
Decreasing-Diagrams-II

By Bertram Felgenhauer

March 17, 2025

Abstract

This theory formalizes a commutation version of decreasing dia-
grams for Church-Rosser modulo. The proof follows Felgenhauer and
van Oostrom (RTA 2013). The theory also provides important special-
izations, in particular van Oostrom’s conversion version (TCS 2008) of
decreasing diagrams.

We follow the development described in [1]: Conversions are mapped to
Greek strings, and we prove that whenever a local peak (or cliff) is replaced
by a joining sequence from a locally decreasing diagram, then the corre-
sponding Greek strings become smaller in a specially crafted well-founded
order on Greek strings. Once there are no more local peaks or cliffs are left,
the result is a valley that establishes the Church-Rosser modulo property.

As special cases we provide non-commutation versions and the conver-
sion version of decreasing diagrams by van Oostrom [3]. We also formalize
extended decreasingness [2].

Contents
1 Preliminaries 2

1.1 Trivialities . 2
1.2 Complete lattices and least fixed points 2

1.2.1 A chain-based induction principle 2
1.2.2 Preservation of transitivity, asymmetry, irreflexivity

by suprema . 3
1.3 Multiset extension . 4
1.4 Incrementality of mult1 and mult 5
1.5 Well-orders and well-quasi-orders 6
1.6 Splitting lists into prefix, element, and suffix 6

2 Decreasing Diagrams 7
2.1 Greek accents . 7
2.2 Comparing Greek strings . 8
2.3 Preservation of strict partial orders 9

1

2.4 Involution . 10
2.5 Monotonicity of greek-less r 12
2.6 Well-founded-ness of greek-less r 13
2.7 Basic Comparisons . 14
2.8 Labeled abstract rewriting . 19

3 Results 24
3.1 Church-Rosser modulo . 24
3.2 Commutation and confluence 27
3.3 Extended decreasing diagrams 27

1 Preliminaries
theory Decreasing-Diagrams-II-Aux
imports

Well-Quasi-Orders.Multiset-Extension
Well-Quasi-Orders.Well-Quasi-Orders

begin

1.1 Trivialities
abbreviation strict-order R ≡ irrefl R ∧ trans R

lemma strict-order-strict: strict-order q =⇒ strict (λa b. (a, b) ∈ q=) = (λa b.
(a, b) ∈ q)
unfolding trans-def irrefl-def by fast

lemma mono-lex1 : mono (λr . lex-prod r s)
by (auto simp add: mono-def)

lemma mono-lex2 : mono (lex-prod r)
by (auto simp add: mono-def)

lemmas converse-inward = rtrancl-converse[symmetric] converse-Un converse-UNION
converse-relcomp

converse-converse converse-Id

1.2 Complete lattices and least fixed points
context complete-lattice
begin

1.2.1 A chain-based induction principle
abbreviation set-chain :: ′a set ⇒ bool where

2

set-chain C ≡ ∀ x ∈ C . ∀ y ∈ C . x ≤ y ∨ y ≤ x

lemma lfp-chain-induct:
assumes mono: mono f
and step:

∧
x. P x =⇒ P (f x)

and chain:
∧

C . set-chain C =⇒ ∀ x ∈ C . P x =⇒ P (Sup C)
shows P (lfp f)

unfolding lfp-eq-fixp[OF mono]
proof (rule fixp-induct)

show monotone (≤) (≤) f using mono unfolding order-class.mono-def mono-
tone-def .
next

show P (Sup {}) using chain[of {}] by simp
next

show ccpo.admissible Sup (≤) P
by (auto simp add: chain ccpo.admissible-def Complete-Partial-Order .chain-def)

qed fact

1.2.2 Preservation of transitivity, asymmetry, irreflexivity by suprema
lemma trans-Sup-of-chain:

assumes set-chain C and trans:
∧

R. R ∈ C =⇒ trans R
shows trans (Sup C)

proof (intro transI)
fix x y z
assume (x,y) ∈ Sup C and (y,z) ∈ Sup C
from ‹(x,y) ∈ Sup C › obtain R where R ∈ C and (x,y) ∈ R by blast
from ‹(y,z) ∈ Sup C › obtain S where S ∈ C and (y,z) ∈ S by blast
from ‹R ∈ C › and ‹S ∈ C › and ‹set-chain C › have R ∪ S = R ∨ R ∪ S = S

by blast
with ‹R ∈ C › and ‹S ∈ C › have R ∪ S ∈ C by fastforce
with ‹(x,y) ∈ R› and ‹(y,z) ∈ S› and trans[of R ∪ S]
have (x,z) ∈ R ∪ S unfolding trans-def by blast
with ‹R ∪ S ∈ C › show (x,z) ∈

⋃
C by blast

qed

lemma asym-Sup-of-chain:
assumes set-chain C and asym:

∧
R. R ∈ C =⇒ asym R

shows asym (Sup C)
proof (intro asymI notI)

fix a b
assume (a,b) ∈ Sup C then obtain R where R ∈ C and (a,b) ∈ R by blast
assume (b,a) ∈ Sup C then obtain S where S ∈ C and (b,a) ∈ S by blast
from ‹R ∈ C › and ‹S ∈ C › and ‹set-chain C › have R ∪ S = R ∨ R ∪ S = S

by blast
with ‹R ∈ C › and ‹S ∈ C › have R ∪ S ∈ C by fastforce
with ‹(a,b) ∈ R› and ‹(b,a) ∈ S› and asym[THEN asymD] show False by blast

qed

3

lemma strict-order-lfp:
assumes mono f and

∧
R. strict-order R =⇒ strict-order (f R)

shows strict-order (lfp f)
proof (intro lfp-chain-induct[of f strict-order])

fix C :: (′b × ′b) set set
assume set-chain C and ∀R ∈ C . strict-order R
from this show strict-order (Sup C)

using asym-on-iff-irrefl-on-if-trans-on[of UNIV]
by (metis asym-Sup-of-chain trans-Sup-of-chain)

qed fact+

lemma trans-lfp:
assumes mono f and

∧
R. trans R =⇒ trans (f R)

shows trans (lfp f)
by (metis lfp-chain-induct[of f trans] assms trans-Sup-of-chain)

end

1.3 Multiset extension
lemma mulex-iff-mult: mulex r M N ←→ (M ,N) ∈ mult {(M ,N) . r M N}
by (auto simp add: mulex-on-def restrict-to-def mult-def mulex1-def tranclp-unfold)

lemma multI :
assumes trans r M = I + K N = I + J J 6= {#} ∀ k ∈ set-mset K . ∃ j ∈

set-mset J . (k,j) ∈ r
shows (M ,N) ∈ mult r

using assms one-step-implies-mult by blast

lemma multE :
assumes trans r and (M ,N) ∈ mult r
obtains I J K where M = I + K N = I + J J 6= {#} ∀ k ∈ set-mset K . ∃ j ∈

set-mset J . (k,j) ∈ r
using mult-implies-one-step[OF assms] by blast

lemma mult-on-union: (M ,N) ∈ mult r =⇒ (K + M , K + N) ∈ mult r
using mulex-on-union[of λx y. (x,y) ∈ r UNIV] by (auto simp: mulex-iff-mult)

lemma mult-on-union ′: (M ,N) ∈ mult r =⇒ (M + K , N + K) ∈ mult r
using mulex-on-union ′[of λx y. (x,y) ∈ r UNIV] by (auto simp: mulex-iff-mult)

lemma mult-on-add-mset: (M ,N) ∈ mult r =⇒ (add-mset k M , add-mset k N) ∈
mult r
unfolding add-mset-add-single[of k M] add-mset-add-single[of k N] by (rule mult-on-union ′)

lemma mult-empty[simp]: (M ,{#}) /∈ mult R
by (metis mult-def not-less-empty trancl.cases)

lemma mult-singleton[simp]: (x, y) ∈ r =⇒ (add-mset x M , add-mset y M) ∈ mult

4

r
unfolding add-mset-add-single[of x M] add-mset-add-single[of y M]
apply (rule mult-on-union)
using mult1-singleton[of x y r] by (auto simp add: mult-def mult-on-union)

lemma empty-mult[simp]: ({#},N) ∈ mult R ←→ N 6= {#}
using empty-mulex-on[of N UNIV λM N . (M ,N) ∈ R] by (auto simp add: mulex-iff-mult)

lemma trans-mult: trans (mult R)
unfolding mult-def by simp

lemma strict-order-mult:
assumes irrefl R and trans R
shows irrefl (mult R) and trans (mult R)

proof −
show irrefl (mult R) unfolding irrefl-def
proof (intro allI notI , elim multE [OF ‹trans R›])

fix M I J K
assume M = I + J M = I + K J 6= {#} and ∗: ∀ k ∈ set-mset K . ∃ j ∈

set-mset J . (k, j) ∈ R
from ‹M = I + J › and ‹M = I + K › have J = K by simp
have finite (set-mset J) by simp
then have set-mset J = {} using ∗ unfolding ‹J = K ›

by (induct rule: finite-induct)
(simp, metis assms insert-absorb insert-iff insert-not-empty irrefl-def transD)

then show False using ‹J 6= {#}› by simp
qed

qed (simp add: trans-mult)

lemma mult-of-image-mset:
assumes trans R and trans R ′

and
∧

x y. x ∈ set-mset N =⇒ y ∈ set-mset M =⇒ (x,y) ∈ R =⇒ (f x, f y) ∈
R ′

and (N , M) ∈ mult R
shows (image-mset f N , image-mset f M) ∈ mult R ′

proof (insert assms(4), elim multE [OF assms(1)])
fix I J K
assume N = I + K M = I + J J 6= {#} ∀ k ∈ set-mset K . ∃ j ∈ set-mset J .

