Decreasing-Diagrams-II

By Bertram Felgenhauer

March 17, 2025

Abstract

This theory formalizes a commutation version of decreasing diagrams for Church-Rosser modulo. The proof follows Felgenhauer and van Oostrom (RTA 2013). The theory also provides important specializations, in particular van Oostrom's conversion version (TCS 2008) of decreasing diagrams.

We follow the development described in [1]: Conversions are mapped to Greek strings, and we prove that whenever a local peak (or cliff) is replaced by a joining sequence from a locally decreasing diagram, then the corresponding Greek strings become smaller in a specially crafted well-founded order on Greek strings. Once there are no more local peaks or cliffs are left, the result is a valley that establishes the Church-Rosser modulo property.

As special cases we provide non-commutation versions and the conversion version of decreasing diagrams by van Oostrom [3]. We also formalize extended decreasingness [2].

Contents

1	Preliminaries		
	1.1	Trivialities	
	1.2	Complete lattices and least fixed points	
		1.2.1 A chain-based induction principle	
		1.2.2 Preservation of transitivity, asymmetry, irreflexivity	
		by suprema	
	1.3	Multiset extension	
	1.4	Incrementality of <i>mult1</i> and <i>mult</i>	
	1.5	Well-orders and well-quasi-orders	
	1.6	Splitting lists into prefix, element, and suffix	
2	Decreasing Diagrams		
	2.1	Greek accents	
	2.2	Comparing Greek strings	
	2.3	Preservation of strict partial orders	

	2.4 Involution
	2.5 Monotonicity of greek-less r
	2.6 Well-founded-ness of greek-less r
	2.7 Basic Comparisons
	2.8 Labeled abstract rewriting
3	Results 24
	3.1 Church-Rosser modulo
	3.2 Commutation and confluence
	3.3 Extended decreasing diagrams
1	Preliminaries
$^{ m th}$	eory Decreasing-Diagrams-II-Aux
	ports
	Well-Quasi-Orders.Multiset-Extension
	Well-Quasi-Orders. Well-Quasi-Orders egin
	8
1.	1 Trivialities
ab	breviation strict-order $R \equiv irrefl \ R \land trans \ R$
leı	mma strict-order-strict: strict-order $q \Longrightarrow strict \ (\lambda a \ b. \ (a, \ b) \in q^{=}) = (\lambda a \ b.$
(a,	$(a,b) \in q$
un	afolding trans-def irreft-def by fast
lei	mma $mono-lex1: mono (\lambda r. lex-prod r s)$
	(auto simp add: mono-def)
leı	mma mono-lex2: mono (lex-prod r)
by	(auto simp add: mono-def)
leı	${f mmas}\ converse\mbox{-}inward = rtrancl\mbox{-}converse[symmetric]\ converse\mbox{-}Un\ converse\mbox{-}UNIOI$
co	nverse-relcomp
C	$converse\ converse\ Id$
1.	2 Complete lattices and least fixed points
	ntext complete-lattice
be	egin
1.	2.1 A chain-based induction principle
ah	breviation set-chain :: 'a set \Rightarrow bool where

```
set-chain C \equiv \forall x \in C. \ \forall y \in C. \ x \leq y \lor y \leq x
\mathbf{lemma}\ \mathit{lfp-chain-induct}\colon
  assumes mono: mono f
  and step: \bigwedge x. P x \Longrightarrow P (f x)
 and chain: \bigwedge C. set-chain C \Longrightarrow \forall x \in C. Px \Longrightarrow P(Sup C)
  shows P(lfp f)
unfolding lfp\text{-}eq\text{-}fixp[OF\ mono]
proof (rule fixp-induct)
  show monotone (\leq) (\leq) f using mono unfolding order-class.mono-def mono-
tone-def.
next
  show P(Sup \{\}) using chain[of \{\}] by simp
next
  show ccpo.admissible Sup (<) P
 by (auto simp add: chain ccpo.admissible-def Complete-Partial-Order.chain-def)
qed fact
1.2.2
          Preservation of transitivity, asymmetry, irreflexivity by suprema
lemma trans-Sup-of-chain:
 assumes set-chain C and trans: \bigwedge R. R \in C \Longrightarrow trans R
  shows trans (Sup C)
proof (intro transI)
  \mathbf{fix} \ x \ y \ z
  assume (x,y) \in Sup \ C and (y,z) \in Sup \ C
  from \langle (x,y) \in Sup \ C \rangle obtain R where R \in C and (x,y) \in R by blast
  from \langle (y,z) \in Sup \ C \rangle obtain S where S \in C and (y,z) \in S by blast
  from \langle R \in C \rangle and \langle S \in C \rangle and \langle set\text{-}chain \ C \rangle have R \cup S = R \lor R \cup S = S
by blast
  with \langle R \in C \rangle and \langle S \in C \rangle have R \cup S \in C by fastforce
  with \langle (x,y) \in R \rangle and \langle (y,z) \in S \rangle and trans[of R \cup S]
 have (x,z) \in R \cup S unfolding trans-def by blast
  with \langle R \cup S \in C \rangle show (x,z) \in \bigcup C by blast
qed
lemma asym-Sup-of-chain:
 assumes set-chain C and asym: \bigwedge R. R \in C \Longrightarrow asym R
  shows asym (Sup C)
proof (intro asymI notI)
  \mathbf{fix} \ a \ b
  assume (a,b) \in Sup \ C then obtain R where R \in C and (a,b) \in R by blast
  assume (b,a) \in Sup \ C then obtain S where S \in C and (b,a) \in S by blast
  from \langle R \in C \rangle and \langle S \in C \rangle and \langle set\text{-}chain \ C \rangle have R \cup S = R \lor R \cup S = S
by blast
  with \langle R \in C \rangle and \langle S \in C \rangle have R \cup S \in C by fastforce
 with \langle (a,b) \in R \rangle and \langle (b,a) \in S \rangle and asym[THEN\ asymD] show False by blast
qed
```

```
lemma strict-order-lfp:
  assumes mono f and \bigwedge R. strict-order R \Longrightarrow strict-order (f R)
  shows strict-order (lfp f)
proof (intro lfp-chain-induct[of f strict-order])
  fix C :: ('b \times 'b) set set
  assume set-chain C and \forall R \in C. strict-order R
  from this show strict-order (Sup C)
   using asym-on-iff-irreft-on-if-trans-on[of UNIV]
   by (metis asym-Sup-of-chain trans-Sup-of-chain)
\mathbf{qed} \ fact +
lemma trans-lfp:
  assumes mono f and \bigwedge R. trans R \Longrightarrow trans (f R)
 shows trans (lfp f)
by (metis lfp-chain-induct[of f trans] assms trans-Sup-of-chain)
end
1.3
        Multiset extension
lemma mulex-iff-mult: mulex r M N \longleftrightarrow (M,N) \in mult \{(M,N) : r M N\}
by (auto simp add: mulex-on-def restrict-to-def mult-def mulex1-def tranclp-unfold)
lemma multI:
  assumes trans r M = I + K N = I + J J \neq \{\#\} \ \forall k \in set\text{-mset } K. \ \exists j \in \{\#\} \}
set-mset J.(k,j) \in r
  shows (M,N) \in mult \ r
using assms one-step-implies-mult by blast
lemma multE:
  assumes trans r and (M,N) \in mult r
 obtains I J K where M = I + K N = I + J J \neq \{\#\} \ \forall k \in set\text{-mset } K. \ \exists j \in J \}
set-mset J.(k,j) \in r
using mult-implies-one-step[OF assms] by blast
lemma mult-on-union: (M,N) \in mult \ r \Longrightarrow (K+M, K+N) \in mult \ r
using mulex-on-union of \lambda x y. (x,y) \in r UNIV by (auto simp: mulex-iff-mult)
lemma mult-on-union': (M,N) \in mult \ r \Longrightarrow (M+K, N+K) \in mult \ r
\textbf{using} \ \textit{mulex-on-union'}[\textit{of} \ \lambda x \ \textit{y.} \ (\textit{x},\textit{y}) \in \textit{r} \ \textit{UNIV}] \ \textbf{by} \ (\textit{auto simp: mulex-iff-mult})
lemma mult-on-add-mset: (M,N) \in mult \ r \Longrightarrow (add-mset \ k \ M, \ add-mset \ k \ N) \in
mult r
\mathbf{unfolding} \ add\text{-}mset\text{-}add\text{-}single[of\ k\ M] \ add\text{-}mset\text{-}add\text{-}single[of\ k\ N] \ \mathbf{by} \ (\textit{rule\ mult-on-union'})
lemma mult-empty[simp]: (M,{\#}) \notin mult R
by (metis mult-def not-less-empty trancl.cases)
```

lemma mult-singleton $[simp]: (x, y) \in r \Longrightarrow (add$ -mset x M, add- $mset y M) \in mult$

```
unfolding add-mset-add-single[of x M] add-mset-add-single[of y M]
apply (rule mult-on-union)
using mult1-singleton[of x \ y \ r] by (auto simp add: mult-def mult-on-union)
lemma empty-mult[simp]: (\{\#\},N) \in mult\ R \longleftrightarrow N \neq \{\#\}
using empty-mulex-on of N UNIV \lambda M N. (M,N) \in R by (auto simp add: mulex-iff-mult)
lemma trans-mult: trans (mult R)
unfolding mult-def by simp
lemma strict-order-mult:
 assumes irreft R and trans R
 shows irreft (mult R) and trans (mult R)
proof -
 show irrefl (mult R) unfolding irrefl-def
 proof (intro all I not I, elim multE[OF \langle trans R \rangle])
   fix MIJK
    assume M = I + J M = I + K J \neq \{\#\} and *: \forall k \in set\text{-mset } K. \exists j \in \{\#\}\}
set-mset J.(k, j) \in R
   from \langle M = I + J \rangle and \langle M = I + K \rangle have J = K by simp
   have finite (set-mset J) by simp
   then have set-mset J = \{\} using * unfolding \langle J = K \rangle
     by (induct rule: finite-induct)
      (simp, metis assms insert-absorb insert-iff insert-not-empty irrefl-def transD)
   then show False using \langle J \neq \{\#\} \rangle by simp
qed (simp add: trans-mult)
lemma mult-of-image-mset:
 assumes trans R and trans R'
 and \bigwedge x \ y. \ x \in set\text{-mset} \ N \Longrightarrow y \in set\text{-mset} \ M \Longrightarrow (x,y) \in R \Longrightarrow (f \ x, f \ y) \in
 and (N, M) \in mult R
 shows (image-mset f N, image-mset f M) \in mult R'
proof (insert assms(4), elim multE[OF assms(1)])
 fix IJK
  assume N = I + K M = I + J J \neq \{\#\} \ \forall k \in set\text{-mset } K. \ \exists j \in set\text{-mset } J.
(k, j) \in R
  thus (image-mset\ f\ N,\ image-mset\ f\ M) \in mult\ R' using assms(2,3)
   by (intro multI) (auto, blast)
qed
       Incrementality of mult1 and mult
```

