Formalizing Results on Directed Sets

Akihisa Yamada and Jérémy Dubut

September 13, 2023

Abstract

Directed sets are of fundamental interest in domain theory and topology. In this paper, we formalize some results on directed sets in Isabelle/HOL, most notably: under the axiom of choice, a poset has a supremum for every directed set if and only if it does so for every chain; and a function between such posets preserves suprema of directed sets if and only if it preserves suprema of chains. The known pen-and-paper proofs of these results crucially use uncountable transfinite sequences, which are not directly implementable in Isabelle/HOL. We show how to emulate such proofs by utilizing Isabelle/HOL's ordinal and cardinal library. Thanks to the formalization, we relax some conditions for the above results.

Contents

1 Introduction

2 Preliminaries 3
2.1 Connecting Predicate-Based and Set-Based Relations 3
2.2 Missing Lemmas 5
3 Iwamura's lemma 7
3.1 Uncountable Case 7
3.2 Countable Case 11
4 Directed Completeness and Scott-Continuity 14

1 Introduction

A directed set is a set D equipped with a binary relation \sqsubseteq such that any finite subset $X \subseteq D$ has an upper bound in D with respect to \sqsubseteq. The property is often equivalently stated that D is non-empty and any two elements $x, y \in D$ have a bound in D, assuming that \sqsubseteq is transitive (as in posets).

Directed sets find uses in various fields of mathematics and computer science. In topology (see for example the textbook [7]), directed sets are used to generalize the set of natural numbers: sequences $\mathbb{N} \rightarrow A$ are generalized to nets $D \rightarrow A$, where D is an arbitrary directed set. For example, the usual result on metric spaces that continuous functions are precisely functions that preserve limits of sequences can be generalized in general topological spaces as: the continuous functions are precisely functions that preserve limits of nets. In domain theory [1], key ingredients are directed-complete posets, where every directed subset has a supremum in the poset, and Scott-continuous functions between posets, that is, functions that preserve suprema of directed sets. Thanks to their fixed-point properties (which we have formalized in Isabelle/HOL in a previous work [5]), directed-complete posets naturally appear in denotational semantics of languages with loops or fixed-point operators (see for example Scott domains [11, 13]). Directed sets also appear in reachability and coverability analyses of transition systems through the notion of ideals, that is, downward-closed directed sets. They allow effective representations of objects, making forward and backward analysis of well-structured transition systems - such as Petri nets possible (see e.g., [6]).

Apparently milder generalizations of natural numbers are chains (totally ordered sets) or even well-ordered sets. In the mathematics literature, the following results are known (assuming the axiom of choice):

Theorem 1 ([4]) A poset is directed-complete if (and only if) it has a supremum for every non-empty well-ordered subset.

Theorem 2 ([9]) Let f be a function between posets, each of which has a supremum for every non-empty chain. If f preserves suprema of non-empty chains, then it is Scott-continuous.

The pen-and-paper proofs of these results use induction on cardinality, where the finite case is merely the base case. The core of the proof is a technical result called Iwamura's Lemma [8], where the countable case is merely an easy case, and the main part heavily uses transfinite sequences indexed by uncountable ordinals.

To formalize these results in Isabelle/HOL we extensively use the existing library for ordinals and cardinals [3], but we needed some delicate work in emulating the pen-and-paper proofs. In Isabelle/HOL, or any proof assistant based on higher-order logic (HOL), it is not possible to have a datatype for arbitrarily large ordinals; hence, it is not possible to directly formalize transfinite sequences. We show how to emulate transfinite sequences using the ordinal and cardinal library [3]. As far as the authors know, our work is the first to mechanize the proof of Theorems 1 and 2 , as well as Iwamura's Lemma. We prove the two theorems for quasi-ordered sets, relaxing
antisymmetry, and strengthen Theorem 2 so that chains are replaced by well-ordered sets and conditions on the codomain are completely dropped.

Related Work Systems based on Zermelo-Fraenkel set theory, such as Mizar [2] and Isabelle/ZF [10], have more direct support for ordinals and cardinals and should pose less challenge in mechanizing the above results. Nevertheless, a part of our contribution is in demonstrating that the power of (Isabelle/)HOL is strong enough to deal with uncountable transfinite sequences.

Except for the extra care for transfinite sequences, our proof of Iwamura's Lemma is largely based on the original proof from [8]. Markowsky presented a proof of Theorem 1 using Iwamura's Lemma [9, Corollary 1]. While he took a minimal-counterexample approach, we take a more constructive approach to build a well-ordered set of suprema. This construction was crucial to be reused in the proof of Theorem 2, which Markowsky claimed without a proof [9]. Another proof of Theorem 1 can be found in [4], without using Iwamura's Lemma, but still crucially using transfinite sequences.

This work has been published in the conference paper [14].

