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Abstract

In this entry we formalize Huet’s [1] bounds for minimal solutions
of homogenous linear Diophantine equations (HLDEs). Based on these
bounds, we further provide a certified algorithm for computing the set
of all minimal solutions of a given HLDE.
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1 Vectors as Lists of Naturals
theory List-Vector

imports Main
begin

lemma lex-lengthD: (x, y) ∈ lex P =⇒ length x = length y
by (auto simp: lexord-lex)

lemma lex-take-index:
assumes (xs, ys) ∈ lex r
obtains i where length ys = length xs

and i < length xs and take i xs = take i ys
and (xs ! i, ys ! i) ∈ r

proof −
obtain n us x xs ′ y ys ′ where (xs, ys) ∈ lexn r n and length xs = n and length

ys = n
and xs = us @ x # xs ′ and ys = us @ y # ys ′ and (x, y) ∈ r
using assms by (fastforce simp: lex-def lexn-conv)

then show ?thesis by (intro that [of length us]) auto
qed

lemma mods-with-nats:
assumes (v::nat) > w

and (v ∗ b) mod a = (w ∗ b) mod a
shows ((v − w) ∗ b) mod a = 0
using assms by (simp add: mod-eq-dvd-iff-nat algebra-simps)

— The 0-vector of length n.
abbreviation zeroes :: nat ⇒ nat list

where
zeroes n ≡ replicate n 0

lemma rep-upd-unit:
assumes x = (zeroes n)[i := a]
shows ∀ j < length x. (j 6= i −→ x ! j = 0 ) ∧ (j = i −→ x ! j = a)
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using assms by simp

definition nonzero-iff : nonzero xs ←→ (∃ x∈set xs. x 6= 0 )

lemma nonzero-append [simp]:
nonzero (xs @ ys) ←→ nonzero xs ∨ nonzero ys by (auto simp: nonzero-iff )

1.1 The Inner Product
definition dotprod :: nat list ⇒ nat list ⇒ nat (infixl ‹·› 70 )

where
xs · ys = (

∑
i<min (length xs) (length ys). xs ! i ∗ ys ! i)

lemma dotprod-code [code]:
xs · ys = sum-list (map (λ(x, y). x ∗ y) (zip xs ys))
by (auto simp: dotprod-def sum-list-sum-nth lessThan-atLeast0 )

lemma dotprod-commute:
assumes length xs = length ys
shows xs · ys = ys · xs
using assms by (auto simp: dotprod-def mult.commute)

lemma dotprod-Nil [simp]: [] · [] = 0
by (simp add: dotprod-def )

lemma dotprod-Cons [simp]:
(x # xs) · (y # ys) = x ∗ y + xs · ys
unfolding dotprod-def and length-Cons and min-Suc-Suc and sum.lessThan-Suc-shift

by auto

lemma dotprod-1-right [simp]:
xs · replicate (length xs) 1 = sum-list xs
by (induct xs) (simp-all)

lemma dotprod-0-right [simp]:
xs · zeroes (length xs) = 0
by (induct xs) (simp-all)

lemma dotprod-unit [simp]:
assumes length a = n

and k < n
shows a · (zeroes n)[k := zk] = a ! k ∗ zk
using assms by (induct a arbitrary: k n) (auto split: nat.splits)

lemma dotprod-gt0 :
assumes length x = length y and ∃ i<length y. x ! i > 0 ∧ y ! i > 0
shows x · y > 0
using assms by (induct x y rule: list-induct2 ) (fastforce simp: nth-Cons split:

nat.splits)+
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lemma dotprod-gt0D:
assumes length x = length y

and x · y > 0
shows ∃ i<length y. x ! i > 0 ∧ y ! i > 0
using assms by (induct x y rule: list-induct2 ) (auto simp: Ex-less-Suc2 )

lemma dotprod-gt0-iff [iff ]:
assumes length x = length y
shows x · y > 0 ←→ (∃ i<length y. x ! i > 0 ∧ y ! i > 0 )
using assms and dotprod-gt0D and dotprod-gt0 by blast

lemma dotprod-append:
assumes length a = length b
shows(a @ x) · (b @ y) = a · b + x · y
using assms by (induct a b rule: list-induct2 ) auto

lemma dotprod-le-take:
assumes length a = length b

and k ≤ length a
showstake k a · take k b ≤ a · b
using assms and append-take-drop-id [of k a] and append-take-drop-id [of k b]
by (metis add-right-cancel leI length-append length-drop not-add-less1 dotprod-append)

lemma dotprod-le-drop:
assumes length a = length b

and k ≤ length a
shows drop k a · drop k b ≤ a · b
using assms and append-take-drop-id [of k a] and append-take-drop-id [of k b]
by (metis dotprod-append length-take order-refl trans-le-add2 )

lemma dotprod-is-0 [simp]:
assumes length x = length y
shows x · y = 0 ←→ (∀ i<length y. x ! i = 0 ∨ y ! i = 0 )
using assms by (metis dotprod-gt0-iff neq0-conv)

lemma dotprod-eq-0-iff :
assumes length x = length a

and 0 /∈ set a
shows x · a = 0 ←→ (∀ e ∈ set x. e = 0 )
using assms by (fastforce simp: in-set-conv-nth)

lemma dotprod-eq-nonzero-iff :
assumes a · x = b · y and length x = length a and length y = length b

and 0 /∈ set a and 0 /∈ set b
shows nonzero x ←→ nonzero y
using assms by (auto simp: nonzero-iff ) (metis dotprod-commute dotprod-eq-0-iff

neq0-conv)+
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lemma eq-0-iff :
xs = zeroes n ←→ length xs = n ∧ (∀ x∈set xs. x = 0 )
using in-set-replicate [of - n 0 ] and replicate-eqI [of xs n 0 ] by auto

lemma not-nonzero-iff : ¬ nonzero x ←→ x = zeroes (length x)
by (auto simp: nonzero-iff replicate-length-same eq-0-iff )

lemma neq-0-iff ′:
xs 6= zeroes n ←→ length xs 6= n ∨ (∃ x∈set xs. x > 0 )
by (auto simp: eq-0-iff )

lemma dotprod-pointwise-le:
assumes length as = length xs

and i < length as
shows as ! i ∗ xs ! i ≤ as · xs

proof −
have as · xs = (

∑
i<min (length as) (length xs). as ! i ∗ xs ! i)

by (simp add: dotprod-def )
then show ?thesis

using assms by (auto intro: member-le-sum)
qed

lemma replicate-dotprod:
assumes length y = n
shows replicate n x · y = x ∗ sum-list y

proof −
have x ∗ (

∑
i<length y. y ! i) = (

∑
i<length y. x ∗ y ! i)

using sum-distrib-left by blast
then show ?thesis

using assms by (auto simp: dotprod-def sum-list-sum-nth atLeast0LessThan)
qed

1.2 The Pointwise Order on Vectors
definition less-eq :: nat list ⇒ nat list ⇒ bool (‹-/ ≤v -› [51 , 51 ] 50 )

where
xs ≤v ys ←→ length xs = length ys ∧ (∀ i<length xs. xs ! i ≤ ys ! i)

definition less :: nat list ⇒ nat list ⇒ bool (‹-/ <v -› [51 , 51 ] 50 )
where

xs <v ys ←→ xs ≤v ys ∧ ¬ ys ≤v xs

interpretation order-vec: order less-eq less
by (standard, auto simp add: less-def less-eq-def dual-order .antisym nth-equalityI )

(force)

lemma less-eqI [intro?]: length xs = length ys =⇒ ∀ i<length xs. xs ! i ≤ ys ! i
=⇒ xs ≤v ys

by (auto simp: less-eq-def )
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lemma le0 [simp, intro]: zeroes (length xs) ≤v xs by (simp add: less-eq-def )

lemma le-list-update [simp]:
assumes xs ≤v ys and i < length ys and z ≤ ys ! i
shows xs[i := z] ≤v ys
using assms by (auto simp: less-eq-def nth-list-update)

lemma le-Cons: x # xs ≤v y # ys ←→ x ≤ y ∧ xs ≤v ys
by (auto simp add: less-eq-def nth-Cons split: nat.splits)

lemma zero-less:
assumes nonzero x
shows zeroes (length x) <v x
using assms and eq-0-iff order-vec.dual-order .strict-iff-order
by (auto simp: nonzero-iff )

lemma le-append:
assumes length xs = length vs
shows xs @ ys ≤v vs @ ws ←→ xs ≤v vs ∧ ys ≤v ws
using assms
by (auto simp: less-eq-def nth-append)
(metis add.commute add-diff-cancel-left ′ nat-add-left-cancel-less not-add-less2 )

lemma less-Cons:
(x # xs) <v (y # ys) ←→ length xs = length ys ∧ (x ≤ y ∧ xs <v ys ∨ x < y
∧ xs ≤v ys)

by (simp add: less-def less-eq-def All-less-Suc2 ) (auto dest: leD)

lemma le-length [dest]:
assumes xs ≤v ys
shows length xs = length ys
using assms by (simp add: less-eq-def )

lemma less-length [dest]:
assumes x <v y
shows length x = length y
using assms by (auto simp: less-def )

lemma less-append:
assumes xs <v vs and ys ≤v ws
shows xs @ ys <v vs @ ws

proof −
have length xs = length vs

using assms by blast
then show ?thesis
using assms by (induct xs vs rule: list-induct2 ) (auto simp: less-Cons le-append

le-length)
qed
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lemma less-appendD:
assumes xs @ ys <v vs @ ws

and length xs = length vs
shows xs <v vs ∨ ys <v ws
by (auto) (metis (no-types, lifting) assms le-append order-vec.order .strict-iff-order)

lemma less-append-cases:
assumes xs @ ys <v vs @ ws and length xs = length vs
obtains xs <v vs and ys ≤v ws | xs ≤v vs and ys <v ws
using assms and that
by (metis le-append less-appendD order-vec.order .strict-implies-order)

lemma less-append-swap:
assumes x @ y <v u @ v

and length x = length u
shows y @ x <v v @ u
using assms(2 , 1 )
by (induct x u rule: list-induct2 )
(auto simp: order-vec.order .strict-iff-order le-Cons le-append le-length)

lemma le-sum-list-less:
assumes xs ≤v ys

and sum-list xs < sum-list ys
shows xs <v ys

proof −
have length xs = length ys and ∀ i<length ys. xs ! i ≤ ys ! i

using assms by (auto simp: less-eq-def )
then show ?thesis

using ‹sum-list xs < sum-list ys›
by (induct xs ys rule: list-induct2 )
(auto simp: less-Cons All-less-Suc2 less-eq-def )

qed

lemma dotprod-le-right:
assumes v ≤v w

and length b = length w
shows b · v ≤ b · w
using assms by (auto simp: dotprod-def less-eq-def intro: sum-mono)

lemma dotprod-pointwise-le-right:
assumes length z = length u

and length u = length v
and ∀ i<length v. u ! i ≤ v ! i

shows z · u ≤ z · v
using assms by (intro dotprod-le-right) (auto intro: less-eqI )

lemma dotprod-le-left:
assumes v ≤v w
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and length b = length w
shows v · b ≤ w · b
using assms by (simp add: dotprod-le-right dotprod-commute le-length)

lemma dotprod-le:
assumes x ≤v u and y ≤v v

and length y = length x and length v = length u
shows x · y ≤ u · v
using assms by (metis dotprod-le-left dotprod-le-right le-length le-trans)

lemma dotprod-less-left:
assumes length b = length w

and 0 /∈ set b
and v <v w

shows v · b < w · b
proof −

have length v = length w using assms
using less-eq-def order-vec.order .strict-implies-order by blast

then show ?thesis
using assms

proof (induct v w arbitrary: b rule: list-induct2 )
case (Cons x xs y ys)
then show ?case
by (cases b) (auto simp: less-Cons add-mono-thms-linordered-field dotprod-le-left)

qed simp
qed

lemma le-append-swap:
assumes length y = length v

and x @ y ≤v w @ v
shows y @ x ≤v v @ w

proof −
have length w = length x using assms by auto
with assms show ?thesis

by (induct y v arbitrary: x w rule: list-induct2 ) (auto simp: le-Cons le-append)
qed

lemma le-append-swap-iff :
assumes length y = length v
shows y @ x ≤v v @ w ←→ x @ y ≤v w @ v
using assms and le-append-swap
by (auto) (metis (no-types, lifting) add-left-imp-eq le-length length-append)

lemma unit-less:
assumes i < n

and x <v (zeroes n)[i := b]
shows x ! i < b ∧ (∀ j<n. j 6= i −→ x ! j = 0 )

proof
show x ! i < b
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using assms less-def by fastforce
next

have x ≤v (zeroes n)[i := b] by (simp add: assms order-vec.less-imp-le)
then show ∀ j<n. j 6= i −→ x ! j = 0 by (auto simp: less-eq-def )

qed

lemma le-sum-list-mono:
assumes xs ≤v ys
shows sum-list xs ≤ sum-list ys
using assms and sum-list-mono [of [0 ..<length ys] (!) xs (!) ys]
by (auto simp: less-eq-def ) (metis map-nth)

lemma sum-list-less-diff-Ex:
assumes u ≤v y

and sum-list u < sum-list y
shows ∃ i<length y. u ! i < y ! i

proof −
have length u = length y and ∀ i<length y. u ! i ≤ y ! i

using ‹u ≤v y› by (auto simp: less-eq-def )
then show ?thesis

using ‹sum-list u < sum-list y›
by (induct u y rule: list-induct2 ) (force simp: Ex-less-Suc2 All-less-Suc2 )+

qed

lemma less-vec-sum-list-less:
assumes v <v w
shows sum-list v < sum-list w
using assms

proof −
have length v = length w

using assms less-eq-def less-imp-le by blast
then show ?thesis

using assms
proof (induct v w rule: list-induct2 )

case (Cons x xs y ys)
then show ?case

using length-replicate less-Cons order-vec.order .strict-iff-order by force
qed simp

qed

definition maxne0 :: nat list ⇒ nat list ⇒ nat
where

maxne0 x a =
(if length x = length a ∧ (∃ i<length a. x ! i 6= 0 )
then Max {a ! i | i. i < length a ∧ x ! i 6= 0}
else 0 )

lemma maxne0-le-Max:
maxne0 x a ≤ Max (set a)
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by (auto simp: maxne0-def nonzero-iff in-set-conv-nth) simp

lemma maxne0-Nil [simp]:
maxne0 [] as = 0
maxne0 xs [] = 0
by (auto simp: maxne0-def )

lemma maxne0-Cons [simp]:
maxne0 (x # xs) (a # as) =
(if length xs = length as then
(if x = 0 then maxne0 xs as else max a (maxne0 xs as))

else 0 )
proof −

let ?a = a # as and ?x = x # xs
have eq: {?a ! i | i. i < length ?a ∧ ?x ! i 6= 0} =
(if x > 0 then {a} else {}) ∪ {as ! i | i. i < length as ∧ xs ! i 6= 0}
by (auto simp: nth-Cons split: nat.splits) (metis Suc-pred)+

show ?thesis
unfolding maxne0-def and eq
by (auto simp: less-Suc-eq-0-disj nth-Cons ′ intro: Max-insert2 )

qed

lemma maxne0-times-sum-list-gt-dotprod:
assumes length b = length ys
shows maxne0 ys b ∗ sum-list ys ≥ b · ys
using assms
apply (induct b ys rule: list-induct2 )
apply (auto simp: max-def ring-distribs add-mono-thms-linordered-semiring(1 ))
by (meson leI le-trans mult-less-cancel2 nat-less-le)

lemma max-times-sum-list-gt-dotprod:
assumes length b = length ys
shows Max (set b) ∗ sum-list ys ≥ b · ys

proof −
have ∀ e ∈ set b . Max (set b) ≥ e by simp
then have replicate (length ys) (Max (set b)) · ys ≥ b · ys (is ?rep ≥ -)

by (metis assms dotprod-pointwise-le-right dotprod-commute
length-replicate nth-mem nth-replicate)

moreover have Max (set b) ∗ sum-list ys = ?rep
using replicate-dotprod [of ys - Max (set b)] by auto

ultimately show ?thesis
by (simp add: assms)

qed

lemma maxne0-mono:
assumes y ≤v x
shows maxne0 y a ≤ maxne0 x a

proof (cases length y = length a)
case True
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have length y = length x using assms by (auto)
then show ?thesis

using assms and True
proof (induct y x arbitrary: a rule: list-induct2 )

case (Cons x xs y ys)
then show ?case by (cases a) (force simp: less-eq-def All-less-Suc2 le-max-iff-disj)+

qed simp
next

case False
then show ?thesis

using assms by (auto simp: maxne0-def )
qed

lemma all-leq-Max:
assumes x ≤v y

and x 6= []
shows ∀ xi ∈ set x. xi ≤ Max (set y)
by (metis (no-types, lifting) List.finite-set Max-ge-iff

assms in-set-conv-nth length-0-conv less-eq-def set-empty)

lemma le-not-less-replicate:
∀ x∈set xs. x ≤ b =⇒ ¬ xs <v replicate (length xs) b =⇒ xs = replicate (length

