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Abstract

The (diagonal) Ramsey number R(k) denotes the minimum size of a
complete graph such that every red-blue colouring of its edges contains
a monochromatic subgraph of size k. In 1935, Erd6és and Szekeres
found an upper bound, proving that R(k) < 4*. Somewhat later, a

lower bound of \/§k was established. In subsequent improvements to
the upper bound, the base of the exponent stubbornly remained at 4
until March 2023, when Campos et al. [1] sensationally showed that
R(k) < (4 — €)* for a particular small positive e.

The Isabelle/HOL formalisation of the result presented here is largely
independent of the prior formalisation (in Lean) by Bhavik Mehta.
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1 Background material: the neighbours of vertices

Preliminaries for the Book Algorithm
theory Neighbours imports Ramsey-Bounds. Ramsey-Bounds

begin

abbreviation set-difference :: ['a set,’a set] = 'a set (infixl <\» 65)
where A\ B = A-B

1.1 Preliminaries on graphs

context ulgraph
begin

The set of undirected edges between two sets

definition all-edges-betw-un :: 'a set = ’a set = ’a set set where
all-edges-betw-un X Y = {{z, y}|zy. 2 €e X Ny e Y AN {z, y} € E}

lemma all-edges-betw-un-commutel: all-edges-betw-un X Y C all-edges-betw-un Y
X
by (smt (verit, del-insts) Collect-mono all-edges-betw-un-def insert-commute)

lemma all-edges-betw-un-commute: all-edges-betw-un X Y = all-edges-betw-un Y
X
by (simp add: all-edges-betw-un-commutel subset-antisym)

lemma all-edges-betw-un-iff-mk-edge: all-edges-betw-un X Y = mk-edge ¢ all-edges-between
XY
using all-edges-between-set all-edges-betw-un-def by presburger

lemma all-uedges-betw-subset: all-edges-betw-un X Y C E
by (auto simp: all-edges-betw-un-def )

lemma all-uedges-betw-I: z €¢ X — y € ¥ = {z, y} € E = {z, y} €
all-edges-betw-un X Y
by (auto simp: all-edges-betw-un-def)

lemma all-edges-betw-un-subset: all-edges-betw-un X Y C Pow (XUY)
by (auto simp: all-edges-betw-un-def )

lemma all-edges-betw-un-empty [simp]:
all-edges-betw-un {} Z = {} all-edges-betw-un Z {} = {}
by (auto simp: all-edges-betw-un-def)

lemma card-all-uedges-betw-le:

assumes finite X finite Y

shows card (all-edges-betw-un X V') < card (all-edges-between X Y')

by (simp add: all-edges-betw-un-iff-mk-edge assms card-image-le finite-all-edges-between )



lemma all-edges-betw-un-le:
assumes finite X finite Y
shows card (all-edges-betw-un X Y) < card X * card YV
by (meson assms card-all-uedges-betw-le max-all-edges-between order-trans)

lemma all-edges-betw-un-insert!:

all-edges-betw-un (insert v X) Y = ({{v, y}| y. y € Y} N E) U all-edges-betw-un
XY

by (auto simp: all-edges-betw-un-def)

lemma all-edges-betw-un-insert2:

all-edges-betw-un X (insert v 'Y) = ({{z, v}| z. z € X} N E) U all-edges-betw-un
XY

by (auto simp: all-edges-betw-un-def)

lemma all-edges-betw-un-Unl:
all-edges-betw-un (X U Y) Z = all-edges-betw-un X Z U all-edges-betw-un Y Z
by (auto simp: all-edges-betw-un-def )

lemma all-edges-betw-un-Un2:
all-edges-betw-un X (Y U Z) = all-edges-betw-un X Y U all-edges-betw-un X Z
by (auto simp: all-edges-betw-un-def)

lemma finite-all-edges-betw-un:
assumes finite X finite Y
shows finite (all-edges-betw-un X Y)
by (simp add: all-edges-betw-un-iff-mk-edge assms finite-all-edges-between)

lemma all-edges-betw-un-Unionl:
all-edges-betw-un (Union X) Y = (|JXeX. all-edges-betw-un X Y)
by (auto simp: all-edges-betw-un-def )

lemma all-edges-betw-un-Union2:
all-edges-betw-un X (Union V) = (| Ye€). all-edges-betw-un X V)
by (auto simp: all-edges-betw-un-def)

lemma all-edges-betw-un-monol:
Y C 7 = all-edges-betw-un Y X C all-edges-betw-un Z X
by (auto simp: all-edges-betw-un-def )

lemma all-edges-betw-un-mono2:
Y C 7 = all-edges-betw-un X Y C all-edges-betw-un X Z
by (auto simp: all-edges-betw-un-def )

lemma disjnt-all-edges-betw-un:
assumes disjnt X Y disjnt X Z
shows disjnt (all-edges-betw-un X Z) (all-edges-betw-un Y Z)
using assms by (auto simp: all-edges-betw-un-def disjnt-iff doubleton-eq-iff)



end

1.2 Neighbours of a vertex

definition Neighbours :: 'a set set = 'a = 'a set where
Neighbours = AE z. {y. {z,y} € E}

lemma in-Neighbours-iff: y € Neighbours E & «— {z,y} € E
by (simp add: Neighbours-def)

lemma finite- Neighbours:
assumes finite £
shows finite (Neighbours E )
proof —
have Neighbours E © C Neighbours {X€E. finite X} z
by (auto simp: Neighbours-def)
also have ... C (|J{X€E. finite X})
by (meson Union-iff in-Neighbours-iff insert-iff subset-iff)
finally show ?thesis
using assms finite-subset by fastforce
qed

lemma (in fin-sgraph) not-own-Neighbour: E' C E — © ¢ Neighbours E' «
by (force simp: Neighbours-def singleton-not-edge)

context fin-sgraph
begin

declare singleton-not-edge [simp)

"A graph on vertex set S U T that contains all edges incident to S"
(page 3). In fact, S is a clique and every vertex in 7' has an edge into S.

definition book :: 'a set = 'a set = 'a set set = bool where
book = AS T F. disjnt S T A all-edges-betw-un S (SUT) C F

Cliques of a given number of vertices; the definition of clique from Ramsey
is used

definition size-clique :: nat = 'a set = 'a set set = bool where

size-clique p K F = card K = p A cliqgue KF N K CV

lemma size-clique-smaller: [size-clique p K F; p’ < p] = I K. size-clique p’ K’
F

unfolding size-clique-def

by (meson card-Ez-subset order.trans less-imp-le-nat smaller-clique)

1.3 Density: for calculating the parameter p
definition edge-card = X\C X Y. card (C N all-edges-betw-un X V')



definition gen-density = A\C X Y. edge-card C X Y /[ (card X % card V)

lemma edge-card-empty [simp]: edge-card C {} X = 0 edge-card C X {} = 0
by (auto simp: edge-card-def)

lemma edge-card-commute: edge-card C X Y = edge-card C' 'Y X
using all-edges-betw-un-commute edge-card-def by presburger

lemma edge-card-le:
assumes finite X finite Y
shows edge-card C X Y < card X * card Y
proof —
have edge-card C X Y < card (all-edges-betw-un X Y)
by (simp add: assms card-mono edge-card-def finite-all-edges-betw-un)
then show ?%thesis
by (meson all-edges-betw-un-le assms le-trans)
qged

the assumption that Z is disjoint from X (or Y) is necessary

lemma edge-card-Un:
assumes disjnt X Y disjnt X Z finite X finite Y
shows edge-card C (X U Y) Z = edge-card C X Z + edge-card C' Y Z
proof —
have [simp]: finite (all-edges-betw-un U Z) for U
by (meson all-uedges-betw-subset fin-edges finite-subset)
have disjnt (C N all-edges-betw-un X Z) (C N all-edges-betw-un Y Z)
using assms by (meson Int-iff disjnt-all-edges-betw-un disjnt-iff )
then show ?thesis
by (simp add: edge-card-def card-Un-disjnt all-edges-betw-un-Unl Int-Un-distrib)
qged

lemma edge-card-diff :

assumes Y CX disjnt X Z finite X

shows edge-card C (X—Y) Z = edge-card C X Z — edge-card C' Y Z
proof —

have (X\Y)U Y = X digjnt (X\Y) YV

by (auto simp: Un-absorb2 assms disjnt-iff )

then show ?thesis

by (metis add-diff-cancel-right’ assms disjnt-Unl edge-card-Un finite-Diff finite-subset)
qged

lemma edge-card-mono:
assumes Y CX shows edge-card C' Y Z < edge-card C X Z
unfolding edge-card-def
proof (intro card-mono)
show finite (C N all-edges-betw-un X Z)
by (meson all-uedges-betw-subset fin-edges finite-Int finite-subset)
show C N all-edges-betw-un Y Z C C N all-edges-betw-un X Z



by (meson Int-mono all-edges-betw-un-monol assms subset-refl)
qed

lemma edge-card-eq-sum-Neighbours:
assumes CCFE and B: finite B disjnt A B
shows edge-card C A B = (>_ i€B. card (Neighbours C i N A))
using B
proof (induction B)
case empty
then show Zcase
by (auto simp: edge-card-def)
next
case (insert b B)
have finite C
using assms(1) fin-edges finite-subset by blast
have bij: bij-betw (\e. the-elem(e—{b})) (C N {{z, b} |z. z € A}) (Neighbours
Cbhn A
unfolding bij-betw-def
proof
have [simp]: the-elem ({z, b} — {b}) =z if z € A for z
using insert.prems by (simp add: disjnt-iff insert-Diff-if that)
show inj-on (Ae. the-elem (e — {b})) (C N {{z, b} |z. z € A})
by (auto simp: inj-on-def)
show (\e. the-elem (e — {b})) ‘ (C N {{z, b} |z. x € A}) = Neighbours C' b
NnA
by (fastforce simp: Neighbours-def insert-commute image-iff Bex-def)
qed
have (C N all-edges-betw-un A (insert b B)) = (C N ({{z, b} |z. z € A} U
all-edges-betw-un A B))
using <C C E»> by (auto simp: all-edges-betw-un-insert2)
then have edge-card C A (insert b B) = card ((C N ({{z,b} |z. z € A}) U (C
N all-edges-betw-un A B)))
by (simp add: edge-card-def Int-Un-distrib)
also have ... = card (C N {{z,b} |z. z € A}) + card (C N all-edges-betw-un
A B)
proof (rule card-Un-disjnt)
show disjnt (C N {{z, b} |z. = € A}) (C N all-edges-betw-un A B)
using insert by (auto simp: disjnt-iff all-edges-betw-un-def doubleton-eq-iff)
qed (use <finite C> in auto)

also have ... = card (Neighbours C b N A) + card (C N all-edges-betw-un A B)
using bij-betw-same-card [OF bij] by simp
also have ... = (> i€insert b B. card (Neighbours C i N A))

using insert by (simp add: edge-card-def)
finally show ?Zcase .
qed

lemma sum-eg-card: finite A= (> z € A. ifz € B then 1 else 0) = card (ANB)
by (metis (no-types, lifting) card-eq-sum sum.cong sum.inter-restrict)



lemma sum-eq-card-Neighbours:

assumes z € V(O C FE

shows (> y € V\{z}. if {z,y} € C then I else 0) = card (Neighbours C x)
proof —

have Neighbours C z = (V \ {z}) N {y. {z, y} € C}

using assms wellformed by (auto simp: Neighbours-def)

with finV sum-eq-card [of - {y. {z,y}€C}] show ?thesis by simp

qed

lemma Neighbours-insert-NO-MATCH: NO-MATCH {} C = Neighbours (insert
e C) ¢ = Neighbours {e} x U Neighbours C x
by (auto simp: Neighbours-def)

lemma Neighbours-sing-2:
assumes ¢ € F
shows (3" z€V. card (Neighbours {e} z)) = 2
proof —
obtain u v where uv: e = {u,v} u#v
by (meson assms card-2-iff two-edges)
then have u € Vv e V
using assms wellformed uv by blast+
have x: Neighbours {e} © = (if x=u then {v} else if z=v then {u} else {}) for
x
by (auto simp: Neighbours-def uwv doubleton-eq-iff)
show ?thesis
using <u#v>
by (simp add: * if-distrib [of card] finV sum.delta-remove <u € Vs <v € V>
cong: if-cong)
qed

lemma sum-Neighbours-eq-card:
assumes finite C CCE
shows (> i€ V. card (Neighbours C i)) = card C * 2
using assms
proof (induction C)
case empty
then show ?case
by (auto simp: Neighbours-def)
next
case (insert e C)
then have [simp]: Neighbours {e} © N Neighbours C z = {} for x
by (auto simp: Neighbours-def)
with insert show ?case
by (auto simp: card-Un-disjoint finite-Neighbours Neighbours-insert-NO-MATCH
sum.distrib Neighbours-sing-2)
qed

lemma gen-density-empty [simp]: gen-density C {} X = 0 gen-density C X {} =
0

10



by (auto simp: gen-density-def)

lemma gen-density-commute: gen-density C X Y = gen-density C Y X
by (simp add: edge-card-commute gen-density-def)

lemma gen-density-ge0: gen-density C X Y > 0
by (auto simp: gen-density-def)

lemma gen-density-gt0:
assumes finite X finite Y {z,y} € Cz € Xye YC CE
shows gen-density C X Y > 0
proof —
have zy: {z,y} € all-edges-betw-un X Y
using assms by (force simp: all-edges-betw-un-def)
moreover have finite (all-edges-betw-un X Y)
by (simp add: assms finite-all-edges-betw-un)
ultimately have edge-card C X Y > 0
by (metis Intl assms(8) card-0-eq edge-card-def emptyE finite-Int gr0l)
with zy show ?thesis
using assms gen-density-def less-eq-real-def by fastforce
qged

lemma gen-density-lel: gen-density C X Y < 1

unfolding gen-density-def

by (smt (verit) card.infinite divide-le-eq-1 edge-card-le mult-eq-0-iff of-nat-le-0-iff
of-nat-mono)

lemma gen-density-le-1-minus:
shows gen-density C X Y < 1 — gen-density (E—C) X Y
proof (cases finite X A finite V)
case True
have C N all-edges-betw-un X Y U (E — C) N all-edges-betw-un X Y =
all-edges-betw-un X Y
by (auto simp: all-edges-betw-un-def )
with True have (edge-card C X Y) + (edge-card (E — C) X Y) < card
(all-edges-betw-un X Y')
unfolding edge-card-def
by (metis Diff-Int-distrib2 Diff-disjoint card-Un-disjoint card-Un-le finite-Int
finite-all-edges-betw-un)
with True show ?thesis
apply (simp add: gen-density-def divide-simps)
by (smt (verit) all-edges-betw-un-le of-nat-add of-nat-mono of-nat-mult)
qed (auto simp: gen-density-def)

lemma gen-density-lt1:
assumes {z,y} €e E-Cz e Xye YCCE
shows gen-density C X Y < 1

proof (cases finite X A finite V)
case True

11



then have 0 < gen-density (E — C) X Y
using assms gen-density-gt0 by auto
have gen-density C X Y < 1 — gen-density (E — C) X Y
by (intro gen-density-le-1-minus)
then show ?thesis
using <0 < gen-density (E — C) X Y> by linarith
qed (auto simp: gen-density-def)

lemma gen-density-le-iff :
assumes disjnt X Z finite X YCX Y # {} finite Z
shows gen-density C X Z < gen-density C Y Z <—
edge-card C X Z /| card X < edge-card C Y Z | card Y
using assms by (simp add: gen-density-def divide-simps mult-less-0-iff zero-less-mult-iff)

"Removing vertices whose degree is less than the average can only in-
crease the density from the remaining set" (page 17)

lemma gen-density-below-avg-ge:
assumes disjnt X Z finite X Y CX finite Z
and genY: gen-density C'Y Z < gen-density C X Z
shows gen-density C (X—-Y) Z > gen-density C X Z
proof —
have real (edge-card C'Y Z) / card Y < real (edge-card C X Z) | card X
using assms
by (force simp: gen-density-def divide-simps zero-less-mult-iff split: if-split-asm)
have card Y < card X
by (simp add: assms psubset-card-mono)
have x: finite Y'Y C X X#{}
using assms finite-subset by blast+
then
have card X * edge-card C'Y Z < card Y x edge-card C X Z
using genY assms
by (simp add: gen-density-def field-split-simps card-eq-0-iff flip: of-nat-mult
split: if-split-asm)
with assms % <card Y < card X> show ?thesis
by (simp add: gen-density-le-iff field-split-simps edge-card-diff card-Diff-subset
edge-card-mono flip: of-nat-mult)
qed

lemma edge-card-insert:
assumes NO-MATCH {} F and e ¢ F
shows edge-card (insert e F) X Y = edge-card {e} X Y + edge-card F X Y
proof —
have fin: finite (all-edges-betw-un X Y)
by (meson all-uedges-betw-subset fin-edges finite-subset)
have insert e F' N all-edges-betw-un X Y
= {e} N all-edges-betw-un X Y U F N all-edges-betw-un X Y
by auto
with <e¢F> show ?Zthesis
by (auto simp: edge-card-def card-Un-disjoint disjoint-iff fin)

12



qed

lemma edge-card-sing:
assumes ¢ € F
shows edge-card {e} U U = (if e C U then 1 else 0)
proof (cases e C U)
case True
obtain z y where zy: e = {2,y} z#y
using assms by (metis card-2-iff two-edges)
with True assms have {e} N all-edges-betw-un U U = {e}
by (auto simp: all-edges-betw-un-def )
with True show ?thesis
by (simp add: edge-card-def)
qed (auto simp: edge-card-def all-edges-betw-un-def )

lemma sum-edge-card-choose:
assumes 2<k C C FE
shows (3 Ue[V]*. edge-card C U U) = (card V — 2 choose (k—2)) * card C
proof —
have x: card {A € [V]F. e C A} = card V — 2 choose (k—2) if e: e € C for e
proof —
have e C V
using <CCE> e wellformed by force
obtain z y where zy: e = {z,y} z#y
using <CCE>» e by (metis in-mono card-2-iff two-edges)
define A where A= {4 € [V]F. ¢ C 4}
have NA. Ac A= A=¢eU (A\e) A A\e € [V\e]F — 2)
by (auto simp: A-def nsets-def zy)
moreover have Aza. [za € [V \ e](k - 2)]] — eUzac A
using <e C V> assms
by (auto simp: A-def nsets-def zy card-insert-if)
ultimately have A = (U)e [V\e](k_g)
by auto
moreover have inj-on ((U) e) ([V\e](k - 2))
by (auto simp: inj-on-def nsets-def)
moreover have card (V\e) = card V — 2
by (metis <CCE> <e € C» subsetD card-Diff-subset finV finite-subset two-edges
wellformed)
ultimately show %thesis
using assms by (simp add: card-image A-def)
qed
have (3. Ue[V]*. edge-card R U U) = ((card V — 2) choose (k—2)) * card R
if finite R R C C for R
using that
proof (induction R)
case empty
then show ?case
by (simp add: edge-card-def)

next

13



case (insert e R)

with assms have ecE by blast

with insert show ?case

by (simp add: edge-card-insert x sum.distrib edge-card-sing Ramsey.finite-imp-finite-nsets

finV flip: sum.inter-filter)
qed
then show ?thesis
by (meson <CCE> fin-edges finite-subset set-eq-subset)
qged

lemma sum-nsets-Compl:
assumes finite A k < card A
shows (3> Uc[A]F. f (A\U)) = (X Ue[A](card & — k) ¢ 1)
proof —
have B € (\) A ‘[AFif B € [A](C‘"d A —k) for B
proof —
have card (A\B) = k
using assms that by (simp add: nsets-def card-Diff-subset)
moreover have B = A\(A\B)
using that by (auto simp: nsets-def )
ultimately show %thesis
using assms unfolding nsets-def image-iff by blast
qed
then have bij-betw (AU. A\U) ([A]F) ([4](card A — k))
using assms by (auto simp: nsets-def bij-betw-def inj-on-def card-Diff-subset)
then show ?thesis
using sum.reindez-bij-betw by blast
qed

1.4 Lemma 9.2 preliminaries

Equation (45) in the text, page 30, is seemingly a huge gap. The development
below relies on binomial coefficient identities.

definition graph-density = AC. card C / card E

lemma graph-density-Un:
assumes disjnt CD C C ED C E
shows graph-density (C U D) = graph-density C' + graph-density D
proof (cases card E > 0)
case True
with assms obtain finite C finite D
by (metis card-ge-0-finite finite-subset)
with assms show ?Zthesis
by (auto simp: graph-density-def card-Un-disjnt divide-simps)
qed (auto simp: graph-density-def)

Could be generalised to any complete graph

lemma density-eq-average:
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assumes C C E and complete: E = all-edges V
shows graph-density C' =
real (O x € V. > y e V\{z}. if {z,y} € Cthen 1 else 0) / (card V * (card
V- 1)
proof —
have cardE: card E = card V choose 2
using card-all-edges complete finV by blast
have finite C
using assms fin-edges finite-subset by blast
then have «: (3" zeV. > yeV\{z}. if {z, y} € Cthen 1 else 0) = card C = 2
using assms by (simp add: sum-eq-card-Neighbours sum-Neighbours-eq-card)
show ?thesis
by (auto simp: graph-density-def divide-simps cardE choose-two-real %)
qed

lemma edge-card-V-V:
assumes C C E and complete: E = all-edges V
shows edge-card C V'V = card C
proof —
have C C all-edges-betw-un V' V
using assms clique-iff complete subset-refl
by (metis all-uedges-betw-I all-uedges-betw-subset clique-def)
then show ?thesis
by (metis Int-absorb2 edge-card-def )
qed

Bhavik’s statement; own proof

proposition density-eq-average-partition:
assumes k: 0 < kk < card V and C C E and complete: E = all-edges V
shows graph-density C = (3 UG[V]k. gen-density C U (V\U)) / (card V choose
k)
proof (cases k=1 V gorder = Suc k)
case True
then have [simp]: gorder choose k = gorder by auto
have eq: (C N {{z, y} ly.y € V Ay #z A{x, y} € E})
= (A\y. {z,y}) {y. {z,y} € C} for z
using <CCE> wellformed by fastforce
have V # {}
using assms by force
then have nontriv: E # {}
using assms card-all-edges finV by force
have (Y Ue[V]E. gen-density C U (V \ U)) = (3. zeV. gen-density C {z} (V
\ {2}))
using True
proof
assume k = 1
then show ?thesis
by (simp add: sum-nsets-one)
next
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assume §: gorder = Suc k
then have V—A # {} if card A = k finite A for A

using that

by (metis assms(2) card.empty card-less-sym-Diff finV less-nat-zero-code)
then have bij: bij-betw (Az. V \ {z}) V ([V]¥)

using finV §

by (auto simp: inj-on-def bij-betw-def nsets-def image-iff )

(metis Diff-insert-absorb card.insert card-subset-eq insert-subset subsetl)

moreover have V\(V\{z}) = {z} if zeV for z

using that by auto
ultimately show “thesis

using sum.reindez-bij-betw [OF bij] gen-density-commute

by (metis (no-types, lifting) sum.cong)

qed

also have ... = (> zeV. real (edge-card C {z} (V \ {z}))) / (gorder — 1)
by (simp add: <CCE> gen-density-def flip: sum-divide-distrib)

also have ... = (>_i€V. card (Neighbours C i)) / (gorder — 1)

unfolding edge-card-def Neighbours-def all-edges-betw-un-def
by (simp add: eq card-image inj-on-def doubleton-eq-iff)
also have ... = graph-density C' x gorder
using assms density-eq-average [OF <CCE> complete|
by (simp add: sum-eq-card-Neighbours)
finally show ?thesis
using k by simp
next
case False
then have K: gorder > Suc k k>2
using assms by auto
then have gorder — Suc (Suc (gorder — Suc (Suc k))) = k
using assms by auto
then have [simp]: gorder — 2 choose (gorder — Suc (Suc k)) = (gorder — 2
choose k)
using binomial-symmetric [of (gorder — Suc (Suc k))]
by simp
have cardE: card E = card V choose 2
using card-all-edges complete finV by blast
have card £ > 0
using k cardE by auto
have in-E-iff [iff]: {v,w} € E +— veV A weV A v#w for v w
by (auto simp: complete all-edges-alt doubleton-eq-iff )

have B: edge-card C V'V = edge-card C U U + edge-card C U (V\U) +
edge-card C (V\U) (V\U)

(is ?L = ?R)
if U CVfor U
proof —

have fin: finite (all-edges-betw-un U U') for U’
by (meson all-uedges-betw-subset fin-edges finite-subset)
have dis: all-edges-betw-un U U N all-edges-betw-un U (V \ U) = {}
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by (auto simp: all-edges-betw-un-def doubleton-eq-iff)
have all-edges-betw-un V V = all-edges-betw-un U U U all-edges-betw-un U
(VA\U) U all-edges-betw-un (V\U) (V\U)
by (smt (verit) that Diff-partition Un-absorb Un-assoc all-edges-betw-un-Un2
all-edges-betw-un-commute)
with that have ?L = card (C N all-edges-betw-un U U U C N all-edges-betw-un
U((V\U)
U C N all-edges-betw-un (V \ U) (V \ U))
by (simp add: edge-card-def Int-Un-distrib)
also have ... = ?R
using fin dis <CCE> fin-edges finite-subset
by ((subst card-Un-disjoint) ?, fastforce simp: edge-card-def all-edges-betw-un-def
doubleton-eq-iff )+
finally show ?thesis .
qed
have C: (3. U€[V]¥. real (edge-card C U (V\U)))
= (card V choose k) * card C — real(y. Ue|[V]¥. edge-card C U U + edge-card
C (VAU) (VA\U))
(is ?L = ¥R)
proof —
have 2L = (3. Ue[V]*. edge-card C V'V — real (edge-card C U U + edge-card
C (VAU) (VA\U)))
unfolding nsets-def by (rule sum.cong) (auto simp: B)
also have ... = ?R
using <CCFE> complete edge-card-V-V
by (simp add: <CCE> sum-subtractf edge-card-V-V)
finally show ?thesis .
qed

have (gorder—2 choose k) + (gorder—2 choose (k—2)) + 2 x (gorder—2 choose
(k—1)) = (gorder choose k)
using assms K by (auto simp: choose-reduce-nat [of gorder| choose-reduce-nat
[of gorder—Suc 0] eval-nat-numeral)
moreover
have (gorder — 1) * (gorder—2 choose (k—1)) = (gorder—k) x (gorder—1 choose
(k1))
by (metis Suc-1 Suc-diff-1 binomial-absorb-comp diff-Suc-eq-diff-pred <k>05)
ultimately have F: (gorder — 1) x (gorder—2 choose k) + (gorder — 1) x
(gorder—2 choose (k—2)) + 2 x (gorder—k) % (gorder—1 choose (k—1))
= (gorder — 1) * (gorder choose k)
by (smt (verit) add-mult-distrib2 mult.assoc mult.left-commute)

have (3. Ue[V]F. edge-card C U (V\U) / (real (card U) * card (V\U)))
= (S Ue[V)k. edge-card C U (V\U) / (real k * (card V — k)))
using card-Diff-subset by (intro sum.cong) (auto simp: nsets-def)
also have ... = (3 UE[V]k. edge-card C U (V\U)) / (k x (card V — k))
by (simp add: sum-divide-distrib)
finally have x: (3 Ue[V]k. edge-card C U (V\U) / (real (card U) * card
(VAU)))
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= (X Ue|VIk edge-card C U (V\U)) / (k * (card V — k)) .

have choose-m1: gorder  (gorder — 1 choose (k — 1)) = k * (gorder choose k)
using <k>0> times-binomial-minusi-eq by presburger
have xx: (real k * (real gorder — real k) % real (gorder choose k)) =
(real (gorder choose k) — (real (gorder — 2 choose (k — 2)) + real (gorder
— 2 choose k))) *
real (gorder choose 2)
using assms K arg-cong [OF F, of Au. real gorder x real u] arg-cong [OF
choose-m1, of real)
apply (simp add: choose-two-real ring-distribs)
by (smt (verit) distrib-right mult.assoc mult-2-right mult-of-nat-commute)
have eq: (3 U€[V]F. real (edge-card C (V\U) (V\U)))
= UG[V](gordeT*k). real (edge-card C U U))
using K finV by (subst sum-nsets-Compl, simp-all)
show ?thesis
unfolding graph-density-def gen-density-def
using K <card E > 0> <CCE»
apply (simp add: eq divide-simps B C sum.distrib *)
apply (simp add: xx sum-edge-card-choose cardE flip: of-nat-sum)
by argo
qged

lemma ezists-density-edge-density:
assumes k: 0 < kk < card V and C C F and complete: E = all-edges V
obtains U where card U = k UCV graph-density C < gen-density C U (V\U)
proof —
have Fulse if AU. U € [V]¥ = graph-density C > gen-density C U (V\U)
proof —
have card([V]F) > 0
using assms by auto
then have (3. U€[V]. gen-density C U (V \ U)) < card([V]F) x graph-density
C
by (meson sum-bounded-above-strict that)
with density-eq-average-partition assms show False by force
qed
with that show thesis
unfolding nsets-def by fastforce
qged

end

end

2 The book algorithm

theory Book imports
Neighbours
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HOL- Library. Disjoint-Sets HOL— Decision-Procs. Approzimation
HOL— Real-Asymp. Real-Asymp

begin

hide-const Bseq

2.1 Locales for the parameters of the construction

type-synonym ’a config = 'a set x 'a set x 'a set X 'a set

locale PO-min =
fixes p0-min :: real
assumes p0-min: 0 < p0-min pO-min < 1

locale Book-Basis = fin-sgraph + P0-min + — building on finite simple graphs
(no loops)

assumes complete: E = all-edges V

assumes infinite-UNIV : infinite (UNIV::"a set)
begin

abbreviation nV = card V

lemma graph-size: graph-size = (nV choose 2)
using card-all-edges complete finV by blast

lemma in-E-iff [iff]: {v,w} € E +— veV A weV A v#w
by (auto simp: complete all-edges-alt doubleton-eq-iff )

lemma all-edges-betw-un-iff-clique: K C V = all-edges-betw-un K K C F <—
clique K F

unfolding clique-def all-edges-betw-un-def doubleton-eq-iff subset-iff

by blast

lemma clique-Un:
assumes clique A F clique B F all-edges-betw-un A BC FACVBCV
shows clique (A U B) F
using assms by (simp add: all-uedges-betw-I clique-Un subset-iff )

lemma clique-insert:
assumes cliqgue A F all-edges-betw-un {s} ACFAC VzeV
shows clique (insert x A) F
using assms
by (metis Un-subset-iff clique-def insert-is-Un insert-subset clique-Un singletonD)

lemma less-RN-Red-Blue:
fixes | k
assumes nV: nV < RNkl
obtains Red Blue :: 'a set set
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where Red C E Blue = E\Red - (K. size-clique k K Red) = (3 K. size-clique
! K Blue)
proof —
have — is-Ramsey-number k|l nV
using RN-le assms leD by blast
then obtain f where f: f € nsets {.<nV} 2 — {.<2}
and noclique: \i. i<2 = = monochromatic {.<nV} ([k,] 4) 2 f1i
by (auto simp: partn-lst-def eval-nat-numeral)
obtain ¢ where ¢: bij-betw ¢ {.<nV} V
using bij-betw-from-nat-into-finite finV by blast
define ¥ where ¥ = inv-into {..<nV} ¢
have 9: bij-betw ¥ V {.<nV}
using ¢ U-def bij-betw-inv-into by blast
have emap: bij-betw (Ae. ¢‘e) (nsets {..<nV} 2) E
by (metis ¢ bij-betw-nsets complete nsets2-eq-all-edges)
define Red where Red = (Xe. p‘e) ‘((f —“{0}) N nsets {.<nV} 2)
define Blue where Blue = (Ae. p‘e) ‘ ((f —{1}) N nsets {..<nV} 2)
have f0: f (¥‘¢) = 0 if e € Red for e
using that ¢ by (auto simp add: Red-def image-iff ¥-def bij-betw-def nsets-def )
have f1: f (9‘e) = 1 if e € Blue for e
using that ¢ by (auto simp add: Blue-def image-iff 9-def bij-betw-def nsets-def )
have Red C F
using bij-betw-imp-surj-on[OF emap| by (auto simp: Red-def)
have Blue = E—Red
using emap f
by (auto simp: Red-def Blue-def bij-betw-def inj-on-eq-iff image-iff Pi-iff)
have no-Red-K: False if size-clique k K Red for K
proof —
have clique K Red and Kk: card K = k and KCV
using that by (auto simp: size-clique-def)
then have f ‘ [0°K]? C {0}
unfolding clique-def image-subset-iff
by (smt (verit, ccfo-SIG) f0 image-empty image-iff image-insert nsets2-E
singleton-iff)
moreover have ¥‘K ¢ [{..<nV}]CaTd K
by (smt (verit) <KCV> ¢ bij-betwE bij-betw-nsets finV mem-Collect-eq
nsets-def finite-subset)
ultimately show Fulse
using noclique [of 0] Kk by (simp add: size-clique-def monochromatic-def)
qed
have no-Blue-K: False if size-clique | K Blue for K
proof —
have clique K Blue and Kl: card K = |l and KCV
using that by (auto simp: size-clique-def)
then have f [19‘](]2 c {1}
unfolding clique-def image-subset-iff
by (smt (verit, ccfv-SIG) f1 image-empty image-iff image-insert nsets2-E
singleton-iff)
moreover have 9‘K € [{.<nV}]cord K
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using bij-betw-nsets [OF 9] <K C V> bij-betwE finV infinite-super nsets-def
by fastforce
ultimately show Fulse
using noclique [of 1] Kl by (simp add: size-clique-def monochromatic-def)
qed
show thesis
using <Blue = E \ Red> <Red C E»> no-Blue-K no-Red-K that by presburger
qed

end

locale No-Cliques = Book-Basis +
fixes Red Blue :: 'a set set
assumes Red-F: Red C E
assumes Blue-def: Blue = E—Red
— the following are local to the program
fixes l::nat — blue limit
fixes k::nat — red limit
assumes [-le-k: | < k — they should be "sufficiently large"
assumes no-Red-clique: - (3 K. size-clique k K Red)
assumes no-Blue-clique: = (A K. size-clique | K Blue)

locale Book = Book-Basis + No-Cliques +

fixes p::real — governs the big blue steps
assumes p01: 0 < pp < 1
fixes X0 :: 'a set and Y0 :: 'a set — initial values

assumes XY0: disjnt X0 YO X0 C VYO CV
assumes density-ge-p0-min: gen-density Red X0 Y0 > p0-min

locale Book’ = Book-Basis + No-Cliques +

fixes ~::real — governs the big blue steps
assumes y-def: v = real | / (real k + real 1)
fixes X0 :: 'a set and Y0 :: 'a set — initial values

assumes XY0: disjnt X0 YO0 X0 C VYO C V
assumes density-ge-p0-min: gen-density Red X0 Y0 > p0-min

definition eps = \k. real k powr (—1/4)

definition gfun-base :: [nat, nat] = real
where gfun-base = Ak h. ((1 + epsk)"h — 1)/ k

definition hgt-mazimum = Mk. 2 * In (real k) / eps k

The first of many "bigness assumptions"

definition Big-height-upper-bound = \k. qfun-base k (nat | hgt-mazimum k]) > 1

lemma Big-height-upper-bound:
shows V*°k. Big-height-upper-bound k
unfolding Big-height-upper-bound-def hgt-mazimum-def eps-def qfun-base-def
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by real-asymp

context No-Cliques
begin

abbreviation ¢ = eps k

lemma eps-eq-sqrt: € = 1 / sqrt (sqrt (real k))
by (simp add: eps-def powr-minus-divide powr-powr flip: powr-half-sqrt)

lemma eps-ge0: € > 0
by (simp add: eps-def)

lemma In0: >0
using no-Blue-clique by (force simp: size-clique-def clique-def)

lemma kn0: k > 0
using [-le-k In0 by auto

lemma eps-gt0: ¢ > 0
by (simp add: eps-def kn0)

lemma eps-lel: ¢ < 1
using kn0 ge-one-powr-ge-zero
by (simp add: eps-def powr-minus powr-mono2 divide-simps)

lemma eps-lessi:
assumes k>1 shows ¢ < I
by (smt (verit) assms eps-def less-imp-of-nat-less of-nat-1 powr-less-one zero-le-divide-iff )

lemma Blue-E: Blue C E
by (simp add: Blue-def)

lemma disjnt-Red-Blue: disjnt Red Blue
by (simp add: Blue-def disjnt-def)

lemma Red-Blue-all: Red U Blue = all-edges V
using Blue-def Red-E complete by blast

lemma Blue-eq: Blue = all-edges V' — Red
using Blue-def complete by auto

lemma Red-eq: Red = all-edges V — Blue
using Blue-eq Red-Blue-all by blast

lemma disjnt-Red-Blue-Neighbours: disjnt (Neighbours Red x N X) (Neighbours

Blue z N X)
using disjnt-Red-Blue by (auto simp: disjnt-def Neighbours-def)
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lemma indep-Red-iff-clique-Blue: K C V = indep K Red +— clique K Blue
using Blue-eq by auto

lemma Red-Blue-RN:

fixes X :: ‘a set

assumes card X > RN mn XCV

shows 3K C X. size-cligue m K Red V size-clique n K Blue

using partn-lst-imp-is-clique-RN [OF is-Ramsey-number-RN [of m n]] assms
indep-Red-iff-clique-Blue

unfolding is-clique-RN-def size-clique-def clique-indep-def

by (metis finV finite-subset subset-eq)

end

context Book
begin

lemma Red-edges-XY0: Red N all-edges-betw-un X0 Y0 # {}
using density-ge-p0-min p0-min
by (auto simp: gen-density-def edge-card-def)

lemma finite-X0: finite X0 and finite-Y0: finite Y0
using XY0 finV finite-subset by blast+

lemma Red-nonempty: Red # {}
using Red-edges-XY0 by blast

lemma gorder-ge2: gorder > 2
using Red-nonempty
by (metis Red-E card-mono equalsOl finV subset-empty two-edges wellformed)

lemma nontriv: E # {}
using Red-E Red-nonempty by force

lemma no-singleton-Blue [simp]: {a} ¢ Blue
using Blue-E by auto

lemma no-singleton-Red [simp]: {a} ¢ Red
using Red-FE by auto

lemma not-Red-Neighbour [simp]: © ¢ Neighbours Red x and not-Blue-Neighbour
[simp]: x ¢ Neighbours Blue x
using Red-FE Blue-E not-own-Neighbour by auto

lemma Neighbours-RB:
assumes ¢ € VXCV
shows Neighbours Red a N X U Neighbours Blue a N X = X — {a}
using assms Red-Blue-all complete singleton-not-edge
by (fastforce simp: Neighbours-def)
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lemma Neighbours-Red-Blue:
assumes z € V
shows Neighbours Red x = V — insert « (Neighbours Blue )
using Red-E assms by (auto simp: Blue-eq Neighbours-def complete all-edges-def)

abbreviation red-density X Y = gen-density Red X Y
abbreviation blue-density X Y = gen-density Blue X Y
definition Weight :: ['a set, 'a set, 'a, 'a] = real where
Weight = AX Y x y. inverse (card Y) x (card (Neighbours Red x N Neighbours
RedyN'Y)
— red-density X Y x card (Neighbours Red z N Y))

definition weight :: 'a set = 'a set = 'a = real where
weight = AX Yz. Yy € X—{z}. Weight X Yz y

definition p0 :: real
where p0 = red-density X0 Y0

definition gfun :: nat = real
where gfun = Ah. p0 + qfun-base k h

lemma qfun-eq: qgfun = Mh. p0 + (1 +e)"h — 1)/ k
by (simp add: qfun-def qfun-base-def eps-def eps-def)

definition hgt :: real = nat
where hgt = A\p. LEAST h. p < qfun h A h>0

lemma gfun0 [simp]: qfun 0 = p0
by (simp add: qfun-eq)

lemma p0-ge: p0 > p0-min
using density-ge-p0-min by (simp add: p0-def)

lemma card-XY0: card X0 > 0 card YO > 0
using Red-edges-XY0 finite-X0 finite-Y0 by force+

lemma finite-Red [simp]: finite Red
by (metis Red-Blue-all complete fin-edges finite-Un)

lemma finite-Blue [simp]: finite Blue
using Blue-F fin-edges finite-subset by blast

lemma Red-edges-nonzero: edge-card Red X0 Y0 > 0
using Red-edges-XY0
using Red-FE edge-card-def fin-edges finite-subset by fastforce

lemma p0-01: 0 < p0 p0 < 1
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proof —
show 0 < p0
using Red-edges-nonzero card-XY0
by (auto simp: p0-def gen-density-def divide-simps mult-less-0-iff)
show p0 < 1
by (simp add: gen-density-lel p0-def)
qged

lemma gfun-strict-mono: h'<h = qfun h’ < qfun h
by (simp add: divide-strict-right-mono eps-gt0 kn0 qfun-eq)

lemma gfun-mono: h'’<h = qfun h’ < gfun h
by (metis less-eq-real-def nat-less-le qfun-strict-mono)

lemma ¢-Suc-diff: qfun (Suc h) — qfunh =e % (I +¢)"h / k
by (simp add: qfun-eq field-split-simps)

lemma height-ezists’:
obtains h where p < gfun-base k h A h>0
proof —
have 1: 1 + ¢ > 1
by (auto simp: eps-def)
have V>®°h. p < real h x € / real k
using p0-01 kn0 unfolding eps-def by real-asymp
then obtain h where p < real h x € / real k
by (meson eventually-sequentially order.refl)
also have ... < ((1 +¢) ~h—1)/ real k
using linear-plus-1-le-power [of ¢ h]

by (intro divide-right-mono add-mono) (auto simp: eps-def add-ac)
also have ... < ((1 +¢) ~Such — 1)/ real k
using power-increasing [OF le-Sucl [OF order-refl] 1]

by (simp add: divide-right-mono)
finally have p < g¢fun-base k (Suc h)
unfolding qfun-base-def eps-def eps-def using p0-01 by blast
then show thesis
using that by blast
qged

lemma height-exists:
obtains h where p < qfun h h>0
proof —
obtain h’ where p < qfun-base kK h' A h'>0
using height-exists’ by blast
then show thesis
using p0-01 qfun-def that
by (metis add-strict-increasing less-eq-real-def )
qed
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lemma hgt-gt0: hgt p > 0
unfolding hgt-def
by (smt (verit, best) Leastl height-exists kn0)

lemma hgt-works: p < qfun (hgt p)
by (metis (no-types, lifting) LeastI height-exists hgt-def)

lemma hgt-Least:
assumes 0<h p < qfun h
shows hgt p < h
by (simp add: Suc-lel assms hgt-def Least-le)

lemma real-hgt-Least:
assumes real h < r 0<h p < qfun h
shows real (hgt p) < r
using assms by (meson assms order.trans hgt-Least of-nat-mono)

lemma hgt-greater:
assumes p > qfun h
shows hgt p > h
by (meson assms hgt-works kn0 not-less order.trans qfun-mono)

lemma hgt-less-imp-qfun-less:
assumes (0<h h < hgt p
shows p > qfun h
by (metis assms hgt-Least not-le)

lemma hgt-le-imp-qgfun-ge:
assumes hgt p < h
shows p < gfun h
by (meson assms hgt-greater not-less)

This gives us an upper bound for heights, namely hgt 1, but it’s not
explicit.
lemma hgt-mono:
assumes p < ¢
shows hgt p < hgt q
by (meson assms order.trans hgt-Least hgt-gt0 hgt-works)

lemma hgt-mono”:
assumes hgt p < hgt q
shows p < ¢
by (smt (verit) assms hgt-mono leD)

The upper bound of the height h(p) appears just below (5) on page 9.
Although we can bound all Heights by monotonicity (since p < 1), we need
to exhibit a specific o(k) function.

lemma height-upper-bound:
assumes p < [ and big: Big-height-upper-bound k
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shows hgt p < 2 xInk /¢

using assms real-hgt-Least big nat-floor-neg not-gr0 of-nat-floor
unfolding Big-height-upper-bound-def hgt-mazimum-def

by (smt (verit) eps-def hgt-Least of-nat-mono p0-01(1) qfun0 gfun-def)

definition alpha :: nat = real where alpha = Mh. qfun h — qfun (h—1)

lemma alpha-ge0: alpha h > 0
by (simp add: alpha-def qfun-eq divide-le-cancel eps-gt0)

lemma alpha-Suc-ge: alpha (Suc h) > ¢ / k
proof —
have (1 +¢) “h>1
by (simp add: eps-def)
then show ?thesis
by (simp add: alpha-def qfun-eq eps-gt0 field-split-simps)
qged

lemma alpha-ge: h>0 = alpha h > ¢ | k
by (metis Suc-pred alpha-Suc-ge)

lemma alpha-gt0: h>0 = alpha h > 0
by (metis alpha-ge alpha-ge0 eps-gt0 kn0 nle-le not-le of-nat-0-less-iff zero-less-divide-iff)

lemma alpha-Suc-eq: alpha (Suc h) =ex (1 +¢) ~h / k
by (simp add: alpha-def ¢-Suc-diff)

lemma alpha-eq:
assumes h>0 shows alpha h = e x (1 +¢) ~(h—1) / k
by (metis Suc-pred’ alpha-Suc-eq assms)

lemma alpha-hgt-eq: alpha (hgt p) = ¢ x (1 +¢) ~(hgtp —1) | k
using alpha-eq hgt-gt0 by presburger

lemma alpha-mono: [h' < h; 0 < h'] = alpha b’ < alpha h
by (simp add: alpha-eq eps-gel divide-right-mono mult-left-mono power-increasing)

definition all-incident-edges :: 'a set = 'a set set where
all-incident-edges = NA. | Jv€eA. incident-edges v

lemma all-incident-edges-Un [simp): all-incident-edges (AUB) = all-incident-edges
A U all-incident-edges B
by (auto simp: all-incident-edges-def)

end

context Book
begin
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2.2 State invariants

definition V-state = A\(X,Y,A,B). XCV A YCV AN ACV A BCV

definition disjoint-state = \(X,Y ,A,B). disjnt X Y A disjnt X A A disjnt X B A
disjnt Y A N disjnt Y B A disjnt A B

previously had all edges incident to A, B

definition RB-state = \(X,Y ,A,B). all-edges-betw-un A A C Red A all-edges-betw-un
A(XUY)C Red
A all-edges-betw-un B (B U X) C Blue

definition valid-state = A\U. V-state U A disjoint-state U N RB-state U

definition termination-condition = AX Y. card X < RN k (nat [real 1 powr
(8/4)]) V red-density X Y < 1/k

lemma
assumes V-state(X,Y A,B)
shows finX: finite X and finY: finite Y and finA: finite A and finB: finite B
using V-state-def assms finV finite-subset by auto

lemma

assumes valid-state(X,Y A, B)

shows A-Red-clique: cliqgue A Red and B-Blue-clique: cligue B Blue

using assms

by (auto simp: valid-state-def V-state-def RB-state-def all-edges-betw-un-iff-clique
all-edges-betw-un-Un2)

lemma A-less-k:

assumes valid: valid-state(X,Y ,A,B)

shows card A < k

using assms A-Red-clique|OF wvalid] no-Red-clique unfolding valid-state-def
V-state-def

by (metis nat-neq-iff prod.case size-clique-def size-clique-smaller)

lemma B-less-I:

assumes valid: valid-state(X,Y ,A,B)

shows card B < |

using assms B-Blue-clique[OF valid] no-Blue-clique unfolding wvalid-state-def
V-state-def

by (metis nat-neg-iff prod.case size-clique-def size-clique-smaller)

2.3 Degree regularisation

definition red-dense = \Y p z. card (Neighbours Red x N'Y) > (p — & powr
(—=1/2) * alpha (hgt p)) * card Y

definition X-degree-reg = AX Y. {2 € X. red-dense Y (red-density X V) z}
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definition degree-reg = \(X,Y ,A,B). (X-degree-reg X Y, Y, A, B)

lemma X-degree-reg-subset: X-degree-reg X ¥ C X
by (auto simp: X-degree-reg-def)

lemma degree-reg-V-state: V-state U = V-state (degree-reg U)
by (auto simp: degree-reg-def X-degree-reg-def V-state-def)

lemma degree-reg-disjoint-state: disjoint-state U = disjoint-state (degree-reg U)
by (auto simp: degree-reg-def X-degree-reg-def disjoint-state-def disjnt-iff)

lemma degree-reg-RB-state: RB-state U =—> RB-state (degree-req U)

apply (simp add: degree-reg-def RB-state-def all-edges-betw-un-Un2 split: prod.split
prod.split-asm)

by (meson X-degree-reg-subset all-edges-betw-un-mono2 order.trans)

lemma degree-reg-valid-state: valid-state U = valid-state (degree-reg U)
by (simp add: degree-reg-RB-state degree-reg-V-state degree-reg-disjoint-state valid-state-def)

lemma not-red-dense-sum-less:
assumes A\z. z € X = - red-dense Y p x and X#{} finite X
shows (3" z€X. card (Neighbours Red x N'Y)) < p * real (card V) * card X
proof —
have Az. © € X = card (Neighbours Red t N'Y) < p * real (card V)
using assms
unfolding red-dense-def
by (smt (verit) alpha-ge0 mult-right-mono of-nat-0-le-iff powr-ge-zero zero-le-mult-iff)
with <X#{}> show ?thesis
by (smt (verit) <finite X> of-nat-sum sum-strict-mono mult-of-nat-commaute
sum-constant)
qged

lemma red-density- X-degree-reg-ge:
assumes disjnt X Y
shows red-density (X-degree-reg X Y) Y > red-density X Y
proof (cases X={} V infinite X V infinite V)
case True
then show %thesis
by (force simp: gen-density-def X-degree-reg-def)
next
case Fulse
then have finite X finite YV
by auto
{ assume Az. z € X = — red-dense Y (red-density X V) z
with False have (> z€X. card (Neighbours Red x N Y)) < red-density X YV
x real (card V) % card X
using <finite X»> not-red-dense-sum-less by blast
with Red-E have edge-card Red Y X < (red-density X Y x real (card Y)) =
card X
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by (metis False assms disjnt-sym edge-card-eq-sum-Neighbours)
then have Fulse
by (simp add: gen-density-def edge-card-commute split: if-split-asm)
}

then obtain z where z: 1 € X red-dense Y (red-density X Y) z
by blast
define X' where X' = {z € X. - red-dense Y (red-density X Y') z}
have X" finite X' disjnt Y X'
using assms <finite X> by (auto simp: X '-def disjnt-iff )
have eq: X-degree-reg X' Y = X — X'
by (auto simp: X-degree-reg-def X '-def)
show ?thesis
proof (cases X'={})
case True
then show ?thesis
by (simp add: eq)
next
case Fualse
show ?thesis
unfolding eq
proof (rule gen-density-below-avg-ge)
have (3" z€X'. card (Neighbours Red x N'Y)) < red-density X Y = real (card
Y) * card X'
proof (intro not-red-dense-sum-less)
fix x
assume z € X'
show — red-dense Y (red-density X V) x
using <z € X"» by (simp add: X'-def)
qed (use False X' in auto)
then have card X * (> z€X'. card (Neighbours Red x N Y)) < card X'
edge-card Red Y X
by (simp add: gen-density-def mult.commute divide-simps edge-card-commute
flip: of-nat-sum of-nat-mult split: if-split-asm)
then have card X * (3. z€X'. card (Neighbours Red x N Y)) < card X' x
(> xeX. card (Neighbours Red z N Y))
using assms Red-E
by (metis <finite X> disjnt-sym edge-card-eq-sum-Neighbours nless-le)
then have red-density Y X' < red-density Y X
using assms X' False <finite X>»
apply (simp add: gen-density-def edge-card-eq-sum-Neighbours disjnt-commute
Red-E)
apply (simp add: X'-def field-split-simps flip: of-nat-sum of-nat-mult)
done
then show red-density X' Y < red-density X Y
by (simp add: X'-def gen-density-commute)
qged (use assms z <finite X» <finite Y> X'-def in auto)
qed
qged
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2.4 Big blue steps: code

definition bluish :: ['a set,’a] = bool where
bluish = AX z. card (Neighbours Blue z N X) > u * real (card X)

definition many-bluish :: 'a set = bool where
many-bluish = AX. card {z€X. bluish X £} > RN k (nat [l powr (2/3)])

definition good-blue-book :: ['a set, 'a set x 'a set] = bool where
good-blue-book = A\X. A(S,T). book S T Blue N SCX AN TCX Ncard T > (u °
card S) x card X | 2

lemma ez-good-blue-book: good-blue-book X ({}, X)
by (simp add: good-blue-book-def book-def)

lemma bounded-good-blue-book: [good-blue-book X (S,T); finite X] = card S <
card X
by (simp add: card-mono finX good-blue-book-def )

definition best-blue-book-card :: 'a set = nat where
best-blue-book-card = \X. GREATEST s. 35 T. good-blue-book X (S,T) N s =
card S

lemma best-blue-book-is-best: [good-blue-book X (S,T); finite X] = card S <
best-blue-book-card X

unfolding best-blue-book-card-def

by (smt (verit) Greatest-le-nat bounded-good-blue-book)

lemma ex-best-blue-book: finite X —> 35 T. good-blue-book X (S,T) A card S =
best-blue-book-card X

unfolding best-blue-book-card-def

by (smt (verit) GreatestI-ex-nat bounded-good-blue-book ex-good-blue-book)

definition choose-blue-book = A\(X,Y,A,B). Q(S,T). good-blue-book X (S,T) A
card S = best-blue-book-card X

lemma choose-blue-book-works:
[finite X; (S,T) = choose-blue-book (X,Y,A,B)]
= good-blue-book X (S,T) A card S = best-blue-book-card X
unfolding choose-blue-book-def
using somel-ex [OF ex-best-blue-book)]
by (metis (mono-tags, lifting) case-prod-conv somel-ezx)

lemma choose-blue-book-subset:

[finite X; (S,T) = choose-blue-book (X,Y,AB)] —= S C X AT C X A disjnt
ST

using choose-blue-book-works good-blue-book-def book-def by fastforce

expressing the complicated preconditions inductively

inductive big-blue
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where [many-bluish X ; good-blue-book X (S,T); card S = best-blue-book-card X]
= big-blue (X,Y ,A,B) (T, Y, A, BUS)

lemma big-blue-V-state: [big-blue U U’; V-state U] = V-state U’
by (force simp: good-blue-book-def V-state-def elim!: big-blue.cases)

lemma big-blue-disjoint-state: [big-blue U U’; disjoint-state U] = disjoint-state
U/
by (force simp: book-def disjnt-iff good-blue-book-def disjoint-state-def elim!: big-blue.cases)

lemma big-blue-RB-state: [big-blue U U’; RB-state U] = RB-state U’

apply (clarsimp simp add: good-blue-book-def book-def RB-state-def all-edges-betw-un-Unl
all-edges-betw-un-Un2 elim!: big-blue.cases)

by (metis all-edges-betw-un-commute all-edges-betw-un-monol le-supl2 sup.orderE)

lemma big-blue-valid-state: [big-blue U U’; valid-state U] = valid-state U’
by (meson big-blue-RB-state big-blue-V-state big-blue-disjoint-state valid-state-def )

2.5 The central vertex

definition central-vertez :: ['a set,’a] = bool where
central-vertex = AX z. v € X A card (Neighbours Blue N X) < p  real (card
X)

lemma ex-central-vertes:
assumes — termination-condition X Y — many-bluish X
shows Jz. central-vertex X x
proof —
have [ # 0
using linorder-not-less assms unfolding many-bluish-def by force
then have x: real [ powr (2/8) < real | powr (3/4)
using powr-mono by force
then have card {z € X. bluish X z} < card X
using assms RN-mono
unfolding termination-condition-def many-bluish-def not-le
by (smt (verit, ccfo-SIG) linorder-not-le nat-ceiling-le-eq of-nat-le-iff )
then obtain z where z € X — bluish X z
by (metis (mono-tags, lifting) mem-Collect-eq nat-neq-iff subsetl subset-antisym)
then show ?thesis
by (meson bluish-def central-vertexz-def linorder-linear)
qed

lemma finite-central-vertez-set: finite X = finite {x. central-vertex X x}
by (simp add: central-vertex-def)

definition max-central-vz :: ['a set,’a set] = real where
maz-central-ve = \X Y. Maz (weight X Y ‘ {x. central-vertex X x})

lemma central-vz-is-best:
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[central-vertex X x; finite X]| = weight X Y z < maz-central-vz X YV
unfolding maz-central-vz-def by (simp add: finite-central-vertez-set)

lemma ex-best-central-va:
[— termination-condition X Y; = many-bluish X; finite X]
= Jx. central-vertex X © N\ weight X Y x = max-central-ve X Y
unfolding maz-central-vz-def
by (metis empty-iff ex-central-vertez finite-central-vertez-set mem-Collect-eq obtains-MAX)

it’s necessary to make a specific choice; a relational treatment might allow
different vertices to be chosen, making a nonsense of the choice between steps
4 and 5

definition choose-central-ve = A\(X,Y,A,B). Qz. central-vertex X = N weight X
Y x = maz-central-vc X Y

lemma choose-central-ve-works:

[— termination-condition X Y; = many-bluish X; finite X]

= central-vertex X (choose-central-vr (X,Y ,A,B)) A weight X Y (choose-central-vz
(X,Y,A,B)) = maz-central-vc X Y

unfolding choose-central-vz-def

using somel-ex [OF ex-best-central-vz] by force

lemma choose-central-ve-X:

[— many-bluish X ; — termination-condition X Y'; finite X| = choose-central-vz
(X,Y,AB) e X

using central-vertex-def choose-central-ve-works by fastforce

2.6 Red step

definition reddish = A\k X Y p x. red-density (Neighbours Red x N X ) (Neighbours
Red z N'Y) > p — alpha (hgt p)

inductive red-step
where [reddish k X Y (red-density X Y) z; © = choose-central-ve (X,Y,A,B)]
= red-step (X,Y,A,B) (Neighbours Red x N X, Neighbours Red z N'Y,
insert z A, B)

lemma red-step-V-state:
assumes red-step (X,Y,A,B) U’ = termination-condition X Y
= many-bluish X V-state (X,Y ,A,B)
shows V-state U’
proof —
have X C V
using assms by (auto simp: V-state-def)
then have choose-central-vz (X, Y, A, B) € V
using assms choose-central-va-X by (fastforce simp: finX)
with assms show ?Zthesis
by (auto simp: V-state-def elim!: red-step.cases)
qged

33



lemma red-step-disjoint-state:

assumes red-step (X,Y ,A,B) U’ = termination-condition X Y

- many-bluish X V-state (X,Y,A,B) disjoint-state (X,Y,A,B)

shows disjoint-state U’
proof —

have choose-central-vz (X, Y, A, B) € X

using assms by (metis choose-central-ve-X finX)

with assms show ?Zthesis

by (auto simp: disjoint-state-def disjnt-iff not-own-Neighbour elim!: red-step.cases)
qged

lemma red-step-RB-state:
assumes red-step (X,Y,A,B) U’ - termination-condition X Y
- many-bluish X V-state (X,Y ,A,B) RB-state (X,Y,A,B)
shows RB-state U’
proof —
define z where = = choose-central-vz (X, Y, A, B)
have [simp]: finite X
using assms by (simp add: finX)
have z € X
using assms choose-central-va-X by (metis <finite X> z-def)
have A: all-edges-betw-un (insert x A) (insert x A) C Red
if all-edges-betw-un A A C Red all-edges-betw-un A (X U Y) C Red
using that <z € X> all-edges-betw-un-commute
by (auto simp: all-edges-betw-un-insert2 all-edges-betw-un-Un2 intro!: all-uedges-betw-I)
have B1: all-edges-betw-un (insert x A) (Neighbours Red z N X) C Red
if all-edges-betw-un A X C Red
using that <z € X> by (force simp: all-edges-betw-un-def in-Neighbours-iff )
have B2: all-edges-betw-un (insert x A) (Neighbours Red x N 'Y') C Red
if all-edges-betw-un A Y C Red
using that <z € X> by (force simp: all-edges-betw-un-def in-Neighbours-iff )
from assms A B1 B2 show ?thesis
apply (clarsimp simp: RB-state-def simp flip: x-def elim!: red-step.cases)
by (metis Int-Un-eq(2) Un-subset-iff all-edges-betw-un-Un2)
ged

lemma red-step-valid-state:
assumes red-step (X,Y ,A,B) U’ — termination-condition X Y
— many-bluish X valid-state (X,Y ,A,B)
shows valid-state U’
by (meson assms red-step-R B-state red-step- V-state red-step-disjoint-state valid-state-def)

2.7 Density-boost step

inductive density-boost
where [ reddish k X Y (red-density X Y') z; © = choose-central-vz (X,Y,A,B)]

= density-boost (X,Y,A,B) (Neighbours Blue x N X, Neighbours Red x
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NY, A, insert z B)

lemma density-boost-V-state:
assumes density-boost (X,Y,A,B) U’ = termination-condition X Y
- many-bluish X V-state (X,Y,A,B)
shows V-state U’
proof —
have X C V
using assms by (auto simp: V-state-def)
then have choose-central-vz (X, Y, A, B) € V
using assms choose-central-vz-X finX by fastforce
with assms show ?Zthesis
by (auto simp: V-state-def elim!: density-boost.cases)
qed

lemma density-boost-disjoint-state:
assumes density-boost (X,Y ,A,B) U’ = termination-condition X Y
— many-bluish X V-state (X,Y A,B) disjoint-state (X,Y ,A,B)
shows disjoint-state U’
proof —
have X C V
using assms by (auto simp: V-state-def)
then have choose-central-vz (X, Y, A, B) € X
using assms by (metis choose-central-ve-X finX)
with assms show ?thesis
by (auto simp: disjoint-state-def disjnt-iff not-own-Neighbour elim!: density-boost.cases)
qged

lemma density-boost-RB-state:
assumes density-boost (X,Y ,A,B) U’ — termination-condition X Y — many-bluish
X V-state (X,Y,A,B)
and rb: RB-state (X,Y ,A,B)
shows RB-state U’
proof —
define z where z = choose-central-vz (X, Y, A, B)
have z € X
using assms by (metis choose-central-vz-X finX z-def)
have all-edges-betw-un A (Neighbours Blue x N X U Neighbours Red x N Y) C
Red
if all-edges-betw-un A (X U Y) C Red
using that by (metis Int-Un-eq(4) Un-subset-iff all-edges-betw-un-Un2)
moreover
have all-edges-betw-un (insert x B) (insert x B) C Blue
if all-edges-betw-un B (B U X) C Blue
using that <z € X»> by (auto simp: subset-iff set-eq-iff all-edges-betw-un-def)
moreover
have all-edges-betw-un (insert x B) (Neighbours Blue z N X) C Blue
if all-edges-betw-un B (B U X) C Blue
using <x € X» that by (auto simp: all-edges-betw-un-def subset-iff in-Neighbours-iff )
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ultimately show ?thesis
using assms
by (auto simp: RB-state-def all-edges-betw-un-Un2 x-def [symmetric] elim!:
density-boost.cases)
qged

lemma density-boost-valid-state:

assumes density-boost (X,Y ,A,B) U’ — termination-condition X Y — many-bluish
X wvalid-state (X,Y,A,B)

shows wvalid-state U’

by (meson assms density-boost-RB-state density-boost-V-state density-boost-disjoint-state
valid-state-def )

2.8 Execution steps 2—-5 as a function

definition nezt-state :: 'a config = 'a config where
next-state = \(X,Y,A,B).

if many-bluish X

then let (S,T) = choose-blue-book (X,Y ,A,B) in (T, Y, A, BUS)

else let © = choose-central-vz (X,Y,A B) in
if reddish k X Y (red-density X V') z
then (Neighbours Red x N X, Neighbours Red x N Y, insert x A, B)
else (Neighbours Blue z N X, Neighbours Red x N Y, A, insert x B)

lemma next-state-valid:
assumes valid-state (X,Y ,A,B) — termination-condition X Y
shows wvalid-state (nect-state (X,Y,A,B))
proof (cases many-bluish X)
case True
with finX have big-blue (X,Y,A,B) (neat-state (X,Y,A,B))
apply (simp add: next-state-def split: prod.split)
by (metis assms(1) big-blue.intros choose-blue-book-works valid-state-def )
then show ?thesis
using assms big-blue-valid-state by blast
next
case non-bluish: False
define z where = = choose-central-vz (X,Y,A,B)
show ?thesis
proof (cases reddish k X Y (red-density X Y) x)
case True
with non-bluish have red-step (X,Y,A,B) (newt-state (X,Y ,A,B))
by (simp add: next-state-def Let-def x-def red-step.intros split: prod.split)
then show ?thesis
using assms non-bluish red-step-valid-state by blast
next
case Fulse
with non-bluish have density-boost (X,Y A B) (next-state (X,Y ,A,B))
by (simp add: next-state-def Let-def z-def density-boost.intros split: prod.split)
then show ?thesis
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using assms density-boost-valid-state non-bluish by blast
qed
qed

primrec stepper :: nat = ’a config where
stepper 0 = (X0,Y0,{}{})
| stepper (Suc n) =
(let (X,Y ,A,B) = stepper n in
if termination-condition X Y then (X,Y,A,B)
else if even n then degree-reg (X,Y,A,B) else next-state (X,Y,A,B))

lemma degree-reg-subset:
assumes degree-reg (X,Y ,A,B) = (X', Y',A'\B’)
shows X' C X ANY'CY
using assms by (auto simp: degree-reg-def X-degree-reg-def)

lemma nezt-state-subset:

assumes next-state (X,Y ,A,B) = (X', Y',A’,B’) finite X

shows X' C X ANY'CY

using assms choose-blue-book-subset

apply (clarsimp simp: next-state-def valid-state-def Let-def split: if-split-asm
prod.split-asm)

by (smt (verit) choose-blue-book-subset subset-eq)

lemma wvalid-state0: valid-state (X0, Y0, {}, {})
using XY0 by (simp add: valid-state-def V-state-def disjoint-state-def RB-state-def )

lemma valid-state-stepper [simp): valid-state (stepper n)
proof (induction n)
case (
then show ?case
by (simp add: stepper-def valid-state0)
next
case (Suc n)
then show ?case
by (force simp: next-state-valid degree-reg-valid-state split: prod.split)
qged

lemma V-state-stepper: V-state (stepper n)
using valid-state-def valid-state-stepper by force

lemma RB-state-stepper: RB-state (stepper n)
using valid-state-def valid-state-stepper by force

lemma

assumes stepper n = (X,Y,A B)

shows stepper-A: cligue A Red N ACV and stepper-B: clique B Blue N BCV
proof —

have ACV BCV
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using V-state-stepper|of n| assms by (auto simp: V-state-def)
moreover
have all-edges-betw-un A A C Red all-edges-betw-un B B C Blue
using RB-state-stepper|of n] assms by (auto simp: RB-state-def all-edges-betw-un-Un2)
ultimately show cligue A Red N\ ACV clique B Blue N BCV
using all-edges-betw-un-iff-clique by auto
qed

lemma card-B-limit:
assumes stepper n = (X,Y,A,B) shows card B < |
by (metis B-less-l assms valid-state-stepper)

