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Abstract

Isabelle’s code generator natively supports type classes. For targets
that do not have language support for classes and instances, it performs
the well-known dictionary translation, as described by Haftmann and
Nipkow [1]. This translation happens outside the logic, i.e., there is
no guarantee that it is correct, besides the pen-and-paper proof. This
work implements a certified dictionary translation that produces new
class-free constants and derives equality theorems.
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1 Dictionary Construction
theory Introduction
imports Main
begin

1.1 Introduction

Isabelle’s logic features type classes [2, 3]. These are built into the kernel and
are used extensively in theory developments. The existing code generator,
when targeting Standard ML, performs the well-known dictionary construc-
tion or dictionary translation [1]. This works by replacing type classes with
records, instances with values, and occurrences with explicit parameters.
Haftmann and Nipkow give a pen-and-paper correctness proof of this con-
struction [1, §4.1], based on a notion of higher-order rewrite systems. The re-
sulting theorem then states that any well-typed term is reduction-equivalent
before and after class elimination. In this work, the dictionary construction
is performed in a certified fashion, that is, the equivalence is a theorem inside
the logic.

1.2 Encoding classes

The choice of representation of a dictionary itself is straightforward: We
model it as a datatype, along with functions returning values of that type.
The alternative here would have been to use the record package. The obvi-
ous advantage is that we could easily model subclass relationships through
record inheritance. However, records do not support multiple inheritance.
Since records offer no advantage over datatypes in that regard, we opted for
the more modern datatype package.

Consider the following example:
class plus =

fixes plus :: ′a ⇒ ′a ⇒ ′a

This will get translated to a datatype with a single constructor taking a
single argument:
datatype ′a dict-plus =

mk-plus (param-plus: ′a ⇒ ′a ⇒ ′a)
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A function using the Introduction.plus constraint:
definition double :: ′a::plus ⇒ ′a where
double x = plus x x

definition double ′ :: ′a dict-plus ⇒ ′a ⇒ ′a where
double ′ dict x = param-plus dict x x

1.3 Encoding instances

A more controversial design decision is how to represent dictionary certifi-
cates. For example, given a value of type nat dict-plus, how do we know that
this is a faithful representation of the Introduction.plus instance for nat?

• Florian Haftmann proposed a “shallow encoding”. It works by exploit-
ing the internal treatment of constants with sort constraints in the
Isabelle kernel. Constants themselves do not carry sort constraints,
only their definitional equations. The fact that a constant only ap-
pears with these constraints on the surface of the system is a feature
of type inference.
Instead, we can instruct the system to ignore these constraints. How-
ever, any attempt at “hiding” the constraints behind a type definition
ultimately does not work: The nonemptiness proof requires a witness
of a valid dictionary for an arbitrary, but fixed type ′a, which is of
course not possible (see §1.5 for details).

• The certificates contain the class axioms directly. For example, the
semigroup-add class requires a + b + c = a + (b + c).
Translated into a definition, this would look as follows:
cert-plus dict = (∀ a b c. param-plus dict (param-plus dict a b) c =
param-plus dict a (param-plus dict b c))
Proving that instances satisfy this certificate is trivial.
However, the equality proof of f ′ and f is impossible: they are simply
not equal in general. Nothing would prevent someone from defining
an alternative dictionary using multiplication instead of addition and
the certificate would still hold; but obviously functions using Introduc-
tion.plus-class.plus on numbers would expect addition.
Intuitively, this makes sense: the above notion of “certificate” estab-
lishes no connection between original instantiation and newly-generated
dictionaries.
Instead of proving equality, one would have to “lift” all existing theo-
rems over the old constants to the new constants.
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• In order for equality between new and old constants to hold, the cer-
tificate needs to capture that the dictionary corresponds exactly to
the class constants. This is achieved by the representation below. It
literally states that the fields of the dictionary are equal to the class
constants. The condition of the resulting equation can only be instan-
tiated with dictionaries corresponding to existing class instances. This
constitutes a closed world assumption, i.e., callers of generated code
may not invent own instantiations.

definition cert-plus :: ′a::plus dict-plus ⇒ bool where
cert-plus dict ←→ (param-plus dict = plus)

Based on that definition, we can prove that double and double ′ are equivalent:
lemma cert-plus dict =⇒ double ′ dict = double
〈proof 〉

An unconditional equation can be obtained by specializing the theorem to
a ground type and supplying a valid dictionary.

