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Abstract

This theory formalizes a commutation version of decreasing dia-
grams for Church-Rosser modulo. The proof follows Felgenhauer and
van Oostrom (RTA 2013). The theory also provides important special-
izations, in particular van Oostrom’s conversion version (TCS 2008) of
decreasing diagrams.

We follow the development described in [1]: Conversions are mapped to
Greek strings, and we prove that whenever a local peak (or cliff) is replaced
by a joining sequence from a locally decreasing diagram, then the corre-
sponding Greek strings become smaller in a specially crafted well-founded
order on Greek strings. Once there are no more local peaks or cliffs are left,
the result is a valley that establishes the Church-Rosser modulo property.

As special cases we provide non-commutation versions and the conver-
sion version of decreasing diagrams by van Oostrom [3]. We also formalize
extended decreasingness [2].
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1 Preliminaries
theory Decreasing-Diagrams-II-Aux
imports

Well-Quasi-Orders.Multiset-Extension
Well-Quasi-Orders.Well-Quasi-Orders

begin

1.1 Trivialities
abbreviation strict-order R ≡ irrefl R ∧ trans R

lemma strict-order-strict: strict-order q =⇒ strict (λa b. (a, b) ∈ q=) = (λa b.
(a, b) ∈ q)
unfolding trans-def irrefl-def by fast

lemma mono-lex1 : mono (λr . lex-prod r s)
by (auto simp add: mono-def )

lemma mono-lex2 : mono (lex-prod r)
by (auto simp add: mono-def )

lemmas converse-inward = rtrancl-converse[symmetric] converse-Un converse-UNION
converse-relcomp

converse-converse converse-Id

1.2 Complete lattices and least fixed points
context complete-lattice
begin

1.2.1 A chain-based induction principle
abbreviation set-chain :: ′a set ⇒ bool where
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set-chain C ≡ ∀ x ∈ C . ∀ y ∈ C . x ≤ y ∨ y ≤ x

lemma lfp-chain-induct:
assumes mono: mono f
and step:

∧
x. P x =⇒ P (f x)

and chain:
∧

C . set-chain C =⇒ ∀ x ∈ C . P x =⇒ P (Sup C )
shows P (lfp f )

unfolding lfp-eq-fixp[OF mono]
proof (rule fixp-induct)

show monotone (≤) (≤) f using mono unfolding order-class.mono-def mono-
tone-def .
next

show P (Sup {}) using chain[of {}] by simp
next

show ccpo.admissible Sup (≤) P
by (auto simp add: chain ccpo.admissible-def Complete-Partial-Order .chain-def )

qed fact

1.2.2 Preservation of transitivity, asymmetry, irreflexivity by suprema
lemma trans-Sup-of-chain:

assumes set-chain C and trans:
∧

R. R ∈ C =⇒ trans R
shows trans (Sup C )

proof (intro transI )
fix x y z
assume (x,y) ∈ Sup C and (y,z) ∈ Sup C
from ‹(x,y) ∈ Sup C › obtain R where R ∈ C and (x,y) ∈ R by blast
from ‹(y,z) ∈ Sup C › obtain S where S ∈ C and (y,z) ∈ S by blast
from ‹R ∈ C › and ‹S ∈ C › and ‹set-chain C › have R ∪ S = R ∨ R ∪ S = S

by blast
with ‹R ∈ C › and ‹S ∈ C › have R ∪ S ∈ C by fastforce
with ‹(x,y) ∈ R› and ‹(y,z) ∈ S› and trans[of R ∪ S ]
have (x,z) ∈ R ∪ S unfolding trans-def by blast
with ‹R ∪ S ∈ C › show (x,z) ∈

⋃
C by blast

qed

lemma asym-Sup-of-chain:
assumes set-chain C and asym:

∧
R. R ∈ C =⇒ asym R

shows asym (Sup C )
proof (intro asymI notI )

fix a b
assume (a,b) ∈ Sup C then obtain R where R ∈ C and (a,b) ∈ R by blast
assume (b,a) ∈ Sup C then obtain S where S ∈ C and (b,a) ∈ S by blast
from ‹R ∈ C › and ‹S ∈ C › and ‹set-chain C › have R ∪ S = R ∨ R ∪ S = S

by blast
with ‹R ∈ C › and ‹S ∈ C › have R ∪ S ∈ C by fastforce
with ‹(a,b) ∈ R› and ‹(b,a) ∈ S› and asym[THEN asymD] show False by blast

qed
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lemma strict-order-lfp:
assumes mono f and

∧
R. strict-order R =⇒ strict-order (f R)

shows strict-order (lfp f )
proof (intro lfp-chain-induct[of f strict-order ])

fix C :: ( ′b × ′b) set set
assume set-chain C and ∀R ∈ C . strict-order R
from this show strict-order (Sup C )

using asym-on-iff-irrefl-on-if-trans-on[of UNIV ]
by (metis asym-Sup-of-chain trans-Sup-of-chain)

qed fact+

lemma trans-lfp:
assumes mono f and

∧
R. trans R =⇒ trans (f R)

shows trans (lfp f )
by (metis lfp-chain-induct[of f trans] assms trans-Sup-of-chain)

end

1.3 Multiset extension
lemma mulex-iff-mult: mulex r M N ←→ (M ,N ) ∈ mult {(M ,N ) . r M N}
by (auto simp add: mulex-on-def restrict-to-def mult-def mulex1-def tranclp-unfold)

lemma multI :
assumes trans r M = I + K N = I + J J 6= {#} ∀ k ∈ set-mset K . ∃ j ∈

set-mset J . (k,j) ∈ r
shows (M ,N ) ∈ mult r

using assms one-step-implies-mult by blast

lemma multE :
assumes trans r and (M ,N ) ∈ mult r
obtains I J K where M = I + K N = I + J J 6= {#} ∀ k ∈ set-mset K . ∃ j ∈

set-mset J . (k,j) ∈ r
using mult-implies-one-step[OF assms] by blast

lemma mult-on-union: (M ,N ) ∈ mult r =⇒ (K + M , K + N ) ∈ mult r
using mulex-on-union[of λx y. (x,y) ∈ r UNIV ] by (auto simp: mulex-iff-mult)

lemma mult-on-union ′: (M ,N ) ∈ mult r =⇒ (M + K , N + K ) ∈ mult r
using mulex-on-union ′[of λx y. (x,y) ∈ r UNIV ] by (auto simp: mulex-iff-mult)

lemma mult-on-add-mset: (M ,N ) ∈ mult r =⇒ (add-mset k M , add-mset k N ) ∈
mult r
unfolding add-mset-add-single[of k M ] add-mset-add-single[of k N ] by (rule mult-on-union ′)

lemma mult-empty[simp]: (M ,{#}) /∈ mult R
by (metis mult-def not-less-empty trancl.cases)

lemma mult-singleton[simp]: (x, y) ∈ r =⇒ (add-mset x M , add-mset y M ) ∈ mult
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r
unfolding add-mset-add-single[of x M ] add-mset-add-single[of y M ]
apply (rule mult-on-union)
using mult1-singleton[of x y r ] by (auto simp add: mult-def mult-on-union)

lemma empty-mult[simp]: ({#},N ) ∈ mult R ←→ N 6= {#}
using empty-mulex-on[of N UNIV λM N . (M ,N ) ∈ R] by (auto simp add: mulex-iff-mult)

lemma trans-mult: trans (mult R)
unfolding mult-def by simp

lemma strict-order-mult:
assumes irrefl R and trans R
shows irrefl (mult R) and trans (mult R)

proof −
show irrefl (mult R) unfolding irrefl-def
proof (intro allI notI , elim multE [OF ‹trans R›])

fix M I J K
assume M = I + J M = I + K J 6= {#} and ∗: ∀ k ∈ set-mset K . ∃ j ∈

set-mset J . (k, j) ∈ R
from ‹M = I + J › and ‹M = I + K › have J = K by simp
have finite (set-mset J ) by simp
then have set-mset J = {} using ∗ unfolding ‹J = K ›

by (induct rule: finite-induct)
(simp, metis assms insert-absorb insert-iff insert-not-empty irrefl-def transD)

then show False using ‹J 6= {#}› by simp
qed

qed (simp add: trans-mult)

lemma mult-of-image-mset:
assumes trans R and trans R ′

and
∧

x y. x ∈ set-mset N =⇒ y ∈ set-mset M =⇒ (x,y) ∈ R =⇒ (f x, f y) ∈
R ′

and (N , M ) ∈ mult R
shows (image-mset f N , image-mset f M ) ∈ mult R ′

proof (insert assms(4 ), elim multE [OF assms(1 )])
fix I J K
assume N = I + K M = I + J J 6= {#} ∀ k ∈ set-mset K . ∃ j ∈ set-mset J .