(MX,Y,AB). X) o stepper

(MX,Y,A,B). Y) o stepper
definition Ase (MX,Y,A,B). A) o stepper
definition Bseq = (M(X,Y,A,B). B) o stepper
definition pseq = \i. red-density (Xseq i) (Yseq i)

definition Xseq
definition Yseq
q

lemma Xseq-0 [simp]: Xseq 0 = X0
by (simp add: Xseq-def)

lemma Xseq-Suc-subset: Xseq (Suc i) C Xseq i and  Yseg-Suc-subset: Yseq (Suc
i) C Yseq i

apply (simp-all add: Xseq-def Yseq-def split: if-split-asm prod.split)

by (metis V-state-stepper degree-reg-subset finX next-state-subset)+

lemma Xseq-antimono: j < i = Xseq i C Xseq j
by (simp add: Xseq-Suc-subset lift-Suc-antimono-le)

lemma Xseg-subset-V: Xseqi C V
using XY0 Xseq-0 Xseq-antimono by blast

lemma finite-Xseq: finite (Xseq 1)
by (meson Xseg-subset-V finV finite-subset)

lemma Yseq-0 [simp]: Yseq 0 = Y0
by (simp add: Yseq-def)

lemma Yseg-antimono: j < i = Yseq i C Yseq j
by (simp add: Yseq-Suc-subset lift-Suc-antimono-le)

lemma Yseq-subset-V: Yseqi C V
using XY0 Yseq-0 Yseq-antimono by blast

lemma finite-Yseq: finite (Yseq 1)
by (meson Yseg-subset-V finV finite-subset)

lemma Xseq-Yseq-disjnt: disjnt (Xseq i) (Yseq i)
by (metis XY0(1) Xseq-0 Xseq-antimmono Yseq-0 Yseq-antimono disjnt-subsetl
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disjnt-sym zero-le)

lemma edge-card-eq-pee:
edge-card Red (Xseq i) (Yseq i) = pseq i * card (Xseq i) x card (Yseq i)
by (simp add: pseq-def gen-density-def finite-Xseq finite-Yseq)

lemma valid-state-seq: valid-state(Xseq i, Yseq i, Aseq i, Bseq i)

using valid-state-stepper|of i]

by (force simp: Xseq-def Yseq-def Aseq-def Bseq-def simp del: valid-state-stepper
split: prod.split)

lemma Aseq-less-k: card (Aseq i) < k
by (meson A-less-k valid-state-seq)

lemma Aseq-0 [simp]: Aseq 0 = {}
by (simp add: Aseq-def)

lemma Aseq-Suc-subset: Aseq i C Aseq (Suc i) and Bseg-Suc-subset: Bseq i C
Bseq (Suc 1)
by (auto simp: Aseq-def Bseq-def next-state-def degree-reg-def Let-def split: prod.split)

lemma
assumes j < ¢
shows Aseq-mono: Aseq j C Aseq i and Bseqg-mono: Bseq j C Bseq i
using assms by (auto simp: Aseq-Suc-subset Bseq-Suc-subset lift-Suc-mono-le)

lemma Aseq-subset-V: Aseqi C V
using stepper-Alof i] by (simp add: Aseq-def split: prod.split)

lemma Bseg-subset-V: Bseqi C V
using stepper-Blof i] by (simp add: Bseq-def split: prod.split)

lemma finite-Aseq: finite (Aseq i) and finite-Bseq: finite (Bseq i)
by (meson Aseg-subset-V Bseg-subset-V finV finite-subset)+

lemma Bseg-less-l: card (Bseq i) < 1
by (meson B-less-l valid-state-seq)

lemma Bseg-0 [simp]: Bseq 0 = {}
by (simp add: Bseq-def)

lemma pee-eq-p0: pseq 0 = p0
by (simp add: pseq-def p0-def)

lemma pee-gel: pseq ¢ > 0
by (simp add: gen-density-ge0 pseq-def)

lemma pee-lel: pseqi < 1
using gen-density-lel pseq-def by presburger
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lemma pseq-0: p0 = pseq 0
by (simp add: p0-def pseq-def Xseq-def Yseq-def)
The central vertex at each step (though only defined in some cases), z-i
in the paper

definition cvz = \i. choose-central-vx (stepper 7)

the indexing of beta is as in the paper — and different from that of Xseq

definition
beta = Xi. let (X,Y,A,B) = stepper i in card(Neighbours Blue (cvz i) N X) /
card X

lemma beta-eq: beta i = card(Neighbours Blue (cvz i) N Xseq i) / card (Xseq i)
by (simp add: beta-def cva-def Xseq-def split: prod.split)

lemma beta-gel: beta 1 > 0
by (simp add: beta-eq)

2.9 The classes of execution steps
For R, B, S, D
datatype stepkind = red-step | bblue-step | dboost-step | dreg-step | halted

definition next-state-kind :: 'a config = stepkind where
next-state-kind = A\(X,Y ,A,B).
if many-bluish X then bblue-step
else let © = choose-central-vx (X,Y ,A,B) in
if reddish k X Y (red-density X Y') x then red-step
else dboost-step

definition stepper-kind :: nat = stepkind where
stepper-kind 1 =
(let (X,Y,A,B) = stepper i in
if termination-condition X Y then halted
else if even i then dreg-step else next-state-kind (X,Y ,A,B))

definition Step-class = Mknd. {n. stepper-kind n € knd}

lemma subset-Step-class: [i € Step-class K'; K' C K| = i € Step-class K
by (auto simp: Step-class-def)

lemma Step-class-Un: Step-class (K' U K) = Step-class K’ U Step-class K
by (auto simp: Step-class-def)

lemma Step-class-insert: Step-class (insert knd K') = (Step-class {knd}) U (Step-class

K)
by (auto simp: Step-class-def)
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lemma Step-class-insert-NO-MATCH:

NO-MATCH {} K = Step-class (insert knd K) = (Step-class {knd}) U (Step-class
K)

by (auto simp: Step-class-def)

lemma Step-class-UNIV : Step-class {red-step,bblue-step,dboost-step,dreg-step,halted }
= UNIV
using Step-class-def stepkind.ezhaust by auto

lemma Step-class-cases:
i € Step-class {stepkind.red-step} V i € Step-class {bblue-step} V
i € Step-class {dboost-step} V i € Step-class {dreg-step} V
i € Step-class {halted}
using Step-class-def stepkind.ezhaust by auto

lemmas step-kind-defs = Step-class-def stepper-kind-def next-state-kind-def
Xseq-def Yseq-def Aseq-def Bseq-def cvz-def Let-def

lemma disjnt-Step-class:
disjnt knd knd' = disjnt (Step-class knd) (Step-class knd’)
by (auto simp: Step-class-def disjnt-iff)

lemma halted-imp-next-halted: stepper-kind i = halted = stepper-kind (Suc i) =
halted
by (auto simp: step-kind-defs split: prod.split if-split-asm)

lemma halted-imp-ge-halted: stepper-kind i = halted = stepper-kind (i+n) =
halted
by (induction n) (auto simp: halted-imp-next-halted)

lemma Step-class-halted-forever: [i € Step-class {halted}; i<j] = j € Step-class
{halted }
by (simp add: Step-class-def) (metis halted-imp-ge-halted le-iff-add)

lemma Step-class-not-halted: [i ¢ Step-class {halted}; i>j] = j ¢ Step-class
{halted }
using Step-class-halted-forever by blast

lemma
assumes i ¢ Step-class {halted}
shows not-halted-pee-gt: pseq i > 1/k
and Xseq-gt0: card (Xseq i) > 0
and Xseq-gt-RN: card (Xseq i) > RN k (nat [real | powr (3/4)])
and not-termination-condition: — termination-condition (Xseq i) (Yseq i)
using assms
by (auto simp: step-kind-defs termination-condition-def pseg-def split: if-split-asm
prod.split-asm)

lemma not-halted-pee-gt0:

41



assumes | ¢ Step-class {halted}
shows pseq i > 0
using not-halted-pee-gt [OF assms] linorder-not-le order-less-le-trans by fastforce

lemma Yseq-gt0:
assumes | ¢ Step-class {halted}
shows card (Yseq i) > 0
using not-halted-pee-gt [OF assms]
using card-gt-0-iff finite-Yseq pseq-def by fastforce

lemma step-odd: i € Step-class {red-step,bblue-step,dboost-step} —> odd i
by (auto simp: Step-class-def stepper-kind-def split: if-split-asm prod.split-asm)

lemma step-even: i € Step-class {dreg-step} — even i
by (auto simp: Step-class-def stepper-kind-def next-state-kind-def split: if-split-asm
prod.split-asm)

lemma not-halted-odd-RBS: [i ¢ Step-class {halted}; odd i] = i € Step-class
{red-step,bblue-step,dboost-step }
by (auto simp: Step-class-def stepper-kind-def next-state-kind-def split: prod.split-asm)

lemma not-halted-even-dreg: [i ¢ Step-class {halted}; even i] = i € Step-class

{dreg-step}
by (auto simp: Step-class-def stepper-kind-def nezt-state-kind-def split: prod.split-asm)

lemma step-before-dreg:
assumes Suc i € Step-class {dreg-step}
shows i € Step-class {red-step,bblue-step,dboost-step}
using assms by (auto simp: step-kind-defs split: if-split-asm prod.split-asm)

lemma dreg-before-step:

assumes Suc i € Step-class {red-step,bblue-step,dboost-step }

shows i € Step-class {dreg-step}

using assms by (auto simp: Step-class-def stepper-kind-def split: if-split-asm
prod.split-asm)

lemma
assumes | € Step-class {red-step,bblue-step,dboost-step}
shows dreg-before-step”: i — Suc 0 € Step-class {dreg-step}
and dreg-before-gt0: i>0
proof —
show i>0
using assms gr0l step-odd by force
then show i — Suc 0 € Step-class {dreg-step}
using assms dreg-before-step Suc-pred by force
qed

lemma dreg-before-step1:
assumes | € Step-class {red-step,bblue-step,dboost-step}
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shows i—1 € Step-class {dreg-step}
using dreg-before-step’ [OF assms| by auto

lemma step-odd-minus2:
assumes | € Step-class {red-step,bblue-step,dboost-step} i>1
shows i—2 € Step-class {red-step,bblue-step,dboost-step}
by (metis Suc-1 Suc-diff-Suc assms dreg-before-step1 step-before-dreg)

lemma Step-class-iterates:
assumes finite (Step-class {knd})
obtains n where Step-class {knd} = {m. m<n A stepper-kind m = knd}
proof —
have eq: (Step-class {knd}) = (|Ji. {m. m<i A stepper-kind m = knd})
by (auto simp: Step-class-def)
then obtain n where n: (Step-class {knd}) = (Ji<n. {m. m<i A stepper-kind
m = knd})
using finite-countable-equals|OF assms] by blast
with Step-class-def
have {m. m<n A stepper-kind m = knd} = (Ji<n. {m. m<i A stepper-kind m
= knd})
by auto
then show ?Zthesis
by (metis n that)
qed

lemma step-non-terminating-iff:
i € Step-class {red-step,bblue-step,dboost-step,dreg-step }
+— - termination-condition (Xseq i) (Yseq i)
by (auto simp: step-kind-defs split: if-split-asm prod.split-asm)

lemma step-terminating-iff :
i € Step-class {halted} <— termination-condition (Xseq i) (Yseq i)
by (auto simp: step-kind-defs split: if-split-asm prod.split-asm)

lemma not-many-bluish:
assumes i € Step-class {red-step,dboost-step}
shows — many-bluish (Xseq i)
using assms
by (simp add: step-kind-defs split: if-split-asm prod.split-asm)

lemma stepper-XYseq: stepper i = (X, Y,A,B) = X = Xseqi N'Y = Yseq i
using Xseq-def Yseq-def by fastforce

lemma cvz-works:
assumes | € Step-class {red-step,dboost-step}
shows central-vertex (Xseq i) (cvz i)
A weight (Xseq i) (Yseq i) (cvx i) = maz-central-ve (Xseq i) (Yseq i)
proof —
have — termination-condition (Xseq i) (Yseq 1)
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using Step-class-def assms step-non-terminating-iff by fastforce
then show ?thesis
using assms not-many-bluish|OF assms]
apply (simp add: Step-class-def Xseq-def cvx-def Yseq-def split: prod.split
prod.split-asm)
by (metis V-state-stepper choose-central-ve-works finX)
qged

lemma cvz-in-Xseq:
assumes i € Step-class {red-step,dboost-step}
shows cvz i € Xseq i
using assms cvz-works|OF assms]
by (simp add: Xseq-def central-vertezx-def cvz-def split: prod.split-asm)

lemma card-Xseq-pos:
assumes | € Step-class {red-step,dboost-step}
shows card (Xseq i) > 0
by (metis assms card-0-eq cvz-in-Xseq empty-iff finite-Xseq grol)

lemma beta-le:

assumes | € Step-class {red-step,dboost-step}

shows beta i < p

using assms cvz-works[OF assms| p01

by (simp add: beta-def central-vertex-def Xseq-def divide-simps split: prod.split-asm)

2.10 Termination proof

Each step decreases the size of X

lemma ez-nonempty-blue-book:
assumes mb: many-bluish X
shows Jz€X. good-blue-book X ({z}, Neighbours Blue x N X)
proof —
have RN k (nat [real  powr (2 / 8)]) > 0
by (metis kn0 In0 RN-eq-0-iff gr0I of-nat-ceiling of-nat-eq-0-iff powr-nonneg-iff)
then obtain z where z€ X and z: bluish X z
using mb unfolding many-bluish-def
by (smt (verit) card-eq-0-iff empty-iff equalityl less-le-not-le mem-Collect-eq
subset-iff)
have book {z} (Neighbours Blue z N X) Blue
by (force simp: book-def all-edges-betw-un-def in-Neighbours-iff )
with z show %thesis
by (auto simp: bluish-def good-blue-book-def <x € X»)
qged

lemma choose-blue-book-psubset:
assumes many-bluish X and ST: choose-blue-book (X,Y ,A,B) = (S,T)
and finite X
shows T # X
proof —
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obtain z where z€X and z: good-blue-book X ({z}, Neighbours Blue z N X)
using ez-nonempty-blue-book assms by blast
with <finite X > have best-blue-book-card X # 0
unfolding wvalid-state-def
by (metis best-blue-book-is-best card.empty card-seteq empty-not-insert finite.intros
singleton-insert-inj-eq)
then have S # {}
by (metis <finite X> ST choose-blue-book-works card.empty)
with <finite X> ST show %thesis
by (metis (no-types, opaque-lifting) choose-blue-book-subset disjnt-iff empty-subset]
equalityl subset-eq)
qged

lemma nezt-state-smaller:
assumes next-state (X,Y,A,B) = (XY’ ,A’"B
and finite X and nont: = termination-condition X Y
shows X' C X
proof —
have X' C X
using assms next-state-subset by auto
moreover have X' # X
proof —
have x: = X C Neighbours rb x N X if x € X rb C FE for z rb
using that by (auto simp: Neighbours-def subset-iff)
show %thesis
proof (cases many-bluish X)
case True
with assms show Zthesis
by (auto simp: next-state-def split: if-split-asm prod.split-asm
dest!: choose-blue-book-psubset [OF True))
next
case False
then have choose-central-ve (X,Y,A,B) € X
by (simp add: <finite X» choose-central-vz-X nont)
with assms x[of - Red] x[of - Blue] <X’ C X»> Red-E Blue-E False
choose-central-vz-X [OF False nont]
show ?thesis
by (fastforce simp: next-state-def Let-def split: if-split-asm prod.split-asm)
qed
qed
ultimately show ?thesis
by auto
qged

lemma do-next-state:
assumes odd i — termination-condition (Xseq i) (Yseq i)
obtains A B A’ B’ where next-state (Xseq i, Yseq i, A, B)
= (Xseq (Suc i), Yseq (Suc i), A",B’)

using assms
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by (force simp: Xseq-def Yseq-def split: if-split-asm prod.split-asm prod.split)

lemma step-bound:
assumes i: Suc (2xi) € Step-class {red-step,bblue-step,dboost-step}
shows card (Xseq (Suc (2xi))) + i < card X0
using ¢
proof (induction 1)
case (
then show ?case
by (metis Xseq-0 Xseq-Suc-subset add-0-right mult-0-right card-mono finite-X0)
next
case (Suc 1)
then have nt: — termination-condition (Xseq (Suc (2xi))) (Yseq (Suc (2xi)))
unfolding step-non-terminating-iff [symmetric)
by (metis Step-class-insert Suc-1 Un-iff dreg-before-step mult-Suc-right plus-1-eq-Suc
plus-nat.simps(2) step-before-dreg)
obtain A B A’ B’ where 2:
next-state (Xseq (Suc (2xi)), Yseq (Suc (2xi)), A, B) = (Xseq (Suc (Suc
(2%1))), Yseq (Suc (Suc (2%i))), A",B)
by (meson nt Suc-double-not-eq-double do-next-state evenFE)
have Xseq (Suc (Suc (2xi))) C Xseq (Suc (2x1))
by (meson 2 finite-Xseq assms next-state-smaller nt)
then have card (Xseq (Suc (Suc (Suc (2x1))))) < card (Xseq (Suc (2xi)))
by (smt (verit, best) Xseq-Suc-subset card-seteq order.trans finite-Xseq leD
not-le)
moreover have card (Xseq (Suc (2x1))) + i < card X0
using Suc dreg-before-step step-before-dreg by force
ultimately show ?case by auto

qed
lemma Step-class-halted-nonempty: Step-class {halted} # {}
proof —

define i where i = Suc (2 * Suc (card X0))

have odd ¢

by (auto simp: i-def)
then have i ¢ Step-class {dreg-step}
using step-even by blast
moreover have i ¢ Step-class {red-step,bblue-step,dboost-step}
unfolding i-def using step-bound le-add2 not-less-eq-eq by blast
ultimately show ?thesis
using <odd i> not-halted-odd-RBS by blast
qged

definition halted-point = Inf (Step-class {halted})
lemma halted-point-halted: halted-point € Step-class {halted}

using Step-class-halted-nonempty Inf-nat-def1
by (auto simp: halted-point-def)
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lemma halted-point-minimal.:

shows i ¢ Step-class {halted} <— i < halted-point

using Step-class-halted-nonempty

by (metis wellorder-Inf-le1 Inf-nat-def1 Step-class-not-halted halted-point-def less-le-not-le
nle-le)

lemma halted-point-minimal’: stepper-kind i # halted <— i < halted-point
by (simp add: Step-class-def flip: halted-point-minimal)

lemma halted-eq-Compl:
Step-class {dreg-step,red-step,bblue-step,dboost-step} = — Step-class {halted}
using Step-class-UNIV [of] by (auto simp: Step-class-def)

lemma before-halted-eq:
shows {..<halted-point} = Step-class {dreg-step,red-step,bblue-step,dboost-step}
using halted-point-minimal by (force simp: halted-eq-Compl)

lemma finite-components:
shows finite (Step-class {dreg-step,red-step,bblue-step,dboost-step})
by (metis before-halted-eq finite-lessThan)

lemma
shows dreg-step-finite [simp]: finite (Step-class {dreg-step})
and red-step-finite [simp]: finite (Step-class {red-step})
and bblue-step-finite [simp): finite (Step-class {bblue-step})
and dboost-step-finite[simp): finite (Step-class {dboost-step})
using finite-components by (auto simp: Step-class-insert-NO-MATCH )

lemma halted-stepper-add-eq: stepper (halted-point + i) = stepper (halted-point)
proof (induction 1)
case ()
then show ?case
by auto
next
case (Suc 1)
have hit: stepper-kind (halted-point) = halted
using Step-class-def halted-point-halted by force
obtain X Y A B where *: stepper (halted-point) = (X, Y, A, B)
by (metis surj-pair)
with hit have termination-condition X Y
by (simp add: stepper-kind-def next-state-kind-def split: if-split-asm)
with x show ?case
by (simp add: Suc)
qed

lemma halted-stepper-eq:
assumes i: i > halted-point
shows stepper i = stepper (halted-point)
using p01 by (metis assms halted-stepper-add-eq le-iff-add)
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lemma below-halted-point-cardX :
assumes i < halted-point
shows card (Xseq i) > 0
using Xseq-gt0 assms halted-point-minimal halted-stepper-eq p01
by blast

end

sublocale Book’ C Book where u=-~
proof
show 0 < v~y <1
using In0 kn0 by (auto simp: ~y-def)
qed (use XY0 density-ge-p0-min in auto)

lemma (in Book) Book":

assumes v = real | / (real k + real I)

shows Book’ V E p0-min Red Blue l k ~v X0 Y0
proof qed (use assms XY0 density-ge-p0-min in auto)

end

3 Big Blue Steps: theorems

theory Big-Blue-Steps imports Book

begin

lemma gbinomial-is-prod: (a gchoose k) = ([[i<k. (a — of-nat i) / (1 + of-nat
i)

unfolding gbinomial-prod-rev

by (induction k; simp add: divide-simps)

3.1 Preliminaries

A bounded increasing sequence of finite sets eventually terminates

lemma Union-incseq-finite:
assumes fin: An. finite (A n) and N: An. card (A n) < N and incseq A
shows V p k in sequentially. |J (range A) = A k
proof (rule ccontr)
assume — ?thesis
then have Vk. 31>k. |J (range A) # Al
using eventually-sequentially by force
then have Vk. 3I>k. Am>l. Am # Al
by (smt (verit, ccfv-threshold) <incseq Ay cSup-eg-mazimum image-iff mono-
toneD nle-le rangel)
then have Vk. 3I>k. Al — Ak # {}
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by (metis <incseq A> diff-shunt-var monotoneD nat-le-linear subset-antisym)
then obtain f where f: Ak. fk >k NA (fk) — Ak #{}
by metis
have card (A ((f~"i)0)) > i for i
proof (induction i)
case (
then show ?case
by auto
next
case (Suc 1)
have card (A ((f ~~ ) 0)) < card (A (f (f ~~10) 0)))
by (metis Diff-cancel <incseq A> card-seteq f fin lel monotoneD)
then show ?case
using Suc by simp
qed
with N show Fulse
using linorder-not-less by auto
qed

Two lemmas for proving "bigness lemmas" over a closed interval

lemma eventually-all-gel0:
assumes YV g [ in sequentially. P a |
Nz [Pal;a<z; z<b; 1 > L] = Pzl
shows V i [ in sequentially. V. a <z ANz < b — Pzl
by (smt (verit, del-insts) assms eventually-sequentially eventually-elim?2)

lemma eventually-all-gell:
assumes VY g [ in sequentially. P b |
Nz [Pbl; a<z; 2<b; | > L] = Pzl
shows V i [ in sequentially. V. a <z ANz < b — Pzl
by (smt (verit, del-insts) assms eventually-sequentially eventually-elim?2)

Mehta’s binomial function: convex on the entire real line and coinciding
with gchoose under weak conditions

definition mfact = \a k. if a < real k — 1 then 0 else prod (Ai. a — of-nat 1)
{0..<k}

Mehta’s special rule for convexity, my proof

lemma convez-on-extend:
fixes f :: real = real
assumes cf: convez-on {k..} f and mon: mono-on {k..} f

and fk: \z. z<k = fz = fk

shows convez-on UNIV f

proof (intro convez-on-linorderl)
fix tzy :: real
assume t: 0 < tt < 1 and z <y
let u = ((1 —t)*pz + t*ry)
show f%u < (I —t)xfz +t*xfy
proof (cases k < z)
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case True
with <z < y> t show %thesis
by (intro convez-onD [OF cf]) auto
next
case Fulse
then have z < k and fuk: f« = f k by (auto simp: fk)
show ?thesis
proof (cases k < y)
case True
then have fy > fk
using mon mono-onD by auto
have kle: k < (1 — )« k+txy
using True segment-bound-lemma t by auto
have fle: f (1 —t)*grk+t*xpy) < (I —t)xfk+txfy
using t True by (intro convez-onD [OF cf]) auto
with Fulse
show ?thesis
proof (cases %u < k)
case True
then show ?thesis
using <f k < fy> frk fk segment-bound-lemma t by auto
next
case False
have f%u < f ((I —t)*p k + t *xp y)
using kle <x < k> False t by (intro mono-onD [OF mon)]) auto
then show ?thesis
using fle fek by auto
qed
next
case False
with <z < k> show %thesis
by (simp add: fk conver-bound-lt order-less-imp-le segment-bound-lemma t)
qed
qed
qed auto

lemma convezr-mfact:
assumes k>0
shows convez-on UNIV (Aa. mfact a k)
unfolding mfact-def
proof (rule convex-on-extend)
show convez-on {real (k — 1)..} (Aa. if a < real k — 1 then 0 else []i = 0..<k.
a — real 1)
using convez-gchoose-auzx [of k] assms
apply (simp add: convez-on-def Ball-def)
by (smt (verit, del-insts) distrib-right mult-cancel-right2 mult-left-mono)
show mono-on {real (k — 1)..} (Aa. if a < real k — 1 then 0 else [[i = 0..<k.
a — real 1)
using <k > 0> by (auto simp: mono-on-def intro!: prod-mono)
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qed (use assms gr0-conv-Suc in force)

definition mbinomial :: real = nat = real
where mbinomial = \a k. mfact a k / fact k

lemma convez-mbinomial: k>0 = convez-on UNIV (Az. mbinomial x k)
by (simp add: mbinomial-def convez-mfact convez-on-cdiv)

lemma mbinomial-eg-choose [simp]: mbinomial (real n) k = n choose k
by (simp add: binomial-gbinomial gbinomial-prod-rev mbinomial-def mfact-def)

lemma mbinomial-eq-gchoose [simp): k < a = mbinomial a k = a gchoose k
by (simp add: gbinomial-prod-rev mbinomial-def mfact-def)

3.2 Preliminaries: Fact D1

from appendix D, page 55

lemma Fact-D1-73-aux:
fixes o::real and m b::nat
assumes o: (<o and bm: real b < real m
shows ((oxm) gchoose b) x inverse (m gchoose b) = o7b * ([[i<b. I —
((1—0)*i) / (o * (real m — real 7)))
proof —
have ((oxm) gchoose b) x inverse (m gchoose b) = ([[i<b. (cxm — i) / (real
m — real i))
using bm by (simp add: gbinomial-prod-rev prod-dividef atLeastOLessThan)
also have ... = 07b x ([[i<b. 1 — ((1—0)xi) / (0 * (real m — real i)))
using bm o by (induction b) (auto simp: field-simps)
finally show ?thesis .
qed

This is fact 4.2 (page 11) as well as equation (73), page 55.

lemma Fact-D1-73:
fixes o::real and m b::nat
assumes 0: 0<o 0<1 and b: real b < ocxm / 2
shows (oxm) gchoose b € {o b * (real m gchoose b) x exp (— (real b ~ 2) /
(oxm)) .. 07b x (m gchoose b)}
proof (cases m=0 V b=0)
case True
then show ?%thesis
using True assms by auto
next
case False
then have o x m / 2 < real m
using o by auto
with b o False have bm: real b < real m
by linarith
then have nonz: m gchoose b # 0
by (simp add: flip: binomial-gbinomial)
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have FEQ: ((oxm) gchoose b) x inverse (m gchoose b) = o~b * ([[i<b. 1 —
((1—0)xi) / (o * (real m — real 7)))
using Fact-D1-73-auz <0<o> bm by blast
also have ... <o ~ b * 1
proof (intro mult-left-mono prod-le-1 congl )
fix i assume i € {..<b}
with b 0 bm show 0 < 1 — (1 — o) i / (0 % (real m — 7))
by (simp add: field-split-simps)
ged (use o bm in auto)
finally have upper: (oxm) gchoose b < o b * (m gchoose b)
using nonz by (simp add: divide-simps flip: binomial-gbinomial)
have *: exp (=2 * real i / (oxm)) < 1 — ((1—0)%i) / (o * (real m — real ©)) if
1<b for 1
proof —
have i1 < m
using bm that by linarith
have ezp-le: 1—x > exp (—2 x z) if 0 <z z < 1/2 for x::real
proof —
have exp (—2 * z) < inverse (1 + 2xz)
using exp-ge-add-one-self that by (simp add: exp-minus)
also have ... < 11—z
using that by (simp add: mult-left-le field-simps)
finally show ?thesis .

qed

have exp (=2 * real i / (oxm)) = exp (=2 * (i / (oxm)))
by simp

also have ... <1 — i/(c * m)

using b that by (intro exp-le) auto
also have ... <1 — ((1—0)*i) / (o % (real m — real 1))
using o b that <i < m> by (simp add: field-split-simps)
finally show ?thesis .
qed
have sum real {.<b} < real b ~ 2 / 2
by (induction b) (auto simp: power2-eq-square algebra-simps)
with o have exp (— (real b ~ 2) / (oxm)) < exp (— (2 * (3 i<b. i) / (o0xm)))
by (simp add: mult-less-0-iff divide-simps)

also have ... = exp (> i<b. —2 * real i / (oxm))
by (simp add: sum-negf sum-distrib-left sum-divide-distrib)
also have ... = ([[i<b. exp (=2 * real i / (oxm)))

using ezp-sum by blast
also have ... < ([]i<b. I — ((I—0)*i) / (o * (real m — real 7)))
using * by (force intro: prod-mono)
finally have exp (— (real b)? / (0 * m)) < ([[i<b. 1 — (1 — o) xi / (o * (real
m — real i))) .
with EQ have c°b x exp (— (real b ~ 2) / (o0xm)) < ((oxm) gchoose b)
inverse (real m gchoose b)
by (simp add: o)
with o bm have lower: o ~b x (real m gchoose b) * exp (— (real b ~ 2) / (o*xm))
< (o*m) gchoose b
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by (simp add: field-split-simps flip: binomial-gbinomial)
with upper show ?thesis
by simp
qged

Exact at zero, so cannot be done using the approximation method

lemma exp-inequality-17:
fixes z::real
assumes ( < zx < 1/7
shows 1 — /xz/3 > exp (—3xx/2)
proof (cases z < 1/12)
case True
have exp (—8xx/2) < 1/(1 + (3*x)/2)
using exp-ge-add-one-self [of 3xx/2] assms
by (simp add: exp-minus divide-simps)
also have ... <1 — /xz/8
using assms True mult-left-le [of zx12] by (simp add: field-simps)
finally show %thesis .
next
case Fulse
with assms have z € {1/12..1/7}
by auto
then show ?thesis
by (approzimation 12 splitting: x=5)
qged

additional part

lemma Fact-D1-75:
fixes o::real and m b::nat
assumes o0: <o o<l and b: real b < o+« m / 2 and b b < m/7 and 0" o

> 7/15

shows (oxm) gchoose b > exp (— (3 * real b ~ 2) / (4xm)) * 0 b * (m gchoose
b)
proof (cases m=0 V b=0)

case True

then show ?thesis
using True assms by auto
next
case Fulse
with b b’ o have bm: real b < real m
by linarith
have : exp (— 8 * real i / (2xm)) < 1 — ((1—0)*i) / (0 * (real m — real i))
if i<b for i
proof —
have im: 0 < i/mi/m < 1/7
using b’ that by auto
have ezp (— 3% real i / (2xm)) < 1 — 4xi / (3+m)
using exp-inequality-17 [OF im] by (simp add: mult.commute)
also have ... < 1 — 8xi / (7 % (real m — real b))
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proof —
have real i x (real b x 7) < real i * real m
using b’ by (simp add: mult-left-mono)
then show ?thesis
using b’ by (simp add: field-split-simps)
qed
also have ... < 1 — ((1—0)*i) / (o * (real m — real 1))
proof —
have 1: (1 — o) /0 < 8/7
using o ¢’ that
by (simp add: field-split-simps)
have 2: 1 / (real m — real i) < 1 / (real m — real b)
using o o’ b’ that by (simp add: field-split-simps)
have §: (1 — o) / (0 * (real m — real i)) < 8 / (7 * (real m — real b))
using mult-mono [OF 1 2] b’ that by auto
show ?thesis
using mult-left-mono [OF §, of i]
by (simp add: mult-of-nat-commute)
qed
finally show ?thesis .
qed
have EQ: ((oxm) gchoose b) x inverse (m gchoose b) = o~b * ([[i<b. 1 —
((1—0)xi) / (o * (real m — real 7)))
using Fact-D1-73-auz <0<o> bm by blast
have sum real {.<b} < realb ~ 2 / 2
by (induction b) (auto simp: power2-eq-square algebra-simps)
with ¢ have exp (— (3 * real b ~ 2) / (4xm)) < exp (— (3 = O i<b. i) /
(24m)))

by (simp add: mult-less-0-iff divide-simps)

also have ... = exp (3 i<b. —3 x real i / (2xm))
by (simp add: sum-negf sum-distrib-left sum-divide-distrib)
also have ... = ([Ji<b. exp (=3 * real i / (2+m)))

using ezp-sum by blast
also have ... < ([[i<b. I — (({—0o)*i) / (o * (real m — real 7)))
using * by (force intro: prod-mono)
finally have exp (— (3 *x real b ~ 2) / (4xm)) < ([]i<b. 1 — (1—0) xi / (o
* (real m — real 7))) .
with FQ have 0 b x exp (— (3 x real b ~ 2) / (4xm)) < ((oxm) gchoose b) /
(m gchoose b)
by (simp add: assms field-simps)
with ¢ bm show ?thesis
by (simp add: field-split-simps flip: binomial-gbinomial)
qged

lemma power2-12: m > 12 = 25 * m? < 2°m
proof (induction m)

case ()

then show ?case by auto
next
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case (Suc m)
then consider m=11 | m>12
by linarith
then show ?case
proof cases
case 1
then show ?thesis
by auto
next
case 2
then have Suc(m+m) < m+x8 m>3
using Suc by auto
then have 25 * Suc (m+m) < 25 x (m*m)
by (metis le-trans mult-le-mono?2)
with Suc show ?thesis
by (auto simp: power2-eq-square algebra-simps 2)
qed
qged

How b and m are obtained from |

definition b-of where b-of = Al::nat. nat[l powr (1/4)]
definition m-of where m-of = Al::nat. nat[l powr (2/8)]

definition Big-Blue-4-1 =
Al m-of 1 > 12 AN 1> (6/p) powr (12/5) N 1> 15
N1 <5/4 % exp (— real((b-of 1)?) / ((n — 2/1) * m-of 1)) N u> 2/l
N BJLS (- 2/1) 5 ((5/4) powr (1/b-of 1) = 1)

Establishing the size requirements for 4.1. NOTE: it doesn’t become
clear until SECTION 9 that all bounds involving the parameter p must hold
for a RANGE of values

lemma Big-Blue-4-1:
assumes 0 <u0
shows V>°I. V. u € {u0..u1} — Big-Blue-4-1 u 1
proof —
have 3: 8 / p0 > 0
using assms by force
have 2: 0 x nat [3 / p0] > 2
by (smt (verit, best) mult.commute assms of-nat-ceiling pos-less-divide-eq)
have V*°[. 12 < m-of |
unfolding m-of-def by real-asymp
moreover have VL. Vu. pu0 < pu Ap < pul — (6 / p) powr (12 / 5) <1
using assms
apply (intro eventually-all-gel0, real-asymp)
by (smt (verit, ccfo-SIG) divide-pos-pos frac-le powr-mono2)
moreover have VL. V. pu0 < p Ap < pul — 4 <5 x exp (— ((real (b-of
)2/ (1 — 2/1)  meof 1)))
proof (intro eventually-all-gel0 [where L = nat [3/u0]])
show V>®°I. / < 5 x exp (— ((real (b-of 1))* / ((n0 — 2/1) * m-of 1)))
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unfolding b-of-def m-of-def using assms by real-asymp
next
fixlp
assume §: 4/ < 5 * exp (— ((real (b-of 1)) / ((n0 — 2/1) * m-of 1)))
and p0 < pp < pl and lel: nat [8 ) p0] <1
then have 0: m-of | > 0
using 3 of-nat-0-eq-iff by (fastforce simp: m-of-def)
have pu0 > 2/1
using lel assms by (auto simp: divide-simps mult.commaute)
then show 4 < 5 * exp (— ((real (b-of 1)) / ((n — 2/1) * m-of 1)))
using order-trans [OF §] by (simp add: 0 <u0 < p> frac-le)
qed
moreover have VL. Vu. p0 < puAp<upl — 2/l <p
using assms by (intro eventually-all-gel0, real-asymp, linarith)
moreover have VL V. p0 < pAp < pul — 2/1 < (u—2/1)*((5/ 4)
powr (1 / real (b-of 1)) — 1)
proof —
have Al p. p0 < p = p0 — 2/1 < p— 2/1
by (auto simp: divide-simps ge-one-powr-ge-zero mult.commute)
show ?thesis
using assms
unfolding b-of-def
apply (intro eventually-all-gel0, real-asymp)
by (smt (verit, best) divide-le-eq-1 ge-one-powr-ge-zero mult-right-mono
of-nat-0-le-iff zero-le-divide-1-iff )
qed
ultimately show ?thesis
by (auto simp: Big-Blue-4-1-def eventually-cong-iff all-imp-congj-distrib)
qed

context Book
begin

lemma Blue-4-1:
assumes X CV and manyb: many-bluish X and big: Big-Blue-4-1 11
shows 35 T. good-blue-book X (S,T) A card S > |l powr (1/4)
proof —
have Ilpowr0[simp]: 0 < [l powr r] for r
by (metis ceiling-mono ceiling-zero powr-ge-zero)
define b where b = b-of |
define W where W = {z€X. bluish X z}
define m where m = m-of |
have m>0m > 6 m > 12 b>0
using big by (auto simp: Big-Blue-4-1-def m-def b-def b-of-def)
have Whig: card W > RNk m
using manyb by (simp add: W-def m-def m-of-def many-bluish-def)
with Red-Blue-RN obtain U where U C W and U-m-Blue: size-clique m U
Blue
by (metis W-def <X C V> mem-Collect-eq no-Red-clique subset-eq)
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then obtain card U = m and clique U Blue and U C V finite U
by (simp add: finV finite-subset size-clique-def)
have finite X
using <X CV>» finV finite-subset by auto
have k < RNk m
using <m>12> by (simp add: RN-8plus’)
moreover have card W < card X
by (simp add: W-def <finite X> card-mono)
ultimately have card X > [
using Whbig l-le-k by linarith
then have U # X
by (metis U-m-Blue <card U = m> le-eq-less-or-eq no-Blue-clique size-clique-smaller)
then have U C X
using W-def <U C W> by blast
then have cardU-less-X: card U < card X
by (meson <XCV> finV finite-subset psubset-card-mono)
with <XCV» have cardXU: card (X—U) = card X — card U
by (meson <U C X» card-Diff-subset finV finite-subset psubset-imp-subset)
then have real-cardXU: real (card (X—U)) = real (card X) — m
using <card U = m> cardU-less-X by linarith
have [simp]: m < card X
using <card U = m> cardU-less-X nless-le by blast
have Ilpowr23: real | powr (2/3) < real I powr 1
using In0 by (intro powr-mono) auto
then have m < | m<k
using [-le-k by (auto simp: m-def m-of-def)
then have m < RN km
using <12 < m»> RN-gt2 by auto
also have ¢cX: RN km < card X
using Wbig <card W < card X»> by linarith
finally have card U < card X
using <card U = m> by blast

First part of (10)

have card U * (u * card X — card U) = m  (u * (card X — card U)) — (1—p)
* m?
using cardU-less-X by (simp add: <card U = m> algebra-simps numeral-2-eq-2)
also have ... < real (card (Blue N all-edges-betw-un U (X—U)))
proof —
have dfam: disjoint-family-on (Au. Blue N all-edges-betw-un {u} (X—-U)) U
by (auto simp: disjoint-family-on-def all-edges-betw-un-def)
have u * (card X — card U) < card (Blue N all-edges-betw-un {u} (X—-U)) +
(I—p) * m
ifu e U for u
proof —
have NBU: Neighbours Blue wu N U = U — {u}
using <clique U Blue> Red-Blue-all singleton-not-edge that
by (force simp: Neighbours-def clique-def)
then have NBX-split: (Neighbours Blue w N X) = (Neighbours Blue u N
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(X=U)) U (U = {u})
using <U C X» by blast
moreover have Neighbours Blue u N (X—U) N (U — {u}) = {}
by blast
ultimately have card(Neighbours Blue u N X) = card(Neighbours Blue u N
(X-=0U)) + (m — Suc 0)
by (simp add: card-Un-disjoint finite-Neighbours <finite U> <card U = m>
that)
then have u * (card X) < real (card (Neighbours Blue w N (X—U))) + real
(m — Suc 0)
using W-def <U C W) bluish-def that by force
then have p x (card X — card U)
< card (Neighbours Blue v N (X—U)) + real (m — Suc 0) — p xcard

by (smt (verit) cardU-less-X nless-le of-nat-diff right-diff-distrib’)
then have x: u * (card X — card U) < real (card (Neighbours Blue u N
(X=0))) + (1—p)em
using assms by (simp add: <card U = m> left-diff-distrib)
have inj-on (Az. {u,x}) (Neighbours Blue u N X)
by (simp add: doubleton-eq-iff inj-on-def)
moreover have (\z. {u,x}) ¢ (Neighbours Blue v N (X—U)) C Blue N
all-edges-betw-un {u} (X—U)
using Blue-E by (auto simp: Neighbours-def all-edges-betw-un-def )
ultimately have card (Neighbours Blue v N (X—U)) < card (Blue N
all-edges-betw-un {u} (X—U))
by (metis NBX-split card-inj-on-le finite-Blue finite-Int inj-on-Un)
with * show ?%thesis
by auto
qed
then have (card U) % (u * real (card X — card U))
< (>-zeU. card (Blue N all-edges-betw-un {z} (X—U)) + (I —p) * m)
by (meson sum-bounded-below)
then have m * (u * (card X — card U))
< (O zeU. card (Blue N all-edges-betw-un {z} (X—-U))) + (1—p) =
m2
by (simp add: sum.distrib power2-eq-square <card U = m> mult-ac)
also have ... < card (|Ju€U. Blue N all-edges-betw-un {u} (X—=0U)) + (1 —p)
* m>
by (simp add: dfam card-UN-disjoint’ <finite U> flip: UN-simps)
finally have m * (u * (card X — card U))
< card (JueU. Blue N all-edges-betw-un {u} (X=U)) + (I —p) *

m2

moreover have ((Ju€U. Blue N all-edges-betw-un {u} (X—U)) = (Blue N
all-edges-betw-un U (X —U))
by (auto simp: all-edges-betw-un-def )
ultimately show “thesis
by simp
qed
also have ... < edge-card Blue U (X—-U)
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by (simp add: edge-card-def)
finally have edge-card-XU: edge-card Blue U (X—U) > card U * (% card X
—card U) .
define o where o = blue-density U (X—U)
then have o > 0 by (simp add: gen-density-ge0)
have o < I
by (simp add: o-def gen-density-lel)
have 6: real (6xk) < real (2 + kxm)
by (metis mult.commute <6<m> mult-le-mono2 of-nat-mono trans-le-add2)
then have km: k + m < Suc (k * m)
using big l-le-k <m < I> by linarith
have m/2 % (2 + real k * (1—p)) < m/2 x (2 + real k)
using assms p01 by (simp add: algebra-simps)
also have ... < (k —1)*(m — 1)
using big l-le-k 6 <m<k> by (simp add: Big-Blue-4-1-def algebra-simps add-divide-distrib
km)
finally have (m/2) % (2 + k = (I1—p)) < RNk m
using RN-times-lower’ [of k m] by linarith
then have u — 2/k < (u * card X — card U) / (card X — card U)
using kn0 assms cardU-less-X <card U = m> ¢X by (simp add: field-simps)
also have ... < ¢
using <m>0> <card U = m> cardU-less-X cardXU edge-card-XU
by (simp add: o-def gen-density-def divide-simps mult-ac)
finally have eq10: p — 2/k < o .
have 2 «b / m < pu — 2/k
proof —
have 512: 5/12 < (1::real)
by simp
with big have [ powr (5/12) > ((6 /1) powr (12/5)) powr (5/12)
by (simp add: Big-Blue-4-1-def powr-mono2)
then have lge: [ powr (5/12) > 6/u
using assms u01 powr-powr by force
have 2 « b < 2 « (I powr (1/4) + 1)
by (simp add: b-def b-of-def del: zero-le-ceiling distrib-left-numeral)
then have 2«b / m + 2/1 < 2 x (Ipowr (1/4) + 1) / lpowr (2/8) + 2/
by (simp add: m-def m-of-def frac-le In0 del: zero-le-ceiling distrib-left-numeral)
also have ... < (2 x I powr (1/4) + 4) / l powr (2/3)
using In0 lpowr23 by (simp add: pos-le-divide-eq pos-divide-le-eq add-divide-distrib
algebra-simps)
also have ... < (2 % Ipowr (1/4) + 4 = lpowr (1/4)) / I powr (2/3)
using big by (simp add: Big-Blue-4-1-def divide-right-mono ge-one-powr-ge-zero)

also have ... =6 / l powr (5/12)
by (simp add: divide-simps flip: powr-add)
also have ... < p

using lge assms 101 by (simp add: divide-le-eq mult.commute)
finally have 2«b / m + 2/1 < pu .
then show %thesis

using l-le-k <m>0> In0

by (smt (verit, best) frac-le of-nat-0-less-iff of-nat-mono)
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qed
with eq10 have 2 / (m/b) <o
by simp
moreover have [ powr (2/3) < nat [real | powr (2/8)]
using of-nat-ceiling by blast
ultimately have ble: b <o *m / 2
using mult-left-mono <o > 0> big kn0 l-le-k
by (simp add: Big-Blue-4-1-def powr-diff b-def m-def divide-simps)
then have o > 0
using <0 < by <0 < o> less-eq-real-def by force

define ® where ® = Y v € X—U. card (Neighbours Blue v N U) choose b

now for the material between (10) and (11)

have o x real m / 2 < m
using <o < 1> <m>0> by auto
with ble have b < m
by linarith
have b * 1 * card X < (5/4 » o7b) * (5/4 * exp(— real(b?) / (oxm))) *
(5/4 * (card X — m))
proof (intro mult-mono)
have 2: 2/k < 2/1
by (simp add: I-le-k frac-le In0)
also have ... < (u — 2/1) % ((56/4) powr (1/b) — 1)
using big by (simp add: Big-Blue-4-1-def b-def)
also have ... <o * ((5/4) powr (1/b) — 1)
using 2 <0 < b> eql0 by auto
finally have 2 / real k < o % ((5/4) powr (1/b) — 1) .
then have 1: y < (5/4)powr(1/b) x o
using eql0 <b>0s by (simp add: algebra-simps)
show p ~b<5/4x0 " b
using power-mono[OF 1, of b] assms <o>0> <b>0> p01
by (simp add: powr-mult powr-powr flip: powr-realpow)
have uy — 2/l < o
using 2 eq10 by linarith
moreover have 2/] < u
using big by (auto simp: Big-Blue-4-1-def)
ultimately have exp (— real(b?) / ((n — 2/1) * m)) < exp (— real (b?) / (o
*m))
using <o>0> <m>0> by (simp add: frac-le)
then show 1 < 5/4 * exp (— real(b?) / (o * real m))
using big unfolding Big-Blue-4-1-def b-def m-def
by (smt (verit, best) divide-minus-left frac-le mult-left-mono)
have 25 x (real m x real m) < 2 powr m
using of-nat-mono [OF power2-12 [OF <12 < m>]] by (simp add: power2-eq-square
powr-realpow)
then have real (5 * m) < 2 powr (real m / 2)
by (simp add: powr-half-sqri-powr power2-eq-square real-le-rsqrt)
moreover
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have card X > 2 powr (m/2)
by (metis RN-commute RN-lower-nodiag <6 < m> <m<k> add-leE less-le-trans
¢X numeral-Bit0 of-nat-mono)
ultimately have 5 * m < real (card X)
by linarith
then show card X < 5/4 % (card X — m)
using <card U = m> cardU-less-X by simp
qed (use <0 < o> in auto)
also have ... = (125/64) * (0 °b) * exp(— (real b)? / (oxm)) * (card X — m)
by simp
also have ... < 2 % (0 °b) * exp(— (real b)? / (oxm)) * (card X — m)
by (intro mult-right-mono) (auto simp: <0 < o)
finally have 11 °b/2 * card X < 0 "b * exp(— of-nat (b%) / (oxm)) * card (X —U)
by (simp add: <card U = m> cardXU real-cardXU)
also have ... < 1/(m choose b) * ((oxm) gchoose b) * card (X—1U)
proof (intro mult-right-mono)
have 0 < real m gchoose b
by (metis <b < m> binomial-gbinomial of-nat-0-less-iff zero-less-binomial-iff )
then have o " b * ((real m gchoose b) x exp (— ((real b)? / (o * real m)))) <
o *x real m gchoose b
using Fact-D1-78 [OF <o>0> <0<15 ble] <b<m> cardU-less-X <0 < o>
by (simp add: field-split-simps binomial-gbinomial)
then show o b * exp (— real (b%) / (o0 * m)) < 1/(m choose b) * (o0 * m
gchoose b)
using <b<m> cardU-less-X <0 < o> <0 < m gchoose b>
by (simp add: field-split-simps binomial-gbinomial)
qed auto
also have ... < 1/(m choose b) * ®
unfolding mult.assoc
proof (intro mult-left-mono)
have eeq: edge-card Blue U (X—U) = (>_i€X—"U. card (Neighbours Blue i N
U))
proof (intro edge-card-eq-sum-Neighbours)
show finite (X—U)
by (meson <XCV> finV finite-Diff finite-subset)
qed (use disjnt-def Blue-E in auto)
have (> i€X — U. card (Neighbours Blue i N U)) / (real (card X) — m) =
blue-density U (X—U) x m
using <m>0> by (simp add: gen-density-def real-cardXU <card U = m> eeq
divide-simps)
then have : (3 i€X — U. real (card (Neighbours Blue i N U)) /g real (card
(X-U))=0xm
by (simp add: o-def divide-inverse-commute real-cardX U flip: sum-distrib-left)
have mbinomial (> i€X — U. real (card (Neighbours Blue i N U)) /r (card
(X=U))) b
< (>JieX — U. inverse (real (card (X—"U))) * mbinomial (card (Neighbours
Blue i N U)) b)
proof (rule convezr-on-sum)
show finite (X—U)
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using cardU-less-X zero-less-diff by fastforce
show convez-on UNIV (Aa. mbinomial a b)
by (simp add: <0 < b> convex-mbinomial)
show (> ieX — U. inverse (card (X-U))) =1
using cardU-less-X cardXU by force
ged (use <U C X» in auto)
with ble
show (oxm gchoose b) x card (X—-U) < ®
unfolding * ®-def
by (simp add: cardU-less-X cardXU binomial-gbinomial divide-simps flip:
sum-distrib-left sum-divide-distrib)

qed auto
finally have 11: b / 2 x card X < ® / (m choose b)
by simp
define 2 where 2 = nsets U b — Choose a random subset of size b

have card(): card Q@ = m choose b
by (simp add: Q-def <card U = m>)
then have finQ: finite Q and Q # {} and card Q > 0
using <b < m> not-less by fastforce+
define M where M = uniform-count-measure )
interpret P: prob-space M
using M-def <b < m> card$Q) finQ) prob-space-uniform-count-measure by force
have measure-eq: measure M C = (if C C Q then card C / card ) else 0) for C
by (simp add: M-def finQ measure-uniform-count-measure-if )

define Int-NB where Int-NB = \S. [ v€ES. Neighbours Blue v N (X—U)
have sum-card-NB: (3" A€). card ([ (Neighbours Blue  A) N Y))
= (> veY. card (Neighbours Blue v N U) choose b)
if finite Y Y C X—U for Y
using that
proof (induction V)
case (inserty Y)
have x: Q N {A. Vz€A. y € Neighbours Blue z} = nsets (Neighbours Blue y
NU)b
QN —{A.VzeA. y € Neighbours Blue x} = Q — nsets (Neighbours Blue y
NU)b
[Neighbours Blue y N U]? C Q
using insert.prems by (auto simp: Q-def nsets-def in- Neighbours-iff insert-commute)
then show ?case
using insert finf)
by (simp add: Int-insert-right sum-Suc sum.If-cases if-distrib [of card)]
sum.subset-diff flip: insert.IH)
qed auto

have (3" ze€Q. card (if = {} then UNIV else (| (Neighbours Blue ‘ z) N
(X-1)))
= (> z€Q. card () (Neighbours Blue ‘z) N (X—U)))
unfolding Q-def nsets-def using <0 < b> by (force intro: sum.cong)
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also have ... = (D_veX — U. card (Neighbours Blue v N U) choose b)
by (metis sum-card-NB <X CV> dual-order.refl finV finite-Diff rev-finite-subset)
finally have sum (card o Int-NB) 2 = ®
by (simp add: Q-def ®-def Int-NB-def)
moreover
have ennreal (P.expectation (AS. card (Int-NB S))) = sum (card o Int-NB) Q
/ (card Q)
using integral-uniform-count-measure M-def finQ) by fastforce
ultimately have P: P.expectation (AS. card (Int-NB S)) = ® / (m choose b)
by (metis Bochner-Integration.integral-nonneg card$) divide-nonneg-nonneg
ennreal-inj of-nat-0-le-iff )
have False if \S. S € Q = card (Int-NB S) < ® / (m choose b)
proof —
define L where L = (\S. ® / real (m choose b) — card (Int-NB S)) ‘Q
have finite L L # {}
using L-def finQ) <Q#{}> by blast+
define ¢ where ¢ = Min L
have ¢ > 0
using that finQ <Q # {}» by (simp add: L-def e-def)
then have AS. S € Q@ = card (Int-NB S) < ® / (m choose b) — ¢
using Min-le [OF <finite L>] by (fastforce simp: algebra-simps e-def L-def)
then have P.expectation (AS. card (Int-NB S)) < ® / (m choose b) — ¢
using P P.not-empty not-integrable-integral-eq <& > 0>
by (intro P.integral-le-const) (fastforce simp: M-def space-uniform-count-measure)+
then show Fulse
using P <0 < &> by auto
qed
then obtain S where S € Q and Sge: card (Int-NB S) > ® / (m choose b)
using linorder-not-le by blast
then have S C U
by (simp add: Q2-def nsets-def subset-iff)
have card S = b clique S Blue
using <S € > «<U C V> <clique U Blue> smaller-clique
unfolding Q-def nsets-def size-clique-def by auto
have ® / (m choose b) > b * card X / 2
using 11 by simp
then have S: card (Int-NB S) > p°b * card X / 2
using Sge by linarith
obtain v where v € S
using <0 < b> <card S = b> by fastforce
have all-edges-betw-un S (S U Int-NB S) C Blue
using <clique S Blue>
unfolding all-edges-betw-un-def Neighbours-def clique-def Int-NB-def by fastforce
then have good-blue-book X (S, Int-NB S)
using <SCU»> <v € S» <U C X» S <card S = b>
unfolding good-blue-book-def book-def size-clique-def Int-NB-def disjnt-iff
by blast
then show ?thesis
by (metis <card S = b> b-def b-of-def of-nat-ceiling)
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qed
Lemma 4.3

proposition bblue-step-limit:

assumes big: Big-Blue-4-1 pul

shows card (Step-class {bblue-step}) < I powr (3/4)
proof —

define BBLUES where BBLUES
bblue-step}

have cardB-ge: card (Bseq n) > b-of |l * card(BBLUES n)

for n

proof (induction n)

case ( then show ?case by (auto simp: BBLUES-def)
next

case (Suc n)
show ?case
proof (cases stepper-kind n = bblue-step)
case True
have [simp]: card (insert n (BBLUES n)) = Suc (card (BBLUES n))
by (simp add: BBLUES-def)

have card-B": card (Bseq (Suc n)) > b-of | * card (BBLUES n)
using Suc.IH

by (meson Bseq-Suc-subset card-mono finite-Bseq le-trans)

= Ar. {m. m < r A stepper-kind m =

define S where S = fst (choose-blue-book (Xseq n, Yseq n, Aseq n, Bseq n))
have BSuc: Bseq (Suc n) = Bseqn U S

and manyb: many-bluish (Xseq n)
and cbb: choose-blue-book (Xseq n, Yseq n, Aseq n, Bseq n) = (S, Xseq
(Suc n))

and same: Aseq (Suc n) = Aseqn Yseq (Suc n) = Yseq n
using True

by (force simp: S-def step-kind-defs next-state-def split: prod.split if-split-asm)+

have 114: | powr (1/4) < card S
using Blue-4-1 [OF Xseg-subset-V manyb big|
by (smt (verit, best) choose-blue-book-works best-blue-book-is-best cbb
finite-Xseq of-nat-mono)
then have ble: b-of | < card S
using b-of-def nat-ceiling-le-eq by presburger
have S: good-blue-book (Xseq n) (S, Xseq (Suc n))
by (metis cbb choose-blue-book-works finite-Xseq)
then have card S < best-blue-book-card (Xseq n)
by (simp add: best-blue-book-is-best finite-Xseq)
have finS: finite S
using In0 114 card.infinite by force
have disjnt (Bseq n) (Xseq n)
using valid-state-seq [of n]
by (auto simp: Bseq-def Xseq-def valid-state-def disjoint-state-def disjnt-iff
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split: prod.split-asm)
then have dBS: disjnt (Bseq n) S
using S cbb by (force simp: good-blue-book-def book-def disjnt-iff)
have eq: BBLUES(Suc n) = insert n (BBLUES n)
using less-Suc-eq True unfolding BBLUES-def by blast
then have b-of | * card (BBLUES (Suc n)) = b-of l + b-of | * card (BBLUES
n)
by auto
also have ... < card (Bseq n) + card S
using ble card-B' Suc.IH by linarith
also have ... < card (Bsegn U S)
using ble dBS by (simp add: card-Un-disjnt finS finite-Bseq)
finally have xx: b-of | * card (BBLUES (Suc n)) < card (Bseq (Suc n))
using order.trans BSuc by argo
then show ?thesis
by (simp add: BBLUES-def)
next
case False
then have BBLUES(Suc n) = BBLUES n
using less-Suc-eq by (auto simp: BBLUES-def)
then show ?thesis
by (metis Bseq-Suc-subset Suc.IH card-mono finite-Bseq le-trans)
qed
qed
{ assume §: card (Step-class {bblue-step}) > 1 powr (3/4)
then have fin: finite (Step-class {bblue-step})
using card.infinite by fastforce
then obtain n where n: (Step-class {bblue-step}) = {m. m<n A stepper-kind
m = bblue-step}
using Step-class-iterates by blast
with § have card-gt: card{m. m<n A stepper-kind m = bblue-step} > | powr
(3/4)
by (simp add: n)
have | = [ powr (1/4) = Il powr (3/4)
by (simp flip: powr-add)
also have ... < b-of | = | powr (3/4)
by (simp add: b-of-def mult-mono”)
also have ... < b-of | x card{m. m<n A stepper-kind m = bblue-step}
using card-gt less-eq-real-def by fastforce

also have ... < card (Bseq n)
using cardB-ge step of-nat-mono unfolding BBLUES-def by blast
also have ... <[

by (simp add: Bseq-less-l)
finally have False
by simp
}

then show ?thesis by force
qged
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lemma red-steps-eq-A:
defines REDS = Ar. {i. i < r A stepper-kind i = red-step}
shows card(REDS n) = card (Aseq n)
proof (induction n)
case ()
then show ?case
by (auto simp: REDS-def)
next
case (Suc n)
show ?Zcase
proof (cases stepper-kind n = red-step)
case True
then have [simp|: REDS (Suc n) = insert n (REDS n) card (insert n (REDS
n)) = Suc (card (REDS n))
by (auto simp: REDS-def)
have Aeq: Aseq (Suc n) = insert (choose-central-vx (Xseq n,Yseq n,Aseq n,Bseq
n)) (Aseq n)
using Suc.prems True
by (auto simp: step-kind-defs next-state-def split: if-split-asm prod.split)
have finite (Xseq n)
using finite-Xseq by presburger
then have choose-central-vz (Xseq n,Yseq n,Aseq n,Bseq n) € Xseq n
using True
by (simp add: step-kind-defs choose-central-vz-X split: if-split-asm prod.split-asm)
moreover have disjnt (Xseq n) (Aseq n)
using valid-state-seq by (simp add: valid-state-def disjoint-state-def)
ultimately have choose-central-vz (Xseq n,Yseq n,Aseq n,Bseq n) ¢ Aseq n
by (simp add: disjnt-iff)
then show ?thesis
by (simp add: Aeq Suc.IH finite-Aseq)
next
case Fulse
then have REDS(Suc n) = REDS n
using less-Suc-eq unfolding REDS-def by blast
moreover have Aseq (Suc n) = Aseq n
using False
by (auto simp: step-kind-defs degree-reg-def newxt-state-def split: prod.split)
ultimately show ?thesis
using Suc.IH by presburger
qed
qed

proposition red-step-eq-Aseq: card (Step-class {red-step}) = card (Aseq halted-point)
proof —
have card{i. i < halted-point A stepper-kind i = red-step} = card (Aseq halted-point)
by (rule red-steps-eq-A)
moreover have (Step-class {red-step}) = {i. i < halted-point A stepper-kind i
= red-step}
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using halted-point-minimal’ by (fastforce simp: Step-class-def)
ultimately show ?thesis
by argo
qged

proposition red-step-limit: card (Step-class {red-step}) < k
using Aseg-less-k red-step-eq-Aseq by presburger

proposition bblue-dboost-step-limit:
assumes big: Big-Blue-4-1 1l
shows card (Step-class {bblue-step}) + card (Step-class {dboost-step}) < 1
proof —
define BDB where BDB = Ar. {i. i < r A stepper-kind i € {bblue-step,dboost-step}}
have x: card(BDB n) < card B — looks clunky but gives access to all state
components
if stepper n = (X,Y,A,B) for n X Y A B
using that
proof (induction n arbitrary: X Y A B)
case (
then show ?case
by (auto simp: BDB-def)
next
case (Suc n)
obtain X' Y’ A’ B’ where step-n: stepper n = (X',)Y' A’ B’)
by (metis surj-pair)
then obtain valid-state (X', Y',A’,B’) and V-state (X', Y',A’",B’)
and disjst: disjoint-state(X 'Y ', A’,B’) and finite X'
by (metis finX valid-state-def valid-state-stepper)
have B'C B
using Suc.prems by (auto simp: next-state-def Let-def degree-reg-def step-n
split: prod.split-asm if-split-asm,)
show ?case
proof (cases stepper-kind n € {bblue-step,dboost-step})
case True
then have BDB (Suc n) = insert n (BDB n)
by (auto simp: BDB-def)
moreover have card (insert n (BDB n)) = Suc (card (BDB n))
by (simp add: BDB-def)
ultimately have card-Suc[simp]: card (BDB (Suc n)) = Suc (card (BDB

by presburger
have card-B': card (BDB n) < card B’
using step-n BDB-def Suc.IH by blast
consider stepper-kind n = bblue-step | stepper-kind n = dboost-step
using True by force
then have Bigger: B’ C B
proof cases
case 1
then have — termination-condition X' Y’
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by (auto simp: stepper-kind-def step-n)
with 1 obtain S where A’ = A Y’ = Y and manyb: many-bluish X'
and cbb: choose-blue-book (X', Y ,A,B’) = (§,X) and le-cardB: B = B' U

using Suc.prems
by (auto simp: step-kind-defs newxt-state-def step-n split: prod.split-asm
if-split-asm)
then obtain X' C V finite X'
using Xseq-subset-V <finite X'> step-n stepper-XYseq by blast
then have [ powr (1/4) < real (card S)
using Blue-4-1 [OF - manyb big]
by (smt (verit, best) of-nat-mono best-blue-book-is-best cbb choose-blue-book-works)
then have S # {}
using [n0 by fastforce
moreover have disjnt B’ S
using choose-blue-book-subset [OF <finite X ">| disjst cbb
unfolding disjoint-state-def
by (smt (verit) in-mono <A’ = A> <Y' =Y disjnt-iff old.prod.case)
ultimately show ?thesis
by (metis <B' C B> disjnt-Unl disjnt-self-iff-empty le-cardB psubsetl )
next
case 2
then have choose-central-vz (X')Y' A’ B’) € X'
unfolding step-kind-defs
by (auto simp: <finite X'> choose-central-ve-X step-n split: if-split-asm)
moreover have disjnt B’ X'
using disjst disjnt-sym by (force simp: disjoint-state-def)
ultimately have choose-central-vz (X',Y' A’ B') ¢ B’
by (meson disjnt-iff )
then show ?thesis
using 2 Suc.prems
by (auto simp: step-kind-defs next-state-def step-n split: if-split-asm)
qed
moreover have finite B
by (metis Suc.prems V-state-stepper finB)
ultimately show ?Zthesis
by (metis card-B' card-Suc card-seteq le-trans not-less-eq-eq psubset-eq)
next
case False
then have BDB (Suc n) = BDB n
using less-Suc-eq unfolding BDB-def by blast
with «B’ C B> Suc show ?thesis
by (metis V-state-stepper card-mono finB le-trans step-n)
qed
qed
have less-I: card (BDB n) < [ for n
by (meson card-B-limit x order.trans linorder-not-le prod-cases/)
moreover have fin: An. finite (BDB n) incseq BDB
by (auto simp: BDB-def incseq-def )
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ultimately have xx: V*°n. |J (range BDB) = BDB n
using Union-incseq-finite by blast
then have finite (|J (range BDB))
using BDB-def eventually-sequentially by force
moreover have Uneq: |J (range BDB) = Step-class {bblue-step,dboost-step}
by (auto simp: Step-class-def BDB-def)
ultimately have fin: finite (Step-class {bblue-step,dboost-step})
by fastforce
obtain n where | J (range BDB) = BDB n
using xx by force
then have card (BDB n) = card (Step-class {bblue-step} U Step-class {dboost-step})
by (metis Step-class-insert Uneq)
also have ... = card (Step-class {bblue-step}) + card (Step-class {dboost-step})
by (simp add: card-Un-disjnt disjnt-Step-class)
finally show ?thesis
by (metis less-1)
qed

end

end

4 Red Steps: theorems

theory Red-Steps imports Big-Blue-Steps

begin
Bhavik Mehta: choose-free Ramsey lower bound that’s okay for very small

p

lemma Ramsey-number-lower-simple:
fixes p::real
assumes n: n°k x p powr (k°2 / 4) + nlxexp (—p x 172/ 4) < 1
assumes p01: 0<p p<I and k>11>1
shows — is-Ramsey-number k | n
proof (rule Ramsey-number-lower-gen)
have (n choose k) x p~(k choose 2) < n"k * p powr (real k~2 ] 4)
proof —
have (n choose k) x p~(k choose 2) < real (Suc n — k) “k * p~(k choose 2)
using choose-le-power p01 by simp
also have ... = real (Sucn — k)°k * p powr (k x (real k — 1) / 2)
by (metis choose-two-real p01(1) powr-realpow)
also have ... < n"k x p powr (real k°2 / /)
using p01 <k>15 by (intro mult-mono powr-mono’) (auto simp: power2-eq-square)
finally show ?thesis .
qed
moreover
have real (n choose 1) x (1 — p) (I choose 2) < n"l x exp (—p * real 1°2 / 4)
proof —
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show ?thesis
proof (intro mult-mono)
show real (n choose ) < n"l
by (metis binomial-eq-0-iff binomial-le-pow not-le of-nat-le-iff zero-le)
have [ + p < 2 % (1 — reall) x —p
using assms by (auto simp: algebra-simps)
also have ... < 2 x (I — reall) x In (1—p)
using p01 <I>15 In-add-one-self-le-self2 [of —p]
by (intro mult-left-mono-neg) auto
finally have real [ x (real | * p) < real l % (2 x (I — real l) x In (1—p))
using mult-left-mono <I>1> by fastforce
with p01 show (1 — p) (I choose 2) < exp (— p * (real 1)? | 4)
by (simp add: field-simps power2-eq-square powr-def choose-two-real flip:
powr-realpow)
qed (use p01 in auto)
qed
ultimately
show real (n choose k) = p~(k choose 2) + real (n choose 1) x (1 — p) ~(I choose
2) < 1
using n by auto
qed (use p01 in auto)

context Book
begin

4.1 Density-boost steps
4.1.1 Observation 5.5

lemma sum-Weight-ge0:
assumes X C VY C Vdisint X Y
shows (> zeX. > z'eX. Weight X Yz ') > 0
proof —
have finite X finite Y
using assms finV finite-subset by blast+
with Red-F have EXY: edge-card Red X Y = (>_x€X. card (Neighbours Red
zNY)
by (metis <disjnt X V> disjnt-sym edge-card-commute edge-card-eq-sum-Neighbours)
have (> zeX. > z’eX. red-density X Y x card (Neighbours Red z N Y))
= red-density X Y * card X * edge-card Red X Y
using assms Red-E
by (simp add: EXY power2-eq-square edge-card-eq-sum-Neighbours flip: sum-distrib-left)

also have ... = red-density X Y2 % card X2 * card Y
by (simp add: power2-eq-square gen-density-def)
also have ... = ((>_i€Y. card (Neighbours Red i N X)) / (real (card X) * real

