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Abstract
Based on evaluating Cauchy indices through remainder sequences

[1] [2, Chapter 11], this entry provides an effective procedure to count
the number of complex roots (with multiplicity) of a polynomial within
a rectangle box or a half-plane. Potential applications of this entry
include certified complex root isolation (of a polynomial) and testing
the Routh-Hurwitz stability criterion (i.e., to check whether all the
roots of some characteristic polynomial have negative real parts).

1 Extra lemmas related to polynomials
theory CC-Polynomials-Extra imports

Winding-Number-Eval.Missing-Algebraic
Winding-Number-Eval.Missing-Transcendental
Sturm-Tarski.PolyMisc
Budan-Fourier .BF-Misc
Polynomial-Interpolation.Ring-Hom-Poly

begin

1.1 Misc
lemma poly-linepath-comp ′:

fixes a:: ′a::{real-normed-vector ,comm-semiring-0 ,real-algebra-1}
shows poly p (linepath a b t) = poly (p ◦p [:a, b−a:]) (of-real t)
by (auto simp add:poly-pcompose linepath-def scaleR-conv-of-real algebra-simps)

lemma path-poly-comp[intro]:
fixes p:: ′a::real-normed-field poly
shows path g =⇒ path (poly p o g)
apply (elim path-continuous-image)
by (auto intro:continuous-intros)

lemma cindex-poly-noroot:
assumes a<b ∀ x. a<x ∧ x<b −→ poly p x 6=0
shows cindex-poly a b q p = 0
unfolding cindex-poly-def
apply (rule sum.neutral)
using assms by (auto intro:jump-poly-not-root)
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1.2 More polynomial homomorphism interpretations
interpretation of-real-poly-hom:map-poly-inj-idom-hom of-real ..

interpretation Re-poly-hom:map-poly-comm-monoid-add-hom Re
by unfold-locales simp-all

interpretation Im-poly-hom:map-poly-comm-monoid-add-hom Im
by unfold-locales simp-all

1.3 More about order
lemma order-normalize[simp]:order x (normalize p) = order x p
by (metis dvd-normalize-iff normalize-eq-0-iff order-1 order-2 order-unique-lemma)

lemma order-gcd:
assumes p 6=0 q 6=0
shows order x (gcd p q) = min (order x p) (order x q)

proof −
define xx op oq where xx=[:− x, 1 :] and op = order x p and oq = order x q
obtain pp where pp:p = xx ^ op ∗ pp ¬ xx dvd pp

using order-decomp[OF ‹p 6=0 ›,of x,folded xx-def op-def ] by auto
obtain qq where qq:q = xx ^ oq ∗ qq ¬ xx dvd qq

using order-decomp[OF ‹q 6=0 ›,of x,folded xx-def oq-def ] by auto
define pq where pq = gcd pp qq

have p-unfold:p = (pq ∗ xx ^ (min op oq)) ∗ ((pp div pq) ∗ xx ^ (op − min op
oq))

and [simp]:coprime xx (pp div pq) and pp 6=0
proof −

have xx ^ op = xx ^ (min op oq) ∗ xx ^ (op − min op oq)
by (simp flip:power-add)

moreover have pp = pq ∗ (pp div pq)
unfolding pq-def by simp

ultimately show p = (pq ∗ xx ^ (min op oq)) ∗ ((pp div pq) ∗ xx ^ (op − min
op oq))

unfolding pq-def pp by(auto simp:algebra-simps)
show coprime xx (pp div pq)

apply (rule prime-elem-imp-coprime[OF
prime-elem-linear-poly[of 1 −x,simplified],folded xx-def ])

using ‹pp = pq ∗ (pp div pq)› pp(2 ) by auto
qed (use pp ‹p 6=0 › in auto)
have q-unfold:q = (pq ∗ xx ^ (min op oq)) ∗ ((qq div pq) ∗ xx ^ (oq − min op

oq))
and [simp]:coprime xx (qq div pq)

proof −
have xx ^ oq = xx ^ (min op oq) ∗ xx ^ (oq − min op oq)

by (simp flip:power-add)
moreover have qq = pq ∗ (qq div pq)

unfolding pq-def by simp
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ultimately show q = (pq ∗ xx ^ (min op oq)) ∗ ((qq div pq) ∗ xx ^ (oq − min
op oq))

unfolding pq-def qq by(auto simp:algebra-simps)
show coprime xx (qq div pq)

apply (rule prime-elem-imp-coprime[OF
prime-elem-linear-poly[of 1 −x,simplified],folded xx-def ])

using ‹qq = pq ∗ (qq div pq)› qq(2 ) by auto
qed

have gcd p q=normalize (pq ∗ xx ^ (min op oq))
proof −

have coprime (pp div pq ∗ xx ^ (op − min op oq)) (qq div pq ∗ xx ^ (oq − min
op oq))

proof (cases op>oq)
case True
then have oq − min op oq = 0 by auto
moreover have coprime (xx ^ (op − min op oq)) (qq div pq) by auto
moreover have coprime (pp div pq) (qq div pq)

apply (rule div-gcd-coprime[of pp qq,folded pq-def ])
using ‹pp 6=0 › by auto

ultimately show ?thesis by auto
next

case False
then have op − min op oq = 0 by auto
moreover have coprime (pp div pq) (xx ^ (oq − min op oq))

by (auto simp:coprime-commute)
moreover have coprime (pp div pq) (qq div pq)

apply (rule div-gcd-coprime[of pp qq,folded pq-def ])
using ‹pp 6=0 › by auto

ultimately show ?thesis by auto
qed
then show ?thesis unfolding p-unfold q-unfold

apply (subst gcd-mult-left)
by auto

qed
then have order x (gcd p q) = order x pq + order x (xx ^ (min op oq))

apply simp
apply (subst order-mult)
using assms(1 ) p-unfold by auto

also have ... = order x (xx ^ (min op oq))
using pp(2 ) qq(2 ) unfolding pq-def xx-def
by (auto simp add: order-0I poly-eq-0-iff-dvd)

also have ... = min op oq
unfolding xx-def by (rule order-power-n-n)

also have ... = min (order x p) (order x q) unfolding op-def oq-def by simp
finally show ?thesis .

qed

lemma pderiv-power : pderiv (p ^ n) = smult (of-nat n) (p ^ (n−1 )) ∗ pderiv p
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apply (cases n)
using pderiv-power-Suc by auto

lemma order-pderiv:
fixes p:: ′a::{idom,semiring-char-0} poly
assumes p 6=0 poly p x=0
shows order x p = Suc (order x (pderiv p)) using assms

proof −
define xx op where xx=[:− x, 1 :] and op = order x p
have op 6=0 unfolding op-def using assms order-root by blast
obtain pp where pp:p = xx ^ op ∗ pp ¬ xx dvd pp

using order-decomp[OF ‹p 6=0 ›,of x,folded xx-def op-def ] by auto
have p-der :pderiv p = smult (of-nat op) (xx^(op −1 )) ∗ pp + xx^op∗pderiv pp

unfolding pp(1 ) by (auto simp:pderiv-mult pderiv-power xx-def algebra-simps
pderiv-pCons)

have xx^(op −1 ) dvd (pderiv p)
unfolding p-der

by (metis One-nat-def Suc-pred assms(1 ) assms(2 ) dvd-add dvd-mult-right
dvd-triv-left

neq0-conv op-def order-root power-Suc smult-dvd-cancel)
moreover have ¬ xx^op dvd (pderiv p)
proof

assume xx ^ op dvd pderiv p
then have xx ^ op dvd smult (of-nat op) (xx^(op −1 ) ∗ pp)

unfolding p-der by (simp add: dvd-add-left-iff )
then have xx ^ op dvd (xx^(op −1 )) ∗ pp

apply (elim dvd-monic[rotated])
using ‹op 6=0 › by (auto simp:lead-coeff-power xx-def )

then have xx ^ (op−1 ) ∗ xx dvd (xx^(op −1 ))
using ‹¬ xx dvd pp› by (simp add: ‹op 6= 0 › mult.commute power-eq-if )

then have xx dvd 1
using assms(1 ) pp(1 ) by auto

then show False unfolding xx-def by (meson assms(1 ) dvd-trans one-dvd
order-decomp)

qed
ultimately have op − 1 = order x (pderiv p)

using order-unique-lemma[of x op−1 pderiv p,folded xx-def ] ‹op 6=0 ›
by auto

then show ?thesis using ‹op 6=0 › unfolding op-def by auto
qed

1.4 More about rsquarefree
lemma rsquarefree-0 [simp]: ¬ rsquarefree 0

unfolding rsquarefree-def by simp

lemma rsquarefree-times:
assumes rsquarefree (p∗q)

4



shows rsquarefree q using assms
proof (induct p rule:poly-root-induct-alt)

case 0
then show ?case by simp

next
case (no-proots p)
then have [simp]:p 6=0 q 6=0

∧
a. order a p = 0

using order-0I by auto
have order a (p ∗ q) = 0 ←→ order a q = 0

order a (p ∗ q) = 1 ←→ order a q = 1
for a

subgoal by (subst order-mult) auto
subgoal by (subst order-mult) auto
done

then show ?case using ‹rsquarefree (p ∗ q)›
unfolding rsquarefree-def by simp

next
case (root a p)
define pq aa where pq = p ∗ q and aa = [:− a, 1 :]
have [simp]:pq 6=0 aa 6=0 order a aa=1

subgoal using pq-def root.prems by auto
subgoal by (simp add: aa-def )
subgoal by (metis aa-def order-power-n-n power-one-right)
done

have rsquarefree (aa ∗ pq)
unfolding aa-def pq-def using root(2 ) by (simp add:algebra-simps)

then have rsquarefree pq
unfolding rsquarefree-def by (auto simp add:order-mult)

from root(1 )[OF this[unfolded pq-def ]] show ?case .
qed

lemma rsquarefree-smult-iff :
assumes s 6=0
shows rsquarefree (smult s p) ←→ rsquarefree p
unfolding rsquarefree-def using assms by (auto simp add:order-smult)

lemma card-proots-within-rsquarefree:
assumes rsquarefree p
shows proots-count p s = card (proots-within p s) using assms

proof (induct rule:poly-root-induct[of - λx. x∈s])
case 0
then have False by simp
then show ?case by simp

next
case (no-roots p)
then show ?case
by (metis all-not-in-conv card.empty proots-count-def proots-within-iff sum.empty)

next
case (root a p)
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have proots-count ([:a, − 1 :] ∗ p) s = 1 + proots-count p s
apply (subst proots-count-times)
subgoal using root.prems rsquarefree-def by blast

subgoal by (metis (no-types, opaque-lifting) add.inverse-inverse add.inverse-neutral

minus-pCons proots-count-pCons-1-iff proots-count-uminus
root.hyps(1 ))

done
also have ... = 1 + card (proots-within p s)
proof −

have rsquarefree p using ‹rsquarefree ([:a, − 1 :] ∗ p)›
by (elim rsquarefree-times)

from root(2 )[OF this] show ?thesis by simp
qed
also have ... = card (proots-within ([:a, − 1 :] ∗ p) s) unfolding proots-within-times

proof (subst card-Un-disjoint)
have [simp]:p 6=0 using root.prems by auto
show finite (proots-within [:a, − 1 :] s) finite (proots-within p s)

by auto
show 1 + card (proots-within p s) = card (proots-within [:a, − 1 :] s)

+ card (proots-within p s)
using ‹a ∈ s›
apply (subst proots-within-pCons-1-iff )
by simp

have poly p a 6=0
proof (rule ccontr)

assume ¬ poly p a 6= 0
then have order a p >0 by (simp add: order-root)
moreover have order a [:a,−1 :] = 1

by (metis (no-types, opaque-lifting) add.inverse-inverse add.inverse-neutral
minus-pCons

order-power-n-n order-uminus power-one-right)
ultimately have order a ([:a, − 1 :] ∗ p) > 1

apply (subst order-mult)
subgoal using root.prems by auto
subgoal by auto
done

then show False using ‹rsquarefree ([:a, − 1 :] ∗ p)›
unfolding rsquarefree-def using gr-implies-not0 less-not-refl2 by blast

qed
then show proots-within [:a, − 1 :] s ∩ proots-within p s = {}

using proots-within-pCons-1-iff (2 ) by auto
qed
finally show ?case .

qed

lemma rsquarefree-gcd-pderiv:
fixes p:: ′a::{factorial-ring-gcd,semiring-gcd-mult-normalize,semiring-char-0} poly
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assumes p 6=0
shows rsquarefree (p div (gcd p (pderiv p)))

proof (cases pderiv p = 0 )
case True
have poly (unit-factor p) x 6=0 for x

using unit-factor-is-unit[OF ‹p 6=0 ›]
by (meson assms dvd-trans order-decomp poly-eq-0-iff-dvd unit-factor-dvd)

then have order x (unit-factor p) = 0 for x
using order-0I by blast

then show ?thesis using True ‹p 6=0 › unfolding rsquarefree-def by simp
next

case False
define q where q = p div (gcd p (pderiv p))
have q 6=0 unfolding q-def by (simp add: assms dvd-div-eq-0-iff )

have order-pq:order x p = order x q + min (order x p) (order x (pderiv p))
for x

proof −
have ∗:p = q ∗ gcd p (pderiv p)

unfolding q-def by simp
show ?thesis

apply (subst ∗)
using ‹q 6=0 › ‹p 6=0 › ‹pderiv p 6=0 › by (simp add:order-mult order-gcd)

qed
have order x q = 0 ∨ order x q=1 for x
proof (cases poly p x=0 )

case True
from order-pderiv[OF ‹p 6=0 › this]
have order x p = order x (pderiv p) + 1 by simp
then show ?thesis using order-pq[of x] by auto

next
case False
then have order x p = 0 by (simp add: order-0I )
then have order x q = 0 using order-pq[of x] by simp
then show ?thesis by simp

qed
then show ?thesis using ‹q 6=0 › unfolding rsquarefree-def q-def

by auto
qed

lemma poly-gcd-pderiv-iff :
fixes p:: ′a::{semiring-char-0 ,factorial-ring-gcd,semiring-gcd-mult-normalize} poly
shows poly (p div (gcd p (pderiv p))) x =0 ←→ poly p x=0

proof (cases pderiv p=0 )
case True
then obtain a where p=[:a:] using pderiv-iszero by auto
then show ?thesis by (auto simp add: unit-factor-poly-def )

next
case False
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then have p 6=0 using pderiv-0 by blast
define q where q = p div (gcd p (pderiv p))
have q 6=0 unfolding q-def by (simp add: ‹p 6=0 › dvd-div-eq-0-iff )

have order-pq:order x p = order x q + min (order x p) (order x (pderiv p)) for x
proof −

have ∗:p = q ∗ gcd p (pderiv p)
unfolding q-def by simp

show ?thesis
apply (subst ∗)
using ‹q 6=0 › ‹p 6=0 › ‹pderiv p 6=0 › by (simp add:order-mult order-gcd)

qed

have order x q =0 ←→ order x p = 0
proof (cases poly p x=0 )

case True
from order-pderiv[OF ‹p 6=0 › this]
have order x p = order x (pderiv p) + 1 by simp
then show ?thesis using order-pq[of x] by auto

next
case False
then have order x p = 0 by (simp add: order-0I )
then have order x q = 0 using order-pq[of x] by simp
then show ?thesis using ‹order x p = 0 › by simp

qed
then show ?thesis

apply (fold q-def )
unfolding order-root using ‹p 6=0 › ‹q 6=0 › by auto

qed

1.5 Composition of a polynomial and a circular path
lemma poly-circlepath-tan-eq:

fixes z0 ::complex and r ::real and p::complex poly
defines q1≡ fcompose p [:(z0+r)∗i,z0−r :] [:i,1 :] and q2 ≡ [:i,1 :] ^ degree p
assumes 0≤t t≤1 t 6=1/2
shows poly p (circlepath z0 r t) = poly q1 (tan (pi∗t)) / poly q2 (tan (pi∗t))
(is ?L = ?R)

proof −
have ?L = poly p (z0+ r∗exp (2 ∗ of-real pi ∗ i ∗ t))

unfolding circlepath by simp
also have ... = ?R
proof −

define f where f = (poly p ◦ (λx::real. z0 + r ∗ exp (i ∗ x)))
have f-eq:f t = ((λx::real. poly q1 x / poly q2 x) o (λx. tan (x/2 )) ) t

when cos (t / 2 ) 6= 0 for t
proof −

have f t = poly p (z0 + r ∗ (cos t + i ∗ sin t))
unfolding f-def exp-Euler by (auto simp add:cos-of-real sin-of-real)
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also have ... = poly p ((λx. ((z0−r)∗x+(z0+r)∗i) / (i+x)) (tan (t/2 )))
proof −

define tt where tt=complex-of-real (tan (t / 2 ))
define rr where rr = complex-of-real r
have cos t = (1−tt∗tt) / (1 + tt ∗ tt)

sin t = 2∗tt / (1 + tt ∗ tt)
unfolding sin-tan-half [of t/2 ,simplified] cos-tan-half [of t/2 ,OF that,

simplified] tt-def
by (auto simp add:power2-eq-square)

moreover have 1 + tt ∗ tt 6= 0 unfolding tt-def
apply (fold of-real-mult)

by (metis (no-types, opaque-lifting) mult-numeral-1 numeral-One of-real-add
of-real-eq-0-iff

of-real-numeral sum-squares-eq-zero-iff zero-neq-one)
ultimately have z0 + r ∗ ( (cos t) + i ∗ (sin t))

=(z0∗(1+tt∗tt)+rr∗(1−tt∗tt)+i∗rr∗2∗tt ) / (1 + tt ∗ tt)
apply (fold rr-def ,simp add:add-divide-distrib)
by (simp add:algebra-simps)

also have ... = ((z0−rr)∗tt+z0∗i+rr∗i) / (tt + i)
proof −

have tt + i 6= 0
using ‹1 + tt ∗ tt 6= 0 ›
by (metis i-squared neg-eq-iff-add-eq-0 square-eq-iff )

then show ?thesis
using ‹1 + tt ∗ tt 6= 0 › by (auto simp add:divide-simps algebra-simps)

qed
finally have z0 + r ∗ ( (cos t) + i ∗ (sin t)) = ((z0−rr)∗tt+z0∗i+rr∗i) /

(tt + i) .
then show ?thesis unfolding tt-def rr-def

by (auto simp add:algebra-simps power2-eq-square)
qed
also have ... = (poly p o ((λx. ((z0−r)∗x+(z0+r)∗i) / (i+x)) o (λx. tan

(x/2 )) )) t
unfolding comp-def by (auto simp:tan-of-real)

also have ... = ((λx::real. poly q1 x / poly q2 x) o (λx. tan (x/2 )) ) t
unfolding q2-def q1-def
apply (subst fcompose-poly[symmetric])
subgoal for x

apply simp
by (metis Re-complex-of-real add-cancel-right-left complex-i-not-zero imag-

inary-unit.sel(1 ) plus-complex.sel(1 ) rcis-zero-arg rcis-zero-mod)
subgoal by (auto simp:tan-of-real algebra-simps)
done

finally show ?thesis .
qed

have cos (pi ∗ t) 6=0 unfolding cos-zero-iff-int2
proof

assume ∃ i. pi ∗ t = real-of-int i ∗ pi + pi / 2
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then obtain i where pi ∗ t = real-of-int i ∗ pi + pi / 2 by auto
then have pi ∗ t=pi ∗ (real-of-int i + 1 / 2 ) by (simp add:algebra-simps)
then have t=real-of-int i + 1 / 2 by auto
then show False using ‹0≤t› ‹t≤1 › ‹t 6=1/2 › by auto

qed
from f-eq[of 2∗pi∗t,simplified,OF this]
show ?thesis

unfolding f-def comp-def by (auto simp add:algebra-simps)
qed
finally show ?thesis .

qed

1.6 Combining two real polynomials into a complex one
definition cpoly-of :: real poly ⇒ real poly ⇒ complex poly where

cpoly-of pR pI = map-poly of-real pR + smult i (map-poly of-real pI )

lemma cpoly-of-eq-0-iff [iff ]:
cpoly-of pR pI = 0 ←→ pR = 0 ∧ pI = 0

proof −
have pR = 0 ∧ pI = 0 when cpoly-of pR pI = 0
proof −

have complex-of-real (coeff pR n) + i ∗ complex-of-real (coeff pI n) = 0 for n
using that unfolding poly-eq-iff cpoly-of-def by (auto simp:coeff-map-poly)

then have coeff pR n = 0 ∧ coeff pI n = 0 for n
by (metis Complex-eq Im-complex-of-real Re-complex-of-real complex.sel(1 )

complex.sel(2 )
of-real-0 )

then show ?thesis unfolding poly-eq-iff by auto
qed
then show ?thesis by (auto simp:cpoly-of-def )

qed

lemma cpoly-of-decompose:
p = cpoly-of (map-poly Re p) (map-poly Im p)

unfolding cpoly-of-def
apply (induct p)
by (auto simp add:map-poly-pCons map-poly-map-poly complex-eq)

lemma cpoly-of-dist-right:
cpoly-of (pR∗g) (pI∗g) = cpoly-of pR pI ∗ (map-poly of-real g)

unfolding cpoly-of-def by (simp add: distrib-right)

lemma poly-cpoly-of-real:
poly (cpoly-of pR pI ) (of-real x) = Complex (poly pR x) (poly pI x)

unfolding cpoly-of-def by (simp add: Complex-eq)

lemma poly-cpoly-of-real-iff :
shows poly (cpoly-of pR pI ) (of-real t) =0 ←→ poly pR t = 0 ∧ poly pI t=0
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unfolding poly-cpoly-of-real using Complex-eq-0 by blast

lemma order-cpoly-gcd-eq:
assumes pR 6=0 ∨ pI 6=0
shows order t (cpoly-of pR pI ) = order t (gcd pR pI )

proof −
define g where g = gcd pR pI
have [simp]:g 6=0 unfolding g-def using assms by auto
obtain pr pi where pri: pR = pr ∗ g pI = pi ∗ g coprime pr pi

unfolding g-def using assms(1 ) gcd-coprime-exists ‹g 6= 0 › g-def by blast
then have pr 6=0 ∨ pi 6=0 using assms mult-zero-left by blast

have order t (cpoly-of pR pI ) = order t (cpoly-of pr pi ∗ (map-poly of-real g))
unfolding pri cpoly-of-dist-right by simp

also have ... = order t (cpoly-of pr pi) + order t g
apply (subst order-mult)
using ‹pr 6=0 ∨ pi 6=0 › by (auto simp:map-poly-order-of-real)

also have ... = order t g
proof −

have poly (cpoly-of pr pi) t 6=0 unfolding poly-cpoly-of-real-iff
using ‹coprime pr pi› coprime-poly-0 by blast

then have order t (cpoly-of pr pi) = 0 by (simp add: order-0I )
then show ?thesis by auto

qed
finally show ?thesis unfolding g-def .

qed

lemma cpoly-of-times:
shows cpoly-of pR pI ∗ cpoly-of qR qI = cpoly-of (pR ∗ qR − pI ∗ qI ) (pI∗qR+pR∗qI )

proof −
define PR PI where PR = map-poly complex-of-real pR

and PI = map-poly complex-of-real pI
define QR QI where QR = map-poly complex-of-real qR

and QI = map-poly complex-of-real qI
show ?thesis

unfolding cpoly-of-def
by (simp add:algebra-simps of-real-poly-hom.hom-minus smult-add-right

flip: PR-def PI-def QR-def QI-def )
qed

lemma map-poly-Re-cpoly[simp]:
map-poly Re (cpoly-of pR pI ) = pR
unfolding cpoly-of-def smult-map-poly
apply (simp add:map-poly-map-poly Re-poly-hom.hom-add comp-def )
by (metis coeff-map-poly leading-coeff-0-iff )

lemma map-poly-Im-cpoly[simp]:
map-poly Im (cpoly-of pR pI ) = pI
unfolding cpoly-of-def smult-map-poly
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apply (simp add:map-poly-map-poly Im-poly-hom.hom-add comp-def )
by (metis coeff-map-poly leading-coeff-0-iff )

end

2 An alternative Sturm sequences
theory Extended-Sturm imports

Sturm-Tarski.Sturm-Tarski
Winding-Number-Eval.Cauchy-Index-Theorem
CC-Polynomials-Extra

begin

The main purpose of this theory is to provide an effective way to compute
cindexE a b f when f is a rational function. The idea is similar to and based
on the evaluation of cindex-poly through [[?a < ?b; poly ?p ?a 6= 0 ; poly ?p
?b 6= 0 ]] =⇒ cindex-poly ?a ?b ?q ?p = changes-itv-smods ?a ?b ?p ?q.

This alternative version of remainder sequences is inspired by the paper
"The Fundamental Theorem of Algebra made effective: an elementary real-
algebraic proof via Sturm chains" by Michael Eisermann.
hide-const Permutations.sign

2.1 Misc
lemma path-of-real[simp]:path (of-real :: real ⇒ ′a::real-normed-algebra-1 )

unfolding path-def by (rule continuous-on-of-real-id)

lemma pathfinish-of-real[simp]:pathfinish of-real = 1
unfolding pathfinish-def by simp

lemma pathstart-of-real[simp]:pathstart of-real = 0
unfolding pathstart-def by simp

lemma is-unit-pCons-ex-iff :
fixes p:: ′a::field poly
shows is-unit p ←→ (∃ a. a 6=0 ∧ p=[:a:])
using is-unit-poly-iff is-unit-triv
by (metis is-unit-pCons-iff )

lemma eventually-poly-nz-at-within:
fixes x :: ′a::{idom,euclidean-space}
assumes p 6=0
shows eventually (λx. poly p x 6=0 ) (at x within S)

proof −
have eventually (λx. poly p x 6=0 ) (at x within S)

= (∀ F x in (at x within S). ∀ y∈proots p. x 6= y)
apply (rule eventually-subst,rule eventuallyI )
by (auto simp add:proots-def )

also have ... = (∀ y∈proots p. ∀ F x in (at x within S). x 6= y)
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apply (subst eventually-ball-finite-distrib)
using ‹p 6=0 › by auto

also have ...
unfolding eventually-at
by (metis gt-ex not-less-iff-gr-or-eq zero-less-dist-iff )

finally show ?thesis .
qed

lemma sgn-power :
fixes x:: ′a::linordered-idom
shows sgn (x^n) = (if n=0 then 1 else if even n then |sgn x| else sgn x)
apply (induct n)
by (auto simp add:sgn-mult)

lemma poly-divide-filterlim-at-top:
fixes p q::real poly
defines ll≡( if degree q<degree p then

at 0
else if degree q=degree p then

nhds (lead-coeff q / lead-coeff p)
else if sgn-pos-inf q ∗ sgn-pos-inf p > 0 then

at-top
else

at-bot)
assumes p 6=0 q 6=0
shows filterlim (λx. poly q x / poly p x) ll at-top

proof −
define pp where pp=(λx. poly p x / x^(degree p))
define qq where qq=(λx. poly q x / x^(degree q))
define dd where dd=(λx::real. if degree p>degree q then 1/x^(degree p − degree

q) else
x^(degree q − degree p))

have divide-cong:∀ F x in at-top. poly q x / poly p x = qq x / pp x ∗ dd x
proof (rule eventually-at-top-linorderI [of 1 ])

fix x assume (x::real)≥1
then have x 6=0 by auto
then show poly q x / poly p x = qq x / pp x ∗ dd x

unfolding qq-def pp-def dd-def using assms
by (auto simp add:field-simps power-diff )

qed
have qqpp-tendsto:((λx. qq x / pp x) −−−→ lead-coeff q / lead-coeff p) at-top
proof −

have (qq −−−→ lead-coeff q) at-top
unfolding qq-def using poly-divide-tendsto-aux[of q]
by (auto elim!:filterlim-mono simp:at-top-le-at-infinity)

moreover have (pp −−−→ lead-coeff p) at-top
unfolding pp-def using poly-divide-tendsto-aux[of p]
by (auto elim!:filterlim-mono simp:at-top-le-at-infinity)

ultimately show ?thesis using ‹p 6=0 › by (auto intro!:tendsto-eq-intros)
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qed

have ?thesis when degree q<degree p
proof −

have filterlim (λx. poly q x / poly p x) (at 0 ) at-top
proof (rule filterlim-atI )

show ((λx. poly q x / poly p x) −−−→ 0 ) at-top
using poly-divide-tendsto-0-at-infinity[OF that]
by (auto elim:filterlim-mono simp:at-top-le-at-infinity)

have ∀ F x in at-top. poly q x 6=0 ∀ F x in at-top. poly p x 6=0
using poly-eventually-not-zero[OF ‹q 6=0 ›] poly-eventually-not-zero[OF ‹p 6=0 ›]

filter-leD[OF at-top-le-at-infinity]
by auto

then show ∀ F x in at-top. poly q x / poly p x 6= 0
apply eventually-elim
by auto

qed
then show ?thesis unfolding ll-def using that by auto

qed
moreover have ?thesis when degree q=degree p
proof −

have ((λx. poly q x / poly p x) −−−→ lead-coeff q / lead-coeff p) at-top
using divide-cong qqpp-tendsto that unfolding dd-def
by (auto dest:tendsto-cong)

then show ?thesis unfolding ll-def using that by auto
qed
moreover have ?thesis when degree q>degree p sgn-pos-inf q ∗ sgn-pos-inf p >

0
proof −

have filterlim (λx. (qq x / pp x) ∗ dd x) at-top at-top
proof (subst filterlim-tendsto-pos-mult-at-top-iff [OF qqpp-tendsto])

show 0 < lead-coeff q / lead-coeff p using that(2 ) unfolding sgn-pos-inf-def
by (simp add: zero-less-divide-iff zero-less-mult-iff )

show filterlim dd at-top at-top
unfolding dd-def using that(1 )
by (auto intro!:filterlim-pow-at-top simp:filterlim-ident)

qed
then have LIM x at-top. poly q x / poly p x :> at-top

using filterlim-cong[OF - - divide-cong] by blast
then show ?thesis unfolding ll-def using that by auto

qed
moreover have ?thesis when degree q>degree p ¬ sgn-pos-inf q ∗ sgn-pos-inf

p > 0
proof −

have filterlim (λx. (qq x / pp x) ∗ dd x) at-bot at-top
proof (subst filterlim-tendsto-neg-mult-at-bot-iff [OF qqpp-tendsto])

show lead-coeff q / lead-coeff p < 0
using that(2 ) ‹p 6=0 › ‹q 6=0 › unfolding sgn-pos-inf-def
by (metis divide-eq-0-iff divide-sgn leading-coeff-0-iff
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linorder-neqE-linordered-idom sgn-divide sgn-greater)
show filterlim dd at-top at-top

unfolding dd-def using that(1 )
by (auto intro!:filterlim-pow-at-top simp:filterlim-ident)

qed
then have LIM x at-top. poly q x / poly p x :> at-bot

using filterlim-cong[OF - - divide-cong] by blast
then show ?thesis unfolding ll-def using that by auto

qed
ultimately show ?thesis by linarith

qed

lemma poly-divide-filterlim-at-bot:
fixes p q::real poly
defines ll≡( if degree q<degree p then

at 0
else if degree q=degree p then

nhds (lead-coeff q / lead-coeff p)
else if sgn-neg-inf q ∗ sgn-neg-inf p > 0 then

at-top
else

at-bot)
assumes p 6=0 q 6=0
shows filterlim (λx. poly q x / poly p x) ll at-bot

proof −
define pp where pp=(λx. poly p x / x^(degree p))
define qq where qq=(λx. poly q x / x^(degree q))
define dd where dd=(λx::real. if degree p>degree q then 1/x^(degree p − degree

q) else
x^(degree q − degree p))

have divide-cong:∀ F x in at-bot. poly q x / poly p x = qq x / pp x ∗ dd x
proof (rule eventually-at-bot-linorderI [of −1 ])

fix x assume (x::real)≤−1
then have x 6=0 by auto
then show poly q x / poly p x = qq x / pp x ∗ dd x

unfolding qq-def pp-def dd-def using assms
by (auto simp add:field-simps power-diff )

qed
have qqpp-tendsto:((λx. qq x / pp x) −−−→ lead-coeff q / lead-coeff p) at-bot
proof −

have (qq −−−→ lead-coeff q) at-bot
unfolding qq-def using poly-divide-tendsto-aux[of q]
by (auto elim!:filterlim-mono simp:at-bot-le-at-infinity)

moreover have (pp −−−→ lead-coeff p) at-bot
unfolding pp-def using poly-divide-tendsto-aux[of p]
by (auto elim!:filterlim-mono simp:at-bot-le-at-infinity)

ultimately show ?thesis using ‹p 6=0 › by (auto intro!:tendsto-eq-intros)
qed
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have ?thesis when degree q<degree p
proof −

have filterlim (λx. poly q x / poly p x) (at 0 ) at-bot
proof (rule filterlim-atI )

show ((λx. poly q x / poly p x) −−−→ 0 ) at-bot
using poly-divide-tendsto-0-at-infinity[OF that]
by (auto elim:filterlim-mono simp:at-bot-le-at-infinity)

have ∀ F x in at-bot. poly q x 6=0 ∀ F x in at-bot. poly p x 6=0
using poly-eventually-not-zero[OF ‹q 6=0 ›] poly-eventually-not-zero[OF ‹p 6=0 ›]

filter-leD[OF at-bot-le-at-infinity]
by auto

then show ∀ F x in at-bot. poly q x / poly p x 6= 0
by eventually-elim auto

qed
then show ?thesis unfolding ll-def using that by auto

qed
moreover have ?thesis when degree q=degree p
proof −

have ((λx. poly q x / poly p x) −−−→ lead-coeff q / lead-coeff p) at-bot
using divide-cong qqpp-tendsto that unfolding dd-def
by (auto dest:tendsto-cong)

then show ?thesis unfolding ll-def using that by auto
qed
moreover have ?thesis when degree q>degree p sgn-neg-inf q ∗ sgn-neg-inf p >