(k, j) ∈ R
thus (image-mset f N , image-mset f M ) ∈ mult R ′ using assms(2 ,3 )

by (intro multI ) (auto, blast)
qed

1.4 Incrementality of mult1 and mult
lemma mono-mult1 : mono mult1
unfolding mono-def mult1-def by blast

lemma mono-mult: mono mult
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unfolding mono-def mult-def
proof (intro allI impI subsetI )

fix R S :: ′a rel and x
assume R ⊆ S and x ∈ (mult1 R)+

then show x ∈ (mult1 S)+
using mono-mult1 [unfolded mono-def ] trancl-mono[of x mult1 R mult1 S ] by

auto
qed

1.5 Well-orders and well-quasi-orders
lemma wf-iff-wfp-on:

wf p ←→ wfp-on (λa b. (a, b) ∈ p) UNIV
unfolding wfp-on-iff-inductive-on wf-def inductive-on-def by force

lemma well-order-implies-wqo:
assumes well-order r
shows wqo-on (λa b. (a, b) ∈ r) UNIV

proof (intro wqo-onI almost-full-onI )
show transp (λa b. (a, b) ∈ r) using assms
by (auto simp only: well-order-on-def linear-order-on-def partial-order-on-def pre-

order-on-def
trans-def transp-def )

next
fix f :: nat ⇒ ′a
show good (λa b. (a, b) ∈ r) f
using assms unfolding well-order-on-def wf-iff-wfp-on wfp-on-def not-ex not-all

de-Morgan-conj
proof (elim conjE allE exE)

fix x assume linear-order r and f x /∈ UNIV ∨ (f (Suc x), f x) /∈ r − Id
then have (f x, f (Suc x)) ∈ r using ‹linear-order r›
by (force simp: linear-order-on-def Relation.total-on-def partial-order-on-def

preorder-on-def
refl-on-def )

then show good (λa b. (a, b) ∈ r) f by (auto simp: good-def )
qed

qed

1.6 Splitting lists into prefix, element, and suffix
fun list-splits :: ′a list ⇒ ( ′a list × ′a × ′a list) list where

list-splits [] = []
| list-splits (x # xs) = ([], x, xs) # map (λ(xs, x ′, xs ′). (x # xs, x ′, xs ′)) (list-splits
xs)

lemma list-splits-empty[simp]:
list-splits xs = [] ←→ xs = []

by (cases xs) simp-all

lemma elem-list-splits-append:
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assumes (ys, y, zs) ∈ set (list-splits xs)
shows ys @ [y] @ zs = xs

using assms by (induct xs arbitrary: ys) auto

lemma elem-list-splits-length:
assumes (ys, y, zs) ∈ set (list-splits xs)
shows length ys < length xs and length zs < length xs

using elem-list-splits-append[OF assms] by auto

lemma elem-list-splits-elem:
assumes (xs, y, ys) ∈ set (list-splits zs)
shows y ∈ set zs

using elem-list-splits-append[OF assms] by force

lemma list-splits-append:
list-splits (xs @ ys) = map (λ(xs ′, x ′, ys ′). (xs ′, x ′, ys ′ @ ys)) (list-splits xs) @

map (λ(xs ′, x ′, ys ′). (xs @ xs ′, x ′, ys ′)) (list-splits ys)
by (induct xs) auto

lemma list-splits-rev:
list-splits (rev xs) = map (λ(xs, x, ys). (rev ys, x, rev xs)) (rev (list-splits xs))

by (induct xs) (auto simp add: list-splits-append comp-def prod.case-distrib rev-map)

lemma list-splits-map:
list-splits (map f xs) = map (λ(xs, x, ys). (map f xs, f x, map f ys)) (list-splits

xs)
by (induct xs) auto

end

2 Decreasing Diagrams
theory Decreasing-Diagrams-II
imports

Decreasing-Diagrams-II-Aux
HOL−Cardinals.Wellorder-Extension
Abstract−Rewriting.Abstract-Rewriting

begin

2.1 Greek accents
datatype accent = Acute | Grave | Macron

lemma UNIV-accent: UNIV = { Acute, Grave, Macron }
using accent.nchotomy by blast

lemma finite-accent: finite (UNIV :: accent set)
by (simp add: UNIV-accent)
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type-synonym ′a letter = accent × ′a

definition letter-less :: ( ′a × ′a) set ⇒ ( ′a letter × ′a letter) set where
[simp]: letter-less R = {(a,b). (snd a, snd b) ∈ R}

lemma mono-letter-less: mono letter-less
by (auto simp add: mono-def )

2.2 Comparing Greek strings
type-synonym ′a greek = ′a letter list

definition adj-msog :: ′a greek ⇒ ′a greek ⇒ ( ′a letter × ′a greek) ⇒ ( ′a letter ×
′a greek)
where

adj-msog xs zs l ≡
case l of (y,ys) ⇒ (y, case fst y of Acute ⇒ ys @ zs | Grave ⇒ xs @ ys | Macron

⇒ ys)

definition ms-of-greek :: ′a greek ⇒ ( ′a letter × ′a greek) multiset where
ms-of-greek as = mset
(map (λ(xs, y, zs) ⇒ adj-msog xs zs (y, [])) (list-splits as))

lemma adj-msog-adj-msog[simp]:
adj-msog xs zs (adj-msog xs ′ zs ′ y) = adj-msog (xs @ xs ′) (zs ′ @ zs) y

by (auto simp: adj-msog-def split: accent.splits prod.splits)

lemma compose-adj-msog[simp]: adj-msog xs zs ◦ adj-msog xs ′ zs ′ = adj-msog (xs
@ xs ′) (zs ′ @ zs)
by (simp add: comp-def )

lemma adj-msog-single:
adj-msog xs zs (x,[]) = (x, (case fst x of Grave ⇒ xs | Acute ⇒ zs | Macron ⇒

[]))
by (simp add: adj-msog-def split: accent.splits)

lemma ms-of-greek-elem:
assumes (x,xs) ∈ set-mset (ms-of-greek ys)
shows x ∈ set ys

using assms by (auto dest: elem-list-splits-elem simp: adj-msog-def ms-of-greek-def )

lemma ms-of-greek-shorter :
assumes (x, t) ∈# ms-of-greek s
shows length s > length t

using assms[unfolded ms-of-greek-def in-multiset-in-set]
by (auto simp: elem-list-splits-length adj-msog-def split: accent.splits)

lemma msog-append: ms-of-greek (xs @ ys) = image-mset (adj-msog [] ys) (ms-of-greek
xs) +
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image-mset (adj-msog xs []) (ms-of-greek ys)
by (auto simp: ms-of-greek-def list-splits-append multiset.map-comp comp-def prod.case-distrib)

definition nest :: ( ′a × ′a) set ⇒ ( ′a greek × ′a greek) set ⇒ ( ′a greek × ′a greek)
set where
[simp]: nest r s = {(a,b). (ms-of-greek a, ms-of-greek b) ∈ mult (letter-less r

<∗lex∗> s)}

lemma mono-nest: mono (nest r)
unfolding mono-def
proof (intro allI impI subsetI )

fix R S x
assume 1 : R ⊆ S and 2 : x ∈ nest r R
from 1 have mult (letter-less r <∗lex∗> R) ⊆ mult (letter-less r <∗lex∗> S)
using mono-mult mono-lex2 [of letter-less r ] unfolding mono-def by blast
with 2 show x ∈ nest r S by auto

qed

lemma nest-mono[mono-set]: x ⊆ y =⇒ (a,b) ∈ nest r x −→ (a,b) ∈ nest r y
using mono-nest[unfolded mono-def , rule-format, of x y r ] by blast

definition greek-less :: ( ′a × ′a) set ⇒ ( ′a greek × ′a greek) set where
greek-less r = lfp (nest r)

lemma greek-less-unfold:
greek-less r = nest r (greek-less r)

using mono-nest[of r ] lfp-unfold[of nest r ] by (simp add: greek-less-def )

