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Abstract

This article provides a formalisation of Dirichlet characters and
Dirichlet L-functions including proofs of their basic properties – most
notably their analyticity, their areas of convergence, and their non-
vanishing for R(s) ≥ 1. All of this is built in a very high-level style
using Dirichlet series. The proof of the non-vanishing follows a very
short and elegant proof by Newman [4], which we attempt to reproduce
faithfully in a similar level of abstraction in Isabelle.

This also leads to a relatively short proof of Dirichlet’s Theorem,
which states that, if h and n are coprime, there are infinitely many
primes p with p ≡ h (mod n).
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1 Multiplicative Characters of Finite Abelian Groups
theory Multiplicative-Characters

imports
Complex-Main
Finitely-Generated-Abelian-Groups.Finitely-Generated-Abelian-Groups

begin

notation integer-mod-group (‹Z ›)

1.1 Definition of characters

A (multiplicative) character is a completely multiplicative function from a
group to the complex numbers. For simplicity, we restrict this to finite
abelian groups here, which is the most interesting case.
Characters form a group where the identity is the principal character that
maps all elements to 1, multiplication is point-wise multiplication of the
characters, and the inverse is the point-wise complex conjugate.
This group is often called the Pontryagin dual group and is isomorphic to
the original group (in a non-natural way) while the double-dual group is
naturally isomorphic to the original group.
To get extensionality of the characters, we also require characters to map
anything that is not in the group to 0.
definition principal-char :: ( ′a, ′b) monoid-scheme ⇒ ′a ⇒ complex where

principal-char G a = (if a ∈ carrier G then 1 else 0 )

definition inv-character where
inv-character χ = (λa. cnj (χ a))

lemma inv-character-principal [simp]: inv-character (principal-char G) = princi-
pal-char G
〈proof 〉

lemma inv-character-inv-character [simp]: inv-character (inv-character χ) = χ
〈proof 〉

lemma eval-inv-character : inv-character χ j = cnj (χ j)
〈proof 〉

bundle character-syntax
begin
notation principal-char (‹χ0ı›)
end

locale character = finite-comm-group +
fixes χ :: ′a ⇒ complex
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assumes char-one-nz: χ 1 6= 0
assumes char-eq-0 : a /∈ carrier G =⇒ χ a = 0
assumes char-mult [simp]: a ∈ carrier G =⇒ b ∈ carrier G =⇒ χ (a ⊗ b) = χ

a ∗ χ b
begin

1.2 Basic properties
lemma char-one [simp]: χ 1 = 1
〈proof 〉

lemma char-power [simp]: a ∈ carrier G =⇒ χ (a [^] k) = χ a ^ k
〈proof 〉

lemma char-root:
assumes a ∈ carrier G
shows χ a ^ ord a = 1
〈proof 〉

lemma char-root ′:
assumes a ∈ carrier G
shows χ a ^ order G = 1
〈proof 〉

lemma norm-char : norm (χ a) = (if a ∈ carrier G then 1 else 0 )
〈proof 〉

lemma char-eq-0-iff : χ a = 0 ←→ a /∈ carrier G
〈proof 〉

lemma inv-character : character G (inv-character χ)
〈proof 〉

lemma mult-inv-character : χ k ∗ inv-character χ k = principal-char G k
〈proof 〉

lemma
assumes a ∈ carrier G
shows char-inv: χ (inv a) = cnj (χ a) and char-inv ′: χ (inv a) = inverse (χ

a)
〈proof 〉

end

lemma (in finite-comm-group) character-principal [simp, intro]: character G (principal-char
G)
〈proof 〉

lemmas [simp,intro] = finite-comm-group.character-principal
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lemma character-ext:
assumes character G χ character G χ ′ ∧x. x ∈ carrier G =⇒ χ x = χ ′ x
shows χ = χ ′

〈proof 〉

lemma character-mult [intro]:
assumes character G χ character G χ ′

shows character G (λx. χ x ∗ χ ′ x)
〈proof 〉

lemma character-inv-character-iff [simp]: character G (inv-character χ)←→ char-
acter G χ
〈proof 〉

definition characters :: ( ′a, ′b) monoid-scheme ⇒ ( ′a ⇒ complex) set where
characters G = {χ. character G χ}

1.3 The Character group

The characters of a finite abelian group G form another group Ĝ, which
is called its Pontryagin dual group. This generalises to the more general
setting of locally compact abelian groups, but we restrict ourselves to the
finite setting because it is much easier.
definition Characters :: ( ′a, ′b) monoid-scheme ⇒ ( ′a ⇒ complex) monoid

where Characters G = (| carrier = characters G, monoid.mult = (λχ1 χ2 k. χ1

k ∗ χ2 k),
one = principal-char G |)

lemma carrier-Characters: carrier (Characters G) = characters G
〈proof 〉

lemma one-Characters: one (Characters G) = principal-char G
〈proof 〉

lemma mult-Characters: monoid.mult (Characters G) χ1 χ2 = (λa. χ1 a ∗ χ2 a)
〈proof 〉