0
proof −

define cc where cc=lead-coeff q / lead-coeff p
have (cc > 0 ∧ even (degree q − degree p)) ∨ (cc<0 ∧ odd (degree q − degree

p))
proof −

have even (degree q − degree p) ←→
(even (degree q) ∧ even (degree p)) ∨ (odd (degree q) ∧ odd (degree p))

using ‹degree q>degree p› by auto
then show ?thesis
using that ‹p 6=0 › ‹q 6=0 › unfolding sgn-neg-inf-def cc-def zero-less-mult-iff

divide-less-0-iff zero-less-divide-iff
apply (simp add:if-split[of (<) 0 ] if-split[of (>) 0 ])
by argo

qed
moreover have filterlim (λx. (qq x / pp x) ∗ dd x) at-top at-bot

when cc>0 even (degree q − degree p)
proof (subst filterlim-tendsto-pos-mult-at-top-iff [OF qqpp-tendsto])

show 0 < lead-coeff q / lead-coeff p using ‹cc>0 › unfolding cc-def by auto
show filterlim dd at-top at-bot

unfolding dd-def using ‹degree q>degree p› that(2 )
by (auto intro!:filterlim-pow-at-bot-even simp:filterlim-ident)

qed
moreover have filterlim (λx. (qq x / pp x) ∗ dd x) at-top at-bot

when cc<0 odd (degree q − degree p)
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proof (subst filterlim-tendsto-neg-mult-at-top-iff [OF qqpp-tendsto])
show 0 > lead-coeff q / lead-coeff p using ‹cc<0 › unfolding cc-def by auto
show filterlim dd at-bot at-bot

unfolding dd-def using ‹degree q>degree p› that(2 )
by (auto intro!:filterlim-pow-at-bot-odd simp:filterlim-ident)

qed
ultimately have filterlim (λx. (qq x / pp x) ∗ dd x) at-top at-bot

by blast
then have LIM x at-bot. poly q x / poly p x :> at-top

using filterlim-cong[OF - - divide-cong] by blast
then show ?thesis unfolding ll-def using that by auto

qed
moreover have ?thesis when degree q>degree p ¬ sgn-neg-inf q ∗ sgn-neg-inf

p > 0
proof −

define cc where cc=lead-coeff q / lead-coeff p
have (cc < 0 ∧ even (degree q − degree p)) ∨ (cc > 0 ∧ odd (degree q − degree

p))
proof −

have even (degree q − degree p) ←→
(even (degree q) ∧ even (degree p)) ∨ (odd (degree q) ∧ odd (degree p))

using ‹degree q>degree p› by auto
then show ?thesis
using that ‹p 6=0 › ‹q 6=0 › unfolding sgn-neg-inf-def cc-def zero-less-mult-iff

divide-less-0-iff zero-less-divide-iff
apply (simp add:if-split[of (<) 0 ] if-split[of (>) 0 ])
by (metis leading-coeff-0-iff linorder-neqE-linordered-idom)

qed
moreover have filterlim (λx. (qq x / pp x) ∗ dd x) at-bot at-bot

when cc<0 even (degree q − degree p)
proof (subst filterlim-tendsto-neg-mult-at-bot-iff [OF qqpp-tendsto])

show 0 > lead-coeff q / lead-coeff p using ‹cc<0 › unfolding cc-def by auto
show filterlim dd at-top at-bot

unfolding dd-def using ‹degree q>degree p› that(2 )
by (auto intro!:filterlim-pow-at-bot-even simp:filterlim-ident)

qed
moreover have filterlim (λx. (qq x / pp x) ∗ dd x) at-bot at-bot

when cc>0 odd (degree q − degree p)
proof (subst filterlim-tendsto-pos-mult-at-bot-iff [OF qqpp-tendsto])

show 0 < lead-coeff q / lead-coeff p using ‹cc>0 › unfolding cc-def by auto
show filterlim dd at-bot at-bot

unfolding dd-def using ‹degree q>degree p› that(2 )
by (auto intro!:filterlim-pow-at-bot-odd simp:filterlim-ident)

qed
ultimately have filterlim (λx. (qq x / pp x) ∗ dd x) at-bot at-bot

by blast
then have LIM x at-bot. poly q x / poly p x :> at-bot

using filterlim-cong[OF - - divide-cong] by blast
then show ?thesis unfolding ll-def using that by auto
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qed
ultimately show ?thesis by linarith

qed

lemma sgnx-poly-times:
assumes F=at-bot ∨ F=at-top ∨ F=at-right x ∨ F=at-left x
shows sgnx (poly (p∗q)) F = sgnx (poly p) F ∗ sgnx (poly q) F
(is ?PQ = ?P ∗ ?Q)

proof −
have (poly p has-sgnx ?P) F

(poly q has-sgnx ?Q) F
by (rule sgnx-able-sgnx;use assms sgnx-able-poly in blast)+

from has-sgnx-times[OF this]
have (poly (p∗q) has-sgnx ?P∗?Q) F

by (simp flip:poly-mult)
moreover have (poly (p∗q) has-sgnx ?PQ) F

by (rule sgnx-able-sgnx;use assms sgnx-able-poly in blast)+
ultimately show ?thesis

using has-sgnx-unique assms by auto
qed

lemma sgnx-poly-plus:
assumes poly p x=0 poly q x 6=0 and F :F=at-right x ∨ F=at-left x
shows sgnx (poly (p+q)) F = sgnx (poly q) F (is ?L=?R)

proof −
have ((poly (p+q)) has-sgnx ?R) F
proof −

have sgnx (poly q) F = sgn (poly q x)
using F assms(2 ) sgnx-poly-nz(1 ) sgnx-poly-nz(2 ) by presburger

moreover have ((λx. poly (p+q) x) has-sgnx sgn (poly q x)) F
proof (rule tendsto-nonzero-has-sgnx)

have ((poly p) −−−→ 0 ) F
by (metis F assms(1 ) poly-tendsto(2 ) poly-tendsto(3 ))

then have ((λx. poly p x + poly q x) −−−→ poly q x) F
apply (elim tendsto-add[where a=0 ,simplified])
using F poly-tendsto(2 ) poly-tendsto(3 ) by blast

then show ((λx. poly (p + q) x) −−−→ poly q x) F
by auto

qed fact
ultimately show ?thesis by metis

qed
from has-sgnx-imp-sgnx[OF this] F
show ?thesis by auto

qed

lemma sign-r-pos-plus-imp:
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assumes sign-r-pos p x sign-r-pos q x
shows sign-r-pos (p+q) x
using assms unfolding sign-r-pos-def
by eventually-elim auto

lemma cindex-poly-combine:
assumes a<b b<c
shows cindex-poly a b q p + jump-poly q p b + cindex-poly b c q p = cindex-poly

a c q p
proof (cases p 6=0 )

case True
define A B C D where A = {x. poly p x = 0 ∧ a < x ∧ x < c}

and B = {x. poly p x = 0 ∧ a < x ∧ x < b}
and C = (if poly p b = 0 then {b} else {})
and D = {x. poly p x = 0 ∧ b < x ∧ x < c}

let ?sum=sum (λx. jump-poly q p x)

have cindex-poly a c q p = ?sum A
unfolding cindex-poly-def A-def by simp

also have ... = ?sum (B ∪ C ∪ D)
apply (rule arg-cong2 [where f=sum])
unfolding A-def B-def C-def D-def using less-linear assms by auto

also have ... = ?sum B + ?sum C + ?sum D
proof −

have finite B finite C finite D
unfolding B-def C-def D-def using True
by (auto simp add: poly-roots-finite)

moreover have B ∩ C = {} C ∩ D = {} B ∩ D = {}
unfolding B-def C-def D-def using assms by auto

ultimately show ?thesis
by (subst sum.union-disjoint;auto)+

qed
also have ... = cindex-poly a b q p + jump-poly q p b + cindex-poly b c q p
proof −

have ?sum C = jump-poly q p b
unfolding C-def using jump-poly-not-root by auto

then show ?thesis unfolding cindex-poly-def B-def D-def
by auto

qed
finally show ?thesis by simp

qed auto

lemma coprime-linear-comp: — TODO: need to be generalised
fixes b c::real
defines r0 ≡ [:b,c:]
assumes coprime p q c 6=0
shows coprime (p ◦p r0 ) (q ◦p r0 )

proof −
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define g where g = gcd (p ◦p r0 ) (q ◦p r0 )
define p ′ where p ′ = (p ◦p r0 ) div g
define q ′ where q ′ = (q ◦p r0 ) div g
define r1 where r1 = [:−b/c,1/c:]

have r-id:
r0 ◦p r1 = [:0 ,1 :]
r1 ◦p r0 = [:0 ,1 :]

unfolding r0-def r1-def using ‹c 6=0 ›
by (simp add: pcompose-pCons)+

have p = (g ◦p r1 ) ∗ (p ′ ◦p r1 )
proof −

from r-id have p = p ◦p (r0 ◦p r1 )
by (metis pcompose-idR)

also have ... = (g ∗ p ′) ◦p r1
unfolding g-def p ′-def by (auto simp:pcompose-assoc)

also have ... = (g ◦p r1 ) ∗ (p ′ ◦p r1 )
unfolding pcompose-mult by simp

finally show ?thesis .
qed
moreover have q = (g ◦p r1 ) ∗ (q ′ ◦p r1 )
proof −

from r-id have q = q ◦p (r0 ◦p r1 )
by (metis pcompose-idR)

also have ... = (g ∗ q ′) ◦p r1
unfolding g-def q ′-def by (auto simp:pcompose-assoc)

also have ... = (g ◦p r1 ) ∗ (q ′ ◦p r1 )
unfolding pcompose-mult by simp

finally show ?thesis .
qed
ultimately have (g ◦p r1 ) dvd gcd p q by simp
then have g ◦p r1 dvd 1

using ‹coprime p q› by auto
from pcompose-hom.hom-dvd-1 [OF this]
have is-unit (g ◦p (r1 ◦p r0 ))

by (auto simp:pcompose-assoc)
then have is-unit g

using r-id pcompose-idR by auto
then show coprime (p ◦p r0 ) (q ◦p r0 ) unfolding g-def

using is-unit-gcd by blast
qed

lemma finite-ReZ-segments-poly-rectpath:
finite-ReZ-segments (poly p ◦ rectpath a b) z

unfolding rectpath-def Let-def path-compose-join
by ((subst finite-ReZ-segments-joinpaths

|intro path-poly-comp conjI );
(simp add:poly-linepath-comp finite-ReZ-segments-poly-of-real path-compose-join
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pathfinish-compose pathstart-compose poly-pcompose)?)+

lemma valid-path-poly-linepath:
fixes a b:: ′a::real-normed-field
shows valid-path (poly p o linepath a b)

proof (rule valid-path-compose)
show valid-path (linepath a b) by simp
show

∧
x. x ∈ path-image (linepath a b) =⇒ poly p field-differentiable at x

by simp
show continuous-on (path-image (linepath a b)) (deriv (poly p))

unfolding deriv-pderiv by (auto intro:continuous-intros)
qed

lemma valid-path-poly-rectpath: valid-path (poly p o rectpath a b)
unfolding rectpath-def Let-def path-compose-join
by (simp add: pathfinish-compose pathstart-compose valid-path-poly-linepath)

2.2 Sign difference
definition psign-diff :: real poly ⇒real poly ⇒ real ⇒ int where

psign-diff p q x = (if poly p x = 0 ∧ poly q x = 0 then
1 else |sign (poly p x) − sign (poly q x)|)

lemma psign-diff-alt:
assumes coprime p q
shows psign-diff p q x = |sign (poly p x) − sign (poly q x)|
unfolding psign-diff-def by (meson assms coprime-poly-0 )

lemma psign-diff-0 [simp]:
psign-diff 0 q x = 1
psign-diff p 0 x = 1
unfolding psign-diff-def by (auto simp add:sign-def )

lemma psign-diff-poly-commute:
psign-diff p q x = psign-diff q p x
unfolding psign-diff-def
by (metis abs-minus-commute gcd.commute)

lemma normalize-real-poly:
normalize p = smult (1/lead-coeff p) (p::real poly)
unfolding normalize-poly-def
by (smt (z3 ) div-unit-factor normalize-eq-0-iff normalize-poly-def

normalize-unit-factor smult-eq-0-iff smult-eq-iff
smult-normalize-field-eq unit-factor-1 )

lemma psign-diff-cancel:
assumes poly r x 6=0
shows psign-diff (r∗p) (r∗q) x = psign-diff p q x
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proof −
have poly (r ∗ p) x = 0 ←→ poly p x=0

by (simp add: assms)
moreover have poly (r ∗ q) x = 0 ←→ poly q x=0 by (simp add: assms)
moreover have |sign (poly (r ∗ p) x) − sign (poly (r ∗ q) x)|

= |sign (poly p x) − sign (poly q x)|
proof −

have |sign (poly (r ∗ p) x) − sign (poly (r ∗ q) x)|
= |sign (poly r x) ∗ (sign (poly p x) − sign (poly q x))|

by (simp add:algebra-simps sign-times)
also have ... = |sign (poly r x) |

∗ |sign (poly p x) − sign (poly q x)|
unfolding abs-mult by simp

also have ... = |sign (poly p x) − sign (poly q x)|
by (simp add: Sturm-Tarski.sign-def assms)

finally show ?thesis .
qed
ultimately show ?thesis

unfolding psign-diff-def by auto
qed

lemma psign-diff-clear : psign-diff p q x = psign-diff 1 (p ∗ q) x
unfolding psign-diff-def
apply (simp add:sign-times )
by (simp add: sign-def )

lemma psign-diff-linear-comp:
fixes b c::real
defines h ≡ (λp. pcompose p [:b,c:])
shows psign-diff (h p) (h q) x = psign-diff p q (c ∗ x + b)
unfolding psign-diff-def h-def poly-pcompose
by (smt (verit, del-insts) mult.commute mult-eq-0-iff poly-0 poly-pCons)

2.3 Alternative definition of cross
definition cross-alt :: real poly ⇒real poly ⇒ real ⇒ real ⇒ int where

cross-alt p q a b= psign-diff p q a − psign-diff p q b

lemma cross-alt-0 [simp]:
cross-alt 0 q a b = 0
cross-alt p 0 a b = 0
unfolding cross-alt-def by simp-all

lemma cross-alt-poly-commute:
cross-alt p q a b = cross-alt q p a b
unfolding cross-alt-def using psign-diff-poly-commute by auto

lemma cross-alt-clear :
cross-alt p q a b = cross-alt 1 (p∗q) a b
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unfolding cross-alt-def using psign-diff-clear by metis

lemma cross-alt-alt:
cross-alt p q a b = sign (poly (p∗q) b) − sign (poly (p∗q) a)
apply (subst cross-alt-clear)
unfolding cross-alt-def psign-diff-def by (auto simp add:sign-def )

lemma cross-alt-coprime-0 :
assumes coprime p q p=0∨q=0
shows cross-alt p q a b=0

proof −
have ?thesis when p=0
proof −

have is-unit q using that ‹coprime p q›
by simp

then obtain a where a 6=0 q=[:a:] using is-unit-pCons-ex-iff by blast
then show ?thesis using that unfolding cross-alt-def by auto

qed
moreover have ?thesis when q=0
proof −

have is-unit p using that ‹coprime p q›
by simp

then obtain a where a 6=0 p=[:a:] using is-unit-pCons-ex-iff by blast
then show ?thesis using that unfolding cross-alt-def by auto

qed
ultimately show ?thesis using ‹p=0∨q=0 › by auto

qed

lemma cross-alt-cancel:
assumes poly q a 6=0 poly q b 6=0
shows cross-alt (q ∗ r) (q ∗ s) a b = cross-alt r s a b
unfolding cross-alt-def using psign-diff-cancel assms by auto

lemma cross-alt-noroot:
assumes a<b and ∀ x. a≤x ∧ x≤b −→ poly (p∗q) x 6=0
shows cross-alt p q a b = 0

proof −
define pq where pq = p∗q
have cross-alt p q a b = psign-diff 1 pq a − psign-diff 1 pq b

apply (subst cross-alt-clear)
unfolding cross-alt-def pq-def by simp

also have ... = |1 − sign (poly pq a)| − |1 − sign (poly pq b)|
unfolding psign-diff-def by simp

also have ... = sign (poly pq b) − sign (poly pq a)
unfolding sign-def by auto

also have ... = 0
proof (rule ccontr)

assume sign (poly pq b) − sign (poly pq a) 6= 0
then have poly pq a ∗ poly pq b < 0
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by (smt (verit, best) Sturm-Tarski.sign-def assms(1 ) assms(2 )
divisors-zero eq-iff-diff-eq-0 pq-def zero-less-mult-pos zero-less-mult-pos2 )

from poly-IVT [OF ‹a<b› this]
have ∃ x>a. x < b ∧ poly pq x = 0 .
then show False using ‹∀ x. a≤x ∧ x≤b −→ poly (p∗q) x 6=0 › ‹a<b›

apply (fold pq-def )
by auto

qed
finally show ?thesis .

qed

lemma cross-alt-linear-comp:
fixes b c::real
defines h ≡ (λp. pcompose p [:b,c:])
shows cross-alt (h p) (h q) lb ub = cross-alt p q (c ∗ lb + b) (c ∗ ub + b)
unfolding cross-alt-def h-def
by (subst (1 2 ) psign-diff-linear-comp;simp)

2.4 Alternative sign variation sequencse
fun changes-alt:: ( ′a ::linordered-idom) list ⇒ int where

changes-alt [] = 0 |
changes-alt [-] = 0 |
changes-alt (x1#x2#xs) = abs(sign x1 − sign x2 ) + changes-alt (x2#xs)

definition changes-alt-poly-at::( ′a ::linordered-idom) poly list ⇒ ′a ⇒ int where
changes-alt-poly-at ps a= changes-alt (map (λp. poly p a) ps)

definition changes-alt-itv-smods:: real ⇒ real ⇒real poly ⇒ real poly ⇒ int
where

changes-alt-itv-smods a b p q= (let ps= smods p q
in changes-alt-poly-at ps a − changes-alt-poly-at ps b)

lemma changes-alt-itv-smods-rec:
assumes a<b coprime p q
shows changes-alt-itv-smods a b p q = cross-alt p q a b + changes-alt-itv-smods

a b q (−(p mod q))
proof (cases p = 0 ∨ q = 0 ∨ q dvd p)

case True
moreover have p=0 ∨ q=0 =⇒ ?thesis

using cross-alt-coprime-0
unfolding changes-alt-itv-smods-def changes-alt-poly-at-def by fastforce

moreover have [[p 6=0 ;q 6=0 ;p mod q = 0 ]] =⇒ ?thesis
unfolding changes-alt-itv-smods-def changes-alt-poly-at-def cross-alt-def

psign-diff-alt[OF ‹coprime p q›]
by (simp add:sign-times)

ultimately show ?thesis
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by auto (auto elim: dvdE)
next

case False
hence p 6=0 q 6=0 p mod q 6=0 by auto
then obtain ps where ps:smods p q=p#q#−(p mod q)#ps smods q (−(p mod

q)) = q#−(p mod q)#ps
by auto

define changes-diff where changes-diff≡λx. changes-alt-poly-at (p#q#−(p mod
q)#ps) x
− changes-alt-poly-at (q#−(p mod q)#ps) x

have changes-diff a − changes-diff b=cross-alt p q a b
unfolding changes-diff-def changes-alt-poly-at-def cross-alt-def

psign-diff-alt[OF ‹coprime p q›]
by simp

thus ?thesis unfolding changes-alt-itv-smods-def changes-diff-def changes-alt-poly-at-def
ps

by force
qed

2.5 jumpF on polynomials
definition jumpF-polyR:: real poly ⇒ real poly ⇒ real ⇒ real where

jumpF-polyR q p a = jumpF (λx. poly q x / poly p x) (at-right a)

definition jumpF-polyL:: real poly ⇒ real poly ⇒ real ⇒ real where
jumpF-polyL q p a = jumpF (λx. poly q x / poly p x) (at-left a)

definition jumpF-poly-top:: real poly ⇒ real poly ⇒ real where
jumpF-poly-top q p = jumpF (λx. poly q x / poly p x) at-top

definition jumpF-poly-bot:: real poly ⇒ real poly ⇒ real where
jumpF-poly-bot q p = jumpF (λx. poly q x / poly p x) at-bot

lemma jumpF-polyR-0 [simp]: jumpF-polyR 0 p a = 0 jumpF-polyR q 0 a = 0
unfolding jumpF-polyR-def by auto

lemma jumpF-polyL-0 [simp]: jumpF-polyL 0 p a = 0 jumpF-polyL q 0 a = 0
unfolding jumpF-polyL-def by auto

lemma jumpF-polyR-mult-cancel:
assumes p ′6=0
shows jumpF-polyR (p ′ ∗ q) (p ′ ∗ p) a = jumpF-polyR q p a

unfolding jumpF-polyR-def
proof (rule jumpF-cong)

obtain ub where a < ub ∀ z. a < z ∧ z ≤ ub −→ poly p ′ z 6= 0
using next-non-root-interval[OF ‹p ′6=0 ›,of a] by auto

then show ∀ F x in at-right a. poly (p ′ ∗ q) x / poly (p ′ ∗ p) x = poly q x / poly
p x
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apply (unfold eventually-at-right)
apply (intro exI [where x=ub])
by auto

qed simp

lemma jumpF-polyL-mult-cancel:
assumes p ′6=0
shows jumpF-polyL (p ′ ∗ q) (p ′ ∗ p) a = jumpF-polyL q p a

unfolding jumpF-polyL-def
proof (rule jumpF-cong)

obtain lb where lb < a ∀ z. lb ≤ z ∧ z < a −→ poly p ′ z 6= 0
using last-non-root-interval[OF ‹p ′6=0 ›,of a] by auto

then show ∀ F x in at-left a. poly (p ′ ∗ q) x / poly (p ′ ∗ p) x = poly q x / poly
p x

apply (unfold eventually-at-left)
apply (intro exI [where x=lb])
by auto

qed simp

lemma jumpF-poly-noroot:
assumes poly p a 6=0
shows jumpF-polyL q p a = 0 jumpF-polyR q p a = 0
subgoal unfolding jumpF-polyL-def using assms

apply (intro jumpF-not-infinity)
by (auto intro!:continuous-intros)

subgoal unfolding jumpF-polyR-def using assms
apply (intro jumpF-not-infinity)
by (auto intro!:continuous-intros)

done

lemma jumpF-polyR-coprime ′:
assumes poly p x 6=0 ∨ poly q x 6=0
shows jumpF-polyR q p x = (if p 6= 0 ∧ q 6= 0 ∧ poly p x=0 then

if sign-r-pos p x ←→ poly q x>0 then 1/2 else − 1/2
else 0 )
proof (cases p=0 ∨ q=0 ∨ poly p x 6=0 )

case True
then show ?thesis using jumpF-poly-noroot by fastforce

next
case False
then have asm:p 6=0 q 6=0 poly p x=0 by auto
then have poly q x 6=0 using assms using coprime-poly-0 by blast
have ?thesis when sign-r-pos p x ←→ poly q x>0
proof −

have (poly p has-sgnx sgn (poly q x)) (at-right x)
by (smt (z3 ) False ‹poly q x 6= 0 › has-sgnx-imp-sgnx

poly-has-sgnx-values(2 ) sgn-real-def sign-r-pos-sgnx-iff that
trivial-limit-at-right-real)

then have LIM x at-right x. poly q x / poly p x :> at-top
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apply (subst filterlim-divide-at-bot-at-top-iff [of - poly q x])
apply (auto simp add:‹poly q x 6=0 ›)
by (metis asm(3 ) poly-tendsto(3 ))

then have jumpF-polyR q p x = 1/2
unfolding jumpF-polyR-def jumpF-def by auto

then show ?thesis using that False by auto
qed
moreover have ?thesis when ¬ (sign-r-pos p x ←→ poly q x>0 )
proof −

have (poly p has-sgnx − sgn (poly q x)) (at-right x)
proof −

have (0 ::real) < 1 ∨ ¬ (1 ::real) < 0 ∧ sign-r-pos p x
∨ (poly p has-sgnx − sgn (poly q x)) (at-right x)

by simp
then show ?thesis
by (metis (no-types) False ‹poly q x 6= 0 › add.inverse-inverse has-sgnx-imp-sgnx

neg-less-0-iff-less poly-has-sgnx-values(2 ) sgn-if sgn-less sign-r-pos-sgnx-iff

that trivial-limit-at-right-real)
qed
then have LIM x at-right x. poly q x / poly p x :> at-bot

apply (subst filterlim-divide-at-bot-at-top-iff [of - poly q x])
apply (auto simp add:‹poly q x 6=0 ›)
by (metis asm(3 ) poly-tendsto(3 ))

then have jumpF-polyR q p x = − 1/2
unfolding jumpF-polyR-def jumpF-def by auto

then show ?thesis using that False by auto
qed
ultimately show ?thesis by auto

qed

lemma jumpF-polyR-coprime:
assumes coprime p q
shows jumpF-polyR q p x = (if p 6= 0 ∧ q 6= 0 ∧ poly p x=0 then

if sign-r-pos p x ←→ poly q x>0 then 1/2 else − 1/2
else 0 )

apply (rule jumpF-polyR-coprime ′)
using assms coprime-poly-0 by blast

lemma jumpF-polyL-coprime ′:
assumes poly p x 6=0 ∨ poly q x 6=0
shows jumpF-polyL q p x = (if p 6= 0 ∧ q 6= 0 ∧ poly p x=0 then

if even (order x p) ←→ sign-r-pos p x ←→ poly q x>0 then 1/2 else
− 1/2 else 0 )
proof (cases p=0 ∨ q=0 ∨ poly p x 6=0 )

case True
then show ?thesis using jumpF-poly-noroot by fastforce

next
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case False
then have asm:p 6=0 q 6=0 poly p x=0 by auto
then have poly q x 6=0 using assms using coprime-poly-0 by blast
have ?thesis when even (order x p) ←→ sign-r-pos p x ←→ poly q x>0
proof −

consider (lt) poly q x>0 | (gt) poly q x<0 using ‹poly q x 6=0 › by linarith
then have sgnx (poly p) (at-left x) = sgn (poly q x)

apply cases
subgoal using that sign-r-pos-sgnx-iff poly-sgnx-values[OF ‹p 6=0 ›,of x]

apply (subst poly-sgnx-left-right[OF ‹p 6=0 ›])
by auto

subgoal using that sign-r-pos-sgnx-iff poly-sgnx-values[OF ‹p 6=0 ›,of x]
apply (subst poly-sgnx-left-right[OF ‹p 6=0 ›])
by auto

done
then have (poly p has-sgnx sgn (poly q x)) (at-left x)

by (metis sgnx-able-poly(2 ) sgnx-able-sgnx)
then have LIM x at-left x. poly q x / poly p x :> at-top

apply (subst filterlim-divide-at-bot-at-top-iff [of - poly q x])
apply (auto simp add:‹poly q x 6=0 ›)
by (metis asm(3 ) poly-tendsto(2 ))

then have jumpF-polyL q p x = 1/2
unfolding jumpF-polyL-def jumpF-def by auto

then show ?thesis using that False by auto
qed
moreover have ?thesis when ¬ (even (order x p) ←→ sign-r-pos p x ←→ poly

q x>0 )
proof −

consider (lt) poly q x>0 | (gt) poly q x<0 using ‹poly q x 6=0 › by linarith
then have sgnx (poly p) (at-left x) = − sgn (poly q x)

apply cases
subgoal using that sign-r-pos-sgnx-iff poly-sgnx-values[OF ‹p 6=0 ›,of x]

apply (subst poly-sgnx-left-right[OF ‹p 6=0 ›])
by auto

subgoal using that sign-r-pos-sgnx-iff poly-sgnx-values[OF ‹p 6=0 ›,of x]
apply (subst poly-sgnx-left-right[OF ‹p 6=0 ›])
by auto

done
then have (poly p has-sgnx − sgn (poly q x)) (at-left x)

by (metis sgnx-able-poly(2 ) sgnx-able-sgnx)
then have LIM x at-left x. poly q x / poly p x :> at-bot

apply (subst filterlim-divide-at-bot-at-top-iff [of - poly q x])
apply (auto simp add:‹poly q x 6=0 ›)
by (metis asm(3 ) poly-tendsto(2 ))

then have jumpF-polyL q p x = − 1/2
unfolding jumpF-polyL-def jumpF-def by auto

then show ?thesis using that False by auto
qed
ultimately show ?thesis by auto
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qed

lemma jumpF-polyL-coprime:
assumes coprime p q
shows jumpF-polyL q p x = (if p 6= 0 ∧ q 6= 0 ∧ poly p x=0 then

if even (order x p) ←→ sign-r-pos p x ←→ poly q x>0 then 1/2 else
− 1/2 else 0 )

apply (rule jumpF-polyL-coprime ′)
using assms coprime-poly-0 by blast

lemma jumpF-times:
assumes tendsto:(f −−−→ c) F and c 6=0 F 6=bot
shows jumpF (λx. f x ∗ g x) F = sgn c ∗ jumpF g F

proof −
have c>0 ∨ c<0 using ‹c 6=0 › by auto
moreover have ?thesis when c>0
proof −

note filterlim-tendsto-pos-mult-at-top-iff [OF tendsto ‹c>0 ›,of g]
moreover note filterlim-tendsto-pos-mult-at-bot-iff [OF tendsto ‹c>0 ›,of g]
moreover have sgn c = 1 using ‹c>0 › by auto
ultimately show ?thesis unfolding jumpF-def by auto

qed
moreover have ?thesis when c<0
proof −

define atbot where atbot = filterlim g at-bot F
define attop where attop = filterlim g at-top F
have jumpF (λx. f x ∗ g x) F = (if atbot then 1 / 2 else if attop then − 1 / 2

else 0 )
proof −

note filterlim-tendsto-neg-mult-at-top-iff [OF tendsto ‹c<0 ›,of g]
moreover note filterlim-tendsto-neg-mult-at-bot-iff [OF tendsto ‹c<0 ›,of g]
ultimately show ?thesis unfolding jumpF-def atbot-def attop-def by auto

qed
also have ... = − (if attop then 1 / 2 else if atbot then − 1 / 2 else 0 )
proof −

have False when atbot attop
using filterlim-at-top-at-bot[OF - - ‹F 6=bot›] that unfolding atbot-def

attop-def by auto
then show ?thesis by fastforce

qed
also have ... = sgn c ∗ jumpF g F

using ‹c<0 › unfolding jumpF-def attop-def atbot-def by auto
finally show ?thesis .

