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Abstract

A chain is defined as a totally ordered subset of a partially ordered
set. A chain cover refers to a collection of chains of a partially ordered
set whose union equals the entire set. A chain decomposition is a chain
cover consisting of pairwise disjoint sets. An antichain is a subset
of elements of a partially ordered set in which no two elements are
comparable.

In 1950, Dilworth proved that in any finite partially ordered set, the
cardinality of a largest antichain equals the cardinality of a smallest
chain decomposition.[2]

In this paper, we formalise a proof of the theorem above, also known
as Dilworth’s theorem, based on a proof by Perles (1963) [3]. Our for-
malisation draws on the formalisation of Dilworth’s theorem for chain
covers in Coq by Abhishek Kr. Singh [4], and builds on the AFP en-
try containing formalisation of minimal and maximal elements in a set
by Martin Desharnais [1]. Our formalisation extends the prior work
in Coq by including a formal proof of Dilworth’s theorem for chain
decomposition.
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theory Dilworth
imports Main HOL.Complete-Partial-Order HOL.Relation HOL.Order-Relation

Min-Max-Least-Greatest.Min-Max-Least-Greatest-Set
begin

Note: The Dilworth’s theorem for chain cover is labelled Dilworth and the
extension to chain decomposition is labelled Dilworth_Decomposition.
context order
begin

1 Definitions
definition chain-on :: - set ⇒ - set ⇒ bool where
chain-on A S ←→ ((A ⊆ S) ∧ (Complete-Partial-Order .chain (≤) A))

definition antichain :: - set ⇒ bool where
antichain S ←→ (∀ x ∈ S . ∀ y ∈ S . ( x ≤ y ∨ y ≤ x) −→ x = y)

definition antichain-on :: - set ⇒ - set ⇒ bool where
(antichain-on A S) ←→
(partial-order-on A (relation-of (≤) A)) ∧ (S ⊆ A) ∧ (antichain S)

definition largest-antichain-on:: - set ⇒ - set ⇒ bool where
largest-antichain-on P lac ←→
(antichain-on P lac ∧ (∀ ac. antichain-on P ac −→ card ac ≤ card lac))

definition chain-cover-on:: - set ⇒ - set set ⇒ bool where
chain-cover-on S cv ←→ (

⋃
cv = S) ∧ (∀ x ∈ cv . chain-on x S)

definition antichain-cover-on:: - set ⇒ - set set ⇒ bool where
antichain-cover-on S cv ←→ (

⋃
cv = S) ∧ (∀ x ∈ cv . antichain-on S x)

definition smallest-chain-cover-on:: - set ⇒ - set set ⇒ bool where
smallest-chain-cover-on S cv ≡
(chain-cover-on S cv ∧
(∀ cv2 . (chain-cover-on S cv2 ∧ card cv2 ≤ card cv) −→ card cv = card cv2 ))

definition chain-decomposition where
chain-decomposition S cd ≡ ((chain-cover-on S cd) ∧

(∀ x ∈ cd. ∀ y ∈ cd. x 6= y −→ (x ∩ y = {})))
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definition smallest-chain-decomposition:: - set ⇒ - set set ⇒ bool where
smallest-chain-decomposition S cd
≡ (chain-decomposition S cd
∧ (∀ cd2 . (chain-decomposition S cd2 ∧ card cd2 ≤ card cd)

−→ card cd = card cd2 ))

2 Preliminary Lemmas

The following lemma shows that given a chain and an antichain, if the
cardinality of their intersection is equal to 0, then their intersection is empty..
lemma inter-nInf :

assumes a1 : Complete-Partial-Order .chain (⊆) X
and a2 : antichain Y

and asmInf : card (X ∩ Y ) = 0
shows X ∩ Y = {}

〈proof 〉

The following lemma shows that given a chain X and an antichain Y that
both are subsets of S, their intersection is either empty or has cardinality
one..
lemma chain-antichain-inter :

assumes a1 : Complete-Partial-Order .chain (⊆) X
and a2 : antichain Y
and a3 : X ⊆ S ∧ Y ⊆ S

shows (card (X ∩ Y ) = 1 ) ∨ ((X ∩ Y ) = {})
〈proof 〉

Following lemmas show that given a finite set S, there exists a chain decom-
position of S.
lemma po-restr : assumes partial-order-on B r

and A ⊆ B
shows partial-order-on A (r ∩ (A × A))

