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Abstract

This article provides a formalisation of Dirichlet characters and
Dirichlet L-functions including proofs of their basic properties – most
notably their analyticity, their areas of convergence, and their non-
vanishing for R(s) ≥ 1. All of this is built in a very high-level style
using Dirichlet series. The proof of the non-vanishing follows a very
short and elegant proof by Newman [4], which we attempt to reproduce
faithfully in a similar level of abstraction in Isabelle.

This also leads to a relatively short proof of Dirichlet’s Theorem,
which states that, if h and n are coprime, there are infinitely many
primes p with p ≡ h (mod n).
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1 Multiplicative Characters of Finite Abelian Groups
theory Multiplicative-Characters

imports
Complex-Main
Finitely-Generated-Abelian-Groups.Finitely-Generated-Abelian-Groups

begin

notation integer-mod-group (‹Z ›)

1.1 Definition of characters

A (multiplicative) character is a completely multiplicative function from a
group to the complex numbers. For simplicity, we restrict this to finite
abelian groups here, which is the most interesting case.
Characters form a group where the identity is the principal character that
maps all elements to 1, multiplication is point-wise multiplication of the
characters, and the inverse is the point-wise complex conjugate.
This group is often called the Pontryagin dual group and is isomorphic to
the original group (in a non-natural way) while the double-dual group is
naturally isomorphic to the original group.
To get extensionality of the characters, we also require characters to map
anything that is not in the group to 0.
definition principal-char :: ( ′a, ′b) monoid-scheme ⇒ ′a ⇒ complex where

principal-char G a = (if a ∈ carrier G then 1 else 0 )

definition inv-character where
inv-character χ = (λa. cnj (χ a))

lemma inv-character-principal [simp]: inv-character (principal-char G) = princi-
pal-char G

by (simp add: inv-character-def principal-char-def fun-eq-iff )

lemma inv-character-inv-character [simp]: inv-character (inv-character χ) = χ
by (simp add: inv-character-def )

lemma eval-inv-character : inv-character χ j = cnj (χ j)
by (simp add: inv-character-def )

bundle character-syntax
begin
notation principal-char (‹χ0ı›)
end

locale character = finite-comm-group +
fixes χ :: ′a ⇒ complex
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assumes char-one-nz: χ 1 6= 0
assumes char-eq-0 : a /∈ carrier G =⇒ χ a = 0
assumes char-mult [simp]: a ∈ carrier G =⇒ b ∈ carrier G =⇒ χ (a ⊗ b) = χ

a ∗ χ b
begin

1.2 Basic properties
lemma char-one [simp]: χ 1 = 1
proof−

from char-mult[of 1 1] have χ 1 ∗ (χ 1 − 1 ) = 0
by (auto simp del: char-mult)

with char-one-nz show ?thesis by simp
qed

lemma char-power [simp]: a ∈ carrier G =⇒ χ (a [^] k) = χ a ^ k
by (induction k) auto

lemma char-root:
assumes a ∈ carrier G
shows χ a ^ ord a = 1

proof −
from assms have χ a ^ ord a = χ (a [^] ord a)

by (subst char-power) auto
also from fin and assms have a [^] ord a = 1 by (intro pow-ord-eq-1 ) auto
finally show ?thesis by simp

qed

lemma char-root ′:
assumes a ∈ carrier G
shows χ a ^ order G = 1

proof −
from assms have χ a ^ order G = χ (a [^] order G) by simp
also from fin and assms have a [^] order G = 1 by (intro pow-order-eq-1 ) auto
finally show ?thesis by simp

qed

lemma norm-char : norm (χ a) = (if a ∈ carrier G then 1 else 0 )
proof (cases a ∈ carrier G)

case True
have norm (χ a) ^ order G = norm (χ a ^ order G) by (simp add: norm-power)
also from True have χ a ^ order G = 1 by (rule char-root ′)
finally have norm (χ a) ^ order G = 1 ^ order G by simp
hence norm (χ a) = 1 by (subst (asm) power-eq-iff-eq-base) auto
with True show ?thesis by auto

next
case False
thus ?thesis by (auto simp: char-eq-0 )

qed
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lemma char-eq-0-iff : χ a = 0 ←→ a /∈ carrier G
proof −

have χ a = 0 ←→ norm (χ a) = 0 by simp
also have . . . ←→ a /∈ carrier G by (subst norm-char) auto
finally show ?thesis .

qed

lemma inv-character : character G (inv-character χ)
by standard (auto simp: inv-character-def char-eq-0 )

lemma mult-inv-character : χ k ∗ inv-character χ k = principal-char G k
proof −

have χ k ∗ inv-character χ k = of-real (norm (χ k) ^ 2 )
by (subst complex-norm-square) (simp add: inv-character-def )

also have . . . = principal-char G k
by (simp add: principal-char-def norm-char)

finally show ?thesis .
qed

lemma
assumes a ∈ carrier G
shows char-inv: χ (inv a) = cnj (χ a) and char-inv ′: χ (inv a) = inverse (χ

a)
proof −

from assms have inv a ⊗ a = 1 by simp
also have χ . . . = 1 by simp
also from assms have χ (inv a ⊗ a) = χ (inv a) ∗ χ a

by (intro char-mult) auto
finally have ∗: χ (inv a) ∗ χ a = 1 .
thus χ (inv a) = inverse (χ a) by (auto simp: divide-simps)
also from mult-inv-character [of a] and assms have inverse (χ a) = cnj (χ a)
by (auto simp add: inv-character-def principal-char-def divide-simps mult.commute)

finally show χ (inv a) = cnj (χ a) .
qed

end

lemma (in finite-comm-group) character-principal [simp, intro]: character G (principal-char
G)

by standard (auto simp: principal-char-def )

lemmas [simp,intro] = finite-comm-group.character-principal

lemma character-ext:
assumes character G χ character G χ ′ ∧x. x ∈ carrier G =⇒ χ x = χ ′ x
shows χ = χ ′

proof
fix x :: ′a
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show χ x = χ ′ x
using assms by (cases x ∈ carrier G) (auto simp: character .char-eq-0 )

qed

lemma character-mult [intro]:
assumes character G χ character G χ ′

shows character G (λx. χ x ∗ χ ′ x)
proof −

interpret χ: character G χ by fact
interpret χ ′: character G χ ′ by fact
show ?thesis by standard (auto simp: χ.char-eq-0 )

qed

lemma character-inv-character-iff [simp]: character G (inv-character χ)←→ char-
acter G χ
proof

assume character G (inv-character χ)
from character .inv-character [OF this] show character G χ by simp

qed (auto simp: character .inv-character)

definition characters :: ( ′a, ′b) monoid-scheme ⇒ ( ′a ⇒ complex) set where
characters G = {χ. character G χ}

1.3 The Character group

The characters of a finite abelian group G form another group Ĝ, which
is called its Pontryagin dual group. This generalises to the more general
setting of locally compact abelian groups, but we restrict ourselves to the
finite setting because it is much easier.
definition Characters :: ( ′a, ′b) monoid-scheme ⇒ ( ′a ⇒ complex) monoid

where Characters G = (| carrier = characters G, monoid.mult = (λχ1 χ2 k. χ1

k ∗ χ2 k),
one = principal-char G |)

lemma carrier-Characters: carrier (Characters G) = characters G
by (simp add: Characters-def )

lemma one-Characters: one (Characters G) = principal-char G
by (simp add: Characters-def )

lemma mult-Characters: monoid.mult (Characters G) χ1 χ2 = (λa. χ1 a ∗ χ2 a)
by (simp add: Characters-def )

context finite-comm-group
begin
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sublocale principal: character G principal-char G ..

lemma finite-characters [intro]: finite (characters G)
proof (rule finite-subset)

show characters G ⊆ (λf x. if x ∈ carrier G then f x else 0 ) ‘
PiE (carrier G) (λ-. {z. z ^ order G = 1}) (is - ⊆ ?h ‘ ?Chars)

proof (intro subsetI , goal-cases)
case (1 χ)
then interpret χ: character G χ by (simp add: characters-def )
have ?h (restrict χ (carrier G)) ∈ ?h ‘ ?Chars

by (intro imageI ) (auto simp: χ.char-root ′)
also have ?h (restrict χ (carrier G)) = χ by (simp add: fun-eq-iff χ.char-eq-0 )
finally show ?case .

qed
show finite (?h ‘ ?Chars)

by (intro finite-imageI finite-PiE finite-roots-unity) (auto simp: Suc-le-eq)
qed

lemma finite-comm-group-Characters [intro]: finite-comm-group (Characters G)
proof

fix χ χ ′ assume ∗: χ ∈ carrier (Characters G) χ ′ ∈ carrier (Characters G)
from ∗ interpret χ: character G χ by (simp-all add: characters-def carrier-Characters)
from ∗ interpret χ ′: character G χ ′ by (simp-all add: characters-def car-

rier-Characters)
have character G (λk. χ k ∗ χ ′ k)

by standard (insert ∗, simp-all add: χ.char-eq-0 one-Characters
mult-Characters characters-def carrier-Characters)

thus χ ⊗Characters G χ ′ ∈ carrier (Characters G)
by (simp add: characters-def one-Characters mult-Characters carrier-Characters)

next
have character G (principal-char G) ..
thus 1Characters G ∈ carrier (Characters G)
by (simp add: characters-def one-Characters mult-Characters carrier-Characters)

next
fix χ assume ∗: χ ∈ carrier (Characters G)
from ∗ interpret χ: character G χ by (simp-all add: characters-def carrier-Characters)
show 1Characters G ⊗Characters G χ = χ and χ ⊗Characters G 1Characters G

= χ
by (simp-all add: principal-char-def fun-eq-iff χ.char-eq-0 one-Characters mult-Characters)

next
have χ ∈ Units (Characters G) if χ ∈ carrier (Characters G) for χ
proof −

from that interpret χ: character G χ by (simp add: characters-def car-
rier-Characters)

have χ ⊗Characters G inv-character χ = 1Characters G and
inv-character χ ⊗Characters G χ = 1Characters G

by (simp-all add: χ.mult-inv-character mult-ac one-Characters mult-Characters)
moreover from that have inv-character χ ∈ carrier (Characters G)

by (simp add: characters-def carrier-Characters)
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ultimately show ?thesis using that unfolding Units-def by blast
qed
thus carrier (Characters G) ⊆ Units (Characters G) ..

qed (auto simp: principal-char-def one-Characters mult-Characters carrier-Characters)

end

lemma (in character) character-in-order-1 :
assumes order G = 1
shows χ = principal-char G

proof −
from assms have card (carrier G − {1}) = 0

by (subst card-Diff-subset) (auto simp: order-def )
hence carrier G − {1} = {}

by (subst (asm) card-0-eq) auto
hence carrier G = {1} by auto
thus ?thesis

by (intro ext) (simp-all add: principal-char-def char-eq-0 )
qed

lemma (in finite-comm-group) characters-in-order-1 :
assumes order G = 1
shows characters G = {principal-char G}
using character .character-in-order-1 [OF - assms] by (auto simp: characters-def )

lemma (in character) inv-Characters: invCharacters G χ = inv-character χ
proof −

interpret Characters: finite-comm-group Characters G ..
have character G χ ..
thus ?thesis

by (intro Characters.inv-equality)
(auto simp: characters-def mult-inv-character mult-ac

carrier-Characters one-Characters mult-Characters)
qed

lemma (in finite-comm-group) inv-Characters ′:
χ ∈ characters G =⇒ invCharacters G χ = inv-character χ
by (intro character .inv-Characters) (auto simp: characters-def )

lemmas (in finite-comm-group) Characters-simps =
carrier-Characters mult-Characters one-Characters inv-Characters ′

lemma inv-Characters ′: χ ∈ characters G =⇒ invCharacters G χ = inv-character
χ

using character .inv-Characters[of G χ] by (simp add: characters-def )
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1.4 The isomorphism between a group and its dual

We start this section by inspecting the special case of a cyclic group. Here,
any character is fixed by the value it assigns to the generating element of
the cyclic group. This can then be used to construct a bijection between the
nth unit roots and the elements of the character group - implying the other
results.
lemma (in finite-cyclic-group)

defines ic: induce-char ≡ (λc::complex. (λa. if a∈carrier G then c powi get-exp
gen a else 0 ))

shows order-Characters: order (Characters G) = order G
and gen-fixes-char : [[character G a; character G b; a gen = b gen]] =⇒ a = b
and unity-root-induce-char : z ^ order G = 1 =⇒ character G (induce-char z)

proof −
interpret C : finite-comm-group Characters G using finite-comm-group-Characters

.
define n where n = order G
hence n: n > 0 using order-gt-0 by presburger
from n-def have nog: n = ord gen using ord-gen-is-group-order by simp
have xnz: x 6= 0 if x ^ n = 1 for x::complex using n(1 ) that by (metis

zero-neq-one zero-power)
have m: x powi m = x powi (m mod n) if x ^ n = 1 for x::complex and m::int

using powi-mod[OF that n] .
show cf : character G (induce-char x) if x: x ^ n = 1 for x
proof

show induce-char x 1 6= 0 using xnz[OF that] unfolding ic by auto
show induce-char x a = 0 if a /∈ carrier G for a using that unfolding ic by

simp
show induce-char x (a ⊗ b) = induce-char x a ∗ induce-char x b

if a ∈ carrier G b ∈ carrier G for a b
proof −

have x powi get-exp gen (a ⊗ b) = x powi get-exp gen a ∗ x powi get-exp gen
b

proof −
have x powi get-exp gen (a ⊗ b) = x powi ((get-exp gen a + get-exp gen b)

mod n)
using m[OF x] get-exp-mult-mod[OF that] n-def ord-gen-is-group-order by

metis
also have . . . = x powi (get-exp gen a + get-exp gen b) using m[OF x ] by

presburger
finally show ?thesis by (simp add: power-int-add xnz[OF x])

qed
thus ?thesis using that unfolding ic by simp

qed
qed
define get-c where gc: get-c = (λc:: ′a ⇒ complex. c gen)
have biji: bij-betw induce-char {z. z ^ n = 1} (characters G)
and bijg: bij-betw get-c (characters G) {z. z ^ n = 1}
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proof (intro bij-betwI [of - - - get-c])
show iin: induce-char ∈ {z. z ^ n = 1} → characters G using cf unfolding

characters-def
by blast

show gi: get-c (induce-char x) = x if x ∈ {z. z ^ n = 1} for x
proof (cases n = 1 )

case True
with that have x = 1 by force
thus ?thesis unfolding ic gc by simp

next
case False
have x: x ^ n = 1 using that by blast
have x powi get-exp gen gen = x
proof −
have x powi get-exp gen gen = x powi (get-exp gen gen mod n) using m[OF

x] by blast
moreover have (get-exp gen gen mod n) = 1
proof −

have 1 = 1 mod int n using False n by auto
also have . . . = get-exp gen gen mod n

by (unfold nog, intro pow-eq-int-mod[OF gen-closed],
use get-exp-fulfills[OF gen-closed] in auto)

finally show ?thesis by argo
qed
ultimately show x powi get-exp gen gen = x by simp

qed
thus ?thesis unfolding ic gc by simp

qed
show gin: get-c ∈ characters G → {z. z ^ n = 1}
proof −

have False if get-c c ^ n 6= 1 character G c for c
proof −

interpret character G c by fact
show False using that(1 )[unfolded gc] by (simp add: char-root ′ n-def )

qed
thus ?thesis unfolding characters-def by blast

qed
show ig: induce-char (get-c y) = y if y: y ∈ characters G for y
proof (cases n = 1 )

case True
hence y = principal-char G using y n-def character .character-in-order-1

characters-def
by auto

thus ?thesis unfolding ic gc principal-char-def by force
next

case False
have yc: y ∈ carrier (Characters G) using y[unfolded carrier-Characters[symmetric]]

.
interpret character G y using that unfolding characters-def by simp
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have ygo: y gen ^ n = 1 using char-root ′[OF gen-closed] n-def by blast
have y gen powi get-exp gen a = y a if a ∈ carrier G for a using that
proof(induction rule: generator-induct1 )

case gen
have y gen powi get-exp gen gen = y gen powi (get-exp gen gen mod n)

using m[OF ygo] by blast
also have . . . = y gen powi ((1 ::int) mod n)

using get-exp-self [OF gen-closed] nog by argo
also have . . . = y gen powi 1 using False n by simp
finally have yg: y gen powi get-exp gen gen = y gen by simp
thus ?case .
case (step x)
have y gen powi get-exp gen (x ⊗ gen) = y gen powi (get-exp gen (x ⊗ gen)

mod n)
using m[OF ygo] by blast

also have . . . = y gen powi ((get-exp gen x + get-exp gen gen) mod n)
using get-exp-mult-mod[OF step(1 ) gen-closed, unfolded nog[symmetric]]

by argo
also have . . . = y gen powi (get-exp gen x + get-exp gen gen) using m[OF

ygo] by presburger
also have . . . = y gen powi get-exp gen x ∗ y gen powi get-exp gen gen

by (simp add: char-eq-0-iff power-int-add)
also have . . . = y x ∗ y gen using yg step(2 ) by argo
also have . . . = y (x ⊗ gen) using step(1 ) by simp
finally show ?case .

qed
thus induce-char (get-c y) = y unfolding ic gc using char-eq-0 by auto

qed
show bij-betw get-c (characters G) {z. z ^ n = 1} using ig gi iin gin

by (auto intro: bij-betwI )
qed
with card-roots-unity-eq[OF n] n-def show order (Characters G) = order G

unfolding order-def
by (metis bij-betw-same-card carrier-Characters)

assume assm: character G a character G b a gen = b gen
with bijg[unfolded gc characters-def bij-betw-def inj-on-def ] show a = b by auto

qed

Moreover, we can show that a character that assigns a "true" root of unity
to the generating element of the group, generates the character group.
lemma (in finite-cyclic-group) finite-cyclic-group-Characters:

obtains χ where finite-cyclic-group (Characters G) χ
proof −
interpret C : finite-comm-group Characters G by (rule finite-comm-group-Characters)
define n where n: n = order G
hence nnz: n 6= 0 by blast
from n have nog: n = ord gen using ord-gen-is-group-order by simp
obtain x::complex where x: x ^ n = 1

∧
m. [[0<m; m<n]] =⇒ x ^ m 6= 1

using true-nth-unity-root by blast
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have xnz: x 6= 0 using x n by (metis order-gt-0 zero-neq-one zero-power)
have m: x powi m = x powi (m mod n) for m::int

using powi-mod[OF x(1 )] nnz by blast
let ?f = (λa. if a ∈ carrier G then x powi (get-exp gen a) else 0 )
have cf : character G ?f using unity-root-induce-char [OF x(1 )[unfolded n]] .
have fpow: (?f [^]Characters G m) a = x powi ((get-exp gen a) ∗ m)

if a ∈ carrier G for a:: ′a and m::nat
using that

proof(unfold Characters-def principal-char-def , induction m)
case s: (Suc m)
have x powi (get-exp gen a ∗ int m) ∗ x powi get-exp gen a

= x powi (get-exp gen a ∗ (1 + int m))
proof −

fix ma :: nat
have x powi ((1 + int ma) ∗ get-exp gen a)

= x powi (get-exp gen a + int ma ∗ get-exp gen a) ∧ 0 6= x
by (simp add: comm-semiring-class.distrib xnz)

then show x powi (get-exp gen a ∗ int ma) ∗ x powi get-exp gen a
= x powi (get-exp gen a ∗ (1 + int ma))

by (simp add: mult.commute power-int-add)
qed
thus ?case using s by simp

qed simp
interpret cyclic-group Characters G ?f
proof (intro C .element-ord-generates-cyclic)

show fc: ?f ∈ carrier (Characters G) using cf carrier-Characters[of G] char-
acters-def by fast

from x nnz have fno: ?f [^]Characters G m 6= 1Characters G if 0 < m m < n
for m

proof (cases n = 1 )
case False

have 1Characters G gen = 1 unfolding Characters-def principal-char-def
using that by simp

moreover have (?f [^]Characters G m) gen 6= 1
proof −

have (?f [^]Characters G m) gen = x powi ((get-exp gen gen) ∗ m) using
fpow by blast

also have . . . = (x powi (get-exp gen gen)) ^ m by (simp add: power-int-mult)
also have . . . = x ^ m
proof −

have x powi (get-exp gen gen) = x powi ((get-exp gen gen) mod n) using
m by blast

moreover have ((get-exp gen gen) mod n) = 1
proof −

have 1 = 1 mod int n using False nnz by simp
also have . . . = get-exp gen gen mod n

by (unfold nog, intro pow-eq-int-mod[OF gen-closed],
use get-exp-fulfills[OF gen-closed] in auto)

finally show ?thesis by argo
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qed
ultimately have x powi (get-exp gen gen) = x by simp
thus ?thesis by simp

qed
finally show ?thesis using x(2 )[OF that] by argo

qed
ultimately show ?thesis by fastforce

qed (use that in blast)
have C .ord ?f = n
proof −

from nnz have C .ord ?f ≤ n unfolding n
using C .ord-dvd-group-order [OF fc] order-Characters dvd-nat-bounds by

auto
with C .ord-conv-Least[OF fc] C .pow-order-eq-1 [OF fc] n nnz show C .ord ?f

= n
by (metis (no-types, lifting) C .ord-pos C .pow-ord-eq-1 fc fno le-neq-implies-less)

qed
thus C .ord ?f = order (Characters G) using n order-Characters by argo

qed
have finite-cyclic-group (Characters G) ?f by unfold-locales
with that show ?thesis by blast

qed

And as two cyclic groups of the same order are isomorphic it follows the
isomorphism of a finite cyclic group and its dual.
lemma (in finite-cyclic-group) Characters-iso:

G ∼= Characters G
proof −
from finite-cyclic-group-Characters obtain f where f : finite-cyclic-group (Characters

G) f .
then interpret C : finite-cyclic-group Characters G f .
have cyclic-group (Characters G) f by unfold-locales
from iso-cyclic-groups-same-order [OF this order-Characters[symmetric]] show

?thesis .
qed

The character groups of two isomorphic groups are also isomorphic.
lemma (in finite-comm-group) iso-imp-iso-chars:

assumes G ∼= H group H
shows Characters G ∼= Characters H

proof −
interpret H : finite-comm-group H by (rule iso-imp-finite-comm[OF assms])
from assms have H ∼= G using iso-sym by auto
then obtain g where g: g ∈ iso H G unfolding is-iso-def by blast
then interpret ggh: group-hom H G g by (unfold-locales, unfold iso-def , simp)
let ?f = (λc a. if a ∈ carrier H then (c ◦ g) a else 0 )
have ?f ∈ iso (Characters G) (Characters H )
proof (intro isoI )
interpret CG: finite-comm-group Characters G by (intro finite-comm-group-Characters)
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interpret CH : finite-comm-group Characters H by (intro H .finite-comm-group-Characters)
have f-in: ?f x ∈ carrier (Characters H ) if x ∈ carrier (Characters G) for x
proof (unfold carrier-Characters characters-def , rule, unfold-locales)
interpret character G x using that characters-def carrier-Characters by blast
show (if 1H ∈ carrier H then (x ◦ g) 1H else 0 ) 6= 0 using g iso-iff by auto
show

∧
a. a /∈ carrier H =⇒ (if a ∈ carrier H then (x ◦ g) a else 0 ) = 0 by

simp
show ?f x (a ⊗H b) = ?f x a ∗ ?f x b if a ∈ carrier H b ∈ carrier H for a b

using that by auto
qed
show ?f ∈ hom (Characters G) (Characters H )
proof (intro homI )

show ?f x ∈ carrier (Characters H ) if x ∈ carrier (Characters G) for x
using f-in[OF that] .

