Solving Cubic and Quartic Equations*

René Thiemann

March 19, 2025

Abstract

We formalize Cardano's formula to solve a cubic equation

$$ax^3 + bx^2 + cx + d = 0$$
,

as well as Ferrari's formula to solve a quartic equation [1]. We further turn both formulas into executable algorithms based on the algebraic number implementation in the AFP [2]. To this end we also slightly extended this library, namely by making the minimal polynomial of an algebraic number executable, and by defining and implementing n-th roots of complex numbers.

Contents

1	Fer	rari's formula for solving quartic equations	2
	1.1	Translation to depressed case	2
	1.2	Solving the depressed case via Ferrari's formula	2
2	Cardano's formula for solving cubic equations		4
	2.1	Translation to depressed case	4
	2.2	Solving the depressed case in arbitrary fields	4
	2.3	Solving the depressed case for complex numbers	5
	2.4	Solving the depressed case for real numbers	7
3	n-th roots of complex numbers		11
	3.1	An algorithm to compute all complex roots of (algebraic)	
		complex numbers	11
	3.2	A definition of the complex root of a complex number	13
4	Algorithms to compute all complex and real roots of a cubic		
	polynomial		22

^{*}Supported by FWF (Austrian Science Fund) project Y757.

1 Ferrari's formula for solving quartic equations

```
theory Ferraris-Formula
imports
Polynomial-Factorization. Explicit-Roots
Polynomial-Interpolation. Ring-Hom-Poly
Complex-Geometry. More-Complex
begin
```

1.1 Translation to depressed case

Solving an arbitrary quartic equation can easily be turned into the depressed case, i.e., where there is no cubic part.

```
lemma to-depressed-quartic: fixes a4 :: 'a :: field-char-0
 assumes a4: a4 \neq 0
 and b: b = a3 / a4
 and c: c = a2 / a4
 and d: d = a1 / a4
 and e: e = a\theta / a4
 and p: p = c - (3/8) * b^2
 and q: q = (b^3 - 4*b*c + 8*d) / 8
 and r: r = (-3 * b^4 + 256 * e - 64 * b * d + 16 * b^2 * c) / 256
 and x: x = y - b/4
shows a4 * x^4 + a3 * x^3 + a2 * x^2 + a1 * x + a0 = 0
 \longleftrightarrow y^4 + p * y^2 + q * y + r = 0
 have a4 * x^4 + a3 * x^3 + a2 * x^2 + a1 * x + a0 = 0 \longleftrightarrow
   (a4 * x^4 + a3 * x^3 + a2 * x^2 + a1 * x + a0) / a4 = 0 using a4 by
auto
 also have (a4 * x^4 + a3 * x^3 + a2 * x^2 + a1 * x + a0) / a4
   = x^4 + b * x^3 + c * x^2 + d * x + e
   unfolding b c d e using a \not d by (simp \ add: field-simps)
 also have ... = y^2 + p * y^2 + q * y + r
   unfolding x p q r
   by (simp add: field-simps power4-eq-xxxx power3-eq-cube power2-eq-square)
 finally show ?thesis.
lemma biquadratic-solution: fixes p q :: 'a :: field-char-0
 shows y^4 + p * y^2 + q = 0 \longleftrightarrow (\exists z. z^2 + p * z + q = 0 \land z = y^2)
 by (auto simp: field-simps power4-eq-xxxx power2-eq-square)
```

1.2 Solving the depressed case via Ferrari's formula

lemma depressed-quartic-Ferrari: fixes $p \neq r :: 'a :: field-char-0$

```
assumes cubic-root: 8*m^3 + (8*p)*m^2 + (2*p^2 - 8*r)*m - q^2
 and q\theta: q \neq \theta — otherwise m might be zero, so a is zero and then there is a
division by zero in b1 and b2
 and sqrt: a * a = 2 * m
 and b1: b1 = p / 2 + m - q / (2 * a)
 and b2: b2 = p / 2 + m + q / (2 * a)
  shows y^4 + p * y^2 + q * y + r = 0 \longleftrightarrow poly [:b1,a,1:] y = 0 \lor poly
[:b2,-a,1:] y = 0
proof -
 let ?N = y^2 + p / 2 + m
 let ?M = a * y - q / (2 * a)
 from cubic-root q0 have m\theta: m \neq 0 by auto
 from sqrt \ m\theta have a\theta: a \neq \theta by auto
 define N where N = ?N
 define M where M = ?M
 note powers = field-simps power4-eq-xxxx power3-eq-cube power2-eq-square
 from cubic-root have 8*m^3 = -(8*p)*m^2 - (2*p^2 - 8*r)*m +
   by (simp add: powers)
 from arg-cong[OF this, of (*) 4]
 have id: 32 * m^3 = 4 * (-(8 * p) * m^2 - (2 * p^2 - 8 * r) * m + q^2)
 let ?add = 2 * y^2 * m + p * m + m^2
 have y^4 + p * y^2 + q * y + r = 0 \longleftrightarrow
    (y^2 + p / 2)^2 = -q * y - r + p^2 / 4
   by (simp add: powers, algebra)
 also have ... \longleftrightarrow (y^2 + p / 2)^2 + ?add = -q * y - r + p^2 / 4 + ?add
bv simp
 also have ... \longleftrightarrow ?N^2 = 2 * m * y^2 - q * y + m^2 + m * p + p^2 / 4 -
   by (simp add: powers)
 also have 2 * m * y^2 - q * y + m^2 + m * p + p^2 / 4 - r =
       ?M \cap 2 using m0 id a0 sqrt by (simp add: powers, algebra)
 also have ?N^2 = ?M^2 \longleftrightarrow (?N + ?M) * (?N - ?M) = 0
   unfolding N-def[symmetric] M-def[symmetric] by algebra
 also have ... \longleftrightarrow ?N + ?M = 0 \lor ?N - ?M = 0 by simp
 also have ?N + ?M = y^2 + a * y + b1
   by (simp add: b1)
 also have ?N - ?M = y^2 - a * y + b2
   by (simp \ add: \ b2)
 also have y^2 + a * y + b1 = 0 \longleftrightarrow poly [:b1,a,1:] y = 0
   by (simp add: powers)
 also have y^2 - a * y + b2 = 0 \longleftrightarrow poly [:b2, -a, 1:] y = 0
   by (simp add: powers)
 finally show ?thesis.
ged
```

2 Cardano's formula for solving cubic equations

```
theory Cardanos-Formula
imports
Polynomial-Factorization.Explicit-Roots
Polynomial-Interpolation.Ring-Hom-Poly
Complex-Geometry.More-Complex
Algebraic-Numbers.Complex-Roots-Real-Poly
begin
```

2.1 Translation to depressed case

Solving an arbitrary cubic equation can easily be turned into the depressed case, i.e., where there is no quadratic part.

```
lemma to-depressed-cubic: fixes a :: 'a :: field-char-0
 assumes a: a \neq 0
 and xy: x = y - b / (3 * a)
 and e: e = (c - b^2 / (3 * a)) / a
 and f: f = (d + 2 * b^3 / (27 * a^2) - b * c / (3 * a)) / a
shows (a * x ^3 + b * x^2 + c * x + d = 0) \longleftrightarrow y^3 + e * y + f = 0
proof -
 let ?yexp = y^3 + e * y + f
 have a * x^3 + b * x^2 + c * x + d = 0 \longleftrightarrow (a * x^3 + b * x^2 + c * x + d)
d) / a = 0
   using a by auto
 also have (a * x^3 + b * x^2 + c * x + d) / a = ?yexp unfolding xy e f
power3-eq-cube power2-eq-square using a
   by (simp add: field-simps)
 finally show ?thesis.
qed
```

2.2 Solving the depressed case in arbitrary fields

```
lemma cubic-depressed: fixes e: 'a:: field-char-0
assumes yz: e \neq 0 \Longrightarrow z^2 - y * z - e / 3 = 0
and u: e \neq 0 \Longrightarrow u = z^3
and v: v = -(e^3 / 27)
shows y^3 + e * y + f = 0 \longleftrightarrow (if e = 0 then y^3 = -f else u^2 + f * u + v = 0)
proof -
let ?yexp = y^3 + e * y + f
show ?thesis
proof (cases e = 0)
case False
note yz = yz[OF\ False]
from yz have eyz: e = 3 * (z^2 - y * z) by auto
```

```
from yz False have z0: z \neq 0 by auto have ?yexp = 0 \longleftrightarrow z^3 * ?yexp = 0 using z0 by simp also have z^3 * ?yexp = z^6 + f * z^3 - e^3/27 unfolding eyz by algebra also have \dots = u^2 + f * u + v unfolding u[OF\ False]\ v by algebra finally show ?thesis using False by auto next case True show ?thesis unfolding True by (auto, algebra) qed qed
```