xs) b
by (induct xs) (auto simp: less-Cons)

lemma le-replicateI : ∀ x∈set xs. x ≤ b =⇒ xs ≤v replicate (length xs) b
by (induct xs) (auto simp: le-Cons)

lemma le-take:
assumes x ≤v y and i ≤ length x shows take i x ≤v take i y
using assms by (auto simp: less-eq-def )

lemma wf-less:
wf {(x, y). x <v y}

proof −
have wf (measure sum-list) ..
moreover have {(x, y). x <v y} ⊆ measure sum-list

by (auto simp: less-vec-sum-list-less)
ultimately show wf {(x, y). x <v y}

by (rule wf-subset)
qed

1.3 Pointwise Subtraction
definition vdiff :: nat list ⇒ nat list ⇒ nat list (infixl ‹−v› 65 )

where
w −v v = map (λi. w ! i − v ! i) [0 ..< length w]

lemma vdiff-Nil [simp]: [] −v [] = [] by (simp add: vdiff-def )
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lemma upt-Cons-conv:
assumes j < n
shows [j..<n] = j # [j+1 ..<n]
by (simp add: assms upt-eq-Cons-conv)

lemma map-upt-Suc: map f [Suc m ..< Suc n] = map (f ◦ Suc) [m ..< n]
by (fold list.map-comp [of f Suc [m ..< n]]) (simp add: map-Suc-upt)

lemma vdiff-Cons [simp]:
(x # xs) −v (y # ys) = (x − y) # (xs −v ys)
by (simp add: vdiff-def upt-Cons-conv [OF zero-less-Suc] map-upt-Suc del: upt-Suc)

lemma vdiff-alt-def :
assumes length w = length v
shows w −v v = map (λ(x, y). x − y) (zip w v)
using assms by (induct rule: list-induct2 ) simp-all

lemma vdiff-dotprod-distr :
assumes length b = length w

and v ≤v w
shows (w −v v) · b = w · b − v · b

proof −
have length v = length w and ∀ i<length w. v ! i ≤ w ! i

using assms less-eq-def by auto
then show ?thesis

using ‹length b = length w›
proof (induct v w arbitrary: b rule: list-induct2 )

case (Cons x xs y ys)
then show ?case

by (cases b) (auto simp: All-less-Suc2 diff-mult-distrib
dotprod-commute dotprod-pointwise-le-right)

qed simp
qed

lemma sum-list-vdiff-distr [simp]:
assumes v ≤v u
shows sum-list (u −v v) = sum-list u − sum-list v
by (metis (no-types, lifting) assms diff-zero dotprod-1-right

length-map length-replicate length-upt
less-eq-def vdiff-def vdiff-dotprod-distr)

lemma vdiff-le:
assumes v ≤v w

and length v = length x
shows v −v x ≤v w
using assms by (auto simp add: less-eq-def vdiff-def )

lemma mods-with-vec:
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assumes v <v w
and 0 /∈ set b
and length b = length w
and (v · b) mod a = (w · b) mod a

shows ((w −v v) · b) mod a = 0
proof −

have ∗: v · b < w · b
using dotprod-less-left and assms by blast

have v ≤v w
using assms by auto

from vdiff-dotprod-distr [OF assms(3 ) this]
have ((w −v v) · b) mod a = (w · b − v · b) mod a

by simp
also have ... = 0 mod a

using mods-with-nats [of v · b w · b 1 a, OF ∗] assms by auto
finally show ?thesis by simp

qed

lemma mods-with-vec-2 :
assumes v <v w

and 0 /∈ set b
and length b = length w
and (b · v) mod a = (b · w) mod a

shows (b · (w −v v)) mod a = 0
by (metis (no-types, lifting) assms diff-zero dotprod-commute

length-map length-upt less-eq-def order-vec.less-imp-le
mods-with-vec vdiff-def )

1.4 The Lexicographic Order on Vectors
abbreviation lex-less-than (‹-/ <lex -› [51 , 51 ] 50 )

where
xs <lex ys ≡ (xs, ys) ∈ lex less-than

definition rlex (infix ‹<rlex› 50 )
where

xs <rlex ys ←→ rev xs <lex rev ys

lemma rev-le [simp]:
rev xs ≤v rev ys ←→ xs ≤v ys

proof −
{ fix i assume i: i < length ys and [simp]: length xs = length ys

and ∀ i < length ys. rev xs ! i ≤ rev ys ! i
then have rev xs ! (length ys − i − 1 ) ≤ rev ys ! (length ys − i − 1 ) by auto
then have xs ! i ≤ ys ! i using i by (auto simp: rev-nth) }

then show ?thesis by (auto simp: less-eq-def rev-nth)
qed

lemma rev-less [simp]:
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rev xs <v rev ys ←→ xs <v ys
by (simp add: less-def )

lemma less-imp-lex:
assumes xs <v ys shows xs <lex ys

proof −
have length ys = length xs using assms by auto
then show ?thesis using assms

by (induct rule: list-induct2 ) (auto simp: less-Cons)
qed

lemma less-imp-rlex:
assumes xs <v ys shows xs <rlex ys
using assms and less-imp-lex [of rev xs rev ys]
by (simp add: rlex-def )

lemma lex-not-sym:
assumes xs <lex ys
shows ¬ ys <lex xs

proof
assume ys <lex xs
then obtain i where i < length xs and take i xs = take i ys

and ys ! i < xs ! i by (elim lex-take-index) auto
moreover obtain j where j < length xs and length ys = length xs and take j

xs = take j ys
and xs ! j < ys ! j using assms by (elim lex-take-index) auto

ultimately show False by (metis le-antisym nat-less-le nat-neq-iff nth-take)
qed

lemma rlex-not-sym:
assumes xs <rlex ys
shows ¬ ys <rlex xs

proof
assume ass: ys <rlex xs
then obtain i where i < length xs and take i xs = take i ys

and ys ! i > xs ! i using assms lex-not-sym rlex-def by blast
moreover obtain j where j < length xs and length ys = length xs and take j

xs = take j ys
and xs ! j > ys ! j using assms rlex-def ass lex-not-sym by blast

ultimately show False
by (metis leD nat-less-le nat-neq-iff nth-take)

qed

lemma lex-trans:
assumes x <lex y and y <lex z
shows x <lex z
using assms by (auto simp: antisym-def intro: transD [OF lex-transI ])

lemma rlex-trans:
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assumes x <rlex y and y <rlex z
shows x <rlex z
using assms lex-trans rlex-def by blast

lemma lex-append-rightD:
assumes xs @ us <lex ys @ vs and length xs = length ys

and ¬ xs <lex ys
shows ys = xs ∧ us <lex vs
using assms(2 ,1 ,3 )
by (induct xs ys rule: list-induct2 ) auto

lemma rlex-Cons:
x # xs <rlex y # ys ←→ xs <rlex ys ∨ ys = xs ∧ x < y (is ?A = ?B)
by (cases length ys = length xs)
(auto simp: rlex-def intro: lex-append-rightI lex-append-leftI dest: lex-append-rightD

lex-lengthD)

lemma rlex-irrefl:
¬ x <rlex x
by (induct x) (auto simp: rlex-def dest: lex-append-rightD)

1.5 Code Equations
fun exists2

where
exists2 d P [] [] ←→ False
| exists2 d P (x#xs) (y#ys) ←→ P x y ∨ exists2 d P xs ys
| exists2 d P - - ←→ d

lemma not-le-code [code-unfold]: ¬ xs ≤v ys ←→ exists2 True (>) xs ys
by (induct True (>) :: nat ⇒ nat ⇒ bool xs ys rule: exists2 .induct) (auto simp:

le-Cons)

end

2 Homogeneous Linear Diophantine Equations
theory Linear-Diophantine-Equations

imports List-Vector
begin

lemma lcm-div-le:
fixes a :: nat
shows lcm a b div b ≤ a
by (metis div-by-0 div-le-dividend div-le-mono div-mult-self-is-m lcm-nat-def neq0-conv)

lemma lcm-div-le ′:
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fixes a :: nat
shows lcm a b div a ≤ b
by (metis lcm.commute lcm-div-le)

lemma lcm-div-gt-0 :
fixes a :: nat
assumes a > 0 and b > 0
shows lcm a b div a > 0

proof −
have lcm a b = (a ∗ b) div (gcd a b)

using lcm-nat-def by blast
moreover have . . . > 0

using assms
by (metis assms calculation lcm-pos-nat)

ultimately show ?thesis
using assms
by simp (metis div-greater-zero-iff div-le-mono2 div-mult-self-is-m gcd-le2-nat

not-gr0 )
qed

lemma sum-list-list-update-Suc:
assumes i < length u
shows sum-list (u[i := Suc (u ! i)]) = Suc (sum-list u)
using assms

proof (induct u arbitrary: i)
case (Cons x xs)
then show ?case by (simp-all split: nat.splits)

qed (simp)

lemma lessThan-conv:
assumes card A = n and ∀ x∈A. x < n
shows A = {..<n}
using assms by (simp add: card-subset-eq subsetI )

Given a non-empty list xs of n natural numbers, either there is a value in
xs that is 0 modulo n, or there are two values whose moduli coincide.
lemma list-mod-cases:

assumes length xs = n and n > 0
shows (∃ x∈set xs. x mod n = 0 ) ∨
(∃ i<length xs. ∃ j<length xs. i 6= j ∧ (xs ! i) mod n = (xs ! j) mod n)

proof −
let ?f = λx. x mod n and ?X = set xs
have ∗: ∀ x ∈ ?f ‘ ?X . x < n using ‹n > 0 › by auto
consider (eq) card (?f ‘ ?X) = card ?X | (less) card (?f ‘ ?X) < card ?X

using antisym-conv2 and card-image-le by blast
then show ?thesis
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proof (cases)
case eq
show ?thesis
proof (cases distinct xs)

assume distinct xs
with eq have card (?f ‘ ?X) = n

using ‹distinct xs› by (simp add: assms card-distinct distinct-card)
from lessThan-conv [OF this ∗] and ‹n > 0 ›
have ∃ x∈set xs. x mod n = 0 by (metis imageE lessThan-iff )
then show ?thesis ..

next
assume ¬ distinct xs
then show ?thesis by (auto) (metis distinct-conv-nth)

qed
next

case less
from pigeonhole [OF this]
show ?thesis by (auto simp: inj-on-def iff : in-set-conv-nth)

qed
qed

Homogeneous linear Diophantine equations: a1x1 + · · · + amxm = b1y1 +
· · · + bnyn

locale hlde-ops =
fixes a b :: nat list

begin

abbreviation m ≡ length a
abbreviation n ≡ length b

— The set of all solutions.
definition Solutions :: (nat list × nat list) set

where
Solutions = {(x, y). a · x = b · y ∧ length x = m ∧ length y = n}

lemma in-Solutions-iff :
(x, y) ∈ Solutions ←→ length x = m ∧ length y = n ∧ a · x = b · y
by (auto simp: Solutions-def )

— The set of pointwise minimal solutions.
definition Minimal-Solutions :: (nat list × nat list) set

where
Minimal-Solutions = {(x, y) ∈ Solutions. nonzero x ∧
¬ (∃ (u, v) ∈ Solutions. nonzero u ∧ u @ v <v x @ y)}

definition dij :: nat ⇒ nat ⇒ nat
where

dij i j = lcm (a ! i) (b ! j) div (a ! i)
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definition eij :: nat ⇒ nat ⇒ nat
where

eij i j = lcm (a ! i) (b ! j) div (b ! j)

definition sij :: nat ⇒ nat ⇒ (nat list × nat list)
where

sij i j = ((zeroes m)[i := dij i j], (zeroes n)[j := eij i j])

2.1 Further Constraints on Minimal Solutions
definition Ej :: nat ⇒ nat list ⇒ nat set

where
Ej j x = { eij i j − 1 | i. i < length x ∧ x ! i ≥ dij i j }

definition Di :: nat ⇒ nat list ⇒ nat set
where

Di i y = { dij i j − 1 | j. j < length y ∧ y ! j ≥ eij i j }

definition Di ′ :: nat ⇒ nat list ⇒ nat set
where

Di ′ i y = { dij i (j + length b − length y) − 1 | j. j < length y ∧ y ! j ≥ eij i
(j + length b − length y) }

lemma Ej-take-subset:
Ej j (take k x) ⊆ Ej j x
by (auto simp: Ej-def )

lemma Di-take-subset:
Di i (take l y) ⊆ Di i y
by (auto simp: Di-def )

lemma Di ′-drop-subset:
Di ′ i (drop l y) ⊆ Di ′ i y
by (auto simp: Di ′-def ) (metis add.assoc add.commute less-diff-conv)

lemma finite-Ej:
finite (Ej j x)
by (rule finite-subset [of - (λi. eij i j − 1 ) ‘ {0 ..< length x}]) (auto simp: Ej-def )

lemma finite-Di:
finite (Di i y)
by (rule finite-subset [of - (λj. dij i j − 1 ) ‘ {0 ..< length y}]) (auto simp: Di-def )

lemma finite-Di ′:
finite (Di ′ i y)
by (rule finite-subset [of - (λj. dij i (j + length b − length y) − 1 ) ‘ {0 ..< length

y}])
(auto simp: Di ′-def )
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definition max-y :: nat list ⇒ nat ⇒ nat
where

max-y x j = (if j < n ∧ Ej j x 6= {} then Min (Ej j x) else Max (set a))

definition max-x :: nat list ⇒ nat ⇒ nat
where

max-x y i = (if i < m ∧ Di i y 6= {} then Min (Di i y) else Max (set b))

definition max-x ′ :: nat list ⇒ nat ⇒ nat
where

max-x ′ y i = (if i < m ∧ Di ′ i y 6= {} then Min (Di ′ i y) else Max (set b))

lemma Min-Ej-le:
assumes j < n

and e ∈ Ej j x
and length x ≤ m

shows Min (Ej j x) ≤ Max (set a) (is ?m ≤ -)
proof −

have ?m ∈ Ej j x
using assms and finite-Ej and Min-in by blast

then obtain i where
i: ?m = eij i j − 1 i < length x x ! i ≥ dij i j
by (auto simp: Ej-def )

have lcm (a ! i) (b ! j) div b ! j ≤ a ! i by (rule lcm-div-le)
then show ?thesis

using i and assms
by (auto simp: eij-def )
(meson List.finite-set Max-ge diff-le-self le-trans less-le-trans nth-mem)

qed

lemma Min-Di-le:
assumes i < m

and e ∈ Di i y
and length y ≤ n

shows Min (Di i y) ≤ Max (set b) (is ?m ≤ -)
proof −

have ?m ∈ Di i y
using assms and finite-Di and Min-in by blast

then obtain j where
j: ?m = dij i j − 1 j < length y y ! j ≥ eij i j
by (auto simp: Di-def )

have lcm (a ! i) (b ! j) div a ! i ≤ b ! j by (rule lcm-div-le ′)
then show ?thesis

using j and assms
by (auto simp: dij-def )
(meson List.finite-set Max-ge diff-le-self le-trans less-le-trans nth-mem)

qed

lemma Min-Di ′-le:
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assumes i < m
and e ∈ Di ′ i y
and length y ≤ n

shows Min (Di ′ i y) ≤ Max (set b) (is ?m ≤ -)
proof −

have ?m ∈ Di ′ i y
using assms and finite-Di ′ and Min-in by blast

then obtain j where
j: ?m = dij i (j + length b − length y) − 1 j < length y y ! j ≥ eij i (j + length

b − length y)
by (auto simp: Di ′-def )

then have j + length b − length y < length b using assms by auto
moreover
have lcm (a ! i) (b ! (j + length b − length y)) div a ! i ≤ b ! (j + length b −

length y) by (rule lcm-div-le ′)
ultimately show ?thesis

using j and assms
by (auto simp: dij-def )
(meson List.finite-set Max-ge diff-le-self le-trans less-le-trans nth-mem)

qed

lemma max-y-le-take:
assumes length x ≤ m
shows max-y x j ≤ max-y (take k x) j
using assms and Min-Ej-le and Ej-take-subset and Min.subset-imp [OF - -

finite-Ej]
by (auto simp: max-y-def ) blast

lemma max-x-le-take:
assumes length y ≤ n
shows max-x y i ≤ max-x (take l y) i
using assms and Min-Di-le and Di-take-subset and Min.subset-imp [OF - -

finite-Di]
by (auto simp: max-x-def ) blast

lemma max-x ′-le-drop:
assumes length y ≤ n
shows max-x ′ y i ≤ max-x ′ (drop l y) i
using assms and Min-Di ′-le and Di ′-drop-subset and Min.subset-imp [OF - -

finite-Di ′]
by (auto simp: max-x ′-def ) blast

end

abbreviation Solutions ≡ hlde-ops.Solutions
abbreviation Minimal-Solutions ≡ hlde-ops.Minimal-Solutions

abbreviation dij ≡ hlde-ops.dij
abbreviation eij ≡ hlde-ops.eij
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abbreviation sij ≡ hlde-ops.sij

declare hlde-ops.dij-def [code]
declare hlde-ops.eij-def [code]
declare hlde-ops.sij-def [code]

lemma Solutions-sym: (x, y) ∈ Solutions a b ←→ (y, x) ∈ Solutions b a
by (auto simp: hlde-ops.in-Solutions-iff )

lemma Minimal-Solutions-imp-Solutions: (x, y) ∈ Minimal-Solutions a b =⇒ (x,
y) ∈ Solutions a b

by (auto simp: hlde-ops.Minimal-Solutions-def )

lemma Minimal-SolutionsI :
assumes (x, y) ∈ Solutions a b

and nonzero x
and ¬ (∃ (u, v) ∈ Solutions a b. nonzero u ∧ u @ v <v x @ y)

shows (x, y) ∈ Minimal-Solutions a b
using assms by (auto simp: hlde-ops.Minimal-Solutions-def )

lemma minimize-nonzero-solution:
assumes (x, y) ∈ Solutions a b and nonzero x
obtains u and v where u @ v ≤v x @ y and (u, v) ∈ Minimal-Solutions a b
using assms

proof (induct x @ y arbitrary: x y thesis rule: wf-induct [OF wf-less])
case 1
then show ?case
proof (cases (x, y) ∈ Minimal-Solutions a b)

case False
then obtain u and v where nonzero u and (u, v) ∈ Solutions a b and uv: u