context finite-comm-group
begin

sublocale principal: character G principal-char G 〈proof 〉

lemma finite-characters [intro]: finite (characters G)
〈proof 〉
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lemma finite-comm-group-Characters [intro]: finite-comm-group (Characters G)
〈proof 〉

end

lemma (in character) character-in-order-1 :
assumes order G = 1
shows χ = principal-char G
〈proof 〉

lemma (in finite-comm-group) characters-in-order-1 :
assumes order G = 1
shows characters G = {principal-char G}
〈proof 〉

lemma (in character) inv-Characters: invCharacters G χ = inv-character χ
〈proof 〉

lemma (in finite-comm-group) inv-Characters ′:
χ ∈ characters G =⇒ invCharacters G χ = inv-character χ
〈proof 〉

lemmas (in finite-comm-group) Characters-simps =
carrier-Characters mult-Characters one-Characters inv-Characters ′

lemma inv-Characters ′: χ ∈ characters G =⇒ invCharacters G χ = inv-character
χ
〈proof 〉

1.4 The isomorphism between a group and its dual

We start this section by inspecting the special case of a cyclic group. Here,
any character is fixed by the value it assigns to the generating element of
the cyclic group. This can then be used to construct a bijection between the
nth unit roots and the elements of the character group - implying the other
results.
lemma (in finite-cyclic-group)

defines ic: induce-char ≡ (λc::complex. (λa. if a∈carrier G then c powi get-exp
gen a else 0 ))

shows order-Characters: order (Characters G) = order G
and gen-fixes-char : [[character G a; character G b; a gen = b gen]] =⇒ a = b
and unity-root-induce-char : z ^ order G = 1 =⇒ character G (induce-char z)
〈proof 〉

Moreover, we can show that a character that assigns a "true" root of unity
to the generating element of the group, generates the character group.
lemma (in finite-cyclic-group) finite-cyclic-group-Characters:

obtains χ where finite-cyclic-group (Characters G) χ
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〈proof 〉

And as two cyclic groups of the same order are isomorphic it follows the
isomorphism of a finite cyclic group and its dual.
lemma (in finite-cyclic-group) Characters-iso:

G ∼= Characters G
〈proof 〉

The character groups of two isomorphic groups are also isomorphic.
lemma (in finite-comm-group) iso-imp-iso-chars:

assumes G ∼= H group H
shows Characters G ∼= Characters H
〈proof 〉

The following two lemmas characterize the way a character behaves in a
direct group product: a character on the product induces characters on each
of the factors. Also, any character on the direct product can be decomposed
into a pointwise product of characters on the factors.
lemma DirProds-subchar :

assumes finite-comm-group (DirProds Gs I )
and x: x ∈ carrier (Characters (DirProds Gs I ))
and i: i ∈ I
and I : finite I
defines g: g ≡ (λc. (λi∈I . (λa. c ((λi∈I . 1Gs i)(i:=a)))))
shows character (Gs i) (g x i)
〈proof 〉

lemma Characters-DirProds-single-prod:
assumes finite-comm-group (DirProds Gs I )
and x: x ∈ carrier (Characters (DirProds Gs I ))
and I : finite I
defines g: g ≡ (λI . (λc. (λi∈I . (λa. c ((λi∈I . 1Gs i)(i:=a))))))
shows (λe. if e∈carrier(DirProds Gs I ) then

∏
i∈I . (g I x i) (e i) else 0 ) = x

(is ?g x = x)
〈proof 〉

This allows for the following: the character group of a direct product is
isomorphic to the direct product of the character groups of the factors.
lemma (in finite-comm-group) Characters-DirProds-iso:

assumes DirProds Gs I ∼= G group (DirProds Gs I ) finite I
shows DirProds (Characters ◦ Gs) I ∼= Characters G
〈proof 〉

As thus both the group and its character group can be decomposed into the
same cyclic factors, the isomorphism follows for any finite abelian group.
theorem (in finite-comm-group) Characters-iso:

shows G ∼= Characters G
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〈proof 〉

Hence, the orders are also equal.
corollary (in finite-comm-group) order-Characters:

order (Characters G) = order G
〈proof 〉

corollary (in finite-comm-group) card-characters: card (characters G) = order G
〈proof 〉

1.5 Non-trivial facts about characters

We characterize the character group of a quotient group as the group of
characters that map all elements of the subgroup onto 1.
lemma (in finite-comm-group) iso-Characters-FactGroup:

assumes H : subgroup H G
shows (λχ x. if x ∈ carrier G then χ (H #> x) else 0 ) ∈

iso (Characters (G Mod H )) ((Characters G)(|carrier := {χ∈characters
G. ∀ x∈H . χ x = 1}|))
〈proof 〉

lemma (in finite-comm-group) is-iso-Characters-FactGroup:
assumes H : subgroup H G
shows Characters (G Mod H ) ∼= (Characters G)(|carrier := {χ∈characters G.
∀ x∈H . χ x = 1}|)
〈proof 〉