2 Preliminaries

2.1 Connecting Predicate-Based and Set-Based Relations

theory Well-Order-Connection
imports
Main
Complete-Non-Orders.Well-Relations
begin
lemma refl-on-relation-of: refl-on A (relation-of $r A) \longleftrightarrow$ reflexive $A r$ by (auto simp: refl-on-def reflexive-def relation-of-def)
lemma trans-relation-of: trans (relation-of $r A) \longleftrightarrow$ transitive $A r$ by (auto simp: trans-def relation-of-def transitive-def)
lemma preorder-on-relation-of: preorder-on A (relation-of $r A) \longleftrightarrow$ quasi-ordered-set Ar by (simp add: preorder-on-def refl-on-relation-of trans-relation-of quasi-ordered-set-def)
lemma antisym-relation-of: antisym (relation-of $r A) \longleftrightarrow$ antisymmetric $A r$ by (auto simp: antisym-def relation-of-def antisymmetric-def)
lemma partial-order-on-relation-of:
partial-order-on $A($ relation-of $r A) \longleftrightarrow$ partially-ordered-set Ar
by (auto simp: partial-order-on-def preorder-on-relation-of antisym-relation-of quasi-ordered-set-def partially-ordered-set-def)

```
lemma total-on-relation-of: total-on A (relation-of r A) \longleftrightarrow semiconnex A r
    by (auto simp: total-on-def relation-of-def semiconnex-def)
lemma linear-order-on-relation-of:
    shows linear-order-on A (relation-of r A) \longleftrightarrow total-ordered-set A r
    by (auto simp: linear-order-on-def partial-order-on-relation-of total-on-relation-of
        total-ordered-set-def total-quasi-ordered-set-def partially-ordered-set-def
        connex-iff-semiconnex-reflexive)
    lemma relation-of-sub-Id:(relation-of r A - Id) = relation-of ( }\lambdax\mathrm{ y.r r y ^ x =
y) }
    by (auto simp: relation-of-def)
lemma (in antisymmetric) asympartp-iff-weak-neq:
    shows }x\inA\Longrightarrowy\inA\Longrightarrow\mathrm{ asympartp (ந) }xy\longleftrightarrowx\sqsubseteqy^x\not=
    by (auto intro!: asympartpI antisym)
lemma wf-relation-of:wf (relation-of r A) = well-founded A r
    apply (simp add: wf-eq-minimal relation-of-def well-founded-iff-ex-extremal Ball-def)
    by (metis (no-types, opaque-lifting) equals0I insert-Diff insert-not-empty subsetI
subset-iff)
lemma well-order-on-relation-of:
    shows well-order-on A (relation-of r A) \longleftrightarrowwell-ordered-set A r
    by (auto simp: well-order-on-def linear-order-on-relation-of relation-of-sub-Id
        wf-relation-of well-ordered-iff-well-founded-total-ordered
        antisymmetric.asympartp-iff-weak-neq total-ordered-set-def
        cong: well-founded-cong)
    lemma (in connex) Field-relation-of: Field (relation-of (\sqsubseteq) A) =A
    by (auto simp: Field-def relation-of-def)
lemma (in well-ordered-set) Well-order-relation-of:
    shows Well-order (relation-of (\sqsubseteq) A)
    by (auto simp: Field-relation-of well-order-on-relation-of well-ordered-set-axioms)
lemma in-relation-of: (x,y)\in relation-of r A\longleftrightarrowx\inA\wedgey\inA\wedgerxy
    by (simp add: relation-of-def)
lemma relation-of-triv: relation-of ( }\lambdaxy.(x,y)\inr)UNIV=
    by (auto simp: relation-of-def)
lemma Restr-eq-relation-of: Restr R A = relation-of ( }\lambdaxy.(x,y)\inR)
    by (auto simp: relation-of-def)
theorem ex-well-order: \existsr.well-ordered-set A r
proof-
    from well-order-on obtain R where R: well-order-on A R by auto
    then have well-order-on A (Restr R A)
```

```
    by (simp add: well-order-on-Field[OF R] Restr-Field)
    then show ?thesis by (auto simp: Restr-eq-relation-of well-order-on-relation-of)
qed
```

end
theory Directed-Completeness
imports
Complete-Non-Orders.Continuity
Well-Order-Connection
HOL-Cardinals.Cardinals
HOL-Library.FuncSet
begin

2.2 Missing Lemmas

```
no-notation disj (infixr | 30)
lemma Sup-funpow-mono:
    fixes f :: 'a :: complete-lattice => 'a
    assumes mono: mono f
    shows mono (\bigsqcupi.f~i
    by (intro monoI, auto intro!: Sup-mono dest: funpow-mono[OF mono])
lemma iso-imp-compat:
    assumes iso: iso r r'f}\mathrm{ shows compat r r'f
    by (simp add: compat-def iso iso-forward)
lemma iso-inv-into:
    assumes ISO: iso r r'f
    shows iso r'r (inv-into (Field r) f)
    using assms unfolding iso-def
    using bij-betw-inv-into inv-into-Field-embed-bij-betw by blast
lemmas iso-imp-compat-inv-into = iso-imp-compat[OF iso-inv-into]
lemma infinite-iff-natLeq: infinite }A\longleftrightarrow\mathrm{ natLeq }\leqo|A
    using infinite-iff-natLeq-ordLeq by blast
```

As we cannot formalize transfinite sequences directly, we take the following approach: We just use A as the index set, and instead of the ordering on ordinals, we take the well-order that is chosen by the cardinality library to denote $|A|$.
definition well-order-of $\left(\left(^{\prime}\left(\preceq_{-}^{\prime}\right)\right)[0] 1000\right)$ where $\left(\preceq_{A}\right) x y \equiv(x, y) \in|A|$
abbreviation well-order-le (- $\preceq-[51,0,51] 50)$ where $x \preceq_{A} y \equiv\left(\preceq_{A}\right) x y$
abbreviation well-order-less (- $\prec-[51,0,51] 50)$ where $x \prec_{A} y \equiv$ asympartp $\left(\preceq_{A}\right) x y$
lemmas well-order-ofI $=$ well-order-of-def[unfolded atomize-eq, THEN iffD2]
lemmas well-order-ofD $=$ well-order-of-def[unfolded atomize-eq, THEN iffD1]
lemma carrier: assumes $x \preceq_{A} y$ shows $x \in A$ and $y \in A$
using assms by (auto dest!: well-order-ofD dest: FieldI1 FieldI2)
lemma relation-of $[$ simp $]$: relation-of $\left(\preceq_{A}\right) A=|A|$
by (auto simp: relation-of-def well-order-of-def dest: FieldI1 FieldI2)
interpretation well-order-of: well-ordered-set $A\left(\preceq_{A}\right)$
apply (fold well-order-on-relation-of)
by auto
Thanks to the well-order theorem, one can have a sequence $\left\{A_{\alpha}\right\}_{\alpha<|A|}$ of subsets of A that satisfies the following three conditions:

- cardinality: $\left|A_{\alpha}\right|<|A|$ for every $\alpha<|A|$,
- monotonicity: $A_{\alpha} \subseteq A_{\beta}$ whenever $\alpha \leq \beta<|A|$, and
- range: if A is infinite, $A=\bigcup_{\alpha<|A|} A_{\alpha}$.

