
Diophantine Equations∗

Florian Meßner Julian Parsert Jonas Schöpf
Christian Sternagel

March 17, 2025

Abstract

In this entry we formalize Huet’s [1] bounds for minimal solutions
of homogenous linear Diophantine equations (HLDEs). Based on these
bounds, we further provide a certified algorithm for computing the set
of all minimal solutions of a given HLDE.

Contents
1 Vectors as Lists of Naturals 2

1.1 The Inner Product . 3
1.2 The Pointwise Order on Vectors 5
1.3 Pointwise Subtraction . 11
1.4 The Lexicographic Order on Vectors 13
1.5 Code Equations . 15

2 Homogeneous Linear Diophantine Equations 15
2.1 Further Constraints on Minimal Solutions 18
2.2 Pointwise Restricting Solutions 23
2.3 Special Solutions . 31
2.4 Huet’s conditions . 34
2.5 New conditions: facilitating generation of candidates from

right to left . 34

3 Minimization 40
3.1 Reverse-Lexicographic Enumeration of Potential Minimal So-

lutions . 42
3.1.1 Completeness: every minimal solution is generated by

solutions . 45
3.1.2 Correctness: solutions generates only minimal solutions. 45

∗This work is supported by the Austrian Science Fund (FWF): project P27502.

1

4 Computing Minimal Complete Sets of Solutions 46
4.1 The Algorithm . 49

4.1.1 Correctness: solve generates only minimal solutions. . 56
4.1.2 Completeness: every minimal solution is generated by

solve . 58

5 Making the Algorithm More Efficient 59
5.1 Code Generation . 68

1 Vectors as Lists of Naturals
theory List-Vector

imports Main
begin

lemma lex-lengthD: (x, y) ∈ lex P =⇒ length x = length y
by (auto simp: lexord-lex)

lemma lex-take-index:
assumes (xs, ys) ∈ lex r
obtains i where length ys = length xs

and i < length xs and take i xs = take i ys
and (xs ! i, ys ! i) ∈ r

proof −
obtain n us x xs ′ y ys ′ where (xs, ys) ∈ lexn r n and length xs = n and length

ys = n
and xs = us @ x # xs ′ and ys = us @ y # ys ′ and (x, y) ∈ r
using assms by (fastforce simp: lex-def lexn-conv)

then show ?thesis by (intro that [of length us]) auto
qed

lemma mods-with-nats:
assumes (v::nat) > w

and (v ∗ b) mod a = (w ∗ b) mod a
shows ((v − w) ∗ b) mod a = 0
using assms by (simp add: mod-eq-dvd-iff-nat algebra-simps)

— The 0-vector of length n.
abbreviation zeroes :: nat ⇒ nat list

where
zeroes n ≡ replicate n 0

lemma rep-upd-unit:
assumes x = (zeroes n)[i := a]
shows ∀ j < length x. (j 6= i −→ x ! j = 0) ∧ (j = i −→ x ! j = a)

2

using assms by simp

definition nonzero-iff : nonzero xs ←→ (∃ x∈set xs. x 6= 0)

lemma nonzero-append [simp]:
nonzero (xs @ ys) ←→ nonzero xs ∨ nonzero ys by (auto simp: nonzero-iff)

1.1 The Inner Product
definition dotprod :: nat list ⇒ nat list ⇒ nat (infixl ‹·› 70)

where
xs · ys = (

∑
i<min (length xs) (length ys). xs ! i ∗ ys ! i)

lemma dotprod-code [code]:
xs · ys = sum-list (map (λ(x, y). x ∗ y) (zip xs ys))
by (auto simp: dotprod-def sum-list-sum-nth lessThan-atLeast0)

lemma dotprod-commute:
assumes length xs = length ys
shows xs · ys = ys · xs
using assms by (auto simp: dotprod-def mult.commute)

lemma dotprod-Nil [simp]: [] · [] = 0
by (simp add: dotprod-def)

lemma dotprod-Cons [simp]:
(x # xs) · (y # ys) = x ∗ y + xs · ys
unfolding dotprod-def and length-Cons and min-Suc-Suc and sum.lessThan-Suc-shift

by auto

lemma dotprod-1-right [simp]:
xs · replicate (length xs) 1 = sum-list xs
by (induct xs) (simp-all)

lemma dotprod-0-right [simp]:
xs · zeroes (length xs) = 0
by (induct xs) (simp-all)

lemma dotprod-unit [simp]:
assumes length a = n

and k < n
shows a · (zeroes n)[k := zk] = a ! k ∗ zk
using assms by (induct a arbitrary: k n) (auto split: nat.splits)

lemma dotprod-gt0 :
assumes length x = length y and ∃ i<length y. x ! i > 0 ∧ y ! i > 0
shows x · y > 0
using assms by (induct x y rule: list-induct2) (fastforce simp: nth-Cons split:

nat.splits)+

3

lemma dotprod-gt0D:
assumes length x = length y

and x · y > 0
shows ∃ i<length y. x ! i > 0 ∧ y ! i > 0
using assms by (induct x y rule: list-induct2) (auto simp: Ex-less-Suc2)

lemma dotprod-gt0-iff [iff]:
assumes length x = length y
shows x · y > 0 ←→ (∃ i<length y. x ! i > 0 ∧ y ! i > 0)
using assms and dotprod-gt0D and dotprod-gt0 by blast

lemma dotprod-append:
assumes length a = length b
shows(a @ x) · (b @ y) = a · b + x · y
using assms by (induct a b rule: list-induct2) auto

lemma dotprod-le-take:
assumes length a = length b

and k ≤ length a
showstake k a · take k b ≤ a · b
using assms and append-take-drop-id [of k a] and append-take-drop-id [of k b]
by (metis add-right-cancel leI length-append length-drop not-add-less1 dotprod-append)

lemma dotprod-le-drop:
assumes length a = length b

and k ≤ length a
shows drop k a · drop k b ≤ a · b
using assms and append-take-drop-id [of k a] and append-take-drop-id [of k b]
by (metis dotprod-append length-take order-refl trans-le-add2)

lemma dotprod-is-0 [simp]:
assumes length x = length y
shows x · y = 0 ←→ (∀ i<length y. x ! i = 0 ∨ y ! i = 0)
using assms by (metis dotprod-gt0-iff neq0-conv)

lemma dotprod-eq-0-iff :
assumes length x = length a

and 0 /∈ set a
shows x · a = 0 ←→ (∀ e ∈ set x. e = 0)
using assms by (fastforce simp: in-set-conv-nth)

lemma dotprod-eq-nonzero-iff :
assumes a · x = b · y and length x = length a and length y = length b

and 0 /∈ set a and 0 /∈ set b
shows nonzero x ←→ nonzero y
using assms by (auto simp: nonzero-iff) (metis dotprod-commute dotprod-eq-0-iff

neq0-conv)+

4

lemma eq-0-iff :
xs = zeroes n ←→ length xs = n ∧ (∀ x∈set xs. x = 0)
using in-set-replicate [of - n 0] and replicate-eqI [of xs n 0] by auto

lemma not-nonzero-iff : ¬ nonzero x ←→ x = zeroes (length x)
by (auto simp: nonzero-iff replicate-length-same eq-0-iff)

lemma neq-0-iff ′:
xs 6= zeroes n ←→ length xs 6= n ∨ (∃ x∈set xs. x > 0)
by (auto simp: eq-0-iff)

lemma dotprod-pointwise-le:
assumes length as = length xs

and i < length as
shows as ! i ∗ xs ! i ≤ as · xs

proof −
have as · xs = (

∑
i<min (length as) (length xs). as ! i ∗ xs ! i)

by (simp add: dotprod-def)
then show ?thesis

using assms by (auto intro: member-le-sum)
qed

lemma replicate-dotprod:
assumes length y = n
shows replicate n x · y = x ∗ sum-list y

proof −
have x ∗ (

∑
i<length y. y ! i) = (

∑
i<length y. x ∗ y ! i)

using sum-distrib-left by blast
then show ?thesis

using assms by (auto simp: dotprod-def sum-list-sum-nth atLeast0LessThan)
qed

1.2 The Pointwise Order on Vectors
definition less-eq :: nat list ⇒ nat list ⇒ bool (‹-/ ≤v -› [51 , 51] 50)

where
xs ≤v ys ←→ length xs = length ys ∧ (∀ i<length xs. xs ! i ≤ ys ! i)

definition less :: nat list ⇒ nat list ⇒ bool (‹-/ <v -› [51 , 51] 50)
where

xs <v ys ←→ xs ≤v ys ∧ ¬ ys ≤v xs

interpretation order-vec: order less-eq less
by (standard, auto simp add: less-def less-eq-def dual-order .antisym nth-equalityI)

(force)

lemma less-eqI [intro?]: length xs = length ys =⇒ ∀ i<length xs. xs ! i ≤ ys ! i
=⇒ xs ≤v ys

by (auto simp: less-eq-def)

5

lemma le0 [simp, intro]: zeroes (length xs) ≤v xs by (simp add: less-eq-def)

lemma le-list-update [simp]:
assumes xs ≤v ys and i < length ys and z ≤ ys ! i
shows xs[i := z] ≤v ys
using assms by (auto simp: less-eq-def nth-list-update)

lemma le-Cons: x # xs ≤v y # ys ←→ x ≤ y ∧ xs ≤v ys
by (auto simp add: less-eq-def nth-Cons split: nat.splits)

lemma zero-less:
assumes nonzero x
shows zeroes (length x) <v x
using assms and eq-0-iff order-vec.dual-order .strict-iff-order
by (auto simp: nonzero-iff)

lemma le-append:
assumes length xs = length vs
shows xs @ ys ≤v vs @ ws ←→ xs ≤v vs ∧ ys ≤v ws
using assms
by (auto simp: less-eq-def nth-append)
(metis add.commute add-diff-cancel-left ′ nat-add-left-cancel-less not-add-less2)

lemma less-Cons:
(x # xs) <v (y # ys) ←→ length xs = length ys ∧ (x ≤ y ∧ xs <v ys ∨ x < y
∧ xs ≤v ys)

by (simp add: less-def less-eq-def All-less-Suc2) (auto dest: leD)

lemma le-length [dest]:
assumes xs ≤v ys
shows length xs = length ys
using assms by (simp add: less-eq-def)

lemma less-length [dest]:
assumes x <v y
shows length x = length y
using assms by (auto simp: less-def)

lemma less-append:
assumes xs <v vs and ys ≤v ws
shows xs @ ys <v vs @ ws

proof −
have length xs = length vs

using assms by blast
then show ?thesis
using assms by (induct xs vs rule: list-induct2) (auto simp: less-Cons le-append

le-length)
qed

6

lemma less-appendD:
assumes xs @ ys <v vs @ ws

and length xs = length vs
shows xs <v vs ∨ ys <v ws
by (auto) (metis (no-types, lifting) assms le-append order-vec.order .strict-iff-order)

lemma less-append-cases:
assumes xs @ ys <v vs @ ws and length xs = length vs
obtains xs <v vs and ys ≤v ws | xs ≤v vs and ys <v ws
using assms and that
by (metis le-append less-appendD order-vec.order .strict-implies-order)

lemma less-append-swap:
assumes x @ y <v u @ v

and length x = length u
shows y @ x <v v @ u
using assms(2 , 1)
by (induct x u rule: list-induct2)
(auto simp: order-vec.order .strict-iff-order le-Cons le-append le-length)

lemma le-sum-list-less:
assumes xs ≤v ys

and sum-list xs < sum-list ys
shows xs <v ys

proof −
have length xs = length ys and ∀ i<length ys. xs ! i ≤ ys ! i

using assms by (auto simp: less-eq-def)
then show ?thesis

using ‹sum-list xs < sum-list ys›
by (induct xs ys rule: list-induct2)
(auto simp: less-Cons All-less-Suc2 less-eq-def)

qed

lemma dotprod-le-right:
assumes v ≤v w

and length b = length w
shows b · v ≤ b · w
using assms by (auto simp: dotprod-def less-eq-def intro: sum-mono)

lemma dotprod-pointwise-le-right:
assumes length z = length u

and length u = length v
and ∀ i<length v. u ! i ≤ v ! i

shows z · u ≤ z · v
using assms by (intro dotprod-le-right) (auto intro: less-eqI)

lemma dotprod-le-left:
assumes v ≤v w

7

and length b = length w
shows v · b ≤ w · b
using assms by (simp add: dotprod-le-right dotprod-commute le-length)

lemma dotprod-le:
assumes x ≤v u and y ≤v v

and length y = length x and length v = length u
shows x · y ≤ u · v
using assms by (metis dotprod-le-left dotprod-le-right le-length le-trans)

lemma dotprod-less-left:
assumes length b = length w

and 0 /∈ set b
and v <v w

shows v · b < w · b
proof −

have length v = length w using assms
using less-eq-def order-vec.order .strict-implies-order by blast

then show ?thesis
using assms

proof (induct v w arbitrary: b rule: list-induct2)
case (Cons x xs y ys)
then show ?case
by (cases b) (auto simp: less-Cons add-mono-thms-linordered-field dotprod-le-left)

qed simp
qed

lemma le-append-swap:
assumes length y = length v

and x @ y ≤v w @ v
shows y @ x ≤v v @ w

proof −
have length w = length x using assms by auto
with assms show ?thesis

by (induct y v arbitrary: x w rule: list-induct2) (auto simp: le-Cons le-append)
qed

lemma le-append-swap-iff :
assumes length y = length v
shows y @ x ≤v v @ w ←→ x @ y ≤v w @ v
using assms and le-append-swap
by (auto) (metis (no-types, lifting) add-left-imp-eq le-length length-append)

lemma unit-less:
assumes i < n

and x <v (zeroes n)[i := b]
shows x ! i < b ∧ (∀ j<n. j 6= i −→ x ! j = 0)

proof
show x ! i < b

8

using assms less-def by fastforce
next

have x ≤v (zeroes n)[i := b] by (simp add: assms order-vec.less-imp-le)
then show ∀ j<n. j 6= i −→ x ! j = 0 by (auto simp: less-eq-def)

qed

lemma le-sum-list-mono:
assumes xs ≤v ys
shows sum-list xs ≤ sum-list ys
using assms and sum-list-mono [of [0 ..<length ys] (!) xs (!) ys]
by (auto simp: less-eq-def) (metis map-nth)

lemma sum-list-less-diff-Ex:
assumes u ≤v y

and sum-list u < sum-list y
shows ∃ i<length y. u ! i < y ! i

proof −
have length u = length y and ∀ i<length y. u ! i ≤ y ! i

using ‹u ≤v y› by (auto simp: less-eq-def)
then show ?thesis

using ‹sum-list u < sum-list y›
by (induct u y rule: list-induct2) (force simp: Ex-less-Suc2 All-less-Suc2)+

qed

lemma less-vec-sum-list-less:
assumes v <v w
shows sum-list v < sum-list w
using assms

proof −
have length v = length w

using assms less-eq-def less-imp-le by blast
then show ?thesis

using assms
proof (induct v w rule: list-induct2)

case (Cons x xs y ys)
then show ?case

using length-replicate less-Cons order-vec.order .strict-iff-order by force
qed simp

qed

definition maxne0 :: nat list ⇒ nat list ⇒ nat
where

maxne0 x a =
(if length x = length a ∧ (∃ i<length a. x ! i 6= 0)
then Max {a ! i | i. i < length a ∧ x ! i 6= 0}
else 0)

lemma maxne0-le-Max:
maxne0 x a ≤ Max (set a)