show ?f (x ⊗Characters G y) = ?f x ⊗Characters H ?f y
if x ∈ carrier (Characters G) y ∈ carrier (Characters G) for x y

proof −
interpret x: character G x using that characters-def carrier-Characters by

blast
interpret y: character G y using that characters-def carrier-Characters by

blast
show ?thesis using that mult-Characters[of G] mult-Characters[of H ] by

auto
qed

qed
show bij-betw ?f (carrier (Characters G)) (carrier (Characters H ))
proof(intro bij-betwI )

define f where f = inv-into (carrier H ) g
hence f : f ∈ iso G H using H .iso-set-sym[OF g] by simp

then interpret fgh: group-hom G H f by (unfold-locales, unfold iso-def , simp)
let ?g = (λc a. if a ∈ carrier G then (c ◦ f ) a else 0 )
show ?f ∈ carrier (Characters G) → carrier (Characters H ) using f-in by

fast
show ?g ∈ carrier (Characters H ) → carrier (Characters G)
proof −

have g-in: ?g x ∈ carrier (Characters G) if x ∈ carrier (Characters H ) for
x

proof (unfold carrier-Characters characters-def , rule, unfold-locales)
interpret character H x using that characters-def carrier-Characters by

blast
show (if 1G ∈ carrier G then (x ◦ f ) 1G else 0 ) 6= 0 using f iso-iff by

auto
show

∧
a. a /∈ carrier G =⇒ (if a ∈ carrier G then (x ◦ f ) a else 0 ) = 0

by simp
show ?g x (a ⊗G b) = ?g x a ∗ ?g x b if a ∈ carrier G b ∈ carrier G for

a b
using that by auto

qed
thus ?thesis by simp
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qed
show ?f (?g x) = x if x: x ∈ carrier (Characters H ) for x
proof −

interpret character H x using x characters-def carrier-Characters by blast
have ?f (?g x) a = x a if a: a /∈ carrier H for a using a char-eq-0 [OF a]

by auto
moreover have ?f (?g x) a = x a if a: a ∈ carrier H for a
proof −

from a have inv-into (carrier H ) g (g a) = a
by (simp add: g ggh.inj-iff-trivial-ker ggh.iso-kernel)

thus ?thesis using a f-def by auto
qed
ultimately show ?thesis by fast

qed
show ?g (?f x) = x if x: x ∈ carrier (Characters G) for x
proof −

interpret character G x using x characters-def carrier-Characters by blast
have ?g (?f x) a = x a if a: a /∈ carrier G for a using a char-eq-0 [OF a]

by auto
moreover have ?g (?f x) a = x a if a: a ∈ carrier G for a using a f-def
proof −

from a have g (inv-into (carrier H ) g a) = a
by (meson f-inv-into-f g ggh.iso-iff subset-iff )

thus ?thesis using a f-def fgh.hom-closed by auto
qed
ultimately show ?thesis by fast

qed
qed

qed
thus ?thesis unfolding is-iso-def by blast

qed

The following two lemmas characterize the way a character behaves in a
direct group product: a character on the product induces characters on each
of the factors. Also, any character on the direct product can be decomposed
into a pointwise product of characters on the factors.
lemma DirProds-subchar :

assumes finite-comm-group (DirProds Gs I )
and x: x ∈ carrier (Characters (DirProds Gs I ))
and i: i ∈ I
and I : finite I
defines g: g ≡ (λc. (λi∈I . (λa. c ((λi∈I . 1Gs i)(i:=a)))))
shows character (Gs i) (g x i)

proof −
interpret DP: finite-comm-group DirProds Gs I by fact
interpret xc: character DirProds Gs I x using x unfolding Characters-def

characters-def by auto
interpret Gi: finite-comm-group Gs i
using i DirProds-finite-comm-group-iff [OF I ] DP.finite-comm-group-axioms by
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blast
have allg:

∧
i. i∈I =⇒ group (Gs i) using DirProds-group-imp-groups[OF DP.is-group]

.
show ?thesis
proof(unfold-locales)

have (λi∈I . 1Gs i) = (λi∈I . 1Gs i)(i := 1Gs i) using i by force
thus g x i 1Gs i 6= 0 using i g DirProds-one ′′[of Gs I ] xc.char-one-nz by auto
show g x i a = 0 if a: a /∈ carrier (Gs i) for a
proof −

from a i have ((λi∈I . 1Gs i)(i := a)) /∈ carrier (DirProds Gs I )
unfolding DirProds-def by force

from xc.char-eq-0 [OF this] show ?thesis using i g by auto
qed
show g x i (a ⊗Gs i b) = g x i a ∗ g x i b

if ab: a ∈ carrier (Gs i) b ∈ carrier (Gs i) for a b
proof −

have g x i (a ⊗Gs i b)
= x ((λi∈I . 1Gs i)(i := a) ⊗DirProds Gs I (λi∈I . 1Gs i)(i := b))

proof −
have ((λi∈I . 1Gs i)(i := a) ⊗DirProds Gs I (λi∈I . 1Gs i)(i := b))

= ((λi∈I . 1Gs i)(i := (a ⊗Gs i b)))
proof −

have ((λi∈I . 1Gs i)(i := a) ⊗DirProds Gs I (λi∈I . 1Gs i)(i := b)) j
= ((λi∈I . 1Gs i)(i := (a ⊗Gs i b))) j

for j
proof (cases j ∈ I )

case True
from allg[OF True] interpret Gj: group Gs j .
show ?thesis using ab True i unfolding DirProds-mult by simp

next
case False
then show ?thesis unfolding DirProds-mult using i by fastforce

qed
thus ?thesis by fast

qed
thus ?thesis using i g by auto

qed
also have . . . = x ((λi∈I . 1Gs i)(i := a)) ∗ x ((λi∈I . 1Gs i)(i := b))
proof −

have ac: ((λi∈I . 1Gs i)(i := a)) ∈ carrier (DirProds Gs I )
unfolding DirProds-def using ab i monoid.one-closed[OF group.is-monoid[OF

allg]] by force
have bc: ((λi∈I . 1Gs i)(i := b)) ∈ carrier (DirProds Gs I )

unfolding DirProds-def using ab i monoid.one-closed[OF group.is-monoid[OF
allg]] by force

from xc.char-mult[OF ac bc] show ?thesis .
qed
also have . . . = g x i a ∗ g x i b using i g by auto
finally show ?thesis .
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qed
qed

qed

lemma Characters-DirProds-single-prod:
assumes finite-comm-group (DirProds Gs I )
and x: x ∈ carrier (Characters (DirProds Gs I ))
and I : finite I
defines g: g ≡ (λI . (λc. (λi∈I . (λa. c ((λi∈I . 1Gs i)(i:=a))))))
shows (λe. if e∈carrier(DirProds Gs I ) then

∏
i∈I . (g I x i) (e i) else 0 ) = x

(is ?g x = x)
proof

show ?g x e = x e for e
proof (cases e ∈ carrier (DirProds Gs I ))

case True
show ?thesis using I x assms(1 ) True unfolding g
proof(induction I arbitrary: x e rule: finite-induct)

case empty
interpret DP: finite-comm-group DirProds Gs {} by fact
from DirProds-empty[of Gs] have order (DirProds Gs {}) = 1 unfolding

order-def by simp
with DP.characters-in-order-1 [OF this] empty(1 ) show ?case

using DirProds-empty[of Gs] unfolding Characters-def principal-char-def
by auto

next
case j: (insert j I )
interpret DP: finite-comm-group DirProds Gs (insert j I ) by fact
interpret DP2 : finite-comm-group DirProds Gs I
proof −
from DirProds-finite-comm-group-iff [of insert j I Gs] DP.finite-comm-group-axioms

j
have (∀ i∈(insert j I ). finite-comm-group (Gs i)) by blast

with DirProds-finite-comm-group-iff [OF j(1 ), of Gs] show finite-comm-group
(DirProds Gs I )

by blast
qed
interpret xc: character DirProds Gs (insert j I ) x

using j(4 ) unfolding Characters-def characters-def by simp
have allg:

∧
i. i∈(insert j I ) =⇒ group (Gs i)

using DirProds-group-imp-groups[OF DP.is-group] .
have e1c: e(j:= 1Gs j) ∈ carrier (DirProds Gs (insert j I ))

using j(6 ) monoid.one-closed[OF group.is-monoid[OF allg[of j]]]
unfolding DirProds-def PiE-def Pi-def by simp

have e2c: (λi∈(insert j I ). 1Gs i)(j := e j) ∈ carrier (DirProds Gs (insert j
I ))

unfolding DirProds-def PiE-def Pi-def
using monoid.one-closed[OF group.is-monoid[OF allg]] comp-in-carr [OF

j(6 )] by auto
have e = e(j:= 1Gs j) ⊗DirProds Gs (insert j I ) (λi∈(insert j I ). 1Gs i)(j :=
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e j)
proof −

have e k
= (e(j:= 1Gs j) ⊗DirProds Gs (insert j I ) (λi∈(insert j I ). 1Gs i)(j := e

j)) k
for k

proof(cases k∈(insert j I ))
case k: True
from allg[OF k] interpret Gk: group Gs k .
from allg[of j] interpret Gj: group Gs j by simp

from k show ?thesis unfolding comp-mult[OF k] using comp-in-carr [OF
j(6 ) k] by auto

next
case False
then show ?thesis using j(6 ) unfolding DirProds-def by auto

qed
thus ?thesis by blast

qed
hence x e = x (e(j:= 1Gs j)) ∗ x ((λi∈(insert j I ). 1Gs i)(j := e j))

using xc.char-mult[OF e1c e2c] by argo
also have . . . = (

∏
i∈I . g (insert j I ) x i (e i)) ∗ g (insert j I ) x j (e j)

proof −
have x (e(j:= 1Gs j)) = (

∏
i∈I . g (insert j I ) x i (e i))

proof −
have eu: e(j:=undefined) ∈ carrier (DirProds Gs I ) using j(2 , 6 )

unfolding DirProds-def PiE-def Pi-def extensional-def by fastforce
let ?x = λp. if p∈carrier(DirProds Gs I ) then x (p(j:= 1Gs j)) else 0
have cx2 : character (DirProds Gs I ) ?x
proof

show ?x 1DirProds Gs I 6= 0
proof −

have 1DirProds Gs I(j := 1Gs j) = 1DirProds Gs (insert j I )
unfolding DirProds-one ′′ by force

thus ?thesis by simp
qed
show ?x a = 0 if a: a /∈ carrier (DirProds Gs I ) for a using a by argo
show ?x (a ⊗DirProds Gs I b) = ?x a ∗ ?x b

if ab: a ∈ carrier (DirProds Gs I ) b ∈ carrier (DirProds Gs I ) for a b
proof −

have ac: a(j := 1Gs j) ∈ carrier (DirProds Gs (insert j I ))
using ab monoid.one-closed[OF group.is-monoid[OF allg[of j]]]
unfolding DirProds-def PiE-def Pi-def by simp

have bc: b(j := 1Gs j) ∈ carrier (DirProds Gs (insert j I ))
using ab monoid.one-closed[OF group.is-monoid[OF allg[of j]]]
unfolding DirProds-def PiE-def Pi-def by simp

have m: ((a ⊗DirProds Gs I b)(j := 1Gs j))
= (a(j := 1Gs j) ⊗DirProds Gs (insert j I ) b(j := 1Gs j))

proof −
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have ((a ⊗DirProds Gs I b)(j := 1Gs j)) h
= (a(j := 1Gs j) ⊗DirProds Gs (insert j I ) b(j := 1Gs j)) h

if h: h∈(insert j I ) for h
proof(cases h=j)

case True
interpret Gj: group Gs j using allg[of j] by blast

from True comp-mult[OF h, of Gs a(j := 1Gs j) b(j := 1Gs j)]
show ?thesis

by auto
next

case False
interpret Gj: group Gs h using allg[OF h] .
from False h comp-mult[OF h, of Gs a(j := 1Gs j) b(j := 1Gs j)]

comp-mult[of h I Gs a b]
show ?thesis by auto

qed
moreover have ((a ⊗DirProds Gs I b)(j := 1Gs j)) h

= (a(j := 1Gs j) ⊗DirProds Gs (insert j I ) b(j := 1Gs j)) h
if h: h /∈(insert j I ) for h using h unfolding DirProds-def PiE-def

by simp
ultimately show ?thesis by blast

qed
have x ((a ⊗DirProds Gs I b)(j := 1Gs j))

= x (a(j := 1Gs j)) ∗ x (b(j := 1Gs j))
by (unfold m, intro xc.char-mult[OF ac bc])

thus ?thesis using ab by auto
qed

qed
then interpret cx2 : character DirProds Gs I ?x .
from cx2 have cx3 :?x ∈ carrier (Characters (DirProds Gs I ))

unfolding Characters-def characters-def by simp
from j(3 )[OF cx3 DP2 .finite-comm-group-axioms eu] have
(if e(j:=undefined) ∈ carrier (DirProds Gs I )

then
∏

i∈I . g I ?x i ((e(j:=undefined)) i)
else 0 ) = ?x (e(j:=undefined))

using eu j(2 ) unfolding g by fast
with eu have (

∏
i∈I . g I (λp. if p ∈ carrier (DirProds Gs I )

then x (p(j := 1Gs j))
else 0 ) i ((e(j := undefined)) i)) = x (e(j :=

1Gs j))
by simp

moreover have g I (λa. if a ∈ carrier (DirProds Gs I )
then x (a(j := 1Gs j))

else 0 ) i ((e(j := undefined)) i) = g (insert j I ) x i (e i)
if i: i∈I for i

proof −
have (λi∈I . 1Gs i)(i := e i) ∈ carrier (DirProds Gs I )

unfolding DirProds-def PiE-def Pi-def extensional-def
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using monoid.one-closed[OF group.is-monoid[OF allg]] comp-in-carr [OF
j(6 )] i by simp

moreover have ((λi∈I . 1Gs i)(i := e i, j := 1Gs j))
= ((λi∈insert j I . 1Gs i)(i := e i)) using i j(2 ) by auto

ultimately show ?thesis using i j(2 , 4 , 6 ) unfolding g by auto
qed
ultimately show ?thesis by simp

qed
moreover have x ((λi∈(insert j I ). 1Gs i)(j := e j)) = g (insert j I ) x j (e

j)
unfolding g by simp

ultimately show ?thesis by argo
qed
finally show ?case using j unfolding g by auto

qed
next

case False
interpret xc: character DirProds Gs I x

using x unfolding Characters-def characters-def by simp
from xc.char-eq-0 [OF False] False show ?thesis by argo

qed
qed

This allows for the following: the character group of a direct product is
isomorphic to the direct product of the character groups of the factors.
lemma (in finite-comm-group) Characters-DirProds-iso:

assumes DirProds Gs I ∼= G group (DirProds Gs I ) finite I
shows DirProds (Characters ◦ Gs) I ∼= Characters G

proof −
interpret DP: group DirProds Gs I by fact
interpret DP: finite-comm-group DirProds Gs I

by (intro iso-imp-finite-comm[OF DP.iso-sym[OF assms(1 )]], unfold-locales)
interpret DPC : finite-comm-group DirProds (Characters ◦ Gs) I

using DirProds-finite-comm-group-iff [OF assms(3 ), of Characters ◦ Gs]
DirProds-finite-comm-group-iff [OF assms(3 ), of Gs]

DP.finite-comm-group-axioms finite-comm-group.finite-comm-group-Characters
by auto

interpret CDP: finite-comm-group Characters (DirProds Gs I )
using DP.finite-comm-group-Characters .

interpret C : finite-comm-group Characters G using finite-comm-group-Characters
.
have allg:

∧
i. i∈I =⇒ group (Gs i) using DirProds-group-imp-groups[OF assms(2 )]

.
let ?f = (λcp. (λe. (if e∈carrier (DirProds Gs I ) then

∏
i∈I . cp i (e i) else 0 )))

have f-in: ?f x ∈ carrier (Characters (DirProds Gs I ))
if x: x ∈ carrier (DirProds (Characters ◦ Gs) I ) for x

proof(unfold carrier-Characters characters-def , safe, unfold-locales)
show ?f x 1DirProds Gs I 6= 0
proof −
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have x i (1DirProds Gs I i) 6= 0 if i: i ∈ I for i
proof −

interpret Gi: finite-comm-group Gs i
using DirProds-finite-comm-group-iff [OF assms(3 )] DP.finite-comm-group-axioms

i by blast
interpret xi: character Gs i x i

using i x unfolding DirProds-def Characters-def characters-def by auto
show ?thesis using DirProds-one ′[OF i, of Gs] by simp

qed
thus ?thesis by (simp add: assms(3 ))

qed
show ?f x a = 0 if a /∈ carrier (DirProds Gs I ) for a using that by simp
show ?f x (a ⊗DirProds Gs I b) = ?f x a ∗ ?f x b

if ab: a ∈ carrier (DirProds Gs I ) b ∈ carrier (DirProds Gs I ) for a b
proof −

have a ⊗DirProds Gs I b ∈ carrier (DirProds Gs I ) using that by blast
moreover have (

∏
i∈I . x i ((a ⊗DirProds Gs I b) i))

= (
∏

i∈I . x i (a i)) ∗ (
∏

i∈I . x i (b i))
proof −

have x i ((a ⊗DirProds Gs I b) i) = x i (a i) ∗ x i (b i) if i: i∈I for i
proof −

interpret xi: character Gs i x i
using i x unfolding DirProds-def Characters-def characters-def by auto

show ?thesis using ab comp-mult[OF i, of Gs a b] by(auto simp:
comp-in-carr [OF - i])

qed
thus ?thesis using prod.distrib by force

qed
ultimately show ?thesis using that by auto

qed
qed
have ?f ∈ iso (DirProds (Characters ◦ Gs) I ) (Characters (DirProds Gs I ))
proof (intro isoI )

show ?f ∈ hom (DirProds (Characters ◦ Gs) I ) (Characters (DirProds Gs I ))
proof (intro homI )

show ?f x ∈ carrier (Characters (DirProds Gs I ))
if x: x ∈ carrier (DirProds (Characters ◦ Gs) I ) for x using f-in[OF that] .

show ?f (x ⊗DirProds (Characters ◦ Gs) I y) = ?f x ⊗Characters (DirProds Gs I )
?f y

if x ∈ carrier (DirProds (Characters ◦ Gs) I ) y ∈ carrier (DirProds
(Characters ◦ Gs) I )

for x y
proof −

have ?f x ⊗Characters (DirProds Gs I ) ?f y
= (λe. if e ∈ carrier (DirProds Gs I ) then (

∏
i∈I . x i (e i)) ∗ (

∏
i∈I . y i

(e i)) else 0 )
unfolding Characters-def by auto

also have . . . = ?f (x ⊗DirProds (Characters ◦ Gs) I y)
proof −

21



have (
∏

i∈I . x i (e i)) ∗ (
∏

i∈I . y i (e i))
= (

∏
i∈I . (x ⊗DirProds (Characters ◦ Gs) I y) i (e i)) for e

unfolding DirProds-def Characters-def by (auto simp: prod.distrib)
thus ?thesis by presburger

qed
finally show ?thesis by argo

qed
qed

then interpret fgh: group-hom DirProds (Characters ◦ Gs) I Characters
(DirProds Gs I ) ?f

by (unfold-locales, simp)
show bij-betw ?f (carrier (DirProds (Characters ◦ Gs) I )) (carrier (Characters

(DirProds Gs I )))
proof (intro bij-betwI )

let ?g = (λc. (λi∈I . (λa. c ((λi∈I . 1Gs i)(i:=a)))))
have allc: character (Gs i) (?g x i)

if x: x ∈ carrier (Characters (DirProds Gs I )) and i: i ∈ I for x i
using DirProds-subchar [OF DP.finite-comm-group-axioms x i assms(3 )] .

have g-in: ?g x ∈ carrier (DirProds (Characters ◦ Gs) I )
if x: x ∈ carrier (Characters (DirProds Gs I )) for x
using allc[OF x] unfolding DirProds-def Characters-def characters-def by

simp
show fi: ?f ∈ carrier (DirProds (Characters ◦ Gs) I ) → carrier (Characters

(DirProds Gs I ))
using f-in by fast
show gi: ?g ∈ carrier (Characters (DirProds Gs I )) → carrier (DirProds

(Characters ◦ Gs) I )
using g-in by fast

show ?f (?g x) = x if x: x ∈ carrier (Characters (DirProds Gs I )) for x
proof −

from x interpret x: character DirProds Gs I x unfolding Characters-def
characters-def

by auto
from f-in[OF g-in[OF x]] interpret character DirProds Gs I ?f (?g x)

unfolding Characters-def characters-def by simp
have (

∏
i∈I . (λi∈I . λa. x ((λi∈I . 1Gs i)(i := a))) i (e i)) = x e

if e: e ∈ carrier (DirProds Gs I ) for e
proof −

define y where y: y = (λe. if e ∈ carrier (DirProds Gs I )
then

∏
i∈I . (λi∈I . λa. x ((λi∈I . 1Gs i)(i := a))) i

(e i)
else 0 )

from Characters-DirProds-single-prod[OF DP.finite-comm-group-axioms x
assms(3 )]

have y = x using y by force
hence y e = x e by blast
thus ?thesis using e unfolding y by argo

qed
with x.char-eq-0 show ?thesis by force
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qed
show ?g (?f x) = x if x: x ∈ carrier (DirProds (Characters ◦ Gs) I ) for x
proof(intro eq-parts-imp-eq[OF g-in[OF f-in[OF x]] x])

show ?g (?f x) i = x i if i: i∈I for i
proof −

interpret xi: character Gs i x i
using x i unfolding DirProds-def Characters-def characters-def by auto

have ?g (?f x) i a = x i a if a: a /∈carrier (Gs i) for a
proof −

have (λi∈I . 1Gs i)(i := a) /∈ carrier (DirProds Gs I )
using a i unfolding DirProds-def PiE-def Pi-def by auto

with xi.char-eq-0 [OF a] a i show ?thesis by auto
qed
moreover have ?g (?f x) i a = x i a if a: a∈carrier (Gs i) for a
proof −

have (λi∈I . 1Gs i)(i := a) ∈ carrier (DirProds Gs I )
using a i monoid.one-closed[OF group.is-monoid[OF allg]]
unfolding DirProds-def by force

moreover have (
∏

j∈I . x j (((λi∈I . 1Gs i)(i := a)) j)) = x i a
proof −

have (
∏

j∈I . x j (((λi∈I . 1Gs i)(i := a)) j))
= x i (((λi∈I . 1Gs i)(i := a)) i) ∗ (

∏
j∈I−{i}. x j (((λi∈I . 1Gs i)(i

:= a)) j))
by (meson assms(3 ) i prod.remove)

moreover have x j (((λi∈I . 1Gs i)(i := a)) j) = 1 if j: j∈I j 6= i for j
proof −

interpret xj: character Gs j x j
using j(1 ) x unfolding DirProds-def Characters-def characters-def

by auto
show ?thesis using j by auto

qed
moreover have x i (((λi∈I . 1Gs i)(i := a)) i) = x i a by simp
ultimately show ?thesis by auto

qed
ultimately show ?thesis using a i by simp

qed
ultimately show ?thesis by blast

qed
qed

qed
qed
hence DirProds (Characters ◦ Gs) I ∼= Characters (DirProds Gs I ) unfolding

is-iso-def by blast
moreover have Characters (DirProds Gs I ) ∼= Characters G

using DP.iso-imp-iso-chars[OF assms(1 ) is-group] .
ultimately show ?thesis using iso-trans by blast

qed

As thus both the group and its character group can be decomposed into the
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same cyclic factors, the isomorphism follows for any finite abelian group.
theorem (in finite-comm-group) Characters-iso:

shows G ∼= Characters G
proof −

from cyclic-product obtain ns
where ns: DirProds (λn. Z (ns ! n)) {..<length ns} ∼= G ∀n∈set ns. n 6= 0 .

interpret DP: group DirProds (λn. Z (ns ! n)) {..<length ns}
by (intro DirProds-is-group, auto)

have G ∼= DirProds (λn. Z (ns ! n)) {..<length ns} using DP.iso-sym[OF ns(1 )]
.

moreover have DirProds (Characters ◦ (λn. Z (ns ! n))) {..<length ns} ∼=
Characters G

by (intro Characters-DirProds-iso[OF ns(1 ) DirProds-is-group], auto)
moreover have DirProds (λn. Z (ns ! n)) {..<length ns}

