Abstract

Depth-first search of a graph is formalized with function. It is shown that it visits all of the reachable nodes from a given list of nodes. Executable ML code of depth-first search is obtained with code generation feature of Isabelle/HOL. The formalization contains two implementations of depth-first search: one by stack and one by nested recursion. They are shown to be equivalent. The termination condition of the version with nested-recursion is shown by the method of inductive invariants.

Contents

1 Depth-First Search 1
 1.1 Definition of Graphs 1
 1.2 Depth-First Search with Stack 2
 1.3 Depth-First Search with Nested-Recursion 3
 1.4 Basic Properties 3
 1.5 Correctness 5
 1.6 Executable Code 5

1 Depth-First Search

theory DFS
imports Main
begin

1.1 Definition of Graphs

typedecl node
type-synonym graph = (node * node) list

primrec nexts :: [graph, node] ⇒ node list
where
 nexts [] n = []
 | nexts (e#es) n = (if fst e = n then snd e # nexts es n else nexts es n)
definition nextss :: [graph, node list] ⇒ node set
 where nextss g xs = set g ++ set xs

lemma nexts-set: y ∈ set (nexts g x) = ((x,y) ∈ set g)
 by (induct g) auto

lemma nextss-Cons: nextss g (x#xs) = set (nexts g x) ∪ nextss g xs
 unfolding nextss-def by (auto simp add:Image-def nexts-set)

definition reachable :: [graph, node list] ⇒ node set
 where reachable g xs = (set g)∗ ++ set xs

1.2 Depth-First Search with Stack

definition nodes-of :: graph ⇒ node set
 where nodes-of g = set (map fst g @ map snd g)

lemma [simp]: x ∉ nodes-of g ⇒ nexts g x = []
 by (induct g) (auto simp add: nodes-of-def)

lemma [simp]: finite (nodes-of g − set ys)
 proof (rule finite-subset)
 show finite (nodes-of g)
 by (auto simp add: nodes-of-def)
 qed (auto)

function dfs :: graph ⇒ node list ⇒ node list ⇒ node list
 where
 dfs-base: dfs g [] ys = ys
 | dfs-inductive: dfs g (x#xs) ys = (if List.member ys x then dfs g xs ys
 else dfs g (nexts g x@xs) (x#ys))
 by pat-completeness auto

termination
apply (relation inv-image (finite-psubset <*lex*> less-than)
(λg,xs,ys. (nodes-of g − set ys, size xs)))
apply auto[1]
apply (simp-all add: finite-psubset-def)
by (case-tac x ∈ nodes-of g) (auto simp add: List.member-def)

• The second argument of dfs is a stack of nodes that will be visited.
• The third argument of dfs is a list of nodes that have been visited already.
1.3 Depth-First Search with Nested-Recursion

function
\texttt{dfs2} :: graph \Rightarrow \texttt{node list} \Rightarrow \texttt{node list} \Rightarrow \texttt{node list}

where
\texttt{dfs2 g [] ys = ys}

| \texttt{dfs2-inductive:}
| \texttt{dfs2 g (x\#xs) ys = (if List.member ys x then dfs2 g xs ys}
| \texttt{else dfs2 g xs (dfs2 g (nexts g x) (x\#ys)))}

by \texttt{pat-completeness} auto

\textbf{lemma} \texttt{dfs2-invariant}: \texttt{dfs2-dom (g, xs, ys) \Rightarrow set ys \subseteq set (dfs2 g xs ys)}

by (induct \texttt{g xs ys rule: dfs2.pinduct}) (force simp add: dfs2.psims)+

termination \texttt{dfs2}

\textbf{apply} (relation \texttt{inv-image} (finite-psubset <\texttt{lex}> less-than)
\lambda(g,xs,ys). (nodes-of g - set ys, size xs))

apply \texttt{auto[1]}

apply (simp-all add: finite-psubset-def)

apply (case-tac \texttt{x \in nodes-of g})

apply (auto simp add: List.member-def)[2]

by (insert \texttt{dfs2-invariant}) force

\textbf{lemma} \texttt{dfs-app}: \texttt{dfs g (xs@ys) zs = dfs g ys (dfs g xs zs)}

by (induct \texttt{g xs zs rule: dfs.induct}) auto

\textbf{lemma} \texttt{dfs2 g xs ys = dfs g xs ys}

by (induct \texttt{g xs ys rule: dfs2.induct}) (auto simp add: dfs-app)

