
Semantics and Data Refinement of Invariant Based
Programs

Viorel Preoteasa and Ralph-Johan Back

March 19, 2025

Abstract

The invariant based programming is a technique of constructing
correct programs by first identifying the basic situations (pre- and
post-conditions and invariants) that can occur during the execution
of the program, and then defining the transitions and proving that
they preserve the invariants. Data refinement is a technique of build-
ing correct programs working on concrete datatypes as refinements of
more abstract programs. In the theories presented here we formalize
the predicate transformer semantics for invariant based programs and
their data refinement.

Contents
1 Introduction 2

2 Preliminaries 2
2.1 Simplification Lemmas . 2

3 Program Statements as Predicate Transformers 3
3.1 Assert statement . 3
3.2 Assume statement . 4
3.3 Demonic update statement 4
3.4 Angelic update statement . 4
3.5 The guard of a statement . 5

4 Hoare Triples 5
4.1 Hoare rule for recursive statements 7

5 Predicate Transformers Semantics of Invariant Diagrams 8

6 Data Refinement of Diagrams 12

1

1 Introduction
Invariant based programming [1, 2, 3, 4] is an approach to construct correct
programs where we start by identifying all basic situations (pre- and post-
conditions, and loop invariants) that could arise during the execution of the
algorithm. These situations are determined and described before any code is
written. After that, we identify the transitions between the situations, which
together determine the flow of control in the program. The transitions are
verified at the same time as they are constructed. The correctness of the
program is thus established as part of the construction process.

These theories present the predicate transformer sematics for invariant
based programs and their data refinement. The complete treatment of the
sematics of invariant based programs was presented in [4]. There we intro-
duced big and small step semantics, predicate transformer semantics, and
we proved complete and correct Hoare rules for invariand based programs.
These results were also formalized in the PVS theorem prover. In [6] we
have studied data refinement of invariant based programs, and we outlined
the steps for proving the Deutsch-Schorr-Waite marking algorithm using
data refinement of invariant based programs. These theories represent a
mechanical formalization of the data refinement results from [6] and some
of the results from [4]. In another formalization we will show how the the-
ory presented here can be used in the complete verification of the marking
algorithm.

2 Preliminaries
theory Preliminaries
imports Main LatticeProperties.Complete-Lattice-Prop

LatticeProperties.Conj-Disj
begin

notation
less-eq (infix ‹v› 50) and
less (infix ‹@› 50) and
inf (infixl ‹u› 70) and
sup (infixl ‹t› 65) and
top (‹>›) and
bot (‹⊥›) and
Inf (‹

d
-› [900] 900) and

Sup (‹
⊔

-› [900] 900)

2.1 Simplification Lemmas
declare fun-upd-idem[simp]

lemma simp-eq-emptyset:

2

(X = {}) = (∀ x. x /∈ X)
〈proof 〉

lemma mono-comp: mono f =⇒ mono g =⇒ mono (f o g)
〈proof 〉

Some lattice simplification rules
lemma inf-bot-bot:
(x:: ′a::{semilattice-inf ,order-bot}) u ⊥ = ⊥
〈proof 〉

end

3 Program Statements as Predicate Transformers
theory Statements
imports Preliminaries
begin

Program statements are modeled as predicate transformers, functions from
predicates to predicates. If State is the type of program states, then a
program S is a a function from State set to State set . If q ∈ State set ,
then the elements of S q are the initial states from which S is guarantied to
terminate in a state from q.
However, most of the time we will work with an arbitrary compleate lattice,
or an arbitrary boolean algebra instead of the complete boolean algebra of
predicate transformers.
We will introduce in this section assert, assume, demonic choice, angelic
choice, demonic update, and angelic update statements. We will prove also
that these statements are monotonic.
lemma mono-top[simp]: mono top
〈proof 〉

lemma mono-choice[simp]: mono S =⇒ mono T =⇒ mono (S u T)
〈proof 〉

3.1 Assert statement

The assert statement of a predicate p when executed from a state s fails if
s 6∈ p and behaves as skip otherwise.
definition