1.4 Implementation

When translating a constant f, we use existing mechanisms in Isabelle to
obtain its code graph. The graph contains the code equations of all transi-
tive dependencies (i.e., other constants) of f. In general, we have to re-define
each of these dependencies. For that, we use the internal interface of the
function package and feed it the code equations after performing the dictio-
nary construction. In the standard case, where the user has not performed a
custom code setup, the resulting function looks similar to its original defini-
tion. But the user may have also changed the implementation of a function
significantly afterwards. This imposes some restrictions:

• The new constant needs to be proven terminating. We apply some
heuristics to transfer the original termination proof to the new defini-
tion. This only works when the termination condition does not rely
on class axioms. (See §3 for details.)

• Pattern matching must be performed on datatypes, instead of the more
general code-datatypes.

• The set of code equations must be exhaustive and non-overlapping.

end
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1.5 Impossibility of hiding sort constraints

Coauthor of this section: Florian Haftmann
theory Impossibility
imports Main
begin

axiomatization of-prop :: prop ⇒ bool where
of-prop-Trueprop [simp]: of-prop (Trueprop P) ←→ P and
Trueprop-of-prop [simp]: Trueprop (of-prop Q) ≡ PROP Q

A type satisfies the certificate if there is an instance of the class.
definition is-sg :: ′a itself ⇒ bool where
is-sg TYPE( ′a) = of-prop OFCLASS( ′a, semigroup-add-class)

We trick the parser into ignoring the sort constraint of (+).
〈ML〉

definition sg :: ( ′a ⇒ ′a ⇒ ′a) ⇒ bool where
sg plus ←→ plus = Groups.plus ∧ is-sg TYPE( ′a) for plus

Attempt: Define a type that contains all legal (+) functions.
typedef (overloaded) ′a Sg = Collect sg :: ( ′a ⇒ ′a ⇒ ′a) set

morphisms the-plus Sg
〈proof 〉

end

2 Setup
theory Dict-Construction
imports Automatic-Refinement.Refine-Util
keywords declassify :: thy-decl
begin

definition set-of :: ( ′a ⇒ ′b ⇒ bool) ⇒ ( ′a × ′b) set where
set-of P = {(x, y). P x y}

lemma wfP-implies-wf-set-of : wfP P =⇒ wf (set-of P)
〈proof 〉

lemma wf-set-of-implies-wfP: wf (set-of P) =⇒ wfP P
〈proof 〉

lemma wf-simulate-simple:
assumes wf r
assumes

∧
x y. (x, y) ∈ r ′ =⇒ (g x, g y) ∈ r

shows wf r ′
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〈proof 〉

lemma set-ofI : P x y =⇒ (x, y) ∈ set-of P
〈proof 〉

lemma set-ofD: (x, y) ∈ set-of P =⇒ P x y
〈proof 〉

lemma wfP-simulate-simple:
assumes wfP r
assumes

∧
x y. r ′ x y =⇒ r (g x) (g y)

shows wfP r ′

〈proof 〉

lemma wf-implies-dom: wf (set-of R) =⇒ All (Wellfounded.accp R)
〈proof 〉

lemma wfP-implies-dom: wfP R =⇒ All (Wellfounded.accp R)
〈proof 〉

named-theorems dict-construction-specs

〈ML〉

declare [[code drop: (∧)]]
lemma [code]: True ∧ p ←→ p False ∧ p ←→ False 〈proof 〉

declare [[code drop: (∨)]]
lemma [code]: True ∨ p ←→ True False ∨ p ←→ p 〈proof 〉

declare comp-cong[fundef-cong del]
declare fun.map-cong[fundef-cong]

end

3 Termination heuristics
theory Termination

imports ../Dict-Construction
begin

As indicated in the introduction, the newly-defined functions must be proven
terminating. In general, we cannot reuse the original termination proof, as
the following example illustrates:
fun f :: nat ⇒ nat where
f 0 = 0 |
f (Suc n) = f n
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lemma [code]: f x = f x 〈proof 〉

