
Count the Number of Complex Roots

Wenda Li

September 13, 2023

Abstract
Based on evaluating Cauchy indices through remainder sequences

[1] [2, Chapter 11], this entry provides an effective procedure to count
the number of complex roots (with multiplicity) of a polynomial within
a rectangle box or a half-plane. Potential applications of this entry
include certified complex root isolation (of a polynomial) and testing
the Routh-Hurwitz stability criterion (i.e., to check whether all the
roots of some characteristic polynomial have negative real parts).

1 Extra lemmas related to polynomials
theory CC-Polynomials-Extra imports

Winding-Number-Eval.Missing-Algebraic
Winding-Number-Eval.Missing-Transcendental
Sturm-Tarski.PolyMisc
Budan-Fourier .BF-Misc
Polynomial-Interpolation.Ring-Hom-Poly

begin

1.1 Misc
lemma poly-linepath-comp ′:

fixes a:: ′a::{real-normed-vector ,comm-semiring-0 ,real-algebra-1}
shows poly p (linepath a b t) = poly (p ◦p [:a, b−a:]) (of-real t)
by (auto simp add:poly-pcompose linepath-def scaleR-conv-of-real algebra-simps)

lemma path-poly-comp[intro]:
fixes p:: ′a::real-normed-field poly
shows path g =⇒ path (poly p o g)
apply (elim path-continuous-image)
by (auto intro:continuous-intros)

lemma cindex-poly-noroot:
assumes a<b ∀ x. a<x ∧ x<b −→ poly p x 6=0
shows cindex-poly a b q p = 0
unfolding cindex-poly-def
apply (rule sum.neutral)
using assms by (auto intro:jump-poly-not-root)

1

1.2 More polynomial homomorphism interpretations
interpretation of-real-poly-hom:map-poly-inj-idom-hom of-real ..

interpretation Re-poly-hom:map-poly-comm-monoid-add-hom Re
by unfold-locales simp-all

interpretation Im-poly-hom:map-poly-comm-monoid-add-hom Im
by unfold-locales simp-all

1.3 More about order
lemma order-normalize[simp]:order x (normalize p) = order x p
by (metis dvd-normalize-iff normalize-eq-0-iff order-1 order-2 order-unique-lemma)

lemma order-gcd:
assumes p 6=0 q 6=0
shows order x (gcd p q) = min (order x p) (order x q)

proof −
define xx op oq where xx=[:− x, 1 :] and op = order x p and oq = order x q
obtain pp where pp:p = xx ^ op ∗ pp ¬ xx dvd pp

using order-decomp[OF ‹p 6=0 ›,of x,folded xx-def op-def] by auto
obtain qq where qq:q = xx ^ oq ∗ qq ¬ xx dvd qq

using order-decomp[OF ‹q 6=0 ›,of x,folded xx-def oq-def] by auto
define pq where pq = gcd pp qq

have p-unfold:p = (pq ∗ xx ^ (min op oq)) ∗ ((pp div pq) ∗ xx ^ (op − min op
oq))

and [simp]:coprime xx (pp div pq) and pp 6=0
proof −

have xx ^ op = xx ^ (min op oq) ∗ xx ^ (op − min op oq)
by (simp flip:power-add)

moreover have pp = pq ∗ (pp div pq)
unfolding pq-def by simp

ultimately show p = (pq ∗ xx ^ (min op oq)) ∗ ((pp div pq) ∗ xx ^ (op − min
op oq))

unfolding pq-def pp by(auto simp:algebra-simps)
show coprime xx (pp div pq)

apply (rule prime-elem-imp-coprime[OF
prime-elem-linear-poly[of 1 −x,simplified],folded xx-def])

using ‹pp = pq ∗ (pp div pq)› pp(2) by auto
qed (use pp ‹p 6=0 › in auto)
have q-unfold:q = (pq ∗ xx ^ (min op oq)) ∗ ((qq div pq) ∗ xx ^ (oq − min op

oq))
and [simp]:coprime xx (qq div pq)

proof −
have xx ^ oq = xx ^ (min op oq) ∗ xx ^ (oq − min op oq)

by (simp flip:power-add)
moreover have qq = pq ∗ (qq div pq)

unfolding pq-def by simp

2

ultimately show q = (pq ∗ xx ^ (min op oq)) ∗ ((qq div pq) ∗ xx ^ (oq − min
op oq))

unfolding pq-def qq by(auto simp:algebra-simps)
show coprime xx (qq div pq)

apply (rule prime-elem-imp-coprime[OF
prime-elem-linear-poly[of 1 −x,simplified],folded xx-def])

using ‹qq = pq ∗ (qq div pq)› qq(2) by auto
qed

have gcd p q=normalize (pq ∗ xx ^ (min op oq))
proof −

have coprime (pp div pq ∗ xx ^ (op − min op oq)) (qq div pq ∗ xx ^ (oq − min
op oq))

proof (cases op>oq)
case True
then have oq − min op oq = 0 by auto
moreover have coprime (xx ^ (op − min op oq)) (qq div pq) by auto
moreover have coprime (pp div pq) (qq div pq)

apply (rule div-gcd-coprime[of pp qq,folded pq-def])
using ‹pp 6=0 › by auto

ultimately show ?thesis by auto
next

case False
then have op − min op oq = 0 by auto
moreover have coprime (pp div pq) (xx ^ (oq − min op oq))

by (auto simp:coprime-commute)
moreover have coprime (pp div pq) (qq div pq)

apply (rule div-gcd-coprime[of pp qq,folded pq-def])
using ‹pp 6=0 › by auto

ultimately show ?thesis by auto
qed
then show ?thesis unfolding p-unfold q-unfold

apply (subst gcd-mult-left)
by auto

qed
then have order x (gcd p q) = order x pq + order x (xx ^ (min op oq))

apply simp
apply (subst order-mult)
using assms(1) p-unfold by auto

also have ... = order x (xx ^ (min op oq))
using pp(2) qq(2) unfolding pq-def xx-def
by (auto simp add: order-0I poly-eq-0-iff-dvd)

also have ... = min op oq
unfolding xx-def by (rule order-power-n-n)

also have ... = min (order x p) (order x q) unfolding op-def oq-def by simp
finally show ?thesis .

qed

lemma pderiv-power : pderiv (p ^ n) = smult (of-nat n) (p ^ (n−1)) ∗ pderiv p

3

apply (cases n)
using pderiv-power-Suc by auto

lemma order-pderiv:
fixes p:: ′a::{idom,semiring-char-0} poly
assumes p 6=0 poly p x=0
shows order x p = Suc (order x (pderiv p)) using assms

proof −
define xx op where xx=[:− x, 1 :] and op = order x p
have op 6=0 unfolding op-def using assms order-root by blast
obtain pp where pp:p = xx ^ op ∗ pp ¬ xx dvd pp

using order-decomp[OF ‹p 6=0 ›,of x,folded xx-def op-def] by auto
have p-der :pderiv p = smult (of-nat op) (xx^(op −1)) ∗ pp + xx^op∗pderiv pp

unfolding pp(1) by (auto simp:pderiv-mult pderiv-power xx-def algebra-simps
pderiv-pCons)

have xx^(op −1) dvd (pderiv p)
unfolding p-der

by (metis One-nat-def Suc-pred assms(1) assms(2) dvd-add dvd-mult-right
dvd-triv-left

neq0-conv op-def order-root power-Suc smult-dvd-cancel)
moreover have ¬ xx^op dvd (pderiv p)
proof

assume xx ^ op dvd pderiv p
then have xx ^ op dvd smult (of-nat op) (xx^(op −1) ∗ pp)

unfolding p-der by (simp add: dvd-add-left-iff)
then have xx ^ op dvd (xx^(op −1)) ∗ pp

apply (elim dvd-monic[rotated])
using ‹op 6=0 › by (auto simp:lead-coeff-power xx-def)

then have xx ^ (op−1) ∗ xx dvd (xx^(op −1))
using ‹¬ xx dvd pp› by (simp add: ‹op 6= 0 › mult.commute power-eq-if)

then have xx dvd 1
using assms(1) pp(1) by auto

then show False unfolding xx-def by (meson assms(1) dvd-trans one-dvd
order-decomp)

qed
ultimately have op − 1 = order x (pderiv p)

using order-unique-lemma[of x op−1 pderiv p,folded xx-def] ‹op 6=0 ›
by auto

then show ?thesis using ‹op 6=0 › unfolding op-def by auto
qed

1.4 More about rsquarefree
lemma rsquarefree-0 [simp]: ¬ rsquarefree 0

unfolding rsquarefree-def by simp

lemma rsquarefree-times:
assumes rsquarefree (p∗q)

4

shows rsquarefree q using assms
proof (induct p rule:poly-root-induct-alt)

case 0
then show ?case by simp

next
case (no-proots p)
then have [simp]:p 6=0 q 6=0

∧
a. order a p = 0

using order-0I by auto
have order a (p ∗ q) = 0 ←→ order a q = 0

order a (p ∗ q) = 1 ←→ order a q = 1
for a

subgoal by (subst order-mult) auto
subgoal by (subst order-mult) auto
done

then show ?case using ‹rsquarefree (p ∗ q)›
unfolding rsquarefree-def by simp

next
case (root a p)
define pq aa where pq = p ∗ q and aa = [:− a, 1 :]
have [simp]:pq 6=0 aa 6=0 order a aa=1

subgoal using pq-def root.prems by auto
subgoal by (simp add: aa-def)
subgoal by (metis aa-def order-power-n-n power-one-right)
done

have rsquarefree (aa ∗ pq)
unfolding aa-def pq-def using root(2) by (simp add:algebra-simps)

then have rsquarefree pq
unfolding rsquarefree-def by (auto simp add:order-mult)

from root(1)[OF this[unfolded pq-def]] show ?case .
qed

lemma rsquarefree-smult-iff :
assumes s 6=0
shows rsquarefree (smult s p) ←→ rsquarefree p
unfolding rsquarefree-def using assms by (auto simp add:order-smult)

lemma card-proots-within-rsquarefree:
assumes rsquarefree p
shows proots-count p s = card (proots-within p s) using assms

proof (induct rule:poly-root-induct[of - λx. x∈s])
case 0
then have False by simp
then show ?case by simp

next
case (no-roots p)
then show ?case
by (metis all-not-in-conv card.empty proots-count-def proots-within-iff sum.empty)

next
case (root a p)

5

have proots-count ([:a, − 1 :] ∗ p) s = 1 + proots-count p s
apply (subst proots-count-times)
subgoal using root.prems rsquarefree-def by blast

subgoal by (metis (no-types, opaque-lifting) add.inverse-inverse add.inverse-neutral

minus-pCons proots-count-pCons-1-iff proots-count-uminus
root.hyps(1))

done
also have ... = 1 + card (proots-within p s)
proof −

have rsquarefree p using ‹rsquarefree ([:a, − 1 :] ∗ p)›
by (elim rsquarefree-times)

from root(2)[OF this] show ?thesis by simp
qed
also have ... = card (proots-within ([:a, − 1 :] ∗ p) s) unfolding proots-within-times

proof (subst card-Un-disjoint)
have [simp]:p 6=0 using root.prems by auto
show finite (proots-within [:a, − 1 :] s) finite (proots-within p s)

by auto
show 1 + card (proots-within p s) = card (proots-within [:a, − 1 :] s)

+ card (proots-within p s)
using ‹a ∈ s›
apply (subst proots-within-pCons-1-iff)
by simp

have poly p a 6=0
proof (rule ccontr)

assume ¬ poly p a 6= 0
then have order a p >0 by (simp add: order-root)
moreover have order a [:a,−1 :] = 1

by (metis (no-types, opaque-lifting) add.inverse-inverse add.inverse-neutral
minus-pCons

order-power-n-n order-uminus power-one-right)
ultimately have order a ([:a, − 1 :] ∗ p) > 1

apply (subst order-mult)
subgoal using root.prems by auto
subgoal by auto
done

then show False using ‹rsquarefree ([:a, − 1 :] ∗ p)›
unfolding rsquarefree-def using gr-implies-not0 less-not-refl2 by blast

qed
then show proots-within [:a, − 1 :] s ∩ proots-within p s = {}

using proots-within-pCons-1-iff (2) by auto
qed
finally show ?case .

qed

lemma rsquarefree-gcd-pderiv:
fixes p:: ′a::{factorial-ring-gcd,semiring-gcd-mult-normalize,semiring-char-0} poly

6

assumes p 6=0
shows rsquarefree (p div (gcd p (pderiv p)))

proof (cases pderiv p = 0)
case True
have poly (unit-factor p) x 6=0 for x

using unit-factor-is-unit[OF ‹p 6=0 ›]
by (meson assms dvd-trans order-decomp poly-eq-0-iff-dvd unit-factor-dvd)

then have order x (unit-factor p) = 0 for x
using order-0I by blast

then show ?thesis using True ‹p 6=0 › unfolding rsquarefree-def by simp
next

case False
define q where q = p div (gcd p (pderiv p))
have q 6=0 unfolding q-def by (simp add: assms dvd-div-eq-0-iff)

have order-pq:order x p = order x q + min (order x p) (order x (pderiv p))
for x

proof −
have ∗:p = q ∗ gcd p (pderiv p)

unfolding q-def by simp
show ?thesis

apply (subst ∗)
using ‹q 6=0 › ‹p 6=0 › ‹pderiv p 6=0 › by (simp add:order-mult order-gcd)

qed
have order x q = 0 ∨ order x q=1 for x
proof (cases poly p x=0)

case True
from order-pderiv[OF ‹p 6=0 › this]
have order x p = order x (pderiv p) + 1 by simp
then show ?thesis using order-pq[of x] by auto

next
case False
then have order x p = 0 by (simp add: order-0I)
then have order x q = 0 using order-pq[of x] by simp
then show ?thesis by simp

qed
then show ?thesis using ‹q 6=0 › unfolding rsquarefree-def q-def

by auto
qed

lemma poly-gcd-pderiv-iff :
fixes p:: ′a::{semiring-char-0 ,factorial-ring-gcd,semiring-gcd-mult-normalize} poly
shows poly (p div (gcd p (pderiv p))) x =0 ←→ poly p x=0

proof (cases pderiv p=0)
case True
then obtain a where p=[:a:] using pderiv-iszero by auto
then show ?thesis by (auto simp add: unit-factor-poly-def)

next
case False

7

then have p 6=0 using pderiv-0 by blast
define q where q = p div (gcd p (pderiv p))
have q 6=0 unfolding q-def by (simp add: ‹p 6=0 › dvd-div-eq-0-iff)

have order-pq:order x p = order x q + min (order x p) (order x (pderiv p)) for x
proof −

have ∗:p = q ∗ gcd p (pderiv p)
unfolding q-def by simp

show ?thesis
apply (subst ∗)
using ‹q 6=0 › ‹p 6=0 › ‹pderiv p 6=0 › by (simp add:order-mult order-gcd)

qed

have order x q =0 ←→ order x p = 0
proof (cases poly p x=0)

case True
from order-pderiv[OF ‹p 6=0 › this]
have order x p = order x (pderiv p) + 1 by simp
then show ?thesis using order-pq[of x] by auto

next
case False
then have order x p = 0 by (simp add: order-0I)
then have order x q = 0 using order-pq[of x] by simp
then show ?thesis using ‹order x p = 0 › by simp

qed
then show ?thesis

apply (fold q-def)
unfolding order-root using ‹p 6=0 › ‹q 6=0 › by auto

qed

1.5 Composition of a polynomial and a circular path
lemma poly-circlepath-tan-eq:

fixes z0 ::complex and r ::real and p::complex poly
defines q1≡ fcompose p [:(z0+r)∗i,z0−r :] [:i,1 :] and q2 ≡ [:i,1 :] ^ degree p
assumes 0≤t t≤1 t 6=1/2
shows poly p (circlepath z0 r t) = poly q1 (tan (pi∗t)) / poly q2 (tan (pi∗t))
(is ?L = ?R)

proof −
have ?L = poly p (z0+ r∗exp (2 ∗ of-real pi ∗ i ∗ t))

unfolding circlepath by simp
also have ... = ?R
proof −

define f where f = (poly p ◦ (λx::real. z0 + r ∗ exp (i ∗ x)))
have f-eq:f t = ((λx::real. poly q1 x / poly q2 x) o (λx. tan (x/2))) t

when cos (t / 2) 6= 0 for t
proof −

have f t = poly p (z0 + r ∗ (cos t + i ∗ sin t))
unfolding f-def exp-Euler by (auto simp add:cos-of-real sin-of-real)

8

also have ... = poly p ((λx. ((z0−r)∗x+(z0+r)∗i) / (i+x)) (tan (t/2)))
proof −

define tt where tt=complex-of-real (tan (t / 2))
define rr where rr = complex-of-real r
have cos t = (1−tt∗tt) / (1 + tt ∗ tt)

sin t = 2∗tt / (1 + tt ∗ tt)
unfolding sin-tan-half [of t/2 ,simplified] cos-tan-half [of t/2 ,OF that,

simplified] tt-def
by (auto simp add:power2-eq-square)

moreover have 1 + tt ∗ tt 6= 0 unfolding tt-def
apply (fold of-real-mult)

by (metis (no-types, opaque-lifting) mult-numeral-1 numeral-One of-real-add
of-real-eq-0-iff

of-real-numeral sum-squares-eq-zero-iff zero-neq-one)
ultimately have z0 + r ∗ ((cos t) + i ∗ (sin t))

=(z0∗(1+tt∗tt)+rr∗(1−tt∗tt)+i∗rr∗2∗tt) / (1 + tt ∗ tt)
apply (fold rr-def ,simp add:add-divide-distrib)
by (simp add:algebra-simps)

also have ... = ((z0−rr)∗tt+z0∗i+rr∗i) / (tt + i)
proof −

have tt + i 6= 0
using ‹1 + tt ∗ tt 6= 0 ›
by (metis i-squared neg-eq-iff-add-eq-0 square-eq-iff)

then show ?thesis
using ‹1 + tt ∗ tt 6= 0 › by (auto simp add:divide-simps algebra-simps)

qed
finally have z0 + r ∗ ((cos t) + i ∗ (sin t)) = ((z0−rr)∗tt+z0∗i+rr∗i) /

(tt + i) .
then show ?thesis unfolding tt-def rr-def

by (auto simp add:algebra-simps power2-eq-square)
qed
also have ... = (poly p o ((λx. ((z0−r)∗x+(z0+r)∗i) / (i+x)) o (λx. tan

(x/2)))) t
unfolding comp-def by (auto simp:tan-of-real)

also have ... = ((λx::real. poly q1 x / poly q2 x) o (λx. tan (x/2))) t
unfolding q2-def q1-def
apply (subst fcompose-poly[symmetric])
subgoal for x

apply simp
by (metis Re-complex-of-real add-cancel-right-left complex-i-not-zero imag-

inary-unit.sel(1) plus-complex.sel(1) rcis-zero-arg rcis-zero-mod)
subgoal by (auto simp:tan-of-real algebra-simps)
done

finally show ?thesis .
qed

have cos (pi ∗ t) 6=0 unfolding cos-zero-iff-int2
proof

assume ∃ i. pi ∗ t = real-of-int i ∗ pi + pi / 2

9

then obtain i where pi ∗ t = real-of-int i ∗ pi + pi / 2 by auto
then have pi ∗ t=pi ∗ (real-of-int i + 1 / 2) by (simp add:algebra-simps)
then have t=real-of-int i + 1 / 2 by auto
then show False using ‹0≤t› ‹t≤1 › ‹t 6=1/2 › by auto

qed
from f-eq[of 2∗pi∗t,simplified,OF this]
show ?thesis

unfolding f-def comp-def by (auto simp add:algebra-simps)
qed
finally show ?thesis .

qed

1.6 Combining two real polynomials into a complex one
definition cpoly-of :: real poly ⇒ real poly ⇒ complex poly where

cpoly-of pR pI = map-poly of-real pR + smult i (map-poly of-real pI)

lemma cpoly-of-eq-0-iff [iff]:
cpoly-of pR pI = 0 ←→ pR = 0 ∧ pI = 0

proof −
have pR = 0 ∧ pI = 0 when cpoly-of pR pI = 0
proof −

have complex-of-real (coeff pR n) + i ∗ complex-of-real (coeff pI n) = 0 for n
using that unfolding poly-eq-iff cpoly-of-def by (auto simp:coeff-map-poly)

then have coeff pR n = 0 ∧ coeff pI n = 0 for n
by (metis Complex-eq Im-complex-of-real Re-complex-of-real complex.sel(1)

complex.sel(2)
of-real-0)

then show ?thesis unfolding poly-eq-iff by auto
qed
then show ?thesis by (auto simp:cpoly-of-def)

qed

lemma cpoly-of-decompose:
p = cpoly-of (map-poly Re p) (map-poly Im p)

unfolding cpoly-of-def
apply (induct p)
by (auto simp add:map-poly-pCons map-poly-map-poly complex-eq)

lemma cpoly-of-dist-right:
cpoly-of (pR∗g) (pI∗g) = cpoly-of pR pI ∗ (map-poly of-real g)

unfolding cpoly-of-def by (simp add: distrib-right)

lemma poly-cpoly-of-real:
poly (cpoly-of pR pI) (of-real x) = Complex (poly pR x) (poly pI x)

unfolding cpoly-of-def by (simp add: Complex-eq)

lemma poly-cpoly-of-real-iff :
shows poly (cpoly-of pR pI) (of-real t) =0 ←→ poly pR t = 0 ∧ poly pI t=0

10

unfolding poly-cpoly-of-real using Complex-eq-0 by blast

lemma order-cpoly-gcd-eq:
assumes pR 6=0 ∨ pI 6=0
shows order t (cpoly-of pR pI) = order t (gcd pR pI)

proof −
define g where g = gcd pR pI
have [simp]:g 6=0 unfolding g-def using assms by auto
obtain pr pi where pri: pR = pr ∗ g pI = pi ∗ g coprime pr pi

unfolding g-def using assms(1) gcd-coprime-exists ‹g 6= 0 › g-def by blast
then have pr 6=0 ∨ pi 6=0 using assms mult-zero-left by blast

have order t (cpoly-of pR pI) = order t (cpoly-of pr pi ∗ (map-poly of-real g))
unfolding pri cpoly-of-dist-right by simp

also have ... = order t (cpoly-of pr pi) + order t g
apply (subst order-mult)
using ‹pr 6=0 ∨ pi 6=0 › by (auto simp:map-poly-order-of-real)

also have ... = order t g
proof −

have poly (cpoly-of pr pi) t 6=0 unfolding poly-cpoly-of-real-iff
using ‹coprime pr pi› coprime-poly-0 by blast

then have order t (cpoly-of pr pi) = 0 by (simp add: order-0I)
then show ?thesis by auto

qed
finally show ?thesis unfolding g-def .

qed

lemma cpoly-of-times:
shows cpoly-of pR pI ∗ cpoly-of qR qI = cpoly-of (pR ∗ qR − pI ∗ qI) (pI∗qR+pR∗qI)

proof −
define PR PI where PR = map-poly complex-of-real pR

and PI = map-poly complex-of-real pI
define QR QI where QR = map-poly complex-of-real qR

and QI = map-poly complex-of-real qI
show ?thesis

unfolding cpoly-of-def
by (simp add:algebra-simps of-real-poly-hom.hom-minus smult-add-right

flip: PR-def PI-def QR-def QI-def)
qed

lemma map-poly-Re-cpoly[simp]:
map-poly Re (cpoly-of pR pI) = pR
unfolding cpoly-of-def smult-map-poly
apply (simp add:map-poly-map-poly Re-poly-hom.hom-add comp-def)
by (metis coeff-map-poly leading-coeff-0-iff)

lemma map-poly-Im-cpoly[simp]:
map-poly Im (cpoly-of pR pI) = pI
unfolding cpoly-of-def smult-map-poly

11

apply (simp add:map-poly-map-poly Im-poly-hom.hom-add comp-def)
by (metis coeff-map-poly leading-coeff-0-iff)

end

2 An alternative Sturm sequences
theory Extended-Sturm imports

Sturm-Tarski.Sturm-Tarski
Winding-Number-Eval.Cauchy-Index-Theorem
CC-Polynomials-Extra

begin

The main purpose of this theory is to provide an effective way to compute
cindexE a b f when f is a rational function. The idea is similar to and based
on the evaluation of cindex-poly through [[?a < ?b; poly ?p ?a 6= 0 ; poly ?p
?b 6= 0]] =⇒ cindex-poly ?a ?b ?q ?p = changes-itv-smods ?a ?b ?p ?q.

This alternative version of remainder sequences is inspired by the paper
"The Fundamental Theorem of Algebra made effective: an elementary real-
algebraic proof via Sturm chains" by Michael Eisermann.
hide-const Permutations.sign

2.1 Misc
lemma path-of-real[simp]:path (of-real :: real ⇒ ′a::real-normed-algebra-1)

unfolding path-def by (rule continuous-on-of-real-id)

lemma pathfinish-of-real[simp]:pathfinish of-real = 1
unfolding pathfinish-def by simp

lemma pathstart-of-real[simp]:pathstart of-real = 0
unfolding pathstart-def by simp

lemma is-unit-pCons-ex-iff :
fixes p:: ′a::field poly
shows is-unit p ←→ (∃ a. a 6=0 ∧ p=[:a:])
using is-unit-poly-iff is-unit-triv
by (metis is-unit-pCons-iff)

lemma eventually-poly-nz-at-within:
fixes x :: ′a::{idom,euclidean-space}
assumes p 6=0
shows eventually (λx. poly p x 6=0) (at x within S)

proof −
have eventually (λx. poly p x 6=0) (at x within S)

= (∀ F x in (at x within S). ∀ y∈proots p. x 6= y)
apply (rule eventually-subst,rule eventuallyI)
by (auto simp add:proots-def)

also have ... = (∀ y∈proots p. ∀ F x in (at x within S). x 6= y)

12

apply (subst eventually-ball-finite-distrib)
using ‹p 6=0 › by auto

also have ...
unfolding eventually-at
by (metis gt-ex not-less-iff-gr-or-eq zero-less-dist-iff)

finally show ?thesis .
qed

lemma sgn-power :
fixes x:: ′a::linordered-idom
shows sgn (x^n) = (if n=0 then 1 else if even n then |sgn x| else sgn x)
apply (induct n)
by (auto simp add:sgn-mult)

lemma poly-divide-filterlim-at-top:
fixes p q::real poly
defines ll≡(if degree q<degree p then

at 0
else if degree q=degree p then

nhds (lead-coeff q / lead-coeff p)
else if sgn-pos-inf q ∗ sgn-pos-inf p > 0 then

at-top
else

at-bot)
assumes p 6=0 q 6=0
shows filterlim (λx. poly q x / poly p x) ll at-top

proof −
define pp where pp=(λx. poly p x / x^(degree p))
define qq where qq=(λx. poly q x / x^(degree q))
define dd where dd=(λx::real. if degree p>degree q then 1/x^(degree p − degree

q) else
x^(degree q − degree p))

have divide-cong:∀ F x in at-top. poly q x / poly p x = qq x / pp x ∗ dd x
proof (rule eventually-at-top-linorderI [of 1])

fix x assume (x::real)≥1
then have x 6=0 by auto
then show poly q x / poly p x = qq x / pp x ∗ dd x

unfolding qq-def pp-def dd-def using assms
by (auto simp add:field-simps power-diff)

qed
have qqpp-tendsto:((λx. qq x / pp x) −−−→ lead-coeff q / lead-coeff p) at-top
proof −

have (qq −−−→ lead-coeff q) at-top
unfolding qq-def using poly-divide-tendsto-aux[of q]
by (auto elim!:filterlim-mono simp:at-top-le-at-infinity)

moreover have (pp −−−→ lead-coeff p) at-top
unfolding pp-def using poly-divide-tendsto-aux[of p]
by (auto elim!:filterlim-mono simp:at-top-le-at-infinity)

ultimately show ?thesis using ‹p 6=0 › by (auto intro!:tendsto-eq-intros)

13

qed

have ?thesis when degree q<degree p
proof −

have filterlim (λx. poly q x / poly p x) (at 0) at-top
proof (rule filterlim-atI)

show ((λx. poly q x / poly p x) −−−→ 0) at-top
using poly-divide-tendsto-0-at-infinity[OF that]
by (auto elim:filterlim-mono simp:at-top-le-at-infinity)

have ∀ F x in at-top. poly q x 6=0 ∀ F x in at-top. poly p x 6=0
using poly-eventually-not-zero[OF ‹q 6=0 ›] poly-eventually-not-zero[OF ‹p 6=0 ›]

filter-leD[OF at-top-le-at-infinity]
by auto

then show ∀ F x in at-top. poly q x / poly p x 6= 0
apply eventually-elim
by auto

qed
then show ?thesis unfolding ll-def using that by auto

qed
moreover have ?thesis when degree q=degree p
proof −

have ((λx. poly q x / poly p x) −−−→ lead-coeff q / lead-coeff p) at-top
using divide-cong qqpp-tendsto that unfolding dd-def
by (auto dest:tendsto-cong)

then show ?thesis unfolding ll-def using that by auto
qed
moreover have ?thesis when degree q>degree p sgn-pos-inf q ∗ sgn-pos-inf p >

0
proof −

have filterlim (λx. (qq x / pp x) ∗ dd x) at-top at-top
proof (subst filterlim-tendsto-pos-mult-at-top-iff [OF qqpp-tendsto])

show 0 < lead-coeff q / lead-coeff p using that(2) unfolding sgn-pos-inf-def
by (simp add: zero-less-divide-iff zero-less-mult-iff)

show filterlim dd at-top at-top
unfolding dd-def using that(1)
by (auto intro!:filterlim-pow-at-top simp:filterlim-ident)

qed
then have LIM x at-top. poly q x / poly p x :> at-top

using filterlim-cong[OF - - divide-cong] by blast
then show ?thesis unfolding ll-def using that by auto

qed
moreover have ?thesis when degree q>degree p ¬ sgn-pos-inf q ∗ sgn-pos-inf

p > 0
proof −

have filterlim (λx. (qq x / pp x) ∗ dd x) at-bot at-top
proof (subst filterlim-tendsto-neg-mult-at-bot-iff [OF qqpp-tendsto])

show lead-coeff q / lead-coeff p < 0
using that(2) ‹p 6=0 › ‹q 6=0 › unfolding sgn-pos-inf-def
by (metis divide-eq-0-iff divide-sgn leading-coeff-0-iff

14

linorder-neqE-linordered-idom sgn-divide sgn-greater)
show filterlim dd at-top at-top

unfolding dd-def using that(1)
by (auto intro!:filterlim-pow-at-top simp:filterlim-ident)

qed
then have LIM x at-top. poly q x / poly p x :> at-bot

using filterlim-cong[OF - - divide-cong] by blast
then show ?thesis unfolding ll-def using that by auto

qed
ultimately show ?thesis by linarith

qed

lemma poly-divide-filterlim-at-bot:
fixes p q::real poly
defines ll≡(if degree q<degree p then

at 0
else if degree q=degree p then

nhds (lead-coeff q / lead-coeff p)
else if sgn-neg-inf q ∗ sgn-neg-inf p > 0 then

at-top
else

at-bot)
assumes p 6=0 q 6=0
shows filterlim (λx. poly q x / poly p x) ll at-bot

proof −
define pp where pp=(λx. poly p x / x^(degree p))
define qq where qq=(λx. poly q x / x^(degree q))
define dd where dd=(λx::real. if degree p>degree q then 1/x^(degree p − degree

q) else
x^(degree q − degree p))

have divide-cong:∀ F x in at-bot. poly q x / poly p x = qq x / pp x ∗ dd x
proof (rule eventually-at-bot-linorderI [of −1])

fix x assume (x::real)≤−1
then have x 6=0 by auto
then show poly q x / poly p x = qq x / pp x ∗ dd x

unfolding qq-def pp-def dd-def using assms
by (auto simp add:field-simps power-diff)

qed
have qqpp-tendsto:((λx. qq x / pp x) −−−→ lead-coeff q / lead-coeff p) at-bot
proof −

have (qq −−−→ lead-coeff q) at-bot
unfolding qq-def using poly-divide-tendsto-aux[of q]
by (auto elim!:filterlim-mono simp:at-bot-le-at-infinity)

moreover have (pp −−−→ lead-coeff p) at-bot
unfolding pp-def using poly-divide-tendsto-aux[of p]
by (auto elim!:filterlim-mono simp:at-bot-le-at-infinity)

ultimately show ?thesis using ‹p 6=0 › by (auto intro!:tendsto-eq-intros)
qed

15

have ?thesis when degree q<degree p
proof −

have filterlim (λx. poly q x / poly p x) (at 0) at-bot
proof (rule filterlim-atI)

show ((λx. poly q x / poly p x) −−−→ 0) at-bot
using poly-divide-tendsto-0-at-infinity[OF that]
by (auto elim:filterlim-mono simp:at-bot-le-at-infinity)

have ∀ F x in at-bot. poly q x 6=0 ∀ F x in at-bot. poly p x 6=0
using poly-eventually-not-zero[OF ‹q 6=0 ›] poly-eventually-not-zero[OF ‹p 6=0 ›]

filter-leD[OF at-bot-le-at-infinity]
by auto

then show ∀ F x in at-bot. poly q x / poly p x 6= 0
by eventually-elim auto

qed
then show ?thesis unfolding ll-def using that by auto

qed
moreover have ?thesis when degree q=degree p
proof −

have ((λx. poly q x / poly p x) −−−→ lead-coeff q / lead-coeff p) at-bot
using divide-cong qqpp-tendsto that unfolding dd-def
by (auto dest:tendsto-cong)

then show ?thesis unfolding ll-def using that by auto
qed
moreover have ?thesis when degree q>degree p sgn-neg-inf q ∗ sgn-neg-inf p >

0
proof −

define cc where cc=lead-coeff q / lead-coeff p
have (cc > 0 ∧ even (degree q − degree p)) ∨ (cc<0 ∧ odd (degree q − degree

p))
proof −

have even (degree q − degree p) ←→
(even (degree q) ∧ even (degree p)) ∨ (odd (degree q) ∧ odd (degree p))

using ‹degree q>degree p› by auto
then show ?thesis
using that ‹p 6=0 › ‹q 6=0 › unfolding sgn-neg-inf-def cc-def zero-less-mult-iff

divide-less-0-iff zero-less-divide-iff
apply (simp add:if-split[of (<) 0] if-split[of (>) 0])
by argo

qed
moreover have filterlim (λx. (qq x / pp x) ∗ dd x) at-top at-bot

when cc>0 even (degree q − degree p)
proof (subst filterlim-tendsto-pos-mult-at-top-iff [OF qqpp-tendsto])

show 0 < lead-coeff q / lead-coeff p using ‹cc>0 › unfolding cc-def by auto
show filterlim dd at-top at-bot

unfolding dd-def using ‹degree q>degree p› that(2)
by (auto intro!:filterlim-pow-at-bot-even simp:filterlim-ident)

qed
moreover have filterlim (λx. (qq x / pp x) ∗ dd x) at-top at-bot

when cc<0 odd (degree q − degree p)

16

proof (subst filterlim-tendsto-neg-mult-at-top-iff [OF qqpp-tendsto])
show 0 > lead-coeff q / lead-coeff p using ‹cc<0 › unfolding cc-def by auto
show filterlim dd at-bot at-bot

unfolding dd-def using ‹degree q>degree p› that(2)
by (auto intro!:filterlim-pow-at-bot-odd simp:filterlim-ident)

qed
ultimately have filterlim (λx. (qq x / pp x) ∗ dd x) at-top at-bot

by blast
then have LIM x at-bot. poly q x / poly p x :> at-top

using filterlim-cong[OF - - divide-cong] by blast
then show ?thesis unfolding ll-def using that by auto

qed
moreover have ?thesis when degree q>degree p ¬ sgn-neg-inf q ∗ sgn-neg-inf

p > 0
proof −

define cc where cc=lead-coeff q / lead-coeff p
have (cc < 0 ∧ even (degree q − degree p)) ∨ (cc > 0 ∧ odd (degree q − degree

p))
proof −

have even (degree q − degree p) ←→
(even (degree q) ∧ even (degree p)) ∨ (odd (degree q) ∧ odd (degree p))

using ‹degree q>degree p› by auto
then show ?thesis
using that ‹p 6=0 › ‹q 6=0 › unfolding sgn-neg-inf-def cc-def zero-less-mult-iff

divide-less-0-iff zero-less-divide-iff
apply (simp add:if-split[of (<) 0] if-split[of (>) 0])
by (metis leading-coeff-0-iff linorder-neqE-linordered-idom)

qed
moreover have filterlim (λx. (qq x / pp x) ∗ dd x) at-bot at-bot

when cc<0 even (degree q − degree p)
proof (subst filterlim-tendsto-neg-mult-at-bot-iff [OF qqpp-tendsto])

show 0 > lead-coeff q / lead-coeff p using ‹cc<0 › unfolding cc-def by auto
show filterlim dd at-top at-bot

unfolding dd-def using ‹degree q>degree p› that(2)
by (auto intro!:filterlim-pow-at-bot-even simp:filterlim-ident)

qed
moreover have filterlim (λx. (qq x / pp x) ∗ dd x) at-bot at-bot

when cc>0 odd (degree q − degree p)
proof (subst filterlim-tendsto-pos-mult-at-bot-iff [OF qqpp-tendsto])

show 0 < lead-coeff q / lead-coeff p using ‹cc>0 › unfolding cc-def by auto
show filterlim dd at-bot at-bot

unfolding dd-def using ‹degree q>degree p› that(2)
by (auto intro!:filterlim-pow-at-bot-odd simp:filterlim-ident)

qed
ultimately have filterlim (λx. (qq x / pp x) ∗ dd x) at-bot at-bot

by blast
then have LIM x at-bot. poly q x / poly p x :> at-bot

using filterlim-cong[OF - - divide-cong] by blast
then show ?thesis unfolding ll-def using that by auto

17

qed
ultimately show ?thesis by linarith

qed

lemma sgnx-poly-times:
assumes F=at-bot ∨ F=at-top ∨ F=at-right x ∨ F=at-left x
shows sgnx (poly (p∗q)) F = sgnx (poly p) F ∗ sgnx (poly q) F
(is ?PQ = ?P ∗ ?Q)

proof −
have (poly p has-sgnx ?P) F

(poly q has-sgnx ?Q) F
by (rule sgnx-able-sgnx;use assms sgnx-able-poly in blast)+

from has-sgnx-times[OF this]
have (poly (p∗q) has-sgnx ?P∗?Q) F

by (simp flip:poly-mult)
moreover have (poly (p∗q) has-sgnx ?PQ) F

by (rule sgnx-able-sgnx;use assms sgnx-able-poly in blast)+
ultimately show ?thesis

using has-sgnx-unique assms by auto
qed

lemma sgnx-poly-plus:
assumes poly p x=0 poly q x 6=0 and F :F=at-right x ∨ F=at-left x
shows sgnx (poly (p+q)) F = sgnx (poly q) F (is ?L=?R)

proof −
have ((poly (p+q)) has-sgnx ?R) F
proof −

have sgnx (poly q) F = sgn (poly q x)
using F assms(2) sgnx-poly-nz(1) sgnx-poly-nz(2) by presburger

moreover have ((λx. poly (p+q) x) has-sgnx sgn (poly q x)) F
proof (rule tendsto-nonzero-has-sgnx)

have ((poly p) −−−→ 0) F
by (metis F assms(1) poly-tendsto(2) poly-tendsto(3))

then have ((λx. poly p x + poly q x) −−−→ poly q x) F
apply (elim tendsto-add[where a=0 ,simplified])
using F poly-tendsto(2) poly-tendsto(3) by blast

then show ((λx. poly (p + q) x) −−−→ poly q x) F
by auto

qed fact
ultimately show ?thesis by metis

qed
from has-sgnx-imp-sgnx[OF this] F
show ?thesis by auto

qed

lemma sign-r-pos-plus-imp:

18

assumes sign-r-pos p x sign-r-pos q x
shows sign-r-pos (p+q) x
using assms unfolding sign-r-pos-def
by eventually-elim auto

lemma cindex-poly-combine:
assumes a<b b<c
shows cindex-poly a b q p + jump-poly q p b + cindex-poly b c q p = cindex-poly

a c q p
proof (cases p 6=0)

case True
define A B C D where A = {x. poly p x = 0 ∧ a < x ∧ x < c}

and B = {x. poly p x = 0 ∧ a < x ∧ x < b}
and C = (if poly p b = 0 then {b} else {})
and D = {x. poly p x = 0 ∧ b < x ∧ x < c}

let ?sum=sum (λx. jump-poly q p x)

have cindex-poly a c q p = ?sum A
unfolding cindex-poly-def A-def by simp

also have ... = ?sum (B ∪ C ∪ D)
apply (rule arg-cong2 [where f=sum])
unfolding A-def B-def C-def D-def using less-linear assms by auto

also have ... = ?sum B + ?sum C + ?sum D
proof −

have finite B finite C finite D
unfolding B-def C-def D-def using True
by (auto simp add: poly-roots-finite)

moreover have B ∩ C = {} C ∩ D = {} B ∩ D = {}
unfolding B-def C-def D-def using assms by auto

ultimately show ?thesis
by (subst sum.union-disjoint;auto)+

qed
also have ... = cindex-poly a b q p + jump-poly q p b + cindex-poly b c q p
proof −

have ?sum C = jump-poly q p b
unfolding C-def using jump-poly-not-root by auto

then show ?thesis unfolding cindex-poly-def B-def D-def
by auto

qed
finally show ?thesis by simp

qed auto

lemma coprime-linear-comp: — TODO: need to be generalised
fixes b c::real
defines r0 ≡ [:b,c:]
assumes coprime p q c 6=0
shows coprime (p ◦p r0) (q ◦p r0)

proof −

19

define g where g = gcd (p ◦p r0) (q ◦p r0)
define p ′ where p ′ = (p ◦p r0) div g
define q ′ where q ′ = (q ◦p r0) div g
define r1 where r1 = [:−b/c,1/c:]

have r-id:
r0 ◦p r1 = [:0 ,1 :]
r1 ◦p r0 = [:0 ,1 :]

unfolding r0-def r1-def using ‹c 6=0 ›
by (simp add: pcompose-pCons)+

have p = (g ◦p r1) ∗ (p ′ ◦p r1)
proof −

from r-id have p = p ◦p (r0 ◦p r1)
by (metis pcompose-idR)

also have ... = (g ∗ p ′) ◦p r1
unfolding g-def p ′-def by (auto simp:pcompose-assoc)

also have ... = (g ◦p r1) ∗ (p ′ ◦p r1)
unfolding pcompose-mult by simp

finally show ?thesis .
qed
moreover have q = (g ◦p r1) ∗ (q ′ ◦p r1)
proof −

from r-id have q = q ◦p (r0 ◦p r1)
by (metis pcompose-idR)

also have ... = (g ∗ q ′) ◦p r1
unfolding g-def q ′-def by (auto simp:pcompose-assoc)

also have ... = (g ◦p r1) ∗ (q ′ ◦p r1)
unfolding pcompose-mult by simp

finally show ?thesis .
qed
ultimately have (g ◦p r1) dvd gcd p q by simp
then have g ◦p r1 dvd 1

using ‹coprime p q› by auto
from pcompose-hom.hom-dvd-1 [OF this]
have is-unit (g ◦p (r1 ◦p r0))

by (auto simp:pcompose-assoc)
then have is-unit g

using r-id pcompose-idR by auto
then show coprime (p ◦p r0) (q ◦p r0) unfolding g-def

using is-unit-gcd by blast
qed

lemma finite-ReZ-segments-poly-rectpath:
finite-ReZ-segments (poly p ◦ rectpath a b) z

unfolding rectpath-def Let-def path-compose-join
by ((subst finite-ReZ-segments-joinpaths

|intro path-poly-comp conjI);
(simp add:poly-linepath-comp finite-ReZ-segments-poly-of-real path-compose-join

20

pathfinish-compose pathstart-compose poly-pcompose)?)+

lemma valid-path-poly-linepath:
fixes a b:: ′a::real-normed-field
shows valid-path (poly p o linepath a b)

proof (rule valid-path-compose)
show valid-path (linepath a b) by simp
show

∧
x. x ∈ path-image (linepath a b) =⇒ poly p field-differentiable at x

by simp
show continuous-on (path-image (linepath a b)) (deriv (poly p))

unfolding deriv-pderiv by (auto intro:continuous-intros)
qed

lemma valid-path-poly-rectpath: valid-path (poly p o rectpath a b)
unfolding rectpath-def Let-def path-compose-join
by (simp add: pathfinish-compose pathstart-compose valid-path-poly-linepath)

2.2 Sign difference
definition psign-diff :: real poly ⇒real poly ⇒ real ⇒ int where

psign-diff p q x = (if poly p x = 0 ∧ poly q x = 0 then
1 else |sign (poly p x) − sign (poly q x)|)

lemma psign-diff-alt:
assumes coprime p q
shows psign-diff p q x = |sign (poly p x) − sign (poly q x)|
unfolding psign-diff-def by (meson assms coprime-poly-0)

lemma psign-diff-0 [simp]:
psign-diff 0 q x = 1
psign-diff p 0 x = 1
unfolding psign-diff-def by (auto simp add:sign-def)

lemma psign-diff-poly-commute:
psign-diff p q x = psign-diff q p x
unfolding psign-diff-def
by (metis abs-minus-commute gcd.commute)

lemma normalize-real-poly:
normalize p = smult (1/lead-coeff p) (p::real poly)
unfolding normalize-poly-def
by (smt (z3) div-unit-factor normalize-eq-0-iff normalize-poly-def

normalize-unit-factor smult-eq-0-iff smult-eq-iff
smult-normalize-field-eq unit-factor-1)

lemma psign-diff-cancel:
assumes poly r x 6=0
shows psign-diff (r∗p) (r∗q) x = psign-diff p q x

21

proof −
have poly (r ∗ p) x = 0 ←→ poly p x=0

by (simp add: assms)
moreover have poly (r ∗ q) x = 0 ←→ poly q x=0 by (simp add: assms)
moreover have |sign (poly (r ∗ p) x) − sign (poly (r ∗ q) x)|

= |sign (poly p x) − sign (poly q x)|
proof −

have |sign (poly (r ∗ p) x) − sign (poly (r ∗ q) x)|
= |sign (poly r x) ∗ (sign (poly p x) − sign (poly q x))|

by (simp add:algebra-simps sign-times)
also have ... = |sign (poly r x) |

∗ |sign (poly p x) − sign (poly q x)|
unfolding abs-mult by simp

also have ... = |sign (poly p x) − sign (poly q x)|
by (simp add: Sturm-Tarski.sign-def assms)

finally show ?thesis .
qed
ultimately show ?thesis

unfolding psign-diff-def by auto
qed

lemma psign-diff-clear : psign-diff p q x = psign-diff 1 (p ∗ q) x
unfolding psign-diff-def
apply (simp add:sign-times)
by (simp add: sign-def)

lemma psign-diff-linear-comp:
fixes b c::real
defines h ≡ (λp. pcompose p [:b,c:])
shows psign-diff (h p) (h q) x = psign-diff p q (c ∗ x + b)
unfolding psign-diff-def h-def poly-pcompose
by (smt (verit, del-insts) mult.commute mult-eq-0-iff poly-0 poly-pCons)

2.3 Alternative definition of cross
definition cross-alt :: real poly ⇒real poly ⇒ real ⇒ real ⇒ int where

cross-alt p q a b= psign-diff p q a − psign-diff p q b

lemma cross-alt-0 [simp]:
cross-alt 0 q a b = 0
cross-alt p 0 a b = 0
unfolding cross-alt-def by simp-all

lemma cross-alt-poly-commute:
cross-alt p q a b = cross-alt q p a b
unfolding cross-alt-def using psign-diff-poly-commute by auto

lemma cross-alt-clear :
cross-alt p q a b = cross-alt 1 (p∗q) a b

22

unfolding cross-alt-def using psign-diff-clear by metis

lemma cross-alt-alt:
cross-alt p q a b = sign (poly (p∗q) b) − sign (poly (p∗q) a)
apply (subst cross-alt-clear)
unfolding cross-alt-def psign-diff-def by (auto simp add:sign-def)

lemma cross-alt-coprime-0 :
assumes coprime p q p=0∨q=0
shows cross-alt p q a b=0

proof −
have ?thesis when p=0
proof −

have is-unit q using that ‹coprime p q›
by simp

then obtain a where a 6=0 q=[:a:] using is-unit-pCons-ex-iff by blast
then show ?thesis using that unfolding cross-alt-def by auto

qed
moreover have ?thesis when q=0
proof −

have is-unit p using that ‹coprime p q›
by simp

then obtain a where a 6=0 p=[:a:] using is-unit-pCons-ex-iff by blast
then show ?thesis using that unfolding cross-alt-def by auto

qed
ultimately show ?thesis using ‹p=0∨q=0 › by auto

qed

lemma cross-alt-cancel:
assumes poly q a 6=0 poly q b 6=0
shows cross-alt (q ∗ r) (q ∗ s) a b = cross-alt r s a b
unfolding cross-alt-def using psign-diff-cancel assms by auto

lemma cross-alt-noroot:
assumes a<b and ∀ x. a≤x ∧ x≤b −→ poly (p∗q) x 6=0
shows cross-alt p q a b = 0

proof −
define pq where pq = p∗q
have cross-alt p q a b = psign-diff 1 pq a − psign-diff 1 pq b

apply (subst cross-alt-clear)
unfolding cross-alt-def pq-def by simp

also have ... = |1 − sign (poly pq a)| − |1 − sign (poly pq b)|
unfolding psign-diff-def by simp

also have ... = sign (poly pq b) − sign (poly pq a)
unfolding sign-def by auto

also have ... = 0
proof (rule ccontr)

assume sign (poly pq b) − sign (poly pq a) 6= 0
then have poly pq a ∗ poly pq b < 0

23

by (smt (verit, best) Sturm-Tarski.sign-def assms(1) assms(2)
divisors-zero eq-iff-diff-eq-0 pq-def zero-less-mult-pos zero-less-mult-pos2)

from poly-IVT [OF ‹a<b› this]
have ∃ x>a. x < b ∧ poly pq x = 0 .
then show False using ‹∀ x. a≤x ∧ x≤b −→ poly (p∗q) x 6=0 › ‹a<b›

apply (fold pq-def)
by auto

qed
finally show ?thesis .

qed

lemma cross-alt-linear-comp:
fixes b c::real
defines h ≡ (λp. pcompose p [:b,c:])
shows cross-alt (h p) (h q) lb ub = cross-alt p q (c ∗ lb + b) (c ∗ ub + b)
unfolding cross-alt-def h-def
by (subst (1 2) psign-diff-linear-comp;simp)