assert:: ′a::semilattice-inf ⇒ ′a ⇒ ′a (‹{. - .}› [0] 1000) where
{.p.} q ≡ p u q

lemma mono-assert [simp]: mono {.p.}
〈proof 〉

3

3.2 Assume statement

The assume statement of a predicate p when executed from a state s is not
enabled if s 6∈ p and behaves as skip otherwise.
definition

assume :: ′a::boolean-algebra ⇒ ′a ⇒ ′a (‹[. - .]› [0] 1000) where
[. p .] q ≡ −p t q

lemma mono-assume [simp]: mono (assume P)
〈proof 〉

3.3 Demonic update statement

The demonic update statement of a relation Q : State → Sate → bool, when
executed in a state s computes nondeterministically a new state s′ such
Q s s′ is true. In order for this statement to be correct all possible choices
of s′ should be correct. If there is no state s′ such that Q s s′, then the
demonic update of Q is not enabled in s.
definition

demonic :: (′a ⇒ ′b::ord) ⇒ ′b::ord ⇒ ′a set (‹[: - :]› [0] 1000) where
[:Q:] p = {s . Q s ≤ p}

lemma mono-demonic [simp]: mono [:Q:]
〈proof 〉

theorem demonic-bottom:
[:R:] (⊥::(′a::order-bot)) = {s . (R s) = ⊥}
〈proof 〉

theorem demonic-bottom-top [simp]:
[:(⊥::-::order-bot):] = >
〈proof 〉

theorem demonic-sup-inf :
[:Q t Q ′:] = [:Q:] u [:Q ′:]
〈proof 〉

3.4 Angelic update statement

The angelic update statement of a relation Q : State → State → bool is
similar to the demonic version, except that it is enough that at least for one
choice s′, Q s s′ is correct. If there is no state s′ such that Q s s′, then the
angelic update of Q fails in s.
definition

angelic :: (′a ⇒ ′b::{semilattice-inf ,order-bot}) ⇒ ′b ⇒ ′a set
(‹{: - :}› [0] 1000) where

4

{:Q:} p = {s . (Q s) u p 6= ⊥}

syntax -update :: patterns => patterns => logic => logic (‹- - . -› 0)
translations

-update (-patterns x xs) (-patterns y ys) t == CONST id (-abs
(-pattern x xs) (-Coll (-pattern y ys) t))

-update x y t == CONST id (-abs x (-Coll y t))

term {: y, z x, z ′ . P x y z z ′ :}

theorem angelic-bottom [simp]:
angelic R ⊥ = {}
〈proof 〉

theorem angelic-disjunctive [simp]:
{:(R::(′a ⇒ ′b::complete-distrib-lattice)):} ∈ Apply.Disjunctive
〈proof 〉

3.5 The guard of a statement

The guard of a statement S is the set of iniatial states from which S is
enabled or fails.
definition
((grd S):: ′a::boolean-algebra) = − (S bot)

lemma grd-choice[simp]: grd (S u T) = (grd S) t (grd T)
〈proof 〉

lemma grd-demonic: grd [:Q:] = {s . ∃ s ′ . s ′ ∈ (Q s) }
〈proof 〉

lemma grd-demonic-2 [simp]: (s /∈ grd [:Q:]) = (∀ s ′ . s ′ /∈ (Q s))
〈proof 〉

theorem grd-angelic:
grd {:R:} = UNIV
〈proof 〉

end

4 Hoare Triples
theory Hoare
imports Statements
begin

A hoare triple for p, q ∈ State set , and S : State set → State set is valid,
denoted |= p{|S|}q, if every execution of S starting from state s ∈ p always

5

terminates, and if it terminates in state s′, then s′ ∈ q. When S is modeled
as a predicate transformer, this definition is equivalent to requiring that p
is a subset of the initial states from which the execution of S is guaranteed
to terminate in q, that is p ⊆ S q.
The formal definition of a valid hoare triple only assumes that p (and also
S q) ranges over a complete lattice.
definition

