Positional Notation for Natural Numbers in an
Arbitrary Base

Charles Staats 111

September 13, 2023

Abstract

We demonstrate the existence and uniqueness of the base-n repre-
sentation of a natural number, where n is any natural number greater
than 1. This comes up when trying to translate mathematical contest
problems and solutions into Isabelle/HOL.

Contents

1 Infinite sums 1
2 Modular arithmetic 3
3 Digits as sequence 4
4 Little Endian notation 8
5 Big Endian notation 9
6 Exercises 11

theory DigitsInBase
imports HOL— Computational-Algebra. Computational-Algebra HOL— Number- Theory. Number- Theory
begin

1 Infinite sums

In this section, it is shown that an infinite series of natural numbers converges
if and only if its terms are eventually zero. Additionally, the notion of a
summation starting from an index other than zero is defined. A few obvious
lemmas about these notions are established.

definition eventually-zero :: (nat = -) = bool where
eventually-zero (D :: nat = -) ¢— (Voo n. Dn = 0)

lemma eventually-zero-char:

shows eventually-zero D «— (3s. Vi>s. D i = 0)
{proof)

There’s a lot of commonality between this setup and univariate poly-
nomials, but drawing out the similarities and proving them is beyond the
scope of the current version of this theory except for the following lemma.

lemma eventually-zero-poly:
shows eventually-zero D «— D = poly.coeff (Abs-poly D)

(proof)

lemma eventually-zero-imp-summable [simp]:
assumes cventually-zero D
shows summable D

{proof)

lemma summable-bounded:
fixes my-seq :: nat = nat and n :: nat
assumes A\ i .7 >n — my-seqi =10
shows summable my-seq

(proof)

lemma sum-bounded:
fixes my-seq :: nat = nat and n :: nat
assumes A\ i . i > n — my-seqi = 0
shows (> i. my-seq i) = (> i<n. my-seq 1)
(proof)

lemma product-seq-eventually-zero:
fixes seql seq?2 :: nat = nat
assumes cventually-zero seql
shows eventually-zero (X i. seql i * seq2 1)

{proof)

abbreviation upper-sum

where upper-sum seqn = > i. seq (i + n)
syntax

-from-sum :: idt = 'a = b= "b ((8>.->-./ -) [0,0,10] 10)
translations

> i>n. t == CONST upper-sum (Ai. t) n

The following two statements are proved as a sanity check. They are not
intended to be used anywhere.

corollary
fixes seq :: nat = nat and a :: nat
assumes seq-def: A\ i. seq i = (if i = 0 then a else 0)
shows (> i>0. seq i) = upper-sum (X 4. seq i) 0
(proof)

corollary

fixes seq :: nat = nat and a :: nat

assumes seq-def: N\ i. seq i = (if i = 0 then a else 0)
shows (> i>0. seq i) = a

(proof)

lemma bounded-sum-from:
fixes seq :: nat = nat and n s :: nat
assumes Vi>s. seqi = 0 and n < s
shows (> i>n. seq i) = (> i=n..s. seq 7)
(proof)

lemma split-suminf:

fixes seq :: nat = nat and n :: nat

assumes eventually-zero seq

shows (> 1. seq i) = (D i<n. seq i) + (D i>n. seq i)
(proof)

lemma dvd-suminf:
fixes seq :: nat = nat and b :: nat
assumes eventually-zero seq and \i. b dvd seq @
shows b dvd (> 1. seq i)

(proof)

lemma eventually-zero-shifted:
assumes ceventually-zero seq
shows eventually-zero (A i. seq (i + n))

{proof)

2 Modular arithmetic

This section establishes a number of lemmas about modular arithmetic,
including that modular division distributes over an “infinite” sum whose
terms are eventually zero.