∼= DirProds (Characters ◦ (λn. Z (ns ! n))) {..<length ns}
proof (intro DirProds-iso1 )

fix i assume i: i ∈ {..<length ns}
obtain a where cyclic-group (Z (ns!i)) a using Zn-cyclic-group .
then interpret Zi: cyclic-group Z (ns!i) a .
interpret Zi: finite-cyclic-group Z (ns!i) a
proof

have order (Z (ns ! i)) 6= 0 using ns(2 ) i Zn-order by simp
thus finite (carrier (Z (ns ! i))) unfolding order-def by (simp add: card-eq-0-iff )
qed
show Group.group ((Characters ◦ (λn. Z (ns ! n))) i)

Group.group (Z (ns ! i)) Z (ns ! i) ∼= (Characters ◦ (λn. Z (ns ! n))) i
using Zi.Characters-iso Zi.finite-comm-group-Characters comm-group-def fi-

nite-comm-group-def
by auto

qed
ultimately show ?thesis by (auto elim: iso-trans)

qed

Hence, the orders are also equal.
corollary (in finite-comm-group) order-Characters:

order (Characters G) = order G
using iso-same-card[OF Characters-iso] unfolding order-def by argo

corollary (in finite-comm-group) card-characters: card (characters G) = order G
using order-Characters unfolding order-def Characters-def by simp

1.5 Non-trivial facts about characters

We characterize the character group of a quotient group as the group of
characters that map all elements of the subgroup onto 1.
lemma (in finite-comm-group) iso-Characters-FactGroup:

assumes H : subgroup H G
shows (λχ x. if x ∈ carrier G then χ (H #> x) else 0 ) ∈
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iso (Characters (G Mod H )) ((Characters G)(|carrier := {χ∈characters
G. ∀ x∈H . χ x = 1}|))
proof −

interpret H : normal H G using subgroup-imp-normal[OF H ] .
interpret Chars: finite-comm-group Characters G

by (rule finite-comm-group-Characters)
interpret Fact: comm-group G Mod H
by (simp add: H .subgroup-axioms comm-group.abelian-FactGroup comm-group-axioms)

interpret Fact: finite-comm-group G Mod H
by unfold-locales (auto simp: carrier-FactGroup)

define C :: ( ′a ⇒ complex) set where C = {χ∈characters G. ∀ x∈H . χ x = 1}
interpret C : subgroup C Characters G
proof (unfold-locales, goal-cases)

case 1
thus ?case
by (auto simp: C-def one-Characters mult-Characters carrier-Characters char-

acters-def )
next

case 2
thus ?case
by (auto simp: C-def one-Characters mult-Characters carrier-Characters char-

acters-def )
next

case 3
thus ?case

by (auto simp: C-def one-Characters mult-Characters
carrier-Characters characters-def principal-char-def )

next
case (4 χ)
hence invCharacters G χ = inv-character χ

by (subst inv-Characters ′) (auto simp: C-def carrier-Characters)
moreover have inv-character χ ∈ characters G

using 4 by (auto simp: C-def characters-def )
moreover have ∀ x∈H . inv-character χ x = 1

using 4 by (auto simp: C-def inv-character-def )
ultimately show ?case

by (auto simp: C-def )
qed

define f :: ( ′a set ⇒ complex) ⇒ ( ′a ⇒ complex)
where f = (λχ x. if x ∈ carrier G then χ (H #> x) else 0 )

have [intro]: character G (f χ) if character (G Mod H ) χ for χ
proof −

interpret character G Mod H χ by fact
show ?thesis
proof (unfold-locales, goal-cases)

case 1
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thus ?case by (auto simp: f-def char-eq-0-iff carrier-FactGroup)
next

case (2 x)
thus ?case by (auto simp: f-def )

next
case (3 x y)
have χ (H #> x) ∗ χ (H #> y) = χ ((H #> x) ⊗G Mod H (H #> y))

using 3 by (intro char-mult [symmetric]) (auto simp: carrier-FactGroup)
also have (H #> x) ⊗G Mod H (H #> y) = H #> (x ⊗ y)

using 3 by (simp add: H .rcos-sum)
finally show ?case

using 3 by (simp add: f-def )
qed

qed

have [intro]: f χ ∈ C if character (G Mod H ) χ for χ
proof −

interpret χ: character G Mod H χ
by fact

have character G (f χ)
using χ.character-axioms by auto

moreover have χ (H #> x) = 1 if x ∈ H for x
using that H .rcos-const χ.char-one by force

ultimately show ?thesis
by (auto simp: carrier-Characters C-def characters-def f-def )

qed

show f ∈ iso (Characters (G Mod H )) ((Characters G)(|carrier := C |))
proof (rule isoI )

show f ∈ hom (Characters (G Mod H )) (Characters G(|carrier := C |))
proof (rule homI , goal-cases)

case (1 χ)
thus ?case

by (auto simp: carrier-Characters characters-def )
qed (auto simp: f-def carrier-Characters fun-eq-iff mult-Characters)

next
have bij-betw f (characters (G Mod H )) C

unfolding bij-betw-def
proof

show inj: inj-on f (characters (G Mod H ))
proof (rule inj-onI , goal-cases)

case (1 χ1 χ2 )
interpret χ1 : character G Mod H χ1

using 1 by (auto simp: characters-def )
interpret χ2 : character G Mod H χ2

using 1 by (auto simp: characters-def )

have χ1 H ′ = χ2 H ′ for H ′

proof (cases H ′ ∈ carrier (G Mod H ))
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case False
thus ?thesis by (simp add: χ1 .char-eq-0 χ2 .char-eq-0 )

next
case True
then obtain x where x: x ∈ carrier G H ′ = H #> x

by (auto simp: carrier-FactGroup)
from 1 have f χ1 x = f χ2 x

by simp
with x show ?thesis

by (auto simp: f-def )
qed
thus χ1 = χ2 by force

qed

have f ‘ characters (G Mod H ) ⊆ C
by (auto simp: characters-def )

moreover have C ⊆ f ‘ characters (G Mod H )
proof safe

fix χ assume χ: χ ∈ C
from χ interpret character G χ

by (auto simp: C-def characters-def )
have [simp]: χ x = 1 if x ∈ H for x

using χ that by (auto simp: C-def )

have ∀H ′∈carrier (G Mod H ). ∃ x∈carrier G. H ′ = H #> x
by (auto simp: carrier-FactGroup)

then obtain h where h: h H ′ ∈ carrier G H ′ = H #> h H ′ if H ′ ∈ carrier
(G Mod H ) for H ′

by metis
define χ ′ where χ ′ = (λH ′. if H ′ ∈ carrier (G Mod H ) then χ (h H ′) else

0 )

have χ-cong: χ x = χ y if H #> x = H #> y x ∈ carrier G y ∈ carrier
G for x y

proof −
have x ∈ H #> x

by (simp add: H .subgroup-axioms rcos-self that(2 ))
also have . . . = H #> y

by fact
finally obtain z where z: z ∈ H x = z ⊗ y

unfolding r-coset-def by auto
thus ?thesis

using z H .subset that by simp
qed

have character (G Mod H ) χ ′

proof (unfold-locales, goal-cases)
case 1
have H : H ∈ carrier (G Mod H )
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using Fact.one-closed unfolding one-FactGroup .
with h[of H ] have h H ∈ carrier G

by blast
thus ?case using H

by (auto simp: char-eq-0-iff χ ′-def )
next

case (2 H ′)
thus ?case by (auto simp: χ ′-def )

next
case (3 H1 H2 )
from 3 have H12 : H1 <#> H2 ∈ carrier (G Mod H )

using Fact.m-closed by force
have χ (h (H1 <#> H2 )) = χ (h H1 ⊗ h H2 )
proof (rule χ-cong)

show H #> h (H1 <#> H2 ) = H #> (h H1 ⊗ h H2 )
by (metis 3 H .rcos-sum H12 h)

qed (use 3 h[of H1 ] h[of H2 ] h[OF H12 ] in auto)
thus ?case

using 3 H12 h[of H1 ] h[of H2 ] by (auto simp: χ ′-def )
qed

moreover have f χ ′ x = χ x for x
proof (cases x ∈ carrier G)

case False
thus ?thesis

by (auto simp: f-def χ ′-def char-eq-0-iff )
next

case True
hence ∗: H #> x ∈ carrier (G Mod H )

by (auto simp: carrier-FactGroup)
have χ (h (H #> x)) = χ x

using True ∗ h[of H #> x] by (intro χ-cong) auto
thus ?thesis

using True ∗ by (auto simp: f-def fun-eq-iff χ ′-def )
qed
hence f χ ′ = χ by force

ultimately show χ ∈ f ‘ characters (G Mod H )
unfolding characters-def by blast

qed

ultimately show f ‘ characters (G Mod H ) = C
by blast

qed
thus bij-betw f (carrier (Characters (G Mod H ))) (carrier (Characters G(|carrier

:= C |)))
by (simp add: carrier-Characters)

qed
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qed

lemma (in finite-comm-group) is-iso-Characters-FactGroup:
assumes H : subgroup H G
shows Characters (G Mod H ) ∼= (Characters G)(|carrier := {χ∈characters G.
∀ x∈H . χ x = 1}|)

using iso-Characters-FactGroup[OF assms] unfolding is-iso-def by blast

In order to derive the number of extensions a character on a subgroup has to
the entire group, we introduce the group homomorphism restrict-char that
restricts a character to a given subgroup H.
definition restrict-char :: ′a set ⇒ ( ′a ⇒ complex) ⇒ ( ′a ⇒ complex) where
restrict-char H χ = (λe. if e∈H then χ e else 0 )

lemma (in finite-comm-group) restrict-char-hom:
assumes subgroup H G
shows group-hom (Characters G) (Characters (G(|carrier := H |))) (restrict-char

H )
proof −

let ?CG = Characters G
let ?H = G(|carrier := H |)
let ?CH = Characters ?H
interpret H : subgroup H G by fact
interpret H : finite-comm-group ?H by (simp add: assms subgroup-imp-finite-comm-group)
interpret CG: finite-comm-group ?CG using finite-comm-group-Characters .
interpret CH : finite-comm-group ?CH using H .finite-comm-group-Characters .
show ?thesis
proof(unfold-locales, intro homI )

show restrict-char H x ∈ carrier ?CH if x: x ∈ carrier ?CG for x
proof −
interpret xc: character G x using x unfolding Characters-def characters-def

by simp
have character ?H (restrict-char H x)

by (unfold restrict-char-def , unfold-locales, auto)
thus ?thesis unfolding Characters-def characters-def by simp

qed
show restrict-char H (x ⊗?CG y) = restrict-char H x ⊗?CH restrict-char H y

if x: x ∈ carrier ?CG and y: y ∈ carrier ?CG for x y
proof −
interpret xc: character G x using x unfolding Characters-def characters-def

by simp
interpret yc: character G y using y unfolding Characters-def characters-def

by simp
show ?thesis unfolding Characters-def restrict-char-def by auto

qed
qed

qed

The kernel is just the set of the characters that are 1 on all of H.
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lemma (in finite-comm-group) restrict-char-kernel:
assumes subgroup H G
shows kernel (Characters G) (Characters (G(|carrier := H |))) (restrict-char H )

= {χ∈characters G. ∀ x∈H . χ x = 1}
by (unfold restrict-char-def kernel-def one-Characters

carrier-Characters principal-char-def characters-def , simp, metis)

Also, all of the characters on the subgroup are the image of some character
on the whole group.
lemma (in finite-comm-group) restrict-char-image:

assumes subgroup H G
shows restrict-char H ‘ (carrier (Characters G)) = carrier (Characters (G(|carrier

:= H |)))
proof −

interpret H : subgroup H G by fact
interpret H : finite-comm-group G(|carrier := H |) using subgroup-imp-finite-comm-group[OF

assms] .
interpret r : group-hom Characters G Characters (G(|carrier := H |)) restrict-char

H
using restrict-char-hom[OF assms] .

interpret Mod: finite-comm-group G Mod H using finite-comm-FactGroup[OF
assms] .
interpret CG: finite-comm-group Characters G using finite-comm-group-Characters

.
have c1 : order (Characters (G(|carrier := H |))) = card H using H .order-Characters

unfolding order-def by simp

have card H ∗ card (kernel (Characters G) (Characters (G(|carrier := H |)))
(restrict-char H ))

= order G
using restrict-char-kernel[OF assms] iso-same-card[OF is-iso-Characters-FactGroup[OF

assms]]
Mod.order-Characters lagrange[OF assms] unfolding order-def Fact-

Group-def
by (force simp: algebra-simps)

moreover have card (kernel (Characters G) (Characters (G(|carrier := H |)))
(restrict-char H )) 6= 0

using r .one-in-kernel unfolding kernel-def CG.fin by auto
ultimately have c2 : card H = card (restrict-char H ‘ carrier (Characters G))
using r .image-kernel-product[unfolded order-Characters] by (metis mult-right-cancel)

have restrict-char H ‘ (carrier (Characters G)) ⊆ carrier (Characters (G(|carrier
:= H |)))

by auto
with c2 H .fin show ?thesis

by (auto, metis H .finite-imp-card-positive c1 card-subset-eq fin-gen
order-def r .H .order-gt-0-iff-finite)

qed
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It follows that any character on H can be extended to a character on G.
lemma (in finite-comm-group) character-extension-exists:

assumes subgroup H G character (G(|carrier := H |)) χ
obtains χ ′ where character G χ ′ and

∧
x. x ∈ H =⇒ χ ′ x = χ x

proof −
from restrict-char-image[OF assms(1 )] assms(2 ) obtain χ ′

where chi ′: restrict-char H χ ′ = χ character G χ ′

by (force simp: carrier-Characters characters-def )
thus ?thesis using that restrict-char-def by metis

qed

For two characters on a group G the number of characters on subgroup H
that share the values with them is the same for both.
lemma (in finite-comm-group) character-restrict-card:

assumes subgroup H G character G a character G b
shows card {χ ′∈characters G. ∀ x∈H . χ ′ x = a x} = card {χ ′∈characters G.
∀ x∈H . χ ′ x = b x}
proof −

interpret H : subgroup H G by fact
interpret H : finite-comm-group G(|carrier := H |) using assms(1 )

by (simp add: subgroup-imp-finite-comm-group)
interpret CG: finite-comm-group Characters G using finite-comm-group-Characters

.
interpret a: character G a by fact
interpret b: character G b by fact
have ac: a ∈ carrier (Characters G) unfolding Characters-def characters-def

using assms by simp
have bc: b ∈ carrier (Characters G) unfolding Characters-def characters-def

using assms by simp
define f where f : f = (λc. b ⊗Characters G invCharacters G a ⊗Characters G c)
define g where g: g = (λc. a ⊗Characters G invCharacters G b ⊗Characters G c)
let ?A = {χ ′∈characters G. ∀ x∈H . χ ′ x = a x}
let ?B = {χ ′∈characters G. ∀ x∈H . χ ′ x = b x}
have bij-betw f ?A ?B
proof(intro bij-betwI [of - - - g])

show f ∈ ?A → ?B
proof

show f x ∈ ?B if x: x ∈ ?A for x
proof −

interpret xc: character G x using x unfolding characters-def by blast
have xc: x ∈ carrier (Characters G) using x unfolding Characters-def by

simp
have f x y = b y if y: y ∈ H for y
proof −

have (invCharacters G a) y ∗ a y = 1
by (simp add: a.inv-Characters a.mult-inv-character mult.commute

principal-char-def y)
thus ?thesis unfolding f mult-Characters using x y by fastforce

qed
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thus f x ∈ ?B unfolding f carrier-Characters[symmetric] using ac bc xc
by blast

qed
qed
show g ∈ ?B → ?A
proof

show g x ∈ ?A if x: x ∈ ?B for x
proof −

interpret xc: character G x using x unfolding characters-def by blast
have xc: x ∈ carrier (Characters G) using x unfolding Characters-def by

simp
have g x y = a y if y: y ∈ H for y
proof −

have (invCharacters G b) y ∗ x y = 1 using x y
by (simp add: b.inv-Characters b.mult-inv-character mult.commute

principal-char-def )
thus ?thesis unfolding g mult-Characters by simp

qed
thus g x ∈ ?A unfolding g carrier-Characters[symmetric] using ac bc xc

by blast
qed

qed
show g (f x) = x if x: x ∈ ?A for x
proof −

have xc: x ∈ carrier (Characters G) using x unfolding Characters-def by
force

with ac bc show ?thesis unfolding f g
by (auto simp: CG.m-assoc[symmetric],

metis CG.inv-closed CG.inv-comm CG.l-inv CG.m-assoc CG.r-one)
qed
show f (g x) = x if x: x ∈ ?B for x
proof −

have xc: x ∈ carrier (Characters G) using x unfolding Characters-def by
force

with ac bc show ?thesis unfolding f g
by (auto simp: CG.m-assoc[symmetric],

metis CG.inv-closed CG.inv-comm CG.l-inv CG.m-assoc CG.r-one)
qed

qed
thus ?thesis using bij-betw-same-card by blast

qed

These lemmas allow to show that the number of extensions of a character
on H to a character on G is just |G|/|H|.
theorem (in finite-comm-group) card-character-extensions:

assumes subgroup H G character (G(|carrier := H |)) χ
shows card {χ ′∈characters G. ∀ x∈H . χ ′ x = χ x} ∗ card H = order G

proof −
interpret H : subgroup H G by fact
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interpret H : finite-comm-group G(|carrier := H |)
using subgroup-imp-finite-comm-group[OF assms(1 )] .

interpret chi: character G(|carrier := H |) χ by fact
interpret C : finite-comm-group Characters G using finite-comm-group-Characters

.
interpret Mod: finite-comm-group G Mod H using finite-comm-FactGroup[OF

assms(1 )] .
obtain a where a: a ∈ carrier (Characters G) restrict-char H a = χ
proof −

have ∃ a∈carrier (Characters G). restrict-char H a = χ
using restrict-char-image[OF assms(1 )] assms(2 )
unfolding carrier-Characters characters-def image-def by force

thus ?thesis using that by blast
qed
show ?thesis
proof −

have p: {χ∈characters G. ∀ x∈H . χ x = 1} = {χ∈characters G. ∀ x∈H . χ x
= principal-char G x}

unfolding principal-char-def by force
have ac: {χ ′∈characters G. ∀ x∈H . χ ′ x = χ x} = {χ ′∈characters G. ∀ x∈H .

χ ′ x = a x}
using a(2 ) unfolding restrict-char-def by force

have card {χ∈characters G. ∀ x∈H . χ x = 1} = card {χ ′∈characters G. ∀ x∈H .
χ ′ x = χ x}

by (unfold ac p; intro character-restrict-card[OF assms(1 )],
use a[unfolded Characters-def characters-def ] in auto)

moreover have card {χ∈characters G. ∀ x∈H . χ x = 1} = card (carrier (G
Mod H ))

using iso-same-card[OF is-iso-Characters-FactGroup[OF assms(1 )]]
Mod.order-Characters[unfolded order-def ] by force

moreover have card (carrier (G Mod H )) ∗ card H = order G
using lagrange[OF assms(1 )] unfolding FactGroup-def by simp

ultimately show ?thesis by argo
qed

qed

Lastly, we can also show that for each x ∈ H of order n > 1 and each n-th
root of unity z, there exists a character χ on G such that χ(x) = z.
lemma (in group) powi-get-exp-self :

fixes z::complex
assumes z ^ n = 1 x ∈ carrier G ord x = n n > 1
shows z powi get-exp x x = z

proof −
from assms have ngt0 : n > 0 by simp
from powi-mod[OF assms(1 ) ngt0 , of get-exp x x] get-exp-self [OF assms(2 ),

unfolded assms(3 )]
have z powi get-exp x x = z powi (1 mod int n) by argo
also have . . . = z using assms(4 ) by simp
finally show ?thesis .
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qed

corollary (in finite-comm-group) character-with-value-exists:
assumes x ∈ carrier G and x 6= 1 and z ^ ord x = 1
obtains χ where character G χ and χ x = z

proof −
interpret H : subgroup generate G {x} G using generate-is-subgroup assms(1 )

by simp
interpret H : finite-comm-group G(|carrier := generate G {x}|)

using subgroup-imp-finite-comm-group[OF H .subgroup-axioms] .
interpret H : finite-cyclic-group G(|carrier := generate G {x}|) x
proof(unfold finite-cyclic-group-def , safe)

show finite-group (G(|carrier := generate G {x}|)) by unfold-locales
show cyclic-group (G(|carrier := generate G {x}|)) x
proof(intro H .cyclic-groupI0 )

show x ∈ carrier (G(|carrier := generate G {x}|)) using generate.incl[of x
{x} G] by simp

show carrier (G(|carrier := generate G {x}|)) = generate (G(|carrier :=
generate G {x}|)) {x}

using generate-consistent[OF generate-sincl H .subgroup-axioms] by simp
qed

qed
have ox: H .ord x = ord x using H .gen-closed H .subgroup-axioms subgroup-ord-eq

by auto
have ogt1 : ord x > 1 using ord-pos by (metis assms(1 , 2 ) less-one nat-neq-iff

ord-eq-1 )
from assms H .unity-root-induce-char [unfolded H .ord-gen-is-group-order [symmetric]

ox, OF assms(3 )]
obtain c where c: character (G(|carrier := generate G {x}|)) c

c = (λa. if a ∈ carrier (G(|carrier := generate G {x}|))
then z powi H .get-exp x a else 0 ) by blast

have cx: c x = z unfolding c(2 )
using H .powi-get-exp-self [OF assms(3 ) - ox ogt1 ] generate-sincl[of {x}] by

simp
obtain f where f : character G f

∧
y. y ∈ (generate G {x}) =⇒ f y = c y

using character-extension-exists[OF H .subgroup-axioms c(1 )] by blast
show ?thesis by (intro that[OF f (1 )], use cx f (2 ) generate-sincl in blast)

qed

In particular, for any x that is not the identity element, there exists a char-
acter χ such that χ(x) 6= 1.
corollary (in finite-comm-group) character-neq-1-exists:

assumes x ∈ carrier G and x 6= 1
obtains χ where character G χ and χ x 6= 1

proof −
define z where z = cis (2 ∗ pi / ord x)
have z-pow-h: z ^ ord x = 1

by (auto simp: z-def DeMoivre)
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from assms have ord x ≥ 1 by (intro ord-ge-1 ) auto
moreover have ord x 6= 1

using pow-ord-eq-1 [of x] assms fin by (intro notI ) simp-all
ultimately have ord x > 1 by linarith

have [simp]: z 6= 1
proof

assume z = 1
have bij-betw (λk. cis (2 ∗ pi ∗ real k / real (ord x))) {..<ord x} {z. z ^ ord x

= 1}
using ‹ord x > 1 › by (intro bij-betw-roots-unity) auto

hence inj: inj-on (λk. cis (2 ∗ pi ∗ real k / real (ord x))) {..<ord x}
by (auto simp: bij-betw-def )

have 0 = (1 :: nat)
using ‹z = 1 › and ‹ord x > 1 › by (intro inj-onD[OF inj]) (auto simp: z-def )

thus False by simp
qed

obtain χ where character G χ and χ x = z
using character-with-value-exists[OF assms z-pow-h] .

