Solving Cubic and Quartic Equations*

René Thiemann

March 19, 2025

Abstract

We formalize Cardano's formula to solve a cubic equation

$$ax^3 + bx^2 + cx + d = 0,$$

as well as Ferrari's formula to solve a quartic equation [1]. We further turn both formulas into executable algorithms based on the algebraic number implementation in the AFP [2]. To this end we also slightly extended this library, namely by making the minimal polynomial of an algebraic number executable, and by defining and implementing n-th roots of complex numbers.

Contents

1	O 1		2
	1.1	Translation to depressed case	2
	1.2	Solving the depressed case via Ferrari's formula	2
2	Car	dano's formula for solving cubic equations	3
	2.1	Translation to depressed case	•
	2.2	Solving the depressed case in arbitrary fields	
	2.3	Solving the depressed case for complex numbers	
	2.4	Solving the depressed case for real numbers	4
3	n-th roots of complex numbers		4
	3.1	An algorithm to compute all complex roots of (algebraic)	
		complex numbers	4
	3.2	A definition of the complex root of a complex number	
4	Algorithms to compute all complex and real roots of a cubic		
	_	vnomial	7

^{*}Supported by FWF (Austrian Science Fund) project Y757.

1 Ferrari's formula for solving quartic equations

```
theory Ferraris-Formula
imports
Polynomial-Factorization. Explicit-Roots
Polynomial-Interpolation. Ring-Hom-Poly
Complex-Geometry. More-Complex
begin
```

1.1 Translation to depressed case

Solving an arbitrary quartic equation can easily be turned into the depressed case, i.e., where there is no cubic part.

```
lemma to-depressed-quartic: fixes a4 :: 'a :: field-char-0
 assumes a4: a4 \neq 0
 and b: b = a3 / a4
 and c: c = a2 / a4
 and d: d = a1 / a4
 and e: e = a\theta / a4
 and p: p = c - (3/8) * b^2
 and q: q = (b^3 - 4*b*c + 8*d) / 8
 and r: r = (-3 * b^4 + 256 * e - 64 * b * d + 16 * b^2 * c) / 256
 and x: x = y - b/4
shows a4 * x^4 + a3 * x^3 + a2 * x^2 + a1 * x + a0 = 0
  \longleftrightarrow y^4 + p * y^2 + q * y + r = 0
\langle proof \rangle
lemma biquadratic-solution: fixes p \ q :: 'a :: field-char-0
 shows y^4 + p * y^2 + q = 0 \longleftrightarrow (\exists z. z^2 + p * z + q = 0 \land z = y^2)
 \langle proof \rangle
```

1.2 Solving the depressed case via Ferrari's formula

```
lemma depressed-quartic-Ferrari: fixes p \ q \ r :: 'a :: field-char-0 assumes cubic\text{-}root: 8*m^3 + (8*p)*m^2 + (2*p^2 - 8*r)*m - q^2 = 0 and q0: q \neq 0 — otherwise m might be zero, so a is zero and then there is a division by zero in b1 and b2 and sqrt: a*a = 2*m and b1: b1 = p \ / \ 2 + m - q \ / \ (2*a) and b2: b2 = p \ / \ 2 + m + q \ / \ (2*a) shows y^4 + p*y^2 + q*y + r = 0 \longleftrightarrow poly \ [:b1,a,1:] \ y = 0 \lor poly \ [:b2,-a,1:] \ y = 0 \langle proof \rangle
```

2 Cardano's formula for solving cubic equations

```
theory Cardanos-Formula
imports
Polynomial-Factorization.Explicit-Roots
Polynomial-Interpolation.Ring-Hom-Poly
Complex-Geometry.More-Complex
Algebraic-Numbers.Complex-Roots-Real-Poly
begin
```

2.1 Translation to depressed case

Solving an arbitrary cubic equation can easily be turned into the depressed case, i.e., where there is no quadratic part.

```
lemma to-depressed-cubic: fixes a :: 'a :: field-char-0 assumes a: a \neq 0 and xy: x = y - b / (3 * a) and e: e = (c - b^2 / (3 * a)) / a and f: f = (d + 2 * b^3 / (27 * a^2) - b * c / (3 * a)) / a shows (a * x ^3 + b * x^2 + c * x + d = 0) \longleftrightarrow y^3 + e * y + f = 0 \langle proof \rangle
```

