Proving the Correctness of Disk Paxos in Isabelle/HOL

Mauro Jaskelioff

Stephan Merz
September 13, 2023

Abstract

Disk Paxos [GL00] is an algorithm for building arbitrary faulttolerant distributed systems. The specification of Disk Paxos has been proved correct informally and tested using the TLC model checker, but up to now, it has never been fully formally verified. In this work we have formally verified its correctness using the Isabelle theorem prover and the HOL logic system [NPW02], showing that Isabelle is a practical tool for verifying properties of TLA ${ }^{+}$specifications.

Contents

1 Introduction 2
2 The Disk Paxos Algorithm 3
2.1 Informal description of the algorithm. 4
2.2 Disk Paxos and its TLA ${ }^{+}$Specification 4
3 Translating from TLA ${ }^{+}$to Isabelle/HOL 6
3.1 Typed vs. Untyped 6
3.2 Primed Variables 8
3.3 Restructuring the specification 8
4 Structure of the Correctness Proof 9
4.1 Going from Informal Proofs to Formal Proofs 10
5 Conclusion 11
A TLA ${ }^{+}$correctness specification 12
B Disk Paxos Algorithm Specification 13
C Proof of Disk Paxos' Invariant 19
C. 1 Invariant 1 19
C. 2 Invariant 2 23
C.2.1 Proofs of Invariant 2 a 25
C.2.2 Proofs of Invariant 2 b 37
C.2.3 Proofs of Invariant 2 c 38
C. 3 Invariant 3 46
C.3.1 Proofs of Invariant 3 47
C. 4 Invariant 4 55
C.4.1 Proofs of Invariant 4a 56
C.4.2 Proofs of Invariant 4b 67
C.4.3 Proofs of Invariant 4 c 76
C.4.4 Proofs of Invariant 4d 81
C. 5 Invariant 5 91
C.5.1 Proof of Invariant 5 92
C. 6 Lemma I2f 115
C. 7 Invariant 6 134
C. 8 The Complete Invariant 148
C. 9 Inner Module 149

1 Introduction

Algorithms for fault-tolerant distributed systems were first introduced to implement critical systems. Nevertheless, what good is such an algorithm if it has a design error? We need some kind of guarantee that the algorithm does not have a faulty design. Formal verification of its specification is one such guarantee.

Disk Paxos [GL00] is an algorithm for building arbitrary fault-tolerant distributed systems, that, due to its complexity, is difficult to reason about. It has been proved correct informally, and tested using the TLC model checker [Lam02]. The informal proof is rigorous but, as it is always the case with large informal proofs, it is easy to overlook details. Thus, one of the motivations of this work is to see if such a rigorous proof can be formalized in a contemporary theorem prover.

In [Pac01] part of the correctness proof (invariance of HInv1 and HInv3) was verified using the theorem prover ACL2 [KMM00]. An implicit assumption of this formalization is that all sets are finite, thus overlooking the fact that there is a missing conjunct in the Disk Paxos invariant (see Section 4).

We set the goal of formally verifying Disk Paxos correctness using the theorem prover Isabelle/HOL [NPW02]. In this way, we could gain more confidence in the correctness of Disk Paxos design and, at the same time, learn to what extent can Isabelle be a useful tool for proving the correctness of distributed systems using a real world example.

In Section 2 we give a brief description of the algorithm and its specification. In Section 3 we describe the translation from TLA ${ }^{+}$to Isabelle/HOL and the problems that this translation originated. In Section 4 we discuss how our formal proofs relate to the informal ones in [GL00], and in Section 5 we conclude. The entire specification and all formal proofs can be found in the Appendix.

2 The Disk Paxos Algorithm

Disk Paxos is a variant of the classic Paxos algorithm [Lam98] for the implementation of arbitrary fault-tolerant systems with a network of processors and disks. It maintains consistency in the event of any number of nonByzantine failures. This means that a processor may fail completely or pause for arbitrary long periods and then restart, remembering only that it has failed. A disk may become inaccessible to some or all processors, but it may not be corrupted. We say that a system is stable if all processes are either non-faulty or have failed completely (i.e. there are no new failed processes). Disk Paxos guarantees progress if the system is stable and there is at least one non-faulty processor that can read and write a majority of the disks. Consequently, the fundamental difference between Classic Paxos and Disk Paxos is that the former achieves redundancy by replicating processes while the latter replicates disks. Since disks are usually cheaper than processors, it is possible to obtain more redundancy at a lower cost.

Disk Paxos uses the state machine approach to solve the problem of implementing an arbitrary distributed system. The state machine approach [Sch90] is a general method that reduces this problem to solving a consensus problem. The distributed system is designed as a deterministic state machine that executes a sequence of commands, and a consensus algorithm ensures that, for each n, all processors agree on the $n^{t h}$ command. Hence, each processor p starts with an input value (a command), and it may output a value (the command to be executed). The problem is solved if all processors eventually output the same value and this value was a value of input $[p]$ for some p (under certain assumptions, in our case that there exists at least one non-faulty processor that can write and read a majority of disks).

Progress of Disk Paxos relies on progress of a leader-election algorithm. It is easy to make a leader-election algorithm if the system stable, but very hard to devise one that works correctly even if the system is unstable. We are requiring stability to ensure progress, but actually only a weaker requirement is needed: progress of the underlying leader-election algorithm. Disk Paxos ensures that all outputs (if any) will be the same even if the leader-election algorithm fails.

2.1 Informal description of the algorithm.

The consensus algorithm of Disk Paxos is called Disk Synod. In it, each processor has an assigned block on each disk. Also it has a local memory that contains its current block (called the dblock), and other state variables (see figure 1). When a process p starts it contains an input value input $[p]$ that will not be modified, except possibly when recovering from a failure.

Disk Synod is structured in two phases, plus one more phase for recovering from failures. In each phase, a processor writes its own block and reads each other processor's block, on a majority of the disks. The idea is to execute ballots to determine:

Phase 1: whether a processor p can choose its own input value input $[p]$ or must choose some other value. When this phase finishes a value v is chosen.

Phase 2: whether it can commit v. When this phase is complete the process has committed value v and can output it (using variable outpt).

In either phase, a processor aborts its ballot if it learns that another processor has begun a higher-numbered ballot. The third phase (Phase 0) is for starting the algorithm or recovering from a failure.

In each block, processors maintain three values:
mbal The current ballot number.
bal The largest ballot number for which the processor entered phase 2 .
inp The value the processor tried to commit in ballot number bal.
For a complete description of the algorithm, see [GL00].

2.2 Disk Paxos and its TLA ${ }^{+}$Specification

The specification of Disk Paxos is written in the TLA ${ }^{+}$specification language [Lam02]. As it is usual with TLA ${ }^{+}$, the specification is organized into modules.

The specification of consensus is given in module Synod, which can be found in appendix A. In it there are only two variables: input and output. To formalize the property stating that all processors should choose the same value and that this value should have been an input of a processor, we need variables that represent all past inputs and the value chosen as result. Consequently, an Inner submodule is introduced, which adds two variables: allInput and chosen. Our Synod module will be obtained by existentially quantifying these variables of the Inner module.

The specification of the algorithm is given in the HDiskSynod module. Hence, what we are going to prove is that the (translation to Isabelle/HOL

Processors

Figure 1: A network of processors and disks.
of the) Inner module is implied by the (translation to Isabelle/HOL of the) algorithm module HDiskSynod.

More concretely we have that the specification of the algorithm is:

$$
\text { HDiskSynodSpec } \triangleq \text { HInit } \wedge \square[H N e x t]_{\langle v a r s, c h o s e n, a l l I n p u t\rangle}
$$

where HInit describes the initial state of the algorithm and HNext is the action that models all of its state transitions. The variable vars is the tuple of all variables used in the algorithm.

Analogously, we have the specification of the Inner module:

$$
\text { ISpec } \triangleq \text { IInit } \wedge \square[\text { INext }]_{\langle\text {input }, \text { output,chosen,allInput }\rangle}
$$

We define ivars $=\langle$ input, output, chosen, allInput \rangle. In order to prove that HDiskSynodSpec implies ISpec, we follow the structure of the proof given by Gafni and Lamport. We must prove two theorems:

$$
\begin{array}{lll}
\text { THEOREM } & R 1 & \text { HInit } \Rightarrow \text { IInit } \\
\text { THEOREM } & R 2 & \text { HInit } \wedge \square[H N e x t]_{\langle\text {vars,chosen,allInput }\rangle} \Rightarrow \square[\text { INext }]_{i v a r s}
\end{array}
$$

The proof of $R 1$ is trivial. For $R 2$, we use TLA proof rules [Lam02] that show that to prove $R 2$, it suffices to find a state predicate HInv for which we can prove:

A predicate satisfying HInv is said to be an invariant of HDiskSynodSpec. To prove $R 2 a$, we make HInv strong enough to satisfy:

TLA $^{+}$	Isabelle/HOL
$\exists d \in D:$ disk $[d][q]$. bal $=b k$	$\exists d \in$ D. bal $($ disk $s d q)=b k$
CHOOSE $x . P x$	$\varepsilon x . P x$
phase $^{\prime}=[$ phase EXCEPT $![p]=1]$	phase $s^{\prime}=($ phase $s)(p:=1)$
UNION $\{$ blocksOf $(p): p \in$ Proc $\}$	UN p. blocksOf $s p$
UNCHANGED v	$v s^{\prime}=v s$

Table 1: Examples of TLA^{+}formulas and their counterparts in Isabelle/HOL.

THEOREM $I 1 \quad H I n i t \Rightarrow H I n v$
THEOREM I2 HInv $\wedge H N e x t \Rightarrow H I n v{ }^{\prime}$
Again, we have TLA proof rules that say that $I 1$ and $I 2$ imply $R 2 a$. In summary, $R 2 b, I 1$, and $I 2$ together imply $H D i s k S y n o d S p e c ~ \Rightarrow I S p e c$.

Finding a predicate HInv that is strong enough can be rather difficult. Fortunately, Gafni and Lamport give this predicate. In their paper, they present HInv as a conjunction of 6 predicates HInv $1, \ldots$, HInv6, where HInv 1 is a simple "type invariant" and the higher-numbered predicates add more and more information. The proof is structured such that the preservation of HInv i by the algorithm's next-state relation relies on all HInv j (for $j \leq i$) being true in the state before the transition. In our proofs we are going to use exactly the same tactic.

Before starting our proofs we have to translate all the specification and theorems above into the formal language of Isabelle/HOL.

3 Translating from TLA ${ }^{+}$to Isabelle/HOL

The translation from TLA ${ }^{+}$to Isabelle/HOL is pretty straightforward as Isabelle/HOL has equivalent counterparts for most of the constructs in TLA ${ }^{+}$ (some representative examples are shown in table 1). Nevertheless, there are some semantic discrepancies. In the following, we discuss these differences, some of the options that one has when dealing with them, and the reasons for our choices ${ }^{1}$.

3.1 Typed vs. Untyped

TLA ${ }^{+}$is an untyped formalism. However, TLA ${ }^{+}$specifications usually have some type information, usually in the form of set membership or set inclusion. When translating these specifications to Isabelle/HOL, which is a typed formalism, one has to invent types that represent these sets of values.

[^0]```
TLA+
CONSTANT Inputs
NotAnInput }\triangleq CHOOSE c:c\not\inInput
DiskBlock \triangleq [mbal : (UNION Ballot (p) : p\inProc)\cup{0},
 bal : (UNION Ballot (p):p\inProc)\cup{0},
 inp : Inputs \cup{NotAnInput}]
Isabelle/HOL:
typedecl InputsOrNi
consts
 Inputs :: InputsOrNi set
 NotAnInput :: InputsOrNi
axioms
 NotAnInput: NotAnInput & Inputs
 InputsOrNi:(UNIV :: InputsOrNi set) = Inputs \cup {NotAnInput }
record
 DiskBlock =
 mbal:: nat
 bal :: nat
 inp :: InputsOrNi
```

Figure 2: Untyped TLA ${ }^{+}$vs. Typed Isabelle/HOL

This process is not automatic and requires some thought to find the right abstractions. Furthermore, simple types may not be expressive enough to represent exactly the set in the specification. In some cases, these sets could be modelled by algebraic datatypes, but this would make the specification more complex and less directly related to the original one. In this work, we have chosen to stick to simple types and add additional axioms to account for their lack of expressiveness.

For example, see figure 2. The type InputsOrNi models the members of the set Inputs, and the element NotAnInput. We record the fact that NotAnInput is not in Inputs, with axiom NotAnInput. Now, looking at the type of the inp field of the DiskBlock record in the TLA ${ }^{+}$specification, we see that its type should be InputsOrNi. However, this is not the same type as Inputs $\cup\{$ NotAnInput $\}$, as nothing prevents the InputsOrNi type from having more values. Consequently, we add the axiom InputsOrNi to establish that the only values of this type are the ones in Inputs and NotAnInput.

This example shows the kind of difficulties that can arise when trans-

```
TLA \({ }^{+}\):
Phase1or 2 Write \((p, d) \triangleq\)
 \(\wedge\) phase \([p] \in\{1,2\}\)
 \(\wedge\) disk \({ }^{\prime}=[\) disk EXCEPT \(![d][p]=\) dblock \([p]]\)
 \(\wedge\) disks Written \(^{\prime}=[\) disksWritten EXCEPT \(![p]=@ \cup\{d\}]\)
 \(\wedge\) UNCHANGED \(\langle\) input, output, phase, dblock, blocksRead \(\rangle\)
```

Isabelle/HOL:

```
Phase1or2Write :: state \(\Rightarrow\) state \(\Rightarrow\) Proc \(\Rightarrow\) Disk \(\Rightarrow\) bool
Phase1or2Write s s'pd
 phase s \(p \in\{1,2\}\)
 \(\wedge\) disk \(s^{\prime}=(\) disk \(s)(d:=(\) disk s \(d)(p:=\) dblock s \(p))\)
 \(\wedge\) disksWritten \(s^{\prime}=(\) disksWritten \(s)(p:=(\) disksWritten sp) \(\cup\{d\})\)
 \(\wedge\) inpt \(s^{\prime}=\) inpt \(s \wedge\) outpt \(s^{\prime}=\) outpt \(s\)
 \(\wedge\) phase \(s^{\prime}=\) phase \(s \wedge\) dblock \(s^{\prime}=\) dblock \(s\)
 \(\wedge\) blocksRead \(s^{\prime}=\) blocksRead \(s\)
```

Figure 3: Translation of an action
lating from an untyped formalism to a typed one. Another solution to this matter that is being currently investigated is the implementation of native (untyped) support for $\mathrm{TLA}^{+}$in Isabelle, without relying on HOL.

### 3.2 Primed Variables

In TLA ${ }^{+}$, to denote the value of a variable in the state resulting from an action, there exists the concept of primed variables. In Isabelle/HOL, there is no built-in notion of state, so we define the state as a record of the variables involved. Instead of defining a "priming" operator, we just define actions as predicates that take any two states, intended to be the previous state and the next state. In this way, Pss will be true iff executing an action $P$ in the $s$ state could result in the $s^{\prime}$ state. In figure 3 we can see how the action Phase1or $2 W$ rite is expressed in TLA ${ }^{+}$and in Isabelle/HOL.

### 3.3 Restructuring the specification

There are some minor changes that can be made to specifications to make the proofs in Isabelle easier.

One such change is the elimination of LET constructs by making them global definitions. This has two benefits, as it makes it possible to:

- Formulate lemmas that use these definitions.
- Selectively unfold these definitions in proofs, instead of adding Let-def to Isabelle's simplifier, which unfolds all "let" constructs.

Another change that makes proofs easier is to break down actions into simpler actions (e.g. giving separate definitions for subactions corresponding to disjuncts). By making actions smaller, Isabelle has to deal with smaller formulas when we feed the prover with such an action.

For example, Phase1or 2 Read is mainly a big if-then-else. We break it down into two simpler actions:

$$
\text { Phase1or2Read } \triangleq \text { Phase1or } 2 \text { ReadThen } \vee \text { Phase1or } 2 \text { ReadElse }
$$

In Phase1or2ReadThen the condition of the if-then-else is present as a state formula (i.e. it is an enabling condition) while in Phase1or2ReadElse we add the negation of this condition.

Another example is HInv2, which we break down into:

$$
\operatorname{HInv} 2 \triangleq \operatorname{Inv} 2 a \wedge \operatorname{Inv} 2 b \wedge \operatorname{Inv} 2 c
$$

Not only we break it down into three conjuncts but, since these conjuncts are quantifications over some predicate, we give a separate definition for this predicate. For example for $\operatorname{Inv} 2 a$, and after translating to Isabelle/HOL, instead of writing:
Inv2a $s \equiv \forall p . \forall b k \in$ blocksOf s $p . \ldots$
we write:

```
Inv2a-innermost :: state \(\Rightarrow\) Proc \(\Rightarrow\) DiskBlock \(\Rightarrow\) bool
Inv2a-innermost s \(p b k \equiv \ldots\)
Inv2a-inner :: state \(\Rightarrow\) Proc \(\Rightarrow\) bool
Inv2a-inner s \(p \equiv \forall b k \in b l o c k s O f\) s \(p\). Inv2a-innermost s \(p b k\)
Inv2a \(::\) state \(\Rightarrow\) bool
Inv2a \(s \equiv \forall p\). Inv2a-inner s \(p\)
```

Now we can express that we want to obtain the fact
Inv2a-innermost s q (dblock s q)
explicitly stating that we are interested in predicate Inv2a, but only for some process $q$ and block (dblock $s q$ ).

## 4 Structure of the Correctness Proof

In [GL00], a specification of correctness and a specification of the algorithm are given. Then, it is proved that the specification of the algorithm implies the specification of correctness. We will do the same for the translated specifications, maintaining the names of theorems and lemmas. It should be noted that only safety properties are given and proved.

### 4.1 Going from Informal Proofs to Formal Proofs

There are informal proofs for invariants HInv3-HInv6 and for theorem R2b in [GL00]. These informal proofs are written in the structured-proof style that Lamport advocates [Lam95], and are rigorous and quite detailed. We based our formal proofs on these informal proofs, but in many cases a higher level of detail was needed. In some cases, the steps where too big for Isabelle to solve them automatically, and intermediate steps had to be proved first; in other cases, some of the facts relevant to the proofs were omitted in the informal proofs.

As an example of these omissions, the invariant should state that the set allRdBlks is finite. This is needed to choose a block with a maximum ballot number in action EndPhase1. Interestingly, this omission cannot be detected with finite-state model checking. As another example, it was omitted that it is necessary to assume that HInv 4 and HInv5 hold in the previous state to prove lemma I2f.

Although our proofs were based on the informal ones, the high-level structure was often different. When proving that a predicate $I$ was an invariant of Next, we preferred proving the invariance of $I$ for each action, rather than a big theorem proving the invariance of $I$ for the Next action. As a consequence, a proof for some actions was often similar to the proof of some other action. For example, the proof of the invariance of HInv3 for the EndPhase0 and Fail actions is almost the same. This means we could have made only one proof for the two actions, shortening the length of the complete proof. Nevertheless, proving each action separately could be tackled more easily by Isabelle, as it had fewer facts to deal with, and proving a new lemma was often a simple matter of copy, paste and renaming of definitions. Once the invariance of a given predicate has been proved for each simple action, proving it for the Next action is easy since the Next action is a disjunction of all actions.

The informal proofs start working with Next, and then do a case split in which each case implies some action. The structure of the formal proof was copied from the informal one, in the parts where the latter focused on a particular action, This structure could be easily maintained since we used Isabelle's Isar proof language [Wen02, Nip03], a language for writing human-readable structured proofs.

Lamport's use of a hierarchical scheme for naming subformulas of a formula would have been very useful, as we have to repeatedly extract subfacts from facts. These proofs were always solved automatically by the auto Isabelle tactic, but made the proofs longer and harder to understand. Automatic naming of subformulas of Isabelle definitions would be a very practical feature.

## 5 Conclusion

We formally verified the correctness of the Disk Paxos specification in Isabelle/HOL. We found some omissions in the informal proofs, including one that could not have been detected with finite-state model checking, but no outright errors. This formal proof gives us a greater confidence in the correctness of the algorithm.

This work was done in little more than two months, including learning Isabelle from scratch. Consequently, this work can be taken as evidence that formal verification of fault-tolerant distributed algorithms may be feasible for software verification in an industrial context.

Isabelle proved to be a very helpful tool for this kind of verification, although it would have been useful to have Lamport's naming of subfacts to make proofs shorter and easier to write.

## References

[GL00] Eli Gafni and Leslie Lamport. Disk Paxos. In International Symposium on Distributed Computing, pages 330-344, 2000.
[KMM00] Matt Kaufmann, J. Strother Moore, and Panagiotis Manolios. Computer-Aided Reasoning: An Approach. Kluwer Academic Publishers, Norwell, MA, USA, 2000.
[Lam95] Leslie Lamport. How to write a proof. American Mathematical Monthly, 102(7):600-608, /1995.
[Lam98] Leslie Lamport. The part-time parliament. ACM Transactions on Computer Systems, 16(2):133-169, 1998.
[Lam02] Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware and Software Engineers. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002.
[Nip03] Tobias Nipkow. Structured Proofs in Isar/HOL. In H. Geuvers and F. Wiedijk, editors, Types for Proofs and Programs (TYPES 2002), volume 2646, pages 259-278, 2003.
[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL - A Proof Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.
[Pac01] Carlos Pacheco. Reasoning about TLA actions, 2001.
[Sch90] Fred B. Schneider. Implementing fault-tolerant services using the state machine approach: A tutorial. ACM Computing Surveys, 22(4):299-319, 1990.
[Wen02] Markus M. Wenzel. Isabelle/Isar - a versatile environment for human-readable formal proof documents. PhD thesis, Institut fur Informatik, TU München, 2002.

## A TLA ${ }^{+}$correctness specification



## B Disk Paxos Algorithm Specification

## theory DiskPaxos-Model imports Main begin

This is the specification of the Disk Synod algorithm.

```
typedecl InputsOrNi
typedecl Disk
typedecl Proc
axiomatization
 Inputs :: InputsOrNi set and
 NotAnInput :: InputsOrNi and
 Ballot :: Proc }=>\mathrm{ nat set and
 IsMajority :: Disk set }=>\mathrm{ bool
where
 NotAnInput: NotAnInput }\ddagger\mathrm{ Inputs and
 InputsOrNi:(UNIV :: InputsOrNi set) = Inputs \cup {NotAnInput } and
 Ballot-nzero: }\forall\mathrm{ p. 0 & Ballot p and
 Ballot-disj: }\forall\mathrm{ p q. p}\not=q\longrightarrow(\mathrm{ Ballot p) }\cap(\mathrm{ Ballot q) = {} and
 Disk-isMajority:IsMajority(UNIV) and
 majorities-intersect:
 \forall T. IsMajority (S)^IsMajority (T)\longrightarrowS\capT\not={}
lemma ballots-not-zero [simp]:
 b\in Ballot p\Longrightarrow0<b
proof (rule ccontr)
 assume b: b\in Ballot p
 and contr: }\neg(0<b
 from Ballot-nzero
 have 0 & Ballot p ..
 with b contr
 show False
 by auto
qed
lemma majority-nonempty [simp]: IsMajority (S)\LongrightarrowS\not={}
proof(auto)
 from majorities-intersect
 have IsMajority({})^IsMajority({})}\longrightarrow{}\cap{}\not={
 by auto
 thus IsMajority {} \Longrightarrow False
 by auto
qed
definition AllBallots :: nat set
 where AllBallots = (UN p. Ballot p)
record
 DiskBlock =
```

```
mbal:: nat
bal :: nat
inp :: InputsOrNi
```

definition InitDB :: DiskBlock
where $\operatorname{InitDB}=(\mathrm{mbal}=0, b a l=0$, inp $=$ NotAnInput $)$
record
BlockProc $=$
block :: DiskBlock
proc :: Proc
record
state $=$
inpt :: Proc $\Rightarrow$ InputsOrNi
outpt :: Proc $\Rightarrow$ InputsOrNi
disk :: Disk $\Rightarrow$ Proc $\Rightarrow$ DiskBlock
dblock :: Proc $\Rightarrow$ DiskBlock
phase :: Proc $\Rightarrow$ nat
disksWritten :: Proc $\Rightarrow$ Disk set
blocksRead :: Proc $\Rightarrow$ Disk $\Rightarrow$ BlockProc set
allInput :: InputsOrNi set
chosen :: InputsOrNi
definition hasRead :: state $\Rightarrow$ Proc $\Rightarrow$ Disk $\Rightarrow$ Proc $\Rightarrow$ bool
where hasRead spdq=( $\exists$ br $\in$ blocksRead spd. proc $b r=q)$
definition allRdBlks :: state $\Rightarrow$ Proc $\Rightarrow$ BlockProc set
where allRdBlks s $p=(U N d$. blocksRead spd)
definition allBlocksRead $::$ state $\Rightarrow$ Proc $\Rightarrow$ DiskBlock set
where allBlocksRead s $p=$ block ' (allRdBlks s $p$ )
definition Init :: state $\Rightarrow$ bool
where
Init $s=$
(range (inpt $s) \subseteq$ Inputs
\& outpt $s=(\lambda p$. NotAnInput $)$
$\&$ disk $s=(\lambda d$. InitDB $)$
\& phase $s=(\lambda p .0)$
\& dblock $s=(\lambda p$. InitDB $)$
$\&$ disksWritten $s=(\lambda p .\{ \})$
$\&$ blocksRead $s=(\lambda p d .\{ \}))$
definition InitializePhase :: state $\Rightarrow$ state $\Rightarrow$ Proc $\Rightarrow$ bool
where
InitializePhase s s' $p=$

```
 (disksWritten s'=(disksWritten s)(p:={})
 & blocksRead s'=(blocksRead s)(p:=(\lambdad. {})))
definition StartBallot :: state }=>\mathrm{ state }=>\mathrm{ Proc }=>\mathrm{ bool
where
 StartBallot s s'p=
 (phase s }p\in{1,2
 & phase s' = (phase s)(p:=1)
 & (\existsb \in Ballot p.
 mbal (dblock s p)<b
 & dblock s' = (dblock s)(p:=(dblock s p)\ mbal := b D))
 & InitializePhase s s'p
 & inpt s' = inpt s & outpt s' = outpt s & disk s'= disk s)
definition Phase1or2Write :: state }=>\mathrm{ state }=>\mathrm{ Proc }=>\mathrm{ Disk }=>\mathrm{ bool
where
 Phase1or2Write s s' p d=
 (phase s p\in{1, 2}
 ^disk s'=(disk s)(d:=(disk s d) (p:= dblock s p))
 ^disksWritten s'=(disksWritten s)}(p:=(\mathrm{ disksWritten s p) U{d})
 inpt s' = inpt s ^ outpt s'= outpt s
 ^ phase s' = phase s ^ dblock s'}=\mathrm{ dblock s
 ^blocksRead s'= blocksRead s)
definition Phase1or2ReadThen :: state }=>\mathrm{ state }=>\mathrm{ Proc }=>\mathrm{ Disk }=>\mathrm{ Proc }=>\mathrm{ bool
where
 Phase1or2ReadThen s s' p d q =
 (d d disksWritten s p
 & mbal(disk s d q) < mbal(dblock s p)
 & blocksRead s'=(blocksRead s)(p:= (blocksRead s p)(d:=
 (blocksRead s p d) \cup{0 block = disk s d q,
 proc=q\\}))
 & inpt s' = inpt s & outpt s' = outpt s
 & disk s'}=\mathrm{ disk s & phase }\mp@subsup{s}{}{\prime}=\mathrm{ phase s
 & dblock s'}=\mathrm{ dblock s & disksWritten s'}=\mathrm{ disksWritten s)
definition Phase1or2ReadElse :: state }=>\mathrm{ state }=>\mathrm{ Proc }=>\mathrm{ Disk }=>\mathrm{ Proc }=>\mathrm{ bool
where
 Phase1or2ReadElse s s' p d q=
 (d f disksWritten s p
 \StartBallot s s' p)
definition Phase1or2Read :: state }=>\mathrm{ state }=>\mathrm{ Proc }=>\mathrm{ Disk }=>\mathrm{ Proc }=>\mathrm{ bool
where
 Phase1or2Read s s' p d q =
 (Phase1or2ReadThen s s' pdq
 \checkmark ~ P h a s e 1 o r 2 R e a d E l s e ~ s ~ s ' ~ p ~ d ~ q) ~
definition blocksSeen :: state }=>\mathrm{ Proc }=>\mathrm{ DiskBlock set
```

```
where blocksSeen s \(p=\) allBlocksRead s \(p \cup\{\) dblock s \(p\}\)
definition nonInitBlks :: state \(\Rightarrow\) Proc \(\Rightarrow\) DiskBlock set
 wherenonInitBlks s \(p=\{b s . b s \in\) blocksSeen s \(p \wedge\) inp bs \(\in\) Inputs \(\}\)
definition maxBlk :: state \(\Rightarrow\) Proc \(\Rightarrow\) DiskBlock
where
 maxBlk s \(p=\)
 (SOME b. b nonInitBlks s \(p \wedge(\forall c \in\) nonInitBlks s \(p\). bal \(c \leq b a l b))\)
definition EndPhase1 \(::\) state \(\Rightarrow\) state \(\Rightarrow\) Proc \(\Rightarrow\) bool
where
 EndPhase1s s \(s^{\prime} p=\)
 (IsMajority \(\{d . d \in\) disks Written s \(p\)
 \(\wedge(\forall q \in U N I V-\{p\}\). hasRead s p d \(q)\}\)
 \(\wedge\) phase s \(p=1\)
 \(\wedge\) dblock \(s^{\prime}=(\) dblock \(s)(p:=\) dblock \(s p\)
 (bal \(:=\operatorname{mbal}(\) dblock s \(p\)),
 inp :=
 (if nonInitBlks s \(p=\{ \}\)
 then inpt sp
 else inp (maxBlk s p))
 D)
\(\wedge\) outpt \(s^{\prime}=\) outpt \(s\)
\(\wedge\) phase \(s^{\prime}=(\) phase \(s)(p:=\) phase s \(p+1)\)
\(\wedge\) InitializePhase \(s s^{\prime} p\)
\(\wedge\) inpt \(s^{\prime}=\operatorname{inpt} s \wedge\) disk \(\left.s^{\prime}=\operatorname{disk} s\right)\)
definition EndPhase2 :: state \(\Rightarrow\) state \(\Rightarrow\) Proc \(\Rightarrow\) bool
where
EndPhase2 s s' \(p=\)
 (IsMajority \(\{d . d \in\) disks Written s \(p\)
 \(\wedge(\forall q \in U N I V-\{p\}\). hasRead spdq)\}
 \(\wedge\) phase s \(p=2\)
 \(\wedge\) outpt \(s^{\prime}=(\) outpt \(s)(p:=\operatorname{inp}(\) dblock sp) \()\)
 \(\wedge\) dblock \(s^{\prime}=\) dblock \(s\)
 \(\wedge\) phase \(s^{\prime}=(\) phase \(s)(p:=\) phase s \(p+1)\)
 \(\wedge\) InitializePhase \(s s^{\prime} p\)
 \(\wedge\) inpt \(s^{\prime}=\operatorname{inpt} s \wedge\) disk \(\left.s^{\prime}=\operatorname{disk} s\right)\)
definition EndPhase1or2 :: state \(\Rightarrow\) state \(\Rightarrow\) Proc \(\Rightarrow\) bool
 where EndPhase1or2 s \(s^{\prime} p=\left(\right.\) EndPhase1 \(s s^{\prime} p \vee\) EndPhase2 \(\left.s s^{\prime} p\right)\)
definition Fail \(::\) state \(\Rightarrow\) state \(\Rightarrow\) Proc \(\Rightarrow\) bool
where
Fail \(s s^{\prime} p=\)
 \(\left(\exists\right.\) ip \(\in\) Inputs. inpt \(s^{\prime}=(\) inpt \(s)(p:=i p)\)
 \(\wedge\) phase \(s^{\prime}=(\) phase \(s)(p:=0)\)
\(\wedge\) dblock \(s^{\prime}=(\) dblock \(s)(p:=\operatorname{InitDB})\)
```

```
\ outpt s' = (outpt s) (p:= NotAnInput)
InitializePhase s s'p
\wedge disk s'= disk s)
definition Phase0Read :: state }=>\mathrm{ state }=>\mathrm{ Proc }=>\mathrm{ Disk }=>\mathrm{ bool
where
Phase0Read s s' pd=
 (phase s p=0
 ^blocksRead s'=(blocksRead s) (p:=(blocksRead s p) (d := blocksRead s p d
\cup \{ 0 ~ b l o c k = ~ d i s k ~ s ~ d ~ p , ~ p r o c ~ = ~ p ~ D \})) ,
 ^ inpt s' = inpt s & outpt s' = outpt s
 ^disk s'}=\mathrm{ disk s & phase s' = phase s
 \dblock s'}=\mathrm{ dblock s & disksWritten s}\mp@subsup{}{}{\prime}=\mathrm{ disksWritten s)
definition EndPhase0 :: state }=>\mathrm{ state }=>\mathrm{ Proc }=>\mathrm{ bool
where
EndPhase0 s s'p=
 (phase s p=0
 \IsMajority ({d. hasRead s p d p })
 \wedge (\existsb G Ballot p.
 (\forallr\in allBlocksRead s p.mbal r<b)
 ^ dblock s' = (dblock s) (p:=
 (SOME r. r allBlocksRead s p
 \wedge(\foralls\inallBlocksRead s p.bal s\leq bal r)) \ mbal := b)))
 InitializePhase s s'p
 ^ phase s' = (phase s) (p:=1)
 ^inpt s' = inpt s ^ outpt s' = outpt s ^ disk s' = disk s)
```

definition Next $::$ state $\Rightarrow$ state $\Rightarrow$ bool
where
Next s $s^{\prime}=(\exists \mathrm{p}$
StartBallot s s'p
$\vee(\exists d$. Phase0Read s s' p d
$\checkmark$ Phase1or2Write s $s^{\prime} p d$
$\vee\left(\exists q . q \neq p \wedge\right.$ Phase1or2Read $\left.\left.s s^{\prime} p d q\right)\right)$
$\vee$ EndPhase1or2 s s'p
$\checkmark$ Fail $s s^{\prime} p$
$\vee$ EndPhase0 s s' $p$ )

In the following, for each action or state name we name Hname the corresponding action that includes the history part of the HNext action or state predicate that includes history variables.

```
definition HInit :: state \(\Rightarrow\) bool
where
 HInit \(s=\)
 (Init s
\& chosen \(s=\) NotAnInput
\& allInput \(s=\) range \((\) inpt \(s))\)
```

HNextPart is the part of the Next action that is concerned with history variables.
definition HNextPart :: state $\Rightarrow$ state $=>$ bool
where

```
 HNextPart s s \({ }^{\prime}=\)
 (chosen \(s^{\prime}=\)
 (if chosen \(s \neq\) NotAnInput \(\vee\left(\forall\right.\) p. outpt \(s^{\prime} p=\) NotAnInput \()\)
 then chosen \(s\)
 else outpt \(s^{\prime}\left(S O M E\right.\) p. outpt \(s^{\prime} p \neq\) NotAnInput))
 \(\wedge\) allInput \(s^{\prime}=\) allInput \(s \cup\left(\right.\) range \(\left(\right.\) inpt \(\left.\left.\left.s^{\prime}\right)\right)\right)\)
```

definition HNext :: state $\Rightarrow$ state $\Rightarrow$ bool
where
HNext s $s^{\prime}=$
(Next s s ${ }^{\prime}$
$\wedge$ HNextPart s s')

We add HNextPart to every action (rather than proving that Next maintains the HInv invariant) to make proofs easier.

## definition

HPhase1or2ReadThen $::$ state $\Rightarrow$ state $\Rightarrow$ Proc $\Rightarrow$ Disk $\Rightarrow$ Proc $\Rightarrow$ bool where
HPhase1or2ReadThen s s'pd $q=($ Phase1or2ReadThen s s' $p d q \wedge$ HNextPart $s s^{\prime}$ )

## definition

HEndPhase1 $::$ state $\Rightarrow$ state $\Rightarrow$ Proc $\Rightarrow$ bool where
HEndPhase1 s $s^{\prime} p=\left(\right.$ EndPhase1 s $s^{\prime} p \wedge$ HNextPart $\left.s s^{\prime}\right)$

## definition

HStartBallot $::$ state $\Rightarrow$ state $\Rightarrow$ Proc $\Rightarrow$ bool where
HStartBallot $s s^{\prime} p=\left(\right.$ StartBallot s s $s^{\prime} p \wedge$ HNextPart s $\left.s^{\prime}\right)$

## definition

HPhase1or2Write :: state $\Rightarrow$ state $\Rightarrow$ Proc $\Rightarrow$ Disk $\Rightarrow$ bool where
HPhase1or2Write s s'pd=(Phase1or2Write s s'pd $s^{\prime}$ HNextParts $\left.s^{\prime}\right)$

## definition

HPhase1or2ReadElse :: state $\Rightarrow$ state $\Rightarrow$ Proc $\Rightarrow$ Disk $\Rightarrow$ Proc $\Rightarrow$ bool where HPhase1or2ReadElse s s'pdq=(Phase1or2ReadElse s s'pdq^HNextParts $\left.s^{\prime}\right)$

## definition

HEndPhase2 $::$ state $\Rightarrow$ state $\Rightarrow$ Proc $\Rightarrow$ bool where
HEndPhase2 s s $s^{\prime} p=\left(\right.$ EndPhase2 $s s^{\prime} p \wedge$ HNextPart $\left.s s^{\prime}\right)$

## definition

HFail $::$ state $\Rightarrow$ state $\Rightarrow$ Proc $\Rightarrow$ bool where
HFail s s $s^{\prime} p=\left(\right.$ Fail s s $s^{\prime} p \wedge$ HNextPart $\left.s s^{\prime}\right)$

```
definition
 HPhase0Read :: state }=>\mathrm{ state }=>\mathrm{ Proc }=>\mathrm{ Disk }=>\mathrm{ bool where
 HPhase0Read s s'pd=(Phase0Read s s'pd^HNextPart s s')
definition
 HEndPhase0 :: state }=>\mathrm{ state }=>\mathrm{ Proc }=>\mathrm{ bool where
 HEndPhase0 s s'p=(EndPhase0 s s' p}^\mathrm{ (HNextPart s s')
```

Since these definitions are the conjunction of two other definitions declaring them as simplification rules should be harmless.

```
declare HPhase1or2ReadThen-def [simp]
declare HPhase1or2ReadElse-def [simp]
declare HEndPhase1-def [simp]
declare HStartBallot-def [simp]
declare HPhase1or2Write-def [simp]
declare HEndPhase2-def [simp]
declare HFail-def [simp]
declare HPhase0Read-def [simp]
declare HEndPhase0-def [simp]
end
```


## C Proof of Disk Paxos' Invariant

theory DiskPaxos-Inv1 imports DiskPaxos-Model begin

## C. 1 Invariant 1

This is just a type Invariant.

```
definition Inv1 :: state \(\Rightarrow\) bool
where
 Inv1 \(s=(\forall p\).
 inpt s \(p \in\) Inputs
 \(\wedge\) phase s \(p \leq 3\)
 \(\wedge\) finite (allRdBlks sp))
```

definition HInv1 :: state $\Rightarrow$ bool
where
HInv1 $s=$
(Inv1s
$\wedge$ allInput $s \subseteq$ Inputs)
declare HInv1-def [simp]

We added the assertion that the set all RdBlksp is finite for every process $p$; one may therefore choose a block with a maximum ballot number in action EndPhase1.

With the following the lemma, it will be enough to prove Inv1 s' for every action, without taking the history variables in account.