qed
ultimately show ?thesis by auto

qed

lemma jumpF-polyR-inverse-add:
assumes coprime p q
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shows jumpF-polyR q p x + jumpF-polyR p q x = jumpF-polyR 1 (q∗p) x
proof (cases p=0 ∨ q=0 )

case True
then show ?thesis by auto

next
case False
have jumpF-add:

jumpF-polyR q p x= jumpF-polyR 1 (q∗p) x when poly p x=0 coprime p q for
p q

proof (cases p=0 )
case True
then show ?thesis by auto

next
case False
have poly q x 6=0 using that coprime-poly-0 by blast
then have q 6=0 by auto
moreover have sign-r-pos p x = (0 < poly q x) ←→ sign-r-pos (q ∗ p) x

using sign-r-pos-mult[OF ‹q 6=0 › ‹p 6=0 ›] sign-r-pos-rec[OF ‹q 6=0 ›] ‹poly q
x 6=0 ›

by auto
ultimately show ?thesis using ‹poly p x=0 ›
unfolding jumpF-polyR-coprime[OF ‹coprime p q›,of x] jumpF-polyR-coprime[of

q∗p 1 x,simplified]
by auto

qed
have False when poly p x=0 poly q x=0

using ‹coprime p q› that coprime-poly-0 by blast
moreover have ?thesis when poly p x=0 poly q x 6=0
proof −

have jumpF-polyR p q x = 0 using jumpF-poly-noroot[OF ‹poly q x 6=0 ›] by
auto

then show ?thesis using jumpF-add[OF ‹poly p x=0 › ‹coprime p q›] by auto
qed
moreover have ?thesis when poly p x 6=0 poly q x=0
proof −

have jumpF-polyR q p x = 0 using jumpF-poly-noroot[OF ‹poly p x 6=0 ›] by
auto

then show ?thesis using jumpF-add[OF ‹poly q x=0 ›,of p] ‹coprime p q›
by (simp add: ac-simps)

qed
moreover have ?thesis when poly p x 6=0 poly q x 6=0

by (simp add: jumpF-poly-noroot(2 ) that(1 ) that(2 ))
ultimately show ?thesis by auto

qed

lemma jumpF-polyL-inverse-add:
assumes coprime p q
shows jumpF-polyL q p x + jumpF-polyL p q x = jumpF-polyL 1 (q∗p) x

proof (cases p=0 ∨ q=0 )
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case True
then show ?thesis by auto

next
case False
have jumpF-add:

jumpF-polyL q p x= jumpF-polyL 1 (q∗p) x when poly p x=0 coprime p q for
p q

proof (cases p=0 )
case True
then show ?thesis by auto

next
case False
have poly q x 6=0 using that coprime-poly-0 by blast
then have q 6=0 by auto
moreover have sign-r-pos p x = (0 < poly q x) ←→ sign-r-pos (q ∗ p) x

using sign-r-pos-mult[OF ‹q 6=0 › ‹p 6=0 ›] sign-r-pos-rec[OF ‹q 6=0 ›] ‹poly q
x 6=0 ›

by auto
moreover have order x p = order x (q ∗ p)

by (metis ‹poly q x 6= 0 › add-cancel-right-left divisors-zero order-mult or-
der-root)

ultimately show ?thesis using ‹poly p x=0 ›
unfolding jumpF-polyL-coprime[OF ‹coprime p q›,of x] jumpF-polyL-coprime[of

q∗p 1 x,simplified]
by auto

qed
have False when poly p x=0 poly q x=0

using ‹coprime p q› that coprime-poly-0 by blast
moreover have ?thesis when poly p x=0 poly q x 6=0
proof −

have jumpF-polyL p q x = 0 using jumpF-poly-noroot[OF ‹poly q x 6=0 ›] by
auto

then show ?thesis using jumpF-add[OF ‹poly p x=0 › ‹coprime p q›] by auto
qed
moreover have ?thesis when poly p x 6=0 poly q x=0
proof −

have jumpF-polyL q p x = 0 using jumpF-poly-noroot[OF ‹poly p x 6=0 ›] by
auto

then show ?thesis using jumpF-add[OF ‹poly q x=0 ›,of p] ‹coprime p q›
by (simp add: ac-simps)

qed
moreover have ?thesis when poly p x 6=0 poly q x 6=0

by (simp add: jumpF-poly-noroot that(1 ) that(2 ))
ultimately show ?thesis by auto

qed

lemma jumpF-polyL-smult-1 :
jumpF-polyL (smult c q) p x = sgn c ∗ jumpF-polyL q p x
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proof (cases c=0 )
case True
then show ?thesis by auto

next
case False
then show ?thesis

unfolding jumpF-polyL-def
apply (subst jumpF-times[of λ-. c,symmetric])
by auto

qed

lemma jumpF-polyR-smult-1 :
jumpF-polyR (smult c q) p x = sgn c ∗ jumpF-polyR q p x

proof (cases c=0 )
case True
then show ?thesis by auto

next
case False
then show ?thesis

unfolding jumpF-polyR-def using False
apply (subst jumpF-times[of λ-. c,symmetric])
by auto

qed

lemma
shows jumpF-polyR-mod:jumpF-polyR q p x = jumpF-polyR (q mod p) p x and

jumpF-polyL-mod:jumpF-polyL q p x = jumpF-polyL (q mod p) p x
proof −

define f where f=(λx. poly (q div p) x)
define g where g=(λx. poly (q mod p) x / poly p x)
have jumpF-eq:jumpF (λx. poly q x / poly p x) (at y within S) = jumpF g (at y

within S)
when p 6=0 for y S

proof −
let ?F = at y within S
have ∀ F x in at y within S . poly p x 6= 0

using eventually-poly-nz-at-within[OF ‹p 6=0 ›,of y S ] .
then have eventually (λx. (poly q x / poly p x) = (f x+ g x)) ?F
proof (rule eventually-mono)

fix x
assume P: poly p x 6= 0
have poly q x = poly (q div p ∗ p + q mod p) x

by simp
also have . . . = f x ∗ poly p x + poly (q mod p) x

by (simp only: poly-add poly-mult f-def g-def )
moreover have poly (q mod p) x = g x ∗ poly p x

using P by (simp add: g-def )
ultimately show poly q x / poly p x = f x + g x
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using P by simp
qed
then have jumpF (λx. poly q x / poly p x) ?F = jumpF (λx. f x+ g x) ?F

by (intro jumpF-cong,auto)
also have ... = jumpF g ?F
proof −

have (f −−−→ f y) (at y within S)
unfolding f-def by (intro tendsto-intros)

from filterlim-tendsto-add-at-bot-iff [OF this,of g] filterlim-tendsto-add-at-top-iff [OF
this,of g]

show ?thesis unfolding jumpF-def by auto
qed
finally show ?thesis .

qed
show jumpF-polyR q p x = jumpF-polyR (q mod p) p x

apply (cases p=0 )
subgoal by auto
subgoal using jumpF-eq unfolding g-def jumpF-polyR-def by auto
done

show jumpF-polyL q p x = jumpF-polyL (q mod p) p x
apply (cases p=0 )
subgoal by auto
subgoal using jumpF-eq unfolding g-def jumpF-polyL-def by auto
done

qed

lemma
assumes order x p ≤ order x r
shows jumpF-polyR-order-leq: jumpF-polyR (r+q) p x = jumpF-polyR q p x

and jumpF-polyL-order-leq: jumpF-polyL (r+q) p x = jumpF-polyL q p x
proof −

define f g h where f=(λx. poly (q + r) x / poly p x)
and g=(λx. poly q x / poly p x)
and h=(λx. poly r x / poly p x)

have ∃ c. h −x→ c if p 6=0 r 6=0
proof −

define xo where xo=[:− x, 1 :] ^ order x p
obtain p ′ where p = xo ∗ p ′ ¬ [:− x, 1 :] dvd p ′

using order-decomp[OF ‹p 6=0 ›,of x] unfolding xo-def by auto
define r ′ where r ′= r div xo
define h ′ where h ′ = (λx. poly r ′ x/ poly p ′ x)

have ∀ F x in at x. h x = h ′ x
proof −

obtain S where open S x∈S by blast
moreover have h w = h ′ w if w∈S w 6=x for w
proof −

have r=xo ∗ r ′
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proof −
have xo dvd r

unfolding xo-def using ‹r 6=0 › assms
by (subst order-divides) simp

then show ?thesis unfolding r ′-def by simp
qed
moreover have poly xo w 6=0

unfolding xo-def using ‹w 6=x› by simp
moreover note ‹p = xo ∗ p ′›
ultimately show ?thesis

unfolding h-def h ′-def by auto
qed
ultimately show ?thesis

unfolding eventually-at-topological by auto
qed
moreover have h ′−x→ h ′ x
proof −

have poly p ′ x 6=0
using ‹¬ [:− x, 1 :] dvd p ′› poly-eq-0-iff-dvd by blast

then show ?thesis
unfolding h ′-def
by (auto intro!:tendsto-eq-intros)

qed
ultimately have h −x→ h ′ x

using tendsto-cong by auto
then show ?thesis by auto

qed
then obtain c where left:(h −−−→ c) (at-left x)

and right:(h −−−→ c) (at-right x)
if p 6=0 r 6=0

unfolding filterlim-at-split by auto

show jumpF-polyR (r+q) p x = jumpF-polyR q p x
proof (cases p=0 ∨ r=0 )

case False
have jumpF-polyR (r+q) p x =

(if filterlim (λx. h x + g x) at-top (at-right x)
then 1 / 2
else if filterlim (λx. h x + g x) at-bot (at-right x)
then − 1 / 2 else 0 )

unfolding jumpF-polyR-def jumpF-def g-def h-def
by (simp add:poly-add add-divide-distrib)

also have ... =
(if filterlim g at-top (at-right x) then 1 / 2

else if filterlim g at-bot (at-right x) then − 1 / 2 else 0 )
using filterlim-tendsto-add-at-top-iff [OF right]

filterlim-tendsto-add-at-bot-iff [OF right] False
by simp

also have ... = jumpF-polyR q p x
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unfolding jumpF-polyR-def jumpF-def g-def by simp
finally show jumpF-polyR (r + q) p x = jumpF-polyR q p x .

qed auto

show jumpF-polyL (r+q) p x = jumpF-polyL q p x
proof (cases p=0 ∨ r=0 )

case False
have jumpF-polyL (r+q) p x =

(if filterlim (λx. h x + g x) at-top (at-left x)
then 1 / 2
else if filterlim (λx. h x + g x) at-bot (at-left x)
then − 1 / 2 else 0 )

unfolding jumpF-polyL-def jumpF-def g-def h-def
by (simp add:poly-add add-divide-distrib)

also have ... =
(if filterlim g at-top (at-left x) then 1 / 2

else if filterlim g at-bot (at-left x) then − 1 / 2 else 0 )
using filterlim-tendsto-add-at-top-iff [OF left]

filterlim-tendsto-add-at-bot-iff [OF left] False
by simp

also have ... = jumpF-polyL q p x
unfolding jumpF-polyL-def jumpF-def g-def by simp

finally show jumpF-polyL (r + q) p x = jumpF-polyL q p x .
qed auto

qed

lemma
assumes order x q < order x r q 6=0
shows jumpF-polyR-order-le:jumpF-polyR (r+q) p x = jumpF-polyR q p x

and jumpF-polyL-order-le:jumpF-polyL (r+q) p x = jumpF-polyL q p x
proof −

have jumpF-polyR (r+q) p x = jumpF-polyR q p x
jumpF-polyL (r+q) p x = jumpF-polyL q p x
if p=0 ∨ r=0 ∨ order x p ≤ order x r
using jumpF-polyR-order-leq jumpF-polyL-order-leq that by auto

moreover have
jumpF-polyR (r+q) p x = jumpF-polyR q p x
jumpF-polyL (r+q) p x = jumpF-polyL q p x
if p 6=0 r 6=0 order x p > order x r

proof −
define xo where xo=[:− x, 1 :] ^ order x q
have [simp]:xo 6=0 unfolding xo-def by simp
have xo-q:order x xo = order x q

unfolding xo-def by (meson order-power-n-n)
obtain q ′ where q:q = xo ∗ q ′ and ¬ [:− x, 1 :] dvd q ′

using order-decomp[OF ‹q 6=0 ›,of x] unfolding xo-def by auto
from this(2 )
have poly q ′ x 6=0 using poly-eq-0-iff-dvd by blast
define p ′ r ′ where p ′= p div xo and r ′ = r div xo
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have p:p = xo ∗ p ′

proof −
have order x q < order x p

using assms(1 ) less-trans that(3 ) by blast
then have xo dvd p

unfolding xo-def by (metis less-or-eq-imp-le order-divides)
then show ?thesis by (simp add: p ′-def )

qed
have r :r = xo ∗ r ′

proof −
have xo dvd r

unfolding xo-def by (meson assms(1 ) less-or-eq-imp-le order-divides)
then show ?thesis by (simp add: r ′-def )

qed
have poly r ′ x=0
proof −

have order x r = order x xo + order x r ′

unfolding r using ‹r 6= 0 › r order-mult by blast
with xo-q have order x r ′ = order x r − order x q

by auto
then have order x r ′ >0

using ‹order x r < order x p› assms(1 ) by linarith
then show poly r ′ x=0 using order-root by blast

qed
have poly p ′ x=0
proof −

have order x p = order x xo + order x p ′

unfolding p using ‹p 6= 0 › p order-mult by blast
with xo-q have order x p ′ = order x p − order x q

by auto
then have order x p ′ >0

using ‹order x r < order x p› assms(1 ) by linarith
then show poly p ′ x=0 using order-root by blast

qed

have jumpF-polyL (r+q) p x = jumpF-polyL (xo ∗ (r ′+q ′)) (xo∗p ′) x
unfolding p q r by (simp add:algebra-simps)

also have ... = jumpF-polyL (r ′+q ′) p ′ x
by (rule jumpF-polyL-mult-cancel) simp

also have ... = (if even (order x p ′) = (sign-r-pos p ′ x
= (0 < poly (r ′ + q ′) x)) then 1 / 2 else − 1 / 2 )

proof −
have poly (r ′ + q ′) x 6= 0

using ‹poly q ′ x 6=0 › ‹poly r ′ x = 0 › by auto
then show ?thesis

apply (subst jumpF-polyL-coprime ′)
subgoal by simp
subgoal by (smt (z3 ) ‹p 6= 0 › ‹poly p ′ x = 0 › mult.commute

mult-zero-left p poly-0 )

36



done
qed
also have ... = (if even (order x p ′) = (sign-r-pos p ′ x

= (0 < poly q ′ x)) then 1 / 2 else − 1 / 2 )
using ‹poly r ′ x=0 › by auto

also have ... = jumpF-polyL q ′ p ′ x
apply (subst jumpF-polyL-coprime ′)
subgoal using ‹poly q ′ x 6= 0 › by blast
subgoal using ‹p 6= 0 › ‹poly p ′ x = 0 › assms(2 ) p q by simp
done

also have ... = jumpF-polyL q p x
unfolding p q by (subst jumpF-polyL-mult-cancel) simp-all

finally show jumpF-polyL (r+q) p x = jumpF-polyL q p x .

have jumpF-polyR (r+q) p x = jumpF-polyR (xo ∗ (r ′+q ′)) (xo∗p ′) x
unfolding p q r by (simp add:algebra-simps)

also have ... = jumpF-polyR (r ′+q ′) p ′ x
by (rule jumpF-polyR-mult-cancel) simp

also have ... = (if sign-r-pos p ′ x = (0 < poly (r ′ + q ′) x)
then 1 / 2 else − 1 / 2 )

proof −
have poly (r ′ + q ′) x 6= 0

using ‹poly q ′ x 6=0 › ‹poly r ′ x = 0 › by auto
then show ?thesis

apply (subst jumpF-polyR-coprime ′)
subgoal by simp
subgoal

by (smt (z3 ) ‹p 6= 0 › ‹poly p ′ x = 0 › mult.commute
mult-zero-left p poly-0 )

done
qed
also have ... = (if sign-r-pos p ′ x = (0 < poly q ′ x)

then 1 / 2 else − 1 / 2 )
using ‹poly r ′ x=0 › by auto

also have ... = jumpF-polyR q ′ p ′ x
apply (subst jumpF-polyR-coprime ′)
subgoal using ‹poly q ′ x 6= 0 › by blast
subgoal using ‹p 6= 0 › ‹poly p ′ x = 0 › assms(2 ) p q by force
done

also have ... = jumpF-polyR q p x
unfolding p q by (subst jumpF-polyR-mult-cancel) simp-all

finally show jumpF-polyR (r+q) p x = jumpF-polyR q p x .
qed
ultimately show

jumpF-polyR (r+q) p x = jumpF-polyR q p x
jumpF-polyL (r+q) p x = jumpF-polyL q p x

by force +
qed
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lemma jumpF-poly-top-0 [simp]: jumpF-poly-top 0 p = 0 jumpF-poly-top q 0 = 0
unfolding jumpF-poly-top-def by auto

lemma jumpF-poly-bot-0 [simp]: jumpF-poly-bot 0 p = 0 jumpF-poly-bot q 0 = 0
unfolding jumpF-poly-bot-def by auto

lemma jumpF-poly-top-code:
jumpF-poly-top q p = (if p 6=0 ∧ q 6=0 ∧ degree q>degree p then

if sgn-pos-inf q ∗ sgn-pos-inf p > 0 then 1/2 else −1/2 else 0 )
proof (cases p 6=0 ∧ q 6=0 ∧ degree q>degree p)

case True
have ?thesis when sgn-pos-inf q ∗ sgn-pos-inf p > 0
proof −

have LIM x at-top. poly q x / poly p x :> at-top
using poly-divide-filterlim-at-top[of p q] True that by auto

then have jumpF (λx. poly q x / poly p x) at-top = 1/2
unfolding jumpF-def by auto

then show ?thesis unfolding jumpF-poly-top-def using that True by auto
qed
moreover have ?thesis when ¬ sgn-pos-inf q ∗ sgn-pos-inf p > 0
proof −

have LIM x at-top. poly q x / poly p x :> at-bot
using poly-divide-filterlim-at-top[of p q] True that by auto

then have jumpF (λx. poly q x / poly p x) at-top = − 1/2
unfolding jumpF-def by auto

then show ?thesis unfolding jumpF-poly-top-def using that True by auto
qed
ultimately show ?thesis by auto

next
case False
define P where P= (¬ (LIM x at-top. poly q x / poly p x :> at-bot)

∧ ¬ (LIM x at-top. poly q x / poly p x :> at-top))
have P when p=0 ∨ q=0

unfolding P-def using that
by (auto elim!:filterlim-at-bot-nhds filterlim-at-top-nhds)

moreover have P when p 6=0 q 6=0 degree p> degree q
proof −

have LIM x at-top. poly q x / poly p x :> at 0
using poly-divide-filterlim-at-top[OF that(1 ,2 )] that(3 ) by auto

then show ?thesis unfolding P-def
by (auto elim!:filterlim-at-bot-nhds filterlim-at-top-nhds simp:filterlim-at)

qed
moreover have P when p 6=0 q 6=0 degree p = degree q
proof −

have ((λx. poly q x / poly p x) −−−→ lead-coeff q / lead-coeff p) at-top
using poly-divide-filterlim-at-top[OF that(1 ,2 )] using that by auto

then show ?thesis unfolding P-def
by (auto elim!:filterlim-at-bot-nhds filterlim-at-top-nhds)

qed
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ultimately have P using False by fastforce
then have jumpF (λx. poly q x / poly p x) at-top = 0

unfolding jumpF-def P-def by auto
then show ?thesis unfolding jumpF-poly-top-def using False by presburger

qed

lemma jumpF-poly-bot-code:
jumpF-poly-bot q p = (if p 6=0 ∧ q 6=0 ∧ degree q>degree p then

if sgn-neg-inf q ∗ sgn-neg-inf p > 0 then 1/2 else −1/2 else 0 )
proof (cases p 6=0 ∧ q 6=0 ∧ degree q>degree p)

case True
have ?thesis when sgn-neg-inf q ∗ sgn-neg-inf p > 0
proof −

have LIM x at-bot. poly q x / poly p x :> at-top
using poly-divide-filterlim-at-bot[of p q] True that by auto

then have jumpF (λx. poly q x / poly p x) at-bot = 1/2
unfolding jumpF-def by auto

then show ?thesis unfolding jumpF-poly-bot-def using that True by auto
qed
moreover have ?thesis when ¬ sgn-neg-inf q ∗ sgn-neg-inf p > 0
proof −

have LIM x at-bot. poly q x / poly p x :> at-bot
using poly-divide-filterlim-at-bot[of p q] True that by auto

then have jumpF (λx. poly q x / poly p x) at-bot = − 1/2
unfolding jumpF-def by auto

then show ?thesis unfolding jumpF-poly-bot-def using that True by auto
qed
ultimately show ?thesis by auto

next
case False
define P where P= (¬ (LIM x at-bot. poly q x / poly p x :> at-bot)

∧ ¬ (LIM x at-bot. poly q x / poly p x :> at-top))
have P when p=0 ∨ q=0

unfolding P-def using that
by (auto elim!:filterlim-at-bot-nhds filterlim-at-top-nhds)

moreover have P when p 6=0 q 6=0 degree p> degree q
proof −

have LIM x at-bot. poly q x / poly p x :> at 0
using poly-divide-filterlim-at-bot[OF that(1 ,2 )] that(3 ) by auto

then show ?thesis unfolding P-def
by (auto elim!:filterlim-at-bot-nhds filterlim-at-top-nhds simp:filterlim-at)

qed
moreover have P when p 6=0 q 6=0 degree p = degree q
proof −

have ((λx. poly q x / poly p x) −−−→ lead-coeff q / lead-coeff p) at-bot
using poly-divide-filterlim-at-bot[OF that(1 ,2 )] using that by auto

then show ?thesis unfolding P-def
by (auto elim!:filterlim-at-bot-nhds filterlim-at-top-nhds)

qed
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ultimately have P using False by fastforce
then have jumpF (λx. poly q x / poly p x) at-bot = 0

unfolding jumpF-def P-def by auto
then show ?thesis unfolding jumpF-poly-bot-def using False by presburger

qed

lemma jump-poly-jumpF-poly:
shows jump-poly q p x = jumpF-polyR q p x − jumpF-polyL q p x

proof (cases p=0 ∨ q=0 )
case True
then show ?thesis by auto

next
case False

have ∗:jump-poly q p x = jumpF-polyR q p x − jumpF-polyL q p x
if coprime q p for q p

proof (cases p=0 ∨ q=0 ∨ poly p x 6=0 )
case True
moreover have ?thesis if p=0 ∨ q=0 using that by auto
moreover have ?thesis if poly p x 6=0
by (simp add: jumpF-poly-noroot(1 ) jumpF-poly-noroot(2 ) jump-poly-not-root

that)
ultimately show ?thesis by blast

next
case False
then have p 6= 0 q 6= 0 poly p x = 0 by auto

have jump-poly q p x = jump (λx. poly q x / poly p x) x
using jump-jump-poly by simp

also have real-of-int ... = jumpF (λx. poly q x / poly p x) (at-right x) −
jumpF (λx. poly q x / poly p x) (at-left x)

proof (rule jump-jumpF)
have poly q x 6=0 by (meson False coprime-poly-0 that)
then show isCont (inverse ◦ (λx. poly q x / poly p x)) x

unfolding comp-def by simp
define l where l = sgnx (λx. poly q x / poly p x) (at-left x)
define r where r = sgnx (λx. poly q x / poly p x) (at-right x)
show ((λx. poly q x / poly p x) has-sgnx l) (at-left x)

unfolding l-def by (auto intro!:sgnx-intros sgnx-able-sgnx)
show ((λx. poly q x / poly p x) has-sgnx r) (at-right x)

unfolding r-def by (auto intro!:sgnx-intros sgnx-able-sgnx)
show l 6=0 unfolding l-def

apply (subst sgnx-divide)
using poly-sgnx-values[OF ‹p 6=0 ›, of x] poly-sgnx-values[OF ‹q 6=0 ›, of x]
by auto

show r 6=0 unfolding r-def
apply (subst sgnx-divide)
using poly-sgnx-values[OF ‹p 6=0 ›, of x] poly-sgnx-values[OF ‹q 6=0 ›, of x]
by auto
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qed
also have ... = jumpF-polyR q p x − jumpF-polyL q p x

unfolding jumpF-polyR-def jumpF-polyL-def by simp
finally show ?thesis .

qed

obtain p ′ q ′ g where pq:p=g∗p ′ q=g∗q ′ and coprime q ′ p ′ g=gcd p q
using gcd-coprime-exists[of p q]
by (metis False coprime-commute gcd-coprime-exists gcd-eq-0-iff mult.commute)

then have g 6=0 using False mult-zero-left by blast
then have jump-poly q p x = jump-poly q ′ p ′ x

unfolding pq using jump-poly-mult by auto
also have ... = jumpF-polyR q ′ p ′ x − jumpF-polyL q ′ p ′ x

using ∗[OF ‹coprime q ′ p ′›] .
also have ... = jumpF-polyR q p x − jumpF-polyL q p x

unfolding pq using ‹g 6=0 › jumpF-polyL-mult-cancel jumpF-polyR-mult-cancel
by auto

finally show ?thesis .
qed

2.6 The extended Cauchy index on polynomials
definition cindex-polyE :: real ⇒ real ⇒ real poly ⇒ real poly ⇒ real where

cindex-polyE a b q p = jumpF-polyR q p a + cindex-poly a b q p − jumpF-polyL
q p b

definition cindex-poly-ubd::real poly ⇒ real poly ⇒ int where
cindex-poly-ubd q p = (THE l. (∀ F r in at-top. cindexE (−r) r (λx. poly q x/poly

p x) = of-int l))

lemma cindex-polyE-0 [simp]: cindex-polyE a b 0 p = 0 cindex-polyE a b q 0 = 0
unfolding cindex-polyE-def by auto

lemma cindex-polyE-mult-cancel:
fixes p q p ′::real poly
assumes p ′6= 0
shows cindex-polyE a b (p ′ ∗ q ) (p ′ ∗ p) = cindex-polyE a b q p
unfolding cindex-polyE-def
using cindex-poly-mult[OF ‹p ′6=0 ›] jumpF-polyL-mult-cancel[OF ‹p ′6=0 ›]

jumpF-polyR-mult-cancel[OF ‹p ′6=0 ›]
by simp

lemma cindexE-eq-cindex-polyE :
assumes a<b
shows cindexE a b (λx. poly q x/poly p x) = cindex-polyE a b q p

proof (cases p=0 ∨ q=0 )
case True
then show ?thesis by (auto simp add: cindexE-constI )

next
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case False
then have p 6=0 q 6=0 by auto
define g where g=gcd p q
define p ′ q ′ where p ′=p div g and q ′ = q div g
define f ′ where f ′=(λx. poly q ′ x / poly p ′ x)
have g 6=0 using False g-def by auto
have pq-f :p=g∗p ′ q=g∗q ′ and coprime p ′ q ′

unfolding g-def p ′-def q ′-def
apply simp-all
using False div-gcd-coprime by blast

have cindexE a b (λx. poly q x/poly p x) = cindexE a b (λx. poly q ′ x/poly p ′ x)
proof −

define f where f=(λx. poly q x / poly p x)
define f ′ where f ′=(λx. poly q ′ x / poly p ′ x)
have jumpF f (at-right x) = jumpF f ′ (at-right x) for x
proof (rule jumpF-cong)

obtain ub where x < ub ∀ z. x < z ∧ z ≤ ub −→ poly g z 6= 0
using next-non-root-interval[OF ‹g 6=0 ›,of x] by auto

then show ∀ F x in at-right x. f x = f ′ x
unfolding eventually-at-right f-def f ′-def pq-f
apply (intro exI [where x=ub])
by auto

qed simp
moreover have jumpF f (at-left x) = jumpF f ′ (at-left x) for x
proof (rule jumpF-cong)

obtain lb where lb < x ∀ z. lb ≤ z ∧ z < x −→ poly g z 6= 0
using last-non-root-interval[OF ‹g 6=0 ›,of x] by auto

then show ∀ F x in at-left x. f x = f ′ x
unfolding eventually-at-left f-def f ′-def pq-f
apply (intro exI [where x=lb])
by auto

qed simp
ultimately show ?thesis unfolding cindexE-def

apply (fold f-def f ′-def )
by auto

qed
also have ... = jumpF f ′ (at-right a) + real-of-int (cindex a b f ′) − jumpF f ′

(at-left b)
unfolding f ′-def
apply (rule cindex-eq-cindexE-divide)
subgoal using ‹a<b› .
subgoal
proof −

have finite (proots (q ′∗p ′))
using False poly-roots-finite pq-f (1 ) pq-f (2 ) by auto

then show finite {x. (poly q ′ x = 0 ∨ poly p ′ x = 0 ) ∧ a ≤ x ∧ x ≤ b}
by (elim rev-finite-subset) auto

qed
subgoal using ‹coprime p ′ q ′› poly-gcd-0-iff by force
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subgoal by (auto intro:continuous-intros)
subgoal by (auto intro:continuous-intros)
done

also have ... = cindex-polyE a b q ′ p ′

using cindex-eq-cindex-poly unfolding cindex-polyE-def jumpF-polyR-def jumpF-polyL-def
f ′-def

by auto
also have ... = cindex-polyE a b q p

using cindex-polyE-mult-cancel[OF ‹g 6=0 ›] unfolding pq-f by auto
finally show ?thesis .

qed

lemma cindex-polyE-cross:
fixes p::real poly and a b::real
assumes a<b
shows cindex-polyE a b 1 p = cross-alt 1 p a b / 2

proof (induct degree p arbitrary:p rule:nat-less-induct)
case induct:1
have ?case when p=0

using that unfolding cross-alt-def by auto
moreover have ?case when p 6=0 and noroot:{x. a< x∧ x< b ∧ poly p x=0 }

= {}
proof −

have cindex-polyE a b 1 p = jumpF-polyR 1 p a − jumpF-polyL 1 p b
proof −

have cindex-poly a b 1 p = 0 unfolding cindex-poly-def
apply (rule sum.neutral)
using that by auto

then show ?thesis unfolding cindex-polyE-def by auto
qed
also have ... = cross-alt 1 p a b / 2
proof −

define f where f = (λx. 1 / poly p x)
define ja where ja = jumpF f (at-right a)
define jb where jb = jumpF f (at-left b)
define right where right = (λR. R ja (0 ::real) ∨ (continuous (at-right a) f

∧ R (poly p a) 0 ))
define left where left = (λR. R jb (0 ::real) ∨ (continuous (at-left b) f ∧ R

(poly p b) 0 ))

note ja-alt=jumpF-polyR-coprime[of p 1 a,unfolded jumpF-polyR-def ,simplified,folded
f-def ja-def ]

note jb-alt=jumpF-polyL-coprime[of p 1 b,unfolded jumpF-polyL-def ,simplified,folded
f-def jb-def ]

have [simp]:0 < ja ←→ jumpF-polyR 1 p a = 1/2 0 > ja ←→ jumpF-polyR
1 p a = −1/2

0 < jb ←→ jumpF-polyL 1 p b = 1/2 0 > jb ←→ jumpF-polyL 1 p b =
−1/2
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unfolding ja-def jb-def jumpF-polyR-def jumpF-polyL-def f-def jumpF-def
by auto

have [simp]:
poly p a 6=0 =⇒ continuous (at-right a) f
poly p b 6=0 =⇒ continuous (at-left b) f

unfolding f-def by (auto intro!: continuous-intros )
have not-right-left: False when (right greater ∧ left less ∨ right less ∧ left

greater)
proof −

have [simp]: f a > 0 ←→ poly p a > 0 f a < 0 ←→ poly p a < 0
f b > 0 ←→ poly p b > 0 f b < 0 ←→ poly p b < 0

unfolding f-def by auto
have continuous-on {a<..<b} f

unfolding f-def using noroot by (auto intro!: continuous-intros)
then have ∃ x>a. x < b ∧ f x = 0

apply (elim jumpF-IVT [OF ‹a<b›,of f ])
using that unfolding right-def left-def by (fold ja-def jb-def ,auto)

then show False using noroot using f-def by auto
qed
have ?thesis when poly p a>0 ∧ poly p b>0 ∨ poly p a<0 ∧ poly p b<0

using that jumpF-poly-noroot
unfolding cross-alt-def psign-diff-def by auto

moreover have False when poly p a>0 ∧ poly p b<0 ∨ poly p a<0 ∧ poly
p b>0

apply (rule not-right-left)
unfolding right-def left-def using that by auto

moreover have ?thesis when poly p a=0 poly p b>0 ∨ poly p b <0
proof −

have ja>0 ∨ ja < 0 using ja-alt ‹p 6=0 › ‹poly p a=0 › by argo
moreover have False when ja > 0 ∧ poly p b<0 ∨ ja < 0 ∧ poly p b>0

apply (rule not-right-left)
unfolding right-def left-def using that by fastforce

moreover have ?thesis when ja >0 ∧ poly p b>0 ∨ ja < 0 ∧ poly p b<0
using that jumpF-poly-noroot ‹poly p a=0 ›
unfolding cross-alt-def psign-diff-def by auto

ultimately show ?thesis using that jumpF-poly-noroot unfolding cross-alt-def
by auto

qed
moreover have ?thesis when poly p b=0 poly p a>0 ∨ poly p a <0
proof −

have jb>0 ∨ jb < 0 using jb-alt ‹p 6=0 › ‹poly p b=0 › by argo
moreover have False when jb > 0 ∧ poly p a<0 ∨ jb < 0 ∧ poly p a>0

apply (rule not-right-left)
unfolding right-def left-def using that by fastforce

moreover have ?thesis when jb >0 ∧ poly p a>0 ∨ jb < 0 ∧ poly p a<0
using that jumpF-poly-noroot ‹poly p b=0 ›
unfolding cross-alt-def psign-diff-def by auto

ultimately show ?thesis using that jumpF-poly-noroot unfolding cross-alt-def
by auto

44



qed
moreover have ?thesis when poly p a=0 poly p b=0
proof −

have jb>0 ∨ jb < 0 using jb-alt ‹p 6=0 › ‹poly p b=0 › by argo
moreover have ja>0 ∨ ja < 0 using ja-alt ‹p 6=0 › ‹poly p a=0 › by argo
moreover have False when ja>0 ∧ jb<0 ∨ ja<0 ∧ jb>0

apply (rule not-right-left)
unfolding right-def left-def using that by fastforce

moreover have ?thesis when ja>0 ∧ jb>0 ∨ ja<0 ∧ jb<0
using that jumpF-poly-noroot ‹poly p b=0 › ‹poly p a=0 ›
unfolding cross-alt-def psign-diff-def by auto

ultimately show ?thesis by blast
qed
ultimately show ?thesis by argo

qed
finally show ?thesis .

qed
moreover have ?case when p 6=0 and no-empty:{x. a< x∧ x< b ∧ poly p x=0
} 6= {}

proof −
define roots where roots≡{x. a< x∧ x< b ∧ poly p x=0 }
have finite roots unfolding roots-def using poly-roots-finite[OF ‹p 6=0 ›] by

auto
define max-r where max-r≡Max roots
hence poly p max-r=0 and a<max-r and max-r<b

using Max-in[OF ‹finite roots›] no-empty unfolding roots-def by auto
define max-rp where max-rp≡[:−max-r ,1 :]^order max-r p
then obtain p ′ where p ′-def :p=p ′∗max-rp and ¬ [:−max-r ,1 :] dvd p ′

by (metis ‹p 6=0 › mult.commute order-decomp)
hence p ′6=0 and max-rp 6=0 and max-r-nz:poly p ′ max-r 6=0

using ‹p 6=0 › by (auto simp add: dvd-iff-poly-eq-0 )
define max-r-sign where max-r-sign≡if odd(order max-r p) then −1 else 1 ::int
define roots ′ where roots ′≡{x. a< x∧ x< b ∧ poly p ′ x=0}

have cindex-polyE a b 1 p = jumpF-polyR 1 p a + (
∑

x∈roots. jump-poly 1 p
x) − jumpF-polyL 1 p b

unfolding cindex-polyE-def cindex-poly-def roots-def by (simp,meson)
also have ... = max-r-sign ∗ cindex-poly a b 1 p ′ + jump-poly 1 p max-r