2.2 Solving the depressed case in arbitrary fields

```
lemma cubic-depressed: fixes e: 'a:: field-char-0 assumes yz: e \neq 0 \Longrightarrow z^2 - y * z - e / 3 = 0 and u: e \neq 0 \Longrightarrow u = z^3 and v: v = -(e^3 / 27) shows y^3 + e * y + f = 0 \longleftrightarrow (if e = 0 then <math>y^3 = -f else u^2 + f * u + v = 0) \langle proof \rangle
```

2.3 Solving the depressed case for complex numbers

In the complex-numbers-case, the quadratic equation for u is always solvable, and the main challenge here is prove that it does not matter which solution of the quadratic equation is considered (this is the diff:False case in the proof below.)

```
lemma solve-cubic-depressed-Cardano-complex: fixes e :: complex assumes e\theta : e \neq 0 and v : v = -(e \mathbin{\widehat{\ }} 3 \mathrel{/} 27) and u : u \mathbin{\widehat{\ }} 2 + f * u + v = 0 shows y \mathbin{\widehat{\ }} 3 + e * y + f = 0 \longleftrightarrow (\exists \ z . \ z \mathbin{\widehat{\ }} 3 = u \land y = z - e \mathrel{/} (3 * z)) \langle proof \rangle
```

2.4 Solving the depressed case for real numbers

```
definition discriminant-cubic-depressed :: 'a :: comm-ring-1 \Rightarrow 'a \Rightarrow 'a where
  discriminant-cubic-depressed ef = -(4 * e^3 + 27 * f^2)
lemma discriminant-cubic-depressed: assumes [:-x,1:]*[:-y,1:]*[:-z,1:] =
 shows discriminant-cubic-depressed ef = (x-y)^2 * (x-z)^2 * (y-z)^2
\langle proof \rangle
If the discriminant is negative, then there is exactly one real root
lemma solve-cubic-depressed-Cardano-real: fixes e f v u :: real
 defines y1 \equiv root \ 3 \ u - e \ / \ (3 * root \ 3 \ u)
   and \Delta \equiv discriminant-cubic-depressed e f
 assumes e\theta: e \neq \theta
 and v: v = -(e^3 / 27)
 and u: u^2 + f * u + v = 0
shows y1^3 + e * y1 + f = 0
  \Delta \neq 0 \Longrightarrow y^3 + e * y + f = 0 \Longrightarrow y = y1
\langle proof \rangle
If the discriminant is non-negative, then all roots are real
lemma solve-cubic-depressed-Cardano-all-real-roots: fixes e\ f\ v :: real and y ::
complex
 defines \Delta \equiv discriminant-cubic-depressed e f
 assumes Delta: \Delta \geq 0
 and rt: y^3 + e * y + f = 0
shows y \in \mathbb{R}
\langle proof \rangle
end
```

3 *n*-th roots of complex numbers

```
theory Complex-Roots
imports
Complex-Geometry.More-Complex
Algebraic-Numbers.Complex-Algebraic-Numbers
Factor-Algebraic-Polynomial.Roots-via-IA
HOL-Library.Product-Lexorder
begin
```

3.1 An algorithm to compute all complex roots of (algebraic) complex numbers

```
definition all-croots :: nat \Rightarrow complex \Rightarrow complex \ list where all-croots n \ x = (if \ n = 0 \ then \ [] \ else if algebraic x \ then (let p = min\text{-}int\text{-}poly \ x;
```

```
q = poly-nth-root \ n \ p;
xs = complex-roots-of-int-poly \ q
in \ filter \ (\lambda \ y. \ y \widehat{\ } n = x) \ xs)
else \ (SOME \ ys. \ set \ ys = \{y. \ y \widehat{\ } n = x\}))
\mathbf{lemma} \ all\text{-}croots: \ \mathbf{assumes} \ n\theta \colon n \neq \theta \ \mathbf{shows} \ set \ (all\text{-}croots \ n \ x) = \{y. \ y \widehat{\ } n = x\}
\langle proof \rangle
```

