
Descartes’ Rule of Signs

Manuel Eberl

March 17, 2025

Abstract
In this work, we formally proved Descartes Rule of Signs, which re-

lates the number of positive real roots of a polynomial with the number
of sign changes in its coefficient list.

Our proof follows the simple inductive proof given by Arthan [1],
which was also used by John Harrison in his HOL Light formalisation.
We proved most of the lemmas for arbitrary linearly-ordered integrity
domains (e.g. integers, rationals, reals); the main result, however,
requires the intermediate value theorem and was therefore only proven
for real polynomials.

Contents
1 Sign changes and Descartes’ Rule of Signs 1

1.1 Polynomials . 2
1.2 List of partial sums . 3
1.3 Sign changes in a list . 4
1.4 Arthan’s lemma . 7
1.5 Roots of a polynomial with a certain property 11
1.6 Coefficient sign changes of a polynomial 13
1.7 Proof of Descartes’ sign rule 15

1 Sign changes and Descartes’ Rule of Signs
theory Descartes-Sign-Rule
imports

Complex-Main
HOL−Computational-Algebra.Polynomial

begin

lemma op-plus-0 : ((+) (0 :: ′a :: monoid-add)) = id
by auto

lemma filter-dropWhile:
filter (λx. ¬P x) (dropWhile P xs) = filter (λx. ¬P x) xs
by (induction xs) simp-all

1

1.1 Polynomials

A real polynomial whose leading and constant coefficients have opposite
non-zero signs must have a positive root.
lemma pos-root-exI :

assumes poly p 0 ∗ lead-coeff p < (0 :: real)
obtains x where x > 0 poly p x = 0

proof −
have P: ∃ x>0 . poly p x = (0 ::real) if lead-coeff p > 0 poly p 0 < 0 for p
proof −

note that(1)
also from poly-pinfty-gt-lc[OF ‹lead-coeff p > 0 ›] obtain x0

where
∧

x. x ≥ x0 =⇒ poly p x ≥ lead-coeff p by auto
hence poly p (max x0 1) ≥ lead-coeff p by auto
finally have poly p (max x0 1) > 0 .
with that have ∃ x. x > 0 ∧ x < max x0 1 ∧ poly p x = 0

by (intro poly-IVT mult-neg-pos) auto
thus ∃ x>0 . poly p x = 0 by auto

qed

show ?thesis
proof (cases lead-coeff p > 0)

case True
with assms have poly p 0 < 0

by (auto simp: mult-less-0-iff)
from P[OF True this] that show ?thesis

by blast
next

case False
from False assms have poly (−p) 0 < 0

by (auto simp: mult-less-0-iff)
moreover from assms have p 6= 0

by auto
with False have lead-coeff (−p) > 0

by (cases rule: linorder-cases[of lead-coeff p 0])
(simp-all add:)

ultimately show ?thesis using that P[of −p] by auto
qed

qed

Substitute X with aX in a polynomial p(X). This turns all the X−a factors
in p into factors of the form X − 1.
definition reduce-root where

reduce-root a p = pcompose p [:0 , a:]

lemma reduce-root-pCons:
reduce-root a (pCons c p) = pCons c (smult a (reduce-root a p))
by (simp add: reduce-root-def pcompose-pCons)

2

lemma reduce-root-nonzero [simp]:
a 6= 0 =⇒ p 6= 0 =⇒ reduce-root a p 6= (0 :: ′a :: idom poly)
unfolding reduce-root-def using pcompose-eq-0 [of p [:0 , a:]]
by auto

1.2 List of partial sums

We first define, for a given list, the list of accumulated partial sums from
left to right: the list psums xs has as its i-th entry

∑i
j=0 xsi.

fun psums where
psums [] = []
| psums [x] = [x]
| psums (x#y#xs) = x # psums ((x+y) # xs)

lemma length-psums [simp]: length (psums xs) = length xs
by (induction xs rule: psums.induct) simp-all

lemma psums-Cons:
psums (x#xs) = (x :: ′a :: semigroup-add) # map ((+) x) (psums xs)
by (induction xs rule: psums.induct) (simp-all add: algebra-simps)

lemma last-psums:
(xs :: ′a :: monoid-add list) 6= [] =⇒ last (psums xs) = sum-list xs
by (induction xs rule: psums.induct)

(auto simp add: add.assoc [symmetric] psums-Cons o-def)

lemma psums-0-Cons [simp]:
psums (0#xs :: ′a :: monoid-add list) = 0 # psums xs
by (induction xs rule: psums.induct) (simp-all add: algebra-simps)

lemma map-uminus-psums:
fixes xs :: ′a :: ab-group-add list
shows map uminus (psums xs) = psums (map uminus xs)
by (induction xs rule: psums.induct) (simp-all)

lemma psums-replicate-0-append:
psums (replicate n (0 :: ′a :: monoid-add) @ xs) =

replicate n 0 @ psums xs
by (induction n) (simp-all add: psums-Cons op-plus-0)

lemma psums-nth: n < length xs =⇒ psums xs ! n = (
∑

i≤n. xs ! i)
proof (induction xs arbitrary: n rule: psums.induct[case-names Nil sng rec])

case (rec x y xs n)
show ?case
proof (cases n)

case (Suc m)
from Suc have psums (x # y # xs) ! n = psums ((x+y) # xs) ! m by simp
also from rec.prems Suc have . . . = (