(card Y)))? * (card X)* % card Y
using Red-E <finite Y> assms
by (simp add: psubset-eq gen-density-def edge-card-eq-sum-Neighbours)
also have ... < (Y. ye€VY. real ((card (Neighbours Red y N X))?))
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proof (cases card Y = 0)
case Fualse
then have (> z€Y. real (card (Neighbours Red z N X)))?
< (>_yeY. (real (card (Neighbours Red y N X)))?) * card Y
using <finite Y> assms by (intro sum-squared-le-sum-of-squares) auto
then show ?thesis
using assms False by (simp add: divide-simps power2-eq-square sum-nonneg)
qed (auto simp: sum-nonneq)
also have ... = (D zeX. > x'e€X. real (card (Neighbours Red x N Neighbours
Red ' N Y)))
proof —
define f::’a x 'a x 'a = 'a x 'a x 'a where f = A\y,(z,27)). (z, (z/, y))
have f: bij-betw f (SIGMA y:Y. (Neighbours Red y N X) x (Neighbours Red
y N X))
(SIGMA z:X. SIGMA z":X. Neighbours Red x N Neighbours
Redz'NY)
by (auto simp: f-def bij-betw-def inj-on-def image-iff in-Neighbours-iff doubleton-eq-iff
insert-commaute)
have (Y ye Y. (card (Neighbours Red y N X))?) = card(SIGMA y:Y . (Neighbours
Red y N X) x (Neighbours Red y N X))
by (simp add: <finite Y> finite-Neighbours power2-eq-square)
also have ... = card(Sigma X (\z. Sigma X (\z'. Neighbours Red & N Neigh-
bours Red ' N Y)))
using bij-betw-same-card f by blast

also have ... = (}_zeX. Y z'eX. card (Neighbours Red x N Neighbours Red
z'NY))
by (simp add: <finite X> finite-Neighbours power2-eq-square)
finally

have (Y yeY. (card (Neighbours Red y N X))?) =
(> zeX. Y z'eX. card (Neighbours Red N Neighbours Red z' N Y)) .
then show ?thesis
by (simp flip: of-nat-sum of-nat-power)
qed
finally have (} zeX. > yeX. red-density X Y * card (Neighbours Red x N

Y))
< (> zeX. > yeX. real (card (Neighbours Red x N Neighbours Red y N Y)))

then show ?thesis
by (simp add: Weight-def sum-subtractf inverse-eq-divide flip: sum-divide-distrib)
qed

end

4.1.2 Lemma 5.6

definition Big-Red-5-6-Ramsey =
Ac 1. nat [real I powr (3/4)] > 3
A (ILpowr (8/4) x (¢ — 1/32) < —1)
AN (VE>1 Kk * (¢ * Ipowr (8/4) xInk — kpowr (7/8) /] 4) < —1)

71



establishing the size requirements for 5.6

lemma Big-Red-5-6-Ramsey:
assumes (<c ¢<1/32
shows V *°[. Big-Red-5-6-Ramsey c |
proof —
have D34: Nl k.1 <k = ¢ x real | powr (3/4) < ¢ * real k powr (3/4)
by (simp add: assms powr-mono?2)
have D0: V>=I. [ x (¢ = L powr (8/4) x Inl — I powr (7/8) / 4) < —1
using <c¢>0> by real-asymp
have Alk.l <k = ¢ x real l powr (8/4) * Ink < ¢ x real k powr (3/4) * Ink
using D38/ le-eg-less-or-eq mult-right-mono by fastforce
then have D: VL. VE>I. k % (¢ * L powr (8/4) * In k — real k powr (7/8) /
)< -1
using eventually-mono [OF eventually-all-ge-at-top [OF D0
by (smt (verit, ccfo-SIG) mult-left-mono of-nat-0-le-iff )
show ?thesis
using assms
unfolding Big-Red-5-6-Ramsey-def eventually-conj-iff m-of-def
by (intro conjl eventually-all-ge-at-top D; real-asymp)
qged

lemma Red-5-6-Ramsey:
assumes (<c c<1/32 and I<k and big: Big-Red-5-6-Ramsey c |
shows exp (¢ * I powr (83/4) *x In k) < RN k (nat[l powr (8/4)])
proof —
define r where r = nat |exp (¢ * | powr (3/4) * In k)]
define s where s = nat [l powr (3/4)]
have [#£0
using big by (force simp: Big-Red-5-6-Ramsey-def)
have 3 < s
using assms by (auto simp: Big-Red-5-6-Ramsey-def s-def)
also have ... <
using powr-mono [of 3/4 1] <l # 0> by (simp add: s-def)
finally have 3 < 1.
then have k>3 <k>0> <I>0>
using assms by auto
define p where p = k powr (—1/8)
have p01: 0 <pp < 1
using <k>3> powr-less-one by (auto simp: p-def)
have r-le: r < k powr (¢ * Il powr (3/4))
using p01 <k>38> unfolding r-def powr-def by force

have left: s * p powr ((real s)? / 4) < 1/2
proof —
have A: r powr s < k powr (s x ¢ * 1l powr (3/4))
using r-le by (smt (verit) mult.commute of-nat-0-le-iff powr-mono2 powr-powr)
have B: p powr ((real s)? / 4) < k powr (—(real s)* | 32)
by (simp add: powr-powr p-def power2-eq-square)
have C: (¢ x l powr (3/4) — 5/32) < —1
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using big by (simp add: Big-Red-5-6-Ramsey-def s-def algebra-simps) linarith
have r~s x p powr ((real s)? / 4) < k powr (s * (¢ * Lpowr (8/4) — s / 32))
using mult-mono [OF A B] <s>3>»
by (simp add: power2-eq-square algebra-simps powr-realpow’ flip: powr-add)
also have ... < k powr — real s
using C <s>3> mult-left-mono <k>3> by fastforce
also have ... < k powr —38
using <k>3> <s>3> by (simp add: powr-minus powr-realpow)
also have ... < 3 powr —3
using <k>3> by (intro powr-mono2’) auto
also have ... < 1/2
by auto
finally show ?thesis .
qed
have right: r°k x exp (— p * (real k)? |/ 4) < 1/2
proof —
have A: r°k < exp (¢ x L powr (3/4) « In k * k)
using r-le <0 < k> <0 < I> by (simp add: powr-def exp-of-nat2-mult)
have B: exp (— p * (real k)? / 4) < exp (— k x k powr (7/8) | 4)
using <k>0> by (simp add: p-def mult-ac power2-eq-square powr-mult-base)
have r°k x exp (— p * (real k)2 / 4) < exp (k * (¢ x L powr (3/4) x Ink — k
powr (7/8) / 4))
using mult-mono [OF A B] by (simp add: algebra-simps s-def flip: exp-add)
also have ... < exp (—1)
using assms unfolding Big-Red-5-6-Ramsey-def by blast
also have ... < 1/2
by (approzimation &)
finally show ?thesis .
qed
have — is-Ramsey-number (nat[l powr (3/4)]) k (nat |exp (¢ = I powr (3/4) *
Ink)|)
using Ramsey-number-lower-simple [OF - p01] left right <k>85 <I>38>
unfolding r-def s-def by force
then show ?thesis
by (smt (verit) RN-commute is-Ramsey-number-RN le-nat-floor partn-lst-greater-resource)
ged

definition ineg-Red-5-6 = Ac 1. Vk. 1 < k — exp (¢ * real l powr (3/4) = In k)
< RN k (nat[l powr (3/4)])

definition Big-Red-5-6 =
M. 6 + m-of 1l < (1/128) % 1l powr (3/4) A ineq-Red-5-6 (1/128) 1

establishing the size requirements for 5.6

lemma Big-Red-5-6: YV *°l. Big-Red-5-6 1
proof —
define c::real where ¢ = 1/128
have 0 < cc < 1/32
by (auto simp: c-def)
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then have V*°I. ineg-Red-5-6 c 1
unfolding ineq-Red-5-6-def using Red-5-6-Ramsey Big-Red-5-6-Ramsey exp-gt-zero
by (smt (verit, del-insts) eventually-sequentially)
then show ?thesis
unfolding Big-Red-5-6-def eventually-cong-iff m-of-def
by (simp add: c-def; real-asymp)
qged

lemma (in Book) Red-5-6:
assumes big: Big-Red-5-6 1
shows RN k (nat[l powr (3/4)]) > k~6 * RN k (m-of I)
proof —
define c::real where ¢ = 1/128
have RN k (m-of 1) < k~(m-of I)
by (metis RN-le-argpower’ RN-mono diff-add-inverse diff-le-self le-refl le-trans)
also have ... < exp (m-of | * In k)
using knl0 by (simp add: exp-of-nat-mult)
finally have RN k (m-of I) < exp (m-of | x In k)
by force
then have £°6 « RN k (m-of l) < real k~6 % exp (m-of l x In k)
by (simp add: kn0)
also have ... < exp (¢ * L powr (3/4) * In k)
proof —
have (6 + real (m-of 1)) * In (real k) < (¢ = I powr (3/4)) = In (real k)
unfolding mult-le-cancel-right
using big kn0 by (auto simp: c-def Big-Red-5-6-def)
then have In (real k°6 * exp (m-of | x In k)) < In (exp (c x I powr (8/4) *
Ink))
using kn0 by (simp add: In-mult In-powr algebra-simps flip: powr-numeral)
then show “thesis
by (smt (verit) exp-gt-zero In-le-cancel-iff )
qed
also have ... < RN k (nat[l powr (3/4)])
using assms l-le-k by (auto simp: ineq-Red-5-6-def Big-Red-5-6-def c-def)
finally show k6 * RN k (m-of I) < RN k (nat[l powr (3/4)])
using of-nat-le-iff by blast
qed

4.2 Lemma 5.4
definition Big-Red-5-4 = M. Big-Red-5-6 L N (Vk>1. real k + 2 * real k™6 < real
k~7)
establishing the size requirements for 5.4

lemma Big-Red-5-4: V¥ *°l. Big-Red-5-4 |

unfolding Big-Red-5-4-def eventually-conj-iff all-imp-conj-distrib

apply (simp add: Big-Red-5-6)

apply (intro conjl eventually-all-ge-at-top; real-asymp)

done
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context Book
begin

lemma Red-5-4:
assumes i: i € Step-class {red-step,dboost-step}
and big: Big-Red-5-4 1
defines X = Xseqi and Y = Yseq i
shows weight X Y (cvz i) > — card X / (real k)5
proof —
have [#1
using big by (auto simp: Big-Red-5-4-def)
with [n0 I-le-k have [>1 k>1 by linarith+
let R = RN k (m-of )
have finite X finite Y
by (auto simp: X-def Y-def finite-Xseq finite- Yseq)
have not-many-bluish: = many-bluish X
using i not-many-bluish unfolding X-def by blast
have nonterm: — termination-condition X Y
using X-def Y-def i step-non-terminating-iff by (force simp: Step-class-def)
moreover have | powr (2/3) <l powr (8/4)
using <I>1> by (simp add: powr-mono)
ultimately have RNX: ?R < card X
unfolding termination-condition-def m-of-def
by (meson RN-mono order.trans ceiling-mono le-refl nat-mono not-le)
have 0 < Yz € X. Y '€ X. Weight X Y z z”)
by (simp add: X-def Y-def sum-Weight-ge0 Xseq-subset-V Yseq-subset-V Xseq-Yseq-disjnt)
also have ... = (D y € X. weight X Yy + Weight X Yy y)
unfolding weight-def X-def
by (smt (verit) sum.cong sum.infinite sum.remove)
finally have ge0: 0 < (> yeX. weight X Yy + Weight X Yy y) .
have w-mazimal: weight X Y (cvx i) > weight X YV x
if central-vertex X = for x
using X-def Y-def <finite X»> central-vz-is-best cvz-works i that by presburger

have |real (card (S N Y)) * (real (card X) * real (card Y)) —
real (edge-card Red X Y') x real (card (T N'Y))|
< real (card X) * real (card Y') * real (card V) for S T
using card-mono [OF - Int-lower2] <finite X» <finite Y >
by (smt (verit, best) of-nat-mult edge-card-le mult.commute mult-right-mono
of-nat-0-le-iff of-nat-mono)
then have Wlabs: |Weight X Yz y| < 1 for z y
using RNX edge-card-le [of X Y Red] <finite X»> <finite V>
apply (simp add: mult-ac Weight-def divide-simps gen-density-def )
by (metis Int-lower2 card-mono mult-of-nat-commute)
then have W1: Weight X Yz y < 1 for z y
by (smt (verit))
have WW-le-cardX: weight X Yy + Weight X Y yy < card X if y € X for y
proof —
have weight X Yy + Weight X Yy y = sum (Weight X YV y) X
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by (simp add: <finite X > sum-diff1 that weight-def)
also have ... < card X
using W1 by (smt (verit) real-of-card sum-mono)
finally show ?thesis .
qed
have weight X Y z < real (card(X — {z})) = 1 for z
unfolding weight-def by (meson DiffE abs-le-D1 sum-bounded-above W1)
then have wgt-le-X1: weight X Yo < card X — 1 if z € X for z
using that card-Diff-singleton One-nat-def by (smt (verit, best))
define XB where XB = {z€X. bluish X z}
have card-XB: card XB < ?R
using not-many-bluish by (auto simp: m-of-def many-bluish-def XB-def)
have XB C X finite XB
using <finite X> by (auto simp: XB-def)
then have cv-non-XB: A\y. y € X — XB = central-vertez X y
by (auto simp: central-vertex-def XB-def bluish-def)
have 0 < (" yeX. weight X Yy + Weight X Y y y)
by (fact ge0)
also have ... = (3> yeXB. weight X Yy + Weight X Yy y) + (O, yeX—XB.
weight X Yy + Weight X Yy y)
using sum.subset-diff [OF <XBCX5] by (smt (verit) X-def Xseg-subset-V finV
finite-subset)
also have ... < (3. yeXB. weight X Yy + Weight X Yy y) + (O yeX—XB.
weight X Y (cvz i) + 1)
by (intro add-mono sum-mono w-mazimal W1 order-refl cv-non-XB)
also have ... = (Y yeXB. weight X Yy + Weight X Yy y) + (card X — card
XB) * (weight X Y (cvx i) + 1)
using <XBCX)» «finite XB> by (simp add: card-Diff-subset)
also have ... < card XB * card X + (card X — card XB) * (weight X Y (cvz
i)+ 1)
using sum-bounded-above WW-le-cardX
by (smt (verit, ccfo-threshold) XB-def mem-Collect-eq of-nat-mult)
also have ... = real (?R * card X) + (real (card XB) — ?R) * card X + (card
X — card XB) x (weight X Y (cvz i) + 1)
using card-XB by (simp add: algebra-simps flip: of-nat-mult of-nat-diff )
also have ... < real (YR * card X) + (card X — ?R) x (weight X Y (cvx i) +
1)
proof —
have (real (card X) — card XB) * (weight X Y (cvz i) + 1)
< (real (card X) — ?R) * (weight X Y (cvz i) + 1) + (real (?R) — card
XB) * (weight X Y (cvz i) + 1)
by (simp add: algebra-simps)
also have ... < (real (card X) — ?R) * (weight X Y (cvz i) + 1) + (real (?R)
— card XB) * card X
using RNX X-def i card-XB cvz-in-Xseq wgt-le-X1 by fastforce
finally show ?thesis
by (smt (verit, del-insts) RNX <XB C X»> <finite X> card-mono nat-less-le
of-nat-diff distrib-right)
qed
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finally have weight-ge-0: 0 < ?R % card X + (card X — ?R) = (weight X YV
(cvzi) +1).
have rk61: real k6 > 1
using <k>1> by simp
have k267: real k + 2 * real k~6 < (real k~7)
using <l < k> big by (auto simp: Big-Red-5-4-def)
have k-le: real k~6 + (?R * real k + YR * (real k°6)) < 1 + R x (real k°7)
using mult-left-mono [OF k267, of ?R] assms
by (smt (verit, ccfo-SIG) distrib-left card-XB mult-le-cancel-right1 nat-less-real-le
of-nat-0-le-iff zero-le-power)
have [simp]: real k~m = real k™n <— m=n real k"m < real k"n <— m<n for
mn
using <1 < k> by auto
have RN k (nat[l powr (3/4)]) > k"6 x ?R
using <! < k> big Red-5-6 by (auto simp: Big-Red-5-4-def)
then have cardX-ge: card X > k6 * ?R
by (meson le-trans nat-le-linear nonterm termination-condition-def)
have —1 / (real k)5 < — 1 / (real k"6 — 1) + —1 / (real k6 = ?R)
using k61 card-XB mult-left-mono [OF k-le, of real k5]
by (simp add: field-split-simps eval-nat-numeral)
also have ... < — ?R / (real k6 * ?R — YR) + —1 / (real k~6 % R)
using card-XB rk61 by (simp add: field-split-simps)
finally have —1 / (real k)5 < — ?R [ (real k"6 * YR — ?R) + —1 / (real k6
*x ?R) .
also have ... < — ?R / (real (card X) — ?R) + —1 / card X
proof (intro add-mono divide-left-mono-neg)
show real k6 * real ?R — real YR < real (card X) — real ?R
using cardX-ge of-nat-mono by fastforce
show real k6 * real ?R < real (card X)
using cardX-ge of-nat-mono by fastforce
ged (use RNX rk61 kn0 card-XB in auto)
also have ... < weight X Y (cvz i) / card X
using RNX mult-left-mono [OF weight-ge-0, of card X| by (simp add: field-split-simps)
finally show ?thesis
using RNX by (simp add: X-def Y-def divide-simps)
ged

lemma Red-5-7a: ¢ / k < alpha (hgt p)
by (simp add: alpha-ge hgt-gt0)

lemma Red-5-7b:
assumes p > ¢fun 0 shows alpha (hgt p) < e * (p — qfun 0 + 1/k)
proof —
have gh-le-p: qfun (hgt p — Suc 0) < p
by (smt (verit) assms diff-Suc-less hgt-gt0 hgt-less-imp-qfun-less zero-less-iff-neq-zero)
have alpha (hgt p) = e * (1 + )" (hgtp — 1) | k
using alpha-eq alpha-hgt-eq by blast
also have ... = ¢ x (qfun (hgt p — 1) — qfun 0 + 1/k)
by (simp add: diff-divide-distrib qfun-eq)
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also have ... <ex (p — qfun 0 + 1/k)
by (simp add: eps-ge0 mult-left-mono gh-le-p)
finally show ?thesis .
qged

lemma Red-5-7c:
assumes p < gfun 1 shows alpha (hgt p) = ¢ / k
using alpha-hgt-eq Book-axioms assms hgt-Least by fastforce

lemma Red-5-8:
assumes i: i € Step-class {dreg-step} and z: © € Xseq (Suc 7)
shows card (Neighbours Red © N Yseq (Suc i))
> (1 — e powr (1/2)) * pseq i x (card (Yseq (Suc 1)))
proof —
obtain X YA B
where step: stepper i = (X,Y ,A,B)
and nonterm: — termination-condition X Y
and even ¢
and Suc-i: stepper (Suc i) = degree-reg (X,Y,A,B)
and XY: X = Xseqi Y = Yseq i
using i by (auto simp: step-kind-defs split: if-split-asm prod.split-asm,)
have Xseq (Suc i) = ((MX, Y, A, B). X) o stepper) (Suc i)
by (simp add: Xseq-def)
also have ... = X-degree-reg X Y
using <even i> step nonterm by (auto simp: degree-reg-def)
finally have XSuc: Xseq (Suc i) = X-degree-reg X Y .
have YSuc: Yseq (Suc i) = Yseq i
using Suc-i step by (auto simp: degree-reg-def stepper-XYseq)
have p-gt-invk: (pseq i) > 1/k
using XY nonterm pseq-def termination-condition-def by auto
have RedN: (pseq i — ¢ powr —(1/2) x alpha (hgt (pseq 1))) * card Y < card
(Neighbours Red x N'Y)
using z XY by (simp add: XSuc YSuc X-degree-reg-def pseq-def red-dense-def)
show ?thesis
proof (cases pseq i > qfun 0)
case True
have i ¢ Step-class {halted}
using i by (simp add: Step-class-def)
then have p0: 1/k < p0
by (metis Step-class-not-halted gr0I nat-less-le not-halted-pee-gt pee-eq-p0)
have 0: ¢ powr —(1/2) > 0
by simp
have ¢ powr —(1/2)  alpha (hgt (pseq i)) < € powr (1/2) = ((pseq i) — qfun
0+ 1/k)
using mult-left-mono [OF Red-5-7b [OF True] 0]
by (simp add: eps-def powr-mult-base flip: mult-ac)
also have ... < e powr (1/2) * (pseq i)
using p0 by (intro mult-left-mono) (auto simp flip: pee-eq-p0)
finally have ¢ powr —(1/2) * alpha (hgt (pseqi)) < e powr (1/2) * (pseq i) .
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then have (1 — ¢ powr (1/2)) = (pseq i) x (card Y) < ((pseq i) — € powr
—(1/2) * alpha (hgt (pseq i))) * card Y
by (intro mult-right-mono) (auto simp: algebra-simps)
with XY RedN YSuc show ?thesis by fastforce
next
case Fulse
then have pseq i < qfun 1
by (smt (verit) One-nat-def alpha-Suc-eq alpha-ge0 q-Suc-diff)
then have ¢ powr —(1/2) * alpha (hgt (pseq i)) = € powr (1/2) / k
using powr-mult-base [of €] eps-gt0 by (force simp: Red-5-7c mult.commute)
also have ... < e powr (1/2) * (pseq i)
using p-gt-invk
by (smt (verit) divide-inverse inverse-eq-divide mult-left-mono powr-ge-zero)
finally have ¢ powr —(1/2) * alpha (hgt (pseq i)) < & powr (1/2) * (pseq i) .
then have (I — ¢ powr (1/2)) % pseq i * card Y < (pseq i — € powr —(1/2)
* alpha (hgt (pseq i))) * card Y
by (intro mult-right-mono) (auto simp: algebra-simps)
with XY RedN YSuc show ?thesis by fastforce
qed
qged

corollary Y-Neighbours-nonempty-Suc:
assumes i: i € Step-class {dreg-step} and z: © € Xseq (Suc i) and k>2
shows Neighbours Red x N Yseq (Suc i) # {}
proof
assume con: Neighbours Red x N Yseq (Suc i) = {}
have not-halted: i ¢ Step-class {halted}
using i by (auto simp: Step-class-def)
then have 0: pseqi > 0
using not-halted-pee-gt0 by blast
have Y card (Yseq (Suci)) > 0
using i Yseq-gt0 [OF not-halted] stepper-XYseq
by (auto simp: step-kind-defs degree-reg-def split: if-split-asm prod.split-asm,)
have (1 — ¢ powr (1/2)) * pseq i * card (Yseq (Suc i)) < 0
using Red-5-8 [OF i z] con by simp
with 0 Y/ have (I — ¢ powr (1/2)) < 0
by (simp add: mult-le-0-iff zero-le-mult-iff)
then show Fulse
using <k>2> powr-le-cancel-iff [of k 1/8 0]
by (simp add: eps-def powr-minus-divide powr-divide powr-powr)
qed

corollary Y-Neighbours-nonempty:
assumes i: i € Step-class {red-step,dboost-step} and z: x € Xseq i and k>2
shows card (Neighbours Red z N Yseq i) > 0
proof (cases i)
case ()
with assms show ?Zthesis
by (auto simp: Step-class-def stepper-kind-def split: if-split-asm)

79



next
case (Suc i)
then have i’ € Step-class {dreg-step}
by (metis dreg-before-step dreg-before-step i Step-class-insert Un-iff)
then have Neighbours Red © N Yseq (Suc i’) # {}
using Suc Y-Neighbours-nonempty-Suc assms by blast
then show ?thesis
by (simp add: Suc card-gt-0-iff finite-Neighbours)
ged

end

4.3 Lemma 5.1

definition Big-Red-5-1 = A\ l. (1—p) * real 1 > 1 A lpowr (5/2) > 8 / (1—p)

Alpowr (1/4) > 4
A Big-Red-5-4 | \ Big-Red-5-6 1

establishing the size requirements for 5.1

lemma Big-Red-5-1:
assumes 11 <1
shows V*®I. Vu. p € {pu0..ul} — Big-Red-5-1 p 1
proof —
have (VL V. p0 < p Ap < pl — 1 < (1—p) * real l)
proof (intro eventually-all-gell)
show Al p. [1 < (1—pl)*real l; p < pl] =1 < (1—p) x1
by (smt (verit, best) mult-right-mono of-nat-0-le-iff)
qed (use assms in real-asymp)
moreover have (VL Vu. pu0 < p A p < pl — 8/ (1—p) < real | powr
(5/2))
proof (intro eventually-all-gell)
show Al p. [8 / (1—pl) < real I powr (5/2); p < pl]
= 3 / (1—p) < real l powr (5/2)
by (smt (verit, ccfv-SIG) assms frac-le)
qged (use assms in real-asymp)
moreover have V>°[. 4 < real | powr (1 / 4)
by real-asymp
ultimately show ?thesis
using assms Big-Red-5-6 Big-Red-5-4 by (auto simp: Big-Red-5-1-def all-imp-cong-distrib
eventually-conj-iff)
qged

context Book
begin

lemma card-cvz-Neighbours:
assumes i: i € Step-class {red-step,dboost-step}
defines =z = cvz ¢
defines X = Xseq i
defines NBX = Neighbours Blue x N X
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defines NRX = Neighbours Red x N X
shows card NBX < p % card X card NRX > (1—p) * card X — 1
proof —
obtain zeX XCV
by (metis Xseq-subset-V cvx-in-Xseq X-def i x-def)
then have card-NRBX: card NRX + card NBX = card X — 1
using Neighbours-RB [of  X] disjnt-Red-Blue-Neighbours
by (simp add: NRX-def NBX-def finite-Neighbours subsetD flip: card-Un-disjnt)
moreover have card-NBX-le: card NBX < p * card X
by (metis cvz-works NBX-def X-def central-vertez-def i z-def)
ultimately show card NBX < p * card X card NRX > (I—p) * card X — 1
by (auto simp: algebra-simps)
qed

lemma Red-5-1:
assumes i: i € Step-class {red-step,dboost-step}
and Big: Big-Red-5-1 u 1
defines p = pseq i
defines =z = cvz ¢
defines X = Xseqi and Y = Yseq i
defines NBX = Neighbours Blue z N X
defines NRX = Neighbours Red © N X
defines NRY = Neighbours Red x N'Y
defines 8 = card NBX / card X
shows red-density NRX NRY > p — alpha (hgt p)
V red-density NBX NRY > p + (1 —¢) x ((1=0) / B) = alpha (hgt p) A 3
>0
proof —
have Red-5-4: weight X Y x > — real (card X) / (real k)5
using Big i Red-5-4 by (auto simp: Big-Red-5-1-def z-def X-def Y-def)
have IA: (1—p) x 1 > 1 and I<k and 1144: l powr (1/4) > 4
using Big by (auto simp: Big-Red-5-1-def l-le-k)
then have k-powr-14: k powr (1/4) > 4
by (smt (verit) divide-nonneg-nonneg of-nat-0-le-iff of-nat-mono powr-mono?2)
have k > 256
using powr-mono2 [of 4, OF - - k-powr-14] by (simp add: powr-powr flip:
powr-numeral)
then have k>0 by linarith
have £52: 3 / (1—p) < k powr (5/2)
using Big <I<k> unfolding Big-Red-5-1-def
by (smt (verit) of-nat-0-le-iff of-nat-mono powr-mono2 zero-le-divide-iff )
have RN-le-RN: k~6 « RN k (m-of l) < RN k (nat [l powr (3/4)])
using Big <l < k> Red-5-6 by (auto simp: Big-Red-5-1-def)
have 134-ge3: | powr (3/4) > 8
by (smt (verit, ccfv-SIG) 1144 divide-nonneg-nonneg frac-le of-nat-0-le-iff powr-lel
powr-less-cancel)
note XY = X-def Y-def
obtain A B
where step: stepper i = (X,Y ,A,B)
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and nonterm: — termination-condition X Y
and odd ¢
and non-mb: = many-bluish X and card X > 0
and not-halted: i ¢ Step-class {halted}
using i by (auto simp: XY step-kind-defs termination-condition-def split:
if-split-asm prod.split-asm)
with Yseq-gt0 XY have card Y # 0

by blast
have ¢X-RN: card X > RN k (nat [l powr (3/4)])

by (meson linorder-not-le nonterm termination-condition-def )
then have X-gt-k: card X > k

by (metis 134-ge3 RN-3plus’ of-nat-numeral order.trans le-natceiling-iff not-less)
have 0 < RN k (m-of 1)

using RN-eq-0-iff m-of-def many-bluish-def non-mb by presburger
then have k4 < k6 x RN k (m-of 1)

by (simp add: eval-nat-numeral)
also have ... < card X

using ¢X-RN RN-le-RN by linarith
finally have card X > k°4 .
have z € X

using cvz-in-Xseq i XY z-def by blast
have X C V

by (simp add: Xseq-subset-V XY')
have finite NRX finite NBX finite NRY

by (auto simp: NRX-def NBX-def NRY-def finite-Neighbours)
have disjnt X Y

using Xseq- Yseq-disjnt step stepper-XYseq by blast
then have disjnt NRX NRY disynt NBX NRY

by (auto simp: NRX-def NBX-def NRY-def disjnt-iff)
have card-NRBX: card NRX + card NBX = card X — 1

using Neighbours-RB [of x X| <finite NRX > <x€X s <X CV> disjnt-Red-Blue-Neighbours
by (simp add: NRX-def NBX-def finite-Neighbours subsetD flip: card-Un-disjnt)
obtain card-NBX-le: card NBX < p * card X and card NRX > (1—p) * card
X -1

unfolding NBX-def NRX-def X-def z-def using card-cvz-Neighbours i by metis
with [A <I<k> X-gt-k have card NRX > 0

by (smt (verit, best) of-nat-0 p01 grol mult-less-cancel-left-pos nat-less-real-le
of-nat-mono)
have card NRY > 0

using Y-Neighbours-nonempty [OF i] <k>256> NRY-def <finite NRY> <z €
X> card-0-eq XY by force
show ?thesis
proof (cases (3> yeNRX. Weight X Y x y) > —alpha (hgt p) * card NRX x
card NRY [ card Y)
case True
then have (p — alpha (hgt p)) * (card NRX % card NRY) < (3_y € NRX. p
* card NRY + Weight X Yz y * card Y)

using <card Y # 0> by (simp add: field-simps sum-distrib-left sum.distrib)
also have ... = (3. y € NRX. card (Neighbours Red x N Neighbours Red y N
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Y))
using <card Y # 0> by (simp add: Weight-def pseq-def XY NRY-def field-simps
p-def)
also have ... = edge-card Red NRY NRX
using <disjnt NRX NRY > <finite NRX >
by (simp add: disjnt-sym edge-card-eq-sum-Neighbours Red-E psubset-imp-subset
NRY-def Int-ac)
also have ... = edge-card Red NRX NRY
by (simp add: edge-card-commute)
finally have (p — alpha (hgt p)) * real (card NRX x card NRY) < real
(edge-card Red NRX NRY) .
then show ?thesis
using <card NRX > 0> <card NRY > 0>
by (simp add: NRX-def NRY-def gen-density-def field-split-simps XY)
next
case Fulse
have z € X
unfolding z-def using cvz-in-Xseq i XY by blast
with Neighbours-RB[of ¢ X] have Xz: X — {z} = NBX U NRX
using Xseq-subset-V NRX-def NBX-def XY by blast
have disjnt: NBX N NRX = {}
by (auto simp: Blue-eq NRX-def NBX-def disjoint-iff in-Neighbours-iff)
then have weight X Yz = (3. y € NRX. Weight X Yz y) + (3 y € NBX.
Weight X Y z y)
by (simp add: weight-def Xz sum.union-disjoint finite-Neighbours NRX-def
NBX-def )
with False
have 15: (3 y € NBX. Weight X Y z y)
> weight X Y x + alpha (hgt p) * card NRX * card NRY [/ card Y
by linarith
have pm1: pseq (i—1) > 1/k
by (meson Step-class-not-halted diff-le-self not-halted not-halted-pee-gt)
have -eq: § = card NBX / card X
using NBX-def (B-def XY by blast
have g<p
by (simp add: $-eq <0 < card X> card-NBX-le pos-divide-le-eq)
have im1: i—1 € Step-class {dreg-step}
using i <odd i> dreg-before-step
by (metis Step-class-insert Un-iff One-nat-def odd-Suc-minus-one)
have e < 1//
using <k>0> k-powr-14 by (simp add: eps-def powr-minus-divide)
then have ¢ powr (1/2) < (1/4) powr (1/2)
by (simp add: eps-def powr-mono2)
then have A: 1/2 < 1 — ¢ powr (1/2)
by (simp add: powr-divide)
have le: 1 / (2 * real k) < (1 — & powr (1/2)) = pseq (i—1)
using pm1 <k>0> mult-mono [OF A less-imp-le [OF pml1]] A by simp
have card Y / (2 = real k) < (1 — & powr (1/2)) * pseq (i—1) % card Y
using mult-left-mono [OF le] by (metis mult.commute divide-inverse inverse-eq-divide
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of-nat-0-le-iff )
also have ... < card NRY
using pml Red-5-8 im1 by (metis NRY-def One-nat-def <odd i> <z € X»
XY odd-Suc-minus-one)
finally have Y-NRY: card Y / (2 « real k) < card NRY .
have NBX # {}
proof
assume empty: NBX = {}
then have ¢cNRX: card NRX = card X — 1
using card-NRBX by auto
have card X > &
using <k>256> X-gt-k by linarith
then have 2 x card X / real (card X — 1) < 3
by (simp add: divide-simps)
also have ... < k"2
using mult-mono [OF <k>256> <k>256>] by (simp add: power2-eq-square
flip: of-nat-mult)
also have ... < e % k"8
using <k>256> by (simp add: eps-def flip: powr-numeral powr-add)
finally have (real (2 * card X) / real (card X — 1)) x k"2 < € * real (k~3)
x k"2
using <k>0> by (intro mult-strict-right-mono) auto
then have real (2 % card X) / real (card X — 1) * k~2 < € = real (k°5)
by (simp add: mult.assoc flip: of-nat-mult)
then have 0 < — real (card X) / (real k)5 + (¢ / k) x real (card X — 1)
x (1 /(2 * real k))
using <k>0> X-gt-k by (simp add: field-simps power2-eq-square)
also have — real (card X) / (real k)5 + (¢ / k) = real (card X — 1) * (1
/ (2 * real k))
< — real (card X) / (real k)5 + (¢ / k) * real (card NRX) * (card
NRY / card Y)
using Y-NRY <k>0> <card Y # 0>
by (intro add-mono mult-mono) (auto simp: ¢cNRX eps-def divide-simps)
also have ... = — real (card X) / (real k)5 + (¢ / k) * real (card NRX)
* card NRY [ card Y
by simp
also have ... < — real (card X) / (real k)5 + alpha (hgt p) * real (card
NRX) * card NRY / card Y
using alpha-ge [OF hgt-gt0]
by (intro add-mono mult-right-mono divide-right-mono) auto
also have ... < (0
using empty 15 Red-5-4 by auto
finally show Fulse
by simp
qed
have card NBX > 0
by (simp add: <NBX # {}> <finite NBX> card-gt-0-iff )
then have 0 < 3
by (simp add: $-eq <0 < card X»)
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have g < u
using X-gt-k card-NBX-le by (simp add: $-eq NBX-def divide-simps)
have ¢cNRX: card NRX = (1) * card X — 1
using X-gt-k card-NRBX by (simp add: B-eq divide-simps)
have ¢cNBX: card NBX = 3 % card X
using <0 < card X> by (simp add: 5-eq)
let ?E16 = p + ((1—3)/8B) * alpha (hgt p) — alpha (hgt p) / (B * card X) +
weight X Y& % card Y / (8 * card X * card NRY')
have p % card NBX x card NRY + alpha (hgt p) * card NRX « card NRY +
weight X Y x * card Y
< (3 y € NBX. p * card NRY + Weight X Y z y * card Y)
using 15 <card Y # 0> apply (simp add: sum-distrib-left sum.distrib)
by (simp only: sum-distrib-right divide-simps split: if-split-asm)
also have ... < (3. y € NBX. card (Neighbours Red x N Neighbours Red y N

Y))

using <card Y # 0> by (simp add: Weight-def pseq-def XY NRY-def field-simps
p-def)

also have ... = edge-card Red NRY NBX

using <disjnt NBX NRY > <finite NBX >
by (simp add: disjnt-sym edge-card-eq-sum-Neighbours Red-FE psubset-imp-subset
NRY-def Int-ac)
also have ... = edge-card Red NBX NRY
by (simp add: edge-card-commute)
finally have Red-bound:
p * card NBX # card NRY + alpha (hgt p) * card NRX % card NRY + weight
X Yz xcard Y < edge-card Red NBX NRY .
then have (p * card NBX * card NRY + alpha (hgt p) * card NRX = card
NRY + weight X Yz * card Y')
/ (card NBX % card NRY') < red-density NBX NRY
by (metis divide-le-cancel gen-density-def of-nat-less-0-iff )
then have p + alpha (hgt p) * card NRX / card NBX + weight X Y z * card
Y / (card NBX x card NRY') < red-density NBX NRY
using <card NBX > 0> <card NRY > 0> by (simp add: add-divide-distrib)
then have 16: ?E16 < red-density NBX NRY
using <5>0> <card X > 0>
by (simp add: ¢cNRX ¢NBX algebra-simps add-divide-distrib diff-divide-distrib)
consider gfun 0 < p | p < gfun 1
by (smt (verit) alpha-Suc-eq alpha-ge0 One-nat-def q-Suc-diff )
then have alpha-le-1: alpha (hgt p) < 1
proof cases
case I
have p xe + ¢/ real k < 1 + ¢ x p0
proof (intro add-mono)
show p x ¢ < 1
by (smt (verit) eps-lel <0 < k> mult-left-le p-def pee-ge0 pee-lel)
have p0 > 1/k
by (metis Step-class-not-halted diff-le-self not-halted not-halted-pee-gt
diff-is-0-eq’ pee-eq-p0)
then show ¢ / real k < e * p0
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by (metis divide-inverse eps-ge0 mult-left-mono less-eq-real-def mult-cancel-right1)
qed
then show ?thesis
using Red-5-7b [OF 1] by (simp add: algebra-simps)
next
case 2
show ?thesis
using Red-5-7c [OF 2] <k>256> eps-lessl by simp
qed
have B: — (3 / (real k°4)) < (=2 / real k~4) — alpha (hgt p) / card X
using <card X > k~4> <card Y # 0> <0 < k> alpha-le-1 by (simp add:
algebra-simps frac-le)
have — (3 / (B x real k°4)) < (=2 / real k°4) / B — alpha (hgt p) / (B *
card X)
using <5>0> divide-right-mono [OF B, of 3] <k>05 by (simp add: field-simps)
also have ... = (— real (card X) / real k°5) % card Y / (B * real (card X) =
(card Y / (2 * real k))) — alpha (hgt p) / (B * card X)
using <card Y # 0> <0 < card X>»
by (simp add: field-split-simps eval-nat-numeral)
also have ... < (— real (card X) / real k~5) % card Y | (8 * real (card X)
x card NRY') — alpha (hgt p) / (B * card X)
using Y-NRY <k>0> <card NRY > 0> <card X > 0> <card Y # 0> <>0>
by (intro diff-mono divide-right-mono mult-left-mono divide-left-mono-neg)
auto
also have ... < weight X Yz % card Y / (8 * real (card X) * card NRY) —
alpha (hgt p) / (B * card X)
using Red-5-4 <k>0> <0 < B>
by (intro diff-mono divide-right-mono mult-right-mono) auto
finally have — (3 / (8 * real k°4)) < weight X Yz x card Y / (B * real (card
X) = card NRY) — alpha (hgt p) / (8 * card X) .
then have 17: p + ((1—5)/8) * alpha (hgt p) — 3 / (B * real k°4) < ?E16
by simp
have 3 / real k4 < (1—p) xe°2 / k
using <k>0> p01 mult-left-mono [OF k52, of k]
by (simp add: field-simps eps-def powr-powr powr-mult-base flip: powr-numeral
powr-add)
also have ... < (1-8)*x¢°2 / k
using <S<u>
by (intro divide-right-mono mult-right-mono) auto
also have ... < (1—0) % € % alpha (hgt p)
using Red-5-7a [of p] eps-ge0 <B<p> 101
unfolding power2-eq-square divide-inverse mult.assoc
by (intro mult-mono) auto
finally have {: 8 / real k°4 < (1—03) % € * alpha (hgt p) .
have p + (1 —¢) * (1) / B) * alpha (hgtp) + 3 / (B *x real k°4) < p +
((1=PB)/B) = alpha (hgt p)
using <0<f3> <k>0> mult-left-mono [OF t, of 5] by (simp add: field-simps)
with 16 17 have p + (I — ¢) *x ((1 — B) / B) * alpha (hgt p) < red-density
NBX NRY
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by linarith
then show ?thesis
using <0 < B> NBX-def NRY-def XY by fastforce
qed
qged

This and the previous result are proved under the assumption of a suffi-
ciently large [

corollary Red-5-2:
assumes i: § € Step-class {dboost-step}
and Big: Big-Red-5-1 p 1
shows pseq (Suc i) — pseq i > (I — ¢) * ((1 — beta i) / beta i) * alpha (hgt
(pseq 1)) A
beta 1 > 0
proof —
let 2z = cvz i
obtain X Y A B
where step: stepper i = (X,Y,A,B)
and nonterm: — termination-condition X Y
and odd ¢
and non-mb: - many-bluish X
and nonredd: — reddish k X Y (red-density X Y') (choose-central-vz (X,Y ,A,B))
and Xeq: X = Xseq i and Yeq: Y = Yseq i
using i
by (auto simp: step-kind-defs split: if-split-asm prod.split-asm)
then have %z € Xseq i
by (simp add: choose-central-va-X cvz-def finite-Xseq)
then have central-vertex (Xseq i) (cvz i)
by (metis Xeq choose-central-va-works cva-def finite-Xseq step non-mb nonterm)
with Xeq have card (Neighbours Blue (cvz i) N Xseq i) < p * card (Xseq i)
by (simp add: central-vertez-def)
then have fSeq: card (Neighbours Blue (cvz i) N Xseq i) = beta i x card (Xseq

i)
using Xeq step by (auto simp: beta-def)
have SUC': stepper (Suc i) = (Neighbours Blue %z N X, Neighbours Red %z N
Y, A, insert %z B)
using step nonterm <odd i> non-mb nonredd
by (simp add: stepper-def next-state-def Let-def cva-def)
have pseq: pseq i = red-density X Y
by (simp add: pseq-def Xeq Yeq)
have choose-central-vz (X,Y,A,B) = cvz i
by (simp add: cvz-def step)
with nonredd have red-density (Neighbours Red (cvz i) N X) (Neighbours Red
(cvzi)NY)
< pseq i — alpha (hgt (red-density X Y))
using nonredd by (simp add: reddish-def pseq)
then have pseqi + (I — &) x ((I — beta i) / beta i) * alpha (hgt (pseq i))
< red-density (Neighbours Blue (cvx i) N Xseq i)
(Neighbours Red (cvz i) N Yseq i) A beta i > 0

87



using Red-5-1 Un-iff Xeq Yeq assms gen-density-ge0 pseq Step-class-insert
by (smt (verit, ccfo-threshold) Beq divide-eq-eq)

moreover have red-density (Neighbours Blue (cvz i) N Xseq i)

(Neighbours Red (cvz i) N Yseq i) < pseq (Suc i)

using SUC Xeq Yeq stepper-XYseq by (simp add: pseq-def)

ultimately show ?thesis
by linarith

qed

end

4.4 Lemma 5.3

This is a weaker consequence of the previous results

definition
Big-Red-5-3 =
A 1. Big-Red-5-1 1
ANNE>LEk>1 AT/ (real k)2 <punt/(realk)><1/(k/epsk /(1 —
eps k) + 1))

establishing the size requirements for 5.3. The one involving p, namely
1/ (real k)* < p, will be useful later with "big beta.

lemma Big-Red-5-3:
assumes 0<ul pl<1
shows V°I. V. u € {u0..u1} — Big-Red-5-3 p |
using assms Big-Red-5-1
apply (simp add: Big-Red-5-3-def eps-def eventually-conj-iff all-imp-cong-distrib)

apply (intro conjl strip eventually-all-gel0 eventually-all-ge-at-top)
apply (real-asymp|force)+
done

context Book
begin

corollary Red-5-3:
assumes i: i € Step-class {dboost-step}
and big: Big-Red-5-3 p 1
shows pseq (Suc i) > pseq i A beta i > 1 / (real k)?
proof
have k>1 and big51: Big-Red-5-1 p 1
using Il-le-k big by (auto simp: Big-Red-5-3-def)
let ?h = hgt (pseq 1)
have ?h > 0
by (simp add: hgt-gt0 kn0 pee-lel)
then obtain «: alpha ?h > 0 and *: alpha ?h > ¢ / k
using alpha-ge0 <k>1> alpha-ge by auto
moreover have —5// = —1/4 — (1:real)
by simp
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ultimately have ab4: alpha ?h > k powr (—5/4)
unfolding eps-def by (metis powr-diff of-nat-0-le-iff powr-one)
have 3: beta i < p
by (metis Step-class-insert Un-iff beta-le i)
have (1 — ¢) x ((1 — beta i) / beta i) x alpha ?h > 0
using beta-gel|of i] eps-lel « B p01 <k>1»
by (simp add: zero-le-mult-iff zero-le-divide-iff)
then show pseq (Suc i) > pseq i
using Red-5-2 [OF i big51] by linarith
have pseq (Suc i) — pseq i < 1
by (smt (verit) pee-ge0 pee-lel)
with Red-5-2 [OF i big51]
have (1 — ¢) * ((1 — beta i) / beta i) x alpha ?h < 1 and beta-gt0: beta i > 0
by linarith+
with % have (I — ) % ((1 — beta i) / beta i) xe / k < 1
by (smt (verit, best) mult.commute eps-gel mult-mono mult-nonneg-nonpos
of-nat-0-le-iff times-divide-eq-right zero-le-divide-iff)
then have (1 — <) * ((1 — beta i) / betai) <k /¢
using beta-ge0 [of i] eps-gt0 kn0
by (auto simp: divide-simps mult-less-0-iff mult-of-nat-commute split: if-split-asm)
then have (1 — beta i) [ betai <k /e /(1 —¢)
by (smt (verit) eps-less1 mult.commute pos-le-divide-eq <1 < k»)
then have 1 / beta i <k /e /(1 —¢) + 1
using beta-gt0 by (simp add: diff-divide-distrib)
thenhave I / (k /e /(1 —¢)+ 1) < betai
using beta-gt0 eps-gt0 eps-less1 [OF <k>1>] kn0
apply (simp add: divide-simps split: if-split-asm)
by (smt (verit, ccfo-SIG) mult.commute mult-less-0-iff)
moreover have 1 / k2 <1 /(k/e/ (1l —¢)+ 1)
using Big-Red-5-3-def I-le-k big eps-def by (metis (no-types, lifting) of-nat-power)
ultimately show beta i > 1 / (real k)?
by auto
qged

corollary beta-gt0:
assumes i € Step-class {dboost-step}
and Big-Red-5-3 p 1
shows beta i > 0
by (meson Big-Red-5-3-def Book.Red-5-2 Book-azioms assms)

end

end

5 Bounding the Size of Y

theory Bounding-Y imports Red-Steps

begin
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yet another telescope variant, with weaker promises but a different con-
clusion; as written it holds even if n = 0

lemma prod-less Than-telescope-mult:
fixes f::nat = 'a::field
assumes Ai. i<n = fi # 0
shows ([[i<n. f (Suci) /fi)xf0=fn
using assms
by (induction n) (auto simp: divide-simps)

5.1 The following results together are Lemma 6.4

Compared with the paper, all the indices are greater by one!!

context Book
begin

lemma Y-6-4-Red:
assumes i € Step-class {red-step}
shows pseq (Suc 1) > pseq i — alpha (hgt (pseq 1))
using assms
by (auto simp: step-kind-defs newt-state-def reddish-def pseq-def
split: if-split-asm prod.split)

lemma Y-6-4-DegreeReg:

assumes i € Step-class {dreg-step}

shows pseq (Suc i) > pseq i

using assms red-density-X-degree-reg-ge [OF Xseq-Yseq-disjnt, of i]

by (auto simp: step-kind-defs degree-reg-def pseq-def split: if-split-asm prod.split-asm)

lemma Y-6-4-Bblue:
assumes i: i € Step-class {bblue-step}
shows pseq (Suc i) > pseq (i—1) — (¢ powr (—1/2))  alpha (hgt (pseq (i—1)))
proof —
define X where X = Xseq i
define Y where Y = Yseq i
obtain A BS T
where step: stepper i = (X,Y,A,B)
and nonterm: — termination-condition X Y
and odd ¢
and mb: many-bluish X
and bluebook: (S,T) = choose-blue-book (X,Y ,A,B)
using ¢
by (simp add: X-def Y-def step-kind-defs split: if-split-asm prod.split-asm)
(metis mk-edge.cases)
then have X1-eq: Xseq (Suc i) =T
by (force simp: Xseq-def next-state-def split: prod.split)
have Y1-eq: Yseq (Suci) =Y
using i by (simp add: Y-def step-kind-defs neat-state-def split: if-split-asm
prod.split-asm prod.split)
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have disjnt X Y
using Xseq-Yseq-disjnt X-def Y-def by blast
obtain fin: finite X finite Y
by (metis V-state-stepper finX finY step)
have X # {} ¥ # {}
using gen-density-def nonterm termination-condition-def by fastforce+
define i’ where i’ = i—1
then have Suci”: Suc i’ =i
by (simp add: <odd i>)
have i’: i’ € Step-class {dreg-step}
by (metis dreg-before-step Step-class-insert Suci’ UnCI 1)
then have Xseq (Suc i’) = X-degree-reg (Xseq i’) (Yseq i’)
Yseq (Suc i) = Yseq i’
and nonterm’. — termination-condition (Xseq i’) (Yseq i’)
by (auto simp: degree-reg-def X-degree-reg-def step-kind-defs split: if-split-asm
prod.split-asm)
then have Xeq: X = X-degree-reg (Xseq i’) (Yseq i)
and Yeq: Y = Vseqi'
using Suci’ by (auto simp: X-def Y-def)
define pm where pm = (pseq i’ — ¢ powr (—1/2) * alpha (hgt (pseq i’)))
have T C X
using bluebook by (simp add: choose-blue-book-subset fin)
then have T-reds: Az. z € T = pm x card Y < card (Neighbours Red z N
Y)
by (auto simp: Xeq Yeq pm-def X-degree-reg-def pseq-def red-dense-def )
have good-blue-book X (S,T)
by (meson bluebook choose-blue-book-works fin)
then have Tne: False if card T = 0
using p01 <X # {}» fin by (simp add: good-blue-book-def pos-prod-le that)
have pm * card T * card Y = (3 x€T. pm * card Y)
by simp
also have ... < (D" z€T. card (Neighbours Red x N Y))
using T-reds by (simp add: sum-bounded-below)
also have ... = edge-card Red T Y
using <disjnt X Y> <finite X> <TCX»> Red-E
by (metis disjnt-subset! disjnt-sym edge-card-commute edge-card-eq-sum-Neighbours
finite-subset)
also have ... = red-density T Y * card T * card Y
using fin <TCX> by (simp add: finite-subset gen-density-def)
finally have pm < red-density T Y
using fin <Y #{}> Yeq Yseq-gt0 Tne nonterm’ step-terminating-iff by fastforce
then show ?thesis
by (simp add: X1-eq Y1-eq i’-def pseq-def pm-def)
qed

The basic form is actually Red-5-3. This variant covers a gap of two,
thanks to degree regularisation

corollary Y-6-/-dbooSt:
assumes i: i € Step-class {dboost-step} and big: Big-Red-5-3 p 1
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shows pseq (Suc i) > pseq (i—1)
proof —
have odd ii—1 € Step-class {dreg-step}
using step-odd i by (auto simp: Step-class-insert-NO-MATCH dreg-before-step)
then show ?thesis
using Red-5-8 Y-6-4-DegreeReg assms <odd i> by fastforce
qed

5.2 Towards Lemmas 6.3

definition Z-class = {i € Step-class {red-step,bblue-step,dboost-step}.
pseq (Suc i) < pseq (i—1) A pseq (i—1) < p0}

lemma finite-Z-class: finite (Z-class)
using finite-components by (auto simp: Z-class-def Step-class-insert-NO-MATCH )

lemma Y-6-3:
assumes bigs3: Big-Red-5-8 p | and big/1: Big-Blue-4-1 1
shows (3" i € Z-class. pseq (i—1) — pseq (Suc i) < 2 x ¢
proof —
define S where S = Step-class {dboost-step}
define R where R = Step-class {red-step}
define B where B = Step-class {bblue-step}
{ fix i
assume i: | € S
moreover have odd i
using step-odd [of i] © by (force simp: S-def Step-class-insert-NO-MATCH )
ultimately have i—1 € Step-class {dreg-step}
by (simp add: S-def dreg-before-step Step-class-insert-NO-MATCH)
then have pseq (i—1) < pseq i N\ pseq i < pseq (Suc i)
using bigh8 S-def
by (metis Red-5-3 One-nat-def Y-6-4-DegreeReg <odd i> i odd-Suc-minus-one)

then have dboost: S N Z-class = {}
by (fastforce simp: Z-class-def)
{ fix i
assume i: i € B N Z-class
then have i—1 € Step-class {dreg-step}
using dreg-before-step step-odd i by (force simp: B-def Step-class-insert-NO-MATCH)
have pseq: pseq (Suc i) < pseq (i—1) pseq (i—1) < p0 and iB: i € B
using i by (auto simp: Z-class-def)
have hgt (pseq (i—1)) = 1
proof —
have hgt (pseq (i—1)) < 1
by (smt (verit, del-insts) hgt-Least less-one pseq(2) qfun0 qfun-strict-mono)
then show ?thesis
by (metis One-nat-def Suc-pred’ diff-is-0-eq hgt-gt0)
qed
then have pseq (i—1) — pseq (Suc i) < & powr (—1/2) = alpha 1
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using pseq iB Y-6-4/-Bblue 01 by (fastforce simp: B-def)
also have ... < 1/k
proof —
have k powr (—1/8) < 1
using kn0 by (simp add: ge-one-powr-ge-zero powr-minus-divide)
then show ?thesis
by (simp add: alpha-eq eps-def powr-powr divide-le-cancel flip: powr-add)
qed
finally have pseq (i—1) — pseq (Suc i) < 1/k .

then have (> i € B N Z-class. pseq (i—1) — pseq (Suc 7))
< card (B N Z-class) * (1/k)
using sum-bounded-above by (metis (mono-tags, lifting))
also have ... < card (B) % (1/k)
using bblue-step-finite
by (simp add: B-def divide-le-cancel card-mono)
also have ... < lpowr (8/4) / k
using big41 by (simp add: B-def kn0 frac-le bblue-step-limit)
also have ... <¢
proof —
have «: [ powr (3/4) < k powr (3/4)
by (simp add: l-le-k powr-mono2)
have 8/} — (1:real) = — 1/4
by simp
then show ?thesis
using divide-right-mono [OF x, of k]
by (metis eps-def of-nat-0-le-iff powr-diff powr-one)
qed
finally have bblue: (3> i€B N Z-class. pseq(i—1) — pseq (Suc i)) < e .
{ fix i
assume i: i € R N Z-class
then have pee-alpha: pseq (i—1) — pseq (Suc i)
< pseq (i—1) — pseq i + alpha (hgt (pseq 1))
using Y-6-/-Red by (force simp: R-def)
have pee-le: pseq (i—1) < pseq i
using dreg-before-step Y-6-4-DegreeReg|of i—1] i step-odd
by (simp add: R-def Step-class-insert-NO-MATCH )
consider (1) hgt (pseqi) = 1 | (2) hgt (pseqi) > 1
by (metis hgt-gt0 less-one nat-neq-iff )
then have pseq (i—1) — pseq i + alpha (hgt (pseqi)) <e / k
proof cases
case [
then show ?thesis
by (smt (verit) Red-5-7c kn0 pee-le hgt-works)
next
case 2
then have p-gt-q: pseq i > qfun 1
by (meson hgt-Least not-le zero-less-one)
have pee-le-q0: pseq (i—1) < qfun 0
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using 2 Z-class-def i by auto
also have pee2: ... < pseq i
using alpha-eq p-gt-q by (smt (verit, best) kn0 qfun-mono zero-le-one)
finally have pseq (i—1) < pseq i .
then have pseq (i—1) — pseq i + alpha (hgt (pseq i))
< gfun 0 — pseqi + € x (pseq i — qfun 0 + 1/k)
using Red-5-7b pee-le-q0 pee2 by fastforce
also have ... <¢e¢ / k
using kn0 pee2 by (simp add: algebra-simps) (smt (verit) affine-ineq eps-lel)
finally show ?thesis .
qed
with pee-alpha have pseq (i—1) — pseq (Suc i) <e / k
by linarith
}

then have (> i € R N Z-class. pseq (i—1) — pseq (Suc i))
< card (R N Z-class) * (¢ | k)

using sum-bounded-above by (metis (mono-tags, lifting))
also have ... < card (R) % (¢ / k)

using eps-gel assms red-step-finite

by (simp add: R-def divide-le-cancel mult-le-cancel-right card-mono)
also have ... <k x (¢ / k)

using red-step-limit R-def p01

by (smt (verit, best) divide-nonneg-nonneg eps-gel mult-mono nat-less-real-le

of-nat-0-le-iff )

also have ... < ¢

using eps-gel by force
finally have red: (> i€R N Z-class. pseq (i—1) — pseq (Suc i)) < €.
have x: finite (B) finite (R) N\z. 2 € B= 2z ¢ R

using finite-components by (auto simp: B-def R-def Step-class-def)
have eq: Z-class = S N Z-class U B N Z-class U R N Z-class

by (auto simp: Z-class-def B-def R-def S-def Step-class-insert-NO-MATCH )
show ?thesis

using bblue red

by (subst eq) (simp add: sum.union-disjoint dboost disjoint-iff *)

qed

5.3 Lemma 6.5

lemma Y-6-5-Red:
assumes i: i € Step-class {red-step} and k>16
defines h = \i. hgt (pseq 1)
shows h (Suci) > hi — 2
proof (cases h i < 3)
case True
have h (Suc i) > 1
by (simp add: h-def Suc-lel hgt-gt0)
with True show ?thesis
by linarith
next
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case False
have k>0 using assms by auto
have ¢ < 1/2
using <k>165 by (simp add: eps-eq-sqrt divide-simps real-le-rsqrt)
moreover have 0 <z Az < 1/2 = zx (1 +2)?>+ 1 < (1 + z)? for x::real
by sos
ultimately have §: ¢ * (1 +¢)> + 1 < (I + ¢)?
using eps-ge0 by presburger
have lel: e + 1 /(1 +¢)? < 1
using mult-left-mono [OF §, of inverse ((1 + €)?)]
by (simp add: ring-distribs inverse-eq-divide) (smt (verit))
have 0: 0 < (1 +¢) ~(hi — Suc 0)
using eps-gel by auto
have lesspi: qfun (hi — 1) < pseq i
using Fulse hgt-Least [of h i — 1 pseq i] unfolding h-def by linarith
have A: (1 +¢) "hi=(1 +¢)x (1 +¢) "~ (hi— Suc0)
using False power.simps by (metis h-def Suc-pred hgt-gt0)
have B: (1 +¢) ~(hi—3)=1/(1 +¢)°2% (1 +¢) ~(hi— Suc0)
using eps-gt0 False
by (simp add: divide-simps Suc-diff-Suc numeral-3-eq-3 flip: power-add)
have gfun (hi — 3) < qfun (hi — 1) — (gfun (h i) — gfun (hi — 1))
using kn0 mult-left-mono [OF lel 0]
by (simp add: gfun-eq A B algebra-simps divide-right-mono flip: add-divide-distrib
diff-divide-distrib)
also have ... < pseq i — alpha (h 1)
using lesspi by (simp add: alpha-def)
also have ... < pseq (Suc i)
using Y-6-4-Red i by (force simp: h-def)
finally have qfun (hi — 8) < pseq (Suc i) .
with hgt-greater show ?thesis
unfolding h-def by force
qged

lemma Y-6-5-DegreeReg:
assumes i € Step-class {dreg-step}
shows hgt (pseq (Suc i)) > hgt (pseq i)
using hgt-mono Y-6-4-DegreeReg assms by presburger

corollary Y-6-5-dbooSt:
assumes | € Step-class {dboost-step} and Big-Red-5-3 u 1
shows hgt (pseq (Suc i)) > hgt (pseq i)
using kn0 Red-5-3 assms hgt-mono by blast

this remark near the top of page 19 only holds in the limit

lemma V>°k. (1 + eps k) powr (— real (nat |2 = eps k powr (—1/2)])) < 1 —
eps k powr (1/2)
unfolding eps-def by real-asymp

end
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definition Big-Y-6-5-Bblue =
M. VE>1. (1 + eps k) powr (— real (nat | 2x(eps k powr (—1/2))])) < 1 —
eps k powr (1/2)

establishing the size requirements for Y 6.5

lemma Big-Y-6-5-Bblue:
shows V *°[. Big-Y-6-5-Bblue |
unfolding Big-Y-6-5-Bblue-def eps-def by (intro eventually-all-ge-at-top; real-asymp)

lemma (in Book) Y-6-5-Bblue:
fixes r::real
defines k = ¢ powr (—1/2)
assumes i: i € Step-class {bblue-step} and big: Big-Y-6-5-Bblue |
defines h = hgt (pseq (i—1))
shows hgt (pseq (Suc i)) > h — 2xk
proof (cases h > 2%k + 1)
case True
then have 0 < h — 1
by (smt (verit, best) k-def one-less-of-natD powr-non-neg zero-less-diff )
with True have pseq (i—1) > qfun (h—1)
by (simp add: h-def hgt-less-imp-qfun-less)
then have gfun (h—1) — e powr (1/2) x (1 +¢) ~(h—1) / k < pseq (i—1) —
Kk * alpha h
using <0 < h—1> Y-6-4-Bblue [OF i] eps-gel
apply (simp add: alpha-eq k-def)
by (smt (verit, best) field-sum-of-halves mult.assoc mult.commute powr-mult-base)
also have ... < pseq (Suc %)
using Y-6-4-Bblue i h-def k-def by blast
finally have A: gfun (h—1) — e powr (1/2) x (1 +¢€) ~(h—1) / k < pseq (Suc
have ek0: 0 < I + ¢
by (smt (verit, best) eps-ge0)
have less-h: nat |2xk| < h
using True <0 < h — 1> by linarith
have gfun (h — nat |2%k] — 1) =p0 + ((1 +¢) ~(h — nat |2%k] — 1) — 1)
/k
by (simp add: gfun-eq)
also have ... < p0 + ((1 — e powr (1/2)) (1 +¢) ~(h—1)—1)/k
proof —
have ge0: (1 +¢) ~(h—1) >0
using eps-ge by auto
have (1 +¢) ~(h — nat |2+x] — 1) = (1 +¢) ~(h—1) * (I + €) powr —
real(nat | 2%k]|)
using less-h ek0 by (simp add: algebra-simps flip: powr-realpow powr-add)
also have ... < (I — e powr (1/2)) *x (1 +¢) ~ (h—1)
using big l-le-k unfolding k-def Big-Y-6-5-Bblue-def
by (metis mult.commute ge0 mult-left-mono)
finally have (I + ¢) ~ (h — nat [2xk] — 1)
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< (1 —epowr (1/2)) x (1 +¢) "~ (h—1).
then show ?thesis
by (intro add-left-mono divide-right-mono diff-right-mono) auto
qed
also have ... < gfun (h—1) — € powr (1/2) « (1 +¢) ~(h—1) / real k
using knl eps-ge0 by (simp add: qfun-eq powr-half-sqrt field-simps)
also have ... < pseq (Suc %)
using A by blast
finally have qfun (h — nat |2xx| — 1) < pseq (Suc i) .
then have h — nat |2+x] < hgt (pseq (Suc 1))
using hgt-greater by force
with less-h show ?thesis
unfolding «-def
by (smt (verit) less-imp-le-nat of-nat-diff of-nat-floor of-nat-mono powr-ge-zero)
next
case Fulse
then show ?thesis
by (smt (verit, del-insts) of-nat-0 hgt-gt0 nat-less-real-le)
qed

