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Abstract

A chain is defined as a totally ordered subset of a partially ordered
set. A chain cover refers to a collection of chains of a partially ordered
set whose union equals the entire set. A chain decomposition is a chain
cover consisting of pairwise disjoint sets. An antichain is a subset
of elements of a partially ordered set in which no two elements are
comparable.

In 1950, Dilworth proved that in any finite partially ordered set, the
cardinality of a largest antichain equals the cardinality of a smallest
chain decomposition.[2]

In this paper, we formalise a proof of the theorem above, also known
as Dilworth’s theorem, based on a proof by Perles (1963) [3]. Our for-
malisation draws on the formalisation of Dilworth’s theorem for chain
covers in Coq by Abhishek Kr. Singh [4], and builds on the AFP en-
try containing formalisation of minimal and maximal elements in a set
by Martin Desharnais [1]. Our formalisation extends the prior work
in Coq by including a formal proof of Dilworth’s theorem for chain

decomposition.
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theory Dilworth

imports Main HOL.Complete-Partial-Order HOL. Relation HOL.Order-Relation
Min-Maz-Least- Greatest. Min- Mazx- Least- Greatest-Set

begin

Note: The Dilworth’s theorem for chain cover is labelled Dilworth and the
extension to chain decomposition is labelled Dilworth_Decomposition.

context order
begin

1 Definitions

definition chain-on :: - set = - set = bool where
chain-on A S «— ((A C S) A (Complete-Partial-Order.chain (<) A))

definition antichain :: - set = bool where
antichain S «+— Vz € S.Vye S. (2 <yVy<z) — z=y)

definition antichain-on :: - set = - set = bool where
(antichain-on A S) <—
(partial-order-on A (relation-of (<) A)) A (S C A) A (antichain S)

definition largest-antichain-on:: - set = - set = bool where
largest-antichain-on P lac +—
(antichain-on P lac A (V ac. antichain-on P ac — card ac < card lac))

definition chain-cover-on:: - set = - set set = bool where
chain-cover-on S cv <— (|J cv = 5) A (V z € cv . chain-on z S)

definition antichain-cover-on:: - set = - set set = bool where
antichain-cover-on S cv «— (U cv = S) A (VY z € cv . antichain-on S )

definition smallest-chain-cover-on:: - set = - set set = bool where
smallest-chain-cover-on S cv =

(chain-cover-on S cv A

(V cv2. (chain-cover-on S cv2 A card cv2 < card cv) — card cv = card cv2))

definition chain-decomposition where
chain-decomposition S c¢d = ((chain-cover-on S cd) A
VzedVyecced sy — (znNny=1{}))



definition smallest-chain-decomposition:: - set = - set set = bool where
smallest-chain-decomposition S cd
= (chain-decomposition S cd
A (V ¢d2. (chain-decomposition S ¢d2 A card ¢d2 < card cd)
— card c¢d = card ¢d2))

2 Preliminary Lemmas

The following lemma shows that given a chain and an antichain, if the
cardinality of their intersection is equal to 0, then their intersection is empty..

lemma inter-ninf:
assumes al: Complete-Partial-Order.chain (C) X
and a2: antichain Y
and asmiInf: card (X N'Y) =0
shows X N Y = {}

(proof)

The following lemma shows that given a chain X and an antichain Y that
both are subsets of S, their intersection is either empty or has cardinality
one..

lemma chain-antichain-inter:
assumes al: Complete-Partial-Order.chain (C) X
and a2: antichain Y
and a8: X CSAY CS
shows (card (X N'Y) =
(proof)

Following lemmas show that given a finite set S, there exists a chain decom-
position of S.

nvxny)={}

lemma po-restr: assumes partial-order-on B r
and A C B
shows partial-order-on A (r N (A x A))

{proof)

lemma eg-restr: (Restr (relation-of (<) (insert a A)) A) = (relation-of (<) A)
(is 2P = 2Q)
(proof)

lemma part-ord:partial-order-on S (relation-of (<) S)
{proof)

The following lemma shows that a chain decomposition exists for any finite
set S.

lemma exists-cd: assumes finite S
shows 3 cd. chain-decomposition S cd

{proof)



The following lemma shows that the chain decomposition of a set is a chain
cover.

lemma cd-cv:
assumes chain-decomposition P cd
shows chain-cover-on P cd

{proof)

The following lemma shows that for any finite partially ordered set, there
exists a chain cover on that set.

lemma exists-chain-cover: assumes finite P
shows 3 cv. chain-cover-on P cv

(proof)

lemma finite-cv-set: assumes finite P
and S = {z. chain-cover-on P x}
shows finite S

(proof)

The following lemma shows that for every element of an antichain in a set,
there exists a chain in the chain cover of that set, such that the element of
the antichain belongs to the chain.

lemma elem-ac-in-c: assumes al: antichain-on P ac
and chain-cover-on P cv
showsV a € ac. d c€ cv. a € ¢

(proof)