The following serves the purpose.
definition Pre $(-\prec[1000] 1000)$ where $A_{\prec} a \equiv\left\{b \in A . b \prec_{A} a\right\}$
lemma Pre-eq-underS: $A_{\prec} a=$ underS $|A| a$
by (auto simp: Pre-def underS-def well-order-ofD carrier well-order-of.antisym dest!: well-order-ofI)
lemma Pre-card: assumes $a A: a \in A$ shows $\left|A_{\prec} a\right|<o|A|$
by (auto simp: Pre-eq-underS aA intro!: card-of-underS[OF card-of-Card-order])
lemma Pre-carrier: $A_{\prec} a \subseteq A$ by (auto simp: Pre-def)
lemma Pre-mono: monotone-on $A\left(\preceq_{A}\right)(\subseteq)\left(A_{\prec}\right)$
by (auto intro!: monotone-onI simp: Pre-def dest: well-order-of.asym-trans well-order-of.asym.irrefl)
lemma extreme-imp-finite:
assumes e : extreme $A\left(\preceq_{A}\right)$ e shows finite A
proof (rule ccontr)
assume inf: infinite A
from e have $e A: e \in A$ by auto
from e have $A=\left\{a \in A . a \preceq_{A} e\right\}$ by auto
also have ... $-\{e\}=A_{\prec} e$
using $e A$ by (auto simp: Pre-def dest: well-order-of.asympartp-iff-weak-neq)
finally have $A e P: A-\{e\}=\ldots$.
have infinite $(A-\{e\})$ using infinite-remove $[O F$ inf $]$.
with $A e P$ have infP: infinite $\left(A_{\prec} e\right)$ by simp
have $A=$ insert $e\left(A_{\prec} e\right)$ using $e A$ by (fold AeP, auto)

```
    also have |...| =o |A< e| using infinite-card-of-insert[OF infP].
    finally have }|\mp@subsup{A}{\prec}{}e|=o|A| using ordIso-symmetric by aut
    with Pre-card[OF eA] not-ordLess-ordIso
    show False by auto
qed
lemma infinite-imp-ex-Pre:
    assumes inf: infinite }A\mathrm{ and }xA:x\inA\mathrm{ shows }\existsy\inA.x\inA\prec
proof-
    from inf
    have }\neg\mathrm{ extreme A (ऑ_A) x by (auto dest!: extreme-imp-finite)
    with }xA\mathrm{ obtain }y\mathrm{ where yA:y}\inA\mathrm{ and }\negy\preceq\preceq_ x by aut
    with }xA\mathrm{ have }x\mp@subsup{\prec}{A}{}y\mathrm{ by (auto simp: well-order-of.not-weak-iff asympartpI)
    with yA show ?thesis by (auto simp: Pre-def xA)
qed
lemma infinite-imp-Un-Pre: assumes inf: infinite A shows U (A\prec`'A)=A
proof (safe)
    fix x assume xA: x\inA
    show }y\in\mp@subsup{A}{\prec}{}x\Longrightarrowy\inA\mathrm{ for y using Pre-carrier[of A x] by auto
    from infinite-imp-ex-Pre[OF inf xA]
    show }x\in\bigcup(\mp@subsup{A}{\prec}{}\mp@subsup{}{}{\prime}A)\mathrm{ by (auto simp: Pre-def)
qed
```


3 Iwamura's lemma

As the proof involves a number of (inductive) definitions, we build a locale for collecting those definitions and lemmas.

```
locale Iwamura-proof = related-set +
    assumes dir: directed-set A (\sqsubseteq)
begin
```

Inside this locale, a related set (A, \sqsubseteq) is fixed and assumed to be directed. The proof starts with declaring, using the axiom of choice, a function f that chooses a bound $f X \in A$ for every finite subset $X \subseteq A$. This function can be formalized using the SOME construction:

```
definition \(f\) where \(f X \equiv S O M E z . z \in A \wedge\) bound \(X\) (Б) \(z\)
lemma assumes \(X A: X \subseteq A\) and \(X f i n\) : finite \(X\)
    shows \(f\)-carrier: \(f X \in A\) and \(f\)-bound: bound \(X(\sqsubseteq)(f X)\)
    using directed-setD[OF dir XA Xfin, unfolded Bex-def, THEN someI-ex]
    by (auto simp: f-def)
```