2.3 Preservation of strict partial orders
lemma strict-order-letter-less:

assumes strict-order r
shows strict-order (letter-less r)

using assms unfolding irrefl-def trans-def letter-less-def by fast

lemma strict-order-nest:
assumes r : strict-order r and R: strict-order R
shows strict-order (nest r R)

proof −
have strict-order (mult (letter-less r <∗lex∗> R))
using strict-order-letter-less[of r ] irrefl-lex-prod[of letter-less r R]

trans-lex-prod[of letter-less r R] strict-order-mult[of letter-less r <∗lex∗> R]
assms

by fast
from this show strict-order (nest r R) unfolding nest-def trans-def irrefl-def

by fast
qed

lemma strict-order-greek-less:
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assumes strict-order r
shows strict-order (greek-less r)

by (simp add: greek-less-def strict-order-lfp[OF mono-nest strict-order-nest[OF assms]])

lemma trans-letter-less:
assumes trans r
shows trans (letter-less r)

using assms unfolding trans-def letter-less-def by fast

lemma trans-order-nest: trans (nest r R)
using trans-mult unfolding nest-def trans-def by fast

lemma trans-greek-less[simp]: trans (greek-less r)
by (subst greek-less-unfold) (rule trans-order-nest)

lemma mono-greek-less: mono greek-less
unfolding greek-less-def mono-def
proof (intro allI impI lfp-mono)

fix r s :: ( ′a × ′a) set and R :: ( ′a greek × ′a greek) set
assume r ⊆ s
then have letter-less r <∗lex∗> R ⊆ letter-less s <∗lex∗> R
using mono-letter-less mono-lex1 unfolding mono-def by metis
then show nest r R ⊆ nest s R using mono-mult unfolding nest-def mono-def

by blast
qed

2.4 Involution
definition inv-letter :: ′a letter ⇒ ′a letter where

inv-letter l ≡
case l of (a, x) ⇒ (case a of Grave ⇒ Acute | Acute ⇒ Grave | Macron ⇒

Macron, x)

lemma inv-letter-pair [simp]:
inv-letter (a, x) = (case a of Grave ⇒ Acute | Acute ⇒ Grave | Macron ⇒

Macron, x)
by (simp add: inv-letter-def )

lemma snd-inv-letter [simp]:
snd (inv-letter x) = snd x

by (simp add: inv-letter-def split: prod.splits)

lemma inv-letter-invol[simp]:
inv-letter (inv-letter x) = x

by (simp add: inv-letter-def split: prod.splits accent.splits)

lemma inv-letter-mono[simp]:
assumes (x, y) ∈ letter-less r
shows (inv-letter x, inv-letter y) ∈ letter-less r
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using assms by simp

definition inv-greek :: ′a greek ⇒ ′a greek where
inv-greek s = rev (map inv-letter s)

lemma inv-greek-invol[simp]:
inv-greek (inv-greek s) = s

by (simp add: inv-greek-def rev-map comp-def )

lemma inv-greek-append:
inv-greek (s @ t) = inv-greek t @ inv-greek s

by (simp add: inv-greek-def )

definition inv-msog :: ( ′a letter × ′a greek) multiset ⇒ ( ′a letter × ′a greek)
multiset where

inv-msog M = image-mset (λ(x, t). (inv-letter x, inv-greek t)) M

lemma inv-msog-invol[simp]:
inv-msog (inv-msog M ) = M

by (simp add: inv-msog-def multiset.map-comp comp-def prod.case-distrib)

lemma ms-of-greek-inv-greek:
ms-of-greek (inv-greek M ) = inv-msog (ms-of-greek M )

unfolding inv-msog-def inv-greek-def ms-of-greek-def list-splits-rev list-splits-map
mset-map

multiset.map-comp mset-rev inv-letter-def adj-msog-def
by (rule cong[OF cong[OF refl[of image-mset]] refl]) (auto split: accent.splits)

lemma inv-greek-mono:
assumes trans r and (s, t) ∈ greek-less r
shows (inv-greek s, inv-greek t) ∈ greek-less r

using assms(2 )
proof (induct length s + length t arbitrary: s t rule: less-induct)

note ∗ = trans-lex-prod[OF trans-letter-less[OF ‹trans r›] trans-greek-less[of r ]]
case (less s t)
have (inv-msog (ms-of-greek s), inv-msog (ms-of-greek t)) ∈ mult (letter-less r

<∗lex∗> greek-less r)
unfolding inv-msog-def
proof (induct rule: mult-of-image-mset[OF ∗ ∗])

case (1 x y) thus ?case
by (auto intro: less(1 ) split: prod.splits dest!: ms-of-greek-shorter)

next
case 2 thus ?case using less(2 ) by (subst(asm) greek-less-unfold) simp

qed
thus ?case by (subst greek-less-unfold) (auto simp: ms-of-greek-inv-greek)

qed
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2.5 Monotonicity of greek-less r
lemma greek-less-rempty[simp]:
(a,[]) ∈ greek-less r ←→ False

by (subst greek-less-unfold) (auto simp: ms-of-greek-def )

lemma greek-less-nonempty:
assumes b 6= []
shows (a,b) ∈ greek-less r ←→ (a,b) ∈ nest r (greek-less r)

by (subst greek-less-unfold) simp

lemma greek-less-lempty[simp]:
([],b) ∈ greek-less r ←→ b 6= []

proof
assume ([],b) ∈ greek-less r
then show b 6= [] using greek-less-rempty by fast

next
assume b 6= []
then show ([],b) ∈ greek-less r
unfolding greek-less-nonempty[OF ‹b 6= []›] by (simp add: ms-of-greek-def )

qed

lemma greek-less-singleton:
(a, b) ∈ letter-less r =⇒ ([a], [b]) ∈ greek-less r

by (subst greek-less-unfold) (auto split: accent.splits simp: adj-msog-def ms-of-greek-def )

lemma ms-of-greek-cons:
ms-of-greek (x # s) = {# adj-msog [] s (x,[]) #} + image-mset (adj-msog [x] [])

(ms-of-greek s)
using msog-append[of [x] s]
by (auto simp add: adj-msog-def ms-of-greek-def accent.splits)

lemma greek-less-cons-mono:
assumes trans r
shows (s, t) ∈ greek-less r =⇒ (x # s, x # t) ∈ greek-less r

proof (induct length s + length t arbitrary: s t rule: less-induct)
note ∗ = trans-lex-prod[OF trans-letter-less[OF ‹trans r›] trans-greek-less[of r ]]
case (less s t)
{

fix M have (M + image-mset (adj-msog [x] []) (ms-of-greek s),
M + image-mset (adj-msog [x] []) (ms-of-greek t)) ∈ mult (letter-less r <∗lex∗>

greek-less r)
proof (rule mult-on-union, induct rule: mult-of-image-mset[OF ∗ ∗])

case (1 x y) thus ?case unfolding adj-msog-def
by (auto intro: less(1 ) split: prod.splits accent.splits dest!: ms-of-greek-shorter)

next
case 2 thus ?case using less(2 ) by (subst(asm) greek-less-unfold) simp

qed
}
moreover {
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fix N have ({# adj-msog [] s (x,[]) #} + N ,{# adj-msog [] t (x,[]) #} + N ) ∈
(mult (letter-less r <∗lex∗> greek-less r))=

by (auto simp: adj-msog-def less split: accent.splits) }
ultimately show ?case using transD[OF trans-mult]
by (subst greek-less-unfold) (fastforce simp: ms-of-greek-cons)

qed

lemma greek-less-app-mono2 :
assumes trans r and (s, t) ∈ greek-less r
shows (p @ s, p @ t) ∈ greek-less r

using assms by (induct p) (auto simp add: greek-less-cons-mono)

lemma greek-less-app-mono1 :
assumes trans r and (s, t) ∈ greek-less r
shows (s @ p, t @ p) ∈ greek-less r

using inv-greek-mono[of r inv-greek p @ inv-greek s inv-greek p @ inv-greek t]
by (simp add: assms inv-greek-append inv-greek-mono greek-less-app-mono2 )