Hoare :: ′a::complete-distrib-lattice ⇒ (′b ⇒ ′a) ⇒ ′b ⇒ bool (‹|= (-){| - |}(-)›
[0 ,0 ,900] 900) where
|= p {|S |} q = (p ≤ (S q))

theorem hoare-sequential:
mono S =⇒ (|= p {| S o T |} r) = ((∃ q. |= p {| S |} q ∧ |= q {| T |} r))
〈proof 〉

theorem hoare-choice:
|= p {| S u T |} q = (|= p {| S |} q ∧ |= p {| T |} q)
〈proof 〉

theorem hoare-assume:
(|= P {| [.R.] |} Q) = (P u R ≤ Q)
〈proof 〉

theorem hoare-mono:
mono S =⇒ Q ≤ R =⇒ |= P {| S |} Q =⇒ |= P {| S |} R
〈proof 〉

theorem hoare-pre:
R ≤ P =⇒ |= P {| S |} Q =⇒ |= R {| S |} Q
〈proof 〉

theorem hoare-Sup:
(∀ p ∈ P . |= p {| S |} q) = |= Sup P {| S |} q
〈proof 〉

lemma hoare-magic [simp]: |= P {| > |} Q
〈proof 〉

lemma hoare-demonic: |= P {| [:R:] |} Q = (∀ s . s ∈ P −→ R s ⊆ Q)
〈proof 〉

lemma hoare-not-guard:
mono (S :: (-::order-bot) ⇒ -) =⇒ |= p {| S |} q = |= (p t (− grd S)) {| S |} q
〈proof 〉

6

4.1 Hoare rule for recursive statements

A statement S is refined by another statement S′ if |= p{|S′|}q is true for
all p and q such that |= p{|S|}q is true. This is equivalent to S ≤ S′.
Next theorem can be used to prove refinement of a recursive program. A
recursive program is modeled as the least fixpoint of a monotonic mapping
from predicate transformers to predicate transformers.
theorem lfp-wf-induction:

mono f =⇒ (∀ w . (p w) ≤ f (Sup-less p w)) =⇒ Sup (range p) ≤ lfp f
〈proof 〉

definition
post-fun (p:: ′a::order) q = (if p ≤ q then > else ⊥)

lemma post-mono [simp]: mono (post-fun p :: (-::{order-bot,order-top}))
〈proof 〉

lemma post-top [simp]: post-fun p p = >
〈proof 〉

lemma post-refin [simp]: mono S =⇒ ((S p):: ′a::bounded-lattice) u (post-fun p) x
≤ S x
〈proof 〉

Next theorem shows the equivalence between the validity of Hoare triples
and refinement statements. This theorem together with the theorem for
refinement of recursive programs will be used to prove a Hoare rule for
recursive programs.
theorem hoare-refinement-post:

mono f =⇒ (|= x {| f |} y) = ({.x.} o (post-fun y) ≤ f)
〈proof 〉

Next theorem gives a Hoare rule for recursive programs. If we can prove
correct the unfolding of the recursive definition applid to a program f ,
|= p w {|F f |} y, assumming that f is correct when starting from p v,
v < w, |= SUP − L p w {|f |} y, then the recursive program is correct
|= SUP p {|lfp F |} y

lemma assert-Sup: {.
⊔

(X :: ′a::complete-distrib-lattice set).} =
⊔

(assert ‘ X)
〈proof 〉

lemma assert-Sup-range: {.
⊔

(range (p:: ′W ⇒ ′a::complete-distrib-lattice)).} =⊔
(range (assert o p))

〈proof 〉

lemma Sup-range-comp: (
⊔

range p) o S =
⊔

(range (λ w . ((p w) o S)))
〈proof 〉

7

lemma Sup-less-comp: (Sup-less P) w o S = Sup-less (λ w . ((P w) o S)) w
〈proof 〉

lemma Sup-less-assert: Sup-less (λw. {. (p w):: ′a::complete-distrib-lattice .}) w =
{.Sup-less p w.}
〈proof 〉

declare mono-comp[simp]

theorem hoare-fixpoint:
mono-mono F =⇒
(!! w f . mono f ∧ |= Sup-less p w {| f |} y =⇒ |= p w {| F f |} y) =⇒ |= (Sup