2.3 Solving the depressed case for complex numbers

In the complex-numbers-case, the quadratic equation for u is always solvable, and the main challenge here is prove that it does not matter which solution of the quadratic equation is considered (this is the diff:False case in the proof below.)

```
lemma solve-cubic-depressed-Cardano-complex: fixes e :: complex
 assumes e\theta: e \neq \theta
 and v: v = -(e^3 / 27)
 and u: u^2 + f * u + v = 0
shows y^3 + e * y + f = 0 \longleftrightarrow (\exists z. z^3 = u \land y = z - e / (3 * z))
proof -
 from v \ e\theta have v\theta: v \neq \theta by auto
 from e0 have (if e = 0 then x else y) = y for x y :: bool by auto
 note main = cubic\text{-}depressed[OF - - v, unfolded this]
 show ?thesis (is ?l = ?r)
 proof
   assume ?r
   then obtain z where z: z^3 = u and y: y = z - e / (3 * z) by auto
   from u \ v\theta have u\theta: u \neq \theta by auto
   from z u\theta have z\theta: z \neq \theta by auto
   show ?l
   proof (subst main)
     show u^2 + f * u + v = 0 by fact
     show u = z^3 unfolding z by simp
     show z^2 - y * z - e / 3 = \theta unfolding y using z\theta
       by (auto simp: field-simps power2-eq-square)
   qed
 next
   assume ?l
   let ?yexp = y^3 + e * y + f
   have y\theta: ?yexp = \theta using \langle ?l \rangle by auto
   define p where p = [: -e/3, -y, 1:]
   have deg: degree p = 2 unfolding p-def by auto
   define z where z = hd (croots2 p)
   have z \in set\ (croots2\ p) unfolding croots2-def Let-def z-def by auto
   with croots2[OF deg] have pz: poly <math>p z = 0 by auto
```

```
from pz \ e\theta have z\theta: z \neq \theta unfolding p-def by auto
   from pz have yz: y * z = z * z - e / 3 unfolding p-def by (auto simp:
field-simps)
   from arg-cong[OF this, of \lambda x. x / z] z0 have y = z - e / (3 * z)
    by (auto simp: field-simps)
   have \exists u z. u^2 + f * u + v = 0 \land z^3 = u \land y = z - e / (3 * z)
   proof (intro exI conjI)
    show y = z - e / (3 * z) by fact
    from y\theta have \theta = ?yexp * z^3 by auto
    also have ... = (y * z)^3 + e * (y * z) * z^2 + f * z^3 by algebra
    also have ... = (z^3)^2 + f * (z^3) + v unfolding yz v by algebra
    finally show (z^3)^2 + f * (z^3) + v = 0 by simp
   qed simp
   then obtain uu z where
     *: uu^2 + f * uu + v = 0 z ^3 = uu y = z - e / (3 * z) by blast
      show ?r
   proof (cases uu = u)
    case True
    thus ?thesis using * by auto
   next
    case diff: False
    define p where p = [:v,f,1:]
    have p2: degree p = 2 unfolding p-def by auto
    have poly: poly p \ u = 0 \ poly \ p \ uu = 0 \ using \ u *(1) \ unfolding \ p-def
      by (auto simp: field-simps power2-eq-square)
    have u\theta: u \neq 0 uu \neq 0 using poly v\theta unfolding p-def by auto
     {
      from poly(1) have [:-u,1:] dvd p by (meson\ poly-eq-0-iff-dvd)
      then obtain q where pq: p = q * [:-u,1:] by auto
      from poly(2)[unfolded pq poly-mult] diff have poly q uu = 0 by auto
      hence [:-uu,1:] dvd q by (meson poly-eq-0-iff-dvd)
      then obtain q' where qq': q = q' * [:-uu,1:] by auto
      with pq have pq: p = q' * [:-uu,1:] * [:-u,1:] by auto
      from pq[unfolded p-def] have q': q' \neq 0 by auto
      from arg\text{-}cong[OF pq, of degree, unfolded <math>p2]
      have 2 = degree (q' * [:- uu, 1:] * [:- u, 1:]).
      also have \dots = degree \ q' + degree \ [:-uu, 1:] + degree \ [:-u, 1:]
        apply (subst degree-mult-eq)
        subgoal using q' by (metis mult-eq-0-iff pCons-eq-0-iff zero-neq-one)
        subgoal by force
        by (subst degree-mult-eq[OF q'], auto)
      also have ... = degree q' + 2 by simp
      finally have dq: degree q' = 0 by simp
      from dq obtain c where q': q' = [: c:] by (metis degree-eq-zeroE)
      from pq[unfolded \ q' \ p\text{-}def] have c = 1 by auto
      with q' have q' = 1 by simp
      with pq have [: -u, 1:] * [: -uu, 1:] = p by simp
    from this[unfolded p-def, simplified] have prod: uu * u = v by simp
```

```
hence uu: u = v / uu using u\theta by (simp \ add: field-simps) define zz where zz = -e / (3*z) show ?r using *(2-) uu unfolding v using u\theta by (intro \ exI[of - zz], auto \ simp: zz-def \ field-simps) qed qed
```

2.4 Solving the depressed case for real numbers

```
definition discriminant-cubic-depressed :: 'a :: comm-ring-1 \Rightarrow 'a \Rightarrow 'a where discriminant-cubic-depressed ef = -(4 * e^3 + 27 * f^2)
```

```
lemma discriminant-cubic-depressed: assumes [:-x,1:] * [:-y,1:] * [:-z,1:] = [:f,e,0,1:] shows discriminant-cubic-depressed e f = (x-y)^2 * (x-z)^2 * (y-z)^2 proof — from assms have f: f = -(z * (y * x)) and e: e = y * x - z * (-y - x) and z: z = -y - x by auto show ?thesis unfolding discriminant-cubic-depressed-def e f z by (simp add: power2-eq-square power3-eq-cube field-simps) qed
```