〈proof 〉

lemma eq-restr : (Restr (relation-of (≤) (insert a A)) A) = (relation-of (≤) A)
(is ?P = ?Q)
〈proof 〉

lemma part-ord:partial-order-on S (relation-of (≤) S)
〈proof 〉

The following lemma shows that a chain decomposition exists for any finite
set S.
lemma exists-cd: assumes finite S

shows ∃ cd. chain-decomposition S cd
〈proof 〉
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The following lemma shows that the chain decomposition of a set is a chain
cover.
lemma cd-cv:

assumes chain-decomposition P cd
shows chain-cover-on P cd
〈proof 〉

The following lemma shows that for any finite partially ordered set, there
exists a chain cover on that set.
lemma exists-chain-cover : assumes finite P

shows ∃ cv. chain-cover-on P cv
〈proof 〉

lemma finite-cv-set: assumes finite P
and S = {x. chain-cover-on P x}

shows finite S
〈proof 〉

The following lemma shows that for every element of an antichain in a set,
there exists a chain in the chain cover of that set, such that the element of
the antichain belongs to the chain.
lemma elem-ac-in-c: assumes a1 : antichain-on P ac

and chain-cover-on P cv
shows ∀ a ∈ ac. ∃ c ∈ cv. a ∈ c

〈proof 〉

For a function f that maps every element of an antichain to some chain it
belongs to in a chain cover, we show that, the co-domain of f is a subset of
the chain cover.
lemma f-image: fixes f :: - ⇒ - set

assumes a1 : (antichain-on P ac)
and a2 : (chain-cover-on P cv)
and a3 : ∀ a ∈ ac. ∃ c ∈ cv. a ∈ c ∧ f a = c

shows (f ‘ ac) ⊆ cv
〈proof 〉

3 Size of an antichain is less than or equal to the
size of a chain cover

The following lemma shows that given an antichain ac and chain cover cv on
a finite set, the cardinality of ac will be less than or equal to the cardinality
of cv.
lemma antichain-card-leq:

assumes (antichain-on P ac)
and (chain-cover-on P cv)
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and finite P
shows card ac ≤ card cv

〈proof 〉

4 Existence of a chain cover whose cardinality is
the cardinality of the largest antichain

4.1 Preliminary lemmas

The following lemma shows that the maximal set is an antichain.
lemma maxset-ac: antichain ({x . is-maximal-in-set P x})
〈proof 〉

The following lemma shows that the minimal set is an antichain.
lemma minset-ac: antichain ({x . is-minimal-in-set P x})
〈proof 〉

The following lemma shows that the null set is both an antichain and a chain
cover.
lemma antichain-null: antichain {}
〈proof 〉

lemma chain-cover-null: assumes P = {} shows chain-cover-on P {}
〈proof 〉

The following lemma shows that for any arbitrary x that does not belong
to the largest antichain of a set, there exists an element y in the antichain
such that x is related to y or y is related to x.
lemma x-not-in-ac-rel: assumes largest-antichain-on P ac

and x ∈ P
and x /∈ ac
and finite P

shows ∃ y ∈ ac. (x ≤ y) ∨ (y ≤ x)
〈proof 〉

The following lemma shows that for any subset Q of the partially ordered
P, if the minimal set of P is a subset of Q, then it is a subset of the minimal
set of Q as well.
lemma minset-subset-minset:

assumes finite P
and Q ⊆ P
and ∀ x. (is-minimal-in-set P x −→ x ∈ Q)

shows {x . is-minimal-in-set P x} ⊆ {x. is-minimal-in-set Q x}
〈proof 〉

The following lemma show that if P is not empty, the minimal set of P is
not empty.
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lemma non-empty-minset: assumes finite P
and P 6= {}

shows {x . is-minimal-in-set P x} 6= {}
〈proof 〉

The following lemma shows that for all elements m of the minimal set, there
exists a chain c in the chain cover such that m belongs to c.
lemma elem-minset-in-chain: assumes finite P

and chain-cover-on P cv
shows is-minimal-in-set P a −→ (∃ c ∈ cv. a ∈ c)

