Compositional properties of crypto-based
components

Maria Spichkova

March 19, 2025

Abstract

This paper presents an Isabelle/HOL [1] set of theories which allows
to specify crypto-based components and to verify their composition
properties wrt. cryptographic aspects. We introduce a formalisation
of the security property of data secrecy, the corresponding definitions
and proofs. A part of these definitions is based on [3].

Please note that here we import the Isabelle/HOL theory ListEx-
tras.thy, presented in [2].

Contents
1 Auxiliary data types

2 Correctness of the relations between sets of Input/Output
channels

3 Secrecy: Definitions and properties
4 Local Secrets of a component

5 Knowledge of Keys and Secrets

17

22

1 Auxiliary data types

theory Secrecy-types
imports Main
begin

— We assume disjoint sets: Data of data values,

— Secrets of unguessable values, Keys - set of cryptographic keys.

— Based on these sets, we specify the sets EncType of encryptors that may be
— used for encryption or decryption, and Expression of expression items.

— The specification (component) identifiers should be listed in the set specID,
— the channel indentifiers should be listed in the set chanID.

datatype Keys = CKey | CKeyP | SKey | SKeyP | genKey
datatype Secrets = secretD | N | NA

type-synonym Var = nat

type-synonym Data = nat

datatype KS = kKS Keys | sKS Secrets

datatype EncType = kEnc Keys | vEnc Var

datatype specID = sCompl | sComp2 | sComp3 | sComp/,
datatype FEzpression = kE Keys | sE Secrets | dE Data | idE specID
datatype chanID = chl | ch2 | ch3 | chy

primrec Ezpression2KSL:: Expression list = KS list
where
Ezpression2KSL || =[] |
Ezpression2KSL (z#txs) =
((case z of (kE m) = [kKS m]
| (sE m) = [sKS m]
| (dEm) = |
| (idE m) = []) @ Ezpression2KSL xs)

primrec KS2Fxpression:: KS = Expression
where
KS2Expression (kKS m) = (kE m) |
KS2Expression (sKS m) = (sE m)

end

2 Correctness of the relations between sets of In-
put/Output channels

theory inout
imports Secrecy-types
begin

consts
subcomponents :: specID = speclID set

— Mappings, defining sets of input, local, and output channels
— of a component
consts

ins :: specID = chanlD set

loc :: specID = chanlID set

out :: specID = chanlD set

— Predicate insuring the correct mapping from the component identifier
— to the set of input channels of a component
definition
inStream :: specID = chanlD set = bool
where
inStream Ty = (ins z = y)

— Predicate insuring the correct mapping from the component identifier
— to the set of local channels of a component
definition
locStream :: specID = chanlD set = bool
where
locStream z y = (loc x = y)

— Predicate insuring the correct mapping from the component identifier
— to the set of output channels of a component
definition
outStream :: specID = chanlID set = bool
where
outStream = y = (out x = y)

— Predicate insuring the correct relations between
— to the set of input, output and local channels of a component
definition
correctInOutLoc :: specID = bool
where
correctinOutLoc © =
(ins z) N (out) = {}
A (ins z) N (loc z) = {}
A (loc) N (out z) = {}

— Predicate insuring the correct relations between
— sets of input channels within a composed component
definition
correctCompositionIn :. specID = bool
where
correctCompositionln x =
(ins) = (U (ins © (subcomponents x)) — (loc z))
A (ins) N (U (out ¢ (subcomponents x))) = {}

— Predicate insuring the correct relations between

— sets of output channels within a composed component
definition

correctCompositionOut :: specID = bool
where

correctCompositionOut © =

(out x) = (U (out ‘ (subcomponents z))— (loc x))

A (out) N (U (ins ¢ (subcomponents z))) = {}

— Predicate insuring the correct relations between
— sets of local channels within a composed component
definition

correctCompositionLoc :: specID = bool
where

correctCompositionLoc x =

(loc) = | (ins (subcomponents x))

N (out ¢ (subcomponents x))

— If a component is an elementary one (has no subcomponents)
— its set of local channels should be empty
lemma subcomponents-loc:
assumes correctCompositionLoc x
and subcomponents x = {}
shows loc z = {}

(proof)

end

3 Secrecy: Definitions and properties

theory Secrecy
imports Secrecy-types inout ListExtras
begin

— Encryption, decryption, signature creation and signature verification functions
— For these functions we define only their signatures and general axioms,
— because in order to reason effectively, we view them as abstract functions and
— abstract from their implementation details
consts

Enc :: Keys = FExpression list = FExpression list

Decr :: Keys = FEzxpression list = Expression list

Sign :: Keys = FExpression list = Fxpression list

Ext :: Keys = Ezxpression list = FExpression list

— Axioms on relations between encription and decription keys
axiomatization
EncrDecrKeys :: Keys = Keys = bool
where
ExtSign:
EncrDecrKeys K1 K2 — (Ext K1 (Sign K2 F)) = E and

DecrEnc:
EncrDecrKeys K1 K2 — (Decr K2 (Enc K1 E))

E

— Set of private keys of a component

consts

specKeys :: speclD = Keys set

— Set of unguessable values used by a component
consts

specSecrets :: specID = Secrets set

— Join set of private keys and unguessable values used by a component
definition
specKeysSecrets :: specID = KS set
where
specKeysSecrets C =
{y. 3 z.y=(kKSz) A (€ (specKeys C))} U
{z. 3 s.2=(sKSs) A (s € (specSecrets C))}

— Predicate defining that a list of expression items does not contain
— any private key or unguessable value used by a component
definition
notSpecKeysSecretsFExpr :: specID = Ezxpression list = bool

where

notSpecKeysSecretsExpr P e =

(V z. (kE) mem e — (kKS z) ¢ specKeysSecrets P) A

(V y. (sE y) mem e — (sKS y) ¢ specKeysSecrets P)

— If a component is a composite one, the set of its private keys
— is a union of the subcomponents’ sets of the private keys
definition
correctCompositionKeys :: specID = bool
where
correctCompositionKeys x =
subcomponents ¢ # {} —
specKeys © = |J (specKeys ‘ (subcomponents x))