If the discriminant is negative, then there is exactly one real root

```
lemma solve-cubic-depressed-Cardano-real: fixes e f v u :: real
  defines y1 \equiv root \ 3 \ u - e \ / \ (3 * root \ 3 \ u)
   and \Delta \equiv discriminant-cubic-depressed e f
 assumes e\theta: e \neq \theta
 and v: v = -(e^{3} / 27)
 and u: u^2 + f * u + v = 0
shows y1^3 + e * y1 + f = 0
  \Delta \neq 0 \Longrightarrow y^3 + e * y + f = 0 \Longrightarrow y = y1
proof -
 let ?c = complex-of-real
 let ?y = ?c y
 let ?e = ?c e
 \mathbf{let} \ ?u = ?c \ u
 let ?v = ?c \ v
 let ?f = ?c f
  {
   \mathbf{fix} \ y :: real
   let ?y = ?c y
   have y^3 + e * y + f = 0 \longleftrightarrow ?c (y^3 + e * y + f) = ?c 0
     using of-real-eq-iff by blast
   also have ... \longleftrightarrow ?y^3 + ?e * ?y + ?f = 0 by simp
   also have ... \longleftrightarrow (\exists z. z^3 = ?u \land ?y = z - ?e / (3 * z))
   proof (rule solve-cubic-depressed-Cardano-complex)
     show ?e \neq \theta using e\theta by auto
     show ?v = -(?e ^3 / 27) unfolding v by simp
```

```
show ?u^2 + ?f * ?u + ?v = 0 using arg-cong[OF u, of ?c] by simp
   qed
   finally have y^3 + e * y + f = 0 \longleftrightarrow (\exists z. z^3 = ?u \land ?y = z - ?e / (3 * )
z)).
  } note pre = this
 show y1: y1^3 + e * y1 + f = 0 unfolding pre y1-def
   by (intro exI[of - ?c (root 3 u)], simp only: of-real-power[symmetric],
       simp del: of-real-power add: odd-real-root-pow)
  from u have \{z. \ poly \ [:v,f,1:] \ z = 0\} \neq \{\}
   by (auto simp add: field-simps power2-eq-square)
 hence set (rroots2 \ [:v,f,1:]) \neq \{\}
   by (subst\ rroots2[symmetric],\ auto)
 hence rroots2 [:v,f,1:] \neq [] by simp
 \mathbf{from} \ this [unfolded \ rroots2\text{-}def \ Let\text{-}def, \ simplified]
 have f^2 - 4 * v > 0
   by (auto split: if-splits simp: numeral-2-eq-2 field-simps power2-eq-square)
 hence delta-le-\theta: \Delta < \theta unfolding \Delta-def discriminant-cubic-depressed-def v by
auto
 assume Delta-non-\theta: \Delta \neq \theta
  with delta-le-0 have delta-neg: \Delta < 0 by simp
 let ?p = [:f,e,0,1:]
 have poly: poly ?p y = 0 \longleftrightarrow y^3 + e * y + f = 0 for y
   by (simp add: field-simps power2-eq-square power3-eq-cube)
  from y1 have poly ?p y1 = 0 unfolding poly.
  hence [:-y1,1:] dvd ?p using poly-eq-0-iff-dvd by blast
  then obtain q where pq: ?p = [:-y1,1:] * q by blast
  {
   fix y2
   assume poly ?p \ y2 = 0 \ y2 \neq y1
   from this [unfolded pq] poly-mult have poly q y2 = 0 by auto
   from this [unfolded poly-eq-0-iff-dvd] obtain r where qr: q = [:-y2,1:] * r  by
blast
     have r\theta: r \neq \theta using pq unfolding qr poly-mult by auto
     have \beta = degree ?p by simp
     also have \dots = 2 + degree \ r  unfolding pq \ qr
       apply (subst degree-mult-eq, force)
       subgoal using r\theta pq qr by force
       \mathbf{by}\ (\mathit{subst\ degree-mult-eq}[\mathit{OF-r0}],\ \mathit{auto})
     finally have degree r = 1 by simp
     from degree1-coeffs [OF this] obtain yy a where r: r = [:yy,a:] by metis
     define y\beta where y\beta = -yy
     with r have r: r = [:-y\beta,a:] by auto
     from pq[unfolded qr r] have a = 1 by auto
     with r have \exists y\beta. r = [:-y\beta,1:] by auto
   then obtain y\beta where r: r = [:-y\beta,1:] by auto
   have py: ?p = [:-y1,1:] * [:-y2,1:] * [:-y3,1:] unfolding pq qr r by algebra
```

```
from discriminant-cubic-depressed [OF this [symmetric], folded \Delta-def]
   have delta: \Delta = (y1 - y2)^2 * (y1 - y3)^2 * (y2 - y3)^2.
   have d\theta: \Delta \geq \theta unfolding delta by auto
   with delta-neg have False by auto
 with y1 show y^3 + e * y + f = 0 \Longrightarrow y = y1 unfolding poly by auto
qed
If the discriminant is non-negative, then all roots are real
lemma solve-cubic-depressed-Cardano-all-real-roots: fixes e \ f \ v :: real and y ::
complex
 defines \Delta \equiv discriminant-cubic-depressed e f
 assumes Delta: \Delta \geq 0
 and rt: y^3 + e * y + f = 0
shows y \in \mathbb{R}
proof -
 note \ powers = field-simps \ power3-eq-cube \ power2-eq-square
 let ?c = complex-of-real
 let ?e = ?c e
 let ?f = ?c f
 let ?cp = [:?f,?e,0,1:]
 let ?p = [:f,e,0,1:]
 from odd-degree-imp-real-root[of ?p] obtain x1 where poly ?p x1 = 0 by auto
 hence [:-x1,1:] dvd ?p using poly-eq-0-iff-dvd by blast
 then obtain q where pq: ?p = [:-x1,1:] * q by auto
 from arg-cong[OF pq, of degree]
 have 3 = degree([:-x1,1:] * q) by simp
 also have \dots = 1 + degree q
   by (subst degree-mult-eq, insert pq, auto)
 finally have dq: degree q = 2 by auto
 let ?cc = map\text{-poly }?c
 let ?q = ?cc q
 have cpq: ?cc ?p = ?cc [:-x1,1:] * ?q unfolding pq hom-distribs by simp
 let ?x1 = ?c \ x1
 have dq': degree ?q = 2 using dq by simp
 have \neg constant (poly ?q) using dq by (simp add: constant-degree)
 from fundamental-theorem-of-algebra [OF this] obtain x2 where x2: poly ?q x2
= 0 by blast
 have x2 \in \mathbb{R}
 proof (rule ccontr)
   assume x2r: x2 \notin \mathbb{R}
   define x3 where x3 = cnj x2
   from x2r have x23: x2 \neq x3 unfolding x3-def using Reals-cnj-iff by force
   have x3: poly ?q x3 = 0 unfolding x3-def
    by (rule complex-conjugate-root [OF - x2], auto)
   from x2[unfolded\ poly-eq-0-iff-dvd] obtain r where qr:\ ?q = [:-x2,1:]*r by
    from arg\text{-}cong[OF\ this[symmetric],\ of\ \lambda\ x.\ poly\ x\ x3,\ unfolded\ poly-mult\ x3
mult-eq-0-iff] x23
```

```
have x3: poly r x3 = 0 by auto
   from arg\text{-}cong[OF\ qr,\ of\ degree]
   have 2 = degree([:-x2,1:]*r) using dq' by simp
   also have \dots = 1 + degree \ r by (subst degree-mult-eq, insert pq qr, auto)
   finally have degree r = 1 by simp
   then obtain a b where r: r = [:a,b:] by (metis degree 1-coeffs)
   from cpq[unfolded\ qr\ r] have b1: b = 1 by simp
   with x3 r have a + x3 = 0 by simp
   hence a = -x3 by algebra
   with b1 r have r: r = [:-x3,1:] by auto
   have ?cc ?p = ?cc [:-x1,1:] * [:-x2,1:] * [:-x3,1:] unfolding cpq \ qr \ r by
   also have ?cc [:-x1,1:] = [:-?x1,1:] by simp
   also have ?cc ?p = ?cp by simp
   finally have id: [:-?x1,1:] * [:-x2,1:] * [:-x3,1:] = ?cp by simp
   define x23 where x23 = -4 * (Im x2)^2
   define x12c where x12c = ?x1 - x2
   define x12 where x12 = (Re \ x12c) ^2 + (Im \ x12c)^2
   have x23-\theta: x23 < \theta unfolding x23-def using x2r using complex-is-Real-iff
by force
   have Im \ x12c \neq 0 unfolding x12c-def using x2r using complex-is-Real-iff
\mathbf{by}\ force
   hence (Im \ x12c)^2 > 0 by simp
   hence x12: x12 > 0 unfolding x12-def using sum-power2-gt-zero-iff by auto
   from discriminant-cubic-depressed[OF id]
   have ?c \Delta = ((?x1 - x2)^2 * (?x1 - x3)^2) * (x2 - x3)^2
    unfolding \Delta-def discriminant-cubic-depressed-def by simp
   also have (x^2 - x^3)^2 = ?c \ x^2 \ unfolding \ x^3 - def \ x^2 - def \ by \ (simp \ add:
complex-eq-iff power2-eq-square)
   also have (?x1 - x2)^2 * (?x1 - x3)^2 = ((?x1 - x2) * (?x1 - x3))^2
    by (simp add: power2-eq-square)
   also have ?x1 - x3 = cnj (?x1 - x2) unfolding x3-def by simp
   also have (?x1 - x2) = x12c unfolding x12c-def ...
    also have x12c * cnj x12c = ?c x12 by (simp add: x12-def complex-eq-iff
power2-eq-square)
   finally have ?c \Delta = ?c (x12^2 * x23) by simp
   hence \Delta = x12^2 * x23 by (rule of-real-hom.injectivity)
   also have ... < \theta using x12 x23-0 by (meson mult-pos-neg zero-less-power)
   finally show False using Delta by simp
 qed
 with x2 obtain x2 where poly ?q (?c x2) = 0 unfolding Reals-def by auto
 hence x2: poly q x2 = 0 by simp
 from x2[unfolded\ poly-eq-0-iff-dvd] obtain r where qr:\ q=[:-x2,1:]*r by
auto
 from arg-cong[OF qr, of degree]
 have 2 = degree([:-x2,1:]*r) using dq' by simp
 also have \dots = 1 + degree \ r by (subst degree-mult-eq, insert pq qr, auto)
 finally have degree r = 1 by simp
 then obtain a b where r: r = [:a,b:] by (metis degree 1-coeffs)
```

```
from pq[unfolded\ qr\ r] have b1\colon b=1 by simp define x3 where x3=-a have r\colon r=[:-x3,1:] unfolding r\ b1\ x3-def by simp let ?pp=[:-x1,1:]*[:-x2,1:]*[:-x3,1:] have id\colon ?p=?pp unfolding pq\ qr\ r by linarith have True\longleftrightarrow y\,\,\widehat{}3+e*y+f=0 using rt by auto also have y\,\,\widehat{}3+e*y+f=poly\ (?cc\ ?p)\ y by (simp\ add\colon powers) also have \dots=poly\ (?cc\ ?pp)\ y unfolding id\ by\ simp also have ?cc\ ?pp=[:-?c\ x1,\ 1:]*[:-?c\ x2,\ 1:]*[:-?c\ x3,\ 1:] by simp also have poly\ \dots\ y=0\longleftrightarrow y=?c\ x1\lor y=?c\ x2\lor y=?c\ x3 unfolding poly-mult mult-eq-0-iff by auto finally show y\in\mathbb{R} by auto qed
```

3 *n*-th roots of complex numbers

```
\begin{tabular}{ll} \textbf{theory} & \textit{Complex-Roots} \\ \textbf{imports} \\ & \textit{Complex-Geometry}. \textit{More-Complex} \\ & \textit{Algebraic-Numbers}. \textit{Complex-Algebraic-Numbers} \\ & \textit{Factor-Algebraic-Polynomial}. \textit{Roots-via-IA} \\ & \textit{HOL-Library}. \textit{Product-Lexorder} \\ \textbf{begin} \\ \end{tabular}
```

3.1 An algorithm to compute all complex roots of (algebraic) complex numbers

```
definition all-croots :: nat \Rightarrow complex \Rightarrow complex \ list \ \mathbf{where}
  all-croots n = (if n = 0 then [] else
     if algebraic \ x \ then
       (let \ p = min-int-poly \ x;
         q = poly-nth-root \ n \ p;
         xs = complex-roots-of-int-poly q
         in filter (\lambda y. y^n = x) xs
     else (SOME ys. set ys = \{y. \ y \hat{n} = x\}))
lemma all-croots: assumes n\theta: n \neq 0 shows set (all-croots n x) = \{y, y \hat{n} = 0\}
proof (cases algebraic x)
  case True
  hence id: (if n = 0 then y else if algebraic x then z else u) = z
    for y z u :: complex list using n0 by auto
  define p where p = poly-nth-root n (min-int-poly x)
  {\bf show} \ ? the sis \ {\bf unfolding} \ Let \hbox{-} def \ p \hbox{-} def [symmetric] \ all \hbox{-} croots \hbox{-} def \ id
  proof (standard, force, standard, simp)
   \mathbf{fix} \ y
```

```
assume y: y \hat{n} = x
   have min-int-poly x represents x using True by auto
   from represents-nth-root[OF n0 y this]
   have p represents y unfolding p-def by auto
   thus y \in set (complex-roots-of-int-poly p)
     by (subst complex-roots-of-int-poly, auto)
 qed
next
 case False
 hence id: (if n = 0 then y else if algebraic x then z else u) = u
   for y z u :: complex list using n0 by auto
 show ?thesis unfolding Let-def all-croots-def id
   by (rule some I-ex, rule finite-list, insert n0, blast)
qed
TODO: One might change complex-roots-of-int-poly to complex-roots-of-int-poly3
in order to avoid an unnecessary factorization of an integer polynomial.
However, then this change already needs to be performed within the defini-
tion of all-croots.
lift-definition all-croots-part1:: nat \Rightarrow complex \Rightarrow complex \ genuine-roots-aux is
 \lambda n x. if n = 0 \lor x = 0 \lor \neg algebraic x then (1, [], 0, filter-fun-complex 1)
       else let p = min\text{-}int\text{-}poly x;
            q = poly-nth-root \ n \ p;
            zeros = complex-roots-of-int-poly q;
           r = Polynomial.monom 1 n - [:x:]
       in (r,zeros, n, filter-fun-complex r)
 subgoal for n x
 proof (cases n = 0 \lor x = 0 \lor \neg algebraic x)
   case True
   thus ?thesis by (simp add: filter-fun-complex)
 next
   hence *: algebraic x \ n \neq 0 \ x \neq 0 by auto
   {
     \mathbf{fix} \ z
     assume zn: z^n = x
     from *(1) have repr: min-int-poly x represents x by auto
     from represents-nth-root[OF *(2) zn repr]
     have poly-nth-root n (min-int-poly x) represents z.
   }
   moreover have card \{z. z \cap n = x\} = n
     by (rule\ card-nth-roots)\ (use*in\ auto)
   ultimately show ?thesis using *
   by (auto simp: Let-def complex-roots-of-int-poly filter-fun-complex poly-monom)
 qed
 done
\mathbf{lemma}\ \mathit{all-croots-code}[\mathit{code}] \colon
 all-croots n = (if n = 0 then [] else if x = 0 then [0]
```

```
else if algebraic x then genuine-roots-impl (all-croots-part1 n x)
     else Code.abort (STR "all-croots invoked on non-algebraic number") (\lambda -.
all-croots \ n \ x))
proof (cases n = \theta)
 case True
  thus ?thesis unfolding all-croots-def by simp
\mathbf{next}
  case n: False
 show ?thesis
 proof (cases x = \theta)
   \mathbf{case}\ x{:}\ False
   show ?thesis
   proof (cases algebraic x)
     {f case} False
     with n \times show? thesis by simp
   next
     case True
     define t where t = ?thesis
     have t \longleftrightarrow filter (\lambda y. \ y \cap n = x)
              (complex-roots-of-int-poly\ (poly-nth-root\ n\ (min-int-poly\ x)))
           = genuine-roots-impl (all-croots-part1 n x)
       unfolding t-def
       by (subst\ all\text{-}croots\text{-}def[of\ n\ x],\ unfold\ Let\text{-}def,\ insert\ n\ x\ True,\ auto)
     also have ... using n \times True unfolding genuine-roots-impl-def
       by (transfer, simp add: Let-def genuine-roots-def poly-monom)
     finally show ?thesis unfolding t-def by simp
   qed
  next
   case x: True
   have set (all\text{-}croots\ n\ \theta) = \{\theta\} unfolding all\text{-}croots[OF\ n] using n by simp
   moreover have distinct (all-croots n \theta) unfolding all-croots-def using n
     by (auto intro!: distinct-filter complex-roots-of-int-poly)
   ultimately have all-croots n \theta = [\theta]
       by (smt (verit, del-insts) distinct.simps(2) distinct-singleton insert-ident
list.set-cases\ list.set-intros(1)\ list.simps(15)\ mem-Collect-eq\ set-empty\ singleton-conv)
   moreover have ?thesis \longleftrightarrow all-croots n \ \theta = [\theta] using n \ x by simp
   ultimately show ?thesis by auto
 qed
qed
```

