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Abstract

We formalize Cardano’s formula to solve a cubic equation
3 2 _
ax® +bx* +cx+d=0,

as well as Ferrari’s formula to solve a quartic equation [1]. We further
turn both formulas into executable algorithms based on the algebraic
number implementation in the AFP [2]. To this end we also slightly
extended this library, namely by making the minimal polynomial of an
algebraic number executable, and by defining and implementing n-th
roots of complex numbers.
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1 Ferrari’s formula for solving quartic equations

theory Ferraris-Formula
imports
Polynomial-Factorization. Explicit- Roots
Polynomial-Interpolation. Ring-Hom-Poly
Complez-Geometry. More-Complex
begin

1.1 Translation to depressed case

Solving an arbitrary quartic equation can easily be turned into the depressed
case, i.e., where there is no cubic part.

lemma to-depressed-quartic: fixes a4 :: 'a :: field-char-0
assumes aj: af # 0

and b: b= a3 / a4

and ¢: ¢ = a2 / a4

and d: d = al / a4

and e: e = a0 / a4

and p: p=c — (3/8) x b2

and ¢: ¢ = (073 — 4xbxc+ 8 xd) / 8
andrmr=(—-8%bf +256xe— 064 xbxd+ 16xb2xc)/ 256
and z:z =y — b/4

shows a4 x 274 + a8 23+ a2 2 2+ al xz+ a0 =0
oY b tpry 2t qryt+r=20

(proof)

lemma biquadratic-solution: fixes p q :: 'a :: field-char-0
shows y 4/ + pxy 2+ q=0+—> T 2.22+px2+q=0N2z2=1y"2)
(proof )

1.2 Solving the depressed case via Ferrari’s formula

lemma depressed-quartic-Ferrari: fixes p q r :: 'a :: field-char-0

assumes cubic-root: 8xm~3 + (8 xp)* m 2+ (2xp 2 — 8 xr)*xm — q 2
=0

and ¢0: ¢ # 0 — otherwise m might be zero, so a is zero and then there is a
division by zero in bl and b2

and sqrt: a x a = 2 x m

and b1: b1 =p/ 2+ m—q/ (2 %*a)

and b2: 02 =p/ 2+ m+q/ (2 *a)

shows y ™/ + pxy 2 + g*xy+ r =0 «— poly [:bl,a,1:] y = 0 V poly
[02,—a,1:]y =0
(proof)



end

2 Cardano’s formula for solving cubic equations

theory Cardanos-Formula
imports
Polynomial-Factorization. Explicit- Roots
Polynomial-Interpolation. Ring-Hom-Poly
Complez-Geometry. More-Complex
Algebraic-Numbers. Complex-Roots-Real-Poly
begin

2.1 Translation to depressed case

Solving an arbitrary cubic equation can easily be turned into the depressed
case, i.e., where there is no quadratic part.

lemma to-depressed-cubic: fixes a :: 'a :: field-char-0

assumes a: a 7% 0

andzy:z =y — b/ (3 *a)

andee=(c—02/(3%a))/a

and f: f=(d+ 2078/ (27T*a2)—bxc/(3%a))/a
shows (ax2 "8 +b*xa’+cxax+d=0)+—y 3 +exy+f=0
(proof)

2.2 Solving the depressed case in arbitrary fields

lemma cubic-depressed: fixes e :: 'a :: field-char-0
assumes yz: e £ 0 = 2 2 —y*xz—e/ 3 =10
anduwe# 0= u=23
and v:v=— (e =8/ 27)
shows y" 3 +exy+ f=0<+— (ife=0theny 3 = —felseu®> + f*u+v=
0)
(proof)

2.3 Solving the depressed case for complex numbers

In the complex-numbers-case, the quadratic equation for u is always solvable,
and the main challenge here is prove that it does not matter which solution
of the quadratic equation is considered (this is the diff:False case in the proof
below.)

lemma solve-cubic-depressed-Cardano-complex: fixes e :: complex
assumes e0: ¢ # 0
and v: v =— (e "3/ 27)
and w: u 2+ frxu+ov=20
shows y 3 +exy+f=0+—> 3 z.28=uny=2z—¢e/ (3% 2)
{proof)



2.4 Solving the depressed case for real numbers

definition discriminant-cubic-depressed :: 'a :: comm-ring-1 = 'a = 'a where

discriminant-cubic-depressed e f = — (4 * 73 + 27 % [72)
lemma discriminant-cubic-depressed: assumes [—z,1:] * [—y,1:] * [:—z,1:] =
[:f,e,0,1:]

shows discriminant-cubic-depressed e f = (z—y) 2 % (x — 2) 2 % (y — 2) 2
(proof)