lemma mono-mult1: mono mult1 unfolding mono-def mult1-def by blast

lemma mono-mult: mono mult

```
unfolding mono-def mult-def proof (intro all I impI subsetI) fix R S :: 'a \text{ rel and } x assume R \subseteq S and x \in (mult1 \ R)^+ then show x \in (mult1 \ S)^+ using mono-mult1 [unfolded mono-def] trancl-mono[of x \text{ mult1 } R \text{ mult1 } S] by auto qed
```

1.5 Well-orders and well-quasi-orders

```
lemma wf-iff-wfp-on:
  wf \ p \longleftrightarrow wfp\text{-}on \ (\lambda a \ b. \ (a, \ b) \in p) \ UNIV
unfolding wfp-on-iff-inductive-on wf-def inductive-on-def by force
lemma well-order-implies-wgo:
  assumes well-order r
 shows wgo-on (\lambda a \ b. \ (a, \ b) \in r) \ UNIV
proof (intro wqo-onI almost-full-onI)
 show transp (\lambda a \ b. \ (a, \ b) \in r) using assms
 by (auto simp only: well-order-on-def linear-order-on-def partial-order-on-def pre-
order-on-def
    trans-def\ transp-def)
\mathbf{next}
  \mathbf{fix}\ f ::\ nat \Rightarrow 'a
 show good (\lambda a \ b. \ (a, \ b) \in r) \ f
  using assms unfolding well-order-on-def wf-iff-wfp-on wfp-on-def not-ex not-all
de-Morgan-conj
  proof (elim conjE allE exE)
   fix x assume linear-order r and fx \notin UNIV \vee (f(Suc\ x), fx) \notin r - Id
   then have (f x, f (Suc x)) \in r using \langle linear\text{-}order r \rangle
     by (force simp: linear-order-on-def Relation.total-on-def partial-order-on-def
preorder-on-def
     refl-on-def)
   then show good (\lambda a \ b. \ (a, \ b) \in r) \ f by (auto simp: good-def)
 qed
qed
```

1.6 Splitting lists into prefix, element, and suffix

```
fun list-splits :: 'a list \Rightarrow ('a list \times 'a \times 'a list) list where list-splits [] = [] | list-splits (x \# xs) = ([], x, xs) # map (\lambda(xs, x', xs'). (x \# xs, x', xs')) (list-splits xs)

lemma list-splits-empty[simp]: list-splits xs = [] \longleftrightarrow xs = [] by (cases xs) simp-all
```

lemma elem-list-splits-append:

```
assumes (ys, y, zs) \in set (list-splits xs)
 \mathbf{shows}\ ys\ @\ [y]\ @\ zs=xs
using assms by (induct xs arbitrary: ys) auto
lemma elem-list-splits-length:
 assumes (ys, y, zs) \in set (list-splits xs)
 shows length ys < length xs and length zs < length xs
using elem-list-splits-append[OF assms] by auto
\mathbf{lemma}\ \mathit{elem-list-splits-elem} :
 assumes (xs, y, ys) \in set (list-splits zs)
 shows y \in set zs
using elem-list-splits-append[OF assms] by force
lemma list-splits-append:
  list-splits (xs @ ys) = map (\lambda(xs', x', ys'). (xs', x', ys' @ ys)) (list-splits xs) @
                       map\ (\lambda(xs',\ x',\ ys').\ (xs\ @\ xs',\ x',\ ys'))\ (list-splits\ ys)
by (induct xs) auto
lemma list-splits-rev:
 list-splits (rev xs) = map (\lambda(xs, x, ys)). (rev ys, x, rev xs)) (rev (list-splits xs))
by (induct xs) (auto simp add: list-splits-append comp-def prod.case-distrib rev-map)
lemma list-splits-map:
  list-splits (map f xs) = map (\lambda(xs, x, ys)). (map f xs, f x, map f ys)) (list-splits
xs
by (induct xs) auto
end
2
     Decreasing Diagrams
```

```
\begin{tabular}{ll} \textbf{theory} & \textit{Decreasing-Diagrams-II} \\ \textbf{imports} \\ & \textit{Decreasing-Diagrams-II-Aux} \\ & \textit{HOL-Cardinals.Wellorder-Extension} \\ & \textit{Abstract-Rewriting.Abstract-Rewriting} \\ \textbf{begin} \\ \end{tabular}
```

2.1 Greek accents

```
datatype accent = Acute \mid Grave \mid Macron

lemma UNIV-accent: UNIV = \{ Acute, Grave, Macron \}

using accent.nchotomy by blast

lemma finite-accent: finite (UNIV :: accent set)

by (simp\ add:\ UNIV-accent)
```

```
type-synonym 'a letter = accent \times 'a
definition letter-less :: ('a \times 'a) set \Rightarrow ('a \ letter \times 'a \ letter) set where
 [simp]: letter-less R = \{(a,b), (snd \ a, snd \ b) \in R\}
lemma mono-letter-less: mono letter-less
by (auto simp add: mono-def)
        Comparing Greek strings
2.2
type-synonym 'a greek = 'a letter list
definition adj-msog :: 'a \ greek \Rightarrow 'a \ greek \Rightarrow ('a \ letter \times 'a \ greek) \Rightarrow ('a \ letter \times
'a greek)
where
  adj-msog xs zs l \equiv
   case l of (y,ys) \Rightarrow (y, case \ fst \ y \ of \ Acute \Rightarrow ys @ zs | Grave \Rightarrow xs @ ys | Macron
\Rightarrow ys
definition ms-of-greek :: 'a greek \Rightarrow ('a letter \times 'a greek) multiset where
 ms-of-greek as = mset
   (map\ (\lambda(xs,\ y,\ zs)\Rightarrow\ adj\text{-}msog\ xs\ zs\ (y,\ []))\ (list\text{-}splits\ as))
lemma adj-msog-adj-msog[simp]:
  adj-msog xs zs (adj-msog xs' zs' y) = adj-msog (xs @ xs') (zs' @ zs) y
by (auto simp: adj-msog-def split: accent.splits prod.splits)
lemma compose-adj-msog[simp]: adj-msog xs zs \circ adj-msog xs' zs' = adj-msog (xs
@ xs') (zs' @ zs)
by (simp add: comp-def)
lemma adj-msog-single:
 adj-msog xs zs (x, ]) = (x, (case fst x of Grave \Rightarrow xs | Acute \Rightarrow zs | Macron \Rightarrow
by (simp add: adj-msog-def split: accent.splits)
lemma ms-of-greek-elem:
 assumes (x,xs) \in set\text{-}mset \ (ms\text{-}of\text{-}greek \ ys)
 shows x \in set ys
using assms by (auto dest: elem-list-splits-elem simp: adj-msog-def ms-of-greek-def)
lemma ms-of-greek-shorter:
 assumes (x, t) \in \# ms\text{-}of\text{-}greek s
 shows length s > length t
using assms[unfolded ms-of-greek-def in-multiset-in-set]
by (auto simp: elem-list-splits-length adj-msog-def split: accent.splits)
lemma msog-append: ms-of-greek (xs @ ys) = image-mset (adj-msog [] ys) (ms-of-greek
```

xs) +

```
image-mset \ (adj-msog \ xs \ []) \ (ms-of-greek \ ys)
by (auto simp: ms-of-greek-def list-splits-append multiset.map-comp comp-def prod.case-distrib)
definition nest :: ('a \times 'a) \ set \Rightarrow ('a \ greek \times 'a \ greek) \ set \Rightarrow ('a \ greek \times 'a \ greek)
  [simp]: nest r s = \{(a,b). (ms-of-greek a, ms-of-greek b) \in mult (letter-less r
\langle *lex* \rangle s)
lemma mono-nest: mono (nest r)
unfolding mono-def
proof (intro allI impI subsetI)
 fix R S x
 assume 1: R \subseteq S and 2: x \in nest \ r \ R
 from 1 have mult (letter-less r < *lex * > R) \subseteq mult (letter-less r < *lex * > S)
 using mono-mult mono-lex2[of letter-less r] unfolding mono-def by blast
 with 2 show x \in nest \ r \ S by auto
qed
lemma nest-mono[mono-set]: x \subseteq y \Longrightarrow (a,b) \in nest \ r \ x \longrightarrow (a,b) \in nest \ r \ y
using mono-nest[unfolded\ mono-def,\ rule-format,\ of\ x\ y\ r] by blast
definition greek-less :: ('a \times 'a) set \Rightarrow ('a \text{ greek} \times 'a \text{ greek}) set where
 greek-less r = lfp \ (nest \ r)
lemma greek-less-unfold:
  greek-less r = nest \ r \ (greek-less r)
using mono-nest[of r] lfp-unfold[of nest r] by (simp add: greek-less-def)
2.3
       Preservation of strict partial orders
lemma strict-order-letter-less:
 assumes strict-order r
 shows strict-order (letter-less r)
using assms unfolding irrefl-def trans-def letter-less-def by fast
\mathbf{lemma}\ strict	ext{-}order	ext{-}nest:
 assumes r: strict-order r and R: strict-order R
 shows strict-order (nest r R)
proof -
 have strict-order (mult (letter-less r < *lex * > R))
 using strict-order-letter-less[of r] irrefl-lex-prod[of letter-less r R]
    trans-lex-prod[of\ letter-less\ r\ R]\ strict-order-mult[of\ letter-less\ r\ <*lex*>\ R]
assms
  from this show strict-order (nest r R) unfolding nest-def trans-def irreft-def
by fast
qed
```