In order to derive the number of extensions a character on a subgroup has to
the entire group, we introduce the group homomorphism restrict-char that
restricts a character to a given subgroup H.
definition restrict-char :: ′a set ⇒ ( ′a ⇒ complex) ⇒ ( ′a ⇒ complex) where
restrict-char H χ = (λe. if e∈H then χ e else 0 )

lemma (in finite-comm-group) restrict-char-hom:
assumes subgroup H G
shows group-hom (Characters G) (Characters (G(|carrier := H |))) (restrict-char

H )
〈proof 〉

The kernel is just the set of the characters that are 1 on all of H.
lemma (in finite-comm-group) restrict-char-kernel:

assumes subgroup H G
shows kernel (Characters G) (Characters (G(|carrier := H |))) (restrict-char H )

= {χ∈characters G. ∀ x∈H . χ x = 1}
〈proof 〉

Also, all of the characters on the subgroup are the image of some character
on the whole group.
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lemma (in finite-comm-group) restrict-char-image:
assumes subgroup H G
shows restrict-char H ‘ (carrier (Characters G)) = carrier (Characters (G(|carrier

:= H |)))
〈proof 〉

It follows that any character on H can be extended to a character on G.
lemma (in finite-comm-group) character-extension-exists:

assumes subgroup H G character (G(|carrier := H |)) χ
obtains χ ′ where character G χ ′ and

∧
x. x ∈ H =⇒ χ ′ x = χ x

〈proof 〉

For two characters on a group G the number of characters on subgroup H
that share the values with them is the same for both.
lemma (in finite-comm-group) character-restrict-card:

assumes subgroup H G character G a character G b
shows card {χ ′∈characters G. ∀ x∈H . χ ′ x = a x} = card {χ ′∈characters G.
∀ x∈H . χ ′ x = b x}
〈proof 〉

These lemmas allow to show that the number of extensions of a character
on H to a character on G is just |G|/|H|.
theorem (in finite-comm-group) card-character-extensions:

assumes subgroup H G character (G(|carrier := H |)) χ
shows card {χ ′∈characters G. ∀ x∈H . χ ′ x = χ x} ∗ card H = order G
〈proof 〉

Lastly, we can also show that for each x ∈ H of order n > 1 and each n-th
root of unity z, there exists a character χ on G such that χ(x) = z.
lemma (in group) powi-get-exp-self :

fixes z::complex
assumes z ^ n = 1 x ∈ carrier G ord x = n n > 1
shows z powi get-exp x x = z
〈proof 〉

corollary (in finite-comm-group) character-with-value-exists:
assumes x ∈ carrier G and x 6= 1 and z ^ ord x = 1
obtains χ where character G χ and χ x = z
〈proof 〉

In particular, for any x that is not the identity element, there exists a char-
acter χ such that χ(x) 6= 1.
corollary (in finite-comm-group) character-neq-1-exists:

assumes x ∈ carrier G and x 6= 1
obtains χ where character G χ and χ x 6= 1
〈proof 〉
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1.6 The first orthogonality relation

The entries of any non-principal character sum to 0.
theorem (in character) sum-character :
(
∑

x∈carrier G. χ x) = (if χ = principal-char G then of-nat (order G) else 0 )
〈proof 〉

corollary (in finite-comm-group) character-orthogonality1 :
assumes character G χ and character G χ ′

shows (
∑

x∈carrier G. χ x ∗ cnj (χ ′ x)) = (if χ = χ ′ then of-nat (order G)
else 0 )
〈proof 〉

1.7 The isomorphism between a group and its double dual

Lastly, we show that the double dual of a finite abelian group is naturally
isomorphic to the original group via the obvious isomorphism x 7→ (χ 7→
χ(x)). It is easy to see that this is a homomorphism and that it is injective.
The fact | ̂̂G| = |Ĝ| = |G| then shows that it is also surjective.
context finite-comm-group
begin

definition double-dual-iso :: ′a ⇒ ( ′a ⇒ complex) ⇒ complex where
double-dual-iso x = (λχ. if character G χ then χ x else 0 )

lemma double-dual-iso-apply [simp]: character G χ =⇒ double-dual-iso x χ = χ x
〈proof 〉

lemma character-double-dual-iso [intro]:
assumes x: x ∈ carrier G
shows character (Characters G) (double-dual-iso x)
〈proof 〉

lemma double-dual-iso-mult [simp]:
assumes x ∈ carrier G y ∈ carrier G
shows double-dual-iso (x ⊗ y) =

double-dual-iso x ⊗Characters (Characters G) double-dual-iso y
〈proof 〉

lemma double-dual-iso-one [simp]:
double-dual-iso 1 = principal-char (Characters G)
〈proof 〉

lemma inj-double-dual-iso: inj-on double-dual-iso (carrier G)
〈proof 〉

lemma double-dual-iso-eq-iff [simp]:
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x ∈ carrier G =⇒ y ∈ carrier G =⇒ double-dual-iso x = double-dual-iso y ←→
x = y
〈proof 〉

theorem double-dual-iso: double-dual-iso ∈ iso G (Characters (Characters G))
〈proof 〉

lemma double-dual-is-iso: Characters (Characters G) ∼= G
〈proof 〉

The second orthogonality relation follows from the first one via Pontryagin
duality:
theorem sum-characters:

assumes x: x ∈ carrier G
shows (

∑
χ∈characters G. χ x) = (if x = 1 then of-nat (order G) else 0 )