```
lemma HNextPart-Inv1: \llbracketHInv1 s;HNextPart s s';Inv1 s'\rrbracket\Longrightarrow HInv1 s
 by(auto simp add: HNextPart-def Inv1-def)
theorem HInit-HInv1: HInit s \longrightarrowHInv1 s
 by(auto simp add: HInit-def Inv1-def Init-def allRdBlks-def)
lemma allRdBlks-finite:
 assumes inv: HInv1 s
 and asm: }\forallp.allRdBlks s' p\subseteqinsert bk (allRdBlks s p)
 shows }\forallp\mathrm{ . finite (allRdBlks s'p)
proof
 fix pp
 from inv
 have }\forallp\mathrm{ . finite (allRdBlks s p)
 by(simp add: Inv1-def)
 hence finite (allRdBlks s pp)
 by blast
 with asm
 show finite (allRdBlks s' pp)
 by (auto intro: finite-subset)
qed
theorem HPhase1or2ReadThen-HInv1:
 assumes inv1: HInv1 s
 and act: HPhase1or2ReadThen s s' p d q
 shows HInv1 s'
proof -
 - we focus on the last conjunct of Inv1
 from act
 have }\forallp\mathrm{ . allRdBlks s' p`allRdBlks s p U {0block=disk s d q, proc = q\}
 by(auto simp add: Phase1or2ReadThen-def allRdBlks-def
 split: if-split-asm)
 with inv1
 have }\forallp\mathrm{ . finite (allRdBlks s'p)
 by(blast dest: allRdBlks-finite)
 - the others conjuncts are trivial
 with inv1 act
 show ?thesis
 by(auto simp add:Inv1-def Phase1or2ReadThen-def HNextPart-def)
qed
theorem HEndPhase1-HInv1:
 assumes inv1: HInv1 s
 and act:HEndPhase1 s s'p
 shows HInv1 s'
proof -
 from inv1 act
```

```
 have Inv1 s'
 by(auto simp add: Inv1-def EndPhase1-def InitializePhase-def allRdBlks-def)
 with inv1 act
 show ?thesis
 by(auto simp del: HInv1-def dest: HNextPart-Inv1)
qed
theorem HStartBallot-HInv1:
 assumes inv1: HInv1 s
 and act:HStartBallot s s'p
 shows HInv1 s'
proof -
 from inv1 act
 have Inv1 s'
 by(auto simp add: Inv1-def StartBallot-def InitializePhase-def allRdBlks-def)
 with inv1 act
 show ?thesis
 by(auto simp del: HInv1-def elim: HNextPart-Inv1)
qed
theorem HPhase1or2Write-HInv1:
 assumes inv1: HInv1 s
 and act:HPhase1or2Write s s' pd
 shows HInv1 s'
proof -
 from inv1 act
 have Inv1 s'
 by(auto simp add: Inv1-def Phase1or2Write-def allRdBlks-def)
 with inv1 act
 show ?thesis
 by(auto simp del: HInv1-def elim: HNextPart-Inv1)
qed
theorem HPhase1or2ReadElse-HInv1:
 assumes act: HPhase1or2ReadElse s s' p d q
 and inv1:HInv1 s
 shows HInv1 s'
 using HStartBallot-HInv1[OF inv1] act
 by(auto simp add: Phase1or2ReadElse-def)
theorem HEndPhase2-HInv1:
 assumes inv1: HInv1s
 and act:HEndPhase2 s s' p
 shows HInv1 s'
proof -
 from inv1 act
 have Inv1 s'
 by(auto simp add: Inv1-def EndPhase2-def InitializePhase-def allRdBlks-def)
 with inv1 act
```

```
 show ?thesis
 by(auto simp del: HInv1-def elim: HNextPart-Inv1)
qed
theorem HFail-HInv1:
 assumes inv1: HInv1 s
 and act:HFail s s'p
 shows HInv1 s'
proof -
 from inv1 act
 have Inv1 s'
 by(auto simp add: Inv1-def Fail-def InitializePhase-def allRdBlks-def)
 with inv1 act show ?thesis
 by(auto simp del: HInv1-def elim: HNextPart-Inv1)
qed
theorem HPhase0Read-HInv1:
 assumes inv1: HInv1 s
 and act:HPhaseORead s s' pd
 shows HInv1 s'
proof -
 - we focus on the last conjunct of Inv1
 from act
 have }\forallpp\mathrm{ . allRdBlks s'pp` allRdBlks s pp U{0block= disk s d p, proc= = p)}
 by(auto simp add: PhaseORead-def allRdBlks-def
 split: if-split-asm)
 with inv1
 have }\forallp\mathrm{ . finite (allRdBlks s'p)
 by(blast dest: allRdBlks-finite)
 - the others conjuncts are trivial
 with inv1 act
 have Inv1 s'
 by(auto simp add: Inv1-def Phase0Read-def)
 with inv1 act
 show ?thesis
 by(auto simp del: HInv1-def elim: HNextPart-Inv1)
qed
theorem HEndPhase0-HInv1:
 assumes inv1: HInv1 s
 and act: HEndPhase0 s s'p
 shows HInv1 s'
proof -
 from inv1 act
 have Inv1 s'
 by(auto simp add: Inv1-def EndPhase0-def allRdBlks-def InitializePhase-def)
 with inv1 act
 show ?thesis
 by(auto simp del: HInv1-def elim: HNextPart-Inv1)
```


## qed

```
declare HInv1-def [simp del]
HInv1 is an invariant of HNext
lemma I2a:
 assumes nxt:HNext s s'
 and inv: HInv1 s
 shows HInv1 s'
 using assms
 by(auto
 simp add: HNext-def Next-def,
 auto intro: HStartBallot-HInv1,
 auto intro: HPhase0Read-HInv1,
 auto intro: HPhase1or2Write-HInv1,
 auto simp add: Phase1or2Read-def
 intro: HPhase1or2ReadThen-HInv1
 HPhase1or2ReadElse-HInv1,
 auto simp add: EndPhase1or2-def
 intro: HEndPhase1-HInv1
 HEndPhase2-HInv1,
 auto intro: HFail-HInv1,
 auto intro: HEndPhase0-HInv1)
```

end

## theory DiskPaxos-Inv2 imports DiskPaxos-Inv1 begin

## C. 2 Invariant 2

The second invariant is split into three main conjuncts called Inv2a, Inv2b, and Inv2c. The main difficulty is in proving the preservation of the first conjunct.
definition rdBy :: state $\Rightarrow$ Proc $\Rightarrow$ Proc $\Rightarrow$ Disk $\Rightarrow$ BlockProc set where

$$
r d B y s p q d=
$$

$\{b r$. $b r \in$ blocksRead s q $d \wedge$ proc $b r=p\}$
definition blocksOf :: state $\Rightarrow$ Proc $\Rightarrow$ DiskBlock set where
blocksOf s $p=$
\{dblock s p \}
$\cup\{$ disk $s d p \mid d . d \in U N I V\}$
$\cup\{$ block $b r \mid b r . b r \in(U N q d . r d B y s p q d)\}$
definition allBlocks :: state $\Rightarrow$ DiskBlock set

```
where allBlocks \(s=(U N\) p. blocksOf \(s p)\)
definition Inv2a-innermost :: state \(\Rightarrow\) Proc \(\Rightarrow\) DiskBlock \(\Rightarrow\) bool
where
 Inv2a-innermost s \(p b k=\)
 (mbal bk \(\in(\) Ballot \(p) \cup\{0\}\)
 \(\wedge\) bal bk \(\in(\) Ballot \(p) \cup\{0\}\)
 \(\wedge(b a l b k=0)=(\) inp \(b k=\) NotAnInput \()\)
 \(\wedge\) bal bk \(\leq\) mbal bk
 \(\wedge\) inp \(b k \in(\) allInput \(s) \cup\{\) NotAnInput \(\})\)
definition Inv2a-inner :: state \(\Rightarrow\) Proc \(\Rightarrow\) bool
 where Inv2a-inner s \(p=(\forall b k \in\) blocksOf \(s p\). Inv2a-innermost s \(p b k)\)
definition Inv2a :: state \(\Rightarrow\) bool
 where Inv2a \(s=(\forall p\). Inv2a-inner s \(p)\)
definition Inv2b-inner :: state \(\Rightarrow\) Proc \(\Rightarrow\) Disk \(\Rightarrow\) bool
where
 Inv2b-inner s p \(d=\)
 (\((d \in\) disksWritten s \(p \longrightarrow\)
 (phase s \(p \in\{1,2\} \wedge\) disk s d \(p=\) dblock \(s p)\))
 \(\wedge(\) phase \(s p \in\{1,2\} \longrightarrow\)
 ((blocksRead spd\(\neq\{ \} \longrightarrow d \in\) disksWritten s \(p\))
 \(\wedge \neg\) hasRead s pdp)))
definition Inv2b :: state \(\Rightarrow\) bool
 where Inv2b \(s=(\forall p d\). Inv2b-inner spd)
definition Inv2c-inner :: state \(\Rightarrow\) Proc \(\Rightarrow\) bool
where
 Inv2c-inner s \(p=\)
 \(((\) phase s \(p=0 \longrightarrow\)
 (dblock s \(p=\operatorname{Init} D B\)
 \(\wedge\) disksWritten s \(p=\{ \}\)
 \(\wedge(\forall d . \forall b r \in\) blocksRead s pd.
 proc \(b r=p \wedge\) block \(b r=\) disk s d \(p)\)))
 \(\wedge\) (phase s \(p \neq 0 \longrightarrow\)
 (mbal(dblock s p) \(\operatorname{Eallot} p\)
 \(\wedge\) bal (dblock s \(p) \in\) Ballot \(p \cup\{0\}\)
 \(\wedge(\forall d . \forall b r \in\) blocksRead spd.
 mbal(block br) <mbal(dblock s p))))
 \(\wedge(\) phase s \(p \in\{2,3\} \longrightarrow\) bal \((\) dblock s \(p)=\operatorname{mbal}(d b l o c k s p))\)
 \(\wedge\) outpt s \(p=(\) if phase s \(p=3\) then inp (dblocks \(p\)) else NotAnInput)
 \(\wedge\) chosen \(s \in\) allInput \(s \cup\{\) NotAnInput \(\}\)
 \(\wedge(\forall p\). inpt s \(p \in\) allInput \(s\)
 \(\wedge(\) chosen \(s=\) NotAnInput \(\longrightarrow\) outpt s \(p=\) NotAnInput \()))\)
```

definition Inv2c :: state $\Rightarrow$ bool

```
 where Inv2c \(s=(\forall p\). Inv2c-inner \(s p)\)
definition HInv2 :: state \(\Rightarrow\) bool
 where HInv2 \(s=(\) Inv2a \(s \wedge \operatorname{Inv2b} s \wedge \operatorname{Inv2c} s)\)
```


## C.2.1 Proofs of Invariant 2 a

theorem HInit-Inv2a: HInit $s \longrightarrow$ Inv2a $s$
by (auto simp add: HInit-def Init-def Inv2a-def Inv2a-inner-def
Inv2a-innermost-def rdBy-def blocksOf-def
InitDB-def)
For every action we define a action-blocks $O f$ lemma. We have two cases: either the new blocks $O f$ is included in the old blocks $O f$, or the new blocks $O f$ is included in the old blocks $O f$ union the new dblock. In the former case the assumption inv will imply the thesis. In the latter, we just have to prove the innermost predicate for the particular case of the new dblock. This particular case is proved in lemma action-Inv2a-dblock.

```
lemma HPhase1or2ReadThen-blocksOf:
 【HPhase1or2ReadThen \(s s^{\prime} p d q \rrbracket \Longrightarrow\) blocksOf \(s^{\prime} r \subseteq\) blocksOf s \(r\)
 by (auto simp add: Phase1or2ReadThen-def blocksOf-def rdBy-def)
theorem HPhase1or2ReadThen-Inv2a:
 assumes inv: Inv2a s
 and act: HPhase1or2ReadThen \(s s^{\prime} p d q\)
 shows Inv2a \(s^{\prime}\)
proof (clarsimp simp add: Inv2a-def Inv2a-inner-def)
 fix \(p p b k\)
 assume \(b k: b k \in b l o c k s O f s^{\prime} p p\)
 with inv HPhase1or2ReadThen-blocksOf[OF act]
 have Inv2a-innermost s pp bk
 by (auto simp add: Inv2a-def Inv2a-inner-def)
 with act
 show Inv2a-innermost s' \(p p b k\)
 by(auto simp add: Inv2a-innermost-def HNextPart-def)
qed
lemma InitializePhase-rdBy:
 InitializePhase s s'p rdBy s'ppqqdd \(\subseteq\) rdBy s pp qq dd
by (auto simp add: InitializePhase-def rdBy-def)
lemma HStartBallot-blocksOf:
 HStartBallot \(s s^{\prime} p \Longrightarrow\) blocksOf \(s^{\prime} q \subseteq\) blocksOf \(s q \cup\left\{\right.\) dblock \(\left.s^{\prime} q\right\}\)
by(auto simp add: StartBallot-def blocksOf-def
 dest: subsetD[OF InitializePhase-rdBy])
lemma HStartBallot-Inv2a-dblock:
 assumes act: HStartBallot s s \(p\)
 and inv2a: Inv2a-innermost s \(p\) (dblock s \(p\))
```

```
 shows Inv2a-innermost s' p(dblock s' p)
proof -
 from act
 have mbal': mbal (dblock s' p) \in Ballot p
 by(auto simp add: StartBallot-def)
 from act
 have bal': bal (dblock s'p) = bal (dblock s p)
 by(auto simp add: StartBallot-def)
 with act
 have inp': inp (dblock s' p) = inp (dblock s p)
 by(auto simp add: StartBallot-def)
 from act
 have mbal (dblock s p) \leqmbal (dblock s' p)
 by(auto simp add: StartBallot-def)
 with bal' inv2a
 have bal-mbal: bal (dblock s'p) \leqmbal (dblock s' p)
 by(auto simp add: Inv2a-innermost-def)
 from act
 have allInput s\subseteqallInput s'
 by(auto simp add: HNextPart-def)
 with mbal' bal' inp' bal-mbal act inv2a
 show ?thesis
 by(auto simp add: Inv2a-innermost-def)
qed
lemma HStartBallot-Inv2a-dblock-q:
 assumes act: HStartBallot s s'p
 and inv2a: Inv2a-innermost s q (dblock s q)
 shows Inv2a-innermost s' q(dblock s'q)
proof(cases p=q)
 case True
 with act inv2a
 show ?thesis
 by(blast dest: HStartBallot-Inv2a-dblock)
next
 case False
 with act inv2a
 show ?thesis
 by(clarsimp simp add: StartBallot-def HNextPart-def
 InitializePhase-def Inv2a-innermost-def)
qed
theorem HStartBallot-Inv2a:
 assumes inv: Inv2a s
 and act: HStartBallot s s'p
 shows Inv2a s'
proof (clarsimp simp add: Inv2a-def Inv2a-inner-def)
 fix q bk
 assume bk:bk\inblocksOf s' q
```

with inv
have oldBlks: $b k \in$ blocksOf s $q \longrightarrow$ Inv2a-innermost s $q b k$
by (auto simp add: Inv2a-def Inv2a-inner-def)
from bk HStartBallot-blocksOf[OF act]
have $b k \in\left\{\right.$ dblock $\left.s^{\prime} q\right\} \cup$ blocksOf $s q$ by blast
thus Inv2a-innermost $s^{\prime} q b k$

## proof

assume $b k$-dblock: $b k \in\left\{\right.$ dblock $\left.s^{\prime} q\right\}$
from inv
have inv-q-dblock: Inv2a-innermost s $q$ (dblock s q)
by (auto simp add: Inv2a-def Inv2a-inner-def Inv2a-innermost-def blocksOf-def)
with act inv bk-dblock
show ?thesis
by(blast dest: HStartBallot-Inv2a-dblock-q)
next
assume bk-in-blocks: bk blocksOf s $q$
with oldBlks
have Inv2a-innermost s $q$ bk..
with act
show ?thesis
by (auto simp add: StartBallot-def HNextPart-def
InitializePhase-def Inv2a-innermost-def)
qed
qed
lemma HPhase1or2Write-blocksOf:
$\llbracket$ HPhase1or2Write s s'pd】 blocksOf $s^{\prime} r \subseteq$ blocksOf s r by (auto simp add: Phase1or2Write-def blocksOf-def rdBy-def)
theorem HPhase1or2Write-Inv2a:
assumes inv: Inv2a s
and act: HPhase1or2Write $s s^{\prime} p d$
shows Inv2a $s^{\prime}$
proof (clarsimp simp add: Inv2a-def Inv2a-inner-def)
fix $q b k$
assume $b k: b k \in b l o c k s O f s^{\prime} q$
from inv bk HPhase1or2Write-blocksOf[OF act]
have inp-q-bk: Inv2a-innermost s $q b k$
by (auto simp add: Inv2a-def Inv2a-inner-def)
with act
show Inv2a-innermost $s^{\prime} q b k$
by (auto simp add: Inv2a-innermost-def HNextPart-def)
qed
theorem HPhase1or2ReadElse-Inv2a:
assumes inv: Inv2a s
and act: HPhase1or2ReadElse $s s^{\prime} p d q$
shows Inv2a $s^{\prime}$

```
proof -
 from act
 have HStartBallot s s'p
 by(simp add: Phase1or2ReadElse-def)
 with inv
 show ?thesis
 by(auto elim: HStartBallot-Inv2a)
qed
lemma HEndPhase2-blocksOf:
 \llbracket HEndPhase2 s s' p\rrbracket\Longrightarrow blocksOf s' q\subseteq blocksOf s q
 by(auto simp add: EndPhase2-def blocksOf-def
 dest: subsetD[OF InitializePhase-rdBy])
theorem HEndPhase2-Inv2a:
 assumes inv: Inv2a s
 and act:HEndPhase2 s s
 shows Inv2a s'
proof(clarsimp simp add: Inv2a-def Inv2a-inner-def)
 fix q bk
 assume bk:bk\inblocksOf s' q
 from inv bk HEndPhase2-blocksOf[OF act]
 have inp-q-bk: Inv2a-innermost s q bk
 by(auto simp add: Inv2a-def Inv2a-inner-def)
 with act
 show Inv2a-innermost s' q bk
 by(auto simp add: Inv2a-innermost-def HNextPart-def)
qed
lemma HFail-blocksOf:
 HFail s s'p\LongrightarrowblocksOf s' q\subseteqblocksOf s q \cup{dblock s' q}
by(auto simp add: Fail-def blocksOf-def
 dest: subsetD[OF InitializePhase-rdBy])
lemma HFail-Inv2a-dblock-q:
 assumes act:HFail s s'p
 and inv:Inv2a-innermost s q (dblock s q)
 shows Inv2a-innermost s' q (dblock s'q)
proof(cases p=q)
 case True
 with act
 have dblock s' q = InitDB
 by (simp add: Fail-def)
 with True
 show ?thesis
 by(auto simp add: InitDB-def Inv2a-innermost-def)
next
 case False
 with inv act
```

```
 show ?thesis
 by(auto simp add: Fail-def HNextPart-def
 InitializePhase-def Inv2a-innermost-def)
qed
theorem HFail-Inv2a:
 assumes inv:Inv2a s
 and act:HFail s s'p
 shows Inv2a s'
proof(clarsimp simp add: Inv2a-def Inv2a-inner-def)
 fix q bk
 assume bk:bk\inblocksOf s'q
 with HFail-blocksOf[OF act]
 have dblock-blocks: bk\in{dblock s' q} \cup blocksOf s q
 by blast
 thus Inv2a-innermost s' q bk
 proof
 assume bk-dblock: bk \in{dblock s'q}
 from inv
 have inv-q-dblock: Inv2a-innermost s q (dblock s q)
 by(auto simp add: Inv2a-def Inv2a-inner-def Inv2a-innermost-def blocksOf-def)
 with act bk-dblock
 show ?thesis
 by(blast dest: HFail-Inv2a-dblock-q)
 next
 assume bk-in-blocks:bk \in blocksOf s q
 with inv
 have Inv2a-innermost s q bk
 by (auto simp add: Inv2a-def Inv2a-inner-def)
 with act
 show ?thesis
 by(auto simp add: Fail-def HNextPart-def
 InitializePhase-def Inv2a-innermost-def)
 qed
qed
lemma HPhase0Read-blocksOf:
 HPhase0Read s s' p d \Longrightarrow blocksOf s' q}\subseteq\mathrm{ blocksOf s q
 by(auto simp add: Phase0Read-def InitializePhase-def
 blocksOf-def rdBy-def)
theorem HPhase0Read-Inv2a:
 assumes inv: Inv2a s
 and act:HPhaseORead s s' p d
 shows Inv2a s'
proof(clarsimp simp add: Inv2a-def Inv2a-inner-def)
 fix q bk
 assume bk: bk\inblocksOf s}\mp@subsup{s}{}{\prime}
 from inv bk HPhase0Read-blocksOf[OF act]
```

```
 have inp-q-bk: Inv2a-innermost s q bk
 by(auto simp add: Inv2a-def Inv2a-inner-def)
 with act
 show Inv2a-innermost s' q bk
 by(auto simp add: Inv2a-innermost-def HNextPart-def)
qed
lemma HEndPhase0-blocksOf:
 HEndPhase0 s s'p\LongrightarrowblocksOf s' q\subseteqblocksOf s q \cup{dblock s'q}
 by(auto simp add: EndPhase0-def blocksOf-def
 dest: subsetD[OF InitializePhase-rdBy])
lemma HEndPhase0-blocksRead:
 assumes act: HEndPhase0 s s'p
 shows \existsd. blocksRead s p d\not={}
proof -
 from act
 have IsMajority({d. hasRead s p d p}) by(simp add: EndPhase0-def)
 hence {d. hasRead s p d p} \not={} by (rule majority-nonempty)
 thus ?thesis
 by(auto simp add: hasRead-def)
qed
```

EndPhase 0 has the additional difficulty of having a choose expression. We prove that there exists an $x$ such that the predicate of the choose expression holds, and then apply someI: ?P ? $x \Longrightarrow$ ?P (Eps ?P).
lemma HEndPhase0-some:
assumes act: HEndPhase0 s s'p
and inv1: Inv1s
shows (SOME $b . \quad b \in$ allBlocksRead $s p$
$\wedge(\forall t \in$ allBlocksRead s $p$. bal $t \leq$ bal b $)$
$) \in$ allBlocksRead s $p$
$\wedge(\forall t \in$ allBlocksRead s $p$.
bal $t \leq$ bal $(S O M E \quad b . \quad b \in$ allBlocksRead $s p$
$\wedge(\forall t \in$ allBlocksRead s p. bal $t \leq$ bal b) $))$
proof -
from inv1 have finite (bal' allBlocksRead s p) (is finite ?S)
by (simp add: Inv1-def allBlocksRead-def)
moreover
from HEndPhaseO-blocksRead[OF act]
have $? S \neq\{ \}$
by (auto simp add: allBlocksRead-def allRdBlks-def)
ultimately
have Max ? $S \in ? S$ and $\forall t \in ? S . t \leq M a x ? S$ by auto
hence $\exists r \in$ ?S. $\forall t \in$ ?S. $t \leq r .$.
then obtain mblk
where $\quad m b l k \in$ allBlocksRead s $p$
$\wedge(\forall t \in$ allBlocksRead s $p$. bal $t \leq$ bal mblk) $($ is ?P mblk)

```
 by auto
 thus ?thesis
 by (rule someI)
qed
lemma HEndPhase0-dblock-allBlocksRead:
 assumes act: HEndPhase0 s s'p
 and inv1: Inv1 s
 shows dblock s'p\in(\lambdax. x (mbal:= mbal(dblock s'p)|)' allBlocksRead s p
using act HEndPhase0-some[OF act inv1]
 by(auto simp add: EndPhase0-def)
lemma HNextPart-allInput-or-NotAnInput:
 assumes act:HNextPart s s'
 and inv2a: Inv2a-innermost s p (dblock s' p)
 shows inp (dblock s'p)\in allInput s'\cup {NotAnInput}
proof -
 from act
 have allInput s'= allInput s \cup(range (inpt s'))
 by(simp add: HNextPart-def)
 moreover
 from inv2a
 have inp (dblock s'p)\inallInput s}\cup{NotAnInput
 by(simp add: Inv2a-innermost-def)
 ultimately show ?thesis
 by blast
qed
lemma HEndPhase0-Inv2a-allBlocksRead:
 assumes act: HEndPhase0 s s'p
 and inv2a: Inv2a-inner s p
 and inv2c: Inv2c-inner s p
 shows }\forallt\in(\lambdax.x\mbal:= mbal (dblock s'p)\)` allBlocksRead s p
 Inv2a-innermost s p t
proof -
 from act
 have mbal': mbal (dblock s'p)\in Ballot p
 by(auto simp add: EndPhase0-def)
 from inv2c act
 have allproc-p: }\foralld.\forallbr\inblocksRead s p d. proc br =
 by(simp add: Inv2c-inner-def EndPhase0-def)
 with inv2a
 have allBlocks-inv2a: }\forallt\in\mathrm{ allBlocksRead s p. Inv2a-innermost s p t
 proof(auto simp add: Inv2a-inner-def allBlocksRead-def
 allRdBlks-def blocksOf-def rdBy-def)
 fix d bk
 assume bk-in-blocksRead: bk \in blocksRead s p d
 and inv2a-bk:}\forallx\in\quad{u.\existsd.u=disk s d p
 \cup{lock br |br. (\existsqd.br f blocksRead s q d)
```

```
 ^ proc br = p}. Inv2a-innermost s p x
 with allproc-p have proc bk=p by auto
 with bk-in-blocksRead inv2a-bk
 show Inv2a-innermost s p (block bk) by blast
 qed
 from act
 have mbal'}\mp@subsup{}{\prime}{\prime}gt:\forallbk\in\mathrm{ allBlocksRead s p. mbal bk }\leqmbal (dblock s'p
 by(auto simp add: EndPhase0-def)
 with mbal' allBlocks-inv2a
 show ?thesis
 proof (auto simp add: Inv2a-innermost-def)
 fix }
 assume t-blocksRead: t\in allBlocksRead s p
 with allBlocks-inv2a
 have bal t\leq mbal t by (auto simp add: Inv2a-innermost-def)
 moreover
 from t-blocksRead mbal'-gt
 have mbal t\leqmbal (dblock s'p) by blast
 ultimately show bal t\leqmbal (dblock s'p)
 by auto
 qed
qed
lemma HEndPhase0-Inv2a-dblock:
 assumes act: HEndPhase0 s s'p
 and inv1: Inv1 s
 and inv2a: Inv2a-inner s p
 and inv2c: Inv2c-inner s p
 shows Inv2a-innermost s' p(dblock s' p)
proof -
 from act inv2a inv2c
 have t1:\forallt\in(\lambdax. x \mbal:= mbal (dblock s' p)D)' allBlocksRead s p.
 Inv2a-innermost s p t
 by(blast dest: HEndPhase0-Inv2a-allBlocksRead)
from act inv1
 have dblock s'p (}\lambdax.x\mbal:= mbal(dblock s'p)\)'allBlocksRead s p
 by(simp, blast dest: HEndPhase0-dblock-allBlocksRead)
 with t1
 have inv2-dblock: Inv2a-innermost s p (dblock s' p) by auto
 with act
 have inp (dblock s' p)\in allInput s'\cup{NotAnInput}
 by(auto dest: HNextPart-allInput-or-NotAnInput)
 with inv2-dblock
 show ?thesis
 by(auto simp add: Inv2a-innermost-def)
qed
lemma HEndPhase0-Inv2a-dblock-q:
 assumes act:HEndPhase0 s s'p
```

```
 and inv1: Inv1 s
 and inv2a: Inv2a-inner s q
 and inv2c: Inv2c-inner s p
 shows Inv2a-innermost s' q (dblock s' q)
proof(cases p=q)
 case True
 with act inv2a inv2c inv1
 show ?thesis
 by(blast dest: HEndPhase0-Inv2a-dblock)
next
 case False
 from inv2a
 have inv-q-dblock: Inv2a-innermost s q(dblock s q)
 by(auto simp add: Inv2a-inner-def blocksOf-def)
 with False act
 show ?thesis
 by(clarsimp simp add: EndPhase0-def HNextPart-def
 InitializePhase-def Inv2a-innermost-def)
qed
theorem HEndPhase0-Inv2a:
 assumes inv: Inv2a s
 and act:HEndPhase0 s s'p
 and inv1:Inv1 s
 and inv2c: Inv2c-inner s p
 shows Inv2a s'
proof(clarsimp simp add: Inv2a-def Inv2a-inner-def)
 fix q bk
 assume bk:bk\inblocksOf s}\mp@subsup{s}{}{\prime}
 with HEndPhase0-blocksOf[OF act]
 have dblock-blocks: bk\in{dblock s' q} \cup blocksOf s q
 by blast
 thus Inv2a-innermost s' q bk
 proof
 from inv
 have inv-q: Inv2a-inner s q
 by(auto simp add: Inv2a-def)
 assume bk\in{dblock s' q}
 with act inv1 inv2c inv-q
 show ?thesis
 by(blast dest:HEndPhase0-Inv2a-dblock-q)
 next
 assume bk-in-blocks: bk \in blocksOf s q
 with inv
 have Inv2a-innermost s q bk
 by(auto simp add: Inv2a-def Inv2a-inner-def)
 with act show ?thesis
 by(auto simp add: EndPhase0-def HNextPart-def
 InitializePhase-def Inv2a-innermost-def)
```

```
 qed
qed
lemma HEndPhase1-blocksOf:
 HEndPhase1 s s' p\Longrightarrow blocksOf s' q\subseteq blocksOf s q\cup{dblock s' q}
by (auto simp add: EndPhase1-def blocksOf-def
 dest: subsetD[OF InitializePhase-rdBy])
lemma maxBlk-in-nonInitBlks:
 assumes b: b\in nonInitBlks s p
 and inv1: Inv1s
 shows maxBlk s p \in nonInitBlks s p
 \wedge(\forallc\in nonInitBlks s p.bal c \leq bal (maxBlk s p))
proof -
 have nibals-finite: finite (bal'(nonInitBlks s p)) (is finite?S)
 proof (rule finite-imageI)
 from inv1
 have finite (allRdBlks s p)
 by (auto simp add: Inv1-def)
 hence finite (allBlocksRead s p)
 by (auto simp add: allBlocksRead-def)
 hence finite (blocksSeen s p)
 by (simp add: blocksSeen-def)
 thus finite (nonInitBlks s p)
 by(auto simp add: nonInitBlks-def intro: finite-subset)
 qed
 from b have bal' nonInitBlks s p}\not={
 by auto
 with nibals-finite
 have Max ?S }\in?S\mathrm{ and }\forallbb\in?S.bb\leqMax ?S by aut
 hence }\existsmb\in?S..\forallbb\in?S.bb\leqmb.
 then obtain mblk
 where mblk \in nonInitBlks s p
 \wedge(\forallc\in nonInitBlks s p.bal c \leq bal mblk)
 (is ?P mblk)
 by auto
 hence ?P (SOME b. ?P b)
 by (rule someI)
 thus ?thesis
 by (simp add: maxBlk-def)
qed
lemma blocksOf-nonInitBlks:
 (\forallp bk.bk \in blocksOf s p\longrightarrowPbk)
 \Longrightarrow b k \in ~ n o n I n i t B l k s ~ s ~ p \longrightarrow P b k
 by(auto simp add: allRdBlks-def blocksOf-def nonInitBlks-def
 blocksSeen-def allBlocksRead-def rdBy-def,
 blast)
```

```
lemma maxBlk-allInput:
 assumes inv: Inv2a s
 and mblk: maxBlk s p nonInitBlks s p
 shows inp (maxBlk s p)\inallInput s
proof -
 from inv
 have blocks: }\forall\textrm{p}bk.bk\inblocksOf s p
 \longrightarrow ~ i n p ~ b k \in (a l l I n p u t ~ s) \cup \{ N o t A n I n p u t \}
 by(auto simp add: Inv2a-def Inv2a-inner-def Inv2a-innermost-def)
 from mblk NotAnInput
 have inp (maxBlk s p)\not= NotAnInput
 by(auto simp add: nonInitBlks-def)
 with mblk blocksOf-nonInitBlks[OF blocks]
 show ?thesis
 by auto
qed
lemma HEndPhase1-dblock-allInput:
 assumes act:HEndPhase1s s'p
 and inv1:HInv1 s
 and inv2: Inv2a s
 shows inp': inp (dblock s'p)\in allInput s'
proof -
 from act
 have inpt: inpt s p\in allInput s'
 by(auto simp add: HNextPart-def EndPhase1-def)
 have nonInitBlks s p}\not={}\longrightarrow\operatorname{inp}(maxBlk s p)\inallInput
 proof
 assume ni: nonInitBlks s p\not={}
 with inv1
 have maxBlk s p\in nonInitBlks s p
 by (auto simp add: HInv1-def maxBlk-in-nonInitBlks)
 with inv2
 show inp (maxBlk s p)\in allInput s
 by(blast dest: maxBlk-allInput)
 qed
 with act inpt
 show ?thesis
 by(auto simp add: EndPhase1-def HNextPart-def)
qed
lemma HEndPhase1-Inv2a-dblock:
 assumes act:HEndPhase1 s s'p
 and inv1: HInv1 s
 and inv2: Inv2a s
 and inv2c: Inv2c-inner s p
 shows Inv2a-innermost s' p (dblock s'p)
proof -
 from inv1 act have inv1': HInv1 s'
```

```
 by(blast dest: HEndPhase1-HInv1)
 from inv2
 have inv2a: Inv2a-innermost s p (dblock s p)
 by(auto simp add: Inv2a-def Inv2a-inner-def blocksOf-def)
 from act inv2c
 have mbal': mbal (dblock s' p) \in Ballot p
 by (auto simp add: EndPhase1-def Inv2c-def Inv2c-inner-def)
moreover
from act
have bal': bal (dblock s'p) = mbal (dblock s p)
 by (auto simp add: EndPhase1-def)
moreover
from act inv1 inv2
have inp': inp (dblock s'p)\in allInput s'
 by(blast dest: HEndPhase1-dblock-allInput)
moreover
with inv1' NotAnInput
have inp (dblock s' p) \not= NotAnInput
 by(auto simp add: HInv1-def)
ultimately show ?thesis
 using act inv2a
 by(auto simp add: Inv2a-innermost-def EndPhase1-def)
qed
lemma HEndPhase1-Inv2a-dblock-q:
 assumes act: HEndPhase1s s'p
 and inv1: HInv1 s
 and inv: Inv2a s
 and inv2c: Inv2c-inner s p
 shows Inv2a-innermost s'q(dblock s'q)
proof(cases p=q)
 case True
 with act inv inv2c inv1
 show ?thesis
 by(blast dest: HEndPhase1-Inv2a-dblock)
next
 case False
 from inv
 have inv-q-dblock: Inv2a-innermost s q (dblock s q)
 by(auto simp add: Inv2a-def Inv2a-inner-def blocksOf-def)
 with False act
 show ?thesis
 by(clarsimp simp add: EndPhase1-def HNextPart-def
 InitializePhase-def Inv2a-innermost-def)
qed
theorem HEndPhase1-Inv2a:
 assumes act:HEndPhase1 s s'p
 and inv1: HInv1 s
```

and inv：Inv2a $s$
and inv2c：Inv2c－inner s $p$
shows Inv2a $s^{\prime}$
proof（clarsimp simp add：Inv2a－def Inv2a－inner－def）
fix $q b k$
assume $b k$－in－bks：$b k \in$ blocks Of $s^{\prime} q$
with HEndPhase1－blocksOf［OF act］
have dblock－blocks：bk $\in\left\{\right.$ dblock $\left.s^{\prime} q\right\} \cup$ blocksOf $s q$
by blast
thus Inv2a－innermost $s^{\prime} q b k$
proof
assume $b k \in\left\{d b l o c k s^{\prime} q\right\}$
with act inv1 inv2c inv
show ？thesis
by（blast dest：HEndPhase1－Inv2a－dblock－q）
next
assume $b k$－in－blocks：$b k \in$ blocksOf $s q$
with inv
have Inv2a－innermost s $q b k$
by（auto simp add：Inv2a－def Inv2a－inner－def）
with act show ？thesis
by（auto simp add：EndPhase1－def HNextPart－def
InitializePhase－def Inv2a－innermost－def）
qed
qed

## C．2．2 Proofs of Invariant 2 b

Invariant 2b is proved automatically，given that we expand the definitions involved．
theorem HInit－Inv2b：HInit $s \longrightarrow$ Inv2b $s$
by（auto simp add：HInit－def Init－def Inv2b－def Inv2b－inner－def InitDB－def）
theorem HPhase1or2ReadThen－Inv2b：
【Inv2b s；HPhase1or2ReadThen $s s^{\prime} p d q \rrbracket$

$$
\Longrightarrow \text { Inv2b } s^{\prime}
$$

by（auto simp add：Phase1or2ReadThen－def Inv2b－def Inv2b－inner－def hasRead－def）

## theorem HStartBallot－Inv2b：

【Inv2b $s$ ；HStartBallot $s s^{\prime} p \rrbracket$
$\Longrightarrow$ Inv2b $s^{\prime}$
by（auto simp add：StartBallot－def InitializePhase－def
Inv2b－def Inv2b－inner－def hasRead－def）
theorem HPhase1or2Write－Inv2b：
【Inv2b $s$ ；HPhase1or2Write $s s^{\prime} p d \rrbracket$
$\Longrightarrow$ Inv2b $s^{\prime}$

```
by(auto simp add: Phase1or2Write-def Inv2b-def
 Inv2b-inner-def hasRead-def)
```

theorem HPhase1or2ReadElse-Inv2b:
【Inv2b $s$; HPhase1or2ReadElse $s s^{\prime} p d q \rrbracket$
$\Longrightarrow$ Inv2b $s^{\prime}$
by (auto simp add: Phase1or2ReadElse-def StartBallot-def hasRead-def
InitializePhase-def Inv2b-def Inv2b-inner-def)
theorem HEndPhase1-Inv2b:
【Inv2b $s$; HEndPhase1 $s s^{\prime} p \rrbracket \Longrightarrow$ Inv2b $s^{\prime}$
by (auto simp add: EndPhase1-def InitializePhase-def
Inv2b-def Inv2b-inner-def hasRead-def)

```
theorem HFail-Inv2b:
```

    【Inv2b \(s\); HFail \(s s^{\prime} p \rrbracket\)
        \(\Longrightarrow\) Inv2b \(s^{\prime}\)
    by (auto simp add: Fail-def InitializePhase-def
Inv2b-def Inv2b-inner-def hasRead-def)
theorem HEndPhase2-Inv2b:
【Inv2b s; HEndPhase2 s s'p $\quad \Longrightarrow$ Inv2b $s^{\prime}$
by (auto simp add: EndPhase2-def InitializePhase-def
Inv2b-def Inv2b-inner-def hasRead-def)
theorem HPhase0Read-Inv2b:
【Inv2b s; HPhase0Read s s'pd】 $\Longrightarrow$ Inv2b $s^{\prime}$
by (auto simp add: Phase0Read-def Inv2b-def
Inv2b-inner-def hasRead-def)
theorem HEndPhase0-Inv2b:
【Inv2b $s$; HEndPhase0 $s s^{\prime} p \rrbracket \Longrightarrow$ Inv2b $s^{\prime}$
by (auto simp add: EndPhase0-def InitializePhase-def
Inv2b-def Inv2b-inner-def hasRead-def)

## C．2．3 Proofs of Invariant 2 c

theorem HInit－Inv2c：HInit $s \longrightarrow$ Inv2c $s$
by（auto simp add：HInit－def Init－def Inv2c－def Inv2c－inner－def）
lemma HNextPart－Inv2c－chosen：
assumes hnp：HNextPart $s s^{\prime}$
and inv2c：Inv2c s
and outpt $: ~ \forall p$ ．outpt $s^{\prime} p=\left(\right.$ if phase $s^{\prime} p=3$
then inp（dblock $s^{\prime} p$ ）
else NotAnInput）
and inp－dblk：$\forall p$ ．inp（dblock $\left.s^{\prime} p\right) \in$ allInput $s^{\prime} \cup\{$ NotAnInput $\}$
shows chosen $s^{\prime} \in$ allInput $s^{\prime} \cup\{$ NotAnInput $\}$

```
using hnp outpt' inp-dblk inv2c
proof(auto simp add: HNextPart-def Inv2c-def Inv2c-inner-def
 split: if-split-asm)
qed
lemma HNextPart-chosen:
 assumes hnp: HNextPart s s'
 shows chosen s'=NotAnInput }\longrightarrow(\forallp\mathrm{ . outpt s'
using hnp
proof(auto simp add: HNextPart-def split: if-split-asm)
 fix p pa
 assume o1: outpt s' p}\not=\mathrm{ NotAnInput
 and o2: outpt s'(SOME p. outpt s' p\not=NotAnInput) = NotAnInput
 from o1
 have }\existsp\mathrm{ . outpt s' p}\not=\mathrm{ NotAnInput
 by auto
 hence outpt s'(SOME p. outpt s' p\not= NotAnInput) }==\mathrm{ NotAnInput
 by(rule someI-ex)
 with o2
 show outpt s' pa= NotAnInput
 by simp
qed
lemma HNextPart-allInput:
 \llbracketHNextPart s s'; Inv2c s \ \Longrightarrow \forallp. inpt s'p allInput s'
 by(auto simp add: HNextPart-def Inv2c-def Inv2c-inner-def)
theorem HPhase1or2ReadThen-Inv2c:
 assumes inv: Inv2c s
 and act: HPhase1or2ReadThen s s' pd q
 and inv2a: Inv2a s
 shows Inv2c s'
proof -
 from inv2a act
 have inv2a': Inv2a s'
 by(blast dest: HPhase1or2ReadThen-Inv2a)
 from act inv
 have outpt': }\forallp\mathrm{ . outpt s' p = (if phase s' p = 3
 then inp(dblock s'p)
 else NotAnInput)
 by(auto simp add: Phase1or2ReadThen-def Inv2c-def Inv2c-inner-def)
 from inv2a'
 have dblk: \forallp.inp (dblock s' p) \in allInput s'\cup {NotAnInput}
 by(auto simp add: Inv2a-def Inv2a-inner-def
 Inv2a-innermost-def blocksOf-def)
 with act inv outpt'
 have chosen': chosen s'\in allInput s'\cup {NotAnInput}
 by(auto dest: HNextPart-Inv2c-chosen)
 from act inv
```