5.4 Lemma 6.2

definition Big-Y-6-2 = \u . Big-Y-6-5-Bblue | N\ Big-Red-5-3 u 1l A\ Big-Blue-4-1
wl
ANNVE>L (1 + epsk)"2) = eps k powr (1/2) < 1
A (1 + eps k) powr (2 * eps k powr (—1/2)) < 2 Ak > 16)

establishing the size requirements for 6.2

lemma Big-Y-6-2:
assumes 0<ul pl<lI
shows V>°I. V. u € {u0..u1} — Big-Y-6-2 ul
using assms Big-Y-6-5-Bblue Big-Red-5-8 Big-Blue-4-1
unfolding Big- Y-6-2-def eps-def
apply (simp add: eventually-cong-iff all-imp-conj-distrib)
apply (intro conjl strip eventually-all-gell eventually-all-ge-at-top; real-asymp)
done

context Book
begin

Following Bhavik in excluding the even steps (degree regularisation). As-
suming it hasn’t halted, the conclusion also holds for the even cases anyway.

proposition Y-6-2:
defines RBS = Step-class {red-step,bblue-step,dboost-step}
assumes j: j € RBS and big: Big-Y-6-2 p 1
shows pseq (Suc j) > p0 — 8 *x ¢
proof (cases pseq (Suc j) > p0)
case True
then show ?thesis
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by (smt (verit) eps-ge0)
next
case Fulse
then have pj-less: pseq(Suc j) < p0 by linarith
have big53: Big-Red-5-3 1
and Y63: (> i € Z-class. pseq (i—1) — pseq (Suc i)) < 2 x ¢
and Y65B: A\i. i € Step-class {bblue-step} = hgt (pseq (Suc 1)) > hgt (pseq
(i—1)) — 2x(e powr (—1/2))
and bigl: (1 + ¢&)°2) x e powr (1/2) < 1 and big2: (1 + ¢) powr (2 * ¢
powr (—1/2)) < 2
and k>16
using big Y-6-5-Bblue Y-6-3 kn0 l-le-k by (auto simp: Big-Y-6-2-def)
have Y64-S: Ai. i € Step-class {dboost-step} —> pseq i < pseq (Suc 1)
using bigd3 Red-5-3 by simp
define J where J = {j’. j'<j A pseqj’ > p0 A even j'}
have finite J
by (auto simp: J-def)
have pseq 0 = p0
by (simp add: pee-eq-p0)
have odd-RBS: odd i if i € RBS for i
using step-odd that unfolding RBS-def by blast
with odd-pos j have j>0 by auto
have non-halted: j ¢ Step-class {halted}
using j by (auto simp: Step-class-def RBS-def)
have exists: J # {}
using <0 < j> <pseq 0 = p0> by (force simp: J-def less-eq-real-def)
define j’' where j' = Maz J
have j' € J
using <finite J> exists by (force simp: j'-def)
then have ;' < j even j' and pSj”: pseqj’ > p0
by (auto simp: J-def odd-RBS)
have mazimal: j' < j'if j' € J for j'
using <finite J> exists by (simp add: j'-def that)
have pseq (j4+2) — 2 x ¢ < pseq (j'+2) — (O_i € Z-class. pseq (i—1) — pseq
(Suc 1))
using Y68 by simp
also have ... < pseq (Suc j)
proof —
define Z where Z = )\j. {i. pseq (Suc i) < pseq (i—1) N j'+2 < i Ni<j A
i € RBS}
have Zsub: Z i C {Suc j'<..i} for i
by (auto simp: Z-def)
then have finZ: finite (Z i) for i
by (meson finite-greater ThanAtMost finite-subset)
have x: (> i € Zj. pseq (i—1) — pseq (Suc i)) < (>_i € Z-class. pseq (i—1)
— pseq (Suc 1))
proof (intro sum-mono2 [OF finite-Z-class))
show 7 j C Z-class
proof
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fix ¢
assume i: i € 7 j
then have dreg: i—1 € Step-class {dreg-step} and i£0 j' < i
by (auto simp: Z-def RBS-def dreg-before-step)
with i dreg mazimal have pseq (i—1) < p0
unfolding Z-def J-def
using Suc-less-eq2 less-eq-Suc-le odd-RBS by fastforce
then show i € Z-class
using i by (simp add: Z-def RBS-def Z-class-def)
qed
show 0 < pseq (i—1) — pseq (Suc i) if i € Z-class — Z j for i
using that by (auto simp: Z-def Z-class-def)
qed
then have pseq (j'+2) — (D i€Z-class. pseq (i—1) — pseq (Suc 7))
< pseq (j'+2) — (34 € Zj. pseq (i—1) — pseq (Suc i))
by auto
also have ... < pseq (Suc j)
proof —
have pseq (j'+2) — pseq (Suc m) < (3 i € Zm. pseq (i—1) — pseq (Suc 7))
if m € RBSj' < m m<j for m
using that
proof (induction m rule: less-induct)
case (less m)
then have odd m
using odd-RBS by blast
show ?Zcase
proof (cases j'+2 < m)
case True
with less.prems
have Z-if: Z m = (if pseq (Suc m) < pseq (m—1) then insert m (Z
(m—2)) else Z (m—2))
by (auto simp: Z-def)
(metis le-diff-conv2 Suc-lel add-2-eq-Suc’ add-leE even-Suc nat-less-le
odd-RBS)+
have m—2 € RBS
using True <m € RBS> step-odd-minus2 by (auto simp: RBS-def)
then have x: pseq (j'+2) — pseq (m — Suc 0) < (> i€Z (m — 2). pseq
(i—1) — pseq (Suc 1))
using less.IH True less <j' € J» by (force simp: J-def Suc-less-eq2)
moreover have m ¢ Z (m — 2)
by (auto simp: Z-def)
ultimately show ?thesis
by (simp add: Z-if finZ)
next
case Fulse
then have [simp]: m = Suc j'
using <odd m> <j' < m> <even j'> by presburger
have Z m = {}
by (auto simp: Z-def)
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then show ?thesis
by simp
qed
qed
then show ?thesis
using j J-def <j' € J> <j' < j» by force
qed
finally show ?thesis .
qed
finally have p2-le-pSuc: pseq (j'+2) — 2 x ¢ < pseq (Sucj) .
have Suc j' € RBS
unfolding RBS-def
proof (intro not-halted-odd-RBS)
show Suc j' ¢ Step-class {halted}
using Step-class-halted-forever Suc-lel <j' < j> non-halted by blast
qed (use <even j> in auto)
then have pseq (j'+2) < p0
using mazimal[of j'+2] False <j' < j> j odd-RBS
by (simp add: J-def) (smt (verit, best) Suc-lessl even-Suc)
then have lel: hgt (pseq (j'+2)) < 1
by (smt (verit) kn0 hgt-Least qfun0 qfun-strict-mono zero-less-one)
moreover
have j’-dreg: j' € Step-class {dreg-step}
using RBS-def <Suc j' € RBS»> dreg-before-step by blast
have 1: ¢ powr —(1/2) > 1
using kn0 by (simp add: eps-def powr-powr ge-one-powr-ge-zero)
consider (R) Suc j’ € Step-class {red-step}
| (B) Suc j' € Step-class {bblue-step}
| (S) Suc j’ € Step-class {dboost-step}
by (metis Step-class-insert UnE <Suc j' € RBS> RBS-def)
note j’-cases = this
then have hgt-le-hgt: hgt (pseq j') < hgt (pseq (j'+2)) + 2 % € powr (—1/2)
proof cases
case R
have real (hgt (pseq j’)) < hgt (pseq (Suc j'))
using Y-6-5-DegreeReg[OF j'-dreg] kn0 by (simp add: eval-nat-numeral)
also have ... < hgt (pseq (j'+2)) + 2 * € powr (—1/2)
using Y-6-5-Red[OF R <k>16>] 1 by (simp add: eval-nat-numeral)
finally show ?thesis .
next
case B
show %thesis
using Y65B [OF B| by simp
next
case S
then show ?thesis
using Y-6-4-DegreeReg <pseq (j'+2) < p0> Y64-S j'-dreg pSj’' by force
qed
ultimately have B: hgt (pseqj’) < 1 + 2 % ¢ powr (—1/2)
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by linarith
have 2 < real k powr (1/2)
using <k>16> by (simp add: powr-half-sqrt real-le-rsqrt)
then have 8: 2 < real k powr 1 * real k powr —(1/8)
unfolding powr-add [symmetric] using <k>16> order.trans nle-le by fastforce
have p0 — ¢ < qfun 0 — 2 x ¢ powr (1/2) | k
using mult-left-mono [OF 8, of k powr (—1/8)] kn0
by (simp add: qfun-eq eps-def powr-powr field-simps flip: powr-add)
also have ... < pseqj’ — e powr (—1/2) * alpha (hgt (pseq j’))
proof —
have 2: (1 + ¢) ~ (hgt (pseqj’) — Suc 0) < 2
using B big2 kn0 eps-gel
by (smt (verit) diff-Suc-less hgt-gt0 nat-less-real-le powr-mono powr-realpow)
have x: £ > 0 = inverse (z powr (1/2)) * © = z powr (1/2) for z::real
by (simp add: inverse-eg-divide powr-half-sqrt real-div-sqrt)
have p0 — pseqj’' < 0
by (simp add: pSj’)
also have ... < 2 x ¢ powr (1/2) / k — (e powr (1/2)) x (1 + €) "~ (hgt
(pseqj’) — 1)/ k
using mult-left-mono [OF 2, of & powr (1/2) ] k]
by (simp add: field-simps diff-divide-distrib)
finally have p0 — 2 x ¢ powr (1/2) | k
< pseqj’ — (e powr (1/2)) * (1 +¢) = (hgt (pseqj’) — 1) / k
by simp
with * [OF eps-ge(] show ?thesis
by (simp add: alpha-hgt-eq powr-minus) (metis mult.assoc)
qed
also have ... < pseq (j'+2)
using j’-cases
proof cases
case R
have hs-le3: hgt (pseq (Suc j')) < 3
using lel Y-6-5-Red[OF R <k>16>] by simp
then have h-le3: hgt (pseqj’) < 8
using Y-6-5-DegreeReg [OF j’-dreg] by simp
have alphal: alpha (hgt (pseq (Suc j’)) <ex* (1 +¢) ~ 2 /k
by (metis alpha-Suc-eq alpha-mono hgt-gt0 hs-le3 numeral-nat(3))
have alpha2: alpha (hgt (pseq i) > ¢/ k
by (simp add: Red-5-7a)
have pseq j' — ¢ powr (— 1/2) * alpha (hgt (pseq j'))
< pseq (Suc j') — alpha (hgt (pseg (Suc j')))
proof —
have alpha (hgt (pseq (Suc j'))) < (1 + €)? x alpha (hgt (pseq j'))
using alphal mult-left-mono [OF alpha2, of (1 + €)?
by (simp add: mult.commute)
also have ... < inverse (¢ powr (1/2)) * alpha (hgt (pseq j’))
using mult-left-mono [OF bigl, of alpha (hgt (pseq j’))] eps-gt0 alpha-ge0
by (simp add: divide-simps mult-ac)
finally have alpha (hgt (pseq (Suc j')))
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< inverse (e powr (1/2)) = alpha (hgt (pseq j’)) .
then show ?thesis
using Y-6-/-DegreeReg|OF j'-dreg] by (simp add: powr-minus)
qed
also have ... < pseq (j'+2)
by (simp add: R Y-6-4-Red)
finally show ?thesis .
next
case B
then show ?thesis
using Y-6-4-Bblue by force
next
case S
show ?thesis
using Y-6-4/-DegreeReg S <pseq (j'+2) < p0> Y64-S j'-dreg pSj’ by fastforce
qed
finally have p0 — ¢ < pseq (j'+2) .
then have p0 — 3 x ¢ < pseq (j'+2) — 2 x ¢
by simp
with p2-le-pSuc show ?thesis
by linarith
qged

corollary Y-6-2-halted:
assumes big: Big-Y-6-2 u 1
shows pseq halted-point > p0 — 8 * e
proof (cases halted-point=0)
case True
then show ?thesis
by (simp add: eps-gel pee-eq-p0)
next
case Fulse
then have halted-point—1 ¢ Step-class {halted}
by (simp add: halted-point-minimal)
then consider halted-point—1 € Step-class {red-step,bblue-step,dboost-step}
| halted-point—1 € Step-class {dreg-step}
using not-halted-even-dreg not-halted-odd-RBS by blast
then show %thesis
proof cases
case I
with False Y-6-2[of halted-point—1] big show ?thesis by simp
next
case ml-dreg: 2
then have *: pseq halted-point > pseq (halted-point—1)
using False Y-6-4-DegreeReg|of halted-point—1] by simp
have odd halted-point
using m1-dreg False step-even|of halted-point—1] by simp
then consider halted-point=1 | halted-point>2
by (metis False less-2-cases One-nat-def not-le)

102



then show ?thesis
proof cases
case I
with % eps-gt0 kn0 show ?Zthesis
by (simp add: pee-eq-p0)
next
case 2
then have m2: halted-point—2 € Step-class {red-step,bblue-step,dboost-step}
using step-before-dreg|of halted-point— 2] m1-dreg
by (simp flip: Suc-diff-le)
then obtain j where j: halted-point—1 = Suc j
using 2 not0-implies-Suc by fastforce
then have pseq (Suc j) > p0 — 8 * ¢
by (metis m2 Suc-1 Y-6-2 big diff-Suc-1 diff-Suc-eq-diff-pred)
with * j show ?thesis by simp
qed
qed
qged

end

5.5 Lemma 6.1

context P0-min
begin

definition ok-fun-61 = Ak. (2 x real k) % log 2 (I — 2 x eps k powr (1/2) /
p0-min)

lemma ok-fun-61-works:
assumes p0-min > 2 x eps k powr (1/2)
shows 2 powr (ok-fun-61k) = (1 — 2 * (eps k) powr (1/2) / p0-min) ~ (2xk)
using p0-min assms
by (simp add: powr-def ok-fun-61-def log-def flip: powr-realpow)

lemma ok-fun-61: ok-fun-61 € o(real)
unfolding eps-def ok-fun-61-def
using p0-min by real-asymp

definition
Big-Y-6-1 =
Al Big-Y-6-2 pl AN (VEk>1. eps k powr (1/2) < 1/8 A pO0-min > 2 * eps k
pour (1/2))
establishing the size requirements for 6.1
lemma Big-Y-6-1:
assumes 0<ul pl<1
shows V>l Vu. p € {u0..ul} — Big-Y-6-1 p 1
using p0-min assms Big-Y-6-2
unfolding Big- Y-6-1-def eps-def
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apply (simp add: eventually-cong-iff all-imp-conj-distrib)
apply (intro conjl strip eventually-all-ge-at-top eventually-all-gel0; real-asymp)
done

end

lemma (in Book) Y-6-1:
assumes big: Big-Y-6-1 p 1
defines st = Step-class {red-step,dboost-step}
shows card (Yseq halted-point) / card Y0 > 2 powr (ok-fun-61 k) * p0 ~ card st
proof —
have big13: € powr (1/2) < 1/3
and big-p0: p0-min > 2 x € powr (1/2)
and big62: Big-Y-6-2 1
and bigf1: Big-Blue-4-1 ul
using big l-le-k by (auto simp: Big-Y-6-1-def Big-Y-6-2-def)
with /-le-k have dboost-step-limit: card (Step-class {dboost-step}) < k
using bblue-dboost-step-limit by fastforce
define pO0m where pOm = p0 — 2 x € powr (1/2)
have pOm > 0
using big-p0 p0-ge by (simp add: pOm-def)
let YRS = Step-class {red-step,dboost-step }
let YBD = Step-class {bblue-step,dreg-step}
have not-halted-below-m: i ¢ Step-class {halted} if i < halted-point for i
using that by (simp add: halted-point-minimal)
have BD-card: card (Yseq i) = card (Yseq (Suc i))
if i € ?BD for i
proof —
have Yseq (Suc i) = Yseq i
using that
by (auto simp: step-kind-defs next-state-def degree-reg-def split: prod.split
if-split-asm)
with p0-01 kn0 show f?thesis
by auto
qed
have RS-card: pOm * card (Yseq i) < card (Yseq (Suc i))
if i € ?RS for i
proof —
have Yeq: Yseq (Suc i) = Neighbours Red (cvz i) N Yseq i
using that
by (auto simp: step-kind-defs next-state-def split: prod.split if-split-asm)
have odd i
using that step-odd by (auto simp: Step-class-def)
moreover have i-not-halted: i ¢ Step-class {halted}
using that by (auto simp: Step-class-def)
ultimately have iminusi-dreg: i — 1 € Step-class {dreg-step}
by (simp add: dreg-before-step not-halted-odd-RBS)
have pOm * card (Yseq i) < (1 — e powr (1/2)) % pseq (i—1) * card (Yseq i)
proof (cases i=1)
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case True
with p0-01 show ?thesis
by (simp add: pOm-def pee-eq-p0 algebra-simps mult-right-mono)
next
case False
with <odd 7> have i>2
by (metis Suc-lessI dvd-refl One-nat-def odd-pos one-add-one plus-1-eq-Suc)
have i—2 € Step-class {red-step,bblue-step,dboost-step}
proof (intro not-halted-odd-RBS)
show i — 2 ¢ Step-class {halted}
using i-not-halted Step-class-not-halted diff-le-self by blast
show odd (i—2)
using <2 < i> <odd i> by auto
qed
then have Y62: pseq (i—1) > p0 — 3 x ¢
using Y-6-2 [OF - big62] <2 < i> by (metis Suc-1 Suc-diff-Suc Suc-lessD)
show ?thesis
proof (intro mult-right-mono)
have ¢ powr (1/2) * pseq (i—1) < € powr (1/2) * 1
by (metis mult.commute mult-right-mono powr-ge-zero pee-lel)
moreover have 3 * ¢ < ¢ powr (1/2)
proof —
have 3 x ¢ = 8 * (¢ powr (1/2))?
using eps-gel powr-half-sqrt real-sqrt-pow2 by presburger
also have ... < 2 x ((1/8) x € powr (1/2))
by (smt (verit) bigl8 mult-right-mono power2-eq-square powr-ge-zero)
also have ... < e powr (1/2)
by simp
finally show ?thesis .
qed
ultimately show pOm < (1 — ¢ powr (1/2)) * pseq (i — 1)
using Y62 by (simp add: pOm-def algebra-simps)
qed auto
qed
also have ... < card (Neighbours Red (cvz i) N Yseq i)
using Red-5-8 [OF iminus1-dreg] cvz-in-Xseq that <odd i»
by fastforce
finally show ?thesis
by (simp add: Yeq)
qed
define ST where ST = \i. /RS N {..<i}
have ST (Suc i) = (if i € ?RS then insert i (ST i) else ST i) for i
by (auto simp: ST-def less-Suc-eq)
then have [simp]: card (ST (Suc i)) = (if i € ?RS then Suc (card (ST i)) else
card (ST i)) for i
by (simp add: ST-def)
have STm: ST halted-point = st
by (auto simp: ST-def st-def Step-class-def simp flip: halted-point-minimal)
have pOm = card (ST i) < ([[j<i. card (Yseq(Suc j)) / card (Yseq j)) if
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i1<halted-pointfor i
using that
proof (induction 1)
case ()
then show ?case
by (auto simp: ST-def)
next
case (Suc 1)
then have i: i ¢ Step-class {halted}
by (simp add: not-halted-below-m)
consider (RS) i € RS
| (BD) i€ ?BD Ni ¢ ?RS
using i stepkind.ezhaust by (auto simp: Step-class-def)
then show ?case
proof cases
case RS
then have pOm ~ card (ST (Suc i)) = pOm % pOm ~ card (ST 1)
by simp
also have ... < pOm * ([[j<i. card (Yseq(Suc j)) / card (Yseq j))
using Suc Suc-leD <0 < pOm> mult-left-mono by auto
also have ... < (card (Yseq (Suc i)) / card (Yseq i)) = ([[j<i. card (Yseq
(Suc j)) / card (Yseq j))
proof (intro mult-right-mono)
show pOm < card (Yseq (Suc i)) / card (Yseq i)
by (simp add: RS RS-card Yseq-gt0 i pos-le-divide-eq)
qed (simp add: prod-nonneg)

also have ... = ([[j<Suc i. card (Yseq (Suc j)) / card (Yseq j))
by simp
finally show ?Zthesis .
next
case BD

with Yseg-gt0 [OF i] show ?thesis
by (simp add: Suc Suc-leD BD-card)
qed
qed
then have p0m ~ card (ST halted-point) < ([[j < halted-point. card (Yseq(Suc
7)) / card (Yseqj))
by blast
also have ... = card (Yseq halted-point) / card (Yseq 0)
proof —
have Ai. i < halted-point = card (Yseq i) # 0
by (metis Yseq-gt0 less-irrefl not-halted-below-m)
then show %thesis
using card-XY0 prod-lessThan-telescope-mult [of halted-point \i. real (card
(Yseq )]
by (simp add: nonzero-eq-divide-eq)
qed
finally have %: (p0 — 2 % & powr (1/2)) ~ card st < card (Yseq halted-point)
/ card (Y0)

106



by (simp add: STm pOm-def)
— Asymptotic part of the argument
have st-le-2k: card st < 2 *x k
proof —
have st C Step-class {red-step,dboost-step}
by (auto simp: st-def Step-class-insert-NO-MATCH)
moreover have finite (Step-class {red-step,dboost-step})
using finite-components by (auto simp: Step-class-insert-NO-MATCH )
ultimately have card st < card (Step-class {red-step,dboost-step})
using card-mono by blast
also have ... = card (Step-class {red-step} U Step-class {dboost-step})
by (auto simp: Step-class-insert-NO-MATCH )
also have ... < k+k
by (meson add-le-mono card-Un-le dboost-step-limit le-trans less-imp-le-nat
red-step-limit)
finally show ?thesis
by auto
qed
have 2 powr (ok-fun-61 k) = p0 ~ card st < (p0 — 2 x € powr (1/2)) ~ card st
proof —
have 2 powr (ok-fun-61k) = (1 — 2 x € powr(1/2) / pO0-min) ~ (2xk)
using big-p0 ok-fun-61-works by blast
also have ... < (1 — 2 x e powr(1/2) / p0) ~ (2xk)
using p0-ge p0-min big-p0 by (intro power-mono) (auto simp: frac-le)
also have ... < (1 — 2 x e powr(1/2) / p0) ~ card st
using big-p0 p0-01 <0 < pOm>
by (intro power-decreasing st-le-2k) (auto simp: pOm-def)
finally have §: 2 powr ok-fun-61k < (1 — 2 % € powr (1/2) / p0) ~ card st .
have (1 — 2 % € powr (1/2) / p0) ~ card st x p0 ~ card st
=((1 — 2 xepowr (1/2) ]/ p0) * p0) ~ card st
by (simp add: power-mult-distrib)
also have ... = (p0 — 2 x ¢ powr (1/2)) ~ card st
using p0-01 by (simp add: algebra-simps)
finally show ?thesis
using mult-right-mono [OF §, of p0 ~ card st] p0-01 by auto
qed
with x show ?thesis
by linarith
qed

end

6 Bounding the Size of X

theory Bounding-X imports Bounding-Y

begin
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6.1 Preliminaries

lemma sum-odds-even:
fixes f :: nat = ’a :: ab-group-add
assumes even m
shows (3" i € {i.i<m A odd i}. f (Suci) — f (i =Suc 0)) =fm — f0
using assms
proof (induction m rule: less-induct)
case (less m)
show ?case
proof (cases m<2)
case True
with <even m> show %thesis
by fastforce
next
case Fulse
have eq: {i. i<m A odd i} = insert (m—1) {i. i<m—2 A odd i}
proof
show {i. i <m A oddi} C insert (m — 1) {i.i <m — 2 A odd i}
using <even m»> by clarify presburger
qged (use False less in auto)
have [simp]: = (m — Suc 0 < m — 2)
by linarith
show ?thesis
using False by (simp add: eq less flip: numeral-2-eq-2)
qed
qged

lemma sum-odds-odd:
fixes f :: nat = ’a :: ab-group-add
assumes odd m
shows (3" i € {i.i<m A odd i}. f (Suci) — f (i — Suc 0)) =f (m—1) — f0
proof —
have eq: {i. i<m A odd i} = {i. i<m—1 A odd i}
using assms not-less-iff-gr-or-eq by fastforce
show ?thesis
by (simp add: sum-odds-even eq assms)
qged

context Book
begin

the set of moderate density-boost steps (page 20)

definition dboost-star where
dboost-star = {i € Step-class {dboost-step}. real (hgt (pseq (Suc i))) — hgt (pseq
i) < e powr (—=1/4)}

definition bigbeta where
bigbeta = let S = dboost-star in if S = {} then u else (card S) * inverse (D i€S.
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inverse (beta 1))

lemma dboost-star-subset: dboost-star C Step-class {dboost-step}
by (auto simp: dboost-star-def)

lemma finite-dboost-star: finite (dboost-star)
by (meson dboost-step-finite dboost-star-subset finite-subset)

lemma bigbeta-ge0: bigbeta > 0
using p01 by (simp add: bigbeta-def Let-def beta-ge0 sum-nonneg)

lemma bigbeta-ge-square:
assumes big: Big-Red-5-3 1l
shows bigbeta > 1 / (real k)2
proof —
have k: 1 / (real k)* < u
using big kn0 l-le-k by (auto simp: Big-Red-5-3-def)
have fin: finite (dboost-star)
using assms finite-dboost-star by blast
have R53: Vi € Step-class {dboost-step}. 1 / (real k)2 < beta i
using Red-5-3 assms by blast
show 1 / (real k) ~2 < bigbeta
proof (cases dboost-star = {})
case True
then show ?thesis
using assms k by (simp add: bigbeta-def)
next
case Fualse
then have card-gt0: card (dboost-star) > 0
by (meson card-gt-0-iff dboost-star-subset fin finite-subset)
moreover have x: Vi € dboost-star. beta i > 0 A (real k) ~2 > inverse (beta
i)
using R53 kn0 assms by (simp add: beta-gt0 field-simps dboost-star-def)
ultimately have (Y i€dboost-star. inverse (beta i)) < card (dboost-star) =
(real k) ~2
by (simp add: sum-bounded-above)
moreover have (> i€dboost-star. inverse (beta 7)) # 0
by (metis * False fin inverse-positive-iff-positive less-irrefl sum-pos)
ultimately show ?thesis
using False card-gt0 k bigbeta-gel
by (simp add: bigbeta-def Let-def divide-simps split: if-split-asm)
qed
qged

lemma bigbeta-gt0:

assumes big: Big-Red-5-3 1 1

shows bigbeta > 0

by (smt (verit) kn0 assms bigbeta-ge-square of-nat-zero-less-power-iff zero-less-divide-iff )
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lemma bigbeta-lessi:
assumes big: Big-Red-5-3 1l
shows bigbeta < 1
proof —
have «: Vic€Step-class {dboost-step}. 0 < beta i
using assms beta-gt0 big by blast
have fin: finite (Step-class {dboost-step})
using dboost-step-finite assms by blast
show bigbeta < 1
proof (cases dboost-star = {})
case True
then show ?thesis
using assms p01 by (simp add: bigbeta-def )
next
case Fulse
then have gt0: card (dboost-star) > 0
by (meson card-gt-0-iff dboost-star-subset fin finite-subset)
have real (card (dboost-star)) = (3 i€dboost-star. 1)
by simp
also have ... < (" i€dboost-star. 1 / beta i)
proof (intro sum-strict-rmono)
show finite (dboost-star)
using card-gt-0-iff gt0 by blast
fix i
assume i € dboost-star
with assms p01 * dboost-star-subset beta-le
show 1 < 1 / beta i
by (force simp: Step-class-insert-NO-MATCH )
qed (use False in auto)
finally show ?thesis
using False by (simp add: bigbeta-def Let-def divide-simps)
qed
qed

lemma bigbeta-le:
assumes big: Big-Red-5-3 1 1
shows bigbeta < p
proof —
have real (card (dboost-star)) = (3 i€dboost-star. 1)
by simp
also have ... < (> i€dboost-star. i / beta 7)
proof (intro sum-mono)
fix 1
assume i: i € dboost-star
with beta-le dboost-star-subset have beta i < p
by (auto simp: Step-class-insert-NO-MATCH )
with beta-gt0 assms show 1 < i / beta i
by (smt (verit) dboost-star-subset divide-less-eq-1-pos i subset-iff )
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qed
also have ... = p * (> i€dboost-star. 1 / beta i)
by (simp add: sum-distrib-left)
finally have real (card (dboost-star)) < u * (> i€dboost-star. 1 / beta i) .
moreover have (Y i€dboost-star. 1 / beta i) > 0
by (simp add: beta-ge0 sum-nonneg)
ultimately show ?thesis
using 101 by (simp add: bigbeta-def Let-def divide-simps)
ged

end

6.2 Lemma 7.2
definition Big-X-7-2 = Au . nat [real I powr (8/4)] >3 A1 >1/ (1—p)
establishing the size requirements for 7.11

lemma Big-X-7-2:
assumes (0<ul pl<1
shows VL. Vpu. p € {u0.u1} — Big-X-7-2 'l
unfolding Big-X-7-2-def eventually-conj-iff all-imp-conj-distrib eps-def
apply (simp add: eventually-cong-iff all-imp-conj-distrib)
apply (intro congl strip eventually-all-gell [where L=1] eventually-all-ge-at-top)
apply real-asymp+
by (smt (verit, best) <pu1<1> frac-le)

definition ok-fun-72 = Au k. (real k / In 2) x In (1 — 1 / (k x (1—p)))

lemma ok-fun-72:
assumes <1
shows ok-fun-72 p € o(real)
using assms unfolding ok-fun-72-def by real-asymp

lemma ok-fun-72-uniform:
assumes (0<ul pl<1
assumes e>()
shows V®k Vu. pu0 < pAp<pl — |ok-fun-72 n k| / k <e
proof (intro eventually-all-gel1 [where L = Suc(nat|[1/(1—p1)])])
show V k. |ok-fun-72 pl k| / real k < e
using assms unfolding ok-fun-72-def by real-asymp
next
fix k p
assume le-e: |ok-fun-72 pl k| / real k < e
and p: p0 < pop < pl
and k: Suc(nat[1/(1—pl1)]) <k
with assms have I > 1 / (real k * (1 — pl))
by (smt (verit, best) divide-less-eq divide-less-eq-1 less-eq-Suc-le natceiling-lessD)
then have *: 1 > 1 / (real k * (1 — r)) if r<ul for r
using that assms k less-le-trans by fastforce

have t: 1 / (k* (1 —p)) <1/ (k= (1 — pl))
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using p assms by (simp add: divide-simps mult-less-0-iff )
obtain u<1 k>0 using p k assms by force
then have |ok-fun-72 u k| < |ok-fun-72 u1 k|
using u * assms T
by (simp add: ok-fun-72-def abs-mult zero-less-mult-iff abs-of-neg divide-le-cancel)
then show |ok-fun-72 p k| / real k < e
by (smt (verit, best) le-e divide-right-mono of-nat-0-le-iff )
qed

lemma (in Book) X-7-2:
defines R = Step-class {red-step}
assumes big: Big-X-7-2 1
shows ([[i€R. card (Xseq(Suc i)) / card (Xseq i)) > 2 powr (ok-fun-72 p k) =
(I—p) ~card R
proof —
define R where R = RN k (nat [real | powr (3/4)])
have 134-ge3: nat [real l powr (3/4)] > 3 and k-gt: k > 1 / (1—p)
using big l-le-k by (auto simp: Big-X-7-2-def)
then obtain R > kk > 2
using 101 RN-gt1 R-def l-le-k
by (smt (verit, best) divide-le-eq-1-pos fact-2 nat-le-real-less of-nat-fact)
with k-gt ;101 have bigR: 1—p > 1/R
by (smt (verit, best) less-imp-of-nat-less In-div In-le-cancel-iff zero-less-divide-iff )
have *: 1—y — 1/R < card (Xseq (Suc i)) / card (Xseq i)
if i € R for ¢
proof —
let YNRX = M\i. Neighbours Red (cvx i) N Xseq i
have nextX: Xseq (Suc i) = NRX i and nont: — termination-condition (Xseq
i) (Yseq i)
using that by (auto simp: R-def step-kind-defs next-state-def split: prod.split)
then have cardX: card (Xseq i) > R
unfolding R-def by (meson not-less termination-condition-def)
have 1: card (YNRX i) > (1—p) * card (Xseq i) — 1
using that card-cvz-Neighbours ;01 by (simp add: R-def Step-class-def)
have R # 0
using <k < R> by linarith
with cardX have (1—p) — 1 / R < (I1—p) — 1 / card (Xseq ©)
by (simp add: inverse-of-nat-le)
also have ... < card (Xseq (Suc 1)) / card (Xseq i)
using cardX nextX 1 by (simp add: divide-simps)
finally show ?thesis .
qed
have fin-red: finite R
using red-step-finite by (auto simp: R-def)
define ¢ where ¢t = card R
have t>0
by (auto simp: t-def)
have (1—u — 1/R) ~ card Red-steps < ([] ¢ € Red-steps. card (Xseq(Suc 1)) /
card (Xseq 1))
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if Red-steps C R for Red-steps
using finite-subset [OF that fin-red] that
proof induction
case empty
then show ?case
by auto
next
case (insert i Red-steps)
then have i: i € R
by auto
have ((1—u) — 1/R) ~ card (insert i Red-steps) = ((1—p) — 1/R) * ((1—p)
— 1/R) " card (Red-steps)
by (simp add: insert)
also have ... < (card (Xseq (Suc 1)) / card (Xseq 1)) * ((I—u) — 1/R) ~
card (Red-steps)
using bigR by (intro mult-right-mono * 1) auto
also have ... < (card (Xseq (Suc i)) / card (Xseq 1)) = (][4 € Red-steps. card
(Xseq(Suc i) / card (Xseq 1))
using insert by (intro mult-left-mono) auto
also have ... = ([] i€insert i Red-steps. card (Xseq(Suc i)) / card (Xseq i))
using insert by simp
finally show ?case .
qed
then have «: (I—u — 1/R) ~t < ([[i € R. card (Xseq(Suc i)) / card (Xseq
i)
using t-def by blast
— Asymptotic part of the argument
have 1—p — 1/k < 1—p— 1/R
using kn0 <k < R» by (simp add: inverse-of-nat-le)
then have In-le: In (1—p — 1/k) <In (I—p — 1/R)
using p01 k-gt <R>k> by (simp add: bigR divide-simps mult.commute less-le-trans)
have ok-fun-72 p k xIln 2 =k xIn (1 — 1 / (k x (1—p)))
by (simp add: ok-fun-72-def)
alsohave ... <t xIn (1 — 1/ (kx (1—p)))
proof (intro mult-right-mono-neg)
have red-steps: card R < k
using red-step-limit <0<p> by (auto simp: R-def)
show real t < real k
using nat-less-le red-steps by (simp add: t-def)
show In (1 — 1/ (k=*(1—p)) <0
using p01 divide-less-eq k-gt In-one-minus-pos-upper-bound by fastforce
qed

also have ... = ¢t xIn (I—p — 1/k) / (1—p))
using <t>0> p01 by (simp add: diff-divide-distrib)
also have ... =t x (In (1—p — 1/k) — In (1—p))

using <t>0> p01 k-gt kn0 In-div by force
also have ... < ¢« (In (I1—p — 1/R) — In (1—p))
by (simp add: In-le mult-left-mono)
finally have ok-fun-72 p k «In 2 + ¢t «In (1—p) < t*in (I1—p — 1/R)
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by (simp add: ring-distribs)
then have 2 powr ok-fun-72 p k x (1—p) ~t < (I—p — 1/R) "t
using ©01 by (simp add: bigR In-mult In-powr In-realpow flip: In-le-cancel-iff )
with x show ?thesis
by (simp add: t-def)
qged

6.3 Lemma 7.3

context Book
begin

definition Bdelta = A p i. Bseq (Suc i) \ Bseq i

lemma card-Bdelta: card (Bdelta 1 i) = card (Bseq (Suc i)) — card (Bseq 1)
by (simp add: Bseqg-mono Bdelta-def card-Diff-subset finite-Bseq)

lemma card-Bseq-mono: card (Bseq (Suc 1)) > card (Bseq i)
by (simp add: Bseq-Suc-subset card-mono finite-Bseq)

lemma card-Bseq-sum: card (Bseq i) = (> j<i. card (Bdelta p j))
proof (induction 1)
case ()
then show ?case
by auto
next
case (Suc 1)
with card-Bseqg-mono show ?case
unfolding card-Bdelta sum.less Than-Suc
by (smt (verit, del-insts) Nat.add-diff-assoc diff-add-inverse)
qed

definition get-blue-book = Mi. let (X,Y,A,B) = stepper i in choose-blue-book
(X7Y’A7B)

Tracking changes to X and B. The sets are necessarily finite

lemma Bdelta-bblue-step:
assumes i € Step-class {bblue-step}
shows 35 C Xseq i. Bdelta pi =S
A card (Xseq (Suc i)) > (1 = card S) % card (Xseq i) / 2
proof —
obtain X Y A B S T where step: stepper i = (X,Y,A,B) and bb: get-blue-book
i=(5,T)
and wvalid: valid-state(X,Y ,A,B)
by (metis surj-pair valid-state-stepper)
moreover have finite X
by (metis V-state-stepper finX step)
ultimately have «: stepper (Suc i) = (T, Y, A, BUS) A good-blue-book X (S,T)

and Xeq: X = Xseq i
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using assms choose-blue-book-works [of X S T Y A B
by (simp-all add: step-kind-defs next-state-def valid-state-def get-blue-book-def
choose-blue-book-works split: if-split-asm)
show ?thesis
proof (intro exl conjl)
have S C X
proof (intro choose-blue-book-subset [THEN conjunctl] <finite X )
show (S, T) = choose-blue-book (X, Y, A, B)
using bb step by (simp add: get-blue-book-def Xseq-def)
qed
then show S C Xseq i
using Xeq by force
have disjnt X B
using valid by (auto simp: valid-state-def disjoint-state-def)
then show Bdelta i =S
using * step <S C X> by (auto simp: Bdelta-def Bseq-def disjnt-iff)
show p ~ card S * real (card (Xseq 1)) / 2 < real (card (Xseq (Suc i)))
using * by (auto simp: Xseq-def good-blue-book-def step)
qed
qged

lemma Bdelta-dboost-step:
assumes | € Step-class {dboost-step}
shows 3z € Xseq i. Bdelta i = {z}
proof —
obtain X Y A B where step: stepper i = (X,Y,A,B) and valid: valid-state(X,Y ,A,B)
by (metis surj-pair valid-state-stepper)
have cvz: choose-central-vz (X,Y,A,B) € X
by (metis Step-class-insert Un-iff cvz-def cvz-in-Xseq assms step stepper-XYseq)
then have 3 X’ Y' stepper (Suc i) = (X', Y', A, insert (choose-central-vz
(X,Y,A,B)) B)
using assms step
by (auto simp: step-kind-defs next-state-def split: if-split-asm)
moreover have choose-central-vz (X,Y,A,B) ¢ B
using valid cvz by (force simp: valid-state-def disjoint-state-def disjnt-iff)
ultimately show ?thesis
using step cvz by (auto simp: Bdelta-def Bseg-def disjnt-iff Xseq-def)
qed

lemma card-Bdelta-dboost-step:
assumes i € Step-class {dboost-step}
shows card (Bdelta p i) = 1
using Bdelta-dboost-step [OF assms] by force

lemma Bdelta-trivial-step:
assumes i: i € Step-class {red-step,dreg-step,halted }
shows Bdelta 1 = {}
using assms
by (auto simp: step-kind-defs newt-state-def Bdelta-def degree-reg-def split: if-split-asm

115



prod.split)
end
definition ok-fun-73 = Ak. — (real k powr (3/4))

lemma ok-fun-73: ok-fun-73 € o(real)
unfolding ok-fun-73-def by real-asymp

lemma (in Book) X-7-3:
assumes big: Big-Blue-4-1 p 1
defines B = Step-class {bblue-step}
defines S = Step-class {dboost-step}
shows ([[i € B. card (Xseq(Suc i)) / card (Xseq i)) > 2 powr (ok-fun-78 k) x*
w (1 = card S)
proof —
have [simp]: finite B finite S and cardB: card B < I powr (3/4)
using assms bblue-step-limit big by (auto simp: B-def S-def)
define b where b = \i. card (Bdelta p 1)
obtain ¢ where card (Bseq i) = sum b B + card S
proof —
define i where i = Suc (Maz (B U S))
define TRIV where TRIV = Step-class {red-step,dreg-step,halted} N {..<i}
have [simp]: finite TRIV
by (auto simp: TRIV-def)
have eq: BU S U TRIV = {.<i}
proof
show BU S U TRIV C {..<i}
by (auto simp: i-def TRIV-def less-Suc-eq-le)
show {.<i} C BUS U TRIV
using stepkind.ezhaust by (auto simp: B-def S-def TRIV-def Step-class-def)
qed
have dis: BNS ={} (BUS) N TRIV = {}
by (auto simp: B-def S-def TRIV-def Step-class-def)
show thesis
proof
have card (Bseqi) = (3.j € BUS U TRIV. bj)
using card-Bseq-sum eq unfolding b-def by metis

also have ... = (3} jeB. bj) + (> jeS. bj) + (D jeTRIV. bj)
by (simp add: sum-Un-nat dis)
also have ... = sum b B + card S

by (simp add: b-def S-def card-Bdelta-dboost-step TRIV-def Bdelta-trivial-step)
finally show card (Bseq i) = sum b B + card S .
qed
qed
then have sum-b-B: sum b B <1 — card S
by (metis Bseg-less-1 less-diff-conv nat-less-le)
have real (card B) < real k powr (3/4)
using cardB l-le-k
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by (smt (verit, best) divide-nonneg-pos of-nat-0-le-iff of-nat-mono powr-mono2)
then have 2 powr (ok-fun-73 k) < (1/2) ~ card B
by (simp add: ok-fun-73-def powr-minus divide-simps flip: powr-realpow)
then have 2 powr (ok-fun-73k) x u ~ (I — card §) < (1/2) ~card B x u ~ (I
— card S)
by (simp add: p01)
also have (1/2) ~card Bxu ~ (I — card §) < (1/2) ~card B x p ~ (sum b
B)
using p01 sum-b-B by simp
also have ... = ([[ieB.p ~bi/ 2)
by (simp add: power-sum prod-dividef divide-simps)
also have ... < ([[ieB. card (Xseq (Suc 1)) / card (Xseq 1))
proof (rule prod-mono)
fix 1 :: nat
assume | € 3
then have — termination-condition (Xseq i) (Yseq i)
by (simp add: B-def Step-class-def flip: step-non-terminating-iff)
then have card (Xseq i) # 0
using termination-condition-def by force
with <i€B> pu0! show 0 < pu ~bi/2Ap ~bi/ 2 < card (Xseq (Suc 1))
/ card (Xseq i)
by (force simp: b-def B-def divide-simps dest!: Bdelta-bblue-step)
qed
finally show ?thesis .
qed

6.4 Lemma 7.5
Small o(k) bounds on summations for this section

This is the explicit upper bound for heights given just below (5) on page
9

definition ok-fun-26 = k. 2 xInk / eps k
definition ok-fun-28 = \k. —2 * real k powr (7/8)

lemma ok-fun-26: ok-fun-26 € o(real) and ok-fun-28: ok-fun-28 € o(real)
unfolding ok-fun-26-def ok-fun-28-def eps-def by real-asymp+

definition
Big-X-7-5 =
A l. Big-Blue-4-1 p 1 N Big-Red-5-3 I N\ Big-Y-6-5-Bblue |
A (Y k>I. Big-height-upper-bound k N k>16 N (ok-fun-26 k — ok-fun-28 k
< k)

establishing the size requirements for 7.5

lemma Big-X-7-5:
assumes 0<ul pl<1
shows VL. Vpu. u € {pu0.u1} — Big-X-7-5 pu l
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proof —
have ok: V*°l. ok-fun-26 | — ok-fun-281 <l
unfolding eps-def ok-fun-26-def ok-fun-28-def by real-asymp
show ?thesis
using assms Big-Y-6-5-Bblue Big-Red-5-3 Big-Blue-4-1
unfolding Big-X-7-5-def
apply (simp add: eventually-cong-iff all-imp-conj-distrib)
apply (intro conjl strip eventually-all-ge-at-top ok Big-height-upper-bound;
real-asymp)
done
qed

context Book
begin

lemma X-26-and-28:
assumes big: Big-X-7-5 1
defines D = Step-class {dreg-step}
defines B = Step-class {bblue-step}
defines H = Step-class {halted}
defines h = \i. real (hgt (pseq 7))
obtains (> ie{..<halted-point} \ D. h (Suc i) — h (i—1)) < ok-fun-26 k
ok-fun-28 k < (3" i € B. h(Suc i) — h(i—1))
proof —
define S where S = Step-class {dboost-step}
have B-limit: Big-Blue-4-1 1 | and bigY65B: Big-Y-6-5-Bblue [
and hub: Big-height-upper-bound k
using big l-le-k by (auto simp: Big-X-7-5-def)
have m-minimal: i ¢ H <— i < halted-point for i
unfolding H-def using halted-point-minimal assms by blast
have oddset: {..<halted-point} \ D = {i € {..<halted-point}. odd i}
using m-minimal step-odd step-even not-halted-even-dreg
by (auto simp: D-def H-def Step-class-insert-NO-MATCH)
— working on 28
have ok-fun-28 k < —2 x € powr (—1/2) * card B
proof —
have k powr (1/8) % card B < k powr (1/8) * l powr (3/4)
using B-limit bblue-step-limit by (simp add: B-def mult-left-rnono)
also have ... < k powr (1/8) * k powr (3/4)
by (simp add: l-le-k mult-mono powr-mono?2)
also have ... = k powr (7/8)
by (simp flip: powr-add)
finally show ?thesis
by (simp add: eps-def powr-powr ok-fun-28-def)
qed
also have ... < (> i € B. h(Suc i) — h(i—1))
proof —
have (>Ji € B. —2 x € powr (—1/2)) < (>_i € B. h(Suc i) — h(i—1))
proof (rule sum-mono)
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fix ¢ :: nat
assume i: i € B
show —2 x ¢ powr (—1/2) < h(Suc i) — h(i—1)
using bigY65B kn0 i Y-6-5-Bblue by (fastforce simp: B-def h-def)
qed
then show ?thesis
by (simp add: mult.commute)
qed
finally have 28: ok-fun-28 k < (3. i € B. h(Suc i) — h(i—1)) .
have (> i € {..<halted-point} \ D. h(Suc i) — h(i—1)) < h halted-point — h 0
proof (cases even halted-point)
case Fualse
have hgt (pseq (halted-point — Suc 0)) < hgt (pseq halted-point)
using Y-6-5-DegreeReqg [of halted-point— 1] False m-minimal not-halted-even-dreg
odd-pos
by (fastforce simp: H-def)
then have h(halted-point — Suc 0) < h halted-point
using h-def of-nat-mono by blast
with False show ?thesis
by (simp add: oddset sum-odds-odd)
qed (simp add: oddset sum-odds-even)
also have ... < ok-fun-26 k
proof —
have hgt (pseq i) > 1 for i
by (simp add: Suc-lel hgt-gt0)
moreover have hgt (pseq halted-point) < ok-fun-26 k
using hub pee-lel height-upper-bound unfolding ok-fun-26-def by blast
ultimately show ?thesis
by (simp add: h-def)
qed
finally have 26: (> ie{..<halted-point} \ D. h (Suc i) — h (i—1)) < ok-fun-26
k.
with 28 show %thesis
using that by blast
qed

proposition X-7-5:
assumes : 0<p pu<l
defines S = Step-class {dboost-step} and SS = dboost-star
assumes big: Big-X-7-5 1
shows card (S\SS) < 8 * € powr (1/4) * k
proof —
define D where D = Step-class {dreg-step}
define R where R = Step-class {red-step}
define B where B = Step-class {bblue-step}
define h where h = \i. real (hgt (pseq i))
obtain 26: (D i€{..<halted-point} \ D. h (Suc i) — h (i—1)) < ok-fun-26 k
and 28: ok-fun-28 k < (3" i € B. h(Suc i) — h(i—1))
using X-26-and-28 assms(1—3) big
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unfolding B-def D-def h-def Big-X-7-5-def by blast
have §S: SS ={i € S. h(Suci) — hi < e powr (—1/4)} and S§ C S
by (auto simp: SS-def S-def dboost-star-def h-def)
have in-S: h(Suc i) — h i > e powr (—1/4) if i € S\SS for i
using that by (fastforce simp: SS)
have B-limit: Big-Blue-4-1 11
and bigR53: Big-Red-5-3 'l
and 16: k>16
and ok-fun: ok-fun-26 k — ok-fun-28 k < k
using big l-le-k by (auto simp: Big-X-7-5-def)
have [simp]: finite R finite B finite S
using finite-components by (auto simp: R-def B-def S-def)
have [simp]: RN S = {} BN (RUS) = {}
by (auto simp: R-def S-def B-def Step-class-def)

obtain cardss: card SS < card S card (S\SS) = card S — card SS
by (meson <SS C 8> <finite S> card-Diff-subset card-mono infinite-super)
have (> i € S. h(Suc i) — h(i—1)) > € powr (—1/4) * card (S\SS)
proof —
have (> i € S\SS. h(Suc i) — h(i—1)) > (i € S\SS. € powr (—1/4))
proof (rule sum-mono)
fix ¢ :: nat
assume i: i € S\SS
with i obtain i—1 € D i>0
using dreg-before-step1 dreg-before-gt0 by (fastforce simp: S-def D-def
Step-class-insert-NO-MATCH )
with i show ¢ powr (—1/4) < h(Suc i) — h(i—1)
using in-S[of i] Y-6-5-DegreeReg[of i—1] by (simp add: D-def h-def)
qed
moreover
have (> i € §S. h(Suc i) — h(i—1)) > 0
proof (intro sum-nonneg)
show A\i. i € §§ = 0 < h (Suci) — h (i — 1)
using Y-6-4-dbooSt 1 bigR53 by (auto simp: h-def SS S-def hgt-mono)
qed
ultimately show %thesis
by (simp add: mult.commute sum.subset-diff [OF <SS C S»> <finite S»])
qed
moreover
have (>"i € R. h(Suc i) — h(i—1)) > i € R. —=2)
proof (rule sum-mono)
fix i :: nat
assume i: | € R
with i obtain i—1 € D i>0
using dreg-before-stepl dreg-before-gt0
by (fastforce simp: R-def D-def Step-class-insert-NO-MATCH)
with ¢ have hgt (pseq (i—1)) — 2 < hgt (pseq (Suc 7))
using Y-6-5-Red[of i| 16 Y-6-5-DegreeReg|of i—1]
by (fastforce simp: algebra-simps R-def D-def)
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then show — 2 < h(Suc i) — h(i—1)
unfolding h-def by linarith
qed
ultimately have 27: (3 i € RUS. h(Suc i) — h(i—1)) > & powr (—1/4) * card
(S\SS) — 2 % card R
by (simp add: sum.union-disjoint)

have ok-fun-28 k + (¢ powr (—1/4) * card (S\SS) — 2 x card R) < (>_i € B.
h(Suc i) — h(i—1)) + (>_i € RUS. h(Suc i) — h(i—1))
using 27 28 by simp

also have ... = (3 i € BU (RUS). h(Suc i) — h(i—1))

by (simp add: sum.union-disjoint)
also have ... = (> i € {..<halted-point} \ D. h(Suc i) — h(i—1))
proof —

have i € B U (RUS) if i < halted-point i ¢ D for i
using that unfolding D-def B-def R-def S-def
using Step-class-cases halted-point-minimal by auto
moreover
have i € {..<halted-point} \ D if i € B U (RUS) for i
using halted-point-minimal’ that by (force simp: D-def B-def R-def S-def
Step-class-def )
ultimately have B U (RUS) = {..<halted-point} \ D
by auto
then show ?thesis
by simp
qed
finally have ok-fun-28 k + (¢ powr (—1/4) * card (S\SS) — real (2 * card R))
< ok-fun-26 k
using 26 by simp
then have real (card (S \ SS)) < (ok-fun-26 k — ok-fun-28 k + 2 x card R)
e powr (1/4)
using eps-gt0 by (simp add: powr-minus field-simps del: div-add div-mult-self3)
moreover have card R < k
using red-step-limit 1 unfolding R-def by blast
ultimately have card (S\SS) < (k + 2 x k) * ¢ powr (1/4)
by (smt (verit, best) of-nat-add mult-2 mult-right-mono nat-less-real-le ok-fun
powr-ge-zero)
then show ?thesis
by (simp add: algebra-simps)
qed

end

6.5 Lemma 7.4

definition
Big-X-7-4 = A\ 1. Big-X-7-5 p Il N Big-Red-5-3 1 1

establishing the size requirements for 7.4
lemma Big-X-7-4:
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assumes 0<p0 pl<l1

shows VL. V. p € {u0..ul} — Big-X-7-4 ul
using assms Big-X-7-5 Big-Red-5-3

unfolding Big-X-7-4-def

by (simp add: eventually-conj-iff all-imp-conj-distrib)

definition ok-fun-74 = \k. —6 * eps k powr (1/4) xk xInk / In 2

lemma ok-fun-74: ok-fun-74 € o(real)
unfolding ok-fun-74-def eps-def by real-asymp

context Book
begin

lemma X-7-4:
assumes big: Big-X-7-4 1
defines S = Step-class {dboost-step}
shows ([[i€S. card (Xseq (Suc i)) / card (Xseq i)) > 2 powr ok-fun-74 k =
bigbeta ~ card S
proof —
define SS where SS = dboost-star
then have big53: Big-Red-5-3 p 1 and X75: card (S\SS) < 3 x € powr (1/4)
x k
using p01 big by (auto simp: Big-X-7-4-def X-7-5 S-def SS-def)
then have R53: pseq (Suc i) > pseq i A beta i > 1 / (real k)? and beta-gt0: 0
< beta i
ifi € S for i
using that Red-5-3 beta-gt0 by (auto simp: S-def)
have bigbeta01: bigbeta € {0<..<1}
using bigh3 assms bigbeta-gt0 bigbeta-less1 by force
have SS C S
unfolding SS-def S-def dboost-star-def by auto
then obtain [simp]: finite S finite SS
by (simp add: SS-def S-def finite-dboost-star)
have card-SSS: card SS < card S
by (metis SS-def S-def <finite Sy card-mono dboost-star-subset)
have (: beta i = card (Xseq (Suc i)) / card (Xseq i) if i € S for i
proof —
have Xseq (Suc i) = Neighbours Blue (cvz i) N Xseq i
using that unfolding S-def
by (auto simp: step-kind-defs next-state-def split: prod.split)
then show ?thesis
by (force simp: beta-eq)
qed
then have x: ([[i€S. card (Xseq (Suc i)) / card (Xseq i)) = ([[i€S. beta i)
by force
have prod-beta-gt0: prod (beta) S’ > 0 if S" C S for S’
using beta-gt0 that
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by (force simp: beta-ge0 intro: prod-pos)
— bounding the immoderate steps
have (J[[i€S\SS. 1 / beta i) < (J[i€S\SS. real k ~ 2)
proof (rule prod-mono)
fix i
assume i: i € S\ SS
with R58 kn0 beta-ge0 [of i) show 0 < 1 / beta i A 1 / beta i < (real k)?
by (force simp: R53 divide-simps mult.commute)
qed
then have ([[i€S\SS. 1 / beta i) < real k ~ (2 % card(S\SS))
by (simp add: power-mult)
also have ... = real k powr (2 x card(S\SS))
by (metis kn0 of-nat-0-less-iff powr-realpow)
also have ... < k powr (2 x 8 x ¢ powr (1/4) * k)
using X75 kn0 by (intro powr-mono; linarith)
also have ... < exp (6 x € powr (1/4) x k % In k)
by (simp add: powr-def)
also have ... = 2 powr —ok-fun-74 k
by (simp add: ok-fun-74-def powr-def)
finally have ([[i€S\SS. 1 / beta i) < 2 powr —ok-fun-74 k .
then have A: (J[]i€S\SS. beta i) > 2 powr ok-fun-74 k
using prod-beta-gt0[of S\SS]
by (simp add: powr-minus prod-dividef mult.commute divide-simps)
— bounding the moderate steps
have ([[i€SS. 1 / beta i) < bigbeta powr (— (card SS))
proof (cases 8§ = {})
case True
with bigbeta01 show ?thesis
by fastforce
next
case Fulse
then have card S§ > 0
using <finite SS> card-0-eq by blast
have ([[i€SS. 1 / beta i) powr (1 / card SS) < (>_i€SS. 1 / beta i / card
SS)
proof (rule arith-geom-mean [OF <finite SS> <SS # {}3])
show A\i. i € §§ = 0 < 1 / beta i
by (simp add: beta-ge0)
qed
then have (([[i€SS. 1 / beta i) powr (1 / card §S)) powr (card SS)
< (30ieSS. 1/ beta i / card SS) powr (card SS)
using powr-mono2 by auto
with <SS # {}>
have ([[i€S8S. 1 / beta i) < (> i€SS. 1 / betai / card SS) powr (card SS)
by (simp add: powr-powr beta-gel) prod-nonneg)
also have ... < (I / (card SS) * (>_1€S8S. 1 / beta i)) powr (card SS)
using <card SS > 0> by (simp add: field-simps sum-divide-distrib)
also have ... < bigbeta powr (— (card SS))
using <SS # {}» <card §§ > 0»
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by (simp add: bigbeta-def field-simps powr-minus powr-divide beta-gel sum-nonneg
flip: SS-def)
finally show ?thesis .
qed
then have B: ([[i€SS. beta i) > bigbeta powr (card SS)
using <SS C S» prod-beta-gt0[of SS] bigbetall
by (simp add: powr-minus prod-dividef mult.commute divide-simps)
have 2 powr ok-fun-7/ k * bigbeta powr card S < 2 powr ok-fun-74 k * bigbeta
powr card 8S
using bigbeta01 bigh3 card-SSS by (simp add: powr-mono’)
also have ... < ([]i€S\SS. beta i) * ([[1€SS. beta i)
using beta-ge0 by (intro mult-mono A B) (auto simp: prod-nonneg)
also have ... = ([[i€S. beta )
by (metis <SS C S» «finite S> prod.subset-diff )
finally have 2 powr ok-fun-7/ k x bigbeta powr real (card S) < prod (beta) S .
with bigbeta01 show %thesis
by (simp add: x powr-realpow)
qed

6.6 Observation 7.7

lemma X-7-7:
assumes i: i € Step-class {dreg-step}
defines ¢ = ¢ powr (—1/2) * alpha (hgt (pseq i))
shows pseq (Suc i) — pseq i > card (Xseq i \ Xseq (Suc 1)) / card (Xseq (Suc
i)) * ¢ A card (Xseq (Suc i)) > 0
proof —
have finX: finite (Xseq i) for i
using finite-Xseq by blast
define Y where Y = Yseq
have Xseq (Suc i) = {z € Xseq i. red-dense (Y i) (red-density (Xseq i) (Y i))
)
and Y: Y (Suci)=Yi
using ¢
by (simp-all add: step-kind-defs next-state-def X-degree-reg-def degree-reg-def
Y-def split: if-split-asm prod.split-asm)
then have Xseq: Xseq (Suc i) = {z € Xseq i. card (Neighbours Red x N'Y i) >
(pseq i — q) * card (Y i)}
by (simp add: red-dense-def g-def pseq-def Y-def)
have Xsub[simp]: Xseq (Suc i) C Xseq i
using Xseq-Suc-subset by blast
then have card-le: card (Xseq (Suc 1)) < card (Xseq i)
by (simp add: card-mono finX)
have [simp]: disjnt (Xseq i) (Y i)
using Xseq- Yseq-disjnt Y-def by blast
have Xnon0: card (Xseq i) > 0 and Ynon0: card (Y i) > 0
using i by (simp-all add: Y-def Xseq-gt0 Yseq-gt0 Step-class-def)
have alpha (hgt (pseq i)) > 0
by (simp add: alpha-gt0 kn0 hgt-gt0)
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with kn0 have ¢ > 0
by (smt (verit) g-def eps-gt0 mult-pos-pos powr-gt-zero)
have Xdif: Xseq i \ Xseq (Suc i) = {z € Xseq i. card (Neighbours Red x N'Y
i) < (pseqi — q) * card (Y i)}
using Xseq by force
have disYX: disjnt (Y i) (Xseq i \ Xseq (Suc 1))
by (metis Diff-subset <disjnt (Xseq i) (Y i)> disjnt-subset2 disjnt-sym)
have edge-card Red (Y i) (Xseq i \ Xseq (Suc i))
= (> z € Xseq i \ Xseq (Suc i). real (card (Neighbours Red x N Y 1)))
using edge-card-eq-sum-Neighbours [OF - - disYX] finX Red-E by simp
also have ... < (D" z € Xseqi \ Xseq (Suc i). (pseq i — q) * card (Y 7))
by (smt (verit, del-insts) Xdif mem-Collect-eq sum-mono)
finally have A: edge-card Red (Xseq i \ Xseq (Suc 1)) (Y i) < card (Xseq i \
Xseq (Suc i) = (pseqi — q) * card (Y i)
by (simp add: edge-card-commaute)
then have False if Xseq (Suc i) = {}
using <¢>0> Xnon0 Ynon0 that by (simp add: edge-card-eq-pee Y-def mult-le-0-iff)
then have XSnon0: card (Xseq (Suc i)) > 0
using card-gt-0-iff finX by blast
have pseq i * card (Xseq i) * real (card (Y i)) — edge-card Red (Xseq (Suc i))
(Vi)
< card (Xseq i \ Xseq (Suc 1)) = (pseqi — q) * card (Y i)
by (metis A edge-card-eq-pee edge-card-mono Y-def Xsub <disjnt (Xseq i) (Y
i)> edge-card-diff finX of-nat-diff )
moreover have real (card (Xseq (Suc 1))) < real (card (Xseq i))
using Xsub by (simp add: card-le)
ultimately have §: edge-card Red (Xseq (Suc i)) (Y i) > pseq i * card (Xseq
(Suc i) % card (Y i) + card (Xseq i \ Xseq (Suc i)) % ¢ * card (Y i)
using Xnonl
by (smt (verit, del-insts) Xsub card-Diff-subset card-gt-0-iff card-le left-diff-distrib
finite-subset mult-of-nat-commute of-nat-diff )
have edge-card Red (Xseq (Suc 1)) (Y i) / (card (Xseq (Suc i)) * card (Y 7)) >
pseq i + card (Xseq i \ Xseq (Suc i)) x q / card (Xseq (Suc 7))
using divide-right-mono [OF §, of card (Xseq (Suc i)) % card (Y i)] XSnon0
Ynono
by (simp add: add-divide-distrib split: if-split-asm)
moreover have pseq (Suc i) = real (edge-card Red (Xseq (Suc i)) (Y i)) / (real
(card (Y i)) = real (card (Xseq (Suc i))))
using Y by (simp add: pseq-def gen-density-def Y-def)
ultimately show ?thesis
by (simp add: algebra-simps XSnon0)
qged

end

6.7 Lemma 7.8
definition Big-X-7-8 = \k. k>2 A eps kpowr (1/2) /) k> 2/ k2
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lemma Big-X-7-8: V*°k. Big-X-7-8 k
unfolding eps-def Big-X-7-8-def eventually-conj-iff eps-def
by (intro conjl; real-asymp)

lemma (in Book) X-7-8:
assumes big: Big-X-7-8 k
and i: 1 € Step-class {dreg-step}
shows card (Xseq (Suc i)) > card (Xseq i) / k™2
proof —
define ¢ where ¢ = ¢ powr (—1/2) x alpha (hgt (pseq i))
have k>0 <k>2> using big by (auto simp: Big-X-7-8-def)
have 2 / k°2 < e powr (1/2) / k
using big by (auto simp: Big-X-7-8-def)
also have ... < ¢
using kn0 eps-gt0 Red-5-7a [of pseq i]
by (simp add: g-def powr-minus divide-simps flip: powr-add)
finally have ¢-ge: ¢ > 2 / k2.
define Y where Y = Yseq
have Xseq (Suc i) = {z € Xseq i. red-dense (Y i) (red-density (Xseq i) (Y i))
z}
and Y: Y (Suci)=Yi
using ¢
by (simp-all add: step-kind-defs next-state-def X-degree-reg-def degree-reg-def
Y-def split: if-split-asm prod.split-asm)
have XSnon0: card (Xseq (Suc i)) > 0
using X-7-7 kn0 assms by simp
have finX: finite (Xseq i) for i
using finite-Xseq by blast
have Xsub[simp]: Xseq (Suc i) C Xseq i
using Xseq-Suc-subset by blast
then have card-le: card (Xseq (Suc i)) < card (Xseq i)
by (simp add: card-mono finX)
have 2 < (real k)?
by (metis of-nat-numeral <2 < k> of-nat-power-le-of-nat-cancel-iff self-le-ge2-pow)
then have 2: 2 / (realk ~2 4+ 2)> 1/ k"2
by (simp add: divide-simps)
have ¢ * card (Xseq i \ Xseq (Suc 1)) / card (Xseq (Suc i)) < pseq (Suc i) —
pseq i
using X-7-7 p01 kn0 assms by (simp add: g-def mult-of-nat-commute)
also have ... < 1
by (smt (verit) pee-ge0 pee-lel)
finally have ¢ * card (Xseq i \ Xseq (Suc 1)) < card (Xseq (Suc i))
using XSnon0 by auto
with ¢-ge have card (Xseq (Suc i)) > (2 / k°2) * card (Xseq i \ Xseq (Suc i))
by (smt (verit, best) mult-right-mono of-nat-0-le-iff)
then have card (Xseq (Suc i)) *x (1 + 2/k°2) > (2/k"2) * card (Xseq 1)
by (simp add: card-Diff-subset finX card-le diff-divide-distrib field-simps)
then have card (Xseq (Suc i)) > (2/(real k ~ 2 + 2)) * card (Xseq i)
using knl add-nonneg-nonneg|of real k~2 2|
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by (simp del: add-nonneg-nonneg add: divide-simps split: if-split-asm)
then show ?thesis
using mult-right-mono [OF 2, of card (Xseq i)] by simp
qged