9

by (auto simp: maxne0-def nonzero-iff in-set-conv-nth) simp

lemma maxne0-Nil [simp]:
maxne0 [] as = 0
maxne0 xs [] = 0
by (auto simp: maxne0-def)

lemma maxne0-Cons [simp]:
maxne0 (x # xs) (a # as) =
(if length xs = length as then
(if x = 0 then maxne0 xs as else max a (maxne0 xs as))

else 0)
proof −

let ?a = a # as and ?x = x # xs
have eq: {?a ! i | i. i < length ?a ∧ ?x ! i 6= 0} =
(if x > 0 then {a} else {}) ∪ {as ! i | i. i < length as ∧ xs ! i 6= 0}
by (auto simp: nth-Cons split: nat.splits) (metis Suc-pred)+

show ?thesis
unfolding maxne0-def and eq
by (auto simp: less-Suc-eq-0-disj nth-Cons ′ intro: Max-insert2)

qed

lemma maxne0-times-sum-list-gt-dotprod:
assumes length b = length ys
shows maxne0 ys b ∗ sum-list ys ≥ b · ys
using assms
apply (induct b ys rule: list-induct2)
apply (auto simp: max-def ring-distribs add-mono-thms-linordered-semiring(1))
by (meson leI le-trans mult-less-cancel2 nat-less-le)

lemma max-times-sum-list-gt-dotprod:
assumes length b = length ys
shows Max (set b) ∗ sum-list ys ≥ b · ys

proof −
have ∀ e ∈ set b . Max (set b) ≥ e by simp
then have replicate (length ys) (Max (set b)) · ys ≥ b · ys (is ?rep ≥ -)

by (metis assms dotprod-pointwise-le-right dotprod-commute
length-replicate nth-mem nth-replicate)

moreover have Max (set b) ∗ sum-list ys = ?rep
using replicate-dotprod [of ys - Max (set b)] by auto

ultimately show ?thesis
by (simp add: assms)

qed

lemma maxne0-mono:
assumes y ≤v x
shows maxne0 y a ≤ maxne0 x a

proof (cases length y = length a)
case True

10

have length y = length x using assms by (auto)
then show ?thesis

using assms and True
proof (induct y x arbitrary: a rule: list-induct2)

case (Cons x xs y ys)
then show ?case by (cases a) (force simp: less-eq-def All-less-Suc2 le-max-iff-disj)+

qed simp
next

case False
then show ?thesis

using assms by (auto simp: maxne0-def)
qed

lemma all-leq-Max:
assumes x ≤v y

and x 6= []
shows ∀ xi ∈ set x. xi ≤ Max (set y)
by (metis (no-types, lifting) List.finite-set Max-ge-iff

assms in-set-conv-nth length-0-conv less-eq-def set-empty)

lemma le-not-less-replicate:
∀ x∈set xs. x ≤ b =⇒ ¬ xs <v replicate (length xs) b =⇒ xs = replicate (length

xs) b
by (induct xs) (auto simp: less-Cons)

lemma le-replicateI : ∀ x∈set xs. x ≤ b =⇒ xs ≤v replicate (length xs) b
by (induct xs) (auto simp: le-Cons)

lemma le-take:
assumes x ≤v y and i ≤ length x shows take i x ≤v take i y
using assms by (auto simp: less-eq-def)

lemma wf-less:
wf {(x, y). x <v y}

proof −
have wf (measure sum-list) ..
moreover have {(x, y). x <v y} ⊆ measure sum-list

by (auto simp: less-vec-sum-list-less)
ultimately show wf {(x, y). x <v y}

by (rule wf-subset)
qed

1.3 Pointwise Subtraction
definition vdiff :: nat list ⇒ nat list ⇒ nat list (infixl ‹−v› 65)

where
w −v v = map (λi. w ! i − v ! i) [0 ..< length w]

lemma vdiff-Nil [simp]: [] −v [] = [] by (simp add: vdiff-def)

11

lemma upt-Cons-conv:
assumes j < n
shows [j..<n] = j # [j+1 ..<n]
by (simp add: assms upt-eq-Cons-conv)

lemma map-upt-Suc: map f [Suc m ..< Suc n] = map (f ◦ Suc) [m ..< n]
by (fold list.map-comp [of f Suc [m ..< n]]) (simp add: map-Suc-upt)

lemma vdiff-Cons [simp]:
(x # xs) −v (y # ys) = (x − y) # (xs −v ys)
by (simp add: vdiff-def upt-Cons-conv [OF zero-less-Suc] map-upt-Suc del: upt-Suc)

lemma vdiff-alt-def :
assumes length w = length v
shows w −v v = map (λ(x, y). x − y) (zip w v)
using assms by (induct rule: list-induct2) simp-all

lemma vdiff-dotprod-distr :
assumes length b = length w

and v ≤v w
shows (w −v v) · b = w · b − v · b

proof −
have length v = length w and ∀ i<length w. v ! i ≤ w ! i

using assms less-eq-def by auto
then show ?thesis

using ‹length b = length w›
proof (induct v w arbitrary: b rule: list-induct2)

case (Cons x xs y ys)
then show ?case

by (cases b) (auto simp: All-less-Suc2 diff-mult-distrib
dotprod-commute dotprod-pointwise-le-right)

qed simp
qed

lemma sum-list-vdiff-distr [simp]:
assumes v ≤v u
shows sum-list (u −v v) = sum-list u − sum-list v
by (metis (no-types, lifting) assms diff-zero dotprod-1-right

length-map length-replicate length-upt
less-eq-def vdiff-def vdiff-dotprod-distr)

lemma vdiff-le:
assumes v ≤v w

and length v = length x
shows v −v x ≤v w
using assms by (auto simp add: less-eq-def vdiff-def)

lemma mods-with-vec:

12

assumes v <v w
and 0 /∈ set b
and length b = length w
and (v · b) mod a = (w · b) mod a

shows ((w −v v) · b) mod a = 0
proof −

have ∗: v · b < w · b
using dotprod-less-left and assms by blast

have v ≤v w
using assms by auto

from vdiff-dotprod-distr [OF assms(3) this]
have ((w −v v) · b) mod a = (w · b − v · b) mod a

by simp
also have ... = 0 mod a

using mods-with-nats [of v · b w · b 1 a, OF ∗] assms by auto
finally show ?thesis by simp

qed

lemma mods-with-vec-2 :
assumes v <v w

and 0 /∈ set b
and length b = length w
and (b · v) mod a = (b · w) mod a

shows (b · (w −v v)) mod a = 0
by (metis (no-types, lifting) assms diff-zero dotprod-commute

length-map length-upt less-eq-def order-vec.less-imp-le
mods-with-vec vdiff-def)

1.4 The Lexicographic Order on Vectors
abbreviation lex-less-than (‹-/ <lex -› [51 , 51] 50)

where
xs <lex ys ≡ (xs, ys) ∈ lex less-than

definition rlex (infix ‹<rlex› 50)
where

xs <rlex ys ←→ rev xs <lex rev ys

lemma rev-le [simp]:
rev xs ≤v rev ys ←→ xs ≤v ys

proof −
{ fix i assume i: i < length ys and [simp]: length xs = length ys

and ∀ i < length ys. rev xs ! i ≤ rev ys ! i
then have rev xs ! (length ys − i − 1) ≤ rev ys ! (length ys − i − 1) by auto
then have xs ! i ≤ ys ! i using i by (auto simp: rev-nth) }

then show ?thesis by (auto simp: less-eq-def rev-nth)
qed

lemma rev-less [simp]:

13

rev xs <v rev ys ←→ xs <v ys
by (simp add: less-def)

lemma less-imp-lex:
assumes xs <v ys shows xs <lex ys

proof −
have length ys = length xs using assms by auto
then show ?thesis using assms

by (induct rule: list-induct2) (auto simp: less-Cons)
qed

lemma less-imp-rlex:
assumes xs <v ys shows xs <rlex ys
using assms and less-imp-lex [of rev xs rev ys]
by (simp add: rlex-def)

lemma lex-not-sym:
assumes xs <lex ys
shows ¬ ys <lex xs

proof
assume ys <lex xs
then obtain i where i < length xs and take i xs = take i ys

and ys ! i < xs ! i by (elim lex-take-index) auto
moreover obtain j where j < length xs and length ys = length xs and take j

xs = take j ys
and xs ! j < ys ! j using assms by (elim lex-take-index) auto

ultimately show False by (metis le-antisym nat-less-le nat-neq-iff nth-take)
qed

lemma rlex-not-sym:
assumes xs <rlex ys
shows ¬ ys <rlex xs

proof
assume ass: ys <rlex xs
then obtain i where i < length xs and take i xs = take i ys

and ys ! i > xs ! i using assms lex-not-sym rlex-def by blast
moreover obtain j where j < length xs and length ys = length xs and take j

xs = take j ys
and xs ! j > ys ! j using assms rlex-def ass lex-not-sym by blast

ultimately show False
by (metis leD nat-less-le nat-neq-iff nth-take)

qed

lemma lex-trans:
assumes x <lex y and y <lex z
shows x <lex z
using assms by (auto simp: antisym-def intro: transD [OF lex-transI])

lemma rlex-trans:

14

assumes x <rlex y and y <rlex z
shows x <rlex z
using assms lex-trans rlex-def by blast

lemma lex-append-rightD:
assumes xs @ us <lex ys @ vs and length xs = length ys

and ¬ xs <lex ys
shows ys = xs ∧ us <lex vs
using assms(2 ,1 ,3)
by (induct xs ys rule: list-induct2) auto

lemma rlex-Cons:
x # xs <rlex y # ys ←→ xs <rlex ys ∨ ys = xs ∧ x < y (is ?A = ?B)
by (cases length ys = length xs)
(auto simp: rlex-def intro: lex-append-rightI lex-append-leftI dest: lex-append-rightD

lex-lengthD)

lemma rlex-irrefl:
¬ x <rlex x
by (induct x) (auto simp: rlex-def dest: lex-append-rightD)

1.5 Code Equations
fun exists2

where
exists2 d P [] [] ←→ False
| exists2 d P (x#xs) (y#ys) ←→ P x y ∨ exists2 d P xs ys
| exists2 d P - - ←→ d

lemma not-le-code [code-unfold]: ¬ xs ≤v ys ←→ exists2 True (>) xs ys
by (induct True (>) :: nat ⇒ nat ⇒ bool xs ys rule: exists2 .induct) (auto simp:

le-Cons)

end

2 Homogeneous Linear Diophantine Equations
theory Linear-Diophantine-Equations

imports List-Vector
begin

lemma lcm-div-le:
fixes a :: nat
shows lcm a b div b ≤ a
by (metis div-by-0 div-le-dividend div-le-mono div-mult-self-is-m lcm-nat-def neq0-conv)

lemma lcm-div-le ′:

15

fixes a :: nat
shows lcm a b div a ≤ b
by (metis lcm.commute lcm-div-le)

lemma lcm-div-gt-0 :
fixes a :: nat
assumes a > 0 and b > 0
shows lcm a b div a > 0

proof −
have lcm a b = (a ∗ b) div (gcd a b)

using lcm-nat-def by blast
moreover have . . . > 0

using assms
by (metis assms calculation lcm-pos-nat)

ultimately show ?thesis
using assms
by simp (metis div-greater-zero-iff div-le-mono2 div-mult-self-is-m gcd-le2-nat

not-gr0)
qed

lemma sum-list-list-update-Suc:
assumes i < length u
shows sum-list (u[i := Suc (u ! i)]) = Suc (sum-list u)
using assms

proof (induct u arbitrary: i)
case (Cons x xs)
then show ?case by (simp-all split: nat.splits)

qed (simp)

lemma lessThan-conv:
assumes card A = n and ∀ x∈A. x < n
shows A = {..<n}
using assms by (simp add: card-subset-eq subsetI)

Given a non-empty list xs of n natural numbers, either there is a value in
xs that is 0 modulo n, or there are two values whose moduli coincide.
lemma list-mod-cases:

assumes length xs = n and n > 0
shows (∃ x∈set xs. x mod n = 0) ∨
(∃ i<length xs. ∃ j<length xs. i 6= j ∧ (xs ! i) mod n = (xs ! j) mod n)

proof −
let ?f = λx. x mod n and ?X = set xs
have ∗: ∀ x ∈ ?f ‘ ?X . x < n using ‹n > 0 › by auto
consider (eq) card (?f ‘ ?X) = card ?X | (less) card (?f ‘ ?X) < card ?X

using antisym-conv2 and card-image-le by blast
then show ?thesis

16

proof (cases)
case eq
show ?thesis
proof (cases distinct xs)

assume distinct xs
with eq have card (?f ‘ ?X) = n

using ‹distinct xs› by (simp add: assms card-distinct distinct-card)
from lessThan-conv [OF this ∗] and ‹n > 0 ›
have ∃ x∈set xs. x mod n = 0 by (metis imageE lessThan-iff)
then show ?thesis ..

next
assume ¬ distinct xs
then show ?thesis by (auto) (metis distinct-conv-nth)

qed
next

case less
from pigeonhole [OF this]
show ?thesis by (auto simp: inj-on-def iff : in-set-conv-nth)

qed
qed

Homogeneous linear Diophantine equations: a1x1 + · · · + amxm = b1y1 +
· · · + bnyn

locale hlde-ops =
fixes a b :: nat list

begin

abbreviation m ≡ length a
abbreviation n ≡ length b

— The set of all solutions.
definition Solutions :: (nat list × nat list) set

where
Solutions = {(x, y). a · x = b · y ∧ length x = m ∧ length y = n}

lemma in-Solutions-iff :
(x, y) ∈ Solutions ←→ length x = m ∧ length y = n ∧ a · x = b · y
by (auto simp: Solutions-def)

— The set of pointwise minimal solutions.
definition Minimal-Solutions :: (nat list × nat list) set

where
Minimal-Solutions = {(x, y) ∈ Solutions. nonzero x ∧
¬ (∃ (u, v) ∈ Solutions. nonzero u ∧ u @ v <v x @ y)}

definition dij :: nat ⇒ nat ⇒ nat
where

dij i j = lcm (a ! i) (b ! j) div (a ! i)

17

definition eij :: nat ⇒ nat ⇒ nat
where

eij i j = lcm (a ! i) (b ! j) div (b ! j)

definition sij :: nat ⇒ nat ⇒ (nat list × nat list)
where

sij i j = ((zeroes m)[i := dij i j], (zeroes n)[j := eij i j])

2.1 Further Constraints on Minimal Solutions
definition Ej :: nat ⇒ nat list ⇒ nat set

where
Ej j x = { eij i j − 1 | i. i < length x ∧ x ! i ≥ dij i j }

definition Di :: nat ⇒ nat list ⇒ nat set
where

Di i y = { dij i j − 1 | j. j < length y ∧ y ! j ≥ eij i j }

definition Di ′ :: nat ⇒ nat list ⇒ nat set
where

Di ′ i y = { dij i (j + length b − length y) − 1 | j. j < length y ∧ y ! j ≥ eij i
(j + length b − length y) }

lemma Ej-take-subset:
Ej j (take k x) ⊆ Ej j x
by (auto simp: Ej-def)

lemma Di-take-subset:
Di i (take l y) ⊆ Di i y
by (auto simp: Di-def)

lemma Di ′-drop-subset:
Di ′ i (drop l y) ⊆ Di ′ i y
by (auto simp: Di ′-def) (metis add.assoc add.commute less-diff-conv)

lemma finite-Ej:
finite (Ej j x)
by (rule finite-subset [of - (λi. eij i j − 1) ‘ {0 ..< length x}]) (auto simp: Ej-def)

lemma finite-Di:
finite (Di i y)
by (rule finite-subset [of - (λj. dij i j − 1) ‘ {0 ..< length y}]) (auto simp: Di-def)

lemma finite-Di ′:
finite (Di ′ i y)
by (rule finite-subset [of - (λj. dij i (j + length b − length y) − 1) ‘ {0 ..< length

y}])
(auto simp: Di ′-def)

18

definition max-y :: nat list ⇒ nat ⇒ nat
where

max-y x j = (if j < n ∧ Ej j x 6= {} then Min (Ej j x) else Max (set a))

definition max-x :: nat list ⇒ nat ⇒ nat
where

max-x y i = (if i < m ∧ Di i y 6= {} then Min (Di i y) else Max (set b))

definition max-x ′ :: nat list ⇒ nat ⇒ nat
where

max-x ′ y i = (if i < m ∧ Di ′ i y 6= {} then Min (Di ′ i y) else Max (set b))

lemma Min-Ej-le:
assumes j < n

and e ∈ Ej j x
and length x ≤ m

shows Min (Ej j x) ≤ Max (set a) (is ?m ≤ -)
proof −

have ?m ∈ Ej j x
using assms and finite-Ej and Min-in by blast

then obtain i where
i: ?m = eij i j − 1 i < length x x ! i ≥ dij i j
by (auto simp: Ej-def)

have lcm (a ! i) (b ! j) div b ! j ≤ a ! i by (rule lcm-div-le)
then show ?thesis

using i and assms
by (auto simp: eij-def)
(meson List.finite-set Max-ge diff-le-self le-trans less-le-trans nth-mem)

qed

lemma Min-Di-le:
assumes i < m

and e ∈ Di i y
and length y ≤ n

shows Min (Di i y) ≤ Max (set b) (is ?m ≤ -)
proof −

have ?m ∈ Di i y
using assms and finite-Di and Min-in by blast

then obtain j where
j: ?m = dij i j − 1 j < length y y ! j ≥ eij i j
by (auto simp: Di-def)

have lcm (a ! i) (b ! j) div a ! i ≤ b ! j by (rule lcm-div-le ′)
then show ?thesis

using j and assms
by (auto simp: dij-def)
(meson List.finite-set Max-ge diff-le-self le-trans less-le-trans nth-mem)

qed

lemma Min-Di ′-le:

19

assumes i < m
and e ∈ Di ′ i y
and length y ≤ n

shows Min (Di ′ i y) ≤ Max (set b) (is ?m ≤ -)
proof −

have ?m ∈ Di ′ i y
using assms and finite-Di ′ and Min-in by blast

then obtain j where
j: ?m = dij i (j + length b − length y) − 1 j < length y y ! j ≥ eij i (j + length

b − length y)
by (auto simp: Di ′-def)

then have j + length b − length y < length b using assms by auto
moreover
have lcm (a ! i) (b ! (j + length b − length y)) div a ! i ≤ b ! (j + length b −

length y) by (rule lcm-div-le ′)
ultimately show ?thesis

using j and assms
by (auto simp: dij-def)
(meson List.finite-set Max-ge diff-le-self le-trans less-le-trans nth-mem)

qed

lemma max-y-le-take:
assumes length x ≤ m
shows max-y x j ≤ max-y (take k x) j
using assms and Min-Ej-le and Ej-take-subset and Min.subset-imp [OF - -

finite-Ej]
by (auto simp: max-y-def) blast

lemma max-x-le-take:
assumes length y ≤ n
shows max-x y i ≤ max-x (take l y) i
using assms and Min-Di-le and Di-take-subset and Min.subset-imp [OF - -

finite-Di]
by (auto simp: max-x-def) blast

lemma max-x ′-le-drop:
assumes length y ≤ n
shows max-x ′ y i ≤ max-x ′ (drop l y) i
using assms and Min-Di ′-le and Di ′-drop-subset and Min.subset-imp [OF - -

finite-Di ′]
by (auto simp: max-x ′-def) blast

end

abbreviation Solutions ≡ hlde-ops.Solutions
abbreviation Minimal-Solutions ≡ hlde-ops.Minimal-Solutions

abbreviation dij ≡ hlde-ops.dij
abbreviation eij ≡ hlde-ops.eij

20

abbreviation sij ≡ hlde-ops.sij

declare hlde-ops.dij-def [code]
declare hlde-ops.eij-def [code]
declare hlde-ops.sij-def [code]

lemma Solutions-sym: (x, y) ∈ Solutions a b ←→ (y, x) ∈ Solutions b a
by (auto simp: hlde-ops.in-Solutions-iff)

lemma Minimal-Solutions-imp-Solutions: (x, y) ∈ Minimal-Solutions a b =⇒ (x,
y) ∈ Solutions a b

by (auto simp: hlde-ops.Minimal-Solutions-def)

lemma Minimal-SolutionsI :
assumes (x, y) ∈ Solutions a b

and nonzero x
and ¬ (∃ (u, v) ∈ Solutions a b. nonzero u ∧ u @ v <v x @ y)

shows (x, y) ∈ Minimal-Solutions a b
using assms by (auto simp: hlde-ops.Minimal-Solutions-def)

lemma minimize-nonzero-solution:
assumes (x, y) ∈ Solutions a b and nonzero x
obtains u and v where u @ v ≤v x @ y and (u, v) ∈ Minimal-Solutions a b
using assms

proof (induct x @ y arbitrary: x y thesis rule: wf-induct [OF wf-less])
case 1
then show ?case
proof (cases (x, y) ∈ Minimal-Solutions a b)

case False
then obtain u and v where nonzero u and (u, v) ∈ Solutions a b and uv: u

@ v <v x @ y
using 1 (3 ,4) by (auto simp: hlde-ops.Minimal-Solutions-def)

with 1 (1) [rule-format, of u @ v u v] obtain u ′ and v ′ where uv ′: u ′ @ v ′

≤v u @ v
and (u ′, v ′) ∈ Minimal-Solutions a b by blast

moreover have u ′ @ v ′ ≤v x @ y using uv and uv ′ by auto
ultimately show ?thesis by (intro 1 (2))

qed blast
qed

lemma Minimal-SolutionsI ′:
assumes (x, y) ∈ Solutions a b

and nonzero x
and ¬ (∃ (u, v) ∈ Minimal-Solutions a b. u @ v <v x @ y)

shows (x, y) ∈ Minimal-Solutions a b
proof (rule Minimal-SolutionsI [OF assms(1 ,2)])

show ¬ (∃ (u, v) ∈ Solutions a b. nonzero u ∧ u @ v <v x @ y)
proof

assume ∃ (u, v) ∈ Solutions a b. nonzero u ∧ u @ v <v x @ y

21

then obtain u and v where (u, v) ∈ Solutions a b and nonzero u
and uv: u @ v <v x @ y by blast

then obtain u ′ and v ′ where (u ′, v ′) ∈ Minimal-Solutions a b
and uv ′: u ′ @ v ′ ≤v u @ v by (blast elim: minimize-nonzero-solution)

moreover have u ′ @ v ′ <v x @ y using uv and uv ′ by auto
ultimately show False using assms by blast

qed
qed

lemma Minimal-Solutions-length:
(x, y) ∈ Minimal-Solutions a b =⇒ length x = length a ∧ length y = length b
by (auto simp: hlde-ops.Minimal-Solutions-def hlde-ops.in-Solutions-iff)

lemma Minimal-Solutions-gt0 :
(x, y) ∈ Minimal-Solutions a b =⇒ zeroes (length x) <v x
using zero-less by (auto simp: hlde-ops.Minimal-Solutions-def)

lemma Minimal-Solutions-sym:
assumes 0 /∈ set a and 0 /∈ set b
shows (xs, ys) ∈ Minimal-Solutions a b −→ (ys, xs) ∈ Minimal-Solutions b a
using assms
by (auto simp: hlde-ops.Minimal-Solutions-def hlde-ops.Solutions-def

dest: dotprod-eq-nonzero-iff dest!: less-append-swap [of - - ys xs])

locale hlde = hlde-ops +
assumes no0 : 0 /∈ set a 0 /∈ set b

begin

lemma nonzero-Solutions-iff :
assumes (x, y) ∈ Solutions
shows nonzero x ←→ nonzero y
using assms and no0 by (auto simp: in-Solutions-iff dest: dotprod-eq-nonzero-iff)

lemma Minimal-Solutions-min:
assumes (x, y) ∈ Minimal-Solutions

and u @ v <v x @ y
and a · u = b · v
and [simp]: length u = m
and non0 : nonzero (u @ v)

shows False
proof −

have [simp]: length v = n using assms by (force dest: less-appendD Mini-
mal-Solutions-length)

have (u, v) ∈ Solutions using ‹a · u = b · v› by (simp add: in-Solutions-iff)
moreover from nonzero-Solutions-iff [OF this] have nonzero u using non0 by

auto
ultimately show False using assms by (auto simp: hlde-ops.Minimal-Solutions-def)

qed

22

lemma Solutions-snd-not-0 :
assumes (x, y) ∈ Solutions

and nonzero x
shows nonzero y
using assms by (metis nonzero-Solutions-iff)

end

2.2 Pointwise Restricting Solutions

Constructing the list of u vectors from Huet’s proof [1], satisfying

• ∀ i<length u. u ! i ≤ y ! i and

• 0 < sum-list u ≤ ak.

Given y, increment a "previous" u vector at first position starting from i
where u is strictly smaller than y. If this is not possible, return u unchanged.
function inc :: nat list ⇒ nat ⇒ nat list ⇒ nat list

where
inc y i u =
(if i < length y then

if u ! i < y ! i then u[i := u ! i + 1]
else inc y (Suc i) u

else u)
by (pat-completeness) auto

termination inc
by (relation measure (λ(y, i, u). max (length y) (length u) − i)) auto

declare inc.simps [simp del]

Starting from the 0-vector produce us by iteratively incrementing with re-
spect to y.
definition huets-us :: nat list ⇒ nat ⇒ nat list (‹u› 1000)

where
u y i = ((inc y 0) ^^ Suc i) (zeroes (length y))

lemma huets-us-simps [simp]:
u y 0 = inc y 0 (zeroes (length y))
u y (Suc i) = inc y 0 (u y i)
by (auto simp: huets-us-def)

lemma length-inc [simp]: length (inc y i u) = length u
by (induct y i u rule: inc.induct) (simp add: inc.simps)

lemma length-us [simp]:
length (u y i) = length y

23

by (induct i) (simp-all)

inc produces vectors that are pointwise smaller than y
lemma inc-le:

assumes length u = length y and i < length y and u ≤v y
shows inc y i u ≤v y
using assms by (induct y i u rule: inc.induct)
(auto simp: inc.simps nth-list-update less-eq-def)

lemma us-le:
assumes length y > 0
shows u y i ≤v y
using assms by (induct i) (auto simp: inc-le le-length)

lemma sum-list-inc-le:
u ≤v y =⇒ sum-list (inc y i u) ≤ sum-list y
by (induct y i u rule: inc.induct)
(auto simp: inc.simps intro: le-sum-list-mono)

lemma sum-list-inc-gt0 :
assumes sum-list u > 0 and length y = length u
shows sum-list (inc y i u) > 0
using assms

proof (induct y i u rule: inc.induct)
case (1 y i u)
then show ?case

by (auto simp add: inc.simps)
(meson Suc-neq-Zero gr-zeroI set-update-memI sum-list-eq-0-iff)

qed

lemma sum-list-inc-gt0 ′:
assumes length u = length y and i < length y and y ! i > 0 and j ≤ i
shows sum-list (inc y j u) > 0
using assms

proof (induct y j u rule: inc.induct)
case (1 y i u)
then show ?case

by (auto simp: inc.simps [of y i] sum-list-update)
(metis elem-le-sum-list le-antisym le-zero-eq neq0-conv not-less-eq-eq sum-list-inc-gt0)

qed

lemma sum-list-us-gt0 :
assumes sum-list y 6= 0
shows 0 < sum-list (u y i)
using assms by (induct i) (auto simp: in-set-conv-nth sum-list-inc-gt0 ′ sum-list-inc-gt0)

lemma sum-list-inc-le ′:
assumes length u = length y
shows sum-list (inc y i u) ≤ sum-list u + 1

24

using assms
by (induct y i u rule: inc.induct) (auto simp: inc.simps sum-list-update)

lemma sum-list-us-le:
sum-list (u y i) ≤ i + 1

proof (induct i)
case 0
then show ?case

by (auto simp: sum-list-update)
(metis Suc-eq-plus1 in-set-replicate length-replicate sum-list-eq-0-iff sum-list-inc-le ′)

next
case (Suc i)
then show ?case
by auto (metis Suc-le-mono add.commute le-trans length-us plus-1-eq-Suc sum-list-inc-le ′)

qed

lemma sum-list-us-bounded:
assumes i < k
shows sum-list (u y i) ≤ k
using assms and sum-list-us-le [of y i] by force

lemma sum-list-inc-eq-sum-list-Suc:
assumes length u = length y and i < length y

and ∃ j≥i. j < length y ∧ u ! j < y ! j
shows sum-list (inc y i u) = Suc (sum-list u)
using assms
by (induct y i u rule: inc.induct)
(metis inc.simps Suc-eq-plus1 Suc-leI antisym-conv2 leD sum-list-list-update-Suc)

lemma sum-list-us-eq:
assumes i < sum-list y
shows sum-list (u y i) = i + 1
using assms

proof (induct i)
case (Suc i)
then show ?case

by (auto)
(metis (no-types, lifting) Suc-eq-plus1 gr-implies-not0 length-pos-if-in-set
length-us less-Suc-eq-le less-imp-le-nat antisym-conv2 not-less-eq-eq
sum-list-eq-0-iff sum-list-inc-eq-sum-list-Suc sum-list-less-diff-Ex us-le)

qed (metis Suc-eq-plus1 Suc-leI antisym-conv gr-implies-not0 sum-list-us-gt0 sum-list-us-le)

lemma inc-ge: length u = length y =⇒ u ≤v inc y i u
by (induct y i u rule: inc.induct) (auto simp: inc.simps nth-list-update less-eq-def)

lemma us-le-mono:
assumes i < j
shows u y i ≤v u y j
using assms

25

proof (induct j − i arbitrary: j i)
case (Suc n)
then show ?case
by (simp add: Suc.prems inc-ge order .strict-implies-order order-vec.lift-Suc-mono-le)

qed simp

lemma us-mono:
assumes i < j and j < sum-list y
shows u y i <v u y j

proof −
let ?u = u y i and ?v = u y j
have ?u ≤v ?v

using us-le-mono [OF ‹i < j›] by simp
moreover have sum-list ?u < sum-list ?v

using assms by (auto simp: sum-list-us-eq)
ultimately show ?thesis by (intro le-sum-list-less) (auto simp: less-eq-def)

qed

context hlde
begin

lemma max-coeff-bound-right:
assumes (xs, ys) ∈ Minimal-Solutions
shows ∀ x ∈ set xs. x ≤ maxne0 ys b (is ∀ x∈set xs. x ≤ ?m)

proof (rule ccontr)
assume ¬ ?thesis
then obtain k

where k-def : k < length xs ∧ ¬ (xs ! k ≤ ?m)
by (metis in-set-conv-nth)

have sol: (xs, ys) ∈ Solutions
using assms Minimal-Solutions-def by auto

then have len: m = length xs by (simp add: in-Solutions-iff)
have max-suml: ?m ∗ sum-list ys ≥ b · ys

using maxne0-times-sum-list-gt-dotprod sol by (auto simp: in-Solutions-iff)
then have is-sol: b · ys = a · xs

using sol by (auto simp: in-Solutions-iff)
then have a-ge-ak: a · xs ≥ a ! k ∗ xs ! k

using dotprod-pointwise-le k-def len by auto
then have ak-gt-max: a ! k ∗ xs ! k > a ! k ∗ ?m

using no0 in-set-conv-nth k-def len by fastforce
then have sl-ys-g-ak: sum-list ys > a ! k

by (metis a-ge-ak is-sol less-le-trans max-suml
mult.commute mult-le-mono1 not-le)

define Seq where
Seq-def : Seq = map (u ys) [0 ..< a ! k]

have ak-n0 : a ! k 6= 0
using ‹a ! k ∗ ?m < a ! k ∗ xs ! k› by auto

have zeroes (length ys) <v ys
by (intro zero-less) (metis gr-implies-not0 nonzero-iff sl-ys-g-ak sum-list-eq-0-iff)

26

then have length Seq > 0
using ak-n0 Seq-def by auto

have u-in-nton: ∀ u ∈ set Seq. length u = length ys
by (simp add: Seq-def)

have prop-3 : ∀ u ∈ set Seq. u ≤v ys
proof −

have length ys > 0
using sl-ys-g-ak by auto

then show ?thesis
using us-le [of ys] less-eq-def Seq-def by (simp)

qed
have prop-4-1 : ∀ u ∈ set Seq. sum-list u > 0

by (metis Seq-def sl-ys-g-ak gr-implies-not-zero imageE
set-map sum-list-us-gt0)

have prop-4-2 : ∀ u ∈ set Seq. sum-list u ≤ a ! k
by (simp add: Seq-def sum-list-us-bounded)

have prop-5 : ∃ u. length u = length ys ∧ u ≤v ys ∧ sum-list u > 0 ∧ sum-list u
≤ a ! k

using ‹0 < length Seq› nth-mem prop-3 prop-4-1 prop-4-2 u-in-nton by blast
define Us where

Us = {u. length u = length ys ∧ u ≤v ys ∧ sum-list u > 0 ∧ sum-list u ≤ a !
k}

have ∃ u ∈ Us. b · u mod a ! k = 0
proof (rule ccontr)

assume neg-th: ¬ ?thesis
define Seq-p where

Seq-p = map (dotprod b) Seq
have length Seq = a ! k

by (simp add: Seq-def)
then consider (eq-0) (∃ x∈set Seq-p. x mod (a ! k) = 0) |
(not-0) (∃ i<length Seq-p. ∃ j<length Seq-p. i 6= j ∧

(Seq-p ! i) mod (a!k) = (Seq-p ! j) mod (a!k))
using list-mod-cases[of Seq-p] Seq-p-def ak-n0 by auto force

then show False
proof (cases)

case eq-0
have ∃ u ∈ set Seq. b · u mod a ! k = 0

using Seq-p-def eq-0 by auto
then show False

by (metis (mono-tags, lifting) Us-def mem-Collect-eq
neg-th prop-3 prop-4-1 prop-4-2 u-in-nton)

next
case not-0
obtain i and j where

i-j: i<length Seq-p j<length Seq-p i 6= j
Seq-p ! i mod a ! k = Seq-p ! j mod a ! k

using not-0 by blast
define v where

v-def : v = Seq!i

27

define w where
w-def : w = Seq!j

have mod-eq: b · v mod a!k = b · w mod a!k
using Seq-p-def i-j w-def v-def i-j by auto

have v <v w ∨ w <v v
using ‹i 6= j› and i-j

proof (cases i < j)
case True
then show ?thesis
using Seq-p-def sl-ys-g-ak i-j(2) local.Seq-def us-mono v-def w-def by auto

next
case False
then show ?thesis

using Seq-p-def sl-ys-g-ak ‹i 6= j› i-j(1) local.Seq-def us-mono v-def w-def
by auto

qed
then show False
proof

assume ass: v <v w
define u where

u-def : u = w −v v
have w ≤v ys

using Seq-p-def w-def i-j(2) prop-3 by force
then have prop-3 : less-eq u ys

using vdiff-le ass less-eq-def order-vec.less-imp-le u-def by auto
have prop-4-1 : sum-list u > 0

using le-sum-list-mono [of v w] ass u-def sum-list-vdiff-distr [of v w]
by (simp add: less-vec-sum-list-less)

have prop-4-2 : sum-list u ≤ a ! k
proof −

have u ≤v w using u-def
using ass less-eq-def order-vec.less-imp-le vdiff-le by auto

then show ?thesis
by (metis Seq-p-def i-j(2) length-map le-sum-list-mono

less-le-trans not-le nth-mem prop-4-2 w-def)
qed
have b · u mod a ! k = 0

by (metis (mono-tags, lifting) in-Solutions-iff ‹w ≤v ys› u-def ass no0 (2)
less-eq-def mem-Collect-eq mod-eq mods-with-vec-2 prod.simps(2) sol)

then show False using neg-th
by (metis (mono-tags, lifting) Us-def less-eq-def mem-Collect-eq

prop-3 prop-4-1 prop-4-2)
next

assume ass: w <v v
define u where

u-def : u = v −v w
have v ≤v ys

using Seq-p-def v-def i-j(1) prop-3 by force
then have prop-3 : u ≤v ys

28

using vdiff-le ass less-eq-def order-vec.less-imp-le u-def by auto
have prop-4-1 : sum-list u > 0

