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Abstract

Difference Bound Matrices (DBMs) [2] are a data structure used
to represent a type of convex polytopes, often called zones. DBMs
find application such as in timed automata model checking and static
program analysis. This entry formalizes DBMs and operations for in-
clusion checking, intersection, variable reset, upper-bound relaxation,
and extrapolation (as used in timed automata model checking). With
the help of the Imperative Refinement Framework, efficient imperative
implementations of these operations are also provided. For each zone,
there exists a canonical DBM. The characteristic properties of canoni-
cal forms are proved, including the fact that DBMs can be transformed
in canonical form by the Floyd-Warshall algorithm. This entry is part
of the work described in a paper by the authors of this entry [4] and a
PhD thesis [3].
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theory DBM
imports

Floyd-Warshall.Floyd-Warshall
HOL.Real

begin

type-synonym ( ′c, ′t) cval = ′c ⇒ ′t

1 Difference Bound Matrices

1.1 Definitions

1.1.1 Definition and Semantics of DBMs

Difference Bound Matrices (DBMs) constrain differences of clocks (or more
precisely, the difference of values assigned to individual clocks by a valua-
tion). The possible constraints are given by the following datatype:
datatype ′t DBMEntry = Le ′t | Lt ′t | INF (‹∞›)

This yields a simple definition of DBMs:
type-synonym ′t DBM = nat ⇒ nat ⇒ ′t DBMEntry

To relate clocks with rows and columns of a DBM, we use a clock number-
ing v of type ′c ⇒ nat to map clocks to indices. DBMs will regularly be
accompanied by a natural number n, which designates the number of clocks
constrained by the matrix. To be able to represent the full set of clock con-
straints with DBMs, we add an imaginary clock 0, which shall be assigned
to 0 in every valuation. In the following predicate we explicitly keep track
of 0.
class time = linordered-ab-group-add +

assumes dense: x < y =⇒ ∃ z. x < z ∧ z < y
assumes non-trivial: ∃ x. x 6= 0

begin

lemma non-trivial-neg: ∃ x. x < 0
proof −

from non-trivial obtain x where x: x 6= 0 by auto
show ?thesis
proof (cases x < 0 )

case False
with x have x > 0 by auto
then have (−x) < 0 by auto
then show ?thesis ..
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qed auto
qed

end

instantiation real :: time
begin

instance proof
fix x y :: real
assume x < y
then show ∃ z>x. z < y using dense-order-class.dense by blast

next
have (1 :: real) 6= 0 by auto
then show ∃ x. (x::real) 6= 0 ..

qed
end

inductive dbm-entry-val :: ( ′c, ′t) cval ⇒ ′c option ⇒ ′c option ⇒ ( ′t::time)
DBMEntry ⇒ bool
where

u r ≤ d =⇒ dbm-entry-val u (Some r) None (Le d) |
−u c ≤ d =⇒ dbm-entry-val u None (Some c) (Le d) |
u r < d =⇒ dbm-entry-val u (Some r) None (Lt d) |
−u c < d =⇒ dbm-entry-val u None (Some c) (Lt d) |
u r − u c ≤ d =⇒ dbm-entry-val u (Some r) (Some c) (Le d) |
u r − u c < d =⇒ dbm-entry-val u (Some r) (Some c) (Lt d) |
dbm-entry-val - - - ∞

declare dbm-entry-val.intros[intro]
inductive-cases[elim!]: dbm-entry-val u None (Some c) (Le d)
inductive-cases[elim!]: dbm-entry-val u (Some c) None (Le d)
inductive-cases[elim!]: dbm-entry-val u None (Some c) (Lt d)
inductive-cases[elim!]: dbm-entry-val u (Some c) None (Lt d)
inductive-cases[elim!]: dbm-entry-val u (Some r) (Some c) (Le d)
inductive-cases[elim!]: dbm-entry-val u (Some r) (Some c) (Lt d)

fun dbm-entry-bound :: ( ′t::time) DBMEntry ⇒ ′t
where

dbm-entry-bound (Le t) = t |
dbm-entry-bound (Lt t) = t |
dbm-entry-bound ∞ = 0

inductive dbm-lt :: ( ′t::linorder) DBMEntry ⇒ ′t DBMEntry ⇒ bool
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(‹- ≺ -› [51 , 51 ] 50 )
where

dbm-lt (Lt -) ∞ |
dbm-lt (Le -) ∞ |
a < b =⇒ dbm-lt (Le a) (Le b) |
a < b =⇒ dbm-lt (Le a) (Lt b) |
a ≤ b =⇒ dbm-lt (Lt a) (Le b) |
a < b =⇒ dbm-lt (Lt a) (Lt b)

declare dbm-lt.intros[intro]

definition dbm-le :: ( ′t::linorder) DBMEntry ⇒ ′t DBMEntry ⇒ bool
(‹- � -› [51 , 51 ] 50 )
where

dbm-le a b ≡ (a ≺ b) ∨ a = b

Now a valuation is contained in the zone represented by a DBM if it fulfills
all individual constraints:

definition DBM-val-bounded :: ( ′c ⇒ nat)⇒ ( ′c, ′t) cval ⇒ ( ′t::time) DBM
⇒ nat ⇒ bool
where

DBM-val-bounded v u m n ≡ Le 0 � m 0 0 ∧
(∀ c. v c ≤ n −→ (dbm-entry-val u None (Some c) (m 0 (v c))

∧ dbm-entry-val u (Some c) None (m (v c) 0 )))
∧ (∀ c1 c2 . v c1 ≤ n ∧ v c2 ≤ n −→ dbm-entry-val u (Some c1 ) (Some

c2 ) (m (v c1 ) (v c2 )))

abbreviation DBM-val-bounded-abbrev ::
( ′c, ′t) cval ⇒ ( ′c ⇒ nat) ⇒ nat ⇒ ( ′t::time) DBM ⇒ bool

(‹- `-,- -› [48 , 48 , 48 , 48 ] 48 )
where

u `v,n M ≡ DBM-val-bounded v u M n

1.1.2 Ordering DBM Entries

abbreviation
dmin a b ≡ if a ≺ b then a else b

lemma dbm-le-dbm-min:
a � b =⇒ a = dmin a b unfolding dbm-le-def

by auto

lemma dbm-lt-asym:
assumes e ≺ f
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shows ∼ f ≺ e
using assms
proof (safe, cases e f rule: dbm-lt.cases, goal-cases)
case 1 from this(2 ) show ?case using 1 (3−) by (cases f e rule: dbm-lt.cases)

auto
next
case 2 from this(2 ) show ?case using 2 (3−) by (cases f e rule: dbm-lt.cases)

auto
next
case 3 from this(2 ) show ?case using 3 (3−) by (cases f e rule: dbm-lt.cases)

auto
next
case 4 from this(2 ) show ?case using 4 (3−) by (cases f e rule: dbm-lt.cases)

auto
next
case 5 from this(2 ) show ?case using 5 (3−) by (cases f e rule: dbm-lt.cases)

auto
next
case 6 from this(2 ) show ?case using 6 (3−) by (cases f e rule: dbm-lt.cases)

auto
qed

lemma dbm-le-dbm-min2 :
a � b =⇒ a = dmin b a

using dbm-lt-asym by (auto simp: dbm-le-def )

lemma dmb-le-dbm-entry-bound-inf :
a � b =⇒ a = ∞ =⇒ b = ∞
by (auto simp: dbm-le-def elim: dbm-lt.cases)

lemma dbm-not-lt-eq: ¬ a ≺ b =⇒ ¬ b ≺ a =⇒ a = b
by (cases a; cases b; fastforce)

lemma dbm-not-lt-impl: ¬ a ≺ b =⇒ b ≺ a ∨ a = b using dbm-not-lt-eq
by auto

lemma dmin a b = dmin b a
proof (cases a ≺ b)

case True thus ?thesis by (simp add: dbm-lt-asym)
next

case False thus ?thesis by (simp add: dbm-not-lt-eq)
qed

lemma dbm-lt-trans: a ≺ b =⇒ b ≺ c =⇒ a ≺ c
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proof (cases a b rule: dbm-lt.cases, goal-cases)
case 1 thus ?case by simp

next
case 2 from this(2−) show ?case by (cases rule: dbm-lt.cases) simp+

next
case 3 from this(2−) show ?case by (cases rule: dbm-lt.cases) simp+

next
case 4 from this(2−) show ?case by (cases rule: dbm-lt.cases) auto

next
case 5 from this(2−) show ?case by (cases rule: dbm-lt.cases) auto

next
case 6 from this(2−) show ?case by (cases rule: dbm-lt.cases) auto

next
case 7 from this(2−) show ?case by (cases rule: dbm-lt.cases) auto

qed

lemma aux-3 : ¬ a ≺ b =⇒ ¬ b ≺ c =⇒ a ≺ c =⇒ c = a
proof goal-cases

case 1 thus ?case
proof (cases c ≺ b)

case True
with ‹a ≺ c› have a ≺ b by (rule dbm-lt-trans)
thus ?thesis using 1 by auto

next
case False thus ?thesis using dbm-not-lt-eq 1 by auto

qed
qed

inductive-cases[elim!]: ∞ ≺ x

lemma dbm-lt-asymmetric[simp]: x ≺ y =⇒ y ≺ x =⇒ False
by (cases x y rule: dbm-lt.cases) (auto elim: dbm-lt.cases)

lemma le-dbm-le: Le a � Le b =⇒ a ≤ b unfolding dbm-le-def by (auto
elim: dbm-lt.cases)

lemma le-dbm-lt: Le a � Lt b =⇒ a < b unfolding dbm-le-def by (auto
elim: dbm-lt.cases)

lemma lt-dbm-le: Lt a � Le b =⇒ a ≤ b unfolding dbm-le-def by (auto
elim: dbm-lt.cases)

lemma lt-dbm-lt: Lt a � Lt b =⇒ a ≤ b unfolding dbm-le-def by (auto
elim: dbm-lt.cases)
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lemma not-dbm-le-le-impl: ¬ Le a ≺ Le b =⇒ a ≥ b by (metis dbm-lt.intros(3 )
not-less)

lemma not-dbm-lt-le-impl: ¬ Lt a ≺ Le b =⇒ a > b by (metis dbm-lt.intros(5 )
not-less)

lemma not-dbm-lt-lt-impl: ¬ Lt a ≺ Lt b =⇒ a ≥ b by (metis dbm-lt.intros(6 )
not-less)

lemma not-dbm-le-lt-impl: ¬ Le a ≺ Lt b =⇒ a ≥ b by (metis dbm-lt.intros(4 )
not-less)

1.1.3 Addition on DBM Entries

fun dbm-add :: ( ′t::linordered-cancel-ab-semigroup-add) DBMEntry ⇒ ′t
DBMEntry ⇒ ′t DBMEntry (infixl ‹⊗› 70 )
where

dbm-add ∞ - = ∞ |
dbm-add - ∞ = ∞ |
dbm-add (Le a) (Le b) = (Le (a+b)) |
dbm-add (Le a) (Lt b) = (Lt (a+b)) |
dbm-add (Lt a) (Le b) = (Lt (a+b)) |
dbm-add (Lt a) (Lt b) = (Lt (a+b))

lemma aux-4 : x ≺ y =⇒ ¬ dbm-add x z ≺ dbm-add y z =⇒ dbm-add x z
= dbm-add y z
by (cases x y rule: dbm-lt.cases; cases z; auto)

lemma aux-5 : ¬ x ≺ y =⇒ dbm-add x z ≺ dbm-add y z =⇒ dbm-add y z
= dbm-add x z
proof −

assume lt: dbm-add x z ≺ dbm-add y z ¬ x ≺ y
hence x = y ∨ y ≺ x by (auto simp: dbm-not-lt-eq)
thus ?thesis
proof

assume x = y thus ?thesis by simp
next

assume y ≺ x
thus ?thesis
proof (cases y x rule: dbm-lt.cases, goal-cases)

case 1 thus ?case using lt by auto
next

case 2 thus ?case using lt by auto
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next
case 3 thus ?case using dbm-lt-asymmetric lt(1 ) by (cases z) fast-

force+
next

case 4 thus ?case using dbm-lt-asymmetric lt(1 ) by (cases z) fast-
force+

next
case 5 thus ?case using dbm-lt-asymmetric lt(1 ) by (cases z) fast-

force+
next

case 6 thus ?case using dbm-lt-asymmetric lt(1 ) by (cases z) fast-
force+

qed
qed

qed

lemma aux-42 : x ≺ y =⇒ ¬ dbm-add z x ≺ dbm-add z y =⇒ dbm-add z x
= dbm-add z y
by (cases x y rule: dbm-lt.cases) ((cases z), auto)+

lemma aux-52 : ¬ x ≺ y =⇒ dbm-add z x ≺ dbm-add z y =⇒ dbm-add z y
= dbm-add z x
proof −

assume lt: dbm-add z x ≺ dbm-add z y ¬ x ≺ y
hence x = y ∨ y ≺ x by (auto simp: dbm-not-lt-eq)
thus ?thesis
proof

assume x = y thus ?thesis by simp
next

assume y ≺ x
thus ?thesis
proof (cases y x rule: dbm-lt.cases, goal-cases)

case 1 thus ?case using lt by (cases z) fastforce+
next

case 2 thus ?case using lt by (cases z) fastforce+
next

case 3 thus ?case using dbm-lt-asymmetric lt(1 ) by (cases z) fast-
force+

next
case 4 thus ?case using dbm-lt-asymmetric lt(1 ) by (cases z) fast-

force+
next

case 5 thus ?case using dbm-lt-asymmetric lt(1 ) by (cases z) fast-
force+
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next
case 6 thus ?case using dbm-lt-asymmetric lt(1 ) by (cases z) fast-

force+
qed

qed
qed

lemma dbm-add-not-inf :
a 6= ∞ =⇒ b 6= ∞ =⇒ dbm-add a b 6= ∞
by (cases a; cases b; auto)

lemma dbm-le-not-inf :
a � b =⇒ b 6= ∞ =⇒ a 6= ∞
by (cases a = b) (auto simp: dbm-le-def )

1.1.4 Negation of DBM Entries

fun neg-dbm-entry where
neg-dbm-entry (Le a) = Lt (−a) |
neg-dbm-entry (Lt a) = Le (−a) |
neg-dbm-entry ∞ = ∞
— This case does not make sense but we make this definition for technical

convenience.

lemma neg-entry:
{u. ¬ dbm-entry-val u a b e} = {u. dbm-entry-val u b a (neg-dbm-entry

e)}
if e 6= (∞ :: - DBMEntry) a 6= None ∨ b 6= None
using that by (cases e; cases a; cases b; auto 4 3 simp: le-minus-iff

less-minus-iff )

instantiation DBMEntry :: (uminus) uminus
begin

definition uminus: uminus = neg-dbm-entry
instance ..

end

Note that it is not clear that this is the only sensible definition for nega-
tion of DBM entries. The following would also have been quite viable: fun
neg-dbm-entry where neg-dbm-entry (Le a) = Le (−a) | neg-dbm-entry (Lt
a) = Lt (−a) | neg-dbm-entry ∞ = ∞
For most practical proofs using arithmetic on DBM entries we have found
that this does not make much of a difference. Lemma [[?e 6= ∞; ?a 6= None
∨ ?b 6= None]] =⇒ {u. ¬ dbm-entry-val u ?a ?b ?e} = {u. dbm-entry-val u
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?b ?a (neg-dbm-entry ?e)} would not hold any longer, however.

1.2 DBM Entries Form a Linearly Ordered Abelian Monoid

instantiation DBMEntry :: (linorder) linorder
begin

definition less-eq: (≤) ≡ dbm-le
definition less: (<) = dbm-lt
instance
proof ((standard; unfold less less-eq), goal-cases)

case 1 thus ?case unfolding dbm-le-def using dbm-lt-asymmetric by
auto

next
case 2 thus ?case by (simp add: dbm-le-def )

next
case 3 thus ?case unfolding dbm-le-def using dbm-lt-trans by auto

next
case 4 thus ?case unfolding dbm-le-def using dbm-lt-asymmetric by

auto
next

case 5 thus ?case unfolding dbm-le-def using dbm-not-lt-eq by auto
qed

end

class linordered-cancel-ab-monoid-add =
linordered-cancel-ab-semigroup-add + zero +

assumes neutl[simp]: 0 + x = x
assumes neutr [simp]: x + 0 = x

begin

subclass linordered-ab-monoid-add
by standard (rule neutl)

end

instantiation DBMEntry :: (zero) zero
begin

definition neutral: 0 = Le 0
instance ..

end

instantiation DBMEntry :: (linordered-cancel-ab-monoid-add) linordered-ab-monoid-add
begin
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definition add: (+) = dbm-add

instance proof ((standard; unfold add neutral less less-eq), goal-cases)
case (1 a b c) thus ?case by (cases a; cases b; cases c; auto simp:

add.assoc)
next

case (2 a b) thus ?case by (cases a; cases b; auto simp: add.commute)
next

case (3 a) thus ?case by (cases a) auto
next

case (4 a b c)
thus ?case unfolding dbm-le-def
apply safe
apply (rule dbm-lt.cases)

apply assumption
by (cases c; fastforce)+

qed

end

interpretation linordered-monoid:
linordered-ab-monoid-add dbm-add Le (0 :: ′t::linordered-cancel-ab-monoid-add)

dbm-le dbm-lt
apply (standard, fold neutral add less-eq less)
using add.commute by (auto intro: add-left-mono simp: add.assoc)

instance time ⊆ linordered-cancel-ab-monoid-add by (standard; simp)

lemma dbm-add-strict-right-mono-neutral: a < Le (d :: ′t :: time) =⇒ a +
Le (−d) < Le 0
unfolding less add by (cases a) (auto elim!: dbm-lt.cases)

lemma dbm-lt-not-inf-less[intro]: A 6= ∞ =⇒ A ≺ ∞ by (cases A) auto

lemma add-inf [simp]:
a + ∞ = ∞ ∞ + a = ∞

unfolding add by (cases a) auto

lemma inf-lt[simp,dest!]:
∞ < x =⇒ False
by (cases x) (auto simp: less)

lemma inf-lt-impl-False[simp]:
∞ < x = False
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by auto

lemma Le-Le-dbm-lt-D[dest]: Le a ≺ Lt b =⇒ a < b by (cases rule: dbm-lt.cases)
auto
lemma Le-Lt-dbm-lt-D[dest]: Le a ≺ Le b =⇒ a < b by (cases rule: dbm-lt.cases)
auto
lemma Lt-Le-dbm-lt-D[dest]: Lt a ≺ Le b =⇒ a ≤ b by (cases rule: dbm-lt.cases)
auto
lemma Lt-Lt-dbm-lt-D[dest]: Lt a ≺ Lt b =⇒ a < b by (cases rule: dbm-lt.cases)
auto

lemma Le-le-LeI [intro]: a ≤ b =⇒ Le a ≤ Le b unfolding less-eq dbm-le-def
by auto
lemma Lt-le-LeI [intro]: a ≤ b =⇒ Lt a ≤ Le b unfolding less-eq dbm-le-def
by auto
lemma Lt-le-LtI [intro]: a ≤ b =⇒ Lt a ≤ Lt b unfolding less-eq dbm-le-def
by auto
lemma Le-le-LtI [intro]: a < b =⇒ Le a ≤ Lt b unfolding less-eq dbm-le-def
by auto
lemma Lt-lt-LeI : x ≤ y =⇒ Lt x < Le y unfolding less by auto

lemma Le-le-LeD[dest]: Le a ≤ Le b =⇒ a ≤ b unfolding dbm-le-def less-eq
by auto
lemma Le-le-LtD[dest]: Le a ≤ Lt b =⇒ a < b unfolding dbm-le-def less-eq
by auto
lemma Lt-le-LeD[dest]: Lt a ≤ Le b =⇒ a ≤ b unfolding less-eq dbm-le-def
by auto
lemma Lt-le-LtD[dest]: Lt a ≤ Lt b =⇒ a ≤ b unfolding less-eq dbm-le-def
by auto

lemma inf-not-le-Le[simp]:∞ ≤ Le x = False unfolding less-eq dbm-le-def
by auto
lemma inf-not-le-Lt[simp]:∞ ≤ Lt x = False unfolding less-eq dbm-le-def
by auto
lemma inf-not-lt[simp]: ∞ ≺ x = False by auto

lemma any-le-inf : x ≤ (∞ :: - DBMEntry) by (metis less-eq dmb-le-dbm-entry-bound-inf
le-cases)

lemma dbm-lt-code-simps[code]:
dbm-lt (Lt a) ∞ = True
dbm-lt (Le a) ∞ = True
dbm-lt (Le a) (Le b) = (a < b)
dbm-lt (Le a) (Lt b) = (a < b)
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dbm-lt (Lt a) (Le b) = (a ≤ b)
dbm-lt (Lt a) (Lt b) = (a < b)
dbm-lt ∞ x = False
by auto

1.3 Basic Properties of DBMs

1.3.1 DBMs and Length of Paths

lemma dbm-entry-val-add-1 : dbm-entry-val u (Some c) (Some d) a =⇒
dbm-entry-val u (Some d) None b

=⇒ dbm-entry-val u (Some c) None (dbm-add a b)
proof (cases a, goal-cases)

case 1 thus ?thesis
apply (cases b)
using add-mono-thms-linordered-semiring(1 ) add-le-less-mono by auto

fastforce+
next

case 2 thus ?thesis
apply (cases b)

apply (clarsimp simp: dbm-entry-val.intros(3 ) diff-less-eq less-le-trans)
apply (clarsimp, metis add-le-less-mono dbm-entry-val.intros(3 ) diff-add-cancel

less-imp-le)
apply auto
done

next
case 3 thus ?thesis by (cases b) auto

qed

lemma dbm-entry-val-add-2 : dbm-entry-val u None (Some c) a =⇒ dbm-entry-val
u (Some c) (Some d) b

=⇒ dbm-entry-val u None (Some d) (dbm-add a b)
proof (cases a, goal-cases)

case 1 thus ?thesis
apply (cases b)
using add-mono-thms-linordered-semiring(1 ) add-le-less-mono by fast-

force+
next

case 2 thus ?thesis
apply (cases b)
using add-mono-thms-linordered-field(3 ) apply fastforce
using add-strict-mono by fastforce+

next
case 3 thus ?thesis by (cases b) auto
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qed

lemma dbm-entry-val-add-3 :
dbm-entry-val u (Some c) (Some d) a =⇒ dbm-entry-val u (Some d)

(Some e) b
=⇒ dbm-entry-val u (Some c) (Some e) (dbm-add a b)

proof (cases a, goal-cases)
case 1 thus ?thesis

apply (cases b)
using add-mono-thms-linordered-semiring(1 ) apply fastforce
using add-le-less-mono by fastforce+

next
case 2 thus ?thesis

apply (cases b)
using add-mono-thms-linordered-field(3 ) apply fastforce
using add-strict-mono by fastforce+

next
case 3 thus ?thesis by (cases b) auto

qed

lemma dbm-entry-val-add-4 :
dbm-entry-val u (Some c) None a =⇒ dbm-entry-val u None (Some d) b
=⇒ dbm-entry-val u (Some c) (Some d) (dbm-add a b)

proof (cases a, goal-cases)
case 1 thus ?thesis

apply (cases b)
using add-mono-thms-linordered-semiring(1 ) apply fastforce
using add-le-less-mono by fastforce+

next
case 2 thus ?thesis

apply (cases b)
using add-mono-thms-linordered-field(3 ) apply fastforce
using add-strict-mono by fastforce+

next
case 3 thus ?thesis by (cases b) auto

qed

no-notation dbm-add (infixl ‹⊗› 70 )

lemma DBM-val-bounded-len-1 ′-aux:
assumes DBM-val-bounded v u m n v c ≤ n ∀ k ∈ set vs. k > 0 ∧ k ≤

n ∧ (∃ c. v c = k)
shows dbm-entry-val u (Some c) None (len m (v c) 0 vs) using assms

proof (induction vs arbitrary: c)
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case Nil then show ?case unfolding DBM-val-bounded-def by auto
next

case (Cons k vs)
then obtain c ′ where c ′: k > 0 k ≤ n v c ′ = k by auto
with Cons have dbm-entry-val u (Some c ′) None (len m (v c ′) 0 vs) by

auto
moreover have dbm-entry-val u (Some c) (Some c ′) (m (v c) (v c ′))

using Cons.prems c ′

by (auto simp add: DBM-val-bounded-def )
ultimately have dbm-entry-val u (Some c) None (m (v c) (v c ′) + len

m (v c ′) 0 vs)
using dbm-entry-val-add-1 unfolding add by fastforce
with c ′ show ?case unfolding DBM-val-bounded-def by simp

qed

lemma DBM-val-bounded-len-3 ′-aux:
DBM-val-bounded v u m n =⇒ v c ≤ n =⇒ v d ≤ n =⇒ ∀ k ∈ set vs. k

> 0 ∧ k ≤ n ∧ (∃ c. v c = k)
=⇒ dbm-entry-val u (Some c) (Some d) (len m (v c) (v d) vs)

proof (induction vs arbitrary: c)
case Nil thus ?case unfolding DBM-val-bounded-def by auto

next
case (Cons k vs)
then obtain c ′ where c ′: k > 0 k ≤ n v c ′ = k by auto
with Cons have dbm-entry-val u (Some c ′) (Some d) (len m (v c ′) (v d)

vs) by auto
moreover have dbm-entry-val u (Some c) (Some c ′) (m (v c) (v c ′))

using Cons.prems c ′

by (auto simp add: DBM-val-bounded-def )
ultimately have dbm-entry-val u (Some c) (Some d) (m (v c) (v c ′) +

len m (v c ′) (v d) vs)
using dbm-entry-val-add-3 unfolding add by fastforce
with c ′ show ?case unfolding DBM-val-bounded-def by simp

qed

lemma DBM-val-bounded-len-2 ′-aux:
DBM-val-bounded v u m n =⇒ v c ≤ n =⇒ ∀ k ∈ set vs. k > 0 ∧ k ≤ n
∧ (∃ c. v c = k)
=⇒ dbm-entry-val u None (Some c) (len m 0 (v c) vs)

proof (cases vs, goal-cases)
case 1 then show ?thesis unfolding DBM-val-bounded-def by auto

next
case (2 k vs)
then obtain c ′ where c ′: k > 0 k ≤ n v c ′ = k by auto
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with 2 have dbm-entry-val u (Some c ′) (Some c) (len m (v c ′) (v c) vs)
using DBM-val-bounded-len-3 ′-aux by auto
moreover have dbm-entry-val u None (Some c ′) (m 0 (v c ′))
using 2 c ′ by (auto simp add: DBM-val-bounded-def )
ultimately have dbm-entry-val u None (Some c) (m 0 (v c ′) + len m (v

c ′) (v c) vs)
using dbm-entry-val-add-2 unfolding add by fastforce
with 2 (4 ) c ′ show ?case unfolding DBM-val-bounded-def by simp

qed

lemma cnt-0-D:
cnt x xs = 0 =⇒ x /∈ set xs
apply (induction xs)
apply simp

subgoal for a xs
by (cases x = a; simp)

done

lemma cnt-at-most-1-D:
cnt x (xs @ x # ys) ≤ 1 =⇒ x /∈ set xs ∧ x /∈ set ys
apply (induction xs)
apply auto[]
using cnt-0-D apply force
subgoal for a xs

by (cases x = a; simp)
done

lemma nat-list-0 [intro]:
x ∈ set xs =⇒ 0 /∈ set (xs :: nat list) =⇒ x > 0
by (induction xs) auto

lemma DBM-val-bounded-len ′1 :
fixes v
assumes DBM-val-bounded v u m n 0 /∈ set vs v c ≤ n

∀ k ∈ set vs. k > 0 −→ k ≤ n ∧ (∃ c. v c = k)
shows dbm-entry-val u (Some c) None (len m (v c) 0 vs)

using DBM-val-bounded-len-1 ′-aux[OF assms(1 ,3 )] assms(2 ,4 ) by fast-
force

lemma DBM-val-bounded-len ′2 :
fixes v
assumes DBM-val-bounded v u m n 0 /∈ set vs v c ≤ n

∀ k ∈ set vs. k > 0 −→ k ≤ n ∧ (∃ c. v c = k)
shows dbm-entry-val u None (Some c) (len m 0 (v c) vs)
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using DBM-val-bounded-len-2 ′-aux[OF assms(1 ,3 )] assms(2 ,4 ) by fast-
force

lemma DBM-val-bounded-len ′3 :
fixes v
assumes DBM-val-bounded v u m n cnt 0 vs ≤ 1 v c1 ≤ n v c2 ≤ n

∀ k ∈ set vs. k > 0 −→ k ≤ n ∧ (∃ c. v c = k)
shows dbm-entry-val u (Some c1 ) (Some c2 ) (len m (v c1 ) (v c2 ) vs)

proof −
show ?thesis
proof (cases ∀ k ∈ set vs. k > 0 )

case True
with assms have ∀ k ∈ set vs. k > 0 ∧ k ≤ n ∧ (∃ c. v c = k) by auto
with DBM-val-bounded-len-3 ′-aux[OF assms(1 ,3 ,4 )] show ?thesis by

auto
next

case False
then have ∃ k ∈ set vs. k = 0 by auto

then obtain us ws where vs: vs = us @ 0 # ws by (meson split-list-last)
with cnt-at-most-1-D[of 0 us] assms(2 ) have

0 /∈ set us 0 /∈ set ws
by auto
with vs have vs: vs = us @ 0 # ws ∀ k ∈ set us. k > 0 ∀ k ∈ set ws.

k > 0 by auto
with assms(5 ) have v:
∀ k∈set us. 0 < k ∧ k ≤ n ∧ (∃ c. v c = k) ∀ k∈set ws. 0 < k ∧ k ≤

n ∧ (∃ c. v c = k)
by auto
with

dbm-entry-val-add-4 [OF
DBM-val-bounded-len-1 ′-aux[OF assms(1 ,3 ) v(1 )]
DBM-val-bounded-len-2 ′-aux[OF assms(1 ,4 ) v(2 )]

]
have dbm-entry-val u (Some c1 ) (Some c2 ) (dbm-add (len m (v c1 ) 0

us) (len m 0 (v c2 ) ws))
by auto

moreover from vs have len m (v c1 ) (v c2 ) vs = dbm-add (len m (v
c1 ) 0 us) (len m 0 (v c2 ) ws)

by (simp add: len-comp add)
ultimately show ?thesis by auto

qed
qed
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Now unused lemma DBM-val-bounded-len ′:
fixes v
defines vo ≡ λ k. if k = 0 then None else Some (SOME c. v c = k)
assumes DBM-val-bounded v u m n cnt 0 (i # j # vs) ≤ 1

∀ k ∈ set (i # j # vs). k > 0 −→ k ≤ n ∧ (∃ c. v c = k)
shows dbm-entry-val u (vo i) (vo j) (len m i j vs)

proof −
show ?thesis
proof (cases ∀ k ∈ set vs. k > 0 )

case True
with assms have ∗: ∀ k ∈ set vs. k > 0 ∧ k ≤ n ∧ (∃ c. v c = k) by

auto
show ?thesis
proof (cases i = 0 )

case True
then have i: vo i = None by (simp add: vo-def )
show ?thesis
proof (cases j = 0 )

case True with assms ‹i = 0 › show ?thesis by auto
next

case False
with assms obtain c2 where c2 : j ≤ n v c2 = j vo j = Some c2
unfolding vo-def by (fastforce intro: someI )
with ‹i = 0 › i DBM-val-bounded-len-2 ′-aux[OF assms(2 ) - ∗] show

?thesis by auto
qed

next
case False
with assms(4 ) obtain c1 where c1 : i ≤ n v c1 = i vo i = Some c1
unfolding vo-def by (fastforce intro: someI )
show ?thesis
proof (cases j = 0 )

case True
with DBM-val-bounded-len-1 ′-aux[OF assms(2 ) - ∗] c1 show ?thesis

by (auto simp: vo-def )
next

case False
with assms obtain c2 where c2 : j ≤ n v c2 = j vo j = Some c2
unfolding vo-def by (fastforce intro: someI )

with c1 DBM-val-bounded-len-3 ′-aux[OF assms(2 ) - - ∗] show ?thesis
by auto

qed
qed

next
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case False
then have ∃ k ∈ set vs. k = 0 by auto

then obtain us ws where vs: vs = us @ 0 # ws by (meson split-list-last)
with cnt-at-most-1-D[of 0 i # j # us ws] assms(3 ) have

0 /∈ set us 0 /∈ set ws i 6= 0 j 6= 0
by auto
with vs have vs: vs = us @ 0 # ws ∀ k ∈ set us. k > 0 ∀ k ∈ set ws.

k > 0 by auto
with assms(4 ) have v:
∀ k∈set us. 0 < k ∧ k ≤ n ∧ (∃ c. v c = k) ∀ k∈set ws. 0 < k ∧ k ≤

n ∧ (∃ c. v c = k)
by auto
from ‹i 6= 0 › ‹j 6= 0 › assms obtain c1 c2 where

c1 : i ≤ n v c1 = i vo i = Some c1 and c2 : j ≤ n v c2 = j vo j =
Some c2

unfolding vo-def by (fastforce intro: someI )
with dbm-entry-val-add-4 [OF DBM-val-bounded-len-1 ′-aux[OF assms(2 )

- v(1 )] DBM-val-bounded-len-2 ′-aux[OF assms(2 ) - v(2 )]]
have dbm-entry-val u (Some c1 ) (Some c2 ) (dbm-add (len m (v c1 ) 0

us) (len m 0 (v c2 ) ws)) by auto
moreover from vs have len m (v c1 ) (v c2 ) vs = dbm-add (len m (v

c1 ) 0 us) (len m 0 (v c2 ) ws)
by (simp add: len-comp add)

ultimately show ?thesis using c1 c2 by auto
qed

qed

lemma DBM-val-bounded-len-1 : DBM-val-bounded v u m n =⇒ v c ≤ n
=⇒ ∀ c ∈ set cs. v c ≤ n

=⇒ dbm-entry-val u (Some c) None (len m (v c) 0 (map v cs))
proof (induction cs arbitrary: c)

case Nil thus ?case unfolding DBM-val-bounded-def by auto
next

case (Cons c ′ cs)
hence dbm-entry-val u (Some c ′) None (len m (v c ′) 0 (map v cs)) by

auto
moreover have dbm-entry-val u (Some c) (Some c ′) (m (v c) (v c ′))

using Cons.prems
by (simp add: DBM-val-bounded-def )

ultimately have dbm-entry-val u (Some c) None (m (v c) (v c ′) + len
m (v c ′) 0 (map v cs))

using dbm-entry-val-add-1 unfolding add by fastforce
thus ?case unfolding DBM-val-bounded-def by simp

qed
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lemma DBM-val-bounded-len-3 : DBM-val-bounded v u m n =⇒ v c ≤ n
=⇒ v d ≤ n =⇒ ∀ c ∈ set cs. v c ≤ n

=⇒ dbm-entry-val u (Some c) (Some d) (len m (v c) (v d) (map v cs))
proof (induction cs arbitrary: c)

case Nil thus ?case unfolding DBM-val-bounded-def by auto
next

case (Cons c ′ cs)
hence dbm-entry-val u (Some c ′) (Some d) (len m (v c ′) (v d) (map v

cs)) by auto
moreover have dbm-entry-val u (Some c) (Some c ′) (m (v c) (v c ′))

using Cons.prems
by (simp add: DBM-val-bounded-def )

ultimately have dbm-entry-val u (Some c) (Some d) (m (v c) (v c ′) +
len m (v c ′) (v d) (map v cs))

using dbm-entry-val-add-3 unfolding add by fastforce
thus ?case unfolding DBM-val-bounded-def by simp

qed

lemma DBM-val-bounded-len-2 : DBM-val-bounded v u m n =⇒ v c ≤ n
=⇒ ∀ c ∈ set cs. v c ≤ n

=⇒ dbm-entry-val u None (Some c) (len m 0 (v c) (map v cs))
proof (cases cs, goal-cases)

case 1 thus ?thesis unfolding DBM-val-bounded-def by auto
next

case (2 c ′ cs)
hence dbm-entry-val u (Some c ′) (Some c) (len m (v c ′) (v c) (map v cs))

using DBM-val-bounded-len-3 by auto
moreover have dbm-entry-val u None (Some c ′) (m 0 (v c ′))

using 2 by (simp add: DBM-val-bounded-def )
ultimately have dbm-entry-val u None (Some c) (m 0 (v c ′) + len m (v

c ′) (v c) (map v cs))
using dbm-entry-val-add-2 unfolding add by fastforce

thus ?case using 2 (4 ) unfolding DBM-val-bounded-def by simp
qed

lemmas DBM-arith-defs = add neutral uminus

end
theory Paths-Cycles

imports Floyd-Warshall.Floyd-Warshall
begin
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2 Library for Paths, Arcs and Lengths
lemma length-eq-distinct:

assumes set xs = set ys distinct xs length xs = length ys
shows distinct ys

using assms card-distinct distinct-card by fastforce

2.1 Arcs

fun arcs :: nat ⇒ nat ⇒ nat list ⇒ (nat ∗ nat) list where
arcs a b [] = [(a,b)] |
arcs a b (x # xs) = (a, x) # arcs x b xs

definition arcs ′ :: nat list ⇒ (nat ∗ nat) set where
arcs ′ xs = set (arcs (hd xs) (last xs) (butlast (tl xs)))

lemma arcs ′-decomp:
length xs > 1 =⇒ (i, j) ∈ arcs ′ xs =⇒ ∃ zs ys. xs = zs @ i # j # ys

proof (induction xs)
case Nil thus ?case by auto

next
case (Cons x xs)
then have length xs > 0 by auto
then obtain y ys where xs: xs = y # ys by (metis Suc-length-conv

less-imp-Suc-add)
show ?case
proof (cases (i, j) = (x, y))

case True
with xs have x # xs = [] @ i # j # ys by simp
then show ?thesis by auto

next
case False
then show ?thesis
proof (cases length ys > 0 , goal-cases)

case 2
then have ys = [] by auto

then have arcs ′ (x#xs) = {(x,y)} using xs by (auto simp add:
arcs ′-def )

with Cons.prems(2 ) 2 (1 ) show ?case by auto
next

case True
with xs Cons.prems(2 ) False have (i, j) ∈ arcs ′ xs by (auto simp

add: arcs ′-def )
with Cons.IH [OF - this] True xs obtain zs ys where xs = zs @ i #
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j # ys by auto
then have x # xs = (x # zs) @ i # j # ys by simp
then show ?thesis by blast

qed
qed

qed

lemma arcs-decomp-tail:
arcs j l (ys @ [i]) = arcs j i ys @ [(i, l)]

by (induction ys arbitrary: j) auto

lemma arcs-decomp: xs = ys @ y # zs =⇒ arcs x z xs = arcs x y ys @
arcs y z zs
by (induction ys arbitrary: x xs) simp+

lemma distinct-arcs-ex:
distinct xs =⇒ i /∈ set xs =⇒ xs 6= [] =⇒ ∃ a b. a 6= x ∧ (a,b) ∈ set (arcs

i j xs)
apply (induction xs arbitrary: i)
apply simp

subgoal for a xs i
apply (cases xs)
apply (simp, metis)

by auto
done

lemma cycle-rotate-2-aux:
(i, j) ∈ set (arcs a b (xs @ [c])) =⇒ (i,j) 6= (c,b) =⇒ (i, j) ∈ set (arcs a

c xs)
by (induction xs arbitrary: a) auto

lemma arcs-set-elem1 :
assumes j 6= k k ∈ set (i # xs)
shows ∃ l. (k, l) ∈ set (arcs i j xs) using assms

by (induction xs arbitrary: i) auto

lemma arcs-set-elem2 :
assumes i 6= k k ∈ set (j # xs)
shows ∃ l. (l, k) ∈ set (arcs i j xs) using assms

proof (induction xs arbitrary: i)
case Nil then show ?case by simp

next
case (Cons x xs)
then show ?case by (cases k = x) auto
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qed

2.2 Length of Paths

lemmas (in linordered-ab-monoid-add) comm = add.commute

lemma len-add:
fixes M :: ( ′a :: linordered-ab-monoid-add) mat
shows len M i j xs + len M i j xs = len (λi j. M i j + M i j) i j xs

proof (induction xs arbitrary: i j)
case Nil thus ?case by auto

next
case (Cons x xs)
have M i x + len M x j xs + (M i x + len M x j xs) = M i x + (len M x

j xs + M i x) + len M x j xs
by (simp add: add.assoc)

also have . . . = M i x + (M i x + len M x j xs) + len M x j xs by (simp
add: comm)

also have . . . = (M i x + M i x) + (len M x j xs + len M x j xs) by
(simp add: add.assoc)

finally have M i x + len M x j xs + (M i x + len M x j xs)
= (M i x + M i x) + len (λi j. M i j + M i j) x j xs

using Cons by simp
thus ?case by simp

qed

2.3 Cycle Rotation

lemma cycle-rotate:
fixes M :: ( ′a :: linordered-ab-monoid-add) mat
assumes length xs > 1 (i, j) ∈ arcs ′ xs
shows ∃ ys zs. len M a a xs = len M i i (j # ys @ a # zs) ∧ xs = zs @

i # j # ys using assms
proof −

assume A: length xs > 1 (i, j) ∈ arcs ′ xs
from arcs ′-decomp[OF this] obtain ys zs where xs: xs = zs @ i # j #

ys by blast
from len-decomp[OF this, of M a a]
have len M a a xs = len M a i zs + len M i a (j # ys) .
also have . . . = len M i a (j # ys) + len M a i zs by (simp add: comm)
also from len-comp[of M i i j # ys a zs] have . . . = len M i i (j # ys @

a # zs) by auto
finally show ?thesis using xs by auto

qed
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lemma cycle-rotate-2 :
fixes M :: ( ′a :: linordered-ab-monoid-add) mat
assumes xs 6= [] (i, j) ∈ set (arcs a a xs)
shows ∃ ys. len M a a xs = len M i i (j # ys) ∧ set ys ⊆ set (a # xs)
∧ length ys < length xs
using assms proof −

assume A:xs 6= [] (i, j) ∈ set (arcs a a xs)
{ fix ys assume A:a = i xs = j # ys

then have ?thesis by auto
} note ∗ = this
{ fix b ys assume A: a = j xs = ys @ [i]

have len M j j (ys @ [i]) = M i j + len M j i ys
using len-decomp[of ys @ [i] ys i [] M j j] by (auto simp: comm)

with A have ?thesis
by auto

} note ∗∗ = this
{ assume length xs = 1

then obtain b where xs: xs = [b] by (metis One-nat-def length-0-conv
length-Suc-conv)

with A(2 ) have a = i ∧ b = j ∨ a = j ∧ b = i by auto
then have ?thesis using ∗ ∗∗ xs by auto

} note ∗∗∗ = this
show ?thesis
proof (cases length xs = 0 )

case True with A show ?thesis by auto
next

case False
thus ?thesis
proof (cases length xs = 1 , goal-cases)

case True with ∗∗∗ show ?thesis by auto
next

case 2
hence length xs > 1 by linarith
then obtain b c ys where ys:xs = b # ys @ [c]

by (metis One-nat-def assms(1 ) 2 (2 ) length-0-conv length-Cons list.exhaust
rev-exhaust)

thus ?thesis
proof (cases (i,j) = (a,b), goal-cases)

case True
with ys ∗ show ?thesis by auto

next
case False
then show ?thesis
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proof (cases (i,j) = (c,a), goal-cases)
case True
with ys ∗∗ show ?thesis by auto

next
case 2
with A(2 ) ys have (i, j) ∈ arcs ′ xs
using cycle-rotate-2-aux by (auto simp: arcs ′-def )
from cycle-rotate[OF ‹length xs > 1 › this, of M a] show ?thesis

by auto
qed

qed
qed

qed
qed

lemma cycle-rotate-len-arcs:
fixes M :: ( ′a :: linordered-ab-monoid-add) mat
assumes length xs > 1 (i, j) ∈ arcs ′ xs
shows ∃ ys zs. len M a a xs = len M i i (j # ys @ a # zs)

∧ set (arcs a a xs) = set (arcs i i (j # ys @ a # zs)) ∧ xs =
zs @ i # j # ys
using assms
proof −

assume A: length xs > 1 (i, j) ∈ arcs ′ xs
from arcs ′-decomp[OF this] obtain ys zs where xs: xs = zs @ i # j #

ys by blast
from len-decomp[OF this, of M a a]
have len M a a xs = len M a i zs + len M i a (j # ys) .
also have . . . = len M i a (j # ys) + len M a i zs by (simp add: comm)
also from len-comp[of M i i j # ys a zs] have . . . = len M i i (j # ys @

a # zs) by auto
finally show ?thesis
using xs arcs-decomp[OF xs, of a a] arcs-decomp[of j # ys @ a # zs j #

ys a zs i i] by force
qed

lemma cycle-rotate-2 ′:
fixes M :: ( ′a :: linordered-ab-monoid-add) mat
assumes xs 6= [] (i, j) ∈ set (arcs a a xs)
shows ∃ ys. len M a a xs = len M i i (j # ys) ∧ set (i # j # ys) = set

(a # xs)
∧ 1 + length ys = length xs ∧ set (arcs a a xs) = set (arcs i i (j

# ys))
proof −
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note A = assms
{ fix ys assume A:a = i xs = j # ys

then have ?thesis by auto
} note ∗ = this
{ fix b ys assume A:a = j xs = ys @ [i]

have len M j j (ys @ [i]) = M i j + len M j i ys
using len-decomp[of ys @ [i] ys i [] M j j] by (auto simp: comm)
moreover have arcs j j (ys @ [i]) = arcs j i ys @ [(i, j)] using

arcs-decomp-tail by auto
ultimately have ?thesis using A by auto

} note ∗∗ = this
{ assume length xs = 1

then obtain b where xs: xs = [b] by (metis One-nat-def length-0-conv
length-Suc-conv)

with A(2 ) have a = i ∧ b = j ∨ a = j ∧ b = i by auto
then have ?thesis using ∗ ∗∗ xs by auto

} note ∗∗∗ = this
show ?thesis
proof (cases length xs = 0 )

case True with A show ?thesis by auto
next

case False
thus ?thesis
proof (cases length xs = 1 , goal-cases)

case True with ∗∗∗ show ?thesis by auto
next

case 2
hence length xs > 1 by linarith
then obtain b c ys where ys:xs = b # ys @ [c]

by (metis One-nat-def assms(1 ) 2 (2 ) length-0-conv length-Cons list.exhaust
rev-exhaust)

thus ?thesis
proof (cases (i,j) = (a,b))

case True
with ys ∗ show ?thesis by blast

next
case False
then show ?thesis
proof (cases (i,j) = (c,a), goal-cases)

case True
with ys ∗∗ show ?thesis by force

next
case 2
with A(2 ) ys have (i, j) ∈ arcs ′ xs
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using cycle-rotate-2-aux by (auto simp add: arcs ′-def )
from cycle-rotate-len-arcs[OF ‹length xs > 1 › this, of M a] show

?thesis by auto
qed

qed
qed

qed
qed

2.4 More on Cycle-Freeness

lemma cyc-free-diag-dest:
assumes cyc-free M n i ≤ n set xs ⊆ {0 ..n}
shows len M i i xs ≥ 0

using assms by auto

lemma cycle-free-0-0 :
fixes M :: ( ′a::linordered-ab-monoid-add) mat
assumes cycle-free M n
shows M 0 0 ≥ 0

using cyc-free-diag-dest[OF cycle-free-diag-dest[OF assms], of 0 []] by auto

2.5 Helper Lemmas for Bouyer’s Theorem on Approxima-
tion

lemma aux1 : i ≤ n =⇒ j ≤ n =⇒ set xs ⊆ {0 ..n} =⇒ (a,b) ∈ set (arcs i
j xs) =⇒ a ≤ n ∧ b ≤ n
by (induction xs arbitrary: i) auto

lemma arcs-distinct1 :
i /∈ set xs =⇒ j /∈ set xs =⇒ distinct xs =⇒ xs 6= [] =⇒ (a,b) ∈ set (arcs

i j xs) =⇒ a 6= b
apply (induction xs arbitrary: i)
apply fastforce

subgoal for a ′ xs i
by (cases xs) auto

done

lemma arcs-distinct2 :
i /∈ set xs =⇒ j /∈ set xs =⇒ distinct xs =⇒ i 6= j =⇒ (a,b) ∈ set (arcs i

j xs) =⇒ a 6= b
by (induction xs arbitrary: i) auto

lemma arcs-distinct3 : distinct (a # b # c # xs) =⇒ (i,j) ∈ set (arcs a b
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xs) =⇒ i 6= c ∧ j 6= c
by (induction xs arbitrary: a) force+

lemma arcs-elem:
assumes (a, b) ∈ set (arcs i j xs) shows a ∈ set (i # xs) b ∈ set (j #

xs)
using assms by (induction xs arbitrary: i) auto

lemma arcs-distinct-dest1 :
distinct (i # a # zs) =⇒ (b,c) ∈ set (arcs a j zs) =⇒ b 6= i

using arcs-elem by fastforce

lemma arcs-distinct-fix:
distinct (a # x # xs @ [b]) =⇒ (a,c) ∈ set (arcs a b (x # xs)) =⇒ c = x

using arcs-elem(1 ) by fastforce

lemma disjE3 : A ∨ B ∨ C =⇒ (A =⇒ G) =⇒ (B =⇒ G) =⇒ (C =⇒ G)
=⇒ G
by auto

lemma arcs-predecessor :
assumes (a, b) ∈ set (arcs i j xs) a 6= i
shows ∃ c. (c, a) ∈ set (arcs i j xs) using assms

by (induction xs arbitrary: i) auto

lemma arcs-successor :
assumes (a, b) ∈ set (arcs i j xs) b 6= j
shows ∃ c. (b,c) ∈ set (arcs i j xs) using assms
apply (induction xs arbitrary: i)
apply simp

subgoal for aa xs i
by (cases xs) auto

done

lemma arcs-predecessor ′:
assumes (a, b) ∈ set (arcs i j (x # xs)) (a,b) 6= (i, x)
shows ∃ c. (c, a) ∈ set (arcs i j (x # xs)) using assms

by (induction xs arbitrary: i x) auto

lemma arcs-cases:
assumes (a, b) ∈ set (arcs i j xs) xs 6= []
shows (∃ ys. xs = b # ys ∧ a = i) ∨ (∃ ys. xs = ys @ [a] ∧ b = j)
∨ (∃ c d ys. (a,b) ∈ set (arcs c d ys) ∧ xs = c # ys @ [d])

using assms
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proof (induction xs arbitrary: i)
case Nil then show ?case by auto

next
case (Cons x xs)
show ?case
proof (cases (a, b) = (i, x))

case True
with Cons.prems show ?thesis by auto

next
case False
note F = this
show ?thesis
proof (cases xs = [])

case True
with F Cons.prems show ?thesis by auto

next
case False
from F Cons.prems have (a, b) ∈ set (arcs x j xs) by auto
from Cons.IH [OF this False] have
(∃ ys. xs = b # ys ∧ a = x) ∨ (∃ ys. xs = ys @ [a] ∧ b = j)
∨ (∃ c d ys. (a, b) ∈ set (arcs c d ys) ∧ xs = c # ys @ [d])

.
then show ?thesis
proof (rule disjE3 , goal-cases)

case 1
from 1 obtain ys where ∗: xs = b # ys ∧ a = x by auto
show ?thesis
proof (cases ys = [])

case True
with ∗ show ?thesis by auto

next
case False

then obtain z zs where zs: ys = zs @ [z] by (metis ap-
pend-butlast-last-id)

with ∗ show ?thesis by auto
qed

next
case 2 then show ?case by auto

next
case 3 with False show ?case by auto

qed
qed

qed
qed
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lemma arcs-cases ′:
assumes (a, b) ∈ set (arcs i j xs) xs 6= []
shows (∃ ys. xs = b # ys ∧ a = i) ∨ (∃ ys. xs = ys @ [a] ∧ b = j) ∨

(∃ ys zs. xs = ys @ a # b # zs)
using assms
proof (induction xs arbitrary: i)

case Nil then show ?case by auto
next

case (Cons x xs)
show ?case
proof (cases (a, b) = (i, x))

case True
with Cons.prems show ?thesis by auto

next
case False
note F = this
show ?thesis
proof (cases xs = [])

case True
with F Cons.prems show ?thesis by auto

next
case False
from F Cons.prems have (a, b) ∈ set (arcs x j xs) by auto
from Cons.IH [OF this False] have
(∃ ys. xs = b # ys ∧ a = x) ∨ (∃ ys. xs = ys @ [a] ∧ b = j)
∨ (∃ ys zs. xs = ys @ a # b # zs)

.
then show ?thesis
proof (rule disjE3 , goal-cases)

case 1
from 1 obtain ys where ∗: xs = b # ys ∧ a = x by auto
show ?thesis
proof (cases ys = [])

case True
with ∗ show ?thesis by auto

next
case False

then obtain z zs where zs: ys = zs @ [z] by (metis ap-
pend-butlast-last-id)

with ∗ show ?thesis by auto
qed

next
case 2 then show ?case by auto
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next
case 3
then obtain ys zs where xs = ys @ a # b # zs by auto
then have x # xs = (x # ys) @ a # b # zs by auto
then show ?thesis by blast

qed
qed

qed
qed

lemma arcs-successor ′:
assumes (a, b) ∈ set (arcs i j xs) b 6= j
shows ∃ c. xs = [b] ∧ a = i ∨ (∃ ys. xs = b # c # ys ∧ a = i) ∨ (∃ ys.

xs = ys @ [a,b] ∧ c = j)
∨ (∃ ys zs. xs = ys @ a # b # c # zs)

using assms
proof (induction xs arbitrary: i)

case Nil then show ?case by auto
next

case (Cons x xs)
show ?case
proof (cases (a, b) = (i, x))

case True
with Cons.prems show ?thesis by (cases xs) auto

next
case False
note F = this
show ?thesis
proof (cases xs = [])

case True
with F Cons.prems show ?thesis by auto

next
case False
from F Cons.prems have (a, b) ∈ set (arcs x j xs) by auto
from Cons.IH [OF this ‹b 6= j›] obtain c where c:

xs = [b] ∧ a = x ∨ (∃ ys. xs = b # c # ys ∧ a = x) ∨ (∃ ys. xs =
ys @ [a, b] ∧ c = j)

∨ (∃ ys zs. xs = ys @ a # b # c # zs)
..
then show ?thesis
proof (standard, goal-cases)

case 1 with Cons.prems show ?case by auto
next

case 2
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then show ?thesis
proof (rule disjE3 , goal-cases)

case 1
from 1 obtain ys where ∗: xs = b # ys ∧ a = x by auto
show ?thesis
proof (cases ys = [])

case True
with ∗ show ?thesis by auto

next
case False
then obtain z zs where zs: ys = z # zs by (cases ys) auto
with ∗ show ?thesis by fastforce

qed
next

case 2 then show ?case by auto
next

case 3
then obtain ys zs where xs = ys @ a # b # c # zs by auto
then have x # xs = (x # ys) @ a # b # c # zs by auto
then show ?thesis by blast

qed
qed

qed
qed

qed

lemma list-last:
xs = [] ∨ (∃ y ys. xs = ys @ [y])

by (induction xs) auto

lemma arcs-predecessor ′′:
assumes (a, b) ∈ set (arcs i j xs) a 6= i

shows ∃ c. xs = [a] ∨ (∃ ys. xs = a # b # ys) ∨ (∃ ys. xs = ys @ [c,a]
∧ b = j)

∨ (∃ ys zs. xs = ys @ c # a # b # zs)
using assms
proof (induction xs arbitrary: i)

case Nil then show ?case by auto
next

case (Cons x xs)
show ?case
proof (cases (a, b) = (i, x))

case True
with Cons.prems show ?thesis by (cases xs) auto
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next
case False
note F = this
show ?thesis
proof (cases xs = [])

case True
with F Cons.prems show ?thesis by auto

next
case False
from F Cons.prems have ∗: (a, b) ∈ set (arcs x j xs) by auto
from False obtain y ys where xs: xs = y # ys by (cases xs) auto
show ?thesis
proof (cases (a,b) = (x,y))

case True with ∗ xs show ?thesis by auto
next

case False
with ∗ xs have ∗∗: (a, b) ∈ set (arcs y j ys) by auto
show ?thesis
proof (cases ys = [])

case True with ∗∗ xs show ?thesis by force
next

case False
from arcs-cases ′[OF ∗∗ this] obtain ws zs where ∗∗∗:

ys = b # ws ∧ a = y ∨ ys = ws @ [a] ∧ b = j ∨ ys = ws @ a #
b # zs

by auto
then show ?thesis
proof (elim disjE , goal-cases)

case 1
then show ?case using xs by blast

next
case 2
then have ∃ y ys. ws = ys @ [y] if ws 6= []

using list-last[of ws] that by fastforce
with 2 show ?case

using xs by (cases ws = []) auto
next

case 3
then have x # xs = [x] @ y # a # b # zs if ws = []

using that by (simp add: xs)
with 3 show ?case

apply (cases ws = [])
apply blast

by (metis append.left-neutral append-Cons append-assoc list-last
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xs)
qed

qed
qed

qed
qed

qed

lemma arcs-ex-middle:
∃ b. (a, b) ∈ set (arcs i j (ys @ a # xs))

by (induction xs arbitrary: i ys) (auto simp: arcs-decomp)

lemma arcs-ex-head:
∃ b. (i, b) ∈ set (arcs i j xs)

by (cases xs) auto

2.5.1 Successive

fun successive where
successive - [] = True |
successive P [-] = True |
successive P (x # y # xs) ←→ ¬ P y ∧ successive P xs ∨ ¬ P x ∧

successive P (y # xs)

lemma ¬ successive (λ x. x > (0 :: nat)) [Suc 0 , Suc 0 ] by simp
lemma successive (λ x. x > (0 :: nat)) [Suc 0 ] by simp
lemma successive (λ x. x > (0 :: nat)) [Suc 0 , 0 , Suc 0 ] by simp
lemma ¬ successive (λ x. x > (0 :: nat)) [Suc 0 , 0 , Suc 0 , Suc 0 ] by simp
lemma ¬ successive (λ x. x > (0 :: nat)) [Suc 0 , 0 , 0 , Suc 0 , Suc 0 ] by
simp
lemma successive (λ x. x > (0 :: nat)) [Suc 0 , 0 , Suc 0 , 0 , Suc 0 ] by simp
lemma ¬ successive (λ x. x > (0 :: nat)) [Suc 0 , Suc 0 , 0 , Suc 0 ] by simp
lemma successive (λ x. x > (0 :: nat)) [0 , 0 , Suc 0 , 0 ] by simp

lemma successive-step: successive P (x # xs) =⇒ ¬ P x =⇒ successive P
xs

apply (cases xs)
apply simp

subgoal for y ys
by (cases ys) auto

done

lemma successive-step-2 : successive P (x # y # xs) =⇒ ¬ P y =⇒ suc-
cessive P xs
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apply (cases xs)
apply simp

subgoal for z zs
by (cases zs) auto

done

lemma successive-stepI :
successive P xs =⇒ ¬ P x =⇒ successive P (x # xs)

by (cases xs) auto

lemmas list-two-induct[case-names Nil Single Cons] = induct-list012

lemma successive-end-1 :
successive P xs =⇒ ¬ P x =⇒ successive P (xs @ [x])

by (induction - xs rule: list-two-induct) auto

lemma successive-ends-1 :
successive P xs =⇒ ¬ P x =⇒ successive P ys =⇒ successive P (xs @ x