3.2 A definition of *the* complex root of a complex number

While the definition of the complex root is quite natural and easy, the main task is a criterion to determine which of all possible roots of a complex number is the chosen one.

```
definition croot :: nat \Rightarrow complex \Rightarrow complex where croot \ n \ x = (rcis \ (root \ n \ (cmod \ x)) \ (Arg \ x \ / \ of-nat \ n)) lemma croot-\theta[simp]: croot \ n \ \theta = \theta \ croot \ \theta \ x = \theta
```

```
unfolding croot-def by auto
lemma croot-power: assumes n: n \neq 0
 shows (croot n x) \hat{n} = x
 unfolding croot-def DeMoivre2
 by (subst real-root-pow-pos2, insert n, auto simp: rcis-cmod-Arg)
lemma Arg-of-real: Arg (of-real x) =
 (if \ x < 0 \ then \ pi \ else \ 0)
proof (cases x = \theta)
 {f case} False
 hence x < \theta \lor x > \theta by auto
 thus ?thesis by (intro cis-Arg-unique, auto
     simp: complex-sgn-def scaleR-complex.ctr complex-eq-iff)
qed (auto simp: Arq-def)
lemma Arg-rcis-cis[simp]: assumes x > \theta
 shows Arg(rcis\ x\ y) = Arg(cis\ y)
 using assms unfolding rcis-def by simp
lemma cis-Arg-1[simp]: cis(Arg 1) = 1
 using Arg-of-real[of 1] by simp
lemma cis-Arg-power[simp]: assumes x \neq 0
 shows cis(Arg(x \cap n)) = cis(Arg x * real n)
proof (induct n)
 case (Suc \ n)
 show ?case unfolding power.simps
 proof (subst cis-arg-mult)
   show cis(Arg x + Arg(x \cap n)) = cis(Arg x * real(Suc n))
     unfolding mult.commute[of Arg x] DeMoivre[symmetric]
     unfolding power.simps using Suc
     by (metis DeMoivre cis-mult mult.commute)
   show x * x ^n \neq 0 using assms by auto
 qed
qed simp
lemma Arg\text{-}croot[simp]: Arg (croot\ n\ x) = Arg\ x\ /\ real\ n
proof (cases n = 0 \lor x = 0)
 {f case}\ True
 thus ?thesis by (auto simp: Arg-def)
next
 case False
 hence n: n \neq 0 and x: x \neq 0 by auto
 let ?root = croot \ n \ x
 from n have n1: real n \ge 1 real n > 0 real n \ne 0 by auto
 have bounded: -pi < Arg x / real n \land Arg x / real n \le pi
 proof (cases Arg x < \theta)
```

```
case True
   \mathbf{from} \ \mathit{Arg-bounded}[\mathit{of} \ x] \ \mathbf{have} - \mathit{pi} < \mathit{Arg} \ \mathit{x} \ \mathbf{by} \ \mathit{auto}
   also have ... \le Arg x / real n using n1 True
     by (smt (verit) div-by-1 divide-minus-left frac-le)
   finally have one: -pi < Arg x / real n.
   have Arg x / real n \le 0 using True n1
     by (smt\ (verit)\ divide-less-0-iff)
   also have \dots \leq pi by simp
   finally show ?thesis using one by auto
  next
   case False
   hence ax: Arg x \ge 0 by auto
   have Arg x / real n \leq Arg x using n1 ax
     by (smt (verit) div-by-1 frac-le)
   also have \dots \leq pi using Arg-bounded[of x] by simp
   finally have one: Arg x / real n \leq pi.
   have -pi < \theta by simp
   also have \dots \leq Arg \ x \ / \ real \ n \ using \ ax \ n1 \ by \ simp
   finally show ?thesis using one by auto
  qed
 have Arg ?root = Arg (cis (Arg x / real n))
   unfolding croot-def using x n by simp
 also have \dots = Arg \ x \ / \ real \ n
   by (rule cis-Arg-unique, force, insert bounded, auto)
 finally show ?thesis.
qed
lemma cos-abs[simp]: cos\ (abs\ x :: real) = cos\ x
proof (cases x < \theta)
 {f case}\ {\it True}
 hence abs: abs \ x = -x \ by \ simp
 show ?thesis unfolding abs by simp
qed simp
lemma cos-mono-le: assumes abs x \leq pi
 and abs y < pi
\mathbf{shows}\ cos\ x \leq cos\ y \longleftrightarrow abs\ y \leq abs\ x
 have cos \ x \le cos \ y \longleftrightarrow cos \ (abs \ x) \le cos \ (abs \ y) by simp
 also have ... \longleftrightarrow abs \ y \le abs \ x
   by (subst cos-mono-le-eq, insert assms, auto)
 finally show ?thesis.
qed
lemma abs-add-2-mult-bound: fixes x :: 'a :: linordered-idom
 assumes xy: |x| \leq y
 shows |x| \leq |x + 2 * of\text{-}int i * y|
proof (cases i = 0)
 \mathbf{case}\ i:\ False
```

```
let ?oi = of\text{-}int :: int \Rightarrow 'a
 from xy have y: y \ge 0 by auto
 consider (pp) x \geq 0 i \geq 0
   |(nn)| x \leq 0 i \leq 0
   |(pn)| x \ge 0 i \le 0
   |(np)| x \leq 0 i \geq 0
   by linarith
 thus ?thesis
 proof cases
   case pp
   thus ?thesis using y by simp
 next
   case nn
   have x \geq x + 2 * ?oi i * y
    using nn y by (simp add: mult-nonneg-nonpos2)
   with nn show ?thesis by linarith
 \mathbf{next}
   case pn
   with i have 0 \le x i < 0 by auto
   define j where j = nat(-i) - 1
   define z where z = x - 2 * y
   define u where u = 2 * ?oi (nat j) * y
   have u: u \geq 0 unfolding u-def using y by auto
   have i: i = -int (Suc j)
     using \langle i < \theta \rangle unfolding j-def by simp
   have id: x + 2 * ?oi i * y = z - u
     unfolding i z-def u-def by (simp add: field-simps)
   have z: z \le 0 abs z \ge x using xy \ y \ pn(1)
     unfolding z-def by auto
   show ?thesis unfolding id using pn(1) z u by simp
 next
   case np
   with i have 0 \ge x i > 0 by auto
   define j where j = nat i - 1
   have i: i = int (Suc j)
    using \langle i > 0 \rangle unfolding j-def by simp
   define u where u = 2 * ?oi (nat j) * y
   have u: u \geq 0 unfolding u-def using y by auto
   define z where z = -x - 2 * y
   have id: x + 2 * ?oi i * y = -z + u
     unfolding i z-def u-def by (simp add: field-simps)
   have z: z \le 0 abs z \ge -x using xy \ y \ np(1)
     unfolding z-def by auto
   show ?thesis unfolding id using np(1) z u by simp
 qed
qed simp
lemma abs-eq-add-2-mult: fixes y :: 'a :: linordered-idom
 assumes abs-id: |x| = |x + 2 * of\text{-int } i * y|
```

```
and xy: -y < x x \le y
 and i: i \neq 0
shows x = y \land i = -1
proof -
 let ?oi = of\text{-}int :: int \Rightarrow 'a
 from xy have y: y > 0 by auto
 consider (pp) x \geq 0 i \geq 0
    (nn) x < 0 i \leq 0
    (pn) \ x \ge 0 \ i \le 0
   |(np)|x < 0|i \ge 0
   by linarith
 hence ?thesis \lor x = ?oi (-i) * y
 proof cases
   case pp
   thus ?thesis using y abs-id xy i by simp
 next
   case nn
   hence |x + 2 * ?oi i * y| =
     -(x + 2 * ?oi i * y)
    using y nn
     by (intro abs-of-nonpos add-nonpos-nonpos,
        force, simp, intro mult-nonneg-nonpos, auto)
   thus ?thesis using y abs-id xy i nn
     by auto
 next
   case pn
   with i have 0 \le x i < 0 by auto
   define j where j = nat(-i) - 1
   define z where z = x - 2 * y
   define u where u = 2 * ?oi (nat j) * y
   have u: u \geq 0 unfolding u-def using y by auto
   have i: i = -int (Suc j)
    using \langle i < \theta \rangle unfolding j-def by simp
   have id: x + 2 * ?oi i * y = z - u
     unfolding i z-def u-def by (simp add: field-simps)
   have z: z \le 0 abs z \ge x using xy \ pn(1)
     unfolding z-def by auto
   from abs-id[unfolded id] have z - u = -x
     using z u pn by auto
   from this[folded id] have x = of\text{-}int (-i) * y
     \mathbf{by} auto
   thus ?thesis by auto
 next
   case np
   with i have \theta \ge x i > \theta by auto
   define j where j = nat i - 1
   have i: i = int (Suc j)
     using \langle i > \theta \rangle unfolding j-def by simp
   define u where u = 2 * ?oi (nat j) * y
```

```
have u: u \geq 0 unfolding u-def using y by auto
   define z where z = -x - 2 * y
   have id: x + 2 * ?oi i * y = -z + u
     unfolding i z-def u-def by (simp add: field-simps)
   have z: z < \theta
     using xy \ y \ np(1) unfolding z-def by auto
   from abs-id[unfolded id] have -z + u = -x
     using u z np by auto
   from this[folded id] have x = of\text{-int } (-i) * y
     by auto
   thus ?thesis by auto
 qed
 thus ?thesis
 proof
   assume x = ?oi (-i) * y
   with xy i y
   show ?thesis
   \mathbf{by}\ (smt\ (verit,\ ccfv\text{-}SIG)\ less-le\ minus-less-iff\ mult-le-cancel-right2\ mult-minus1-right)
mult-minus-left mult-of-int-commute of-int-hom.hom-one of-int-le-1-iff of-int-minus)
 qed
qed
```