3.1 Uncountable Case

Actually, the main part of the proof of Iwamura's Lemma is about monotonically expanding an infinite subset (in particular A_{α}) of A into a directed
one, without changing the cardinality. To this end, Iwamura's original proof introduces a function $F: \operatorname{Pow} A \rightarrow \operatorname{Pow} A$ that expands a set with upper bounds of all finite subsets. This approach is different from Markowsky's reproof (based on [12]) which uses nested transfinite induction to extend a set one element after another.

```
definition \(F\) where \(F X \equiv X \cup f^{\prime}\) Fpow \(X\)
lemma \(F\)-carrier: \(X \subseteq A \Longrightarrow F X \subseteq A\)
    and \(F\)-infl: \(X \subseteq F X\)
    and \(F\)-fin: finite \(X \Longrightarrow\) finite \((F X)\)
    by (auto simp: F-def Fpow-def f-carrier)
lemma \(F\)-card: assumes inf: infinite \(X\) shows \(|F X|=o|X|\)
proof-
    have \(\mid f\) ' Fpow \(X|\leq o|\) Fpow \(X \mid\) using card-of-image.
    thm card-of-Fpow-infinite
    also have \(\mid\) Fpow \(X|=o| X \mid\) using card-of-Fpow-infinite \([O F\) inf \(]\).
    finally have \(\mid f\) ' Fpow \(X|\leq o| X \mid\).
    with inf show ?thesis by (auto simp: F-def)
qed
lemma \(F\)-mono: mono \(F\)
\(\operatorname{proof}(\) intro monoI)
    show \(X \subseteq Y \Longrightarrow F X \subseteq F Y\) for \(X Y\)
        using Fpow-mono[of \(X Y\) ] by (auto simp: \(F\)-def)
qed
lemma Fn-carrier: \(X \subseteq A \Longrightarrow(F \wedge n) X \subseteq A\)
    and Fn-infl: \(X \subseteq(F \leadsto n) X\)
    and \(F n\)-fin: finite \(X \Longrightarrow\) finite \(\left(\left(F \sim_{n}\right) X\right)\)
    and Fn-card: infinite \(X \Longrightarrow|(F \leadsto n) X|=o|X|\)
proof (atomize(full), induct \(n\) )
    case (Suc n)
    define \(Y\) where \(Y \equiv\left(F^{\sim} n\right) X\)
    then have *: \(\left(F^{\leadsto}\right.\) Suc n) \(X=F Y\) by auto
    from Suc[folded Y-def]
    have infinite \(X \Longrightarrow\) infinite \(Y \wedge|Y|=o|X|\)
        and finite \(X \Longrightarrow\) finite \(Y\)
        and \(X \subseteq Y\)
        and \(X \subseteq A \Longrightarrow Y \subseteq A\) by (auto simp: \(Y\)-def)
    with \(F\)-carrier [of \(Y\) ] F-infl[of \(Y\) ] F-card[of \(Y\) ] F-fin[of \(Y\) ]
    show ?case by (unfold *, auto del:subsetI dest:ordIso-transitive)
qed auto
lemma Fn-mono1: \(i \leq j \Longrightarrow(F \leadsto i) X \subseteq(F \leadsto j) X\) for \(i j\)
    using \(\operatorname{Fn}\)-infl[ of ( \(F^{\sim i}\) i) \(\left.X j-i\right]\) funpow-add \([\) of \(j-i\) i \(F]\)
    by auto
```

We take the ω-iteration of the monotone function F, namely:

```
definition Flim (F}\mp@subsup{F}{}{\omega})\mathrm{ where F F
lemma Flim-mono: mono F}\mp@subsup{}{}{\omega
proof-
    have F}\mp@subsup{F}{}{\omega}=(\bigsqcup\mathrm{ range ((``)F)) by (auto simp: Flim-def)
    with Sup-funpow-mono[OF F-mono]
    show ?thesis by auto
qed
lemma Flim-infl: }X\subseteq\mp@subsup{F}{}{\omega}
    using Fn-infl by (auto simp: Flim-def)
lemma Flim-carrier: assumes }X\subseteqA\mathrm{ shows }\mp@subsup{F}{}{\omega}X\subseteq
    using Fn-carrier[OF assms] by (auto simp: Flim-def)
lemma Flim-directed: assumes }X\subseteqA\mathrm{ shows directed-set (F}\mp@subsup{F}{}{\omega}X\mathrm{ ) (Б)
proof (safe intro!: directed-setI)
    fix Y assume YC:Y\subseteq\mp@subsup{F}{}{\omega}X\mathrm{ and fin Y: finite }Y
    from finY YC have }\existsi.Y\subseteq(F^i)
    proof (induct)
        case empty
        then show ?case by auto
    next
    case (insert y Y)
        then obtain ij where Yi: Y\subseteq(F~i) X and y\in(F~ j) X by (auto
simp: Flim-def)
    with Fn-mono1[OF max.cobounded1[of i j], of X] Fn-mono1[OF max.cobounded2[of
j i], of X]
    show ?case by (auto intro!: exI[of - max i j])
    qed
    then obtain i where Yi: Y\subseteq(F^^ i) X by auto
    with Fn-carrier[OF assms] have YA: Y}\subseteqA\mathrm{ by auto
    from Yi finY have f Y\in(F`^Suc i) X by (auto simp: F-def Fpow-def)
    then have f Y\in F' X by (auto simp: Flim-def simp del: funpow.simps)
    with f-bound[OF YA finY]
    show }\existsz\in\mp@subsup{F}{}{\omega}X\mathrm{ . bound }Y\mathrm{ (Б) z by auto
qed
lemma Flim-card: assumes infinite X shows }|\mp@subsup{F}{}{\omega}X|=o |X
proof-
    from assms have natX: |UNIV :: nat set }\\leqo|X| by (simp add: infinite-iff-card-of-nat
    have }|\mp@subsup{F}{}{\omega}X|\leqo |X
        apply (unfold Flim-def, rule card-of-UNION-ordLeq-infinite[OF assms natX])
        using Fn-card[OF assms] ordIso-imp-ordLeq
        by auto
    with Flim-infl show }|\mp@subsup{F}{}{\omega}X|=o|X| by (simp add: ordIso-iff-ordLeq
qed
lemma Flim-fin: assumes finite X shows }|\mp@subsup{F}{}{\omega}X|\leqo natLe
```

```
proof-
    have }|\mp@subsup{F}{}{\omega}X|\leqo|UNIV :: nat set 
        apply (unfold Flim-def)
        apply (rule card-of-UNION-ordLeq-infinite)
        by (auto simp: Fn-fin[OF assms] intro!: ordLess-imp-ordLeq)
    then show ?thesis using card-of-nat ordLeq-ordIso-trans by auto
qed
lemma mono-uncountable: monotone-on A (\preceq_) (\subseteq) (FF
    using monotone-on-o[OF Flim-mono Pre-mono]
    by (auto simp: o-def)
lemma card-uncountable:
    assumes aA: a\inA and unc: natLeq <o |A|
    shows }|\mp@subsup{F}{}{\omega}(\mp@subsup{A}{\prec}{}a)|<o|A
proof (cases finite ( }\mp@subsup{A}{\prec}{}a)\mathrm{ )
    case True
    note Flim-fin[OF this]
    also note unc
    finally show ?thesis
        using unc not-ordLess-ordIso by auto
next
    case False
    note Flim-card[OF this]
    also note Pre-card[OF aA]
    finally show ?thesis using unc not-ordLess-ordIso by auto
qed
lemma in-I-uncountable:
    assumes aA: a\inA and inf: infinite A
    shows }\exists\mp@subsup{a}{}{\prime}\inA.a\in\mp@subsup{F}{}{\omega}(\mp@subsup{A}{\prec}{}\mp@subsup{a}{}{\prime}
    using infinite-imp-ex-Pre[OF inf aA] Flim-infl
    by auto
lemma carrier-uncountable:
    shows F}\mp@subsup{F}{}{\omega}(\mp@subsup{A}{\prec}{}a)\subseteq
    using Flim-carrier[OF Pre-carrier]
    by auto
lemma range-uncountable: assumes inf: infinite }A\mathrm{ shows }\bigcup((\mp@subsup{F}{}{\omega}\circ\mp@subsup{A}{\prec}{})'A)
A
proof (safe intro!: subset-antisym)
    fix a assume aA: a\inA
    from infinite-imp-ex-Pre[OF inf aA] Flim-infl
    show }a\in\bigcup((\mp@subsup{F}{}{\omega}\circ\mp@subsup{A}{\prec}{})'A) by aut
    show }x\in(\mp@subsup{F}{}{\omega}\circ\mp@subsup{A}{\prec}{})a\Longrightarrowx\inA\mathrm{ for }
        using carrier-uncountable by auto
qed
```

