Depth-First Search

Toshiaki Nishihara Yasuhiko Minamide

April 19, 2020

Abstract

Depth-first search of a graph is formalized with function. It is shown that it visits all of the reachable nodes from a given list of nodes. Executable ML code of depth-first search is obtained with code generation feature of Isabelle/HOL. The formalization contains two implementations of depth-first search: one by stack and one by nested recursion. They are shown to be equivalent. The termination condition of the version with nested-recursion is shown by the method of inductive invariants.

Contents

1 Depth-First Search 1
 1.1 Definition of Graphs 1
 1.2 Depth-First Search with Stack 2
 1.3 Depth-First Search with Nested-Recursion 3
 1.4 Basic Properties 3
 1.5 Correctness 5
 1.6 Executable Code 5

1 Depth-First Search

theory DFS
imports Main
begin

1.1 Definition of Graphs

typedecl node
type-synonym graph = (node * node) list

primrec nexts :: [graph, node] ⇒ node list
where
 nexts [] n = []
| nexts (e#es) n = (if fst e = n then snd e # nexts es n else nexts es n)
definition nextss :: [graph, node list] ⇒ node set
 where nextss g xs = set g "" set xs

lemma nexts-set: y ∈ set (nexts g x) = ((x,y) ∈ set g)
 by (induct g) auto

lemma nextss-Cons: nextss g (x#xs) = set (nexts g x) ∪ nextss g xs
 unfolding nextss-def by (auto simp add:Image-def nexts-set)

definition reachable :: [graph, node list] ⇒ node set
 where reachable g xs = (set g)* "" set xs

1.2 Depth-First Search with Stack

definition nodes-of :: graph ⇒ node set
 where nodes-of g = set (map fst g @ map snd g)

lemma [simp]: x /∈ nodes-of g ⇒ nexts g x = []
 by (induct g) (auto simp add: nodes-of-def)

lemma [simp]: finite (nodes-of g - set ys)
 proof (rule finite-subset)
 show finite (nodes-of g)
 by (auto simp add: nodes-of-def)
 qed (auto)

function dfs :: graph ⇒ node list ⇒ node list ⇒ node list
 where
 dfs-base: dfs g [] ys = ys
 | dfs-inductive: dfs g (x#xs) ys = (if List.member ys x then dfs g xs ys
 else dfs g (nexts g x@xs) (x#ys))
 by pat-completeness auto

termination
 apply (relation inv-image (finite-psubset <*lex*> less-than)
 (λ(g,ys,xs). (nodes-of g - set ys, size xs)))
 apply auto[1]
 apply (simp-all add: finite-psubset-def)
 by (case-tac x ∈ nodes-of g) (auto simp add: List.member-def)

 • The second argument of dfs is a stack of nodes that will be visited.
 • The third argument of dfs is a list of nodes that have been visited already.
1.3 Depth-First Search with Nested-Recursion

function
dfs2 :: graph ⇒ node list ⇒ node list ⇒ node list

where
dfs2 g [] ys = ys
| dfs2-inductive:
 dfs2 g (x#xs) ys = (if List.member ys x then dfs2 g xs ys
 else dfs2 g xs (dfs2 g (nexts g x) (x#ys)))

by pat-completeness auto

lemma dfs2-invariant: dfs2-dom (g, xs, ys) ⇒ set ys ⊆ set (dfs2 g xs ys)
by (induct g xs ys rule: dfs2.pinduct) (force simp add: dfs2.psimps)+

termination dfs2
apply (relation inv-image (finite-psubset <*lex*> less-than)
(λ(g,xs,ys). (nodes-of g - set ys, size xs)))
apply auto[1]
apply (simp-all add: finite-psubset-def)
apply (case-tac x ∈ nodes-of g)
apply (auto simp add: List.member-def)[2]
by (insert dfs2-invariant) force

lemma dfs-app: dfs g (xs@ys) zs = dfs g ys (dfs g xs zs)
by (induct g xs zs rule: dfs.induct) auto

lemma dfs2 g xs ys = dfs g xs ys
by (induct g xs ys rule: dfs2.induct) (auto simp add: dfs-app)