〈proof 〉

The following lemma shows that for all elements m of the maximal set, there
exists a chain c in the chain cover such that m belongs to c.
lemma elem-maxset-in-chain: assumes finite P

and chain-cover-on P cv
shows is-maximal-in-set P a −→ (∃ c ∈ cv. a ∈ c)

〈proof 〉

The following lemma shows that for a given chain cover and antichain on
P, if the cardinality of the chain cover is equal to the cardinality of the
antichain then for all chains c of the chain cover, there exists an element a
of the antichain such that a belongs to c.
lemma card-ac-cv-eq: assumes finite P

and chain-cover-on P cv
and antichain-on P ac
and card cv = card ac

shows ∀ c ∈ cv. ∃ a ∈ ac. a ∈ c
〈proof 〉

The following lemma shows that if an element m from the minimal set is in
a chain, it is less than or equal to all elements in the chain.
lemma e-minset-lesseq-e-chain: assumes chain-on c P

and is-minimal-in-set P m
and m ∈ c

shows ∀ a ∈ c. m ≤ a
〈proof 〉

The following lemma shows that if an element m from the maximal set is in
a chain, it is greater than or equal to all elements in the chain.
lemma e-chain-lesseq-e-maxset: assumes chain-on c P

and is-maximal-in-set P m
and m ∈ c

shows ∀ a ∈ c. a ≤ m
〈proof 〉

The following lemma shows that for any two elements of an antichain, if
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they both belong to the same chain in the chain cover, they must be the
same element.
lemma ac-to-c : assumes finite P

and chain-cover-on P cv
and antichain-on P ac

shows ∀ a ∈ ac. ∀ b ∈ ac. ∃ c ∈ cv. a ∈ c ∧ b ∈ c −→ a = b
〈proof 〉

The following lemma shows that for two finite sets, if their cardinalities are
equal, then their cardinalities would remain equal after removing a single
element from both sets.
lemma card-Diff1-eq: assumes finite A

and finite B
and card A = card B

shows ∀ a ∈ A. ∀ b ∈ B. card (A − {a}) = card (B − {b})
〈proof 〉

The following lemma shows that for two finite sets A and B of equal cardi-
nality, removing two unique elements from A and one element from B will
ensure the cardinality of A is less than B.
lemma card-Diff2-1-less: assumes finite A

and finite B
and card A = card B
and a ∈ A
and b ∈ A
and a 6= b

shows ∀ x ∈ B. card ((A − {a}) − {b}) < card (B − {x})
〈proof 〉

The following lemma shows that for all elements of a partially ordered set,
there exists an element in the minimal set that will be less than or equal to
it.
lemma min-elem-for-P: assumes finite P

shows ∀ p ∈ P. ∃ m. is-minimal-in-set P m ∧ m ≤ p
〈proof 〉

The following lemma shows that for all elements of a partially ordered set,
there exists an element in the maximal set that will be greater than or equal
to it.
lemma max-elem-for-P: assumes finite P

shows ∀ p ∈ P. ∃ m. is-maximal-in-set P m ∧ p ≤ m
〈proof 〉

The following lemma shows that if the minimal set is not considered as the
largest antichain on a set, then there exists an element a in the minimal set
such that a does not belong to the largest antichain.
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lemma min-e-nIn-lac: assumes largest-antichain-on P ac
and {x. is-minimal-in-set P x} 6= ac
and finite P

shows ∃m. (is-minimal-in-set P m) ∧ (m /∈ ac)
(is ∃m. (?ms m) ∧ (m /∈ ac))

〈proof 〉

The following lemma shows that if the maximal set is not considered as the
largest antichain on a set, then there exists an element a in the maximal set
such that a does not belong to the largest antichain.
lemma max-e-nIn-lac: assumes largest-antichain-on P ac

and {x . is-maximal-in-set P x} 6= ac
and finite P

shows ∃ m . is-maximal-in-set P m ∧ m /∈ ac
(is ∃ m. ?ms m ∧ m /∈ ac)