The invocation of declassify f would fail, because f ’s code equations are
not terminating.
Hence, in the general case where users have modified the code equations, we
need to fall back to an (automated) attempt to prove termination.
In the remainder of this section, we will illustrate the special case where the
user has not modified the code equations, i.e., the original termination proof
should “morally” be still applicable. For this, we will perform the dictionary
construction manually.
〈ML〉

fun sum-list :: ′a::{plus,zero} list ⇒ ′a where
sum-list [] = 0 |
sum-list (x # xs) = x + sum-list xs

The above function carries two distinct class constraints, which are trans-
lated into two dictionary parameters:
function sum-list ′ where
sum-list ′ d-plus d-zero [] = Groups-zero--class-zero--field d-zero |
sum-list ′ d-plus d-zero (x # xs) = Groups-plus--class-plus--field d-plus x (sum-list ′

d-plus d-zero xs)
〈proof 〉

Now, we need to carry out the termination proof of sum-list ′. The function
package analyzes the function definition and discovers one recursive call. In
pseudo-notation:

(d-plus, d-zero, x # xs) ; (d-plus, d-zero, xs)

The result of this analysis is captured in the inductive predicate sum-list ′-rel.
Its introduction rules look as follows:
thm sum-list ′-rel.intros
— sum-list ′-rel (?d-plus, ?d-zero, ?xs) (?d-plus, ?d-zero, ?x # ?xs)

Compare this to the relation for Termination.sum-list:
thm sum-list-rel.intros
— sum-list-rel ?xs (?x # ?xs)

Except for the additional (unchanging) dictionary arguments, these relations
are more or less equivalent to each other. There is an important difference,
though: sum-list-rel has sort constraints, sum-list ′-rel does not. (This will
become important later on.)
context

notes [[show-sorts]]
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begin

term sum-list-rel
— ′a::{plus,zero} list ⇒ ′a::{plus,zero} list ⇒ bool

term sum-list ′-rel
— ′a::type Groups-plus--dict × ′a::type Groups-zero--dict × ′a::type list ⇒ ′a::type
Groups-plus--dict × ′a::type Groups-zero--dict × ′a::type list ⇒ bool

end

Let us know discuss the rough concept of the termination proof for sum-list ′.
The goal is to show that sum-list ′-rel is well-founded. Usually, this is proved
by specifying a measure function that

1. maps the arguments to natural numbers

2. decreases for each recursive call.

Here, however, we want to instead show that each recursive call in sum-list ′
has a corresponding recursive call in Termination.sum-list. In other words,
we want to show that the existing proof of well-foundedness of sum-list-rel
can be lifted to a proof of well-foundedness of sum-list ′-rel. This is what the
theorem wfP-simulate-simple states:

[[wfp ?r ;
∧

x y. ?r ′ x y =⇒ ?r (?g x) (?g y)]] =⇒ wfp ?r ′

Given any well-founded relation r and a function g that maps function
arguments from r ′ to r, we can deduce that r ′ is also well-founded.
For our example, we need to provide a function g of type ′b Groups-plus--dict
× ′b Groups-zero--dict × ′b list ⇒ ′a list. Because the dictionary parameters
are not changing, they can safely be dropped by g. However, because of
the sort constraint in sum-list-rel, the term snd ◦ snd is not a well-typed
instantiation for g.
Instead (this is where the heuristic comes in), we assume that the original
function Termination.sum-list is parametric, i.e., termination does not de-
pend on the elements of the list passed to it, but only on the structure of
the list. Additionally, we assume that all involved type classes have at least
one instantiation.
With this in mind, we can use map (λ-. undefined) ◦ snd ◦ snd as g:
thm wfP-simulate-simple[where

r = sum-list-rel and
r ′ = sum-list ′-rel and
g = map (λ-. undefined) ◦ snd ◦ snd]