∑
i≤m. ((x+y) # xs) ! i)

by (intro rec.IH) simp-all

3

also have . . . = x + y + (
∑

i=1 ..m. (y#xs) ! i)
by (auto simp: atLeast0AtMost [symmetric] sum.atLeast-Suc-atMost[of 0])

also have (
∑

i=1 ..m. (y#xs) ! i) = (
∑

i=Suc 1 ..Suc m. (x#y#xs) ! i)
by (subst sum.shift-bounds-cl-Suc-ivl) simp

also from Suc have x + y + . . . = (
∑

i≤n. (x#y#xs) ! i)
by (auto simp: atLeast0AtMost [symmetric] sum.atLeast-Suc-atMost add-ac)

finally show ?thesis .
qed simp

qed simp-all

1.3 Sign changes in a list

Next, we define the number of sign changes in a sequence. Intuitively, this
is the number of times that, when passing through the list, a sign change
between one element and the next element occurs (while ignoring all zero
entries).
We implement this by filtering all zeros from the list of signs, removing all
adjacent equal elements and taking the length of the resulting list minus
one.
definition sign-changes :: (′a :: {sgn,zero} list) ⇒ nat where

sign-changes xs = length (remdups-adj (filter (λx. x 6= 0) (map sgn xs))) − 1

lemma sign-changes-Nil [simp]: sign-changes [] = 0
by (simp add: sign-changes-def)

lemma sign-changes-singleton [simp]: sign-changes [x] = 0
by (simp add: sign-changes-def)

lemma sign-changes-cong:
assumes map sgn xs = map sgn ys
shows sign-changes xs = sign-changes ys
using assms unfolding sign-changes-def by simp

lemma sign-changes-Cons-ge: sign-changes (x # xs) ≥ sign-changes xs
unfolding sign-changes-def by (simp add: remdups-adj-Cons split: list.split)

lemma sign-changes-Cons-Cons-different:
fixes x y :: ′a :: linordered-idom
assumes x ∗ y < 0
shows sign-changes (x # y # xs) = 1 + sign-changes (y # xs)

proof −
from assms have sgn x = −1 ∧ sgn y = 1 ∨ sgn x = 1 ∧ sgn y = −1

by (auto simp: mult-less-0-iff)
thus ?thesis by (fastforce simp: sign-changes-def)

qed

lemma sign-changes-Cons-Cons-same:
fixes x y :: ′a :: linordered-idom

4

shows x ∗ y > 0 =⇒ sign-changes (x # y # xs) = sign-changes (y # xs)
by (subst (asm) zero-less-mult-iff) (fastforce simp: sign-changes-def)

lemma sign-changes-0-Cons [simp]:
sign-changes (0 # xs :: ′a :: idom-abs-sgn list) = sign-changes xs
by (simp add: sign-changes-def)

lemma sign-changes-two:
fixes x y :: ′a :: linordered-idom
shows sign-changes [x,y] =

(if x > 0 ∧ y < 0 ∨ x < 0 ∧ y > 0 then 1 else 0)
by (auto simp: sgn-if sign-changes-def mult-less-0-iff)

lemma sign-changes-induct [case-names nil sing zero nonzero]:
assumes P []

∧
x. P [x]

∧
xs. P xs =⇒ P (0#xs)∧

x y xs. x 6= 0 =⇒ P ((x + y) # xs) =⇒ P (x # y # xs)
shows P xs

proof (induction length xs arbitrary: xs rule: less-induct)
case (less xs)
show ?case
proof (cases xs rule: psums.cases)

fix x y xs ′ assume xs = x # y # xs ′

with assms less show ?thesis by (cases x = 0) auto
qed (insert less assms, auto)

qed

lemma sign-changes-filter :
fixes xs :: ′a :: linordered-idom list
shows sign-changes (filter (λx. x 6= 0) xs) = sign-changes xs
by (simp add: sign-changes-def filter-map o-def sgn-0-0)

lemma sign-changes-Cons-Cons-0 :
fixes xs :: ′a :: linordered-idom list
shows sign-changes (x # 0 # xs) = sign-changes (x # xs)
by (subst (1 2) sign-changes-filter [symmetric]) simp-all

lemma sign-changes-uminus:
fixes xs :: ′a :: linordered-idom list
shows sign-changes (map uminus xs) = sign-changes xs

proof −
have sign-changes (map uminus xs) =

length (remdups-adj [x←map sgn (map uminus xs) . x 6= 0]) − 1
unfolding sign-changes-def ..

also have map sgn (map uminus xs) = map uminus (map sgn xs)
by (auto simp: sgn-minus)

also have remdups-adj (filter (λx. x 6= 0) . . .) =
map uminus (remdups-adj (filter (λx. x 6= 0) (map sgn xs)))

by (subst filter-map, subst remdups-adj-map-injective)
(simp-all add: o-def)

