Depth-First Search

Toshiaki Nishihara Yasuhiko Minamide

March 17, 2025

Abstract

Depth-first search of a graph is formalized with function. It is
shown that it visits all of the reachable nodes from a given list of
nodes. Executable ML code of depth-first search is obtained with code
generation feature of Isabelle/HOL. The formalization contains two
implementations of depth-first search: one by stack and one by nested
recursion. They are shown to be equivalent. The termination condi-
tion of the version with nested-recursion is shown by the method of
inductive invariants.

Contents

1 Depth-First Search
1.1 Definition of Graphs
1.2 Depth-First Search with Stack
1.3 Depth-First Search with Nested-Recursion
1.4 Basic Properties,
1.5 Correctness o o v v i e
1.6 Executable Code

1 Depth-First Search

theory DFS
imports Main
begin

1.1 Definition of Graphs

typedecl node
type-synonym graph = (node * node) list

primrec nexts :: [graph, node] = node list
where
nexts [| n =]
| nexts (eftes) n = (if fst e = n then snd e # nexts es n else nexts es n)

UL Ot W N N = =

definition nextss :: [graph, node list] = node set
where nextss g xs = set g *‘ set s

lemma nexts-set: y € set (nexts g) = ((z,y) € set g)
by (induct g) auto

lemma nextss-Cons: nextss g (z#xs) = set (nexts g x) U nextss g xs
unfolding neztss-def by (auto simp add:Image-def nexts-set)

definition reachable :: [graph, node list] = node set
where reachable g xs = (set g)* “‘ set s

1.2 Depth-First Search with Stack

definition nodes-of :: graph = node set
where nodes-of g = set (map fst g Q map snd g)

lemma [simp]: © ¢ nodes-of g = nexts g x = ||
by (induct g) (auto simp add: nodes-of-def)

lemma [simp]: finite (nodes-of g — set ys)
proof (rule finite-subset)
show finite (nodes-of g)
by (auto simp add: nodes-of-def)
qed (auto)

function
dfs :: graph = node list = node list = node list
where
dfs-base: dfs g [| ys = ys
| dfs-inductive: dfs g (z#txs) ys = (if List.member ys x then dfs g xs ys
else dfs g (nexts g zQuzs) (x#ys))
by pat-completeness auto

termination

apply (relation inv-image (finite-psubset <xlexx> less-than)
(Mg,zs,ys). (nodes-of g — set ys, size xs)))

apply auto|!]

apply (simp-all add: finite-psubset-def)

by (case-tac x € nodes-of g) (auto simp add: List.member-def)

e The second argument of dfs is a stack of nodes that will be visited.

e The third argument of dfs is a list of nodes that have been visited
already.

1.3 Depth-First Search with Nested-Recursion

function

dfs2 :: graph = node list = node list = node list
where

dfs2 g [| ys = ys
| dfs2-inductive:

dfs2 g (z#xs) ys = (if List.member ys x then dfs2 g xs ys
else dfs2 g xs (dfs2 g (nexts g z) (z#ys)))

by pat-completeness auto

lemma dfs2-invariant: dfs2-dom (g, xs, ys) = set ys C set (dfs2 g zs ys)
by (induct g zs ys rule: dfs2.pinduct) (force simp add: dfs2.psimps)+

termination dfs2

apply (relation inv-image (finite-psubset <xlexx> less-than)
(Mg,xs,ys). (nodes-of g — set ys, size xs)))

apply auto[1]

apply (simp-all add: finite-psubset-def)

apply (case-tac = € nodes-of g)

apply (auto simp add: List.member-def)[2]

by (insert dfs2-invariant) force

lemma dfs-app: dfs g (zsQys) zs = dfs g ys (dfs g xs zs)
by (induct g zs zs rule: dfs.induct) auto

lemma dfs2 g xs ys = dfs g zs ys
by (induct g zs ys rule: dfs2.induct) (auto simp add: dfs-app)