If the discriminant is negative, then there is exactly one real root

lemma solve-cubic-depressed-Cardano-real: fixes e f v u :: real
defines yI = root 3 u — e / (3 * root 3 u)
and A = discriminant-cubic-depressed e f
assumes e0: ¢ # 0
and v: v =— (e "3/ 27)
and v: W2 + fxu+ov=20
shows y173 +exyl +f =10
A#40=yS+exy+f=0=—= y=yl
(proof)

If the discriminant is non-negative, then all roots are real

lemma solve-cubic-depressed-Cardano-all-real-roots: fixes e f v :: real and y :
complex

defines A = discriminant-cubic-depressed e f

assumes Delta: A > 0

and rt: y 8 +exy+f=0
shows y € R

(proof)

end

3 n-th roots of complex numbers

theory Complez-Roots
imports
Complez-Geometry. More-Complex
Algebraic-Numbers. Complex-Algebraic- Numbers
Factor-Algebraic-Polynomial. Roots-via-1A
HOL- Library. Product-Lexorder
begin

3.1 An algorithm to compute all complex roots of (algebraic)
complex numbers

definition all-croots :: nat = compler = complex list where
all-croots n & = (if n = 0 then [] else
if algebraic x then
(let p = min-int-poly x;



q = poly-nth-root n p;
xzs = complex-roots-of-int-poly q
in filter (A y. y"n = ) xs)
else (SOME ys. set ys = {y. y"n = z}))

lemma all-croots: assumes n0: n # 0 shows set (all-croots n ) = {y. y™n =
z}
(proof)

TODO: One might change complex-roots-of-int-poly to complez-roots-of-int-polys
in order to avoid an unnecessary factorization of an integer polynomial.
However, then this change already needs to be performed within the defini-
tion of all-croots.

lift-definition all-croots-part! :: nat = complexr = complex genuine-roots-auzx is
Anz. ifn=0Vz=0V - algebraic x then (1,]],0, filter-fun-complex 1)
else let p = min-int-poly x;
q = poly-nth-root n p;
zeros = complex-roots-of-int-poly g;
r = Polynomial.monom 1 n — [:x:]
in (r,zeros, n, filter-fun-complex r)
(proof)

lemma all-croots-code[code]:
all-croots n x = (if n = 0 then [] else if x = 0 then [0]
else if algebraic x then genuine-roots-impl (all-croots-partl n x)
else Code.abort (STR "all-croots invoked on non—algebraic number'’) (X -.
all-croots n x))

(proof)

3.2 A definition of the complex root of a complex number

While the definition of the complex root is quite natural and easy, the main
task is a criterion to determine which of all possible roots of a complex
number is the chosen one.

definition croot :: nat = compler = complex where
croot n x = (rcis (root n (cmod x)) (Arg z / of-nat n))

lemma croot-0[simp|: croot n 0 = 0 croot 0 x = 0
{proof)

lemma croot-power: assumes n: n # 0
shows (croot nxz) "n =z

{proof)

lemma Arg-of-real: Arg (of-real z) =
(if x < 0 then pi else 0)
(proof)



lemma Arg-reis-cis[simp]: assumes z > 0
shows Arg (rcis ¢ y) = Arg (cis y)
{proof)

lemma cis-Arg-1[simp]: cis (Arg 1) = 1
{proof)

lemma cis-Arg-power[simp]: assumes z # 0
shows cis (Arg (z "~ n)) = cis (Arg x * real n)

(proof)

lemma Arg-croot[simp|: Arg (croot n z) = Arg x / real n
(proof)

lemma cos-abs[simp]: cos (abs x :: real) = cos x

(proof)

lemma cos-mono-le: assumes abs © < pi
and abs y < pi
shows cos z < cos y «— abs y < abs x

(proof)

lemma abs-add-2-mult-bound: fixes z :: 'a :: linordered-idom
assumes zy: |z| <y
shows |z| < |z 4+ 2 * of-int i x y|

(proof)

lemma abs-eq-add-2-mult: fixes y :: 'a :: linordered-idom
assumes abs-id: |z| = |z + 2 * of-int i x y|
and zy: —y<zax <y
and i: i £ 0

shows 2 =y A i = —1

(proof)

This is the core lemma. It tells us that croot will choose the principal root,
i.e. the root with largest real part and if there are two roots with identical
real part, then the largest imaginary part. This criterion will be crucial for
implementing croot.