〈proof 〉

4.2 Statement and Proof

Proves theorem for the empty set.
lemma largest-antichain-card-eq-empty:

assumes largest-antichain-on P lac
and P = {}

shows ∃ cv. (chain-cover-on P cv) ∧ (card cv = card lac)
〈proof 〉

Proves theorem for the non-empty set.
lemma largest-antichard-card-eq:

assumes asm1 : largest-antichain-on P lac
and asm2 : finite P
and asm3 : P 6= {}

shows ∃ cv. (chain-cover-on P cv) ∧ (card cv = card lac)
〈proof 〉

5 Dilworth’s Theorem for Chain Covers: State-
ment and Proof

We show that in any partially ordered set, the cardinality of a largest an-
tichain is equal to the cardinality of a smallest chain cover.
theorem Dilworth:

assumes largest-antichain-on P lac
and finite P

shows ∃ cv. (smallest-chain-cover-on P cv) ∧ (card cv = card lac)
〈proof 〉
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6 Dilworth’s Decomposition Theorem
6.1 Preliminaries

Now we will strengthen the result above to prove that the cardinality of
a smallest chain decomposition is equal to the cardinality of a largest an-
tichain. In order to prove that, we construct a preliminary result which
states that cardinality of smallest chain decomposition is equal to the car-
dinality of smallest chain cover.

We begin by constructing the function make_disjoint which takes a list of
sets and returns a list of sets which are mutually disjoint, and leaves the
union of the sets in the list invariant. This function when acting on a chain
cover returns a chain decomposition.
fun make-disjoint::- set list ⇒ -

where
make-disjoint [] = ([])
|make-disjoint (s#ls) = (s − (

⋃
(set ls)))#(make-disjoint ls)

lemma finite-dist-card-list:
assumes finite S
shows ∃ ls. set ls = S ∧ length ls = card S ∧ distinct ls
〈proof 〉

lemma len-make-disjoint:length xs = length (make-disjoint xs)
〈proof 〉

We use the predicate list-all2 (⊆), which checks if two lists (of sets) have
equal length, and if each element in the first list is a subset of the corre-
sponding element in the second list.
lemma subset-make-disjoint: list-all2 (⊆) (make-disjoint xs) xs
〈proof 〉

lemma subslist-union:
assumes list-all2 (⊆) xs ys
shows

⋃
(set xs) ⊆

⋃
(set ys)

〈proof 〉

lemma make-disjoint-union:
⋃

(set xs) =
⋃

(set (make-disjoint xs))
〈proof 〉

lemma make-disjoint-empty-int:
assumes X ∈ set (make-disjoint xs) Y ∈ set (make-disjoint xs)

and X 6= Y
shows X ∩ Y = {}
〈proof 〉
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lemma chain-subslist:
assumes ∀ i < length xs. Complete-Partial-Order .chain (≤) (xs!i)

and list-all2 (⊆) ys xs
shows ∀ i < length ys. Complete-Partial-Order .chain (≤) (ys!i)
〈proof 〉

lemma chain-cover-disjoint:
assumes chain-cover-on P (set C )
shows chain-cover-on P (set (make-disjoint C ))
〈proof 〉

lemma make-disjoint-subset-i:
assumes i < length as
shows (make-disjoint (as))!i ⊆ (as!i)
〈proof 〉

Following theorem asserts that the corresponding to the smallest chain cover
on a finite set, there exists a corresponding chain decomposition of the same
cardinality.
lemma chain-cover-decompsn-eq:

assumes finite P
and smallest-chain-cover-on P A

shows ∃ B. chain-decomposition P B ∧ card B = card A
〈proof 〉

lemma smallest-cv-cd:
assumes smallest-chain-decomposition P cd

and smallest-chain-cover-on P cv
shows card cv ≤ card cd

〈proof 〉

lemma smallest-cv-eq-smallest-cd:
assumes finite P

and smallest-chain-decomposition P cd
and smallest-chain-cover-on P cv

shows card cv = card cd
〈proof 〉

6.2 Statement and Proof

We extend the Dilworth’s theorem to chain decomposition. The following
theorem asserts that size of a largest antichain is equal to the size of a
smallest chain decomposition.
theorem Dilworth-Decomposition:

assumes largest-antichain-on P lac
and finite P

shows ∃ cd. (smallest-chain-decomposition P cd) ∧ (card cd = card lac)
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〈proof 〉

end

end
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