# ys)
by (induction - xs rule: list-two-induct) (fastforce intro: successive-stepI )+

lemma successive-ends-1 ′:
successive P xs =⇒ ¬ P x =⇒ P y =⇒ ¬ P z =⇒ successive P ys =⇒

successive P (xs @ x # y # z # ys)
by (induction - xs rule: list-two-induct) (fastforce intro: successive-stepI )+

lemma successive-end-2 :
successive P xs =⇒ ¬ P x =⇒ successive P (xs @ [x,y])

by (induction - xs rule: list-two-induct) auto

lemma successive-end-2 ′:
successive P (xs @ [x]) =⇒ ¬ P x =⇒ successive P (xs @ [x,y])

by (induction - xs rule: list-two-induct) auto

lemma successive-end-3 :
successive P (xs @ [x]) =⇒ ¬ P x =⇒ P y =⇒ ¬ P z =⇒ successive P

(xs @ [x,y,z])
by (induction - xs rule: list-two-induct) auto

lemma successive-step-rev:
successive P (xs @ [x]) =⇒ ¬ P x =⇒ successive P xs

by (induction - xs rule: list-two-induct) auto

lemma successive-glue:
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successive P (zs @ [z]) =⇒ successive P (x # xs) =⇒ ¬ P z ∨ ¬ P x =⇒
successive P (zs @ [z] @ x # xs)
proof goal-cases

case A: 1
show ?thesis
proof (cases P x)

case False
with A(1 ,2 ) successive-ends-1 successive-step show ?thesis by fastforce

next
case True

with A(1 ,3 ) successive-step-rev have ¬ P z successive P zs by fastforce+
with A(2 ) successive-ends-1 show ?thesis by fastforce

qed
qed

lemma successive-glue ′:
successive P (zs @ [y]) ∧ ¬ P z ∨ successive P zs ∧ ¬ P y
=⇒ successive P (x # xs) ∧ ¬ P w ∨ successive P xs ∧ ¬ P x
=⇒ ¬ P z ∨ ¬ P w =⇒ successive P (zs @ y # z # w # x # xs)

by (metis append-Cons append-Nil successive.simps(3 ) successive-ends-1 suc-
cessive-glue successive-stepI )

lemma successive-dest-head:
xs = w # x # ys =⇒ successive P xs =⇒ successive P (x # xs) ∧ ¬ P w
∨ successive P xs ∧ ¬ P x
by auto

lemma successive-dest-tail:
xs = zs @ [y,z] =⇒ successive P xs
=⇒ successive P (zs @ [y]) ∧ ¬ P z ∨ successive P zs ∧ ¬ P y
apply (induction - xs arbitrary: zs rule: list-two-induct)

apply simp+
subgoal for - - - zs

apply (cases zs)
apply simp

subgoal for - ws
by (cases ws) auto

done
done

lemma successive-split:
xs = ys @ zs =⇒ successive P xs =⇒ successive P ys ∧ successive P zs
apply (induction - xs arbitrary: ys rule: list-two-induct)

apply simp
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subgoal for - ys
by (cases ys; simp)

subgoal for - - - ys
apply (cases ys; simp)
subgoal for list

by (cases list) (auto intro: successive-stepI )
done

done

lemma successive-decomp:
xs = x # ys @ zs @ [z] =⇒ successive P xs =⇒ ¬ P x ∨ ¬ P z =⇒

successive P (zs @ [z] @ (x # ys))
by (metis Cons-eq-appendI successive-glue successive-split)

lemma successive-predecessor :
assumes (a, b) ∈ set (arcs i j xs) a 6= i successive P (arcs i j xs) P (a,b)

xs 6= []
shows ∃ c. (xs = [a] ∧ c = i ∨ (∃ ys. xs = a # b # ys ∧ c = i) ∨ (∃

ys. xs = ys @ [c,a] ∧ b = j)
∨ (∃ ys zs. xs = ys @ c # a # b # zs)) ∧ ¬ P (c,a)

proof −
from arcs-predecessor ′′[OF assms(1 ,2 )] obtain c where c:

xs = [a] ∨ (∃ ys. xs = a # b # ys) ∨ (∃ ys. xs = ys @ [c, a] ∧ b = j)
∨ (∃ ys zs. xs = ys @ c # a # b # zs)

by auto
then show ?thesis
proof (safe, goal-cases)

case 1
with assms have arcs i j xs = [(i, a), (a, j)] by auto
with assms have ¬ P (i, a) by auto
with 1 show ?case by simp

next
case 2
with assms have ¬ P (i, a) by fastforce
with 2 show ?case by auto

next
case 3
with assms have ¬ P (c, a) using arcs-decomp successive-dest-tail by

fastforce
with 3 show ?case by auto

next
case 4
with assms(3 ,4 ) have ¬ P (c, a) using arcs-decomp successive-split

by fastforce
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with 4 show ?case by auto
qed

qed

lemma successive-successor :
assumes (a, b) ∈ set (arcs i j xs) b 6= j successive P (arcs i j xs) P (a,b)

xs 6= []
shows ∃ c. (xs = [b] ∧ c = j ∨ (∃ ys. xs = b # c # ys) ∨ (∃ ys. xs = ys
@ [a,b] ∧ c = j)

∨ (∃ ys zs. xs = ys @ a # b # c # zs)) ∧ ¬ P (b,c)
proof −

from arcs-successor ′[OF assms(1 ,2 )] obtain c where c:
xs = [b] ∧ a = i ∨ (∃ ys. xs = b # c # ys ∧ a = i) ∨ (∃ ys. xs = ys @

[a, b] ∧ c = j)
∨ (∃ ys zs. xs = ys @ a # b # c # zs)

..
then show ?thesis
proof (safe, goal-cases)

case 1
with assms(1 ,2 ) have arcs i j xs = [(a,b), (b,j)] by auto
with assms have ¬ P (b,j) by auto
with 1 show ?case by simp

next
case 2
with assms have ¬ P (b, c) by fastforce
with 2 show ?case by auto

next
case 3
with assms have ¬ P (b, c) using arcs-decomp successive-dest-tail by

fastforce
with 3 show ?case by auto

next
case 4
with assms(3 ,4 ) have ¬ P (b, c) using arcs-decomp successive-split by

fastforce
with 4 show ?case by auto

qed
qed

lemmas add-mono-right = add-mono[OF order-refl]
lemmas add-mono-left = add-mono[OF - order-refl]

Obtaining successive and distinct paths lemma canonical-successive:
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fixes A B
defines M ≡ λ i j. min (A i j) (B i j)
assumes canonical A n
assumes set xs ⊆ {0 ..n}
assumes i ≤ n j ≤ n
shows ∃ ys. len M i j ys ≤ len M i j xs ∧ set ys ⊆ {0 ..n}

∧ successive (λ (a, b). M a b = A a b) (arcs i j ys)
using assms
proof (induction xs arbitrary: i rule: list-two-induct)

case Nil show ?case by fastforce
next

case 2 : (Single x i)
show ?case
proof (cases M i x = A i x ∧ M x j = A x j)

case False
then have successive (λ(a, b). M a b = A a b) (arcs i j [x]) by auto
with 2 show ?thesis by blast

next
case True
with 2 have M i j ≤ M i x + M x j unfolding min-def by fastforce
with 2 (3−) show ?thesis apply simp apply (rule exI [where x = []])

by auto
qed

next
case 3 : (Cons x y xs i)
show ?case
proof (cases M i y ≤ M i x + M x y, goal-cases)

case 1
from 3 obtain ys where

len M i j ys ≤ len M i j (y # xs) ∧ set ys ⊆ {0 ..n}
∧ successive (λa. case a of (a, b) ⇒ M a b = A a b) (arcs i j ys)

by fastforce
moreover from 1 have len M i j (y # xs) ≤ len M i j (x # y # xs)
using add-mono by (auto simp: add.assoc[symmetric])
ultimately show ?case by force

next
case False
{ assume M i x = A i x M x y = A x y

with 3 (3−) have A i y ≤ M i x + M x y by auto
then have M i y ≤ M i x + M x y unfolding M-def min-def by auto

} note ∗ = this
with False have M i x 6= A i x ∨ M x y 6= A x y by auto
then show ?thesis
proof (standard, goal-cases)
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case 1
from 3 obtain ys where ys:

len M x j ys ≤ len M x j (y # xs) set ys ⊆ {0 ..n}
successive (λa. case a of (a, b) ⇒ M a b = A a b) (arcs x j ys)

by force+
from 1 successive-stepI [OF ys(3 ), of (i, x)] have
successive (λa. case a of (a, b) ⇒ M a b = A a b) (arcs i j (x # ys))

by auto
moreover have len M i j (x # ys) ≤ len M i j (x # y # xs) using

add-mono-right[OF ys(1 )]
by auto
ultimately show ?case using 3 (5 ) ys(2 ) by fastforce

next
case 2
from 3 obtain ys where ys:

len M y j ys ≤ len M y j xs set ys ⊆ {0 ..n}
successive (λa. case a of (a, b) ⇒ M a b = A a b) (arcs y j ys)

by force+
from this(3 ) 2 have

successive (λa. case a of (a, b) ⇒ M a b = A a b) (arcs i j (x # y
# ys))

by simp
moreover from add-mono-right[OF ys(1 )] have

len M i j (x # y # ys) ≤ len M i j (x # y # xs)
by (auto simp: add.assoc[symmetric])
ultimately show ?thesis using ys(2 ) 3 (5 ) by fastforce

qed
qed

qed

lemma canonical-successive-distinct:
fixes A B
defines M ≡ λ i j. min (A i j) (B i j)
assumes canonical A n
assumes set xs ⊆ {0 ..n}
assumes i ≤ n j ≤ n
assumes distinct xs i /∈ set xs j /∈ set xs
shows ∃ ys. len M i j ys ≤ len M i j xs ∧ set ys ⊆ set xs

∧ successive (λ (a, b). M a b = A a b) (arcs i j ys)
∧ distinct ys ∧ i /∈ set ys ∧ j /∈ set ys

using assms
proof (induction xs arbitrary: i rule: list-two-induct)

case Nil show ?case by fastforce
next
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case 2 : (Single x i)
show ?case
proof (cases M i x = A i x ∧ M x j = A x j)

case False
then have successive (λ(a, b). M a b = A a b) (arcs i j [x]) by auto
with 2 show ?thesis by blast

next
case True
with 2 have M i j ≤ M i x + M x j unfolding min-def by fastforce
with 2 (3−) show ?thesis apply simp apply (rule exI [where x = []])

by auto
qed

next
case 3 : (Cons x y xs i)
show ?case
proof (cases M i y ≤ M i x + M x y)

case 1 : True
from 3 (2 )[OF 3 (3 ,4 )] 3 (5−10 ) obtain ys where ys:

len M i j ys ≤ len M i j (y # xs) set ys ⊆ set (x # y # xs)
successive (λa. case a of (a, b) ⇒ M a b = A a b) (arcs i j ys)
distinct ys ∧ i /∈ set ys ∧ j /∈ set ys

by fastforce
moreover from 1 have len M i j (y # xs) ≤ len M i j (x # y # xs)
using add-mono by (auto simp: add.assoc[symmetric])
ultimately have len M i j ys ≤ len M i j (x # y # xs) by auto
then show ?thesis using ys(2−) by blast

next
case False
{ assume M i x = A i x M x y = A x y

with 3 (3−) have A i y ≤ M i x + M x y by auto
then have M i y ≤ M i x + M x y unfolding M-def min-def by auto

} note ∗ = this
with False have M i x 6= A i x ∨ M x y 6= A x y by auto
then show ?thesis
proof (standard, goal-cases)

case 1
from 3 (2 )[OF 3 (3 ,4 )] 3 (5−10 ) obtain ys where ys:

len M x j ys ≤ len M x j (y # xs) set ys ⊆ set (y # xs)
successive (λa. case a of (a, b) ⇒ M a b = A a b) (arcs x j ys)
distinct ys i /∈ set ys x /∈ set ys j /∈ set ys

by fastforce
from 1 successive-stepI [OF ys(3 ), of (i, x)] have
successive (λa. case a of (a, b) ⇒ M a b = A a b) (arcs i j (x # ys))

by auto
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moreover have len M i j (x # ys) ≤ len M i j (x # y # xs) using
add-mono-right[OF ys(1 )]

by auto
moreover have distinct (x # ys) i /∈ set (x # ys) j /∈ set (x # ys)

using ys(4−) 3 (8−)
by auto
moreover from ys(2 ) have set (x # ys) ⊆ set (x # y # xs) by auto
ultimately show ?case by fastforce

next
case 2
from 3 (1 )[OF 3 (3 ,4 )] 3 (5−) obtain ys where ys:

len M y j ys ≤ len M y j xs set ys ⊆ set xs
successive (λa. case a of (a, b) ⇒ M a b = A a b) (arcs y j ys)
distinct ys j /∈ set ys y /∈ set ys i /∈ set ys x /∈ set ys

by fastforce
from this(3 ) 2 have

successive (λa. case a of (a, b) ⇒ M a b = A a b) (arcs i j (x # y
# ys))

by simp
moreover from add-mono-right[OF ys(1 )] have

len M i j (x # y # ys) ≤ len M i j (x # y # xs)
by (auto simp: add.assoc[symmetric])
moreover have distinct (x # y # ys) i /∈ set (x # y # ys) j /∈ set

(x # y # ys)
using ys(4−) 3 (8−) by auto
ultimately show ?thesis using ys(2 ) by fastforce

qed
qed

qed

lemma successive-snd-last: successive P (xs @ [x, y]) =⇒ P y =⇒ ¬ P x
by (induction - xs rule: list-two-induct) auto

lemma canonical-shorten-rotate-neg-cycle:
fixes A B
defines M ≡ λ i j. min (A i j) (B i j)
assumes canonical A n
assumes set xs ⊆ {0 ..n}
assumes i ≤ n
assumes len M i i xs < 0
shows ∃ j ys. len M j j ys < 0 ∧ set (j # ys) ⊆ set (i # xs)

∧ successive (λ (a, b). M a b = A a b) (arcs j j ys)
∧ distinct ys ∧ j /∈ set ys ∧
(ys 6= [] −→ M j (hd ys) 6= A j (hd ys) ∨ M (last ys) j 6= A
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(last ys) j)
using assms
proof −

note A = assms
from negative-len-shortest[OF - A(5 )] obtain j ys where ys:

distinct (j # ys) len M j j ys < 0 j ∈ set (i # xs) set ys ⊆ set xs
by blast
from this(1 ,3 ) canonical-successive-distinct[OF A(2 ) subset-trans[OF this(4 )

A(3 )], of j j B] A(3 ,4 )
obtain zs where zs:

len M j j zs ≤ len M j j ys
set zs ⊆ set ys successive (λ(a, b). M a b = A a b) (arcs j j zs)
distinct zs j /∈ set zs

by (force simp: M-def )
show ?thesis
proof (cases zs = [])

assume zs 6= []
then obtain w ws where ws: zs = w # ws by (cases zs) auto
show ?thesis
proof (cases ws = [])

case False
then obtain u us where us: ws = us @ [u] by (induction ws) auto
show ?thesis
proof (cases M j w = A j w ∧ M u j = A u j)

case True
have u ≤ n j ≤ n w ≤ n using us ws zs(2 ) ys(3 ,4 ) A(3 ,4 ) by auto
with A(2 ) True have M u w ≤ M u j + M j w unfolding M-def

min-def by fastforce
then have

len M u u (w # us) ≤ len M j j zs
using ws us by (simp add: len-comp comm) (auto intro: add-mono

simp: add.assoc[symmetric])
moreover have set (u # w # us) ⊆ set (i # xs) using ws us zs(2 )

ys(3 ,4 ) by auto
moreover have distinct (w # us) u /∈ set (w # us) using ws us

zs(4 ) by auto
moreover have successive (λ(a, b). M a b = A a b) (arcs u u (w #

us))
proof (cases us)

case Nil
with zs(3 ) ws us True show ?thesis by auto

next
case (Cons v vs)
with zs(3 ) ws us True have M w v 6= A w v by auto
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with ws us Cons zs(3 ) True arcs-decomp-tail successive-split show
?thesis by (simp, blast)

qed
moreover have M (last (w # us)) u 6= A (last (w # us)) u
proof (cases us = [])

case T : True
with zs(3 ) ws us True show ?thesis by auto

next
case False
then obtain v vs where vs: us = vs @ [v] by (induction us) auto
with ws us have arcs j j zs = arcs j v (w # vs) @ [(v, u), (u,j)]

by (simp add: arcs-decomp)
with zs(3 ) True have M v u 6= A v u
using successive-snd-last[of λ(a, b). M a b = A a b arcs j v (w #

vs)] by auto
with vs show ?thesis by simp

qed
ultimately show ?thesis using zs(1 ) ys(2 )
by (intro exI [where x = u], intro exI [where x = w # us]) fastforce

next
case False
with zs ws us ys show ?thesis by (intro exI [where x = j], intro

exI [where x = zs]) auto
qed

next
case True
with True ws zs ys show ?thesis by (intro exI [where x = j], intro

exI [where x = zs]) fastforce
qed

next
case True
with ys zs show ?thesis by (intro exI [where x = j], intro exI [where

x = zs]) fastforce
qed

qed

lemma successive-arcs-extend-last:
successive P (arcs i j xs) =⇒ ¬ P (i, hd xs) ∨ ¬ P (last xs, j) =⇒ xs 6= []
=⇒ successive P (arcs i j xs @ [(i, hd xs)])

proof −
assume a1 : ¬ P (i, hd xs) ∨ ¬ P (last xs, j)
assume a2 : successive P (arcs i j xs)
assume a3 : xs 6= []
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then have f4 : ¬ P (last xs, j) −→ successive P (arcs i (last xs) (butlast
xs))

using a2 by (metis (no-types) append-butlast-last-id arcs-decomp-tail
successive-step-rev)

have f5 : arcs i j xs = arcs i (last xs) (butlast xs) @ [(last xs, j)]
using a3 by (metis (no-types) append-butlast-last-id arcs-decomp-tail)

have ([] @ arcs i j xs @ [(i, hd xs)]) @ [(i, hd xs)] = arcs i j xs @ [(i, hd
xs), (i, hd xs)]

by simp
then have P (last xs, j) −→ successive P (arcs i j xs @ [(i, hd xs)])

using a2 a1 by (metis (no-types) self-append-conv2 successive-end-2
successive-step-rev)

then show ?thesis
using f5 f4 successive-end-2 by fastforce

qed

lemma cycle-rotate-arcs:
fixes M :: ( ′a :: linordered-ab-monoid-add) mat
assumes length xs > 1 (i, j) ∈ arcs ′ xs
shows ∃ ys zs. set (arcs a a xs) = set (arcs i i (j # ys @ a # zs)) ∧ xs

= zs @ i # j # ys using assms
proof −

assume A: length xs > 1 (i, j) ∈ arcs ′ xs
from arcs ′-decomp[OF this] obtain ys zs where xs: xs = zs @ i # j #

ys by blast
with arcs-decomp[OF this, of a a] arcs-decomp[of j # ys @ a # zs j # ys

a zs i i]
show ?thesis by force

qed

lemma cycle-rotate-len-arcs-successive:
fixes M :: ( ′a :: linordered-ab-monoid-add) mat
assumes length xs > 1 (i, j) ∈ arcs ′ xs successive P (arcs a a xs) ¬ P

(a, hd xs) ∨ ¬ P (last xs, a)
shows ∃ ys zs. len M a a xs = len M i i (j # ys @ a # zs)

∧ set (arcs a a xs) = set (arcs i i (j # ys @ a # zs)) ∧ xs =
zs @ i # j # ys

∧ successive P (arcs i i (j # ys @ a # zs))
using assms
proof −

note A = assms
from arcs ′-decomp[OF A(1 ,2 )] obtain ys zs where xs: xs = zs @ i # j

# ys by blast
note arcs1 = arcs-decomp[OF xs, of a a]
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note arcs2 = arcs-decomp[of j # ys @ a # zs j # ys a zs i i]
have ∗:successive P (arcs i i (j # ys @ a # zs))
proof (cases ys = [])

case True
show ?thesis
proof (cases zs)

case Nil
with A(3 ,4 ) xs True show ?thesis by auto

next
case (Cons z zs ′)
with True arcs2 A(3 ,4 ) xs show ?thesis apply simp
by (metis arcs.simps(1 ,2 ) arcs1 successive.simps(3 ) successive-split

successive-step)
qed

next
case False

then obtain y ys ′ where ys: ys = ys ′@ [y] by (metis append-butlast-last-id)
show ?thesis
proof (cases zs)

case Nil
with A(3 ,4 ) xs ys have
¬ P (a, i) ∨ ¬ P (y, a) successive P (arcs a a (i # j # ys ′ @ [y]))

by simp+
from successive-decomp[OF - this(2 ,1 )] show ?thesis using ys Nil

arcs-decomp by fastforce
next

case (Cons z zs ′)
with A(3 ,4 ) xs ys have
¬ P (a, z) ∨ ¬ P (y, a) successive P (arcs a a (z # zs ′ @ i # j #

ys ′ @ [y]))
by simp+
from successive-decomp[OF - this(2 ,1 )] show ?thesis using ys Cons

arcs-decomp by fastforce
qed

qed
from len-decomp[OF xs, of M a a] have len M a a xs = len M a i zs +

len M i a (j # ys) .
also have . . . = len M i a (j # ys) + len M a i zs by (simp add: comm)
also from len-comp[of M i i j # ys a zs] have . . . = len M i i (j # ys @

a # zs) by auto
finally show ?thesis
using ∗ xs arcs-decomp[OF xs, of a a] arcs-decomp[of j # ys @ a # zs j

# ys a zs i i] by force
qed
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lemma successive-successors:
xs = ys @ a # b # c # zs =⇒ successive P (arcs i j xs) =⇒ ¬ P (a,b)
∨ ¬ P (b, c)

apply (induction - xs arbitrary: i ys rule: list-two-induct)
apply fastforce

apply fastforce
subgoal for - - - - ys

apply (cases ys)
apply fastforce

subgoal for - list
apply (cases list)
apply fastforce+

done
done

done

lemma successive-successors ′:
xs = ys @ a # b # zs =⇒ successive P xs =⇒ ¬ P a ∨ ¬ P b

using successive-split by fastforce

lemma cycle-rotate-len-arcs-successive ′:
fixes M :: ( ′a :: linordered-ab-monoid-add) mat
assumes length xs > 1 (i, j) ∈ arcs ′ xs successive P (arcs a a xs)

¬ P (a, hd xs) ∨ ¬ P (last xs, a)
shows ∃ ys zs. len M a a xs = len M i i (j # ys @ a # zs)

∧ set (arcs a a xs) = set (arcs i i (j # ys @ a # zs)) ∧ xs =
zs @ i # j # ys

∧ successive P (arcs i i (j # ys @ a # zs) @ [(i,j)])
using assms
proof −

note A = assms
from arcs ′-decomp[OF A(1 ,2 )] obtain ys zs where xs: xs = zs @ i # j

# ys by blast
note arcs1 = arcs-decomp[OF xs, of a a]
note arcs2 = arcs-decomp[of j # ys @ a # zs j # ys a zs i i]
have ∗:successive P (arcs i i (j # ys @ a # zs) @ [(i,j)])
proof (cases ys = [])

case True
show ?thesis
proof (cases zs)

case Nil
with A(3 ,4 ) xs True show ?thesis by auto

next
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case (Cons z zs ′)
with True arcs2 A(3 ,4 ) xs show ?thesis

apply simp
apply (cases P (a, z))
apply (simp add: arcs-decomp)

using successive-split[of ((a, z) # arcs z i zs ′) @ [(i, j), (j, a)] - [(j,
a)] P]

apply auto[]
by (metis append-Cons arcs.simps(1 ,2 ) arcs1 successive.simps(1 )

successive-dest-tail
successive-ends-1 successive-step)

qed
next

case False
then obtain y ys ′ where ys: ys = ys ′@ [y] by (metis append-butlast-last-id)
show ?thesis
proof (cases zs)

case Nil
with A(3 ,4 ) xs ys have ∗:
¬ P (a, i) ∨ ¬ P (y, a) successive P (arcs a a (i # j # ys ′ @ [y]))

by simp+
from successive-decomp[OF - this(2 ,1 )] ys Nil arcs-decomp have

successive P (arcs i i (j # ys @ a # zs))
by fastforce
moreover from ∗ have ¬ P (a, i) ∨ ¬ P (i, j) by auto
ultimately show ?thesis
by (metis append-Cons last-snoc list.distinct(1 ) list.sel(1 ) Nil succes-

sive-arcs-extend-last)
next

case (Cons z zs ′)
with A(3 ,4 ) xs ys have ∗:
¬ P (a, z) ∨ ¬ P (y, a) successive P (arcs a a (z # zs ′ @ i # j #

ys ′ @ [y]))
by simp+
from successive-decomp[OF - this(2 ,1 )] ys Cons arcs-decomp have ∗∗:

successive P (arcs i i (j # ys @ a # zs))
by fastforce
from Cons have zs 6= [] by auto
then obtain w ws where ws: zs = ws @ [w] by (induction zs) auto
with A(3 ,4 ) xs ys have ∗:

successive P (arcs a a (ws @ [w] @ i # j # ys ′ @ [y]))
by simp
moreover from successive-successors[OF - this] have ¬ P (w, i) ∨ ¬

P (i, j) by auto
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ultimately show ?thesis
by (metis ∗∗ append-is-Nil-conv last.simps last-append list.distinct(2 )

list.sel(1 )
successive-arcs-extend-last ws)

qed
qed
from len-decomp[OF xs, of M a a] have len M a a xs = len M a i zs +

len M i a (j # ys) .
also have . . . = len M i a (j # ys) + len M a i zs by (simp add: comm)
also from len-comp[of M i i j # ys a zs] have . . . = len M i i (j # ys @

a # zs) by auto
finally show ?thesis
using ∗ xs arcs-decomp[OF xs, of a a] arcs-decomp[of j # ys @ a # zs j

# ys a zs i i] by force
qed

lemma cycle-rotate-3 :
fixes M :: ( ′a :: linordered-ab-monoid-add) mat
assumes xs 6= [] (i, j) ∈ set (arcs a a xs) successive P (arcs a a xs) ¬ P

(a, hd xs) ∨ ¬ P (last xs, a)
shows ∃ ys. len M a a xs = len M i i (j # ys) ∧ set (i # j # ys) = set

(a # xs) ∧ 1 + length ys = length xs
∧ set (arcs a a xs) = set (arcs i i (j # ys))
∧ successive P (arcs i i (j # ys))

proof −
note A = assms
{ fix ys assume A:a = i xs = j # ys

with assms(3 ) have ?thesis by auto
} note ∗ = this
have ∗∗: ?thesis if A: a = j xs = ys @ [i] for ys using A
proof (safe, goal-cases)

case 1
have len M j j (ys @ [i]) = M i j + len M j i ys
using len-decomp[of ys @ [i] ys i [] M j j] by (auto simp: comm)

moreover have arcs j j (ys @ [i]) = arcs j i ys @ [(i, j)] using
arcs-decomp-tail by auto

moreover with assms(3 ,4 ) A have successive P ((i,j) # arcs j i ys)
apply simp
apply (cases ys)
apply simp

by (simp, metis arcs.simps(2 ) calculation(2 ) 1 (1 ) successive-split suc-
cessive-step)

ultimately show ?case by auto
qed

50



{ assume length xs = 1
then obtain b where xs: xs = [b] by (metis One-nat-def length-0-conv

length-Suc-conv)
with A(2 ) have a = i ∧ b = j ∨ a = j ∧ b = i by auto
then have ?thesis using ∗ ∗∗ xs by auto

} note ∗∗∗ = this
show ?thesis
proof (cases length xs = 0 )

case True with A show ?thesis by auto
next

case False
thus ?thesis
proof (cases length xs = 1 , goal-cases)

case True with ∗∗∗ show ?thesis by auto
next

case 2
hence length xs > 1 by linarith
then obtain b c ys where ys:xs = b # ys @ [c]

by (metis One-nat-def assms(1 ) 2 (2 ) length-0-conv length-Cons list.exhaust
rev-exhaust)

thus ?thesis
proof (cases (i,j) = (a,b))

case True
with ys ∗ show ?thesis by blast

next
case False
then show ?thesis
proof (cases (i,j) = (c,a), goal-cases)

case True
with ys ∗∗ show ?thesis by force

next
case 2
with A(2 ) ys have (i, j) ∈ arcs ′ xs
using cycle-rotate-2-aux by (auto simp add: arcs ′-def )

from cycle-rotate-len-arcs-successive[OF ‹length xs > 1 › this A(3 ,4 ),
of M ] show ?thesis

by auto
qed

qed
qed

qed
qed

lemma cycle-rotate-3 ′:
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fixes M :: ( ′a :: linordered-ab-monoid-add) mat
assumes xs 6= [] (i, j) ∈ set (arcs a a xs) successive P (arcs a a xs) ¬ P

(a, hd xs) ∨ ¬ P (last xs, a)
shows ∃ ys. len M a a xs = len M i i (j # ys) ∧ set (i # j # ys) = set

(a # xs) ∧ 1 + length ys = length xs
∧ set (arcs a a xs) = set (arcs i i (j # ys))
∧ successive P (arcs i i (j # ys) @ [(i, j)])

proof −
note A = assms
have ∗: ?thesis if a = i xs = j # ys for ys
using that assms(3 ) successive-arcs-extend-last[OF assms(3 ,4 )] by auto
have ∗∗: ?thesis if A:a = j xs = ys @ [i] for ys
using A proof (safe, goal-cases)

case 1
have len M j j (ys @ [i]) = M i j + len M j i ys
using len-decomp[of ys @ [i] ys i [] M j j] by (auto simp: comm)

moreover have arcs j j (ys @ [i]) = arcs j i ys @ [(i, j)] using
arcs-decomp-tail by auto

moreover with assms(3 ,4 ) A have successive P ((i,j) # arcs j i ys @
[(i, j)])

apply simp
apply (cases ys)
apply simp

by (simp, metis successive-step)
ultimately show ?case by auto

qed
{ assume length xs = 1

then obtain b where xs: xs = [b] by (metis One-nat-def length-0-conv
length-Suc-conv)

with A(2 ) have a = i ∧ b = j ∨ a = j ∧ b = i by auto
then have ?thesis using ∗ ∗∗ xs by auto

} note ∗∗∗ = this
show ?thesis
proof (cases length xs = 0 )

case True with A show ?thesis by auto
next

case False
thus ?thesis
proof (cases length xs = 1 , goal-cases)

case True with ∗∗∗ show ?thesis by auto
next

case 2
hence length xs > 1 by linarith
then obtain b c ys where ys:xs = b # ys @ [c]
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by (metis One-nat-def assms(1 ) 2 (2 ) length-0-conv length-Cons list.exhaust
rev-exhaust)

thus ?thesis
proof (cases (i,j) = (a,b))

case True
with ys ∗ show ?thesis by blast

next
case False
then show ?thesis
proof (cases (i,j) = (c,a), goal-cases)

case True
with ys ∗∗ show ?thesis by force

next
case 2
with A(2 ) ys have (i, j) ∈ arcs ′ xs
using cycle-rotate-2-aux by (auto simp add: arcs ′-def )

from cycle-rotate-len-arcs-successive ′[OF ‹length xs > 1 › this
A(3 ,4 ), of M ] show ?thesis

by auto
qed

qed
qed

qed
qed

end

2.5.2 Zones and DBMs

theory Zones
imports DBM

begin

type-synonym ( ′c, ′t) zone = ( ′c, ′t) cval set

type-synonym ( ′c, ′t) cval = ′c ⇒ ′t

definition cval-add :: ( ′c, ′t) cval ⇒ ′t::plus ⇒ ( ′c, ′t) cval (infixr ‹⊕› 64 )
where

u ⊕ d = (λ x. u x + d)

definition zone-delay :: ( ′c, ( ′t::time)) zone ⇒ ( ′c, ′t) zone
(‹-↑› [71 ] 71 )
where
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Z ↑ = {u ⊕ d|u d. u ∈ Z ∧ d ≥ (0 :: ′t)}

fun clock-set :: ′c list ⇒ ′t::time ⇒ ( ′c, ′t) cval ⇒ ( ′c, ′t) cval
where

clock-set [] - u = u |
clock-set (c#cs) t u = (clock-set cs t u)(c:=t)

abbreviation clock-set-abbrv :: ′c list ⇒ ′t::time ⇒ ( ′c, ′t) cval ⇒ ( ′c, ′t)
cval
(‹[-→-]-› [65 ,65 ,65 ] 65 )
where
[r → t]u ≡ clock-set r t u

definition zone-set :: ( ′c, ′t::time) zone ⇒ ′c list ⇒ ( ′c, ′t) zone
(‹-- → 0› [71 ] 71 )
where

zone-set Z r = {[r → (0 :: ′t)]u | u . u ∈ Z}

lemma clock-set-set[simp]:
([r→d]u) c = d if c ∈ set r
using that by (induction r) auto

lemma clock-set-id[simp]:
([r→d]u) c = u c if c /∈ set r
using that by (induction r) auto

definition DBM-zone-repr :: ( ′t::time) DBM ⇒ ( ′c ⇒ nat) ⇒ nat ⇒ ( ′c,
′t :: time) zone
(‹[-]-,-› [72 ,72 ,72 ] 72 )
where
[M ]v,n = {u . DBM-val-bounded v u M n}

lemma dbm-entry-val-mono1 :
dbm-entry-val u (Some c) (Some c ′) b =⇒ b � b ′ =⇒ dbm-entry-val u

(Some c) (Some c ′) b ′

proof (induction b, goal-cases)
case 1 thus ?case using le-dbm-le le-dbm-lt by − (cases b ′; fastforce)

next
case 2 thus ?case using lt-dbm-le lt-dbm-lt by (cases b ′; fastforce)

next
case 3 thus ?case unfolding dbm-le-def by auto

qed

lemma dbm-entry-val-mono2 :
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dbm-entry-val u None (Some c) b =⇒ b � b ′ =⇒ dbm-entry-val u None
(Some c) b ′

proof (induction b, goal-cases)
case 1 thus ?case using le-dbm-le le-dbm-lt by − (cases b ′; fastforce)

next
case 2 thus ?case using lt-dbm-le lt-dbm-lt by (cases b ′; fastforce)

next
case 3 thus ?case unfolding dbm-le-def by auto

qed

lemma dbm-entry-val-mono3 :
dbm-entry-val u (Some c) None b =⇒ b � b ′ =⇒ dbm-entry-val u (Some

c) None b ′

proof (induction b, goal-cases)
case 1 thus ?case using le-dbm-le le-dbm-lt by − (cases b ′; fastforce)

next
case 2 thus ?case using lt-dbm-le lt-dbm-lt by (cases b ′; fastforce)

next
case 3 thus ?case unfolding dbm-le-def by auto

qed

lemmas dbm-entry-val-mono = dbm-entry-val-mono1 dbm-entry-val-mono2
dbm-entry-val-mono3

lemma DBM-le-subset:
∀ i j. i ≤ n −→ j ≤ n −→ M i j � M ′ i j =⇒ u ∈ [M ]v,n =⇒ u ∈ [M ′]v,n

proof −
assume A: ∀ i j. i ≤ n −→ j ≤ n −→ M i j � M ′ i j u ∈ [M ]v,n
hence DBM-val-bounded v u M n by (simp add: DBM-zone-repr-def )
with A(1 ) have DBM-val-bounded v u M ′ n unfolding DBM-val-bounded-def
proof (safe, goal-cases)

case 1 from this(1 ,2 ) show ?case unfolding less-eq[symmetric] by
fastforce

next
case (2 c)
hence dbm-entry-val u None (Some c) (M 0 (v c)) M 0 (v c) � M ′ 0

(v c) by auto
thus ?case using dbm-entry-val-mono2 by fast

next
case (3 c)
hence dbm-entry-val u (Some c) None (M (v c) 0 ) M (v c) 0 � M ′ (v

c) 0 by auto
thus ?case using dbm-entry-val-mono3 by fast

next
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case (4 c1 c2 )
hence dbm-entry-val u (Some c1 ) (Some c2 ) (M (v c1 ) (v c2 )) M (v

c1 ) (v c2 ) � M ′ (v c1 ) (v c2 )
by auto
thus ?case using dbm-entry-val-mono1 by fast

qed
thus u ∈ [M ′]v,n by (simp add: DBM-zone-repr-def )

qed

end
theory DBM-Basics

imports
DBM
Paths-Cycles
Zones

begin

2.5.3 Useful definitions

fun get-const where
get-const (Le c) = c |
get-const (Lt c) = c |
get-const (∞ :: - DBMEntry) = undefined

2.5.4 Updating DBMs

abbreviation DBM-update :: ( ′t::time) DBM ⇒ nat ⇒ nat ⇒ ( ′t DBMEn-
try) ⇒ ( ′t::time) DBM
where

DBM-update M m n v ≡ (λ x y. if m = x ∧ n = y then v else M x y)

fun DBM-upd :: ( ′t::time) DBM ⇒ (nat ⇒ nat ⇒ ′t DBMEntry) ⇒ nat
⇒ nat ⇒ nat ⇒ ′t DBM
where

DBM-upd M f 0 0 - = DBM-update M 0 0 (f 0 0 ) |
DBM-upd M f (Suc i) 0 n = DBM-update (DBM-upd M f i n n) (Suc i)

0 (f (Suc i) 0 ) |
DBM-upd M f i (Suc j) n = DBM-update (DBM-upd M f i j n) i (Suc j)

(f i (Suc j))

lemma upd-1 :
assumes j ≤ n
shows DBM-upd M1 f (Suc m) n N (Suc m) j = DBM-upd M1 f (Suc m)
j N (Suc m) j
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using assms
by (induction n) auto

lemma upd-2 :
assumes i ≤ m
shows DBM-upd M1 f (Suc m) n N i j = DBM-upd M1 f (Suc m) 0 N i j
using assms
proof (induction n)

case 0 thus ?case by blast
next

case (Suc n)
thus ?case by simp

qed

lemma upd-3 :
assumes m ≤ N n ≤ N j ≤ n i ≤ m
shows (DBM-upd M1 f m n N ) i j = (DBM-upd M1 f i j N ) i j
using assms
proof (induction m arbitrary: n i j, goal-cases)

case (1 n) thus ?case by (induction n) auto
next

case (2 m n i j) thus ?case
proof (cases i = Suc m)

case True thus ?thesis using upd-1 [OF ‹j ≤ n›] by blast
next
case False
with ‹i ≤ Suc m› have i ≤ m by auto
with upd-2 [OF this] have DBM-upd M1 f (Suc m) n N i j = DBM-upd

M1 f m N N i j by force
also have . . . = DBM-upd M1 f i j N i j using False 2 by force
finally show ?thesis .

qed
qed

lemma upd-id:
assumes m ≤ N n ≤ N i ≤ m j ≤ n
shows (DBM-upd M1 f m n N ) i j = f i j

proof −
from assms upd-3 have DBM-upd M1 f m n N i j = DBM-upd M1 f i j

N i j by blast
also have . . . = f i j by (cases i; cases j; fastforce)
finally show ?thesis .

qed
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2.5.5 DBMs Without Negative Cycles are Non-Empty

We need all of these assumptions for the proof that matrices without negative
cycles represent non-negative zones:

• Abelian (linearly ordered) monoid

• Time is non-trivial

• Time is dense

lemmas (in linordered-ab-monoid-add) comm = add.commute

lemma sum-gt-neutral-dest ′:
(a :: (( ′a :: time) DBMEntry)) ≥ 0 =⇒ a + b > 0 =⇒ ∃ d. Le d ≤ a ∧

Le (−d) ≤ b ∧ d ≥ 0
proof −

assume a + b > 0 a ≥ 0
show ?thesis
proof (cases b ≥ 0 )

case True
with ‹a ≥ 0 › show ?thesis by (auto simp: neutral)

next
case False
hence b < Le 0 by (auto simp: neutral)
note ∗ = this ‹a ≥ 0 › ‹a + b > 0 ›
note [simp] = neutral
show ?thesis
proof (cases a, cases b, goal-cases)

case (1 a ′ b ′)
with ∗ have a ′ + b ′ > 0 by (auto elim: dbm-lt.cases simp: less add)
hence b ′ > −a ′ by (metis add.commute diff-0 diff-less-eq)
with ∗ 1 show ?case

by (auto simp: dbm-le-def less-eq le-dbm-le)
next

case (2 a ′ b ′)
with ∗ have a ′ + b ′ > 0 by (auto elim: dbm-lt.cases simp: less add)
hence b ′ > −a ′ by (metis add.commute diff-0 diff-less-eq)
with ∗ 2 show ?case

by (auto simp: dbm-le-def less-eq le-dbm-le)
next

case (3 a ′)
with ∗ show ?case

by auto
next
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case (4 a ′)
thus ?case
proof (cases b, goal-cases)

case (1 b ′)
have b ′ < 0 using 1 (2 ) ∗ by (metis dbm-lt.intros(3 ) less less-asym

neqE)
from 1 ∗ have a ′ + b ′ > 0 by (auto elim: dbm-lt.cases simp: less

add)
then have −b ′ < a ′ by (metis diff-0 diff-less-eq)
with ‹b ′ < 0 › ∗ 1 show ?case by (auto simp: dbm-le-def less-eq)

next
case (2 b ′)
with ∗ have A: b ′ ≤ 0 a ′ > 0 by (auto elim: dbm-lt.cases simp: less

less-eq dbm-le-def )
show ?case
proof (cases b ′ = 0 )

case True
from dense[OF A(2 )] obtain d where d: d > 0 d < a ′ by auto
then have Le (−d) < Lt b ′ Le d < Lt a ′ unfolding less using

True by auto
with d(1 ) 2 ∗ show ?thesis by − (rule exI [where x = d], auto)

next
case False
with A(1 ) have ∗∗: − b ′ > 0 by simp
from 2 ∗ have a ′ + b ′ > 0 by (auto elim: dbm-lt.cases simp: less

add)
then have −b ′< a ′ by (metis less-add-same-cancel1 minus-add-cancel

minus-less-iff )
from dense[OF this] obtain d where d:

d > −b ′ −d < b ′ d < a ′

by (auto simp add: minus-less-iff )
then have Le (−d) < Lt b ′ Le d < Lt a ′ unfolding less by auto
with d(1 ) 2 ∗∗ show ?thesis

by − (rule exI [where x = d], auto,
meson d(2 ) dual-order .order-iff-strict less-trans neg-le-0-iff-le)

qed
next

case 3
with ∗ show ?case

by auto
qed
next

case 5 thus ?case
proof (cases b, goal-cases)
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case (1 b ′)
with ∗ have −b ′ ≥ 0

by (metis dbm-lt.intros(3 ) leI less less-asym neg-less-0-iff-less)
let ?d = − b ′

have Le ?d ≤ ∞ Le (− ?d) ≤ Le b ′ by (auto simp: any-le-inf )
with ‹−b ′ ≥ 0 › ∗ 1 show ?case by auto

next
case (2 b ′)
with ∗ have b ′ ≤ 0 by (auto elim: dbm-lt.cases simp: less)
from non-trivial-neg obtain e :: ′a where e:e < 0 by blast
let ?d = − (b ′ + e)
from e ‹b ′ ≤ 0 › have Le ?d ≤ ∞ Le (− ?d) ≤ Lt b ′ b ′ + e < 0

by (auto simp: dbm-lt.intros(4 ) less less-imp-le any-le-inf add-nonpos-neg)
then have Le ?d ≤ ∞ Le (− ?d) ≤ Lt b ′ ?d ≥ 0

using less-imp-le neg-0-le-iff-le by blast+
with ∗ 2 show ?case by auto

next
case 3
with ∗ show ?case

by auto
qed

qed
qed

qed

lemma sum-gt-neutral-dest:
(a :: (( ′a :: time) DBMEntry)) + b > 0 =⇒ ∃ d. Le d ≤ a ∧ Le (−d) ≤

b
proof −

assume A: a + b > 0
then have A ′: b + a > 0 by (simp add: comm)
show ?thesis
proof (cases a ≥ 0 )

case True
with A sum-gt-neutral-dest ′ show ?thesis by auto

next
case False
{ assume b ≤ 0

with False have a ≤ 0 b ≤ 0 by auto
from add-mono[OF this] have a + b ≤ 0 by auto
with A have False by auto

}
then have b ≥ 0 by fastforce
with sum-gt-neutral-dest ′[OF this A ′] show ?thesis by auto
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qed
qed

2.5.6 Negative Cycles in DBMs

lemma DBM-val-bounded-neg-cycle1 :
fixes i xs assumes

bounded: DBM-val-bounded v u M n and A:i ≤ n set xs ⊆ {0 ..n} len M
i i xs < 0 and

surj-on: ∀ k ≤ n. k > 0 −→ (∃ c. v c = k) and at-most: i 6= 0 cnt 0 xs
≤ 1
shows False
proof −

from A(1 ) surj-on at-most obtain c where c: v c = i by auto
with DBM-val-bounded-len ′3 [OF bounded at-most(2 ), of c c] A(1 ,2 ) surj-on
have bounded:dbm-entry-val u (Some c) (Some c) (len M i i xs) by force
from A(3 ) have len M i i xs ≺ Le 0 by (simp add: neutral less)
then show False using bounded by (cases rule: dbm-lt.cases) (auto elim:

dbm-entry-val.cases)
qed

lemma cnt-0-I :
x /∈ set xs =⇒ cnt x xs = 0

by (induction xs) auto

lemma distinct-cnt: distinct xs =⇒ cnt x xs ≤ 1
apply (induction xs)
apply simp

subgoal for a xs
using cnt-0-I by (cases x = a) fastforce+

done

lemma DBM-val-bounded-neg-cycle:
fixes i xs assumes

bounded: DBM-val-bounded v u M n and A:i ≤ n set xs ⊆ {0 ..n} len M
i i xs < 0 and

surj-on: ∀ k ≤ n. k > 0 −→ (∃ c. v c = k)
shows False
proof −

from negative-len-shortest[OF - A(3 )] obtain j ys where ys:
distinct (j # ys) len M j j ys < 0 j ∈ set (i # xs) set ys ⊆ set xs

by blast
show False
proof (cases ys = [])
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case True
show ?thesis
proof (cases j = 0 )

case True
with ‹ys = []› ys bounded show False unfolding DBM-val-bounded-def

neutral less-eq[symmetric]
by auto

next
case False

with ‹ys = []› DBM-val-bounded-neg-cycle1 [OF bounded - - ys(2 )
surj-on] ys(3 ) A(1 ,2 )

show False by auto
qed

next
case False
from distinct-arcs-ex[OF - - this, of j 0 j] ys(1 ) obtain a b where arc:

a 6= 0 (a, b) ∈ set (arcs j j ys)
by auto
from cycle-rotate-2 ′[OF False this(2 )] obtain zs where zs:

len M j j ys = len M a a (b # zs) set (a # b # zs) = set (j # ys)
1 + length zs = length ys set (arcs j j ys) = set (arcs a a (b # zs))

by blast
with distinct-card[OF ys(1 )] have distinct (a # b # zs) by (intro

card-distinct) auto
with distinct-cnt[of b # zs] have ∗: cnt 0 (b # zs) ≤ 1 by fastforce
show ?thesis
apply (rule DBM-val-bounded-neg-cycle1 [OF bounded - - - surj-on ‹a

6= 0 › ∗])
using zs(2 ) ys(3 ,4 ) A(1 ,2 ) apply fastforce+

using zs(1 ) ys(2 ) by simp
qed

qed

Nicer Path Boundedness Theorems lemma DBM-val-bounded-len-1 :
fixes v
assumes DBM-val-bounded v u M n v c ≤ n set vs ⊆ {0 ..n} ∀ k ≤ n. (∃

c. v c = k)
shows dbm-entry-val u (Some c) None (len M (v c) 0 vs) using assms

proof (induction length vs arbitrary: vs rule: less-induct)
case A: less
show ?case
proof (cases 0 ∈ set vs)

case False
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with DBM-val-bounded-len-1 ′-aux[OF A(2 ,3 )] A(4 ,5 ) show ?thesis by
fastforce

next
case True
then obtain xs ys where vs: vs = xs @ 0 # ys by (meson split-list)
from len-decomp[OF this] have len M (v c) 0 vs = len M (v c) 0 xs +

len M 0 0 ys .
moreover have len M 0 0 ys ≥ 0
proof (rule ccontr , goal-cases)

case 1
then have len M 0 0 ys < 0 by simp

with DBM-val-bounded-neg-cycle[OF assms(1 ), of 0 ys] vs A(4 ,5 )
show False by auto

qed
ultimately have ∗: len M (v c) 0 vs ≥ len M (v c) 0 xs by (simp add:

add-increasing2 )
from vs A have dbm-entry-val u (Some c) None (len M (v c) 0 xs) by

auto
from dbm-entry-val-mono3 [OF this, of len M (v c) 0 vs] ∗ show ?thesis

unfolding less-eq by auto
qed

qed

lemma DBM-val-bounded-len-2 :
fixes v
assumes DBM-val-bounded v u M n v c ≤ n set vs ⊆ {0 ..n} ∀ k ≤ n. (∃

c. v c = k)
shows dbm-entry-val u None (Some c) (len M 0 (v c) vs) using assms

proof (induction length vs arbitrary: vs rule: less-induct)
case A: less
show ?case
proof (cases 0 ∈ set vs)

case False
with DBM-val-bounded-len-2 ′-aux[OF A(2 ,3 )] A(4 ,5 ) show ?thesis by

fastforce
next

case True
then obtain xs ys where vs: vs = xs @ 0 # ys by (meson split-list)
from len-decomp[OF this] have len M 0 (v c) vs = len M 0 0 xs + len

M 0 (v c) ys .
moreover have len M 0 0 xs ≥ 0
proof (rule ccontr , goal-cases)

case 1
then have len M 0 0 xs < 0 by simp
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with DBM-val-bounded-neg-cycle[OF assms(1 ), of 0 xs] vs A(4 ,5 )
show False by auto

qed
ultimately have ∗: len M 0 (v c) vs ≥ len M 0 (v c) ys by (simp add:

add-increasing)
from vs A have dbm-entry-val u None (Some c) (len M 0 (v c) ys) by

auto
from dbm-entry-val-mono2 [OF this] ∗ show ?thesis unfolding less-eq

by auto
qed

qed

lemma DBM-val-bounded-len-3 :
fixes v
assumes DBM-val-bounded v u M n v c1 ≤ n v c2 ≤ n set vs ⊆ {0 ..n}

∀ k ≤ n. (∃ c. v c = k)
shows dbm-entry-val u (Some c1 ) (Some c2 ) (len M (v c1 ) (v c2 ) vs)

using assms
proof (cases 0 ∈ set vs)

case False
with DBM-val-bounded-len-3 ′-aux[OF assms(1−3 )] assms(4−) show ?thesis

by fastforce
next

case True
then obtain xs ys where vs: vs = xs @ 0 # ys by (meson split-list)
from assms(4 ,5 ) vs DBM-val-bounded-len-1 [OF assms(1 ,2 )] DBM-val-bounded-len-2 [OF

assms(1 ,3 )]
have

dbm-entry-val u (Some c1 ) None (len M (v c1 ) 0 xs)
dbm-entry-val u None (Some c2 ) (len M 0 (v c2 ) ys)

by auto
from dbm-entry-val-add-4 [OF this] len-decomp[OF vs, of M ] show ?thesis

unfolding add by auto
qed

An equivalent way of handling 0

fun val-0 :: ( ′c ⇒ ( ′a :: linordered-ab-group-add)) ⇒ ′c option ⇒ ′a where
val-0 u None = 0 |
val-0 u (Some c) = u c

notation val-0 (‹-0 -› [90 ,90 ] 90 )

lemma dbm-entry-val-None-None[dest]:
dbm-entry-val u None None l =⇒ l = ∞
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by (auto elim: dbm-entry-val.cases)

lemma dbm-entry-val-dbm-lt:
assumes dbm-entry-val u x y l
shows Lt (u0 x − u0 y) ≺ l

using assms by (cases rule: dbm-entry-val.cases, auto)

lemma dbm-lt-dbm-entry-val-1 :
assumes Lt (u x) ≺ l
shows dbm-entry-val u (Some x) None l

using assms by (cases rule: dbm-lt.cases) auto

lemma dbm-lt-dbm-entry-val-2 :
assumes Lt (− u x) ≺ l
shows dbm-entry-val u None (Some x) l

using assms by (cases rule: dbm-lt.cases) auto

lemma dbm-lt-dbm-entry-val-3 :
assumes Lt (u x − u y) ≺ l
shows dbm-entry-val u (Some x) (Some y) l

using assms by (cases rule: dbm-lt.cases) auto

A more uniform theorem for boundedness by paths

lemma DBM-val-bounded-len:
fixes v
defines v ′ ≡ λ x. if x = None then 0 else v (the x)
assumes DBM-val-bounded v u M n v ′ x ≤ n v ′ y ≤ n set vs ⊆ {0 ..n}

∀ k ≤ n. (∃ c. v c = k) x 6= None ∨ y 6= None
shows Lt (u0 x − u0 y) ≺ len M (v ′ x) (v ′ y) vs using assms

apply −
apply (rule dbm-entry-val-dbm-lt)
apply (cases x; cases y)

apply simp-all
apply (rule DBM-val-bounded-len-2 ; auto)

apply (rule DBM-val-bounded-len-1 ; auto)
apply (rule DBM-val-bounded-len-3 ; auto)
done

2.5.7 Floyd-Warshall Algorithm Preservers Zones

lemma D-dest: x = D m i j k =⇒
x ∈ {len m i j xs |xs. set xs ⊆ {0 ..k} ∧ i /∈ set xs ∧ j /∈ set xs ∧ distinct

xs}
using Min-elem-dest[OF D-base-finite ′′ D-base-not-empty] by (fastforce simp
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add: D-def )

lemma FW-zone-equiv:
∀ k ≤ n. k > 0 −→ (∃ c. v c = k) =⇒ [M ]v,n = [FW M n]v,n

proof safe
fix u assume A: u ∈ [FW M n]v,n
{ fix i j assume i ≤ n j ≤ n

hence FW M n i j ≤ M i j using fw-mono[of i n j M ] by simp
hence FW M n i j � M i j by (simp add: less-eq)

}
with DBM-le-subset[of n FW M n M ] A show u ∈ [M ]v,n by auto

next
fix u assume u:u ∈ [M ]v,n and surj-on: ∀ k ≤ n. k > 0 −→ (∃ c. v c

= k)
hence ∗:DBM-val-bounded v u M n by (simp add: DBM-zone-repr-def )
note ∗∗ = DBM-val-bounded-neg-cycle[OF this - - - surj-on]
have cyc-free: cyc-free M n using ∗∗ by fastforce
from cyc-free-diag[OF this] have diag-ge-zero: ∀ k≤n. M k k ≥ Le 0

unfolding neutral by auto

have DBM-val-bounded v u (FW M n) n unfolding DBM-val-bounded-def
proof (safe, goal-cases)

case 1
from fw-shortest-path[OF cyc-free] have ∗∗:

D M 0 0 n = FW M n 0 0
by (simp add: neutral)
from D-dest[OF ∗∗[symmetric]] obtain xs where xs:

FW M n 0 0 = len M 0 0 xs set xs ⊆ {0 ..n}
0 /∈ set xs distinct xs

by auto
with cyc-free have FW M n 0 0 ≥ 0 by auto
then show ?case unfolding neutral less-eq by simp

next
case (2 c)
with fw-shortest-path[OF cyc-free] have ∗∗:

D M 0 (v c) n = FW M n 0 (v c)
by (simp add: neutral)
from D-dest[OF ∗∗[symmetric]] obtain xs where xs:

FW M n 0 (v c) = len M 0 (v c) xs set xs ⊆ {0 ..n}
0 /∈ set xs v c /∈ set xs distinct xs

by auto
show ?case unfolding xs(1 ) using xs surj-on ‹v c ≤ n›
by − (rule DBM-val-bounded-len ′2 [OF ∗ xs(3 )]; auto)

next
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case (3 c)
with fw-shortest-path[OF cyc-free] have ∗∗:

D M (v c) 0 n = FW M n (v c) 0
by (simp add: neutral)
with D-dest[OF ∗∗[symmetric]] obtain xs where xs:

FW M n (v c) 0 = len M (v c) 0 xs set xs ⊆ {0 ..n}
0 /∈ set xs v c /∈ set xs distinct xs

by auto
show ?case unfolding xs(1 ) using xs surj-on ‹v c ≤ n›
by − (rule DBM-val-bounded-len ′1 [OF ∗ xs(3 )]; auto)

next
case (4 c1 c2 )
with fw-shortest-path[OF cyc-free]
have D M (v c1 ) (v c2 ) n = FW M n (v c1 ) (v c2 ) by (simp add:

neutral)
from D-dest[OF this[symmetric]] obtain xs where xs:

FW M n (v c1 ) (v c2 ) = len M (v c1 ) (v c2 ) xs set xs ⊆ {0 ..n}
v c1 /∈ set xs v c2 /∈ set xs distinct xs

by auto
show ?case

unfolding xs(1 )
apply (rule DBM-val-bounded-len ′3 [OF ∗])
using xs surj-on ‹v c1 ≤ n› ‹v c2 ≤ n› by (auto dest!: distinct-cnt[of