Finally, we can prove the termination of sum-list ′.
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termination sum-list ′

〈proof 〉

This can be automated with a special tactic:
experiment
begin

termination sum-list ′

〈proof 〉

end

A similar technique can be used for making functions defined in locales
executable when, for some reason, the definition of a “defs” locale is not
feasible.
locale foo =

fixes A :: nat
assumes A > 0

begin

fun f where
f 0 = A |
f (Suc n) = Suc (f n)

— We carry out this proof in the locale for simplicity; a real implementation would
probably have to set up a local theory properly.
lemma f-total: wfP f-rel
〈proof 〉

end

— The dummy interpretation serves the same purpose as the assumption that class
constraints have at least one instantiation.
interpretation dummy: foo 1 〈proof 〉

function f ′ where
f ′ A 0 = A |
f ′ A (Suc n) = Suc (f ′ A n)
〈proof 〉

termination f ′

〈proof 〉

Automatic:
experiment
begin

termination f ′
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〈proof 〉

end

end

4 Test cases for dictionary construction
theory Test-Dict-Construction
imports

Dict-Construction
HOL−Library.ListVector

begin

4.1 Code equations with different number of explicit argu-
ments

lemma [code]: fold f [] = id fold f (x # xs) s = fold f xs (f x s) fold f [x, y] u ≡ f
y (f x u)
〈proof 〉

experiment begin

declassify valid: fold
thm valid
lemma List-fold = fold 〈proof 〉

end

4.2 Complex class hierarchies
〈ML〉

experiment begin

〈ML〉

typ nat Rings-ring--dict

end

Check that Class-Graph does not leak out of locales
〈ML〉

4.3 Instances with non-trivial arity
fun f :: ′a::plus ⇒ ′a where
f x = x + x
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definition g :: ′a::{plus,zero} list ⇒ ′a list where
g x = f x

datatype natt = Z | S natt

instantiation natt :: {zero,plus} begin
definition zero-natt where
zero-natt = Z

fun plus-natt where
plus-natt Z x = x |
plus-natt (S m) n = S (plus-natt m n)

instance 〈proof 〉
end

definition h :: natt list where
h = g [Z ,S Z ]

experiment begin

declassify valid: h
thm valid
lemma Test--Dict--Construction-h = h 〈proof 〉

〈ML〉

end

Check that declassify does not leak out of locales
〈ML〉

4.4 [fundef-cong] rules
datatype ′a seq = Cons ′a ′a seq | Nil

experiment begin

declassify map-seq

Check presence of derived [fundef-cong] rule
〈ML〉

end

4.5 Mutual recursion
fun odd :: nat ⇒ bool and even where
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odd 0 ←→ False |
even 0 ←→ True |
odd (Suc n) ←→ even n |
even (Suc n) ←→ odd n

experiment begin

declassify valid: odd even
thm valid

end

datatype ′a bin-tree = Leaf | Node ′a ′a bin-tree ′a bin-tree

experiment begin

declassify valid: map-bin-tree rel-bin-tree
thm valid

end

datatype ′v env = Env ′v list
datatype v = Closure v env

context
notes is-measure-trivial[where f = size-env size, measure-function]

begin

fun test-v :: v ⇒ bool and test-w :: v env ⇒ bool where
test-v (Closure env) ←→ test-w env |
test-w (Env vs) ←→ list-all test-v vs

fun test-v1 :: v ⇒ ′a::{one,monoid-add} and test-w1 :: v env ⇒ ′a where
test-v1 (Closure env) = 1 + test-w1 env |
test-w1 (Env vs) = sum-list (map test-v1 vs)

end

experiment begin

declassify valid: test-w test-v
thm valid

end

experiment begin
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declassify valid: test-w1 test-v1
thm valid