(range p)) {| lfp F |} y
〈proof 〉

theorem (∀ t . |= ({s . t ∈ R s}) {|S |} q) =⇒ |= ({:R:} p) {| S |} q
〈proof 〉

end

5 Predicate Transformers Semantics of Invariant
Diagrams

theory Diagram
imports Hoare
begin

This theory introduces the concept of a transition diagram and proves a
number of Hoare total corectness rules for these diagrams. As before the
diagrams are introduced using their predicate transformer semantics.
A transition diagram D is a function from pairs of indexes to predicate
transformers: D : I × I → (State set → State set), or more general D :
I×I → Ptran, where Ptran is a complete lattice. The elements of I are called
situations and intuitively a diagram is executed starting in a situation i ∈ I
by choosing a transition D(i, j) which is enabled and continuing similarly
from j if there are enabled trasitions. The execution of a diagram stops
when there are no more transitions enabled or when it fails.
The semantics of a transition diagram is an indexed predicate transformer
(I → State set). If Q : I → State set is an indexed predicate, then p =
pt D Q i is a weakest predicate such that if the executution of D starts in
a state s ∈ p from situation i, then it terminates, and if it terminates in
situation j and state s′, then s′ ∈ Q j.
We introduce first the indexed predicate transformer step D of executing
one step of diagram D. The predicate step D Q i is true for those states
s from which the execution of one step of D starting in situation i ends in

8

one of the situations j such that Qj is true.
definition

step D Q i = (INF j . D (i, j) (Q j) :: - :: complete-lattice)

definition
dmono D = (∀ ij . mono (D ij))

lemma dmono-mono [simp]: dmono D =⇒ mono (D ij)
〈proof 〉

theorem mono-step [simp]:
dmono D =⇒ mono (step D)
〈proof 〉

The indexed predicate transformer of a transition diagram is defined as the
least fixpoint of the unfolding of the execution of the diagram. The indexed
predicate transformer dgr D U is the choice between executing one step
of D follwed by U ((step D) ◦ U) or skip if no transion of D is enabled
(assume ¬grd(step D)).
definition

dgr D U = ((step D) o U) u [.−(grd (step D)).]

theorem mono-mono-dgr [simp]: dmono D =⇒ mono-mono (dgr D)
〈proof 〉

definition
pt D = lfp (dgr D)

If U is an indexed predicate transformer and if P,Q : I → State set are
indexed predicates, then the meaning of the Hoare triple defined earlier,
|= P{|U |}Q, is that if we start U in a state s from a situation i such that
s ∈ P i, then U terminates, and if it terminates in s′ and situation j, then
s′ ∈ Q j is true.
Next theorem shows that in a diagram all transitions are correct if and only
if step D is correct.
theorem hoare-step:
(∀ i j . |= (P i) {| D(i,j) |} (Q j)) = (|= P {| step D |} Q)
〈proof 〉

Next theorem provides the first proof rule for total correctnes of transition
diagrams. If all transitions are correct and if a global variant decreases on
every transition then the diagram is correct and it terminates. The variant
must decrease according to a well founded and transitive relation.
theorem hoare-diagram:

dmono D =⇒ (∀ w i j . |= X w i {| D(i,j) |} Sup-less X w j) =⇒
|= (Sup (range X)) {| pt D |} (Sup(range X) u −(grd (step D)))

9

〈proof 〉

This theorem is a more general form of the more familiar form with a variant
t which must decrease. If we take X w i = (Y i ∧ t i = w), then the second
hypothesis of the theorem above becomes |= Y i∧t i = w{|D(i, j)|}Y i∧t i <
w. However, the more general form of the theorem is needed, because in
data refinements, the form Y i ∧ t i = w cannot be preserved.

