Depth-First Search

Toshiaki Nishihara

Yasuhiko Minamide

March 17, 2025

Abstract

Depth-first search of a graph is formalized with function. It is shown that it visits all of the reachable nodes from a given list of nodes. Executable ML code of depth-first search is obtained with code generation feature of Isabelle/HOL. The formalization contains two implementations of depth-first search: one by stack and one by nested recursion. They are shown to be equivalent. The termination condition of the version with nested-recursion is shown by the method of inductive invariants.

Contents

1	Depth-First Search		
	1.1	Definition of Graphs	1
	1.2	Depth-First Search with Stack	2
	1.3	Depth-First Search with Nested-Recursion	2
	1.4	Basic Properties	3
	1.5	Correctness	5
	1.6	Executable Code	5

1 Depth-First Search

theory DFS imports Main begin

1.1 Definition of Graphs

typedecl node **type-synonym** graph = (node * node) list **primrec** nexts :: [graph, node] \Rightarrow node list **where** nexts [] n = []| nexts (e#es) n = (if fst e = n then snd e # nexts es n else nexts es n) **definition** *nextss* :: $[graph, node list] \Rightarrow node set$ where *nextss* g xs = set g " set xs

lemma nexts-set: $y \in set$ (nexts g x) = ((x,y) \in set g) by (induct g) auto

lemma nextss-Cons: nextss $g(x\#xs) = set (nexts g x) \cup nextss g xs$ unfolding nextss-def by (auto simp add:Image-def nexts-set)

definition reachable :: $[graph, node list] \Rightarrow node set$ where reachable $g xs = (set g)^*$ " set xs

1.2 Depth-First Search with Stack

definition nodes-of :: graph \Rightarrow node set where nodes-of g = set (map fst g @ map snd g)

lemma [simp]: $x \notin$ nodes-of $g \implies$ nexts g x = []**by** (induct g) (auto simp add: nodes-of-def)

lemma [simp]: finite (nodes-of g - set ys)
proof(rule finite-subset)
show finite (nodes-of g)
by (auto simp add: nodes-of-def)
qed (auto)

function

 $\begin{array}{l} dfs :: graph \Rightarrow node \ list \Rightarrow node \ list \Rightarrow node \ list \\ \textbf{where} \\ dfs\text{-base: } dfs \ g \ [] \ ys = ys \\ | \ dfs\text{-inductive: } dfs \ g \ (x\#xs) \ ys = (if \ List.member \ ys \ x \ then \ dfs \ g \ xs \ ys \\ else \ dfs \ g \ (nexts \ g \ x@xs) \ (x\#ys)) \end{array}$ by pat-completeness auto

termination

apply (relation inv-image (finite-psubset < lex > less-than) $(\lambda(g,xs,ys). (nodes-of g - set ys, size xs)))$ **apply** auto[1] **apply** (simp-all add: finite-psubset-def) **by** (case-tac $x \in nodes-of g$) (auto simp add: List.member-def)

- The second argument of *dfs* is a stack of nodes that will be visited.
- The third argument of *dfs* is a list of nodes that have been visited already.

1.3 Depth-First Search with Nested-Recursion

 $\begin{array}{l} \textbf{function} \\ dfs2 :: graph \Rightarrow node \ list \Rightarrow node \ list \Rightarrow node \ list \\ \textbf{where} \\ dfs2 \ g \ [] \ ys = ys \\ | \ dfs2 \cdot inductive: \\ dfs2 \ g \ (x\#xs) \ ys = (if \ List.member \ ys \ x \ then \ dfs2 \ g \ xs \ ys \\ else \ dfs2 \ g \ (nexts \ g \ x) \ (x\#ys))) \end{array}$

 $\mathbf{by} \ pat-completeness \ auto$

lemma dfs2-invariant: dfs2-dom $(g, xs, ys) \Longrightarrow$ set $ys \subseteq$ set $(dfs2 \ g \ xs \ ys)$ by (induct $g \ xs \ ys$ rule: dfs2.pinduct) (force simp add: dfs2.psimps)+

```
termination dfs2

apply (relation inv-image (finite-psubset \langle *lex* \rangle less-than)

(\lambda(g,xs,ys). (nodes-of g - set ys, size xs)))

apply auto[1]

apply (simp-all add: finite-psubset-def)

apply (case-tac x \in nodes-of g)

apply (auto simp add: List.member-def)[2]

by (insert dfs2-invariant) force
```

lemma dfs-app: dfs g (xs@ys) zs = dfs g ys (dfs g xs zs) by (induct g xs zs rule: dfs.induct) auto

lemma dfs2 g xs ys = dfs g xs ys
by (induct g xs ys rule: dfs2.induct) (auto simp add: dfs-app)