2.6 Well-founded-ness of greek-less r
lemma greek-embed:

assumes trans r
shows list-emb (λa b. (a, b): reflcl (letter-less r)) a b =⇒ (a, b) ∈ reflcl (greek-less

r)
proof (induct rule: list-emb.induct)

case (list-emb-Cons a b y) thus ?case
using trans-greek-less[unfolded trans-def ] ‹trans r›

greek-less-app-mono1 [of r [] [y] a] greek-less-app-mono2 [of r a b [y]] by auto
next

case (list-emb-Cons2 x y a b) thus ?case
using trans-greek-less[unfolded trans-def ] ‹trans r› greek-less-singleton[of x y r ]

greek-less-app-mono1 [of r [x] [y] a] greek-less-app-mono2 [of r a b [y]] by auto
qed simp

lemma wqo-letter-less:
assumes t: trans r and w: wqo-on (λa b. (a, b) ∈ r=) UNIV
shows wqo-on (λa b. (a, b) ∈ (letter-less r)=) UNIV

proof (rule wqo-on-hom[of id - - prod-le (=) (λa b. (a, b) ∈ r=), unfolded image-id
id-apply])

show wqo-on (prod-le ((=) :: accent ⇒ accent ⇒ bool) (λa b. (a, b) ∈ r=)) UNIV
by (rule dickson[OF finite-eq-wqo-on[OF finite-accent] w, unfolded UNIV-Times-UNIV ])

qed (insert t, auto simp: transp-on-def trans-def prod-le-def )

lemma wf-greek-less:
assumes wf r and trans r
shows wf (greek-less r)

proof −
obtain q where r ⊆ q and well-order q by (metis total-well-order-extension ‹wf

r›)
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define q ′ where q ′ = q − Id
from ‹well-order q› have reflcl q ′ = q
by (auto simp add: well-order-on-def linear-order-on-def partial-order-on-def pre-

order-on-def
refl-on-def q ′-def )

from ‹well-order q› have trans q ′ and irrefl q ′

unfolding well-order-on-def linear-order-on-def partial-order-on-def preorder-on-def
antisym-def

trans-def irrefl-def q ′-def by blast+
from ‹r ⊆ q› ‹wf r› have r ⊆ q ′ by (auto simp add: q ′-def )
have wqo-on (λa b. (a,b) ∈ (greek-less q ′)=) UNIV
proof (intro wqo-on-hom[of id UNIV (λa b. (a, b) ∈ (greek-less q ′)=)

list-emb (λa b. (a, b) ∈ (letter-less q ′)=), unfolded surj-id])
show transp (λa b. (a, b) ∈ (greek-less q ′)=)
using trans-greek-less[of q ′] unfolding trans-def transp-on-def by blast

next
show ∀ x∈UNIV . ∀ y∈UNIV . list-emb (λa b. (a, b) ∈ (letter-less q ′)=) x y −→

(id x, id y) ∈ (greek-less q ′)=

using greek-embed[OF ‹trans q ′›] by auto
next

show wqo-on (list-emb (λa b. (a, b) ∈ (letter-less q ′)=)) UNIV
using higman[OF wqo-letter-less[OF ‹trans q ′›]] ‹well-order q› ‹reflcl q ′ = q›
by (auto simp: well-order-implies-wqo)

qed
with wqo-on-imp-wfp-on[OF this] strict-order-strict[OF strict-order-greek-less]

‹irrefl q ′› ‹trans q ′›
have wfp-on (λa b. (a, b) ∈ greek-less q ′) UNIV by force
then show ?thesis
using mono-greek-less ‹r ⊆ q ′› wf-subset unfolding wf-iff-wfp-on[symmetric]

mono-def by metis
qed

2.7 Basic Comparisons
lemma pairwise-imp-mult:

assumes N 6= {#} and ∀ x ∈ set-mset M . ∃ y ∈ set-mset N . (x, y) ∈ r
shows (M , N ) ∈ mult r

using assms one-step-implies-mult[of - - - {#}] by auto

lemma singleton-greek-less:
assumes as: snd ‘ set as ⊆ under r b
shows (as, [(a,b)]) ∈ greek-less r

proof −
{

fix e assume e ∈ set-mset (ms-of-greek as)
with as ms-of-greek-elem[of - - as]
have (e, ((a,b),[])) ∈ letter-less r <∗lex∗> greek-less r
by (cases e) (fastforce simp: adj-msog-def under-def )

}
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moreover have ms-of-greek [(a,b)] = {# ((a,b),[]) #}
by (auto simp: ms-of-greek-def adj-msog-def split: accent.splits)
ultimately show ?thesis
by (subst greek-less-unfold) (auto intro!: pairwise-imp-mult)

qed

lemma peak-greek-less:
assumes as: snd ‘ set as ⊆ under r a and b ′: b ′ ∈ {[(Grave,b)],[]}
and cs: snd ‘ set cs ⊆ under r a ∪ under r b and a ′: a ′ ∈ {[(Acute,a)],[]}
and bs: snd ‘ set bs ⊆ under r b
shows (as @ b ′ @ cs @ a ′ @ bs, [(Acute,a),(Grave,b)]) ∈ greek-less r

proof −
let ?A = (Acute,a) and ?B = (Grave,b)
have (ms-of-greek (as @ b ′ @ cs @ a ′ @ bs), ms-of-greek [?A,?B]) ∈ mult

(letter-less r <∗lex∗> greek-less r)
proof (intro pairwise-imp-mult)

{
fix e assume e ∈ set-mset (ms-of-greek as)
with as ms-of-greek-elem[of - - as]
have (adj-msog [] (b ′ @ cs @ a ′ @ bs) e, (?A,[?B])) ∈ letter-less r <∗lex∗>

greek-less r
by (cases e) (fastforce simp: adj-msog-def under-def )

}
moreover {

fix e assume e ∈ set-mset (ms-of-greek b ′)
with b ′ singleton-greek-less[OF as] ms-of-greek-elem[of - - b ′]

have (adj-msog as (cs @ a ′ @ bs) e, (?B,[?A])) ∈ letter-less r <∗lex∗>
greek-less r

by (cases e) (fastforce simp: adj-msog-def ms-of-greek-def )
}
moreover {

fix e assume e ∈ set-mset (ms-of-greek cs)
with cs ms-of-greek-elem[of - - cs]
have (adj-msog (as @ b ′) (a ′ @ bs) e, (?A,[?B])) ∈ letter-less r <∗lex∗>

greek-less r ∨
(adj-msog (as @ b ′) (a ′ @ bs) e, (?B,[?A])) ∈ letter-less r <∗lex∗>

greek-less r
by (cases e) (fastforce simp: adj-msog-def under-def )

}
moreover {

fix e assume e ∈ set-mset (ms-of-greek a ′)
with a ′ singleton-greek-less[OF bs] ms-of-greek-elem[of - - a ′]

have (adj-msog (as @ b ′ @ cs) bs e, (?A,[?B])) ∈ letter-less r <∗lex∗>
greek-less r

by (cases e) (fastforce simp: adj-msog-def ms-of-greek-def )
}
moreover {

fix e assume e ∈ set-mset (ms-of-greek bs)
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with bs ms-of-greek-elem[of - - bs]
have (adj-msog (as @ b ′ @ cs @ a ′) [] e, (?B,[?A])) ∈ letter-less r <∗lex∗>

greek-less r
by (cases e) (fastforce simp: adj-msog-def under-def )

}
moreover have ms-of-greek [?A,?B] = {# (?B,[?A]), (?A,[?B]) #}
by (simp add: adj-msog-def ms-of-greek-def )
ultimately show ∀ x∈set-mset (ms-of-greek (as @ b ′ @ cs @ a ′ @ bs)).
∃ y∈set-mset (ms-of-greek [?A,?B]). (x, y) ∈ letter-less r <∗lex∗> greek-less r

by (auto simp: msog-append) blast
qed (auto simp: ms-of-greek-def )
then show ?thesis by (subst greek-less-unfold) auto

qed

lemma rcliff-greek-less1 :
assumes trans r
and as: snd ‘ set as ⊆ under r a ∩ under r b and b ′: b ′ ∈ {[(Grave,b)],[]}
and cs: snd ‘ set cs ⊆ under r b and a ′: a ′ = [(Macron,a)]
and bs: snd ‘ set bs ⊆ under r b
shows (as @ b ′ @ cs @ a ′ @ bs, [(Macron,a),(Grave,b)]) ∈ greek-less r

proof −
let ?A = (Macron,a) and ?B = (Grave,b)
have ∗: ms-of-greek [?A,?B] = {#(?B,[?A]), (?A,[])#} ms-of-greek [?A] = {#(?A,[])#}
by (simp-all add: ms-of-greek-def adj-msog-def )
then have ∗∗: ms-of-greek [(Macron, a), (Grave, b)] − {#((Macron, a), [])#}
6= {#}

by (auto)

{
fix e assume e ∈ set-mset (ms-of-greek as)
with as ms-of-greek-elem[of - - as]
have (adj-msog [] (b ′ @ cs @ a ′ @ bs) e, (?B,[?A])) ∈ letter-less r <∗lex∗>

greek-less r
by (cases e) (force simp: adj-msog-def under-def )