The drawback of this theorem is that the variant must be decreased on ev-
ery transitions which may be too cumbersome for practical applications. A
similar situation occur when introducing proof rules for mutually recursive
procedures. There the straightforward generalization of the proof rule of
a recursive procedure to mutually recursive procedures suffers of a similar
problem. We would need to prove that the variant decreases before every
recursive call. Nipkow [5] has introduced a rule for mutually recursive pro-
cedures in which the variant is required to decrease only in a sequence of
recursive calls before calling again a procedure in this sequence. We intro-
duce a similar proof rule in which the variant depends also on the situation
indexes.
locale DiagramTermination =

fixes pair :: ′a ⇒ ′b ⇒ (′c::well-founded-transitive)
begin

definition
SUP-L-P X u i = (SUP v∈{v. pair v i < u}. X v i :: - :: complete-lattice)

definition
SUP-LE-P X u i = (SUP v∈{v. pair v i ≤ u}. X v i :: - :: complete-lattice)

lemma SUP-L-P-upper :
pair v i < u =⇒ P v i ≤ SUP-L-P P u i
〈proof 〉

lemma SUP-L-P-least:
(!! v . pair v i < u =⇒ P v i ≤ Q) =⇒ SUP-L-P P u i ≤ Q
〈proof 〉

lemma SUP-LE-P-upper :
pair v i ≤ u =⇒ P v i ≤ SUP-LE-P P u i
〈proof 〉

lemma SUP-LE-P-least:
(!! v . pair v i ≤ u =⇒ P v i ≤ Q) =⇒ SUP-LE-P P u i ≤ Q
〈proof 〉

lemma SUP-SUP-L [simp]: Sup (range (SUP-LE-P X)) = Sup (range X)
〈proof 〉

10

lemma SUP-L-SUP-LE-P [simp]: Sup-less (SUP-LE-P X) = SUP-L-P X
〈proof 〉

end

theorem (in DiagramTermination) hoare-diagram2 :
dmono D =⇒ (∀ u i j . |= X u i {| D(i, j) |} SUP-L-P X (pair u i) j) =⇒
|= (Sup (range X)) {| pt D |} ((Sup (range X)) u (−(grd (step D))))

〈proof 〉

lemma mono-pt [simp]: dmono D =⇒ mono (pt D)
〈proof 〉

theorem (in DiagramTermination) hoare-diagram3 :
dmono D =⇒

(∀ u i j . |= X u i {| D(i, j) |} SUP-L-P X (pair u i) j) =⇒
P ≤ Sup (range X) =⇒ ((Sup (range X)) u (−(grd (step D)))) ≤ Q =⇒
|= P {| pt D |} Q

〈proof 〉

The following definition introduces the concept of correct Hoare triples for
diagrams.
definition (in DiagramTermination)

Hoare-dgr :: (′b ⇒ (′u::{complete-distrib-lattice, boolean-algebra})) ⇒ (′b × ′b ⇒
′u ⇒ ′u) ⇒ (′b ⇒ ′u) ⇒ bool (‹` (-){| - |}(-) ›
[0 ,0 ,900] 900) where
` P {| D |} Q ≡ (∃ X . (∀ u i j . |= X u i {| D(i, j) |} SUP-L-P X (pair u i)

j) ∧
P = Sup (range X) ∧ Q = ((Sup (range X)) u (−(grd (step D)))))

definition (in DiagramTermination)
Hoare-dgr1 :: (′b ⇒ (′u::{complete-distrib-lattice, boolean-algebra})) ⇒ (′b × ′b

⇒ ′u ⇒ ′u) ⇒ (′b ⇒ ′u) ⇒ bool (‹`1 (-){| - |}(-) ›
[0 ,0 ,900] 900) where
`1 P {| D |} Q ≡ (∃ X . (∀ u i j . |= X u i {| D(i, j) |} SUP-L-P X (pair u i)

j) ∧
P ≤ Sup (range X) ∧ ((Sup (range X)) u (−(grd (step D)))) ≤ Q)

theorem (in DiagramTermination) hoare-dgr-correctness:
dmono D =⇒ (` P {| D |} Q) =⇒ (|= P {| pt D |} Q)
〈proof 〉

theorem (in DiagramTermination) hoare-dgr-correctness1 :
dmono D =⇒ (`1 P {| D |} Q) =⇒ (|= P {| pt D |} Q)
〈proof 〉

definition
dgr-demonic Q ij = [:Q ij:]