+ max-r-sign ∗ jumpF-polyR 1 p ′ a − jumpF-polyL 1 p ′ b
proof −

have (
∑

x∈roots. jump-poly 1 p x) = max-r-sign ∗ cindex-poly a b 1 p ′ +
jump-poly 1 p max-r

proof −
have (

∑
x∈roots. jump-poly 1 p x)= (

∑
x∈roots ′. jump-poly 1 p x)+

jump-poly 1 p max-r
proof −

have roots = insert max-r roots ′

unfolding roots-def roots ′-def p ′-def
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using ‹poly p max-r=0 › ‹a<max-r› ‹max-r<b› ‹p 6=0 › order-root
apply (subst max-rp-def )
by auto

moreover have finite roots ′

unfolding roots ′-def using poly-roots-finite[OF ‹p ′6=0 ›] by auto
moreover have max-r /∈ roots ′

unfolding roots ′-def using max-r-nz
by auto

ultimately show ?thesis using sum.insert[of roots ′ max-r ] by auto
qed
moreover have (

∑
x∈roots ′. jump-poly 1 p x) = max-r-sign ∗ cindex-poly

a b 1 p ′

proof −
have (

∑
x∈roots ′. jump-poly 1 p x) = (

∑
x∈roots ′. max-r-sign ∗ jump-poly

1 p ′ x)
proof (rule sum.cong,rule refl)

fix x assume x ∈ roots ′

hence x 6=max-r using max-r-nz unfolding roots ′-def
by auto
hence poly max-rp x 6=0 using poly-power-n-eq unfolding max-rp-def

by auto
hence order x max-rp=0 by (metis order-root)
moreover have jump-poly 1 max-rp x=0

using ‹poly max-rp x 6=0 › by (metis jump-poly-not-root)
moreover have x∈roots

using ‹x ∈ roots ′› unfolding roots-def roots ′-def p ′-def by auto
hence x<max-r
using Max-ge[OF ‹finite roots›,of x ] ‹x 6=max-r› by (fold max-r-def ,auto)
hence sign (poly max-rp x) = max-r-sign
using ‹poly max-rp x 6= 0 › unfolding max-r-sign-def max-rp-def sign-def
by (subst poly-power ,simp add:linorder-class.not-less zero-less-power-eq)
ultimately show jump-poly 1 p x = max-r-sign ∗ jump-poly 1 p ′ x

using jump-poly-1-mult[of p ′ x max-rp] unfolding p ′-def
by (simp add: ‹poly max-rp x 6= 0 ›)

qed
also have ... = max-r-sign ∗ (

∑
x∈roots ′. jump-poly 1 p ′ x)

by (simp add: sum-distrib-left)
also have ... = max-r-sign ∗ cindex-poly a b 1 p ′

unfolding cindex-poly-def roots ′-def by meson
finally show ?thesis .

qed
ultimately show ?thesis by simp

qed
moreover have jumpF-polyR 1 p a = max-r-sign ∗ jumpF-polyR 1 p ′ a
proof −

define f where f = (λx. 1 / poly max-rp x)
define g where g = (λx. 1 / poly p ′ x)
have jumpF-polyR 1 p a = jumpF (λx. f x ∗ g x) (at-right a)

unfolding jumpF-polyR-def f-def g-def p ′-def
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by (auto simp add:field-simps)
also have ... = sgn (f a) ∗ jumpF g (at-right a)
proof (rule jumpF-times)

have [simp]: poly max-rp a 6=0
unfolding max-rp-def using ‹max-r>a› by auto

show (f −−−→ f a) (at-right a) f a 6= 0
unfolding f-def by (auto intro:tendsto-intros)

qed auto
also have ... = max-r-sign ∗ jumpF-polyR 1 p ′ a
proof −

have sgn (f a) = max-r-sign
unfolding max-r-sign-def f-def max-rp-def using ‹a<max-r›
by (auto simp add:sgn-power)

then show ?thesis unfolding jumpF-polyR-def g-def by auto
qed
finally show ?thesis .

qed
moreover have jumpF-polyL 1 p b = jumpF-polyL 1 p ′ b
proof −

define f where f = (λx. 1 / poly max-rp x)
define g where g = (λx. 1 / poly p ′ x)
have jumpF-polyL 1 p b = jumpF (λx. f x ∗ g x) (at-left b)

unfolding jumpF-polyL-def f-def g-def p ′-def
by (auto simp add:field-simps)

also have ... = sgn (f b) ∗ jumpF g (at-left b)
proof (rule jumpF-times)

have [simp]: poly max-rp b 6=0
unfolding max-rp-def using ‹max-r<b› by auto

show (f −−−→ f b) (at-left b) f b 6= 0
unfolding f-def by (auto intro:tendsto-intros)

qed auto
also have ... = jumpF-polyL 1 p ′ b
proof −

have sgn (f b) = 1
unfolding max-r-sign-def f-def max-rp-def using ‹b>max-r›
by (auto simp add:sgn-power)

then show ?thesis unfolding jumpF-polyL-def g-def by auto
qed
finally show ?thesis .

qed
ultimately show ?thesis by auto

qed
also have ... = max-r-sign ∗ cindex-polyE a b 1 p ′ + jump-poly 1 p max-r

+ (max-r-sign − 1 ) ∗ jumpF-polyL 1 p ′ b
unfolding cindex-polyE-def roots ′-def by (auto simp add:algebra-simps)

also have ... = max-r-sign ∗ cross-alt 1 p ′ a b / 2 + jump-poly 1 p max-r
+ (max-r-sign − 1 ) ∗ jumpF-polyL 1 p ′ b

proof −
have degree max-rp>0 unfolding max-rp-def degree-linear-power
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using ‹poly p max-r=0 › order-root ‹p 6=0 › by blast
then have degree p ′<degree p unfolding p ′-def

using degree-mult-eq[OF ‹p ′6=0 › ‹max-rp 6=0 ›] by auto
from induct[rule-format, OF this]
have cindex-polyE a b 1 p ′ = real-of-int (cross-alt 1 p ′ a b) / 2 by auto
then show ?thesis by auto

qed
also have ... = real-of-int (cross-alt 1 p a b) / 2
proof −

have sjump-p:jump-poly 1 p max-r = (if odd (order max-r p) then sign (poly
p ′ max-r) else 0 )

proof −
note max-r-nz
moreover then have poly max-rp max-r=0

using ‹poly p max-r = 0 › p ′-def by auto
ultimately have jump-poly 1 p max-r = sign (poly p ′ max-r) ∗ jump-poly

1 max-rp max-r
unfolding p ′-def using jump-poly-1-mult[of p ′ max-r max-rp]
by auto

also have ... = (if odd (order max-r max-rp) then sign (poly p ′ max-r) else
0 )

proof −
have sign-r-pos max-rp max-r

unfolding max-rp-def using sign-r-pos-power by auto
then show ?thesis using ‹max-rp 6=0 › unfolding jump-poly-def by auto

qed
also have ... = (if odd (order max-r p) then sign (poly p ′ max-r) else 0 )
proof −

have order max-r p ′=0 by (simp add: ‹poly p ′ max-r 6= 0 › order-0I )
then have order max-r max-rp = order max-r p

unfolding p ′-def using ‹p ′6=0 › ‹max-rp 6=0 ›
apply (subst order-mult)
by auto

then show ?thesis by auto
qed
finally show ?thesis .

qed
have ?thesis when even (order max-r p)
proof −

have sign (poly p x) = (sign (poly p ′ x)::int) when x 6=max-r for x
proof −

have sign (poly max-rp x) = (1 ::int)
unfolding max-rp-def using ‹even (order max-r p)› that
apply (simp add:sign-power )
by (simp add: Sturm-Tarski.sign-def )

then show ?thesis unfolding p ′-def by (simp add:sign-times)
qed
from this[of a] this[of b] ‹a<max-r› ‹max-r<b›
have cross-alt 1 p ′ a b = cross-alt 1 p a b
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unfolding cross-alt-def psign-diff-def by auto
then show ?thesis using that unfolding max-r-sign-def sjump-p by auto

qed
moreover have ?thesis when odd (order max-r p)
proof −
let ?thesis2 = sign (poly p ′ max-r) ∗ 2 − cross-alt 1 p ′ a b − 4 ∗ jumpF-polyL

1 p ′ b
= cross-alt 1 p a b

have ?thesis2 when poly p ′ b=0
proof −

have jumpF-polyL 1 p ′ b = 1/2 ∨ jumpF-polyL 1 p ′ b=−1/2
using jumpF-polyL-coprime[of p ′ 1 b,simplified] ‹p ′6=0 › ‹poly p ′ b=0 › by

auto
moreover have poly p ′ max-r>0 ∨ poly p ′ max-r<0

using max-r-nz by auto
moreover have False when poly p ′ max-r>0 ∧ jumpF-polyL 1 p ′ b=−1/2

∨ poly p ′ max-r<0 ∧ jumpF-polyL 1 p ′ b=1/2
proof −

define f where f= (λx. 1/ poly p ′ x)
have noroots:poly p ′ x 6=0 when x∈{max-r<..<b} for x
proof (rule ccontr)

assume ¬ poly p ′ x 6= 0
then have poly p x =0 unfolding p ′-def by auto

then have x∈roots unfolding roots-def using that ‹a<max-r› by auto
then have x≤max-r using Max-ge[OF ‹finite roots›] unfolding

max-r-def by auto
moreover have x>max-r using that by auto
ultimately show False by auto

qed
have continuous-on {max-r<..<b} f

unfolding f-def using noroots by (auto intro!:continuous-intros)
moreover have continuous (at-right max-r) f

unfolding f-def using max-r-nz
by (auto intro!:continuous-intros)

moreover have f max-r>0 ∧ jumpF f (at-left b)<0
∨ f max-r<0 ∧ jumpF f (at-left b)>0

using that unfolding f-def jumpF-polyL-def by auto
ultimately have ∃ x>max-r . x < b ∧ f x = 0

apply (intro jumpF-IVT [OF ‹max-r<b›])
by auto

then show False using noroots unfolding f-def by auto
qed

moreover have ?thesis when poly p ′ max-r>0 ∧ jumpF-polyL 1 p ′ b=1/2
∨ poly p ′ max-r<0 ∧ jumpF-polyL 1 p ′ b=−1/2

proof −
have poly max-rp a < 0 poly max-rp b>0

unfolding max-rp-def using ‹odd (order max-r p)› ‹a<max-r› ‹max-r<b›
by (simp-all add:zero-less-power-eq)
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then have cross-alt 1 p a b = − cross-alt 1 p ′ a b
unfolding cross-alt-def p ′-def using ‹poly p ′ b=0 ›
apply (simp add:sign-times)

by (auto simp add: Sturm-Tarski.sign-def psign-diff-def zero-less-mult-iff )
with that show ?thesis by auto

qed
ultimately show ?thesis by blast

qed
moreover have ?thesis2 when poly p ′ b 6=0
proof −

have [simp]:jumpF-polyL 1 p ′ b = 0
using jumpF-polyL-coprime[of p ′ 1 b,simplified] ‹poly p ′ b 6=0 › by auto

have [simp]:poly max-rp a < 0 poly max-rp b>0
unfolding max-rp-def using ‹odd (order max-r p)› ‹a<max-r› ‹max-r<b›

by (simp-all add:zero-less-power-eq)
have poly p ′ b>0 ∨ poly p ′ b<0

using ‹poly p ′ b 6=0 › by auto
moreover have poly p ′ max-r>0 ∨ poly p ′ max-r<0

using max-r-nz by auto
moreover have ?thesis when poly p ′ b>0 ∧ poly p ′ max-r>0

using that unfolding cross-alt-def p ′-def psign-diff-def
apply (simp add:sign-times)
by (simp add: Sturm-Tarski.sign-def )

moreover have ?thesis when poly p ′ b<0 ∧ poly p ′ max-r<0
using that unfolding cross-alt-def p ′-def psign-diff-def
apply (simp add:sign-times)
by (simp add: Sturm-Tarski.sign-def )
moreover have False when poly p ′ b>0 ∧ poly p ′ max-r<0 ∨ poly p ′

b<0 ∧ poly p ′ max-r>0
proof −

have ∃ x>max-r . x < b ∧ poly p ′ x = 0
apply (rule poly-IVT [OF ‹max-r<b›,of p ′])
using that mult-less-0-iff by blast

then obtain x where max-r<x x<b poly p x=0 unfolding p ′-def by
auto

then have x∈roots using ‹a<max-r› unfolding roots-def by auto
then have x≤max-r unfolding max-r-def using Max-ge[OF ‹finite

roots›] by auto
then show False using ‹max-r<x› by auto

qed
ultimately show ?thesis by blast

qed
ultimately have ?thesis2 by auto
then show ?thesis unfolding max-r-sign-def sjump-p using that by simp

qed
ultimately show ?thesis by auto

qed
finally show ?thesis .

qed
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ultimately show ?case by fast
qed

lemma cindex-polyE-inverse-add:
fixes p q::real poly
assumes cp:coprime p q
shows cindex-polyE a b q p + cindex-polyE a b p q=cindex-polyE a b 1 (q∗p)
unfolding cindex-polyE-def
using cindex-poly-inverse-add[OF cp,symmetric] jumpF-polyR-inverse-add[OF

cp,symmetric]
jumpF-polyL-inverse-add[OF cp,symmetric]

by auto

lemma cindex-polyE-inverse-add-cross:
fixes p q::real poly
assumes a < b coprime p q
shows cindex-polyE a b q p + cindex-polyE a b p q = cross-alt p q a b / 2
apply (subst cindex-polyE-inverse-add[OF ‹coprime p q›])
apply (subst cindex-polyE-cross[OF ‹a<b›])
apply (subst mult.commute)
apply (subst (2 ) cross-alt-clear)
by simp

lemma cindex-polyE-inverse-add-cross ′:
fixes p q::real poly
assumes a < b poly p a 6=0 ∨ poly q a 6=0 poly p b 6=0 ∨ poly q b 6=0
shows cindex-polyE a b q p + cindex-polyE a b p q = cross-alt p q a b / 2

proof −
define g1 where g1 = gcd p q
obtain p ′ q ′ where pq:p=g1∗p ′ q=g1∗q ′ and coprime p ′ q ′

unfolding g1-def
by (metis assms(2 ) coprime-commute div-gcd-coprime dvd-mult-div-cancel gcd-dvd1

gcd-dvd2 order-root)
have [simp]:g1 6=0

unfolding g1-def using assms(2 ) by force

have cindex-polyE a b q ′ p ′ + cindex-polyE a b p ′ q ′ = (cross-alt p ′ q ′ a b) / 2
using cindex-polyE-inverse-add-cross[OF ‹a<b› ‹coprime p ′ q ′›] .

moreover have cindex-polyE a b p ′ q ′ = cindex-polyE a b p q
unfolding pq
apply (subst cindex-polyE-mult-cancel)
by simp-all

moreover have cindex-polyE a b q ′ p ′ = cindex-polyE a b q p
unfolding pq
apply (subst cindex-polyE-mult-cancel)
by simp-all

moreover have cross-alt p ′ q ′ a b = cross-alt p q a b
unfolding pq
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apply (subst cross-alt-cancel)
subgoal using assms(2 ) g1-def poly-gcd-0-iff by blast
subgoal using assms(3 ) g1-def poly-gcd-0-iff by blast
by simp

ultimately show ?thesis by auto
qed

lemma cindex-polyE-smult-1 :
fixes p q::real poly and c::real
shows cindex-polyE a b (smult c q) p = (sgn c) ∗ cindex-polyE a b q p

proof −
have real-of-int (sign c) = sgn c

by (simp add: sgn-if )
then show ?thesis

unfolding cindex-polyE-def jumpF-polyL-smult-1 jumpF-polyR-smult-1 cin-
dex-poly-smult-1

by (auto simp add: algebra-simps)
qed

lemma cindex-polyE-smult-2 :
fixes p q::real poly and c::real
shows cindex-polyE a b q (smult c p) = (sgn c) ∗ cindex-polyE a b q p

proof (cases c=0 )
case True
then show ?thesis by simp

next
case False
then have cindex-polyE a b q (smult c p)

= cindex-polyE a b ([:1/c:]∗q) ([:1/c:]∗(smult c p))
apply (subst cindex-polyE-mult-cancel)
by simp-all

also have ... = cindex-polyE a b (smult (1/c) q) p
by simp

also have ... = (sgn (1/c)) ∗ cindex-polyE a b q p
using cindex-polyE-smult-1 by simp

also have ... = (sgn c) ∗ cindex-polyE a b q p
by simp

finally show ?thesis .
qed

lemma cindex-polyE-mod:
fixes p q::real poly
shows cindex-polyE a b q p = cindex-polyE a b (q mod p) p
unfolding cindex-polyE-def
apply (subst cindex-poly-mod)
apply (subst jumpF-polyR-mod)
apply (subst jumpF-polyL-mod)
by simp
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lemma cindex-polyE-rec:
fixes p q::real poly
assumes a < b coprime p q
shows cindex-polyE a b q p = cross-alt q p a b/2 + cindex-polyE a b (− (p

mod q)) q
proof −

note cindex-polyE-inverse-add-cross[OF assms]
moreover have cindex-polyE a b (− (p mod q)) q = − cindex-polyE a b p q

using cindex-polyE-mod cindex-polyE-smult-1 [of a b −1 ]
by auto

ultimately show ?thesis by (auto simp add:field-simps cross-alt-poly-commute)
qed

lemma cindex-polyE-changes-alt-itv-mods:
assumes a<b coprime p q
shows cindex-polyE a b q p = changes-alt-itv-smods a b p q / 2 using ‹coprime

p q›
proof (induct smods p q arbitrary:p q)

case Nil
then have p=0 by (metis smods-nil-eq)
then show ?case by (simp add:changes-alt-itv-smods-def changes-alt-poly-at-def )

next
case (Cons x xs)
then have p 6=0 by auto
have ?case when q=0

using that by (simp add:changes-alt-itv-smods-def changes-alt-poly-at-def )
moreover have ?case when q 6=0
proof −

define r where r≡− (p mod q)
obtain ps where ps:smods p q=p#q#ps smods q r=q#ps and xs=q#ps

unfolding r-def using ‹q 6=0 › ‹p 6=0 › ‹x # xs = smods p q›
by (metis list.inject smods.simps)

from Cons.prems ‹q 6= 0 › have coprime q r
by (simp add: r-def ac-simps)

then have cindex-polyE a b r q = real-of-int (changes-alt-itv-smods a b q r) /
2

apply (rule-tac Cons.hyps(1 ))
using ps ‹xs=q#ps› by simp-all

moreover have changes-alt-itv-smods a b p q = cross-alt p q a b + changes-alt-itv-smods
a b q r

using changes-alt-itv-smods-rec[OF ‹a<b› ‹coprime p q›,folded r-def ] .
moreover have cindex-polyE a b q p = real-of-int (cross-alt q p a b) / 2 +

cindex-polyE a b r q
using cindex-polyE-rec[OF ‹a<b› ‹coprime p q›,folded r-def ] .

ultimately show ?case
by (auto simp add:field-simps cross-alt-poly-commute)

qed
ultimately show ?case by blast
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qed

lemma cindex-poly-ubd-eventually:
shows ∀ F r in at-top. cindexE (−r) r (λx. poly q x/poly p x) = of-int (cindex-poly-ubd

q p)
proof −

define f where f=(λx. poly q x/poly p x)
obtain R where R-def : R>0 proots p ⊆ {−R<..<R}

if p 6=0
proof (cases p=0 )

case True
then show ?thesis using that[of 1 ] by auto

next
case False
then have finite (proots p) by auto
from finite-ball-include[OF this,of 0 ]
obtain r where r>0 and r-ball:proots p ⊆ ball 0 r

by auto
have proots p ⊆ {−r<..<r}
proof

fix x assume x ∈ proots p
then have x∈ball 0 r using r-ball by auto
then have abs x<r using mem-ball-0 by auto
then show x ∈ {− r<..<r} using ‹r>0 › by auto

qed
then show ?thesis using that[of r ] False ‹r>0 › by auto

qed
define l where l=(if p=0 then 0 else cindex-poly (−R) R q p)
define P where P=(λl. (∀ F r in at-top. cindexE (−r) r f = of-int l))
have P l
proof (cases p=0 )

case True
then show ?thesis

unfolding P-def f-def l-def using True
by (auto intro!: eventuallyI cindexE-constI )

next
case False
have P l unfolding P-def
proof (rule eventually-at-top-linorderI [of R])

fix r assume R ≤ r
then have cindexE (− r) r f = cindex-polyE (−r) r q p
unfolding f-def using R-def [OF ‹p 6=0 ›] by (auto intro: cindexE-eq-cindex-polyE)
also have ... = of-int (cindex-poly (− r) r q p)
proof −

have jumpF-polyR q p (− r) = 0
apply (rule jumpF-poly-noroot)
using ‹R≤r› R-def [OF ‹p 6=0 ›] by auto

moreover have jumpF-polyL q p r = 0
apply (rule jumpF-poly-noroot)
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using ‹R≤r› R-def [OF ‹p 6=0 ›] by auto
ultimately show ?thesis unfolding cindex-polyE-def by auto

qed
also have ... = of-int (cindex-poly (− R) R q p)
proof −

define rs where rs={x. poly p x = 0 ∧ − r < x ∧ x < r}
define Rs where Rs={x. poly p x = 0 ∧ − R < x ∧ x < R}
have rs=Rs

using R-def [OF ‹p 6=0 ›] ‹R≤r› unfolding rs-def Rs-def by force
then show ?thesis

unfolding cindex-poly-def by (fold rs-def Rs-def ,auto)
qed
also have ... = of-int l unfolding l-def using False by auto
finally show cindexE (− r) r f = real-of-int l .

qed
then show ?thesis unfolding P-def by auto

qed
moreover have x=l when P x for x
proof −

have ∀ F r in at-top. cindexE (− r) r f = real-of-int x
∀ F r in at-top. cindexE (− r) r f = real-of-int l

using ‹P x› ‹P l› unfolding P-def by auto
from eventually-conj[OF this]
have ∀ F r ::real in at-top. real-of-int x = real-of-int l

by (elim eventually-mono,auto)
then have real-of-int x = real-of-int l by auto
then show ?thesis by simp

qed
ultimately have P (THE x . P x) using theI [of P l] by blast
then show ?thesis unfolding P-def f-def cindex-poly-ubd-def by auto

qed

lemma cindex-poly-ubd-0 :
assumes p=0 ∨ q=0
shows cindex-poly-ubd q p = 0

proof −
have ∀ F r in at-top. cindexE (−r) r (λx. poly q x/poly p x) = 0

apply (rule eventuallyI )
using assms by (auto intro:cindexE-constI )

from eventually-conj[OF this cindex-poly-ubd-eventually[of q p]]
have ∀ F r ::real in at-top. (cindex-poly-ubd q p) = (0 ::int)

apply (elim eventually-mono)
by auto

then show ?thesis by auto
qed

lemma cindex-poly-ubd-code:
shows cindex-poly-ubd q p = changes-R-smods p q

proof (cases p=0 )
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case True
then show ?thesis using cindex-poly-ubd-0 by auto

next
case False
define ps where ps≡smods p q
have p∈set ps using ps-def ‹p 6=0 › by auto
obtain lb where lb:∀ p∈set ps. ∀ x. poly p x=0 −→ x>lb

and lb-sgn:∀ x≤lb. ∀ p∈set ps. sgn (poly p x) = sgn-neg-inf p
and lb<0

using root-list-lb[OF no-0-in-smods,of p q,folded ps-def ]
by auto

obtain ub where ub:∀ p∈set ps. ∀ x. poly p x=0 −→ x<ub
and ub-sgn:∀ x≥ub. ∀ p∈set ps. sgn (poly p x) = sgn-pos-inf p
and ub>0

using root-list-ub[OF no-0-in-smods,of p q,folded ps-def ]
by auto

define f where f=(λt. poly q t/ poly p t)
define P where P=(λl. (∀ F r in at-top. cindexE (−r) r f = of-int l))
have P (changes-R-smods p q) unfolding P-def
proof (rule eventually-at-top-linorderI [of max |lb| |ub| + 1 ])

fix r assume r-asm:r≥max |lb| |ub| + 1
have cindexE (− r) r f = cindex-polyE (−r) r q p

unfolding f-def using r-asm by (auto intro: cindexE-eq-cindex-polyE)
also have ... = of-int (cindex-poly (− r) r q p)
proof −

have jumpF-polyR q p (− r) = 0
apply (rule jumpF-poly-noroot)
using r-asm lb[rule-format,OF ‹p∈set ps›,of −r ] by linarith

moreover have jumpF-polyL q p r = 0
apply (rule jumpF-poly-noroot)
using r-asm ub[rule-format,OF ‹p∈set ps›,of r ] by linarith

ultimately show ?thesis unfolding cindex-polyE-def by auto
qed
also have ... = of-int (changes-itv-smods (− r) r p q)

apply (rule cindex-poly-changes-itv-mods[THEN arg-cong])
using r-asm lb[rule-format,OF ‹p∈set ps›,of −r ] ub[rule-format,OF ‹p∈set

ps›,of r ]
by linarith+

also have ... = of-int (changes-R-smods p q)
proof −

have map (sgn ◦ (λp. poly p (−r))) ps = map sgn-neg-inf ps
and map (sgn ◦ (λp. poly p r)) ps = map sgn-pos-inf ps

using lb-sgn[THEN spec,of −r ,simplified] ub-sgn[THEN spec,of r ,simplified]
r-asm

by auto
hence changes-poly-at ps (−r)=changes-poly-neg-inf ps
∧ changes-poly-at ps r=changes-poly-pos-inf ps

unfolding changes-poly-neg-inf-def changes-poly-at-def changes-poly-pos-inf-def
by (subst (1 3 ) changes-map-sgn-eq,metis map-map)

56



thus ?thesis unfolding changes-R-smods-def changes-itv-smods-def ps-def
by metis

qed
finally show cindexE (− r) r f = of-int (changes-R-smods p q) .

qed
moreover have x = changes-R-smods p q when P x for x
proof −

have ∀ F r in at-top. cindexE (− r) r f = real-of-int (changes-R-smods p q)
∀ F r in at-top. cindexE (− r) r f = real-of-int x

using ‹P (changes-R-smods p q)› ‹P x› unfolding P-def by auto
from eventually-conj[OF this]
have ∀ F (r ::real) in at-top. of-int x = of-int (changes-R-smods p q)

by (elim eventually-mono,auto)
then have of-int x = of-int (changes-R-smods p q)

using eventually-const-iff by auto
then show ?thesis using of-int-eq-iff by blast

qed
ultimately have (THE x . P x) = changes-R-smods p q

using the-equality[of P changes-R-smods p q] by blast
then show ?thesis unfolding cindex-poly-ubd-def P-def f-def by auto

qed

lemma cindexE-ubd-poly: cindexE-ubd (λx. poly q x/poly p x) = cindex-poly-ubd q
p
proof (cases p=0 )

case True
then show ?thesis using cindex-poly-ubd-0 unfolding cindexE-ubd-def

by auto
next

case False
define mx mn where mx = Max {x. poly p x = 0} and mn = Min {x. poly p

x=0}
define rr where rr= 1+ (max |mx| |mn|)
have rr :−rr < x ∧ x< rr when poly p x = 0 for x
proof −

have finite {x. poly p x = 0} using ‹p 6=0 › poly-roots-finite by blast
then have mn ≤ x x≤mx

using Max-ge Min-le that unfolding mn-def mx-def by simp-all
then show ?thesis unfolding rr-def by auto

qed
define f where f=(λx. poly q x / poly p x)
have ∀ F r in at-top. cindexE (− r) r f = cindexE-ubd f
proof (rule eventually-at-top-linorderI [of rr ])

fix r assume r≥rr
define R1 R2 where R1={x. jumpF f (at-right x) 6= 0 ∧ − r ≤ x ∧ x < r}

and R2 = {x. jumpF f (at-right x) 6= 0}
define L1 L2 where L1={x. jumpF f (at-left x) 6= 0 ∧ − r < x ∧ x ≤ r}

and L2={x. jumpF f (at-left x) 6= 0}
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have R1=R2
proof −

have jumpF f (at-right x) = 0 when ¬ (− r ≤ x ∧ x < r) for x
proof −

have jumpF f (at-right x) = jumpF-polyR q p x
unfolding f-def jumpF-polyR-def by simp

also have ... = 0
apply (rule jumpF-poly-noroot)
using that ‹r≥rr› by (auto dest:rr)

finally show ?thesis .
qed
then show ?thesis unfolding R1-def R2-def by blast

qed
moreover have L1=L2
proof −

have jumpF f (at-left x) = 0 when ¬ (− r < x ∧ x ≤ r) for x
proof −

have jumpF f (at-left x) = jumpF-polyL q p x
unfolding f-def jumpF-polyL-def by simp

also have ... = 0
apply (rule jumpF-poly-noroot)
using that ‹r≥rr› by (auto dest:rr)

finally show ?thesis .
qed
then show ?thesis unfolding L1-def L2-def by blast

qed
ultimately show cindexE (− r) r f = cindexE-ubd f

unfolding cindexE-def cindexE-ubd-def
apply (fold R1-def R2-def L1-def L2-def )
by auto

qed
moreover have ∀ F r in at-top. cindexE (− r) r f = cindex-poly-ubd q p

using cindex-poly-ubd-eventually unfolding f-def by auto
ultimately have ∀ F r in at-top. cindexE (− r) r f = cindexE-ubd f

∧ cindexE (− r) r f = cindex-poly-ubd q p
using eventually-conj by auto

then have ∀ F (r ::real) in at-top. cindexE-ubd f = cindex-poly-ubd q p
by (elim eventually-mono) auto

then show ?thesis unfolding f-def by auto
qed

lemma cindex-polyE-noroot:
assumes a<b ∀ x. a≤x ∧ x≤b −→ poly p x 6=0
shows cindex-polyE a b q p = 0

proof −
have jumpF-polyR q p a = 0

apply (rule jumpF-poly-noroot)
using assms by auto

moreover have jumpF-polyL q p b = 0
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apply (rule jumpF-poly-noroot)
using assms by auto

moreover have cindex-poly a b q p =0
apply (rule cindex-poly-noroot)
using assms by auto

ultimately show ?thesis unfolding cindex-polyE-def by auto
qed

lemma cindex-polyE-combine:
assumes a<b b<c
shows cindex-polyE a b q p + cindex-polyE b c q p = cindex-polyE a c q p

proof −
define A B where A=cindex-poly a b q p − jumpF-polyL q p b

and B=jumpF-polyR q p b + cindex-poly b c q p
have cindex-polyE a b q p + cindex-polyE b c q p =

jumpF-polyR q p a + (A +B) − jumpF-polyL q p c
unfolding cindex-polyE-def A-def B-def by auto

also have ... = jumpF-polyR q p a + cindex-poly a c q p − jumpF-polyL q p c
proof −

have A+B = cindex-poly a b q p + (jumpF-polyR q p b − jumpF-polyL q p b)
+ cindex-poly b c q p

unfolding A-def B-def by auto
also have ... = cindex-poly a b q p + real-of-int (jump-poly q p b) + cindex-poly

b c q p
using jump-poly-jumpF-poly by auto

also have ... = cindex-poly a c q p
using assms
apply (subst (3 ) cindex-poly-combine[symmetric,of - b])
by auto

finally show ?thesis by auto
qed
also have ... = cindex-polyE a c q p

unfolding cindex-polyE-def by simp
finally show ?thesis .

qed

lemma cindex-polyE-linear-comp:
fixes b c::real
defines h ≡ (λp. pcompose p [:b,c:])
assumes lb<ub c 6=0
shows cindex-polyE lb ub (h q) (h p) =

(if 0 < c then cindex-polyE (c ∗ lb + b) (c ∗ ub + b) q p
else − cindex-polyE (c ∗ ub + b) (c ∗ lb + b) q p)

proof −
have cindex-polyE lb ub (h q) (h p) = cindexE lb ub (λx. poly (h q) x / poly (h

p) x)
apply (subst cindexE-eq-cindex-polyE [symmetric,OF ‹lb<ub›])
by simp

also have ... = cindexE lb ub ((λx. poly q x / poly p x) ◦ (λx. c ∗ x + b))
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unfolding comp-def h-def poly-pcompose by (simp add:algebra-simps)
also have ... = (if 0 < c then cindexE (c ∗ lb + b) (c ∗ ub + b) (λx. poly q x /

poly p x)
else − cindexE (c ∗ ub + b) (c ∗ lb + b) (λx. poly q x / poly p x))

apply (subst cindexE-linear-comp[OF ‹c 6=0 ›])
by simp

also have ... = (if 0 < c then cindex-polyE (c ∗ lb + b) (c ∗ ub + b) q p
else − cindex-polyE (c ∗ ub + b) (c ∗ lb + b) q p)

proof −
have cindexE (c ∗ lb + b) (c ∗ ub + b) (λx. poly q x / poly p x)

= cindex-polyE (c ∗ lb + b) (c ∗ ub + b) q p if c>0
apply (subst cindexE-eq-cindex-polyE)
using that ‹lb<ub› by auto

moreover have cindexE (c ∗ ub + b) (c ∗ lb + b) (λx. poly q x / poly p x)
= cindex-polyE (c ∗ ub + b) (c ∗ lb + b) q p if ¬ c>0

apply (subst cindexE-eq-cindex-polyE)
using that assms by auto

ultimately show ?thesis by auto
qed
finally show ?thesis .

qed

lemma cindex-polyE-product ′:
fixes p r q s::real poly and a b ::real
assumes a<b coprime q p coprime s r
shows cindex-polyE a b (p ∗ r − q ∗ s) (p ∗ s + q ∗ r)