- 0 ])
qed
then show u ∈ [FW M n]v,n unfolding DBM-zone-repr-def by simp

qed

lemma new-negative-cycle-aux ′:
fixes M :: ( ′a :: time) DBM
fixes i j d
defines M ′ ≡ λ i ′ j ′. if (i ′ = i ∧ j ′ = j) then Le d

else if (i ′ = j ∧ j ′ = i) then Le (−d)
else M i ′ j ′

assumes i ≤ n j ≤ n set xs ⊆ {0 ..n} cycle-free M n length xs = m
assumes len M ′ i i (j # xs) < 0 ∨ len M ′ j j (i # xs) < 0
assumes i 6= j
shows ∃ xs. set xs ⊆ {0 ..n} ∧ j /∈ set xs ∧ i /∈ set xs

∧ (len M ′ i i (j # xs) < 0 ∨ len M ′ j j (i # xs) < 0 ) using
assms
proof (induction - m arbitrary: xs rule: less-induct)

case (less x)
{ fix b a xs assume A: (i, j) /∈ set (arcs b a xs) (j, i) /∈ set (arcs b a xs)

with ‹i 6= j› have len M ′ b a xs = len M b a xs
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unfolding M ′-def by (induction xs arbitrary: b) auto
} note ∗ = this
{ fix a xs assume A:(i, j) /∈ set (arcs a a xs) (j, i) /∈ set (arcs a a xs)

assume a: a ≤ n and xs: set xs ⊆ {0 ..n} and cycle: ¬ len M ′ a a xs
≥ 0

from ∗[OF A] have len M ′ a a xs = len M a a xs .
with ‹cycle-free M n› ‹i ≤ n› cycle xs a have False unfolding cy-

cle-free-def by auto
} note ∗∗ = this
{ fix a :: nat fix ys :: nat list

assume A: ys 6= [] length ys ≤ length xs set ys ⊆ set xs a ≤ n
assume cycle: len M ′ a a ys < 0
assume arcs: (i, j) ∈ set (arcs a a ys) ∨ (j, i) ∈ set (arcs a a ys)
from arcs have ?thesis
proof

assume (i, j) ∈ set (arcs a a ys)
from cycle-rotate-2 [OF ‹ys 6= []› this, of M ′]
obtain ws where ws: len M ′ a a ys = len M ′ i i (j # ws) set ws ⊆

set (a # ys)
length ws < length ys by auto

with cycle less.hyps(1 )[OF - less.hyps(2 ) , of length ws ws] less.prems
A

show ?thesis by fastforce
next

assume (j, i) ∈ set (arcs a a ys)
from cycle-rotate-2 [OF ‹ys 6= []› this, of M ′]
obtain ws where ws: len M ′ a a ys = len M ′ j j (i # ws) set ws ⊆

set (a # ys)
length ws < length ys by auto

with cycle less.hyps(1 )[OF - less.hyps(2 ) , of length ws ws] less.prems
A

show ?thesis by fastforce
qed

} note ∗∗∗ = this
{ fix a :: nat fix ys :: nat list

assume A: ys 6= [] length ys ≤ length xs set ys ⊆ set xs a ≤ n
assume cycle: ¬ len M ′ a a ys ≥ 0
with A ∗∗[of a ys] less.prems
have (i, j) ∈ set (arcs a a ys) ∨ (j, i) ∈ set (arcs a a ys) by auto
with ∗∗∗[OF A] cycle have ?thesis by auto

} note neg-cycle-IH = this
from cycle-free-diag[OF ‹cycle-free M n›] have ∀ i. i ≤ n −→ Le 0 ≤ M

i i unfolding neutral by auto
then have M ′-diag: ∀ i. i ≤ n −→ Le 0 ≤ M ′ i i unfolding M ′-def
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using ‹i 6= j› by auto
from less(8 ) show ?thesis
proof standard

assume cycle:len M ′ i i (j # xs) < 0
show ?thesis
proof (cases i ∈ set xs)

case False
then show ?thesis
proof (cases j ∈ set xs)

case False
with ‹i /∈ set xs› show ?thesis using less.prems(3 ,6 ) by auto

next
case True

then obtain ys zs where ys-zs: xs = ys @ j # zs by (meson split-list)
with len-decomp[of j # xs j # ys j zs M ′ i i]
have len: len M ′ i i (j # xs) = M ′ i j + len M ′ j j ys + len M ′ j i

zs by auto
show ?thesis
proof (cases len M ′ j j ys ≥ 0 )

case True
have len M ′ i i (j # zs) = M ′ i j + len M ′ j i zs by simp
also from len True have M ′ i j + len M ′ j i zs ≤ len M ′ i i (j #

xs)
by (metis add-le-impl add-lt-neutral comm not-le)
finally have cycle ′: len M ′ i i (j # zs) < 0 using cycle by auto
from ys-zs less.prems(5 ) have x > length zs by auto
from cycle ′ less.prems ys-zs less.hyps(1 )[OF this less.hyps(2 ) , of

zs]
show ?thesis by auto

next
case False
with M ′-diag less.prems have ys 6= [] by (auto simp: neutral)

from neg-cycle-IH [OF this] ys-zs False less.prems(1 ,2 ) show ?thesis
by auto

qed
qed

next
case True
then obtain ys zs where ys-zs: xs = ys @ i # zs by (meson split-list)
with len-decomp[of j # xs j # ys i zs M ′ i i]
have len: len M ′ i i (j # xs) = M ′ i j + len M ′ j i ys + len M ′ i i zs

by auto
show ?thesis
proof (cases len M ′ i i zs ≥ 0 )
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case True
have len M ′ i i (j # ys) = M ′ i j + len M ′ j i ys by simp
also from len True have M ′ i j + len M ′ j i ys ≤ len M ′ i i (j #

xs)
by (metis add-lt-neutral comm not-le)
finally have cycle ′: len M ′ i i (j # ys) < 0 using cycle by auto
from ys-zs less.prems(5 ) have x > length ys by auto
from cycle ′ less.prems ys-zs less.hyps(1 )[OF this less.hyps(2 ) , of ys]
show ?thesis by auto

next
case False
with less.prems(1 ,7 ) M ′-diag have zs 6= [] by (auto simp: neutral)
from neg-cycle-IH [OF this] ys-zs False less.prems(1 ,2 ) show ?thesis

by auto
qed

qed
next

assume cycle:len M ′ j j (i # xs) < 0
show ?thesis
proof (cases j ∈ set xs)

case False
then show ?thesis
proof (cases i ∈ set xs)

case False
with ‹j /∈ set xs› show ?thesis using less.prems(3 ,6 ) by auto

next
case True

then obtain ys zs where ys-zs: xs = ys @ i # zs by (meson split-list)
with len-decomp[of i # xs i # ys i zs M ′ j j]
have len: len M ′ j j (i # xs) = M ′ j i + len M ′ i i ys + len M ′ i j

zs by auto
show ?thesis
proof (cases len M ′ i i ys ≥ 0 )

case True
have len M ′ j j (i # zs) = M ′ j i + len M ′ i j zs by simp
also from len True have M ′ j i + len M ′ i j zs ≤ len M ′ j j (i #

xs)
by (metis add-le-impl add-lt-neutral comm not-le)
finally have cycle ′: len M ′ j j (i # zs) < 0 using cycle by auto
from ys-zs less.prems(5 ) have x > length zs by auto
from cycle ′ less.prems ys-zs less.hyps(1 )[OF this less.hyps(2 ) , of

zs]
show ?thesis by auto

next
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case False
with less.prems M ′-diag have ys 6= [] by (auto simp: neutral)

from neg-cycle-IH [OF this] ys-zs False less.prems(1 ,2 ) show ?thesis
by auto

qed
qed

next
case True
then obtain ys zs where ys-zs: xs = ys @ j # zs by (meson split-list)
with len-decomp[of i # xs i # ys j zs M ′ j j]
have len: len M ′ j j (i # xs) = M ′ j i + len M ′ i j ys + len M ′ j j zs

by auto
show ?thesis
proof (cases len M ′ j j zs ≥ 0 )

case True
have len M ′ j j (i # ys) = M ′ j i + len M ′ i j ys by simp
also from len True have M ′ j i + len M ′ i j ys ≤ len M ′ j j (i #

xs)
by (metis add-lt-neutral comm not-le)
finally have cycle ′: len M ′ j j (i # ys) < 0 using cycle by auto
from ys-zs less.prems(5 ) have x > length ys by auto
from cycle ′ less.prems ys-zs less.hyps(1 )[OF this less.hyps(2 ) , of ys]
show ?thesis by auto

next
case False
with less.prems(2 ,7 ) M ′-diag have zs 6= [] by (auto simp: neutral)
from neg-cycle-IH [OF this] ys-zs False less.prems(1 ,2 ) show ?thesis

by auto
qed

qed
qed

qed

lemma new-negative-cycle-aux:
fixes M :: ( ′a :: time) DBM
fixes i d
defines M ′ ≡ λ i ′ j ′. if (i ′ = i ∧ j ′ = 0 ) then Le d

else if (i ′ = 0 ∧ j ′ = i) then Le (−d)
else M i ′ j ′

assumes i ≤ n set xs ⊆ {0 ..n} cycle-free M n length xs = m
assumes len M ′ 0 0 (i # xs) < 0 ∨ len M ′ i i (0 # xs) < 0
assumes i 6= 0
shows ∃ xs. set xs ⊆ {0 ..n} ∧ 0 /∈ set xs ∧ i /∈ set xs

∧ (len M ′ 0 0 (i # xs) < 0 ∨ len M ′ i i (0 # xs) < 0 ) using
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assms
proof (induction - m arbitrary: xs rule: less-induct)

case (less x)
{ fix b a xs assume A: (0 , i) /∈ set (arcs b a xs) (i, 0 ) /∈ set (arcs b a

xs)
then have len M ′ b a xs = len M b a xs
unfolding M ′-def by (induction xs arbitrary: b) auto

} note ∗ = this
{ fix a xs assume A:(0 , i) /∈ set (arcs a a xs) (i, 0 ) /∈ set (arcs a a xs)

assume a: a ≤ n and xs: set xs ⊆ {0 ..n} and cycle: ¬ len M ′ a a xs
≥ 0

from ∗[OF A] have len M ′ a a xs = len M a a xs .
with ‹cycle-free M n› ‹i ≤ n› cycle xs a have False unfolding cy-

cle-free-def by auto
} note ∗∗ = this
{ fix a :: nat fix ys :: nat list

assume A: ys 6= [] length ys ≤ length xs set ys ⊆ set xs a ≤ n
assume cycle: len M ′ a a ys < 0
assume arcs: (0 , i) ∈ set (arcs a a ys) ∨ (i, 0 ) ∈ set (arcs a a ys)
from arcs have ?thesis
proof

assume (0 , i) ∈ set (arcs a a ys)
from cycle-rotate-2 [OF ‹ys 6= []› this, of M ′]
obtain ws where ws: len M ′ a a ys = len M ′ 0 0 (i # ws) set ws ⊆

set (a # ys)
length ws < length ys by auto

with cycle less.hyps(1 )[OF - less.hyps(2 ) , of length ws ws] less.prems
A

show ?thesis by fastforce
next

assume (i, 0 ) ∈ set (arcs a a ys)
from cycle-rotate-2 [OF ‹ys 6= []› this, of M ′]
obtain ws where ws: len M ′ a a ys = len M ′ i i (0 # ws) set ws ⊆

set (a # ys)
length ws < length ys by auto

with cycle less.hyps(1 )[OF - less.hyps(2 ) , of length ws ws] less.prems
A

show ?thesis by fastforce
qed

} note ∗∗∗ = this
{ fix a :: nat fix ys :: nat list

assume A: ys 6= [] length ys ≤ length xs set ys ⊆ set xs a ≤ n
assume cycle: ¬ len M ′ a a ys ≥ 0
with A ∗∗[of a ys] less.prems(2 )
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have (0 , i) ∈ set (arcs a a ys) ∨ (i, 0 ) ∈ set (arcs a a ys) by auto
with ∗∗∗[OF A] cycle have ?thesis by auto

} note neg-cycle-IH = this
from cycle-free-diag[OF ‹cycle-free M n›] have ∀ i. i ≤ n −→ Le 0 ≤ M

i i unfolding neutral by auto
then have M ′-diag: ∀ i. i ≤ n −→ Le 0 ≤ M ′ i i unfolding M ′-def

using ‹i 6= 0 › by auto
from less(7 ) show ?thesis
proof standard

assume cycle:len M ′ 0 0 (i # xs) < 0
show ?thesis
proof (cases 0 ∈ set xs)

case False
thus ?thesis
proof (cases i ∈ set xs)

case False
with ‹0 /∈ set xs› show ?thesis using less.prems by auto

next
case True

then obtain ys zs where ys-zs: xs = ys @ i # zs by (meson split-list)
with len-decomp[of i # xs i # ys i zs M ′ 0 0 ]
have len: len M ′ 0 0 (i # xs) = M ′ 0 i + len M ′ i i ys + len M ′ i

0 zs by auto
show ?thesis
proof (cases len M ′ i i ys ≥ 0 )

case True
have len M ′ 0 0 (i # zs) = M ′ 0 i + len M ′ i 0 zs by simp
also from len True have M ′ 0 i + len M ′ i 0 zs ≤ len M ′ 0 0 (i

# xs)
by (metis add-le-impl add-lt-neutral comm not-le)
finally have cycle ′: len M ′ 0 0 (i # zs) < 0 using cycle by auto
from ys-zs less.prems(4 ) have x > length zs by auto
from cycle ′ less.prems ys-zs less.hyps(1 )[OF this less.hyps(2 ) , of

zs]
show ?thesis by auto

next
case False

with less.prems(1 ,6 ) M ′-diag have ys 6= [] by (auto simp: neutral)
from neg-cycle-IH [OF this] ys-zs False less.prems(1 ,2 ) show ?thesis

by auto
qed

qed
next

case True
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then obtain ys zs where ys-zs: xs = ys @ 0 # zs by (meson split-list)
with len-decomp[of i # xs i # ys 0 zs M ′ 0 0 ]
have len: len M ′ 0 0 (i # xs) = M ′ 0 i + len M ′ i 0 ys + len M ′ 0 0

zs by auto
show ?thesis
proof (cases len M ′ 0 0 zs ≥ 0 )

case True
have len M ′ 0 0 (i # ys) = M ′ 0 i + len M ′ i 0 ys by simp
also from len True have M ′ 0 i + len M ′ i 0 ys ≤ len M ′ 0 0 (i #

xs)
by (metis add-lt-neutral comm not-le)
finally have cycle ′: len M ′ 0 0 (i # ys) < 0 using cycle by auto
from ys-zs less.prems(4 ) have x > length ys by auto
from cycle ′ less.prems ys-zs less.hyps(1 )[OF this less.hyps(2 ) , of ys]
show ?thesis by auto

next
case False
with less.prems(1 ,6 ) M ′-diag have zs 6= [] by (auto simp: neutral)
from neg-cycle-IH [OF this] ys-zs False less.prems(1 ,2 ) show ?thesis

by auto
qed

qed
next

assume cycle: len M ′ i i (0 # xs) < 0
show ?thesis
proof (cases i ∈ set xs)

case False
thus ?thesis
proof (cases 0 ∈ set xs)

case False
with ‹i /∈ set xs› show ?thesis using less.prems by auto

next
case True

then obtain ys zs where ys-zs: xs = ys @ 0 # zs by (meson
split-list)

with len-decomp[of 0 # xs 0 # ys 0 zs M ′ i i]
have len: len M ′ i i (0 # xs) = M ′ i 0 + len M ′ 0 0 ys + len M ′ 0

i zs by auto
show ?thesis
proof (cases len M ′ 0 0 ys ≥ 0 )

case True
have len M ′ i i (0 # zs) = M ′ i 0 + len M ′ 0 i zs by simp
also from len True have M ′ i 0 + len M ′ 0 i zs ≤ len M ′ i i (0

# xs)
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by (metis add-le-impl add-lt-neutral comm not-le)
finally have cycle ′: len M ′ i i (0 # zs) < 0 using cycle by auto
from ys-zs less.prems(4 ) have x > length zs by auto
from cycle ′ less.prems ys-zs less.hyps(1 )[OF this less.hyps(2 ) , of

zs]
show ?thesis by auto

next
case False

with less.prems(1 ,6 ) M ′-diag have ys 6= [] by (auto simp: neutral)
from neg-cycle-IH [OF this] ys-zs False less.prems(1 ,2 ) show ?thesis

by auto
qed

qed
next

case True
then obtain ys zs where ys-zs: xs = ys @ i # zs by (meson split-list)
with len-decomp[of 0 # xs 0 # ys i zs M ′ i i]
have len: len M ′ i i (0 # xs) = M ′ i 0 + len M ′ 0 i ys + len M ′ i i

zs by auto
show ?thesis
proof (cases len M ′ i i zs ≥ 0 )

case True
have len M ′ i i (0 # ys) = M ′ i 0 + len M ′ 0 i ys by simp
also from len True have M ′ i 0 + len M ′ 0 i ys ≤ len M ′ i i (0 #

xs)
by (metis add-lt-neutral comm not-le)
finally have cycle ′: len M ′ i i (0 # ys) < 0 using cycle by auto
from ys-zs less.prems(4 ) have x > length ys by auto
from cycle ′ less.prems ys-zs less.hyps(1 )[OF this less.hyps(2 ) , of ys]
show ?thesis by auto

next
case False
with less.prems(1 ,6 ) M ′-diag have zs 6= [] by (auto simp: neutral)
from neg-cycle-IH [OF this] ys-zs False less.prems(1 ,2 ) show ?thesis

by auto
qed

qed
qed

qed

2.6 The Characteristic Property of Canonical DBMs

theorem fix-index ′:
fixes M :: (( ′a :: time) DBMEntry) mat
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assumes Le r ≤ M i j Le (−r) ≤ M j i cycle-free M n canonical M n i ≤
n j ≤ n i 6= j

defines M ′ ≡ λ i ′ j ′. if (i ′ = i ∧ j ′ = j) then Le r
else if (i ′ = j ∧ j ′ = i) then Le (−r)
else M i ′ j ′

shows (∀ u. DBM-val-bounded v u M ′ n −→ DBM-val-bounded v u M n)
∧ cycle-free M ′ n
proof −

note A = assms
note r = assms(1 ,2 )
from ‹cycle-free M n› have diag-cycles: ∀ i xs. i ≤ n ∧ set xs ⊆ {0 ..n}
−→ Le 0 ≤ len M i i xs

unfolding cycle-free-def neutral by auto
let ?M ′ = λ i ′ j ′. if (i ′ = i ∧ j ′ = j) then Le r

else if (i ′ = j ∧ j ′ = i) then Le (−r)
else M i ′ j ′

have ?M ′ i ′ j ′ ≤ M i ′ j ′ when i ′ ≤ n j ′ ≤ n for i ′ j ′ using assms by
auto

with DBM-le-subset[folded less-eq, of n ?M ′ M ] have DBM-val-bounded
v u M n
if DBM-val-bounded v u ?M ′ n for u unfolding DBM-zone-repr-def using

that by auto
then have not-empty:∀ u. DBM-val-bounded v u ?M ′ n −→ DBM-val-bounded

v u M n by auto
{ fix a xs assume prems: a ≤ n set xs ⊆ {0 ..n} and cycle: ¬ len ?M ′ a

a xs ≥ 0
{ fix b assume A: (i, j) /∈ set (arcs b a xs) (j, i) /∈ set (arcs b a xs)

with ‹i 6= j› have len ?M ′ b a xs = len M b a xs by (induction xs
arbitrary: b) auto

} note ∗ = this
{ fix a b xs assume A: i /∈ set (a # xs) j /∈ set (a # xs)

then have len ?M ′ a b xs = len M a b xs by (induction xs arbitrary:
a, auto)

} note ∗∗ = this
{ assume A:(i, j) /∈ set (arcs a a xs) (j, i) /∈ set (arcs a a xs)

from ∗[OF this] have len ?M ′ a a xs = len M a a xs .
with ‹cycle-free M n› prems cycle have False by (auto simp: cy-

cle-free-def )
}
then have arcs:(i, j) ∈ set (arcs a a xs) ∨ (j, i) ∈ set (arcs a a xs) by

auto
with ‹i 6= j› have xs 6= [] by auto
from arcs obtain xs where xs: set xs ⊆ {0 ..n}

len ?M ′ i i (j # xs) < 0 ∨ len ?M ′ j j (i # xs) < 0
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proof (standard, goal-cases)
case 1
from cycle-rotate-2 ′[OF ‹xs 6= []› this(2 ), of ?M ′] prems obtain ys

where
len ?M ′ i i (j # ys) = len ?M ′ a a xs set ys ⊆ {0 ..n}

by fastforce
with 1 cycle show ?thesis by fastforce

next
case 2
from cycle-rotate-2 ′[OF ‹xs 6= []› this(2 ), of ?M ′] prems obtain ys

where
len ?M ′ j j (i # ys) = len ?M ′ a a xs set ys ⊆ {0 ..n}

by fastforce
with 2 cycle show ?thesis by fastforce

qed
from new-negative-cycle-aux ′[OF ‹i ≤ n› ‹j ≤ n› this(1 ) ‹cycle-free M

n› - this(2 ) ‹i 6= j›]
obtain xs where xs:

set xs ⊆ {0 ..n} i /∈ set xs j /∈ set xs
len ?M ′ i i (j # xs) < 0 ∨ len ?M ′ j j (i # xs) < 0

by auto
from this(4 ) have False
proof

assume A: len ?M ′ j j (i # xs) < 0
show False
proof (cases xs)

case Nil
with ‹i 6= j› have ∗:?M ′ j i = Le (−r) ?M ′ i j = Le r by simp+
from Nil have len ?M ′ j j (i # xs) = ?M ′ j i + ?M ′ i j by simp
with ∗ have len ?M ′ j j (i # xs) = Le 0 by (simp add: add)
then show False using A by (simp add: neutral)

next
case (Cons y ys)
have ∗:M i y + M y j ≥ M i j
using ‹canonical M n› Cons xs ‹i ≤ n› ‹j ≤ n› by (simp add: add

less-eq)
have Le 0 = Le (−r) + Le r by (simp add: add)
also have . . . ≤ Le (−r) + M i j using r by (simp add: add-mono)
also have . . . ≤ Le (−r) + M i y + M y j using ∗ by (simp add:

add-mono add.assoc)
also have . . . ≤ Le (−r) + ?M ′ i y + len M y j ys

using canonical-len[OF ‹canonical M n›] xs(1−3 ) ‹i ≤ n› ‹j ≤ n›
Cons

by (simp add: add-mono)
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also have . . . = len ?M ′ j j (i # xs) using Cons ‹i 6= j› ∗∗ xs(1−3 )
by (simp add: add.assoc)

also have . . . < Le 0 using A by (simp add: neutral)
finally show False by simp

qed
next

assume A: len ?M ′ i i (j # xs) < 0
show False
proof (cases xs)

case Nil
with ‹i 6= j› have ∗:?M ′ j i = Le (−r) ?M ′ i j = Le r by simp+
from Nil have len ?M ′ i i (j # xs) = ?M ′ i j + ?M ′ j i by simp
with ∗ have len ?M ′ i i (j # xs) = Le 0 by (simp add: add)
then show False using A by (simp add: neutral)

next
case (Cons y ys)
have ∗:M j y + M y i ≥ M j i
using ‹canonical M n› Cons xs ‹i ≤ n› ‹j ≤ n› by (simp add: add

less-eq)
have Le 0 = Le r + Le (−r) by (simp add: add)
also have . . . ≤ Le r + M j i using r by (simp add: add-mono)

also have . . . ≤ Le r + M j y + M y i using ∗ by (simp add:
add-mono add.assoc)

also have . . . ≤ Le r + ?M ′ j y + len M y i ys
using canonical-len[OF ‹canonical M n›] xs(1−3 ) ‹i ≤ n› ‹j ≤ n›

Cons
by (simp add: add-mono)

also have . . . = len ?M ′ i i (j # xs) using Cons ‹i 6= j› ∗∗ xs(1−3 )
by (simp add: add.assoc)

also have . . . < Le 0 using A by (simp add: neutral)
finally show False by simp

qed
qed

} note ∗ = this
have cycle-free ?M ′ n unfolding cycle-free-diag-equiv[symmetric]

using negative-cycle-dest-diag ∗ by fastforce
then show ?thesis using not-empty ‹i 6= j› r unfolding M ′-def by auto

qed

lemma fix-index:
fixes M :: (( ′a :: time) DBMEntry) mat
assumes M 0 i + M i 0 > 0 cycle-free M n canonical M n i ≤ n i 6= 0
shows
∃ (M ′ :: ( ′a DBMEntry) mat). ((∃ u. DBM-val-bounded v u M ′ n) −→
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(∃ u. DBM-val-bounded v u M n))
∧ M ′ 0 i + M ′ i 0 = 0 ∧ cycle-free M ′ n
∧ (∀ j. i 6= j ∧ M 0 j + M j 0 = 0 −→ M ′ 0 j + M ′ j 0 = 0 )
∧ (∀ j. i 6= j ∧ M 0 j + M j 0 > 0 −→ M ′ 0 j + M ′ j 0 > 0 )

proof −
note A = assms
from sum-gt-neutral-dest[OF assms(1 )] obtain d where d: Le d ≤ M i

0 Le (−d) ≤ M 0 i by auto
have i 6= 0 using A by − (rule ccontr ; simp)
let ?M ′ = λi ′ j ′. if i ′ = i ∧ j ′ = 0 then Le d else if i ′ = 0 ∧ j ′ = i then

Le (−d) else M i ′ j ′
from fix-index ′[OF d(1 ,2 ) A(2 ,3 ,4 ) - ‹i 6= 0 ›] have M ′:
∀ u. DBM-val-bounded v u ?M ′ n −→ DBM-val-bounded v u M n cycle-free

?M ′ n
by auto
moreover from ‹i 6= 0 › have ∀ j. i 6= j ∧ M 0 j + M j 0 = 0 −→ ?M ′

0 j + ?M ′ j 0 = 0 by auto
moreover from ‹i 6= 0 › have ∀ j. i 6= j ∧ M 0 j + M j 0 > 0 −→ ?M ′

0 j + ?M ′ j 0 > 0 by auto
moreover from ‹i 6= 0 › have ?M ′ 0 i + ?M ′ i 0 = 0 unfolding neutral

add by auto
ultimately show ?thesis by blast

qed

Putting it together lemma FW-not-empty:
DBM-val-bounded v u (FW M ′ n) n =⇒ DBM-val-bounded v u M ′ n

proof −
assume A: DBM-val-bounded v u (FW M ′ n) n
have ∀ i j. i ≤ n −→ j ≤ n −→ FW M ′ n i j ≤ M ′ i j using fw-mono

by blast
from DBM-le-subset[of n FW M ′ n M ′ - v, OF this[unfolded less-eq]]
show DBM-val-bounded v u M ′ n using A by (auto simp: DBM-zone-repr-def )

qed

lemma fix-indices:
fixes M :: (( ′a :: time) DBMEntry) mat
assumes set xs ⊆ {0 ..n} distinct xs
assumes cyc-free M n canonical M n
shows
∃ (M ′ :: ( ′a DBMEntry) mat). ((∃ u. DBM-val-bounded v u M ′ n) −→

(∃ u. DBM-val-bounded v u M n))
∧ (∀ i ∈ set xs. i 6= 0 −→ M ′ 0 i + M ′ i 0 = 0 ) ∧ cyc-free M ′ n
∧ (∀ i≤n. i /∈ set xs ∧ M 0 i + M i 0 = 0 −→ M ′ 0 i + M ′ i 0 = 0 )
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using assms
proof (induction xs arbitrary: M )

case Nil then show ?case by auto
next

case (Cons i xs)
show ?case
proof (cases M 0 i + M i 0 ≤ 0 ∨ i = 0 )

case True
note T = this
show ?thesis
proof (cases i = 0 )

case False
from Cons.prems have 0 ≤ n set [i] ⊆ {0 ..n} by auto
with Cons.prems(3 ) False T have M 0 i + M i 0 = 0 by fastforce

with Cons.IH [OF - - Cons.prems(3 ,4 )] Cons.prems(1 ,2 ) show ?thesis
by auto

next
case True

with Cons.IH [OF - - Cons.prems(3 ,4 )] Cons.prems(1 ,2 ) show ?thesis
by auto

qed
next

case False
with Cons.prems have 0 < M 0 i + M i 0 i ≤ n i 6= 0 by auto

with fix-index[OF this(1 ) cycle-free-diag-intro[OF Cons.prems(3 )] Cons.prems(4 )
this(2 ,3 ), of v]

obtain M ′ :: ( ′a DBMEntry) mat where M ′:
((∃ u. DBM-val-bounded v u M ′ n) −→ (∃ u. DBM-val-bounded v u M

n)) (M ′ 0 i + M ′ i 0 = 0 )
cyc-free M ′ n ∀ j≤n. i 6= j ∧ M 0 j + M j 0 > 0 −→ M ′ 0 j + M ′ j

0 > 0
∀ j. i 6= j ∧ M 0 j + M j 0 = 0 −→ M ′ 0 j + M ′ j 0 = 0

using cycle-free-diag-equiv by blast
let ?M ′ = FW M ′ n
from fw-canonical[of n M ′] ‹cyc-free M ′ n› have canonical ?M ′ n by

auto
from FW-cyc-free-preservation[OF ‹cyc-free M ′ n›] have cyc-free ?M ′

n
by auto

from FW-fixed-preservation[OF ‹i ≤ n› M ′(2 ) ‹canonical ?M ′ n›
‹cyc-free ?M ′ n›]

have fixed:?M ′ 0 i + ?M ′ i 0 = 0 by (auto simp: add-mono)
from Cons.IH [OF - - ‹cyc-free ?M ′ n› ‹canonical ?M ′ n›] Cons.prems(1 ,2 ,3 )
obtain M ′′ :: ( ′a DBMEntry) mat
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where M ′′: ((∃ u. DBM-val-bounded v u M ′′ n) −→ (∃ u. DBM-val-bounded
v u ?M ′ n))

(∀ i∈set xs. i 6= 0 −→ M ′′ 0 i + M ′′ i 0 = 0 ) cyc-free M ′′ n
(∀ i≤n. i /∈ set xs ∧ ?M ′ 0 i + ?M ′ i 0 = 0 −→ M ′′ 0 i + M ′′ i 0 =

0 )
by auto
from FW-fixed-preservation[OF - - ‹canonical ?M ′ n› ‹cyc-free ?M ′ n›]

M ′(5 )
have ∀ j≤n. i 6= j ∧ M 0 j + M j 0 = 0 −→ ?M ′ 0 j + ?M ′ j 0 = 0

by auto
with M ′′(4 ) have ∀ j≤n. j /∈ set (i # xs) ∧ M 0 j + M j 0 = 0 −→

M ′′ 0 j + M ′′ j 0 = 0 by auto
moreover from M ′′(2 ) M ′′(4 ) fixed Cons.prems(2 ) ‹i ≤ n›
have (∀ i∈set (i#xs). i 6= 0 −→ M ′′ 0 i + M ′′ i 0 = 0 ) by auto
moreover from M ′′(1 ) M ′(1 ) FW-not-empty[of v - M ′ n]
have (∃ u. DBM-val-bounded v u M ′′ n) −→ (∃ u. DBM-val-bounded v u

M n) by auto
ultimately show ?thesis using ‹cyc-free M ′′ n› M ′′(4 ) by auto

qed
qed

lemma cyc-free-obtains-valuation:
cyc-free M n =⇒ ∀ c. v c ≤ n −→ v c > 0 =⇒ ∃ u. DBM-val-bounded v

u M n
proof −

assume A: cyc-free M n ∀ c. v c ≤ n −→ v c > 0
let ?M = FW M n
from fw-canonical[of n M ] A have canonical ?M n by auto
from FW-cyc-free-preservation[OF A(1 ) ] have cyc-free ?M n .
have set [0 ..<n+1 ] ⊆ {0 ..n} distinct [0 ..<n+1 ] by auto
from fix-indices[OF this ‹cyc-free ?M n› ‹canonical ?M n›]
obtain M ′ :: ( ′a DBMEntry) mat where M ′:
(∃ u. DBM-val-bounded v u M ′ n) −→ (∃ u. DBM-val-bounded v u (FW

M n) n)
∀ i∈set [0 ..<n + 1 ]. i 6= 0 −→ M ′ 0 i + M ′ i 0 = 0 cyc-free M ′ n
by blast

let ?M ′ = FW M ′ n
have

∧
i. i ≤ n =⇒ i ∈ set [0 ..<n + 1 ] by auto

with M ′(2 ) have M ′-fixed: ∀ i≤n. i 6= 0 −→ M ′ 0 i + M ′ i 0 = 0 by
fastforce

from fw-canonical[of n M ′] M ′(3 ) have canonical ?M ′ n by blast
from FW-fixed-preservation[OF - - this FW-cyc-free-preservation[OF M ′(3 )]]

M ′-fixed
have fixed: ∀ i≤n. i 6= 0 −→ ?M ′ 0 i + ?M ′ i 0 = 0 by auto
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have ∗:
∧

i. i ≤ n =⇒ i 6= 0 =⇒ ∃ d. ?M ′ 0 i = Le (−d) ∧ ?M ′ i 0 =
Le d

proof −
fix i assume i: i ≤ n i 6= 0
from i fixed have ∗:dbm-add (?M ′ 0 i) (?M ′ i 0 ) = Le 0 by (auto simp

add: add neutral)
moreover
{ fix a b :: ′a assume a + b = 0

then have a = −b by (simp add: eq-neg-iff-add-eq-0 )
}
ultimately show ∃ d. ?M ′ 0 i = Le (−d) ∧ ?M ′ i 0 = Le d
by (cases ?M ′ 0 i; cases ?M ′ i 0 ; simp)

qed
then obtain f where f : ∀ i≤n. i 6= 0 −→ Le (f i) = ?M ′ i 0 ∧ Le (−

f i) = ?M ′ 0 i by metis
let ?u = λ c. f (v c)
have DBM-val-bounded v ?u ?M ′ n

unfolding DBM-val-bounded-def
proof (safe, goal-cases)

case 1
from cyc-free-diag-dest ′[OF FW-cyc-free-preservation[OF M ′(3 )]] show

?case
unfolding neutral less-eq by fast

next
case (2 c)
with A(2 ) have ∗∗: v c > 0 by auto
with ∗[OF 2 ] obtain d where d: Le (−d) = ?M ′ 0 (v c) by auto
with f 2 ∗∗ have Le (− f (v c)) = Le (− d) by simp
then have − f (v c) ≤ − d by auto
from dbm-entry-val.intros(2 )[of ?u , OF this] d
show ?case by auto

next
case (3 c)
with A(2 ) have ∗∗: v c > 0 by auto
with ∗[OF 3 ] obtain d where d: Le d = ?M ′ (v c) 0 by auto
with f 3 ∗∗ have Le (f (v c)) = Le d by simp
then have f (v c) ≤ d by auto
from dbm-entry-val.intros(1 )[of ?u, OF this] d
show ?case by auto

next
case (4 c1 c2 )
with A(2 ) have ∗∗: v c1 > 0 v c2 > 0 by auto
with ∗[OF 4 (1 )] obtain d1 where d1 : Le d1 = ?M ′ (v c1 ) 0 by auto
with f 4 ∗∗ have Le (f (v c1 )) = Le d1 by simp
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then have d1 ′: f (v c1 ) = d1 by auto
from ∗[OF 4 (2 )] ∗∗ obtain d2 where d2 : Le d2 = ?M ′ (v c2 ) 0 by

auto
with f 4 ∗∗ have Le (f (v c2 )) = Le d2 by simp
then have d2 ′: f (v c2 ) = d2 by auto
have Le d1 ≤ ?M ′ (v c1 ) (v c2 ) + Le d2 using ‹canonical ?M ′ n› 4

d1 d2
by (auto simp add: less-eq add)

then show ?case
proof (cases ?M ′ (v c1 ) (v c2 ), goal-cases)

case (1 d)
then have d1 ≤ d + d2 by (auto simp: add less-eq le-dbm-le)
then have d1 − d2 ≤ d by (simp add: diff-le-eq)
with 1 show ?case using d1 ′ d2 ′ by auto

next
case (2 d)
then have d1 < d + d2 by (auto simp: add less-eq dbm-le-def elim:

dbm-lt.cases)
then have d1 − d2 < d using diff-less-eq by blast
with 2 show ?case using d1 ′ d2 ′ by auto

qed auto
qed
from M ′(1 ) FW-not-empty[OF this] obtain u where DBM-val-bounded

v u ?M n by auto
from FW-not-empty[OF this] show ?thesis by auto

qed

2.6.1 Floyd-Warshall and Empty DBMs

theorem FW-detects-empty-zone:
∀ k≤n. 0 < k −→ (∃ c. v c = k) =⇒ ∀ c. v c ≤ n −→ v c > 0
=⇒ [FW M n]v,n = {} ←→ (∃ i≤n. (FW M n) i i < Le 0 )

proof
assume surj-on:∀ k≤n. 0 < k −→ (∃ c. v c = k) and ∃ i≤n. (FW M n)

i i < Le 0
then obtain i where ∗: len (FW M n) i i [] < 0 i ≤n by (auto simp

add: neutral)
show [FW M n]v,n = {}
proof (rule ccontr , goal-cases)

case 1
then obtain u where DBM-val-bounded v u (FW M n) n unfolding

DBM-zone-repr-def by auto
from DBM-val-bounded-neg-cycle[OF this ∗(2 ) - ∗(1 ) surj-on] show

?case by auto
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qed
next

assume surj-on: ∀ k≤n. 0 < k −→ (∃ c. v c = k) and empty: [FW M
n]v,n = {}

and cn: ∀ c. v c ≤ n −→ v c > 0
show ∃ i≤n. (FW M n) i i < Le 0
proof (rule ccontr , goal-cases)

case 1
then have ∗:∀ i≤n. FW M n i i ≥ 0 by (auto simp add: neutral)
have cyc-free M n
proof (rule ccontr)

assume ¬ cyc-free M n
from FW-neg-cycle-detect[OF this] ∗ show False by auto

qed
from FW-cyc-free-preservation[OF this] have cyc-free (FW M n) n .
from cyc-free-obtains-valuation[OF ‹cyc-free (FW M n) n› cn] empty
obtain u where DBM-val-bounded v u (FW M n) n by blast
with empty show ?case by (auto simp add: DBM-zone-repr-def )

qed
qed

hide-const (open) D

2.6.2 Mixed Corollaries

lemma cyc-free-not-empty:
assumes cyc-free M n ∀ c. v c ≤ n −→ 0 < v c
shows [(M :: ( ′a :: time) DBM )]v,n 6= {}

using cyc-free-obtains-valuation[OF assms(1 ,2 )] unfolding DBM-zone-repr-def
by auto

lemma empty-not-cyc-free:
assumes ∀ c. v c ≤ n −→ 0 < v c [(M :: ( ′a :: time) DBM )]v,n = {}
shows ¬ cyc-free M n

using assms by (meson cyc-free-not-empty)

lemma not-empty-cyc-free:
assumes ∀ k≤n. 0 < k −→ (∃ c. v c = k) [(M :: ( ′a :: time) DBM )]v,n
6= {}
shows cyc-free M n using DBM-val-bounded-neg-cycle[OF - - - - assms(1 )]

assms(2 )
unfolding DBM-zone-repr-def by fastforce
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lemma neg-cycle-empty:
assumes ∀ k≤n. 0 < k −→ (∃ c. v c = k) set xs ⊆ {0 ..n} i ≤ n len M i

i xs < 0
shows [(M :: ( ′a :: time) DBM )]v,n = {} using assms

by (metis leD not-empty-cyc-free)

abbreviation clock-numbering ′ :: ( ′c ⇒ nat) ⇒ nat ⇒ bool
where

clock-numbering ′ v n ≡ ∀ c. v c > 0 ∧ (∀ x. ∀ y. v x ≤ n ∧ v y ≤ n ∧ v
x = v y −→ x = y)

lemma non-empty-dbm-diag-set:
clock-numbering ′ v n =⇒ [M ]v,n 6= {}
=⇒ [M ]v,n = [(λ i j. if i = j then 0 else M i j)]v,n
unfolding DBM-zone-repr-def

proof (safe, goal-cases)
case 1
{ fix c assume A: v c = 0

from 1 have v c > 0 by auto
with A have False by auto

} note ∗ = this
from 1 have [simp]: Le 0 � M 0 0 by (auto simp: DBM-val-bounded-def )
note [simp] = neutral
from 1 show ?case

unfolding DBM-val-bounded-def
apply safe
subgoal

using ∗ by simp
subgoal

using ∗ by (metis (full-types))
subgoal

using ∗ by (metis (full-types))
subgoal for c1 c2

by (cases c1 = c2 ) auto
done

next
case (2 x xa)
note G = this
{ fix c assume A: v c = 0

from 2 have v c > 0 by auto
with A have False by auto

} note ∗ = this
{ fix c assume A: v c ≤ n M (v c) (v c) < 0

with 2 have False
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by (fastforce simp: neutral DBM-val-bounded-def less elim!: dbm-lt.cases)
} note ∗∗ = this
from 2 have [simp]: Le 0 � M 0 0 by (auto simp: DBM-val-bounded-def )
note [simp] = neutral
from 2 show ?case

unfolding DBM-val-bounded-def
proof (safe, goal-cases)

case 1 with ∗ show ?case by simp presburger
case 2 with ∗ show ?case by presburger

next
case (3 c1 c2 )
show ?case
proof (cases v c1 = v c2 )

case True
with 3 have c1 = c2 by auto
moreover from this ∗∗[OF 3 (9 )] not-less have M (v c2 ) (v c2 ) ≥ 0

by auto
ultimately show dbm-entry-val xa (Some c1 ) (Some c2 ) (M (v c1 )

(v c2 )) unfolding neutral
by (cases M (v c1 ) (v c2 )) (auto simp add: less-eq dbm-le-def , fast-

force+)
next

case False
with 3 show ?thesis by presburger

qed
qed

qed

lemma non-empty-cycle-free:
assumes [M ]v,n 6= {}

and ∀ k≤n. 0 < k −→ (∃ c. v c = k)
shows cycle-free M n

apply (rule ccontr)
apply (drule negative-cycle-dest-diag ′)
using DBM-val-bounded-neg-cycle assms unfolding DBM-zone-repr-def by
blast

lemma neg-diag-empty:
assumes ∀ k≤n. 0 < k −→ (∃ c. v c = k) i ≤ n M i i < 0
shows [M ]v,n = {}

unfolding DBM-zone-repr-def using DBM-val-bounded-neg-cycle[of v - M
n i []] assms by auto

lemma canonical-empty-zone:
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assumes ∀ k≤n. 0 < k −→ (∃ c. v c = k) ∀ c. v c ≤ n −→ 0 < v c
and canonical M n

shows [M ]v,n = {} ←→ (∃ i≤n. M i i < 0 )
using FW-detects-empty-zone[OF assms(1 ,2 ), of M ] FW-canonical-id[OF
assms(3 )] unfolding neutral
by simp

2.7 Orderings of DBMs

lemma canonical-saturated-1 :
assumes Le r ≤ M (v c1 ) 0

and Le (− r) ≤ M 0 (v c1 )
and cycle-free M n
and canonical M n
and v c1 ≤ n
and v c1 > 0
and ∀ c. v c ≤ n −→ 0 < v c

obtains u where u ∈ [M ]v,n u c1 = r
proof −

let ?M ′ = λi ′ j ′. if i ′=v c1 ∧ j ′=0 then Le r else if i ′=0 ∧ j ′=v c1 then
Le (− r) else M i ′ j ′

from fix-index ′[OF assms(1−5 )] assms(6 ) have M ′:
∀ u. DBM-val-bounded v u ?M ′ n −→ DBM-val-bounded v u M n
cycle-free ?M ′ n ?M ′ (v c1 ) 0 = Le r ?M ′ 0 (v c1 ) = Le (− r)

by auto
with cyc-free-obtains-valuation[unfolded cycle-free-diag-equiv, of ?M ′ n v]

assms(7 ) obtain u where
u: DBM-val-bounded v u ?M ′ n

by fastforce
with assms(5 ,6 ) M ′(3 ,4 ) have u c1 = r unfolding DBM-val-bounded-def

by fastforce
moreover from u M ′(1 ) have u ∈ [M ]v,n unfolding DBM-zone-repr-def

by auto
ultimately show thesis by (auto intro: that)

qed

lemma canonical-saturated-2 :
assumes Le r ≤ M 0 (v c2 )

and Le (− r) ≤ M (v c2 ) 0
and cycle-free M n
and canonical M n
and v c2 ≤ n
and v c2 > 0
and ∀ c. v c ≤ n −→ 0 < v c
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obtains u where u ∈ [M ]v,n u c2 = − r
proof −

let ?M ′ = λi ′ j ′. if i ′=0 ∧ j ′=v c2 then Le r else if i ′=v c2 ∧ j ′=0 then
Le (−r) else M i ′ j ′

from fix-index ′[OF assms(1−4 )] assms(5 ,6 ) have M ′:
∀ u. DBM-val-bounded v u ?M ′ n −→ DBM-val-bounded v u M n
cycle-free ?M ′ n ?M ′ 0 (v c2 ) = Le r ?M ′ (v c2 ) 0 = Le (− r)

by auto
with cyc-free-obtains-valuation[unfolded cycle-free-diag-equiv, of ?M ′ n v]

assms(7 ) obtain u where
u: DBM-val-bounded v u ?M ′ n

by fastforce
with assms(5 ,6 ) M ′(3 ,4 ) have u c2 ≤ −r − u c2 ≤ r unfolding

DBM-val-bounded-def by fastforce+
then have u c2 = −r by (simp add: le-minus-iff )
moreover from u M ′(1 ) have u ∈ [M ]v,n unfolding DBM-zone-repr-def

by auto
ultimately show thesis by (auto intro: that)

qed

lemma canonical-saturated-3 :
assumes Le r ≤ M (v c1 ) (v c2 )

and Le (− r) ≤ M (v c2 ) (v c1 )
and cycle-free M n
and canonical M n
and v c1 ≤ n v c2 ≤ n
and v c1 6= v c2
and ∀ c. v c ≤ n −→ 0 < v c

obtains u where u ∈ [M ]v,n u c1 − u c2 = r
proof −

let ?M ′=λi ′ j ′. if i ′=v c1 ∧ j ′=v c2 then Le r else if i ′=v c2 ∧ j ′=v c1
then Le (−r) else M i ′ j ′

from fix-index ′[OF assms(1−7 ), of v] assms(7 ,8 ) have M ′:
∀ u. DBM-val-bounded v u ?M ′ n −→ DBM-val-bounded v u M n
cycle-free ?M ′ n ?M ′ (v c1 ) (v c2 ) = Le r ?M ′ (v c2 ) (v c1 ) = Le (−

r)
by auto
with cyc-free-obtains-valuation[unfolded cycle-free-diag-equiv, of ?M ′ n v]

assms obtain u where u:
DBM-val-bounded v u ?M ′ n

by fastforce
with assms(5 ,6 ) M ′(3 ,4 ) have

u c1 − u c2 ≤ r u c2 − u c1 ≤ − r
unfolding DBM-val-bounded-def by fastforce+
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then have u c1 − u c2 = r by (simp add: le-minus-iff )
moreover from u M ′(1 ) have u ∈ [M ]v,n unfolding DBM-zone-repr-def

by auto
ultimately show thesis by (auto intro: that)

qed

lemma DBM-canonical-subset-le:
notes any-le-inf [intro]
fixes M :: real DBM
assumes canonical M n [M ]v,n ⊆ [M ′]v,n [M ]v,n 6= {} i ≤ n j ≤ n i 6= j
assumes clock-numbering: clock-numbering ′ v n

∀ k≤n. 0 < k −→ (∃ c. v c = k)
shows M i j ≤ M ′ i j

proof −
from non-empty-cycle-free[OF assms(3 )] clock-numbering(2 ) have cy-

cle-free M n by auto
with assms(1 ,4 ,5 ) have non-neg:

M i j + M j i ≥ Le 0
by (metis cycle-free-diag order .trans neutral)

from clock-numbering have cn: ∀ c. v c ≤ n −→ 0 < v c by auto
show ?thesis
proof (cases i = 0 )

case True
show ?thesis
proof (cases j = 0 )

case True
with assms ‹i = 0 › show ?thesis

unfolding neutral DBM-zone-repr-def DBM-val-bounded-def less-eq by
auto

next
case False
then have j > 0 by auto
with ‹j ≤ n› clock-numbering obtain c2 where c2 : v c2 = j by auto

note t = canonical-saturated-2 [OF - - ‹cycle-free M n› assms(1 )
assms(5 )[folded c2 ] - cn,unfolded c2 ]

show ?thesis
proof (rule ccontr , goal-cases)

case 1
{ fix d assume 1 : M 0 j = ∞

obtain r where r : Le r ≤ M 0 j Le (−r) ≤ M j 0 d < r
proof (cases M j 0 )

case (Le d ′)
obtain r where r > − d ′ using gt-ex by blast
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with Le 1 show ?thesis by (intro that[of max r (d + 1 )]) auto
next

case (Lt d ′)
obtain r where r > − d ′ using gt-ex by blast
with Lt 1 show ?thesis by (intro that[of max r (d + 1 )]) auto

next
case INF
with 1 show ?thesis by (intro that[of d + 1 ]) auto

qed
then have ∃ r . Le r ≤ M 0 j ∧ Le (−r) ≤ M j 0 ∧ d < r by auto

} note inf-case = this
{ fix a b d :: real assume 1 : a < b assume b: b + d > 0

then have ∗: b > −d by auto
obtain r where r > − d r > a r < b
proof (cases a ≥ − d)

case True
from 1 obtain r where r > a r < b using dense by auto
with True show ?thesis by (auto intro: that[of r ])

next
case False
with ∗ obtain r where r > −d r < b using dense by auto
with False show ?thesis by (auto intro: that[of r ])

qed
then have ∃ r . r > −d ∧ r > a ∧ r < b by auto

} note gt-case = this
{ fix a r assume r : Le r ≤ M 0 j Le (−r) ≤ M j 0 a < r M ′ 0 j =

Le a ∨ M ′ 0 j = Lt a
from t[OF this(1 ,2 ) ‹0 < j›] obtain u where u: u ∈ [M ]v,n u c2

= − r .
with ‹j ≤ n› c2 assms(2 ) have dbm-entry-val u None (Some c2 )

(M ′ 0 j)
unfolding DBM-zone-repr-def DBM-val-bounded-def by blast
with u(2 ) r(3 ,4 ) have False by auto

} note contr = this
from 1 True have M ′ 0 j < M 0 j by auto
then show False unfolding less
proof (cases rule: dbm-lt.cases)

case (1 d)
with inf-case obtain r where r : Le r ≤ M 0 j Le (−r) ≤ M j 0 d

< r by auto
from contr [OF this] 1 show False by fast

next
case (2 d)
with inf-case obtain r where r : Le r ≤ M 0 j Le (−r) ≤ M j 0 d
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< r by auto
from contr [OF this] 2 show False by fast

next
case (3 a b)
obtain r where r : Le r ≤ M 0 j Le (−r) ≤ M j 0 a < r
proof (cases M j 0 )

case (Le d ′)
with 3 non-neg ‹i = 0 › have b + d ′ ≥ 0 unfolding add by auto
then have b ≥ − d ′ by auto
with 3 obtain r where r ≥ − d ′ r > a r ≤ b by blast
with Le 3 show ?thesis by (intro that[of r ]) auto

next
case (Lt d ′)

with 3 non-neg ‹i = 0 › have b + d ′ > 0 unfolding add by auto
from gt-case[OF 3 (3 ) this] obtain r where r > − d ′ r > a r ≤

b by auto
with Lt 3 show ?thesis by (intro that[of r ]) auto

next
case INF
with 3 show ?thesis by (intro that[of b]) auto

qed
from contr [OF this] 3 show False by fast

next
case (4 a b)
obtain r where r : Le r ≤ M 0 j Le (−r) ≤ M j 0 a < r
proof (cases M j 0 )

case (Le d)
with 4 non-neg ‹i = 0 › have b + d > 0 unfolding add by auto
from gt-case[OF 4 (3 ) this] obtain r where r > − d r > a r <

b by auto
with Le 4 show ?thesis by (intro that[of r ]) auto

next
case (Lt d)
with 4 non-neg ‹i = 0 › have b + d > 0 unfolding add by auto
from gt-case[OF 4 (3 ) this] obtain r where r > − d r > a r <

b by auto
with Lt 4 show ?thesis by (intro that[of r ]) auto

next
case INF
from 4 dense obtain r where r > a r < b by auto
with 4 INF show ?thesis by (intro that[of r ]) auto

qed
from contr [OF this] 4 show False by fast

next
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case (5 a b)
obtain r where r : Le r ≤ M 0 j Le (−r) ≤ M j 0 a ≤ r
proof (cases M j 0 )

case (Le d ′)
with 5 non-neg ‹i = 0 › have b + d ′ ≥ 0 unfolding add by auto
then have b ≥ − d ′ by auto
with 5 obtain r where r ≥ − d ′ r ≥ a r ≤ b by blast
with Le 5 show ?thesis by (intro that[of r ]) auto

next
case (Lt d ′)

with 5 non-neg ‹i = 0 › have b + d ′ > 0 unfolding add by auto
then have b > − d ′ by auto
with 5 obtain r where r > − d ′ r ≥ a r ≤ b by blast
with Lt 5 show ?thesis by (intro that[of r ]) auto

next
case INF
with 5 show ?thesis by (intro that[of b]) auto

qed
from t[OF this(1 ,2 ) ‹j > 0 ›] obtain u where u: u ∈ [M ]v,n u c2

= − r .
with ‹j ≤ n› c2 assms(2 ) have dbm-entry-val u None (Some c2 )

(M ′ 0 j)
unfolding DBM-zone-repr-def DBM-val-bounded-def by blast
with u(2 ) r(3 ) 5 show False by auto

next
case (6 a b)
obtain r where r : Le r ≤ M 0 j Le (−r) ≤ M j 0 a < r
proof (cases M j 0 )

case (Le d)
with 6 non-neg ‹i = 0 › have b + d > 0 unfolding add by auto
from gt-case[OF 6 (3 ) this] obtain r where r > − d r > a r <

b by auto
with Le 6 show ?thesis by (intro that[of r ]) auto

next
case (Lt d)
with 6 non-neg ‹i = 0 › have b + d > 0 unfolding add by auto
from gt-case[OF 6 (3 ) this] obtain r where r > − d r > a r <

b by auto
with Lt 6 show ?thesis by (intro that[of r ]) auto

next
case INF
from 6 dense obtain r where r > a r < b by auto
with 6 INF show ?thesis by (intro that[of r ]) auto

qed
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from contr [OF this] 6 show False by fast
qed

qed
qed

next
case False
then have i > 0 by auto
with ‹i ≤ n› clock-numbering obtain c1 where c1 : v c1 = i by auto
show ?thesis
proof (cases j = 0 )

case True
note t = canonical-saturated-1 [OF - - ‹cycle-free M n› assms(1 )

assms(4 )[folded c1 ] - cn,
unfolded c1 ]

show ?thesis
proof (rule ccontr , goal-cases)

case 1
{ fix d assume 1 : M i 0 = ∞

obtain r where r : Le r ≤ M i 0 Le (−r) ≤ M 0 i d < r
proof (cases M 0 i)

case (Le d ′)
obtain r where r > − d ′ using gt-ex by blast
with Le 1 show ?thesis by (intro that[of max r (d + 1 )]) auto

next
case (Lt d ′)
obtain r where r > − d ′ using gt-ex by blast
with Lt 1 show ?thesis by (intro that[of max r (d + 1 )]) auto

next
case INF
with 1 show ?thesis by (intro that[of d + 1 ]) auto

qed
then have ∃ r . Le r ≤ M i 0 ∧ Le (−r) ≤ M 0 i ∧ d < r by auto

} note inf-case = this
{ fix a b d :: real assume 1 : a < b assume b: b + d > 0

then have ∗: b > −d by auto
obtain r where r > − d r > a r < b
proof (cases a ≥ − d)

case True
from 1 obtain r where r > a r < b using dense by auto
with True show ?thesis by (auto intro: that[of r ])

next
case False
with ∗ obtain r where r > −d r < b using dense by auto
with False show ?thesis by (auto intro: that[of r ])
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qed
then have ∃ r . r > −d ∧ r > a ∧ r < b by auto

} note gt-case = this
{ fix a r assume r : Le r ≤ M i 0 Le (−r) ≤ M 0 i a < r M ′ i 0 =

Le a ∨ M ′ i 0 = Lt a
from t[OF this(1 ,2 ) ‹i > 0 ›] obtain u where u: u ∈ [M ]v,n u c1

= r .
with ‹i ≤ n› c1 assms(2 ) have dbm-entry-val u (Some c1 ) None

(M ′ i 0 )
unfolding DBM-zone-repr-def DBM-val-bounded-def by blast
with u(2 ) r(3 ,4 ) have False by auto