For a function f that maps every element of an antichain to some chain it
belongs to in a chain cover, we show that, the co-domain of f is a subset of
the chain cover.
lemma f-image: fixes f :: - = - set
assumes al: (antichain-on P ac)
and a2: (chain-cover-on P cv)

and a3:Va€ac. 3 c€ecv.a€cNfa=c
shows (f ‘ac) C cv

(proof)

3 Size of an antichain is less than or equal to the
size of a chain cover

The following lemma shows that given an antichain ac and chain cover cv on
a finite set, the cardinality of ac will be less than or equal to the cardinality
of cv.

lemma antichain-card-leq:
assumes (antichain-on P ac)
and (chain-cover-on P cv)



and finite P
shows card ac < card cv

(proof)

4 Existence of a chain cover whose cardinality is
the cardinality of the largest antichain

4.1 Preliminary lemmas

The following lemma shows that the maximal set is an antichain.

lemma mazxset-ac: antichain ({x . is-mazimal-in-set P z})
{proof)

The following lemma shows that the minimal set is an antichain.

lemma minset-ac: antichain ({z . is-minimal-in-set P x})
{proof)

The following lemma shows that the null set is both an antichain and a chain
cover.

lemma antichain-null: antichain {}
(proof)

lemma chain-cover-null: assumes P = {} shows chain-cover-on P {}

(proof)

The following lemma shows that for any arbitrary x that does not belong
to the largest antichain of a set, there exists an element y in the antichain
such that x is related to y or y is related to x.

lemma x-not-in-ac-rel: assumes largest-antichain-on P ac
and z € P
and z ¢ ac
and finite P
shows 3 y € ac. (z < y) V (y < z)

(proof)

The following lemma shows that for any subset Q of the partially ordered
P, if the minimal set of P is a subset of Q, then it is a subset of the minimal
set of Q as well.

lemma minset-subset-minset:
assumes finite P
and Q C P
and V z. (is-minimal-in-set Pt — x € Q)
shows {z . is-minimal-in-set P x} C {z. is-minimal-in-set Q z}

(proof)

The following lemma show that if P is not empty, the minimal set of P is
not empty.



lemma non-empty-minset: assumes finite P
and P # {}
shows {z . is-minimal-in-set P x} # {}
{proof)

The following lemma shows that for all elements m of the minimal set, there
exists a chain c in the chain cover such that m belongs to c.

lemma elem-minset-in-chain: assumes finite P
and chain-cover-on P cv
shows is-minimal-in-set P a — (3 ¢ € cv. a € ¢)

(proof)

The following lemma shows that for all elements m of the maximal set, there
exists a chain c in the chain cover such that m belongs to c.

lemma elem-maxset-in-chain: assumes finite P
and chain-cover-on P cv
shows is-mazimal-in-set P a — (3 ¢ € cv. a € ¢)

(proof)

The following lemma shows that for a given chain cover and antichain on
P, if the cardinality of the chain cover is equal to the cardinality of the
antichain then for all chains c¢ of the chain cover, there exists an element a
of the antichain such that a belongs to c.

lemma card-ac-cv-eq: assumes finite P
and chain-cover-on P cv
and antichain-on P ac
and card cv = card ac
showsV c€ cv. 4 a € ac. a € ¢

(proof)

The following lemma shows that if an element m from the minimal set is in
a chain, it is less than or equal to all elements in the chain.

lemma e-minset-lesseq-e-chain: assumes chain-on ¢ P
and is-minimal-in-set P m
and m € ¢

showsVY a € c. m<a

(proof)

The following lemma shows that if an element m from the maximal set is in
a chain, it is greater than or equal to all elements in the chain.

lemma e-chain-lesseq-e-mazset: assumes chain-on ¢ P
and is-mazimal-in-set P m
and m € ¢

showsVY a€c.a<m

(proof)

The following lemma shows that for any two elements of an antichain, if



they both belong to the same chain in the chain cover, they must be the
same element.

lemma ac-to-c : assumes finite P
and chain-cover-on P cv
and antichain-on P ac
showsVY a € ac.V b€ ac.d c€Ecv.a€cNbeEc— a=D

(proof)

The following lemma shows that for two finite sets, if their cardinalities are
equal, then their cardinalities would remain equal after removing a single
element from both sets.

lemma card-Diff1-eq: assumes finite A
and finite B
and card A = card B
showsV a € A.V b € B. card (A — {a}) = card (B — {b})

(proof)

The following lemma shows that for two finite sets A and B of equal cardi-
nality, removing two unique elements from A and one element from B will
ensure the cardinality of A is less than B.

lemma card-Diff2-1-less: assumes finite A
and finite B
and card A = card B
and a € A
and b € A
and a # b
shows V z € B. card ((A — {a}) — {b}) < card (B — {z})

(proof)

The following lemma shows that for all elements of a partially ordered set,
there exists an element in the minimal set that will be less than or equal to
it.
lemma min-elem-for-P: assumes finite P

shows V p € P. 3 m. is-minimal-in-set P m A m < p

(proof)

The following lemma shows that for all elements of a partially ordered set,
there exists an element in the maximal set that will be greater than or equal
to it.