@ v <v x @ y
using 1 (3 ,4 ) by (auto simp: hlde-ops.Minimal-Solutions-def )

with 1 (1 ) [rule-format, of u @ v u v] obtain u ′ and v ′ where uv ′: u ′ @ v ′

≤v u @ v
and (u ′, v ′) ∈ Minimal-Solutions a b by blast

moreover have u ′ @ v ′ ≤v x @ y using uv and uv ′ by auto
ultimately show ?thesis by (intro 1 (2 ))

qed blast
qed

lemma Minimal-SolutionsI ′:
assumes (x, y) ∈ Solutions a b

and nonzero x
and ¬ (∃ (u, v) ∈ Minimal-Solutions a b. u @ v <v x @ y)

shows (x, y) ∈ Minimal-Solutions a b
proof (rule Minimal-SolutionsI [OF assms(1 ,2 )])

show ¬ (∃ (u, v) ∈ Solutions a b. nonzero u ∧ u @ v <v x @ y)
proof

assume ∃ (u, v) ∈ Solutions a b. nonzero u ∧ u @ v <v x @ y
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then obtain u and v where (u, v) ∈ Solutions a b and nonzero u
and uv: u @ v <v x @ y by blast

then obtain u ′ and v ′ where (u ′, v ′) ∈ Minimal-Solutions a b
and uv ′: u ′ @ v ′ ≤v u @ v by (blast elim: minimize-nonzero-solution)

moreover have u ′ @ v ′ <v x @ y using uv and uv ′ by auto
ultimately show False using assms by blast

qed
qed

lemma Minimal-Solutions-length:
(x, y) ∈ Minimal-Solutions a b =⇒ length x = length a ∧ length y = length b
by (auto simp: hlde-ops.Minimal-Solutions-def hlde-ops.in-Solutions-iff )

lemma Minimal-Solutions-gt0 :
(x, y) ∈ Minimal-Solutions a b =⇒ zeroes (length x) <v x
using zero-less by (auto simp: hlde-ops.Minimal-Solutions-def )

lemma Minimal-Solutions-sym:
assumes 0 /∈ set a and 0 /∈ set b
shows (xs, ys) ∈ Minimal-Solutions a b −→ (ys, xs) ∈ Minimal-Solutions b a
using assms
by (auto simp: hlde-ops.Minimal-Solutions-def hlde-ops.Solutions-def

dest: dotprod-eq-nonzero-iff dest!: less-append-swap [of - - ys xs])

locale hlde = hlde-ops +
assumes no0 : 0 /∈ set a 0 /∈ set b

begin

lemma nonzero-Solutions-iff :
assumes (x, y) ∈ Solutions
shows nonzero x ←→ nonzero y
using assms and no0 by (auto simp: in-Solutions-iff dest: dotprod-eq-nonzero-iff )

lemma Minimal-Solutions-min:
assumes (x, y) ∈ Minimal-Solutions

and u @ v <v x @ y
and a · u = b · v
and [simp]: length u = m
and non0 : nonzero (u @ v)

shows False
proof −

have [simp]: length v = n using assms by (force dest: less-appendD Mini-
mal-Solutions-length)

have (u, v) ∈ Solutions using ‹a · u = b · v› by (simp add: in-Solutions-iff )
moreover from nonzero-Solutions-iff [OF this] have nonzero u using non0 by

auto
ultimately show False using assms by (auto simp: hlde-ops.Minimal-Solutions-def )

qed
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lemma Solutions-snd-not-0 :
assumes (x, y) ∈ Solutions

and nonzero x
shows nonzero y
using assms by (metis nonzero-Solutions-iff )

end

2.2 Pointwise Restricting Solutions

Constructing the list of u vectors from Huet’s proof [1], satisfying

• ∀ i<length u. u ! i ≤ y ! i and

• 0 < sum-list u ≤ ak.

Given y, increment a "previous" u vector at first position starting from i
where u is strictly smaller than y. If this is not possible, return u unchanged.
function inc :: nat list ⇒ nat ⇒ nat list ⇒ nat list

where
inc y i u =
(if i < length y then

if u ! i < y ! i then u[i := u ! i + 1 ]
else inc y (Suc i) u

else u)
by (pat-completeness) auto

termination inc
by (relation measure (λ(y, i, u). max (length y) (length u) − i)) auto

declare inc.simps [simp del]

Starting from the 0-vector produce us by iteratively incrementing with re-
spect to y.
definition huets-us :: nat list ⇒ nat ⇒ nat list (‹u› 1000 )

where
u y i = ((inc y 0 ) ^^ Suc i) (zeroes (length y))

lemma huets-us-simps [simp]:
u y 0 = inc y 0 (zeroes (length y))
u y (Suc i) = inc y 0 (u y i)
by (auto simp: huets-us-def )

lemma length-inc [simp]: length (inc y i u) = length u
by (induct y i u rule: inc.induct) (simp add: inc.simps)

lemma length-us [simp]:
length (u y i) = length y
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by (induct i) (simp-all)

inc produces vectors that are pointwise smaller than y
lemma inc-le:

assumes length u = length y and i < length y and u ≤v y
shows inc y i u ≤v y
using assms by (induct y i u rule: inc.induct)
(auto simp: inc.simps nth-list-update less-eq-def )

lemma us-le:
assumes length y > 0
shows u y i ≤v y
using assms by (induct i) (auto simp: inc-le le-length)

lemma sum-list-inc-le:
u ≤v y =⇒ sum-list (inc y i u) ≤ sum-list y
by (induct y i u rule: inc.induct)
(auto simp: inc.simps intro: le-sum-list-mono)

lemma sum-list-inc-gt0 :
assumes sum-list u > 0 and length y = length u
shows sum-list (inc y i u) > 0
using assms

proof (induct y i u rule: inc.induct)
case (1 y i u)
then show ?case

by (auto simp add: inc.simps)
(meson Suc-neq-Zero gr-zeroI set-update-memI sum-list-eq-0-iff )

qed

lemma sum-list-inc-gt0 ′:
assumes length u = length y and i < length y and y ! i > 0 and j ≤ i
shows sum-list (inc y j u) > 0
using assms

proof (induct y j u rule: inc.induct)
case (1 y i u)
then show ?case

by (auto simp: inc.simps [of y i] sum-list-update)
(metis elem-le-sum-list le-antisym le-zero-eq neq0-conv not-less-eq-eq sum-list-inc-gt0 )

qed

lemma sum-list-us-gt0 :
assumes sum-list y 6= 0
shows 0 < sum-list (u y i)
using assms by (induct i) (auto simp: in-set-conv-nth sum-list-inc-gt0 ′ sum-list-inc-gt0 )

lemma sum-list-inc-le ′:
assumes length u = length y
shows sum-list (inc y i u) ≤ sum-list u + 1
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using assms
by (induct y i u rule: inc.induct) (auto simp: inc.simps sum-list-update)

lemma sum-list-us-le:
sum-list (u y i) ≤ i + 1

proof (induct i)
case 0
then show ?case

by (auto simp: sum-list-update)
(metis Suc-eq-plus1 in-set-replicate length-replicate sum-list-eq-0-iff sum-list-inc-le ′)

next
case (Suc i)
then show ?case
by auto (metis Suc-le-mono add.commute le-trans length-us plus-1-eq-Suc sum-list-inc-le ′)

qed

lemma sum-list-us-bounded:
assumes i < k
shows sum-list (u y i) ≤ k
using assms and sum-list-us-le [of y i] by force

lemma sum-list-inc-eq-sum-list-Suc:
assumes length u = length y and i < length y

and ∃ j≥i. j < length y ∧ u ! j < y ! j
shows sum-list (inc y i u) = Suc (sum-list u)
using assms
by (induct y i u rule: inc.induct)
(metis inc.simps Suc-eq-plus1 Suc-leI antisym-conv2 leD sum-list-list-update-Suc)

lemma sum-list-us-eq:
assumes i < sum-list y
shows sum-list (u y i) = i + 1
using assms

proof (induct i)
case (Suc i)
then show ?case

by (auto)
(metis (no-types, lifting) Suc-eq-plus1 gr-implies-not0 length-pos-if-in-set
length-us less-Suc-eq-le less-imp-le-nat antisym-conv2 not-less-eq-eq
sum-list-eq-0-iff sum-list-inc-eq-sum-list-Suc sum-list-less-diff-Ex us-le)

qed (metis Suc-eq-plus1 Suc-leI antisym-conv gr-implies-not0 sum-list-us-gt0 sum-list-us-le)

lemma inc-ge: length u = length y =⇒ u ≤v inc y i u
by (induct y i u rule: inc.induct) (auto simp: inc.simps nth-list-update less-eq-def )

lemma us-le-mono:
assumes i < j
shows u y i ≤v u y j
using assms
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proof (induct j − i arbitrary: j i)
case (Suc n)
then show ?case
by (simp add: Suc.prems inc-ge order .strict-implies-order order-vec.lift-Suc-mono-le)

qed simp

lemma us-mono:
assumes i < j and j < sum-list y
shows u y i <v u y j

proof −
let ?u = u y i and ?v = u y j
have ?u ≤v ?v

using us-le-mono [OF ‹i < j›] by simp
moreover have sum-list ?u < sum-list ?v

using assms by (auto simp: sum-list-us-eq)
ultimately show ?thesis by (intro le-sum-list-less) (auto simp: less-eq-def )

qed

context hlde
begin

lemma max-coeff-bound-right:
assumes (xs, ys) ∈ Minimal-Solutions
shows ∀ x ∈ set xs. x ≤ maxne0 ys b (is ∀ x∈set xs. x ≤ ?m)

proof (rule ccontr)
assume ¬ ?thesis
then obtain k

where k-def : k < length xs ∧ ¬ (xs ! k ≤ ?m)
by (metis in-set-conv-nth)

have sol: (xs, ys) ∈ Solutions
using assms Minimal-Solutions-def by auto

then have len: m = length xs by (simp add: in-Solutions-iff )
have max-suml: ?m ∗ sum-list ys ≥ b · ys

using maxne0-times-sum-list-gt-dotprod sol by (auto simp: in-Solutions-iff )
then have is-sol: b · ys = a · xs

using sol by (auto simp: in-Solutions-iff )
then have a-ge-ak: a · xs ≥ a ! k ∗ xs ! k

using dotprod-pointwise-le k-def len by auto
then have ak-gt-max: a ! k ∗ xs ! k > a ! k ∗ ?m

using no0 in-set-conv-nth k-def len by fastforce
then have sl-ys-g-ak: sum-list ys > a ! k

by (metis a-ge-ak is-sol less-le-trans max-suml
mult.commute mult-le-mono1 not-le)

define Seq where
Seq-def : Seq = map (u ys) [0 ..< a ! k]

have ak-n0 : a ! k 6= 0
using ‹a ! k ∗ ?m < a ! k ∗ xs ! k› by auto

have zeroes (length ys) <v ys
by (intro zero-less) (metis gr-implies-not0 nonzero-iff sl-ys-g-ak sum-list-eq-0-iff )
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then have length Seq > 0
using ak-n0 Seq-def by auto

have u-in-nton: ∀ u ∈ set Seq. length u = length ys
by (simp add: Seq-def )

have prop-3 : ∀ u ∈ set Seq. u ≤v ys
proof −

have length ys > 0
using sl-ys-g-ak by auto

then show ?thesis
using us-le [of ys ] less-eq-def Seq-def by (simp)

qed
have prop-4-1 : ∀ u ∈ set Seq. sum-list u > 0

by (metis Seq-def sl-ys-g-ak gr-implies-not-zero imageE
set-map sum-list-us-gt0 )

have prop-4-2 : ∀ u ∈ set Seq. sum-list u ≤ a ! k
by (simp add: Seq-def sum-list-us-bounded)

have prop-5 : ∃ u. length u = length ys ∧ u ≤v ys ∧ sum-list u > 0 ∧ sum-list u
≤ a ! k

using ‹0 < length Seq› nth-mem prop-3 prop-4-1 prop-4-2 u-in-nton by blast
define Us where

Us = {u. length u = length ys ∧ u ≤v ys ∧ sum-list u > 0 ∧ sum-list u ≤ a !
k}

have ∃ u ∈ Us. b · u mod a ! k = 0
proof (rule ccontr)

assume neg-th: ¬ ?thesis
define Seq-p where

Seq-p = map (dotprod b) Seq
have length Seq = a ! k

by (simp add: Seq-def )
then consider (eq-0 ) (∃ x∈set Seq-p. x mod (a ! k) = 0 ) |
(not-0 ) (∃ i<length Seq-p. ∃ j<length Seq-p. i 6= j ∧

(Seq-p ! i) mod (a!k) = (Seq-p ! j) mod (a!k))
using list-mod-cases[of Seq-p] Seq-p-def ak-n0 by auto force

then show False
proof (cases)

case eq-0
have ∃ u ∈ set Seq. b · u mod a ! k = 0

using Seq-p-def eq-0 by auto
then show False

by (metis (mono-tags, lifting) Us-def mem-Collect-eq
neg-th prop-3 prop-4-1 prop-4-2 u-in-nton)

next
case not-0
obtain i and j where

i-j: i<length Seq-p j<length Seq-p i 6= j
Seq-p ! i mod a ! k = Seq-p ! j mod a ! k

using not-0 by blast
define v where

v-def : v = Seq!i
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define w where
w-def : w = Seq!j

have mod-eq: b · v mod a!k = b · w mod a!k
using Seq-p-def i-j w-def v-def i-j by auto

have v <v w ∨ w <v v
using ‹i 6= j› and i-j

proof (cases i < j)
case True
then show ?thesis
using Seq-p-def sl-ys-g-ak i-j(2 ) local.Seq-def us-mono v-def w-def by auto

next
case False
then show ?thesis

using Seq-p-def sl-ys-g-ak ‹i 6= j› i-j(1 ) local.Seq-def us-mono v-def w-def
by auto

qed
then show False
proof

assume ass: v <v w
define u where

u-def : u = w −v v
have w ≤v ys

using Seq-p-def w-def i-j(2 ) prop-3 by force
then have prop-3 : less-eq u ys

using vdiff-le ass less-eq-def order-vec.less-imp-le u-def by auto
have prop-4-1 : sum-list u > 0

using le-sum-list-mono [of v w] ass u-def sum-list-vdiff-distr [of v w]
by (simp add: less-vec-sum-list-less)

have prop-4-2 : sum-list u ≤ a ! k
proof −

have u ≤v w using u-def
using ass less-eq-def order-vec.less-imp-le vdiff-le by auto

then show ?thesis
by (metis Seq-p-def i-j(2 ) length-map le-sum-list-mono

less-le-trans not-le nth-mem prop-4-2 w-def )
qed
have b · u mod a ! k = 0

by (metis (mono-tags, lifting) in-Solutions-iff ‹w ≤v ys› u-def ass no0 (2 )
less-eq-def mem-Collect-eq mod-eq mods-with-vec-2 prod.simps(2 ) sol)

then show False using neg-th
by (metis (mono-tags, lifting) Us-def less-eq-def mem-Collect-eq

prop-3 prop-4-1 prop-4-2 )
next

assume ass: w <v v
define u where

u-def : u = v −v w
have v ≤v ys

using Seq-p-def v-def i-j(1 ) prop-3 by force
then have prop-3 : u ≤v ys
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using vdiff-le ass less-eq-def order-vec.less-imp-le u-def by auto
have prop-4-1 : sum-list u > 0

using le-sum-list-mono [of w v] sum-list-vdiff-distr [of w v]
‹u ≡ v −v w› ass less-vec-sum-list-less by auto

have prop-4-2 : sum-list u ≤ a!k
proof −

have u ≤v v using u-def
using ass less-eq-def order-vec.less-imp-le vdiff-le by auto

then show ?thesis
by (metis Seq-p-def i-j(1 ) le-neq-implies-less length-map less-imp-le-nat