end

4.6 Non-trivial code dependencies; code equations where the
head is not fully general

definition c ≡ 0 :: nat
definition d x ≡ if x = 0 then 0 else x

lemma contrived[code]: c = d 0 〈proof 〉

experiment begin

declassify valid: c
thm valid
lemma Test--Dict--Construction-c = c 〈proof 〉

end

4.7 Pattern matching on 0
definition j where j (n::nat) = (0 ::nat)

lemma [code]: j 0 = 0 j (Suc n) = j n
〈proof 〉

fun k where
k 0 = (0 ::nat) |
k (Suc n) = k n

lemma f-code[code]: k n = 0
〈proof 〉

experiment begin

declassify valid: j k
thm valid
lemma

Test--Dict--Construction-j = j
Test--Dict--Construction-k = k
〈proof 〉

end

4.8 Complex termination arguments
fun fac :: nat ⇒ nat where
fac n = (if n ≤ 1 then 1 else n ∗ fac (n − 1 ))
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experiment begin

declassify valid: fac

end

4.9 Combination of various things
experiment begin

declassify valid: sum-list

end

4.10 Interaction with the code generator
declassify h
export-code Test--Dict--Construction-h in SML

end

4.11 Contrived side conditions
theory Test-Side-Conditions
imports Dict-Construction
begin

〈ML〉

fun head where
head (x # -) = x

〈ML〉

lemma head-side-eq: head-side xs ←→ xs 6= []
〈proof 〉

〈ML〉

fun map where
map f [] = [] |
map f (x # xs) = f x # map f xs

〈ML〉
thm map-side.intros

〈ML〉
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experiment begin

Functions that use partial functions always in their domain are processed
correctly.

fun tail where
tail (- # xs) = xs

〈ML〉

lemma tail-side-eq: tail-side xs ←→ xs 6= []
〈proof 〉

〈ML〉

function map ′ where
map ′ f xs = (if xs = [] then [] else f (head xs) # map ′ f (tail xs))
〈proof 〉

termination
〈proof 〉

〈ML〉
thm map ′-side.intros

〈ML〉

end

lemma map-cong:
assumes xs = ys

∧
x. x ∈ set ys =⇒ f x = g x

shows map f xs = map g ys
〈proof 〉

definition map-head where
map-head xs = map head xs

experiment begin

declare map-cong[fundef-cong]

〈ML〉
thm map-head-side.intros

lemma map-head-side xs ←→ (∀ x ∈ set xs. x 6= [])
〈proof 〉

definition map-head ′ where
map-head ′ xss = map (map head) xss
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〈ML〉
thm map-head ′-side.intros

lemma map-head ′-side xss ←→ (∀ xs ∈ set xss. ∀ x ∈ set xs. x 6= [])
〈proof 〉

end

experiment begin

〈ML〉
term map-head-side
thm map-head-side.intros

lemma ¬ map-head-side xs
〈proof 〉

end

definition head-known where
head-known xs = head (3 # xs)

〈ML〉
thm head-known-side.intros

〈ML〉

fun odd :: nat ⇒ bool and even where
odd 0 ←→ False |
even 0 ←→ True |
odd (Suc n) ←→ even n |
even (Suc n) ←→ odd n

〈ML〉
thm odd-side-even-side.intros

〈ML〉

definition odd-known where
odd-known = odd (Suc 0 )

〈ML〉
thm odd-known-side.intros

〈ML〉

end
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4.12 Interaction with Lazy-Case
theory Test-Lazy-Case
imports

Dict-Construction
Lazy-Case.Lazy-Case
Show.Show-Instances

begin

datatype ′a tree = Node | Fork ′a ′a tree list

lemma map-tree[code]:
map-tree f t = (case t of Node ⇒ Node | Fork x ts ⇒ Fork (f x) (map (map-tree

f ) ts))
〈proof 〉

experiment begin

Dictionary construction of map-tree requires the [fundef-cong] rule of Test-Lazy-Case.tree.case-lazy.
declassify valid: map-tree
thm valid

lemma Test--Lazy--Case-tree-map--tree = map-tree 〈proof 〉

end

definition i :: (unit × (bool list × string × nat option) list) option ⇒ string
where
i = show

experiment begin

This currently requires Lazy-Case.Lazy-Case because of Euclidean-Rings.divmod-nat.
declassify valid: i
thm valid

lemma Test--Lazy--Case-i = i 〈proof 〉

end

end
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