lemma maz-elem-for-P: assumes finite P
shows V p € P. 3 m. is-mazimal-in-set P m A p < m

{proof)

The following lemma shows that if the minimal set is not considered as the
largest antichain on a set, then there exists an element a in the minimal set
such that a does not belong to the largest antichain.



lemma min-e-nin-lac: assumes largest-antichain-on P ac
and {z. is-minimal-in-set P z} # ac
and finite P
shows Im. (is-minimal-in-set P m) A (m ¢ ac)
(is Im. (Pms m) A (m ¢ ac))
(proof )

The following lemma shows that if the maximal set is not considered as the
largest antichain on a set, then there exists an element a in the maximal set
such that a does not belong to the largest antichain.

lemma maz-e-nin-lac: assumes largest-antichain-on P ac
and {z . is-mazimal-in-set P z} # ac
and finite P
shows 3 m . is-mazimal-in-set P m A m ¢ ac
(is 3 m. fmsm A m & ac)

(proof)

4.2 Statement and Proof

Proves theorem for the empty set.

lemma largest-antichain-card-eq-empty:
assumes largest-antichain-on P lac

and P = {}
shows 3 cv. (chain-cover-on P cv) A (card cv = card lac)
(proof)

Proves theorem for the non-empty set.

lemma largest-antichard-card-eq:
assumes asml: largest-antichain-on P lac
and asm2: finite P
and asm3: P # {}
shows 3 cv. (chain-cover-on P cv) A (card cv = card lac)

(proof)

5 Dilworth’s Theorem for Chain Covers: State-
ment and Proof

We show that in any partially ordered set, the cardinality of a largest an-
tichain is equal to the cardinality of a smallest chain cover.

theorem Dilworth:
assumes largest-antichain-on P lac
and finite P
shows 3 cv. (smallest-chain-cover-on P cv) A (card cv = card lac)

(proof)



6 Dilworth’s Decomposition Theorem

6.1 Preliminaries

Now we will strengthen the result above to prove that the cardinality of
a smallest chain decomposition is equal to the cardinality of a largest an-
tichain. In order to prove that, we construct a preliminary result which
states that cardinality of smallest chain decomposition is equal to the car-
dinality of smallest chain cover.

We begin by constructing the function make_ disjoint which takes a list of
sets and returns a list of sets which are mutually disjoint, and leaves the
union of the sets in the list invariant. This function when acting on a chain
cover returns a chain decomposition.
fun make-disjoint::- set list = -

where

make-disjoint [| = ([])
|make-disjoint (s#ls) = (s — (U (set ls)))#(make-disjoint Is)

lemma finite-dist-card-list:
assumes finite S
shows Jls. set ls = S A length s = card S A distinct s

{proof)

lemma len-make-disjoint:length xs = length (make-disjoint xs)
(proof)

We use the predicate list-all2 (C), which checks if two lists (of sets) have
equal length, and if each element in the first list is a subset of the corre-
sponding element in the second list.

lemma subset-make-disjoint: list-all2 (C) (make-disjoint xs) xs
{proof)

lemma subslist-union:
assumes list-all2 (C) zs ys
shows |J (set xs) C |J (set ys)

{proof)

lemma make-disjoint-union:\J (set zs) = |J (set (make-disjoint xs))

(proof)

lemma make-disjoint-empty-int:

assumes X € set (make-disjoint xs) Y € set (make-disjoint xs)
and X # Y
shows X N Y = {}

{proof)



lemma chain-subslist:
assumes Vi < length xs. Complete-Partial-Order.chain (<) (zs!4)
and list-all2 (C) ys xs
shows Vi < length ys. Complete-Partial-Order.chain (<) (ys!i)

(proof)

lemma chain-cover-disjoint:
assumes chain-cover-on P (set C)
shows chain-cover-on P (set (make-disjoint C))

{(proof)

lemma make-disjoint-subset-i:
assumes i < length as
shows (make-disjoint (as))!i C (asli)
(proof)

Following theorem asserts that the corresponding to the smallest chain cover
on a finite set, there exists a corresponding chain decomposition of the same
cardinality:.

lemma chain-cover-decompsn-eq:
assumes finite P
and smallest-chain-cover-on P A
shows 3 B. chain-decomposition P B N\ card B = card A

{(proof)

lemma smallest-cv-cd:
assumes smallest-chain-decomposition P cd
and smallest-chain-cover-on P cv
shows card cv < card cd

{proof)

lemma smallest-cv-eq-smallest-cd:
assumes finite P
and smallest-chain-decomposition P cd
and smallest-chain-cover-on P cv
shows card cv = card cd

{proof)

6.2 Statement and Proof

We extend the Dilworth’s theorem to chain decomposition. The following
theorem asserts that size of a largest antichain is equal to the size of a
smallest chain decomposition.

theorem Dilworth-Decomposition:

assumes largest-antichain-on P lac
and finite P
shows 3 cd. (smallest-chain-decomposition P ¢d) A (card ¢d = card lac)

10



{proof)

end

end
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