by (auto simp: Pre-def)

3.2 Countable Case

```
context
    assumes countable: }|A|=o natLe
begin
```

The assumption above means that there exists an order-isomorphism between (\mathbb{N}, \leq) and $\left(A, \preceq_{A}\right)$.
definition seq :: nat $\Rightarrow{ }^{\prime} a$ where seq \equiv SOME f. iso natLeq $|A| f$
lemma seq-iso: iso natLeq $|A|$ seq
apply (unfold seq-def)
apply (rule someI-ex[of iso natLeq $|A|]$)
using countable[THEN ordIso-symmetric]
apply (unfold ordIso-def) by auto
lemma seq-bij-betw: bij-betw seq UNIV A
using seq-iso by (auto simp: iso-def Field-natLeq)
This means that A has been indexed by \mathbb{N}.

```
lemma range-seq: range seq =A
    using seq-bij-betw bij-betw-imp-surj-on by force
lemma seq-mono: monotone ( }\leq\mathrm{ ) ( }\mp@subsup{\preceq}{A}{})\mathrm{ seq
    using iso-imp-compat[OF seq-iso]
    by (auto intro!: monotoneI well-order-ofI simp: compat-def natLeq-def)
lemma inv-seq-mono: monotone-on A (\preceq_})(\leq)(\mathrm{ inv seq)
    using iso-imp-compat-inv-into[OF seq-iso]
    unfolding Field-natLeq
    by (auto intro!: monotone-onI simp: natLeq-def compat-def well-order-of-def)
```

 We turn the sequence into a sequence of directed subsets of \(A\) :
 fun $S e q::$ nat \Rightarrow 'a set where
Seq $0=\{f\{ \}\}$
$\mid \operatorname{Seq}($ Suc $n)=S e q n \cup\{\operatorname{seq} n, f(\operatorname{Seq} n \cup\{$ seq $n\})\}$
lemma seq-n-in-Seq-n: seq $n \in S e q(S u c n)$ by auto
lemma Seq-finite: finite (Seq n)
by (induction n) auto
lemma Seq-card: \mid Seq $n|<o| A \mid$
using countable Seq-finite by (simp add: ordIso-natLeq-infinite1)

```
lemma Seq-carrier: Seq n\subseteqA
proof(induction n)
    case 0
    show ?case by (auto intro!: f-carrier)
next
    case (Suc n)
    with range-seq have sgA: Seq }n\cup{seq n}\subseteqA by aut
    from Seq-finite f-carrier[OF sgA]
    have f(Seq n\cup{seq n})\inA by auto
    with sgA show ?case by auto
qed
lemma Seq-range: U(range Seq) = A
proof (intro equalityI)
    from Seq-carrier show \bigcup(range Seq)\subseteqA by auto
    show }A\subseteq\bigcup(\mathrm{ range Seq)
    proof
        fix a assume aA: a \inA
        with seq-bij-betw obtain n where a=seq n
            by (metis bij-betw-inv-into-right)
        with seq-n-in-Seq-n show a\inU(range Seq) by (auto intro!: exI[of - Suc n])
    qed
qed
lemma Seq-extremed:
    assumes refl: reflexive A (\sqsubseteq) shows extremed (Seq n)(\sqsubseteq)
proof -
    interpret reflexive using refl.
    show ?thesis
    proof(induction n)
        case 0
        show ?case by (auto intro!: extremedI extremeI f-carrier)
    next
        case (Suc n)
        show ?case
        proof (intro extremedI extremeI)
            show f(Seq n\cup{seq n}) \inSeq (Suc n) by auto
            fix x assume xssn: x \inSeq (Suc n)
            show }x\sqsubseteqf(Seq n\cup{seq n}
            proof(cases x\inSeq n\cup{seq n})
                case True
                    with f-bound[of Seq n \cup{seq n}] range-seq Seq-finite[of n]
                    Seq-carrier[of n]
                show ?thesis by (auto simp: bound-def)
            next
                case False
                with xssn have x: x = f(Seq n\cup{seq n}) by auto
```

```
            from range-seq Seq-finite[of n] Seq-carrier[of n]
            show ?thesis by (auto simp: x intro!: f-carrier)
        qed
    qed
    qed
qed
lemma Seq-directed: assumes refl: reflexive A (\sqsubseteq) shows directed-set (Seq n) (\sqsubseteq)
    using Seq-extremed[OF refl] by (simp add: directed-set-iff-extremed[OF Seq-finite])
lemma range-countable: \((Seq\circinv seq)'A)=A
    apply (fold image-comp)
    apply (unfold bij-betw-imp-surj-on[OF bij-betw-inv-into[OF seq-bij-betw]])
    using Seq-range.
lemma Seq-mono: mono Seq
proof (intro monoI)
    show }n\leqm\LongrightarrowSeq n\subseteqSeq m for n m by (induct rule:inc-induct, auto
qed
lemma mono-countable: monotone-on A (\preceq_)(\subseteq)(Seq\circinv seq)
    by (rule monotone-on-o[OF Seq-mono inv-seq-mono]) auto
lemma infl-countable:
    assumes }aA:a\inA\mathrm{ and }bA:b\inA\mathrm{ and }ab:a\mp@subsup{\prec}{A}{}
    shows a 
proof-
    from aA seq-bij-betw seq-n-in-Seq-n
    have a: a \inSeq (Suc (inv seq a)) by (simp add: bij-betw-inv-into-right)
    from ab have inv seq a<inv seq b
                            by (metis (mono-tags, lifting) aA well-order-of.asympartp-iff-weak-neq bA
range-seq inv-seq-mono inv-into-injective not-le-imp-less ord.mono-onD verit-la-disequality)
    then have Suc (inv seq a) \leqinv seq b by auto
    from a monoD[OF Seq-mono this] have a GSeq (inv seq b) by auto
    then show ?thesis by auto
qed
end
```