— If a component is a composite one, the set of its unguessable values
— is a union of the subcomponents’ sets of the unguessable values
definition
correctCompositionSecrets :: specID = bool
where
correctCompositionSecrets © =
subcomponents ¥ # {} —

specSecrets © = |J (specSecrets ¢

subcomponents x
b t

— If a component is a composite one, the set of its private keys and
— unguessable values is a union of the corresponding sets of its subcomponents
definition

correctCompositionKS :: specID = bool

where
correctCompositionKS x =
subcomponents x # {} —
specKeysSecrets x = | (specKeysSecrets ¢ (subcomponents t))

— Predicate defining set of correctness properties of the component’s
— interface and relations on its private keys and unguessable values
definition
correctComponentSecrecy :: specID = bool
where
correctComponentSecrecy © =
correctCompositionKS = A
correctCompositionSecrets x N\
correctCompositionKeys A
correctCompositionLoc x N
correctCompositionIn x N
correctCompositionOut N
correctInOutLoc x

— Predicate exprChannel I E defines whether the expression item E can be sent
via the channel I

consts

exprChannel :: chanlD = Fxpression = bool

— Predicate eoutM sP M E defines whether the component sP may eventually
— output an expression E if there exists a time interval t of
— an output channel which contains this expression E
definition
eout :: specID = Ezpression = bool
where
eout sP F =
3 (ch :: chanID). ((ch € (out sP)) A (exprChannel ch E))

— Predicate eout sP E defines whether the component sP may eventually
— output an expression E via subset of channels M,
— which is a subset of output channels of sP,
— and if there exists a time interval t of
— an output channel which contains this expression E
definition
eoutM :: specID =- chanlD set = Ezpression = bool
where
eoutM sP M F =
3 (ch :: chanID). ((ch € (out sP)) A (ch € M) A (exprChannel ch F))

— Predicate ineM sP M E defines whether a component sP may eventually
— get an expression E if there exists a time interval t of
— an input stream which contains this expression E
definition
ine :: specID = Ezxpression = bool

where
ine sP B =
3 (ch :: chanID). ((ch € (ins sP)) A (exprChannel ch E))

— Predicate ine sP E defines whether a component sP may eventually
— get an expression E via subset of channels M,
— which is a subset of input channels of sP,
— and if there exists a time interval t of
— an input stream which contains this expression E
definition
ineM :: specID = chanlD set = FEzxpression = bool
where
ineM sP M E =
3 (ch :: chanID). ((ch € (ins sP)) A (ch € M) A (exprChannel ch E))

— This predicate defines whether an input channel ch of a component sP
— is the only one input channel of this component
— via which it may eventually output an expression E
definition
out-exprChannelSingle :: specID = chanID = Ezxpression = bool
where
out-exprChannelSingle sP ch E =
(ch € (out sP)) A
(exprChannel ch E) A
(V (z :: chanID) (t :: nat). ((z € (out sP)) A (z # ch) — — exprChannel z E))

— This predicate yields true if only the channels from the set chSet,
— which is a subset of input channels of the component sP,
— may eventually output an expression E
definition
out-exprChannelSet :: specID = chanlD set = Ezxpression = bool
where
out-exprChannelSet sP chSet E =
((V (z ::chanID). ((z € chSet) — ((z € (out sP)) A (exprChannel z E))))
N
(V (z :: chanID). ((z ¢ chSet) A (z € (out sP)) — — exprChannel z E)))

— This redicate defines whether
— an input channel ch of a component sP is the only one input channel
— of this component via which it may eventually get an expression E
definition
ine-exprChannelSingle :: specID = chanlD = FExpression = bool
where
ine-exprChannelSingle sP ch E =
(ch € (ins sP)) A
(exprChannel ch E) A
(V (z :: chanID) (t :: nat). ((z € (ins sP)) A (z # ch) — — exprChannel z E))

— This predicate yields true if the component sP may eventually

— get an expression E only via the channels from the set chSet,

— which is a subset of input channels of sP

definition

ine-exprChannelSet :: specID = chanlD set = FExpression = bool

where

ine-exprChannelSet sP chSet F =
((V (z ::chanID). ((z € chSet) — ((z € (ins sP)) A (exprChannel z FE))))
N
(V (z :: chanID). ((z ¢ chSet) A (= € (ins sP)) — — exprChannel z E)))

— If a list of expression items does not contain any private key
— or unguessable value of a component P, then the first element
— of the list is neither a private key nor unguessable value of P
lemma notSpecKeysSecretsExpr-L1:
assumes notSpecKeysSecretsExpr P (a # 1)
shows notSpecKeysSecretsExpr P [a]
(proof)
lemma notSpecKeysSecretsExpr-L2:
assumes notSpecKeysSecretsExpr P (a # 1)
shows notSpecKeysSecretsExpr P |
(proof)
lemma correctCompositionIn-L1:
assumes subcomponents PQ = {P,Q}
and correctCompositionln PQ
and ch ¢ loc PQ
and ch € ins P
shows ch € ins PQ
(proof)
lemma correctCompositionIn-L2:
assumes subcomponents PQ = {P,Q}
and correctCompositionin PQ
and ch € ins PQ
shows (ch € ins P) V (ch € ins Q)
(proof)

lemma ineM-L1:
assumes ch € M

and ch € ins P

and exprChannel ch E
shows imeM PME

(proof)

lemma ineM-ine:
assumes neM PM E
shows ine P F

(proof)

lemma not-ine-ineM:
assumes — ine P F

shows - ineM PME
(proof)

lemma eoutM-eout:
assumes eoutM P M E
shows eout P E

(proof)

lemma not-eout-coutM:
assumes — eout P F
shows - eoutM PME

(proof)

lemma correctCompositionKeys-subcompl :
assumes correctCompositionKeys C

and z € subcomponents C

and zb € specKeys C
shows 3 z € subcomponents C. (zb € specKeys x)

(proof)

lemma correctCompositionSecrets-subcompl :
assumes correctCompositionSecrets C

and z € subcomponents C

and s € specSecrets C
shows 3 z € subcomponents C. (s € specSecrets)

(proof)

lemma correctCompositionKeys-subcomp2:
assumes correctCompositionKeys C

and zb € subcomponents C

and zc € specKeys xb
shows zc € specKeys C

(proof)

lemma correctCompositionSecrets-subcomp2:
assumes correctCompositionSecrets C

and zb € subcomponents C

and zc € specSecrets xb
shows xc € specSecrets C

(proof)

lemma correctCompKS-Keys:
assumes correctCompositionKS C
shows correctCompositionKeys C

