
Derandomization with Conditional Expectations

Emin Karayel

March 17, 2025

Abstract

The Method of Conditional Expectations [4] (sometimes also called “Method of Conditional
Probabilities”) is one of the prominent derandomization techniques. Given a randomized algorithm,
it allows the construction of a deterministic algorithm with a result that matches the average-case
quality of the randomized algorithm.

Using this technique, this entry starts with a simple example, an algorithm that obtains a cut
that crosses at least half of the edges. This is a well-known approximate solution to the Max-Cut
problem. It is followed by a more complex and interesting result: an algorithm that returns an
independent set matching (or exceeding) the Caro-Wei bound [3]: n

d+1 where n is the vertex count
and d is the average degree of the graph.

Both algorithms are efficient and deterministic, and follow from the derandomization of a
probabilistic existence proof.

Contents
1 Some Preliminary Results 2

1.1 On Probability Theory . 2
1.2 On Convexity . 2
1.3 On subseq and strict-subseq . 2
1.4 On Random Permutations . 3
1.5 On Finite Simple Graphs . 4

2 Method of Conditional Expectations: Large Cuts 4

3 Method of Pessimistic Estimators: Independent Sets 6

1

1 Some Preliminary Results
theory Derandomization-Conditional-Expectations-Preliminary

imports
HOL−Combinatorics.Multiset-Permutations
Universal-Hash-Families.Pseudorandom-Objects
Undirected-Graph-Theory.Undirected-Graphs-Root

begin

1.1 On Probability Theory
lemma map-pmf-of-set-bij-betw-2 :

assumes bij-betw (λx. (f x, g x)) A (B×C) A 6= {} finite A
shows map-pmf f (pmf-of-set A) = pmf-of-set B (is ?L = ?R)
〈proof 〉

lemma integral-bind-pmf :
fixes f :: - ⇒ real
assumes

∧
x. x ∈ set-pmf (bind-pmf p q) =⇒ |f x| ≤ M

shows (
∫

x. f x ∂bind-pmf p q) = (
∫

x.
∫

y. f y ∂q x ∂p) (is ?L = ?R)
〈proof 〉

lemma pmf-of-set-un:
fixes A B :: ′x set
assumes A ∪ B 6= {} A ∩ B = {} finite (A ∪ B)
defines p ≡ real (card A) / real (card A + card B)
shows pmf-of-set (A ∪ B) = do {c ← bernoulli-pmf p; pmf-of-set (if c then A else B)}
(is ?L = ?R)

〈proof 〉

If the expectation of a discrete random variable is larger or equal to c, there will be at
least one point at which the random variable is larger or equal to c.
lemma exists-point-above-expectation:

assumes integrable (measure-pmf M) f
assumes measure-pmf .expectation M f ≥ (c::real)
shows ∃ x ∈ set-pmf M . f x ≥ c
〈proof 〉

1.2 On Convexity

A translation rule for convexity.
lemma convex-on-shift:

fixes f :: (′b :: real-vector) ⇒ real
assumes convex-on S f convex S
shows convex-on {x. x + a ∈ S} (λx. f (x+a))
〈proof 〉

1.3 On subseq and strict-subseq
lemma strict-subseq-imp-shorter : strict-subseq x y =⇒ length x < length y
〈proof 〉

lemma subseq-distinct: subseq x y =⇒ distinct y =⇒ distinct x
〈proof 〉

lemma strict-subseq-imp-distinct: strict-subseq x y =⇒ distinct y =⇒ distinct x
〈proof 〉

2

lemma subseq-set: subseq xs ys =⇒ set xs ⊆ set ys
〈proof 〉

lemma strict-subseq-set: strict-subseq x y =⇒ set x ⊆ set y
〈proof 〉

lemma subseq-induct:
assumes

∧
ys. (

∧
zs. strict-subseq zs ys =⇒ P zs) =⇒ P ys

shows P xs
〈proof 〉

lemma subseq-induct ′:
assumes P []
assumes

∧
y ys. (

∧
zs. strict-subseq zs (y#ys) =⇒ P zs) =⇒ P (y#ys)

shows P xs
〈proof 〉

lemma strict-subseq-remove1 :
assumes w ∈ set x
shows strict-subseq (remove1 w x) x
〈proof 〉

1.4 On Random Permutations
lemma filter-permutations-of-set-pmf :

assumes finite S
shows map-pmf (filter P) (pmf-of-set (permutations-of-set S)) =
pmf-of-set (permutations-of-set {x ∈ S . P x}) (is ?L = ?R)
〈proof 〉

lemma permutations-of-set-prefix:
assumes finite S v ∈ S
shows measure (pmf-of-set (permutations-of-set S)) {xs. prefix [v] xs} = 1/real (card S)
(is ?L = ?R)

