
Depth-First Search

Toshiaki Nishihara Yasuhiko Minamide

March 17, 2025

Abstract

Depth-first search of a graph is formalized with function. It is
shown that it visits all of the reachable nodes from a given list of
nodes. Executable ML code of depth-first search is obtained with code
generation feature of Isabelle/HOL. The formalization contains two
implementations of depth-first search: one by stack and one by nested
recursion. They are shown to be equivalent. The termination condi-
tion of the version with nested-recursion is shown by the method of
inductive invariants.

Contents
1 Depth-First Search 1

1.1 Definition of Graphs . 1
1.2 Depth-First Search with Stack 2
1.3 Depth-First Search with Nested-Recursion 2
1.4 Basic Properties . 3
1.5 Correctness . 5
1.6 Executable Code . 5

1 Depth-First Search
theory DFS
imports Main
begin

1.1 Definition of Graphs
typedecl node
type-synonym graph = (node ∗ node) list

primrec nexts :: [graph, node] ⇒ node list
where

nexts [] n = []
| nexts (e#es) n = (if fst e = n then snd e # nexts es n else nexts es n)

1

definition nextss :: [graph, node list] ⇒ node set
where nextss g xs = set g ‘‘ set xs

lemma nexts-set: y ∈ set (nexts g x) = ((x,y) ∈ set g)
by (induct g) auto

lemma nextss-Cons: nextss g (x#xs) = set (nexts g x) ∪ nextss g xs
unfolding nextss-def by (auto simp add:Image-def nexts-set)

definition reachable :: [graph, node list] ⇒ node set
where reachable g xs = (set g)∗ ‘‘ set xs

1.2 Depth-First Search with Stack
definition nodes-of :: graph ⇒ node set

where nodes-of g = set (map fst g @ map snd g)

lemma [simp]: x /∈ nodes-of g =⇒ nexts g x = []
by (induct g) (auto simp add: nodes-of-def)

lemma [simp]: finite (nodes-of g − set ys)
proof(rule finite-subset)

show finite (nodes-of g)
by (auto simp add: nodes-of-def)

qed (auto)

function
dfs :: graph ⇒ node list ⇒ node list ⇒ node list

where
dfs-base: dfs g [] ys = ys

| dfs-inductive: dfs g (x#xs) ys = (if List.member ys x then dfs g xs ys
else dfs g (nexts g x@xs) (x#ys))

by pat-completeness auto

termination
apply (relation inv-image (finite-psubset <∗lex∗> less-than)

(λ(g,xs,ys). (nodes-of g − set ys, size xs)))
apply auto[1]
apply (simp-all add: finite-psubset-def)
by (case-tac x ∈ nodes-of g) (auto simp add: List.member-def)

• The second argument of dfs is a stack of nodes that will be visited.

• The third argument of dfs is a list of nodes that have been visited
already.

2

1.3 Depth-First Search with Nested-Recursion
function

dfs2 :: graph ⇒ node list ⇒ node list ⇒ node list
where

dfs2 g [] ys = ys
| dfs2-inductive:

dfs2 g (x#xs) ys = (if List.member ys x then dfs2 g xs ys
else dfs2 g xs (dfs2 g (nexts g x) (x#ys)))

by pat-completeness auto

lemma dfs2-invariant: dfs2-dom (g, xs, ys) =⇒ set ys ⊆ set (dfs2 g xs ys)
by (induct g xs ys rule: dfs2 .pinduct) (force simp add: dfs2 .psimps)+

termination dfs2
apply (relation inv-image (finite-psubset <∗lex∗> less-than)

(λ(g,xs,ys). (nodes-of g − set ys, size xs)))
apply auto[1]
apply (simp-all add: finite-psubset-def)
apply (case-tac x ∈ nodes-of g)
apply (auto simp add: List.member-def)[2]
by (insert dfs2-invariant) force

lemma dfs-app: dfs g (xs@ys) zs = dfs g ys (dfs g xs zs)
by (induct g xs zs rule: dfs.induct) auto

lemma dfs2 g xs ys = dfs g xs ys
by (induct g xs ys rule: dfs2 .induct) (auto simp add: dfs-app)