```
 have \(\forall p\). inpt \(s^{\prime} p \in\) allInput \(s^{\prime}\)
 \(\wedge\left(\right.\) chosen \(s^{\prime}=\) NotAnInput \(\longrightarrow\) outpt \(s^{\prime} p=\) NotAnInput \()\)
 by (auto dest: HNextPart-chosen HNextPart-allInput)
 with outpt' chosen' act inv
 show ?thesis
 by (auto simp add: Phase1or2ReadThen-def Inv2c-def Inv2c-inner-def)
qed
theorem HStartBallot-Inv2c:
 assumes inv: Inv2c s
 and act: HStartBallot s s'p
 and inv2a: Inv2a s
 shows Inv2c s \({ }^{\prime}\)
proof -
 from act
 have phase': phase \(s^{\prime} p=1\)
 by (simp add: StartBallot-def)
 from act
 have phase: phase s \(p \in\{1,2\}\)
 by (simp add: StartBallot-def)
 from act inv
 have mbal': mbal (dblock \(\left.s^{\prime} p\right) \in\) Ballot \(p\)
 by (auto simp add: StartBallot-def Inv2c-def Inv2c-inner-def)
 from inv phase
 have bal (dblock s \(p) \in\) Ballot \(p \cup\{0\}\)
 by (auto simp add: Inv2c-def Inv2c-inner-def)
 with act
 have bal': bal(dblock \(\left.s^{\prime} p\right) \in\) Ballot \(p \cup\{0\}\)
 by(auto simp add: StartBallot-def)
 from act inv phase phase'
 have blks': \(\left(\forall d . \forall b r \in\right.\) blocksRead \(s^{\prime} p d\).
 mbal(block br) < mbal(dblock \(\left.\left.s^{\prime} p\right)\right)\)
 by (auto simp add: StartBallot-def InitializePhase-def
 Inv2c-def Inv2c-inner-def)
from inv2a act
have inv2a': Inv2a \(s^{\prime}\)
 by (blast dest: HStartBallot-Inv2a)
 from act inv
 have outpt \({ }^{\prime}: \forall p\). outpt \(s^{\prime} p=\left(\right.\) if phase \(s^{\prime} p=3\)
 then inp(dblock \(s^{\prime} p\))
 else NotAnInput)
 by (auto simp add: StartBallot-def Inv2c-def Inv2c-inner-def)
from inv2a'
 have dblk: \(\forall p\). inp (dblock \(\left.s^{\prime} p\right) \in\) allInput \(s^{\prime} \cup\{\) NotAnInput \(\}\)
 by (auto simp add: Inv2a-def Inv2a-inner-def
 Inv2a-innermost-def blocksOf-def)
with act inv outpt \({ }^{\prime}\)
have chosen': chosen \(s^{\prime} \in\) allInput \(s^{\prime} \cup\{\) NotAnInput \(\}\)
 by (auto dest: HNextPart-Inv2c-chosen)
```

from act inv
have allinp: $\forall p$. inpt $s^{\prime} p \in$ allInput $s^{\prime}$

$$
\wedge\left(\text { chosen } s^{\prime}=\right.\text { NotAnInput }
$$

$$
\left.\longrightarrow \text { outpt } s^{\prime} p=\text { NotAnInput }\right)
$$

by (auto dest: HNextPart-chosen HNextPart-allInput) with phase' mbal' bal' outpt' chosen' act inv blks' show ?thesis
by (auto simp add: StartBallot-def InitializePhase-def

> Inv2c-def Inv2c-inner-def)
qed

```
theorem HPhase1or2Write-Inv2c:
 assumes inv: Inv2c s
 and act: HPhase1or2Write s s'pd
 and inv2a: Inv2a s
 shows Inv2c s'
proof -
 from inv2a act
 have inv2a': Inv2a s'
 by(blast dest: HPhase1or2Write-Inv2a)
 from act inv
 have outpt': }\forallp\mathrm{ . outpt s' p = (if phase s' p=3
 then inp(dblock s' p)
 else NotAnInput)
 by(auto simp add: Phase1or2Write-def Inv2c-def Inv2c-inner-def)
 from inv2a'
 have dblk: \forallp. inp (dblock s'p)\in allInput s'\cup{NotAnInput}
 by(auto simp add: Inv2a-def Inv2a-inner-def
 Inv2a-innermost-def blocksOf-def)
 with act inv outpt'
 have chosen': chosen s' \in allInput s'\cup {NotAnInput}
 by(auto dest: HNextPart-Inv2c-chosen)
 from act inv
 have allinp: \forallp. inpt s' p\in allInput s'^(chosen s}\mp@subsup{s}{}{\prime}=\mathrm{ NotAnInput
 \longrightarrow \text { outpt s' p = NotAnInput)}
 by(auto dest: HNextPart-chosen HNextPart-allInput)
 with outpt' chosen' act inv
 show ?thesis
 by(auto simp add: Phase1or2Write-def Inv2c-def Inv2c-inner-def)
qed
theorem HPhase1or2ReadElse-Inv2c:
 \llbracketInv2c s; HPhase1or2ReadElse s s'p d q; Inv2a s \\LongrightarrowInv2c s'
 by(auto simp add: Phase1or2ReadElse-def dest: HStartBallot-Inv2c)
theorem HEndPhase1-Inv2c:
 assumes inv: Inv2c s
 and act:HEndPhase1 s s'p
 and inv2a: Inv2a s
```

```
 and inv1: HInv1 s
 shows Inv2c s'
proof -
 from inv
 have Inv2c-inner s p by (auto simp add: Inv2c-def)
 with inv2a act inv1
 have inv2a': Inv2a s'
 by(blast dest: HEndPhase1-Inv2a)
 from act inv
 have mbal': mbal(dblock s'p)\in Ballot p
 by(auto simp add: EndPhase1-def Inv2c-def Inv2c-inner-def)
 from act
 have bal': bal(dblock s'p)=mbal (dblock s'p)
 by(auto simp add: EndPhase1-def)
 from act inv
 have blks': (\foralld. \forallbr \in blocksRead s'pd.
 mbal(block br) < mbal(dblock s' p))
 by(auto simp add: EndPhase1-def InitializePhase-def
 Inv2c-def Inv2c-inner-def)
 from act inv
 have outpt': }\forallp\mathrm{ . outpt s' p=(if phase s' p=3
 then inp(dblock s'p)
 else NotAnInput)
 by(auto simp add: EndPhase1-def Inv2c-def Inv2c-inner-def)
 from inv2a'
 have dblk: \forallp.inp (dblock s' p) \in allInput s'\cup{NotAnInput}
 by(auto simp add: Inv2a-def Inv2a-inner-def
 Inv2a-innermost-def blocksOf-def)
 with act inv outpt'
 have chosen': chosen s'\in allInput s'\cup{NotAnInput }
 by(auto dest: HNextPart-Inv2c-chosen)
 from act inv
 have allinp: }\forallp.\quad\mathrm{ inpt s' p}\in\mathrm{ allInput s'
 \wedge (chosen s}\mp@subsup{}{}{\prime}=\mathrm{ NotAnInput
 \longrightarrow \text { outpt s' p = NotAnInput)}
 by(auto dest: HNextPart-chosen HNextPart-allInput)
 with mbal' bal' blks' outpt' chosen' act inv
 show ?thesis
 by(auto simp add: EndPhase1-def InitializePhase-def
 Inv2c-def Inv2c-inner-def)
qed
theorem HEndPhase2-Inv2c:
 assumes inv: Inv2c s
 and act:HEndPhase2 s s'p
 and inv2a:Inv2a s
 shows Inv2c s'
proof -
 from inv2a act
```

have inv2a': Inv2a $s^{\prime}$
by(blast dest: HEndPhase2-Inv2a)
from act inv
have outpt': $\forall p$. outpt $s^{\prime} p=\left(\right.$ if phase $s^{\prime} p=3$ then inp (dblock s'p) else NotAnInput)
by (auto simp add: EndPhase2-def Inv2c-def Inv2c-inner-def)
from inv2a'
have dblk: $\forall p$. inp (dblock $\left.s^{\prime} p\right) \in$ allInput $s^{\prime} \cup\{$ NotAnInput $\}$
by (auto simp add: Inv2a-def Inv2a-inner-def
Inv2a-innermost-def blocksOf-def)
with act inv outpt ${ }^{\prime}$
have chosen': chosen $s^{\prime} \in$ allInput $s^{\prime} \cup\{$ NotAnInput $\}$
by (auto dest: HNextPart-Inv2c-chosen)
from act inv
have allinp: $\forall p . \quad$ inpt $s^{\prime} p \in$ allInput $s^{\prime}$ $\wedge\left(\right.$ chosen $s^{\prime}=$ NotAnInput
$\longrightarrow$ outpt $s^{\prime} p=$ NotAnInput)
by (auto dest: HNextPart-chosen HNextPart-allInput)
with outpt' chosen' act inv
show ?thesis
by (auto simp add: EndPhase2-def InitializePhase-def Inv2c-def Inv2c-inner-def)
qed
theorem HFail-Inv2c:
assumes inv: Inv2c s
and act: HFail s s $s^{\prime} p$
and inv2a: Inv2a $s$
shows Inv2c s ${ }^{\prime}$
proof -
from inv2a act
have inv2a': Inv2a s ${ }^{\prime}$
by (blast dest: HFail-Inv2a)
from act inv
have outpt $: ~ \forall p$. outpt $s^{\prime} p=\left(\right.$ if phase $s^{\prime} p=3$

$$
\text { then inp (dblock } \left.s^{\prime} p\right)
$$

else NotAnInput)
by (auto simp add: Fail-def Inv2c-def Inv2c-inner-def)
from inv2a ${ }^{\prime}$
have dblk: $\forall p$. inp (dblock $\left.s^{\prime} p\right) \in$ allInput $s^{\prime} \cup\{$ NotAnInput $\}$
by (auto simp add: Inv2a-def Inv2a-inner-def
Inv2a-innermost-def blocksOf-def)
with act inv outpt'
have chosen': chosen $s^{\prime} \in$ allInput $s^{\prime} \cup\{$ NotAnInput $\}$
by (auto dest: HNextPart-Inv2c-chosen)
from act inv
have allinp: $\forall p$. inpt $s^{\prime} p \in$ allInput $s^{\prime} \wedge\left(\right.$ chosen $s^{\prime}=$ NotAnInput $\longrightarrow$ outpt $s^{\prime} p=$ NotAnInput)

```
 by(auto dest: HNextPart-chosen HNextPart-allInput)
 with outpt' chosen' act inv
 show ?thesis
 by(auto simp add: Fail-def InitializePhase-def
 Inv2c-def Inv2c-inner-def)
qed
theorem HPhase0Read-Inv2c:
 assumes inv: Inv2c s
 and act:HPhase0Read s s'pd
 and inv2a: Inv2a s
 shows Inv2c s'
proof -
 from inv2a act
 have inv2a': Inv2a s'
 by(blast dest: HPhase0Read-Inv2a)
 from act inv
 have outpt': }\forallp\mathrm{ . outpt s' }p=(\mathrm{ if phase s' }p=
 then inp(dblock s'p)
 else NotAnInput)
 by(auto simp add: Phase0Read-def Inv2c-def Inv2c-inner-def)
 from inv2a'
 have dblk: \forallp.inp (dblock s' p) \in allInput s'\cup{NotAnInput}
 by(auto simp add: Inv2a-def Inv2a-inner-def
 Inv2a-innermost-def blocksOf-def)
 with act inv outpt'
 have chosen': chosen s' \in allInput s'\cup {NotAnInput}
 by(auto dest: HNextPart-Inv2c-chosen)
 from act inv
 have allinp: }\forallp.\quad\mathrm{ inpt s}\mp@subsup{s}{}{\prime}p\in\mathrm{ allInput s'
 ^(chosen s}\mp@subsup{}{}{\prime}=\mathrm{ NotAnInput
 outpt s' p = NotAnInput)
 by(auto dest: HNextPart-chosen HNextPart-allInput)
 with outpt' chosen' act inv
 show ?thesis
 by(auto simp add: Phase0Read-def
 Inv2c-def Inv2c-inner-def)
qed
theorem HEndPhase0-Inv2c:
 assumes inv: Inv2c s
 and act: HEndPhase0 s s'p
 and inv2a: Inv2a s
 and inv1: Inv1 s
 shows Inv2c s'
proof -
 from inv
 have Inv2c-inner s p by (auto simp add: Inv2c-def)
 with inv2a act inv1
```

```
 have inv2a': Inv2a \(s^{\prime}\)
 by (blast dest: HEndPhase0-Inv2a)
 hence bal': bal(dblock \(\left.s^{\prime} p\right) \in\) Ballot \(p \cup\{0\}\)
 by (auto simp add: Inv2a-def Inv2a-inner-def
 Inv2a-innermost-def blocksOf-def)
 from act inv
 have mbal': mbal (dblock \(\left.s^{\prime} p\right) \in\) Ballot \(p\)
 by (auto simp add: EndPhase0-def Inv2c-def Inv2c-inner-def)
 from act inv
 have blks': \(\left(\forall d . \forall b r \in\right.\) blocksRead \(s^{\prime} p d\).
 mbal(block br) < mbal(dblock s'p))
 by (auto simp add: EndPhase0-def InitializePhase-def
 Inv2c-def Inv2c-inner-def)
from act inv
have outpt \({ }^{\prime}: \forall p\). outpt \(s^{\prime} p=\left(\right.\) if phase \(s^{\prime} p=3\)
 then inp(dblock \(s^{\prime} p\))
 else NotAnInput)
 by (auto simp add: EndPhase0-def Inv2c-def Inv2c-inner-def)
from inv2a'
have dblk: \(\forall p\). inp (dblock \(\left.s^{\prime} p\right) \in\) allInput \(s^{\prime} \cup\{\) NotAnInput \(\}\)
 by (auto simp add: Inv2a-def Inv2a-inner-def
 Inv2a-innermost-def blocksOf-def)
with act inv outpt'
have chosen': chosen \(s^{\prime} \in\) allInput \(s^{\prime} \cup\{\) NotAnInput \(\}\)
 by (auto dest: HNextPart-Inv2c-chosen)
from act inv
have allinp: \(\forall p\). inpt \(s^{\prime} p \in\) allInput \(s^{\prime} \wedge\left(\right.\) chosen \(s^{\prime}=\) NotAnInput
 \(\longrightarrow\) outpt \(s^{\prime} p=\) NotAnInput)
 by (auto dest: HNextPart-chosen HNextPart-allInput)
with mbal' bal' blks' outpt' chosen' act inv
show ?thesis
 by (auto simp add: EndPhase0-def InitializePhase-def
 Inv2c-def Inv2c-inner-def)
qed
theorem HInit-HInv2:
 HInit \(s \Longrightarrow\) HInv2 \(s\)
using HInit-Inv2a HInit-Inv2b HInit-Inv2c
by(auto simp add: HInv2-def)
\(H \operatorname{Inv} 1 \wedge H I n v 2\) is an invariant of \(H N e x t\).
lemma I2b:
 assumes \(n x t\) : HNext \(s s^{\prime}\)
 and inv: HInv1 s \(\wedge\) HInv2 \(s\)
 shows HInv2 \(s^{\prime}\)
proof (auto simp add: HInv2-def)
 show Inv2a s' using assms
 by (auto simp add: HInv2-def HNext-def Next-def,
 auto intro: HStartBallot-Inv2a,
```

```
 auto intro: HPhase1or2Write-Inv2a,
 auto simp add: Phase1or2Read-def
 intro: HPhase1or2ReadThen-Inv2a
 HPhase1or2ReadElse-Inv2a,
 auto intro: HPhase0Read-Inv2a,
 auto simp add: EndPhase1or2-def Inv2c-def
 intro: HEndPhase1-Inv2a
 HEndPhase2-Inv2a,
 auto intro: HFail-Inv2a,
 auto simp add: HInv1-def
 intro: HEndPhase0-Inv2a)
 show Inv2b s' using assms
 by(auto simp add: HInv2-def HNext-def Next-def,
 auto intro: HStartBallot-Inv2b,
 auto intro: HPhase0Read-Inv2b,
 auto intro: HPhase1or2Write-Inv2b,
 auto simp add: Phase1or2Read-def
 intro: HPhase1or2ReadThen-Inv2b
 HPhase1or2ReadElse-Inv2b,
 auto simp add: EndPhase1or2-def
 intro: HEndPhase1-Inv2b HEndPhase2-Inv2b,
 auto intro: HFail-Inv2b HEndPhase0-Inv2b)
show Inv2c s' using assms
 by(auto simp add: HInv2-def HNext-def Next-def,
 auto intro: HStartBallot-Inv2c,
 auto intro: HPhase0Read-Inv2c,
 auto intro: HPhase1or2Write-Inv2c,
 auto simp add: Phase1or2Read-def
 intro: HPhase1or2ReadThen-Inv2c
 HPhase1or2ReadElse-Inv2c,
 auto simp add: EndPhase1or2-def
 intro: HEndPhase1-Inv2c
 HEndPhase2-Inv2c,
 auto intro: HFail-Inv2c,
 auto simp add: HInv1-def intro: HEndPhase0-Inv2c)
qed
end
```

theory DiskPaxos-Inv3 imports DiskPaxos-Inv2 begin

## C. 3 Invariant 3

This invariant says that if two processes have read each other's block from disk $d$ during their current phases, then at least one of them has read the other's current block.
definition HInv3-L :: state $\Rightarrow$ Proc $\Rightarrow$ Proc $\Rightarrow$ Disk $\Rightarrow$ bool where

```
HInv3-L s p qd = (phase s p \in{1,2}
 ^phase s q}\in{1,2
 hasRead s pdq
 ^ hasRead s q d p)
definition HInv3-R :: state }=>\mathrm{ Proc }=>\mathrm{ Proc }=>\mathrm{ Disk }=>\mathrm{ bool
where
 HInv3-R s p qd = (0block= dblock s q, proc= q|) \inblocksRead s pd
 \vee (block= dblock s p, proc=p\)\in blocksRead s q d)
definition HInv3-inner :: state }=>\mathrm{ Proc }=>\mathrm{ Proc }=>\mathrm{ Disk }=>\mathrm{ bool
 where HInv3-inner s p qd =(HInv3-L s p qd \longrightarrowHInv3-R s p q d)
definition HInv3 :: state }=>\mathrm{ bool
 where HInv3 s = (}\forall\textrm{p}q|d.HInv3-inner s p q d)
```


## C.3.1 Proofs of Invariant 3

theorem HInit-HInv3: HInit $s \Longrightarrow$ HInv3 s
by (simp add: HInit-def Init-def HInv3-def HInv3-inner-def HInv3-L-def HInv3-R-def)
lemma InitPhase-HInv3-p:
【InitializePhase s $s^{\prime} p$; HInv3-L $s^{\prime} p q d \rrbracket \Longrightarrow H I n v 3-R s^{\prime} p q d$ by (auto simp add: InitializePhase-def HInv3-inner-def hasRead-def HInv3-L-def HInv3-R-def)
lemma InitPhase-HInv3-q:
【InitializePhase $s s^{\prime} q ; H I n v 3-L s^{\prime} p q d \rrbracket \Longrightarrow H I n v 3-R s^{\prime} p q d$ by (auto simp add: InitializePhase-def HInv3-inner-def hasRead-def HInv3-L-def HInv3-R-def)
lemma HInv3-L-sym: HInv3-L s p q d $\Longrightarrow$ HInv3-L s q pd by (auto simp add: HInv3-L-def)
lemma HInv3- $R$-sym: HInv3-R s p $q d \Longrightarrow H I n v 3-R$ s $q$ pd by (auto simp add: HInv3-R-def)
lemma Phase1or2ReadThen-HInv3-pq:
assumes act: Phase1or2ReadThen $s s^{\prime} p d q$
and inv-L': HInv3-L s' p qd
and $\quad p q: p \neq q$
and inv2b: Inv2b $s$
shows HInv3-R $s^{\prime} p q d$
proof -
from inv-L' act $p q$
have phase $s q \in\{1,2\} \wedge$ hasRead $s q d p$
by (auto simp add: Phase1or2ReadThen-def HInv3-L-def hasRead-def split: if-split-asm)

## with inv2b

have disk s $d q=$ dblock $s q$
by (auto simp add: Inv2b-def Inv2b-inner-def hasRead-def)
with act
show ?thesis
by (auto simp add: Phase1or2ReadThen-def HInv3-def HInv3-inner-def HInv3-R-def)
qed
lemma Phase1or2ReadThen-HInv3-hasRead:
【 $\neg$ hasRead s pp dd $q q$;
Phase1or2ReadThen s $s^{\prime} p d q$;
$p p \neq p \vee q q \neq q \vee d d \neq d \rrbracket$
$\Longrightarrow \neg$ hasRead $s^{\prime} p p d d q q$
by (auto simp add: hasRead-def Phase1or2ReadThen-def)
theorem HPhase1or2ReadThen-HInv3:
assumes act: HPhase1or2ReadThen $s s^{\prime} p d q$
and inv: HInv3 s
and $p q: p \neq q$
and inv2b: Inv2b $s$
shows HInv3 s ${ }^{\prime}$
proof (clarsimp simp add: HInv3-def HInv3-inner-def)
fix $p p q q d d$
assume $h 3 l^{\prime}: H I n v 3-L s^{\prime} p p q q d d$
show HInv3-R s' pp qq dd
proof(cases HInv3-L s pp qq dd)
case True
with inv
have HInv3-R s pp qq dd
by (auto simp add: HInv3-def HInv3-inner-def)
with act h3l'
show ?thesis
by (auto simp add: HInv3-R-def HInv3-L-def
Phase1or2ReadThen-def)
next
case False
assume $n h 3 l: \neg$ HInv3-L s pp qq dd
show HInv3-R $s^{\prime} p p q q d d$
proof $($ cases $((p p=p \wedge q q=q) \vee(p p=q \wedge q q=p)) \wedge d d=d)$
case True
with act pq inv2b h3l' HInv3-L-sym[OF h3l]
show ?thesis
by (auto dest: Phase1or2ReadThen-HInv3-pq HInv3-R-sym)

## next

case False
from nh3l h3l' act
have ( $\neg$ hasRead s $p p d d q q \vee \neg h a s R e a d s q q d d p p)$
with act False
show ?thesis
by (auto dest: Phase1or2ReadThen-HInv3-hasRead)
qed
qed
qed
lemma StartBallot-HInv3-p:
$\llbracket$ StartBallot $s s^{\prime} p ;$ HInv3-L $s^{\prime} p q d \rrbracket$
$\Longrightarrow H I n v 3-R s^{\prime} p q d$
by (auto simp add: StartBallot-def dest: InitPhase-HInv3-p)
lemma StartBallot-HInv3-q:
【StartBallot $s s^{\prime} q ; H I n v 3-L s^{\prime} p q d \rrbracket$
$\Longrightarrow H I n v 3-R s^{\prime} p q d$
by (auto simp add: StartBallot-def dest: InitPhase-HInv3-q)
lemma StartBallot-HInv3-nL:
【StartBallot s s't; ${ }^{\prime}$ HInv3-L spqd; $t \neq p ; t \neq q \rrbracket$
$\Longrightarrow \neg$ HInv3-L s'p qd
by (auto simp add: StartBallot-def InitializePhase-def
HInv3-L-def hasRead-def)
lemma StartBallot-HInv3-R:
【StartBallot s s' $t$ HInv3-R spqd; $t \neq p ; t \neq q \rrbracket$
$\Longrightarrow$ HInv3-R s'p qd
by(auto simp add: StartBallot-def InitializePhase-def
HInv3-R-def hasRead-def)
lemma StartBallot-HInv3-t:
【StartBallot s s't; HInv3-inner s p q $d ; t \neq p ; t \neq q \rrbracket$
$\Longrightarrow$ HInv3-inner $s^{\prime} p q d$
by (auto simp add: HInv3-inner-def
dest: StartBallot-HInv3-nL StartBallot-HInv3-R)
lemma StartBallot-HInv3:
assumes act: StartBallot s $s^{\prime} t$
and inv: HInv3-inner s $p q d$
shows HInv3-inner $s^{\prime} p q d$
$\operatorname{proof}($ cases $t=p \vee t=q$ )
case True
with act inv
show ?thesis
by (auto simp add: HInv3-inner-def
dest: StartBallot-HInv3-p StartBallot-HInv3-q)
next
case False

```
 with inv act
 show ?thesis
 by(auto simp add: HInv3-inner-def dest: StartBallot-HInv3-t)
qed
theorem HStartBallot-HInv3:
 \llbracketHStartBallot s s' p; HInv3 s\rrbracket\LongrightarrowHInv3 s'
 by(auto simp add: HInv3-def dest: StartBallot-HInv3)
theorem HPhase1or2ReadElse-HInv3:
 \llbracket HPhase1or2ReadElse s s' p d q; HInv3 s \rrbracket \LongrightarrowHInv3 s'
 by(auto simp add: Phase1or2ReadElse-def HInv3-def
 dest: StartBallot-HInv3)
theorem HPhase1or2Write-HInv3:
 assumes act: HPhase1or2Write s s'p d
 and inv: HInv3 s
 shows HInv3 s'
proof(auto simp add: HInv3-def)
 fix pp qq dd
 show HInv3-inner s' pp qq dd
 proof(cases HInv3-L s pp qq dd)
 case True
 with inv
 have HInv3-R s pp qq dd
 by(simp add: HInv3-def HInv3-inner-def)
 with act
 show ?thesis
 by(auto simp add: HInv3-inner-def HInv3-R-def
 Phase1or2Write-def)
 next
 case False
 with act
 have }\negHInv3-L s' pp qq d
 by(auto simp add: HInv3-L-def hasRead-def Phase1or2Write-def)
 thus ?thesis
 by(simp add: HInv3-inner-def)
 qed
qed
lemma EndPhase1-HInv3-p:
 \llbracket EndPhase1 s s' p; HInv3-L s' p q d \rrbracket\LongrightarrowHInv3-R s' p q d
by(auto simp add: EndPhase1-def dest: InitPhase-HInv3-p)
lemma EndPhase1-HInv3-q:
 |EndPhase1 s s' q; HInv3-L s'p qd\rrbracket\LongrightarrowHInv3-R s' p qd
 by(auto simp add: EndPhase1-def dest: InitPhase-HInv3-q)
lemma EndPhase1-HInv3-nL:
```

```
 \llbracket EndPhase1 s s
 \LongrightarrowHInv3-L s'p q d
 by(auto simp add: EndPhase1-def InitializePhase-def
 HInv3-L-def hasRead-def)
lemma EndPhase1-HInv3-R:
 \llbracketEndPhase1 s s
 \Longrightarrow H I n v 3 - R ~ s ' ~ p ~ q d ~ d
 by(auto simp add: EndPhase1-def InitializePhase-def
 HInv3-R-def hasRead-def)
lemma EndPhase1-HInv3-t:
 \llbracketEndPhase1 s s't; HInv3-inner s p qd;t\not=p;t\not=q\rrbracket
 \Longrightarrow H I n v 3 - i n n e r ~ s ' ~ p ~ q ~ d ~ d
 by(auto simp add: HInv3-inner-def dest: EndPhase1-HInv3-nL
 EndPhase1-HInv3-R)
lemma EndPhase1-HInv3:
 assumes act: EndPhase1 s s
 and inv: HInv3-inner s p qd
 shows HInv3-inner s' p qd
proof(cases t=p\veet=q)
 case True
 with act inv
 show ?thesis
 by(auto simp add: HInv3-inner-def
 dest: EndPhase1-HInv3-p EndPhase1-HInv3-q)
next
 case False
 with inv act
 show ?thesis
 by(auto simp add: HInv3-inner-def dest: EndPhase1-HInv3-t)
qed
theorem HEndPhase1-HInv3:
 \llbracketHEndPhase1 s s' p; HInv3 s \rrbracket\LongrightarrowHInv3 s
 by(auto simp add: HInv3-def dest: EndPhase1-HInv3)
lemma EndPhase2-HInv3-p:
 \llbracketEndPhase2 s s'p;HInv3-L s'p qd\rrbracket\LongrightarrowHInv3-R s' p qd
by(auto simp add: EndPhase2-def dest: InitPhase-HInv3-p)
lemma EndPhase2-HInv3-q:
 \llbracket EndPhase2 s s' q; HInv3-L s'p q d \rrbracket\LongrightarrowHInv3-R s' p qd
 by(auto simp add: EndPhase2-def dest: InitPhase-HInv3-q)
lemma EndPhase2-HInv3-nL:
 \llbracket EndPhase2 s s't;\negHInv3-L s p qd; t\not=p;t\not= q\rrbracket
 \Longrightarrow \neg H I n v 3 - L ~ s ' p q d ~
```

lemma EndPhase2－HInv3－R：
【EndPhase2 s s＇t；HInv3－R s p q $d ; t \neq p ; t \neq q \rrbracket$
$\Longrightarrow H I n v 3-R s^{\prime} p q d$
by（auto simp add：EndPhase2－def InitializePhase－def HInv3－R－def hasRead－def）
lemma EndPhase2－HInv3－t：
【EndPhase2 s s＇$t$ ；HInv3－inner s p qd；$t \neq p ; t \neq q \rrbracket$ $\Longrightarrow$ HInv3－inner s＇p qd
by（auto simp add：HInv3－inner－def dest：EndPhase2－HInv3－nL EndPhase2－HInv3－R）
lemma EndPhase2－HInv3：
assumes act：EndPhase2 s s＇t
and inv：HInv3－inner s $p q d$
shows HInv3－inner $s^{\prime} p q d$
$\operatorname{proof}($ cases $t=p \vee t=q)$
case True
with act inv
show ？thesis
by（auto simp add：HInv3－inner－def dest：EndPhase2－HInv3－p EndPhase2－HInv3－q）
next
case False
with inv act
show ？thesis
by（auto simp add：HInv3－inner－def dest：EndPhase2－HInv3－t）
qed
theorem HEndPhase2－HInv3：
$\llbracket H E n d P h a s e 2 s s^{\prime} p ; H I n v 3 s \rrbracket \Longrightarrow H I n v 3 s^{\prime}$
by（auto simp add：HInv3－def dest：EndPhase2－HInv3）

## lemma Fail－HInv3－p：

$\llbracket$ Fail s s＇p；HInv3－L s＇p qd】 $\Longrightarrow H I n v 3-R s^{\prime} p q d$
by（auto simp add：Fail－def dest：InitPhase－HInv3－p）
lemma Fail－HInv3－q：
$\llbracket$ Fail s s＇$q$ ；HInv3－L $s^{\prime} p q d \rrbracket \Longrightarrow H I n v 3-R s^{\prime} p q d$
by（auto simp add：Fail－def dest：InitPhase－HInv3－q）
lemma Fail－HInv3－nL：
$\llbracket$ Fail s s＇$t$ ；$\neg$ HInv3－L spqd；$t \neq p ; t \neq q \rrbracket$
$\Longrightarrow \neg H I n v 3-L s^{\prime} p q d$
by（auto simp add：Fail－def InitializePhase－def
HInv3－L－def hasRead－def）

## lemma Fail-HInv3-R:

【Fail s $s^{\prime} t ;$ HInv3-R s p $q d ; t \neq p ; t \neq q \rrbracket$

$$
\Longrightarrow H I n v 3-R s^{\prime} p q d
$$

by (auto simp add: Fail-def InitializePhase-def HInv3-R-def hasRead-def)
lemma Fail-HInv3-t:
【Fail s s't; HInv3-inner s p q $d ; t \neq p ; t \neq q \rrbracket$ $\Longrightarrow$ HInv3-inner s' p qd
by (auto simp add: HInv3-inner-def dest: Fail-HInv3-nL Fail-HInv3-R)
lemma Fail-HInv3:
assumes act: Fail s s' $t$
and inv: HInv3-inner s p qd
shows HInv3-inner $s^{\prime} p q d$
$\operatorname{proof}($ cases $t=p \vee t=q$ )
case True
with act inv
show ?thesis
by (auto simp add: HInv3-inner-def dest: Fail-HInv3-p Fail-HInv3-q)
next
case False
with inv act
show ?thesis
by (auto simp add: HInv3-inner-def dest: Fail-HInv3-t)
qed
theorem HFail-HInv3:
$\llbracket$ HFail s s' p; HInv3 s $\Longrightarrow H I n v 3 ~ s '$
by (auto simp add: HInv3-def dest: Fail-HInv3)
theorem HPhase0Read-HInv3:
assumes act: HPhase0Read s s' pd
and inv: HInv3 s
shows HInv3 s'
proof (auto simp add: HInv3-def)
fix $p p q q d d$
show HInv3-inner $s^{\prime} p p q q d d$
proof(cases HInv3-L s pp qq dd)
case True
with inv
have HInv3-R s pp qq dd
by (simp add: HInv3-def HInv3-inner-def)
with act
show ?thesis
by (auto simp add: HInv3-inner-def HInv3-R-def Phase0Read-def)

```
 next
 case False
 with act
 have }\negHInv3-L s' pp qq d
 by(auto simp add: HInv3-L-def hasRead-def Phase0Read-def)
 thus ?thesis
 by(simp add: HInv3-inner-def)
 qed
qed
lemma EndPhase0-HInv3-p:
 \llbracketEndPhase0 s s'p; HInv3-L s'p q d\rrbracket
 HInv3-R s' p qd
by(auto simp add: EndPhase0-def dest: InitPhase-HInv3-p)
lemma EndPhase0-HInv3-q:
 \llbracket EndPhase0 s s' q; HInv3-L s' p q d \rrbracket
 HInv3-R s' p qd
 by(auto simp add: EndPhase0-def dest:InitPhase-HInv3-q)
lemma EndPhase0-HInv3-nL:
 \llbracket EndPhase0 s s't;\negHInv3-L s p qd; t\not=p;t\not= q\rrbracket
 \squareHInv3-L s' p qd
 by(auto simp add: EndPhase0-def InitializePhase-def
 HInv3-L-def hasRead-def)
lemma EndPhase0-HInv3-R:
 \llbracket EndPhase0 s s
 HInv3-R s' p qd
 by(auto simp add: EndPhase0-def InitializePhase-def
 HInv3-R-def hasRead-def)
lemma EndPhase0-HInv3-t:
 \llbracketEndPhase0 s s't;HInv3-inner s p qd;t\not=p;t\not=q\rrbracket
 \Longrightarrow H I n v 3 - i n n e r ~ s ' ~ p ~ q d ~ d
 by(auto simp add: HInv3-inner-def
 dest: EndPhase0-HInv3-nL EndPhase0-HInv3-R)
lemma EndPhase0-HInv3:
 assumes act: EndPhase0 s s
 and inv: HInv3-inner s p qd
 shows HInv3-inner s' p qd
proof(cases t=p\veet=q)
 case True
 with act inv
 show ?thesis
 by(auto simp add: HInv3-inner-def
 dest: EndPhase0-HInv3-p EndPhase0-HInv3-q)
next
```

```
 case False
 with inv act
 show ?thesis
 by(auto simp add: HInv3-inner-def dest: EndPhase0-HInv3-t)
qed
theorem HEndPhase0-HInv3:
 \llbracketHEndPhase0 s s' p; HInv3 s\rrbracket\LongrightarrowHInv3 s'
 by(auto simp add: HInv3-def dest: EndPhase0-HInv3)
HInv1^HInv2^HInv3 is an invariant of HNext.
lemma I2c:
 assumes nxt: HNext s s'
 and inv:HInv1 s ^HInv2 s ^HInv3 s
 shows HInv3 s' using assms
 by(auto simp add: HNext-def Next-def,
 auto intro: HStartBallot-HInv3,
 auto intro: HPhase0Read-HInv3,
 auto intro: HPhase1or2Write-HInv3,
 auto simp add: Phase1or2Read-def HInv2-def
 intro: HPhase1or2ReadThen-HInv3
 HPhase1or2ReadElse-HInv3,
 auto simp add: EndPhase1or2-def
 intro: HEndPhase1-HInv3
 HEndPhase2-HInv3,
 auto intro: HFail-HInv3,
 auto intro: HEndPhase0-HInv3)
end
```

```
theory DiskPaxos-Inv4 imports DiskPaxos-Inv2 begin
```

```
theory DiskPaxos-Inv4 imports DiskPaxos-Inv2 begin
```


## C. 4 Invariant 4

This invariant expresses relations among mbal and bal values of a processor and of its disk blocks. HInv $4 a$ asserts that, when $p$ is not recovering from a failure, its mbal value is at least as large as the bal field of any of its blocks, and at least as large as the mbal field of its block on some disk in any majority set. HInv4b conjunct asserts that, in phase 1 , its mbal value is actually greater than the bal field of any of its blocks. HInv $4 c$ asserts that, in phase 2, its bal value is the mbal field of all its blocks on some majority set of disks. H Inv4d asserts that the bal field of any of its blocks is at most as large as the mbal field of all its disk blocks on some majority set of disks.