2.4 Alternative sign variation sequencse
fun changes-alt:: (′a ::linordered-idom) list ⇒ int where

changes-alt [] = 0 |
changes-alt [-] = 0 |
changes-alt (x1#x2#xs) = abs(sign x1 − sign x2) + changes-alt (x2#xs)

definition changes-alt-poly-at::(′a ::linordered-idom) poly list ⇒ ′a ⇒ int where
changes-alt-poly-at ps a= changes-alt (map (λp. poly p a) ps)

definition changes-alt-itv-smods:: real ⇒ real ⇒real poly ⇒ real poly ⇒ int
where

changes-alt-itv-smods a b p q= (let ps= smods p q
in changes-alt-poly-at ps a − changes-alt-poly-at ps b)

lemma changes-alt-itv-smods-rec:
assumes a<b coprime p q
shows changes-alt-itv-smods a b p q = cross-alt p q a b + changes-alt-itv-smods

a b q (−(p mod q))
proof (cases p = 0 ∨ q = 0 ∨ q dvd p)

case True
moreover have p=0 ∨ q=0 =⇒ ?thesis

using cross-alt-coprime-0
unfolding changes-alt-itv-smods-def changes-alt-poly-at-def by fastforce

moreover have [[p 6=0 ;q 6=0 ;p mod q = 0]] =⇒ ?thesis
unfolding changes-alt-itv-smods-def changes-alt-poly-at-def cross-alt-def

psign-diff-alt[OF ‹coprime p q›]
by (simp add:sign-times)

ultimately show ?thesis

24

by auto (auto elim: dvdE)
next

case False
hence p 6=0 q 6=0 p mod q 6=0 by auto
then obtain ps where ps:smods p q=p#q#−(p mod q)#ps smods q (−(p mod

q)) = q#−(p mod q)#ps
by auto

define changes-diff where changes-diff≡λx. changes-alt-poly-at (p#q#−(p mod
q)#ps) x
− changes-alt-poly-at (q#−(p mod q)#ps) x

have changes-diff a − changes-diff b=cross-alt p q a b
unfolding changes-diff-def changes-alt-poly-at-def cross-alt-def

psign-diff-alt[OF ‹coprime p q›]
by simp

thus ?thesis unfolding changes-alt-itv-smods-def changes-diff-def changes-alt-poly-at-def
ps

by force
qed

2.5 jumpF on polynomials
definition jumpF-polyR:: real poly ⇒ real poly ⇒ real ⇒ real where

jumpF-polyR q p a = jumpF (λx. poly q x / poly p x) (at-right a)

definition jumpF-polyL:: real poly ⇒ real poly ⇒ real ⇒ real where
jumpF-polyL q p a = jumpF (λx. poly q x / poly p x) (at-left a)

definition jumpF-poly-top:: real poly ⇒ real poly ⇒ real where
jumpF-poly-top q p = jumpF (λx. poly q x / poly p x) at-top

definition jumpF-poly-bot:: real poly ⇒ real poly ⇒ real where
jumpF-poly-bot q p = jumpF (λx. poly q x / poly p x) at-bot

lemma jumpF-polyR-0 [simp]: jumpF-polyR 0 p a = 0 jumpF-polyR q 0 a = 0
unfolding jumpF-polyR-def by auto

lemma jumpF-polyL-0 [simp]: jumpF-polyL 0 p a = 0 jumpF-polyL q 0 a = 0
unfolding jumpF-polyL-def by auto

lemma jumpF-polyR-mult-cancel:
assumes p ′6=0
shows jumpF-polyR (p ′ ∗ q) (p ′ ∗ p) a = jumpF-polyR q p a

unfolding jumpF-polyR-def
proof (rule jumpF-cong)

obtain ub where a < ub ∀ z. a < z ∧ z ≤ ub −→ poly p ′ z 6= 0
using next-non-root-interval[OF ‹p ′6=0 ›,of a] by auto

then show ∀ F x in at-right a. poly (p ′ ∗ q) x / poly (p ′ ∗ p) x = poly q x / poly
p x

25

apply (unfold eventually-at-right)
apply (intro exI [where x=ub])
by auto

qed simp

lemma jumpF-polyL-mult-cancel:
assumes p ′6=0
shows jumpF-polyL (p ′ ∗ q) (p ′ ∗ p) a = jumpF-polyL q p a

unfolding jumpF-polyL-def
proof (rule jumpF-cong)

obtain lb where lb < a ∀ z. lb ≤ z ∧ z < a −→ poly p ′ z 6= 0
using last-non-root-interval[OF ‹p ′6=0 ›,of a] by auto

then show ∀ F x in at-left a. poly (p ′ ∗ q) x / poly (p ′ ∗ p) x = poly q x / poly
p x

apply (unfold eventually-at-left)
apply (intro exI [where x=lb])
by auto

qed simp

lemma jumpF-poly-noroot:
assumes poly p a 6=0
shows jumpF-polyL q p a = 0 jumpF-polyR q p a = 0
subgoal unfolding jumpF-polyL-def using assms

apply (intro jumpF-not-infinity)
by (auto intro!:continuous-intros)

subgoal unfolding jumpF-polyR-def using assms
apply (intro jumpF-not-infinity)
by (auto intro!:continuous-intros)

done

lemma jumpF-polyR-coprime ′:
assumes poly p x 6=0 ∨ poly q x 6=0
shows jumpF-polyR q p x = (if p 6= 0 ∧ q 6= 0 ∧ poly p x=0 then

if sign-r-pos p x ←→ poly q x>0 then 1/2 else − 1/2
else 0)
proof (cases p=0 ∨ q=0 ∨ poly p x 6=0)

case True
then show ?thesis using jumpF-poly-noroot by fastforce

next
case False
then have asm:p 6=0 q 6=0 poly p x=0 by auto
then have poly q x 6=0 using assms using coprime-poly-0 by blast
have ?thesis when sign-r-pos p x ←→ poly q x>0
proof −

have (poly p has-sgnx sgn (poly q x)) (at-right x)
by (smt (z3) False ‹poly q x 6= 0 › has-sgnx-imp-sgnx

poly-has-sgnx-values(2) sgn-real-def sign-r-pos-sgnx-iff that
trivial-limit-at-right-real)

then have LIM x at-right x. poly q x / poly p x :> at-top

26

apply (subst filterlim-divide-at-bot-at-top-iff [of - poly q x])
apply (auto simp add:‹poly q x 6=0 ›)
by (metis asm(3) poly-tendsto(3))

then have jumpF-polyR q p x = 1/2
unfolding jumpF-polyR-def jumpF-def by auto

then show ?thesis using that False by auto
qed
moreover have ?thesis when ¬ (sign-r-pos p x ←→ poly q x>0)
proof −

have (poly p has-sgnx − sgn (poly q x)) (at-right x)
proof −

have (0 ::real) < 1 ∨ ¬ (1 ::real) < 0 ∧ sign-r-pos p x
∨ (poly p has-sgnx − sgn (poly q x)) (at-right x)

by simp
then show ?thesis
by (metis (no-types) False ‹poly q x 6= 0 › add.inverse-inverse has-sgnx-imp-sgnx

neg-less-0-iff-less poly-has-sgnx-values(2) sgn-if sgn-less sign-r-pos-sgnx-iff

that trivial-limit-at-right-real)
qed
then have LIM x at-right x. poly q x / poly p x :> at-bot

apply (subst filterlim-divide-at-bot-at-top-iff [of - poly q x])
apply (auto simp add:‹poly q x 6=0 ›)
by (metis asm(3) poly-tendsto(3))

then have jumpF-polyR q p x = − 1/2
unfolding jumpF-polyR-def jumpF-def by auto

then show ?thesis using that False by auto
qed
ultimately show ?thesis by auto

qed

lemma jumpF-polyR-coprime:
assumes coprime p q
shows jumpF-polyR q p x = (if p 6= 0 ∧ q 6= 0 ∧ poly p x=0 then

if sign-r-pos p x ←→ poly q x>0 then 1/2 else − 1/2
else 0)

apply (rule jumpF-polyR-coprime ′)
using assms coprime-poly-0 by blast

lemma jumpF-polyL-coprime ′:
assumes poly p x 6=0 ∨ poly q x 6=0
shows jumpF-polyL q p x = (if p 6= 0 ∧ q 6= 0 ∧ poly p x=0 then

if even (order x p) ←→ sign-r-pos p x ←→ poly q x>0 then 1/2 else
− 1/2 else 0)
proof (cases p=0 ∨ q=0 ∨ poly p x 6=0)

case True
then show ?thesis using jumpF-poly-noroot by fastforce

next

27

case False
then have asm:p 6=0 q 6=0 poly p x=0 by auto
then have poly q x 6=0 using assms using coprime-poly-0 by blast
have ?thesis when even (order x p) ←→ sign-r-pos p x ←→ poly q x>0
proof −

consider (lt) poly q x>0 | (gt) poly q x<0 using ‹poly q x 6=0 › by linarith
then have sgnx (poly p) (at-left x) = sgn (poly q x)

apply cases
subgoal using that sign-r-pos-sgnx-iff poly-sgnx-values[OF ‹p 6=0 ›,of x]

apply (subst poly-sgnx-left-right[OF ‹p 6=0 ›])
by auto

subgoal using that sign-r-pos-sgnx-iff poly-sgnx-values[OF ‹p 6=0 ›,of x]
apply (subst poly-sgnx-left-right[OF ‹p 6=0 ›])
by auto

done
then have (poly p has-sgnx sgn (poly q x)) (at-left x)

by (metis sgnx-able-poly(2) sgnx-able-sgnx)
then have LIM x at-left x. poly q x / poly p x :> at-top

apply (subst filterlim-divide-at-bot-at-top-iff [of - poly q x])
apply (auto simp add:‹poly q x 6=0 ›)
by (metis asm(3) poly-tendsto(2))

then have jumpF-polyL q p x = 1/2
unfolding jumpF-polyL-def jumpF-def by auto

then show ?thesis using that False by auto
qed
moreover have ?thesis when ¬ (even (order x p) ←→ sign-r-pos p x ←→ poly

q x>0)
proof −

consider (lt) poly q x>0 | (gt) poly q x<0 using ‹poly q x 6=0 › by linarith
then have sgnx (poly p) (at-left x) = − sgn (poly q x)

apply cases
subgoal using that sign-r-pos-sgnx-iff poly-sgnx-values[OF ‹p 6=0 ›,of x]

apply (subst poly-sgnx-left-right[OF ‹p 6=0 ›])
by auto

subgoal using that sign-r-pos-sgnx-iff poly-sgnx-values[OF ‹p 6=0 ›,of x]
apply (subst poly-sgnx-left-right[OF ‹p 6=0 ›])
by auto

done
then have (poly p has-sgnx − sgn (poly q x)) (at-left x)

by (metis sgnx-able-poly(2) sgnx-able-sgnx)
then have LIM x at-left x. poly q x / poly p x :> at-bot

apply (subst filterlim-divide-at-bot-at-top-iff [of - poly q x])
apply (auto simp add:‹poly q x 6=0 ›)
by (metis asm(3) poly-tendsto(2))

then have jumpF-polyL q p x = − 1/2
unfolding jumpF-polyL-def jumpF-def by auto

then show ?thesis using that False by auto
qed
ultimately show ?thesis by auto

28

qed

lemma jumpF-polyL-coprime:
assumes coprime p q
shows jumpF-polyL q p x = (if p 6= 0 ∧ q 6= 0 ∧ poly p x=0 then

if even (order x p) ←→ sign-r-pos p x ←→ poly q x>0 then 1/2 else
− 1/2 else 0)

apply (rule jumpF-polyL-coprime ′)
using assms coprime-poly-0 by blast

lemma jumpF-times:
assumes tendsto:(f −−−→ c) F and c 6=0 F 6=bot
shows jumpF (λx. f x ∗ g x) F = sgn c ∗ jumpF g F

proof −
have c>0 ∨ c<0 using ‹c 6=0 › by auto
moreover have ?thesis when c>0
proof −

note filterlim-tendsto-pos-mult-at-top-iff [OF tendsto ‹c>0 ›,of g]
moreover note filterlim-tendsto-pos-mult-at-bot-iff [OF tendsto ‹c>0 ›,of g]
moreover have sgn c = 1 using ‹c>0 › by auto
ultimately show ?thesis unfolding jumpF-def by auto

qed
moreover have ?thesis when c<0
proof −

define atbot where atbot = filterlim g at-bot F
define attop where attop = filterlim g at-top F
have jumpF (λx. f x ∗ g x) F = (if atbot then 1 / 2 else if attop then − 1 / 2

else 0)
proof −

note filterlim-tendsto-neg-mult-at-top-iff [OF tendsto ‹c<0 ›,of g]
moreover note filterlim-tendsto-neg-mult-at-bot-iff [OF tendsto ‹c<0 ›,of g]
ultimately show ?thesis unfolding jumpF-def atbot-def attop-def by auto

qed
also have ... = − (if attop then 1 / 2 else if atbot then − 1 / 2 else 0)
proof −

have False when atbot attop
using filterlim-at-top-at-bot[OF - - ‹F 6=bot›] that unfolding atbot-def

attop-def by auto
then show ?thesis by fastforce

qed
also have ... = sgn c ∗ jumpF g F

using ‹c<0 › unfolding jumpF-def attop-def atbot-def by auto
finally show ?thesis .

qed
ultimately show ?thesis by auto

qed

lemma jumpF-polyR-inverse-add:
assumes coprime p q

29

shows jumpF-polyR q p x + jumpF-polyR p q x = jumpF-polyR 1 (q∗p) x
proof (cases p=0 ∨ q=0)

case True
then show ?thesis by auto

next
case False
have jumpF-add:

jumpF-polyR q p x= jumpF-polyR 1 (q∗p) x when poly p x=0 coprime p q for
p q

proof (cases p=0)
case True
then show ?thesis by auto

next
case False
have poly q x 6=0 using that coprime-poly-0 by blast
then have q 6=0 by auto
moreover have sign-r-pos p x = (0 < poly q x) ←→ sign-r-pos (q ∗ p) x

using sign-r-pos-mult[OF ‹q 6=0 › ‹p 6=0 ›] sign-r-pos-rec[OF ‹q 6=0 ›] ‹poly q
x 6=0 ›

by auto
ultimately show ?thesis using ‹poly p x=0 ›
unfolding jumpF-polyR-coprime[OF ‹coprime p q›,of x] jumpF-polyR-coprime[of

q∗p 1 x,simplified]
by auto

qed
have False when poly p x=0 poly q x=0

using ‹coprime p q› that coprime-poly-0 by blast
moreover have ?thesis when poly p x=0 poly q x 6=0
proof −

have jumpF-polyR p q x = 0 using jumpF-poly-noroot[OF ‹poly q x 6=0 ›] by
auto

then show ?thesis using jumpF-add[OF ‹poly p x=0 › ‹coprime p q›] by auto
qed
moreover have ?thesis when poly p x 6=0 poly q x=0
proof −

have jumpF-polyR q p x = 0 using jumpF-poly-noroot[OF ‹poly p x 6=0 ›] by
auto

then show ?thesis using jumpF-add[OF ‹poly q x=0 ›,of p] ‹coprime p q›
by (simp add: ac-simps)

qed
moreover have ?thesis when poly p x 6=0 poly q x 6=0

by (simp add: jumpF-poly-noroot(2) that(1) that(2))
ultimately show ?thesis by auto

qed

lemma jumpF-polyL-inverse-add:
assumes coprime p q
shows jumpF-polyL q p x + jumpF-polyL p q x = jumpF-polyL 1 (q∗p) x

proof (cases p=0 ∨ q=0)

30

case True
then show ?thesis by auto

next
case False
have jumpF-add:

jumpF-polyL q p x= jumpF-polyL 1 (q∗p) x when poly p x=0 coprime p q for
p q

proof (cases p=0)
case True
then show ?thesis by auto

next
case False
have poly q x 6=0 using that coprime-poly-0 by blast
then have q 6=0 by auto
moreover have sign-r-pos p x = (0 < poly q x) ←→ sign-r-pos (q ∗ p) x

using sign-r-pos-mult[OF ‹q 6=0 › ‹p 6=0 ›] sign-r-pos-rec[OF ‹q 6=0 ›] ‹poly q
x 6=0 ›

by auto
moreover have order x p = order x (q ∗ p)

by (metis ‹poly q x 6= 0 › add-cancel-right-left divisors-zero order-mult or-
der-root)

ultimately show ?thesis using ‹poly p x=0 ›
unfolding jumpF-polyL-coprime[OF ‹coprime p q›,of x] jumpF-polyL-coprime[of

q∗p 1 x,simplified]
by auto

qed
have False when poly p x=0 poly q x=0

using ‹coprime p q› that coprime-poly-0 by blast
moreover have ?thesis when poly p x=0 poly q x 6=0
proof −

have jumpF-polyL p q x = 0 using jumpF-poly-noroot[OF ‹poly q x 6=0 ›] by
auto

then show ?thesis using jumpF-add[OF ‹poly p x=0 › ‹coprime p q›] by auto
qed
moreover have ?thesis when poly p x 6=0 poly q x=0
proof −

have jumpF-polyL q p x = 0 using jumpF-poly-noroot[OF ‹poly p x 6=0 ›] by
auto

then show ?thesis using jumpF-add[OF ‹poly q x=0 ›,of p] ‹coprime p q›
by (simp add: ac-simps)

qed
moreover have ?thesis when poly p x 6=0 poly q x 6=0

by (simp add: jumpF-poly-noroot that(1) that(2))
ultimately show ?thesis by auto

qed

lemma jumpF-polyL-smult-1 :
jumpF-polyL (smult c q) p x = sgn c ∗ jumpF-polyL q p x

31

proof (cases c=0)
case True
then show ?thesis by auto

next
case False
then show ?thesis

unfolding jumpF-polyL-def
apply (subst jumpF-times[of λ-. c,symmetric])
by auto

qed

lemma jumpF-polyR-smult-1 :
jumpF-polyR (smult c q) p x = sgn c ∗ jumpF-polyR q p x

proof (cases c=0)
case True
then show ?thesis by auto

next
case False
then show ?thesis

unfolding jumpF-polyR-def using False
apply (subst jumpF-times[of λ-. c,symmetric])
by auto

qed

lemma
shows jumpF-polyR-mod:jumpF-polyR q p x = jumpF-polyR (q mod p) p x and

jumpF-polyL-mod:jumpF-polyL q p x = jumpF-polyL (q mod p) p x
proof −

define f where f=(λx. poly (q div p) x)
define g where g=(λx. poly (q mod p) x / poly p x)
have jumpF-eq:jumpF (λx. poly q x / poly p x) (at y within S) = jumpF g (at y

within S)
when p 6=0 for y S

proof −
let ?F = at y within S
have ∀ F x in at y within S . poly p x 6= 0

using eventually-poly-nz-at-within[OF ‹p 6=0 ›,of y S] .
then have eventually (λx. (poly q x / poly p x) = (f x+ g x)) ?F
proof (rule eventually-mono)

fix x
assume P: poly p x 6= 0
have poly q x = poly (q div p ∗ p + q mod p) x

by simp
also have . . . = f x ∗ poly p x + poly (q mod p) x

by (simp only: poly-add poly-mult f-def g-def)
moreover have poly (q mod p) x = g x ∗ poly p x

using P by (simp add: g-def)
ultimately show poly q x / poly p x = f x + g x

32

using P by simp
qed
then have jumpF (λx. poly q x / poly p x) ?F = jumpF (λx. f x+ g x) ?F

by (intro jumpF-cong,auto)
also have ... = jumpF g ?F
proof −

have (f −−−→ f y) (at y within S)
unfolding f-def by (intro tendsto-intros)

from filterlim-tendsto-add-at-bot-iff [OF this,of g] filterlim-tendsto-add-at-top-iff [OF
this,of g]

show ?thesis unfolding jumpF-def by auto
qed
finally show ?thesis .

qed
show jumpF-polyR q p x = jumpF-polyR (q mod p) p x

apply (cases p=0)
subgoal by auto
subgoal using jumpF-eq unfolding g-def jumpF-polyR-def by auto
done

show jumpF-polyL q p x = jumpF-polyL (q mod p) p x
apply (cases p=0)
subgoal by auto
subgoal using jumpF-eq unfolding g-def jumpF-polyL-def by auto
done

qed

lemma
assumes order x p ≤ order x r
shows jumpF-polyR-order-leq: jumpF-polyR (r+q) p x = jumpF-polyR q p x

and jumpF-polyL-order-leq: jumpF-polyL (r+q) p x = jumpF-polyL q p x
proof −

define f g h where f=(λx. poly (q + r) x / poly p x)
and g=(λx. poly q x / poly p x)
and h=(λx. poly r x / poly p x)

have ∃ c. h −x→ c if p 6=0 r 6=0
proof −

define xo where xo=[:− x, 1 :] ^ order x p
obtain p ′ where p = xo ∗ p ′ ¬ [:− x, 1 :] dvd p ′

using order-decomp[OF ‹p 6=0 ›,of x] unfolding xo-def by auto
define r ′ where r ′= r div xo
define h ′ where h ′ = (λx. poly r ′ x/ poly p ′ x)

have ∀ F x in at x. h x = h ′ x
proof −

obtain S where open S x∈S by blast
moreover have h w = h ′ w if w∈S w 6=x for w
proof −

have r=xo ∗ r ′

33

proof −
have xo dvd r

unfolding xo-def using ‹r 6=0 › assms
by (subst order-divides) simp

then show ?thesis unfolding r ′-def by simp
qed
moreover have poly xo w 6=0

unfolding xo-def using ‹w 6=x› by simp
moreover note ‹p = xo ∗ p ′›
ultimately show ?thesis

unfolding h-def h ′-def by auto
qed
ultimately show ?thesis

unfolding eventually-at-topological by auto
qed
moreover have h ′−x→ h ′ x
proof −

have poly p ′ x 6=0
using ‹¬ [:− x, 1 :] dvd p ′› poly-eq-0-iff-dvd by blast

then show ?thesis
unfolding h ′-def
by (auto intro!:tendsto-eq-intros)

qed
ultimately have h −x→ h ′ x

using tendsto-cong by auto
then show ?thesis by auto

qed
then obtain c where left:(h −−−→ c) (at-left x)

and right:(h −−−→ c) (at-right x)
if p 6=0 r 6=0

unfolding filterlim-at-split by auto

show jumpF-polyR (r+q) p x = jumpF-polyR q p x
proof (cases p=0 ∨ r=0)

case False
have jumpF-polyR (r+q) p x =

(if filterlim (λx. h x + g x) at-top (at-right x)
then 1 / 2
else if filterlim (λx. h x + g x) at-bot (at-right x)
then − 1 / 2 else 0)

unfolding jumpF-polyR-def jumpF-def g-def h-def
by (simp add:poly-add add-divide-distrib)

also have ... =
(if filterlim g at-top (at-right x) then 1 / 2

else if filterlim g at-bot (at-right x) then − 1 / 2 else 0)
using filterlim-tendsto-add-at-top-iff [OF right]

filterlim-tendsto-add-at-bot-iff [OF right] False
by simp

also have ... = jumpF-polyR q p x

34

unfolding jumpF-polyR-def jumpF-def g-def by simp
finally show jumpF-polyR (r + q) p x = jumpF-polyR q p x .

qed auto

show jumpF-polyL (r+q) p x = jumpF-polyL q p x
proof (cases p=0 ∨ r=0)

case False
have jumpF-polyL (r+q) p x =

(if filterlim (λx. h x + g x) at-top (at-left x)
then 1 / 2
else if filterlim (λx. h x + g x) at-bot (at-left x)
then − 1 / 2 else 0)

unfolding jumpF-polyL-def jumpF-def g-def h-def
by (simp add:poly-add add-divide-distrib)

also have ... =
(if filterlim g at-top (at-left x) then 1 / 2

else if filterlim g at-bot (at-left x) then − 1 / 2 else 0)
using filterlim-tendsto-add-at-top-iff [OF left]

filterlim-tendsto-add-at-bot-iff [OF left] False
by simp

also have ... = jumpF-polyL q p x
unfolding jumpF-polyL-def jumpF-def g-def by simp

finally show jumpF-polyL (r + q) p x = jumpF-polyL q p x .
qed auto

qed

lemma
assumes order x q < order x r q 6=0
shows jumpF-polyR-order-le:jumpF-polyR (r+q) p x = jumpF-polyR q p x

and jumpF-polyL-order-le:jumpF-polyL (r+q) p x = jumpF-polyL q p x
proof −

have jumpF-polyR (r+q) p x = jumpF-polyR q p x
jumpF-polyL (r+q) p x = jumpF-polyL q p x
if p=0 ∨ r=0 ∨ order x p ≤ order x r
using jumpF-polyR-order-leq jumpF-polyL-order-leq that by auto

moreover have
jumpF-polyR (r+q) p x = jumpF-polyR q p x
jumpF-polyL (r+q) p x = jumpF-polyL q p x
if p 6=0 r 6=0 order x p > order x r

proof −
define xo where xo=[:− x, 1 :] ^ order x q
have [simp]:xo 6=0 unfolding xo-def by simp
have xo-q:order x xo = order x q

unfolding xo-def by (meson order-power-n-n)
obtain q ′ where q:q = xo ∗ q ′ and ¬ [:− x, 1 :] dvd q ′

using order-decomp[OF ‹q 6=0 ›,of x] unfolding xo-def by auto
from this(2)
have poly q ′ x 6=0 using poly-eq-0-iff-dvd by blast
define p ′ r ′ where p ′= p div xo and r ′ = r div xo

35

have p:p = xo ∗ p ′

proof −
have order x q < order x p

using assms(1) less-trans that(3) by blast
then have xo dvd p

unfolding xo-def by (metis less-or-eq-imp-le order-divides)
then show ?thesis by (simp add: p ′-def)

qed
have r :r = xo ∗ r ′

proof −
have xo dvd r

unfolding xo-def by (meson assms(1) less-or-eq-imp-le order-divides)
then show ?thesis by (simp add: r ′-def)

qed
have poly r ′ x=0
proof −

have order x r = order x xo + order x r ′

unfolding r using ‹r 6= 0 › r order-mult by blast
with xo-q have order x r ′ = order x r − order x q

by auto
then have order x r ′ >0

using ‹order x r < order x p› assms(1) by linarith
then show poly r ′ x=0 using order-root by blast

qed
have poly p ′ x=0
proof −

have order x p = order x xo + order x p ′

unfolding p using ‹p 6= 0 › p order-mult by blast
with xo-q have order x p ′ = order x p − order x q

by auto
then have order x p ′ >0

using ‹order x r < order x p› assms(1) by linarith
then show poly p ′ x=0 using order-root by blast

qed

have jumpF-polyL (r+q) p x = jumpF-polyL (xo ∗ (r ′+q ′)) (xo∗p ′) x
unfolding p q r by (simp add:algebra-simps)

also have ... = jumpF-polyL (r ′+q ′) p ′ x
by (rule jumpF-polyL-mult-cancel) simp

also have ... = (if even (order x p ′) = (sign-r-pos p ′ x
= (0 < poly (r ′ + q ′) x)) then 1 / 2 else − 1 / 2)

proof −
have poly (r ′ + q ′) x 6= 0

using ‹poly q ′ x 6=0 › ‹poly r ′ x = 0 › by auto
then show ?thesis

apply (subst jumpF-polyL-coprime ′)
subgoal by simp
subgoal by (smt (z3) ‹p 6= 0 › ‹poly p ′ x = 0 › mult.commute

mult-zero-left p poly-0)

36

done
qed
also have ... = (if even (order x p ′) = (sign-r-pos p ′ x

= (0 < poly q ′ x)) then 1 / 2 else − 1 / 2)
using ‹poly r ′ x=0 › by auto

also have ... = jumpF-polyL q ′ p ′ x
apply (subst jumpF-polyL-coprime ′)
subgoal using ‹poly q ′ x 6= 0 › by blast
subgoal using ‹p 6= 0 › ‹poly p ′ x = 0 › assms(2) p q by simp
done

also have ... = jumpF-polyL q p x
unfolding p q by (subst jumpF-polyL-mult-cancel) simp-all

finally show jumpF-polyL (r+q) p x = jumpF-polyL q p x .

have jumpF-polyR (r+q) p x = jumpF-polyR (xo ∗ (r ′+q ′)) (xo∗p ′) x
unfolding p q r by (simp add:algebra-simps)

also have ... = jumpF-polyR (r ′+q ′) p ′ x
by (rule jumpF-polyR-mult-cancel) simp

also have ... = (if sign-r-pos p ′ x = (0 < poly (r ′ + q ′) x)
then 1 / 2 else − 1 / 2)

proof −
have poly (r ′ + q ′) x 6= 0

using ‹poly q ′ x 6=0 › ‹poly r ′ x = 0 › by auto
then show ?thesis

apply (subst jumpF-polyR-coprime ′)
subgoal by simp
subgoal

by (smt (z3) ‹p 6= 0 › ‹poly p ′ x = 0 › mult.commute
mult-zero-left p poly-0)

done
qed
also have ... = (if sign-r-pos p ′ x = (0 < poly q ′ x)

then 1 / 2 else − 1 / 2)
using ‹poly r ′ x=0 › by auto

also have ... = jumpF-polyR q ′ p ′ x
apply (subst jumpF-polyR-coprime ′)
subgoal using ‹poly q ′ x 6= 0 › by blast
subgoal using ‹p 6= 0 › ‹poly p ′ x = 0 › assms(2) p q by force
done

also have ... = jumpF-polyR q p x
unfolding p q by (subst jumpF-polyR-mult-cancel) simp-all

finally show jumpF-polyR (r+q) p x = jumpF-polyR q p x .
qed
ultimately show

jumpF-polyR (r+q) p x = jumpF-polyR q p x
jumpF-polyL (r+q) p x = jumpF-polyL q p x

by force +
qed

37

lemma jumpF-poly-top-0 [simp]: jumpF-poly-top 0 p = 0 jumpF-poly-top q 0 = 0
unfolding jumpF-poly-top-def by auto

lemma jumpF-poly-bot-0 [simp]: jumpF-poly-bot 0 p = 0 jumpF-poly-bot q 0 = 0
unfolding jumpF-poly-bot-def by auto

lemma jumpF-poly-top-code:
jumpF-poly-top q p = (if p 6=0 ∧ q 6=0 ∧ degree q>degree p then

if sgn-pos-inf q ∗ sgn-pos-inf p > 0 then 1/2 else −1/2 else 0)
proof (cases p 6=0 ∧ q 6=0 ∧ degree q>degree p)

case True
have ?thesis when sgn-pos-inf q ∗ sgn-pos-inf p > 0
proof −

have LIM x at-top. poly q x / poly p x :> at-top
using poly-divide-filterlim-at-top[of p q] True that by auto

then have jumpF (λx. poly q x / poly p x) at-top = 1/2
unfolding jumpF-def by auto

then show ?thesis unfolding jumpF-poly-top-def using that True by auto
qed
moreover have ?thesis when ¬ sgn-pos-inf q ∗ sgn-pos-inf p > 0
proof −

have LIM x at-top. poly q x / poly p x :> at-bot
using poly-divide-filterlim-at-top[of p q] True that by auto

then have jumpF (λx. poly q x / poly p x) at-top = − 1/2
unfolding jumpF-def by auto

then show ?thesis unfolding jumpF-poly-top-def using that True by auto
qed
ultimately show ?thesis by auto

next
case False
define P where P= (¬ (LIM x at-top. poly q x / poly p x :> at-bot)

∧ ¬ (LIM x at-top. poly q x / poly p x :> at-top))
have P when p=0 ∨ q=0

unfolding P-def using that
by (auto elim!:filterlim-at-bot-nhds filterlim-at-top-nhds)

moreover have P when p 6=0 q 6=0 degree p> degree q
proof −

have LIM x at-top. poly q x / poly p x :> at 0
using poly-divide-filterlim-at-top[OF that(1 ,2)] that(3) by auto

then show ?thesis unfolding P-def
by (auto elim!:filterlim-at-bot-nhds filterlim-at-top-nhds simp:filterlim-at)

qed
moreover have P when p 6=0 q 6=0 degree p = degree q
proof −

have ((λx. poly q x / poly p x) −−−→ lead-coeff q / lead-coeff p) at-top
using poly-divide-filterlim-at-top[OF that(1 ,2)] using that by auto

then show ?thesis unfolding P-def
by (auto elim!:filterlim-at-bot-nhds filterlim-at-top-nhds)

qed

38

ultimately have P using False by fastforce
then have jumpF (λx. poly q x / poly p x) at-top = 0

unfolding jumpF-def P-def by auto
then show ?thesis unfolding jumpF-poly-top-def using False by presburger

qed

lemma jumpF-poly-bot-code:
jumpF-poly-bot q p = (if p 6=0 ∧ q 6=0 ∧ degree q>degree p then

if sgn-neg-inf q ∗ sgn-neg-inf p > 0 then 1/2 else −1/2 else 0)
proof (cases p 6=0 ∧ q 6=0 ∧ degree q>degree p)

case True
have ?thesis when sgn-neg-inf q ∗ sgn-neg-inf p > 0
proof −

have LIM x at-bot. poly q x / poly p x :> at-top
using poly-divide-filterlim-at-bot[of p q] True that by auto

then have jumpF (λx. poly q x / poly p x) at-bot = 1/2
unfolding jumpF-def by auto

then show ?thesis unfolding jumpF-poly-bot-def using that True by auto
qed
moreover have ?thesis when ¬ sgn-neg-inf q ∗ sgn-neg-inf p > 0
proof −

have LIM x at-bot. poly q x / poly p x :> at-bot
using poly-divide-filterlim-at-bot[of p q] True that by auto

then have jumpF (λx. poly q x / poly p x) at-bot = − 1/2
unfolding jumpF-def by auto

then show ?thesis unfolding jumpF-poly-bot-def using that True by auto
qed
ultimately show ?thesis by auto

next
case False
define P where P= (¬ (LIM x at-bot. poly q x / poly p x :> at-bot)

∧ ¬ (LIM x at-bot. poly q x / poly p x :> at-top))
have P when p=0 ∨ q=0

unfolding P-def using that
by (auto elim!:filterlim-at-bot-nhds filterlim-at-top-nhds)

moreover have P when p 6=0 q 6=0 degree p> degree q
proof −

have LIM x at-bot. poly q x / poly p x :> at 0
using poly-divide-filterlim-at-bot[OF that(1 ,2)] that(3) by auto

then show ?thesis unfolding P-def
by (auto elim!:filterlim-at-bot-nhds filterlim-at-top-nhds simp:filterlim-at)

qed
moreover have P when p 6=0 q 6=0 degree p = degree q
proof −

have ((λx. poly q x / poly p x) −−−→ lead-coeff q / lead-coeff p) at-bot
using poly-divide-filterlim-at-bot[OF that(1 ,2)] using that by auto

then show ?thesis unfolding P-def
by (auto elim!:filterlim-at-bot-nhds filterlim-at-top-nhds)

qed

39

ultimately have P using False by fastforce
then have jumpF (λx. poly q x / poly p x) at-bot = 0

unfolding jumpF-def P-def by auto
then show ?thesis unfolding jumpF-poly-bot-def using False by presburger

qed

lemma jump-poly-jumpF-poly:
shows jump-poly q p x = jumpF-polyR q p x − jumpF-polyL q p x

proof (cases p=0 ∨ q=0)
case True
then show ?thesis by auto

next
case False

have ∗:jump-poly q p x = jumpF-polyR q p x − jumpF-polyL q p x
if coprime q p for q p

proof (cases p=0 ∨ q=0 ∨ poly p x 6=0)
case True
moreover have ?thesis if p=0 ∨ q=0 using that by auto
moreover have ?thesis if poly p x 6=0
by (simp add: jumpF-poly-noroot(1) jumpF-poly-noroot(2) jump-poly-not-root

that)
ultimately show ?thesis by blast

next
case False
then have p 6= 0 q 6= 0 poly p x = 0 by auto

have jump-poly q p x = jump (λx. poly q x / poly p x) x
using jump-jump-poly by simp

also have real-of-int ... = jumpF (λx. poly q x / poly p x) (at-right x) −
jumpF (λx. poly q x / poly p x) (at-left x)

proof (rule jump-jumpF)
have poly q x 6=0 by (meson False coprime-poly-0 that)
then show isCont (inverse ◦ (λx. poly q x / poly p x)) x

unfolding comp-def by simp
define l where l = sgnx (λx. poly q x / poly p x) (at-left x)
define r where r = sgnx (λx. poly q x / poly p x) (at-right x)
show ((λx. poly q x / poly p x) has-sgnx l) (at-left x)

unfolding l-def by (auto intro!:sgnx-intros sgnx-able-sgnx)
show ((λx. poly q x / poly p x) has-sgnx r) (at-right x)

unfolding r-def by (auto intro!:sgnx-intros sgnx-able-sgnx)
show l 6=0 unfolding l-def

apply (subst sgnx-divide)
using poly-sgnx-values[OF ‹p 6=0 ›, of x] poly-sgnx-values[OF ‹q 6=0 ›, of x]
by auto

show r 6=0 unfolding r-def
apply (subst sgnx-divide)
using poly-sgnx-values[OF ‹p 6=0 ›, of x] poly-sgnx-values[OF ‹q 6=0 ›, of x]
by auto

40

qed
also have ... = jumpF-polyR q p x − jumpF-polyL q p x

unfolding jumpF-polyR-def jumpF-polyL-def by simp
finally show ?thesis .

qed

obtain p ′ q ′ g where pq:p=g∗p ′ q=g∗q ′ and coprime q ′ p ′ g=gcd p q
using gcd-coprime-exists[of p q]
by (metis False coprime-commute gcd-coprime-exists gcd-eq-0-iff mult.commute)

then have g 6=0 using False mult-zero-left by blast
then have jump-poly q p x = jump-poly q ′ p ′ x

unfolding pq using jump-poly-mult by auto
also have ... = jumpF-polyR q ′ p ′ x − jumpF-polyL q ′ p ′ x

using ∗[OF ‹coprime q ′ p ′›] .
also have ... = jumpF-polyR q p x − jumpF-polyL q p x

unfolding pq using ‹g 6=0 › jumpF-polyL-mult-cancel jumpF-polyR-mult-cancel
by auto

finally show ?thesis .
qed

2.6 The extended Cauchy index on polynomials
definition cindex-polyE :: real ⇒ real ⇒ real poly ⇒ real poly ⇒ real where

cindex-polyE a b q p = jumpF-polyR q p a + cindex-poly a b q p − jumpF-polyL
q p b

definition cindex-poly-ubd::real poly ⇒ real poly ⇒ int where
cindex-poly-ubd q p = (THE l. (∀ F r in at-top. cindexE (−r) r (λx. poly q x/poly

p x) = of-int l))

lemma cindex-polyE-0 [simp]: cindex-polyE a b 0 p = 0 cindex-polyE a b q 0 = 0
unfolding cindex-polyE-def by auto

lemma cindex-polyE-mult-cancel:
fixes p q p ′::real poly
assumes p ′6= 0
shows cindex-polyE a b (p ′ ∗ q) (p ′ ∗ p) = cindex-polyE a b q p
unfolding cindex-polyE-def
using cindex-poly-mult[OF ‹p ′6=0 ›] jumpF-polyL-mult-cancel[OF ‹p ′6=0 ›]

jumpF-polyR-mult-cancel[OF ‹p ′6=0 ›]
by simp

lemma cindexE-eq-cindex-polyE :
assumes a<b
shows cindexE a b (λx. poly q x/poly p x) = cindex-polyE a b q p

proof (cases p=0 ∨ q=0)
case True
then show ?thesis by (auto simp add: cindexE-constI)

next

41

case False
then have p 6=0 q 6=0 by auto
define g where g=gcd p q
define p ′ q ′ where p ′=p div g and q ′ = q div g
define f ′ where f ′=(λx. poly q ′ x / poly p ′ x)
have g 6=0 using False g-def by auto
have pq-f :p=g∗p ′ q=g∗q ′ and coprime p ′ q ′

unfolding g-def p ′-def q ′-def
apply simp-all
using False div-gcd-coprime by blast

have cindexE a b (λx. poly q x/poly p x) = cindexE a b (λx. poly q ′ x/poly p ′ x)
proof −

define f where f=(λx. poly q x / poly p x)
define f ′ where f ′=(λx. poly q ′ x / poly p ′ x)
have jumpF f (at-right x) = jumpF f ′ (at-right x) for x
proof (rule jumpF-cong)

obtain ub where x < ub ∀ z. x < z ∧ z ≤ ub −→ poly g z 6= 0
using next-non-root-interval[OF ‹g 6=0 ›,of x] by auto

then show ∀ F x in at-right x. f x = f ′ x
unfolding eventually-at-right f-def f ′-def pq-f
apply (intro exI [where x=ub])
by auto

qed simp
moreover have jumpF f (at-left x) = jumpF f ′ (at-left x) for x
proof (rule jumpF-cong)

obtain lb where lb < x ∀ z. lb ≤ z ∧ z < x −→ poly g z 6= 0
using last-non-root-interval[OF ‹g 6=0 ›,of x] by auto

then show ∀ F x in at-left x. f x = f ′ x
unfolding eventually-at-left f-def f ′-def pq-f
apply (intro exI [where x=lb])
by auto

qed simp
ultimately show ?thesis unfolding cindexE-def

apply (fold f-def f ′-def)
by auto

qed
also have ... = jumpF f ′ (at-right a) + real-of-int (cindex a b f ′) − jumpF f ′

(at-left b)
unfolding f ′-def
apply (rule cindex-eq-cindexE-divide)
subgoal using ‹a<b› .
subgoal
proof −

have finite (proots (q ′∗p ′))
using False poly-roots-finite pq-f (1) pq-f (2) by auto

then show finite {x. (poly q ′ x = 0 ∨ poly p ′ x = 0) ∧ a ≤ x ∧ x ≤ b}
by (elim rev-finite-subset) auto

qed
subgoal using ‹coprime p ′ q ′› poly-gcd-0-iff by force

42

subgoal by (auto intro:continuous-intros)
subgoal by (auto intro:continuous-intros)
done

also have ... = cindex-polyE a b q ′ p ′

using cindex-eq-cindex-poly unfolding cindex-polyE-def jumpF-polyR-def jumpF-polyL-def
f ′-def

by auto
also have ... = cindex-polyE a b q p

using cindex-polyE-mult-cancel[OF ‹g 6=0 ›] unfolding pq-f by auto
finally show ?thesis .

qed

lemma cindex-polyE-cross:
fixes p::real poly and a b::real
assumes a<b
shows cindex-polyE a b 1 p = cross-alt 1 p a b / 2

proof (induct degree p arbitrary:p rule:nat-less-induct)
case induct:1
have ?case when p=0

using that unfolding cross-alt-def by auto
moreover have ?case when p 6=0 and noroot:{x. a< x∧ x< b ∧ poly p x=0 }

= {}
proof −

have cindex-polyE a b 1 p = jumpF-polyR 1 p a − jumpF-polyL 1 p b
proof −

have cindex-poly a b 1 p = 0 unfolding cindex-poly-def
apply (rule sum.neutral)
using that by auto

then show ?thesis unfolding cindex-polyE-def by auto
qed
also have ... = cross-alt 1 p a b / 2
proof −

define f where f = (λx. 1 / poly p x)
define ja where ja = jumpF f (at-right a)
define jb where jb = jumpF f (at-left b)
define right where right = (λR. R ja (0 ::real) ∨ (continuous (at-right a) f

∧ R (poly p a) 0))
define left where left = (λR. R jb (0 ::real) ∨ (continuous (at-left b) f ∧ R

(poly p b) 0))

note ja-alt=jumpF-polyR-coprime[of p 1 a,unfolded jumpF-polyR-def ,simplified,folded
f-def ja-def]

note jb-alt=jumpF-polyL-coprime[of p 1 b,unfolded jumpF-polyL-def ,simplified,folded
f-def jb-def]

have [simp]:0 < ja ←→ jumpF-polyR 1 p a = 1/2 0 > ja ←→ jumpF-polyR
1 p a = −1/2

0 < jb ←→ jumpF-polyL 1 p b = 1/2 0 > jb ←→ jumpF-polyL 1 p b =
−1/2

43

unfolding ja-def jb-def jumpF-polyR-def jumpF-polyL-def f-def jumpF-def
by auto

have [simp]:
poly p a 6=0 =⇒ continuous (at-right a) f
poly p b 6=0 =⇒ continuous (at-left b) f

unfolding f-def by (auto intro!: continuous-intros)
have not-right-left: False when (right greater ∧ left less ∨ right less ∧ left

greater)
proof −

have [simp]: f a > 0 ←→ poly p a > 0 f a < 0 ←→ poly p a < 0
f b > 0 ←→ poly p b > 0 f b < 0 ←→ poly p b < 0

unfolding f-def by auto
have continuous-on {a<..<b} f

unfolding f-def using noroot by (auto intro!: continuous-intros)
then have ∃ x>a. x < b ∧ f x = 0

apply (elim jumpF-IVT [OF ‹a<b›,of f])
using that unfolding right-def left-def by (fold ja-def jb-def ,auto)

then show False using noroot using f-def by auto
qed
have ?thesis when poly p a>0 ∧ poly p b>0 ∨ poly p a<0 ∧ poly p b<0

using that jumpF-poly-noroot
unfolding cross-alt-def psign-diff-def by auto

moreover have False when poly p a>0 ∧ poly p b<0 ∨ poly p a<0 ∧ poly
p b>0

apply (rule not-right-left)
unfolding right-def left-def using that by auto

moreover have ?thesis when poly p a=0 poly p b>0 ∨ poly p b <0
proof −

have ja>0 ∨ ja < 0 using ja-alt ‹p 6=0 › ‹poly p a=0 › by argo
moreover have False when ja > 0 ∧ poly p b<0 ∨ ja < 0 ∧ poly p b>0

apply (rule not-right-left)
unfolding right-def left-def using that by fastforce

moreover have ?thesis when ja >0 ∧ poly p b>0 ∨ ja < 0 ∧ poly p b<0
using that jumpF-poly-noroot ‹poly p a=0 ›
unfolding cross-alt-def psign-diff-def by auto

ultimately show ?thesis using that jumpF-poly-noroot unfolding cross-alt-def
by auto

qed
moreover have ?thesis when poly p b=0 poly p a>0 ∨ poly p a <0
proof −

have jb>0 ∨ jb < 0 using jb-alt ‹p 6=0 › ‹poly p b=0 › by argo
moreover have False when jb > 0 ∧ poly p a<0 ∨ jb < 0 ∧ poly p a>0

apply (rule not-right-left)
unfolding right-def left-def using that by fastforce

moreover have ?thesis when jb >0 ∧ poly p a>0 ∨ jb < 0 ∧ poly p a<0
using that jumpF-poly-noroot ‹poly p b=0 ›
unfolding cross-alt-def psign-diff-def by auto

ultimately show ?thesis using that jumpF-poly-noroot unfolding cross-alt-def
by auto

44

qed
moreover have ?thesis when poly p a=0 poly p b=0
proof −

have jb>0 ∨ jb < 0 using jb-alt ‹p 6=0 › ‹poly p b=0 › by argo
moreover have ja>0 ∨ ja < 0 using ja-alt ‹p 6=0 › ‹poly p a=0 › by argo
moreover have False when ja>0 ∧ jb<0 ∨ ja<0 ∧ jb>0

apply (rule not-right-left)
unfolding right-def left-def using that by fastforce

moreover have ?thesis when ja>0 ∧ jb>0 ∨ ja<0 ∧ jb<0
using that jumpF-poly-noroot ‹poly p b=0 › ‹poly p a=0 ›
unfolding cross-alt-def psign-diff-def by auto

ultimately show ?thesis by blast
qed
ultimately show ?thesis by argo

qed
finally show ?thesis .

qed
moreover have ?case when p 6=0 and no-empty:{x. a< x∧ x< b ∧ poly p x=0
} 6= {}

proof −
define roots where roots≡{x. a< x∧ x< b ∧ poly p x=0 }
have finite roots unfolding roots-def using poly-roots-finite[OF ‹p 6=0 ›] by

auto
define max-r where max-r≡Max roots
hence poly p max-r=0 and a<max-r and max-r<b

using Max-in[OF ‹finite roots›] no-empty unfolding roots-def by auto
define max-rp where max-rp≡[:−max-r ,1 :]^order max-r p
then obtain p ′ where p ′-def :p=p ′∗max-rp and ¬ [:−max-r ,1 :] dvd p ′

by (metis ‹p 6=0 › mult.commute order-decomp)
hence p ′6=0 and max-rp 6=0 and max-r-nz:poly p ′ max-r 6=0

using ‹p 6=0 › by (auto simp add: dvd-iff-poly-eq-0)
define max-r-sign where max-r-sign≡if odd(order max-r p) then −1 else 1 ::int
define roots ′ where roots ′≡{x. a< x∧ x< b ∧ poly p ′ x=0}

have cindex-polyE a b 1 p = jumpF-polyR 1 p a + (
∑

x∈roots. jump-poly 1 p
x) − jumpF-polyL 1 p b

unfolding cindex-polyE-def cindex-poly-def roots-def by (simp,meson)
also have ... = max-r-sign ∗ cindex-poly a b 1 p ′ + jump-poly 1 p max-r

+ max-r-sign ∗ jumpF-polyR 1 p ′ a − jumpF-polyL 1 p ′ b
proof −

have (
∑

x∈roots. jump-poly 1 p x) = max-r-sign ∗ cindex-poly a b 1 p ′ +
jump-poly 1 p max-r

proof −
have (

∑
x∈roots. jump-poly 1 p x)= (

∑
x∈roots ′. jump-poly 1 p x)+

jump-poly 1 p max-r
proof −

have roots = insert max-r roots ′

unfolding roots-def roots ′-def p ′-def

45

using ‹poly p max-r=0 › ‹a<max-r› ‹max-r<b› ‹p 6=0 › order-root
apply (subst max-rp-def)
by auto

moreover have finite roots ′

unfolding roots ′-def using poly-roots-finite[OF ‹p ′6=0 ›] by auto
moreover have max-r /∈ roots ′

unfolding roots ′-def using max-r-nz
by auto

ultimately show ?thesis using sum.insert[of roots ′ max-r] by auto
qed
moreover have (

∑
x∈roots ′. jump-poly 1 p x) = max-r-sign ∗ cindex-poly

a b 1 p ′

proof −
have (

∑
x∈roots ′. jump-poly 1 p x) = (

∑
x∈roots ′. max-r-sign ∗ jump-poly

1 p ′ x)
proof (rule sum.cong,rule refl)

fix x assume x ∈ roots ′

hence x 6=max-r using max-r-nz unfolding roots ′-def
by auto
hence poly max-rp x 6=0 using poly-power-n-eq unfolding max-rp-def

by auto
hence order x max-rp=0 by (metis order-root)
moreover have jump-poly 1 max-rp x=0

using ‹poly max-rp x 6=0 › by (metis jump-poly-not-root)
moreover have x∈roots

using ‹x ∈ roots ′› unfolding roots-def roots ′-def p ′-def by auto
hence x<max-r
using Max-ge[OF ‹finite roots›,of x] ‹x 6=max-r› by (fold max-r-def ,auto)
hence sign (poly max-rp x) = max-r-sign
using ‹poly max-rp x 6= 0 › unfolding max-r-sign-def max-rp-def sign-def
by (subst poly-power ,simp add:linorder-class.not-less zero-less-power-eq)
ultimately show jump-poly 1 p x = max-r-sign ∗ jump-poly 1 p ′ x

using jump-poly-1-mult[of p ′ x max-rp] unfolding p ′-def
by (simp add: ‹poly max-rp x 6= 0 ›)

qed
also have ... = max-r-sign ∗ (

∑
x∈roots ′. jump-poly 1 p ′ x)

by (simp add: sum-distrib-left)
also have ... = max-r-sign ∗ cindex-poly a b 1 p ′

unfolding cindex-poly-def roots ′-def by meson
finally show ?thesis .

qed
ultimately show ?thesis by simp

qed
moreover have jumpF-polyR 1 p a = max-r-sign ∗ jumpF-polyR 1 p ′ a
proof −

define f where f = (λx. 1 / poly max-rp x)
define g where g = (λx. 1 / poly p ′ x)
have jumpF-polyR 1 p a = jumpF (λx. f x ∗ g x) (at-right a)

unfolding jumpF-polyR-def f-def g-def p ′-def

46

by (auto simp add:field-simps)
also have ... = sgn (f a) ∗ jumpF g (at-right a)
proof (rule jumpF-times)

have [simp]: poly max-rp a 6=0
unfolding max-rp-def using ‹max-r>a› by auto

show (f −−−→ f a) (at-right a) f a 6= 0
unfolding f-def by (auto intro:tendsto-intros)

qed auto
also have ... = max-r-sign ∗ jumpF-polyR 1 p ′ a
proof −

have sgn (f a) = max-r-sign
unfolding max-r-sign-def f-def max-rp-def using ‹a<max-r›
by (auto simp add:sgn-power)

then show ?thesis unfolding jumpF-polyR-def g-def by auto
qed
finally show ?thesis .