}
moreover {

fix e assume e ∈ set-mset (ms-of-greek b ′)
with b ′ singleton-greek-less as ms-of-greek-elem[of - - b ′]

have (adj-msog as (cs @ a ′ @ bs) e, (?B,[?A])) ∈ letter-less r <∗lex∗> greek-less
r

by (cases e) (fastforce simp: adj-msog-def ms-of-greek-def )
}
moreover {

fix e assume e ∈ set-mset (ms-of-greek cs)
with cs ms-of-greek-elem[of - - cs]
have (adj-msog (as @ b ′) (a ′ @ bs) e, (?B,[?A])) ∈ letter-less r <∗lex∗>

greek-less r
by (cases e) (fastforce simp: adj-msog-def under-def )

}
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moreover {
fix e assume e ∈ set-mset (ms-of-greek bs)
with bs ms-of-greek-elem[of - - bs]
have (adj-msog (as @ b ′ @ cs @ a ′) [] e, (?B,[?A])) ∈ letter-less r <∗lex∗>

greek-less r
by (cases e) (fastforce simp: adj-msog-def under-def )

}
moreover have ms-of-greek [?A,?B] = {# (?B,[?A]), (?A,[]) #}
by (simp add: adj-msog-def ms-of-greek-def )
ultimately have ∀ x∈set-mset (ms-of-greek (as @ b ′@ cs @ a ′@ bs) − {#(?A,[])#}).
∃ y∈set-mset (ms-of-greek [?A,?B] − {#(?A,[])#}). (x, y) ∈ letter-less r <∗lex∗>

greek-less r
unfolding msog-append by (auto simp: a ′ msog-append ac-simps ∗ adj-msog-single)
from one-step-implies-mult[OF ∗∗ this,of {#(?A,[])#}]
have (ms-of-greek (as @ b ′ @ cs @ a ′ @ bs), ms-of-greek [?A,?B]) ∈ mult

(letter-less r <∗lex∗> greek-less r)
unfolding a ′ msog-append by (auto simp: a ′ ac-simps ∗ adj-msog-single)
then show ?thesis
by (subst greek-less-unfold) auto

qed

lemma rcliff-greek-less2 :
assumes trans r
and as: snd ‘ set as ⊆ under r a and b ′: b ′ ∈ {[(Grave,b)],[]}
and cs: snd ‘ set cs ⊆ under r a ∪ under r b
shows (as @ b ′ @ cs, [(Macron,a),(Grave,b)]) ∈ greek-less r

proof −
let ?A = (Macron,a) and ?B = (Grave,b)
have (ms-of-greek (as @ b ′ @ cs), ms-of-greek [?A,?B]) ∈ mult (letter-less r

<∗lex∗> greek-less r)
proof (intro pairwise-imp-mult)

{
fix e assume e ∈ set-mset (ms-of-greek as)
with as ms-of-greek-elem[of - - as]
have (adj-msog [] (b ′ @ cs) e, (?A,[])) ∈ letter-less r <∗lex∗> greek-less r
by (cases e) (fastforce simp: adj-msog-def under-def )

}
moreover {

fix e assume e ∈ set-mset (ms-of-greek b ′)
with b ′ singleton-greek-less[OF as] ms-of-greek-elem[of - - b ′]
have (adj-msog as (cs) e, (?B,[?A])) ∈ letter-less r <∗lex∗> greek-less r
by (cases e) (fastforce simp: adj-msog-def ms-of-greek-def )

}
moreover {

fix e assume e ∈ set-mset (ms-of-greek cs)
with cs ms-of-greek-elem[of - - cs]
have (adj-msog (as @ b ′) [] e, (?A,[])) ∈ letter-less r <∗lex∗> greek-less r ∨

(adj-msog (as @ b ′) [] e, (?B,[?A])) ∈ letter-less r <∗lex∗> greek-less r
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by (cases e) (fastforce simp: adj-msog-def under-def )
}
moreover have ∗: ms-of-greek [?A,?B] = {# (?B,[?A]), (?A,[]) #}
by (simp add: adj-msog-def ms-of-greek-def )
ultimately show ∀ x∈set-mset (ms-of-greek (as @ b ′ @ cs)).
∃ y∈set-mset (ms-of-greek [?A,?B]). (x, y) ∈ letter-less r <∗lex∗> greek-less r

by (auto simp: msog-append adj-msog-single ac-simps ∗) blast
qed (auto simp: ms-of-greek-def )
then show ?thesis by (subst greek-less-unfold) auto

qed

lemma snd-inv-greek [simp]: snd ‘ set (inv-greek as) = snd ‘ set as
by (force simp: inv-greek-def )

lemma lcliff-greek-less1 :
assumes trans r
and as: snd ‘ set as ⊆ under r a and b ′: b ′ = [(Macron,b)]
and cs: snd ‘ set cs ⊆ under r a and a ′: a ′ ∈ {[(Acute,a)],[]}
and bs: snd ‘ set bs ⊆ under r a ∩ under r b
shows (as @ b ′ @ cs @ a ′ @ bs, [(Acute,a),(Macron,b)]) ∈ greek-less r

proof −
have ∗: inv-greek [(Acute,a),(Macron,b)] = [(Macron,b),(Grave,a)] by (simp add:

inv-greek-def )
have (inv-greek (inv-greek (as @ b ′ @ cs @ a ′ @ bs)),
inv-greek (inv-greek ([(Acute,a),(Macron,b)]))) ∈ greek-less r
apply (rule inv-greek-mono[OF ‹trans r›])
apply (unfold inv-greek-append append-assoc ∗)
apply (insert assms)
apply (rule rcliff-greek-less1 , auto simp: inv-greek-def )

done
then show ?thesis by simp

qed

lemma lcliff-greek-less2 :
assumes trans r
and cs: snd ‘ set cs ⊆ under r a ∪ under r b and a ′: a ′ ∈ {[(Acute,a)],[]}
and bs: snd ‘ set bs ⊆ under r b
shows (cs @ a ′ @ bs, [(Acute,a),(Macron,b)]) ∈ greek-less r

proof −
have ∗: inv-greek [(Acute,a),(Macron,b)] = [(Macron,b),(Grave,a)] by (simp add:

inv-greek-def )
have (inv-greek (inv-greek (cs @ a ′ @ bs)),

inv-greek (inv-greek ([(Acute,a),(Macron,b)]))) ∈ greek-less r
apply (rule inv-greek-mono[OF ‹trans r›])
apply (unfold inv-greek-append append-assoc ∗)
apply (insert assms)
apply (rule rcliff-greek-less2 , auto simp: inv-greek-def )

done
then show ?thesis by simp

18



qed

2.8 Labeled abstract rewriting
context

fixes L R E :: ′b ⇒ ′a rel
begin

definition lstep :: ′b letter ⇒ ′a rel where
[simp]: lstep x = (case x of (a, i) ⇒ (case a of Acute ⇒ (L i)−1 | Grave ⇒ R i
| Macron ⇒ E i))

fun lconv :: ′b greek ⇒ ′a rel where
lconv [] = Id
| lconv (x # xs) = lstep x O lconv xs

lemma lconv-append[simp]:
lconv (xs @ ys) = lconv xs O lconv ys

by (induct xs) auto

lemma conversion-join-or-peak-or-cliff :
obtains (join) as bs cs where set as ⊆ {Grave} and set bs ⊆ {Macron} and

set cs ⊆ {Acute}
and ds = as @ bs @ cs
| (peak) as bs where ds = as @ ([Acute] @ [Grave]) @ bs
| (lcliff ) as bs where ds = as @ ([Acute] @ [Macron]) @ bs
| (rcliff ) as bs where ds = as @ ([Macron] @ [Grave]) @ bs

proof (induct ds arbitrary: thesis)
case (Cons d ds thesis) note IH = this show ?case
proof (rule IH (1 ))

fix as bs assume ds = as @ ([Acute] @ [Grave]) @ bs then show ?case
using IH (3 )[of d # as bs] by simp

next
fix as bs assume ds = as @ ([Acute] @ [Macron]) @ bs then show ?case
using IH (4 )[of d # as bs] by simp

next
fix as bs assume ds = as @ ([Macron] @ [Grave]) @ bs then show ?case
using IH (5 )[of d # as bs] by simp

next
fix as bs cs assume ∗: set as ⊆ {Grave} set bs ⊆ {Macron} set cs ⊆ {Acute}

ds = as @ bs @ cs
show ?case
proof (cases d)