```
definition MajoritySet :: Disk set set
 where MajoritySet \(=\{D\). IsMajority \((D)\}\)
definition HInv4a1 :: state \(\Rightarrow\) Proc \(\Rightarrow\) bool
```

```
 where HInv孔a1 s \(p=(\forall b k \in\) blocksOf s \(p\). bal bk \(\leq\) mbal \((d b l o c k s p))\)
definition HInv4a2 :: state \(\Rightarrow\) Proc \(\Rightarrow\) bool
where
 HInv孔a2 s \(p=(\forall D \in \operatorname{MajoritySet.}(\exists d \in D . \operatorname{mbal}(\operatorname{disk} s d p) \leq m b a l(d b l o c k s\)
p)
 \(\wedge \operatorname{bal}(\) disk s d \(p) \leq \operatorname{bal}(\) dblock s \(p)))\)
definition HInv \(4 a\) :: state \(\Rightarrow\) Proc \(\Rightarrow\) bool
 where HInv4a s \(p=(\) phase s \(p \neq 0 \longrightarrow\) HInv4a1 s \(p \wedge\) HInv4a2 s \(p)\)
definition HInv \(4 b\) :: state \(\Rightarrow\) Proc \(\Rightarrow\) bool
 where HInv 4 b s \(p=(\) phase s \(p=1 \longrightarrow(\forall b k \in\) blocksOf s \(p\). bal bk \(<\) mbal (dblock
\(s p)\))
definition HInv4c :: state \(\Rightarrow\) Proc \(\Rightarrow\) bool
 where HInv 4 c s \(p=(\) phase s \(p \in\{2,3\} \longrightarrow(\exists\) D MajoritySet. \(\forall d \in D\). mbal (disk
s d \(p)=\) bal (dblock sp)))
definition HInv4d \(::\) state \(\Rightarrow\) Proc \(\Rightarrow\) bool
 where HInv4d s \(p=(\forall b k \in\) blocksOf s \(p . \exists D \in\) MajoritySet. \(\forall d \in D\). bal \(b k \leq\)
mbal (disk s d p))
definition HInv4 :: state \(\Rightarrow\) bool
 where HInv4 \(s=\left(\forall p\right.\). HInv4a s \(p \wedge \operatorname{HInv}_{4} b\) s \(p \wedge \operatorname{HInv}_{4}\) c s \(p \wedge \operatorname{HInv}_{4} d\) s \(\left.p\right)\)
The initial state implies Invariant 4.
```

```
theorem HInit-HInv4: HInit \(s \Longrightarrow\) HInv4 \(s\)
```

theorem HInit-HInv4: HInit $s \Longrightarrow$ HInv4 $s$
using Disk-isMajority
using Disk-isMajority
by (auto simp add: HInit-def Init-def HInv4-def HInv4a-def HInv_a1-def
by (auto simp add: HInit-def Init-def HInv4-def HInv4a-def HInv_a1-def
HInv4a2-def HInv4b-def HInv4c-def HInv4d-def
HInv4a2-def HInv4b-def HInv4c-def HInv4d-def
MajoritySet-def blocksOf-def InitDB-def rdBy-def)

```
 MajoritySet-def blocksOf-def InitDB-def rdBy-def)
```

To prove that the actions preserve $H \operatorname{Inv} 4$ ，we do it for one conjunct at a time．
For each action actionss＇$q$ and conjunct $x \in a, b, c, d$ of $H I n v 4 x s^{\prime} p$ ，we prove two lemmas．The first lemma action－HInv4x－p proves the case of $p=q$ ， while lemma action－HInv4x－q proves the other case．

## C．4．1 Proofs of Invariant $4 \mathbf{a}$

lemma HStartBallot－HInv4a1：
assumes act：HStartBallot s s＇p
and inv：HInv孔a1 s p
and inv2a：Inv2a－inner $s^{\prime} p$
shows HInv4a1 s＇$p$
proof（auto simp add：HInv孔a1－def）
fix $b k$

```
 assume bk \in blocksOf s' p
 with HStartBallot-blocksOf[OF act]
 have bk\in{dblock s'p}\cupblocksOf s p
 by blast
 thus bal bk \leqmbal (dblock s'p)
 proof
 assume bk\in{dblock s'p}
 with inv2a
 show ?thesis
 by(auto simp add: Inv2a-innermost-def Inv2a-inner-def blocksOf-def)
 next
 assume bk\inblocksOf s p
 with inv act
 show ?thesis
 by(auto simp add: StartBallot-def HInv4a1-def)
 qed
qed
lemma HStartBallot-HInv&a2:
 assumes act: HStartBallot s s'p
 and inv:HInv4a2 s p
 shows HInv4a2 s' p
proof(auto simp add:HInv&a2-def)
 fix D
 assume Dmaj: D G MajoritySet
 from inv Dmaj
 have \existsd\inD. mbal (disk s d p) \leqmbal (dblock s p)
 \wedge bal (disk s d p) \leq bal (dblock s p)
 by(auto simp add: HInv4a2-def)
then obtain d
 where d\inD
 ^mbal (disk s d p) \leqmbal (dblock s p)
 ^bal (disk s d p) \leqbal (dblock s p)
 by auto
 with act
 have d\inD
 ^mbal (disk s' d p) \leqmbal (dblock s' p)
 ^bal (disk s' d p) \leqbal (dblock s'p)
 by(auto simp add: StartBallot-def)
with Dmaj
show }\existsd\inD.\quadmbal(disk s' d p)\leqmbal (dblock s' p
 ^bal (disk s'd p) \leqbal (dblock s'p)
 by auto
qed
lemma HStartBallot-HInv4a-p:
 assumes act: HStartBallot s s'p
 and inv: HInv4a s p
 and inv2a: Inv2a-inner s' p
```

```
 shows HInv4a s' p
using act inv inv2a
proof -
 from act
 have phase: 0 < phase s p
 by(auto simp add: StartBallot-def)
 from act inv inv2a
 show ?thesis
 by(auto simp del: HStartBallot-def simp add: HInv&a-def phase
 elim: HStartBallot-HInv{a1 HStartBallot-HInv&a2)
qed
lemma HStartBallot-HInv_a-q:
 assumes act: HStartBallot s s' p
 and inv: HInv_a s q
 and pnq: p\not=q
 shows HInv4a s' q
proof -
 from act pnq
 have blocksOf s' q\subseteq blocksOf s q
 by(auto simp add: StartBallot-def InitializePhase-def
 blocksOf-def rdBy-def)
 with act inv pnq
 show ?thesis
 by(auto simp add: StartBallot-def HInv4a-def
 HInv&a1-def HInv4a2-def)
qed
theorem HStartBallot-HInv4a:
 assumes act:HStartBallot s s'p
 and inv:HInv&a s q
 and inv2a: Inv2a s'
 shows HInv4a s' q
proof(cases p=q)
 case True
 from inv2a
 have Inv2a-inner s'p
 by(auto simp add: Inv2a-def)
 with act inv True
 show ?thesis
 by(blast dest: HStartBallot-HInv4a-p)
next
 case False
 with act inv
 show ?thesis
 by(blast dest: HStartBallot-HInv4a-q)
qed
lemma Phase1or2Write-HInv&a1:
```

```
 \llbracketPhase1or2Write s s'pd; HInv4a1 s q\rrbracket\LongrightarrowHInv&a1 s' q
 by(auto simp add: Phase1or2Write-def HInv4a1-def
 blocksOf-def rdBy-def)
lemma Phase1or2Write-HInv4a2:
 \llbracketPhase1or2Write s s'pd;HInv4a2 s q\rrbracket \LongrightarrowHInv&a2 s' q
 by(auto simp add: Phase1or2Write-def HInv&a2-def)
theorem HPhase1or2Write-HInv{a:
 assumes act: HPhase1or2Write s s' p d
 and inv:HInv&a s q
 shows HInv4a s' q
proof -
 from act
 have phase': phase s=phase s'
 by(simp add: Phase1or2Write-def)
 show ?thesis
 proof(cases phase s q=0)
 case True
 with phase' act
 show ?thesis
 by(auto simp add: HInv4a-def)
next
 case False
 with phase' act inv
 show ?thesis
 by(auto simp add: HInv4a-def
 dest: Phase1or2Write-HInv4a1 Phase1or2Write-HInv4a2)
 qed
qed
lemma HPhase1or2ReadThen-HInv4a1-p:
 assumes act: HPhase1or2ReadThen s s' p d q
 and inv:HInv4a1 s p
 shows HInv4a1 s' p
proof(auto simp:HInv&a1-def)
 fix bk
 assume bk:bk\inblocksOf s' p
 with HPhase1or2ReadThen-blocksOf[OF act]
 have bk blocksOf s p by auto
 with inv act
 show bal bk \leqmbal (dblock s' p)
 by(auto simp add: HInv4a1-def Phase1or2ReadThen-def)
qed
lemma HPhase1or2ReadThen-HInv&a2:
 \llbracketHPhase1or2ReadThen s s'pdr;HInv4a2 s q\rrbracket\LongrightarrowHInv4a2 s'q
 by(auto simp add: Phase1or2ReadThen-def HInv4a2-def)
```

```
lemma HPhase1or2ReadThen-HInv4a-p:
 assumes act: HPhase1or2ReadThen s s' p d r
 and inv: HInv_a s p
 and inv2b: Inv2b s
 shows HInv4a s' p
proof -
 from act inv2b
 have phase s }p\in{1,2
 by(auto simp add: Phase1or2ReadThen-def Inv2b-def Inv2b-inner-def)
 with act inv
 show ?thesis
 by(auto simp del: HPhase1or2ReadThen-def simp add: HInv4a-def
 elim: HPhase1or2ReadThen-HInv&a1-p HPhase1or2ReadThen-HInv&a2)
qed
lemma HPhase1or2ReadThen-HInv4a-q:
 assumes act: HPhase1or2ReadThen s s' p d r
 and inv: HInv&a s q
 and pnq: p\not=q
 shows HInv4a s' q
proof -
 from act pnq
 have blocksOf s' q\subseteqblocksOf s q
 by(auto simp add: Phase1or2ReadThen-def InitializePhase-def
 blocksOf-def rdBy-def)
 with act inv pnq
 show ?thesis
 by(auto simp add: Phase1or2ReadThen-def HInv4a-def
 HInv&a1-def HInv4a2-def)
qed
theorem HPhase1or2ReadThen-HInv4a:
 \llbracketHPhase1or2ReadThen s s'p d r; HInv4a s q;Inv2b s\rrbracket\LongrightarrowHInv4a s'q
 by(blast dest: HPhase1or2ReadThen-HInv&a-p HPhase1or2ReadThen-HInv4a-q)
theorem HPhase1or2ReadElse-HInv{a:
 assumes act: HPhase1or2ReadElse s s' p dr
 and inv:HInv4a s q and inv2a: Inv2a s'
 shows HInv4a s' q
proof -
 from act have HStartBallot s s'p
 by(simp add: Phase1or2ReadElse-def)
 with inv inv2a show ?thesis
 by(blast dest: dest: HStartBallot-HInv&a)
qed
lemma HEndPhase1-HInv&a1:
 assumes act:HEndPhase1 s s'p
 and inv:HInv4a1 s p
```

```
 shows HInv4a1 s' p
proof(auto simp add: HInv4a1-def)
 fix bk
 assume bk: bk\inblocksOf s'p
 from bk HEndPhase1-blocksOf[OF act]
 have bk \in{dblock s' p} \cup blocksOf s p
 by blast
 with act inv
 show bal bk \leq mbal (dblock s'p)
 by(auto simp add: HInv4a-def HInv4a1-def EndPhase1-def)
qed
lemma HEndPhase1-HInv&a2:
 assumes act: HEndPhase1 s s'p
 and inv: HInv{a2 s p
 and inv2a: Inv2a s
 shows HInv{a2 s'p
proof(auto simp add:HInv4a2-def)
 fix }
 assume Dmaj: D G MajoritySet
 from inv Dmaj
 have \existsd\inD. mbal (disk s d p) \leqmbal (dblock s p)
 ^bal (disk s d p) \leq bal (dblock s p)
 by(auto simp add: HInv4a2-def)
 then obtain d
 where d-cond: d\inD
 \mbal (disk s d p) \leqmbal (dblock s p)
 ^bal (disk s d p) \leq bal (dblock s p)
 by auto
 have disk s d p blocksOf s p
 by(auto simp add: blocksOf-def)
 with inv2a
 have bal(disk s d p) \leqmbal (disk s d p)
 by(auto simp add: Inv2a-def Inv2a-inner-def Inv2a-innermost-def)
 with act d-cond
 have d\inD
 ^mbal (disk s'd p) \leqmbal (dblock s' p)
 ^bal (disk s' d p) \leqbal (dblock s'p)
 by(auto simp add: EndPhase1-def)
with Dmaj
show }\existsd\inD.\quadmbal (disk s'd p)\leqmbal (dblock s'p
 \wedge bal (disk s' d p) \leq bal (dblock s' p)
 by auto
qed
lemma HEndPhase1-HInv4a-p:
 assumes act:HEndPhase1 s s' p
 and inv: HInv&a s p
 and inv2a:Inv2a s
```

```
 shows HInv4a s' p
proof -
 from act
 have phase: 0 < phase s p
 by(auto simp add: EndPhase1-def)
 with act inv inv2a
 show ?thesis
 by(auto simp del: HEndPhase1-def simp add: HInv4a-def
 elim: HEndPhase1-HInv&a1 HEndPhase1-HInv&a2)
qed
lemma HEndPhase1-HInv4a-q:
 assumes act: HEndPhase1 s s'
 and inv: HInv4a s q
 and pnq: p\not=q
 shows HInv4a s' q
proof -
 from act pnq
 have dblock s' q = dblock s q ^ disk s'= disk s
 by(auto simp add: EndPhase1-def)
 moreover
 from act pnq
 have }\forallpd.rdBy s' q pd\subseteqrdBy s q p d
 by(auto simp add: EndPhase1-def InitializePhase-def rdBy-def)
 hence (UN p d.rdBy s'q p d) \subseteq(UN p d.rdBy s q p d)
 by(auto, blast)
 ultimately
 have blocksOf s' q\subseteq blocksOf s q
 by(auto simp add: blocksOf-def, blast)
 with act inv pnq
 show ?thesis
 by(auto simp add: EndPhase1-def HInv&a-def HInv&a1-def HInv&a2-def)
qed
theorem HEndPhase1-HInv4a:
 |HEndPhase1s s' p;HInv&as q; Inv2a s\rrbracket\LongrightarrowHInv&a s' q
 by(blast dest: HEndPhase1-HInv4a-p HEndPhase1-HInv4a-q)
theorem HFail-HInv{a:
 \llbracketHFail s s' p; HInv&as q\rrbracket\LongrightarrowHInv&a s' q
 by(auto simp add: Fail-def HInv4a-def HInv&a1-def
 HInv&a2-def InitializePhase-def
 blocksOf-def rdBy-def)
theorem HPhase0Read-HInv{a:
 \llbracketHPhase0Read s s'pd;HInv&a s q\rrbracket\LongrightarrowHInv&a s' q
 by(auto simp add: Phase0Read-def HInv&a-def HInv4a1-def
 HInv&a2-def InitializePhase-def
 blocksOf-def rdBy-def)
```

```
theorem HEndPhase2-HInv{a:
 \llbracketHEndPhase2 s s' p; HInv&a s q\rrbracket\LongrightarrowHInv4a s'q
 by(auto simp add: EndPhase2-def HInv4a-def HInv4a1-def HInv4a2-def
 InitializePhase-def blocksOf-def rdBy-def)
lemma allSet:
 assumes aPQ:\foralla.\forallr\inPa.Qr and rb:rb\inPd
 shows Q rb
proof -
 from aPQ have }\forallr\inPd.Qr\mathrm{ by auto
 with rb
 show ?thesis by auto
qed
lemma EndPhase0-44:
 assumes act: EndPhase0 s s'p
 and bk: bk \inblocksOf s p
 and inv4d: HInv4d s p
 and inv2c: Inv2c-inner s p
 shows \existsd.\existsrb\inblocksRead s p d. bal bk \leqmbal(block rb)
proof -
 from bk inv{d
 have \existsD1\in MajoritySet.\foralld\inD1. bal bk \leqmbal(disk s d p) - 4.2
 by(auto simp add: HInv&d-def)
 with majorities-intersect
 have p43: }\forallD\in\mathrm{ MajoritySet. }\existsd\inD.bal bk\leqmbal(disk s d p
 by(simp add: MajoritySet-def, blast)
 from act
 have phase s p = 0 by(simp add: EndPhase0-def)
 with inv2c
 have }\foralld.\forallrb\in blocksRead s p d. block rb = disk s d p-5.
 by(simp add: Inv2c-inner-def)
 hence }\foralld\mathrm{ . hasRead s p d p
 \longrightarrow (\exists r b \in b l o c k s R e a d ~ s ~ p ~ d . ~ b l o c k ~ r b ~ = ~ d i s k ~ s ~ d ~ p) - 5 . 2
 (is }\foralld\mathrm{ . ? H d }\longrightarrow\mathrm{ ?P d
 by(auto simp add: hasRead-def)
 with act
 have p53: \existsD\in MajoritySet. }\foralld\inD. ?P d
 by(auto simp add: MajoritySet-def EndPhase0-def)
 show ?thesis
 proof -
 from p43 p53
 have }\existsD\in\mathrm{ MajoritySet. }\quad(\existsd\inD.bal bk\leqmbal(disk s d p)
 \wedge(\foralld\inD.?P d)
 by auto
 thus ?thesis
 by force
 qed
```


## qed

lemma HEndPhase0-HInv_a1-p:
assumes act: HEndPhase0 $s s^{\prime} p$
and inv2a': Inv2a $s^{\prime}$
and inv2c: Inv2c-inner s $p$
and inv4d: HInv4d s p
shows HInv4a1 s' p
proof (auto simp add: HInv4a1-def)
fix $b k$
assume $b k \in$ blocksOf $s^{\prime} p$
with HEndPhase0-blocksOf[OF act]
have $b k \in\left\{\right.$ dblock $\left.s^{\prime} p\right\} \cup$ blocksOf $s p$ by auto
thus bal bk $\leq$ mbal (dblock $s^{\prime} p$ )
proof
assume $b k: b k \in\left\{d b l o c k s^{\prime} p\right\}$
with inv2a'
have Inv2a-innermost $s^{\prime} p b k$
by (auto simp add: Inv2a-def Inv2a-inner-def blocksOf-def)
with bk show ?thesis
by (auto simp add: Inv2a-innermost-def)
next
assume $b k: b k \in b l o c k s O f s p$
from act
have $f 1: \forall r \in$ allBlocksRead s p. mbal $r<m b a l\left(d b l o c k s^{\prime} p\right)$
by(auto simp add: EndPhase0-def)
with act inv $4 d$ inv2c bk
have $\exists d . \exists r b \in$ blocksRead s pd.bal bk $\leq m b a l$ (block rb)
by(auto dest: EndPhase0-44)
with $f 1$
show ?thesis
by(auto simp add: EndPhase0-def allBlocksRead-def allRdBlks-def dest: allSet)
qed
qed
lemma hasRead-allBlks:
assumes inv2c: Inv2c-inner s $p$
and phase: phase s $p=0$
shows $(\forall d \in\{d$. hasRead spdp\}. disk s $d p \in$ allBlocksRead s $p)$
proof
fix $d$
assume $d: d \in\{d$. hasRead s p $d p\}$ (is $d \in ? D$ )
hence br-ne: blocksRead s pd$d \neq\{ \}$
by (auto simp add: hasRead-def)
from inv2c phase
have $\forall b r \in$ blocksRead spd. block br $=$ disk $s d p$
by(auto simp add: Inv2c-inner-def)
with $b r$-ne

```
 have disk s d p\in block'blocksRead s p d
 by force
 thus disk s d p\inallBlocksRead s p
 by(auto simp add: allBlocksRead-def allRdBlks-def)
qed
lemma HEndPhase0-41:
 assumes act: HEndPhase0 s s'p
 and inv1: Inv1 s
 and inv2c: Inv2c-inner s p
 shows }\exists\textrm{D}\in\mathrm{ MajoritySet. }\foralld\inD. mbal(disk s d p)\leqmbal(dblock s'p
 \wedgebal(disk s d p) \leqbal(dblock s'p)
proof -
 from act HEndPhase0-some[OF act inv1]
 have p51: \forallbr\inallBlocksRead s p. mbal br < mbal(dblock s' p)
 ^bal br \leqbal(dblock s' p)
 and a:IsMajority({d. hasRead s p d p})
 and phase: phase s p=0
 by(auto simp add: EndPhase0-def)+
 from inv2c phase
 have (\foralld\in{d. hasRead s p d p}. disk s d p \in allBlocksRead s p)
 by(auto dest: hasRead-allBlks)
 with p51
 have (\foralld\in{d. hasRead s p d p}. mbal(disk s d p) \leqmbal(dblock s'p)
 \wedgebal(disk s d p) \leqbal(dblock s' p))
 by force
 with a show ?thesis
 by(auto simp add: MajoritySet-def)
qed
lemma Majority-exQ:
 assumes asm1: \existsD G MajoritySet. }\foralld\inD.P
 shows }\forallD\inMajoritySet.\existsd\inD.P
using asm1
proof(auto simp add: MajoritySet-def)
 fix D1 D2
 assume D1: IsMajority D1 and D2: IsMajority D2
 and Px: \forallx\inD1. P x
 from D1 D2 majorities-intersect
 have \exists d\inD1. d\inD2 by auto
 with Px
 show \existsx\inD2. P }
 by auto
qed
lemma HEndPhase0-HInv{a2-p:
 assumes act:HEndPhase0 s s'p
 and inv1: Inv1 s
```

```
 and inv2c: Inv2c-inner s p
 shows HInv&a2 s'p
proof(simp add:HInv4a2-def)
 from act
 have disk': disk s' = disk s
 by(simp add: EndPhase0-def)
 from act inv1 inv2c
 have \exists}D\in\mathrm{ MajoritySet. }\foralld\inD. mbal(disk s d p)\leqmbal(dblock s'p
 \wedgebal(disk s d p) \leqbal(dblock s'p)
 by(blast dest: HEndPhase0-41)
 from Majority-exQ[OF this]
 have }\forallD\inMajoritySet. \existsd\inD. mbal(disk s d p)\leqmbal(dblock s' p
 ^bal(disk s d p) \leqbal(dblock s' p)
 (is ?P (disk s)).
 from ssubst[OF disk', of ?P, OF this]
 show }\forallD\in\mathrm{ MajoritySet. }\existsd\inD. mbal (disk s'd p)\leqmbal (dblock s'p
 ^bal (disk s'd p) \leqbal (dblock s'p).
qed
lemma HEndPhase0-HInv4a-p:
 assumes act:HEndPhase0 s s'p
 and inv2a: Inv2a s
 and inv2: Inv2c s
 and inv4d: HInv4dsp
 and inv1: Inv1 s
 and inv: HInv_a s p
 shows HInv4a s' p
proof -
 from inv2
 have inv2c: Inv2c-inner s p
 by(auto simp add: Inv2c-def)
 with inv1 inv2a act
 have inv2a': Inv2a s'
 by(blast dest: HEndPhase0-Inv2a)
 from act
 have phase s'p=1
 by(auto simp add: EndPhase0-def)
 with act inv inv2c inv4d inv2a' inv1
 show ?thesis
 by(auto simp add: HInv_a-def simp del: HEndPhase0-def
 elim: HEndPhase0-HInv&a1-p HEndPhase0-HInv&a2-p)
qed
lemma HEndPhase0-HInv4a-q:
 assumes act:HEndPhase0 s s'p
 and inv: HInv_a s q
 and pnq: p\not=q
 shows HInv4a s' q
proof -
```

```
from act pnq
have dblock s' q = dblock s q ^ disk s'= disks
 by(auto simp add: EndPhase0-def)
moreover
from act pnq
have }\forallpd.rdBy s' q p d\subseteqrdBy s q p d
 by(auto simp add: EndPhase0-def InitializePhase-def rdBy-def)
hence (UN p d.rdBy s'q p d) \subseteq(UN p d.rdBy s q p d)
 by(auto, blast)
 ultimately
 have blocksOf s' q\subseteqblocksOf s q
 by(auto simp add: blocksOf-def, blast)
 with act inv pnq
 show ?thesis
 by(auto simp add: EndPhase0-def HInv&a-def HInv&a1-def HInv&a2-def)
qed
theorem HEndPhase0-HInv4a:
 \llbracketHEndPhase0 s s' p; HInv&a s q; HInv4d s p;
 Inv2a s; Inv1 s; Inv2a s; Inv2c s】
 HInv&a s'q
 by(blast dest: HEndPhase0-HInv4a-p HEndPhase0-HInv4a-q)
```


## C.4.2 Proofs of Invariant 4b

lemma blocksRead-allBlocksRead:
$r b \in$ blocksRead s p $d \Longrightarrow$ block $r b \in$ allBlocksRead s p
by (auto simp add: allBlocksRead-def allRdBlks-def)
lemma HEndPhase0-dblock-mbal:
【HEndPhase0 $s s^{\prime} p \rrbracket$
$\Longrightarrow \forall b r \in a l l B l o c k s R e a d ~ s p . m b a l ~ b r<m b a l(d b l o c k ~ s ' p)$
by (auto simp add: EndPhase0-def)
lemma HEndPhase0-HInv4b-p-dblock:
assumes act: HEndPhase0 s $s^{\prime} p$
and inv1: Inv1 s
and inv2a: Inv2a s
and inv2c: Inv2c-inner s $p$
shows bal(dblock $\left.s^{\prime} p\right)<\operatorname{mbal}\left(d b l o c k s^{\prime} p\right)$
proof -
from act have phase s $p=0$ by (auto simp add: EndPhase0-def)
with inv2c
have $\forall d . \forall b r \in$ blocksRead spd. proc $b r=p \wedge$ block br $=$ disk s $d p$ by(auto simp add: Inv2c-inner-def)
hence allBlks-in-blocksOf: allBlocksRead s $p \subseteq$ blocksOf s $p$
by(auto simp add: allBlocksRead-def allRdBlks-def blocksOf-def)
from act HEndPhase0-some[OF act inv1]

```
 have \(p 53: \exists b r \in\) allBlocksRead s \(p\). bal \(\left(\right.\) dblock \(\left.s^{\prime} p\right)=b a l ~ b r\)
 by(auto simp add: EndPhase0-def)
 from inv2a
 have \(i 2: \forall p . \forall b k \in b l o c k s O f\) s \(p\). bal \(b k \leq m b a l ~ b k\)
 by (auto simp add: Inv2a-def Inv2a-inner-def Inv2a-innermost-def)
 with allBlks-in-blocksOf
 have \(\forall b k \in\) allBlocksRead s \(p\). bal \(b k \leq m b a l b k\)
 by auto
 with \(p 53\)
 have \(\exists b r \in\) allBlocksRead s \(p\).bal \(\left(\right.\) dblock \(\left.s^{\prime} p\right) \leq m b a l ~ b r\)
 by force
 with HEndPhase0-dblock-mbal[OF act]
 show ?thesis
 by auto
qed
lemma HEndPhase0-HInv孔b-p-blocksOf:
 assumes act: HEndPhase0 \(s s^{\prime} p\)
 and inv4d: HInv4d s p
 and inv2c: Inv2c-inner s \(p\)
 and \(b k: b k \in b l o c k s O f s p\)
 shows bal bk < mbal(dblock \(\left.s^{\prime} p\right)\)
proof -
 from inv4d majorities-intersect \(b k\)
 have \(p 43\) : \(\forall D \in\) MajoritySet. \(\exists d \in D\). bal bk \(\leq \operatorname{mbal}(\) disk s d \(p\))
 by (auto simp add: HInv4d-def MajoritySet-def Majority-exQ)
 have \(\exists b r \in\) allBlocksRead s \(p\). bal bk \(\leq\) mbal br
 proof -
 from act
 have maj: IsMajority (\(\{d\). hasRead s p d p \(\}\)) (is IsMajority (?D))
 and phase: phase s \(p=0\)
 by (simp add: EndPhase0-def)+
 have br-ne: \(\forall d \in\) ?D. blocksRead s p \(d \neq\{ \}\)
 by (auto simp add: hasRead-def)
 from phase inv2c
 have \(\forall d \in ?\) D. \(\forall\) br blocksRead spd. block br \(=\) disk s \(d p\)
 by(auto simp add: Inv2c-inner-def)
 with \(b r\)-ne
 have \(\forall d \in ? D . \exists b r \in\) allBlocksRead s \(p . b r=\) disk s \(d p\)
 by (blast dest: blocksRead-allBlocksRead)
 with p 43 maj
 show ?thesis
 by (auto simp add: MajoritySet-def)
 qed
 with HEndPhase0-dblock-mbal[OF act]
 show ?thesis
 by auto
qed
```

```
lemma HEndPhase0-HInv4b-p:
 assumes act: HEndPhase0 s s'p
 and inv&d: HInv&d s p
 and inv1: Inv1s
 and inv2a: Inv2a s
 and inv2c: Inv2c-inner s p
 shows HInv4b s' p
proof(clarsimp simp add: HInv4b-def)
 from act
 have phase: phase s p=0
 by(auto simp add: EndPhase0-def)
 fix bk
 assume bk:bk\in blocksOf s'p
 with HEndPhase0-blocksOf[OF act]
 have bk\in{dblock s'p}\vee bk\inblocksOf s p
 by blast
 thus bal bk< mbal (dblock s'p)
 proof
 assume bk:bk\in{dblock s}\mp@subsup{s}{}{\prime}p
 with act inv1 inv2a inv2c
 show ?thesis
 by(auto simp del: HEndPhase0-def
 dest: HEndPhase0-HInv{b-p-dblock)
 next
 assume bk: bk \in blocksOf s p
 with act inv2c inv4d
 show ?thesis
 by(blast dest: HEndPhase0-HInv4b-p-blocksOf)
 qed
qed
lemma HEndPhase0-HInv4b-q:
 assumes act: HEndPhase0 s s'p
 and pnq: p\not=q
 and inv: HInv{b s q
 shows HInv4b s' q
proof -
 from act pnq
 have disk': disk s'=
 and dblock': dblock s' q=dblock s q
 and phase': phase s' q}=\mathrm{ phase s q
 by(auto simp add: EndPhase0-def)
 from act pnq
 have blocksRead': \forallq. allRdBlks s' q\subseteq allRdBlks s q
 by(auto simp add: EndPhase0-def InitializePhase-def allRdBlks-def)
 with disk' dblock'
 have blocksOf s' q\subseteq blocksOf s q
 by(auto simp add: allRdBlks-def blocksOf-def rdBy-def, blast)
 with inv phase' dblock'
```

```
 show ?thesis
 by(auto simp add: HInv&b-def)
qed
theorem HEndPhase0-HInv4b:
 assumes act: HEndPhase0 s s'p
 and inv: HInv4b s q
 and inv4d: HInv4d s p
 and inv1: Inv1 s
 and inv2a: Inv2a s
 and inv2c: Inv2c-inner s p
 shows HInv4b s' q
proof(cases p=q)
 case True
 with HEndPhase0-HInv4b-p[OF act inv4d inv1 inv2a inv2c]
 show ?thesis by simp
next
 case False
 from HEndPhase0-HInv4b-q[OF act False inv]
 show ?thesis.
qed
lemma HStartBallot-HInv4b-p:
 assumes act:HStartBallot s s'p
 and inv2a: Inv2a-innermost s p (dblock s p)
 and inv&b: HInv&b s p
 and inv&a: HInv4a s p
 shows HInv4b s' p
proof(clarsimp simp add: HInv4b-def)
 fix bk
 assume bk:bk\inblocksOf s' p
 from act
 have phase': phase s' p=1
 and phase: phase s p}\in{1,2
 by(auto simp add: StartBallot-def)
 from act
 have p42: mbal (dblock s p)< mbal (dblock s' p)
 ^bal(dblock s p) = bal(dblock s' p)
 by(auto simp add: StartBallot-def)
 from HStartBallot-blocksOf[OF act] bk
 have bk\in{dblock s'p}\cupblocksOf s p
 by blast
 thus bal bk < mbal (dblock s'p)
 proof
 assume bk:bk\in{dblock s'p}
 from inv2a
 have bal (dblock s p)\leqmbal (dblock s p)
 by(auto simp add: Inv2a-innermost-def)
 with p42 bk
```

```
 show ?thesis by auto
 next
 assume bk:bk\inblocksOf s p
 from phase inv4a
 have p41:HInv4a1 s p
 by(auto simp add: HInv&a-def)
 with p42 bk
 show ?thesis
 by(auto simp add: HInv{a1-def)
 qed
qed
lemma HStartBallot-HInv&b-q:
 assumes act: HStartBallot s s'p
 and pnq: p\not=q
 and inv: HInv4b s q
 shows HInv4b s' q
proof -
 from act pnq
 have disk': disk s'= disk s
 and dblock':dblock s' q=dblock s q
 and phase': phase s' }q=phase s q
 by(auto simp add: StartBallot-def)
 from act pnq
 have blocksRead': \forallq. allRdBlks s' q\subseteqallRdBlks s q
 by(auto simp add: StartBallot-def InitializePhase-def allRdBlks-def)
 with disk' dblock'
 have blocksOf s' q\subseteq blocksOf s q
 by(auto simp add: allRdBlks-def blocksOf-def rdBy-def, blast)
 with inv phase' dblock'
 show ?thesis
 by(auto simp add: HInv4b-def)
qed
theorem HStartBallot-HInv4b:
 assumes act: HStartBallot s s'p
 and inv2a: Inv2a s
 and inv4b: HInv4b s q
 and inv4a: HInv&a s p
 shows HInv4b s' q
using act inv2a inv{b inv{a
proof (cases p=q)
 case True
 from inv2a
 have Inv2a-innermost s p (dblock s p)
 by(auto simp add: Inv2a-def Inv2a-inner-def blocksOf-def)
 with act True inv&b inv&a
 show ?thesis
 by(blast dest: HStartBallot-HInv4b-p)
```

```
next
 case False
 with act inv4b
 show ?thesis
 by(blast dest: HStartBallot-HInv4b-q)
qed
theorem HPhase1or2Write-HInv{b:
 \llbracketHPhase1or2Write s s' pd; HInv4b s q\rrbracket\Longrightarrow HInv4b s' q
 by(auto simp add: Phase1or2Write-def HInv{b-def
 blocksOf-def rdBy-def)
lemma HPhase1or2ReadThen-HInv4b-p:
 assumes act: HPhase1or2ReadThen s s' pd q
 and inv: HInv4b s p
 shows HInv4b s'p
proof -
 from HPhase1or2ReadThen-blocksOf[OF act] inv act
 show ?thesis
 by(auto simp add: HInv4b-def Phase1or2ReadThen-def)
qed
lemma HPhase1or2ReadThen-HInv{b-q:
 assumes act: HPhase1or2ReadThen s s' p dr
 and inv: HInv{b sq
 and pnq: p\not=q
 shows HInv4b s' q
 using assms HPhase1or2ReadThen-blocksOf[OF act]
 by(auto simp add: Phase1or2ReadThen-def HInv4b-def)
theorem HPhase1or2ReadThen-HInv4b:
 \llbracketHPhase1or2ReadThen s s' p d q; HInv&b s r\rrbracket \LongrightarrowHInv4b s'r
 by(blast dest: HPhase1or2ReadThen-HInv4b-p
 HPhase1or2ReadThen-HInv&b-q)
theorem HPhase1or2ReadElse-HInv{b:
 \llbracketHPhase1or2ReadElse s s'p d q; HInv4b s r;
 Inv2a s; HInv{a s p
```



```
using HStartBallot-HInv4b
 by(auto simp add: Phase1or2ReadElse-def)
lemma HEndPhase1-HInv4b-p:
 HEndPhase1 s s' p\Longrightarrow HInv4b s'p
 by(auto simp add: EndPhase1-def HInv4b-def)
lemma HEndPhase1-HInv4b-q:
 assumes act:HEndPhase1 s s'p
 and pnq: p\not=q
```

```
 and inv: HInv4b s q
 shows HInv4b s' q
proof -
 from act pnq
 have disk': disk s'= disk s
 and dblock': dblock s' q=dblock s q
 and phase': phase s' }q=\mathrm{ phase s q
 by(auto simp add: EndPhase1-def)
 from act pnq
 have blocksRead': \forallq. allRdBlks s' q\subseteq allRdBlks s q
 by(auto simp add: EndPhase1-def InitializePhase-def allRdBlks-def)
 with disk' dblock'
 have blocksOf s' q\subseteqblocksOf s q
 by(auto simp add: allRdBlks-def blocksOf-def rdBy-def, blast)
 with inv phase' dblock'
 show ?thesis
 by(auto simp add: HInv&b-def)
qed
theorem HEndPhase1-HInv4b:
 assumes act:HEndPhase1 s s'p
 and inv:HInv4b s q
 shows HInv4b s' q
proof(cases p=q)
 case True
 with HEndPhase1-HInv&b-p[OF act]
 show ?thesis by simp
next
 case False
 from HEndPhase1-HInv&b-q[OF act False inv]
 show ?thesis.
qed
lemma HEndPhase2-HInv{b-p:
 HEndPhase2 s s'p\LongrightarrowHInv4b s'p
 by(auto simp add: EndPhase2-def HInv4b-def)
lemma HEndPhase2-HInv4b-q:
 assumes act: HEndPhase2 s s'p
 and pnq: p\not=q
 and inv: HInv{b sq
 shows HInv4b s'q
proof -
 from act pnq
 have disk': disk s'=disk s
 and dblock':dblock s' }q=\mathrm{ dblock s q
 and phase': phase s' q =phase s q
 by(auto simp add: EndPhase2-def)
 from act pnq
```

```
 have blocksRead}\mp@subsup{}{\prime}{\prime}:\forallq.allRdBlks s' q\subseteq allRdBlks s q
 by(auto simp add: EndPhase2-def InitializePhase-def allRdBlks-def)
 with disk' dblock'
 have blocksOf s' q\subseteqblocksOf s q
 by(auto simp add: allRdBlks-def blocksOf-def rdBy-def, blast)
 with inv phase' dblock'
 show ?thesis
 by(auto simp add:HInv&b-def)
qed
theorem HEndPhase2-HInv4b:
 assumes act:HEndPhase2 s s'p
 and inv: HInv{b s q
 shows HInv4b s' q
proof(cases p=q)
 case True
 with HEndPhase2-HInv4b-p[OF act]
 show ?thesis by simp
next
 case False
 from HEndPhase2-HInv4b-q[OF act False inv]
 show ?thesis.
qed
lemma HFail-HInv&b-p:
 HFail s s' p\LongrightarrowHInv&b s'p
 by(auto simp add: Fail-def HInv4b-def)
lemma HFail-HInv&b-q:
 assumes act: HFail s s}\mp@subsup{s}{}{\prime}
 and pnq: p\not=q
 and inv: HInv4b s q
 shows HInv4b s'q
proof -
 from act pnq
 have disk': disk s'=disk s
 and dblock': dblock s' q=dblock s q
 and phase': phase s' q =phase s q
 by(auto simp add: Fail-def)
 from act pnq
 have blocksRead': \forallq. allRdBlks s' q\subseteqallRdBlks s q
 by(auto simp add: Fail-def InitializePhase-def allRdBlks-def)
 with disk' dblock'
 have blocksOf s' q\subseteq blocksOf s q
 by(auto simp add: allRdBlks-def blocksOf-def rdBy-def, blast)
 with inv phase' dblock'
 show ?thesis
 by(auto simp add: HInv&b-def)
qed
```

```
theorem HFail-HInv{b:
 assumes act: HFail s s}\mp@subsup{s}{}{\prime}
 and inv: HInv&b sq
 shows HInv4b s' q
proof(cases p=q)
 case True
 with HFail-HInv4b-p[OF act]
 show ?thesis by simp
next
 case False
 from HFail-HInv4b-q[OF act False inv]
 show ?thesis.
qed
lemma HPhase0Read-HInv4b-p:
 HPhase0Read s s' p d \LongrightarrowHInv4b s'p
 by(auto simp add: Phase0Read-def HInv4b-def)
lemma HPhase0Read-HInv&b-q:
 assumes act: HPhase0Read s s'pd
 and pnq: p\not=q
 and inv: HInv{b s q
 shows HInv&b s' q
proof -
 from act pnq
 have disk': disk s'=disk s
 and dblock':dblock s' q=dblock s q
 and phase': phase s' }q=\mathrm{ phase s q
 by(auto simp add: Phase0Read-def)
 from HPhase0Read-blocksOf[OF act] inv phase' dblock'
 show ?thesis
 by(auto simp add: HInv4b-def)
qed
theorem HPhase0Read-HInv4b:
 assumes act:HPhase0Read s s'pd
 and inv: HInv4b s q
 shows HInv4b s' q
proof(cases p=q)
 case True
 with HPhase0Read-HInv4b-p[OF act]
 show ?thesis by simp
next
 case False
 from HPhase0Read-HInv4b-q[OF act False inv]
 show ?thesis.
qed
```


## C.4.3 Proofs of Invariant 4c

```
lemma HStartBallot-HInv4c-p:
 \llbracketHStartBallot s s' p; HInv4c s p\rrbracket\LongrightarrowHInv4c s' p
 by(auto simp add: StartBallot-def HInv4c-def)
lemma HStartBallot-HInv4c-q:
 assumes act: HStartBallot s s' p
 and inv: HInv4c s q
 and pnq: p\not=q
 shows HInv4c s' q
proof -
 from act pnq
 have phase: phase s' q= phase s q
 and dblock: dblock s q = dblock s' q
 and disk: disk s'= disks
 by(auto simp add: StartBallot-def)
 with inv
 show ?thesis
 by(auto simp add: HInv4c-def)
qed
theorem HStartBallot-HInv4c:
 |HStartBallot s s' p;HInv4c s q\rrbracket\LongrightarrowHInv4c s' q
 by(blast dest: HStartBallot-HInv4c-p HStartBallot-HInv4c-q)
lemma HPhase1or2Write-HInv4c-p:
 assumes act:HPhase1or2Write s s' p d
 and inv: HInv4c s p
 and inv2c: Inv2c s
 shows HInv4c s' p
proof(cases phase s'p=2)
 assume phase': phase s'p=2
 show ?thesis
 proof(auto simp add:HInv4c-def phase' MajoritySet-def)
 from act phase'
 have bal: bal(dblock s'p)=bal(dblock s p)
 and phase: phase s p=2
 by(auto simp add: Phase1or2Write-def)
 from phase' inv2c act
 have mbal(disk s'd p)=bal(dblock s p)
 by(auto simp add: Phase1or2Write-def Inv2c-def Inv2c-inner-def)
 with bal
 have bal(dblock s'p)=mbal(disk s'd p)
 by auto
 with inv phase act
 show \existsD. IsMajority D
 \wedge(\foralld\inD.mbal (disk s'd p)=bal (dblock s'p))
 by(auto simp add: HInv4c-def Phase1or2Write-def MajoritySet-def)
qed
```

```
next
 case False
 with act
 show ?thesis
 by(auto simp add: HInv4c-def Phase1or2Write-def)
qed
lemma HPhase1or2Write-HInv4c-q:
 assumes act: HPhase1or2Write s s' pd
 and inv: HInv4c s q
 and pnq: p\not=q
 shows HInv4c s' q
proof -
 from act pnq
 have phase: phase s' }q=\mathrm{ phase s q
 and dblock: dblock s q = dblock s' q
 and disk: }\foralld\mathrm{ . disk s' d q = disk s d q
 by(auto simp add: Phase1or2Write-def)
 with inv
 show ?thesis
 by(auto simp add: HInv4c-def)
qed
theorem HPhase1or2Write-HInv4c:
 HPhase1or2Write s s' p d; HInv4c s q; Inv2c s\rrbracket
 \Longrightarrow H I n v 4 c ~ s ' ~ q ~
 by(blast dest: HPhase1or2Write-HInv4c-p
 HPhase1or2Write-HInv4c-q)
lemma HPhase1or2ReadThen-HInv4c-p:
 \llbracketHPhase1or2ReadThen s s'pd q; HInv4c s p\rrbracket\LongrightarrowHInv4c s' p
 by(auto simp add: Phase1or2ReadThen-def HInv4c-def)
lemma HPhase1or2ReadThen-HInv4c-q:
 assumes act: HPhase1or2ReadThen s s' pdr
 and inv: HInv_c s q
 and pnq: p\not=q
 shows HInv4c s' q
proof -
 from act pnq
 have phase: phase s' q= phase s q
 and dblock: dblock s q = dblock s' q
 and disk: disk s' = disk s
 by(auto simp add: Phase1or2ReadThen-def)
 with inv
 show ?thesis
 by(auto simp add: HInv4c-def)
qed
```