using le-sum-list-mono [of w v] sum-list-vdiff-distr [of w v]
‹u ≡ v −v w› ass less-vec-sum-list-less by auto

have prop-4-2 : sum-list u ≤ a!k
proof −

have u ≤v v using u-def
using ass less-eq-def order-vec.less-imp-le vdiff-le by auto

then show ?thesis
by (metis Seq-p-def i-j(1) le-neq-implies-less length-map less-imp-le-nat

less-le-trans nth-mem prop-4-2 le-sum-list-mono v-def)
qed
have b · u mod a ! k = 0

by (metis (mono-tags, lifting) in-Solutions-iff ‹v ≤v ys› u-def ass no0 (2)
less-eq-def mem-Collect-eq mod-eq mods-with-vec-2 prod.simps(2) sol)

then show False
by (metis (mono-tags, lifting) neg-th Us-def less-eq-def mem-Collect-eq

prop-3 prop-4-1 prop-4-2)
qed

qed
qed
then obtain u where

u3-4 : u ≤v ys sum-list u > 0 sum-list u ≤ a ! k b · u mod (a ! k) = 0
length u = length ys
unfolding Us-def by auto

have u-b-len: length u = n
using less-eq-def u3-4 in-Solutions-iff sol by simp

have b · u ≤ maxne0 u b ∗ sum-list u
by (simp add: maxne0-times-sum-list-gt-dotprod u-b-len)

also have ... ≤ ?m ∗ a ! k
by (intro mult-le-mono) (simp-all add: u3-4 maxne0-mono)

also have ... < a ! k ∗ xs ! k
using ak-gt-max by auto

then obtain zk where
zk: b · u = zk ∗ a ! k
using u3-4 (4) by auto

have length xs > k
by (simp add: k-def)

have zk 6= 0
proof −

have ∃ e ∈ set u. e 6= 0
using u3-4
by (metis neq0-conv sum-list-eq-0-iff)

then have b · u > 0
using assms no0 u3-4
unfolding dotprod-gt0-iff [OF u-b-len [symmetric]]
by (fastforce simp add: in-set-conv-nth u-b-len)

then have a ! k > 0
using ‹a ! k 6= 0 › by blast

29

then show ?thesis
using ‹0 < b · u› zk by auto

qed
define z where

z-def : z = (zeroes (length xs))[k := zk]
then have zk-zk: z ! k = zk

by (auto simp add: ‹k < length xs›)
have length z = length xs

using assms z-def ‹k < length xs› by auto
then have bu-eq-akzk: b · u = a ! k ∗ z ! k

by (simp add: ‹b · u = zk ∗ a ! k› zk-zk)
then have z!k < xs!k

using ak-gt-max calculation by auto
then have z-less-xs: z <v xs

by (auto simp add: z-def) (metis ‹k < length xs› le0 le-list-update less-def
less-imp-le order-vec.dual-order .antisym nat-neq-iff z-def zk-zk)

then have z @ u <v xs @ ys
by (intro less-append) (auto simp add: u3-4 (1) z-less-xs)

moreover have (z, u) ∈ Solutions
by (auto simp add: bu-eq-akzk in-Solutions-iff z-def u-b-len ‹k < length xs› len)

moreover have nonzero z
using ‹length z = length xs› and ‹zk 6= 0 › and k-def and zk-zk by (auto simp:

nonzero-iff)
ultimately show False using assms by (auto simp: Minimal-Solutions-def)

qed

Proof of Lemma 1 of Huet’s paper.
lemma max-coeff-bound:

assumes (xs, ys) ∈ Minimal-Solutions
shows (∀ x ∈ set xs. x ≤ maxne0 ys b) ∧ (∀ y ∈ set ys. y ≤ maxne0 xs a)

proof −
interpret ba: hlde b a by (standard) (auto simp: no0)
show ?thesis

using assms and Minimal-Solutions-sym [OF no0 , of xs ys]
by (auto simp: max-coeff-bound-right ba.max-coeff-bound-right)

qed

lemma max-coeff-bound ′:
assumes (x, y) ∈ Minimal-Solutions
shows ∀ i<length x . x ! i ≤ Max (set b) and ∀ j<length y. y ! j ≤ Max (set a)
using max-coeff-bound [OF assms] and maxne0-le-Max
by auto (metis le-eq-less-or-eq less-le-trans nth-mem)+

lemma Minimal-Solutions-alt-def :
Minimal-Solutions = {(x, y)∈Solutions.
(x, y) 6= (zeroes m, zeroes n) ∧
x ≤v replicate m (Max (set b)) ∧
y ≤v replicate n (Max (set a)) ∧
¬ (∃ (u, v)∈Solutions. nonzero u ∧ u @ v <v x @ y)}

30

by (auto simp: not-nonzero-iff Minimal-Solutions-imp-Solutions less-eq-def Min-
imal-Solutions-length max-coeff-bound ′

intro!: Minimal-SolutionsI ′ dest: Minimal-Solutions-gt0)
(auto simp: Minimal-Solutions-def nonzero-Solutions-iff not-nonzero-iff)

2.3 Special Solutions
definition Special-Solutions :: (nat list × nat list) set

where
Special-Solutions = {sij i j | i j. i < m ∧ j < n}

lemma dij-neq-0 :
assumes i < m

and j < n
shows dij i j 6= 0

proof −
have a ! i > 0 and b ! j > 0

using assms and no0 by (simp-all add: in-set-conv-nth)
then have dij i j > 0

using lcm-div-gt-0 [of a ! i b ! j] by (simp add: dij-def)
then show ?thesis by simp

qed

lemma eij-neq-0 :
assumes i < m

and j < n
shows eij i j 6= 0

proof −
have a ! i > 0 and b ! j > 0

using assms and no0 by (simp-all add: in-set-conv-nth)
then have eij i j > 0

using lcm-div-gt-0 [of b ! j a ! i] by (simp add: eij-def lcm.commute)
then show ?thesis

by simp
qed

lemma Special-Solutions-in-Solutions:
x ∈ Special-Solutions =⇒ x ∈ Solutions
by (auto simp: in-Solutions-iff Special-Solutions-def sij-def dij-def eij-def)

lemma Special-Solutions-in-Minimal-Solutions:
assumes (x, y) ∈ Special-Solutions
shows (x, y) ∈ Minimal-Solutions

proof (intro Minimal-SolutionsI ′)
show (x, y) ∈ Solutions by (fact Special-Solutions-in-Solutions [OF assms])
then have [simp]: length x = m length y = n by (auto simp: in-Solutions-iff)
show nonzero x using assms and dij-neq-0

by (auto simp: Special-Solutions-def sij-def nonzero-iff)
(metis length-replicate set-update-memI)

31

show ¬ (∃ (u, v)∈Minimal-Solutions. u @ v <v x @ y)
proof

assume ∃ (u, v)∈Minimal-Solutions. u @ v <v x @ y
then obtain u and v where uv: (u, v) ∈ Minimal-Solutions and u @ v <v x

@ y
and [simp]: length u = m length v = n
and nonzero u by (auto simp: Minimal-Solutions-def in-Solutions-iff)

then consider u <v x and v ≤v y | v <v y and u ≤v x by (auto elim:
less-append-cases)

then show False
proof (cases)

case 1
then obtain i and j where ij: i < m j < n

and less-dij: u ! i < dij i j
and u ≤v (zeroes m)[i := dij i j]
and v ≤v (zeroes n)[j := eij i j]
using assms by (auto simp: Special-Solutions-def sij-def unit-less)

then have u: u = (zeroes m)[i := u ! i] and v: v = (zeroes n)[j := v ! j]
by (auto simp: less-eq-def list-eq-iff-nth-eq)
(metis le-zero-eq length-list-update length-replicate rep-upd-unit)+

then have u ! i > 0 using ‹nonzero u› and ij
by (metis gr-implies-not0 neq0-conv unit-less zero-less)

define c where c = a ! i ∗ u ! i
then have ac: a ! i dvd c by simp

have a · u = b · v using uv by (auto simp: Minimal-Solutions-def in-Solutions-iff)
then have c = b ! j ∗ v ! j

using ij unfolding c-def by (subst (asm) u, subst (asm)v, subst u, subst
v) auto

then have bc: b ! j dvd c by simp

have a ! i ∗ u ! i < a ! i ∗ dij i j
using less-dij and no0 and ij by (auto simp: in-set-conv-nth)

then have c < lcm (a ! i) (b ! j) by (auto simp: dij-def c-def)
moreover have lcm (a ! i) (b ! j) dvd c by (simp add: ac bc)
moreover have c > 0 using ‹u ! i > 0 › and no0 and ij by (auto simp:

c-def in-set-conv-nth)
ultimately show False using ac and bc by (auto dest: nat-dvd-not-less)

next
case 2
then obtain i and j where ij: i < m j < n

and less-dij: v ! j < eij i j
and u ≤v (zeroes m)[i := dij i j]
and v ≤v (zeroes n)[j := eij i j]
using assms by (auto simp: Special-Solutions-def sij-def unit-less)

then have u: u = (zeroes m)[i := u ! i] and v: v = (zeroes n)[j := v ! j]
by (auto simp: less-eq-def list-eq-iff-nth-eq)
(metis le-zero-eq length-list-update length-replicate rep-upd-unit)+

32

moreover have nonzero v
using ‹nonzero u› and ‹(u, v) ∈ Minimal-Solutions›

and Minimal-Solutions-imp-Solutions Solutions-snd-not-0 by blast
ultimately have v ! j > 0 using ij

by (metis gr-implies-not0 neq0-conv unit-less zero-less)

define c where c = b ! j ∗ v ! j
then have bc: b ! j dvd c by simp

have a · u = b · v using uv by (auto simp: Minimal-Solutions-def in-Solutions-iff)
then have c = a ! i ∗ u ! i

using ij unfolding c-def by (subst (asm) u, subst (asm)v, subst u, subst
v) auto

then have ac: a ! i dvd c by simp

have b ! j ∗ v ! j < b ! j ∗ eij i j
using less-dij and no0 and ij by (auto simp: in-set-conv-nth)

then have c < lcm (a ! i) (b ! j) by (auto simp: eij-def c-def)
moreover have lcm (a ! i) (b ! j) dvd c by (simp add: ac bc)
moreover have c > 0 using ‹v ! j > 0 › and no0 and ij by (auto simp:

c-def in-set-conv-nth)
ultimately show False using ac and bc by (auto dest: nat-dvd-not-less)

qed
qed

qed

lemma non-special-solution-non-minimal:
assumes (x, y) ∈ Solutions − Special-Solutions

and ij: i < m j < n
and x ! i ≥ dij i j and y ! j ≥ eij i j

shows (x, y) /∈ Minimal-Solutions
proof

assume min: (x, y) ∈ Minimal-Solutions
moreover have sij i j ∈ Solutions
using ij by (intro Special-Solutions-in-Solutions) (auto simp: Special-Solutions-def)

moreover have (case sij i j of (u, v) ⇒ u @ v) <v x @ y
using assms and min
apply (cases sij i j)
apply (auto simp: sij-def Special-Solutions-def)

by (metis List-Vector .le0 Minimal-Solutions-length le-append le-list-update less-append
order-vec.dual-order .strict-iff-order same-append-eq)

moreover have (case sij i j of (u, v) ⇒ nonzero u)
apply (auto simp: sij-def)
by (metis dij-neq-0 ij length-replicate nonzero-iff set-update-memI)

ultimately show False
by (auto simp: Minimal-Solutions-def)

qed

33

2.4 Huet’s conditions
definition cond-A xs ys ←→ (∀ x∈set xs. x ≤ maxne0 ys b)

definition cond-B x ←→
(∀ k≤m. take k a · take k x ≤ b · map (max-y (take k x)) [0 ..< n])

definition boundr x y ←→ (∀ j<n. y ! j ≤ max-y x j)

definition cond-D x y ←→ (∀ l≤n. take l b · take l y ≤ a · x)

2.5 New conditions: facilitating generation of candidates from
right to left

definition subdprodr y ←→
(∀ l≤n. take l b · take l y ≤ a · map (max-x (take l y)) [0 ..< m])

definition subdprodl x y ←→ (∀ k≤m. take k a · take k x ≤ b · y)

definition boundl x y ←→ (∀ i<m. x ! i ≤ max-x y i)

lemma boundr :
assumes min: (x, y) ∈ Minimal-Solutions

and (x, y) /∈ Special-Solutions
shows boundr x y

proof (unfold boundr-def , intro allI impI)
fix j
assume ass: j < n
have ln: m = length x ∧ n = length y

using assms Minimal-Solutions-def in-Solutions-iff min by auto
have is-sol: (x, y) ∈ Solutions

using assms Minimal-Solutions-def min by auto
have j-less-l: j < n

using assms ass le-less-trans by linarith
consider (notemp) Ej j x 6= {} | (empty) Ej j x = {}

by blast
then show y ! j ≤ max-y x j
proof (cases)

case notemp
have max-y-def : max-y x j = Min (Ej j x)

using j-less-l max-y-def notemp by auto
have fin-e: finite (Ej j x)

using finite-Ej [of j x] by auto
have e-def ′: ∀ e ∈ Ej j x. (∃ i<length x. x ! i ≥ dij i j ∧ eij i j − 1 = e)

using Ej-def [of j x] by auto

34

then have ∃ i<length x. x ! i ≥ dij i j ∧ eij i j − 1 = Min (Ej j x)
using notemp Min-in e-def ′ fin-e by blast

then obtain i where
i: i < length x x ! i ≥ dij i j eij i j − 1 = Min (Ej j x)
by blast

show ?thesis
proof (rule ccontr)

assume ¬ ?thesis
with non-special-solution-non-minimal [of x y i j]

and i and ln and assms and is-sol and j-less-l
have case sij i j of (u, v) ⇒ u @ v ≤v x @ y

by (force simp: max-y-def)
then have cs:case sij i j of (u, v) ⇒ u @ v <v x @ y
using assms by(auto simp: Special-Solutions-def) (metis append-eq-append-conv

i(1) j-less-l length-list-update length-replicate sij-def
order-vec.le-neq-trans ln prod.sel(1))

then obtain u v where
u-v: sij i j = (u, v) u @ v <v x @ y
by blast

have dij-gt0 : dij i j > 0
using assms(1) assms(2) dij-neq-0 i(1) j-less-l ln by auto

then have not-0-u: nonzero u
proof (unfold nonzero-iff)

have i < length (zeroes m) by (simp add: i(1) ln)
then show ∃ i∈set u. i 6= 0

by (metis (no-types) Pair-inject dij-gt0 set-update-memI sij-def u-v(1)
neq0-conv)

qed
then have sij i j ∈ Solutions

by (metis (mono-tags, lifting) Special-Solutions-def i(1)
Special-Solutions-in-Solutions j-less-l ln mem-Collect-eq u-v(1))

then show False
using assms cs u-v not-0-u Minimal-Solutions-def min by auto

qed
next

case empty
have ∀ y∈set y. y ≤ Max (set a)

using assms and max-coeff-bound and maxne0-le-Max
using le-trans by blast

then show ?thesis
using empty j-less-l ln max-y-def by auto

qed
qed

lemma boundl:
assumes min: (x, y) ∈ Minimal-Solutions

and (x, y) /∈ Special-Solutions
shows boundl x y

proof (unfold boundl-def , intro allI impI)