(proof)

lemma correctCompKS-Secrets:
assumes correctCompositionKS C
shows correctCompositionSecrets C

(proof)

lemma correctCompKS-KeysSecrets:

assumes correctCompositionKeys C
and correctCompositionSecrets C

shows correctCompositionKS C

(proof)

lemma correctCompositionKS-subcompl :
assumes correctCompositionKS C
and hil:x € subcomponents C
and za € specKeys C
shows 3 y € subcomponents C. (za € specKeys y)

(proof)

lemma correctCompositionKS-subcomp2:
assumes correctCompositionKS C
and hl:x € subcomponents C
and za € specSecrets C
shows 3 y € subcomponents C. za € specSecrets y

(proof)

lemma correctCompositionKS-subcomp3:
assumes correctCompositionKS C

and z € subcomponents C

and za € specKeys x
shows za € specKeys C

(proof)

lemma correctCompositionKS-subcomp4
assumes correctCompositionKS C

and z € subcomponents C'

and za € specSecrets x
shows xa € specSecrets C

(proof)

lemma correctCompositionKS-PQ:
assumes subcomponents PQ = {P, Q}
and correctCompositionKS PQ
and ks € specKeysSecrets PQ
shows ks € specKeysSecrets P V ks € specKeysSecrets Q)

(proof)

lemma correctCompositionKS-neg1:
assumes subcomponents PQ = {P, Q}
and correctCompositionKS PQ
and ks ¢ specKeysSecrets P
and ks ¢ specKeysSecrets Q
shows ks ¢ specKeysSecrets PQ

10

(proof)

lemma correctCompositionKS-negP:

assumes subcomponents PQ = {P, Q}
and correctCompositionKS PQ
and ks ¢ specKeysSecrets PQ

shows ks ¢ specKeysSecrets P

(proof)

lemma correctCompositionKS-negQ:

assumes subcomponents PQ = {P, Q}
and correctCompositionKS PQ
and ks ¢ specKeysSecrets PQ

shows ks ¢ specKeysSecrets @

(proof)

lemma out-exprChannelSingle-Set:
assumes out-exprChannelSingle P ch E
shows out-exprChannelSet P {ch} F

(proof)

lemma out-exprChannelSet-Single:
assumes out-exprChannelSet P {ch} E
shows out-exprChannelSingle P ch E

(proof)

lemma ine-exprChannelSingle-Set:
assumes ine-exprChannelSingle P ch E
shows ine-exprChannelSet P {ch} E

(proof)

lemma ine-exprChannelSet-Single:
assumes ine-exprChannelSet P {ch} E
shows ine-exprChannelSingle P ch E

(proof)

lemma ine-ins-negl:
assumes — ine P m

and exprChannel x m
shows z ¢ ins P

(proof)

theorem TBtheoremla:
assumes ine PQ FE
and subcomponents PQ = {P,Q}
and correctCompositionIn PQ
shows ine P E V ine Q E

(proof)

11

theorem TBtheorem1b:
assumes ineM PQ M E
and subcomponents PQ = {P,Q}
and correctCompositionIn PQ
shows ineM PMFE V ineM Q M E

(proof)

theorem TBtheorem2a:
assumes eout PQ E
and subcomponents PQ = {P,Q}
and correctCompositionOut PQ
shows eout P E V eout Q E

(proof)

theorem TBtheorem2b:
assumes eoutM PQ M E
and subcomponents PQ = {P,Q}
and correctCompositionOut PQ
shows eoutM P M E V eoutM Q M E

(proof)

lemma correctCompositionIn-propl:

assumes subcomponents PQ = {P,Q}
and correctCompositionln PQ
and z € (ins PQ)

shows (z € (ins P)) V (z € (ins Q))

{proof)

lemma correctCompositionOut-prop1 :

assumes subcomponents PQ = {P,Q}
and correctCompositionOut PQ
and z € (out PQ)

shows (z € (out P)) V (z € (out Q))

(proof)

theorem T'Btheorem3a:
assumes — (ine P E)
and - (ine Q E)
and subcomponents PQ = {P,Q}
and correctCompositionln PQ
shows - (ine PQ E)
{proof)

theorem TBlemmaS3b:

assumes hl:— (ineM P M F)
and h2:— (ineM Q M E)
and subPQ:subcomponents PQ = {P,Q}
and cCompl:correctCompositionin PQ
and chM:ch € M

12

and chPQ:ch € ins PQ
and eCh:exprChannel ch E
shows Fulse

(proof)

theorem TBtheorem3b:
assumes — (ineM P M E)
and - (ineM Q M E)
and subcomponents PQ = {P,Q}
and correctCompositionin PQ
shows - (ineM PQ M E)
(proof)

theorem TBtheorem4a-empty:

assumes (ine P E) V (ine Q E)
and subcomponents PQ = {P,Q}
and correctCompositionIn PQ
and loc PQ = {}

shows ine PQ F

(proof)

theorem TBtheoremja-P:
assumes ine P E

and subcomponents PQ = {P,Q}

and correctCompositionIn PQ

and 3 ch. (ch € (ins P) A exprChannel ch E N ch ¢ (loc PQ))
shows ine PQ F

(proof)

theorem TBtheorem4b-P:
assumes ineM P M E
and subcomponents PQ = {P,Q}
and correctCompositionIn PQ
and 3 ch. ((ch € (ins Q)) A (exprChannel ch E) A
(ch & (loc PQ)) N (ch € M))
shows ineM PQ M FE

(proof)

theorem TBtheoremia-PQ:
assumes (ine P E) V (ine Q E)
and subcomponents PQ = {P,Q}
and correctCompositionin PQ
and 3 ch. (((ch € (ins P)) V (ch € (ins @))) A
(exprChannel ch E) A (ch ¢ (loc PQ)))
shows ine PQ F

(proof)

theorem TBtheorem4b-PQ:
assumes (ineM P M E) V (ineM Q M E)

13

and subcomponents PQ = {P,Q}
and correctCompositionln PQ
and 3 ch. (((ch € (ins P)) V (ch € (ins Q))) A
(ch € M) A (exprChannel ch E) N (ch ¢ (loc PQ)))
shows ineM PQ M E