This is the core lemma. It tells us that *croot* will choose the principal root, i.e. the root with largest real part and if there are two roots with identical real part, then the largest imaginary part. This criterion will be crucial for implementing *croot*.

```
lemma croot-principal: assumes n: n \neq 0
 and y: y \cap n = x
 and neq: y \neq croot \ n \ x
shows Re y < Re \ (croot \ n \ x) \lor Re \ y = Re \ (croot \ n \ x) \land Im \ y < Im \ (croot \ n \ x)
proof (cases x = \theta)
 case True
 with neq y have False by auto
 thus ?thesis ..
next
 case x: False
 let ?root = croot n x
 from n have n1: real n \ge 1 real n > 0 real n \ne 0 by auto
  from x \ y \ n have y\theta \colon y \neq \theta by auto
  from croot\text{-}power[OF\ n,\ of\ x]\ y
 have id: ?root \widehat{n} = y \widehat{n} by simp
hence cmod (?root \widehat{n}) = cmod (y \widehat{n}) by simp
  hence norm-eq: cmod\ ?root = cmod\ y using n unfolding norm-power
   by (meson gr-zeroI norm-ge-zero power-eq-imp-eq-base)
  have cis\ (Arg\ y*real\ n) = cis\ (Arg\ (y\hat{n})) by (subst\ cis-Arg-power[OF\ y0],
simp)
 also have \dots = cis (Arg x) using y by simp
 finally have ciseq: cis(Arg\ y*real\ n)=cis(Arg\ x) by simp
 from cis-eq[OF\ ciseq] obtain i where
```

```
Arg \ y * real \ n - Arg \ x = 2 * real-of-int \ i * pi
 by auto
hence Arg \ y * real \ n = Arg \ x + 2 * real-of-int \ i * pi \ by \ auto
from arg\text{-}cong[OF this, of <math>\lambda x. x / real \ n] \ n1
have Argy: Arg y = Arg ?root + 2 * real-of-int i * pi / real n
 by (auto simp: field-simps)
have i\theta: i \neq \theta
proof
 assume i = 0
 hence Arg y = Arg ?root unfolding Argy by simp
 with norm-eq have ?root = y by (metis\ rcis-cmod-Arg)
 with neg show False by simp
qed
from y\theta have cy\theta: cmod\ y > \theta by auto
from Arg-bounded [of x] have abs-pi: abs (Arg x) \leq pi by auto
have Re \ y \le Re \ ?root \longleftrightarrow Re \ y \ / \ cmod \ y \le Re \ ?root \ / \ cmod \ y
 using cy\theta unfolding divide-le-cancel by simp
also have cosy: Re y / cmod y = cos (Arg y) unfolding cos-arg[OF y0] ...
also have cosrt: Re ?root / cmod y = cos (Arg ?root)
 unfolding norm-eq[symmetric] by (subst cos-arg, insert norm-eq cy\theta, auto)
also have cos(Arg\ y) \leq cos(Arg\ ?root) \longleftrightarrow abs(Arg\ ?root) \leq abs(Arg\ y)
 by (rule cos-mono-le, insert Arg-bounded[of y] Arg-bounded[of ?root], auto)
also have ... \longleftrightarrow abs (Arg ?root) * real n \le abs (Arg y) * real n
 unfolding mult-le-cancel-right using n1 by simp
also have ... \longleftrightarrow abs (Arg \ x) \le |Arg \ x + 2 * real \text{-} of \text{-} int \ i * pi|
 unfolding Argy using n1 by (simp add: field-simps)
also have ... using abs-pi
 by (rule abs-add-2-mult-bound)
finally have le: Re \ y \leq Re \ (croot \ n \ x).
show ?thesis
proof (cases Re \ y = Re \ (croot \ n \ x))
 case False
 with le show ?thesis by auto
next
 case True
 hence Re\ y\ /\ cmod\ y=Re\ ?root\ /\ cmod\ y\ by\ simp
 hence cos(Arg\ y) = cos(Arg\ ?root) unfolding cosy\ cosrt.
 hence cos(abs(Arg\ y)) = cos(abs(Arg\ ?root)) unfolding cos-abs.
 from cos-inj-pi[OF - - - - this]
 have abs (Arg y) = abs (Arg ?root)
   using Arg-bounded[of y] Arg-bounded[of ?root] by auto
 hence abs (Arg y) * real n = abs (Arg ?root) * real n by simp
 hence abs (Arg \ x) = |Arg \ x + 2 * real-of-int \ i * pi| unfolding Argy
   using n1 by (simp add: field-simps)
 from abs-eq-add-2-mult[OF this - - \langle i \neq 0 \rangle] Arg-bounded[of x]
 have Argx: Arg x = pi and i: i = -1 by auto
 have Argy: Arg y = -pi / real n
   unfolding Argy Arg-croot i Argx by simp
 have Im ?root > Im y \longleftrightarrow Im ?root / cmod ?root > Im y / cmod y
```

```
unfolding norm-eq using cy\theta
     by (meson divide-less-cancel divide-strict-right-mono)
   also have ... \longleftrightarrow sin (Arg ?root) > sin (Arg y)
     by (subst (12) sin-arg, insert y0 norm-eq, auto)
   also have ... \longleftrightarrow sin (-pi / real n) < sin (pi / real n)
     unfolding Argy Arg-croot Argx by simp
   also have ...
   proof -
     have sin (-pi / real n) < 0
          using n1 by (smt (verit) Arg-bounded Argy divide-neg-pos sin-gt-zero
sin-minus)
     also have \dots < sin (pi / real n)
       using n1 calculation by fastforce
     finally show ?thesis.
   qed
   finally show ?thesis using le by auto
 qed
qed
lemma croot-unique: assumes n: n \neq 0
 and y: y \cap n = x
 and y-max-Re-Im: \bigwedge z. z \cap n = x \Longrightarrow
     Re \ z < Re \ y \lor Re \ z = Re \ y \land Im \ z \le Im \ y
shows croot n x = y
proof (rule ccontr)
 assume croot n \ x \neq y
 from croot-principal[OF n y this[symmetric]]
 have Re \ y < Re \ (croot \ n \ x) \ \lor
   Re \ y = Re \ (croot \ n \ x) \land Im \ y < Im \ (croot \ n \ x).
 with y-max-Re-Im[OF\ croot-power[OF\ n]]
 show False by auto
lemma csqrt-is-croot-2: csqrt = croot 2
proof
 \mathbf{fix} \ x
 show csqrt x = croot 2 x
 proof (rule sym, rule croot-unique, force, force)
   let ?p = [:-x,0,1:]
   let ?cx = csqrt x
   have p: ?p = [:?cx,1:] * [:-?cx,1:]
     by (simp add: power2-eq-square[symmetric])
   assume y^2 = x
   hence True \longleftrightarrow poly ?p \ y = 0
     by (auto simp: power2-eq-square)
   also have \dots \longleftrightarrow y = -?cx \lor y = ?cx
     unfolding p poly-mult mult-eq-0-iff poly-root-factor by auto
   finally have y = -?cx \lor y = ?cx by simp
```

```
thus Re \ y < Re \ ?cx \lor Re \ y = Re \ ?cx \land Im \ y \le Im \ ?cx
   proof
     assume y: y = - ?cx
     show ?thesis
     proof (cases Re ?cx = 0)
       case False
       with csqrt-principal [of x] have Re ?cx > 0 by simp
       thus ?thesis unfolding y by simp
     next
       case True
       with csqrt-principal [of x] have Im ?cx \ge 0 by simp
       thus ?thesis unfolding y using True by auto
     qed
   qed auto
 qed
qed
lemma croot-via-root-selection: assumes roots: set ys = \{ y. \ y \hat{\ } n = x \}
 and n: n \neq 0
shows croot n \ x = arg\text{-}min\text{-}list \ (\lambda \ y. \ (-Re \ y, -Im \ y)) \ ys
  (is - arg-min-list ?f ys)
proof (rule\ croot\text{-}unique[OF\ n])
 let ?y = arg\text{-}min\text{-}list ?f ys
 have rt: croot n \ x \cap n = x \ using \ n \ by \ (rule \ croot-power)
 hence croot \ n \ x \in set \ ys \ unfolding \ roots \ by \ auto
 hence ys: ys \neq [] by auto
 from arg-min-list-in[OF this] have ?y \in set \ ys \ by \ auto
 from this[unfolded roots]
 show ?y \hat{n} = x by auto
 fix z
 assume z \hat{n} = x
 hence z: z \in set \ ys \ unfolding \ roots \ by \ auto
 from f-arg-min-list-f[OF\ ys,\ of\ ?f]\ z
 have ?f ?y \le ?f z by simp
 thus Re \ z < Re \ ?y \lor Re \ z = Re \ ?y \land Im \ z \le Im \ ?y by auto
qed
lemma croot-impl[code]: croot n = 0 then 0 else
  arg-min-list (\lambda y. (-Re y, -Im y)) (all-croots n x))
proof (cases n = \theta)
 case n\theta: False
 hence id: (if n = 0 then y else z) = z
   for y z u :: complex by auto
 show ?thesis unfolding id Let-def
   by (rule\ croot-via-root-selection[OF - n0],\ rule\ all-croots[OF\ n0])
qed auto
end
```