TODO: One might change *complex-roots-of-int-poly* to *complex-roots-of-int-poly*3 in order to avoid an unnecessary factorization of an integer polynomial. However, then this change already needs to be performed within the definition of *all-croots*.

```
lift-definition all-croots-part1 :: nat \Rightarrow complex \Rightarrow complex \ genuine-roots-aux is \lambda \ n \ x. if n = 0 \lor x = 0 \lor \neg algebraic \ x then (1,[],0,\ filter-fun-complex \ 1) else let p = min-int-poly \ x; q = poly-nth-root \ n \ p; zeros = complex-roots-of-int-poly \ q; r = Polynomial.monom \ 1 \ n - [:x:] in \ (r,zeros,\ n,\ filter-fun-complex \ r) \langle proof \rangle

lemma all\text{-croots-code}[code]: all\text{-croots-code}[code]: all\text{-croots-} \ n \ x = (if \ n = 0 \ then \ [] \ else \ if \ algebraic \ x \ then \ genuine-roots-impl \ (all\text{-croots-part1} \ n \ x) else \ Code.abort \ (STR \ "all\text{-croots-invoked-on-non-algebraic number"}) \ (\lambda \ -.\ all\text{-croots-n} \ x)) \langle proof \rangle
```

3.2 A definition of the complex root of a complex number

While the definition of the complex root is quite natural and easy, the main task is a criterion to determine which of all possible roots of a complex number is the chosen one.

```
definition croot :: nat \Rightarrow complex \Rightarrow complex where croot \ n \ x = (rcis \ (root \ n \ (cmod \ x)) \ (Arg \ x \ / \ of\text{-}nat \ n))
lemma croot\text{-}0[simp]: croot \ n \ \theta = \theta \ croot \ \theta \ x = \theta
\langle proof \rangle
lemma croot\text{-}power: assumes n: n \neq \theta
shows (croot \ n \ x) \ \hat{} \ n = x
\langle proof \rangle
lemma Arg\text{-}of\text{-}real: Arg \ (of\text{-}real \ x) = (if \ x < \theta \ then \ pi \ else \ \theta)
\langle proof \rangle
```

```
shows Arg(rcis x y) = Arg(cis y)
  \langle proof \rangle
lemma cis-Arg-1[simp]: cis(Arg 1) = 1
  \langle proof \rangle
lemma cis-Arg-power[simp]: assumes x \neq 0
  shows cis(Arg(x \cap n)) = cis(Arg x * real n)
\langle proof \rangle
lemma Arg-croot[simp]: Arg (croot n x) = Arg x / real n
\langle proof \rangle
lemma cos-abs[simp]: cos\ (abs\ x :: real) = cos\ x
\langle proof \rangle
lemma cos-mono-le: assumes abs x \leq pi
 and abs \ y \leq pi
shows cos \ x \le cos \ y \longleftrightarrow abs \ y \le abs \ x
\langle proof \rangle
lemma abs-add-2-mult-bound: fixes x :: 'a :: linordered-idom
  assumes xy: |x| \leq y
  shows |x| \leq |x + 2 * of\text{-}int i * y|
\langle proof \rangle
lemma abs-eq-add-2-mult: fixes y :: 'a :: linordered-idom
 assumes abs-id: |x| = |x + 2 * of\text{-int } i * y|
 and xy: -y < x x \le y
 and i: i \neq 0
shows x = y \land i = -1
\langle proof \rangle
This is the core lemma. It tells us that croot will choose the principal root,
i.e. the root with largest real part and if there are two roots with identical
real part, then the largest imaginary part. This criterion will be crucial for
implementing croot.
lemma croot-principal: assumes n: n \neq 0
 and y: y \cap n = x
  and neq: y \neq croot \ n \ x
shows Re y < Re \ (croot \ n \ x) \lor Re \ y = Re \ (croot \ n \ x) \land Im \ y < Im \ (croot \ n \ x)
\langle proof \rangle
lemma croot-unique: assumes n: n \neq 0
  and y: y \cap n = x
 and y-max-Re-Im: \bigwedge z. z \cap n = x \Longrightarrow
     Re \ z < Re \ y \lor Re \ z = Re \ y \land Im \ z \le Im \ y
```