(proof)

theorem TBtheorem4a-notP1:
assumes ine P F

and - ine Q F

and subcomponents PQ = {P,Q}

and correctCompositionIn PQ

and 3 ch. ((ine-exprChannelSingle P ch E) A (ch € (loc PQ)))
shows - ine PQ F

(proof)

theorem TBtheorem4b-notP1:
assumes ineM P M E
and - ineM Q M E
and subcomponents PQ = {P,Q}
and correctCompositionin PQ
and 3 ch. ((ine-exprChannelSingle P ch E) A (ch € M)
A (ch € (loc PQ)))
shows — ineM PQ M E

(proof)

theorem TBtheorem4a-notP2:
assumes — ine Q F

and subcomponents PQ = {P,Q}

and correctCompositionIn PQ

and ine-exprChannelSet P ChSet E

and V (z ::chanID). ((z € ChSet) — (z € (loc PQ)))
shows —ine PQ FE

(proof)

theorem TBtheorem4b-notP2:
assumes - ineM Q M E

and subcomponents PQ = {P,Q}

and correctCompositionIn PQ

and ine-exprChannelSet P ChSet E

and V (z ::chanID). ((z € ChSet) — (z € (loc PQ)))
shows - ineM PQ M E

(proof)

theorem TBtheoremja-notPQ:

assumes subcomponents PQ = {P,Q}
and correctCompositionin PQ
and ine-exprChannelSet P ChSetP E
and ine-exprChannelSet @) ChSetQ E

14

and V (z ::chanID). ((z € ChSetP) — (z € (loc PQ)))
and V (z ::chanID). ((z € ChSetQ) — (z € (loc PQ)))
shows - ine PQ F

(proof)

lemma ineM-Unl:
assumes ineM P A E
shows ineM P (A Un B) E

(proof)

theorem TBtheorem4b-notPQ:
assumes subcomponents PQ = {P,Q}
and correctCompositionln PQ
and ine-exprChannelSet P ChSetP E
and ine-exprChannelSet) ChSetQ) E
and V (z ::chanID). ((z € ChSetP) — (z € (loc PQ)))
and V (z ::chanID). ((z € ChSetQ) — (z € (loc PQ)))
shows - ineM PQ M E

(proof)

lemma ine-nonempty-exprChannelSet:

assumes ine-exprChannelSet P ChSet E
and ChSet # {}

shows ine P E

(proof)

lemma ine-empty-exprChannelSet:

assumes ine-exprChannelSet P ChSet E
and ChSet = {}

shows —ine P FE

{(proof)

theorem TBtheoremba-empty:

assumes (eout P E) V (eout Q E)
and subcomponents PQ = {P,Q}
and correctCompositionOut PQ
and loc PQ = {}

shows eout PQ FE

(proof)

theorem TBtheorem4ba-P:
assumes eout P E
and subcomponents PQ = {P,Q}
and correctCompositionOut PQ
and 3 ch. ((ch € (out P)) A (exprChannel ch E) A

(ch & (loc PQ)))
shows eout PQ F

(proof)

15

theorem TBtheore54b-P:
assumes eoutM P M E
and subcomponents PQ = {P,Q}
and correctCompositionOut PQ
and 3 ch. ((ch € (out Q)) A (exprChannel ch E) A
(ch ¢ (loc PQ)) A (ch € M))
shows eoutM PQ M E

(proof)

theorem TBtheoremba-PQ:
assumes (eout P E) V (eout Q E)
and subcomponents PQ = {P,Q}
and correctCompositionOut PQ
and 3 ch. (((ch € (out P)) V (ch € (out Q))) A
(exprChannel ch E) A (ch ¢ (loc PQ)))
shows eout PQ FE

(proof)

theorem TBtheorem5b-PQ:
assumes (eoutM P M E) V (eoutM Q M E)
and subcomponents PQ = {P,Q}
and correctCompositionOut PQ
and 3 ch. (((ch € (out P)) V (ch € (out Q))) A (ch € M)
A (exprChannel ch E) A (ch ¢ (loc PQ)))
shows eoutM PQ M E

(proof)

theorem TBtheoremba-notP1:
assumes cout P F

and - eout Q F

and subcomponents PQ = {P,Q}

and correctCompositionOut PQ

and 3 ch. ((out-exprChannelSingle P ch E) A (ch € (loc PQ)))
shows — eout PQ FE

(proof)

theorem TBtheorembb-notP1:
assumes eoutM P M E
and — eoutM Q M FE
and subcomponents PQ = {P,Q}
and correctCompositionOut PQ
and 3 ch. ((out-exprChannelSingle P ch E) A (ch € M)
A (ch € (loc PQ)))
shows — eoutM PQ M E

(proof)

theorem TBtheoremba-notP2:
assumes — eout Q F
and subcomponents PQ = {P,Q}

16

and correctCompositionOut PQ

and out-exprChannelSet P ChSet E

and V (z ::chanID). ((x € ChSet) — (z € (loc PQ)))
shows — eout PQ F

(proof)

theorem TBtheorem5b-notP2:
assumes - eoutM Q M E

and subcomponents PQ = {P,Q}

and correctCompositionOut PQ

and out-exprChannelSet P ChSet E

and YV (z ::chanID). ((z € ChSet) — (z € (loc PQ)))
shows — eoutM PQ M E

(proof)

theorem TBtheoremba-notPQ:
assumes subcomponents PQ = {P,Q}
and correctCompositionOut PQ
and out-exprChannelSet P ChSetP E
and out-exprChannelSet @ ChSetQ E
and Y (z ::chanID). ((z € ChSetP) — (z € (loc PQ)))
and V (z ::chanID). ((z € ChSetQ) — (z € (loc PQ)))
shows — eout PQ FE

(proof)

theorem TBtheoremb5b-notPQ:
assumes subcomponents PQ = {P,Q}
and correctCompositionOut PQ
and out-exprChannelSet P ChSetP E
and out-exprChannelSet) ChSetQ E
and M = ChSetP U ChSet(Q)
and V (z ::chanID). ((z € ChSetP) — (z € (loc PQ)))
and V (z ::chanID). ((z € ChSetQ) — (z € (loc PQ)))
shows — eoutM PQ M F

(proof)

end

4 Local Secrets of a component

theory CompLocalSecrets
imports Secrecy
begin

— Set of local secrets: the set of secrets which does not belong to
— the set of private keys and unguessable values, but are transmitted
— via local channels or belongs to the local secrets of its subcomponents
axiomatization