less-le-trans nth-mem prop-4-2 le-sum-list-mono v-def )
qed
have b · u mod a ! k = 0

by (metis (mono-tags, lifting) in-Solutions-iff ‹v ≤v ys› u-def ass no0 (2 )
less-eq-def mem-Collect-eq mod-eq mods-with-vec-2 prod.simps(2 ) sol)

then show False
by (metis (mono-tags, lifting) neg-th Us-def less-eq-def mem-Collect-eq

prop-3 prop-4-1 prop-4-2 )
qed

qed
qed
then obtain u where

u3-4 : u ≤v ys sum-list u > 0 sum-list u ≤ a ! k b · u mod (a ! k) = 0
length u = length ys
unfolding Us-def by auto

have u-b-len: length u = n
using less-eq-def u3-4 in-Solutions-iff sol by simp

have b · u ≤ maxne0 u b ∗ sum-list u
by (simp add: maxne0-times-sum-list-gt-dotprod u-b-len)

also have ... ≤ ?m ∗ a ! k
by (intro mult-le-mono) (simp-all add: u3-4 maxne0-mono)

also have ... < a ! k ∗ xs ! k
using ak-gt-max by auto

then obtain zk where
zk: b · u = zk ∗ a ! k
using u3-4 (4 ) by auto

have length xs > k
by (simp add: k-def )

have zk 6= 0
proof −

have ∃ e ∈ set u. e 6= 0
using u3-4
by (metis neq0-conv sum-list-eq-0-iff )

then have b · u > 0
using assms no0 u3-4
unfolding dotprod-gt0-iff [OF u-b-len [symmetric]]
by (fastforce simp add: in-set-conv-nth u-b-len)

then have a ! k > 0
using ‹a ! k 6= 0 › by blast
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then show ?thesis
using ‹0 < b · u› zk by auto

qed
define z where

z-def : z = (zeroes (length xs))[k := zk]
then have zk-zk: z ! k = zk

by (auto simp add: ‹k < length xs›)
have length z = length xs

using assms z-def ‹k < length xs› by auto
then have bu-eq-akzk: b · u = a ! k ∗ z ! k

by (simp add: ‹b · u = zk ∗ a ! k› zk-zk)
then have z!k < xs!k

using ak-gt-max calculation by auto
then have z-less-xs: z <v xs

by (auto simp add: z-def ) (metis ‹k < length xs› le0 le-list-update less-def
less-imp-le order-vec.dual-order .antisym nat-neq-iff z-def zk-zk)

then have z @ u <v xs @ ys
by (intro less-append) (auto simp add: u3-4 (1 ) z-less-xs)

moreover have (z, u) ∈ Solutions
by (auto simp add: bu-eq-akzk in-Solutions-iff z-def u-b-len ‹k < length xs› len)

moreover have nonzero z
using ‹length z = length xs› and ‹zk 6= 0 › and k-def and zk-zk by (auto simp:

nonzero-iff )
ultimately show False using assms by (auto simp: Minimal-Solutions-def )

qed

Proof of Lemma 1 of Huet’s paper.
lemma max-coeff-bound:

assumes (xs, ys) ∈ Minimal-Solutions
shows (∀ x ∈ set xs. x ≤ maxne0 ys b) ∧ (∀ y ∈ set ys. y ≤ maxne0 xs a)

proof −
interpret ba: hlde b a by (standard) (auto simp: no0 )
show ?thesis

using assms and Minimal-Solutions-sym [OF no0 , of xs ys]
by (auto simp: max-coeff-bound-right ba.max-coeff-bound-right)

qed

lemma max-coeff-bound ′:
assumes (x, y) ∈ Minimal-Solutions
shows ∀ i<length x . x ! i ≤ Max (set b) and ∀ j<length y. y ! j ≤ Max (set a)
using max-coeff-bound [OF assms] and maxne0-le-Max
by auto (metis le-eq-less-or-eq less-le-trans nth-mem)+

lemma Minimal-Solutions-alt-def :
Minimal-Solutions = {(x, y)∈Solutions.
(x, y) 6= (zeroes m, zeroes n) ∧
x ≤v replicate m (Max (set b)) ∧
y ≤v replicate n (Max (set a)) ∧
¬ (∃ (u, v)∈Solutions. nonzero u ∧ u @ v <v x @ y)}
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by (auto simp: not-nonzero-iff Minimal-Solutions-imp-Solutions less-eq-def Min-
imal-Solutions-length max-coeff-bound ′

intro!: Minimal-SolutionsI ′ dest: Minimal-Solutions-gt0 )
(auto simp: Minimal-Solutions-def nonzero-Solutions-iff not-nonzero-iff )

2.3 Special Solutions
definition Special-Solutions :: (nat list × nat list) set

where
Special-Solutions = {sij i j | i j. i < m ∧ j < n}

lemma dij-neq-0 :
assumes i < m

and j < n
shows dij i j 6= 0

proof −
have a ! i > 0 and b ! j > 0

using assms and no0 by (simp-all add: in-set-conv-nth)
then have dij i j > 0

using lcm-div-gt-0 [of a ! i b ! j] by (simp add: dij-def )
then show ?thesis by simp

qed

lemma eij-neq-0 :
assumes i < m

and j < n
shows eij i j 6= 0

proof −
have a ! i > 0 and b ! j > 0

using assms and no0 by (simp-all add: in-set-conv-nth)
then have eij i j > 0

using lcm-div-gt-0 [of b ! j a ! i] by (simp add: eij-def lcm.commute)
then show ?thesis

by simp
qed

lemma Special-Solutions-in-Solutions:
x ∈ Special-Solutions =⇒ x ∈ Solutions
by (auto simp: in-Solutions-iff Special-Solutions-def sij-def dij-def eij-def )

lemma Special-Solutions-in-Minimal-Solutions:
assumes (x, y) ∈ Special-Solutions
shows (x, y) ∈ Minimal-Solutions

proof (intro Minimal-SolutionsI ′)
show (x, y) ∈ Solutions by (fact Special-Solutions-in-Solutions [OF assms])
then have [simp]: length x = m length y = n by (auto simp: in-Solutions-iff )
show nonzero x using assms and dij-neq-0

by (auto simp: Special-Solutions-def sij-def nonzero-iff )
(metis length-replicate set-update-memI )
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show ¬ (∃ (u, v)∈Minimal-Solutions. u @ v <v x @ y)
proof

assume ∃ (u, v)∈Minimal-Solutions. u @ v <v x @ y
then obtain u and v where uv: (u, v) ∈ Minimal-Solutions and u @ v <v x

@ y
and [simp]: length u = m length v = n
and nonzero u by (auto simp: Minimal-Solutions-def in-Solutions-iff )

then consider u <v x and v ≤v y | v <v y and u ≤v x by (auto elim:
less-append-cases)

then show False
proof (cases)

case 1
then obtain i and j where ij: i < m j < n

and less-dij: u ! i < dij i j
and u ≤v (zeroes m)[i := dij i j]
and v ≤v (zeroes n)[j := eij i j]
using assms by (auto simp: Special-Solutions-def sij-def unit-less)

then have u: u = (zeroes m)[i := u ! i] and v: v = (zeroes n)[j := v ! j]
by (auto simp: less-eq-def list-eq-iff-nth-eq)
(metis le-zero-eq length-list-update length-replicate rep-upd-unit)+

then have u ! i > 0 using ‹nonzero u› and ij
by (metis gr-implies-not0 neq0-conv unit-less zero-less)

define c where c = a ! i ∗ u ! i
then have ac: a ! i dvd c by simp

have a · u = b · v using uv by (auto simp: Minimal-Solutions-def in-Solutions-iff )
then have c = b ! j ∗ v ! j

using ij unfolding c-def by (subst (asm) u, subst (asm)v, subst u, subst
v) auto

then have bc: b ! j dvd c by simp

have a ! i ∗ u ! i < a ! i ∗ dij i j
using less-dij and no0 and ij by (auto simp: in-set-conv-nth)

then have c < lcm (a ! i) (b ! j) by (auto simp: dij-def c-def )
moreover have lcm (a ! i) (b ! j) dvd c by (simp add: ac bc)
moreover have c > 0 using ‹u ! i > 0 › and no0 and ij by (auto simp:

c-def in-set-conv-nth)
ultimately show False using ac and bc by (auto dest: nat-dvd-not-less)

next
case 2
then obtain i and j where ij: i < m j < n

and less-dij: v ! j < eij i j
and u ≤v (zeroes m)[i := dij i j]
and v ≤v (zeroes n)[j := eij i j]
using assms by (auto simp: Special-Solutions-def sij-def unit-less)

then have u: u = (zeroes m)[i := u ! i] and v: v = (zeroes n)[j := v ! j]
by (auto simp: less-eq-def list-eq-iff-nth-eq)
(metis le-zero-eq length-list-update length-replicate rep-upd-unit)+
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moreover have nonzero v
using ‹nonzero u› and ‹(u, v) ∈ Minimal-Solutions›

and Minimal-Solutions-imp-Solutions Solutions-snd-not-0 by blast
ultimately have v ! j > 0 using ij

by (metis gr-implies-not0 neq0-conv unit-less zero-less)

define c where c = b ! j ∗ v ! j
then have bc: b ! j dvd c by simp

have a · u = b · v using uv by (auto simp: Minimal-Solutions-def in-Solutions-iff )
then have c = a ! i ∗ u ! i

using ij unfolding c-def by (subst (asm) u, subst (asm)v, subst u, subst
v) auto

then have ac: a ! i dvd c by simp

have b ! j ∗ v ! j < b ! j ∗ eij i j
using less-dij and no0 and ij by (auto simp: in-set-conv-nth)

then have c < lcm (a ! i) (b ! j) by (auto simp: eij-def c-def )
moreover have lcm (a ! i) (b ! j) dvd c by (simp add: ac bc)
moreover have c > 0 using ‹v ! j > 0 › and no0 and ij by (auto simp:

c-def in-set-conv-nth)
ultimately show False using ac and bc by (auto dest: nat-dvd-not-less)

qed
qed

qed

lemma non-special-solution-non-minimal:
assumes (x, y) ∈ Solutions − Special-Solutions

and ij: i < m j < n
and x ! i ≥ dij i j and y ! j ≥ eij i j

shows (x, y) /∈ Minimal-Solutions
proof

assume min: (x, y) ∈ Minimal-Solutions
moreover have sij i j ∈ Solutions
using ij by (intro Special-Solutions-in-Solutions) (auto simp: Special-Solutions-def )

moreover have (case sij i j of (u, v) ⇒ u @ v) <v x @ y
using assms and min
apply (cases sij i j)
apply (auto simp: sij-def Special-Solutions-def )

by (metis List-Vector .le0 Minimal-Solutions-length le-append le-list-update less-append
order-vec.dual-order .strict-iff-order same-append-eq)

moreover have (case sij i j of (u, v) ⇒ nonzero u)
apply (auto simp: sij-def )
by (metis dij-neq-0 ij length-replicate nonzero-iff set-update-memI )

ultimately show False
by (auto simp: Minimal-Solutions-def )

qed
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2.4 Huet’s conditions
definition cond-A xs ys ←→ (∀ x∈set xs. x ≤ maxne0 ys b)

definition cond-B x ←→
(∀ k≤m. take k a · take k x ≤ b · map (max-y (take k x)) [0 ..< n])

definition boundr x y ←→ (∀ j<n. y ! j ≤ max-y x j)

definition cond-D x y ←→ (∀ l≤n. take l b · take l y ≤ a · x)

2.5 New conditions: facilitating generation of candidates from
right to left

definition subdprodr y ←→
(∀ l≤n. take l b · take l y ≤ a · map (max-x (take l y)) [0 ..< m])

definition subdprodl x y ←→ (∀ k≤m. take k a · take k x ≤ b · y)

definition boundl x y ←→ (∀ i<m. x ! i ≤ max-x y i)

lemma boundr :
assumes min: (x, y) ∈ Minimal-Solutions

and (x, y) /∈ Special-Solutions
shows boundr x y

proof (unfold boundr-def , intro allI impI )
fix j
assume ass: j < n
have ln: m = length x ∧ n = length y

using assms Minimal-Solutions-def in-Solutions-iff min by auto
have is-sol: (x, y) ∈ Solutions

using assms Minimal-Solutions-def min by auto
have j-less-l: j < n

using assms ass le-less-trans by linarith
consider (notemp) Ej j x 6= {} | (empty) Ej j x = {}

by blast
then show y ! j ≤ max-y x j
proof (cases)

case notemp
have max-y-def : max-y x j = Min (Ej j x)

using j-less-l max-y-def notemp by auto
have fin-e: finite (Ej j x)

using finite-Ej [of j x] by auto
have e-def ′: ∀ e ∈ Ej j x. (∃ i<length x. x ! i ≥ dij i j ∧ eij i j − 1 = e)

using Ej-def [of j x] by auto
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then have ∃ i<length x. x ! i ≥ dij i j ∧ eij i j − 1 = Min (Ej j x)
using notemp Min-in e-def ′ fin-e by blast

then obtain i where
i: i < length x x ! i ≥ dij i j eij i j − 1 = Min (Ej j x)
by blast

show ?thesis
proof (rule ccontr)

assume ¬ ?thesis
with non-special-solution-non-minimal [of x y i j]

and i and ln and assms and is-sol and j-less-l
have case sij i j of (u, v) ⇒ u @ v ≤v x @ y

by (force simp: max-y-def )
then have cs:case sij i j of (u, v) ⇒ u @ v <v x @ y
using assms by(auto simp: Special-Solutions-def ) (metis append-eq-append-conv

i(1 ) j-less-l length-list-update length-replicate sij-def
order-vec.le-neq-trans ln prod.sel(1 ))

then obtain u v where
u-v: sij i j = (u, v) u @ v <v x @ y
by blast

have dij-gt0 : dij i j > 0
using assms(1 ) assms(2 ) dij-neq-0 i(1 ) j-less-l ln by auto

then have not-0-u: nonzero u
proof (unfold nonzero-iff )

have i < length (zeroes m) by (simp add: i(1 ) ln)
then show ∃ i∈set u. i 6= 0

by (metis (no-types) Pair-inject dij-gt0 set-update-memI sij-def u-v(1 )
neq0-conv)

qed
then have sij i j ∈ Solutions

by (metis (mono-tags, lifting) Special-Solutions-def i(1 )
Special-Solutions-in-Solutions j-less-l ln mem-Collect-eq u-v(1 ))

then show False
using assms cs u-v not-0-u Minimal-Solutions-def min by auto

qed
next

case empty
have ∀ y∈set y. y ≤ Max (set a)

using assms and max-coeff-bound and maxne0-le-Max
using le-trans by blast

then show ?thesis
using empty j-less-l ln max-y-def by auto

qed
qed

lemma boundl:
assumes min: (x, y) ∈ Minimal-Solutions

and (x, y) /∈ Special-Solutions
shows boundl x y

proof (unfold boundl-def , intro allI impI )
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fix i
assume ass: i < m
have ln: n = length y ∧ m = length x

using assms Minimal-Solutions-def in-Solutions-iff min by auto
have is-sol: (x, y) ∈ Solutions

using assms Minimal-Solutions-def min by auto
have i-less-l: i < m

using assms ass le-less-trans by linarith
consider (notemp) Di i y 6= {} | (empty) Di i y = {}

by blast
then show x ! i ≤ max-x y i
proof (cases)

case notemp
have max-x-def : max-x y i = Min (Di i y)

using i-less-l max-x-def notemp by auto
have fin-e: finite (Di i y)

using finite-Di [of i y] by auto
have e-def ′: ∀ e ∈ Di i y. (∃ j<length y. y ! j ≥ eij i j ∧ dij i j − 1 = e)

using Di-def [of i y] by auto
then have ∃ j<length y. y ! j ≥ eij i j ∧ dij i j − 1 = Min (Di i y)

using notemp Min-in e-def ′ fin-e by blast
then obtain j where

j: j < length y y ! j ≥ eij i j dij i j − 1 = Min (Di i y)
by blast

show ?thesis
proof (rule ccontr)

assume ¬ ?thesis
with non-special-solution-non-minimal [of x y i j]

and j and ln and assms and is-sol and i-less-l
have case sij i j of (u, v) ⇒ u @ v ≤v x @ y

by (force simp: max-x-def )
then have cs: case sij i j of (u, v) ⇒ u @ v <v x @ y
using assms by(auto simp: Special-Solutions-def ) (metis append-eq-append-conv

j(1 ) i-less-l length-list-update length-replicate sij-def
order-vec.le-neq-trans ln prod.sel(1 ))

then obtain u v where
u-v: sij i j = (u, v) u @ v <v x @ y
by blast

have dij-gt0 : dij i j > 0
using assms(1 ) assms(2 ) dij-neq-0 j(1 ) i-less-l ln by auto

then have not-0-u: nonzero u
proof (unfold nonzero-iff )

have i < length (zeroes m)
using ass by simp

then show ∃ i∈set u. i 6= 0
by (metis (no-types) Pair-inject dij-gt0 set-update-memI sij-def u-v(1 )