thus ?thesis using that[of χ] by simp
qed

1.6 The first orthogonality relation

The entries of any non-principal character sum to 0.
theorem (in character) sum-character :
(
∑

x∈carrier G. χ x) = (if χ = principal-char G then of-nat (order G) else 0 )
proof (cases χ = principal-char G)

case True
hence (

∑
x∈carrier G. χ x) = (

∑
x∈carrier G. 1 )

by (intro sum.cong) (auto simp: principal-char-def )
also have . . . = order G by (simp add: order-def )
finally show ?thesis using True by simp

next
case False
define S where S = (

∑
x∈carrier G. χ x)

from False obtain y where y: y ∈ carrier G χ y 6= 1
by (auto simp: principal-char-def fun-eq-iff char-eq-0-iff split: if-splits)

from y have S = (
∑

x∈carrier G. χ (y ⊗ x)) unfolding S-def
by (intro sum.reindex-bij-betw [symmetric] bij-betw-mult-left)

also have . . . = (
∑

x∈carrier G. χ y ∗ χ x)
by (intro sum.cong refl char-mult y)

also have . . . = χ y ∗ S by (simp add: S-def sum-distrib-left)
finally have (χ y − 1 ) ∗ S = 0 by (simp add: algebra-simps)
with y have S = 0 by simp
with False show ?thesis by (simp add: S-def )

qed
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corollary (in finite-comm-group) character-orthogonality1 :
assumes character G χ and character G χ ′

shows (
∑

x∈carrier G. χ x ∗ cnj (χ ′ x)) = (if χ = χ ′ then of-nat (order G)
else 0 )
proof −

define C where [simp]: C = Characters G
interpret C : finite-comm-group C unfolding C-def

by (rule finite-comm-group-Characters)
let ?χ = λx. χ x ∗ inv-character χ ′ x
interpret character G λx. χ x ∗ inv-character χ ′ x

by (intro character-mult character .inv-character assms)
have (

∑
x∈carrier G. χ x ∗ cnj (χ ′ x)) = (

∑
x∈carrier G. ?χ x)

by (intro sum.cong) (auto simp: inv-character-def )
also have . . . = (if ?χ = principal-char G then of-nat (order G) else 0 )

by (rule sum-character)
also have ?χ = principal-char G ←→ χ ⊗C invC χ ′ = 1C

using assms by (simp add: Characters-simps characters-def )
also have . . . ←→ χ = χ ′

proof
assume χ ⊗C invC χ ′ = 1C
from C .inv-equality [OF this] and assms show χ = χ ′

by (auto simp: characters-def Characters-simps)
next

assume ∗: χ = χ ′

from assms show χ ⊗C invC χ ′ = 1C
by (subst ∗, intro C .r-inv) (auto simp: carrier-Characters characters-def )

qed
finally show ?thesis .

qed

1.7 The isomorphism between a group and its double dual

Lastly, we show that the double dual of a finite abelian group is naturally
isomorphic to the original group via the obvious isomorphism x 7→ (χ 7→
χ(x)). It is easy to see that this is a homomorphism and that it is injective.
The fact | ̂̂G| = |Ĝ| = |G| then shows that it is also surjective.
context finite-comm-group
begin

definition double-dual-iso :: ′a ⇒ ( ′a ⇒ complex) ⇒ complex where
double-dual-iso x = (λχ. if character G χ then χ x else 0 )

lemma double-dual-iso-apply [simp]: character G χ =⇒ double-dual-iso x χ = χ x
by (simp add: double-dual-iso-def )

lemma character-double-dual-iso [intro]:
assumes x: x ∈ carrier G
shows character (Characters G) (double-dual-iso x)
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proof −
interpret G ′: finite-comm-group Characters G

by (rule finite-comm-group-Characters)
show character (Characters G) (double-dual-iso x)

using x by unfold-locales (auto simp: double-dual-iso-def characters-def Char-
acters-def

principal-char-def character .char-eq-0 )
qed

lemma double-dual-iso-mult [simp]:
assumes x ∈ carrier G y ∈ carrier G
shows double-dual-iso (x ⊗ y) =

double-dual-iso x ⊗Characters (Characters G) double-dual-iso y
using assms by (auto simp: double-dual-iso-def Characters-def fun-eq-iff charac-

ter .char-mult)

lemma double-dual-iso-one [simp]:
double-dual-iso 1 = principal-char (Characters G)
by (auto simp: fun-eq-iff double-dual-iso-def principal-char-def

carrier-Characters characters-def character .char-one)

lemma inj-double-dual-iso: inj-on double-dual-iso (carrier G)
proof −

interpret G ′: finite-comm-group Characters G
by (rule finite-comm-group-Characters)

interpret G ′′: finite-comm-group Characters (Characters G)
by (rule G ′.finite-comm-group-Characters)

have hom: double-dual-iso ∈ hom G (Characters (Characters G))
by (rule homI ) (auto simp: carrier-Characters characters-def )

have inj-aux: x = 1
if x: x ∈ carrier G double-dual-iso x = 1Characters (Characters G) for x

proof (rule ccontr)
assume x 6= 1
obtain χ where χ: character G χ χ x 6= 1

using character-neq-1-exists[OF x(1 ) ‹x 6= 1›] .
from x have ∀χ. (if χ ∈ characters G then χ x else 0 ) = (if χ ∈ characters

G then 1 else 0 )
by (auto simp: double-dual-iso-def Characters-def fun-eq-iff

principal-char-def characters-def )
hence eq1 : ∀χ∈characters G. χ x = 1 by metis
with χ show False unfolding characters-def by auto

qed
thus ?thesis

using inj-aux hom is-group G ′′.is-group by (subst inj-on-one-iff ′) auto
qed

lemma double-dual-iso-eq-iff [simp]:
x ∈ carrier G =⇒ y ∈ carrier G =⇒ double-dual-iso x = double-dual-iso y ←→

x = y
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by (auto dest: inj-onD[OF inj-double-dual-iso])

theorem double-dual-iso: double-dual-iso ∈ iso G (Characters (Characters G))
proof (rule isoI )

interpret G ′: finite-comm-group Characters G
by (rule finite-comm-group-Characters)

interpret G ′′: finite-comm-group Characters (Characters G)
by (rule G ′.finite-comm-group-Characters)

show hom: double-dual-iso ∈ hom G (Characters (Characters G))
by (rule homI ) (auto simp: carrier-Characters characters-def )

show bij-betw double-dual-iso (carrier G) (carrier (Characters (Characters G)))
unfolding bij-betw-def

proof
show inj-on double-dual-iso (carrier G) by (fact inj-double-dual-iso)

next
show double-dual-iso ‘ carrier G = carrier (Characters (Characters G))
proof (rule card-subset-eq)

show finite (carrier (Characters (Characters G)))
by (fact G ′′.fin)

next
have card (carrier (Characters (Characters G))) = card (carrier G)

by (simp add: carrier-Characters G ′.card-characters card-characters or-
der-def )

also have . . . = card (double-dual-iso ‘ carrier G)
by (intro card-image [symmetric] inj-double-dual-iso)

finally show card (double-dual-iso ‘ carrier G) =
card (carrier (Characters (Characters G))) ..

next
show double-dual-iso ‘ carrier G ⊆ carrier (Characters (Characters G))

using hom by (auto simp: hom-def )
qed

qed
qed

lemma double-dual-is-iso: Characters (Characters G) ∼= G
by (rule iso-sym) (use double-dual-iso in ‹auto simp: is-iso-def ›)

The second orthogonality relation follows from the first one via Pontryagin
duality:
theorem sum-characters:

assumes x: x ∈ carrier G
shows (

∑
χ∈characters G. χ x) = (if x = 1 then of-nat (order G) else 0 )

proof −
interpret G ′: finite-comm-group Characters G

by (rule finite-comm-group-Characters)
interpret x: character Characters G double-dual-iso x

using x by auto
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from x.sum-character show ?thesis using double-dual-iso-eq-iff [of x 1] x
by (auto simp: characters-def carrier-Characters order-Characters simp del:

double-dual-iso-eq-iff )
qed

corollary character-orthogonality2 :
assumes x ∈ carrier G y ∈ carrier G
shows (

∑
χ∈characters G. χ x ∗ cnj (χ y)) = (if x = y then of-nat (order G)

else 0 )
proof −

from assms have (
∑

χ∈characters G. χ x ∗ cnj (χ y)) = (
∑

χ∈characters G.
χ (x ⊗ inv y))

by (intro sum.cong) (simp-all add: character .char-inv character .char-mult char-
acters-def )

also from assms have . . . = (if x ⊗ inv y = 1 then of-nat (order G) else 0 )
by (intro sum-characters) auto

also from assms have x ⊗ inv y = 1 ←→ x = y
using inv-equality[of x inv y] by auto

finally show ?thesis .
qed

end

no-notation integer-mod-group (‹Z ›)
end

2 Dirichlet Characters
theory Dirichlet-Characters
imports

Multiplicative-Characters
HOL−Number-Theory.Residues
Dirichlet-Series.Multiplicative-Function

begin

Dirichlet characters are essentially just the characters of the multiplicative
group of integer residues ZZ/nZZ for some fixed n. For convenience, these
residues are usually represented by natural numbers from 0 to n − 1, and
we extend the characters to all natural numbers periodically, so that χ(k
mod n) = χ(k) holds.
Numbers that are not coprime to n are not in the group and therefore are
assigned 0 by all characters.

2.1 The multiplicative group of residues
definition residue-mult-group :: nat ⇒ nat monoid where

residue-mult-group n = (| carrier = totatives n, monoid.mult = (λx y. (x ∗ y)
mod n), one = 1 |)
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definition principal-dchar :: nat ⇒ nat ⇒ complex where
principal-dchar n = (λk. if coprime k n then 1 else 0 )

lemma principal-dchar-coprime [simp]: coprime k n =⇒ principal-dchar n k = 1
and principal-dchar-not-coprime [simp]: ¬coprime k n =⇒ principal-dchar n k =

0
by (simp-all add: principal-dchar-def )

lemma principal-dchar-1 [simp]: principal-dchar n 1 = 1
by simp

lemma principal-dchar-minus1 [simp]:
assumes n > 0
shows principal-dchar n (n − Suc 0 ) = 1

proof (cases n = 1 )
case False
with assms have n > 1 by linarith
thus ?thesis using coprime-diff-one-left-nat[of n]

by (intro principal-dchar-coprime) auto
qed auto

lemma mod-in-totatives: n > 1 =⇒ a mod n ∈ totatives n ←→ coprime a n
by (auto simp: totatives-def mod-greater-zero-iff-not-dvd dest: coprime-common-divisor-nat)

bundle dcharacter-syntax
begin
notation principal-dchar (‹χ0ı›)
end

locale residues-nat =
fixes n :: nat (structure) and G
assumes n: n > 1
defines G ≡ residue-mult-group n

begin

lemma order [simp]: order G = totient n
by (simp add: order-def G-def totient-def residue-mult-group-def )

lemma totatives-mod [simp]: x ∈ totatives n =⇒ x mod n = x
using n by (intro mod-less) (auto simp: totatives-def intro!: order .not-eq-order-implies-strict)

lemma principal-dchar-minus1 [simp]: principal-dchar n (n − Suc 0 ) = 1
using principal-dchar-minus1 [of n] n by simp

sublocale finite-comm-group G
proof

fix x y assume xy: x ∈ carrier G y ∈ carrier G
hence coprime (x ∗ y) n
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by (auto simp: G-def residue-mult-group-def totatives-def )
with xy and n show x ⊗G y ∈ carrier G

using coprime-common-divisor-nat[of x ∗ y n]
by (auto simp: G-def residue-mult-group-def totatives-def

mod-greater-zero-iff-not-dvd le-Suc-eq simp del: coprime-mult-left-iff )
next

fix x y z assume xyz: x ∈ carrier G y ∈ carrier G z ∈ carrier G
thus x ⊗G y ⊗G z = x ⊗G (y ⊗G z)

by (auto simp: G-def residue-mult-group-def mult-ac mod-mult-right-eq)
next

fix x assume x ∈ carrier G
with n have x < n by (auto simp: G-def residue-mult-group-def totatives-def

intro!: order .not-eq-order-implies-strict)
thus 1G ⊗G x = x and x ⊗G 1G = x

by (simp-all add: G-def residue-mult-group-def )
next

have x ∈ Units G if x ∈ carrier G for x unfolding Units-def
proof safe

from that have x > 0 coprime x n
by (auto simp: G-def residue-mult-group-def totatives-def )

from ‹coprime x n› and n obtain y where y: y < n [x ∗ y = 1 ] (mod n)
by (subst (asm) coprime-iff-invertible ′-nat) auto

hence x ∗ y mod n = 1
using n by (simp add: cong-def mult-ac)

moreover from y have coprime y n
by (subst coprime-iff-invertible-nat) (auto simp: mult.commute)

ultimately show ∃ a∈carrier G. a ⊗G x = 1G ∧ x ⊗G a = 1G using y
by (intro bexI [of - y])
(auto simp: G-def residue-mult-group-def totatives-def mult.commute intro!:

Nat.gr0I )
qed fact+
thus carrier G ⊆ Units G ..

qed (insert n, auto simp: G-def residue-mult-group-def mult-ac)

2.2 Definition of Dirichlet characters

The following two functions make the connection between Dirichlet charac-
ters and the multiplicative characters of the residue group.
definition c2dc :: (nat ⇒ complex) ⇒ (nat ⇒ complex) where

c2dc χ = (λx. χ (x mod n))

definition dc2c :: (nat ⇒ complex) ⇒ (nat ⇒ complex) where
dc2c χ = (λx. if x < n then χ x else 0 )

lemma dc2c-c2dc [simp]:
assumes character G χ
shows dc2c (c2dc χ) = χ

proof −
interpret character G χ by fact
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show ?thesis
using n by (auto simp: fun-eq-iff dc2c-def c2dc-def char-eq-0-iff G-def

residue-mult-group-def totatives-def )
qed

end

locale dcharacter = residues-nat +
fixes χ :: nat ⇒ complex
assumes mult-aux: a ∈ totatives n =⇒ b ∈ totatives n =⇒ χ (a ∗ b) = χ a ∗ χ

b
assumes eq-zero: ¬coprime a n =⇒ χ a = 0
assumes periodic: χ (a + n) = χ a
assumes one-not-zero: χ 1 6= 0

begin

lemma zero-eq-0 [simp]: χ 0 = 0
using n by (intro eq-zero) auto

lemma Suc-0 [simp]: χ (Suc 0 ) = 1
using n mult-aux[of 1 1 ] one-not-zero by (simp add: totatives-def )

lemma periodic-mult: χ (a + m ∗ n) = χ a
proof (induction m)

case (Suc m)
have a + Suc m ∗ n = a + m ∗ n+ n by simp
also have χ . . . = χ (a + m ∗ n) by (rule periodic)
also have . . . = χ a by (rule Suc.IH )
finally show ?case .

qed simp-all

lemma minus-one-periodic [simp]:
assumes k > 0
shows χ (k ∗ n − 1 ) = χ (n − 1 )

proof −
have k ∗ n − 1 = n − 1 + (k − 1 ) ∗ n

using assms n by (simp add: algebra-simps)
also have χ . . . = χ (n − 1 )

by (rule periodic-mult)
finally show ?thesis .

qed

lemma cong:
assumes [a = b] (mod n)
shows χ a = χ b

proof −
from assms obtain k1 k2 where ∗: b + k1 ∗ n = a + k2 ∗ n

by (subst (asm) cong-iff-lin-nat) auto
have χ a = χ (a + k2 ∗ n) by (rule periodic-mult [symmetric])
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also note ∗ [symmetric]
also have χ (b + k1 ∗ n) = χ b by (rule periodic-mult)
finally show ?thesis .

qed

lemma mod [simp]: χ (a mod n) = χ a
by (rule cong) (simp-all add: cong-def )

lemma mult [simp]: χ (a ∗ b) = χ a ∗ χ b
proof (cases coprime a n ∧ coprime b n)

case True
hence a mod n ∈ totatives n b mod n ∈ totatives n
using n by (auto simp: totatives-def mod-greater-zero-iff-not-dvd coprime-absorb-right)

hence χ ((a mod n) ∗ (b mod n)) = χ (a mod n) ∗ χ (b mod n)
by (rule mult-aux)

also have χ ((a mod n) ∗ (b mod n)) = χ (a ∗ b)
by (rule cong) (auto simp: cong-def mod-mult-eq)

finally show ?thesis by simp
next

case False
hence ¬coprime (a ∗ b) n by simp
with False show ?thesis by (auto simp: eq-zero)

qed

sublocale mult: completely-multiplicative-function χ
by standard auto

lemma eq-zero-iff : χ x = 0 ←→ ¬coprime x n
proof safe

assume χ x = 0 and coprime x n
from cong-solve-coprime-nat [OF this(2 )]

obtain y where [x ∗ y = Suc 0 ] (mod n) by blast
hence χ (x ∗ y) = χ (Suc 0 ) by (rule cong)
with ‹χ x = 0 › show False by simp

qed (auto simp: eq-zero)

lemma minus-one ′: χ (n − 1 ) ∈ {−1 , 1}
proof −

define n ′ where n ′ = n − 2
have n: n = Suc (Suc n ′) using n by (simp add: n ′-def )
have (n − 1 ) ^ 2 = 1 + (n − 2 ) ∗ n

by (simp add: power2-eq-square algebra-simps n)
also have χ . . . = 1

by (subst periodic-mult) auto
also have χ ((n − 1 ) ^ 2 ) = χ (n − 1 ) ^ 2

by (rule mult.power)
finally show ?thesis

by (subst (asm) power2-eq-1-iff ) auto
qed
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lemma c2dc-dc2c [simp]: c2dc (dc2c χ) = χ
using n by (auto simp: c2dc-def dc2c-def fun-eq-iff intro!: cong simp: cong-def )

lemma character-dc2c: character G (dc2c χ)
by standard (insert n, auto simp: G-def residue-mult-group-def dc2c-def tota-

tives-def
intro!: eq-zero)

sublocale dc2c: character G dc2c χ
by (fact character-dc2c)

lemma dcharacter-inv-character [intro]: dcharacter n (inv-character χ)
by standard (auto simp: inv-character-def eq-zero periodic)

lemma norm: norm (χ k) = (if coprime k n then 1 else 0 )
proof −

have χ k = χ (k mod n) by (intro cong) (auto simp: cong-def )
also from n have . . . = dc2c χ (k mod n) by (simp add: dc2c-def )
also from n have norm . . . = (if coprime k n then 1 else 0 )
by (subst dc2c.norm-char) (auto simp: G-def residue-mult-group-def mod-in-totatives)

finally show ?thesis .
qed

lemma norm-le-1 : norm (χ k) ≤ 1
by (subst norm) auto

end

definition dcharacters :: nat ⇒ (nat ⇒ complex) set where
dcharacters n = {χ. dcharacter n χ}

context residues-nat
begin

lemma character-dc2c: dcharacter n χ =⇒ character G (dc2c χ)
using dcharacter .character-dc2c[of n χ] by (simp add: G-def )

lemma dcharacter-c2dc:
assumes character G χ
shows dcharacter n (c2dc χ)

proof −
interpret character G χ by fact
show ?thesis
proof

fix x assume ¬coprime x n
thus c2dc χ x = 0

by (auto simp: c2dc-def char-eq-0-iff G-def residue-mult-group-def tota-
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tives-def )
qed (insert char-mult char-one n,

auto simp: c2dc-def G-def residue-mult-group-def simp del: char-mult char-one)
qed

lemma principal-dchar-altdef : principal-dchar n = c2dc (principal-char G)
using n by (auto simp: c2dc-def principal-dchar-def principal-char-def G-def

residue-mult-group-def fun-eq-iff mod-in-totatives)

sublocale principal: dcharacter n G principal-dchar n
by (simp add: principal-dchar-altdef dcharacter-c2dc | rule G-def )+

lemma c2dc-principal [simp]: c2dc (principal-char G) = principal-dchar n
by (simp add: principal-dchar-altdef )

lemma dc2c-principal [simp]: dc2c (principal-dchar n) = principal-char G
proof −

have dc2c (c2dc (principal-char G)) = dc2c (principal-dchar n)
by (subst c2dc-principal) (rule refl)

thus ?thesis by (subst (asm) dc2c-c2dc) simp-all
qed

lemma bij-betw-dcharacters-characters:
bij-betw dc2c (dcharacters n) (characters G)
by (intro bij-betwI [where ?g = c2dc])

(auto simp: characters-def dcharacters-def dcharacter-c2dc
character-dc2c dcharacter .c2dc-dc2c)

lemma bij-betw-characters-dcharacters:
bij-betw c2dc (characters G) (dcharacters n)
by (intro bij-betwI [where ?g = dc2c])

(auto simp: characters-def dcharacters-def dcharacter-c2dc
character-dc2c dcharacter .c2dc-dc2c)

lemma finite-dcharacters [intro]: finite (dcharacters n)
using bij-betw-finite [OF bij-betw-dcharacters-characters] by auto

lemma card-dcharacters [simp]: card (dcharacters n) = totient n
using bij-betw-same-card [OF bij-betw-dcharacters-characters] card-characters by

simp

end

lemma inv-character-eq-principal-dchar-iff [simp]:
inv-character χ = principal-dchar n ←→ χ = principal-dchar n
by (auto simp add: fun-eq-iff inv-character-def principal-dchar-def )
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2.3 Sums of Dirichlet characters
lemma (in dcharacter) sum-dcharacter-totatives:
(
∑

x∈totatives n. χ x) = (if χ = principal-dchar n then of-nat (totient n) else
0 )
proof −

from n have (
∑

x∈totatives n. χ x) = (
∑

x∈carrier G. dc2c χ x)
by (intro sum.cong) (auto simp: totatives-def dc2c-def G-def residue-mult-group-def )

also have . . . = (if dc2c χ = principal-char G then of-nat (order G) else 0 )
by (rule dc2c.sum-character)

also have dc2c χ = principal-char G ←→ χ = principal-dchar n
by (metis c2dc-dc2c dc2c-principal principal-dchar-altdef )

finally show ?thesis by simp
qed

lemma (in dcharacter) sum-dcharacter-block:
(
∑

x<n. χ x) = (if χ = principal-dchar n then of-nat (totient n) else 0 )
proof −

from n have (
∑

x<n. χ x) = (
∑

x∈totatives n. χ x)
by (intro sum.mono-neutral-right)
(auto simp: totatives-def eq-zero-iff intro!: Nat.gr0I order .not-eq-order-implies-strict)

also have . . . = (if χ = principal-dchar n then of-nat (totient n) else 0 )
by (rule sum-dcharacter-totatives)

finally show ?thesis .
qed

lemma (in dcharacter) sum-dcharacter-block ′:
sum χ {Suc 0 ..n} = (if χ = principal-dchar n then of-nat (totient n) else 0 )

proof −
let ?f = λk. if k = n then 0 else k and ?g = λk. if k = 0 then n else k
have sum χ {1 ..n} = sum χ {..<n}

using n by (intro sum.reindex-bij-witness[where j = ?f and i = ?g]) (auto
simp: eq-zero-iff )

thus ?thesis by (simp add: sum-dcharacter-block)
qed

lemma (in dcharacter) sum-lessThan-dcharacter :
assumes χ 6= principal-dchar n
shows (

∑
x<m. χ x) = (

∑
x<m mod n. χ x)

proof (induction m rule: less-induct)
case (less m)
show ?case
proof (cases m < n)

case True
thus ?thesis by simp

next
case False
hence {..<m} = {..<n} ∪ {n..<m} by auto
also have (

∑
x∈. . . . χ x) = (

∑
x<n. χ x) + (

∑
x∈{n..<m}. χ x)

by (intro sum.union-disjoint) auto
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also from assms have (
∑

x<n. χ x) = 0
by (subst sum-dcharacter-block) simp-all

also from False have (
∑

x∈{n..<m}. χ x) = (
∑

x∈{..<m − n}. χ (x + n))
by (intro sum.reindex-bij-witness[of - λx. x + n λx. x − n]) (auto simp:

periodic)
also have . . . = (

∑
x∈{..<m − n}. χ x) by (simp add: periodic)

also have . . . = (
∑

x<(m − n) mod n. χ x)
using False and n by (intro less.IH ) auto

also from False and n have (m − n) mod n = m mod n
by (simp add: le-mod-geq)

finally show ?thesis by simp
qed

qed

lemma (in dcharacter) sum-dcharacter-lessThan-le:
assumes χ 6= principal-dchar n
shows norm (

∑
x<m. χ x) ≤ totient n

proof −
have (

∑
x<m. χ x) = (

∑
x<m mod n. χ x) by (rule sum-lessThan-dcharacter)

fact
also have . . . = (

∑
x | x < m mod n ∧ coprime x n. χ x)

by (intro sum.mono-neutral-right) (auto simp: eq-zero-iff )
also have norm . . . ≤ (

∑
x | x < m mod n ∧ coprime x n. 1 )

by (rule sum-norm-le) (auto simp: norm)
also have . . . = card {x. x < m mod n ∧ coprime x n} by simp
also have . . . ≤ card (totatives n) unfolding of-nat-le-iff
proof (intro card-mono subsetI )

fix x assume x: x ∈ {x. x < m mod n ∧ coprime x n}
hence x < m mod n by simp
also have . . . < n using n by simp
finally show x ∈ totatives n using x

by (auto simp: totatives-def intro!: Nat.gr0I )
qed auto
also have . . . = totient n by (simp add: totient-def )
finally show ?thesis .