LocalSecrets :: specID = KS set

17

where
LocalSecretsDef:
LocalSecrets A =
{(m :: KS). m ¢ specKeysSecrets A N
(3 zy. (z €loc A) N m = (kKS y) A (exprChannel z (kE y))))
[(3 z 2z ((z €loc A) AN m = (sKS z) A (exprChannel z (sE z)))))}
U (U (LocalSecrets ¢ (subcomponents A)))

lemma LocalSecrets Compositionl:
assumes Is € LocalSecrets P

and subcomponents PQ = {P, Q}
shows s € LocalSecrets PQ)

(proof)

lemma LocalSecretsComposition-exprChannel-k:
assumes exprChannel x (kE Keys)

and — ine P (kE Keys)

and — ine Q (kE Keys)

and - (z ¢ ins P Az ¢ ins Q)
shows Fulse

(proof)

lemma LocalSecretsComposition-exprChannel-s:
assumes exprChannel © (sE Secrets)
and — ine P (sE Secrets)
and — ine Q (sE Secrets)
and - (z ¢ ins P Az ¢ ins Q)
shows Fulse
(proof)

lemma LocalSecretsComposition-negl-k:
assumes subcomponents PQ = {P, Q}
and correctCompositionLoc PQ
and — ine P (kE Keys)
and — ine Q (kE Keys)
and kKS Keys ¢ LocalSecrets P
and kKS Keys ¢ LocalSecrets @
shows kKS Keys ¢ LocalSecrets PQ

(proof)

lemma LocalSecretsComposition-neg-k:
assumes subcomponents PQ = {P,Q}
and correctCompositionLoc PQ
and correctCompositionKS PQ
and (kKS m) ¢ specKeysSecrets P
and (kKS m) ¢ specKeysSecrets Q
and — ine P (kE m)
and - ine Q (kE m)
and (kKS m) ¢ ((LocalSecrets P) U (LocalSecrets Q))

18

shows (kKS m) ¢ (LocalSecrets PQ)
(proof)

lemma LocalSecretsComposition-neg-s:
assumes subPQ:subcomponents PQ = {P,Q}

and cCompLoc:correctCompositionLoc PQ

and cCompKS:correctCompositionKS PQ

and notKSP:(sKS m) ¢ specKeysSecrets P

and notKSQ:(sKS m) ¢ specKeysSecrets @

and — ine P (sE m)

and — ine Q (sE m)

and notLocSeqPQ:(sKS m) ¢ ((LocalSecrets P) U (LocalSecrets Q))
shows (sKS m) ¢ (LocalSecrets PQ)

(proof)

lemma LocalSecretsComposition-neg:
assumes subcomponents PQ = {P,Q}
and correctCompositionLoc PQ
and correctCompositionKS PQ
and ks ¢ specKeysSecrets P
and ks ¢ specKeysSecrets Q
and h1:V m. ks = kKS m — (= ine P (kE m) A = ine Q (kE m))
and h2:Y m. ks = sKS m — (= ine P (sE m) A = ine Q (sE m))
and ks ¢ ((LocalSecrets P) U (LocalSecrets Q))
shows ks ¢ (LocalSecrets PQ)

(proof)

lemma LocalSecretsComposition-negl-s:
assumes subcomponents PQ = {P, Q}
and correctCompositionLoc PQ
and — ine P (sE s)
and — ine Q (sE s)
and sKS s ¢ LocalSecrets P
and sKS s ¢ LocalSecrets Q)
shows sKS s ¢ LocalSecrets PQ

(proof)

lemma LocalSecretsComposition-neg! :

assumes subcomponents PQ = {P, Q}
and correctCompositionLoc PQ
and hi1:V m. ks = kKS m — (= ine P (kE m) A = ine Q (kE m))
and h2:Y m. ks = sKS m — (= ine P (sE m) A = ine Q (sE m))
and ks ¢ LocalSecrets P
and ks ¢ LocalSecrets Q

shows ks ¢ LocalSecrets PQ

(proof)

lemma LocalSecretsComposition-inel-k:
assumes kKS k € LocalSecrets PQ

19

and subcomponents PQ = {P, Q}

and correctCompositionLoc PQ

and — ine Q (kE k)

and kKS k ¢ LocalSecrets P

and kKS k ¢ LocalSecrets @
shows ine P (kE k)

(proof)

lemma LocalSecretsComposition-inel-s:
assumes sKS s € LocalSecrets PQ
and subcomponents PQ = {P, Q}
and correctCompositionLoc PQ
and — ine @ (sE s)
and sKS s ¢ LocalSecrets P
and sKS s ¢ LocalSecrets @
shows ine P (sE s)

(proof)

lemma LocalSecretsComposition-ine2-k:
assumes kKS k € LocalSecrets PQ)
and subcomponents PQ = {P, Q}
and correctCompositionLoc PQ
and — ine P (kE k)
and kKS k ¢ LocalSecrets P
and kKS k ¢ LocalSecrets @
shows ine Q (kE k)

(proof)

lemma LocalSecretsComposition-ine2-s:
assumes sKS s € LocalSecrets PQ
and subcomponents PQ = {P, Q}
and correctCompositionLoc PQ
and — ine P (sE s)
and sKS s ¢ LocalSecrets P
and sKS s ¢ LocalSecrets @
shows ine Q (sE s)

(proof)

lemma LocalSecretsComposition-neg-loc-k:
assumes kKS key ¢ LocalSecrets P

and ezprChannel ch (kE key)

and kKS key ¢ specKeysSecrets P
shows c¢ch ¢ loc P

(proof)

lemma LocalSecretsComposition-neg-loc-s:

assumes sKS secret ¢ LocalSecrets P
and exprChannel ch (sE secret)
and sKS secret ¢ specKeysSecrets P

20

shows c¢h ¢ loc P
(proof)

lemma correctCompositionKS-exprChannel-k-P:
assumes subcomponents PQ = {P,Q}

and correctCompositionKS PQ)

and kKS key ¢ LocalSecrets PQ

and ch € ins P

and ezprChannel ch (kE key)

and kKS key ¢ specKeysSecrets PQ

and correctCompositionin PQ
shows ch € ins PQ A exprChannel ch (kE key)