lemma croot-principal: assumes n: n # 0
and y: y “n=2x
and neq: y # croot n x
shows Re y < Re (croot n ) V Re y = Re (croot n ) A Im y < Im (croot n x)

(proof)

lemma croot-unique: assumes n: n # 0
and y: y “n==2x
and y-maz-Re-Im: \ z. z "n =1 =
Rez< ReyV Rez=ReyANImz<Imy



shows croot n x = y
(proof )

lemma csqrt-is-croot-2: csqrt = croot 2

(proof)

lemma croot-via-root-selection: assumes roots: set ys = { y. y'n = z}
and n: n # 0

shows croot n x = arg-min-list (A y. (— Re y, — Im y)) ys
(is - = arg-min-list ?f ys)

(proof)

lemma croot-impl[code]: croot n z = (if n = 0 then 0 else
arg-min-list (A y. (— Re y, — Im y)) (all-croots n z))
(proof)

end

4 Algorithms to compute all complex and real roots
of a cubic polynomial

theory Cubic-Polynomials
imports
Cardanos-Formula
Complez-Roots
begin

The real case where a result is only delivered if the discriminant is negative

definition solve-depressed-cubic-Cardano-real :: real = real = real option where
solve-depressed-cubic-Cardano-real e f = (
if e = 0 then Some (root 3 (—f)) else
letv=— (e "8/ 27) in
case rroots2 [:v,f,1:] of
[u,-] = let rt = root 3 w in Some (1t — e / (3 * rt))
| - = None)

lemma solve-depressed-cubic-Cardano-real:
assumes solve-depressed-cubic-Cardano-real e f = Some y
shows {y. y" 9 +exy + f =0} = {y}

(proof)

The complex case

definition solve-depressed-cubic-complex :: complexr = complex = complex list
where
solve-depressed-cubic-complex e f = (let
ys = (if e = 0 then all-croots 3 (— f) else (let
u = hd (croots2 [ — (e = 3 / 27) .f,1:]);
zs = all-croots 3 u



inmap (A z.z— e/ (3% 2)) zs))
in remdups ys)

lemma solve-depressed-cubic-complex-code[code]:
solve-depressed-cubic-complex e f = (let
ys = (if e = 0 then all-croots 8 (— f) else (let
2=fr/2
u=— f2 + csqrt (f2°2 + e "3/ 27);
zs = all-croots 3 u
inmap (A z. z — e [/ (8 % 2)) z5))
in remdups ys)
(proof)

lemma solve-depressed-cubic-complex: y € set (solve-depressed-cubic-complex e f)

(YS9 texy+f=0)
(proof)

For the general real case, we first try Cardano with negative discrimiant
and only if it is not applicable, then we go for the calculation using complex
numbers. Note that for for non-negative delta no filter is required to identify
the real roots from the list of complex roots, since in that case we already
know that all roots are real.

definition solve-depressed-cubic-real :: real = real = real list where
solve-depressed-cubic-real e f = (case solve-depressed-cubic-Cardano-real e f
of Some y = [y]
| None = map Re (solve-depressed-cubic-complex (of-real e) (of-real f)))

lemma solve-depressed-cubic-real-code[code]: solve-depressed-cubic-real e f =
(if e = 0 then [root 8 (—f)] else
letv=1e"8/ 27,
2=f/2
fov = f272 + vin
if f2v > 0 then
let u = —f2 4 sqrt f2v;
Tt = 100t 3 U
in[rt — e/ (3 x 1t)]

else
let ce3 = of-real e | 3;
u = — of-real f2 + csqrt (of-real f2v) in

map Re (remdups (map (Art. rt — ce3 / rt) (all-croots 3 u))))
(proof)

lemma solve-depressed-cubic-real: y € set (solve-depressed-cubic-real e f)
(Y8 texy+f=0)
{proof )

Combining the various algorithms



lemma degree3-coeffs: degree p = 3 =
Jabed p=[d,c,bal]Na#0
{proof )

definition roots3-generic :: ('a :: field-char-0 = 'a = 'a list) = 'a poly = 'a list
where
roots3-generic depressed-solver p = (let

cs = coeffs p;

a=cs! 3;b=cs!2;,c=cs!1;d=cs! 0
ald = 8 x a;

ba3 = b / a8;

b2 = b * b;

b3 = b2 x b;

e=(c—0b2/a8) / g
f=d+2%xb3/)(27T*%a"2)—bxc/al3)/ a
roots = depressed-solver e f

in map (A y. y — bal) roots)

lemma roots3-generic: assumes deg: degree p = 3
and solver: \ e fy. y € set (depressed-solver e f) +— y"8 + exy+ f =0
shows set (roots3-generic depressed-solver p) = {z. poly p z = 0}