lemma *strict-order-greek-less*:

```
assumes strict-order r
 shows strict-order (greek-less r)
by (simp\ add:\ greek-less-def\ strict-order-lfp[OF\ mono-nest\ strict-order-nest[OF\ assms]])
lemma trans-letter-less:
 assumes trans r
 shows trans (letter-less r)
using assms unfolding trans-def letter-less-def by fast
lemma trans-order-nest: trans (nest r R)
using trans-mult unfolding nest-def trans-def by fast
lemma trans-greek-less[simp]: trans(greek-less r)
by (subst greek-less-unfold) (rule trans-order-nest)
lemma mono-greek-less: mono greek-less
unfolding greek-less-def mono-def
proof (intro allI impI lfp-mono)
 fix r s :: ('a \times 'a) set and R :: ('a \ greek \times 'a \ greek) set
 assume r \subseteq s
 then have letter-less r < *lex* > R \subseteq letter-less s < *lex* > R
 using mono-letter-less mono-lex1 unfolding mono-def by metis
 then show nest r R \subseteq nest \ s \ R using mono-mult unfolding nest-def mono-def
\mathbf{by} blast
qed
2.4
       Involution
definition inv-letter :: 'a letter \Rightarrow 'a letter where
  inv-letter l \equiv
    case l of (a, x) \Rightarrow (case \ a \ of \ Grave \Rightarrow Acute \mid Acute \Rightarrow Grave \mid Macron \Rightarrow
Macron, x)
lemma inv-letter-pair[simp]:
  inv-letter (a, x) = (case \ a \ of \ Grave \Rightarrow Acute \mid Acute \Rightarrow Grave \mid Macron \Rightarrow
Macron, x)
by (simp add: inv-letter-def)
lemma snd-inv-letter[simp]:
  snd (inv-letter x) = snd x
by (simp add: inv-letter-def split: prod.splits)
lemma inv-letter-invol[simp]:
  inv-letter (inv-letter x) = x
by (simp add: inv-letter-def split: prod.splits accent.splits)
lemma inv-letter-mono[simp]:
 assumes (x, y) \in letter-less r
 shows (inv-letter x, inv-letter y) \in letter-less r
```

```
using assms by simp
definition inv-greek :: 'a greek <math>\Rightarrow 'a greek where
 inv-greek s = rev (map inv-letter s)
lemma inv-greek-invol[simp]:
  inv-greek (inv-greek s) = s
by (simp add: inv-greek-def rev-map comp-def)
lemma inv-greek-append:
  inv-greek (s @ t) = inv-greek t @ inv-greek s
by (simp add: inv-greek-def)
definition inv-msog :: ('a letter \times 'a greek) multiset \Rightarrow ('a letter \times 'a greek)
multiset where
  inv-msog\ M = image-mset\ (\lambda(x,\ t).\ (inv-letter\ x,\ inv-greek\ t))\ M
lemma inv-msog-invol[simp]:
  inv-msog (inv-msog M) = M
by (simp add: inv-msoq-def multiset.map-comp comp-def prod.case-distrib)
lemma ms-of-greek-inv-greek:
  ms-of-greek (inv-greek M) = inv-msog (ms-of-greek M)
unfolding inv-msog-def inv-greek-def ms-of-greek-def list-splits-rev list-splits-map
  multiset.map-comp mset-rev inv-letter-def adj-msog-def
by (rule cong[OF cong[OF reft[of image-mset]] reft]) (auto split: accent.splits)
lemma inv-greek-mono:
 assumes trans r and (s, t) \in greek\text{-}less r
 shows (inv\text{-}greek\ s,\ inv\text{-}greek\ t) \in greek\text{-}less\ r
using assms(2)
proof (induct length s + length t arbitrary: s t rule: less-induct)
 \mathbf{note} * = trans-lex-prod[OF\ trans-letter-less[OF\ \langle trans\ r \rangle]\ trans-greek-less[of\ r]]
 case (less\ s\ t)
  have (inv\text{-}msog\ (ms\text{-}of\text{-}qreek\ s),\ inv\text{-}msog\ (ms\text{-}of\text{-}qreek\ t)) \in mult\ (letter\text{-}less\ r
<*lex*> greek-less r)
  unfolding inv-msog-def
 proof (induct rule: mult-of-image-mset[OF * *])
   case (1 \ x \ y) thus ?case
   by (auto intro: less(1) split: prod.splits dest!: ms-of-greek-shorter)
 next
   case 2 thus ?case using less(2) by (subst(asm) greek-less-unfold) simp
 thus ?case by (subst greek-less-unfold) (auto simp: ms-of-greek-inv-greek)
qed
```