lemma Arg-rcis-cis[simp]: assumes x > 0

```
shows croot\ n\ x=y \langle proof \rangle
lemma csqrt-is-croot-2: csqrt=croot\ 2 \langle proof \rangle
lemma croot-via-root-selection: assumes roots: set\ ys=\{\ y.\ y^n=x\} and n:\ n\neq 0 shows croot\ n\ x=arg-min-list\ (\lambda\ y.\ (-\ Re\ y,\ -\ Im\ y))\ ys (is\ -=arg-min-list\ ?f\ ys) \langle proof \rangle
lemma croot-impl[code]: croot\ n\ x=(if\ n=0\ then\ 0\ else\ arg-min-list\ (\lambda\ y.\ (-\ Re\ y,\ -\ Im\ y))\ (all-croots\ n\ x)) \langle proof \rangle
end
```

4 Algorithms to compute all complex and real roots of a cubic polynomial

```
theory Cubic-Polynomials
 imports
    Cardanos	ext{-}Formula
    Complex-Roots
begin
The real case where a result is only delivered if the discriminant is negative
definition solve-depressed-cubic-Cardano-real :: real \Rightarrow real \Rightarrow real option where
  solve-depressed-cubic-Cardano-real\ e\ f=(
   if e = 0 then Some (root 3 (-f)) else
    let v = -(e^3 / 27) in
    case rroots2 [:v,f,1:] of
      [u,-] \Rightarrow let \ rt = root \ 3 \ u \ in \ Some \ (rt - e / (3 * rt))
    | - \Rightarrow None \rangle
{\bf lemma}\ solve-depressed-cubic-Cardano-real:
 assumes solve-depressed-cubic-Cardano-real\ e\ f=Some\ y
 shows \{y. \ y^3 + e * y + f = 0\} = \{y\}
\langle proof \rangle
The complex case
definition solve-depressed-cubic-complex :: <math>complex \Rightarrow complex \Rightarrow complex
where
  solve-depressed-cubic-complex\ e\ f=(let
         ys = (if \ e = 0 \ then \ all-croots \ 3 \ (-f) \ else \ (let
      u = hd \ (croots2 \ [: -(e^3 / 27), f, 1:]);
      zs = all\text{-}croots \ 3 \ u
```

```
in map (\lambda z. z - e / (3 * z)) zs)
in remdups ys)
```

```
lemma solve-depressed-cubic-complex-code[code]: solve-depressed-cubic-complex e f = (let ys = (if \ e = 0 \ then \ all\text{-}croots \ 3 \ (-f) \ else \ (let \ f2 = f \ / \ 2; \ u = -f2 + csqrt \ (f2^2 + e \ ^3 \ / \ 27); \ zs = all\text{-}croots \ 3 \ u \ in \ map \ (\lambda \ z. \ z - e \ / \ (3 * z)) \ zs)) in \ remdups \ ys) \langle proof \rangle
```

lemma solve-depressed-cubic-complex: $y \in set$ (solve-depressed-cubic-complex ef)

```
\longleftrightarrow (y^3 + e * y + f = 0)\langle proof \rangle
```