neq0-conv)
qed
then have sij i j ∈ Solutions
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by (metis (mono-tags, lifting) Special-Solutions-def j(1 )
Special-Solutions-in-Solutions i-less-l ln mem-Collect-eq u-v(1 ))

then show False
using assms cs u-v not-0-u Minimal-Solutions-def min by auto

qed
next

case empty
have ∀ x∈set x. x ≤ Max (set b)

using assms and max-coeff-bound and maxne0-le-Max
using le-trans by blast

then show ?thesis
using empty i-less-l ln max-x-def by auto

qed
qed

lemma Solution-imp-cond-D:
assumes (x, y) ∈ Solutions
shows cond-D x y
using assms and dotprod-le-take by (auto simp: cond-D-def in-Solutions-iff )

lemma Solution-imp-subdprodl:
assumes (x, y) ∈ Solutions
shows subdprodl x y
using assms and dotprod-le-take
by (auto simp: subdprodl-def in-Solutions-iff ) metis

theorem conds:
assumes min: (x, y) ∈ Minimal-Solutions
shows cond-A: cond-A x y

and cond-B: (x, y) /∈ Special-Solutions =⇒ cond-B x
and (x, y) /∈ Special-Solutions =⇒ boundr x y
and cond-D: cond-D x y
and subdprodr : (x, y) /∈ Special-Solutions =⇒ subdprodr y
and subdprodl: subdprodl x y

proof −
have sol: a · x = b · y and ln: m = length x ∧ n = length y

using min by (auto simp: Minimal-Solutions-def in-Solutions-iff )
then have ∀ i<m. x ! i ≤ maxne0 y b

by (metis min max-coeff-bound-right nth-mem)
then show cond-A x y

using min and le-less-trans by (auto simp: cond-A-def max-coeff-bound)
show (x, y) /∈ Special-Solutions =⇒ cond-B x
proof (unfold cond-B-def , intro allI impI )

fix k assume non-spec: (x, y) /∈ Special-Solutions and k: k ≤ m
from k have take k a · take k x ≤ a · x

using dotprod-le-take ln by blast
also have ... = b · y by fact
also have map-b-dot-p: ... ≤ b · map (max-y x) [0 ..<n] (is - ≤ - b · ?nt)

using non-spec and less-eq-def and ln and boundr and min
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by (fastforce intro!: dotprod-le-right simp: boundr-def )
also have ... ≤ b · map (max-y (take k x)) [0 ..<n] (is - ≤ - · ?t)
proof −

have ∀ j<n. ?nt!j ≤ ?t!j
using min and ln and max-y-le-take and k by auto

then have ?nt ≤v ?t
using less-eq-def by auto

then show ?thesis
by (simp add: dotprod-le-right)

qed
finally show take k a · take k x ≤ b · map (max-y (take k x)) [0 ..<n]

by (auto simp: cond-B-def )
qed

show (x, y) /∈ Special-Solutions =⇒ subdprodr y
proof (unfold subdprodr-def , intro allI impI )

fix l assume non-spec: (x, y) /∈ Special-Solutions and l: l ≤ n
from l have take l b · take l y ≤ b · y

using dotprod-le-take ln by blast
also have ... = a · x by (simp add: sol)
also have map-b-dot-p: ... ≤ a · map (max-x y) [0 ..<m] (is - ≤ - a · ?nt)

using non-spec and less-eq-def and ln and boundl and min
by (fastforce intro!: dotprod-le-right simp: boundl-def )

also have ... ≤ a · map (max-x (take l y)) [0 ..<m] (is - ≤ - · ?t)
proof −

have ∀ i<m. ?nt ! i ≤ ?t ! i
using min and ln and max-x-le-take and l by auto

then have ?nt ≤v ?t
using less-eq-def by auto

then show ?thesis
by (simp add: dotprod-le-right)

qed
finally show take l b · take l y ≤ a · map (max-x (take l y)) [0 ..<m]

by (auto simp: cond-B-def )
qed

show (x, y) /∈ Special-Solutions =⇒ boundr x y
using boundr [of x y] and min by blast

show cond-D x y
using ln and dotprod-le-take and sol by (auto simp: cond-D-def )

show subdprodl x y
using ln and dotprod-le-take and sol by (force simp: subdprodl-def )

qed

lemma le-imp-Ej-subset:
assumes u ≤v x
shows Ej j u ⊆ Ej j x
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using assms and le-trans by (force simp: Ej-def less-eq-def dij-def eij-def )

lemma le-imp-max-y-ge:
assumes u ≤v x

and length x ≤ m
shows max-y u j ≥ max-y x j
using assms and le-imp-Ej-subset and Min-Ej-le [of j, OF - - assms(2 )]
by (metis Min.subset-imp Min-in emptyE finite-Ej max-y-def order-refl subsetCE)

lemma le-imp-Di-subset:
assumes v ≤v y
shows Di i v ⊆ Di i y
using assms and le-trans by (force simp: Di-def less-eq-def dij-def eij-def )

lemma le-imp-max-x-ge:
assumes v ≤v y

and length y ≤ n
shows max-x v i ≥ max-x y i
using assms and le-imp-Di-subset and Min-Di-le [of i, OF - - assms(2 )]
by (metis Min.subset-imp Min-in emptyE finite-Di max-x-def order-refl subsetCE)

end

end

theory Sorted-Wrt
imports Main

begin

lemma sorted-wrt-filter :
sorted-wrt P xs =⇒ sorted-wrt P (filter Q xs)
by (induct xs) (auto)

lemma sorted-wrt-map-mono:
assumes sorted-wrt Q xs

and
∧

x y. Q x y =⇒ P (f x) (f y)
shows sorted-wrt P (map f xs)
using assms by (induct xs) (auto)

lemma sorted-wrt-concat-map-map:
assumes sorted-wrt Q xs

and sorted-wrt Q ys
and

∧
a x y. Q x y =⇒ P (f x a) (f y a)

and
∧

x y u v. x ∈ set xs =⇒ y ∈ set xs =⇒ Q u v =⇒ P (f x u) (f y v)
shows sorted-wrt P [f x y . y ← ys, x ← xs]
using assms by (induct ys)
(auto simp: sorted-wrt-append intro: sorted-wrt-map-mono [of Q])
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lemma sorted-wrt-concat-map:
assumes sorted-wrt P (map h xs)

and
∧

x. x ∈ set xs =⇒ sorted-wrt P (map h (f x))
and

∧
x y u v. P (h x) (h y) =⇒ x ∈ set xs =⇒ y ∈ set xs =⇒ u ∈ set (f x)

=⇒ v ∈ set (f y) =⇒ P (h u) (h v)
shows sorted-wrt P (concat (map (map h ◦ f ) xs))
using assms by (induct xs) (auto simp: sorted-wrt-append)

lemma sorted-wrt-map-distr :
assumes sorted-wrt (λx y. P x y) (map f xs)
shows sorted-wrt (λx y. P (f x) (f y)) xs
using assms
by (induct xs) (auto)

lemma sorted-wrt-tl:
xs 6= [] =⇒ sorted-wrt P xs =⇒ sorted-wrt P (tl xs)
by (cases xs) (auto)

end

3 Minimization
theory Minimize-Wrt

imports Sorted-Wrt
begin

fun minimize-wrt
where

minimize-wrt P [] = []
| minimize-wrt P (x # xs) = x # filter (P x) (minimize-wrt P xs)

lemma minimize-wrt-subset: set (minimize-wrt P xs) ⊆ set xs
by (induct xs) auto

lemmas minimize-wrtD = minimize-wrt-subset [THEN subsetD]

lemma sorted-wrt-minimize-wrt:
sorted-wrt P (minimize-wrt P xs)
by (induct xs) (auto simp: sorted-wrt-filter)

lemma sorted-wrt-imp-sorted-wrt-minimize-wrt:
sorted-wrt Q xs =⇒ sorted-wrt Q (minimize-wrt P xs)
by (induct xs) (auto simp: sorted-wrt-filter dest: minimize-wrtD)

lemma in-minimize-wrt-False:
assumes

∧
x y. Q x y =⇒ ¬ Q y x

and sorted-wrt Q xs
and x ∈ set (minimize-wrt P xs)
and ¬ P y x and Q y x and y ∈ set xs and y 6= x
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shows False
using assms by (induct xs) (auto dest: minimize-wrtD)

lemma in-minimize-wrtI :
assumes x ∈ set xs

and ∀ y∈set xs. P y x
shows x ∈ set (minimize-wrt P xs)
using assms by (induct xs) auto

lemma minimize-wrt-eq:
assumes distinct xs and

∧
x y. x ∈ set xs =⇒ y ∈ set xs =⇒ P x y ←→ Q x y

∨ x = y
shows minimize-wrt P xs = minimize-wrt Q xs
using assms by (induct xs) (auto, metis contra-subsetD filter-cong minimize-wrt-subset)

lemma minimize-wrt-ni:
assumes x ∈ set xs

and x /∈ set (minimize-wrt Q xs)
shows ∃ y ∈ set xs. (¬ Q y x) ∧ x 6= y
using assms by (induct xs) (auto)

lemma in-minimize-wrtD:
assumes

∧
x y. Q x y =⇒ ¬ Q y x

and sorted-wrt Q xs
and x ∈ set (minimize-wrt P xs)
and

∧
x y. ¬ P x y =⇒ Q x y

and
∧

x. P x x
shows x ∈ set xs ∧ (∀ y∈set xs. P y x)
using in-minimize-wrt-False [OF assms(1−3 )] and minimize-wrt-subset [of P

xs] and assms(3−5 )
by blast

lemma in-minimize-wrt-iff :
assumes

∧
x y. Q x y =⇒ ¬ Q y x

and sorted-wrt Q xs
and

∧
x y. ¬ P x y =⇒ Q x y

and
∧

x. P x x
shows x ∈ set (minimize-wrt P xs) ←→ x ∈ set xs ∧ (∀ y∈set xs. P y x)
using assms and in-minimize-wrtD [of Q xs x P, OF assms(1 ,2 ) - assms(3 ,4 )]
by (blast intro: in-minimize-wrtI )

lemma set-minimize-wrt:
assumes

∧
x y. Q x y =⇒ ¬ Q y x

and sorted-wrt Q xs
and

∧
x y. ¬ P x y =⇒ Q x y

and
∧

x. P x x
shows set (minimize-wrt P xs) = {x ∈ set xs. ∀ y∈set xs. P y x}
by (auto simp: in-minimize-wrt-iff [OF assms])
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lemma minimize-wrt-append:
assumes ∀ x∈set xs. ∀ y∈set (xs @ ys). P y x
shows minimize-wrt P (xs @ ys) = xs @ filter (λy. ∀ x∈set xs. P x y) (minimize-wrt

P ys)
using assms by (induct xs) (auto intro: filter-cong)

end

theory Simple-Algorithm
imports

Linear-Diophantine-Equations
Minimize-Wrt

begin

lemma concat-map-nth0 : xs 6= [] =⇒ f (xs ! 0 ) 6= [] =⇒ concat (map f xs) ! 0 =
f (xs ! 0 ) ! 0

by (induct xs) (auto simp: nth-append)

3.1 Reverse-Lexicographic Enumeration of Potential Mini-
mal Solutions

fun rlex2 :: (nat list × nat list) ⇒ (nat list × nat list) ⇒ bool (infix ‹<rlex2›
50 )

where
(xs, ys) <rlex2 (us, vs) ←→ xs @ ys <rlex us @ vs

lemma rlex2-irrefl:
¬ x <rlex2 x
by (cases x) (auto simp: rlex-irrefl)

lemma rlex2-not-sym: x <rlex2 y =⇒ ¬ y <rlex2 x
using rlex-not-sym by (cases x; cases y; simp)

lemma less-imp-rlex2 : ¬ (case x of (x, y) ⇒ λ(u, v). ¬ x @ y <v u @ v) y =⇒
x <rlex2 y

using less-imp-rlex by (cases x; cases y; auto)

Generate all lists (of natural numbers) of length n with elements bounded
by B.
fun gen :: nat ⇒ nat ⇒ nat list list

where
gen B 0 = [[]]
| gen B (Suc n) = [x#xs . xs ← gen B n, x ← [0 ..< B + 1 ]]

definition generate A B m n = tl [(x, y) . y ← gen B n, x ← gen A m]

definition check a b = filter (λ(x, y). a · x = b · y)
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definition minimize = minimize-wrt (λ(x, y) (u, v). ¬ x @ y <v u @ v)

definition solutions a b =
(let A = Max (set b); B = Max (set a); m = length a; n = length b
in minimize (check a b (generate A B m n)))

lemma set-gen: set (gen B n) = {xs. length xs = n ∧ (∀ i<n. xs ! i ≤ B)} (is -
= ?A n)
proof (induct n)

case [simp]: (Suc n)
{ fix xs assume xs ∈ ?A (Suc n)

then have xs ∈ set (gen B (Suc n))
by (cases xs) (force simp: All-less-Suc2 )+ }

then show ?case by (auto simp: less-Suc-eq-0-disj)
qed simp

abbreviation gen2 A B m n ≡ [(x, y) . y ← gen B n, x ← gen A m]

lemma sorted-wrt-gen:
sorted-wrt (<rlex) (gen B n)

by (induction n)
(auto simp: rlex-Cons sorted-wrt-append sorted-wrt-map rlex-irrefl
intro!: sorted-wrt-concat-map [where h = id, simplified])

lemma sorted-wrt-gen2 : sorted-wrt (<rlex2) (gen2 A B m n)
by (intro sorted-wrt-concat-map-map [where Q = (<rlex)] sorted-wrt-gen)
(auto simp: set-gen rlex-def intro: lex-append-leftI lex-append-rightI )

lemma gen-ne [simp]: gen B n 6= [] by (induct n) auto

lemma gen2-ne: gen2 A B m n 6= [] by auto

lemma sorted-wrt-generate: sorted-wrt (<rlex2) (generate A B m n)
by (auto simp: generate-def intro: sorted-wrt-tl sorted-wrt-gen2 )

abbreviation check-generate a b ≡ check a b (generate (Max (set b)) (Max (set
a)) (length a) (length b))

lemma sorted-wrt-check-generate: sorted-wrt (<rlex2) (check-generate a b)
by (auto simp: check-def intro: sorted-wrt-filter sorted-wrt-generate)

lemma in-tl-gen2 : x ∈ set (tl (gen2 A B m n)) =⇒ x ∈ set (gen2 A B m n)
by (rule list.set-sel) simp

lemma gen-nth0 [simp]: gen B n ! 0 = zeroes n
by (induct n) (auto simp: nth-append concat-map-nth0 )

lemma gen2-nth0 [simp]:
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gen2 A B m n ! 0 = (zeroes m, zeroes n)
by (auto simp: concat-map-nth0 )

lemma set-gen2 :
set (gen2 A B m n) = {(x, y). length x = m ∧ length y = n ∧ (∀ i<m. x ! i ≤

A) ∧ (∀ j<n. y ! j ≤ B)}
by (auto simp: set-gen)

lemma gen2-unique:
assumes i < j

and j < length (gen2 A B m n)
shows gen2 A B m n ! i 6= gen2 A B m n ! j
using sorted-wrt-nth-less [OF sorted-wrt-gen2 assms]
by (auto simp: rlex2-irrefl)

lemma zeroes-ni-tl-gen2 :
(zeroes m, zeroes n) /∈ set (tl (gen2 A B m n))

proof −
have gen2 A B m n ! 0 = (zeroes m, zeroes n) by (auto simp: generate-def )
with gen2-unique[of 0 - A m B n] show ?thesis

by (metis (no-types, lifting) Suc-eq-plus1 in-set-conv-nth length-tl less-diff-conv
nth-tl zero-less-Suc)
qed

lemma set-generate:
set (generate A B m n) = {(x, y). (x, y) 6= (zeroes m, zeroes n) ∧ (x, y) ∈ set

(gen2 A B m n)}
proof

show set (generate A B m n)
⊆ {(x, y).(x, y) 6= (zeroes m, zeroes n) ∧ (x, y) ∈ set (gen2 A B m n)}
using in-tl-gen2 and mem-Collect-eq and zeroes-ni-tl-gen2 by (auto simp:

generate-def )
next

have (zeroes m, zeroes n) = hd (gen2 A B m n)
by (simp add: hd-conv-nth)

moreover have set (gen2 A B m n) = set (generate A B m n) ∪ {(zeroes m,
zeroes n)}

by (metis Un-empty-right generate-def Un-insert-right gen2-ne calculation list.exhaust-sel
list.simps(15 ))

ultimately show {(x, y). (x, y) 6= (zeroes m, zeroes n) ∧ (x, y) ∈ set (gen2 A
B m n)}
⊆ set (generate A B m n)
by blast

qed

lemma set-check-generate:
set (check-generate a b) = {(x, y).
(x, y) 6= (zeroes (length a), zeroes (length b)) ∧
length x = length a ∧ length y = length b ∧ a · x = b · y ∧
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(∀ i<length a. x ! i ≤ Max (set b)) ∧ (∀ j<length b. y ! j ≤ Max (set a))}
unfolding check-def and set-filter and set-generate and set-gen2 by auto

lemma set-minimize-check-generate:
set (minimize (check-generate a b)) =
{(x, y)∈set (check-generate a b). ¬ (∃ (u, v)∈set (check-generate a b). u @ v <v

x @ y)}
unfolding minimize-def
by (subst set-minimize-wrt [OF - sorted-wrt-check-generate]) (auto dest: rlex-not-sym

less-imp-rlex)

lemma set-solutions-iff :
set (solutions a b) =
{(x, y) ∈ set (check-generate a b). ¬ (∃ (u, v)∈set (check-generate a b). u @ v