```
theorem HPhase1or2ReadThen-HInv4c:
 \llbracketHPhase1or2ReadThen s s'pdr;HInv4c s q\rrbracket
 HInv4c s'q
 by(blast dest: HPhase1or2ReadThen-HInv4c-p
 HPhase1or2ReadThen-HInv4c-q)
theorem HPhase1or2ReadElse-HInv4c:
 \llbracketHPhase1or2ReadElse s s'pd r;HInv4c s q\rrbracket\LongrightarrowHInv4c s'q
using HStartBallot-HInv4c
 by(auto simp add: Phase1or2ReadElse-def)
lemma HEndPhase1-HInv4c-p:
 assumes act:HEndPhase1 s s'p
 and inv2b: Inv2b s
 shows HInv4c s'p
proof -
 from act
 have maj: IsMajority {d.d\in disksWritten s p
 \wedge (\forallq\in(UNIV - {p}). hasRead s pd q)}
 (is IsMajority ?M)
 by(simp add: EndPhase1-def)
 from inv2b
 have }\foralld\in?\mathrm{ ?M. disk s d p = dblock s p
 by(auto simp add: Inv2b-def Inv2b-inner-def)
 with act maj
 show ?thesis
 by(auto simp add: HInv4c-def EndPhase1-def MajoritySet-def)
qed
lemma HEndPhase1-HInv4c-q:
 assumes act:HEndPhase1 s s'p
 and inv: HInv4c s q
 and pnq: p\not=q
 shows HInv4c s' q
proof -
 from act pnq
 have phase: phase s' }q=\mathrm{ phase s q
 and dblock: dblock s q = dblock s' q
 and disk: disk s'= disks
 by(auto simp add: EndPhase1-def)
 with inv
 show ?thesis
 by(auto simp add: HInv4c-def)
qed
theorem HEndPhase1-HInv4c:
 \llbracket HEndPhase1 s s' p; HInv4c s q; Inv2b s\rrbracket\LongrightarrowHInv{c s' q
 by(blast dest: HEndPhase1-HInv4c-p HEndPhase1-HInv4c-q)
```

```
lemma HEndPhase2-HInv4c-p:
 |HEndPhase2 s s' p;HInv4c s p\rrbracket\LongrightarrowHInv4c s'p
 by(auto simp add: EndPhase2-def HInv4c-def)
lemma HEndPhase2-HInv4c-q:
 assumes act:HEndPhase2 s s'p
 and inv: HInv4c s q
 and pnq: p\not=q
 shows HInv4c s' q
proof -
 from act pnq
 have phase: phase s' }q=\mathrm{ phase s q
 and dblock: dblock s q = dblock s'q
 and disk: disk s' = disks
 by(auto simp add: EndPhase2-def)
 with inv
 show ?thesis
 by(auto simp add: HInv4c-def)
qed
theorem HEndPhase2-HInv4c:
 \llbracketHEndPhase2 s s' p; HInv4c s q\rrbracket\Longrightarrow HInv4c s' q
 by(blast dest: HEndPhase2-HInv4c-p HEndPhase2-HInv4c-q)
lemma HFail-HInv4c-p:
 \llbracketHFail s s' p; HInv4c s p\rrbracket\Longrightarrow HInv4c s'p
 by(auto simp add: Fail-def HInv4c-def)
lemma HFail-HInv&c-q:
 assumes act: HFail s s'p
 and inv: HInv4c s q
 and pnq: p\not=q
 shows HInv4c s' q
proof -
 from act pnq
 have phase: phase s' }q=\mathrm{ phase s q
 and dblock:dblock s q = dblock s' q
 and disk: disk s'= disk s
 by(auto simp add: Fail-def)
 with inv
 show ?thesis
 by(auto simp add: HInv&c-def)
qed
theorem HFail-HInv4c:
 \llbracketHFail s s' p; HInv4c s q\rrbracket\LongrightarrowHInv&c s'q
 by(blast dest:HFail-HInv4c-p HFail-HInv4c-q)
lemma HPhase0Read-HInv4c-p:
```

```
 \llbracketHPhase0Read s s'pd;HInv4c s p\rrbracket\LongrightarrowHInv4c s'p
 by(auto simp add: Phase0Read-def HInv4c-def)
lemma HPhase0Read-HInv4c-q:
 assumes act:HPhase0Read s s'pd
 and inv: HInv4c s q
 and pnq: p\not=q
 shows HInv4c s' q
proof -
 from act pnq
 have phase: phase s' }q=\mathrm{ phase s q
 and dblock: dblock s q = dblock s' q
 and disk: disk s'= disk s
 by(auto simp add: Phase0Read-def)
 with inv
 show ?thesis
 by(auto simp add: HInv4c-def)
qed
theorem HPhase0Read-HInv4c:
 \llbracketHPhaseORead s s' p d; HInv4c s q\rrbracket \Longrightarrow HInv4c s' q
 by(blast dest: HPhase0Read-HInv4c-p HPhase0Read-HInv4c-q)
lemma HEndPhase0-HInv&c-p:
 \llbracketHEndPhase0 s s' p; HInv4c s p\rrbracket\LongrightarrowHInv4c s'p
 by(auto simp add: EndPhase0-def HInv4c-def)
lemma HEndPhase0-HInv4c-q:
 assumes act: HEndPhase0 s s'p
 and inv: HInv4c s q
 and pnq: p\not=q
 shows HInv4c s' q
proof -
 from act pnq
 have phase: phase s' q= phase s q
 and dblock: dblock s q = dblock s' q
 and disk: disk s' = disk s
 by(auto simp add: EndPhase0-def)
 with inv
 show ?thesis
 by(auto simp add: HInv4c-def)
qed
theorem HEndPhase0-HInv4c:
 \llbracketHEndPhase0 s s' p; HInv4c s q\rrbracket\Longrightarrow HInv4c s' q
 by(blast dest: HEndPhase0-HInv4c-p HEndPhase0-HInv4c-q)
```


## C.4.4 Proofs of Invariant 4d

```
lemma HStartBallot-HInv4d-p:
 assumes act: HStartBallot s s'p
 and inv: HInv{d s p
 shows HInv4d s' p
proof(clarsimp simp add: HInv4d-def)
 fix bk
 assume bk: bk\inblocksOf s'p
 from act
 have bal': bal (dblock s' p) = bal (dblock s p)
 by(auto simp add: StartBallot-def)
 from subsetD[OF HStartBallot-blocksOf[OF act] bk]
 have \exists}D\in\mathrm{ MajoritySet. }\foralld\inD.bal bk\leqmbal (disk s d p
 proof
 assume bk: bk \in blocksOf s p
 with inv
 show ?thesis
 by(auto simp add:HInv&d-def)
 next
 assume bk:bk\in{dblock s'p}
 with bal' inv
 show ?thesis
 by(auto simp add: HInv&d-def blocksOf-def)
 qed
 with act
 show \existsD\inMajoritySet. }\foralld\inD.bal bk\leqmbal (disk s' d p
 by(auto simp add: StartBallot-def)
qed
lemma HStartBallot-HInv4d-q:
 assumes act:HStartBallot s s'p
 and inv: HInv4d s q
 and pnq: p\not=q
 shows HInv4d s' q
proof -
 from act pnq
 have disk': disk s'= disk s
 and dblock':dblock s' q=dblock s q
 by(auto simp add:StartBallot-def)
 from act pnq
 have blocksRead': \forallq. allRdBlks s' q\subseteqallRdBlks s q
 by(auto simp add: StartBallot-def InitializePhase-def allRdBlks-def)
 with disk' dblock'
 have blocksOf s' q\subseteq blocksOf s q
 by(auto simp add: allRdBlks-def blocksOf-def rdBy-def, blast)
 from subsetD[OF this] inv
 have }\forallbk\inblocksOf s' q.
 \existsD\inMajoritySet. }\foralld\inD.bal bk\leqmbal(disk s d q)
 by(auto simp add:HInv4d-def)
```

```
 with disk'
 show ?thesis
 by(auto simp add:HInv&d-def)
qed
theorem HStartBallot-HInv4d:
 \llbracketHStartBallot s s' p; HInv{d s q\rrbracket\LongrightarrowHInv{d s'q
 by(blast dest: HStartBallot-HInv4d-p HStartBallot-HInv&d-q)
lemma HPhase1or2Write-HInv4d-p:
 assumes act: HPhase1or2Write s s' p d
 and inv: HInv&d s p
 and inv4a: HInv4a s p
 shows HInv&d s'p
proof(clarsimp simp add:HInv4d-def)
 fix bk
 assume bk:bk\inblocksOf s}\mp@subsup{s}{}{\prime}
 from act
 have ddisk: }\foralldd\mathrm{ . disk s' dd p=(if d = dd
 then dblock s p
 else disk s dd p)
 and phase: phase s p}\not=
 by(auto simp add: Phase1or2Write-def)
 from inv subsetD[OF HPhase1or2Write-blocksOf[OF act] bk]
 have asm3: \existsD\inMajoritySet. }\foralldd\inD.bal bk\leqmbal (disk s dd p
 by(auto simp add: HInv4d-def)
 from phase inv&a subsetD[OF HPhase1or2Write-blocksOf[OF act] bk] ddisk
 have p41: bal bk \leq mbal (disk s' d p)
 by(auto simp add: HInv&a-def HInv&a1-def)
 with ddisk asm3
 show }\existsD\inMajoritySet.. \foralldd\inD. bal bk\leqmbal (disk s'dd p
 by(auto simp add: MajoritySet-def split: if-split-asm)
qed
lemma HPhase1or2Write-HInv4d-q:
 assumes act: HPhase1or2Write s s}\mp@subsup{s}{}{\prime}p
 and inv: HInv4d s q
 and pnq: p\not=q
 shows HInv4d s' q
proof -
 from act pnq
 have disk': }\foralld.\mathrm{ disk s' d q = disk s d q
 by(auto simp add: Phase1or2Write-def)
 from act pnq
 have blocksRead': \forall q. allRdBlks s' q\subseteqallRdBlks s q
 by(auto simp add: Phase1or2Write-def
 InitializePhase-def allRdBlks-def)
 with act pnq
 have blocksOf s' q\subseteqblocksOf s q
```

```
 by(auto simp add: Phase1or2Write-def allRdBlks-def
 blocksOf-def rdBy-def)
 from subsetD[OF this] inv
 have }\forallbk\inblocksOf s' q.
 \exists D\inMajoritySet. }\foralld\inD.bal bk\leqmbal(disk s d q)
 by(auto simp add: HInv4d-def)
 with disk'
 show ?thesis
 by(auto simp add: HInv4d-def)
qed
theorem HPhase1or2 Write-HInv4d:
 \llbracketHPhase1or2Write s s' pd;HInv4ds q; HInv&a s p\rrbracket\LongrightarrowHInv4d s'q
 by(blast dest: HPhase1or2Write-HInv4d-p HPhase1or2Write-HInv4d-q)
lemma HPhase1or2ReadThen-HInv4d-p:
 assumes act: HPhase1or2ReadThen s s'p d q
 and inv: HInv4d s p
 shows HInv4d s'p
proof(clarsimp simp add:HInv4d-def)
 fix bk
 assume bk:bk\inblocksOf s' p
 from act
 have bal': bal (dblock s'p) = bal (dblock s p)
 by(auto simp add: Phase1or2ReadThen-def)
 from subsetD[OF HPhase1or2ReadThen-blocksOf[OF act] bk] inv
 have \existsD\inMajoritySet. }\foralld\inD.bal bk\leqmbal (disk s d p
 by(auto simp add: HInv4d-def)
 with act
 show }\existsD\inMajoritySet. \foralld\inD. bal bk\leqmbal (disk s' d p
 by(auto simp add: Phase1or2ReadThen-def)
qed
lemma HPhase1or2ReadThen-HInv4d-q:
 assumes act: HPhase1or2ReadThen s s'pdr
 and inv: HInv_d s q
 and pnq: p\not=q
 shows HInv4d s' q
proof -
 from act pnq
 have disk': disk s'=disk s
 by(auto simp add: Phase1or2ReadThen-def)
 from act pnq
 have blocksOf s' q\subseteqblocksOf s q
 by(auto simp add: Phase1or2ReadThen-def allRdBlks-def
 blocksOf-def rdBy-def)
 from subsetD[OF this] inv
 have }\forallbk\inblocksOf s' q.
 \exists D\inMajoritySet. }\foralld\inD.bal bk\leqmbal(disk s d q
```

```
 by(auto simp add: HInv4d-def)
 with disk'
 show ?thesis
 by(auto simp add: HInv4d-def)
qed
theorem HPhase1or2ReadThen-HInv4d:
 \llbracketHPhase1or2ReadThen s s'pdr;HInv4d s q\rrbracket\LongrightarrowHInv4d s'q
 by(blast dest: HPhase1or2ReadThen-HInv4d-p
 HPhase1or2ReadThen-HInv&d-q)
theorem HPhase1or2ReadElse-HInv4d:
 〔HPhase1or2ReadElse s s'pdr;HInv4d s q\rrbracket\LongrightarrowHInv4d s'q
using HStartBallot-HInv&d
 by(auto simp add: Phase1or2ReadElse-def)
lemma HEndPhase1-HInv4d-p:
 assumes act:HEndPhase1 s s'
 and inv: HInv4d s p
 and inv2b: Inv2b s
 and inv4c:HInv4c s p
 shows HInv4d s' p
proof(clarsimp simp add: HInv4d-def)
 fix bk
 assume bk: bk blocksOf s'p
 from HEndPhase1-HInv4c[OF act inv4c inv2b]
 have HInv&c s'p.
 with act
 have p31: \existsD\inMajoritySet.
 \foralld\inD.mbal (disk s'd p)=bal(dblock s'p)
 and disk': disk s'= disk s
 by(auto simp add: EndPhase1-def HInv4c-def)
 from subsetD[OF HEndPhase1-blocksOf[OF act] bk]
 show \exists D\inMajoritySet. }\foralld\inD.bal bk\leqmbal (disk s' d p
 proof
 assume bk:bk\in blocksOf s p
 with inv disk'
 show ?thesis
 by(auto simp add: HInv4d-def)
 next
 assume bk:bk\in{dblock s'p
 with p31
 show ?thesis
 by force
 qed
qed
lemma HEndPhase1-HInv4d-q:
 assumes act: HEndPhase1 s s'p
```

```
 and inv: HInv&d s q
 and pnq: p\not=q
 shows HInv4d s' q
proof -
 from act pnq
 have disk': disk s'=
 and dblock': dblock s' q=dblock s q
 by(auto simp add: EndPhase1-def)
 from act pnq
 have blocksRead': \forall q. allRdBlks s' q\subseteq allRdBlks s q
 by(auto simp add: EndPhase1-def InitializePhase-def
 allRdBlks-def)
 with disk' dblock'
 have blocksOf s' q\subseteqblocksOf s q
 by(auto simp add: allRdBlks-def blocksOf-def rdBy-def, blast)
 from subsetD[OF this] inv
 have }\forallbk\inblocksOf s' q.
 \existsD\inMajoritySet. }\foralld\inD.bal bk\leqmbal(disk s d q)
 by(auto simp add: HInv4d-def)
 with disk'
 show ?thesis
 by(auto simp add: HInv4d-def)
qed
theorem HEndPhase1-HInv4d:
 \llbracketHEndPhase1 s s' p; HInv4d s q; Inv2b s; HInv&c s p\rrbracket
 \Longrightarrow H I n v 4 d ~ s ' q
 by(blast dest: HEndPhase1-HInv4d-p HEndPhase1-HInv4d-q)
lemma HEndPhase2-HInv4d-p:
 assumes act: HEndPhase2 s s'p
 and inv: HInv4d s p
 shows HInv4d s' p
proof(clarsimp simp add: HInv4d-def)
 fix bk
 assume bk:bk\inblocksOf s'p
 from act
 have bal': bal (dblock s' p) = bal (dblock s p)
 by(auto simp add: EndPhase2-def)
 from subsetD[OF HEndPhase2-blocksOf[OF act] bk] inv
 have \existsD\inMajoritySet..}\foralld\inD.bal bk\leqmbal (disk s d p
 by(auto simp add: HInv&d-def)
 with act
 show \existsD\inMajoritySet. }\foralld\inD.bal bk \leqmbal (disk s'd p
 by(auto simp add: EndPhase2-def)
qed
lemma HEndPhase2-HInv4d-q:
 assumes act: HEndPhase2 s s'p
```

```
 and inv: HInv&d s q
 and pnq: p\not=q
 shows HInv4d s' q
proof -
 from act pnq
 have disk': disk s'=disk s
 by(auto simp add: EndPhase2-def)
 from act pnq
 have blocksOf s' q\subseteqblocksOf s q
 by(auto simp add: EndPhase2-def InitializePhase-def
 allRdBlks-def blocksOf-def rdBy-def)
 from subsetD[OF this] inv
 have }\forallbk\inblocksOf s' q.
 \exists D\inMajoritySet. }\foralld\inD.bal bk\leqmbal(disk s d q)
 by(auto simp add: HInv&d-def)
 with disk'
 show ?thesis
 by(auto simp add: HInv4d-def)
qed
theorem HEndPhase2-HInv4d:
 \llbracketHEndPhase2 s s' p; HInv4d s q\rrbracket\LongrightarrowHInv4d s' q
 by(blast dest: HEndPhase2-HInv4d-p HEndPhase2-HInv4d-q)
lemma HFail-HInv4d-p:
 assumes act:HFail s s'p
 and inv: HInv4d s p
 shows HInv4d s' p
proof(clarsimp simp add: HInv4d-def)
 fix bk
 assume bk: bk blocksOf s' p
 from act
 have disk': disk s' = disk s
 by(auto simp add: Fail-def)
from subsetD[OF HFail-blocksOf[OF act] bk]
show }\existsD\in\mathrm{ MajoritySet. }\foralld\inD\mathrm{ . bal bk }\leq\mathrm{ mbal (disk s'd p)
proof
 assume bk: bk \in blocksOf s p
 with inv disk'
 show ?thesis
 by(auto simp add: HInv4d-def)
 next
 assume bk: bk \in{dblock s'p}
 with act
 have bal bk=0
 by(auto simp add: Fail-def InitDB-def)
 with Disk-isMajority
 show ?thesis
 by(auto simp add: MajoritySet-def)
```

```
 qed
qed
lemma HFail-HInv4d-q:
 assumes act:HFail s s'p
 and inv: HInv4d s q
 and pnq: p\not=q
 shows HInv4d s' q
proof -
 from act pnq
 have disk': disk s'= disk s
 and dblock':dblock s' q=dblock s q
 by(auto simp add: Fail-def)
 from act pnq
 have blocksRead': \forall q. allRdBlks s' q\subseteq allRdBlks s q
 by(auto simp add: Fail-def InitializePhase-def allRdBlks-def)
 with disk' dblock'
 have blocksOf s' q\subseteqblocksOf s q
 by(auto simp add: allRdBlks-def blocksOf-def rdBy-def, blast)
 from subsetD[OF this] inv
 have }\forallbk\inblocksOf s' q.
 \existsD\inMajoritySet. }\foralld\inD.bal bk\leqmbal(disk s d q)
 by(auto simp add: HInv&d-def)
 with disk'
 show ?thesis
 by(auto simp add: HInv&d-def)
qed
theorem HFail-HInv{d:
 |HFail s s' p;HInv4d s q\rrbracket\LongrightarrowHInv4d s'q
 by(blast dest:HFail-HInv4d-p HFail-HInv4d-q)
lemma HPhase0Read-HInv4d-p:
 assumes act:HPhase0Read s s' p d
 and inv: HInv4d s p
 shows HInv&d s'p
proof(clarsimp simp add: HInv4d-def)
 fix bk
 assume bk:bk\inblocksOf s'p
 from act
 have bal': bal (dblock s'p) = bal (dblock s p)
 by(auto simp add: Phase0Read-def)
 from subsetD[OF HPhase0Read-blocksOf[OF act] bk] inv
 have \existsD\inMajoritySet. }\foralld\inD.bal bk\leqmbal (disk s d p
 by(auto simp add: HInv4d-def)
 with act
 show \existsD\inMajoritySet. }\foralld\inD.bal bk\leqmbal (disk s' d p
 by(auto simp add: Phase0Read-def)
qed
```

```
lemma HPhaseORead-HInv4d-q:
 assumes act: HPhase0Read s s'pd
 and inv: HInv4d s q
 and pnq: p\not=q
 shows HInv4d s' q
proof -
 from act pnq
 have disk': disk s'=disk s
 by(auto simp add: Phase0Read-def)
 from act pnq
 have blocksOf s' q\subseteqblocksOf s q
 by(auto simp add: Phase0Read-def allRdBlks-def
 blocksOf-def rdBy-def)
 from subsetD[OF this] inv
 have }\forallbk\inblocksOf s' q.
 \existsD\inMajoritySet. }\foralld\inD.bal bk\leqmbal(disk s d q)
 by(auto simp add:HInv&d-def)
 with disk'
 show ?thesis
 by(auto simp add: HInv4d-def)
qed
theorem HPhase0Read-HInv4d:
 \llbracketHPhase0Read s s' p d; HInv4d s q\rrbracket \Longrightarrow HInv4d s' q
 by(blast dest:HPhase0Read-HInv4d-p HPhase0Read-HInv4d-q)
lemma HEndPhase0-blocksOf2:
 assumes act: HEndPhase0 s s'p
 and inv2c: Inv2c-inner s p
 shows allBlocksRead s p\subseteqblocksOf s p
proof -
 from act inv2c
 have }\foralld.\forallbr\inblocksRead s pd. proc br =
 ^block br = disk s d p
 by(auto simp add: EndPhase0-def Inv2c-inner-def)
 thus ?thesis
 by(auto simp add: allBlocksRead-def allRdBlks-def
 blocksOf-def)
qed
lemma HEndPhase0-HInv4d-p:
 assumes act: HEndPhase0 s s'p
 and inv: HInv4d s p
 and inv2c: Inv2c s
 and inv1:Inv1 s
 shows HInv4d s' p
proof(clarsimp simp add:HInv4d-def)
 fix bk
```

```
 assume bk:bk\inblocksOf s' p
 from subsetD[OF HEndPhase0-blocksOf[OF act] bk]
 have }\existsD\in\mathrm{ MajoritySet. }\foralld\inD.bal bk\leqmbal (disk s d p
 proof
 assume bk: bk\in blocksOf s p
 with inv
 show ?thesis
 by(auto simp add: HInv4d-def)
 next
 assume bk:bk\in{dblock s'p}
 from inv2c
 have inv2c-inner: Inv2c-inner s p
 by(auto simp add: Inv2c-def)
 from bk HEndPhase0-some[OF act inv1]
 HEndPhaseO-blocksOf2[OF act inv2c-inner] act
 have bal bk \in bal '(blocksOf s p)
 by(auto simp add: EndPhase0-def)
 with inv
 show ?thesis
 by(auto simp add: HInv4d-def)
 qed
 with act
 show \exists D\inMajoritySet. }\foralld\inD.bal bk\leqmbal (disk s'd p
 by(auto simp add: EndPhase0-def)
qed
lemma HEndPhase0-HInv4d-q:
 assumes act:HEndPhase0 s s'p
 and inv: HInv_d s q
 and pnq: p\not=q
 shows HInv4d s' q
proof -
from act pnq
 have dblock s' }q=dblocks q ^ disk s'= disk
 by(auto simp add: EndPhase0-def)
 moreover
 from act pnq
 have }\forallpd.rdBy s' q pd\subseteqrdBy s q pd
 by(auto simp add: EndPhase0-def InitializePhase-def rdBy-def)
hence (UN p d.rdBy s'q p d) \subseteq(UN p d.rdBy s q p d)
 by(auto, blast)
ultimately
have blocksOf s' q\subseteqblocksOf s q
 by(auto simp add: blocksOf-def, blast)
from subsetD[OF this] inv
have }\forallbk\inblocksOf s' q.
 \exists D\inMajoritySet. }\foralld\inD.bal bk\leqmbal(disk s d q)
 by(auto simp add:HInv4d-def)
with act
```

```
 show ?thesis
 by(auto simp add: EndPhase0-def HInv&d-def)
qed
theorem HEndPhase0-HInv4d:
 \llbracketHEndPhase0 s s' p; HInv&d s q;
 Inv2c s; Inv1 s\rrbracket\Longrightarrow HInv4d s' q
 by(blast dest: HEndPhase0-HInv4d-p HEndPhase0-HInv4d-q)
```

Since we have already proved HInv2 is an invariant of HNext, HInv1 $\wedge$ $H I n v 2 \wedge H I n v 4$ is also an invariant of $H N e x t$.

```
lemma I2d:
 assumes nxt: HNext s s'
 and inv:HInv1 s ^ HInv2 s ^ HInv2 s'^ HInv4 s
 shows HInv4 s'
proof(auto simp add: HInv4-def)
 fix p
 show HInv4a s' p using assms
 by(auto simp add: HInv4-def HNext-def Next-def,
 auto simp add: HInv2-def intro: HStartBallot-HInv4a,
 auto intro: HPhase0Read-HInv4a,
 auto intro: HPhase1or2Write-HInv4a,
 auto simp add: Phase1or2Read-def
 intro: HPhase1or2ReadThen-HInv4a
 HPhase1or2ReadElse-HInv4a,
 auto simp add: EndPhase1or2-def
 intro: HEndPhase1-HInv&a
 HEndPhase2-HInv&a,
 auto intro: HFail-HInv&a,
 auto intro: HEndPhase0-HInv&a simp add: HInv1-def)
 show HInv4b s' p using assms
 by(auto simp add: HInv4-def HNext-def Next-def,
 auto simp add: HInv2-def
 intro: HStartBallot-HInv4b,
 auto intro: HPhase0Read-HInv4b,
 auto intro: HPhase1or2Write-HInv4b,
 auto simp add: Phase1or2Read-def
 intro: HPhase1or2ReadThen-HInv4b
 HPhase1or2ReadElse-HInv{b,
 auto simp add: EndPhase1or2-def
 intro: HEndPhase1-HInv&b
 HEndPhase2-HInv4b,
 auto intro: HFail-HInv4b,
 auto intro: HEndPhase0-HInv&b simp add: HInv1-def Inv2c-def)
 show HInv4c s' p using assms
 by(auto simp add: HInv4-def HNext-def Next-def,
 auto simp add: HInv2-def
 intro: HStartBallot-HInv4c,
 auto intro: HPhase0Read-HInv4c,
```

```
 auto intro: HPhase1or2Write-HInv4c,
 auto simp add: Phase1or2Read-def
 intro: HPhase1or2ReadThen-HInv4c
 HPhase1or2ReadElse-HInv4c,
 auto simp add: EndPhase1or2-def
 intro: HEndPhase1-HInv4c
 HEndPhase2-HInv4c,
 auto intro: HFail-HInv4c,
 auto intro: HEndPhase0-HInv4c simp add: HInv1-def)
show HInv{d s'p using assms
 by(auto simp add: HInv4-def HNext-def Next-def,
 auto simp add: HInv2-def
 intro: HStartBallot-HInv4d,
 auto intro: HPhase0Read-HInv4d,
 auto intro: HPhase1or2Write-HInv4d,
 auto simp add: Phase1or2Read-def
 intro: HPhase1or2ReadThen-HInv4d
 HPhase1or2ReadElse-HInv4d,
 auto simp add: EndPhase1or2-def
 intro: HEndPhase1-HInv4d
 HEndPhase2-HInv4d,
 auto intro: HFail-HInv4d,
 auto intro: HEndPhase0-HInv&d simp add: HInv1-def)
qed
end
```


## theory DiskPaxos-Inv5 imports DiskPaxos-Inv3 DiskPaxos-Inv4 begin

## C. 5 Invariant 5

This invariant asserts that, if a processor $p$ is in phase 2 , then either its bal and inp values satisfy maxBalInp, or else $p$ must eventually abort its current ballot. Processor $p$ will eventually abort its ballot if there is some processor $q$ and majority set $D$ such that $p$ has not read $q$ 's block on any disk $D$, and all of those blocks have mbal values greater than bal(dblocksp).

```
definition maxBalInp :: state \(\Rightarrow\) nat \(\Rightarrow\) InputsOrNi \(\Rightarrow\) bool
 where maxBalInp s b \(v=(\forall b k \in\) allBlocks \(s . b \leq b a l ~ b k \longrightarrow\) inp \(b k=v)\)
definition HInv5-inner- \(R::\) state \(\Rightarrow\) Proc \(\Rightarrow\) bool
where
 HInv5-inner-R s \(p=\)
 (maxBalInp s (bal(dblock s p)) (inp(dblock sp))
 \(\vee(\exists D \in\) MajoritySet. \(\exists q .(\forall d \in D . \quad\) bal \((d b l o c k ~ s p)<\operatorname{mbal}(d i s k s d q)\)
 \(\wedge \neg h a s R e a d s p d q))\))
definition HInv5-inner :: state \(\Rightarrow\) Proc \(\Rightarrow\) bool
```

```
 where HInv5-inner s \(p=(\) phase s \(p=2 \longrightarrow\) HInv5-inner-R s \(p)\)
definition HInv5 :: state \(\Rightarrow\) bool
 where HInv5 \(s=(\forall p\). HInv5-inner \(s p)\)
```


## C.5.1 Proof of Invariant 5

The initial state implies Invariant 5.

```
theorem HInit-HInv5: HInit \(s \Longrightarrow\) HInv5 s
 using Disk-isMajority
 by (auto simp add: HInit-def Init-def HInv5-def HInv5-inner-def)
```

We will use the notation used in the proofs of invariant 4, and prove the lemma action-HInv5-p and action-HInv5-q for each action, for the cases $p=q$ and $p \neq q$ respectively.
Also, for each action we will define an action-allBlocks lemma in the same way that we defined -blocksOf lemmas in the proofs of HInv2. Now we prove that for each action the new allBlocks are included in the old allBlocks or, in some cases, included in the old allBlocks union the new dblock.
lemma HStartBallot-HInv5-p:
assumes act: HStartBallot s $s^{\prime} p$
and inv: HInv5-inner s $p$
shows HInv5-inner s'pusing assms
by (auto simp add: StartBallot-def HInv5-inner-def)
lemma HStartBallot-blocksOf-q:
assumes act: HStartBallot $s s^{\prime} p$
and $p n q$ : $p \neq q$
shows blocksOf $s^{\prime} q \subseteq$ blocksOf s $q$ using assms
by (auto simp add: StartBallot-def InitializePhase-def blocksOf-def rdBy-def)
lemma HStartBallot-allBlocks:
assumes act: HStartBallot s s $s^{\prime} p$
shows allBlocks $s^{\prime} \subseteq$ allBlocks $s \cup\left\{\right.$ dblock $\left.s^{\prime} p\right\}$
proof (auto simp del: HStartBallot-def simp add: allBlocks-def dest: HStartBallot-blocksOf-q[OF act])
fix $x p a$
assume $x$-pa: $x \in$ blocksOf $s^{\prime} p a$ and
$x$-nblks: $\forall x a . x \notin$ blocksOf s xa
show $x=d$ block $s^{\prime} p$
proof (cases $p=p a$ )
case True
from $x$-nblks
have $x \notin$ blocksOf s $p$
by auto
with True subsetD[OF HStartBallot-blocksOf[OF act] x-pa]

```
 show ?thesis
 by auto
 next
 case False
 from x-nblks subsetD[OF HStartBallot-blocksOf-q[OF act False] x-pa]
 show ?thesis
 by auto
 qed
qed
lemma HStartBallot-HInv5-q1:
 assumes act:HStartBallot s s'p
 and pnq: p\not=q
 and inv5-1: maxBalInp s (bal(dblock s q)) (inp(dblock s q))
 shows maxBalInp s'(bal(dblock s' q)) (inp(dblock s' q))
proof(auto simp add: maxBalInp-def)
 fix bk
 assume bk:bk\in allBlocks s'
 and bal: bal (dblock s'q) \leqbal bk
 from act pnq
 have dblock': dblock s' q = dblock s q by(auto simp add: StartBallot-def)
 from subsetD[OF HStartBallot-allBlocks[OF act] bk]
 show inp bk = inp (dblock s' q)
 proof
 assume bk: bk\inallBlocks s
 with inv5-1 dblock' bal
 show ?thesis
 by(auto simp add: maxBalInp-def)
 next
 assume bk:bk\in{dblock s'p}
 have dblock s p \in allBlocks s
 by(auto simp add: allBlocks-def blocksOf-def)
 with bal act bk dblock' inv5-1
 show ?thesis
 by(auto simp add: maxBalInp-def StartBallot-def)
 qed
qed
lemma HStartBallot-HInv5-q2:
 assumes act: HStartBallot s s'p
 and pnq: p\not=q
 and inv5-2: \existsD\inMajoritySet. \existsqq. (}\foralld\inD.\quadbal(dblock s q)<mbal(disk s d
qq)
 \wedge ᄀhasRead s q d qq)
 shows }\exists\textrm{D}\in\mathrm{ MajoritySet. }\exists\textrm{qq.}(\foralld\inD.\quadbal(dblock s'q)<mbal(disk s'd qq
 \wedge \neghasRead s' q d qq)
proof -
 from act pnq
 have disk: disk s' = disk s
```

and blocksRead: $\forall d$. blocksRead $s^{\prime} q d=$ blocksRead s q d and dblock: dblock $s^{\prime} q=$ dblock s $q$
by (auto simp add: StartBallot-def InitializePhase-def)
with inv5-2
show ?thesis
by (auto simp add: hasRead-def)
qed
lemma HStartBallot-HInv5-q:
assumes act: HStartBallot s s'p
and inv: HInv5-inner s $q$
and $p n q: p \neq q$
shows HInv5-inner $s^{\prime} q$
using assms and HStartBallot-HInv5-q1 [OF act pnq] HStartBallot-HInv5-q2[OF act pnq]
by (auto simp add: HInv5-inner-def HInv5-inner-R-def StartBallot-def)
theorem HStartBallot-HInv5:
$\llbracket$ HStartBallot s s'p; HInv5-inner s $q \rrbracket \Longrightarrow H I n v 5-i n n e r ~ s^{\prime} q$ by (blast dest: HStartBallot-HInv5-q HStartBallot-HInv5-p)

```
lemma HPhase1or2Write-HInv5-1:
 assumes act: HPhase1or2Write s s'pd
 and inv5-1: maxBalInp s (bal(dblock s q)) (inp(dblock s q))
 shows maxBalInp s'(bal(dblock s' q)) (inp(dblock s'q))
 using assms and HPhase1or2Write-blocksOf[OF act]
 by(auto simp add: Phase1or2Write-def maxBalInp-def allBlocks-def)
lemma HPhase1or2Write-HInv5-p2:
 assumes act: HPhase1or2Write s s' p d
 and inv4c: HInv4c s p
 and phase: phase s p=2
 and inv5-2: \existsD\inMajoritySet. \existsq. (\foralld\inD. bal(dblock s p)<mbal(disk s d q)
 \wedgehasRead s p d q)
 shows }\exists\mathrm{ D MajoritySet. }\exists\textrm{q}.(\foralld\inD.\quadbal(dblock s'p)<mbal(disk s'd q
 \wedge ᄀhasRead s' p d q)
proof -
 from inv5-2
 obtain D q
 where i1: IsMajority D
 and i2: }\foralld\inD.bal(dblock s p)<mbal(disk s d q)
 and i3: }\foralld\inD.\neghasRead s pd q
 by(auto simp add: MajoritySet-def)
 have pnq: p\not=q
 proof -
 from inv4c phase
 obtain D1 where r1: IsMajority D1 ^(\foralld\inD1.mbal(disk s d p)=bal (dblock
s p))
```

```
 by(auto simp add: HInv4c-def MajoritySet-def)
 with i1 majorities-intersect
 have }D\capD1\not={}\mathrm{ by auto
 then obtain dd where dd\inD\capD1
 by auto
 with i1 i2 r1
 have bal(dblock s p)< mbal(disks dd q) ^ mbal(disk s dd p)=bal (dblock s p)
 by auto
 thus ?thesis by auto
qed
from act pnq
 - dblock and hasRead do not change
 have dblock s'= dblock s
 and }\foralld.hasRead s'pdq=hasRead s pd q
 - In all disks q blocks don't change
 and }\foralld.disk s'd q= disk s d q
 by(auto simp add: Phase1or2Write-def hasRead-def)
 with i2 i1 i3 majority-nonempty
```



```
 by auto
 with i1
 show ?thesis
 by(auto simp add: MajoritySet-def)
qed
lemma HPhase1or2Write-HInv5-p:
 assumes act: HPhase1or2Write s s' p d
 and inv: HInv5-inner s p
 and inv4: HInv& c s p
 shows HInv5-inner s' p
proof(auto simp add: HInv5-inner-def HInv5-inner-R-def)
 assume phase': phase s'p=2
 and i2: }\forallD\inMajoritySet. \forallq. \existsd\inD. bal (dblock s'p)<mbal (disk s'd q) \longrightarrow
hasRead s' p d q
 with act have phase: phase s p=2
 by(auto simp add: Phase1or2Write-def)
 show maxBalInp s'(bal (dblock s'p)) (inp (dblock s' p))
 proof(rule HPhase1or2Write-HInv5-1[OF act, of p])
 from HPhase1or2Write-HInv5-p2[OF act inv4 phase] inv i2 phase
 show maxBalInp s (bal (dblock s p)) (inp (dblock s p))
 by(auto simp add: HInv5-inner-def HInv5-inner-R-def, blast)
 qed
qed
lemma HPhase1or2Write-allBlocks:
 assumes act: HPhase1or2Write s s' p d
 shows allBlocks s'\subseteq allBlocks s
 using HPhase1or2Write-blocksOf[OF act]
 by(auto simp add: allBlocks-def)
```

```
lemma HPhase1or2Write-HInv5-q2:
 assumes act: HPhase1or2Write s s' pd
 and pnq: p\not=q
 and inv&a:HInv&a s p
 and inv5-2: \exists D\inMajoritySet. \existsqq. (}\foralld\inD.\quadbal(dblock s q)<mbal(disk s d
qq)
 \wedge \neghasRead s q d qq)
 shows }\exists\mathrm{ D MajoritySet. }\exists\textrm{qq.}(\foralld\inD.\quadbal(dblock s'q)<mbal(disk s'd qq
 \wedge \neghasRead s' q d qq)
proof -
 from inv5-2
 obtain D qq
 where i1: IsMajority D
 and i2: }\foralld\inD.bal(dblocks q)< mbal(disk s d qq)
 and i3: }\foralld\inD.\neghasRead s qd d
 by(auto simp add: MajoritySet-def)
 from act pnq
 - dblock and hasRead do not change
 have dblock': dblock s'}=\mathrm{ dblock s
 and hasread: \foralld. hasRead s' qd qq = hasRead s q d qq
 by(auto simp add: Phase1or2Write-def hasRead-def)
 have }\foralld\inD\mathrm{ . bal (dblock s'q)< mbal (disk s' d qq)^ ᄀhasRead s' q d qq
 proof(cases qq=p)
 case True
 have bal(dblocks q) < mbal(dblock s p)
 proof -
 from inv4a act i1
 have \existsd\inD.mbal(disk s d p)\leqmbal(dblock s p)
 by(auto simp add: MajoritySet-def HInv4a-def
 HInv&a2-def Phase1or2Write-def)
 with True i2
 show bal(dblock s q) < mbal(dblock s p)
 by auto
 qed
 with hasread dblock' True i1 i2 i3 act
 show ?thesis
 by(auto simp add: Phase1or2Write-def)
 next
 case False
 with act i2 i3
 show ?thesis
 by(auto simp add: Phase1or2Write-def hasRead-def)
 qed
 with i1
 show ?thesis
 by(auto simp add: MajoritySet-def)
qed
```