〈proof 〉

cond-perm returns all permutations of a set starting with specific prefix.
definition cond-perm where cond-perm V p = (@) p ‘ permutations-of-set (V − set p)

context fin-sgraph
begin

lemma perm-non-empty-finite:
permutations-of-set V 6= {} finite (permutations-of-set V)
〈proof 〉

lemma cond-perm-non-empty-finite:
cond-perm V p 6= {} finite (cond-perm V p)
〈proof 〉

lemma cond-perm-alt:
assumes distinct p set p ⊆ V
shows cond-perm V p = {xs ∈ permutations-of-set V . prefix p xs}
〈proof 〉

lemma cond-permD:
assumes distinct p set p ⊆ V xs ∈ cond-perm V p
shows distinct xs set xs = V

3

〈proof 〉

1.5 On Finite Simple Graphs
lemma degree-sum: (

∑
v ∈ V . degree v) = 2 ∗ card E (is ?L = ?R)

〈proof 〉

The environment of a set of nodes is the union of it with its neighborhood.
definition environment where environment S = S ∪ {v. ∃ s ∈ S . vert-adj v s}

lemma finite-environment:
assumes finite S
shows finite (environment S)
〈proof 〉

lemma environment-mono: S ⊆ T =⇒ environment S ⊆ environment T
〈proof 〉

lemma environment-sym: x ∈ environment {y} ←→ y ∈ environment {x}
〈proof 〉

lemma environment-self : S ⊆ environment S 〈proof 〉

lemma environment-sym-2 : A ∩ environment B = {} ←→ B ∩ environment A = {}
〈proof 〉

lemma environment-range: S ⊆ V =⇒ environment S ⊆ V
〈proof 〉

lemma environment-union: environment (S ∪ T) = environment S ∪ environment T
〈proof 〉

lemma card-environment: card (environment {v}) = 1 + degree v (is ?L = ?R)
〈proof 〉

end

end

2 Method of Conditional Expectations: Large Cuts

The following is an example of the application of the method of conditional expectations [2,
1] to construct an approximation algorithm that finds a cut of an undirected graph cutting
at least half of the edges. This is also the example that Vadhan [4, Section 3.4.2] uses to
introduce the “Method of Conditional Expectations”.
theory Derandomization-Conditional-Expectations-Cut

imports Derandomization-Conditional-Expectations-Preliminary
begin

context fin-sgraph
begin

definition cut-size where cut-size C = card {e ∈ E . e ∩ C 6= {} ∧ e − C 6= {}}

lemma eval-cond-edge:
assumes L ⊆ U finite U e ∈ E

4

shows (
∫

C . of-bool (e∩C 6={} ∧ e−C 6={}) ∂pmf-of-set {C . L⊆C∧C⊆U}) =
((if e ⊆ −U ∪ L then of-bool(e ∩ L 6={} ∧ e ∩ −U 6={})::real else 1/2))
(is ?L = ?R)

〈proof 〉

If every vertex is selected independently with probability 1
2 into the cut, it is easy to deduce

that an edge will be cut with probability 1
2 as well. Thus the expected cut size will be real

graph-size / 2.
lemma exp-cut-size:
(
∫

C . real (cut-size C) ∂pmf-of-set (Pow V)) = real (card E) / 2 (is ?L = ?R)
〈proof 〉

For the above it is easy to show that there exists a cut, cutting at least half of the edges.
lemma exists-cut: ∃C ⊆ V . real (cut-size C) ≥ card E/2
〈proof 〉

end

However the above is just an existence proof, but it doesn’t provide a method to construct
such a cut efficiently. Here, we can apply the method of conditional expectations.
This works because, we can not only compute the expectation of the number of cut edges,
when all vertices are chosen at random, but also conditional expectations, when some of
the edges are fixed. The idea of the algorithm, is to choose the assignment of vertices into
the cut based on which option maximizes the conditional expectation. The latter can be
done incrementally for each vertex.
This results in the following efficient algorithm:
fun derandomized-max-cut :: ′a list ⇒ ′a set ⇒ ′a set ⇒ ′a set set ⇒ ′a set where

derandomized-max-cut [] R - - = R |
derandomized-max-cut (v#vs) R B E =
(if card {e ∈ E . v ∈ e ∧ e ∩ R 6= {}} ≥ card {e ∈ E . v ∈ e ∧ e ∩ B 6= {}} then

derandomized-max-cut vs R (B ∪ {v}) E
else

derandomized-max-cut vs (R ∪ {v}) B E
)

context fin-sgraph
begin

The term cond-exp is the conditional expectation, when some of the edges are selected
into the cut, and some are selected to be outside the cut, while the remaining vertices are
chosen randomly.
definition cond-exp where cond-exp R B = (