= cindex-polyE a b p q + cindex-polyE a b r s
− cross-alt (p ∗ s + q ∗ r) (q ∗ s) a b / 2 (is ?L = ?R)

proof (cases q=0 ∨ s=0 ∨ p=0 ∨ r=0 ∨ p ∗ s + q ∗ r = 0 )
case True
moreover have ?thesis if q=0
proof −

have p 6=0
using assms(2 ) coprime-poly-0 poly-0 that by blast

then show ?thesis using that cindex-polyE-mult-cancel by simp
qed
moreover have ?thesis if s=0
proof −

have r 6=0 using assms(3 ) coprime-poly-0 poly-0 that by blast
then have ?L = cindex-polyE a b (r ∗ p) (r ∗ q)

using that by (simp add:algebra-simps)
also have ... = ?R

using that cindex-polyE-mult-cancel ‹r 6=0 › by simp
finally show ?thesis .

qed
moreover have ?thesis if p ∗ s + q ∗ r = 0 s 6=0 q 6=0
proof −

have cindex-polyE a b p q = cindex-polyE a b (s∗p) (s∗q)
using cindex-polyE-mult-cancel[OF ‹s 6=0 ›] by simp
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also have ... = cindex-polyE a b (−(q ∗ r)) (q∗ s)
using that(1 )
by (metis add.inverse-inverse add.inverse-unique mult.commute)

also have ... = − cindex-polyE a b (q ∗ r) (q∗ s)
using cindex-polyE-smult-1 [where c=−1 ,simplified] by simp

also have ... = − cindex-polyE a b r s
using cindex-polyE-mult-cancel[OF ‹q 6=0 ›] by simp

finally have cindex-polyE a b p q = − cindex-polyE a b r s .
then show ?thesis using that(1 ) by simp

qed
moreover have ?thesis if p=0
proof −

have poly q a 6=0
using assms(2 ) coprime-poly-0 order-root that(1 ) by blast

have poly q b 6=0
by (metis assms(2 ) coprime-poly-0 mpoly-base-conv(1 ) that)

then have q 6=0 using poly-0 by blast

have ?L= − cindex-polyE a b s r
using that cindex-polyE-smult-1 [where c=−1 ,simplified]

cindex-polyE-mult-cancel[OF ‹q 6=0 ›]
by simp

also have ... = cindex-polyE a b r s − (cross-alt r s a b) / 2
apply (subst cindex-polyE-inverse-add-cross[symmetric])
using ‹a<b› ‹coprime s r› by (auto simp:coprime-commute)

also have ... = ?R
using ‹p=0 › ‹poly q a 6=0 › ‹poly q b 6=0 › cross-alt-cancel
by simp

finally show ?thesis .
qed
moreover have ?thesis if r=0
proof −

have poly s a 6=0
using assms(3 ) coprime-poly-0 order-root that by blast

have poly s b 6=0
using assms(3 ) coprime-poly-0 order-root that by blast

then have s 6=0 using poly-0 by blast

have cindex-polyE a b (− (q ∗ s)) (p ∗ s)
= − cindex-polyE a b (q ∗ s) (p ∗ s)

using cindex-polyE-smult-1 [where c=−1 ,simplified] by auto
also have ... = − cindex-polyE a b (s ∗ q) (s ∗ p)

by (simp add:algebra-simps)
also have ... = − cindex-polyE a b q p

using cindex-polyE-mult-cancel[OF ‹s 6=0 ›] by simp
finally have cindex-polyE a b (− (q ∗ s)) (p ∗ s)

= − cindex-polyE a b q p .
moreover have cross-alt (p ∗ s) (q ∗ s) a b / 2

= cindex-polyE a b q p + cindex-polyE a b p q
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proof −
have cross-alt (p ∗ s) (q ∗ s) a b

= cross-alt (s ∗ p) (s ∗ q) a b
by (simp add:algebra-simps)

also have ... = cross-alt p q a b
using cross-alt-cancel by (simp add: ‹poly s a 6= 0 › ‹poly s b 6= 0 ›)

also have ... / 2 = cindex-polyE a b q p + cindex-polyE a b p q
apply (subst cindex-polyE-inverse-add-cross[symmetric])
using ‹a<b› ‹coprime q p› coprime-commute by auto

finally show ?thesis .
qed
ultimately show ?thesis using that by simp

qed
ultimately show ?thesis by argo

next
case False
define P where P=(p ∗ s + q ∗ r)
define Q where Q = q ∗ s ∗ P

from False have q 6=0 s 6=0 p 6=0 r 6=0 P 6= 0 Q 6=0
unfolding P-def Q-def by auto

then have finite:finite (proots-within Q {x. a≤x ∧ x≤b})
unfolding P-def Q-def
by (auto intro: finite-proots)

have sign-pos-eq:
sign-r-pos Q a = (poly Q b>0 )
poly Q a 6=0 =⇒ poly Q a >0 = (poly Q b>0 )

if a<b and noroot:∀ x. a<x ∧ x≤b −→ poly Q x 6=0 for a b Q
proof −

have sign-r-pos Q a = (sgnx (poly Q) (at-right a) >0 )
unfolding sign-r-pos-sgnx-iff by simp

also have ... = (sgnx (poly Q) (at-left b) >0 )
proof (rule ccontr)

assume (0 < sgnx (poly Q) (at-right a))
6= (0 < sgnx (poly Q) (at-left b))

then have ∃ x>a. x < b ∧ poly Q x = 0
using sgnx-at-left-at-right-IVT [OF - ‹a<b›] by auto

then show False using that(2 ) by auto
qed
also have ... = (poly Q b>0 )

apply (subst sgnx-poly-nz)
using that by auto

finally show sign-r-pos Q a = (poly Q b>0 ) .
show (poly Q a >0 ) = (poly Q b>0 ) if poly Q a 6=0
proof (rule ccontr)

assume (0 < poly Q a) 6= (0 < poly Q b)
then have poly Q a ∗ poly Q b < 0

by (metis ‹sign-r-pos Q a = (0 < poly Q b)› poly-0 sign-r-pos-rec that)
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from poly-IVT [OF ‹a<b› this]
have ∃ x>a. x < b ∧ poly Q x = 0 .
then show False using noroot by auto

qed
qed

define Case where Case=(λa b. cindex-polyE a b (p ∗ r − q ∗ s) P
= cindex-polyE a b p q + cindex-polyE a b r s
− (cross-alt P (q ∗ s) a b) / 2 )

have basic-case:Case a b
if noroot0 :proots-within Q {x. a<x ∧ x<b} = {}

and noroot-disj:poly Q a 6=0 ∨ poly Q b 6=0
and a<b

for a b
proof −

let ?thesis ′ = λp r q s a. cindex-polyE a b (p ∗ r − q ∗ s) (p ∗ s + q ∗ r) =
cindex-polyE a b p q + cindex-polyE a b r s −

(cross-alt (p ∗ s + q ∗ r) (q ∗ s) a b) / 2
have base-case:?thesis ′ p r q s a

if proots-within (q ∗ s ∗ (p ∗ s + q ∗ r)) {x. a < x ∧ x ≤ b} = {}
and coprime q p coprime s r
q 6=0 s 6=0 p 6=0 r 6=0 p ∗ s + q ∗ r 6= 0
a<b

for p r q s a
proof −

define P where P=(p ∗ s + q ∗ r)
have noroot1 :proots-within (q ∗ s ∗ P) {x. a < x ∧ x ≤ b} = {}

using that(1 ) unfolding P-def .
have P 6=0 using ‹p ∗ s + q ∗ r 6= 0 › unfolding P-def by simp

have cind1 :cindex-polyE a b (p ∗ r − q ∗ s) P
= (if poly P a = 0 then jumpF-polyR (p ∗ r − q ∗ s) P a else 0 )

proof −
have cindex-poly a b (p ∗ r − q ∗ s) P = 0

apply (rule cindex-poly-noroot[OF ‹a<b›])
using noroot1 by fastforce

moreover have jumpF-polyL (p ∗ r − q ∗ s) P b = 0
apply (rule jumpF-poly-noroot)
using noroot1 ‹a<b› by auto

ultimately show ?thesis
unfolding cindex-polyE-def by (simp add: jumpF-poly-noroot(2 ))

qed
have cind2 :cindex-polyE a b p q

= (if poly q a = 0 then jumpF-polyR p q a else 0 )
proof −

have cindex-poly a b p q = 0
apply (rule cindex-poly-noroot)
using noroot1 ‹a<b› by auto fastforce
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moreover have jumpF-polyL p q b = 0
apply (rule jumpF-poly-noroot)
using noroot1 ‹a<b› by auto

ultimately show ?thesis
unfolding cindex-polyE-def
by (simp add: jumpF-poly-noroot(2 ))

qed
have cind3 :cindex-polyE a b r s

= (if poly s a = 0 then jumpF-polyR r s a else 0 )
proof −

have cindex-poly a b r s = 0
apply (rule cindex-poly-noroot)
using noroot1 ‹a<b› by auto fastforce

moreover have jumpF-polyL r s b = 0
apply (rule jumpF-poly-noroot)
using noroot1 ‹a<b› by auto

ultimately show ?thesis
unfolding cindex-polyE-def
by (simp add: jumpF-poly-noroot(2 ))

qed

have ?thesis if poly (q ∗ s ∗ P) a 6=0
proof −

have noroot2 :proots-within (q ∗ s ∗ P) {x. a≤x ∧ x≤b} = {}
using that noroot1 by force

have cindex-polyE a b (p ∗ r − q ∗ s) P = 0
apply (rule cindex-polyE-noroot)
using noroot2 ‹a < b› by auto

moreover have cindex-polyE a b p q = 0
apply (rule cindex-polyE-noroot)
using noroot2 ‹a < b› by auto

moreover have cindex-polyE a b r s = 0
apply (rule cindex-polyE-noroot)
using noroot2 ‹a < b› by auto

moreover have cross-alt P (q ∗ s) a b = 0
apply (rule cross-alt-noroot[OF ‹a<b›])
using noroot2 by auto

ultimately show ?thesis unfolding P-def by auto
qed
moreover have ?thesis if poly (q ∗ s ∗ P) a=0
proof −

have ?thesis if poly q a =0 poly s a 6=0
proof −

have poly P a 6=0
using that coprime-poly-0 [OF ‹coprime q p›] unfolding P-def
by simp

then have cindex-polyE a b (p ∗ r − q ∗ s) P = 0
using cind1 by auto

moreover have cindex-polyE a b p q = (cross-alt P (q ∗ s) a b) / 2
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proof −
have cindex-polyE a b p q = jumpF-polyR p q a

using cind2 that(1 ) by auto
also have ... = (cross-alt 1 (q ∗ s ∗ P) a b) / 2
proof −

have sign-eq:(sign-r-pos q a ←→ poly p a>0 )
= (poly (q ∗ s ∗ P) b > 0 )

proof −
have (sign-r-pos q a ←→ poly p a>0 )

= (sgnx (poly (q∗p)) (at-right a) >0 )
proof −

have (poly p a>0 ) = (sgnx (poly p) (at-right a) > 0 )
apply (subst sgnx-poly-nz)
using ‹coprime q p› coprime-poly-0 that(1 ) by auto

then show ?thesis
unfolding sign-r-pos-sgnx-iff
apply (subst sgnx-poly-times[of - a])
subgoal by simp
using poly-sgnx-values ‹p 6=0 › ‹q 6=0 ›
by (metis (no-types, opaque-lifting) add.inverse-inverse

mult.right-neutral mult-minus-right zero-less-one)
qed
also have ... = (sgnx (poly ((q∗p) ∗ s^2 )) (at-right a) > 0 )
proof (subst (2 ) sgnx-poly-times)

have sgnx (poly (s2)) (at-right a) > 0
using sgn-zero-iff sgnx-poly-nz(2 ) that(2 ) by auto

then show (0 < sgnx (poly (q ∗ p)) (at-right a)) =
(0 < sgnx (poly (q ∗ p)) (at-right a)
∗ sgnx (poly (s2)) (at-right a))

by (simp add: zero-less-mult-iff )
qed auto
also have ... = (sgnx (poly (q ∗ s)) (at-right a)
∗ sgnx (poly (p ∗ s)) (at-right a)> 0 )

unfolding power2-eq-square
apply (subst sgnx-poly-times[where x=a],simp)+
by (simp add:algebra-simps)

also have ... = (sgnx (poly (q ∗ s)) (at-right a)
∗ sgnx (poly P) (at-right a)> 0 )

proof −
have sgnx (poly P) (at-right a) =

sgnx (poly (q ∗ r + p ∗ s)) (at-right a)
unfolding P-def by (simp add:algebra-simps)

also have ... = sgnx (poly (p ∗ s)) (at-right a)
apply (rule sgnx-poly-plus[where x=a])
subgoal using ‹poly q a=0 › by simp
subgoal using ‹coprime q p› coprime-poly-0 poly-mult-zero-iff

that(1 ) that(2 ) by blast
by simp

finally show ?thesis by auto

65



qed
also have ... = (0 < sgnx (poly (q ∗ s ∗ P)) (at-right a))

apply (subst sgnx-poly-times[where x=a],simp)+
by (simp add:algebra-simps)

also have ... = (0 < sgnx (poly (q ∗ s ∗ P)) (at-left b))
proof −

have sgnx (poly (q ∗ s ∗ P)) (at-right a)
= sgnx (poly (q ∗ s ∗ P)) (at-left b)

proof (rule ccontr)
assume sgnx (poly (q ∗ s ∗ P)) (at-right a)

6= sgnx (poly (q ∗ s ∗ P)) (at-left b)
from sgnx-at-left-at-right-IVT [OF this ‹a<b›]
have ∃ x>a. x < b ∧ poly (q ∗ s ∗ P) x = 0 .
then show False using noroot1 by fastforce

qed
then show ?thesis by auto

qed
also have ... = (poly (q ∗ s ∗ P) b > 0 )

apply (subst sgnx-poly-nz)
using noroot1 ‹a<b› by auto

finally show ?thesis .
qed
have psign-a:psign-diff 1 (q ∗ s ∗ P) a = 1

unfolding psign-diff-def using ‹poly (q ∗ s ∗ P) a=0 ›
by simp

have poly (q ∗ s ∗ P) b 6=0
using noroot1 ‹a<b› by blast

moreover have ?thesis if poly (q ∗ s ∗ P) b >0
proof −

have psign-diff 1 (q ∗ s ∗ P) b = 0
using that unfolding psign-diff-def by auto

moreover have jumpF-polyR p q a = 1/2
unfolding jumpF-polyR-coprime[OF ‹coprime q p›]
using ‹p 6= 0 › ‹poly q a = 0 › ‹q 6= 0 › sign-eq that by presburger

ultimately show ?thesis
unfolding cross-alt-def using psign-a by auto

qed
moreover have ?thesis if poly (q ∗ s ∗ P) b <0
proof −

have psign-diff 1 (q ∗ s ∗ P) b = 2
using that unfolding psign-diff-def by auto

moreover have jumpF-polyR p q a = − 1/2
unfolding jumpF-polyR-coprime[OF ‹coprime q p›]
using ‹p 6= 0 › ‹poly q a = 0 › ‹q 6= 0 › sign-eq that by auto

ultimately show ?thesis
unfolding cross-alt-def using psign-a by auto

qed
ultimately show ?thesis by argo
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qed
also have ... = (cross-alt P (q ∗ s) a b) / 2

apply (subst cross-alt-clear [symmetric])
using ‹poly P a 6= 0 › noroot1 ‹a<b› cross-alt-poly-commute
by auto

finally show ?thesis .
qed
moreover have cindex-polyE a b r s = 0

using cind3 that by auto
ultimately show ?thesis using that

apply (fold P-def )
by auto

qed
moreover have ?thesis if poly q a 6=0 poly s a=0
proof −

have poly P a 6=0
using that coprime-poly-0 [OF ‹coprime s r›] unfolding P-def
by simp

then have cindex-polyE a b (p ∗ r − q ∗ s) P = 0
using cind1 by auto

moreover have cindex-polyE a b r s = (cross-alt P (q ∗ s) a b) / 2
proof −

have cindex-polyE a b r s = jumpF-polyR r s a
using cind3 that by auto

also have ... = (cross-alt 1 (s ∗ q ∗ P) a b) / 2
proof −

have sign-eq:(sign-r-pos s a ←→ poly r a>0 )
= (poly (s ∗ q ∗ P) b > 0 )

proof −
have (sign-r-pos s a ←→ poly r a>0 )

= (sgnx (poly (s∗r)) (at-right a) >0 )
proof −

have (poly r a>0 ) = (sgnx (poly r) (at-right a) > 0 )
apply (subst sgnx-poly-nz)
using ‹coprime s r› coprime-poly-0 that(2 ) by auto

then show ?thesis
unfolding sign-r-pos-sgnx-iff
apply (subst sgnx-poly-times[of - a])
subgoal by simp
subgoal using ‹r 6= 0 › ‹s 6= 0 ›

by (metis (no-types, opaque-lifting) add.inverse-inverse
mult.right-neutral mult-minus-right poly-sgnx-values(2 )
zero-less-one)

done
qed
also have ... = (sgnx (poly ((s∗r) ∗ q^2 )) (at-right a) > 0 )
proof (subst (2 ) sgnx-poly-times)

have sgnx (poly (q2)) (at-right a) > 0
by (metis ‹q 6= 0 › power2-eq-square sign-r-pos-mult sign-r-pos-sgnx-iff )

67



then show (0 < sgnx (poly (s ∗ r)) (at-right a)) =
(0 < sgnx (poly (s ∗ r)) (at-right a)
∗ sgnx (poly (q2)) (at-right a))

by (simp add: zero-less-mult-iff )
qed auto
also have ... = (sgnx (poly (s ∗ q)) (at-right a)
∗ sgnx (poly (r ∗ q)) (at-right a)> 0 )

unfolding power2-eq-square
apply (subst sgnx-poly-times[where x=a],simp)+
by (simp add:algebra-simps)

also have ... = (sgnx (poly (s ∗ q)) (at-right a)
∗ sgnx (poly P) (at-right a)> 0 )

proof −
have sgnx (poly P) (at-right a) =

sgnx (poly (p ∗ s + q ∗ r )) (at-right a)
unfolding P-def by (simp add:algebra-simps)

also have ... = sgnx (poly (q ∗ r)) (at-right a)
apply (rule sgnx-poly-plus[where x=a])
subgoal using ‹poly s a=0 › by simp
subgoal

using ‹coprime s r› coprime-poly-0 poly-mult-zero-iff that(1 )
that(2 ) by blast

by simp
finally show ?thesis by (auto simp:algebra-simps)

qed
also have ... = (0 < sgnx (poly (s ∗ q ∗ P)) (at-right a))

apply (subst sgnx-poly-times[where x=a],simp)+
by (simp add:algebra-simps)

also have ... = (0 < sgnx (poly (s ∗ q ∗ P)) (at-left b))
proof −

have sgnx (poly (s ∗ q ∗ P)) (at-right a)
= sgnx (poly (s ∗ q ∗ P)) (at-left b)

proof (rule ccontr)
assume sgnx (poly (s ∗ q ∗ P)) (at-right a)

6= sgnx (poly (s ∗ q ∗ P)) (at-left b)
from sgnx-at-left-at-right-IVT [OF this ‹a<b›]
have ∃ x>a. x < b ∧ poly (s ∗ q ∗ P) x = 0 .
then show False using noroot1 by fastforce

qed
then show ?thesis by auto

qed
also have ... = (poly (s ∗ q ∗ P) b > 0 )

apply (subst sgnx-poly-nz)
using noroot1 ‹a<b› by auto

finally show ?thesis .
qed
have psign-a:psign-diff 1 (s ∗ q ∗ P) a = 1

unfolding psign-diff-def using ‹poly (q ∗ s ∗ P) a=0 ›
by (simp add:algebra-simps)
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have poly (s ∗ q ∗ P) b 6=0
using noroot1 ‹a<b› by (auto simp:algebra-simps)

moreover have ?thesis if poly (s ∗ q ∗ P) b >0
proof −

have psign-diff 1 (s ∗ q ∗ P) b = 0
using that unfolding psign-diff-def by auto

moreover have jumpF-polyR r s a = 1/2
unfolding jumpF-polyR-coprime[OF ‹coprime s r›]
using ‹poly s a = 0 › ‹r 6= 0 › ‹s 6= 0 › sign-eq that by presburger

ultimately show ?thesis
unfolding cross-alt-def using psign-a by auto

qed
moreover have ?thesis if poly (s ∗ q ∗ P) b <0
proof −

have psign-diff 1 (s ∗ q ∗ P) b = 2
using that unfolding psign-diff-def by auto

moreover have jumpF-polyR r s a = − 1/2
unfolding jumpF-polyR-coprime[OF ‹coprime s r›]
using ‹poly s a = 0 › ‹r 6= 0 › sign-eq that by auto

ultimately show ?thesis
unfolding cross-alt-def using psign-a by auto

qed
ultimately show ?thesis by argo

qed
also have ... = (cross-alt P (q ∗ s) a b) / 2

apply (subst cross-alt-clear [symmetric])
using ‹poly P a 6= 0 › noroot1 ‹a<b› cross-alt-poly-commute
by (auto simp:algebra-simps)

finally show ?thesis .
qed
moreover have cindex-polyE a b p q = 0

using cind2 that by auto
ultimately show ?thesis using that

apply (fold P-def )
by auto

qed
moreover have ?thesis if poly P a =0 poly q a 6=0 poly s a 6=0
proof −

have cindex-polyE a b (p ∗ r − q ∗ s) P
= jumpF-polyR (p ∗ r − q ∗ s) P a

using cind1 that by auto
also have ... = (if sign-r-pos P a = (0 < poly (p ∗ r − q ∗ s) a)

then 1 / 2 else − 1 / 2 ) (is - = ?R)
proof (subst jumpF-polyR-coprime ′)

let ?C=(P 6= 0 ∧ p ∗ r − q ∗ s 6= 0 ∧ poly P a = 0 )
have ?C

by (smt (z3 ) P-def ‹P 6= 0 › add.left-neutral diff-add-cancel
poly-add poly-mult-zero-iff sign-r-pos-mult sign-r-pos-rec that(1 )
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that(2 ) that(3 ))
then show (if ?C then ?R else 0 ) = ?R by auto
show poly P a 6= 0 ∨ poly (p ∗ r − q ∗ s) a 6= 0

by (smt (z3 ) P-def mult-less-0-iff poly-add poly-diff poly-mult
poly-mult-zero-iff that(2 ) that(3 ))

qed
also have ... = − cross-alt P (q ∗ s) a b / 2
proof −

have (sign-r-pos P a = (0 < poly (p ∗ r − q ∗ s) a))
=(¬ (poly (q ∗ s ∗ P) b > 0 ))

proof −
have (poly (q ∗ s ∗ P) b > 0 )

= (sgnx (poly (q ∗ s ∗ P)) (at-left b) >0 )
apply (subst sgnx-poly-nz)
using noroot1 ‹a<b› by auto

also have ... = (sgnx (poly (q ∗ s ∗ P)) (at-right a) >0 )
proof (rule ccontr)

define F where F=(q ∗ s ∗ P)
assume (0 < sgnx (poly F) (at-left b))

6= (0 < sgnx (poly F) (at-right a))
then have sgnx (poly F) (at-right a) 6= sgnx (poly F) (at-left b)

by auto
then have ∃ x>a. x < b ∧ poly F x = 0

using sgnx-at-left-at-right-IVT [OF - ‹a<b›] by auto
then show False using noroot1 [folded F-def ] ‹a<b› by fastforce

qed
also have ... = sign-r-pos (q ∗ s ∗ P) a

using sign-r-pos-sgnx-iff by simp
also have ... = (sign-r-pos P a = sign-r-pos (q ∗ s) a)

apply (subst sign-r-pos-mult[symmetric])
using ‹P 6=0 › ‹q 6=0 › ‹s 6=0 › by (auto simp add:algebra-simps)

also have ... = (sign-r-pos P a = (0 ≥ poly (p ∗ r − q ∗ s) a))
proof −

have sign-r-pos (q ∗ s) a=(poly (q ∗ s) a > 0 )
by (metis poly-0 poly-mult-zero-iff sign-r-pos-rec

that(2 ) that(3 ))
also have ... = (0 ≥ poly (p ∗ r − q ∗ s) a)

using ‹poly P a =0 › unfolding P-def
by (smt (verit, ccfv-threshold) ‹p 6= 0 › ‹q 6= 0 › ‹r 6= 0 › ‹s 6= 0 ›

divisors-zero
poly-add poly-diff poly-mult-zero-iff sign-r-pos-mult sign-r-pos-rec

that(2 )
that(3 ))

finally show ?thesis by simp
qed
finally have (0 < poly (q ∗ s ∗ P) b)
= (sign-r-pos P a = (poly (p ∗ r − q ∗ s) a ≤ 0 )) .

then show ?thesis by argo
qed
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moreover have cross-alt P (q ∗ s) a b =
(if poly (q ∗ s ∗ P) b > 0 then 1 else −1 )

proof −
have psign-diff P (q ∗ s) a = 1

by (smt (verit, ccfv-threshold) Sturm-Tarski.sign-def
dvd-div-mult-self gcd-dvd1 gcd-dvd2 poly-mult-zero-iff
psign-diff-def that(1 ) that(2 ) that(3 ))

moreover have psign-diff P (q ∗ s) b
= (if poly (q ∗ s ∗ P) b > 0 then 0 else 2 )

proof −
define F where F = q ∗ s ∗ P
have psign-diff P (q ∗ s) b = psign-diff 1 F b

apply (subst psign-diff-clear)
using noroot1 ‹a<b› unfolding F-def
by (auto simp:algebra-simps)

also have ... = (if 0 < poly F b then 0 else 2 )
proof −

have poly F b 6=0
unfolding F-def using ‹a<b› noroot1 by auto

then show ?thesis
unfolding psign-diff-def by auto

qed
finally show ?thesis unfolding F-def .

qed
ultimately show ?thesis unfolding cross-alt-def by auto

qed
ultimately show ?thesis by auto

qed
finally have cindex-polyE a b (p ∗ r − q ∗ s) P

= − cross-alt P (q ∗ s) a b / 2 .
moreover have cindex-polyE a b p q = 0

using cind2 that by auto
moreover have cindex-polyE a b r s = 0

using cind3 that by auto
ultimately show ?thesis

by (fold P-def ) auto
qed
moreover have ?thesis if poly q a=0 poly s a=0
proof −

have poly p a 6=0
using ‹coprime q p› coprime-poly-0 that(1 ) by blast

have poly r a 6=0
using ‹coprime s r› coprime-poly-0 that(2 ) by blast

have poly P a=0
unfolding P-def using that by simp

define ff where ff=(λx. if x then 1/(2 ::real) else −1/2 )
define C1 C2 C3 C4 C5 where C1 = (sign-r-pos P a)

and C2 =(0 < poly p a)
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and C3= (0 < poly r a)
and C4=(sign-r-pos q a)
and C5=(sign-r-pos s a)

note CC-def = C1-def C2-def C3-def C4-def C5-def

have cindex-polyE a b (p ∗ r − q ∗ s) P = ff ((C1 = C2 ) = C3 )
proof −

have cindex-polyE a b (p ∗ r − q ∗ s) P
= jumpF-polyR (p ∗ r − q ∗ s) P a

using cind1 ‹poly P a=0 › by auto
also have ... = (ff (sign-r-pos P a

= (0 < poly (p ∗ r − q ∗ s) a)) )
unfolding ff-def
apply (subst jumpF-polyR-coprime ′)
subgoal

by (simp add: ‹poly p a 6= 0 › ‹poly r a 6= 0 › that(1 ))
subgoal

by (smt (z3 ) ‹P 6= 0 › ‹poly P a = 0 ›
‹poly P a 6= 0 ∨ poly (p ∗ r − q ∗ s) a 6= 0 › poly-0 )

done
also have ... = (ff (sign-r-pos P a = (0 < poly (p ∗ r) a)))
proof −

have (0 < poly (p ∗ r − q ∗ s) a) = (0 < poly (p ∗ r) a)
by (simp add: that(1 ))

then show ?thesis by simp
qed
also have ... = ff ((C1 = C2 ) = C3 )

unfolding CC-def
by (smt (z3 ) ‹p 6= 0 › ‹poly p a 6= 0 › ‹poly r a 6= 0 › ‹r 6= 0 ›

no-zero-divisors
poly-mult-zero-iff sign-r-pos-mult sign-r-pos-rec)

finally show ?thesis .
qed
moreover have cindex-polyE a b p q

= ff (C4 = C2 )
proof −

have cindex-polyE a b p q = jumpF-polyR p q a
using cind2 ‹poly q a=0 › by auto

also have ... = ff (sign-r-pos q a = (0 < poly p a))
apply (subst jumpF-polyR-coprime ′)
subgoal using ‹poly p a 6= 0 › by auto
subgoal using ‹p 6= 0 › ‹q 6= 0 › ff-def that(1 ) by presburger
done

also have ... = ff (C4 = C2 )
using ‹a<b› noroot1 unfolding CC-def by auto

finally show ?thesis .
qed
moreover have cindex-polyE a b r s = ff (C5 = C3 )
proof −
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have cindex-polyE a b r s = jumpF-polyR r s a
using cind3 ‹poly s a=0 › by auto

also have ... = ff (sign-r-pos s a = (0 < poly r a))
apply (subst jumpF-polyR-coprime ′)
subgoal using ‹poly r a 6= 0 › by auto
subgoal using ‹r 6= 0 › ‹s 6= 0 › ff-def that(2 ) by presburger
done

also have ... = ff (C5 = C3 )
using ‹a<b› noroot1 unfolding CC-def by auto

finally show ?thesis .
qed
moreover have cross-alt P (q ∗ s) a b = 2 ∗ ff ((C1 = C4 ) = C5 )
proof −

have cross-alt P (q ∗ s) a b
= sign (poly P b ∗ (poly q b ∗ poly s b))

apply (subst cross-alt-clear)
apply (subst cross-alt-alt)
using that by auto

also have ... = 2 ∗ ff ((C1 = C4 ) = C5 )
proof −

have sign-r-pos P a = (poly P b>0 )
apply (rule sign-pos-eq)
using ‹a<b› noroot1 by auto

moreover have sign-r-pos q a = (poly q b>0 )
apply (rule sign-pos-eq)
using ‹a<b› noroot1 by auto

moreover have sign-r-pos s a = (poly s b>0 )
apply (rule sign-pos-eq)
using ‹a<b› noroot1 by auto

ultimately show ?thesis
unfolding CC-def ff-def
apply (simp add:sign-times)
using noroot1 ‹a<b› by (auto simp:sign-def )

qed
finally show ?thesis .

qed
ultimately have ?thesis = (ff ((C1 = C2 ) = C3 ) = ff (C4 = C2 ) +

ff (C5 = C3 ) − ff ((C1 = C4 ) = C5 ))
by (fold P-def ) auto

moreover have ff ((C1 = C2 ) = C3 ) = ff (C4 = C2 ) +
ff (C5 = C3 ) − ff ((C1 = C4 ) = C5 )

proof −
have pp:(0 < poly p a) = sign-r-pos p a

apply (subst sign-r-pos-rec)
using ‹poly p a 6=0 › by auto

have rr :(0 < poly r a) = sign-r-pos r a
apply (subst sign-r-pos-rec)

using ‹poly r a 6=0 › by auto

73



have C1 if C2=C5 C3=C4
proof −

have sign-r-pos (p ∗ s) a
apply (subst sign-r-pos-mult)
using pp ‹C2=C5 › ‹p 6=0 › ‹s 6=0 › unfolding CC-def by auto

moreover have sign-r-pos (q ∗ r) a
apply (subst sign-r-pos-mult)
using rr ‹C3=C4 › ‹q 6=0 › ‹r 6=0 › unfolding CC-def by auto

ultimately show ?thesis unfolding CC-def P-def
using sign-r-pos-plus-imp by auto

qed
moreover have foo2 :¬C1 if C2 6=C5 C3 6=C4
proof −

have (0 < poly p a) = sign-r-pos (−s) a
apply (subst sign-r-pos-minus)
using ‹s 6=0 › ‹C2 6=C5 › unfolding CC-def by auto

then have sign-r-pos (p ∗ (−s)) a
apply (subst sign-r-pos-mult)
unfolding pp using ‹p 6=0 › ‹s 6=0 › by auto

moreover have (0 < poly r a) = sign-r-pos (−q) a
apply (subst sign-r-pos-minus)
using ‹q 6=0 › ‹C3 6=C4 › unfolding CC-def by auto

then have sign-r-pos (r ∗ (−q)) a
apply (subst sign-r-pos-mult)
unfolding rr using ‹r 6=0 › ‹q 6=0 › by auto

ultimately have sign-r-pos (p ∗ (−s) + r ∗ (−q)) a
using sign-r-pos-plus-imp by blast

then have sign-r-pos (− (p ∗ s + q ∗ r)) a
by (simp add:algebra-simps)

then have ¬ sign-r-pos P a
apply (subst sign-r-pos-minus)
using ‹P 6=0 › unfolding P-def by auto

then show ?thesis unfolding CC-def .
qed
ultimately show ?thesis unfolding ff-def by auto

qed
ultimately show ?thesis by simp

qed
ultimately show ?thesis using that by auto

qed
ultimately show ?thesis by auto

qed

have ?thesis ′ p r q s a if poly Q b 6= 0
apply (rule base-case[OF - ‹coprime q p› ‹coprime s r›])
subgoal using noroot0 that unfolding Q-def P-def by fastforce
using False ‹a<b› by auto

moreover have ?thesis ′ p r q s a if poly Q b = 0
proof −
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have poly Q a 6=0 using noroot-disj that by auto

define h where h=(λp. p ◦p [:a + b, − 1 :])

have h-rw:
h p − h q = h (p − q)
h p ∗ h q = h (p ∗ q)
h p + h q = h (p + q)
cindex-polyE a b (h q) (h p) = − cindex-polyE a b q p
cross-alt (h p) (h q) a b = cross-alt p q b a
for p q

unfolding h-def pcompose-diff pcompose-mult pcompose-add
cindex-polyE-linear-comp[OF ‹a<b›, of −1 - a+b,simplified]
cross-alt-linear-comp[of p a+b −1 q a b,simplified]

by simp-all
have ?thesis ′ (h p) (h r) (h q) (h s) a
proof (rule base-case)
have proots-within (h q ∗ h s ∗ (h p ∗ h s + h q ∗ h r)) {x. a < x ∧ x ≤ b}