qed
moreover have jumpF-polyL 1 p b = jumpF-polyL 1 p ′ b
proof −

define f where f = (λx. 1 / poly max-rp x)
define g where g = (λx. 1 / poly p ′ x)
have jumpF-polyL 1 p b = jumpF (λx. f x ∗ g x) (at-left b)

unfolding jumpF-polyL-def f-def g-def p ′-def
by (auto simp add:field-simps)

also have ... = sgn (f b) ∗ jumpF g (at-left b)
proof (rule jumpF-times)

have [simp]: poly max-rp b 6=0
unfolding max-rp-def using ‹max-r<b› by auto

show (f −−−→ f b) (at-left b) f b 6= 0
unfolding f-def by (auto intro:tendsto-intros)

qed auto
also have ... = jumpF-polyL 1 p ′ b
proof −

have sgn (f b) = 1
unfolding max-r-sign-def f-def max-rp-def using ‹b>max-r›
by (auto simp add:sgn-power)

then show ?thesis unfolding jumpF-polyL-def g-def by auto
qed
finally show ?thesis .

qed
ultimately show ?thesis by auto

qed
also have ... = max-r-sign ∗ cindex-polyE a b 1 p ′ + jump-poly 1 p max-r

+ (max-r-sign − 1) ∗ jumpF-polyL 1 p ′ b
unfolding cindex-polyE-def roots ′-def by (auto simp add:algebra-simps)

also have ... = max-r-sign ∗ cross-alt 1 p ′ a b / 2 + jump-poly 1 p max-r
+ (max-r-sign − 1) ∗ jumpF-polyL 1 p ′ b

proof −
have degree max-rp>0 unfolding max-rp-def degree-linear-power

47

using ‹poly p max-r=0 › order-root ‹p 6=0 › by blast
then have degree p ′<degree p unfolding p ′-def

using degree-mult-eq[OF ‹p ′6=0 › ‹max-rp 6=0 ›] by auto
from induct[rule-format, OF this]
have cindex-polyE a b 1 p ′ = real-of-int (cross-alt 1 p ′ a b) / 2 by auto
then show ?thesis by auto

qed
also have ... = real-of-int (cross-alt 1 p a b) / 2
proof −

have sjump-p:jump-poly 1 p max-r = (if odd (order max-r p) then sign (poly
p ′ max-r) else 0)

proof −
note max-r-nz
moreover then have poly max-rp max-r=0

using ‹poly p max-r = 0 › p ′-def by auto
ultimately have jump-poly 1 p max-r = sign (poly p ′ max-r) ∗ jump-poly

1 max-rp max-r
unfolding p ′-def using jump-poly-1-mult[of p ′ max-r max-rp]
by auto

also have ... = (if odd (order max-r max-rp) then sign (poly p ′ max-r) else
0)

proof −
have sign-r-pos max-rp max-r

unfolding max-rp-def using sign-r-pos-power by auto
then show ?thesis using ‹max-rp 6=0 › unfolding jump-poly-def by auto

qed
also have ... = (if odd (order max-r p) then sign (poly p ′ max-r) else 0)
proof −

have order max-r p ′=0 by (simp add: ‹poly p ′ max-r 6= 0 › order-0I)
then have order max-r max-rp = order max-r p

unfolding p ′-def using ‹p ′6=0 › ‹max-rp 6=0 ›
apply (subst order-mult)
by auto

then show ?thesis by auto
qed
finally show ?thesis .

qed
have ?thesis when even (order max-r p)
proof −

have sign (poly p x) = (sign (poly p ′ x)::int) when x 6=max-r for x
proof −

have sign (poly max-rp x) = (1 ::int)
unfolding max-rp-def using ‹even (order max-r p)› that
apply (simp add:sign-power)
by (simp add: Sturm-Tarski.sign-def)

then show ?thesis unfolding p ′-def by (simp add:sign-times)
qed
from this[of a] this[of b] ‹a<max-r› ‹max-r<b›
have cross-alt 1 p ′ a b = cross-alt 1 p a b

48

unfolding cross-alt-def psign-diff-def by auto
then show ?thesis using that unfolding max-r-sign-def sjump-p by auto

qed
moreover have ?thesis when odd (order max-r p)
proof −
let ?thesis2 = sign (poly p ′ max-r) ∗ 2 − cross-alt 1 p ′ a b − 4 ∗ jumpF-polyL

1 p ′ b
= cross-alt 1 p a b

have ?thesis2 when poly p ′ b=0
proof −

have jumpF-polyL 1 p ′ b = 1/2 ∨ jumpF-polyL 1 p ′ b=−1/2
using jumpF-polyL-coprime[of p ′ 1 b,simplified] ‹p ′6=0 › ‹poly p ′ b=0 › by

auto
moreover have poly p ′ max-r>0 ∨ poly p ′ max-r<0

using max-r-nz by auto
moreover have False when poly p ′ max-r>0 ∧ jumpF-polyL 1 p ′ b=−1/2

∨ poly p ′ max-r<0 ∧ jumpF-polyL 1 p ′ b=1/2
proof −

define f where f= (λx. 1/ poly p ′ x)
have noroots:poly p ′ x 6=0 when x∈{max-r<..<b} for x
proof (rule ccontr)

assume ¬ poly p ′ x 6= 0
then have poly p x =0 unfolding p ′-def by auto

then have x∈roots unfolding roots-def using that ‹a<max-r› by auto
then have x≤max-r using Max-ge[OF ‹finite roots›] unfolding

max-r-def by auto
moreover have x>max-r using that by auto
ultimately show False by auto

qed
have continuous-on {max-r<..<b} f

unfolding f-def using noroots by (auto intro!:continuous-intros)
moreover have continuous (at-right max-r) f

unfolding f-def using max-r-nz
by (auto intro!:continuous-intros)

moreover have f max-r>0 ∧ jumpF f (at-left b)<0
∨ f max-r<0 ∧ jumpF f (at-left b)>0

using that unfolding f-def jumpF-polyL-def by auto
ultimately have ∃ x>max-r . x < b ∧ f x = 0

apply (intro jumpF-IVT [OF ‹max-r<b›])
by auto

then show False using noroots unfolding f-def by auto
qed

moreover have ?thesis when poly p ′ max-r>0 ∧ jumpF-polyL 1 p ′ b=1/2
∨ poly p ′ max-r<0 ∧ jumpF-polyL 1 p ′ b=−1/2

proof −
have poly max-rp a < 0 poly max-rp b>0

unfolding max-rp-def using ‹odd (order max-r p)› ‹a<max-r› ‹max-r<b›
by (simp-all add:zero-less-power-eq)

49

then have cross-alt 1 p a b = − cross-alt 1 p ′ a b
unfolding cross-alt-def p ′-def using ‹poly p ′ b=0 ›
apply (simp add:sign-times)

by (auto simp add: Sturm-Tarski.sign-def psign-diff-def zero-less-mult-iff)
with that show ?thesis by auto

qed
ultimately show ?thesis by blast

qed
moreover have ?thesis2 when poly p ′ b 6=0
proof −

have [simp]:jumpF-polyL 1 p ′ b = 0
using jumpF-polyL-coprime[of p ′ 1 b,simplified] ‹poly p ′ b 6=0 › by auto

have [simp]:poly max-rp a < 0 poly max-rp b>0
unfolding max-rp-def using ‹odd (order max-r p)› ‹a<max-r› ‹max-r<b›

by (simp-all add:zero-less-power-eq)
have poly p ′ b>0 ∨ poly p ′ b<0

using ‹poly p ′ b 6=0 › by auto
moreover have poly p ′ max-r>0 ∨ poly p ′ max-r<0

using max-r-nz by auto
moreover have ?thesis when poly p ′ b>0 ∧ poly p ′ max-r>0

using that unfolding cross-alt-def p ′-def psign-diff-def
apply (simp add:sign-times)
by (simp add: Sturm-Tarski.sign-def)

moreover have ?thesis when poly p ′ b<0 ∧ poly p ′ max-r<0
using that unfolding cross-alt-def p ′-def psign-diff-def
apply (simp add:sign-times)
by (simp add: Sturm-Tarski.sign-def)
moreover have False when poly p ′ b>0 ∧ poly p ′ max-r<0 ∨ poly p ′

b<0 ∧ poly p ′ max-r>0
proof −

have ∃ x>max-r . x < b ∧ poly p ′ x = 0
apply (rule poly-IVT [OF ‹max-r<b›,of p ′])
using that mult-less-0-iff by blast

then obtain x where max-r<x x<b poly p x=0 unfolding p ′-def by
auto

then have x∈roots using ‹a<max-r› unfolding roots-def by auto
then have x≤max-r unfolding max-r-def using Max-ge[OF ‹finite

roots›] by auto
then show False using ‹max-r<x› by auto

qed
ultimately show ?thesis by blast

qed
ultimately have ?thesis2 by auto
then show ?thesis unfolding max-r-sign-def sjump-p using that by simp

qed
ultimately show ?thesis by auto

qed
finally show ?thesis .

qed

50

ultimately show ?case by fast
qed

lemma cindex-polyE-inverse-add:
fixes p q::real poly
assumes cp:coprime p q
shows cindex-polyE a b q p + cindex-polyE a b p q=cindex-polyE a b 1 (q∗p)
unfolding cindex-polyE-def
using cindex-poly-inverse-add[OF cp,symmetric] jumpF-polyR-inverse-add[OF

cp,symmetric]
jumpF-polyL-inverse-add[OF cp,symmetric]

by auto

lemma cindex-polyE-inverse-add-cross:
fixes p q::real poly
assumes a < b coprime p q
shows cindex-polyE a b q p + cindex-polyE a b p q = cross-alt p q a b / 2
apply (subst cindex-polyE-inverse-add[OF ‹coprime p q›])
apply (subst cindex-polyE-cross[OF ‹a<b›])
apply (subst mult.commute)
apply (subst (2) cross-alt-clear)
by simp

lemma cindex-polyE-inverse-add-cross ′:
fixes p q::real poly
assumes a < b poly p a 6=0 ∨ poly q a 6=0 poly p b 6=0 ∨ poly q b 6=0
shows cindex-polyE a b q p + cindex-polyE a b p q = cross-alt p q a b / 2

proof −
define g1 where g1 = gcd p q
obtain p ′ q ′ where pq:p=g1∗p ′ q=g1∗q ′ and coprime p ′ q ′

unfolding g1-def
by (metis assms(2) coprime-commute div-gcd-coprime dvd-mult-div-cancel gcd-dvd1

gcd-dvd2 order-root)
have [simp]:g1 6=0

unfolding g1-def using assms(2) by force

have cindex-polyE a b q ′ p ′ + cindex-polyE a b p ′ q ′ = (cross-alt p ′ q ′ a b) / 2
using cindex-polyE-inverse-add-cross[OF ‹a<b› ‹coprime p ′ q ′›] .

moreover have cindex-polyE a b p ′ q ′ = cindex-polyE a b p q
unfolding pq
apply (subst cindex-polyE-mult-cancel)
by simp-all

moreover have cindex-polyE a b q ′ p ′ = cindex-polyE a b q p
unfolding pq
apply (subst cindex-polyE-mult-cancel)
by simp-all

moreover have cross-alt p ′ q ′ a b = cross-alt p q a b
unfolding pq

51

apply (subst cross-alt-cancel)
subgoal using assms(2) g1-def poly-gcd-0-iff by blast
subgoal using assms(3) g1-def poly-gcd-0-iff by blast
by simp

ultimately show ?thesis by auto
qed

lemma cindex-polyE-smult-1 :
fixes p q::real poly and c::real
shows cindex-polyE a b (smult c q) p = (sgn c) ∗ cindex-polyE a b q p

proof −
have real-of-int (sign c) = sgn c

by (simp add: sgn-if)
then show ?thesis

unfolding cindex-polyE-def jumpF-polyL-smult-1 jumpF-polyR-smult-1 cin-
dex-poly-smult-1

by (auto simp add: algebra-simps)
qed

lemma cindex-polyE-smult-2 :
fixes p q::real poly and c::real
shows cindex-polyE a b q (smult c p) = (sgn c) ∗ cindex-polyE a b q p

proof (cases c=0)
case True
then show ?thesis by simp

next
case False
then have cindex-polyE a b q (smult c p)

= cindex-polyE a b ([:1/c:]∗q) ([:1/c:]∗(smult c p))
apply (subst cindex-polyE-mult-cancel)
by simp-all

also have ... = cindex-polyE a b (smult (1/c) q) p
by simp

also have ... = (sgn (1/c)) ∗ cindex-polyE a b q p
using cindex-polyE-smult-1 by simp

also have ... = (sgn c) ∗ cindex-polyE a b q p
by simp

finally show ?thesis .
qed

lemma cindex-polyE-mod:
fixes p q::real poly
shows cindex-polyE a b q p = cindex-polyE a b (q mod p) p
unfolding cindex-polyE-def
apply (subst cindex-poly-mod)
apply (subst jumpF-polyR-mod)
apply (subst jumpF-polyL-mod)
by simp

52

lemma cindex-polyE-rec:
fixes p q::real poly
assumes a < b coprime p q
shows cindex-polyE a b q p = cross-alt q p a b/2 + cindex-polyE a b (− (p

mod q)) q
proof −

note cindex-polyE-inverse-add-cross[OF assms]
moreover have cindex-polyE a b (− (p mod q)) q = − cindex-polyE a b p q

using cindex-polyE-mod cindex-polyE-smult-1 [of a b −1]
by auto

ultimately show ?thesis by (auto simp add:field-simps cross-alt-poly-commute)
qed

lemma cindex-polyE-changes-alt-itv-mods:
assumes a<b coprime p q
shows cindex-polyE a b q p = changes-alt-itv-smods a b p q / 2 using ‹coprime

p q›
proof (induct smods p q arbitrary:p q)

case Nil
then have p=0 by (metis smods-nil-eq)
then show ?case by (simp add:changes-alt-itv-smods-def changes-alt-poly-at-def)

next
case (Cons x xs)
then have p 6=0 by auto
have ?case when q=0

using that by (simp add:changes-alt-itv-smods-def changes-alt-poly-at-def)
moreover have ?case when q 6=0
proof −

define r where r≡− (p mod q)
obtain ps where ps:smods p q=p#q#ps smods q r=q#ps and xs=q#ps

unfolding r-def using ‹q 6=0 › ‹p 6=0 › ‹x # xs = smods p q›
by (metis list.inject smods.simps)

from Cons.prems ‹q 6= 0 › have coprime q r
by (simp add: r-def ac-simps)

then have cindex-polyE a b r q = real-of-int (changes-alt-itv-smods a b q r) /
2

apply (rule-tac Cons.hyps(1))
using ps ‹xs=q#ps› by simp-all

moreover have changes-alt-itv-smods a b p q = cross-alt p q a b + changes-alt-itv-smods
a b q r

using changes-alt-itv-smods-rec[OF ‹a<b› ‹coprime p q›,folded r-def] .
moreover have cindex-polyE a b q p = real-of-int (cross-alt q p a b) / 2 +

cindex-polyE a b r q
using cindex-polyE-rec[OF ‹a<b› ‹coprime p q›,folded r-def] .

ultimately show ?case
by (auto simp add:field-simps cross-alt-poly-commute)

qed
ultimately show ?case by blast

53

qed

lemma cindex-poly-ubd-eventually:
shows ∀ F r in at-top. cindexE (−r) r (λx. poly q x/poly p x) = of-int (cindex-poly-ubd

q p)
proof −

define f where f=(λx. poly q x/poly p x)
obtain R where R-def : R>0 proots p ⊆ {−R<..<R}

if p 6=0
proof (cases p=0)

case True
then show ?thesis using that[of 1] by auto

next
case False
then have finite (proots p) by auto
from finite-ball-include[OF this,of 0]
obtain r where r>0 and r-ball:proots p ⊆ ball 0 r

by auto
have proots p ⊆ {−r<..<r}
proof

fix x assume x ∈ proots p
then have x∈ball 0 r using r-ball by auto
then have abs x<r using mem-ball-0 by auto
then show x ∈ {− r<..<r} using ‹r>0 › by auto

qed
then show ?thesis using that[of r] False ‹r>0 › by auto

qed
define l where l=(if p=0 then 0 else cindex-poly (−R) R q p)
define P where P=(λl. (∀ F r in at-top. cindexE (−r) r f = of-int l))
have P l
proof (cases p=0)

case True
then show ?thesis

unfolding P-def f-def l-def using True
by (auto intro!: eventuallyI cindexE-constI)

next
case False
have P l unfolding P-def
proof (rule eventually-at-top-linorderI [of R])

fix r assume R ≤ r
then have cindexE (− r) r f = cindex-polyE (−r) r q p
unfolding f-def using R-def [OF ‹p 6=0 ›] by (auto intro: cindexE-eq-cindex-polyE)
also have ... = of-int (cindex-poly (− r) r q p)
proof −

have jumpF-polyR q p (− r) = 0
apply (rule jumpF-poly-noroot)
using ‹R≤r› R-def [OF ‹p 6=0 ›] by auto

moreover have jumpF-polyL q p r = 0
apply (rule jumpF-poly-noroot)

54

using ‹R≤r› R-def [OF ‹p 6=0 ›] by auto
ultimately show ?thesis unfolding cindex-polyE-def by auto

qed
also have ... = of-int (cindex-poly (− R) R q p)
proof −

define rs where rs={x. poly p x = 0 ∧ − r < x ∧ x < r}
define Rs where Rs={x. poly p x = 0 ∧ − R < x ∧ x < R}
have rs=Rs

using R-def [OF ‹p 6=0 ›] ‹R≤r› unfolding rs-def Rs-def by force
then show ?thesis

unfolding cindex-poly-def by (fold rs-def Rs-def ,auto)
qed
also have ... = of-int l unfolding l-def using False by auto
finally show cindexE (− r) r f = real-of-int l .

qed
then show ?thesis unfolding P-def by auto

qed
moreover have x=l when P x for x
proof −

have ∀ F r in at-top. cindexE (− r) r f = real-of-int x
∀ F r in at-top. cindexE (− r) r f = real-of-int l

using ‹P x› ‹P l› unfolding P-def by auto
from eventually-conj[OF this]
have ∀ F r ::real in at-top. real-of-int x = real-of-int l

by (elim eventually-mono,auto)
then have real-of-int x = real-of-int l by auto
then show ?thesis by simp

qed
ultimately have P (THE x . P x) using theI [of P l] by blast
then show ?thesis unfolding P-def f-def cindex-poly-ubd-def by auto

qed

lemma cindex-poly-ubd-0 :
assumes p=0 ∨ q=0
shows cindex-poly-ubd q p = 0

proof −
have ∀ F r in at-top. cindexE (−r) r (λx. poly q x/poly p x) = 0

apply (rule eventuallyI)
using assms by (auto intro:cindexE-constI)

from eventually-conj[OF this cindex-poly-ubd-eventually[of q p]]
have ∀ F r ::real in at-top. (cindex-poly-ubd q p) = (0 ::int)

apply (elim eventually-mono)
by auto

then show ?thesis by auto
qed

lemma cindex-poly-ubd-code:
shows cindex-poly-ubd q p = changes-R-smods p q

proof (cases p=0)

55

case True
then show ?thesis using cindex-poly-ubd-0 by auto

next
case False
define ps where ps≡smods p q
have p∈set ps using ps-def ‹p 6=0 › by auto
obtain lb where lb:∀ p∈set ps. ∀ x. poly p x=0 −→ x>lb

and lb-sgn:∀ x≤lb. ∀ p∈set ps. sgn (poly p x) = sgn-neg-inf p
and lb<0

using root-list-lb[OF no-0-in-smods,of p q,folded ps-def]
by auto

obtain ub where ub:∀ p∈set ps. ∀ x. poly p x=0 −→ x<ub
and ub-sgn:∀ x≥ub. ∀ p∈set ps. sgn (poly p x) = sgn-pos-inf p
and ub>0

using root-list-ub[OF no-0-in-smods,of p q,folded ps-def]
by auto

define f where f=(λt. poly q t/ poly p t)
define P where P=(λl. (∀ F r in at-top. cindexE (−r) r f = of-int l))
have P (changes-R-smods p q) unfolding P-def
proof (rule eventually-at-top-linorderI [of max |lb| |ub| + 1])

fix r assume r-asm:r≥max |lb| |ub| + 1
have cindexE (− r) r f = cindex-polyE (−r) r q p

unfolding f-def using r-asm by (auto intro: cindexE-eq-cindex-polyE)
also have ... = of-int (cindex-poly (− r) r q p)
proof −

have jumpF-polyR q p (− r) = 0
apply (rule jumpF-poly-noroot)
using r-asm lb[rule-format,OF ‹p∈set ps›,of −r] by linarith

moreover have jumpF-polyL q p r = 0
apply (rule jumpF-poly-noroot)
using r-asm ub[rule-format,OF ‹p∈set ps›,of r] by linarith

ultimately show ?thesis unfolding cindex-polyE-def by auto
qed
also have ... = of-int (changes-itv-smods (− r) r p q)

apply (rule cindex-poly-changes-itv-mods[THEN arg-cong])
using r-asm lb[rule-format,OF ‹p∈set ps›,of −r] ub[rule-format,OF ‹p∈set

ps›,of r]
by linarith+

also have ... = of-int (changes-R-smods p q)
proof −

have map (sgn ◦ (λp. poly p (−r))) ps = map sgn-neg-inf ps
and map (sgn ◦ (λp. poly p r)) ps = map sgn-pos-inf ps

using lb-sgn[THEN spec,of −r ,simplified] ub-sgn[THEN spec,of r ,simplified]
r-asm

by auto
hence changes-poly-at ps (−r)=changes-poly-neg-inf ps
∧ changes-poly-at ps r=changes-poly-pos-inf ps

unfolding changes-poly-neg-inf-def changes-poly-at-def changes-poly-pos-inf-def
by (subst (1 3) changes-map-sgn-eq,metis map-map)

56

thus ?thesis unfolding changes-R-smods-def changes-itv-smods-def ps-def
by metis

qed
finally show cindexE (− r) r f = of-int (changes-R-smods p q) .

qed
moreover have x = changes-R-smods p q when P x for x
proof −

have ∀ F r in at-top. cindexE (− r) r f = real-of-int (changes-R-smods p q)
∀ F r in at-top. cindexE (− r) r f = real-of-int x

using ‹P (changes-R-smods p q)› ‹P x› unfolding P-def by auto
from eventually-conj[OF this]
have ∀ F (r ::real) in at-top. of-int x = of-int (changes-R-smods p q)

by (elim eventually-mono,auto)
then have of-int x = of-int (changes-R-smods p q)

using eventually-const-iff by auto
then show ?thesis using of-int-eq-iff by blast

qed
ultimately have (THE x . P x) = changes-R-smods p q

using the-equality[of P changes-R-smods p q] by blast
then show ?thesis unfolding cindex-poly-ubd-def P-def f-def by auto

qed

lemma cindexE-ubd-poly: cindexE-ubd (λx. poly q x/poly p x) = cindex-poly-ubd q
p
proof (cases p=0)

case True
then show ?thesis using cindex-poly-ubd-0 unfolding cindexE-ubd-def

by auto
next

case False
define mx mn where mx = Max {x. poly p x = 0} and mn = Min {x. poly p

x=0}
define rr where rr= 1+ (max |mx| |mn|)
have rr :−rr < x ∧ x< rr when poly p x = 0 for x
proof −

have finite {x. poly p x = 0} using ‹p 6=0 › poly-roots-finite by blast
then have mn ≤ x x≤mx

using Max-ge Min-le that unfolding mn-def mx-def by simp-all
then show ?thesis unfolding rr-def by auto

qed
define f where f=(λx. poly q x / poly p x)
have ∀ F r in at-top. cindexE (− r) r f = cindexE-ubd f
proof (rule eventually-at-top-linorderI [of rr])

fix r assume r≥rr
define R1 R2 where R1={x. jumpF f (at-right x) 6= 0 ∧ − r ≤ x ∧ x < r}

and R2 = {x. jumpF f (at-right x) 6= 0}
define L1 L2 where L1={x. jumpF f (at-left x) 6= 0 ∧ − r < x ∧ x ≤ r}

and L2={x. jumpF f (at-left x) 6= 0}

57

have R1=R2
proof −

have jumpF f (at-right x) = 0 when ¬ (− r ≤ x ∧ x < r) for x
proof −

have jumpF f (at-right x) = jumpF-polyR q p x
unfolding f-def jumpF-polyR-def by simp

also have ... = 0
apply (rule jumpF-poly-noroot)
using that ‹r≥rr› by (auto dest:rr)

finally show ?thesis .
qed
then show ?thesis unfolding R1-def R2-def by blast

qed
moreover have L1=L2
proof −

have jumpF f (at-left x) = 0 when ¬ (− r < x ∧ x ≤ r) for x
proof −

have jumpF f (at-left x) = jumpF-polyL q p x
unfolding f-def jumpF-polyL-def by simp

also have ... = 0
apply (rule jumpF-poly-noroot)
using that ‹r≥rr› by (auto dest:rr)

finally show ?thesis .
qed
then show ?thesis unfolding L1-def L2-def by blast

qed
ultimately show cindexE (− r) r f = cindexE-ubd f

unfolding cindexE-def cindexE-ubd-def
apply (fold R1-def R2-def L1-def L2-def)
by auto

qed
moreover have ∀ F r in at-top. cindexE (− r) r f = cindex-poly-ubd q p

using cindex-poly-ubd-eventually unfolding f-def by auto
ultimately have ∀ F r in at-top. cindexE (− r) r f = cindexE-ubd f

∧ cindexE (− r) r f = cindex-poly-ubd q p
using eventually-conj by auto

then have ∀ F (r ::real) in at-top. cindexE-ubd f = cindex-poly-ubd q p
by (elim eventually-mono) auto

then show ?thesis unfolding f-def by auto
qed

lemma cindex-polyE-noroot:
assumes a<b ∀ x. a≤x ∧ x≤b −→ poly p x 6=0
shows cindex-polyE a b q p = 0

proof −
have jumpF-polyR q p a = 0

apply (rule jumpF-poly-noroot)
using assms by auto

moreover have jumpF-polyL q p b = 0

58

apply (rule jumpF-poly-noroot)
using assms by auto

moreover have cindex-poly a b q p =0
apply (rule cindex-poly-noroot)
using assms by auto

ultimately show ?thesis unfolding cindex-polyE-def by auto
qed

lemma cindex-polyE-combine:
assumes a<b b<c
shows cindex-polyE a b q p + cindex-polyE b c q p = cindex-polyE a c q p

proof −
define A B where A=cindex-poly a b q p − jumpF-polyL q p b

and B=jumpF-polyR q p b + cindex-poly b c q p
have cindex-polyE a b q p + cindex-polyE b c q p =

jumpF-polyR q p a + (A +B) − jumpF-polyL q p c
unfolding cindex-polyE-def A-def B-def by auto

also have ... = jumpF-polyR q p a + cindex-poly a c q p − jumpF-polyL q p c
proof −

have A+B = cindex-poly a b q p + (jumpF-polyR q p b − jumpF-polyL q p b)
+ cindex-poly b c q p

unfolding A-def B-def by auto
also have ... = cindex-poly a b q p + real-of-int (jump-poly q p b) + cindex-poly

b c q p
using jump-poly-jumpF-poly by auto

also have ... = cindex-poly a c q p
using assms
apply (subst (3) cindex-poly-combine[symmetric,of - b])
by auto

finally show ?thesis by auto
qed
also have ... = cindex-polyE a c q p

unfolding cindex-polyE-def by simp
finally show ?thesis .

qed

lemma cindex-polyE-linear-comp:
fixes b c::real
defines h ≡ (λp. pcompose p [:b,c:])
assumes lb<ub c 6=0
shows cindex-polyE lb ub (h q) (h p) =

(if 0 < c then cindex-polyE (c ∗ lb + b) (c ∗ ub + b) q p
else − cindex-polyE (c ∗ ub + b) (c ∗ lb + b) q p)

proof −
have cindex-polyE lb ub (h q) (h p) = cindexE lb ub (λx. poly (h q) x / poly (h

p) x)
apply (subst cindexE-eq-cindex-polyE [symmetric,OF ‹lb<ub›])
by simp

also have ... = cindexE lb ub ((λx. poly q x / poly p x) ◦ (λx. c ∗ x + b))

59

unfolding comp-def h-def poly-pcompose by (simp add:algebra-simps)
also have ... = (if 0 < c then cindexE (c ∗ lb + b) (c ∗ ub + b) (λx. poly q x /

poly p x)
else − cindexE (c ∗ ub + b) (c ∗ lb + b) (λx. poly q x / poly p x))

apply (subst cindexE-linear-comp[OF ‹c 6=0 ›])
by simp

also have ... = (if 0 < c then cindex-polyE (c ∗ lb + b) (c ∗ ub + b) q p
else − cindex-polyE (c ∗ ub + b) (c ∗ lb + b) q p)

proof −
have cindexE (c ∗ lb + b) (c ∗ ub + b) (λx. poly q x / poly p x)

= cindex-polyE (c ∗ lb + b) (c ∗ ub + b) q p if c>0
apply (subst cindexE-eq-cindex-polyE)
using that ‹lb<ub› by auto

moreover have cindexE (c ∗ ub + b) (c ∗ lb + b) (λx. poly q x / poly p x)
= cindex-polyE (c ∗ ub + b) (c ∗ lb + b) q p if ¬ c>0

apply (subst cindexE-eq-cindex-polyE)
using that assms by auto

ultimately show ?thesis by auto
qed
finally show ?thesis .

qed

lemma cindex-polyE-product ′:
fixes p r q s::real poly and a b ::real
assumes a<b coprime q p coprime s r
shows cindex-polyE a b (p ∗ r − q ∗ s) (p ∗ s + q ∗ r)

= cindex-polyE a b p q + cindex-polyE a b r s
− cross-alt (p ∗ s + q ∗ r) (q ∗ s) a b / 2 (is ?L = ?R)

proof (cases q=0 ∨ s=0 ∨ p=0 ∨ r=0 ∨ p ∗ s + q ∗ r = 0)
case True
moreover have ?thesis if q=0
proof −

have p 6=0
using assms(2) coprime-poly-0 poly-0 that by blast

then show ?thesis using that cindex-polyE-mult-cancel by simp
qed
moreover have ?thesis if s=0
proof −

have r 6=0 using assms(3) coprime-poly-0 poly-0 that by blast
then have ?L = cindex-polyE a b (r ∗ p) (r ∗ q)

using that by (simp add:algebra-simps)
also have ... = ?R

using that cindex-polyE-mult-cancel ‹r 6=0 › by simp
finally show ?thesis .

qed
moreover have ?thesis if p ∗ s + q ∗ r = 0 s 6=0 q 6=0
proof −

have cindex-polyE a b p q = cindex-polyE a b (s∗p) (s∗q)
using cindex-polyE-mult-cancel[OF ‹s 6=0 ›] by simp

60

also have ... = cindex-polyE a b (−(q ∗ r)) (q∗ s)
using that(1)
by (metis add.inverse-inverse add.inverse-unique mult.commute)

also have ... = − cindex-polyE a b (q ∗ r) (q∗ s)
using cindex-polyE-smult-1 [where c=−1 ,simplified] by simp

also have ... = − cindex-polyE a b r s
using cindex-polyE-mult-cancel[OF ‹q 6=0 ›] by simp

finally have cindex-polyE a b p q = − cindex-polyE a b r s .
then show ?thesis using that(1) by simp

qed
moreover have ?thesis if p=0
proof −

have poly q a 6=0
using assms(2) coprime-poly-0 order-root that(1) by blast

have poly q b 6=0
by (metis assms(2) coprime-poly-0 mpoly-base-conv(1) that)

then have q 6=0 using poly-0 by blast

have ?L= − cindex-polyE a b s r
using that cindex-polyE-smult-1 [where c=−1 ,simplified]

cindex-polyE-mult-cancel[OF ‹q 6=0 ›]
by simp

also have ... = cindex-polyE a b r s − (cross-alt r s a b) / 2
apply (subst cindex-polyE-inverse-add-cross[symmetric])
using ‹a<b› ‹coprime s r› by (auto simp:coprime-commute)

also have ... = ?R
using ‹p=0 › ‹poly q a 6=0 › ‹poly q b 6=0 › cross-alt-cancel
by simp

finally show ?thesis .
qed
moreover have ?thesis if r=0
proof −

have poly s a 6=0
using assms(3) coprime-poly-0 order-root that by blast

have poly s b 6=0
using assms(3) coprime-poly-0 order-root that by blast

then have s 6=0 using poly-0 by blast

have cindex-polyE a b (− (q ∗ s)) (p ∗ s)
= − cindex-polyE a b (q ∗ s) (p ∗ s)

using cindex-polyE-smult-1 [where c=−1 ,simplified] by auto
also have ... = − cindex-polyE a b (s ∗ q) (s ∗ p)

by (simp add:algebra-simps)
also have ... = − cindex-polyE a b q p

using cindex-polyE-mult-cancel[OF ‹s 6=0 ›] by simp
finally have cindex-polyE a b (− (q ∗ s)) (p ∗ s)

= − cindex-polyE a b q p .
moreover have cross-alt (p ∗ s) (q ∗ s) a b / 2

= cindex-polyE a b q p + cindex-polyE a b p q

61

proof −
have cross-alt (p ∗ s) (q ∗ s) a b

= cross-alt (s ∗ p) (s ∗ q) a b
by (simp add:algebra-simps)

also have ... = cross-alt p q a b
using cross-alt-cancel by (simp add: ‹poly s a 6= 0 › ‹poly s b 6= 0 ›)

also have ... / 2 = cindex-polyE a b q p + cindex-polyE a b p q
apply (subst cindex-polyE-inverse-add-cross[symmetric])
using ‹a<b› ‹coprime q p› coprime-commute by auto

finally show ?thesis .
qed
ultimately show ?thesis using that by simp

qed
ultimately show ?thesis by argo

next
case False
define P where P=(p ∗ s + q ∗ r)
define Q where Q = q ∗ s ∗ P

from False have q 6=0 s 6=0 p 6=0 r 6=0 P 6= 0 Q 6=0
unfolding P-def Q-def by auto

then have finite:finite (proots-within Q {x. a≤x ∧ x≤b})
unfolding P-def Q-def
by (auto intro: finite-proots)

have sign-pos-eq:
sign-r-pos Q a = (poly Q b>0)
poly Q a 6=0 =⇒ poly Q a >0 = (poly Q b>0)

if a<b and noroot:∀ x. a<x ∧ x≤b −→ poly Q x 6=0 for a b Q
proof −

have sign-r-pos Q a = (sgnx (poly Q) (at-right a) >0)
unfolding sign-r-pos-sgnx-iff by simp

also have ... = (sgnx (poly Q) (at-left b) >0)
proof (rule ccontr)

assume (0 < sgnx (poly Q) (at-right a))
6= (0 < sgnx (poly Q) (at-left b))

then have ∃ x>a. x < b ∧ poly Q x = 0
using sgnx-at-left-at-right-IVT [OF - ‹a<b›] by auto

then show False using that(2) by auto
qed
also have ... = (poly Q b>0)

apply (subst sgnx-poly-nz)
using that by auto

finally show sign-r-pos Q a = (poly Q b>0) .
show (poly Q a >0) = (poly Q b>0) if poly Q a 6=0
proof (rule ccontr)

assume (0 < poly Q a) 6= (0 < poly Q b)
then have poly Q a ∗ poly Q b < 0

by (metis ‹sign-r-pos Q a = (0 < poly Q b)› poly-0 sign-r-pos-rec that)

62

from poly-IVT [OF ‹a<b› this]
have ∃ x>a. x < b ∧ poly Q x = 0 .
then show False using noroot by auto

qed
qed

define Case where Case=(λa b. cindex-polyE a b (p ∗ r − q ∗ s) P
= cindex-polyE a b p q + cindex-polyE a b r s
− (cross-alt P (q ∗ s) a b) / 2)

have basic-case:Case a b
if noroot0 :proots-within Q {x. a<x ∧ x<b} = {}

and noroot-disj:poly Q a 6=0 ∨ poly Q b 6=0
and a<b

for a b
proof −

let ?thesis ′ = λp r q s a. cindex-polyE a b (p ∗ r − q ∗ s) (p ∗ s + q ∗ r) =
cindex-polyE a b p q + cindex-polyE a b r s −

(cross-alt (p ∗ s + q ∗ r) (q ∗ s) a b) / 2
have base-case:?thesis ′ p r q s a

if proots-within (q ∗ s ∗ (p ∗ s + q ∗ r)) {x. a < x ∧ x ≤ b} = {}
and coprime q p coprime s r
q 6=0 s 6=0 p 6=0 r 6=0 p ∗ s + q ∗ r 6= 0
a<b

for p r q s a
proof −

define P where P=(p ∗ s + q ∗ r)
have noroot1 :proots-within (q ∗ s ∗ P) {x. a < x ∧ x ≤ b} = {}

using that(1) unfolding P-def .
have P 6=0 using ‹p ∗ s + q ∗ r 6= 0 › unfolding P-def by simp

have cind1 :cindex-polyE a b (p ∗ r − q ∗ s) P
= (if poly P a = 0 then jumpF-polyR (p ∗ r − q ∗ s) P a else 0)

proof −
have cindex-poly a b (p ∗ r − q ∗ s) P = 0

apply (rule cindex-poly-noroot[OF ‹a<b›])
using noroot1 by fastforce

moreover have jumpF-polyL (p ∗ r − q ∗ s) P b = 0
apply (rule jumpF-poly-noroot)
using noroot1 ‹a<b› by auto

ultimately show ?thesis
unfolding cindex-polyE-def by (simp add: jumpF-poly-noroot(2))

qed
have cind2 :cindex-polyE a b p q

= (if poly q a = 0 then jumpF-polyR p q a else 0)
proof −

have cindex-poly a b p q = 0
apply (rule cindex-poly-noroot)
using noroot1 ‹a<b› by auto fastforce

63

moreover have jumpF-polyL p q b = 0
apply (rule jumpF-poly-noroot)
using noroot1 ‹a<b› by auto

ultimately show ?thesis
unfolding cindex-polyE-def
by (simp add: jumpF-poly-noroot(2))

qed
have cind3 :cindex-polyE a b r s

= (if poly s a = 0 then jumpF-polyR r s a else 0)
proof −

have cindex-poly a b r s = 0
apply (rule cindex-poly-noroot)
using noroot1 ‹a<b› by auto fastforce

moreover have jumpF-polyL r s b = 0
apply (rule jumpF-poly-noroot)
using noroot1 ‹a<b› by auto

ultimately show ?thesis
unfolding cindex-polyE-def
by (simp add: jumpF-poly-noroot(2))

qed

have ?thesis if poly (q ∗ s ∗ P) a 6=0
proof −

have noroot2 :proots-within (q ∗ s ∗ P) {x. a≤x ∧ x≤b} = {}
using that noroot1 by force

have cindex-polyE a b (p ∗ r − q ∗ s) P = 0
apply (rule cindex-polyE-noroot)
using noroot2 ‹a < b› by auto

moreover have cindex-polyE a b p q = 0
apply (rule cindex-polyE-noroot)
using noroot2 ‹a < b› by auto

moreover have cindex-polyE a b r s = 0
apply (rule cindex-polyE-noroot)
using noroot2 ‹a < b› by auto

moreover have cross-alt P (q ∗ s) a b = 0
apply (rule cross-alt-noroot[OF ‹a<b›])
using noroot2 by auto

ultimately show ?thesis unfolding P-def by auto
qed
moreover have ?thesis if poly (q ∗ s ∗ P) a=0
proof −

have ?thesis if poly q a =0 poly s a 6=0
proof −

have poly P a 6=0
using that coprime-poly-0 [OF ‹coprime q p›] unfolding P-def
by simp

then have cindex-polyE a b (p ∗ r − q ∗ s) P = 0
using cind1 by auto

moreover have cindex-polyE a b p q = (cross-alt P (q ∗ s) a b) / 2

64

proof −
have cindex-polyE a b p q = jumpF-polyR p q a

using cind2 that(1) by auto
also have ... = (cross-alt 1 (q ∗ s ∗ P) a b) / 2
proof −

have sign-eq:(sign-r-pos q a ←→ poly p a>0)
= (poly (q ∗ s ∗ P) b > 0)

proof −
have (sign-r-pos q a ←→ poly p a>0)

= (sgnx (poly (q∗p)) (at-right a) >0)
proof −

have (poly p a>0) = (sgnx (poly p) (at-right a) > 0)
apply (subst sgnx-poly-nz)
using ‹coprime q p› coprime-poly-0 that(1) by auto

then show ?thesis
unfolding sign-r-pos-sgnx-iff
apply (subst sgnx-poly-times[of - a])
subgoal by simp
using poly-sgnx-values ‹p 6=0 › ‹q 6=0 ›
by (metis (no-types, opaque-lifting) add.inverse-inverse

mult.right-neutral mult-minus-right zero-less-one)
qed
also have ... = (sgnx (poly ((q∗p) ∗ s^2)) (at-right a) > 0)
proof (subst (2) sgnx-poly-times)

have sgnx (poly (s2)) (at-right a) > 0
using sgn-zero-iff sgnx-poly-nz(2) that(2) by auto

then show (0 < sgnx (poly (q ∗ p)) (at-right a)) =
(0 < sgnx (poly (q ∗ p)) (at-right a)
∗ sgnx (poly (s2)) (at-right a))

by (simp add: zero-less-mult-iff)
qed auto
also have ... = (sgnx (poly (q ∗ s)) (at-right a)
∗ sgnx (poly (p ∗ s)) (at-right a)> 0)

unfolding power2-eq-square
apply (subst sgnx-poly-times[where x=a],simp)+
by (simp add:algebra-simps)

also have ... = (sgnx (poly (q ∗ s)) (at-right a)
∗ sgnx (poly P) (at-right a)> 0)

proof −
have sgnx (poly P) (at-right a) =

sgnx (poly (q ∗ r + p ∗ s)) (at-right a)
unfolding P-def by (simp add:algebra-simps)

also have ... = sgnx (poly (p ∗ s)) (at-right a)
apply (rule sgnx-poly-plus[where x=a])
subgoal using ‹poly q a=0 › by simp
subgoal using ‹coprime q p› coprime-poly-0 poly-mult-zero-iff

that(1) that(2) by blast
by simp

finally show ?thesis by auto

65

qed
also have ... = (0 < sgnx (poly (q ∗ s ∗ P)) (at-right a))

apply (subst sgnx-poly-times[where x=a],simp)+
by (simp add:algebra-simps)

also have ... = (0 < sgnx (poly (q ∗ s ∗ P)) (at-left b))
proof −

have sgnx (poly (q ∗ s ∗ P)) (at-right a)
= sgnx (poly (q ∗ s ∗ P)) (at-left b)

proof (rule ccontr)
assume sgnx (poly (q ∗ s ∗ P)) (at-right a)

6= sgnx (poly (q ∗ s ∗ P)) (at-left b)
from sgnx-at-left-at-right-IVT [OF this ‹a<b›]
have ∃ x>a. x < b ∧ poly (q ∗ s ∗ P) x = 0 .
then show False using noroot1 by fastforce

qed
then show ?thesis by auto

qed
also have ... = (poly (q ∗ s ∗ P) b > 0)

apply (subst sgnx-poly-nz)
using noroot1 ‹a<b› by auto

finally show ?thesis .
qed
have psign-a:psign-diff 1 (q ∗ s ∗ P) a = 1

unfolding psign-diff-def using ‹poly (q ∗ s ∗ P) a=0 ›
by simp

have poly (q ∗ s ∗ P) b 6=0
using noroot1 ‹a<b› by blast

moreover have ?thesis if poly (q ∗ s ∗ P) b >0
proof −

have psign-diff 1 (q ∗ s ∗ P) b = 0
using that unfolding psign-diff-def by auto

moreover have jumpF-polyR p q a = 1/2
unfolding jumpF-polyR-coprime[OF ‹coprime q p›]
using ‹p 6= 0 › ‹poly q a = 0 › ‹q 6= 0 › sign-eq that by presburger

ultimately show ?thesis
unfolding cross-alt-def using psign-a by auto

qed
moreover have ?thesis if poly (q ∗ s ∗ P) b <0
proof −

have psign-diff 1 (q ∗ s ∗ P) b = 2
using that unfolding psign-diff-def by auto

moreover have jumpF-polyR p q a = − 1/2
unfolding jumpF-polyR-coprime[OF ‹coprime q p›]
using ‹p 6= 0 › ‹poly q a = 0 › ‹q 6= 0 › sign-eq that by auto

ultimately show ?thesis
unfolding cross-alt-def using psign-a by auto

qed
ultimately show ?thesis by argo

66

qed
also have ... = (cross-alt P (q ∗ s) a b) / 2

apply (subst cross-alt-clear [symmetric])
using ‹poly P a 6= 0 › noroot1 ‹a<b› cross-alt-poly-commute
by auto

finally show ?thesis .
qed
moreover have cindex-polyE a b r s = 0

using cind3 that by auto
ultimately show ?thesis using that

apply (fold P-def)
by auto

qed
moreover have ?thesis if poly q a 6=0 poly s a=0
proof −

have poly P a 6=0
using that coprime-poly-0 [OF ‹coprime s r›] unfolding P-def
by simp

then have cindex-polyE a b (p ∗ r − q ∗ s) P = 0
using cind1 by auto

moreover have cindex-polyE a b r s = (cross-alt P (q ∗ s) a b) / 2
proof −

have cindex-polyE a b r s = jumpF-polyR r s a
using cind3 that by auto

also have ... = (cross-alt 1 (s ∗ q ∗ P) a b) / 2
proof −

have sign-eq:(sign-r-pos s a ←→ poly r a>0)
= (poly (s ∗ q ∗ P) b > 0)

proof −
have (sign-r-pos s a ←→ poly r a>0)

= (sgnx (poly (s∗r)) (at-right a) >0)
proof −

have (poly r a>0) = (sgnx (poly r) (at-right a) > 0)
apply (subst sgnx-poly-nz)
using ‹coprime s r› coprime-poly-0 that(2) by auto

then show ?thesis
unfolding sign-r-pos-sgnx-iff
apply (subst sgnx-poly-times[of - a])
subgoal by simp
subgoal using ‹r 6= 0 › ‹s 6= 0 ›

by (metis (no-types, opaque-lifting) add.inverse-inverse
mult.right-neutral mult-minus-right poly-sgnx-values(2)
zero-less-one)

done
qed
also have ... = (sgnx (poly ((s∗r) ∗ q^2)) (at-right a) > 0)
proof (subst (2) sgnx-poly-times)

have sgnx (poly (q2)) (at-right a) > 0
by (metis ‹q 6= 0 › power2-eq-square sign-r-pos-mult sign-r-pos-sgnx-iff)

67

then show (0 < sgnx (poly (s ∗ r)) (at-right a)) =
(0 < sgnx (poly (s ∗ r)) (at-right a)
∗ sgnx (poly (q2)) (at-right a))

by (simp add: zero-less-mult-iff)
qed auto
also have ... = (sgnx (poly (s ∗ q)) (at-right a)
∗ sgnx (poly (r ∗ q)) (at-right a)> 0)

unfolding power2-eq-square
apply (subst sgnx-poly-times[where x=a],simp)+
by (simp add:algebra-simps)

also have ... = (sgnx (poly (s ∗ q)) (at-right a)
∗ sgnx (poly P) (at-right a)> 0)

proof −
have sgnx (poly P) (at-right a) =

sgnx (poly (p ∗ s + q ∗ r)) (at-right a)
unfolding P-def by (simp add:algebra-simps)

also have ... = sgnx (poly (q ∗ r)) (at-right a)
apply (rule sgnx-poly-plus[where x=a])
subgoal using ‹poly s a=0 › by simp
subgoal

using ‹coprime s r› coprime-poly-0 poly-mult-zero-iff that(1)
that(2) by blast

by simp
finally show ?thesis by (auto simp:algebra-simps)

qed
also have ... = (0 < sgnx (poly (s ∗ q ∗ P)) (at-right a))

apply (subst sgnx-poly-times[where x=a],simp)+
by (simp add:algebra-simps)

also have ... = (0 < sgnx (poly (s ∗ q ∗ P)) (at-left b))
proof −

have sgnx (poly (s ∗ q ∗ P)) (at-right a)
= sgnx (poly (s ∗ q ∗ P)) (at-left b)

proof (rule ccontr)
assume sgnx (poly (s ∗ q ∗ P)) (at-right a)

6= sgnx (poly (s ∗ q ∗ P)) (at-left b)
from sgnx-at-left-at-right-IVT [OF this ‹a<b›]
have ∃ x>a. x < b ∧ poly (s ∗ q ∗ P) x = 0 .
then show False using noroot1 by fastforce

qed
then show ?thesis by auto

qed
also have ... = (poly (s ∗ q ∗ P) b > 0)

apply (subst sgnx-poly-nz)
using noroot1 ‹a<b› by auto

finally show ?thesis .
qed
have psign-a:psign-diff 1 (s ∗ q ∗ P) a = 1

unfolding psign-diff-def using ‹poly (q ∗ s ∗ P) a=0 ›
by (simp add:algebra-simps)

68

have poly (s ∗ q ∗ P) b 6=0
using noroot1 ‹a<b› by (auto simp:algebra-simps)

moreover have ?thesis if poly (s ∗ q ∗ P) b >0
proof −

have psign-diff 1 (s ∗ q ∗ P) b = 0
using that unfolding psign-diff-def by auto

moreover have jumpF-polyR r s a = 1/2
unfolding jumpF-polyR-coprime[OF ‹coprime s r›]
using ‹poly s a = 0 › ‹r 6= 0 › ‹s 6= 0 › sign-eq that by presburger

ultimately show ?thesis
unfolding cross-alt-def using psign-a by auto

qed
moreover have ?thesis if poly (s ∗ q ∗ P) b <0
proof −

have psign-diff 1 (s ∗ q ∗ P) b = 2
using that unfolding psign-diff-def by auto

moreover have jumpF-polyR r s a = − 1/2
unfolding jumpF-polyR-coprime[OF ‹coprime s r›]
using ‹poly s a = 0 › ‹r 6= 0 › sign-eq that by auto

ultimately show ?thesis
unfolding cross-alt-def using psign-a by auto

qed
ultimately show ?thesis by argo

qed
also have ... = (cross-alt P (q ∗ s) a b) / 2

apply (subst cross-alt-clear [symmetric])
using ‹poly P a 6= 0 › noroot1 ‹a<b› cross-alt-poly-commute
by (auto simp:algebra-simps)

finally show ?thesis .
qed
moreover have cindex-polyE a b p q = 0

using cind2 that by auto
ultimately show ?thesis using that

apply (fold P-def)
by auto

qed
moreover have ?thesis if poly P a =0 poly q a 6=0 poly s a 6=0
proof −

have cindex-polyE a b (p ∗ r − q ∗ s) P
= jumpF-polyR (p ∗ r − q ∗ s) P a

using cind1 that by auto
also have ... = (if sign-r-pos P a = (0 < poly (p ∗ r − q ∗ s) a)

then 1 / 2 else − 1 / 2) (is - = ?R)
proof (subst jumpF-polyR-coprime ′)

let ?C=(P 6= 0 ∧ p ∗ r − q ∗ s 6= 0 ∧ poly P a = 0)
have ?C

by (smt (z3) P-def ‹P 6= 0 › add.left-neutral diff-add-cancel
poly-add poly-mult-zero-iff sign-r-pos-mult sign-r-pos-rec that(1)