qed

lemma (in dcharacter) sum-dcharacter-atMost-le:
assumes χ 6= principal-dchar n
shows norm (

∑
x≤m. χ x) ≤ totient n

using sum-dcharacter-lessThan-le[OF assms, of Suc m] by (subst (asm) lessThan-Suc-atMost)

lemma (in residues-nat) sum-dcharacters:
(
∑

χ∈dcharacters n. χ x) = (if [x = 1 ] (mod n) then of-nat (totient n) else 0 )
proof (cases coprime x n)

case True
with n have x: x mod n ∈ totatives n by (auto simp: mod-in-totatives)
have (

∑
χ∈dcharacters n. χ x) = (

∑
χ∈characters G. c2dc χ x)

by (rule sum.reindex-bij-betw [OF bij-betw-characters-dcharacters, symmetric])
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also from x have . . . = (
∑

χ∈characters G. χ (x mod n))
by (simp add: c2dc-def )

also from x have . . . = (if x mod n = 1 then order G else 0 )
by (subst sum-characters) (unfold G-def residue-mult-group-def , auto)

also from n have x mod n = 1 ←→ [x = 1 ] (mod n)
by (simp add: cong-def )

finally show ?thesis by simp
next

case False
have x mod n 6= 1
proof

assume ∗: x mod n = 1
have gcd (x mod n) n = 1 by (subst ∗) simp
also have gcd (x mod n) n = gcd x n

by (subst gcd.commute) (simp only: gcd-red-nat [symmetric])
finally show False using ‹¬coprime x n› unfolding coprime-iff-gcd-eq-1 by

contradiction
qed
from False have (

∑
χ∈dcharacters n. χ x) = 0

by (intro sum.neutral) (auto simp: dcharacters-def dcharacter .eq-zero)
with ‹x mod n 6= 1 › and n show ?thesis by (simp add: cong-def )

qed

lemma (in dcharacter) even-dcharacter-linear-sum-eq-0 [simp]:
assumes χ 6= principal-dchar n and χ (n − 1 ) = 1
shows (

∑
k=Suc 0 ..<n. of-nat k ∗ χ k) = 0

proof −
have (

∑
k=1 ..<n. of-nat k ∗ χ k) = (

∑
k=1 ..<n. (of-nat n − of-nat k) ∗ χ (n

− k))
by (intro sum.reindex-bij-witness[where i = λk. n − k and j = λk. n − k])

(auto simp: of-nat-diff )
also have . . . = n ∗ (

∑
k=1 ..<n. χ (n − k)) − (

∑
k=1 ..<n. k ∗ χ (n − k))

by (simp add: algebra-simps sum-subtractf sum-distrib-left)
also have (

∑
k=1 ..<n. χ (n − k)) = (

∑
k=1 ..<n. χ k)

by (intro sum.reindex-bij-witness[where i = λk. n − k and j = λk. n − k])
auto

also have . . . = (
∑

k<n. χ k)
by (intro sum.mono-neutral-left) (auto simp: Suc-le-eq)

also have . . . = 0 using assms by (simp add: sum-dcharacter-block)
also have (

∑
k=1 ..<n. of-nat k ∗ χ (n − k)) = (

∑
k=1 ..<n. k ∗ χ k)

proof (intro sum.cong refl)
fix k assume k: k ∈ {1 ..<n}
have of-nat k ∗ χ k = of-nat k ∗ χ ((n − 1 ) ∗ k)

using assms by (subst mult) simp-all
also have (n − 1 ) ∗ k = n − k + (k − 1 ) ∗ n

using k by (simp add: algebra-simps)
also have χ . . . = χ (n − k)

by (rule periodic-mult)
finally show of-nat k ∗ χ (n − k) = of-nat k ∗ χ k ..
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qed
finally show ?thesis by simp

qed

end

3 Dirichlet L-functions
theory Dirichlet-L-Functions
imports

Dirichlet-Characters
HOL−Library.Landau-Symbols
Zeta-Function.Zeta-Function

begin

We can now define the Dirichlet L-functions. These are essentially the func-
tions in the complex plane that the Dirichlet series

∑∞
k=1 χ(k)k

−s converge
to, for some fixed Dirichlet character χ.
First of all, we need to take care of a syntactical problem: The notation for
vectors uses χ as syntax, which causes some annoyance to us, so we disable
it locally.

3.1 Definition and basic properties

We now define Dirichlet L functions as a finite linear combination of Hur-
witz ζ functions. This has the advantage that we directly get the analytic
continuation over the full domain and only need to prove that the series
really converges to this definition whenever it does converge, which is not
hard to do.
definition Dirichlet-L :: nat ⇒ (nat ⇒ complex) ⇒ complex ⇒ complex where

Dirichlet-L m χ s =
(if s = 1 then

if χ = principal-dchar m then 0 else eval-fds (fds χ) 1
else

of-nat m powr − s ∗ (
∑

k = 1 ..m. χ k ∗ hurwitz-zeta (real k / real m) s))

lemma Dirichlet-L-conv-hurwitz-zeta-nonprincipal:
assumes s 6= 1
shows Dirichlet-L n χ s =

of-nat n powr −s ∗ (
∑

k = 1 ..n. χ k ∗ hurwitz-zeta (real k / real n) s)
using assms by (simp add: Dirichlet-L-def )

Analyticity everywhere except 1 is trivial by the above definition, since the
Hurwitz ζ function is analytic everywhere except 1. For L functions of non
principal characters, we will have to show the analyticity at 1 separately
later.
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lemma holomorphic-Dirichlet-L-weak:
assumes m > 0 1 /∈ A
shows Dirichlet-L m χ holomorphic-on A

proof −
have (λs. of-nat m powr − s ∗ (

∑
k = 1 ..m. χ k ∗ hurwitz-zeta (real k / real

m) s))
holomorphic-on A

using assms unfolding Dirichlet-L-def by (intro holomorphic-intros) auto
also have ?this ←→ ?thesis

using assms by (intro holomorphic-cong refl) (auto simp: Dirichlet-L-def )
finally show ?thesis .

qed

context dcharacter
begin

For a real value greater than 1, the formal Dirichlet series of an L function
for some character χ converges to the L function.
lemma

fixes s :: complex
assumes s: Re s > 1
shows abs-summable-Dirichlet-L: summable (λn. norm (χ n ∗ of-nat n powr
−s))

and summable-Dirichlet-L: summable (λn. χ n ∗ of-nat n powr −s)
and sums-Dirichlet-L: (λn. χ n ∗ n powr −s) sums Dirichlet-L n χ s
and Dirichlet-L-conv-eval-fds-weak: Dirichlet-L n χ s = eval-fds (fds χ) s

proof −
define L where L = (

∑
n. χ n ∗ of-nat n powr −s)

show summable (λn. norm (χ n ∗ of-nat n powr −s))
by (subst summable-Suc-iff [symmetric],

rule summable-comparison-test [OF - summable-zeta-real[of Re s]])
(insert s norm, auto intro!: exI [of - 0 ] simp: norm-mult norm-powr-real-powr)

thus summable: summable (λn. χ n ∗ of-nat n powr −s)
by (rule summable-norm-cancel)

hence (λn. χ n ∗ of-nat n powr −s) sums L by (simp add: L-def sums-iff )
from this have (λm.

∑
k = m ∗ n..<m ∗ n + n. χ k ∗ of-nat k powr − s) sums

L
by (rule sums-group) (use n in auto)

also have (λm.
∑

k = m ∗ n..<m ∗ n + n. χ k ∗ of-nat k powr − s) =
(λm. of-nat n powr −s ∗ (

∑
k = 1 ..n. χ k ∗ (of-nat m + of-nat k /

of-nat n) powr − s))
proof (rule ext, goal-cases)

case (1 m)
have (

∑
k = m ∗ n..<m ∗ n + n. χ k ∗ of-nat k powr − s) =

(
∑

k=0 ..<n. χ (k + m ∗ n) ∗ of-nat (m ∗ n + k) powr − s)
by (intro sum.reindex-bij-witness[of - λk. k + m ∗ n λk. k − m ∗ n]) auto

also have . . . = (
∑

k=0 ..<n. χ k ∗ of-nat (m ∗ n + k) powr − s)
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by (simp add: periodic-mult)
also have . . . = (

∑
k=0 ..<n. χ k ∗ (of-nat m + of-nat k / of-nat n) powr −

s ∗ of-nat n powr −s)
proof (intro sum.cong refl, goal-cases)

case (1 k)
have of-nat (m ∗ n + k) = (of-nat m + of-nat k / of-nat n :: complex) ∗

of-nat n
using n by (simp add: divide-simps del: div-mult-self1 div-mult-self2

div-mult-self3 div-mult-self4 )
also have . . . powr −s = (of-nat m + of-nat k / of-nat n) powr −s ∗ of-nat

n powr −s
by (rule powr-times-real) auto

finally show ?case by simp
qed
also have . . . = of-nat n powr −s ∗ (

∑
k=0 ..<n. χ k ∗ (of-nat m + of-nat k

/ of-nat n) powr − s)
by (subst sum-distrib-left) (simp-all add: mult-ac)

also have (
∑

k = 0 ..<n. χ k ∗ (of-nat m + of-nat k / of-nat n) powr − s) =
(
∑

k = 1 ..<n. χ k ∗ (of-nat m + of-nat k / of-nat n) powr − s)
by (intro sum.mono-neutral-right) (auto simp: Suc-le-eq)

also have . . . = (
∑

k = 1 ..n. χ k ∗ (of-nat m + of-nat k / of-nat n) powr −
s)

using periodic-mult[of 0 1 ] by (intro sum.mono-neutral-left) auto
finally show ?case .

qed
finally have . . . sums L .
moreover have (λm. of-nat n powr − s ∗ (

∑
k=1 ..n. χ k ∗ (of-nat m + of-real

(of-nat k / of-nat n)) powr − s)) sums
(of-nat n powr − s ∗ (

∑
k=1 ..n. χ k ∗ hurwitz-zeta (of-nat k /

of-nat n) s))
using s by (intro sums-sum sums-mult sums-hurwitz-zeta) auto

ultimately have L = . . .
by (simp add: sums-iff )

also have . . . = Dirichlet-L n χ s using assms by (auto simp: Dirichlet-L-def )
finally have Dirichlet-L n χ s = (

∑
n. χ n ∗ of-nat n powr −s)

by (simp add: L-def )
with summable show (λn. χ n ∗ n powr −s) sums Dirichlet-L n χ s

by (simp add: sums-iff L-def )
thus Dirichlet-L n χ s = eval-fds (fds χ) s

by (simp add: eval-fds-def sums-iff powr-minus field-simps fds-nth-fds ′)
qed

lemma fds-abs-converges-weak: Re s > 1 =⇒ fds-abs-converges (fds χ) s
using abs-summable-Dirichlet-L[of s]
by (simp add: fds-abs-converges-def powr-minus divide-simps fds-nth-fds ′)

lemma abs-conv-abscissa-weak: abs-conv-abscissa (fds χ) ≤ 1
proof (rule abs-conv-abscissa-leI , goal-cases)

case (1 c)
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thus ?case
by (intro exI [of - of-real c] conjI fds-abs-converges-weak) auto

qed

Dirichlet L functions have the Euler product expansion

L(χ, s) =
∏
p

(
1− χ(p)

p−s

)
for all s with R(s) > 1.
lemma

fixes s :: complex assumes s: Re s > 1
shows Dirichlet-L-euler-product-LIMSEQ:

(λn.
∏

p≤n. if prime p then inverse (1 − χ p / nat-power p s) else 1 )
−−−−→ Dirichlet-L n χ s (is ?th1 )

and Dirichlet-L-abs-convergent-euler-product:
abs-convergent-prod (λp. if prime p then inverse (1 − χ p / p powr s)

else 1 )
(is ?th2 )

proof −
have mult: completely-multiplicative-function (fds-nth (fds χ))
using mult.completely-multiplicative-function-axioms by (simp add: fds-nth-fds ′)

have conv: fds-abs-converges (fds χ) s
using abs-summable-Dirichlet-L[OF s]
by (simp add: fds-abs-converges-def fds-nth-fds ′ powr-minus divide-simps)

have (λn.
∏

p≤n. if prime p then inverse (1 − χ p / nat-power p s) else 1 )
−−−−→ eval-fds (fds χ) s

using fds-euler-product-LIMSEQ ′ [OF mult conv] by (simp add: fds-nth-fds ′

cong: if-cong)
also have eval-fds (fds χ) s = Dirichlet-L n χ s

using sums-Dirichlet-L[OF s] unfolding eval-fds-def
by (simp add: sums-iff fds-nth-fds ′ powr-minus divide-simps)

finally show ?th1 .
from fds-abs-convergent-euler-product ′ [OF mult conv] show ?th2

by (simp add: fds-nth-fds cong: if-cong)
qed

lemma Dirichlet-L-Re-gt-1-nonzero:
assumes Re s > 1
shows Dirichlet-L n χ s 6= 0

proof −
have completely-multiplicative-function (fds-nth (fds χ))

by (simp add: fds-nth-fds ′ mult.completely-multiplicative-function-axioms)
moreover have fds-abs-converges (fds χ) s

using abs-summable-Dirichlet-L[OF assms]
by (simp add: fds-abs-converges-def fds-nth-fds ′ powr-minus divide-simps)

ultimately have (eval-fds (fds χ) s = 0 ) ←→ (∃ p. prime p ∧ fds-nth (fds χ) p
= nat-power p s)

by (rule fds-abs-convergent-zero-iff )
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also have eval-fds (fds χ) s = Dirichlet-L n χ s
using Dirichlet-L-conv-eval-fds-weak[OF assms] by simp

also have ¬(∃ p. prime p ∧ fds-nth (fds χ) p = nat-power p s)
proof safe

fix p :: nat assume p: prime p fds-nth (fds χ) p = nat-power p s
from p have real 1 < real p by (subst of-nat-less-iff ) (auto simp: prime-gt-Suc-0-nat)
also have . . . = real p powr 1 by simp
also from p and assms have real p powr 1 ≤ real p powr Re s

by (intro powr-mono) (auto simp: real-of-nat-ge-one-iff prime-ge-Suc-0-nat)
also have . . . = norm (nat-power p s) by (simp add: norm-nat-power norm-powr-real-powr)
also have nat-power p s = fds-nth (fds χ) p using p by simp
also have norm . . . ≤ 1 by (auto simp: fds-nth-fds ′ norm)
finally show False by simp

qed
finally show ?thesis .

qed

lemma sum-dcharacter-antimono-bound:
fixes x0 a b :: real and f f ′ :: real ⇒ real
assumes nonprincipal: χ 6= χ0

assumes x0 : x0 ≥ 0 and ab: x0 ≤ a a < b
assumes f ′:

∧
x. x ≥ x0 =⇒ (f has-field-derivative f ′ x) (at x)

assumes f-nonneg:
∧

x. x ≥ x0 =⇒ f x ≥ 0
assumes f ′-nonpos:

∧
x. x ≥ x0 =⇒ f ′ x ≤ 0

shows norm (
∑

n∈real −‘ {a<..b}. χ n ∗ (f (real n))) ≤ 2 ∗ real (totient n)
∗ f a
proof −

note deriv = has-field-derivative-at-within [OF f ′]
let ?A = sum-upto χ
have cont: continuous-on {a..b} f

by (rule DERIV-continuous-on[OF deriv]) (use ab in auto)
have I ′: (f ′ has-integral (f b − f a)) {a..b}

using ab deriv by (intro fundamental-theorem-of-calculus)
(auto simp: has-real-derivative-iff-has-vector-derivative [symmetric])

define I where I = integral {a..b} (λt. ?A t ∗ of-real (f ′ t))
define C where C = real (totient n)
have C-nonneg: C ≥ 0 by (simp add: C-def )
have C : norm (?A x) ≤ C for x
proof −

have ?A x = (
∑

k≤nat bxc. χ k) unfolding sum-upto-altdef
by (intro sum.mono-neutral-left) auto

also have norm . . . ≤ C unfolding C-def using nonprincipal
by (rule sum-dcharacter-atMost-le)

finally show ?thesis .
qed

have I : ((λt. ?A t ∗ f ′ t) has-integral ?A b ∗ f b − ?A a ∗ f a −
(
∑

n∈real −‘ {a<..b}. χ n ∗ f (real n))) {a..b} using ab x0 cont f ′
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by (intro partial-summation-strong[of {}] has-vector-derivative-of-real) auto
hence (

∑
n∈real −‘ {a<..b}. χ n ∗ f (real n)) = ?A b ∗ f b − ?A a ∗ f a − I

by (simp add: has-integral-iff I-def )
also have norm . . . ≤ norm (?A b) ∗ norm (f b) + norm (?A a) ∗ norm (f a)

+ norm I
by (rule order .trans[OF norm-triangle-ineq4 ] add-mono)+ (simp-all add: norm-mult)

also have norm I ≤ integral {a..b} (λt. of-real (−C ) ∗ of-real (f ′ t))
unfolding I-def using I I ′ f ′-nonpos ab C
by (intro integral-norm-bound-integral integrable-on-cmult-left)

(simp-all add: has-integral-iff norm-mult mult-right-mono-neg)
also have . . . = − (C ∗ (f b − f a))

using integral-linear [OF - bounded-linear-of-real, of f ′ {a..b}] I ′

by (simp add: has-integral-iff o-def )
also have . . . = C ∗ (f a − f b) by (simp add: algebra-simps)
also have norm (sum-upto χ b) ≤ C by (rule C )
also have norm (sum-upto χ a) ≤ C by (rule C )
also have C ∗ norm (f b) + C ∗ norm (f a) + C ∗ (f a − f b) = 2 ∗ C ∗ f a

using f-nonneg[of a] f-nonneg[of b] ab by (simp add: algebra-simps)
finally show ?thesis by (simp add: mult-right-mono C-def )

qed

lemma summable-dcharacter-antimono:
fixes x0 a b :: real and f f ′ :: real ⇒ real
assumes nonprincipal: χ 6= χ0

assumes f ′:
∧

x. x ≥ x0 =⇒ (f has-field-derivative f ′ x) (at x)
assumes f-nonneg:

∧
x. x ≥ x0 =⇒ f x ≥ 0

assumes f ′-nonpos:
∧

x. x ≥ x0 =⇒ f ′ x ≤ 0
assumes lim: (f −−−→ 0 ) at-top
shows summable (λn. χ n ∗ f n)

proof (rule summable-bounded-partials [where ?g = λx. 2 ∗ real (totient n) ∗ f
x], goal-cases)

case 1
from eventually-ge-at-top[of nat dx0 e] show ?case
proof eventually-elim

case (elim x)
show ?case
proof (safe, goal-cases)

case (1 a b)
with elim have ∗: max 0 x0 ≥ 0 max 0 x0 ≤ a real a < real b

by (simp-all add: nat-le-iff ceiling-le-iff )
have (

∑
n∈{a<..b}. χ n ∗ complex-of-real (f (real n))) =

(
∑

n∈real −‘ {real a<..real b}. χ n ∗ complex-of-real (f (real n)))
by (intro sum.cong refl) auto

also have norm . . . ≤ 2 ∗ real (totient n) ∗ f a
using nonprincipal ∗ f ′ f-nonneg f ′-nonpos by (rule sum-dcharacter-antimono-bound)

simp-all
finally show ?case .

qed
qed
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qed (auto intro!: tendsto-mult-right-zero filterlim-compose[OF lim] filterlim-real-sequentially)

lemma conv-abscissa-le-0 :
fixes s :: real
assumes nonprincipal: χ 6= χ0

shows conv-abscissa (fds χ) ≤ 0
proof (rule conv-abscissa-leI )

fix s assume s: 0 < ereal s
have summable (λn. χ n ∗ of-real (n powr −s))
proof (rule summable-dcharacter-antimono[of 1 ])

fix x :: real assume x ≥ 1
thus ((λx. x powr −s) has-field-derivative (−s ∗ x powr (−s−1 ))) (at x)

by (auto intro!: derivative-eq-intros)
qed (insert s assms, auto intro!: tendsto-neg-powr filterlim-ident)
thus ∃ s ′::complex. s ′ · 1 = s ∧ fds-converges (fds χ) s ′ using s

by (intro exI [of - of-real s])
(auto simp: fds-converges-def powr-minus divide-simps powr-of-real [symmetric]

fds-nth-fds ′)
qed

lemma summable-Dirichlet-L ′:
assumes nonprincipal: χ 6= χ0

assumes s: Re s > 0
shows summable (λn. χ n ∗ of-nat n powr −s)

proof −
from assms have fds-converges (fds χ) s

by (intro fds-converges le-less-trans[OF conv-abscissa-le-0 ]) auto
thus ?thesis by (simp add: fds-converges-def powr-minus divide-simps fds-nth-fds ′)

qed

lemma
assumes χ 6= χ0

shows Dirichlet-L-conv-eval-fds:
∧

s. Re s > 0 =⇒ Dirichlet-L n χ s = eval-fds
(fds χ) s

and holomorphic-Dirichlet-L: Dirichlet-L n χ holomorphic-on A
proof −

show eq: Dirichlet-L n χ s = eval-fds (fds χ) s (is ?f s = ?g s) if Re s > 0 for s
proof (cases s = 1 )

case False
show ?thesis
proof (rule analytic-continuation-open[where ?f = ?f and ?g = ?g])

show {s. Re s > 1} ⊆ {s. Re s > 0} − {1} by auto
show connected ({s. 0 < Re s} − {1})

using aff-dim-halfspace-gt[of 0 1 ::complex]
by (intro connected-punctured-convex convex-halfspace-Re-gt) auto

qed (insert that n assms False,
auto intro!: convex-halfspace-Re-gt open-halfspace-Re-gt exI [of - 2 ]

holomorphic-intros holomorphic-Dirichlet-L-weak
Dirichlet-L-conv-eval-fds-weak le-less-trans[OF conv-abscissa-le-0 ])
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qed (insert assms, simp-all add: Dirichlet-L-def )

have Dirichlet-L n χ holomorphic-on UNIV
proof (rule no-isolated-singularity ′)

from n show Dirichlet-L n χ holomorphic-on (UNIV − {1})
by (intro holomorphic-Dirichlet-L-weak) auto

next
fix s :: complex assume s: s ∈ {1}
show Dirichlet-L n χ −s→ Dirichlet-L n χ s
proof (rule Lim-transform-eventually)

from assms have continuous-on {s. Re s > 0} (eval-fds (fds χ))
by (intro holomorphic-fds-eval holomorphic-on-imp-continuous-on)
(auto intro: le-less-trans[OF conv-abscissa-le-0 ])

hence eval-fds (fds χ) −s→ eval-fds (fds χ) s using s
by (subst (asm) continuous-on-eq-continuous-at) (auto simp: open-halfspace-Re-gt

isCont-def )
also have eval-fds (fds χ) s = Dirichlet-L n χ s

using assms s by (simp add: Dirichlet-L-def )
finally show eval-fds (fds χ) −s→ Dirichlet-L n χ s .

next
have eventually (λz. z ∈ {z. Re z > 0}) (nhds s) using s

by (intro eventually-nhds-in-open) (auto simp: open-halfspace-Re-gt)
hence eventually (λz. z ∈ {z. Re z > 0}) (at s)

unfolding eventually-at-filter by eventually-elim auto
then show eventually (λz. eval-fds (fds χ) z = Dirichlet-L n χ z) (at s)

by eventually-elim (auto intro!: eq [symmetric])
qed

qed auto
thus Dirichlet-L n χ holomorphic-on A by (rule holomorphic-on-subset) auto

qed

lemma cnj-Dirichlet-L:
cnj (Dirichlet-L n χ s) = Dirichlet-L n (inv-character χ) (cnj s)

proof −
{

assume ∗: χ 6= χ0 s = 1
with summable-Dirichlet-L ′[of 1 ] have (λn. χ n / n) sums eval-fds (fds χ) 1

by (simp add: eval-fds-def fds-nth-fds ′ powr-minus sums-iff divide-simps)
hence (λn. inv-character χ n / n) sums cnj (eval-fds (fds χ) 1 )

by (subst (asm) sums-cnj [symmetric]) (simp add: inv-character-def )
hence eval-fds (fds (inv-character χ)) 1 = cnj (eval-fds (fds χ) 1 )

by (simp add: eval-fds-def fds-nth-fds ′ inv-character-def sums-iff )
}
thus ?thesis by (auto simp add: Dirichlet-L-def cnj-powr eval-inv-character)

qed
end

lemma holomorphic-Dirichlet-L [holomorphic-intros]:
assumes n > 1 χ 6= principal-dchar n ∧ dcharacter n χ ∨ χ = principal-dchar
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n ∧ 1 /∈ A
shows Dirichlet-L n χ holomorphic-on A
using assms(2 )

proof
assume χ = principal-dchar n ∧ 1 /∈ A
with holomorphic-Dirichlet-L-weak[of n A principal-dchar n] assms(1 ) show