To match the types, we use the inverse inv seq of the isomorphism isaseq. We define the final I as follows:
definition I where $I \equiv$ if $|A|=o$ natLeq then Seq \circ inv seq else $F^{\omega} \circ A_{\prec}$
lemma I-carrier: I $a \subseteq A$
using Seq-carrier carrier-uncountable by (auto simp: I-def)
lemma I-directed: assumes reflexive A (ㄷ) shows directed-set (I a) (ㄷ) using Seq-directed $[$ OF - assms] Flim-directed [OF Pre-carrier] by (auto simp: I-def)

```
lemma I-mono: monotone-on A (\preceq⿸⿻一丿工⺝)}(\subseteq)
    by (auto simp: mono-uncountable mono-countable I-def)
lemma I-card:
    assumes inf: infinite A and aA: a \inA
    shows |I a|<o |A|
proof (cases }|A|=o natLeq
    case True
    with Seq-finite[OF this] show ?thesis by (simp add: I-def inf)
next
    case F: False
    with inf have natLeq <o |A
    by (auto simp: infinite-iff-natLeq ordLeq-iff-ordLess-or-ordIso ordIso-symmetric)
    from card-uncountable[OF aA this] show ?thesis by (auto simp:I-def F)
qed
lemma I-range: assumes inf: infinite A shows }\bigcup(\mp@subsup{I}{}{\prime}A)=
    using range-uncountable[OF inf] range-countable by (auto simp:I-def)
lemma I-infl: assumes }a\inAb\inA a\mp@subsup{\prec}{A}{}b\mathrm{ shows }a\inI
    using infl-countable infl-uncountable assms by (auto simp:I-def)
end
```

Now we close the locale Iwamura－proof and state the final result in the global scope．
theorem (in reflexive) Iwamura:
assumes dir: directed-set A (\sqsubseteq) and inf: infinite A
shows $\exists I$. $(\forall a \in A$. directed-set $(I a)(\sqsubseteq) \wedge|I a|<o|A|) \wedge$
monotone-on $A\left(\preceq_{A}\right)(\subseteq) I \wedge \bigcup\left(I^{`} A\right)=A$
proof-
interpret Iwamura-proof using dir by unfold-locales
show ?thesis using I-mono I-card[OF inf] I-directed I-range[OF inf]
by (auto intro!: exI[of-I])
qed