5

also have length . . . − 1 = sign-changes xs by (simp add: sign-changes-def)
finally show ?thesis .

qed

lemma sign-changes-replicate: sign-changes (replicate n x) = 0
by (simp add: sign-changes-def remdups-adj-replicate filter-replicate)

lemma sign-changes-decompose:
assumes x 6= (0 :: ′a :: linordered-idom)
shows sign-changes (xs @ x # ys) =

sign-changes (xs @ [x]) + sign-changes (x # ys)
proof −

have sign-changes (xs @ x # ys) =
length (remdups-adj ([x←map sgn xs . x 6= 0] @

sgn x # [x←map sgn ys . x 6= 0])) − 1
by (simp add: sgn-0-0 assms sign-changes-def)

also have . . . = sign-changes (xs @ [x]) + sign-changes (x # ys)
by (subst remdups-adj-append) (simp add: sign-changes-def assms sgn-0-0)

finally show ?thesis .
qed

If the first and the last entry of a list are non-zero, its number of sign changes
is even if and only if the first and the last element have the same sign. This
will be important later to establish the base case of Descartes’ Rule. (if
there are no positive roots, the number of sign changes is even)
lemma even-sign-changes-iff :

assumes xs 6= ([] :: ′a :: linordered-idom list) hd xs 6= 0 last xs 6= 0
shows even (sign-changes xs) ←→ sgn (hd xs) = sgn (last xs)

using assms
proof (induction length xs arbitrary: xs rule: less-induct)

case (less xs)
show ?case
proof (cases xs)

case (Cons x xs ′)
note x = this
show ?thesis
proof (cases xs ′)

case (Cons y xs ′′)
note y = this
show ?thesis
proof (rule linorder-cases[of x∗y 0])

assume xy: x∗y = 0
with x y less(1 ,3 ,4) show ?thesis by (auto simp: sign-changes-Cons-Cons-0)
next

assume xy: x∗y > 0
with less(1 ,4) show ?thesis

by (auto simp add: x y sign-changes-Cons-Cons-same zero-less-mult-iff)
next

assume xy: x∗y < 0

6

moreover from xy have sgn x = − sgn y by (auto simp: mult-less-0-iff)
moreover have even (sign-changes (y # xs ′′)) ←→

sgn (hd (y # xs ′′)) = sgn (last (y # xs ′′))
using xy less.prems by (intro less) (auto simp: x y)

moreover from xy less.prems
have sgn y = sgn (last xs) ←→ −sgn y 6= sgn (last xs)
by (auto simp: sgn-if)

ultimately show ?thesis by (auto simp: sign-changes-Cons-Cons-different
x y)

qed
qed (auto simp: x)

qed (insert less.prems, simp-all)
qed

1.4 Arthan’s lemma
context
begin

We first prove an auxiliary lemma that allows us to assume w.l.o.g. that the
first element of the list is non-negative, similarly to what Arthan does in his
proof.
private lemma arthan-wlog [consumes 3 , case-names nonneg lift]:

fixes xs :: ′a :: linordered-idom list
assumes xs 6= [] last xs 6= 0 x + y + sum-list xs = 0
assumes

∧
x y xs. xs 6= [] =⇒ last xs 6= 0 =⇒

x + y + sum-list xs = 0 =⇒ x ≥ 0 =⇒ P x y xs
assumes

∧
x y xs. xs 6= [] =⇒ P x y xs =⇒ P (−x) (−y) (map uminus xs)

shows P x y xs
proof (cases x ≥ 0)

assume x: ¬(x ≥ 0)
from assms have map uminus xs 6= [] by simp
moreover from x assms(1 ,2 ,3) haveP (−x) (−y) (map uminus xs)

using uminus-sum-list-map[of λx. x xs, symmetric]
by (intro assms) (auto simp: last-map algebra-simps o-def neg-eq-iff-add-eq-0)

ultimately have P (− (−x)) (− (−y)) (map uminus (map uminus xs)) by (rule
assms)

thus ?thesis by (simp add: o-def)
qed (simp-all add: assms)

We now show that the α and β in Arthan’s proof have the necessary prop-
erties: their difference is non-negative and even.
private lemma arthan-aux1 :

fixes xs :: ′a :: {linordered-idom} list
assumes xs 6= [] last xs 6= 0 x + y + sum-list xs = 0
defines v ≡ λxs. int (sign-changes xs)
shows v (x # y # xs) − v ((x + y) # xs) ≥

v (psums (x # y # xs)) − v (psums ((x + y) # xs)) ∧
even (v (x # y # xs) − v ((x + y) # xs) −