} note contr = this
from 1 True have M ′ i 0 < M i 0 by auto
then show False unfolding less
proof (cases rule: dbm-lt.cases)

case (1 d)
with inf-case obtain r where r : Le r ≤ M i 0 Le (−r) ≤ M 0 i d

< r by auto
from contr [OF this] 1 show False by fast

next
case (2 d)
with inf-case obtain r where r : Le r ≤ M i 0 Le (−r) ≤ M 0 i d

< r by auto
from contr [OF this] 2 show False by fast

next
case (3 a b)
obtain r where r : Le r ≤ M i 0 Le (−r) ≤ M 0 i a < r
proof (cases M 0 i)

case (Le d ′)
with 3 non-neg ‹j = 0 › have b + d ′ ≥ 0 unfolding add by auto
then have b ≥ − d ′ by auto
with 3 obtain r where r ≥ − d ′ r > a r ≤ b by blast
with Le 3 show ?thesis by (intro that[of r ]) auto

next
case (Lt d ′)

with 3 non-neg ‹j = 0 › have b + d ′ > 0 unfolding add by auto
from gt-case[OF 3 (3 ) this] obtain r where r > − d ′ r > a r ≤

b by auto
with Lt 3 show ?thesis by (intro that[of r ]) auto

next
case INF
with 3 show ?thesis by (intro that[of b]) auto

qed
from contr [OF this] 3 show False by fast
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next
case (4 a b)
obtain r where r : Le r ≤ M i 0 Le (−r) ≤ M 0 i a < r
proof (cases M 0 i)

case (Le d)
with 4 non-neg ‹j = 0 › have b + d > 0 unfolding add by auto
from gt-case[OF 4 (3 ) this] obtain r where r > − d r > a r <

b by auto
with Le 4 show ?thesis by (intro that[of r ]) auto

next
case (Lt d)
with 4 non-neg ‹j = 0 › have b + d > 0 unfolding add by auto
from gt-case[OF 4 (3 ) this] obtain r where r > − d r > a r <

b by auto
with Lt 4 show ?thesis by (intro that[of r ]) auto

next
case INF
from 4 dense obtain r where r > a r < b by auto
with 4 INF show ?thesis by (intro that[of r ]) auto

qed
from contr [OF this] 4 show False by fast

next
case (5 a b)
obtain r where r : Le r ≤ M i 0 Le (−r) ≤ M 0 i a ≤ r
proof (cases M 0 i)

case (Le d ′)
with 5 non-neg ‹j = 0 › have b + d ′ ≥ 0 unfolding add by auto
then have b ≥ − d ′ by auto
with 5 obtain r where r ≥ − d ′ r ≥ a r ≤ b by blast
with Le 5 show ?thesis by (intro that[of r ]) auto

next
case (Lt d ′)

with 5 non-neg ‹j = 0 › have b + d ′ > 0 unfolding add by auto
then have b > − d ′ by auto
with 5 obtain r where r > − d ′ r ≥ a r ≤ b by blast
with Lt 5 show ?thesis by (intro that[of r ]) auto

next
case INF
with 5 show ?thesis by (intro that[of b]) auto

qed
from t[OF this(1 ,2 ) ‹i > 0 ›] obtain u where u: u ∈ [M ]v,n u c1

= r .
with ‹i ≤ n› c1 assms(2 ) have dbm-entry-val u (Some c1 ) None

(M ′ i 0 )
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unfolding DBM-zone-repr-def DBM-val-bounded-def by blast
with u(2 ) r(3 ) 5 show False by auto

next
case (6 a b)
obtain r where r : Le r ≤ M i 0 Le (−r) ≤ M 0 i a < r
proof (cases M 0 i)

case (Le d)
with 6 non-neg ‹j = 0 › have b + d > 0 unfolding add by auto
from gt-case[OF 6 (3 ) this] obtain r where r > − d r > a r <

b by auto
with Le 6 show ?thesis by (intro that[of r ]) auto

next
case (Lt d)
with 6 non-neg ‹j = 0 › have b + d > 0 unfolding add by auto
from gt-case[OF 6 (3 ) this] obtain r where r > − d r > a r <

b by auto
with Lt 6 show ?thesis by (intro that[of r ]) auto

next
case INF
from 6 dense obtain r where r > a r < b by auto
with 6 INF show ?thesis by (intro that[of r ]) auto

qed
from contr [OF this] 6 show False by fast

qed
qed

next
case False
then have j > 0 by auto
with ‹j ≤ n› clock-numbering obtain c2 where c2 : v c2 = j by auto

note t = canonical-saturated-3 [OF - - ‹cycle-free M n› assms(1 )
assms(4 )[folded c1 ]

assms(5 )[folded c2 ] - cn, unfolded c1 c2 ]
show ?thesis
proof (rule ccontr , goal-cases)

case 1
{ fix d assume 1 : M i j = ∞

obtain r where r : Le r ≤ M i j Le (−r) ≤ M j i d < r
proof (cases M j i)

case (Le d ′)
obtain r where r > − d ′ using gt-ex by blast
with Le 1 show ?thesis by (intro that[of max r (d + 1 )]) auto

next
case (Lt d ′)
obtain r where r > − d ′ using gt-ex by blast
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with Lt 1 show ?thesis by (intro that[of max r (d + 1 )]) auto
next

case INF
with 1 show ?thesis by (intro that[of d + 1 ]) auto

qed
then have ∃ r . Le r ≤ M i j ∧ Le (−r) ≤ M j i ∧ d < r by auto

} note inf-case = this
{ fix a b d :: real assume 1 : a < b assume b: b + d > 0

then have ∗: b > −d by auto
obtain r where r > − d r > a r < b
proof (cases a ≥ − d)

case True
from 1 obtain r where r > a r < b using dense by auto
with True show ?thesis by (auto intro: that[of r ])

next
case False
with ∗ obtain r where r > −d r < b using dense by auto
with False show ?thesis by (auto intro: that[of r ])

qed
then have ∃ r . r > −d ∧ r > a ∧ r < b by auto

} note gt-case = this
{ fix a r assume r : Le r ≤ M i j Le (−r) ≤ M j i a < r M ′ i j =

Le a ∨ M ′ i j = Lt a
from t[OF this(1 ,2 ) ‹i 6= j›] obtain u where u: u ∈ [M ]v,n u c1

− u c2 = r .
with ‹i ≤ n› ‹j ≤ n› c1 c2 assms(2 ) have dbm-entry-val u (Some

c1 ) (Some c2 ) (M ′ i j)
unfolding DBM-zone-repr-def DBM-val-bounded-def by blast
with u(2 ) r(3 ,4 ) have False by auto

} note contr = this
from 1 have M ′ i j < M i j by auto
then show False unfolding less
proof (cases rule: dbm-lt.cases)

case (1 d)
with inf-case obtain r where r : Le r ≤ M i j Le (−r) ≤ M j i d

< r by auto
from contr [OF this] 1 show False by fast

next
case (2 d)
with inf-case obtain r where r : Le r ≤ M i j Le (−r) ≤ M j i d

< r by auto
from contr [OF this] 2 show False by fast

next
case (3 a b)
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obtain r where r : Le r ≤ M i j Le (−r) ≤ M j i a < r
proof (cases M j i)

case (Le d ′)
with 3 non-neg have b + d ′ ≥ 0 unfolding add by auto
then have b ≥ − d ′ by auto
with 3 obtain r where r ≥ − d ′ r > a r ≤ b by blast
with Le 3 show ?thesis by (intro that[of r ]) auto

next
case (Lt d ′)
with 3 non-neg have b + d ′ > 0 unfolding add by auto
from gt-case[OF 3 (3 ) this] obtain r where r > − d ′ r > a r ≤

b by auto
with Lt 3 show ?thesis by (intro that[of r ]) auto

next
case INF
with 3 show ?thesis by (intro that[of b]) auto

qed
from contr [OF this] 3 show False by fast

next
case (4 a b)
obtain r where r : Le r ≤ M i j Le (−r) ≤ M j i a < r
proof (cases M j i)

case (Le d)
with 4 non-neg have b + d > 0 unfolding add by auto
from gt-case[OF 4 (3 ) this] obtain r where r > − d r > a r <

b by auto
with Le 4 show ?thesis by (intro that[of r ]) auto

next
case (Lt d)
with 4 non-neg have b + d > 0 unfolding add by auto
from gt-case[OF 4 (3 ) this] obtain r where r > − d r > a r <

b by auto
with Lt 4 show ?thesis by (intro that[of r ]) auto

next
case INF
from 4 dense obtain r where r > a r < b by auto
with 4 INF show ?thesis by (intro that[of r ]) auto

qed
from contr [OF this] 4 show False by fast

next
case (5 a b)
obtain r where r : Le r ≤ M i j Le (−r) ≤ M j i a ≤ r
proof (cases M j i)

case (Le d ′)
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with 5 non-neg have b + d ′ ≥ 0 unfolding add by auto
then have b ≥ − d ′ by auto
with 5 obtain r where r ≥ − d ′ r ≥ a r ≤ b by blast
with Le 5 show ?thesis by (intro that[of r ]) auto

next
case (Lt d ′)
with 5 non-neg have b + d ′ > 0 unfolding add by auto
then have b > − d ′ by auto
with 5 obtain r where r > − d ′ r ≥ a r ≤ b by blast
with Lt 5 show ?thesis by (intro that[of r ]) auto

next
case INF
with 5 show ?thesis by (intro that[of b]) auto

qed
from t[OF this(1 ,2 ) ‹i 6= j›] obtain u where u: u ∈ [M ]v,n u c1

− u c2= r .
with ‹i ≤ n› ‹j ≤ n› c1 c2 assms(2 ) have dbm-entry-val u (Some

c1 ) (Some c2 ) (M ′ i j)
unfolding DBM-zone-repr-def DBM-val-bounded-def by blast
with u(2 ) r(3 ) 5 show False by auto

next
case (6 a b)
obtain r where r : Le r ≤ M i j Le (−r) ≤ M j i a < r
proof (cases M j i)

case (Le d)
with 6 non-neg have b + d > 0 unfolding add by auto
from gt-case[OF 6 (3 ) this] obtain r where r > − d r > a r <

b by auto
with Le 6 show ?thesis by (intro that[of r ]) auto

next
case (Lt d)
with 6 non-neg have b + d > 0 unfolding add by auto
from gt-case[OF 6 (3 ) this] obtain r where r > − d r > a r <

b by auto
with Lt 6 show ?thesis by (intro that[of r ]) auto

next
case INF
from 6 dense obtain r where r > a r < b by auto
with 6 INF show ?thesis by (intro that[of r ]) auto

qed
from contr [OF this] 6 show False by fast

qed
qed

qed
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qed
qed

end
theory FW-More

imports
DBM-Basics
Floyd-Warshall.FW-Code

begin

2.8 Partial Floyd-Warshall Preserves Zones

lemma fwi-len-distinct:
∃ ys. set ys ⊆ {k} ∧ fwi m n k n n i j = len m i j ys ∧ i /∈ set ys ∧ j /∈

set ys ∧ distinct ys
if i ≤ n j ≤ n k ≤ n m k k ≥ 0
using fwi-step ′[of m, OF that(4 ), of n n n i j] that
apply (clarsimp split: if-splits simp: min-def )
by (rule exI [where x = []] exI [where x = [k]]; auto simp: add-increasing

add-increasing2 )+

lemma FWI-mono:
i ≤ n =⇒ j ≤ n =⇒ FWI M n k i j ≤ M i j
using fwi-mono[of - n - M k n n, folded FWI-def , rule-format] .

lemma FWI-zone-equiv:
[M ]v,n = [FWI M n k]v,n if surj-on: ∀ k ≤ n. k > 0 −→ (∃ c. v c = k)

and k ≤ n
proof safe

fix u assume A: u ∈ [FWI M n k]v,n
{ fix i j assume i ≤ n j ≤ n

then have FWI M n k i j ≤ M i j by (rule FWI-mono)
hence FWI M n k i j � M i j by (simp add: less-eq)

}
with DBM-le-subset[of n FWI M n k M ] A show u ∈ [M ]v,n by auto

next
fix u assume u:u ∈ [M ]v,n
hence ∗:DBM-val-bounded v u M n by (simp add: DBM-zone-repr-def )
note ∗∗ = DBM-val-bounded-neg-cycle[OF this - - - surj-on]
have cyc-free: cyc-free M n using ∗∗ by fastforce
from cyc-free-diag[OF this] ‹k ≤ n› have M k k ≥ 0 by auto

have DBM-val-bounded v u (FWI M n k) n unfolding DBM-val-bounded-def
proof (safe, goal-cases)
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case 1
with ‹k ≤ n› ‹M k k ≥ 0 › cyc-free show ?case

unfolding FWI-def neutral[symmetric] less-eq[symmetric]
by − (rule fwi-cyc-free-diag[where I = {0 ..n}]; auto)

next
case (2 c)
with ‹k ≤ n› ‹M k k ≥ 0 › fwi-len-distinct[of 0 n v c k M ] obtain xs

where xs:
FWI M n k 0 (v c) = len M 0 (v c) xs set xs ⊆ {0 ..n} 0 /∈ set xs
unfolding FWI-def by force

with surj-on ‹v c ≤ n› show ?case unfolding xs(1 )
by − (rule DBM-val-bounded-len ′2 [OF ∗]; auto)

next
case (3 c)
with ‹k ≤ n› ‹M k k ≥ 0 › fwi-len-distinct[of v c n 0 k M ] obtain xs

where xs:
FWI M n k (v c) 0 = len M (v c) 0 xs set xs ⊆ {0 ..n}
0 /∈ set xs v c /∈ set xs
unfolding FWI-def by force

with surj-on ‹v c ≤ n› show ?case unfolding xs(1 )
by − (rule DBM-val-bounded-len ′1 [OF ∗]; auto)

next
case (4 c1 c2 )
with ‹k ≤ n› ‹M k k ≥ 0 › fwi-len-distinct[of v c1 n v c2 k M ] obtain

xs where xs:
FWI M n k (v c1 ) (v c2 ) = len M (v c1 ) (v c2 ) xs set xs ⊆ {0 ..n}
v c1 /∈ set xs v c2 /∈ set xs distinct xs
unfolding FWI-def by force

with surj-on ‹v c1 ≤ n› ‹v c2 ≤ n› show ?case
unfolding xs(1 ) by − (rule DBM-val-bounded-len ′3 [OF ∗]; auto dest:

distinct-cnt[of - 0 ])
qed
then show u ∈ [FWI M n k]v,n unfolding DBM-zone-repr-def by simp

qed

end

3 DBM Operations
theory DBM-Operations

imports
DBM-Basics

begin
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3.1 Auxiliary

lemmas [trans] = finite-subset

lemma finite-vimageI2 : finite (h −‘ F) if finite F inj-on h {x. h x ∈ F}
proof −

have h −‘ F = h −‘ F ∩ {x. h x ∈ F}
by auto

from that show ?thesis
by(subst ‹h −‘ F = -›) (rule finite-vimage-IntI [of F h {x. h x ∈ F}])

qed

lemma gt-swap:
fixes a b c :: ′t :: time
assumes c < a + b
shows c < b + a

by (simp add: add.commute assms)

lemma le-swap:
fixes a b c :: ′t :: time
assumes c ≤ a + b
shows c ≤ b + a

by (simp add: add.commute assms)

abbreviation clock-numbering :: ( ′c ⇒ nat) ⇒ bool
where

clock-numbering v ≡ ∀ c. v c > 0

lemma DBM-triv:
u `v,n (λi j. ∞)
unfolding DBM-val-bounded-def by (auto simp: dbm-le-def )

3.2 Relaxation

Relaxation of upper bound constraints on all variables. Used to compute
time lapse in timed automata.

definition
up :: ( ′t::linordered-cancel-ab-semigroup-add) DBM ⇒ ′t DBM

where
up M ≡
λ i j. if i > 0 then if j = 0 then ∞ else min (dbm-add (M i 0 ) (M 0 j))

(M i j) else M i j

lemma dbm-entry-dbm-lt:
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assumes dbm-entry-val u (Some c1 ) (Some c2 ) a a ≺ b
shows dbm-entry-val u (Some c1 ) (Some c2 ) b
using assms

proof (cases, goal-cases)
case 1 thus ?case by (cases, auto)

next
case 2 thus ?case by (cases, auto)

qed auto

lemma dbm-entry-dbm-min2 :
assumes dbm-entry-val u None (Some c) (min a b)
shows dbm-entry-val u None (Some c) b

using dbm-entry-val-mono2 [folded less-eq, OF assms] by auto

lemma dbm-entry-dbm-min3 :
assumes dbm-entry-val u (Some c) None (min a b)
shows dbm-entry-val u (Some c) None b

using dbm-entry-val-mono3 [folded less-eq, OF assms] by auto

lemma dbm-entry-dbm-min:
assumes dbm-entry-val u (Some c1 ) (Some c2 ) (min a b)
shows dbm-entry-val u (Some c1 ) (Some c2 ) b

using dbm-entry-val-mono1 [folded less-eq, OF assms] by auto

lemma dbm-entry-dbm-min3 ′:
assumes dbm-entry-val u (Some c) None (min a b)
shows dbm-entry-val u (Some c) None a

using dbm-entry-val-mono3 [folded less-eq, OF assms] by auto

lemma dbm-entry-dbm-min2 ′:
assumes dbm-entry-val u None (Some c) (min a b)
shows dbm-entry-val u None (Some c) a

using dbm-entry-val-mono2 [folded less-eq, OF assms] by auto

lemma dbm-entry-dbm-min ′:
assumes dbm-entry-val u (Some c1 ) (Some c2 ) (min a b)
shows dbm-entry-val u (Some c1 ) (Some c2 ) a

using dbm-entry-val-mono1 [folded less-eq, OF assms] by auto

lemma DBM-up-complete ′: clock-numbering v =⇒ u ∈ ([M ]v,n)↑ =⇒ u ∈
[up M ]v,n
unfolding up-def DBM-zone-repr-def DBM-val-bounded-def zone-delay-def
proof (safe, goal-cases)

case prems: (2 u d c)
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hence ∗: dbm-entry-val u None (Some c) (M 0 (v c)) by auto
thus ?case
proof (cases, goal-cases)

case (1 d ′)
have − (u c + d) ≤ − u c using ‹d ≥ 0 › by simp
with 1 (2 ) have − (u c + d)≤ d ′ by (blast intro: order .trans)
thus ?case unfolding cval-add-def using 1 by fastforce

next
case (2 d ′)
have − (u c + d) ≤ − u c using ‹d ≥ 0 › by simp
with 2 (2 ) have − (u c + d) < d ′ by (blast intro: order-le-less-trans)
thus ?case unfolding cval-add-def using 2 by fastforce

qed auto
next

case prems: (4 u d c1 c2 )
then have

dbm-entry-val u (Some c1 ) None (M (v c1 ) 0 ) dbm-entry-val u None
(Some c2 ) (M 0 (v c2 ))

by auto
from dbm-entry-val-add-4 [OF this] prems have

dbm-entry-val u (Some c1 ) (Some c2 ) (min (dbm-add (M (v c1 ) 0 ) (M
0 (v c2 ))) (M (v c1 ) (v c2 )))

by (auto split: split-min)
with prems(1 ) show ?case
by (cases min (dbm-add (M (v c1 ) 0 ) (M 0 (v c2 ))) (M (v c1 ) (v c2 )),

auto simp: cval-add-def )
qed auto

fun theLe :: ( ′t::time) DBMEntry ⇒ ′t where
theLe (Le d) = d |
theLe (Lt d) = d |
theLe ∞ = 0

lemma DBM-up-sound ′:
assumes clock-numbering ′ v n u ∈ [up M ]v,n
shows u ∈ ([M ]v,n)↑

proof −
obtain S-Max-Le where S-Max-Le:

S-Max-Le = {d − u c | c d. 0 < v c ∧ v c ≤ n ∧ M (v c) 0 = Le d}
by auto

obtain S-Max-Lt where S-Max-Lt:
S-Max-Lt = {d − u c | c d. 0 < v c ∧ v c ≤ n ∧ M (v c) 0 = Lt d}
by auto

obtain S-Min-Le where S-Min-Le:
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S-Min-Le = {− d − u c| c d. 0 < v c ∧ v c ≤ n ∧ M 0 (v c) = Le d}
by auto

obtain S-Min-Lt where S-Min-Lt:
S-Min-Lt = {− d − u c | c d. 0 < v c ∧ v c ≤ n ∧ M 0 (v c) = Lt d}
by auto

have finite {c. 0 < v c ∧ v c ≤ n} (is finite ?S)
proof −

have ?S ⊆ v −‘ {1 ..n}
by auto

also have finite . . .
using assms(1 ) by (auto intro!: finite-vimageI2 inj-onI )

finally show ?thesis .
qed
then have ∀ f . finite {(c,b) | c b. 0 < v c ∧ v c ≤ n ∧ f M (v c) = b}

by auto
moreover have
∀ f K . {(c,K d) | c d. 0 < v c ∧ v c ≤ n ∧ f M (v c) = K d}
⊆ {(c,b) | c b. 0 < v c ∧ v c ≤ n ∧ f M (v c) = b}
by auto

ultimately have 1 :
∀ f K . finite {(c,K d) | c d. 0 < v c ∧ v c ≤ n ∧ f M (v c) = K d}

using finite-subset
by fast

have ∀ f K . theLe o K = id −→ finite {(c,d) | c d. 0 < v c ∧ v c ≤ n
∧ f M (v c) = K d}

proof (safe, goal-cases)
case prems: (1 f K )
then have (c, d) = (λ (c,b). (c, theLe b)) (c, K d) for c :: ′a and d

by (simp add: pointfree-idE)
then have
{(c,d) | c d. 0 < v c ∧ v c ≤ n ∧ f M (v c) = K d}
= (λ (c,b). (c, theLe b)) ‘ {(c,K d) | c d. 0 < v c ∧ v c ≤ n ∧ f M (v

c) = K d}
by (force simp: split-beta)

moreover from 1 have
finite ((λ (c,b). (c, theLe b)) ‘ {(c,K d) | c d. 0 < v c ∧ v c ≤ n ∧ f

M (v c) = K d})
by auto

ultimately show ?case by auto
qed
then have finI :∧

f g K . theLe o K = id =⇒ finite (g ‘ {(c,d) | c d. 0 < v c ∧ v c ≤ n
∧ f M (v c) = K d})

by auto

105



have
finite ((λ(c,d). − d − u c) ‘ {(c,d) | c d. 0 < v c ∧ v c ≤ n ∧ M 0 (v

c) = Le d})
by (rule finI , auto)

moreover have
S-Min-Le = ((λ(c,d). − d − u c) ‘ {(c,d) | c d. 0 < v c ∧ v c ≤ n ∧ M

0 (v c) = Le d})
using S-Min-Le by auto

ultimately have fin-min-le: finite S-Min-Le by auto

have
finite ((λ(c,d). − d − u c) ‘ {(c,d) | c d. 0 < v c ∧ v c ≤ n ∧ M 0 (v

c) = Lt d})
by (rule finI , auto)

moreover have
S-Min-Lt = ((λ(c,d). − d − u c) ‘ {(c,d) | c d. 0 < v c ∧ v c ≤ n ∧ M

0 (v c) = Lt d})
using S-Min-Lt by auto

ultimately have fin-min-lt: finite S-Min-Lt by auto

have finite ((λ(c,d). d − u c) ‘ {(c,d) | c d. 0 < v c ∧ v c ≤ n ∧ M (v
c) 0 = Le d})

by (rule finI , auto)
moreover have

S-Max-Le = ((λ(c,d). d − u c) ‘ {(c,d) | c d. 0 < v c ∧ v c ≤ n ∧ M
(v c) 0 = Le d})

using S-Max-Le by auto
ultimately have fin-max-le: finite S-Max-Le by auto

have
finite ((λ(c,d). d − u c) ‘ {(c,d) | c d. 0 < v c ∧ v c ≤ n ∧ M (v c) 0

= Lt d})
by (rule finI , auto)

moreover have
S-Max-Lt = ((λ(c,d). d − u c) ‘ {(c,d) | c d. 0 < v c ∧ v c ≤ n ∧ M

(v c) 0 = Lt d})
using S-Max-Lt by auto

ultimately have fin-max-lt: finite S-Max-Lt by auto

{ fix x assume x ∈ S-Min-Le
hence x ≤ 0 unfolding S-Min-Le
proof (safe, goal-cases)

case (1 c d)
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with assms have − u c ≤ d unfolding DBM-zone-repr-def DBM-val-bounded-def
up-def by auto

thus ?case by (simp add: minus-le-iff )
qed

} note Min-Le-le-0 = this
have Min-Lt-le-0 : x < 0 if x ∈ S-Min-Lt for x using that unfolding

S-Min-Lt
proof (safe, goal-cases)

case (1 c d)
with assms have − u c < d unfolding DBM-zone-repr-def DBM-val-bounded-def

up-def by auto
thus ?case by (simp add: minus-less-iff )

qed

The following basically all use the same proof. Only the first is not com-
pletely identical but nearly identical.

{ fix l r assume l ∈ S-Min-Le r ∈ S-Max-Le
with S-Min-Le S-Max-Le have l ≤ r
proof (safe, goal-cases)

case (1 c c ′ d d ′)
note G1 = this
hence ∗:(up M ) (v c ′) (v c) = min (dbm-add (M (v c ′) 0 ) (M 0 (v

c))) (M (v c ′) (v c))
using assms unfolding up-def by (auto split: split-min)

have dbm-entry-val u (Some c ′) (Some c) ((up M ) (v c ′) (v c))
using assms G1 unfolding DBM-zone-repr-def DBM-val-bounded-def

by fastforce
hence dbm-entry-val u (Some c ′) (Some c) (dbm-add (M (v c ′) 0 ) (M

0 (v c)))
using dbm-entry-dbm-min ′ ∗ by auto

hence u c ′ − u c ≤ d ′ + d using G1 by auto
hence u c ′ + (− u c − d) ≤ d ′ by (simp add: add-diff-eq diff-le-eq)
hence − u c − d ≤ d ′ − u c ′ by (simp add: add.commute le-diff-eq)
thus ?case by (metis add-uminus-conv-diff uminus-add-conv-diff )

qed
} note EE = this
{ fix l r assume l ∈ S-Min-Le r ∈ S-Max-Le

with S-Min-Le S-Max-Le have l ≤ r
proof (safe, goal-cases)

case (1 c c ′ d d ′)
note G1 = this
hence ∗:(up M ) (v c ′) (v c) = min (dbm-add (M (v c ′) 0 ) (M 0 (v

c))) (M (v c ′) (v c))
using assms unfolding up-def by (auto split: split-min)
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have dbm-entry-val u (Some c ′) (Some c) ((up M ) (v c ′) (v c))
using assms G1 unfolding DBM-zone-repr-def DBM-val-bounded-def

by fastforce
hence dbm-entry-val u (Some c ′) (Some c) (dbm-add (M (v c ′) 0 ) (M

0 (v c)))
using dbm-entry-dbm-min ′ ∗ by auto

hence u c ′ − u c ≤ d ′ + d using G1 by auto
hence u c ′ + (− u c − d) ≤ d ′ by (simp add: add-diff-eq diff-le-eq)
hence − u c − d ≤ d ′ − u c ′ by (simp add: add.commute le-diff-eq)
thus ?case by (metis add-uminus-conv-diff uminus-add-conv-diff )

qed
} note EE = this
{ fix l r assume l ∈ S-Min-Lt r ∈ S-Max-Le

with S-Min-Lt S-Max-Le have l < r
proof (safe, goal-cases)

case (1 c c ′ d d ′)
note G1 = this
hence ∗:(up M ) (v c ′) (v c) = min (dbm-add (M (v c ′) 0 ) (M 0 (v

c))) (M (v c ′) (v c))
using assms unfolding up-def by (auto split: split-min)

have dbm-entry-val u (Some c ′) (Some c) ((up M ) (v c ′) (v c))
using assms G1 unfolding DBM-zone-repr-def DBM-val-bounded-def

by fastforce
hence dbm-entry-val u (Some c ′) (Some c) (dbm-add (M (v c ′) 0 ) (M

0 (v c)))
using dbm-entry-dbm-min ′ ∗ by auto

hence u c ′ − u c < d ′ + d using G1 by auto
hence u c ′ + (− u c − d) < d ′ by (simp add: add-diff-eq diff-less-eq)
hence − u c − d < d ′ − u c ′ by (simp add: add.commute less-diff-eq)
thus ?case by (metis add-uminus-conv-diff uminus-add-conv-diff )

qed
} note LE = this
{ fix l r assume l ∈ S-Min-Le r ∈ S-Max-Lt

with S-Min-Le S-Max-Lt have l < r
proof (safe, goal-cases)

case (1 c c ′ d d ′)
note G1 = this
hence ∗:(up M ) (v c ′) (v c) = min (dbm-add (M (v c ′) 0 ) (M 0 (v

c))) (M (v c ′) (v c))
using assms unfolding up-def by (auto split: split-min)

have dbm-entry-val u (Some c ′) (Some c) ((up M ) (v c ′) (v c))
using assms G1 unfolding DBM-zone-repr-def DBM-val-bounded-def

by fastforce
hence dbm-entry-val u (Some c ′) (Some c) (dbm-add (M (v c ′) 0 ) (M
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0 (v c)))
using dbm-entry-dbm-min ′ ∗ by auto

hence u c ′ − u c < d ′ + d using G1 by auto
hence u c ′ + (− u c − d) < d ′ by (simp add: add-diff-eq diff-less-eq)
hence − u c − d < d ′ − u c ′ by (simp add: add.commute less-diff-eq)
thus ?case by (metis add-uminus-conv-diff uminus-add-conv-diff )

qed
} note EL = this
{ fix l r assume l ∈ S-Min-Lt r ∈ S-Max-Lt

with S-Min-Lt S-Max-Lt have l < r
proof (safe, goal-cases)

case (1 c c ′ d d ′)
note G1 = this
hence ∗:(up M ) (v c ′) (v c) = min (dbm-add (M (v c ′) 0 ) (M 0 (v

c))) (M (v c ′) (v c))
using assms unfolding up-def by (auto split: split-min)

have dbm-entry-val u (Some c ′) (Some c) ((up M ) (v c ′) (v c))
using assms G1 unfolding DBM-zone-repr-def DBM-val-bounded-def

by fastforce
hence dbm-entry-val u (Some c ′) (Some c) (dbm-add (M (v c ′) 0 ) (M

0 (v c)))
using dbm-entry-dbm-min ′ ∗ by auto

hence u c ′ − u c < d ′ + d using G1 by auto
hence u c ′ + (− u c − d) < d ′ by (simp add: add-diff-eq diff-less-eq)
hence − u c − d < d ′ − u c ′ by (simp add: add.commute less-diff-eq)
thus ?case by (metis add-uminus-conv-diff uminus-add-conv-diff )

qed
} note LL = this
obtain m where m: ∀ t ∈ S-Min-Le. m ≥ t ∀ t ∈ S-Min-Lt. m > t
∀ t ∈ S-Max-Le. m ≤ t ∀ t ∈ S-Max-Lt. m < t m ≤ 0

proof −
assume m:(

∧
m. ∀ t∈S-Min-Le. t ≤ m =⇒

∀ t∈S-Min-Lt. t < m =⇒ ∀ t∈S-Max-Le. m ≤ t =⇒ ∀ t∈S-Max-Lt.
m < t =⇒ m ≤ 0 =⇒ thesis)

let ?min-le = Max S-Min-Le
let ?min-lt = Max S-Min-Lt
let ?max-le = Min S-Max-Le
let ?max-lt = Min S-Max-Lt
show thesis
proof (cases S-Min-Le = {} ∧ S-Min-Lt = {})

case True
note T = this
show thesis
proof (cases S-Max-Le = {} ∧ S-Max-Lt = {})
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case True
let ?d ′ = 0 :: ′t :: time
show thesis using True T by (intro m[of ?d ′]) auto

next
case False
let ?d =

if S-Max-Le 6= {}
then if S-Max-Lt 6= {} then min ?max-lt ?max-le else ?max-le
else ?max-lt

obtain a :: ′b where a: a < 0 using non-trivial-neg by auto
let ?d ′ = min 0 (?d + a)
{ fix x assume x ∈ S-Max-Le

with fin-max-le a have min 0 (Min S-Max-Le + a) ≤ x
by (metis Min-le add-le-same-cancel1 le-less-trans less-imp-le

min.cobounded2 not-less)
then have min 0 (Min S-Max-Le + a) ≤ x by auto

} note 1 = this
{ fix x assume x: x ∈ S-Max-Lt
have min 0 (min (Min S-Max-Lt) (Min S-Max-Le) + a) < ?max-lt
by (meson a add-less-same-cancel1 min.cobounded1 min.strict-coboundedI2

order .strict-trans2 )
also from fin-max-lt x have . . . ≤ x by auto
finally have min 0 (min (Min S-Max-Lt) (Min S-Max-Le) + a) <

x .
} note 2 = this
{ fix x assume x: x ∈ S-Max-Le
have min 0 (min (Min S-Max-Lt) (Min S-Max-Le) + a) ≤ ?max-le

by (metis le-add-same-cancel1 linear not-le a min-le-iff-disj)
also from fin-max-le x have . . . ≤ x by auto
finally have min 0 (min (Min S-Max-Lt) (Min S-Max-Le) + a) ≤

x .
} note 3 = this
show thesis using False T a 1 2 3

apply (intro m[of ?d ′])
apply simp-all

apply (metis Min.coboundedI add-less-same-cancel1 dual-order .strict-trans2
fin-max-lt

min.boundedE not-le)
done

qed
next

case False
note F = this
show thesis
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proof (cases S-Max-Le = {} ∧ S-Max-Lt = {})
case True
let ?d ′ = 0 :: ′t :: time

show thesis using True Min-Le-le-0 Min-Lt-le-0 by (intro m[of ?d ′])
auto

next
case False
let ?r =

if S-Max-Le 6= {}
then if S-Max-Lt 6= {} then min ?max-lt ?max-le else ?max-le
else ?max-lt

let ?l =
if S-Min-Le 6= {}
then if S-Min-Lt 6= {} then max ?min-lt ?min-le else ?min-le
else ?min-lt

have 1 : x ≤ max ?min-lt ?min-le x ≤ ?min-le if x ∈ S-Min-Le for x
using that fin-min-le by (simp add: max.coboundedI2 )+

{
fix x y assume x: x ∈ S-Max-Le y ∈ S-Min-Lt
then have S-Min-Lt 6= {} by auto

from LE [OF Max-in[OF fin-min-lt], OF this, OF x(1 )] have ?min-lt
≤ x by auto

} note 3 = this

have 4 : ?min-le ≤ x if x ∈ S-Max-Le y ∈ S-Min-Le for x y
using EE [OF Max-in[OF fin-min-le], OF - that(1 )] that by auto

{
fix x y assume x: x ∈ S-Max-Lt y ∈ S-Min-Lt
then have S-Min-Lt 6= {} by auto

from LL[OF Max-in[OF fin-min-lt], OF this, OF x(1 )] have ?min-lt
< x by auto

} note 5 = this
{

fix x y assume x: x ∈ S-Max-Lt y ∈ S-Min-Le
then have S-Min-Le 6= {} by auto

from EL[OF Max-in[OF fin-min-le], OF this, OF x(1 )] have ?min-le
< x by auto

} note 6 = this
{

fix x y assume x: y ∈ S-Min-Le
then have S-Min-Le 6= {} by auto
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from Min-Le-le-0 [OF Max-in[OF fin-min-le], OF this] have ?min-le
≤ 0 by auto

} note 7 = this
{

fix x y assume x: y ∈ S-Min-Lt
then have S-Min-Lt 6= {} by auto

from Min-Lt-le-0 [OF Max-in[OF fin-min-lt], OF this] have ?min-lt
< 0 ?min-lt ≤ 0 by auto

} note 8 = this
show thesis
proof (cases ?l < ?r)

case False
then have ∗: S-Max-Le 6= {}
proof (safe, goal-cases)

case 1
with ‹¬ (S-Max-Le = {} ∧ S-Max-Lt = {})› obtain y where

y:y ∈ S-Max-Lt by auto
note 1 = 1 this
{ fix x y assume A: x ∈ S-Min-Le y ∈ S-Max-Lt

with EL[OF Max-in[OF fin-min-le] Min-in[OF fin-max-lt]]
have Max S-Min-Le < Min S-Max-Lt by auto

} note ∗∗ = this
{ fix x y assume A: x ∈ S-Min-Lt y ∈ S-Max-Lt

with LL[OF Max-in[OF fin-min-lt] Min-in[OF fin-max-lt]]
have Max S-Min-Lt < Min S-Max-Lt by auto

} note ∗∗∗ = this
show ?case
proof (cases S-Min-Le 6= {})

case True
note T = this
show ?thesis
proof (cases S-Min-Lt 6= {})

case True
then show False using 1 T True ∗∗ ∗∗∗ by auto

next
case False with 1 T ∗∗ show False by auto

qed
next

case False
with 1 False ∗∗∗ ‹¬ (S-Min-Le = {} ∧ S-Min-Lt = {})› show

?thesis by auto
qed

qed
{ fix x y assume A: x ∈ S-Min-Lt y ∈ S-Max-Lt

112



with LL[OF Max-in[OF fin-min-lt] Min-in[OF fin-max-lt]]
have Max S-Min-Lt < Min S-Max-Lt by auto

} note ∗∗∗ = this
{ fix x y assume A: x ∈ S-Min-Lt y ∈ S-Max-Le

with LE [OF Max-in[OF fin-min-lt] Min-in[OF fin-max-le]]
have Max S-Min-Lt < Min S-Max-Le by auto

} note ∗∗∗∗ = this
from F False have ∗∗: S-Min-Le 6= {}
proof (safe, goal-cases)

case (1 x)
show ?case
proof (cases S-Max-Le 6= {})

case True
note T = this
show ?thesis
proof (cases S-Max-Lt 6= {})

case True
then show x ∈ {} using 1 T True ∗∗∗∗ ∗∗∗ by auto

next
case False with 1 T ∗∗∗∗ show x ∈ {} by auto

qed
next

case False
with 1 False ∗∗∗ ‹¬ (S-Max-Le = {} ∧ S-Max-Lt = {})› show

?thesis by auto
qed

qed
{

fix x assume x: x ∈ S-Min-Lt
then have x ≤ ?min-lt using fin-min-lt by (simp add:

max.coboundedI2 )
also have ?min-lt < ?min-le
proof (rule ccontr , goal-cases)

case 1
with x ∗∗ have 1 : ?l = ?min-lt by auto
have 2 : ?min-lt < ?max-le using ∗ ∗∗∗∗[OF x] by auto
show False
proof (cases S-Max-Lt = {})

case False
then have ?min-lt < ?max-lt using ∗ ∗∗∗[OF x] by auto
with 1 2 have ?l < ?r by auto
with ‹¬ ?l < ?r› show False by auto

next
case True
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with 1 2 have ?l < ?r by auto
with ‹¬ ?l < ?r› show False by auto

qed
qed

finally have x < max ?min-lt ?min-le by (simp add: max.strict-coboundedI2 )
} note 2 = this
show thesis using F False 1 2 3 4 5 6 7 8 ∗ ∗∗ by ((intro m[of

?l]), auto)
next

case True
then obtain d where d: ?l < d d < ?r using dense by auto
let ?d ′ = min 0 d
{

fix t assume t ∈ S-Min-Le
then have t ≤ ?l using 1 by auto
with d have t ≤ d by auto

}
moreover {

fix t assume t: t ∈ S-Min-Lt
then have t ≤ max ?min-lt ?min-le using fin-min-lt by (simp

add: max.coboundedI1 )
with t Min-Lt-le-0 have t ≤ ?l using fin-min-lt by auto
with d have t < d by auto

}
moreover {

fix t assume t: t ∈ S-Max-Le
then have min ?max-lt ?max-le ≤ t using fin-max-le by (simp

add: min.coboundedI2 )
then have ?r ≤ t using fin-max-le t by auto
with d have d ≤ t by auto
then have min 0 d ≤ t by (simp add: min.coboundedI2 )

}
moreover {

fix t assume t: t ∈ S-Max-Lt
then have min ?max-lt ?max-le ≤ t using fin-max-lt by (simp

add: min.coboundedI1 )
then have ?r ≤ t using fin-max-lt t by auto
with d have d < t by auto
then have min 0 d < t by (simp add: min.strict-coboundedI2 )

}
ultimately show thesis using Min-Le-le-0 Min-Lt-le-0 by ((intro

m[of ?d ′]), auto)
qed

qed
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qed
qed
obtain u ′ where u ′ = (u ⊕ m) by blast
hence u ′: u = (u ′ ⊕ (−m)) unfolding cval-add-def by force
have DBM-val-bounded v u ′ M n unfolding DBM-val-bounded-def
proof (safe, goal-cases)

case 1 with assms(1 ,2 ) show ?case unfolding DBM-zone-repr-def
DBM-val-bounded-def up-def by auto

next
case (3 c)
thus ?case
proof (cases M (v c) 0 , goal-cases)

case (1 x1 )
hence m ≤ x1 − u c using m(3 ) S-Max-Le assms by auto
hence u c + m ≤ x1 by (simp add: add.commute le-diff-eq)
thus ?case using u ′ 1 (2 ) unfolding cval-add-def by auto

next
case (2 x2 )
hence m < x2 − u c using m(4 ) S-Max-Lt assms by auto
hence u c + m < x2 by (metis add-less-cancel-left diff-add-cancel

gt-swap)
thus ?case using u ′ 2 (2 ) unfolding cval-add-def by auto

next
case 3 thus ?case by auto

qed
next

case (2 c) thus ?case
proof (cases M 0 (v c), goal-cases)

case (1 x1 )
hence − x1 − u c ≤ m using m(1 ) S-Min-Le assms by auto
hence − u c − m ≤ x1 using diff-le-eq neg-le-iff-le by fastforce
thus ?case using u ′ 1 (2 ) unfolding cval-add-def by auto

next
case (2 x2 )
hence − x2 − u c < m using m(2 ) S-Min-Lt assms by auto
hence − u c − m < x2 using diff-less-eq neg-less-iff-less by fastforce
thus ?case using u ′ 2 (2 ) unfolding cval-add-def by auto

next
case 3 thus ?case by auto

qed
next

case (4 c1 c2 )
from assms have v c1 > 0 v c2 6= 0 by auto
then have B: (up M ) (v c1 ) (v c2 ) = min (dbm-add (M (v c1 ) 0 ) (M
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0 (v c2 ))) (M (v c1 ) (v c2 ))
unfolding up-def by simp

show ?case
proof (cases (dbm-add (M (v c1 ) 0 ) (M 0 (v c2 ))) < (M (v c1 ) (v

c2 )))
case False
with B have (up M ) (v c1 ) (v c2 ) = M (v c1 ) (v c2 ) by (auto split:

split-min)
with assms 4 have

dbm-entry-val u (Some c1 ) (Some c2 ) (M (v c1 ) (v c2 ))
unfolding DBM-zone-repr-def unfolding DBM-val-bounded-def by

fastforce
thus ?thesis using u ′ by cases (auto simp add: cval-add-def )

next
case True
with B have (up M ) (v c1 ) (v c2 ) = dbm-add (M (v c1 ) 0 ) (M 0 (v

c2 )) by (auto split: split-min)
with assms 4 have

dbm-entry-val u (Some c1 ) (Some c2 ) (dbm-add (M (v c1 ) 0 ) (M 0
(v c2 )))

unfolding DBM-zone-repr-def unfolding DBM-val-bounded-def by
fastforce

with True dbm-entry-dbm-lt have
dbm-entry-val u (Some c1 ) (Some c2 ) (M (v c1 ) (v c2 ))
unfolding less by fast

thus ?thesis using u ′ by cases (auto simp add: cval-add-def )
qed

qed
with m(5 ) u ′ show ?thesis

unfolding DBM-zone-repr-def zone-delay-def by fastforce
qed

3.3 Intersection

fun And :: ( ′t :: {linordered-cancel-ab-monoid-add}) DBM ⇒ ′t DBM ⇒ ′t
DBM where

And M1 M2 = (λ i j. min (M1 i j) (M2 i j))

lemma DBM-and-complete:
assumes DBM-val-bounded v u M1 n DBM-val-bounded v u M2 n
shows DBM-val-bounded v u (And M1 M2 ) n
using assms unfolding DBM-val-bounded-def by (auto simp: min-def )
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lemma DBM-and-sound1 :
assumes DBM-val-bounded v u (And M1 M2 ) n
shows DBM-val-bounded v u M1 n
using assms unfolding DBM-val-bounded-def
apply safe

apply (simp add: less-eq[symmetric]; fail)
apply (auto 4 3 intro: dbm-entry-val-mono[folded less-eq])

done

lemma DBM-and-sound2 :
assumes DBM-val-bounded v u (And M1 M2 ) n
shows DBM-val-bounded v u M2 n
using assms unfolding DBM-val-bounded-def
apply safe

apply (simp add: less-eq[symmetric]; fail)
apply (auto 4 3 intro: dbm-entry-val-mono[folded less-eq])

done

lemma And-correct:
[M1 ]v,n ∩ [M2 ]v,n = [And M1 M2 ]v,n
using DBM-and-sound1 DBM-and-sound2 DBM-and-complete unfolding

DBM-zone-repr-def by blast

3.4 Variable Reset

definition
DBM-reset :: ( ′t :: time) DBM ⇒ nat ⇒ nat ⇒ ′t ⇒ ′t DBM ⇒ bool

where
DBM-reset M n k d M ′ ≡
(∀ j ≤ n. 0 < j ∧ k 6= j−→ M ′ k j = ∞ ∧ M ′ j k = ∞) ∧ M ′ k 0 =

Le d ∧ M ′ 0 k = Le (− d)
∧ M ′ k k = M k k
∧ (∀ i ≤ n. ∀ j ≤ n.

i 6= k ∧ j 6= k −→ M ′ i j = min (dbm-add (M i k) (M k j)) (M i j))

lemma DBM-reset-mono:
assumes DBM-reset M n k d M ′ i ≤ n j ≤ n i 6= k j 6= k
shows M ′ i j ≤ M i j

using assms unfolding DBM-reset-def by auto

lemma DBM-reset-len-mono:
assumes DBM-reset M n k d M ′ k /∈ set xs i 6= k j 6= k set (i # j # xs)
⊆ {0 ..n}
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shows len M ′ i j xs ≤ len M i j xs
using assms by (induction xs arbitrary: i) (auto intro: add-mono DBM-reset-mono)

lemma DBM-reset-neg-cycle-preservation:
assumes DBM-reset M n k d M ′ len M i i xs < Le 0 set (k # i # xs) ⊆
{0 ..n}

shows ∃ j. ∃ ys. set (j # ys) ⊆ {0 ..n} ∧ len M ′ j j ys < Le 0
proof (cases xs = [])

case Nil: True
show ?thesis
proof (cases k = i)

case True
with Nil assms have len M ′ i i [] < Le 0 unfolding DBM-reset-def by

auto
moreover from assms have set (i # []) ⊆ {0 ..n} by auto
ultimately show ?thesis by blast

next
case False
with Nil assms DBM-reset-mono have len M ′ i i [] < Le 0 by fastforce
moreover from assms have set (i # []) ⊆ {0 ..n} by auto
ultimately show ?thesis by blast

qed
next

case False
with assms obtain j ys where cycle:

len M j j ys < Le 0 distinct (j # ys) j ∈ set (i # xs) set ys ⊆ set xs
by (metis negative-len-shortest neutral)
show ?thesis
proof (cases k ∈ set (j # ys))

case False
with cycle assms have len M ′ j j ys ≤ len M j j ys by − (rule

DBM-reset-len-mono, auto)
moreover from cycle assms have set (j # ys) ⊆ {0 ..n} by auto
ultimately show ?thesis using cycle(1 ) by fastforce

next
case True
then obtain l where l: (l, k) ∈ set (arcs j j ys)
proof (cases j = k, goal-cases)

case True
show ?thesis
proof (cases ys = [])

case T : True
with True show ?thesis by (auto intro: that)

next
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case False
then obtain z zs where ys = zs @ [z] by (metis append-butlast-last-id)

from arcs-decomp[OF this] True show ?thesis by (auto intro: that)
qed

next
case False

from arcs-set-elem2 [OF False True] show ?thesis by (blast intro: that)
qed
show ?thesis
proof (cases ys = [])

case False
from cycle-rotate-2 ′[OF False l, of M ] cycle(1 ) obtain zs where

rotated:
len M l l (k # zs) < Le 0 set (l # k # zs) = set (j # ys) 1 + length

zs = length ys
by auto
with length-eq-distinct[OF this(2 )[symmetric] cycle(2 )] have distinct

(l # k # zs) by auto
note rotated = rotated(1 ,2 ) this
from this(2 ) cycle(3 ,4 ) assms(3 ) have n-bound: set (l # k # zs) ⊆

{0 ..n} by auto
then have l ≤ n by auto
show ?thesis
proof (cases zs)

case Nil
with rotated have M l k + M k l < Le 0 l 6= k by auto

with assms(1 ) ‹l ≤ n› have M ′ l l < Le 0 unfolding DBM-reset-def
add min-def by auto

with ‹l ≤ n› have len M ′ l l [] < Le 0 set [l] ⊆ {0 ..n} by auto
then show ?thesis by blast

next
case (Cons w ws)
with n-bound have ∗: set (w # l # ws) ⊆ {0 ..n} by auto
from Cons n-bound rotated(3 ) have w ≤ n w 6= k l 6= k by auto
with assms(1 ) ‹l ≤ n› have

M ′ l w ≤ M l k + M k w
unfolding DBM-reset-def add min-def by auto

moreover from Cons rotated assms ∗ have
len M ′ w l ws ≤ len M w l ws
by − (rule DBM-reset-len-mono, auto)

ultimately have
len M ′ l l zs ≤ len M l l (k # zs)

using Cons by (auto intro: add-mono simp add: add.assoc[symmetric])
with n-bound rotated(1 ) show ?thesis by fastforce
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qed
next

case T : True
with True cycle have M j j < Le 0 j = k by auto
with assms(1 ) have len M ′ k k [] < Le 0 unfolding DBM-reset-def

by simp
moreover from assms(3 ) have set (k # []) ⊆ {0 ..n} by auto
ultimately show ?thesis by blast

qed
qed

qed

Implementation of DBM reset
definition

reset :: ( ′t::{linordered-cancel-ab-semigroup-add,uminus}) DBM ⇒ nat ⇒
nat ⇒ ′t ⇒ ′t DBM
where

reset M n k d =
(λ i j.

if i = k ∧ j = 0 then Le d
else if i = 0 ∧ j = k then Le (−d)
else if i = k ∧ j 6= k then ∞
else if i 6= k ∧ j = k then ∞
else if i = k ∧ j = k then M k k
else min (dbm-add (M i k) (M k j)) (M i j)
)

fun
reset ′ ::
( ′t::{linordered-cancel-ab-semigroup-add,uminus}) DBM
⇒ nat ⇒ ′c list ⇒ ( ′c ⇒ nat) ⇒ ′t ⇒ ′t DBM

where
reset ′ M n [] v d = M |
reset ′ M n (c # cs) v d = reset (reset ′ M n cs v d) n (v c) d

lemma DBM-reset-reset:
0 < k =⇒ k ≤ n =⇒ DBM-reset M n k d (reset M n k d)

unfolding DBM-reset-def by (auto simp: reset-def )

lemma DBM-reset-complete:
assumes clock-numbering ′ v n v c ≤ n DBM-reset M n (v c) d M ′

DBM-val-bounded v u M n
shows DBM-val-bounded v (u(c := d)) M ′ n

unfolding DBM-val-bounded-def using assms
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proof (safe, goal-cases)
case 1
then have ∗: M 0 0 ≥ Le 0 unfolding DBM-val-bounded-def less-eq by

auto
from 1 have ∗∗: M ′ 0 0 = min (M 0 (v c) + M (v c) 0 ) (M 0 0 )

unfolding DBM-reset-def add by auto
show ?case
proof (cases M 0 (v c) + M (v c) 0 ≤ M 0 0 )

case False
with ∗ ∗∗ show ?thesis unfolding min-def less-eq by auto

next
case True
have dbm-entry-val u (Some c) (Some c) (M (v c) 0 + M 0 (v c))

by (metis DBM-val-bounded-def assms(2 ,4 ) dbm-entry-val-add-4 add)
then have M (v c) 0 + M 0 (v c) ≥ Le 0

unfolding less-eq dbm-le-def by (cases M (v c) 0 + M 0 (v c)) auto
with True ∗∗ have M ′ 0 0 ≥ Le 0 by (simp add: comm)
then show ?thesis unfolding less-eq .

qed
next

case (2 c ′)
show ?case
proof (cases c = c ′)

case False
hence F :v c ′ 6= v c using 2 by metis
hence ∗:M ′ 0 (v c ′) = min (dbm-add (M 0 (v c)) (M (v c) (v c ′))) (M

0 (v c ′))
using F 2 unfolding DBM-reset-def by simp
show ?thesis
proof (cases dbm-add (M 0 (v c)) (M (v c) (v c ′)) < M 0 (v c ′))

case False
with ∗ have M ′ 0 (v c ′) = M 0 (v c ′) by (auto split: split-min)
hence dbm-entry-val u None (Some c ′) (M ′ 0 (v c ′))
using 2 unfolding DBM-val-bounded-def by auto
thus ?thesis using F by cases fastforce+

next
case True
with ∗ have ∗∗:M ′ 0 (v c ′) = dbm-add (M 0 (v c)) (M (v c) (v c ′))

by (auto split: split-min)
from 2 have ∗∗∗:dbm-entry-val u None (Some c) (M 0 (v c))

dbm-entry-val u (Some c) (Some c ′) (M (v c) (v c ′))
unfolding DBM-val-bounded-def by auto

show ?thesis
proof −
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note ∗∗∗
moreover have dbm-entry-val (u(c := d)) None (Some c ′) (dbm-add

(Le d1 ) (M (v c) (v c ′)))
if M 0 (v c) = Le d1

and dbm-entry-val u (Some c) (Some c ′) (M (v c) (v c ′))
and − u c ≤ d1

for d1 :: ′b
proof −

note G1 = that
from G1 (2 ) show ?thesis
proof (cases, goal-cases)

case (1 d ′)
from ‹u c − u c ′ ≤ d ′› G1 (3 ) have − u c ′ ≤ d1 + d ′

by (metis diff-minus-eq-add less-diff-eq less-le-trans minus-diff-eq
minus-le-iff not-le)

thus ?case using 1 ‹c 6= c ′› by fastforce
next

case (2 d ′)
from this(2 ) G1 (3 ) have u c − u c ′ − u c < d1 + d ′ using

add-le-less-mono by fastforce
hence − u c ′ < d1 + d ′ by simp
thus ?case using 2 ‹c 6= c ′› by fastforce

next
case (3 ) thus ?case by auto

qed
qed

moreover have dbm-entry-val (u(c := d)) None (Some c ′) (dbm-add
(Lt d2 ) (M (v c) (v c ′)))

if M 0 (v c) = Lt d2
and dbm-entry-val u (Some c) (Some c ′) (M (v c) (v c ′))
and − u c < d2

for d2 :: ′b
proof −

note G2 = that
from this(2 ) show ?thesis
proof (cases, goal-cases)

case (1 d ′)
from this(2 ) G2 (3 ) have u c − u c ′ − u c < d ′ + d2 using

add-le-less-mono by fastforce
hence − u c ′ < d ′ + d2 by simp
hence − u c ′ < d2 + d ′

by (metis (no-types) diff-0-right diff-minus-eq-add minus-add-distrib
minus-diff-eq)

thus ?case using 1 ‹c 6= c ′› by fastforce

122



next
case (2 d ′)
from this(2 ) G2 (3 ) have u c − u c ′ − u c < d2 + d ′ using

add-strict-mono by fastforce
hence − u c ′ < d2 + d ′ by simp
thus ?case using 2 ‹c 6= c ′› by fastforce

next
case (3 ) thus ?case by auto

qed
qed
ultimately show ?thesis

unfolding ∗∗ by (cases, auto)
qed

qed
next

case True
with 2 show ?thesis unfolding DBM-reset-def by auto

qed
next

case (3 c ′)
show ?case
proof (cases c = c ′)

case False
hence F :v c ′ 6= v c using 3 by metis
hence ∗:M ′ (v c ′) 0 = min (dbm-add (M (v c ′) (v c)) (M (v c) 0 )) (M

(v c ′) 0 )
using F 3 unfolding DBM-reset-def by simp
show ?thesis
proof (cases dbm-add (M (v c ′) (v c)) (M (v c) 0 ) < M (v c ′) 0 )

case False
with ∗ have M ′ (v c ′) 0 = M (v c ′) 0 by (auto split: split-min)
hence dbm-entry-val u (Some c ′) None (M ′ (v c ′) 0 )
using 3 unfolding DBM-val-bounded-def by auto
thus ?thesis using F by cases fastforce+

next
case True
with ∗ have ∗∗:M ′ (v c ′) 0 = dbm-add (M (v c ′) (v c)) (M (v c) 0 )

by (auto split: split-min)
from 3 have ∗∗∗:dbm-entry-val u (Some c ′) (Some c) (M (v c ′) (v c))

dbm-entry-val u (Some c) None (M (v c) 0 )
unfolding DBM-val-bounded-def by auto

thus ?thesis
proof −

note ∗∗∗
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moreover have dbm-entry-val (u(c := d)) (Some c ′) None (dbm-add
(Le d1 ) (M (v c) 0 ))

if M (v c ′) (v c) = Le d1
and dbm-entry-val u (Some c) None (M (v c) 0 )
and u c ′ − u c ≤ d1

for d1 :: ′b
proof −

note G1 = that
from G1 (2 ) show ?thesis
proof (cases, goal-cases)

case (1 d ′)
from this(2 ) G1 (3 ) have u c ′≤ d1 + d ′ using ordered-ab-semigroup-add-class.add-mono

by fastforce
thus ?case using 1 ‹c 6= c ′› by fastforce

next
case (2 d ′)

from this(2 ) G1 (3 ) have u c + u c ′ − u c < d1 + d ′ using
add-le-less-mono by fastforce

hence u c ′ < d1 + d ′ by simp
thus ?case using 2 ‹c 6= c ′› by fastforce

next
case (3 ) thus ?case by auto

qed
qed
moreover have dbm-entry-val (u(c := d)) (Some c ′) None (dbm-add

(Lt d1 ) (M (v c) 0 ))
if M (v c ′) (v c) = Lt d1

and dbm-entry-val u (Some c) None (M (v c) 0 )
and u c ′ − u c < d1

for d1 :: ′b
proof −

note G2 = that
from that(2 ) show ?thesis
proof (cases, goal-cases)

case (1 d ′)
from this(2 ) G2 (3 ) have u c + u c ′ − u c < d ′ + d1 using

add-le-less-mono by fastforce
hence u c ′ < d ′ + d1 by simp
hence u c ′ < d1 + d ′

by (metis (no-types) diff-0-right diff-minus-eq-add minus-add-distrib
minus-diff-eq)

thus ?case using 1 ‹c 6= c ′› by fastforce
next

case (2 d ′)
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from this(2 ) G2 (3 ) have u c + u c ′ − u c < d1 + d ′ using
add-strict-mono by fastforce

hence u c ′ < d1 + d ′ by simp
thus ?case using 2 ‹c 6= c ′› by fastforce

next
case 3 thus ?case by auto

qed
qed
ultimately show ?thesis

unfolding ∗∗ by (cases, auto)
qed

qed
next

case True
with 3 show ?thesis unfolding DBM-reset-def by auto

qed
next

case (4 c1 c2 )
show ?case
proof (cases c = c1 )

case False
note F1 = this
show ?thesis
proof (cases c = c2 )

case False
with F1 4 have F : v c 6= v c1 v c 6= v c2 v c1 6= 0 v c2 6= 0 by

force+
hence ∗:M ′ (v c1 ) (v c2 ) = min (dbm-add (M (v c1 ) (v c)) (M (v c)