```
lemma HPhase1or2Write-HInv5-q:
 assumes act: HPhase1or2Write s s' pd
 and inv: HInv5-inner s q
 and inv4a: HInv4a s p
 and pnq: p\not=q
 shows HInv5-inner s' q
proof(auto simp add: HInv5-inner-def HInv5-inner-R-def)
 assume phase': phase s' }q=
 and i2: }\forallD\inMajoritySet. \forallqa. \existsd\inD.bal (dblock s'q)<mbal (disk s' d qa)
 hasRead s' q d qa
 from phase' act have phase: phase s q=2
 by(auto simp add: Phase1or2Write-def)
 show maxBalInp s'(bal (dblock s'q)) (inp (dblock s' q))
 proof(rule HPhase1or2Write-HInv5-1 [OF act, of q])
 from HPhase1or2Write-HInv5-q2[OF act pnq inv{a] inv i2 phase
 show maxBalInp s (bal (dblock s q)) (inp (dblock s q))
 by(auto simp add: HInv5-inner-def HInv5-inner-R-def, blast)
 qed
qed
theorem HPhase1or2Write-HInv5:
 \llbracket HPhase1or2Write s s' p d; HInv5-inner s q;
 HInv4c s p; HInv&a s p \ \LongrightarrowHInv5-inner s' q
 by(blast dest: HPhase1or2Write-HInv5-q HPhase1or2Write-HInv5-p)
lemma HPhase1or2ReadThen-HInv5-1:
 assumes act: HPhase1or2ReadThen s s' p d r
 and inv5-1: maxBalInp s (bal(dblock s q)) (inp(dblock s q))
 shows maxBalInp s'(bal(dblock s' q)) (inp(dblock s'q))
 using assms and HPhase1or2ReadThen-blocksOf[OF act]
 by(auto simp add: Phase1or2ReadThen-def maxBalInp-def allBlocks-def)
lemma HPhase1or2ReadThen-HInv5-p2:
 assumes act: HPhase1or2ReadThen s s' p d r
 and inv4c: HInv4c s p
 and inv2c: Inv2c-inner s p
 and phase: phase s p=2
 and inv5-2: \existsD\inMajoritySet. \existsq. (\foralld\inD. bal(dblock s p)<mbal(disk s d q)
 \wedge ᄀhasRead s p d q)
 shows }\exists\textrm{D}\in\mathrm{ MajoritySet. }\exists\textrm{q}.(\foralld\inD.\quadbal(dblock s'p)<mbal(disk s'd q
 \wedge ᄀhasRead s'pdq)
proof -
 from inv5-2
 obtain Dq
 where i1: IsMajority D
 and i2: \foralld\inD.bal(dblock s p)<mbal(disk s d q)
 and i3: }\foralld\inD.\neghasRead s pd
 by(auto simp add: MajoritySet-def)
 from inv2c phase
```

```
 have bal(dblock s p)=mbal(dblock s p)
 by(auto simp add: Inv2c-inner-def)
 moreover
 from act have mbal (disk s d r)< mbal (dblock s p)
 by(auto simp add: Phase1or2ReadThen-def)
 moreover
 from i2 have d\inD\longrightarrowbal(dblock s p)<mbal(disk s d q) by auto
 ultimately have pnr: d\inD\longrightarrowq\not=r by auto
 have pnq: }p\not=
 proof -
 from inv4c phase
 obtain D1 where r1: IsMajority D1 ^(}\forall\mathrm{ d dGD1.mbal(disk s d p) =bal (dblock
s p))
 by(auto simp add: HInv4c-def MajoritySet-def)
 with i1 majorities-intersect
 have }D\capD1\not={}\mathrm{ by auto
 then obtain dd where dd\inD\capD1
 by auto
 with i1 iQ r1
 have bal(dblock s p)<mbal(disk s dd q) ^mbal(disk s dd p)=bal (dblock s p)
 by auto
 thus ?thesis by auto
qed
from pnr act
have hasRead': }\foralld\inD. hasRead s' p d q = hasRead s pd q
 by(auto simp add: Phase1or2ReadThen-def hasRead-def)
from act pnq
 - dblock and disk do not change
 have dblock s' = dblock s
 and }\foralld.\mathrm{ disk s' = disk s
 by(auto simp add: Phase1or2ReadThen-def)
 with i2 hasRead' i3
 have }\foralld\inD.bal (dblock s'p)<mbal (disk s' d q)^\neghasRead s'p d q
 by auto
 with i1
 show ?thesis
 by(auto simp add: MajoritySet-def)
qed
lemma HPhase1or2ReadThen-HInv5-p:
 assumes act: HPhase1or2ReadThen s s' p d r
 and inv: HInv5-inner s p
 and inv4:HInv4c s p
 and inv2c: Inv2c s
 shows HInv5-inner s'p
proof(auto simp add: HInv5-inner-def HInv5-inner-R-def)
 assume phase': phase s'
 and i2: }\forallD\inMajoritySet. \forallq. \existsd\inD.bal (dblock s' p)<mbal (disk s'd q) \longrightarrow
hasRead s' p d q
```

```
 with act have phase: phase s p=2
 by(auto simp add: Phase1or2ReadThen-def)
 show maxBalInp s'(bal (dblock s'p)) (inp (dblock s'p))
 proof(rule HPhase1or2ReadThen-HInv5-1[OF act, of p])
 from inv2c
 have Inv2c-inner s p by(auto simp add: Inv2c-def)
 from HPhase1or2ReadThen-HInv5-p2[OF act inv4 this phase] inv i2 phase
 show maxBalInp s (bal (dblock s p)) (inp (dblock s p))
 by(auto simp add: HInv5-inner-def HInv5-inner-R-def, blast)
 qed
qed
lemma HPhase1or2ReadThen-allBlocks:
 assumes act: HPhase1or2ReadThen s s'p dr
 shows allBlocks s'\subseteq allBlocks s
 using HPhase1or2ReadThen-blocksOf[OF act]
 by(auto simp add: allBlocks-def)
lemma HPhase1or2ReadThen-HInv5-q2:
 assumes act: HPhase1or2ReadThen s s' p dr
 and pnq: p\not=q
 and inv&a: HInv&a s p
 and inv5-2: \exists D\inMajoritySet. \exists qq. (}\foralld\inD.\quadbal(dblock s q) < mbal(disk s d
qq)
 \wedge \neghasRead s q d qq)
 shows }\exists\mathrm{ D MajoritySet. }\exists\textrm{qq.}(\foralld\inD.\quadbal(dblock s'q)<mbal(disk s'd qq
 \wedge \neghasRead s' q d qq)
proof -
 from inv5-2
 obtain D qq
 where i1: IsMajority D
 and i2: }\foralld\inD.bal(dblock s q) < mbal(disk s d qq)
 and i3: }\foralld\inD.\neghasRead s q d qq
 by(auto simp add: MajoritySet-def)
 from act pnq
 - dblock and hasRead do not change
 have dblock': dblock s'= dblock s
 and disk': disk s' = disk s
 and hasread: }\foralld\mathrm{ . hasRead s' qd qq=hasRead s q d qq
 by(auto simp add: Phase1or2ReadThen-def hasRead-def)
 with i2 i3
 have }\foralld\inD.bal (dblock s'q)<mbal (disk s'd qq)^\neghasRead s' q d qq
 by auto
 with i1
 show ?thesis
 by(auto simp add: MajoritySet-def)
qed
lemma HPhase1or2ReadThen-HInv5-q:
```

```
 assumes act:HPhase1or2ReadThen s s' p d r
 and inv: HInv5-inner s q
 and inv&a: HInv4a s p
 and pnq: p\not=q
 shows HInv5-inner s' q
proof(auto simp add: HInv5-inner-def HInv5-inner-R-def)
 assume phase': phase s' }q=
 and i2: }\forallD\inMajoritySet. \forallqa. \existsd\inD. bal (dblock s'q)< mbal (disk s'd qa
 \longrightarrow h a s R e a d ~ s ' ~ q ~ d ~ q a ~
 from phase' act have phase: phase s q=2
 by(auto simp add: Phase1or2ReadThen-def)
 show maxBalInp s'(bal (dblock s' q)) (inp (dblock s' q))
 proof(rule HPhase1or2ReadThen-HInv5-1 [OF act, of q])
 from HPhase1or2ReadThen-HInv5-q2[OF act pnq inv4a] inv i2 phase
 show maxBalInp s (bal (dblock s q)) (inp (dblock s q))
 by(auto simp add: HInv5-inner-def HInv5-inner-R-def, blast)
 qed
qed
theorem HPhase1or2ReadThen-HInv5:
 \llbracket HPhase1or2ReadThen s s' p d r; HInv5-inner s q;
 Inv2c s; HInv4c s p; HInv4a s p \\Longrightarrow HInv5-inner s' q
 by(blast dest: HPhase1or2ReadThen-HInv5-q HPhase1or2ReadThen-HInv5-p)
theorem HPhase1or2ReadElse-HInv5:
 \llbracketHPhase1or2ReadElse s s' p d r; HInv5-inner s q\rrbracket
 \Longrightarrow H I n v 5 - i n n e r ~ s ' ~ q ~
 using HStartBallot-HInv5
 by(auto simp add: Phase1or2ReadElse-def)
lemma HEndPhase2-HInv5-p:
 HEndPhase2 s s' p \LongrightarrowHInv5-inner s' p
 by(auto simp add: EndPhase2-def HInv5-inner-def)
lemma HEndPhase2-allBlocks:
 assumes act: HEndPhase2 s s'p
 shows allBlocks s'\subseteq allBlocks s
 using HEndPhase2-blocksOf[OF act]
 by(auto simp add: allBlocks-def)
lemma HEndPhase2-HInv5-q1:
 assumes act:HEndPhase2 s s'p
 and pnq: p\not=q
 and inv5-1: maxBalInp s (bal(dblock s q)) (inp(dblock s q))
 shows maxBalInp s'(bal(dblock s' q)) (inp(dblock s' q))
proof(auto simp add: maxBalInp-def)
 fix bk
 assume bk:bk \in allBlocks s'
 and bal: bal (dblock s' q) \leq bal bk
```

```
 from act pnq
 have dblock': dblock s' q = dblock s q by(auto simp add: EndPhase2-def)
 from subsetD[OF HEndPhase2-allBlocks[OF act] bk] inv5-1 dblock' bal
 show inp bk = inp (dblock s' q)
 by(auto simp add: maxBalInp-def)
qed
lemma HEndPhase2-HInv5-q2:
 assumes act: HEndPhase2 s s'p
 and pnq: p\not=q
 and inv5-2: \exists D\inMajoritySet. \exists qq. (}\foralld\inD.\quadbal(dblock s q) < mbal(disk s d
qq)
 \wedge ᄀhasRead s q d qq)
 shows }\existsD\in\mathrm{ MajoritySet. }\exists\mathrm{ qq. (}\foralld\inD.\quadbal(dblock s'q)<mbal(disk s'd qq
 \wedge \neghasRead s' q d qq)
proof -
 from act pnq
 have disk: disk s'= disk s
 and blocksRead: }\forall\mathrm{ d. blocksRead s' q d = blocksRead s q d
 and dblock:dblock s' q = dblock s q
 by(auto simp add: EndPhase2-def InitializePhase-def)
 with inv5-2
 show ?thesis
 by(auto simp add: hasRead-def)
qed
lemma HEndPhase2-HInv5-q:
 assumes act:HEndPhase2 s s'p
 and inv: HInv5-inner s q
 and pnq: p\not=q
 shows HInv5-inner s' q
 using assms and HEndPhase2-HInv5-q1[OF act pnq] HEndPhase2-HInv5-q2[OF
act pnq]
 by(auto simp add: HInv5-inner-def HInv5-inner-R-def EndPhase2-def)
theorem HEndPhase2-HInv5:
 \llbracketHEndPhase2 s s' p; HInv5-inner s q\rrbracket\Longrightarrow HInv5-inner s'q
 by(blast dest: HEndPhase2-HInv5-q HEndPhase2-HInv5-p)
lemma HEndPhase1-HInv5-p:
 assumes act:HEndPhase1 s s'p
 and inv4: HInv4 s
 and inv2a: Inv2a s
 and inv2a': Inv2a s'
 and inv2c: Inv2c s
 and asm4: \negmaxBalInp s'(bal(dblock s'p)) (inp(dblock s' p))
 shows (\existsD\inMajoritySet. \existsq. (\foralld\inD. bal(dblock s' p)<mbal(disk s'd q)
 \wedge hasRead s'pd q))
proof -
```

```
have \(\exists b k \in\) allBlocks \(s\). bal (dblock \(\left.s^{\prime} p\right) \leq b a l b k \wedge b k \neq d b l o c k s^{\prime} p\)
proof -
 from asm4
 obtain \(b k\)
 where p31: bk allBlocks \(s^{\prime} \wedge\) bal(dblock \(\left.s^{\prime} p\right) \leq b a l b k \wedge b k \neq d b l o c k s^{\prime} p\)
 by (auto simp add: maxBalInp-def)
 then obtain \(q\) where \(p 32: b k \in\) blocksOf \(s^{\prime} q\)
 by (auto simp add: allBlocks-def)
 from act
 have dblock: \(p \neq q \Longrightarrow\) dblock \(s^{\prime} q=\) dblock s \(q\)
 by (auto simp add: EndPhase1-def)
 have \(b k \in\) blocksOf \(s q\)
 proof (cases \(p=q\))
 case True
 with p32 p31 HEndPhase1-blocksOf[OF act]
 show ?thesis
 by auto
 next
 case False
 from dblock[OF False] subsetD[OF HEndPhase1-blocksOf[OF act, of q] p32]
 show ?thesis
 by (auto simp add: blocksOf-def)
 qed
 with p31
 show ?thesis
 by(auto simp add: allBlocks-def)
qed
then obtain \(b k\) where \(p 22: b k \in\) allBlocks \(s \wedge\) bal \(\left(\right.\) dblock \(\left.s^{\prime} p\right) \leq b a l b k \wedge b k \neq\)
dblock \(s^{\prime} p\) by auto
have \(\exists q \in U N I V-\{p\} . b k \in\) blocksOf \(s q\)
proof -
 from \(p 22\)
 obtain \(q\) where \(b k: b k \in\) blocksOf s \(q\)
 by (auto simp add: allBlocks-def)
 from act \(p 22\)
 have mbal(dblock s p) \(\leq\) bal bk
 by(auto simp add: EndPhase1-def)
 moreover
 from act
 have phase s \(p=1\)
 by(auto simp add: EndPhase1-def)
 moreover
 from inv4
 have HInv4b s p by (auto simp add: HInv4-def)
 ultimately
 have \(p \neq q\)
 using \(b k\)
 by (auto simp add: HInv4-def HInv4b-def)
 with \(b k\)
```

```
 show ?thesis
 by auto
qed
then obtain q}\mathrm{ where p23: qGUNIV - {p}^bk blocksOf s q
 by auto
have \existsD\inMajoritySet.\foralld\inD. bal(dblock s'p)\leqmbal(disk s d q)
proof -
 from p23 inv4
 have i4d: \existsD\inMajoritySet.\foralld\inD. bal bk\leqmbal(disk s d q)
 by(auto simp add: HInv4-def HInv4d-def)
 from i4d p22
 show ?thesis
 by force
qed
then obtain D where Dmaj: D\inMajoritySet and p24:(\foralld\inD.bal(dblock s'p)
\leqmbal(disk s d q))
 by auto
have p25: }\foralld\inD.bal(dblock s'p)<mbal(disk s d q)
proof -
 from inv2c
 have Inv2c-inner s p
 by(auto simp add: Inv2c-def)
 with act
 have bal-pos: 0<bal(dblock s'p)
 by(auto simp add: Inv2c-inner-def EndPhase1-def)
 with inv2a'
 have bal(dblock s'p)\in Ballot p\cup{0}
 by(auto simp add: Inv2a-def Inv2a-inner-def
 Inv2a-innermost-def blocksOf-def)
 with bal-pos have bal-in-p: bal(dblock s' p)\in Ballot p
 by auto
 from inv2a have Inv2a-inner s q by(auto simp add: Inv2a-def)
 hence }\foralld\inD.mbal(disk s d q) \in Ballot q\cup{0
 by(auto simp add: Inv2a-inner-def Inv2a-innermost-def
 blocksOf-def)
 with p24 bal-pos
 have }\foralld\inD.mbal(disk s d q) \in Ballot q
 by force
 with Ballot-disj p23 bal-in-p
 have }\foralld\inD.mbal(disk s d q)\not=bal(dblock s'p
 by force
 with p23 p24
 show ?thesis
 by force
qed
with p23 act
have }\foralld\inD.bal(dblock s'p)<mbal(disk s'd q) ^\neghasRead s'pd q
 by(auto simp add: EndPhase1-def InitializePhase-def hasRead-def)
with Dmaj
```

```
 show ?thesis
 by blast
qed
lemma union-inclusion:
 \llbracketA\subseteq\mp@subsup{A}{}{\prime};B\subseteq\mp@subsup{B}{}{\prime}\rrbracket\LongrightarrowA\cupB\subseteq\mp@subsup{A}{}{\prime}\cup\mp@subsup{B}{}{\prime}
by blast
lemma HEndPhase1-blocksOf-q:
 assumes act:HEndPhase1 s s'p
 and pnq: p\not=q
 shows blocksOf s' q\subseteq blocksOf s q
proof -
 from act pnq
 have dblock: {dblock s'q}\subseteq{dblock s q}
 and disk: disk s' = disk s
 and blks: blocksRead s' q = blocksRead s q
 by(auto simp add: EndPhase1-def InitializePhase-def)
 from disk
 have disk': {disk s' d q| d. d\inUNIV }\subseteq{disk s d q| d. d\inUNIV} (is ?D'
\subseteq?D)
 by auto
 from pnq act
 have (UN qq d.rdBy s' q qq d)\subseteq(UN qq d.rdBy s q qq d}
 by(auto simp add: EndPhase1-def InitializePhase-def rdBy-def split: if-split-asm,
blast)
 hence {block br | br.br f (UN qq d.rdBy s' q qq d)}\subseteq{block br | br.br \in(UN
qq d. rdBy s q qq d)} (is ? R'\subseteq? ?R)
 by auto blast
 from union-inclusion[OF dblock union-inclusion[OF disk' this]]
 show ?thesis
 by(auto simp add: blocksOf-def)
qed
lemma HEndPhase1-allBlocks:
 assumes act: HEndPhase1 s s'p
 shows allBlocks s'\subseteq allBlocks s \cup {dblock s' p}
proof(auto simp del: HEndPhase1-def simp add: allBlocks-def
 dest: HEndPhase1-blocksOf-q[OF act])
 fix x pa
 assume x-pa: x b blocksOf s' pa and
 x-nblks: }\forallxa.x\not\in blocksOf s xa
 show }x=\mathrm{ dblock s' p
 proof(cases p=pa)
 case True
 from x-nblks
 have }x\not\in\mathrm{ blocksOf s p
 by auto
 with True subsetD[OF HEndPhase1-blocksOf[OF act] x-pa]
```

```
 show ?thesis
 by auto
 next
 case False
 from x-nblks subsetD[OF HEndPhase1-blocksOf-q[OF act False] x-pa]
 show ?thesis
 by auto
 qed
qed
lemma HEndPhase1-HInv5-q:
 assumes act:HEndPhase1 s s' p
 and inv:HInv5 s
 and inv1: Inv1 s
 and inv2a: Inv2a s'
 and inv2a-q: Inv2a s
 and inv2b: Inv2b s
 and inv2c:Inv2c s
 and inv3: HInv3 s
 and phase': phase s' q=2
 and pnq: p\not=q
 and asm4: \negmaxBalInp s' (bal(dblock s' q)) (inp(dblock s' q))
 shows (\existsD\inMajoritySet. \exists qq. (\foralld\inD. bal(dblock s' q)< mbal(disk s'd qq)
 \wedge \neghasRead s' q d qq))
proof -
 from act pnq
 have phase s' }q=\mathrm{ phase s q
 and phase-p: phase s p=1
 and disk:disk s' = disk s
 and dblock:dblock s'q= dblock s q
 and bal: bal(dblock s'p) = mbal(dblock s p)
 by(auto simp add: EndPhase1-def InitializePhase-def)
 with phase'
 have phase: phase s q = 2 by auto
 from phase inv2c
 have bal-dblk-q: bal(dblock s q) \in Ballot q
 by(auto simp add: Inv2c-def Inv2c-inner-def)
 have }\exists\mathrm{ D MajoritySet. }\existsqq.(\foralld\inD.\quadbal(dblock s q)< mbal(disk s d qq)
 \wedge \neghasRead s q d qq)
 proof(cases maxBalInp s (bal(dblock s q)) (inp(dblock s q)))
 case True
 have p21:bal(dblock s q) < bal(dblock s'p)^inp(dblock s q)}\not=inp(dblock s'
p)
 proof -
 from True asm4 dblock HEndPhase1-allBlocks[OF act]
 have p32: bal(dblock s q)\leqbal(dblock s'p)
 \wedgeinp(dblock s q) \not=inp(dblock s'p)
 by(auto simp add: maxBalInp-def)
 from inv2a
```

```
 have bal(dblock s'p)\in Ballot p \cup{0}
 by(auto simp add: Inv2a-def Inv2a-inner-def
 Inv2a-innermost-def blocksOf-def)
 moreover
 from Ballot-disj Ballot-nzero pnq
 have Ballot q\cap(Ballot p\cup{0})={}
 by auto
 ultimately
 have bal(dblock s'p)}\not=\operatorname{bal(dblock s q)
 using bal-dblk-q
 by auto
 with p32
 show ?thesis
 by auto
 qed
 have \existsD\inMajoritySet.\foralld\inD.bal(dblock s q)< mbal(disk s d p)}\wedge hasRead
pdq
 proof -
 from act
 have \existsD\inMajoritySet.\foralld\inD.d\indisksWritten s p}\wedge(\forallq\inUNIV-{p}.hasRead
spdq)
 by(auto simp add: EndPhase1-def MajoritySet-def)
 then obtain D
 where act1: }\foralld\inD.d\indisksWritten s p ^(\forallq\inUNIV -{p}. hasRead s p
q)
 and Dmaj: D\inMajoritySet
 by auto
 from inv2b
 have }\foralld\mathrm{ . Inv2b-inner s p d by(auto simp add: Inv2b-def)
 with act1 pnq phase-p bal
 have }\foralld\inD.bal(dblock s'p)=mbal(disk s d p)^ hasRead s p d q
 by(auto simp add: Inv2b-def Inv2b-inner-def)
 with p21 Dmaj
 have }\foralld\inD\mathrm{ . bal(dblock s q)< mbal(disk s d p)^ hasRead s p d q
 by auto
 with Dmaj
 show ?thesis
 by auto
 qed
 then obtain D
 where p22: D\inMajoritySet }\wedge(\foralld\inD.bal(dblock s q)<mbal(disk s d p)^
hasRead s p d q)
 by auto
 have p23: }\foralld\inD.(\lock=dblock s q, proc=q) & blocksRead s p d
 proof -
 have dblock s q GllBlocksRead s p\longrightarrowinp(dblock s'p)=inp(dblock s q)
 proof auto
 assume dblock-q:dblock s q \in allBlocksRead s p
 from inv2a-q
```

```
 have \((\) bal \((\) dblock s q \()=0)=(\) inp \((\) dblock s q) \()=\) NotAnInput \()\)
 by (auto simp add: Inv2a-def Inv2a-inner-def
 blocksOf-def Inv2a-innermost-def)
 with bal-dblk-q Ballot-nzero dblock-q InputsOrNi
 have dblock-q-nib: dblock s \(q \in\) nonInitBlks s \(p\)
 by (auto simp add: nonInitBlks-def blocksSeen-def)
 with act
 have dblock-max: inp \(\left(d b l o c k s^{\prime} p\right)=\operatorname{inp}(\operatorname{maxBlk} s p)\)
 by (auto simp add: EndPhase1-def)
 from maxBlk-in-nonInitBlks[OF dblock-q-nib inv1]
 have max-in-nib: maxBlk s \(p \in\) nonInitBlks s \(p\)..
 hence nonInitBlks s \(p \subseteq\) allBlocks \(s\)
 by (auto simp add: allBlocks-def nonInitBlks-def
 blocksSeen-def blocksOf-def rdBy-def
 allBlocksRead-def allRdBlks-def)
 with True subsetD[OF this max-in-nib]
 have bal (dblock s \(q\)) \(\leq\) bal \((\operatorname{maxBlk}\) s \(p) \longrightarrow\) inp \((\operatorname{maxBlk}\) s \(p)=\operatorname{inp}(d b l o c k\)
s q)
 by (auto simp add: maxBalInp-def)
 with maxBlk-in-nonInitBlks[OF dblock-q-nib inv1]
 dblock-q-nib dblock-max
 show \(\operatorname{inp}\left(\right.\) dblock \(\left.s^{\prime} p\right)=\operatorname{inp}(d b l o c k s q)\)
 by auto
 qed
 with \(p 21\)
 have dblock s q \(\notin\) block‘allRdBlks s \(p\)
 by (auto simp add: allBlocksRead-def)
 hence \(\forall d\). dblock s \(q \notin\) block'blocksRead s p d
 by (auto simp add: allRdBlks-def)
 thus ?thesis
 by force
qed
have p24: \(\forall d \in D . \neg(\exists b r \in\) blocksRead s q d. bal(dblock s q) \(\leq\) mbal \((\) block br) \()\)
proof -
 from inv2c phase
 have \(\forall d . \forall b r \in\) blocksRead s q d. mbal(block br)<mbal(dblock s q)
 and bal \((\) dblock \(s q)=m b a l(\) dblock \(s q)\)
 by (auto simp add: Inv2c-def Inv2c-inner-def)
 thus ?thesis
 by force
qed
have p25: \(\forall d \in D\). \(\neg\) hasRead \(s q d p\)
proof auto
 fix \(d\)
 assume \(d\)-in- \(D: d \in D\)
 and hasRead-qdp: hasRead s qd \(p\)
 have p31: (block=dblock s p, proc=p) \(\in\) blocksRead s qd
 proof -
 from \(d\)-in-D p22
```

```
 have hasRead-pdq: hasRead s p d q by auto
 with hasRead-qdp phase phase-p inv3
 have HInv3-R s q pd
 by(auto simp add: HInv3-def HInv3-inner-def HInv3-L-def)
 with p23 d-in-D
 show ?thesis
 by(auto simp add: HInv3-R-def)
 qed
 from p21 act
 have p32: bal(dblock s q) < mbal(dblock s p)
 by(auto simp add: EndPhase1-def)
 with p31 d-in-D hasRead-qdp p24
 show False
 by(force)
 qed
 with p22
 show ?thesis
 by auto
next
 case False
 with inv phase
 show ?thesis
 by(auto simp add: HInv5-def HInv5-inner-def HInv5-inner-R-def)
 qed
 then obtain D qq
 where D\inMajoritySet }\wedge(\foralld\inD.\quadbal(dblock s q) < mbal(disk s d qq)
 \wedge \neghasRead s q d qq)
 by auto
moreover
from act pnq
have }\foralld\mathrm{ . hasRead s' qd qq= hasRead s qd qq
 by(auto simp add: EndPhase1-def InitializePhase-def hasRead-def)
ultimately show ?thesis
 using disk dblock
 by auto
qed
theorem HEndPhase1-HInv5:
 assumes act:HEndPhase1 s s' p
 and inv: HInv5 s
 and inv1: Inv1s
 and inv2a:Inv2a s
 and inv2a': Inv2a s'
 and inv2b: Inv2b s
 and inv2c: Inv2c s
 and inv3:HInv3 s
 and inv4:HInv4 s
shows HInv5-inner s' q
 using HEndPhase1-HInv5-p[OF act inv4 inv2a inv2a' inv2c]
```

HEndPhase1-HInv5-q[OF act inv inv1 inv2a' inv2a inv2b inv2c inv3, of $q$ ] by (auto simp add: HInv5-def HInv5-inner-def HInv5-inner-R-def)

```
lemma HFail-HInv5-p:
 HFail s s' p \LongrightarrowHInv5-inner s' p
 by(auto simp add: Fail-def HInv5-inner-def)
lemma HFail-blocksOf-q:
 assumes act: HFail s s'p
 and pnq: p\not=q
 shows blocksOf s' q\subseteq blocksOf s q
 using assms
 by(auto simp add: Fail-def InitializePhase-def blocksOf-def rdBy-def)
lemma HFail-allBlocks:
 assumes act: HFail s s'p
 shows allBlocks s'\subseteq allBlocks s\cup{dblock s'p}
proof(auto simp del: HFail-def simp add: allBlocks-def
 dest: HFail-blocksOf-q[OF act])
 fix x pa
 assume x-pa: x blocksOf s' pa and
 x-nblks: }\forall\mathrm{ xa. x & blocksOf s xa
 show }x=\mathrm{ dblock s'p
 proof(cases p=pa)
 case True
 from x-nblks
 have x\not\inblocksOf s p
 by auto
 with True subsetD[OF HFail-blocksOf[OF act] x-pa]
 show ?thesis
 by auto
 next
 case False
 from x-nblks subsetD[OF HFail-blocksOf-q[OF act False] x-pa]
 show ?thesis
 by auto
 qed
qed
lemma HFail-HInv5-q1:
 assumes act: HFail s s'p
 and pnq: p\not=q
 and inv2a: Inv2a-inner s' q
 and inv5-1: maxBalInp s (bal(dblock s q)) (inp(dblock s q))
 shows maxBalInp s'(bal(dblock s' q)) (inp(dblock s' q))
proof(auto simp add: maxBalInp-def)
 fix bk
 assume bk:bk\in allBlocks s'
 and bal: bal (dblock s' q) \leq bal bk
```

```
from act pnq
have dblock': dblock s'q= dblock s q by(auto simp add: Fail-def)
from subsetD[OF HFail-allBlocks[OF act] bk]
show inp bk = inp (dblock s'q)
proof
 assume bk: bk \in allBlocks s
 with inv5-1 dblock' bal
 show ?thesis
 by(auto simp add: maxBalInp-def)
 next
 assume bk:bk\in{dblock s'p}
 with act have bk-init: bk=InitDB
 by(auto simp add: Fail-def)
 with bal
 have bal (dblock s' q)=0
 by(auto simp add: InitDB-def)
 with inv2a
 have inp (dblock s'q)= NotAnInput
 by(auto simp add: Inv2a-inner-def Inv2a-innermost-def blocksOf-def)
 with bk-init
 show ?thesis
 by(auto simp add: InitDB-def)
 qed
qed
lemma HFail-HInv5-q2:
 assumes act:HFail s s'p
 and pnq: p\not=q
 and inv5-2: }\exists\textrm{D}\in\mathrm{ MajoritySet. }\exists\textrm{qq.}(\foralld\inD.\quadbal(dblock s q) < mbal(disk s d
qq)
 \neghasRead s q d qq)
 shows }\exists\mathrm{ D MajoritySet. }\exists\mathrm{ qq. (}\foralld\inD.\quadbal(dblock s' q)< mbal(disk s'd qq
 \wedge \neghasRead s' q d qq)
proof -
 from act pnq
 have disk: disk s' = disk s
 and blocksRead: }\forall\mathrm{ d. blocksRead s' q d = blocksRead s q d
 and dblock: dblock s' q = dblock s q
 by(auto simp add: Fail-def InitializePhase-def)
 with inv5-2
 show ?thesis
 by(auto simp add: hasRead-def)
qed
lemma HFail-HInv5-q:
 assumes act:HFail s s'p
 and inv: HInv5-inner s q
 and pnq: p\not=q
 and inv2a: Inv2a s'
```

```
 shows HInv5-inner s' q
proof(auto simp add: HInv5-inner-def HInv5-inner-R-def)
 assume phase': phase s' }q=
 and nR2: }\forallD\in\mathrm{ MajoritySet.
 \forallqa.\existsd\inD.bal (dblock s' q)<mbal (disk s'd qa)}
 hasRead s' q d qa (is ?P s')
 from HFail-HInv5-q2[OF act pnq]
 have }\neg(?Ps)\Longrightarrow\neg(?P\mp@subsup{s}{}{\prime}
 by auto
 with nR2
 have P:?P s
 by blast
 from inv2a
 have inv2a': Inv2a-inner s' q by (auto simp add: Inv2a-def)
 from act pnq phase'
 have phase s q=2
 by(auto simp add: Fail-def split: if-split-asm)
 with inv HFail-HInv5-q1[OF act pnq inv2a] P
 show maxBalInp s' (bal (dblock s'q)) (inp (dblock s'q))
 by(auto simp add: HInv5-inner-def HInv5-inner-R-def)
qed
theorem HFail-HInv5:
 \llbracketHFail s s' p; HInv5-inner s q;Inv2a s'\rrbracket \LongrightarrowHInv5-inner s'q
by(blast dest: HFail-HInv5-q HFail-HInv5-p)
lemma HPhase0Read-HInv5-p:
 HPhase0Read s s'pd\LongrightarrowHInv5-inner s'p
 by(auto simp add: Phase0Read-def HInv5-inner-def)
lemma HPhase0Read-allBlocks:
 assumes act: HPhase0Read s s'pd
 shows allBlocks s'}\subseteq\mathrm{ allBlocks s
 using HPhase0Read-blocksOf[OF act]
 by(auto simp add: allBlocks-def)
lemma HPhase0Read-HInv5-1:
 assumes act:HPhase0Read s s'p d
 and inv5-1: maxBalInp s (bal(dblock s q)) (inp(dblock s q))
 shows maxBalInp s'(bal(dblock s' q)) (inp(dblock s'q))
 using assms and HPhase0Read-blocksOf[OF act]
 by(auto simp add: Phase0Read-def maxBalInp-def allBlocks-def)
lemma HPhase0Read-HInv5-q2:
 assumes act:HPhase0Read s s'pd
 and pnq: p\not=q
 and inv5-2: \existsD\inMajoritySet. \existsqq. (}\foralld\inD.\quadbal(dblock s q)<mbal(disk s d
qq)
 \wedge \neghasRead s q d qq)
```

shows $\exists D \in$ MajoritySet. $\exists q q .\left(\forall d \in D . \quad b a l\left(d b l o c k s^{\prime} q\right)<m b a l\left(d i s k s^{\prime} d q q\right)\right.$ $\left.\wedge \neg h a s R e a d s^{\prime} q d q q\right)$
proof -
from act pnq
have disk: disk $s^{\prime}=$ disk $s$
and blocksRead: $\forall d$. blocksRead $s^{\prime} q d=$ blocksRead s qd
and dblock: dblock $s^{\prime} q=$ dblock $s q$
by (auto simp add: Phase0Read-def InitializePhase-def)
with inv5-2
show ?thesis
by (auto simp add: hasRead-def)
qed
lemma HPhase0Read-HInv5-q:
assumes act: HPhaseORead $s s^{\prime} p d$
and inv: HInv5-inner s $q$
and $p n q: p \neq q$
shows HInv5-inner $s^{\prime} q$
proof (auto simp add: HInv5-inner-def HInv5-inner-R-def)
assume phase': phase $s^{\prime} q=2$
and i2: $\forall D \in$ MajoritySet. $\forall q a . \exists d \in D$. bal (dblock $\left.s^{\prime} q\right)<$ mbal (disk $\left.s^{\prime} d q a\right)$
$\longrightarrow$ hasRead s' q d qa
from phase' act have phase: phase s $q=2$
by (auto simp add: Phase0Read-def)
show maxBalInp $s^{\prime}\left(\right.$ bal (dblock $\left.\left.s^{\prime} q\right)\right)\left(\right.$ inp (dblock $\left.\left.s^{\prime} q\right)\right)$
proof (rule HPhase0Read-HInv5-1[OF act, of q])
from HPhase0Read-HInv5-q2[OF act pnq] inv i2 phase
show maxBalInp s (bal (dblock s q)) (inp (dblock s q))
by (auto simp add: HInv5-inner-def HInv5-inner-R-def, blast)
qed
qed
theorem HPhase0Read-HInv5:
$\llbracket H P h a s e 0 R e a d s s^{\prime} p d ;$ HInv5-inner s $q \rrbracket \Longrightarrow H I n v 5-i n n e r s^{\prime} q$
by (blast dest: HPhase0Read-HInv5-q HPhase0Read-HInv5-p)
lemma HEndPhase0-HInv5-p:
HEndPhase0 $s s^{\prime} p \Longrightarrow$ HInv5-inner $s^{\prime} p$
by (auto simp add: EndPhase0-def HInv5-inner-def)
lemma HEndPhase0-blocksOf-q:
assumes act: HEndPhase0 $s s^{\prime} p$
and $p n q: p \neq q$
shows blocksOf $s^{\prime} q \subseteq$ blocksOf s $q$
proof -
from act pnq
have dblock: $\left\{\right.$ dblock $\left.s^{\prime} q\right\} \subseteq\{$ dblock $s q\}$
and disk: disk $s^{\prime}=$ disk $s$

```
 and blks: blocksRead s' q = blocksRead s q
 by(auto simp add: EndPhase0-def InitializePhase-def)
 from disk
 have disk': {disk s' d q| d. d\inUNIV }\subseteq{disk s d q| d. d\inUNIV} (is ?D'
C ?D)
 by auto
 from pnq act
 have (UN qq d.rdBy s' q qq d)\subseteq(UN qq d.rdBy s q qq d)
 by(auto simp add: EndPhase0-def InitializePhase-def
 rdBy-def split: if-split-asm, blast)
 hence {block br | br.br \in(UN qq d.rdBy s' q qq d)}\subseteq
 {block br | br.br \in(UN qq d. rdBy s q qq d)}
 (is ? }\mp@subsup{R}{}{\prime}\subseteq??R
 by auto blast
 from union-inclusion[OF dblock union-inclusion[OF disk' this]]
 show ?thesis
 by(auto simp add: blocksOf-def)
qed
lemma HEndPhase0-allBlocks:
 assumes act: HEndPhase0 s s'p
 shows allBlocks s'\subseteq allBlocks s\cup{dblock s' p}
proof(auto simp del: HEndPhase0-def simp add: allBlocks-def
 dest: HEndPhase0-blocksOf-q[OF act])
 fix x pa
 assume x-pa: x blocksOf s'pa and
 x-nblks: }\forallxa.x\not\in blocksOf s xa
 show }x=\mathrm{ dblock s' p
 proof(cases p=pa)
 case True
 from x-nblks
 have x & blocksOf s p
 by auto
 with True subsetD[OF HEndPhase0-blocksOf[OF act] x-pa]
 show ?thesis
 by auto
 next
 case False
 from x-nblks subsetD[OF HEndPhase0-blocksOf-q[OF act False] x-pa]
 show ?thesis
 by auto
 qed
qed
lemma HEndPhase0-HInv5-q1:
 assumes act:HEndPhase0 s s'p
 and pnq: p\not=q
 and inv1: Inv1 s
 and inv5-1: maxBalInp s (bal(dblock s q)) (inp(dblock s q))
```

```
 shows maxBalInp s'(bal(dblock s' q)) (inp(dblock s' q))
proof(auto simp add: maxBalInp-def)
 fix bk
 assume bk:bk\in allBlocks s'
 and bal: bal (dblock s'q) \leq bal bk
 from act pnq
 have dblock': dblock s' q = dblock s q by(auto simp add: EndPhase0-def)
 from subsetD[OF HEndPhase0-allBlocks[OF act] bk]
 show inp bk = inp (dblock s'q)
 proof
 assume bk: bk \in allBlocks s
 with inv5-1 dblock' bal
 show ?thesis
 by(auto simp add: maxBalInp-def)
 next
 assume bk:bk\in{dblock s'p}
 with HEndPhase0-some[OF act inv1] act
 have \existsba\inallBlocksRead s p.bal ba=bal (dblock s'p)^inp ba=inp (dblock
s'p)
 by(auto simp add: EndPhase0-def)
 then obtain ba
 where ba-blksread: ba\inallBlocksRead s p
 and ba-balinp: bal ba = bal (dblock s' p) ^ inp ba =inp (dblock s'p)
 by auto
 have allBlocksRead s p\subseteqallBlocks s
 by(auto simp add: allBlocksRead-def allRdBlks-def
 allBlocks-def blocksOf-def rdBy-def)
 from subsetD[OF this ba-blksread] ba-balinp bal bk dblock' inv5-1
 show ?thesis
 by(auto simp add: maxBalInp-def)
 qed
qed
lemma HEndPhase0-HInv5-q2:
 assumes act: HEndPhase0 s s'p
 and pnq: p\not=q
 and inv5-2: }\exists\textrm{D}\in\mathrm{ MajoritySet. }\exists\textrm{qq.}(\foralld\inD.\quadbal(dblock s q)<mbal(disk s d
qq)
 \wedge ᄀhasRead s q d qq)
 shows }\exists\textrm{D}\in\mathrm{ MajoritySet. }\exists\textrm{qq.}(\foralld\inD.\quadbal(dblock s'q)<mbal(disk s'd qq
 \wedge hasRead s' q d qq)
proof -
 from act pnq
 have disk: disk s' = disk s
 and blocksRead: }\forall\mathrm{ d. blocksRead s' q d = blocksRead s q d
 and dblock:dblock s' q = dblock s q
 by(auto simp add: EndPhase0-def InitializePhase-def)
 with inv5-2
 show ?thesis
```