(k, j) ∈ R
thus (image-mset f N , image-mset f M) ∈ mult R ′ using assms(2 ,3)

by (intro multI) (auto, blast)
qed

1.4 Incrementality of mult1 and mult
lemma mono-mult1 : mono mult1
unfolding mono-def mult1-def by blast

lemma mono-mult: mono mult

5

unfolding mono-def mult-def
proof (intro allI impI subsetI)

fix R S :: ′a rel and x
assume R ⊆ S and x ∈ (mult1 R)+

then show x ∈ (mult1 S)+
using mono-mult1 [unfolded mono-def] trancl-mono[of x mult1 R mult1 S] by

auto
qed

1.5 Well-orders and well-quasi-orders
lemma wf-iff-wfp-on:

wf p ←→ wfp-on (λa b. (a, b) ∈ p) UNIV
unfolding wfp-on-iff-inductive-on wf-def inductive-on-def by force

lemma well-order-implies-wqo:
assumes well-order r
shows wqo-on (λa b. (a, b) ∈ r) UNIV

proof (intro wqo-onI almost-full-onI)
show transp (λa b. (a, b) ∈ r) using assms
by (auto simp only: well-order-on-def linear-order-on-def partial-order-on-def pre-

order-on-def
trans-def transp-def)

next
fix f :: nat ⇒ ′a
show good (λa b. (a, b) ∈ r) f
using assms unfolding well-order-on-def wf-iff-wfp-on wfp-on-def not-ex not-all

de-Morgan-conj
proof (elim conjE allE exE)

fix x assume linear-order r and f x /∈ UNIV ∨ (f (Suc x), f x) /∈ r − Id
then have (f x, f (Suc x)) ∈ r using ‹linear-order r›
by (force simp: linear-order-on-def Relation.total-on-def partial-order-on-def

preorder-on-def
refl-on-def)

then show good (λa b. (a, b) ∈ r) f by (auto simp: good-def)
qed

qed

1.6 Splitting lists into prefix, element, and suffix
fun list-splits :: ′a list ⇒ (′a list × ′a × ′a list) list where

list-splits [] = []
| list-splits (x # xs) = ([], x, xs) # map (λ(xs, x ′, xs ′). (x # xs, x ′, xs ′)) (list-splits
xs)

lemma list-splits-empty[simp]:
list-splits xs = [] ←→ xs = []

by (cases xs) simp-all

lemma elem-list-splits-append:

6

assumes (ys, y, zs) ∈ set (list-splits xs)
shows ys @ [y] @ zs = xs

using assms by (induct xs arbitrary: ys) auto

lemma elem-list-splits-length:
assumes (ys, y, zs) ∈ set (list-splits xs)
shows length ys < length xs and length zs < length xs

using elem-list-splits-append[OF assms] by auto

lemma elem-list-splits-elem:
assumes (xs, y, ys) ∈ set (list-splits zs)
shows y ∈ set zs

using elem-list-splits-append[OF assms] by force

lemma list-splits-append:
list-splits (xs @ ys) = map (λ(xs ′, x ′, ys ′). (xs ′, x ′, ys ′ @ ys)) (list-splits xs) @

map (λ(xs ′, x ′, ys ′). (xs @ xs ′, x ′, ys ′)) (list-splits ys)
by (induct xs) auto

lemma list-splits-rev:
list-splits (rev xs) = map (λ(xs, x, ys). (rev ys, x, rev xs)) (rev (list-splits xs))

by (induct xs) (auto simp add: list-splits-append comp-def prod.case-distrib rev-map)

lemma list-splits-map:
list-splits (map f xs) = map (λ(xs, x, ys). (map f xs, f x, map f ys)) (list-splits

xs)
by (induct xs) auto

end

2 Decreasing Diagrams
theory Decreasing-Diagrams-II
imports

Decreasing-Diagrams-II-Aux
HOL−Cardinals.Wellorder-Extension
Abstract−Rewriting.Abstract-Rewriting

begin

2.1 Greek accents
datatype accent = Acute | Grave | Macron

lemma UNIV-accent: UNIV = { Acute, Grave, Macron }
using accent.nchotomy by blast

lemma finite-accent: finite (UNIV :: accent set)
by (simp add: UNIV-accent)

7

type-synonym ′a letter = accent × ′a

definition letter-less :: (′a × ′a) set ⇒ (′a letter × ′a letter) set where
[simp]: letter-less R = {(a,b). (snd a, snd b) ∈ R}

lemma mono-letter-less: mono letter-less
by (auto simp add: mono-def)

2.2 Comparing Greek strings
type-synonym ′a greek = ′a letter list

definition adj-msog :: ′a greek ⇒ ′a greek ⇒ (′a letter × ′a greek) ⇒ (′a letter ×
′a greek)
where

adj-msog xs zs l ≡
case l of (y,ys) ⇒ (y, case fst y of Acute ⇒ ys @ zs | Grave ⇒ xs @ ys | Macron

⇒ ys)

definition ms-of-greek :: ′a greek ⇒ (′a letter × ′a greek) multiset where
ms-of-greek as = mset
(map (λ(xs, y, zs) ⇒ adj-msog xs zs (y, [])) (list-splits as))

lemma adj-msog-adj-msog[simp]:
adj-msog xs zs (adj-msog xs ′ zs ′ y) = adj-msog (xs @ xs ′) (zs ′ @ zs) y

by (auto simp: adj-msog-def split: accent.splits prod.splits)

lemma compose-adj-msog[simp]: adj-msog xs zs ◦ adj-msog xs ′ zs ′ = adj-msog (xs
@ xs ′) (zs ′ @ zs)
by (simp add: comp-def)

lemma adj-msog-single:
adj-msog xs zs (x,[]) = (x, (case fst x of Grave ⇒ xs | Acute ⇒ zs | Macron ⇒

[]))
by (simp add: adj-msog-def split: accent.splits)

lemma ms-of-greek-elem:
assumes (x,xs) ∈ set-mset (ms-of-greek ys)
shows x ∈ set ys

using assms by (auto dest: elem-list-splits-elem simp: adj-msog-def ms-of-greek-def)

lemma ms-of-greek-shorter :
assumes (x, t) ∈# ms-of-greek s
shows length s > length t

using assms[unfolded ms-of-greek-def in-multiset-in-set]
by (auto simp: elem-list-splits-length adj-msog-def split: accent.splits)

lemma msog-append: ms-of-greek (xs @ ys) = image-mset (adj-msog [] ys) (ms-of-greek
xs) +

8

image-mset (adj-msog xs []) (ms-of-greek ys)
by (auto simp: ms-of-greek-def list-splits-append multiset.map-comp comp-def prod.case-distrib)

definition nest :: (′a × ′a) set ⇒ (′a greek × ′a greek) set ⇒ (′a greek × ′a greek)
set where
[simp]: nest r s = {(a,b). (ms-of-greek a, ms-of-greek b) ∈ mult (letter-less r

<∗lex∗> s)}

lemma mono-nest: mono (nest r)
unfolding mono-def
proof (intro allI impI subsetI)

fix R S x
assume 1 : R ⊆ S and 2 : x ∈ nest r R
from 1 have mult (letter-less r <∗lex∗> R) ⊆ mult (letter-less r <∗lex∗> S)
using mono-mult mono-lex2 [of letter-less r] unfolding mono-def by blast
with 2 show x ∈ nest r S by auto

qed

lemma nest-mono[mono-set]: x ⊆ y =⇒ (a,b) ∈ nest r x −→ (a,b) ∈ nest r y
using mono-nest[unfolded mono-def , rule-format, of x y r] by blast

definition greek-less :: (′a × ′a) set ⇒ (′a greek × ′a greek) set where
greek-less r = lfp (nest r)

lemma greek-less-unfold:
greek-less r = nest r (greek-less r)

using mono-nest[of r] lfp-unfold[of nest r] by (simp add: greek-less-def)