(v c2 ))) (M (v c1 ) (v c2 ))
using 4 unfolding DBM-reset-def by simp
show ?thesis
proof (cases dbm-add (M (v c1 ) (v c)) (M (v c) (v c2 )) < M (v c1 )

(v c2 ))
case False
with ∗ have M ′ (v c1 ) (v c2 ) = M (v c1 ) (v c2 ) by (auto split:

split-min)
hence dbm-entry-val u (Some c1 ) (Some c2 ) (M ′ (v c1 ) (v c2 ))
using 4 unfolding DBM-val-bounded-def by auto
thus ?thesis using F by cases fastforce+

next
case True
with ∗ have ∗∗:M ′ (v c1 ) (v c2 ) = dbm-add (M (v c1 ) (v c)) (M

(v c) (v c2 )) by (auto split: split-min)
from 4 have ∗∗∗:dbm-entry-val u (Some c1 ) (Some c) (M (v c1 ) (v
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c))
dbm-entry-val u (Some c) (Some c2 ) (M (v c) (v c2 )) unfolding

DBM-val-bounded-def by auto
show ?thesis
proof −

note ∗∗∗
moreover have dbm-entry-val (u(c := d)) (Some c1 ) (Some c2 )

(dbm-add (Le d1 ) (M (v c) (v c2 )))
if M (v c1 ) (v c) = Le d1

and dbm-entry-val u (Some c) (Some c2 ) (M (v c) (v c2 ))
and u c1 − u c ≤ d1

for d1 :: ′b
proof −

note G1 = that
from G1 (2 ) show ?thesis
proof (cases, goal-cases)

case (1 d ′)
from ‹u c − u c2 ≤ d ′› ‹u c1 − u c ≤ d1 › have u c1 − u c2

≤ d1 + d ′

by (metis (no-types) ab-semigroup-add-class.add-ac(1 )
add-le-cancel-right

add-left-mono diff-add-cancel dual-order .refl
dual-order .trans)

thus ?case using 1 (1 ) ‹c 6= c1 › ‹c 6= c2 › by fastforce
next

case (2 d ′)
from add-less-le-mono[OF ‹u c − u c2 < d ′› ‹u c1 − u c ≤

d1 ›] have
− u c2 + u c1 < d ′ + d1 by simp

hence u c1 − u c2 < d1 + d ′ by (simp add: add.commute)
thus ?case using 2 ‹c 6= c1 › ‹c 6= c2 › by fastforce

next
case (3 ) thus ?case by auto

qed
qed
moreover have dbm-entry-val (u(c := d)) (Some c1 ) (Some c2 )

(dbm-add (Lt d2 ) (M (v c) (v c2 )))
if M (v c1 ) (v c) = Lt d2

and dbm-entry-val u (Some c) (Some c2 ) (M (v c) (v c2 ))
and u c1 − u c < d2

for d2 :: ′b
proof −

note G2 = that
from G2 (2 ) show ?thesis
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proof (cases, goal-cases)
case (1 d ′)

with add-less-le-mono[OF G2 (3 ) this(2 )] ‹c 6= c1 › ‹c 6= c2 ›
show ?case

by auto
next

case (2 d ′)
with add-strict-mono[OF this(2 ) G2 (3 )] ‹c 6= c1 › ‹c 6= c2 ›

show ?case
by (auto simp: add.commute)

next
case (3 ) thus ?case by auto

qed
qed
ultimately show ?thesis

unfolding ∗∗ by (cases, auto)
qed

qed
next

case True
with F1 4 have F : v c 6= v c1 v c1 6= 0 v c2 6= 0 by force+
thus ?thesis using 4 True unfolding DBM-reset-def by auto

qed
next

case True
note T1 = this
show ?thesis
proof (cases c = c2 )

case False
with T1 4 have F : v c 6= v c2 v c1 6= 0 v c2 6= 0 by force+
thus ?thesis using 4 True unfolding DBM-reset-def by auto

next
case True
then have ∗: M ′ (v c1 ) (v c1 ) = M (v c1 ) (v c1 )
using T1 4 unfolding DBM-reset-def by auto
from 4 True T1 have dbm-entry-val u (Some c1 ) (Some c2 ) (M (v

c1 ) (v c2 ))
unfolding DBM-val-bounded-def by auto
then show ?thesis by (cases rule: dbm-entry-val.cases, auto simp: ∗

True[symmetric] T1 )
qed

qed
qed
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lemma DBM-reset-sound-empty:
assumes clock-numbering ′ v n v c ≤ n DBM-reset M n (v c) d M ′

∀ u . ¬ DBM-val-bounded v u M ′ n
shows ¬ DBM-val-bounded v u M n

using assms DBM-reset-complete by metis

lemma DBM-reset-diag-preservation:
∀ k≤n. M ′ k k ≤ 0 if ∀ k≤n. M k k ≤ 0 DBM-reset M n i d M ′

proof safe
fix k :: nat
assume k ≤ n
with that show M ′ k k ≤ 0

by (cases k = i; cases k = 0 )
(auto simp add: DBM-reset-def less[symmetric] neutral split: split-min)

qed

lemma FW-diag-preservation:
∀ k≤n. M k k ≤ 0 =⇒ ∀ k≤n. (FW M n) k k ≤ 0

proof clarify
fix k assume A: ∀ k≤n. M k k ≤ 0 k ≤ n
then have M k k ≤ 0 by auto
with fw-mono[of k n k M n] A show FW M n k k ≤ 0 by auto

qed

lemma DBM-reset-not-cyc-free-preservation:
assumes ¬ cyc-free M n DBM-reset M n k d M ′ k ≤ n
shows ¬ cyc-free M ′ n

proof −
from assms(1 ) obtain i xs where i ≤ n set xs ⊆ {0 ..n} len M i i xs <

Le 0
unfolding neutral by auto
with DBM-reset-neg-cycle-preservation[OF assms(2 ) this(3 )] assms(3 )

obtain j ys where
set (j # ys) ⊆ {0 ..n} len M ′ j j ys < Le 0

by auto
then show ?thesis unfolding neutral by force

qed

lemma DBM-reset-complete-empty ′:
assumes ∀ k≤n. k > 0 −→ (∃ c. v c = k) clock-numbering v k ≤ n

DBM-reset M n k d M ′ ∀ u . ¬ DBM-val-bounded v u M n
shows ¬ DBM-val-bounded v u M ′ n

proof −
from assms(5 ) have [M ]v,n = {} unfolding DBM-zone-repr-def by auto
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from empty-not-cyc-free[OF - this] have ¬ cyc-free M n using assms(2 )
by auto

from DBM-reset-not-cyc-free-preservation[OF this assms(4 ,3 )] have ¬
cyc-free M ′ n by auto

then obtain i xs where i ≤ n set xs ⊆ {0 ..n} len M ′ i i xs < 0 by auto
from DBM-val-bounded-neg-cycle[OF - this assms(1 )] show ?thesis by

fast
qed

lemma DBM-reset-complete-empty:
assumes ∀ k≤n. k > 0 −→ (∃ c. v c = k) clock-numbering v

DBM-reset (FW M n) n (v c) d M ′ ∀ u . ¬ DBM-val-bounded v u
(FW M n) n

shows ¬ DBM-val-bounded v u M ′ n
proof −

note A = assms
from A(4 ) have [FW M n]v,n = {} unfolding DBM-zone-repr-def by

auto
with FW-detects-empty-zone[OF A(1 ), of M ] A(2 )
obtain i where i: i ≤ n FW M n i i < Le 0 by blast
with A(3 ,4 ) have M ′ i i < Le 0
unfolding DBM-reset-def by (cases i = v c, auto split: split-min)
with fw-mono[of i n i M ′ n] i have FW M ′ n i i < Le 0 by auto
with FW-detects-empty-zone[OF A(1 ), of M ′] A(2 ) i
have [FW M ′ n]v,n = {} by auto
with FW-zone-equiv[OF A(1 )] show ?thesis by (auto simp: DBM-zone-repr-def )

qed

lemma DBM-reset-complete-empty1 :
assumes ∀ k≤n. k > 0 −→ (∃ c. v c = k) clock-numbering v

DBM-reset (FW M n) n (v c) d M ′ ∀ u . ¬ DBM-val-bounded v u
M n

shows ¬ DBM-val-bounded v u M ′ n
proof −

from assms have [M ]v,n = {} unfolding DBM-zone-repr-def by auto
with FW-zone-equiv[OF assms(1 )] have
∀ u . ¬ DBM-val-bounded v u (FW M n) n

unfolding DBM-zone-repr-def by auto
from DBM-reset-complete-empty[OF assms(1−3 ) this] show ?thesis by

auto
qed

Lemma FW-canonical-id allows us to prove correspondences between reset
and canonical, like for the two below. Can be left out for the rest because
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of the triviality of the correspondence.

lemma DBM-reset-empty ′′:
assumes ∀ k≤n. k > 0 −→ (∃ c. v c = k) clock-numbering ′ v n v c ≤ n

DBM-reset M n (v c) d M ′

shows [M ]v,n = {} ←→ [M ′]v,n = {}
proof

assume A: [M ]v,n = {}
hence ∀ u . ¬ DBM-val-bounded v u M n unfolding DBM-zone-repr-def

by auto
hence ∀ u . ¬ DBM-val-bounded v u M ′ n
using DBM-reset-complete-empty ′[OF assms(1 ) - assms(3 ,4 )] assms(2 )

by auto
thus [M ′]v,n = {} unfolding DBM-zone-repr-def by auto

next
assume [M ′]v,n = {}
hence ∀ u . ¬ DBM-val-bounded v u M ′ n unfolding DBM-zone-repr-def

by auto
hence ∀ u . ¬ DBM-val-bounded v u M n using DBM-reset-sound-empty[OF

assms(2−4 )] by auto
thus [M ]v,n = {} unfolding DBM-zone-repr-def by auto

qed

lemma DBM-reset-empty:
assumes ∀ k≤n. k > 0 −→ (∃ c. v c = k) clock-numbering ′ v n v c ≤ n

DBM-reset (FW M n) n (v c) d M ′

shows [FW M n]v,n = {} ←→ [M ′]v,n = {}
proof

assume A: [FW M n]v,n = {}
hence ∀ u . ¬ DBM-val-bounded v u (FW M n) n unfolding DBM-zone-repr-def

by auto
hence ∀ u . ¬ DBM-val-bounded v u M ′ n
using DBM-reset-complete-empty[of n v M , OF assms(1 ) - assms(4 )]

assms(2 ,3 ) by auto
thus [M ′]v,n = {} unfolding DBM-zone-repr-def by auto

next
assume [M ′]v,n = {}
hence ∀ u . ¬ DBM-val-bounded v u M ′ n unfolding DBM-zone-repr-def

by auto
hence ∀ u . ¬ DBM-val-bounded v u (FW M n) n using DBM-reset-sound-empty[OF

assms(2−)] by auto
thus [FW M n]v,n = {} unfolding DBM-zone-repr-def by auto

qed
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lemma DBM-reset-empty ′:
assumes canonical M n ∀ k≤n. k > 0 −→ (∃ c. v c = k) clock-numbering ′

v n v c ≤ n
DBM-reset (FW M n) n (v c) d M ′

shows [M ]v,n = {} ←→ [M ′]v,n = {}
using FW-canonical-id[OF assms(1 )] DBM-reset-empty[OF assms(2−)] by
simp

lemma DBM-reset-sound ′:
assumes clock-numbering ′ v n v c ≤ n DBM-reset M n (v c) d M ′

DBM-val-bounded v u M ′ n
DBM-val-bounded v u ′′ M n

obtains d ′ where DBM-val-bounded v (u(c := d ′)) M n
proof −

from assms(1 ) have
∀ c. 0 < v c
and ∀ x y. v x ≤ n ∧ v y ≤ n ∧ v x = v y −→ x = y
by auto

note A = that assms(2−) this
obtain S-Min-Le where S-Min-Le:
S-Min-Le = {u c ′ − d | c ′ d. 0 < v c ′ ∧ v c ′ ≤ n ∧ c 6= c ′ ∧ M (v c ′) (v

c) = Le d}
∪ {−d | d. M 0 (v c) = Le d} by auto

obtain S-Min-Lt where S-Min-Lt:
S-Min-Lt = {u c ′ − d | c ′ d. 0 < v c ′ ∧ v c ′ ≤ n ∧ c 6= c ′ ∧ M (v c ′) (v

c) = Lt d}
∪ {−d | d. M 0 (v c) = Lt d} by auto

obtain S-Max-Le where S-Max-Le:
S-Max-Le = {u c ′ + d | c ′ d. 0 < v c ′ ∧ v c ′ ≤ n ∧ c 6= c ′ ∧ M (v c) (v

c ′) = Le d}
∪ {d | d. M (v c) 0 = Le d} by auto

obtain S-Max-Lt where S-Max-Lt:
S-Max-Lt = {u c ′ + d | c ′ d. 0 < v c ′ ∧ v c ′ ≤ n ∧ c 6= c ′ ∧ M (v c) (v

c ′) = Lt d}
∪ {d | d. M (v c) 0 = Lt d} by auto

have finite {c. 0 < v c ∧ v c ≤ n} using A(6 ,7 )
proof (induction n)

case 0
then have {c. 0 < v c ∧ v c ≤ 0} = {} by auto
then show ?case by (metis finite.emptyI )

next
case (Suc n)
then have finite {c. 0 < v c ∧ v c ≤ n} by auto
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moreover have {c. 0 < v c ∧ v c ≤ Suc n} = {c. 0 < v c ∧ v c ≤ n}
∪ {c. v c = Suc n} by auto

moreover have finite {c. v c = Suc n}
proof −

{fix c assume v c = Suc n
then have {c. v c = Suc n} = {c} using Suc.prems(2 ) by auto

}
then show ?thesis by (cases {c. v c = Suc n} = {}) auto

qed
ultimately show ?case by auto

qed
then have ∀ f . finite {(c,b) | c b. 0 < v c ∧ v c ≤ n ∧ f M (v c) = b}

by auto
moreover have
∀ f K . {(c,K d) | c d. 0 < v c ∧ v c ≤ n ∧ f M (v c) = K d}
⊆ {(c,b) | c b. 0 < v c ∧ v c ≤ n ∧ f M (v c) = b}

by auto
ultimately have B:
∀ f K . finite {(c,K d) | c d. 0 < v c ∧ v c ≤ n ∧ f M (v c) = K d}
using finite-subset by fast

have ∀ f K . theLe o K = id −→ finite {(c,d) | c d. 0 < v c ∧ v c ≤ n
∧ f M (v c) = K d}

proof (safe, goal-cases)
case prems: (1 f K )
then have (c, d) = (λ (c,b). (c, theLe b)) (c, K d) for c :: ′a and d

by (simp add: pointfree-idE)
then have
{(c,d) | c d. 0 < v c ∧ v c ≤ n ∧ f M (v c) = K d}
= (λ (c,b). (c, theLe b)) ‘ {(c,K d) | c d. 0 < v c ∧ v c ≤ n ∧ f M (v

c) = K d}
by (force simp: split-beta)

moreover from B have
finite ((λ (c,b). (c, theLe b)) ‘ {(c,K d) | c d. 0 < v c ∧ v c ≤ n ∧ f

M (v c) = K d})
by auto

ultimately show ?case by auto
qed
then have finI :∧

f g K . theLe o K = id =⇒ finite (g ‘ {(c ′,d) | c ′ d. 0 < v c ′ ∧ v c ′ ≤
n ∧ f M (v c ′) = K d})

by auto
have finI1 :∧

f g K . theLe o K = id =⇒ finite (g ‘ {(c ′,d) | c ′ d. 0 < v c ′ ∧ v c ′ ≤
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n ∧ c 6= c ′ ∧ f M (v c ′) = K d})
proof goal-cases

case (1 f g K )
have

g ‘ {(c ′,d) | c ′ d. 0 < v c ′ ∧ v c ′ ≤ n ∧ c 6= c ′ ∧ f M (v c ′) = K d}
⊆ g ‘ {(c ′,d) | c ′ d. 0 < v c ′ ∧ v c ′ ≤ n ∧ f M (v c ′) = K d}

by auto
from finite-subset[OF this finI [OF 1 , of g f ]] show ?case .

qed
have ∀ f . finite {b. f M (v c) = b} by auto
moreover have ∀ f K . {K d | d. f M (v c) = K d} ⊆ {b. f M (v c) =

b} by auto
ultimately have B: ∀ f K . finite {K d | d. f M (v c) = K d} using

finite-subset by fast

have ∀ f K . theLe o K = id −→ finite {d | d. f M (v c) = K d}
proof (safe, goal-cases)

case prems: (1 f K )
then have (c, d) = (λ (c,b). (c, theLe b)) (c, K d) for c :: ′a and d

by (simp add: pointfree-idE)
then have
{d | d. f M (v c) = K d}
= (λ b. theLe b) ‘ {K d | d. f M (v c) = K d}
by (force simp: split-beta)

moreover from B have
finite ((λb. theLe b) ‘ {K d | d. f M (v c) = K d})
by auto

ultimately show ?case by auto
qed
then have C : ∀ f g K . theLe o K = id −→ finite (g ‘ {d | d. f M (v c)

= K d}) by auto
have finI2 :

∧
f g K . theLe o K = id =⇒ finite ({g d | d. f M (v c) = K

d})
proof goal-cases

case (1 f g K )
have {g d |d. f M (v c) = K d} = g ‘ {d | d. f M (v c) = K d} by auto
with C 1 show ?case by auto

qed

{ fix K :: ′b ⇒ ′b DBMEntry assume A: theLe o K = id
then have

finite ((λ(c,d). u c − d) ‘ {(c ′,d) | c ′ d. 0 < v c ′ ∧ v c ′ ≤ n ∧ c 6= c ′

∧ M (v c ′) (v c) = K d})
by (intro finI1 , auto)
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moreover have
{u c ′ − d |c ′ d. 0 < v c ′ ∧ v c ′ ≤ n ∧ c 6= c ′ ∧ M (v c ′) (v c) = K d}
= ((λ(c,d). u c − d) ‘ {(c ′,d) | c ′ d. 0 < v c ′ ∧ v c ′ ≤ n ∧ c 6= c ′ ∧

M (v c ′) (v c) = K d})
by auto
ultimately have finite {u c ′ − d |c ′ d. 0 < v c ′ ∧ v c ′ ≤ n ∧ c 6= c ′ ∧

M (v c ′) (v c) = K d}
by auto
moreover have finite {− d |d. M 0 (v c) = K d} using A by (intro

finI2 , auto)
ultimately have

finite ({u c ′ − d |c ′ d. 0 < v c ′ ∧ v c ′ ≤ n ∧ c 6= c ′ ∧ M (v c ′) (v c)
= K d}

∪ {− d |d. M 0 (v c) = K d})
by (auto simp: S-Min-Le)

} note fin1 = this
have fin-min-le: finite S-Min-Le unfolding S-Min-Le by (rule fin1 , auto)
have fin-min-lt: finite S-Min-Lt unfolding S-Min-Lt by (rule fin1 , auto)

{ fix K :: ′b ⇒ ′b DBMEntry assume A: theLe o K = id
then have finite ((λ(c,d). u c + d) ‘ {(c ′,d) | c ′ d. 0 < v c ′ ∧ v c ′ ≤ n

∧ c 6= c ′ ∧ M (v c) (v c ′) = K d})
by (intro finI1 , auto)
moreover have
{u c ′ + d |c ′ d. 0 < v c ′ ∧ v c ′ ≤ n ∧ c 6= c ′ ∧ M (v c) (v c ′) = K d}
= ((λ(c,d). u c + d) ‘ {(c ′,d) | c ′ d. 0 < v c ′ ∧ v c ′ ≤ n ∧ c 6= c ′ ∧

M (v c) (v c ′) = K d})
by auto
ultimately have finite {u c ′ + d |c ′ d. 0 < v c ′ ∧ v c ′ ≤ n ∧ c 6= c ′ ∧

M (v c) (v c ′) = K d}
by auto
moreover have finite {d |d. M (v c) 0 = K d} using A by (intro

finI2 , auto)
ultimately have

finite ({u c ′ + d |c ′ d. 0 < v c ′ ∧ v c ′ ≤ n ∧ c 6= c ′ ∧ M (v c) (v c ′)
= K d}

∪ {d |d. M (v c) 0 = K d})
by (auto simp: S-Min-Le)

} note fin2 = this
have fin-max-le: finite S-Max-Le unfolding S-Max-Le by (rule fin2 , auto)
have fin-max-lt: finite S-Max-Lt unfolding S-Max-Lt by (rule fin2 , auto)

{ fix l r assume l ∈ S-Min-Le r ∈ S-Max-Le
then have l ≤ r
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unfolding S-Min-Le S-Max-Le
proof (safe, goal-cases)

case (1 c1 d1 c2 d2 )
with A have

dbm-entry-val u (Some c1 ) (Some c2 ) (M ′ (v c1 ) (v c2 ))
unfolding DBM-val-bounded-def by presburger
moreover have
M ′ (v c1 ) (v c2 ) = min (dbm-add (M (v c1 ) (v c)) (M (v c) (v c2 )))

(M (v c1 ) (v c2 ))
using A(3 ,7 ) 1 unfolding DBM-reset-def by metis
ultimately have
dbm-entry-val u (Some c1 ) (Some c2 ) (dbm-add (M (v c1 ) (v c)) (M

(v c) (v c2 )))
using dbm-entry-dbm-min ′ by auto
with 1 have u c1 − u c2 ≤ d1 + d2 by auto
thus ?case

by (metis (no-types) add-diff-cancel-left diff-0-right diff-add-cancel
diff-eq-diff-less-eq)

next
case (2 c ′ d)
with A have
(∀ i≤n. i 6= v c ∧ i > 0 −→ M ′ i 0 = min (dbm-add (M i (v c)) (M

(v c) 0 )) (M i 0 ))
v c ′ 6= v c

unfolding DBM-reset-def by auto
hence (M ′ (v c ′) 0 = min (dbm-add (M (v c ′) (v c)) (M (v c) 0 )) (M

(v c ′) 0 ))
using 2 by blast
moreover from A 2 have dbm-entry-val u (Some c ′) None (M ′ (v

c ′) 0 )
unfolding DBM-val-bounded-def by presburger
ultimately have dbm-entry-val u (Some c ′) None (dbm-add (M (v c ′)

(v c)) (M (v c) 0 ))
using dbm-entry-dbm-min3 ′ by fastforce
with 2 have u c ′ ≤ d + r by auto
thus ?case by (metis add-diff-cancel-left add-le-cancel-right diff-0-right

diff-add-cancel)
next

case (3 d c ′ d ′)
with A have
(∀ i≤n. i 6= v c ∧ i > 0 −→ M ′ 0 i = min (dbm-add (M 0 (v c)) (M

(v c) i)) (M 0 i))
v c ′ 6= v c

unfolding DBM-reset-def by auto
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hence (M ′ 0 (v c ′) = min (dbm-add (M 0 (v c)) (M (v c) (v c ′))) (M
0 (v c ′)))

using 3 by blast
moreover from A 3 have dbm-entry-val u None (Some c ′) (M ′ 0 (v

c ′))
unfolding DBM-val-bounded-def by presburger
ultimately have dbm-entry-val u None (Some c ′) (dbm-add (M 0 (v

c)) (M (v c) (v c ′)))
using dbm-entry-dbm-min2 ′ by fastforce
with 3 have −u c ′ ≤ d + d ′ by auto
thus ?case

by (metis add-uminus-conv-diff diff-le-eq minus-add-distrib minus-le-iff )
next

case (4 d)

Here is the reason we need the assumption that the zone was not empty
before the reset. We cannot deduce anything from the current value of c
itself because we reset it. We can only ensure that we can reset the value
of c by using the value from the alternative assignment. This case is only
relevant if the tightest bounds for d were given by its original lower and
upper bounds. If they would overlap, the original zone would be empty.

from A(2 ,5 ) have
dbm-entry-val u ′′ None (Some c) (M 0 (v c))
dbm-entry-val u ′′ (Some c) None (M (v c) 0 )

unfolding DBM-val-bounded-def by auto
with 4 have − u ′′ c ≤ d u ′′ c ≤ r by auto
thus ?case by (metis minus-le-iff order .trans)

qed
} note EE = this
{ fix l r assume l ∈ S-Min-Le r ∈ S-Max-Lt

then have l < r
unfolding S-Min-Le S-Max-Lt

proof (safe, goal-cases)
case (1 c1 d1 c2 d2 )

with A have dbm-entry-val u (Some c1 ) (Some c2 ) (M ′ (v c1 ) (v c2 ))
unfolding DBM-val-bounded-def by presburger
moreover have M ′ (v c1 ) (v c2 ) = min (dbm-add (M (v c1 ) (v c))

(M (v c) (v c2 ))) (M (v c1 ) (v c2 ))
using A(3 ,7 ) 1 unfolding DBM-reset-def by metis
ultimately have dbm-entry-val u (Some c1 ) (Some c2 ) (dbm-add (M

(v c1 ) (v c)) (M (v c) (v c2 )))
using dbm-entry-dbm-min ′ by fastforce
with 1 have u c1 − u c2 < d1 + d2 by auto
then show ?case by (metis add.assoc add.commute diff-less-eq)
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next
case (2 c ′ d)
with A have
(∀ i≤n. i 6= v c ∧ i > 0 −→ M ′ i 0 = min (dbm-add (M i (v c)) (M

(v c) 0 )) (M i 0 ))
v c ′ 6= v c

unfolding DBM-reset-def by auto
hence (M ′ (v c ′) 0 = min (dbm-add (M (v c ′) (v c)) (M (v c) 0 )) (M

(v c ′) 0 ))
using 2 by blast
moreover from A 2 have dbm-entry-val u (Some c ′) None (M ′ (v

c ′) 0 )
unfolding DBM-val-bounded-def by presburger
ultimately have dbm-entry-val u (Some c ′) None (dbm-add (M (v c ′)

(v c)) (M (v c) 0 ))
using dbm-entry-dbm-min3 ′ by fastforce
with 2 have u c ′ < d + r by auto
thus ?case by (metis add-less-imp-less-right diff-add-cancel gt-swap)

next
case (3 d c ′ da)
with A have
(∀ i≤n. i 6= v c ∧ i > 0 −→ M ′ 0 i = min (dbm-add (M 0 (v c)) (M

(v c) i)) (M 0 i))
v c ′ 6= v c

unfolding DBM-reset-def by auto
hence (M ′ 0 (v c ′) = min (dbm-add (M 0 (v c)) (M (v c) (v c ′))) (M

0 (v c ′)))
using 3 by blast
moreover from A 3 have dbm-entry-val u None (Some c ′) (M ′ 0 (v

c ′))
unfolding DBM-val-bounded-def by presburger
ultimately have dbm-entry-val u None (Some c ′) (dbm-add (M 0 (v

c)) (M (v c) (v c ′)))
using dbm-entry-dbm-min2 ′ by fastforce
with 3 have −u c ′ < d + da by auto
thus ?case by (metis add.commute diff-less-eq uminus-add-conv-diff )

next
case (4 d)
from A(2 ,5 ) have

dbm-entry-val u ′′ None (Some c) (M 0 (v c))
dbm-entry-val u ′′ (Some c) None (M (v c) 0 )

unfolding DBM-val-bounded-def by auto
with 4 have − u ′′ c ≤ d u ′′ c < r by auto
thus ?case by (metis minus-le-iff neq-iff not-le order .strict-trans)
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qed
} note EL = this
{ fix l r assume l ∈ S-Min-Lt r ∈ S-Max-Le

then have l < r
unfolding S-Min-Lt S-Max-Le

proof (safe, goal-cases)
case (1 c1 d1 c2 d2 )

with A have dbm-entry-val u (Some c1 ) (Some c2 ) (M ′ (v c1 ) (v c2 ))
unfolding DBM-val-bounded-def by presburger
moreover have M ′ (v c1 ) (v c2 ) = min (dbm-add (M (v c1 ) (v c))

(M (v c) (v c2 ))) (M (v c1 ) (v c2 ))
using A(3 ,7 ) 1 unfolding DBM-reset-def by metis
ultimately have dbm-entry-val u (Some c1 ) (Some c2 ) (dbm-add (M

(v c1 ) (v c)) (M (v c) (v c2 )))
using dbm-entry-dbm-min ′ by fastforce
with 1 have u c1 − u c2 < d1 + d2 by auto
thus ?case by (metis add.assoc add.commute diff-less-eq)

next
case (2 c ′ d)
with A have
(∀ i≤n. i 6= v c ∧ i > 0 −→ M ′ i 0 = min (dbm-add (M i (v c)) (M

(v c) 0 )) (M i 0 ))
v c ′ 6= v c

unfolding DBM-reset-def by auto
hence (M ′ (v c ′) 0 = min (dbm-add (M (v c ′) (v c)) (M (v c) 0 )) (M

(v c ′) 0 ))
using 2 by blast
moreover from A 2 have dbm-entry-val u (Some c ′) None (M ′ (v

c ′) 0 )
unfolding DBM-val-bounded-def by presburger
ultimately have dbm-entry-val u (Some c ′) None (dbm-add (M (v c ′)

(v c)) (M (v c) 0 ))
using dbm-entry-dbm-min3 ′ by fastforce
with 2 have u c ′ < d + r by auto
thus ?case by (metis add-less-imp-less-right diff-add-cancel gt-swap)

next
case (3 d c ′ da)
with A have
(∀ i≤n. i 6= v c ∧ i > 0 −→ M ′ 0 i = min (dbm-add (M 0 (v c)) (M

(v c) i)) (M 0 i))
v c ′ 6= v c

unfolding DBM-reset-def by auto
hence (M ′ 0 (v c ′) = min (dbm-add (M 0 (v c)) (M (v c) (v c ′))) (M

0 (v c ′)))
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using 3 by blast
moreover from A 3 have dbm-entry-val u None (Some c ′) (M ′ 0 (v

c ′))
unfolding DBM-val-bounded-def by presburger
ultimately have dbm-entry-val u None (Some c ′) (dbm-add (M 0 (v

c)) (M (v c) (v c ′)))
using dbm-entry-dbm-min2 ′ by fastforce
with 3 have −u c ′ < d + da by auto
thus ?case by (metis add.commute diff-less-eq uminus-add-conv-diff )

next
case (4 d)
from A(2 ,5 ) have

dbm-entry-val u ′′ None (Some c) (M 0 (v c))
dbm-entry-val u ′′ (Some c) None (M (v c) 0 )

unfolding DBM-val-bounded-def by auto
with 4 have − u ′′ c < d u ′′ c ≤ r by auto
thus ?case by (meson less-le-trans minus-less-iff )

qed
} note LE = this
{ fix l r assume l ∈ S-Min-Lt r ∈ S-Max-Lt

then have l < r
unfolding S-Min-Lt S-Max-Lt

proof (safe, goal-cases)
case (1 c1 d1 c2 d2 )

with A have dbm-entry-val u (Some c1 ) (Some c2 ) (M ′ (v c1 ) (v c2 ))
unfolding DBM-val-bounded-def by presburger
moreover have M ′ (v c1 ) (v c2 ) = min (dbm-add (M (v c1 ) (v c))

(M (v c) (v c2 ))) (M (v c1 ) (v c2 ))
using A(3 ,7 ) 1 unfolding DBM-reset-def by metis
ultimately have dbm-entry-val u (Some c1 ) (Some c2 ) (dbm-add (M

(v c1 ) (v c)) (M (v c) (v c2 )))
using dbm-entry-dbm-min ′ by fastforce
with 1 have u c1 − u c2 < d1 + d2 by auto
then show ?case by (metis add.assoc add.commute diff-less-eq)

next
case (2 c ′ d)
with A have
(∀ i≤n. i 6= v c ∧ i > 0−→ M ′ i 0 = min (dbm-add (M i (v c)) (M

(v c) 0 )) (M i 0 ))
v c ′ 6= v c

unfolding DBM-reset-def by auto
hence (M ′ (v c ′) 0 = min (dbm-add (M (v c ′) (v c)) (M (v c) 0 )) (M

(v c ′) 0 ))
using 2 by blast
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moreover from A 2 have dbm-entry-val u (Some c ′) None (M ′ (v
c ′) 0 )

unfolding DBM-val-bounded-def by presburger
ultimately have dbm-entry-val u (Some c ′) None (dbm-add (M (v c ′)

(v c)) (M (v c) 0 ))
using dbm-entry-dbm-min3 ′ by fastforce
with 2 have u c ′ < d + r by auto
thus ?case by (metis add-less-imp-less-right diff-add-cancel gt-swap)

next
case (3 d c ′ da)
with A have
(∀ i≤n. i 6= v c ∧ i > 0 −→ M ′ 0 i = min (dbm-add (M 0 (v c)) (M

(v c) i)) (M 0 i))
v c ′ 6= v c

unfolding DBM-reset-def by auto
hence (M ′ 0 (v c ′) = min (dbm-add (M 0 (v c)) (M (v c) (v c ′))) (M

0 (v c ′)))
using 3 by blast
moreover from A 3 have dbm-entry-val u None (Some c ′) (M ′ 0 (v

c ′))
unfolding DBM-val-bounded-def by presburger
ultimately have dbm-entry-val u None (Some c ′) (dbm-add (M 0 (v

c)) (M (v c) (v c ′)))
using dbm-entry-dbm-min2 ′ by fastforce
with 3 have −u c ′ < d + da by auto

thus ?case by (metis ab-group-add-class.ab-diff-conv-add-uminus add.commute
diff-less-eq)

next
case (4 d)
from A(2 ,5 ) have

dbm-entry-val u ′′ None (Some c) (M 0 (v c))
dbm-entry-val u ′′ (Some c) None (M (v c) 0 )

unfolding DBM-val-bounded-def by auto
with 4 have − u ′′ c ≤ d u ′′ c < r by auto
thus ?case by (metis minus-le-iff neq-iff not-le order .strict-trans)

qed
} note LL = this

obtain d ′ where d ′:
∀ t ∈ S-Min-Le. d ′ ≥ t ∀ t ∈ S-Min-Lt. d ′ > t
∀ t ∈ S-Max-Le. d ′ ≤ t ∀ t ∈ S-Max-Lt. d ′ < t

proof −
assume m:∧

d ′. [[∀ t∈S-Min-Le. t ≤ d ′; ∀ t∈S-Min-Lt. t < d ′; ∀ t∈S-Max-Le. d ′ ≤

140



t; ∀ t∈S-Max-Lt. d ′ < t]]
=⇒ thesis

let ?min-le = Max S-Min-Le
let ?min-lt = Max S-Min-Lt
let ?max-le = Min S-Max-Le
let ?max-lt = Min S-Max-Lt

show thesis
proof (cases S-Min-Le = {} ∧ S-Min-Lt = {})

case True
note T = this
show thesis
proof (cases S-Max-Le = {} ∧ S-Max-Lt = {})

case True
let ?d ′ = 0 :: ′t :: time
show thesis using True T by (intro m[of ?d ′]) auto

next
case False
let ?d =

if S-Max-Le 6= {}
then if S-Max-Lt 6= {} then min ?max-lt ?max-le else ?max-le
else ?max-lt

obtain a :: ′b where a: a < 0 using non-trivial-neg by auto
let ?d ′ = min 0 (?d + a)
{ fix x assume x ∈ S-Max-Le

with fin-max-le a have min 0 (Min S-Max-Le + a) ≤ x
by (metis Min.boundedE add-le-same-cancel1 empty-iff less-imp-le

min.coboundedI2 )
then have min 0 (Min S-Max-Le + a) ≤ x by auto

} note 1 = this
{ fix x assume x: x ∈ S-Max-Lt
have min 0 (min (Min S-Max-Lt) (Min S-Max-Le) + a) < ?max-lt

by (meson a add-less-same-cancel1 min.cobounded1 min.strict-coboundedI2
order .strict-trans2 )

also from fin-max-lt x have . . . ≤ x by auto
finally have min 0 (min (Min S-Max-Lt) (Min S-Max-Le) + a) <

x .
} note 2 = this
{ fix x assume x: x ∈ S-Max-Le
have min 0 (min (Min S-Max-Lt) (Min S-Max-Le) + a) ≤ ?max-le
by (metis le-add-same-cancel1 linear not-le a min-le-iff-disj)
also from fin-max-le x have . . . ≤ x by auto
finally have min 0 (min (Min S-Max-Lt) (Min S-Max-Le) + a) ≤

x .
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} note 3 = this
show thesis using False T a 1 2 3

by (intro m[of ?d ′], auto)
(metis Min.coboundedI add-less-same-cancel1 fin-max-lt min.boundedE

min.orderE
not-less)

qed
next

case False
note F = this
show thesis
proof (cases S-Max-Le = {} ∧ S-Max-Lt = {})

case True
let ?l =

if S-Min-Le 6= {}
then if S-Min-Lt 6= {} then max ?min-lt ?min-le else ?min-le
else ?min-lt

obtain a :: ′b where a < 0 using non-trivial-neg by blast
then have a: −a > 0 using non-trivial-neg by simp
then obtain a :: ′b where a: a > 0 by blast
let ?d ′ = ?l + a
{

fix x assume x: x ∈ S-Min-Le
then have x ≤ max ?min-lt ?min-le x ≤ ?min-le using fin-min-le

by (simp add: max.coboundedI2 )+
then have x ≤ max ?min-lt ?min-le + a x ≤ ?min-le + a using

a by (simp add: add-increasing2 )+
} note 1 = this
{

fix x assume x: x ∈ S-Min-Lt
then have x ≤ max ?min-lt ?min-le x ≤ ?min-lt using fin-min-lt

by (simp add: max.coboundedI1 )+
then have x < ?d ′ using a x by (auto simp add: add.commute

add-strict-increasing)
} note 2 = this
show thesis using True F a 1 2 by ((intro m[of ?d ′]), auto)

next
case False
let ?r =

if S-Max-Le 6= {}
then if S-Max-Lt 6= {} then min ?max-lt ?max-le else ?max-le
else ?max-lt

let ?l =
if S-Min-Le 6= {}
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then if S-Min-Lt 6= {} then max ?min-lt ?min-le else ?min-le
else ?min-lt

have 1 : x ≤ max ?min-lt ?min-le x ≤ ?min-le if x ∈ S-Min-Le for x
by (simp add: max.coboundedI2 that fin-min-le)+
{

fix x y assume x: x ∈ S-Max-Le y ∈ S-Min-Lt
then have S-Min-Lt 6= {} by auto

from LE [OF Max-in[OF fin-min-lt], OF this, OF x(1 )] have ?min-lt
≤ x by auto

} note 3 = this
{

fix x y assume x: x ∈ S-Max-Le y ∈ S-Min-Le
with EE [OF Max-in[OF fin-min-le], OF - x(1 )] have ?min-le ≤ x

by auto
} note 4 = this
{

fix x y assume x: x ∈ S-Max-Lt y ∈ S-Min-Lt
then have S-Min-Lt 6= {} by auto

from LL[OF Max-in[OF fin-min-lt], OF this, OF x(1 )] have ?min-lt
< x by auto

} note 5 = this
{

fix x y assume x: x ∈ S-Max-Lt y ∈ S-Min-Le
then have S-Min-Le 6= {} by auto

from EL[OF Max-in[OF fin-min-le], OF this, OF x(1 )] have ?min-le
< x by auto

} note 6 = this

show thesis
proof (cases ?l < ?r)

case False
then have ∗: S-Max-Le 6= {}
proof (safe, goal-cases)

case 1
with ‹¬ (S-Max-Le = {} ∧ S-Max-Lt = {})› obtain y where

y:y ∈ S-Max-Lt by auto
note 1 = 1 this
{ fix x y assume A: x ∈ S-Min-Le y ∈ S-Max-Lt

with EL[OF Max-in[OF fin-min-le] Min-in[OF fin-max-lt]]
have Max S-Min-Le < Min S-Max-Lt by auto

} note ∗∗ = this
{ fix x y assume A: x ∈ S-Min-Lt y ∈ S-Max-Lt

with LL[OF Max-in[OF fin-min-lt] Min-in[OF fin-max-lt]]
have Max S-Min-Lt < Min S-Max-Lt by auto
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} note ∗∗∗ = this
show ?case
proof (cases S-Min-Le 6= {})

case True
note T = this
show ?thesis
proof (cases S-Min-Lt 6= {})

case True
then show False using 1 T True ∗∗ ∗∗∗ by auto

next
case False with 1 T ∗∗ show False by auto

qed
next

case False
with 1 False ∗∗∗ ‹¬ (S-Min-Le = {} ∧ S-Min-Lt = {})› show

?thesis by auto
qed

qed
{ fix x y assume A: x ∈ S-Min-Lt y ∈ S-Max-Lt

with LL[OF Max-in[OF fin-min-lt] Min-in[OF fin-max-lt]]
have Max S-Min-Lt < Min S-Max-Lt by auto

} note ∗∗∗ = this
{ fix x y assume A: x ∈ S-Min-Lt y ∈ S-Max-Le

with LE [OF Max-in[OF fin-min-lt] Min-in[OF fin-max-le]]
have Max S-Min-Lt < Min S-Max-Le by auto

} note ∗∗∗∗ = this
from F False have ∗∗: S-Min-Le 6= {}
proof (safe, goal-cases)

case 1
show ?case
proof (cases S-Max-Le 6= {})

case True
note T = this
show ?thesis
proof (cases S-Max-Lt 6= {})

case True
then show ?thesis using 1 T True ∗∗∗∗ ∗∗∗ by auto

next
case False with 1 T ∗∗∗∗ show ?thesis by auto

qed
next

case False
with 1 False ∗∗∗ ‹¬ (S-Max-Le = {} ∧ S-Max-Lt = {})› show

?thesis by auto
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qed
qed
{

fix x assume x: x ∈ S-Min-Lt
then have x ≤ ?min-lt using fin-min-lt by (simp add:

max.coboundedI2 )
also have ?min-lt < ?min-le
proof (rule ccontr , goal-cases)

case 1
with x ∗∗ have 1 : ?l = ?min-lt by (auto simp: max.absorb1 )
have 2 : ?min-lt < ?max-le using ∗ ∗∗∗∗[OF x] by auto
show False
proof (cases S-Max-Lt = {})

case False
then have ?min-lt < ?max-lt using ∗ ∗∗∗[OF x] by auto
with 1 2 have ?l < ?r by auto
with ‹¬ ?l < ?r› show False by auto

next
case True
with 1 2 have ?l < ?r by auto
with ‹¬ ?l < ?r› show False by auto

qed
qed

finally have x < max ?min-lt ?min-le by (simp add: max.strict-coboundedI2 )
} note 2 = this
show thesis using F False 1 2 3 4 5 6 ∗ ∗∗ by ((intro m[of ?l]),

auto)
next

case True
then obtain d where d: ?l < d d < ?r using dense by auto
let ?d ′ = d
{

fix t assume t ∈ S-Min-Le
then have t ≤ ?l using 1 by auto
with d have t ≤ d by auto

}
moreover {

fix t assume t: t ∈ S-Min-Lt
then have t ≤ max ?min-lt ?min-le using fin-min-lt by (simp

add: max.coboundedI1 )
with t have t ≤ ?l using fin-min-lt by auto
with d have t < d by auto

}
moreover {
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fix t assume t: t ∈ S-Max-Le
then have min ?max-lt ?max-le ≤ t using fin-max-le by (simp

add: min.coboundedI2 )
then have ?r ≤ t using fin-max-le t by auto
with d have d ≤ t by auto
then have d ≤ t by (simp add: min.coboundedI2 )

}
moreover {

fix t assume t: t ∈ S-Max-Lt
then have min ?max-lt ?max-le ≤ t using fin-max-lt by (simp

add: min.coboundedI1 )
then have ?r ≤ t using fin-max-lt t by auto
with d have d < t by auto
then have d < t by (simp add: min.strict-coboundedI2 )

}
ultimately show thesis by ((intro m[of ?d ′]), auto)

qed
qed

qed
qed
have DBM-val-bounded v (u(c := d ′)) M n unfolding DBM-val-bounded-def
proof (safe, goal-cases)

case 1
with A show ?case unfolding DBM-reset-def DBM-val-bounded-def by

auto
next

case (2 c ′)
show ?case
proof (cases c = c ′)

case False
with A(2 ,7 ) have v c 6= v c ′ by auto
hence ∗:M ′ 0 (v c ′) = min (dbm-add (M 0 (v c)) (M (v c) (v c ′)))

(M 0 (v c ′))
using A(2 ,3 ,6 ,7 ) 2 unfolding DBM-reset-def by auto
from 2 A(2 ,4 ) have dbm-entry-val u None (Some c ′) (M ′ 0 (v c ′))
unfolding DBM-val-bounded-def by auto
with dbm-entry-dbm-min2 ∗ have dbm-entry-val u None (Some c ′)

(M 0 (v c ′)) by auto
thus ?thesis using False by cases auto

next
case True
note [simp] = True[symmetric]
show ?thesis
proof (cases M 0 (v c))
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case (Le t)
hence −t ∈ S-Min-Le unfolding S-Min-Le by force
hence d ′ ≥ −t using d ′ by auto
thus ?thesis using A Le by (auto simp: minus-le-iff )

next
case (Lt t)
hence −t ∈ S-Min-Lt unfolding S-Min-Lt by force
hence d ′ > −t using d ′ by auto
thus ?thesis using 2 Lt by (auto simp: minus-less-iff )

next
case INF thus ?thesis by auto

qed
qed

next
case (3 c ′)
show ?case
proof (cases c = c ′)

case False
with A(2 ,7 ) have v c 6= v c ′ by auto
hence ∗:M ′ (v c ′) 0 = min (dbm-add (M (v c ′) (v c)) (M (v c) 0 ))

(M (v c ′) 0 )
using A(2 ,3 ,6 ,7 ) 3 unfolding DBM-reset-def by auto
from 3 A(2 ,4 ) have dbm-entry-val u (Some c ′) None (M ′ (v c ′) 0 )
unfolding DBM-val-bounded-def by auto
with dbm-entry-dbm-min3 ∗ have dbm-entry-val u (Some c ′) None

(M (v c ′) 0 ) by auto
thus ?thesis using False by cases auto

next
case [symmetric, simp]: True
show ?thesis
proof (cases M (v c) 0 , goal-cases)

case (1 t)
hence t ∈ S-Max-Le unfolding S-Max-Le by force
hence d ′ ≤ t using d ′ by auto
thus ?case using 1 by (auto simp: minus-le-iff )

next
case (2 t)
hence t ∈ S-Max-Lt unfolding S-Max-Lt by force
hence d ′ < t using d ′ by auto
thus ?case using 2 by (auto simp: minus-less-iff )

next
case 3 thus ?case by auto

qed
qed
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next
case (4 c1 c2 )
show ?case
proof (cases c = c1 )

case False
note F1 = this
show ?thesis
proof (cases c = c2 )

case False
with A(2 ,6 ,7 ) F1 have v c 6= v c1 v c 6= v c2 by auto
hence ∗:M ′ (v c1 ) (v c2 ) = min (dbm-add (M (v c1 ) (v c)) (M (v

c) (v c2 ))) (M (v c1 ) (v c2 ))
using A(2 ,3 ,6 ,7 ) 4 unfolding DBM-reset-def by auto
from 4 A(2 ,4 ) have dbm-entry-val u (Some c1 ) (Some c2 ) (M ′ (v

c1 ) (v c2 ))
unfolding DBM-val-bounded-def by auto
with dbm-entry-dbm-min ∗ have dbm-entry-val u (Some c1 ) (Some

c2 ) (M (v c1 ) (v c2 )) by auto
thus ?thesis using F1 False by cases auto

next
case [symmetric, simp]: True
show ?thesis
proof (cases M (v c1 ) (v c), goal-cases)

case (1 t)
hence u c1 − t ∈ S-Min-Le unfolding S-Min-Le using A F1 4

by blast
hence d ′ ≥ u c1 − t using d ′ by auto

hence t + d ′ ≥ u c1 by (metis le-swap add-le-cancel-right
diff-add-cancel)

hence u c1 − d ′ ≤ t by (metis add-le-imp-le-right diff-add-cancel)
thus ?case using 1 F1 by auto

next
case (2 t)
hence u c1 − t ∈ S-Min-Lt unfolding S-Min-Lt using A 4 F1

by blast
hence d ′ > u c1 − t using d ′ by auto

hence d ′+ t > u c1 by (metis add-strict-right-mono diff-add-cancel)
hence u c1 − d ′ < t by (metis gt-swap add-less-cancel-right

diff-add-cancel)
thus ?case using 2 F1 by auto

next
case 3 thus ?case by auto

qed
qed
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next
case True
note T = this
show ?thesis
proof (cases c = c2 )

case False
show ?thesis
proof (cases M (v c) (v c2 ), goal-cases)

case (1 t)
hence u c2 + t ∈ S-Max-Le unfolding S-Max-Le using A 4 False

by blast
hence d ′ ≤ u c2 + t using d ′ by auto
hence d ′ − u c2 ≤ t

by (metis (no-types) add-diff-cancel-left add-ac(1 ) add-le-cancel-right
add-right-cancel diff-add-cancel)

thus ?case using 1 T False by auto
next

case (2 t)
hence u c2 + t ∈ S-Max-Lt unfolding S-Max-Lt using A 4 False

by blast
hence d ′ < u c2 + t using d ′ by auto

hence d ′ − u c2 < t by (metis gt-swap add-less-cancel-right
diff-add-cancel)

thus ?case using 2 T False by force
next

case 3 thus ?case using T by auto
qed

next
case [symmetric, simp]: True
from A 4 have ∗:dbm-entry-val u ′′ (Some c1 ) (Some c1 ) (M (v c1 )

(v c1 ))
unfolding DBM-val-bounded-def by auto
show ?thesis using True T
proof (cases M (v c1 ) (v c1 ), goal-cases)

case (1 t)
with ∗ have 0 ≤ t by auto
thus ?case using 1 by auto

next
case (2 t)
with ∗ have 0 < t by auto
thus ?case using 2 by auto

next
case 3 thus ?case by auto

qed
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qed
qed

qed
thus ?thesis using A(1 ) by blast

qed

lemma DBM-reset-sound2 :
assumes v c ≤ n DBM-reset M n (v c) d M ′ DBM-val-bounded v u M ′ n
shows u c = d

using assms unfolding DBM-val-bounded-def DBM-reset-def
by fastforce

lemma DBM-reset-sound ′′:
fixes M v c n d
defines M ′ ≡ reset M n (v c) d
assumes clock-numbering ′ v n v c ≤ n DBM-val-bounded v u M ′ n

DBM-val-bounded v u ′′ M n
obtains d ′ where DBM-val-bounded v (u(c := d ′)) M n

proof −
assume A:

∧
d ′. DBM-val-bounded v (u(c := d ′)) M n =⇒ thesis

from assms DBM-reset-reset[of v c n M d]
have ∗:DBM-reset M n (v c) d M ′ by (auto simp add: M ′-def )
with DBM-reset-sound ′[of v n c M d M ′, OF - - this] assms obtain d ′

where
DBM-val-bounded v (u(c := d ′)) M n by auto
with A show thesis by auto

qed

lemma DBM-reset-sound:
fixes M v c n d
defines M ′ ≡ reset M n (v c) d
assumes ∀ k≤n. k > 0 −→ (∃ c. v c = k) clock-numbering ′ v n v c ≤ n

u ∈ [M ′]v,n
obtains d ′ where u(c := d ′) ∈[M ]v,n

proof (cases [M ]v,n = {})
case False
then obtain u ′ where DBM-val-bounded v u ′ M n unfolding DBM-zone-repr-def

by auto
from DBM-reset-sound ′′[OF assms(3−4 ) - this] assms(1 ,5 ) that show

?thesis
unfolding DBM-zone-repr-def by auto

next
case True
with DBM-reset-complete-empty ′[OF assms(2 ) - - DBM-reset-reset, of v
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c M u d] assms show ?thesis
unfolding DBM-zone-repr-def by simp

qed

lemma DBM-reset ′-complete ′:
assumes DBM-val-bounded v u M n clock-numbering ′ v n ∀ c ∈ set cs. v

c ≤ n
shows ∃ u ′. DBM-val-bounded v u ′ (reset ′ M n cs v d) n

using assms
proof (induction cs)

case Nil thus ?case by auto
next

case (Cons c cs)
let ?M ′ = reset ′ M n cs v d
let ?M ′′ = reset ?M ′ n (v c) d
from Cons obtain u ′ where u ′: DBM-val-bounded v u ′ ?M ′ n by fastforce
from Cons(3 ,4 ) have 0 < v c v c ≤ n by auto
from DBM-reset-reset[OF this] have ∗∗: DBM-reset ?M ′ n (v c) d ?M ′′

by fast
from Cons(4 ) have v c ≤ n by auto
from DBM-reset-complete[of v n c ?M ′ d ?M ′′, OF Cons(3 ) this ∗∗ u ′]
have DBM-val-bounded v (u ′(c := d)) (reset (reset ′ M n cs v d) n (v c)

d) n by fast
thus ?case by auto

qed

lemma DBM-reset ′-complete:
assumes DBM-val-bounded v u M n clock-numbering ′ v n ∀ c ∈ set cs. v

c ≤ n
shows DBM-val-bounded v ([cs → d]u) (reset ′ M n cs v d) n

using assms
proof (induction cs)

case Nil thus ?case by auto
next

case (Cons c cs)
let ?M ′ = reset ′ M n cs v d
let ?M ′′ = reset ?M ′ n (v c) d
from Cons have ∗: DBM-val-bounded v ([cs→d]u) (reset ′ M n cs v d) n

by fastforce
from Cons(3 ,4 ) have 0 < v c v c ≤ n by auto
from DBM-reset-reset[OF this] have ∗∗: DBM-reset ?M ′ n (v c) d ?M ′′

by fast
from Cons(4 ) have v c ≤ n by auto
from DBM-reset-complete[of v n c ?M ′ d ?M ′′, OF Cons(3 ) this ∗∗ ∗]
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have ∗∗∗:DBM-val-bounded v ([c#cs→d]u) (reset (reset ′ M n cs v d) n
(v c) d) n by simp

have reset ′ M n (c#cs) v d = reset (reset ′ M n cs v d) n (v c) d by auto
with ∗∗∗ show ?case by presburger

qed

lemma DBM-reset ′-sound-empty:
assumes clock-numbering ′ v n ∀ c ∈ set cs. v c ≤ n

∀ u . ¬ DBM-val-bounded v u (reset ′ M n cs v d) n
shows ¬ DBM-val-bounded v u M n

using assms DBM-reset ′-complete by metis

fun set-clocks :: ′c list ⇒ ′t::time list⇒ ( ′c, ′t) cval ⇒ ( ′c, ′t) cval
where

set-clocks [] - u = u |
set-clocks - [] u = u |
set-clocks (c#cs) (t#ts) u = (set-clocks cs ts (u(c:=t)))

lemma DBM-reset ′-sound ′:
fixes M v c n d cs
assumes clock-numbering ′ v n ∀ c ∈ set cs. v c ≤ n

DBM-val-bounded v u (reset ′ M n cs v d) n DBM-val-bounded v u ′′

M n
shows ∃ ts. DBM-val-bounded v (set-clocks cs ts u) M n

using assms
proof (induction cs arbitrary: M u)

case Nil
hence DBM-val-bounded v (set-clocks [] [] u) M n by auto
thus ?case by blast

next
case (Cons c ′ cs)
let ?M ′ = reset ′ M n (c ′ # cs) v d
let ?M ′′ = reset ′ M n cs v d
from DBM-reset ′-complete[OF Cons(5 ) Cons(2 )] Cons(3 )
have u ′′: DBM-val-bounded v ([cs→d]u ′′) ?M ′′ n by fastforce
from Cons(3 ,4 ) have v c ′ ≤ n DBM-val-bounded v u (reset ?M ′′ n (v c ′)

d) n by auto
from DBM-reset-sound ′′[OF Cons(2 ) this u ′′]
obtain d ′ where ∗∗:DBM-val-bounded v (u(c ′ := d ′)) ?M ′′ n by blast
from Cons.IH [OF Cons.prems(1 ) - ∗∗ Cons.prems(4 )] Cons.prems(2 )
obtain ts where ts:DBM-val-bounded v (set-clocks cs ts (u(c ′ := d ′))) M

n by fastforce
hence DBM-val-bounded v (set-clocks (c ′ # cs) (d ′#ts) u) M n by auto
thus ?case by fast
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qed

lemma DBM-reset ′-resets:
fixes M v c n d cs
assumes ∀ k≤n. k > 0 −→ (∃ c. v c = k) clock-numbering ′ v n ∀ c ∈ set

cs. v c ≤ n
DBM-val-bounded v u (reset ′ M n cs v d) n

shows ∀ c ∈ set cs. u c = d
using assms
proof (induction cs arbitrary: M u)

case Nil thus ?case by auto
next

case (Cons c ′ cs)
let ?M ′ = reset ′ M n (c ′ # cs) v d
let ?M ′′ = reset ′ M n cs v d
from Cons(4 ,5 ) have v c ′ ≤ n DBM-val-bounded v u (reset ?M ′′ n (v c ′)

d) n by auto
from DBM-reset-sound2 [OF this(1 ) - Cons(5 ), of ?M ′′ d] DBM-reset-reset[OF

- this(1 ), of ?M ′′ d] Cons(3 )
have c ′:u c ′ = d by auto
from Cons(4 ,5 ) have v c ′ ≤ n DBM-val-bounded v u (reset ?M ′′ n (v c ′)

d) n by auto
with DBM-reset-sound[OF Cons.prems(1 ,2 ) this(1 )]
obtain d ′ where ∗∗:DBM-val-bounded v (u(c ′ := d ′)) ?M ′′ n unfolding

DBM-zone-repr-def by blast
from Cons.IH [OF Cons.prems(1 ,2 ) - ∗∗] Cons.prems(3 ) have ∀ c∈set

cs. (u(c ′ := d ′)) c = d by auto
thus ?case using c ′

by (auto split: if-split-asm)
qed

lemma DBM-reset ′-resets ′:
fixes M :: ( ′t :: time) DBM and v c n d cs
assumes clock-numbering ′ v n ∀ c ∈ set cs. v c ≤ n DBM-val-bounded v

u (reset ′ M n cs v d) n
DBM-val-bounded v u ′′ M n

shows ∀ c ∈ set cs. u c = d
using assms
proof (induction cs arbitrary: M u)

case Nil thus ?case by auto
next

case (Cons c ′ cs)
let ?M ′ = reset ′ M n (c ′ # cs) v d
let ?M ′′ = reset ′ M n cs v d
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from DBM-reset ′-complete[OF Cons(5 ) Cons(2 )] Cons(3 )
have u ′′: DBM-val-bounded v ([cs→d]u ′′) ?M ′′ n by fastforce
from Cons(3 ,4 ) have v c ′ ≤ n DBM-val-bounded v u (reset ?M ′′ n (v c ′)

d) n by auto
from DBM-reset-sound2 [OF this(1 ) - Cons(4 ), of ?M ′′ d] DBM-reset-reset[OF