1.4 Basic Properties

\textbf{lemma} \texttt{visit-subset-dfs}: \texttt{set ys \subseteq set (dfs g xs ys)}

by (induct \texttt{g xs ys rule: dfs.induct}) auto

\textbf{lemma} \texttt{next-subset-dfs}: \texttt{set xs \subseteq set (dfs g xs ys)}

\textbf{proof}(induct \texttt{g xs ys rule:dfs.induct})

\textbf{case}(2 g x xs ys)

show ?case

\textbf{proof}(cases \texttt{x \in set ys})

\textbf{case} True

have \texttt{set ys \subseteq set (dfs g xs ys)}

by (rule visit-subset-dfs)

with 2 and \texttt{True} show ?thesis

by (auto simp add: List.member-def)

next

\textbf{case} False

have \texttt{set (x#ys) \subseteq set (dfs g (nexts g x @ xs) (x#ys))}

by (rule visit-subset-dfs)
with 2 and False show ?thesis
 by (auto simp add: List.member-def)
qed
qed (simp)

lemma nextss-closed-dfs'[rule-format]:
nextss g ys ⊆ set xs ∪ set ys → nextss g (dfs g xs ys) ⊆ set (dfs g xs ys)
by (induct g xs ys rule:dfs.induct, auto simp add:nextss-Cons List.member-def)

lemma nextss-closed-dfs: nextss g (dfs g xs []) ⊆ set (dfs g xs [])
by (rule nextss-closed-dfs', simp add: nextss-def)

lemma Image-closed-trancl: assumes r " X ⊆ X shows r* " X = X
proof
 show r* " X ⊆ X
 proof
 { fix x y
 assume y: y ∈ X
 assume (y,x) ∈ r
 then have x ∈ X
 by (induct) (insert assms y, auto simp add: Image-def)
 }
 then show ?thesis unfolding Image-def by auto
 qed
qed auto

lemma reachable-closed-dfs: reachable g xs ⊆ set(dfs g xs [])
proof
 have reachable g xs ⊆ reachable g (dfs g xs [])
 unfolding reachable-def by (rule Image-mono) (auto simp add: next-subset-dfs)
 also have ... = set(dfs g xs [])
 unfolding reachable-def
 proof (rule Image-closed-trancl)
 from nextss-closed-dfs
 show set g " set (dfs g xs []) ⊆ set (dfs g xs [])
 by (simp add: nextss-def)
 qed
 finally show ?thesis .
qed

lemma reachable-nexts: reachable g (nexts g x) ⊆ reachable g [x]
 unfolding reachable-def
 by (auto intro: converse-rtrancl-into-rtrancl simp: nexts-set)

lemma reachable-append: reachable g (xs @ ys) = reachable g xs ∪ reachable g ys
 unfolding reachable-def by auto
lemma dfs-subset-reachable-visit-nodes: set (dfs g xs ys) ⊆ reachable g xs ∪ set ys
proof (induct g xs ys rule: dfs.induct)
 case 1
 then show ?case by simp
next
 case (2 g x xs ys)
 show ?case
 proof (cases x ∈ set ys)
 case True
 with 2 show set (dfs g (x#xs) ys) ⊆ reachable g (x#xs) ∪ set ys
 by (auto simp add: reachable-def List.member-def)
 next
 case False
 have reachable g (nexts g x) ⊆ reachable g [x]
 by (rule reachable-nexts)
 hence a: reachable g (nexts g x @ xs) ⊆ reachable g (x#xs)
 by(simp add: reachable-append, auto simp add: reachable-def)
 with False 2
 show set (dfs g (x#xs) ys) ⊆ reachable g (x#xs) ∪ set ys
 by (auto simp add: reachable-def List.member-def)
 qed
qed

1.5 Correctness

theorem dfs-eq-reachable: set (dfs g xs []) = reachable g xs
proof
 have set (dfs g xs []) ⊆ reachable g xs ∪ set []
 by (rule dfs-subset-reachable-visit-nodes[of g xs []])
 thus set (dfs g xs []) ⊆ reachable g xs
 by simp
qed

theorem y ∈ set (dfs g [x] []) = ((x,y) ∈ (set g)^*)
by(simp only:dfs-eq-reachable reachable-def, auto)

1.6 Executable Code

consts Node :: int ⇒ node

code-datatype Node

instantiation node :: equal
begin

definition equal-node :: node ⇒ node ⇒ bool
where
 [code del]: equal-node = HOL.eq
instance proof
qed (simp add: equal-node-def)

end

declare [[code abort: HOL.equal :: node ⇒ node ⇒ bool]]

export-code dfs dfs2 in SML file dfs.ML

end