2.3 Preservation of strict partial orders
lemma strict-order-letter-less:

assumes strict-order r
shows strict-order (letter-less r)

using assms unfolding irrefl-def trans-def letter-less-def by fast

lemma strict-order-nest:
assumes r : strict-order r and R: strict-order R
shows strict-order (nest r R)

proof −
have strict-order (mult (letter-less r <∗lex∗> R))
using strict-order-letter-less[of r] irrefl-lex-prod[of letter-less r R]

trans-lex-prod[of letter-less r R] strict-order-mult[of letter-less r <∗lex∗> R]
assms

by fast
from this show strict-order (nest r R) unfolding nest-def trans-def irrefl-def

by fast
qed

lemma strict-order-greek-less:

9

assumes strict-order r
shows strict-order (greek-less r)

by (simp add: greek-less-def strict-order-lfp[OF mono-nest strict-order-nest[OF assms]])

lemma trans-letter-less:
assumes trans r
shows trans (letter-less r)

using assms unfolding trans-def letter-less-def by fast

lemma trans-order-nest: trans (nest r R)
using trans-mult unfolding nest-def trans-def by fast

lemma trans-greek-less[simp]: trans (greek-less r)
by (subst greek-less-unfold) (rule trans-order-nest)

lemma mono-greek-less: mono greek-less
unfolding greek-less-def mono-def
proof (intro allI impI lfp-mono)

fix r s :: (′a × ′a) set and R :: (′a greek × ′a greek) set
assume r ⊆ s
then have letter-less r <∗lex∗> R ⊆ letter-less s <∗lex∗> R
using mono-letter-less mono-lex1 unfolding mono-def by metis
then show nest r R ⊆ nest s R using mono-mult unfolding nest-def mono-def

by blast
qed

2.4 Involution
definition inv-letter :: ′a letter ⇒ ′a letter where

inv-letter l ≡
case l of (a, x) ⇒ (case a of Grave ⇒ Acute | Acute ⇒ Grave | Macron ⇒

Macron, x)

lemma inv-letter-pair [simp]:
inv-letter (a, x) = (case a of Grave ⇒ Acute | Acute ⇒ Grave | Macron ⇒

Macron, x)
by (simp add: inv-letter-def)

lemma snd-inv-letter [simp]:
snd (inv-letter x) = snd x

by (simp add: inv-letter-def split: prod.splits)

lemma inv-letter-invol[simp]:
inv-letter (inv-letter x) = x

by (simp add: inv-letter-def split: prod.splits accent.splits)

lemma inv-letter-mono[simp]:
assumes (x, y) ∈ letter-less r
shows (inv-letter x, inv-letter y) ∈ letter-less r

10

using assms by simp

definition inv-greek :: ′a greek ⇒ ′a greek where
inv-greek s = rev (map inv-letter s)

lemma inv-greek-invol[simp]:
inv-greek (inv-greek s) = s

by (simp add: inv-greek-def rev-map comp-def)

lemma inv-greek-append:
inv-greek (s @ t) = inv-greek t @ inv-greek s

by (simp add: inv-greek-def)

definition inv-msog :: (′a letter × ′a greek) multiset ⇒ (′a letter × ′a greek)
multiset where

inv-msog M = image-mset (λ(x, t). (inv-letter x, inv-greek t)) M

lemma inv-msog-invol[simp]:
inv-msog (inv-msog M) = M

by (simp add: inv-msog-def multiset.map-comp comp-def prod.case-distrib)

lemma ms-of-greek-inv-greek:
ms-of-greek (inv-greek M) = inv-msog (ms-of-greek M)

unfolding inv-msog-def inv-greek-def ms-of-greek-def list-splits-rev list-splits-map
mset-map

multiset.map-comp mset-rev inv-letter-def adj-msog-def
by (rule cong[OF cong[OF refl[of image-mset]] refl]) (auto split: accent.splits)

lemma inv-greek-mono:
assumes trans r and (s, t) ∈ greek-less r
shows (inv-greek s, inv-greek t) ∈ greek-less r

using assms(2)
proof (induct length s + length t arbitrary: s t rule: less-induct)

note ∗ = trans-lex-prod[OF trans-letter-less[OF ‹trans r›] trans-greek-less[of r]]
case (less s t)
have (inv-msog (ms-of-greek s), inv-msog (ms-of-greek t)) ∈ mult (letter-less r

<∗lex∗> greek-less r)
unfolding inv-msog-def
proof (induct rule: mult-of-image-mset[OF ∗ ∗])

case (1 x y) thus ?case
by (auto intro: less(1) split: prod.splits dest!: ms-of-greek-shorter)

next
case 2 thus ?case using less(2) by (subst(asm) greek-less-unfold) simp

qed
thus ?case by (subst greek-less-unfold) (auto simp: ms-of-greek-inv-greek)

qed

11

2.5 Monotonicity of greek-less r
lemma greek-less-rempty[simp]:
(a,[]) ∈ greek-less r ←→ False

by (subst greek-less-unfold) (auto simp: ms-of-greek-def)

lemma greek-less-nonempty:
assumes b 6= []
shows (a,b) ∈ greek-less r ←→ (a,b) ∈ nest r (greek-less r)

by (subst greek-less-unfold) simp

lemma greek-less-lempty[simp]:
([],b) ∈ greek-less r ←→ b 6= []

proof
assume ([],b) ∈ greek-less r
then show b 6= [] using greek-less-rempty by fast

next
assume b 6= []
then show ([],b) ∈ greek-less r
unfolding greek-less-nonempty[OF ‹b 6= []›] by (simp add: ms-of-greek-def)

qed

lemma greek-less-singleton:
(a, b) ∈ letter-less r =⇒ ([a], [b]) ∈ greek-less r

by (subst greek-less-unfold) (auto split: accent.splits simp: adj-msog-def ms-of-greek-def)

lemma ms-of-greek-cons:
ms-of-greek (x # s) = {# adj-msog [] s (x,[]) #} + image-mset (adj-msog [x] [])

(ms-of-greek s)
using msog-append[of [x] s]
by (auto simp add: adj-msog-def ms-of-greek-def accent.splits)

lemma greek-less-cons-mono:
assumes trans r
shows (s, t) ∈ greek-less r =⇒ (x # s, x # t) ∈ greek-less r

proof (induct length s + length t arbitrary: s t rule: less-induct)
note ∗ = trans-lex-prod[OF trans-letter-less[OF ‹trans r›] trans-greek-less[of r]]
case (less s t)
{

fix M have (M + image-mset (adj-msog [x] []) (ms-of-greek s),
M + image-mset (adj-msog [x] []) (ms-of-greek t)) ∈ mult (letter-less r <∗lex∗>

greek-less r)
proof (rule mult-on-union, induct rule: mult-of-image-mset[OF ∗ ∗])

case (1 x y) thus ?case unfolding adj-msog-def
by (auto intro: less(1) split: prod.splits accent.splits dest!: ms-of-greek-shorter)

next
case 2 thus ?case using less(2) by (subst(asm) greek-less-unfold) simp

qed
}
moreover {

12

fix N have ({# adj-msog [] s (x,[]) #} + N ,{# adj-msog [] t (x,[]) #} + N) ∈
(mult (letter-less r <∗lex∗> greek-less r))=

by (auto simp: adj-msog-def less split: accent.splits) }
ultimately show ?case using transD[OF trans-mult]
by (subst greek-less-unfold) (fastforce simp: ms-of-greek-cons)

qed

lemma greek-less-app-mono2 :
assumes trans r and (s, t) ∈ greek-less r
shows (p @ s, p @ t) ∈ greek-less r

using assms by (induct p) (auto simp add: greek-less-cons-mono)

lemma greek-less-app-mono1 :
assumes trans r and (s, t) ∈ greek-less r
shows (s @ p, t @ p) ∈ greek-less r

using inv-greek-mono[of r inv-greek p @ inv-greek s inv-greek p @ inv-greek t]
by (simp add: assms inv-greek-append inv-greek-mono greek-less-app-mono2)