?thesis by auto
qed (insert dcharacter .holomorphic-Dirichlet-L[of n χ A], auto)

lemma holomorphic-Dirichlet-L ′ [holomorphic-intros]:
assumes n > 1 f holomorphic-on A

χ 6= principal-dchar n ∧ dcharacter n χ ∨ χ = principal-dchar n ∧ (∀ x∈A.
f x 6= 1 )

shows (λs. Dirichlet-L n χ (f s)) holomorphic-on A
using holomorphic-on-compose[OF assms(2 ) holomorphic-Dirichlet-L[OF assms(1 ),

of χ]] assms
by (auto simp: o-def image-iff )

lemma continuous-on-Dirichlet-L:
assumes n > 1 χ 6= principal-dchar n ∧ dcharacter n χ ∨ χ = principal-dchar

n ∧ 1 /∈ A
shows continuous-on A (Dirichlet-L n χ)
using assms by (intro holomorphic-on-imp-continuous-on holomorphic-intros)

lemma continuous-on-Dirichlet-L ′ [continuous-intros]:
assumes continuous-on A f n > 1

and χ 6= principal-dchar n ∧ dcharacter n χ ∨ χ = principal-dchar n ∧
(∀ x∈A. f x 6= 1 )

shows continuous-on A (λx. Dirichlet-L n χ (f x))
using continuous-on-compose2 [OF continuous-on-Dirichlet-L[of n χ f ‘ A] assms(1 )]

assms
by (auto simp: image-iff )

corollary continuous-Dirichlet-L [continuous-intros]:
n > 1 =⇒ χ 6= principal-dchar n ∧ dcharacter n χ ∨ χ = principal-dchar n ∧ s
6= 1 =⇒

continuous (at s within A) (Dirichlet-L n χ)
by (rule continuous-within-subset[of - UNIV ])

(insert continuous-on-Dirichlet-L[of n χ (if χ = principal-dchar n then −{1}
else UNIV )],

auto simp: continuous-on-eq-continuous-at open-Compl)

corollary continuous-Dirichlet-L ′ [continuous-intros]:
n > 1 =⇒ continuous (at s within A) f =⇒

χ 6= principal-dchar n ∧ dcharacter n χ ∨ χ = principal-dchar n ∧ f s 6= 1
=⇒

continuous (at s within A) (λx. Dirichlet-L n χ (f x))
by (rule continuous-within-compose3 [OF continuous-Dirichlet-L]) auto
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context residues-nat
begin

Applying the above to the L(χ0, s), the L function of the principal character,
we find that it differs from the Riemann ζ function only by multiplication
with a constant that depends only on the modulus n. They therefore have
the same analytic properties as the ζ function itself.
lemma Dirichlet-L-principal:

fixes s :: complex
shows Dirichlet-L n χ0 s = (

∏
p | prime p ∧ p dvd n. (1 − 1 / p powr s)) ∗

zeta s
(is ?f s = ?g s)

proof (cases s = 1 )
case False
show ?thesis
proof (rule analytic-continuation-open[where ?f = ?f and ?g = ?g])

show {s. Re s > 1} ⊆ − {1} by auto
show ?f s = ?g s if s ∈ {s. Re s > 1} for s
proof −

from that have s: Re s > 1 by simp
let ?P = (

∏
p | prime p ∧ p dvd n. (1 − 1 / p powr s))

have (λn.
∏

p≤n. if prime p then inverse (1 − χ0 p / nat-power p s) else 1 )
−−−−→ Dirichlet-L n χ0 s

using s by (rule principal.Dirichlet-L-euler-product-LIMSEQ)
also have ?this ←→ (λn. ?P ∗ (

∏
p≤n. if prime p then inverse (1 − 1 /

of-nat p powr s) else 1 ))
−−−−→ Dirichlet-L n χ0 s (is - = filterlim ?g - -)

proof (intro tendsto-cong eventually-mono [OF eventually-ge-at-top, of n],
goal-cases)

case (1 m)
let ?f = λp. inverse (1 − 1 / p powr s)
have (

∏
p≤m. if prime p then inverse (1 − χ0 p / nat-power p s) else 1 ) =

(
∏

p | p ≤ m ∧ prime p ∧ coprime p n. ?f p) (is - = prod - ?A)
by (intro prod.mono-neutral-cong-right) (auto simp: principal-dchar-def )

also have ?A = {p. p ≤ m ∧ prime p} − {p. prime p ∧ p dvd n}
(is - = ?B − ?C ) using n by (auto dest: prime-imp-coprime simp:

coprime-absorb-left)
also {

have ∗: (
∏

p∈?B. ?f p) = (
∏

p∈?B − ?C . ?f p) ∗ (
∏

p∈?C . ?f p)
using 1 n by (intro prod.subset-diff ) (auto dest: dvd-imp-le)

have (
∏

p∈?B. ?f p) ∗ ?P = (
∏

p∈?B − ?C . ?f p) ∗ ((
∏

p∈?C . ?f p) ∗
?P)

by (subst ∗) (simp add: mult-ac)
also have (

∏
p∈?C . ?f p) ∗ ?P = (

∏
p∈?C . 1 )

by (subst prod.distrib [symmetric], rule prod.cong)
(insert s, auto simp: divide-simps powr-def exp-eq-1 )

also have . . . = 1 by simp
finally have (

∏
p∈?B − ?C . ?f p) = (

∏
p∈?B. ?f p) ∗ ?P by simp
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}
also have (

∏
p∈?B. ?f p) = (

∏
p≤m. if prime p then ?f p else 1 )

by (intro prod.mono-neutral-cong-left) auto
finally show ?case by (simp only: mult-ac)

qed
finally have ?g −−−−→ Dirichlet-L n χ0 s .
moreover have ?g −−−−→ ?P ∗ zeta s

by (intro tendsto-mult tendsto-const euler-product-zeta s)
ultimately show Dirichlet-L n χ0 s = ?P ∗ zeta s

by (rule LIMSEQ-unique)
qed

qed (insert ‹s 6= 1 › n, auto intro!: holomorphic-intros holomorphic-Dirichlet-L-weak

open-halfspace-Re-gt exI [of - 2 ] connected-punctured-universe)
qed (simp-all add: Dirichlet-L-def zeta-1 )
end

3.2 The non-vanishing for R(s) ≥ 1

lemma coprime-prime-exists:
assumes n > (0 :: nat)
obtains p where prime p coprime p n

proof −
from bigger-prime[of n] obtain p where p: prime p p > n by auto
with assms have ¬p dvd n by (auto dest: dvd-imp-le)
with p have coprime p n by (intro prime-imp-coprime)
with that[of p] and p show ?thesis by auto

qed

The case of the principal character is trivial, since it differs from the Riemann
ζ(s) only in a multiplicative factor that is clearly non-zero for R(s) ≥ 1.
theorem (in residues-nat) Dirichlet-L-Re-ge-1-nonzero-principal:

assumes Re s ≥ 1 s 6= 1
shows Dirichlet-L n (principal-dchar n) s 6= 0

proof −
have (

∏
p | prime p ∧ p dvd n. 1 − 1 / p powr s) 6= (0 :: complex)

proof (subst prod-zero-iff )
from n show finite {p. prime p ∧ p dvd n} by (intro finite-prime-divisors)

auto
show ¬(∃ p∈{p. prime p ∧ p dvd n}. 1 − 1 / p powr s = 0 )
proof safe

fix p assume p: prime p p dvd n and 1 − 1 / p powr s = 0
hence norm (p powr s) = 1 by simp

also have norm (p powr s) = real p powr Re s by (simp add: norm-powr-real-powr)
finally show False using p assms by (simp add: powr-def prime-gt-0-nat)

qed
qed
with zeta-Re-ge-1-nonzero[OF assms] show ?thesis by (simp add: Dirichlet-L-principal)

qed
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The proof for non-principal character is quite involved and is typically very
complicated and technical in most textbooks. For instance, Apostol [1]
proves the result separately for real and non-real characters, where the non-
real case is relatively short and nice, but the real case involves a number of
complicated asymptotic estimates.
The following proof, on the other hand – like our proof of the analogous
result for the Riemann ζ function – is based on Newman’s book [4]. Newman
gives a very short, concise, and high-level sketch that we aim to reproduce
faithfully here.
context dcharacter
begin
theorem Dirichlet-L-Re-ge-1-nonzero-nonprincipal:

assumes χ 6= χ0 and Re u ≥ 1
shows Dirichlet-L n χ u 6= 0

proof (cases Re u > 1 )
include dcharacter-syntax
case False
define a where a = −Im u
from False and assms have Re u = 1 by simp
hence [simp]: u = 1 − i ∗ a by (simp add: a-def complex-eq-iff )

show ?thesis
proof

assume Dirichlet-L n χ u = 0
hence zero: Dirichlet-L n χ (1 − i ∗ a) = 0 by simp
define χ ′ where [simp]: χ ′ = inv-character χ

— We define the function Z(s), which is the product of all the Dirichlet L
functions, and its Dirichlet series. Then, similarly to the proof of the non-vanishing
of the Riemann ζ function for R(s) ≥ 1, we define Q(s) = Z(s)Z(s+ ia)Z(s− ia).
Our objective is to show that the Dirichlet series of this function Q converges
everywhere.

define Z where Z = (λs.
∏

χ∈dcharacters n. Dirichlet-L n χ s)
define Z-fds where Z-fds = (

∏
χ∈dcharacters n. fds χ)

define Q where Q = (λs. Z s ^ 2 ∗ Z (s + i ∗ a) ∗ Z (s − i ∗ a))
define Q-fds where Q-fds = Z-fds ^ 2 ∗ fds-shift (i ∗ a) Z-fds ∗ fds-shift (−i

∗ a) Z-fds
let ?sings = {1 , 1 + i ∗ a, 1 − i ∗ a}

— Some preliminary auxiliary facts
define P where P = (λs. (

∏
x∈{p. prime p ∧ p dvd n}. 1 − 1 / of-nat x powr

s :: complex))
have χ0: χ0 ∈ dcharacters n by (auto simp: principal.dcharacter-axioms dchar-

acters-def )
have [continuous-intros]: continuous-on A P for A unfolding P-def

by (intro continuous-intros) (auto simp: prime-gt-0-nat)
from this[of UNIV ] have [continuous-intros]: isCont P s for s

by (auto simp: continuous-on-eq-continuous-at)
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have χ: χ ∈ dcharacters n χ ′ ∈ dcharacters n using dcharacter-axioms
by (auto simp add: dcharacters-def dcharacter .dcharacter-inv-character)

from zero dcharacter .cnj-Dirichlet-L[of n χ 1 − i ∗ a] dcharacter-axioms
have zero ′: Dirichlet-L n χ ′ (1 + i ∗ a) = 0 by simp

have Z = (λs. Dirichlet-L n χ0 s ∗ (
∏

χ∈dcharacters n − {χ0}. Dirichlet-L n
χ s))

unfolding Z-def using χ0 by (intro ext prod.remove) auto
also have . . . = (λs. P s ∗ zeta s ∗ (

∏
χ∈dcharacters n − {χ0}. Dirichlet-L n

χ s))
by (simp add: Dirichlet-L-principal P-def )
finally have Z-eq: Z = (λs. P s ∗ zeta s ∗ (

∏
χ∈dcharacters n − {χ0}.

Dirichlet-L n χ s)) .

have Z-eq ′: Z = (λs. P s ∗ zeta s ∗ Dirichlet-L n χ s ∗
(
∏

χ∈dcharacters n − {χ0} − {χ}. Dirichlet-L n χ s))
if χ ∈ dcharacters n χ 6= χ0 for χ

proof (rule ext, goal-cases)
case (1 s)
from that have χ: χ ∈ dcharacters n by (simp add: dcharacters-def )
have Z s = P s ∗ zeta s ∗

(
∏

χ∈dcharacters n − {χ0}. Dirichlet-L n χ s) by (simp add: Z-eq)
also have (

∏
χ∈dcharacters n − {χ0}. Dirichlet-L n χ s) = Dirichlet-L n χ

s ∗
(
∏

χ∈dcharacters n − {χ0} − {χ}. Dirichlet-L n χ s)
using assms χ that by (intro prod.remove) auto

finally show ?case by (simp add: mult-ac)
qed

— We again show that Q is locally bounded everywhere by showing that every
singularity is cancelled by some zero. Since now, a can be zero, we do a case
distinction here to make things a bit easier.

have Q-bigo-1 : Q ∈ O[at s](λ-. 1 ) for s
proof (cases a = 0 )

case True
have (λs. Dirichlet-L n χ s − Dirichlet-L n χ 1 ) ∈ O[at 1 ](λs. s − 1 ) using

χ assms n
by (intro taylor-bigo-linear holomorphic-on-imp-differentiable-at[of - UNIV ]

holomorphic-intros) (auto simp: dcharacters-def )
hence ∗: Dirichlet-L n χ ∈ O[at 1 ](λs. s − 1 ) using zero True by simp
have Z = (λs. P s ∗ zeta s ∗ Dirichlet-L n χ s ∗

(
∏

χ∈dcharacters n − {χ0} − {χ}. Dirichlet-L n χ s))
using χ assms by (intro Z-eq ′) auto

also have . . . ∈ O[at 1 ](λs. 1 ∗ (1 / (s − 1 )) ∗ (s − 1 ) ∗ 1 ) using n χ
by (intro landau-o.big.mult continuous-imp-bigo-1 zeta-bigo-at-1 continu-

ous-intros ∗)
(auto simp: dcharacters-def )

also have (λs::complex. 1 ∗ (1 / (s − 1 )) ∗ (s − 1 ) ∗ 1 ) ∈ Θ[at 1 ](λ-. 1 )
by (intro bigthetaI-cong) (auto simp: eventually-at-filter)
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finally have Z-at-1 : Z ∈ O[at 1 ](λ-. 1 ) .

have Z ∈ O[at s](λ-. 1 )
proof (cases s = 1 )

case False
thus ?thesis unfolding Z-def using n χ

by (intro continuous-imp-bigo-1 continuous-intros) (auto simp: dcharac-
ters-def )

qed (insert Z-at-1 , auto)

from ‹a = 0 › have Q = (λs. Z s ∗ Z s ∗ Z s ∗ Z s)
by (simp add: Q-def power2-eq-square)

also have . . . ∈ O[at s](λ-. 1 ∗ 1 ∗ 1 ∗ 1 )
by (intro landau-o.big.mult) fact+

finally show ?thesis by simp
next

case False
have bigo1 : (λs. Z s ∗ Z (s − i ∗ a)) ∈ O[at 1 ](λ-. 1 )

if Dirichlet-L n χ (1 − i ∗ a) = 0 a 6= 0 χ ∈ dcharacters n χ 6= χ0

for a :: real and χ
proof −
have (λs. Dirichlet-L n χ (s − i ∗ a) − Dirichlet-L n χ (1 − i ∗ a)) ∈ O[at

1 ](λs. s − 1 )
using assms n that

by (intro taylor-bigo-linear holomorphic-on-imp-differentiable-at[of - UNIV ]
holomorphic-intros) (auto simp: dcharacters-def )

hence ∗: (λs. Dirichlet-L n χ (s − i ∗ a)) ∈ O[at 1 ](λs. s − 1 ) using that
by simp

have (λs. Z (s − i∗a)) = (λs. P (s − i∗a) ∗ zeta (s − i∗a) ∗ Dirichlet-L n
χ (s − i∗a)

∗ (
∏

χ∈dcharacters n − {χ0} − {χ}. Dirichlet-L n χ (s − i∗a)))
using that by (subst Z-eq ′[of χ]) auto

also have . . . ∈ O[at 1 ](λs. 1 ∗ 1 ∗ (s − 1 ) ∗ 1 ) unfolding P-def using
that n

by (intro landau-o.big.mult continuous-imp-bigo-1 continuous-intros ∗)
(auto simp: prime-gt-0-nat dcharacters-def )

finally have (λs. Z (s − i ∗ a)) ∈ O[at 1 ](λs. s − 1 ) by simp
moreover have Z ∈ O[at 1 ](λs. 1 ∗ (1 / (s − 1 )) ∗ 1 ) unfolding Z-eq

using n that
by (intro landau-o.big.mult zeta-bigo-at-1 continuous-imp-bigo-1 continu-

ous-intros)
(auto simp: dcharacters-def )

hence Z ∈ O[at 1 ](λs. 1 / (s − 1 )) by simp
ultimately have (λs. Z s ∗ Z (s − i ∗ a)) ∈ O[at 1 ](λs. 1 / (s − 1 ) ∗ (s

− 1 ))
by (intro landau-o.big.mult)

also have (λs. 1 / (s − 1 ) ∗ (s − 1 )) ∈ Θ[at 1 ](λ-. 1 )
by (intro bigthetaI-cong) (auto simp add: eventually-at-filter)
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finally show ?thesis .
qed

have bigo1 ′: (λs. Z s ∗ Z (s + i ∗ a)) ∈ O[at 1 ](λ-. 1 )
if Dirichlet-L n χ (1 − i ∗ a) = 0 a 6= 0 χ ∈ dcharacters n χ 6= χ0

for a :: real and χ
proof −

from that interpret dcharacter n G χ by (simp-all add: dcharacters-def
G-def )

from bigo1 [of inv-character χ −a] that cnj-Dirichlet-L[of 1 − i ∗ a] show
?thesis

by (simp add: dcharacters-def dcharacter-inv-character)
qed

have bigo2 : (λs. Z s ∗ Z (s − i ∗ a)) ∈ O[at (1 + i ∗ a)](λ-. 1 )
if Dirichlet-L n χ (1 − i ∗ a) = 0 a 6= 0 χ ∈ dcharacters n χ 6= χ0

for a :: real and χ
proof −

have (λs. Z s ∗ Z (s − i ∗ a)) ∈ O[filtermap (λs. s + i ∗ a) (at 1 )](λ-. 1 )
using bigo1 ′[of χ a] that by (simp add: mult.commute landau-o.big.in-filtermap-iff )
also have filtermap (λs. s + i ∗ a) (at 1 ) = at (1 + i ∗ a)

using filtermap-at-shift[of −i ∗ a 1 ] by simp
finally show ?thesis .

qed

have bigo2 ′: (λs. Z s ∗ Z (s + i ∗ a)) ∈ O[at (1 − i ∗ a)](λ-. 1 )
if Dirichlet-L n χ (1 − i ∗ a) = 0 a 6= 0 χ ∈ dcharacters n χ 6= χ0

for a :: real and χ
proof −

from that interpret dcharacter n G χ by (simp-all add: dcharacters-def
G-def )

from bigo2 [of inv-character χ −a] that cnj-Dirichlet-L[of 1 − i ∗ a] show
?thesis

by (simp add: dcharacters-def dcharacter-inv-character)
qed

have Q-eq: Q = (λs. (Z s ∗ Z (s + i ∗ a)) ∗ (Z s ∗ Z (s − i ∗ a)))
by (simp add: Q-def power2-eq-square mult-ac)

consider s = 1 | s = 1 + i ∗ a | s = 1 − i ∗ a | s /∈ ?sings by blast
thus ?thesis
proof cases

case 1
have Q ∈ O[at 1 ](λ-. 1 ∗ 1 )

unfolding Q-eq using assms zero zero ′ False χ
by (intro landau-o.big.mult bigo1 [of χ a] bigo1 ′[of χ a]; simp)+

with 1 show ?thesis by simp
next

case 2
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have Q ∈ O[at (1 + i ∗ a)](λ-. 1 ∗ 1 ) unfolding Q-eq
using assms zero zero ′ False χ n
by (intro landau-o.big.mult bigo2 [of χ a] continuous-imp-bigo-1 )

(auto simp: Z-def dcharacters-def intro!: continuous-intros)
with 2 show ?thesis by simp

next
case 3
have Q ∈ O[at (1 − i ∗ a)](λ-. 1 ∗ 1 ) unfolding Q-eq

using assms zero zero ′ False χ n
by (intro landau-o.big.mult bigo2 ′[of χ a] continuous-imp-bigo-1 )

(auto simp: Z-def dcharacters-def intro!: continuous-intros)
with 3 show ?thesis by simp

next
case 4
thus ?thesis unfolding Q-def Z-def using n

by (intro continuous-imp-bigo-1 continuous-intros)
(auto simp: dcharacters-def complex-eq-iff )

qed
qed

— Again, we can remove the singularities from Q and extend it to an entire
function.

have ∃Q ′. Q ′ holomorphic-on UNIV ∧ (∀ z∈UNIV − ?sings. Q ′ z = Q z)
using n by (intro removable-singularities Q-bigo-1 )

(auto simp: Q-def Z-def dcharacters-def complex-eq-iff intro!:
holomorphic-intros)

then obtain Q ′ where Q ′: Q ′ holomorphic-on UNIV
∧

z. z /∈ ?sings =⇒ Q ′

z = Q z by blast

— Q ′ constitutes an analytic continuation of the Dirichlet series of Q.
have eval-Q-fds: eval-fds Q-fds s = Q ′ s if Re s > 1 for s
proof −

have [simp]: dcharacter n χ if χ ∈ dcharacters n for χ
using that by (simp add: dcharacters-def )

from that have abs-conv-abscissa (fds χ) < ereal (Re s) if χ ∈ dcharacters
n for χ

using that by (intro le-less-trans[OF dcharacter .abs-conv-abscissa-weak[of
n χ]]) auto

hence eval-fds Q-fds s = Q s using that
by (simp add: Q-fds-def Q-def eval-fds-mult eval-fds-power fds-abs-converges-mult

eval-fds-prod fds-abs-converges-prod dcharacter .Dirichlet-L-conv-eval-fds-weak
fds-abs-converges-power eval-fds-zeta Z-fds-def Z-def fds-abs-converges)

also from that have . . . = Q ′ s by (subst Q ′) auto
finally show ?thesis .

qed

— Since the characters are completely multiplicative, the series for this logarithm
can be rewritten like this:
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define I where I = (λk. if [k = 1 ] (mod n) then totient n else 0 :: real)
have ln-Q-fds-eq:

fds-ln 0 Q-fds = fds (λk. of-real (2 ∗ I k ∗ mangoldt k / ln k ∗ (1 + cos (a ∗
ln k))))

proof −
have nz: χ (Suc 0 ) = 1 if χ ∈ dcharacters n for χ

using dcharacter .Suc-0 [of n χ] that by (simp add: dcharacters-def )
note simps = fds-ln-mult[where l ′ = 0 and l ′′ = 0 ] fds-ln-power [where l ′

= 0 ]
fds-ln-prod[where l ′ = λ-. 0 ]

have fds-ln 0 Q-fds = (
∑

χ∈dcharacters n. 2 ∗ fds-ln 0 (fds χ) +
fds-shift (i ∗ a) (fds-ln 0 (fds χ)) + fds-shift (−i ∗ a) (fds-ln 0 (fds χ)))

by (auto simp: Q-fds-def Z-fds-def simps nz sum.distrib sum-distrib-left)
also have . . . = (

∑
χ∈dcharacters n.

fds (λk. χ k ∗ of-real (2 ∗ mangoldt k / ln k ∗ (1 + cos (a ∗
ln k)))))