6.8 Lemma 7.9

definition Big-X-7-9 = Ak. ((1 + eps k) powr (eps k powr (—1/4) + 1) — 1)/
eps k < 2 % eps k powr (—1/4)
ANk>2 A epskpowr (1/2) )k >2)k"2

lemma Big-X-7-9: V*°k. Big-X-7-9 k
unfolding eps-def Big-X-7-9-def eventually-conj-iff eps-def
by (intro conjl; real-asymp)

lemma one-plus-powr-le:
fixes p::real
assumes (<p p<1 x>0
shows (1+z) powr p — 1 < z*p
proof —
define f where f = A\z. zxp — ((14+z) powrp — 1)
have 0 < f 0
by (simp add: f-def)
also have ... < fz
proof (intro DERIV-nonneg-imp-nondecreasing|of concl: f] exl conjl assms)
fix y::real
assume y: 0 < yy <z
show (f has-real-derivative p — (1+y)powr (p—1) x p) (at y)
unfolding f-def using assms y by (intro derivative-eg-intros | simp)+
show p — (1+y)powr (p—1) xp > 0
using y assms less-eq-real-def powr-less-one by fastforce
qed
finally show ?thesis
by (simp add: f-def)
qged

lemma (in Book) X-7-9:
assumes i: i € Step-class {dreg-step} and big: Big-X-7-9 k
defines hp = \i. hgt (pseq 1)
assumes pseq i > p0 and hgt: hp (Suc i) < hp i + € powr (—1/4)
shows card (Xseq (Suc 1)) > (1 — 2 x € powr (1/4)) * card (Xseq i)
proof —
have k: k>2 ¢ powr (1/2) / k> 2/ k"2
using big by (auto simp: Big-X-7-9-def)
let g = & powr (—1/2) % alpha (hp i)
have k>0 using k by auto
have Xsub[simp]: Xseq (Suc i) C Xseq i
using Xseq-Suc-subset by blast
have finX: finite (Xseq i) for i
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using finite-Xseq by blast
then have card-le: card (Xseq (Suc 1)) < card (Xseq i)
by (simp add: card-mono finX)
have XSnon0: card (Xseq (Suc i)) > 0
using X-7-7 <0 < k> i by blast
have card (Xseq i \ Xseq (Suc i)) / card (Xseq (Suc i)) * ?q < pseq (Suc i) —
pseq i
using X-7-7 i k hp-def by auto
also have ... < 2 x ¢ powr (—1/4) * alpha (hp 7)
proof —
have hgt-le: hp i < hp (Suc i)
using Y-6-5-DegreeReg <0 < k> i hp-def by blast
have A: pseq (Suc i) < gfun (hp (Suc 7))
by (simp add: <0 < k> hp-def hgt-works)
have B: qfun (hp i — 1) < pseq i
using hgt-Least [of hp i — 1 pseq i] <pseq i > p0> by (force simp: hp-def)
have pseq (Suc i) — pseq i < qfun (hp (Suc i)) — qfun (hp i — 1)
using A B by auto
also have ... = ((1 +¢) ~ (Suc (hpi — 1 + hp (Suci)) — hp i) —
(1+e) " (pi—1)) /) k
using kn0 eps-gt0 hgt-le <pseq i > p0> hgt-gt0 [of k]
by (simp add: hp-def qfun-eq Suc-diff-eq-diff-pred hgt-gt0 diff-divide-distrib)
also have ... = alpha (hp i) /e x ((I +¢€) ~ (I + hp (Suci) — hpi)— 1)
using kn0 hgt-le hgt-gt0
by (simp add: hp-def alpha-eq right-diff-distrib flip: diff-divide-distrib power-add)
also have ... < 2 x ¢ powr (—1/4) * alpha (hp 7)
proof —
have ((1 +¢) ~ (1 + hp (Suci) —hpi)—1) /e < ((I + €) powr (¢ powr
(—1/4)+ 1) - 1) /¢
using hgt eps-ge0 hgt-le powr-mono-both by (force simp flip: powr-realpow
intro: divide-right-mono)
also have ... < 2 x ¢ powr (—1/4)
using big by (meson Big-X-7-9-def)
finally have x: ((I + ) ~ (1 + hp (Suc i) — hpi) — 1) /€ < 2 % ¢ powr
(—1/4) -
show ?thesis
using mult-left-mono [OF x, of alpha (hp i)
by (smt (verit) alpha-ge0 mult.commute times-divide-eq-right)
qed
finally show ?thesis .
qed
finally have 29: card (Xseq i \ Xseq (Suc i)) / card (Xseq (Suc i)) * 2q < 2 %
e powr (—1/4) * alpha (hp 1) .
moreover have alpha (hp i) > 0
unfolding hp-def
by (smt (verit, ccfo-SIG) eps-gt0 <0 < k> alpha-ge divide-le-0-iff hgt-gt0
of-nat-0-less-iff )
ultimately have card (Xseq i \ Xseq (Suc i)) / card (Xseq (Suc i)) x € powr
(=1/2) < 2 e powr (=1/4)
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using mult-le-cancel-right by fastforce
then have card (Xseq i \ Xseq (Suc i)) / card (Xseq (Suc i)) < 2 % ¢ powr
(—1/4) * = pour (1/2)
using <0 < k> eps-gt0
by (force simp: powr-minus divide-simps mult.commute mult-less-0-iff)
then have card (Xseq i \ Xseq (Suc 1)) < 2 % ¢ powr (1/4) * card (Xseq (Suc
)
using XSnon0 by (simp add: field-simps flip: powr-add)
also have ... < 2 x ¢ powr (1/4) x card (Xseq i)
by (simp add: card-le mult-mono”)
finally show ?thesis
by (simp add: card-Diff-subset finX card-le algebra-simps)
qed

6.9 Lemma 7.10
definition Big-X-7-10 = Ap 1. Big-X-7-5 p 1 A Big-Red-5-3 1
establishing the size requirements for 7.10

lemma Big-X-7-10:
assumes (<ul pl<1
shows VI . Vpu. p € {u0.ul} — Big-X-7-10 pu 1
using Big-X-7-10-def Big-X-7-4 Big-X-7-4-def assms by force

lemma (in Book) X-7-10:
defines R = Step-class {red-step}
defines S = Step-class {dboost-step}
defines h = \i. real (hgt (pseq 7))
defines C = {i. hi > h (i—1) + € powr (—1/4)}
assumes big: Big-X-7-10 p 1
shows card (RUS) N C) < 8 x e powr (1/4) x k
proof —
define D where D = Step-class {dreg-step}
define B where B = Step-class {bblue-step}
have hub: Big-height-upper-bound k
and 16: k>16
and ok-le-k: ok-fun-26 k — ok-fun-28 k < k
and bigR53: Big-Red-5-3 pl
using big l-le-k by (auto simp: Big-X-7-5-def Big-X-7-10-def)
have RUS C {..<halted-point} \ D \ B and BmD: B C {..<halted-point} \ D
using halted-point-minimal’
by (fastforce simp: R-def S-def D-def B-def Step-class-def )+
then have RS-eq: RUS = {..<halted-point} \ D — B
using halted-point-minimal Step-class-cases by (auto simp: R-def S-def D-def
B-def)
obtain 26: (> ie{..<halted-point} \ D. h (Suc i) — h (i—1)) < ok-fun-26 k
and 28: ok-fun-28 k < (3.4 € B. h(Suc i) — h(i—1))
using X-26-and-28 big unfolding B-def D-def h-def Big-X-7-10-def by blast
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have (> i€RUS. h (Suc i) — h (i—1)) = (O] ie{..<halted-point} \ D. h (Suc
i) —h (i—1)) — O_i € B. h(Suc i) — h(i—1))
unfolding RS-eq by (intro sum-diff BmD) auto
also have ... < ok-fun-26 k — ok-fun-28 k
using 26 28 by linarith
finally have x: (> i€RUS. h (Suc i) — h (i—1)) < ok-fun-26 k — ok-fun-28 k

have [simp]: finite R finite S
using finite-components by (auto simp: R-def S-def)
have h-ge-0-if-S: h(Suc i) — h(i—1) > 0 if i € S for i
proof —
have *: hgt (pseq i) < hgt (pseq (Suc 7))
using bigR53 Y-6-5-dbooSt that unfolding S-def by blast
obtain i—1 € D i>0
using that <i€S> dreg-before-stepl|of i] dreg-before-gt0[of i
by (force simp: S-def D-def Step-class-insert-NO-MATCH)
then have hgt (pseq (i—1)) < hgt (pseq i)
using that kn0 by (metis Suc-diff-1 Y-6-5-DegreeReg D-def )
with * show 0 < h(Suc i) — h(i—1)
using kn0 unfolding h-def by linarith
qed

have card (RUS) N C) x € powr (—1/4) + real (card R) * (—2)
= (321 € RUS. if i€C then € powr (—1/4) else 0) + (3.1 € RUS. if ieR
then —2 else 0)
by (simp add: Int-commute Int-left-commute flip: sum.inter-restrict)
also have ... = (}"i € RUS. (if i€C then € powr (—1/4) else 0) + (if i€R
then —2 else 0))
by (simp add: sum.distrib)
also have ... < (377 € RUS. h(Suc i) — h(i—1))
proof (rule sum-mono)
fix i :: nat
assume i: i € RUS
with i dreg-before-stepl dreg-before-gt0) have D: i—1 € D i>0
by (force simp: S-def R-def D-def dreg-before-step Step-class-def)+
then have x: hgt (pseq (i—1)) < hgt (pseq i)
by (metis Suc-diff-1 Y-6-5-DegreeReg D-def)
show (if i€ C then € powr (—1/4) else 0) + (if i€R then — 2 else 0) < h (Suc
i) — h (i—1)
proof (cases i€R)
case True
then have hi — 2 < h (Suc i)
using Y-6-5-Red[of i] 16 by (force simp: algebra-simps R-def h-def)
with x True show ?thesis
by (simp add: h-def C-def)
next
case False
with i have i€S by blast
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show ?thesis
proof (cases i€(C)
case True
then have h (i — Suc 0) + € powr (—1/4) < h i
by (simp add: C-def)
then show %thesis
using * i <i¢R> kn0 bigR53 Y-6-5-dbooSt by (force simp: h-def S-def)
qged (use <i¢R> <i€S> h-ge-0-if-S in auto)
qed
qed
also have ... <k
using x ok-le-k
by linarith
finally have card ((RUS) N C) * & powr (=1/4) — 2 x card R < k
by linarith
moreover have card R < k
by (metis R-def nless-le red-step-limit)
ultimately have card (RUS) N C) x € powr (—1/4) < 8 x k
by linarith
with eps-gt0 show ?thesis
by (simp add: powr-minus divide-simps mult.commute split: if-split-asm)
qged

6.10 Lemma 7.11

definition Big-X-7-11-inequalities = M\k.
eps k x eps k powr (—1/4) < (I + eps k) ~ (2 % nat |eps k powr
(—1/4))) - 1
ANk > 2xepskpowr (—1/2) % k powr (3/4)
A((1 + epsk) = (1 + eps k) powr (2 % eps k powr (—1/4))) < 2
A (1 + epsk) ~ (nat |2 x eps k powr (—1/4)| + nat |2 = eps k powr
(—1/2)] - 1) < 2

definition Big-X-7-11 =
Al Big-X-7-5 p 1 N\ Big-Red-5-3 1 1 N\ Big-Y-6-5-Bblue |
N (Vk. I<k — Big-X-7-11-inequalities k)

establishing the size requirements for 7.11

lemma Big-X-7-11:

assumes (<ul pl<1

shows VI . Vpu. p € {u0.ul} — Big-X-7-11 pu 1

using assms Big-Red-5-3 Big-X-7-5 Big-Y-6-5-Bblue

unfolding Big-X-7-11-def Big-X-7-11-inequalities-def eventually-conj-iff all-imp-conj-distrib
eps-def

apply (simp add: eventually-cong-iff all-imp-conj-distrib)

apply (intro conjl strip eventually-all-gel0 eventually-all-ge-at-top; real-asymp)

done

lemma (in Book) X-7-11:
defines R = Step-class {red-step}
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defines S = Step-class {dboost-step}
defines C = {i. pseq i > pseq (i—1) + € powr (—1/4) * alpha 1 A pseq (i—1)
< p0}
assumes big: Big-X-7-11 |
shows card (RUS) N C) < 4 x e powr (1/4) x k
proof —
define gstar where gstar = p0 + € powr (—1/4) x alpha 1
define pstar where pstar = \i. min (pseq i) gstar
define D where D = Step-class {dreg-step}
define B where B = Step-class {bblue-step}
have big-z75: Big-X-7-5 1
and 711: € x ¢ powr (—1/4) < (1 +¢) ~ (2 = nat | powr (—1/4)]) — 1
and big3/: k > 2 x ¢ powr (—1/2) * k powr (3/4)
and le2: (I 4+ ¢) % (I + ¢) powr (2 * € powr (—1/4))) < 2

(I +¢) " (nat |2 xe powr (—1/4)] + nat |2 % € powr (—1/2)] — 1)
<2

and bigY65B: Big-Y-6-5-Bblue [
and R58: Ai. i € S = pseq (Suc i) > pseq i
using big l-le-k
by (auto simp: Red-5-3 Big-X-7-11-def Big-X-7-11-inequalities-def S-def)
then have Y-6-5-B: \i. i € B = hgt (pseq (Suc i)) > hgt (pseq (i—1)) — 2
x € powr (—1/2)
using bigY65B Y-6-5-Bblue unfolding B-def by blast
have big41: Big-Blue-4-1 p 1
and hub: Big-height-upper-bound k
and 16: k>16
and ok-le-k: ok-fun-26 k — ok-fun-28 k < k
using big-z75 I-le-k by (auto simp: Big-X-7-5-def)
have oddset: {..<halted-point} \ D = {i € {..<halted-point}. odd i}
using step-odd step-even not-halted-even-dreg halted-point-minimal by (auto
simp: D-def)
have [simp]: finite R finite B finite S
using finite-components by (auto simp: R-def B-def S-def)
have [simp]: R NS = {} and [simp]: (R U S) N B = {}
by (simp-all add: R-def S-def B-def Step-class-def disjoint-iff)

have hgt-gstar-le: hgt gstar < 2 x ¢ powr (—1/4)
proof (intro real-hgt-Least)
show 0 < 2 * nat | powr (—1/4)]
using kn0 eps-gt0 by (simp add: eps-lel powr-lel powr-minus-divide)
show gstar < gfun (2 * nat |e powr (—1/4)])
using kn0 711

by (simp add: gstar-def alpha-def qfun-eq divide-right-mono mult.commute)
qed auto
then have ((I + ¢) * (I + ¢) "~ hgt gstar) < ((I + ¢) * (I + €) powr (2 x ¢
powr (~1/4)))
by (smt (verit) eps-ge0 mult-left-mono powr-mono powr-realpow)
also have ((1 + ¢€) x (I + ¢) powr (2 x € powr (—1/4))) < 2
using le2 by simp
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finally have (1 + ¢) x (I + ) ~ hgt gstar < 2.
moreover have card R < k
by (simp add: R-def less-imp-le red-step-limit)
ultimately have §: ((1 + ) * (I + €) " hgt gstar) * card R < 2 * real k
by (intro mult-mono) auto
have — 2 x alpha 1 * k < — alpha (hgt gstar + 2) * card R
using mult-right-mono-neg [OF §, of — €] eps-ge0
by (simp add: alpha-eq divide-simps mult-ac)
also have ... < (3 i€R. pstar (Suc i) — pstar i)
proof —
{ fix i
assume i € R
have — alpha (hgt gstar + 2) < pstar (Suc i) — pstar i
proof (cases hgt (pseq i) > hgt gstar + 2)
case True
then have hgt (pseq (Suc 1)) > hgt gstar
using Y-6-5-Red 16 <i € R»> by (force simp: R-def)
then have pstar (Suc i) = pstar i
using True hgt-mono’ pstar-def by fastforce
then show ?thesis
by (simp add: alpha-ge0)
next
case False
with < € R> show ?thesis
unfolding pstar-def R-def
by (smt (verit, del-insts) Y-6-4-Red alpha-ge0 alpha-mono hgt-gt0
linorder-not-less)
qed
}
then show ?thesis
by (smt (verit, ccfo-SIG) mult-of-nat-commute sum-constant sum-mono)
qed
finally have — 2 x alpha 1 x k < (> i€R. pstar (Suc i) — pstar i) .
moreover have 0 < () i€S. pstar (Suc i) — pstar i)
using R53 by (intro sum-nonneg) (force simp: pstar-def)
ultimately have RS-half: — 2 * alpha 1 * k < (3 i€RUS. pstar (Suc i) —
pstar i)
by (simp add: sum.union-disjoint)

let %e12 = ¢ powr (—1/2)
define h’ where h’ = hgt qstar + nat |2 x Yel2]
have — alpha 1 *x k < —2 % %e12 x alpha 1 * k powr (8/4)
using mult-right-mono-neg [OF big34, of — alpha 1] alpha-ge0 [of 1]
by (simp add: mult-ac)
also have ... < —%e12 « alpha (h') * card B
proof —
have card B < Il powr (3/4)
using big41 bblue-step-limit by (simp add: B-def)
also have ... < k powr (3/4)
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by (simp add: powr-mono2 Il-le-k)
finally have 1: card B < k powr (8/4) .
have alpha (h') < alpha (nat |2 * € powr (—1/4)] + nat |2 = %el2])
proof (rule alpha-mono)
show h' < nat |2 * & powr (—1/4)] + nat |2 x %el2]
using h'-def hgt-qstar-le le-nat-floor by auto
qed (simp add: hgt-gt0 h'-def)
also have ... < 2 x alpha 1
proof —
have x: (I 4+ ) ~ (nat |2 % € powr (—1/4)] + nat |2 x %e12] — 1) < 2
using le2 by simp
have 1 < 2 x ¢ powr (—1/4)
by (smt (verit) hgt-gstar-le Suc-lel divide-minus-left hgt-gt0 numeral-nat(7)
real-of-nat-ge-one-iff )
then show ?thesis
using mult-right-mono [OF *, of €| eps-ge0
by (simp add: alpha-eq hgt-gt0 divide-right-mono mult.commute)
qed
finally have 2: 2 x alpha 1 > alpha (h') .
show %thesis
using mult-right-mono-neg [OF mult-mono [OF 1 2], of —%e12] alpha-ge0
by (simp add: mult-ac)
qed
also have ... < (3 ieB. pstar (Suc i) — pstar (i—1))
proof —
{ fix i
assume | € BB
have —%e12 x alpha (h') < pstar (Suc i) — pstar (i—1)
proof (cases hgt (pseq (i—1)) > hgt gstar + 2 x %el2)
case True
then have hgt (pseq (Suc i)) > hgt gstar
using Y-6-5-B <i € B> by (force simp: R-def)
then have pstar (i—1) = pstar(Suc i)
unfolding pstar-def
by (smt (verit) True hgt-mono’ of-nat-less-iff powr-non-neg)
then show ?thesis
by (simp add: alpha-ge0)
next
case False
then have hgt (pseq (i—1)) < h’
by (simp add: h'-def) linarith
then have {: alpha (hgt (pseq (i—1))) < alpha b’
by (intro alpha-mono hgt-gt0)
have pseq (Suc i) > pseq (i—1) — %el12 « alpha (hgt (pseq (i—1)))
using Y-6-4-Bblue <i € B> unfolding B-def by blast
with mult-left-mono [OF 1, of ?e12] show ?thesis
unfolding pstar-def
by (smt (verit) alpha-ge0 mult-minus-left powr-non-neg mult-le-0-iff)
qed
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}

then show ?thesis
by (smt (verit, ccfv-SIG) mult-of-nat-commute sum-constant sum-mono)
qed
finally have B: — alpha 1 = k < (}_ i€B. pstar (Suc i) — pstar (i—1)) .

have ¢ powr (—1/4) * alpha 1 * card (RUS) N C) < (3 i€RUS. if i € C then
e powr (—1/4) * alpha 1 else 0)
by (simp add: flip: sum.inter-restrict)
also have (> i€RUS. if i € C then € powr (—1/4) * alpha 1 else 0) <
(3o ieRUS. pstar i — pstar (i—1))
proof (intro sum-mono)
fix 1
assume i: 1 € RUS
then obtain i—1 € D i>0
unfolding R-def S-def D-def by (metis dreg-before-stepl dreg-before-gt0
Step-class-insert Un-iff)
then have pseq (i—1) < pseq i
by (metis Suc-pred’ Y-6-4-DegreeReg D-def)
then have pstar (i—1) < pstar i
by (fastforce simp: pstar-def)
then show (if i € C then ¢ powr (—1/4)  alpha 1 else 0) < pstar i — pstar
(i-1)
using C-def pstar-def qstar-def by auto
qed
finally have §: ¢ powr (—1/4) * alpha 1 % card (RUS) N C) < (3 i€eRUS.
pstar i — pstar (i—1)) .

have psplit: pstar (Suc i) — pstar (i—1) = (pstar (Suc i) — pstar i) + (pstar i
— pstar (i—1)) for i
by simp
have RS: ¢ powr (—1/4) * alpha 1 % card (RUS) N C) + (— 2 * alpha 1 x k)
< (D2 i€eRUS. pstar (Suc i) — pstar (i—1))
unfolding psplit sum.distrib using RS-half § by linarith

have k16: k powr (1/16) < k powr 1
using kn0 by (intro powr-mono) auto

have meq: {..<halted-point} \ D = (RUS) U B
using Step-class-cases halted-point-minimal’ by (fastforce simp: R-def S-def
D-def B-def Step-class-def)

have (e powr (—1/4) * alpha 1 * card (RUS) N C) + (— 2 x alpha 1 * k))
+ (— alpha 1 x k)
< (O2i € RUS. pstar(Suc i) — pstar(i—1)) + (O i€B. pstar(Suc i) —
pstar(i—1))
using RS B by linarith
also have ... = (>_i € {..<halted-point} \ D. pstar(Suc i) — pstar(i—1))
by (simp add: meq sum.union-disjoint)
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also have ... < pstar halted-point — pstar 0
proof (cases even halted-point)
case Fulse
have pseq (halted-point — Suc 0) < pseq halted-point
using Y-6-4-DegreeReg [of halted-point—1] False not-halted-even-dreg odd-pos

by (auto simp: halted-point-minimal)
then have pstar(halted-point — Suc 0) < pstar halted-point
by (simp add: pstar-def)
with False show ?thesis
by (simp add: oddset sum-odds-odd)
qed (simp add: oddset sum-odds-even)

also have ... = (3 i < halted-point. pstar(Suc i) — pstar i)
by (simp add: sum-lessThan-telescope)
also have ... = pstar halted-point — pstar 0

by (simp add: sum-less Than-telescope)
also have ... < alpha 1 * € powr (—1/4)
using alpha-ge0 by (simp add: mult.commute pee-eq-p0 pstar-def qstar-def)
also have ... < alpha 1 * k
using alpha-ge0 k16 by (intro powr-mono mult-left-mono) (auto simp: eps-def
poOWr-powr)
finally have ¢ powr (—1/4) % card (R US) N C) * alpha 1 < 4 x k * alpha 1
by (simp add: mult-ac)
then have ¢ powr (—1/4) * real (card (R US)NC)) < 4 xk
using kn0 by (simp add: divide-simps alpha-eq eps-gt0)
then show ?thesis
using alpha-geO[of 1] knO eps-gt0 by (simp add: powr-minus divide-simps
mult-ac split: if-split-asm)
qed

6.11 Lemma 7.12

definition Big-X-7-12 =
Al Big-X-7-11 p I A Big-X-7-10 p 1l N (Vk. I<k — Big-X-7-9 k)

establishing the size requirements for 7.12

lemma Big-X-7-12:
assumes 0<ul pl<lI
shows V>°I. V. p € {u0..ul} — Big-X-7-12 u 1
using assms Big-X-7-11 Big-X-7-10 Big-X-7-9
unfolding Big-X-7-12-def eventually-conj-iff
apply (simp add: eventually-conj-iff all-imp-conj-distrib eventually-frequently-const-simps)
using eventually-all-ge-at-top by blast

lemma (in Book) X-7-12:
defines R = Step-class {red-step}
defines S = Step-class {dboost-step}
defines C' = {i. card (Xseq i) < (1 — 2 x € powr (1/4)) * card (Xseq (i—1))}
assumes big: Big-X-7-12 p 1
shows card (RUS) N C) < 7 x e powr (1/4) x k
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proof —
define D where D = Step-class {dreg-step}
have big-711: Big-X-7-11 1 1 and big-710: Big-X-7-10 p 1
using big by (auto simp: Big-X-7-12-def)
have [simp]: finite R finite S
using finite-components by (auto simp: R-def S-def)
— now the conditions for Lemmas 7.10 and 7.11
define C10 where C10 = {i. hgt (pseqi) > hgt (pseq (i—1)) + € powr (—1/4)}
define C11 where C11 = {i. pseq i > pseq (i—1) + € powr (—1/4) * alpha 1
A pseq (i—1) < p0}
have (RUS) N C N {i. pseq (i—1) < p0} C (RUS) N C11
proof
fix 1
assume i: i € (RUS) N C N {i. pseq (i—1) < p0}
then have iRS: i e RU S and iC: i € C
by auto
then obtain il: i—1 € D i>0
unfolding R-def S-def D-def by (metis Step-class-insert Un-iff dreg-before-step1
dreg-before-gt0)
then have 77: card (Xseq (i—1) \ Xseq i) / card (Xseq i) * (¢ powr (—1/2)
+ alpha (hgt (pseq (i—1))))
< pseq i — pseq (i—1)
by (metis Suc-diff-1 X-7-7 D-def)
have card-Xm1: card (Xseq (i—1)) = card (Xseq i) + card (Xseq (i—1) \ Xseq

i)
by (metis Xseq-antimono add-diff-inverse-nat card-Diff-subset card-mono
diff-le-self
finite-Xseq linorder-not-less)
have card (Xseq i) > 0
by (metis Step-class-insert card-Xseq-pos R-def S-def iRS)
have card (Xseq (i—1)) > 0
using C-def iC less-irrefl by fastforce
moreover have 2 x (card (Xseq (i—1)) x € powr (1/4)) < card (Xseq (i—1)
\ Xseq i)
using iC card-Xml1 by (simp add: algebra-simps C-def)
moreover have card (Xseq i) < 2 x card (Xseq (i—1))
using card-Xm1 by linarith
ultimately have ¢ powr (1/4) < card (Xseq (i—1) \ Xseq i) / card (Xseq
(i-1))
by (simp add: divide-simps mult.commute)
moreover have real (card (Xseq i)) < card (Xseq (i—1))
using card-Xm1 by linarith
ultimately have 1: ¢ powr (1/4) < card (Xseq (i—1) \ Xseq i) / card (Xseq
i)
by (smt (verit) <0 < card (Xseq i)> frac-le of-nat-0-le-iff of-nat-0-less-iff)
have ¢ powr (—1/4) * alpha 1
< card (Xseq (i—1) \ Xseq i) / card (Xseq i) * (¢ powr (—1/2) % alpha 1)
using alpha-ge0 mult-right-mono [OF 1, of € powr (—1/2) % alpha 1]
by (simp add: mult-ac flip: powr-add)
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also have ... < card (Xseq (i—1) \ Xseq i) / card (Xseq i) x (¢ powr (—1/2)
* alpha (hgt (pseq (i—1))))
by (intro mult-left-mono alpha-mono) (auto simp: Suc-lel hgt-gt0)
also have ... < pseqi — pseq (i—1)
using 77 by simp
finally have ¢ powr (—1/4) * alpha 1 < pseqi — pseq (i—1) .
with i show i € (R U S) N C11
by (simp add: C11-def)
qed
then have real (card (RUS) N C N {i. pseq (i—1) < p0})) < real (card ((RUS)
N C11))
by (simp add: card-mono)
also have ... < 4 x e powr (1/4) x k
using X-7-11 big-711 by (simp add: R-def S-def C11-def Step-class-insert-NO-MATCH)
finally have card ((RUS) N C N {i. pseq (i—1) < p0}) < 4 * & powr (1/4) *
k.
moreover
have card (RUS) N C \ {i. pseq (i—1) < p0}) < 3 x ¢ powr (1/4) * k
proof —
have Big-X-7-9 k
using Big-X-7-12-def big l-le-k by presburger
then have X79: card (Xseq (Suc 1)) > (I — 2 *x ¢ powr (1/4)) * card (Xseq
i)
if i € Step-class {dreg-step} and pseq i > p0
and hgt (pseq (Suc i)) < hgt (pseq i) + € powr (—1/4) for i
using X-7-9 that by blast
have (RUS) N C \ {i. pseq (i—1) < p0} C (RUS) N C10
unfolding C10-def C-def
proof clarify
fix ¢
assume i € RUS
and §: card (Xseqi) < (I — 2 x & powr (1/4)) x card (Xseq (i—1)) — pseq
(i—1) < p0
then obtain i—1 € D i>0
unfolding D-def R-def S-def
by (metis dreg-before-step1 dreg-before-gt0 Step-class-Un Un-iff insert-is-Un)
with X79 § show hgt (pseq (i — 1)) + € powr (—1/4) < hgt (pseq 1)
by (force simp: D-def)
qed
then have card ((RUS) N C \ {i. pseq (i—1) < p0}) < real (card ((RUS) N
C10))
by (simp add: card-mono)
also have card ((RUS) N C10) < 8 x € powr (1/4) x k
unfolding R-def S-def C10-def by (intro X-7-10 assms big-710)
finally show ?thesis .
qed
moreover
have card (RUS) N C)
= real (card (RUS) N C N {i. pseq (i—1) < p0})) + real (card ((RUS) N
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C\ {i. pseq (i—1) < p0}))
by (metis card-Int-Diff of-nat-add <finite R> <finite S> finite-Int infinite-Un)
ultimately show ?thesis
by linarith
qged

6.12 Lemma 7.6

definition Big-X-7-6 =
A l. Big-Blue-4-1 p 1l A Big-X-7-12 p Il N Vk. k>l — Big-X-7-8 k N1 — 2
x eps k powr (1/4) > 0)

lemma Big-X-7-6:
assumes 0<ul pl<1
shows VL. V. p € {u0..ul} — Big-X-7-6 ul
using assms Big-Blue-4-1 Big-X-7-8 Big-X-7-12
unfolding Big-X-7-6-def eps-def
apply (simp add: eventually-conj-iff all-imp-conj-distrib eventually-all-ge-at-top)

apply (intro conjl strip eventually-all-gel0 eventually-all-ge-at-top; real-asymp)
done

definition ok-fun-76 =
Mk, (I 4+ 2 xreal k) * In (1 — 2 % eps k powr (1/4))
— (kpowr (8/4) + 7 x eps kpowr (1/4) xk + 1) * (2 «xInk))/In 2

lemma ok-fun-76: ok-fun-76 € o(real)
unfolding eps-def ok-fun-76-def by real-asymp

lemma (in Book) X-7-6:
assumes big: Big-X-7-6 p 1
defines D = Step-class {dreg-step}
shows ([[i€D. card(Xseq(Suc i)) / card (Xseq i)) > 2 powr ok-fun-76 k
proof —
define R where R = Step-class {red-step}
define B where B = Step-class {bblue-step}
define S where S = Step-class {dboost-step}
define C where C = {i. card (Xseqi) < (I — 2 x & powr (1/4)) * card (Xseq
(i—1))}
define C’ where C' = Suc —‘ C
have big41: Big-Blue-4-1 p 1
and 712: card (RUS) N C) < 7 x € powr (1/4) x k
using big X-7-12 l-le-k by (auto simp: Big-X-7-6-def R-def S-def C-def)

have [simp]: finite D finite R finite B finite S

using finite-components by (auto simp: D-def R-def B-def S-def)
have card R < k

using R-def assms red-step-limit by blast+
have card B < [ powr (3/4)
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using big41 bblue-step-limit by (auto simp: B-def)
then have card (BN C) <l powr (8/4)

using card-mono [OF - Int-lowerl] by (smt (verit) <finite B> of-nat-mono)
also have ... < k powr (8/4)

by (simp add: l-le-k powr-mono2)
finally have Bk-34: card (BN C) < k powr (3/4) .

have less-I: card B + card S < 1
using bblue-dboost-step-limit bigi1 by (auto simp: B-def S-def)
have [simp]: (B U (R U S)) N {halted-point} = {} RNS={} BN (RUS) =
{}
halted-point ¢ B halted-point ¢ R halted-point ¢ S
BNCN(RNnCUuSNC)={}for C
using halted-point-minimal’ by (force simp: B-def R-def S-def Step-class-def )+

have Big-X-7-8 k and one-minus-gt0: 1 — 2 % € powr (1/4) > 0
using big l-le-k by (auto simp: Big-X-7-6-def)

then have X78: card (Xseq (Suc i)) > card (Xseqi) / k~2 if i € D for i
using X-7-8 that by (force simp: D-def)

let ?DC = k. k powr (3/4) + 7 % eps k powr (1/4) * k + 1
have dc-pos: ?DC k > 0 for k
by (smt (verit) of-nat-less-0-iff powr-ge-zero zero-le-mult-iff )
have X-pos: card (Xseq i) > 0 if i € D for i
proof —
have card (Xseq (Suc i)) > 0
using that X-7-7 kn0 unfolding D-def by blast
then show ?thesis
by (metis Xseq-Suc-subset card-mono finite-Xseq groI leD)
qed
have ok-fun-76 k < log 2 ((1 / (real k)?) powr ?DCk * (1 — 2 x € powr (1/4))
~k+14 1))
unfolding ok-fun-76-def log-def
using kn0 l-le-k one-minus-gt0
by (simp add: In-mult In-div In-realpow divide-right-mono mult-le-cancel-right
flip: power-Suc mult.assoc)
then have 2 powr ok-fun-76 k < (1 / (real k)?) powr ?DC k x (1 — 2 x € powr
(1/4)) ~ (k + L+ 1)
using powr-eq-iff kn0 one-minus-gt0 by (simp add: le-log-iff)
also have ... < (1 / (real k)?) powr card (D N C’) x (1 — 2 * & powr (1/4))
~ card (D\C")
proof (intro mult-mono powr-mono’)
have Suc i € R if i € D Suc i # halted-point Suc i ¢ B Suc i ¢ S for i
proof —
have Suc i ¢ D
by (metis D-def <i € D> even-Suc step-even)
moreover
have stepper-kind i # halted
using D-def <i € D> Step-class-def by force
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ultimately show Suc i € R
using that halted-point-minimal’ halted-point-minimal Step-class-cases
Suc-lessl
B-def D-def R-def S-def by blast
qed
then have Suc ‘D C BU (R U S) U {halted-point}
by auto
then have ifD: Suci € BV Suci € RV Suci € SV Suc i = halted-point if
i € D for i
using that by force
then have card D < card (B U (RUS) U {halted-point})
by (intro card-inj-on-le [of Suc]) auto
also have ... = card B + card R + card S + 1
by (simp add: card-Un-disjoint card-insert-if )
alsohave ... <k + 1+ 1
using <card R < k> less-l by linarith
finally have card-D: card D < k + 1+ 1 .

have (1 — 2 * ¢ powr (1/4)) * card (Xseq 0) < 1 x real (card (Xseq 0))
by (intro mult-right-mono; force)
then have 0 ¢ C
by (force simp: C-def)
then have C-eq-C’: C = Suc ‘ C'
using nat.exhaust by (auto simp: C'-def set-eq-iff image-iff)
have card (D N C') < real (card ((B U (RUS) U {halted-point}) N C))
using ifD
by (intro of-nat-mono card-inj-on-le [of Suc]) (force simp: Int-insert-left
C-eq-C)+
also have ... < card (BN C) + real (card (RUS) N C)) + 1
by (simp add: Int-insert-left Int-Un-distrib2 card-Un-disjoint card-insert-if )
also have ... < ?DCk
using Bk-34 712 by force
finally show card (DN C’) < ?DCk .
have card (D\C') < card D
using <finite D> by (simp add: card-mono)
then show (1 — 2 x ¢ powr (1/4)) ~ (k+l+1) < (I — 2 x € powr (1/4))
card (D\C")
by (smt (verit) card-D add-leD2 one-minus-gt0 power-decreasing powr-ge-zero)
qed (use one-minus-gt0 kn0 in auto)
also have ... = (J[[i€D. ifi € C'then 1 / real k ~ 2 else 1 — 2 % € powr
(1/4))
by (simp add: kn0 powr-realpow prod.If-cases Diff-eq)
also have ... < ([[7 € D. card (Xseq (Suc 7)) / card (Xseq 1))
using X-pos X78 one-minus-gt0 kn0 by (simp add: divide-simps C'-def C-def
prod-momno)
finally show ?thesis .
qged

141



6.13 Lemma 7.1

definition Big-X-7-1 =
A l. Big-Blue-4-1 p 1 N Big-X-7-2 u 1l AN Big-X-7-4 u I A Big-X-7-6 u 1

establishing the size requirements for 7.11

lemma Big-X-7-1:
assumes 0<ul pl<1
shows VL. Vpu. p € {pu0.u1} — Big-X-7-1 p 'l
unfolding Big-X-7-1-def
using assms Big-Blue-4-1 Big-X-7-2 Big-X-7-4 Big-X-7-6
by (simp add: eventually-conj-iff all-imp-conj-distrib)

definition ok-fun-71 = Ay k. ok-fun-72 p k + ok-fun-73 k + ok-fun-74 k +
ok-fun-76 k

lemma ok-fun-71:
assumes <y pu<lI
shows ok-fun-71 p € o(real)
using ok-fun-72 ok-fun-73 ok-fun-74 ok-fun-76
by (simp add: assms ok-fun-71-def sum-in-smallo)

lemma (in Book) X-7-1:
assumes big: Big-X-7-1 u 1
defines D = Step-class {dreg-step}
defines R = Step-class {red-step} and S = Step-class {dboost-step}
shows card (Xseq halted-point) >
2 powr ok-fun-71 p k « pu~l x (1—p) ~ card R = (bigbeta / p) ~ card S * card
X0
proof —
define B where B = Step-class {bblue-step}
have 72: Big-X-7-2 p l and 74: Big-X-7-4 p 1
and 76: Big-X-7-6 i 1
and bigf1: Big-Blue-4-1 ul
using big by (auto simp: Big-X-7-1-def)
then have [simp]: finite R finite B finite S finite D
RNB = {} SND = {} (RUB)N(SUD) = {}
using finite-components by (auto simp: R-def B-def S-def D-def Step-class-def)
have BS-le-l: card B + card S < I
using big41 bblue-dboost-step-limit by (auto simp: S-def B-def)

have R: ([[i€R. card (Xseq(Suc 1)) / card (Xseq i)) > 2 powr (ok-fun-72 p k)
* (1—p) " card R
unfolding R-def using 72 X-7-2 by meson
have B: ([ i€B. card (Xseq(Suc 1)) / card (Xseq i)) > 2 powr (ok-fun-73 k) =
w ™ (I — card S)
unfolding B-def S-def using big41 X-7-3 by meson
have S: ([[i€S. card (Xseq (Suc i)) / card (Xseq i)) > 2 powr ok-fun-74 k
bigbeta ~ card S
unfolding S-def using 74 X-7-4 by meson
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have D: ([[i€D. card(Xseq(Suc i)) / card (Xseq i)) > 2 powr ok-fun-76 k
unfolding D-def using 76 X-7-6 by meson
have below-m: RUBUSUD = {..<halted-point}
using assms by (auto simp: R-def B-def S-def D-def before-halted-eq Step-class-insert-NO-MATCH)
have X-nz: A\i. i < halted-point = card (Xseq i) # 0
using assms below-halted-point-cardX by blast
have tele: card (Xseq halted-point) = ([[i < halted-point. card (Xseq(Suc 1)) /
card (Xseq i)) = card (Xseq 0)
proof (cases halted-point=0)
case Fulse
with X-nz prod-less Than-telescope-mult [where f = Ai. real (card (Xseq i))]
show ?thesis by simp
qed auto
have X0-nz: card (Xseq 0) > 0
by (simp add: card-XY0)
have 2 powr ok-fun-71 p k * pu~l = (1 —p) ~ card R * (bigbeta / p) ~ card S
< 2 powr ok-fun-71 p k x pn ~ (I — card S) % (1—p) ~ card R * (bigheta ~
card S)
using ;01 BS-le-l by (simp add: power-diff power-divide)
also have ... < ([[1€RUBUSUD. card (Xseq(Suc i)) / card (Xseq i))
proof —
have ([]i€(RUB)U(SUD). card (Xseq(Suc 1)) / card (Xseq i))
> ((2 powr (ok-fun-72 p k) x (I1—p) ~ card R) * (2 powr (ok-fun-73 k)
w (1 — card S)))
* ((2 powr ok-fun-74 k * bigbeta ~ card S) * (2 powr ok-fun-76 k))
using p01 by (auto simp: R B S D prod.union-disjoint prod-nonneg bigbeta-ge0
intro!: mult-mono)
then show ?thesis
by (simp add: Un-assoc mult-ac powr-add ok-fun-71-def)
qed
also have ... < ([[7 < halted-point. card (Xseq(Suc 1)) / card (Xseq 7))
using below-m by auto
finally show ?thesis
using X0-nz 01 unfolding tele by (simp add: divide-simps)
qed

end

7 The Zigzag Lemma
theory Zigzag imports Bounding-X
begin

7.1 Lemma 8.1 (the actual Zigzag Lemma)

definition Big-ZZ-8-2 = Mk. (1 + eps k powr (1/2)) > (1 + eps k) powr (eps k
powr (—1/4))
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An inequality that pops up in the proof of (39)
definition Big39 = A\k. 1/2 < (1 + eps k) powr (—2 x eps k powr (—1/2))
Two inequalities that pops up in the proof of (42)

definition Big/2a = k. (1 + eps k)2 / (1 — eps k powr (1/2)) < 1 + 2 * k
powr (—1/16)

definition Bigf2b = \k. 2 x k powr (—1/16) * k
+ (I +2xInk/epsk+ 2 kpowr (7/8)) / (1 — eps k
powr (1/2))
< real k powr (19/20)

definition Big-ZZ-8-1 =
A l. Big-Blue-4-1 p 1 N\ Big-Red-5-1 p 1 N\ Big-Red-5-8 p | N\ Big-Y-6-5-Bblue
l
A (Vk. k>l — Big-height-upper-bound k N Big-ZZ-8-2 k N k>16 A Big39
k
A Big42a k N Bigf2b k)

(16::'a) < k is for Y-6-5-Red

lemma Big-ZZ-8-1:
assumes 0<ul pl<lI
shows V>°I. V. p € {u0..ul} — Big-ZZ-8-1 p 1
using assms Big-Blue-4-1 Big-Red-5-1 Big-Red-5-8 Big-Y-6-5-Bblue
unfolding Big-ZZ-8-1-def Big-ZZ-8-2-def Big39-def Big42a-def Big42b-def
eventually-cong-iff all-imp-conj-distrib eps-def
apply (simp add: eventually-cong-iff eventually-frequently-const-simps)
apply (intro conjl strip eventually-all-ge-at-top Big-height-upper-bound; real-asymp)
done

lemma (in Book) ZZ-8-1:
assumes big: Big-ZZ-8-1 1
defines R = Step-class {red-step}
defines sum-SS = (3 i€dboost-star. (1 — beta i) / beta i)
shows sum-SS < card R + k powr (19/20)
proof —
define pp where pp = \i h. if h=1 then min (pseq i) (gfun 1)
else if pseq i < qfun (h—1) then gfun (h—1)
else if pseq i > qfun h then gfun h
else pseq i
define A where A = \i. pseq (Suc i) — pseq i
define AA where AA = Xi h. pp (Suci) h — ppih
have pp-eq: pp i h = (if h=1 then min (pseq i) (gfun 1)
else max (gfun (h—1)) (min (pseq i) (gfun h))) for i h
using qfun-mono [of h—1 h] by (auto simp: pp-def maz-def)

define mazh where mazh = nat|2 « Ilnk [ | + 1

have mazh: A\pseq. pseq<1 —> hgt pseq < 2 x In k / ¢ and k>16
using big l-le-k by (auto simp: Big-ZZ-8-1-def height-upper-bound)
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then have 1 < 2 xink /¢
using hgt-gt0 [of 1] by force
then have mazh > 1
by (simp add: mazh-def eps-gt0)
have hgt pseq < mazh if pseq<1for pseq
using that kn0 mazh|of pseq] unfolding mazh-def by linarith
then have hgt-le-mazh: hgt (pseq i) < mazh for i
using pee-lel by auto

have pp-eq-hgt [simp]: pp i (hgt (pseq i)) = pseq i for i
using hgt-less-imp-qfun-less [of hgt (pseq i) — 1 pseq i]
using hgt-works [of pseq i] hgt-gt0 [of pseq i] kn0 pp-eq by force

have pp-less-hgt [simp]: pp i h = qfun h if 0<h h < hgt (pseq i) for h i
proof (cases h=1)
case True
then show ?thesis
using hgt-less-imp-qfun-less pp-def that by auto
next
case Fulse
with that show ?thesis
using alpha-def alpha-ge0 hgt-less-imp-qfun-less pp-eq by force
qed

have pp-gt-hgt [simp]: pp i h = qfun (h—1) if h > hgt (pseq i) for h i
using hgt-gt0 [of pseq i] kn0 that
by (simp add: pp-def hgt-le-imp-qfun-ge)

have A0: A i > 0 +— (Vh>0. AAih > 0) for i
proof (intro iff] strip)
fix h::nat
assume () < A ¢ 0 < h then show 0 < AA 7 h
using qfun-mono [of h—1 h] kn0 by (auto simp: A-def AA-def pp-def)
next
assume VA>0. 0 < AA i h
then have pseq i < pp (Suc i) (hgt (pseq 7))
unfolding AA-def
by (smt (verit, best) hgt-gt0 pp-eq-hgt)
then show 0 < A i
using hgt-less-imp-qfun-less [of hgt (pseq i) — 1 pseq i]
using hgt-gt0 [of pseq i] kn0
by (simp add: A-def pp-def split: if-split-asm)
qed

have sum-pp-auz: (3> h==Suc 0..n. pp i h)
= (if hgt (pseq i) < n then pseq i + (> h=1..<n. ¢fun h) else
(3" h=1..n. qfun h))
if n>0 for n i
using that
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proof (induction n)
case (Suc n)
show ?case
proof (cases n=0)
case True
then show ?thesis
using knl hgt-Least [of 1 pseq i
by (simp add: pp-def hgt-le-imp-qfun-ge min-def)
next
case False
with Suc show ?thesis
by (simp split: if-split-asm) (smt (verit) le-Suc-eq not-less-eq pp-eq-hgt
sum.head-if)
qed
qed auto
have sum-pp: (3 h=Suc 0..mazh. pp i h) = pseq i + (>, h=1..<mazh. gfun h)
for i
using <1 < mazh> by (simp add: hgt-le-mazh less-or-eq-imp-le sum-pp-auz)
have 33: A i = (3 h=1..mazh. AA i h) for i
by (simp add: AA-def A-def sum-subtractf sum-pp)

have (3 i<halted-point. AA i h) = 0
if Ai. i<halted-point =—> h > hgt (pseq i) for h
using that by (simp add: sum.neutral AA-def)
then have B: (}_ i<halted-point. AA i h) = 0 if h > mazh for h
by (meson hgt-le-mazh le-simps le-trans not-less-eq that)
have (3 h=Suc 0..mazh. Y i<halted-point. AA i h / alpha h) < (3 h=Suc
0..mazh. 1)
proof (intro sum-mono)
fix h
assume h € {Suc 0..mazh}
have (> i<halted-point. AA i h) < alpha h
using qfun-mono [of h—1 h] kn0
unfolding AA-def alpha-def sum-less Than-telescope [where f = Xi. pp i h]
by (auto simp: pp-def pee-eq-p0)
then show (Y i<halted-point. AA i h / alpha h) < 1
using alpha-ge0 [of h] by (simp add: divide-simps flip: sum-divide-distrib)
qed
alsohave ... <1 +2xInk /¢
using <mazh > 1> by (simp add: mazh-def)
finally have 34: (3 h=Suc 0..mazh. > i<halted-point. AA i h / alpha h) < 1
+2xink/c.

define D where D = Step-class {dreg-step}
define B where B = Step-class {bblue-step}
define S where S = Step-class {dboost-step}
have dboost-star C S
unfolding dboost-star-def S-def dboost-star-def by auto
have BD-disj: BND = {} and disj: RNB = {} SNB = {} RND = {} SND =
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{} RS = {}
by (auto simp: D-def R-def B-def S-def Step-class-def)

have [simp]: finite D finite B finite R finite S

using finite-components assms

by (auto simp: D-def B-def R-def S-def Step-class-insert-NO-MATCH )
have card R < k

using red-step-limit by (auto simp: R-def)

have R52: pseq (Suc i) — pseqi > (1 — &) = ((1 — beta i) / beta i) * alpha (hgt
(pseq i)
and beta-gt0: beta i > 0
and R53: pseq (Suc i) > pseqi A betai > 1 / (real k)?
if i € S for ¢

using big Red-5-2 that by (auto simp: Big-ZZ-8-1-def Red-5-3 B-def S-def)
have cardB: card B < 1 powr (3/4) and bigY65B: Big-Y-6-5-Bblue |

using big bblue-step-limit by (auto simp: Big-ZZ-8-1-def B-def)

have AA-ge0: AAih >0ifie€Sh>1forih
using that R53 [OF <i € 8] by (fastforce simp: AA-def pp-eq)
have AA-eq-0: AA i h = 0 if hgt (pseq i) < hgt (pseq (Suc i)) hgt (pseq (Suc
i)) < h for h i
using AA-def that by fastforce
define oneminus where oneminus = 1 — ¢ powr (1/2)
have 35: oneminus * ((1 — beta i) / beta 1)
< (3_h=1..mazh. AA i h / alpha h) (is ?L < ?R)
if ¢ € dboost-star for i
proof —
have i € §
using <dboost-star C S» that by blast
have [simp]: real (hgt £ — Suc 0) = real (hgt z) — 1 for x
using hgt-gt0 [of z] by linarith
have 36: (1 — ¢) * ((I — beta i) / beta i) < A i / alpha (hgt (pseq i))
using R52 alpha-gt0 [OF hgt-gt0] beta-gt0 that <dboost-star C S»> by (force
simp: A-def divide-simps)
have k-big: (1 + & powr (1/2)) > (1 + ) powr (¢ powr (—1/4))
using big l-le-k by (auto simp: Big-ZZ-8-1-def Big-ZZ-8-2-def )
have x: Az:real. £ > 0 = (1 — z powr (1/2)) * (1 + z powr (1/2)) = 1
—x
by (simp add: algebra-simps flip: powr-add)
have ?L = (1 — ) x ((1 — beta i) / beta i) / (I + & powr (1/2))
using beta-gt0 [OF <i € S»] eps-gt0 k-big
by (force simp: oneminus-def divide-simps *)
also have ... < A i / alpha (hgt (pseq i)) / (1 + € powr (1/2))
by (intro 36 divide-right-mono) auto
also have ... < A i / alpha (hgt (pseq i)) / (I + €) powr (real (hgt (pseq
(Suci))) — hgt (pseq i))
proof (intro divide-left-mono mult-pos-pos)
have real (hgt (pseq (Suc 1))) — hgt (pseq i) < & powr (—1/4)
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using that by (simp add: dboost-star-def)
then show (1 + ¢) powr (real (hgt (pseq (Suc i))) — real (hgt (pseq i))) <
1+ € powr (1/2)
using k-big by (smt (verit) eps-ge0 powr-mono)
show 0 < A i / alpha (hgt (pseq 7))
by (simp add: A0 AA-ge0 <i € Sy alpha-gel)
show 0 < (1 + €) powr (real (hgt (pseq (Suc i))) — real (hgt (pseq i)))
using eps-gt0 by auto
qed (auto simp: add-strict-increasing)
also have ... < A i / alpha (hgt (pseq (Suc i)))
proof —
have alpha (hgt (pseq (Suc i))) < alpha (hgt (pseq i)) * (1 + ) powr (real
(hgt (pseq (Suc i))) — real (hgt (pseq i)))
using eps-gt0 hgt-gt0
by (simp add: alpha-eq divide-right-mono flip: powr-realpow powr-add)
moreover have 0 < A i
by (simp add: A0 AA-ge <i € S»)
moreover have 0 < alpha (hgt (pseq (Suc i)))
by (simp add: alpha-gt0 hgt-gt0 kn0)
ultimately show ?Zthesis
by (simp add: divide-left-rnono)
qed
also have ... < ?R
unfolding 38 sum-divide-distrib
proof (intro sum-mono)
fix h
assume h: h € {I..mazh}
show AA i h / alpha (hgt (pseq (Suc i))) < AA i h / alpha h
proof (cases hgt (pseq i) < hgt (pseq (Suc i)) N hgt (pseq (Suc i)) < h)
case Fulse
then consider hgt (pseq i) > hgt (pseq (Suc 1)) | hgt (pseq (Suc i)) > h
by linarith
then show %thesis
proof cases
case I
then show %thesis
using R53 <i € 8> hgt-mono’ kn0 by force
next
case 2
have alpha h < alpha (hgt (pseq (Suc i)))
using 2 alpha-mono h by auto
moreover have 0 < AA i h
using AA-ge0 <i € S> h by presburger
moreover have 0 < alpha h
using h kn0 by (simp add: alpha-gt0 hgt-gt0)
ultimately show ?thesis
by (simp add: divide-left-mono)
qed
qed (auto simp: AA-eq-0)
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qed
finally show ?thesis .
qed
— now we are able to prove claim 8.2
have oneminus * sum-SS = (3 i€dboost-star. oneminus * ((1 — beta i) / beta
i)
using sum-distrib-left sum-SS-def by blast
also have ... < (3 i€dboost-star. Y h=1..mazh. AA i h / alpha h)
by (intro sum-mono 35)
also have ... = (> h=1..mazh. Y i€dboost-star. AA i h / alpha h)
using sum.swap by fastforce
also have ... < (3" h=1..mazh. Y i€S. AA i h / alpha h)
by (intro sum-mono sum-mono2) (auto simp: <dboost-star C S» AA-ge0
alpha-ge0)
finally have 82: oneminus * sum-SS
< (3> h=1..mazh. Y i€S. AA i h / alpha h) .
— leading onto claim 8.3
have Aalpha: — 1 < A i / alpha (hgt (pseq i)) if i € R for i
using Y-6-/-Red [of i] <i € R»
unfolding A-def R-def
by (smt (verit, best) hgt-gt0 alpha-gt0 divide-minus-left less-divide-eq-1-pos)

have (3" i€R. — (1 +¢)?) < (3. i€R. > h=1..mazh. AA i h / alpha h)
proof (intro sum-mono)
fix 1 :: nat
assume | € R
show — (1 + ¢)?
proof (cases A i
case True
have (1 +¢)? x —1 < (1 + €)% x (A i / alpha (hgt (pseq i)))
using Aalpha
by (smt (verit, best) power2-less-0 <i € Ry mult-le-cancel-left2 mult-minus-right)
also have ... < (3" h = I..mazh. AA i h / alpha h)
proof —
have le0: AA ih < 0 for h
using True by (auto simp: AA-def A-def pp-eq)
have eq0: AA ih=0if 1 < hh < hgt (pseqi) — 2 for h
proof —
have hgt (pseq i) — 2 < hgt (pseq (Suc i))
using Y-6-5-Red <16 < k> <i € R> unfolding R-def by blast
then show ?thesis
using that pp-less-hgt[of h] by (auto simp: AA-def pp-def)
qed
show ?thesis
unfolding 33 sum-distrib-left sum-divide-distrib
proof (intro sum-mono)
fix h :: nat
assume h € {1..mazh}
then have 1 < h h < mazh by auto

(3" h = 1..mazh. AA i h / alpha h)
0)

<
<

149



show (1 + ¢)? x (AA i h / alpha (hgt (pseqi))) < AA i h / alpha h
proof (cases h < hgt (pseq i) — 2)
case True
then show ?thesis
using <1 < h> eq0 by force

next
case False
have x: (1 + €) " (hgt (pseqi) — Suc 0) < (1 +¢&)? x (1 +¢) ~ (h —
Suc 0)
using Fualse eps-ge0 unfolding power-add [symmetric]
by (intro power-increasing) auto
have *: (I + €)? * alpha h > alpha (hgt (pseq i))
using <1 < h> mult-left-mono [OF x, of €| eps-ge0
by (simp add: alpha-eq hgt-gt0 mult-ac divide-right-mono)
show ?thesis
using le0 alpha-gt0 <h>15 hgt-gt0 mult-left-mono-neg [OF xx, of AA
i h)
by (simp add: divide-simps mult-ac)
qed
qed
qed

finally show ?thesis
by linarith
next
case False
then have AA i h > 0 for h
using AA-def A-def pp-eq by auto
then have (3> h = I..mazh. AA i h / alpha h) > 0
by (simp add: alpha-ge0 sum-nonneg)
then show ?thesis
by (smt (verit, ccfo-SIG) sum-power2-ge-zero)
qed
qed
then have 83: — (1 + €)% x card R < (3 h=1..mazh. > i€R. AA i h / alpha
h)
by (simp add: mult.commute sum.swap [of - R])

— now to tackle claim 8.4

have A0: A i > 01if i € D for i
using Y-6-4-DegreeReg that unfolding D-def A-def by auto

have 39: —2 x ¢ powr(—1/2) < (3 h = 1..mazh. (AA (i—1) h + AA i h) /
alpha h) (is 2L < ?R)
if i € B for i
proof —
have odd i
using step-odd that by (force simp: Step-class-insert-NO-MATCH B-def)
then have i>0
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using odd-pos by auto
show ?thesis
proof (cases A (i—1) + A i > 0)
case True
with <i>0> have AA (i—1) h + AA ih > 0 if h>1 for h
by (fastforce simp: AA-def A-def pp-eq)
then have (3> h = I..mazh. (AA (i—1) h + AA i h) / alpha h) > 0
by (force simp: alpha-ge0 intro: sum-nonneg)
then show ?thesis
by (smt (verit, ccfo-SIG) powr-ge-zero)
next
case False
then have AA-le0: AA (i—1) h + AA i h < 0 if h>1 for h
by (smt (verit, best) One-nat-def AA-def A-def <odd i> odd-Suc-minus-one
pp-eq)
have hge: hgt (pseq (Suc 7)) > hgt (pseq (i—1)) — 2 % € powr (—1/2)
using bigY65B that Y-6-5-Bblue by (fastforce simp: B-def)
have AAO: AA (i—1) h + AA ih = 0 if O<h h < hgt (pseq (i—1)) — 2 =
e powr (—1/2) for h
using <odd i> that hge unfolding AA-def One-nat-def
by (smt (verit) of-nat-less-iff odd-Suc-minus-one powr-non-neg pp-less-hgt)
have big39: 1/2 < (1 + ¢€) powr (—2 % € powr (—1/2))
using big l-le-k by (auto simp: Big-ZZ-8-1-def Big39-def)
have ?L « alpha (hgt (pseq (i—1))) * (1 + €) powr (—2 % € powr (—1/2))
< — (e powr (—1/2)) * alpha (hgt (pseq (i—1)))
using mult-left-mono-neg [OF big39, of — (¢ powr (—1/2)) = alpha (hgt
(pseq (i—1)) / 2]
using alpha-ge0 [of hgt (pseq (i—1))] eps-ge0
by (simp add: mult-ac)
also have ... <A (i—1)+ A g
proof —
have pseq (Suc i) > pseq (i—1) — (¢ powr (—1/2)) * alpha (hgt (pseq
(i-1)))
using Y-6-4-Bblue that B-def by blast
with <i>0> show ?thesis
by (simp add: A-def)
qed
finally have ?L x alpha (hgt (pseq (i—1))) * (I + €) powr (—2 x € powr
(=1/2)) < A(i—1)+ A
then have ?L < (1 + ¢) powr (2 % ¢ powr (—1/2)) « (A (i—1) + Ad) /
alpha (hgt (pseq (i—1)))
using alpha-ge0 [of hgt (pseq (i—1))] eps-ge0
by (simp add: powr-minus divide-simps mult-ac)
also have ... < ?R
proof —
have (1 + ¢) powr (2 x € powr(—1/2)) * (AA (i — Suc 0) h + AA i h)
/ alpha (hgt (pseq (i — Suc 0)))
< (AA (i — Suc 0) h + AA i h) / alpha h
if A: Suc 0 < h h < mazh for h
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proof (cases h < hgt (pseq (i—1)) — 2 *x € powr(—1/2))
case Fualse
then have hgt (pseq (i—1)) — 1 < 2 x € powr(—1/2) + (h — 1)
using hgt-gt0 by (simp add: nat-less-real-le)
then have «: (1 + ¢) powr (2 x € powr(—1/2)) / alpha (hgt (pseq (i—1)))
> 1 / alpha h
using that eps-gt0 kn0 hgt-gt0
by (simp add: alpha-eq divide-simps flip: powr-realpow powr-add)
show ?thesis
using mult-left-mono-neg [OF x AA-le0] that by (simp add: Groups.mult-ac)

qed (use h AAQ in auto)
then show %thesis
by (force simp: 38 sum-distrib-left sum-divide-distrib simp flip: sum.distrib
intro: sum-mono)
qed
finally show ?thesis .
qed
qed

have B3/: card B < k powr (3/4)
by (smt (verit) cardB l-le-k of-nat-0-le-iff of-nat-mono powr-mono2 zero-le-divide-iff )
have —2 x k powr (7/8) < —2 x € powr(—1/2) x k powr (3/4)
by (simp add: eps-def powr-powr flip: powr-add)
also have ... < —2 x ¢ powr(—1/2) x card B
using B34 by (intro mult-left-mono-neg powr-mono2) auto
also have ... = (3 ieB. —2 x ¢ powr(—1/2))
by simp
also have ... < (D_h = 1..mazh. Y ieB. (AA (i—1) h + AA i h) / alpha h)
unfolding sum.swap [of - B] by (intro sum-mono 39)
also have ... < (3 h=1..mazh. Y icBUD. AA i h / alpha h)
proof (intro sum-mono)
fix h
assume h € {1..mazh}
have B C {0<..}
using odd-pos [OF step-odd] by (auto simp: B-def Step-class-insert-NO-MATCH)
with inj-on-diff-nat [of B 1] have inj-pred: inj-on (Mi. i — Suc 0) B
by (simp add: Suc-lel subset-eq)
have (> ieB. AA (i — Suc 0) h) = (3 i € (M. i—1) ‘B. AAih)
by (simp add: sum.reindex [OF inj-pred))
also have ... < (> ieD. AAih)
proof (intro sum-mono2)
show (A\i.i — 1) ‘BCD
by (force simp: D-def B-def Step-class-insert-NO-MATCH intro: dreg-before-step’)
show 0 < AAihifieD\ (Ni.i— 1) ‘Bfori
using that A0 AA-def A-def pp-eq by fastforce
qed auto
finally have (>_ieB. AA (i — Suc 0) h) < (> ieD. AA ih).
with alpha-ge0 [of h]
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show (> ieB. (AA (i — 1) h + AA i h) / alpha h) < (3 i € BUD. AAih
/ alpha h)
by (simp add: BD-disj divide-right-mono sum.distrib sum.union-disjoint flip:
sum-divide-distrib)
qed
finally have 84: —2 x k powr (7/8) < (>_h=1..mazh. > i€eBUD. AA i h /
alpha h) .