〈proof 〉

corollary character-orthogonality2 :
assumes x ∈ carrier G y ∈ carrier G
shows (

∑
χ∈characters G. χ x ∗ cnj (χ y)) = (if x = y then of-nat (order G)

else 0 )
〈proof 〉

end

no-notation integer-mod-group (‹Z ›)
end

2 Dirichlet Characters
theory Dirichlet-Characters
imports

Multiplicative-Characters
HOL−Number-Theory.Residues
Dirichlet-Series.Multiplicative-Function

begin

Dirichlet characters are essentially just the characters of the multiplicative
group of integer residues ZZ/nZZ for some fixed n. For convenience, these
residues are usually represented by natural numbers from 0 to n − 1, and
we extend the characters to all natural numbers periodically, so that χ(k
mod n) = χ(k) holds.
Numbers that are not coprime to n are not in the group and therefore are
assigned 0 by all characters.

2.1 The multiplicative group of residues
definition residue-mult-group :: nat ⇒ nat monoid where
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residue-mult-group n = (| carrier = totatives n, monoid.mult = (λx y. (x ∗ y)
mod n), one = 1 |)

definition principal-dchar :: nat ⇒ nat ⇒ complex where
principal-dchar n = (λk. if coprime k n then 1 else 0 )

lemma principal-dchar-coprime [simp]: coprime k n =⇒ principal-dchar n k = 1
and principal-dchar-not-coprime [simp]: ¬coprime k n =⇒ principal-dchar n k =

0
〈proof 〉

lemma principal-dchar-1 [simp]: principal-dchar n 1 = 1
〈proof 〉

lemma principal-dchar-minus1 [simp]:
assumes n > 0
shows principal-dchar n (n − Suc 0 ) = 1
〈proof 〉

lemma mod-in-totatives: n > 1 =⇒ a mod n ∈ totatives n ←→ coprime a n
〈proof 〉

bundle dcharacter-syntax
begin
notation principal-dchar (‹χ0ı›)
end

locale residues-nat =
fixes n :: nat (structure) and G
assumes n: n > 1
defines G ≡ residue-mult-group n

begin

lemma order [simp]: order G = totient n
〈proof 〉

lemma totatives-mod [simp]: x ∈ totatives n =⇒ x mod n = x
〈proof 〉

lemma principal-dchar-minus1 [simp]: principal-dchar n (n − Suc 0 ) = 1
〈proof 〉

sublocale finite-comm-group G
〈proof 〉

2.2 Definition of Dirichlet characters

The following two functions make the connection between Dirichlet charac-
ters and the multiplicative characters of the residue group.

12



definition c2dc :: (nat ⇒ complex) ⇒ (nat ⇒ complex) where
c2dc χ = (λx. χ (x mod n))

definition dc2c :: (nat ⇒ complex) ⇒ (nat ⇒ complex) where
dc2c χ = (λx. if x < n then χ x else 0 )

lemma dc2c-c2dc [simp]:
assumes character G χ
shows dc2c (c2dc χ) = χ
〈proof 〉

end

locale dcharacter = residues-nat +
fixes χ :: nat ⇒ complex
assumes mult-aux: a ∈ totatives n =⇒ b ∈ totatives n =⇒ χ (a ∗ b) = χ a ∗ χ

b
assumes eq-zero: ¬coprime a n =⇒ χ a = 0
assumes periodic: χ (a + n) = χ a
assumes one-not-zero: χ 1 6= 0

begin

lemma zero-eq-0 [simp]: χ 0 = 0
〈proof 〉

lemma Suc-0 [simp]: χ (Suc 0 ) = 1
〈proof 〉

lemma periodic-mult: χ (a + m ∗ n) = χ a
〈proof 〉

lemma minus-one-periodic [simp]:
assumes k > 0
shows χ (k ∗ n − 1 ) = χ (n − 1 )
〈proof 〉

lemma cong:
assumes [a = b] (mod n)
shows χ a = χ b
〈proof 〉

lemma mod [simp]: χ (a mod n) = χ a
〈proof 〉

lemma mult [simp]: χ (a ∗ b) = χ a ∗ χ b
〈proof 〉

sublocale mult: completely-multiplicative-function χ
〈proof 〉
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lemma eq-zero-iff : χ x = 0 ←→ ¬coprime x n
〈proof 〉

lemma minus-one ′: χ (n − 1 ) ∈ {−1 , 1}
〈proof 〉

lemma c2dc-dc2c [simp]: c2dc (dc2c χ) = χ
〈proof 〉

lemma character-dc2c: character G (dc2c χ)
〈proof 〉

sublocale dc2c: character G dc2c χ
〈proof 〉

lemma dcharacter-inv-character [intro]: dcharacter n (inv-character χ)
〈proof 〉

lemma norm: norm (χ k) = (if coprime k n then 1 else 0 )
〈proof 〉

lemma norm-le-1 : norm (χ k) ≤ 1
〈proof 〉

end

definition dcharacters :: nat ⇒ (nat ⇒ complex) set where
dcharacters n = {χ. dcharacter n χ}