2.5 Monotonicity of greek-less r

```
lemma greek-less-rempty[simp]:
 (a, []) \in greek\text{-}less \ r \longleftrightarrow False
by (subst greek-less-unfold) (auto simp: ms-of-greek-def)
lemma greek-less-nonempty:
  assumes b \neq []
  shows (a,b) \in greek\text{-}less\ r \longleftrightarrow (a,b) \in nest\ r\ (greek\text{-}less\ r)
by (subst greek-less-unfold) simp
lemma greek-less-lempty[simp]:
  ([],b) \in greek\text{-}less\ r \longleftrightarrow b \neq []
proof
  assume ([],b) \in greek\text{-}less\ r
  then show b \neq [] using greek-less-rempty by fast
next
  assume b \neq []
  then show ([],b) \in greek\text{-}less\ r
  unfolding greek-less-nonempty[OF \langle b \neq [] \rangle] by (simp add: ms-of-greek-def)
qed
lemma greek-less-singleton:
  (a, b) \in letter-less \ r \Longrightarrow ([a], [b]) \in greek-less \ r
by (subst greek-less-unfold) (auto split: accent.splits simp: adj-msog-def ms-of-greek-def)
lemma ms-of-greek-cons:
  ms-of-greek (x \# s) = \{\# \ adj-msog [] \ s \ (x,[]) \#\} + image-mset \ (adj-msog \ [x] \ [])
(ms\text{-}of\text{-}greek\ s)
using msog-append[of [x] s]
by (auto simp add: adj-msoq-def ms-of-greek-def accent.splits)
lemma greek-less-cons-mono:
  assumes trans r
  shows (s, t) \in greek\text{-}less \ r \Longrightarrow (x \# s, x \# t) \in greek\text{-}less \ r
proof (induct length s + length t arbitrary: s t rule: less-induct)
  \mathbf{note} * = trans-lex-prod[OF\ trans-letter-less[OF\ \langle trans\ r \rangle]\ trans-greek-less[of\ r]]
  case (less\ s\ t)
   fix M have (M + image-mset (adj-msog [x])) (ms-of-greek s),
    M + image\text{-}mset \ (adj\text{-}msog \ [x] \ []) \ (ms\text{-}of\text{-}greek \ t)) \in mult \ (letter\text{-}less \ r < *lex*>
qreek-less r)
   proof (rule mult-on-union, induct rule: mult-of-image-mset[OF * *])
     case (1 x y) thus ?case unfolding adj-msoq-def
    by (auto intro: less(1) split: prod.splits accent.splits dest!: ms-of-greek-shorter)
     case 2 thus ?case using less(2) by (subst(asm) greek-less-unfold) simp
   \mathbf{qed}
 moreover {
```

```
fix N have (\{\# \ adj\text{-}msog\ []\ s\ (x,[])\ \#\} + N, \{\# \ adj\text{-}msog\ []\ t\ (x,[])\ \#\} + N) \in
     (mult\ (letter-less\ r\ <*lex*>\ greek-less\ r))^=
   by (auto simp: adj-msog-def less split: accent.splits) }
  ultimately show ?case using transD[OF trans-mult]
 by (subst greek-less-unfold) (fastforce simp: ms-of-greek-cons)
\mathbf{qed}
lemma greek-less-app-mono2:
 assumes trans r and (s, t) \in greek\text{-}less r
 shows (p @ s, p @ t) \in greek-less r
using assms by (induct p) (auto simp add: greek-less-cons-mono)
lemma greek-less-app-mono1:
 assumes trans r and (s, t) \in greek\text{-}less r
 shows (s @ p, t @ p) \in greek-less r
using inv-greek-mono[of r inv-greek p @ inv-greek s inv-greek p @ inv-greek t]
by (simp add: assms inv-greek-append inv-greek-mono greek-less-app-mono2)
2.6
        Well-founded-ness of greek-less r
lemma greek-embed:
 assumes trans r
 shows list-emb (\lambda a b. (a, b): reflct (letter-less r)) a b \Longrightarrow (a, b) \in reflct (greek-less
r)
proof (induct rule: list-emb.induct)
 case (list-emb-Cons a b y) thus ?case
 using trans-greek-less[unfolded\ trans-def] \langle trans\ r \rangle
   greek-less-app-mono2[of r [] [y] a] greek-less-app-mono2[of r a b [y]] by auto
next
 case (list-emb-Cons2 x y a b) thus ?case
 using trans-greek-less[unfolded\ trans-def] \langle trans\ r \rangle\ greek-less-singleton[of\ x\ y\ r]
   greek-less-app-mono1[of r [x] [y] a] greek-less-app-mono2[of r a b [y]] by auto
qed simp
\mathbf{lemma}\ wqo\text{-}letter\text{-}less:
 assumes t: trans \ r and w: wqo-on\ (\lambda a\ b.\ (a,\ b) \in r^{=})\ UNIV
 shows wqo-on (\lambda a \ b. \ (a, \ b) \in (letter-less \ r)^{=}) \ UNIV
proof (rule wgo-on-hom[of id - - prod-le (=) (\lambda a \ b. \ (a, b) \in r^{=}), unfolded image-id
id-apply])
 show wqo\text{-}on (prod\text{-}le ((=) :: accent \Rightarrow accent \Rightarrow bool) (\lambda a b. (a, b) \in r^{=})) UNIV
 by (rule dickson OF finite-eq-wqo-on OF finite-accent) w, unfolded UNIV-Times-UNIV)
qed (insert t, auto simp: transp-on-def trans-def prod-le-def)
lemma wf-greek-less:
 assumes wf r and trans r
 shows wf (greek-less r)
proof -
 obtain q where r \subseteq q and well-order q by (metis total-well-order-extension \langle wf \rangle
```

```
define q' where q' = q - Id
  from \langle well\text{-}order \ q \rangle have reflcl \ q' = q
 by (auto simp add: well-order-on-def linear-order-on-def partial-order-on-def pre-
order-on-def
      refl-on-def \ q'-def)
 from \langle well\text{-}order\ q \rangle have trans q' and irrefl\ q'
 unfolding well-order-on-def linear-order-on-def partial-order-on-def preorder-on-def
antisym-def
    trans-def irrefl-def q'-def by blast+
  from \langle r \subseteq q \rangle \langle wf r \rangle have r \subseteq q' by (auto simp add: q'-def)
  have wqo-on (\lambda a \ b. \ (a,b) \in (greek-less \ q')^{=}) \ UNIV
  proof (intro wqo-on-hom[of id UNIV (\lambda a \ b. \ (a, b) \in (greek-less \ q')^{=})
         list-emb (\lambda a b. (a, b) \in (letter-less q')^{=}), unfolded surj-id])
   show transp (\lambda a \ b. \ (a, \ b) \in (greek\text{-less} \ q')^{=})
   using trans-greek-less[of q'] unfolding trans-def transp-on-def by blast
   show \forall x \in UNIV. \forall y \in UNIV. list-emb (\lambda a b. (a, b) \in (letter-less q')^{=}) x y \longrightarrow
          (id\ x,\ id\ y) \in (greek\text{-}less\ q')^=
   using greek-embed[OF \langle trans \ q' \rangle] by auto
   show wqo-on (list-emb (\lambda a b. (a, b) \in (letter-less q')^{=})) UNIV
   using higman[OF\ wqo\ letter\ less[OF\ \langle trans\ q'\rangle]]\ \langle well\ order\ q\rangle\ \langle reflcl\ q'=q\rangle
   by (auto simp: well-order-implies-wqo)
  qed
  with wqo-on-imp-wfp-on[OF this] strict-order-strict[OF strict-order-greek-less]
    \langle irrefl \ q' \rangle \langle trans \ q' \rangle
  have wfp-on (\lambda a \ b. \ (a, \ b) \in greek-less \ q') UNIV by force
  then show ?thesis
  using mono-greek-less \langle r \subseteq q' \rangle wf-subset unfolding wf-iff-wfp-on[symmetric]
mono-def by metis
qed
2.7
        Basic Comparisons
lemma pairwise-imp-mult:
 assumes N \neq \{\#\} and \forall x \in set\text{-mset } M. \exists y \in set\text{-mset } N. (x, y) \in r
  shows (M, N) \in mult \ r
using assms one-step-implies-mult[of - - - {#}] by auto
lemma singleton-greek-less:
  assumes as: snd ' set as \subseteq under \ r \ b
  shows (as, [(a,b)]) \in greek-less r
proof -
  {
   fix e assume e \in set-mset (ms-of-greek as)
   with as ms-of-greek-elem[of - - as]
   have (e, ((a,b), [])) \in letter-less\ r < lex > greek-less\ r
   by (cases e) (fastforce simp: adj-msog-def under-def)
  }
```

```
moreover have ms-of-greek [(a,b)] = \{ \# ((a,b),[]) \# \}
  by (auto simp: ms-of-greek-def adj-msog-def split: accent.splits)
  ultimately show ?thesis
  by (subst greek-less-unfold) (auto intro!: pairwise-imp-mult)
qed
lemma peak-greek-less:
  assumes as: snd 'set as \subseteq under r a and b': b' \in \{[(Grave,b)],[]\}
  and cs: snd 'set cs \subseteq under r a \cup under r b and a': a' \in \{[(Acute, a)], []\}
  and bs: snd 'set bs \subseteq under \ r \ b
 shows (as @ b' @ cs @ a' @ bs, [(Acute,a),(Grave,b)]) \in greek-less\ r
proof -
  let ?A = (Acute, a) and ?B = (Grave, b)
  have (ms\text{-}of\text{-}greek\ (as\ @\ b'\ @\ cs\ @\ a'\ @\ bs),\ ms\text{-}of\text{-}greek\ [?A,?B])\in mult
(letter-less\ r < *lex* > greek-less\ r)
  proof (intro pairwise-imp-mult)
     fix e assume e \in set\text{-}mset \ (ms\text{-}of\text{-}greek \ as)
     with as ms-of-greek-elem[of - - as]
      have (adj\text{-}msog \ [\ (b' @ cs @ a' @ bs) \ e, (?A,[?B])) \in letter\text{-}less \ r <*lex*>
greek-less r
     by (cases e) (fastforce simp: adj-msog-def under-def)
   moreover {
     fix e assume e \in set\text{-}mset \ (ms\text{-}of\text{-}greek \ b')
     with b' singleton-greek-less[OF as] ms-of-greek-elem[of - - b']
       have (adj\text{-}msog\ as\ (cs\ @\ a'\ @\ bs)\ e,\ (?B,[?A]))\in letter\text{-}less\ r\ <*lex*>