2.6 Well-founded-ness of greek-less r
lemma greek-embed:

assumes trans r
shows list-emb (λa b. (a, b): reflcl (letter-less r)) a b =⇒ (a, b) ∈ reflcl (greek-less

r)
proof (induct rule: list-emb.induct)

case (list-emb-Cons a b y) thus ?case
using trans-greek-less[unfolded trans-def] ‹trans r›

greek-less-app-mono1 [of r [] [y] a] greek-less-app-mono2 [of r a b [y]] by auto
next

case (list-emb-Cons2 x y a b) thus ?case
using trans-greek-less[unfolded trans-def] ‹trans r› greek-less-singleton[of x y r]

greek-less-app-mono1 [of r [x] [y] a] greek-less-app-mono2 [of r a b [y]] by auto
qed simp

lemma wqo-letter-less:
assumes t: trans r and w: wqo-on (λa b. (a, b) ∈ r=) UNIV
shows wqo-on (λa b. (a, b) ∈ (letter-less r)=) UNIV

proof (rule wqo-on-hom[of id - - prod-le (=) (λa b. (a, b) ∈ r=), unfolded image-id
id-apply])

show wqo-on (prod-le ((=) :: accent ⇒ accent ⇒ bool) (λa b. (a, b) ∈ r=)) UNIV
by (rule dickson[OF finite-eq-wqo-on[OF finite-accent] w, unfolded UNIV-Times-UNIV])

qed (insert t, auto simp: transp-on-def trans-def prod-le-def)

lemma wf-greek-less:
assumes wf r and trans r
shows wf (greek-less r)

proof −
obtain q where r ⊆ q and well-order q by (metis total-well-order-extension ‹wf

r›)

13

define q ′ where q ′ = q − Id
from ‹well-order q› have reflcl q ′ = q
by (auto simp add: well-order-on-def linear-order-on-def partial-order-on-def pre-

order-on-def
refl-on-def q ′-def)

from ‹well-order q› have trans q ′ and irrefl q ′

unfolding well-order-on-def linear-order-on-def partial-order-on-def preorder-on-def
antisym-def

trans-def irrefl-def q ′-def by blast+
from ‹r ⊆ q› ‹wf r› have r ⊆ q ′ by (auto simp add: q ′-def)
have wqo-on (λa b. (a,b) ∈ (greek-less q ′)=) UNIV
proof (intro wqo-on-hom[of id UNIV (λa b. (a, b) ∈ (greek-less q ′)=)

list-emb (λa b. (a, b) ∈ (letter-less q ′)=), unfolded surj-id])
show transp (λa b. (a, b) ∈ (greek-less q ′)=)
using trans-greek-less[of q ′] unfolding trans-def transp-on-def by blast

next
show ∀ x∈UNIV . ∀ y∈UNIV . list-emb (λa b. (a, b) ∈ (letter-less q ′)=) x y −→

(id x, id y) ∈ (greek-less q ′)=

using greek-embed[OF ‹trans q ′›] by auto
next

show wqo-on (list-emb (λa b. (a, b) ∈ (letter-less q ′)=)) UNIV
using higman[OF wqo-letter-less[OF ‹trans q ′›]] ‹well-order q› ‹reflcl q ′ = q›
by (auto simp: well-order-implies-wqo)

qed
with wqo-on-imp-wfp-on[OF this] strict-order-strict[OF strict-order-greek-less]

‹irrefl q ′› ‹trans q ′›
have wfp-on (λa b. (a, b) ∈ greek-less q ′) UNIV by force
then show ?thesis
using mono-greek-less ‹r ⊆ q ′› wf-subset unfolding wf-iff-wfp-on[symmetric]

mono-def by metis
qed

2.7 Basic Comparisons
lemma pairwise-imp-mult:

assumes N 6= {#} and ∀ x ∈ set-mset M . ∃ y ∈ set-mset N . (x, y) ∈ r
shows (M , N) ∈ mult r

using assms one-step-implies-mult[of - - - {#}] by auto

lemma singleton-greek-less:
assumes as: snd ‘ set as ⊆ under r b
shows (as, [(a,b)]) ∈ greek-less r

proof −
{

fix e assume e ∈ set-mset (ms-of-greek as)
with as ms-of-greek-elem[of - - as]
have (e, ((a,b),[])) ∈ letter-less r <∗lex∗> greek-less r
by (cases e) (fastforce simp: adj-msog-def under-def)

}

14

moreover have ms-of-greek [(a,b)] = {# ((a,b),[]) #}
by (auto simp: ms-of-greek-def adj-msog-def split: accent.splits)
ultimately show ?thesis
by (subst greek-less-unfold) (auto intro!: pairwise-imp-mult)

qed

lemma peak-greek-less:
assumes as: snd ‘ set as ⊆ under r a and b ′: b ′ ∈ {[(Grave,b)],[]}
and cs: snd ‘ set cs ⊆ under r a ∪ under r b and a ′: a ′ ∈ {[(Acute,a)],[]}
and bs: snd ‘ set bs ⊆ under r b
shows (as @ b ′ @ cs @ a ′ @ bs, [(Acute,a),(Grave,b)]) ∈ greek-less r

proof −
let ?A = (Acute,a) and ?B = (Grave,b)
have (ms-of-greek (as @ b ′ @ cs @ a ′ @ bs), ms-of-greek [?A,?B]) ∈ mult

(letter-less r <∗lex∗> greek-less r)
proof (intro pairwise-imp-mult)

{
fix e assume e ∈ set-mset (ms-of-greek as)
with as ms-of-greek-elem[of - - as]
have (adj-msog [] (b ′ @ cs @ a ′ @ bs) e, (?A,[?B])) ∈ letter-less r <∗lex∗>

greek-less r
by (cases e) (fastforce simp: adj-msog-def under-def)

}
moreover {

fix e assume e ∈ set-mset (ms-of-greek b ′)
with b ′ singleton-greek-less[OF as] ms-of-greek-elem[of - - b ′]

have (adj-msog as (cs @ a ′ @ bs) e, (?B,[?A])) ∈ letter-less r <∗lex∗>
greek-less r

by (cases e) (fastforce simp: adj-msog-def ms-of-greek-def)
}
moreover {

fix e assume e ∈ set-mset (ms-of-greek cs)
with cs ms-of-greek-elem[of - - cs]
have (adj-msog (as @ b ′) (a ′ @ bs) e, (?A,[?B])) ∈ letter-less r <∗lex∗>

greek-less r ∨
(adj-msog (as @ b ′) (a ′ @ bs) e, (?B,[?A])) ∈ letter-less r <∗lex∗>

greek-less r
by (cases e) (fastforce simp: adj-msog-def under-def)

}
moreover {

fix e assume e ∈ set-mset (ms-of-greek a ′)
with a ′ singleton-greek-less[OF bs] ms-of-greek-elem[of - - a ′]

have (adj-msog (as @ b ′ @ cs) bs e, (?A,[?B])) ∈ letter-less r <∗lex∗>
greek-less r

by (cases e) (fastforce simp: adj-msog-def ms-of-greek-def)
}
moreover {

fix e assume e ∈ set-mset (ms-of-greek bs)

15

with bs ms-of-greek-elem[of - - bs]
have (adj-msog (as @ b ′ @ cs @ a ′) [] e, (?B,[?A])) ∈ letter-less r <∗lex∗>

greek-less r
by (cases e) (fastforce simp: adj-msog-def under-def)

}
moreover have ms-of-greek [?A,?B] = {# (?B,[?A]), (?A,[?B]) #}
by (simp add: adj-msog-def ms-of-greek-def)
ultimately show ∀ x∈set-mset (ms-of-greek (as @ b ′ @ cs @ a ′ @ bs)).
∃ y∈set-mset (ms-of-greek [?A,?B]). (x, y) ∈ letter-less r <∗lex∗> greek-less r

by (auto simp: msog-append) blast
qed (auto simp: ms-of-greek-def)
then show ?thesis by (subst greek-less-unfold) auto

qed

lemma rcliff-greek-less1 :
assumes trans r
and as: snd ‘ set as ⊆ under r a ∩ under r b and b ′: b ′ ∈ {[(Grave,b)],[]}
and cs: snd ‘ set cs ⊆ under r b and a ′: a ′ = [(Macron,a)]
and bs: snd ‘ set bs ⊆ under r b
shows (as @ b ′ @ cs @ a ′ @ bs, [(Macron,a),(Grave,b)]) ∈ greek-less r

proof −
let ?A = (Macron,a) and ?B = (Grave,b)
have ∗: ms-of-greek [?A,?B] = {#(?B,[?A]), (?A,[])#} ms-of-greek [?A] = {#(?A,[])#}
by (simp-all add: ms-of-greek-def adj-msog-def)
then have ∗∗: ms-of-greek [(Macron, a), (Grave, b)] − {#((Macron, a), [])#}
6= {#}

by (auto)

{
fix e assume e ∈ set-mset (ms-of-greek as)
with as ms-of-greek-elem[of - - as]
have (adj-msog [] (b ′ @ cs @ a ′ @ bs) e, (?B,[?A])) ∈ letter-less r <∗lex∗>

greek-less r
by (cases e) (force simp: adj-msog-def under-def)