have m-eq: {..<halted-point} = R US U (B U D)
using before-halted-eq by (auto simp: B-def D-def S-def R-def Step-class-insert-NO-MATCH)

have — (1 + €)? * real (card R)
+ oneminus x sum-SS
— 2 % real k powr (7/8) < (3_h = Suc 0..mazh. Y i€R. AA i h / alpha h)
+ (O_h = Suc 0..mazh. > i€S. AA i h / alpha h)
+ O h = Suc 0..mazh. > i € BUD. AA ih / alpha h)
using 82 83 8 by simp
also have ... = (D" h = Suc 0..mazh. Y i e RUS U (BUD). AAih / alpha
h)
by (simp add: sum.distrib disj sum.union-disjoint Int-Un-distrib Int-Un-distrib2)
also have ... <1 + 2 xIn (real k) / ¢
using 34 by (simp add: m-eq)
finally
have /1: oneminus * sum-SS — (1 + €)? x card R — 2 * k powr (7/8)
<1+ 2xink/ec
by simp
have big/2: (1 + €)* / oneminus < 1 + 2 x k powr (—1/16)
2 x kpowr (—1/16) * k
+ (I +2*ink/ec+ 2xkpowr (7/8)) / oneminus
< real k powr (19/20)
using big l-le-k by (auto simp: Big-ZZ-8-1-def Big42a-def Big42b-def oneminus-def)
have oneminus > 0
using <16 < k> eps-gt0 eps-less1 powr01-less-one by (auto simp: oneminus-def )
with 41 have sum-SS
<(I+2%Ink/e+ (1 +¢e)?xcardR+ 2x*kpowr (7/8)) / oneminus
by (simp add: mult-ac pos-le-divide-eq diff-le-eq)
also have ... < card R » (((1 + ¢)?) / oneminus)
+ (1 +2xink/ec+ 2xkpowr (7/8)) / oneminus
by (simp add: field-simps add-divide-distrib)
also have ... < card R * (I + 2 * k powr (—1/16))
+ (I +2xInk/ec+ 2xkpowr (7/8)) / oneminus
using big42 <oneminus > 0> by (intro add-mono mult-mono) auto
also have ... < card R + 2 * k powr (—1/16) % k
+ (I +2xink/ec+ 2xkpowr (7/8)) / oneminus
using <card R < k> by (intro add-mono mult-mono) (auto simp: algebra-simps)
also have ... < real (card R) + real k powr (19/20)
using big42 by force
finally show %thesis .
qged
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7.2 Lemma 8.5
An inequality that pops up in the proof of (39)
definition inequality85 = \k. 3 * eps k powr (1/4) = k < k powr (19/20)

definition Big-ZZ-8-5 =
A l. Big-X-7-5 p I N\ Big-ZZ-8-1 u Il N\ Big-Red-5-3 1
A (VE>1. inequality85 k)

lemma Big-ZZ-8-5:
assumes 0<ul pl<lI
shows VL. V. p € {u0..ul} — Big-ZZ-8-5 1
using assms Big-Red-5-3 Big-X-7-5 Big-ZZ-8-1
unfolding Big-ZZ-8-5-def inequality85-def eps-def
apply (simp add: eventually-cong-iff all-imp-conj-distrib)
apply (intro conjl strip eventually-all-ge-at-top; real-asymp)
done

lemma (in Book) ZZ-8-5:
assumes big: Big-ZZ-8-5 1
defines R = Step-class {red-step} and S = Step-class {dboost-step}
shows card S < (bigbeta / (I — bigbeta)) * card R
+ (2 / (1—p)) x k powr (19/20)
proof —
have [simp]: finite S
by (simp add: S-def)
moreover have dboost-star C S
by (auto simp: dboost-star-def S-def)
ultimately have real (card S) — real (card dboost-star) = card (S\dboost-star)
by (metis card-Diff-subset card-mono finite-subset of-nat-diff)
also have ... < 3 x e powr (1/4) * k
using 101 big X-7-5 by (auto simp: Big-ZZ-8-5-def dboost-star-def S-def)
also have ... < k powr (19/20)
using big l-le-k by (auto simp: Big-ZZ-8-5-def inequality85-def )
finally have x: real (card S) — card dboost-star < k powr (19/20) .
have bigbeta-lt1: bigbeta < 1 and bigbeta-gt0: 0 < bigbeta and beta-gt0: Ni. i
€S = betai >0
using bigbeta-ge0 big by (auto simp: Big-ZZ-8-5-def S-def beta-gt0 bigbeta-gt0
bigbeta-less1)
then have ge0: bigbeta / (1 — bigbeta) > 0
by auto
show ?thesis
proof (cases dboost-star = {})
case True
with x have card S < k powr (19/20)
by simp
also have ... < (2 / (1—p)) * k powr (19/20)
using 101 kn0 by (simp add: divide-simps)
finally show ?thesis
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by (smt (verit, ccfv-SIG) mult-nonneg-nonneg of-nat-0-le-iff ge0)
next
case Fulse
have bb-le: bigbeta < p
using big bigbeta-le by (auto simp: Big-ZZ-8-5-def)
have (card S — k powr (19/20)) / bigbeta < card dboost-star | bigbeta
by (smt (verit)  bigbeta-ge0 divide-right-mono)
also have ... = (3 i€dboost-star. 1 / beta i)
proof (cases card dboost-star = 0)
case False
then show ?thesis
by (simp add: bigbeta-def Let-def inverse-eq-divide)
qed (simp add: False card-eq-0-iff)
also have ... < real(card dboost-star) + card R + k powr (19/20)
proof —
have (> i€dboost-star. (1 — beta i) / beta 7)
< real (card R) + k powr (19/20)
using ZZ-8-1 big unfolding Big-ZZ-8-5-def R-def by blast
moreover have (3 i€dboost-star. beta i / beta i) = (> i€dboost-star. 1)
using <dboost-star C S> beta-gt0 by (intro sum.cong) force+
ultimately show ?Zthesis
by (simp add: field-simps diff-divide-distrib sum-subtractf)
qed
also have ... < real(card S) + card R + k powr (19/20)
by (simp add: <dboost-star C S> card-mono)
finally have (card S — k powr (19/20)) / bigbeta < real (card S) + card R
+ k powr (19/20) .
then have card S — k powr (19/20) < (real (card S) + card R + k powr
(19/20)) * bigbeta
using bigbeta-gt0 by (simp add: field-simps)
then have card S * (1 — bigbeta) < bigbeta * card R + (1 + bigbeta) = k
powr (19/20)
by (simp add: algebra-simps)
then have card S < (bigbeta x card R + (1 + bigbeta) * k powr (19/20)) /
(1 — bigbeta)
using bigbeta-lt! by (simp add: field-simps)
also have ... = (bigbeta / (1 — bigbeta)) * card R
+ ((1 + bigbeta) / (1 — bigbeta)) = k powr (19/20)
using bigbeta-gt0 bigbeta-lt1 by (simp add: divide-simps)
also have ... < (bigbeta / (I — bigbeta)) * card R + (2 / (1—pn)) * k powr
(19/20)
using p01 bb-le by (intro add-mono order-refl mult-right-mono frac-le) auto
finally show ?thesis .
qed
qed
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7.3 Lemma 8.6

For some reason this was harder than it should have been. It does require a
further small limit argument.

definition Big-ZZ-8-6 =
A l. Big-ZZ-8-5 pl A (WVk>1. 2 | (1—p) = k powr (19/20) < k powr (39/40))

lemma Big-ZZ-8-6:
assumes 0<ul pl<lI
shows V>°I. V. p € {u0..ul} — Big-ZZ-8-6 p 1
using assms Big-ZZ-8-5
unfolding Big-ZZ-8-6-def
apply (simp add: eventually-cong-iff all-imp-conj-distrib)
apply (intro conjl strip eventually-all-ge-at-top eventually-all-gell [where L=1])

apply real-asymp
by (smt (verit, ccfu-SIG) frac-le powr-ge-zero)

lemma (in Book) ZZ-8-6:
assumes big: Big-ZZ-8-6 1 1
defines R = Step-class {red-step} and S = Step-class {dboost-step}
and a = 2 / (1—p)
assumes s-ge: card S > k powr (39/40)
shows bigbeta > (1 — a % k powr (—1/40)) = (card S / (card S + card R))
proof —
have bigbeta-lt1: bigbeta < 1 and bigbeta-gt0: 0 < bigbeta
using bigbeta-gel big
by (auto simp: Big-ZZ-8-6-def Big-ZZ-8-5-def bigbeta-less! bigbeta-gt0 S-def)
have a > 0
using 101 by (simp add: a-def)
have s-gi-a: a * k powr (19/20) < card S
and 85: card S < (bigbeta / (1 — bigbeta)) * card R + a * k powr (19/20)
using big l-le-k assms
unfolding R-def S-def a-def Big-ZZ-8-6-def by (fastforce intro: ZZ-8-5)+
then have t-non0: card R # 0 — seemingly not provable without our assumption
using mult-eq-0-iff by fastforce
then have (card S — a * k powr (19/20)) / card R < bigbeta / (I — bigbeta)
using 85 bigbeta-gt0 bigbeta-lt1 t-non0 by (simp add: pos-divide-le-eq)
then have bigbeta > (1 — bigbeta) * (card S — a * k powr (19/20)) / card R
by (smt (verit, ccfu-threshold) bigbeta-lt1 mult.commute le-divide-eq times-divide-eq-left)
then have x: bigheta * (card R + card S — a * k powr (19/20)) > card S — a
x k powr (19/20)
using t-non0 by (simp add: field-simps)
have (1 — a x k powr — (1/40)) * card S < card S — a * k powr (19/20)
using s-ge kn0 <a>0> t-non0 by (simp add: powr-minus field-simps flip:
powr-add)
then have (I — a * k powr (—1/40)) * (card S / (card S + card R))
< (card S — a * k powr (19/20)) / (card S + card R)
by (force simp: divide-right-mono)
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also have ... < (card S — a x k powr (19/20)) / (card R + card § — a * k
powr (19/20))
using s-gt-a <a>0> t-nonl by (intro divide-left-mono) auto
also have ... < bigbeta
using * s-gt-a
by (simp add: divide-simps split: if-split-asm)
finally show ?thesis .
qed

end

8 An exponential improvement far from the diago-
nal

theory Far-From-Diagonal
imports Zigzag Stirling-Formula.Stirling-Formula

begin

8.1 An asymptotic form for binomial coefficients via Stir-
ling’s formula

From Appendix D.3, page 56

lemma const-smallo-real: (An. z) € o(real)
by real-asymp

lemma o-real-shift:
assumes f € o(real)
shows (Xi. f(i+7)) € o(real)
unfolding smallo-def
proof clarify
fix ¢ :: real
assume (0::real) < ¢
then have *: V g i in sequentially. norm (fi) < ¢/2 x norm i
using assms half-gt-zero landau-o.smallD by blast
have V g i in sequentially. norm (f (i + 7)) < ¢/2 * norm (i + j)
using eventually-all-ge-at-top [OF x|
by (metis (mono-tags, lifting) eventually-sequentially le-add1)
then have V p i in sequentially. i>j — norm (f (i + j)) < ¢ * norm i
apply eventually-elim
apply clarsimp
by (smt (verit, best) <0 < ¢> mult-left-mono nat-distrib(2) of-nat-mono)
then show Vg i in sequentially. norm (f (i + j)) < ¢ * norm i
using eventually-mp by fastforce
qed

lemma tendsto-zero-imp-o1:
fixes a :: nat = real
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assumes ¢ — (

shows a € o(1)
proof —

have V r n in sequentially. |a n| < ¢ if ¢>0 for ¢

using assms order-tendstoD(2) tendsto-rabs-zero-iff eventually-sequentially less-eq-real-def
that

by metis
then show ?thesis
by (auto simp: smallo-def)

qged

8.2 Fact D.3 from the Appendix

And hence, Fact 9.4
definition stir = An. fact n / (sqrt (2xpixn) « (n [ exp 1) ~n) — 1
Generalised to the reals to allow derivatives

definition stirG = An. Gamma (n+1) / (sqrt (2«pixn) = (n / exp 1) powr n) —
1

lemma stir-eq-stirG: n>0 = stir n = stirG (real n)
by (simp add: stirG-def stir-def add.commute powr-realpow Gamma-fact)

lemma stir-ge0: n>0 = stirn > 0
using fact-bounds|of n] by (simp add: stir-def)

lemma stir-to-0: stir —— 0
using fact-asymp-equiv by (simp add: asymp-equiv-def stir-def LIM-zero)

lemma stir-ol: stir € o(1)
using stir-to-0 tendsto-zero-imp-o1 by presburger

lemma fact-eq-stir-times: n # 0 = fact n = (1 + stir n) = (sqrt (2xpixn) * (n
[ exp 1) ~n)
by (simp add: stir-def)

definition logstir = An. if n=0 then 0 else log 2 ((1 + stir n) x sqrt (2xpi*n))

lemma logstir-o-real: logstir € o(real)
proof —
have V°n. 0 < n — |log 2 ((1 + stir n) * sqrt (2xpixn))| < ¢ * real n if ¢>0
for ¢
proof —
have V*>°n. 2 powr (cxn) / sqrt (2xpixn) > c+1
using that by real-asymp
moreover have V>n. |stir n| < ¢
using stir-ol that by (auto simp: smallo-def)
ultimately have V>°n. ((1 + stir n) * sqrt (2xpixn)) < 2 powr (¢ * n)
proof eventually-elim
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fix n
assume cl: c+1 < 2 powr (¢ x n) / sqrt (2xpixn) and lec: |stir n| < ¢
then have stirn < ¢
by auto
then show (I + stir n) x sqrt (2xpixn) < 2 powr (c*n)
using mult-right-mono [OF c1, of sqrt (2xpixn)] lec
by (smt (verit, ccfv-SIG) c1 mult-right-mono nonzero-eq-divide-eq pos-prod-le
powr-gt-zero)
qed
then show ?thesis
proof (eventually-elim, clarify)
fix n
assume n: (1 + stir n) * sqrt (2 * pi * n) < 2 powr (¢ * n)
and n>0
have (I + stir n) * sqrt (2 = pi = real n) > 1
using stir-ge0 <0 < n> mult-gel-I pi-ge-two by auto
with n show |log 2 ((1 + stir n) x sqrt (2 x pi x n))| < c*n
by (simp add: abs-if le-powr-iff)
qed
qed
then show ?thesis
by (auto simp: smallo-def logstir-def)
qed

lemma logfact-eq-stir-times:
fact n = 2 powr (logstir n) x (n / exp 1) " n
proof—
have 1 + stirn > 0 if n#0
using that by (simp add: stir-def)
then show ?thesis
by (simp add: logstir-def fact-eq-stir-times)
qged

lemma mono-G:
defines G = (Az::real. Gamma (x + 1) / (x / exp 1) powr x)
shows mono-on {0<..} G
unfolding monotone-on-def
proof (intro strip)
fix x y::real
assume z: z € {0<.} z <y
define GD where GD = Au::real. Gamma(u—+1) * (Digamma(u+1) — In(u))
/ (u / exp 1) powr u
have x: 3D. (G has-real-derivative D) (at u) A D > 0 if 0 < u for u
proof (intro exI conjl)
show (G has-real-derivative GD u) (at u)
unfolding G-def GD-def
using that
by (force intro!: derivative-eg-intros has-real-derivative-powr’ simp: In-div
pos-prod-lt field-simps)
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show GD u > 0
using that by (auto simp: GD-def Digamma-plus-1-gt-ln) — Thank you,
Manuel!
qed
show Gz < Gy
using & DERIV-pos-imp-increasing [OF - x] by (force simp: less-eq-real-def)
qged

lemma mono-logstir: mono logstir
unfolding monotone-on-def
proof (intro strip)
fix i j::nat
assume ;<j
show logstir i < logstir j
proof (cases j=0)
case True
with <i<j»> show ?Zthesis
by auto
next
case Fulse
with pi-ge-two have 1 x 1 < 2 % pi x j
by (intro mult-mono) auto
with False stir-ge0 [of j] have x: 1 x 1 < (1 + stir j) = sqrt (2 = pi * real j)
by (intro mult-mono) auto
with <i < j> mono-G show ?thesis
by (auto simp: logstir-def stir-eq-stirG stirG-def monotone-on-def)
qed
qed

definition ok-fun-94 = M\k. — logstir k

lemma ok-fun-94: ok-fun-94 € o(real)
unfolding ok-fun-94-def
using logstir-o-real by simp

lemma fact-9-4:
assumes [: 0 <[] <k
defines v =1 / (real k + real 1)
shows k+1 choose I > 2 powr ok-fun-94 k * v powr (—1) * (1—) powr (—k)
proof —
have «*: ok-fun-94 k < logstir (k+1) — (logstir k + logstir 1)
using mono-logstir by (auto simp: ok-fun-94-def monotone-def)
have 2 powr ok-fun-94 k = v powr (— real 1) x (1—~) powr (— real k)
= (2 powr ok-fun-94 k) * (k+1) powr(k+1) / (k powr k % I powr 1)
by (simp add: vy-def powr-minus powr-add powr-divide divide-simps)
also have ... < (2 powr (logstir (k+1)) / (2 powr (logstir k) = 2 powr (logstir

1))
* (k+1) powr (k+1) / (k powr k x [ powr 1)
by (smt (verit, del-insts) x divide-right-mono mult-less-0-iff mult-right-mono
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powr-add powr-diff powr-ge-zero powr-mono)

also have ... = fact(k+1) / (fact k * fact 1)
using ! by (simp add: logfact-eq-stir-times powr-add divide-simps flip: powr-realpow)
also have ... = real (k+I choose )

by (simp add: binomial-fact)
finally show %thesis .
qed

8.3 Fact D.2
For Fact 9.6

lemma D2:
fixes k1
assumes t: 0<tt < k
defines v =1 / (real k + real l)
shows (k+1—t choose 1) < exp (— v * (t—1)"2 / (2%k)) = (k / (k+1)) "t = (k+I
choose 1)
proof —
have (k+I1—t choose 1) * inverse (k+I choose 1) = ([]i<t. (k—1i) / (k+1—1))
using <t < k>
proof (induction t)
case (Suc t)
then have ¢t < k
by simp
have (k + 1 —t) « (k + | — Suc t choose l) = (k — t) = (k + 1 — t choose 1)
by (metis binomial-absorb-comp diff-Suc-eq-diff-pred diff-add-inverse2 diff-commute)
with Suc.IH [symmetric] Suc(2) show ?case
by (simp add: field-simps flip: of-nat-mult of-nat-diff)
qed auto
also have ... = (real k / (k+1))"t = ([[i<t. 1 — real i x real | / (real k *
(k+1—i)))
proof —
have 1 — i % reall / (real k * (k+1—1i)) = ((k—14)/(k+1—1)) = ((k+1) / k)
if i<t for i
using that <t < k> by (simp add: divide-simps) argo
then have x: ([[i<t. 1 — real i % real | / (real k * (k+1—1))) = ([]i<t.
((k=i)/(b-+1—1)) * ((k+1) / K))
by auto
show ?thesis
unfolding * prod.distrib by (simp add: power-divide)
qed
also have ... < (real k / (k+1)) "t * exp (— (O i<t. real i * real 1 / (real k *
(k+1))))
proof (intro mult-left-mono)
have real i x real 1 / (real k x real (k+1—1i)) < 1
ifi <t for i
using that <t < k> by (simp add: divide-simps mult-mono)
moreover have 1 — i x [ / (k % real (k+1—1i)) < exp (— (i * real l / (k * (k
+ real 1)))) (is - < ?R)

161



ifi <t for i
proof —
have exp (— (ixl / (k * real (k+1—i)))) < ?R
using that <t < k> by (simp add: frac-le-eq divide-le-0-iff mult-mono)
with exp-minus-ge show ?thesis
by (smt (verit, best))
qed
ultimately show ([[i<t. 1 — i x real | / (k * real (k+1—i))) < exp (—
Ooi<t. i x real l / (k * real (k+1))))
by (force simp: exp-sum simp flip: sum-negf intro!: prod-mono)
qed auto
finally have 1: (k+I—t choose 1) * inverse (k+I choose 1)
< (real k / (k4+1))"t x exp (— O i<t. i x vy / k))
by (simp add: y-def mult.commute)
have #x: v % (t — 1)°2 / (2xk) < D i<t.ix~v / k)
proof —
have g: (> i<t. real i) = real (tx(t—1)) / 2
by (induction t) (auto simp: algebra-simps eval-nat-numeral)
have v * (t—1)"2 / (2xk) < real(tx(t—1)) / 2 * v/k
by (simp add: field-simps eval-nat-numeral divide-right-mono mult-mono
v-def)
also have ... = (> i<t. i xv / k)
unfolding g [symmetric] by (simp add: sum-distrib-right sum-divide-distrib)
finally show ?thesis .

qed
have 0: 0 < real (k + I choose 1)
by simp
have «: (k+1—t choose 1) < (k / (k+1)) "t * exp (— O i<t. i x~v [ k)) = (k+1
choose 1)

using order-trans [OF - mult-right-mono [OF 1 0]]
by (simp add: less-eq-real-def )
also have ... < (k / (k+0))"t * exp (— v x (t—1)"2 / (2xk)) x(k+I choose 1)
using *x by (intro mult-mono) auto
also have ... < exp (— v (t—1)"2 / (2 = real k)) * (k / (k+1)) "t = (k+I
choose 1)
by (simp add: mult-ac)
finally show ?thesis
using ¢ by simp
qed

Statement borrowed from Bhavik; no o(k) function

corollary Far-9-6:

fixes k1

assumes t: 0<tt < k

defines vy =1 / (k + real 1)

shows exp (—1) * (1—v) powr (— real t) x exp (v * (real t)* / real(2xk)) *
(k—t+I choose 1) < (k+I choose 1)
proof —

have kkl: k / (k + real l) = 1 — v k+l—t = k—t+1
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using ¢ by (auto simp: ~y-def divide-simps)
have [simp]: t + ¢t < Suc (t * t)
using ¢
by (metis One-nat-def Suc-lel mult-2 mult-right-mono nle-le not-less-eq-eq
numeral-2-eq-2 mult-1-right)
have 0 <y ~vy < 1
using ¢ by (auto simp: ~y-def)
then have v  (real t x 2) <~y + real k x 2
using t by (smt (verit, best) mult-less-cancel-right2 of-nat-0-less-iff of-nat-mono)
then have x: v % t°2 / (2xk) — 1 <~y x (t—1)"2 / (2xk)
using ¢
apply (simp add: power2-eq-square pos-divide-le-eq divide-simps)
apply (simp add: algebra-simps)
done
then have x: exp (—1) x exp (v *x t°2 [ (2xk)) < exp (v * (t—1)"2 ] (2xk))
by (metis exp-add exp-le-cancel-iff uminus-add-conv-diff)
have I: exp (v % (t—1)"2 / (2xk)) * (k+I1—t choose 1) < (k / (k+1)) "t * (k+1
choose 1)
using mult-right-mono [OF D2 [OF t], of exp (v * (t—1)"2 / (2xk)) 1] t
by (simp add: v-def exp-minus field-simps)
have 2: (k / (k+1)) powr (— real t) * exp (v * (t—1)"2 / (2xk)) * (k+1—t
choose 1) < (k+1 choose 1)
using mult-right-mono [OF 1, of (1—~) powr (— real t)] t
by (simp add: powr-minus y-def powr-realpow mult-ac divide-simps)
then have 3: (1—7) powr (— real t) * exp (v * (t—1)"2 / (2xk)) * (k—t+I
choose 1) < (k+1 choose 1)
by (simp add: kkl)
show ?thesis
apply (rule order-trans [OF - 3])
using * less-eg-real-def by fastforce
qged

8.4 Lemma 9.3

definition ok-fun-93g = My k. (nat [k powr (3/4)]) = log 2 k — (ok-fun-71 ~ k
+ ok-fun-94 k) + 1

lemma ok-fun-93¢:
assumes () < v v < 1
shows ok-fun-93g v € o(real)
proof —
have (Ak. (nat [k powr (3/4)]) * log 2 k) € o(real)
by real-asymp
then show ?thesis
unfolding ok-fun-93g-def
by (intro ok-fun-71 [OF assms] ok-fun-94 sum-in-smallo const-smallo-real)
qed

definition ok-fun-93h = Ay k. (2 / (1—7)) * k powr (19/20) = (In v + 2 x In k)
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+ ok-fun-93g v k x In 2

lemma ok-fun-93h:

assumes () < v v < 1

shows ok-fun-93h v € o(real)
proof —

have (A\k. (2 / (1—7)) * k powr (19/20) * (In v + 2 % In k)) € o(real)

by real-asymp

then show %thesis

unfolding ok-fun-93h-def by (metis (mono-tags) ok-fun-93g assms sum-in-smallo(1)
cmult-in-smallo-iff ')
qed

lemma ok-fun-93h-uniform:
assumes p01: 0<pl pi<li
assumes e>()
shows V®k. Vyu. p € {u0..ul}y — |ok-fun-93h p k| / k < e
proof —
define f where f = A\k. ok-fun-78 k + ok-fun-74 k + ok-fun-76 k + ok-fun-94 k
define g where g = \u k. 2 * real k powr (19/20) * (In p+ 2 x In k) / (1—p)
have ¢: V°k. V. u0 < p Ap<ul —|gpkl/k<eif e>0 for e
proof (intro eventually-all-gell [where L = nat[1 / pn07])
show V°k. |g ul k| / real k < e
using assms that unfolding g-def by real-asymp
next
fix k p
assume le-e: |g pl k| / k< eand p: p0 < pp < pl and k: nat [1/p0] < k
then have k>0
using assms gr0l by force
have In-k: Ink > In (1/u0)
using k <0<p0> In-mono by fastforce
with p p01
have |ln p + 2 % In (real k)| < |ln pl + 2 * In (real k)|
by (smt (verit) In-div In-mono In-one)
with p k <pul < 1>
have |g p k| < [g p1 k|
by (simp add: g-def abs-mult frac-le mult-mono)
then show |g p k| / real k < e
by (smt (verit, best) divide-right-mono le-e of-nat-less-0-iff )
qed
have eq93: ok-fun-93h p k = g p k +
[k powr (8/4)] x Ink — ((ok-fun-72 uw k + fk) — 1)  In 2 for p k
by (simp add: ok-fun-93h-def g-def ok-fun-71-def ok-fun-93g-def f-def log-def
field-simps)

have In2: In 2 > (0::real)
by simp
have 1e93: |ok-fun-95h 1 k|
< |g p k| + |k powr (3/4)] * In k| + (|ok-fun-72 pw k| + |fk| + 1) * In 2
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for u k
unfolding eq93
by (smt (verit, best) mult.commute In-gt-zero-iff mult-le-cancel-left-pos mult-minus-left)
define e5 where e5 = e/5
have e5 > 0
by (simp add: <e>05 e5-def)
then have A: V°k. Yyu. p € {p0.ul} — |gu k|l /) k <es
using g by simp
have B: VL. |[k powr (3/4)] *Ink| | k < e5
using <0 < e5> by real-asymp
have C: V®°k. V. p € {pu0..u1} — |ok-fun-72 p k| xIn 2 / k < e5
using In2 assms ok-fun-72-uniform[OF n01, of 5 / In 2] <e5 > 0>
by (simp add: divide-simps)
have f € o(real)
by (simp add: f-def ok-fun-78 ok-fun-74 ok-fun-76 ok-fun-94 sum-in-smallo(1))
then have D: V°k. [fk| «In 2 | k < e5
using <e§ > 0> In2
by (force simp: smallo-def field-simps eventually-at-top-dense dest!: spec [where
z=e5 /[ In 2])
have E:V>°k. In2 |k < e5
using <ej > 0> In2 by real-asymp
have V>°k. V. p € {u0..u1} — |ok-fun-93h p k| / real k < e5+eb5+e5+es+eb
using A BCDE
apply eventually-elim
by (fastforce simp: add-divide-distrib distrib-right
intro!: order-trans [OF divide-right-mono [OF 1e93]])
then show %thesis
by (simp add: e5-def)
qed

context P0-min
begin

definition Big-Far-9-8 =
A l. Big-ZZ-8-5 p I N Big-X-7-1 p 1l A Big-Y-6-2 1 1 N\ Big-Red-5-3 1
AN (VE>I pO-min — 3 x epsk > 1/k N kE>2
A |ok-fun-98h wk / (u* (1 + 1/ (exp 1 x (1—p))))| / k < 0.667 —
2/3)

lemma Big-Far-9-3:
assumes 0<ul p0<pl pi<l
shows V*°I. V. u € {u0..u1} — Big-Far-9-3 p 1
proof —
define d where d = \uzreal. o+ (1 + 1 / (exp 1 * (1—p)))
have d p0 > 0
using assms by (auto simp: d-def divide-simps add-pos-pos)
then have dgt: d pn > d p0 if p € {p0..u1} for p
using that assms by (auto simp: d-def frac-le mult-mono)
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define e::real where e = 0.667 — 2/3
have e>0
by (simp add: e-def)
have : VUL Vu. p € {u0.ul}y — (VEk>1. |ok-fun-95h p k / d p] [ k < e)
proof —
have V. VEk>I. Vu. p € {u0..u1} — |ok-fun-93h pw k| / k < d p0 * e)
using mult-pos-pos[OF <d p0 > 0> <e>0>] assms
using ok-fun-93h-uniform eventually-all-ge-at-top
by blast
then show ?thesis
apply eventually-elim
using dgt <0 < d p0> <0 < e>
by (auto simp: mult-ac divide-simps mult-less-0-iff zero-less-mult-iff split:
if-split-asm)
(smt (verit) mult-less-cancel-left nat-neg-iff of-nat-0-le-iff )
qed
with p0-min show f?thesis
unfolding Big-Far-9-3-def eps-def d-def e-def
using assms Big-ZZ-8-5 Big-X-7-1 Big-Y-6-2 Big-Red-5-3
apply (simp add: eventually-conj-iff all-imp-conj-distrib)
apply (intro conjI strip eventually-all-ge-at-top; real-asymp)
done
qed

end

lemma (A\k. (nat [real k powr (3/4)]) * log 2 k) € o(real)
by real-asymp

lemma RN34-le-2powr-ok:
fixes [ k::nat
assumes | < k 0<k
defines 13/ = nat [real | powr (3/4)]
shows RN k134 < 2 powr ([k powr (3/4)] = log 2 k)
proof —
have §: [l powr (3/4)] < [k powr (8/4)]
by (simp add: assms(1) ceiling-mono powr-mono2)
have RN k 134 < k powr (134—1)
— Bhavik’s off-diagonal Ramsey upper bound; can’t use (2::’a)k + 134
using RN-le-argpower’ <k>0> powr-realpow by auto
also have ... < k powr 13/
using <k>0> powr-mono by force
also have ... < 2 powr (134 * log 2 k)
by (smt (verit, best) mult.commute <k>0> of-nat-0-less-iff powr-log-cancel
powr-powr)
also have ... < 2 powr ([real k powr (3/4)] = log 2 k)
unfolding [34-def
proof (intro powr-mono powr-mono2 mult-mono ceiling-mono of-nat-mono nat-mono
d < k)
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show 0 < real-of-int [k powr (3/4)]
by (meson le-of-int-ceiling order.trans powr-ge-zero)
qed (use assms § in auto)
finally show %thesis .
qged

Here n really refers to the cardinality of V, so actually nV

lemma (in Book') Far-9-3:
defines § = min (1/200) (v/20)
defines R = Step-class {red-step}
defines ¢ = card R
assumes y15: v < 1/5 and p0: p0 > 1//4
and nge: n > exp (—0 * real k) * (k+1 choose 1)
and X0Oge: card X0 > n/2
— Because n / 2 < real (card X0) makes the proof harder
assumes big: Big-Far-9-3 v [
shows ¢ > 2xk / 8
proof —
define § where S = Step-class {dboost-step}
have k>2 and b0ig85: Big-ZZ-8-5 ~ | and big71: Big-X-7-1 v 1
and big62: Big-Y-6-2 v 1 and big53: Big-Red-5-3 ~ I
using big l-le-k by (auto simp: Big-Far-9-3-def)
define 13/ where 13/ = nat [real | powr (3/4)]
have 134 > 0
using [34-def In0 by fastforce
have v01: 0 < vy < 1
using In0 l-le-k by (auto simp: y-def)
then have bigbeta01: 0 < bigbeta bigbeta < 1
using big53 assms bigbeta-gt0 bigbeta-less! by (auto simp: bigbeta-def)
have one-minus: 1—y = real k / (real k + real 1)
using In0 by (simp add: v-def divide-simps)
have t < k
using red-step-limit by (auto simp: R-def t-def)
have f: 2 powr ok-fun-94 k % v powr (— real 1) * (1—v) powr (— real k)
< k-1 choose 1
unfolding v-def using fact-9-4 l-le-k In0 by blast
have powr-combine-right: x powr a * (x powr b * y) = z powr (a+b) x y for z
y a b:real
by (simp add: powr-add)
have (2 powr ok-fun-71 v k x 2 powr ok-fun-94 k)  (bigbeta/y) ~ card S * (exp
(=6xk) * (1—v) powr (— real k + t) / 2)
< 2 powr ok-fun-71 v k x vl = (1—v) ~ t * (bigbeta/vy) ~ card S * (exp
(—0xk) x (k+1 choose 1) | 2)
using 01 <0<bigbeta> mult-right-mono [OF f, of 2 powr ok-fun-71 v k = ~ "l
x (1—v) "t * (bigbeta/y) =~ card S = (exp (—dxk)) / 2]
by (simp add: mult-ac zero-le-mult-iff powr-minus powr-diff divide-simps powr-realpow)
also have ... < 2 powr ok-fun-71 v k x v~ = (1—v) ~ t * (bigbeta/v) ~ card
S * card X0
proof (intro mult-left-mono order-refl)
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show exp (=6 x k) x real (k+1 choose l) | 2 < real (card X0)
using X0ge nge by force
show 0 < 2 powr ok-fun-71 v k x v ~ 1l % (1—7) "t * (bigbeta/y) ~ card S
using 01 bigbeta-ge by (force simp: bigbeta-def)
qed
also have ... < card (Xseq halted-point)
unfolding R-def S-def t-def using big
by (intro X-7-1) (auto simp: Big-Far-9-3-def)
also have ... < RN k13
proof —
have p0 — 3 x € > 1/k and pseq halted-point > p0 — 8 * ¢
using l-le-k big p0-ge Y-6-2-halted by (auto simp: Big-Far-9-3-def ~-def)
then show ?thesis
using halted-point-halted 01
by (fastforce simp: step-terminating-iff termination-condition-def pseq-def
134-def)
qed
also have ... < 2 powr ([k powr (8/4)] * log 2 k)
using RN34-le-2powr-ok 134-def l-le-k In0 by blast
finally have 2 powr (ok-fun-71 v k + ok-fun-94 k) * (bigbeta/v) ~ card S
x exp (—0xk) * (1—v) powr (— real k +t) / 2
< 2 powr ([k powr (8/4)] * log 2 k)
by (simp add: powr-add)
then have le-2-powr-g: exp (—0xk) x (1—7) powr (— real k + t) x (bigbeta /)
" card S
< 2 powr ok-fun-93g v k
using <k>2> by (simp add: ok-fun-93g-def field-simps powr-add powr-diff flip:
powr-realpow)

let % = bigbeta x t / (1—) + (2 / (1—7)) * k powr (19/20)
have bigbeta-le: bigbeta < v and bigbeta-ge: bigbeta > 1 / (real k)?
using bigbeta-def 01 bigh3 bigbeta-le bigbeta-ge-square by blast+

define ¢ where ¢ = \u. (v / (1—7)) * In (y/u) — finding the maximum via
derivatives
have In-eq: In (v / (v / eap 1)) / (1—7) = 1/(1—7)
using 701 by simp
have ¢: ¢ (v / exp 1) > ¢ bigbeta
proof (cases v / exp 1 < bigbeta) — Could perhaps avoid case analysis via
2nd derivatives
case True
show ?thesis
proof (intro DERIV-nonpos-imp-nonincreasing [where f = ¢|)
fix z
assume z: v / ezp 1 < z x < bigbeta
with y01 have z>0
by (smt (verit, best) divide-pos-pos exp-gt-zero)
with v01 z have In (v/z) / (1—y) — 1 / (1—v) <0
by (smt (verit, ccfv-SIG) divide-pos-pos exp-gt-zero frac-le In-eq In-mono)
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with z <z>0> v01 show 3D. (¢ has-real-derivative D) (at ) AN D < 0
unfolding ¢-def by (intro exl conjl derivative-eg-intros | force)+
qed (simp add: True)
next
case Fulse
show ?thesis
proof (intro DERIV-nonneg-imp-nondecreasing [where f = ¢])
fix z
assume z: bigheta < zz <~y / exp 1
with bigbeta01 ~v01 have x>0 by linarith
with v01 z have In (v/z) / (1—y) — 1 / (1—7) >0
by (smt (verit, best) frac-le In-eq In-mono zero-less-divide-iff )
with z <z>0> v01 show 3 D. (¢ has-real-derivative D) (at ) A D > 0
unfolding p-def
by (intro exl conjl derivative-eg-intros | force)+
qed (use False in force)
qed

define ¢ where ¢ = A\z:ireal. 1 + 1 / (exp 1 % (1—x))
have mono-c: mono-on {0<..<1} ¢

by (auto simp: monotone-on-def c-def field-simps)
have cgt0: c z > 0 if 2<1 for z

using that by (simp add: add-pos-nonneg c-def)

have card S < bigbeta = t / (1—bigbeta) + (2 / (1—7)) * k powr (19/20)
using ZZ-8-5 [OF big85] by (auto simp: R-def S-def t-def)
also have ... < %
using bigbeta-le by (simp add: v01 bigbeta-gel frac-le)
finally have card S < % .
with bigbeta-le bigbeta0l have 2¢ x In (bigbeta/) < card S * In (bigbeta/~)
by (simp add: mult-right-mono-neg)
then have —2¢ x In (v/bigbeta) < card S * In (bigbeta/v)
using bigbeta01 ~01 by (smt (verit) In-div minus-mult-minus)
then have v  (real k — t) — dxk — 2 x In (v/bigbeta) < ~v * (real k — t) —
dxk + card S x In (bigbeta /)
by linarith
also have ... < (t — real k) x In (1—7) — 6%k + card S * In (bigbeta/7)
using <t < k> v01 mult-right-mono [OF In-add-one-self-le-self2 [of —~], of real
k — 1]
by (simp add: algebra-simps)
also have ... = In (exp (—dxk) x (1—v) powr (— real k + t) * (bigbeta/y) ~
card S)
using Y01 bigbeta01 by (simp add: In-mult In-div In-realpow)
also have ... < In (2 powr ok-fun-93g ~ k)
using le-2-powr-g 01 bigbeta01 by (simp del: In-powr)
also have ... = ok-fun-93g v k = In 2
by auto
finally have v x (real k — t) — 0xk — %2 * In (vy/bigbeta) < ok-fun-93g v k =
In 2.
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then have v x (real k — t) < %€ = In (y/bigbeta) + dxk + ok-fun-93g v k = In 2
by simp
also have ... < (bigbeta x t / (1—7)) * In (v/bigbeta) + dxk + ok-fun-93h ~ k
proof —
have v/bigbeta < v * (real k)?
using kn0 bigbeta-le bigbeta-ge <bigbeta>0> by (simp add: field-simps)
then have X: In (v/bigbeta) < In v+ 2 xInk
using <bigbeta>0> <y>0> kn0
by (metis In-mult-pos In-realpow of-nat-numeral of-nat-zero-less-power-iff
divide-pos-pos In-mono)
show ?thesis
using mult-right-mono [OF X, of 2 x k powr (19/20) |/ (1—)] <y<1>
by (simp add: ok-fun-93h-def algebra-simps)
qed
also have ... < ((y/exp 1) xt /[ (1—7)) + dxk + ok-fun-93h ~ k
using 01 mult-right-mono [OF ¢, of t] by (simp add: @-def mult-ac)
finally have v x (real k — t) < ((y / exzp 1) x t / (1—7)) + d*xk + ok-fun-93h
v k.
then have (y—0) x k — ok-fun-93h v k <t x vy % cvy
by (simp add: c-def algebra-simps)
then have ((y—0) x k — ok-fun-93h v k) / (y x ¢ v) <t
using Y01 cgt0 by (simp add: pos-divide-le-eq)
then have x: t > (1—¢6 / «y) % inverse (¢ ) * k — ok-fun-93h v k | (7 % ¢ 7)
using 01 cgtO[of ] by (simp add: divide-simps)
define f/7 where f47 = Mx. (1 — 1/(200%z)) * inverse (¢ x)
have concave-on {1/10..1/5} f47
unfolding f/7-def
proof (intro concave-on-mul)
show concave-on {1/10..1/5} (Ax. 1 — 1/(200xz))
proof (intro f’'-le0-imp-concave)
fix z::real
assume z € {1/10..1/5}
then have z01: 0<z <1 by auto
show ((Az. (1 — 1/(200%z))) has-real-derivative 1/(200%z°2)) (at )
using z01 by (intro derivative-eq-intros | force simp: eval-nat-numeral)+
show ((Az. 1/(200xz"2)) has-real-derivative —1/(100%z"3)) (at x)
using z01 by (intro derivative-eq-intros | force simp: eval-nat-numeral)+
show —1/(100xz°3) < 0
using z01 by (simp add: divide-simps)
qed auto
show concave-on {1/10..1/5} (Az. inverse (c z))
proof (intro f’'-le0-imp-concave)
fix z::real
assume ¢ € {1/10..1/5}
then have 201: 0<z <1 by auto
have swap: v x (z—1) = (—u) * (I —z) for u
by (metis minus-diff-eq minus-mult-commute)
have §: exp 1 x (z — 1) < 0
using z01 by (meson exp-gi-zero less-iff-diff-less-0 mult-less-0-iff)
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then have non0: 1 + 1 / (exp 1 x (1—z)) # 0
using z01 by (smt (verit) exp-gt-zero mult-pos-pos zero-less-divide-iff )
let 9f1 = Xz. —exp 1 /(— 1 + exp 1 x (— 1 + x))?
let 2f2 = \z. 2xexp(1)~2/(—1 + exp(1)*x(—1 + z))"3
show ((Az. inverse (¢ x)) has-real-derivative ?f1 z) (at x)
unfolding c-def power2-eq-square
using z01 § non0
apply (intro ezl congl derivative-eq-intros | force)+
apply (simp add: divide-simps square-eq-iff swap)
done
show (%f1 has-real-derivative ?f2 ) (at x)
using z01 §
by (intro derivative-eg-intros | force simp: divide-simps eval-nat-numeral)+
show #f2 (z:real) < 0
using 201 § by (simp add: divide-simps)
qed auto
show mono-on {(1::real)/10..1/5} (Ax. 1 — 1 / (200 % z))
by (auto simp: monotone-on-def frac-le)
show monotone-on {1/10..1/5} (<) Az y. y < z) (Az. inverse (¢ x))
using mono-c cgt0 by (auto simp: monotone-on-def divide-simps)
qed (auto simp: c-def)
moreover have f/7(1/10) > 0.667
unfolding f/7-def c-def by (approxzimation 15)
moreover have f/7(1/5) > 0.667
unfolding f/7-def c-def by (approzimation 15)
ultimately have /7: {47z > 0.667 if x € {1/10..1/5} for z
using concave-on-ge-min that by fastforce

define f/8 where f/8 = Az. (1 — 1/20) % inverse (c z)
have 48: f{8 z > 0.667 if z € {0<..<1/10} for z
proof —

have (0.667::real) < (1 — 1/20) x inverse(c(1/10))

unfolding c-def by (approzimation 15)
also have ... < f/8
using that unfolding f/8-def c-def
by (intro mult-mono le-imp-inverse-le add-mono divide-left-mono) (auto simp:
add-pos-pos)

finally show ?thesis .
qed
define e::real where e = 0.667 — 2/8
have BIGH: abs (ok-fun-93h v k / (v xcv)) / k< e
using big l-le-k unfolding Big-Far-9-3-def all-imp-cong-distrib e-def [symmetric]

c-def

by auto
consider v € {0<..<1/10} | v € {1/10..1/5}

using d-def <y < 1/5> v01 by fastforce
then show %thesis
proof cases

case [

171



then have 6v: 0 / v = 1/20
by (auto simp: 0-def)
have (2/3:real) < f48 v — e
using 48[OF 1] e-def by force
also have ... < (1—-§ / ~) * inverse (¢ ) — ok-fun-93h vk / (y x ¢ v) / k
unfolding f}8-def 6 using BIGH
by (smt (verit, best) divide-nonneg-nonneg of-nat-0-le-iff zero-less-divide-iff )
finally
have A: 2/3 < (1-6 / v) * inverse (¢ v) — ok-fun-93h v k |/ (y xc~) / k.
have real (2 x k) / 3 < (1 — 6/ 7) * inverse (¢ v) x k — ok-fun-93h v k /
(v *c9)
using mult-left-mono [OF A, of k] cgt0 [of ~] 701 kn0
by (simp add: divide-simps mult-ac)
with x show ?thesis
by linarith
next
case 2
then have 6v: § / v = 1/(200%)
by (auto simp: 0-def)
have (2/3:real) < f47 v — e
using 47[OF 2] e-def by force
also have ... < (1 —§ /v) = inverse (¢ v) — ok-fun-93h vk / (yxc~v) / k
unfolding f47-def 6 using BIGH
by (smt (verit, best) divide-right-mono of-nat-0-le-iff)
finally
have 2/3 < (1 — 0 / 7) * inverse (¢ v) — ok-fun-93h vk / (y x ¢ ) / k .
from mult-left-mono [OF this, of k] cgt0 [of ~] v01 knO
have real (2 x k) / 83 < (1 — & / ~) * inverse (¢ ) * k — ok-fun-93h v k /
(7% ¢ )
by (simp add: divide-simps mult-ac)
with x show ?thesis
by linarith
qed
qed

8.5 Lemma 9.5

context P0-min
begin

Again stolen from Bhavik: cannot allow a dependence on ~y
definition ok-fun-95a = Ak. ok-fun-61'k — (2 + 4 * k powr (19/20))

definition ok-fun-95b = \k. In 2 x ok-fun-95a k — 1

lemma ok-fun-95a: ok-fun-95a € o(real)
proof —
have (\k. 2 + / = k powr (19/20)) € o(real)
by real-asymp
then show ?thesis

172



unfolding ok-fun-95a-def using ok-fun-61 sum-in-smallo by blast
qed

lemma ok-fun-95b: ok-fun-95b € o(real)
using ok-fun-95a by (auto simp: ok-fun-95b-def sum-in-smallo const-smallo-real)

definition Big-Far-9-5 = A\ 1. Big-Red-5-8 p I N\ Big-Y-6-1 p I N\ Big-ZZ-8-5 1
l

lemma Big-Far-9-5:
assumes 0<ul pl<1
shows V*°I. V. p0 < pu A p < pul — Big-Far-9-5 p 1
using assms Big-Red-5-8 Big-Y-6-1 Big-ZZ-8-5
unfolding Big-Far-9-5-def eps-def
by (simp add: eventually-cong-iff all-imp-conj-distrib)

end

Y0 is an additional assumption found in Bhavik’s version. (He had a
couple of others). The first o(k) function adjusts for the error in n/2

lemma (in Book’) Far-9-5:

fixes ¢ n::real

defines R = Step-class {red-step}

defines ¢t = card R

assumes nV: real nV > exp (=6 * k) x (k+I choose l) and Y0: card Y0 > nV
div 2

assumes p0: 1/2 < 1—y—n 1—y—n < p0 and 0<n

assumes big: Big-Far-9-5 v [

shows card (Yseq halted-point) >

exp (=0 x k + ok-fun-95b k) x (1 —y—n) powr (yxt / (1—7)) * (1 —y—n)/(1—7)) "t

x exp (v * (real t)? | (2%k)) » (k—t+1 choose 1) (is - > ?rhs)
proof —
define § where S = Step-class {dboost-step}
define s where s = card S
have v01: 0 < vy < 1
using In0 l-le-k by (auto simp: ~y-def)
have big85: Big-ZZ-8-5 v | and big61: Big-Y-6-1 v | and bighb3: Big-Red-5-8 ~
l
using big by (auto simp: Big-Far-9-5-def)
have bigbeta < ~
using bigbeta-def ~01 bigh3 bigbeta-le by blast
have 85: s < (bigbeta / (1—bigbeta)) * t + (2 / (1—7)) * k powr (19/20)
unfolding s-def t-def R-def S-def using ZZ-8-5 ~01 big85 by blast
also have ... < (y/ (I—7)) xt + (2 / (1—7)) * k powr (19/20)
using Y01 <bigbeta < ~> by (intro add-mono mult-right-mono frac-le) auto
finally have D85: s < vxt / (1—v) + (2 / (1—7)) * k powr (19/20)
by auto
have t<k
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unfolding t-def R-def using 01 red-step-limit by blast
have st: card (Step-class {red-step,dboost-step}) =t + s
using 01
by (simp add: s-def t-def R-def S-def Step-class-insert-NO-MATCH card-Un-disjnt
disjnt-Step-class)
then have 61: 2 powr (ok-fun-61 k) * p0 ~ (t+s) * card Y0 < card (Yseq
halted-point)
using Y-6-1[OF big61] card-XY0 v01 by (simp add: divide-simps)
have (1—~y—n) powr (¢t + vxt / (1—7)) * nV < (1—y—n) powr (t+s — 4 = k
powr (19/20)) * (4 * card Y0)
proof (intro mult-rmono)
show (1—~—n) powr (¢t + vt / (1—7)) < (I —y—n) powr (t+s — 4 * k powr
(19/20))
proof (intro powr-mono’)
have v < 1/2
using <0<n> p0 by linarith
then have 22: 1 / (1 — 7)< 2
using divide-le-eq-1 by fastforce
show real (t + s) — 4 * real k powr (19 / 20) < real t + v x real t / (1 —
7)
using mult-left-mono [OF 22, of 2 x real k powr (19 / 20)] D85
by (simp add: algebra-simps)
next
show 0 <1 —~v—-—n1—-~v—-—n<1
using assms y01 by linarith+
qed
have nV > 2
by (metis nontriv wellformed two-edges card-mono ez-in-conv finV')
then have nV < 4 x (nV div 2) by linarith
also have ... < 4 x card Y0
using Y0 mult-le-mono2 by presburger
finally show real nV < real (4 * card Y0)
by force
qed (use Y0 in auto)
also have ... < (1—y—n) powr (t+s) / (1—y—n) powr (4 = k powr (19/20))
x (4 % card Y0)
by (simp add: divide-powr-uminus powr-diff)
also have ... < (I —y—n) powr (t+s) / (1/2) powr (4 = k powr (19/20)) * (4
* card Y0)
proof (intro mult-mono divide-left-mono)
show (1/2) powr (4 =k powr (19/20)) < (1—~y—n) powr (4 * k powr (19/20))
using 01 p0 <0<ns by (intro powr-mono-both’) auto
qed (use p0 in auto)
also have ... < p0 powr (t+s) / (1/2) powr (4 = k powr (19/20)) * (4 * card
Y0)
using p0 powr-mono2 by (intro mult-mono divide-right-mono) auto
also have ... = (2 powr (2 + 4 = k powr (19/20))) * p0 ~ (t+s) * card Y0
using p0-01 by (simp add: powr-divide powr-add power-add powr-realpow)
finally have 2 powr (ok-fun-95a k) x (1—vy—n) powr (t + vxt / (1—7)) * nV
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< 2 powr (ok-fun-61k) x p0 ~ (t+s) = card Y0
by (simp add: ok-fun-95a-def powr-diff field-simps)
with 61 have x: card (Yseq halted-point) > 2 powr (ok-fun-95a k) x (1—vy—n)
powr (t + vyxt / (1—7)) * nV
by linarith

have F: exp (ok-fun-95b k) = 2 powr ok-fun-95a k * exp (— 1)
by (simp add: ok-fun-95b-def exp-diff exp-minus powr-def field-simps)
have ?rhs
< exp (=0 x k) * 2 powr (ok-fun-95a k) x exp (—1) x (1—y—n) powr (yxt /
(1))
* (((1=y=m)/(1—=7)) ~t * exp (v * (real t)? / real(2xk)) x (k—t+I choose
)

unfolding exp-add F by simp
also have ... < exp (=6 * k) x 2 powr (ok-fun-95a k) x (1 —y—n) powr (yxt /
(1-7))
* (exp (—1) * (1—y—n)/(1—7)) “t x exp (v * (real t)? / real(2xk)) *
(k—t+1 choose 1))
by (simp add: mult.assoc)
also have ... < 2 powr (ok-fun-95a k) x (1—vy—n) powr (t + vyxt / (1—7)) *
exp (=6 = k)
x (exp (—1) * (1—) powr (— real t) * exp (v * (real t)? / real(2xk))
* (k—t+1 choose 1))
using p0 01
unfolding powr-add powr-minus by (simp add: mult-ac divide-simps flip:
powr-realpow)
also have ... < 2 powr (ok-fun-95a k) x (1—~y—n) powr (t + v+t / (1—7)) *
exp (=6 = k) * (k+I choose 1)
proof (cases t=0)
case Fulse
then show %thesis
unfolding v-def using <t<k> by (intro mult-mono order-refl Far-9-6) auto
qed auto
also have ... < 2 powr (ok-fun-95a k) x (1—~—mn) powr (¢t + v+t / (1—7)) *
nV
using nV mult-left-mono by fastforce
also have ... < card (Yseq halted-point)
by (rule *)
finally show ?thesis .
qed

8.6 Lemma 9.2

context P0-min
begin

lemma error-9-2:

assumes u>0d > 0
shows V k. ok-fun-95b k + u *x real k / d > 0
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proof —
have V k. |ok-fun-95b k| < (pn/d) * k
using ok-fun-95b assms unfolding smallo-def
by (auto dest!: spec [where z = p/d])
then show ?thesis
by eventually-elim force
qed

definition Big-Far-9-2 = Ap 1. Big-Far-9-3 u I N Big-Far-9-5 p 1 N (VEk>I.
ok-fun-95b k + uxk/60 > 0)

lemma Big-Far-9-2:
assumes 0<p0 p0<pl pi<l
shows V*°IL. Vu. p0 < p A p < pl — Big-Far-9-2 pl
proof —
have VL. VEk>I. (Vp. p0 < pAp<pl — 0 < ok-fun-95b k + u x k / 60)
using assms
apply (intro eventually-all-ge-at-top eventually-all-gel0 error-9-2)
apply (auto simp: divide-right-mono mult-right-mono elim!: order-trans)
done
then show ?thesis
using assms Big-Far-9-3 Big-Far-9-5
unfolding Big-Far-9-2-def
apply (simp add: eventually-cong-iff all-imp-conj-distrib)
by (smt (verit, ccfo-threshold) eventually-sequentially)
qged

end

Used for both 9.2 and 10.2

lemma (in Book’) Off-diagonal-conclusion:
defines R = Step-class {red-step}
defines ¢ = card R
assumes Y: (k—t+[ choose 1) < card (Yseq halted-point)
shows Fulse
proof —
have t<k
unfolding t-def R-def using red-step-limit by blast
have RN (k—t) I < card (Yseq halted-point)
by (metis Y add.commute RN-commute RN-le-choose le-trans)
then obtain K
where Ksub: K C Yseq halted-point
and K: card K = k—t A cliqgue K Red V card K = 1 A clique K Blue
by (meson Red-Blue-RN Yseq-subset-V size-clique-def)
show Fulse
using K
proof
assume K: card K = k — t A clique K Red
have cliqgue (K U Aseq halted-point) Red
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proof (intro clique-Un)
show clique (Aseq halted-point) Red
by (meson A-Red-clique valid-state-seq)
have all-edges-betw-un (Aseq halted-point) (Yseq halted-point) C Red
using valid-state-seq Ksub
by (auto simp: valid-state-def RB-state-def all-edges-betw-un-Un2)
then show all-edges-betw-un K (Aseq halted-point) C Red
using Ksub all-edges-betw-un-commaute all-edges-betw-un-mono2 by blast
show K C V
using Ksub Yseq-subset-V by blast
qed (use K Aseq-subset-V in auto)
moreover have card (K U Aseq halted-point) = k
proof —
have eqt: card (Aseq halted-point) =t
using red-step-eq-Aseq R-def t-def by simp
have card (K U Aseq halted-point) = card K + card (Aseq halted-point)
proof (intro card-Un-disjoint)
show finite K
by (meson Ksub Yseq-subset-V finV finite-subset)
have disjnt (Yseq halted-point) (Aseq halted-point)
using valid-state-seq by (auto simp: valid-state-def disjoint-state-def)
with Ksub show K N Aseq halted-point = {}
by (auto simp: disjnt-def)
qed (simp add: finite-Aseq)
also have ... =k
using eqt K <t < k> by simp
finally show ?thesis .
qed
moreover have K U Aseq halted-point C V
using Aseq-subset-V Ksub Yseq-subset-V by blast
ultimately show Fulse
using no-Red-clique size-clique-def by blast
next
assume card K =1 A cliqgue K Blue
then show False
using Ksub Yseg-subset-V no-Blue-clique size-clique-def by blast
qed
qed

A little tricky to express since the Book locale assumes that there are no
cliques in the original graph (page 9). So it’s a contrapositive

lemma (in Book’) Far-9-2-aux:
fixes ¢ n::real
defines § = /20
assumes 0: real (card X0) > nV /2 card YO > nV div 2 p0 > 1—~v—n
— These are the assumptions about the red density of the graph
assumes v: v < 1/10 and n: 0<nn < /15
assumes nV: real nV > exp (=9 * k) x (k+1 choose 1)
assumes big: Big-Far-9-2 ~ [
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shows Fulse
proof —
define R where R = Step-class {red-step}
define ¢ where t = card R
have v01: 0 < vy < 1
using In0 l-le-k by (auto simp: vy-def)
have bi993: Big-Far-9-3 v 1
using big by (auto simp: Big-Far-9-2-def)
have t23: t > 2xk / 3
unfolding t-def R-def
proof (rule Far-9-3)
show v < 1/5
using v unfolding v-def by linarith
have min (1/200) (v / 20) > §
unfolding §-def using ~ In0 by (simp add: y-def)
then show exp (— min (1/200) (v / 20) % k) * (k+1 choose I) < nV
using d-def ~v-def nV by force
show 1// < p0
using 1 v 0 by linarith
show Big-Far-9-3 () 1
using y-def big93 by blast
qed (use assms in auto)
have t<k
unfolding t-def R-def using 01 red-step-limit by blast

have ge-half: 1/2 < 1—vy—n
using v n by linarith
have exp (—1/3 + (1/5:real)) < exp (10/9 * In (184/150))
by (approzimation 9)
also have ... < exp (I / (I—7) * In (134/150))
using v by (auto simp: divide-simps)
also have ... < exp (I / (1—7) * In (1—vy—n))
using v n by (auto simp: divide-simps)
also have ... = (1—vy—n) powr (1 / (1—%))
using ge-half by (simp add: powr-def)
finally have A: exp (—1/8 + 1/5) < (1—y—n) powr (1 / (1—7)) .

have 3xt / (10xk) < (—1/8 + 1/5) + t/(2xk)
using t23 kn0 by (simp add: divide-simps)
from mult-right-mono [OF this, of ~vyxt] v01
have 3xyxt2 / (10%k) < yxtx(—1/8 4+ 1/5) + y+t2/(2%k)
by (simp add: eval-nat-numeral algebra-simps)
then have exp (3xy+t? /| (10%k)) < exp (—1/3 + 1/5) powr (y*t) * exp
(1212 (2+k)
by (simp add: mult-exp-exp exp-powr-real)
also have ... < (1—vy—n) powr ((yxt) / (1—7)) * exp (yxt2/(2xk))
using 01 powr-powr powr-mono2 [of vyt exp (—1/8 + 1/5), OF - - A]
by (intro mult-right-mono) auto
finally have B: exp (8xyxt? /| (10xk)) < (1—y—n) powr ((y*t) / (1—7)) * exp
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(yt2/(2%k)) .

have (2xk / 3)°2 < 2

using t23 by auto
from kn0 ~01 mult-right-mono [OF this, of ~v/(80xk)]
have C: 6xk + vxk/60 < 3xyxt2 | (20%k)

by (simp add: field-simps 0-def eval-nat-numeral)

have exp (— Sxyxt / (20xk)) < exp (=3 * n/2)
proof —
have 1 < 3/2 * t/k
using ¢23 kn0 by (auto simp: divide-simps)
from mult-right-mono [OF this, of ~v/15] v01 n
show ?thesis
by simp
qed
also have ... <1 —n/ (1—7)
proof —
have §: 2/3 < (1 — v — n)
using v n by linarith
have 1 / (1—n / (1=7)) =1 +n/ (1—y-n)
using ge-half n by (simp add: divide-simps split: if-split-asm)
alsohave ... <1 +8xn/2
using mult-right-mono [OF §, of n] n ge-half by (simp add: field-simps)
also have ... < exp (8 x1n/ 2)
using exp-minus-ge [of —8*n/2] by simp
finally show ?thesis
using 01 ge-half
by (simp add: exp-minus divide-simps mult.commute split: if-split-asm)
qed
also have ... = (1—y—n) / (1—7)
using v01 by (simp add: divide-simps)
finally have exp (— 3xyxt / (20%k)) < (I—y—n) / (I—7) .
from powr-mono2 [of t, OF - - this] ge-half 01
have D: exp (— 3xy*t? / (20%k)) < ((1—y—n) / (1—7))"t
by (simp add: eval-nat-numeral powr-powr exp-powr-real mult-ac flip: powr-realpow)

have Y: (k—t+I choose 1) < card (Yseq halted-point)
proof —
have 1 x real(k—t+1 choose )
< exp (ok-fun-95b k + vxk/60) * (k—t+I choose [)
using big l-le-k unfolding Big-Far-9-2-def
by (intro mult-right-mono mult-gel-I) auto
also have ... < exp (3xyxt? / (20%k) + —0 * k + ok-fun-95b k) * (k—t+1

choose 1)
using C by simp
also have ... = exp (3xy*t? / (10%k)) * exp (—6 * k + ok-fun-95b k) * exp

(— 3xyxt? | (20%k))
* (k—t+1 choose 1)
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by (simp flip: exp-add)
also have ... < exp (3*y*t2 / (10%k)) * exp (=8 * k + ok-fun-95b k) *
((1=y—m)/(1—7)) "t
* (k—t+1 choose 1)
using Y01 ge-half D by (intro mult-right-mono) auto
also have ... < (1—vy—n) powr (yxt | (1—7)) * exp (v * t2 | (2%k)) * exp
(=6 x k + ok-fun-95b k)
x ((1—y—n)/(1—7)) "t * (k—t+1 choose I)
using v01 ge-half by (intro mult-right-mono B) auto
also have ... = exp (=6 * k + ok-fun-95b k) x (1 —y—n) powr (yxt / (1—7))
* ((1=y=m)/(1=7)) "t
x exp (v * (real t)? | (2xk)) * (k—t+1 choose )
by (simp add: mult-ac)
also have 95: ... < real (card (Yseq halted-point))
unfolding t-def R-def
proof (rule Far-9-5)
show 1/2 <1 —~v—1n
using ge-half vy-def by blast
show Big-Far-9-5 () 1
using Big-Far-9-2-def big unfolding ~-def by presburger
qed (use assms in auto)
finally show ?thesis by simp
qed
then show Fualse
using Off-diagonal-conclusion by (simp flip: R-def t-def )
qged

Mediation of 9.2 (and 10.2) from locale Book-Basis to the book locales
with the starting sets of equal size

lemma (in No-Cliques) to-Book:
assumes gd: p0-min < graph-density Red
assumes p01: 0 < pp < 1
obtains X0 Y0 where [>2 card X0 > real nV | 2 card Y0 = gorder div 2
and X0 =V \ Y0 YOCV
and graph-density Red < gen-density Red X0 Y0
and Book V E p0-min Red Blue l k p X0 Y0
proof —
have Red # {}
using gd p0-min by (auto simp: graph-density-def)
then have gorder > 2
by (metis Red-E card-mono equalsOI finV subset-empty two-edges wellformed)
then have div2: 0 < gorder div 2 gorder div 2 < gorder
by auto
then obtain Y0 where Y0: card Y0 = gorder div 2 YOCV
graph-density Red < gen-density Red (V\Y0) Y0
by (metis complete Red-E ezists-density-edge-density gen-density-commute)
define X0 where X0 = V \ Y0
interpret Book V E p0-min Red Blue I k 1 X0 Y0
proof
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show X0CV disjnt X0 Y0
by (auto simp: X0-def disjnt-iff)
show p0-min < gen-density Red X0 Y0
using X0-def Y0 gd gen-density-commute p0-min by auto
qged (use assms <YOC V> in auto)
have Fulse if [<2
using that unfolding less-2-cases-iff
proof
assume | = Suc 0
with Y0 div2 show False
by (metis RN-1' no-Red-clique no-Blue-clique Red-Blue-RN Suc-lel kn0)
qed (use In0 in auto)
with [-le-k have [>2
by force
have card-X0: card X0 > nV /2
using Y0 <Y0CV)» unfolding X0-def
by (simp add: card-Diff-subset finite-Y0)
then show thesis
using Book-azioms X0-def Y0 <2 < > that by blast
qged

Material that needs to be proved outside the book locales

As above, for Book’

lemma (in No-Cliques) to-Book':
assumes gd: pO-min < graph-density Red
assumes [: 0<l I<k
obtains X0 Y0 where [>2 card X0 > real nV / 2 card Y0 = gorder div 2 and
X0 =V \Y0oYoCV
and graph-density Red < gen-density Red X0 Y0
and Book’ V E p0-min Red Blue 1 k (real | / (real k + real 1)) X0 Y0
proof —
define v where v = real | / (real k + real I)
have 0 < vy < 1
using [ by (auto simp: ~v-def)
with assms to-Book [of +]
obtain X0 Y0 where *: [>2 card X0 > real nV / 2 card Y0 = gorder div 2 X0
=V\YoYoCv
graph-density Red < gen-density Red X0 Y0 Book V E p0-min Red Blue l k ~
X0 Y0
by blast
then interpret Book V E p0-min Red Blue I k v X0 Y0
by blast
have Book’ V E p0-min Red Blue I k v X0 Y0
using Book' vy-def by auto
with x assms show Zthesis
using v-def that by blast
qged

lemma (in No-Cliques) Far-9-2:
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fixes § v n::real
defines v =1 / (real k + real I)
defines § = v/20
assumes gd: graph-density Red > 1—~—n and p0-min-OK: p0-min < 1 —vy—n
assumes 7 < 1/10 and n: 0<nn < v/15
assumes nV: real nV > exp (= * k) * (k-+I choose 1)
assumes big: Big-Far-9-2 ~ [
shows Fulse
proof —
obtain X0 Y0 where [>2 and card-X0: card X0 > real nV /| 2
and card-Y0: card YO0 = gorder div 2
and X(0-def: X0 = V \ Y0 and YOCV
and gd-le: graph-density Red < gen-density Red X0 Y0
and Book’' V E p0-min Red Blue l k v X0 Y0
using to-Book’ assms p0-min no-Red-clique no-Blue-clique In0 by auto
then interpret Book’ V E p0-min Red Blue | k v X0 Y0
by blast
show Fualse
proof (intro Far-9-2-auz [of 7))
show I — v —n < p0
using X0-def v-def gd gd-le gen-density-commute p0-def by auto
qed (use assms card-X0 card-Y0 in auto)
qged

8.7 Theorem 9.1

An arithmetical lemma proved outside of the locales

lemma kl-choose:
fixes [ k::nat
assumes m<! k>0
defines PM = [[i<m. (I — real i) / (k+I—real i)
shows (k+I choose 1) = (k+l—m choose (I-m)) / PM
proof —
have inj: inj-on (\i. i—m) {m..<l} — relating the power and binomials; maybe
easier using factorials
by (auto simp: inj-on-def)
have ([]i<l. (k+1—i) / (I-1)) / (T i<m. (k+1—=%) / (I-i))
=(I]é = m..<l. (k+1—i) / (I-1))
using prod-divide-nat-ivl [of 0 m 1 Xi. (k+1—1) / (I—=i)] <m < D>
by (simp add: atLeastOLessThan)
also have ... = (J[i<l — m. (k+l-m — i) / (I-m—1))
apply (intro prod.reindex-cong [OF inj, symmetric))
by (auto simp: image-minus-const-atLeastLess Than-nat)
finally
have ([[¢ < I-m. (k+i—-m — %) / (I-m—1))
=] < . (k+1—i) / (I-9)) / ([Ti<m. (k+1—1%) / (I—i))
by linarith
also have ... = (k+1 choose 1) x inverse ([[i<m. (k+1—1i) / (I—i))
by (simp add: field-simps atLeastOLess Than binomial-altdef-of-nat)
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also have ... = (k+I choose l) x PM
unfolding PM-def using <m < I> <k>0>
by (simp add: atLeastOLessThan flip: prod-inversef)

finally have (k+I—m choose (I—m)) = (k+I choose l) x PM
by (simp add: atLeastOLessThan binomial-altdef-of-nat)

then show real(k+1 choose ) = (k+l—m choose (I—m)) /| PM
by auto

qed

context P0-min
begin

The proof considers a smaller graph, so [ needs to be so big that the
smaller [’ will be big enough.

definition Big-Far-9-1 :: real = nat = bool where
Big-Far-9-1 = A 1. 1>8 N (V1" v. real 1" > (10/11) % p * real | — p? < v A
v < 1/10 — Big-Far-9-2 v 1)