case Grave thus ?thesis using ∗ IH (2 )[of d # as bs cs] by simp
next

case Macron show ?thesis
proof (cases as)

case Nil thus ?thesis using ∗ Macron IH (2 )[of as d # bs cs] by simp
next
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case (Cons a as) thus ?thesis using ∗ Macron IH (5 )[of [] as @ bs @ cs]
by simp

qed
next

case Acute show ?thesis
proof (cases as)

case Nil note as = this show ?thesis
proof (cases bs)

case Nil thus ?thesis using ∗ as Acute IH (2 )[of [] [] d # cs] by simp
next

case (Cons b bs) thus ?thesis using ∗ as Acute IH (4 )[of [] bs @ cs] by
simp

qed
next

case (Cons a as) thus ?thesis using ∗ Acute IH (3 )[of [] as @ bs @ cs] by
simp

qed
qed

qed
qed auto

lemma map-eq-append-split:
assumes map f xs = ys1 @ ys2
obtains xs1 xs2 where ys1 = map f xs1 ys2 = map f xs2 xs = xs1 @ xs2

proof (insert assms, induct ys1 arbitrary: xs thesis)
case (Cons y ys) note IH = this show ?case
proof (cases xs)

case (Cons x xs ′) show ?thesis
proof (rule IH (1 ))

fix xs1 xs2 assume ys = map f xs1 ys2 = map f xs2 xs ′ = xs1 @ xs2 thus
?thesis

using Cons IH (2 )[of x # xs1 xs2 ] IH (3 ) by simp
next

show map f xs ′ = ys @ ys2 using Cons IH (3 ) by simp
qed

qed (insert Cons, simp)
qed auto

lemmas map-eq-append-splits = map-eq-append-split map-eq-append-split[OF sym]

abbreviation conversion ′ M ≡ ((
⋃

i ∈ M . R i) ∪ (
⋃

i ∈ M . E i) ∪ (
⋃

i ∈ M . L
i)−1)∗

abbreviation valley ′ M ≡ (
⋃

i ∈ M . R i)∗ O (
⋃

i ∈ M . E i)∗ O ((
⋃

i ∈ M . L
i)−1)∗

lemma conversion-to-lconv:
assumes (u, v) ∈ conversion ′ M
obtains xs where snd ‘ set xs ⊆ M and (u, v) ∈ lconv xs

using assms

20



proof (induct arbitrary: thesis rule: converse-rtrancl-induct)
case base show ?case using base[of []] by simp

next
case (step u ′ x)
from step(1 ) obtain p where snd p ∈ M and (u ′, x) ∈ lstep p
by (force split: accent.splits)
moreover obtain xs where snd ‘ set xs ⊆ M (x, v) ∈ lconv xs by (rule step(3 ))
ultimately show ?case using step(4 )[of p # xs] by auto

qed

definition lpeak :: ′b rel ⇒ ′b ⇒ ′b ⇒ ′b greek ⇒ bool where
lpeak r a b xs ←→ (∃ as b ′ cs a ′ bs. snd ‘ set as ⊆ under r a ∧ b ′ ∈ {[(Grave,b)],[]}
∧

snd ‘ set cs ⊆ under r a ∪ under r b ∧ a ′ ∈ {[(Acute,a)],[]} ∧
snd ‘ set bs ⊆ under r b ∧ xs = as @ b ′ @ cs @ a ′ @ bs)

definition lcliff :: ′b rel ⇒ ′b ⇒ ′b ⇒ ′b greek ⇒ bool where
lcliff r a b xs ←→ (∃ as b ′ cs a ′ bs. snd ‘ set as ⊆ under r a ∧ b ′ = [(Macron,b)]
∧

snd ‘ set cs ⊆ under r a ∧ a ′ ∈ {[(Acute,a)],[]} ∧
snd ‘ set bs ⊆ under r a ∩ under r b ∧ xs = as @ b ′ @ cs @ a ′ @ bs) ∨
(∃ cs a ′ bs. snd ‘ set cs ⊆ under r a ∪ under r b ∧ a ′ ∈ {[(Acute,a)],[]} ∧
snd ‘ set bs ⊆ under r b ∧ xs = cs @ a ′ @ bs)

definition rcliff :: ′b rel ⇒ ′b ⇒ ′b ⇒ ′b greek ⇒ bool where
rcliff r a b xs ←→ (∃ as b ′ cs a ′ bs. snd ‘ set as ⊆ under r a ∩ under r b ∧ b ′ ∈
{[(Grave,b)],[]} ∧

snd ‘ set cs ⊆ under r b ∧ a ′ = [(Macron,a)] ∧
snd ‘ set bs ⊆ under r b ∧ xs = as @ b ′ @ cs @ a ′ @ bs) ∨
(∃ as b ′ cs. snd ‘ set as ⊆ under r a ∧ b ′ ∈ {[(Grave,b)],[]} ∧
snd ‘ set cs ⊆ under r a ∪ under r b ∧ xs = as @ b ′ @ cs)

lemma dd-commute-modulo-conv[case-names wf trans peak lcliff rcliff ]:
assumes wf r and trans r
and pk:

∧
a b s t u. (s, t) ∈ L a =⇒ (s, u) ∈ R b =⇒ ∃ xs. lpeak r a b xs ∧ (t,

u) ∈ lconv xs
and lc:

∧
a b s t u. (s, t) ∈ L a =⇒ (s, u) ∈ E b =⇒ ∃ xs. lcliff r a b xs ∧ (t, u)

∈ lconv xs
and rc:

∧
a b s t u. (s, t) ∈ (E a)−1 =⇒ (s, u) ∈ R b =⇒ ∃ xs. rcliff r a b xs ∧

(t, u) ∈ lconv xs
shows conversion ′ UNIV ⊆ valley ′ UNIV

proof (intro subrelI )
fix u v
assume (u,v) ∈ conversion ′ UNIV
then obtain xs where (u, v) ∈ lconv xs by (auto intro: conversion-to-lconv[of

u v])
then show (u, v) ∈ valley ′ UNIV
proof (induct xs rule: wf-induct[of greek-less r ])

case 1 thus ?case using wf-greek-less[OF ‹wf r› ‹trans r›] .
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next
case (2 xs) show ?case
proof (rule conversion-join-or-peak-or-cliff [of map fst xs])

fix as bs cs
assume ∗: set as ⊆ {Grave} set bs ⊆ {Macron} set cs ⊆ {Acute} map fst xs

= as @ bs @ cs
then show (u, v) ∈ valley ′ UNIV
proof (elim map-eq-append-splits)

fix as ′ bs ′ cs ′ bcs ′

assume as: set as ⊆ {Grave} as = map fst as ′ and
bs: set bs ⊆ {Macron} bs = map fst bs ′ and
cs: set cs ⊆ {Acute} cs = map fst cs ′ and
xs: xs = as ′ @ bcs ′ bcs ′ = bs ′ @ cs ′

from as(1 )[unfolded as(2 )] have as ′:
∧

x y. (x,y) ∈ lconv as ′ =⇒ (x,y) ∈
(
⋃

a. R a)∗
proof (induct as ′)

case (Cons x ′ xs)
have

∧
x y z i. (x,y) ∈ R i =⇒ (y,z) ∈ (

⋃
a. R a)∗ =⇒ (x,z) ∈ (

⋃
a. R

a)∗
by (rule rtrancl-trans) auto
with Cons show ?case by auto

qed simp
from bs(1 )[unfolded bs(2 )] have bs ′:

∧
x y. (x,y) ∈ lconv bs ′ =⇒ (x,y) ∈

(
⋃

a. E a)∗
proof (induct bs ′)

case (Cons x ′ xs)
have

∧
x y z i. (x,y) ∈ E i =⇒ (y,z) ∈ (

⋃
a. E a)∗ =⇒ (x,z) ∈ (

⋃
a. E a)∗

by (rule rtrancl-trans) auto
with Cons show ?case by auto

qed simp
from cs(1 )[unfolded cs(2 )] have cs ′:

∧
x y. (x,y) ∈ lconv cs ′ =⇒ (x,y) ∈

((
⋃

a. L a)−1)∗

proof (induct cs ′)
case (Cons x ′ xs)
have

∧
x y z i. (x,y) ∈ (L i)−1 =⇒ (y,z) ∈ ((

⋃
a. L a)−1)∗ =⇒ (x,z) ∈

((
⋃

a. L a)−1)∗

by (rule rtrancl-trans) auto
with Cons show ?case by auto

qed simp
from 2 (2 ) as ′ bs ′ cs ′ show (u, v) ∈ valley ′ UNIV
unfolding xs lconv-append by auto (meson relcomp.simps)

qed
next

fix as bs assume ∗: map fst xs = as @ ([Acute] @ [Grave]) @ bs
{

fix p a b q t ′ s ′ u ′

assume xs: xs = p @ [(Acute,a),(Grave,b)] @ q and p: (u,t ′) ∈ lconv p
and a: (s ′,t ′) ∈ L a and b: (s ′,u ′) ∈ R b and q: (u ′,v) ∈ lconv q

obtain js where lp: lpeak r a b js and js: (t ′,u ′) ∈ lconv js using pk[OF a
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b] by auto
from lp have (js, [(Acute,a),(Grave,b)]) ∈ greek-less r
unfolding lpeak-def using peak-greek-less[of - r a - b] by fastforce
then have (p @ js @ q, xs) ∈ greek-less r unfolding xs
by (intro greek-less-app-mono1 greek-less-app-mono2 ‹trans r›) auto
moreover have (u, v) ∈ lconv (p @ js @ q)
using p q js by auto
ultimately have (u, v) ∈ valley ′ UNIV using 2 (1 ) by blast

}
with ∗ show (u, v) ∈ valley ′ UNIV using 2 (2 )
by (auto elim!: map-eq-append-splits relcompEpair simp del: append.simps)

simp
next

fix as bs assume ∗: map fst xs = as @ ([Acute] @ [Macron]) @ bs
{

fix p a b q t ′ s ′ u ′

assume xs: xs = p @ [(Acute,a),(Macron,b)] @ q and p: (u,t ′) ∈ lconv p
and a: (s ′,t ′) ∈ L a and b: (s ′,u ′) ∈ E b and q: (u ′,v) ∈ lconv q

obtain js where lp: lcliff r a b js and js: (t ′,u ′) ∈ lconv js using lc[OF a
b] by auto

from lp have (js, [(Acute,a),(Macron,b)]) ∈ greek-less r
unfolding lcliff-def
using lcliff-greek-less1 [OF ‹trans r›, of - a - b] lcliff-greek-less2 [OF ‹trans

r›, of - a b]
by fastforce
then have (p @ js @ q, xs) ∈ greek-less r unfolding xs
by (intro greek-less-app-mono1 greek-less-app-mono2 ‹trans r›) auto
moreover have (u, v) ∈ lconv (p @ js @ q)
using p q js by auto
ultimately have (u, v) ∈ valley ′ UNIV using 2 (1 ) by blast

}
with ∗ show (u, v) ∈ valley ′ UNIV using 2 (2 )
by (auto elim!: map-eq-append-splits relcompEpair simp del: append.simps)

simp
next

fix as bs assume ∗: map fst xs = as @ ([Macron] @ [Grave]) @ bs
{

fix p a b q t ′ s ′ u ′

assume xs: xs = p @ [(Macron,a),(Grave,b)] @ q and p: (u,t ′) ∈ lconv p
and a: (s ′,t ′) ∈ (E a)−1 and b: (s ′,u ′) ∈ R b and q: (u ′,v) ∈ lconv q

obtain js where lp: rcliff r a b js and js: (t ′,u ′) ∈ lconv js using rc[OF a
b] by auto

from lp have (js, [(Macron,a),(Grave,b)]) ∈ greek-less r
unfolding rcliff-def
using rcliff-greek-less1 [OF ‹trans r›, of - a b] rcliff-greek-less2 [OF ‹trans

r›, of - a - b]
by fastforce
then have (p @ js @ q, xs) ∈ greek-less r unfolding xs
by (intro greek-less-app-mono1 greek-less-app-mono2 ‹trans r›) auto
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moreover have (u, v) ∈ lconv (p @ js @ q)
using p q js by auto
ultimately have (u, v) ∈ valley ′ UNIV using 2 (1 ) by blast

}
with ∗ show (u, v) ∈ valley ′ UNIV using 2 (2 )
by (auto elim!: map-eq-append-splits relcompEpair simp del: append.simps)

simp
qed

qed
qed

3 Results
3.1 Church-Rosser modulo

Decreasing diagrams for Church-Rosser modulo, commutation version.
lemma dd-commute-modulo[case-names wf trans peak lcliff rcliff ]:

assumes wf r and trans r
and pk:

∧
a b s t u. (s, t) ∈ L a =⇒ (s, u) ∈ R b =⇒

(t, u) ∈ conversion ′ (under r a) O (R b)= O conversion ′ (under r a ∪ under r
b) O

((L a)−1)= O conversion ′ (under r b)
and lc:

∧
a b s t u. (s, t) ∈ L a =⇒ (s, u) ∈ E b =⇒

(t, u) ∈ conversion ′ (under r a) O E b O conversion ′ (under r a) O
((L a)−1)= O conversion ′ (under r a ∩ under r b) ∨
(t, u) ∈ conversion ′ (under r a ∪ under r b) O ((L a )−1)= O conversion ′

(under r b)
and rc:

∧
a b s t u. (s, t) ∈ (E a)−1 =⇒ (s, u) ∈ R b =⇒

(t, u) ∈ conversion ′ (under r a ∩ under r b) O (R b)= O conversion ′ (under r
b) O

E a O conversion ′ (under r b) ∨
(t, u) ∈ conversion ′ (under r a) O (R b)= O conversion ′ (under r a ∪ under r

b)
shows conversion ′ UNIV ⊆ valley ′ UNIV

proof (cases rule: dd-commute-modulo-conv[of r ])
case (peak a b s t u)
{

fix w x y z
assume (t, w) ∈ conversion ′ (under r a)
from conversion-to-lconv[OF this]
obtain as where snd ‘ set as ⊆ under r a (t, w) ∈ lconv as by auto
moreover assume (w, x) ∈ (R b)=
then obtain b ′ where b ′ ∈ {[(Grave,b)],[]} (w, x) ∈ lconv b ′ by fastforce
moreover assume (x, y) ∈ conversion ′ (under r a ∪ under r b)
from conversion-to-lconv[OF this]
obtain cs where snd ‘ set cs ⊆ under r a ∪ under r b (x, y) ∈ lconv cs by

auto
moreover assume (y, z) ∈ ((L a)−1)=
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then obtain a ′ where a ′ ∈ {[(Acute,a)],[]} (y, z) ∈ lconv a ′ by fastforce
moreover assume (z, u) ∈ conversion ′ (under r b)
from conversion-to-lconv[OF this]
obtain bs where snd ‘ set bs ⊆ under r b (z, u) ∈ lconv bs by auto
ultimately have ∃ xs. lpeak r a b xs ∧ (t, u) ∈ lconv xs
by (intro exI [of - as @ b ′ @ cs @ a ′ @ bs], unfold lconv-append lpeak-def ) blast

}
then show ?case using pk[OF peak] by blast

next
case (lcliff a b s t u)
{

fix w x y z
assume (t, w) ∈ conversion ′ (under r a)
from conversion-to-lconv[OF this]
obtain as where snd ‘ set as ⊆ under r a (t, w) ∈ lconv as by auto
moreover assume (w, x) ∈ E b
then obtain b ′ where b ′ = [(Macron,b)] (w, x) ∈ lconv b ′ by fastforce
moreover assume (x, y) ∈ conversion ′ (under r a)
from conversion-to-lconv[OF this]
obtain cs where snd ‘ set cs ⊆ under r a (x, y) ∈ lconv cs by auto
moreover assume (y, z) ∈ ((L a)−1)=

then obtain a ′ where a ′ ∈ {[(Acute,a)],[]} (y, z) ∈ lconv a ′ by fastforce
moreover assume (z, u) ∈ conversion ′ (under r a ∩ under r b)
from conversion-to-lconv[OF this]
obtain bs where snd ‘ set bs ⊆ under r a ∩ under r b (z, u) ∈ lconv bs by

auto
ultimately have ∃ xs. lcliff r a b xs ∧ (t, u) ∈ lconv xs
by (intro exI [of - as @ b ′ @ cs @ a ′ @ bs], unfold lconv-append lcliff-def ) blast