greek-less r
     by (cases e) (fastforce simp: adj-msog-def ms-of-greek-def)
   }
   moreover {
     fix e assume e \in set-mset (ms-of-greek cs)
     with cs ms-of-greek-elem[of - - cs]
      have (adj\text{-}msog\ (as\ @\ b')\ (a'\ @\ bs)\ e,\ (?A,[?B]))\in letter\text{-}less\ r<*lex*>
greek-less r \lor
              (adj\text{-}msog\ (as\ @\ b')\ (a'\ @\ bs)\ e,\ (?B,[?A])) \in letter\text{-}less\ r <*lex*>
greek-less r
     by (cases e) (fastforce simp: adj-msog-def under-def)
   moreover {
     fix e assume e \in set\text{-}mset \ (ms\text{-}of\text{-}greek \ a')
     with a' singleton-greek-less[OF bs] ms-of-greek-elem[of - - a']
       have (adj\text{-}msog\ (as\ @\ b'\ @\ cs)\ bs\ e,\ (?A,[?B])) \in letter\text{-}less\ r\ <*lex*>
greek\text{-}less\ r
     by (cases e) (fastforce simp: adj-msog-def ms-of-greek-def)
   moreover {
     fix e assume e \in set\text{-}mset \ (ms\text{-}of\text{-}greek \ bs)
```

```
with bs ms-of-greek-elem[of - - bs]
     have (adj\text{-}msog\ (as\ @\ b'\ @\ cs\ @\ a')\ []\ e,\ (?B,[?A])) \in letter\text{-}less\ r <*lex*>
greek-less r
     by (cases e) (fastforce simp: adj-msog-def under-def)
   }
   moreover have ms-of-greek [?A,?B] = \{ \# (?B,[?A]), (?A,[?B]) \# \}
   by (simp add: adj-msog-def ms-of-greek-def)
   ultimately show \forall x \in set\text{-}mset \ (ms\text{-}of\text{-}greek \ (as @ b' @ cs @ a' @ bs)).
     \exists y \in set\text{-mset } (ms\text{-of-greek } [?A,?B]). (x,y) \in letter\text{-less } r < lex > greek\text{-less } r
   by (auto simp: msog-append) blast
  qed (auto simp: ms-of-greek-def)
 then show ?thesis by (subst greek-less-unfold) auto
qed
lemma rcliff-greek-less1:
 assumes trans r
 and as: snd 'set as \subseteq under r a \cap under r b and b': b' \in \{[(Grave,b)],[]\}
 and cs: snd 'set cs \subseteq under \ r \ b and a': a' = [(Macron, a)]
 and bs: snd 'set bs \subseteq under \ r \ b
 shows (as @ b' @ cs @ a' @ bs, [(Macron,a), (Grave,b)]) \in greek-less r
proof -
 let ?A = (Macron, a) and ?B = (Grave, b)
 have *: ms-of-greek [?A,?B] = \{\#(?B,[?A]), (?A,[])\#\} ms-of-greek [?A] = \{\#(?A,[])\#\}
 by (simp-all add: ms-of-greek-def adj-msog-def)
  then have **: ms-of-greek [(Macron, a), (Grave, b)] - {\#((Macron, a), [])\#}
\neq \{\#\}
 by (auto)
   fix e assume e \in set\text{-}mset \ (ms\text{-}of\text{-}greek \ as)
   with as ms-of-greek-elem[of - - as]
    have (adj\text{-}msog \ []\ (b'\ @\ cs\ @\ a'\ @\ bs)\ e,\ (?B,[?A])) \in letter\text{-}less\ r <*lex*>
greek-less r
   by (cases e) (force simp: adj-msog-def under-def)
  }
 moreover {
   fix e assume e \in set\text{-}mset \ (ms\text{-}of\text{-}greek \ b')
   with b' singleton-greek-less as ms-of-greek-elem[of - - b']
  have (adj\text{-}msog\ as\ (cs\ @\ a'\ @\ bs)\ e,\ (?B,[?A])) \in letter\text{-}less\ r <*lex*> greek\text{-}less
   by (cases e) (fastforce simp: adj-msog-def ms-of-greek-def)
  }
 moreover {
   fix e assume e \in set\text{-}mset \ (ms\text{-}of\text{-}greek \ cs)
   with cs ms-of-greek-elem[of - - cs]
     have (adj\text{-}msog\ (as\ @\ b')\ (a'\ @\ bs)\ e,\ (?B,[?A]))\in letter\text{-}less\ r\ <*lex*>
   by (cases e) (fastforce simp: adj-msog-def under-def)
```

```
moreover {
    fix e assume e \in set\text{-}mset \ (ms\text{-}of\text{-}greek \ bs)
    with bs ms-of-greek-elem[of - - bs]
    have (adj\text{-}msog\ (as\ @\ b'\ @\ cs\ @\ a')\ []\ e,\ (?B,[?A]))\in letter\text{-}less\ r\ <*lex*>
greek-less r
    by (cases e) (fastforce simp: adj-msog-def under-def)
  moreover have ms-of-greek [?A,?B] = \{ \# (?B,[?A]), (?A,[]) \# \}
 by (simp add: adj-msog-def ms-of-greek-def)
 ultimately have \forall x \in set\text{-}mset \ (ms\text{-}of\text{-}greek \ (as @ b' @ cs @ a' @ bs) - \{\#(?A,[])\#\}).
   \exists y \in set\text{-}mset \ (ms\text{-}of\text{-}greek \ [?A,?B] - \{\#(?A,[])\#\}). \ (x,y) \in letter\text{-}less \ r < *lex*>
greek-less r
 unfolding msog-append by (auto\ simp:\ a'\ msog-append\ ac\text{-}simps*\ adj\text{-}msog\text{-}single)
 from one-step-implies-mult[OF ** this, of {\#(?A,[])\#}]
  have (ms\text{-}of\text{-}greek\ (as\ @\ b'\ @\ cs\ @\ a'\ @\ bs),\ ms\text{-}of\text{-}greek\ [?A,?B])\in mult
(letter-less\ r < *lex* > greek-less\ r)
  unfolding a' msog-append by (auto simp: a' ac-simps * adj-msog-single)
  then show ?thesis
  by (subst greek-less-unfold) auto
qed
lemma rcliff-greek-less2:
  assumes trans r
  and as: snd 'set as \subseteq under r a and b': b' \in \{[(Grave, b)], []\}
  and cs: snd 'set cs \subseteq under \ r \ a \cup under \ r \ b
  shows (as @ b' @ cs, [(Macron,a), (Grave,b)]) \in greek-less r
proof -
  let ?A = (Macron, a) and ?B = (Grave, b)
  have (ms\text{-}of\text{-}greek\ (as\ @\ b'\ @\ cs),\ ms\text{-}of\text{-}greek\ [?A,?B]) \in mult\ (letter\text{-}less\ r
<*lex*> greek-less r)
  proof (intro pairwise-imp-mult)
     fix e assume e \in set\text{-}mset \ (ms\text{-}of\text{-}greek \ as)
     with as ms-of-greek-elem[of - - as]
     have (adj\text{-}msog \ []\ (b'\ @\ cs)\ e,\ (?A,[])) \in letter\text{-}less\ r <*lex*> greek\text{-}less\ r
      by (cases e) (fastforce simp: adj-msog-def under-def)
    moreover {
      fix e assume e \in set\text{-}mset \ (ms\text{-}of\text{-}greek \ b')
      with b' singleton-greek-less[OF as] ms-of-greek-elem[of - - b']
      have (adj\text{-}msog\ as\ (cs)\ e,\ (?B,[?A])) \in letter\text{-}less\ r <*lex*> greek\text{-}less\ r
      by (cases e) (fastforce simp: adj-msog-def ms-of-greek-def)
    }
    moreover {
      fix e assume e \in set\text{-}mset \ (ms\text{-}of\text{-}greek \ cs)
      with cs ms-of-greek-elem[of - - cs]
      have (adj\text{-}msog\ (as\ @\ b')\ []\ e,\ (?A,[])) \in letter\text{-}less\ r <*lex*> greek\text{-}less\ r \lor
            (adj\text{-}msog\ (as\ @\ b')\ []\ e,\ (?B,[?A])) \in letter\text{-}less\ r <*lex*> greek\text{-}less\ r
```

```
by (cases e) (fastforce simp: adj-msog-def under-def)
   }
   moreover have *: ms-of-greek [?A,?B] = \{ \# (?B,[?A]), (?A,[]) \# \}
   by (simp add: adj-msog-def ms-of-greek-def)
   ultimately show \forall x \in set\text{-}mset \ (ms\text{-}of\text{-}greek \ (as @ b' @ cs)).
     \exists y \in set\text{-}mset \ (ms\text{-}of\text{-}greek \ [?A,?B]). \ (x,y) \in letter\text{-}less \ r < *lex*> greek\text{-}less \ r
   by (auto simp: msog-append adj-msog-single ac-simps *) blast
 qed (auto simp: ms-of-greek-def)
  then show ?thesis by (subst greek-less-unfold) auto
qed
lemma snd-inv-greek [simp]: snd ' set (inv-greek as) = snd ' set as
by (force simp: inv-greek-def)
lemma lcliff-greek-less1:
 assumes trans r
 and as: snd ' set as \subseteq under\ r\ a and b': b' = [(Macron, b)]
 and cs: snd ' set cs \subseteq under \ r \ a and a': a' \in \{[(Acute, a)], []\}
 and bs: snd 'set bs \subseteq under \ r \ a \cap under \ r \ b
 shows (as @ b' @ cs @ a' @ bs, [(Acute,a), (Macron,b)]) \in greek-less r
proof -
 have *: inv-greek [(Acute,a),(Macron,b)] = [(Macron,b),(Grave,a)] by (simp\ add:
inv-greek-def)
  have (inv\text{-}greek\ (inv\text{-}greek\ (as @ b' @ cs @ a' @ bs)),
  inv-greek (inv-greek ([(Acute, a), (Macron, b)]))) \in greek-less r
  apply (rule inv-greek-mono[OF \langle trans r \rangle])
  apply (unfold inv-greek-append append-assoc *)
  apply (insert assms)
  apply (rule rcliff-greek-less1, auto simp: inv-greek-def)
  done
 then show ?thesis by simp
qed
lemma lcliff-greek-less2:
 assumes trans r
 and cs: snd 'set cs \subseteq under r a \cup under r b and a': a' \in \{[(Acute, a)], []\}
 and bs: snd 'set bs \subseteq under \ r \ b
 shows (cs @ a' @ bs, [(Acute,a), (Macron,b)]) \in greek-less r
proof -
 have *: inv-qreek [(Acute, a), (Macron, b)] = [(Macron, b), (Grave, a)] by (simp add:
inv-greek-def)
 have (inv\text{-}greek\ (inv\text{-}greek\ (cs\ @\ a'\ @\ bs)),
   inv-greek (inv-greek ([(Acute, a), (Macron, b)]))) \in greek-less r
  apply (rule inv-greek-mono[OF \langle trans r \rangle])
  apply (unfold inv-greek-append append-assoc *)
  apply (insert assms)
  apply (rule rcliff-greek-less2, auto simp: inv-greek-def)
  done
  then show ?thesis by simp
```