(is (
∑

χ∈-. ?l χ) = -)
proof (intro sum.cong refl, goal-cases)

case (1 χ)
then interpret dcharacter n G χ by (simp-all add: dcharacters-def G-def )
have mult: completely-multiplicative-function (fds-nth (fds χ))

by (simp add: fds-nth-fds ′ mult.completely-multiplicative-function-axioms)
have ∗: fds-ln 0 (fds χ) = fds (λn. χ n ∗ mangoldt n /R ln (real n))

by (simp add: fds-ln-completely-multiplicative[OF mult] fds-nth-fds ′

fds-eq-iff )
have ?l χ = fds (λk. χ k ∗ mangoldt k /R ln k ∗ (2 + k powr (i ∗ a) + k

powr (−i ∗ a)))
by (unfold ∗, rule fds-eqI ) (simp add: algebra-simps scaleR-conv-of-real

numeral-fds)
also have . . . = fds (λk. χ k ∗ 2 ∗ mangoldt k /R ln k ∗ (1 + cos (of-real(a

∗ ln k))))
unfolding cos-exp-eq by (intro fds-eqI ) (simp add: powr-def algebra-simps)
also have . . . = fds (λk. χ k ∗ of-real (2 ∗ mangoldt k / ln k ∗ (1 + cos

(a ∗ ln k))))
unfolding cos-of-real by (simp add: field-simps scaleR-conv-of-real)

finally show ?case .
qed
also have . . . = fds (λk. (

∑
χ∈dcharacters n. χ k) ∗ of-real (2 ∗ mangoldt

k / ln k ∗
(1 + cos (a ∗ ln k))))

by (simp add: sum-distrib-right sum-divide-distrib scaleR-conv-of-real sum-distrib-left)
also have . . . = fds (λk. of-real (2 ∗ I k ∗ mangoldt k / ln k ∗ (1 + cos (a

∗ ln k))))
by (intro fds-eqI , subst sum-dcharacters) (simp-all add: I-def algebra-simps)

finally show ?thesis .
qed
— The coefficients of that logarithm series are clearly nonnegative:
have nonneg-dirichlet-series (fds-ln 0 Q-fds)
proof
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show fds-nth (fds-ln 0 Q-fds) k ∈ �≥0 for k
proof (cases k < 2 )

case False
have cos: 1 + cos x ≥ 0 for x :: real

using cos-ge-minus-one[of x] by linarith
have fds-nth (fds-ln 0 Q-fds) k =

of-real (2 ∗ I k ∗ mangoldt k / ln k ∗ (1 + cos (a ∗ ln k)))
by (auto simp: fds-nth-fds ′ ln-Q-fds-eq)

also have . . . ∈ �≥0 using False unfolding I-def
by (subst nonneg-Reals-of-real-iff )
(intro mult-nonneg-nonneg divide-nonneg-pos cos mangoldt-nonneg, auto)

finally show ?thesis .
qed (cases k; auto simp: ln-Q-fds-eq)

qed
— Therefore Q-fds also has non-negative coefficients.
hence nonneg: nonneg-dirichlet-series Q-fds
proof (rule nonneg-dirichlet-series-lnD)

have (
∏

x∈dcharacters n. x (Suc 0 )) = 1
by (intro prod.neutral) (auto simp: dcharacters-def dcharacter .Suc-0 )

thus exp 0 = fds-nth Q-fds (Suc 0 ) by (simp add: Q-fds-def Z-fds-def )
qed

— And by Pringsheim–Landau, we get that the Dirichlet series of Q converges
everywhere.

have abs-conv-abscissa Q-fds ≤ 1 unfolding Q-fds-def Z-fds-def fds-shift-prod
by (intro abs-conv-abscissa-power-leI abs-conv-abscissa-mult-leI abs-conv-abscissa-prod-le)

(auto simp: dcharacters-def dcharacter .abs-conv-abscissa-weak)
with nonneg and eval-Q-fds and ‹Q ′ holomorphic-on UNIV ›

have abscissa: abs-conv-abscissa Q-fds = −∞
by (intro entire-continuation-imp-abs-conv-abscissa-MInfty[where g = Q ′

and c = 1 ])
(auto simp: one-ereal-def )

— Again, similarly to the proof for ζ, we select a subseries of Q. This time we
cannot simply pick powers of 2, since 2 might not be coprime to n, in which case
the subseries would simply be 1 everywhere, which is not helpful. However, it is
clear that there is always some prime p that is coprime to n, so we just use the
subseries Q that corresponds to powers of p.

from n obtain p where p: prime p coprime p n
using coprime-prime-exists[of n] by auto

define R-fds where R-fds = fds-primepow-subseries p Q-fds
have conv-abscissa R-fds ≤ abs-conv-abscissa R-fds by (rule conv-le-abs-conv-abscissa)
also have abs-conv-abscissa R-fds ≤ abs-conv-abscissa Q-fds

unfolding R-fds-def by (rule abs-conv-abscissa-restrict)
also have . . . = −∞ by (simp add: abscissa)
finally have abscissa ′: conv-abscissa R-fds = −∞ by simp

— The following function g(a, s) is the denominator in the Euler product
expansion of the subseries of Z(s+ ia). It is clear that it is entire and non-zero for
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R(s) > 0 and all real a.
define g :: real ⇒ complex ⇒ complex

where g = (λa s. (
∏

χ∈dcharacters n. (1 − χ p ∗ p powr (−s + i ∗ of-real
a))))

have g-nz: g a s 6= 0 if Re s > 0 for s a unfolding g-def
proof (subst prod-zero-iff [OF finite-dcharacters], safe)

fix χ assume χ ∈ dcharacters n and ∗: 1 − χ p ∗ p powr (−s + i∗a) = 0
then interpret dcharacter n G χ by (simp-all add: dcharacters-def G-def )

from p have real p > real 1 by (subst of-nat-less-iff ) (auto simp: prime-gt-Suc-0-nat)
hence real p powr − Re s < real p powr 0

using p that by (intro powr-less-mono) auto
hence 0 < norm (1 :: complex) − norm (χ p ∗ p powr (−s + i∗a))

using p by (simp add: norm-mult norm norm-powr-real-powr)
also have . . . ≤ norm (1 − χ p ∗ p powr (−s + i∗a))

by (rule norm-triangle-ineq2 )
finally show False by (subst (asm) ∗) simp-all

qed
have [holomorphic-intros]: g a holomorphic-on A for a A unfolding g-def

using p by (intro holomorphic-intros)

— By taking Euler product expansions of every factor, we get

R(s) =
1

g(0, s)2g(a, s)g(−a, s)
= (1− 2−s)−2(1− 2−s+ia)−1(1− 2−s−ia)−1

for every s with R(s) > 1, and by analytic continuation also for R(s) > 0.

have eval-R: eval-fds R-fds s = 1 / (g 0 s ^ 2 ∗ g a s ∗ g (−a) s)
(is - = ?f s) if Re s > 0 for s :: complex

proof −
show ?thesis
proof (rule analytic-continuation-open[where f = eval-fds R-fds])
show ?f holomorphic-on {s. Re s > 0} using p g-nz[of 0 ] g-nz[of a] g-nz[of

−a]
by (intro holomorphic-intros) (auto simp: g-nz)

next
fix z assume z: z ∈ {s. Re s > 1}
have [simp]: completely-multiplicative-function χ fds-nth (fds χ) = χ

if χ ∈ dcharacters n for χ
proof −

from that interpret dcharacter n G χ by (simp-all add: G-def dcharac-
ters-def )

show completely-multiplicative-function χ fds-nth (fds χ) = χ
by (simp-all add: fds-nth-fds ′ mult.completely-multiplicative-function-axioms)
qed
have [simp]: dcharacter n χ if χ ∈ dcharacters n for χ

using that by (simp add: dcharacters-def )
from that have abs-conv-abscissa (fds χ) < ereal (Re z) if χ ∈ dcharacters

n for χ
using that z by (intro le-less-trans[OF dcharacter .abs-conv-abscissa-weak[of

n χ]]) auto
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thus eval-fds R-fds z = ?f z using z p
by (simp add: R-fds-def Q-fds-def Z-fds-def eval-fds-mult eval-fds-prod

eval-fds-power
fds-abs-converges-mult fds-abs-converges-power fds-abs-converges-prod

g-def mult-ac
fds-primepow-subseries-euler-product-cm powr-minus powr-diff powr-add

prod-dividef
fds-abs-summable-zeta g-nz fds-abs-converges power-one-over di-

vide-inverse [symmetric])
qed (insert that abscissa ′, auto intro!: exI [of - 2 ] convex-connected open-halfspace-Re-gt

convex-halfspace-Re-gt holomorphic-intros)
qed

— We again have our contradiction: R(s) is entire, but the right-hand side has
a pole at 0 since g(0, 0) = 0.

show False
proof (rule not-tendsto-and-filterlim-at-infinity)

have g-limit: (g a −−−→ g a 0 ) (at 0 within {s. Re s > 0}) for a
proof −
have continuous-on UNIV (g a) by (intro holomorphic-on-imp-continuous-on

holomorphic-intros)
hence isCont (g a) 0 by (rule continuous-on-interior) auto

hence continuous (at 0 within {s. Re s > 0}) (g a) by (rule continu-
ous-within-subset) auto

thus ?thesis by (auto simp: continuous-within)
qed
have ((λs. g 0 s ^ 2 ∗ g a s ∗ g (−a) s) −−−→ g 0 0 ^ 2 ∗ g a 0 ∗ g (−a) 0 )

(at 0 within {s. Re s > 0}) by (intro tendsto-intros g-limit)
also have g 0 0 = 0 unfolding g-def
proof (rule prod-zero)

from p and χ0 show ∃χ∈dcharacters n. 1 − χ p ∗ of-nat p powr (− 0 +
i ∗ of-real 0 ) = 0

by (intro bexI [of - χ0]) (auto simp: principal-dchar-def )
qed auto
moreover have eventually (λs. s ∈ {s. Re s > 0}) (at 0 within {s. Re s >

0})
by (auto simp: eventually-at-filter)

hence eventually (λs. g 0 s ^ 2 ∗ g a s ∗ g (−a) s 6= 0 ) (at 0 within {s. Re s
> 0})

by eventually-elim (auto simp: g-nz)
ultimately have filterlim (λs. g 0 s ^ 2 ∗ g a s ∗ g (−a) s) (at 0 )

(at 0 within {s. Re s > 0}) by (simp add: filterlim-at)
hence filterlim ?f at-infinity (at 0 within {s. Re s > 0}) (is ?lim)

by (intro filterlim-divide-at-infinity[OF tendsto-const]
tendsto-mult-filterlim-at-infinity) auto

also have ev: eventually (λs. Re s > 0 ) (at 0 within {s. Re s > 0})
by (auto simp: eventually-at intro!: exI [of - 1 ])

have ?lim ←→ filterlim (eval-fds R-fds) at-infinity (at 0 within {s. Re s >
0})
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by (intro filterlim-cong refl eventually-mono[OF ev]) (auto simp: eval-R)
finally show . . . .

next
have continuous (at 0 within {s. Re s > 0}) (eval-fds R-fds)

by (intro continuous-intros) (auto simp: abscissa ′)
thus ((eval-fds R-fds −−−→ eval-fds R-fds 0 )) (at 0 within {s. Re s > 0})

by (auto simp: continuous-within)
next

have 0 ∈ {s. Re s ≥ 0} by simp
also have {s. Re s ≥ 0} = closure {s. Re s > 0}

using closure-halfspace-gt[of 1 ::complex 0 ] by (simp add: inner-commute)
finally have 0 ∈ . . . .
thus at 0 within {s. Re s > 0} 6= bot

by (subst at-within-eq-bot-iff ) auto
qed

qed
qed (fact Dirichlet-L-Re-gt-1-nonzero)

3.3 Asymptotic bounds on partial sums of Dirichlet L func-
tions

The following are some bounds on partial sums of the L-function of a char-
acter that are useful for asymptotic reasoning, particularly for Dirichlet’s
Theorem.
lemma sum-upto-dcharacter-le:

assumes χ 6= χ0

shows norm (sum-upto χ x) ≤ totient n
proof −

have sum-upto χ x = (
∑

k≤nat bxc. χ k) unfolding sum-upto-altdef
by (intro sum.mono-neutral-left) auto

also have norm . . . ≤ totient n
by (rule sum-dcharacter-atMost-le) fact

finally show ?thesis .
qed

lemma Dirichlet-L-minus-partial-sum-bound:
fixes s :: complex and x :: real
assumes χ 6= χ0 and Re s > 0 and x > 0
defines σ ≡ Re s
shows norm (sum-upto (λn. χ n ∗ n powr −s) x − Dirichlet-L n χ s) ≤

real (totient n) ∗ (2 + cmod s / σ) / x powr σ
proof (rule Lim-norm-ubound)

from assms have summable (λn. χ n ∗ of-nat n powr −s)
by (intro summable-Dirichlet-L ′)

with assms have (λn. χ n ∗ of-nat n powr −s) sums Dirichlet-L n χ s
using Dirichlet-L-conv-eval-fds[OF assms(1 ,2 )]
by (simp add: sums-iff eval-fds-def powr-minus divide-simps fds-nth-fds ′)

hence (λm.
∑

k≤m. χ k ∗ of-nat k powr −s) −−−−→ Dirichlet-L n χ s
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by (simp add: sums-def ′ atLeast0AtMost)
thus (λm. sum-upto (λk. χ k ∗ of-nat k powr −s) x − (

∑
k≤m. χ k ∗ of-nat k

powr −s))
−−−−→ sum-upto (λk. χ k ∗ of-nat k powr −s) x − Dirichlet-L n χ s

by (intro tendsto-intros)
next

define M where M = sum-upto χ
have le: norm (

∑
n∈real−‘{x<..y}. χ n ∗ of-nat n powr − s)

≤ real (totient n) ∗ (2 + cmod s / σ) / x powr σ if xy: 0 < x x < y
for x y

proof −
from xy have I : ((λt. M t ∗ (−s ∗ t powr (−s−1 ))) has-integral

M y ∗ of-real y powr − s − M x ∗ of-real x powr − s −
(
∑

n∈real−‘{x<..y}. χ n ∗ of-real (real n) powr −s)) {x..y}
unfolding M-def

by (intro partial-summation-strong [of {}])
(auto intro!: has-vector-derivative-real-field derivative-eq-intros continu-

ous-intros)
hence (

∑
n∈real−‘{x<..y}. χ n ∗ real n powr −s) =

M y ∗ of-real y powr − s − M x ∗ of-real x powr − s −
integral {x..y} (λt. M t ∗ (−s ∗ t powr (−s−1 )))

by (simp add: has-integral-iff )
also have norm . . . ≤ norm (M y ∗ of-real y powr −s) + norm (M x ∗ of-real

x powr −s) +
norm (integral {x..y} (λt. M t ∗ (−s ∗ t powr (−s−1 ))))

by (intro order .trans[OF norm-triangle-ineq4 ] add-mono order .refl)
also have norm (M y ∗ of-real y powr −s) ≤ totient n ∗ y powr −σ

using xy assms unfolding norm-mult M-def σ-def
by (intro mult-mono sum-upto-dcharacter-le) (auto simp: norm-powr-real-powr)
also have . . . ≤ totient n ∗ x powr −σ

using assms xy by (intro mult-left-mono powr-mono2 ′) (auto simp: σ-def )
also have norm (M x ∗ of-real x powr −s) ≤ totient n ∗ x powr −σ

using xy assms unfolding norm-mult M-def σ-def
by (intro mult-mono sum-upto-dcharacter-le) (auto simp: norm-powr-real-powr)
also have norm (integral {x..y} (λt. M t ∗ (− s ∗ of-real t powr (−s−1 )))) ≤

integral {x..y} (λt. real (totient n) ∗ norm s ∗ t powr (−σ−1 ))
proof (rule integral-norm-bound-integral integrable-on-cmult-left)

show (λt. real (totient n) ∗ norm s ∗ t powr (− σ − 1 )) integrable-on {x..y}
using xy by (intro integrable-continuous-real continuous-intros) auto

next
fix t assume t: t ∈ {x..y}
have norm (M t ∗ (−s ∗ of-real t powr (−s−1 ))) ≤

real (totient n) ∗ (norm s ∗ t powr (−σ−1 ))
unfolding norm-mult M-def σ-def using xy t assms

by (intro mult-mono sum-upto-dcharacter-le) (auto simp: norm-mult norm-powr-real-powr)
thus norm (M t ∗ (−s ∗ of-real t powr (−s−1 ))) ≤ real (totient n) ∗ norm s

∗ t powr (−σ−1 )
by (simp add: algebra-simps)

qed (insert I , auto simp: has-integral-iff )
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also have . . . = real (totient n) ∗ norm s ∗ integral {x..y} (λt. t powr (−σ−1 ))
by simp

also have ((λt. t powr (−σ−1 )) has-integral (y powr −σ / (−σ) − x powr −σ
/ (−σ))) {x..y}

using xy assms
by (intro fundamental-theorem-of-calculus)

(auto intro!: derivative-eq-intros
simp: has-real-derivative-iff-has-vector-derivative [symmetric] σ-def )

hence integral {x..y} (λt. t powr (−σ−1 )) = y powr −σ / (−σ) − x powr −σ
/ (−σ)

by (simp add: has-integral-iff )
also from assms have . . . ≤ x powr −σ / σ by (simp add: σ-def )
also have real (totient n) ∗ x powr −σ + real (totient n) ∗ x powr −σ +

real (totient n) ∗ norm s ∗ (x powr −σ / σ) =
real (totient n) ∗ (2 + norm s / σ) / x powr σ

using xy by (simp add: field-simps powr-minus)
finally show ?thesis by (simp add: mult-left-mono)

qed

show eventually (λm. norm (sum-upto (λk. χ k ∗ of-nat k powr − s) x −
(
∑

k≤m. χ k ∗ of-nat k powr − s))
≤ real (totient n) ∗ (2 + cmod s / σ) / x powr σ) at-top

using eventually-gt-at-top[of nat bxc]
proof eventually-elim

case (elim m)
have (

∑
k≤m. χ k ∗ of-nat k powr − s) − sum-upto (λk. χ k ∗ of-nat k powr

− s) x =
(
∑

k∈{..m} − {k. 0 < k ∧ real k ≤ x}. χ k ∗ of-nat k powr −s) unfolding
sum-upto-def

using elim ‹x > 0 › by (intro Groups-Big.sum-diff [symmetric])
(auto simp: nat-less-iff floor-less-iff )

also have . . . = (
∑

k∈{..m} − {k. real k ≤ x}. χ k ∗ of-nat k powr −s)
by (intro sum.mono-neutral-right) auto

also have {..m} − {k. real k ≤ x} = real −‘ {x<..real m}
using elim ‹x > 0 › by (auto simp: nat-less-iff floor-less-iff not-less)

also have norm (
∑

k∈. . . . χ k ∗ of-nat k powr −s) ≤
real (totient n) ∗ (2 + cmod s / σ) / x powr σ

using elim ‹x > 0 › by (intro le) (auto simp: nat-less-iff floor-less-iff )
finally show ?case by (simp add: norm-minus-commute)

qed
qed auto

lemma partial-Dirichlet-L-sum-bigo:
fixes s :: complex and x :: real
assumes χ 6= χ0 Re s > 0
shows (λx. sum-upto (λn. χ n ∗ n powr −s) x − Dirichlet-L n χ s) ∈ O(λx.

x powr −s)
proof (rule bigoI )

show eventually (λx. norm (sum-upto (λn. χ n ∗ of-nat n powr −s) x − Dirich-
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let-L n χ s)
≤ real (totient n) ∗ (2 + norm s / Re s) ∗ norm (of-real x powr − s))

at-top
using eventually-gt-at-top[of 0 ]

proof eventually-elim
case (elim x)
have norm (sum-upto (λn. χ n ∗ of-nat n powr −s) x − Dirichlet-L n χ s)

≤ real (totient n) ∗ (2 + norm s / Re s) / x powr Re s
using elim assms by (intro Dirichlet-L-minus-partial-sum-bound) auto

thus ?case using elim assms
by (simp add: norm-powr-real-powr powr-minus divide-simps norm-divide

del: div-mult-self1 div-mult-self2 div-mult-self3 div-mult-self4 )
qed

qed
end

3.4 Evaluation of L(χ, 0)

context residues-nat
begin
lemma Dirichlet-L-0-principal [simp]: Dirichlet-L n χ0 0 = 0
proof −

have Dirichlet-L n χ0 0 = −1/2 ∗ (
∏

p | prime p ∧ p dvd n. 1 − 1 / p powr
0 )

by (simp add: Dirichlet-L-principal prime-gt-0-nat)
also have (

∏
p | prime p ∧ p dvd n. 1 − 1 / p powr 0 ) = (

∏
p | prime p ∧ p

dvd n. 0 :: complex)
by (intro prod.cong) (auto simp: prime-gt-0-nat)

also have (
∏

p | prime p ∧ p dvd n. 0 :: complex) = 0
using prime-divisor-exists[of n] n by (auto simp: card-gt-0-iff )

finally show ?thesis by simp
qed

end
context dcharacter
begin
lemma Dirichlet-L-0-nonprincipal:

assumes nonprincipal: χ 6= χ0

shows Dirichlet-L n χ 0 = −(
∑

k=1 ..<n. of-nat k ∗ χ k) / of-nat n
proof −

have Dirichlet-L n χ 0 = (
∑

k=1 ..n. χ k ∗ (1 / 2 − of-nat k / of-nat n))
using assms n by (simp add: Dirichlet-L-conv-hurwitz-zeta-nonprincipal)

also have . . . = −1/n ∗ (
∑

k=1 ..n. of-nat k ∗ χ k)
using assms by (simp add: algebra-simps sum-subtractf sum-dcharacter-block ′

sum-divide-distrib [symmetric])
also have (

∑
k=1 ..n. of-nat k ∗ χ k) = (

∑
k=1 ..<n. of-nat k ∗ χ k)

using n by (intro sum.mono-neutral-right) (auto simp: eq-zero-iff )
finally show eq: Dirichlet-L n χ 0 = −(

∑
k=1 ..<n. of-nat k ∗ χ k) / of-nat n

by simp
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qed

lemma Dirichlet-L-0-even [simp]:
assumes χ (n − 1 ) = 1
shows Dirichlet-L n χ 0 = 0

proof (cases χ = χ0)
case False
hence Dirichlet-L n χ 0 = −(

∑
k=Suc 0 ..<n. of-nat k ∗ χ k) / of-nat n

by (simp add: Dirichlet-L-0-nonprincipal)
also have . . . = 0

using assms False by (subst even-dcharacter-linear-sum-eq-0 ) auto
finally show Dirichlet-L n χ 0 = 0 .

qed auto

lemma Dirichlet-L-0 :
Dirichlet-L n χ 0 = (if χ (n − 1 ) = 1 then 0 else −(

∑
k=1 ..<n. of-nat k ∗ χ

k) / of-nat n)
by (cases χ = χ0) (auto simp: Dirichlet-L-0-nonprincipal)

end

3.5 Properties of L(χ, s) for real χ

locale real-dcharacter = dcharacter +
assumes real: χ k ∈ �

begin

lemma Im-eq-0 [simp]: Im (χ k) = 0
using real[of k] by (auto elim!: Reals-cases)

lemma of-real-Re [simp]: of-real (Re (χ k)) = χ k
by (simp add: complex-eq-iff )

lemma char-cases: χ k ∈ {−1 , 0 , 1}
proof −

from norm[of k] have Re (χ k) ∈ {−1 ,0 ,1}
by (auto simp: cmod-def split: if-splits)

hence of-real (Re (χ k)) ∈ {−1 , 0 , 1} by auto
also have of-real (Re (χ k)) = χ k by (simp add: complex-eq-iff )
finally show ?thesis .

qed

lemma cnj [simp]: cnj (χ k) = χ k
by (simp add: complex-eq-iff )

lemma inv-character-id [simp]: inv-character χ = χ
by (simp add: inv-character-def fun-eq-iff )

lemma Dirichlet-L-in-Reals:
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assumes s ∈ �
shows Dirichlet-L n χ s ∈ �

proof −
have cnj (Dirichlet-L n χ s) = Dirichlet-L n χ s

using assms by (subst cnj-Dirichlet-L) (auto elim!: Reals-cases)
thus ?thesis using Reals-cnj-iff by blast

qed

The following property of real characters is used by Apostol to show the
non-vanishing of L(χ, 1). We have already shown this in a much easier way,
but this particular result is still of general interest.
lemma

assumes k: k > 0
shows sum-char-divisors-ge: Re (

∑
d | d dvd k. χ d) ≥ 0 (is Re (?A k) ≥ 0 )

and sum-char-divisors-square-ge: is-square k =⇒ Re (
∑

d | d dvd k. χ d) ≥ 1
proof −

interpret sum: multiplicative-function ?A
by (fact mult.multiplicative-sum-divisors)

have A: ?A k ∈ � for k by (intro sum-in-Reals real)
hence [simp]: Im (?A k) = 0 for k by (auto elim!: Reals-cases)
have ∗: Re (?A (p ^ m)) ≥ (if even m then 1 else 0 ) if p: prime p for p m
proof −

have sum-neg1 : (
∑

i≤m. (−1 ) ^ i) = (if even m then 1 else (0 ::real))
by (induction m) auto

from p have ?A (p ^ m) = (
∑

k≤m. χ (p ^ k))
by (intro sum.reindex-bij-betw [symmetric] bij-betw-prime-power-divisors)

also have Re . . . = (
∑

k≤m. Re (χ p) ^ k) by (simp add: mult.power)
also have . . . ≥ (if even m then 1 else 0 )

using sum-neg1 char-cases[of p] by (auto simp: power-0-left)
finally show ?thesis .

qed
have ∗: Re (?A (p ^ m)) ≥ 0 even m =⇒ Re (?A (p ^ m)) ≥ 1 if prime p for

p m
using ∗[of p m] that by (auto split: if-splits)

have eq: Re (?A k) = (
∏

p∈prime-factors k. Re (?A (p ^ multiplicity p k)))
using k A by (subst sum.prod-prime-factors) (auto simp: Re-prod-Reals)

show Re (
∑

d | d dvd k. χ d) ≥ 0 by (subst eq, intro prod-nonneg ballI ∗) auto

assume is-square k
then obtain m where m: k = m ^ 2 by (auto elim!: is-nth-powerE)
have even (multiplicity p k) if prime p for p using k that unfolding m

by (subst prime-elem-multiplicity-power-distrib) (auto intro!: Nat.gr0I )
thus Re (

∑
d | d dvd k. χ d) ≥ 1

by (subst eq, intro prod-ge-1 ballI ∗) auto
qed

end
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end

4 Dirichlet’s Theorem on primes in arithmetic pro-
gressions

theory Dirichlet-Theorem
imports

Dirichlet-L-Functions
Bertrands-Postulate.Bertrand
Landau-Symbols.Landau-More

begin

We can now turn to the proof of the main result: Dirichlet’s theorem about
the infinitude of primes in arithmetic progressions.
There are previous proofs of this by John Harrison in HOL Light [3] and
by Mario Carneiro in Metamath [2]. Both of them strive to prove Dirich-
let’s theorem with a minimum amount of auxiliary results and definitions,
whereas our goal was to get a short and simple proof of Dirichlet’s theorem
built upon a large library of Analytic Number Theory.
At this point, we already have the key part – the non-vanishing of L(1, χ)
– and the proof was relatively simple and straightforward due to the large
amount of Complex Analysis and Analytic Number Theory we have avail-
able. The remainder will be a bit more concrete, but still reasonably concise.
First, we need to re-frame some of the results from the AFP entry about
Bertrand’s postulate a little bit.