1.4 Basic Properties

lemma visit-subset-dfs: set $ys \subseteq$ set (dfs g xs ys) by (induct g xs ys rule: dfs.induct) auto

```
with 2 and False show ?thesis
    by (auto simp add: List.member-def)
    qed
    qed(simp)
```

```
lemma nextss-closed-dfs'[rule-format]:
```

 $\begin{array}{l} nextss \ g \ ys \subseteq set \ xs \cup set \ ys \longrightarrow nextss \ g \ (dfs \ g \ xs \ ys) \subseteq set \ (dfs \ g \ xs \ ys) \\ \textbf{by} \ (induct \ g \ xs \ ys \ rule: dfs.induct, \ auto \ simp \ add: nextss-Cons \ List.member-def) \end{array}$

```
lemma nextss-closed-dfs: nextss g (dfs g xs []) \subseteq set (dfs g xs [])
by (rule nextss-closed-dfs', simp add: nextss-def)
```

```
lemma Image-closed-trancl: assumes r " X \subseteq X shows r^* " X = X
proof
 show r^* " X \subset X
 proof –
   ł
     fix x y
     assume y: y \in X
     assume (y,x) \in r^*
     then have x \in X
      by (induct) (insert assms y, auto simp add: Image-def)
   }
   then show ?thesis unfolding Image-def by auto
 qed
qed auto
lemma reachable-closed-dfs: reachable g xs \subseteq set(dfs \ g xs [])
proof –
 have reachable g xs \subseteq reachable g (dfs g xs [])
  unfolding reachable-def by (rule Image-mono) (auto simp add: next-subset-dfs)
 also have \ldots = set(dfs \ g \ xs \ [])
   unfolding reachable-def
 proof (rule Image-closed-trancl)
   from nextss-closed-dfs
   show set g '' set (dfs g xs []) \subseteq set (dfs g xs [])
     by (simp add: nextss-def)
 qed
 finally show ?thesis .
qed
```

```
lemma reachable-nexts: reachable g (nexts g x) \subseteq reachable g [x]

unfolding reachable-def

by (auto intro: converse-rtrancl-into-rtrancl simp: nexts-set)
```

lemma reachable-append: reachable $g(xs @ ys) = reachable g xs \cup reachable g ys$ unfolding reachable-def by auto **lemma** dfs-subset-reachable-visit-nodes: set (dfs g xs ys) \subseteq reachable g xs \cup set ys **proof**(*induct g xs ys rule: dfs.induct*) case 1 then show ?case by simp next case (2 g x xs ys)show ?case **proof** (cases $x \in set ys$) case True with 2 show set (dfs g (x#xs) ys) \subseteq reachable g (x#xs) \cup set ys **by** (*auto simp add: reachable-def List.member-def*) next ${\bf case} \ {\it False}$ have reachable g (nexts g x) \subseteq reachable g [x]by (rule reachable-nexts) hence a: reachable g (nexts g x @ xs) \subseteq reachable g (x#xs) **by**(*simp add: reachable-append, auto simp add: reachable-def*) with False 2 **show** set (dfs g (x#xs) ys) \subseteq reachable g (x#xs) \cup set ys **by** (auto simp add: reachable-def List.member-def) qed qed

1.5 Correctness

theorem dfs-eq-reachable: set (dfs g xs []) = reachable g xs **proof have** set (dfs g xs []) \subseteq reachable g xs \cup set [] **by** (rule dfs-subset-reachable-visit-nodes[of g xs []]) **thus** set (dfs g xs []) \subseteq reachable g xs **by** simp **qed**(rule reachable-closed-dfs)

theorem $y \in set (dfs \ g \ [x] \ []) = ((x,y) \in (set \ g)^*)$ **by**(simp only:dfs-eq-reachable reachable-def, auto)

1.6 Executable Code

 $\textbf{consts} \ \textit{Node} :: \textit{int} \Rightarrow \textit{node}$

code-datatype Node

instantiation node :: equal begin

definition equal-node :: node \Rightarrow node \Rightarrow bool where [code del]: equal-node = HOL.eq

instance proof qed (simp add: equal-node-def)

 \mathbf{end}

declare [[code abort: HOL.equal :: node \Rightarrow node \Rightarrow bool]]

export-code $dfs \ dfs2$ in SML file $\langle dfs.ML \rangle$

 \mathbf{end}