7

(v (psums (x # y # xs)) − v (psums ((x + y) # xs))))
using assms(1−3)
proof (induction rule: arthan-wlog)
have uminus-v: v (map uminus xs) = v xs for xs by (simp add: v-def sign-changes-uminus)

case (lift x y xs)
note lift(2)
also have v (psums (x#y#xs)) − v (psums ((x+y)#xs)) =

v (psums (− x # − y # map uminus xs)) −
v (psums ((− x + − y) # map uminus xs))

by (subst (1 2) uminus-v [symmetric]) (simp add: map-uminus-psums)
also have v (x # y # xs) − v ((x + y) # xs) =

v (−x # −y # map uminus xs) − v ((−x + −y) # map uminus xs)
by (subst (1 2) uminus-v [symmetric]) simp

finally show ?case .
next

case (nonneg x y xs)
define p where p = (LEAST n. xs ! n 6= 0)
define xs1 :: ′a list where xs1 = replicate p 0
define xs2 where xs2 = drop (Suc p) xs
from nonneg have xs ! (length xs − 1) 6= 0 by (simp add: last-conv-nth)
hence p-nz: xs ! p 6= 0 unfolding p-def by (rule LeastI)
{

fix q assume q < p hence xs ! q = 0
using Least-le[of λn. xs ! n 6= 0 q] unfolding p-def by force

} note less-p-zero = this
from Least-le[of λn. xs ! n 6= 0 length xs − 1] nonneg

have p ≤ length xs − 1 unfolding p-def by (auto simp: last-conv-nth)
with nonneg have p-less-length: p < length xs by (cases xs) simp-all

from p-less-length less-p-zero have take p xs = replicate p 0
by (subst list-eq-iff-nth-eq) auto

with p-less-length have xs-decompose: xs = xs1 @ xs ! p # xs2
unfolding xs1-def xs2-def
by (subst append-take-drop-id [of p, symmetric],

subst Cons-nth-drop-Suc) simp-all

have v-decompose: v (xs ′ @ xs) = v (xs ′ @ [xs ! p]) + v (xs ! p # xs2) for xs ′

proof −
have xs ′ @ xs = (xs ′ @ xs1) @ xs ! p # xs2 by (subst xs-decompose) simp
also have v . . . = v (xs ′ @ [xs ! p]) + v (xs ! p # xs2) unfolding v-def

by (subst sign-changes-decompose[OF p-nz],
subst (1 2 3 4) sign-changes-filter [symmetric]) (simp-all add: xs1-def)

finally show ?thesis .
qed

have psums-decompose: psums xs = replicate p 0 @ psums (xs!p # xs2)
by (subst xs-decompose) (simp add: xs1-def psums-replicate-0-append)

have v-psums-decompose: sign-changes (xs ′ @ psums xs) = sign-changes (xs ′ @

8

[xs!p]) +
sign-changes (xs!p # map ((+) (xs!p)) (psums xs2)) for xs ′

proof −
fix xs ′ :: ′a list
have sign-changes (xs ′ @ psums xs) =

sign-changes (xs ′ @ xs ! p # map ((+) (xs!p)) (psums xs2))
by (subst psums-decompose, subst (1 2) sign-changes-filter [symmetric])

(simp-all add: psums-Cons)
also have . . . = sign-changes (xs ′ @ [xs!p]) +

sign-changes (xs!p # map ((+) (xs!p)) (psums xs2))
by (subst sign-changes-decompose[OF p-nz]) simp-all

finally show sign-changes (xs ′ @ psums xs) =
qed

show ?case
proof (cases x > 0)

assume ¬(x > 0)
with nonneg show ?thesis by (auto simp: v-def)

next
assume x: x > 0
show ?thesis
proof (rule linorder-cases[of y 0])

assume y: y > 0
from x and this have xy: x + y > 0 by (rule add-pos-pos)
with y have sign-changes ((x + y) # xs) = sign-changes (y # xs)

by (intro sign-changes-cong) auto
moreover have sign-changes (x # psums ((x + y) # xs)) =

sign-changes (psums ((x+y) # xs))
using x xy by (subst (1 2) psums-Cons) (simp-all add: sign-changes-Cons-Cons-same)
ultimately show ?thesis using x y

by (simp add: v-def algebra-simps sign-changes-Cons-Cons-same)
next

assume y: y = 0
with x show ?thesis

by (simp add: v-def sign-changes-Cons-Cons-0 psums-Cons
o-def sign-changes-Cons-Cons-same)

next
assume y: y < 0
with x have different: x ∗ y < 0 by (rule mult-pos-neg)
show ?thesis
proof (rule linorder-cases[of x + y 0])

assume xy: x + y < 0
with x have different ′: x ∗ (x + y) < 0 by (rule mult-pos-neg)
have (λt. t + (x + y)) = ((+) (x + y)) by (rule ext) simp
moreover from y xy have sign-changes ((x+y) # xs) = sign-changes (y

xs)
by (intro sign-changes-cong) auto

ultimately show ?thesis using xy different different ′ y
by (simp add: v-def sign-changes-Cons-Cons-different psums-Cons o-def