lemma pmod-int-char:
fixes a b d :: int
shows [a = b] (mod d) +— (I (n::int). a = b + nxd)
(proof)

lemma equiv-conj-if:
assumes P— Qand P— Rand Q = R =— P
shows P «— Q A R

{proof)

lemma mod-successor-char:

fixes k k' ¢ b :: nat

assumes (b::nat) > 2

shows [k = k'] (mod b (Suc ©)) «— [k div b7 = k' div b74] (mod b) A [k = k]
(mod b7%)

(proof)

lemma mod-1:
fixes k k' b :: nat
shows [k = k'] (mod b70)
(proof)

lemma mod-distributes:

fixes seq :: nat = nat and b :: nat

assumes dn. Vi>n. seq i = 0

shows [(3> . seq i) = (3 i. seq i mod b)] (mod b)
(proof)

lemma another-mod-cancellation-int:
fixes a b cdm :: int
assumes d > 0 and [m = a + b] (mod ¢ x d) and a div d = 0 and d dvd b
shows [m div d = b div d] (mod ¢)

(proof)

lemma another-mod-cancellation:
fixes a b ¢ d m :: nat
assumes d > 0 and [m = a + b] (mod ¢ * d) and a div d = 0 and d dvd b
shows [m div d = b div d] (mod ¢)

{proof)

3 Digits as sequence

Rules are introduced for computing the i*" digit of a base-b representation
and the number of digits required to represent a given number. (The latter
is essentially an integer version of the base-b logarithm.) It is shown that
the sum of the terms d;b* converges to m if d; is the ith digit m. It is shown
that the sequence of digits defined is the unique sequence of digits less than
b with this property
Additionally, the digits_in_base locale is introduced, which specifies a

single symbol b referring to a natural number greater than one (the base of
the digits). Consequently this symbol is omitted from many of the following
lemmas and definitions.
locale digits-in-base =

fixes b :: nat

assumes b-gte-2: b > 2
begin

lemma b-facts [simp):

shows b > 1 and b > 0 and b # 1 and b # 0 and I mod b = 1 and 1 div b
=90

{proof)

Definition based on [1].

abbreviation ith-digit :: nat = nat = nat where
ith-digit m i = (m div b7%) mod b

lemma ith-digit-lt-base:
fixes m i :: nat
shows 0 < ith-digit m ¢ and ith-digit m i < b
(proof)

definition num-digits :: nat = nat
where num-digits m = (LEAST i. m < b7%)

lemma num-digits-works:
shows m < b ™ (num-digits m)

{proof)

lemma num-digits-le:
assumes m < b
shows num-digits m < i

{proof)

lemma num-digits-zero:
fixes m :: nat
assumes num-digits m = 0
shows m = 0

{proof)

lemma num-digits-gt:
assumes m > b i
shows num-digits m > i

{proof)

lemma num-digits-eql [intro):
assumes m > b i and m < b (i+1)
shows num-digits m = 7 + 1

(proof)

lemma num-digits-char:
assumes m > 1
shows num-digits m =i + 1 «<— m > b"T A m < b (i+1)
(proof)

Statement based on [1].

lemma num-digits-recurrence:
fixes m :: nat
assumes m > 1
shows num-digits m = num-digits (m div b) + 1

(proof)

lemma num-digits-zero-2 [simp|: num-digits 0 = 0

{proof)

end

locale base-10
begin

As a sanity check, the number of digits in base ten is computed for several
natural numbers.

sublocale digits-in-base 10

(proof)

corollary

shows num-digits 0 = 0
and num-digits 1 = 1
and num-digits 9 = 1
and num-digits 10 = 2
and num-digits 99 = 2
and num-digits 100 = 3

(proof)

end

context digits-in-base
begin

lemma high-digits-zero-helper:

fixes m i :: nat

shows i < num-digits m V ith-digit m i = 0
(proof)

lemma high-digits-zero:
fixes m i :: nat
assumes i > num-digits m
shows ith-digit m i = 0
(proof)

lemma digit-expansion-bound:
fixes 7 :: nat and A :: nat = nat
assumes A\j. Aj<b
shows (> j<i. Ajxb7j) < b7
(proof)
Statement and proof based on [1].