<v x @ y)}
by (auto simp: solutions-def set-minimize-check-generate)

3.1.1 Completeness: every minimal solution is generated by solu-
tions

lemma (in hlde) solutions-complete:
Minimal-Solutions ⊆ set (solutions a b)

proof (rule subrelI )
let ?A = Max (set b) and ?B = Max (set a)
fix x y assume min: (x, y) ∈ Minimal-Solutions
then have (x, y) ∈ set (check a b (generate ?A ?B m n))
by (auto simp: Minimal-Solutions-alt-def set-check-generate less-eq-def in-Solutions-iff )

moreover have ∀ (u, v) ∈ set (check a b (generate ?A ?B m n)). ¬ u @ v <v x
@ y

using min and no0
by (auto simp: check-def set-generate neq-0-iff ′ set-gen nonzero-iff dest!: Mini-

mal-Solutions-min)
ultimately show (x, y) ∈ set (solutions a b) by (auto simp: set-solutions-iff )

qed

3.1.2 Correctness: solutions generates only minimal solutions.
lemma (in hlde) solutions-sound:

set (solutions a b) ⊆ Minimal-Solutions
proof (rule subrelI )

fix x y assume sol: (x, y) ∈ set (solutions a b)
show (x, y) ∈ Minimal-Solutions
proof (rule Minimal-SolutionsI ′)

show ∗: (x, y) ∈ Solutions
using sol by (auto simp: set-solutions-iff in-Solutions-iff check-def set-generate

set-gen)
show nonzero x

using sol and nonzero-iff and replicate-eqI and nonzero-Solutions-iff [OF
∗]
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by (fastforce simp: solutions-def minimize-def check-def set-generate set-gen
dest!: minimize-wrtD)

show ¬ (∃ (u, v)∈Minimal-Solutions. u @ v <v x @ y)
proof

have min-cg: (x, y) ∈ set (minimize (check-generate a b))
using sol by (auto simp: solutions-def )
note ∗ = in-minimize-wrt-False [OF - sorted-wrt-check-generate min-cg

[unfolded minimize-def ]]

assume ∃ (u, v)∈Minimal-Solutions. u @ v <v x @ y
then obtain u and v where (u, v) ∈ Minimal-Solutions and less: u @ v <v

x @ y by blast
then have (u, v) ∈ set (solutions a b) by (auto intro: solutions-complete

[THEN subsetD])
then have (u, v) ∈ set (check-generate a b)

by (auto simp: solutions-def minimize-def dest: minimize-wrtD)
from ∗ [OF - - - this] and less show False

using less-imp-rlex and rlex-not-sym by force
qed

qed
qed

lemma (in hlde) set-solutions [simp]: set (solutions a b) = Minimal-Solutions
using solutions-sound and solutions-complete by blast

end

4 Computing Minimal Complete Sets of Solutions
theory Algorithm

imports Simple-Algorithm
begin

lemma all-Suc-le-conv: (∀ i≤Suc n. P i) ←→ P 0 ∧ (∀ i≤n. P (Suc i))
by (metis less-Suc-eq-0-disj nat-less-le order-refl)

lemma concat-map-filter-filter :
assumes

∧
x. x ∈ set xs =⇒ ¬ Q x =⇒ filter P (f x) = []

shows concat (map (filter P ◦ f ) (filter Q xs)) = concat (map (filter P ◦ f ) xs)
using assms by (induct xs) simp-all

lemma filter-pairs-conj:
filter (λ(x, y). P x y ∧ Q y) xs = filter (λ(x, y). P x y) (filter (Q ◦ snd) xs)
by (induct xs) auto
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lemma concat-map-filter :
concat (map f (filter P xs)) = concat (map (λx. if P x then f x else []) xs)
by (induct xs) simp-all

fun alls
where

alls B [] = [([], 0 )]
| alls B (a # as) = [(x # xs, s + a ∗ x). (xs, s) ← alls B as, x ← [0 ..< B + 1 ]]

lemma alls-ne [simp]:
alls B as 6= []
by (induct as)
(auto, metis (no-types, lifting) append-is-Nil-conv case-prod-conv list.set-intros(1 )

neq-Nil-conv old.prod.exhaust)

lemma set-alls: set (alls B a) =
{(x, s). length x = length a ∧ (∀ i<length a. x ! i ≤ B) ∧ s = a · x}
(is ?L a = ?R a)

proof
show ?L a ⊆ ?R a by (induct a) (auto simp: nth-Cons split: nat.splits)

next
show ?R a ⊆ ?L a
proof (induct a)

case (Cons a as)
show ?case
proof

fix xs ′ assume xs ′ ∈ ?R (a # as)
then obtain x and xs where [simp]: xs ′ = (x # xs, (a # as) · (x # xs))

and length as = length xs
and B: x ≤ B ∀ i<length as. xs ! i ≤ B
by (cases xs ′, case-tac a) (auto simp: All-less-Suc2 )

then have (xs, as · xs) ∈ ?L as using Cons by auto
then show xs ′ ∈ ?L (a # as)

using B
apply auto
apply (rule bexI [of - (xs, as · xs)])
apply auto

done
qed

qed auto
qed

lemma alls-nth0 [simp]: alls A as ! 0 = (zeroes (length as), 0 )
by (induct as) (auto simp: nth-append concat-map-nth0 )

lemma alls-Cons-tl-conv: alls A as = (zeroes (length as), 0 ) # tl (alls A as)
by (rule nth-equalityI ) (auto simp: nth-Cons nth-tl split: nat.splits)

lemma sorted-wrt-alls:
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sorted-wrt (<rlex) (map fst (alls B xs))
by (induct xs) (auto simp: map-concat rlex-Cons sorted-wrt-append

intro!: sorted-wrt-concat-map sorted-wrt-map-mono [of (<)])

definition alls2 A B a b = [(xs, ys). ys ← alls B b, xs ← alls A a]

lemma alls2-ne [simp]:
alls2 A B a b 6= []
by (auto simp: alls2-def ) (metis alls-ne list.set-intros(1 ) neq-Nil-conv surj-pair)

lemma set-alls2 :
set (alls2 A B a b) = {((x, s), (y, t)). length x = length a ∧ length y = length b
∧

(∀ i<length a. x ! i ≤ A) ∧ (∀ j<length b. y ! j ≤ B) ∧ s = a · x ∧ t = b · y}
by (auto simp: alls2-def set-alls)

lemma alls2-nth0 [simp]: alls2 A B as bs ! 0 = ((zeroes (length as), 0 ), (zeroes
(length bs), 0 ))

by (auto simp: alls2-def concat-map-nth0 )

lemma alls2-Cons-tl-conv: alls2 A B as bs =
((zeroes (length as), 0 ), (zeroes (length bs), 0 )) # tl (alls2 A B as bs)
apply (rule nth-equalityI )
apply (auto simp: alls2-def nth-Cons nth-tl length-concat concat-map-nth0 split:

nat.splits)
apply (cases alls B bs; simp)
done

abbreviation gen2
where

gen2 A B a b ≡ map (λ(x, y). (fst x, fst y)) (alls2 A B a b)

lemma sorted-wrt-gen2 :
sorted-wrt (<rlex2) (gen2 A B a b)
apply (rule sorted-wrt-map-mono [of λ(x, y) (u, v). (fst x, fst y) <rlex2 (fst u,

fst v)])
apply (auto simp: alls2-def map-concat)

apply (fold rlex2 .simps)
apply (rule sorted-wrt-concat-map-map)

apply (rule sorted-wrt-map-distr , rule sorted-wrt-alls)
apply (rule sorted-wrt-map-distr , rule sorted-wrt-alls)

apply (auto simp: rlex-def set-alls intro: lex-append-leftI lex-append-rightI )
done

definition generate ′

where
generate ′ A B a b = tl (map (λ(x, y). (fst x, fst y)) (alls2 A B a b))

lemma sorted-wrt-generate ′:
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sorted-wrt (<rlex2) (generate ′ A B a b)
by (auto simp: generate ′-def sorted-wrt-gen2 sorted-wrt-tl)

lemma gen2-nth0 [simp]:
gen2 A B a b ! 0 = (zeroes (length a), zeroes (length b))
by auto

lemma gen2-ne [simp, intro]: gen2 m n b c 6= [] by auto

lemma in-generate ′: x ∈ set (generate ′ m n c b) =⇒ x ∈ set (gen2 m n c b)
unfolding generate ′-def by (rule list.set-sel) simp

definition cond-cons P = (λ(ys, s). case ys of [] ⇒ True | ys ⇒ P ys s)

lemma cond-cons-simp [simp]:
cond-cons P ([], s) = True
cond-cons P (x # xs, s) = P (x # xs) s
by (auto simp: cond-cons-def )

fun suffs
where

suffs P as (xs, s) ←→
length xs = length as ∧
s = as · xs ∧
(∀ i≤length xs. cond-cons P (drop i xs, drop i as · drop i xs))

declare suffs.simps [simp del]

lemma suffs-Nil [simp]: suffs P [] ([], s) ←→ s = 0
by (auto simp: suffs.simps)

lemma suffs-Cons:
suffs P (a # as) (x # xs, s) ←→

s = a ∗ x + as · xs ∧ cond-cons P (x # xs, s) ∧ suffs P as (xs, as · xs)
apply (auto simp: suffs.simps cond-cons-def split: list.splits)

apply force
apply (metis Suc-le-mono drop-Suc-Cons)
by (metis One-nat-def Suc-le-mono Suc-pred dotprod-Cons drop-Cons ′ le-0-eq

not-le-imp-less)

4.1 The Algorithm
fun maxne0-impl

where
maxne0-impl [] a = 0
| maxne0-impl x [] = 0
| maxne0-impl (x#xs) (a#as) = (if x > 0 then max a (maxne0-impl xs as) else

maxne0-impl xs as)

lemma maxne0-impl:
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assumes length x = length a
shows maxne0-impl x a = maxne0 x a
using assms by (induct x a rule: list-induct2 ) (auto)

lemma maxne0-impl-le:
maxne0-impl x a ≤ Max (set (a::nat list))
apply (induct x a rule: maxne0-impl.induct)
apply (auto simp add: max.coboundedI2 )
by (metis List.finite-set Max-insert Nat.le0 le-max-iff-disj maxne0-impl.elims

maxne0-impl.simps(2 ) set-empty)

context
fixes a b :: nat list

begin

definition special-solutions :: (nat list × nat list) list
where

special-solutions = [sij a b i j . i ← [0 ..< length a], j ← [0 ..< length b]]

definition big-e :: nat list ⇒ nat ⇒ nat list
where

big-e x j = map (λi. eij a b i j − 1 ) (filter (λi. x ! i ≥ dij a b i j) [0 ..< length
x])

definition big-d :: nat list ⇒ nat ⇒ nat list
where

big-d y i = map (λj. dij a b i j − 1 ) (filter (λj. y ! j ≥ eij a b i j) [0 ..< length
y])

definition big-d ′ :: nat list ⇒ nat ⇒ nat list
where

big-d ′ y i =
(let l = length y; n = length b in
if l > n then [] else
(let k = n − l in
map (λj. dij a b i (j + k) − 1 ) (filter (λj. y ! j ≥ eij a b i (j + k)) [0 ..<

length y])))

definition max-y-impl :: nat list ⇒ nat ⇒ nat
where

max-y-impl x j =
(if j < length b ∧ big-e x j 6= [] then Min (set (big-e x j))
else Max (set a))

definition max-x-impl :: nat list ⇒ nat ⇒ nat
where

max-x-impl y i =
(if i < length a ∧ big-d y i 6= [] then Min (set (big-d y i))
else Max (set b))
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definition max-x-impl ′ :: nat list ⇒ nat ⇒ nat
where

max-x-impl ′ y i =
(if i < length a ∧ big-d ′ y i 6= [] then Min (set (big-d ′ y i))
else Max (set b))

definition cond-a :: nat list ⇒ nat list ⇒ bool
where

cond-a xs ys ←→ (∀ x∈set xs. x ≤ maxne0 ys b)

definition cond-b :: nat list ⇒ bool
where

cond-b xs ←→ (∀ k≤length a.
take k a · take k xs ≤ b · (map (max-y-impl (take k xs)) [0 ..< length b]))

definition boundr-impl :: nat list ⇒ nat list ⇒ bool
where

boundr-impl x y ←→ (∀ j<length b. y ! j ≤ max-y-impl x j)

definition cond-d :: nat list ⇒ nat list ⇒ bool
where

cond-d xs ys ←→ (∀ l≤length b. take l b · take l ys ≤ a · xs)

definition subdprodr-impl :: nat list ⇒ bool
where

subdprodr-impl ys ←→ (∀ l≤length b.
take l b · take l ys ≤ a · map (max-x-impl (take l ys)) [0 ..< length a])

definition subdprodl-impl :: nat list ⇒ nat list ⇒ bool
where

subdprodl-impl x y ←→ (∀ k≤length a. take k a · take k x ≤ b · y)

definition boundl-impl x y ←→ (∀ i<length a. x ! i ≤ max-x-impl y i)

definition static-bounds
where

static-bounds x y ←→
(let mx = maxne0-impl y b; my = maxne0-impl x a in
(∀ x∈set x. x ≤ mx) ∧ (∀ y∈set y. y ≤ my))

definition check-cond =
(λ(x, y). static-bounds x y ∧ a · x = b · y ∧ boundr-impl x y ∧ subdprodl-impl x

y ∧ subdprodr-impl y)

definition check ′ = filter check-cond

definition non-special-solutions =
(let A = Max (set b); B = Max (set a)
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in minimize (check ′ (generate ′ A B a b)))

definition solve = special-solutions @ non-special-solutions

end

lemma sorted-wrt-check-generate ′:
sorted-wrt (<rlex2) (check ′ a b (generate ′ A B a b))
by (auto simp: check ′-def intro!: sorted-wrt-filter sorted-wrt-generate ′ sorted-wrt-tl)

lemma big-e:
set (big-e a b xs j) = hlde-ops.Ej a b j xs
by (auto simp: hlde-ops.Ej-def big-e-def )

lemma big-d:
set (big-d a b ys i) = hlde-ops.Di a b i ys
by (auto simp: hlde-ops.Di-def big-d-def )

lemma big-d ′:
length ys ≤ length b =⇒ set (big-d ′ a b ys i) = hlde-ops.Di ′ a b i ys
by (auto simp: hlde-ops.Di ′-def big-d ′-def Let-def )

lemma max-y-impl:
max-y-impl a b x j = hlde-ops.max-y a b x j
by (simp add: max-y-impl-def big-e hlde-ops.max-y-def set-empty [symmetric])

lemma max-x-impl:
max-x-impl a b y i = hlde-ops.max-x a b y i
by (simp add: max-x-impl-def big-d hlde-ops.max-x-def set-empty [symmetric])

lemma max-x-impl ′:
assumes length y ≤ length b
shows max-x-impl ′ a b y i = hlde-ops.max-x ′ a b y i
by (simp add: max-x-impl ′-def big-d ′ [OF assms] hlde-ops.max-x ′-def set-empty