The proof of theorem 10.1 requires a range of values

lemma Big-Far-9-1:
assumes (<p0 p0<1/10
shows VL. Vyu. p0 < pu A p<1/10 — Big-Far-9-1 p 1
proof —
have (0% < 1/10
using assms by (smt (verit, ccfu-threshold) le-divide-eq-1 mult-left-le power2-eq-square)
then have V>°I. V~. u0? <y A~y < 1/10 — Big-Far-9-2 ~ |
using assms by (intro Big-Far-9-2) auto
then obtain N where N: VI>N.V~. u0? <~y A~y < 1/10 — Big-Far-9-2 ~
l
using eventually-sequentially by auto
define M where M = nat[11+xN / (10*u0))
have (10/11) « u0 x 1 > N if | > M for |
using that by (simp add: M-def <u0>0> mult-of-nat-commute pos-divide-le-eq)
with N have VI>M. V1'~. (10/11) * p0 1 < 1" — p0?> <y Ay <1/ 10
— Big-Far-9-2 v I’
by (smt (verit, ccfo-SIG) of-nat-le-iff )
then have V>°I. VI’ ~. (10/11) * p0 x 1 <1' — p0?> <y A~y <1/ 10 —
Big-Far-9-2 v 1’
by (auto simp: eventually-sequentially)
moreover have V*°[. [>3
by simp
ultimately show ?thesis
unfolding Big-Far-9-1-def
apply eventually-elim
by (smt (verit) <0<p0> mult-left-mono mult-right-mono of-nat-less-0-iff power-mono
zero-less-mult-iff )
qged

The text claims the result for all £ and I, not just those sufficiently large,
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but the o(k) function allowed in the exponent provides a fudge factor

theorem Far-9-1:

fixes | k::nat

fixes 6 v::real

defines v = real | / (real k + real 1)

defines § = v/20

assumes v: v < 1/10

assumes big: Big-Far-9-1 v [

assumes p0-min-91: p0-min < 1 — (1/10) = (1 + 1/15)

shows RN k| < exp (—0xk + 1) = (k+I choose 1)

proof (rule ccontr)

assume non: = RN k1l < exp (—0 x k + 1) * (k+I choose 1)

with RN-eq-0-iff have [>0 by force

with v have [9k: 9x] < k
by (auto simp: y-def divide-simps)

have [<k
using 7y-def v nat-le-real-less by fastforce

with </>0> have k>0 by linarith

define &::real where £ = 1/15

define U-lower-bound-ratio where — Bhavik’s name
U-lower-bound-ratio = Am. (1+&) "m x ([[i<m. (I — real i) / (k+1 — real 7))

define n where n = RNkl — 1
have [>3
using big by (auto simp: Big-Far-9-1-def)
have k>27
using [9k <I>38> by linarith
have exp 1 / (exp 1 — 2) < (27::real)
by (approzimation 5)
also have RN27: ... < RN k'l
by (meson RN-3plus’ <I1>83> <k>27> le-trans numeral-le-real-of-nat-iff )
finally have exp I / (exp I — 2) < RN k1.
moreover have n < RN k]
using RN27 by (simp add: n-def)
moreover have 2 < exp (I:real)
by (approzimation 5)
ultimately have nRNe: n/2 > RNkl / exp 1
by (simp add: n-def field-split-simps)

have (k+1 choose l) | exp (—1 + 6xk) < RN k1
by (smt (verit) divide-inverse exp-minus mult-minus-left mult-of-nat-commute
non)
then have (RN k1 / exp 1) * exp (6xk) > (k+1 choose 1)
unfolding exp-add exp-minus by (simp add: field-simps)
with nRNe have n2ezp-gt: (n/2) * exp (d0xk) > (k+1 choose I)
by (smt (verit, best) exp-gt-zero mult-le-cancel-right-pos)
then have nexp-gt: n x exp (§xk) > (k41 choose 1)
by simp
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define V where V = {.<n}
define F where E = all-edges V
interpret Book-Basis V E
proof qed (auto simp: V-def E-def comp-sgraph.wellformed comp-sgraph.two-edges)
have [simp]: nV = n
by (simp add: V-def)
then obtain Red Blue
where Red-E: Red C E and Blue-def: Blue = E—Red
and no-Red-K: — (3 K. size-clique k K Red)
and no-Blue-K: - (K. size-clique | K Blue)
by (metis <n < RN k I> less-RN-Red-Blue)
have Blue-E: Blue C E and disjnt-Red-Blue: disjnt Red Blue
and Blue-eq: Blue = all-edges V — Red
using complete by (auto simp: Blue-def disjnt-iff E-def)
define is-good-clique where
is-good-clique = \i K. clique K Blue N K C V A
card (V N (NwekK. Neighbours Blue w))
> real i * U-lower-bound-ratio (card K) — card K
have is-good-card: card K < 1 if is-good-clique i K for i K
using no-Blue-K that unfolding is-good-clique-def
by (metis nat-neg-iff size-clique-def size-clique-smaller)
define GC where GC = {C. is-good-clique n C}
have GC # {}
by (auto simp: GC-def is-good-clique-def U-lower-bound-ratio-def E-def V-def)
have GC C Pow V
by (auto simp: is-good-clique-def GC-def)
then have finite GC
by (simp add: finV finite-subset)
then obtain W where W € GC and MazW: Max (card * GC) = card W
using <GC # {}> obtains-MAX by blast
then have 49: is-good-cliqgue n W
using GC-def by blast
have maz49: — is-good-clique n (insert z W) if z€ V\W for z
proof
assume z: is-good-clique n (insert x W)
then have card (insert ¥ W) = Suc (card W)
using finV is-good-clique-def finite-subset that by fastforce
with z <finite GC> have Maz (card * GC) > Suc (card W)
by (simp add: GC-def rev-image-eql)
then show False
by (simp add: MazW)
qed

have WCV

using /9 by (auto simp: is-good-clique-def )
define m where m = card W
define v’ where v’/ = (I — real m) / (k+l—real m)
define  where nn = £ * +/
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have Red-Blue-RN: 3K C X. size-cligue m K Red V size-clique n K Blue
if card X > RN mn XCV for m n and X
using partn-lst-imp-is-clique-RN [OF is-Ramsey-number-RN [of m n]] finV that

unfolding is-clique-RN-def size-clique-def clique-indep-def Blue-eq
by (metis clique-iff-indep finite-subset subset-trans)

define U where U = V N (\we W. Neighbours Blue w)

define EU where EU = E N Pow U

define RedU where RedU = Red N Pow U

define BlueU where BlueU = Blue N Pow U

have RN k1l > 0
using <n < RN k I> by auto
have v/ > 0
using is-good-card [OF 49] by (simp add: ~'-def m-def)
then have np > 0
by (simp add: n-def £-def)
have finite W
using <W C V> finV finite-subset by (auto simp: V-def)
have U C Vand VUU: VNU=U
by (force simp: U-def )+
have disjnt U W
using Blue-E not-own-Neighbour unfolding E-def V-def U-def disjnt-iff by
blast
have m<!I
using 49 is-good-card m-def by blast
then have v1516: v/ < 15/16
using v-def v by (simp add: v'-def divide-simps)
then have v'-lel: (1+&) * v/ < 1
by (simp add: &-def)

have cardU: n x U-lower-bound-ratio m < m + card U
using 49 VUU unfolding is-good-clique-def U-def m-def by force
obtain [iff]: finite RedU finite BlueU RedU C EU
using BlueU-def EU-def RedU-def E-def V-def Red-E Blue-FE fin-edges finite-subset
by blast
have card-RedU-le: card RedU < card EU
by (metis EU-def E-def <RedU C EU> card-mono fin-all-edges finite-Int)
interpret UBB: Book-Basis U E N Pow U p0-min
proof
fix e
assume ¢ € E N Pow U
with two-edges show e C U card e = 2 by auto
next
show finite U
using <U C V> by (simp add: V-def finite-subset)
have z € E if ¢ € all-edges U for z
using <U C V' all-edges-mono that complete E-def by blast
then show E N Pow U = all-edges U
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using comp-sgraph.wellformed <U C V> by (auto intro: e-in-all-edges-ss)
qed auto

have clique-W: size-clique m W Blue
using 49 is-good-clique-def size-clique-def V-def m-def by blast

define PM where PM = [[i<m. (I — real i) / (k+Il—real i)
then have U-lower-m: U-lower-bound-ratio m = (14+&) "m = PM
using U-lower-bound-ratio-def by blast
have prod-gt0: PM > 0
unfolding PM-def using <m<!I> by (intro prod-pos) auto

have kl-choose: real(k+1 choose 1) = (k-+1—m choose (I—m)) /| PM
unfolding PM-def using kl-choose <0 < k> <m < > by blast
— Now a huge effort just to show that U is nontrivial. Proof probably shows its
cardinality exceeds a multiple of [
define ekl20 where ekl20 = exp (k / (20x(k+1)))
have ekl20-eq: exp (xk) = ekl20"1
by (simp add: §-def ~y-def ekl20-def field-simps flip: exp-of-nat2-mult)
have ekl20 < exp(1/20)
unfolding ekl20-def using <m < [> by fastforce
also have ... < (1+4¢)
unfolding ¢-def by (approzimation 10)
finally have exp120: ekl20 < 1 + ¢ .
have ekl20-gt0: 0 < ekl20
by (simp add: ekl20-def)

have 3xl + Sucl — q < (k+q choose q) | exp(dxk) x (14+&) ~ (I — q)
if 1<q g<lI for ¢
using that
proof (induction q rule: nat-induct-at-least)
case base
have ekl20°1 = ekl20~(1—1) * ekl20
by (metis <0 < I> power-minus-mult)
also have ... < (1+4¢&) ~ (I-1) = ekl20
using ekl20-def exp120 power-mono by fastforce
also have ... < 2 x (1+¢£) ~ (I-1)
proof —
have §: eki20 < 2
using &-def exp120 by linarith
from mult-right-mono [OF this, of (1+&) ~ (I—1)]
show ?thesis by (simp add: mult-ac §-def)
qed
finally have eki20° < 2 % (1+¢) =~ (I-1)
by argo
then have 1/2 < (1+&) ~ (I-1) / ekl20"1
using ekl20-def by auto
moreover have / x reall / (1 + real k) < 1/2
using 19k by (simp add: divide-simps)
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ultimately have 4 * real I / (1 + real k) < (1+&) ~ (1—1) / ekl20"]
by linarith
then show “case
by (simp add: field-simps ekl20-eq)
next
case (Suc q)
then have 1: (1+&) ~ (I — ¢q) = (1+&) = (1+£) ~ (I — Suc q)
by (metis Suc-diff-le diff-Suc-Suc power.simps(2))
have real(k + ¢ choose q) < real(k + g choose Suc q) 0 < (14+&) ~ (I — Suc

q)
using <Suc ¢ < 1> 19k by (auto simp: &-def binomial-mono)
from mult-right-mono [OF this]
have (k + q choose q) * (1+&) ~ (I — q) / exp (6 x k) — 1
< (real (k + q choose q) + (k + q choose Suc q)) = (1+€) ~ (I — Suc q) /
exp (8 x k)
unfolding i by (simp add: &-def field-simps add-increasing)
with Suc show ?case by force
qed
from «<m<1> this [of I—m)]
have 1 + 3%l + real m < (k+I—m choose (I—m)) / exp 6 "~k * (14+&) ~m
by (simp add: Suc-lel exp-of-nat2-mult)
also have ... < (k+l—m choose (I—m)) / exp (§ * k) x (I1+£) "~ m
by (simp add: ezxp-of-nat2-mult)
also have ... < PM x (real n * (14+£) ~ m)
proof —
have §: (k+1 choose 1) [/ exp (0 x k) < n
by (simp add: less-eq-real-def nexp-gt pos-divide-less-eq)
show ?thesis
using mult-strict-left-mono [OF §, of PM x (1+&) ~ m] kl-choose prod-gt0
by (auto simp: field-simps &-def)
qed
also have ... = real n * U-lower-bound-ratio m
by (simp add: U-lower-m)
finally have U-MINUS-M: 3%l + 1 < real n x U-lower-bound-ratio m — m
by linarith
then have cardU-gt: card U > 3%l + 1
using cardU by linarith
with UBB.complete have card EU > 0 card U > 1
by (simp-all add: EU-def UBB.finV card-all-edges)
have BlueU-eq: BlueU = EU \ RedU
using Blue-eq complete by (fastforce simp: BlueU-def RedU-def EU-def V-def
E-def)
have [simp]: UBB.graph-size = card EU
using EU-def by blast
have 7/ < v
using «<m<I> <k>0> by (simp add: vy-def ~'-def field-simps)
have Fulse if UBB.graph-density RedU < 1 — v’ — 7
proof — — by maximality, etc.
have §: UBB.graph-density BlueU > ~' + 7
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using that <card EU > 0> card-RedU-le
by (simp add: BlueU-eq UBB.graph-density-def diff-divide-distrib card-Diff-subset)
have Nz: Neighbours BlueU z N (U \ {z}) = Neighbours BlueU z for z
using that by (auto simp: BlueU-eq EU-def Neighbours-def)
have BlueU C F N Pow U
using BlueU-eq EU-def by blast
with UBB.exists-density-edge-density [of 1 BlueU]
obtain z where x€U and z: UBB.graph-density BlueU < UBB.gen-density
BlueU {z} (U\{z})
by (metis UBB.complete <1 < UBB.gorders card-1-singletonE insertll
zero-less-one subsetD)
with § have v’ + n < UBB.gen-density BlueU (U\{z}) {z}
using UBB.gen-density-commute by auto
then have *: (' + ) * (card U — 1) < card (Neighbours BlueU z)
using <BlueU C E N Pow U» <card U > 1> <z € U>»
by (simp add: UBB.gen-density-def UBB.edge-card-eq-sum-Neighbours UBB.finV
divide-simps Nx)

have z: z € V\W
using <z € U»> <U C V> «disjnt U W by (auto simp: U-def disjnt-iff)
moreover
have is-good-clique n (insert © W)
unfolding is-good-clique-def
proof (intro conjl)
show clique (insert x W) Blue
proof (intro clique-insert)
show clique W Blue
using 49 is-good-clique-def by blast
show all-edges-betw-un {z} W C Blue
using <z€U» by (auto simp: U-def all-edges-betw-un-def insert-commute
in-Neighbours-iff)
qged (use <W C V> <z € V\W> in auto)
next
show insert z W C V
using <W C V» <z € V\W> by auto
next
have NB-Int-U: Neighbours Blue x N U = Neighbours BlueU x
using <z € Uy by (auto simp: BlueU-def U-def Neighbours-def)
have ulb-ins: U-lower-bound-ratio (card (insert x W)) = U-lower-bound-ratio
mx (1+€) x v’
using <z € V\W> «<finite W» by (simp add: U-lower-bound-ratio-def ~'-def
m-def)
have n * U-lower-bound-ratio (card (insert z W)) = n *x U-lower-bound-ratio
mx (1+E) v’
by (simp add: ulb-ins)
also have ... < real (m + card U) % (1+&) * v’
using mult-right-mono [OF cardU, of (1+£) x v'] <0 < > <0 < > n-def
by argo
also have ... < m + card U * (14+&) * 7’

189



using mult-left-mono [OF ~'-lel, of m] by (simp add: algebra-simps)
also have ... < Suc m + (v’ + 1) *x (UBB.gorder — Suc 0)
using x <z € V\W> <finite W» cardU-gt v1516
apply (simp add: U-lower-bound-ratio-def &-def n-def)
by (simp add: algebra-simps)
also have ... < Suc m + card (V N () (Neighbours Blue ‘ insert x W))
using x NB-Int-U finV by (simp add: U-def Int-ac)
also have ... = real (card (insert £ W) + card (V N () (Neighbours Blue
insert x W)))
using z <finite W> VUU by (auto simp: U-def m-def)
finally show n x U-lower-bound-ratio (card(insert x W)) — card(insert x W)
< card (V N () (Neighbours Blue ¢ insert z W))
by simp
qed
ultimately show Fulse
using maz49 by blast
qed
then have gd-RedU-ge: UBB.graph-density RedU > 1 — v’ — n by force

— Bhavik’s gamma’ le gamma iff
have v/v2: v/ < 42 «— (real k * real 1) + (real | x real ) < (real k * real m)
+ (real | * (real m * 2))
using <m < >
apply (simp add: v'-def ~y-def eval-nat-numeral divide-simps; simp add: algebra-simps)
by (metis <k>0> mult-less-cancel-left-pos of-nat-0-less-iff distrib-left)
also have ... «— (I« (k+l)) /(k+ 2x1)<m
using <m < I> by (simp add: field-simps)
finally have 'y 2-iff: v/ < 4% «— (I x (k+1)) / (k + 2 x 1) < m .
— in both cases below, we find a blue clique of size I — m
have eztend-Blue-clique: 3K '. size-clique | K’ Blue
if K C U size-clique (I—m) K Blue for K
proof —
have K: card K = |—m clique K Blue
using that by (auto simp: size-clique-def)
define K’ where K'=K U W
have card K' = |
unfolding K '-def
proof (subst card-Un-disjnt)
show finite K finite W
using UBB.finV <K C U>» finite-subset <finite W»> by blast+
show disjnt K W
using <disjnt U W» <K C U>» disjnt-subset! by blast
show card K + card W =1
using K <m < I> m-def by auto
qed
moreover have clique K’ Blue
using <clique K Blue> clique-W <K C U>»
unfolding K'-def size-clique-def U-def
by (force simp: in-Neighbours-iff insert-commute intro: Ramsey.clique-Un)
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ultimately show ?thesis
unfolding K '-def size-clique-def using <K C U»> <U C Vs> <W C V> by
auto
qed

show Fulse
proof (cases v' < ?)
case True
with v'v2 have YKK: vk < m
using <«0<k> <m < D
apply (simp add: ~-def field-simps)
by (smt (verit, best) distrib-left mult-left-mono of-nat-0-le-iff)
have In1&: In (1+E) = 20 > 1
unfolding ¢-def by (approzimation 10)
with YKK have §: m x In (14+&) > § x k
unfolding J-def using zero-le-one mult-mono by fastforce
have powerm: (1+&) "m > exp (§ * k)
using exp-mono [OF §]
by (smt (verit) n-def <0 <mn> <0 <~'> exp-In-iff exp-of-nat-mult zero-le-mult-iff )
have n * (1+&) “m > (k+1 choose 1)
by (smt (verit, best) mult-left-mono nexp-gt of-nat-0-le-iff powerm,)
then have sx: n x U-lower-bound-ratio m > (k+I—m choose (I—m))
using <m<!> prod-gt0 kl-choose by (auto simp: U-lower-m field-simps)

have m-le-choose: m < (k+l—m—1 choose (I—m))
proof (cases m=0)
case False
have m < (k+I—m—1 choose 1)
using <[<k> <m<l> by simp
also have ... < (k+l—m—1 choose (I—m))
using False <I<k> <m<I> by (intro binomial-mono) auto
finally have m-le-choose: m < (k+I—m—1 choose (I—m)) .
then show %thesis .
qed auto
have RN k (I-m) < k + (I-m) — 2 choose (k — 1)
by (rule RN-le-choose-strong)
also have ... < (k+l—m—1 choose k)
using <I<k> <m<l> choose-reduce-nat by simp

also have ... = (k+l—m—1 choose (I-m—1))
using «<m<I> by (simp add: binomial-symmetric [of k])
also have ... = (k+I—m choose (I—m)) — (k+l—m—1 choose (I—m))

using <I<k> <m<l> choose-reduce-nat by simp
also have ... < (k+l—m choose (I—m)) — m
using m-le-choose by linarith
finally have RN k (I—m) < (k+l—m choose (I-m)) — m .
then have card U > RN k (I—m)
using 49 xx VUU by (force simp: is-good-clique-def U-def m-def)
with Red-Blue-RN no-Red-K <U C V>
obtain K where K C U size-clique (I—m) K Blue by meson
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then show Fulse
using no-Blue-K extend-Blue-clique by blast
next
case Fulse
have YMK: v—' < m/k
using <m<I[»
apply (simp add: ~-def ~'-def divide-simps)
apply (simp add: algebra-simps)
by (smt (verit) mult-left-mono mult-right-mono nat-less-real-le of-nat-0-le-iff)

define §’ where 6’ = ~'/20
have no-RedU-K: -~ (3 K. UBB.size-clique k K RedU)
unfolding UBB.size-clique-def RedU-def
by (metis Int-subset-iff VUU all-edges-subset-iff-clique no-Red-K size-clique-def)
have (3 K. UBB.size-clique k K RedU) V (3 K. UBB.size-clique (I-m) K
Bluel)
proof (rule ccontr)
assume neg: - ((3K. UBB.size-clique k K RedU) V (3 K. UBB.size-clique
(I-m) K BlueU))
interpret UBB-NC: No-Cliques U E N Pow U p0-min RedU BlueU [—m k
proof
show BlueU = E N Pow U \ RedU
using BlueU-eq EU-def by fastforce
qed (use neg EU-def <RedU C EU> no-RedU-K <I<k»> in auto)
show Fulse
proof (intro UBB-NC.Far-9-2)
have exp (6xk) x exp (—'xk) = exp (yxk/20 — v'*xk/20)
unfolding §-def §'-def by (simp add: mult-exp-exp)
also have ... < ezxp (m/20)
using YMK <0 < k> by (simp add: left-diff-distrib divide-simps)
also have ... < (14&)™m
proof —
have In (16 / 15) % 20 > (1::real)
by (approzimation &)
from mult-left-mono [OF this]
show ?thesis
by (simp add: &-def powr-def mult-ac flip: powr-realpow)
qed
finally have ezpezp: exp (dxk) x exp (—0'xk) < (1+€) ~m .

have exp (—§'«k) = (k + (I—m) choose (I—m)) = exp (—6'xk) x PM * (k+I
choose 1)
using <m < > kl-choose by force
also have ... < (n/2) * exp (k) x exp (—'*k) x PM
using n2exp-gt prod-gt0 by auto
also have ... < (n/2) x (1+£) ~m x PM
using expezp less-eq-real-def prod-gt0 by fastforce
also have ... < n x U-lower-bound-ratio m — m — where I was stuck: the
"minus m"
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using PM-def U-MINUS-M U-lower-bound-ratio-def <m < I> by fastforce
finally have exp (—d§'*k) * (k + (I—m) choose (I—m)) < n * U-lower-bound-ratio
m— m
by linarith
also have ... < UBB.nV
using cardU by linarith
finally have exp (—d'*k) x (k + (I—m) choose (I—m)) < UBB.nV .
then show ezp (— ((I-m) / (k + real (I-m)) / 20) = k) = (k + (I—m)
choose (I—m)) < UBB.nV
using <m < > by (simp add: §’-def v'-def) argo
next
show 1 — real (I-m) / (real k + real (I—m)) — n < UBB.graph-density
RedU
using gd-RedU-ge <y’ < v> <m < |> unfolding v-def ~'-def
by (smt (verit) less-or-eq-imp-le of-nat-add of-nat-diff)
have pO0-min <1 — v —n
using <y’ < 4> v p0-min-91 by (auto simp: n-def &-def)
also have ... <1 — (I-m) / (real k + real (I-m)) — 7
using <y’ < v> <m<l> by (simp add: ~y-def ~’'-def algebra-simps)
finally show p0-min < 1 — (I-m) / (real k + real (I—m)) — n .
next
have m <1« (k + reall) / (k + 2 * real l)
using False v'v2-iff by auto
also have ... <[ x (1 — (10/11)xy)
using v <I>0> by (simp add: v-def field-split-simps)
finally have m < real | * (1 — (10/11)%7)
by force
then have real | — real m > (10/11) % v x 1
by (simp add: algebra-simps)
then have Big-Far-9-2 v’ (I—m)
using False big <y’ < > v <m<l>
by (simp add: Big-Far-9-1-def)
then show Big-Far-9-2 ((I—m) / (real k + real (I—m))) (I—m)
by (simp add: v'-def <m < 1> add-diff-eq less-or-eq-imp-le)
show (I—m) / (real k + real (I—m)) < 1/10
using v y-def <m < I> by fastforce
show 0 <
using <0 < 1> by linarith
show n < (I—m) / (real k + real (I—m)) / 15
using mult-right-mono [OF <y’ < >, of €]
by (simp add: n-def ~v'-def <m < I> &-def add-diff-eq less-or-eg-imp-le
mult.commute)
qed
qed
with no-RedU-K obtain K where K C U UBB.size-clique (I—m) K BlueU
by (meson UBB.size-clique-def)
then show False
using no-Blue-K extend-Blue-cliqgue VUU
unfolding UBB.size-clique-def size-clique-def BlueU-def
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by (metis Int-subset-iff all-edges-subset-iff-clique)
qed
qed

end

end

9 An exponential improvement closer to the diag-
onal

theory Closer-To-Diagonal
imports Far-From-Diagonal

begin

9.1 Lemma 10.2

context P0-min
begin

lemma error-10-2:
assumes p / real d > 1/200
shows V k. ok-fun-95b k + p * real k / real d > k/200
proof —
have d>0 u>0
using assms by (auto simp: divide-simps split: if-split-asm)
then have x: real k < p * (real k * 200) / real d for k
using assms by (fastforce simp: divide-simps less-eq-real-def )
have V k. |ok-fun-95b k| < (n/d — 1/200) * k
using ok-fun-95b assms unfolding smallo-def
by (auto dest!: spec [where x = p/d])
then show ?thesis
apply eventually-elim
using assms <d>0> *
by (simp add: algebra-simps not-less abs-if add-increasing split: if-split-asm)
qed

The "sufficiently large" assumptions are problematical. The proof’s cal-
culation for (3::'a) / (20::'a) < ~ is sharp. We need a finite gap for the limit
to exist. We can get away with 1/300.

definition 2320::real where z320 = 3/20 + 1/300

lemma error-10-2-True: ¥ k. ok-fun-95b k + 320 * real k / real 30 > k/200
unfolding z320-def
by (intro error-10-2) auto

lemma error-10-2-False: ¥V *°k. ok-fun-95b k + (1/10) = real k | real 15 > k/200
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by (intro error-10-2) auto

definition Big-Closer-10-2 = A\ . Big-Far-9-3 1 A Big-Far-9-5 p 1
N (VE>1. ok-fun-95b k + (if u > x320 then pxk/30 else uxk/15) >
k/200)

lemma Big-Closer-10-2:
assumes 1/10<ul pl<l
shows VL. Vpu. 1/10 < p A p < ul — Big-Closer-10-2 p 1
proof —
have T: VL. VEk>I. (Vp. 2320 < p A p < pl — k/200 < ok-fun-95b k +
uxk [/ real 30)
using assms
apply (intro eventually-all-ge-at-top eventually-all-gel0 error-10-2-True)
apply (auto simp: mult-right-mono elim!: order-trans)
done
have F: VL. VE>I. (Vp. 1/10 < p A p < pl — k/200 < ok-fun-95b k +
uxk [/ real 15)
using assms
apply (intro eventually-all-ge-at-top eventually-all-gel0 error-10-2-False)
by (smt (verit, ccfo-SIG) divide-right-mono mult-right-mono of-nat-0-le-iff )
have VI . VEk>1. (Vu. 1/10 < p A p < pl — k/200 < ok-fun-95b k + (if p
> 2320 then pxk/30 else uxk/15))
using assms
apply (split if-split)
unfolding eventually-conj-iff all-imp-conj-distrib all-conj-distrib
by (force intro: eventually-mono [OF T] eventually-mono [OF FY)
then show ?thesis
using assms Big-Far-9-3[of 1/10] Big-Far-9-5[of 1/10]
unfolding Big-Closer-10-2-def eventually-conj-iff all-imp-conj-distrib
by (force simp: elim!: eventually-mono)
qged

end

A little tricky to express since the Book locale assumes that there are no
cliques in the original graph (page 10). So it’s a contrapositive

lemma (in Book’) Closer-10-2-aux:
assumes 0: real (card X0) > nV /2 card YO > nV div 2 p0 > 1—~
— These are the assumptions about the red density of the graph
assumes y: 1/10 <~y ~vy < 1/5
assumes nV: real nV > exp (—k/200) * (k+1 choose 1)
assumes big: Big-Closer-10-2 v 1
shows Fulse
proof —
define R where R = Step-class {red-step}
define ¢ where ¢t = card R
define d::real where 6 = 1/200
have v01: 0 < vy < 1
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using In0 l-le-k by (auto simp: ~vy-def)
have t<k
unfolding t-def R-def using 01 red-step-limit by blast
have big93: Big-Far-9-3 v 1
using big by (auto simp: Big-Closer-10-2-def Big-Far-9-2-def)
have t23: ¢t > 2«k / 3
unfolding t-def R-def
proof (rule Far-9-3)
have min (1/200) (I / (real k + real 1) / 20) = 1/200
using v In0 by (simp add: v-def)
then show exp (— min (1/200) (v / 20) * real k) * real (k+1 choose 1) < nV
using nV divide-real-def inverse-eq-divide minus-mult-right mult.commute
y-def
by (metis of-int-of-nat-eq of-int-minus)
show 1/4 < p0
using v 0 by linarith
show Big-Far-9-3 ~ |
using y-def big93 by blast
qed (use assms ~y-def in auto)

have card (Yseq halted-point) >
exp (=6 * k + ok-fun-95b k) x (1—v) powr (yxt / (1—7)) =
(1) (1) "¢
x exp (v * (real t)? | (2xk)) * (k—t+1 choose I)
proof (rule order-trans [OF - Far-9-5])
show exp (=0 * k) * real (k41 choose 1) < real nV
using nV by (auto simp: §-def)
show 1/2 <1 —~ -0
using divide-le-eq-1 I-le-k ~y-def by fastforce
next
show Big-Far-9-5 ~ 1
using big by (simp add: Big-Closer-10-2-def Big-Far-9-2-def ~-def)
qed (use 0 kn0 in <auto simp flip: t-def ~v-def R-def>)
then have 52: card (Yseq halted-point) >
exp (—0 x k + ok-fun-95b k) x (1—~) powr (yxt / (1—7)) * exp (7
* (real t)? | (2%k)) » (k—t+I choose 1)
using v by simp

define gamf where gamf = Az::real. (1—2z) powr (1/(1—x))
have deriv-gamf: 3y. DERIV gamfx :> y ANy < 0 if 0<a a<z 2<b b<1 for
abz
unfolding gamf-def
using that In-less-self [of 1 —1]
by (force intro!: DERIV-powr derivative-eq-intros simp: divide-simps mult-le-0-iff
simp del: In-less-self)
have (1—v) powr (yxt / (1—7)) * exp (v * (real t)? /| (2%k)) > exp (0xk —
ok-fun-95b k)
proof (cases v > £320)
case True
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then have ok-fun-95b k + vk / 30 > k/200
using big l-le-k by (auto simp: Big-Closer-10-2-def Big-Far-9-2-def)
with True kn0 have ¢ x k — ok-fun-95b k < (v/80) * k
by (simp add: 6-def)
also have ... < & x v * (real t)? | (40xk)
using True mult-right-mono [OF mult-mono [OF t23 t23], of 8xv | (40xk)]
<k>0>
by (simp add: power2-eq-square x320-def)
finally have {: 0xk — ok-fun-95b k < 8 x v x (real t)* | (40%k) .

have gamf v > gamf (1/5)
by (smt (verit, best) DERIV-nonpos-imp-nonincreasing[of ~v 1/5 gamf] ~
~v01 deriv-gamf divide-less-eq-1)
moreover have In (gamf (1/5)) > —1/3 + 1/20
unfolding gamjf-def by (approzimation 10)
moreover have gamf (1/5) > 0
by (simp add: gamf-def)
ultimately have gamf v > exp (—1/3 + 1/20)
using In-ge-iff by auto
from powr-mono2 [OF - - this]
have (1—~) powr (yxt / (1—7)) > exp (—17/60) powr (yxt)
unfolding gamf-def using v01 powr-powr by fastforce
from mult-left-mono [OF this, of exp (v x (real t)% / (2%k))]
have (1—7) powr (yxt / (1—7)) * exp (v * (real t)* | (2%k)) > exp (—17/60
« (5t) + (v = (real £)? / (24K))
by (smt (verit) mult.commute exp-add exp-ge-zero exp-powr-real)
moreover have (—17/60 * (yxt) + (v * (real t)? / (2xk))) > (3% * (real t)*
/ (40+k))
using t23 <k>0> <y>0> by (simp add: divide-simps eval-nat-numeral)
ultimately have (1—v) powr (y*t / (1—7)) * exp (v x (real t)* | (2%k)) >
exp (3% * (real t)? | (40%k))
by (smt (verit) exp-mono)
with 1 show ?thesis
by (smt (verit, best) exp-le-cancel-iff)
next
case Fulse
then have ok-fun-95b k + ~vxk/15 > k/200
using big I-le-k by (auto simp: Big-Closer-10-2-def Big-Far-9-2-def)
with kn0 have § x k — ok-fun-95b k < (v/15) * k
by (simp add: §-def £320-def)
also have ... < & x v * (real t)? / (20%k)
using v mult-right-mono [OF mult-mono [OF t23 t23], of 3xv | (40xk)] kn0
by (simp add: power2-eq-square field-simps)
finally have {: 6xk — ok-fun-95b k < 3 x v x (real t)? / (20%k) .

have gamf ~v > gamf x320
using False v
by (intro DERIV-nonpos-imp-nonincreasing|of v x320 gamf] deriv-gamf)
(auto simp: x320-def)
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moreover have In (gamf £320) > —1/3 + 1/10
unfolding gamf-def £320-def by (approximation 6)
moreover have gamf 320 > 0
by (simp add: gamf-def x320-def)
ultimately have gamf v > exp (—1/3 + 1/10)
using In-ge-iff by auto
from powr-mono2 [OF - - this]
have (1—v) powr (yxt / (1—7)) > exp (—7/30) powr (y*t)
unfolding gamf-def using v01 powr-powr by fastforce
from mult-left-mono [OF this, of exp (v x (real t)* | (2xk))]
have (1—v) powr (y+t / (1—7)) * exp (v * (real t)? / (2xk)) > exp (—7/30
* (yxt) + (v * (real t)? ] (2xk)))
by (smt (verit) mult.commute exp-add exp-ge-zero exp-powr-real)
moreover have (—7/30 * (y*t) + (v * (real t)? / (2%k))) > (3% * (real t)*
/ (20%k))
using t28 <k>0> <y>0> by (simp add: divide-simps eval-nat-numeral)
ultimately have (1—v) powr (y+t / (1—7)) * exp (v * (real t)? / (2xk)) >
exp (3% * (real t)? / (20%k))
by (smt (verit) exp-mono)
with { show %thesis
by (smt (verit, best) exp-le-cancel-iff)
qed
then have 1 < exp (—d%k + ok-fun-95b k) = (1—~) powr (y x t / (1—7)) * ezxp
(v * (real t)® / (2 x k))
by (simp add: exp-add exp-diff mult-ac pos-divide-le-eq)
then have (k—t+1 choose 1) <
exp (—0 x k + ok-fun-95b k) = (1—~) powr (vt / (1—7)) * exp (v * (real
t)2 / (2xk)) * (k—t+l choose 1)
by auto
with 52 have (k—t+1 choose 1) < card (Yseq halted-point) by linarith
then show Fulse
using Off-diagonal-conclusion by (simp flip: R-def t-def)
qged

Material that needs to be proved outside the book locales

lemma (in No-Cliques) Closer-10-2:
fixes ~::real
defines v =1 / (real k + real 1)
assumes nV: real nV > exp (— real k/200) * (k+I choose 1)
assumes gd: graph-density Red > 1—~ and p0-min-OK: p0-min < 1—~
assumes big: Big-Closer-10-2 ~ | and I<k
assumes 7: 1/10 <y~ < 1/5
shows Fulse
proof —
obtain X0 Y0 where [>2 and card-X0: card X0 > nV /2
and card-Y0: card Y0 = gorder div 2
and X0-def: X0 = V \ Y0 and YOCV
and gd-le: graph-density Red < gen-density Red X0 Y0
and Book’' V E p0-min Red Blue l k v X0 Y0
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using to-Book’ assms order.trans In0 by blast
then interpret Book’ V E p0-min Red Blue l k v X0 Y0

by blast
show Fulse
proof (intro Closer-10-2-auz)

show 1 — v< p0

using X0-def ~-def gd gd-le gen-density-commute p0-def by auto
qed (use assms card-X0 card-Y0 in auto)
ged

9.2 Theorem 10.1

context P0-min
begin

definition Bigi0la = \k. 2 + real k / 2 < exp (of-int|k/10]| * 2 — k/200)

definition Big101b = \k. (real k)?> — 10 * real k > (k/10) * real(10 + 9xk)

The proof considers a smaller graph, so [ needs to be so big that the
smaller [’ will be big enough.

definition Bigl0ic = My01.¥Y1'~v. "> nat |2/5 x| — ~0 <~y — v < 1/10
— Big-Far-9-1 v 1’

definition Big101d = Xl. VI’ ~v. ' > nat [2/5 1] — 1/10 <~y — v <1/}
— Big-Closer-10-2 ~ 1)

definition Big-Closer-10-1 = M0 1. 1>9 A (Vk>1. Bigl01c v0 k A Big101d k A
Big101a k N Big101b k)

lemma Big-Closer-10-1-upward: [Big-Closer-10-1 v01; 1 < k; v0 < v] = Big-Closer-10-1

vk
unfolding Big-Closer-10-1-def Bigl01c-def by (meson order.trans)

The need for 0 is unfortunate, but it seems simpler to hide the precise
value of this term in the main proof.

lemma Big-Closer-10-1:
fixes v0::real
assumes y0>0
shows V*°[. Big-Closer-10-1 v0 1
proof —
have a: V*°k. Big101a k
unfolding Bigl01a-def by real-asymp
have b: V*°k. Big101b k
unfolding Big101b-def by real-asymp
have c: V*°I. Big101c ~v01
proof —
have V>°I[. V~. v0 <y A~ < 1/10 — Big-Far-9-1 v 1
using Big-Far-9-1 <y0>0> eventually-sequentially order.trans by blast
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then obtain N where N: VI>N.V~.~v0 <~y A~y < 1/10 — Big-Far-9-1
vl
using eventually-sequentially by auto
define M where M = nat[5xN / 2]
have nat|(2/5) x| > N if | > M for |
using that assms by (simp add: M-def le-nat-floor)
with N have VI>M. V1’ v. nat|(2/5) x 1] <" — 0 <y Ay < 1/10 —
Big-Far-9-1 v 1’
by (meson order.trans)
then show ?thesis
by (auto simp: Bigl01c-def eventually-sequentially)
qed
have d: V*°I. Big101d 1
proof —
have V>°[. V~. 1/10 <~y A v < 1/5 — Big-Closer-10-2 ~ 1
using assms Big-Closer-10-2 [of 1/5] by linarith
then obtain N where N:VI>N.V~.1/10 <~y A~ <1/5 — Big-Closer-10-2
vl
using eventually-sequentially by auto
define M where M = nat[5xN / 2]
have nat|(2/5) «x 1| > N if | > M for |
using that assms by (simp add: M-def le-nat-floor)
with N have VI>M.VI'~. I'"> nat [2/5 x 1] — 1/10 <y Ay < 1/5 —
Big-Closer-10-2 v 1’
by (smt (verit, ccfv-SIG) of-nat-le-iff )
then show ?thesis
by (auto simp: eventually-sequentially Big101d-def)
qed
show ?thesis
using a b ¢ d eventually-all-ge-at-top eventually-ge-at-top
unfolding Big-Closer-10-1-def eventually-conj-iff all-imp-conj-distrib
by blast
qged

The strange constant «0 is needed for the case where we consider a
subgraph; see near the end of this proof

theorem Closer-10-1:

fixes | k::nat

fixes 6 v::real

defines v = real | / (real k + real 1)

defines § = v/40

defines v0 = min ~ (0.07) — Since 86 < k, the lower bound 1 / (10::'a) — 1
/ (86::'a) works

assumes big: Big-Closer-10-1 v0 1

assumes 7: v < 1/5

assumes p0-min-101: pO0-min < 1 — 1/5

shows RN k'l < exp (—dxk + 3) x (k+I1 choose 1)
proof (rule ccontr)

assume non: - RN k1 < exp (—0xk + 3) % (k41 choose 1)
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have [<k
using 7y-def v nat-le-real-less by fastforce
moreover have [>9
using big by (simp add: Big-Closer-10-1-def)
ultimately have [>0 k>0 >3 by linarith+
then have lJk: /xl < k
using v by (auto simp: y-def divide-simps)
have k>36
using <[>9> lJk by linarith
have exp-gt21: exp (x + 2) > exp (z + 1) for z::real
by auto
have exp2: exp (2::real) = exp 1 x exp 1
by (simp add: mult-exp-exp)
have Big91-I:Al’ . [I' > nat [2/5 = 1]; v0 < p; p < 1/10] = Big-Far-9-1
'
using big by (meson Bigl01c-def Big-Closer-10-1-def order.refl)
show Fulse
proof (cases v < 1/10)
case True
have v>0
using <0 < I> v-def by auto
have RN k| < exp (—d0xk + 1) * (k+1 choose 1)
proof (intro order.trans [OF Far-9-1] strip)
show Big-Far-9-1 (I / (real k + real 1)) 1
proof (intro Big91-I)
show | > nat [2/5 ]
by linarith
qed (use True v0-def v-def in auto)
next
show exp (— (I / (k + reall) / 20) x k + 1) * (k+l choose l) < exp (—dxk
+ 1) % (k+1 choose 1)
by (smt (verit, best) <0 < > ~-def d-def exp-mono frac-le mult-right-mono
of-nat-0-le-iff )
qed (use <I>9> p0-min-101 True v-def in auto)
then show False
using non exp-gt21 by (smt (verit, ccfv-SIG) mult-right-mono of-nat-0-le-iff)
next
case Fulse
with <I>0> have v>0 v>1/10 and k9l: k < 9%l
by (auto simp: ~y-def)
— Much overlap with the proof of 9.2, but key differences too
define U-lower-bound-ratio where
U-lower-bound-ratio = Am. ([ i<m. (I — real i) / (k+1 — real i))
define n where n = nat[RN k1l — 1]
have £k>12
using 4k <I>3> by linarith
have exp 1 / (exp 1 — 2) < (12::real)
by (approzimation &)
also have RN12: ... < RNkl
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by (meson RN-3plus’ <I1>35 <k>125 le-trans numeral-le-real-of-nat-iff)
finally have exp 1 / (ezp 1 — 2) < RN k1.
moreover have n < RN k]
using RN12 by (simp add: n-def)
moreover have 2 < exp (1::real)
by (approzimation &)
ultimately have nRNe: n/2 > RNkl / exp 1
by (simp add: n-def field-split-simps)

have (k+I choose 1) / exp (—8 + 0%k) < RN k1
by (smt (verit) divide-inverse exp-minus mult-minus-left mult-of-nat-commute
non)
then have (k+I choosel) < (RN k1l / exp 2) % exp (0xk — 1)
by (simp add: divide-simps exp-add exp-diff flip: exp-add)
also have ... < (n/2) x exp (0xk — 2)
using nRNe by (simp add: divide-simps exp-diff)
finally have n2ezp-gt”: (n/2) * exp (0xk) > (k+I choose 1) x exp 2
by (metis exp-diff exp-gt-zero linorder-not-le pos-divide-le-eq times-divide-eq-right)
then have n2exp-gi: (n/2) % exp (0xk) > (k+I choose 1)
by (smt (verit, best) mult-le-cancel-left1 of-nat-0-le-iff one-le-exp-iff)
then have nezp-gt: n x exp (§xk) > (k+1 choose 1)
using less-le-trans linorder-not-le by force

define V where V = {..<n}
define F where E = all-edges V
interpret Book-Basis V E
proof ged (auto simp: V-def E-def comp-sgraph.wellformed comp-sgraph.two-edges)
have [simp]: nV = n
by (simp add: V-def)
then obtain Red Blue
where Red-E: Red C E and Blue-def: Blue = E—Red
and no-Red-K: — (3 K. size-clique k K Red)
and no-Blue-K: = (K. size-clique | K Blue)
by (metis <n < RN k I> less-RN-Red-Blue)
have Blue-E: Blue C E and disjnt-Red-Blue: disjnt Red Blue and Blue-eq:
Blue = all-edges V — Red
using complete by (auto simp: Blue-def disjnt-iff E-def)
define is-good-cligue where
is-good-clique = \i K. clique K Blue N K C V
A card (V N (N weK. Neighbours Blue w))
> i x U-lower-bound-ratio (card K) — card K
have is-good-card: card K < [ if is-good-clique i K for i K
using no-Blue-K that unfolding is-good-clique-def
by (metis nat-neq-iff size-clique-def size-clique-smaller)
define maz-m where maz-m = Suc (nat [l — k/9])
define GC where GC = {C. is-good-cliqgue n C A card C < maz-m}
have mazm-bounds: | — k/9 < maz-m maz-m < I+1 — k/9 maz-m > 0
using k9! unfolding maz-m-def by linarith+
then have GC # {}
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by (auto simp: GC-def is-good-clique-def U-lower-bound-ratio-def E-def V-def
intro: exl [where z={}])
have GC C Pow V
by (auto simp: is-good-clique-def GC-def)
then have finite GC
by (simp add: finV finite-subset)
then obtain W where W € GC and MazW: Maz (card * GC) = card W
using <GC # {}> obtains-MAX by blast
then have 53: is-good-cliqgue n W
using GC-def by blast
then have WCV
by (auto simp: is-good-clique-def )

define m where m = card W
define v’ where v/ = (I — real m) / (k+I—real m)

have maz53: — (is-good-clique n (insert z W) A card (insert z W) < maz-m)
if ze V\W for z
proof — Setting up the case analysis for v’
assume z: is-good-clique n (insert x W) A card (insert ¢ W) < maz-m
then have card (insert ¥ W) = Suc (card W)
using finV is-good-clique-def finite-subset that by fastforce
with z <finite GC»> have Maxz (card ‘ GC) > Suc (card W)
by (metis (no-types, lifting) GC-def Maz-ge finite-imagel image-iff mem-Collect-eq)
then show False
by (simp add: MazW)
qed
then have cligue-cases: m < maz-m N (Vz€ V\W. = is-good-clique n (insert
z W)) VvV m = maz-m
using GC-def <W € GC» <W C V> finV finite-subset m-def by fastforce

have Red-Blue-RN: 3K C X. size-cligue m K Red V size-clique n K Blue
if card X > RN m n XCV for m n and X
using partn-lst-imp-is-clique-RN [OF is-Ramsey-number-RN [of m n]] finV
that
unfolding is-clique-RN-def size-clique-def clique-indep-def Blue-eq
by (metis clique-iff-indep finite-subset subset-trans)
define U where U = V N ((YweW. Neighbours Blue w)
have RNkl > 0
by (metis RN-eq-0-iff grOI <k>0> <I>05)
with <n < RN k I> have n-less: n < (k+I choose 1)
by (metis add.commute RN-commute RN-le-choose le-trans linorder-not-less)

have v/ > 0

using is-good-card [OF 53] by (simp add: v'-def m-def)
have finite W

using <W C V> finV finite-subset by (auto simp: V-def)
have U C V

by (force simp: U-def)
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then have VUU: VN U =U
by blast
have disjnt U W
using Blue-E not-own-Neighbour unfolding E-def V-def U-def disjnt-iff by
blast
have m<l
using 53 is-good-card m-def by blast
have v/ < 1
using <m<I> by (simp add: v'-def divide-simps)

have cardU: n * U-lower-bound-ratio m < m + card U
using 58 VUU unfolding is-good-clique-def m-def U-def by force
have clique-W: size-clique m W Blue
using 53 is-good-clique-def m-def size-clique-def V-def by blast
have prod-gt0: U-lower-bound-ratio m > 0
unfolding U-lower-bound-ratio-def using <m<lI> by (intro prod-pos) auto
have kl-choose: real(k+1 choose 1) = (k+I—m choose (I—m)) / U-lower-bound-ratio
m
unfolding U-lower-bound-ratio-def using ki-choose <0 < k> <m < I> by blast

— in both cases below, we find a blue clique of size | — m
have extend-Blue-clique: 3K '. size-clique | K' Blue
if K C U size-cliqgue (I—m) K Blue for K
proof —
have K: card K = |—m clique K Blue
using that by (auto simp: size-clique-def)
define K’ where K'= K U W
have card K' =1
unfolding K'-def
proof (subst card-Un-disjnt)
show finite K finite W
using finV <K C U»> <UCV)>» finite-subset <finite W> that by meson+
show disjnt K W
using <disjnt U Wy <K C U> disjnt-subset! by blast
show card K + card W =1
using K <m < > m-def by auto
qed
moreover have clique K’ Blue
using <clique K Blues clique-W <K C U»
unfolding K'-def size-clique-def U-def
by (force simp: in-Neighbours-iff insert-commute intro: Ramsey.clique-Un)
ultimately show ?Zthesis
unfolding K '-def size-clique-def using <K C U> <U C V> <W C V> by
auto
qed

have 7/ < v
using <m<I> by (simp add: ~v-def ~v'-def field-simps)
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consider m < maz-m | m = maz-m
using clique-cases by blast
then consider m < maz-m ' > 1/10 | 1/10 — 1/k <~y AN~' < 1/10
proof cases
case [
then have v/ > 1/10
using «y>1/105 <k>0> mazm-bounds by (auto simp: v-def ~’'-def)
with 1 that show thesis by blast
next
case 2
then have v'-le110: v' < 1/10
using «y>1/105 <k>0> mazm-bounds by (auto simp: v-def ~'-def)
have 1/10 — 1/k <+’
proof —
have §: [-m > k/9 — 1
using <y>1/10> <k>0> 2 by (simp add: maz-m-def ~y-def) linarith
have 1/10 — 1/k <1 — k / (10xk/9 — 1)
using v'-le110 <m<l> <k>0> by (simp add: v'-def field-simps)
alsohave ... <1 -k /(k+1—-m)
using <I<k> <m<I> § by (simp add: divide-left-mono)
also have ... =~/
using <I>0> <I<k> <m<l> <k>0> by (simp add: ~'-def divide-simps)
finally show 1/10 — 1 [ real k < ~'.
qed
with ~'-le110 that show thesis
by linarith
qed
note y'-cases = this
have 110: 1/10 — 1/k < ~'
using y’-cases by (smt (verit, best) divide-nonneg-nonneg of-nat-0-le-iff)
have (real k)2 — 10 * real k < (I—m) * (10 + 9xk)
using 110 <m<I> <k>0>
by (simp add: v'-def field-split-simps power2-eq-square)
with big <k>1> have k/10 < I-m
unfolding Big101b-def Big-Closer-10-1-def by (smt (verit, best) mult-right-mono
of-nat-0-le-iff of-nat-mult)
then have k10-lm: nat |k/10] <1 —m
by linarith
have Im-ge-25: nat |2/5 1] <1 —m
using False I4k k10-lm by linarith

— As with 9: a huge effort just to show that U is nontrivial. Proof actually
shows its cardinality exceeds a small multiple of I (7/5).
have | + Sucl — q¢ < (k-+q choose q) | exp(d*k)
if nat|k/10] < q ¢<Il for ¢
using that
proof (induction q rule: nat-induct-at-least)
case base
have 1: 0 < 10 + 10 * real-of-int |k/10] / k
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using <k>0> by (smt (verit) divide-nonneg-nonneg of-nat-0-le-iff of-nat-int-floor)

have In9: In (10::real) > 2
by (approzimation &)
have | + real (Sucl — nat|k/10]) < 2 + k/2
using 4k by linarith
also have ... < exp(of-int|k/10] = 2 — k/200)
using big by (simp add: Bigl01a-def Big-Closer-10-1-def <l < k»)
also have ... < exp(|k/10] % In(10) — k/200)
by (intro exp-mono diff-mono mult-left-mono In9) auto
also have ... < exp(|k/10] % In(10)) * exp (—real k/200)
by (simp add: mult-exp-exp)
also have ... < exp(|k/10] * In(10 + (10 * nat|k/10]) / k)) * exp (—real
k/200)
using | by (intro mult-mono exp-mono) auto
also have ... < (10 + (10 * nat|k/10]) / k) ~ nat|k/10] % exp (—real
k/200)
using T by (auto simp: powr-def simp flip: powr-realpow)
also have ... < ((k + nat|k/10]) / (k/10)) ~ nat|k/10| * exp (—real
k/200)
using <k>05 by (simp add: mult.commute add-divide-distrib)
also have ... < ((k + nat|k/10]) / nat|k/10]) ~ nat|k/10] * exp (—real
k/200)
proof (intro mult-mono power-mono divide-left-mono)
show nat|k/10] < k/10
by linarith
ged (use <k>86> in auto)
also have ... < (k + nat|k/10] gchoose nat|k/10]) * exp (—real k/200)

by (meson exp-gt-zero gbinomial-ge-n-over-k-pow-k le-add2 mult-le-cancel-right-pos

of-nat-mono)
also have ... < (k + nat|k/10] choose nat|k/10]) * exp (—real k/200)
by (simp add: binomial-gbinomial)
also have ... < (k + nat|k/10] choose nat|k/10]) / exp (§ * k)
using v <0 < k> by (simp add: algebra-simps §-def exp-minus’ frac-le)
finally show ?case by linarith
next
case (Suc q)
then show ?case
apply simp
by (smt (verit) divide-right-mono exp-ge-zero of-nat-0-le-iff)
qed
from «m<> this [of I—m]
have 1 + [ + real m < (k+Il—m choose (I—m)) [/ exp § ~ k
by (simp add: exp-of-nat2-mult k10-Im)
also have ... < (k+1—m choose (I-m)) / exp (§ x k)
by (simp add: ezxp-of-nat2-mult)
also have ... < U-lower-bound-ratio m * (real n)
proof —
have §: (k41 choose 1) / exp (§ x k) < n
by (simp add: less-eq-real-def nexp-gt pos-divide-less-eq)
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show ?thesis
using mult-strict-left-mono [OF §, of U-lower-bound-ratio m| kl-choose
prod-gt0
by (auto simp: field-simps)

qed
finally have U-MINUS-M: 1+1 < real n * U-lower-bound-ratio m — m

by argo
then have cardU-gt: card U > 1 4+ 1 card U > 1

using cardU by linarith+

show Fulse
using ~'-cases
proof cases
case I
— Restricting attention to U
define EU where EU = E N Pow U
define RedU where RedU = Red N Pow U
define BlueU where BlueU = Blue N Pow U
have RedU-eq: RedU = EU \ BlueU
using BlueU-def Blue-def EU-def RedU-def Red-E by fastforce
obtain [iff]: finite RedU finite BlueU RedU C EU
using BlueU-def EU-def RedU-def E-def V-def Red-E Blue-E fin-edges
finite-subset by blast
then have card-EU: card EU = card RedU + card BlueU
by (simp add: BlueU-def Blue-def Diff-Int-distrib2 EU-def RedU-def card-Diff-subset
card-mono)
then have card-RedU-le: card RedU < card EU
by linarith
interpret UBB: Book-Basis U E N Pow U p0-min
proof
fix e assume e € E N Pow U
with two-edges show e C U card e = 2 by auto
next
show finite U
using <U C V> by (simp add: V-def finite-subset)
have z € E if z € all-edges U for z
using <U C V> all-edges-mono that complete E-def by blast
then show E N Pow U = all-edges U
using comp-sgraph.wellformed <U C V> by (auto intro: e-in-all-edges-ss)
qed auto

have BlueU-eq: BlueU = EU \ RedU

using Blue-eq complete by (fastforce simp: BlueU-def RedU-def EU-def V-def
E-def)

have [simp]: UBB.graph-size = card EU

using FEU-def by blast
have card EU > 0
using <card U > 1> UBB.complete by (simp add: EU-def UBB.finV

card-all-edges)
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have Fulse if UBB.graph-density BlueU > ~'
proof — — by maximality, etc.; only possible in case 1
have Nz: Neighbours BlueU x N (U \ {z}) = Neighbours BlueU x for z
using that by (auto simp: BlueU-eq EU-def Neighbours-def)
have BlueU C E N Pow U
using BlueU-eq EU-def by blast
with UBB.exists-density-edge-density [of 1 BlueU]
obtain z where x€ U and z: UBB.graph-density BlueU < UBB.gen-density
BlueU {z} (U\{z})
by (metis UBB.complete <1 < UBB.gorder> card-1-singletonE insertl1
zero-less-one subsetD)
with that have v’ < UBB.gen-density BlueU (U\{z}) {z}
using UBB.gen-density-commute by auto
then have x: v' % (card U — 1) < card (Neighbours BlueU z)
using <BlueU C E N Pow U» <card U > 1> <z € U>»
by (simp add: UBB.gen-density-def UBB.edge-card-eq-sum-Neighbours
UBB.finV divide-simps Nz)

have z: z € V\W
using <x € Uy <U C V> <«disjnt U W> by (auto simp: U-def disjnt-iff )
moreover
have is-good-clique n (insert z W)
unfolding is-good-clique-def
proof (intro congl)
show clique (insert © W) Blue
proof (intro clique-insert)
show clique W Blue
using 53 is-good-clique-def by blast
show all-edges-betw-un {x} W C Blue
using <z€U» by (auto simp: U-def all-edges-betw-un-def insert-commute
in-Neighbours-iff )
qed (use <W C V> <z € V\W> in auto)
next
show insertz W C V
using <W C V> <z € V\W> by auto
next
have NB-Int-U: Neighbours Blue x N U = Neighbours BlueU x
using <z € U» by (auto simp: BlueU-def U-def Neighbours-def)
have ulb-ins: U-lower-bound-ratio (card (insert x W)) = U-lower-bound-ratio
m x 7y’
using <z € V\W> <finite W> by (simp add: m-def U-lower-bound-ratio-def
v '-def )

have n x U-lower-bound-ratio (card (insert x W)) = n x U-lower-bound-ratio
m * '
by (simp add: ulb-ins)
also have ... < real (m + card U) * ~’
using mult-right-mono [OF cardU, of v'] <0 < ~'> by argo
also have ... < m + card U * ~'
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using mult-left-mono [OF <y'<1>, of m] by (simp add: algebra-simps)
also have ... < Suc m + v’ x (UBB.gorder — Suc 0)
using * <x € V\W> <finite W» <1 < UBB.gorder> <y'<1>»
by (simp add: U-lower-bound-ratio-def algebra-simps)
also have ... < Suc m + card (V N () (Neighbours Blue ‘ insert z W))
using * NB-Int-U finV by (simp add: U-def Int-ac)
also have ... = real (card (insert x W) + card (V N () (Neighbours Blue
“insert z W)))
using z <finite W»> VUU by (auto simp: m-def U-def)
finally show n x U-lower-bound-ratio (card(insert x W)) — card(insert
w)
< card (V N () (Neighbours Blue ¢ insert z W))
by simp
qed
ultimately show Fualse
using 1 clique-cases by blast
qed
then have *: UBB.graph-density BlueU < ~' by force
have no-RedU-K: - (3 K. UBB.size-clique k K RedU)
unfolding UBB.size-clique-def RedU-def
by (metis Int-subset-iff VUU all-edges-subset-iff-clique no-Red-K size-clique-def)
have (3 K. UBB.size-clique k K RedU) VvV (3 K. UBB.size-clique (I—m) K

BilueU)
proof (rule ccontr)
assume neg: - ((3K. UBB.size-clique k K RedU) V (3 K. UBB.size-clique

(I-m) K BlueU))
interpret UBB-NC': No-Cliques U E N Pow U p0-min RedU BlueU l—m k

proof
show BlueU = E N Pow U \ RedU
using BlueU-eq EU-def by fastforce
aed (use neg EU-def <RedU C EU> no-RedU-K <I<k> in auto)
show False
proof (intro UBB-NC.Closer-10-2)
have § < 1/200
using v by (simp add: §-def field-simps)
then have exp (§ * real k) < exp (real k/200)
using <0 < k> by auto
then have expexp: exp (0xk) * exp (— real k/200) < 1
by (metis divide-minus-left exp-ge-zero exp-minus-inverse mult-right-mono)
have ezp (— real k/200) x (k + (I—m) choose (I—m)) = exp (— real
k/200) = U-lower-bound-ratio m * (k+1 choose 1)
using <m < > kl-choose by force
also have ... < (n/2) % exp (d*k) * exp (— real k/200) * U-lower-bound-ratio

using n2exp-gt prod-gt0 by auto
also have ... < (n/2) * U-lower-bound-ratio m
using mult-left-mono [OF expexp, of (n/2) x U-lower-bound-ratio m]

prod-gt0 by (simp add: mult-ac)
also have ... < n x U-lower-bound-ratio m — m — formerly stuck here,
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due to the "minus m"
using U-MINUS-M <m <[> by auto
finally have exp (— real k/200) * (k + (I—m) choose (I—m)) < UBB.nV
using cardU by linarith
then show exp (— real k / 200) * (k + (I—m) choose (I—m)) < UBB.nV
using <m < I> by (simp add: v'-def)
next
have 1 — v’ < UBB.graph-density RedU
using * card-EU <card EU > 0>
by (simp add: UBB.graph-density-def BlueU-eq field-split-simps split:
if-split-asm)
then show 1 — real (I—m) / (real k + real (I—m)) < UBB.graph-density
RedU
unfolding v'-def using <m<I> by (smt (verit, ccfu-threshold) less-imp-le-nat
of-nat-add of-nat-diff)
next
show p0-min < 1 — real (I—m) / (real k + real (I—m))
using p0-min-101 <y'<~vy> <m < I> vy
by (smt (verit, del-insts) of-nat-add ~’'-def less-imp-le-nat of-nat-diff)
next
have Big-10-2I: Nl' p. [nat [2/5 « 1] <15 1/10 < p;p<1 /5] =
Big-Closer-10-2 u 1’
using big by (meson Bigl01d-def Big-Closer-10-1-def order.refl)
have m < real | x (1 — (10/11)%v)
using «<m<l> <y>1/105 <y'>1/10> v
apply (simp add: v-def ~'-def field-simps)
by (smt (verit, ccfo-SIG) mult.commute mult-left-mono distrib-left)
then have real | — real m > (10/11) % v * 1
by (simp add: algebra-simps)
moreover
have 1/10 <~y'A~'<1/5
using mult-mono [OF ~ v] <y'>1/10> <y' < > v by (auto simp:
power2-eq-square)
ultimately
have Big-Closer-10-2 ~' (I—m)
using Im-ge-25 by (intro Big-10-2I) auto
then show Big-Closer-10-2 ((I—m) / (real k + real (I—m))) (I—m)
by (simp add: v'-def <m < 1> add-diff-eq less-or-eq-imp-le)
next
show [-m < k
using <! < k> by auto
show (I—m) / (real k + real (I-m)) < 1/5
using v y-def <m < > by fastforce
show 1/10 < (I-m) / (real k + real (I—m))
using y/'-def <1/10 < ~’> <m < I> by auto
qed
qed
with no-RedU-K UBB.size-clique-def obtain K where K C U UBB.size-clique
(I-m) K BlueU
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by meson
then show False
using no-Blue-K extend-Blue-clique VUU
unfolding UBB.size-clique-def size-clique-def BlueU-def
by (metis Int-subset-iff all-edges-subset-iff-clique)
next
case 2
have RN k (I-m) < exp (— ((I-m) / (k + real (I-m)) / 20) x k + 1) = (k
+ (I—m) choose (I—m))
proof (intro Far-9-1 strip)
show real (I—m) / (real k + real (I—m)) < 1/10
using v'-def 2 <m < I> by auto
next — here is where we need the specified definition of 70
show Big-Far-9-1 (real (I—m) / (k + real (I—m))) (I—m)
proof (intro Big91-I [OF lm-ge-25])
have 0.07 < (1::real)/10 — 1/36
by (approzimation &)
also have ... < 1/10 — 1/k
using <k>36> by (intro diff-mono divide-right-mono) auto
finally have 7: v/ > 0.07 using 110 by linarith
with <m<l> show 0 < real (I-m) / (real k + real (I—m))
by (simp add: v0-def min-le-iff-disj ~'-def algebra-simps)
next
show real (I—m) / (real k + real (I-m)) < 1/10
using 2 «<m<lI> by (simp add: v'-def)
qed
next
show p0-min < 1 — 1/10 % (1 + 1 / 15)
using p0-min-101 by auto
qed
also have ... < real n * U-lower-bound-ratio m — m
proof —
have v * real k < k/5
using v <0 < k> by auto
also have ... </ x (real k x 2) + 2
using mult-left-mono [OF 110, of kx2] <k>0> by (simp add: algebra-simps)
finally have v * real k < v’ x (real k = 2) + 2 .
then have ezpezp: exp (§ * real k) x exp (—y"*k / 20 — 1) < 1
by (simp add: §-def flip: exp-add)
have exp (—v'*k/20 + 1) x (k + (I—m) choose (I—m)) = exp (—v'xk/20+1)
x U-lower-bound-ratio m * (k+I choose 1)
using <m < > kl-choose by force
also have ... < (n/2) x exp (0xk) * exp (—'xk/20 — 1) % U-lower-bound-ratio
m
using n2exp-gt’ prod-gt0 by (simp add: exp2 exp-diff exp-minus’ mult-ac
pos-less-divide-eq)

also have ... < (n/2) x U-lower-bound-ratio m
using expexp order-le-less prod-gt0 by fastforce
also have ... < n x U-lower-bound-ratio m — m
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using U-MINUS-M <m < I> by fastforce
finally show ?thesis
using <m < > by (simp add: v'-def) argo
qed
also have ... < card U
using cardU by auto
finally have RN k (I—m) < card U by linarith
then show Fulse
using Red-Blue-RN <U C V> extend-Blue-clique no-Blue-K no-Red-K by
blast
qed
qed
qed

definition ok-fun-10-1 = My k. if Big-Closer-10-1 (min v 0.07) (nat[((~v / (1—7))
x k)]) then 3 else (v/40 * k)

lemma ok-fun-10-1:
assumes () < v v < 1
shows ok-fun-10-1 ~ € o(real)
proof —
define v0 where v0 = min v 0.07
have v0 > 0
using assms by (simp add: v0-def)
then have V°[. Big-Closer-10-1 ~0 1
by (simp add: Big-Closer-10-1)
then obtain | where Al’. I’ > | = Big-Closer-10-1 ~0 1’
using eventually-sequentially by auto
moreover
have nat[((v / (1—7)) * k)] > 1l if real k > 1/y — [ for k
using that assms
by (auto simp: field-simps intro!: le-natceiling-iff)
ultimately have V k. Big-Closer-10-1 (min v 0.07) (nat[((y / (1—7)) * k)])
by (smt (verit) v0-def eventually-sequentially nat-ceiling-le-eq)
then have V*°k. ok-fun-10-1 v k = 8
by (simp add: ok-fun-10-1-def eventually-mono)
then show ?thesis
by (simp add: const-smallo-real landau-o.small.in-cong)
qed

theorem Closer-10-1-unconditional:

fixes [ k::nat

fixes 6 ~v::real

defines v = real | / (real k + real 1)

defines § = v/40

assumes 7: 0 < v~y < 1/5

assumes pO-min-101: pO-min < 1 — 1/5

shows RN k| < exp (—dxk + ok-fun-10-1 v k) = (k+I choose 1)
proof —
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define v0 where v0 = min v 0.07
show ?thesis
proof (cases Big-Closer-10-1 v0 1)
case True
show ?thesis
using Closer-10-1 [OF True [unfolded v0-def ~-def]] assms
by (simp add: ok-fun-10-1-def ~y-def 0-def RN-le-choose’)
next
case Fulse
have (nat [y« k / (1—7)]) <
by (simp add: vy-def divide-simps)
with False Big-Closer-10-1-upward
have — Big-Closer-10-1 v0 (nat [y x k / (1—7)])
by blast
then show ?thesis
by (simp add: ok-fun-10-1-def §-def ~0-def RN-le-choose’)
qed
qed

end

end

10 From diagonal to off-diagonal

theory From-Diagonal
imports Closer-To-Diagonal

begin

10.1 Lemma 11.2
definition ok-fun-11-2a = A\k. [real k powr (3/4)] = log 2 k

definition ok-fun-11-2b = A k. k powr (89/40) * (log 2 1 + 8 « log 2 k)
definition ok-fun-11-2¢ = Ap k. — k xlog 2 (1 — (2 / (1—p)) * k powr (—1/40))

definition ok-fun-11-2 = A\u k. 2 — ok-fun-71 p k + ok-fun-11-2a k
+ mazx (ok-fun-11-2b p k) (ok-fun-11-2¢ p k)

lemma ok-fun-11-2a: ok-fun-11-2a € o(real)
unfolding ok-fun-11-2a-def
by real-asymp

possibly, the functions that depend upon p need a more refined analysis
to cover a closed interval of possible values. But possibly not, as the text
implies pp = (2::a) / (5:a).
lemma ok-fun-11-2b: ok-fun-11-2b 11 € o(real)
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unfolding ok-fun-11-2b-def by real-asymp

lemma ok-fun-11-2c: ok-fun-11-2¢ pu € o(real)
unfolding ok-fun-11-2¢-def
by real-asymp

lemma ok-fun-11-2:

assumes 0<p p<l

shows ok-fun-11-2 1 € o(real)

unfolding ok-fun-11-2-def

by (simp add: assms const-smallo-real mazmin-in-smallo ok-fun-11-2a ok-fun-11-2b
ok-fun-11-2¢ ok-fun-71 sum-in-smallo)

definition Big-From-11-2 =
A k. Big-ZZ-8-6 u k N Big-X-7-1 u k N Big-Y-6-2 u k AN Big-Red-5-3 p k N
Big-Blue-4-1 u k
N1 <pu~2xrealk N2 /) (1—p)*real kpowr (—1/40) < 1 N1/k<1/2
— 3 xepsk

lemma Big-From-11-2:
assumes 0<p0 p0 < pl pi<li
shows V°k. V. p € {u0..u1} — Big-From-11-2 p k
proof —
have A: V& V. p0 < p Ap<pul — 1 < p?xk
proof (intro eventually-all-gel0)
show x: V®z. 1 < u0? * real x
using <0<up0> by real-asymp
next
fix k p
assume 1 < pu0? x real k and p0 < pp < pl
with «0<u0> show 1 < u? x k
by (smt (verit, ccfu-SIG) mult-le-cancel-right of-nat-less-0-iff power-mono)
qed
have B:V>®k. Vu. p0 < p Ap<pul — 2/ (1—p) * kpowr (—1/40) < 1
proof (intro eventually-all-gell)
show V°Fk. 2 / (1—pl) * k powr (—1/40) < 1
by real-asymp
qed (use assms in auto)
have C: V>®k. 1/k < 1/2 — 3 * eps k
unfolding eps-def by real-asymp
show ?thesis
unfolding Big-From-11-2-def
using assms Big-ZZ-8-6 Big-X-7-1 Big-Y-6-2 Big-Red-5-3 Big-Blue-4-1 A B C
by (simp add: eventually-conj-iff all-imp-conj-distrib)
qed