9

add-ac)
next

assume xy: x + y = 0
show ?case
proof (cases xs ! p > 0)

assume p: xs ! p > 0
from p y have different ′: y ∗ xs ! p < 0 by (intro mult-neg-pos)

with v-decompose[of [x, y]] v-decompose[of [x+y]] x xy p different different ′

v-psums-decompose[of [x]] v-psums-decompose[of []]
show ?thesis by (auto simp add: algebra-simps v-def sign-changes-Cons-Cons-0

sign-changes-Cons-Cons-different sign-changes-Cons-Cons-same)
next

assume ¬(xs ! p > 0)
with p-nz have p: xs ! p < 0 by simp
from p y have same: y ∗ xs ! p > 0 by (intro mult-neg-neg)
from p x have different ′: x ∗ xs ! p < 0 by (intro mult-pos-neg)
from v-decompose[of [x, y]] v-decompose[of [x+y]] xy different different ′

same
v-psums-decompose[of [x]] v-psums-decompose[of []]

show ?thesis by (auto simp add: algebra-simps v-def sign-changes-Cons-Cons-0

sign-changes-Cons-Cons-different sign-changes-Cons-Cons-same)
qed

next
assume xy: x + y > 0
from x and this have same: x ∗ (x + y) > 0 by (rule mult-pos-pos)
show ?case
proof (cases xs ! p > 0)

assume p: xs ! p > 0
from xy p have same ′: (x + y) ∗ xs ! p > 0 by (intro mult-pos-pos)
from p y have different ′: y ∗ xs ! p < 0 by (intro mult-neg-pos)
have (λt. t + (x + y)) = ((+) (x + y)) by (rule ext) simp

with v-decompose[of [x, y]] v-decompose[of [x+y]] different different ′ same
same ′

show ?thesis by (auto simp add: algebra-simps v-def psums-Cons o-def
sign-changes-Cons-Cons-different sign-changes-Cons-Cons-same)

next
assume ¬(xs ! p > 0)
with p-nz have p: xs ! p < 0 by simp
from xy p have different ′: (x + y) ∗ xs ! p < 0 by (rule mult-pos-neg)
from y p have same ′: y ∗ xs ! p > 0 by (rule mult-neg-neg)
have (λt. t + (x + y)) = ((+) (x + y)) by (rule ext) simp

with v-decompose[of [x, y]] v-decompose[of [x+y]] different different ′ same
same ′

show ?thesis by (auto simp add: algebra-simps v-def psums-Cons o-def
sign-changes-Cons-Cons-different sign-changes-Cons-Cons-same)

qed

10

qed
qed

qed
qed

Now we can prove the main lemma of the proof by induction over the list
with our specialised induction rule for sign-changes. It states that for a
non-empty list whose last element is non-zero and whose sum is zero, the
difference of the sign changes in the list and in the list of its partial sums is
odd and positive.
lemma arthan:

fixes xs :: ′a :: linordered-idom list
assumes xs 6= [] last xs 6= 0 sum-list xs = 0
shows sign-changes xs > sign-changes (psums xs) ∧

odd (sign-changes xs − sign-changes (psums xs))
using assms
proof (induction xs rule: sign-changes-induct)

case (nonzero x y xs)
show ?case
proof (cases xs = [])

case False
define α where α = int (sign-changes (x # y # xs)) − int (sign-changes ((x

+ y) # xs))
define β where β = int (sign-changes (psums (x # y # xs))) − int (sign-changes

(psums ((x+y) # xs)))
from nonzero False have α ≥ β ∧ even (α − β) unfolding α-def β-def

by (intro arthan-aux1) auto
from False and nonzero.prems have

sign-changes (psums ((x + y) # xs)) < sign-changes ((x + y) # xs) ∧
odd (sign-changes ((x + y) # xs) − sign-changes (psums ((x + y) # xs)))

by (intro nonzero.IH) (auto simp: add.assoc)
with arthan-aux1 [of xs x y] nonzero(4 ,5) False(1) show ?thesis by force

qed (insert nonzero.prems, auto split: if-split-asm simp: sign-changes-two add-eq-0-iff)
qed (auto split: if-split-asm simp: add-eq-0-iff)

end

1.5 Roots of a polynomial with a certain property

The set of roots of a polynomial p that fulfil a given property P:
definition roots-with P p = {x. P x ∧ poly p x = 0}

The number of roots of a polynomial p with a given property P, where
multiple roots are counted multiple times.
definition count-roots-with P p = (

∑
x∈roots-with P p. order x p)

abbreviation pos-roots ≡ roots-with (λx. x > 0)
abbreviation count-pos-roots ≡ count-roots-with (λx. x > 0)

