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Abstract

We provide a framework for registering automatic methods to de-
rive class instances of datatypes, as it is possible using Haskell’s “de-
riving Ord, Show, ...” feature.

We further implemented such automatic methods to derive (linear)
orders or hash-functions which are required in the Isabelle Collection
Framework [1] and the Container Framework [2]. Moreover, for the
tactic of Huffman and Krauss to show that a datatype is countable, we
implemented a wrapper so that this tactic becomes accessible in our
framework.

Our formalization was performed as part of the IsaFoR/CeTA project’
[3]. With our new tactic we could completely remove tedious proofs
for linear orders of two datatypes.
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1 Important Information

The described generators are outdated as they are based on the old datatype
package. Generators for the new datatypes are available in the AFP entry
“Deriving”.
theory Derive-Aux
imports

Deriving. Derive-Manager
begin

ML-file <derive-aux.ML>

end

2 Generating linear orders for datatypes

theory Order-Generator
imports

Derive-Aux
begin

2.1 Introduction

The order generator registers itself at the derive-manager for the classes ord,
order, and linorder. To be more precise, it automatically generates the two
functions (<) and (<) for some datatype dtype and proves the following
instantiations.

e instantiation dtype :: (ord,...,ord) ord
o instantiation dtype :: (order,...,order) order
e instantiation dtype :: (linorder,...,linorder) linorder



All the non-recursive types that are used in the datatype must have
similar instantiations. For recursive type-dependencies this is automatically
generated.

For example, for the datatype tree = Leaf nat | Node "tree list"
we require that nat is already in linorder, whereas for list nothing is required,
since for the tree datatype the list is only used recursively.

However, if we define datatype tree = Leaf "nat list" | Node tree
tree then list must provide the above instantiations.

Note that when calling the generator for linorder, it will automatically
also derive the instantiations for order, which in turn invokes the generator
for ord. A later invokation of linorder after order or ord is not possible.

2.2 Implementation Notes

The generator uses the recursors from the datatype package to define a
lexicographic order. E.g., for a declaration datatype ’a tree = Empty |
Node "’a tree" ’a "’a tree" this will semantically result in

(Empty < Node _ _ _) = True
(Node 11 12 13 < Node rl r2 r3) =
(11 <r1 || 11 =11 && (12 <r2 || 12 = r2 && 13 < r3))
(_ < _) = False
Q1<=1r)=QA<rll1l=r)

The desired properties (like [z < y; y < 2] = z < z) of the orders are
all proven using induction (with the induction theorem from the datatype
on z), and afterwards there is a case distinction on the remaining variables,
i.e., here y and z. If the constructors of z, y, and z are different always some
basic tactic is invoked. In the other case (identical constructors) for each
property a dedicated tactic was designed.

2.3 Features and Limitations

The order generator has been developed mainly for datatypes without ex-
plicit mutual recursion. For mutual recursive datatypes—Ilike datatype a
= C b and b = D a a—only for the first mentioned datatype—here a—the
instantiations of the order-classes are derived.

Indirect recursion like in datatype tree = Leaf nat | Node "tree list"
should work without problems.

2.4 Installing the generator

lemma linear-cases: (z :: 'a :: linorder) = y V z < y V y < z by auto

ML-file <order-generator. ML»



end

3 Hash functions

theory Hash-Generator

imports
Collections. HashCode
Derive-Auz

begin

3.1 Introduction

The interface for hash-functions is defined in the class hashable which has
been developed as part of the Isabelle Collection Framework [1]. It requires
a hash-function (hashcode), a bounded hash-function (bounded-hashcode),
and a default hash-table size (def-hashmap-size).

The hashcode function for each datatype are created by instantiating the
recursors of that datatype appropriately. E.g., for datatype ’a test = C1
’a ’a | C2 "’a test list" we get a hash-function which is equivalent to

hashcode (C1 a b) cl * hashcode a + c2 * hashcode b
hashcode (C2 Nil) c3
hashcode (C2 (a # as)) = c4 * hashcode a + cb5 * hashcode as

where each c; is a non-negative 32-bit number which is dependent on the
datatype name, the constructor name, and the occurrence of the argument
(i.e., in the example c1 and c2 will usually be different numbers.) These
parameters are used in linear combination with prime numbers to hopefully
get some useful hash-function.

The bounded-hashcode functions are constructed in the same way, except
that after each arithmetic operation a modulo operation is performed.

Finally, the default hash-table size is just set to 10, following Java’s
default hash-table constructor.

3.2 Features and Limitations

We get same limitation as for the order generator. For mutual recursive
datatypes, only for the first mentioned datatype the instantiations of the
hashable-class are derived.

3.3 Installing the generator

lemma hash-mod-lemma: 1 < (n :: nat) = x mod n < n by auto

ML-file <hash-generator. ML)



end

4 Loading derive-commands

theory Derive
imports
Order-Generator
Hash-Generator
Deriving. Countable-Generator
begin

We just load the commands to derive (linear) orders, hash-functions, and
the command to show that a datatype is countable, so that now all of them
are available. There are further generators available in the AFP entries of
lightweight containers and Show.

print-derives

end

5 Examples

theory Derive-Examples
imports
Derive
HOL.Rat
begin
5.1 Register standard existing types

derive linorder list sum prod

5.2 Without nested recursion
datatype ‘a bintree = BEmpty | BNode 'a bintree 'a 'a bintree
derive linorder bintree

derive hashable bintree
derive countable bintree

5.3 Using other datatypes
datatype nat-list-list = NNil | CCons nat list nat-list-list
derive linorder nat-list-list

derive hashable nat-list-list
derive countable nat-list-list



5.4 Explicit mutual recursion

datatype
'a mtree = MEmpty | MNode 'a 'a mtree-list and
'a mtree-list = MNil | MCons 'a mtree 'a mtree-list

derive linorder mtree
derive hashable mtree
derive countable mtree

5.5 Implicit mutual recursion

datatype ‘a tree = Empty | Node 'a 'a tree list
datatype-compat tree

derive linorder tree
derive hashable tree
derive countable tree

datatype ‘a ttree = TEmpty | TNode 'a 'a ttree list tree
datatype-compat ttree

derive linorder tiree
derive hashable ttree
derive countable ttree

5.6 Examples from IsaFoR
datatype ('f,’v) term = Var 'v | Fun 'f ('f,’v) term list

datatype-compat term

datatype ('f, 'l) lab =
Lab ('f, 1) lab 'l
| PunLab ('f, 'l) lab ('f, 'l) lab list
| UnLab 'f
| Sharp ('f, 'l) lab

datatype-compat lab

derive linorder term lab
derive countable term lab
derive hashable term lab

5.7 A complex datatype

The following datatype has nested indirect recursion, mutual recursion and
uses other datatypes.



datatype (‘a, 'b) complex =

C1 nat 'a ttree |

C2 ('a, 'b) complex list tree tree 'b (‘a, 'b) complex ('a, 'b) complex2 ttree list
and (‘a, 'b) complex? = D1 ('a, 'b) complex tiree

datatype-compat complex complex?2

derive linorder complex
derive hashable complex
derive countable complex

end
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