11

theorem dgr-demonic-mono[simp]:
dmono (dgr-demonic Q)
〈proof 〉

definition
dangelic R Q i = angelic (R i) (Q i)

lemma grd-dgr :
((grd (step D) i)::(′a::complete-boolean-algebra)) =

⊔
{P . ∃ j . P = grd (D(i,j))}

〈proof 〉

lemma grd-dgr-set:
((grd (step D) i)::(′a set)) = Union {P . ∃ j . P = grd (D(i,j))}
〈proof 〉

lemma not-grd-dgr [simp]: (a ∈ (− grd (step D) i)) = (∀ j . a /∈ grd (D(i,j)))
〈proof 〉

lemma not-grd-dgr2 [simp]: a /∈ (grd (step D) i) = (∀ j . a /∈ grd (D(i,j)))
〈proof 〉

end

6 Data Refinement of Diagrams
theory DataRefinement
imports Diagram
begin

Next definition introduces the concept of data refinement of S1 to S2 using
the data abstractions R and R′.
definition

DataRefinement :: (′a::type ⇒ ′b::type)
⇒ (′b::type ⇒ ′c::ord) ⇒ (′a::type ⇒ ′d::type)
⇒ (′d::type ⇒ ′c::ord) ⇒ bool where

DataRefinement S1 R R ′ S2 = ((R o S1) ≤ (S2 o R ′))

If demonic Q is correct with respect to p and q, and (assert p)◦(demonic Q)
is data refined by S, then S is correct with respect to angelic R p and
angelic R′ q.
theorem data-refinement:

mono R =⇒ |= p {| S |} q =⇒ DataRefinement S R R ′ S ′ =⇒
|= (R p) {| S ′ |} (R ′ q)

〈proof 〉

theorem data-refinement2 :
mono R =⇒ |= p {| S |} q =⇒ DataRefinement ({.p.} o S) R R ′ S ′ =⇒

|= (R p) {| S ′ |} (R ′ q)

12

〈proof 〉

theorem data-refinement-hoare:
mono S =⇒ mono D =⇒ DataRefinement ({.p.} o [:Q:]) {:R:} D S =

(∀ s . |= {s ′ . s ∈ R s ′ ∧ s ∈ p} {| S |} (D ((Q s):: ′a::order)))
〈proof 〉

theorem data-refinement-choice1 :
DataRefinement S1 D D ′ S2 =⇒ DataRefinement S1 D D ′ S2 ′ =⇒ DataRefine-

ment S1 D D ′ (S2 u S2 ′)
〈proof 〉

theorem data-refinement-choice2 :
mono D =⇒ DataRefinement S1 D D ′ S2 =⇒ DataRefinement S1 ′ D D ′ S2 ′ =⇒

DataRefinement (S1 u S1 ′) D D ′ (S2 u S2 ′)
〈proof 〉

theorem data-refinement-top [simp]:
DataRefinement S1 D D ′ (>::-::order-top)
〈proof 〉

definition apply-fun::(′a⇒ ′b⇒ ′c)⇒(′a⇒ ′b)⇒ ′a⇒ ′c (infixl ‹..› 5) where
(A .. B) = (λ x . (A x) (B x))

definition
Disjunctive-fun R = (∀ i . (R i) ∈ Apply.Disjunctive)

lemma Disjunctive-Sup:
Disjunctive-fun R =⇒ (R .. (Sup X)) = Sup {y . ∃ x ∈ X . y = (R .. x)}
〈proof 〉

lemma (in DiagramTermination) disjunctive-SUP-L-P:
Disjunctive-fun R =⇒ (R .. (SUP-L-P P (pair u i))) = (SUP-L-P (λ w . (R ..