11

lemma finite-roots-with [simp]:
(p :: ′a :: linordered-idom poly) 6= 0 =⇒ finite (roots-with P p)
by (rule finite-subset[OF - poly-roots-finite[of p]]) (auto simp: roots-with-def)

lemma count-roots-with-times-root:
assumes p 6= 0 P (a :: ′a :: linordered-idom)
shows count-roots-with P ([:a, −1 :] ∗ p) = Suc (count-roots-with P p)

proof −
define q where q = [:a, −1 :] ∗ p
from assms have a: a ∈ roots-with P q by (simp-all add: roots-with-def q-def)
have q-nz: q 6= 0 unfolding q-def by (rule no-zero-divisors) (simp-all add:

assms)

have count-roots-with P q = (
∑

x∈roots-with P q. order x q) by (simp add:
count-roots-with-def)

also from a q-nz have . . . = order a q + (
∑

x∈roots-with P q − {a}. order x q)
by (subst sum.remove) simp-all

also have order a q = order a [:a, −1 :] + order a p unfolding q-def
by (subst order-mult[OF no-zero-divisors]) (simp-all add: assms)

also have order a [:a, −1 :] = 1
by (subst order-smult [of −1 , symmetric])

(insert order-power-n-n[of a 1], simp-all add: order-1)
also have (

∑
x∈roots-with P q − {a}. order x q) = (

∑
x∈roots-with P q − {a}.

order x p)
proof (intro sum.cong refl)

fix x assume x: x ∈ roots-with P q − {a}
from assms have order x q = order x [:a, −1 :] + order x p unfolding q-def

by (subst order-mult[OF no-zero-divisors]) (simp-all add: assms)
also from x have order x [:a, −1 :] = 0 by (intro order-0I) simp-all
finally show order x q = order x p by simp

qed
also from a q-nz have 1 + order a p + (

∑
x∈roots-with P q − {a}. order x p)

=
1 + (

∑
x∈roots-with P q. order x p)

by (subst add.assoc, subst sum.remove[symmetric]) simp-all
also from q-nz have (

∑
x∈roots-with P q. order x p) = (

∑
x∈roots-with P p.

order x p)
proof (intro sum.mono-neutral-right)

show roots-with P p ⊆ roots-with P q
by (auto simp: roots-with-def q-def simp del: mult-pCons-left)

show ∀ x∈roots-with P q − roots-with P p. order x p = 0
by (auto simp: roots-with-def q-def order-root simp del: mult-pCons-left)

qed simp-all
finally show ?thesis by (simp add: q-def count-roots-with-def)

qed

12

1.6 Coefficient sign changes of a polynomial
abbreviation (input) coeff-sign-changes f ≡ sign-changes (coeffs f)

We first show that when building a polynomial from a coefficient list, the
coefficient sign sign changes of the resulting polynomial are the same as the
same sign changes in the list.
Note that constructing a polynomial from a list removes all trailing zeros.
lemma sign-changes-coeff-sign-changes:

assumes Poly xs = (p :: ′a :: linordered-idom poly)
shows sign-changes xs = coeff-sign-changes p

proof −
have coeffs p = coeffs (Poly xs) by (subst assms) (rule refl)
also have . . . = strip-while ((=) 0) xs by simp
also have filter ((6=) 0) . . . = filter ((6=) 0) xs unfolding strip-while-def o-def
by (subst rev-filter [symmetric], subst filter-dropWhile) (simp-all add: rev-filter)

also have sign-changes . . . = sign-changes xs by (simp add: sign-changes-filter)
finally show ?thesis by (simp add: sign-changes-filter)

qed

By applying reduce-root a, we can assume w.l.o.g. that the root in question is
1, since applying root reduction does not change the number of sign changes.
lemma coeff-sign-changes-reduce-root:

assumes a > (0 :: ′a :: linordered-idom)
shows coeff-sign-changes (reduce-root a p) = coeff-sign-changes p

proof (intro sign-changes-cong, induction p)
case (pCons c p)
have map sgn (coeffs (reduce-root a (pCons c p))) =

cCons (sgn c) (map sgn (coeffs (reduce-root a p)))
using assms by (auto simp add: cCons-def sgn-0-0 sgn-mult reduce-root-pCons

coeffs-smult)
also note pCons.IH
also have cCons (sgn c) (map sgn (coeffs p)) = map sgn (coeffs (pCons c p))

using assms by (auto simp add: cCons-def sgn-0-0)
finally show ?case .

qed (simp-all add: reduce-root-def)

Multiplying a polynomial with a positive constant also does not change the
number of sign changes. (in fact, any non-zero constant would also work,
but the proof is slightly more difficult and positive constants suffice in our
use case)
lemma coeff-sign-changes-smult:

assumes a > (0 :: ′a :: linordered-idom)
shows coeff-sign-changes (smult a p) = coeff-sign-changes p
using assms by (auto intro!: sign-changes-cong simp: sgn-mult coeffs-smult)

context

13

begin

We now show that a polynomial with an odd number of sign changes contains
a positive root. We first assume that the constant coefficient is non-zero.
Then it is clear that the polynomial’s sign at 0 will be the sign of the constant
coefficient, whereas the polynomial’s sign for sufficiently large inputs will be
the sign of the leading coefficient.
Moreover, we have shown before that in a list with an odd number of sign
changes and non-zero initial and last coefficients, the initial coefficient and
the last coefficient have opposite and non-zero signs. Then, the polynomial
obviously has a positive root.
private lemma odd-coeff-sign-changes-imp-pos-roots-aux:

assumes [simp]: p 6= (0 :: real poly) poly p 0 6= 0
assumes odd (coeff-sign-changes p)
obtains x where x > 0 poly p x = 0

proof −
from ‹poly p 0 6= 0 ›
have [simp]: hd (coeffs p) 6= 0

by (induct p) auto
from assms have ¬ even (coeff-sign-changes p)

by blast
also have even (coeff-sign-changes p) ←→ sgn (hd (coeffs p)) = sgn (lead-coeff

p)
by (auto simp add: even-sign-changes-iff last-coeffs-eq-coeff-degree)

finally have sgn (hd (coeffs p)) ∗ sgn (lead-coeff p) < 0
by (auto simp: sgn-if split: if-split-asm)

also from ‹p 6= 0 › have hd (coeffs p) = poly p 0 by (induction p) auto
finally have poly p 0 ∗ lead-coeff p < 0 by (auto simp: mult-less-0-iff)

from pos-root-exI [OF this] that show ?thesis by blast
qed

We can now show the statement without the restriction to a non-zero con-
stant coefficient. We can do this by simply factoring p into the form p · xn,
where n is chosen as large as possible. This corresponds to stripping all ini-
tial zeros of the coefficient list, which obviously changes neither the existence
of positive roots nor the number of coefficient sign changes.
lemma odd-coeff-sign-changes-imp-pos-roots:

assumes p 6= (0 :: real poly)
assumes odd (coeff-sign-changes p)
obtains x where x > 0 poly p x = 0

proof −
define s where s = sgn (lead-coeff p)
define n where n = order 0 p
define r where r = p div [:0 , 1 :] ^ n
have p: p = [:0 , 1 :] ^ n ∗ r unfolding r-def n-def

using order-1 [of 0 p] by (simp del: mult-pCons-left)

14

from assms p have r-nz: r 6= 0 by auto

obtain x where x > 0 poly r x = 0
proof (rule odd-coeff-sign-changes-imp-pos-roots-aux)

show r 6= 0 by fact
have order 0 p = order 0 p + order 0 r

by (subst p, insert order-power-n-n[of 0 ::real n] r-nz)
(simp del: mult-pCons-left add: order-mult n-def)

hence order 0 r = 0 by simp
with r-nz show nz: poly r 0 6= 0 by (simp add: order-root)

note ‹odd (coeff-sign-changes p)›
also have p = [:0 , 1 :] ^ n ∗ r by (simp add: p)
also have [:0 , 1 :] ^ n = monom 1 n

by (induction n) (simp-all add: monom-Suc monom-0)
also have coeffs (monom 1 n ∗ r) = replicate n 0 @ coeffs r

by (induction n) (simp-all add: monom-Suc cCons-def r-nz monom-0)
also have sign-changes . . . = coeff-sign-changes r

by (subst (1 2) sign-changes-filter [symmetric]) simp
finally show odd (coeff-sign-changes r) .

qed
thus ?thesis by (intro that[of x]) (simp-all add: p)

qed

end

1.7 Proof of Descartes’ sign rule

For a polynomial p(X) = a0 + . . . + anX
n, we have [Xi](1 − X)p(X) =

(
i∑

j=0
aj).

lemma coeff-poly-times-one-minus-x:
fixes g :: ′a :: linordered-idom poly
shows coeff g n = (

∑
i≤n. coeff (g ∗ [:1 , −1 :]) i)

by (induction n) simp-all

We apply the previous lemma to the coefficient list of a polynomial and
show: given a polynomial p(X) and q(X) = (1−X)p(X), the coefficient list
of p(X) is the list of partial sums of the coefficient list of q(X).
lemma Poly-times-one-minus-x-eq-psums:

fixes xs :: ′a :: linordered-idom list
assumes [simp]: length xs = length ys
assumes Poly xs = Poly ys ∗ [:1 , −1 :]
shows ys = psums xs

proof (rule nth-equalityI ; safe?)
fix i assume i: i < length ys
hence ys ! i = coeff (Poly ys) i

by (simp add: nth-default-def)

15

also from coeff-poly-times-one-minus-x[of Poly ys i] assms
have . . . = (

∑
j≤i. coeff (Poly xs) j) by simp

also from i have . . . = psums xs ! i
by (auto simp: nth-default-def psums-nth)

finally show ys ! i = psums xs ! i .
qed simp-all

We can now apply our main lemma on the sign changes in lists to the
coefficient lists of a nonzero polynomial p(X) and (1−X)p(X): the difference
of the changes in the coefficient lists is odd and positive.
lemma sign-changes-poly-times-one-minus-x:

fixes g :: ′a :: linordered-idom poly and a :: ′a
assumes nz: g 6= 0
defines v ≡ coeff-sign-changes
shows v ([:1 , −1 :] ∗ g) − v g > 0 ∧ odd (v ([:1 , −1 :] ∗ g) − v g)

proof −
define xs where xs = coeffs ([:1 , −1 :] ∗ g)
define ys where ys = coeffs g @ [0]
have ys: ys = psums xs
proof (rule Poly-times-one-minus-x-eq-psums)