2.8 Labeled abstract rewriting

```
context
 fixes L R E :: 'b \Rightarrow 'a rel
begin
definition lstep :: 'b \ letter \Rightarrow 'a \ rel \ where
  [simp]: lstep x = (case \ x \ of \ (a, \ i) \Rightarrow (case \ a \ of \ Acute \Rightarrow (L \ i)^{-1} \mid Grave \Rightarrow R \ i
| Macron \Rightarrow E i)
fun lconv :: 'b \ greek \Rightarrow 'a \ rel \ \mathbf{where}
  lconv [] = Id
| lconv (x \# xs) = lstep x O lconv xs
lemma lconv-append[simp]:
 lconv (xs @ ys) = lconv xs O lconv ys
by (induct xs) auto
lemma conversion-join-or-peak-or-cliff:
  obtains (join) as bs cs where set as \subseteq \{Grave\} and set bs \subseteq \{Macron\} and
set \ cs \subseteq \{Acute\}
   and ds = as @ bs @ cs
   (peak) as by where ds = as @ ([Acute] @ [Grave]) @ bs
   (lcliff) as bs where ds = as @ ([Acute] @ [Macron]) @ bs
  | (rcliff) \ as \ bs \ \mathbf{where} \ ds = as \ @ ([Macron] \ @ [Grave]) \ @ \ bs
proof (induct ds arbitrary: thesis)
 case (Cons \ d \ ds \ thesis) note IH = this \ show \ ?case
 proof (rule IH(1))
   fix as bs assume ds = as @ ([Acute] @ [Grave]) @ bs then show ?case
   using IH(3)[of d \# as bs] by simp
   fix as bs assume ds = as @ ([Acute] @ [Macron]) @ bs then show ?case
   using IH(4)[of d \# as bs] by simp
   fix as bs assume ds = as @ ([Macron] @ [Grave]) @ bs then show ?case
   using IH(5)[of d \# as bs] by simp
  next
   fix as bs cs assume *: set as \subseteq \{Grave\} set bs \subseteq \{Macron\} set cs \subseteq \{Acute\}
ds = as @ bs @ cs
   show ?case
   proof (cases d)
     case Grave thus ?thesis using * IH(2)[of d \# as bs cs] by simp
     case Macron show ?thesis
     proof (cases as)
       case Nil thus ?thesis using * Macron IH(2)[of as d \# bs \ cs] by simp
```

```
case (Cons a as) thus ?thesis using * Macron IH(5)[of [] as @ bs @ cs]
\mathbf{by} \ simp
              qed
         \mathbf{next}
              case Acute show ?thesis
              proof (cases as)
                   case Nil note as = this show ?thesis
                   proof (cases bs)
                        case (Cons b bs) thus ?thesis using * as Acute IH(4)[of [] bs @ cs] by
simp
                   qed
              \mathbf{next}
                  case (Cons a as) thus ?thesis using * Acute IH(3)[of [] as @ bs @ cs] by
simp
              qed
         qed
    qed
qed auto
lemma map-eq-append-split:
     assumes map f xs = ys1 @ ys2
     obtains xs1 \ xs2 \ where ys1 = map \ f \ xs1 \ ys2 = map \ f \ xs2 \ xs = xs1 \ @ xs2
proof (insert assms, induct ys1 arbitrary: xs thesis)
     case (Cons \ y \ ys) note IH = this \ show \ ?case
     proof (cases xs)
         case (Cons x xs') show ?thesis
         proof (rule\ IH(1))
              fix xs1 xs2 assume ys = map f xs1 ys2 = map f xs2 xs' = xs1 @ xs2 thus
 ?thesis
              using Cons\ IH(2)[of\ x\ \#\ xs1\ xs2]\ IH(3) by simp
              show map f xs' = ys @ ys2 using Cons IH(3) by simp
     qed (insert Cons, simp)
qed auto
lemmas map-eq-append-splits = map-eq-append-split map-eq-append-split[OF sym]
abbreviation conversion' M \equiv ((\bigcup i \in M. R i) \cup (\bigcup i \in M. E i) \cup (\bigcup i \in M. L
abbreviation valley' M \equiv (\bigcup i \in M. R i)^* O (\bigcup i \in M. E i)^* O ((\bigcup i \in M. L i)^* O (
i)^{-1})^*
{\bf lemma}\ conversion\mbox{-}to\mbox{-}lconv:
     assumes (u, v) \in conversion' M
     obtains xs where snd ' set xs \subseteq M and (u, v) \in lconv xs
using assms
```

```
proof (induct arbitrary: thesis rule: converse-rtrancl-induct)
    case base show ?case using base[of []] by simp
\mathbf{next}
     case (step \ u' \ x)
    from step(1) obtain p where snd p \in M and (u', x) \in lstep p
    by (force split: accent.splits)
   moreover obtain xs where snd 'set xs \subseteq M(x, v) \in lconv xs by (rule step(3))
     ultimately show ?case using step(4)[of p \# xs] by auto
qed
definition lpeak :: 'b rel \Rightarrow 'b \Rightarrow 'b greek \Rightarrow bool where
    lpeak\ r\ a\ b\ xs \longleftrightarrow (\exists\ as\ b'\ cs\ a'\ bs.\ snd\ `set\ as \subseteq under\ r\ a \land b' \in \{[(Grave,b)],[]\}
         \mathit{snd} \ `\mathit{set} \ \mathit{cs} \subseteq \mathit{under} \ \mathit{r} \ \mathit{a} \ \cup \ \mathit{under} \ \mathit{r} \ \mathit{b} \ \land \ \mathit{a}' \in \{[(\mathit{Acute}, \mathit{a})], []\} \ \land \\
         snd 'set bs \subseteq under \ r \ b \land xs = as @ b' @ cs @ a' @ bs)
definition lcliff :: 'b \ rel \Rightarrow 'b \Rightarrow 'b \ greek \Rightarrow bool \ where
     lcliff r \ a \ b \ xs \longleftrightarrow (\exists \ as \ b' \ cs \ a' \ bs. \ snd \ `set \ as \subseteq under \ r \ a \land b' = [(Macron, b)]
         snd \cdot set \ cs \subseteq under \ r \ a \land a' \in \{[(Acute,a)], []\} \land a' \in \{[Acute,a], []\} \land a' \in \{[A
         \mathit{snd} \,\, \lq \, \mathit{set} \,\, \mathit{bs} \subseteq \mathit{under} \,\, \mathit{r} \,\, \mathit{a} \,\cap\, \mathit{under} \,\, \mathit{r} \,\, \mathit{b} \,\wedge\, \mathit{xs} = \, \mathit{as} \,\, @ \,\, \mathit{b'} \,\, @ \,\, \mathit{cs} \,\, @ \,\, \mathit{a'} \,\, @ \,\, \mathit{bs}) \,\, \vee
         (\exists cs \ a' \ bs. \ snd \ `set \ cs \subseteq under \ r \ a \cup under \ r \ b \land a' \in \{[(Acute,a)],[]\} \land a' \in \{[(Acute,a)],[]\}
         snd \cdot set \ bs \subseteq under \ r \ b \wedge xs = cs @ a' @ bs)
definition rcliff :: 'b \ rel \Rightarrow 'b \Rightarrow 'b \ greek \Rightarrow bool \ where
     rcliff r \ a \ b \ xs \longleftrightarrow (\exists \ as \ b' \ cs \ a' \ bs. \ snd \ `set \ as \subseteq under \ r \ a \cap under \ r \ b \wedge b' \in
\{[(Grave,b)],[]\} \land
         snd \cdot set \ cs \subseteq under \ r \ b \land a' = [(Macron, a)] \land
         snd 'set bs \subseteq under \ r \ b \land xs = as @ b' @ cs @ a' @ bs) <math>\lor
         (\exists \textit{ as } b' \textit{ cs. snd `set as} \subseteq \textit{under } r \textit{ a} \land b' \in \{[(\textit{Grave},b)],\![]\} \land \\
         snd 'set cs \subseteq under \ r \ a \cup under \ r \ b \land xs = as @ b' @ cs)
lemma dd-commute-modulo-conv[case-names wf trans peak lcliff rcliff]:
    assumes wf r and trans r
    and pk: \bigwedge a\ b\ s\ t\ u.\ (s,\ t)\in L\ a\Longrightarrow (s,\ u)\in R\ b\Longrightarrow \exists\ xs.\ lpeak\ r\ a\ b\ xs\wedge (t,\ t)
u) \in lconv xs
    and lc: \land a \ b \ s \ t \ u. \ (s, \ t) \in L \ a \Longrightarrow (s, \ u) \in E \ b \Longrightarrow \exists \ xs. \ lcliff \ r \ a \ b \ xs \land (t, \ u)
\in lconv xs
    and rc: \bigwedge a\ b\ s\ t\ u.\ (s,\ t)\in (E\ a)^{-1}\Longrightarrow (s,\ u)\in R\ b\Longrightarrow \exists\ xs.\ rcliff\ r\ a\ b\ xs\ \land
(t, u) \in lconv xs
    shows conversion' UNIV \subseteq valley' UNIV
proof (intro subrelI)
    \mathbf{fix} \ u \ v
    assume (u,v) \in conversion' UNIV
    then obtain xs where (u, v) \in lconv xs by (auto intro: conversion-to-lconv[of
[u \ v])
     then show (u, v) \in valley' UNIV
    proof (induct xs rule: wf-induct[of greek-less r])
         case 1 thus ?case using wf-greek-less[OF \langle wf r \rangle \langle trans r \rangle].
```

```
next
          case (2 xs) show ?case
          proof (rule conversion-join-or-peak-or-cliff[of map fst xs])
               assume *: set as \subseteq \{Grave\} set bs \subseteq \{Macron\} set cs \subseteq \{Acute\} map fst xs
= as @ bs @ cs
                then show (u, v) \in valley' UNIV
                proof (elim map-eq-append-splits)
                     fix as' bs' cs' bcs'
                     assume as: set as \subseteq \{Grave\} as = map fst as' and
                          bs: set \ bs \subseteq \{Macron\} \ bs = map \ fst \ bs' \ \mathbf{and}
                          cs: set cs \subseteq \{Acute\}\ cs = map\ fst\ cs'\ and
                          xs: xs = as' @ bcs' bcs' = bs' @ cs'
                      from as(1)[unfolded\ as(2)] have as': \bigwedge x\ y.\ (x,y) \in lconv\ as' \Longrightarrow (x,y) \in
(\bigcup a. R a)^*
                     proof (induct as')
                          case (Cons x' xs)
                           have \bigwedge x \ y \ z \ i. \ (x,y) \in R \ i \Longrightarrow (y,z) \in (\bigcup a. \ R \ a)^* \Longrightarrow (x,z) \in (\bigcup a. \ R
a)^*
                          by (rule rtrancl-trans) auto
                          with Cons show ?case by auto
                      qed simp
                       from bs(1)[unfolded \ bs(2)] have bs': \bigwedge x \ y. \ (x,y) \in lconv \ bs' \Longrightarrow (x,y) \in lconv \ bs'
(\bigcup a. E a)^*
                     proof (induct bs')
                          case (Cons x' xs)
                       have \bigwedge x \ y \ z \ i. \ (x,y) \in E \ i \Longrightarrow (y,z) \in (\bigcup a. \ E \ a)^* \Longrightarrow (x,z) \in (\bigcup a. \ E \ a)^*
                          by (rule rtrancl-trans) auto
                          with Cons show ?case by auto
                      \mathbf{qed} \ simp
                       from cs(1)[unfolded \ cs(2)] have cs': \bigwedge x \ y. \ (x,y) \in lconv \ cs' \Longrightarrow (x,y) \in 
((\bigcup a. \ L \ a)^{-1})^*
                     proof (induct cs')
                          case (Cons \ x' \ xs)
                           have \bigwedge x \ y \ z \ i. \ (x,y) \in (L \ i)^{-1} \Longrightarrow (y,z) \in ((\bigcup a. \ L \ a)^{-1})^* \Longrightarrow (x,z) \in
((\bigcup a. \ L \ a)^{-1})^*
                          by (rule rtrancl-trans) auto
                          with Cons show ?case by auto
                     qed simp
                     from 2(2) as' bs' cs' show (u, v) \in valley' UNIV
                     unfolding xs lconv-append by auto (meson relcomp.simps)
                qed
          \mathbf{next}
                fix as bs assume *: map fst xs = as @ ([Acute] @ [Grave]) @ bs
                     \mathbf{fix}\ p\ a\ b\ q\ t'\ s'\ u'
                     assume xs: xs = p @ [(Acute,a), (Grave,b)] @ q \text{ and } p: (u,t') \in lconv p
                          and a: (s',t') \in L a and b: (s',u') \in R b and q: (u',v) \in lconv q
                     obtain js where lp: lpeak r a b js and js: (t',u') \in lconv js using pk[OF \ a]
```

```
b] by auto
       from lp have (js, [(Acute, a), (Grave, b)]) \in greek-less <math>r
       unfolding lpeak-def using peak-greek-less[of - r a - b] by fastforce
       then have (p @ js @ q, xs) \in greek\text{-}less \ r \ unfolding \ xs
       by (intro greek-less-app-mono1 greek-less-app-mono2 \langle trans \ r \rangle) auto
       moreover have (u, v) \in lconv (p @ js @ q)
       using p \neq js by auto
       ultimately have (u, v) \in valley' \ UNIV \ using \ 2(1) by blast
     with * show (u, v) \in valley' UNIV using <math>2(2)
      by (auto elim!: map-eq-append-splits relcompEpair simp del: append.simps)
simp
   next
     fix as bs assume *: map fst xs = as @ ([Acute] @ [Macron]) @ bs
       fix p a b q t' s' u'
       assume xs: xs = p \otimes [(Acute, a), (Macron, b)] \otimes q and p: (u, t') \in lconv p
         and a: (s',t') \in L a and b: (s',u') \in E b and q: (u',v) \in lconv q
       obtain js where lp: lcliff r a b js and js: (t',u') \in lconv js using lc[OF \ a]
b] by auto
       from lp have (js, [(Acute, a), (Macron, b)]) \in greek-less r
       unfolding lcliff-def
       using lcliff-greek-less1[OF \land trans r \land, of - a - b] lcliff-greek-less2[OF \land trans r \land, of - a - b]
r \rightarrow, of - a b
       by fastforce
       then have (p @ js @ q, xs) \in greek\text{-}less \ r \ unfolding \ xs
       by (intro greek-less-app-mono1 greek-less-app-mono2 \langle trans \ r \rangle) auto
       moreover have (u, v) \in lconv (p @ js @ q)
       using p q js by auto
       ultimately have (u, v) \in valley' \ UNIV \ using \ 2(1) by blast
     with * show (u, v) \in valley' UNIV using <math>2(2)
      by (auto elim!: map-eq-append-splits relcompEpair simp del: append.simps)
simp
   next
     fix as bs assume *: map fst xs = as @ ([Macron] @ [Grave]) @ bs
       fix p a b q t' s' u'
       assume xs: xs = p @ [(Macron, a), (Grave, b)] @ q and p: (u, t') \in lconv p
         and a: (s',t') \in (E \ a)^{-1} and b: (s',u') \in R \ b and q: (u',v) \in lconv \ q
       obtain js where lp: rcliff r a b js and js: (t',u') \in lconv js using rc[OF \ a]
b] by auto
       from lp have (js, [(Macron, a), (Grave, b)]) \in greek-less r
       unfolding reliff-def
        using rcliff-greek-less1 [OF \langle trans \ r \rangle, of - a b] rcliff-greek-less2 [OF \langle trans \ r \rangle
r, of - a - b]
       by fastforce
       then have (p @ js @ q, xs) \in greek\text{-}less \ r \ unfolding \ xs
       by (intro greek-less-app-mono1 greek-less-app-mono2 \langle trans \ r \rangle) auto
```

```
\begin{array}{c} \textbf{moreover have} \ (u, \, v) \in lconv \ (p \ @ \ js \ @ \ q) \\ \textbf{using} \ p \ q \ js \ \textbf{by} \ auto \\ \textbf{ultimately have} \ (u, \, v) \in valley' \ UNIV \ \textbf{using} \ 2(1) \ \textbf{by} \ blast \\ \} \\ \textbf{with} * \textbf{show} \ (u, \, v) \in valley' \ UNIV \ \textbf{using} \ 2(2) \\ \textbf{by} \ (auto \ elim!: \ map-eq-append-splits \ relcompEpair \ simp \ del: \ append.simps) \\ simp \\ \textbf{qed} \\ \textbf{qed} \\ \textbf{qed} \\ \textbf{qed} \end{array}
```