(P w)))) (pair u i)
〈proof 〉

lemma apply-fun-range: {y. ∃ x. y = (R .. P x)} = range (λ x . R .. P x)
〈proof 〉

lemma [simp]: Disjunctive-fun R =⇒ mono ((R i):: ′a::complete-lattice ⇒ ′b::complete-lattice)
〈proof 〉

theorem (in DiagramTermination) dgr-data-refinement-1 :
dmono D ′ =⇒ Disjunctive-fun R =⇒
(∀ w i j . |= P w i {| D(i,j) |} SUP-L-P P (pair w i) j) =⇒
(∀ w i j . DataRefinement ((assert (P w i)) o (D (i,j))) (R i) (R j) (D ′ (i, j)))

13

=⇒

|= (R .. (Sup (range P))) {| pt D ′ |} ((R .. (Sup (range P))) u (−(grd (step
D ′))))
〈proof 〉

definition
DgrDataRefinement1 D R D ′ = (∀ i j . DataRefinement (D (i , j)) (R i) (R j)

(D ′ (i, j)))

definition
DgrDataRefinement2 P D R D ′ = (∀ i j . DataRefinement ({.P i.} o D (i , j))

(R i) (R j) (D ′ (i, j)))

theorem DataRefinement-mono:
T ≤ S =⇒ mono R =⇒ DataRefinement S R R ′ S ′ =⇒ DataRefinement T R R ′

S ′

〈proof 〉

definition
mono-fun R = (∀ i . mono (R i))

theorem DgrDataRefinement-mono:
Q ≤ P =⇒ mono-fun R =⇒ DgrDataRefinement2 P D R D ′ =⇒ DgrDataRe-

finement2 Q D R D ′

〈proof 〉

Next theorem is the diagram version of the data refinement theorem. If the
diagram demonic choice T is correct, and it is refined by D, then D is also
correct. One important point in this theorem is that if the diagram demonic
choice T terminates, then D also terminates.
theorem (in DiagramTermination) Diagram-DataRefinement1 :

dmono D =⇒ Disjunctive-fun R =⇒ ` P {| D |} Q =⇒ DgrDataRefinement1 D
R D ′ =⇒

` (R .. P) {| D ′ |} ((R .. P) u (−(grd (step D ′))))
〈proof 〉

lemma comp-left-mono [simp]: S ≤ S ′ =⇒ S o T ≤ S ′ o T
〈proof 〉

lemma assert-pred-mono [simp]: p ≤ q =⇒ {.p.} ≤ {.q.}
〈proof 〉

theorem (in DiagramTermination) Diagram-DataRefinement2 :
dmono D =⇒ Disjunctive-fun R =⇒ ` P {| D |} Q =⇒ DgrDataRefinement2 P

D R D ′ =⇒
` (R .. P) {| D ′ |} ((R .. P) u (−(grd (step D ′))))

〈proof 〉

14

lemma (R ′:: ′a::complete-lattice ⇒ ′b::complete-lattice) ∈ Apply.Disjunctive =⇒
DataRefinement S R R ′ S ′ =⇒ R (− grd S) ≤ − grd S ′

〈proof 〉

end

References

[1] R.-J. Back. Semantic correctness of invariant based programs. In Inter-
national Workshop on Program Construction, Chateau de Bonas, France,
1980.

[2] R.-J. Back. Invariant based programs and their correctness. In W. Bier-
mann, G. Guiho, and Y. Kodratoff, editors, Automatic Program Con-
struction Techniques, pages 223–242. MacMillan Publishing Company,
1983.

[3] R.-J. Back. Invariant based programming: Basic approach and teaching
experience. Formal Aspects of Computing, 2008.

[4] R.-J. Back and V. Preoteasa. Semantics and proof rules of invariant
based programs. Technical Report 903, TUCS, Jul 2008.

[5] T. Nipkow. Hoare logics for recursive procedures and unbounded nonde-
terminism. In CSL ’02: Proceedings of the 16th International Workshop
and 11th Annual Conference of the EACSL on Computer Science Logic,
pages 103–119, London, UK, 2002. Springer-Verlag.

[6] V. Preoteasa and R.-J. Back. Data refinement of invariant based pro-
grams. Electronic Notes in Theoretical Computer Science, 259:143 –
163, 2009. Proceedings of the 14th BCS-FACS Refinement Workshop
(REFINE 2009).

15

	Introduction
	Preliminaries
	Simplification Lemmas

	Program Statements as Predicate Transformers
	Assert statement
	Assume statement
	Demonic update statement
	Angelic update statement
	The guard of a statement

	Hoare Triples
	Hoare rule for recursive statements

	Predicate Transformers Semantics of Invariant Diagrams
	Data Refinement of Diagrams