context residues-nat
begin

lemma character-dc2c: dcharacter n χ =⇒ character G (dc2c χ)
〈proof 〉

lemma dcharacter-c2dc:
assumes character G χ
shows dcharacter n (c2dc χ)
〈proof 〉

lemma principal-dchar-altdef : principal-dchar n = c2dc (principal-char G)
〈proof 〉

sublocale principal: dcharacter n G principal-dchar n
〈proof 〉

lemma c2dc-principal [simp]: c2dc (principal-char G) = principal-dchar n
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〈proof 〉

lemma dc2c-principal [simp]: dc2c (principal-dchar n) = principal-char G
〈proof 〉

lemma bij-betw-dcharacters-characters:
bij-betw dc2c (dcharacters n) (characters G)
〈proof 〉

lemma bij-betw-characters-dcharacters:
bij-betw c2dc (characters G) (dcharacters n)
〈proof 〉

lemma finite-dcharacters [intro]: finite (dcharacters n)
〈proof 〉

lemma card-dcharacters [simp]: card (dcharacters n) = totient n
〈proof 〉

end

lemma inv-character-eq-principal-dchar-iff [simp]:
inv-character χ = principal-dchar n ←→ χ = principal-dchar n
〈proof 〉

2.3 Sums of Dirichlet characters
lemma (in dcharacter) sum-dcharacter-totatives:
(
∑

x∈totatives n. χ x) = (if χ = principal-dchar n then of-nat (totient n) else
0 )
〈proof 〉

lemma (in dcharacter) sum-dcharacter-block:
(
∑

x<n. χ x) = (if χ = principal-dchar n then of-nat (totient n) else 0 )
〈proof 〉

lemma (in dcharacter) sum-dcharacter-block ′:
sum χ {Suc 0 ..n} = (if χ = principal-dchar n then of-nat (totient n) else 0 )
〈proof 〉

lemma (in dcharacter) sum-lessThan-dcharacter :
assumes χ 6= principal-dchar n
shows (

∑
x<m. χ x) = (

∑
x<m mod n. χ x)

〈proof 〉

lemma (in dcharacter) sum-dcharacter-lessThan-le:
assumes χ 6= principal-dchar n
shows norm (

∑
x<m. χ x) ≤ totient n
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〈proof 〉

lemma (in dcharacter) sum-dcharacter-atMost-le:
assumes χ 6= principal-dchar n
shows norm (

∑
x≤m. χ x) ≤ totient n

〈proof 〉

lemma (in residues-nat) sum-dcharacters:
(
∑

χ∈dcharacters n. χ x) = (if [x = 1 ] (mod n) then of-nat (totient n) else 0 )
〈proof 〉

lemma (in dcharacter) even-dcharacter-linear-sum-eq-0 [simp]:
assumes χ 6= principal-dchar n and χ (n − 1 ) = 1
shows (

∑
k=Suc 0 ..<n. of-nat k ∗ χ k) = 0

〈proof 〉

end

3 Dirichlet L-functions
theory Dirichlet-L-Functions
imports

Dirichlet-Characters
HOL−Library.Landau-Symbols
Zeta-Function.Zeta-Function

begin

We can now define the Dirichlet L-functions. These are essentially the func-
tions in the complex plane that the Dirichlet series

∑∞
k=1 χ(k)k

−s converge
to, for some fixed Dirichlet character χ.
First of all, we need to take care of a syntactical problem: The notation for
vectors uses χ as syntax, which causes some annoyance to us, so we disable
it locally.

3.1 Definition and basic properties

We now define Dirichlet L functions as a finite linear combination of Hur-
witz ζ functions. This has the advantage that we directly get the analytic
continuation over the full domain and only need to prove that the series
really converges to this definition whenever it does converge, which is not
hard to do.
definition Dirichlet-L :: nat ⇒ (nat ⇒ complex) ⇒ complex ⇒ complex where

Dirichlet-L m χ s =
(if s = 1 then

if χ = principal-dchar m then 0 else eval-fds (fds χ) 1
else

of-nat m powr − s ∗ (
∑

k = 1 ..m. χ k ∗ hurwitz-zeta (real k / real m) s))
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lemma Dirichlet-L-conv-hurwitz-zeta-nonprincipal:
assumes s 6= 1
shows Dirichlet-L n χ s =

of-nat n powr −s ∗ (
∑

k = 1 ..n. χ k ∗ hurwitz-zeta (real k / real n) s)
〈proof 〉

Analyticity everywhere except 1 is trivial by the above definition, since the
Hurwitz ζ function is analytic everywhere except 1. For L functions of non
principal characters, we will have to show the analyticity at 1 separately
later.
lemma holomorphic-Dirichlet-L-weak:

assumes m > 0 1 /∈ A
shows Dirichlet-L m χ holomorphic-on A
〈proof 〉

context dcharacter
begin

For a real value greater than 1, the formal Dirichlet series of an L function
for some character χ converges to the L function.
lemma

fixes s :: complex
assumes s: Re s > 1
shows abs-summable-Dirichlet-L: summable (λn. norm (χ n ∗ of-nat n powr
−s))

and summable-Dirichlet-L: summable (λn. χ n ∗ of-nat n powr −s)
and sums-Dirichlet-L: (λn. χ n ∗ n powr −s) sums Dirichlet-L n χ s
and Dirichlet-L-conv-eval-fds-weak: Dirichlet-L n χ s = eval-fds (fds χ) s