4 Directed Completeness and Scott－Continuity

abbreviation nonempty $A \equiv$ if $A=\{ \}$ then \perp else \top
lemma（in quasi－ordered－set）directed－completeness－lemma：
fixes $l e B($ infix $\unlhd 50)$
assumes comp：（nonempty \sqcap well－related－set）－complete A（ \sqsubseteq ）and dir：di－
rected－set D（ \sqsubseteq ）and $D A: D \subseteq A$
shows \exists s．extreme－bound A（Б）$D s$
and well－related－set－continuous $A(\sqsubseteq) B(\unlhd) f \Longrightarrow$
$D \neq\{ \} \Longrightarrow$ extreme－bound A（Б）$D t \Longrightarrow$ extreme－bound $B(\unlhd)\left(f^{\prime} D\right)(f$
t）
proof (atomize(full), insert wf-ordLess dir $D A$, induct $|D|$ arbitrary: $D t$ rule: wf-induct-rule)
interpret less-eq-symmetrize.
case less
note this(1)
note $I H=$ this[THEN conjunct1]
and IH2 $=$ this[THEN conjunct2, rule-format $]$
note $D A=\langle D \subseteq A\rangle$
interpret D : quasi-ordered-set $D(\sqsubseteq)$ using quasi-ordered-subset $[O F D A]$.
note dir $=\langle$ directed-set $D(\sqsubseteq)\rangle$
show ? case
$\operatorname{proof}($ cases finite $D)$
case True
from directed-set-iff-extremed[OF True] dir
obtain d where $d D: d \in D$ and exd: extreme D (\sqsubseteq) d by (auto simp:
extremed-def)
then have $d d: d \sqsubseteq d$ by (auto simp: extreme-def)
show ?thesis
$\operatorname{proof}($ intro conjI allI impI exI $[o f-d])$
from extreme-imp-extreme-bound $[O F$ exd $D A]$
show exbd: extreme-bound A (Б) $D d$ by auto
assume f : well-related-set-continuous $A(\sqsubseteq) B(\unlhd) f$
and Dt: extreme-bound A (Б) $D t$ and $D 0: D \neq\{ \}$
from $f[T H E N$ continuous-carrierD $]$ have $f A B$: $f^{\prime} A \subseteq B$ by auto
from $D t$ have $t A: t \in A$ by auto
show extreme-bound $B(\unlhd)(f$ ' $D)(f t)$
proof (safe intro!: extreme-boundI)
from $f A B t A$ show $f t \in B$ by auto
fix x assume $x D: x \in D$
from $x D$ Dt have $x t: x \sqsubseteq t$ by auto
have monotone-on $A(\sqsubseteq)(\unlhd) f$
by (auto intro!: continuous-imp-monotone-on[OF f] pair-well-related)
from monotone-onD[OF this] $x D$ DA tA xt
show $f x \unlhd f t$ by (auto simp: bound-empty extreme-def)
next
fix b assume bound $\left(f^{\prime} D\right)(\unlhd) b$ and $b B: b \in B$
with $d D$ have $f d b$: $f d \unlhd b$ by auto
from $D t$ exbd have $d t: d \sim t$ by (auto simp: extreme-bound-iff)
from $d D D A$ have $d A: d \in A$ by auto
with extreme-bound-sym-trans $[O F$ - extreme-bound-singleton $[O F d A] d t t A]$
have extreme-bound A ($\sqsubseteq)\{d\} t$ by auto
from $d D D A f[T H E N$ continuousD, OF well-related-singleton-refl - this]
have exfdt: extreme-bound $B(\unlhd)\{f d\}(f t)$ by auto
from $f d b b B$ exfdt show $f t \unlhd b$ by auto
qed
qed
next
case inf: False
from D.Iwamura[OF dir inf]
obtain I where Imono: monotone-on $D\left(\preceq_{D}\right)(\subseteq) I$
and Icard: $\forall a \in D .|I a|<o|D|$

and Irange: $\bigcup\left(I^{\prime} D\right)=D$
by auto
have $\forall d \in D . \exists$ s. extreme-bound A (Б) $\left(\begin{array}{ll}I & d) s\end{array}\right.$
proof safe
fix d assume $d D: d \in D$
with Irange $D A$ have $I d A: I d \subseteq A$ by auto
with $I H$ Icard Idir $d D$ range $D A$
show \exists s. extreme-bound $A(\sqsubseteq)(I d) s$ by auto
qed
from bchoice[OF this]
obtain s where $s: \bigwedge d . d \in D \Longrightarrow$ extreme-bound A ($\sqsubseteq)(I d)(s d)$ by auto
then have $s D A$: s ' $D \subseteq A$ by auto
have smono: monotone-on $D\left(\preceq_{D}\right)(\sqsubseteq) s$
proof (intro monotone-onI)
fix $x y$ assume $x D: x \in D$ and $y D: y \in D$ and $x y: x \preceq D y$
show $s x \sqsubseteq s y$
apply (rule extreme-bound-subset[OF monotone-onD[OF Imono $x D$ yD xy], of $A]$)
using $s x D y D$ by auto
qed
from well-order-of.monotone-image-well-related[OF this]
have wsD: well-related-set ($s^{\prime} D$) ($\left.\sqsubseteq\right)$.
from inf have sD0: nonempty (s' D) (\sqsubseteq) by auto
from complete $D[O F$ comp sDA] wsD sD0
obtain x where x : extreme-bound $A(\sqsubseteq)\left(s^{\prime} D\right) x$ by auto
show ?thesis
proof (intro conjI allI impI exI $[$ of $-x]$)
show $D x$: extreme-bound A (Б) $D x$
proof (intro smono exI[of-x] extreme-boundI)
from x show $x A: x \in A$ by auto
fix d assume $d D: d \in D$
with Irange obtain d^{\prime} where $d^{\prime} D: d^{\prime} \in D$ and $d \in I d^{\prime}$ by auto
with s have $1: d \sqsubseteq s d^{\prime}$ by auto
from $x d^{\prime} D$ have $2: \ldots \sqsubseteq x$ by auto
from trans $\left[O F 1\right.$ 2] show $d \sqsubseteq x$ using $d D s D A d^{\prime} D D A x A$ by auto
next
fix b assume $b A: b \in A$ and $D b$: bound D (Б) b
have bound $(s$ ' D) ($\sqsubseteq) b$
proof safe
fix d assume $d D: d \in D$
from $d D D b$ Irange have bound $(I d)(\sqsubseteq) b$ by auto
with $s d D$ bA show $s d \sqsubseteq b$ by auto
qed
with $x b A$ show $x \sqsubseteq b$ by auto
qed
assume f : well-related-set-continuous $A(\sqsubseteq) B(\unlhd) f$
and $D t$: extreme-bound A (ந) $D t$ and $D 0: D \neq\{ \}$ from $D t$ have $t A: t \in A$ by auto
have fmono: monotone-on $A(\sqsubseteq)(\unlhd) f$
by (auto intro!:continuous-imp-monotone-on[OF f] pair-well-related)
show extreme-bound $B(\unlhd)(f$ ' $D)(f t)$
proof (safe intro!: extreme-boundI)
from $f t A$ show $f t \in B$ by auto
fix d assume $d D: d \in D$
from $d D$ Dt have $d t: d \sqsubseteq t$ by auto
from $d D$ Dt $D A$ show $f d \unlhd f t$ by (auto intro!: monotone-on $D[O F$ fmono])
next
fix b assume $f D b$: bound $\left(f^{\prime} D\right)(\unlhd) b$ and $b B: b \in B$
from $D x D t$ have $x \sim t$ by (auto intro!: sympartpI elim!: extreme-boundE)
with extreme-bound-sym-trans[OF sDA x this $t A]$
have extreme-bound A (Б) (s ' D) t by auto
from $f[$ THEN continuousD, OF wsD - sDA this] D0
have $f t$: extreme-bound $B(\unlhd)(f$ ' s ' $D)(f t)$ by auto
have bound (f ' s ' $D)(\unlhd) b$
proof (safe)
fix d assume $d D: d \in D$
from Irange $d D$ have $I d D: I d \subseteq D$ by auto
with $D A$ have $I d A: I d \subseteq A$ by auto
from directed-setD[OF Idir[rule-format, OF dD], of $\}]$
have Idne: $I d \neq\{ \}$ by auto
have $f s d$: extreme-bound $B(\unlhd)\left(f^{\prime} I d\right)(f(s d))$
apply (rule IH2[OF - IdA f Idne s[OF dD]])
using Icard Idir $d D$ by auto
from $I d D$ have $f^{\prime} I d \subseteq f^{\prime} D$ by auto
from bound-subset[OF this fDb] fsd bB
show $f(s d) \unlhd b$ by auto
qed
with $f t b B$ show $f t \unlhd b$ by auto
qed
qed
qed
qed
The next Theorem corresponds to Proposition 5.9 of [4], without antisymmetry on A.
theorem (in quasi-ordered-set) well-complete-iff-directed-complete:
(nonempty \sqcap well-related-set)-complete $A(\sqsubseteq) \longleftrightarrow$ directed-set-complete $A(\sqsubseteq)$
(is ? $l \longleftrightarrow ? r$)
proof (intro iffI)
show ? \Longrightarrow ? r
by (auto intro!: completeI dest!: directed-completeness-lemma(1))
assume r : ? r
show?l
apply (rule complete-subclass [OF r])
using well-related-set.directed-set