35

fix i
assume ass: i < m
have ln: n = length y ∧ m = length x

using assms Minimal-Solutions-def in-Solutions-iff min by auto
have is-sol: (x, y) ∈ Solutions

using assms Minimal-Solutions-def min by auto
have i-less-l: i < m

using assms ass le-less-trans by linarith
consider (notemp) Di i y 6= {} | (empty) Di i y = {}

by blast
then show x ! i ≤ max-x y i
proof (cases)

case notemp
have max-x-def : max-x y i = Min (Di i y)

using i-less-l max-x-def notemp by auto
have fin-e: finite (Di i y)

using finite-Di [of i y] by auto
have e-def ′: ∀ e ∈ Di i y. (∃ j<length y. y ! j ≥ eij i j ∧ dij i j − 1 = e)

using Di-def [of i y] by auto
then have ∃ j<length y. y ! j ≥ eij i j ∧ dij i j − 1 = Min (Di i y)

using notemp Min-in e-def ′ fin-e by blast
then obtain j where

j: j < length y y ! j ≥ eij i j dij i j − 1 = Min (Di i y)
by blast

show ?thesis
proof (rule ccontr)

assume ¬ ?thesis
with non-special-solution-non-minimal [of x y i j]

and j and ln and assms and is-sol and i-less-l
have case sij i j of (u, v) ⇒ u @ v ≤v x @ y

by (force simp: max-x-def)
then have cs: case sij i j of (u, v) ⇒ u @ v <v x @ y
using assms by(auto simp: Special-Solutions-def) (metis append-eq-append-conv

j(1) i-less-l length-list-update length-replicate sij-def
order-vec.le-neq-trans ln prod.sel(1))

then obtain u v where
u-v: sij i j = (u, v) u @ v <v x @ y
by blast

have dij-gt0 : dij i j > 0
using assms(1) assms(2) dij-neq-0 j(1) i-less-l ln by auto

then have not-0-u: nonzero u
proof (unfold nonzero-iff)

have i < length (zeroes m)
using ass by simp

then show ∃ i∈set u. i 6= 0
by (metis (no-types) Pair-inject dij-gt0 set-update-memI sij-def u-v(1)

neq0-conv)
qed
then have sij i j ∈ Solutions

36

by (metis (mono-tags, lifting) Special-Solutions-def j(1)
Special-Solutions-in-Solutions i-less-l ln mem-Collect-eq u-v(1))

then show False
using assms cs u-v not-0-u Minimal-Solutions-def min by auto

qed
next

case empty
have ∀ x∈set x. x ≤ Max (set b)

using assms and max-coeff-bound and maxne0-le-Max
using le-trans by blast

then show ?thesis
using empty i-less-l ln max-x-def by auto

qed
qed

lemma Solution-imp-cond-D:
assumes (x, y) ∈ Solutions
shows cond-D x y
using assms and dotprod-le-take by (auto simp: cond-D-def in-Solutions-iff)

lemma Solution-imp-subdprodl:
assumes (x, y) ∈ Solutions
shows subdprodl x y
using assms and dotprod-le-take
by (auto simp: subdprodl-def in-Solutions-iff) metis

theorem conds:
assumes min: (x, y) ∈ Minimal-Solutions
shows cond-A: cond-A x y

and cond-B: (x, y) /∈ Special-Solutions =⇒ cond-B x
and (x, y) /∈ Special-Solutions =⇒ boundr x y
and cond-D: cond-D x y
and subdprodr : (x, y) /∈ Special-Solutions =⇒ subdprodr y
and subdprodl: subdprodl x y

proof −
have sol: a · x = b · y and ln: m = length x ∧ n = length y

using min by (auto simp: Minimal-Solutions-def in-Solutions-iff)
then have ∀ i<m. x ! i ≤ maxne0 y b

by (metis min max-coeff-bound-right nth-mem)
then show cond-A x y

using min and le-less-trans by (auto simp: cond-A-def max-coeff-bound)
show (x, y) /∈ Special-Solutions =⇒ cond-B x
proof (unfold cond-B-def , intro allI impI)

fix k assume non-spec: (x, y) /∈ Special-Solutions and k: k ≤ m
from k have take k a · take k x ≤ a · x

using dotprod-le-take ln by blast
also have ... = b · y by fact
also have map-b-dot-p: ... ≤ b · map (max-y x) [0 ..<n] (is - ≤ - b · ?nt)

using non-spec and less-eq-def and ln and boundr and min

37

by (fastforce intro!: dotprod-le-right simp: boundr-def)
also have ... ≤ b · map (max-y (take k x)) [0 ..<n] (is - ≤ - · ?t)
proof −

have ∀ j<n. ?nt!j ≤ ?t!j
using min and ln and max-y-le-take and k by auto

then have ?nt ≤v ?t
using less-eq-def by auto

then show ?thesis
by (simp add: dotprod-le-right)

qed
finally show take k a · take k x ≤ b · map (max-y (take k x)) [0 ..<n]

by (auto simp: cond-B-def)
qed

show (x, y) /∈ Special-Solutions =⇒ subdprodr y
proof (unfold subdprodr-def , intro allI impI)

fix l assume non-spec: (x, y) /∈ Special-Solutions and l: l ≤ n
from l have take l b · take l y ≤ b · y

using dotprod-le-take ln by blast
also have ... = a · x by (simp add: sol)
also have map-b-dot-p: ... ≤ a · map (max-x y) [0 ..<m] (is - ≤ - a · ?nt)

using non-spec and less-eq-def and ln and boundl and min
by (fastforce intro!: dotprod-le-right simp: boundl-def)

also have ... ≤ a · map (max-x (take l y)) [0 ..<m] (is - ≤ - · ?t)
proof −

have ∀ i<m. ?nt ! i ≤ ?t ! i
using min and ln and max-x-le-take and l by auto

then have ?nt ≤v ?t
using less-eq-def by auto

then show ?thesis
by (simp add: dotprod-le-right)

qed
finally show take l b · take l y ≤ a · map (max-x (take l y)) [0 ..<m]

by (auto simp: cond-B-def)
qed

show (x, y) /∈ Special-Solutions =⇒ boundr x y
using boundr [of x y] and min by blast

show cond-D x y
using ln and dotprod-le-take and sol by (auto simp: cond-D-def)

show subdprodl x y
using ln and dotprod-le-take and sol by (force simp: subdprodl-def)

qed

lemma le-imp-Ej-subset:
assumes u ≤v x
shows Ej j u ⊆ Ej j x

38

using assms and le-trans by (force simp: Ej-def less-eq-def dij-def eij-def)

lemma le-imp-max-y-ge:
assumes u ≤v x

and length x ≤ m
shows max-y u j ≥ max-y x j
using assms and le-imp-Ej-subset and Min-Ej-le [of j, OF - - assms(2)]
by (metis Min.subset-imp Min-in emptyE finite-Ej max-y-def order-refl subsetCE)

lemma le-imp-Di-subset:
assumes v ≤v y
shows Di i v ⊆ Di i y
using assms and le-trans by (force simp: Di-def less-eq-def dij-def eij-def)

lemma le-imp-max-x-ge:
assumes v ≤v y

and length y ≤ n
shows max-x v i ≥ max-x y i
using assms and le-imp-Di-subset and Min-Di-le [of i, OF - - assms(2)]
by (metis Min.subset-imp Min-in emptyE finite-Di max-x-def order-refl subsetCE)

end

end

theory Sorted-Wrt
imports Main

begin

lemma sorted-wrt-filter :
sorted-wrt P xs =⇒ sorted-wrt P (filter Q xs)
by (induct xs) (auto)

lemma sorted-wrt-map-mono:
assumes sorted-wrt Q xs

and
∧

x y. Q x y =⇒ P (f x) (f y)
shows sorted-wrt P (map f xs)
using assms by (induct xs) (auto)

lemma sorted-wrt-concat-map-map:
assumes sorted-wrt Q xs

and sorted-wrt Q ys
and

∧
a x y. Q x y =⇒ P (f x a) (f y a)

and
∧

x y u v. x ∈ set xs =⇒ y ∈ set xs =⇒ Q u v =⇒ P (f x u) (f y v)
shows sorted-wrt P [f x y . y ← ys, x ← xs]
using assms by (induct ys)
(auto simp: sorted-wrt-append intro: sorted-wrt-map-mono [of Q])

39

lemma sorted-wrt-concat-map:
assumes sorted-wrt P (map h xs)

and
∧

x. x ∈ set xs =⇒ sorted-wrt P (map h (f x))
and

∧
x y u v. P (h x) (h y) =⇒ x ∈ set xs =⇒ y ∈ set xs =⇒ u ∈ set (f x)

=⇒ v ∈ set (f y) =⇒ P (h u) (h v)
shows sorted-wrt P (concat (map (map h ◦ f) xs))
using assms by (induct xs) (auto simp: sorted-wrt-append)

lemma sorted-wrt-map-distr :
assumes sorted-wrt (λx y. P x y) (map f xs)
shows sorted-wrt (λx y. P (f x) (f y)) xs
using assms
by (induct xs) (auto)

lemma sorted-wrt-tl:
xs 6= [] =⇒ sorted-wrt P xs =⇒ sorted-wrt P (tl xs)
by (cases xs) (auto)

end

3 Minimization
theory Minimize-Wrt

imports Sorted-Wrt
begin

fun minimize-wrt
where

minimize-wrt P [] = []
| minimize-wrt P (x # xs) = x # filter (P x) (minimize-wrt P xs)

lemma minimize-wrt-subset: set (minimize-wrt P xs) ⊆ set xs
by (induct xs) auto

lemmas minimize-wrtD = minimize-wrt-subset [THEN subsetD]

lemma sorted-wrt-minimize-wrt:
sorted-wrt P (minimize-wrt P xs)
by (induct xs) (auto simp: sorted-wrt-filter)

lemma sorted-wrt-imp-sorted-wrt-minimize-wrt:
sorted-wrt Q xs =⇒ sorted-wrt Q (minimize-wrt P xs)
by (induct xs) (auto simp: sorted-wrt-filter dest: minimize-wrtD)

lemma in-minimize-wrt-False:
assumes

∧
x y. Q x y =⇒ ¬ Q y x

and sorted-wrt Q xs
and x ∈ set (minimize-wrt P xs)
and ¬ P y x and Q y x and y ∈ set xs and y 6= x

40

shows False
using assms by (induct xs) (auto dest: minimize-wrtD)

lemma in-minimize-wrtI :
assumes x ∈ set xs

and ∀ y∈set xs. P y x
shows x ∈ set (minimize-wrt P xs)
using assms by (induct xs) auto

lemma minimize-wrt-eq:
assumes distinct xs and

∧
x y. x ∈ set xs =⇒ y ∈ set xs =⇒ P x y ←→ Q x y

∨ x = y
shows minimize-wrt P xs = minimize-wrt Q xs
using assms by (induct xs) (auto, metis contra-subsetD filter-cong minimize-wrt-subset)

lemma minimize-wrt-ni:
assumes x ∈ set xs

and x /∈ set (minimize-wrt Q xs)
shows ∃ y ∈ set xs. (¬ Q y x) ∧ x 6= y
using assms by (induct xs) (auto)

lemma in-minimize-wrtD:
assumes

∧
x y. Q x y =⇒ ¬ Q y x

and sorted-wrt Q xs
and x ∈ set (minimize-wrt P xs)
and

∧
x y. ¬ P x y =⇒ Q x y

and
∧

x. P x x
shows x ∈ set xs ∧ (∀ y∈set xs. P y x)
using in-minimize-wrt-False [OF assms(1−3)] and minimize-wrt-subset [of P

xs] and assms(3−5)
by blast

lemma in-minimize-wrt-iff :
assumes

∧
x y. Q x y =⇒ ¬ Q y x

and sorted-wrt Q xs
and

∧
x y. ¬ P x y =⇒ Q x y

and
∧

x. P x x
shows x ∈ set (minimize-wrt P xs) ←→ x ∈ set xs ∧ (∀ y∈set xs. P y x)
using assms and in-minimize-wrtD [of Q xs x P, OF assms(1 ,2) - assms(3 ,4)]
by (blast intro: in-minimize-wrtI)

lemma set-minimize-wrt:
assumes

∧
x y. Q x y =⇒ ¬ Q y x

and sorted-wrt Q xs
and

∧
x y. ¬ P x y =⇒ Q x y

and
∧

x. P x x
shows set (minimize-wrt P xs) = {x ∈ set xs. ∀ y∈set xs. P y x}
by (auto simp: in-minimize-wrt-iff [OF assms])

41

lemma minimize-wrt-append:
assumes ∀ x∈set xs. ∀ y∈set (xs @ ys). P y x
shows minimize-wrt P (xs @ ys) = xs @ filter (λy. ∀ x∈set xs. P x y) (minimize-wrt

P ys)
using assms by (induct xs) (auto intro: filter-cong)

end

theory Simple-Algorithm
imports

Linear-Diophantine-Equations
Minimize-Wrt

begin

lemma concat-map-nth0 : xs 6= [] =⇒ f (xs ! 0) 6= [] =⇒ concat (map f xs) ! 0 =
f (xs ! 0) ! 0

by (induct xs) (auto simp: nth-append)

3.1 Reverse-Lexicographic Enumeration of Potential Mini-
mal Solutions

fun rlex2 :: (nat list × nat list) ⇒ (nat list × nat list) ⇒ bool (infix ‹<rlex2›
50)

where
(xs, ys) <rlex2 (us, vs) ←→ xs @ ys <rlex us @ vs

lemma rlex2-irrefl:
¬ x <rlex2 x
by (cases x) (auto simp: rlex-irrefl)

lemma rlex2-not-sym: x <rlex2 y =⇒ ¬ y <rlex2 x
using rlex-not-sym by (cases x; cases y; simp)

lemma less-imp-rlex2 : ¬ (case x of (x, y) ⇒ λ(u, v). ¬ x @ y <v u @ v) y =⇒
x <rlex2 y

using less-imp-rlex by (cases x; cases y; auto)

Generate all lists (of natural numbers) of length n with elements bounded
by B.
fun gen :: nat ⇒ nat ⇒ nat list list

where
gen B 0 = [[]]
| gen B (Suc n) = [x#xs . xs ← gen B n, x ← [0 ..< B + 1]]

definition generate A B m n = tl [(x, y) . y ← gen B n, x ← gen A m]

definition check a b = filter (λ(x, y). a · x = b · y)

42

definition minimize = minimize-wrt (λ(x, y) (u, v). ¬ x @ y <v u @ v)

definition solutions a b =
(let A = Max (set b); B = Max (set a); m = length a; n = length b
in minimize (check a b (generate A B m n)))

lemma set-gen: set (gen B n) = {xs. length xs = n ∧ (∀ i<n. xs ! i ≤ B)} (is -
= ?A n)
proof (induct n)

case [simp]: (Suc n)
{ fix xs assume xs ∈ ?A (Suc n)

then have xs ∈ set (gen B (Suc n))
by (cases xs) (force simp: All-less-Suc2)+ }

then show ?case by (auto simp: less-Suc-eq-0-disj)
qed simp

abbreviation gen2 A B m n ≡ [(x, y) . y ← gen B n, x ← gen A m]

lemma sorted-wrt-gen:
sorted-wrt (<rlex) (gen B n)

by (induction n)
(auto simp: rlex-Cons sorted-wrt-append sorted-wrt-map rlex-irrefl
intro!: sorted-wrt-concat-map [where h = id, simplified])

lemma sorted-wrt-gen2 : sorted-wrt (<rlex2) (gen2 A B m n)
by (intro sorted-wrt-concat-map-map [where Q = (<rlex)] sorted-wrt-gen)
(auto simp: set-gen rlex-def intro: lex-append-leftI lex-append-rightI)

lemma gen-ne [simp]: gen B n 6= [] by (induct n) auto

lemma gen2-ne: gen2 A B m n 6= [] by auto

lemma sorted-wrt-generate: sorted-wrt (<rlex2) (generate A B m n)
by (auto simp: generate-def intro: sorted-wrt-tl sorted-wrt-gen2)

abbreviation check-generate a b ≡ check a b (generate (Max (set b)) (Max (set
a)) (length a) (length b))

lemma sorted-wrt-check-generate: sorted-wrt (<rlex2) (check-generate a b)
by (auto simp: check-def intro: sorted-wrt-filter sorted-wrt-generate)

lemma in-tl-gen2 : x ∈ set (tl (gen2 A B m n)) =⇒ x ∈ set (gen2 A B m n)
by (rule list.set-sel) simp

lemma gen-nth0 [simp]: gen B n ! 0 = zeroes n
by (induct n) (auto simp: nth-append concat-map-nth0)

lemma gen2-nth0 [simp]:

43

gen2 A B m n ! 0 = (zeroes m, zeroes n)
by (auto simp: concat-map-nth0)

lemma set-gen2 :
set (gen2 A B m n) = {(x, y). length x = m ∧ length y = n ∧ (∀ i<m. x ! i ≤

A) ∧ (∀ j<n. y ! j ≤ B)}
by (auto simp: set-gen)

lemma gen2-unique:
assumes i < j

and j < length (gen2 A B m n)
shows gen2 A B m n ! i 6= gen2 A B m n ! j
using sorted-wrt-nth-less [OF sorted-wrt-gen2 assms]
by (auto simp: rlex2-irrefl)

lemma zeroes-ni-tl-gen2 :
(zeroes m, zeroes n) /∈ set (tl (gen2 A B m n))

proof −
have gen2 A B m n ! 0 = (zeroes m, zeroes n) by (auto simp: generate-def)
with gen2-unique[of 0 - A m B n] show ?thesis

by (metis (no-types, lifting) Suc-eq-plus1 in-set-conv-nth length-tl less-diff-conv
nth-tl zero-less-Suc)
qed

lemma set-generate:
set (generate A B m n) = {(x, y). (x, y) 6= (zeroes m, zeroes n) ∧ (x, y) ∈ set

(gen2 A B m n)}
proof

show set (generate A B m n)
⊆ {(x, y).(x, y) 6= (zeroes m, zeroes n) ∧ (x, y) ∈ set (gen2 A B m n)}
using in-tl-gen2 and mem-Collect-eq and zeroes-ni-tl-gen2 by (auto simp:

generate-def)
next

have (zeroes m, zeroes n) = hd (gen2 A B m n)
by (simp add: hd-conv-nth)

moreover have set (gen2 A B m n) = set (generate A B m n) ∪ {(zeroes m,
zeroes n)}

by (metis Un-empty-right generate-def Un-insert-right gen2-ne calculation list.exhaust-sel
list.simps(15))

ultimately show {(x, y). (x, y) 6= (zeroes m, zeroes n) ∧ (x, y) ∈ set (gen2 A
B m n)}
⊆ set (generate A B m n)
by blast

qed

lemma set-check-generate:
set (check-generate a b) = {(x, y).
(x, y) 6= (zeroes (length a), zeroes (length b)) ∧
length x = length a ∧ length y = length b ∧ a · x = b · y ∧