For the general real case, we first try Cardano with negative discrimiant and only if it is not applicable, then we go for the calculation using complex numbers. Note that for for non-negative delta no filter is required to identify the real roots from the list of complex roots, since in that case we already know that all roots are real.

```
 \begin{array}{l} \textbf{definition} \ solve\ depressed\ cubic\ real :: real \Rightarrow real \ ist \ \textbf{where} \\ solve\ depressed\ cubic\ real \ e \ f = (case \ solve\ depressed\ cubic\ Cardano\ real \ e \ f \\ of \ Some \ y \Rightarrow [y] \\ | \ None \Rightarrow map \ Re \ (solve\ depressed\ cubic\ complex \ (of\ real \ e) \ (of\ real \ f))) \\ \end{array}
```

```
lemma solve-depressed-cubic-real-code[code]: solve-depressed-cubic-real e f = (if \ e = 0 \ then \ [root \ 3 \ (-f)] \ else
let v = e \ 3 \ / \ 27;
f2 = f \ / \ 2;
f2v = f2 \ 2 + v \ in
if f2v > 0 \ then
let u = -f2 + sqrt \ f2v;
rt = root \ 3 \ u
in \ [rt - e \ / \ (3 * rt)]
else
let ce3 = of-real e \ / \ 3;
u = -of-real f2 + csqrt \ (of-real f2v) \ in
map \ Re \ (remdups \ (map \ (\lambda rt. \ rt - ce3 \ / \ rt) \ (all-croots gart \ u))))
```

```
lemma solve-depressed-cubic-real: y \in set (solve-depressed-cubic-real ef) \longleftrightarrow (y^3 + e * y + f = 0) \langle proof \rangle
```

Combining the various algorithms

 $\langle proof \rangle$

```
lemma degree 3-coeffs: degree p = 3 \Longrightarrow
 \exists \ a \ b \ c \ d. \ p = [: d, c, b, a :] \land a \neq 0
  \langle proof \rangle
definition roots3-generic :: ('a :: field-char-0 \Rightarrow 'a | ist) \Rightarrow 'a poly \Rightarrow 'a list
where
  roots3-generic depressed-solver p = (let
    cs = coeffs p;
    a = cs ! 3; b = cs ! 2; c = cs ! 1; d = cs ! 0;
    a\beta = \beta * a;
    ba\beta = b / a\beta;
    b2 = b * b;
    b3 = b2 * b;
    e = (c - b2 / a3) / a;
    f = (d + 2 * b3 / (27 * a^2) - b * c / a3) / a;
    roots = depressed-solver e f
    in map (\lambda y. y - ba3) roots)
lemma roots3-generic: assumes deg: degree p = 3
 and solver: \bigwedge e f y. y \in set (depressed\text{-solver } e f) \longleftrightarrow y^3 + e * y + f = 0
  shows set (roots3-generic depressed-solver p) = \{x. poly p | x = 0\}
\langle proof \rangle
definition croots3 :: complex poly <math>\Rightarrow complex \ list \ \mathbf{where}
  croots3 = roots3-generic solve-depressed-cubic-complex
lemma croots3: assumes deg: degree p = 3
  shows set (croots3\ p) = \{x.\ poly\ p\ x = 0\}
  \langle proof \rangle
definition rroots3 :: real poly \Rightarrow real list where
  rroots3 = roots3-generic solve-depressed-cubic-real
lemma rroots3: assumes deg: degree p = 3
 shows set (rroots3\ p) = \{x.\ poly\ p\ x = 0\}
  \langle proof \rangle
end
```

5 Algorithms to compute all complex and real roots of a quartic polynomial

```
theory Quartic-Polynomials
imports
Ferraris-Formula
Cubic-Polynomials
begin
```