〈proof 〉

lemma fds-abs-converges-weak: Re s > 1 =⇒ fds-abs-converges (fds χ) s
〈proof 〉

lemma abs-conv-abscissa-weak: abs-conv-abscissa (fds χ) ≤ 1
〈proof 〉

Dirichlet L functions have the Euler product expansion

L(χ, s) =
∏
p

(
1− χ(p)

p−s

)
for all s with R(s) > 1.
lemma

fixes s :: complex assumes s: Re s > 1
shows Dirichlet-L-euler-product-LIMSEQ:

(λn.
∏

p≤n. if prime p then inverse (1 − χ p / nat-power p s) else 1 )
−−−−→ Dirichlet-L n χ s (is ?th1 )
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and Dirichlet-L-abs-convergent-euler-product:
abs-convergent-prod (λp. if prime p then inverse (1 − χ p / p powr s)

else 1 )
(is ?th2 )

〈proof 〉

lemma Dirichlet-L-Re-gt-1-nonzero:
assumes Re s > 1
shows Dirichlet-L n χ s 6= 0
〈proof 〉

lemma sum-dcharacter-antimono-bound:
fixes x0 a b :: real and f f ′ :: real ⇒ real
assumes nonprincipal: χ 6= χ0

assumes x0 : x0 ≥ 0 and ab: x0 ≤ a a < b
assumes f ′:

∧
x. x ≥ x0 =⇒ (f has-field-derivative f ′ x) (at x)

assumes f-nonneg:
∧

x. x ≥ x0 =⇒ f x ≥ 0
assumes f ′-nonpos:

∧
x. x ≥ x0 =⇒ f ′ x ≤ 0

shows norm (
∑

n∈real −‘ {a<..b}. χ n ∗ (f (real n))) ≤ 2 ∗ real (totient n)
∗ f a
〈proof 〉

lemma summable-dcharacter-antimono:
fixes x0 a b :: real and f f ′ :: real ⇒ real
assumes nonprincipal: χ 6= χ0

assumes f ′:
∧

x. x ≥ x0 =⇒ (f has-field-derivative f ′ x) (at x)
assumes f-nonneg:

∧
x. x ≥ x0 =⇒ f x ≥ 0

assumes f ′-nonpos:
∧

x. x ≥ x0 =⇒ f ′ x ≤ 0
assumes lim: (f −−−→ 0 ) at-top
shows summable (λn. χ n ∗ f n)
〈proof 〉

lemma conv-abscissa-le-0 :
fixes s :: real
assumes nonprincipal: χ 6= χ0

shows conv-abscissa (fds χ) ≤ 0
〈proof 〉

lemma summable-Dirichlet-L ′:
assumes nonprincipal: χ 6= χ0

assumes s: Re s > 0
shows summable (λn. χ n ∗ of-nat n powr −s)
〈proof 〉

lemma
assumes χ 6= χ0

shows Dirichlet-L-conv-eval-fds:
∧

s. Re s > 0 =⇒ Dirichlet-L n χ s = eval-fds
(fds χ) s

and holomorphic-Dirichlet-L: Dirichlet-L n χ holomorphic-on A
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〈proof 〉

lemma cnj-Dirichlet-L:
cnj (Dirichlet-L n χ s) = Dirichlet-L n (inv-character χ) (cnj s)
〈proof 〉end

lemma holomorphic-Dirichlet-L [holomorphic-intros]:
assumes n > 1 χ 6= principal-dchar n ∧ dcharacter n χ ∨ χ = principal-dchar

n ∧ 1 /∈ A
shows Dirichlet-L n χ holomorphic-on A
〈proof 〉

lemma holomorphic-Dirichlet-L ′ [holomorphic-intros]:
assumes n > 1 f holomorphic-on A

χ 6= principal-dchar n ∧ dcharacter n χ ∨ χ = principal-dchar n ∧ (∀ x∈A.
f x 6= 1 )

shows (λs. Dirichlet-L n χ (f s)) holomorphic-on A
〈proof 〉

lemma continuous-on-Dirichlet-L:
assumes n > 1 χ 6= principal-dchar n ∧ dcharacter n χ ∨ χ = principal-dchar

n ∧ 1 /∈ A
shows continuous-on A (Dirichlet-L n χ)
〈proof 〉

lemma continuous-on-Dirichlet-L ′ [continuous-intros]:
assumes continuous-on A f n > 1

and χ 6= principal-dchar n ∧ dcharacter n χ ∨ χ = principal-dchar n ∧
(∀ x∈A. f x 6= 1 )

shows continuous-on A (λx. Dirichlet-L n χ (f x))
〈proof 〉

corollary continuous-Dirichlet-L [continuous-intros]:
n > 1 =⇒ χ 6= principal-dchar n ∧ dcharacter n χ ∨ χ = principal-dchar n ∧ s
6= 1 =⇒

continuous (at s within A) (Dirichlet-L n χ)
〈proof 〉

corollary continuous-Dirichlet-L ′ [continuous-intros]:
n > 1 =⇒ continuous (at s within A) f =⇒