44

(∀ i<length a. x ! i ≤ Max (set b)) ∧ (∀ j<length b. y ! j ≤ Max (set a))}
unfolding check-def and set-filter and set-generate and set-gen2 by auto

lemma set-minimize-check-generate:
set (minimize (check-generate a b)) =
{(x, y)∈set (check-generate a b). ¬ (∃ (u, v)∈set (check-generate a b). u @ v <v

x @ y)}
unfolding minimize-def
by (subst set-minimize-wrt [OF - sorted-wrt-check-generate]) (auto dest: rlex-not-sym

less-imp-rlex)

lemma set-solutions-iff :
set (solutions a b) =
{(x, y) ∈ set (check-generate a b). ¬ (∃ (u, v)∈set (check-generate a b). u @ v

<v x @ y)}
by (auto simp: solutions-def set-minimize-check-generate)

3.1.1 Completeness: every minimal solution is generated by solu-
tions

lemma (in hlde) solutions-complete:
Minimal-Solutions ⊆ set (solutions a b)

proof (rule subrelI)
let ?A = Max (set b) and ?B = Max (set a)
fix x y assume min: (x, y) ∈ Minimal-Solutions
then have (x, y) ∈ set (check a b (generate ?A ?B m n))
by (auto simp: Minimal-Solutions-alt-def set-check-generate less-eq-def in-Solutions-iff)

moreover have ∀ (u, v) ∈ set (check a b (generate ?A ?B m n)). ¬ u @ v <v x
@ y

using min and no0
by (auto simp: check-def set-generate neq-0-iff ′ set-gen nonzero-iff dest!: Mini-

mal-Solutions-min)
ultimately show (x, y) ∈ set (solutions a b) by (auto simp: set-solutions-iff)

qed

3.1.2 Correctness: solutions generates only minimal solutions.
lemma (in hlde) solutions-sound:

set (solutions a b) ⊆ Minimal-Solutions
proof (rule subrelI)

fix x y assume sol: (x, y) ∈ set (solutions a b)
show (x, y) ∈ Minimal-Solutions
proof (rule Minimal-SolutionsI ′)

show ∗: (x, y) ∈ Solutions
using sol by (auto simp: set-solutions-iff in-Solutions-iff check-def set-generate

set-gen)
show nonzero x

using sol and nonzero-iff and replicate-eqI and nonzero-Solutions-iff [OF
∗]

45

by (fastforce simp: solutions-def minimize-def check-def set-generate set-gen
dest!: minimize-wrtD)

show ¬ (∃ (u, v)∈Minimal-Solutions. u @ v <v x @ y)
proof

have min-cg: (x, y) ∈ set (minimize (check-generate a b))
using sol by (auto simp: solutions-def)
note ∗ = in-minimize-wrt-False [OF - sorted-wrt-check-generate min-cg

[unfolded minimize-def]]

assume ∃ (u, v)∈Minimal-Solutions. u @ v <v x @ y
then obtain u and v where (u, v) ∈ Minimal-Solutions and less: u @ v <v

x @ y by blast
then have (u, v) ∈ set (solutions a b) by (auto intro: solutions-complete

[THEN subsetD])
then have (u, v) ∈ set (check-generate a b)

by (auto simp: solutions-def minimize-def dest: minimize-wrtD)
from ∗ [OF - - - this] and less show False

using less-imp-rlex and rlex-not-sym by force
qed

qed
qed

lemma (in hlde) set-solutions [simp]: set (solutions a b) = Minimal-Solutions
using solutions-sound and solutions-complete by blast

end

4 Computing Minimal Complete Sets of Solutions
theory Algorithm

imports Simple-Algorithm
begin

lemma all-Suc-le-conv: (∀ i≤Suc n. P i) ←→ P 0 ∧ (∀ i≤n. P (Suc i))
by (metis less-Suc-eq-0-disj nat-less-le order-refl)

lemma concat-map-filter-filter :
assumes

∧
x. x ∈ set xs =⇒ ¬ Q x =⇒ filter P (f x) = []

shows concat (map (filter P ◦ f) (filter Q xs)) = concat (map (filter P ◦ f) xs)
using assms by (induct xs) simp-all

lemma filter-pairs-conj:
filter (λ(x, y). P x y ∧ Q y) xs = filter (λ(x, y). P x y) (filter (Q ◦ snd) xs)
by (induct xs) auto

46

lemma concat-map-filter :
concat (map f (filter P xs)) = concat (map (λx. if P x then f x else []) xs)
by (induct xs) simp-all

fun alls
where

alls B [] = [([], 0)]
| alls B (a # as) = [(x # xs, s + a ∗ x). (xs, s) ← alls B as, x ← [0 ..< B + 1]]

lemma alls-ne [simp]:
alls B as 6= []
by (induct as)
(auto, metis (no-types, lifting) append-is-Nil-conv case-prod-conv list.set-intros(1)

neq-Nil-conv old.prod.exhaust)

lemma set-alls: set (alls B a) =
{(x, s). length x = length a ∧ (∀ i<length a. x ! i ≤ B) ∧ s = a · x}
(is ?L a = ?R a)

proof
show ?L a ⊆ ?R a by (induct a) (auto simp: nth-Cons split: nat.splits)

next
show ?R a ⊆ ?L a
proof (induct a)

case (Cons a as)
show ?case
proof

fix xs ′ assume xs ′ ∈ ?R (a # as)
then obtain x and xs where [simp]: xs ′ = (x # xs, (a # as) · (x # xs))

and length as = length xs
and B: x ≤ B ∀ i<length as. xs ! i ≤ B
by (cases xs ′, case-tac a) (auto simp: All-less-Suc2)

then have (xs, as · xs) ∈ ?L as using Cons by auto
then show xs ′ ∈ ?L (a # as)

using B
apply auto
apply (rule bexI [of - (xs, as · xs)])
apply auto

done
qed

qed auto
qed

lemma alls-nth0 [simp]: alls A as ! 0 = (zeroes (length as), 0)
by (induct as) (auto simp: nth-append concat-map-nth0)

lemma alls-Cons-tl-conv: alls A as = (zeroes (length as), 0) # tl (alls A as)
by (rule nth-equalityI) (auto simp: nth-Cons nth-tl split: nat.splits)

lemma sorted-wrt-alls:

47

sorted-wrt (<rlex) (map fst (alls B xs))
by (induct xs) (auto simp: map-concat rlex-Cons sorted-wrt-append

intro!: sorted-wrt-concat-map sorted-wrt-map-mono [of (<)])

definition alls2 A B a b = [(xs, ys). ys ← alls B b, xs ← alls A a]

lemma alls2-ne [simp]:
alls2 A B a b 6= []
by (auto simp: alls2-def) (metis alls-ne list.set-intros(1) neq-Nil-conv surj-pair)

lemma set-alls2 :
set (alls2 A B a b) = {((x, s), (y, t)). length x = length a ∧ length y = length b
∧

(∀ i<length a. x ! i ≤ A) ∧ (∀ j<length b. y ! j ≤ B) ∧ s = a · x ∧ t = b · y}
by (auto simp: alls2-def set-alls)

lemma alls2-nth0 [simp]: alls2 A B as bs ! 0 = ((zeroes (length as), 0), (zeroes
(length bs), 0))

by (auto simp: alls2-def concat-map-nth0)

lemma alls2-Cons-tl-conv: alls2 A B as bs =
((zeroes (length as), 0), (zeroes (length bs), 0)) # tl (alls2 A B as bs)
apply (rule nth-equalityI)
apply (auto simp: alls2-def nth-Cons nth-tl length-concat concat-map-nth0 split:

nat.splits)
apply (cases alls B bs; simp)
done

abbreviation gen2
where

gen2 A B a b ≡ map (λ(x, y). (fst x, fst y)) (alls2 A B a b)

lemma sorted-wrt-gen2 :
sorted-wrt (<rlex2) (gen2 A B a b)
apply (rule sorted-wrt-map-mono [of λ(x, y) (u, v). (fst x, fst y) <rlex2 (fst u,

fst v)])
apply (auto simp: alls2-def map-concat)

apply (fold rlex2 .simps)
apply (rule sorted-wrt-concat-map-map)

apply (rule sorted-wrt-map-distr , rule sorted-wrt-alls)
apply (rule sorted-wrt-map-distr , rule sorted-wrt-alls)

apply (auto simp: rlex-def set-alls intro: lex-append-leftI lex-append-rightI)
done

definition generate ′

where
generate ′ A B a b = tl (map (λ(x, y). (fst x, fst y)) (alls2 A B a b))

lemma sorted-wrt-generate ′:

48

sorted-wrt (<rlex2) (generate ′ A B a b)
by (auto simp: generate ′-def sorted-wrt-gen2 sorted-wrt-tl)

lemma gen2-nth0 [simp]:
gen2 A B a b ! 0 = (zeroes (length a), zeroes (length b))
by auto

lemma gen2-ne [simp, intro]: gen2 m n b c 6= [] by auto

lemma in-generate ′: x ∈ set (generate ′ m n c b) =⇒ x ∈ set (gen2 m n c b)
unfolding generate ′-def by (rule list.set-sel) simp

definition cond-cons P = (λ(ys, s). case ys of [] ⇒ True | ys ⇒ P ys s)

lemma cond-cons-simp [simp]:
cond-cons P ([], s) = True
cond-cons P (x # xs, s) = P (x # xs) s
by (auto simp: cond-cons-def)

fun suffs
where

suffs P as (xs, s) ←→
length xs = length as ∧
s = as · xs ∧
(∀ i≤length xs. cond-cons P (drop i xs, drop i as · drop i xs))

declare suffs.simps [simp del]

lemma suffs-Nil [simp]: suffs P [] ([], s) ←→ s = 0
by (auto simp: suffs.simps)

lemma suffs-Cons:
suffs P (a # as) (x # xs, s) ←→

s = a ∗ x + as · xs ∧ cond-cons P (x # xs, s) ∧ suffs P as (xs, as · xs)
apply (auto simp: suffs.simps cond-cons-def split: list.splits)

apply force
apply (metis Suc-le-mono drop-Suc-Cons)
by (metis One-nat-def Suc-le-mono Suc-pred dotprod-Cons drop-Cons ′ le-0-eq

not-le-imp-less)

4.1 The Algorithm
fun maxne0-impl

where
maxne0-impl [] a = 0
| maxne0-impl x [] = 0
| maxne0-impl (x#xs) (a#as) = (if x > 0 then max a (maxne0-impl xs as) else

maxne0-impl xs as)

lemma maxne0-impl:

49

assumes length x = length a
shows maxne0-impl x a = maxne0 x a
using assms by (induct x a rule: list-induct2) (auto)

lemma maxne0-impl-le:
maxne0-impl x a ≤ Max (set (a::nat list))
apply (induct x a rule: maxne0-impl.induct)
apply (auto simp add: max.coboundedI2)
by (metis List.finite-set Max-insert Nat.le0 le-max-iff-disj maxne0-impl.elims

maxne0-impl.simps(2) set-empty)

context
fixes a b :: nat list

begin

definition special-solutions :: (nat list × nat list) list
where

special-solutions = [sij a b i j . i ← [0 ..< length a], j ← [0 ..< length b]]

definition big-e :: nat list ⇒ nat ⇒ nat list
where

big-e x j = map (λi. eij a b i j − 1) (filter (λi. x ! i ≥ dij a b i j) [0 ..< length
x])

definition big-d :: nat list ⇒ nat ⇒ nat list
where

big-d y i = map (λj. dij a b i j − 1) (filter (λj. y ! j ≥ eij a b i j) [0 ..< length
y])

definition big-d ′ :: nat list ⇒ nat ⇒ nat list
where

big-d ′ y i =
(let l = length y; n = length b in
if l > n then [] else
(let k = n − l in
map (λj. dij a b i (j + k) − 1) (filter (λj. y ! j ≥ eij a b i (j + k)) [0 ..<

length y])))

definition max-y-impl :: nat list ⇒ nat ⇒ nat
where

max-y-impl x j =
(if j < length b ∧ big-e x j 6= [] then Min (set (big-e x j))
else Max (set a))

definition max-x-impl :: nat list ⇒ nat ⇒ nat
where

max-x-impl y i =
(if i < length a ∧ big-d y i 6= [] then Min (set (big-d y i))
else Max (set b))

50

definition max-x-impl ′ :: nat list ⇒ nat ⇒ nat
where

max-x-impl ′ y i =
(if i < length a ∧ big-d ′ y i 6= [] then Min (set (big-d ′ y i))
else Max (set b))

definition cond-a :: nat list ⇒ nat list ⇒ bool
where

cond-a xs ys ←→ (∀ x∈set xs. x ≤ maxne0 ys b)

definition cond-b :: nat list ⇒ bool
where

cond-b xs ←→ (∀ k≤length a.
take k a · take k xs ≤ b · (map (max-y-impl (take k xs)) [0 ..< length b]))

definition boundr-impl :: nat list ⇒ nat list ⇒ bool
where

boundr-impl x y ←→ (∀ j<length b. y ! j ≤ max-y-impl x j)

definition cond-d :: nat list ⇒ nat list ⇒ bool
where

cond-d xs ys ←→ (∀ l≤length b. take l b · take l ys ≤ a · xs)

definition subdprodr-impl :: nat list ⇒ bool
where

subdprodr-impl ys ←→ (∀ l≤length b.
take l b · take l ys ≤ a · map (max-x-impl (take l ys)) [0 ..< length a])

definition subdprodl-impl :: nat list ⇒ nat list ⇒ bool
where

subdprodl-impl x y ←→ (∀ k≤length a. take k a · take k x ≤ b · y)

definition boundl-impl x y ←→ (∀ i<length a. x ! i ≤ max-x-impl y i)

definition static-bounds
where

static-bounds x y ←→
(let mx = maxne0-impl y b; my = maxne0-impl x a in
(∀ x∈set x. x ≤ mx) ∧ (∀ y∈set y. y ≤ my))

definition check-cond =
(λ(x, y). static-bounds x y ∧ a · x = b · y ∧ boundr-impl x y ∧ subdprodl-impl x

y ∧ subdprodr-impl y)

definition check ′ = filter check-cond

definition non-special-solutions =
(let A = Max (set b); B = Max (set a)

51

in minimize (check ′ (generate ′ A B a b)))

definition solve = special-solutions @ non-special-solutions

end

lemma sorted-wrt-check-generate ′:
sorted-wrt (<rlex2) (check ′ a b (generate ′ A B a b))
by (auto simp: check ′-def intro!: sorted-wrt-filter sorted-wrt-generate ′ sorted-wrt-tl)

lemma big-e:
set (big-e a b xs j) = hlde-ops.Ej a b j xs
by (auto simp: hlde-ops.Ej-def big-e-def)

lemma big-d:
set (big-d a b ys i) = hlde-ops.Di a b i ys
by (auto simp: hlde-ops.Di-def big-d-def)

lemma big-d ′:
length ys ≤ length b =⇒ set (big-d ′ a b ys i) = hlde-ops.Di ′ a b i ys
by (auto simp: hlde-ops.Di ′-def big-d ′-def Let-def)

lemma max-y-impl:
max-y-impl a b x j = hlde-ops.max-y a b x j
by (simp add: max-y-impl-def big-e hlde-ops.max-y-def set-empty [symmetric])

lemma max-x-impl:
max-x-impl a b y i = hlde-ops.max-x a b y i
by (simp add: max-x-impl-def big-d hlde-ops.max-x-def set-empty [symmetric])

lemma max-x-impl ′:
assumes length y ≤ length b
shows max-x-impl ′ a b y i = hlde-ops.max-x ′ a b y i
by (simp add: max-x-impl ′-def big-d ′ [OF assms] hlde-ops.max-x ′-def set-empty