∫
C . real (cut-size C) ∂pmf-of-set {C . R ⊆ C ∧ C

⊆ V−B})

The following is the crucial property of conditional expectations, the average of choosing
a vertex in/out is the same as not fixing that vertex. This means that at least one choice
will not decrease the conditional expectation.
lemma cond-exp-split:

assumes R ⊆ V B ⊆ V R ∩ B = {} v ∈ V −R−B
shows cond-exp R B = (cond-exp (R ∪ {v}) B + cond-exp R (B ∪ {v}))/2 (is ?L = ?R)
〈proof 〉

lemma cond-exp-cut-size:
assumes R ⊆ V B ⊆ V R ∩ B = {}

5

shows cond-exp R B = real (card {e∈E . e∩R 6={}∧e∩B 6={}}) + real (card {e∈E . e∩V−R−B 6={}})
/ 2

(is ?L = ?R)
〈proof 〉

Indeed the algorithm returns a cut with the promised approximation guarantee.
theorem derandomized-max-cut:

assumes vs ∈ permutations-of-set V
defines C ≡ derandomized-max-cut vs {} {} E
shows C ⊆ V 2 ∗ cut-size C ≥ card E
〈proof 〉

end

end

3 Method of Pessimistic Estimators: Independent Sets

A generalization of the the method of conditional expectations is the method of pessimistic
estimators. Where the conditional expectations are conservatively approximated. The
following example is such a case.
Starting with a probabilistic proof of Caro-Wei’s theorem [1, Section: The Probabilistic
Lens: Turán’s theorem], this section constructs a deterministic algorithm that finds such
a set.
theory Derandomization-Conditional-Expectations-Independent-Set

imports Derandomization-Conditional-Expectations-Cut
begin

hide-fact (open) Henstock-Kurzweil-Integration.integral-sum

The following represents a greedy algorithm that walks through the vertices in a given
order and adds it to a result set, if and only if it preserves independence of the set.
fun indep-set :: ′a list ⇒ ′a set set ⇒ ′a list

where
indep-set [] E = [] |
indep-set (v#vt) E = v#indep-set (filter (λw. {v,w} /∈ E) vt) E

context fin-sgraph
begin

lemma indep-set-range: subseq (indep-set p E) p
〈proof 〉

lemma is-independent-set-insert:
assumes is-independent-set A x ∈ V − environment A
shows is-independent-set (insert x A)
〈proof 〉

Correctness properties of indep-set:
theorem indep-set-correct:

assumes distinct p set p ⊆ V
shows distinct (indep-set p E) set (indep-set p E) ⊆ V is-independent-set (set (indep-set p E))
〈proof 〉

While for an individual call of indep-set it is not possible to derive a non-trivial bound
on the size of the resulting independent set, it is possible to estimate its performance on

6

average, i.e., with respect to a random choice on the order it visits the vertices. This will
be derived in the following:
definition is-first where

is-first v p = prefix [v] (filter (λy. y ∈ environment {v}) p)

lemma is-first-subseq:
assumes is-first v p distinct p subseq q p v ∈ set q
shows is-first v q
〈proof 〉

lemma is-first-imp-in-set:
assumes is-first v p
shows v ∈ set p
〈proof 〉

Let us observe that a node, which comes first in the ordering of the vertices with respect to
its neighbors, will definitely be in the independent set. (This is only a sufficient condition,
but not a necessary condition.)
lemma set-indep-set:

assumes distinct p set p ⊆ V is-first v p
shows v ∈ set (indep-set p E)
〈proof 〉

Using the above we can establish the following lower-bound on the expected size of an
independent set obtained by indep-set:
theorem exp-indep-set:

defines Ω ≡ pmf-of-set (permutations-of-set V)
shows (

∫
vs. real (length (indep-set vs E)) ∂Ω) ≥ (

∑
v ∈ V . 1 / (degree v + 1 ::real))

(is ?L ≥ ?R)
〈proof 〉

The function λx. 1 / (x + 1) is convex.
lemma inverse-x-plus-1-convex: convex-on {−1<..} (λx. 1 / (x+1 ::real))
〈proof 〉

lemma caro-wei-aux: card V / (2∗card E / card V + 1) ≤ (
∑

v ∈ V . 1/ (degree v+1))
〈proof 〉

A corollary of the exp-indep-set is Caro-Wei’s theorem:
corollary caro-wei:
∃S ⊆ V . is-independent-set S ∧ card S ≥ card V / (2∗card E / card V + 1)
〈proof 〉

end

After establishing the above result, we may ask the question, whether there is a practical
algorithm to find such a set. This is where the method of conditional expectations comes
to stage.
We are tasked with finding an ordering of the vertices, for which the above algorithm
would return an above-average independent set. This is possible, because we can compute
the conditional expectation of
measure-pmf .expectation (pmf-of-set (permutations-of-set V)) (λvs.