[symmetric])

lemma (in hlde) cond-a [simp]: cond-a b x y = cond-A x y
by (simp add: cond-a-def cond-A-def )

lemma (in hlde) cond-b [simp]: cond-b a b x = cond-B x
using max-y-impl by (auto simp: cond-b-def cond-B-def ) presburger+

lemma (in hlde) boundr-impl [simp]: boundr-impl a b x y = boundr x y
by (simp add: boundr-impl-def boundr-def max-y-impl)

lemma (in hlde) cond-d [simp]: cond-d a b x y = cond-D x y
by (simp add: cond-d-def cond-D-def )

lemma (in hlde) subdprodr-impl [simp]: subdprodr-impl a b y = subdprodr y
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using max-x-impl by (auto simp: subdprodr-impl-def subdprodr-def ) presburger+

lemma (in hlde) subdprodl-impl [simp]: subdprodl-impl a b x y = subdprodl x y
by (simp add: subdprodl-impl-def subdprodl-def )

lemma (in hlde) cond-bound-impl [simp]: boundl-impl a b x y = boundl x y
by (simp add: boundl-impl-def boundl-def max-x-impl)

lemma (in hlde) check [simp]:
check ′ a b =

filter (λ(x, y). static-bounds a b x y ∧ a · x = b · y ∧ boundr x y ∧
subdprodl x y ∧
subdprodr y)

by (simp add: check ′-def check-cond-def )

conditions B, C, and D from Huet as well as "subdprodr" and "subdprodl"
are preserved by smaller solutions
lemma (in hlde) le-imp-conds:

assumes le: u ≤v x v ≤v y
and len: length x = m length y = n

shows cond-B x =⇒ cond-B u
and boundr x y =⇒ boundr u v
and a · u = b · v =⇒ cond-D x y =⇒ cond-D u v
and a · u = b · v =⇒ subdprodl x y =⇒ subdprodl u v
and subdprodr y =⇒ subdprodr v

proof −
assume B: cond-B x
have length u = m using len and le by (auto)
show cond-B u
proof (unfold cond-B-def , intro allI impI )

fix k
assume k: k ≤ m
moreover have ∗: take k u ≤v take k x if k ≤ m for k

using le and that by (intro le-take) (auto simp: len)
ultimately have take k a · take k u ≤ take k a · take k x

by (intro dotprod-le-right) (auto simp: len)
also have . . . ≤ b · map (max-y (take k x)) [0 ..<n]

using k and B by (auto simp: cond-B-def )
also have . . . ≤ b · map (max-y (take k u)) [0 ..<n]

using le-imp-max-y-ge [OF ∗ [OF k]]
using k by (auto simp: len intro!: dotprod-le-right less-eqI )

finally show take k a · take k u ≤ b · map (max-y (take k u)) [0 ..<n] .
qed

next
assume subdprodr : subdprodr y
have length v = n using len and le by (auto)
show subdprodr v
proof (unfold subdprodr-def , intro allI impI )

fix l
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assume l: l ≤ n
moreover have ∗: take l v ≤v take l y if l ≤ n for l

using le and that by (intro le-take) (auto simp: len)
ultimately have take l b · take l v ≤ take l b · take l y

by (intro dotprod-le-right) (auto simp: len)
also have . . . ≤ a · map (max-x (take l y)) [0 ..<m]

using l and subdprodr by (auto simp: subdprodr-def )
also have . . . ≤ a · map (max-x (take l v)) [0 ..<m]

using le-imp-max-x-ge [OF ∗ [OF l]]
using l by (auto simp: len intro!: dotprod-le-right less-eqI )

finally show take l b · take l v ≤ a · map (max-x (take l v)) [0 ..<m] .
qed

next
assume C : boundr x y
show boundr u v

using le-imp-max-y-ge [OF ‹u ≤v x›] and C and le
by (auto simp: boundr-def len less-eq-def ) (meson order-trans)

next
assume a · u = b · v and cond-D x y
then show cond-D u v

using le by (auto simp: cond-D-def len le-length intro: dotprod-le-take)
next

assume a · u = b · v and subdprodl x y
then show subdprodl u v

using le by (metis subdprodl-def dotprod-le-take le-length len(1 ))
qed

lemma (in hlde) special-solutions [simp]:
shows set (special-solutions a b) = Special-Solutions

proof −
have set (special-solutions a b) ⊆ Special-Solutions

by (auto simp: Special-Solutions-def special-solutions-def ) (blast)
moreover have Special-Solutions ⊆ set (special-solutions a b)

by (auto simp: Special-Solutions-def special-solutions-def )
ultimately show ?thesis ..

qed

lemma set-gen2 :
set (gen2 A B a b) = {(x, y). x ≤v replicate (length a) A ∧ y ≤v replicate (length

b) B}
(is ?L = ?R)

proof (intro equalityI subrelI )
fix xs ys assume (xs, ys) ∈ ?R
then have ∀ x∈set xs. x ≤ A and ∀ y∈set ys. y ≤ B

and length xs = length a and length ys = length b
by (auto simp: less-eq-def in-set-conv-nth)

then have ((xs, a · xs), (ys, b · ys)) ∈ set (alls2 A B a b) by (auto simp:
set-alls2 )

then have (λ(x, y). (fst x, fst y)) ((xs, a · xs), (ys, b · ys)) ∈ (λ(x, y). (fst x,
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fst y)) ‘ set (alls2 A B a b)
by (intro imageI )

then show (xs, ys) ∈ ?L by simp
qed (auto simp: less-eq-def set-alls2 )

lemma set-gen2 ′:
(λ(x, y). (fst x, fst y)) ‘ set (alls2 A B a b) =
{(x, y). x ≤v replicate (length a) A ∧ y ≤v replicate (length b) B}

using set-gen2 by simp

lemma (in hlde) in-non-special-solutions:
assumes (x, y) ∈ set (non-special-solutions a b)
shows (x, y) ∈ Solutions
using assms
by (auto dest!: minimize-wrtD in-generate ′

simp: non-special-solutions-def in-Solutions-iff minimize-def set-alls2 )

lemma generate-unique:
assumes i < j

and j < length (generate A B a b)
shows generate A B a b ! i 6= generate A B a b ! j
using sorted-wrt-nth-less [OF sorted-wrt-generate assms]
by (auto simp: rlex2-irrefl)

lemma gen2-unique:
assumes i < j

and j < length (gen2 A B a b)
shows gen2 A B a b ! i 6= gen2 A B a b ! j
using sorted-wrt-nth-less [OF sorted-wrt-gen2 assms]
by (auto simp: rlex2-irrefl)

lemma zeroes-ni-generate ′:
(zeroes (length a), zeroes (length b)) /∈ set (generate ′ A B a b)

proof −
have gen2 A B a b ! 0 = (zeroes (length a), zeroes (length b)) by (auto)
with gen2-unique [of 0 - A B a b] show ?thesis

by (auto simp: in-set-conv-nth nth-tl generate ′-def )
(metis One-nat-def Suc-eq-plus1 less-diff-conv zero-less-Suc)

qed

lemma set-generate ′:
set (generate ′ A B a b) =
{(x, y). (x, y) 6= (zeroes (length a), zeroes (length b)) ∧ (x, y) ∈ set (gen2 A B

a b)}
proof

show set (generate ′ A B a b)
⊆ {(x, y).(x, y) 6= (zeroes (length a), zeroes (length b)) ∧ (x, y) ∈ set (gen2

A B a b)}
using in-generate ′ and mem-Collect-eq and zeroes-ni-generate ′ by (auto)
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next
have (zeroes (length a), zeroes (length b)) = hd (gen2 A B a b)

by (simp add: hd-conv-nth)
moreover have set (gen2 A B a b) = set (tl (gen2 A B a b)) ∪ {(zeroes (length

a), zeroes (length b))}
by (metis Un-empty-right Un-insert-right gen2-ne calculation list.exhaust-sel

list.simps(15 ))
ultimately show {(x, y). (x, y) 6= (zeroes (length a), zeroes (length b)) ∧ (x,

y) ∈ set (gen2 A B a b)}
⊆ set (generate ′ A B a b)

unfolding generate ′-def by blast
qed

lemma set-generate ′′:
set (generate ′ A B a b) =
{(x, y). (x, y) 6= (zeroes (length a), zeroes (length b)) ∧ x ≤v replicate (length a)

A ∧ y ≤v replicate (length b) B}
by (simp add: set-generate ′ set-gen2 ′)

lemma (in hlde) zeroes-ni-non-special-solutions:
shows (zeroes m, zeroes n) /∈ set (non-special-solutions a b)

proof −
define All-lex where

All-lex: All-lex = gen2 (Max (set b)) (Max (set a)) a b
define z where z: z = (zeroes m, zeroes n)
have set (non-special-solutions a b) ⊆ set (tl (All-lex))
by (auto simp: All-lex generate ′-def non-special-solutions-def minimize-def dest:

minimize-wrtD)
moreover have z /∈ set (tl (All-lex))

using zeroes-ni-generate ′ All-lex z by (auto simp: generate ′-def )
ultimately show ?thesis

using z by blast
qed

4.1.1 Correctness: solve generates only minimal solutions.
lemma (in hlde) solve-subset-Minimal-Solutions:

shows set (solve a b) ⊆ Minimal-Solutions
proof (rule subrelI )

let ?a = Max (set a) and ?b = Max (set b)
fix x y
assume ass: (x, y) ∈ set (solve a b)
then consider (x, y) ∈ set (special-solutions a b) | (x, y) ∈ set (non-special-solutions

a b)
unfolding solve-def and set-append by blast

then show (x, y) ∈ Minimal-Solutions
proof (cases)

case 1
then have (x, y) ∈ Special-Solutions
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unfolding special-solutions .
then show ?thesis

by (simp add: Special-Solutions-in-Minimal-Solutions)
next

let ?xs = [(x, y) ← generate ′ ?b ?a a b.
static-bounds a b x y ∧ a · x = b · y ∧ boundr x y //∧//////////cond-B//x///∧/////////cond-D///x//y ∧
subdprodl x y ∧
subdprodr y]

case 2
then have conds: ∀ e∈set x . e ≤ Max (set b) boundr x y

subdprodl x y subdprodr y
and xs: (x, y) ∈ set (minimize ?xs)
by (auto simp: non-special-solutions-def minimize-def set-alls2

dest!: minimize-wrtD in-generate ′)
(metis in-set-conv-nth)

have sol: (x, y) ∈ Solutions
using ass by (auto simp: solve-def Special-Solutions-in-Solutions in-non-special-solutions)
then have len: length x = m length y = n by (auto simp: Solutions-def )
have nonzero x

using sol Solutions-snd-not-0 [of y x]
by (metis 2 eq-0-iff len nonzero-Solutions-iff nonzero-iff zeroes-ni-non-special-solutions)
moreover have ¬ (∃ (u, v) ∈ Minimal-Solutions. u @ v <v x @ y)
proof

let ?P = λ(x, y) (u, v). ¬ x @ y <v u @ v
let ?Q = (λ(x, y). static-bounds a b x y ∧ a · x = b · y ∧ boundr x y //∧//////////cond-B

/x///∧//////////cond-D//x//y ∧
subdprodl x y ∧
subdprodr y)

note sorted = sorted-wrt-generate ′ [THEN sorted-wrt-filter , of ?Q ?b ?a a b]
note ∗ = in-minimize-wrt-False [OF - sorted, of (x, y) ?P, OF - xs [unfolded

minimize-def ]]

assume ∃ (u, v)∈Minimal-Solutions. u @ v <v x @ y
then obtain u and v where

uv: (u, v) ∈ Minimal-Solutions and less: u @ v <v x @ y by blast
from uv and less have le: u ≤v x v ≤v y and sol ′: a · u = b · v

and nonzero: nonzero u
using sol by (auto simp: Minimal-Solutions-def Solutions-def elim!: less-append-cases)

with le-imp-conds(2 ,4 ,5 ) [OF le] and conds(2−)
have conds ′: ∀ e∈set u. e ≤ Max (set b) boundr u v

subdprodl u v subdprodr v
using conds(1 ,3 ,4 ) by (auto simp: len less-eq-def ) (metis in-set-conv-nth

le-trans len(1 ))
moreover have static-bounds a b u v

using max-coeff-bound [OF uv] and Minimal-Solutions-length [OF uv]
by (auto simp: static-bounds-def maxne0-impl)

moreover have x ≤v replicate m ?b
using xs set-generate ′ [of Max (set b) Max (set a) a b]
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cond-A-def conds(1 ) le-replicateI len by metis
moreover have y ≤v replicate n ?a

using xs by (auto simp: less-eqI minimize-def set-generate ′ set-alls2 dest!:
minimize-wrtD)

ultimately have (u, v) ∈ set ?xs
using sol ′ and set-generate ′′ [of ?b ?a a b] and uv [THEN Minimal-Solutions-imp-Solutions]

and nonzero
by (simp add: set-gen2 ) (metis in-set-replicate le order-vec.dual-order .trans

nonzero-iff )
from ∗ [OF - - - this] and less show False

using less-imp-rlex and rlex-not-sym by force
qed
ultimately show ?thesis by (simp add: Minimal-SolutionsI ′ sol)

qed
qed

4.1.2 Completeness: every minimal solution is generated by solve
lemma (in hlde) Minimal-Solutions-subset-solve:

shows Minimal-Solutions ⊆ set (solve a b)
proof (rule subrelI )

fix x y
assume min: (x, y) ∈ Minimal-Solutions
then have sol: a · x = b · y length x = m length y = n

and [dest]: x = zeroes m =⇒ y = zeroes n =⇒ False
by (auto simp: Minimal-Solutions-def Solutions-def nonzero-iff )

consider (special) (x, y) ∈ Special-Solutions
| (not-special) (x, y) /∈ Special-Solutions by blast

then show (x, y) ∈ set (solve a b)
proof (cases)

case special
then show ?thesis

by (simp add: no0 solve-def )
next

define all where all = generate ′ (Max (set b)) (Max (set a)) a b
have ∗: ∀ (u, v) ∈ set (check ′ a b all). ¬ u @ v <v x @ y

using min and no0
by (auto simp: all-def set-generate ′′ neq-0-iff ′ nonzero-iff dest!: Minimal-Solutions-min)

case not-special
from conds [OF min] and not-special
have (x, y) ∈ set (check ′ a b all)

using max-coeff-bound [OF min] and maxne0-le-Max
and Minimal-Solutions-length [OF min]

apply (auto simp: sol all-def set-generate ′′ cond-A-def less-eq-def static-bounds-def
maxne0-impl)

apply (metis le-trans nth-mem sol(2 ))
by (metis le-trans nth-mem sol(3 ))

from in-minimize-wrtI [OF this, of λ(x, y) (u, v). ¬ x @ y <v u @ v] ∗
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have (x, y) ∈ set (non-special-solutions a b)
by (auto simp: non-special-solutions-def minimize-def all-def )

then show ?thesis
by (simp add: solve-def )

qed
qed

The main correctness and completeness result of our algorithm.
lemma (in hlde) solve [simp]:

shows set (solve a b) = Minimal-Solutions
using Minimal-Solutions-subset-solve and solve-subset-Minimal-Solutions by blast

5 Making the Algorithm More Efficient
locale bounded-gen-check =

fixes C :: nat list ⇒ nat ⇒ bool
and B :: nat

assumes bound:
∧

x xs s. x > B =⇒ C (x # xs) s = False
and cond-antimono:

∧
x x ′ xs s s ′. C (x # xs) s =⇒ x ′ ≤ x =⇒ s ′ ≤ s =⇒ C

(x ′ # xs) s ′

begin

function incs :: nat ⇒ nat ⇒ (nat list × nat) ⇒ (nat list × nat) list
where

incs a x (xs, s) =
(let t = s + a ∗ x in
if C (x # xs) t then (x # xs, t) # incs a (Suc x) (xs, s) else [])

by (auto)
termination

by (relation measure (λ(a, x, xs, s). B + 1 − x), rule wf-measure, case-tac x >
B)

(use bound in auto)
declare incs.simps [simp del]

lemma in-incs:
assumes (ys, t) ∈ set (incs a x (xs, s))
shows length ys = length xs + 1 ∧ t = s + hd ys ∗ a ∧ tl ys = xs ∧ C ys t
using assms
by (induct a x (xs, s) arbitrary: ys t rule: incs.induct)
(subst (asm) (2 ) incs.simps, auto simp: Let-def )

lemma incs-Nil [simp]: x > B =⇒ incs a x (xs, s) = []
by (induct a x (xs, s) rule: incs.induct) (simp add: incs.simps bound)

lemma incs-filter :
assumes x ≤ B
shows incs a x = (λ(xs, s). filter (cond-cons C ) (map (λx. (x # xs, s + a ∗ x))

[x ..< B + 1 ]))
proof
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fix xss
show incs a x xss = (λ(xs, s). filter (cond-cons C ) (map (λx. (x # xs, s + a ∗

x)) [x ..< B + 1 ])) xss
using assms

proof (induct a x xss rule: incs.induct)
case (1 a x xs s)
then show ?case

by (unfold incs.simps [of a x], cases x = B)
(auto simp: filter-empty-conv Let-def cond-cons-def upt-conv-Cons intro:

cond-antimono)
qed

qed

fun gen-check :: nat list ⇒ (nat list × nat) list
where

gen-check [] = [([], 0 )]
| gen-check (a # as) = concat (map (incs a 0 ) (gen-check as))

lemma gen-check-len:
assumes (ys, s) ∈ set (gen-check as)
shows length ys = length as
using assms

proof (induct as arbitrary: ys s)
case (Cons a as)
have ∃ (la,t) ∈ set (gen-check as). (ys, s) ∈ set (incs a 0 (la,t))

using Cons.prems(1 ) by auto
moreover obtain la t where (la,t) ∈ set (gen-check as)

using calculation by auto
moreover have length ys = length la + 1

using calculation
by (metis (no-types, lifting) Cons.hyps case-prodE in-incs)

moreover have length la = length as
using calculation
using Cons.hyps Cons.prems by fastforce

ultimately show ?case by simp
qed (auto)

lemma in-gen-check:
assumes (xs, s) ∈ set (gen-check as)
shows length xs = length as ∧ s = as · xs
using assms
apply (induct as arbitrary: xs s)
apply (auto simp: in-incs)

apply (case-tac xs)
apply (auto dest: in-incs)

done

lemma gen-check-filter :
gen-check as = filter (suffs C as) (alls B as)
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proof (induct as)
next

case (Cons a as)
have filter (suffs C (a # as)) (alls B (a # as)) =

filter (λ(xs, s). cond-cons C (xs, s) ∧ suffs C as (tl xs, as · tl xs)) (alls B (a #
as))

by (intro filter-cong [OF refl])
(auto simp: set-alls suffs.simps all-Suc-le-conv ac-simps split: list.splits)

also have . . . =
concat (map (λ(xs, s). filter (cond-cons C ) (map (λx. (x # xs, s + a ∗ x))