4 Algorithms to compute all complex and real roots of a cubic polynomial

```
theory Cubic-Polynomials
 imports
    Cardanos	ext{-}Formula
    Complex-Roots
begin
The real case where a result is only delivered if the discriminant is negative
definition solve-depressed-cubic-Cardano-real :: real \Rightarrow real \Rightarrow real option where
  solve-depressed-cubic-Cardano-real\ e\ f=(
    if e = 0 then Some (root 3 (-f)) else
    let v = -(e^3 / 27) in
    case rroots2 [:v,f,1:] of
      [u,-] \Rightarrow let \ rt = root \ 3 \ u \ in \ Some \ (rt - e / (3 * rt))
    | - \Rightarrow None \rangle
\mathbf{lemma}\ solve-depressed\text{-}cubic\text{-}Cardano\text{-}real\text{:}
  assumes solve-depressed-cubic-Cardano-real e f = Some y
  shows \{y. \ y^3 + e * y + f = 0\} = \{y\}
proof (cases e = \theta)
  case True
  have \{y.\ y^3 + e * y + f = 0\} = \{y.\ y^3 = -f\} unfolding True
   by (auto simp add: field-simps)
 also have \dots = \{root \ 3 \ (-f)\}
   \mathbf{using}\ odd\text{-}real\text{-}root\text{-}unique[of\ 3\ -\ -f]\ odd\text{-}real\text{-}root\text{-}pow[of\ 3]\ \mathbf{by}\ auto
 also have root 3(-f) = y using assms unfolding True solve-depressed-cubic-Cardano-real-def
   by auto
  finally show ?thesis.
next
  case False
  define v where v = -(e^3 / 27)
  note * = assms[unfolded solve-depressed-cubic-Cardano-real-def Let-def, folded]
v-def
  let ?rr = rroots2 [:v,f,1:]
  \mathbf{from} * \mathit{False} \ \mathbf{obtain} \ \mathit{u} \ \mathit{u}' \ \mathbf{where} \ \mathit{rr} : \ ?\mathit{rr} = [\mathit{u},\mathit{u}']
   by (cases ?rr; cases tl ?rr; cases tl (tl ?rr); auto split: if-splits)
  from *[unfolded rr list.simps] False
  have y: y = root \ 3 \ u - e \ / \ (3 * root \ 3 \ u) by auto
  have u \in set (rroots2 [:v,f,1:]) unfolding rr by auto
 also have set (rroots2 \ [:v,f,1:]) = \{u. \ poly \ [:v,f,1:] \ u = 0\}
   by (subst rroots2, auto)
 finally have u: u^2 + f * u + v = 0 by (simp add: field-simps power2-eq-square)
  note Cardano = solve-cubic-depressed-Cardano-real[OF False v-def u]
  have 2: 2 = Suc (Suc \ \theta) by simp
  from rr have \theta: f^2 - 4 * v \neq \theta unfolding rroots2-def Let-def
   by (auto split: if-splits simp: 2)
  hence \theta: discriminant-cubic-depressed e f \neq \theta
```

```
unfolding discriminant-cubic-depressed-def v-def by auto
 show ?thesis using Cardano(1) Cardano(2)[OF 0] unfolding y[symmetric] by
blast
qed
The complex case
definition solve-depressed-cubic-complex :: complex \Rightarrow complex \Rightarrow complex list
where
 solve-depressed-cubic-complex\ e\ f=(let
        ys = (if \ e = 0 \ then \ all\text{-}croots \ 3 \ (-f) \ else \ (let
      u = hd \ (croots2 \ [: -(e^3 / 27), f, 1:]);
      zs = all\text{-}croots \ 3 \ u
      in map (\lambda z. z - e / (3 * z)) zs)
     in remdups ys)
lemma solve-depressed-cubic-complex-code[code]:
 solve-depressed-cubic-complex\ e\ f=(let
        ys = (if \ e = 0 \ then \ all\text{-}croots \ 3 \ (-f) \ else \ (let
          f2 = f / 2;
          u = -f2 + csqrt (f2^2 + e^3 / 27);
          zs = all\text{-}croots \ 3 \ u
          in map (\lambda z. z - e / (3 * z)) zs)
     in remdups ys)
 unfolding solve-depressed-cubic-complex-def Let-def croots2-def
 by (simp\ add:\ numeral-2-eq-2)
lemma solve-depressed-cubic-complex: y \in set (solve-depressed-cubic-complex ef)
 \longleftrightarrow (y^3 + e * y + f = 0)
proof (cases e = \theta)
 {f case}\ True
 thus ?thesis by (simp add: solve-depressed-cubic-complex-def Let-def all-croots
eq-neg-iff-add-eq-0
next
 case e\theta: False
 hence id: (if e = 0 then x else y) = y for x y :: complex list by simp
 define v where v = -(e^3 / 27)
 define p where p = [:v, f, 1:]
 have p2: degree p = 2 unfolding p-def by auto
 let ?u = hd (croots2 p)
 define u where u = ?u
 have u \in set (croots2 p) unfolding croots2-def Let-def u-def by auto
 with croots2[OF p2] have poly p u = 0 by auto
 hence u: u^2 + f * u + v = \theta unfolding p-def
   by (simp add: field-simps power2-eq-square)
 note cube-roots = all-croots [of 3, simplified]
  show ?thesis unfolding solve-depressed-cubic-complex-def Let-def set-remdups
set-map id cube-roots
```

```
unfolding v-def[symmetric] p-def[symmetric] set-concat set-map u-def[symmetric] proof — have p: \{x.\ poly\ p\ x=0\}=\{u.\ u^2+f*u+v=0\} unfolding p-def by (auto simp: field-simps power2-eq-square) have cube: \bigcup (set 'all-croots 3 '\{x.\ poly\ p\ x=0\}) = \{z.\ \exists\ u.\ u^2+f*u+v=0\land z^3=u\} unfolding p by (auto simp: cube-roots) show (y\in(\lambda z.\ z-e\ /\ (3*z))\ `\{y.\ y^3=u\})=(y^3+e*y+f=0) using solve-cubic-depressed-Cardano-complex[OF e0\ v-def u] cube by blast qed qed
```