(proof)

definition croots3 :: complex poly = complex list where
croots3 = roots3-generic solve-depressed-cubic-complex

lemma croots3: assumes deg: degree p = 8
shows set (croots3 p) = { . poly p z = 0}

{proof)

definition rroots3 :: real poly = real list where
rrootsd = roots3-generic solve-depressed-cubic-real

lemma rroots3: assumes deg: degree p = 3
shows set (rroots3 p) = { z. poly p x = 0}
(proof)

end

5 Algorithms to compute all complex and real roots
of a quartic polynomial

theory Quartic-Polynomials
imports
Ferraris-Formula
Clubic-Polynomials
begin

The complex case is straight-forward



definition solve-depressed-quartic-complezx :: complex = complex = complex =
complez list where
solve-depressed-quartic-complex p q v = remdups (if ¢ = 0 then
(concat (map (X z. let y = csqrt z in [y,—y]) (croots2 [:r,p,1:]))) else
let cubics = croots3 [ — (¢72), 2« p 2 — 8 xr, 8 x p, 8;
m = hd cubics; — select any root of the cubic polynomial
a = csqrt (2 * m);
p2m =1p/ 2 + m;
q2a = q / (2 * a);
b1 = p2m — q2a;
b2 = p2m + q2a
in (croots2 [:b1,a,1:] Q croots2 [:b2,—a,1:]))

lemma solve-depressed-quartic-complex: © € set (solve-depressed-quartic-complex
pqr)

+— @y +pxax2+qgqxz+r=20)
(proof)

The main difference in the real case is that a specific cubic root has to be
used, namely a positive one. In the soundness proof we show that such a
cubic root always exists.

definition solve-depressed-quartic-real :: real = real = real = real list where
solve-depressed-quartic-real p q v = remdups (if ¢ = 0 then
(concat (map (X z. rroots2 [:—z,0,1:]) (rroots2 [:r,p,1:]))) else
let cubics = rroots8 [: — (¢72), 2 xp 2 — 8 = r, 8 * p, 8;
m = the (find (A m. m > 0) cubics); — select any positive root of the
cubic polynomial
a = sqrt (2 = m);
p2m=1p/ 2 + m;
q2a = q / (2 * a);
b1 = p2m — q2a;
b2 = p2m + q2a
in (rroots2 [:b1,a,1:] Q rroots2 [:b2,—a,1:]))

lemma solve-depressed-quartic-real: x € set (solve-depressed-quartic-real p q 1)
+— (4 +pxrs2+qgxx+1r=20)
(proof)

Combining the various algorithms

lemma numeral-4-eq-4: 4 = Suc (Suc (Suc (Suc 0)))
(proof)

lemma degrees-coeffs: degree p = | =
Jabecdep=1[ed cba:]ANa#0
(proof )

definition rootsj-generic :: (‘a :: field-char-0 = 'a = 'a = 'a list) = 'a poly =

'a list where
roots4-generic depressed-solver p = (let

10



cs = coeffs p;

cs = coeffs p;
af =cs'!' 4;a3 =cs! 3;a2=cs! 2;al =cs! 1;a0 =cs! 0;
b=a8 / a4;
c=a2 / a4;
d=al / a4;
e=al / a4;
b2 = b x b;
b3 = b2 * b;
b4 = b3 * b;
bi'=0b/ 4;

p=c— 3/8 x b2,

q= (b3 — Jxbxc + 8 x d) / 8;
r=(—3%bj+ 256xe— 064 xbxd+ 16 % b2 xc)/ 256;
roots = depressed-solver p q r

in map (A y. y — b4") roots)

lemma roots/-generic: assumes deg: degree p = 4

and solver: \ p qry. y € set (depressed-solver p qr) «— y 4 + p*xy 2 + ¢
xy+r=20

shows set (roots4-generic depressed-solver p) = {z. poly p z = 0}

(proof)

definition crootsj :: complex poly = complex list where
croots4 = roots4-generic solve-depressed-quartic-complex

lemma crootsj: assumes deg: degree p = 4
shows set (croots4 p) = { x. poly p x = 0}

{proof)

definition rroots4 :: real poly = real list where
rroots4 = roots4-generic solve-depressed-quartic-real

lemma rrootss: assumes deg: degree p = /4
shows set (rroots4 p) = { x. poly p x = 0}

{proof)

end
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