(proof)

lemma correctCompositionKS-exprChannel-k-Pex:
assumes subcomponents PQ = {P,Q}

and correctCompositionKS PQ

and kKS key ¢ LocalSecrets PQ

and ch € ins P

and ezprChannel ch (kE key)

and kKS key ¢ specKeysSecrets PQ

and correctCompositionIn PQ
shows I ch. ch € ins PQ A exprChannel ch (kE key)

(proof)

lemma correctCompositionKS-exprChannel-k-Q:
assumes subcomponents PQ = {P,Q}

and correctCompositionKS PQ

and kKS key ¢ LocalSecrets PQ

and ch € ins @

and hi1:exprChannel ch (kE key)

and kKS key ¢ specKeysSecrets PQ

and correctCompositionIn PQ
shows ch € ins PQ A exprChannel ch (kE key)

(proof)

lemma correctCompositionKS-exprChannel-k-Qex:
assumes subcomponents PQ = {P,Q}

and correctCompositionKS PQ

and kKS key ¢ LocalSecrets PQ)

and ch € ins @

and ezprChannel ch (kE key)

and kKS key ¢ specKeysSecrets PQ

and correctCompositionIn PQ
shows I ch. ch € ins PQ A exprChannel ch (kE key)

(proof)

lemma correctCompositionKS-exprChannel-s-P:
assumes subcomponents PQ = {P,Q}

21

and correctCompositionKS PQ
and sKS secret ¢ LocalSecrets PQ
and ch € ins P
and exprChannel ch (sE secret)
and sKS secret ¢ specKeysSecrets PQ
and correctCompositionin PQ
shows ch € ins PQ A exprChannel ch (sE secret)

(proof)

lemma correctCompositionKS-exprChannel-s-Pezx:
assumes subcomponents PQ = {P,Q}

and correctCompositionKS PQ

and sKS secret ¢ LocalSecrets PQ

and ch € ins P

and exprChannel ch (sE secret)

and sKS secret ¢ specKeysSecrets PQ

and correctCompositionIn PQ
shows Jch. ch € ins PQ A exprChannel ch (sE secret)

(proof)

lemma correctCompositionKS-exprChannel-s-Q:
assumes subcomponents PQ = {P,Q}

and correctCompositionKS PQ

and sKS secret ¢ LocalSecrets PQ

and ch € ins @

and hl:exprChannel ch (sE secret)

and sKS secret ¢ specKeysSecrets PQ

and correctCompositionIn PQ
shows ch € ins PQ A exprChannel ch (sE secret)

(proof)

lemma correctCompositionKS-exprChannel-s-Qex:
assumes subcomponents PQ = {P,Q}

and correctCompositionKS PQ

and sKS secret ¢ LocalSecrets PQ

and ch € ins @

and exprChannel ch (sE secret)

and sKS secret ¢ specKeysSecrets PQ

and correctCompositionIn PQ
shows 3Jch. ch € ins PQ A exprChannel ch (sE secret)

(proof)

end

5 Knowledge of Keys and Secrets
theory KnowledgeKeysSecrets

imports CompLocalSecrets
begin

22

An component A knows a secret m (or some secret expression m) that does not
belong to its local sectrets , if

e A may eventually get the secret m,
e m belongs to the set LS4 of its local secrets,

o A knows some list of expressions mso which is an concatenations of m and
some list of expressions mq,

e m is a concatenation of some lists of secrets my and mo, and A knows both
these secrets,

o A knows some secret key k™! and the result of the encryption of the m with
the corresponding public key,

o A knows some public key k and the result of the signature creation of the m
with the corresponding private key,

e m is an encryption of some secret my with a public key k, and A knows both
my and k,

e m is the result of the signature creation of the my with the key k, and A
knows both my and k.

primrec
know :: specID = KS = bool

where
know A (kKS m)
((ine A (kE m))
know A (sKS m)
)

j((k’KS m) € (LocalSecrets A))) |
((ine A (sE m) ;

((sKS m) € (LocalSecrets A)))

axiomatization
knows :: specID = FExpression list = bool
where
knows-emptyexpression:
knows C [| = True and
knowl1k:
knows C [KS2Expression (kKS m1)] = know C (kKS m1) and
knowls:
knows C [KS2Expression (sKS m2)] = know C (sKS m2) and
knows2a:
knows A (el @ e) — knows A e and
knows2b:
knows A (e Q el) — knows A e and
knows3:
(knows A el) N (knows A e2) — knows A (el @ ¢2) and
knows4 :
(IncrDecrKeys k1 k2) A (know A (kKS k2)) A (knows A (Enc k1 e))
— knows A e
and
knows5:
(IncrDecrKeys k1 k2) A (know A (kKS k1)) A (knows A (Sign k2 e))

23

— knows A e
and
knows6:
(know A (kKS k)) A (knows A el) — knows A (Enc k el)
and
knows7:
(know A (kKS k)) A (knows A el) — knows A (Sign k el)

primrec eoutKnowCorrect :: specID = KS = bool
where
eout-know-k:
eoutKnowCorrect C' (kKS m) =
((eout C (kE m)) «— (m € (specKeys C) V (know C (kKS m)))) |
eout-know-s:
eoutKnowCorrect C' (sKS m) =
((eout C (sE m)) «— (m € (specSecrets C) V (know C (sKS m))))

definition eoutKnowsECorrect :: specID = FExpression = bool
where
eoutKnowsECorrect C' e =
((eout Ce) +—
(3 k. e=(kE k) A (k € specKeys C)) V
(3 s.e=(sEs) A (s € specSecrets C)) V
(knows C [€])))

lemma eoutKnowCorrect-L1k:
assumes coutKnowCorrect C (kKS m)
and eout C (kE m)
shows m € (specKeys C) V (know C (kKS m))

(proof)

lemma eoutKnowCorrect-L1s:
assumes eoutKnowCorrect C (sKS m)
and eout C (sE m)
shows m € (specSecrets C) V (know C (sKS m))

(proof)

lemma eoutKnowsFECorrect-L1:
assumes eoutKnowsECorrect C e
and eout C e
shows (3 k. e = (kE k) A
(3 s. e = (sE s)
(knows C [€])

(k € specKeys C)) V
A (s € specSecrets C)) V

(proof)

lemma knowZknows-k:
assumes know A (kKS m)
shows knows A [kE m]

(proof)

24

lemma knows2know-k:
assumes knows A [kE m]
shows know A (kKS m)