[symmetric])

lemma (in hlde) cond-a [simp]: cond-a b x y = cond-A x y
by (simp add: cond-a-def cond-A-def)

lemma (in hlde) cond-b [simp]: cond-b a b x = cond-B x
using max-y-impl by (auto simp: cond-b-def cond-B-def) presburger+

lemma (in hlde) boundr-impl [simp]: boundr-impl a b x y = boundr x y
by (simp add: boundr-impl-def boundr-def max-y-impl)

lemma (in hlde) cond-d [simp]: cond-d a b x y = cond-D x y
by (simp add: cond-d-def cond-D-def)

lemma (in hlde) subdprodr-impl [simp]: subdprodr-impl a b y = subdprodr y

52

using max-x-impl by (auto simp: subdprodr-impl-def subdprodr-def) presburger+

lemma (in hlde) subdprodl-impl [simp]: subdprodl-impl a b x y = subdprodl x y
by (simp add: subdprodl-impl-def subdprodl-def)

lemma (in hlde) cond-bound-impl [simp]: boundl-impl a b x y = boundl x y
by (simp add: boundl-impl-def boundl-def max-x-impl)

lemma (in hlde) check [simp]:
check ′ a b =

filter (λ(x, y). static-bounds a b x y ∧ a · x = b · y ∧ boundr x y ∧
subdprodl x y ∧
subdprodr y)

by (simp add: check ′-def check-cond-def)

conditions B, C, and D from Huet as well as "subdprodr" and "subdprodl"
are preserved by smaller solutions
lemma (in hlde) le-imp-conds:

assumes le: u ≤v x v ≤v y
and len: length x = m length y = n

shows cond-B x =⇒ cond-B u
and boundr x y =⇒ boundr u v
and a · u = b · v =⇒ cond-D x y =⇒ cond-D u v
and a · u = b · v =⇒ subdprodl x y =⇒ subdprodl u v
and subdprodr y =⇒ subdprodr v

proof −
assume B: cond-B x
have length u = m using len and le by (auto)
show cond-B u
proof (unfold cond-B-def , intro allI impI)

fix k
assume k: k ≤ m
moreover have ∗: take k u ≤v take k x if k ≤ m for k

using le and that by (intro le-take) (auto simp: len)
ultimately have take k a · take k u ≤ take k a · take k x

by (intro dotprod-le-right) (auto simp: len)
also have . . . ≤ b · map (max-y (take k x)) [0 ..<n]

using k and B by (auto simp: cond-B-def)
also have . . . ≤ b · map (max-y (take k u)) [0 ..<n]

using le-imp-max-y-ge [OF ∗ [OF k]]
using k by (auto simp: len intro!: dotprod-le-right less-eqI)

finally show take k a · take k u ≤ b · map (max-y (take k u)) [0 ..<n] .
qed

next
assume subdprodr : subdprodr y
have length v = n using len and le by (auto)
show subdprodr v
proof (unfold subdprodr-def , intro allI impI)

fix l

53

assume l: l ≤ n
moreover have ∗: take l v ≤v take l y if l ≤ n for l

using le and that by (intro le-take) (auto simp: len)
ultimately have take l b · take l v ≤ take l b · take l y

by (intro dotprod-le-right) (auto simp: len)
also have . . . ≤ a · map (max-x (take l y)) [0 ..<m]

using l and subdprodr by (auto simp: subdprodr-def)
also have . . . ≤ a · map (max-x (take l v)) [0 ..<m]

using le-imp-max-x-ge [OF ∗ [OF l]]
using l by (auto simp: len intro!: dotprod-le-right less-eqI)

finally show take l b · take l v ≤ a · map (max-x (take l v)) [0 ..<m] .
qed

next
assume C : boundr x y
show boundr u v

using le-imp-max-y-ge [OF ‹u ≤v x›] and C and le
by (auto simp: boundr-def len less-eq-def) (meson order-trans)

next
assume a · u = b · v and cond-D x y
then show cond-D u v

using le by (auto simp: cond-D-def len le-length intro: dotprod-le-take)
next

assume a · u = b · v and subdprodl x y
then show subdprodl u v

using le by (metis subdprodl-def dotprod-le-take le-length len(1))
qed

lemma (in hlde) special-solutions [simp]:
shows set (special-solutions a b) = Special-Solutions

proof −
have set (special-solutions a b) ⊆ Special-Solutions

by (auto simp: Special-Solutions-def special-solutions-def) (blast)
moreover have Special-Solutions ⊆ set (special-solutions a b)

by (auto simp: Special-Solutions-def special-solutions-def)
ultimately show ?thesis ..

qed

lemma set-gen2 :
set (gen2 A B a b) = {(x, y). x ≤v replicate (length a) A ∧ y ≤v replicate (length

b) B}
(is ?L = ?R)

proof (intro equalityI subrelI)
fix xs ys assume (xs, ys) ∈ ?R
then have ∀ x∈set xs. x ≤ A and ∀ y∈set ys. y ≤ B

and length xs = length a and length ys = length b
by (auto simp: less-eq-def in-set-conv-nth)

then have ((xs, a · xs), (ys, b · ys)) ∈ set (alls2 A B a b) by (auto simp:
set-alls2)

then have (λ(x, y). (fst x, fst y)) ((xs, a · xs), (ys, b · ys)) ∈ (λ(x, y). (fst x,

54

fst y)) ‘ set (alls2 A B a b)
by (intro imageI)

then show (xs, ys) ∈ ?L by simp
qed (auto simp: less-eq-def set-alls2)

lemma set-gen2 ′:
(λ(x, y). (fst x, fst y)) ‘ set (alls2 A B a b) =
{(x, y). x ≤v replicate (length a) A ∧ y ≤v replicate (length b) B}

using set-gen2 by simp

lemma (in hlde) in-non-special-solutions:
assumes (x, y) ∈ set (non-special-solutions a b)
shows (x, y) ∈ Solutions
using assms
by (auto dest!: minimize-wrtD in-generate ′

simp: non-special-solutions-def in-Solutions-iff minimize-def set-alls2)

lemma generate-unique:
assumes i < j

and j < length (generate A B a b)
shows generate A B a b ! i 6= generate A B a b ! j
using sorted-wrt-nth-less [OF sorted-wrt-generate assms]
by (auto simp: rlex2-irrefl)

lemma gen2-unique:
assumes i < j

and j < length (gen2 A B a b)
shows gen2 A B a b ! i 6= gen2 A B a b ! j
using sorted-wrt-nth-less [OF sorted-wrt-gen2 assms]
by (auto simp: rlex2-irrefl)

lemma zeroes-ni-generate ′:
(zeroes (length a), zeroes (length b)) /∈ set (generate ′ A B a b)

proof −
have gen2 A B a b ! 0 = (zeroes (length a), zeroes (length b)) by (auto)
with gen2-unique [of 0 - A B a b] show ?thesis

by (auto simp: in-set-conv-nth nth-tl generate ′-def)
(metis One-nat-def Suc-eq-plus1 less-diff-conv zero-less-Suc)

qed

lemma set-generate ′:
set (generate ′ A B a b) =
{(x, y). (x, y) 6= (zeroes (length a), zeroes (length b)) ∧ (x, y) ∈ set (gen2 A B

a b)}
proof

show set (generate ′ A B a b)
⊆ {(x, y).(x, y) 6= (zeroes (length a), zeroes (length b)) ∧ (x, y) ∈ set (gen2

A B a b)}
using in-generate ′ and mem-Collect-eq and zeroes-ni-generate ′ by (auto)

55

next
have (zeroes (length a), zeroes (length b)) = hd (gen2 A B a b)

by (simp add: hd-conv-nth)
moreover have set (gen2 A B a b) = set (tl (gen2 A B a b)) ∪ {(zeroes (length

a), zeroes (length b))}
by (metis Un-empty-right Un-insert-right gen2-ne calculation list.exhaust-sel

list.simps(15))
ultimately show {(x, y). (x, y) 6= (zeroes (length a), zeroes (length b)) ∧ (x,

y) ∈ set (gen2 A B a b)}
⊆ set (generate ′ A B a b)

unfolding generate ′-def by blast
qed

lemma set-generate ′′:
set (generate ′ A B a b) =
{(x, y). (x, y) 6= (zeroes (length a), zeroes (length b)) ∧ x ≤v replicate (length a)

A ∧ y ≤v replicate (length b) B}
by (simp add: set-generate ′ set-gen2 ′)

lemma (in hlde) zeroes-ni-non-special-solutions:
shows (zeroes m, zeroes n) /∈ set (non-special-solutions a b)

proof −
define All-lex where

All-lex: All-lex = gen2 (Max (set b)) (Max (set a)) a b
define z where z: z = (zeroes m, zeroes n)
have set (non-special-solutions a b) ⊆ set (tl (All-lex))
by (auto simp: All-lex generate ′-def non-special-solutions-def minimize-def dest:

minimize-wrtD)
moreover have z /∈ set (tl (All-lex))

using zeroes-ni-generate ′ All-lex z by (auto simp: generate ′-def)
ultimately show ?thesis

using z by blast
qed

4.1.1 Correctness: solve generates only minimal solutions.
lemma (in hlde) solve-subset-Minimal-Solutions:

shows set (solve a b) ⊆ Minimal-Solutions
proof (rule subrelI)

let ?a = Max (set a) and ?b = Max (set b)
fix x y
assume ass: (x, y) ∈ set (solve a b)
then consider (x, y) ∈ set (special-solutions a b) | (x, y) ∈ set (non-special-solutions

a b)
unfolding solve-def and set-append by blast

then show (x, y) ∈ Minimal-Solutions
proof (cases)

case 1
then have (x, y) ∈ Special-Solutions

56

unfolding special-solutions .
then show ?thesis

by (simp add: Special-Solutions-in-Minimal-Solutions)
next

let ?xs = [(x, y) ← generate ′ ?b ?a a b.
static-bounds a b x y ∧ a · x = b · y ∧ boundr x y //∧//////////cond-B//x///∧/////////cond-D///x//y ∧
subdprodl x y ∧
subdprodr y]

case 2
then have conds: ∀ e∈set x . e ≤ Max (set b) boundr x y

subdprodl x y subdprodr y
and xs: (x, y) ∈ set (minimize ?xs)
by (auto simp: non-special-solutions-def minimize-def set-alls2

dest!: minimize-wrtD in-generate ′)
(metis in-set-conv-nth)

have sol: (x, y) ∈ Solutions
using ass by (auto simp: solve-def Special-Solutions-in-Solutions in-non-special-solutions)
then have len: length x = m length y = n by (auto simp: Solutions-def)
have nonzero x

using sol Solutions-snd-not-0 [of y x]
by (metis 2 eq-0-iff len nonzero-Solutions-iff nonzero-iff zeroes-ni-non-special-solutions)
moreover have ¬ (∃ (u, v) ∈ Minimal-Solutions. u @ v <v x @ y)
proof

let ?P = λ(x, y) (u, v). ¬ x @ y <v u @ v
let ?Q = (λ(x, y). static-bounds a b x y ∧ a · x = b · y ∧ boundr x y //∧//////////cond-B

/x///∧//////////cond-D//x//y ∧
subdprodl x y ∧
subdprodr y)

note sorted = sorted-wrt-generate ′ [THEN sorted-wrt-filter , of ?Q ?b ?a a b]
note ∗ = in-minimize-wrt-False [OF - sorted, of (x, y) ?P, OF - xs [unfolded

minimize-def]]

assume ∃ (u, v)∈Minimal-Solutions. u @ v <v x @ y
then obtain u and v where

uv: (u, v) ∈ Minimal-Solutions and less: u @ v <v x @ y by blast
from uv and less have le: u ≤v x v ≤v y and sol ′: a · u = b · v

and nonzero: nonzero u
using sol by (auto simp: Minimal-Solutions-def Solutions-def elim!: less-append-cases)

with le-imp-conds(2 ,4 ,5) [OF le] and conds(2−)
have conds ′: ∀ e∈set u. e ≤ Max (set b) boundr u v

subdprodl u v subdprodr v
using conds(1 ,3 ,4) by (auto simp: len less-eq-def) (metis in-set-conv-nth

le-trans len(1))
moreover have static-bounds a b u v

using max-coeff-bound [OF uv] and Minimal-Solutions-length [OF uv]
by (auto simp: static-bounds-def maxne0-impl)

moreover have x ≤v replicate m ?b
using xs set-generate ′ [of Max (set b) Max (set a) a b]

57

cond-A-def conds(1) le-replicateI len by metis
moreover have y ≤v replicate n ?a

using xs by (auto simp: less-eqI minimize-def set-generate ′ set-alls2 dest!:
minimize-wrtD)

ultimately have (u, v) ∈ set ?xs
using sol ′ and set-generate ′′ [of ?b ?a a b] and uv [THEN Minimal-Solutions-imp-Solutions]

and nonzero
by (simp add: set-gen2) (metis in-set-replicate le order-vec.dual-order .trans

nonzero-iff)
from ∗ [OF - - - this] and less show False

using less-imp-rlex and rlex-not-sym by force
qed
ultimately show ?thesis by (simp add: Minimal-SolutionsI ′ sol)

qed
qed

4.1.2 Completeness: every minimal solution is generated by solve
lemma (in hlde) Minimal-Solutions-subset-solve:

shows Minimal-Solutions ⊆ set (solve a b)
proof (rule subrelI)

fix x y
assume min: (x, y) ∈ Minimal-Solutions
then have sol: a · x = b · y length x = m length y = n

and [dest]: x = zeroes m =⇒ y = zeroes n =⇒ False
by (auto simp: Minimal-Solutions-def Solutions-def nonzero-iff)

consider (special) (x, y) ∈ Special-Solutions
| (not-special) (x, y) /∈ Special-Solutions by blast

then show (x, y) ∈ set (solve a b)
proof (cases)

case special
then show ?thesis

by (simp add: no0 solve-def)
next

define all where all = generate ′ (Max (set b)) (Max (set a)) a b
have ∗: ∀ (u, v) ∈ set (check ′ a b all). ¬ u @ v <v x @ y

using min and no0
by (auto simp: all-def set-generate ′′ neq-0-iff ′ nonzero-iff dest!: Minimal-Solutions-min)

case not-special
from conds [OF min] and not-special
have (x, y) ∈ set (check ′ a b all)

using max-coeff-bound [OF min] and maxne0-le-Max
and Minimal-Solutions-length [OF min]

apply (auto simp: sol all-def set-generate ′′ cond-A-def less-eq-def static-bounds-def
maxne0-impl)

apply (metis le-trans nth-mem sol(2))
by (metis le-trans nth-mem sol(3))

from in-minimize-wrtI [OF this, of λ(x, y) (u, v). ¬ x @ y <v u @ v] ∗

58

have (x, y) ∈ set (non-special-solutions a b)
by (auto simp: non-special-solutions-def minimize-def all-def)

then show ?thesis
by (simp add: solve-def)

qed
qed

The main correctness and completeness result of our algorithm.
lemma (in hlde) solve [simp]:

shows set (solve a b) = Minimal-Solutions
using Minimal-Solutions-subset-solve and solve-subset-Minimal-Solutions by blast

5 Making the Algorithm More Efficient
locale bounded-gen-check =

fixes C :: nat list ⇒ nat ⇒ bool
and B :: nat

assumes bound:
∧

x xs s. x > B =⇒ C (x # xs) s = False
and cond-antimono:

∧
x x ′ xs s s ′. C (x # xs) s =⇒ x ′ ≤ x =⇒ s ′ ≤ s =⇒ C

(x ′ # xs) s ′

begin

function incs :: nat ⇒ nat ⇒ (nat list × nat) ⇒ (nat list × nat) list
where

incs a x (xs, s) =
(let t = s + a ∗ x in
if C (x # xs) t then (x # xs, t) # incs a (Suc x) (xs, s) else [])

by (auto)
termination

by (relation measure (λ(a, x, xs, s). B + 1 − x), rule wf-measure, case-tac x >
B)

(use bound in auto)
declare incs.simps [simp del]

lemma in-incs:
assumes (ys, t) ∈ set (incs a x (xs, s))
shows length ys = length xs + 1 ∧ t = s + hd ys ∗ a ∧ tl ys = xs ∧ C ys t
using assms
by (induct a x (xs, s) arbitrary: ys t rule: incs.induct)
(subst (asm) (2) incs.simps, auto simp: Let-def)

lemma incs-Nil [simp]: x > B =⇒ incs a x (xs, s) = []
by (induct a x (xs, s) rule: incs.induct) (simp add: incs.simps bound)

lemma incs-filter :
assumes x ≤ B
shows incs a x = (λ(xs, s). filter (cond-cons C) (map (λx. (x # xs, s + a ∗ x))

[x ..< B + 1]))
proof

59

fix xss
show incs a x xss = (λ(xs, s). filter (cond-cons C) (map (λx. (x # xs, s + a ∗

x)) [x ..< B + 1])) xss
using assms

proof (induct a x xss rule: incs.induct)
case (1 a x xs s)
then show ?case

by (unfold incs.simps [of a x], cases x = B)
(auto simp: filter-empty-conv Let-def cond-cons-def upt-conv-Cons intro:

cond-antimono)
qed

qed

fun gen-check :: nat list ⇒ (nat list × nat) list
where

gen-check [] = [([], 0)]
| gen-check (a # as) = concat (map (incs a 0) (gen-check as))

lemma gen-check-len:
assumes (ys, s) ∈ set (gen-check as)
shows length ys = length as
using assms

proof (induct as arbitrary: ys s)
case (Cons a as)
have ∃ (la,t) ∈ set (gen-check as). (ys, s) ∈ set (incs a 0 (la,t))

using Cons.prems(1) by auto
moreover obtain la t where (la,t) ∈ set (gen-check as)

using calculation by auto
moreover have length ys = length la + 1

using calculation
by (metis (no-types, lifting) Cons.hyps case-prodE in-incs)

moreover have length la = length as
using calculation
using Cons.hyps Cons.prems by fastforce

ultimately show ?case by simp
qed (auto)

lemma in-gen-check:
assumes (xs, s) ∈ set (gen-check as)
shows length xs = length as ∧ s = as · xs
using assms
apply (induct as arbitrary: xs s)
apply (auto simp: in-incs)

apply (case-tac xs)
apply (auto dest: in-incs)

done

lemma gen-check-filter :
gen-check as = filter (suffs C as) (alls B as)

60

proof (induct as)
next

case (Cons a as)
have filter (suffs C (a # as)) (alls B (a # as)) =

filter (λ(xs, s). cond-cons C (xs, s) ∧ suffs C as (tl xs, as · tl xs)) (alls B (a #
as))

by (intro filter-cong [OF refl])
(auto simp: set-alls suffs.simps all-Suc-le-conv ac-simps split: list.splits)

also have . . . =
concat (map (λ(xs, s). filter (cond-cons C) (map (λx. (x # xs, s + a ∗ x))

[0 ..<B + 1]))
(filter (suffs C as) (alls B as)))

unfolding alls.simps
unfolding filter-concat
unfolding map-map
by (subst concat-map-filter-filter [symmetric, where Q = suffs C as])
(auto simp: set-alls intro!: arg-cong [of - - concat] filter-cong)

finally have ∗: filter (suffs C (a # as)) (alls B (a # as)) =
concat (map (λ(xs, s).