> by auto qed

The next Theorem corresponds to Corollary 3 of [9] without any assumptions on the codomain B and without antisymmetry on the domain A.

```
theorem (in quasi-ordered-set)
    fixes \(l e B(\) infix \(\unlhd 50)\)
    assumes comp: (nonempty \(\sqcap\) well-related-set)-complete \(A\) ( \(\sqsubseteq\) )
    shows well-related-set-continuous \(A(\sqsubseteq) B(\unlhd) f \longleftrightarrow\) directed-set-continuous
\(A(\sqsubseteq) B(\unlhd) f\)
    (is ?l \(\longleftrightarrow\) ? \(r\) )
proof (intro iffI)
    assume \(l\) : ?l
    show ?r
        using continuous-carrierD[OF l]
        using directed-completeness-lemma(2)[OF comp - - l]
        by (auto intro!: continuousI)
next
    assume \(r\) : ? \(r\)
    show?l
        apply (rule continuous-subclass \([O F-r]\) )
        using well-related-set.directed-set by auto
qed
end
```


References

[1] S. Abramsky and A. Jung. Domain Theory. Number III in Handbook of Logic in Computer Science. Oxford University Press, 1994.
[2] G. Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989.
[3] J. C. Blanchette, A. Popescu, and D. Traytel. Cardinals in Isabelle/HOL. In G. Klein and R. Gamboa, editors, Interactive Theorem Proving - 5th International Conference, ITP 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 14-17, 2014. Proceedings, volume 8558 of Lecture Notes in Computer Science, pages 111-127. Springer, 2014.
[4] P. M. Cohn. Universal Algebra. Harper \& Row, 1965.
[5] J. Dubut and A. Yamada. Fixed point theorems for non-transitive relations. Log. Methods Comput. Sci., 18(1), 2022.
[6] A. Finkel and J. Goubault-Larrecq. Forward Analysis for WSTS, Part I: Completions. In S. Albers and J.-Y. Marion, editors, 26th International Symposium on Theoretical Aspects of Computer Science, volume 3 of Leibniz International Proceedings in Informatics (LIPIcs), pages 433-444, Dagstuhl, Germany, 2009. Schloss Dagstuhl-LeibnizZentrum fuer Informatik.
[7] J. Goubault-Larrecq. Non-Hausdorff Topology and Domain Theory: Selected Topics in Point-Set Topology, volume 22 of New Mathematical Monographs. Cambridge University Press, 2013.
[8] T. Iwamura. A lemma on directed sets. In Zenkoku Shijo Sugaku Danwakai, number 262, pages 107-111, 1944. in Japanese.
[9] G. Markowsky. Chain-complete posets and directed sets with applications. Algebra Universalis, 6:53-68, 1976.
[10] L. C. Paulson and K. Grabczewski. Mechanizing set theory. J. Autom. Reason., 17(3):291-323, 1996.
[11] D. Scott. Outline of a Mathematical Theory of Computation. Technical Report PRG02, OUCL, 1970.
[12] L. A. Skorni akov. Complemented modular lattices and regular rings. Oliver \& Boyd, 1964.
[13] G. Winskel. The Formal Semantics of Programming Languages: An Introduction. Foundations of Computing. The MIT Press, 1993.
[14] A. Yamada and J. Dubut. Formalizing Results on Directed Sets in Isabelle/HOL. In Proceedings of the fourteenth conference on Interactive Theorem Proving (ITP'Z3), 2023.