show length xs = length ys unfolding xs-def ys-def
by (simp add: length-coeffs nz degree-mult-eq no-zero-divisors del: mult-pCons-left)
show Poly xs = Poly ys ∗ [:1 , − 1 :] unfolding xs-def ys-def

by (simp only: Poly-snoc Poly-coeffs) simp
qed
have sign-changes (psums xs) < sign-changes xs ∧

odd (sign-changes xs − sign-changes (psums xs))
proof (rule arthan)

show xs 6= []
by (auto simp: xs-def nz simp del: mult-pCons-left)

then show sum-list xs = 0 by (simp add: last-psums [symmetric] ys [symmetric]
ys-def)

show last xs 6= 0
by (auto simp: xs-def nz last-coeffs-eq-coeff-degree simp del: mult-pCons-left)

qed
with ys have sign-changes ys < sign-changes xs ∧

odd (sign-changes xs − sign-changes ys) by simp
also have sign-changes xs = v ([:1 , −1 :] ∗ g) unfolding v-def

by (intro sign-changes-coeff-sign-changes) (simp-all add: xs-def)
also have sign-changes ys = v g unfolding v-def

by (intro sign-changes-coeff-sign-changes) (simp-all add: ys-def Poly-snoc)
finally show ?thesis by simp

qed

We can now lift the previous lemma to the case of p(X) and (a −X)p(X)
by substituting X with aX, yielding the polynomials p(aX) and a · (1−X) ·
p(aX).
lemma sign-changes-poly-times-root-minus-x:

fixes g :: ′a :: linordered-idom poly and a :: ′a

16

assumes nz: g 6= 0 and pos: a > 0
defines v ≡ coeff-sign-changes
shows v ([:a, −1 :] ∗ g) − v g > 0 ∧ odd (v ([:a, −1 :] ∗ g) − v g)

proof −
have 0 < v ([:1 , − 1 :] ∗ reduce-root a g) − v (reduce-root a g) ∧

odd (v ([:1 , − 1 :] ∗ reduce-root a g) − v (reduce-root a g))
using nz pos unfolding v-def by (intro sign-changes-poly-times-one-minus-x)

simp-all
also have v ([:1 , −1 :] ∗ reduce-root a g) = v (smult a ([:1 , −1 :] ∗ reduce-root a

g))
unfolding v-def by (simp add: coeff-sign-changes-smult pos)

also have smult a ([:1 , −1 :] ∗ reduce-root a g) = [:a:] ∗ [:1 , −1 :] ∗ reduce-root
a g

by (subst mult.assoc) simp
also have [:a:] ∗ [:1 , −1 :] = reduce-root a [:a, −1 :]

by (simp add: reduce-root-def pcompose-pCons)
also have . . . ∗ reduce-root a g = reduce-root a ([:a, −1 :] ∗ g)

unfolding reduce-root-def by (simp only: pcompose-mult)
also have v . . . = v ([:a, −1 :] ∗ g) by (simp add: v-def coeff-sign-changes-reduce-root

pos)
also have v (reduce-root a g) = v g by (simp add: v-def coeff-sign-changes-reduce-root

pos)
finally show ?thesis .

qed

Finally, the difference of the number of coefficient sign changes and the num-
ber of positive roots is non-negative and even. This follows straightforwardly
by induction over the roots.
lemma descartes-sign-rule-aux:

fixes p :: real poly
assumes p 6= 0
shows coeff-sign-changes p ≥ count-pos-roots p ∧

even (coeff-sign-changes p − count-pos-roots p)
using assms
proof (induction p rule: poly-root-induct[where P = λa. a > 0])

case (root a p)
define q where q = [:a, −1 :] ∗ p
from root.prems have p: p 6= 0 by auto
with root p sign-changes-poly-times-root-minus-x[of p a]

count-roots-with-times-root[of p λx. x > 0 a] show ?case by (fold q-def)
fastforce
next

case (no-roots p)
from no-roots have pos-roots p = {} by (auto simp: roots-with-def)
hence [simp]: count-pos-roots p = 0 by (simp add: count-roots-with-def)
thus ?case using no-roots ‹p 6= 0 › odd-coeff-sign-changes-imp-pos-roots[of p]

by (auto simp: roots-with-def)
qed simp-all

17

The main theorem is then an obvious consequence
theorem descartes-sign-rule:

fixes p :: real poly
assumes p 6= 0
shows ∃ d. even d ∧ coeff-sign-changes p = count-pos-roots p + d

proof
define d where d = coeff-sign-changes p − count-pos-roots p
show even d ∧ coeff-sign-changes p = count-pos-roots p + d

unfolding d-def using descartes-sign-rule-aux[OF assms] by auto
qed

end

References

[1] R. D. Arthan. Descartes’ rule of signs by an easy induction. 2007.

18

	Sign changes and Descartes' Rule of Signs
	Polynomials
	List of partial sums
	Sign changes in a list
	Arthan's lemma
	Roots of a polynomial with a certain property
	Coefficient sign changes of a polynomial
	Proof of Descartes' sign rule