filter (cond-cons C) (map (λx. (x # xs, s + a ∗ x)) [0 ..<B + 1])) (filter
(suffs C as) (alls B as))) .

have gen-check (a # as) = filter (suffs C (a # as)) (alls B (a # as))
unfolding ∗
by (simp add: incs-filter [OF zero-le] Cons)

then show ?case by simp
qed simp

lemma in-gen-check-cond:
assumes (xs, s) ∈ set (gen-check as)
shows ∀ j≤length xs. drop j xs 6= [] −→ C (drop j xs) (s − take j as · take j xs)
using assms
apply (induct as arbitrary: xs s)
apply auto

apply (case-tac xs)
apply auto

apply (case-tac j)
apply (auto dest: in-incs)

done

lemma sorted-gen-check:
sorted-wrt (<rlex) (map fst (gen-check xs))

proof −
have sort-map: sorted-wrt (λx y. x <rlex y) (map fst (alls B xs))

using sorted-wrt-alls by auto
then have sorted-wrt (λx y. fst x <rlex fst y) (alls B xs)

using sorted-wrt-map-distr [of (<rlex) fst alls B xs]
by (auto)

then have sorted-wrt (λx y. fst x <rlex fst y) (filter (suffs C xs) (alls B xs))
using sorted-wrt-alls sorted-wrt-filter sorted-wrt-map

61

by blast
then show ?thesis

using gen-check-filter
by (simp add: case-prod-unfold sorted-wrt-map-mono)

qed

end

locale bounded-generate-check =
c2 : bounded-gen-check C 2 B2 for C 2 B2 +
fixes C 1 and B1

assumes cond1 :
∧

b ys. ys ∈ fst ‘ set (c2 .gen-check b) =⇒ bounded-gen-check
(C 1 b ys) (B1 b)
begin

definition generate-check a b =
[(xs, ys). ys ← c2 .gen-check b, xs ← bounded-gen-check.gen-check (C 1 b (fst ys))

a]

lemma generate-check-filter-conv:
generate-check a b = [(xs, ys).

ys ← filter (suffs C 2 b) (alls B2 b),
xs ← filter (suffs (C 1 b (fst ys)) a) (alls (B1 b) a)]

using bounded-gen-check.gen-check-filter [OF cond1]
by (force simp: generate-check-def c2 .gen-check-filter intro!: arg-cong [of - - con-

cat] map-cong)

lemma generate-check-filter :
generate-check a b = [(xs, ys) ← alls2 (B1 b) B2 a b. suffs (C 1 b (fst ys)) a xs
∧ suffs C 2 b ys]

by (auto intro: arg-cong [of - - concat]
simp: generate-check-filter-conv alls2-def filter-concat concat-map-filter filter-map

o-def)

lemma tl-generate-check-filter :
assumes suffs (C 1 b (zeroes (length b))) a (zeroes (length a), 0)

and suffs C 2 b (zeroes (length b), 0)
shows tl (generate-check a b) = [(xs, ys) ← tl (alls2 (B1 b) B2 a b). suffs (C 1

b (fst ys)) a xs ∧ suffs C 2 b ys]
using assms
by (unfold generate-check-filter , subst (1 2) alls2-Cons-tl-conv) auto

end

context
fixes a b :: nat list

begin

fun cond1

62

where
cond1 ys [] s ←→ True
| cond1 ys (x # xs) s ←→ s ≤ b · ys ∧ x ≤ maxne0-impl ys b

lemma max-x-impl ′-conv:
i < length a =⇒ length y = length b =⇒ max-x-impl ′ a b y i = max-x-impl a b

y i
by (auto simp: max-x-impl ′-def max-x-impl-def Let-def big-d ′-def big-d-def)

fun cond2
where

cond2 [] s ←→ True
| cond2 (y # ys) s ←→ y ≤ Max (set a) ∧ s ≤ a · map (max-x-impl ′ a b (y #

ys)) [0 ..< length a]

lemma le-imp-big-d ′-subset:
assumes v ≤v y
shows set (big-d ′ a b v i) ⊆ set (big-d ′ a b y i)
using assms and le-trans
by (auto simp: Let-def big-d ′-def less-eq-def hlde-ops.dij-def hlde-ops.eij-def)

lemma finite-big-d ′:
finite (set (big-d ′ a b y i))
by (rule finite-subset [of - (λj. dij a b i (j + length b − length y) − 1) ‘ {0 ..<

length y}])
(auto simp: Let-def big-d ′-def)

lemma Min-big-d ′-le:
assumes i < length a

and big-d ′ a b y i 6= []
and length y ≤ length b

shows Min (set (big-d ′ a b y i)) ≤ Max (set b) (is ?m ≤ -)
proof −

have ?m ∈ set (big-d ′ a b y i)
using assms and finite-big-d ′ and Min-in by auto

then obtain j where
j: ?m = dij a b i (j + length b − length y) − 1 j < length y y ! j ≥ eij a b i (j

+ length b − length y)
by (auto simp: big-d ′-def Let-def split: if-splits)

then have j + length b − length y < length b
using assms by auto

moreover
have lcm (a ! i) (b ! (j + length b − length y)) div a ! i ≤ b ! (j + length b −

length y) by (rule lcm-div-le ′)
ultimately show ?thesis

using j and assms
by (auto simp: hlde-ops.dij-def)
(meson List.finite-set Max-ge diff-le-self le-trans less-le-trans nth-mem)

qed

63

lemma le-imp-max-x-impl ′-ge:
assumes v ≤v y

and i < length a
shows max-x-impl ′ a b v i ≥ max-x-impl ′ a b y i
using assms and le-imp-big-d ′-subset [OF assms(1), of i]

and Min-in [OF finite-big-d ′, of y i]
and finite-big-d ′ and Min-le

by (auto simp: max-x-impl ′-def Let-def intro!: Min-big-d ′-le [of i y])
(fastforce simp: big-d ′-def intro: leI)

end

global-interpretation c12 : bounded-generate-check (cond2 a b) Max (set a) cond1
λb. Max (set b)

defines c2-gen-check = c12 .c2 .gen-check and c2-incs = c12 .c2 .incs
and c12-generate-check = c12 .generate-check

proof −
{ fix x xs s assume Max (set a) < x

then have cond2 a b (x # xs) s = False by (auto) }
note 1 = this

{ fix x x ′ xs s s ′ assume cond2 a b (x # xs) s and x ′ ≤ x and s ′ ≤ s
moreover have map (max-x-impl ′ a b (x # xs)) [0 ..<length a] ≤v map

(max-x-impl ′ a b (x ′ # xs)) [0 ..<length a]
using le-imp-max-x-impl ′-ge [of x ′ # xs x # xs] and ‹x ′ ≤ x›
by (auto simp: le-Cons less-eq-def All-less-Suc2)

ultimately have cond2 a b (x ′ # xs) s ′

by (auto simp: le-Cons) (metis dotprod-le-right le-trans length-map map-nth)
}

note 2 = this

interpret c2 : bounded-gen-check cond2 a b Max (set a) by (standard) fact+

{ fix b ys x xs s assume ys ∈ fst ‘ set (c2 .gen-check b) and Max (set b) < x
then have cond1 b ys (x # xs) s = False
by (auto dest!: c2 .in-gen-check) (metis leD less-le-trans maxne0-impl maxne0-le-Max)

}
note 3 = this

{ fix b ys x x ′ xs s s ′ assume ys ∈ fst ‘ set (c2 .gen-check b) and cond1 b ys (x
xs) s

and x ′ ≤ x and s ′ ≤ s
then have cond1 b ys (x ′ # xs) s ′ by auto }

note 4 = this

show bounded-generate-check (cond2 a b) (Max (set a)) cond1 (λb. Max (set b))
using 1 and 2 and 3 and 4 by (unfold-locales) metis+

qed

64

definition post-cond a b = (λ(x, y). static-bounds a b x y ∧ a · x = b · y ∧
boundr-impl a b x y)

definition fast-filter a b =
filter (post-cond a b) (map (λ(x, y). (fst x, fst y)) (tl (c12-generate-check a b a

b)))

lemma cond1-cond2-zeroes:
shows suffs (cond1 b (zeroes (length b))) a (zeroes (length a), 0)

and suffs (cond2 a b) b (zeroes (length b), 0)
apply (auto simp: suffs.simps cond-cons-def split: list.splits)

apply (metis dotprod-0-right length-drop)
apply (metis Cons-replicate-eq Nat.le0)

apply (metis Cons-replicate-eq Nat.le0)
by (metis Nat.le0 dotprod-0-right length-drop)

lemma suffs-cond1I :
assumes ∀ y∈set aa. y ≤ maxne0-impl aaa b

and length aa = length a
and a · aa = b · aaa

shows suffs (cond1 b aaa) a (aa, b · aaa)
using assms
apply (auto simp: suffs.simps cond-cons-def split: list.splits)
apply (metis dotprod-le-drop)

by (metis in-set-dropD list.set-intros(1))

lemma suffs-cond2-conv:
assumes length ys = length b
shows suffs (cond2 a b) b (ys, b · ys) ←→
(∀ y∈set ys. y ≤ Max (set a)) ∧ subdprodr-impl a b ys
(is ?L ←→ ?R)

proof
assume ∗: ?L
then have ∀ y∈set ys. y ≤ Max (set a)

apply (auto simp: suffs.simps cond-cons-def in-set-conv-nth split: list.splits)
apply (auto simp: hd-drop-conv-nth [symmetric])
apply (case-tac drop i ys)

apply simp-all
using less-or-eq-imp-le by blast

moreover
{ fix l assume l: l ≤ length b

have take l b · take l ys ≤ b · ys
using l and assms by (simp add: dotprod-le-take)

also have . . . ≤ a · map (max-x-impl ′ a b ys) [0 ..< length a]
using ∗ apply (auto simp: suffs.simps cond-cons-def split: list.splits)
apply (drule-tac x = 0 in spec)

apply (cases ys)
apply auto

65

done
also have . . . = a · map (max-x-impl a b ys) [0 ..< length a]

using max-x-impl ′-conv [OF - assms, of - a]
by (metis (mono-tags, lifting) atLeastLessThan-iff map-eq-conv set-upt)

also have . . . ≤ a · map (max-x-impl a b (take l ys)) [0 ..< length a]
unfolding max-x-impl using hlde-ops.max-x-le-take [OF eq-imp-le, OF assms,

of a]
by (intro dotprod-le-right) (auto simp: less-eq-def)

finally have take l b · take l ys ≤ a · map (max-x-impl a b (take l ys)) [0 ..<
length a] .

}
ultimately show ?R by (auto simp: subdprodr-impl-def)

next
assume ∗: ?R
then have ∀ y∈set ys. y ≤ Max (set a) and subdprodr-impl a b ys by auto
moreover
{ fix i assume i: i ≤ length b

have drop i b · drop i ys ≤ b · ys
using i and assms by (simp add: dotprod-le-drop)

also have . . . ≤ a · map (max-x-impl a b ys) [0 ..< length a]
using ∗ and assms by (auto simp: subdprodr-impl-def)

also have . . . = a · map (max-x-impl ′ a b ys) [0 ..< length a]
using max-x-impl ′-conv [OF - assms, of - a]
by (metis (mono-tags, lifting) atLeastLessThan-iff map-eq-conv set-upt)

also have . . . ≤ a · map (max-x-impl ′ a b (drop i ys)) [0 ..< length a]
using hlde-ops.max-x ′-le-drop [OF eq-imp-le, OF assms, of a]
by (intro dotprod-le-right) (auto simp: less-eq-def max-x-impl ′ i assms)

finally have drop i b · drop i ys ≤ a · map (max-x-impl ′ a b (drop i ys)) [0 ..<
length a] .

}
ultimately show ?L

using assms
apply (auto simp: suffs.simps cond-cons-def split: list.splits)
apply (metis in-set-dropD list.set-intros(1))

apply force
done

qed

lemma suffs-cond2I :
assumes ∀ y∈set aaa. y ≤ Max (set a)

and length aaa = length b
and subdprodr-impl a b aaa

shows suffs (cond2 a b) b (aaa, b · aaa)
using assms by (subst suffs-cond2-conv) simp-all

lemma check-cond-conv:
assumes (x, y) ∈ set (alls2 (Max (set b)) (Max (set a)) a b)
shows check-cond a b (fst x, fst y) ←→

static-bounds a b (fst x) (fst y) ∧ a · fst x = b · fst y ∧ boundr-impl a b (fst x)

66

(fst y) ∧
suffs (cond1 b (fst y)) a x ∧
suffs (cond2 a b) b y

using assms
apply (cases x; cases y; auto simp: static-bounds-def check-cond-def set-alls2 split:

list.splits)
apply (auto intro: suffs-cond1I suffs-cond2I simp: subdprodl-impl-def suffs-cond2-conv)

apply (metis in-set-conv-nth)
by (metis dotprod-le-take)

lemma tune:
check ′ a b (generate ′ (Max (set b)) (Max (set a)) a b) = fast-filter a b
using cond1-cond2-zeroes
by (auto simp: c12 .tl-generate-check-filter check ′-def generate ′-def map-tl [symmetric]

filter-map post-cond-def fast-filter-def
intro!: map-cong filter-cong dest: list.set-sel(2) [THEN check-cond-conv, OF

alls2-ne])

locale bounded-incs =
fixes cond :: nat list ⇒ nat ⇒ bool

and B :: nat
assumes bound:

∧
x xs s. x > B =⇒ cond (x # xs) s = False

begin

function incs :: nat ⇒ nat ⇒ (nat list × nat) ⇒ (nat list × nat) list
where

incs a x (xs, s) =
(let t = s + a ∗ x in
if cond (x # xs) t then (x # xs, t) # incs a (Suc x) (xs, s) else [])

by (auto)
termination

by (relation measure (λ(a, x, xs, s). B + 1 − x), rule wf-measure, case-tac x >
B)

(use bound in auto)
declare incs.simps [simp del]

lemma in-incs:
assumes (ys, t) ∈ set (incs a x (xs, s))
shows length ys = length xs + 1 ∧ t = s + hd ys ∗ a ∧ tl ys = xs ∧ cond ys t
using assms
by (induct a x (xs, s) arbitrary: ys t rule: incs.induct)
(subst (asm) (2) incs.simps, auto simp: Let-def)

lemma incs-Nil [simp]: x > B =⇒ incs a x (xs, s) = []
by (induct a x (xs, s) rule: incs.induct) (auto simp: Let-def incs.simps bound)

end

global-interpretation incs1 :

67

bounded-incs (cond1 b ys) (Max (set b))
for b ys :: nat list
defines c1-incs = incs1 .incs

proof
fix x xs s
assume Max (set b) < x
then show cond1 b ys (x # xs) s = False

using maxne0-impl-le [of ys b] by auto
qed

fun c1-gen-check
where

c1-gen-check b ys [] = [([], 0)]
| c1-gen-check b ys (a # as) = concat (map (c1-incs b ys a 0) (c1-gen-check b ys

as))

definition generate-check a b = [(xs, ys). ys← c2-gen-check a b b, xs← c1-gen-check
b (fst ys) a]

lemma c1-gen-check-conv:
assumes (ys, s) ∈ set (c2-gen-check a b b)
shows c1-gen-check b ys a = bounded-gen-check.gen-check (cond1 b ys) a

proof −
interpret c1 : bounded-gen-check (cond1 b ys) Max (set b)

by (unfold-locales) (auto, meson leD less-le-trans maxne0-impl-le)
have eq: c1-incs b ys a1 0 (a, ba) = c1 .incs a1 0 (a, ba) if (a, ba) ∈ set

(c1 .gen-check a2)
for a a1 a2 ba
using that
by (induct rule: c1 .incs.induct)
(auto dest!: c1 .in-gen-check simp: Let-def incs1 .incs.simps c1 .incs.simps)

show ?thesis
by (induct a) (auto intro!: arg-cong [of - - concat] dest: eq)

qed

5.1 Code Generation
lemma solve-efficient [code]:

solve a b = special-solutions a b @ minimize (fast-filter a b)
by (auto simp: solve-def non-special-solutions-def tune)

lemma c12-generate-check-code [code-unfold]:
c12-generate-check a b a b = generate-check a b
by (auto simp: generate-check-def c12 .generate-check-def c1-gen-check-conv in-

tro!: arg-cong [of - - concat])

end

68

References

[1] G. Huet. An algorithm to generate the basis of solutions to homo-
geneous linear diophantine equations. Information Processing Letters,
7(3):144–147, 1978.

69

	Vectors as Lists of Naturals
	The Inner Product
	The Pointwise Order on Vectors
	Pointwise Subtraction
	The Lexicographic Order on Vectors
	Code Equations

	Homogeneous Linear Diophantine Equations
	Further Constraints on Minimal Solutions
	Pointwise Restricting Solutions
	Special Solutions
	Huet's conditions
	New conditions: facilitating generation of candidates from right to left

	Minimization
	Reverse-Lexicographic Enumeration of Potential Minimal Solutions
	Completeness: every minimal solution is generated by 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 solutions
	Correctness: 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 solutions generates only minimal solutions.

	Computing Minimal Complete Sets of Solutions
	The Algorithm
	Correctness: 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 solve generates only minimal solutions.
	Completeness: every minimal solution is generated by 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 solve

	Making the Algorithm More Efficient
	Code Generation