69

that(2) that(3))
then show (if ?C then ?R else 0) = ?R by auto
show poly P a 6= 0 ∨ poly (p ∗ r − q ∗ s) a 6= 0

by (smt (z3) P-def mult-less-0-iff poly-add poly-diff poly-mult
poly-mult-zero-iff that(2) that(3))

qed
also have ... = − cross-alt P (q ∗ s) a b / 2
proof −

have (sign-r-pos P a = (0 < poly (p ∗ r − q ∗ s) a))
=(¬ (poly (q ∗ s ∗ P) b > 0))

proof −
have (poly (q ∗ s ∗ P) b > 0)

= (sgnx (poly (q ∗ s ∗ P)) (at-left b) >0)
apply (subst sgnx-poly-nz)
using noroot1 ‹a<b› by auto

also have ... = (sgnx (poly (q ∗ s ∗ P)) (at-right a) >0)
proof (rule ccontr)

define F where F=(q ∗ s ∗ P)
assume (0 < sgnx (poly F) (at-left b))

6= (0 < sgnx (poly F) (at-right a))
then have sgnx (poly F) (at-right a) 6= sgnx (poly F) (at-left b)

by auto
then have ∃ x>a. x < b ∧ poly F x = 0

using sgnx-at-left-at-right-IVT [OF - ‹a<b›] by auto
then show False using noroot1 [folded F-def] ‹a<b› by fastforce

qed
also have ... = sign-r-pos (q ∗ s ∗ P) a

using sign-r-pos-sgnx-iff by simp
also have ... = (sign-r-pos P a = sign-r-pos (q ∗ s) a)

apply (subst sign-r-pos-mult[symmetric])
using ‹P 6=0 › ‹q 6=0 › ‹s 6=0 › by (auto simp add:algebra-simps)

also have ... = (sign-r-pos P a = (0 ≥ poly (p ∗ r − q ∗ s) a))
proof −

have sign-r-pos (q ∗ s) a=(poly (q ∗ s) a > 0)
by (metis poly-0 poly-mult-zero-iff sign-r-pos-rec

that(2) that(3))
also have ... = (0 ≥ poly (p ∗ r − q ∗ s) a)

using ‹poly P a =0 › unfolding P-def
by (smt (verit, ccfv-threshold) ‹p 6= 0 › ‹q 6= 0 › ‹r 6= 0 › ‹s 6= 0 ›

divisors-zero
poly-add poly-diff poly-mult-zero-iff sign-r-pos-mult sign-r-pos-rec

that(2)
that(3))

finally show ?thesis by simp
qed
finally have (0 < poly (q ∗ s ∗ P) b)
= (sign-r-pos P a = (poly (p ∗ r − q ∗ s) a ≤ 0)) .

then show ?thesis by argo
qed

70

moreover have cross-alt P (q ∗ s) a b =
(if poly (q ∗ s ∗ P) b > 0 then 1 else −1)

proof −
have psign-diff P (q ∗ s) a = 1

by (smt (verit, ccfv-threshold) Sturm-Tarski.sign-def
dvd-div-mult-self gcd-dvd1 gcd-dvd2 poly-mult-zero-iff
psign-diff-def that(1) that(2) that(3))

moreover have psign-diff P (q ∗ s) b
= (if poly (q ∗ s ∗ P) b > 0 then 0 else 2)

proof −
define F where F = q ∗ s ∗ P
have psign-diff P (q ∗ s) b = psign-diff 1 F b

apply (subst psign-diff-clear)
using noroot1 ‹a<b› unfolding F-def
by (auto simp:algebra-simps)

also have ... = (if 0 < poly F b then 0 else 2)
proof −

have poly F b 6=0
unfolding F-def using ‹a<b› noroot1 by auto

then show ?thesis
unfolding psign-diff-def by auto

qed
finally show ?thesis unfolding F-def .

qed
ultimately show ?thesis unfolding cross-alt-def by auto

qed
ultimately show ?thesis by auto

qed
finally have cindex-polyE a b (p ∗ r − q ∗ s) P

= − cross-alt P (q ∗ s) a b / 2 .
moreover have cindex-polyE a b p q = 0

using cind2 that by auto
moreover have cindex-polyE a b r s = 0

using cind3 that by auto
ultimately show ?thesis

by (fold P-def) auto
qed
moreover have ?thesis if poly q a=0 poly s a=0
proof −

have poly p a 6=0
using ‹coprime q p› coprime-poly-0 that(1) by blast

have poly r a 6=0
using ‹coprime s r› coprime-poly-0 that(2) by blast

have poly P a=0
unfolding P-def using that by simp

define ff where ff=(λx. if x then 1/(2 ::real) else −1/2)
define C1 C2 C3 C4 C5 where C1 = (sign-r-pos P a)

and C2 =(0 < poly p a)

71

and C3= (0 < poly r a)
and C4=(sign-r-pos q a)
and C5=(sign-r-pos s a)

note CC-def = C1-def C2-def C3-def C4-def C5-def

have cindex-polyE a b (p ∗ r − q ∗ s) P = ff ((C1 = C2) = C3)
proof −

have cindex-polyE a b (p ∗ r − q ∗ s) P
= jumpF-polyR (p ∗ r − q ∗ s) P a

using cind1 ‹poly P a=0 › by auto
also have ... = (ff (sign-r-pos P a

= (0 < poly (p ∗ r − q ∗ s) a)))
unfolding ff-def
apply (subst jumpF-polyR-coprime ′)
subgoal

by (simp add: ‹poly p a 6= 0 › ‹poly r a 6= 0 › that(1))
subgoal

by (smt (z3) ‹P 6= 0 › ‹poly P a = 0 ›
‹poly P a 6= 0 ∨ poly (p ∗ r − q ∗ s) a 6= 0 › poly-0)

done
also have ... = (ff (sign-r-pos P a = (0 < poly (p ∗ r) a)))
proof −

have (0 < poly (p ∗ r − q ∗ s) a) = (0 < poly (p ∗ r) a)
by (simp add: that(1))

then show ?thesis by simp
qed
also have ... = ff ((C1 = C2) = C3)

unfolding CC-def
by (smt (z3) ‹p 6= 0 › ‹poly p a 6= 0 › ‹poly r a 6= 0 › ‹r 6= 0 ›

no-zero-divisors
poly-mult-zero-iff sign-r-pos-mult sign-r-pos-rec)

finally show ?thesis .
qed
moreover have cindex-polyE a b p q

= ff (C4 = C2)
proof −

have cindex-polyE a b p q = jumpF-polyR p q a
using cind2 ‹poly q a=0 › by auto

also have ... = ff (sign-r-pos q a = (0 < poly p a))
apply (subst jumpF-polyR-coprime ′)
subgoal using ‹poly p a 6= 0 › by auto
subgoal using ‹p 6= 0 › ‹q 6= 0 › ff-def that(1) by presburger
done

also have ... = ff (C4 = C2)
using ‹a<b› noroot1 unfolding CC-def by auto

finally show ?thesis .
qed
moreover have cindex-polyE a b r s = ff (C5 = C3)
proof −

72

have cindex-polyE a b r s = jumpF-polyR r s a
using cind3 ‹poly s a=0 › by auto

also have ... = ff (sign-r-pos s a = (0 < poly r a))
apply (subst jumpF-polyR-coprime ′)
subgoal using ‹poly r a 6= 0 › by auto
subgoal using ‹r 6= 0 › ‹s 6= 0 › ff-def that(2) by presburger
done

also have ... = ff (C5 = C3)
using ‹a<b› noroot1 unfolding CC-def by auto

finally show ?thesis .
qed
moreover have cross-alt P (q ∗ s) a b = 2 ∗ ff ((C1 = C4) = C5)
proof −

have cross-alt P (q ∗ s) a b
= sign (poly P b ∗ (poly q b ∗ poly s b))

apply (subst cross-alt-clear)
apply (subst cross-alt-alt)
using that by auto

also have ... = 2 ∗ ff ((C1 = C4) = C5)
proof −

have sign-r-pos P a = (poly P b>0)
apply (rule sign-pos-eq)
using ‹a<b› noroot1 by auto

moreover have sign-r-pos q a = (poly q b>0)
apply (rule sign-pos-eq)
using ‹a<b› noroot1 by auto

moreover have sign-r-pos s a = (poly s b>0)
apply (rule sign-pos-eq)
using ‹a<b› noroot1 by auto

ultimately show ?thesis
unfolding CC-def ff-def
apply (simp add:sign-times)
using noroot1 ‹a<b› by (auto simp:sign-def)

qed
finally show ?thesis .

qed
ultimately have ?thesis = (ff ((C1 = C2) = C3) = ff (C4 = C2) +

ff (C5 = C3) − ff ((C1 = C4) = C5))
by (fold P-def) auto

moreover have ff ((C1 = C2) = C3) = ff (C4 = C2) +
ff (C5 = C3) − ff ((C1 = C4) = C5)

proof −
have pp:(0 < poly p a) = sign-r-pos p a

apply (subst sign-r-pos-rec)
using ‹poly p a 6=0 › by auto

have rr :(0 < poly r a) = sign-r-pos r a
apply (subst sign-r-pos-rec)

using ‹poly r a 6=0 › by auto

73

have C1 if C2=C5 C3=C4
proof −

have sign-r-pos (p ∗ s) a
apply (subst sign-r-pos-mult)
using pp ‹C2=C5 › ‹p 6=0 › ‹s 6=0 › unfolding CC-def by auto

moreover have sign-r-pos (q ∗ r) a
apply (subst sign-r-pos-mult)
using rr ‹C3=C4 › ‹q 6=0 › ‹r 6=0 › unfolding CC-def by auto

ultimately show ?thesis unfolding CC-def P-def
using sign-r-pos-plus-imp by auto

qed
moreover have foo2 :¬C1 if C2 6=C5 C3 6=C4
proof −

have (0 < poly p a) = sign-r-pos (−s) a
apply (subst sign-r-pos-minus)
using ‹s 6=0 › ‹C2 6=C5 › unfolding CC-def by auto

then have sign-r-pos (p ∗ (−s)) a
apply (subst sign-r-pos-mult)
unfolding pp using ‹p 6=0 › ‹s 6=0 › by auto

moreover have (0 < poly r a) = sign-r-pos (−q) a
apply (subst sign-r-pos-minus)
using ‹q 6=0 › ‹C3 6=C4 › unfolding CC-def by auto

then have sign-r-pos (r ∗ (−q)) a
apply (subst sign-r-pos-mult)
unfolding rr using ‹r 6=0 › ‹q 6=0 › by auto

ultimately have sign-r-pos (p ∗ (−s) + r ∗ (−q)) a
using sign-r-pos-plus-imp by blast

then have sign-r-pos (− (p ∗ s + q ∗ r)) a
by (simp add:algebra-simps)

then have ¬ sign-r-pos P a
apply (subst sign-r-pos-minus)
using ‹P 6=0 › unfolding P-def by auto

then show ?thesis unfolding CC-def .
qed
ultimately show ?thesis unfolding ff-def by auto

qed
ultimately show ?thesis by simp

qed
ultimately show ?thesis using that by auto

qed
ultimately show ?thesis by auto

qed

have ?thesis ′ p r q s a if poly Q b 6= 0
apply (rule base-case[OF - ‹coprime q p› ‹coprime s r›])
subgoal using noroot0 that unfolding Q-def P-def by fastforce
using False ‹a<b› by auto

moreover have ?thesis ′ p r q s a if poly Q b = 0
proof −

74

have poly Q a 6=0 using noroot-disj that by auto

define h where h=(λp. p ◦p [:a + b, − 1 :])

have h-rw:
h p − h q = h (p − q)
h p ∗ h q = h (p ∗ q)
h p + h q = h (p + q)
cindex-polyE a b (h q) (h p) = − cindex-polyE a b q p
cross-alt (h p) (h q) a b = cross-alt p q b a
for p q

unfolding h-def pcompose-diff pcompose-mult pcompose-add
cindex-polyE-linear-comp[OF ‹a<b›, of −1 - a+b,simplified]
cross-alt-linear-comp[of p a+b −1 q a b,simplified]

by simp-all
have ?thesis ′ (h p) (h r) (h q) (h s) a
proof (rule base-case)
have proots-within (h q ∗ h s ∗ (h p ∗ h s + h q ∗ h r)) {x. a < x ∧ x ≤ b}

= proots-within (h Q) {x. a < x ∧ x ≤ b}
unfolding Q-def P-def h-def
by (simp add:pcompose-diff pcompose-mult pcompose-add)

also have ... = {}
unfolding proots-within-def h-def poly-pcompose

using ‹a<b› that[folded Q-def] noroot0 [unfolded P-def , folded Q-def] ‹poly
Q a 6=0 ›

by (auto simp:order .order-iff-strict proots-within-def)
finally show proots-within (h q ∗ h s ∗ (h p ∗ h s + h q ∗ h r))

{x. a < x ∧ x ≤ b} = {} .
show coprime (h q) (h p) unfolding h-def

apply (rule coprime-linear-comp)
using ‹coprime q p› by auto

show coprime (h s) (h r) unfolding h-def
apply (rule coprime-linear-comp)
using ‹coprime s r› by auto

show h q 6= 0 h s 6= 0 h p 6= 0 h r 6= 0
using False unfolding h-def
by (subst pcompose-eq-0 ;auto)+

have h (p ∗ s + q ∗ r) 6= 0
using False unfolding h-def
by (subst pcompose-eq-0 ;auto)

then show h p ∗ h s + h q ∗ h r 6= 0
unfolding h-def pcompose-mult pcompose-add by simp

show a < b by fact
qed
moreover have cross-alt (p ∗ s + q ∗ r) (q ∗ s) b a

= − cross-alt (p ∗ s + q ∗ r) (q ∗ s) a b
unfolding cross-alt-def by auto

ultimately show ?thesis unfolding h-rw by auto
qed

75

ultimately show ?thesis unfolding Case-def P-def by blast
qed

show ?thesis using ‹a<b›
proof (induct card (proots-within (q ∗ s ∗ P) {x. a<x ∧ x≤b}) arbitrary:a)

case 0
have Case a b
proof (rule basic-case)

have ∗:proots-within Q {x. a < x ∧ x ≤ b} = {}
using 0 ‹Q 6=0 › unfolding Q-def by auto

then show proots-within Q {x. a < x ∧ x < b} = {} by force
show poly Q a 6= 0 ∨ poly Q b 6= 0

using ∗ ‹a<b› by blast
show a < b by fact

qed
then show ?case unfolding Case-def P-def by simp

next
case (Suc n)

define S where S=(λa. proots-within Q {x. a < x ∧ x ≤ b})
have Sa-Suc:Suc n = card (S a)

using Suc(2) unfolding S-def Q-def by auto

define mroot where mroot = Min (S a)
have fin-S :finite (S a) for a

using Suc(2) unfolding S-def Q-def
by (simp add: ‹P 6= 0 › ‹q 6= 0 › ‹s 6= 0 ›)

have mroot-in:mroot ∈ S a and mroot-min:∀ x∈S a. mroot≤x
proof −

have S a 6={}
unfolding S-def Q-def using Suc.hyps(2) by force

then show mroot ∈ S a unfolding mroot-def
using Min-in fin-S by auto

show ∀ x∈S a. mroot≤x
using ‹finite (S a)› Min-le unfolding mroot-def by auto

qed
have mroot-nzero:poly Q x 6=0 if a<x x<mroot for x

using mroot-in mroot-min that unfolding S-def
by (metis (no-types, lifting) dual-order .strict-trans leD

le-less-linear mem-Collect-eq proots-within-iff)

define C1 where C1=(λa b. cindex-polyE a b (p ∗ r − q ∗ s) P)
define C2 where C2=(λa b. cindex-polyE a b p q)
define C3 where C3=(λa b. cindex-polyE a b r s)
define C4 where C4=(λa b. cross-alt P (q ∗ s) a b)
note CC-def = C1-def C2-def C3-def C4-def

have hyps:C1 mroot b = C2 mroot b + C3 mroot b − C4 mroot b / 2

76

if mroot < b
unfolding C1-def C2-def C3-def C4-def P-def

proof (rule Suc.hyps(1)[OF - that])
have Suc n = card (S a) using Sa-Suc by auto
also have ... = card (insert mroot (S mroot))
proof −

have S a = proots-within Q {x. a < x ∧ x ≤ b}
unfolding S-def Q-def by simp

also have ... = proots-within Q ({x. a < x ∧ x ≤ mroot} ∪ {x. mroot < x
∧ x ≤ b})

apply (rule arg-cong2 [where f=proots-within])
using mroot-in unfolding S-def by auto

also have ... = proots-within Q {x. a < x ∧ x ≤ mroot} ∪ S mroot
unfolding S-def Q-def
apply (subst proots-within-union)
by auto

also have ... = {mroot} ∪ S mroot
proof −

have proots-within Q {x. a < x ∧ x ≤ mroot} = {mroot}
using mroot-in mroot-min unfolding S-def
by auto force

then show ?thesis by auto
qed
finally have S a = insert mroot (S mroot) by auto
then show ?thesis by auto

qed
also have ... = Suc (card (S mroot))

apply (rule card-insert-disjoint)
using fin-S unfolding S-def by auto

finally have Suc n = Suc (card (S mroot)) .
then have n = card (S mroot) by simp
then show n = card (proots-within (q ∗ s ∗ P) {x. mroot < x ∧ x ≤ b})

unfolding S-def Q-def by simp
qed

have ?case if mroot = b
proof −

have nzero:poly Q x 6=0 if a<x x<b for x
using mroot-nzero ‹mroot = b› that by auto

define m where m=(a+b)/2
have [simp]:a<m m<b using ‹a<b› unfolding m-def by auto

have Case a m
proof (rule basic-case)

show proots-within Q {x. a < x ∧ x < m} = {}
using nzero ‹a<b› unfolding m-def by auto

have poly Q m 6= 0 using nzero ‹a<m› ‹m<b› by auto
then show poly Q a 6= 0 ∨ poly Q m 6= 0 by auto

77

qed simp
moreover have Case m b
proof (rule basic-case)

show proots-within Q {x. m < x ∧ x < b} = {}
using nzero ‹a<b› unfolding m-def by auto

have poly Q m 6= 0 using nzero ‹a<m› ‹m<b› by auto
then show poly Q m 6= 0 ∨ poly Q b 6= 0 by auto

qed simp
ultimately have C1 a m + C1 m b = (C2 a m + C2 m b)

+ (C3 a m + C3 m b) − (C4 a m + C4 m b)/2
unfolding Case-def C1-def
apply simp
unfolding C2-def C3-def C4-def by (auto simp:algebra-simps)

moreover have
C1 a m + C1 m b = C1 a b
C2 a m + C2 m b = C2 a b
C3 a m + C3 m b = C3 a b

unfolding CC-def
by (rule cindex-polyE-combine;auto)+

moreover have C4 a m + C4 m b = C4 a b
unfolding C4-def cross-alt-def by simp

ultimately have C1 a b = C2 a b + C3 a b − C4 a b/2
by auto

then show ?thesis unfolding CC-def P-def by auto
qed
moreover have ?case if mroot 6=b
proof −

have [simp]:a<mroot mroot < b
using mroot-in that unfolding S-def by auto

define m where m=(a+mroot)/2
have [simp]:a<m m<mroot

using mroot-in unfolding m-def S-def by auto
have poly Q m 6= 0

by (rule mroot-nzero) auto

have C1 mroot b = C2 mroot b + C3 mroot b − C4 mroot b / 2
using hyps ‹mroot<b› by simp

moreover have Case a m
apply (rule basic-case)
subgoal
by (smt (verit) Collect-empty-eq ‹m < mroot› mem-Collect-eq mroot-nzero

proots-within-def)
subgoal using ‹poly Q m 6= 0 › by auto
by fact

then have C1 a m = C2 a m + C3 a m − C4 a m / 2
unfolding Case-def CC-def by auto

moreover have Case m mroot
apply (rule basic-case)

78

subgoal
by (smt (verit) Collect-empty-eq ‹a < m› mem-Collect-eq mroot-nzero

proots-within-def)
subgoal using ‹poly Q m 6= 0 › by auto
by fact

then have C1 m mroot = C2 m mroot + C3 m mroot − C4 m mroot / 2
unfolding Case-def CC-def by auto

ultimately have C1 a m + C1 m mroot + C1 mroot b =
(C2 a m + C2 m mroot + C2 mroot b)
+ (C3 a m + C3 m mroot + C3 mroot b)
− (C4 a m + C4 m mroot + C4 mroot b) / 2

by simp (simp add:algebra-simps)
moreover have

C1 a m + C1 m mroot + C1 mroot b = C1 a b
C2 a m + C2 m mroot + C2 mroot b = C2 a b
C3 a m + C3 m mroot + C3 mroot b = C3 a b

unfolding CC-def
by (subst cindex-polyE-combine;simp?)+

moreover have C4 a m + C4 m mroot + C4 mroot b = C4 a b
unfolding C4-def cross-alt-def by simp

ultimately have C1 a b = C2 a b + C3 a b − C4 a b/2
by auto

then show ?thesis unfolding CC-def P-def by auto
qed
ultimately show ?case by auto

qed
qed

lemma cindex-polyE-product:
fixes p r q s::real poly and a b ::real
assumes a<b

and poly p a 6=0 ∨ poly q a 6=0 poly p b 6=0 ∨ poly q b 6=0
and poly r a 6=0 ∨ poly s a 6=0 poly r b 6=0 ∨ poly s b 6=0

shows cindex-polyE a b (p ∗ r − q ∗ s) (p ∗ s + q ∗ r)
= cindex-polyE a b p q + cindex-polyE a b r s
− cross-alt (p ∗ s + q ∗ r) (q ∗ s) a b / 2

proof −
define g1 where g1 = gcd p q
obtain p ′ q ′ where pq:p=g1∗p ′ q=g1∗q ′ and coprime q ′ p ′

unfolding g1-def
by (metis assms(2) coprime-commute div-gcd-coprime dvd-mult-div-cancel gcd-dvd1

gcd-dvd2 order-root)

define g2 where g2 = gcd r s
obtain r ′ s ′ where rs:r=g2∗r ′ s = g2 ∗ s ′ coprime s ′ r ′

unfolding g2-def using assms(4)
by (metis coprime-commute div-gcd-coprime dvd-mult-div-cancel gcd-dvd1 gcd-dvd2

79

order-root)
define g where g=g1 ∗ g2
have [simp]:g 6=0 g1 6=0 g2 6=0

unfolding g-def g1-def g2-def
using assms by auto

have [simp]:poly g a 6= 0 poly g b 6= 0
unfolding g-def g1-def g2-def
subgoal by (metis assms(2) assms(4) poly-gcd-0-iff poly-mult-zero-iff)
subgoal by (metis assms(3) assms(5) poly-gcd-0-iff poly-mult-zero-iff)
done

have cindex-polyE a b (p ′ ∗ r ′ − q ′ ∗ s ′) (p ′ ∗ s ′ + q ′ ∗ r ′) =
cindex-polyE a b p ′ q ′ + cindex-polyE a b r ′ s ′ −

(cross-alt (p ′ ∗ s ′ + q ′ ∗ r ′) (q ′ ∗ s ′) a b) / 2
using cindex-polyE-product ′[OF ‹a<b› ‹coprime q ′ p ′› ‹coprime s ′ r ′›] .

moreover have cindex-polyE a b (p ∗ r − q ∗ s) (p ∗ s + q ∗ r)
= cindex-polyE a b (g∗(p ′ ∗ r ′ − q ′ ∗ s ′)) (g∗(p ′ ∗ s ′ + q ′ ∗ r ′))

unfolding pq rs g-def by (auto simp:algebra-simps)
then have cindex-polyE a b (p ∗ r − q ∗ s) (p ∗ s + q ∗ r)

= cindex-polyE a b (p ′ ∗ r ′ − q ′ ∗ s ′) (p ′ ∗ s ′ + q ′ ∗ r ′)
apply (subst (asm) cindex-polyE-mult-cancel)
by simp

moreover have cindex-polyE a b p q = cindex-polyE a b p ′ q ′

unfolding pq using cindex-polyE-mult-cancel by simp
moreover have cindex-polyE a b r s =cindex-polyE a b r ′ s ′

unfolding rs using cindex-polyE-mult-cancel by simp
moreover have cross-alt (p ∗ s + q ∗ r) (q ∗ s) a b

= cross-alt (g∗(p ′ ∗ s ′ + q ′ ∗ r ′)) (g∗(q ′ ∗ s ′)) a b
unfolding pq rs g-def by (auto simp:algebra-simps)

then have cross-alt (p ∗ s + q ∗ r) (q ∗ s) a b
= cross-alt (p ′ ∗ s ′ + q ′ ∗ r ′) (q ′ ∗ s ′) a b

apply (subst (asm) cross-alt-cancel)
by simp-all

ultimately show ?thesis by auto
qed

lemma cindex-pathE-linepath-on:
assumes z ∈ closed-segment a b
shows cindex-pathE (linepath a b) z = 0

proof −
obtain u where 0≤u u≤1

and z-eq:z = complex-of-real (1 − u) ∗ a + complex-of-real u ∗ b
using assms unfolding in-segment scaleR-conv-of-real
by auto

define U where U = [:−u, 1 :]
have U 6=0 unfolding U-def by auto

80

have cindex-pathE (linepath a b) z
= cindexE 0 1 (λt. (Im a + t ∗ Im b − (Im z + t ∗ Im a))

/ (Re a + t ∗ Re b − (Re z + t ∗ Re a)))
unfolding cindex-pathE-def
by (simp add:linepath-def algebra-simps)

also have ... = cindexE 0 1
(λt. ((Im b − Im a) ∗ (t−u))

/ ((Re b − Re a) ∗ (t−u)))
unfolding z-eq
by (simp add:algebra-simps)

also have ... = cindex-polyE 0 1 (U∗[:Im b − Im a:]) (U∗[:Re b − Re a:])
proof (subst cindexE-eq-cindex-polyE [symmetric])

have (Im b − Im a) ∗ (t − u) / ((Re b − Re a) ∗ (t − u))
= poly (U ∗ [:Im b − Im a:]) t / poly (U ∗ [:Re b − Re a:]) t for t

unfolding U-def by (simp add:algebra-simps)
then show cindexE 0 1 (λt. (Im b − Im a) ∗ (t − u) / ((Re b − Re a) ∗ (t −

u))) =
cindexE 0 1 (λx. poly (U ∗ [:Im b − Im a:]) x / poly (U ∗ [:Re b −

Re a:]) x)
by auto

qed simp
also have ... = cindex-polyE 0 1 [:Im b − Im a:] [:Re b − Re a:]

apply (rule cindex-polyE-mult-cancel)
by fact

also have ... = cindexE 0 1 (λx. (Im b − Im a) / (Re b − Re a))
apply (subst cindexE-eq-cindex-polyE [symmetric])
by auto

also have ... = 0
apply (rule cindexE-constI)
by auto

finally show ?thesis .
qed

2.7 More Cauchy indices on polynomials
definition cindexP-pathE ::complex poly ⇒ (real ⇒ complex) ⇒ real where

cindexP-pathE p g = cindex-pathE (poly p o g) 0

definition cindexP-lineE :: complex poly ⇒ complex ⇒ complex ⇒ real where
cindexP-lineE p a b = cindexP-pathE p (linepath a b)

lemma cindexP-pathE-const:cindexP-pathE [:c:] g = 0
unfolding cindexP-pathE-def by (auto intro:cindex-pathE-constI)

lemma cindex-poly-pathE-joinpaths:
assumes finite-ReZ-segments (poly p o g1) 0

and finite-ReZ-segments (poly p o g2) 0
and path g1 and path g2
and pathfinish g1 = pathstart g2

81

shows cindexP-pathE p (g1 +++ g2)
= cindexP-pathE p g1 + cindexP-pathE p g2

proof −
have path (poly p o g1) path (poly p o g2)

using ‹path g1 › ‹path g2 › by auto
moreover have pathfinish (poly p o g1) = pathstart (poly p o g2)

using ‹pathfinish g1 = pathstart g2 ›
by (simp add: pathfinish-compose pathstart-def)

ultimately have
cindex-pathE ((poly p ◦ g1) +++ (poly p ◦ g2)) 0 =

cindex-pathE (poly p ◦ g1) 0 + cindex-pathE (poly p ◦ g2) 0
using cindex-pathE-joinpaths[OF assms(1 ,2)] by auto

then show ?thesis
unfolding cindexP-pathE-def
by (simp add:path-compose-join)

qed

lemma cindexP-lineE-polyE :
fixes p::complex poly and a b::complex
defines pp ≡ pcompose p [:a, b−a:]
defines pR ≡ map-poly Re pp

and pI ≡ map-poly Im pp
shows cindexP-lineE p a b = cindex-polyE 0 1 pI pR

proof −
have cindexP-lineE p a b = cindexE 0 1

(λt. Im (poly (p ◦p [:a, b − a:]) (complex-of-real t)) /
Re (poly (p ◦p [:a, b − a:]) (complex-of-real t)))

unfolding cindexP-lineE-def cindexP-pathE-def cindex-pathE-def
by (simp add:poly-linepath-comp ′)

also have ... = cindexE 0 1 (λt. poly pI t/poly pR t)
unfolding pI-def pR-def pp-def
by (simp add:Im-poly-of-real Re-poly-of-real)

also have ... = cindex-polyE 0 1 pI pR
apply (subst cindexE-eq-cindex-polyE)
by simp-all

finally show ?thesis .
qed

definition psign-aux :: complex poly ⇒ complex poly ⇒ complex ⇒ int where
psign-aux p q b =

sign (Im (poly p b ∗ poly q b) ∗ (Im (poly p b) ∗ Im (poly q b)))
+ sign (Re (poly p b ∗ poly q b) ∗ Im (poly p b ∗ poly q b))
− sign (Re (poly p b) ∗ Im (poly p b))
− sign (Re (poly q b) ∗ Im (poly q b))

definition cdiff-aux :: complex poly ⇒ complex poly ⇒ complex ⇒ complex ⇒ int
where

cdiff-aux p q a b = psign-aux p q b − psign-aux p q a

82

lemma cindexP-lineE-times:
fixes p q::complex poly and a b::complex
assumes poly p a 6=0 poly p b 6=0 poly q a 6=0 poly q b 6=0
shows cindexP-lineE (p∗q) a b = cindexP-lineE p a b + cindexP-lineE q a

b+cdiff-aux p q a b/2
proof −

define pR pI where pR = map-poly Re (p ◦p [:a, b − a:])
and pI = map-poly Im (p ◦p [:a, b − a:])

define qR qI where qR = map-poly Re (q ◦p [:a, b − a:])
and qI = map-poly Im (q ◦p [:a, b − a:])

define P1 P2 where P1 = pR ∗ qI + pI ∗ qR and P2=pR ∗ qR − pI ∗ qI

have p-poly:
poly pR 0 = Re (poly p a)
poly pI 0 = Im (poly p a)
poly pR 1 = Re (poly p b)
poly pI 1 = Im (poly p b)

unfolding pR-def pI-def
by (simp flip:Re-poly-of-real Im-poly-of-real add:poly-pcompose)+

have q-poly:
poly qR 0 = Re (poly q a)
poly qI 0 = Im (poly q a)
poly qR 1 = Re (poly q b)
poly qI 1 = Im (poly q b)

unfolding qR-def qI-def
by (simp flip:Re-poly-of-real Im-poly-of-real add:poly-pcompose)+

have P2-poly:
poly P2 0 = Re (poly (p∗q) a)
poly P2 1 = Re (poly (p∗q) b)

unfolding P2-def pR-def qI-def pI-def qR-def
by (simp flip:Re-poly-of-real Im-poly-of-real add:poly-pcompose)+

have P1-poly:
poly P1 0 = Im (poly (p∗q) a)
poly P1 1 = Im (poly (p∗q) b)

unfolding P1-def pR-def qI-def pI-def qR-def
by (simp flip:Re-poly-of-real Im-poly-of-real add:poly-pcompose)+

have p-nzero:poly pR 0 6= 0 ∨ poly pI 0 6= 0 poly pR 1 6= 0 ∨ poly pI 1 6= 0
unfolding p-poly
using assms(1 ,2) complex-eqI by force+

have q-nzero:poly qR 0 6= 0 ∨ poly qI 0 6= 0 poly qR 1 6= 0 ∨ poly qI 1 6= 0
unfolding q-poly using assms(3 ,4) complex-eqI by force+

have P12-nzero:poly P2 0 6= 0 ∨ poly P1 0 6= 0 poly P2 1 6= 0 ∨ poly P1 1 6= 0
unfolding P1-poly P2-poly using assms
by (metis Im-poly-hom.base.hom-zero Re-poly-hom.base.hom-zero

complex-eqI poly-mult-zero-iff)+

83

define C1 C2 where C1 = (λp q. cindex-polyE 0 1 p q)
and C2 = (λp q. real-of-int (cross-alt p q 0 1) /2)

define CR where CR = C2 P1 (pI ∗ qI) +C2 P2 P1 − C2 pR pI − C2 qR qI

have cindexP-lineE (p∗q) a b =
cindex-polyE 0 1 (map-poly Im (cpoly-of pR pI ∗ cpoly-of qR qI))

(map-poly Re (cpoly-of pR pI ∗ cpoly-of qR qI))
proof −

have p ◦p [:a, b − a:] = cpoly-of pR pI
using cpoly-of-decompose pI-def pR-def by blast

moreover have q ◦p [:a, b − a:] = cpoly-of qR qI
using cpoly-of-decompose qI-def qR-def by blast

ultimately show ?thesis
apply (subst cindexP-lineE-polyE)
unfolding pcompose-mult by simp

qed
also have ... = cindex-polyE 0 1 (pR ∗ qI + pI ∗ qR) (pR ∗ qR − pI ∗ qI)

unfolding cpoly-of-times by (simp add:algebra-simps)
also have ... = cindex-polyE 0 1 P1 P2

unfolding P1-def P2-def by simp
also have ... = cindex-polyE 0 1 pI pR + cindex-polyE 0 1 qI qR + CR
proof −

have C1 P2 P1 = C1 pR pI + C1 qR qI − C2 P1 (pI ∗ qI)
unfolding P1-def P2-def C1-def C2-def
apply (rule cindex-polyE-product) thm cindex-polyE-product
by simp fact+

moreover have C1 P2 P1 = C2 P2 P1 − C1 P1 P2
unfolding C1-def C2-def
apply (subst cindex-polyE-inverse-add-cross ′[symmetric])
using P12-nzero by simp-all

moreover have C1 pR pI = C2 pR pI − C1 pI pR
unfolding C1-def C2-def
apply (subst cindex-polyE-inverse-add-cross ′[symmetric])
using p-nzero by simp-all

moreover have C1 qR qI = C2 qR qI − C1 qI qR
unfolding C1-def C2-def
apply (subst cindex-polyE-inverse-add-cross ′[symmetric])
using q-nzero by simp-all

ultimately have C2 P2 P1 − C1 P1 P2 = (C2 pR pI − C1 pI pR)
+ (C2 qR qI − C1 qI qR) − C2 P1 (pI ∗ qI)

by auto
then have C1 P1 P2 = C1 pI pR + C1 qI qR + CR

unfolding CR-def by (auto simp:algebra-simps)
then show ?thesis unfolding C1-def .

qed
also have ... = cindexP-lineE p a b +cindexP-lineE q a b + CR

unfolding C1-def pI-def pR-def qI-def qR-def
apply (subst (1 2) cindexP-lineE-polyE)
by simp

84

also have ... = cindexP-lineE p a b +cindexP-lineE q a b + cdiff-aux p q a b/2
proof −

have CR = cdiff-aux p q a b/2
unfolding CR-def C2-def cross-alt-alt cdiff-aux-def psign-aux-def
by (simp add:P1-poly P2-poly p-poly q-poly del:times-complex.sel)

then show ?thesis by simp
qed
finally show ?thesis .

qed

lemma cindexP-lineE-changes:
fixes p::complex poly and a b ::complex
assumes p 6=0 a 6=b
shows cindexP-lineE p a b =
(let p1 = pcompose p [:a, b−a:];

pR1 = map-poly Re p1 ;
pI1 = map-poly Im p1 ;
gc1 = gcd pR1 pI1

in
real-of-int (changes-alt-itv-smods 0 1

(pR1 div gc1) (pI1 div gc1)) / 2)
proof −

define p1 pR1 pI1 gc1 where p1 = pcompose p [:a, b−a:]
and pR1 = map-poly Re p1 and pI1 = map-poly Im p1
and gc1 = gcd pR1 pI1

have gc1 6=0
proof (rule ccontr)

assume ¬ gc1 6= 0
then have pI1 = 0 pR1 = 0 unfolding gc1-def by auto
then have p1 = 0 unfolding pI1-def pR1-def

by (metis cpoly-of-decompose map-poly-0)
then have p=0 unfolding p1-def

apply (subst (asm) pcompose-eq-0)
using ‹a 6=b› by auto

then show False using ‹p 6=0 › by auto
qed

have cindexP-lineE p a b =
cindexE 0 1 (λt. Im (poly p (linepath a b t))
/ Re (poly p (linepath a b t)))

unfolding cindexP-lineE-def cindex-pathE-def cindexP-pathE-def by simp
also have ... = cindexE 0 1 (λt. poly pI1 t / poly pR1 t)

unfolding pI1-def pR1-def p1-def poly-linepath-comp ′

by (simp add:Im-poly-of-real Re-poly-of-real)
also have ... = cindex-polyE 0 1 pI1 pR1

by (simp add: cindexE-eq-cindex-polyE)
also have ... = cindex-polyE 0 1 (pI1 div gc1) (pR1 div gc1)

using ‹gc1 6=0 ›

85

apply (subst (2) cindex-polyE-mult-cancel[of gc1 ,symmetric])
by (simp-all add: gc1-def)

also have ... = real-of-int (changes-alt-itv-smods 0 1
(pR1 div gc1) (pI1 div gc1)) / 2

apply (rule cindex-polyE-changes-alt-itv-mods)
apply simp
by (metis ‹gc1 6= 0 › div-gcd-coprime gc1-def gcd-eq-0-iff)

finally show ?thesis
by (metis gc1-def p1-def pI1-def pR1-def)

qed

lemma cindexP-lineE-code[code]:
cindexP-lineE p a b = (if p 6=0 ∧ a 6=b then

(let p1 = pcompose p [:a, b−a:];
pR1 = map-poly Re p1 ;
pI1 = map-poly Im p1 ;
gc1 = gcd pR1 pI1

in
real-of-int (changes-alt-itv-smods 0 1

(pR1 div gc1) (pI1 div gc1)) / 2)
else
Code.abort (STR ′′cindexP-lineE fails for now ′′)

(λ-. cindexP-lineE p a b))
using cindexP-lineE-changes by auto

end

theory Count-Line imports
CC-Polynomials-Extra
Winding-Number-Eval.Winding-Number-Eval
Extended-Sturm
Budan-Fourier .Sturm-Multiple-Roots

begin

2.8 Misc
lemma closed-segment-imp-Re-Im:

fixes x::complex
assumes x∈closed-segment lb ub
shows Re lb ≤ Re ub =⇒ Re lb ≤ Re x ∧ Re x ≤ Re ub

Im lb ≤ Im ub =⇒ Im lb ≤ Im x ∧ Im x ≤ Im ub
proof −

obtain u where x-u:x=(1 − u) ∗R lb + u ∗R ub and 0 ≤ u u ≤ 1
using assms unfolding closed-segment-def by auto

have Re lb ≤ Re x when Re lb ≤ Re ub
proof −

have Re x = Re ((1 − u) ∗R lb + u ∗R ub)

86

using x-u by blast
also have ... = Re (lb + u ∗R (ub − lb)) by (auto simp add:algebra-simps)
also have ... = Re lb + u ∗ (Re ub − Re lb) by auto
also have ... ≥ Re lb using ‹u≥0 › ‹Re lb ≤ Re ub› by auto
finally show ?thesis .

qed
moreover have Im lb ≤ Im x when Im lb ≤ Im ub
proof −

have Im x = Im ((1 − u) ∗R lb + u ∗R ub)
using x-u by blast

also have ... = Im (lb + u ∗R (ub − lb)) by (auto simp add:algebra-simps)
also have ... = Im lb + u ∗ (Im ub − Im lb) by auto
also have ... ≥ Im lb using ‹u≥0 › ‹Im lb ≤ Im ub› by auto
finally show ?thesis .

qed
moreover have Re x ≤ Re ub when Re lb ≤ Re ub
proof −

have Re x = Re ((1 − u) ∗R lb + u ∗R ub)
using x-u by blast

also have ... = (1 − u) ∗ Re lb + u ∗ Re ub by auto
also have ... ≤ (1 − u) ∗ Re ub + u ∗ Re ub

using ‹u≤1 › ‹Re lb ≤ Re ub› by (auto simp add: mult-left-mono)
also have ... = Re ub by (auto simp add:algebra-simps)
finally show ?thesis .

qed
moreover have Im x ≤ Im ub when Im lb ≤ Im ub
proof −

have Im x = Im ((1 − u) ∗R lb + u ∗R ub)
using x-u by blast

also have ... = (1 − u) ∗ Im lb + u ∗ Im ub by auto
also have ... ≤ (1 − u) ∗ Im ub + u ∗ Im ub

using ‹u≤1 › ‹Im lb ≤ Im ub› by (auto simp add: mult-left-mono)
also have ... = Im ub by (auto simp add:algebra-simps)
finally show ?thesis .

qed
ultimately show

Re lb ≤ Re ub =⇒ Re lb ≤ Re x ∧ Re x ≤ Re ub
Im lb ≤ Im ub =⇒ Im lb ≤ Im x ∧ Im x ≤ Im ub

by auto
qed

lemma closed-segment-degen-complex:
[[Re lb = Re ub; Im lb ≤ Im ub]]
=⇒ x ∈ closed-segment lb ub ←→ Re x = Re lb ∧ Im lb ≤ Im x ∧ Im x ≤ Im

ub
[[Im lb = Im ub; Re lb ≤ Re ub]]
=⇒ x ∈ closed-segment lb ub ←→ Im x = Im lb ∧ Re lb ≤ Re x ∧ Re x ≤ Re

ub
proof −

87

show x ∈ closed-segment lb ub ←→ Re x = Re lb ∧ Im lb ≤ Im x ∧ Im x ≤ Im
ub

when Re lb = Re ub Im lb ≤ Im ub
proof

show Re x = Re lb ∧ Im lb ≤ Im x ∧ Im x ≤ Im ub when x ∈ closed-segment
lb ub

using closed-segment-imp-Re-Im[OF that] ‹Re lb = Re ub› ‹Im lb ≤ Im ub›
by fastforce

next
assume asm:Re x = Re lb ∧ Im lb ≤ Im x ∧ Im x ≤ Im ub
define u where u=(Im x − Im lb)/ (Im ub − Im lb)
have x = (1 − u) ∗R lb + u ∗R ub

unfolding u-def using asm ‹Re lb = Re ub› ‹Im lb ≤ Im ub›
apply (intro complex-eqI)
apply (auto simp add:field-simps)
apply (cases Im ub − Im lb =0)
apply (auto simp add:field-simps)
done

moreover have 0≤u u≤1 unfolding u-def
using ‹Im lb ≤ Im ub› asm
by (cases Im ub − Im lb =0 ,auto simp add:field-simps)+

ultimately show x ∈ closed-segment lb ub unfolding closed-segment-def by
auto

qed
show x ∈ closed-segment lb ub ←→ Im x = Im lb ∧ Re lb ≤ Re x ∧ Re x ≤ Re

ub
when Im lb = Im ub Re lb ≤ Re ub

proof
show Im x = Im lb ∧ Re lb ≤ Re x ∧ Re x ≤ Re ub when x ∈ closed-segment

lb ub
using closed-segment-imp-Re-Im[OF that] ‹Im lb = Im ub› ‹Re lb ≤ Re ub›

by fastforce
next

assume asm:Im x = Im lb ∧ Re lb ≤ Re x ∧ Re x ≤ Re ub
define u where u=(Re x − Re lb)/ (Re ub − Re lb)
have x = (1 − u) ∗R lb + u ∗R ub

unfolding u-def using asm ‹Im lb = Im ub› ‹Re lb ≤ Re ub›
apply (intro complex-eqI)
apply (auto simp add:field-simps)

apply (cases Re ub − Re lb =0)
apply (auto simp add:field-simps)

done
moreover have 0≤u u≤1 unfolding u-def

using ‹Re lb ≤ Re ub› asm
by (cases Re ub − Re lb =0 ,auto simp add:field-simps)+

ultimately show x ∈ closed-segment lb ub unfolding closed-segment-def by
auto

qed
qed

88

corollary path-image-part-circlepath-subset:
assumes r≥0
shows path-image(part-circlepath z r st tt) ⊆ sphere z r

proof (cases st≤tt)
case True
then show ?thesis

by (auto simp: assms path-image-part-circlepath sphere-def dist-norm alge-
bra-simps norm-mult)
next

case False
then have path-image(part-circlepath z r tt st) ⊆ sphere z r

by (auto simp: assms path-image-part-circlepath sphere-def dist-norm alge-
bra-simps norm-mult)

moreover have path-image(part-circlepath z r tt st) = path-image(part-circlepath
z r st tt)

using path-image-reversepath by fastforce
ultimately show ?thesis by auto

qed

proposition in-path-image-part-circlepath:
assumes w ∈ path-image(part-circlepath z r st tt) 0 ≤ r
shows norm(w − z) = r

proof −
have w ∈ {c. dist z c = r}
by (metis (no-types) path-image-part-circlepath-subset sphere-def subset-eq assms)

thus ?thesis
by (simp add: dist-norm norm-minus-commute)

qed

lemma infinite-ball:
fixes a :: ′a::euclidean-space
assumes r > 0
shows infinite (ball a r)
using uncountable-ball[OF assms, THEN uncountable-infinite] .

lemma infinite-cball:
fixes a :: ′a::euclidean-space
assumes r > 0
shows infinite (cball a r)
using uncountable-cball[OF assms, THEN uncountable-infinite,of a] .

lemma infinite-sphere:
fixes a :: complex
assumes r > 0
shows infinite (sphere a r)

89

proof −
have uncountable (path-image (circlepath a r))

apply (rule simple-path-image-uncountable)
using simple-path-circlepath assms by simp

then have uncountable (sphere a r)
using assms by simp

from uncountable-infinite[OF this] show ?thesis .
qed

lemma infinite-halfspace-Im-gt: infinite {x. Im x > b}
apply (rule connected-uncountable[THEN uncountable-infinite,of - (b+1)∗ i (b+2)∗i])
by (auto intro!:convex-connected simp add: convex-halfspace-Im-gt)

lemma (in ring-1) Ints-minus2 : − a ∈ � =⇒ a ∈ �
using Ints-minus[of −a] by auto

lemma dvd-divide-Ints-iff :
b dvd a ∨ b=0 ←→ of-int a / of-int b ∈ (� :: ′a :: {field,ring-char-0} set)

proof
assume asm:b dvd a ∨ b=0
let ?thesis = of-int a / of-int b ∈ (� :: ′a :: {field,ring-char-0} set)
have ?thesis when b dvd a
proof −

obtain c where a=b ∗ c using ‹b dvd a› unfolding dvd-def by auto
then show ?thesis by (auto simp add:field-simps)

qed
moreover have ?thesis when b=0

using that by auto
ultimately show ?thesis using asm by auto

next
assume of-int a / of-int b ∈ (� :: ′a :: {field,ring-char-0} set)
from Ints-cases[OF this] obtain c where ∗:(of-int::- ⇒ ′a) c= of-int a / of-int

b
by metis

have b dvd a when b 6=0
proof −

have (of-int::- ⇒ ′a) a = of-int b ∗ of-int c using that ∗ by auto
then have a = b ∗ c using of-int-eq-iff by fastforce
then show ?thesis unfolding dvd-def by auto

qed
then show b dvd a ∨ b = 0 by auto

qed

lemma of-int-div-field:
assumes d dvd n
shows (of-int::-⇒ ′a::field-char-0) (n div d) = of-int n / of-int d
apply (subst (2) dvd-mult-div-cancel[OF assms,symmetric])
by (auto simp add:field-simps)

90

lemma powr-eq-1-iff :
assumes a>0
shows (a::real) powr b =1 ←→ a=1 ∨ b=0

proof
assume a powr b = 1
have b ∗ ln a = 0

using ‹a powr b = 1 › ln-powr [of a b] assms by auto
then have b=0 ∨ ln a =0 by auto
then show a = 1 ∨ b = 0 using assms by auto

qed (insert assms, auto)

lemma tan-inj-pi:
− (pi/2) < x =⇒ x < pi/2 =⇒ − (pi/2) < y =⇒ y < pi/2 =⇒ tan x = tan y

=⇒ x = y
by (metis arctan-tan)

lemma finite-ReZ-segments-poly-circlepath:
finite-ReZ-segments (poly p ◦ circlepath z0 r) 0

proof (cases ∀ t∈({0 ..1} − {1/2}). Re ((poly p ◦ circlepath z0 r) t) = 0)
case True
have isCont (Re ◦ poly p ◦ circlepath z0 r) (1/2)

by (auto intro!:continuous-intros simp:circlepath)
moreover have (Re ◦ poly p ◦ circlepath z0 r)− 1/2 → 0
proof −

have ∀ F x in at (1 / 2). (Re ◦ poly p ◦ circlepath z0 r) x = 0
unfolding eventually-at-le
apply (rule exI [where x=1/2])
unfolding dist-real-def abs-diff-le-iff
by (auto intro!:True[rule-format, unfolded comp-def])

then show ?thesis by (rule tendsto-eventually)
qed
ultimately have Re ((poly p ◦ circlepath z0 r) (1/2)) = 0

unfolding comp-def by (simp add: LIM-unique continuous-within)
then have ∀ t∈{0 ..1}. Re ((poly p ◦ circlepath z0 r) t) = 0

using True by blast
then show ?thesis

apply (rule-tac finite-ReZ-segments-constI [THEN finite-ReZ-segments-congE])
by auto

next
case False
define q1 q2 where q1=fcompose p [:(z0+r)∗i,z0−r :] [:i,1 :] and

q2=([:i, 1 :] ^ degree p)
define q1R q1I where q1R=map-poly Re q1 and q1I=map-poly Im q1
define q2R q2I where q2R=map-poly Re q2 and q2I=map-poly Im q2
define qq where qq=q1R∗q2R + q1I∗q2I

have poly-eq:Re ((poly p ◦ circlepath z0 r) t) = 0 ←→ poly qq (tan (pi ∗ t)) = 0
when 0≤t t≤1 t 6=1/2 for t

91

proof −
define tt where tt=tan (pi ∗ t)
have Re ((poly p ◦ circlepath z0 r) t) = 0 ←→ Re (poly q1 tt / poly q2 tt) = 0

unfolding comp-def
apply (subst poly-circlepath-tan-eq[of t p z0 r ,folded q1-def q2-def tt-def])
using that by simp-all

also have ... ←→ poly q1R tt ∗ poly q2R tt + poly q1I tt ∗ poly q2I tt = 0
unfolding q1I-def q1R-def q2R-def q2I-def
by (simp add:Re-complex-div-eq-0 Re-poly-of-real Im-poly-of-real)

also have ... ←→ poly qq tt = 0
unfolding qq-def by simp

finally show ?thesis unfolding tt-def .
qed

have finite {t. Re ((poly p ◦ circlepath z0 r) t) = 0 ∧ 0 ≤ t ∧ t ≤ 1}
proof −

define P where P=(λt. Re ((poly p ◦ circlepath z0 r) t) = 0)
define A where A= ({0 ..1}::real set)
define S where S={t∈A−{1 ,1/2}. P t}
have finite {t. poly qq (tan (pi ∗ t)) = 0 ∧ 0 ≤ t ∧ t < 1 ∧ t 6=1/2}
proof −

define A where A={t::real. 0 ≤ t ∧ t < 1 ∧ t 6= 1 / 2}
have finite ((λt. tan (pi ∗ t)) −‘ {x. poly qq x=0} ∩ A)
proof (rule finite-vimage-IntI)

have x = y when tan (pi ∗ x) = tan (pi ∗ y) x∈A y∈A for x y
proof −

define x ′ where x ′=(if x<1/2 then x else x−1)
define y ′ where y ′=(if y<1/2 then y else y−1)
have x ′∗pi = y ′∗pi
proof (rule tan-inj-pi)

have ∗:− 1 / 2 < x ′ x ′ < 1 / 2 − 1 / 2 < y ′ y ′ < 1 / 2
using that(2 ,3) unfolding x ′-def y ′-def A-def by simp-all

show − (pi / 2) < x ′ ∗ pi x ′ ∗ pi < pi / 2 − (pi / 2) < y ′ ∗ pi
y ′∗pi < pi / 2

using mult-strict-right-mono[OF ∗(1),of pi]
mult-strict-right-mono[OF ∗(2),of pi]
mult-strict-right-mono[OF ∗(3),of pi]
mult-strict-right-mono[OF ∗(4),of pi]

by auto
next

have tan (x ′ ∗ pi) = tan (x ∗ pi)
unfolding x ′-def using tan-periodic-int[of - − 1 ,simplified]
by (auto simp add:algebra-simps)

also have ... = tan (y ∗ pi)
using ‹tan (pi ∗ x) = tan (pi ∗ y)› by (auto simp:algebra-simps)

also have ... = tan (y ′ ∗ pi)
unfolding y ′-def using tan-periodic-int[of - − 1 ,simplified]
by (auto simp add:algebra-simps)

finally show tan (x ′ ∗ pi) = tan (y ′ ∗ pi) .