∑
v∈V . of-bool (is-first

v vs))
when we restrict to permutations starting with a given prefix. The latter term is a pes-
simistic estimator for the size of the independent set for the given ordering (as discussed
above.)

7

It then is possible to obtain a deterministic algorithm that obtains an ordering by incre-
mentally choosing vertices, that maximize the conditional expectation.
The resulting algorithm looks as follows:
function derandomized-indep-set :: ′a list ⇒ ′a list ⇒ ′a set set ⇒ ′a list

where
derandomized-indep-set [] p E = indep-set p E |
derandomized-indep-set (vh#vt) p E = (

let node-deg = (λv. real (card {e ∈ E . v ∈ e}));
is-indep = (λv. list-all (λw. {v,w} /∈ E) p);
env = (λv. filter is-indep (v#filter (λw. {v,w} ∈ E) (vh#vt)));
cost = (λv. (

∑
w ← env v. 1 /(node-deg w+1)) − of-bool(is-indep v));

w = arg-min-list cost (vh#vt)
in derandomized-indep-set (remove1 w (vh#vt)) (p@[w]) E)

〈proof 〉

termination
〈proof 〉

context fin-sgraph
begin

lemma is-first-append-1 :
assumes v /∈ environment (set p)
shows is-first v (p@q) = is-first v q
〈proof 〉

lemma is-first-append-2 :
assumes v ∈ environment (set p)
shows is-first v (p@q) = is-first v p
〈proof 〉

The conditional expectation of the pessimistic estimator for a given prefix of the ordering
of the vertices.
definition p-estimator where

p-estimator p = (
∫

vs. (
∑

v ∈ V . of-bool(is-first v vs)) ∂pmf-of-set (cond-perm V p))

lemma p-estimator-split:
assumes V − set p 6= {}
shows p-estimator p = (

∑
v∈V−set p. p-estimator (p@[v])) / real (card (V−set p)) (is ?L =

?R)
〈proof 〉

The fact that the pessimistic estimator can be computed efficiently is the reason we can
apply this method:
lemma p-estimator :

assumes distinct p set p ⊆ V
defines P ≡ {v. is-first v p}
defines R ≡ V − environment (set p)
shows p-estimator p = card P + (

∑
v∈R. 1/(degree v +1 ::real))

(is ?L = ?R)
〈proof 〉

lemma p-estimator-step:
assumes distinct (p@[v]) set (p@[v]) ⊆ V
shows p-estimator (p@[v]) − p-estimator p = of-bool(environment {v} ∩ set p = {})
− (

∑
w∈environment {v}−environment(set p). 1 / (degree w+1 ::real))

〈proof 〉

8

lemma derandomized-indep-set-correct-aux:
assumes p1@p2 ∈ permutations-of-set V
shows distinct (derandomized-indep-set p1 p2 E) ∧

is-independent-set (set (derandomized-indep-set p1 p2 E))
〈proof 〉

lemma derandomized-indep-set-length-aux:
assumes p1@p2 ∈ permutations-of-set V
shows length (derandomized-indep-set p1 p2 E) ≥ p-estimator p2
〈proof 〉

The main result of this section the algorithm derandomized-indep-set obtains an indepen-
dent set meeting the Caro-Wei bound in polynomial time.
theorem derandomized-indep-set:

assumes p ∈ permutations-of-set V
shows

is-independent-set (set (derandomized-indep-set p [] E))
distinct (derandomized-indep-set p [] E)
length (derandomized-indep-set p [] E) ≥ (

∑
v ∈ V . 1/ (degree v+1))

length (derandomized-indep-set p [] E) ≥ card V / (2∗card E / card V + 1)
〈proof 〉

end

end

References
[1] N. Alon and J. H. Spencer. The Probabilistic Method. John Wiley & Sons, Ltd, 2000.
[2] S. Jukna. Extremal Combinatorics: With Applications in Computer Science, chapter Deran-

domization, pages 307–318. Springer, Berlin, Heidelberg, 2001.
[3] O. Murphy. Lower bounds on the stability number of graphs computed in terms of degrees.

Discrete Mathematics, 90(2):207–211, 1991.
[4] S. P. Vadhan. Pseudorandomness. Foundations and Trends®in Theoretical Computer Science,

7(1-3):1–336, 2012.

9

	Some Preliminary Results
	On Probability Theory
	On Convexity
	On 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 subseq and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 strict-subseq
	On Random Permutations
	On Finite Simple Graphs

	Method of Conditional Expectations: Large Cuts
	Method of Pessimistic Estimators: Independent Sets