- this(1 ), of ?M ′′ d] Cons(2 )
have c ′:u c ′ = d by auto
from Cons(3 ,4 ) have v c ′ ≤ n DBM-val-bounded v u (reset ?M ′′ n (v c ′)

d) n by auto
from DBM-reset-sound ′′[OF Cons(2 ) this u ′′]
obtain d ′ where ∗∗:DBM-val-bounded v (u(c ′ := d ′)) ?M ′′ n by blast
from Cons.IH [OF Cons.prems(1 ) - ∗∗ Cons.prems(4 )] Cons.prems(2 )
have ∀ c∈set cs. (u(c ′ := d ′)) c = d by auto
thus ?case using c ′

by (auto split: if-split-asm)
qed

lemma DBM-reset ′-neg-diag-preservation ′:
fixes M :: ( ′t :: time) DBM
assumes k≤n M k k < 0 clock-numbering v ∀ c ∈ set cs. v c ≤ n
shows reset ′ M n cs v d k k < 0 using assms

proof (induction cs)
case Nil thus ?case by auto

next
case (Cons c cs)
then have IH : reset ′ M n cs v d k k < 0 by auto
from Cons.prems have v c > 0 v c ≤ n by auto
from DBM-reset-reset[OF this, of reset ′ M n cs v d d] ‹k ≤ n›
have reset (reset ′ M n cs v d) n (v c) d k k ≤ reset ′ M n cs v d k k

unfolding DBM-reset-def
by (cases v c = k, cases k = 0 , auto simp: less[symmetric])

with IH show ?case by auto
qed

lemma DBM-reset ′-complete-empty ′:
assumes ∀ k≤n. k > 0 −→ (∃ c. v c = k) clock-numbering ′ v n

∀ c ∈ set cs. v c ≤ n ∀ u . ¬ DBM-val-bounded v u M n
shows ∀ u . ¬ DBM-val-bounded v u (reset ′ M n cs v d) n using assms

proof (induction cs)
case Nil then show ?case by simp

next
case (Cons c cs)
then have ∀ u. ¬ DBM-val-bounded v u (reset ′ M n cs v d) n by auto
from Cons.prems(2 ,3 ) DBM-reset-complete-empty ′[OF Cons.prems(1 ) -
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- DBM-reset-reset this]
show ?case by auto

qed

lemma DBM-reset ′-complete-empty:
assumes ∀ k≤n. k > 0 −→ (∃ c. v c = k) clock-numbering ′ v n

∀ c ∈ set cs. v c ≤ n ∀ u . ¬ DBM-val-bounded v u M n
shows ∀ u . ¬ DBM-val-bounded v u (reset ′ (FW M n) n cs v d) n using

assms
proof −

note A = assms
from A(4 ) have [M ]v,n = {} unfolding DBM-zone-repr-def by auto
with FW-zone-equiv[OF A(1 )] have [FW M n]v,n = {} by auto
with FW-detects-empty-zone[OF A(1 )] A(2 ) obtain i where i: i ≤ n

FW M n i i < Le 0 by blast
with DBM-reset ′-neg-diag-preservation ′ A(2 ,3 ) have

reset ′ (FW M n) n cs v d i i < Le 0
by (auto simp: neutral)
with fw-mono[of i n i reset ′ (FW M n) n cs v d n] i
have FW (reset ′ (FW M n) n cs v d) n i i < Le 0 by auto
with FW-detects-empty-zone[OF A(1 ), of reset ′ (FW M n) n cs v d]

A(2 ,3 ) i
have [FW (reset ′ (FW M n) n cs v d) n]v,n = {} by auto
with FW-zone-equiv[OF A(1 ), of reset ′ (FW M n) n cs v d] A(3 ,4 )
show ?thesis by (auto simp: DBM-zone-repr-def )

qed

lemma DBM-reset ′-empty ′:
assumes ∀ k≤n. k > 0 −→ (∃ c. v c = k) clock-numbering ′ v n ∀ c ∈ set

cs. v c ≤ n
shows [M ]v,n = {} ←→ [reset ′ (FW M n) n cs v d]v,n = {}

proof
let ?M ′ = reset ′ (FW M n) n cs v d
assume A: [M ]v,n = {}
hence ∀ u . ¬ DBM-val-bounded v u M n unfolding DBM-zone-repr-def

by auto
with DBM-reset ′-complete-empty[OF assms] show [?M ′]v,n = {} unfold-

ing DBM-zone-repr-def by auto
next

let ?M ′ = reset ′ (FW M n) n cs v d
assume A: [?M ′]v,n = {}
hence ∀ u . ¬ DBM-val-bounded v u ?M ′ n unfolding DBM-zone-repr-def

by auto
from DBM-reset ′-sound-empty[OF assms(2 ,3 ) this] have ∀ u. ¬ DBM-val-bounded
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v u (FW M n) n by auto
with FW-zone-equiv[OF assms(1 )] show [M ]v,n = {} unfolding DBM-zone-repr-def

by auto
qed

lemma DBM-reset ′-empty:
assumes ∀ k≤n. k > 0 −→ (∃ c. v c = k) clock-numbering ′ v n ∀ c ∈ set

cs. v c ≤ n
shows [M ]v,n = {} ←→ [reset ′ M n cs v d]v,n = {}

proof
let ?M ′ = reset ′ M n cs v d
assume A: [M ]v,n = {}
hence ∀ u . ¬ DBM-val-bounded v u M n unfolding DBM-zone-repr-def

by auto
with DBM-reset ′-complete-empty ′[OF assms] show [?M ′]v,n = {} un-

folding DBM-zone-repr-def by auto
next

let ?M ′ = reset ′ M n cs v d
assume A: [?M ′]v,n = {}
hence ∀ u . ¬ DBM-val-bounded v u ?M ′ n unfolding DBM-zone-repr-def

by auto
from DBM-reset ′-sound-empty[OF assms(2 ,3 ) this] have ∀ u. ¬ DBM-val-bounded

v u M n by auto
with FW-zone-equiv[OF assms(1 )] show [M ]v,n = {} unfolding DBM-zone-repr-def

by auto
qed

lemma DBM-reset ′-sound:
assumes ∀ k≤n. k > 0 −→ (∃ c. v c = k) clock-numbering ′ v n

and ∀ c∈set cs. v c ≤ n
and u ∈ [reset ′ M n cs v d]v,n

shows ∃ ts. set-clocks cs ts u ∈ [M ]v,n
proof −

from DBM-reset ′-empty[OF assms(1−3 )] assms(4 ) obtain u ′ where u ′

∈ [M ]v,n by blast
with DBM-reset ′-sound ′[OF assms(2 ,3 )] assms(4 ) show ?thesis unfold-

ing DBM-zone-repr-def by blast
qed

3.5 Misc Preservation Lemmas

lemma get-const-sum[simp]:
a 6= ∞ =⇒ b 6= ∞ =⇒ get-const a ∈ � =⇒ get-const b ∈ � =⇒ get-const

(a + b) ∈ �
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by (cases a) (cases b, auto simp: add)+

lemma sum-not-inf-dest:
assumes a + b 6= (∞ :: - DBMEntry)
shows a 6= (∞ :: - DBMEntry) ∧ b 6= (∞ :: - DBMEntry)

using assms by (cases a; cases b; simp add: add)

lemma sum-not-inf-int:
assumes a + b 6= (∞ :: - DBMEntry) get-const a ∈ � get-const b ∈ �
shows get-const (a + b) ∈ �

using assms sum-not-inf-dest by fastforce

lemma int-fw-upd:
∀ i ≤ n. ∀ j ≤ n. m i j 6= ∞ −→ get-const (m i j) ∈ � =⇒ k ≤ n =⇒ i
≤ n =⇒ j ≤ n
=⇒ i ′ ≤ n =⇒ j ′ ≤ n =⇒ (fw-upd m k i j i ′ j ′) 6= ∞
=⇒ get-const (fw-upd m k i j i ′ j ′) ∈ �

proof (goal-cases)
case 1
show ?thesis
proof (cases i = i ′ ∧ j = j ′)

case True
with 1 show ?thesis by (fastforce simp: fw-upd-def upd-def min-def

dest: sum-not-inf-dest)
next

case False
with 1 show ?thesis by (auto simp : fw-upd-def upd-def )

qed
qed

abbreviation dbm-int M n ≡ ∀ i≤n. ∀ j≤n. M i j 6= ∞ −→ get-const (M
i j) ∈ �

abbreviation dbm-int-all M ≡ ∀ i. ∀ j. M i j 6= ∞ −→ get-const (M i j)
∈ �

lemma dbm-intI :
dbm-int-all M =⇒ dbm-int M n

by auto

lemma fwi-int-preservation:
dbm-int (fwi M n k i j) n if dbm-int M n k ≤ n
apply (induction - (i, j) arbitrary: i j rule: wf-induct[of less-than <∗lex∗>

less-than])
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apply force
subgoal for i j

using that
by (cases i; cases j) (auto 4 3 dest: sum-not-inf-dest simp: min-def

fw-upd-def upd-def )
done

lemma fw-int-preservation:
dbm-int (fw M n k) n if dbm-int M n k ≤ n
using ‹k ≤ n› apply (induction k)
using that apply simp
apply (rule fwi-int-preservation; auto)

using that by (simp) (rule fwi-int-preservation; auto)

lemma FW-int-preservation:
assumes dbm-int M n
shows dbm-int (FW M n) n
using fw-int-preservation[OF assms(1 )] by auto

lemma FW-int-all-preservation:
assumes dbm-int-all M
shows dbm-int-all (FW M n)

using assms
apply clarify
subgoal for i j
apply (cases i ≤ n)
apply (cases j ≤ n)
by (auto simp: FW-int-preservation[OF dbm-intI [OF assms(1 )]] FW-out-of-bounds1
FW-out-of-bounds2 )
done

lemma And-int-all-preservation[intro]:
assumes dbm-int-all M1 dbm-int-all M2
shows dbm-int-all (And M1 M2 )

using assms by (auto simp: min-def )

lemma And-int-preservation:
assumes dbm-int M1 n dbm-int M2 n
shows dbm-int (And M1 M2 ) n

using assms by (auto simp: min-def )

lemma up-int-all-preservation:
dbm-int-all (M :: (( ′t :: {time, ring-1}) DBM )) =⇒ dbm-int-all (up M )
unfolding up-def min-def add[symmetric] by (auto dest: sum-not-inf-dest
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split: if-split-asm)

lemma up-int-preservation:
dbm-int (M :: (( ′t :: {time, ring-1}) DBM )) n =⇒ dbm-int (up M ) n
unfolding up-def min-def add[symmetric] by (auto dest: sum-not-inf-dest

split: if-split-asm)

lemma DBM-reset-int-preservation ′:
assumes dbm-int M n DBM-reset M n k d M ′ d ∈ � k ≤ n
shows dbm-int M ′ n

proof clarify
fix i j
assume A: i ≤ n j ≤ n M ′ i j 6= ∞
from assms(2 ) show get-const (M ′ i j) ∈ � unfolding DBM-reset-def

apply (cases i = k; cases j = k)
apply simp

subgoal using A assms(1 ,4 ) by presburger
apply (cases j = 0 )

subgoal using assms(3 ) by simp
subgoal using A by simp
apply simp
apply (cases i = 0 )

subgoal using assms(3 ) by simp
subgoal using A by simp
using A apply simp
apply (simp split: split-min, safe)
subgoal
proof goal-cases

case 1
then have ∗: M i k + M k j 6= ∞ unfolding add min-def by meson
with sum-not-inf-dest have M i k 6= ∞ M k j 6= ∞ by auto
with 1 (3 ,4 ) assms(1 ,4 ) have get-const (M i k) ∈ � get-const (M k

j) ∈ � by auto
with sum-not-inf-int[folded add, OF ∗] show ?case unfolding add

by auto
qed
subgoal
proof goal-cases

case 1
then have ∗: M i j 6= ∞ unfolding add min-def by meson
with 1 (3 ,4 ) assms(1 ,4 ) show ?case by auto

qed
done
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qed

lemma DBM-reset-int-preservation:
fixes M :: ( ′t :: {time,ring-1}) DBM
assumes dbm-int M n d ∈ � 0 < k k ≤ n
shows dbm-int (reset M n k d) n

using assms(3−) DBM-reset-int-preservation ′[OF assms(1 ) DBM-reset-reset
assms(2 )] by blast

lemma DBM-reset-int-all-preservation:
fixes M :: ( ′t :: {time,ring-1}) DBM
assumes dbm-int-all M d ∈ �
shows dbm-int-all (reset M n k d)

using assms
apply clarify
subgoal for i j

by (cases i = k; cases j = k;
auto simp: reset-def min-def add[symmetric] dest!: sum-not-inf-dest
)

done

lemma DBM-reset ′-int-all-preservation:
fixes M :: ( ′t :: {time, ring-1}) DBM
assumes dbm-int-all M d ∈ �
shows dbm-int-all (reset ′ M n cs v d) using assms

by (induction cs) (simp | rule DBM-reset-int-all-preservation)+

lemma DBM-reset ′-int-preservation:
fixes M :: ( ′t :: {time, ring-1}) DBM
assumes dbm-int M n d ∈ � ∀ c. v c > 0 ∀ c ∈ set cs. v c ≤ n
shows dbm-int (reset ′ M n cs v d) n using assms

proof (induction cs)
case Nil then show ?case by simp

next
case (Cons c cs)
from Cons.IH [OF Cons.prems(1 ,2 ,3 )] Cons.prems(4 ) have dbm-int (reset ′

M n cs v d) n
by fastforce

from DBM-reset-int-preservation[OF this Cons.prems(2 ), of v c] Cons.prems(3 ,4 )
show ?case

by auto
qed

lemma reset-set1 :
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∀ c ∈ set cs. ([cs→d]u) c = d
by (induction cs) auto

lemma reset-set11 :
∀ c. c /∈ set cs −→ ([cs→d]u) c = u c

by (induction cs) auto

lemma reset-set2 :
∀ c. c /∈ set cs −→ (set-clocks cs ts u)c = u c

proof (induction cs arbitrary: ts u)
case Nil then show ?case by auto

next
case Cons then show ?case
proof (cases ts, goal-cases)
case Nil then show ?thesis by simp

next
case (2 a ′) then show ?case by auto

qed
qed

lemma reset-set:
assumes ∀ c ∈ set cs. u c = d
shows [cs→d](set-clocks cs ts u) = u

proof
fix c
show ([cs→d]set-clocks cs ts u) c = u c
proof (cases c ∈ set cs)

case True
hence ([cs→d]set-clocks cs ts u) c = d using reset-set1 by fast
also have d = u c using assms True by auto
finally show ?thesis by auto

next
case False
hence ([cs→d]set-clocks cs ts u) c = set-clocks cs ts u c by (simp add:

reset-set11 )
also with False have . . . = u c by (simp add: reset-set2 )
finally show ?thesis by auto

qed
qed

3.5.1 Unused theorems

lemma canonical-cyc-free:
canonical M n =⇒ ∀ i ≤ n. M i i ≥ 0 =⇒ cyc-free M n
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by (auto dest!: canonical-len)

lemma canonical-cyc-free2 :
canonical M n =⇒ cyc-free M n ←→ (∀ i ≤ n. M i i ≥ 0 )
apply safe
apply (simp add: cyc-free-diag-dest ′)
using canonical-cyc-free by blast

lemma DBM-reset ′-diag-preservation:
fixes M :: ( ′t :: time) DBM
assumes ∀ k≤n. M k k ≤ 0 clock-numbering v ∀ c ∈ set cs. v c ≤ n
shows ∀ k≤n. reset ′ M n cs v d k k ≤ 0 using assms

proof (induction cs)
case Nil thus ?case by auto

next
case (Cons c cs)
then have IH : ∀ k≤n. reset ′ M n cs v d k k ≤ 0 by auto
from Cons.prems have v c > 0 v c ≤ n by auto
from DBM-reset-diag-preservation[of n reset ′ M n cs v d, OF IH DBM-reset-reset,

of v c, OF this]
show ?case by simp

qed

end
theory DBM-Misc

imports
Main
HOL.Real

begin

lemma finite-set-of-finite-funs2 :
fixes A :: ′a set

and B :: ′b set
and C :: ′c set
and d :: ′c

assumes finite A
and finite B
and finite C

shows finite {f . ∀ x. ∀ y. (x ∈ A ∧ y ∈ B −→ f x y ∈ C ) ∧ (x /∈ A −→ f
x y = d) ∧ (y /∈ B −→ f x y = d)}
proof −

let ?S = {f . ∀ x. ∀ y. (x ∈ A ∧ y ∈ B −→ f x y ∈ C ) ∧ (x /∈ A −→ f x y
= d) ∧ (y /∈ B −→ f x y = d)}

let ?R = {g. ∀ x. (x ∈ B −→ g x ∈ C ) ∧ (x /∈ B −→ g x = d)}
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let ?Q = {f . ∀ x. (x ∈ A −→ f x ∈ ?R) ∧ (x /∈ A −→ f x = (λy. d))}
from finite-set-of-finite-funs[OF assms(2 ,3 )] have finite ?R .
from finite-set-of-finite-funs[OF assms(1 ) this, of λ y. d] have finite ?Q

.
moreover have ?S = ?Q

by force+
ultimately show ?thesis by simp

qed

end

3.6 Extrapolation of DBMs

theory DBM-Normalization
imports

DBM-Basics
DBM-Misc
HOL−Eisbach.Eisbach

begin

NB: The journal paper on extrapolations based on lower and upper bounds
[1] provides slightly incorrect definitions that would always set (lower) bounds
of the form M 0 i to ∞. To fix this, we use two invariants that can also be
found in TChecker’s DBM library, for instance:

1. Lower bounds are always nonnegative, i.e. ∀ i ≤ n. M 0 i ≤ 0 (see
extra-lup-lower-bounds).

2. Entries to the diagonal is always normalized to Le 0, Lt 0 or ∞. This
makes it again obvious that the set of normalized DBMs is finite.

lemmas dbm-less-simps[simp] = dbm-lt-code-simps[folded DBM .less]

lemma dbm-less-eq-simps[simp]:
Le a ≤ Le b ←→ a ≤ b
Le a ≤ Lt b ←→ a < b
Lt a ≤ Le b ←→ a ≤ b
Lt a ≤ Lt b ←→ a ≤ b
unfolding less-eq dbm-le-def by auto

lemma Le-less-Lt[simp]: Le x < Lt x ←→ False
using leD by blast

3.6.1 Classical extrapolation

This is the implementation of the classical extrapolation operator (ExtraM ).
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fun norm-upper :: ( ′t::linorder) DBMEntry ⇒ ′t ⇒ ′t DBMEntry
where

norm-upper e t = (if Le t ≺ e then ∞ else e)

fun norm-lower :: ( ′t::linorder) DBMEntry ⇒ ′t ⇒ ′t DBMEntry
where

norm-lower e t = (if e ≺ Lt t then Lt t else e)

definition
norm-diag e = (if e ≺ Le 0 then Lt 0 else if e = Le 0 then e else ∞)

Note that literature pretends that 0 would have a bound of negative infinity
in k and thus defines normalization uniformly. The easiest way to get around
this seems to explicate this in the definition as below.
definition norm :: ( ′t :: linordered-ab-group-add) DBM ⇒ (nat ⇒ ′t) ⇒
nat ⇒ ′t DBM
where

norm M k n ≡ λi j.
let ub = if i > 0 then k i else 0 in
let lb = if j > 0 then − k j else 0 in
if i ≤ n ∧ j ≤ n then

if i 6= j then norm-lower (norm-upper (M i j) ub) lb else norm-diag
(M i j)

else M i j

3.6.2 Extrapolations based on lower and upper bounds

This is the implementation of the LU-bounds based extrapolation operation
(Extra-{LU}).
definition extra-lu ::
( ′t :: linordered-ab-group-add) DBM ⇒ (nat ⇒ ′t) ⇒ (nat ⇒ ′t) ⇒ nat
⇒ ′t DBM
where

extra-lu M l u n ≡ λi j.
let ub = if i > 0 then l i else 0 in
let lb = if j > 0 then − u j else 0 in
if i ≤ n ∧ j ≤ n then

if i 6= j then norm-lower (norm-upper (M i j) ub) lb else norm-diag
(M i j)

else M i j

lemma norm-is-extra:
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norm M k n = extra-lu M k k n
unfolding norm-def extra-lu-def ..

This is the implementation of the LU-bounds based extrapolation operation
(Extra-{LU}^+).
definition extra-lup ::
( ′t :: linordered-ab-group-add) DBM ⇒ (nat ⇒ ′t) ⇒ (nat ⇒ ′t) ⇒ nat
⇒ ′t DBM
where

extra-lup M l u n ≡ λi j.
let ub = if i > 0 then Lt (l i) else Le 0 ;

lb = if j > 0 then Lt (− u j) else Lt 0
in
if i ≤ n ∧ j ≤ n then

if i 6= j then
if ub ≺ M i j then ∞
else if i > 0 ∧ M 0 i ≺ Lt (− l i) then ∞
else if i > 0 ∧ M 0 j ≺ lb then ∞
else if i = 0 ∧ M 0 j ≺ lb then Lt (− u j)
else M i j

else norm-diag (M i j)
else M i j

method csimp = (clarsimp simp: extra-lup-def Let-def DBM .less[symmetric]
not-less any-le-inf neutral)

method solve = csimp?; safe?; (csimp | meson Lt-le-LeI le-less le-less-trans
less-asym ′); fail

////////lemma/////////////////////////////////////////extrapolations-diag-preservation:////////////extra-lu////M///L////U///n//i///i///=////M///i//i
///////////extra-lup///M///L///U//n//i//i///=///M//i/i////////norm///M//k///n//i/i///=////M//i/i/////////////unfolding///////////////extra-lu-def
///////////////extra-lup-def////////////norm-def//////////Let-def///by///////auto

lemma
assumes ∀ i ≤ n. i > 0 −→ M 0 i ≤ 0 ∀ i ≤ n. U i ≥ 0
shows

extra-lu-lower-bounds: ∀ i ≤ n. i > 0 −→ extra-lu M L U n 0 i ≤ 0
and

norm-lower-bounds: ∀ i ≤ n. i > 0 −→ norm M U n 0 i ≤ 0 and
extra-lup-lower-bounds: ∀ i ≤ n. i > 0 −→ extra-lup M L U n 0 i ≤ 0

using assms unfolding extra-lu-def norm-def by − (csimp; force)+

lemma extra-lu-le-extra-lup:
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assumes canonical: canonical M n
and canonical-lower-bounds: ∀ i ≤ n. i > 0 −→ M 0 i ≤ 0

shows extra-lu M l u n i j ≤ extra-lup M l u n i j
proof −

have M 0 j ≤ M i j if i ≤ n j ≤ n i > 0
proof −

have M 0 i ≤ 0
using canonical-lower-bounds ‹i ≤ n› ‹i > 0 › by simp

then have M 0 i + M i j ≤ M i j
by (simp add: add-decreasing)

also have M 0 j ≤ M 0 i + M i j
using canonical that by auto

finally (xtrans) show ?thesis .
qed
then show ?thesis

unfolding extra-lu-def Let-def by (cases i ≤ n; cases j ≤ n) (simp;
safe?; solve)+
qed

lemma extra-lu-subs-extra-lup:
assumes canonical: canonical M n and canonical-lower-bounds: ∀ i ≤ n.

i > 0 −→ M 0 i ≤ 0
shows [extra-lu M L U n]v,n ⊆ [extra-lup M L U n]v,n

using assms
by (auto intro: extra-lu-le-extra-lup simp: DBM .less-eq[symmetric] elim!:

DBM-le-subset[rotated])

3.6.3 Extrapolations are widening operators

lemma extra-lu-mono:
assumes ∀ c. v c > 0 u ∈ [M ]v,n
shows u ∈ [extra-lu M L U n]v,n (is u ∈ [?M2 ]v,n)

proof −
note A = assms
note M1 = A(2 )[unfolded DBM-zone-repr-def DBM-val-bounded-def ]
show ?thesis

unfolding DBM-zone-repr-def DBM-val-bounded-def
proof safe

show Le 0 � ?M2 0 0
using A unfolding extra-lu-def DBM-zone-repr-def DBM-val-bounded-def

dbm-le-def norm-diag-def
by auto

next
fix c assume v c ≤ n
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with M1 have M1 : dbm-entry-val u None (Some c) (M 0 (v c)) by
auto

from ‹v c ≤ n› A have ∗:
?M2 0 (v c) = norm-lower (norm-upper (M 0 (v c)) 0 ) (− U (v c))

unfolding extra-lu-def by auto
show dbm-entry-val u None (Some c) (?M2 0 (v c))
proof (cases M 0 (v c) ≺ Lt (− U (v c)))

case True
show ?thesis
proof (cases Le 0 ≺ M 0 (v c))

case True with ∗ show ?thesis by auto
next

case False
with ∗ True have ?M2 0 (v c) = Lt (− U (v c)) by auto
moreover from True dbm-entry-val-mono2 [OF M1 ] have

dbm-entry-val u None (Some c) (Lt (− U (v c)))
by auto
ultimately show ?thesis by auto

qed
next

case False
show ?thesis
proof (cases Le 0 ≺ M 0 (v c))

case True with ∗ show ?thesis by auto
next

case F : False
with M1 ∗ False show ?thesis by auto

qed
qed

next
fix c assume v c ≤ n
with M1 have M1 : dbm-entry-val u (Some c) None (M (v c) 0 ) by

auto
from ‹v c ≤ n› A have ∗:

?M2 (v c) 0 = norm-lower (norm-upper (M (v c) 0 ) (L (v c))) 0
unfolding extra-lu-def by auto
show dbm-entry-val u (Some c) None (?M2 (v c) 0 )
proof (cases Le (L (v c)) ≺ M (v c) 0 )

case True
with A(1 ,2 ) ‹v c ≤ n› have ?M2 (v c) 0 = ∞ unfolding extra-lu-def

by auto
then show ?thesis by auto

next
case False
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show ?thesis
proof (cases M (v c) 0 ≺ Lt 0 )

case True with False ∗ dbm-entry-val-mono3 [OF M1 ] show ?thesis
by auto

next
case F : False
with M1 ∗ False show ?thesis by auto

qed
qed

next
fix c1 c2 assume v c1 ≤ n v c2 ≤ n
with M1 have M1 : dbm-entry-val u (Some c1 ) (Some c2 ) (M (v c1 )

(v c2 )) by auto
show dbm-entry-val u (Some c1 ) (Some c2 ) (?M2 (v c1 ) (v c2 ))
proof (cases v c1 = v c2 )

case True
with M1 show ?thesis
by (auto simp: extra-lu-def norm-diag-def dbm-entry-val.simps dbm-lt.simps)

(meson diff-less-0-iff-less le-less-trans less-le-trans)+
next

case False
show ?thesis
proof (cases Le (L (v c1 )) ≺ M (v c1 ) (v c2 ))

case True
with A(1 ,2 ) ‹v c1 ≤ n› ‹v c2 ≤ n› ‹v c1 6= v c2 › have ?M2 (v c1 )

(v c2 ) = ∞
unfolding extra-lu-def by auto

then show ?thesis by auto
next

case False
with A(1 ,2 ) ‹v c1 ≤ n› ‹v c2 ≤ n› ‹v c1 6= v c2 › have ∗:

?M2 (v c1 ) (v c2 ) = norm-lower (M (v c1 ) (v c2 )) (− U (v c2 ))
unfolding extra-lu-def by auto

show ?thesis
proof (cases M (v c1 ) (v c2 ) ≺ Lt (− U (v c2 )))

case True
with dbm-entry-val-mono1 [OF M1 ] have

dbm-entry-val u (Some c1 ) (Some c2 ) (Lt (− U (v c2 )))
by auto

then have u c1 − u c2 < − U (v c2 ) by auto
with ∗ True show ?thesis by auto

next
case False with M1 ∗ show ?thesis by auto

qed
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qed
qed

qed
qed

lemma norm-mono:
assumes ∀ c. v c > 0 u ∈ [M ]v,n
shows u ∈ [norm M k n]v,n
using assms unfolding norm-is-extra by (rule extra-lu-mono)

3.6.4 Finiteness of extrapolations

abbreviation dbm-default M n ≡ (∀ i > n. ∀ j. M i j = 0 ) ∧ (∀ j > n.
∀ i. M i j = 0 )

lemma norm-default-preservation:
dbm-default M n =⇒ dbm-default (norm M k n) n
by (simp add: norm-def norm-diag-def DBM .neutral dbm-lt.simps)

lemma extra-lu-default-preservation:
dbm-default M n =⇒ dbm-default (extra-lu M L U n) n
by (simp add: extra-lu-def norm-diag-def DBM .neutral dbm-lt.simps)

instance int :: linordered-cancel-ab-monoid-add by (standard; simp)

lemmas finite-subset-rev[intro?] = finite-subset[rotated]
lemmas [intro?] = finite-subset

lemma extra-lu-finite:
fixes L U :: nat ⇒ nat
shows finite {extra-lu M L U n | M . dbm-default M n}

proof −
let ?u = Max {L i | i. i ≤ n} let ?l = − Max {U i | i. i ≤ n}
let ?S = (Le ‘ {d :: int. ?l ≤ d ∧ d ≤ ?u}) ∪ (Lt ‘ {d :: int. ?l ≤ d ∧ d
≤ ?u}) ∪ {Le 0 , Lt 0 , ∞}

from finite-set-of-finite-funs2 [of {0 ..n} {0 ..n} ?S ] have fin:
finite {f . ∀ x y. (x ∈ {0 ..n} ∧ y ∈ {0 ..n} −→ f x y ∈ ?S)

∧ (x /∈ {0 ..n} −→ f x y = 0 ) ∧ (y /∈ {0 ..n} −→ f x y = 0 )}
(is finite ?R)

by auto
{ fix M :: int DBM assume A: dbm-default M n

let ?M = extra-lu M L U n
from extra-lu-default-preservation[OF A] have A: dbm-default ?M n .
{ fix i j assume i ∈ {0 ..n} j ∈ {0 ..n}
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then have B: i ≤ n j ≤ n
by auto

have ?M i j ∈ ?S
proof (cases ?M i j ∈ {Le 0 , Lt 0 , ∞})

case True then show ?thesis
by auto

next
case F : False
note not-inf = this
have ?l ≤ get-const (?M i j) ∧ get-const (?M i j) ≤ ?u
proof (cases i = 0 )

case True
show ?thesis
proof (cases j = 0 )

case True
with ‹i = 0 › A F show ?thesis

unfolding extra-lu-def by (auto simp: neutral norm-diag-def )
next

case False
with ‹i = 0 › B not-inf have ?M i j ≤ Le 0 Lt (−int (U j)) ≤

?M i j
unfolding extra-lu-def by (auto simp: Let-def less[symmetric]

intro: any-le-inf )
with not-inf have get-const (?M i j) ≤ 0 −U j ≤ get-const (?M

i j)
by (cases ?M i j; auto)+

moreover from ‹j ≤ n› have − U j ≥ ?l
by (auto intro: Max-ge)

ultimately show ?thesis
by auto

qed
next

case False
then have i > 0 by simp
show ?thesis
proof (cases j = 0 )

case True
with ‹i > 0 › A(1 ) B not-inf have Lt 0 ≤ ?M i j ?M i j ≤ Le

(int (L i))
unfolding extra-lu-def by (auto simp: Let-def less[symmetric]

intro: any-le-inf )
with not-inf have 0 ≤ get-const (?M i j) get-const (?M i j) ≤ L

i
by (cases ?M i j; auto)+
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moreover from ‹i ≤ n› have L i ≤ ?u
by (auto intro: Max-ge)

ultimately show ?thesis
by auto

next
case False
with ‹i > 0 › A(1 ) B not-inf F have

Lt (−int (U j)) ≤ ?M i j ?M i j ≤ Le (int (L i))
unfolding extra-lu-def
by (auto simp: Let-def less[symmetric] neutral norm-diag-def

intro: any-le-inf split: if-split-asm)
with not-inf have − U j ≤ get-const (?M i j) get-const (?M i j)

≤ L i
by (cases ?M i j; auto)+

moreover from ‹i ≤ n› ‹j ≤ n› have ?l ≤ − U j L i ≤ ?u
by (auto intro: Max-ge)

ultimately show ?thesis
by auto

qed
qed
then show ?thesis by (cases ?M i j; auto elim: Ints-cases)

qed
} moreover
{ fix i j assume i /∈ {0 ..n}

with A have ?M i j = 0 by auto
} moreover
{ fix i j assume j /∈ {0 ..n}

with A have ?M i j = 0 by auto
} moreover note the = calculation

} then have {extra-lu M L U n | M . dbm-default M n} ⊆ ?R
by blast

with fin show ?thesis ..
qed

lemma normalized-integral-dbms-finite:
finite {norm M (k :: nat ⇒ nat) n | M . dbm-default M n}
unfolding norm-is-extra by (rule extra-lu-finite)

end

4 DBMs as Constraint Systems
theory DBM-Constraint-Systems
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imports
DBM-Operations
DBM-Normalization

begin

4.1 Misc

lemma Max-le-MinI :
assumes finite S finite T S 6= {} T 6= {}

∧
x y. x ∈ S =⇒ y ∈ T =⇒ x

≤ y
shows Max S ≤ Min T by (simp add: assms)

lemma Min-insert-cases:
assumes x = Min (insert a S) finite S
obtains (default) x = a | (elem) x ∈ S
by (metis Min-in assms finite.insertI insertE insert-not-empty)

lemma cval-add-simp[simp]:
(u ⊕ d) x = u x + d
unfolding cval-add-def by simp

lemmas [simp] = any-le-inf

lemma Le-in-between:
assumes a < b
obtains d where a ≤ Le d Le d ≤ b
using assms by atomize-elim (cases a; cases b; auto)

lemma DBMEntry-le-to-sum:
fixes e e ′ :: ′t :: time DBMEntry
assumes e ′ 6= ∞ e ≤ e ′

shows − e ′ + e ≤ 0
using assms by (cases e; cases e ′) (auto simp: DBM .neutral DBM .add

uminus)

lemma DBMEntry-le-add:
fixes a b c :: ′t :: time DBMEntry
assumes a ≤ b + c c 6= ∞
shows −c + a ≤ b
using assms
by (cases a; cases b; cases c) (auto simp: DBM .neutral DBM .add uminus

algebra-simps)

lemma DBM-triv-emptyI :
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assumes M 0 0 < 0
shows [M ]v,n = {}
using assms
unfolding DBM-zone-repr-def DBM-val-bounded-def DBM .less-eq[symmetric]

DBM .neutral by auto

4.2 Definition and Semantics of Constraint Systems

datatype ( ′x, ′v) constr =
Lower ′x ′v DBMEntry | Upper ′x ′v DBMEntry | Diff ′x ′x ′v DBMEntry

type-synonym ( ′x, ′v) cs = ( ′x, ′v) constr set

inductive entry-sem (‹- |=e -› [62 , 62 ] 62 ) where
v |=e Lt x if v < x |
v |=e Le x if v ≤ x |
v |=e ∞

inductive constr-sem (‹- |=c -› [62 , 62 ] 62 ) where
u |=c Lower x e if − u x |=e e |
u |=c Upper x e if u x |=e e |
u |=c Diff x y e if u x − u y |=e e

definition cs-sem (‹- |=cs -› [62 , 62 ] 62 ) where
u |=cs cs ←→ (∀ c ∈ cs. u |=c c)

definition cs-models (‹- |= -› [62 , 62 ] 62 ) where
cs |= c ≡ ∀ u. u |=cs cs −→ u |=c c

definition cs-equiv (‹- ≡cs -› [62 , 62 ] 62 ) where
cs ≡cs cs ′ ≡ ∀ u. u |=cs cs ←→ u |=cs cs ′

definition
closure cs ≡ {c. cs |= c}

definition
bot-cs = {Lower undefined (Lt 0 ), Upper undefined (Lt 0 )}

lemma constr-sem-less-eq-iff :
u |=c Lower x e ←→ Le (−u x) ≤ e
u |=c Upper x e ←→ Le (u x) ≤ e
u |=c Diff x y e ←→ Le (u x − u y) ≤ e
by (cases e; auto simp: constr-sem.simps entry-sem.simps)+
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lemma constr-sem-mono:
assumes e ≤ e ′

shows
u |=c Lower x e =⇒ u |=c Lower x e ′

u |=c Upper x e =⇒ u |=c Upper x e ′

u |=c Diff x y e =⇒ u |=c Diff x y e ′

using assms unfolding constr-sem-less-eq-iff by simp+

lemma constr-sem-triv[simp,intro]:
u |=c Upper x ∞ u |=c Lower y ∞ u |=c Diff x y ∞
unfolding constr-sem.simps entry-sem.simps by auto

lemma cs-sem-antimono:
assumes cs ⊆ cs ′ u |=cs cs ′

shows u |=cs cs
using assms unfolding cs-sem-def by auto

lemma cs-equivD[intro, dest]:
assumes u |=cs cs cs ≡cs cs ′

shows u |=cs cs ′

using assms unfolding cs-equiv-def by auto

lemma cs-equiv-sym:
cs ≡cs cs ′ if cs ′ ≡cs cs
using that unfolding cs-equiv-def by fast

lemma cs-equiv-union:
cs ≡cs cs ∪ cs ′ if cs ≡cs cs ′

using that unfolding cs-equiv-def cs-sem-def by blast

lemma cs-equiv-alt-def :
cs ≡cs cs ′←→ (∀ c. cs |= c ←→ cs ′ |= c)
unfolding cs-equiv-def cs-models-def cs-sem-def by auto

lemma closure-equiv:
closure cs ≡cs cs
unfolding cs-equiv-alt-def closure-def cs-models-def cs-sem-def by auto

lemma closure-superset:
cs ⊆ closure cs
unfolding closure-def cs-models-def cs-sem-def by auto

lemma bot-cs-empty:
¬ (u :: ( ′c ⇒ ′t :: linordered-ab-group-add)) |=cs bot-cs
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unfolding bot-cs-def cs-sem-def by (auto elim!: constr-sem.cases en-
try-sem.cases)

lemma finite-bot-cs:
finite bot-cs
unfolding bot-cs-def by auto

definition cs-vars where
cs-vars cs =

⋃
(set1-constr ‘ cs)

definition map-cs-vars where
map-cs-vars v cs = map-constr v id ‘ cs

lemma constr-sem-rename-vars:
assumes inj-on v S set1-constr c ⊆ S
shows (u o inv-into S v) |=c map-constr v id c ←→ u |=c c
using assms
by (cases c) (auto intro!: constr-sem.intros elim!: constr-sem.cases simp:

DBMEntry.map-id)

lemma cs-sem-rename-vars:
assumes inj-on v (cs-vars cs)
shows (u o inv-into (cs-vars cs) v) |=cs map-cs-vars v cs ←→ u |=cs cs
using assms constr-sem-rename-vars unfolding map-cs-vars-def cs-sem-def

cs-vars-def by blast

4.3 Conversion of DBMs to Constraint Systems and Back

definition dbm-to-cs :: nat ⇒ ( ′x ⇒ nat) ⇒ ( ′v :: {linorder ,zero}) DBM
⇒ ( ′x, ′v) cs where

dbm-to-cs n v M ≡ if M 0 0 < 0 then bot-cs else
{Lower x (M 0 (v x)) | x. v x ≤ n} ∪
{Upper x (M (v x) 0 ) | x. v x ≤ n} ∪
{Diff x y (M (v x) (v y)) | x y. v x ≤ n ∧ v y ≤ n}

lemma dbm-entry-val-Lower-iff :
dbm-entry-val u None (Some x) e ←→ u |=c Lower x e
by (cases e) (auto simp: constr-sem-less-eq-iff )

lemma dbm-entry-val-Upper-iff :
dbm-entry-val u (Some x) None e ←→ u |=c Upper x e
by (cases e) (auto simp: constr-sem-less-eq-iff )

lemma dbm-entry-val-Diff-iff :
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dbm-entry-val u (Some x) (Some y) e ←→ u |=c Diff x y e
by (cases e) (auto simp: constr-sem-less-eq-iff )

lemmas dbm-entry-val-constr-sem-iff =
dbm-entry-val-Lower-iff
dbm-entry-val-Upper-iff
dbm-entry-val-Diff-iff

theorem dbm-to-cs-correct:
u `v,n M ←→ u |=cs dbm-to-cs n v M
apply (rule iffI )
unfolding DBM-val-bounded-def dbm-entry-val-constr-sem-iff dbm-to-cs-def
subgoal

by (auto simp: DBM .neutral DBM .less-eq[symmetric] cs-sem-def )
using bot-cs-empty by (cases M 0 0 < 0 , auto simp: DBM .neutral

DBM .less-eq[symmetric] cs-sem-def )

definition
cs-to-dbm v cs ≡ if (∀ u. ¬u |=cs cs) then (λ- -. Lt 0 ) else (
λi j.

if i = 0 then
if j = 0 then

Le 0
else

Min (insert ∞ {e. ∃ x. Lower x e ∈ cs ∧ v x = j})
else

if j = 0 then
Min (insert ∞ {e. ∃ x. Upper x e ∈ cs ∧ v x = i})

else
Min (insert ∞ {e. ∃ x y. Diff x y e ∈ cs ∧ v x = i ∧ v y = j})

)

lemma finite-dbm-to-cs:
assumes finite {x. v x ≤ n}
shows finite (dbm-to-cs n v M )
using [[simproc add: finite-Collect]] unfolding dbm-to-cs-def
by (auto intro: assms simp: finite-bot-cs)

lemma empty-dbm-empty:
u `v,n (λ- -. Lt 0 ) ←→ False
unfolding DBM-val-bounded-def by (auto simp: DBM .less-eq[symmetric])

fun expr-of-constr where
expr-of-constr (Lower - e) = e |
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expr-of-constr (Upper - e) = e |
expr-of-constr (Diff - - e) = e

lemma cs-to-dbm1 :
assumes ∀ x ∈ cs-vars cs. v x > 0 ∧ v x ≤ n finite cs
assumes u `v,n cs-to-dbm v cs
shows u |=cs cs

proof (cases ∀ u. ¬u |=cs cs)
case True
with assms(3 ) show ?thesis

unfolding cs-to-dbm-def by (simp add: empty-dbm-empty)
next

case False
show u |=cs cs

unfolding cs-sem-def
proof (rule ballI )

fix c
assume c ∈ cs
show u |=c c
proof (cases c)

case (Lower x e)
with assms(1 ) ‹c ∈ cs› have ∗: 0 < v x v x ≤ n

by (auto simp: cs-vars-def )
let ?S = {e. ∃ x ′. Lower x ′ e ∈ cs ∧ v x ′ = v x}
let ?e = Min (insert ∞ ?S)
have ?S ⊆ expr-of-constr ‘ cs

by force
with ‹finite cs› ‹c ∈ cs› ‹c = -› have ?e ≤ e

using finite-subset finite-imageI by (blast intro: Min-le)
moreover from ∗ assms(3 ) False have dbm-entry-val u None (Some

x) ?e
unfolding DBM-val-bounded-def cs-to-dbm-def by (auto 4 4 )

ultimately have dbm-entry-val u None (Some x) (e)
by − (rule dbm-entry-val-mono[folded DBM .less-eq])

then show ?thesis
unfolding dbm-entry-val-constr-sem-iff [symmetric] ‹c = -› .

next
case (Upper x e)
with assms(1 ) ‹c ∈ cs› have ∗: 0 < v x v x ≤ n

by (auto simp: cs-vars-def )
let ?S = {e. ∃ x ′. Upper x ′ e ∈ cs ∧ v x ′ = v x}
let ?e = Min (insert ∞ ?S)
have ?S ⊆ expr-of-constr ‘ cs

by force
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with ‹finite cs› ‹c ∈ cs› ‹c = -› have ?e ≤ e
using finite-subset finite-imageI by (blast intro: Min-le)
moreover from ∗ assms(3 ) False have dbm-entry-val u (Some x)

None ?e
unfolding DBM-val-bounded-def cs-to-dbm-def by (auto 4 4 )

ultimately have dbm-entry-val u (Some x) None e
by − (rule dbm-entry-val-mono[folded DBM .less-eq])

then show ?thesis
unfolding dbm-entry-val-constr-sem-iff ‹c = -› .

next
case (Diff x y e)
with assms(1 ) ‹c ∈ cs› have ∗: 0 < v x v x ≤ n 0 < v y v y ≤ n

by (auto simp: cs-vars-def )
let ?S = {e. ∃ x ′ y ′. Diff x ′ y ′ e ∈ cs ∧ v x ′ = v x ∧ v y ′ = v y}
let ?e = Min (insert ∞ ?S)
have ?S ⊆ expr-of-constr ‘ cs

by force
with ‹finite cs› ‹c ∈ cs› ‹c = -› have ?e ≤ e

using finite-subset finite-imageI by (blast intro: Min-le)
moreover from ∗ assms(3 ) False have dbm-entry-val u (Some x)

(Some y) ?e
unfolding DBM-val-bounded-def cs-to-dbm-def by (auto 4 4 )

ultimately have dbm-entry-val u (Some x) (Some y) e
by − (rule dbm-entry-val-mono[folded DBM .less-eq])

then show ?thesis
unfolding dbm-entry-val-constr-sem-iff ‹c = -› .

qed
qed

qed

lemma cs-to-dbm2 :
assumes ∀ x. v x ≤ n −→ v x > 0 ∀ x y. v x ≤ n ∧ v y ≤ n ∧ v x = v y
−→ x = y

assumes finite cs
assumes u |=cs cs
shows u `v,n cs-to-dbm v cs

proof (cases ∀ u. ¬u |=cs cs)
case True
with assms show ?thesis

unfolding cs-to-dbm-def by (simp add: empty-dbm-empty)
next

case False
let ?M = cs-to-dbm v cs
show u `v,n cs-to-dbm v cs
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unfolding DBM-val-bounded-def DBM .less-eq[symmetric]
proof (safe)

show Le 0 ≤ cs-to-dbm v cs 0 0
using False unfolding cs-to-dbm-def by auto

next
fix x :: ′a
assume v x ≤ n
let ?S = {e. ∃ x ′. Lower x ′ e ∈ cs ∧ v x ′ = v x}
from ‹v x ≤ n› assms have v x > 0

by simp
with False have ?M 0 (v x) = Min (insert ∞ ?S)

unfolding cs-to-dbm-def by auto
moreover have finite ?S
proof −

have ?S ⊆ expr-of-constr ‘ cs
by force

also have finite . . .
using ‹finite cs› by (rule finite-imageI )

finally show ?thesis .
qed
ultimately show dbm-entry-val u None (Some x) (?M 0 (v x))

using assms(2−) ‹v x ≤ n›
apply (cases rule: Min-insert-cases)
apply auto[]

apply (simp add: dbm-entry-val-constr-sem-iff cs-sem-def , metis)
done

next
fix x :: ′a
assume v x ≤ n
let ?S = {e. ∃ x ′. Upper x ′ e ∈ cs ∧ v x ′ = v x}
from ‹v x ≤ n› assms have v x > 0

by simp
with False have ?M (v x) 0 = Min (insert ∞ ?S)

unfolding cs-to-dbm-def by auto
moreover have finite ?S
proof −

have ?S ⊆ expr-of-constr ‘ cs
by force

also have finite . . .
using ‹finite cs› by (rule finite-imageI )

finally show ?thesis .
qed
ultimately show dbm-entry-val u (Some x) None (cs-to-dbm v cs (v x)

0 )
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using ‹v x ≤ n› assms(2−)
apply (cases rule: Min-insert-cases)
apply auto[]

apply (simp add: dbm-entry-val-constr-sem-iff cs-sem-def , metis)
done

next
fix x y :: ′a
assume v x ≤ n v y ≤ n
let ?S = {e. ∃ x ′ y ′. Diff x ′ y ′ e ∈ cs ∧ v x ′ = v x ∧ v y ′ = v y}
from ‹v x ≤ n› ‹v y ≤ n› assms have v x > 0 v y > 0

by auto
with False have ?M (v x) (v y) = Min (insert ∞ ?S)

unfolding cs-to-dbm-def by auto
moreover have finite ?S
proof −

have ?S ⊆ expr-of-constr ‘ cs
by force

also have finite . . .
using ‹finite cs› by (rule finite-imageI )

finally show ?thesis .
qed
ultimately show dbm-entry-val u (Some x) (Some y) (cs-to-dbm v cs

(v x) (v y))
using ‹v x ≤ n› ‹v y ≤ n› assms(2−)
apply (cases rule: Min-insert-cases)
apply auto[]

apply (simp add: dbm-entry-val-constr-sem-iff cs-sem-def , metis)
done

qed
qed

theorem cs-to-dbm-correct:
assumes ∀ x ∈ cs-vars cs. v x ≤ n ∀ x. v x ≤ n −→ v x > 0
∀ x y. v x ≤ n ∧ v y ≤ n ∧ v x = v y −→ x = y
finite cs

shows u `v,n cs-to-dbm v cs ←→ u |=cs cs
using assms by (blast intro: cs-to-dbm1 cs-to-dbm2 )

corollary cs-to-dbm-correct ′:
assumes

bij-betw v (cs-vars cs) {1 ..n} ∀ x. v x ≤ n −→ v x > 0 ∀ x. x /∈ cs-vars
cs −→ v x > n

finite cs
shows u `v,n cs-to-dbm v cs ←→ u |=cs cs
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proof (rule cs-to-dbm-correct , safe)
fix x assume x ∈ cs-vars cs
then show v x ≤ n

using assms(1 ) unfolding bij-betw-def by auto
next

fix x assume v x ≤ n
then show 0 < v x

using assms(2 ) by blast
next

fix x y :: ′a
assume A: v x ≤ n v y ≤ n v x = v y
with A assms show x = y

unfolding bij-betw-def by (auto dest!: inj-onD)
next

show finite cs
by (rule assms)

qed

4.4 Application: Relaxation On Constraint Systems

The following is a sample application of viewing DBMs as constraint sys-
tems. We show define an equivalent of the up operation on DBMs, prove it
correct, and then derive an alternative correctness proof for up.

definition
up-cs cs = {c. c ∈ cs ∧ (case c of Upper - - ⇒ False | - ⇒ True)}

lemma Lower-shiftI :
u ⊕ d |=c Lower x e if u |=c Lower x e (d :: ′t :: linordered-ab-group-add)
≥ 0

using that diff-mono less-trans not-less-iff-gr-or-eq
by (cases e;fastforce simp: constr-sem-less-eq-iff )

lemma Upper-shiftI :
u ⊕ d |=c Upper x e if u |=c Upper x e (d :: ′t :: linordered-ab-group-add)
≤ 0

using that add-less-le-mono
by (cases e) (fastforce simp: constr-sem-less-eq-iff add.commute add-decreasing)+

lemma Diff-shift:
u ⊕ d |=c Diff x y e←→ u |=c Diff x y e for d :: ′t :: linordered-ab-group-add
by (cases e) (auto simp: constr-sem-less-eq-iff )

lemma up-cs-complete:
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u ⊕ d |=cs up-cs cs if u |=cs cs d ≥ 0 for d :: ′t :: linordered-ab-group-add
using that unfolding up-cs-def cs-sem-def
apply clarsimp
subgoal for x

by (cases x) (auto simp: Diff-shift intro: Lower-shiftI )
done

definition
lower-upper-closed cs ≡ ∀ x y e e ′.