}
moreover {

fix e assume e ∈ set-mset (ms-of-greek b ′)
with b ′ singleton-greek-less as ms-of-greek-elem[of - - b ′]

have (adj-msog as (cs @ a ′ @ bs) e, (?B,[?A])) ∈ letter-less r <∗lex∗> greek-less
r

by (cases e) (fastforce simp: adj-msog-def ms-of-greek-def)
}
moreover {

fix e assume e ∈ set-mset (ms-of-greek cs)
with cs ms-of-greek-elem[of - - cs]
have (adj-msog (as @ b ′) (a ′ @ bs) e, (?B,[?A])) ∈ letter-less r <∗lex∗>

greek-less r
by (cases e) (fastforce simp: adj-msog-def under-def)

}

16

moreover {
fix e assume e ∈ set-mset (ms-of-greek bs)
with bs ms-of-greek-elem[of - - bs]
have (adj-msog (as @ b ′ @ cs @ a ′) [] e, (?B,[?A])) ∈ letter-less r <∗lex∗>

greek-less r
by (cases e) (fastforce simp: adj-msog-def under-def)

}
moreover have ms-of-greek [?A,?B] = {# (?B,[?A]), (?A,[]) #}
by (simp add: adj-msog-def ms-of-greek-def)
ultimately have ∀ x∈set-mset (ms-of-greek (as @ b ′@ cs @ a ′@ bs) − {#(?A,[])#}).
∃ y∈set-mset (ms-of-greek [?A,?B] − {#(?A,[])#}). (x, y) ∈ letter-less r <∗lex∗>

greek-less r
unfolding msog-append by (auto simp: a ′ msog-append ac-simps ∗ adj-msog-single)
from one-step-implies-mult[OF ∗∗ this,of {#(?A,[])#}]
have (ms-of-greek (as @ b ′ @ cs @ a ′ @ bs), ms-of-greek [?A,?B]) ∈ mult

(letter-less r <∗lex∗> greek-less r)
unfolding a ′ msog-append by (auto simp: a ′ ac-simps ∗ adj-msog-single)
then show ?thesis
by (subst greek-less-unfold) auto

qed

lemma rcliff-greek-less2 :
assumes trans r
and as: snd ‘ set as ⊆ under r a and b ′: b ′ ∈ {[(Grave,b)],[]}
and cs: snd ‘ set cs ⊆ under r a ∪ under r b
shows (as @ b ′ @ cs, [(Macron,a),(Grave,b)]) ∈ greek-less r

proof −
let ?A = (Macron,a) and ?B = (Grave,b)
have (ms-of-greek (as @ b ′ @ cs), ms-of-greek [?A,?B]) ∈ mult (letter-less r

<∗lex∗> greek-less r)
proof (intro pairwise-imp-mult)

{
fix e assume e ∈ set-mset (ms-of-greek as)
with as ms-of-greek-elem[of - - as]
have (adj-msog [] (b ′ @ cs) e, (?A,[])) ∈ letter-less r <∗lex∗> greek-less r
by (cases e) (fastforce simp: adj-msog-def under-def)

}
moreover {

fix e assume e ∈ set-mset (ms-of-greek b ′)
with b ′ singleton-greek-less[OF as] ms-of-greek-elem[of - - b ′]
have (adj-msog as (cs) e, (?B,[?A])) ∈ letter-less r <∗lex∗> greek-less r
by (cases e) (fastforce simp: adj-msog-def ms-of-greek-def)

}
moreover {

fix e assume e ∈ set-mset (ms-of-greek cs)
with cs ms-of-greek-elem[of - - cs]
have (adj-msog (as @ b ′) [] e, (?A,[])) ∈ letter-less r <∗lex∗> greek-less r ∨

(adj-msog (as @ b ′) [] e, (?B,[?A])) ∈ letter-less r <∗lex∗> greek-less r

17

by (cases e) (fastforce simp: adj-msog-def under-def)
}
moreover have ∗: ms-of-greek [?A,?B] = {# (?B,[?A]), (?A,[]) #}
by (simp add: adj-msog-def ms-of-greek-def)
ultimately show ∀ x∈set-mset (ms-of-greek (as @ b ′ @ cs)).
∃ y∈set-mset (ms-of-greek [?A,?B]). (x, y) ∈ letter-less r <∗lex∗> greek-less r

by (auto simp: msog-append adj-msog-single ac-simps ∗) blast
qed (auto simp: ms-of-greek-def)
then show ?thesis by (subst greek-less-unfold) auto

qed

lemma snd-inv-greek [simp]: snd ‘ set (inv-greek as) = snd ‘ set as
by (force simp: inv-greek-def)

lemma lcliff-greek-less1 :
assumes trans r
and as: snd ‘ set as ⊆ under r a and b ′: b ′ = [(Macron,b)]
and cs: snd ‘ set cs ⊆ under r a and a ′: a ′ ∈ {[(Acute,a)],[]}
and bs: snd ‘ set bs ⊆ under r a ∩ under r b
shows (as @ b ′ @ cs @ a ′ @ bs, [(Acute,a),(Macron,b)]) ∈ greek-less r

proof −
have ∗: inv-greek [(Acute,a),(Macron,b)] = [(Macron,b),(Grave,a)] by (simp add:

inv-greek-def)
have (inv-greek (inv-greek (as @ b ′ @ cs @ a ′ @ bs)),
inv-greek (inv-greek ([(Acute,a),(Macron,b)]))) ∈ greek-less r
apply (rule inv-greek-mono[OF ‹trans r›])
apply (unfold inv-greek-append append-assoc ∗)
apply (insert assms)
apply (rule rcliff-greek-less1 , auto simp: inv-greek-def)

done
then show ?thesis by simp

qed

lemma lcliff-greek-less2 :
assumes trans r
and cs: snd ‘ set cs ⊆ under r a ∪ under r b and a ′: a ′ ∈ {[(Acute,a)],[]}
and bs: snd ‘ set bs ⊆ under r b
shows (cs @ a ′ @ bs, [(Acute,a),(Macron,b)]) ∈ greek-less r

proof −
have ∗: inv-greek [(Acute,a),(Macron,b)] = [(Macron,b),(Grave,a)] by (simp add:

inv-greek-def)
have (inv-greek (inv-greek (cs @ a ′ @ bs)),

inv-greek (inv-greek ([(Acute,a),(Macron,b)]))) ∈ greek-less r
apply (rule inv-greek-mono[OF ‹trans r›])
apply (unfold inv-greek-append append-assoc ∗)
apply (insert assms)
apply (rule rcliff-greek-less2 , auto simp: inv-greek-def)

done
then show ?thesis by simp

18

qed

2.8 Labeled abstract rewriting
context

fixes L R E :: ′b ⇒ ′a rel
begin

definition lstep :: ′b letter ⇒ ′a rel where
[simp]: lstep x = (case x of (a, i) ⇒ (case a of Acute ⇒ (L i)−1 | Grave ⇒ R i
| Macron ⇒ E i))

fun lconv :: ′b greek ⇒ ′a rel where
lconv [] = Id
| lconv (x # xs) = lstep x O lconv xs

lemma lconv-append[simp]:
lconv (xs @ ys) = lconv xs O lconv ys

by (induct xs) auto

lemma conversion-join-or-peak-or-cliff :
obtains (join) as bs cs where set as ⊆ {Grave} and set bs ⊆ {Macron} and

set cs ⊆ {Acute}
and ds = as @ bs @ cs
| (peak) as bs where ds = as @ ([Acute] @ [Grave]) @ bs
| (lcliff) as bs where ds = as @ ([Acute] @ [Macron]) @ bs
| (rcliff) as bs where ds = as @ ([Macron] @ [Grave]) @ bs

proof (induct ds arbitrary: thesis)
case (Cons d ds thesis) note IH = this show ?case
proof (rule IH (1))

fix as bs assume ds = as @ ([Acute] @ [Grave]) @ bs then show ?case
using IH (3)[of d # as bs] by simp

next
fix as bs assume ds = as @ ([Acute] @ [Macron]) @ bs then show ?case
using IH (4)[of d # as bs] by simp

next
fix as bs assume ds = as @ ([Macron] @ [Grave]) @ bs then show ?case
using IH (5)[of d # as bs] by simp

next
fix as bs cs assume ∗: set as ⊆ {Grave} set bs ⊆ {Macron} set cs ⊆ {Acute}

ds = as @ bs @ cs
show ?case
proof (cases d)

case Grave thus ?thesis using ∗ IH (2)[of d # as bs cs] by simp
next

case Macron show ?thesis
proof (cases as)

case Nil thus ?thesis using ∗ Macron IH (2)[of as d # bs cs] by simp
next

19

case (Cons a as) thus ?thesis using ∗ Macron IH (5)[of [] as @ bs @ cs]
by simp

qed
next

case Acute show ?thesis
proof (cases as)

case Nil note as = this show ?thesis
proof (cases bs)