= proots-within (h Q) {x. a < x ∧ x ≤ b}
unfolding Q-def P-def h-def
by (simp add:pcompose-diff pcompose-mult pcompose-add)

also have ... = {}
unfolding proots-within-def h-def poly-pcompose

using ‹a<b› that[folded Q-def ] noroot0 [unfolded P-def , folded Q-def ] ‹poly
Q a 6=0 ›

by (auto simp:order .order-iff-strict proots-within-def )
finally show proots-within (h q ∗ h s ∗ (h p ∗ h s + h q ∗ h r))

{x. a < x ∧ x ≤ b} = {} .
show coprime (h q) (h p) unfolding h-def

apply (rule coprime-linear-comp)
using ‹coprime q p› by auto

show coprime (h s) (h r) unfolding h-def
apply (rule coprime-linear-comp)
using ‹coprime s r› by auto

show h q 6= 0 h s 6= 0 h p 6= 0 h r 6= 0
using False unfolding h-def
by (subst pcompose-eq-0 ;auto)+

have h (p ∗ s + q ∗ r) 6= 0
using False unfolding h-def
by (subst pcompose-eq-0 ;auto)

then show h p ∗ h s + h q ∗ h r 6= 0
unfolding h-def pcompose-mult pcompose-add by simp

show a < b by fact
qed
moreover have cross-alt (p ∗ s + q ∗ r) (q ∗ s) b a

= − cross-alt (p ∗ s + q ∗ r) (q ∗ s) a b
unfolding cross-alt-def by auto

ultimately show ?thesis unfolding h-rw by auto
qed
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ultimately show ?thesis unfolding Case-def P-def by blast
qed

show ?thesis using ‹a<b›
proof (induct card (proots-within (q ∗ s ∗ P) {x. a<x ∧ x≤b}) arbitrary:a)

case 0
have Case a b
proof (rule basic-case)

have ∗:proots-within Q {x. a < x ∧ x ≤ b} = {}
using 0 ‹Q 6=0 › unfolding Q-def by auto

then show proots-within Q {x. a < x ∧ x < b} = {} by force
show poly Q a 6= 0 ∨ poly Q b 6= 0

using ∗ ‹a<b› by blast
show a < b by fact

qed
then show ?case unfolding Case-def P-def by simp

next
case (Suc n)

define S where S=(λa. proots-within Q {x. a < x ∧ x ≤ b})
have Sa-Suc:Suc n = card (S a)

using Suc(2 ) unfolding S-def Q-def by auto

define mroot where mroot = Min (S a)
have fin-S :finite (S a) for a

using Suc(2 ) unfolding S-def Q-def
by (simp add: ‹P 6= 0 › ‹q 6= 0 › ‹s 6= 0 ›)

have mroot-in:mroot ∈ S a and mroot-min:∀ x∈S a. mroot≤x
proof −

have S a 6={}
unfolding S-def Q-def using Suc.hyps(2 ) by force

then show mroot ∈ S a unfolding mroot-def
using Min-in fin-S by auto

show ∀ x∈S a. mroot≤x
using ‹finite (S a)› Min-le unfolding mroot-def by auto

qed
have mroot-nzero:poly Q x 6=0 if a<x x<mroot for x

using mroot-in mroot-min that unfolding S-def
by (metis (no-types, lifting) dual-order .strict-trans leD

le-less-linear mem-Collect-eq proots-within-iff )

define C1 where C1=(λa b. cindex-polyE a b (p ∗ r − q ∗ s) P)
define C2 where C2=(λa b. cindex-polyE a b p q)
define C3 where C3=(λa b. cindex-polyE a b r s)
define C4 where C4=(λa b. cross-alt P (q ∗ s) a b)
note CC-def = C1-def C2-def C3-def C4-def

have hyps:C1 mroot b = C2 mroot b + C3 mroot b − C4 mroot b / 2
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if mroot < b
unfolding C1-def C2-def C3-def C4-def P-def

proof (rule Suc.hyps(1 )[OF - that])
have Suc n = card (S a) using Sa-Suc by auto
also have ... = card (insert mroot (S mroot))
proof −

have S a = proots-within Q {x. a < x ∧ x ≤ b}
unfolding S-def Q-def by simp

also have ... = proots-within Q ({x. a < x ∧ x ≤ mroot} ∪ {x. mroot < x
∧ x ≤ b})

apply (rule arg-cong2 [where f=proots-within])
using mroot-in unfolding S-def by auto

also have ... = proots-within Q {x. a < x ∧ x ≤ mroot} ∪ S mroot
unfolding S-def Q-def
apply (subst proots-within-union)
by auto

also have ... = {mroot} ∪ S mroot
proof −

have proots-within Q {x. a < x ∧ x ≤ mroot} = {mroot}
using mroot-in mroot-min unfolding S-def
by auto force

then show ?thesis by auto
qed
finally have S a = insert mroot (S mroot) by auto
then show ?thesis by auto

qed
also have ... = Suc (card (S mroot))

apply (rule card-insert-disjoint)
using fin-S unfolding S-def by auto

finally have Suc n = Suc (card (S mroot)) .
then have n = card (S mroot) by simp
then show n = card (proots-within (q ∗ s ∗ P) {x. mroot < x ∧ x ≤ b})

unfolding S-def Q-def by simp
qed

have ?case if mroot = b
proof −

have nzero:poly Q x 6=0 if a<x x<b for x
using mroot-nzero ‹mroot = b› that by auto

define m where m=(a+b)/2
have [simp]:a<m m<b using ‹a<b› unfolding m-def by auto

have Case a m
proof (rule basic-case)

show proots-within Q {x. a < x ∧ x < m} = {}
using nzero ‹a<b› unfolding m-def by auto

have poly Q m 6= 0 using nzero ‹a<m› ‹m<b› by auto
then show poly Q a 6= 0 ∨ poly Q m 6= 0 by auto
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qed simp
moreover have Case m b
proof (rule basic-case)

show proots-within Q {x. m < x ∧ x < b} = {}
using nzero ‹a<b› unfolding m-def by auto

have poly Q m 6= 0 using nzero ‹a<m› ‹m<b› by auto
then show poly Q m 6= 0 ∨ poly Q b 6= 0 by auto

qed simp
ultimately have C1 a m + C1 m b = (C2 a m + C2 m b)

+ (C3 a m + C3 m b) − (C4 a m + C4 m b)/2
unfolding Case-def C1-def
apply simp
unfolding C2-def C3-def C4-def by (auto simp:algebra-simps)

moreover have
C1 a m + C1 m b = C1 a b
C2 a m + C2 m b = C2 a b
C3 a m + C3 m b = C3 a b

unfolding CC-def
by (rule cindex-polyE-combine;auto)+

moreover have C4 a m + C4 m b = C4 a b
unfolding C4-def cross-alt-def by simp

ultimately have C1 a b = C2 a b + C3 a b − C4 a b/2
by auto

then show ?thesis unfolding CC-def P-def by auto
qed
moreover have ?case if mroot 6=b
proof −

have [simp]:a<mroot mroot < b
using mroot-in that unfolding S-def by auto

define m where m=(a+mroot)/2
have [simp]:a<m m<mroot

using mroot-in unfolding m-def S-def by auto
have poly Q m 6= 0

by (rule mroot-nzero) auto

have C1 mroot b = C2 mroot b + C3 mroot b − C4 mroot b / 2
using hyps ‹mroot<b› by simp

moreover have Case a m
apply (rule basic-case)
subgoal
by (smt (verit) Collect-empty-eq ‹m < mroot› mem-Collect-eq mroot-nzero

proots-within-def )
subgoal using ‹poly Q m 6= 0 › by auto
by fact

then have C1 a m = C2 a m + C3 a m − C4 a m / 2
unfolding Case-def CC-def by auto

moreover have Case m mroot
apply (rule basic-case)

78



subgoal
by (smt (verit) Collect-empty-eq ‹a < m› mem-Collect-eq mroot-nzero

proots-within-def )
subgoal using ‹poly Q m 6= 0 › by auto
by fact

then have C1 m mroot = C2 m mroot + C3 m mroot − C4 m mroot / 2
unfolding Case-def CC-def by auto

ultimately have C1 a m + C1 m mroot + C1 mroot b =
(C2 a m + C2 m mroot + C2 mroot b)
+ (C3 a m + C3 m mroot + C3 mroot b)
− (C4 a m + C4 m mroot + C4 mroot b) / 2

by simp (simp add:algebra-simps)
moreover have

C1 a m + C1 m mroot + C1 mroot b = C1 a b
C2 a m + C2 m mroot + C2 mroot b = C2 a b
C3 a m + C3 m mroot + C3 mroot b = C3 a b

unfolding CC-def
by (subst cindex-polyE-combine;simp?)+

moreover have C4 a m + C4 m mroot + C4 mroot b = C4 a b
unfolding C4-def cross-alt-def by simp

ultimately have C1 a b = C2 a b + C3 a b − C4 a b/2
by auto

then show ?thesis unfolding CC-def P-def by auto
qed
ultimately show ?case by auto

qed
qed

lemma cindex-polyE-product:
fixes p r q s::real poly and a b ::real
assumes a<b

and poly p a 6=0 ∨ poly q a 6=0 poly p b 6=0 ∨ poly q b 6=0
and poly r a 6=0 ∨ poly s a 6=0 poly r b 6=0 ∨ poly s b 6=0

shows cindex-polyE a b (p ∗ r − q ∗ s) (p ∗ s + q ∗ r)
= cindex-polyE a b p q + cindex-polyE a b r s
− cross-alt (p ∗ s + q ∗ r) (q ∗ s) a b / 2

proof −
define g1 where g1 = gcd p q
obtain p ′ q ′ where pq:p=g1∗p ′ q=g1∗q ′ and coprime q ′ p ′

unfolding g1-def
by (metis assms(2 ) coprime-commute div-gcd-coprime dvd-mult-div-cancel gcd-dvd1

gcd-dvd2 order-root)

define g2 where g2 = gcd r s
obtain r ′ s ′ where rs:r=g2∗r ′ s = g2 ∗ s ′ coprime s ′ r ′

unfolding g2-def using assms(4 )
by (metis coprime-commute div-gcd-coprime dvd-mult-div-cancel gcd-dvd1 gcd-dvd2
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order-root)
define g where g=g1 ∗ g2
have [simp]:g 6=0 g1 6=0 g2 6=0

unfolding g-def g1-def g2-def
using assms by auto

have [simp]:poly g a 6= 0 poly g b 6= 0
unfolding g-def g1-def g2-def
subgoal by (metis assms(2 ) assms(4 ) poly-gcd-0-iff poly-mult-zero-iff )
subgoal by (metis assms(3 ) assms(5 ) poly-gcd-0-iff poly-mult-zero-iff )
done

have cindex-polyE a b (p ′ ∗ r ′ − q ′ ∗ s ′) (p ′ ∗ s ′ + q ′ ∗ r ′) =
cindex-polyE a b p ′ q ′ + cindex-polyE a b r ′ s ′ −

(cross-alt (p ′ ∗ s ′ + q ′ ∗ r ′) (q ′ ∗ s ′) a b) / 2
using cindex-polyE-product ′[OF ‹a<b› ‹coprime q ′ p ′› ‹coprime s ′ r ′›] .

moreover have cindex-polyE a b (p ∗ r − q ∗ s) (p ∗ s + q ∗ r)
= cindex-polyE a b (g∗(p ′ ∗ r ′ − q ′ ∗ s ′)) (g∗(p ′ ∗ s ′ + q ′ ∗ r ′))

unfolding pq rs g-def by (auto simp:algebra-simps)
then have cindex-polyE a b (p ∗ r − q ∗ s) (p ∗ s + q ∗ r)

= cindex-polyE a b (p ′ ∗ r ′ − q ′ ∗ s ′) (p ′ ∗ s ′ + q ′ ∗ r ′)
apply (subst (asm) cindex-polyE-mult-cancel)
by simp

moreover have cindex-polyE a b p q = cindex-polyE a b p ′ q ′

unfolding pq using cindex-polyE-mult-cancel by simp
moreover have cindex-polyE a b r s =cindex-polyE a b r ′ s ′

unfolding rs using cindex-polyE-mult-cancel by simp
moreover have cross-alt (p ∗ s + q ∗ r) (q ∗ s) a b

= cross-alt (g∗(p ′ ∗ s ′ + q ′ ∗ r ′)) (g∗(q ′ ∗ s ′)) a b
unfolding pq rs g-def by (auto simp:algebra-simps)

then have cross-alt (p ∗ s + q ∗ r) (q ∗ s) a b
= cross-alt (p ′ ∗ s ′ + q ′ ∗ r ′) (q ′ ∗ s ′) a b

apply (subst (asm) cross-alt-cancel)
by simp-all

ultimately show ?thesis by auto
qed

lemma cindex-pathE-linepath-on:
assumes z ∈ closed-segment a b
shows cindex-pathE (linepath a b) z = 0

proof −
obtain u where 0≤u u≤1

and z-eq:z = complex-of-real (1 − u) ∗ a + complex-of-real u ∗ b
using assms unfolding in-segment scaleR-conv-of-real
by auto

define U where U = [:−u, 1 :]
have U 6=0 unfolding U-def by auto
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have cindex-pathE (linepath a b) z
= cindexE 0 1 (λt. (Im a + t ∗ Im b − (Im z + t ∗ Im a))

/ (Re a + t ∗ Re b − (Re z + t ∗ Re a)))
unfolding cindex-pathE-def
by (simp add:linepath-def algebra-simps)

also have ... = cindexE 0 1
(λt. ( (Im b − Im a) ∗ (t−u))

/ ( (Re b − Re a) ∗ (t−u)))
unfolding z-eq
by (simp add:algebra-simps)

also have ... = cindex-polyE 0 1 (U∗[:Im b − Im a:]) (U∗[:Re b − Re a:])
proof (subst cindexE-eq-cindex-polyE [symmetric])

have (Im b − Im a) ∗ (t − u) / ((Re b − Re a) ∗ (t − u))
= poly (U ∗ [:Im b − Im a:]) t / poly (U ∗ [:Re b − Re a:]) t for t

unfolding U-def by (simp add:algebra-simps)
then show cindexE 0 1 (λt. (Im b − Im a) ∗ (t − u) / ((Re b − Re a) ∗ (t −

u))) =
cindexE 0 1 (λx. poly (U ∗ [:Im b − Im a:]) x / poly (U ∗ [:Re b −

Re a:]) x)
by auto

qed simp
also have ... = cindex-polyE 0 1 [:Im b − Im a:] [:Re b − Re a:]

apply (rule cindex-polyE-mult-cancel)
by fact

also have ... = cindexE 0 1 (λx. (Im b − Im a) / (Re b − Re a))
apply (subst cindexE-eq-cindex-polyE [symmetric])
by auto

also have ... = 0
apply (rule cindexE-constI )
by auto

finally show ?thesis .
qed

2.7 More Cauchy indices on polynomials
definition cindexP-pathE ::complex poly ⇒ (real ⇒ complex) ⇒ real where

cindexP-pathE p g = cindex-pathE (poly p o g) 0

definition cindexP-lineE :: complex poly ⇒ complex ⇒ complex ⇒ real where
cindexP-lineE p a b = cindexP-pathE p (linepath a b)

lemma cindexP-pathE-const:cindexP-pathE [:c:] g = 0
unfolding cindexP-pathE-def by (auto intro:cindex-pathE-constI )

lemma cindex-poly-pathE-joinpaths:
assumes finite-ReZ-segments (poly p o g1 ) 0

and finite-ReZ-segments (poly p o g2 ) 0
and path g1 and path g2
and pathfinish g1 = pathstart g2
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shows cindexP-pathE p (g1 +++ g2 )
= cindexP-pathE p g1 + cindexP-pathE p g2

proof −
have path (poly p o g1 ) path (poly p o g2 )

using ‹path g1 › ‹path g2 › by auto
moreover have pathfinish (poly p o g1 ) = pathstart (poly p o g2 )

using ‹pathfinish g1 = pathstart g2 ›
by (simp add: pathfinish-compose pathstart-def )

ultimately have
cindex-pathE ((poly p ◦ g1 ) +++ (poly p ◦ g2 )) 0 =

cindex-pathE (poly p ◦ g1 ) 0 + cindex-pathE (poly p ◦ g2 ) 0
using cindex-pathE-joinpaths[OF assms(1 ,2 )] by auto

then show ?thesis
unfolding cindexP-pathE-def
by (simp add:path-compose-join)

qed

lemma cindexP-lineE-polyE :
fixes p::complex poly and a b::complex
defines pp ≡ pcompose p [:a, b−a:]
defines pR ≡ map-poly Re pp

and pI ≡ map-poly Im pp
shows cindexP-lineE p a b = cindex-polyE 0 1 pI pR

proof −
have cindexP-lineE p a b = cindexE 0 1

(λt. Im (poly (p ◦p [:a, b − a:]) (complex-of-real t)) /
Re (poly (p ◦p [:a, b − a:]) (complex-of-real t)))

unfolding cindexP-lineE-def cindexP-pathE-def cindex-pathE-def
by (simp add:poly-linepath-comp ′)

also have ... = cindexE 0 1 (λt. poly pI t/poly pR t)
unfolding pI-def pR-def pp-def
by (simp add:Im-poly-of-real Re-poly-of-real)

also have ... = cindex-polyE 0 1 pI pR
apply (subst cindexE-eq-cindex-polyE)
by simp-all

finally show ?thesis .
qed

definition psign-aux :: complex poly ⇒ complex poly ⇒ complex ⇒ int where
psign-aux p q b =

sign (Im (poly p b ∗ poly q b) ∗ (Im (poly p b) ∗ Im (poly q b)))
+ sign (Re (poly p b ∗ poly q b) ∗ Im (poly p b ∗ poly q b))
− sign (Re (poly p b) ∗ Im (poly p b))
− sign (Re (poly q b) ∗ Im (poly q b))

definition cdiff-aux :: complex poly ⇒ complex poly ⇒ complex ⇒ complex ⇒ int
where

cdiff-aux p q a b = psign-aux p q b − psign-aux p q a
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lemma cindexP-lineE-times:
fixes p q::complex poly and a b::complex
assumes poly p a 6=0 poly p b 6=0 poly q a 6=0 poly q b 6=0
shows cindexP-lineE (p∗q) a b = cindexP-lineE p a b + cindexP-lineE q a

b+cdiff-aux p q a b/2
proof −

define pR pI where pR = map-poly Re (p ◦p [:a, b − a:])
and pI = map-poly Im (p ◦p [:a, b − a:])

define qR qI where qR = map-poly Re (q ◦p [:a, b − a:])
and qI = map-poly Im (q ◦p [:a, b − a:])

define P1 P2 where P1 = pR ∗ qI + pI ∗ qR and P2=pR ∗ qR − pI ∗ qI

have p-poly:
poly pR 0 = Re (poly p a)
poly pI 0 = Im (poly p a)
poly pR 1 = Re (poly p b)
poly pI 1 = Im (poly p b)

unfolding pR-def pI-def
by (simp flip:Re-poly-of-real Im-poly-of-real add:poly-pcompose)+

have q-poly:
poly qR 0 = Re (poly q a)
poly qI 0 = Im (poly q a)
poly qR 1 = Re (poly q b)
poly qI 1 = Im (poly q b)

unfolding qR-def qI-def
by (simp flip:Re-poly-of-real Im-poly-of-real add:poly-pcompose)+

have P2-poly:
poly P2 0 = Re (poly (p∗q) a)
poly P2 1 = Re (poly (p∗q) b)

unfolding P2-def pR-def qI-def pI-def qR-def
by (simp flip:Re-poly-of-real Im-poly-of-real add:poly-pcompose)+

have P1-poly:
poly P1 0 = Im (poly (p∗q) a)
poly P1 1 = Im (poly (p∗q) b)

unfolding P1-def pR-def qI-def pI-def qR-def
by (simp flip:Re-poly-of-real Im-poly-of-real add:poly-pcompose)+

have p-nzero:poly pR 0 6= 0 ∨ poly pI 0 6= 0 poly pR 1 6= 0 ∨ poly pI 1 6= 0
unfolding p-poly
using assms(1 ,2 ) complex-eqI by force+

have q-nzero:poly qR 0 6= 0 ∨ poly qI 0 6= 0 poly qR 1 6= 0 ∨ poly qI 1 6= 0
unfolding q-poly using assms(3 ,4 ) complex-eqI by force+

have P12-nzero:poly P2 0 6= 0 ∨ poly P1 0 6= 0 poly P2 1 6= 0 ∨ poly P1 1 6= 0
unfolding P1-poly P2-poly using assms
by (metis Im-poly-hom.base.hom-zero Re-poly-hom.base.hom-zero

complex-eqI poly-mult-zero-iff )+
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define C1 C2 where C1 = (λp q. cindex-polyE 0 1 p q)
and C2 = (λp q. real-of-int (cross-alt p q 0 1 ) /2 )

define CR where CR = C2 P1 (pI ∗ qI ) +C2 P2 P1 − C2 pR pI − C2 qR qI

have cindexP-lineE (p∗q) a b =
cindex-polyE 0 1 (map-poly Im (cpoly-of pR pI ∗ cpoly-of qR qI ))

(map-poly Re (cpoly-of pR pI ∗ cpoly-of qR qI ))
proof −

have p ◦p [:a, b − a:] = cpoly-of pR pI
using cpoly-of-decompose pI-def pR-def by blast

moreover have q ◦p [:a, b − a:] = cpoly-of qR qI
using cpoly-of-decompose qI-def qR-def by blast

ultimately show ?thesis
apply (subst cindexP-lineE-polyE)
unfolding pcompose-mult by simp

qed
also have ... = cindex-polyE 0 1 (pR ∗ qI + pI ∗ qR ) (pR ∗ qR − pI ∗ qI )

unfolding cpoly-of-times by (simp add:algebra-simps)
also have ... = cindex-polyE 0 1 P1 P2

unfolding P1-def P2-def by simp
also have ... = cindex-polyE 0 1 pI pR + cindex-polyE 0 1 qI qR + CR
proof −

have C1 P2 P1 = C1 pR pI + C1 qR qI − C2 P1 (pI ∗ qI )
unfolding P1-def P2-def C1-def C2-def
apply (rule cindex-polyE-product) thm cindex-polyE-product
by simp fact+

moreover have C1 P2 P1 = C2 P2 P1 − C1 P1 P2
unfolding C1-def C2-def
apply (subst cindex-polyE-inverse-add-cross ′[symmetric])
using P12-nzero by simp-all

moreover have C1 pR pI = C2 pR pI − C1 pI pR
unfolding C1-def C2-def
apply (subst cindex-polyE-inverse-add-cross ′[symmetric])
using p-nzero by simp-all

moreover have C1 qR qI = C2 qR qI − C1 qI qR
unfolding C1-def C2-def
apply (subst cindex-polyE-inverse-add-cross ′[symmetric])
using q-nzero by simp-all

ultimately have C2 P2 P1 − C1 P1 P2 = (C2 pR pI − C1 pI pR)
+ (C2 qR qI − C1 qI qR) − C2 P1 (pI ∗ qI )

by auto
then have C1 P1 P2 = C1 pI pR + C1 qI qR + CR

unfolding CR-def by (auto simp:algebra-simps)
then show ?thesis unfolding C1-def .

qed
also have ... = cindexP-lineE p a b +cindexP-lineE q a b + CR

unfolding C1-def pI-def pR-def qI-def qR-def
apply (subst (1 2 ) cindexP-lineE-polyE)
by simp
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also have ... = cindexP-lineE p a b +cindexP-lineE q a b + cdiff-aux p q a b/2
proof −

have CR = cdiff-aux p q a b/2
unfolding CR-def C2-def cross-alt-alt cdiff-aux-def psign-aux-def
by (simp add:P1-poly P2-poly p-poly q-poly del:times-complex.sel)

then show ?thesis by simp
qed
finally show ?thesis .

qed

lemma cindexP-lineE-changes:
fixes p::complex poly and a b ::complex
assumes p 6=0 a 6=b
shows cindexP-lineE p a b =
(let p1 = pcompose p [:a, b−a:];

pR1 = map-poly Re p1 ;
pI1 = map-poly Im p1 ;
gc1 = gcd pR1 pI1

in
real-of-int (changes-alt-itv-smods 0 1

(pR1 div gc1 ) (pI1 div gc1 )) / 2 )
proof −

define p1 pR1 pI1 gc1 where p1 = pcompose p [:a, b−a:]
and pR1 = map-poly Re p1 and pI1 = map-poly Im p1
and gc1 = gcd pR1 pI1

have gc1 6=0
proof (rule ccontr)

assume ¬ gc1 6= 0
then have pI1 = 0 pR1 = 0 unfolding gc1-def by auto
then have p1 = 0 unfolding pI1-def pR1-def

by (metis cpoly-of-decompose map-poly-0 )
then have p=0 unfolding p1-def

apply (subst (asm) pcompose-eq-0 )
using ‹a 6=b› by auto

then show False using ‹p 6=0 › by auto
qed

have cindexP-lineE p a b =
cindexE 0 1 (λt. Im (poly p (linepath a b t))
/ Re (poly p (linepath a b t)))

unfolding cindexP-lineE-def cindex-pathE-def cindexP-pathE-def by simp
also have ... = cindexE 0 1 (λt. poly pI1 t / poly pR1 t)

unfolding pI1-def pR1-def p1-def poly-linepath-comp ′

by (simp add:Im-poly-of-real Re-poly-of-real)
also have ... = cindex-polyE 0 1 pI1 pR1

by (simp add: cindexE-eq-cindex-polyE)
also have ... = cindex-polyE 0 1 (pI1 div gc1 ) (pR1 div gc1 )

using ‹gc1 6=0 ›
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apply (subst (2 ) cindex-polyE-mult-cancel[of gc1 ,symmetric])
by (simp-all add: gc1-def )

also have ... = real-of-int (changes-alt-itv-smods 0 1
(pR1 div gc1 ) (pI1 div gc1 )) / 2

apply (rule cindex-polyE-changes-alt-itv-mods)
apply simp
by (metis ‹gc1 6= 0 › div-gcd-coprime gc1-def gcd-eq-0-iff )

finally show ?thesis
by (metis gc1-def p1-def pI1-def pR1-def )

qed

lemma cindexP-lineE-code[code]:
cindexP-lineE p a b = (if p 6=0 ∧ a 6=b then

(let p1 = pcompose p [:a, b−a:];
pR1 = map-poly Re p1 ;
pI1 = map-poly Im p1 ;
gc1 = gcd pR1 pI1

in
real-of-int (changes-alt-itv-smods 0 1

(pR1 div gc1 ) (pI1 div gc1 )) / 2 )
else
Code.abort (STR ′′cindexP-lineE fails for now ′′)

(λ-. cindexP-lineE p a b))
using cindexP-lineE-changes by auto

end

theory Count-Line imports
CC-Polynomials-Extra
Winding-Number-Eval.Winding-Number-Eval
Extended-Sturm
Budan-Fourier .Sturm-Multiple-Roots

begin

2.8 Misc
lemma closed-segment-imp-Re-Im:

fixes x::complex
assumes x∈closed-segment lb ub
shows Re lb ≤ Re ub =⇒ Re lb ≤ Re x ∧ Re x ≤ Re ub

Im lb ≤ Im ub =⇒ Im lb ≤ Im x ∧ Im x ≤ Im ub
proof −

obtain u where x-u:x=(1 − u) ∗R lb + u ∗R ub and 0 ≤ u u ≤ 1
using assms unfolding closed-segment-def by auto

have Re lb ≤ Re x when Re lb ≤ Re ub
proof −

have Re x = Re ((1 − u) ∗R lb + u ∗R ub)
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using x-u by blast
also have ... = Re (lb + u ∗R (ub − lb)) by (auto simp add:algebra-simps)
also have ... = Re lb + u ∗ (Re ub − Re lb) by auto
also have ... ≥ Re lb using ‹u≥0 › ‹Re lb ≤ Re ub› by auto
finally show ?thesis .

qed
moreover have Im lb ≤ Im x when Im lb ≤ Im ub
proof −

have Im x = Im ((1 − u) ∗R lb + u ∗R ub)
using x-u by blast

also have ... = Im (lb + u ∗R (ub − lb)) by (auto simp add:algebra-simps)
also have ... = Im lb + u ∗ (Im ub − Im lb) by auto
also have ... ≥ Im lb using ‹u≥0 › ‹Im lb ≤ Im ub› by auto
finally show ?thesis .

qed
moreover have Re x ≤ Re ub when Re lb ≤ Re ub
proof −

have Re x = Re ((1 − u) ∗R lb + u ∗R ub)
using x-u by blast

also have ... = (1 − u) ∗ Re lb + u ∗ Re ub by auto
also have ... ≤ (1 − u) ∗ Re ub + u ∗ Re ub

using ‹u≤1 › ‹Re lb ≤ Re ub› by (auto simp add: mult-left-mono)
also have ... = Re ub by (auto simp add:algebra-simps)
finally show ?thesis .

qed
moreover have Im x ≤ Im ub when Im lb ≤ Im ub
proof −

have Im x = Im ((1 − u) ∗R lb + u ∗R ub)
using x-u by blast

also have ... = (1 − u) ∗ Im lb + u ∗ Im ub by auto
also have ... ≤ (1 − u) ∗ Im ub + u ∗ Im ub

using ‹u≤1 › ‹Im lb ≤ Im ub› by (auto simp add: mult-left-mono)
also have ... = Im ub by (auto simp add:algebra-simps)
finally show ?thesis .

qed
ultimately show

Re lb ≤ Re ub =⇒ Re lb ≤ Re x ∧ Re x ≤ Re ub
Im lb ≤ Im ub =⇒ Im lb ≤ Im x ∧ Im x ≤ Im ub

by auto
qed

lemma closed-segment-degen-complex:
[[Re lb = Re ub; Im lb ≤ Im ub ]]
=⇒ x ∈ closed-segment lb ub ←→ Re x = Re lb ∧ Im lb ≤ Im x ∧ Im x ≤ Im

ub
[[Im lb = Im ub; Re lb ≤ Re ub ]]
=⇒ x ∈ closed-segment lb ub ←→ Im x = Im lb ∧ Re lb ≤ Re x ∧ Re x ≤ Re

ub
proof −
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show x ∈ closed-segment lb ub ←→ Re x = Re lb ∧ Im lb ≤ Im x ∧ Im x ≤ Im
ub

when Re lb = Re ub Im lb ≤ Im ub
proof

show Re x = Re lb ∧ Im lb ≤ Im x ∧ Im x ≤ Im ub when x ∈ closed-segment
lb ub

using closed-segment-imp-Re-Im[OF that] ‹Re lb = Re ub› ‹Im lb ≤ Im ub›
by fastforce

next
assume asm:Re x = Re lb ∧ Im lb ≤ Im x ∧ Im x ≤ Im ub
define u where u=(Im x − Im lb)/ (Im ub − Im lb)
have x = (1 − u) ∗R lb + u ∗R ub

unfolding u-def using asm ‹Re lb = Re ub› ‹Im lb ≤ Im ub›
apply (intro complex-eqI )
apply (auto simp add:field-simps)
apply (cases Im ub − Im lb =0 )
apply (auto simp add:field-simps)
done

moreover have 0≤u u≤1 unfolding u-def
using ‹Im lb ≤ Im ub› asm
by (cases Im ub − Im lb =0 ,auto simp add:field-simps)+

ultimately show x ∈ closed-segment lb ub unfolding closed-segment-def by
auto

qed
show x ∈ closed-segment lb ub ←→ Im x = Im lb ∧ Re lb ≤ Re x ∧ Re x ≤ Re

ub
when Im lb = Im ub Re lb ≤ Re ub

proof
show Im x = Im lb ∧ Re lb ≤ Re x ∧ Re x ≤ Re ub when x ∈ closed-segment

lb ub
using closed-segment-imp-Re-Im[OF that] ‹Im lb = Im ub› ‹Re lb ≤ Re ub›

by fastforce
next

assume asm:Im x = Im lb ∧ Re lb ≤ Re x ∧ Re x ≤ Re ub
define u where u=(Re x − Re lb)/ (Re ub − Re lb)
have x = (1 − u) ∗R lb + u ∗R ub

unfolding u-def using asm ‹Im lb = Im ub› ‹Re lb ≤ Re ub›
apply (intro complex-eqI )
apply (auto simp add:field-simps)

apply (cases Re ub − Re lb =0 )
apply (auto simp add:field-simps)

done
moreover have 0≤u u≤1 unfolding u-def

using ‹Re lb ≤ Re ub› asm
by (cases Re ub − Re lb =0 ,auto simp add:field-simps)+

ultimately show x ∈ closed-segment lb ub unfolding closed-segment-def by
auto

qed
qed
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corollary path-image-part-circlepath-subset:
assumes r≥0
shows path-image(part-circlepath z r st tt) ⊆ sphere z r

proof (cases st≤tt)
case True
then show ?thesis

by (auto simp: assms path-image-part-circlepath sphere-def dist-norm alge-
bra-simps norm-mult)
next

case False
then have path-image(part-circlepath z r tt st) ⊆ sphere z r

by (auto simp: assms path-image-part-circlepath sphere-def dist-norm alge-
bra-simps norm-mult)

moreover have path-image(part-circlepath z r tt st) = path-image(part-circlepath
z r st tt)

using path-image-reversepath by fastforce
ultimately show ?thesis by auto

qed

proposition in-path-image-part-circlepath:
assumes w ∈ path-image(part-circlepath z r st tt) 0 ≤ r
shows norm(w − z) = r

proof −
have w ∈ {c. dist z c = r}
by (metis (no-types) path-image-part-circlepath-subset sphere-def subset-eq assms)

thus ?thesis
by (simp add: dist-norm norm-minus-commute)

qed

lemma infinite-ball:
fixes a :: ′a::euclidean-space
assumes r > 0
shows infinite (ball a r)
using uncountable-ball[OF assms, THEN uncountable-infinite] .