lemma num-digits-suc:
fixes n m :: nat
assumes Suc n = num-digits m
shows n = num-digits (m div b)
(proof)

Proof (and to some extent statement) based on [1].

lemma digit-expansion-bounded-seq:

fixes m :: nat

shows m = (Y j<num-digits m. ith-digit m j x b7j)
(proof)

A natural number can be obtained from knowing all its base-b digits by
the formula d;b’.

theorem digit-expansion-seq:
fixes m :: nat
shows m = (> j. ith-digit m j * b7j)
(proof)

lemma lower-terms:
fixes a ¢ ¢ :: nat
assumes ¢ < b7 and a < b
shows ith-digit (a x b7 +¢c)i=a
(proof)

lemma upper-terms:
fixes A a 7 :: nat
assumes bxb i dvd A and a < b
shows ith-digit (A + a % b70) i=a
(proof)

lemma current-term:
fixes A a c i :: nat
assumes bxb i dvd Aand ¢c < biand a < b
shows ith-digit (A + axb™i + ¢) i =a
(proof)

Given that

m = Zdibi

where the d; are all natural numbers less than b, it follows that d; is the 5t
digit of m.

h

theorem seg-uniqueness:
fixes m j :: nat and D :: nat = nat
assumes eventually-zero D and m = (> ¢. D i+ b %) and Ni. Di < b
shows D j = ith-digit m j

(proof)

end

4 Little Endian notation

In this section we begin to define finite digit expansions. Ultimately we want
to write digit expansions in “big endian” notation, by which we mean with
the highest place digit on the left and the ones digit on the write, since this
ordering is standard in informal mathematics. However, it is easier to first
define “little endian” expansions with the ones digit on the left since that
way the list indexing agrees with the sequence indexing used in the previous
section (whenever both are defined).

Notation, definitions, and lemmas in this section typically start with
the prefix LE (for “little endian”) to distinguish them from the big endian
versions in the next section.

fun LEeval-as-base (-1,gpose - 165, 65] 70)

where || LEbase b — 0)
| (d # d-list) [ppase b = d + b (d-list; prase b)

corollary shows [2, 4| [Epase 5 = (22::nat)
{proof)

lemma LEbase-one-digit [simp]: shows [a:nat] [gpese b = @
{proof)

lemma LEbase-two-digits [simp]: shows [ag::nat, 1] [Epase p = G0 + 41 * b
(proof)

lemma LEbase-three-digits [simp): shows [ag::nat, a1, a2) [Epase b = G0 + a1%b
=+ GQ*bAQ
(proof)

lemma LEbase-closed-form:
shows (A :: nat list) [ppase b = O ¢ < length A . Ali % b7%)

(proof)

lemma LFEbase-concatenate:

fixes A D :: nat list and b :: nat

shows (4 @ D)LEbase b= (ALEbase b) + b (length A) * (DLEbase b)
(proof)

context digits-in-base
begin

definition LFEdigits :: nat = nat list where
LEdigits m = [ith-digit m i. i + [0..<(num-digits m)]]

lemma length-is-num-digits:
fixes m :: nat
shows length (LEdigits m) = num-digits m

{proof)

lemma ith-list-element [simp):
assumes (i::nat) < length (LEdigits m)
shows (LEdigits m) | i = ith-digit m {
(proof)

lemma LEbase-infinite-sum:

fixes m :: nat

shows (> i. ith-digit m i = b7%) = (LEdigits m) [gbase b
(proof)

lemma digit-expansion-LElist:
fixes m :: nat
shows (LEdigits m) [, Epase b = ™

(proof)

lemma LElist-uniqueness:
fixes D :: nat list
assumes V ¢ < length D. Dli < band D =[] V last D # 0
shows LEdigitS (DLEbase b) =D

(proof)

lemma LE-digits-zero [simp: LEdigits 0 = |]
(proof)

lemma LE-units-digit [simp]:
assumes (m:nat) € {1..<b}
shows LEdigits m = [m]
{proof)

end

5 Big Endian notation

In this section the desired representation of natural numbers, as finite lists
of digits with the highest place on the left, is finally realized.