}
moreover {

fix w x
assume (t, w) ∈ conversion ′ (under r a ∪ under r b)
from conversion-to-lconv[OF this]
obtain cs where snd ‘ set cs ⊆ under r a ∪ under r b (t, w) ∈ lconv cs by

auto
moreover assume (w, x) ∈ ((L a)−1)=

then obtain a ′ where a ′ ∈ {[(Acute,a)],[]} (w, x) ∈ lconv a ′ by fastforce
moreover assume (x, u) ∈ conversion ′ (under r b)
from conversion-to-lconv[OF this]
obtain bs where snd ‘ set bs ⊆ under r b (x, u) ∈ lconv bs by auto
ultimately have ∃ xs. lcliff r a b xs ∧ (t, u) ∈ lconv xs
by (intro exI [of - cs @ a ′ @ bs], unfold lconv-append lcliff-def ) blast

}
ultimately show ?case using lc[OF lcliff ] by blast

next
case (rcliff a b s t u)
{

fix w x y z
assume (t, w) ∈ conversion ′ (under r a ∩ under r b)
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from conversion-to-lconv[OF this]
obtain as where snd ‘ set as ⊆ under r a ∩ under r b (t, w) ∈ lconv as by

auto
moreover assume (w, x) ∈ (R b)=
then obtain b ′ where b ′ ∈ {[(Grave,b)],[]} (w, x) ∈ lconv b ′ by fastforce
moreover assume (x, y) ∈ conversion ′ (under r b)
from conversion-to-lconv[OF this]
obtain cs where snd ‘ set cs ⊆ under r b (x, y) ∈ lconv cs by auto
moreover assume (y, z) ∈ E a
then obtain a ′ where a ′ = [(Macron,a)] (y, z) ∈ lconv a ′ by fastforce
moreover assume (z, u) ∈ conversion ′ (under r b)
from conversion-to-lconv[OF this]
obtain bs where snd ‘ set bs ⊆ under r b (z, u) ∈ lconv bs by auto
ultimately have ∃ xs. rcliff r a b xs ∧ (t, u) ∈ lconv xs
by (intro exI [of - as @ b ′ @ cs @ a ′ @ bs], unfold lconv-append rcliff-def ) blast

}
moreover {

fix w x
assume (t, w) ∈ conversion ′ (under r a)
from conversion-to-lconv[OF this]
obtain as where snd ‘ set as ⊆ under r a (t, w) ∈ lconv as by auto
moreover assume (w, x) ∈ (R b)=
then obtain b ′ where b ′ ∈ {[(Grave,b)],[]} (w, x) ∈ lconv b ′ by fastforce
moreover assume (x, u) ∈ conversion ′ (under r a ∪ under r b)
from conversion-to-lconv[OF this]
obtain cs where snd ‘ set cs ⊆ under r a ∪ under r b (x, u) ∈ lconv cs by

auto
ultimately have ∃ xs. rcliff r a b xs ∧ (t, u) ∈ lconv xs
by (intro exI [of - as @ b ′ @ cs], unfold lconv-append rcliff-def ) blast

}
ultimately show ?case using rc[OF rcliff ] by blast

qed fact+

end

Decreasing diagrams for Church-Rosser modulo.
lemma dd-cr-modulo[case-names wf trans symE peak cliff ]:

assumes wf r and trans r and E :
∧

i. sym (E i)
and pk:

∧
a b s t u. (s, t) ∈ L a =⇒ (s, u) ∈ L b =⇒

(t, u) ∈ conversion ′ L L E (under r a) O (L b)= O conversion ′ L L E (under
r a ∪ under r b) O

((L a)−1)= O conversion ′ L L E (under r b)
and cl:

∧
a b s t u. (s, t) ∈ L a =⇒ (s, u) ∈ E b =⇒

(t, u) ∈ conversion ′ L L E (under r a) O E b O conversion ′ L L E (under r a)
O

((L a)−1)= O conversion ′ L L E (under r a ∩ under r b) ∨
(t, u) ∈ conversion ′ L L E (under r a ∪ under r b) O ((L a )−1)= O conversion ′

L L E (under r b)
shows conversion ′ L L E UNIV ⊆ valley ′ L L E UNIV
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proof (induct rule: dd-commute-modulo[of r ])
note E ′ = E [unfolded sym-conv-converse-eq]
case (rcliff a b s t u) show ?case
using cl[OF rcliff (2 ) rcliff (1 )[unfolded E ′], unfolded converse-iff [of t u,symmetric]]
by (auto simp only: E ′ converse-inward) (auto simp only: ac-simps)

qed fact+

3.2 Commutation and confluence
abbreviation conversion ′′ L R M ≡ ((

⋃
i ∈ M . R i) ∪ (

⋃
i ∈ M . L i)−1)∗

abbreviation valley ′′ L R M ≡ (
⋃

i ∈ M . R i)∗ O ((
⋃

i ∈ M . L i)−1)∗

Decreasing diagrams for commutation.
lemma dd-commute[case-names wf trans peak]:

assumes wf r and trans r
and pk:

∧
a b s t u. (s, t) ∈ L a =⇒ (s, u) ∈ R b =⇒

(t, u) ∈ conversion ′′ L R (under r a) O (R b)= O conversion ′′ L R (under r a
∪ under r b) O

((L a)−1)= O conversion ′′ L R (under r b)
shows commute (

⋃
i. L i) (

⋃
i. R i)

proof −
have ((

⋃
i. L i)−1)∗ O (

⋃
i. R i)∗ ⊆ conversion ′′ L R UNIV by regexp

also have . . . ⊆ valley ′′ L R UNIV
using dd-commute-modulo[OF assms(1 ,2 ), of L R λ-. {}] pk by auto
finally show ?thesis by (simp only: commute-def )

qed

Decreasing diagrams for confluence.
lemmas dd-cr [case-names wf trans peak] =

dd-commute[of - L L for L, unfolded CR-iff-self-commute[symmetric]]

3.3 Extended decreasing diagrams
context

fixes r q :: ′b rel
assumes wf r and trans r and trans q and refl q and compat: r O q ⊆ r

begin

private abbreviation (input) down :: ( ′b ⇒ ′a rel) ⇒ ( ′b ⇒ ′a rel) where
down L ≡ λi.

⋃
j ∈ under q i. L j

private lemma Union-down: (
⋃

i. down L i) = (
⋃

i. L i)
using ‹refl q› by (auto simp: refl-on-def under-def )

Extended decreasing diagrams for commutation.
lemma edd-commute[case-names wf transr transq reflq compat peak]:

assumes pk:
∧

a b s t u. (s, t) ∈ L a =⇒ (s, u) ∈ R b =⇒
(t, u) ∈ conversion ′′ L R (under r a) O (down R b)= O conversion ′′ L R (under

r a ∪ under r b) O
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((down L a)−1)= O conversion ′′ L R (under r b)
shows commute (

⋃
i. L i) (

⋃
i. R i)

unfolding Union-down[of L, symmetric] Union-down[of R, symmetric]
proof (induct rule: dd-commute[of r down L down R])

case (peak a b s t u)
then obtain a ′ b ′ where a ′: (a ′, a) ∈ q (s, t) ∈ L a ′ and b ′: (b ′, b) ∈ q (s, u)
∈ R b ′

by (auto simp: under-def )
have

∧
a ′ a. (a ′,a) ∈ q =⇒ under r a ′ ⊆ under r a using compat by (auto simp:

under-def )
then have aux1 :

∧
a ′ a L. (a ′,a) ∈ q =⇒ (

⋃
i ∈ under r a ′. L i) ⊆ (

⋃
i ∈ under

r a. L i) by auto
have aux2 :

∧
a ′ a L. (a ′,a) ∈ q =⇒ down L a ′ ⊆ down L a

using ‹trans q› by (auto simp: under-def trans-def )
have aux3 :

∧
a L. (

⋃
i ∈ under r a. L i) ⊆ (

⋃
i ∈ under r a. down L i)

using ‹refl q› by (auto simp: under-def refl-on-def )
from aux1 [OF a ′(1 ), of L] aux1 [OF a ′(1 ), of R] aux2 [OF a ′(1 ), of L]

aux1 [OF b ′(1 ), of L] aux1 [OF b ′(1 ), of R] aux2 [OF b ′(1 ), of R]
aux3 [of L] aux3 [of R]

show ?case
by (intro subsetD[OF - pk[OF ‹(s, t) ∈ L a ′› ‹(s, u) ∈ R b ′›]], unfold UN-Un)

(intro relcomp-mono rtrancl-mono Un-mono iffD2 [OF converse-mono]; fast)
qed fact+

Extended decreasing diagrams for confluence.
lemmas edd-cr [case-names wf transr transq reflq compat peak] =

edd-commute[of L L for L, unfolded CR-iff-self-commute[symmetric]]

end

end
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