lemma infinite-cball:
fixes a :: ′a::euclidean-space
assumes r > 0
shows infinite (cball a r)
using uncountable-cball[OF assms, THEN uncountable-infinite,of a] .

lemma infinite-sphere:
fixes a :: complex
assumes r > 0
shows infinite (sphere a r)
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proof −
have uncountable (path-image (circlepath a r))

apply (rule simple-path-image-uncountable)
using simple-path-circlepath assms by simp

then have uncountable (sphere a r)
using assms by simp

from uncountable-infinite[OF this] show ?thesis .
qed

lemma infinite-halfspace-Im-gt: infinite {x. Im x > b}
apply (rule connected-uncountable[THEN uncountable-infinite,of - (b+1 )∗ i (b+2 )∗i])
by (auto intro!:convex-connected simp add: convex-halfspace-Im-gt)

lemma (in ring-1 ) Ints-minus2 : − a ∈ � =⇒ a ∈ �
using Ints-minus[of −a] by auto

lemma dvd-divide-Ints-iff :
b dvd a ∨ b=0 ←→ of-int a / of-int b ∈ (� :: ′a :: {field,ring-char-0} set)

proof
assume asm:b dvd a ∨ b=0
let ?thesis = of-int a / of-int b ∈ (� :: ′a :: {field,ring-char-0} set)
have ?thesis when b dvd a
proof −

obtain c where a=b ∗ c using ‹b dvd a› unfolding dvd-def by auto
then show ?thesis by (auto simp add:field-simps)

qed
moreover have ?thesis when b=0

using that by auto
ultimately show ?thesis using asm by auto

next
assume of-int a / of-int b ∈ (� :: ′a :: {field,ring-char-0} set)
from Ints-cases[OF this] obtain c where ∗:(of-int::- ⇒ ′a) c= of-int a / of-int

b
by metis

have b dvd a when b 6=0
proof −

have (of-int::- ⇒ ′a) a = of-int b ∗ of-int c using that ∗ by auto
then have a = b ∗ c using of-int-eq-iff by fastforce
then show ?thesis unfolding dvd-def by auto

qed
then show b dvd a ∨ b = 0 by auto

qed

lemma of-int-div-field:
assumes d dvd n
shows (of-int::-⇒ ′a::field-char-0 ) (n div d) = of-int n / of-int d
apply (subst (2 ) dvd-mult-div-cancel[OF assms,symmetric])
by (auto simp add:field-simps)
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lemma powr-eq-1-iff :
assumes a>0
shows (a::real) powr b =1 ←→ a=1 ∨ b=0

proof
assume a powr b = 1
have b ∗ ln a = 0

using ‹a powr b = 1 › ln-powr [of a b] assms by auto
then have b=0 ∨ ln a =0 by auto
then show a = 1 ∨ b = 0 using assms by auto

qed (insert assms, auto)

lemma tan-inj-pi:
− (pi/2 ) < x =⇒ x < pi/2 =⇒ − (pi/2 ) < y =⇒ y < pi/2 =⇒ tan x = tan y

=⇒ x = y
by (metis arctan-tan)

lemma finite-ReZ-segments-poly-circlepath:
finite-ReZ-segments (poly p ◦ circlepath z0 r) 0

proof (cases ∀ t∈({0 ..1} − {1/2}). Re ((poly p ◦ circlepath z0 r) t) = 0 )
case True
have isCont (Re ◦ poly p ◦ circlepath z0 r) (1/2 )

by (auto intro!:continuous-intros simp:circlepath)
moreover have (Re ◦ poly p ◦ circlepath z0 r)− 1/2 → 0
proof −

have ∀ F x in at (1 / 2 ). (Re ◦ poly p ◦ circlepath z0 r) x = 0
unfolding eventually-at-le
apply (rule exI [where x=1/2 ])
unfolding dist-real-def abs-diff-le-iff
by (auto intro!:True[rule-format, unfolded comp-def ])

then show ?thesis by (rule tendsto-eventually)
qed
ultimately have Re ((poly p ◦ circlepath z0 r) (1/2 )) = 0

unfolding comp-def by (simp add: LIM-unique continuous-within)
then have ∀ t∈{0 ..1}. Re ((poly p ◦ circlepath z0 r) t) = 0

using True by blast
then show ?thesis

apply (rule-tac finite-ReZ-segments-constI [THEN finite-ReZ-segments-congE ])
by auto

next
case False
define q1 q2 where q1=fcompose p [:(z0+r)∗i,z0−r :] [:i,1 :] and

q2=([:i, 1 :] ^ degree p)
define q1R q1I where q1R=map-poly Re q1 and q1I=map-poly Im q1
define q2R q2I where q2R=map-poly Re q2 and q2I=map-poly Im q2
define qq where qq=q1R∗q2R + q1I∗q2I

have poly-eq:Re ((poly p ◦ circlepath z0 r) t) = 0 ←→ poly qq (tan (pi ∗ t)) = 0
when 0≤t t≤1 t 6=1/2 for t
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proof −
define tt where tt=tan (pi ∗ t)
have Re ((poly p ◦ circlepath z0 r) t) = 0 ←→ Re (poly q1 tt / poly q2 tt) = 0

unfolding comp-def
apply (subst poly-circlepath-tan-eq[of t p z0 r ,folded q1-def q2-def tt-def ])
using that by simp-all

also have ... ←→ poly q1R tt ∗ poly q2R tt + poly q1I tt ∗ poly q2I tt = 0
unfolding q1I-def q1R-def q2R-def q2I-def
by (simp add:Re-complex-div-eq-0 Re-poly-of-real Im-poly-of-real)

also have ... ←→ poly qq tt = 0
unfolding qq-def by simp

finally show ?thesis unfolding tt-def .
qed

have finite {t. Re ((poly p ◦ circlepath z0 r) t) = 0 ∧ 0 ≤ t ∧ t ≤ 1}
proof −

define P where P=(λt. Re ((poly p ◦ circlepath z0 r) t) = 0 )
define A where A= ({0 ..1}::real set)
define S where S={t∈A−{1 ,1/2}. P t}
have finite {t. poly qq (tan (pi ∗ t)) = 0 ∧ 0 ≤ t ∧ t < 1 ∧ t 6=1/2}
proof −

define A where A={t::real. 0 ≤ t ∧ t < 1 ∧ t 6= 1 / 2}
have finite ((λt. tan (pi ∗ t)) −‘ {x. poly qq x=0} ∩ A)
proof (rule finite-vimage-IntI )

have x = y when tan (pi ∗ x) = tan (pi ∗ y) x∈A y∈A for x y
proof −

define x ′ where x ′=(if x<1/2 then x else x−1 )
define y ′ where y ′=(if y<1/2 then y else y−1 )
have x ′∗pi = y ′∗pi
proof (rule tan-inj-pi)

have ∗:− 1 / 2 < x ′ x ′ < 1 / 2 − 1 / 2 < y ′ y ′ < 1 / 2
using that(2 ,3 ) unfolding x ′-def y ′-def A-def by simp-all

show − (pi / 2 ) < x ′ ∗ pi x ′ ∗ pi < pi / 2 − (pi / 2 ) < y ′ ∗ pi
y ′∗pi < pi / 2

using mult-strict-right-mono[OF ∗(1 ),of pi]
mult-strict-right-mono[OF ∗(2 ),of pi]
mult-strict-right-mono[OF ∗(3 ),of pi]
mult-strict-right-mono[OF ∗(4 ),of pi]

by auto
next

have tan (x ′ ∗ pi) = tan (x ∗ pi)
unfolding x ′-def using tan-periodic-int[of - − 1 ,simplified]
by (auto simp add:algebra-simps)

also have ... = tan (y ∗ pi)
using ‹tan (pi ∗ x) = tan (pi ∗ y)› by (auto simp:algebra-simps)

also have ... = tan (y ′ ∗ pi)
unfolding y ′-def using tan-periodic-int[of - − 1 ,simplified]
by (auto simp add:algebra-simps)

finally show tan (x ′ ∗ pi) = tan (y ′ ∗ pi) .
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qed
then have x ′=y ′ by auto
then show ?thesis

using that(2 ,3 ) unfolding x ′-def y ′-def A-def by (auto split:if-splits)
qed
then show inj-on (λt. tan (pi ∗ t)) A

unfolding inj-on-def by blast
next

have qq 6=0
proof (rule ccontr)

assume ¬ qq 6= 0
then have Re ((poly p ◦ circlepath z0 r) t) = 0 when t∈{0 ..1} − {1/2}

for t
apply (subst poly-eq)
using that by auto

then show False using False by blast
qed
then show finite {x. poly qq x = 0} by (simp add: poly-roots-finite)

qed
then show ?thesis by (elim rev-finite-subset) (auto simp:A-def )

qed
moreover have {t. poly qq (tan (pi ∗ t)) = 0 ∧ 0 ≤ t ∧ t < 1 ∧ t 6=1/2} = S

unfolding S-def P-def A-def using poly-eq by force
ultimately have finite S by blast
then have finite (S ∪ (if P 1 then {1} else {}) ∪ (if P (1/2 ) then {1/2} else

{}))
by auto

moreover have (S ∪ (if P 1 then {1} else {}) ∪ (if P (1/2 ) then {1/2} else
{}))

= {t. P t ∧ 0 ≤ t ∧ t ≤ 1}
proof −

have 1∈A 1/2 ∈A unfolding A-def by auto
then have (S ∪ (if P 1 then {1} else {}) ∪ (if P (1/2 ) then {1/2} else {}))

= {t∈A. P t}
unfolding S-def
apply auto
by (metis eq-divide-eq-numeral1 (1 ) zero-neq-numeral)+

also have ... = {t. P t ∧ 0 ≤ t ∧ t ≤ 1}
unfolding A-def by auto

finally show ?thesis .
qed
ultimately have finite {t. P t ∧ 0 ≤ t ∧ t ≤ 1} by auto
then show ?thesis unfolding P-def by simp

qed
then show ?thesis

apply (rule-tac finite-imp-finite-ReZ-segments)
by auto

qed
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lemma changes-itv-smods-ext-geq-0 :
assumes a<b poly p a 6=0 poly p b 6=0
shows changes-itv-smods-ext a b p (pderiv p) ≥0
using sturm-ext-interval[OF assms] by auto

2.9 Some useful conformal/bij-betw properties
lemma bij-betw-plane-ball:bij-betw (λx. (i−x)/(i+x)) {x. Im x>0} (ball 0 1 )
proof (rule bij-betw-imageI )

have neq:i + x 6=0 when Im x>0 for x
using that
by (metis add-less-same-cancel2 add-uminus-conv-diff diff-0 diff-add-cancel

imaginary-unit.simps(2 ) not-one-less-zero uminus-complex.sel(2 ))
then show inj-on (λx. (i − x) / (i + x)) {x. 0 < Im x}

unfolding inj-on-def by (auto simp add:divide-simps algebra-simps)
have cmod ((i − x) / (i + x)) < 1 when 0 < Im x for x
proof −

have cmod (i − x) < cmod (i + x)
unfolding norm-lt inner-complex-def using that
by (auto simp add:algebra-simps)

then show ?thesis
unfolding norm-divide using neq[OF that] by auto

qed
moreover have x ∈ (λx. (i − x) / (i + x)) ‘ {x. 0 < Im x} when cmod x < 1

for x
proof (rule rev-image-eqI [of i∗(1−x)/(1+x)])

have 1 + x 6=0 i ∗ 2 + i ∗ (x ∗ 2 ) 6=0
subgoal using that by (metis complex-mod-triangle-sub norm-one norm-zero

not-le pth-7 (1 ))
subgoal using that by (metis ‹1 + x 6= 0 › complex-i-not-zero div-mult-self4

mult-2
mult-zero-right nonzero-mult-div-cancel-left nonzero-mult-div-cancel-right
one-add-one zero-neq-numeral)

done
then show x = (i − i ∗ (1 − x) / (1 + x)) / (i + i ∗ (1 − x) / (1 + x))

by (auto simp add:field-simps)
show i ∗ (1 − x) / (1 + x) ∈ {x. 0 < Im x}

apply (auto simp:Im-complex-div-gt-0 algebra-simps)
using that unfolding cmod-def by (auto simp:power2-eq-square)

qed
ultimately show (λx. (i − x) / (i + x)) ‘ {x. 0 < Im x} = ball 0 1

by auto
qed

lemma bij-betw-axis-sphere:bij-betw (λx. (i−x)/(i+x)) {x. Im x=0} (sphere 0 1 −
{−1})
proof (rule bij-betw-imageI )

have neq:i + x 6=0 when Im x=0 for x
using that
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by (metis add-diff-cancel-left ′ imaginary-unit.simps(2 ) minus-complex.simps(2 )

right-minus-eq zero-complex.simps(2 ) zero-neq-one)
then show inj-on (λx. (i − x) / (i + x)) {x. Im x = 0}

unfolding inj-on-def by (auto simp add:divide-simps algebra-simps)
have cmod ((i − x) / (i + x)) = 1 (i − x) / (i + x) 6= − 1 when Im x = 0 for

x
proof −

have cmod (i + x) = cmod (i − x)
using that unfolding cmod-def by auto

then show cmod ((i − x) / (i + x)) = 1
unfolding norm-divide using neq[OF that] by auto

show (i − x) / (i + x) 6= − 1 using neq[OF that] by (auto simp add:divide-simps)
qed
moreover have x ∈ (λx. (i − x) / (i + x)) ‘ {x. Im x = 0}

when cmod x = 1 x 6=−1 for x
proof (rule rev-image-eqI [of i∗(1−x)/(1+x)])

have 1 + x 6=0 i ∗ 2 + i ∗ (x ∗ 2 ) 6=0
subgoal using that(2 ) by algebra
subgoal using that by (metis ‹1 + x 6= 0 › complex-i-not-zero div-mult-self4

mult-2
mult-zero-right nonzero-mult-div-cancel-left nonzero-mult-div-cancel-right
one-add-one zero-neq-numeral)

done
then show x = (i − i ∗ (1 − x) / (1 + x)) / (i + i ∗ (1 − x) / (1 + x))

by (auto simp add:field-simps)
show i ∗ (1 − x) / (1 + x) ∈ {x. Im x = 0}

apply (auto simp:algebra-simps Im-complex-div-eq-0 )
using that(1 ) unfolding cmod-def by (auto simp:power2-eq-square)

qed
ultimately show (λx. (i − x) / (i + x)) ‘ {x. Im x = 0} = sphere 0 1 − {− 1}

by force
qed

lemma bij-betw-ball-uball:
assumes r>0
shows bij-betw (λx. complex-of-real r∗x + z0 ) (ball 0 1 ) (ball z0 r)

proof (rule bij-betw-imageI )
show inj-on (λx. complex-of-real r ∗ x + z0 ) (ball 0 1 )

unfolding inj-on-def using assms by simp
have dist z0 (complex-of-real r ∗ x + z0 ) < r when cmod x<1 for x

using that assms by (auto simp:dist-norm norm-mult abs-of-pos)
moreover have x ∈ (λx. complex-of-real r ∗ x + z0 ) ‘ ball 0 1 when dist z0 x

< r for x
apply (rule rev-image-eqI [of (x−z0 )/r ])

using that assms by (auto simp add: dist-norm norm-divide norm-minus-commute)
ultimately show (λx. complex-of-real r ∗ x + z0 ) ‘ ball 0 1 = ball z0 r

by auto
qed
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lemma bij-betw-sphere-usphere:
assumes r>0
shows bij-betw (λx. complex-of-real r∗x + z0 ) (sphere 0 1 ) (sphere z0 r)

proof (rule bij-betw-imageI )
show inj-on (λx. complex-of-real r ∗ x + z0 ) (sphere 0 1 )

unfolding inj-on-def using assms by simp
have dist z0 (complex-of-real r ∗ x + z0 ) = r when cmod x=1 for x

using that assms by (auto simp:dist-norm norm-mult abs-of-pos)
moreover have x ∈ (λx. complex-of-real r ∗ x + z0 ) ‘ sphere 0 1 when dist z0

x = r for x
apply (rule rev-image-eqI [of (x−z0 )/r ])

using that assms by (auto simp add: dist-norm norm-divide norm-minus-commute)
ultimately show (λx. complex-of-real r ∗ x + z0 ) ‘ sphere 0 1 = sphere z0 r

by auto
qed

lemma proots-ball-plane-eq:
defines q1≡[:i,−1 :] and q2≡[:i,1 :]
assumes p 6=0
shows proots-count p (ball 0 1 ) = proots-count (fcompose p q1 q2 ) {x. 0 < Im

x}
unfolding q1-def q2-def

proof (rule proots-fcompose-bij-eq[OF - ‹p 6=0 ›])
show ∀ x∈{x. 0 < Im x}. poly [:i, 1 :] x 6= 0

apply simp
by (metis add-less-same-cancel2 imaginary-unit.simps(2 ) not-one-less-zero

plus-complex.simps(2 ) zero-complex.simps(2 ))
show infinite (UNIV ::complex set) by (simp add: infinite-UNIV-char-0 )

qed (use bij-betw-plane-ball in auto)

lemma proots-sphere-axis-eq:
defines q1≡[:i,−1 :] and q2≡[:i,1 :]
assumes p 6=0
shows proots-count p (sphere 0 1 − {− 1}) = proots-count (fcompose p q1 q2 )
{x. 0 = Im x}
unfolding q1-def q2-def
proof (rule proots-fcompose-bij-eq[OF - ‹p 6=0 ›])

show ∀ x∈{x. 0 = Im x}. poly [:i, 1 :] x 6= 0 by (simp add: Complex-eq-0
plus-complex.code)

show infinite (UNIV ::complex set) by (simp add: infinite-UNIV-char-0 )
qed (use bij-betw-axis-sphere in auto)

lemma proots-card-ball-plane-eq:
defines q1≡[:i,−1 :] and q2≡[:i,1 :]
assumes p 6=0
shows card (proots-within p (ball 0 1 )) = card (proots-within (fcompose p q1 q2 )
{x. 0 < Im x})
unfolding q1-def q2-def
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proof (rule proots-card-fcompose-bij-eq[OF - ‹p 6=0 ›])
show ∀ x∈{x. 0 < Im x}. poly [:i, 1 :] x 6= 0

apply simp
by (metis add-less-same-cancel2 imaginary-unit.simps(2 ) not-one-less-zero

plus-complex.simps(2 ) zero-complex.simps(2 ))
qed (use bij-betw-plane-ball infinite-UNIV-char-0 in auto)

lemma proots-card-sphere-axis-eq:
defines q1≡[:i,−1 :] and q2≡[:i,1 :]
assumes p 6=0
shows card (proots-within p (sphere 0 1 − {− 1}))

= card (proots-within (fcompose p q1 q2 ) {x. 0 = Im x})
unfolding q1-def q2-def
proof (rule proots-card-fcompose-bij-eq[OF - ‹p 6=0 ›])

show ∀ x∈{x. 0 = Im x}. poly [:i, 1 :] x 6= 0 by (simp add: Complex-eq-0
plus-complex.code)
qed (use bij-betw-axis-sphere infinite-UNIV-char-0 in auto)

lemma proots-uball-eq:
fixes z0 ::complex and r ::real
defines q≡[:z0 , of-real r :]
assumes p 6=0 and r>0
shows proots-count p (ball z0 r) = proots-count (p ◦p q) (ball 0 1 )

proof −
show ?thesis

apply (rule proots-pcompose-bij-eq[OF - ‹p 6=0 ›])
subgoal unfolding q-def using bij-betw-ball-uball[OF ‹r>0 ›,of z0 ] by (auto

simp:algebra-simps)
subgoal unfolding q-def using ‹r>0 › by auto
done

qed

lemma proots-card-uball-eq:
fixes z0 ::complex and r ::real
defines q≡[:z0 , of-real r :]
assumes r>0
shows card (proots-within p (ball z0 r)) = card (proots-within (p ◦p q) (ball 0

1 ))
proof −

have ?thesis
when p=0

proof −
have card (ball z0 r) = 0 card (ball (0 ::complex) 1 ) = 0

using infinite-ball[OF ‹r>0 ›,of z0 ] infinite-ball[of 1 0 ::complex] by auto
then show ?thesis using that by auto

qed
moreover have ?thesis

when p 6=0
apply (rule proots-card-pcompose-bij-eq[OF - ‹p 6=0 ›])
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subgoal unfolding q-def using bij-betw-ball-uball[OF ‹r>0 ›,of z0 ] by (auto
simp:algebra-simps)

subgoal unfolding q-def using ‹r>0 › by auto
done

ultimately show ?thesis
by blast

qed

lemma proots-card-usphere-eq:
fixes z0 ::complex and r ::real
defines q≡[:z0 , of-real r :]
assumes r>0
shows card (proots-within p (sphere z0 r)) = card (proots-within (p ◦p q) (sphere

0 1 ))
proof −

have ?thesis
when p=0

proof −
have card (sphere z0 r) = 0 card (sphere (0 ::complex) 1 ) = 0
using infinite-sphere[OF ‹r>0 ›,of z0 ] infinite-sphere[of 1 0 ::complex] by auto

then show ?thesis using that by auto
qed
moreover have ?thesis

when p 6=0
apply (rule proots-card-pcompose-bij-eq[OF - ‹p 6=0 ›])
subgoal unfolding q-def using bij-betw-sphere-usphere[OF ‹r>0 ›,of z0 ]

by (auto simp:algebra-simps)
subgoal unfolding q-def using ‹r>0 › by auto
done

ultimately show card (proots-within p (sphere z0 r)) = card (proots-within (p
◦p q) (sphere 0 1 ))

by blast
qed

2.10 Number of roots on a (bounded or unbounded) segment
definition unbounded-line:: ′a::real-vector ⇒ ′a ⇒ ′a set where

unbounded-line a b = ({x. ∃ u::real. x= (1 − u) ∗R a + u ∗R b})

definition proots-line-card:: complex poly ⇒ complex ⇒ complex ⇒ nat where
proots-line-card p st tt = card (proots-within p (open-segment st tt))

definition proots-unbounded-line-card:: complex poly ⇒ complex ⇒ complex ⇒
nat where

proots-unbounded-line-card p st tt = card (proots-within p (unbounded-line st tt))

definition proots-unbounded-line :: complex poly ⇒ complex ⇒ complex ⇒ nat
where
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proots-unbounded-line p st tt = proots-count p (unbounded-line st tt)

lemma card-proots-open-segments:
assumes poly p st 6=0 poly p tt 6= 0
shows card (proots-within p (open-segment st tt)) =

(let pc = pcompose p [:st, tt − st:];
pR = map-poly Re pc;
pI = map-poly Im pc;
g = gcd pR pI

in changes-itv-smods 0 1 g (pderiv g)) (is ?L = ?R)
proof −

define pc pR pI g where
pc = pcompose p [:st, tt−st:] and
pR = map-poly Re pc and
pI = map-poly Im pc and
g = gcd pR pI

have poly-iff :poly g t=0 ←→ poly pc t =0 for t
proof −

have poly g t = 0 ←→ poly pR t =0 ∧ poly pI t =0
unfolding g-def using poly-gcd-0-iff by auto

also have ... ←→ poly pc t =0
proof −

have cpoly-of pR pI = pc
unfolding pc-def pR-def pI-def using cpoly-of-decompose by auto

then show ?thesis using poly-cpoly-of-real-iff by blast
qed
finally show ?thesis by auto

qed

have ?R = changes-itv-smods 0 1 g (pderiv g)
unfolding pc-def g-def pI-def pR-def by (auto simp add:Let-def )

also have ... = card {t. poly g t = 0 ∧ 0 < t ∧ t < 1}
proof −

have poly g 0 6= 0
using poly-iff [of 0 ] assms unfolding pc-def by (auto simp add:poly-pcompose)
moreover have poly g 1 6= 0
using poly-iff [of 1 ] assms unfolding pc-def by (auto simp add:poly-pcompose)
ultimately show ?thesis using sturm-interval[of 0 1 g] by auto

qed
also have ... = card {t::real. poly pc (of-real t) = 0 ∧ 0 < t ∧ t < 1}

unfolding poly-iff by simp
also have ... = ?L
proof (cases st=tt)

case True
then show ?thesis unfolding pc-def poly-pcompose using ‹poly p tt 6= 0 ›

by auto
next

case False
define ff where ff = (λt::real. st + t∗(tt−st))
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define ll where ll = {t. poly pc (complex-of-real t) = 0 ∧ 0 < t ∧ t < 1}
have ff ‘ ll = proots-within p (open-segment st tt)
proof (rule equalityI )

show ff ‘ ll ⊆ proots-within p (open-segment st tt)
unfolding ll-def ff-def pc-def poly-pcompose
by (auto simp add:in-segment False scaleR-conv-of-real algebra-simps)

next
show proots-within p (open-segment st tt) ⊆ ff ‘ ll
proof clarify

fix x assume asm:x ∈ proots-within p (open-segment st tt)
then obtain u where 0<u and u < 1 and u:x = (1 − u) ∗R st + u ∗R tt

by (auto simp add:in-segment)
then have poly p ((1 − u) ∗R st + u ∗R tt) = 0 using asm by simp
then have u ∈ ll

unfolding ll-def pc-def poly-pcompose
by (simp add:scaleR-conv-of-real algebra-simps ‹0<u› ‹u<1 ›)

moreover have x = ff u
unfolding ff-def using u by (auto simp add:algebra-simps scaleR-conv-of-real)
ultimately show x ∈ ff ‘ ll by (rule rev-image-eqI [of u])

qed
qed
moreover have inj-on ff ll

unfolding ff-def using False inj-on-def by fastforce
ultimately show ?thesis unfolding ll-def

using card-image[of ff ] by fastforce
qed
finally show ?thesis by simp

qed

lemma unbounded-line-closed-segment: closed-segment a b ⊆ unbounded-line a b
unfolding unbounded-line-def closed-segment-def by auto

lemma card-proots-unbounded-line:
assumes st 6=tt
shows card (proots-within p (unbounded-line st tt)) =

(let pc = pcompose p [:st, tt − st:];
pR = map-poly Re pc;
pI = map-poly Im pc;
g = gcd pR pI

in nat (changes-R-smods g (pderiv g))) (is ?L = ?R)
proof −

define pc pR pI g where
pc = pcompose p [:st, tt−st:] and
pR = map-poly Re pc and
pI = map-poly Im pc and
g = gcd pR pI

have poly-iff :poly g t=0 ←→ poly pc t =0 for t
proof −

have poly g t = 0 ←→ poly pR t =0 ∧ poly pI t =0
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unfolding g-def using poly-gcd-0-iff by auto
also have ... ←→ poly pc t =0
proof −

have cpoly-of pR pI = pc
unfolding pc-def pR-def pI-def using cpoly-of-decompose by auto

then show ?thesis using poly-cpoly-of-real-iff by blast
qed
finally show ?thesis by auto

qed

have ?R = nat (changes-R-smods g (pderiv g))
unfolding pc-def g-def pI-def pR-def by (auto simp add:Let-def )

also have ... = card {t. poly g t = 0}
using sturm-R[of g] by simp

also have ... = card {t::real. poly pc t = 0}
unfolding poly-iff by simp

also have ... = ?L
proof (cases st=tt)

case True
then show ?thesis unfolding pc-def poly-pcompose unbounded-line-def using

assms
by (auto simp add:proots-within-def )

next
case False
define ff where ff = (λt::real. st + t∗(tt−st))
define ll where ll = {t. poly pc (complex-of-real t) = 0}
have ff ‘ ll = proots-within p (unbounded-line st tt)
proof (rule equalityI )

show ff ‘ ll ⊆ proots-within p (unbounded-line st tt)
unfolding ll-def ff-def pc-def poly-pcompose

by (auto simp add:unbounded-line-def False scaleR-conv-of-real algebra-simps)
next

show proots-within p (unbounded-line st tt) ⊆ ff ‘ ll
proof clarify

fix x assume asm:x ∈ proots-within p (unbounded-line st tt)
then obtain u where u:x = (1 − u) ∗R st + u ∗R tt

by (auto simp add:unbounded-line-def )
then have poly p ((1 − u) ∗R st + u ∗R tt) = 0 using asm by simp
then have u ∈ ll

unfolding ll-def pc-def poly-pcompose
by (simp add:scaleR-conv-of-real algebra-simps unbounded-line-def )

moreover have x = ff u
unfolding ff-def using u by (auto simp add:algebra-simps scaleR-conv-of-real)
ultimately show x ∈ ff ‘ ll by (rule rev-image-eqI [of u])

qed
qed
moreover have inj-on ff ll

unfolding ff-def using False inj-on-def by fastforce
ultimately show ?thesis unfolding ll-def
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using card-image[of ff ] by metis
qed
finally show ?thesis by simp

qed

lemma proots-count-gcd-eq:
fixes p::complex poly and st tt::complex

and g::real poly
defines pc ≡ pcompose p [:st, tt − st:]
defines pR ≡ map-poly Re pc and pI ≡ map-poly Im pc
defines g ≡ gcd pR pI
assumes st 6=tt p 6=0

and s1-def :s1 = (λx. poly [:st, tt − st:] (of-real x)) ‘ s2
shows proots-count p s1 = proots-count g s2

proof −
have [simp]: g 6=0 pc 6=0
proof −

show pc 6=0 using assms pc-def pcompose-eq-0
by (metis cancel-comm-monoid-add-class.diff-cancel degree-pCons-eq-if

diff-eq-diff-eq less-nat-zero-code pCons-eq-0-iff zero-less-Suc)
then have pR 6=0 ∨ pI 6=0 unfolding pR-def pI-def by (metis cpoly-of-decompose

map-poly-0 )
then show g 6=0 unfolding g-def by simp

qed
have order-eq:order t g = order t pc for t

apply (subst order-cpoly-gcd-eq[of pR pI ,folded g-def ,symmetric])
subgoal using ‹g 6=0 › unfolding g-def by simp

subgoal unfolding pR-def pI-def by (simp add:cpoly-of-decompose[symmetric])
done

have proots-count g s2 = proots-count (map-poly complex-of-real g)
(of-real ‘ s2 )

apply (subst proots-count-of-real)
by auto

also have ... = proots-count pc (of-real ‘ s2 )
apply (rule proots-count-cong)
by (auto simp add: map-poly-order-of-real order-eq)

also have ... = proots-count p s1
unfolding pc-def s1-def
apply (subst proots-pcompose)
using ‹st 6=tt› ‹p 6=0 › by (simp-all add:image-image)

finally show ?thesis by simp
qed

lemma proots-unbounded-line:
assumes st 6=tt p 6=0
shows (proots-count p (unbounded-line st tt)) =

(let pc = pcompose p [:st, tt − st:];
pR = map-poly Re pc;
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pI = map-poly Im pc;
g = gcd pR pI

in nat (changes-R-smods-ext g (pderiv g))) (is ?L = ?R)
proof −

define pc pR pI g where
pc = pcompose p [:st, tt−st:] and
pR = map-poly Re pc and
pI = map-poly Im pc and
g = gcd pR pI

have [simp]: g 6=0 pc 6=0
proof −

show pc 6=0 using assms(1 ) assms(2 ) pc-def pcompose-eq-0
by (metis cancel-comm-monoid-add-class.diff-cancel degree-pCons-eq-if

diff-eq-diff-eq less-nat-zero-code pCons-eq-0-iff zero-less-Suc)
then have pR 6=0 ∨ pI 6=0 unfolding pR-def pI-def by (metis cpoly-of-decompose

map-poly-0 )
then show g 6=0 unfolding g-def by simp

qed
have order-eq:order t g = order t pc for t

apply (subst order-cpoly-gcd-eq[of pR pI ,folded g-def ,symmetric])
subgoal using ‹g 6=0 › unfolding g-def by simp

subgoal unfolding pR-def pI-def by (simp add:cpoly-of-decompose[symmetric])
done

have ?R = nat (changes-R-smods-ext g (pderiv g))
unfolding pc-def g-def pI-def pR-def by (auto simp add:Let-def )

also have ... = proots-count g UNIV
using sturm-ext-R[OF ‹g 6=0 ›] by auto

also have ... = proots-count (map-poly complex-of-real g) (of-real ‘ UNIV )
apply (subst proots-count-of-real)
by auto

also have ... = proots-count (map-poly complex-of-real g) {x. Im x = 0}
apply (rule arg-cong2 [where f=proots-count])
using Reals-def complex-is-Real-iff by auto

also have ... = proots-count pc {x. Im x = 0}
apply (rule proots-count-cong)
apply (metis (mono-tags) Im-complex-of-real Re-complex-of-real ‹g 6= 0 › com-

plex-surj
map-poly-order-of-real mem-Collect-eq order-eq)

by auto
also have ... = proots-count p (unbounded-line st tt)
proof −

have poly [:st, tt − st:] ‘ {x. Im x = 0} = unbounded-line st tt
unfolding unbounded-line-def
apply safe
subgoal for - x

apply (rule-tac x=Re x in exI )
apply (simp add:algebra-simps)
by (simp add: mult.commute scaleR-complex.code times-complex.code)
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subgoal for - u
apply (rule rev-image-eqI [of of-real u])
by (auto simp:scaleR-conv-of-real algebra-simps)

done
then show ?thesis

unfolding pc-def
apply (subst proots-pcompose)
using ‹p 6=0 › ‹st 6=tt› by auto

qed
finally show ?thesis by simp

qed

lemma proots-unbounded-line-card-code[code]:
proots-unbounded-line-card p st tt =