```
 by(auto simp add: hasRead-def)
qed
lemma HEndPhase0-HInv5-q:
 assumes act: HEndPhase0 s s'p
 and inv: HInv5-inner s q
 and inv1:Inv1s
 and pnq: p\not=q
 shows HInv5-inner s' q
 using assms and
 HEndPhase0-HInv5-q1[OF act pnq inv1]
 HEndPhase0-HInv5-q2[OF act pnq]
 by(auto simp add: HInv5-inner-def HInv5-inner-R-def EndPhase0-def)
theorem HEndPhase0-HInv5:
 \llbracketHEndPhase0 s s' p; HInv5-inner s q;Inv1 s\rrbracket\Longrightarrow HInv5-inner s' q
 by(blast dest: HEndPhase0-HInv5-q HEndPhase0-HInv5-p)
HInv1 ^HInv2^HInv3^HInv4^HInv5 is an invariant of HNext.
lemma I2e:
 assumes nxt: HNext s s'
 and inv:HInv1 s ^ HInv2 s ^ HInv2 s'^HInv3 s ^HInv4 s ^ HInv5 s
 shows HInv5 s'
 using assms
 by(auto simp add: HInv5-def HNext-def Next-def,
 auto simp add: HInv2-def intro: HStartBallot-HInv5,
 auto intro: HPhase0Read-HInv5,
 auto simp add: HInv4-def intro: HPhase1or2Write-HInv5,
 auto simp add: Phase1or2Read-def
 intro: HPhase1or2ReadThen-HInv5
 HPhase1or2ReadElse-HInv5,
 auto simp add: EndPhase1or2-def HInv1-def HInv4-def HInv5-def
 intro: HEndPhase1-HInv5
 HEndPhase2-HInv5,
 auto intro: HFail-HInv5,
 auto intro: HEndPhase0-HInv5 simp add: HInv1-def)
```

end
theory DiskPaxos-Chosen imports DiskPaxos-Inv5 begin

## C. 6 Lemma I2f

To prove the final conjunct we will use the predicate valueChosen $(v)$. This predicate is true if $v$ is the only possible value that can be chosen as output. It also asserts that, for every disk $d$ in $D$, if $q$ has already read $\operatorname{disks} d p$, then it has read a block with bal field at least $b$.
definition valueChosen :: state $\Rightarrow$ InputsOrNi $\Rightarrow$ bool

## where

valueChosen $s v=$
$(\exists b \in(U N p$. Ballot $p)$.
maxBalInp s bv
$\wedge(\exists$ p. $\exists D \in$ MajoritySet. $(\forall d \in D . \quad b \leq b a l($ disk $s d p)$ $\wedge(\forall q .(\quad$ phase s $q=1$
$\wedge b \leq m b a l(d b l o c k s q)$
$\wedge$ hasRead s q d p
$) \longrightarrow(\exists b r \in$ blocksRead s q d. $b \leq$ bal(block br $))$
)))
lemma HEndPhase1-valueChosen-inp:
assumes act: HEndPhase1 s s $s^{\prime} q$
and inv2a: Inv2a s
and asm1: $b \in(U N p$. Ballot $p)$
and $b k$-blocksOf: bk blocksOf s r
and $b k: b k \in$ blocksSeen s $q$
and $b$-bal: $b \leq b a l b k$
and asm3: maxBalInp s b $v$
and inv1: Inv1s
shows $\operatorname{inp}\left(\right.$ dblock $\left.s^{\prime} q\right)=v$
proof -
from bk-blocksOf inv2a
have inv2a-bk: Inv2a-innermost s rbk
by (auto simp add: Inv2a-def Inv2a-inner-def)
from Ballot-nzero asm1
have $0<b$ by auto
with $b$-bal
have $0<b a l$ bk by auto
with inv2a-bk
have inp bk $\neq$ NotAnInput
by (auto simp add: Inv2a-innermost-def)
with bk InputsOrNi
have $b k$-noninit: $b k \in$ nonInitBlks $s q$
by (auto simp add: nonInitBlks-def blocksSeen-def allBlocksRead-def allRdBlks-def)
with maxBlk-in-nonInitBlks[OF this inv1] b-bal
have maxBlk-b: $b \leq b a l(\operatorname{maxBlk} s q)$
by auto
from maxBlk-in-nonInitBlks[OF bk-noninit inv1]
have $\exists p$ d. maxBlk s $q \in$ blocksSeen s $p$
by(auto simp add: nonInitBlks-def blocksSeen-def)
hence $\exists$ p. maxBlk s $q \in$ blocksOf s $p$
by (auto simp add: blocksOf-def blocksSeen-def allBlocksRead-def allRdBlks-def rdBy-def, force)
with maxBlk-b asm3
have $\operatorname{inp}(\operatorname{maxBlk} s q)=v$
by (auto simp add: maxBalInp-def allBlocks-def)

```
 with bk-noninit act
 show ?thesis
 by(auto simp add: EndPhase1-def)
qed
lemma HEndPhase1-maxBalInp:
 assumes act: HEndPhase1s s'q
 and asm1: b\in(UN p. Ballot p)
 and asm2: D\inMajoritySet
 and asm3: maxBalInp s b v
 and asm4:}\foralld\inD.\quadb\leqbal(disk s d p
 \wedge(\forallq.(phase s q=1
 \wedge b\leqmbal(dblock s q)
 hasRead s qd p
)\longrightarrow(\existsbr\inblocksRead s q d. b \leqbal(block br)))
 and inv1: Inv1 s
 and inv2a: Inv2a s
 and inv2b: Inv2b s
 shows maxBalInp s' b v
proof(cases b \leqmbal(dblock s q))
 case True
 show ?thesis
 proof(cases }p\not=q\mathrm{)
 assume pnq: p\not=q
 have }\existsd\inD. hasRead s qd
 proof -
 from act
 have IsMajority({d.d\in disksWritten s q ^(\forallr\inUNIV-{q}. hasRead s qd
r)})(is IsMajority(?M))
 by(auto simp add: EndPhase1-def)
 with majorities-intersect asm2
 have D\cap?M\not={}
 by(auto simp add: MajoritySet-def)
 hence }\existsd\inD.(\forallr\inUNIV-{q}. hasRead s q d r
 by auto
 with pnq
 show ?thesis
 by auto
 qed
 then obtain d where p41:d\inD\wedge hasRead s qd p by auto
 with asm4 asm3 act True
 have p42: \existsbr\inblocksRead s q d. b\leq bal(block br)
 by(auto simp add: EndPhase1-def)
 from True act
 have thesis-L: b\leqbal (dblock s'q)
 by(auto simp add: EndPhase1-def)
 from p42
 have inp(dblock s'q)}=
```

```
 proof auto
 fix br
 assume br:br \in blocksRead s qd
 and b-bal: b}\leqbal (block br)
 hence br-rdBy:br\in(UN q d.rdBy s (proc br) qd)
 by(auto simp add: rdBy-def)
 hence br-blksof: block br \in blocksOf s (proc br)
 by(auto simp add: blocksOf-def)
 from br have br-bseen: block br\in blocksSeen s q
 by(auto simp add: blocksSeen-def allBlocksRead-def allRdBlks-def)
 from HEndPhase1-valueChosen-inp[OF act inv2a asm1 br-blksof br-bseen b-bal
asm3 inv1]
 show ?thesis .
 qed
 with asm3 HEndPhase1-allBlocks[OF act]
 show ?thesis
 by(auto simp add: maxBalInp-def)
next
 case False
 from asm4
 have p41: }\foralld\inD.b\leqbal(disk s d p
 by auto
 have p42: \exists d\inD. disk s d p = dblock s p
 proof -
 from act
 have IsMajority {d. d\indisksWritten s q ^(\forallp\inUNIV-{q}. hasRead s qd
p)} (is IsMajority ?S)
 by(auto simp add: EndPhase1-def)
 with majorities-intersect asm2
 have D\cap?S\not={}
 by(auto simp add: MajoritySet-def)
 hence }\existsd\inD.d\in\mathrm{ disks Written s q
 by auto
 with inv2b False
 show ?thesis
 by(auto simp add: Inv2b-def Inv2b-inner-def)
 qed
 have inp(dblock s' q)=v
 proof -
 from p42 p41 False
 have b-bal: b\leqbal(dblock s q) by auto
 have db-blksof:(dblock s q) \in blocksOf s q
 by(auto simp add: blocksOf-def)
 have db-bseen: (dblock s q) \in blocksSeen s q
 by(auto simp add: blocksSeen-def)
 from HEndPhase1-valueChosen-inp[OF act inv2a asm1 db-blksof db-bseen
b-bal asm3 inv1]
 show ?thesis.
 qed
```

```
 with asm3 HEndPhase1-allBlocks[OF act]
 show ?thesis
 by(auto simp add: maxBalInp-def)
 qed
next
 case False
 have dblock s' q\in allBlocks s'
 by(auto simp add: allBlocks-def blocksOf-def)
 show ?thesis
 proof(auto simp add: maxBalInp-def)
 fix bk
 assume bk:bk\inallBlocks s'
 and b-bal: b \leqbal bk
 from subsetD[OF HEndPhase1-allBlocks[OF act] bk]
 show inp bk=v
 proof
 assume bk: bk\in allBlocks s
 with asm3 b-bal
 show ?thesis
 by(auto simp add: maxBalInp-def)
 next
 assume bk:bk\in {dblock s' q}
 from act False
 have }\negb\leqbal(dblock s'q
 by(auto simp add: EndPhase1-def)
 with bk b-bal
 show ?thesis
 by(auto)
 qed
 qed
qed
lemma HEndPhase1-valueChosen2:
 assumes act: HEndPhase1 s s
 and asm4:}\foralld\inD.\quadb\leqbal(disk s d p
 \wedge(\forallq.(phase s q = 1
 \wedge b\leqmbal(dblock s q)
 ^hasRead s q d p
)\longrightarrow(\existsbr\inblocksRead s q d. b \leqbal(block br)))(is ?P s)
 shows ?P s'
proof(auto)
 fix d
 assume d:d\inD
 with act asm4
 show b\leqbal (disk s'd p)
 by(auto simp add: EndPhase1-def)
 fix }d
 assume d:d\inD
 and phase': phase s' }q=\mathrm{ Suc 0
```

and dblk-mbal: $b \leq m b a l\left(\right.$ dblock $\left.s^{\prime} q\right)$
with act
have $p$ 31: phase s $q=1$
and p32: dblock $s^{\prime} q=$ dblock s $q$
by(auto simp add: EndPhase1-def split: if-split-asm)
with dblk-mbal
have $b \leq m b a l(d b l o c k s q)$ by auto
moreover
assume hasRead: hasRead $s^{\prime} q d p$
with act
have hasRead s qd p by (auto simp add: EndPhase1-def InitializePhase-def hasRead-def split: if-split-asm)
ultimately
have $\exists b r \in b l o c k s R e a d s q d . b \leq b a l(b l o c k ~ b r)$
using p31 asm4 d
by blast
with act hasRead
show $\exists b r \in b l o c k s R e a d ~ s^{\prime} q d . b \leq b a l(b l o c k ~ b r)$
by(auto simp add: EndPhase1-def InitializePhase-def hasRead-def)
qed
theorem HEndPhase1-valueChosen:
assumes act: HEndPhase1 $s s^{\prime} q$
and $v c$ : valueChosen $s v$
and inv1: Inv1 s
and inv2a: Inv2a $s$
and inv2b: Inv2b s
and $v$-input: $v \in$ Inputs
shows valueChosen $s^{\prime} v$
proof -
from $v c$
obtain $b p D$ where
asm1: $b \in(U N p$. Ballot $p)$
and asm2: $D \in$ MajoritySet
and asm3: maxBalInp s $b v$
and asm4: $\forall d \in D . \quad b \leq b a l(d i s k s d p)$
$\wedge(\forall q)(\quad$ phase s $q=1$
$\wedge b \leq m b a l(d b l o c k s q)$
$\wedge$ hasRead s q d p
$) \longrightarrow(\exists b r \in$ blocksRead s q d. $b \leq b a l($ block $b r)))$
by (auto simp add: valueChosen-def)
from HEndPhase1-maxBalInp[OF act asm1 asm2 asm3 asm4 inv1 inv2a inv2b]
have maxBalInp $s^{\prime} b v$.
with HEndPhase1-valueChosen2[OF act asm4] asm1 asm2
show ?thesis
by (auto simp add: valueChosen-def)
qed

```
lemma HStartBallot-maxBalInp:
 assumes act: HStartBallot \(s s^{\prime} q\)
 and asm3: maxBalInp s bv
 shows maxBalInp \(s^{\prime} b v\)
proof (auto simp add: maxBalInp-def)
 fix \(b k\)
 assume \(b k: b k \in\) allBlocks \(s^{\prime}\)
 and \(b\)-bal: \(b \leq b a l b k\)
 from subsetD \([\) OF HStartBallot-allBlocks \([\) OF act \(] b k]\)
 show inp \(b k=v\)
 proof
 assume \(b k\) : bk allBlocks \(s\)
 with asm3 b-bal
 show ?thesis
 by (auto simp add: maxBalInp-def)
 next
 assume \(b k: b k \in\left\{d b l o c k s^{\prime} q\right\}\)
 from asm3
 have \(b \leq b a l(d b l o c k s q) \Longrightarrow \operatorname{inp}(\) dblock \(s q)=v\)
 by (auto simp add: maxBalInp-def allBlocks-def blocksOf-def)
 with act bk b-bal
 show ?thesis
 by(auto simp add: StartBallot-def)
 qed
qed
lemma HStartBallot-valueChosen2:
 assumes act: HStartBallot s s' q
 and asm4: \(\forall d \in D . \quad b \leq b a l(d i s k s d p)\)
 \(\wedge(\forall\) q. \((\quad\) phase s \(q=1\)
 \(\wedge b \leq m b a l(d b l o c k s q)\)
 \(\wedge\) hasRead s q d p
 \() \longrightarrow(\exists b r \in\) blocksRead s q d. \(b \leq \operatorname{bal}(\) block br)) \()(\) is ?P \(s)\)
 shows ?P \(s^{\prime}\)
proof (auto)
 fix \(d\)
 assume \(d: d \in D\)
 with act asm4
 show \(b \leq b a l\left(d i s k ~ s s^{\prime} d p\right)\)
 by(auto simp add: StartBallot-def)
 fix \(d q\)
 assume \(d: d \in D\)
 and phase': phase \(s^{\prime} q=\) Suc 0
 and dblk-mbal: \(b \leq m b a l\left(d b l o c k s^{\prime} q\right)\)
 and hasRead: hasRead s' qd p
from phase act hasRead
have \(p 31\) : phase s \(q=1\)
 and p32: dblock \(s^{\prime} q=\) dblock \(s q\)
 by (auto simp add: StartBallot-def InitializePhase-def
```

```
hasRead-def split : if-split-asm)
```

with dblk-mbal
have $b \leq m b a l(d b l o c k s q)$ by auto
moreover
from act hasRead
have hasRead s qd p
by (auto simp add: StartBallot-def InitializePhase-def hasRead-def split: if-split-asm)
ultimately
have $\exists b r \in b l o c k s R e a d s q d . b \leq b a l(b l o c k b r)$
using p31 asm4 d
by blast
with act hasRead
show $\exists b r \in$ blocksRead $s^{\prime} q d . b \leq b a l(b l o c k$ br)
by (auto simp add: StartBallot-def InitializePhase-def hasRead-def)
qed
theorem HStartBallot-valueChosen:
assumes act: HStartBallot s s $s^{\prime} q$
and $v c$ : valueChosen $s v$
and $v$-input: $v \in$ Inputs
shows valueChosen $s^{\prime} v$
proof -
from $v c$
obtain $b p D$ where
asm1: $b \in(U N p$. Ballot $p)$
and asm2: D $\in$ MajoritySet
and asm3: maxBalInp $s b v$
and asm4: $\forall d \in D . \quad b \leq b a l(d i s k s d p)$
$\wedge(\forall q)(\quad$ phase s $q=1$
$\wedge b \leq m b a l($ dblocks $q)$
$\wedge$ hasRead s q d p
$) \longrightarrow(\exists b r \in$ blocksRead s q d. $b \leq$ bal(block br $))$ )
by (auto simp add: valueChosen-def)
from HStartBallot-maxBalInp[OF act asm3]
have maxBalInp $s^{\prime} b v$.
with HStartBallot-valueChosen2[OF act asm4] asm1 asm2
show ?thesis
by (auto simp add: valueChosen-def)
qed
lemma HPhase1or2Write-maxBalInp:
assumes act: HPhase1or2Write s $s^{\prime} q d$
and asm3: maxBalInp s bv
shows maxBalInp $s^{\prime} b v$
proof (auto simp add: maxBalInp-def)
fix $b k$
assume $b k: b k \in$ allBlocks $s^{\prime}$
and $b$-bal: $b \leq b a l b k$
from subsetD[OF HPhase1or2Write-allBlocks $[$ OF act $]$ bk] asm3 b-bal show inp $b k=v$
by (auto simp add: maxBalInp-def)
qed
lemma HPhase1or2Write-valueChosen2:
assumes act: HPhase1or2Write $s s^{\prime} p p d$
and asm2: D $\in$ MajoritySet
and asm4: $\forall d \in D . \quad b \leq b a l(d i s k s d p)$

$$
\wedge(\forall q \cdot(\quad \text { phase s } q=1
$$

$\wedge b \leq \operatorname{mbal}($ dblock $s q)$
$\wedge$ hasRead s q d p
$) \longrightarrow(\exists b r \in$ blocksRead $s q d . b \leq b a l(b l o c k b r)))($ is ?P $s)$
and inv4: HInv_a s pp
shows ?P $s^{\prime}$
proof (auto)
fix $d 1$
assume $d: d 1 \in D$
show $b \leq b a l\left(d i s k s^{\prime} d 1 p\right)$
$\operatorname{proof}($ cases $d 1=d \wedge p p=p)$
case True
with inv4 act
have HInvaa2 s p
by (auto simp add: Phase1or2Write-def HInvムa-def)
with asm2 majorities-intersect
have $\exists d d \in D$. bal (disk s dd $p) \leq b a l(d b l o c k s p)$
by (auto simp add: HInvムa2-def MajoritySet-def)
then obtain $d d$ where $p 41: d d \in D \wedge$ bal $($ disk s $d d p) \leq b a l(d b l o c k s p)$
by auto
from asm4 $p 41$
have $b \leq b a l(d i s k s d d p)$
by auto
with $p 41$
have $p 42: b \leq \operatorname{bal}($ dblock $s p)$
by auto
from act True
have dblock s $p=$ disk $s^{\prime} d p$
by (auto simp add: Phase1or2Write-def)
with $p 42$ True
show ?thesis
by auto
next
case False
with act asm4 d
show ?thesis
by (auto simp add: Phase1or2Write-def)
qed
next
fix $d q$
assume $d: d \in D$
and phase': phase $s^{\prime} q=$ Suc 0
and dblk-mbal: $b \leq m b a l\left(d b l o c k ~ s^{\prime} q\right)$
and hasRead: hasRead $s^{\prime} q d p$
from phase ${ }^{\prime}$ act hasRead
have $p 31$ : phase s $q=1$
and p32: dblock $s^{\prime} q=$ dblock $s q$
by (auto simp add: Phase1or2Write-def InitializePhase-def hasRead-def split : if-split-asm)
with $d b l k$-mbal
have $b \leq m b a l(d b l o c k s q)$ by auto
moreover
from act hasRead
have hasRead s qd p
by (auto simp add: Phase1or2Write-def InitializePhase-def hasRead-def split: if-split-asm)
ultimately
have $\exists b r \in b l o c k s R e a d s q d . b \leq b a l(b l o c k b r)$
using p31 asm4 $d$
by blast
with act hasRead
show $\exists b r \in$ blocksRead $s^{\prime} q d . b \leq b a l(b l o c k ~ b r)$
by (auto simp add: Phase1or2Write-def InitializePhase-def hasRead-def)
qed
theorem HPhase1or2Write-valueChosen:
assumes act: HPhase1or2Write $s s^{\prime} q d$
and $v c$ : valueChosen $s v$
and $v$-input: $v \in$ Inputs
and inv4: HInv4a s $q$
shows valueChosen $s^{\prime} v$
proof -
from $v c$
obtain $b p D$ where
asm1: $b \in(U N p$. Ballot $p)$
and asm2: D $\in$ MajoritySet
and asm3: maxBalInp s $b v$
and asm4: $\forall d \in D . \quad b \leq b a l(d i s k s d p)$
$\wedge(\forall q \cdot(\quad$ phase $s q=1$
$\wedge b \leq m b a l(d b l o c k s q)$
$\wedge$ hasRead s q d p
$) \longrightarrow(\exists$ br $\operatorname{blocksRead~sqd.b\leq bal(block~br)))~}$
by (auto simp add: valueChosen-def)
from HPhase1or2Write-maxBalInp[OF act asm3]
have maxBalInp $s^{\prime} b v$.
with HPhase1or2Write-valueChosen2[OF act asm2 asm4 inv4] asm1 asm2
show ?thesis

```
 by(auto simp add: valueChosen-def)
qed
lemma HPhase1or2ReadThen-maxBalInp:
 assumes act: HPhase1or2ReadThen s s' q d p
 and asm3: maxBalInp s b v
 shows maxBalInp s' b v
proof(auto simp add: maxBalInp-def)
 fix bk
 assume bk: bk allBlocks s'
 and b-bal: b\leq bal bk
 from subsetD[OF HPhase1or2ReadThen-allBlocks[OF act] bk] asm3 b-bal
 show inp bk=v
 by(auto simp add: maxBalInp-def)
qed
lemma HPhase1or2ReadThen-valueChosen2:
 assumes act: HPhase1orQReadThen s s'qd pp
 and asm4: }\foralld\inD.\quadb\leqbal(disk s d p
 \wedge(\forallq.(phase s q=1
 \wedge b\leqmbal(dblock s q)
 ^ hasRead s q d p
)\longrightarrow(\existsbr\inblocksRead s q d. b \leq bal(block br)))(is ?P s)
 shows ?P s'
proof(auto)
 fix dd
 assume d:dd\inD
 with act asm4
 show b}\leq\mathrm{ bal (disk s' dd p)
 by(auto simp add: Phase1or2ReadThen-def)
 fix }ddq
 assume d:dd\inD
 and phase': phase s' qq = Suc 0
 and dblk-mbal: b \leqmbal (dblock s'qq)
 and hasRead: hasRead s' qq dd p
 show \existsbr\inblocksRead s' qq dd. b \leq bal (block br)
 proof(cases d=dd ^qq=q^pp=p)
 case True
 from d asm4
 have b\leqbal(disks dd p)
 by auto
 with act True
 show ?thesis
 by(auto simp add: Phase1or2ReadThen-def)
 next
 case False
 with phase' act
 have p31: phase s qq=1
```

```
 and p32:dblock s' qq = dblock s qq
 by(auto simp add: Phase1or2ReadThen-def)
 with dblk-mbal
 have b\leqmbal(dblocks qq) by auto
 moreover
 from act hasRead False
 have hasReads qq dd p
 by(auto simp add: Phase1or2ReadThen-def
 hasRead-def split: if-split-asm)
 ultimately
 have \existsbr\inblocksRead s qq dd. b\leqbal(block br)
 using p31 asm4d
 by blast
 with act hasRead
 show \existsbr\inblocksRead s' qq dd. b\leq bal(block br)
 by(auto simp add: Phase1or2ReadThen-def hasRead-def)
 qed
qed
theorem HPhase1or2ReadThen-valueChosen:
 assumes act: HPhase1or2ReadThen s s'q d p
 and vc: valueChosen s v
 and v-input:v }\in\mathrm{ Inputs
 shows valueChosen s'v
proof -
 from vc
 obtain b p D where
 asm1:b\in(UN p. Ballot p)
 and asm2: D\inMajoritySet
 and asm3: maxBalInp s b v
 and asm4::}\foralld\inD.b\leqbal(disk s d p
 \wedge(\forallq.(phase s q = 1
 \wedge b\leqmbal(dblock s q)
 \asRead s q d p
)\longrightarrow(\existsbr\inblocksRead s q d.b\leqbal(block br)))
 by(auto simp add: valueChosen-def)
 from HPhase1or2ReadThen-maxBalInp[OF act asm3]
 have maxBalInp s' b v.
 with HPhase1or2ReadThen-valueChosen2[OF act asm4] asm1 asm2
 show ?thesis
 by(auto simp add: valueChosen-def)
qed
theorem HPhase1or2ReadElse-valueChosen:
 \llbracketHPhase1or2ReadElse s s'pdr; valueChosen s v;v\in Inputs \rrbracket
 \Longrightarrow \text { valueChosen s'v}
 using HStartBallot-valueChosen
 by(auto simp add: Phase1or2ReadElse-def)
```

```
lemma HEndPhase2-maxBalInp:
 assumes act: HEndPhase2 \(s s^{\prime} q\)
 and asm3: maxBalInp s bv
 shows maxBalInp \(s^{\prime} b v\)
proof(auto simp add: maxBalInp-def)
 fix \(b k\)
 assume \(b k: b k \in\) allBlocks \(s^{\prime}\)
 and \(b\)-bal: \(b \leq b a l b k\)
 from subsetD[OF HEndPhase2-allBlocks[OF act] bk] asm3 b-bal
 show inp \(b k=v\)
 by (auto simp add: maxBalInp-def)
qed
lemma HEndPhase2-valueChosen2:
 assumes act: HEndPhase2 s s \(s^{\prime} q\)
 and asm4: \(\forall d \in D . \quad b \leq b a l(d i s k s d p)\)
 \(\wedge(\forall q .(\quad\) phase s \(q=1\)
 \(\wedge b \leq m b a l(d b l o c k s q)\)
 \(\wedge\) hasRead s q dp
 \() \longrightarrow(\exists b r \in\) blocksRead s q d. \(b \leq b a l(\) block br) \()\)) (is ?P s)
 shows ?P s \({ }^{\prime}\)
proof (auto)
 fix \(d\)
 assume \(d: d \in D\)
 with act asm4
 show \(b \leq b a l(d i s k ~ s ' d p)\)
 by(auto simp add: EndPhase2-def)
 fix \(d q\)
 assume \(d: d \in D\)
 and phase': phase \(s^{\prime} q=\) Suc 0
 and dblk-mbal: \(b \leq m b a l\) (dblock \(s^{\prime} q\))
 and hasRead: hasRead s' qd p
 from phase \({ }^{\prime}\) act hasRead
 have p31: phase s \(q=1\)
 and p32: dblock \(s^{\prime} q=\) dblock \(s q\)
 by (auto simp add: EndPhase2-def InitializePhase-def
 hasRead-def split : if-split-asm)
 with dblk-mbal
 have \(b \leq m b a l(d b l o c k s q)\) by auto
 moreover
 from act hasRead
 have hasRead s qd p
 by (auto simp add: EndPhase2-def InitializePhase-def
 hasRead-def split: if-split-asm)
 ultimately
 have \(\exists b r \in b l o c k s R e a d s q d . b \leq b a l(b l o c k b r)\)
 using p31 asm4 \(d\)
 by blast
 with act hasRead
```

```
 show \existsbr\inblocksRead s' q d. b\leqbal(block br)
 by(auto simp add: EndPhase2-def InitializePhase-def
 hasRead-def)
qed
theorem HEndPhase2-valueChosen:
 assumes act:HEndPhase2 s s'q
 and vc: valueChosen s v
 and v-input:}v\in\mathrm{ Inputs
 shows valueChosen s'v
proof -
 from vc
 obtain b p D where
 asm1: b\in(UN p. Ballot p)
 and asm2: D\inMajoritySet
 and asm3: maxBalInp s b v
 and asm4:}\foralld\inD.\quadb\leqbal(disk s d p
 \wedge(\forallq.(phase s q=1
 \wedge b\leqmbal(dblock s q)
 hasRead s q d p
)\longrightarrow(\existsbr\inblocksRead s q d. b \leqbal(block br)))
 by(auto simp add: valueChosen-def)
 from HEndPhase2-maxBalInp[OF act asm3]
 have maxBalInp s'bv.
 with HEndPhase2-valueChosen2[OF act asm4] asm1 asm2
 show ?thesis
 by(auto simp add: valueChosen-def)
qed
lemma HFail-maxBalInp:
 assumes act:HFail s s'q
 and asm1:b\in(UN p. Ballot p)
 and asm3: maxBalInp s b v
 shows maxBalInp s'bv
proof(auto simp add: maxBalInp-def)
 fix bk
 assume bk:bk\inallBlocks s'
 and b-bal: b\leq bal bk
 from subsetD[OF HFail-allBlocks[OF act] bk]
 show inp bk=v
 proof
 assume bk: bk\inallBlocks s
 with asm3 b-bal
 show ?thesis
 by(auto simp add: maxBalInp-def)
 next
 assume bk:bk\in{dblock s'q}
 with act
 have bal bk=0
```

```
 by(auto simp add: Fail-def InitDB-def)
 moreover
 from Ballot-nzero asm1
 have 0<b
 by auto
 ultimately
 show ?thesis
 using b-bal
 by auto
 qed
qed
lemma HFail-valueChosen2:
 assumes act: HFail s s'q
 and asm4: }\foralld\inD.\quadb\leqbal(disk s d p
 \wedge(\forallq.(phase s q = 1
 \wedge b\leqmbal(dblock s q)
 hasRead s q d p
)\longrightarrow(\existsbr\inblocksRead s q d.b\leqbal(block br)))(is ?P s)
 shows ?P s'
proof(auto)
 fix d
 assume d:d\inD
 with act asm4
 show b\leqbal (disk s'd p)
 by(auto simp add: Fail-def)
 fix dq
 assume d:d\inD
 and phase': phase s' q = Suc 0
 and dblk-mbal: b\leqmbal (dblock s' q)
 and hasRead: hasRead s' qd p
 from phase' act hasRead
 have p31: phase s q=1
 and p32:dblock s' q = dblock s q
 by(auto simp add: Fail-def InitializePhase-def
 hasRead-def split : if-split-asm)
with dblk-mbal
have b\leqmbal(dblocks q) by auto
moreover
from act hasRead
have hasRead s qd p
 by(auto simp add: Fail-def InitializePhase-def
 hasRead-def split: if-split-asm)
ultimately
have \existsbr\inblocksRead s q d. b\leqbal(block br)
 using p31 asm4 d
 by blast
with act hasRead
show \existsbr\inblocksRead s'q d. b\leqbal(block br)
```

```
 by(auto simp add: Fail-def InitializePhase-def hasRead-def)
qed
theorem HFail-valueChosen:
 assumes act: HFail s s'q
 and vc: valueChosen s v
 and v-input: v\in Inputs
 shows valueChosen s'v
proof -
 from vc
 obtain b p D where
 asm1:b }\in(UN p. Ballot p
 and asm2: D\inMajoritySet
 and asm3: maxBalInp s b v
 and asm4: \foralld\inD. b \leqbal(disk s d p)
 \wedge(\forallq.(phase s q = 1
 \wedge b\leqmbal(dblock s q)
 \hasRead s q d p
)\longrightarrow(\existsbr\inblocksRead s q d. b \leqbal(block br)))
 by(auto simp add: valueChosen-def)
 from HFail-maxBalInp[OF act asm1 asm3]
 have maxBalInp s' b v.
 with HFail-valueChosen2[OF act asm4] asm1 asm2
 show ?thesis
 by(auto simp add: valueChosen-def)
qed
lemma HPhase0Read-maxBalInp:
 assumes act:HPhase0Read s s' qd
 and asm3: maxBalInp s b v
 shows maxBalInp s' b v
proof(auto simp add: maxBalInp-def)
 fix bk
 assume bk: bk \in allBlocks s'
 and b-bal: b\leqbal bk
 from subsetD[OF HPhaseORead-allBlocks[OF act] bk] asm3 b-bal
 show inp bk =v
 by(auto simp add: maxBalInp-def)
qed
lemma HPhase0Read-valueChosen2:
 assumes act: HPhase0Read s s' qq dd
 and asm4: }\foralld\inD.\quadb\leqbal(disk s d p
 \wedge(\forallq.(phase s q=1
 ^b\leqmbal(dblock s q)
 hasRead s q d p
)\longrightarrow(\existsbr\inblocksRead s q d. b\leqbal(block br)))(is ?P s)
 shows ?P s'
proof(auto)
```

```
 fix d
 assume d:d\inD
 with act asm4
 show b \leq bal (disk s'd p)
 by(auto simp add: Phase0Read-def)
next
 fix dq
 assume d:d\inD
 and phase': phase s' q = Suc 0
 and dblk-mbal: b \leqmbal (dblock s' q)
 and hasRead: hasRead s' q d p
 from phase' act
 have qqnq: qq\not=q
 by(auto simp add: Phase0Read-def)
 show \existsbr\inblocksRead s' q d. b \leq bal (block br)
 proof -
 from phase' act hasRead
 have p31: phase s q=1
 and p32:dblock s' q = dblock s q
 by(auto simp add: Phase0Read-def hasRead-def)
 with dblk-mbal
 have b\leqmbal(dblock s q) by auto
 moreover
 from act hasRead qqnq
 have hasRead s qd p
 by(auto simp add: Phase0Read-def hasRead-def
 split:if-split-asm)
 ultimately
 have \existsbr\inblocksRead s q d. b\leqbal(block br)
 using p31 asm4 d
 by blast
 with act hasRead
 show \existsbr\inblocksRead s' q d. b\leq bal(block br)
 by(auto simp add: Phase0Read-def InitializePhase-def
 hasRead-def)
 qed
qed
theorem HPhase0Read-valueChosen:
 assumes act:HPhase0Read s s' qd
 and vc: valueChosen s v
 and v-input:}v\in\mathrm{ Inputs
 shows valueChosen s'v
proof -
 from vc
 obtain b p D where
 asm1:b\in(UN p. Ballot p)
 and asm2: D\inMajoritySet
 and asm3: maxBalInp s b v
```

```
 and asm4: }\foralld\inD.\quadb\leqbal(disk s d p
 \wedge(\forallq.(phase s q}=
 \wedge b\leqmbal(dblock s q)
 hasRead s q d p
)\longrightarrow(\existsbr\inblocksRead s q d. b \leqbal(block br)))
 by(auto simp add: valueChosen-def)
from HPhase0Read-maxBalInp[OF act asm3]
have maxBalInp s' b v .
with HPhase0Read-valueChosen2[OF act asm4] asm1 asm2
show ?thesis
 by(auto simp add: valueChosen-def)
qed
lemma HEndPhase0-maxBalInp:
 assumes act: HEndPhase0 s s'q
 and asm3: maxBalInp s b v
 and inv1: Inv1 s
 shows maxBalInp s' b v
proof(auto simp add: maxBalInp-def)
 fix bk
 assume bk:bk\in allBlocks s'
 and b-bal: b\leqbal bk
 from subsetD[OF HEndPhase0-allBlocks[OF act] bk]
 show inp bk=v
 proof
 assume bk: bk\inallBlocks s
 with asm3 b-bal
 show ?thesis
 by(auto simp add: maxBalInp-def)
 next
 assume bk: bk\in{dblock s' q}
 with HEndPhase0-some[OF act inv1] act
 have \existsba\inallBlocksRead s q. bal ba=bal (dblock s'q)}\wedge inp ba=inp (dbloc
s' q)
 by(auto simp add: EndPhase0-def)
 then obtain ba
 where ba-blksread: ba\inallBlocksRead s q
 and ba-balinp: bal ba = bal (dblock s'q) ^ inp ba=inp (dblock s'q)
 by auto
 have allBlocksRead s q\subseteqallBlocks s
 by(auto simp add: allBlocksRead-def allRdBlks-def
 allBlocks-def blocksOf-def rdBy-def)
 from subsetD[OF this ba-blksread] ba-balinp bk b-bal asm3
 show ?thesis
 by(auto simp add: maxBalInp-def)
 qed
qed
```

```
lemma HEndPhase0-valueChosen2:
 assumes act: HEndPhase0 s s'q
 and asm4:}\foralld\inD.\quadb\leqbal(disk s d p
 \wedge(\forallq.(phase s q=1
 \wedge b\leqmbal(dblock s q)
 ^ hasRead s q d p
)\longrightarrow(\existsbr\inblocksRead s qd.b\leqbal(block br)))(is ?P s)
 shows ?P s'
proof(auto)
 fix d
 assume d:d\inD
 with act asm4
 show b \leqbal (disk s'd p)
 by(auto simp add: EndPhase0-def)
 fix dq
 assume d:d\inD
 and phase':phase s' q = Suc 0
 and dblk-mbal: b \leqmbal (dblock s'q)
 and hasRead: hasRead s' qd p
 from phase' act hasRead
 have p31: phase s q=1
 and p32:dblock s' q = dblock s q
 by(auto simp add: EndPhase0-def InitializePhase-def
 hasRead-def split : if-split-asm)
 with dblk-mbal
 have b\leqmbal(dblock s q) by auto
 moreover
 from act hasRead
 have hasRead s qd p
 by(auto simp add: EndPhase0-def InitializePhase-def
 hasRead-def split: if-split-asm)
 ultimately
 have \existsbr\inblocksRead s qd. b\leqbal(block br)
 using p31 asm4 d
 by blast
 with act hasRead
 show \existsbr\inblocksRead s' q d. b\leq bal(block br)
 by(auto simp add: EndPhase0-def InitializePhase-def
 hasRead-def)
qed
theorem HEndPhase0-valueChosen:
 assumes act:HEndPhase0 s s'q
 and vc: valueChosen s v
 and v-input:v }\in\mathrm{ Inputs
 and inv1: Inv1 s
 shows valueChosen s'v
proof -
 from vc
```

```
 obtain b p D where
 asm1:b\in(UN p. Ballot p)
 and asm2: D\inMajoritySet
 and asm3: maxBalInp s b v
 and asm4:}\foralld\inD.\quadb\leqbal(disk s d p
 \wedge(\forallq.(phase s q=1
 \wedge b\leqmbal(dblock s q)
 hasRead s q d p
)\longrightarrow(\existsbr\inblocksRead s q d. b \leqbal(block br)))
 by(auto simp add: valueChosen-def)
 from HEndPhase0-maxBalInp[OF act asm3 inv1]
 have maxBalInp s' b v.
 with HEndPhase0-valueChosen2[OF act asm4] asm1 asm2
 show ?thesis
 by(auto simp add: valueChosen-def)
qed
end
```

theory DiskPaxos-Inv6 imports DiskPaxos-Chosen begin

## C. 7 Invariant 6

The final conjunct of HInv asserts that, once an output has been chosen, valueChosen(chosen) holds, and each processor's output equals either chosen or NotAnInput.
definition HInv6 :: state $\Rightarrow$ bool where HInv6 $s=(($ chosen $s \neq$ NotAnInput $\longrightarrow$ valueChosen $s($ chosen $s))$
$\wedge(\forall$ p. outpt s $p \in\{$ chosen $s$, NotAnInput $\}))$
theorem HInit-HInv6: HInit $s \Longrightarrow$ HInv6 $s$
by (auto simp add: HInit-def Init-def InitDB-def HInv6-def)
lemma HEndPhase2-Inv6-1:
assumes act: HEndPhase2 $s s^{\prime} p$
and inv: HInv6 $s$
and inv2b: Inv2b s
and inv2c: Inv2c s
and inv3: HInv3 s
and inv5: HInv5-inner s $p$
and chosen': chosen $s^{\prime} \neq$ NotAnInput
shows valueChosen $s^{\prime}$ (chosen $s^{\prime}$ )
proof(cases chosen $s=$ NotAnInput)
from inv5 act
have inv5R: HInv5-inner-R s $p$ and phase: phase s $p=2$
and ep2-maj: IsMajority $\{d . \quad d \in$ disksWritten sp