Lower x e ∈ cs ∧ Upper y e ′ ∈ cs −→ (∃ e ′′. Diff y x e ′′ ∈ cs ∧ e ′′ ≤ e
+ e ′)

lemma up-cs-sound:
assumes u |=cs up-cs cs lower-upper-closed cs finite cs
obtains u ′ and d :: ′t :: time where d ≥ 0 u ′ |=cs cs u = u ′ ⊕ d

proof −
define U and L and LT where

U ≡ {e + Le (−u x) | x e. Upper x e ∈ cs ∧ e 6= ∞}
and L ≡ {−e + Le (−u x) | x e. Lower x e ∈ cs ∧ e 6= ∞}
and LT ≡ {Le (−d − u x) | x d. Lower x (Lt d) ∈ cs}

note defs = U-def L-def LT-def
let ?l = Max L and ?u = Min U
have LT ⊆ L

by (force simp: DBM-arith-defs defs)
have Diff-semD: u |=c Diff y x (e + e ′) if Lower x e ∈ cs Upper y e ′ ∈

cs for x y e e ′

proof −
from assms that obtain e ′′ where Diff y x e ′′ ∈ cs e ′′ ≤ e + e ′

unfolding lower-upper-closed-def cs-equiv-def by blast
with assms(1 ) show ?thesis

unfolding cs-sem-def up-cs-def by (auto intro: constr-sem-mono)
qed
have Lower-semD: u |=c Lower x e if Lower x e ∈ cs for x e

using that assms unfolding cs-sem-def up-cs-def by auto
have Lower-boundI : −e + Le (−u x) ≤ 0 if Lower x e ∈ cs e 6= ∞ for x

e
using Lower-semD[OF that(1 )] that(2 ) unfolding constr-sem-less-eq-iff
by (intro DBMEntry-le-to-sum)

from ‹finite cs› have finite L
unfolding defs
by (force intro: finite-subset[where B = (λc. case c of Lower x e ⇒ −

e + Le (− u x)) ‘ cs])
from ‹finite cs› have finite U
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unfolding defs
by (force intro: finite-subset[where B = (λc. case c of Upper x e ⇒ e

+ Le (− u x)) ‘ cs])
note L-ge = Max-ge[OF ‹finite L›] and U-le = Min-le[OF ‹finite U ›]
have L-0 : Max L ≤ 0 if L 6= {}

by (intro Max.boundedI ‹finite L› that) (auto intro: Lower-boundI simp:
defs)

have L-U : Max L ≤ Min U if L 6= {} U 6= {}
apply (intro Max-le-MinI ‹finite L› ‹finite U › that)
apply (clarsimp simp: defs)
apply (drule (1 ) Diff-semD)
subgoal for x y e e ′

unfolding constr-sem-less-eq-iff
by (cases e; cases e ′; simp add: DBM-arith-defs; simp add: alge-

bra-simps)
done

consider
(L-empty) L = {} | (Lt-empty) LT = {} | (L-gt-Lt) Max L > Max LT |
(Lt-Max) x d where Lower x (Lt d) ∈ cs Le (−d − u x) ∈ LT Max L

= Le (−d − u x)
by (smt (verit) finite-subset Max-in Max-mono ‹finite L› ‹LT ⊆ L›

less-le mem-Collect-eq defs)
note L-Lt-cases = this
have Lt-Max-rule: − c − u x < 0

if Lower x (Lt c) ∈ cs Max L = Le (− c − u x) L 6= {} for c x
using that
by (metis DBMEntry.distinct(1 ) L-0 Le-le-LeD Le-less-Lt Lower-semD

add.inverse-inverse constr-sem-less-eq-iff (1 ) eq-iff-diff-eq-0 less-le
neutral)

have LT-0-boundI : ∃ d ≤ 0 . (∀ l ∈ L. l ≤ Le d) ∧ (∀ l ∈ LT . l < Le d)
if ‹L 6= {}›

proof −
obtain d where d: ?l ≤ Le d d ≤ 0

by (metis L-0 ‹L 6= {}› neutral order-refl)
show ?thesis
proof (cases rule: L-Lt-cases)

case L-empty
with ‹L 6= {}› show ?thesis

by simp
next

case Lt-empty
then show ?thesis

by (smt (verit) L-ge d(1 ,2 ) empty-iff leD leI less-le-trans)
next
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case L-gt-Lt
then show ?thesis

by (smt (verit) finite-subset Max-ge ‹finite L› ‹LT ⊆ L› d(1 ,2 ) leD
leI less-le-trans)

next
case (Lt-Max x c)
define d where d ≡ − c − u x
from Lt-Max(1 ,3 ) ‹L 6= {}› have d < 0

unfolding d-def by (rule Lt-Max-rule)
then obtain d ′ where d ′: d < d ′ d ′ < 0

using dense by auto
have ∀ l ∈ L. l < Le d ′

proof safe
fix l
assume l ∈ L
then have l ≤ Le d

unfolding d-def ‹Max L = -›[symmetric] by (rule L-ge)
also from d ′ have . . . < Le d ′

by auto
finally show l < Le d ′ .

qed
with Lt-Max(1 ,3 ) d ′ ‹finite L› ‹L 6= {}› ‹LT ⊆ L› show ?thesis

by (intro exI [of - d ′]) auto
qed

qed
consider

(none) L = {} U = {}
| (upper) L = {} U 6= {}
| (lower) L 6= {} U = {}
| (proper) L 6= {} U 6= {}
by force

The main statement of of the proof. Note that most of the lengthiness of the
proof is owed to the third conjunct. Our initial hope was that this conjunct
would not be needed.

then obtain d where d: d ≤ 0 ∀ l ∈ L. l ≤ Le d ∀ l ∈ LT . l < Le d ∀ u
∈ U . Le d ≤ u

proof cases
case none
then show ?thesis

by (intro that[of 0 ]) (auto simp: defs)
next

case upper
obtain d where Le d ≤ Min U d ≤ 0
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by (smt (verit) DBMEntry.distinct(3 ) add-inf (2 ) any-le-inf neg-le-0-iff-le
DBM .neutral

order .not-eq-order-implies-strict sum-gt-neutral-dest ′)
then show ?thesis

using upper ‹finite U › by (intro that[of d]) (auto simp: defs)
next

case lower
obtain d where d: Max L ≤ Le d d ≤ 0

by (smt (verit) L-0 lower(1 ) neutral order-refl)
show ?thesis
proof (cases rule: L-Lt-cases)

case L-empty
with lower(1 ) show ?thesis

by simp
next

case Lt-empty
then show ?thesis
by (metis (lifting) L-ge d(1 ,2 ) empty-iff leD leI less-le-trans lower(2 )

that)
next

case L-gt-Lt
then show ?thesis

using LT-0-boundI lower(1 ,2 ) that by blast
next

case (Lt-Max x c)
define d where d ≡ − c − u x
from Lt-Max(1 ,3 ) lower(1 ) have d < 0

unfolding d-def by (rule Lt-Max-rule)
then obtain d ′ where d ′: d < d ′ d ′ < 0

using dense by auto
have ∀ l ∈ L. l < Le d ′

proof safe
fix l
assume l ∈ L
then have l ≤ Le d

unfolding d-def ‹Max L = -›[symmetric] by (rule L-ge)
also from d ′ have . . . < Le d ′

by auto
finally show l < Le d ′ .

qed
with Lt-Max(1 ,3 ) d ′ ‹finite L› lower ‹LT ⊆ L› show ?thesis

by (intro that[of d ′]) auto
qed

next
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case proper
with L-U L-0 have Max L ≤ Min U Max L ≤ 0

by auto
from ‹finite U › ‹U 6= {}› have ?u ∈ U

unfolding U-def by (rule Min-in)
have main:
∃ d ′. −d − u x < d ′ ∧ Le d ′ < ?u
if Lower x (Lt d) ∈ cs Le (−d − u x) ∈ LT ?l = Le (−d − u x) for d

x
proof (cases ?u)

case (Le d ′)
with ‹?u ∈ U › obtain e y where ∗: Le d ′ = e + Le (− u y) Upper y

e ∈ cs
unfolding U-def by auto

then obtain d1 where e = Le d1
by (cases e) (auto simp: DBM-arith-defs)

with ∗ have d ′ = d1 − u y
by (auto simp: DBM-arith-defs)

from Diff-semD[OF ‹Lower x (Lt d) ∈ cs› ‹Upper y e ∈ -›] have u y
− u x < d + d1

unfolding constr-sem-less-eq-iff ‹e = -› by (simp add: DBM-arith-defs)
then have − d − u x < d ′

unfolding ‹d ′ = -› by (simp add: algebra-simps)
then obtain d1 where −d − u x < d1 d1 < d ′

using dense by auto
with ‹?u = -› show ?thesis

by (intro exI [where x = d1 ]) auto
next

case (Lt d ′)
with ‹?u ∈ U › obtain e y where ∗: Lt d ′ = e + Le (− u y) Upper y

e ∈ cs
unfolding U-def by auto

then obtain d1 where e = Lt d1
by (cases e) (auto simp: DBM-arith-defs)

with ∗ have d ′ = d1 − u y
by (auto simp: DBM-arith-defs)

from Diff-semD[OF ‹Lower x (Lt d) ∈ cs› ‹Upper y e ∈ -›] have u y
− u x < d + d1

unfolding constr-sem-less-eq-iff ‹e = -› by (simp add: DBM-arith-defs)
then have − d − u x < d ′

unfolding ‹d ′ = -› by (simp add: algebra-simps)
then obtain d1 where −d − u x < d1 d1 < d ′

using dense by auto
with ‹?u = -› show ?thesis
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by (intro exI [where x = d1 ]) auto
next

case INF
with ‹?u ∈ U › show ?thesis

using Lt-Max-rule proper(1 ) that(1 ,3 ) by fastforce
qed
consider (eq) Max L = Min U | (0 ) Min U ≥ 0 | (gt) Max L < Min

U Min U < 0
using ‹Max L ≤ Min U › by fastforce

then show ?thesis
proof cases

case eq
from proper ‹finite L› ‹finite U › have ?l ∈ L ?u ∈ U

by − (rule Max-in Min-in; assumption)+
then obtain x y e e ′ where ∗:

?l = − e + Le (− u x) Lower x e ∈ cs e 6= ∞
?u = e ′ + Le (− u y) Upper y e ′ ∈ cs e ′ 6= ∞
unfolding defs by auto

with ‹?l = ?u› obtain d where d: ?l = Le d
apply (cases e; cases e ′; simp add: DBM-arith-defs)
subgoal for a b
proof −

assume prems: − a − u x = b − u y e = Le a e ′ = Lt b
from ∗ have u |=c Diff y x (e + e ′)

by (intro Diff-semD)
with prems have False
by (simp add: DBM-arith-defs constr-sem-less-eq-iff algebra-simps)
then show ?thesis ..

qed
done

from ‹?l ≤ 0 › have ∗∗: d ≤ 0 ∀ l ∈ L. l ≤ Le d ∀ u ∈ U . Le d ≤ u
apply (simp add: DBM .neutral d)

apply (auto simp: d[symmetric] intro: L-ge)[]
apply (auto simp: d[symmetric] eq intro: U-le L-ge)[]
done

show ?thesis
proof (cases rule: L-Lt-cases)

case L-empty
with ‹L 6= {}› show ?thesis

by simp
next

case Lt-empty
with ∗∗ show ?thesis

by (intro that[of d]) auto

187



next
case L-gt-Lt
with ∗∗ show ?thesis

by (intro that[of d]; simp)
(metis finite-subset Max-ge ‹LT ⊆ L› ‹finite L› d le-less-trans)

next
case (Lt-Max y d1 )
from main[OF this] obtain d ′ where d ′ > − d1 − u y Le d ′ < Min

U
by auto

with ∗∗ Lt-Max(3 )[symmetric] d eq show ?thesis
by (intro that[of d ′]; simp)

qed
next

case 0
from LT-0-boundI [OF ‹L 6= {}›] obtain d where d ≤ 0 ∀ l∈L. l ≤

Le d ∀ l∈LT . l < Le d
by safe

with ‹Max L ≤ 0 › ‹finite L› ‹finite U › proper 0 show ?thesis
by (intro that[of d]) (auto simp: DBM .neutral intro: order-trans)

next
case gt
then obtain d where d: Max L ≤ Le d Le d ≤ Min U

by (elim Le-in-between)
with ‹- < 0 › have Le d < 0

by auto
then have d ≤ 0

by (simp add: neutral)
show ?thesis
proof (cases rule: L-Lt-cases)

case L-empty
with ‹L 6= {}› show ?thesis

by simp
next

case Lt-empty
with d ‹d ≤ 0 › show ?thesis

using proper ‹finite L› ‹finite U › by (intro that[of d]) (auto intro:
L-ge U-le)

next
case L-gt-Lt
with d ‹d ≤ 0 › proper ‹finite L› ‹finite U › show ?thesis

apply (intro that[of d])
apply (auto intro: L-ge U-le)[2 ]

apply (meson finite-subset Max-ge ‹LT ⊆ L› le-less-trans
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less-le-trans)
apply simp
done

next
case (Lt-Max y d1 )
from main[OF this] obtain d ′ where d ′: d ′ > − d1 − u y Le d ′ <

Min U
by auto

with d have d-bounds: ?l < Le d ′ Le d ′ ≤ ?u
unfolding ‹?l = -› by auto

from ‹?l < Le d ′› have ∀ l ∈ L. l < Le d ′

using Max-less-iff ‹finite L› by blast
moreover from ‹Le d ′ ≤ ?u› ‹?u < 0 › have d ′ ≤ 0

by (metis Le-le-LeD le-less-trans neutral order .strict-iff-order)
with d Lt-Max(3 )[symmetric] d-bounds d ′ ‹LT ⊆ L› show ?thesis

using proper ‹finite L› ‹finite U ›
by (intro that[of d ′]; auto)

qed
qed

qed
have u ⊕ d |=cs cs

unfolding cs-sem-def
proof safe

fix c :: ( ′a, ′t) constr
assume c ∈ cs
show u ⊕ d |=c c
proof (cases c)

case (Lower x e)
show ?thesis
proof (cases e = ∞)

case True
with ‹c = -› show ?thesis

by (auto simp: constr-sem-less-eq-iff )
next

case False
with ‹c = -› ‹c ∈ -› have −e + Le (−u x) ∈ L

unfolding defs by auto
with d have −e + Le (−u x) ≤ Le d

by auto
then show ?thesis

using d(3 ) ‹c ∈ -› unfolding ‹c = -› constr-sem-less-eq-iff
apply (cases e; simp add: defs DBM-arith-defs)

apply (metis diff-le-eq minus-add-distrib minus-le-iff uminus-add-conv-diff )
apply (metis ab-group-add-class.ab-diff-conv-add-uminus leD le-less
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less-diff-eq
minus-diff-eq neg-less-iff-less)

done
qed

next
case (Upper x e)
show ?thesis
proof (cases e = ∞)

case True
with ‹c = -› show ?thesis

by (auto simp: constr-sem-less-eq-iff )
next

case False
with ‹c = -› ‹c ∈ -› have e + Le (−u x) ∈ U

by (auto simp: defs)
with d show ?thesis
by (cases e) (auto simp: ‹c = -› constr-sem-less-eq-iff DBM-arith-defs

algebra-simps)
qed

next
case (Diff x y e)
with assms ‹c ∈ cs› show ?thesis

by (auto simp: Diff-shift cs-sem-def up-cs-def )
qed

qed
with ‹d ≤ 0 › show ?thesis

by (intro that[of −d u ⊕ d]; simp add: cval-add-def )
qed

Note that if we compare this proof to [[∀ c. 0 < ?v c ∧ (∀ x y. ?v x ≤ ?n
∧ ?v y ≤ ?n ∧ ?v x = ?v y −→ x = y); ?u ∈ [up ?M ]?v,?n]] =⇒ ?u ∈
[?M ]?v,?n

↑, we can see that we have not gained much. Settling on DBM
entry arithmetic as done above was not the optimal choice for this proof,
while it can drastically simply some other proofs. Also, note that the final
theorem we obtain below (DBM-up-correct) is slightly stronger than what
we would get with [[∀ c. 0 < ?v c ∧ (∀ x y. ?v x ≤ ?n ∧ ?v y ≤ ?n ∧ ?v
x = ?v y −→ x = y); ?u ∈ [up ?M ]?v,?n]] =⇒ ?u ∈ [?M ]?v,?n

↑. Finally,
note that a more elegant definition of lower-upper-closed would probably
be: definition lower-upper-closed cs ≡ ∀ x y e e ′. cs |= Lower x e ∧ cs
|= Upper y e ′ −→ (∃ e ′′. cs |= Diff y x e ′′ ∧ e ′′ ≤ e + e ′) This would
mean that in the proof we would have to replace minimum and maximum
by supremum and infimum. The advantage would be that the finiteness
assumption could be removed. However, as our DBM entries do not come
with −∞, they do not form a complete lattice. Thus we would either have to
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make this extension or directly refer to the embedded values directly, which
would again have to form a complete lattice. Both variants come with some
technical inconvenience.

lemma up-cs-sem:
fixes cs :: ( ′x, ′v :: time) cs
assumes lower-upper-closed cs finite cs
shows {u. u |=cs up-cs cs} = {u ⊕ d | u d. u |=cs cs ∧ d ≥ 0}
by safe (metis up-cs-sound up-cs-complete assms)+

definition
close-lu :: ( ′t::linordered-cancel-ab-semigroup-add) DBM ⇒ ′t DBM

where
close-lu M ≡ λi j. if i > 0 then min (dbm-add (M i 0 ) (M 0 j)) (M i j)

else M i j

definition
up ′ :: ( ′t::linordered-cancel-ab-semigroup-add) DBM ⇒ ′t DBM

where
up ′ M ≡ λi j. if i > 0 ∧ j = 0 then ∞ else M i j

lemma up-alt-def :
up M = up ′ (close-lu M )
by (intro ext) (simp add: up-def up ′-def close-lu-def )

lemma close-lu-equiv:
fixes M :: ′t ::time DBM
shows dbm-to-cs n v M ≡cs dbm-to-cs n v (close-lu M )
unfolding cs-equiv-def dbm-to-cs-correct[symmetric]

DBM-val-bounded-def close-lu-def dbm-entry-val-constr-sem-iff
unfolding min-def DBM .add[symmetric]
unfolding constr-sem-less-eq-iff
unfolding DBM .less-eq[symmetric] DBM .neutral[symmetric]
apply (auto simp:)[]

apply (force simp add: add-increasing2 )
apply (metis (full-types) le0 )+

subgoal premises prems for u c1 c2
proof −

have Le (u c1 − u c2 ) = Le (u c1 ) + Le (− u c2 )
by (simp add: DBM-arith-defs)

also from prems have . . . ≤ M (v c1 ) 0 + M 0 (v c2 )
by (intro add-mono) auto

finally show ?thesis .
qed
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by (smt (verit) leI le-zero-eq order-trans | metis le0 )+

lemma close-lu-closed:
lower-upper-closed (dbm-to-cs n v (close-lu M )) if M 0 0 ≥ 0
using that unfolding lower-upper-closed-def dbm-to-cs-def close-lu-def
apply (clarsimp; safe)
subgoal

by auto
subgoal for x y

by (auto simp: DBM .add[symmetric])
(metis add.commute add.right-neutral add-left-mono min.absorb2

min.cobounded1 )
by (simp add: add-increasing2 )

lemma close-lu-closed ′: — Unused
lower-upper-closed (dbm-to-cs n v (close-lu M ) ∪ dbm-to-cs n v M ) if M

0 0 ≥ 0
using that unfolding lower-upper-closed-def dbm-to-cs-def close-lu-def
apply (clarsimp; safe)
subgoal

by auto
subgoal for x y
by (metis DBM .add add.commute add.right-neutral add-left-mono min.absorb2

min.cobounded1 )
subgoal for x y

by (metis DBM .add add.commute min.cobounded1 )
by (simp add: add-increasing2 )

lemma up-cs-up ′-equiv:
fixes M :: ′t ::time DBM
assumes M 0 0 ≥ 0 clock-numbering v
shows up-cs (dbm-to-cs n v M ) ≡cs dbm-to-cs n v (up ′ M )
using assms
unfolding up ′-def up-cs-def cs-equiv-def dbm-to-cs-correct[symmetric]

DBM-val-bounded-def close-lu-def dbm-entry-val-constr-sem-iff
by (auto split: if-split-asm

simp: dbm-to-cs-def cs-sem-def DBM .add[symmetric] DBM .less-eq[symmetric]
DBM .neutral)

lemma up-equiv-cong: — Unused
fixes cs cs ′ :: ( ′x, ′v :: time) cs
assumes cs ≡cs cs ′ finite cs finite cs ′ lower-upper-closed cs lower-upper-closed

cs ′

shows up-cs cs ≡cs up-cs cs ′
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using assms unfolding cs-equiv-def by (metis up-cs-complete up-cs-sound)

lemma DBM-up-correct:
fixes M :: ′t ::time DBM
assumes clock-numbering v finite {x. v x ≤ n}
shows u ∈ ([M ]v,n)↑ ←→ u ∈ [up M ]v,n

proof (cases M 0 0 ≥ 0 )
case True
have u ∈ ([M ]v,n)↑ ←→ (∃ d u ′. u ′ `v,n M ∧ d ≥ 0 ∧ u = u ′ ⊕ d)

unfolding DBM-zone-repr-def zone-delay-def by auto
also have . . . ←→ (∃ d u ′. u ′ |=cs dbm-to-cs n v M ∧ d ≥ 0 ∧ u = u ′ ⊕

d)
unfolding dbm-to-cs-correct ..

also have . . . ←→ (∃ d u ′. u ′ |=cs dbm-to-cs n v (close-lu M ) ∧ d ≥ 0 ∧
u = u ′ ⊕ d)

using cs-equivD close-lu-equiv cs-equiv-sym by metis
also have . . . ←→ u |=cs up-cs (dbm-to-cs n v (close-lu M ))
proof −

let ?cs = dbm-to-cs n v (close-lu M )
have lower-upper-closed ?cs

by (intro close-lu-closed True)
moreover have finite ?cs

by (intro finite-dbm-to-cs assms)
ultimately have {u. u |=cs up-cs ?cs} = {u ⊕ d |u d. u |=cs ?cs ∧ 0

≤ d}
by (rule up-cs-sem)

then show ?thesis
by (auto 4 3 )

qed
also have . . . ←→ u |=cs dbm-to-cs n v (up ′ (close-lu M ))
proof −
from ‹M 0 0 ≥ 0 › have up-cs (dbm-to-cs n v (close-lu M )) ≡cs dbm-to-cs

n v (up ′ (close-lu M ))
by (intro up-cs-up ′-equiv[OF - ‹clock-numbering v›], simp add: close-lu-def )
then show ?thesis

using cs-equivD cs-equiv-sym by metis
qed
also have . . . ←→ u |=cs dbm-to-cs n v (up M )

unfolding up-alt-def ..
also have . . . ←→ u `v,n up M

unfolding dbm-to-cs-correct ..
also have . . . ←→ u ∈ [up M ]v,n

unfolding DBM-zone-repr-def by blast
finally show ?thesis .
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next
case False
then have M 0 0 < 0

by auto
then have up M 0 0 < 0

unfolding up-def by auto
with ‹M 0 0 < 0 › have [M ]v,n = {} [up M ]v,n = {}

by (auto intro!: DBM-triv-emptyI )
then show ?thesis

unfolding zone-delay-def by blast
qed

end

5 Implementation of DBM Operations
theory DBM-Operations-Impl

imports
DBM-Operations
DBM-Normalization
Refine-Imperative-HOL.IICF
HOL−Library.IArray

begin

5.1 Misc

lemma fold-last:
fold f (xs @ [x]) a = f x (fold f xs a)

by simp

5.2 Reset

definition
reset-canonical M k d =
(λ i j. if i = k ∧ j = 0 then Le d

else if i = 0 ∧ j = k then Le (−d)
else if i = k ∧ j 6= k then Le d + M 0 j
else if i 6= k ∧ j = k then Le (−d) + M i 0
else M i j

)

— However, DBM entries are NOT a member of this typeclass.
lemma canonical-is-cyc-free:
fixes M :: nat ⇒ nat ⇒ ( ′b :: {linordered-cancel-ab-semigroup-add, linordered-ab-monoid-add})
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assumes canonical M n
shows cyc-free M n

proof (cases ∀ i ≤ n. 0 ≤ M i i)
case True
with assms show ?thesis by (rule canonical-cyc-free)

next
case False
then obtain i where i ≤ n M i i < 0 by auto
then have M i i + M i i < M i i using add-strict-left-mono by fastforce
with ‹i ≤ n› assms show ?thesis by fastforce

qed

lemma dbm-neg-add:
fixes a :: ( ′t :: time) DBMEntry
assumes a < 0
shows a + a < 0

using assms unfolding neutral add less
by (cases a) auto

instance linordered-ab-group-add ⊆ linordered-cancel-ab-monoid-add by stan-
dard auto

lemma Le-cancel-1 [simp]:
fixes d :: ′c :: linordered-ab-group-add
shows Le d + Le (−d) = Le 0

unfolding add by simp

lemma Le-cancel-2 [simp]:
fixes d :: ′c :: linordered-ab-group-add
shows Le (−d) + Le d = Le 0

unfolding add by simp

lemma reset-canonical-canonical ′:
canonical (reset-canonical M k (d :: ′c :: linordered-ab-group-add)) n
if M 0 0 = 0 M k k = 0 canonical M n k > 0 for k n :: nat

proof −
have add-mono-neutr ′: a ≤ a + b if b ≥ Le (0 :: ′c) for a b
using that unfolding neutral[symmetric] by (simp add: add-increasing2 )

have add-mono-neutl ′: a ≤ b + a if b ≥ Le (0 :: ′c) for a b
using that unfolding neutral[symmetric] by (simp add: add-increasing)

show ?thesis
using that
unfolding reset-canonical-def neutral
apply (clarsimp split: if-splits)
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apply safe
apply (simp add: add-mono-neutr ′; fail)

apply (simp add: comm; fail)
apply (simp add: add-mono-neutl ′; fail)

apply (simp add: comm; fail)
apply (simp add: add-mono-neutl ′; fail)

apply (simp add: add-mono-neutl ′; fail)
apply (simp add: add-mono-neutl ′; fail)

apply (simp add: add-mono-neutl ′ add-mono-neutr ′; fail)
apply (simp add: add.assoc[symmetric] add-mono-neutl ′ add-mono-neutr ′;

fail)
apply (simp add: add.assoc[symmetric] add-mono-neutl ′ add-mono-neutr ′

comm; fail)
apply (simp add: add.assoc[symmetric] add-mono-neutl ′ add-mono-neutr ′;

fail)
subgoal premises prems for i j k
proof −

from prems have M i k ≤ M i 0 + M 0 k
by auto

also have . . . ≤ Le (− d) + M i 0 + (Le d + M 0 k)
apply (simp add: add.assoc[symmetric], simp add: comm, simp add:

add.assoc[symmetric])
using prems(1 ) that(1 ) by auto

finally show ?thesis .
qed
subgoal premises prems for i j k
proof −

from prems have Le 0 ≤ M 0 j + M j 0
by force

also have . . . ≤ Le d + M 0 j + (Le (− d) + M j 0 )
apply (simp add: add.assoc[symmetric], simp add: comm, simp add:

add.assoc[symmetric])
using prems(1 ) that(1 ) by (auto simp: add.commute)

finally show ?thesis .
qed
subgoal premises prems for i j k
proof −

from prems have Le 0 ≤ M 0 j + M j 0
by force

then show ?thesis
by (simp add: add.assoc add-mono-neutr ′)

qed
subgoal premises prems for i j k
proof −
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from prems have M 0 k ≤ M 0 j + M j k
by force

then show ?thesis
by (simp add: add-left-mono add.assoc)

qed
subgoal premises prems for i j
proof −

from prems have M i 0 ≤ M i j + M j 0
by force

then show ?thesis
by (simp add: ab-semigroup-add-class.add.left-commute add-mono-right)

qed
subgoal premises prems for i j
proof −

from prems have Le 0 ≤ M 0 j + M j 0
by force

then show ?thesis
by (simp add: ab-semigroup-add-class.add.left-commute add-mono-neutr ′)

qed
subgoal premises prems for i j
proof −

from prems have M i 0 ≤ M i j + M j 0
by force

then show ?thesis
by (simp add: ab-semigroup-add-class.add.left-commute add-mono-right)

qed
done

qed

lemma reset-canonical-canonical:
canonical (reset-canonical M k (d :: ′c :: linordered-ab-group-add)) n
if ∀ i ≤ n. M i i = 0 canonical M n k > 0 for k n :: nat

proof −
have add-mono-neutr ′: a ≤ a + b if b ≥ Le (0 :: ′c) for a b
using that unfolding neutral[symmetric] by (simp add: add-increasing2 )

have add-mono-neutl ′: a ≤ b + a if b ≥ Le (0 :: ′c) for a b
using that unfolding neutral[symmetric] by (simp add: add-increasing)

show ?thesis
using that
unfolding reset-canonical-def neutral
apply (clarsimp split: if-splits)
apply safe

apply (simp add: add-mono-neutr ′; fail)
apply (simp add: comm; fail)
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apply (simp add: add-mono-neutl ′; fail)
apply (simp add: comm; fail)

apply (simp add: add-mono-neutl ′; fail)
apply (simp add: add-mono-neutl ′; fail)

apply (simp add: add-mono-neutl ′; fail)
apply (simp add: add-mono-neutl ′ add-mono-neutr ′; fail)

apply (simp add: add.assoc[symmetric] add-mono-neutl ′ add-mono-neutr ′;
fail)

apply (simp add: add.assoc[symmetric] add-mono-neutl ′ add-mono-neutr ′

comm; fail)
apply (simp add: add.assoc[symmetric] add-mono-neutl ′ add-mono-neutr ′;

fail)
subgoal premises prems for i j k
proof −

from prems have M i k ≤ M i 0 + M 0 k
by auto

also have . . . ≤ Le (− d) + M i 0 + (Le d + M 0 k)
apply (simp add: add.assoc[symmetric], simp add: comm, simp add:

add.assoc[symmetric])
using prems(1 ) that(1 ) by (auto simp: add.commute)

finally show ?thesis .
qed
subgoal premises prems for i j k
proof −

from prems have Le 0 ≤ M 0 j + M j 0
by force

also have . . . ≤ Le d + M 0 j + (Le (− d) + M j 0 )
apply (simp add: add.assoc[symmetric], simp add: comm, simp add:

add.assoc[symmetric])
using prems(1 ) that(1 ) by (auto simp: add.commute)

finally show ?thesis .
qed
subgoal premises prems for i j k
proof −

from prems have Le 0 ≤ M 0 j + M j 0
by force

then show ?thesis
by (simp add: add.assoc add-mono-neutr ′)

qed
subgoal premises prems for i j k
proof −

from prems have M 0 k ≤ M 0 j + M j k
by force

then show ?thesis
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by (simp add: add-left-mono add.assoc)
qed
subgoal premises prems for i j
proof −

from prems have M i 0 ≤ M i j + M j 0
by force

then show ?thesis
by (simp add: ab-semigroup-add-class.add.left-commute add-mono-right)

qed
subgoal premises prems for i j
proof −

from prems have Le 0 ≤ M 0 j + M j 0
by force

then show ?thesis
by (simp add: ab-semigroup-add-class.add.left-commute add-mono-neutr ′)

qed
subgoal premises prems for i j
proof −

from prems have M i 0 ≤ M i j + M j 0
by force

then show ?thesis
by (simp add: ab-semigroup-add-class.add.left-commute add-mono-right)

qed
done

qed

lemma canonicalD[simp]:
assumes canonical M n i ≤ n j ≤ n k ≤ n
shows min (dbm-add (M i k) (M k j)) (M i j) = M i j

using assms unfolding add[symmetric] min-def by fastforce

lemma reset-reset-canonical:
assumes canonical M n k > 0 k ≤ n clock-numbering v
shows [reset M n k d]v,n = [reset-canonical M k d]v,n

proof safe
fix u assume u ∈ [reset M n k d]v,n
show u ∈ [reset-canonical M k d]v,n
unfolding DBM-zone-repr-def DBM-val-bounded-def
proof (safe, goal-cases)

case 1
with ‹u ∈ -› have

Le 0 ≤ reset M n k d 0 0
unfolding DBM-zone-repr-def DBM-val-bounded-def less-eq by auto
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also have . . . = M 0 0 unfolding reset-def using assms by auto
finally show ?case unfolding less-eq reset-canonical-def using ‹k >

0 › by auto
next

case (2 c)
from ‹clock-numbering -› have v c > 0 by auto
show ?case
proof (cases v c = k)

case True
with ‹v c > 0 › ‹u ∈ -› ‹v c ≤ n› show ?thesis

unfolding reset-canonical-def DBM-zone-repr-def DBM-val-bounded-def
reset-def by auto

next
case False
show ?thesis
proof (cases v c = k)

case True
with ‹v c > 0 › ‹u ∈ -› ‹v c ≤ n› ‹k > 0 › show ?thesis

unfolding reset-canonical-def DBM-zone-repr-def DBM-val-bounded-def
reset-def

by auto
next

case False
with ‹v c > 0 › ‹k > 0 › ‹v c ≤ n› ‹k ≤ n› ‹canonical - -› ‹u ∈ -›

have
dbm-entry-val u None (Some c) (M 0 (v c))
unfolding DBM-zone-repr-def DBM-val-bounded-def reset-def by

auto
with False ‹k > 0 › show ?thesis unfolding reset-canonical-def by

auto
qed

qed
next

case (3 c)
from ‹clock-numbering -› have v c > 0 by auto
show ?case
proof (cases v c = k)

case True
with ‹v c > 0 › ‹u ∈ -› ‹v c ≤ n› show ?thesis

unfolding reset-canonical-def DBM-zone-repr-def DBM-val-bounded-def
reset-def by auto

next
case False
show ?thesis
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proof (cases v c = k)
case True
with ‹v c > 0 › ‹u ∈ -› ‹v c ≤ n› ‹k > 0 › show ?thesis

unfolding reset-canonical-def DBM-zone-repr-def DBM-val-bounded-def
reset-def

by auto
next

case False
with ‹v c > 0 › ‹k > 0 › ‹v c ≤ n› ‹k ≤ n› ‹canonical - -› ‹u ∈ -›

have
dbm-entry-val u (Some c) None (M (v c) 0 )
unfolding DBM-zone-repr-def DBM-val-bounded-def reset-def by

auto
with False ‹k > 0 › show ?thesis unfolding reset-canonical-def by

auto
qed

qed
next

case (4 c1 c2 )
from ‹clock-numbering -› have v c1 > 0 v c2 > 0 by auto
show ?case
proof (cases v c1 = k)

case True
show ?thesis
proof (cases v c2 = k)

case True
with ‹v c1 = k› ‹v c1 > 0 › ‹v c2 > 0 › ‹u ∈ -› ‹v c1 ≤ n› ‹v c2 ≤

n› ‹canonical - -›
have reset-canonical M k d (v c1 ) (v c2 ) = M k k
unfolding reset-canonical-def by auto
moreover from True ‹v c1 = k› ‹v c1 > 0 › ‹v c2 > 0 › ‹v c1 ≤ n›

‹v c2 ≤ n›
have reset M n k d (v c1 ) (v c2 ) = M k k unfolding reset-def by

auto
moreover from ‹u ∈ -› ‹v c1 = k› ‹v c2 = k› ‹k ≤ n› have

dbm-entry-val u (Some c1 ) (Some c2 ) (reset M n k d k k)
unfolding DBM-zone-repr-def DBM-val-bounded-def by auto metis
ultimately show ?thesis using ‹v c1 = k› ‹v c2 = k› by auto

next
case False
with ‹v c1 = k› ‹v c1 > 0 › ‹k > 0 › ‹v c1 ≤ n› ‹k ≤ n› ‹canonical

- -› ‹u ∈ -› have
dbm-entry-val u (Some c1 ) None (Le d)
unfolding DBM-zone-repr-def DBM-val-bounded-def reset-def by
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auto
moreover from ‹v c2 6= k› ‹k > 0 › ‹v c2 ≤ n› ‹k ≤ n› ‹canonical

- -› ‹u ∈ -› have
dbm-entry-val u None (Some c2 ) (M 0 (v c2 ))
unfolding DBM-zone-repr-def DBM-val-bounded-def reset-def by

auto
ultimately show ?thesis using False ‹k > 0 › ‹v c1 = k› ‹v c2 >

0 ›
unfolding reset-canonical-def add by (auto intro: dbm-entry-val-add-4 )
qed

next
case False
show ?thesis
proof (cases v c2 = k)

case True
from ‹v c1 6= k› ‹v c1 > 0 › ‹k > 0 › ‹v c1 ≤ n› ‹k ≤ n› ‹canonical

- -› ‹u ∈ -› have
dbm-entry-val u (Some c1 ) None (M (v c1 ) 0 )
unfolding DBM-zone-repr-def DBM-val-bounded-def reset-def by

auto
moreover from ‹v c2 = k› ‹k > 0 › ‹v c2 ≤ n› ‹k ≤ n› ‹canonical

- -› ‹u ∈ -› have
dbm-entry-val u None (Some c2 ) (Le (−d))
unfolding DBM-zone-repr-def DBM-val-bounded-def reset-def by

auto
ultimately show ?thesis using False ‹k > 0 › ‹v c2 = k› ‹v c1 >

0 › ‹v c2 > 0 ›
unfolding reset-canonical-def

apply simp
apply (subst add.commute)

by (auto intro: dbm-entry-val-add-4 [folded add])
next

case False
from ‹u ∈ -› ‹v c1 ≤ n› ‹v c2 ≤ n› have
dbm-entry-val u (Some c1 ) (Some c2 ) (reset M n k d (v c1 ) (v c2 ))

unfolding DBM-zone-repr-def DBM-val-bounded-def by auto
with ‹v c1 6= k› ‹v c2 6= k› ‹v c1 ≤ n› ‹v c2 ≤ n› ‹k ≤ n› ‹canonical

- -› have
dbm-entry-val u (Some c1 ) (Some c2 ) (M (v c1 ) (v c2 ))
unfolding DBM-zone-repr-def DBM-val-bounded-def reset-def by

auto
with ‹v c1 6= k› ‹v c2 6= k› show ?thesis unfolding reset-canonical-def

by auto
qed
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qed
qed

next
fix u assume u ∈ [reset-canonical M k d]v,n
note unfolds = DBM-zone-repr-def DBM-val-bounded-def reset-canonical-def
show u ∈ [reset M n k d]v,n
unfolding DBM-zone-repr-def DBM-val-bounded-def
proof (safe, goal-cases)

case 1
with ‹u ∈ -› have

Le 0 ≤ reset-canonical M k d 0 0
unfolding DBM-zone-repr-def DBM-val-bounded-def less-eq by auto
also have . . . = M 0 0 unfolding reset-canonical-def using assms by

auto
finally show ?case unfolding less-eq reset-def using ‹k > 0 › ‹k ≤ n›

‹canonical - -› by auto
next

case (2 c)
with assms have v c > 0 by auto
note A = this assms(1−3 ) ‹v c ≤ n›
show ?case
proof (cases v c = k)

case True
with A ‹u ∈ -› show ?thesis unfolding reset-def unfolds by auto

next
case False
with A ‹u ∈ -› show ?thesis unfolding unfolds reset-def by auto

qed
next

case (3 c)
with assms have v c > 0 by auto
note A = this assms(1−3 ) ‹v c ≤ n›
show ?case
proof (cases v c = k)

case True
with A ‹u ∈ -› show ?thesis unfolding reset-def unfolds by auto

next
case False
with A ‹u ∈ -› show ?thesis unfolding unfolds reset-def by auto

qed
next

case (4 c1 c2 )
with assms have v c1 > 0 v c2 > 0 by auto
note A = this assms(1−3 ) ‹v c1 ≤ n› ‹v c2 ≤ n›
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show ?case
proof (cases v c1 = k)

case True
show ?thesis
proof (cases v c2 = k)

case True
with ‹u ∈ -› A ‹v c1 = k› have

dbm-entry-val u (Some c1 ) (Some c2 ) (reset-canonical M k d k k)
unfolding DBM-zone-repr-def DBM-val-bounded-def by auto metis
with A ‹v c1 = k› have

dbm-entry-val u (Some c1 ) (Some c2 ) (M k k)
unfolding reset-canonical-def by auto

with A ‹v c1 = k› show ?thesis unfolding reset-def unfolds by auto
next

case False
with A ‹v c1 = k› show ?thesis unfolding reset-def unfolds by auto

qed
next

case False
show ?thesis
proof (cases v c2 = k)

case False
with ‹u ∈ -› A ‹v c1 6= k› have

dbm-entry-val u (Some c1 ) (Some c2 ) (reset-canonical M k d (v
c1 ) (v c2 ))

unfolding DBM-zone-repr-def DBM-val-bounded-def by auto
with A ‹v c1 6= k› ‹v c2 6= k› have

dbm-entry-val u (Some c1 ) (Some c2 ) (M (v c1 ) (v c2 ))
unfolding reset-canonical-def by auto

with A ‹v c1 6= k› show ?thesis unfolding reset-def unfolds by auto
next

case True
with A ‹v c1 6= k› show ?thesis unfolding reset-def unfolds by auto

qed
qed

qed
qed

lemma reset-canonical-diag-preservation:
fixes k :: nat
assumes k > 0
shows ∀ i ≤ n. (reset-canonical M k d) i i = M i i

using assms unfolding reset-canonical-def by auto
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definition reset ′′ where
reset ′′ M n cs v d = fold (λ c M . reset-canonical M (v c) d) cs M

lemma reset ′′-diag-preservation:
assumes clock-numbering v
shows ∀ i ≤ n. (reset ′′ M n cs v d) i i = M i i
using assms
apply (induction cs arbitrary: M )
unfolding reset ′′-def apply auto[]
using reset-canonical-diag-preservation by simp blast

lemma reset-resets:
assumes ∀ k≤n. k > 0 −→ (∃ c. v c = k) clock-numbering ′ v n v c ≤ n
shows [reset M n (v c) d]v,n = {u(c := d) | u. u ∈ [M ]v,n}

proof safe
fix u assume u: u ∈ [reset M n (v c) d]v,n
with assms have

u c = d
by (auto intro: DBM-reset-sound2 [OF - DBM-reset-reset] simp: DBM-zone-repr-def )
moreover from DBM-reset-sound[OF assms u] obtain d ′ where

u(c := d ′) ∈ [M ]v,n (is ?u ∈ -)
by auto
ultimately have u = ?u(c := d) by auto
with ‹?u ∈ -› show ∃ u ′. u = u ′(c := d) ∧ u ′ ∈ [M ]v,n by blast

next
fix u assume u: u ∈ [M ]v,n
with DBM-reset-complete[OF assms(2 ,3 ) DBM-reset-reset] assms
show u(c := d) ∈ [reset M n (v c) d]v,n unfolding DBM-zone-repr-def

by auto
qed

lemma reset-eq ′:
assumes prems: ∀ k≤n. k > 0 −→ (∃ c. v c = k) clock-numbering ′ v n v

c ≤ n
and eq: [M ]v,n = [M ′]v,n

shows [reset M n (v c) d]v,n = [reset M ′ n (v c) d]v,n
using reset-resets[OF prems] eq by blast

lemma reset-eq:
assumes prems: ∀ k≤n. k > 0 −→ (∃ c. v c = k) clock-numbering ′ v n

and k: k > 0 k ≤ n
and eq: [M ]v,n = [M ′]v,n

shows [reset M n k d]v,n = [reset M ′ n k d]v,n
using reset-eq ′[OF prems - eq] prems(1 ) k by blast
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lemma FW-reset-commute:
assumes prems: ∀ k≤n. k > 0 −→ (∃ c. v c = k) clock-numbering ′ v n k

> 0 k ≤ n
shows [FW (reset M n k d) n]v,n = [reset (FW M n) n k d]v,n

using reset-eq[OF prems] FW-zone-equiv[OF prems(1 )] by blast

lemma reset-canonical-diag-presv:
fixes k :: nat
assumes M i i = Le 0 k > 0
shows (reset-canonical M k d) i i = Le 0

unfolding reset-canonical-def using assms by auto

lemma reset-cycle-free:
fixes M :: ( ′t :: time) DBM
assumes cycle-free M n

and prems: ∀ k≤n. k > 0 −→ (∃ c. v c = k) clock-numbering ′ v n k >
0 k ≤ n

shows cycle-free (reset M n k d) n
proof −

from assms cyc-free-not-empty cycle-free-diag-equiv have [M ]v,n 6= {} by
metis

with reset-resets[OF prems(1 ,2 )] prems(1 ,3 ,4 ) have [reset M n k d]v,n
6= {} by fast

with not-empty-cyc-free[OF prems(1 )] cycle-free-diag-equiv show ?thesis
by metis
qed

lemma reset ′-reset ′′-equiv:
assumes canonical M n d ≥ 0 ∀ i ≤ n. M i i = 0

clock-numbering ′ v n ∀ c ∈ set cs. v c ≤ n
and surj: ∀ k ≤ n. k > 0 −→ (∃ c. v c = k)

shows [reset ′ M n cs v d]v,n = [reset ′′ M n cs v d]v,n
proof −

from assms(3 ,4 ,5 ) surj have
∀ i ≤ n. M i i ≥ 0 M 0 0 = Le 0 ∀ c ∈ set cs. M (v c) (v c) = Le 0

unfolding neutral by auto
note assms = assms(1 ,2 ) this assms(4−)
from ‹clock-numbering ′ v n› have clock-numbering v by auto
from canonical-cyc-free assms(1 ,3 ) cycle-free-diag-equiv have cycle-free

M n by metis
have reset ′ M n cs v d = foldr (λ c M . reset M n (v c) d) cs M by

(induction cs) auto
then have
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[FW (reset ′ M n cs v d) n]v,n = [FW (foldr (λ c M . reset M n (v c) d)
cs M ) n]v,n

by simp
also have . . . = [foldr (λc M . reset-canonical M (v c) d) cs M ]v,n
using assms
apply (induction cs)
apply (force simp: FW-canonical-id)

apply simp
subgoal premises prems for a cs
proof −

let ?l = FW (reset (foldr (λc M . reset M n (v c) d) cs M ) n (v a) d)
n

let ?m = reset (foldr (λc M . reset-canonical M (v c) d) cs M ) n (v a)
d

let ?r = reset-canonical (foldr (λc M . reset-canonical M (v c) d) cs
M ) (v a) d

have foldr (λc M . reset-canonical M (v c) d) cs M 0 0 = Le 0
apply (induction cs)
using prems by (force intro: reset-canonical-diag-presv)+

from prems(6 ) have canonical (foldr (λc M . reset-canonical M (v c)
d) cs M ) n

apply (induction cs)
using ‹canonical M n› apply force
apply simp
apply (rule reset-canonical-canonical ′[unfolded neutral])
using assms apply simp
subgoal premises − for a cs

apply (induction cs)
using assms(4 ) ‹clock-numbering v› by (force intro: reset-canonical-diag-presv)+
subgoal premises prems for a cs

apply (induction cs)
using prems ‹clock-numbering v› by (force intro: reset-canonical-diag-presv)+

apply (simp; fail)
using ‹clock-numbering v› by metis

have [FW (reset (foldr (λc M . reset M n (v c) d) cs M ) n (v a) d)
n]v,n

= [reset (FW (foldr (λc M . reset M n (v c) d) cs M ) n) n (v a) d]v,n
using assms(8−) prems(7−) by − (rule FW-reset-commute; auto)

also from prems have . . . = [?m]v,n by − (rule reset-eq; auto)
also from ‹canonical (foldr - - -) n› prems have
. . . = [?r ]v,n
by − (rule reset-reset-canonical; simp)

finally show ?thesis .
qed
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done
also have . . . = [reset ′′ M n cs v d]v,n unfolding reset ′′-def
apply (rule arg-cong[where f = λ M . [M ]v,n])
apply (rule fun-cong[where x = M ])
apply (rule foldr-fold)
apply (rule ext)
apply simp
subgoal for x y M
proof −

from ‹clock-numbering v› have v x > 0 v y > 0 by auto
show ?thesis
proof (cases v x = v y)

case True
then show ?thesis unfolding reset-canonical-def by force

next
case False

with ‹v x > 0 › ‹v y > 0 › show ?thesis unfolding reset-canonical-def
by fastforce

qed
qed

done
finally show ?thesis using FW-zone-equiv[OF surj] by metis

qed

Eliminating the clock numbering
definition reset ′′′ where

reset ′′′ M n cs d = fold (λ c M . reset-canonical M c d) cs M

lemma reset ′′-reset ′′′:
assumes ∀ c ∈ set cs. v c = c
shows reset ′′ M n cs v d = reset ′′′ M n cs d

using assms
apply (induction cs arbitrary: M )

unfolding reset ′′-def reset ′′′-def by simp+

type-synonym ′a DBM ′ = nat × nat ⇒ ′a DBMEntry

definition
reset-canonical-upd
(M :: ( ′a :: {linordered-cancel-ab-monoid-add,uminus}) DBM ′) (n:: nat)

(k:: nat) d =
fold (λ i M . if i = k then M else M ((k, i) := Le d + M (0 ,i), (i, k) :=

Le (−d) + M (i, 0 )))
(map nat [1 ..n])
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(M ((k, 0 ) := Le d, (0 , k) := Le (−d)))

lemma one-upto-Suc:
[1 ..<Suc i + 1 ] = [1 ..<i+1 ] @ [Suc i]
by simp

lemma one-upto-Suc ′:
[1 ..Suc i] = [1 ..i] @ [Suc i]
by (simp add: upto-rec2 )

lemma one-upto-Suc ′′:
[1 ..1 + i] = [1 ..i] @ [Suc i]
by (simp add: upto-rec2 )

lemma reset-canonical-upd-diag-id:
fixes k n :: nat
assumes k > 0
shows (reset-canonical-upd M n k d) (k, k) = M (k, k)

unfolding reset-canonical-upd-def using assms by (induction n) (auto simp:
upto-rec2 )

lemma reset-canonical-upd-out-of-bounds-id1 :
fixes i j k n :: nat
assumes i 6= k i > n
shows (reset-canonical-upd M n k d) (i, j) = M (i, j)

using assms by (induction n) (auto simp add: reset-canonical-upd-def upto-rec2 )

lemma reset-canonical-upd-out-of-bounds-id2 :
fixes i j k n :: nat
assumes j 6= k j > n
shows (reset-canonical-upd M n k d) (i, j) = M (i, j)

using assms by (induction n) (auto simp add: reset-canonical-upd-def upto-rec2 )

lemma reset-canonical-upd-out-of-bounds1 :
fixes i j k n :: nat
assumes k ≤ n i > n
shows (reset-canonical-upd M n k d) (i, j) = M (i, j)

using assms reset-canonical-upd-out-of-bounds-id1 by (metis not-le)

lemma reset-canonical-upd-out-of-bounds2 :
fixes i j k n :: nat
assumes k ≤ n j > n
shows (reset-canonical-upd M n k d) (i, j) = M (i, j)
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using assms reset-canonical-upd-out-of-bounds-id2 by (metis not-le)

lemma reset-canonical-upd-id1 :
fixes k n :: nat
assumes k > 0 i > 0 i ≤ n i 6= k
shows (reset-canonical-upd M n k d) (i, k) = Le (−d) + M (i,0 )

using assms apply (induction n)
apply (simp add: reset-canonical-upd-def ; fail)
subgoal for n

apply (simp add: reset-canonical-upd-def )
apply (subst one-upto-Suc ′′)
using reset-canonical-upd-out-of-bounds-id1 [unfolded reset-canonical-upd-def ,

where j = 0 and M = M ]
by fastforce
done

lemma reset-canonical-upd-id2 :
fixes k n :: nat
assumes k > 0 i > 0 i ≤ n i 6= k
shows (reset-canonical-upd M n k d) (k, i) = Le d + M (0 ,i)

unfolding reset-canonical-upd-def using assms apply (induction n)
apply (simp add: upto-rec2 ; fail)
subgoal for n

apply (simp add: one-upto-Suc ′′)
using reset-canonical-upd-out-of-bounds-id2 [unfolded reset-canonical-upd-def ,

where i = 0 and M = M ]
by fastforce
done

lemma reset-canonical-updid-0-1 :
fixes n :: nat
assumes k > 0
shows (reset-canonical-upd M n k d) (0 , k) = Le (−d)

using assms by (induction n) (auto simp add: reset-canonical-upd-def upto-rec2 )

lemma reset-canonical-updid-0-2 :
fixes n :: nat
assumes k > 0
shows (reset-canonical-upd M n k d) (k, 0 ) = Le d

using assms by (induction n) (auto simp add: reset-canonical-upd-def upto-rec2 )

lemma reset-canonical-upd-id:
fixes n :: nat
assumes i 6= k j 6= k
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shows (reset-canonical-upd M n k d) (i,j) = M (i,j)
using assms by (induction n; simp add: reset-canonical-upd-def upto-rec2 )

lemma reset-canonical-upd-reset-canonical:
fixes i j k n :: nat and M :: nat × nat ⇒ ( ′a :: {linordered-cancel-ab-monoid-add,uminus})

DBMEntry
assumes k > 0 i ≤ n j ≤ n ∀ i ≤ n. ∀ j ≤ n. M (i, j) = M ′ i j
shows (reset-canonical-upd M n k d)(i,j) = (reset-canonical M ′ k d) i j

(is ?M (i,j) = -)
proof (cases i = k)

case True
show ?thesis
proof (cases j = k)

case True
with ‹i = k› assms reset-canonical-upd-diag-id[where M = M ] show

?thesis
by (auto simp: reset-canonical-def )

next
case False
show ?thesis
proof (cases j = 0 )

case False
with ‹i = k› ‹j 6= k› assms have

?M (i,j) = Le d + M (0 ,j)
using reset-canonical-upd-id2 [where M = M ] by fastforce

with ‹i = k› ‹j 6= k› ‹j 6= 0 › assms show ?thesis unfolding re-
set-canonical-def by auto

next
case True

with ‹i = k› ‹k > 0 › show ?thesis by (simp add: reset-canonical-updid-0-2
reset-canonical-def )

qed
qed

next
case False
show ?thesis
proof (cases j = k)

case True
show ?thesis
proof (cases i = 0 )

case False
with ‹j = k› ‹i 6= k›assms have

?M (i,j) = Le (−d) + M (i,0 )
using reset-canonical-upd-id1 [where M = M ] by fastforce
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with ‹j = k› ‹i 6= k› ‹i 6= 0 › assms show ?thesis unfolding re-
set-canonical-def by force

next
case True

with ‹j = k› ‹k > 0 › show ?thesis by (simp add: reset-canonical-updid-0-1
reset-canonical-def )

qed
next

case False
with ‹i 6= k› assms show ?thesis by (simp add: reset-canonical-upd-id

reset-canonical-def )
qed

qed

lemma reset-canonical-upd-reset-canonical ′:
fixes i j k n :: nat
assumes k > 0 i ≤ n j ≤ n
shows (reset-canonical-upd M n k d)(i,j) = (reset-canonical (curry M ) k

d) i j (is ?M (i,j) = -)
proof (cases i = k)

case True
show ?thesis
proof (cases j = k)

case True
with ‹i = k› assms reset-canonical-upd-diag-id show ?thesis by (auto

simp add: reset-canonical-def )
next

case False
show ?thesis
proof (cases j = 0 )

case False
with ‹i = k› ‹j 6= k› assms have

?M (i,j) = Le d + M (0 ,j)
using reset-canonical-upd-id2 [where M = M ] by fastforce

with ‹i = k› ‹j 6= k› ‹j 6= 0 › show ?thesis unfolding reset-canonical-def
by simp

next
case True

with ‹i = k› ‹k > 0 › show ?thesis by (simp add: reset-canonical-updid-0-2
reset-canonical-def )

qed
qed

next
case False
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show ?thesis
proof (cases j = k)

case True
show ?thesis
proof (cases i = 0 )

case False
with ‹j = k› ‹i 6= k›assms have

?M (i,j) = Le (−d) + M (i,0 )
using reset-canonical-upd-id1 [where M = M ] by fastforce

with ‹j = k› ‹i 6= k› ‹i 6= 0 › show ?thesis unfolding reset-canonical-def
by simp

next
case True

with ‹j = k› ‹k > 0 › show ?thesis by (simp add: reset-canonical-updid-0-1
reset-canonical-def )

qed
next

case False
with ‹i 6= k› show ?thesis by (simp add: reset-canonical-upd-id re-

set-canonical-def )
qed

qed

lemma reset-canonical-upd-canonical:
canonical (curry (reset-canonical-upd M n k (d :: ′c :: {linordered-ab-group-add,uminus})))

n
if ∀ i ≤ n. M (i, i) = 0 canonical (curry M ) n k > 0 for k n :: nat
using reset-canonical-canonical[of n curry M k] that
by (auto simp: reset-canonical-upd-reset-canonical ′)

definition reset ′-upd where
reset ′-upd M n cs d = fold (λ c M . reset-canonical-upd M n c d) cs M

lemma reset ′′′-reset ′-upd:
fixes n:: nat and cs :: nat list
assumes ∀ c ∈ set cs. c 6= 0 i ≤ n j ≤ n ∀ i ≤ n. ∀ j ≤ n. M (i, j) =

M ′ i j
shows (reset ′-upd M n cs d) (i, j) = (reset ′′′ M ′ n cs d) i j

using assms
apply (induction cs arbitrary: M M ′)
unfolding reset ′-upd-def reset ′′′-def
apply (simp; fail)
subgoal for c cs M M ′

using reset-canonical-upd-reset-canonical[where M = M ] by auto
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done

lemma reset ′′′-reset ′-upd ′:
fixes n:: nat and cs :: nat list and M :: ( ′a :: {linordered-cancel-ab-monoid-add,uminus})

DBM ′

assumes ∀ c ∈ set cs. c 6= 0 i ≤ n j ≤ n
shows (reset ′-upd M n cs d) (i, j) = (reset ′′′ (curry M ) n cs d) i j

using reset ′′′-reset ′-upd[where M = M and M ′ = curry M , OF assms]
by simp

lemma reset ′-upd-out-of-bounds1 :
fixes i j k n :: nat
assumes ∀ c ∈ set cs. c ≤ n i > n
shows (reset ′-upd M n cs d) (i, j) = M (i, j)

using assms
by (induction cs arbitrary: M , auto simp: reset ′-upd-def intro: reset-canonical-upd-out-of-bounds-id1 )

lemma reset ′-upd-out-of-bounds2 :
fixes i j k n :: nat
assumes ∀ c ∈ set cs. c ≤ n j > n
shows (reset ′-upd M n cs d) (i, j) = M (i, j)

using assms
by (induction cs arbitrary: M , auto simp: reset ′-upd-def intro: reset-canonical-upd-out-of-bounds-id2 )

lemma reset-canonical-int-preservation:
fixes n :: nat
assumes dbm-int M n d ∈ �
shows dbm-int (reset-canonical M k d) n

using assms unfolding reset-canonical-def by (auto dest: sum-not-inf-dest)

lemma reset-canonical-upd-int-preservation:
assumes dbm-int (curry M ) n d ∈ � k > 0
shows dbm-int (curry (reset-canonical-upd M n k d)) n

using reset-canonical-int-preservation[OF assms(1 ,2 )] reset-canonical-upd-reset-canonical ′
by (metis assms(3 ) curry-conv)

lemma reset ′-upd-int-preservation:
assumes dbm-int (curry M ) n d ∈ � ∀ c ∈ set cs. c 6= 0
shows dbm-int (curry (reset ′-upd M n cs d)) n

using assms
apply (induction cs arbitrary: M )
unfolding reset ′-upd-def
apply (simp; fail)
apply (drule reset-canonical-upd-int-preservation; auto)
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done

lemma reset-canonical-upd-diag-preservation:
fixes i :: nat
assumes k > 0
shows ∀ i ≤ n. (reset-canonical-upd M n k d) (i, i) = M (i, i)

using reset-canonical-diag-preservation reset-canonical-upd-reset-canonical ′
assms
by (metis curry-conv)

lemma reset ′-upd-diag-preservation:
assumes ∀ c ∈ set cs. c > 0 i ≤ n
shows (reset ′-upd M n cs d) (i, i) = M (i, i)

using assms
by (induction cs arbitrary: M ; simp add: reset ′-upd-def reset-canonical-upd-diag-preservation)

lemma upto-from-1-upt:
fixes n :: nat
shows map nat [1 ..int n] = [1 ..<n+1 ]

by (induction n) (auto simp: one-upto-Suc ′′)

lemma reset-canonical-upd-alt-def :
reset-canonical-upd (M :: ( ′a :: {linordered-cancel-ab-monoid-add,uminus})

DBM ′) ( n:: nat) (k :: nat) d =
fold
(λ i M .

if i = k then
M

else do {
let m0i = op-mtx-get M (0 ,i);
let mi0 = op-mtx-get M (i, 0 );
M ((k, i) := Le d + m0i, (i, k) := Le (−d) + mi0 )
}

)
[1 ..<n+1 ]
(M ((k, 0 ) := Le d, (0 , k) := Le (−d)))

unfolding reset-canonical-upd-def by (simp add: upto-from-1-upt cong: if-cong)

5.3 Relaxation

named-theorems dbm-entry-simps
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lemma [dbm-entry-simps]:
a + ∞ = ∞

unfolding add by (cases a) auto

lemma [dbm-entry-simps]:
∞ + b = ∞

unfolding add by (cases b) auto

lemmas any-le-inf [dbm-entry-simps]

lemma up-canonical-preservation:
assumes canonical M n
shows canonical (up M ) n

unfolding up-def using assms by (simp add: dbm-entry-simps)

definition up-canonical :: ′t DBM ⇒ ′t DBM where
up-canonical M = (λ i j. if i > 0 ∧ j = 0 then ∞ else M i j)

lemma up-canonical-eq-up:
assumes canonical M n i ≤ n j ≤ n
shows up-canonical M i j = up M i j

unfolding up-canonical-def up-def using assms by simp

lemma DBM-up-to-equiv:
assumes ∀ i ≤ n. ∀ j ≤ n. M i j = M ′ i j
shows [M ]v,n = [M ′]v,n

apply safe
apply (rule DBM-le-subset)

using assms by (auto simp: add[symmetric] intro: DBM-le-subset)

lemma up-canonical-equiv-up:
assumes canonical M n
shows [up-canonical M ]v,n = [up M ]v,n

apply (rule DBM-up-to-equiv)
unfolding up-canonical-def up-def using assms by simp

lemma up-canonical-diag-preservation:
assumes ∀ i ≤ n. M i i = 0
shows ∀ i ≤ n. (up-canonical M ) i i = 0

unfolding up-canonical-def using assms by auto

no-notation Ref .update (‹- := -› 62 )

definition up-canonical-upd :: ′t DBM ′⇒ nat ⇒ ′t DBM ′ where
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up-canonical-upd M n = fold (λ i M . M ((i,0 ) := ∞)) [1 ..<n+1 ] M

lemma up-canonical-upd-rec:
up-canonical-upd M (Suc n) = (up-canonical-upd M n) ((Suc n, 0 ) := ∞)

unfolding up-canonical-upd-def by auto

lemma up-canonical-out-of-bounds1 :
fixes i :: nat
assumes i > n
shows up-canonical-upd M n (i, j) = M (i,j)

using assms by (induction n) (auto simp: up-canonical-upd-def )

lemma up-canonical-out-of-bounds2 :
fixes j :: nat
assumes j > 0
shows up-canonical-upd M n (i, j) = M (i,j)

using assms by (induction n) (auto simp: up-canonical-upd-def )

lemma up-canonical-upd-up-canonical:
assumes i ≤ n j ≤ n ∀ i ≤ n. ∀ j ≤ n. M (i, j) = M ′ i j
shows (up-canonical-upd M n) (i, j) = (up-canonical M ′) i j

using assms
proof (induction n)

case 0
then show ?case by (simp add: up-canonical-upd-def up-canonical-def ;

fail)
next

case (Suc n)
show ?case
proof (cases j = Suc n)

case True
with Suc.prems show ?thesis by (simp add: up-canonical-out-of-bounds2

up-canonical-def )
next

case False
show ?thesis
proof (cases i = Suc n)

case True
with Suc.prems ‹j 6= -› show ?thesis

by (simp add: up-canonical-out-of-bounds1 up-canonical-def up-canonical-upd-rec)
next

case False
with Suc ‹j 6= -› show ?thesis by (auto simp: up-canonical-upd-rec)

qed
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qed
qed

lemma up-canonical-int-preservation:
assumes dbm-int M n
shows dbm-int (up-canonical M ) n

using assms unfolding up-canonical-def by auto

lemma up-canonical-upd-int-preservation:
assumes dbm-int (curry M ) n
shows dbm-int (curry (up-canonical-upd M n)) n

using up-canonical-int-preservation[OF assms] up-canonical-upd-up-canonical[where
M ′ = curry M ]
by (auto simp: curry-def )

lemma up-canonical-diag-preservation ′:
(up-canonical M ) i i = M i i

unfolding up-canonical-def by auto

lemma up-canonical-upd-diag-preservation:
(up-canonical-upd M n) (i, i) = M (i, i)

unfolding up-canonical-upd-def by (induction n) auto

5.4 Intersection

definition
unbounded-dbm n = (λ (i, j). (if i = j ∨ i > n ∨ j > n then Le 0 else
∞))

definition And-upd :: nat ⇒ ( ′t::{linorder ,zero}) DBM ′ ⇒ ′t DBM ′ ⇒ ′t
DBM ′ where