3 Results

3.1 Church-Rosser modulo

Decreasing diagrams for Church-Rosser modulo, commutation version.

```
lemma dd-commute-modulo[case-names wf trans peak lcliff rcliff]:
  assumes wf r and trans r
 and pk: \bigwedge a \ b \ s \ t \ u. \ (s, \ t) \in L \ a \Longrightarrow (s, \ u) \in R \ b \Longrightarrow
    (t, u) \in conversion' (under \ r \ a) \ O \ (R \ b)^{=} \ O \ conversion' (under \ r \ a \cup under \ r
b) O
      ((L\ a)^{-1})^{=}\ O\ conversion'\ (under\ r\ b)
 and lc: \land a \ b \ s \ t \ u. \ (s, \ t) \in L \ a \Longrightarrow (s, \ u) \in E \ b \Longrightarrow
    (t, u) \in conversion' (under r a) O E b O conversion' (under r a) O
      ((L\ a)^{-1})^{=}\ O\ conversion'\ (under\ r\ a\cap under\ r\ b)\ \lor
     (t, u) \in conversion' (under \ r \ a \cup under \ r \ b) \ O \ ((L \ a \ )^{-1})^{=} \ O \ conversion'
(under \ r \ b)
  and rc: \land a \ b \ s \ t \ u. \ (s, \ t) \in (E \ a)^{-1} \Longrightarrow (s, \ u) \in R \ b \Longrightarrow
    (t, u) \in conversion' (under \ r \ a \cap under \ r \ b) \ O \ (R \ b)^{=} \ O \ conversion' (under \ r \ b)
b) O
      E \ a \ O \ conversion' \ (under \ r \ b) \ \lor
    (t, u) \in conversion' (under \ r \ a) \ O \ (R \ b)^{=} \ O \ conversion' (under \ r \ a \cup under \ r
  shows conversion' UNIV \subseteq valley' UNIV
proof (cases rule: dd-commute-modulo-conv[of r])
  case (peak \ a \ b \ s \ t \ u)
  {
    \mathbf{fix} \ w \ x \ y \ z
    assume (t, w) \in conversion' (under r a)
    from conversion-to-lconv[OF this]
    obtain as where snd 'set as \subseteq under r a (t, w) \in lconv as by auto
    moreover assume (w, x) \in (R \ b)^{=}
    then obtain b' where b' \in \{[(Grave, b)], []\} (w, x) \in lconv \ b' by fastforce
    moreover assume (x, y) \in conversion' (under r a \cup under r b)
    from conversion-to-lconv[OF this]
    obtain cs where snd 'set cs \subseteq under r a \cup under r b (x, y) \in lconv cs by
auto
    moreover assume (y, z) \in ((L \ a)^{-1})^{=}
```

```
then obtain a' where a' \in \{[(Acute, a)], []\}\ (y, z) \in lconv\ a' by fastforce
   moreover assume (z, u) \in conversion' (under r b)
   from conversion-to-lconv[OF this]
   obtain bs where snd 'set bs \subseteq under r b (z, u) \in lconv bs by auto
   ultimately have \exists xs. lpeak \ r \ a \ b \ xs \land (t, u) \in lconv \ xs
   by (intro exI[of - as @ b' @ cs @ a' @ bs], unfold lconv-append lpeak-def) blast
  then show ?case using pk[OF peak] by blast
next
  case (lcliff \ a \ b \ s \ t \ u)
  {
   \mathbf{fix} \ w \ x \ y \ z
   assume (t, w) \in conversion' (under r a)
   from conversion-to-lconv[OF this]
   obtain as where snd 'set as \subseteq under \ r \ a \ (t, \ w) \in lconv as by auto
   moreover assume (w, x) \in E b
   then obtain b' where b' = [(Macron, b)] (w, x) \in lconv b' by fastforce
   moreover assume (x, y) \in conversion' (under r a)
   from conversion-to-lconv[OF this]
   obtain cs where snd 'set cs \subseteq under r a (x, y) \in lconv cs by auto
   moreover assume (y, z) \in ((L \ a)^{-1})^{=}
   then obtain a' where a' \in \{[(Acute, a)], []\} (y, z) \in lconv a' by fastforce
   moreover assume (z, u) \in conversion' (under r a \cap under r b)
   from conversion-to-lconv[OF this]
   obtain bs where snd 'set bs \subseteq under r a \cap under r b (z, u) \in lconv bs by
auto
   ultimately have \exists xs. \ lcliff \ r \ a \ b \ xs \land (t, \ u) \in lconv \ xs
   by (intro exI[of - as @ b' @ cs @ a' @ bs], unfold lconv-append lcliff-def) blast
  }
 moreover {
   \mathbf{fix} \ w \ x
   assume (t, w) \in conversion' (under r a \cup under r b)
   from conversion-to-lconv[OF this]
   obtain cs where snd 'set cs \subseteq under r a \cup under r b (t, w) \in lconv cs by
auto
   moreover assume (w, x) \in ((L \ a)^{-1})^{=}
   then obtain a' where a' \in \{[(Acute, a)], []\}\ (w, x) \in lconv\ a' by fastforce
   moreover assume (x, u) \in conversion' (under r b)
   from conversion-to-lconv[OF this]
   obtain bs where snd 'set bs \subseteq under r b (x, u) \in lconv bs by auto
   ultimately have \exists xs. lcliff \ r \ a \ b \ xs \land (t, u) \in lconv \ xs
   by (intro exI[of - cs @ a' @ bs], unfold lconv-append lcliff-def) blast
  }
 ultimately show ?case using lc[OF lcliff] by blast
\mathbf{next}
 case (rcliff\ a\ b\ s\ t\ u)
   \mathbf{fix} \ w \ x \ y \ z
   assume (t, w) \in conversion' (under r a \cap under r b)
```

```
from conversion-to-lconv[OF this]
    obtain as where snd 'set as \subseteq under r a \cap under r b (t, w) \in lconv as by
auto
   moreover assume (w, x) \in (R \ b)^{=}
   then obtain b' where b' \in \{[(Grave, b)], []\} (w, x) \in lconv \ b' by fastforce
   moreover assume (x, y) \in conversion' (under r b)
   from conversion-to-lconv[OF this]
   obtain cs where snd 'set cs \subseteq under r b (x, y) \in lconv cs by auto
   moreover assume (y, z) \in E a
   then obtain a' where a' = [(Macron, a)] (y, z) \in lconv \ a' by fastforce
   moreover assume (z, u) \in conversion' (under r b)
   from conversion-to-lconv[OF this]
   obtain bs where snd 'set bs \subseteq under r b (z, u) \in lconv bs by auto
   ultimately have \exists xs. \ rcliff \ r \ a \ b \ xs \land (t, \ u) \in lconv \ xs
   by (intro exI[of - as @ b' @ cs @ a' @ bs], unfold lconv-append reliff-def) blast
  }
  moreover {
   \mathbf{fix} \ w \ x
   assume (t, w) \in conversion' (under r a)
   from conversion-to-lconv[OF this]
   obtain as where snd 'set as \subseteq under r a (t, w) \in lconv as by auto
   moreover assume (w, x) \in (R \ b)^{=}
   then obtain b' where b' \in \{[(Grave, b)], []\}\ (w, x) \in lconv\ b' by fastforce
   moreover assume (x, u) \in conversion' (under r a \cup under r b)
   from conversion-to-lconv[OF this]
    obtain cs where snd 'set cs \subseteq under r a \cup under r b (x, u) \in lconv cs by
   ultimately have \exists xs. \ rcliff \ r \ a \ b \ xs \land (t, u) \in lconv \ xs
   by (intro exI[of - as @ b' @ cs], unfold lconv-append rcliff-def) blast
 ultimately show ?case using rc[OF rcliff] by blast
qed fact+
\quad \mathbf{end} \quad
Decreasing diagrams for Church-Rosser modulo.
lemma dd-cr-modulo[case-names wf trans symE peak cliff]:
 assumes wf r and trans r and E: \bigwedge i. sym (E i)
 and pk: \bigwedge a \ b \ s \ t \ u. (s, \ t) \in L \ a \Longrightarrow (s, \ u) \in L \ b \Longrightarrow
    (t, u) \in conversion' L L E (under r a) O (L b)^{=} O conversion' L L E (under r a)
r \ a \cup under \ r \ b) \ O
     ((L\ a)^{-1})^{=}\ O\ conversion'\ L\ L\ E\ (under\ r\ b)
 and cl: \bigwedge a \ b \ s \ t \ u. \ (s, t) \in L \ a \Longrightarrow (s, u) \in E \ b \Longrightarrow
   (t, u) \in conversion' L L E (under r a) O E b O conversion' L L E (under r a)
     ((L \ a)^{-1})^{=} \ O \ conversion' \ L \ L \ E \ (under \ r \ a \cap under \ r \ b) \ \lor
   (t, u) \in conversion' L L E (under r a \cup under r b) O ((L a)^{-1})^{=} O conversion'
L L E (under r b)
  shows conversion' L L E UNIV \subseteq valley' L L E UNIV
```

```
 \begin{array}{l} \textbf{proof} \ (induct \ rule: \ dd\text{-}commute\text{-}modulo[of \ r]) \\ \textbf{note} \ E' = E[unfolded \ sym\text{-}conv\text{-}converse\text{-}eq] \\ \textbf{case} \ (rcliff \ a \ b \ s \ t \ u) \ \textbf{show} \ ?case \\ \textbf{using} \ cl[OF \ rcliff(2) \ rcliff(1)[unfolded \ E'], \ unfolded \ converse\text{-}iff[of \ t \ u, symmetric]] \\ \textbf{by} \ (auto \ simp \ only: \ E' \ converse\text{-}inward) \ (auto \ simp \ only: \ ac\text{-}simps) \\ \textbf{qed} \ fact+ \\ \end{array}
```