92

qed
then have x ′=y ′ by auto
then show ?thesis

using that(2 ,3) unfolding x ′-def y ′-def A-def by (auto split:if-splits)
qed
then show inj-on (λt. tan (pi ∗ t)) A

unfolding inj-on-def by blast
next

have qq 6=0
proof (rule ccontr)

assume ¬ qq 6= 0
then have Re ((poly p ◦ circlepath z0 r) t) = 0 when t∈{0 ..1} − {1/2}

for t
apply (subst poly-eq)
using that by auto

then show False using False by blast
qed
then show finite {x. poly qq x = 0} by (simp add: poly-roots-finite)

qed
then show ?thesis by (elim rev-finite-subset) (auto simp:A-def)

qed
moreover have {t. poly qq (tan (pi ∗ t)) = 0 ∧ 0 ≤ t ∧ t < 1 ∧ t 6=1/2} = S

unfolding S-def P-def A-def using poly-eq by force
ultimately have finite S by blast
then have finite (S ∪ (if P 1 then {1} else {}) ∪ (if P (1/2) then {1/2} else

{}))
by auto

moreover have (S ∪ (if P 1 then {1} else {}) ∪ (if P (1/2) then {1/2} else
{}))

= {t. P t ∧ 0 ≤ t ∧ t ≤ 1}
proof −

have 1∈A 1/2 ∈A unfolding A-def by auto
then have (S ∪ (if P 1 then {1} else {}) ∪ (if P (1/2) then {1/2} else {}))

= {t∈A. P t}
unfolding S-def
apply auto
by (metis eq-divide-eq-numeral1 (1) zero-neq-numeral)+

also have ... = {t. P t ∧ 0 ≤ t ∧ t ≤ 1}
unfolding A-def by auto

finally show ?thesis .
qed
ultimately have finite {t. P t ∧ 0 ≤ t ∧ t ≤ 1} by auto
then show ?thesis unfolding P-def by simp

qed
then show ?thesis

apply (rule-tac finite-imp-finite-ReZ-segments)
by auto

qed

93

lemma changes-itv-smods-ext-geq-0 :
assumes a<b poly p a 6=0 poly p b 6=0
shows changes-itv-smods-ext a b p (pderiv p) ≥0
using sturm-ext-interval[OF assms] by auto

2.9 Some useful conformal/bij-betw properties
lemma bij-betw-plane-ball:bij-betw (λx. (i−x)/(i+x)) {x. Im x>0} (ball 0 1)
proof (rule bij-betw-imageI)

have neq:i + x 6=0 when Im x>0 for x
using that
by (metis add-less-same-cancel2 add-uminus-conv-diff diff-0 diff-add-cancel

imaginary-unit.simps(2) not-one-less-zero uminus-complex.sel(2))
then show inj-on (λx. (i − x) / (i + x)) {x. 0 < Im x}

unfolding inj-on-def by (auto simp add:divide-simps algebra-simps)
have cmod ((i − x) / (i + x)) < 1 when 0 < Im x for x
proof −

have cmod (i − x) < cmod (i + x)
unfolding norm-lt inner-complex-def using that
by (auto simp add:algebra-simps)

then show ?thesis
unfolding norm-divide using neq[OF that] by auto

qed
moreover have x ∈ (λx. (i − x) / (i + x)) ‘ {x. 0 < Im x} when cmod x < 1

for x
proof (rule rev-image-eqI [of i∗(1−x)/(1+x)])

have 1 + x 6=0 i ∗ 2 + i ∗ (x ∗ 2) 6=0
subgoal using that by (metis complex-mod-triangle-sub norm-one norm-zero

not-le pth-7 (1))
subgoal using that by (metis ‹1 + x 6= 0 › complex-i-not-zero div-mult-self4

mult-2
mult-zero-right nonzero-mult-div-cancel-left nonzero-mult-div-cancel-right
one-add-one zero-neq-numeral)

done
then show x = (i − i ∗ (1 − x) / (1 + x)) / (i + i ∗ (1 − x) / (1 + x))

by (auto simp add:field-simps)
show i ∗ (1 − x) / (1 + x) ∈ {x. 0 < Im x}

apply (auto simp:Im-complex-div-gt-0 algebra-simps)
using that unfolding cmod-def by (auto simp:power2-eq-square)

qed
ultimately show (λx. (i − x) / (i + x)) ‘ {x. 0 < Im x} = ball 0 1

by auto
qed

lemma bij-betw-axis-sphere:bij-betw (λx. (i−x)/(i+x)) {x. Im x=0} (sphere 0 1 −
{−1})
proof (rule bij-betw-imageI)

have neq:i + x 6=0 when Im x=0 for x
using that

94

by (metis add-diff-cancel-left ′ imaginary-unit.simps(2) minus-complex.simps(2)

right-minus-eq zero-complex.simps(2) zero-neq-one)
then show inj-on (λx. (i − x) / (i + x)) {x. Im x = 0}

unfolding inj-on-def by (auto simp add:divide-simps algebra-simps)
have cmod ((i − x) / (i + x)) = 1 (i − x) / (i + x) 6= − 1 when Im x = 0 for

x
proof −

have cmod (i + x) = cmod (i − x)
using that unfolding cmod-def by auto

then show cmod ((i − x) / (i + x)) = 1
unfolding norm-divide using neq[OF that] by auto

show (i − x) / (i + x) 6= − 1 using neq[OF that] by (auto simp add:divide-simps)
qed
moreover have x ∈ (λx. (i − x) / (i + x)) ‘ {x. Im x = 0}

when cmod x = 1 x 6=−1 for x
proof (rule rev-image-eqI [of i∗(1−x)/(1+x)])

have 1 + x 6=0 i ∗ 2 + i ∗ (x ∗ 2) 6=0
subgoal using that(2) by algebra
subgoal using that by (metis ‹1 + x 6= 0 › complex-i-not-zero div-mult-self4

mult-2
mult-zero-right nonzero-mult-div-cancel-left nonzero-mult-div-cancel-right
one-add-one zero-neq-numeral)

done
then show x = (i − i ∗ (1 − x) / (1 + x)) / (i + i ∗ (1 − x) / (1 + x))

by (auto simp add:field-simps)
show i ∗ (1 − x) / (1 + x) ∈ {x. Im x = 0}

apply (auto simp:algebra-simps Im-complex-div-eq-0)
using that(1) unfolding cmod-def by (auto simp:power2-eq-square)

qed
ultimately show (λx. (i − x) / (i + x)) ‘ {x. Im x = 0} = sphere 0 1 − {− 1}

by force
qed

lemma bij-betw-ball-uball:
assumes r>0
shows bij-betw (λx. complex-of-real r∗x + z0) (ball 0 1) (ball z0 r)

proof (rule bij-betw-imageI)
show inj-on (λx. complex-of-real r ∗ x + z0) (ball 0 1)

unfolding inj-on-def using assms by simp
have dist z0 (complex-of-real r ∗ x + z0) < r when cmod x<1 for x

using that assms by (auto simp:dist-norm norm-mult abs-of-pos)
moreover have x ∈ (λx. complex-of-real r ∗ x + z0) ‘ ball 0 1 when dist z0 x

< r for x
apply (rule rev-image-eqI [of (x−z0)/r])

using that assms by (auto simp add: dist-norm norm-divide norm-minus-commute)
ultimately show (λx. complex-of-real r ∗ x + z0) ‘ ball 0 1 = ball z0 r

by auto
qed

95

lemma bij-betw-sphere-usphere:
assumes r>0
shows bij-betw (λx. complex-of-real r∗x + z0) (sphere 0 1) (sphere z0 r)

proof (rule bij-betw-imageI)
show inj-on (λx. complex-of-real r ∗ x + z0) (sphere 0 1)

unfolding inj-on-def using assms by simp
have dist z0 (complex-of-real r ∗ x + z0) = r when cmod x=1 for x

using that assms by (auto simp:dist-norm norm-mult abs-of-pos)
moreover have x ∈ (λx. complex-of-real r ∗ x + z0) ‘ sphere 0 1 when dist z0

x = r for x
apply (rule rev-image-eqI [of (x−z0)/r])

using that assms by (auto simp add: dist-norm norm-divide norm-minus-commute)
ultimately show (λx. complex-of-real r ∗ x + z0) ‘ sphere 0 1 = sphere z0 r

by auto
qed

lemma proots-ball-plane-eq:
defines q1≡[:i,−1 :] and q2≡[:i,1 :]
assumes p 6=0
shows proots-count p (ball 0 1) = proots-count (fcompose p q1 q2) {x. 0 < Im

x}
unfolding q1-def q2-def

proof (rule proots-fcompose-bij-eq[OF - ‹p 6=0 ›])
show ∀ x∈{x. 0 < Im x}. poly [:i, 1 :] x 6= 0

apply simp
by (metis add-less-same-cancel2 imaginary-unit.simps(2) not-one-less-zero

plus-complex.simps(2) zero-complex.simps(2))
show infinite (UNIV ::complex set) by (simp add: infinite-UNIV-char-0)

qed (use bij-betw-plane-ball in auto)

lemma proots-sphere-axis-eq:
defines q1≡[:i,−1 :] and q2≡[:i,1 :]
assumes p 6=0
shows proots-count p (sphere 0 1 − {− 1}) = proots-count (fcompose p q1 q2)
{x. 0 = Im x}
unfolding q1-def q2-def
proof (rule proots-fcompose-bij-eq[OF - ‹p 6=0 ›])

show ∀ x∈{x. 0 = Im x}. poly [:i, 1 :] x 6= 0 by (simp add: Complex-eq-0
plus-complex.code)

show infinite (UNIV ::complex set) by (simp add: infinite-UNIV-char-0)
qed (use bij-betw-axis-sphere in auto)

lemma proots-card-ball-plane-eq:
defines q1≡[:i,−1 :] and q2≡[:i,1 :]
assumes p 6=0
shows card (proots-within p (ball 0 1)) = card (proots-within (fcompose p q1 q2)
{x. 0 < Im x})
unfolding q1-def q2-def

96

proof (rule proots-card-fcompose-bij-eq[OF - ‹p 6=0 ›])
show ∀ x∈{x. 0 < Im x}. poly [:i, 1 :] x 6= 0

apply simp
by (metis add-less-same-cancel2 imaginary-unit.simps(2) not-one-less-zero

plus-complex.simps(2) zero-complex.simps(2))
qed (use bij-betw-plane-ball infinite-UNIV-char-0 in auto)

lemma proots-card-sphere-axis-eq:
defines q1≡[:i,−1 :] and q2≡[:i,1 :]
assumes p 6=0
shows card (proots-within p (sphere 0 1 − {− 1}))

= card (proots-within (fcompose p q1 q2) {x. 0 = Im x})
unfolding q1-def q2-def
proof (rule proots-card-fcompose-bij-eq[OF - ‹p 6=0 ›])

show ∀ x∈{x. 0 = Im x}. poly [:i, 1 :] x 6= 0 by (simp add: Complex-eq-0
plus-complex.code)
qed (use bij-betw-axis-sphere infinite-UNIV-char-0 in auto)

lemma proots-uball-eq:
fixes z0 ::complex and r ::real
defines q≡[:z0 , of-real r :]
assumes p 6=0 and r>0
shows proots-count p (ball z0 r) = proots-count (p ◦p q) (ball 0 1)

proof −
show ?thesis

apply (rule proots-pcompose-bij-eq[OF - ‹p 6=0 ›])
subgoal unfolding q-def using bij-betw-ball-uball[OF ‹r>0 ›,of z0] by (auto

simp:algebra-simps)
subgoal unfolding q-def using ‹r>0 › by auto
done

qed

lemma proots-card-uball-eq:
fixes z0 ::complex and r ::real
defines q≡[:z0 , of-real r :]
assumes r>0
shows card (proots-within p (ball z0 r)) = card (proots-within (p ◦p q) (ball 0

1))
proof −

have ?thesis
when p=0

proof −
have card (ball z0 r) = 0 card (ball (0 ::complex) 1) = 0

using infinite-ball[OF ‹r>0 ›,of z0] infinite-ball[of 1 0 ::complex] by auto
then show ?thesis using that by auto

qed
moreover have ?thesis

when p 6=0
apply (rule proots-card-pcompose-bij-eq[OF - ‹p 6=0 ›])

97

subgoal unfolding q-def using bij-betw-ball-uball[OF ‹r>0 ›,of z0] by (auto
simp:algebra-simps)

subgoal unfolding q-def using ‹r>0 › by auto
done

ultimately show ?thesis
by blast

qed

lemma proots-card-usphere-eq:
fixes z0 ::complex and r ::real
defines q≡[:z0 , of-real r :]
assumes r>0
shows card (proots-within p (sphere z0 r)) = card (proots-within (p ◦p q) (sphere

0 1))
proof −

have ?thesis
when p=0

proof −
have card (sphere z0 r) = 0 card (sphere (0 ::complex) 1) = 0
using infinite-sphere[OF ‹r>0 ›,of z0] infinite-sphere[of 1 0 ::complex] by auto

then show ?thesis using that by auto
qed
moreover have ?thesis

when p 6=0
apply (rule proots-card-pcompose-bij-eq[OF - ‹p 6=0 ›])
subgoal unfolding q-def using bij-betw-sphere-usphere[OF ‹r>0 ›,of z0]

by (auto simp:algebra-simps)
subgoal unfolding q-def using ‹r>0 › by auto
done

ultimately show card (proots-within p (sphere z0 r)) = card (proots-within (p
◦p q) (sphere 0 1))

by blast
qed

2.10 Number of roots on a (bounded or unbounded) segment
definition unbounded-line:: ′a::real-vector ⇒ ′a ⇒ ′a set where

unbounded-line a b = ({x. ∃ u::real. x= (1 − u) ∗R a + u ∗R b})

definition proots-line-card:: complex poly ⇒ complex ⇒ complex ⇒ nat where
proots-line-card p st tt = card (proots-within p (open-segment st tt))

definition proots-unbounded-line-card:: complex poly ⇒ complex ⇒ complex ⇒
nat where

proots-unbounded-line-card p st tt = card (proots-within p (unbounded-line st tt))

definition proots-unbounded-line :: complex poly ⇒ complex ⇒ complex ⇒ nat
where

98

proots-unbounded-line p st tt = proots-count p (unbounded-line st tt)

lemma card-proots-open-segments:
assumes poly p st 6=0 poly p tt 6= 0
shows card (proots-within p (open-segment st tt)) =

(let pc = pcompose p [:st, tt − st:];
pR = map-poly Re pc;
pI = map-poly Im pc;
g = gcd pR pI

in changes-itv-smods 0 1 g (pderiv g)) (is ?L = ?R)
proof −

define pc pR pI g where
pc = pcompose p [:st, tt−st:] and
pR = map-poly Re pc and
pI = map-poly Im pc and
g = gcd pR pI

have poly-iff :poly g t=0 ←→ poly pc t =0 for t
proof −

have poly g t = 0 ←→ poly pR t =0 ∧ poly pI t =0
unfolding g-def using poly-gcd-0-iff by auto

also have ... ←→ poly pc t =0
proof −

have cpoly-of pR pI = pc
unfolding pc-def pR-def pI-def using cpoly-of-decompose by auto

then show ?thesis using poly-cpoly-of-real-iff by blast
qed
finally show ?thesis by auto

qed

have ?R = changes-itv-smods 0 1 g (pderiv g)
unfolding pc-def g-def pI-def pR-def by (auto simp add:Let-def)

also have ... = card {t. poly g t = 0 ∧ 0 < t ∧ t < 1}
proof −

have poly g 0 6= 0
using poly-iff [of 0] assms unfolding pc-def by (auto simp add:poly-pcompose)
moreover have poly g 1 6= 0
using poly-iff [of 1] assms unfolding pc-def by (auto simp add:poly-pcompose)
ultimately show ?thesis using sturm-interval[of 0 1 g] by auto

qed
also have ... = card {t::real. poly pc (of-real t) = 0 ∧ 0 < t ∧ t < 1}

unfolding poly-iff by simp
also have ... = ?L
proof (cases st=tt)

case True
then show ?thesis unfolding pc-def poly-pcompose using ‹poly p tt 6= 0 ›

by auto
next

case False
define ff where ff = (λt::real. st + t∗(tt−st))

99

define ll where ll = {t. poly pc (complex-of-real t) = 0 ∧ 0 < t ∧ t < 1}
have ff ‘ ll = proots-within p (open-segment st tt)
proof (rule equalityI)

show ff ‘ ll ⊆ proots-within p (open-segment st tt)
unfolding ll-def ff-def pc-def poly-pcompose
by (auto simp add:in-segment False scaleR-conv-of-real algebra-simps)

next
show proots-within p (open-segment st tt) ⊆ ff ‘ ll
proof clarify

fix x assume asm:x ∈ proots-within p (open-segment st tt)
then obtain u where 0<u and u < 1 and u:x = (1 − u) ∗R st + u ∗R tt

by (auto simp add:in-segment)
then have poly p ((1 − u) ∗R st + u ∗R tt) = 0 using asm by simp
then have u ∈ ll

unfolding ll-def pc-def poly-pcompose
by (simp add:scaleR-conv-of-real algebra-simps ‹0<u› ‹u<1 ›)

moreover have x = ff u
unfolding ff-def using u by (auto simp add:algebra-simps scaleR-conv-of-real)
ultimately show x ∈ ff ‘ ll by (rule rev-image-eqI [of u])

qed
qed
moreover have inj-on ff ll

unfolding ff-def using False inj-on-def by fastforce
ultimately show ?thesis unfolding ll-def

using card-image[of ff] by fastforce
qed
finally show ?thesis by simp

qed

lemma unbounded-line-closed-segment: closed-segment a b ⊆ unbounded-line a b
unfolding unbounded-line-def closed-segment-def by auto

lemma card-proots-unbounded-line:
assumes st 6=tt
shows card (proots-within p (unbounded-line st tt)) =

(let pc = pcompose p [:st, tt − st:];
pR = map-poly Re pc;
pI = map-poly Im pc;
g = gcd pR pI

in nat (changes-R-smods g (pderiv g))) (is ?L = ?R)
proof −

define pc pR pI g where
pc = pcompose p [:st, tt−st:] and
pR = map-poly Re pc and
pI = map-poly Im pc and
g = gcd pR pI

have poly-iff :poly g t=0 ←→ poly pc t =0 for t
proof −

have poly g t = 0 ←→ poly pR t =0 ∧ poly pI t =0

100

unfolding g-def using poly-gcd-0-iff by auto
also have ... ←→ poly pc t =0
proof −

have cpoly-of pR pI = pc
unfolding pc-def pR-def pI-def using cpoly-of-decompose by auto

then show ?thesis using poly-cpoly-of-real-iff by blast
qed
finally show ?thesis by auto

qed

have ?R = nat (changes-R-smods g (pderiv g))
unfolding pc-def g-def pI-def pR-def by (auto simp add:Let-def)

also have ... = card {t. poly g t = 0}
using sturm-R[of g] by simp

also have ... = card {t::real. poly pc t = 0}
unfolding poly-iff by simp

also have ... = ?L
proof (cases st=tt)

case True
then show ?thesis unfolding pc-def poly-pcompose unbounded-line-def using

assms
by (auto simp add:proots-within-def)

next
case False
define ff where ff = (λt::real. st + t∗(tt−st))
define ll where ll = {t. poly pc (complex-of-real t) = 0}
have ff ‘ ll = proots-within p (unbounded-line st tt)
proof (rule equalityI)

show ff ‘ ll ⊆ proots-within p (unbounded-line st tt)
unfolding ll-def ff-def pc-def poly-pcompose

by (auto simp add:unbounded-line-def False scaleR-conv-of-real algebra-simps)
next

show proots-within p (unbounded-line st tt) ⊆ ff ‘ ll
proof clarify

fix x assume asm:x ∈ proots-within p (unbounded-line st tt)
then obtain u where u:x = (1 − u) ∗R st + u ∗R tt

by (auto simp add:unbounded-line-def)
then have poly p ((1 − u) ∗R st + u ∗R tt) = 0 using asm by simp
then have u ∈ ll

unfolding ll-def pc-def poly-pcompose
by (simp add:scaleR-conv-of-real algebra-simps unbounded-line-def)

moreover have x = ff u
unfolding ff-def using u by (auto simp add:algebra-simps scaleR-conv-of-real)
ultimately show x ∈ ff ‘ ll by (rule rev-image-eqI [of u])

qed
qed
moreover have inj-on ff ll

unfolding ff-def using False inj-on-def by fastforce
ultimately show ?thesis unfolding ll-def

101

using card-image[of ff] by metis
qed
finally show ?thesis by simp

qed

lemma proots-count-gcd-eq:
fixes p::complex poly and st tt::complex

and g::real poly
defines pc ≡ pcompose p [:st, tt − st:]
defines pR ≡ map-poly Re pc and pI ≡ map-poly Im pc
defines g ≡ gcd pR pI
assumes st 6=tt p 6=0

and s1-def :s1 = (λx. poly [:st, tt − st:] (of-real x)) ‘ s2
shows proots-count p s1 = proots-count g s2

proof −
have [simp]: g 6=0 pc 6=0
proof −

show pc 6=0 using assms pc-def pcompose-eq-0
by (metis cancel-comm-monoid-add-class.diff-cancel degree-pCons-eq-if

diff-eq-diff-eq less-nat-zero-code pCons-eq-0-iff zero-less-Suc)
then have pR 6=0 ∨ pI 6=0 unfolding pR-def pI-def by (metis cpoly-of-decompose

map-poly-0)
then show g 6=0 unfolding g-def by simp

qed
have order-eq:order t g = order t pc for t

apply (subst order-cpoly-gcd-eq[of pR pI ,folded g-def ,symmetric])
subgoal using ‹g 6=0 › unfolding g-def by simp

subgoal unfolding pR-def pI-def by (simp add:cpoly-of-decompose[symmetric])
done

have proots-count g s2 = proots-count (map-poly complex-of-real g)
(of-real ‘ s2)

apply (subst proots-count-of-real)
by auto

also have ... = proots-count pc (of-real ‘ s2)
apply (rule proots-count-cong)
by (auto simp add: map-poly-order-of-real order-eq)

also have ... = proots-count p s1
unfolding pc-def s1-def
apply (subst proots-pcompose)
using ‹st 6=tt› ‹p 6=0 › by (simp-all add:image-image)

finally show ?thesis by simp
qed

lemma proots-unbounded-line:
assumes st 6=tt p 6=0
shows (proots-count p (unbounded-line st tt)) =

(let pc = pcompose p [:st, tt − st:];
pR = map-poly Re pc;

102

pI = map-poly Im pc;
g = gcd pR pI

in nat (changes-R-smods-ext g (pderiv g))) (is ?L = ?R)
proof −

define pc pR pI g where
pc = pcompose p [:st, tt−st:] and
pR = map-poly Re pc and
pI = map-poly Im pc and
g = gcd pR pI

have [simp]: g 6=0 pc 6=0
proof −

show pc 6=0 using assms(1) assms(2) pc-def pcompose-eq-0
by (metis cancel-comm-monoid-add-class.diff-cancel degree-pCons-eq-if

diff-eq-diff-eq less-nat-zero-code pCons-eq-0-iff zero-less-Suc)
then have pR 6=0 ∨ pI 6=0 unfolding pR-def pI-def by (metis cpoly-of-decompose

map-poly-0)
then show g 6=0 unfolding g-def by simp

qed
have order-eq:order t g = order t pc for t

apply (subst order-cpoly-gcd-eq[of pR pI ,folded g-def ,symmetric])
subgoal using ‹g 6=0 › unfolding g-def by simp

subgoal unfolding pR-def pI-def by (simp add:cpoly-of-decompose[symmetric])
done

have ?R = nat (changes-R-smods-ext g (pderiv g))
unfolding pc-def g-def pI-def pR-def by (auto simp add:Let-def)

also have ... = proots-count g UNIV
using sturm-ext-R[OF ‹g 6=0 ›] by auto

also have ... = proots-count (map-poly complex-of-real g) (of-real ‘ UNIV)
apply (subst proots-count-of-real)
by auto

also have ... = proots-count (map-poly complex-of-real g) {x. Im x = 0}
apply (rule arg-cong2 [where f=proots-count])
using Reals-def complex-is-Real-iff by auto

also have ... = proots-count pc {x. Im x = 0}
apply (rule proots-count-cong)
apply (metis (mono-tags) Im-complex-of-real Re-complex-of-real ‹g 6= 0 › com-

plex-surj
map-poly-order-of-real mem-Collect-eq order-eq)

by auto
also have ... = proots-count p (unbounded-line st tt)
proof −

have poly [:st, tt − st:] ‘ {x. Im x = 0} = unbounded-line st tt
unfolding unbounded-line-def
apply safe
subgoal for - x

apply (rule-tac x=Re x in exI)
apply (simp add:algebra-simps)
by (simp add: mult.commute scaleR-complex.code times-complex.code)

103

subgoal for - u
apply (rule rev-image-eqI [of of-real u])
by (auto simp:scaleR-conv-of-real algebra-simps)

done
then show ?thesis

unfolding pc-def
apply (subst proots-pcompose)
using ‹p 6=0 › ‹st 6=tt› by auto

qed
finally show ?thesis by simp

qed

lemma proots-unbounded-line-card-code[code]:
proots-unbounded-line-card p st tt =

(if st 6=tt then
(let pc = pcompose p [:st, tt − st:];

pR = map-poly Re pc;
pI = map-poly Im pc;
g = gcd pR pI

in nat (changes-R-smods g (pderiv g)))
else

Code.abort (STR ′′proots-unbounded-line-card fails due to invalid
hyperplanes. ′′)

(λ-. proots-unbounded-line-card p st tt))
unfolding proots-unbounded-line-card-def using card-proots-unbounded-line[of st

tt p] by auto

lemma proots-unbounded-line-code[code]:
proots-unbounded-line p st tt =

(if st 6=tt then
if p 6=0 then
(let pc = pcompose p [:st, tt − st:];

pR = map-poly Re pc;
pI = map-poly Im pc;
g = gcd pR pI

in nat (changes-R-smods-ext g (pderiv g)))
else

Code.abort (STR ′′proots-unbounded-line fails due to p=0 ′′)
(λ-. proots-unbounded-line p st tt)

else
Code.abort (STR ′′proots-unbounded-line fails due to invalid

hyperplanes. ′′)
(λ-. proots-unbounded-line p st tt))

unfolding proots-unbounded-line-def using proots-unbounded-line by auto

2.11 Checking if there a polynomial root on a closed segment
definition no-proots-line::complex poly ⇒ complex ⇒ complex ⇒ bool where

no-proots-line p st tt = (proots-within p (closed-segment st tt) = {})

104

lemma no-proots-line-code[code]: no-proots-line p st tt = (if poly p st 6=0 ∧ poly p
tt 6= 0 then

(let pc = pcompose p [:st, tt − st:];
pR = map-poly Re pc;
pI = map-poly Im pc;
g = gcd pR pI

in if changes-itv-smods 0 1 g (pderiv g) = 0 then True else False)
else False)

(is ?L = ?R)
proof (cases poly p st 6=0 ∧ poly p tt 6= 0)

case False
thus ?thesis unfolding no-proots-line-def by auto

next
case True
then have poly p st 6= 0 poly p tt 6= 0 by auto
define pc pR pI g where

pc = pcompose p [:st, tt−st:] and
pR = map-poly Re pc and
pI = map-poly Im pc and
g = gcd pR pI

have poly-iff :poly g t=0 ←→ poly pc t =0 for t
proof −

have poly g t = 0 ←→ poly pR t =0 ∧ poly pI t =0
unfolding g-def using poly-gcd-0-iff by auto

also have ... ←→ poly pc t =0
proof −

have cpoly-of pR pI = pc
unfolding pc-def pR-def pI-def using cpoly-of-decompose by auto

then show ?thesis using poly-cpoly-of-real-iff by blast
qed
finally show ?thesis by auto

qed
have ?R = (changes-itv-smods 0 1 g (pderiv g) = 0)

using True unfolding pc-def g-def pI-def pR-def
by (auto simp add:Let-def)

also have ... = (card {x. poly g x = 0 ∧ 0 < x ∧ x < 1} = 0)
proof −

have poly g 0 6= 0
using poly-iff [of 0] True unfolding pc-def by (auto simp add:poly-pcompose)

moreover have poly g 1 6= 0
using poly-iff [of 1] True unfolding pc-def by (auto simp add:poly-pcompose)

ultimately show ?thesis using sturm-interval[of 0 1 g] by auto
qed
also have ... = ({x. poly g (of-real x) = 0 ∧ 0 < x ∧ x < 1} = {})
proof −

have g 6=0
proof (rule ccontr)

105

assume ¬ g 6= 0
then have poly pc 0 =0

using poly-iff [of 0] by auto
then show False using True unfolding pc-def by (auto simp add:poly-pcompose)
qed
from poly-roots-finite[OF this] have finite {x. poly g x = 0 ∧ 0 < x ∧ x < 1}

by auto
then show ?thesis using card-eq-0-iff by auto

qed
also have ... = ?L
proof −

have (∃ t. poly g (of-real t) = 0 ∧ 0 < t ∧ t < 1) ←→
(∃ t::real. poly pc (of-real t) = 0 ∧ 0 < t ∧ t < 1)

using poly-iff by auto
also have ... ←→ (∃ x. x ∈ closed-segment st tt ∧ poly p x = 0)
proof

assume ∃ t. poly pc (complex-of-real t) = 0 ∧ 0 < t ∧ t < 1
then obtain t where ∗:poly pc (of-real t) = 0 and 0 < t t < 1 by auto
define x where x=poly [:st, tt − st:] t
have x ∈ closed-segment st tt using ‹0<t› ‹t<1 › unfolding x-def in-segment

by (intro exI [where x=t],auto simp add: algebra-simps scaleR-conv-of-real)
moreover have poly p x=0 using ∗ unfolding pc-def x-def

by (auto simp add:poly-pcompose)
ultimately show ∃ x. x ∈ closed-segment st tt ∧ poly p x = 0 by auto

next
assume ∃ x. x ∈ closed-segment st tt ∧ poly p x = 0
then obtain x where x ∈ closed-segment st tt poly p x = 0 by auto
then obtain t::real where ∗:x = (1 − t) ∗R st + t ∗R tt and 0≤t t≤1

unfolding in-segment by auto
then have x=poly [:st, tt − st:] t by (auto simp add: algebra-simps scaleR-conv-of-real)

then have poly pc (complex-of-real t) = 0
using ‹poly p x=0 › unfolding pc-def by (auto simp add:poly-pcompose)

moreover have t 6=0 t 6=1 using True ∗ ‹poly p x=0 › by auto
then have 0<t t<1 using ‹0≤t› ‹t≤1 › by auto
ultimately show ∃ t. poly pc (complex-of-real t) = 0 ∧ 0 < t ∧ t < 1 by

auto
qed
finally show ?thesis

unfolding no-proots-line-def proots-within-def
by blast

qed
finally show ?thesis by simp

qed

2.12 Number of roots on a bounded open segment
definition proots-line:: complex poly ⇒ complex ⇒ complex ⇒ nat where

proots-line p st tt = proots-count p (open-segment st tt)

106

lemma proots-line-commute:
proots-line p st tt = proots-line p tt st
unfolding proots-line-def by (simp add: open-segment-commute)

lemma proots-line-smods:
assumes poly p st 6=0 poly p tt 6= 0 st 6=tt
shows proots-line p st tt =

(let pc = pcompose p [:st, tt − st:];
pR = map-poly Re pc;
pI = map-poly Im pc;
g = gcd pR pI

in nat (changes-itv-smods-ext 0 1 g (pderiv g)))
(is -=?R)

proof −
have p 6=0 using assms(2) poly-0 by blast

define pc pR pI g where
pc = pcompose p [:st, tt−st:] and
pR = map-poly Re pc and
pI = map-poly Im pc and
g = gcd pR pI

have [simp]: g 6=0 pc 6=0
proof −

show pc 6=0
by (metis assms(1) coeff-pCons-0 pCons-0-0 pc-def pcompose-coeff-0)

then have pR 6=0 ∨ pI 6=0 unfolding pR-def pI-def
by (metis cpoly-of-decompose map-poly-0)

then show g 6=0 unfolding g-def by simp
qed
have order-eq:order t g = order t pc for t

apply (subst order-cpoly-gcd-eq[of pR pI ,folded g-def ,symmetric])
subgoal using ‹g 6=0 › unfolding g-def by simp

subgoal unfolding pR-def pI-def by (simp add:cpoly-of-decompose[symmetric])
done

have poly-iff :poly g t=0 ←→ poly pc t =0 for t
using order-eq by (simp add: order-root)

have poly g 0 6= 0 poly g 1 6=0
unfolding poly-iff pc-def
using assms by (simp-all add:poly-pcompose)

have ?R = changes-itv-smods-ext 0 1 g (pderiv g)
unfolding Let-def
apply (fold pc-def g-def pI-def pR-def)
using assms changes-itv-smods-ext-geq-0 [OF - ‹poly g 0 6=0 › ‹poly g 1 6=0 ›]
by auto

also have ... = int (proots-count g {x. 0 < x ∧ x < 1})
apply (rule sturm-ext-interval[symmetric])
by simp fact+

107

also have ... = int (proots-count p (open-segment st tt))
proof −

define f where f = (λx. poly [:st, tt − st:] (complex-of-real x))
have x∈f ‘ {x. 0 < x ∧ x < 1} if x∈open-segment st tt for x
proof −

obtain u where u:u>0 u < 1 x = (1 − u) ∗R st + u ∗R tt
using ‹x∈open-segment st tt› unfolding in-segment by auto

show ?thesis
apply (rule rev-image-eqI [where x=u])
using u unfolding f-def
by (auto simp:algebra-simps scaleR-conv-of-real)

qed
moreover have x∈open-segment st tt if x∈f ‘ {x. 0 < x ∧ x < 1} for x

using that ‹st 6=tt› unfolding in-segment f-def
by (auto simp:scaleR-conv-of-real algebra-simps)

ultimately have open-segment st tt = f ‘ {x. 0 < x ∧ x < 1}
by auto

then have proots-count p (open-segment st tt)
= proots-count g {x. 0 < x ∧ x < 1}

using proots-count-gcd-eq[OF ‹st 6=tt› ‹p 6=0 ›,
folded pc-def pR-def pI-def g-def] unfolding f-def

by auto
then show ?thesis by auto

qed
also have ... =proots-line p st tt

unfolding proots-line-def by simp
finally show ?thesis by simp

qed

lemma proots-line-code[code]:
proots-line p st tt =

(if poly p st 6=0 ∧ poly p tt 6= 0 then
(if st 6=tt then

(let pc = pcompose p [:st, tt − st:];
pR = map-poly Re pc;
pI = map-poly Im pc;
g = gcd pR pI

in nat (changes-itv-smods-ext 0 1 g (pderiv g)))
else 0)

else Code.abort (STR ′′prootsline does not handle vanishing endpoints for now ′′)

(λ-. proots-line p st tt)) (is ?L = ?R)
proof (cases poly p st 6=0 ∧ poly p tt 6= 0 ∧ st 6=tt)

case False
moreover have ?thesis if st=tt p 6=0

using that unfolding proots-line-def by auto
ultimately show ?thesis by fastforce

next

108

case True
then show ?thesis using proots-line-smods by auto

qed

end

theory Count-Half-Plane imports
Count-Line

begin

2.13 Polynomial roots on the upper half-plane
definition proots-upper ::complex poly ⇒ nat where

proots-upper p= proots-count p {z. Im z>0}

— Roots counted WITHOUT multiplicity
definition proots-upper-card::complex poly ⇒ nat where

proots-upper-card p = card (proots-within p {x. Im x >0})

lemma Im-Ln-tendsto-at-top: ((λx. Im (Ln (Complex a x))) −−−→ pi/2) at-top
proof (cases a=0)

case False
define f where f=(λx. if a>0 then arctan (x/a) else arctan (x/a) + pi)
define g where g=(λx. Im (Ln (Complex a x)))
have (f −−−→ pi / 2) at-top
proof (cases a>0)

case True
then have (f −−−→ pi / 2) at-top ←→ ((λx. arctan (x ∗ inverse a)) −−−→ pi

/ 2) at-top
unfolding f-def field-class.field-divide-inverse by auto

also have ... ←→ (arctan −−−→ pi / 2) at-top
apply (subst filterlim-at-top-linear-iff [of inverse a arctan 0 nhds (pi/2),simplified])

using True by auto
also have ... using tendsto-arctan-at-top .
finally show ?thesis .

next
case False
then have (f −−−→ pi / 2) at-top ←→ ((λx. arctan (x ∗ inverse a) + pi) −−−→

pi / 2) at-top
unfolding f-def field-class.field-divide-inverse by auto

also have ... ←→ ((λx. arctan (x ∗ inverse a)) −−−→ − pi / 2) at-top
apply (subst tendsto-add-const-iff [of −pi,symmetric])
by auto

also have ... ←→ (arctan −−−→ − pi / 2) at-bot
apply (subst filterlim-at-top-linear-iff [of inverse a arctan 0 ,simplified])
using False ‹a 6=0 › by auto

also have ... using tendsto-arctan-at-bot by simp
finally show ?thesis .

qed

109

moreover have ∀ F x in at-top. f x = g x
unfolding f-def g-def using ‹a 6=0 ›
apply (subst Im-Ln-eq)
subgoal for x using Complex-eq-0 by blast
subgoal unfolding eventually-at-top-linorder by auto
done

ultimately show ?thesis
using tendsto-cong[of f g at-top] unfolding g-def by auto

next
case True
show ?thesis

apply (rule tendsto-eventually)
apply (rule eventually-at-top-linorderI [of 1])
using True by (subst Im-Ln-eq,auto simp add:Complex-eq-0)

qed

lemma Im-Ln-tendsto-at-bot: ((λx. Im (Ln (Complex a x))) −−−→ − pi/2) at-bot

proof (cases a=0)
case False
define f where f=(λx. if a>0 then arctan (x/a) else arctan (x/a) − pi)
define g where g=(λx. Im (Ln (Complex a x)))
have (f −−−→ − pi / 2) at-bot
proof (cases a>0)

case True
then have (f −−−→ − pi / 2) at-bot ←→ ((λx. arctan (x ∗ inverse a)) −−−→

− pi / 2) at-bot
unfolding f-def field-class.field-divide-inverse by auto

also have ... ←→ (arctan −−−→ − pi / 2) at-bot
apply (subst filterlim-at-bot-linear-iff [of inverse a arctan 0 ,simplified])
using True by auto

also have ... using tendsto-arctan-at-bot by simp
finally show ?thesis .

next
case False
then have (f −−−→ − pi / 2) at-bot ←→ ((λx. arctan (x ∗ inverse a) − pi)

−−−→ − pi / 2) at-bot
unfolding f-def field-class.field-divide-inverse by auto

also have ... ←→ ((λx. arctan (x ∗ inverse a)) −−−→ pi / 2) at-bot
apply (subst tendsto-add-const-iff [of pi,symmetric])
by auto

also have ... ←→ (arctan −−−→ pi / 2) at-top
apply (subst filterlim-at-bot-linear-iff [of inverse a arctan 0 ,simplified])
using False ‹a 6=0 › by auto

also have ... using tendsto-arctan-at-top by simp
finally show ?thesis .

qed
moreover have ∀ F x in at-bot. f x = g x

unfolding f-def g-def using ‹a 6=0 ›

110

apply (subst Im-Ln-eq)
subgoal for x using Complex-eq-0 by blast

subgoal unfolding eventually-at-bot-linorder by (auto intro:exI [where x=−1])
done

ultimately show ?thesis
using tendsto-cong[of f g at-bot] unfolding g-def by auto

next
case True
show ?thesis

apply (rule tendsto-eventually)
apply (rule eventually-at-bot-linorderI [of −1])
using True by (subst Im-Ln-eq,auto simp add:Complex-eq-0)

qed

lemma Re-winding-number-tendsto-part-circlepath:
shows ((λr . Re (winding-number (part-circlepath z0 r 0 pi) a)) −−−→ 1/2)

at-top
proof (cases Im z0≤Im a)

case True
define g1 where g1=(λr . part-circlepath z0 r 0 pi)
define g2 where g2=(λr . part-circlepath z0 r pi (2∗pi))
define f1 where f1=(λr . Re (winding-number (g1 r) a))
define f2 where f2=(λr . Re (winding-number (g2 r) a))
have (f2 −−−→ 1/2) at-top
proof −

define h1 where h1 = (λr . Im (Ln (Complex (Im a−Im z0) (Re z0 − Re a
+ r))))

define h2 where h2= (λr . Im (Ln (Complex (Im a −Im z0) (Re z0 − Re a
− r))))

have ∀ F x in at-top. f2 x = (h1 x − h2 x) / (2 ∗ pi)
proof (rule eventually-at-top-linorderI [of cmod (a−z0) + 1])

fix r assume asm:r ≥ cmod (a − z0) + 1
have Im p ≤ Im a when p∈path-image (g2 r) for p
proof −
obtain t where p-def :p=z0 + of-real r ∗ exp (i ∗ of-real t) and pi≤t t≤2∗pi

using ‹p∈path-image (g2 r)›
unfolding g2-def path-image-part-circlepath[of pi 2∗pi,simplified]
by auto

then have Im p=Im z0 + sin t ∗ r by (auto simp add:Im-exp)
also have ... ≤ Im z0
proof −

have sin t≤0 using ‹pi≤t› ‹t≤2∗pi› sin-le-zero by fastforce
moreover have r≥0

using asm by (metis add.inverse-inverse add.left-neutral add-uminus-conv-diff
diff-ge-0-iff-ge norm-ge-zero order-trans zero-le-one)

ultimately have sin t ∗ r≤0 using mult-le-0-iff by blast
then show ?thesis by auto

qed
also have ... ≤ Im a using True .

111

finally show ?thesis .
qed
moreover have valid-path (g2 r) unfolding g2-def by auto
moreover have a /∈ path-image (g2 r)

unfolding g2-def
apply (rule not-on-circlepathI)
using asm by auto

moreover have [symmetric]:Im (Ln (i ∗ pathfinish (g2 r) − i ∗ a)) = h1 r
unfolding h1-def g2-def
apply (simp only:pathfinish-pathstart-partcirclepath-simps)
apply (subst (4 10) complex-eq)
by (auto simp add:algebra-simps Complex-eq)

moreover have [symmetric]:Im (Ln (i ∗ pathstart (g2 r) − i ∗ a)) = h2 r
unfolding h2-def g2-def
apply (simp only:pathfinish-pathstart-partcirclepath-simps)
apply (subst (4 10) complex-eq)
by (auto simp add:algebra-simps Complex-eq)

ultimately show f2 r = (h1 r − h2 r) / (2 ∗ pi)
unfolding f2-def
apply (subst Re-winding-number-half-lower)
by (auto simp add:exp-Euler algebra-simps)

qed
moreover have ((λx. (h1 x − h2 x) / (2 ∗ pi)) −−−→ 1/2) at-top
proof −

have (h1 −−−→ pi/2) at-top
unfolding h1-def

apply (subst filterlim-at-top-linear-iff [of 1 - Re a − Re z0 ,simplified,symmetric])

using Im-Ln-tendsto-at-top by (simp del:Complex-eq)
moreover have (h2 −−−→ − pi/2) at-top

unfolding h2-def
apply (subst filterlim-at-bot-linear-iff [of − 1 - − Re a + Re z0 ,simplified,symmetric])

using Im-Ln-tendsto-at-bot by (simp del:Complex-eq)
ultimately have ((λx. h1 x− h2 x) −−−→ pi) at-top

by (auto intro: tendsto-eq-intros)
then show ?thesis

by (auto intro: tendsto-eq-intros)
qed
ultimately show ?thesis by (auto dest:tendsto-cong)

qed
moreover have ∀ F r in at-top. f2 r = 1 − f1 r
proof (rule eventually-at-top-linorderI [of cmod (a−z0) + 1])

fix r assume asm:r ≥ cmod (a − z0) + 1
have f1 r + f2 r = Re(winding-number (g1 r +++ g2 r) a)

unfolding f1-def f2-def g1-def g2-def
apply (subst winding-number-join)
using asm by (auto intro!:not-on-circlepathI)

also have ... = Re(winding-number (circlepath z0 r) a)

112

proof −
have g1 r +++ g2 r = circlepath z0 r

unfolding circlepath-def g1-def g2-def joinpaths-def part-circlepath-def
linepath-def

by (auto simp add:field-simps)
then show ?thesis by auto

qed
also have ... = 1
proof −

have winding-number (circlepath z0 r) a = 1
apply (rule winding-number-circlepath)
using asm by auto

then show ?thesis by auto
qed
finally have f1 r+f2 r=1 .
then show f2 r = 1 − f1 r by auto

qed
ultimately have ((λr . 1 − f1 r) −−−→ 1/2) at-top

using tendsto-cong[of f2 λr . 1 − f1 r at-top] by auto
then have (f1 −−−→ 1/2) at-top

apply (rule-tac tendsto-minus-cancel)
apply (subst tendsto-add-const-iff [of 1 ,symmetric])
by auto

then show ?thesis unfolding f1-def g1-def by auto
next

case False
define g where g=(λr . part-circlepath z0 r 0 pi)
define f where f=(λr . Re (winding-number (g r) a))
have (f −−−→ 1/2) at-top
proof −

define h1 where h1 = (λr . Im (Ln (Complex (Im z0−Im a) (Re a − Re z0
+ r))))

define h2 where h2= (λr . Im (Ln (Complex (Im z0 −Im a) (Re a − Re
z0 − r))))

have ∀ F x in at-top. f x = (h1 x − h2 x) / (2 ∗ pi)
proof (rule eventually-at-top-linorderI [of cmod (a−z0) + 1])

fix r assume asm:r ≥ cmod (a − z0) + 1
have Im p ≥ Im a when p∈path-image (g r) for p
proof −

obtain t where p-def :p=z0 + of-real r ∗ exp (i ∗ of-real t) and 0≤t t≤pi
using ‹p∈path-image (g r)›
unfolding g-def path-image-part-circlepath[of 0 pi,simplified]
by auto

then have Im p=Im z0 + sin t ∗ r by (auto simp add:Im-exp)
moreover have sin t ∗ r≥0
proof −

have sin t≥0 using ‹0≤t› ‹t≤pi› sin-ge-zero by fastforce
moreover have r≥0

using asm by (metis add.inverse-inverse add.left-neutral add-uminus-conv-diff

113

diff-ge-0-iff-ge norm-ge-zero order-trans zero-le-one)
ultimately have sin t ∗ r≥0 by simp
then show ?thesis by auto

qed
ultimately show ?thesis using False by auto

qed
moreover have valid-path (g r) unfolding g-def by auto
moreover have a /∈ path-image (g r)

unfolding g-def
apply (rule not-on-circlepathI)
using asm by auto

moreover have [symmetric]:Im (Ln (i ∗ a − i ∗ pathfinish (g r))) = h1 r
unfolding h1-def g-def
apply (simp only:pathfinish-pathstart-partcirclepath-simps)
apply (subst (4 9) complex-eq)
by (auto simp add:algebra-simps Complex-eq)

moreover have [symmetric]:Im (Ln (i ∗ a − i ∗ pathstart (g r))) = h2 r
unfolding h2-def g-def
apply (simp only:pathfinish-pathstart-partcirclepath-simps)
apply (subst (4 9) complex-eq)
by (auto simp add:algebra-simps Complex-eq)

ultimately show f r = (h1 r − h2 r) / (2 ∗ pi)
unfolding f-def
apply (subst Re-winding-number-half-upper)
by (auto simp add:exp-Euler algebra-simps)

qed
moreover have ((λx. (h1 x − h2 x) / (2 ∗ pi)) −−−→ 1/2) at-top
proof −

have (h1 −−−→ pi/2) at-top
unfolding h1-def

apply (subst filterlim-at-top-linear-iff [of 1 - − Re a + Re z0 ,simplified,symmetric])

using Im-Ln-tendsto-at-top by (simp del:Complex-eq)
moreover have (h2 −−−→ − pi/2) at-top

unfolding h2-def
apply (subst filterlim-at-bot-linear-iff [of − 1 - Re a − Re z0 ,simplified,symmetric])

using Im-Ln-tendsto-at-bot by (simp del:Complex-eq)
ultimately have ((λx. h1 x− h2 x) −−−→ pi) at-top

by (auto intro: tendsto-eq-intros)
then show ?thesis

by (auto intro: tendsto-eq-intros)
qed
ultimately show ?thesis by (auto dest:tendsto-cong)

qed
then show ?thesis unfolding f-def g-def by auto

qed

lemma not-image-at-top-poly-part-circlepath:

114

assumes degree p>0
shows ∀ F r in at-top. b/∈path-image (poly p o part-circlepath z0 r st tt)

proof −
have finite (proots (p−[:b:]))

apply (rule finite-proots)
using assms by auto

from finite-ball-include[OF this]
obtain R::real where R>0 and R-ball:proots (p−[:b:]) ⊆ ball z0 R by auto
show ?thesis
proof (rule eventually-at-top-linorderI [of R])

fix r assume r≥R
show b/∈path-image (poly p o part-circlepath z0 r st tt)

unfolding path-image-compose
proof clarify

fix x assume asm:b = poly p x x ∈ path-image (part-circlepath z0 r st tt)
then have x∈proots (p−[:b:]) unfolding proots-def by auto
then have x∈ball z0 r using R-ball ‹r≥R› by auto
then have cmod (x− z0) < r

by (simp add: dist-commute dist-norm)
moreover have cmod (x − z0) = r

using asm(2) in-path-image-part-circlepath ‹R>0 › ‹r≥R› by auto
ultimately show False by auto

qed
qed

qed

lemma not-image-poly-part-circlepath:
assumes degree p>0
shows ∃ r>0 . b/∈path-image (poly p o part-circlepath z0 r st tt)

proof −
have finite (proots (p−[:b:]))

apply (rule finite-proots)
using assms by auto

from finite-ball-include[OF this]
obtain r ::real where r>0 and r-ball:proots (p−[:b:]) ⊆ ball z0 r by auto
have b/∈path-image (poly p o part-circlepath z0 r st tt)

unfolding path-image-compose
proof clarify

fix x assume asm:b = poly p x x ∈ path-image (part-circlepath z0 r st tt)
then have x∈proots (p−[:b:]) unfolding proots-def by auto
then have x∈ball z0 r using r-ball by auto
then have cmod (x− z0) < r

by (simp add: dist-commute dist-norm)
moreover have cmod (x − z0) = r

using asm(2) in-path-image-part-circlepath ‹r>0 › by auto
ultimately show False by auto

qed
then show ?thesis using ‹r>0 › by blast

qed

115

lemma Re-winding-number-poly-part-circlepath:
assumes degree p>0
shows ((λr . Re (winding-number (poly p o part-circlepath z0 r 0 pi) 0)) −−−→

degree p/2) at-top
using assms
proof (induct rule:poly-root-induct-alt)

case 0
then show ?case by auto

next
case (no-proots p)
then have False
using Fundamental-Theorem-Algebra.fundamental-theorem-of-algebra constant-degree

neq0-conv
by blast

then show ?case by auto
next

case (root a p)
define g where g = (λr . part-circlepath z0 r 0 pi)
define q where q=[:− a, 1 :] ∗ p
define w where w = (λr . winding-number (poly q ◦ g r) 0)
have ?case when degree p=0
proof −
obtain pc where pc-def :p=[:pc:] using ‹degree p = 0 › degree-eq-zeroE by blast
then have pc 6=0 using root(2) by auto
have ∀ F r in at-top. Re (w r) = Re (winding-number (g r) a)
proof (rule eventually-at-top-linorderI [of cmod ((pc ∗ a) / pc − z0) + 1])

fix r ::real assume asm:cmod ((pc ∗ a) / pc − z0) + 1 ≤ r
have w r = winding-number ((λx. pc∗x − pc∗a) ◦ (g r)) 0

unfolding w-def pc-def g-def q-def
apply auto

by (metis (no-types, opaque-lifting) add.right-neutral mult.commute mult-zero-right

poly-0 poly-pCons uminus-add-conv-diff)
also have ... = winding-number (g r) a

apply (subst winding-number-comp-linear [where b=−pc∗a,simplified])
subgoal using ‹pc 6=0 › .
subgoal unfolding g-def by auto
subgoal unfolding g-def

apply (rule not-on-circlepathI)
using asm by auto

subgoal using ‹pc 6=0 › by (auto simp add:field-simps)
done

finally have w r = winding-number (g r) a .
then show Re (w r) = Re (winding-number (g r) a) by simp

qed
moreover have ((λr . Re (winding-number (g r) a)) −−−→ 1/2) at-top

using Re-winding-number-tendsto-part-circlepath unfolding g-def by auto
ultimately have ((λr . Re (w r)) −−−→ 1/2) at-top

116

by (auto dest!:tendsto-cong)
moreover have degree ([:− a, 1 :] ∗ p) = 1 unfolding pc-def using ‹pc 6=0 ›

by auto
ultimately show ?thesis unfolding w-def g-def comp-def q-def by simp

qed
moreover have ?case when degree p>0
proof −

have ∀ F r in at-top. 0 /∈ path-image (poly q ◦ g r)
unfolding g-def
apply (rule not-image-at-top-poly-part-circlepath)
unfolding q-def using root.prems by blast

then have ∀ F r in at-top. Re (w r) = Re (winding-number (g r) a)
+ Re (winding-number (poly p ◦ g r) 0)

proof (rule eventually-mono)
fix r assume asm:0 /∈ path-image (poly q ◦ g r)
define cc where cc= 1 / (of-real (2 ∗ pi) ∗ i)
define pf where pf=(λw. deriv (poly p) w / poly p w)
define af where af=(λw. 1/(w−a))
have w r = cc ∗ contour-integral (g r) (λw. deriv (poly q) w / poly q w)

unfolding w-def
apply (subst winding-number-comp[of UNIV ,simplified])
using asm unfolding g-def cc-def by auto

also have ... = cc ∗ contour-integral (g r) (λw. deriv (poly p) w / poly p w
+ 1/(w−a))

proof −
have contour-integral (g r) (λw. deriv (poly q) w / poly q w)

= contour-integral (g r) (λw. deriv (poly p) w / poly p w + 1/(w−a))
proof (rule contour-integral-eq)

fix x assume x ∈ path-image (g r)
have deriv (poly q) x = deriv (poly p) x ∗ (x−a) + poly p x
proof −

have poly q = (λx. (x−a) ∗ poly p x)
apply (rule ext)
unfolding q-def by (auto simp add:algebra-simps)

then show ?thesis
apply simp
apply (subst deriv-mult[of λx. x− a - poly p])
by (auto intro:derivative-intros)

qed
moreover have poly p x 6=0 ∧ x−a 6=0
proof (rule ccontr)

assume ¬ (poly p x 6= 0 ∧ x − a 6= 0)
then have poly q x=0 unfolding q-def by auto
then have 0∈poly q ‘ path-image (g r)

using ‹x ∈ path-image (g r)› by auto
then show False using ‹0 /∈ path-image (poly q ◦ g r)›

unfolding path-image-compose by auto
qed
ultimately show deriv (poly q) x / poly q x = deriv (poly p) x / poly p x

117

+ 1 / (x − a)
unfolding q-def by (auto simp add:field-simps)

qed
then show ?thesis by auto

qed
also have ... = cc ∗ contour-integral (g r) (λw. deriv (poly p) w / poly p w)

+ cc ∗ contour-integral (g r) (λw. 1/(w−a))
proof (subst contour-integral-add)

have continuous-on (path-image (g r)) (λw. deriv (poly p) w)
unfolding deriv-pderiv by (intro continuous-intros)

moreover have ∀w∈path-image (g r). poly p w 6= 0
using asm unfolding q-def path-image-compose by auto

ultimately show (λw. deriv (poly p) w / poly p w) contour-integrable-on g
r

unfolding g-def
by (auto intro!: contour-integrable-continuous-part-circlepath continu-

ous-intros)
show (λw. 1 / (w − a)) contour-integrable-on g r

apply (rule contour-integrable-inversediff)
subgoal unfolding g-def by auto
subgoal using asm unfolding q-def path-image-compose by auto
done

qed (auto simp add:algebra-simps)
also have ... = winding-number (g r) a + winding-number (poly p o g r) 0
proof −

have winding-number (poly p o g r) 0
= cc ∗ contour-integral (g r) (λw. deriv (poly p) w / poly p w)

apply (subst winding-number-comp[of UNIV ,simplified])
using ‹0 /∈ path-image (poly q ◦ g r)› unfolding path-image-compose q-def

g-def cc-def
by auto

moreover have winding-number (g r) a = cc ∗ contour-integral (g r) (λw.
1/(w−a))

apply (subst winding-number-valid-path)
using ‹0 /∈ path-image (poly q ◦ g r)› unfolding path-image-compose q-def

g-def cc-def
by auto

ultimately show ?thesis by auto
qed
finally show Re (w r) = Re (winding-number (g r) a) + Re (winding-number

(poly p ◦ g r) 0)
by auto

qed
moreover have ((λr . Re (winding-number (g r) a)

+ Re (winding-number (poly p ◦ g r) 0)) −−−→ degree q / 2) at-top
proof −

have ((λr . Re (winding-number (g r) a)) −−−→1 / 2) at-top
unfolding g-def by (rule Re-winding-number-tendsto-part-circlepath)

moreover have ((λr . Re (winding-number (poly p ◦ g r) 0)) −−−→ degree p

118

/ 2) at-top
unfolding g-def by (rule root(1)[OF that])

moreover have degree q = degree p + 1
unfolding q-def
apply (subst degree-mult-eq)
using that by auto

ultimately show ?thesis
by (simp add: tendsto-add add-divide-distrib)

qed
ultimately have ((λr . Re (w r)) −−−→ degree q/2) at-top

by (auto dest!:tendsto-cong)
then show ?thesis unfolding w-def q-def g-def by blast

qed
ultimately show ?case by blast

qed

lemma Re-winding-number-poly-linepth:
fixes pp::complex poly
defines g ≡ (λr . poly pp o linepath (−r) (of-real r))
assumes lead-coeff pp=1 and no-real-zero:∀ x∈proots pp. Im x 6=0
shows ((λr . 2∗Re (winding-number (g r) 0) + cindex-pathE (g r) 0) −−−→ 0

) at-top
proof −

define p where p=map-poly Re pp
define q where q=map-poly Im pp
define f where f=(λt. poly q t / poly p t)
have sgnx-top:sgnx (poly p) at-top = 1

unfolding sgnx-poly-at-top sgn-pos-inf-def p-def using ‹lead-coeff pp=1 ›
by (subst lead-coeff-map-poly-nz,auto)

have not-g-image:0 /∈ path-image (g r) for r
proof (rule ccontr)

assume ¬ 0 /∈ path-image (g r)
then obtain x where poly pp x=0 x∈closed-segment (− of-real r) (of-real r)

unfolding g-def path-image-compose of-real-linepath by auto
then have Im x=0 x∈proots pp

using closed-segment-imp-Re-Im(2) unfolding proots-def by fastforce+
then show False using ‹∀ x∈proots pp. Im x 6=0 › by auto

qed
have arctan-f-tendsto:((λr . (arctan (f r) − arctan (f (−r))) / pi) −−−→ 0)

at-top
proof (cases degree p>0)

case True
have degree p>degree q
proof −

have degree p=degree pp
unfolding p-def using ‹lead-coeff pp=1 ›
by (auto intro:map-poly-degree-eq)

moreover then have degree q<degree pp
unfolding q-def using ‹lead-coeff pp=1 › True

119

by (auto intro!:map-poly-degree-less)
ultimately show ?thesis by auto

qed
then have (f −−−→ 0) at-infinity

unfolding f-def using poly-divide-tendsto-0-at-infinity by auto
then have (f −−−→ 0) at-bot (f −−−→ 0) at-top
by (auto elim!:filterlim-mono simp add:at-top-le-at-infinity at-bot-le-at-infinity)
then have ((λr . arctan (f r))−−−→ 0) at-top ((λr . arctan (f (−r)))−−−→ 0)

at-top
apply −
subgoal by (auto intro:tendsto-eq-intros)
subgoal

apply (subst tendsto-compose-filtermap[of - uminus,unfolded comp-def])
by (auto intro:tendsto-eq-intros simp add:at-bot-mirror [symmetric])

done
then show ?thesis

by (auto intro:tendsto-eq-intros)
next

case False
obtain c where f=(λr . c)
proof −

have degree p=0 using False by auto
moreover have degree q≤degree p
proof −

have degree p=degree pp
unfolding p-def using ‹lead-coeff pp=1 ›
by (auto intro:map-poly-degree-eq)

moreover have degree q≤degree pp
unfolding q-def by simp

ultimately show ?thesis by auto
qed
ultimately have degree q=0 by simp
then obtain pa qa where p=[:pa:] q=[:qa:]

using ‹degree p=0 › by (meson degree-eq-zeroE)
then show ?thesis using that unfolding f-def by auto

qed
then show ?thesis by auto

qed
have [simp]:valid-path (g r) path (g r) finite-ReZ-segments (g r) 0 for r
proof −

show valid-path (g r) unfolding g-def
apply (rule valid-path-compose-holomorphic[where S=UNIV])
by (auto simp add:of-real-linepath)

then show path (g r) using valid-path-imp-path by auto
show finite-ReZ-segments (g r) 0

unfolding g-def of-real-linepath using finite-ReZ-segments-poly-linepath by
simp

qed
have g-f-eq:Im (g r t) / Re (g r t) = (f o (λx. 2∗r∗x − r)) t for r t

120

proof −
have Im (g r t) / Re (g r t) = Im ((poly pp o of-real o (λx. 2∗r∗x − r)) t)

/ Re ((poly pp o of-real o (λx. 2∗r∗x − r)) t)
unfolding g-def linepath-def comp-def
by (auto simp add:algebra-simps)

also have ... = (f o (λx. 2∗r∗x − r)) t
unfolding comp-def
by (simp only:Im-poly-of-real diff-0-right Re-poly-of-real f-def q-def p-def)

finally show ?thesis .
qed

have ?thesis when proots p={}
proof −

have ∀ F r in at-top. 2 ∗ Re (winding-number (g r) 0) + cindex-pathE (g r) 0
= (arctan (f r) − arctan (f (−r))) / pi

proof (rule eventually-at-top-linorderI [of 1])
fix r ::real assume r≥1
have image-pos:∀ p∈path-image (g r). 0<Re p
proof (rule ccontr)

assume ¬ (∀ p∈path-image (g r). 0 < Re p)
then obtain t where poly p t≤0

unfolding g-def path-image-compose of-real-linepath p-def
using Re-poly-of-real
apply (simp add:closed-segment-def)
by (metis not-less of-real-def real-vector .scale-scale scaleR-left-diff-distrib)

moreover have False when poly p t<0
proof −

have sgnx (poly p) (at-right t) = −1
using sgnx-poly-nz that by auto

then obtain x where x>t poly p x = 0
using sgnx-at-top-IVT [of p t] sgnx-top by auto

then have x∈proots p unfolding proots-def by auto
then show False using ‹proots p={}› by auto

qed
moreover have False when poly p t=0

using ‹proots p={}› that unfolding proots-def by auto
ultimately show False by linarith

qed
have Re (winding-number (g r) 0) = (Im (Ln (pathfinish (g r))) − Im (Ln

(pathstart (g r))))
/ (2 ∗ pi)

apply (rule Re-winding-number-half-right[of g r 0 ,simplified])
subgoal using image-pos by auto
subgoal by (auto simp add:not-g-image)
done

also have ... = (arctan (f r) − arctan (f (−r)))/(2∗pi)
proof −

have Im (Ln (pathfinish (g r))) = arctan (f r)

121

proof −
have Re (pathfinish (g r)) > 0

by (auto intro: image-pos[rule-format])
then have Im (Ln (pathfinish (g r)))

= arctan (Im (pathfinish (g r)) / Re (pathfinish (g r)))
by (subst Im-Ln-eq,auto)

also have ... = arctan (f r)
unfolding path-defs by (subst g-f-eq,auto)

finally show ?thesis .
qed
moreover have Im (Ln (pathstart (g r))) = arctan (f (−r))
proof −

have Re (pathstart (g r)) > 0
by (auto intro: image-pos[rule-format])

then have Im (Ln (pathstart (g r)))
= arctan (Im (pathstart (g r)) / Re (pathstart (g r)))

by (subst Im-Ln-eq,auto)
also have ... = arctan (f (−r))

unfolding path-defs by (subst g-f-eq,auto)
finally show ?thesis .

qed
ultimately show ?thesis by auto

qed
finally have Re (winding-number (g r) 0) = (arctan (f r) − arctan (f

(−r)))/(2∗pi) .
moreover have cindex-pathE (g r) 0 = 0
proof −

have cindex-pathE (g r) 0 = cindex-pathE (poly pp o of-real o (λx. 2∗r∗x
− r)) 0

unfolding g-def linepath-def comp-def
by (auto simp add:algebra-simps)

also have ... = cindexE 0 1 (f o (λx. 2∗r∗x − r))
unfolding cindex-pathE-def comp-def
by (simp only:Im-poly-of-real diff-0-right Re-poly-of-real f-def q-def p-def)

also have ... = cindexE (−r) r f
apply (subst cindexE-linear-comp[of 2∗r 0 1 - −r ,simplified])
using ‹r≥1 › by auto

also have ... = 0
proof −

have jumpF f (at-left x) =0 jumpF f (at-right x) = 0 when x∈{−r ..r}
for x

proof −
have poly p x 6=0 using ‹proots p={}› unfolding proots-def by auto
then show jumpF f (at-left x) =0 jumpF f (at-right x) = 0

unfolding f-def by (auto intro!: jumpF-not-infinity continuous-intros)
qed
then show ?thesis unfolding cindexE-def by auto

qed
finally show ?thesis .

122

qed
ultimately show 2 ∗ Re (winding-number (g r) 0) + cindex-pathE (g r) 0

= (arctan (f r) − arctan (f (−r))) / pi
unfolding path-defs by (auto simp add:field-simps)

qed
with arctan-f-tendsto show ?thesis by (auto dest:tendsto-cong)

qed
moreover have ?thesis when proots p 6={}
proof −

define max-r where max-r=Max (proots p)
define min-r where min-r=Min (proots p)
have max-r ∈proots p min-r ∈proots p min-r≤max-r and

min-max-bound:∀ p∈proots p. p∈{min-r ..max-r}
proof −

have p 6=0
proof −

have (0 ::real) 6= 1
by simp

then show ?thesis
by (metis (full-types) ‹p ≡ map-poly Re pp› assms(2) coeff-0 coeff-map-poly

one-complex.simps(1) zero-complex.sel(1))
qed
then have finite (proots p) by auto
then show max-r ∈proots p min-r ∈proots p

using Min-in Max-in that unfolding max-r-def min-r-def by fast+
then show ∀ p∈proots p. p∈{min-r ..max-r}

using Min-le Max-ge ‹finite (proots p)› unfolding max-r-def min-r-def by
auto

then show min-r≤max-r using ‹max-r∈proots p› by auto
qed
have ∀ F r in at-top. 2 ∗ Re (winding-number (g r) 0) + cindex-pathE (g r) 0

= (arctan (f r) − arctan (f (−r))) / pi
proof (rule eventually-at-top-linorderI [of max (norm max-r) (norm min-r) +

1])
fix r assume r-asm:max (norm max-r) (norm min-r) + 1 ≤ r
then have r 6=0 min-r>−r max-r<r by auto
define u where u=(min-r + r)/(2∗r)
define v where v=(max-r + r)/(2∗r)
have uv:u∈{0 ..1} v∈{0 ..1} u≤v

unfolding u-def v-def using r-asm ‹min-r≤max-r›
by (auto simp add:field-simps)

define g1 where g1=subpath 0 u (g r)
define g2 where g2=subpath u v (g r)
define g3 where g3=subpath v 1 (g r)
have path g1 path g2 path g3 valid-path g1 valid-path g2 valid-path g3

unfolding g1-def g2-def g3-def using uv
by (auto intro!:path-subpath valid-path-subpath)

define wc-add where wc-add = (λg. 2∗Re (winding-number g 0) + cin-
dex-pathE g 0)

123

have wc-add (g r) = wc-add g1 + wc-add g2 + wc-add g3
proof −
have winding-number (g r) 0 = winding-number g1 0 + winding-number g2

0 + winding-number g3 0
unfolding g1-def g2-def g3-def using ‹u∈{0 ..1}› ‹v∈{0 ..1}› not-g-image
by (subst winding-number-subpath-combine,simp-all)+

moreover have cindex-pathE (g r) 0 = cindex-pathE g1 0 + cindex-pathE
g2 0 + cindex-pathE g3 0

unfolding g1-def g2-def g3-def using ‹u∈{0 ..1}› ‹v∈{0 ..1}› ‹u≤v›
not-g-image

by (subst cindex-pathE-subpath-combine,simp-all)+
ultimately show ?thesis unfolding wc-add-def by auto

qed
moreover have wc-add g2=0
proof −

have 2 ∗ Re (winding-number g2 0) = − cindex-pathE g2 0
unfolding g2-def
apply (rule winding-number-cindex-pathE-aux)
subgoal using uv by (auto intro:finite-ReZ-segments-subpath)
subgoal using uv by (auto intro:valid-path-subpath)

subgoal using Path-Connected.path-image-subpath-subset ‹
∧

r . path (g
r)› not-g-image uv

by blast
subgoal unfolding subpath-def v-def g-def linepath-def using r-asm ‹max-r

∈proots p›
by (auto simp add:field-simps Re-poly-of-real p-def)

subgoal unfolding subpath-def u-def g-def linepath-def using r-asm ‹min-r
∈proots p›

by (auto simp add:field-simps Re-poly-of-real p-def)
done

then show ?thesis unfolding wc-add-def by auto
qed
moreover have wc-add g1=− arctan (f (−r)) / pi
proof −

have g1-pq:
Re (g1 t) = poly p (min-r∗t+r∗t−r)
Im (g1 t) = poly q (min-r∗t+r∗t−r)
Im (g1 t)/Re (g1 t) = (f o (λx. (min-r+r)∗x − r)) t
for t

proof −
have g1 t = poly pp (of-real (min-r∗t+r∗t−r))
using ‹r 6=0 › unfolding g1-def g-def linepath-def subpath-def u-def p-def

by (auto simp add:field-simps)
then show

Re (g1 t) = poly p (min-r∗t+r∗t−r)
Im (g1 t) = poly q (min-r∗t+r∗t−r)

unfolding p-def q-def
by (simp only:Re-poly-of-real Im-poly-of-real)+

124

then show Im (g1 t)/Re (g1 t) = (f o (λx. (min-r+r)∗x − r)) t
unfolding f-def by (auto simp add:algebra-simps)

qed
have Re(g1 1)=0

using ‹r 6=0 › Re-poly-of-real ‹min-r∈proots p›
unfolding g1-def subpath-def u-def g-def linepath-def
by (auto simp add:field-simps p-def)

have 0 /∈ path-image g1
by (metis (full-types) path-image-subpath-subset ‹

∧
r . path (g r)›

atLeastAtMost-iff g1-def le-less not-g-image subsetCE uv(1) zero-le-one)

have wc-add-pos:wc-add h = − arctan (poly q (− r) / poly p (−r)) / pi
when

Re-pos:∀ x∈{0 ..<1}. 0 < (Re ◦ h) x
and hp:∀ t. Re (h t) = c∗poly p (min-r∗t+r∗t−r)
and hq:∀ t. Im (h t) = c∗poly q (min-r∗t+r∗t−r)
and [simp]:c 6=0

and Re (h 1) = 0
and valid-path h
and h-img:0 /∈ path-image h
for h c

proof −
define f where f=(λt. c∗poly q t / (c∗poly p t))
define farg where farg= (if 0 < Im (h 1) then pi / 2 else − pi / 2)
have Re (winding-number h 0) = (Im (Ln (pathfinish h))
− Im (Ln (pathstart h))) / (2 ∗ pi)

apply (rule Re-winding-number-half-right[of h 0 ,simplified])
subgoal using that ‹Re (h 1) = 0 › unfolding path-image-def

by (auto simp add:le-less)
subgoal using ‹valid-path h› .
subgoal using h-img .
done

also have ... = (farg − arctan (f (−r))) / (2 ∗ pi)
proof −

have Im (Ln (pathfinish h)) = farg
using ‹Re(h 1)=0 › unfolding farg-def path-defs
apply (subst Im-Ln-eq)
subgoal using h-img unfolding path-defs by fastforce
subgoal by simp
done

moreover have Im (Ln (pathstart h)) = arctan (f (−r))
proof −

have pathstart h 6= 0
using h-img
by (metis pathstart-in-path-image)
then have Im (Ln (pathstart h)) = arctan (Im (pathstart h) / Re

(pathstart h))
using Re-pos[rule-format,of 0]

125

by (simp add: Im-Ln-eq path-defs)
also have ... = arctan (f (−r))

unfolding f-def path-defs hp[rule-format] hq[rule-format]
by simp

finally show ?thesis .
qed
ultimately show ?thesis by auto

qed
finally have Re (winding-number h 0) = (farg − arctan (f (−r))) / (2 ∗

pi) .
moreover have cindex-pathE h 0 = (−farg/pi)
proof −

have cindex-pathE h 0 = cindexE 0 1 (f ◦ (λx. (min-r + r) ∗ x − r))
unfolding cindex-pathE-def using ‹c 6=0 ›
by (auto simp add:hp hq f-def comp-def algebra-simps)

also have ... = cindexE (−r) min-r f
apply (subst cindexE-linear-comp[where b=−r ,simplified])
using r-asm by auto

also have ... = − jumpF f (at-left min-r)
proof −

define right where right = {x. jumpF f (at-right x) 6= 0 ∧ − r ≤ x
∧ x < min-r}

define left where left = {x. jumpF f (at-left x) 6= 0 ∧ − r < x ∧ x
≤ min-r}

have ∗:jumpF f (at-right x) =0 jumpF f (at-left x) =0 when
x∈{−r ..<min-r} for x

proof −
have False when poly p x =0
proof −

have x≥min-r
using min-max-bound[rule-format,of x] that by auto

then show False using ‹x∈{−r ..<min-r}› by auto
qed
then show jumpF f (at-right x) =0 jumpF f (at-left x) =0
unfolding f-def by (auto intro!:jumpF-not-infinity continuous-intros)

qed
then have right = {}

unfolding right-def by force
moreover have left = (if jumpF f (at-left min-r) = 0 then {} else

{min-r})
unfolding left-def le-less using ∗ r-asm by force

ultimately show ?thesis
unfolding cindexE-def by (fold left-def right-def ,auto)

qed
also have ... = (−farg/pi)
proof −

have p-pos:c∗poly p x > 0 when x ∈ {− r<..<min-r} for x
proof −

126

define hh where hh=(λt. min-r∗t+r∗t−r)
have (x+r)/(min-r+r) ∈ {0 ..<1}

using that r-asm by (auto simp add:field-simps)
then have 0 < c∗poly p (hh ((x+r)/(min-r+r)))

apply (drule-tac Re-pos[rule-format])
unfolding comp-def hp[rule-format] hq[rule-format] hh-def .

moreover have hh ((x+r)/(min-r+r)) = x
unfolding hh-def using ‹min-r>−r›
apply (auto simp add:divide-simps)
by (auto simp add:algebra-simps)

ultimately show ?thesis by simp
qed

have c∗poly q min-r 6=0
using no-real-zero ‹c 6=0 ›

by (metis Im-complex-of-real UNIV-I ‹min-r ∈ proots p› cpoly-of-decompose

mult-eq-0-iff p-def poly-cpoly-of-real-iff proots-within-iff q-def)

moreover have ?thesis when c∗poly q min-r > 0
proof −
have 0 < Im (h 1) unfolding hq[rule-format] hp[rule-format] using

that by auto
moreover have jumpF f (at-left min-r) = 1/2
proof −

have ((λt. c∗poly p t) has-sgnx 1) (at-left min-r)
unfolding has-sgnx-def
apply (rule eventually-at-leftI [of −r])
using p-pos ‹min-r>−r› by auto

then have filterlim f at-top (at-left min-r)
unfolding f-def
apply (subst filterlim-divide-at-bot-at-top-iff [of - c∗poly q min-r])
using that ‹min-r∈proots p› by (auto intro!:tendsto-eq-intros)

then show ?thesis unfolding jumpF-def by auto
qed
ultimately show ?thesis unfolding farg-def by auto

qed
moreover have ?thesis when c∗poly q min-r < 0
proof −
have 0 > Im (h 1) unfolding hq[rule-format] hp[rule-format] using

that by auto
moreover have jumpF f (at-left min-r) = − 1/2
proof −

have ((λt. c∗poly p t) has-sgnx 1) (at-left min-r)
unfolding has-sgnx-def
apply (rule eventually-at-leftI [of −r])
using p-pos ‹min-r>−r› by auto

then have filterlim f at-bot (at-left min-r)
unfolding f-def

127

apply (subst filterlim-divide-at-bot-at-top-iff [of - c∗poly q min-r])
using that ‹min-r∈proots p› by (auto intro!:tendsto-eq-intros)

then show ?thesis unfolding jumpF-def by auto
qed
ultimately show ?thesis unfolding farg-def by auto

qed
ultimately show ?thesis by linarith

qed
finally show ?thesis .

qed
ultimately show ?thesis unfolding wc-add-def f-def by (auto simp

add:field-simps)
qed

have ∀ x∈{0 ..<1}. (Re ◦ g1) x 6= 0
proof (rule ccontr)

assume ¬ (∀ x∈{0 ..<1}. (Re ◦ g1) x 6= 0)
then obtain t where t-def :Re (g1 t) =0 t∈{0 ..<1}

unfolding path-image-def by fastforce
define m where m=min-r∗t+r∗t−r
have poly p m=0
proof −

have Re (g1 t) = Re (poly pp (of-real m))
unfolding m-def g1-def g-def linepath-def subpath-def u-def using

‹r 6=0 ›
by (auto simp add:field-simps)

then show ?thesis using t-def unfolding Re-poly-of-real p-def by auto
qed
moreover have m<min-r
proof −

have min-r+r>0 using r-asm by simp
then have (min-r + r)∗(t−1)<0 using ‹t∈{0 ..<1}›

by (simp add: mult-pos-neg)
then show ?thesis unfolding m-def by (auto simp add:algebra-simps)

qed
ultimately show False using min-max-bound unfolding proots-def by

auto
qed
then have (∀ x∈{0 ..<1}. 0 < (Re ◦ g1) x) ∨ (∀ x∈{0 ..<1}. (Re ◦ g1) x

< 0)
apply (elim continuous-on-neq-split)
using ‹path g1 › unfolding path-def
by (auto intro!:continuous-intros elim:continuous-on-subset)

moreover have ?thesis when ∀ x∈{0 ..<1}. (Re ◦ g1) x < 0
proof −

have wc-add (uminus o g1) = − arctan (f (− r)) / pi
unfolding f-def
apply (rule wc-add-pos[of - −1])

using g1-pq that ‹min-r ∈proots p› ‹valid-path g1 › ‹0 /∈ path-image g1 ›

128

by (auto simp add:path-image-compose)
moreover have wc-add (uminus ◦ g1) = wc-add g1

unfolding wc-add-def cindex-pathE-def
apply (subst winding-number-uminus-comp)
using ‹valid-path g1 › ‹0 /∈ path-image g1 › by auto

ultimately show ?thesis by auto
qed
moreover have ?thesis when ∀ x∈{0 ..<1}. (Re ◦ g1) x > 0

unfolding f-def
apply (rule wc-add-pos[of - 1])
using g1-pq that ‹min-r ∈proots p› ‹valid-path g1 › ‹0 /∈ path-image g1 ›
by (auto simp add:path-image-compose)

ultimately show ?thesis by blast
qed
moreover have wc-add g3 = arctan (f r) / pi
proof −

have g3-pq:
Re (g3 t) = poly p ((r−max-r)∗t + max-r)
Im (g3 t) = poly q ((r−max-r)∗t + max-r)
Im (g3 t)/Re (g3 t) = (f o (λx. (r−max-r)∗x + max-r)) t
for t

proof −
have g3 t = poly pp (of-real ((r−max-r)∗t + max-r))
using ‹r 6=0 › ‹max-r<r› unfolding g3-def g-def linepath-def subpath-def

v-def p-def
by (auto simp add:algebra-simps)

then show
Re (g3 t) = poly p ((r−max-r)∗t + max-r)
Im (g3 t) = poly q ((r−max-r)∗t + max-r)

unfolding p-def q-def
by (simp only:Re-poly-of-real Im-poly-of-real)+

then show Im (g3 t)/Re (g3 t) = (f o (λx. (r−max-r)∗x + max-r)) t
unfolding f-def by (auto simp add:algebra-simps)

qed
have Re(g3 0)=0

using ‹r 6=0 › Re-poly-of-real ‹max-r∈proots p›
unfolding g3-def subpath-def v-def g-def linepath-def
by (auto simp add:field-simps p-def)

have 0 /∈ path-image g3
proof −

have (1 ::real) ∈ {0 ..1}
by auto

then show ?thesis
using Path-Connected.path-image-subpath-subset ‹

∧
r . path (g r)› g3-def

not-g-image uv(2) by blast
qed

have wc-add-pos:wc-add h = arctan (poly q r / poly p r) / pi when
Re-pos:∀ x∈{0<..1}. 0 < (Re ◦ h) x

129

and hp:∀ t. Re (h t) = c∗poly p ((r−max-r)∗t + max-r)
and hq:∀ t. Im (h t) = c∗poly q ((r−max-r)∗t + max-r)
and [simp]:c 6=0

and Re (h 0) = 0
and valid-path h
and h-img:0 /∈ path-image h
for h c

proof −
define f where f=(λt. c∗poly q t / (c∗poly p t))
define farg where farg= (if 0 < Im (h 0) then pi / 2 else − pi / 2)
have Re (winding-number h 0) = (Im (Ln (pathfinish h))
− Im (Ln (pathstart h))) / (2 ∗ pi)

apply (rule Re-winding-number-half-right[of h 0 ,simplified])
subgoal using that ‹Re (h 0) = 0 › unfolding path-image-def

by (auto simp add:le-less)
subgoal using ‹valid-path h› .
subgoal using h-img .
done

also have ... = (arctan (f r) − farg) / (2 ∗ pi)
proof −

have Im (Ln (pathstart h)) = farg
using ‹Re(h 0)=0 › unfolding farg-def path-defs
apply (subst Im-Ln-eq)
subgoal using h-img unfolding path-defs by fastforce
subgoal by simp
done

moreover have Im (Ln (pathfinish h)) = arctan (f r)
proof −

have pathfinish h 6= 0
using h-img
by (metis pathfinish-in-path-image)
then have Im (Ln (pathfinish h)) = arctan (Im (pathfinish h) / Re

(pathfinish h))
using Re-pos[rule-format,of 1]
by (simp add: Im-Ln-eq path-defs)

also have ... = arctan (f r)
unfolding f-def path-defs hp[rule-format] hq[rule-format]
by simp

finally show ?thesis .
qed
ultimately show ?thesis by auto

qed
finally have Re (winding-number h 0) = (arctan (f r) − farg) / (2 ∗ pi) .
moreover have cindex-pathE h 0 = farg/pi
proof −
have cindex-pathE h 0 = cindexE 0 1 (f ◦ (λx. (r−max-r)∗x + max-r))

unfolding cindex-pathE-def using ‹c 6=0 ›
by (auto simp add:hp hq f-def comp-def algebra-simps)

130

also have ... = cindexE max-r r f
apply (subst cindexE-linear-comp)
using r-asm by auto

also have ... = jumpF f (at-right max-r)
proof −
define right where right = {x. jumpF f (at-right x) 6= 0 ∧ max-r ≤ x

∧ x < r}
define left where left = {x. jumpF f (at-left x) 6= 0 ∧ max-r < x ∧ x

≤ r}
have ∗:jumpF f (at-right x) =0 jumpF f (at-left x) =0 when

x∈{max-r<..r} for x
proof −

have False when poly p x =0
proof −

have x≤max-r
using min-max-bound[rule-format,of x] that by auto

then show False using ‹x∈{max-r<..r}› by auto
qed
then show jumpF f (at-right x) =0 jumpF f (at-left x) =0
unfolding f-def by (auto intro!:jumpF-not-infinity continuous-intros)

qed
then have left = {}

unfolding left-def by force
moreover have right = (if jumpF f (at-right max-r) = 0 then {} else

{max-r})
unfolding right-def le-less using ∗ r-asm by force

ultimately show ?thesis
unfolding cindexE-def by (fold left-def right-def ,auto)

qed
also have ... = farg/pi
proof −

have p-pos:c∗poly p x > 0 when x ∈ {max-r<..<r} for x
proof −

define hh where hh=(λt. (r−max-r)∗t + max-r)
have (x−max-r)/(r−max-r) ∈ {0<..1}

using that r-asm by (auto simp add:field-simps)
then have 0 < c∗poly p (hh ((x−max-r)/(r−max-r)))

apply (drule-tac Re-pos[rule-format])
unfolding comp-def hp[rule-format] hq[rule-format] hh-def .

moreover have hh ((x−max-r)/(r−max-r)) = x
unfolding hh-def using ‹max-r<r›
by (auto simp add:divide-simps)

ultimately show ?thesis by simp
qed

have c∗poly q max-r 6=0
using no-real-zero ‹c 6=0 ›

by (metis Im-complex-of-real UNIV-I ‹max-r ∈ proots p› cpoly-of-decompose

131

mult-eq-0-iff p-def poly-cpoly-of-real-iff proots-within-iff q-def)

moreover have ?thesis when c∗poly q max-r > 0
proof −
have 0 < Im (h 0) unfolding hq[rule-format] hp[rule-format] using

that by auto
moreover have jumpF f (at-right max-r) = 1/2
proof −

have ((λt. c∗poly p t) has-sgnx 1) (at-right max-r)
unfolding has-sgnx-def
apply (rule eventually-at-rightI [of - r])
using p-pos ‹max-r<r› by auto

then have filterlim f at-top (at-right max-r)
unfolding f-def
apply (subst filterlim-divide-at-bot-at-top-iff [of - c∗poly q max-r])
using that ‹max-r∈proots p› by (auto intro!:tendsto-eq-intros)

then show ?thesis unfolding jumpF-def by auto
qed
ultimately show ?thesis unfolding farg-def by auto

qed
moreover have ?thesis when c∗poly q max-r < 0
proof −
have 0 > Im (h 0) unfolding hq[rule-format] hp[rule-format] using

that by auto
moreover have jumpF f (at-right max-r) = − 1/2
proof −

have ((λt. c∗poly p t) has-sgnx 1) (at-right max-r)
unfolding has-sgnx-def
apply (rule eventually-at-rightI [of - r])
using p-pos ‹max-r<r› by auto

then have filterlim f at-bot (at-right max-r)
unfolding f-def
apply (subst filterlim-divide-at-bot-at-top-iff [of - c∗poly q max-r])
using that ‹max-r∈proots p› by (auto intro!:tendsto-eq-intros)

then show ?thesis unfolding jumpF-def by auto
qed
ultimately show ?thesis unfolding farg-def by auto

qed
ultimately show ?thesis by linarith

qed
finally show ?thesis .

qed
ultimately show ?thesis unfolding wc-add-def f-def by (auto simp

add:field-simps)
qed

have ∀ x∈{0<..1}. (Re ◦ g3) x 6= 0
proof (rule ccontr)

132

assume ¬ (∀ x∈{0<..1}. (Re ◦ g3) x 6= 0)
then obtain t where t-def :Re (g3 t) =0 t∈{0<..1}

unfolding path-image-def by fastforce
define m where m=(r−max-r)∗t + max-r
have poly p m=0
proof −

have Re (g3 t) = Re (poly pp (of-real m))
unfolding m-def g3-def g-def linepath-def subpath-def v-def using ‹r 6=0 ›

by (auto simp add:algebra-simps)
then show ?thesis using t-def unfolding Re-poly-of-real p-def by auto

qed
moreover have m>max-r
proof −

have r−max-r>0 using r-asm by simp
then have (r − max-r)∗t>0 using ‹t∈{0<..1}›

by (simp add: mult-pos-neg)
then show ?thesis unfolding m-def by (auto simp add:algebra-simps)

qed
ultimately show False using min-max-bound unfolding proots-def by

auto
qed
then have (∀ x∈{0<..1}. 0 < (Re ◦ g3) x) ∨ (∀ x∈{0<..1}. (Re ◦ g3) x

< 0)
apply (elim continuous-on-neq-split)
using ‹path g3 › unfolding path-def
by (auto intro!:continuous-intros elim:continuous-on-subset)

moreover have ?thesis when ∀ x∈{0<..1}. (Re ◦ g3) x < 0
proof −

have wc-add (uminus o g3) = arctan (f r) / pi
unfolding f-def
apply (rule wc-add-pos[of - −1])

using g3-pq that ‹max-r ∈proots p› ‹valid-path g3 › ‹0 /∈ path-image g3 ›
by (auto simp add:path-image-compose)

moreover have wc-add (uminus ◦ g3) = wc-add g3
unfolding wc-add-def cindex-pathE-def
apply (subst winding-number-uminus-comp)
using ‹valid-path g3 › ‹0 /∈ path-image g3 › by auto

ultimately show ?thesis by auto
qed
moreover have ?thesis when ∀ x∈{0<..1}. (Re ◦ g3) x > 0

unfolding f-def
apply (rule wc-add-pos[of - 1])
using g3-pq that ‹max-r ∈proots p› ‹valid-path g3 › ‹0 /∈ path-image g3 ›
by (auto simp add:path-image-compose)

ultimately show ?thesis by blast
qed
ultimately have wc-add (g r) = (arctan (f r) − arctan (f (−r))) / pi

by (auto simp add:field-simps)
then show 2 ∗ Re (winding-number (g r) 0) + cindex-pathE (g r) 0

133

= (arctan (f r) − arctan (f (− r))) / pi
unfolding wc-add-def .

qed
with arctan-f-tendsto show ?thesis by (auto dest:tendsto-cong)

qed
ultimately show ?thesis by auto

qed

lemma proots-upper-cindex-eq:
assumes lead-coeff p=1 and no-real-roots:∀ x∈proots p. Im x 6=0
shows proots-upper p =

(degree p − cindex-poly-ubd (map-poly Im p) (map-poly Re p)) /2
proof (cases degree p = 0)

case True
then obtain c where p=[:c:] using degree-eq-zeroE by blast
then have p-def :p=[:1 :] using ‹lead-coeff p=1 › by simp
have proots-count p {x. Im x>0} = 0 unfolding p-def proots-count-def by auto

moreover have cindex-poly-ubd (map-poly Im p) (map-poly Re p) = 0
apply (subst cindex-poly-ubd-code)
unfolding p-def

by (auto simp add:map-poly-pCons changes-R-smods-def changes-poly-neg-inf-def

changes-poly-pos-inf-def)
ultimately show ?thesis using True unfolding proots-upper-def by auto

next
case False
then have degree p>0 p 6=0 by auto
define w1 where w1=(λr . Re (winding-number (poly p ◦

(λx. complex-of-real (linepath (− r) (of-real r) x))) 0))
define w2 where w2=(λr . Re (winding-number (poly p ◦ part-circlepath 0 r 0

pi) 0))
define cp where cp=(λr . cindex-pathE (poly p ◦ (λx.

of-real (linepath (− r) (of-real r) x))) 0)
define ci where ci=(λr . cindexE (−r) r (λx. poly (map-poly Im p) x/poly

(map-poly Re p) x))
define cubd where cubd =cindex-poly-ubd (map-poly Im p) (map-poly Re p)
obtain R where proots p ⊆ ball 0 R and R>0

using ‹p 6=0 › finite-ball-include[of proots p 0] by auto
have ((λr . w1 r +w2 r+ cp r / 2 −ci r/2)
−−−→ real (degree p) / 2 − of-int cubd / 2) at-top

proof −
have t1 :((λr . 2 ∗ w1 r + cp r) −−−→ 0) at-top

using Re-winding-number-poly-linepth[OF assms] unfolding w1-def cp-def
by auto

have t2 :(w2 −−−→ real (degree p) / 2) at-top
using Re-winding-number-poly-part-circlepath[OF ‹degree p>0 ›,of 0] unfold-

ing w2-def by auto
have t3 :(ci −−−→ of-int cubd) at-top

134

apply (rule tendsto-eventually)
using cindex-poly-ubd-eventually[of map-poly Im p map-poly Re p]
unfolding ci-def cubd-def by auto

from tendsto-add[OF tendsto-add[OF tendsto-mult-left[OF t3 ,of −1/2 ,simplified]

tendsto-mult-left[OF t1 ,of 1/2 ,simplified]]
t2]

show ?thesis by (simp add:algebra-simps)
qed
moreover have ∀ F r in at-top. w1 r +w2 r+ cp r / 2 −ci r/2 = proots-count

p {x. Im x>0}
proof (rule eventually-at-top-linorderI [of R])

fix r assume r≥R
then have r-ball:proots p ⊆ ball 0 r and r>0

using ‹R>0 › ‹proots p ⊆ ball 0 R› by auto
define ll where ll=linepath (− complex-of-real r) r
define rr where rr=part-circlepath 0 r 0 pi
define lr where lr = ll +++ rr
have img-ll:path-image ll ⊆ − proots p and img-rr : path-image rr ⊆ − proots

p
subgoal unfolding ll-def using ‹0 < r› closed-segment-degen-complex(2)

no-real-roots by auto
subgoal unfolding rr-def using in-path-image-part-circlepath ‹0 < r› r-ball

by fastforce
done

have [simp]:valid-path (poly p o ll) valid-path (poly p o rr)
valid-path ll valid-path rr
pathfinish rr=pathstart ll pathfinish ll = pathstart rr

proof −
show valid-path (poly p o ll) valid-path (poly p o rr)

unfolding ll-def rr-def by (auto intro:valid-path-compose-holomorphic)
then show valid-path ll valid-path rr unfolding ll-def rr-def by auto
show pathfinish rr=pathstart ll pathfinish ll = pathstart rr

unfolding ll-def rr-def by auto
qed
have proots-count p {x. Im x>0} = (

∑
x∈proots p. winding-number lr x ∗

of-nat (order x p))
unfolding proots-count-def of-nat-sum
proof (rule sum.mono-neutral-cong-left)

show finite (proots p) proots-within p {x. 0 < Im x} ⊆ proots p
using ‹p 6=0 › by auto

next
have winding-number lr x=0 when x∈proots p − proots-within p {x. 0 < Im

x} for x
unfolding lr-def ll-def rr-def
proof (eval-winding,simp-all)

show ∗:x /∈ closed-segment (− complex-of-real r) (complex-of-real r)
using img-ll that unfolding ll-def by auto

show x /∈ path-image (part-circlepath 0 r 0 pi)

135

using img-rr that unfolding rr-def by auto
have xr-facts:0 > Im x −r<Re x Re x<r cmod x<r
proof −

have Im x≤0 using that by auto
moreover have Im x 6=0 using no-real-roots that by blast
ultimately show 0 > Im x by auto

next
show cmod x<r using that r-ball by auto
then have |Re x| < r

using abs-Re-le-cmod[of x] by argo
then show −r<Re x Re x<r by linarith+

qed
then have cindex-pathE ll x = 1

using ‹r>0 › unfolding cindex-pathE-linepath[OF ∗] ll-def
by (auto simp add: mult-pos-neg)

moreover have cindex-pathE rr x=−1
unfolding rr-def using r-ball that
by (auto intro!: cindex-pathE-circlepath-upper)

ultimately show −cindex-pathE (linepath (− of-real r) (of-real r)) x =
cindex-pathE (part-circlepath 0 r 0 pi) x

unfolding ll-def rr-def by auto
qed
then show ∀ i∈proots p − proots-within p {x. 0 < Im x}.

winding-number lr i ∗ of-nat (order i p) = 0
by auto

next
fix x assume x-asm:x ∈ proots-within p {x. 0 < Im x}
have winding-number lr x=1 unfolding lr-def ll-def rr-def
proof (eval-winding,simp-all)

show ∗:x /∈ closed-segment (− complex-of-real r) (complex-of-real r)
using img-ll x-asm unfolding ll-def by auto

show x /∈ path-image (part-circlepath 0 r 0 pi)
using img-rr x-asm unfolding rr-def by auto

have xr-facts:0 < Im x −r<Re x Re x<r cmod x<r
proof −

show 0 < Im x using x-asm by auto
next

show cmod x<r using x-asm r-ball by auto
then have |Re x| < r

using abs-Re-le-cmod[of x] by argo
then show −r<Re x Re x<r by linarith+

qed
then have cindex-pathE ll x = −1

using ‹r>0 › unfolding cindex-pathE-linepath[OF ∗] ll-def
by (auto simp add: mult-less-0-iff)

moreover have cindex-pathE rr x=−1
unfolding rr-def using r-ball x-asm
by (auto intro!: cindex-pathE-circlepath-upper)

ultimately show − of-real (cindex-pathE (linepath (− of-real r) (of-real

136

r)) x) −
of-real (cindex-pathE (part-circlepath 0 r 0 pi) x) = 2

unfolding ll-def rr-def by auto
qed
then show of-nat (order x p) = winding-number lr x ∗ of-nat (order x p) by

auto
qed
also have ... = 1/(2∗pi∗i) ∗ contour-integral lr (λx. deriv (poly p) x / poly p

x)
apply (subst argument-principle-poly[of p lr])
using ‹p 6=0 › img-ll img-rr unfolding lr-def ll-def rr-def
by (auto simp add:path-image-join)

also have ... = winding-number (poly p ◦ lr) 0
apply (subst winding-number-comp[of UNIV poly p lr 0])
using ‹p 6=0 › img-ll img-rr unfolding lr-def ll-def rr-def
by (auto simp add:path-image-join path-image-compose)

also have ... = Re (winding-number (poly p ◦ lr) 0)
proof −

have winding-number (poly p ◦ lr) 0 ∈ Ints
apply (rule integer-winding-number)
using ‹p 6=0 › img-ll img-rr unfolding lr-def
by (auto simp add:path-image-join path-image-compose path-compose-join

pathstart-compose pathfinish-compose valid-path-imp-path)
then show ?thesis by (simp add: complex-eqI complex-is-Int-iff)

qed
also have ... = Re (winding-number (poly p ◦ ll) 0) + Re (winding-number

(poly p ◦ rr) 0)
unfolding lr-def path-compose-join using img-ll img-rr
apply (subst winding-number-join)
by (auto simp add:valid-path-imp-path path-image-compose pathstart-compose

pathfinish-compose)
also have ... = w1 r +w2 r

unfolding w1-def w2-def ll-def rr-def of-real-linepath by auto
finally have of-nat (proots-count p {x. 0 < Im x}) = complex-of-real (w1 r +

w2 r) .
then have proots-count p {x. 0 < Im x} = w1 r + w2 r

using of-real-eq-iff by fastforce
moreover have cp r = ci r
proof −

define f where f=(λx. Im (poly p (of-real x)) / Re (poly p x))
have cp r = cindex-pathE (poly p ◦ (λx. 2∗r∗x − r)) 0

unfolding cp-def linepath-def by (auto simp add:algebra-simps)
also have ... = cindexE 0 1 (f o (λx. 2∗r∗x − r))

unfolding cp-def ci-def cindex-pathE-def f-def comp-def by auto
also have ... = cindexE (−r) r f

apply (subst cindexE-linear-comp[of 2∗r 0 1 f −r ,simplified])
using ‹r>0 › by auto

also have ... = ci r
unfolding ci-def f-def Im-poly-of-real Re-poly-of-real by simp

137

finally show ?thesis .
qed
ultimately show w1 r + w2 r + cp r / 2 − ci r / 2 = real (proots-count p

{x. 0 < Im x})
by auto

qed
ultimately have ((λr ::real. real (proots-count p {x. 0 < Im x}))
−−−→ real (degree p) / 2 − of-int cubd / 2) at-top

by (auto dest: tendsto-cong)
then show ?thesis

apply (subst (asm) tendsto-const-iff)
unfolding cubd-def proots-upper-def by auto

qed

lemma cindexE-roots-on-horizontal-border :
fixes a::complex and s::real
defines g≡linepath a (a + of-real s)
assumes pqr :p = q ∗ r and r-monic:lead-coeff r=1 and r-proots:∀ x∈proots r .