For the general real case, we first try Cardano with negative discrimiant and only if it is not applicable, then we go for the calculation using complex numbers. Note that for for non-negative delta no filter is required to identify the real roots from the list of complex roots, since in that case we already know that all roots are real.

```
definition solve-depressed-cubic-real :: real \Rightarrow real \Rightarrow real list where
  solve-depressed-cubic-real\ e\ f=(case\ solve-depressed-cubic-Cardano-real\ e\ f
     of Some y \Rightarrow [y]
      | None \Rightarrow map \ Re \ (solve-depressed-cubic-complex \ (of-real \ e) \ (of-real \ f)))
lemma solve-depressed-cubic-real-code[code]: solve-depressed-cubic-real e f =
  (if e = 0 then [root 3 (-f)] else
  let v = e^{3} / 27;
      f2 = f / 2;
      f2v = f2^2 + v in
   if f2v > 0 then
    let u = -f2 + sqrt f2v;
        rt = root 3 u
     in [rt - e / (3 * rt)]
  else
  let ce3 = of\text{-real } e / 3;
     u = - of-real f2 + csqrt (of-real f2v) in
  map \ Re \ (remdups \ (map \ (\lambda rt. \ rt - ce3 \ / \ rt) \ (all-croots \ 3 \ u))))
proof -
 have id: rroots2 [:v, f, 1:] = (let
    f2 = f / 2;
    bac = f2^2 - v in
    if \ bac = 0 \ then \ [-f2] \ else
    if bac < 0 then [ | else \ let \ e = sqrt \ bac \ in \ [-f2 + e, -f2 - e] ) for v
   unfolding rroots2-def Let-def numeral-2-eq-2 by auto
  define foo :: real \Rightarrow real \Rightarrow real option where
   foo f2v f2 = (case (if f2v = 0 then [-f2] else []) of [] \Rightarrow None | - \Rightarrow None)
   for f2v f2
 have solve-depressed-cubic-real e f = (if e = 0 then [root 3 (-f)] else
  let v = e^{3} / 27;
      f2 = f / 2;
```

```
f2v = f2^2 + v in
  if f2v > 0 then
    let u = -f2 + sqrt f2v;
       rt = root 3 u
     in [rt - e / (3 * rt)]
  else
  (case foo f2v f2 of
    None \Rightarrow let \ u = - \ cor \ f2 + \ csqrt \ (cor \ f2v) \ in
  map Re
   (remdups\ (map\ (\lambda z.\ z-cor\ e\ /\ (3*z))\ (all-croots\ 3\ u)))
  | Some y \Rightarrow [])
   unfolding solve-depressed-cubic-real-def solve-depressed-cubic-Cardano-real-def
     solve-depressed-cubic-complex-code
     Let-def id foo-def
   by (auto split: if-splits)
  also have id: foo f2v f2 = None
   for f2v f2 unfolding foo-def by auto
  ultimately show ?thesis by (auto simp: Let-def)
qed
lemma solve-depressed-cubic-real: y \in set (solve-depressed-cubic-real ef)
  \longleftrightarrow (y^3 + e * y + f = 0)
proof (cases solve-depressed-cubic-Cardano-real e f)
 case (Some \ x)
 show ?thesis unfolding solve-depressed-cubic-real-def Some option.simps
   using solve-depressed-cubic-Cardano-real[OF Some] by auto
next
  case None
 from this[unfolded solve-depressed-cubic-Cardano-real-def Let-def rroots2-def]
 have disc: 0 \leq discriminant-cubic-depressed of unfolding discriminant-cubic-depressed-def
   by (auto split: if-splits simp: numeral-2-eq-2)
 let ?c = complex-of-real
 let ?y = ?c y
 let ?e = ?c e
 let ?f = ?c f
 have sub: set (solve-depressed-cubic-complex ?e ?f) \subseteq \mathbb{R}
 proof
   \mathbf{fix} \ y
   assume y: y \in set (solve-depressed-cubic-complex ?e ?f)
   show y \in \mathbb{R}
   \textbf{by } (\textit{rule solve-cubic-depressed-Cardano-all-real-roots} | \textit{OF disc y} [\textit{unfolded solve-depressed-cubic-complex}]])
 qed
  have y^3 + e * y + f = 0 \longleftrightarrow (?c (y^3 + e * y + f) = ?c \ 0) unfolding
of-real-eq-iff by simp
 also have ... \longleftrightarrow ?y^3 + ?e * ?y + ?f = 0 by simp
 also have ... \longleftrightarrow ?y \in set (solve-depressed-cubic-complex ?e ?f)
   unfolding solve-depressed-cubic-complex ..
 also have \ldots \longleftrightarrow y \in Re 'set (solve-depressed-cubic-complex ?e ?f) using sub
```

```
by force
 finally show ?thesis unfolding solve-depressed-cubic-real-def None by auto
qed
Combining the various algorithms
lemma degree 3-coeffs: degree p = 3 \Longrightarrow
 \exists \ a \ b \ c \ d. \ p = [: d, c, b, a :] \land a \neq 0
 by (metis One-nat-def Suc-1 degree2-coeffs degree-pCons-eq-if nat.inject numeral-3-eq-3
pCons-cases zero-neq-numeral)
definition roots3-generic :: ('a :: field-char-0 \Rightarrow 'a \Rightarrow 'a list) \Rightarrow 'a poly \Rightarrow 'a list
where
  roots3-generic depressed-solver p = (let
    cs = coeffs p;
    a = cs ! 3; b = cs ! 2; c = cs ! 1; d = cs ! 0;
    a\beta = \beta * a;
    ba\beta = b / a\beta;
    b2 = b * b;
    b3 = b2 * b;
    e = (c - b2 / a3) / a;
    f = (d + 2 * b3 / (27 * a^2) - b * c / a3) / a;
    roots = depressed-solver e f
    in map (\lambda y. y - ba3) roots)
lemma roots3-generic: assumes deg: degree p = 3
 and solver: \bigwedge e f y. y \in set (depressed\text{-solver } e f) \longleftrightarrow y^3 + e * y + f = 0
 shows set (roots3-generic depressed-solver p) = \{x. poly p \mid x = 0\}
proof -
  note \ powers = field-simps \ power3-eq-cube \ power2-eq-square
 from degree3-coeffs[OF deg] obtain a b c d where
   p: p = [:d,c,b,a:] and a: a \neq 0 by auto
 have coeffs: coeffs p \mid 3 = a coeffs p \mid 2 = b coeffs p \mid 1 = c coeffs p \mid 0 = d
   unfolding p using a by auto
 define e where e = (c - b^2 / (3 * a)) / a
 define f where f = (d + 2 * b^3 / (27 * a^2) - b * c / (3 * a)) / a
 note def = roots3-generic-def[of depressed-solver p, unfolded Let-def coeffs,
     folded power3-eq-cube, folded power2-eq-square, folded e-def f-def]
   fix x :: 'a
   define y where y = x + b / (3 * a)
   have xy: x = y - b / (3 * a) unfolding y-def by auto
   have poly p \ x = 0 \longleftrightarrow a * x^3 + b * x^2 + c * x + d = 0 unfolding p
     by (simp add: powers)
   also have ... \longleftrightarrow (y \hat{\ } 3 + e * y + f = 0)
     unfolding to-depressed-cubic [OF a xy e-def f-def] ...
   also have ... \longleftrightarrow y \in set (depressed\text{-}solver \ e \ f)
     unfolding solver ...
   also have ... \longleftrightarrow x \in set \ (roots3\text{-}generic \ depressed\text{-}solver \ p) \ \mathbf{unfolding} \ xy \ def
by auto
```

```
finally have poly p \ x = 0 \longleftrightarrow x \in set \ (roots3-generic \ depressed-solver \ p) by
auto
 thus ?thesis by auto
ged
definition croots3 :: complex poly <math>\Rightarrow complex \ list \ \mathbf{where}
  croots3 = roots3-generic solve-depressed-cubic-complex
lemma croots3: assumes deg: degree p = 3
 shows set (croots3\ p) = \{x.\ poly\ p\ x = 0\}
 unfolding croots3-def by (rule roots3-generic[OF deg solve-depressed-cubic-complex])
definition rroots3 :: real poly \Rightarrow real list where
  rroots3 = roots3-generic solve-depressed-cubic-real
lemma rroots3: assumes deq: degree p = 3
 shows set (rroots3\ p) = \{x.\ poly\ p\ x = 0\}
 unfolding rroots3-def by (rule roots3-generic[OF deg solve-depressed-cubic-real])
end
5
      Algorithms to compute all complex and real roots
      of a quartic polynomial
theory Quartic-Polynomials
 imports
   Ferraris	ext{-}Formula
    Cubic-Polynomials
begin
The complex case is straight-forward
definition solve-depressed-quartic-complex :: complex \Rightarrow complex \Rightarrow complex \Rightarrow
complex list where
  solve-depressed-quartic-complex p \ q \ r = remdups (if q = 0 then
    (\mathit{concat}\ (\mathit{map}\ (\lambda\ \mathit{z}.\ \mathit{let}\ y = \mathit{csqrt}\ \mathit{z}\ \mathit{in}\ [\mathit{y}, -\mathit{y}])\ (\mathit{croots2}\ [:\mathit{r}, \mathit{p}, 1:])))\ \mathit{else}
    let cubics = croots3 [: -(q^2), 2 * p^2 - 8 * r, 8 * p, 8:];
        m = hd \ cubics; — select any root of the cubic polynomial
        a = csqrt (2 * m);
        p2m = p / 2 + m;
        q2a = q / (2 * a);
        b1\,=\,p2m\,-\,q2a;
        b2 = p2m + q2a
      in (croots2 [:b1,a,1:] @ croots2 [:b2,-a,1:]))
lemma solve-depressed-quartic-complex: x \in set (solve-depressed-quartic-complex
```

p q r

 $\longleftrightarrow (x^4 + p * x^2 + q * x + r = 0)$

```
proof -
  note powers = field-simps power4-eq-xxxx power3-eq-cube power2-eq-square
 show ?thesis
 proof (cases \ q = \theta)
   \mathbf{case} \ \mathit{True}
   have csqrt: z = x^2 \longleftrightarrow (x = csqrt \ z \lor x = -csqrt \ z) for z
     by (metis power2-csqrt power2-eq-iff)
   have (x \hat{\ } 4 + p * x^2 + q * x + r = 0) \longleftrightarrow (x \hat{\ } 4 + p * x^2 + r = 0)
     unfolding True by simp
     also have ... \longleftrightarrow (\exists z. z^2 + p * z + r = 0 \land z = x^2) unfolding bi-
quadratic-solution by simp
   also have ... \longleftrightarrow (\exists z. poly [:r,p,1:] z = 0 \land z = x^2)
     by (simp add: powers)
   also have ... \longleftrightarrow (\exists z \in set (croots2 [:r,p,1:]). z = x^2)
     by (subst croots2[symmetric], auto)
   also have ... \longleftrightarrow (\exists z \in set (croots2 [:r,p,1:]). x = csqrt z \lor x = - csqrt z)
     unfolding csqrt ..
   also have ... \longleftrightarrow (x \in set (solve-depressed-quartic-complex p q r))
    unfolding solve-depressed-quartic-complex-def id unfolding True Let-def by
auto
   finally show ?thesis ..
 \mathbf{next}
   case q\theta: False
   hence id: (if q = 0 then x else y) = y for x y :: complex list by auto
   {f note}\ powers = field\mbox{-}simps\ power4\mbox{-}eq\mbox{-}xxxx\ power3\mbox{-}eq\mbox{-}cube\ power2\mbox{-}eq\mbox{-}square
   let ?poly = [:-q^2, 2 * p^2 - 8 * r, 8 * p, 8:]
    from croots3[of ?poly] have croots: set (croots3 ?poly) = {x. poly ?poly x = }
\theta} by auto
   from fundamental-theorem-of-algebra-alt[of ?poly]
   have \{x. \ poly \ ?poly \ x = \theta\} \neq \{\} by auto
   with croots have croots3 ?poly \neq [] by auto
    then obtain m rest where rts: croots3 ?poly = m # rest by (cases croots3
?poly, auto)
   hence hd: hd (croots3 ?poly) = m by auto
   from croots[unfolded rts] have poly ?poly m = 0 by auto
   hence mrt: 8*m^3 + (8*p)*m^2 + (2*p^2 - 8*r)*m - q^2 = 0
     and m\theta: m \neq \theta using q\theta
     by (auto simp: powers)
   define b1 where b1 = p / 2 + m - q / (2 * csqrt (2 * m))
   define b2 where b2 = p / 2 + m + q / (2 * csqrt (2 * m))
   have csqrt: csqrt \ x * csqrt \ x = x \ \textbf{for} \ x \ \textbf{by} \ (metis \ power2-csqrt \ power2-eq-square)
  show ?thesis unfolding solve-depressed-quartic-complex-def id Let-def set-remdups
set-append hd
     unfolding b1-def[symmetric] b2-def[symmetric]
     apply (subst depressed-quartic-Ferrari[OF mrt q0 csqrt b1-def b2-def])
     apply (subst (1 2) croots2[symmetric], auto)
     done
 qed
qed
```