```
\wedge (\forallq\inUNIV - {p}. hasRead s p d q)}
```

by (auto simp add: EndPhase2-def HInv5-inner-def)
case True
have p32: maxBalInp $s($ bal (dblock s p)) $($ inp $($ dblock s $p))$
proof -
have $\neg(\exists D \in$ MajoritySet. $\exists$ q. $(\forall d \in D$. bal (dblock s $p)<$ mbal (disk s d $q) \wedge$ $\neg$ hasRead s pdq))
proof auto
fix $D q$
assume Dmaj: D $\in$ MajoritySet
from ep2-maj Dmaj majorities-intersect
have $\exists d \in D . d \in$ disks Written s $p$
$\wedge(\forall q \in U N I V-\{p\}$. hasRead spdq)
by (auto simp add: MajoritySet-def, blast)
then obtain $d$
where $\operatorname{din} D: d \in D$
and ddisk: $d \in$ disksWritten s $p$
and dhasR: $\forall q \in U N I V-\{p\}$. hasRead spdq
by auto
from inv2b
have Inv2b-inner s pd
by (auto simp add: Inv2b-def)
with ddisk
have disk s $d p=$ dblock $s p$
by (auto simp add: Inv2b-inner-def)
with inv2c phase
have bal (dblock s $p$ ) $=\operatorname{mbal}($ disk s d $p$ )
by (auto simp add: Inv2c-def Inv2c-inner-def)
with dhasR $\operatorname{dinD}$
show $\exists d \in D$. bal (dblock sp)<mbal (disksdq) $\longrightarrow$ hasRead spdq by auto
qed
with inv5R
show ?thesis
by (auto simp add: HInv5-inner-R-def)
qed
have p33: maxBalInp $s^{\prime}\left(\right.$ bal(dblock $\left.\left.s^{\prime} p\right)\right)\left(\right.$ chosen $\left.s^{\prime}\right)$
proof -
from act
have outpt': outpt $s^{\prime}=($ outpt $s)(p:=\operatorname{inp}($ dblocks $p))$
by(auto simp add: EndPhase2-def)
have outpt' $-q: \forall q . p \neq q \longrightarrow$ outpt $s^{\prime} q=$ NotAnInput
proof auto
fix $q$
assume $p n q: p \neq q$
from outpt' $p n q$
have outpt $s^{\prime} q=$ outpt $s q$
by(auto simp add: EndPhase2-def)
with True inv2c

```
 show outpt s' q= NotAnInput
 by(auto simp add: Inv2c-def Inv2c-inner-def)
 qed
 from True act chosen'
 have chosen s' = inp (dblock s p)
 proof(auto simp add: HNextPart-def split: if-split-asm)
 fix pa
 assume outpt'-pa: outpt s' pa\not= NotAnInput
 from outpt'-q
 have someeq2: \bigwedgepa. outpt s' pa = NotAnInput \Longrightarrow pa=p
 by auto
 with outpt'-pa
 have outpt s'p\not=NotAnInput
 by auto
 from some-equality[of \lambdap. outpt s' p}\not=\mathrm{ NotAnInput, OF this someeq2]
 have (SOME p. outpt s' p}=\mathrm{ NotAnInput) = p.
 with outpt'
 show outpt s'(SOME p. outpt s' p}=\mathrm{ NotAnInput) = inp (dblock s p)
 by auto
 qed
 moreover
 from act
 havebal(dblock s' p) = bal(dblock s p)
 by(auto simp add: EndPhase2-def)
 ultimately
 have maxBalInp s (bal(dblock s'p)) (chosen s')
 using p32
 by auto
 with HEndPhase2-allBlocks[OF act]
 show ?thesis
 by(auto simp add: maxBalInp-def)
qed
from ep2-maj inv2b majorities-intersect
have }\exists\mathrm{ D MajoritySet. (}\foralld\inD\mathrm{ . disk s d p = dblock s p
 \wedge(\forallq\inUNIV - {p}. hasRead s pd q))
 by(auto simp add: Inv2b-def Inv2b-inner-def MajoritySet-def)
then obtain D
 where Dmaj: D\inMajoritySet
 and p34:}\foralld\inD. disk s d p = dblock s p
 \wedge(\forallq\inUNIV - {p}. hasRead s p d q)
 by auto
have p35: \forallq.}\foralld\inD.(phase s q=1^bal(dblock s p)\leqmbal(dblock s q)^ hasRead
s qd p)
 \longrightarrow(block=dblock s p, proc=p)\inblocksRead s q d
proof auto
 fix qd
 assume dD:d\inD and phase-q: phase s q=Suc 0
 and bal-mbal: bal(dblock s p)\leqmbal(dblock s q) and hasRead: hasRead s q d p
 from phase inv2c
```

```
 have \(b a l(d b l o c k s p)=m b a l(d b l o c k s p)\)
 by (auto simp add: Inv2c-def Inv2c-inner-def)
 moreover
 from inv2c phase
 have \(\forall b r \in\) blocksRead s \(p\) d. mbal(block br) \(<\) mbal \((\) dblock s \(p)\)
 by (auto simp add: Inv2c-def Inv2c-inner-def)
 ultimately
 have \(p 41\) : (\(b\) block \(=d\) block \(s q\), proc=q|) \(\notin\) blocksRead s \(p d\)
 using bal-mbal
 by auto
 from phase phase-q
 have \(p \neq q\) by auto
 with \(p 34 d D\)
 have hasRead spdq
 by auto
 with phase phase-q hasRead inv3 p41
 show (block \(=\) dblock s \(p\), proc \(=p\)) \(\in\) blocksRead s qd
 by (auto simp add: HInv3-def HInv3-inner-def
 HInv3-L-def HInv3-R-def)
qed
 have p36: \(\forall q . \forall d \in D\). phase \(s^{\prime} q=1 \wedge\) bal(dblock s \(\left.p\right) \leq \operatorname{mbal}\left(d b l o c k s^{\prime} q\right) \wedge\)
hasRead s' qd \(p\)
 \(\longrightarrow\left(\exists b r \in\right.\) blocksRead \(s^{\prime} q\) d. bal(block br \()=\) bal \((\) dblock \(\left.s p)\right)\)
proof (auto)
 fix \(q d\)
 assume \(d D: d \in D\) and phase- \(q\) : phase \(s^{\prime} q=\) Suc 0
 and bal: bal (dblock s p) \(\leq\) mbal (dblock \(\left.s^{\prime} q\right)\)
 and hasRead: hasRead s' qd p
 from phase-q act
 have phase \(s^{\prime} q=\) phase \(s q \wedge\) dblock \(s^{\prime} q=\) dblock \(s q \wedge\) hasRead \(s^{\prime} q d p=\) hasRead
\(s q d p \wedge\) blocksRead \(s^{\prime} q d=\) blocksRead \(s q d\)
 by (auto simp add: EndPhase2-def hasRead-def InitializePhase-def)
 with p35 phase-q bal hasRead dD
 have (block=dblock s p, proc=p) \(\in\) blocksRead \(s^{\prime} q d\)
 by auto
 thus \(\exists b r \in\) blocksRead \(s^{\prime} q\) d. bal(block br) \(=\) bal (dblock sp)
 by force
qed
hence p36-2: \(\forall q . \forall d \in D\). phase \(s^{\prime} q=1 \wedge\) bal (dblock \(\left.s p\right) \leq \operatorname{mbal}\left(\right.\) dblock \(\left.s^{\prime} q\right) \wedge\)
hasRead \(s^{\prime} q d p\)
 \(\longrightarrow\left(\exists b r \in\right.\) blocksRead \(s^{\prime} q\) d. bal(dblock s \(\left.p\right) \leq\) bal(block br \(\left.)\right)\)
 by force
from act
have bal-dblock: bal(dblock s' \(p)=b a l(d b l o c k s p)\)
 and disk: disk \(s^{\prime}=\) disk \(s\)
 by(auto simp add: EndPhase2-def)
from bal-dblock p33
have maxBalInp \(s^{\prime}\left(\right.\) bal (dblock s p)) (chosen \(\left.s^{\prime}\right)\)
 by auto
```

```
 moreover
 from disk p34
 have }\foralld\inD.bal(dblock s p)\leqbal(disk s'd p
 by auto
 ultimately
 have maxBalInp s'(bal(dblock s p)) (chosen s') ^
 (}\exists\mathrm{ D MajoritySet.
 \foralld\inD.bal(dblock s p)\leqbal (disk s'd p)^
 (}\forall\mathrm{ q. phase s' q = Suc 0 ^
 bal(dblock s p) \leqmbal (dblock s'q) ^ hasRead s' qd p \longrightarrow
 (\existsbr\inblocksRead s' q d. bal(dblock s p) \leq bal (block br))))
 using p36-2 Dmaj
 by auto
 moreover
 from phase inv2c
 have bal(dblock s p)\in Ballot p
 by(auto simp add: Inv2c-def Inv2c-inner-def)
 ultimately
 show ?thesis
 by(auto simp add: valueChosen-def)
next
 case False
 with act
 have p31: chosen s'= chosen s
 by(auto simp add: HNextPart-def)
 from False inv
 have valueChosen s (chosen s)
 by(auto simp add: HInv6-def)
 from HEndPhase2-valueChosen[OF act this] p31 False InputsOrNi
 show ?thesis
 by auto
qed
lemma valueChosen-equal-case:
 assumes max-v: maxBalInp s b v
 and Dmaj: D G MajoritySet
 and asm-v: }\foralld\inD.b\leqbal (disk s d p
 and max-w: maxBalInp s ba w
 and Damaj: Da G MajoritySet
 and asm-w: \foralld\inDa.ba\leqbal (disk s d pa)
 and b-ba: b\leqba
 shows v=w
proof -
 have }\foralld.disk s d pa\in allBlocks s
 by(auto simp add: allBlocks-def blocksOf-def)
 with majorities-intersect Dmaj Damaj
 have }\existsd\inD\capDa. disk s d pa\in allBlocks
 by(auto simp add: MajoritySet-def, blast)
 then obtain d
```

where dinmaj: $d \in D \cap D a$ and $d a b: d i s k s d p a \in$ allBlocks $s$
by auto
with asm-w
have $b a: b a \leq b a l(d i s k s d p a)$
by auto
with $b-b a$
have $b \leq b a l(d i s k s d p a)$
by auto
with max-v dab
have $v$-value: inp (disk s d pa) $=v$
by (auto simp add: maxBalInp-def)
from ba max-w dab
have $w$-value: inp (disk s d pa) $=w$
by (auto simp add: maxBalInp-def)
with $v$-value
show ?thesis by auto
qed
lemma valueChosen-equal:
assumes $v$ : valueChosen s $v$
and $w$ : valueChosen $s w$
shows $v=w$ using assms
proof (auto simp add: valueChosen-def)
fix $a b$ aa ba $p D$ pa $D a$
assume max-v: maxBalInp s $b v$
and Dmaj: $D \in$ MajoritySet
and asm-v: $\forall d \in D . b \leq b a l(d i s k s d p) \wedge$
( $\forall$ q. phase s $q=$ Suc $0 \wedge$
$b \leq m b a l($ dblock $s q) \wedge$ hasRead s qd $p \longrightarrow$
$(\exists b r \in$ blocksRead s q d. $b \leq$ bal (block br)))
and max-w: maxBalInp s ba w
and Damaj: Da $\in$ MajoritySet
and asm-w: $\forall d \in D a . b a \leq b a l(d i s k s d p a) \wedge$
( $\forall$ q. phase s $q=$ Suc $0 \wedge$
$b a \leq$ mbal $($ dblock $s q) \wedge$ hasRead $s q d p a \longrightarrow$ $(\exists b r \in$ blocksRead s q d. ba $\leq$ bal (block br)))
from asm-v
have asm-v: $\forall d \in D$. $b \leq b a l(d i s k s d p)$ by auto
from $a s m-w$
have asm-w: $\forall d \in D a . b a \leq b a l$ (disk $s d p a$ ) by auto
show $v=w$
proof (cases $b \leq b a$ )
case True
from valueChosen-equal-case[OF max-v Dmaj asm-v max-w Damaj asm-w True] show ?thesis.

## next

case False
from valueChosen-equal-case[OF max-w Damaj asm-w max-v Dmaj asm-v] False show ?thesis

```
 by auto
 qed
qed
lemma HEndPhase2-Inv6-2:
 assumes act:HEndPhase2 s s'p
 and inv: HInv6 s
 and inv2b: Inv2b s
 and inv2c: Inv2c s
 and inv3: HInv3 s
 and inv5: HInv5-inner s p
 and asm: outpt s' r = NotAnInput
 shows outpt s'r = chosen s'
proof(cases chosen s=NotAnInput)
 case True
 with inv2c
 have }\forallq.outpt s q = NotAnInpu
 by(auto simp add: Inv2c-def Inv2c-inner-def)
 with True act asm
 show ?thesis
 by(auto simp add: EndPhase2-def HNextPart-def
 split: if-split-asm)
next
 case False
 with inv
 have p31: valueChosen s (chosen s)
 by(auto simp add: HInv6-def)
 with False act
 have chosen s'}=\mathrm{ NotAnInput
 by(auto simp add: HNextPart-def)
from HEndPhase2-Inv6-1[OF act inv inv2b inv2c inv3 inv5 this]
have p32: valueChosen s'(chosen s').
from False InputsOrNi
have chosen s}\in\mathrm{ Inputs by auto
from valueChosen-equal[OF HEndPhase2-valueChosen[OF act p31 this] p32]
have p33: chosen s=chosen s}\mp@subsup{}{}{\prime}
from act
have maj: IsMajority {d. d\in disksWritten s p
 \wedge(\forallq\inUNIV - {p}. hasRead s pd q)} (is IsMajority?D)
 and phase: phase s p=2
 by(auto simp add: EndPhase2-def)
show ?thesis
proof(cases outpt s r = NotAnInput)
 case True
 with asm act
 have p41:r=p
 by(auto simp add: EndPhase2-def split: if-split-asm)
 from maj
 have p42: \existsD\inMajoritySet. }\foralld\inD.\forallq\inUNIV-{p}. hasRead s p d q
```

by (auto simp add: MajoritySet-def)
have $p \not 43: \neg(\exists D \in$ MajoritySet. $\exists q .(\forall d \in D . \quad$ bal $($ dblock s $p)<\operatorname{mbal}($ disk s d q)
$\wedge \neg$ hasRead spdq))
proof auto
fix $D q$
assume Dmaj: $D \in$ MajoritySet
show $\exists d \in D$. bal $($ dblock $s p)<\operatorname{mbal}($ disk $s d q) \longrightarrow h a s R e a d s p d q$
proof (cases $p=q$ )
assume $p q: p=q$
thus ?thesis
proof auto
from maj majorities-intersect Dmaj
have ? $D \cap D \neq\{ \}$
by(auto simp add: MajoritySet-def)
hence $\exists d \in$ ? $D \cap D$. $d \in$ disks Written $s p$ by auto
then obtain $d$ where $d: d \in$ disksWritten s $p$ and $d \in ? D \cap D$
by auto
hence $d D: d \in D$ by auto
from $d$ inv2b
have disk s d $p=$ dblock s $p$
by (auto simp add: Inv2b-def Inv2b-inner-def)
with inv2c phase
have $\operatorname{bal}($ dblock s $p)=\operatorname{mbal}($ disk s $d p)$
by (auto simp add: Inv2c-def Inv2c-inner-def)
with $d D p q$
show $\exists d \in D$. bal (dblock s $q$ ) $<$ mbal $($ disk s d $q) \longrightarrow$ hasRead s qd $q$ by auto
qed
next
case False
with 142
have $\exists D \in$ MajoritySet. $\forall d \in D$. hasRead spd $q$ by auto
with majorities-intersect Dmaj
show ?thesis
by (auto simp add: MajoritySet-def, blast)
qed
qed
with inv5 act
have $p 44:$ maxBalInp $s(b a l(d b l o c k s p))($ inp $($ dblock $s p))$
by (auto simp add: EndPhase2-def HInv5-inner-def HInv5-inner-R-def)
have $\exists b k \in$ allBlocks $s . \exists b \in(U N p$. Ballot $p) .($ maxBalInp $s b($ chosen $s)) \wedge b \leq$ bal bk
proof -
have disk-allblks: $\forall d$ p. disk s $d p \in$ allBlocks $s$ by (auto simp add: allBlocks-def blocksOf-def)
from $p 31$

```
 have \existsb\in (UN p. Ballot p). maxBalInp s b (chosen s) ^
 (\exists p. \existsD\inMajoritySet. (\foralld\inD. b\leqbal(disk s d p)))
 by(auto simp add: valueChosen-def, force)
 with majority-nonempty obtain b p D d
 where IsMajority D ^ b\in(UN p. Ballot p)^
 maxBalInp s b (chosen s) ^d\inD ^b\leqbal(disk s d p)
 by(auto simp add: MajoritySet-def, blast)
 with disk-allblks
 show ?thesis
 by(auto)
 qed
 then obtain bk b
 where p45-bk:bk\inallBlocks s ^b\leqbal bk
 and p45-b:b\in(UN p. Ballot p) ^(maxBalInp s b (chosen s))
 by auto
 have p46: inp(dblock s p)= chosen s
 proof(cases b \leqbal(dblock s p))
 case True
 have dblock s p\inallBlocks s
 by(auto simp add: allBlocks-def blocksOf-def)
 with p45-b True
 show ?thesis
 by(auto simp add: maxBalInp-def)
 next
 case False
 from p44 p45-bk False
 have inp bk = inp(dblock s p)
 by(auto simp add: maxBalInp-def)
 with p45-b p45-bk
 show ?thesis
 by(auto simp add: maxBalInp-def)
 qed
 with p41 p33 act
 show ?thesis
 by(auto simp add: EndPhase2-def)
next
 case False
 from inv2c
 have Inv2c-inner s r
 by(auto simp add: Inv2c-def)
 with False asm inv2c act
 have outpt s'r=outpt s r
 by(auto simp add: Inv2c-inner-def EndPhase2-def
 split: if-split-asm)
 with inv p33 False
 show ?thesis
 by(auto simp add: HInv6-def)
 qed
qed
```

```
theorem HEndPhase2-Inv6:
 assumes act: HEndPhase2 s s'p
 and inv: HInv6 s
 and inv2b: Inv2b s
 and inv2c: Inv2c s
 and inv3: HInv3 s
 and inv5: HInv5-inner s p
 shows HInv6 s'
proof(auto simp add: HInv6-def)
 assume chosen s' = NotAnInput
 from HEndPhase2-Inv6-1[OF act inv inv2b inv2c inv3 inv5 this]
 show valueChosen s'(chosen s').
next
 fix p
 assume outpt s' p\not= NotAnInput
 from HEndPhase2-Inv6-2[OF act inv inv2b inv2c inv3 inv5 this]
 show outpt s'p=chosen s}\mp@subsup{s}{}{\prime}
qed
lemma outpt-chosen:
 assumes outpt: outpt s= outpt s'
 and inv2c: Inv2c s
 and nextp: HNextPart s s'
 shows chosen s'}=\mathrm{ chosen s
proof -
 from inv2c
 have chosen s=NotAnInput }\longrightarrow(\forallp. outpt s p = NotAnInput)
 by(auto simp add: Inv2c-inner-def Inv2c-def)
 with outpt nextp
 show ?thesis
 by(auto simp add: HNextPart-def)
qed
lemma outpt-Inv6:
 |outpt s= outpt s';}\forallp\mathrm{ . outpt s p { {chosen s,NotAnInput };
 Inv2c s; HNextPart s s'\ \Longrightarrow \forallp.outpt s' p \in{chosen s',NotAnInput}
 using outpt-chosen
 by auto
theorem HStartBallot-Inv6:
 assumes act:HStartBallot s s'p
 and inv: HInv6 s
 and inv2c: Inv2c s
 shows HInv6 s'
proof -
 from outpt-chosen act inv2c inv
 have chosen s' }=\mathrm{ NotAnInput }\longrightarrow\mathrm{ valueChosen s(chosen s')
 by(auto simp add: StartBallot-def HInv6-def)
```

```
 from HStartBallot-valueChosen[OF act] this InputsOrNi
 have t1: chosen s}\mp@subsup{s}{}{\prime}\not=NotAnInput \longrightarrow valueChosen s'(chosen s'
 by auto
 from act
 have outpt: outpt s= outpt s'
 by(auto simp add: StartBallot-def)
 from outpt-Inv6[OF outpt] act inv2c inv
 have }\forallp\mathrm{ . outpt }\mp@subsup{s}{}{\prime}p=\mathrm{ chosen }\mp@subsup{s}{}{\prime}\vee\mathrm{ outpt }\mp@subsup{s}{}{\prime}p=NotAnInput
 by(auto simp add: HInv6-def)
 with t1
 show ?thesis
 by(simp add: HInv6-def)
qed
theorem HPhase1or2Write-Inv6:
 assumes act: HPhase1or2Write s s' p d
 and inv: HInv6 s
 and inv4:HInv4 a s p
 and inv2c: Inv2c s
 shows HInv6 s'
proof -
 from outpt-chosen act inv2c inv
 have chosen s'}=\mathrm{ NotAnInput }\longrightarrow\mathrm{ valueChosen s(chosen s')
 by(auto simp add: Phase1or2Write-def HInv6-def)
 from HPhase1or2Write-valueChosen[OF act] inv4 this InputsOrNi
 have t1: chosen s}\mp@subsup{s}{}{\prime}\not=NotAnInput \longrightarrow valueChosen s'(chosen s'
 by auto
 from act
 have outpt: outpt s= outpt s'
 by(auto simp add: Phase1or2Write-def)
 from outpt-Inv6[OF outpt] act inv2c inv
 have }\forallp\mathrm{ . outpt s' p = chosen s'}\vee\mathrm{ outpt s' p = NotAnInput
 by(auto simp add: HInv6-def)
 with t1
 show ?thesis
 by(simp add: HInv6-def)
qed
theorem HPhase1or2ReadThen-Inv6:
 assumes act: HPhase1or2ReadThen s s' pdq
 and inv: HInv6 s
 and inv2c: Inv2c s
 shows HInv6 s'
proof -
 from outpt-chosen act inv2c inv
 have chosen s'}=\mathrm{ NotAnInput }\longrightarrow\mathrm{ valueChosen s(chosen s')
 by(auto simp add: Phase1or2ReadThen-def HInv6-def)
 from HPhase1or2ReadThen-valueChosen[OF act] this InputsOrNi
 have t1: chosen s'}=\mathrm{ NotAnInput }\longrightarrow\mathrm{ valueChosen s'(chosen s')
```

```
 by auto
 from act
 have outpt: outpt s= outpt s'
 by(auto simp add: Phase1or2ReadThen-def)
 from outpt-Inv6[OF outpt] act inv2c inv
 have }\forallp\mathrm{ . outpt s' p = chosen s'}\vee\mathrm{ outpt s' p = NotAnInput
 by(auto simp add: HInv6-def)
 with t1
 show ?thesis
 by(simp add: HInv6-def)
qed
theorem HPhase1or2ReadElse-Inv6:
 assumes act: HPhase1or2ReadElse s s' p d q
 and inv: HInv6 s
 and inv2c: Inv2c s
 shows HInv6 s'
 using assms and HStartBallot-Inv6
 by(auto simp add: Phase1or2ReadElse-def)
theorem HEndPhase1-Inv6:
 assumes act:HEndPhase1 s s'p
 and inv: HInv6 s
 and inv1: Inv1s
 and inv2a:Inv2a s
 and inv2b: Inv2b s
 and inv2c: Inv2c s
 shows HInv6 s'
proof -
 from outpt-chosen act inv2c inv
 have chosen s'}=|\mathrm{ NotAnInput }\longrightarrow\mathrm{ valueChosen s (chosen s')
 by(auto simp add: EndPhase1-def HInv6-def)
 from HEndPhase1-valueChosen[OF act] inv1 inv2a inv2b this InputsOrNi
 have t1: chosen s'}=\mathrm{ NotAnInput }\longrightarrow\mathrm{ valueChosen s'(chosen s')
 by auto
 from act
 have outpt: outpt s= outpt s'
 by(auto simp add: EndPhase1-def)
 from outpt-Inv6[OF outpt] act inv2c inv
 have }\forallp\mathrm{ . outpt s'
 by(auto simp add: HInv6-def)
 with t1
 show ?thesis
 by(simp add: HInv6-def)
qed
lemma outpt-chosen-2:
 assumes outpt: outpt s'=(outpt s) (p:= NotAnInput)
 and inv2c: Inv2c s
```

```
 and nextp: HNextPart s s'
 shows chosen s}=\mathrm{ chosen s'
proof -
 from inv2c
 have chosen s=NotAnInput }\longrightarrow(\forallp\mathrm{ . outpt s p = NotAnInput }
 by(auto simp add: Inv2c-inner-def Inv2c-def)
 with outpt nextp
 show ?thesis
 by(auto simp add: HNextPart-def)
qed
lemma outpt-HInv6-2:
 assumes outpt: outpt s'=(outpt s) (p:= NotAnInput)
 and inv: }\forall\mathrm{ p. outpt s p}\in{\mathrm{ chosen s, NotAnInput}
 and inv2c: Inv2c s
 and nextp: HNextPart s s'
 shows }\forallp\mathrm{ . outpt s' p}\in{\mathrm{ chosen s',NotAnInput }
proof -
 from outpt-chosen-2[OF outpt inv2c nextp]
 have chosen s= chosen s'.
 with inv outpt
 show ?thesis
 by auto
qed
theorem HFail-Inv6:
 assumes act: HFail s s'p
 and inv: HInv6 s
 and inv2c: Inv2c s
 shows HInv6 s'
proof -
 from outpt-chosen-2 act inv2c inv
 have chosen s' = NotAnInput }\longrightarrow\mathrm{ valueChosen s (chosen s')
 by(auto simp add: Fail-def HInv6-def)
 from HFail-valueChosen[OF act] this InputsOrNi
 have t1: chosen s}\mp@subsup{s}{}{\prime}\not=NotAnInput \longrightarrow valueChosen s'(chosen s'
 by auto
 from act
 have outpt: outpt s' = (outpt s) (p:=NotAnInput)
 by(auto simp add: Fail-def)
 from outpt-HInv6-2[OF outpt] act inv2c inv
 have }\forallp\mathrm{ . outpt }\mp@subsup{s}{}{\prime}p=\mathrm{ chosen }\mp@subsup{s}{}{\prime}\vee\mathrm{ outpt }\mp@subsup{s}{}{\prime}p=NotAnInput
 by(auto simp add: HInv6-def)
 with t1
 show ?thesis
 by(simp add: HInv6-def)
qed
```

theorem HPhase0Read-Inv6:

```
 assumes act:HPhase0Read s s' p d
 and inv: HInv6 s
 and inv2c: Inv2c s
 shows HInv6 s'
proof -
 from outpt-chosen act inv2c inv
 have chosen s}\mp@subsup{s}{}{\prime}\not=\mathrm{ NotAnInput }\longrightarrow\mathrm{ valueChosen s(chosen s')
 by(auto simp add: Phase0Read-def HInv6-def)
 from HPhaseORead-valueChosen[OF act] this InputsOrNi
 have t1: chosen s'}=\mathrm{ NotAnInput }\longrightarrow\mathrm{ valueChosen s'(chosen s')
 by auto
 from act
 have outpt: outpt s = outpt s'
 by(auto simp add: Phase0Read-def)
 from outpt-Inv6[OF outpt] act inv2c inv
 have }\forallp\mathrm{ . outpt }\mp@subsup{s}{}{\prime}p=\mathrm{ chosen }\mp@subsup{s}{}{\prime}\vee\mathrm{ outpt }\mp@subsup{s}{}{\prime}p=NotAnInput
 by(auto simp add: HInv6-def)
 with t1
 show ?thesis
 by(simp add: HInv6-def)
qed
theorem HEndPhase0-Inv6:
 assumes act: HEndPhase0 s s'p
 and inv: HInv6 s
 and inv1: Inv1s
 and inv2c: Inv2c s
 shows HInv6 s'
proof -
 from outpt-chosen act inv2c inv
 have chosen s' }=\mathrm{ NotAnInput }\longrightarrow\mathrm{ valueChosen s (chosen s')
 by(auto simp add: EndPhase0-def HInv6-def)
 from HEndPhase0-valueChosen[OF act] inv1 this InputsOrNi
 have t1: chosen s'}=\mathrm{ NotAnInput }\longrightarrow\mathrm{ valueChosen s' (chosen s}
 by auto
 from act
 have outpt: outpt s= outpt s'
 by(auto simp add: EndPhase0-def)
 from outpt-Inv6[OF outpt] act inv2c inv
 have }\forallp\mathrm{ . outpt s'
 by(auto simp add: HInv6-def)
 with t1
 show ?thesis
 by(simp add: HInv6-def)
qed
HInv1^HInv2^HInv2'^HInv 3^HInv4^HInv5^HInv6 is an invariant
of HNext.
lemma I2f:
```

```
 assumes nxt: HNext s s'
 and inv: HInv1 s ^ HInv2 s ^ HInv2 s'^HInv3 s ^ HInv4 s ^ HInv5 s ^ HInv6
s
 shows HInv6 s' using assms
 by(auto simp add: HNext-def Next-def,
 auto simp add: HInv2-def intro: HStartBallot-Inv6,
 auto intro: HPhase0Read-Inv6,
 auto simp add:HInv4-def intro: HPhase1or2Write-Inv6,
 auto simp add: Phase1or2Read-def
 intro: HPhase1or2ReadThen-Inv6
 HPhase1or2ReadElse-Inv6,
 auto simp add: EndPhase1or2-def HInv1-def HInv5-def
 intro: HEndPhase1-Inv6
 HEndPhase2-Inv6,
 auto intro: HFail-Inv6,
 auto intro: HEndPhase0-Inv6)
```

end
theory DiskPaxos-Invariant imports DiskPaxos-Inv6 begin

## C. 8 The Complete Invariant

definition HInv :: state $\Rightarrow$ bool
where
HInv $s=($ HInv1 $s$
$\wedge$ HInv2 s
$\wedge$ HInv3 s
$\wedge$ HInv4 s
$\wedge$ HInv5 s
$\wedge$ HInv6 s)
theorem I1:
HInit $s \Longrightarrow$ HInv $s$
using HInit-HInv1 HInit-HInv2 HInit-HInv3
HInit-HInv4 HInit-HInv5 HInit-HInv6
by (auto simp add: HInv-def)
theorem I2:
assumes inv: HInv s
and $n x t$ : HNext $s s^{\prime}$
shows HInv s ${ }^{\prime}$
using inv I2a[OF nxt] I2b[OF nxt] I2c [OF nxt]
I2d $[$ OF $n x t]$ I2e $[O F n x t]$ IRf[OF $n x t]$
by (simp add: HInv-def)
end

## theory DiskPaxos imports DiskPaxos-Invariant begin

## C. 9 Inner Module

## record

Istate $=$
iinput :: Proc $\Rightarrow$ InputsOrNi
ioutput :: Proc $\Rightarrow$ InputsOrNi
ichosen :: InputsOrNi
iallInput :: InputsOrNi set
definition IInit :: Istate $\Rightarrow$ bool

## where

IInit $s=($ range $($ iinput $s) \subseteq$ Inputs
$\wedge$ ioutput $s=(\lambda p$. NotAnInput $)$
$\wedge$ ichosen $s=$ NotAnInput
$\wedge$ iallInput $s=$ range (iinput $s)$ )
definition IChoose :: Istate $\Rightarrow$ Istate $\Rightarrow$ Proc $\Rightarrow$ bool where
IChoose s s' $p=($ ioutput $s p=$ NotAnInput

$$
\begin{aligned}
& \wedge(\text { if }(\text { ichosen } s=\text { NotAnInput }) \\
& \quad \text { then }\left(\exists \text { ip } \in \text { iallInput } s . \quad \text { ichosen } s^{\prime}=i p\right.
\end{aligned}
$$ $\wedge$ ioutput $s^{\prime}=($ ioutput $s)(p:=$ ip $\left.)\right)$

else ( ioutput $s^{\prime}=($ ioutput $s)(p:=$ ichosen $s)$
$\wedge$ ichosen $s^{\prime}=$ ichosen $\left.s\right)$ )
$\wedge$ iinput $s^{\prime}=$ iinput $s \wedge$ iallInput $s^{\prime}=$ iallInput $\left.s\right)$
definition IFail :: Istate $\Rightarrow$ Istate $\Rightarrow$ Proc $\Rightarrow$ bool where
IFail s s $s^{\prime} p=\left(\right.$ ioutput $s^{\prime}=($ ioutput $s)(p:=$ NotAnInput $)$
$\wedge\left(\exists\right.$ ip $\in$ Inputs. iinput $s^{\prime}=($ iinput $s)(p:=$ ip $)$
$\wedge$ iallInput $s^{\prime}=$ iallInput $\left.s \cup\{i p\}\right)$
$\wedge$ ichosen $s^{\prime}=$ ichosen $s$ )
definition INext :: Istate $\Rightarrow$ Istate $\Rightarrow$ bool
where INext $s s^{\prime}=\left(\exists p\right.$. IChoose $s s^{\prime} p \vee$ IFail $\left.s s^{\prime} p\right)$
definition s2is :: state $\Rightarrow$ Istate
where

$$
\begin{aligned}
\text { s2is } s= & (\text { iinput }=\text { inpt } s, \\
& \text { } \text { output }=\text { outpt } s, \\
& \text { ichosen }=\text { chosen } s, \\
& \text { iallInput }=\text { allInput } s \mid)
\end{aligned}
$$

## theorem R1:

$\llbracket$ HInit $s$; is $=s 2 i s s \rrbracket \Longrightarrow$ IInit is
by (auto simp add: HInit-def IInit-def s2is-def Init-def)
theorem R2b:
assumes inv: HInv s
and inv': HInv s'
and $n x t$ : HNext s $s^{\prime}$
and srel: is=s2is $s \wedge i s^{\prime}=s \mathcal{Z} i s s^{\prime}$
shows $\left(\exists p\right.$. IFail is is $s^{\prime} p \vee$ IChoose is is $\left.s^{\prime} p\right) \vee i s=i s^{\prime}$
proof (auto)
assume chg-vars: $i s \neq i s^{\prime}$
with srel
have $s$-change: inpt $s \neq$ inpt $s^{\prime} \vee$ outpt $s \neq$ outpt $s^{\prime}$
$\vee$ chosen $s \neq$ chosen $s^{\prime} \vee$ allInput $s \neq$ allInput $s^{\prime}$
by (auto simp add: s2is-def)
from $i n v$
have inv2c5: $\forall p$. inpt $s p \in$ allInput $s$
$\wedge($ chosen $s=$ NotAnInput $\longrightarrow$ outpt s $p=$ NotAnInput $)$
by (auto simp add: HInv-def HInv2-def Inv2c-def Inv2c-inner-def)
from nxt s-change inv2c5
have inpt $s^{\prime} \neq$ inpt $s \vee$ outpt $s^{\prime} \neq$ outpt $s$
by (auto simp add: HNext-def Next-def HNextPart-def)
with $n x t$
have $\exists p$. Fail $s s^{\prime} p \vee$ EndPhase2 $s s^{\prime} p$
by (auto simp add: HNext-def Next-def StartBallot-def Phase0Read-def Phase1or2Write-def Phase1or2Read-def Phase1or2ReadThen-def Phase1or2ReadElse-def EndPhase1or2-def EndPhase1-def EndPhase0-def)
then obtain $p$ where fail-or-endphase2: Fail $s s^{\prime} p \vee$ EndPhase2 s s $s^{\prime} p$
by auto
from $i n v$
have inv2c: Inv2c-inner s $p$
by (auto simp add: HInv-def HInv2-def Inv2c-def)
from fail-or-endphase2 have IFail is is' $p \vee$ IChoose is is' $p$
proof
assume fail: Fail s s' $p$
hence phase': phase $s^{\prime} p=0$
and outpt: outpt $s^{\prime}=($ outpt $s)(p:=$ NotAnInput)
by (auto simp add: Fail-def)
have IFail is is ${ }^{\prime} p$
proof -
from fail srel
have ioutput $s^{\prime}=($ ioutput is) $(p:=$ NotAnInput $)$
by(auto simp add: Fail-def s2is-def)
moreover
from $n x t$
have all-nxt: allInput $s^{\prime}=$ allInput $s \cup\left(\right.$ range $\left(\right.$ inpt $\left.\left.s^{\prime}\right)\right)$
by (auto simp add: HNext-def HNextPart-def)
from fail srel
have $\exists i p \in$ Inputs. iinput is $^{\prime}=($ iinput is $)(p:=i p)$

```
 by(auto simp add: Fail-def s2is-def)
 then obtain ip where ip-Input: ip\inInputs and iinput is' = (iinput is)}(p:
 by auto
 with inv2c5 srel all-nxt
 have imput is'=((input is) (p:= ip)
 \allInput is' = iallInput is \cup{ip}
 by(auto simp add: s2is-def)
 moreover
 from outpt srel nxt inv2c
 have ichosen is' = ichosen is
 by(auto simp add: HNext-def HNextPart-def s2is-def Inv2c-inner-def)
 ultimately
 show ?thesis
 using ip-Input
 by(auto simp add: IFail-def)
qed
thus ?thesis
 by auto
next
 assume endphase2: EndPhase2 s s'p
 from endphase2
 have phase s p=2
 by(auto simp add: EndPhase2-def)
 with inv2c Ballot-nzero
 have bal-dblk-nzero:bal(dblock s p)\not=0
 by(auto simp add: Inv2c-inner-def)
moreover
from inv
have inv2a-dblock: Inv2a-innermost s p (dblock s p)
 by(auto simp add: HInv-def HInv2-def Inv2a-def Inv2a-inner-def blocksOf-def)
ultimately
have p22: inp (dblock s p)\in allInput s
 by(auto simp add: Inv2a-innermost-def)
from inv
have allInput s\subseteqInputs
 by(auto simp add: HInv-def HInv1-def)
with p22 NotAnInput endphase2
have outpt-nni: outpt s' p}\not=\mathrm{ NotAnInput
 by(auto simp add: EndPhase2-def)
show ?thesis
proof(cases chosen s = NotAnInput)
 case True
 with inv2c5
 have p31: \forallq. outpt s q = NotAnInput
 by auto
 with endphase2
 have p32: }\forallq\inUNIV -{p}. outpt s' q = NotAnInput
 by(auto simp add: EndPhase2-def)
```

ip)
hence some-eq: $\left(\bigwedge x\right.$. outpt $s^{\prime} x \neq$ NotAnInput $\left.\Longrightarrow x=p\right)$
by auto
from p32 True nxt some-equality[of $\lambda p$. outpt $s^{\prime} p \neq$ NotAnInput, OF outpt-nni some-eq]
have $p 33$ : chosen $s^{\prime}=$ outpt $s^{\prime} p$
by(auto simp add: HNext-def HNextPart-def)
with endphase2
have chosen $s^{\prime}=\operatorname{inp}($ dblocks $p) \wedge$ outpt $s^{\prime}=($ outpt $s)(p:=\operatorname{inp}($ dblock sp) $)$ by (auto simp add: EndPhase2-def)
with True p22
have if (chosen $s=$ NotAnInput)

$$
\text { then }\left(\exists \text { ip } \in \text { allInput } s . \text { chosen } s^{\prime}=i p\right.
$$ $\wedge$ outpt $s^{\prime}=($ outpt $s)(p:=$ ip $\left.)\right)$

else ( outpt $s^{\prime}=($ outpt $s)(p:=$ chosen $s)$
$\wedge$ chosen $s^{\prime}=$ chosen $\left.s\right)$
by auto
moreover
from endphase2 inv2c5 nxt
have inpt $s^{\prime}=$ inpt $s \wedge$ allInput $s^{\prime}=$ allInput $s$
by (auto simp add: EndPhase2-def HNext-def HNextPart-def)
ultimately
show ?thesis
using srel p31
by (auto simp add: IChoose-def s2is-def)
next
case False
with $n x t$
have p31: chosen $s^{\prime}=$ chosen $s$
by(auto simp add: HNext-def HNextPart-def)
from $i n v^{\prime}$
have inv6: HInv6 $s^{\prime}$
by (auto simp add: HInv-def)
have p32: outpt $s^{\prime} p=$ chosen $s$
proof-
from endphase2
have outpt $s^{\prime} p=\operatorname{inp}($ dblock s $p$ )
by (auto simp add: EndPhase2-def)
moreover
from inv6 p31
have outpt $s^{\prime} p \in\{$ chosen $s$, NotAnInput $\}$
by (auto simp add: HInv6-def)
ultimately
show ?thesis
using outpt-nni
by auto
qed
from srel False
have IChoose is is' $p$
proof(clarsimp simp add: IChoose-def s2is-def)

```
 from endphase2 inv2c
 have outpt s p = NotAnInput
 by(auto simp add: EndPhase2-def Inv2c-inner-def)
 moreover
 from endphase2 p31 p32 False
 have outpt s'=(outpt s) (p:= chosen s)\wedge chosen s'= chosen s
 by(auto simp add: EndPhase2-def)
 moreover
 from endphase2 nxt inv2c5
 have inpt s' = inpt s ^ allInput s'= allInput s
 by(auto simp add: EndPhase2-def HNext-def HNextPart-def)
 ultimately
 show outpt s p = NotAnInput
 outpt s'= (outpt s) (p:= chosen s) ^ chosen s'= chosen s
 \inpt s}\mp@subsup{s}{}{\prime}=\mathrm{ inpt }s\wedge\mathrm{ allInput }\mp@subsup{s}{}{\prime}=\mathrm{ allInput }
 by auto
 qed
 thus ?thesis
 by auto
 qed
qed
thus \exists p. IFail is is' p \vee IChoose is is' p
 by auto
qed
end
```


[^0]:    ${ }^{1}$ There is no point in using the existing TLA encoding in Isabelle. Since the encoding is also based on HOL and we only prove safety, we would have gained nothing.