Im x=Im a
shows cindexE lb ub (λt. Im ((poly p ◦ g) t) / Re ((poly p ◦ g) t)) =

cindexE lb ub (λt. Im ((poly q ◦ g) t) / Re ((poly q ◦ g) t))
using assms

proof (induct r arbitrary:p rule:poly-root-induct-alt)
case 0
then have False

by (metis Im-complex-of-real UNIV-I imaginary-unit.simps(2) proots-within-0
zero-neq-one)

then show ?case by simp
next

case (no-proots r)
then obtain b where b 6=0 r=[:b:]

using fundamental-theorem-of-algebra-alt by blast
then have r=1 using ‹lead-coeff r = 1 › by simp
with ‹p = q ∗ r› show ?case by simp

next
case (root b r)
then have ?case when s=0

using that(1) unfolding cindex-pathE-def by (simp add:cindexE-constI)
moreover have ?case when s 6=0
proof −

define qrg where qrg = poly (q∗r) ◦ g
have cindexE lb ub (λt. Im ((poly p ◦ g) t) / Re ((poly p ◦ g) t))

= cindexE lb ub (λt. Im (qrg t ∗ (g t − b)) / Re (qrg t ∗ (g t − b)))
unfolding qrg-def ‹p = q ∗ ([:− b, 1 :] ∗ r)› comp-def
by (simp add:algebra-simps)

also have ... = cindexE lb ub
(λt. ((Re a + t ∗ s − Re b)∗ Im (qrg t)) /

((Re a + t ∗ s − Re b)∗ Re (qrg t)))
proof −

138

have Im b = Im a
using ‹∀ x∈proots ([:− b, 1 :] ∗ r). Im x = Im a› by auto

then show ?thesis
unfolding cindex-pathE-def g-def linepath-def
by (simp add:algebra-simps)

qed
also have ... = cindexE lb ub (λt. Im (qrg t) / Re (qrg t))
proof (rule cindexE-cong[of {t. Re a + t ∗ s − Re b = 0}])

show finite {t. Re a + t ∗ s − Re b = 0}
proof (cases Re a= Re b)

case True
then have {t. Re a + t ∗ s − Re b = 0} = {0}

using ‹s 6=0 › by auto
then show ?thesis by auto

next
case False
then have {t. Re a + t ∗ s − Re b = 0} = {(Re b − Re a) / s}

using ‹s 6=0 › by (auto simp add:field-simps)
then show ?thesis by auto

qed
next

fix x assume asm:x /∈ {t. Re a + t ∗ s − Re b = 0}
define tt where tt=Re a + x ∗ s − Re b
have tt 6=0 using asm unfolding tt-def by auto
then show tt ∗ Im (qrg x) / (tt ∗ Re (qrg x)) = Im (qrg x) / Re (qrg x)

by auto
qed
also have ... = cindexE lb ub (λt. Im ((poly q ◦ g) t) / Re ((poly q ◦ g) t))

unfolding qrg-def
proof (rule root(1))

show lead-coeff r = 1
by (metis lead-coeff-mult lead-coeff-pCons(1) mult-cancel-left2 one-poly-eq-simps(2)

root.prems(2) zero-neq-one)
qed (use root in simp-all)
finally show ?thesis .

qed
ultimately show ?case by auto

qed

lemma poly-decompose-by-proots:
fixes p :: ′a::idom poly
assumes p 6=0
shows ∃ q r . p = q ∗ r ∧ lead-coeff q=1 ∧ (∀ x∈proots q. P x) ∧ (∀ x∈proots r .
¬P x) using assms
proof (induct p rule:poly-root-induct-alt)

case 0

139

then show ?case by simp
next

case (no-proots p)
then show ?case

apply (rule-tac x=1 in exI)
apply (rule-tac x=p in exI)
by (simp add:proots-def)

next
case (root a p)
then obtain q r where pqr :p = q ∗ r and leadq:lead-coeff q=1

and qball:∀ a∈proots q. P a and rball:∀ x∈proots r . ¬ P x
using mult-zero-right by metis

have ?case when P a
apply (rule-tac x=[:− a, 1 :] ∗ q in exI)
apply (rule-tac x=r in exI)
using pqr qball rball that leadq unfolding lead-coeff-mult
by (auto simp add:algebra-simps)

moreover have ?case when ¬ P a
apply (rule-tac x=q in exI)
apply (rule-tac x=[:− a, 1 :] ∗r in exI)
using pqr qball rball that leadq unfolding lead-coeff-mult
by (auto simp add:algebra-simps)

ultimately show ?case by blast
qed

lemma proots-upper-cindex-eq ′:
assumes lead-coeff p=1
shows proots-upper p = (degree p − proots-count p {x. Im x=0}

− cindex-poly-ubd (map-poly Im p) (map-poly Re p)) /2
proof −

have p 6=0 using assms by auto
from poly-decompose-by-proots[OF this,of λx. Im x 6=0]
obtain q r where pqr :p = q ∗ r and leadq:lead-coeff q=1

and qball: ∀ x∈proots q. Im x 6=0 and rball:∀ x∈proots r . Im x =0
by auto

have real-of-int (proots-upper p) = proots-upper q + proots-upper r
using ‹p 6=0 › unfolding proots-upper-def pqr by (auto simp add:proots-count-times)

also have ... = proots-upper q
proof −

have proots-within r {z. 0 < Im z} = {}
using rball by auto

then have proots-upper r =0
unfolding proots-upper-def proots-count-def by simp

then show ?thesis by auto
qed
also have ... = (degree q − cindex-poly-ubd (map-poly Im q) (map-poly Re q))

/ 2
by (rule proots-upper-cindex-eq[OF leadq qball])

also have ... = (degree p − proots-count p {x. Im x=0}

140

− cindex-poly-ubd (map-poly Im p) (map-poly Re p)) /2
proof −

have degree q = degree p − proots-count p {x. Im x=0}
proof −

have degree p= degree q + degree r
unfolding pqr
apply (rule degree-mult-eq)
using ‹p 6= 0 › pqr by auto

moreover have degree r = proots-count p {x. Im x=0}
unfolding degree-proots-count proots-count-def

proof (rule sum.cong)
fix x assume x ∈ proots-within p {x. Im x = 0}
then have Im x=0 by auto
then have order x q = 0

using qball order-0I by blast
then show order x r = order x p

using ‹p 6=0 › unfolding pqr by (simp add: order-mult)
next

show proots r = proots-within p {x. Im x = 0}
unfolding pqr proots-within-times using qball rball by auto

qed
ultimately show ?thesis by auto

qed
moreover have cindex-poly-ubd (map-poly Im q) (map-poly Re q)

= cindex-poly-ubd (map-poly Im p) (map-poly Re p)
proof −

define iq rq ip rp where iq = map-poly Im q and rq=map-poly Re q
and ip=map-poly Im p and rp = map-poly Re p

have cindexE (− x) x (λx. poly iq x / poly rq x)
= cindexE (− x) x (λx. poly ip x / poly rp x) for x

proof −
have lead-coeff r = 1

using pqr leadq ‹lead-coeff p=1 › by (simp add: coeff-degree-mult)
then have cindexE (− x) x (λt. Im (poly p (t ∗R 1)) / Re (poly p (t ∗R

1))) =
cindexE (− x) x (λt. Im (poly q (t ∗R 1)) / Re (poly q (t ∗R 1)))

using cindexE-roots-on-horizontal-border [OF pqr ,of 0 −x x 1
,unfolded linepath-def comp-def ,simplified] rball by simp

then show ?thesis
unfolding scaleR-conv-of-real iq-def ip-def rq-def rp-def
by (simp add:Im-poly-of-real Re-poly-of-real)

qed
then have ∀ F r ::real in at-top.

real-of-int (cindex-poly-ubd iq rq) = cindex-poly-ubd ip rp
using eventually-conj[OF cindex-poly-ubd-eventually[of iq rq]

cindex-poly-ubd-eventually[of ip rp]]
by (elim eventually-mono,auto)

then show ?thesis
apply (fold iq-def rq-def ip-def rp-def)

141

by simp
qed
ultimately show ?thesis by auto

qed
finally show ?thesis by simp

qed

lemma proots-within-upper-squarefree:
assumes rsquarefree p
shows card (proots-within p {x. Im x >0}) = (let

pp = smult (inverse (lead-coeff p)) p;
pI = map-poly Im pp;
pR = map-poly Re pp;
g = gcd pR pI

in
nat ((degree p − changes-R-smods g (pderiv g) − changes-R-smods pR

pI) div 2)
)

proof −
define pp where pp = smult (inverse (lead-coeff p)) p
define pI where pI = map-poly Im pp
define pR where pR = map-poly Re pp
define g where g = gcd pR pI
have card (proots-within p {x. Im x >0}) = proots-upper p
unfolding proots-upper-def using card-proots-within-rsquarefree[OF assms] by

auto
also have ... = proots-upper pp

unfolding proots-upper-def pp-def
apply (subst proots-count-smult)
using assms by auto

also have ... = (degree pp − proots-count pp {x. Im x = 0} − cindex-poly-ubd
pI pR) div 2

proof −
define rr where rr = proots-count pp {x. Im x = 0}
define cpp where cpp = cindex-poly-ubd pI pR
have ∗:proots-upper pp = (degree pp − rr − cpp) / 2

apply (rule proots-upper-cindex-eq ′[of pp,folded rr-def cpp-def pR-def pI-def])
unfolding pp-def using assms by auto

also have ... = (degree pp − rr − cpp) div 2
proof (subst real-of-int-div)

define tt where tt=int (degree pp − rr) − cpp
have real-of-int tt=2∗proots-upper pp

by (simp add:∗[folded tt-def])
then show even tt by (metis dvd-triv-left even-of-nat of-int-eq-iff of-int-of-nat-eq)
qed simp
finally show ?thesis unfolding rr-def cpp-def by simp

qed
also have ... = (degree pp − changes-R-smods g (pderiv g)

142

− cindex-poly-ubd pI pR) div 2
proof −

have rsquarefree pp
using assms rsquarefree-smult-iff unfolding pp-def
by (metis inverse-eq-imp-eq inverse-zero leading-coeff-neq-0 rsquarefree-0)

from card-proots-within-rsquarefree[OF this]
have proots-count pp {x. Im x = 0} = card (proots-within pp {x. Im x = 0})

by simp
also have ... = card (proots-within pp (unbounded-line 0 1))
proof −

have {x. Im x = 0} = unbounded-line 0 1
unfolding unbounded-line-def
apply auto
subgoal for x

apply (rule-tac x=Re x in exI)
by (metis complex-is-Real-iff of-real-Re of-real-def)

done
then show ?thesis by simp

qed
also have ... = changes-R-smods g (pderiv g)
unfolding card-proots-unbounded-line[of 0 1 pp,simplified,folded pI-def pR-def]

g-def
by (auto simp add:Let-def sturm-R[symmetric])

finally have proots-count pp {x. Im x = 0} = changes-R-smods g (pderiv g) .
moreover have degree pp ≥ proots-count pp {x. Im x = 0}

by (metis ‹rsquarefree pp› proots-count-leq-degree rsquarefree-0)
ultimately show ?thesis

by auto
qed
also have ... = (degree p − changes-R-smods g (pderiv g)

− changes-R-smods pR pI) div 2
using cindex-poly-ubd-code unfolding pp-def by simp

finally have card (proots-within p {x. 0 < Im x}) = (degree p − changes-R-smods
g (pderiv g) −

changes-R-smods pR pI) div 2 .
then show ?thesis unfolding Let-def

apply (fold pp-def pR-def pI-def g-def)
by (simp add: pp-def)

qed

lemma proots-upper-code1 [code]:
proots-upper p =
(if p 6= 0 then

(let pp=smult (inverse (lead-coeff p)) p;
pI=map-poly Im pp;
pR=map-poly Re pp;
g = gcd pI pR

in
nat ((degree p − nat (changes-R-smods-ext g (pderiv g)) − changes-R-smods

143

pR pI) div 2)
)

else
Code.abort (STR ′′proots-upper fails when p=0 . ′′) (λ-. proots-upper p))

proof −
define pp where pp = smult (inverse (lead-coeff p)) p
define pI where pI = map-poly Im pp
define pR where pR=map-poly Re pp
define g where g = gcd pI pR
have ?thesis when p=0

using that by auto
moreover have ?thesis when p 6=0
proof −

have pp 6=0 unfolding pp-def using that by auto
define rr where rr=int (degree pp − proots-count pp {x. Im x = 0}) −

cindex-poly-ubd pI pR
have lead-coeff p 6=0 using ‹p 6=0 › by simp
then have proots-upper pp = rr / 2 unfolding rr-def

apply (rule-tac proots-upper-cindex-eq ′[of pp, folded pI-def pR-def])
unfolding pp-def lead-coeff-smult by auto

then have proots-upper pp = nat (rr div 2) by linarith
moreover have

rr = degree p − nat (changes-R-smods-ext g (pderiv g)) − changes-R-smods
pR pI

proof −
have degree pp = degree p unfolding pp-def by auto
moreover have proots-count pp {x. Im x = 0} = nat (changes-R-smods-ext

g (pderiv g))
proof −

have {x. Im x = 0} = unbounded-line 0 1
unfolding unbounded-line-def by (simp add: complex-eq-iff)

then show ?thesis
using proots-unbounded-line[of 0 1 pp,simplified, folded pI-def pR-def]

‹pp 6=0 ›
by (auto simp:Let-def g-def gcd.commute)

qed
moreover have cindex-poly-ubd pI pR = changes-R-smods pR pI

using cindex-poly-ubd-code by auto
ultimately show ?thesis unfolding rr-def by auto

qed
moreover have proots-upper pp = proots-upper p

unfolding pp-def proots-upper-def
apply (subst proots-count-smult)
using that by auto

ultimately show ?thesis
unfolding Let-def using that
apply (fold pp-def pI-def pR-def g-def)
by argo

qed

144

ultimately show ?thesis by blast
qed

lemma proots-upper-card-code[code]:
proots-upper-card p = (if p=0 then 0 else

(let
pf = p div (gcd p (pderiv p));
pp = smult (inverse (lead-coeff pf)) pf ;
pI = map-poly Im pp;
pR = map-poly Re pp;
g = gcd pR pI

in
nat ((degree pf − changes-R-smods g (pderiv g) − changes-R-smods pR

pI) div 2)
))

proof (cases p=0)
case True
then show ?thesis unfolding proots-upper-card-def using infinite-halfspace-Im-gt

by auto
next

case False
define pf pp pI pR g where

pf = p div (gcd p (pderiv p))
and pp = smult (inverse (lead-coeff pf)) pf
and pI = map-poly Im pp
and pR = map-poly Re pp
and g = gcd pR pI

have proots-upper-card p = proots-upper-card pf
proof −

have proots-within p {x. 0 < Im x} = proots-within pf {x. 0 < Im x}
unfolding proots-within-def using poly-gcd-pderiv-iff [of p,folded pf-def]
by auto

then show ?thesis unfolding proots-upper-card-def by auto
qed
also have ... = nat ((degree pf − changes-R-smods g (pderiv g) − changes-R-smods

pR pI) div 2)
using proots-within-upper-squarefree[OF rsquarefree-gcd-pderiv[OF ‹p 6=0 ›]

,unfolded Let-def ,folded pf-def ,folded pp-def pI-def pR-def g-def]
unfolding proots-upper-card-def by blast

finally show ?thesis unfolding Let-def
apply (fold pf-def ,fold pp-def pI-def pR-def g-def)
using False by auto

qed

2.14 Polynomial roots on a general half-plane
the number of roots of polynomial p, counted with multiplicity, on the left
half plane of the vector b − a.
definition proots-half ::complex poly ⇒ complex ⇒ complex ⇒ nat where

145

proots-half p a b = proots-count p {w. Im ((w−a) / (b−a)) > 0}

lemma proots-half-empty:
assumes a=b
shows proots-half p a b = 0

unfolding proots-half-def using assms by auto

lemma proots-half-proots-upper :
assumes a 6=b p 6=0
shows proots-half p a b= proots-upper (pcompose p [:a, (b−a):])

proof −
define q where q=[:a, (b − a):]
define f where f=(λx. (b−a)∗x+ a)
have (

∑
r∈proots-within p {w. Im ((w−a) / (b−a)) > 0}. order r p)

= (
∑

r∈proots-within (p ◦p q) {z. 0 < Im z}. order r (p ◦pq))
proof (rule sum.reindex-cong[of f])

have inj f
using assms unfolding f-def inj-on-def by fastforce

then show inj-on f (proots-within (p ◦p q) {z. 0 < Im z})
by (elim inj-on-subset,auto)

next
show proots-within p {w. Im ((w−a) / (b−a)) > 0} = f ‘ proots-within (p ◦p

q) {z. 0 < Im z}
proof safe

fix x assume x-asm:x ∈ proots-within p {w. Im ((w−a) / (b−a)) > 0}
define xx where xx=(x −a) / (b − a)
have poly (p ◦p q) xx = 0

unfolding q-def xx-def poly-pcompose using assms x-asm by auto
moreover have Im xx > 0

unfolding xx-def using x-asm by auto
ultimately have xx ∈ proots-within (p ◦p q) {z. 0 < Im z} by auto
then show x ∈ f ‘ proots-within (p ◦p q) {z. 0 < Im z}

apply (intro rev-image-eqI [of xx])
unfolding f-def xx-def using assms by auto

next
fix x assume x ∈ proots-within (p ◦p q) {z. 0 < Im z}
then show f x ∈ proots-within p {w. 0 < Im ((w−a) / (b − a))}

unfolding f-def q-def using assms
apply (auto simp add:poly-pcompose)
by (auto simp add:algebra-simps)

qed
next

fix x assume x ∈ proots-within (p ◦p q) {z. 0 < Im z}
show order (f x) p = order x (p ◦p q) using ‹p 6=0 ›
proof (induct p rule:poly-root-induct-alt)

case 0
then show ?case by simp

next

146

case (no-proots p)
have order (f x) p = 0

apply (rule order-0I)
using no-proots by auto

moreover have order x (p ◦p q) = 0
apply (rule order-0I)
unfolding poly-pcompose q-def using no-proots by auto

ultimately show ?case by auto
next

case (root c p)
have order (f x) ([:− c, 1 :] ∗ p) = order (f x) [:−c,1 :] + order (f x) p

apply (subst order-mult)
using root by auto

also have ... = order x ([:− c, 1 :] ◦p q) + order x (p ◦p q)
proof −

have order (f x) [:− c, 1 :] = order x ([:− c, 1 :] ◦p q)
proof (cases f x=c)

case True
have [:− c, 1 :] ◦p q = smult (b−a) [:−x,1 :]

using True unfolding q-def f-def pcompose-pCons by auto
then have order x ([:− c, 1 :] ◦p q) = order x (smult (b−a) [:−x,1 :])

by auto
then have order x ([:− c, 1 :] ◦p q) = 1

apply (subst (asm) order-smult)
using assms order-power-n-n[of - 1 ,simplified] by auto

moreover have order (f x) [:− c, 1 :] = 1
using True order-power-n-n[of - 1 ,simplified] by auto

ultimately show ?thesis by auto
next

case False
have order (f x) [:− c, 1 :] = 0

apply (rule order-0I)
using False unfolding f-def by auto

moreover have order x ([:− c, 1 :] ◦p q) = 0
apply (rule order-0I)
using False unfolding f-def q-def poly-pcompose by auto

ultimately show ?thesis by auto
qed
moreover have order (f x) p = order x (p ◦p q)

apply (rule root)
using root by auto

ultimately show ?thesis by auto
qed
also have ... = order x (([:− c, 1 :] ∗ p) ◦p q)

unfolding pcompose-mult
apply (subst order-mult)
subgoal

unfolding q-def using assms(1) pcompose-eq-0 root.prems
by (metis One-nat-def degree-pCons-eq-if mult-eq-0-iff

147

one-neq-zero pCons-eq-0-iff right-minus-eq)
by simp

finally show ?case .
qed

qed
then show ?thesis unfolding proots-half-def proots-upper-def proots-count-def

q-def
by auto

qed

lemma proots-half-code1 [code]:
proots-half p a b = (if a 6=b then

if p 6=0 then proots-upper (p ◦p [:a, b − a:])
else Code.abort (STR ′′proots-half fails when p=0 . ′′)
(λ-. proots-half p a b)

else 0)
proof −

have ?thesis when a=b
using proots-half-empty that by auto

moreover have ?thesis when a 6=b p=0
using that by auto

moreover have ?thesis when a 6=b p 6=0
using proots-half-proots-upper [OF that] that by auto

ultimately show ?thesis by auto
qed

end

theory Count-Circle imports
Count-Half-Plane

begin

2.15 Polynomial roots within a circle (open ball)
definition proots-ball::complex poly ⇒ complex ⇒ real ⇒ nat where

proots-ball p z0 r = proots-count p (ball z0 r)

— Roots counted WITHOUT multiplicity
definition proots-ball-card ::complex poly ⇒ complex ⇒ real ⇒ nat where

proots-ball-card p z0 r = card (proots-within p (ball z0 r))

lemma proots-ball-code1 [code]:
proots-ball p z0 r = (if r ≤ 0 then

0
else if p 6=0 then
proots-upper (fcompose (p ◦p [:z0 , of-real r :]) [:i,−1 :] [:i,1 :])

else
Code.abort (STR ′′proots-ball fails when p=0 . ′′)
(λ-. proots-ball p z0 r)

148

)
proof (cases p=0 ∨ r≤0)

case False
have proots-ball p z0 r = proots-count (p ◦p [:z0 , of-real r :]) (ball 0 1)

unfolding proots-ball-def
apply (rule proots-uball-eq[THEN arg-cong])
using False by auto

also have ... = proots-upper (fcompose (p ◦p [:z0 , of-real r :]) [:i,−1 :] [:i,1 :])
unfolding proots-upper-def
apply (rule proots-ball-plane-eq[THEN arg-cong])
using False pcompose-eq-0 [of p [:z0 , of-real r :]]
by (simp add: pcompose-eq-0)

finally show ?thesis using False by auto
qed (auto simp:proots-ball-def ball-empty)

lemma proots-ball-card-code1 [code]:
proots-ball-card p z0 r =

(if r ≤ 0 ∨ p=0 then
0

else
proots-upper-card (fcompose (p ◦p [:z0 , of-real r :]) [:i,−1 :] [:i,1 :])

)
proof (cases p=0 ∨ r≤0)

case True
moreover have ?thesis when r≤0
proof −

have proots-within p (ball z0 r) = {}
by (simp add: ball-empty that)

then show ?thesis unfolding proots-ball-card-def using that by auto
qed
moreover have ?thesis when r>0 p=0

unfolding proots-ball-card-def using that infinite-ball[of r z0]
by auto

ultimately show ?thesis by argo
next

case False
then have p 6=0 r>0 by auto

have proots-ball-card p z0 r = card (proots-within (p ◦p [:z0 , of-real r :]) (ball 0
1))

unfolding proots-ball-card-def
by (rule proots-card-uball-eq[OF ‹r>0 ›, THEN arg-cong])

also have ... = proots-upper-card (fcompose (p ◦p [:z0 , of-real r :]) [:i,−1 :] [:i,1 :])
unfolding proots-upper-card-def
apply (rule proots-card-ball-plane-eq[THEN arg-cong])
using False pcompose-eq-0 [of p [:z0 , of-real r :]] by (simp add: pcompose-eq-0)

finally show ?thesis using False by auto
qed

149

2.16 Polynomial roots on a circle (sphere)
definition proots-sphere::complex poly ⇒ complex ⇒ real ⇒ nat where

proots-sphere p z0 r = proots-count p (sphere z0 r)

— Roots counted WITHOUT multiplicity
definition proots-sphere-card ::complex poly ⇒ complex ⇒ real ⇒ nat where

proots-sphere-card p z0 r = card (proots-within p (sphere z0 r))

lemma proots-sphere-card-code1 [code]:
proots-sphere-card p z0 r =

(if r=0 then
(if poly p z0=0 then 1 else 0)

else if r < 0 ∨ p=0 then
0

else
(if poly p (z0−r) =0 then 1 else 0) +

proots-unbounded-line-card (fcompose (p ◦p [:z0 , of-real r :]) [:i,−1 :]
[:i,1 :])

0 1
)

proof −
have ?thesis when r=0
proof −

have proots-within p {z0} = (if poly p z0 = 0 then {z0} else {})
by auto

then show ?thesis unfolding proots-sphere-card-def using that by simp
qed
moreover have ?thesis when r 6=0 r < 0 ∨ p=0
proof −

have ?thesis when r<0
proof −

have proots-within p (sphere z0 r) = {}
by (auto simp add: ball-empty that)

then show ?thesis unfolding proots-sphere-card-def using that by auto
qed
moreover have ?thesis when r>0 p=0

unfolding proots-sphere-card-def using that infinite-sphere[of r z0]
by auto

ultimately show ?thesis using that by argo
qed
moreover have ?thesis when r>0 p 6=0
proof −

define pp where pp = p ◦p [:z0 , of-real r :]
define ppp where ppp=fcompose pp [:i, − 1 :] [:i, 1 :]

have pp 6=0 unfolding pp-def using that pcompose-eq-0
by force

have proots-sphere-card p z0 r = card (proots-within pp (sphere 0 1))

150

unfolding proots-sphere-card-def pp-def
by (rule proots-card-usphere-eq[OF ‹r>0 ›, THEN arg-cong])

also have ... = card (proots-within pp {−1} ∪ proots-within pp (sphere 0 1 −
{−1}))

by (simp add: insert-absorb proots-within-union)
also have ... = card (proots-within pp {−1}) + card (proots-within pp (sphere

0 1 − {−1}))
apply (rule card-Un-disjoint)
using ‹pp 6=0 › by auto

also have ... = card (proots-within pp {−1}) + card (proots-within ppp {x. 0
= Im x})

using proots-card-sphere-axis-eq[OF ‹pp 6=0 ›,folded ppp-def] by simp
also have ... = (if poly p (z0−r) =0 then 1 else 0) + proots-unbounded-line-card

ppp 0 1
proof −

have proots-within pp {−1} = (if poly p (z0−r) =0 then {−1} else {})
unfolding pp-def by (auto simp:poly-pcompose)

then have card (proots-within pp {−1}) = (if poly p (z0−r) =0 then 1 else
0)

by auto
moreover have {x. Im x = 0} = unbounded-line 0 1

unfolding unbounded-line-def
apply auto
by (metis complex-is-Real-iff of-real-Re of-real-def)

then have card (proots-within ppp {x. 0 = Im x})
= proots-unbounded-line-card ppp 0 1

unfolding proots-unbounded-line-card-def by simp
ultimately show ?thesis by auto

qed
finally show ?thesis

apply (fold pp-def ,fold ppp-def)
using that by auto

qed
ultimately show ?thesis by auto

qed

2.17 Polynomial roots on a closed ball
definition proots-cball::complex poly ⇒ complex ⇒ real ⇒ nat where

proots-cball p z0 r = proots-count p (cball z0 r)

— Roots counted WITHOUT multiplicity
definition proots-cball-card ::complex poly ⇒ complex ⇒ real ⇒ nat where

proots-cball-card p z0 r = card (proots-within p (cball z0 r))

lemma proots-cball-card-code1 [code]:
proots-cball-card p z0 r =

(if r=0 then

151

(if poly p z0=0 then 1 else 0)
else if r < 0 ∨ p=0 then

0
else
(let pp=fcompose (p ◦p [:z0 , of-real r :]) [:i,−1 :] [:i,1 :]

in
(if poly p (z0−r) =0 then 1 else 0)
+ proots-unbounded-line-card pp 0 1
+ proots-upper-card pp

)
)

proof −
have ?thesis when r=0
proof −

have proots-within p {z0} = (if poly p z0 = 0 then {z0} else {})
by auto

then show ?thesis unfolding proots-cball-card-def using that by simp
qed
moreover have ?thesis when r 6=0 r < 0 ∨ p=0
proof −

have ?thesis when r<0
proof −

have proots-within p (cball z0 r) = {}
by (auto simp add: ball-empty that)

then show ?thesis unfolding proots-cball-card-def using that by auto
qed
moreover have ?thesis when r>0 p=0

unfolding proots-cball-card-def using that infinite-cball[of r z0]
by auto

ultimately show ?thesis using that by argo
qed
moreover have ?thesis when p 6=0 r>0
proof −

define pp where pp=fcompose (p ◦p [:z0 , of-real r :]) [:i,−1 :] [:i,1 :]

have proots-cball-card p z0 r = card (proots-within p (sphere z0 r)
∪ proots-within p (ball z0 r))

unfolding proots-cball-card-def
apply (simp add:proots-within-union)
by (metis Diff-partition cball-diff-sphere sphere-cball)

also have ... = card (proots-within p (sphere z0 r)) + card (proots-within p
(ball z0 r))

apply (rule card-Un-disjoint)
using ‹p 6=0 › by auto

also have ... = (if poly p (z0−r) =0 then 1 else 0) + proots-unbounded-line-card
pp 0 1

+ proots-upper-card pp
using proots-sphere-card-code1 [of p z0 r ,folded pp-def ,unfolded proots-sphere-card-def]

152

proots-ball-card-code1 [of p z0 r ,folded pp-def ,unfolded proots-ball-card-def]
that

by simp
finally show ?thesis

apply (fold pp-def)
using that by auto

qed
ultimately show ?thesis by auto

qed

end

theory Count-Rectangle imports Count-Line
begin

Counting roots in a rectangular area can be in a purely algebraic ap-
proach without introducing (analytic) winding number (winding-number)
nor the argument principle ([[open ?s; connected ?s; ?f holomorphic-on ?s
− ?poles; ?h holomorphic-on ?s; valid-path ?g; pathfinish ?g = pathstart
?g; path-image ?g ⊆ ?s − {w ∈ ?s. ?f w = 0 ∨ w ∈ ?poles}; ∀ z. z /∈ ?s
−→ winding-number ?g z = 0 ; finite {w ∈ ?s. ?f w = 0 ∨ w ∈ ?poles};
∀ p∈?s ∩ ?poles. is-pole ?f p]] =⇒ contour-integral ?g (λx. deriv ?f x ∗ ?h
x / ?f x) = complex-of-real (2 ∗ pi) ∗ i ∗ (

∑
p∈{w ∈ ?s. ?f w = 0 ∨ w

∈ ?poles}. winding-number ?g p ∗ ?h p ∗ complex-of-int (zorder ?f p))).
This has been illustrated by Michael Eisermann [1]. We lightly make use
of winding-number here only to shorten the proof of one of the technical
lemmas.

2.18 Misc
lemma proots-count-const:

assumes c 6=0
shows proots-count [:c:] s = 0
unfolding proots-count-def using assms by auto

lemma proots-count-nzero:
assumes

∧
x. x∈s =⇒ poly p x 6=0

shows proots-count p s = 0
unfolding proots-count-def
by(rule sum.neutral) (use assms in auto)

lemma complex-box-ne-empty:
fixes a b::complex
shows

cbox a b 6= {} ←→ (Re a ≤ Re b ∧ Im a ≤ Im b)
box a b 6= {} ←→ (Re a < Re b ∧ Im a < Im b)

by (auto simp add:box-ne-empty Basis-complex-def)

153

2.19 Counting roots in a rectangle
definition proots-rect ::complex poly ⇒ complex ⇒ complex ⇒ nat where

proots-rect p lb ub = proots-count p (box lb ub)

definition proots-crect ::complex poly ⇒ complex ⇒ complex ⇒ nat where
proots-crect p lb ub = proots-count p (cbox lb ub)

definition proots-rect-ll ::complex poly ⇒ complex ⇒ complex ⇒ nat where
proots-rect-ll p lb ub = proots-count p (box lb ub ∪ {lb}

∪ open-segment lb (Complex (Re ub) (Im lb))
∪ open-segment lb (Complex (Re lb) (Im ub)))

definition proots-rect-border ::complex poly ⇒ complex ⇒ complex ⇒ nat where
proots-rect-border p a b = proots-count p (path-image (rectpath a b))

definition not-rect-vertex::complex ⇒ complex ⇒ complex ⇒ bool where
not-rect-vertex r a b = (r 6=a ∧ r 6= Complex (Re b) (Im a) ∧ r 6=b ∧ r 6=Complex

(Re a) (Im b))

definition not-rect-vanishing :: complex poly ⇒ complex ⇒ complex ⇒ bool where
not-rect-vanishing p a b = (poly p a 6=0 ∧ poly p (Complex (Re b) (Im a)) 6= 0

∧ poly p b 6=0 ∧ poly p (Complex (Re a) (Im b)) 6= 0)

lemma cindexP-rectpath-edge-base:
assumes Re a < Re b Im a < Im b

and not-rect-vertex r a b
and r∈path-image (rectpath a b)

shows cindexP-pathE [:−r ,1 :] (rectpath a b) = −1
proof −

have r-nzero:r 6=a r 6=Complex (Re b) (Im a) r 6=b r 6=Complex (Re a) (Im b)
using ‹not-rect-vertex r a b› unfolding not-rect-vertex-def by auto

define rr where rr = [:−r ,1 :]
have rr-linepath:cindexP-pathE rr (linepath a b)

= cindex-pathE (linepath (a − r) (b−r)) 0 for a b
unfolding rr-def
unfolding cindexP-lineE-def cindexP-pathE-def poly-linepath-comp

by (simp add:poly-pcompose comp-def linepath-def scaleR-conv-of-real alge-
bra-simps)

have cindexP-pathE-eq:cindexP-pathE rr (rectpath a b) =
cindexP-pathE rr (linepath a (Complex (Re b) (Im a)))
+ cindexP-pathE rr (linepath (Complex (Re b) (Im a)) b)
+ cindexP-pathE rr (linepath b (Complex (Re a) (Im b)))
+ cindexP-pathE rr (linepath (Complex (Re a) (Im b)) a)

unfolding rectpath-def Let-def
by ((subst cindex-poly-pathE-joinpaths

|subst finite-ReZ-segments-joinpaths
|intro path-poly-comp conjI);

154

(simp add:poly-linepath-comp finite-ReZ-segments-poly-of-real path-compose-join

pathfinish-compose pathstart-compose poly-pcompose)?)+

have (Im r = Im a ∧ Re a < Re r ∧ Re r < Re b)
∨ (Re r = Re b ∧ Im a < Im r ∧ Im r < Im b)
∨ (Im r = Im b ∧ Re a < Re r ∧ Re r < Re b)
∨ (Re r = Re a ∧ Im a < Im r ∧ Im r < Im b)

proof −
have r ∈ closed-segment a (Complex (Re b) (Im a))

∨ r ∈ closed-segment (Complex (Re b) (Im a)) b
∨ r ∈ closed-segment b (Complex (Re a) (Im b))
∨ r ∈ closed-segment (Complex (Re a) (Im b)) a

using ‹r∈path-image (rectpath a b)›
unfolding rectpath-def Let-def
by (subst (asm) path-image-join;simp)+

then show ?thesis
by (smt (verit, del-insts) assms(1) assms(2) r-nzero
closed-segment-commute closed-segment-imp-Re-Im(1) closed-segment-imp-Re-Im(2)

complex.sel(1) complex.sel(2) complex-eq-iff)
qed
moreover have cindexP-pathE rr (rectpath a b) = −1

if Im r = Im a Re a < Re r Re r < Re b
proof −

have cindexP-pathE rr (linepath a (Complex (Re b) (Im a))) = 0
unfolding rr-linepath
apply (rule cindex-pathE-linepath-on)
using closed-segment-degen-complex(2) that(1) that(2) that(3) by auto

moreover have cindexP-pathE rr (linepath (Complex (Re b) (Im a)) b) = 0
unfolding rr-linepath
apply (subst cindex-pathE-linepath)
subgoal using closed-segment-imp-Re-Im(1) that(3) by fastforce
subgoal using that assms unfolding Let-def by auto
done

moreover have cindexP-pathE rr (linepath b (Complex (Re a) (Im b))) = −1
unfolding rr-linepath
apply (subst cindex-pathE-linepath)
subgoal using assms(2) closed-segment-imp-Re-Im(2) that(1) by fastforce
subgoal using that assms unfolding Let-def by auto
done

moreover have cindexP-pathE rr (linepath (Complex (Re a) (Im b)) a) = 0
unfolding rr-linepath
apply (subst cindex-pathE-linepath)
subgoal using closed-segment-imp-Re-Im(1) that(2) by fastforce
subgoal using that assms unfolding Let-def by auto
done

ultimately show ?thesis unfolding cindexP-pathE-eq by auto
qed

155

moreover have cindexP-pathE rr (rectpath a b) = −1
if Re r = Re b Im a < Im r Im r < Im b

proof −
have cindexP-pathE rr (linepath a (Complex (Re b) (Im a))) = −1/2

unfolding rr-linepath
apply (subst cindex-pathE-linepath)
subgoal using closed-segment-imp-Re-Im(2) that(2) by fastforce
subgoal using that assms unfolding Let-def by auto
done

moreover have cindexP-pathE rr (linepath (Complex (Re b) (Im a)) b) = 0
unfolding rr-linepath
apply (rule cindex-pathE-linepath-on)
using closed-segment-degen-complex(1) that(1) that(2) that(3) by auto

moreover have cindexP-pathE rr (linepath b (Complex (Re a) (Im b))) =
−1/2

unfolding rr-linepath
apply (subst cindex-pathE-linepath)
subgoal using closed-segment-imp-Re-Im(2) that(3) by fastforce
subgoal using that assms unfolding Let-def by auto
done

moreover have cindexP-pathE rr (linepath (Complex (Re a) (Im b)) a) = 0
unfolding rr-linepath
apply (subst cindex-pathE-linepath)
subgoal using assms(1) closed-segment-imp-Re-Im(1) that(1) by fastforce
subgoal using that assms unfolding Let-def by auto
done

ultimately show ?thesis unfolding cindexP-pathE-eq by auto
qed
moreover have cindexP-pathE rr (rectpath a b) = −1

if Im r = Im b Re a < Re r Re r < Re b
proof −

have cindexP-pathE rr (linepath a (Complex (Re b) (Im a))) = −1
unfolding rr-linepath
apply (subst cindex-pathE-linepath)
subgoal using assms(2) closed-segment-imp-Re-Im(2) that(1) by fastforce
subgoal using that assms unfolding Let-def by auto
done

moreover have cindexP-pathE rr (linepath (Complex (Re b) (Im a)) b) = 0
unfolding rr-linepath
apply (subst cindex-pathE-linepath)
subgoal using closed-segment-imp-Re-Im(1) that(3) by force
subgoal using that assms unfolding Let-def by auto
done

moreover have cindexP-pathE rr (linepath b (Complex (Re a) (Im b))) = 0
unfolding rr-linepath
apply (rule cindex-pathE-linepath-on)

by (smt (verit, del-insts) Im-poly-hom.base.hom-zero Re-poly-hom.base.hom-zero

156

closed-segment-commute closed-segment-degen-complex(2) complex.sel(1)
complex.sel(2) minus-complex.simps(1) minus-complex.simps(2) that(1)

that(2) that(3))
moreover have cindexP-pathE rr (linepath (Complex (Re a) (Im b)) a) = 0

unfolding rr-linepath
apply (subst cindex-pathE-linepath)
subgoal using closed-segment-imp-Re-Im(1) that(2) by fastforce
subgoal using that assms unfolding Let-def by auto
done

ultimately show ?thesis unfolding cindexP-pathE-eq by auto
qed
moreover have cindexP-pathE rr (rectpath a b) = −1

if Re r = Re a Im a < Im r Im r < Im b
proof −

have cindexP-pathE rr (linepath a (Complex (Re b) (Im a))) = −1/2
unfolding rr-linepath
apply (subst cindex-pathE-linepath)
subgoal using closed-segment-imp-Re-Im(2) that(2) by fastforce
subgoal using that assms unfolding Let-def by auto
done

moreover have cindexP-pathE rr (linepath (Complex (Re b) (Im a)) b) = 0
unfolding rr-linepath
apply (subst cindex-pathE-linepath)
subgoal using assms(1) closed-segment-imp-Re-Im(1) that(1) by fastforce
subgoal using that assms unfolding Let-def by auto
done

moreover have cindexP-pathE rr (linepath b (Complex (Re a) (Im b))) =
−1/2

unfolding rr-linepath
apply (subst cindex-pathE-linepath)
subgoal using closed-segment-imp-Re-Im(2) that(3) by fastforce
subgoal using that assms unfolding Let-def by auto
done

moreover have cindexP-pathE rr (linepath (Complex (Re a) (Im b)) a) = 0
unfolding rr-linepath
apply (rule cindex-pathE-linepath-on)
by (smt (verit) Im-poly-hom.base.hom-zero Re-poly-hom.base.hom-zero

closed-segment-commute closed-segment-degen-complex(1) complex.sel(1)
complex.sel(2) minus-complex.simps(1) minus-complex.simps(2) that(1)

that(2) that(3))
ultimately show ?thesis unfolding cindexP-pathE-eq by auto

qed
ultimately show ?thesis unfolding rr-def by auto

qed

lemma cindexP-rectpath-vertex-base:
assumes Re a < Re b Im a < Im b

and ¬ not-rect-vertex r a b
shows cindexP-pathE [:−r ,1 :] (rectpath a b) = −1/2

157

proof −
have r-cases:r=a ∨ r=Complex (Re b) (Im a)∨ r=b ∨ r=Complex (Re a) (Im

b)
using ‹¬ not-rect-vertex r a b› unfolding not-rect-vertex-def by auto

define rr where rr = [:−r ,1 :]
have rr-linepath:cindexP-pathE rr (linepath a b)

= cindex-pathE (linepath (a − r) (b−r)) 0 for a b
unfolding rr-def
unfolding cindexP-lineE-def cindexP-pathE-def poly-linepath-comp

by (simp add:poly-pcompose comp-def linepath-def scaleR-conv-of-real alge-
bra-simps)

have cindexP-pathE-eq:cindexP-pathE rr (rectpath a b) =
cindexP-pathE rr (linepath a (Complex (Re b) (Im a)))
+ cindexP-pathE rr (linepath (Complex (Re b) (Im a)) b)
+ cindexP-pathE rr (linepath b (Complex (Re a) (Im b)))
+ cindexP-pathE rr (linepath (Complex (Re a) (Im b)) a)

unfolding rectpath-def Let-def
by ((subst cindex-poly-pathE-joinpaths

|subst finite-ReZ-segments-joinpaths
|intro path-poly-comp conjI);

(simp add:poly-linepath-comp finite-ReZ-segments-poly-of-real path-compose-join

pathfinish-compose pathstart-compose poly-pcompose)?)+

have cindexP-pathE rr (rectpath a b) = −1/2
if r=a

proof −
have cindexP-pathE rr (linepath a (Complex (Re b) (Im a))) = 0

unfolding rr-linepath
apply (rule cindex-pathE-linepath-on)
by (simp add: that)

moreover have cindexP-pathE rr (linepath (Complex (Re b) (Im a)) b) = 0
unfolding rr-linepath
apply (subst cindex-pathE-linepath)
subgoal using assms(1) closed-segment-imp-Re-Im(1) that by fastforce
subgoal using that assms unfolding Let-def by auto
done

moreover have cindexP-pathE rr (linepath b (Complex (Re a) (Im b))) =
−1/2

unfolding rr-linepath
apply (subst cindex-pathE-linepath)
subgoal using assms(2) closed-segment-imp-Re-Im(2) that(1) by fastforce
subgoal using that assms unfolding Let-def by auto
done

moreover have cindexP-pathE rr (linepath (Complex (Re a) (Im b)) a) = 0
unfolding rr-linepath
apply (rule cindex-pathE-linepath-on)
by (simp add: that)

158

ultimately show ?thesis unfolding cindexP-pathE-eq by auto
qed
moreover have cindexP-pathE rr (rectpath a b) = −1/2

if r=Complex (Re b) (Im a)
proof −

have cindexP-pathE rr (linepath a (Complex (Re b) (Im a))) = 0
unfolding rr-linepath
apply (rule cindex-pathE-linepath-on)
by (simp add: that)

moreover have cindexP-pathE rr (linepath (Complex (Re b) (Im a)) b) = 0
unfolding rr-linepath
apply (rule cindex-pathE-linepath-on)
by (simp add: that)

moreover have cindexP-pathE rr (linepath b (Complex (Re a) (Im b))) =
−1/2

unfolding rr-linepath
apply (subst cindex-pathE-linepath)
subgoal using assms(2) closed-segment-imp-Re-Im(2) that(1) by fastforce
subgoal using that assms unfolding Let-def by auto
done

moreover have cindexP-pathE rr (linepath (Complex (Re a) (Im b)) a) = 0
unfolding rr-linepath
apply (subst cindex-pathE-linepath)
subgoal using assms(1) closed-segment-imp-Re-Im(1) that by fastforce
subgoal by (smt (z3) complex.sel(1) minus-complex.simps(1))
done

ultimately show ?thesis unfolding cindexP-pathE-eq by auto
qed
moreover have cindexP-pathE rr (rectpath a b) = −1/2

if r=b
proof −

have cindexP-pathE rr (linepath a (Complex (Re b) (Im a))) = −1/2
unfolding rr-linepath
apply (subst cindex-pathE-linepath)
subgoal using assms(2) closed-segment-imp-Re-Im(2) that by fastforce
subgoal using assms(1) assms(2) that by auto
done

moreover have cindexP-pathE rr (linepath (Complex (Re b) (Im a)) b) = 0
unfolding rr-linepath
apply (rule cindex-pathE-linepath-on)
by (simp add: that)

moreover have cindexP-pathE rr (linepath b (Complex (Re a) (Im b))) = 0
unfolding rr-linepath
apply (rule cindex-pathE-linepath-on)
by (simp add: that)

moreover have cindexP-pathE rr (linepath (Complex (Re a) (Im b)) a) = 0
unfolding rr-linepath
apply (subst cindex-pathE-linepath)
subgoal using assms(1) closed-segment-imp-Re-Im(1) that by fastforce

159

subgoal by (smt (z3) complex.sel(1) minus-complex.simps(1))
done

ultimately show ?thesis unfolding cindexP-pathE-eq by auto
qed
moreover have cindexP-pathE rr (rectpath a b) = −1/2

if r=Complex (Re a) (Im b)
proof −

have cindexP-pathE rr (linepath a (Complex (Re b) (Im a))) = −1/2
unfolding rr-linepath
apply (subst cindex-pathE-linepath)
subgoal using assms(2) closed-segment-imp-Re-Im(2) that by fastforce
subgoal using assms(1) assms(2) that by auto
done

moreover have cindexP-pathE rr (linepath (Complex (Re b) (Im a)) b) = 0
unfolding rr-linepath
apply (subst cindex-pathE-linepath)
subgoal using assms(1) closed-segment-imp-Re-Im(1) that by fastforce
subgoal by (smt (z3) complex.sel(1) minus-complex.simps(1))
done

moreover have cindexP-pathE rr (linepath b (Complex (Re a) (Im b))) = 0
unfolding rr-linepath
apply (rule cindex-pathE-linepath-on)
by (simp add: that)

moreover have cindexP-pathE rr (linepath (Complex (Re a) (Im b)) a) = 0
unfolding rr-linepath
apply (rule cindex-pathE-linepath-on)
by (simp add: that)

ultimately show ?thesis unfolding cindexP-pathE-eq by auto
qed
ultimately show ?thesis using r-cases unfolding rr-def by auto

qed

lemma cindexP-rectpath-interior-base:
assumes r∈box a b
shows cindexP-pathE [:−r ,1 :] (rectpath a b) = −2

proof −
have inbox:Re r ∈ {Re a<..<Re b} ∧ Im r ∈ {Im a<..<Im b}

using ‹r∈box a b› unfolding in-box-complex-iff by auto
then have r-nzero:r 6=a r 6=Complex (Re b) (Im a) r 6=b r 6=Complex (Re a) (Im

b)
by auto

have Re a < Re b Im a < Im b
using ‹r∈box a b› complex-box-ne-empty by blast+

define rr where rr = [:−r ,1 :]
have rr-linepath:cindexP-pathE rr (linepath a b)

= cindex-pathE (linepath (a − r) (b−r)) 0 for a b
unfolding rr-def
unfolding cindexP-lineE-def cindexP-pathE-def poly-linepath-comp

160

by (simp add:poly-pcompose comp-def linepath-def scaleR-conv-of-real alge-
bra-simps)

have cindexP-pathE rr (rectpath a b) =
cindexP-pathE rr (linepath a (Complex (Re b) (Im a)))
+ cindexP-pathE rr (linepath (Complex (Re b) (Im a)) b)
+ cindexP-pathE rr (linepath b (Complex (Re a) (Im b)))
+ cindexP-pathE rr (linepath (Complex (Re a) (Im b)) a)

unfolding rectpath-def Let-def
by ((subst cindex-poly-pathE-joinpaths

|subst finite-ReZ-segments-joinpaths
|intro path-poly-comp conjI);

(simp add:poly-linepath-comp finite-ReZ-segments-poly-of-real path-compose-join

pathfinish-compose pathstart-compose poly-pcompose)?)+
also have ... = −2
proof −

have cindexP-pathE rr (linepath a (Complex (Re b) (Im a))) = −1
unfolding rr-linepath
apply (subst cindex-pathE-linepath)
subgoal using closed-segment-imp-Re-Im(2) inbox by fastforce
using inbox by auto

moreover have cindexP-pathE rr (linepath (Complex (Re b) (Im a)) b) = 0
unfolding rr-linepath
apply (subst cindex-pathE-linepath)
subgoal using closed-segment-imp-Re-Im(1) inbox by fastforce
using inbox by auto

moreover have cindexP-pathE rr (linepath b (Complex (Re a) (Im b))) = −1
unfolding rr-linepath
apply (subst cindex-pathE-linepath)
subgoal using closed-segment-imp-Re-Im(2) inbox by fastforce
using inbox by auto

moreover have cindexP-pathE rr (linepath (Complex (Re a) (Im b)) a) = 0
unfolding rr-linepath
apply (subst cindex-pathE-linepath)
subgoal using closed-segment-imp-Re-Im(1) inbox by fastforce
using inbox by auto

ultimately show ?thesis by auto
qed
finally show ?thesis unfolding rr-def .

qed

lemma cindexP-rectpath-outside-base:
assumes Re a < Re b Im a < Im b

and r /∈cbox a b
shows cindexP-pathE [:−r ,1 :] (rectpath a b) = 0

proof −
have not-cbox:¬ (Re r ∈ {Re a..Re b} ∧ Im r ∈ {Im a..Im b})

161

using ‹r /∈cbox a b› unfolding in-cbox-complex-iff by auto
then have r-nzero:r 6=a r 6=Complex (Re b) (Im a) r 6=b r 6=Complex (Re a) (Im

b)
using assms by auto

define rr where rr = [:−r ,1 :]
have rr-linepath:cindexP-pathE rr (linepath a b)

= cindex-pathE (linepath (a − r) (b−r)) 0 for a b
unfolding rr-def
unfolding cindexP-lineE-def cindexP-pathE-def poly-linepath-comp

by (simp add:poly-pcompose comp-def linepath-def scaleR-conv-of-real alge-
bra-simps)

have cindexP-pathE rr (rectpath a b) =
cindexP-pathE rr (linepath a (Complex (Re b) (Im a)))
+ cindexP-pathE rr (linepath (Complex (Re b) (Im a)) b)
+ cindexP-pathE rr (linepath b (Complex (Re a) (Im b)))
+ cindexP-pathE rr (linepath (Complex (Re a) (Im b)) a)

unfolding rectpath-def Let-def
by ((subst cindex-poly-pathE-joinpaths

|subst finite-ReZ-segments-joinpaths
|intro path-poly-comp conjI);

(simp add:poly-linepath-comp finite-ReZ-segments-poly-of-real path-compose-join

pathfinish-compose pathstart-compose poly-pcompose)?)+
have cindexP-pathE rr (rectpath a b) = cindex-pathE (poly rr ◦ rectpath a b) 0

unfolding cindexP-pathE-def by simp
also have ... = − 2 ∗ winding-number (poly rr ◦ rectpath a b) 0

— We don’t need winding-number to finish the proof, but thanks to Cauthy’s
Index theorem (i.e., [[finite-ReZ-segments ?g ?z; valid-path ?g; ?z /∈ path-image
?g; pathfinish ?g = pathstart ?g]] =⇒ winding-number ?g ?z = complex-of-real (−
cindex-pathE ?g ?z / 2)) we can make the proof shorter.

proof −
have winding-number (poly rr ◦ rectpath a b) 0

= − cindex-pathE (poly rr ◦ rectpath a b) 0 / 2
proof (rule winding-number-cindex-pathE)

show finite-ReZ-segments (poly rr ◦ rectpath a b) 0
using finite-ReZ-segments-poly-rectpath .

show valid-path (poly rr ◦ rectpath a b)
using valid-path-poly-rectpath .

show 0 /∈ path-image (poly rr ◦ rectpath a b)
by (smt (z3) DiffE add.right-neutral add-diff-cancel-left ′ add-uminus-conv-diff

assms(1) assms(2) assms(3) basic-cqe-conv1 (1) diff-add-cancel imageE
mult.right-neutral

mult-zero-right path-image-compose path-image-rectpath-cbox-minus-box
poly-pCons rr-def)

show pathfinish (poly rr ◦ rectpath a b) = pathstart (poly rr ◦ rectpath a b)
by (simp add: pathfinish-compose pathstart-compose)