[0 ..<B + 1 ]))
(filter (suffs C as) (alls B as)))

unfolding alls.simps
unfolding filter-concat
unfolding map-map
by (subst concat-map-filter-filter [symmetric, where Q = suffs C as])
(auto simp: set-alls intro!: arg-cong [of - - concat] filter-cong)

finally have ∗: filter (suffs C (a # as)) (alls B (a # as)) =
concat (map (λ(xs, s).

filter (cond-cons C ) (map (λx. (x # xs, s + a ∗ x)) [0 ..<B + 1 ])) (filter
(suffs C as) (alls B as))) .

have gen-check (a # as) = filter (suffs C (a # as)) (alls B (a # as))
unfolding ∗
by (simp add: incs-filter [OF zero-le] Cons)

then show ?case by simp
qed simp

lemma in-gen-check-cond:
assumes (xs, s) ∈ set (gen-check as)
shows ∀ j≤length xs. drop j xs 6= [] −→ C (drop j xs) (s − take j as · take j xs)
using assms
apply (induct as arbitrary: xs s)
apply auto

apply (case-tac xs)
apply auto

apply (case-tac j)
apply (auto dest: in-incs)

done

lemma sorted-gen-check:
sorted-wrt (<rlex) (map fst (gen-check xs))

proof −
have sort-map: sorted-wrt (λx y. x <rlex y) (map fst (alls B xs))

using sorted-wrt-alls by auto
then have sorted-wrt (λx y. fst x <rlex fst y) (alls B xs)

using sorted-wrt-map-distr [of (<rlex) fst alls B xs]
by (auto)

then have sorted-wrt (λx y. fst x <rlex fst y) (filter (suffs C xs) (alls B xs))
using sorted-wrt-alls sorted-wrt-filter sorted-wrt-map
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by blast
then show ?thesis

using gen-check-filter
by (simp add: case-prod-unfold sorted-wrt-map-mono)

qed

end

locale bounded-generate-check =
c2 : bounded-gen-check C 2 B2 for C 2 B2 +
fixes C 1 and B1

assumes cond1 :
∧

b ys. ys ∈ fst ‘ set (c2 .gen-check b) =⇒ bounded-gen-check
(C 1 b ys) (B1 b)
begin

definition generate-check a b =
[(xs, ys). ys ← c2 .gen-check b, xs ← bounded-gen-check.gen-check (C 1 b (fst ys))

a]

lemma generate-check-filter-conv:
generate-check a b = [(xs, ys).

ys ← filter (suffs C 2 b) (alls B2 b),
xs ← filter (suffs (C 1 b (fst ys)) a) (alls (B1 b) a)]

using bounded-gen-check.gen-check-filter [OF cond1 ]
by (force simp: generate-check-def c2 .gen-check-filter intro!: arg-cong [of - - con-

cat] map-cong)

lemma generate-check-filter :
generate-check a b = [(xs, ys) ← alls2 (B1 b) B2 a b. suffs (C 1 b (fst ys)) a xs
∧ suffs C 2 b ys]

by (auto intro: arg-cong [of - - concat]
simp: generate-check-filter-conv alls2-def filter-concat concat-map-filter filter-map

o-def )

lemma tl-generate-check-filter :
assumes suffs (C 1 b (zeroes (length b))) a (zeroes (length a), 0 )

and suffs C 2 b (zeroes (length b), 0 )
shows tl (generate-check a b) = [(xs, ys) ← tl (alls2 (B1 b) B2 a b). suffs (C 1

b (fst ys)) a xs ∧ suffs C 2 b ys]
using assms
by (unfold generate-check-filter , subst (1 2 ) alls2-Cons-tl-conv) auto

end

context
fixes a b :: nat list

begin

fun cond1
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where
cond1 ys [] s ←→ True
| cond1 ys (x # xs) s ←→ s ≤ b · ys ∧ x ≤ maxne0-impl ys b

lemma max-x-impl ′-conv:
i < length a =⇒ length y = length b =⇒ max-x-impl ′ a b y i = max-x-impl a b

y i
by (auto simp: max-x-impl ′-def max-x-impl-def Let-def big-d ′-def big-d-def )

fun cond2
where

cond2 [] s ←→ True
| cond2 (y # ys) s ←→ y ≤ Max (set a) ∧ s ≤ a · map (max-x-impl ′ a b (y #

ys)) [0 ..< length a]

lemma le-imp-big-d ′-subset:
assumes v ≤v y
shows set (big-d ′ a b v i) ⊆ set (big-d ′ a b y i)
using assms and le-trans
by (auto simp: Let-def big-d ′-def less-eq-def hlde-ops.dij-def hlde-ops.eij-def )

lemma finite-big-d ′:
finite (set (big-d ′ a b y i))
by (rule finite-subset [of - (λj. dij a b i (j + length b − length y) − 1 ) ‘ {0 ..<

length y}])
(auto simp: Let-def big-d ′-def )

lemma Min-big-d ′-le:
assumes i < length a

and big-d ′ a b y i 6= []
and length y ≤ length b

shows Min (set (big-d ′ a b y i)) ≤ Max (set b) (is ?m ≤ -)
proof −

have ?m ∈ set (big-d ′ a b y i)
using assms and finite-big-d ′ and Min-in by auto

then obtain j where
j: ?m = dij a b i (j + length b − length y) − 1 j < length y y ! j ≥ eij a b i (j

+ length b − length y)
by (auto simp: big-d ′-def Let-def split: if-splits)

then have j + length b − length y < length b
using assms by auto

moreover
have lcm (a ! i) (b ! (j + length b − length y)) div a ! i ≤ b ! (j + length b −

length y) by (rule lcm-div-le ′)
ultimately show ?thesis

using j and assms
by (auto simp: hlde-ops.dij-def )
(meson List.finite-set Max-ge diff-le-self le-trans less-le-trans nth-mem)

qed
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lemma le-imp-max-x-impl ′-ge:
assumes v ≤v y

and i < length a
shows max-x-impl ′ a b v i ≥ max-x-impl ′ a b y i
using assms and le-imp-big-d ′-subset [OF assms(1 ), of i]

and Min-in [OF finite-big-d ′, of y i]
and finite-big-d ′ and Min-le

by (auto simp: max-x-impl ′-def Let-def intro!: Min-big-d ′-le [of i y])
(fastforce simp: big-d ′-def intro: leI )

end

global-interpretation c12 : bounded-generate-check (cond2 a b) Max (set a) cond1
λb. Max (set b)

defines c2-gen-check = c12 .c2 .gen-check and c2-incs = c12 .c2 .incs
and c12-generate-check = c12 .generate-check

proof −
{ fix x xs s assume Max (set a) < x

then have cond2 a b (x # xs) s = False by (auto) }
note 1 = this

{ fix x x ′ xs s s ′ assume cond2 a b (x # xs) s and x ′ ≤ x and s ′ ≤ s
moreover have map (max-x-impl ′ a b (x # xs)) [0 ..<length a] ≤v map

(max-x-impl ′ a b (x ′ # xs)) [0 ..<length a]
using le-imp-max-x-impl ′-ge [of x ′ # xs x # xs] and ‹x ′ ≤ x›
by (auto simp: le-Cons less-eq-def All-less-Suc2 )

ultimately have cond2 a b (x ′ # xs) s ′

by (auto simp: le-Cons) (metis dotprod-le-right le-trans length-map map-nth)
}

note 2 = this

interpret c2 : bounded-gen-check cond2 a b Max (set a) by (standard) fact+

{ fix b ys x xs s assume ys ∈ fst ‘ set (c2 .gen-check b) and Max (set b) < x
then have cond1 b ys (x # xs) s = False
by (auto dest!: c2 .in-gen-check) (metis leD less-le-trans maxne0-impl maxne0-le-Max)

}
note 3 = this

{ fix b ys x x ′ xs s s ′ assume ys ∈ fst ‘ set (c2 .gen-check b) and cond1 b ys (x
# xs) s

and x ′ ≤ x and s ′ ≤ s
then have cond1 b ys (x ′ # xs) s ′ by auto }

note 4 = this

show bounded-generate-check (cond2 a b) (Max (set a)) cond1 (λb. Max (set b))
using 1 and 2 and 3 and 4 by (unfold-locales) metis+

qed
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definition post-cond a b = (λ(x, y). static-bounds a b x y ∧ a · x = b · y ∧
boundr-impl a b x y)

definition fast-filter a b =
filter (post-cond a b) (map (λ(x, y). (fst x, fst y)) (tl (c12-generate-check a b a

b)))

lemma cond1-cond2-zeroes:
shows suffs (cond1 b (zeroes (length b))) a (zeroes (length a), 0 )

and suffs (cond2 a b) b (zeroes (length b), 0 )
apply (auto simp: suffs.simps cond-cons-def split: list.splits)

apply (metis dotprod-0-right length-drop)
apply (metis Cons-replicate-eq Nat.le0 )

apply (metis Cons-replicate-eq Nat.le0 )
by (metis Nat.le0 dotprod-0-right length-drop)

lemma suffs-cond1I :
assumes ∀ y∈set aa. y ≤ maxne0-impl aaa b

and length aa = length a
and a · aa = b · aaa

shows suffs (cond1 b aaa) a (aa, b · aaa)
using assms
apply (auto simp: suffs.simps cond-cons-def split: list.splits)
apply (metis dotprod-le-drop)

by (metis in-set-dropD list.set-intros(1 ))

lemma suffs-cond2-conv:
assumes length ys = length b
shows suffs (cond2 a b) b (ys, b · ys) ←→
(∀ y∈set ys. y ≤ Max (set a)) ∧ subdprodr-impl a b ys
(is ?L ←→ ?R)

proof
assume ∗: ?L
then have ∀ y∈set ys. y ≤ Max (set a)

apply (auto simp: suffs.simps cond-cons-def in-set-conv-nth split: list.splits)
apply (auto simp: hd-drop-conv-nth [symmetric])
apply (case-tac drop i ys)

apply simp-all
using less-or-eq-imp-le by blast

moreover
{ fix l assume l: l ≤ length b

have take l b · take l ys ≤ b · ys
using l and assms by (simp add: dotprod-le-take)

also have . . . ≤ a · map (max-x-impl ′ a b ys) [0 ..< length a]
using ∗ apply (auto simp: suffs.simps cond-cons-def split: list.splits)
apply (drule-tac x = 0 in spec)

apply (cases ys)
apply auto
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done
also have . . . = a · map (max-x-impl a b ys) [0 ..< length a]

using max-x-impl ′-conv [OF - assms, of - a]
by (metis (mono-tags, lifting) atLeastLessThan-iff map-eq-conv set-upt)

also have . . . ≤ a · map (max-x-impl a b (take l ys)) [0 ..< length a]
unfolding max-x-impl using hlde-ops.max-x-le-take [OF eq-imp-le, OF assms,

of a]
by (intro dotprod-le-right) (auto simp: less-eq-def )

finally have take l b · take l ys ≤ a · map (max-x-impl a b (take l ys)) [0 ..<
length a] .

}
ultimately show ?R by (auto simp: subdprodr-impl-def )

next
assume ∗: ?R
then have ∀ y∈set ys. y ≤ Max (set a) and subdprodr-impl a b ys by auto
moreover
{ fix i assume i: i ≤ length b

have drop i b · drop i ys ≤ b · ys
using i and assms by (simp add: dotprod-le-drop)

also have . . . ≤ a · map (max-x-impl a b ys) [0 ..< length a]
using ∗ and assms by (auto simp: subdprodr-impl-def )

also have . . . = a · map (max-x-impl ′ a b ys) [0 ..< length a]
using max-x-impl ′-conv [OF - assms, of - a]
by (metis (mono-tags, lifting) atLeastLessThan-iff map-eq-conv set-upt)

also have . . . ≤ a · map (max-x-impl ′ a b (drop i ys)) [0 ..< length a]
using hlde-ops.max-x ′-le-drop [OF eq-imp-le, OF assms, of a]
by (intro dotprod-le-right) (auto simp: less-eq-def max-x-impl ′ i assms)

finally have drop i b · drop i ys ≤ a · map (max-x-impl ′ a b (drop i ys)) [0 ..<
length a] .

}
ultimately show ?L

using assms
apply (auto simp: suffs.simps cond-cons-def split: list.splits)
apply (metis in-set-dropD list.set-intros(1 ))

apply force
done

qed

lemma suffs-cond2I :
assumes ∀ y∈set aaa. y ≤ Max (set a)

and length aaa = length b
and subdprodr-impl a b aaa

shows suffs (cond2 a b) b (aaa, b · aaa)
using assms by (subst suffs-cond2-conv) simp-all

lemma check-cond-conv:
assumes (x, y) ∈ set (alls2 (Max (set b)) (Max (set a)) a b)
shows check-cond a b (fst x, fst y) ←→

static-bounds a b (fst x) (fst y) ∧ a · fst x = b · fst y ∧ boundr-impl a b (fst x)
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(fst y) ∧
suffs (cond1 b (fst y)) a x ∧
suffs (cond2 a b) b y

using assms
apply (cases x; cases y; auto simp: static-bounds-def check-cond-def set-alls2 split:

list.splits)
apply (auto intro: suffs-cond1I suffs-cond2I simp: subdprodl-impl-def suffs-cond2-conv)

apply (metis in-set-conv-nth)
by (metis dotprod-le-take)

lemma tune:
check ′ a b (generate ′ (Max (set b)) (Max (set a)) a b) = fast-filter a b
using cond1-cond2-zeroes
by (auto simp: c12 .tl-generate-check-filter check ′-def generate ′-def map-tl [symmetric]

filter-map post-cond-def fast-filter-def
intro!: map-cong filter-cong dest: list.set-sel(2 ) [THEN check-cond-conv, OF

alls2-ne])

locale bounded-incs =
fixes cond :: nat list ⇒ nat ⇒ bool

and B :: nat
assumes bound:

∧
x xs s. x > B =⇒ cond (x # xs) s = False

begin

function incs :: nat ⇒ nat ⇒ (nat list × nat) ⇒ (nat list × nat) list
where

incs a x (xs, s) =
(let t = s + a ∗ x in
if cond (x # xs) t then (x # xs, t) # incs a (Suc x) (xs, s) else [])

by (auto)
termination

by (relation measure (λ(a, x, xs, s). B + 1 − x), rule wf-measure, case-tac x >
B)

(use bound in auto)
declare incs.simps [simp del]

lemma in-incs:
assumes (ys, t) ∈ set (incs a x (xs, s))
shows length ys = length xs + 1 ∧ t = s + hd ys ∗ a ∧ tl ys = xs ∧ cond ys t
using assms
by (induct a x (xs, s) arbitrary: ys t rule: incs.induct)
(subst (asm) (2 ) incs.simps, auto simp: Let-def )

lemma incs-Nil [simp]: x > B =⇒ incs a x (xs, s) = []
by (induct a x (xs, s) rule: incs.induct) (auto simp: Let-def incs.simps bound)

end

global-interpretation incs1 :
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bounded-incs (cond1 b ys) (Max (set b))
for b ys :: nat list
defines c1-incs = incs1 .incs

proof
fix x xs s
assume Max (set b) < x
then show cond1 b ys (x # xs) s = False

using maxne0-impl-le [of ys b] by auto
qed

fun c1-gen-check
where

c1-gen-check b ys [] = [([], 0 )]
| c1-gen-check b ys (a # as) = concat (map (c1-incs b ys a 0 ) (c1-gen-check b ys

as))

definition generate-check a b = [(xs, ys). ys← c2-gen-check a b b, xs← c1-gen-check
b (fst ys) a]

lemma c1-gen-check-conv:
assumes (ys, s) ∈ set (c2-gen-check a b b)
shows c1-gen-check b ys a = bounded-gen-check.gen-check (cond1 b ys) a

proof −
interpret c1 : bounded-gen-check (cond1 b ys) Max (set b)

by (unfold-locales) (auto, meson leD less-le-trans maxne0-impl-le)
have eq: c1-incs b ys a1 0 (a, ba) = c1 .incs a1 0 (a, ba) if (a, ba) ∈ set

(c1 .gen-check a2 )
for a a1 a2 ba
using that
by (induct rule: c1 .incs.induct)
(auto dest!: c1 .in-gen-check simp: Let-def incs1 .incs.simps c1 .incs.simps)

show ?thesis
by (induct a) (auto intro!: arg-cong [of - - concat] dest: eq)

qed

5.1 Code Generation
lemma solve-efficient [code]:

solve a b = special-solutions a b @ minimize (fast-filter a b)
by (auto simp: solve-def non-special-solutions-def tune)

lemma c12-generate-check-code [code-unfold]:
c12-generate-check a b a b = generate-check a b
by (auto simp: generate-check-def c12 .generate-check-def c1-gen-check-conv in-

tro!: arg-cong [of - - concat])

end
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