3.2 Commutation and confluence

```
abbreviation conversion" L R M \equiv ((\bigcup i \in M. R i) \cup (\bigcup i \in M. L i)^{-1})^* abbreviation valley" L R M \equiv (\bigcup i \in M. R i)^* O ((\bigcup i \in M. L i)^{-1})^*
```

Decreasing diagrams for commutation.

```
lemma dd\text{-}commute[case\text{-}names\ wf\ trans\ peak]:}
assumes wf\ r and trans\ r
and pk: \bigwedge a\ b\ s\ t\ u.\ (s,\ t) \in L\ a \Longrightarrow (s,\ u) \in R\ b \Longrightarrow
(t,\ u) \in conversion''\ L\ R\ (under\ r\ a)\ O\ (R\ b)^=\ O\ conversion''\ L\ R\ (under\ r\ a)
\cup\ under\ r\ b)\ O\ ((L\ a)^{-1})^=\ O\ conversion''\ L\ R\ (under\ r\ b)
shows commute\ (\bigcup\ i.\ L\ i)\ (\bigcup\ i.\ R\ i)
proof -
have ((\bigcup\ i.\ L\ i)^{-1})^*\ O\ (\bigcup\ i.\ R\ i)^*\ \subseteq\ conversion''\ L\ R\ UNIV\ by regexp
also have \dots\subseteq valley''\ L\ R\ UNIV
using dd\text{-}commute\text{-}modulo[OF\ assms(1,2),\ of\ L\ R\ \lambda\text{-}.\ \{\}]\ pk\ by auto\ finally show ?thesis\ by (simp\ only:\ commute\text{-}def)
qed
```

Decreasing diagrams for confluence.

```
lemmas dd-cr[case-names wf trans peak] = dd-commute[of - L L for L, unfolded CR-iff-self-commute[symmetric]]
```

3.3 Extended decreasing diagrams

```
context fixes r \ q :: 'b \ rel assumes wf \ r and trans \ r and trans \ q and refl \ q and compat: \ r \ O \ q \subseteq r begin private abbreviation (input) \ down :: ('b \Rightarrow 'a \ rel) \Rightarrow ('b \Rightarrow 'a \ rel) where down \ L \equiv \lambda i. \ \bigcup j \in under \ q \ i. \ L \ j private lemma Union\text{-}down: \ (\bigcup i. \ down \ L \ i) = (\bigcup i. \ L \ i) using \langle refl \ q \rangle by (auto \ simp: \ refl\text{-}on\text{-}def \ under\text{-}def) Extended decreasing diagrams for commutation.
```

```
lemma edd-commute[case-names wf transr transq reflq compat peak]: assumes pk: \bigwedge a b s t u. (s, t) \in L a \Longrightarrow (s, u) \in R b \Longrightarrow (t, u) \in conversion'' L R (under <math>r a) O (down R b)^= O conversion'' L R (under <math>r a \cup under r b) O
```

```
((down\ L\ a)^{-1})^{=}\ O\ conversion''\ L\ R\ (under\ r\ b)
  shows commute (\bigcup i. L i) (\bigcup i. R i)
unfolding Union-down[of L, symmetric] Union-down[of R, symmetric]
proof (induct rule: dd-commute[of r down L down R])
  case (peak \ a \ b \ s \ t \ u)
  then obtain a'b' where a': (a', a) \in q (s, t) \in L \ a' and b': (b', b) \in q (s, u)
\in R b'
  by (auto simp: under-def)
 have \bigwedge a' a. (a',a) \in q \Longrightarrow under \ r \ a' \subseteq under \ r \ a \ using \ compat by (auto simp:
 then have aux1: \bigwedge a' \ a \ L. \ (a',a) \in q \Longrightarrow (\bigcup i \in under \ r \ a'. \ L \ i) \subseteq (\bigcup i \in under \ r \ a')
r \ a. \ L \ i) by auto
  have aux2: \bigwedge a' \ a \ L. \ (a',a) \in q \Longrightarrow down \ L \ a' \subseteq down \ L \ a
    using \(\psi trans q\)\) by \((auto \simp: under-def \text{ trans-def}\)\)
  have aux3: \bigwedge a L. (\bigcup i \in under \ r \ a. \ L \ i) \subseteq (\bigcup i \in under \ r \ a. \ down \ L \ i)
    using \langle refl \ q \rangle by (auto simp: under-def refl-on-def)
  from aux1[OF \ a'(1), \ of \ L] \ aux1[OF \ a'(1), \ of \ R] \ aux2[OF \ a'(1), \ of \ L]
       aux1[OF\ b'(1),\ of\ L]\ aux1[OF\ b'(1),\ of\ R]\ aux2[OF\ b'(1),\ of\ R]
       aux3[of L] \ aux3[of R]
  show ?case
  by (intro\ subset D[OF - pk[OF \land (s,\ t) \in L\ a' \land \land (s,\ u) \in R\ b' \land ]],\ unfold\ UN-Un)
     (intro relcomp-mono rtrancl-mono Un-mono iffD2[OF converse-mono]; fast)
\mathbf{qed} \ fact +
Extended decreasing diagrams for confluence.
```

lemmas edd-cr[case-names wf transr transg reflg compat peak] =edd-commute[of L L for L, unfolded CR-iff-self-commute[symmetric]]

end

end

References

- [1] B. Felgenhauer and V. van Oostrom. Proof orders for decreasing diagrams. In Proc. 24th International Conference on Rewriting Techniques and Applications, number 21 in Leibniz International Proceedings in Informatics, pages 174–189, 2013.
- [2] N. Hirokawa and A. Middeldorp. Decreasing diagrams and relative termination. In Proc. 5th International Joint Conference on Automated Reasoning, volume 6173 of Lecture Notes in Artificial Intelligence, pages 487-501, 2010.
- [3] V. van Oostrom. Confluence by decreasing diagrams converted. In Proc. 19th International Conference on Rewriting Techniques and Ap-

plications, volume 5117 of $Lecture\ Notes$ in $Computer\ Science,$ pages 306–320, 2008.