Simply to prevent issues about the positioning of the function real

abbreviation ratio = A\ s t. p * (real s + real t) / real s
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the text refers to the actual Ramsey number but I don’t see how that
could work. Theorem 11.1 will define n to be one less than the Ramsey
number, hence we add that one back here.

lemma (in Book) From-11-2:
assumes [=k
assumes big: Big-From-11-2 u k
defines R = Step-class {red-step} and S = Step-class {dboost-step}
defines t = card R and s = card S
defines nV’' = Suc nV
assumes (: card X0 > nV div 2 and p0 > 1/2
shows log 2 nV' < k x log 2 (1/u) + t xlog 2 (1 / (1—p)) + s = log 2 (ratio
wst)+ ok-fun-11-2 p k
proof —
have big71: Big-X-7-1 p k and big62: Big-Y-6-2 p k and big86: Big-ZZ-8-6 n
k and big53: Big-Red-5-3 p k
and big{1: Big-Blue-4-1 p k and bigu: 1 < p™2 % real k
and big-lel: 2 / (1—p) * real k powr (—1/40) < 1
using big by (auto simp: Big-From-11-2-def)
have bigul: 1 < p * real k
using bigu p01
by (smt (verit, best) mult-less-cancel-right2 mult-right-mono of-nat-less-0-iff
power2-eq-square)
then have log2uk: log 2 pu + log 2k > 0
using kn0 p01 add-log-eq-powr by auto
have bigu2: 1 < u * (real k)?
unfolding power2-eq-square by (smt (verit, ccfo-SIG) bigul 1101 mult-less-cancel-left1
mult-mono’)
define g where g = Ak. [real k powr (3/4)] * log 2 k
have g: g € o(real)
unfolding g-def by real-asymp
have bb-gt0: bigbeta > 0
using bigh3 bigbeta-gt0 <l=Fk> by blast
have t < k
by (simp add: R-def t-def red-step-limit)
have s < k
unfolding S-def s-def
using bblue-dboost-step-limit big4l <I=k> by fastforce

have £34: k powr (3/4) < k powr 1
using kn0 by (intro powr-mono) auto

define ¢712 where g712 = \k. 2 — ok-fun-71 pn k + g k
have nV' > 2

using gorder-ge2 nV'-def by linarith
have nV' < / * card X0

using 0 card-XY0 by (auto simp: nV'-def odd-iff-mod-2-eq-one)
with p01 have 2 powr (ok-fun-71 u k — 2) x u°k x (1—p) =t * (bigheta / p)
~ S * nV/

< 2 powr ok-fun-71 p k * p°k % (1—p) =t * (bigbeta / p) ~ s x card X0
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using p01 by (simp add: powr-diff mult.assoc bigbeta-ge0 mult-left-mono)
also have ... < card (Xseq halted-point)
using X-7-1 assms big71 by blast
also have ... < 2 powr (g k)
proof —
have 1/k < p0 — 8 x ¢
using big <p0 > 1/2> by (auto simp: Big-From-11-2-def)
also have ... < pseq halted-point
using Y-6-2-halted big62 assms by blast
finally have pseq halted-point > 1/k .
moreover have termination-condition (Xseq halted-point) (Yseq halted-point)
using halted-point-halted step-terminating-iff by blast
ultimately have card (Xseq halted-point) < RN k (nat [real k powr (3/4)])
using <I=k»> pseq-def termination-condition-def by auto
then show ?thesis
unfolding g-def by (smt (verit) RN34-le-2powr-ok kn0 of-nat-le-iff)
qed
finally have 58: 2 powr (g k) > 2 powr (ok-fun-71 u k — 2) « p "k % (1—p) °
t * (bigbeta / p) ~ s x nV'.
then have 59: nV’' < 2 powr (g712 k) * (1/u) ~k = (1 / (1—w)) ~t* (u/
bigbeta) ~ s
using ©01 bb-gt0 by (simp add: g712-def powr-diff powr-add mult.commute
divide-simps) argo

define a where a = 2 / (1—pu)
have ok-less1: a x real k powr (—1/40) < 1
unfolding a-def using big-le! by blast
consider s < k powr (39/40) | s > k powr (39/40) bigbeta > (1 — a * k powr
(—1/40)) * (s / (5 + 1))
using ZZ-8-6 big86 a-def <l=k> by (force simp: s-def t-def S-def R-def)
then show ?thesis
proof cases
case I
define h where h = Ac k. real k powr (39/40) * (log 2 p + real ¢  log 2 (real
)
have h: h ¢ € o(real) for ¢
unfolding h-def by real-asymp

have le-h: |s % log 2 (ratio p st)] < h 1k
proof (cases s>0)
case True
with <s>0> have peq: ratio p st = p x (I + t/s)
by (auto simp: distrib-left add-divide-distrib)
show ?thesis
proof (cases log 2 (ratio p st) < 0)
case True
have s x (— log 2 (p * (1 + t/s))) < real k powr (39/40) * (log 2 p + log
2 (real k))
proof (intro mult-mono)
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show s < k powr (39 / 40)
using 1 by linarith
next
have inverse (u * (1 + t/s)) < inverse u
using p01 inverse-le-1-iff by fastforce
also have ... < puxk
using bigu p01 by (metis neg-iff mult.assoc mult-le-cancel-left-pos
power2-eq-square right-inverse)
finally have inverse (pu x (1 + t/s)) < p*k .
moreover have 0 < p x (I + real t / real s)
using p01 <0 < s> by (simp add: zero-less-mult-iff add-num-frac)
ultimately have — log 2 (i % (I + real t / real s)) < log 2 (p * k)
using p01 kn0 by (simp add: zero-less-mult-iff flip: log-inverse log-mult)
then show — log 2 (u % (1 + real t / real s)) < log 2 u + log 2 (real k)
using <u>0> kn0 log-mult by fastforce
qed (use True peq in auto)
with <s>0> bigul True show ?thesis
by (simp add: peq h-def mult-le-0-iff )
next
case Fulse
have lek: 1 + t/s <k
proof —
have real t < real t * real s
using True mult-le-cancel-left]1 by fastforce
then have 1 + t/s <1 + ¢
by (simp add: True pos-divide-le-eq)
also have ... <k
using <t < k> by linarith
finally show ?thesis .
qed
have |s  log 2 (ratio p s t)| < k powr (89/40) = log 2 (ratio p s t)
using Fulse 1 by auto

also have ... = k powr (89/40) * (log 2 (u * (1 + t/s)))
by (simp add: peq)
also have ... = k powr (39/40) * (log 2 u + log 2 (1 + t/s))

using p01 by (smt (verit, best) divide-nonneg-nonneg log-mult of-nat-0-le-iff)

also have ... < k powr (89/40) * (log 2 u + log 2 k)
by (smt (verit, best) 1 Transcendental.log-mono divide-nonneg-nonneg lek
mult-le-cancel-left-pos of-nat-0-le-iff)
also have ... < h 1k
unfolding h-def using kn0 by force
finally show %thesis .
qed
qed (use log2uk h-def in auto)

have j3: bigbeta > 1 / (real k)*

using bigh3 bigbeta-ge-square <I=k> by blast
then have (u / bigbeta) ~ s < (u * (real k)?) ~ s
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using bb-gt0 kn0 p01 by (intro power-mono) (auto simp: divide-simps
mult.commaute)
also have ... < (u x (real k)?) powr (k powr (39/40))
using p01 bigu2 1 by (smt (verit) powr-less-mono powr-one-eq-one powr-realpow)

also have ... = 2 powr (log 2 ((u * (real k)?) powr (k powr (39/40))))
by (smt (verit, best) bigu?2 powr-gt-zero powr-log-cancel)
also have ... = 2 powr h 2 k

using 101 bigu2 kn0 by (simp add: log-powr log-nat-power log-mult h-def)
finally have 1: (1 / bigbeta) ~ s < 2 powr h 2k .
have {: nV’' < 2 powr (g712 k) = (1/p) ~k x (1 / (I—p)) ~ ¢t * 2 powr h 2k
using 59 mult-left-mono [OF t, of 2 powr (¢g712°k) x (1/u) ~k = (1 / (1—p))
by (smt (verit) 01 pos-prod-le powr-nonneg-iff zero-less-divide-iff zero-less-power)
have *: log 2nV' <k xlog 2 (1/pn) + t *xlog 2 (1 / (1—p)) + (9712 k + h
2k)
using p01 <nV' > 2> by (simp add: log-mult log-nat-power order.trans [OF
Transcendental.log-mono [OF - - 1]])

show ?thesis
proof —
have le-ok-fun: g712 k + h 8 k < ok-fun-11-2 p k
by (simp add: g712-def h-def ok-fun-11-2-def g-def ok-fun-11-2a-def ok-fun-11-2b-def )
have h3: h 3k =h 1k + h 2k — real k powr (39/40) = log 2
by (simp add: h-def algebra-simps)
have 0 < h 1k + sx*xlog2 ((u*real s + p* real t) / s)
by (smt (verit, del-insts) of-nat-add distrib-left le-h)
moreover have log 2 u < 0
using ;01 by simp
ultimately have g712 k + h 2k < s = log 2 (ratio p s t) + ok-fun-11-2 u k
by (smt (verit, best) kn0 distrib-left h3 le-ok-fun nat-neg-iff of-nat-eq-0-iff
pos-prod-lt powr-gt-zero)
then show log 2nV’' <k xlog 2 (1/u) + txlog2 (1 [/ (1—p)) + s *log 2
(ratio p s t) + ok-fun-11-2 p k
using * by linarith
qed
next
case 2
then have s > 0
using kn0 powr-gt-zero by fastforce
define h where h = \k. real k * log 2 (1 — a % k powr (—1/40))
have s x log 2 (1 / bigbeta) = s * log 2 pn — s = log 2 (bigbeta)
using p01 bb-gt0 2 by (simp add: log-divide algebra-simps)
also have ... < sxlog2 u— sxlog 2 (1 — ax*kpowr (—1/40)) * (s / (s
1)
using 2 <s>0> ok-lessl by (intro diff-mono order-refl mult-left-mono Tran-
scendental.log-mono) auto
also have ... = s *1log 2 p — s * (log 2 (1 — a * k powr (—1/40)) + log 2
(s / (5 + 1))

using <0 < s> a-def add-log-eq-powr big-lel by auto
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also have ... = s x log 2 (ratio p st) — s x log 2 (1 — a * k powr (—1/40))
using <0 < p» <0 < 8> minus-log-eq-powr by (auto simp flip: right-diff-distrib’)
also have ... < s * log 2 (ratio pp st) — h k
proof —
have log 2 (1 — a x real k powr (—1/40)) < 0
using p01 kn0 a-def ok-less1 by auto
with <s<k> show ?Zthesis
by (simp add: h-def)
qed
finally have 1: s x log 2 (p / bigbeta) < s x log 2 (ratio u st) — h k .
show ?thesis
proof —
have le-ok-fun: ¢712 k — h k < ok-fun-11-2 p k
by (simp add: g712-def h-def ok-fun-11-2-def g-def ok-fun-11-2a-def a-def
ok-fun-11-2c¢-def)
have log 2 nV’' < s x log 2 (u / bigbeta) + k = log 2 (1/p) + t * log 2 (1 /
(1—p)) + (9712 k)
proof (intro order.trans [OF Transcendental.log-mono [OF - - 59]])
show log 2 (2 powr g712 k = (1/u) ~k = (1 / (1—pu)) ~t * (u / bigbeta)

9712 k

< s*log 2 (n/ bigbeta) + k = log 2 (1/pn) + t x log 2 (1 / (1—p)) +

using bb-gt0 p01 by (simp add: log-mult log-nat-power)

qged (use <nV’ > 2> in auto)

with | le-ok-fun show log 2 n V' < k x log 2 (1/u) + t = log 2 (1 / (1—p))
+ s x log 2 (ratio p s t) + ok-fun-11-2 p k

by simp
qed
qed

qed

10.2 Lemma 11.3

same remark as in Lemma 11.2 about the use of the Ramsey number in the
conclusion

lemma (in Book) From-11-3:
assumes =k
assumes big: Big-Y-6-1 pu k
defines R = Step-class {red-step} and S = Step-class {dboost-step}
defines t = card R and s = card S
defines nV’' = Suc nV
assumes 0: card Y0 > nV div 2 and p0 > 1/2
shows log 2 nV’' < log 2 (RNk (k—t)) + s + t + 2 — ok-fun-61 k
proof —
define RS where RS = Step-class {red-step,dboost-step}
have RS =R U S
using Step-class-insert R-def S-def RS-def by blast
moreover obtain finite R finite S
by (simp add: R-def S-def)
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moreover have disjnt R S
using R-def S-def disjnt-Step-class by auto
ultimately have card-RS: card RS = t+s
by (simp add: t-def s-def card-Un-disjnt)
have 4: nV'/{ < card Y0
using 0 card-XY0 by (auto simp: nV'-def odd-iff-mod-2-eq-one)
have ge0: 0 < 2 powr ok-fun-61 k x p0 ~ card RS
using p0-01 by fastforce
have nV' > 2
using gorder-ge2 nV'-def by linarith
have 2 powr (— real s — real t + ok-fun-61k — 2) x nV' = 2 powr (ok-fun-61
k—2)%(1/2) " card RS x nV'
by (simp add: powr-add powr-diff powr-minus power-add powr-realpow divide-simps
card-RS)
also have ... < 2 powr (ok-fun-61 k — 2) x p0 ~ card RS * nV’
using power-mono [OF <p0 > 1/2>] <nV' > 25 by auto
also have ... < 2 powr (ok-fun-61 k) * p0 ~ card RS * (nV'/})
by (simp add: divide-simps powr-diff split: if-split-asm)
also have ... < 2 powr (ok-fun-61 k) x p0 ~ card RS * card Y0
using mult-left-mono [OF J ge0 | by simp
also have ... < card (Yseq halted-point)
using Y-6-1 big <I=k> by (auto simp: RS-def divide-simps split: if-split-asm)
finally have 2 powr (— real s — real t + ok-fun-61k — 2) x nV' < card (Yseq
halted-point) .
moreover
{ assume card (Yseq halted-point) > RN k (k—t)
then obtain K where K: K C Yseq halted-point and size-clique (k—t) K Red
V size-clique k K Blue
by (metis RN-commute Red-Blue-RN Yseq-subset-V)
then have KRed: size-clique (k—t) K Red
using <I=k> no-Blue-clique by blast
have card (K U Aseq halted-point) = k
proof (subst card-Un-disjnt)
show finite K finite (Aseq halted-point)
using K finite-Aseq finite- Yseq infinite-super by blast+
show disjnt K (Aseq halted-point)
using valid-state-seq[of halted-point] K disjnt-subset!
by (auto simp: valid-state-def disjoint-state-def)
have card (Aseq halted-point) = t
using red-step-eq-Aseq R-def t-def by presburger
then show card K + card (Aseq halted-point) = k
using Aseq-less-k[OF| nat-less-le KRed size-clique-def by force
qed
moreover have clique (K U Aseq halted-point) Red
proof —
obtain K C V Aseq halted-point C 'V
by (meson Aseq-subset-V KRed size-clique-def)
moreover have clique K Red
using KRed size-clique-def by blast
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moreover have clique (Aseq halted-point) Red
by (meson A-Red-clique valid-state-seq)
moreover have all-edges-betw-un (Aseq halted-point) (Yseq halted-point) C
Red
using valid-state-seq|of halted-point] K
by (auto simp: valid-state-def RB-state-def all-edges-betw-un-Un2)
then have all-edges-betw-un K (Aseq halted-point) C Red
using K all-edges-betw-un-mono2 all-edges-betw-un-commute by blast
ultimately show ?Zthesis
by (simp add: local.clique-Un)
qed
ultimately have size-clique k (K U Aseq halted-point) Red
using KRed Aseq-subset-V by (auto simp: size-clique-def)
then have False
using no-Red-clique by blast

ultimately have x: 2 powr (— real s — real t + ok-fun-61k — 2) x nV’' < RN
k (k—t)
by fastforce
have — real s — real t + ok-fun-61k — 2 + log 2 nV' = log 2 (2 powr (— real
s — real t + ok-fun-61k — 2) x nV"’)
using add-log-eq-powr <nV' > 2> by auto
also have ... <log 2 (RN k (k—t))
using * Transcendental.log-mono <nV' > 2> less-eq-real-def by auto
finally show log 2nV'<log 2 (RNk (k —t)) + real s + real t + 2 — ok-fun-61
k
by linarith
qged

10.3 Theorem 11.1

definition FF :: nat = real = real = real where
FF =Xk xy. log 2 (RN k (nat|real k — z = real k|)) / real k + = + y

definition GG :: real = real = real = real where
GG =X uzy. log2 (1/u)+zxlog2 (1/(1—p)) +yx*log?2 (u=(z+y)/y)

definition FF-bound :: nat = real = real where
FF-bound = Xk u. FF k0O u + 1

lemma log2-RN-ge0: 0 < log 2 (RN kk) / k
proof (cases k=0)
case Fulse
then have RNk Lk > 1
by (simp add: RN-eq-0-iff lel)
then show ?thesis
by simp
qed auto
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lemma le-FF-bound:
assumes z: z € {0..1} and y € {0..u}
shows FF k zy < FF-bound k u
proof (cases |k — zxk] = 0)
case True — to handle the singularity
with assms log2-RN-ge0|of k] show ?thesis
by (simp add: True FF-def FF-bound-def log-def)
next
case Fulse
with gr0l have k>0 by fastforce
with False assms have x: 0 < |k — zxk]
using linorder-neqE-linordered-idom by fastforce
have le-k: k — zxk < k
using z by auto
then have le-k: nat |k — zxk| < k
by linarith
have log 2 (RN k (nat |k — zxk])) / k <log 2 (RNkk) / k
proof (intro divide-right-mono Transcendental.log-mono)
show 0 < real (RN k (nat |k — xxk]))
by (metis RN-eq-0-iff <k>0> gr-zerol x of-nat-0-less-iff zero-less-nat-eq)
qed (auto simp: RN-mono le-k)
then show ?thesis
using assms False le-SucE by (fastforce simp: FF-def FF-bound-def)
qed

lemma FF2: y' <y = FFkay < FFkuzy
by (simp add: FF-def)

lemma FF-GG-bound:
assumes p: 0 < pp< ! and z:z € {0..1} and y: y € {0.px 2z / (1—p) +
n}
shows min (FFkzy) (GG pzy) +n < FF-bound k (pn/ (1—p) +n) +n
proof —
have FF-ub: FF kzy < FF-bound k (u / (1—p) + 1)
proof (rule order.trans)
show FF kzy < FF-bound k y
using z y by (simp add: le-FF-bound)
next
have y < p / (1—p) + 7
using z y u by simp (smt (verit, best) frac-le mult-left-le)
then show FF-bound k y < FF-bound k (pn / (1—p) + n)
by (simp add: FF-bound-def FF-def)
qed
show ?thesis
using FF-ub by auto
qged

context P0-min
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begin
definition ok-fun-11-1 = A\u k. maz (ok-fun-11-2 p k) (2 — ok-fun-61 k)

lemma ok-fun-11-1:

assumes <y pu<lI

shows ok-fun-11-1 p € o(real)

unfolding ok-fun-11-1-def

by (simp add: assms const-smallo-real maxmin-in-smallo ok-fun-11-2 ok-fun-61
sum-in-smallo)

lemma eventually-ok111-le-n:
assumes 7 > 0 and p: 0<p p<l
shows V k. ok-fun-11-1 u k / k <17
proof —
have (\k. ok-fun-11-1 p k / k) € o(Ak. 1)
using eventually-mono ok-fun-11-1 [OF p] by (fastforce simp: smallo-def
divide-simps)
with assms have V*°k. |ok-fun-11-1 p k| / k < n
by (auto simp: smallo-def)
then show ?thesis
by (metis (mono-tags, lifting) eventually-mono abs-divide abs-le-D1 abs-of-nat)
qed

lemma eventually-powr-le-n:
assumes 7 > (
shows V>°k. (2 / (1—p)) * k powr (—1/20) <n
using assms by real-asymp

definition Big-From-11-1 =
An p k. Big-From-11-2 p k N Big-ZZ-8-5 u k N Big-Y-6-1 u k N ok-fun-11-1 1
k/k<n/2
A2/ (1—p)) * kpowr (—1/20) <n/2
A Big-Closer-10-1 (1/101) (nat[k/100]) A 8 | (k xIn 2) < n/2 N k>3

In sections 9 and 10 (and by implication all proceeding sections), we
needed to consider a closed interval of possible values of p. Let’s hope, maybe
not here. The fact below can only be proved with the strict inequality 0 <
1, which is why it is also strict in the theorems depending on this property.

lemma Big-From-11-1:
assumes 7 > 0 0<p p<lI
shows V*°k. Big-From-11-1 n u k
proof —
have V>|. Big-Closer-10-1 (1/101) 1
by (rule Big-Closer-10-1) auto
then have a: V°°k. Big-Closer-10-1 (1/101) (nat[k/1007)
unfolding eventually-sequentially
by (meson le-divide-eq-numerall (1) le-natceiling-iff nat-ceiling-le-eq)
have b: V>°k. 8 / (k xIn 2) <n/2
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using <n>0> by real-asymp
show ?thesis
unfolding Big-From-11-1-def
using assms a b Big-From-11-2[of p p] Big-ZZ-8-5[of p u] Big-Y-6-1[of 1 p]
using eventually-ok111-le-nlof n/2] eventually-powr-le-n [of 1/2]
by (auto simp: eventually-conj-iff all-imp-conj-distrib eventually-sequentially)
qged

The actual proof of theorem 11.1 is now combined with the development
of section 12, since the concepts seem to be inescapably mixed up.

end

end

11 The Proof of Theorem 1.1

theory The-Proof
imports From-Diagonal

begin

11.1 The bounding functions
definition H = A\p. —p x log 2 p — (1—p) * log 2 (1—p)

definition dH where dH = Az:real. —In(z)/In(2) + In(1 — z)/In(2)

lemma dH [derivative-intros]:
assumes <z <1
shows (H has-real-derivative dH x) (at x)
unfolding H-def dH-def log-def
by (rule derivative-eg-intros | use assms in force)+

lemma HO [simp]: H 0 = 0 and HI [simp]: H1 = 0
by (auto simp: H-def)

lemma H-reflect: H (1—p) = Hp
by (simp add: H-def)

lemma H-ge0:
assumes () < pp < 1
shows 0 < Hp
unfolding H-def
by (smt (verit, best) assms mult-minus-left mult-le-0-iff zero-less-log-cancel-iff)

Going up, from 0 to 1/2

lemma H-half-mono:
assumes 0<p’'p'<pp < 1/2
shows Hp' < Hp
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proof (cases p'=0)
case True
then have Hp’' = 0
by (auto simp: H-def)
then show ?thesis
by (smt (verit) H-ge0 True assms(2) assms(8) divide-le-eq-1-pos)
next
case Fulse
with assms have p’>0 by simp
have dH(1/2) = 0
by (simp add: dH-def)
moreover
have dH z > 0 if 0<z z<1/2 for z
using that by (simp add: dH-def divide-right-mono)
ultimately show ?thesis
by (smt (verit) dH DERIV-nonneg-imp-nondecreasing <p'>0> assms le-divide-eq-1-pos)
qed

Going down, from 1/2 to 1

lemma H-half-mono’:
assumes 1/2 <p'p<pp < I
shows Hp' > Hp
using H-half-mono [of 1—p 1—p’| H-reflect assms by auto

lemma H-half: H(1/2) = 1
by (simp add: H-def log-divide)

lemma H-lei:
assumes ) < pp < 1
shows Hp < 1
by (smt (verit, best) HO H1 H-ge0 H-half-mono H-half-mono’ H-half assms)

Many thanks to Fedor Petrov on mathoverflow

lemma H-12-1:
fixes a b::nat
assumes a > b
shows log 2 (a choose b) < a x H(b/a)
proof (cases a=b VvV b=0)
case True
with assms show ?thesis
by (auto simp: H-def)
next
let %p = b/a
case False
then have p01: 0 < %p 7p < 1
using assms by auto
then have (a choose b) * ?p ~ b x (1—%p) ~(a—b) < (%p + (1—9p)) " a
by (subst binomial-ring) (force intro!: member-le-sum assms)
also have ... = 1
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by simp
finally have §: (a choose b) x ?p ~ b * (1—%p) ~(a—b) < 1.
have log 2 (a choose b) + b * log 2 ?p + (a—b) x log 2 (1—9p) < 0
using Transcendental.log-mono [OF - - §] False assms
by (force simp add: p01 log-mult log-nat-power)
then show ?thesis
using p01 False assms unfolding H-def by (simp add: divide-simps)
qed

definition gg = GG (2/5)

lemma gg-eq: ggzy = log 2 (5/2) + z x log 2 (5/3) + y * log 2 ((2 * (z+y))

/ (5%y))
by (simp add: gg-def GG-def)

definition fI = Az y. v + y + (2—2) * H(1/(2—x))
definition f2 = Mz y. flxy — (1 / (40 % In 2)) x (I —z) / (2—1))

definition ff = Az y. if x < 3/4 then fl z y else f2x y
Incorporating Bhavik’s idea, which gives us a lower bound for v of 1/101

definition [fGG :: real = real = real = real where
HGG = pxy. maz 1.9 (min (ffzy) (GG pzy))

The proofs involving Sup are needlessly difficult because ultimately the
sets involved are finite, eliminating the need to demonstrate boundedness.
Simpler might be to use the extended reals.

lemma f1-le:
assumes <1
shows fl zy < y+2
unfolding f1-def
using H-lel [of 1/(2—1)] assms
by (smt (verit) divide-le-eq-1-pos divide-nonneg-nonneg mult-left-le)

lemma ff-le4:
assumes <1 y<I
shows ffzy < 4
proof —
have ffoey < flzy
using assms by (simp add: ff-def f2-def)
also have ... < /4
using assms by (smt (verit) f1-le)
finally show ?thesis .
qed

lemma ff-GG-bound:

assumes <1 y<I
shows ffGG pzy < 4
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using ff-lef [OF assms] by (auto simp: f[fGG-def)

lemma bdd-above-ff-GG:
assumes <1 u<I
shows bdd-above (M\y. fGG pzy + 1) ‘{0..u})
using ff-GG-bound assms
by (intro bdd-above.I2 [where M = /+n]) force

lemma bdd-above-SUP-ff-GG:
assumes (0<u u<I
shows bdd-above ((A\z. | Jye{0..u}. fGG pxy +n) {0..1})
using bdd-above-ff-GG assms
by (intro bdd-abovel [where M = 4 + nl]) (auto simp: cSup-le-iff ff-GG-bound

Pi-iff)
Claim (62). A singularity if z = 1. Okay if we put In(0) =0

lemma FF-le-fI:
fixes k::nat and z y::real
assumes z: 0 < zz < land y: 0 <yy < I
shows FF kxy < flzy
proof (cases nat|k — zxk| = 0)
case True
with z show ?thesis
by (simp add: FF-def f1-def H-ge0 log-def)
next
case False
let 2kl = k + k — nat [zxk]
have kk-less-1: k /| %kl < 1
using z False by (simp add: field-split-simps, linarith)
have le: nat|k — z*k| < k — nat[z*k|
using floor-ceiling-diff-le ©
by (meson mult-left-le-one-le mult-nonneg-nonneg of-nat-0-le-iff )
have k>0
using Fualse zero-less-iff-neq-zero by fastforce
have RN-gt0: RN k (nat|k — zxk]) > 0
by (metis False RN-eq-0-iff <k>0> groI)
then have §: RN k (nat|k — zxk]) < k + nat|k — xzxk]| choose k
using RN-le-choose by force
also have ... <k + k — nat[zxk] choose k
using False Nat.le-diff-conv2 binomial-right-mono le by fastforce
finally have RN k (nat |real k — zxk]) < 2kl choose k .
with RN-gt0 have FF k z y < log 2 (%kl choose k) /| k + z + y
by (simp add: FF-def divide-right-mono nat-less-real-le)
also have ... < (%Kl x H(k/?kl)) /| k+ 1 + y
proof —
have k < k + k — nat[zxk]
using False by linarith
then show ?thesis
by (simp add: H-12-1 divide-right-mono)
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qed
also have ... < flzy
proof —
have 1: %kl / k < 2—x
using z by (simp add: field-split-simps)
have 2: H (k / ¢kl) < H (1 / (2—x))
proof (intro H-half-mono’)
show 1 / (2—z) <k / %k
using z False by (simp add: field-split-simps, linarith)
qed (use z kk-less-1 in auto)
have %kl / k « H (k / %kl) < (2—z) « H (1 / (2—x))
using z mult-mono [OF 1 2 - H-ge0] kk-less-1 by fastforce
then show ?thesis
by (simp add: f1-def)
qed
finally show %thesis .
qed

Bhavik’s eleven-one-large-end

lemma f1-le-19:
fixes k::nat and z y::real
assumes z: 0.99 < zz < land y: 0 <yy < 38/4
shows fl zy < 1.9
proof —
have A: 2—x < 1.01
using z by simp
have H (1 / (2—z)) < H (1 / (2-0.99))
using z by (intro H-half-mono’) (auto simp: divide-simps)
also have ... < 0.081
unfolding H-def by (approzimation 15)
finally have B: H (1 / (2—x)) < 0.081 .
have (2—z) «x H (1 / (2—x)) < 1.01 = 0.081
using mult-mono [OF A B] x
by (smt (verit) A H-ge0 divide-le-eq-1-pos divide-nonneg-nonneg)
with assms show ?thesis by (auto simp: f1-def)
qged

Claim (63) in weakened form; we get rid of the extra bit later

lemma (in P0-min) FF-le-f2:
fixes k::nat and z y::real
assumes z: 8/4 <zzx < Ilandy: 0<yy<I
and I: real | = k — zxk
assumes pO-min-101: pO-min < 1 — 1/5
defines v = real | / (real k + real 1)
defines v0 = min v (0.07)
assumes 7y > ()
shows FFkzy < f2xy + ok-fun-10-1 v k / (k = In 2)
proof —
have [>0
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using <y>0> v-def less-irrefl by fastforce
have z>0
using z by linarith
with [ have k>]
by (smt (verit, del-insts) of-nat-0-le-iff of-nat-le-iff pos-prod-it)
with <0 < [> have k>0 by force
have RN-gt0: RNkl > 0
by (metis RN-eq-0-iff <0 < k> <0 < 1> gr0I)
define 6 where § = v/40
have A: 1 / real(k+1) = (1—z)/(2—1)
using © <k>0> by (simp add: 1 field-simps)
have B: real(k+1) | k = 2—=z
using <0 < k> I by (auto simp: divide-simps left-diff-distrib)
have v: v < 1/5
using z A by (simp add: ~y-def)
have 1 — 1 / (2—xz) = (1-12) / (2—x)
using z by (simp add: divide-simps)
then have Heq: H (1 / (2—z)) = H ((1—z) / (2—1))
by (metis H-reflect)
have RN k1 < exp (—0xk + ok-fun-10-1 ~ k) * (k+I choose 1)
unfolding J-def ~-def
proof (rule Closer-10-1-unconditional)
show 0 <1/ (real k + real 1) 1 / (real k + real 1) < 1/5
using v <y > 0> by (auto simp: y-def)
have min (I / (k + real 1)) 0.07 > 0
using <I>0> by force
qed (use pO-min-101 in auto)
with RN-gt0 have FF k z y < log 2 (exp (—0xk + ok-fun-10-1 ~ k) * (k+I
choosel)) /| k +z + y
unfolding FF-def
by (intro add-mono divide-right-mono Transcendental.log-mono; simp flip: 1)
also have ... = (log 2 (exp (—0xk + ok-fun-10-1 v k)) + log 2 (k+1 choose 1))
Jk+z+y
by (simp add: log-mult)
also have ... < ((—0xk + ok-fun-10-1 v k) / In 2 + (k+1) « H(l/(k+1))) / k
+z+y
using H-12-1
by (smt (verit, ccfo-SIG) log-exp divide-right-mono le-add2 of-nat-0-le-iff )
also have ... = (=0xk + ok-fun-10-1 v k) / k / In 2 + (k+1) / k « H(l/(k+1))
+z+y
by argo
alsohave ... =—¢6 /In 2 + ok-fun-10-1 vk / (k«In 2) + (2—z) «x H((1—2)/(2—x))
+ T+ y
proof —
have (—0xk + ok-fun-10-1 v k) / k /In 2 = —6 / In 2 + ok-fun-10-1 v k /
(k *In 2)
using <0 < k> by (simp add: divide-simps)
with A B show ?thesis
by presburger
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qed
also have ... = — (log 2 (exp 1) / 40) * (1—z) /] (2—z) + ok-fun-10-1 v k /
(k+xln2)+ (2-z)«H(I-2)/(2—2)) +z+y
using A by (force simp: §-def ~-def field-simps)
also have ... < f2zy + ok-fun-10-1 v k / (real k * In 2)
by (simp add: Heq f1-def f2-def mult-ac)
finally show ?thesis .
qed

The body of the proof has been extracted to allow the symmetry argu-
ment. And 1/12 is 3/4-2/3, the latter number corresponding to u = (2::a)
/ (5:'a)
lemma (in Book-Basis) From-11-1-Body:

fixes V :: ‘a set
assumes p: 0 < ppu<2/5andn: 0 <nn<1/12

and ge-RN: Suc nV > RNk k

and Red: graph-density Red > 1/2

and p0-min12: p0-min < 1/2

and Red-E: Red C E and Blue-def: Blue = E\Red

and no-Red-K: — (3 K. size-clique k K Red)

and no-Blue-K: = (AK. size-clique k K Blue)

and big: Big-From-11-1 n p k

shows log 2 (RN kk) / k < (SUPz € {0..1}. SUPy € {0..3/4}. fGG pnzy
+ 1)
proof —
have 12: 8/4 — 2/8 = (1/12::real)
by simp
define 7’ where n’' = /2
have n: 0 <n'n' < 1/12
using 7 by (auto simp: n’-def)
have k>0 and big101: Big-Closer-10-1 (1/101) (nat[k/1007) and ok-fun-10-1-le:
3/ (kxin2)<n’
using big by (auto simp: Big-From-11-1-def n’-def)
interpret No-Cliques where [=Fk
using assms unfolding No-Cliques-def No-Cliques-azioms-def
using Book-Basis-azxioms PO-min-azioms by blast
obtain X0 Y0 where card-X0: card X0 > nV /2 and card-Y0: card Y0 =
gorder div 2

and X0 =V \ Y0 YOCV

and p0-half: 1/2 < gen-density Red X0 Y0

and Book V E p0-min Red Blue k k u X0 Y0

proof (rule to-Book)
show p0-min < graph-density Red
using p0-mini12 Red by linarith
show 0 < pp < 1
using p by auto
qed (use infinite-UNIV p0-min Blue-def Red p in auto)
then interpret Book V E p0-min Red Blue k k p X0 Y0
by meson
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define R where R = Step-class {red-step}
define S where S = Step-class {dboost-step}
define ¢ where ¢t = card R
define s where s = card S
define z where z = t/k
define y where y = s/k
have sts: (s + real t) / s = (z+y) / y

using <k>0> by (simp add: z-def y-def divide-simps)
have t<k

by (simp add: R-def p t-def red-step-limit)
then obtain z01: 0<z z<1

by (auto simp: z-def)

have big41: Big-Blue-4-1 p k and big61: Big-Y-6-1 p k
and big85: Big-ZZ-8-5 p k and big11-2: Big-From-11-2 p k
and ok111-le: ok-fun-11-1 p k / k < n’
and powr-le: (2 / (1—p)) * k powr (—1/20) < n’and k>0
using big by (auto simp: Big-From-11-1-def Big-Y-6-1-def Big-Y-6-2-def n’-def)
then have big53: Big-Red-5-3 p k
by (meson Big-From-11-2-def )
have p < 1
using p by auto

have s<k

unfolding s-def S-def

by (meson p le-less-trans bblue-dboost-step-limit big41 le-add2)
then obtain y01: 0<y y<1I

by (auto simp: y-def)

Now that z and y are fixed, here’s the body of the outer supremum

define w where w = (| |y€{0..3/4}. fGG pzy + n)
show ?thesis

proof (intro cSup-upper2 imagel)
show w € (\z. | |ye{0..3/4}. fGG pnzy +1n) ‘{0..1}
using 201 by (force simp: w-def intro!: image-eql [where z=z))
next
have p23: pn / (1—p) < 2/3
using p by (simp add: divide-simps)
have beta-le: bigbeta < p
using <u<1y u bigh3 bigbeta-le by blast
have s < (bigbeta / (1 — bigbeta)) x t + (2 / (1—p)) = k powr (19/20)
using ZZ-8-5 [OF big85] u by (auto simp: R-def S-def s-def t-def)
also have ... < (u/ (I—p)) *t + (2 / (1—p)) = k powr (19/20)
by (smt (verit, ccfv-SIG) <u<1> p beta-le frac-le mult-right-mono of-nat-0-le-iff)
also have ... < (u/ (I1—p)) *t + (2 / (1—p)) * (k powr (—1/20) * k powr
1)
unfolding powr-add [symmetric] by simp
also have ... < (2/8) xt + (2 / (1—u)) * (k powr (—1/20)) x k
using mult-right-mono [OF 123, of t| by (simp add: mult-ac)
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k

also have ... < (3/4 —n") xk + (2 / (1—p)) = (k powr (—1/20)) * k
proof —
have (2/3) x t < (2/3) x k
using <t < k> by simp
then show ?thesis
using 12 n’' by (smt (verit) mult-right-mono of-nat-0-le-iff )
qed
finally have s < (8/4 —n') xk + (2 / (1—p)) * k powr (—1/20) * k
by simp
with mult-right-mono [OF powr-le, of k]
have 1: s < 8/4 x k
by (simp add: mult.commute right-diff-distrib’)
then have y < 3//
by (metis t <0 < k> of-nat-0-less-iff pos-divide-le-eq y-def)

have k-minus-t: nat |real k — real t] = k—t
by linarith
have nV div 2 < card Y0
by (simp add: card-Y0)
then have §: log 2 (Suc nV) <log 2 (RN k (k—t)) + s + t + 2 — ok-fun-61

using From-11-8 [OF - big61] p0-half p by (auto simp: R-def S-def p0-def

s-def t-def)

S

define | where | = k—t
define v where v = real | / (real k + real I)
have v < I
using <t < k» by (simp add: v-def)
have nV div 2 < card X0
using card-X0 by linarith
then have 112: log 2 (Suc nV) < k xlog 2 (1/u) + t *log 2 (1 / (1—u)) +
x log 2 (ratio p s t)
+ ok-fun-11-2 p k
using From-11-2 [OF - big11-2] p0-half u
unfolding s-def t-def p0-def R-def S-def by force
have log 2 (SucnV) / k <log 2 (1/p) + z *x log 2 (1 / (1—p)) + y * log 2

ratio [ St
I

k

+ ok-fun-11-2 w k / k
using <k>0> divide-right-mono [OF 112, of k]
by (simp add: add-divide-distrib z-def y-def)
also have ... = GG pxy + ok-fun-11-2 pn k / k
by (metis GG-def sts times-divide-eq-right)
also have ... < GG pzy + ok-fun-11-1 p k / k
by (simp add: ok-fun-11-1-def divide-right-mono)
finally have le-GG: log 2 (Suc nV) / k < GG pzy + ok-fun-11-1 pn k / k .

have log 2 (SucnV) / k <log 2 (RNk (k—t)) / k+ 2+ y + (2 — ok-fun-61

)/ k
using <k>0> divide-right-mono [OF §, of k] add-divide-distrib z-def y-def
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by (smt (verit) add-uminus-conv-diff of-nat-0-le-iff)
also have ... = FFkzy + (2 — ok-fun-61k) / k
by (simp add: FF-def z-def k-minus-t)
finally have DD: log 2 (SucnV) /| k < FFkzy + (2 — ok-fun-61Fk) / k .

have RNkk > 0
by (metis RN-eq-0-iff <k>0> grol)
moreover have log 2 (SucnV) / k < fGG pxy +n
proof (cases © < 0.99) — a further case split that gives a lower bound for
gamma
case True
have i: Big-Closer-10-1 (min v 0.07) (nat [y * real k / (1 — 7)])
proof (intro Big-Closer-10-1-upward [OF big101])
show 1/101 < min v 0.07
using <k>0> <t<k> True by (simp add: ~y-def l-def x-def divide-simps)
with <y < 1> less-eq-real-def have k/100 < v x k / (1 — )
by (fastforce simp: field-simps)
then show nat [k/100] < nat [y xk / (1 — )]
using ceiling-mono nat-mono by blast
qed
have 122: FFkzy < ffzy + 1’
proof —
have FFkzy < flzy
using z01 y01
by (intro FF-le-f1) auto
moreover
have FF kxy < f2xy + ok-fun-10-1 vk / (k * In 2) if z > 3/4
unfolding ~-def
proof (intro FF-le-f2 that)
have vy = (1—-z) / (2—2)
using <0 < k» <t < k> by (simp add: l-def ~y-def z-def divide-simps)
then have v < 1/5
using that <z<1> by simp
show real | = real k — = * real k
using <t < k> by (simp add: l-def z-def)
show 0 <1/ (k + real 1)
using <t < k> l-def by auto
qed (use z01 y01 pO0-minl2 in auto)
moreover have ok-fun-10-1 v k / (k x In 2) < n’
using I ok-fun-10-1-le by (simp add: ok-fun-10-1-def)
ultimately show ?thesis
using 7' by (auto simp: ff-def)
qed
have log 2 (Suc nV) / k< ffzy +n' + (2 — ok-fun-61 k) / k
using 122 DD by linarith
also have ... < ffzy + n' + ok-fun-11-1 p k / k
by (simp add: ok-fun-11-1-def divide-right-mono)
finally have le-ff: log 2 (Suc nV) / k < ffzy +n' + ok-fun-11-1 u k / k.
then show ?thesis
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using 1 ok111-le le-ff le-GG unfolding n’'-def [fGG-def by linarith
next
case False — in this case, we can use the existing bound involving f1
have log 2 (SucnV) /| k < FFkzy + (2 — ok-fun-61Fk) / k
by (metis DD)
also have ... < flzy + (2 — ok-fun-61k) / k
using z01 y01 FF-le-f1 [of x y] by simp
also have ... < 1.9 + (2 — ok-fun-61k) / k
using z01 y01 by (smt (verit) False <y < 8/4> fl1-le-19)
also have ... < ffGG uzy + 7
by (smt (verit) PO-min.intro PO-min.ok-fun-11-1-def n'(1) n’-def divide-right-mono
HfGG-def field-sum-of-halves of-nat-0-le-iff ok111-le pO0-min(1) p0-min(2))
finally show ?thesis .
qed
ultimately have log 2 (RN kk) / k < ffGG pzy + n
using ge-RN <k>0>
by (smt (verit, best) Transcendental.log-mono divide-right-mono of-nat-0-less-iff
of-nat-mono)
also have ... < w
unfolding w-def
proof (intro cSup-upper2)
have y € {0..8/4}
using divide-right-mono [OF t, of k] <k>0» by (simp add: z-def y-def)
then show [fGG nzy +ne Ny. fGGuruzy+mn) {0.83/4}
by blast
next
show bdd-above (\y. fGG pxy +n) “{0..8/4})
by (simp add: bdd-above-ff-GG less-imp-le x01)
qed auto
finally show log 2 (real (RNkE)) / k < w .
next
show bdd-above ((\z. | |y€{0..3/4}. fGG pxzy +n) ‘{0..1})
by (auto intro: bdd-above-SUP-ff-GG)
qed
qed

theorem (in P0-min) From-11-1:
assumes p: 0 < ppu < 2/5and 0 <nn<1/12
and p0-min12: p0-min < 1/2 and big: Big-From-11-1 n p k
shows log 2 (RN kk) / k < (SUPz € {0..1}. SUPy € {0..83/4}. fGG nzy
+ )
proof —
have k>3
using big by (auto simp: Big-From-11-1-def)
define n where n = RNk k — 1
define V where V = {.<n}
define F where E = all-edges V
interpret Book-Basis V E
proof ged (auto simp: V-def E-def comp-sgraph.wellformed comp-sgraph.two-edges)
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have RN kk > 38
using <k>38> RN-3plus le-trans by blast
then have n < RN k k
by (simp add: n-def)
moreover have [simp]: nV = n
by (simp add: V-def)
ultimately obtain Red Blue
where Red-E: Red C E and Blue-def: Blue = E\Red
and no-Red-K: — (3 K. size-clique k K Red)
and no-Blue-K: = (3 K. size-clique k K Blue)
by (metis <n < RN k k> less-RN-Red-Blue)
have Blue-E: Blue C FE and disjnt-Red-Blue: disjnt Red Blue and Blue-eq: Blue
= all-edges V \ Red
using complete by (auto simp: Blue-def disjnt-iff E-def)
have nV > 1
using <RN k k > 3> <nV=n> n-def by linarith
with graph-size have graph-size > 0
by simp
then have graph-density E = 1
by (simp add: graph-density-def)
then have graph-density Red + graph-density Blue = 1
using graph-density-Un [OF disjnt-Red-Blue] by (simp add: Blue-def Red-E
Un-absorb1)
then consider (Red) graph-density Red > 1/2 | (Blue) graph-density Blue >
1/2
by force
then show %thesis
proof cases
case Red
show ?thesis
proof (intro From-11-1-Body)
next
show RN k k < Suc nV
by (simp add: n-def)
show A K. size-clique k K Red
using no-Red-K by blast
show A K. size-clique k K Blue
using no-Blue-K by blast
qed (use Red Red-E Blue-def assms in auto)
next
case Blue
show ?thesis
proof (intro From-11-1-Body)
show RN k k < Suc nV
by (simp add: n-def)
show Blue C E
by (simp add: Blue-E)
show Red = E \ Blue
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by (simp add: Blue-def Red-E double-diff)
show 3 K. size-clique k K Red
using no-Red-K by blast
show A K. size-clique k K Blue
using no-Blue-K by blast
qed (use Blue Red-E Blue-def assms in auto)
qed
qed

11.2 The monster calculation from appendix A

11.2.1 Observation A.1

lemma gg-increasing:

assumes z <z’ 0 <z 0 <y

shows ggzy < g9’y
proof (cases y=0)

case False

with assms show ?Zthesis

unfolding gg-eq by (intro add-mono mult-left-mono divide-right-mono Tran-

scendental .log-mono) auto
qed (auto simp: gg-eq assms)

Thanks to Manuel Eberl

lemma continuous-on-z-In: continuous-on {0..} (Az:real. x * In )
proof —
have continuous (at x within {0..}) (A\z. z * In x)
if z > 0 for z :: real
proof (cases © = 0)
case True
have continuous (at-right 0) (Az::real. z * In x)
unfolding continuous-within by real-asymp
thus Zthesis
using True by (simp add: at-within-Ici-at-right)
qed (auto intro!: continuous-intros)
thus ?thesis
by (simp add: continuous-on-eg-continuous-within)
qed

lemma continuous-on-f1: continuous-on {..1} (Az. f1 x y)
proof —
have §: (A\z:real. (1 — 1/(2—x)) *In (1 — 1/(2-2))) = (Az.  x In z) o (\z.
1 1/(2-2))
by (simp add: o-def)
have cont-zln: continuous-on {..1} (Az::real. (1 — 1/(2—2z)) *In (1 — 1/(2—1)))
unfolding §
proof (rule continuous-intros)
show continuous-on {..1::real} (A\x. 1 — 1/(2—x))
by (intro continuous-intros) auto
next
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show continuous-on ((Az:real. 1 — 1/(2—x)) ‘{..1}) (M\z. = * In z)
by (rule continuous-on-subset [OF continuous-on-z-In]) auto
qed
show ?thesis
apply (simp add: f1-def H-def log-def)
by (intro continuous-on-subset [OF cont-zln] continuous-intros) auto
qed

definition df! where dft = Az. log 2 (2 x ((1—z) / (2—1)))

lemma DfI [derivative-intros]:
assumes <1
shows ((A\z. fI = y) has-real-derivative df1 z) (at z)
proof —
have (2 —z % 2) = 2 * (1—x)
by simp
then have [simp]: log 2 (2 — z % 2) = log 2 (1—2x) + 1
using log-mult [of 2 1—z 2] assms by (smt (verit, best) log-eq-one)
show ?thesis
using assms
unfolding f1-def H-def df1-def
apply —
apply (rule derivative-eq-intros | simp)+
apply (simp add: log-divide divide-simps)
apply (simp add: algebra-simps)
done
qged

definition delta where delta = \uzreal. 1 / (In 2 x 40 x (2 — u)?)

lemma Df2:
assumes 1 /2<zx z<1
shows ((\z. f2 x y) has-real-derivative dfl = + delta ) (at )
using assms unfolding f2-def delta-def
apply —
apply (rule derivative-eq-intros Df1 | simp)+
apply (simp add: divide-simps power2-eq-square)
done

lemma antimono-on-ff:
assumes (0 < yy < I
shows antimono-on {1/2..1} (\z. ffz y)
proof —
have §: 1 — 1 / (2—2z) = (1—z) / (2—x) if 2<2 for z::7real
using that by (simp add: divide-simps)
have f1: flz' y < flzy
ifze{1/2.1} 2’ €{1/2.1} x <z'z' < 1 for z z":real
proof (rule DERIV-nonpos-imp-decreasing-open [OF <x < z'>, where f = \x.
f1zy])
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fix u :: real
assume z < u u < 2z’
with that show 3D. ((A\z. fI z y) has-real-derivative D) (at u) A D < 0
by — (rule exI conjl Df1 [unfolded df1-def] | simp)+
next
show continuous-on {x..x'} (\x. fl z y)
using that by (intro continuous-on-subset [OF continuous-on-f1]) auto
qed
have f1f2: f22' y < fl z y
ifee{1/2.1}y 2z’ e{1/2.1} 2 <z’'z<3/4{-~a'<3/4 for z z":real
using that
apply (simp add: f2-def)
by (smt (verit, best) divide-nonneg-nonneg f1 In-le-zero-iff pos-prod-lt that)

have f2: f2z'y < f2zy
ifA:ze{1/2..1}yz'e€{1/2..1} s < z’and B: =z < 3/4 for z z":real
proof (rule DERIV-nonpos-imp-decreasing-open [OF <x < z’> , where f = Az.
f2 x y))
fix u :: real
assume u: t < v u < z’
have ((Az. f2 z y) has-real-derivative df1 u + delta u) (at u)
using u that by (intro Df2) auto
moreover have dff u + delta u < 0
proof —
have dff (1/2) < —1/2
unfolding df1-def by (approzimation 20)
moreover have dfl v < df1 (1/2)
using u that unfolding df1-def
by (intro Transcendental.log-mono) (auto simp: divide-simps)
moreover have delta 1 < 0.0/
unfolding delta-def by (approzimation 4)
moreover have delta v < delta 1
using u that by (auto simp: delta-def divide-simps)
ultimately show Zthesis
by auto
qed
ultimately show 3D. ((Az. f2 z y) has-real-derivative D) (at u) A D < 0
by blast
next
show continuous-on {z..z'} (Az. 2z y)
unfolding f2-def
using that by (intro continuous-on-subset [OF continuous-on-f1] continuous-intros)
auto
qed
show ?thesis
using f1 f1f2 f2 by (simp add: monotone-on-def ff-def)
ged
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11.2.2 Claims A.2-A .4
Called simply z in the paper, but are you kidding me?
definition z-of = Ay::real. 3xy/5 + 0.5454

lemma z-of: z-of € {0..3/4} — {1/2..1}
by (simp add: z-of-def)

definition y-of = A\z:real. 5 x /3 — 0.909

lemma y-of-z-of [simp]: y-of (z-of y) =y
by (simp add: z-of-def y-of-def add-divide-distrib)

lemma z-of-y-of [simp]: z-of (y-of z) = x
by (simp add: z-of-def y-of-def divide-simps)

lemma Df1-y [derivative-intros]:
assumes <1
shows ((A\z. fI x (y-of z)) has-real-derivative 5/3 + df1 z) (at )
proof —
have (2 —z % 2) = 2 x (1—x)
by simp
then have [simp]: log 2 (2 — z % 2) =log 2 (1—1z) + 1
using log-mult [of 2 1—x 2] assms by (smt (verit, best) log-eq-one)
show ?thesis
using assms
unfolding f1-def y-of-def H-def df1-def
apply —
apply (rule derivative-eq-intros refl | simp)+
apply (simp add: log-divide divide-simps)
apply (simp add: algebra-simps)
done
qed

lemma Df2-y [derivative-intros]:
assumes 1/2<z <1
shows ((A\z. f2 z (y-of x)) has-real-derivative 5 /8 + dfl x + delta z) (at z)
using assms unfolding f2-def delta-def
apply —
apply (rule derivative-eq-intros Df1 | simp)+
apply (simp add: divide-simps power2-eq-square)
done

definition Dg-z = \y. 3 xlog 2 (5/3) / 5 + log 2 ((2727 + y = 8000) / (y *

12500))
— 2727 | (In 2 = (2727 + y = 8000))

lemma Dg-z [derivative-intros]:
assumes y € {0<..<8/4}
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shows ((\y. gg (z-of y) y) has-real-derivative Dg-z y) (at y)
using assms

unfolding z-of-def gg-def GG-def Dg-z-def

apply —

apply (rule derivative-eq-intros refl | simp)+

apply (simp add: field-simps)

done

Claim A2 is difficult because it comes *real close™: max value — 1.999281,
when y = 0.4339. There is no simple closed form for the maximum point
(where the derivative goes to 0).

Due to the singularity at zero, we need to cover the zero case analytically,
but at least interval arithmetic covers the maximum point

lemma A2:
assumes y € {0..3/4}
shows gg (z-of y) y < 2 — 1/2"°11
proof —
have ?thesis if y € {0..1/10}
proof —
have gg (z-of y) y < gg (z-of (1/10)) (1/10)
proof (rule DERIV-nonneg-imp-increasing-open [of y 1/10])
fix y' :: real
assume y" y < y'y' < 1/10
then have y'>0
using that by auto
show 3D. ((Au. gg (z-of u) u) has-real-derivative D) (at y') A 0 < D
proof (intro exl conjl)
show ((Au. gg (z-of u) u) has-real-derivative Dg-x y') (at y’)
using y’ that by (intro derivative-eg-intros) auto
next
define Num where Num = 3 x log 2 (5/3) / & = (In 2 = (2727 + y'
8000)) + log 2 (2727 + y' = 8000) / (y' * 12500)) * (In 2 % (2727 + y' * 8000))
— 2727
have A: 835.81 < 3 xlog 2 (5/8) / 5 = In 2 x 2727
by (approzimation 25)
have B: 2451.9 < 8 xlog 2 (5/3) / 5 = In 2 x 8000
by (approzimation 25)
have C: Dg-z y’ = Num / (In 2 x (2727 + y' * 8000))
using <y">0> by (simp add: Dg-z-def Num-def add-divide-distrib diff-divide-distrib)
have 0 < —1891.19 + log 2 (2727 | 1250) * (In 2 = (2727))
by (approzimation 6)
also have ... < —1891.19 + 2451.9 x y' + log 2 ((2727 + y' = 8000) /
(y' * 12500)) % (In 2 % (2727 + y' * 8000))
using y’' <0 < y”
by (intro add-mono mult-mono Transcendental.log-mono frac-le order.refl)

auto
also have ... = 835.81 + 2451.9 x y' + log 2 ((2727 + y' = 8000) / (y’
x 12500)) * (In 2 x (2727 + y' * 8000))
— 2727
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by simp
also have ... < Num
using A mult-right-mono [OF B, of y'] <y'>0>
unfolding Num-def ring-distribs
by (intro add-mono diff-mono order.refl) (auto simp: mult-ac)
finally have Num > 0 .
with C show 0 < Dg-z y’
using <0 < y’> by auto
qed
next
let 9f = X\x. x = log 2 ((16*x/5 + 2727/2500) | (5*x))
have f{: continuous-on {0..} ?f
proof —
have continuous (at z within {0..}) ?f
if x > 0 for z :: real
proof (cases z = 0)
case True
have continuous (at-right 0) ?f
unfolding continuous-within by real-asymp
thus ?thesis
using True by (simp add: at-within-Ici-at-right)
qed (use that in <auto intro!: continuous-intros>)
thus ?thesis
by (simp add: continuous-on-eg-continuous-within)
qed
show continuous-on {y..1/10} (Ay. g9 (z-of y) y)
unfolding gg-eq z-of-def using that
by (force intro: continuous-on-subset [OF t] continuous-intros)
qed (use that in auto)
also have ... <2 — 1/2°11
unfolding gg-eq x-of-def by (approxzimation 10)
finally show ?thesis .
qed
moreover
have ?thesis if y € {1/10 .. 3/4}
using that unfolding gg-eq z-of-def
by (approzimation 24 splitting: y = 12) — many thanks to Fabian Immler
ultimately show ?thesis

by (meson assms atLeastAtMost-iff linear)
qed

lemma A3:
assumes y € {0..0.341}
shows f1 (z-of y) y < 2 — 1/2°11
proof —
define D where D = \z. 5/3 + dfl
define I where I = {0.545/ .. 3/4::real}

define ¢ where z = z-of y
then have yeq: y = y-of «
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by (metis y-of-z-of )
have z € {z-0f 0 .. z-0f 0.341}
using assms by (simp add: z-def z-of-def)
then have z: z € T
by (simp add: z-of-def I-def)
have D: ((Az. fI x (y-of ©)) has-real-derivative D z) (at z) if x € I for x
using that Df1-y by (force simp: D-def I-def)
have Dgt0: Dz > 0 if x € I for x
using that unfolding D-def df1-def I-def by (approzimation 10)
have f1 z y = f1 z (y-of z)
by (simp add: yeq)
also have ... < fI (8/4) (y-of (3/4))
using z Dgt0
by (force simp: I-def intro!: D DERIV-nonneg-imp-nondecreasing [where f =
Az. f1z (y-of z)])
also have ... < 1.99
by (simp add: f1-def H-def y-of-def) (approximation 50)
also have ... < 2 — 1/2°11
by (approzimation 50)
finally show ?thesis
using z-def by auto
qged

This one also comes close: max value = 1.999271, when y = 0.4526. The
specified upper bound is 1.99951

lemma A/:
assumes y € {0.841..3/4}
shows f2 (z-of y) y < 2 — 1/2°11
unfolding f2-def f1-def x-of-def H-def
using assms by (approzimation 18 splitting: y = 13)

context P0-min
begin

The truly horrible Lemma 12.3

lemma 1235:
assumes § < [ / 2°11
shows (SUP z € {0..1}. SUP y € {0..3/4}. fGG (2/5) z y) < 24
proof —
have min (ffzy) (99zy) <2 — 1/2°11 ifz € {0..1} y € {0..3/4} for z y
proof (cases x < z-of y)
case True
with that have gg z y < gg (z-of y) y
by (intro gg-increasing) auto
with A2 that show ?thesis
by fastforce
next
case Fualse
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with that have ffzy < ff (z-of y) y
by (intro monotone-onD [OF antimono-on-ff]) (auto simp: z-of-def)
also have ... <2 — 1/2°11
proof (cases z-of y < 8/4)
case True
with that have fI (z-ofy) y < 2 — 1/2°11
by (intro A3) (auto simp: z-of-def)
then show ?thesis
using True ff-def by presburger
next
case False
with that have f2 (z-of y) y < 2 — 1/2"°11
by (intro A4) (auto simp: z-of-def)
then show ?thesis
using Fulse ff-def by presburger
qed
finally show ?thesis
by linarith
qed
moreover have 2 — /2711 < 2§
using assms by auto
ultimately show ?thesis
by (fastforce simp: [fGG-def gg-def intro!: c¢cSUP-least)
qed

end

11.3 Concluding the proof

we subtract a tiny bit, as we seem to need this gap

definition delta’::real where delta’ =1 / 2711 — 1 /] 2718

lemma Auz-1-1:
assumes p0-minl2: p0-min < 1/2
shows V>°k. log 2 (RN kk) / k < 2 — delta’
proof —
define p0-min::real where p0-min = 1/2
interpret P0-min p0-min
proof qed (auto simp: p0-min-def)
define 0::real where 6 = 1 / 2711
define 7::real where n =1/ 2°18
have n: 0 <nn<1/12
by (auto simp: n-def)
define p::real where = 2/5
have V*°k. Big-From-11-1 n p k
unfolding p-def using n by (intro Big-From-11-1) auto
moreover have log 2 (real (RN k k)) / k < 2—6 + n if Big-From-11-1 n p k
for k

proof —
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have x: (| |ye{0..3/4}. fGG pxy +n) = (Jye{0..83/4}. fGG pzy) +n
if 2<1 for z
using bdd-above-ff-GG [OF that, of 3/4 p 0]
by (simp add: add.commute [of - 1] Sup-add-eq)
have log 2 (RN kk) |k < (SUPz € {0..1}. SUPy € {0..3/4}. fGG pzy
+ 1)
using that p0-minl2 n u-def
by (intro From-11-1) (auto simp: p0-min-def )
also have ... < (SUPxz € {0..1}. (SUPy € {0..8/4}. fGG p zy) + n)
proof (intro ¢SUP-subset-mono bdd-above.I2 [where M = /+n)])
fix x :: real
assume z: z € {0..1}
have (| |y€{0..5/4}. fGG pzy +n) <4 + 1
using bdd-above-ff-GG ff-GG-bound z by (simp add: cSup-le-iff)
with * z show (| |y€{0..3/4}. fGG pzy) +n <4 +1n

by simp
qed (use * in auto)
also have ... = (SUPz € {0..1}. SUP y € {0..83/4}. fGG pzy) + n

using bdd-above-SUP-ff-GG [of /4 1 0]
by (simp add: add.commute [of - n] Sup-add-eq)
also have ... < 2-0 + 7
using 123 [of 1 / 2°11]
unfolding §-def f[fGG-def by (auto simp: d-def [fGG-def p-def)
finally show ?thesis .
qed
ultimately have V>°k. log 2 (RN kk) / k < 2-6 + ¢
by (metis (lifting) eventually-mono)
then show ?thesis
by (simp add: -def n-def delta’-def)
qed

Main theorem 1.1: the exponent is approximately 3.9987

theorem Main-1-1:
obtains e::real where e>0 V>°k. RNk k < ({—¢) "k
proof
let % = 0.00134 ::real
have V>°k. k>0 A log 2 (RN kk) / k < 2 — delta’
unfolding eventually-conj-iff using Auz-1-1 eventually-gt-at-top by blast
then have V>°k. RN k k < (2 powr (2—delta’)) ~ k
proof (eventually-elim)
case (elim k)
then have log 2 (RN k k) < (2—delta’) x k
by (meson of-nat-0-less-iff pos-divide-le-eq)
then have RN k k < 2 powr ((2—delta’) = k)
by (smt (verit, best) Transcendental.log-le-iff powr-ge-zero)
then show RN k k < (2 powr (2—delta’)) ~ k
by (simp add: mult.commute powr-power)
qed
moreover have 2 powr (2—delta’) < 4 — %
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unfolding delta’-def by (approximation 25)
ultimately show V>°k. real (RN kk) < (4—%) "k
by (smt (verit) power-mono powr-ge-zero eventually-mono)
qed auto

end
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