1.4 Basic Properties

lemma visit-subset-dfs: set ys ⊆ set (dfs g xs ys)
by (induct g xs ys rule: dfs.induct) auto

lemma next-subset-dfs: set xs ⊆ set (dfs g xs ys)
proof (induct g xs ys rule:dfs.induct)
case (2 g x xs ys)
show ?case
proof (cases x ∈ set ys)
case True
 have set ys ⊆ set (dfs g xs ys)
 by (rule visit-subset-dfs)
with 2 and True show ?thesis
 by (auto simp add: List.member-def)
next
case False
 have set (x#ys) ⊆ set (dfs g (nexts g x @ xs) (x#ys))
 by (rule visit-subset-dfs)
with 2 and False show \(?\text{thesis}\)
 by (auto simp add: List.member-def)
qed
qed (simp)

\textbf{lemma} nextss-closed-dfs \([\text{rule-format}]\):
nextss g ys \(\subseteq\) set xs \(\cup\) set ys \(\rightarrow\) nextss g (dfs g xs ys) \(\subseteq\) set (dfs g xs ys)
by (induct g xs ys rule:dfs.induct, auto simp add:nextss-Cons List.member-def)

\textbf{lemma} nextss-closed-dfs: nextss g (dfs g xs []) \(\subseteq\) set (dfs g xs [])
by (rule nextss-closed-dfs, simp add: nextss-def)

\textbf{lemma} Image-closed-trancl: assumes \(r \circ X \subseteq X\) shows \(r^* \circ X = X\)
proof
show \(r^* \circ X \subseteq X\)
proof –
 \{
 \fix x y
 assume y: y \in X
 assume (y,x) \in r^*
 then have x \in X
 by (induct) (insert assms y, auto simp add: Image-def)
 \}
then show \(?\text{thesis}\) unfolding Image-def by auto
qed
qed auto

\textbf{lemma} reachable-closed-dfs: reachable g xs \(\subseteq\) set(dfs g xs [])
proof –
have reachable g xs \(\subseteq\) reachable g (dfs g xs [])
 unfolding reachable-def by (rule Image-mono) (auto simp add: next-subset-dfs)
also have \(\ldots =\) set(dfs g xs [])
 unfolding reachable-def
proof (rule Image-closed-trancl)
 from nextss-closed-dfs
 show set g \(\circ\) set (dfs g xs []) \(\subseteq\) set (dfs g xs [])
 by (simp add: nextss-def)

 qed
finally show \(?\text{thesis}\) .
qed

\textbf{lemma} reachable-nexts: reachable g (nexts g x) \(\subseteq\) reachable g [x]
unfolding reachable-def
by (auto intro: converse-rtrancl-into-rtrancl simp: nexts-set)

\textbf{lemma} reachable-append: reachable g (xs @ ys) = reachable g xs \(\cup\) reachable g ys
unfolding reachable-def by auto
lemma dfs-subset-reachable-visit-nodes: set (dfs g xs ys) ⊆ reachable g xs ∪ set ys
proof (induct g xs ys rule: dfs.induct)
 case 1
 then show ?case by simp
next
 case (2 g x xs ys)
 show ?case
 proof (cases x ∈ set ys)
 case True
 with 2 show set (dfs g (x#xs) ys) ⊆ reachable g (x#xs) ∪ set ys
 by (auto simp add: reachable-def List.member-def)
 next
 case False
 have reachable g (nexts g x) ⊆ reachable g [x]
 by (rule reachable-nexts)
 hence a: reachable g (nexts g x @ xs) ⊆ reachable g (x#xs)
 by (simp add: reachable-append, auto simp add: reachable-def)
 with False 2
 show set (dfs g (x#xs) ys) ⊆ reachable g (x#xs) ∪ set ys
 by (auto simp add: reachable-def List.member-def)
qed
qed

1.5 Correctness

theorem dfs-eq-reachable: set (dfs g xs []) = reachable g xs
proof
 have set (dfs g xs []) ⊆ reachable g xs ∪ set []
 by (rule dfs-subset-reachable-visit-nodes[of g xs []])
 thus set (dfs g xs []) ⊆ reachable g xs
 by simp
qed (rule reachable-closed-dfs)

theorem y ∈ set (dfs g [x] []) = ((x,y) ∈ (set g)*)
by (simp only: dfs-eq-reachable reachable-def, auto)

1.6 Executable Code

consts Node :: int ⇒ node
code-datatype Node

instantiation node :: equal
begin

definition equal-node :: node ⇒ node ⇒ bool
where
 [code del]: equal-node = HOL.eq
instance proof
qed (simp add: equal-node-def)

end

declare [[code abort: HOL.equal :: node ⇒ node ⇒ bool]]
export-code dfs dfs2 in SML file ⟨dfs.ML⟩
end