162

qed
then show ?thesis by auto

qed
also have ... = 0
proof −

have winding-number (poly rr ◦ rectpath a b) 0 = 0
proof (rule winding-number-zero-outside)

have path-image (poly rr ◦ rectpath a b) = poly rr ‘ path-image (rectpath a b)
using path-image-compose by simp

also have ... = poly rr ‘ (cbox a b − box a b)
apply (subst path-image-rectpath-cbox-minus-box)
using assms(1 ,2) by (simp|blast)+

also have ... ⊆ (λx. x −r) ‘ cbox a b
unfolding rr-def by (simp add: image-subset-iff)

finally show path-image (poly rr ◦ rectpath a b) ⊆ (λx. x −r) ‘ cbox a b .
show 0 /∈ (λx. x − r) ‘ cbox a b using assms(3) by force
show path (poly rr ◦ rectpath a b) by (simp add: path-poly-comp)
show convex ((λx. x − r) ‘ cbox a b)

using convex-box(1) convex-translation-subtract-eq by blast
show pathfinish (poly rr ◦ rectpath a b) = pathstart (poly rr ◦ rectpath a b)

by (simp add: pathfinish-compose pathstart-compose)
qed
then show ?thesis by simp

qed
finally show ?thesis unfolding rr-def by simp

qed

lemma cindexP-rectpath-add-one-root:
assumes Re a < Re b Im a < Im b

and not-rect-vertex r a b
and not-rect-vanishing p a b

shows cindexP-pathE ([:−r ,1 :]∗p) (rectpath a b) =
cindexP-pathE p (rectpath a b)

+ (if r∈box a b then −2 else if r∈path-image (rectpath a b) then − 1 else
0)
proof −

define rr where rr = [:−r ,1 :]
have rr-nzero:poly rr a 6=0 poly rr (Complex (Re b) (Im a)) 6=0

poly rr b 6=0 poly rr (Complex (Re a) (Im b)) 6=0
using ‹not-rect-vertex r a b› unfolding rr-def not-rect-vertex-def by auto

have p-nzero:poly p a 6=0 poly p (Complex (Re b) (Im a)) 6=0
poly p b 6=0 poly p (Complex (Re a) (Im b)) 6=0

using ‹not-rect-vanishing p a b› unfolding not-rect-vanishing-def by auto

define cindp where cindp = (λp a b.
cindexP-lineE p a (Complex (Re b) (Im a))
+ cindexP-lineE p (Complex (Re b) (Im a)) b
+ cindexP-lineE p b (Complex (Re a) (Im b))

163

+ cindexP-lineE p (Complex (Re a) (Im b)) a
)

define cdiff where cdiff = (λrr p a b.
cdiff-aux rr p a (Complex (Re b) (Im a))
+ cdiff-aux rr p (Complex (Re b) (Im a)) b
+ cdiff-aux rr p b (Complex (Re a) (Im b))
+ cdiff-aux rr p (Complex (Re a) (Im b)) a

)

have cindexP-pathE (rr∗p) (rectpath a b) =
cindexP-pathE (rr∗p) (linepath a (Complex (Re b) (Im a)))
+ cindexP-pathE (rr∗p) (linepath (Complex (Re b) (Im a)) b)
+ cindexP-pathE (rr∗p) (linepath b (Complex (Re a) (Im b)))
+ cindexP-pathE (rr∗p) (linepath (Complex (Re a) (Im b)) a)

unfolding rectpath-def Let-def
by ((subst cindex-poly-pathE-joinpaths

|subst finite-ReZ-segments-joinpaths
|intro path-poly-comp conjI);

(simp add:poly-linepath-comp finite-ReZ-segments-poly-of-real path-compose-join

pathfinish-compose pathstart-compose poly-pcompose)?)+
also have ... = cindexP-lineE (rr∗p) a (Complex (Re b) (Im a))

+ cindexP-lineE (rr∗p) (Complex (Re b) (Im a)) b
+ cindexP-lineE (rr∗p) b (Complex (Re a) (Im b))
+ cindexP-lineE (rr∗p) (Complex (Re a) (Im b)) a

unfolding cindexP-lineE-def by simp
also have ... = cindp rr a b + cindp p a b + cdiff rr p a b/2

unfolding cindp-def cdiff-def
by (subst cindexP-lineE-times;

(use rr-nzero p-nzero one-complex.code imaginary-unit.code in simp)?)+
also have ... = cindexP-pathE p (rectpath a b) +(if r∈box a b then −2 else

if r∈path-image (rectpath a b) then − 1 else 0)
proof −

have cindp rr a b = cindexP-pathE rr (rectpath a b)
unfolding rectpath-def Let-def cindp-def cindexP-lineE-def
by ((subst cindex-poly-pathE-joinpaths

|subst finite-ReZ-segments-joinpaths
|intro path-poly-comp conjI);

(simp add:poly-linepath-comp finite-ReZ-segments-poly-of-real path-compose-join

pathfinish-compose pathstart-compose poly-pcompose)?)+
also have ... = (if r∈box a b then −2 else

if r∈path-image (rectpath a b) then − 1 else 0)
proof −

have ?thesis if r∈box a b
using cindexP-rectpath-interior-base rr-def that by presburger

moreover have ?thesis if r /∈box a b r∈path-image (rectpath a b)
using cindexP-rectpath-edge-base[OF assms(1 ,2 ,3)] that unfolding rr-def

by auto

164

moreover have ?thesis if r /∈box a b r /∈path-image (rectpath a b)
proof −

have r /∈cbox a b
using that assms(1) assms(2) path-image-rectpath-cbox-minus-box by auto

then show ?thesis unfolding rr-def
using assms(1) assms(2) cindexP-rectpath-outside-base that(1) that(2)

by presburger
qed
ultimately show ?thesis by auto

qed
finally have cindp rr a b = (if r∈box a b then −2 else

if r∈path-image (rectpath a b) then − 1 else 0) .
moreover have cindp p a b = cindexP-pathE p (rectpath a b)

unfolding rectpath-def Let-def cindp-def cindexP-lineE-def
by ((subst cindex-poly-pathE-joinpaths

|subst finite-ReZ-segments-joinpaths
|intro path-poly-comp conjI);

(simp add:poly-linepath-comp finite-ReZ-segments-poly-of-real path-compose-join

pathfinish-compose pathstart-compose poly-pcompose)?)+
moreover have cdiff rr p a b = 0

unfolding cdiff-def cdiff-aux-def by simp
ultimately show ?thesis by auto

qed
finally show ?thesis unfolding rr-def .

qed

lemma proots-rect-cindexP-pathE :
assumes Re a < Re b Im a < Im b

and not-rect-vanishing p a b
shows proots-rect p a b = −(proots-rect-border p a b +cindexP-pathE p (rectpath

a b)) / 2
using ‹not-rect-vanishing p a b›

proof (induct p rule:poly-root-induct-alt)
case 0
then have False unfolding not-rect-vanishing-def by auto
then show ?case by simp

next
case (no-proots p)
then obtain c where pc:p=[:c:] c 6=0

by (meson fundamental-theorem-of-algebra-alt)
have cindexP-pathE p (rectpath a b) = 0

using pc by (auto intro:cindexP-pathE-const)
moreover have proots-rect p a b = 0 proots-rect-border p a b = 0

using pc proots-count-const
unfolding proots-rect-def proots-rect-border-def by auto

ultimately show ?case by auto
next

case (root r p)

165

define rr where rr=[:−r ,1 :]

have hyps:real (proots-rect p a b) =
−(proots-rect-border p a b + cindexP-pathE p (rectpath a b)) / 2

apply (rule root(1))
by (meson not-rect-vanishing-def poly-mult-zero-iff root.prems)

have cind-eq:cindexP-pathE (rr ∗ p) (rectpath a b) =
cindexP-pathE p (rectpath a b) +
(if r ∈ box a b then − 2 else if r ∈ path-image (rectpath a b) then − 1

else 0)
proof (rule cindexP-rectpath-add-one-root[OF assms(1 ,2),of r p,folded rr-def])

show not-rect-vertex r a b
using not-rect-vanishing-def not-rect-vertex-def root.prems by auto

show not-rect-vanishing p a b
using not-rect-vanishing-def root.prems by force

qed

have rect-eq:proots-rect (rr ∗ p) a b = proots-rect p a b
+ (if r∈box a b then 1 else 0)

proof −
have proots-rect (rr ∗ p) a b

= proots-count rr (box a b) + proots-rect p a b
unfolding proots-rect-def
apply (rule proots-count-times)
by (metis not-rect-vanishing-def poly-0 root.prems rr-def)

moreover have proots-count rr (box a b) = (if r∈box a b then 1 else 0)
using proots-count-pCons-1-iff rr-def by blast

ultimately show ?thesis by auto
qed

have border-eq:proots-rect-border (rr ∗ p) a b =
proots-rect-border p a b

+ (if r ∈ path-image (rectpath a b) then 1 else 0)
proof −

have proots-rect-border (rr ∗ p) a b = proots-count rr (path-image (rectpath a
b))

+ proots-rect-border p a b
unfolding proots-rect-border-def
apply (rule proots-count-times)
by (metis not-rect-vanishing-def poly-0 root.prems rr-def)

moreover have proots-count rr (path-image (rectpath a b))
= (if r ∈ path-image (rectpath a b) then 1 else 0)

using proots-count-pCons-1-iff rr-def by blast
ultimately show ?thesis by auto

qed

have ?case if r ∈ box a b
proof −

166

have proots-rect (rr ∗ p) a b = proots-rect p a b + 1
unfolding rect-eq using that by auto

moreover have proots-rect-border (rr ∗ p) a b = proots-rect-border p a b
unfolding border-eq using that
using assms(1) assms(2) path-image-rectpath-cbox-minus-box by auto
moreover have cindexP-pathE (rr ∗ p) (rectpath a b) = cindexP-pathE p

(rectpath a b) − 2
using cind-eq that by auto

ultimately show ?thesis using hyps
by (fold rr-def) simp

qed
moreover have ?case if r /∈ box a b r ∈ path-image (rectpath a b)
proof −

have proots-rect (rr ∗ p) a b = proots-rect p a b
unfolding rect-eq using that by auto

moreover have proots-rect-border (rr ∗ p) a b = proots-rect-border p a b + 1
unfolding border-eq using that
using assms(1) assms(2) path-image-rectpath-cbox-minus-box by auto
moreover have cindexP-pathE (rr ∗ p) (rectpath a b) = cindexP-pathE p

(rectpath a b) − 1
using cind-eq that by auto

ultimately show ?thesis using hyps
by (fold rr-def) auto

qed
moreover have ?case if r /∈ box a b r /∈ path-image (rectpath a b)
proof −

have proots-rect (rr ∗ p) a b = proots-rect p a b
unfolding rect-eq using that by auto

moreover have proots-rect-border (rr ∗ p) a b = proots-rect-border p a b
unfolding border-eq using that
using assms(1) assms(2) path-image-rectpath-cbox-minus-box by auto
moreover have cindexP-pathE (rr ∗ p) (rectpath a b) = cindexP-pathE p

(rectpath a b)
using cind-eq that by auto

ultimately show ?thesis using hyps
by (fold rr-def) auto

qed
ultimately show ?case by auto

qed

2.20 Code generation
lemmas Complex-minus-eq = minus-complex.code

lemma cindexP-pathE-rect-smods:
fixes p::complex poly and lb ub::complex
assumes ab-le:Re lb < Re ub Im lb < Im ub

and not-rect-vanishing p lb ub
shows cindexP-pathE p (rectpath lb ub) =

167

(let p1 = pcompose p [:lb, Complex (Re ub − Re lb) 0 :];
pR1 = map-poly Re p1 ; pI1 = map-poly Im p1 ; gc1 = gcd pR1 pI1 ;
p2 = pcompose p [:Complex (Re ub) (Im lb), Complex 0 (Im ub − Im

lb):];
pR2 = map-poly Re p2 ; pI2 = map-poly Im p2 ; gc2 = gcd pR2 pI2 ;
p3 = pcompose p [:ub, Complex (Re lb − Re ub) 0 :];
pR3 = map-poly Re p3 ; pI3 = map-poly Im p3 ; gc3 = gcd pR3 pI3 ;
p4 = pcompose p [:Complex (Re lb) (Im ub), Complex 0 (Im lb − Im

ub):];
pR4 = map-poly Re p4 ; pI4 = map-poly Im p4 ; gc4 = gcd pR4 pI4

in
(changes-alt-itv-smods 0 1 (pR1 div gc1) (pI1 div gc1)

+ changes-alt-itv-smods 0 1 (pR2 div gc2) (pI2 div gc2)
+ changes-alt-itv-smods 0 1 (pR3 div gc3) (pI3 div gc3)
+ changes-alt-itv-smods 0 1 (pR4 div gc4) (pI4 div gc4)
) / 2) (is ?L=?R)

proof −
have cindexP-pathE p (rectpath lb ub) =

cindexP-lineE p lb (Complex (Re ub) (Im lb))
+ cindexP-lineE (p) (Complex (Re ub) (Im lb)) ub
+ cindexP-lineE (p) ub (Complex (Re lb) (Im ub))
+ cindexP-lineE (p) (Complex (Re lb) (Im ub)) lb

unfolding rectpath-def Let-def cindexP-lineE-def
by ((subst cindex-poly-pathE-joinpaths

|subst finite-ReZ-segments-joinpaths
|intro path-poly-comp conjI);

(simp add:poly-linepath-comp finite-ReZ-segments-poly-of-real path-compose-join

pathfinish-compose pathstart-compose poly-pcompose)?)+
also have ... = ?R

apply (subst (1 2 3 4)cindexP-lineE-changes)
subgoal using assms(3) not-rect-vanishing-def by fastforce
subgoal by (smt (verit) assms(2) complex.sel(2))
subgoal by (metis assms(1) complex.sel(1) order-less-irrefl)
subgoal by (smt (verit) assms(2) complex.sel(2))
subgoal by (metis assms(1) complex.sel(1) order-less-irrefl)
subgoal unfolding Let-def by (simp-all add:Complex-minus-eq)
done

finally show ?thesis .
qed

lemma open-segment-Im-equal:
assumes Re x 6= Re y Im x=Im y
shows open-segment x y = {z. Im z = Im x

∧ Re z ∈ open-segment (Re x) (Re y)}
proof −

have open-segment x y = (λu. (1 − u) ∗R x + u ∗R y) ‘ {0<..<1}
unfolding open-segment-image-interval
using assms by auto

168

also have ... = (λu. Complex (Re x + u ∗ (Re y − Re x))
(Im y)) ‘ {0<..<1}

apply (subst (1 2 3 4) complex-surj[symmetric])
using assms by (simp add:scaleR-conv-of-real algebra-simps)

also have ... = {z. Im z = Im x ∧ Re z ∈ open-segment (Re x) (Re y)}
proof −

have Re x + u ∗ (Re y − Re x) ∈ open-segment (Re x) (Re y)
if Re x 6= Re y Im x = Im y 0 < u u < 1 for u

proof −
define yx where yx = Re y − Re x
have Re y = yx + Re x yx >0 ∨ yx<0

unfolding yx-def using that by auto
then show ?thesis

unfolding open-segment-eq-real-ivl
using that mult-pos-neg by auto

qed
moreover have z ∈ (λxa. Complex (Re x + xa ∗ (Re y − Re x)) (Im y))

‘ {0<..<1}
if Im x = Im y Im z = Im y Re z ∈ open-segment (Re x) (Re y) for z
apply (rule rev-image-eqI [of (Re z − Re x)/(Re y − Re x)])
subgoal

using that unfolding open-segment-eq-real-ivl
by (auto simp:divide-simps)

subgoal using ‹Re x 6= Re y› complex-eq-iff that(2) by auto
done

ultimately show ?thesis using assms by auto
qed
finally show ?thesis .

qed

lemma open-segment-Re-equal:
assumes Re x = Re y Im x 6=Im y
shows open-segment x y = {z. Re z = Re x

∧ Im z ∈ open-segment (Im x) (Im y)}
proof −

have open-segment x y = (λu. (1 − u) ∗R x + u ∗R y) ‘ {0<..<1}
unfolding open-segment-image-interval
using assms by auto

also have ... = (λu. Complex (Re y) (Im x + u ∗ (Im y − Im x))
) ‘ {0<..<1}

apply (subst (1 2 3 4) complex-surj[symmetric])
using assms by (simp add:scaleR-conv-of-real algebra-simps)

also have ... = {z. Re z = Re x ∧ Im z ∈ open-segment (Im x) (Im y)}
proof −

have Im x + u ∗ (Im y − Im x) ∈ open-segment (Im x) (Im y)
if Im x 6= Im y Re x = Re y 0 < u u < 1 for u

proof −
define yx where yx = Im y − Im x
have Im y = yx + Im x yx >0 ∨ yx<0

169

unfolding yx-def using that by auto
then show ?thesis

unfolding open-segment-eq-real-ivl
using that mult-pos-neg by auto

qed
moreover have z ∈ (λxa. Complex (Re y) (Im x + xa ∗ (Im y − Im x)))

‘ {0<..<1}
if Re x = Re y Re z = Re y Im z ∈ open-segment (Im x) (Im y) for z
apply (rule rev-image-eqI [of (Im z − Im x)/(Im y − Im x)])
subgoal

using that unfolding open-segment-eq-real-ivl
by (auto simp:divide-simps)

subgoal using ‹Im x 6= Im y› complex-eq-iff that(2) by auto
done

ultimately show ?thesis using assms by auto
qed
finally show ?thesis .

qed

lemma Complex-eq-iff :
x = Complex y z ←→ Re x = y ∧ Im x = z
Complex y z = x ←→ Re x = y ∧ Im x = z
by auto

lemma proots-rect-border-eq-lines:
fixes p::complex poly and lb ub::complex
assumes ab-le:Re lb < Re ub Im lb < Im ub

and not-van:not-rect-vanishing p lb ub
shows proots-rect-border p lb ub =

proots-line p lb (Complex (Re ub) (Im lb))
+ proots-line p (Complex (Re ub) (Im lb)) ub
+ proots-line p ub (Complex (Re lb) (Im ub))
+ proots-line p (Complex (Re lb) (Im ub)) lb

proof −
have p 6=0

using not-rect-vanishing-def not-van order-root by blast

define l1 l2 l3 l4 where l1 = open-segment lb (Complex (Re ub) (Im lb))
and l2 = open-segment (Complex (Re ub) (Im lb)) ub
and l3 = open-segment ub (Complex (Re lb) (Im ub))
and l4 = open-segment (Complex (Re lb) (Im ub)) lb

have ll-eq:
l1 = {z. Im z ∈ {Im lb} ∧ Re z ∈ {Re lb<..<Re ub}}
l2 = {z. Re z ∈ {Re ub} ∧ Im z ∈ {Im lb<..<Im ub}}
l3 = {z. Im z ∈ {Im ub} ∧ Re z ∈ {Re lb<..<Re ub}}
l4 = {z. Re z ∈ {Re lb} ∧ Im z ∈ {Im lb<..<Im ub}}
subgoal unfolding l1-def

apply (subst open-segment-Im-equal)
using assms unfolding open-segment-eq-real-ivl by auto

170

subgoal unfolding l2-def
apply (subst open-segment-Re-equal)
using assms unfolding open-segment-eq-real-ivl by auto

subgoal unfolding l3-def
apply (subst open-segment-Im-equal)
using assms unfolding open-segment-eq-real-ivl by auto

subgoal unfolding l4-def
apply (subst open-segment-Re-equal)
using assms unfolding open-segment-eq-real-ivl by auto

done

have ll-disj: l1 ∩ l2 = {} l1 ∩ l3 = {} l1 ∩ l4 = {}
l2 ∩ l3 = {} l2 ∩ l4 = {} l3 ∩ l4 = {}

using assms unfolding ll-eq by auto

have proots-rect-border p lb ub = proots-count p
({z. Re z ∈ {Re lb, Re ub} ∧ Im z ∈ {Im lb..Im ub}} ∪
{z. Im z ∈ {Im lb, Im ub} ∧ Re z ∈ {Re lb..Re ub}})

unfolding proots-rect-border-def
apply (subst path-image-rectpath)
using assms(1 ,2) by auto

also have ... = proots-count p
({z. Re z ∈ {Re lb, Re ub} ∧ Im z ∈ {Im lb<..<Im ub}} ∪
{z. Im z ∈ {Im lb, Im ub} ∧ Re z ∈ {Re lb<..<Re ub}}
∪ {lb,Complex (Re ub) (Im lb), ub,Complex (Re lb) (Im ub)})

apply (rule arg-cong2 [where f=proots-count])
unfolding not-rect-vanishing-def using assms(1 ,2) complex.exhaust-sel
by (auto simp add:order .order-iff-strict intro:complex-eqI)

also have ... = proots-count p
({z. Re z ∈ {Re lb, Re ub} ∧ Im z ∈ {Im lb<..<Im ub}} ∪
{z. Im z ∈ {Im lb, Im ub} ∧ Re z ∈ {Re lb<..<Re ub}})
+ proots-count p
({lb,Complex (Re ub) (Im lb), ub,Complex (Re lb) (Im ub)})

apply (subst proots-count-union-disjoint)
using ‹p 6=0 › by auto

also have ... = proots-count p
({z. Re z ∈ {Re lb, Re ub} ∧ Im z ∈ {Im lb<..<Im ub}} ∪
{z. Im z ∈ {Im lb, Im ub} ∧ Re z ∈ {Re lb<..<Re ub}})

proof −
have proots-count p

({lb,Complex (Re ub) (Im lb), ub,Complex (Re lb) (Im ub)}) = 0
apply (rule proots-count-nzero)
using not-van unfolding not-rect-vanishing-def by auto

then show ?thesis by auto
qed
also have ... = proots-count p (l1 ∪ l2 ∪ l3 ∪ l4)

apply (rule arg-cong2 [where f=proots-count])
unfolding ll-eq by auto

also have ... = proots-count p l1

171

+ proots-count p l2
+ proots-count p l3
+ proots-count p l4

using ll-disj ‹p 6=0 ›
by (subst proots-count-union-disjoint;

(simp add:Int-Un-distrib Int-Un-distrib2)?)+
also have ... = proots-line p lb (Complex (Re ub) (Im lb))

+ proots-line p (Complex (Re ub) (Im lb)) ub
+ proots-line p ub (Complex (Re lb) (Im ub))
+ proots-line p (Complex (Re lb) (Im ub)) lb

unfolding proots-line-def l1-def l2-def l3-def l4-def by simp-all
finally show ?thesis .

qed

lemma proots-rect-border-smods:
fixes p::complex poly and lb ub::complex
assumes ab-le:Re lb < Re ub Im lb < Im ub

and not-van:not-rect-vanishing p lb ub
shows proots-rect-border p lb ub =

(let p1 = pcompose p [:lb, Complex (Re ub − Re lb) 0 :];
pR1 = map-poly Re p1 ; pI1 = map-poly Im p1 ; gc1 = gcd pR1 pI1 ;
p2 = pcompose p [:Complex (Re ub) (Im lb), Complex 0 (Im ub − Im

lb):];
pR2 = map-poly Re p2 ; pI2 = map-poly Im p2 ; gc2 = gcd pR2 pI2 ;
p3 = pcompose p [:ub, Complex (Re lb − Re ub) 0 :];
pR3 = map-poly Re p3 ; pI3 = map-poly Im p3 ; gc3 = gcd pR3 pI3 ;
p4 = pcompose p [:Complex (Re lb) (Im ub), Complex 0 (Im lb − Im

ub):];
pR4 = map-poly Re p4 ; pI4 = map-poly Im p4 ; gc4 = gcd pR4 pI4

in
nat (changes-itv-smods-ext 0 1 gc1 (pderiv gc1)

+ changes-itv-smods-ext 0 1 gc2 (pderiv gc2)
+ changes-itv-smods-ext 0 1 gc3 (pderiv gc3)
+ changes-itv-smods-ext 0 1 gc4 (pderiv gc4)
)) (is ?L=?R)

proof −
have proots-rect-border p lb ub = proots-line p lb (Complex (Re ub) (Im lb))

+ proots-line p (Complex (Re ub) (Im lb)) ub
+ proots-line p ub (Complex (Re lb) (Im ub))
+ proots-line p (Complex (Re lb) (Im ub)) lb

apply (rule proots-rect-border-eq-lines)
by fact+

also have ... = ?R
proof −

define p1 pR1 pI1 gc1 C1 where pp1 :
p1 = pcompose p [:lb, Complex (Re ub − Re lb) 0 :]
pR1 = map-poly Re p1
pI1 = map-poly Im p1
gc1 = gcd pR1 pI1

172

and
C1=changes-itv-smods-ext 0 1 gc1 (pderiv gc1)

define p2 pR2 pI2 gc2 C2 where pp2 :
p2 = pcompose p [:Complex (Re ub) (Im lb), Complex 0 (Im ub − Im lb):]
pR2 = map-poly Re p2
pI2 = map-poly Im p2
gc2 = gcd pR2 pI2
and
C2=changes-itv-smods-ext 0 1 gc2 (pderiv gc2)

define p3 pR3 pI3 gc3 C3 where pp3 :
p3 =pcompose p [:ub, Complex (Re lb − Re ub) 0 :]
pR3 = map-poly Re p3
pI3 = map-poly Im p3
gc3 = gcd pR3 pI3
and
C3=changes-itv-smods-ext 0 1 gc3 (pderiv gc3)

define p4 pR4 pI4 gc4 C4 where pp4 :
p4 = pcompose p [:Complex (Re lb) (Im ub), Complex 0 (Im lb − Im ub):]
pR4 = map-poly Re p4
pI4 = map-poly Im p4
gc4 = gcd pR4 pI4
and
C4=changes-itv-smods-ext 0 1 gc4 (pderiv gc4)

have poly gc1 0 6=0 poly gc1 1 6=0
poly gc2 0 6=0 poly gc2 1 6=0
poly gc3 0 6=0 poly gc3 1 6=0
poly gc4 0 6=0 poly gc4 1 6=0

unfolding pp1 pp2 pp3 pp4 poly-gcd-0-iff
using not-van[unfolded not-rect-vanishing-def]
by (simp flip:Re-poly-of-real Im-poly-of-real add:poly-pcompose

; simp add: Complex-eq-iff zero-complex.code plus-complex.code)+

have proots-line p lb (Complex (Re ub) (Im lb)) = nat C1
apply (subst proots-line-smods)
using not-van assms(1 ,2)
unfolding not-rect-vanishing-def C1-def pp1 Let-def
by (simp-all add:Complex-eq-iff Complex-minus-eq)

moreover have proots-line p (Complex (Re ub) (Im lb)) ub = nat C2
apply (subst proots-line-smods)
using not-van assms(1 ,2)
unfolding not-rect-vanishing-def C2-def pp2 Let-def
by (simp-all add:Complex-eq-iff Complex-minus-eq)

moreover have proots-line p ub (Complex (Re lb) (Im ub)) = nat C3
apply (subst proots-line-smods)
using not-van assms(1 ,2)
unfolding not-rect-vanishing-def C3-def pp3 Let-def
by (simp-all add:Complex-eq-iff Complex-minus-eq)

moreover have proots-line p (Complex (Re lb) (Im ub)) lb = nat C4

173

apply (subst proots-line-smods)
using not-van assms(1 ,2)
unfolding not-rect-vanishing-def C4-def pp4 Let-def
by (simp-all add:Complex-eq-iff Complex-minus-eq)

moreover have C1 ≥0 C2 ≥0 C3 ≥0 C4≥0
unfolding C1-def C2-def C3-def C4-def
by (rule changes-itv-smods-ext-geq-0 ;(fact|simp))+

ultimately have proots-line p lb (Complex (Re ub) (Im lb))
+ proots-line p (Complex (Re ub) (Im lb)) ub
+ proots-line p ub (Complex (Re lb) (Im ub))
+ proots-line p (Complex (Re lb) (Im ub)) lb
= nat (C1+C2+C3+C4)

by linarith
also have ... = ?R

unfolding C1-def C2-def C3-def C4-def pp1 pp2 pp3 pp4 Let-def
by simp

finally show ?thesis .
qed
finally show ?thesis .

qed

lemma proots-rect-smods:
assumes Re lb < Re ub Im lb < Im ub

and not-van:not-rect-vanishing p lb ub
shows proots-rect p lb ub = (

let p1 = pcompose p [:lb, Complex (Re ub − Re lb) 0 :];
pR1 = map-poly Re p1 ; pI1 = map-poly Im p1 ; gc1 = gcd pR1 pI1 ;
p2 = pcompose p [:Complex (Re ub) (Im lb), Complex 0 (Im ub − Im

lb):];
pR2 = map-poly Re p2 ; pI2 = map-poly Im p2 ; gc2 = gcd pR2 pI2 ;
p3 = pcompose p [:ub, Complex (Re lb − Re ub) 0 :];
pR3 = map-poly Re p3 ; pI3 = map-poly Im p3 ; gc3 = gcd pR3 pI3 ;
p4 = pcompose p [:Complex (Re lb) (Im ub), Complex 0 (Im lb − Im

ub):];
pR4 = map-poly Re p4 ; pI4 = map-poly Im p4 ; gc4 = gcd pR4 pI4

in
nat (− (changes-alt-itv-smods 0 1 (pR1 div gc1) (pI1 div gc1)
+ changes-alt-itv-smods 0 1 (pR2 div gc2) (pI2 div gc2)
+ changes-alt-itv-smods 0 1 (pR3 div gc3) (pI3 div gc3)
+ changes-alt-itv-smods 0 1 (pR4 div gc4) (pI4 div gc4)
+ 2∗changes-itv-smods-ext 0 1 gc1 (pderiv gc1)
+ 2∗changes-itv-smods-ext 0 1 gc2 (pderiv gc2)
+ 2∗changes-itv-smods-ext 0 1 gc3 (pderiv gc3)
+ 2∗changes-itv-smods-ext 0 1 gc4 (pderiv gc4)) div 4)

)
proof −

define p1 pR1 pI1 gc1 C1 D1 where pp1 :
p1 = pcompose p [:lb, Complex (Re ub − Re lb) 0 :]
pR1 = map-poly Re p1

174

pI1 = map-poly Im p1
gc1 = gcd pR1 pI1

and C1=changes-itv-smods-ext 0 1 gc1 (pderiv gc1)
and D1=changes-alt-itv-smods 0 1 (pR1 div gc1) (pI1 div gc1)

define p2 pR2 pI2 gc2 C2 D2 where pp2 :
p2 = pcompose p [:Complex (Re ub) (Im lb), Complex 0 (Im ub − Im lb):]
pR2 = map-poly Re p2
pI2 = map-poly Im p2
gc2 = gcd pR2 pI2

and C2=changes-itv-smods-ext 0 1 gc2 (pderiv gc2)
and D2=changes-alt-itv-smods 0 1 (pR2 div gc2) (pI2 div gc2)

define p3 pR3 pI3 gc3 C3 D3 where pp3 :
p3 =pcompose p [:ub, Complex (Re lb − Re ub) 0 :]
pR3 = map-poly Re p3
pI3 = map-poly Im p3
gc3 = gcd pR3 pI3

and C3=changes-itv-smods-ext 0 1 gc3 (pderiv gc3)
and D3=changes-alt-itv-smods 0 1 (pR3 div gc3) (pI3 div gc3)

define p4 pR4 pI4 gc4 C4 D4 where pp4 :
p4 = pcompose p [:Complex (Re lb) (Im ub), Complex 0 (Im lb − Im ub):]
pR4 = map-poly Re p4
pI4 = map-poly Im p4
gc4 = gcd pR4 pI4

and C4=changes-itv-smods-ext 0 1 gc4 (pderiv gc4)
and D4=changes-alt-itv-smods 0 1 (pR4 div gc4) (pI4 div gc4)

have poly gc1 0 6=0 poly gc1 1 6=0
poly gc2 0 6=0 poly gc2 1 6=0
poly gc3 0 6=0 poly gc3 1 6=0
poly gc4 0 6=0 poly gc4 1 6=0

unfolding pp1 pp2 pp3 pp4 poly-gcd-0-iff
using not-van[unfolded not-rect-vanishing-def]
by (simp flip:Re-poly-of-real Im-poly-of-real add:poly-pcompose

; simp add: Complex-eq-iff zero-complex.code plus-complex.code)+
have C1≥0 C2≥0 C3≥0 C4≥0

unfolding C1-def C2-def C3-def C4-def
by (rule changes-itv-smods-ext-geq-0 ;(fact|simp))+

define CC DD where CC=C1 + C2 + C3 + C4
and DD=D1 + D2 + D3 + D4

have real (proots-rect p lb ub) = − (real (proots-rect-border p lb ub)
+ cindexP-pathE p (rectpath lb ub)) / 2

apply (rule proots-rect-cindexP-pathE)
by fact+

also have ... = −(nat CC + DD / 2) / 2
proof −

have proots-rect-border p lb ub = nat CC
apply (rule proots-rect-border-smods[

of lb ub p,

175

unfolded Let-def ,
folded pp1 pp2 pp3 pp4 ,
folded C1-def C2-def C3-def C4-def ,
folded CC-def])

by fact+
moreover have cindexP-pathE p (rectpath lb ub) = (real-of-int DD) / 2

apply (rule cindexP-pathE-rect-smods[
of lb ub p,
unfolded Let-def ,
folded pp1 pp2 pp3 pp4 ,
folded D1-def D2-def D3-def D4-def ,
folded DD-def])

by fact+
ultimately show ?thesis by auto

qed
also have ... = − (DD + 2∗CC) /4

by (simp add: CC-def ‹0 ≤ C1 › ‹0 ≤ C2 › ‹0 ≤ C3 › ‹0 ≤ C4 ›)
finally have real (proots-rect p lb ub)

= real-of-int (− (DD + 2 ∗ CC)) / 4 .
then have proots-rect p lb ub = nat (− (DD + 2 ∗ CC) div 4)

by simp
then show ?thesis unfolding Let-def

apply (fold pp1 pp2 pp3 pp4)
apply (fold C1-def C2-def C3-def C4-def D1-def D2-def D3-def D4-def)
by (simp add:CC-def DD-def)

qed

lemma proots-rect-code[code]:
proots-rect p lb ub =

(if Re lb < Re ub ∧ Im lb < Im ub then
if not-rect-vanishing p lb ub then
(
let p1 = pcompose p [:lb, Complex (Re ub − Re lb) 0 :];

pR1 = map-poly Re p1 ; pI1 = map-poly Im p1 ; gc1 = gcd pR1 pI1 ;
p2 = pcompose p [:Complex (Re ub) (Im lb), Complex 0 (Im ub − Im

lb):];
pR2 = map-poly Re p2 ; pI2 = map-poly Im p2 ; gc2 = gcd pR2 pI2 ;
p3 = pcompose p [:ub, Complex (Re lb − Re ub) 0 :];
pR3 = map-poly Re p3 ; pI3 = map-poly Im p3 ; gc3 = gcd pR3 pI3 ;
p4 = pcompose p [:Complex (Re lb) (Im ub), Complex 0 (Im lb − Im

ub):];
pR4 = map-poly Re p4 ; pI4 = map-poly Im p4 ; gc4 = gcd pR4 pI4

in
nat (− (changes-alt-itv-smods 0 1 (pR1 div gc1) (pI1 div gc1)
+ changes-alt-itv-smods 0 1 (pR2 div gc2) (pI2 div gc2)
+ changes-alt-itv-smods 0 1 (pR3 div gc3) (pI3 div gc3)
+ changes-alt-itv-smods 0 1 (pR4 div gc4) (pI4 div gc4)
+ 2∗changes-itv-smods-ext 0 1 gc1 (pderiv gc1)

176

+ 2∗changes-itv-smods-ext 0 1 gc2 (pderiv gc2)
+ 2∗changes-itv-smods-ext 0 1 gc3 (pderiv gc3)
+ 2∗changes-itv-smods-ext 0 1 gc4 (pderiv gc4)) div 4)

)
else Code.abort (STR ′′proots-rect: the polynomial should not vanish

at the four vertices for now ′′) (λ-. proots-rect p lb ub)
else 0)

proof (cases Re lb < Re ub ∧ Im lb < Im ub ∧ not-rect-vanishing p lb ub)
case False
have ?thesis if ¬ (Re lb < Re ub) ∨ ¬ (Im lb < Im ub)
proof −

have box lb ub = {} using that by (metis complex-box-ne-empty(2))
then show ?thesis

unfolding proots-rect-def
using proots-count-emtpy that by fastforce

qed
then show ?thesis using False by auto

next
case True
then show ?thesis

apply (subst proots-rect-smods)
unfolding Let-def by simp-all

qed

lemma proots-rect-ll-rect:
assumes Re lb < Re ub Im lb < Im ub

and not-van:not-rect-vanishing p lb ub
shows proots-rect-ll p lb ub = proots-rect p lb ub

+ proots-line p lb (Complex (Re ub) (Im lb))
+ proots-line p lb (Complex (Re lb) (Im ub))

proof −
have p 6=0

using not-rect-vanishing-def not-van order-root by blast

define l1 l4 where l1 = open-segment lb (Complex (Re ub) (Im lb))
and l4 = open-segment lb (Complex (Re lb) (Im ub))

have ll-eq:
l1 = {z. Im z ∈ {Im lb} ∧ Re z ∈ {Re lb<..<Re ub}}
l4 = {z. Re z ∈ {Re lb} ∧ Im z ∈ {Im lb<..<Im ub}}
subgoal unfolding l1-def

apply (subst open-segment-Im-equal)
using assms unfolding open-segment-eq-real-ivl by auto

subgoal unfolding l4-def
apply (subst open-segment-Re-equal)
using assms unfolding open-segment-eq-real-ivl by auto

done

have ll-disj: l1 ∩ l4 = {} box lb ub ∩ {lb} = {}

177

box lb ub ∩ l1 = {} box lb ub ∩ l4 = {}
l1 ∩ {lb} = {} l4 ∩ {lb} = {}
using assms unfolding ll-eq
by (auto simp:in-box-complex-iff)

have proots-rect-ll p lb ub = proots-count p (box lb ub)
+ proots-count p {lb}
+ proots-count p l1
+ proots-count p l4

unfolding proots-rect-ll-def using ll-disj ‹p 6=0 ›
apply (fold l1-def l4-def)
by (subst proots-count-union-disjoint

;(simp add:Int-Un-distrib Int-Un-distrib2 del: Un-insert-right)?)+
also have ... = proots-rect p lb ub

+ proots-line p lb (Complex (Re ub) (Im lb))
+ proots-line p lb (Complex (Re lb) (Im ub))

proof −
have proots-count p {lb} = 0

by (metis not-rect-vanishing-def not-van proots-count-nzero singleton-iff)
then show ?thesis

unfolding proots-rect-def l1-def l4-def proots-line-def by simp
qed
finally show ?thesis .

qed

lemma proots-rect-ll-smods:
assumes Re lb < Re ub Im lb < Im ub

and not-van:not-rect-vanishing p lb ub
shows proots-rect-ll p lb ub = (

let p1 = pcompose p [:lb, Complex (Re ub − Re lb) 0 :];
pR1 = map-poly Re p1 ; pI1 = map-poly Im p1 ; gc1 = gcd pR1 pI1 ;
p2 = pcompose p [:Complex (Re ub) (Im lb), Complex 0 (Im ub − Im

lb):];
pR2 = map-poly Re p2 ; pI2 = map-poly Im p2 ; gc2 = gcd pR2 pI2 ;
p3 = pcompose p [:ub, Complex (Re lb − Re ub) 0 :];
pR3 = map-poly Re p3 ; pI3 = map-poly Im p3 ; gc3 = gcd pR3 pI3 ;
p4 = pcompose p [:Complex (Re lb) (Im ub), Complex 0 (Im lb − Im

ub):];
pR4 = map-poly Re p4 ; pI4 = map-poly Im p4 ; gc4 = gcd pR4 pI4

in
nat (− (changes-alt-itv-smods 0 1 (pR1 div gc1) (pI1 div gc1)
+ changes-alt-itv-smods 0 1 (pR2 div gc2) (pI2 div gc2)
+ changes-alt-itv-smods 0 1 (pR3 div gc3) (pI3 div gc3)
+ changes-alt-itv-smods 0 1 (pR4 div gc4) (pI4 div gc4)
− 2∗changes-itv-smods-ext 0 1 gc1 (pderiv gc1)
+ 2∗changes-itv-smods-ext 0 1 gc2 (pderiv gc2)
+ 2∗changes-itv-smods-ext 0 1 gc3 (pderiv gc3)
− 2∗changes-itv-smods-ext 0 1 gc4 (pderiv gc4)) div 4))

proof −

178

have p 6=0
using not-rect-vanishing-def not-van order-root by blast

define l1 l4 where l1 = open-segment lb (Complex (Re ub) (Im lb))
and l4 = open-segment lb (Complex (Re lb) (Im ub))

have l4-alt:l4 = open-segment (Complex (Re lb) (Im ub)) lb
unfolding l4-def by (simp add: open-segment-commute)

have ll-eq:
l1 = {z. Im z ∈ {Im lb} ∧ Re z ∈ {Re lb<..<Re ub}}
l4 = {z. Re z ∈ {Re lb} ∧ Im z ∈ {Im lb<..<Im ub}}
subgoal unfolding l1-def

apply (subst open-segment-Im-equal)
using assms unfolding open-segment-eq-real-ivl by auto

subgoal unfolding l4-def
apply (subst open-segment-Re-equal)
using assms unfolding open-segment-eq-real-ivl by auto

done

have ll-disj: l1 ∩ l4 = {} box lb ub ∩ {lb} = {}
box lb ub ∩ l1 = {} box lb ub ∩ l4 = {}
l1 ∩ {lb} = {} l4 ∩ {lb} = {}
using assms unfolding ll-eq
by (auto simp:in-box-complex-iff)

define p1 pR1 pI1 gc1 C1 D1 where pp1 :
p1 = pcompose p [:lb, Complex (Re ub − Re lb) 0 :]
pR1 = map-poly Re p1
pI1 = map-poly Im p1
gc1 = gcd pR1 pI1

and C1=changes-itv-smods-ext 0 1 gc1 (pderiv gc1)
and D1=changes-alt-itv-smods 0 1 (pR1 div gc1) (pI1 div gc1)

define p2 pR2 pI2 gc2 C2 D2 where pp2 :
p2 = pcompose p [:Complex (Re ub) (Im lb), Complex 0 (Im ub − Im lb):]
pR2 = map-poly Re p2
pI2 = map-poly Im p2
gc2 = gcd pR2 pI2

and C2=changes-itv-smods-ext 0 1 gc2 (pderiv gc2)
and D2=changes-alt-itv-smods 0 1 (pR2 div gc2) (pI2 div gc2)

define p3 pR3 pI3 gc3 C3 D3 where pp3 :
p3 =pcompose p [:ub, Complex (Re lb − Re ub) 0 :]
pR3 = map-poly Re p3
pI3 = map-poly Im p3
gc3 = gcd pR3 pI3

and C3=changes-itv-smods-ext 0 1 gc3 (pderiv gc3)
and D3=changes-alt-itv-smods 0 1 (pR3 div gc3) (pI3 div gc3)

define p4 pR4 pI4 gc4 C4 D4 where pp4 :
p4 = pcompose p [:Complex (Re lb) (Im ub), Complex 0 (Im lb − Im ub):]
pR4 = map-poly Re p4

179

pI4 = map-poly Im p4
gc4 = gcd pR4 pI4

and C4=changes-itv-smods-ext 0 1 gc4 (pderiv gc4)
and D4=changes-alt-itv-smods 0 1 (pR4 div gc4) (pI4 div gc4)

have poly gc1 0 6=0 poly gc1 1 6=0
poly gc2 0 6=0 poly gc2 1 6=0
poly gc3 0 6=0 poly gc3 1 6=0
poly gc4 0 6=0 poly gc4 1 6=0

unfolding pp1 pp2 pp3 pp4 poly-gcd-0-iff
using not-van[unfolded not-rect-vanishing-def]
by (simp flip:Re-poly-of-real Im-poly-of-real add:poly-pcompose

; simp add: Complex-eq-iff zero-complex.code plus-complex.code)+
have CC-pos:C1≥0 C2≥0 C3≥0 C4≥0

unfolding C1-def C2-def C3-def C4-def
by (rule changes-itv-smods-ext-geq-0 ;(fact|simp))+

define CC DD where CC= C2 + C3 − C4 − C1
and DD=D1 + D2 + D3 + D4

define p1 p2 p3 p4 where pp:p1=proots-line p lb (Complex (Re ub) (Im lb))
p2 = proots-line p (Complex (Re ub) (Im lb)) ub
p3 = proots-line p ub (Complex (Re lb) (Im ub))
p4 = proots-line p (Complex (Re lb) (Im ub)) lb

have p4-alt:p4 = proots-line p lb (Complex (Re lb) (Im ub))
unfolding pp by (simp add: proots-line-commute)

have real (proots-rect-ll p lb ub) = real (proots-rect p lb ub) + p1 + p4
unfolding pp by (simp add: proots-rect-ll-rect[OF assms] proots-line-commute)

also have ... = (p1 + p4 − real p2 − real p3 − cindexP-pathE p (rectpath lb
ub)) / 2

proof −
have real (proots-rect p lb ub) = − (real (proots-rect-border p lb ub)

+ cindexP-pathE p (rectpath lb ub)) / 2
apply (rule proots-rect-cindexP-pathE)
by fact+

also have ... = − (p1 + p2 + p3 + p4 + cindexP-pathE p (rectpath lb ub)) /
2

using proots-rect-border-eq-lines[OF assms,folded pp] by simp
finally have real (proots-rect p lb ub) =

− (real (p1 + p2 + p3 + p4)
+ cindexP-pathE p (rectpath lb ub)) / 2 .

then show ?thesis by auto
qed
also have ... = (nat C1 + nat C4 − real (nat C2) − real (nat C3)

− ((real-of-int DD) / 2)) / 2
proof −

have p1 = nat C1 p2 = nat C2 p3 = nat C3 p4 = nat C4
using not-van[unfolded not-rect-vanishing-def] assms(1 ,2)

180

unfolding pp C1-def pp1 C2-def pp2 C3-def pp3 C4-def pp4
by (subst proots-line-smods

;simp-all add:Complex-eq-iff Let-def Complex-minus-eq)+
moreover have cindexP-pathE p (rectpath lb ub) = (real-of-int DD) / 2

apply (rule cindexP-pathE-rect-smods[
of lb ub p,
unfolded Let-def ,
folded pp1 pp2 pp3 pp4 ,
folded D1-def D2-def D3-def D4-def ,
folded DD-def])

by fact+
ultimately show ?thesis by presburger

qed
also have ... = −(DD + 2∗CC) / 4
unfolding CC-def using CC-pos by (auto simp add:divide-simps algebra-simps)

finally have real (proots-rect-ll p lb ub)
= real-of-int (− (DD + 2 ∗ CC)) / 4 .

then have proots-rect-ll p lb ub
= nat (− (DD + 2 ∗ CC) div 4)

by simp
then show ?thesis

unfolding Let-def
apply (fold pp1 pp2 pp3 pp4)
apply (fold C1-def C2-def C3-def C4-def D1-def D2-def D3-def D4-def)
by (simp add:CC-def DD-def)

qed

lemma proots-rect-ll-code[code]:
proots-rect-ll p lb ub =

(if Re lb < Re ub ∧ Im lb < Im ub then
if not-rect-vanishing p lb ub then
(
let p1 = pcompose p [:lb, Complex (Re ub − Re lb) 0 :];

pR1 = map-poly Re p1 ; pI1 = map-poly Im p1 ; gc1 = gcd pR1 pI1 ;
p2 = pcompose p [:Complex (Re ub) (Im lb), Complex 0 (Im ub − Im

lb):];
pR2 = map-poly Re p2 ; pI2 = map-poly Im p2 ; gc2 = gcd pR2 pI2 ;
p3 = pcompose p [:ub, Complex (Re lb − Re ub) 0 :];
pR3 = map-poly Re p3 ; pI3 = map-poly Im p3 ; gc3 = gcd pR3 pI3 ;
p4 = pcompose p [:Complex (Re lb) (Im ub), Complex 0 (Im lb − Im

ub):];
pR4 = map-poly Re p4 ; pI4 = map-poly Im p4 ; gc4 = gcd pR4 pI4

in
nat (− (changes-alt-itv-smods 0 1 (pR1 div gc1) (pI1 div gc1)
+ changes-alt-itv-smods 0 1 (pR2 div gc2) (pI2 div gc2)
+ changes-alt-itv-smods 0 1 (pR3 div gc3) (pI3 div gc3)
+ changes-alt-itv-smods 0 1 (pR4 div gc4) (pI4 div gc4)
− 2∗changes-itv-smods-ext 0 1 gc1 (pderiv gc1)
+ 2∗changes-itv-smods-ext 0 1 gc2 (pderiv gc2)

181

+ 2∗changes-itv-smods-ext 0 1 gc3 (pderiv gc3)
− 2∗changes-itv-smods-ext 0 1 gc4 (pderiv gc4)) div 4)

)
else Code.abort (STR ′′proots-rect-ll: the polynomial should not vanish

at the four vertices for now ′′) (λ-. proots-rect-ll p lb ub)
else Code.abort (STR ′′proots-rect-ll: the box is improper ′′)

(λ-. proots-rect-ll p lb ub))
proof (cases Re lb < Re ub ∧ Im lb < Im ub ∧ not-rect-vanishing p lb ub)

case False
then show ?thesis using False by auto

next
case True
then show ?thesis

apply (subst proots-rect-ll-smods)
unfolding Let-def by simp-all

qed

end

3 Procedures to count the number of complex roots
in various areas

theory Count-Complex-Roots imports
Count-Half-Plane
Count-Line
Count-Circle
Count-Rectangle

begin

end

4 Some examples for complex root counting
theory Count-Complex-Roots-Examples

imports Count-Complex-Roots
begin

value proots-rect [:2∗i,0 ,i:] (Complex (−1) 0) (Complex 2 2)

value proots-rect [:−1 ,−2∗i,1 :]
(Complex (−1) 0) (Complex 2 2)

value proots-rect-ll [:−1 ,1 :]
(Complex (−1) 0) (Complex 2 2)

182

value proots-half [:1−i,2−i,1 :]
0 (Complex 0 1)

value proots-half [:1−i,2−i,1 :] (Complex 0 1) 0

value [code] proots-ball ([:−2 ,1 :]∗[:−2 ,1 :]∗[:−3 ,1 :]) 0 4

end

5 Acknowledgements
The work was supported by the ERC Advanced Grant ALEXANDRIA
(Project 742178), funded by the European Research Council and led by
Professor Lawrence Paulson at the University of Cambridge, UK.

References
[1] M. Eisermann. The fundamental theorem of algebra made effective: An

elementary real-algebraic proof via Sturm chains. American Mathemat-
ical Monthly, 119(9):715–752, 2012.

[2] Q. I. Rahman and G. Schmeisser. Analytic theory of polynomials. Num-
ber 26. Oxford University Press, 2002.

183

	Extra lemmas related to polynomials
	Misc
	More polynomial homomorphism interpretations
	More about 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 order
	More about 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 rsquarefree
	Composition of a polynomial and a circular path
	Combining two real polynomials into a complex one

	An alternative Sturm sequences
	Misc
	Sign difference
	Alternative definition of cross
	Alternative sign variation sequencse
	jumpF on polynomials
	The extended Cauchy index on polynomials
	More Cauchy indices on polynomials
	Misc
	Some useful conformal/42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 bij-betw properties
	Number of roots on a (bounded or unbounded) segment
	Checking if there a polynomial root on a closed segment
	Number of roots on a bounded open segment
	Polynomial roots on the upper half-plane
	Polynomial roots on a general half-plane
	Polynomial roots within a circle (open ball)
	Polynomial roots on a circle (sphere)
	Polynomial roots on a closed ball
	Misc
	Counting roots in a rectangle
	Code generation

	Procedures to count the number of complex roots in various areas
	Some examples for complex root counting
	Acknowledgements