1.4 Basic Properties

lemma visit-subset-dfs: set ys C set (dfs g zs ys)
by (induct g zs ys rule: dfs.induct) auto

lemma next-subset-dfs: set xs C set (dfs g xs ys)
proof (induct g xs ys rule:dfs.induct)
case(2 g x s ys)
show ?Zcase
proof(cases x € set ys)
case True
have set ys C set (dfs g zs ys)
by (rule visit-subset-dfs)
with 2 and True show ?thesis
by (auto simp add: List.member-def)
next
case Fulse
have set (z#ys) C set (dfs g (nexts g x Q zs) (z#ys))
by (rule visit-subset-dfs)

with 2 and False show %thesis
by (auto simp add: List.member-def)
qed
qed(simp)

lemma nextss-closed-dfs'[rule-format]:
nextss g ys C set xs U set ys — nextss g (dfs g xs ys) C set (dfs g xs ys)
by (induct g zs ys rule:dfs.induct, auto simp add:nextss-Cons List.member-def)

lemma nextss-closed-dfs: nextss g (dfs g zs []) C set (dfs g zs [])
by (rule nextss-closed-dfs’, simp add: nextss-def)

lemma Image-closed-trancl: assumes r ““ X C X shows r* “ X = X
proof
show r* “ X C X
proof —
{
fixzy
assume y: y € X
assume (y,z) € r*
then have z €¢ X
by (induct) (insert assms y, auto simp add: Image-def)

then show ?thesis unfolding Image-def by auto
qged
qged auto

lemma reachable-closed-dfs: reachable g xs C set(dfs g xs [])
proof —
have reachable g xs C reachable g (dfs g zs |])
unfolding reachable-def by (rule Image-mono) (auto simp add: next-subset-dfs)
also have ... = set(dfs g zs [])
unfolding reachable-def
proof (rule Image-closed-trancl)
from nextss-closed-dfs
show set g ““ set (dfs g zs []) C set (dfs g zs [])
by (simp add: nextss-def)
qed
finally show ?thesis .
qed

lemma reachable-nexts: reachable g (nexts g x) C reachable g [z]
unfolding reachable-def
by (auto intro: converse-rtrancl-into-rtrancl simp: nexts-set)

lemma reachable-append: reachable g (xs Q ys) = reachable g xs U reachable g ys
unfolding reachable-def by auto

lemma dfs-subset-reachable-visit-nodes: set (dfs g xs ys) C reachable g xs U set ys
proof (induct g xs ys rule: dfs.induct)
case I
then show ?case by simp
next
case (2 g x xs ys)
show ?Zcase
proof (cases z € set ys)
case True
with 2 show set (dfs g (x#xs) ys) C reachable g (x#xs) U set ys
by (auto simp add: reachable-def List.member-def)
next
case Fulse
have reachable g (nexts g) C reachable g [z]
by (rule reachable-nexts)
hence a: reachable g (nexts g x @Q zs) C reachable g (z#xs)
by (simp add: reachable-append, auto simp add: reachable-def)
with Fulse 2
show set (dfs g (z#xs) ys) C reachable g (z#xs) U set ys
by (auto simp add: reachable-def List.member-def)
qed
qed

1.5 Correctness

theorem dfs-eg-reachable: set (dfs g xs []) = reachable g xs
proof
have set (dfs g zs []) C reachable g zs U set ||
by (rule dfs-subset-reachable-visit-nodes[of g xs [|])
thus set (dfs g zs []) C reachable g zs
by simp
qed(rule reachable-closed-dfs)

theorem y € set (dfs g [z] [|) = ((z,y) € (set g)*)
by (simp only:dfs-eq-reachable reachable-def, auto)

1.6 Executable Code
consts Node :: int = node

code-datatype Node

instantiation node :: equal
begin

definition equal-node :: node = node = bool
where
[code del]: equal-node = HOL.eq

instance proof
qed (simp add: equal-node-def)

end
declare [[code abort: HOL.equal :: node = node = bool]]
export-code dfs dfs2 in SML file <dfs. ML

end

	Depth-First Search
	Definition of Graphs
	Depth-First Search with Stack
	Depth-First Search with Nested-Recursion
	Basic Properties
	Correctness
	Executable Code