definition BFEeval-as-base (-pgqe - [65, 65] 70)
where [simp]: Dygse p = (rev D) gpase b

corollary shows [4, 2]p,se 5 = (22::nat)
{proof)

lemma BFEbase-one-digit [simp]: shows [a::nat] puee p = @
{proof)

lemma BEbase-two-digits [simp]: shows [a1::nat, ao] pgse p = @1%b + ao
(proof)

lemma BFEbase-three-digits [simp]: shows [az::nat, a1, ao] pose p = G2%b "2 + ar*b
+ ag
(proof)

lemma BFEbase-closed-form:
fixes A :: nat list and b :: nat
shows Ay, p = (O i<length A. Ali x b (length A — Suc 1))

{proof)

lemma BFEbase-concatenate:
fixes A D :: nat list and b :: nat
shows (4 @ D) base b — (Abase b)*bA(length D) + (Dbase b)

{proof)

context digits-in-base
begin

definition digits :: nat = nat list where
digits m = rev (LEdigits m)

lemma length-is-num-digits-2:
fixes m :: nat
shows length (digits m) = num-digits m
(proof)

lemma LE-BE-equivalence:
fixes m :: nat
shows (digits m) puse p = (LEdigits m) [Epase b

{proof)

lemma BFEbase-infinite-sum:
fixes m :: nat
shows (> ¢. ith-digit m i * b77) = (digits m)pase b
(proof)

Every natural number can be represented in base b, specifically by the
digits sequence defined earlier.

theorem digit-expansion-list:
fixes m :: nat
shows (digits m)pgee p = ™
(proof)

If two natural numbers have the same base-b representation, then they
are equal.

lemma digits-cancellation:
fixes k m :: nat
assumes digits k = digits m
shows k = m

10

{proof)

Suppose we have a finite (possibly empty) sequence D1, ..., D, of natural
numbers such that 0 < D; < b for all 7+ and such that Dy, if it exists, is
nonzero. Then this sequence is the base-b representation for), D;b" .

theorem list-uniqueness:
fixes D :: nat list
assumesV d € set D.d < band D=1 VvV DI0 # 0
shows digits (Dpgse p) = D

(proof)

We now prove some simplification rules (including a reccurrence relation)
to make it easier for Isabelle/HOL to compute the base-b representation of
a natural number.

The base-b representation of 0 is empty, at least following the conventions
of this theory file.
lemma digits-zero [simp]:
shows digits 0 = |]
{proof)

If 0 < m < b, then the base-b representation of m consists of a single
digit, namely m itself.
lemma single-digit-number [simp):
assumes m € {0<..<b}
shows digits m = [m)]
(proof)

For all m > b, the base-b representation of m consists of the base-b
representation of |m/b| followed by (as the last digit) the remainder of m
when divided by b.

lemma digits-recurrence [simp):

assumes m > b

shows digits m = (digits (m div b)) @ [m mod b)
(proof)

end

6 Exercises

This section contains demonstrations of how to denote certain facts with
the notation of the previous sections, and how to quickly prove those facts
using the lemmas and theorems above.

The base-5 representation of 22 is 425.

corollary digits-in-base.digits 5 22 = [4, 2]
{proof)

11

A different proof of the same statement.

corollary digits-in-base.digits 5 22 = [4, 2]
(proof)

end

References

[1] B. Porter. Threedivides. https://isabelle.in.tum.de/dist/library /HOL/
HOL-ex/ThreeDivides.html, 2005. Accessed: 2023-03-06.

12

https://isabelle.in.tum.de/dist/library/HOL/HOL-ex/ThreeDivides.html
https://isabelle.in.tum.de/dist/library/HOL/HOL-ex/ThreeDivides.html

	Infinite sums
	Modular arithmetic
	Digits as sequence
	Little Endian notation
	Big Endian notation
	Exercises