χ 6= principal-dchar n ∧ dcharacter n χ ∨ χ = principal-dchar n ∧ f s 6= 1
=⇒

continuous (at s within A) (λx. Dirichlet-L n χ (f x))
〈proof 〉

context residues-nat
begin

Applying the above to the L(χ0, s), the L function of the principal character,
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we find that it differs from the Riemann ζ function only by multiplication
with a constant that depends only on the modulus n. They therefore have
the same analytic properties as the ζ function itself.
lemma Dirichlet-L-principal:

fixes s :: complex
shows Dirichlet-L n χ0 s = (

∏
p | prime p ∧ p dvd n. (1 − 1 / p powr s)) ∗

zeta s
(is ?f s = ?g s)

〈proof 〉end

3.2 The non-vanishing for R(s) ≥ 1

lemma coprime-prime-exists:
assumes n > (0 :: nat)
obtains p where prime p coprime p n
〈proof 〉

The case of the principal character is trivial, since it differs from the Riemann
ζ(s) only in a multiplicative factor that is clearly non-zero for R(s) ≥ 1.
theorem (in residues-nat) Dirichlet-L-Re-ge-1-nonzero-principal:

assumes Re s ≥ 1 s 6= 1
shows Dirichlet-L n (principal-dchar n) s 6= 0
〈proof 〉

The proof for non-principal character is quite involved and is typically very
complicated and technical in most textbooks. For instance, Apostol [1]
proves the result separately for real and non-real characters, where the non-
real case is relatively short and nice, but the real case involves a number of
complicated asymptotic estimates.
The following proof, on the other hand – like our proof of the analogous
result for the Riemann ζ function – is based on Newman’s book [4]. Newman
gives a very short, concise, and high-level sketch that we aim to reproduce
faithfully here.
context dcharacter
begin
theorem Dirichlet-L-Re-ge-1-nonzero-nonprincipal:

assumes χ 6= χ0 and Re u ≥ 1
shows Dirichlet-L n χ u 6= 0
〈proof 〉

include dcharacter-syntax
〈proof 〉

3.3 Asymptotic bounds on partial sums of Dirichlet L func-
tions

The following are some bounds on partial sums of the L-function of a char-
acter that are useful for asymptotic reasoning, particularly for Dirichlet’s
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Theorem.
lemma sum-upto-dcharacter-le:

assumes χ 6= χ0

shows norm (sum-upto χ x) ≤ totient n
〈proof 〉

lemma Dirichlet-L-minus-partial-sum-bound:
fixes s :: complex and x :: real
assumes χ 6= χ0 and Re s > 0 and x > 0
defines σ ≡ Re s
shows norm (sum-upto (λn. χ n ∗ n powr −s) x − Dirichlet-L n χ s) ≤

real (totient n) ∗ (2 + cmod s / σ) / x powr σ
〈proof 〉

lemma partial-Dirichlet-L-sum-bigo:
fixes s :: complex and x :: real
assumes χ 6= χ0 Re s > 0
shows (λx. sum-upto (λn. χ n ∗ n powr −s) x − Dirichlet-L n χ s) ∈ O(λx.

x powr −s)
〈proof 〉end

3.4 Evaluation of L(χ, 0)

context residues-nat
begin
lemma Dirichlet-L-0-principal [simp]: Dirichlet-L n χ0 0 = 0
〈proof 〉

end
context dcharacter
begin
lemma Dirichlet-L-0-nonprincipal:

assumes nonprincipal: χ 6= χ0

shows Dirichlet-L n χ 0 = −(
∑

k=1 ..<n. of-nat k ∗ χ k) / of-nat n
〈proof 〉

lemma Dirichlet-L-0-even [simp]:
assumes χ (n − 1 ) = 1
shows Dirichlet-L n χ 0 = 0
〈proof 〉

lemma Dirichlet-L-0 :
Dirichlet-L n χ 0 = (if χ (n − 1 ) = 1 then 0 else −(

∑
k=1 ..<n. of-nat k ∗ χ

k) / of-nat n)
〈proof 〉end

3.5 Properties of L(χ, s) for real χ

21



locale real-dcharacter = dcharacter +
assumes real: χ k ∈ �

begin

lemma Im-eq-0 [simp]: Im (χ k) = 0
〈proof 〉

lemma of-real-Re [simp]: of-real (Re (χ k)) = χ k
〈proof 〉

lemma char-cases: χ k ∈ {−1 , 0 , 1}
〈proof 〉

lemma cnj [simp]: cnj (χ k) = χ k
〈proof 〉

lemma inv-character-id [simp]: inv-character χ = χ
〈proof 〉

lemma Dirichlet-L-in-Reals:
assumes s ∈ �
shows Dirichlet-L n χ s ∈ �
〈proof 〉

The following property of real characters is used by Apostol to show the
non-vanishing of L(χ, 1). We have already shown this in a much easier way,
but this particular result is still of general interest.
lemma