The complex case is straight-forward

```
definition solve-depressed-quartic-complex :: complex \Rightarrow complex \Rightarrow complex
complex list where
  solve-depressed-quartic-complex p \ q \ r = remdups \ (if \ q = 0 \ then
    (concat (map (\lambda z. let y = csqrt z in [y,-y]) (croots2 [:r,p,1:]))) else
    let cubics = croots3 [: -(q^2), 2 * p^2 - 8 * r, 8 * p, 8:];
        m = hd \ cubics; — select any root of the cubic polynomial
        a = csqrt (2 * m);
        p2m = p / 2 + m;
        q2a = q / (2 * a);
        b1 = p2m - q2a;
        b2 = p2m + q2a
      in (croots2 [:b1,a,1:] @ croots2 [:b2,-a,1:]))
lemma solve-depressed-quartic-complex: x \in set (solve-depressed-quartic-complex
 \longleftrightarrow (x^4 + p * x^2 + q * x + r = 0)
\langle proof \rangle
The main difference in the real case is that a specific cubic root has to be
used, namely a positive one. In the soundness proof we show that such a
cubic root always exists.
definition solve-depressed-quartic-real :: real \Rightarrow real \Rightarrow real \Rightarrow real list where
  solve-depressed-quartic-real p \ q \ r = remdups (if q = 0 then
    (concat \ (map \ (\lambda \ z. \ rroots2 \ [:-z,0,1:]) \ (rroots2 \ [:r,p,1:]))) \ else
    let cubics = rroots3 [: -(q^2), 2 * p^2 - 8 * r, 8 * p, 8:];
         m = the (find (\lambda m. m > 0) cubics); — select any positive root of the
cubic polynomial
        a = sqrt (2 * m);
        p2m = p / 2 + m;
        q2a = q / (2 * a);
        b1 = p2m - q2a;
        b\mathcal{2}\,=\,p\mathcal{2}m\,+\,q\mathcal{2}a
      in (rroots2 [:b1,a,1:] @ rroots2 [:b2,-a,1:]))
lemma solve-depressed-quartic-real: x \in set (solve-depressed-quartic-real p q r)
  \longleftrightarrow (x^4 + p * x^2 + q * x + r = 0)
\langle proof \rangle
Combining the various algorithms
lemma numeral-4-eq-4: 4 = Suc (Suc (Suc (Suc (Suc (0))))
  \langle proof \rangle
lemma degree 4-coeffs: degree p = 4 \Longrightarrow
 \exists \ a \ b \ c \ d \ e. \ p = [: e, d, c, b, a :] \land a \neq 0
 \langle proof \rangle
definition roots4-generic :: ('a :: field-char-0 \Rightarrow 'a \Rightarrow 'a | ist) \Rightarrow 'a poly \Rightarrow
'a list where
```

roots4-generic depressed-solver p = (let

```
cs = coeffs p;
    cs = coeffs p;
    a4 = cs ! 4; a3 = cs ! 3; a2 = cs ! 2; a1 = cs ! 1; a0 = cs ! 0;
    b = a3 / a4;
    c = a2 / a4;
    d = a1 / a4;
    e = a0 / a4;
    b2 = b * b;
    b3 = b2 * b;
    b4 = b3 * b;
    b4' = b / 4;
    p = c - 3/8 * b2;
    q = (b3 - 4*b*c + 8*d) / 8;
    r = (-3 * b4 + 256 * e - 64 * b * d + 16 * b2 * c) / 256;
    roots = depressed-solver p \neq r
    in map (\lambda y. y - b4') roots)
lemma roots4-generic: assumes deg: degree p = 4
 and solver: \bigwedge p \ q \ r \ y. y \in set \ (depressed\text{-solver} \ p \ q \ r) \longleftrightarrow y^4 + p * y^2 + q
* y + r = 0
 shows set (roots4-generic depressed-solver p) = \{x. poly p \mid x = 0\}
\langle proof \rangle
definition croots4 :: complex poly \Rightarrow complex list where
  croots4 = roots4-generic solve-depressed-quartic-complex
lemma croots4: assumes deg: degree p = 4
 shows set (croots 4 p) = \{ x. poly p x = 0 \}
  \langle proof \rangle
definition rroots4 :: real poly \Rightarrow real list where
  rroots4 = roots4-generic solve-depressed-quartic-real
lemma rroots4: assumes deg: degree p = 4
 shows set (rroots 4 p) = \{ x. poly p x = 0 \}
 \langle proof \rangle
end
```

References

- [1] G. Cardano. Ars Magna, The Great Art or the Rules of Algebra. 1545. https://en.wikipedia.org/wiki/Ars_Magna_(Cardano_book).
- [2] R. Thiemann, A. Yamada, and S. Joosten. Algebraic numbers in Isabelle/HOL. *Archive of Formal Proofs*, Dec. 2015. https://isa-afp.org/entries/Algebraic_Numbers.html, Formal proof development.