case Nil thus ?thesis using ∗ as Acute IH (2)[of [] [] d # cs] by simp
next

case (Cons b bs) thus ?thesis using ∗ as Acute IH (4)[of [] bs @ cs] by
simp

qed
next

case (Cons a as) thus ?thesis using ∗ Acute IH (3)[of [] as @ bs @ cs] by
simp

qed
qed

qed
qed auto

lemma map-eq-append-split:
assumes map f xs = ys1 @ ys2
obtains xs1 xs2 where ys1 = map f xs1 ys2 = map f xs2 xs = xs1 @ xs2

proof (insert assms, induct ys1 arbitrary: xs thesis)
case (Cons y ys) note IH = this show ?case
proof (cases xs)

case (Cons x xs ′) show ?thesis
proof (rule IH (1))

fix xs1 xs2 assume ys = map f xs1 ys2 = map f xs2 xs ′ = xs1 @ xs2 thus
?thesis

using Cons IH (2)[of x # xs1 xs2] IH (3) by simp
next

show map f xs ′ = ys @ ys2 using Cons IH (3) by simp
qed

qed (insert Cons, simp)
qed auto

lemmas map-eq-append-splits = map-eq-append-split map-eq-append-split[OF sym]

abbreviation conversion ′ M ≡ ((
⋃

i ∈ M . R i) ∪ (
⋃

i ∈ M . E i) ∪ (
⋃

i ∈ M . L
i)−1)∗

abbreviation valley ′ M ≡ (
⋃

i ∈ M . R i)∗ O (
⋃

i ∈ M . E i)∗ O ((
⋃

i ∈ M . L
i)−1)∗

lemma conversion-to-lconv:
assumes (u, v) ∈ conversion ′ M
obtains xs where snd ‘ set xs ⊆ M and (u, v) ∈ lconv xs

using assms

20

proof (induct arbitrary: thesis rule: converse-rtrancl-induct)
case base show ?case using base[of []] by simp

next
case (step u ′ x)
from step(1) obtain p where snd p ∈ M and (u ′, x) ∈ lstep p
by (force split: accent.splits)
moreover obtain xs where snd ‘ set xs ⊆ M (x, v) ∈ lconv xs by (rule step(3))
ultimately show ?case using step(4)[of p # xs] by auto

qed

definition lpeak :: ′b rel ⇒ ′b ⇒ ′b ⇒ ′b greek ⇒ bool where
lpeak r a b xs ←→ (∃ as b ′ cs a ′ bs. snd ‘ set as ⊆ under r a ∧ b ′ ∈ {[(Grave,b)],[]}
∧

snd ‘ set cs ⊆ under r a ∪ under r b ∧ a ′ ∈ {[(Acute,a)],[]} ∧
snd ‘ set bs ⊆ under r b ∧ xs = as @ b ′ @ cs @ a ′ @ bs)

definition lcliff :: ′b rel ⇒ ′b ⇒ ′b ⇒ ′b greek ⇒ bool where
lcliff r a b xs ←→ (∃ as b ′ cs a ′ bs. snd ‘ set as ⊆ under r a ∧ b ′ = [(Macron,b)]
∧

snd ‘ set cs ⊆ under r a ∧ a ′ ∈ {[(Acute,a)],[]} ∧
snd ‘ set bs ⊆ under r a ∩ under r b ∧ xs = as @ b ′ @ cs @ a ′ @ bs) ∨
(∃ cs a ′ bs. snd ‘ set cs ⊆ under r a ∪ under r b ∧ a ′ ∈ {[(Acute,a)],[]} ∧
snd ‘ set bs ⊆ under r b ∧ xs = cs @ a ′ @ bs)

definition rcliff :: ′b rel ⇒ ′b ⇒ ′b ⇒ ′b greek ⇒ bool where
rcliff r a b xs ←→ (∃ as b ′ cs a ′ bs. snd ‘ set as ⊆ under r a ∩ under r b ∧ b ′ ∈
{[(Grave,b)],[]} ∧

snd ‘ set cs ⊆ under r b ∧ a ′ = [(Macron,a)] ∧
snd ‘ set bs ⊆ under r b ∧ xs = as @ b ′ @ cs @ a ′ @ bs) ∨
(∃ as b ′ cs. snd ‘ set as ⊆ under r a ∧ b ′ ∈ {[(Grave,b)],[]} ∧
snd ‘ set cs ⊆ under r a ∪ under r b ∧ xs = as @ b ′ @ cs)

lemma dd-commute-modulo-conv[case-names wf trans peak lcliff rcliff]:
assumes wf r and trans r
and pk:

∧
a b s t u. (s, t) ∈ L a =⇒ (s, u) ∈ R b =⇒ ∃ xs. lpeak r a b xs ∧ (t,

u) ∈ lconv xs
and lc:

∧
a b s t u. (s, t) ∈ L a =⇒ (s, u) ∈ E b =⇒ ∃ xs. lcliff r a b xs ∧ (t, u)

∈ lconv xs
and rc:

∧
a b s t u. (s, t) ∈ (E a)−1 =⇒ (s, u) ∈ R b =⇒ ∃ xs. rcliff r a b xs ∧

(t, u) ∈ lconv xs
shows conversion ′ UNIV ⊆ valley ′ UNIV

proof (intro subrelI)
fix u v
assume (u,v) ∈ conversion ′ UNIV
then obtain xs where (u, v) ∈ lconv xs by (auto intro: conversion-to-lconv[of

u v])
then show (u, v) ∈ valley ′ UNIV
proof (induct xs rule: wf-induct[of greek-less r])

case 1 thus ?case using wf-greek-less[OF ‹wf r› ‹trans r›] .

21

next
case (2 xs) show ?case
proof (rule conversion-join-or-peak-or-cliff [of map fst xs])

fix as bs cs
assume ∗: set as ⊆ {Grave} set bs ⊆ {Macron} set cs ⊆ {Acute} map fst xs

= as @ bs @ cs
then show (u, v) ∈ valley ′ UNIV
proof (elim map-eq-append-splits)

fix as ′ bs ′ cs ′ bcs ′

assume as: set as ⊆ {Grave} as = map fst as ′ and
bs: set bs ⊆ {Macron} bs = map fst bs ′ and
cs: set cs ⊆ {Acute} cs = map fst cs ′ and
xs: xs = as ′ @ bcs ′ bcs ′ = bs ′ @ cs ′

from as(1)[unfolded as(2)] have as ′:
∧

x y. (x,y) ∈ lconv as ′ =⇒ (x,y) ∈
(
⋃

a. R a)∗
proof (induct as ′)

case (Cons x ′ xs)
have

∧
x y z i. (x,y) ∈ R i =⇒ (y,z) ∈ (

⋃
a. R a)∗ =⇒ (x,z) ∈ (

⋃
a. R

a)∗
by (rule rtrancl-trans) auto
with Cons show ?case by auto

qed simp
from bs(1)[unfolded bs(2)] have bs ′:

∧
x y. (x,y) ∈ lconv bs ′ =⇒ (x,y) ∈

(
⋃

a. E a)∗
proof (induct bs ′)

case (Cons x ′ xs)
have

∧
x y z i. (x,y) ∈ E i =⇒ (y,z) ∈ (

⋃
a. E a)∗ =⇒ (x,z) ∈ (

⋃
a. E a)∗

by (rule rtrancl-trans) auto
with Cons show ?case by auto

qed simp
from cs(1)[unfolded cs(2)] have cs ′:

∧
x y. (x,y) ∈ lconv cs ′ =⇒ (x,y) ∈

((
⋃

a. L a)−1)∗

proof (induct cs ′)
case (Cons x ′ xs)
have

∧
x y z i. (x,y) ∈ (L i)−1 =⇒ (y,z) ∈ ((

⋃
a. L a)−1)∗ =⇒ (x,z) ∈

((
⋃

a. L a)−1)∗

by (rule rtrancl-trans) auto
with Cons show ?case by auto

qed simp
from 2 (2) as ′ bs ′ cs ′ show (u, v) ∈ valley ′ UNIV
unfolding xs lconv-append by auto (meson relcomp.simps)

qed
next

fix as bs assume ∗: map fst xs = as @ ([Acute] @ [Grave]) @ bs
{

fix p a b q t ′ s ′ u ′

assume xs: xs = p @ [(Acute,a),(Grave,b)] @ q and p: (u,t ′) ∈ lconv p
and a: (s ′,t ′) ∈ L a and b: (s ′,u ′) ∈ R b and q: (u ′,v) ∈ lconv q

obtain js where lp: lpeak r a b js and js: (t ′,u ′) ∈ lconv js using pk[OF a

22

b] by auto
from lp have (js, [(Acute,a),(Grave,b)]) ∈ greek-less r
unfolding lpeak-def using peak-greek-less[of - r a - b] by fastforce
then have (p @ js @ q, xs) ∈ greek-less r unfolding xs
by (intro greek-less-app-mono1 greek-less-app-mono2 ‹trans r›) auto
moreover have (u, v) ∈ lconv (p @ js @ q)
using p q js by auto
ultimately have (u, v) ∈ valley ′ UNIV using 2 (1) by blast