The main difference in the real case is that a specific cubic root has to be used, namely a positive one. In the soundness proof we show that such a cubic root always exists.

```
definition solve-depressed-quartic-real :: real \Rightarrow real \Rightarrow real \Rightarrow real list where
  solve-depressed-quartic-real p \ q \ r = remdups \ (if \ q = 0 \ then
    (concat \ (map \ (\lambda \ z. \ rroots2 \ [:-z,0,1:]) \ (rroots2 \ [:r,p,1:]))) \ else
    let cubics = rroots3 [: -(q^2), 2 * p^2 - 8 * r, 8 * p, 8:];
         m = the (find (\lambda m. m > 0) cubics); — select any positive root of the
cubic polynomial
        a = sqrt (2 * m);
        p2m = p / 2 + m;
        q2a = q / (2 * a);
        b1 = p2m - q2a;
        b2 = p2m + q2a
      in (rroots2 [:b1,a,1:] @ rroots2 [:b2,-a,1:]))
lemma solve-depressed-quartic-real: x \in set (solve-depressed-quartic-real p q r)
 \longleftrightarrow (x^4 + p * x^2 + q * x + r = 0)
proof -
 note powers = field-simps power4-eq-xxxx power3-eq-cube power2-eq-square
 show ?thesis
  proof (cases \ q = \theta)
   case True
   have sqrt: z = x^2 \longleftrightarrow (x \in set (rroots2 [:-z,0,1:])) for z
     by (subst rroots2[symmetric], auto simp: powers)
   have (x \hat{\ } 4 + p * x^2 + q * x + r = 0) \longleftrightarrow (x \hat{\ } 4 + p * x^2 + r = 0)
     unfolding True by simp
     also have ... \longleftrightarrow (\exists z. z^2 + p * z + r = 0 \land z = x^2) unfolding bi-
quadratic-solution by simp
   also have ... \longleftrightarrow (\exists z. poly [:r,p,1:] z = 0 \land z = x^2)
     by (simp add: powers)
   also have ... \longleftrightarrow (\exists z \in set (rroots2 [:r,p,1:]). z = x^2)
     by (subst rroots2[symmetric], auto)
   also have ... \longleftrightarrow (\exists z \in set (rroots2 [:r,p,1:]). x \in set (rroots2 [:-z,0,1:]))
     unfolding sqrt ..
   also have ... \longleftrightarrow (x \in set (solve-depressed-quartic-real p q r))
    unfolding solve-depressed-quartic-real-def id unfolding True Let-def by auto
   finally show ?thesis ..
  next
   case q\theta: False
   hence id: (if q = 0 then x else y) = y for x y :: real list by auto
   note powers = field-simps power4-eq-xxxx power3-eq-cube power2-eq-square
   let ?poly = [:-q^2, 2 * p^2 - 8 * r, 8 * p, 8:]
   define cubics where cubics = rroots3 ?poly
   from rroots3[of ?poly, folded cubics-def]
   have rroots: set \ cubics = \{x. \ poly \ ?poly \ x = 0\} by auto
   from odd-degree-imp-real-root[of ?poly]
   have \{x. \ poly \ ?poly \ x = \theta\} \neq \{\} by auto
```

```
with rroots have cubics \neq [] by auto
         have \exists m. m \in set \ cubics \land m > 0
         proof (rule ccontr)
               assume ¬ ?thesis
               from this [unfolded rroots] have rt: poly ?poly m = 0 \implies m \le 0 for m by
auto
               have poly ?poly \theta = -(q^2) by simp
               also have \dots < \theta using q\theta by auto
               finally have lt: poly ?poly 0 \le 0 by simp
              from poly-pinfty-gt-lc[of ?poly] obtain n\theta where \bigwedge n. n \ge n\theta \Longrightarrow 8 \le poly
 ?poly n by auto
               from this of max n\theta \theta have poly ?poly (max n\theta \theta) \ge \theta by auto
               from IVT[of\ poly\ ?poly,\ OF\ lt\ this] obtain m where m\geq \theta and poly:\ poly
 ?poly m = 0 by auto
               from rt[OF\ this(2)]\ this(1) have m=0 by auto
               thus False using poly q0 by simp
         qed
         hence find (\lambda m. m > 0) cubics \neq None unfolding find-None-iff by auto
         then obtain m where find: find (\lambda m. m > 0) cubics = Some m by auto
         from find-Some-D[OF this] have m: m \in set\ cubics\ and\ m \cdot \theta: m > \theta by auto
         with rroots have poly ?poly m = 0 by auto
         hence mrt: 8*m^3 + (8*p)*m^2 + (2*p^2 - 8*r)*m - q^2 = 0
               by (auto simp: powers)
         from m-0 have sqrt: sqrt(2*m)*sqrt(2*m) = 2*m by simp
         define b1 where b1 = p / 2 + m - q / (2 * sqrt (2 * m))
         define b2 where b2 = p / 2 + m + q / (2 * sqrt (2 * m))
         show ?thesis unfolding solve-depressed-quartic-real-def id Let-def set-remdups
set-append
                    cubics-def[symmetric] find option.sel
               unfolding b1-def[symmetric] b2-def[symmetric]
               apply (subst depressed-quartic-Ferrari[OF mrt q0 sqrt b1-def b2-def])
               apply (subst (1 2) rroots2[symmetric], auto)
               done
     qed
qed
Combining the various algorithms
lemma numeral-4-eq-4: 4 = Suc (Suc (Suc (Suc (Suc (O))))
    by (simp add: eval-nat-numeral)
lemma degree 4-coeffs: degree p = 4 \Longrightarrow
     \exists a \ b \ c \ d \ e. \ p = [: e, d, c, b, a :] \land a \neq 0
     using degree3-coeffs degree-pCons-eq-if nat.inject numeral-3-eq-3 numeral-4-eq-4
pCons-cases zero-neq-numeral
     by metis
\textbf{definition} \ \textit{roots4-generic} :: (\textit{'a} :: \textit{field-char-0} \ \Rightarrow \ \textit{'a} \ \Rightarrow \ \textit{'a} \ \textit{list}) \ \Rightarrow \ \textit{'a} \ \textit{poly} \ \Rightarrow \ \textit{'a} \ \textit{poly} \ \Rightarrow \ \textit{'a} \ \textit{boly} \ \Rightarrow \ \textit{'a} \ \texttt{boly} \ \Rightarrow \ \textit{'a} \ \texttt{boly} \ \Rightarrow \ \textit{'a} \ \texttt{boly} \ \Rightarrow \ \texttt{boly} \ 
'a list where
     roots4-generic depressed-solver p = (let
```

```
cs = coeffs p;
    cs = coeffs p;
    a4 = cs ! 4; a3 = cs ! 3; a2 = cs ! 2; a1 = cs ! 1; a0 = cs ! 0;
    b = a3 / a4;
    c = a2 / a4;
    d = a1 / a4;
    e = a0 / a4;
    b2 = b * b;
    b3 = b2 * b;
    b4 = b3 * b;
    b4' = b / 4;
    p = c - 3/8 * b2;
    q = (b3 - 4*b*c + 8*d) / 8;
    r = (-3 * b4 + 256 * e - 64 * b * d + 16 * b2 * c) / 256;
    roots = depressed-solver p \neq r
    in map (\lambda y. y - b4') roots)
lemma roots4-generic: assumes deg: degree p = 4
 and solver: \bigwedge p \ q \ r \ y. y \in set \ (depressed\text{-}solver \ p \ q \ r) \longleftrightarrow y^4 + p * y^2 + q
* y + r = 0
 shows set (roots4-generic depressed-solver p) = \{x. poly p | x = 0\}
proof -
 \mathbf{note}\ powers = field\text{-}simps\ power4\text{-}eq\text{-}xxxx\ power3\text{-}eq\text{-}cube\ power2\text{-}eq\text{-}square}
 from degree4-coeffs[OF deg] obtain a4 a3 a2 a1 a0 where
   p: p = [:a0, a1, a2, a3, a4:] and a4: a4 \neq 0 by auto
 have coeffs: coeffs p ! 4 = a4 coeffs p ! 3 = a3 coeffs p ! 2 = a2 coeffs p ! 1 = a4
a1 coeffs p ! 0 = a0
   unfolding p using a \not= b y auto
 define b where b = a3 / a4
 define c where c = a2 / a4
 define d where d = a1 / a4
 define e where e = a\theta / a4
 b-def c-def d-def e-def,
    folded power4-eq-xxxx, folded power3-eq-cube, folded power2-eq-square
 let ?p = p
 {
   \mathbf{fix} \ x
   define y where y = x + b / 4
   define p where p = c - (3/8) * b^2
   define q where q = (b^3 - 4*b*c + 8*d) / 8
   define r where r = (-3 * b^4 + 256 * e - 64 * b * d + 16 * b^2 * c) /
256
   \mathbf{note}\ def = def[folded\ p\text{-}def\ q\text{-}def\ r\text{-}def]
   have xy: x = y - b / 4 unfolding y-def by auto
   have poly ?p \ x = 0 \longleftrightarrow a4 * x^4 + a3 * x^3 + a2 * x^2 + a1 * x + a0 =
\theta unfolding p
    by (simp add: powers)
   also have ... \longleftrightarrow (y \ \hat{} \ 4 + p * y^2 + q * y + r = 0)
```

```
unfolding to-depressed-quartic[OF a4 b-def c-def d-def e-def p-def q-def r-def
xy] ..
   also have \ldots \longleftrightarrow y \in set \ (depressed\text{-}solver \ p \ q \ r)
     unfolding solver ...
    also have ... \longleftrightarrow x \in set \ (roots4\text{-}generic \ depressed\text{-}solver \ ?p) unfolding xy
def by auto
    finally have poly ?p \ x = 0 \longleftrightarrow x \in set \ (roots4-generic \ depressed-solver \ ?p)
  }
  thus ?thesis by simp
qed
definition croots4 :: complex poly \Rightarrow complex list where
  croots4 = roots4-generic solve-depressed-quartic-complex
lemma croots4: assumes deg: degree p = 4
 shows set (croots 4 p) = \{ x. poly p x = 0 \}
 unfolding croots4-def by (rule roots4-generic[OF deg solve-depressed-quartic-complex])
definition rroots4 :: real poly \Rightarrow real list where
  rroots4 = roots4-generic solve-depressed-quartic-real
lemma rroots4: assumes deg: degree p = 4
  shows set (rroots 4 p) = \{ x. poly p x = 0 \}
 \mathbf{unfolding}\ \mathit{rroots4-def}\ \mathbf{by}\ (\mathit{rule}\ \mathit{roots4-generic}[\mathit{OF}\ \mathit{deg}\ \mathit{solve-depressed-quartic-real}])
end
```

References

- [1] G. Cardano. Ars Magna, The Great Art or the Rules of Algebra. 1545. https://en.wikipedia.org/wiki/Ars_Magna_(Cardano_book).
- [2] R. Thiemann, A. Yamada, and S. Joosten. Algebraic numbers in Isabelle/HOL. *Archive of Formal Proofs*, Dec. 2015. https://isa-afp.org/entries/Algebraic_Numbers.html, Formal proof development.