And-upd n A B =
fold (λi M .

fold (λj M . M ((i,j) := min (A(i,j)) (B(i,j)))) [0 ..<n+1 ] M )
[0 ..<n+1 ]
(unbounded-dbm n)

lemma fold-loop-inv-rule:
assumes I 0 x
assumes

∧
i x. I i x =⇒ i ≤ n =⇒ I (Suc i) (f i x)

assumes
∧

x. I n x =⇒ Q x
shows Q (fold f [0 ..<n] x)

proof −
from assms(2 ) have I n (fold f [0 ..<n] x)
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proof (induction n)
case 0
show ?case

by simp (rule assms)
next

case (Suc n)
show ?case

using Suc by auto
qed
then show ?thesis

by (rule assms(3 ))
qed

lemma And-upd-min:
assumes i ≤ n j ≤ n
shows And-upd n A B (i, j) = min (A(i,j)) (B(i,j))
unfolding And-upd-def
apply (rule fold-loop-inv-rule[where I = λk M . ∀ i<k. ∀ j ≤ n. M (i,j) =

min (A(i,j)) (B(i,j))])
apply (simp; fail)

subgoal for k x
apply (rule fold-loop-inv-rule[where I =

λj ′ M . ∀ i≤k.
if i = k then
(∀ j < j ′. M (i,j) = min (A(i,j)) (B(i,j)))

else
(∀ j ≤ n. M (i,j) = min (A(i,j)) (B(i,j)))])

by (simp-all) (metis Suc-eq-plus1 less-Suc-eq-le)
using assms by auto

lemma And-upd-And:
assumes i ≤ n j ≤ n
∀ i ≤ n. ∀ j ≤ n. A (i, j) = A ′ i j ∀ i ≤ n. ∀ j ≤ n. B (i, j) = B ′ i j

shows And-upd n A B (i, j) = And A ′ B ′ i j
using assms by (auto simp: And-upd-min)

5.5 Inclusion

definition pointwise-cmp where
pointwise-cmp P n M M ′ = (∀ i ≤ n. ∀ j ≤ n. P (M i j) (M ′ i j))

lemma subset-eq-pointwise-le:
fixes M :: real DBM
assumes canonical M n ∀ i ≤ n. M i i = 0 ∀ i ≤ n. M ′ i i = 0
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and prems: clock-numbering ′ v n ∀ k≤n. 0 < k −→ (∃ c. v c = k)
shows [M ]v,n ⊆ [M ′]v,n ←→ pointwise-cmp (≤) n M M ′

unfolding pointwise-cmp-def
apply safe
subgoal for i j
apply (cases i = j)
using assms apply (simp; fail)

apply (rule DBM-canonical-subset-le)
using assms(1−3 ) prems by (auto simp: cyc-free-not-empty[OF canoni-

cal-cyc-free])
by (auto simp: less-eq intro: DBM-le-subset)

definition check-diag :: nat ⇒ ( ′t :: {linorder , zero}) DBM ′⇒ bool where
check-diag n M ≡ ∃ i ≤ n. M (i, i) < Le 0

lemma check-diag-empty:
fixes n :: nat and v
assumes surj: ∀ k≤n. 0 < k −→ (∃ c. v c = k)
assumes check-diag n M
shows [curry M ]v,n = {}

using assms neg-diag-empty[OF surj, where M = curry M ] unfolding
check-diag-def neutral by auto

lemma check-diag-alt-def :
check-diag n M = list-ex (λ i. op-mtx-get M (i, i) < Le 0 ) [0 ..<Suc n]

unfolding check-diag-def list-ex-iff by fastforce

definition dbm-subset :: nat ⇒ ( ′t :: {linorder , zero}) DBM ′ ⇒ ′t DBM ′

⇒ bool where
dbm-subset n M M ′ ≡ check-diag n M ∨ pointwise-cmp (≤) n (curry M )

(curry M ′)

lemma dbm-subset-refl:
dbm-subset n M M

unfolding dbm-subset-def pointwise-cmp-def by simp

lemma dbm-subset-trans:
assumes dbm-subset n M1 M2 dbm-subset n M2 M3
shows dbm-subset n M1 M3

using assms unfolding dbm-subset-def pointwise-cmp-def check-diag-def
by fastforce

lemma canonical-nonneg-diag-non-empty:
assumes canonical M n ∀ i≤n. 0 ≤ M i i ∀ c. v c ≤ n −→ 0 < v c
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shows [M ]v,n 6= {}
apply (rule cyc-free-not-empty)
apply (rule canonical-cyc-free)

using assms by auto

The type constraint in this lemma is due to [[canonical ?M ?n; [?M ]?v,?n
⊆ [?M ′]?v,?n; [?M ]?v,?n 6= {}; ?i ≤ ?n; ?j ≤ ?n; ?i 6= ?j; ∀ c. 0 < ?v c ∧
(∀ x y. ?v x ≤ ?n ∧ ?v y ≤ ?n ∧ ?v x = ?v y −→ x = y); ∀ k≤?n. 0 <
k −→ (∃ c. ?v c = k)]] =⇒ ?M ?i ?j ≤ ?M ′ ?i ?j. Proving it for a more
general class of types is possible but also tricky due to a missing setup for
arithmetic.
lemma subset-eq-dbm-subset:

fixes M :: real DBM ′

assumes canonical (curry M ) n ∨ check-diag n M ∀ i ≤ n. M (i, i) ≤
0 ∀ i ≤ n. M ′ (i, i) ≤ 0

and cn: clock-numbering ′ v n and surj: ∀ k≤n. 0 < k −→ (∃ c. v c =
k)

shows [curry M ]v,n ⊆ [curry M ′]v,n ←→ dbm-subset n M M ′

proof (cases check-diag n M )
case True
with check-diag-empty[OF surj] show ?thesis unfolding dbm-subset-def

by auto
next

case F : False
with assms(1 ) have canonical: canonical (curry M ) n by fast
show ?thesis
proof (cases check-diag n M ′)

case True
from F cn have
[curry M ]v,n 6= {}

apply −
apply (rule canonical-nonneg-diag-non-empty[OF canonical])

unfolding check-diag-def neutral[symmetric] by auto
moreover from F True have
¬ dbm-subset n M M ′

unfolding dbm-subset-def pointwise-cmp-def check-diag-def by fastforce
ultimately show ?thesis using check-diag-empty[OF surj True] by auto

next
case False
with F assms(2 ,3 ) have
∀ i ≤ n. M (i, i) = 0 ∀ i ≤ n. M ′ (i, i) = 0

unfolding check-diag-def neutral[symmetric] by fastforce+
with F False show ?thesis unfolding dbm-subset-def
by (subst subset-eq-pointwise-le[OF canonical - - cn surj]; auto)
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qed
qed

lemma pointwise-cmp-alt-def :
pointwise-cmp P n M M ′ =

list-all (λ i. list-all (λ j. P (M i j) (M ′ i j)) [0 ..<Suc n]) [0 ..<Suc n]
unfolding pointwise-cmp-def by (fastforce simp: list-all-iff )

lemma dbm-subset-alt-def [code]:
dbm-subset n M M ′ =
(list-ex (λ i. op-mtx-get M (i, i) < Le 0 ) [0 ..<Suc n] ∨
list-all (λ i. list-all (λ j. (op-mtx-get M (i, j) ≤ op-mtx-get M ′ (i, j)))

[0 ..<Suc n]) [0 ..<Suc n])
by (simp add: dbm-subset-def check-diag-alt-def pointwise-cmp-alt-def )

definition pointwise-cmp-alt-def where
pointwise-cmp-alt-def P n M M ′ = fold (λ i b. fold (λ j b. P (M i j) (M ′

i j) ∧ b) [1 ..<Suc n] b) [1 ..<Suc n] True

lemma list-all-foldli:
list-all P xs = foldli xs (λx. x = True) (λ x -. P x) True

apply (induction xs)
apply (simp; fail)

subgoal for x xs
apply simp
apply (induction xs)

by auto
done

lemma list-ex-foldli:
list-ex P xs = foldli xs Not (λ x y. P x ∨ y) False

apply (induction xs)
apply (simp; fail)

subgoal for x xs
apply simp
apply (induction xs)

by auto
done

5.6 Extrapolations

context
fixes

upd-entry :: nat ⇒ nat ⇒ ′t ⇒ ′t ⇒ ( ′t::{linordered-ab-group-add})
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DBMEntry ⇒ ′t DBMEntry
and upd-entry-0 :: nat ⇒ ′t ⇒ ′t DBMEntry ⇒ ′t DBMEntry

begin

definition extra ::
′t DBM ⇒ (nat ⇒ ′t) ⇒ (nat ⇒ ′t) ⇒ nat ⇒ ′t DBM

where
extra M l u n ≡ λi j.

let ub = if i > 0 then l i else 0 in
let lb = if j > 0 then u j else 0 in
if i ≤ n ∧ j ≤ n then

if i 6= j then
if i > 0 then upd-entry i j lb ub (M i j) else upd-entry-0 j lb (M i j)

else norm-diag (M i j)
else M i j

definition upd-line-0 ::
′t DBM ′⇒ ′t list ⇒ nat ⇒ ′t DBM ′

where
upd-line-0 M k n =

fold
(λj M .

M ((0 , j) := upd-entry-0 j (op-list-get k j) (M (0 , j))))
[1 ..<Suc n]
(M ((0 , 0 ) := norm-diag (M (0 , 0 ))))

definition upd-line ::
′t DBM ′⇒ ′t list ⇒ ′t ⇒ nat ⇒ nat ⇒ ′t DBM ′

where
upd-line M k ub i n =

fold
(λj M .

if i 6= j then
M ((i, j) := upd-entry i j (op-list-get k j) ub (M (i, j)))

else M ((i, j) := norm-diag (M (i, j))))
[1 ..<Suc n]
(M ((i, 0 ) := upd-entry i 0 0 ub (M (i, 0 ))))

lemma upd-line-Suc-unfold:
upd-line M k ub i (Suc n) = (let M ′ = upd-line M k ub i n in
if i 6= Suc n then

M ′ ((i, Suc n) := upd-entry i (Suc n) (op-list-get k (Suc n)) ub (M ′(i,
Suc n)))

else M ′ ((i, Suc n) := norm-diag (M ′ (i, Suc n))))
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unfolding upd-line-def by simp

lemma upd-line-out-of-bounds:
assumes j > n
shows upd-line M k ub i n (i ′, j) = M (i ′, j)
using assms by (induction n) (auto simp: upd-line-def )

lemma upd-line-alt-def :
assumes i > 0
shows
upd-line M k ub i n (i ′, j) = (

let lb = if j > 0 then op-list-get k j else 0 in
if i ′ = i ∧ j ≤ n then

if i 6= j then
upd-entry i j lb ub (M (i, j))

else
norm-diag (M (i, j))

else M (i ′, j)
)

using assms
apply simp
apply safe

apply (induction n, simp add: upd-line-def ,
auto simp: upd-line-out-of-bounds upd-line-Suc-unfold Let-def )+

done

lemma upd-line-0-alt-def :
upd-line-0 M k n (i ′, j) = (

if i ′ = 0 ∧ j ≤ n then
if j > 0 then upd-entry-0 j (op-list-get k j) (M (0 , j)) else norm-diag

(M (0 , 0 ))
else M (i ′, j)

)
by (induction n) (auto simp: upd-line-0-def )

definition extra-upd :: ′t DBM ′⇒ ′t list ⇒ ′t list ⇒ nat ⇒ ′t DBM ′

where
extra-upd M l u n ≡

fold (λi M . upd-line M u (op-list-get l i) i n) [1 ..<Suc n] (upd-line-0 M
u n)

lemma upd-line-0-out-ouf-bounds1 :
assumes i > 0
shows upd-line-0 M k n (i, j) = M (i, j)
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using assms unfolding upd-line-0-alt-def by simp

lemma upd-line-0-out-ouf-bounds2 :
assumes j > n
shows upd-line-0 M k n (i, j) = M (i, j)
using assms unfolding upd-line-0-alt-def by simp

lemma upd-out-of-bounds-aux1 :
assumes i > n
shows fold (λi M . upd-line M k (op-list-get l i) i m) [1 ..<Suc n] M (i, j)

= M (i, j)
using assms
by (intro fold-invariant[where Q = λi. i > 0 ∧ i ≤ n and P = λM ′.

M ′ (i, j) = M (i, j)])
(auto simp: upd-line-alt-def )

lemma upd-out-of-bounds-aux2 :
assumes j > m
shows fold (λi M . upd-line M k (op-list-get l i) i m) [1 ..<Suc n] M (i, j)

= M (i, j)
using assms
by (intro fold-invariant[where Q = λi. i > 0 ∧ i ≤ n and P = λM ′.

M ′ (i, j) = M (i, j)])
(auto simp: upd-line-alt-def )

lemma upd-out-of-bounds1 :
assumes i > n
shows extra-upd M l u n (i, j) = M (i, j)
using assms unfolding extra-upd-def
by (subst upd-out-of-bounds-aux1 ) (auto simp: upd-line-0-out-ouf-bounds1 )

lemma upd-out-of-bounds2 :
assumes j > n
shows extra-upd M l u n (i, j) = M (i, j)
by (simp only: assms extra-upd-def upd-out-of-bounds-aux2 upd-line-0-out-ouf-bounds2 )

definition norm-entry where
norm-entry x l u i j = (

let ub = if i > 0 then (l ! i) else 0 in
let lb = if j > 0 then (u ! j) else 0 in
if i 6= j then if i = 0 then upd-entry-0 j lb x else upd-entry i j lb ub x else

norm-diag x)

lemma upd-extra-aux:
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assumes i ≤ n j ≤ m
shows
fold (λi M . upd-line M u (op-list-get l i) i m) [1 ..<Suc n] (upd-line-0 M

u m) (i, j)
= norm-entry (M (i, j)) l u i j
using assms upd-out-of-bounds-aux1 [unfolded op-list-get-def ]
apply (induction n)
apply (simp add: upd-line-0-alt-def norm-entry-def ; fail)

apply (auto simp: upd-line-alt-def upt-Suc-append upd-line-0-out-ouf-bounds1
norm-entry-def

simp del: upt-Suc)
done

lemma upd-extra-aux ′:
assumes i ≤ n j ≤ n
shows extra-upd M l u n (i, j) = extra (curry M ) (λi. l ! i) (λi. u ! i) n

i j
using assms unfolding extra-upd-def
by (subst upd-extra-aux[OF assms]) (simp add: norm-entry-def extra-def

norm-diag-def Let-def )

lemma extra-upd-extra ′′:
extra-upd M l u n (i, j) = extra (curry M ) (λi. l ! i) (λi. u ! i) n i j
by (cases i > n; cases j > n;

simp add: upd-out-of-bounds1 upd-out-of-bounds2 extra-def upd-extra-aux ′)

lemma extra-upd-extra ′:
curry (extra-upd M l u n) = extra (curry M ) (λi. l ! i) (λi. u ! i) n
by (simp add: curry-def extra-upd-extra ′′)

lemma extra-upd-extra:
extra-upd = (λM l u n (i, j). extra (curry M ) (λi. l ! i) (λi. u ! i) n i j)
by (intro ext) (clarsimp simp: extra-upd-extra ′′)

end

lemma norm-is-extra:
norm M k n =

extra
(λ- - lb ub e. norm-lower (norm-upper e ub) (−lb))
(λ- lb e. norm-lower (norm-upper e 0 ) (−lb)) M k k n

unfolding norm-def extra-def Let-def by (intro ext) auto

lemma extra-lu-is-extra:
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extra-lu M l u n =
extra
(λ- - lb ub e. norm-lower (norm-upper e ub) (−lb))
(λ- lb e. norm-lower (norm-upper e 0 ) (−lb)) M l u n

unfolding extra-def extra-lu-def Let-def by (intro ext) auto

lemma extra-lup-is-extra:
extra-lup M l u n =

extra
(λi j lb ub e. if Lt ub ≺ e then ∞

else if M 0 i ≺ Lt (− ub) then ∞
else if M 0 j ≺ (if j > 0 then Lt (− lb) else Lt 0 ) then ∞
else e)

(λj lb e. if Le 0 ≺ M 0 j then ∞
else if M 0 j ≺ (if j > 0 then Lt (− lb) else Lt 0 ) then Lt (− lb)
else M 0 j) M l u n

unfolding extra-def extra-lup-def Let-def by (intro ext) auto

definition
norm-upd M k =

extra-upd
(λ- - lb ub e. norm-lower (norm-upper e ub) (−lb))
(λ- lb e. norm-lower (norm-upper e 0 ) (−lb)) M k k

definition
extra-lu-upd =

extra-upd
(λ- - lb ub e. norm-lower (norm-upper e ub) (−lb))
(λ- lb e. norm-lower (norm-upper e 0 ) (−lb))

definition
extra-lup-upd M =

extra-upd
(λi j lb ub e. if Lt ub ≺ e then ∞

else if M (0 , i) ≺ Lt (− ub) then ∞
else if M (0 , j) ≺ (if j > 0 then Lt (− lb) else Lt 0 ) then ∞
else e)

(λj lb e. if Le 0 ≺ M (0 , j) then ∞
else if M (0 , j) ≺ (if j > 0 then Lt (− lb) else Lt 0 ) then Lt (− lb)
else M (0 , j)) M

lemma extra-upd-cong:
assumes

∧
i j x y e. i ≤ n =⇒ j ≤ n =⇒ upd-entry i j x y e = upd-entry ′

i j x y e
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∧
i x e. i ≤ n =⇒ upd-entry-0 i x e = upd-entry-0 ′ i x e

shows extra-upd upd-entry upd-entry-0 M l u n = extra-upd upd-entry ′

upd-entry-0 ′ M l u n
unfolding extra-upd-def upd-line-def upd-line-0-def
apply (intro fold-cong)

apply (auto simp: assms)[4 ]
apply (rule ext, rule fold-cong, auto simp: assms)
done

lemma extra-lup-upd-alt-def :
extra-lup-upd M l u n = (

let xs = IArray (map (λi. M (0 , i)) [0 ..<Suc n]) in
extra-upd
(λi j lb ub e. if Lt ub ≺ e then ∞

else if (xs !! i) ≺ Lt (− ub) then ∞
else if (xs !! j) ≺ (if j > 0 then Lt (− lb) else Lt 0 ) then ∞
else e)

(λj lb e. if Le 0 ≺ (xs !! j) then ∞
else if (xs !! j) ≺ (if j > 0 then Lt (− lb) else Lt 0 ) then Lt (− lb)
else (xs !! j))) M l u n

unfolding extra-lup-upd-def Let-def by (rule extra-upd-cong; clarsimp
simp del: upt-Suc; fail)

lemma extra-lup-upd-alt-def2 :
extra-lup-upd M l u n = (

let xs = map (λi. M (0 , i)) [0 ..<Suc n] in
extra-upd
(λi j lb ub e. if Lt ub ≺ e then ∞

else if (xs ! i) ≺ Lt (− ub) then ∞
else if (xs ! j) ≺ (if j > 0 then Lt (− lb) else Lt 0 ) then ∞
else e)

(λj lb e. if Le 0 ≺ (xs ! j) then ∞
else if (xs ! j) ≺ (if j > 0 then Lt (− lb) else Lt 0 ) then Lt (− lb)
else (xs ! j)) M l u n)

unfolding extra-lup-upd-def Let-def by (rule extra-upd-cong; clarsimp
simp del: upt-Suc; fail)

lemma norm-upd-norm: norm-upd = (λM k n (i, j). norm (curry M ) (λi.
k ! i) n i j)

and extra-lu-upd-extra-lu:
extra-lu-upd = (λM l u n (i, j). extra-lu (curry M ) (λi. l ! i) (λi. u ! i)

n i j)
and extra-lup-upd-extra-lup:

extra-lup-upd = (λM l u n (i, j). extra-lup (curry M ) (λi. l ! i) (λi. u !
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i) n i j)
unfolding norm-upd-def norm-is-extra extra-lu-upd-def extra-lu-is-extra

extra-lup-upd-def extra-lup-is-extra extra-upd-extra curry-def
by standard+

lemma norm-upd-norm ′:
curry (norm-upd M k n) = norm (curry M ) (λi. k ! i) n
unfolding norm-upd-norm by simp

— Copy from Regions Beta, original should be moved
lemma norm-int-preservation:

assumes dbm-int M n ∀ c ≤ n. k c ∈ �
shows dbm-int (norm M k n) n
using assms unfolding norm-def norm-diag-def by (auto simp: Let-def )

lemma
assumes dbm-int M n ∀ c ≤ n. l c ∈ � ∀ c ≤ n. u c ∈ �
shows extra-lu-preservation: dbm-int (extra-lu M l u n) n

and extra-lup-preservation: dbm-int (extra-lup M l u n) n
using assms unfolding extra-lu-def extra-lup-def norm-diag-def by (auto

simp: Let-def )

lemma norm-upd-int-preservation:
fixes M :: ( ′t :: {linordered-ab-group-add, ring-1}) DBM ′

assumes dbm-int (curry M ) n ∀ c ∈ set k. c ∈ � length k = Suc n
shows dbm-int (curry (norm-upd M k n)) n
using norm-int-preservation[OF assms(1 )] assms(2 ,3 ) unfolding norm-upd-norm

curry-def by simp

lemma
fixes M :: ( ′t :: {linordered-ab-group-add, ring-1}) DBM ′

assumes dbm-int (curry M ) n
∀ c ∈ set l. c ∈ � length l = Suc n ∀ c ∈ set u. c ∈ � length u = Suc n

shows extra-lu-upd-int-preservation: dbm-int (curry (extra-lu-upd M l u
n)) n

and extra-lup-upd-int-preservation: dbm-int (curry (extra-lup-upd M l u
n)) n
using extra-lu-preservation[OF assms(1 )] extra-lup-preservation[OF assms(1 )]

assms(2−)
unfolding extra-lu-upd-extra-lu extra-lup-upd-extra-lup curry-def by simp+

lemma
assumes dbm-default (curry M ) n
shows norm-upd-default: dbm-default (curry (norm-upd M k n)) n
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and extra-lu-upd-default: dbm-default (curry (extra-lu-upd M l u n)) n
and extra-lup-upd-default: dbm-default (curry (extra-lup-upd M l u n))

n
using assms unfolding
norm-upd-norm norm-def extra-lu-upd-extra-lu extra-lu-def extra-lup-upd-extra-lup

extra-lup-def
by auto

end
theory DBM-Imperative-Loops

imports
Refine-Imperative-HOL.IICF

begin

5.6.1 Additional proof rules for typical looping constructs

Heap-Monad.fold-map lemma fold-map-ht:
assumes list-all (λx. <A ∗ true> f x <λr . ↑(Q x r) ∗ A>t) xs
shows <A ∗ true> Heap-Monad.fold-map f xs <λrs. ↑(list-all2 (λx r . Q

x r) xs rs) ∗ A>t

using assms by (induction xs; sep-auto)

lemma fold-map-ht ′:
assumes list-all (λx. <true> f x <λr . ↑(Q x r)>t) xs
shows <true> Heap-Monad.fold-map f xs <λrs. ↑(list-all2 (λx r . Q x r)

xs rs)>t

using assms by (induction xs; sep-auto)

lemma fold-map-ht1 :
assumes

∧
x xi. <A ∗ R x xi ∗ true> f xi <λr . A ∗ ↑(Q x r)>t

shows
<A ∗ list-assn R xs xsi ∗ true>

Heap-Monad.fold-map f xsi
<λrs. A ∗ ↑(list-all2 (λx r . Q x r) xs rs)>t

apply (induction xs arbitrary: xsi)
apply (sep-auto; fail)

subgoal for x xs xsi
by (cases xsi; sep-auto heap: assms)

done

lemma fold-map-ht2 :
assumes

∧
x xi. <A ∗ R x xi ∗ true> f xi <λr . A ∗ R x xi ∗ ↑(Q x r)>t

shows
<A ∗ list-assn R xs xsi ∗ true>
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Heap-Monad.fold-map f xsi
<λrs. A ∗ list-assn R xs xsi ∗ ↑(list-all2 (λx r . Q x r) xs rs)>t

apply (induction xs arbitrary: xsi)
apply (sep-auto; fail)

subgoal for x xs xsi
apply (cases xsi; sep-auto heap: assms)
apply (rule cons-rule[rotated 2 ], rule frame-rule, rprems)
apply frame-inference

apply frame-inference
apply sep-auto
done

done

lemma fold-map-ht3 :
assumes

∧
x xi. <A ∗ R x xi ∗ true> f xi <λr . A ∗ Q x r>t

shows <A ∗ list-assn R xs xsi ∗ true> Heap-Monad.fold-map f xsi <λrs.
A ∗ list-assn Q xs rs>t

apply (induction xs arbitrary: xsi)
apply (sep-auto; fail)

subgoal for x xs xsi
apply (cases xsi; sep-auto heap: assms)
apply (rule Hoare-Triple.cons-pre-rule[rotated], rule frame-rule, rprems,

frame-inference)
apply sep-auto
done

done

imp-for ′ and imp-for lemma imp-for-rule2 :
assumes

emp =⇒A I i a∧
i a. <A ∗ I i a ∗ true> ci a <λr . A ∗ I i a ∗ ↑(r ←→ c a)>t∧
i a. i < j =⇒ c a =⇒ <A ∗ I i a ∗ true> f i a <λr . A ∗ I (i + 1 )

r>t∧
a. I j a =⇒A Q a

∧
i a. i < j =⇒ ¬ c a =⇒ I i a =⇒A Q a

i ≤ j
shows <A ∗ true> imp-for i j ci f a <λr . A ∗ Q r>t

proof −
have
<A ∗ I i a ∗ true>

imp-for i j ci f a
<λr . A ∗ (I j r ∨A (∃A i ′. ↑(i ′ < j ∧ ¬ c r) ∗ I i ′ r))>t

using ‹i ≤ j› assms(2 ,3 )
apply (induction j − i arbitrary: i a; sep-auto)
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subgoal
apply (rule ent-star-mono, rule ent-star-mono)

apply (rule ent-refl, rule ent-disjI1-direct, rule ent-refl)
done

apply rprems
apply sep-auto

apply (rprems)
apply sep-auto+

apply (rule ent-star-mono, rule ent-star-mono, rule ent-refl, rule ent-disjI2 ′)
apply solve-entails
apply simp+

done
then show ?thesis

apply (rule cons-rule[rotated 2 ])
subgoal

apply (subst merge-true-star [symmetric])
apply (rule ent-frame-fwd[OF assms(1 )])
apply frame-inference+

done
apply (rule ent-star-mono)
apply (rule ent-star-mono, rule ent-refl)
apply (solve-entails eintros: assms(5 ) assms(4 ) ent-disjE)+

done
qed

lemma imp-for-rule:
assumes

emp =⇒A I i a∧
i a. <I i a ∗ true> ci a <λr . I i a ∗ ↑(r ←→ c a)>t∧
i a. i < j =⇒ c a =⇒ <I i a ∗ true> f i a <λr . I (i + 1 ) r>t∧
a. I j a =⇒A Q a

∧
i a. i < j =⇒ ¬ c a =⇒ I i a =⇒A Q a

i ≤ j
shows <true> imp-for i j ci f a <λr . Q r>t

by (rule cons-rule[rotated 2 ], rule imp-for-rule2 [where A = true])
(rule assms | sep-auto heap: assms; fail)+

lemma imp-for ′-rule2 :
assumes

emp =⇒A I i a∧
i a. i < j =⇒ <A ∗ I i a ∗ true> f i a <λr . A ∗ I (i + 1 ) r>t∧
a. I j a =⇒A Q a

i ≤ j
shows <A ∗ true> imp-for ′ i j f a <λr . A ∗ Q r>t

unfolding imp-for-imp-for ′[symmetric] using assms(3 ,4 )
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by (sep-auto heap: assms imp-for-rule2 [where c = λ-. True])

lemma imp-for ′-rule:
assumes

emp =⇒A I i a∧
i a. i < j =⇒ <I i a ∗ true> f i a <λr . I (i + 1 ) r>t∧
a. I j a =⇒A Q a

i ≤ j
shows <true> imp-for ′ i j f a <λr . Q r>t

unfolding imp-for-imp-for ′[symmetric] using assms(3 ,4 )
by (sep-auto heap: assms imp-for-rule[where c = λ-. True])

lemma nth-rule:
assumes is-pure S

and b < length a
shows
<nat-assn b bi ∗ array-assn S a ai> Array.nth ai bi
<λr . ∃Ax. nat-assn b bi ∗ array-assn S a ai ∗ S x r ∗ true ∗ ↑ (x = a

! b)>
using sepref-fr-rules(165 )[unfolded hn-refine-def hn-ctxt-def ] assms by

force

lemma imp-for-list-all:
assumes

is-pure R n ≤ length xs∧
x xi. <A ∗ R x xi ∗ true> Pi xi <λr . A ∗ ↑ (r ←→ P x)>t

shows
<A ∗ array-assn R xs a ∗ true>

imp-for 0 n Heap-Monad.return
(λi -. do {

x ← Array.nth a i; Pi x
})
True

<λr . A ∗ array-assn R xs a ∗ ↑(r ←→ list-all P (take n xs))>t

apply (rule imp-for-rule2 [where I = λi r . ↑ (r ←→ list-all P (take i
xs))])

apply sep-auto
apply sep-auto

subgoal for i b
using assms(2 )
apply (sep-auto heap: nth-rule)
apply (rule cons-rule[rotated 2 ], rule frame-rule,

rule nth-rule[where b = i and a = xs], rule assms)
apply simp
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apply (simp add: pure-def )
apply frame-inference

apply frame-inference
apply (sep-auto heap: assms(3 ) simp: pure-def take-Suc-conv-app-nth)
done
apply (simp add: take-Suc-conv-app-nth)

apply simp
unfolding list-all-iff
apply clarsimp
apply (metis le-less set-take-subset-set-take subsetCE)

..

lemma imp-for-list-ex:
assumes

is-pure R n ≤ length xs∧
x xi. <A ∗ R x xi ∗ true> Pi xi <λr . A ∗ ↑ (r ←→ P x)>t

shows
<A ∗ array-assn R xs a ∗ true>

imp-for 0 n (λx. Heap-Monad.return (¬ x))
(λi -. do {

x ← Array.nth a i; Pi x
})
False

<λr . A ∗ array-assn R xs a ∗ ↑(r ←→ list-ex P (take n xs))>t

apply (rule imp-for-rule2 [where I = λi r . ↑ (r ←→ list-ex P (take i
xs))])

apply sep-auto
apply sep-auto

subgoal for i b
using assms(2 )
apply (sep-auto heap: nth-rule)
apply (rule cons-rule[rotated 2 ], rule frame-rule, rule nth-rule[of - i xs],

rule assms)
apply simp

apply (simp add: pure-def )
apply frame-inference

apply frame-inference
apply (sep-auto heap: assms(3 ) simp: pure-def take-Suc-conv-app-nth)
done
apply (simp add: take-Suc-conv-app-nth)

apply simp
unfolding list-ex-iff
apply clarsimp
apply (metis le-less set-take-subset-set-take subsetCE)
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..

lemma imp-for-list-all2 :
assumes

is-pure R is-pure S n ≤ length xs n ≤ length ys∧
x xi y yi. <A ∗ R x xi ∗ S y yi ∗ true> Pi xi yi <λr . A ∗ ↑ (r ←→ P

x y)>t

shows
<A ∗ array-assn R xs a ∗ array-assn S ys b ∗ true>

imp-for 0 n Heap-Monad.return
(λi -. do {

x ← Array.nth a i; y ← Array.nth b i; Pi x y
})
True

<λr . A ∗ array-assn R xs a ∗ array-assn S ys b ∗ ↑(r ←→ list-all2 P
(take n xs) (take n ys))>t

apply (rule imp-for-rule2 [where I = λi r . ↑ (r ←→ list-all2 P (take i
xs) (take i ys))])

apply (sep-auto; fail)
apply (sep-auto; fail)

subgoal for i -
supply [simp] = pure-def
using assms(3 ,4 )
apply sep-auto
apply (rule cons-rule[rotated 2 ], rule frame-rule, rule nth-rule[of - i xs],

rule assms)
apply force

apply (simp, frame-inference; fail)
apply frame-inference

apply sep-auto

apply (rule cons-rule[rotated 2 ], rule frame-rule, rule nth-rule[of - i ys],
rule assms)

unfolding pure-def
apply force

apply (simp, frame-inference; fail)
apply frame-inference

apply sep-auto

supply [sep-heap-rules] = assms(5 )
apply sep-auto
subgoal

unfolding list-all2-conv-all-nth apply clarsimp
subgoal for i ′
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by (cases i ′ = i) auto
done

subgoal
unfolding list-all2-conv-all-nth by clarsimp

apply frame-inference
done

unfolding list-all2-conv-all-nth apply auto
done

lemma imp-for-list-all2 ′:
assumes

is-pure R is-pure S n ≤ length xs n ≤ length ys∧
x xi y yi. <R x xi ∗ S y yi> Pi xi yi <λr . ↑ (r ←→ P x y)>t

shows
<array-assn R xs a ∗ array-assn S ys b>

imp-for 0 n Heap-Monad.return
(λi -. do {

x ← Array.nth a i; y ← Array.nth b i; Pi x y
})
True

<λr . array-assn R xs a ∗ array-assn S ys b ∗ ↑(r ←→ list-all2 P (take n
xs) (take n ys))>t

by (rule cons-rule[rotated 2 ], rule imp-for-list-all2 [where A = true, ro-
tated 4 ])

(sep-auto heap: assms intro: assms)+

end
theory DBM-Operations-Impl-Refine

imports
DBM-Operations-Impl
HOL−Library.IArray
DBM-Imperative-Loops

begin

lemma rev-map-fold-append-aux:
fold (λ x xs. f x # xs) xs zs @ ys = fold (λ x xs. f x # xs) xs (zs@ys)
by (induction xs arbitrary: zs) auto

lemma rev-map-fold:
rev (map f xs) = fold (λ x xs. f x # xs) xs []
by (induction xs; simp add: rev-map-fold-append-aux)

lemma map-rev-fold:
map f xs = rev (fold (λ x xs. f x # xs) xs [])
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using rev-map-fold rev-swap by fastforce

lemma pointwise-cmp-iff :
pointwise-cmp P n M M ′ ←→ list-all2 P (take ((n + 1 ) ∗ (n + 1 )) xs)

(take ((n + 1 ) ∗ (n + 1 )) ys)
if ∀ i≤n. ∀ j≤n. xs ! (i + i ∗ n + j) = M i j
∀ i≤n. ∀ j≤n. ys ! (i + i ∗ n + j) = M ′ i j
(n + 1 ) ∗ (n + 1 ) ≤ length xs (n + 1 ) ∗ (n + 1 ) ≤ length ys

using that unfolding pointwise-cmp-def
unfolding list-all2-conv-all-nth
apply clarsimp
apply safe
subgoal premises prems for x
proof −

let ?i = x div (n + 1 ) let ?j = x mod (n + 1 )
from ‹x < -› have ?i < Suc n ?j ≤n

by (simp add: less-mult-imp-div-less)+
with prems have

xs ! (?i + ?i ∗ n + ?j) = M ?i ?j ys ! (?i + ?i ∗ n + ?j) = M ′ ?i ?j
P (M ?i ?j) (M ′ ?i ?j)
by auto

moreover have ?i + ?i ∗ n + ?j = x
by (metis ab-semigroup-add-class.add.commute mod-div-mult-eq mult-Suc-right

plus-1-eq-Suc)
ultimately show ‹P (xs ! x) (ys ! x)›

by auto
qed
subgoal for i j

apply (erule allE [of - i], erule impE , simp)
apply (erule allE [of - i], erule impE , simp)
apply (erule allE [of - i + i ∗ n + j], erule impE)
subgoal

by (rule le-imp-less-Suc) (auto intro!: add-mono simp: algebra-simps)
apply (erule allE [of - j], erule impE , simp)
apply (erule allE [of - j], erule impE , simp)
apply simp
done

done

fun intersperse :: ′a ⇒ ′a list ⇒ ′a list where
intersperse sep (x # y # xs) = x # sep # intersperse sep (y # xs) |
intersperse - xs = xs

lemma the-pure-id-assn-eq[simp]:
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the-pure (λa c. ↑ (c = a)) = Id
proof −

have ∗: (λa c. ↑ (c = a)) = pure Id
unfolding pure-def by simp

show ?thesis
by (subst ∗) simp

qed

lemma pure-eq-conv:
(λa c. ↑ (c = a)) = id-assn
using is-pure-assn-def is-pure-iff-pure-assn is-pure-the-pure-id-eq the-pure-id-assn-eq

by blast

5.7 Refinement

instance DBMEntry :: ({countable}) countable
apply (rule

countable-classI [of
(λLe (a:: ′a) ⇒ to-nat (0 ::nat,a) |

DBM .Lt a ⇒ to-nat (1 ::nat,a) |
DBM .INF ⇒ to-nat (2 ::nat,undefined:: ′a) )])

apply (simp split: DBMEntry.splits)
done

instance DBMEntry :: ({heap}) heap ..

definition dbm-subset ′ :: nat ⇒ ( ′t :: {linorder , zero}) DBM ′ ⇒ ′t DBM ′

⇒ bool where
dbm-subset ′ n M M ′ ≡ pointwise-cmp (≤) n (curry M ) (curry M ′)

lemma dbm-subset ′-alt-def :
dbm-subset ′ n M M ′ ≡

list-all (λi. list-all (λj. (op-mtx-get M (i, j) ≤ op-mtx-get M ′ (i, j)))
[0 ..<Suc n])

[0 ..<Suc n]
by (simp add: dbm-subset ′-def pointwise-cmp-alt-def neutral)

lemma dbm-subset-alt-def ′[code]:
dbm-subset n M M ′←→

list-ex (λi. op-mtx-get M (i, i) < 0 ) [0 ..<Suc n] ∨
list-all (λi. list-all (λj. (op-mtx-get M (i, j) ≤ op-mtx-get M ′ (i, j)))

[0 ..<Suc n])
[0 ..<Suc n]

by (simp add: dbm-subset-def check-diag-alt-def pointwise-cmp-alt-def neu-
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tral)

definition
mtx-line-to-iarray m M = IArray (map (λi. M (0 , i)) [0 ..<Suc m])

definition
mtx-line m (M :: - DBM ′) = map (λi. M (0 , i)) [0 ..<Suc m]

locale DBM-Impl =
fixes n :: nat

begin

abbreviation
mtx-assn :: (nat × nat ⇒ ( ′a :: {linordered-ab-monoid-add, heap})) ⇒ ′a

array ⇒ assn
where

mtx-assn ≡ asmtx-assn (Suc n) id-assn

abbreviation clock-assn ≡ nbn-assn (Suc n)

lemmas Relation.IdI [where a = ∞, sepref-import-param]
lemma [sepref-import-param]: ((+),(+)) ∈ Id→Id→Id by simp
lemma [sepref-import-param]: (uminus,uminus) ∈ (Id::(-∗-)set)→Id by simp
lemma [sepref-import-param]: (Lt,Lt) ∈ Id→Id by simp
lemma [sepref-import-param]: (Le,Le) ∈ Id→Id by simp
lemma [sepref-import-param]: (∞,∞) ∈ Id by simp
lemma [sepref-import-param]: (min :: - DBMEntry ⇒ -, min) ∈ Id → Id
→ Id by simp
lemma [sepref-import-param]: (Suc, Suc) ∈ Id → Id by simp

lemma [sepref-import-param]: (norm-lower , norm-lower) ∈ Id→Id→Id by
simp
lemma [sepref-import-param]: (norm-upper , norm-upper) ∈ Id→Id→Id by
simp
lemma [sepref-import-param]: (norm-diag, norm-diag) ∈ Id→Id by simp

end

definition zero-clock :: - :: linordered-cancel-ab-monoid-add where
zero-clock = 0

sepref-register zero-clock
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lemma [sepref-import-param]: (zero-clock, zero-clock) ∈ Id by simp

lemmas [sepref-opt-simps] = zero-clock-def

context
fixes n :: nat

begin

interpretation DBM-Impl n .

sepref-definition reset-canonical-upd-impl ′ is
uncurry2 (uncurry (λx. RETURN ooo reset-canonical-upd x)) ::
[λ(((-,i),j),-). i≤n ∧ j≤n]a mtx-assnd ∗a nat-assnk ∗a nat-assnk ∗a

id-assnk → mtx-assn
unfolding reset-canonical-upd-alt-def op-mtx-set-def [symmetric] by sepref

sepref-definition reset-canonical-upd-impl is
uncurry2 (uncurry (λx. RETURN ooo reset-canonical-upd x)) ::
[λ(((-,i),j),-). i≤n ∧ j≤n]a mtx-assnd ∗a nat-assnk ∗a nat-assnk ∗a

id-assnk → mtx-assn
unfolding reset-canonical-upd-alt-def op-mtx-set-def [symmetric] by sepref

sepref-definition up-canonical-upd-impl is
uncurry (RETURN oo up-canonical-upd) :: [λ(-,i). i≤n]a mtx-assnd ∗a

nat-assnk → mtx-assn
unfolding up-canonical-upd-def op-mtx-set-def [symmetric] by sepref

lemma [sepref-import-param]:
(Le 0 , 0 ) ∈ Id
unfolding neutral by simp

— Not sure if this is dangerous.
sepref-register 0

sepref-definition check-diag-impl ′ is
uncurry (RETURN oo check-diag) ::
[λ(i, -). i≤n]a nat-assnk ∗a mtx-assnk → bool-assn
unfolding check-diag-alt-def list-ex-foldli neutral[symmetric] by sepref

lemma [sepref-opt-simps]:
(x = True) = x
by simp
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sepref-definition dbm-subset ′-impl2 is
uncurry2 (RETURN ooo dbm-subset ′) ::
[λ((i, -), -). i≤n]a nat-assnk ∗a mtx-assnk ∗a mtx-assnk → bool-assn

unfolding dbm-subset ′-alt-def list-all-foldli by sepref

definition
dbm-subset ′-impl ′ ≡ λm a b.

do {
imp-for 0 ((m + 1 ) ∗ (m + 1 )) Heap-Monad.return
(λi -. do {

x ← Array.nth a i; y ← Array.nth b i; Heap-Monad.return (x ≤ y)
})
True
}

lemma imp-for-list-all2-spec:

<a 7→a xs ∗ b 7→a ys>
imp-for 0 n ′ Heap-Monad.return
(λi -. do {

x ← Array.nth a i; y ← Array.nth b i; Heap-Monad.return (P x y)
})
True

<λr . ↑(r ←→ list-all2 P (take n ′ xs) (take n ′ ys)) ∗ a 7→a xs ∗ b 7→a ys>t

if n ′ ≤ length xs n ′ ≤ length ys
apply (rule cons-rule[rotated 2 ])

apply (rule imp-for-list-all2 ′[where xs = xs and ys = ys and R =
id-assn and S = id-assn])

apply (use that in simp; fail)+
apply (sep-auto simp: pure-def array-assn-def is-array-def )+

done

lemma dbm-subset ′-impl ′-refine:
(uncurry2 dbm-subset ′-impl ′, uncurry2 (RETURN ◦◦◦ dbm-subset ′))
∈ [λ((i, -), -). i = n]a nat-assnk ∗a local.mtx-assnk ∗a local.mtx-assnk →
bool-assn

apply sepref-to-hoare
unfolding dbm-subset ′-impl ′-def
unfolding amtx-assn-def hr-comp-def is-amtx-def
apply (sep-auto heap: imp-for-list-all2-spec simp only:)

apply (simp; intro add-mono mult-mono; simp; fail)+
apply sep-auto

subgoal for b bi ba bia l la a bb
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unfolding dbm-subset ′-def by (simp add: pointwise-cmp-iff [where xs
= l and ys = la])

subgoal for b bi ba bia l la a bb
unfolding dbm-subset ′-def by (simp add: pointwise-cmp-iff [where xs

= l and ys = la])
done

sepref-register check-diag ::
nat ⇒ - :: {linordered-cancel-ab-monoid-add,heap} DBMEntry i-mtx ⇒

bool

sepref-register dbm-subset ′ ::
nat ⇒ ′a :: {linordered-cancel-ab-monoid-add,heap} DBMEntry i-mtx ⇒

′a DBMEntry i-mtx ⇒ bool

lemmas [sepref-fr-rules] = dbm-subset ′-impl ′-refine check-diag-impl ′.refine

sepref-definition dbm-subset-impl ′ is
uncurry2 (RETURN ooo dbm-subset) ::
[λ((i, -), -). i=n]a nat-assnk ∗a mtx-assnk ∗a mtx-assnk → bool-assn

unfolding dbm-subset-def dbm-subset ′-def [symmetric] short-circuit-conv by
sepref

context
notes [id-rules] = itypeI [of n TYPE (nat)]

and [sepref-import-param] = IdI [of n]
begin

sepref-definition dbm-subset-impl is
uncurry (RETURN oo PR-CONST (dbm-subset n)) :: mtx-assnk ∗a mtx-assnk

→a bool-assn
unfolding dbm-subset-def dbm-subset ′-def [symmetric] short-circuit-conv

PR-CONST-def by sepref

sepref-definition check-diag-impl is
RETURN o PR-CONST (check-diag n) :: mtx-assnk →a bool-assn
unfolding check-diag-alt-def list-ex-foldli neutral[symmetric] PR-CONST-def

by sepref

sepref-definition dbm-subset ′-impl is
uncurry (RETURN oo PR-CONST (dbm-subset ′ n)) :: mtx-assnk ∗a mtx-assnk

→a bool-assn
unfolding dbm-subset ′-alt-def list-all-foldli PR-CONST-def by sepref
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end

abbreviation
iarray-assn x y ≡ pure (br IArray (λ-. True)) y x

lemma [sepref-fr-rules]:
(uncurry (return oo IArray.sub), uncurry (RETURN oo op-list-get))
∈ iarray-assnk ∗a id-assnk →a id-assn

unfolding br-def by sepref-to-hoare sep-auto

lemmas extra-defs = extra-upd-def upd-line-def upd-line-0-def

sepref-definition norm-upd-impl is
uncurry2 (RETURN ooo norm-upd) ::
[λ((-, xs), i). length xs > n ∧ i≤n]a mtx-assnd ∗a iarray-assnk ∗a

nat-assnk → mtx-assn
unfolding norm-upd-def extra-defs zero-clock-def [symmetric] by sepref

sepref-definition norm-upd-impl ′ is
uncurry2 (RETURN ooo norm-upd) ::
[λ((-, xs), i). length xs > n ∧ i≤n]a mtx-assnd ∗a (list-assn id-assn)k ∗a

nat-assnk → mtx-assn
unfolding norm-upd-def extra-defs zero-clock-def [symmetric] by sepref

sepref-definition extra-lu-upd-impl is
uncurry3 (λx. RETURN ooo (extra-lu-upd x)) ::
[λ(((-, ys), xs), i). length xs > n ∧ length ys > n ∧ i≤n]a

mtx-assnd ∗a iarray-assnk ∗a iarray-assnk ∗a nat-assnk → mtx-assn
unfolding extra-lu-upd-def extra-defs zero-clock-def [symmetric] by sepref

sepref-definition mtx-line-to-list-impl is
uncurry (RETURN oo PR-CONST mtx-line) ::
[λ(m, -). m ≤ n]a nat-assnk ∗a mtx-assnk → list-assn id-assn
unfolding mtx-line-def HOL-list.fold-custom-empty PR-CONST-def map-rev-fold

by sepref

context
fixes m :: nat assumes m ≤ n
notes [id-rules] = itypeI [of m TYPE (nat)]

and [sepref-import-param] = IdI [of m]
begin

sepref-definition mtx-line-to-list-impl2 is
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RETURN o PR-CONST mtx-line m :: mtx-assnk →a list-assn id-assn
unfolding mtx-line-def HOL-list.fold-custom-empty PR-CONST-def map-rev-fold
apply sepref-dbg-keep
using ‹m ≤ n›

apply sepref-dbg-trans-keep
apply sepref-dbg-opt

apply sepref-dbg-cons-solve
apply sepref-dbg-cons-solve

apply sepref-dbg-constraints
done

end

lemma IArray-impl:
(return o IArray, RETURN o id) ∈ (list-assn id-assn)k →a iarray-assn
by sepref-to-hoare (sep-auto simp: br-def list-assn-pure-conv pure-eq-conv)

definition
mtx-line-to-iarray-impl m M = (mtx-line-to-list-impl2 m M >>= return o

IArray)

lemmas mtx-line-to-iarray-impl-ht =
mtx-line-to-list-impl2 .refine[to-hnr , unfolded hn-refine-def hn-ctxt-def , sim-

plified]

lemmas IArray-ht = IArray-impl[to-hnr , unfolded hn-refine-def hn-ctxt-def ,
simplified]

lemma mtx-line-to-iarray-impl-refine[sepref-fr-rules]:
(uncurry mtx-line-to-iarray-impl, uncurry (RETURN ◦◦ mtx-line))
∈ [λ(m, -). m ≤ n]a nat-assnk ∗a mtx-assnk → iarray-assn
unfolding mtx-line-to-iarray-impl-def hfref-def
apply clarsimp
apply sepref-to-hoare
apply (sep-auto
heap: mtx-line-to-iarray-impl-ht IArray-ht simp: br-def pure-eq-conv list-assn-pure-conv)

apply (simp add: pure-def )
done

sepref-register mtx-line :: nat ⇒ ( ′ef ) DBMEntry i-mtx ⇒ ′ef DBMEntry
list

lemma [sepref-import-param]: (dbm-lt :: - DBMEntry ⇒ -, dbm-lt) ∈ Id →
Id → Id by simp
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sepref-definition extra-lup-upd-impl is
uncurry3 (λx. RETURN ooo (extra-lup-upd x)) ::
[λ(((-, ys), xs), i). length xs > n ∧ length ys > n ∧ i≤n]a
mtx-assnd ∗a iarray-assnk ∗a iarray-assnk ∗a nat-assnk → mtx-assn

unfolding extra-lup-upd-alt-def2 extra-defs zero-clock-def [symmetric] mtx-line-def [symmetric]
by sepref

context
notes [id-rules] = itypeI [of n TYPE (nat)]

and [sepref-import-param] = IdI [of n]
begin

definition
unbounded-dbm ′ = unbounded-dbm n

lemma unbounded-dbm-alt-def :
unbounded-dbm n = op-amtx-new (Suc n) (Suc n) (unbounded-dbm ′)
unfolding unbounded-dbm ′-def by simp

We need the custom rule here because unbounded-dbm is a higher-order
constant
lemma [sepref-fr-rules]:
(uncurry0 (return unbounded-dbm ′), uncurry0 (RETURN (PR-CONST

(unbounded-dbm ′))))
∈ unit-assnk →a pure (nat-rel ×r nat-rel → Id)
by sepref-to-hoare sep-auto

sepref-register PR-CONST (unbounded-dbm n) :: nat × nat ⇒ int DB-
MEntry :: ′b DBMEntry i-mtx
sepref-register unbounded-dbm ′ :: nat × nat ⇒ - DBMEntry

Necessary to solve side conditions of op-amtx-new

lemma unbounded-dbm ′-bounded:
mtx-nonzero unbounded-dbm ′ ⊆ {0 ..<Suc n} × {0 ..<Suc n}
unfolding mtx-nonzero-def unbounded-dbm ′-def unbounded-dbm-def neu-

tral by auto

We need to pre-process the lemmas due to a failure of TRADE

lemma unbounded-dbm ′-bounded-1 :
(a, b) ∈ mtx-nonzero unbounded-dbm ′ =⇒ a < Suc n
using unbounded-dbm ′-bounded by auto
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lemma unbounded-dbm ′-bounded-2 :
(a, b) ∈ mtx-nonzero unbounded-dbm ′ =⇒ b < Suc n
using unbounded-dbm ′-bounded by auto

lemmas [sepref-fr-rules] = dbm-subset-impl.refine

sepref-register PR-CONST (dbm-subset n) :: ′e DBMEntry i-mtx ⇒ ′e
DBMEntry i-mtx ⇒ bool

lemma [def-pat-rules]:
dbm-subset $ n ≡ PR-CONST (dbm-subset n)
by simp

sepref-definition unbounded-dbm-impl is
uncurry0 (RETURN (PR-CONST (unbounded-dbm n))) :: unit-assnk →a

mtx-assn
supply unbounded-dbm ′-bounded-1 [simp] unbounded-dbm ′-bounded-2 [simp]
using unbounded-dbm ′-bounded
apply (subst unbounded-dbm-alt-def )
unfolding PR-CONST-def by sepref

DBM to List

definition dbm-to-list :: (nat × nat ⇒ ′a) ⇒ ′a list where
dbm-to-list M ≡
rev $ fold (λi xs. fold (λj xs. M (i, j) # xs) [0 ..<Suc n] xs) [0 ..<Suc n] []

sepref-definition dbm-to-list-impl is
RETURN o PR-CONST dbm-to-list :: mtx-assnk →a list-assn id-assn
unfolding dbm-to-list-def HOL-list.fold-custom-empty PR-CONST-def by

sepref

5.8 Pretty-Printing

context
fixes show-clock :: nat ⇒ string

and show-num :: ′a :: {linordered-ab-group-add,heap} ⇒ string
begin

definition
make-string e i j ≡

if i = j then if e < 0 then Some ( ′′EMPTY ′′) else None
else
if i = 0 then
case e of
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DBMEntry.Le a ⇒ if a = 0 then None else Some (show-clock j @ ′′

>= ′′ @ show-num (− a))
| DBMEntry.Lt a ⇒ Some (show-clock j @ ′′ > ′′ @ show-num (− a))
| - ⇒ None
else if j = 0 then
case e of

DBMEntry.Le a ⇒ Some (show-clock i @ ′′ <= ′′ @ show-num a)
| DBMEntry.Lt a ⇒ Some (show-clock i @ ′′ < ′′ @ show-num a)
| - ⇒ None
else
case e of

DBMEntry.Le a ⇒ Some (show-clock i @ ′′ − ′′ @ show-clock j @ ′′

<= ′′ @ show-num a)
| DBMEntry.Lt a ⇒ Some (show-clock i @ ′′ − ′′ @ show-clock j @ ′′ <

′′ @ show-num a)
| - ⇒ None

definition
dbm-list-to-string xs ≡
(concat o intersperse ′′, ′′ o rev o snd o snd) $ fold (λe (i, j, acc).

let
v = make-string e i j;
j = (j + 1 ) mod (n + 1 );
i = (if j = 0 then i + 1 else i)

in
case v of

None ⇒ (i, j, acc)
| Some s ⇒ (i, j, s # acc)

) xs (0 , 0 , [])

lemma [sepref-import-param]:
(dbm-list-to-string, PR-CONST dbm-list-to-string) ∈ 〈Id〉list-rel → 〈Id〉list-rel
by simp

definition show-dbm where
show-dbm M ≡ PR-CONST dbm-list-to-string (dbm-to-list M )

sepref-register PR-CONST local.dbm-list-to-string
sepref-register dbm-to-list :: ′b i-mtx ⇒ ′b list

lemmas [sepref-fr-rules] = dbm-to-list-impl.refine
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sepref-definition show-dbm-impl is
RETURN o show-dbm :: mtx-assnk →a list-assn id-assn
unfolding show-dbm-def by sepref

end

end

end

5.9 Generate Code

lemma [code]:
dbm-le a b = (a = b ∨ (a ≺ b))

unfolding dbm-le-def by auto

export-code
norm-upd-impl
reset-canonical-upd-impl
up-canonical-upd-impl
dbm-subset-impl
dbm-subset
show-dbm-impl

checking SML

export-code
norm-upd-impl
reset-canonical-upd-impl
up-canonical-upd-impl
dbm-subset-impl
dbm-subset
show-dbm-impl

checking SML-imp

end
theory DBM-Examples

imports
DBM-Operations-Impl-Refine
FW-More
Show.Show-Instances

begin
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5.10 Examples

no-notation Ref .update (‹- := -› 62 )

Let us represent the zone y ≤ x ∧ x − y ≤ 2 ∧ y ≥ 1 as a DBM:

definition test-dbm :: int DBM ′ where
test-dbm = ((((λ(i, j). Le 0 )((1 ,2 ) := Le 2 ))((0 , 2 ) := Le (−1 )))((1 , 0 )

:= ∞))((2 , 0 ) := ∞)

— Pretty-printing
definition show-test-dbm where

show-test-dbm M = String.implode (
show-dbm 2
(λi. if i = 1 then ′′x ′′ else if i = 2 then ′′y ′′ else ′′f ′′) show
M

)

— Pretty-printing
value [code] show-test-dbm test-dbm

— Canonical form
value [code] show-test-dbm (FW ′ test-dbm 2 )

— Projection onto x axis
value [code] show-test-dbm (reset ′-upd (FW ′ test-dbm 2 ) 2 [2 ] 0 )
— Note that if reset ′-upd is not applied to the canonical form, the result is
incorrect:
value [code] show-test-dbm (reset ′-upd test-dbm 2 [2 ] 0 )
— In this case, we already obtained a new canonical form after reset:
value [code] show-test-dbm (FW ′ (reset ′-upd (FW ′ test-dbm 2 ) 2 [2 ] 0 ) 2 )
— Note that FWI can be used to restore the canonical form without running
a full FW ′.

— Relaxation, a.k.a computing the "future", or "letting time elapse":
value [code] show-test-dbm (up-canonical-upd (reset ′-upd (FW ′ test-dbm 2 )
2 [2 ] 0 ) 2 )
— Note that up-canonical-upd always preservers canonical form.

— Intersection
value [code] show-test-dbm (FW ′ (And-upd 2

(up-canonical-upd (reset ′-upd (FW ′ test-dbm 2 ) 2 [2 ] 0 ) 2 )
((λ(i, j). ∞)((1 , 0 ):=Lt 1 ))) 2 )

— Note that up-canonical-upd always preservers canonical form.
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— Checking if DBM represents the empty zone
value [code] check-diag 2 (FW ′ (And-upd 2

(up-canonical-upd (reset ′-upd (FW ′ test-dbm 2 ) 2 [2 ] 0 ) 2 )
((λ(i, j). ∞)((1 , 0 ):=Lt 1 ))) 2 )

— Instead of λ(i, j). ∞ we could also have been using unbounded-dbm.

end
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