}
with ∗ show (u, v) ∈ valley ′ UNIV using 2 (2)
by (auto elim!: map-eq-append-splits relcompEpair simp del: append.simps)

simp
next

fix as bs assume ∗: map fst xs = as @ ([Acute] @ [Macron]) @ bs
{

fix p a b q t ′ s ′ u ′

assume xs: xs = p @ [(Acute,a),(Macron,b)] @ q and p: (u,t ′) ∈ lconv p
and a: (s ′,t ′) ∈ L a and b: (s ′,u ′) ∈ E b and q: (u ′,v) ∈ lconv q

obtain js where lp: lcliff r a b js and js: (t ′,u ′) ∈ lconv js using lc[OF a
b] by auto

from lp have (js, [(Acute,a),(Macron,b)]) ∈ greek-less r
unfolding lcliff-def
using lcliff-greek-less1 [OF ‹trans r›, of - a - b] lcliff-greek-less2 [OF ‹trans

r›, of - a b]
by fastforce
then have (p @ js @ q, xs) ∈ greek-less r unfolding xs
by (intro greek-less-app-mono1 greek-less-app-mono2 ‹trans r›) auto
moreover have (u, v) ∈ lconv (p @ js @ q)
using p q js by auto
ultimately have (u, v) ∈ valley ′ UNIV using 2 (1) by blast

}
with ∗ show (u, v) ∈ valley ′ UNIV using 2 (2)
by (auto elim!: map-eq-append-splits relcompEpair simp del: append.simps)

simp
next

fix as bs assume ∗: map fst xs = as @ ([Macron] @ [Grave]) @ bs
{

fix p a b q t ′ s ′ u ′

assume xs: xs = p @ [(Macron,a),(Grave,b)] @ q and p: (u,t ′) ∈ lconv p
and a: (s ′,t ′) ∈ (E a)−1 and b: (s ′,u ′) ∈ R b and q: (u ′,v) ∈ lconv q

obtain js where lp: rcliff r a b js and js: (t ′,u ′) ∈ lconv js using rc[OF a
b] by auto

from lp have (js, [(Macron,a),(Grave,b)]) ∈ greek-less r
unfolding rcliff-def
using rcliff-greek-less1 [OF ‹trans r›, of - a b] rcliff-greek-less2 [OF ‹trans

r›, of - a - b]
by fastforce
then have (p @ js @ q, xs) ∈ greek-less r unfolding xs
by (intro greek-less-app-mono1 greek-less-app-mono2 ‹trans r›) auto

23

moreover have (u, v) ∈ lconv (p @ js @ q)
using p q js by auto
ultimately have (u, v) ∈ valley ′ UNIV using 2 (1) by blast

}
with ∗ show (u, v) ∈ valley ′ UNIV using 2 (2)
by (auto elim!: map-eq-append-splits relcompEpair simp del: append.simps)

simp
qed

qed
qed

3 Results
3.1 Church-Rosser modulo

Decreasing diagrams for Church-Rosser modulo, commutation version.
lemma dd-commute-modulo[case-names wf trans peak lcliff rcliff]:

assumes wf r and trans r
and pk:

∧
a b s t u. (s, t) ∈ L a =⇒ (s, u) ∈ R b =⇒

(t, u) ∈ conversion ′ (under r a) O (R b)= O conversion ′ (under r a ∪ under r
b) O

((L a)−1)= O conversion ′ (under r b)
and lc:

∧
a b s t u. (s, t) ∈ L a =⇒ (s, u) ∈ E b =⇒

(t, u) ∈ conversion ′ (under r a) O E b O conversion ′ (under r a) O
((L a)−1)= O conversion ′ (under r a ∩ under r b) ∨
(t, u) ∈ conversion ′ (under r a ∪ under r b) O ((L a)−1)= O conversion ′

(under r b)
and rc:

∧
a b s t u. (s, t) ∈ (E a)−1 =⇒ (s, u) ∈ R b =⇒

(t, u) ∈ conversion ′ (under r a ∩ under r b) O (R b)= O conversion ′ (under r
b) O

E a O conversion ′ (under r b) ∨
(t, u) ∈ conversion ′ (under r a) O (R b)= O conversion ′ (under r a ∪ under r

b)
shows conversion ′ UNIV ⊆ valley ′ UNIV

proof (cases rule: dd-commute-modulo-conv[of r])
case (peak a b s t u)
{

fix w x y z
assume (t, w) ∈ conversion ′ (under r a)
from conversion-to-lconv[OF this]
obtain as where snd ‘ set as ⊆ under r a (t, w) ∈ lconv as by auto
moreover assume (w, x) ∈ (R b)=
then obtain b ′ where b ′ ∈ {[(Grave,b)],[]} (w, x) ∈ lconv b ′ by fastforce
moreover assume (x, y) ∈ conversion ′ (under r a ∪ under r b)
from conversion-to-lconv[OF this]
obtain cs where snd ‘ set cs ⊆ under r a ∪ under r b (x, y) ∈ lconv cs by

auto
moreover assume (y, z) ∈ ((L a)−1)=

24

then obtain a ′ where a ′ ∈ {[(Acute,a)],[]} (y, z) ∈ lconv a ′ by fastforce
moreover assume (z, u) ∈ conversion ′ (under r b)
from conversion-to-lconv[OF this]
obtain bs where snd ‘ set bs ⊆ under r b (z, u) ∈ lconv bs by auto
ultimately have ∃ xs. lpeak r a b xs ∧ (t, u) ∈ lconv xs
by (intro exI [of - as @ b ′ @ cs @ a ′ @ bs], unfold lconv-append lpeak-def) blast

}
then show ?case using pk[OF peak] by blast

next
case (lcliff a b s t u)
{

fix w x y z
assume (t, w) ∈ conversion ′ (under r a)
from conversion-to-lconv[OF this]
obtain as where snd ‘ set as ⊆ under r a (t, w) ∈ lconv as by auto
moreover assume (w, x) ∈ E b
then obtain b ′ where b ′ = [(Macron,b)] (w, x) ∈ lconv b ′ by fastforce
moreover assume (x, y) ∈ conversion ′ (under r a)
from conversion-to-lconv[OF this]
obtain cs where snd ‘ set cs ⊆ under r a (x, y) ∈ lconv cs by auto
moreover assume (y, z) ∈ ((L a)−1)=

then obtain a ′ where a ′ ∈ {[(Acute,a)],[]} (y, z) ∈ lconv a ′ by fastforce
moreover assume (z, u) ∈ conversion ′ (under r a ∩ under r b)
from conversion-to-lconv[OF this]
obtain bs where snd ‘ set bs ⊆ under r a ∩ under r b (z, u) ∈ lconv bs by

auto
ultimately have ∃ xs. lcliff r a b xs ∧ (t, u) ∈ lconv xs
by (intro exI [of - as @ b ′ @ cs @ a ′ @ bs], unfold lconv-append lcliff-def) blast

}
moreover {

fix w x
assume (t, w) ∈ conversion ′ (under r a ∪ under r b)
from conversion-to-lconv[OF this]
obtain cs where snd ‘ set cs ⊆ under r a ∪ under r b (t, w) ∈ lconv cs by

auto
moreover assume (w, x) ∈ ((L a)−1)=

then obtain a ′ where a ′ ∈ {[(Acute,a)],[]} (w, x) ∈ lconv a ′ by fastforce
moreover assume (x, u) ∈ conversion ′ (under r b)
from conversion-to-lconv[OF this]
obtain bs where snd ‘ set bs ⊆ under r b (x, u) ∈ lconv bs by auto
ultimately have ∃ xs. lcliff r a b xs ∧ (t, u) ∈ lconv xs
by (intro exI [of - cs @ a ′ @ bs], unfold lconv-append lcliff-def) blast

}
ultimately show ?case using lc[OF lcliff] by blast

next
case (rcliff a b s t u)
{

fix w x y z
assume (t, w) ∈ conversion ′ (under r a ∩ under r b)