1.4 Basic Properties
lemma visit-subset-dfs: set ys ⊆ set (dfs g xs ys)

by (induct g xs ys rule: dfs.induct) auto

lemma next-subset-dfs: set xs ⊆ set (dfs g xs ys)
proof(induct g xs ys rule:dfs.induct)

case(2 g x xs ys)
show ?case
proof(cases x ∈ set ys)

case True
have set ys ⊆ set (dfs g xs ys)

by (rule visit-subset-dfs)
with 2 and True show ?thesis

by (auto simp add: List.member-def)
next

case False
have set (x#ys) ⊆ set (dfs g (nexts g x @ xs) (x#ys))

by(rule visit-subset-dfs)

3

with 2 and False show ?thesis
by (auto simp add: List.member-def)

qed
qed(simp)

lemma nextss-closed-dfs ′[rule-format]:
nextss g ys ⊆ set xs ∪ set ys −→ nextss g (dfs g xs ys) ⊆ set (dfs g xs ys)
by (induct g xs ys rule:dfs.induct, auto simp add:nextss-Cons List.member-def)

lemma nextss-closed-dfs: nextss g (dfs g xs []) ⊆ set (dfs g xs [])
by (rule nextss-closed-dfs ′, simp add: nextss-def)

lemma Image-closed-trancl: assumes r ‘‘ X ⊆ X shows r∗ ‘‘ X = X
proof

show r∗ ‘‘ X ⊆ X
proof −

{
fix x y
assume y: y ∈ X
assume (y,x) ∈ r∗

then have x ∈ X
by (induct) (insert assms y, auto simp add: Image-def)

}
then show ?thesis unfolding Image-def by auto

qed
qed auto

lemma reachable-closed-dfs: reachable g xs ⊆ set(dfs g xs [])
proof −

have reachable g xs ⊆ reachable g (dfs g xs [])
unfolding reachable-def by (rule Image-mono) (auto simp add: next-subset-dfs)

also have . . . = set(dfs g xs [])
unfolding reachable-def

proof (rule Image-closed-trancl)
from nextss-closed-dfs
show set g ‘‘ set (dfs g xs []) ⊆ set (dfs g xs [])

by (simp add: nextss-def)
qed
finally show ?thesis .

qed

lemma reachable-nexts: reachable g (nexts g x) ⊆ reachable g [x]
unfolding reachable-def
by (auto intro: converse-rtrancl-into-rtrancl simp: nexts-set)

lemma reachable-append: reachable g (xs @ ys) = reachable g xs ∪ reachable g ys
unfolding reachable-def by auto

4

lemma dfs-subset-reachable-visit-nodes: set (dfs g xs ys) ⊆ reachable g xs ∪ set ys
proof(induct g xs ys rule: dfs.induct)

case 1
then show ?case by simp

next
case (2 g x xs ys)
show ?case
proof (cases x ∈ set ys)

case True
with 2 show set (dfs g (x#xs) ys) ⊆ reachable g (x#xs) ∪ set ys

by (auto simp add: reachable-def List.member-def)
next

case False
have reachable g (nexts g x) ⊆ reachable g [x]

by (rule reachable-nexts)
hence a: reachable g (nexts g x @ xs) ⊆ reachable g (x#xs)

by(simp add: reachable-append, auto simp add: reachable-def)
with False 2
show set (dfs g (x#xs) ys) ⊆ reachable g (x#xs) ∪ set ys

by (auto simp add: reachable-def List.member-def)
qed

qed

1.5 Correctness
theorem dfs-eq-reachable: set (dfs g xs []) = reachable g xs
proof

have set (dfs g xs []) ⊆ reachable g xs ∪ set []
by (rule dfs-subset-reachable-visit-nodes[of g xs []])

thus set (dfs g xs []) ⊆ reachable g xs
by simp

qed(rule reachable-closed-dfs)

theorem y ∈ set (dfs g [x] []) = ((x,y) ∈ (set g)∗)
by(simp only:dfs-eq-reachable reachable-def , auto)

1.6 Executable Code
consts Node :: int ⇒ node

code-datatype Node

instantiation node :: equal
begin

definition equal-node :: node ⇒ node ⇒ bool
where
[code del]: equal-node = HOL.eq

5

instance proof
qed (simp add: equal-node-def)

end

declare [[code abort: HOL.equal :: node ⇒ node ⇒ bool]]

export-code dfs dfs2 in SML file ‹dfs.ML›

end

6

	Depth-First Search
	Definition of Graphs
	Depth-First Search with Stack
	Depth-First Search with Nested-Recursion
	Basic Properties
	Correctness
	Executable Code