(proof)

lemma know2knowsPQ-k:
assumes know P (kKS m) V know Q (kKS m)
shows knows P [kE m] V knows Q [kE m]

{(proof)

lemma knows2knowPQ-k:
assumes knows P [kE m| V knows Q [kE m)|
shows know P (kKS m) V know @ (kKS m)

(proof)

lemma knowsI1k:
know A (kKS m) = knows A [kE m]

(proof)

lemma know2knows-neg-k:
assumes - know A (kKS m)
shows = knows A [kE m]

(proof)

lemma knows2know-neg-k:
assumes — knows A [kE m)]
shows = know A (kKS m)

(proof)

lemma know2knows-s:
assumes know A (sKS m)
shows knows A [sE m)|

(proof)

lemma knows2know-s:
assumes knows A [sE m)]
shows know A (sKS m)

(proof)

lemma know2knowsPQ-s:
assumes know P (sKS m) V know Q (sKS m)
shows knows P [sE m] V knows Q [sE m]

(proof)

lemma knows2knowPQ-s:
assumes knows P [sE m] V knows Q [sE m)]
shows know P (sKS m) V know @ (sKS m)

(proof)

25

lemma knowsls:
know A (sKS m) = knows A [sE m]

(proof)

lemma know2knows-neg-s:
assumes — know A (sKS m)
shows - knows A [sE m]

(proof)

lemma knows2know-neg-s:
assumes — knows A [sE m]
shows = know A (sKS m)

(proof)

lemma knows2:

assumes e2 = el Q eV e2 = e Q el
and knows A e2

shows knows A e

(proof)

lemma correctCompositionInLoc-exprChannel:
assumes subcomponents PQ = {P, Q}

and correctCompositionln PQ

and ch : ins P

and exprChannel ch m

and V z. z € ins PQ — — exprChannel x m
shows ch : loc PQ

(proof)

lemma eout-know-nonKS-k:
assumes m ¢ specKeys A

and eout A (kE m)

and eoutKnowCorrect A (kKS m)
shows know A (kKS m)

(proof)

lemma eout-know-nonKS-s:
assumes m ¢ specSecrets A

and eout A (sE m)

and eoutKnowCorrect A (sKS m)
shows know A (sKS m)

(proof)

lemma not-know-k-not-ine:
assumes - know A (kKS m)
shows - ine A (kE m)

(proof)

26

lemma not-know-s-not-ine:
assumes — know A (sKS m)
shows - ine A (s m)

(proof)

lemma not-know-k-not-eout:
assumes m ¢ specKeys A

and - know A (kKS m)

and eoutKnowCorrect A (kKS m)
shows - eout A (kE m)

(proof)

lemma not-know-s-not-eout:
assumes m ¢ specSecrets A

and - know A (sKS m)

and eoutKnowCorrect A (sKS m)
shows - eout A (sE m)

(proof)

lemma adv-not-knowl:
assumes out P C ins A

and - know A (kKS m)
shows = eout P (kE m)

(proof)

lemma adv-not-know2:

assumes out P C ins A
and - know A (sKS m)

shows - eout P (sEm)

(proof)

lemma LocalSecrets-L1:
assumes (kKS) key € LocalSecrets P

and (kKS key) ¢ U (LocalSecrets ¢ subcomponents P)
shows kKS key ¢ specKeysSecrets P

(proof)

lemma LocalSecrets-L2:
assumes kKS key € LocalSecrets P
and kKS key € specKeysSecrets P
shows kKS key € | (LocalSecrets ¢ subcomponents P)

(proof)

lemma know-compositionl:

assumes notKSP:m ¢ specKeysSecrets P
and notKSQ:m ¢ specKeysSecrets Q)
and know P m
and subPQ:subcomponents PQ = {P,Q}
and cCompl:correctCompositionIn PQ)

27

and cCompKS:correctCompositionKS PQ
shows know PQ m

(proof)

lemma know-composition2:
assumes m ¢ specKeysSecrets P
and m ¢ specKeysSecrets Q
and know Q m
and subcomponents PQ = {P,Q}
and correctCompositionin PQ
and correctCompositionKS PQ
shows know PQ m

(proof)

lemma know-composition:

assumes m ¢ specKeysSecrets P
and m ¢ specKeysSecrets Q
and know P m V know @ m
and subcomponents PQ = {P,Q}
and correctCompositionIn PQ
and correctCompositionKS PQ

shows know PQ m

(proof)

theorem know-composition-neg-ine-k:
assumes — know P (kKS key)

and - know @ (kKS key)

and subcomponents PQ = {P,Q}

and correctCompositionln PQ
shows - (ine PQ (kE key))

{(proof)

theorem know-composition-neg-ine-s:
assumes — know P (sKS secret)

and — know Q (sKS secret)

and subcomponents PQ = {P,Q}

and correctCompositionin PQ
shows - (ine PQ (sE secret))

(proof)

lemma know-composition-neg1:
assumes notknowP:— know P m
and notknow@:— know Q m
and subPQ:subcomponents PQ = {P,Q}
and cCompLoc:correctCompositionLoc PQ
and cCompl:correctCompositionIn PQ
shows = know PQ m

(proof)

28

lemma know-decomposition:

assumes knowPQ:know PQ m
and subPQ:subcomponents PQ = {P,Q}
and cCompl:correctCompositionIn PQ
and cCompLoc:correct CompositionLoc PQ

shows know P m V know @ m

(proof)

lemma eout-knows-nonKS-k:
assumes m ¢ (specKeys A)
and eout A (kE m)
and eoutKnowsECorrect A (kE m)
shows knows A [kE m]

(proof)

lemma eout-knows-nonKS-s:
assumes hl:m ¢ specSecrets A
and h2:eout A (sE m)
and h3:eoutKnowsECorrect A (sE m)
shows knows A [sE m)

(proof)

lemma not-knows-k-not-ine:
assumes — knows A [kE m)]
shows - ine A (kE m)

(proof)

lemma not-knows-s-not-ine:
assumes — knows A [sE m]
shows - ine A (sEm)

{(proof)

lemma not-knows-k-not-eout:
assumes m ¢ specKeys A

and - knows A [kE m)

and eoutKnowsECorrect A (kE m)
shows - eout A (kE m)