4.1 Auxiliary results

The AFP entry for Bertrand’s postulate already provides a slightly stronger
version of this for integer values of x, but we can easily extend this to real
numbers to obtain a slightly nicer presentation.
lemma sum-upto-mangoldt-le:

assumes x ≥ 0
shows sum-upto mangoldt x ≤ 3 / 2 ∗ x

proof −
have sum-upto mangoldt x = psi (nat bxc)

by (simp add: sum-upto-altdef psi-def atLeastSucAtMost-greaterThanAtMost)
also have . . . ≤ 551 / 256 ∗ ln 2 ∗ real (nat bxc)

by (rule psi-ubound-log)
also have . . . ≤ 3 / 2 ∗ real (nat bxc)

using Bertrand.ln-2-le by (intro mult-right-mono) auto
also have . . . ≤ 3 / 2 ∗ x using assms by linarith
finally show ?thesis .

qed
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We can also, similarly, use the results from the Bertrand’s postulate entry
to show that the sum of ln p/p over all primes grows logarithmically.
lemma Mertens-bigo:
(λx. (

∑
p | prime p ∧ real p ≤ x. ln p / p) − ln x) ∈ O(λ-. 1 )

proof (intro bigoI [of - 8 ] eventually-mono[OF eventually-gt-at-top[of 1 ]], goal-cases)
case (1 x)
have |(

∑
p | prime p ∧ p ≤ nat bxc. ln p / p) − ln x| =

|(
∑

p | prime p ∧ p ≤ nat bxc. ln p / p) − ln (nat bxc) − (ln x − ln (nat
bxc))|

by simp
also have . . . ≤ |(

∑
p | prime p ∧ p ≤ nat bxc. ln p / p) − ln (nat bxc)| + |ln

x − ln (nat bxc)|
by (rule abs-triangle-ineq4 )

also have |(
∑

p | prime p ∧ p ≤ nat bxc. ln p / p) − ln (nat bxc)| ≤ 7
using 1 by (intro Mertens) auto

also have |ln x − ln (nat bxc)| = ln x − ln (nat bxc)
using 1 by (intro abs-of-nonneg) auto

also from 1 have . . . ≤ (x − nat bxc) / nat bxc by (intro ln-diff-le) auto
also have . . . ≤ (x − nat bxc) / 1 using 1 by (intro divide-left-mono) auto
also have . . . = x − nat bxc by simp
also have . . . ≤ 1 using 1 by linarith
also have (

∑
p | prime p ∧ p ≤ nat bxc. ln p / p) = (

∑
p | prime p ∧ real p ≤

x. ln p / p)
using 1 by (intro sum.cong refl) (auto simp: le-nat-iff le-floor-iff )

finally show ?case by simp
qed

4.2 The contribution of the non-principal characters

The estimates in the next two sections are partially inspired by John Harri-
son’s proof of Dirichlet’s Theorem [3].
We first estimate the growth of the partial sums of

−L′(1, χ)/L(1, χ) =

∞∑
k=1

χ(k)
Λ(k)

k

for a non-principal character χ and show that they are, in fact, bounded,
which is ultimately a consequence of the non-vanishing of L(1, χ) for non-
principal χ.
context dcharacter
begin

context
includes no vec-lambda-syntax and dcharacter-syntax
fixes L
assumes nonprincipal: χ 6= χ0

defines L ≡ Dirichlet-L n χ 1
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begin

lemma Dirichlet-L-nonprincipal-mangoldt-bound-aux-strong:
assumes x: x > 0
shows norm (L ∗ sum-upto (λk. χ k ∗ mangoldt k / k) x − sum-upto (λk. χ k
∗ ln k / k) x)

≤ 9 / 2 ∗ real (totient n)
proof −

define B where B = 3 ∗ real (totient n)
have sum-upto (λk. χ k ∗ ln k / k) x = sum-upto (λk. χ k ∗ (

∑
d | d dvd k.

mangoldt d) / k) x
by (intro sum-upto-cong) (simp-all add: mangoldt-sum)

also have . . . = sum-upto (λk.
∑

d | d dvd k. χ k ∗ mangoldt d / k) x
by (simp add: sum-distrib-left sum-distrib-right sum-divide-distrib)

also have . . . = sum-upto (λk. sum-upto (λd. χ (d ∗ k) ∗ mangoldt k / (d ∗ k))
(x / real k)) x

by (rule sum-upto-sum-divisors)
also have . . . = sum-upto (λk. χ k ∗ mangoldt k / k ∗ sum-upto (λd. χ d / d)

(x / real k)) x
by (simp add: sum-upto-def sum-distrib-left mult-ac)

also have L ∗ sum-upto (λk. χ k ∗ mangoldt k / k) x − . . . =
sum-upto (λk. (L − sum-upto (λd. χ d / d) (x / real k)) ∗ (χ k ∗

mangoldt k / k)) x
unfolding ring-distribs by (simp add: sum-upto-def sum-subtractf sum-distrib-left

mult-ac)
also have norm . . . ≤ sum-upto (λk. B / x ∗ mangoldt k) x unfolding sum-upto-def
proof (rule sum-norm-le, goal-cases)

case (1 k)
have norm ((L − sum-upto (λd. χ d / of-nat d) (x / k)) ∗ χ k ∗ (mangoldt k

/ of-nat k)) ≤
(B ∗ real k / x) ∗ 1 ∗ (mangoldt k / real k) unfolding norm-mult

norm-divide
proof (intro mult-mono divide-left-mono)

show norm (L − sum-upto (λd. χ d / d) (x / k)) ≤ B ∗ real k / x
using Dirichlet-L-minus-partial-sum-bound[OF nonprincipal, of 1 x / k] 1 x
by (simp add: powr-minus B-def L-def divide-simps norm-minus-commute)

qed (insert 1 , auto intro!: divide-nonneg-pos mangoldt-nonneg norm-le-1 simp:
B-def )

also have . . . = B / x ∗ mangoldt k using 1 by simp
finally show ?case by (simp add: sum-upto-def mult-ac)

qed
also have . . . = B / x ∗ sum-upto mangoldt x

unfolding sum-upto-def sum-distrib-left by simp
also have . . . ≤ B / x ∗ (3 / 2 ∗ x) using x

by (intro mult-left-mono sum-upto-mangoldt-le) (auto simp: B-def )
also have . . . = 9 / 2 ∗ real (totient n) using x by (simp add: B-def )
finally show ?thesis by (simp add: B-def )

qed
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lemma Dirichlet-L-nonprincipal-mangoldt-aux-bound:
(λx. L ∗ sum-upto (λk. χ k ∗ mangoldt k / k) x − sum-upto (λk. χ k ∗ ln k / k)

x) ∈ O(λ-. 1 )
by (intro bigoI [of - 9 / 2 ∗ real (totient n)] eventually-mono[OF eventually-gt-at-top[of

0 ]])
(use Dirichlet-L-nonprincipal-mangoldt-bound-aux-strong in simp-all)

lemma nonprincipal-mangoldt-bound:
(λx. sum-upto (λk. χ k ∗ mangoldt k / k) x) ∈ O(λ-. 1 ) (is ?lhs ∈ -)

proof −
have [simp]: L 6= 0
using nonprincipal unfolding L-def by (intro Dirichlet-L-Re-ge-1-nonzero-nonprincipal)

auto
have fds-converges (fds-deriv (fds χ)) 1 using conv-abscissa-le-0 [OF nonprinci-

pal]
by (intro fds-converges-deriv) (auto intro: le-less-trans)

hence summable (λn. −(χ n ∗ ln n / n))
by (auto simp: fds-converges-def fds-deriv-def scaleR-conv-of-real fds-nth-fds ′

algebra-simps)
hence summable (λn. χ n ∗ ln n / n) by (simp only: summable-minus-iff )
from summable-imp-convergent-sum-upto [OF this] obtain c where
(sum-upto (λn. χ n ∗ ln n / n) −−−→ c) at-top by blast

hence ∗: sum-upto (λk. χ k ∗ ln k / k) ∈ O(λ-. 1 ) unfolding sum-upto-def
by (intro bigoI-tendsto[of - - c]) auto

from sum-in-bigo[OF Dirichlet-L-nonprincipal-mangoldt-aux-bound ∗]
have (λx. L ∗ sum-upto (λk. χ k ∗ mangoldt k / k) x) ∈ O(λ-. 1 ) by (simp

add: L-def )
thus ?thesis by simp

qed

end
end

4.3 The contribution of the principal character

Next, we turn to the analogous partial sum for the principal character and
show that it grows logarithmically and therefore is the dominant contribu-
tion.
context residues-nat
begin
context

includes no vec-lambda-syntax and dcharacter-syntax
begin

lemma principal-dchar-sum-bound:
(λx. (

∑
p | prime p ∧ real p ≤ x. χ0 p ∗ (ln p / p)) − ln x) ∈ O(λ-. 1 )

proof −
have fin [simp]: finite {p. prime p ∧ real p ≤ x ∧ Q p} for Q x

by (rule finite-subset[of - {..nat bxc}]) (auto simp: le-nat-iff le-floor-iff )
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from fin[of - λ-. True] have [simp]: finite {p. prime p ∧ real p ≤ x} for x
by (simp del: fin)

define P :: complex where P = (
∑

p | prime p ∧ p dvd n. of-real (ln p / p))

have (λx. (
∑

p | prime p ∧ real p ≤ x. χ0 p ∗ (ln p / p)) − ln x) ∈
Θ(λx. of-real ((

∑
p | prime p ∧ real p ≤ x. ln p / p) − ln x) − P) (is - ∈

Θ(?f ))
proof (intro bigthetaI-cong eventually-mono[OF eventually-gt-at-top[of real n]],

goal-cases)
case (1 x)
have ∗: {p. prime p ∧ real p ≤ x} =

{p. prime p ∧ real p ≤ x ∧ p dvd n} ∪ {p. prime p ∧ real p ≤ x ∧ ¬p
dvd n}

(is - = ?A ∪ ?B) by auto
have (

∑
p | prime p ∧ real p ≤ x. of-real (ln p / p)) =

(
∑

p∈?A. of-real (ln p / p)) + (
∑

p∈?B. complex-of-real (ln p / p))
by (subst ∗, subst sum.union-disjoint) auto
also from 1 have ?A = {p. prime p ∧ p dvd n} using n by (auto dest:

dvd-imp-le)
also have (

∑
p∈. . . . of-real (ln p / p)) = P by (simp add: P-def )

also have (
∑

p∈?B. of-real (ln p / p)) =
(
∑

p | prime p ∧ real p ≤ x. χ0 p ∗ (ln p / p))
by (intro sum.mono-neutral-cong-left)
(auto simp: principal-dchar-def prime-gt-0-nat coprime-absorb-left prime-imp-coprime)

finally show ?case using 1 by (simp add: Ln-of-real)
qed
also have ?f ∈ O(λ-. of-real 1 )

by (rule sum-in-bigo, subst landau-o.big.of-real-iff , rule Mertens-bigo) auto
finally show ?thesis by simp

qed

lemma principal-dchar-sum-bound ′:
(λx. sum-upto (λk. χ0 k ∗ mangoldt k / k) x − Ln x) ∈ O(λ-. 1 )

proof −
have (λx. sum-upto (λk. χ0 k ∗ mangoldt k / k) x −

(
∑

p | prime p ∧ real p ≤ x. χ0 p ∗ (ln p / p))) ∈ O(λ-. 1 )
proof (intro bigoI [of - 3 ] eventually-mono[OF eventually-gt-at-top[of 0 ]], goal-cases)

case (1 x)
have norm (complex-of-real (

∑
k | real k ≤ x ∧ coprime k n. mangoldt k / k)

−
of-real (

∑
p | prime p ∧ p ∈ {k. real k ≤ x ∧ coprime k n}. ln p /

p)) ≤ 3
unfolding of-real-diff [symmetric] norm-of-real
by (rule Mertens-mangoldt-versus-ln[where n = nat bxc])

(insert n, auto simp: Suc-le-eq le-nat-iff le-floor-iff intro!: Nat.gr0I )
also have complex-of-real (

∑
k | real k ≤ x ∧ coprime k n. mangoldt k / k) =

sum-upto (λk. χ0 k ∗ mangoldt k / k) x
unfolding sum-upto-def of-real-sum using n
by (intro sum.mono-neutral-cong-left) (auto simp: principal-dchar-def intro!:
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Nat.gr0I )
also have complex-of-real (

∑
p | prime p ∧ p ∈ {k. real k ≤ x ∧ coprime k n}.

ln p / p) =
(
∑

p | prime p ∧ real p ≤ x. χ0 p ∗ (ln p / p))
unfolding of-real-sum
by (intro sum.mono-neutral-cong-left)

(auto simp: principal-dchar-def le-nat-iff le-floor-iff prime-gt-0-nat
intro!: finite-subset[of - {..nat bxc}])

finally show ?case by simp
qed
from sum-in-bigo(1 )[OF principal-dchar-sum-bound this] show ?thesis

by simp
qed

4.4 The main result

We can now show the main result by extracting the primes we want using
the orthogonality relation on characters, separating the principal part of the
sum from the non-principal ones and then applying the above estimates.
lemma Dirichlet-strong:

assumes coprime h n
shows (λx. (

∑
p | prime p ∧ [p = h] (mod n) ∧ real p ≤ x. ln p / p) − ln x /

totient n)
∈ O(λ-. 1 ) (is (λx. sum - (?A x) − -) ∈ -)

proof −
from assms obtain h ′ where h ′: [h ∗ h ′ = Suc 0 ] (mod n)

by (subst (asm) coprime-iff-invertible-nat) blast
let ?A ′ = λx. {p. p > 0 ∧ real p ≤ x ∧ [p = h] (mod n)}
let ?B = dcharacters n − {χ0}
have [simp]: χ0 ∈ dcharacters n

by (auto simp: dcharacters-def principal.dcharacter-axioms)

have (λx. of-nat (totient n) ∗ (
∑

p∈?A ′ x. mangoldt p / p) − ln x) ∈
Θ(λx. sum-upto (λk. χ0 k ∗ mangoldt k / k) x − ln x +

(
∑

χ∈?B. χ h ′ ∗ sum-upto (λk. χ k ∗ mangoldt k / k) x))
(is - ∈ Θ(?f ))

proof (intro bigthetaI-cong eventually-mono[OF eventually-gt-at-top[of 0 ]], goal-cases)
case (1 x)
have of-nat (totient n) ∗ (

∑
p∈?A ′ x. of-real (mangoldt p / p) :: complex) =

(
∑

p∈?A ′ x. of-nat (totient n) ∗ of-real (mangoldt p / p))
by (subst sum-distrib-left) simp-all

also have . . . = sum-upto (λk.
∑

χ∈dcharacters n. χ (h ′ ∗ k) ∗ (mangoldt k /
k)) x

unfolding sum-upto-def
proof (intro sum.mono-neutral-cong-left ballI , goal-cases)

case (3 p)
have [h ′ ∗ p 6= 1 ] (mod n)
proof

assume [h ′ ∗ p = 1 ] (mod n)
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hence [h ∗ (h ′ ∗ p) = h ∗ 1 ] (mod n) by (rule cong-scalar-left)
hence [h = h ∗ h ′ ∗ p] (mod n) by (simp add: mult-ac cong-sym)
also have [h ∗ h ′ ∗ p = 1 ∗ p] (mod n)

using h ′ by (intro cong-scalar-right) auto
finally have [p = h] (mod n) by (simp add: cong-sym)
with 3 show False by auto

qed
thus ?case
by (auto simp: sum-dcharacters sum-divide-distrib [symmetric] sum-distrib-right

[symmetric])
next

case (4 p)
hence [p ∗ h ′ = h ∗ h ′] (mod n) by (intro cong-scalar-right) auto
also have [h ∗ h ′ = 1 ] (mod n) using h ′ by simp
finally have [h ′ ∗ p = 1 ] (mod n) by (simp add: mult-ac)
thus ?case using h ′ 4
by (auto simp: sum-dcharacters sum-divide-distrib [symmetric] sum-distrib-right

[symmetric])
qed auto
also have . . . = (

∑
χ∈dcharacters n. sum-upto (λk. χ (h ′ ∗ k) ∗ (mangoldt k

/ k)) x)
unfolding sum-upto-def by (rule sum.swap)

also have . . . = (
∑

χ∈dcharacters n. χ h ′ ∗ sum-upto (λk. χ k ∗ (mangoldt k
/ k)) x)

unfolding sum-upto-def
by (intro sum.cong refl) (auto simp: dcharacters-def dcharacter .mult sum-distrib-left

mult-ac)
also have . . . = χ0 h ′ ∗ sum-upto (λk. χ0 k ∗ (mangoldt k / k)) x +

(
∑

χ∈?B. χ h ′ ∗ sum-upto (λk. χ k ∗ (mangoldt k / k)) x)
by (subst sum.remove [symmetric]) (auto simp: sum-distrib-left)

also have coprime h ′ n
using h ′ by (subst coprime-iff-invertible-nat, subst (asm) mult.commute) auto

hence χ0 h ′ = 1
by (simp add: principal-dchar-def )

finally show ?case using n 1 by (simp add: Ln-of-real)
qed
also have ?f ∈ O(λ-. complex-of-real 1 )
proof (rule sum-in-bigo[OF - big-sum-in-bigo], goal-cases)

case 1
from principal-dchar-sum-bound ′ show ?case by simp

next
case (2 χ)
then interpret dcharacter n G χ by (simp-all add: G-def dcharacters-def )
from 2 have χ 6= χ0 by auto
thus ?case unfolding of-real-1

by (intro landau-o.big.mult-in-1 nonprincipal-mangoldt-bound) auto
qed
finally have ∗: (λx. real (totient n) ∗ (

∑
p∈?A ′ x. mangoldt p / p) − ln x) ∈

O(λ-. 1 )
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by (subst (asm) landau-o.big.of-real-iff )

have (λx. real (totient n) ∗ ((
∑

p∈?A x. ln p / p) − (
∑

p∈?A ′ x. mangoldt p /
p))) ∈ O(λ-. 1 )

proof (intro landau-o.big.mult-in-1 )
show (λx. (

∑
p∈?A x. ln p / p) − (

∑
p∈?A ′ x. mangoldt p / p)) ∈ O(λ-. 1 )

unfolding landau-o.big.of-real-iff
proof (intro bigoI [of - 3 ] eventually-mono[OF eventually-gt-at-top[of 0 ]], goal-cases)

case (1 x)
have |(

∑
p∈?A ′ x. mangoldt p / p) − (

∑
p | prime p ∧ p ∈ ?A ′ x. ln p / p)|

≤ 3
by (rule Mertens-mangoldt-versus-ln[where n = nat bxc])

(auto simp: le-nat-iff le-floor-iff )
also have {p. prime p ∧ p ∈ ?A ′ x} = ?A x by (auto simp: prime-gt-0-nat)
finally show ?case by (simp add: abs-minus-commute)

qed
qed auto
from sum-in-bigo(1 )[OF ∗ this]

have (λx. totient n ∗ (
∑

p∈?A x . ln p / p) − ln x) ∈ O(λ-. 1 )
by (simp add: field-simps)

also have (λx. totient n ∗ (
∑

p∈?A x . ln p / p) − ln x) =
(λx. totient n ∗ ((

∑
p∈?A x . ln p / p) − ln x / totient n))

using n by (intro ext) (auto simp: field-simps)
also have . . . ∈ O(λ-. 1 ) ←→ ?thesis using n

by (intro landau-o.big.cmult-in-iff ) auto
finally show ?thesis .

qed

It is now obvious that the set of primes we are interested in is, in fact,
infinite.
theorem Dirichlet:

assumes coprime h n
shows infinite {p. prime p ∧ [p = h] (mod n)}

proof
assume finite {p. prime p ∧ [p = h] (mod n)}
then obtain K where K : {p. prime p ∧ [p = h] (mod n)} ⊆ {..<K}

by (auto simp: finite-nat-iff-bounded)
have eventually (λx. (

∑
p | prime p ∧ [p = h] (mod n) ∧ real p ≤ x. ln p / p) =

(
∑

p | prime p ∧ [p = h] (mod n). ln p / p)) at-top
using eventually-ge-at-top[of real K ] by eventually-elim (intro sum.cong, use

K in auto)
hence (λx. (

∑
p | prime p ∧ [p = h] (mod n) ∧ real p ≤ x. ln p / p)) ∈

Θ(λ-. (
∑

p | prime p ∧ [p = h] (mod n). ln p / p)) by (intro bigthetaI-cong)
auto

also have (λ-. (
∑

p | prime p ∧ [p = h] (mod n). ln p / p)) ∈ O(λ-. 1 ) by simp
finally have (λx. (

∑
p | prime p ∧ [p = h] (mod n) ∧ real p ≤ x. ln p / p)) ∈

O(λ-. 1 ) .
from sum-in-bigo(2 )[OF this Dirichlet-strong[OF assms]] and n show False by

simp
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qed

In the future, one could extend this result to more precise estimates of the
distribution of primes in arithmetic progressions in a similar way to the
Prime Number Theorem.
end
end
end
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