25

from conversion-to-lconv[OF this]
obtain as where snd ‘ set as ⊆ under r a ∩ under r b (t, w) ∈ lconv as by

auto
moreover assume (w, x) ∈ (R b)=
then obtain b ′ where b ′ ∈ {[(Grave,b)],[]} (w, x) ∈ lconv b ′ by fastforce
moreover assume (x, y) ∈ conversion ′ (under r b)
from conversion-to-lconv[OF this]
obtain cs where snd ‘ set cs ⊆ under r b (x, y) ∈ lconv cs by auto
moreover assume (y, z) ∈ E a
then obtain a ′ where a ′ = [(Macron,a)] (y, z) ∈ lconv a ′ by fastforce
moreover assume (z, u) ∈ conversion ′ (under r b)
from conversion-to-lconv[OF this]
obtain bs where snd ‘ set bs ⊆ under r b (z, u) ∈ lconv bs by auto
ultimately have ∃ xs. rcliff r a b xs ∧ (t, u) ∈ lconv xs
by (intro exI [of - as @ b ′ @ cs @ a ′ @ bs], unfold lconv-append rcliff-def) blast

}
moreover {

fix w x
assume (t, w) ∈ conversion ′ (under r a)
from conversion-to-lconv[OF this]
obtain as where snd ‘ set as ⊆ under r a (t, w) ∈ lconv as by auto
moreover assume (w, x) ∈ (R b)=
then obtain b ′ where b ′ ∈ {[(Grave,b)],[]} (w, x) ∈ lconv b ′ by fastforce
moreover assume (x, u) ∈ conversion ′ (under r a ∪ under r b)
from conversion-to-lconv[OF this]
obtain cs where snd ‘ set cs ⊆ under r a ∪ under r b (x, u) ∈ lconv cs by

auto
ultimately have ∃ xs. rcliff r a b xs ∧ (t, u) ∈ lconv xs
by (intro exI [of - as @ b ′ @ cs], unfold lconv-append rcliff-def) blast

}
ultimately show ?case using rc[OF rcliff] by blast

qed fact+

end

Decreasing diagrams for Church-Rosser modulo.
lemma dd-cr-modulo[case-names wf trans symE peak cliff]:

assumes wf r and trans r and E :
∧

i. sym (E i)
and pk:

∧
a b s t u. (s, t) ∈ L a =⇒ (s, u) ∈ L b =⇒

(t, u) ∈ conversion ′ L L E (under r a) O (L b)= O conversion ′ L L E (under
r a ∪ under r b) O

((L a)−1)= O conversion ′ L L E (under r b)
and cl:

∧
a b s t u. (s, t) ∈ L a =⇒ (s, u) ∈ E b =⇒

(t, u) ∈ conversion ′ L L E (under r a) O E b O conversion ′ L L E (under r a)
O

((L a)−1)= O conversion ′ L L E (under r a ∩ under r b) ∨
(t, u) ∈ conversion ′ L L E (under r a ∪ under r b) O ((L a)−1)= O conversion ′

L L E (under r b)
shows conversion ′ L L E UNIV ⊆ valley ′ L L E UNIV

26

proof (induct rule: dd-commute-modulo[of r])
note E ′ = E [unfolded sym-conv-converse-eq]
case (rcliff a b s t u) show ?case
using cl[OF rcliff (2) rcliff (1)[unfolded E ′], unfolded converse-iff [of t u,symmetric]]
by (auto simp only: E ′ converse-inward) (auto simp only: ac-simps)

qed fact+

3.2 Commutation and confluence
abbreviation conversion ′′ L R M ≡ ((

⋃
i ∈ M . R i) ∪ (

⋃
i ∈ M . L i)−1)∗

abbreviation valley ′′ L R M ≡ (
⋃

i ∈ M . R i)∗ O ((
⋃

i ∈ M . L i)−1)∗

Decreasing diagrams for commutation.
lemma dd-commute[case-names wf trans peak]:

assumes wf r and trans r
and pk:

∧
a b s t u. (s, t) ∈ L a =⇒ (s, u) ∈ R b =⇒

(t, u) ∈ conversion ′′ L R (under r a) O (R b)= O conversion ′′ L R (under r a
∪ under r b) O

((L a)−1)= O conversion ′′ L R (under r b)
shows commute (

⋃
i. L i) (

⋃
i. R i)

proof −
have ((

⋃
i. L i)−1)∗ O (

⋃
i. R i)∗ ⊆ conversion ′′ L R UNIV by regexp

also have . . . ⊆ valley ′′ L R UNIV
using dd-commute-modulo[OF assms(1 ,2), of L R λ-. {}] pk by auto
finally show ?thesis by (simp only: commute-def)

qed

Decreasing diagrams for confluence.
lemmas dd-cr [case-names wf trans peak] =

dd-commute[of - L L for L, unfolded CR-iff-self-commute[symmetric]]

3.3 Extended decreasing diagrams
context

fixes r q :: ′b rel
assumes wf r and trans r and trans q and refl q and compat: r O q ⊆ r

begin

private abbreviation (input) down :: (′b ⇒ ′a rel) ⇒ (′b ⇒ ′a rel) where
down L ≡ λi.

⋃
j ∈ under q i. L j

private lemma Union-down: (
⋃

i. down L i) = (
⋃

i. L i)
using ‹refl q› by (auto simp: refl-on-def under-def)

Extended decreasing diagrams for commutation.
lemma edd-commute[case-names wf transr transq reflq compat peak]:

assumes pk:
∧

a b s t u. (s, t) ∈ L a =⇒ (s, u) ∈ R b =⇒
(t, u) ∈ conversion ′′ L R (under r a) O (down R b)= O conversion ′′ L R (under

r a ∪ under r b) O

27

((down L a)−1)= O conversion ′′ L R (under r b)
shows commute (

⋃
i. L i) (

⋃
i. R i)

unfolding Union-down[of L, symmetric] Union-down[of R, symmetric]
proof (induct rule: dd-commute[of r down L down R])

case (peak a b s t u)
then obtain a ′ b ′ where a ′: (a ′, a) ∈ q (s, t) ∈ L a ′ and b ′: (b ′, b) ∈ q (s, u)
∈ R b ′

by (auto simp: under-def)
have

∧
a ′ a. (a ′,a) ∈ q =⇒ under r a ′ ⊆ under r a using compat by (auto simp:

under-def)
then have aux1 :

∧
a ′ a L. (a ′,a) ∈ q =⇒ (

⋃
i ∈ under r a ′. L i) ⊆ (

⋃
i ∈ under

r a. L i) by auto
have aux2 :

∧
a ′ a L. (a ′,a) ∈ q =⇒ down L a ′ ⊆ down L a

using ‹trans q› by (auto simp: under-def trans-def)
have aux3 :

∧
a L. (

⋃
i ∈ under r a. L i) ⊆ (

⋃
i ∈ under r a. down L i)

using ‹refl q› by (auto simp: under-def refl-on-def)
from aux1 [OF a ′(1), of L] aux1 [OF a ′(1), of R] aux2 [OF a ′(1), of L]

aux1 [OF b ′(1), of L] aux1 [OF b ′(1), of R] aux2 [OF b ′(1), of R]
aux3 [of L] aux3 [of R]

show ?case
by (intro subsetD[OF - pk[OF ‹(s, t) ∈ L a ′› ‹(s, u) ∈ R b ′›]], unfold UN-Un)

(intro relcomp-mono rtrancl-mono Un-mono iffD2 [OF converse-mono]; fast)
qed fact+

Extended decreasing diagrams for confluence.
lemmas edd-cr [case-names wf transr transq reflq compat peak] =

edd-commute[of L L for L, unfolded CR-iff-self-commute[symmetric]]

end

end

References

[1] B. Felgenhauer and V. van Oostrom. Proof orders for decreasing dia-
grams. In Proc. 24th International Conference on Rewriting Techniques
and Applications, number 21 in Leibniz International Proceedings in In-
formatics, pages 174–189, 2013.

[2] N. Hirokawa and A. Middeldorp. Decreasing diagrams and relative ter-
mination. In Proc. 5th International Joint Conference on Automated
Reasoning, volume 6173 of Lecture Notes in Artificial Intelligence, pages
487–501, 2010.

[3] V. van Oostrom. Confluence by decreasing diagrams – converted. In
Proc. 19th International Conference on Rewriting Techniques and Ap-

28

plications, volume 5117 of Lecture Notes in Computer Science, pages
306–320, 2008.

29

	Preliminaries
	Trivialities
	Complete lattices and least fixed points
	A chain-based induction principle
	Preservation of transitivity, asymmetry, irreflexivity by suprema

	Multiset extension
	Incrementality of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 mult1 and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 mult
	Well-orders and well-quasi-orders
	Splitting lists into prefix, element, and suffix

	Decreasing Diagrams
	Greek accents
	Comparing Greek strings
	Preservation of strict partial orders
	Involution
	Monotonicity of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 greek-less r
	Well-founded-ness of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 greek-less r
	Basic Comparisons
	Labeled abstract rewriting

	Results
	Church-Rosser modulo
	Commutation and confluence
	Extended decreasing diagrams