(proof)

lemma not-knows-s-not-eout:
assumes m ¢ specSecrets A

and - knows A [sE m]

and eoutKnowsECorrect A (sE m)
shows - eout A (sE m)

(proof)
lemma adv-not-knowsl:

assumes out P C ins A
and — knows A [kE m)

29

shows - eout P (kE m)
(proof)

lemma adv-not-knows2:

assumes out P C ins A
and — knows A [sE m]

shows - eout P (sE m)

(proof)

lemma knows-decomposition-1-k:
assumes kKS a ¢ specKeysSecrets P
and kKS a ¢ specKeysSecrets @
and subcomponents PQ = {P, Q}
and knows PQ [kE a]
and correctCompositionin PQ
and correctCompositionLoc PQ
shows knows P [kE a] V knows Q [kE a]

(proof)

lemma knows-decomposition-1-s:
assumes sKS a ¢ specKeysSecrets P
and sKS a ¢ specKeysSecrets Q
and subcomponents PQ = {P, Q}
and knows PQ [sE a]
and correctCompositionIn PQ
and correctCompositionLoc PQ
shows knows P [sE a] V knows Q [sE a]

(proof)

lemma knows-decomposition-1:
assumes subcomponents PQ = {P, Q}
and knows PQ [a]
and correctCompositionIn PQ
and correctCompositionLoc PQ
and (3 z.a =kE2)V (3 2. a = sE 2)
andV 2. a =kE 2z —
kKS z ¢ specKeysSecrets P N kKS z ¢ specKeysSecrets Q
and A7V 2. a = sE z —
sKS z ¢ specKeysSecrets P N sKS z ¢ specKeysSecrets @
shows knows P [a] V knows Q [a]

(proof)

lemma knows-compositionl-k:

assumes (kKS m) ¢ specKeysSecrets P
and (kKS m) ¢ specKeysSecrets @
and knows P [kE m]
and subcomponents PQ = {P,Q}
and correctCompositionin PQ
and correctCompositionKS PQ

30

shows knows PQ [kE m)]
(proof)

lemma knows-compositionl-s:

assumes (sKS m) ¢ specKeysSecrets P
and (sKS m) ¢ specKeysSecrets @
and knows P [sE m]
and subcomponents PQ = {P,Q}
and correctCompositionIn PQ
and correctCompositionKS P(Q)

shows knows PQ [sE m]

(proof)

lemma knows-composition2-k:

assumes (kKS m) ¢ specKeysSecrets P
and (kKS m) ¢ specKeysSecrets @
and knows Q [kE m]
and subcomponents PQ = {P,Q}
and correctCompositionIn PQ
and correctCompositionKS PQ

shows knows PQ [kE m)]

(proof)

lemma knows-composition2-s:

assumes (sKS m) ¢ specKeysSecrets P
and (sKS m) ¢ specKeysSecrets @
and knows Q [sE m]
and subcomponents PQ = {P,Q}
and correctCompositionln PQ
and correctCompositionKS PQ

shows knows PQ [sE m]

(proof)

lemma knows-composition-neg1-k:
assumes kKS m ¢ specKeysSecrets P
and kKS m ¢ specKeysSecrets Q
and — knows P [kE m)]
and — knows Q [kE m]
and subcomponents PQ = {P,Q}
and correctCompositionLoc PQ
and correctCompositionIn PQ
and correctCompositionKS P(Q)
shows - knows PQ [kE m)]

(proof)

lemma knows-composition-neg1-s:

assumes sKS m ¢ specKeysSecrets P
and sKS m ¢ specKeysSecrets Q
and — knows P [sE m]

31

and — knows @ [sE m]

and subcomponents PQ = {P,Q}

and correctCompositionLoc PQ

and correctCompositionIn PQ

and correctCompositionKS P(Q)
shows — knows PQ [sE m)|

(proof)

lemma knows-concat-1:
assumes knows P (a # e)
shows knows P [a]

(proof)

lemma knows-concat-2:
assumes knows P (a # e)
shows knows P e

(proof)

lemma knows-concat-3:

assumes knows P [d]
and knows P e

shows knows P (a # e)

(proof)

lemma not-knows-conc-knows-elem-not-knows-tail:
assumes — knows P (a # e)

and knows P [a]
shows — knows P e

(proof)

lemma not-knows-conc-not-knows-elem-tail:
assumes — knows P (afte)
shows = knows P [a] V = knows P e

(proof)

lemma not-knows-elem-not-knows-conc:
assumes — knows P [a]
shows - knows P (a # e)

(proof)

lemma not-knows-tail-not-knows-conc:
assumes — knows P e
shows - knows P (a # ¢)

(proof)

lemma knows-composition3:
fixes e::Expression list
assumes knows P e
and subPQ:subcomponents PQ = {P,Q}

32

and cCompl:correctCompositionln PQ)
and cCompKS:correctCompositionKS PQ
and V (m:: Expression). ((m mem e) —»
(3 21. m=(kE 21)) V (3 22. m = (sE 22))))
and notSpecKeysSecretsExpr P e
and notSpecKeysSecretsExpr @ e
shows knows PQ e

(proof)

lemma knows-composition :
assumes knows @ e
and subPQ:subcomponents PQ = {P,Q}
and cCompl:correctCompositionIn PQ
and cCompKS:correctCompositionKS PQ
andV m. mmeme — (3 2z m=kEz2)V (3 2. m = sE z2))
and notSpecKeysSecretsExpr P e
and notSpecKeysSecretsExpr @ e
shows knows PQ e

(proof)

lemma knows-compositions:
assumes knows P e V knows @ e
and subcomponents PQ = {P,Q}
and correctCompositionln PQ
and correctCompositionKS PQ
andV m. mmeme — (3 2z m=kE2)V (3 2. m = sE z2))
and notSpecKeysSecretsExpr P e
and notSpecKeysSecretsExpr @ e
shows knows PQ e

(proof)

end

References

[1] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof
Assistant for Higher-Order Logic. LNCS. Springer, 2013.

[2] M. Spichkova. Stream Processing Components: Isabelle/HOL Formali-
sation and Case Studies. Archive of Formal Proofs, Nov. 2013.

[3] M. Spichkova and J. Jirjens. Formal Specification of Cryptographic Pro-
tocols and Their Composition Properties: FOCUS-oriented approach.
Technical report, Technische Universitdt Miinchen, 2008.

33