assumes k: k > 0
shows sum-char-divisors-ge: Re (

∑
d | d dvd k. χ d) ≥ 0 (is Re (?A k) ≥ 0 )

and sum-char-divisors-square-ge: is-square k =⇒ Re (
∑

d | d dvd k. χ d) ≥ 1
〈proof 〉

end

end

4 Dirichlet’s Theorem on primes in arithmetic pro-
gressions

theory Dirichlet-Theorem
imports

Dirichlet-L-Functions
Bertrands-Postulate.Bertrand
Landau-Symbols.Landau-More

begin

We can now turn to the proof of the main result: Dirichlet’s theorem about
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the infinitude of primes in arithmetic progressions.
There are previous proofs of this by John Harrison in HOL Light [3] and
by Mario Carneiro in Metamath [2]. Both of them strive to prove Dirich-
let’s theorem with a minimum amount of auxiliary results and definitions,
whereas our goal was to get a short and simple proof of Dirichlet’s theorem
built upon a large library of Analytic Number Theory.
At this point, we already have the key part – the non-vanishing of L(1, χ)
– and the proof was relatively simple and straightforward due to the large
amount of Complex Analysis and Analytic Number Theory we have avail-
able. The remainder will be a bit more concrete, but still reasonably concise.
First, we need to re-frame some of the results from the AFP entry about
Bertrand’s postulate a little bit.

4.1 Auxiliary results

The AFP entry for Bertrand’s postulate already provides a slightly stronger
version of this for integer values of x, but we can easily extend this to real
numbers to obtain a slightly nicer presentation.
lemma sum-upto-mangoldt-le:

assumes x ≥ 0
shows sum-upto mangoldt x ≤ 3 / 2 ∗ x
〈proof 〉

We can also, similarly, use the results from the Bertrand’s postulate entry
to show that the sum of ln p/p over all primes grows logarithmically.
lemma Mertens-bigo:
(λx. (

∑
p | prime p ∧ real p ≤ x. ln p / p) − ln x) ∈ O(λ-. 1 )

〈proof 〉

4.2 The contribution of the non-principal characters

The estimates in the next two sections are partially inspired by John Harri-
son’s proof of Dirichlet’s Theorem [3].
We first estimate the growth of the partial sums of

−L′(1, χ)/L(1, χ) =

∞∑
k=1

χ(k)
Λ(k)

k

for a non-principal character χ and show that they are, in fact, bounded,
which is ultimately a consequence of the non-vanishing of L(1, χ) for non-
principal χ.
context dcharacter
begin
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context
includes no vec-lambda-syntax and dcharacter-syntax
fixes L
assumes nonprincipal: χ 6= χ0

defines L ≡ Dirichlet-L n χ 1
begin

lemma Dirichlet-L-nonprincipal-mangoldt-bound-aux-strong:
assumes x: x > 0
shows norm (L ∗ sum-upto (λk. χ k ∗ mangoldt k / k) x − sum-upto (λk. χ k
∗ ln k / k) x)

≤ 9 / 2 ∗ real (totient n)
〈proof 〉

lemma Dirichlet-L-nonprincipal-mangoldt-aux-bound:
(λx. L ∗ sum-upto (λk. χ k ∗ mangoldt k / k) x − sum-upto (λk. χ k ∗ ln k / k)

x) ∈ O(λ-. 1 )
〈proof 〉

lemma nonprincipal-mangoldt-bound:
(λx. sum-upto (λk. χ k ∗ mangoldt k / k) x) ∈ O(λ-. 1 ) (is ?lhs ∈ -)
〈proof 〉

end
end

4.3 The contribution of the principal character

Next, we turn to the analogous partial sum for the principal character and
show that it grows logarithmically and therefore is the dominant contribu-
tion.
context residues-nat
begin
context

includes no vec-lambda-syntax and dcharacter-syntax
begin

lemma principal-dchar-sum-bound:
(λx. (

∑
p | prime p ∧ real p ≤ x. χ0 p ∗ (ln p / p)) − ln x) ∈ O(λ-. 1 )

〈proof 〉

lemma principal-dchar-sum-bound ′:
(λx. sum-upto (λk. χ0 k ∗ mangoldt k / k) x − Ln x) ∈ O(λ-. 1 )
〈proof 〉
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4.4 The main result

We can now show the main result by extracting the primes we want using
the orthogonality relation on characters, separating the principal part of the
sum from the non-principal ones and then applying the above estimates.
lemma Dirichlet-strong:

assumes coprime h n
shows (λx. (

∑
p | prime p ∧ [p = h] (mod n) ∧ real p ≤ x. ln p / p) − ln x /

totient n)
∈ O(λ-. 1 ) (is (λx. sum - (?A x) − -) ∈ -)

〈proof 〉

It is now obvious that the set of primes we are interested in is, in fact,
infinite.
theorem Dirichlet:

assumes coprime h n
shows infinite {p. prime p ∧ [p = h] (mod n)}
〈proof 〉

In the future, one could extend this result to more precise estimates of the
distribution of primes in arithmetic progressions in a similar way to the
Prime Number Theorem.
end
end
end
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