(if st 6=tt then
(let pc = pcompose p [:st, tt − st:];

pR = map-poly Re pc;
pI = map-poly Im pc;
g = gcd pR pI

in nat (changes-R-smods g (pderiv g)))
else

Code.abort (STR ′′proots-unbounded-line-card fails due to invalid
hyperplanes. ′′)

(λ-. proots-unbounded-line-card p st tt))
unfolding proots-unbounded-line-card-def using card-proots-unbounded-line[of st

tt p] by auto

lemma proots-unbounded-line-code[code]:
proots-unbounded-line p st tt =

( if st 6=tt then
if p 6=0 then
(let pc = pcompose p [:st, tt − st:];

pR = map-poly Re pc;
pI = map-poly Im pc;
g = gcd pR pI

in nat (changes-R-smods-ext g (pderiv g)))
else

Code.abort (STR ′′proots-unbounded-line fails due to p=0 ′′)
(λ-. proots-unbounded-line p st tt)

else
Code.abort (STR ′′proots-unbounded-line fails due to invalid

hyperplanes. ′′)
(λ-. proots-unbounded-line p st tt) )

unfolding proots-unbounded-line-def using proots-unbounded-line by auto

2.11 Checking if there a polynomial root on a closed segment
definition no-proots-line::complex poly ⇒ complex ⇒ complex ⇒ bool where

no-proots-line p st tt = (proots-within p (closed-segment st tt) = {})
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lemma no-proots-line-code[code]: no-proots-line p st tt = (if poly p st 6=0 ∧ poly p
tt 6= 0 then

(let pc = pcompose p [:st, tt − st:];
pR = map-poly Re pc;
pI = map-poly Im pc;
g = gcd pR pI

in if changes-itv-smods 0 1 g (pderiv g) = 0 then True else False)
else False)

(is ?L = ?R)
proof (cases poly p st 6=0 ∧ poly p tt 6= 0 )

case False
thus ?thesis unfolding no-proots-line-def by auto

next
case True
then have poly p st 6= 0 poly p tt 6= 0 by auto
define pc pR pI g where

pc = pcompose p [:st, tt−st:] and
pR = map-poly Re pc and
pI = map-poly Im pc and
g = gcd pR pI

have poly-iff :poly g t=0 ←→ poly pc t =0 for t
proof −

have poly g t = 0 ←→ poly pR t =0 ∧ poly pI t =0
unfolding g-def using poly-gcd-0-iff by auto

also have ... ←→ poly pc t =0
proof −

have cpoly-of pR pI = pc
unfolding pc-def pR-def pI-def using cpoly-of-decompose by auto

then show ?thesis using poly-cpoly-of-real-iff by blast
qed
finally show ?thesis by auto

qed
have ?R = (changes-itv-smods 0 1 g (pderiv g) = 0 )

using True unfolding pc-def g-def pI-def pR-def
by (auto simp add:Let-def )

also have ... = (card {x. poly g x = 0 ∧ 0 < x ∧ x < 1} = 0 )
proof −

have poly g 0 6= 0
using poly-iff [of 0 ] True unfolding pc-def by (auto simp add:poly-pcompose)

moreover have poly g 1 6= 0
using poly-iff [of 1 ] True unfolding pc-def by (auto simp add:poly-pcompose)

ultimately show ?thesis using sturm-interval[of 0 1 g] by auto
qed
also have ... = ({x. poly g (of-real x) = 0 ∧ 0 < x ∧ x < 1} = {})
proof −

have g 6=0
proof (rule ccontr)
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assume ¬ g 6= 0
then have poly pc 0 =0

using poly-iff [of 0 ] by auto
then show False using True unfolding pc-def by (auto simp add:poly-pcompose)
qed
from poly-roots-finite[OF this] have finite {x. poly g x = 0 ∧ 0 < x ∧ x < 1}

by auto
then show ?thesis using card-eq-0-iff by auto

qed
also have ... = ?L
proof −

have (∃ t. poly g (of-real t) = 0 ∧ 0 < t ∧ t < 1 ) ←→
(∃ t::real. poly pc (of-real t) = 0 ∧ 0 < t ∧ t < 1 )

using poly-iff by auto
also have ... ←→ (∃ x. x ∈ closed-segment st tt ∧ poly p x = 0 )
proof

assume ∃ t. poly pc (complex-of-real t) = 0 ∧ 0 < t ∧ t < 1
then obtain t where ∗:poly pc (of-real t) = 0 and 0 < t t < 1 by auto
define x where x=poly [:st, tt − st:] t
have x ∈ closed-segment st tt using ‹0<t› ‹t<1 › unfolding x-def in-segment

by (intro exI [where x=t],auto simp add: algebra-simps scaleR-conv-of-real)
moreover have poly p x=0 using ∗ unfolding pc-def x-def

by (auto simp add:poly-pcompose)
ultimately show ∃ x. x ∈ closed-segment st tt ∧ poly p x = 0 by auto

next
assume ∃ x. x ∈ closed-segment st tt ∧ poly p x = 0
then obtain x where x ∈ closed-segment st tt poly p x = 0 by auto
then obtain t::real where ∗:x = (1 − t) ∗R st + t ∗R tt and 0≤t t≤1

unfolding in-segment by auto
then have x=poly [:st, tt − st:] t by (auto simp add: algebra-simps scaleR-conv-of-real)

then have poly pc (complex-of-real t) = 0
using ‹poly p x=0 › unfolding pc-def by (auto simp add:poly-pcompose)

moreover have t 6=0 t 6=1 using True ∗ ‹poly p x=0 › by auto
then have 0<t t<1 using ‹0≤t› ‹t≤1 › by auto
ultimately show ∃ t. poly pc (complex-of-real t) = 0 ∧ 0 < t ∧ t < 1 by

auto
qed
finally show ?thesis

unfolding no-proots-line-def proots-within-def
by blast

qed
finally show ?thesis by simp

qed

2.12 Number of roots on a bounded open segment
definition proots-line:: complex poly ⇒ complex ⇒ complex ⇒ nat where

proots-line p st tt = proots-count p (open-segment st tt)
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lemma proots-line-commute:
proots-line p st tt = proots-line p tt st
unfolding proots-line-def by (simp add: open-segment-commute)

lemma proots-line-smods:
assumes poly p st 6=0 poly p tt 6= 0 st 6=tt
shows proots-line p st tt =

(let pc = pcompose p [:st, tt − st:];
pR = map-poly Re pc;
pI = map-poly Im pc;
g = gcd pR pI

in nat (changes-itv-smods-ext 0 1 g (pderiv g)))
(is -=?R)

proof −
have p 6=0 using assms(2 ) poly-0 by blast

define pc pR pI g where
pc = pcompose p [:st, tt−st:] and
pR = map-poly Re pc and
pI = map-poly Im pc and
g = gcd pR pI

have [simp]: g 6=0 pc 6=0
proof −

show pc 6=0
by (metis assms(1 ) coeff-pCons-0 pCons-0-0 pc-def pcompose-coeff-0 )

then have pR 6=0 ∨ pI 6=0 unfolding pR-def pI-def
by (metis cpoly-of-decompose map-poly-0 )

then show g 6=0 unfolding g-def by simp
qed
have order-eq:order t g = order t pc for t

apply (subst order-cpoly-gcd-eq[of pR pI ,folded g-def ,symmetric])
subgoal using ‹g 6=0 › unfolding g-def by simp

subgoal unfolding pR-def pI-def by (simp add:cpoly-of-decompose[symmetric])
done

have poly-iff :poly g t=0 ←→ poly pc t =0 for t
using order-eq by (simp add: order-root)

have poly g 0 6= 0 poly g 1 6=0
unfolding poly-iff pc-def
using assms by (simp-all add:poly-pcompose)

have ?R = changes-itv-smods-ext 0 1 g (pderiv g)
unfolding Let-def
apply (fold pc-def g-def pI-def pR-def )
using assms changes-itv-smods-ext-geq-0 [OF - ‹poly g 0 6=0 › ‹poly g 1 6=0 ›]
by auto

also have ... = int (proots-count g {x. 0 < x ∧ x < 1})
apply (rule sturm-ext-interval[symmetric])
by simp fact+
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also have ... = int (proots-count p (open-segment st tt))
proof −

define f where f = (λx. poly [:st, tt − st:] (complex-of-real x))
have x∈f ‘ {x. 0 < x ∧ x < 1} if x∈open-segment st tt for x
proof −

obtain u where u:u>0 u < 1 x = (1 − u) ∗R st + u ∗R tt
using ‹x∈open-segment st tt› unfolding in-segment by auto

show ?thesis
apply (rule rev-image-eqI [where x=u])
using u unfolding f-def
by (auto simp:algebra-simps scaleR-conv-of-real)

qed
moreover have x∈open-segment st tt if x∈f ‘ {x. 0 < x ∧ x < 1} for x

using that ‹st 6=tt› unfolding in-segment f-def
by (auto simp:scaleR-conv-of-real algebra-simps)

ultimately have open-segment st tt = f ‘ {x. 0 < x ∧ x < 1}
by auto

then have proots-count p (open-segment st tt)
= proots-count g {x. 0 < x ∧ x < 1}

using proots-count-gcd-eq[OF ‹st 6=tt› ‹p 6=0 ›,
folded pc-def pR-def pI-def g-def ] unfolding f-def

by auto
then show ?thesis by auto

qed
also have ... =proots-line p st tt

unfolding proots-line-def by simp
finally show ?thesis by simp

qed

lemma proots-line-code[code]:
proots-line p st tt =

(if poly p st 6=0 ∧ poly p tt 6= 0 then
(if st 6=tt then

(let pc = pcompose p [:st, tt − st:];
pR = map-poly Re pc;
pI = map-poly Im pc;
g = gcd pR pI

in nat (changes-itv-smods-ext 0 1 g (pderiv g)))
else 0 )

else Code.abort (STR ′′prootsline does not handle vanishing endpoints for now ′′)

(λ-. proots-line p st tt)) (is ?L = ?R)
proof (cases poly p st 6=0 ∧ poly p tt 6= 0 ∧ st 6=tt)

case False
moreover have ?thesis if st=tt p 6=0

using that unfolding proots-line-def by auto
ultimately show ?thesis by fastforce

next
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case True
then show ?thesis using proots-line-smods by auto

qed

end

theory Count-Half-Plane imports
Count-Line

begin

2.13 Polynomial roots on the upper half-plane
definition proots-upper ::complex poly ⇒ nat where

proots-upper p= proots-count p {z. Im z>0}

— Roots counted WITHOUT multiplicity
definition proots-upper-card::complex poly ⇒ nat where

proots-upper-card p = card (proots-within p {x. Im x >0})

lemma Im-Ln-tendsto-at-top: ((λx. Im (Ln (Complex a x))) −−−→ pi/2 ) at-top
proof (cases a=0 )

case False
define f where f=(λx. if a>0 then arctan (x/a) else arctan (x/a) + pi)
define g where g=(λx. Im (Ln (Complex a x)))
have (f −−−→ pi / 2 ) at-top
proof (cases a>0 )

case True
then have (f −−−→ pi / 2 ) at-top ←→ ((λx. arctan (x ∗ inverse a)) −−−→ pi

/ 2 ) at-top
unfolding f-def field-class.field-divide-inverse by auto

also have ... ←→ (arctan −−−→ pi / 2 ) at-top
apply (subst filterlim-at-top-linear-iff [of inverse a arctan 0 nhds (pi/2 ),simplified])

using True by auto
also have ... using tendsto-arctan-at-top .
finally show ?thesis .

next
case False
then have (f −−−→ pi / 2 ) at-top ←→ ((λx. arctan (x ∗ inverse a) + pi) −−−→

pi / 2 ) at-top
unfolding f-def field-class.field-divide-inverse by auto

also have ... ←→ ((λx. arctan (x ∗ inverse a)) −−−→ − pi / 2 ) at-top
apply (subst tendsto-add-const-iff [of −pi,symmetric])
by auto

also have ... ←→ (arctan −−−→ − pi / 2 ) at-bot
apply (subst filterlim-at-top-linear-iff [of inverse a arctan 0 ,simplified])
using False ‹a 6=0 › by auto

also have ... using tendsto-arctan-at-bot by simp
finally show ?thesis .

qed
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moreover have ∀ F x in at-top. f x = g x
unfolding f-def g-def using ‹a 6=0 ›
apply (subst Im-Ln-eq)
subgoal for x using Complex-eq-0 by blast
subgoal unfolding eventually-at-top-linorder by auto
done

ultimately show ?thesis
using tendsto-cong[of f g at-top] unfolding g-def by auto

next
case True
show ?thesis

apply (rule tendsto-eventually)
apply (rule eventually-at-top-linorderI [of 1 ])
using True by (subst Im-Ln-eq,auto simp add:Complex-eq-0 )

qed

lemma Im-Ln-tendsto-at-bot: ((λx. Im (Ln (Complex a x))) −−−→ − pi/2 ) at-bot

proof (cases a=0 )
case False
define f where f=(λx. if a>0 then arctan (x/a) else arctan (x/a) − pi)
define g where g=(λx. Im (Ln (Complex a x)))
have (f −−−→ − pi / 2 ) at-bot
proof (cases a>0 )

case True
then have (f −−−→ − pi / 2 ) at-bot ←→ ((λx. arctan (x ∗ inverse a)) −−−→

− pi / 2 ) at-bot
unfolding f-def field-class.field-divide-inverse by auto

also have ... ←→ (arctan −−−→ − pi / 2 ) at-bot
apply (subst filterlim-at-bot-linear-iff [of inverse a arctan 0 ,simplified])
using True by auto

also have ... using tendsto-arctan-at-bot by simp
finally show ?thesis .

next
case False
then have (f −−−→ − pi / 2 ) at-bot ←→ ((λx. arctan (x ∗ inverse a) − pi)

−−−→ − pi / 2 ) at-bot
unfolding f-def field-class.field-divide-inverse by auto

also have ... ←→ ((λx. arctan (x ∗ inverse a)) −−−→ pi / 2 ) at-bot
apply (subst tendsto-add-const-iff [of pi,symmetric])
by auto

also have ... ←→ (arctan −−−→ pi / 2 ) at-top
apply (subst filterlim-at-bot-linear-iff [of inverse a arctan 0 ,simplified])
using False ‹a 6=0 › by auto

also have ... using tendsto-arctan-at-top by simp
finally show ?thesis .

qed
moreover have ∀ F x in at-bot. f x = g x

unfolding f-def g-def using ‹a 6=0 ›
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apply (subst Im-Ln-eq)
subgoal for x using Complex-eq-0 by blast

subgoal unfolding eventually-at-bot-linorder by (auto intro:exI [where x=−1 ])
done

ultimately show ?thesis
using tendsto-cong[of f g at-bot] unfolding g-def by auto

next
case True
show ?thesis

apply (rule tendsto-eventually)
apply (rule eventually-at-bot-linorderI [of −1 ])
using True by (subst Im-Ln-eq,auto simp add:Complex-eq-0 )

qed

lemma Re-winding-number-tendsto-part-circlepath:
shows ((λr . Re (winding-number (part-circlepath z0 r 0 pi ) a)) −−−→ 1/2 )

at-top
proof (cases Im z0≤Im a)

case True
define g1 where g1=(λr . part-circlepath z0 r 0 pi)
define g2 where g2=(λr . part-circlepath z0 r pi (2∗pi))
define f1 where f1=(λr . Re (winding-number (g1 r ) a))
define f2 where f2=(λr . Re (winding-number (g2 r) a))
have (f2 −−−→ 1/2 ) at-top
proof −

define h1 where h1 = (λr . Im (Ln (Complex ( Im a−Im z0 ) (Re z0 − Re a
+ r))))

define h2 where h2= (λr . Im (Ln (Complex ( Im a −Im z0 ) (Re z0 − Re a
− r))))

have ∀ F x in at-top. f2 x = (h1 x − h2 x) / (2 ∗ pi)
proof (rule eventually-at-top-linorderI [of cmod (a−z0 ) + 1 ])

fix r assume asm:r ≥ cmod (a − z0 ) + 1
have Im p ≤ Im a when p∈path-image (g2 r) for p
proof −
obtain t where p-def :p=z0 + of-real r ∗ exp (i ∗ of-real t) and pi≤t t≤2∗pi

using ‹p∈path-image (g2 r)›
unfolding g2-def path-image-part-circlepath[of pi 2∗pi,simplified]
by auto

then have Im p=Im z0 + sin t ∗ r by (auto simp add:Im-exp)
also have ... ≤ Im z0
proof −

have sin t≤0 using ‹pi≤t› ‹t≤2∗pi› sin-le-zero by fastforce
moreover have r≥0

using asm by (metis add.inverse-inverse add.left-neutral add-uminus-conv-diff
diff-ge-0-iff-ge norm-ge-zero order-trans zero-le-one)

ultimately have sin t ∗ r≤0 using mult-le-0-iff by blast
then show ?thesis by auto

qed
also have ... ≤ Im a using True .

111



finally show ?thesis .
qed
moreover have valid-path (g2 r) unfolding g2-def by auto
moreover have a /∈ path-image (g2 r)

unfolding g2-def
apply (rule not-on-circlepathI )
using asm by auto

moreover have [symmetric]:Im (Ln (i ∗ pathfinish (g2 r) − i ∗ a)) = h1 r
unfolding h1-def g2-def
apply (simp only:pathfinish-pathstart-partcirclepath-simps)
apply (subst (4 10 ) complex-eq)
by (auto simp add:algebra-simps Complex-eq)

moreover have [symmetric]:Im (Ln (i ∗ pathstart (g2 r) − i ∗ a)) = h2 r
unfolding h2-def g2-def
apply (simp only:pathfinish-pathstart-partcirclepath-simps)
apply (subst (4 10 ) complex-eq)
by (auto simp add:algebra-simps Complex-eq)

ultimately show f2 r = (h1 r − h2 r) / (2 ∗ pi)
unfolding f2-def
apply (subst Re-winding-number-half-lower)
by (auto simp add:exp-Euler algebra-simps)

qed
moreover have ((λx. (h1 x − h2 x) / (2 ∗ pi)) −−−→ 1/2 ) at-top
proof −

have (h1 −−−→ pi/2 ) at-top
unfolding h1-def

apply (subst filterlim-at-top-linear-iff [of 1 - Re a − Re z0 ,simplified,symmetric])

using Im-Ln-tendsto-at-top by (simp del:Complex-eq)
moreover have (h2 −−−→ − pi/2 ) at-top

unfolding h2-def
apply (subst filterlim-at-bot-linear-iff [of − 1 - − Re a + Re z0 ,simplified,symmetric])

using Im-Ln-tendsto-at-bot by (simp del:Complex-eq)
ultimately have ((λx. h1 x− h2 x) −−−→ pi) at-top

by (auto intro: tendsto-eq-intros)
then show ?thesis

by (auto intro: tendsto-eq-intros)
qed
ultimately show ?thesis by (auto dest:tendsto-cong)

qed
moreover have ∀ F r in at-top. f2 r = 1 − f1 r
proof (rule eventually-at-top-linorderI [of cmod (a−z0 ) + 1 ])

fix r assume asm:r ≥ cmod (a − z0 ) + 1
have f1 r + f2 r = Re(winding-number (g1 r +++ g2 r) a)

unfolding f1-def f2-def g1-def g2-def
apply (subst winding-number-join)
using asm by (auto intro!:not-on-circlepathI )

also have ... = Re(winding-number (circlepath z0 r) a)
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proof −
have g1 r +++ g2 r = circlepath z0 r

unfolding circlepath-def g1-def g2-def joinpaths-def part-circlepath-def
linepath-def

by (auto simp add:field-simps)
then show ?thesis by auto

qed
also have ... = 1
proof −

have winding-number (circlepath z0 r) a = 1
apply (rule winding-number-circlepath)
using asm by auto

then show ?thesis by auto
qed
finally have f1 r+f2 r=1 .
then show f2 r = 1 − f1 r by auto

qed
ultimately have ((λr . 1 − f1 r) −−−→ 1/2 ) at-top

using tendsto-cong[of f2 λr . 1 − f1 r at-top] by auto
then have (f1 −−−→ 1/2 ) at-top

apply (rule-tac tendsto-minus-cancel)
apply (subst tendsto-add-const-iff [of 1 ,symmetric])
by auto

then show ?thesis unfolding f1-def g1-def by auto
next

case False
define g where g=(λr . part-circlepath z0 r 0 pi)
define f where f=(λr . Re (winding-number (g r) a))
have (f −−−→ 1/2 ) at-top
proof −

define h1 where h1 = (λr . Im (Ln (Complex ( Im z0−Im a) (Re a − Re z0
+ r))))

define h2 where h2= (λr . Im (Ln (Complex ( Im z0 −Im a ) (Re a − Re
z0 − r))))

have ∀ F x in at-top. f x = (h1 x − h2 x) / (2 ∗ pi)
proof (rule eventually-at-top-linorderI [of cmod (a−z0 ) + 1 ])

fix r assume asm:r ≥ cmod (a − z0 ) + 1
have Im p ≥ Im a when p∈path-image (g r) for p
proof −

obtain t where p-def :p=z0 + of-real r ∗ exp (i ∗ of-real t) and 0≤t t≤pi
using ‹p∈path-image (g r)›
unfolding g-def path-image-part-circlepath[of 0 pi,simplified]
by auto

then have Im p=Im z0 + sin t ∗ r by (auto simp add:Im-exp)
moreover have sin t ∗ r≥0
proof −

have sin t≥0 using ‹0≤t› ‹t≤pi› sin-ge-zero by fastforce
moreover have r≥0

using asm by (metis add.inverse-inverse add.left-neutral add-uminus-conv-diff
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diff-ge-0-iff-ge norm-ge-zero order-trans zero-le-one)
ultimately have sin t ∗ r≥0 by simp
then show ?thesis by auto

qed
ultimately show ?thesis using False by auto

qed
moreover have valid-path (g r) unfolding g-def by auto
moreover have a /∈ path-image (g r)

unfolding g-def
apply (rule not-on-circlepathI )
using asm by auto

moreover have [symmetric]:Im (Ln (i ∗ a − i ∗ pathfinish (g r))) = h1 r
unfolding h1-def g-def
apply (simp only:pathfinish-pathstart-partcirclepath-simps)
apply (subst (4 9 ) complex-eq)
by (auto simp add:algebra-simps Complex-eq)

moreover have [symmetric]:Im (Ln (i ∗ a − i ∗ pathstart (g r))) = h2 r
unfolding h2-def g-def
apply (simp only:pathfinish-pathstart-partcirclepath-simps)
apply (subst (4 9 ) complex-eq)
by (auto simp add:algebra-simps Complex-eq)

ultimately show f r = (h1 r − h2 r) / (2 ∗ pi)
unfolding f-def
apply (subst Re-winding-number-half-upper)
by (auto simp add:exp-Euler algebra-simps)

qed
moreover have ((λx. (h1 x − h2 x) / (2 ∗ pi)) −−−→ 1/2 ) at-top
proof −

have (h1 −−−→ pi/2 ) at-top
unfolding h1-def

apply (subst filterlim-at-top-linear-iff [of 1 - − Re a + Re z0 ,simplified,symmetric])

using Im-Ln-tendsto-at-top by (simp del:Complex-eq)
moreover have (h2 −−−→ − pi/2 ) at-top

unfolding h2-def
apply (subst filterlim-at-bot-linear-iff [of − 1 - Re a − Re z0 ,simplified,symmetric])

using Im-Ln-tendsto-at-bot by (simp del:Complex-eq)
ultimately have ((λx. h1 x− h2 x) −−−→ pi) at-top

by (auto intro: tendsto-eq-intros)
then show ?thesis

by (auto intro: tendsto-eq-intros)
qed
ultimately show ?thesis by (auto dest:tendsto-cong)

qed
then show ?thesis unfolding f-def g-def by auto

qed

lemma not-image-at-top-poly-part-circlepath:
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assumes degree p>0
shows ∀ F r in at-top. b/∈path-image (poly p o part-circlepath z0 r st tt)

proof −
have finite (proots (p−[:b:]))

apply (rule finite-proots)
using assms by auto

from finite-ball-include[OF this]
obtain R::real where R>0 and R-ball:proots (p−[:b:]) ⊆ ball z0 R by auto
show ?thesis
proof (rule eventually-at-top-linorderI [of R])

fix r assume r≥R
show b/∈path-image (poly p o part-circlepath z0 r st tt)

unfolding path-image-compose
proof clarify

fix x assume asm:b = poly p x x ∈ path-image (part-circlepath z0 r st tt)
then have x∈proots (p−[:b:]) unfolding proots-def by auto
then have x∈ball z0 r using R-ball ‹r≥R› by auto
then have cmod (x− z0 ) < r

by (simp add: dist-commute dist-norm)
moreover have cmod (x − z0 ) = r

using asm(2 ) in-path-image-part-circlepath ‹R>0 › ‹r≥R› by auto
ultimately show False by auto

qed
qed

qed

lemma not-image-poly-part-circlepath:
assumes degree p>0
shows ∃ r>0 . b/∈path-image (poly p o part-circlepath z0 r st tt)

proof −
have finite (proots (p−[:b:]))

apply (rule finite-proots)
using assms by auto

from finite-ball-include[OF this]
obtain r ::real where r>0 and r-ball:proots (p−[:b:]) ⊆ ball z0 r by auto
have b/∈path-image (poly p o part-circlepath z0 r st tt)

unfolding path-image-compose
proof clarify

fix x assume asm:b = poly p x x ∈ path-image (part-circlepath z0 r st tt)
then have x∈proots (p−[:b:]) unfolding proots-def by auto
then have x∈ball z0 r using r-ball by auto
then have cmod (x− z0 ) < r

by (simp add: dist-commute dist-norm)
moreover have cmod (x − z0 ) = r

using asm(2 ) in-path-image-part-circlepath ‹r>0 › by auto
ultimately show False by auto

qed
then show ?thesis using ‹r>0 › by blast

qed
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lemma Re-winding-number-poly-part-circlepath:
assumes degree p>0
shows ((λr . Re (winding-number (poly p o part-circlepath z0 r 0 pi) 0 )) −−−→

degree p/2 ) at-top
using assms
proof (induct rule:poly-root-induct-alt)

case 0
then show ?case by auto

next
case (no-proots p)
then have False
using Fundamental-Theorem-Algebra.fundamental-theorem-of-algebra constant-degree

neq0-conv
by blast

then show ?case by auto
next

case (root a p)
define g where g = (λr . part-circlepath z0 r 0 pi)
define q where q=[:− a, 1 :] ∗ p
define w where w = (λr . winding-number (poly q ◦ g r) 0 )
have ?case when degree p=0
proof −
obtain pc where pc-def :p=[:pc:] using ‹degree p = 0 › degree-eq-zeroE by blast
then have pc 6=0 using root(2 ) by auto
have ∀ F r in at-top. Re (w r) = Re (winding-number (g r) a)
proof (rule eventually-at-top-linorderI [of cmod (( pc ∗ a) / pc − z0 ) + 1 ])

fix r ::real assume asm:cmod ((pc ∗ a) / pc − z0 ) + 1 ≤ r
have w r = winding-number ((λx. pc∗x − pc∗a) ◦ (g r)) 0

unfolding w-def pc-def g-def q-def
apply auto

by (metis (no-types, opaque-lifting) add.right-neutral mult.commute mult-zero-right

poly-0 poly-pCons uminus-add-conv-diff )
also have ... = winding-number (g r) a

apply (subst winding-number-comp-linear [where b=−pc∗a,simplified])
subgoal using ‹pc 6=0 › .
subgoal unfolding g-def by auto
subgoal unfolding g-def

apply (rule not-on-circlepathI )
using asm by auto

subgoal using ‹pc 6=0 › by (auto simp add:field-simps)
done

finally have w r = winding-number (g r) a .
then show Re (w r) = Re (winding-number (g r) a) by simp

qed
moreover have ((λr . Re (winding-number (g r) a)) −−−→ 1/2 ) at-top

using Re-winding-number-tendsto-part-circlepath unfolding g-def by auto
ultimately have ((λr . Re (w r)) −−−→ 1/2 ) at-top
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by (auto dest!:tendsto-cong)
moreover have degree ([:− a, 1 :] ∗ p) = 1 unfolding pc-def using ‹pc 6=0 ›

by auto
ultimately show ?thesis unfolding w-def g-def comp-def q-def by simp

qed
moreover have ?case when degree p>0
proof −

have ∀ F r in at-top. 0 /∈ path-image (poly q ◦ g r)
unfolding g-def
apply (rule not-image-at-top-poly-part-circlepath)
unfolding q-def using root.prems by blast

then have ∀ F r in at-top. Re (w r) = Re (winding-number (g r) a)
+ Re (winding-number (poly p ◦ g r) 0 )

proof (rule eventually-mono)
fix r assume asm:0 /∈ path-image (poly q ◦ g r)
define cc where cc= 1 / (of-real (2 ∗ pi) ∗ i)
define pf where pf=(λw. deriv (poly p) w / poly p w)
define af where af=(λw. 1/(w−a))
have w r = cc ∗ contour-integral (g r) (λw. deriv (poly q) w / poly q w)

unfolding w-def
apply (subst winding-number-comp[of UNIV ,simplified])
using asm unfolding g-def cc-def by auto

also have ... = cc ∗ contour-integral (g r) (λw. deriv (poly p) w / poly p w
+ 1/(w−a))

proof −
have contour-integral (g r) (λw. deriv (poly q) w / poly q w)

= contour-integral (g r) (λw. deriv (poly p) w / poly p w + 1/(w−a))
proof (rule contour-integral-eq)

fix x assume x ∈ path-image (g r)
have deriv (poly q) x = deriv (poly p) x ∗ (x−a) + poly p x
proof −

have poly q = (λx. (x−a) ∗ poly p x)
apply (rule ext)
unfolding q-def by (auto simp add:algebra-simps)

then show ?thesis
apply simp
apply (subst deriv-mult[of λx. x− a - poly p])
by (auto intro:derivative-intros)

qed
moreover have poly p x 6=0 ∧ x−a 6=0
proof (rule ccontr)

assume ¬ (poly p x 6= 0 ∧ x − a 6= 0 )
then have poly q x=0 unfolding q-def by auto
then have 0∈poly q ‘ path-image (g r)

using ‹x ∈ path-image (g r)› by auto
then show False using ‹0 /∈ path-image (poly q ◦ g r)›

unfolding path-image-compose by auto
qed
ultimately show deriv (poly q) x / poly q x = deriv (poly p) x / poly p x
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+ 1 / (x − a)
unfolding q-def by (auto simp add:field-simps)

qed
then show ?thesis by auto

qed
also have ... = cc ∗ contour-integral (g r) (λw. deriv (poly p) w / poly p w)

+ cc ∗ contour-integral (g r) (λw. 1/(w−a))
proof (subst contour-integral-add)

have continuous-on (path-image (g r)) (λw. deriv (poly p) w)
unfolding deriv-pderiv by (intro continuous-intros)

moreover have ∀w∈path-image (g r). poly p w 6= 0
using asm unfolding q-def path-image-compose by auto

ultimately show (λw. deriv (poly p) w / poly p w) contour-integrable-on g
r

unfolding g-def
by (auto intro!: contour-integrable-continuous-part-circlepath continu-

ous-intros)
show (λw. 1 / (w − a)) contour-integrable-on g r

apply (rule contour-integrable-inversediff )
subgoal unfolding g-def by auto
subgoal using asm unfolding q-def path-image-compose by auto
done

qed (auto simp add:algebra-simps)
also have ... = winding-number (g r) a + winding-number (poly p o g r) 0
proof −

have winding-number (poly p o g r) 0
= cc ∗ contour-integral (g r) (λw. deriv (poly p) w / poly p w)

apply (subst winding-number-comp[of UNIV ,simplified])
using ‹0 /∈ path-image (poly q ◦ g r)› unfolding path-image-compose q-def

g-def cc-def
by auto

moreover have winding-number (g r) a = cc ∗ contour-integral (g r) (λw.
1/(w−a))

apply (subst winding-number-valid-path)
using ‹0 /∈ path-image (poly q ◦ g r)› unfolding path-image-compose q-def

g-def cc-def
by auto

ultimately show ?thesis by auto
qed
finally show Re (w r) = Re (winding-number (g r) a) + Re (winding-number

(poly p ◦ g r) 0 )
by auto

qed
moreover have ((λr . Re (winding-number (g r) a)

+ Re (winding-number (poly p ◦ g r) 0 )) −−−→ degree q / 2 ) at-top
proof −

have ((λr . Re (winding-number (g r) a)) −−−→1 / 2 ) at-top
unfolding g-def by (rule Re-winding-number-tendsto-part-circlepath)

moreover have ((λr . Re (winding-number (poly p ◦ g r) 0 )) −−−→ degree p
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/ 2 ) at-top
unfolding g-def by (rule root(1 )[OF that])

moreover have degree q = degree p + 1
unfolding q-def
apply (subst degree-mult-eq)
using that by auto

ultimately show ?thesis
by (simp add: tendsto-add add-divide-distrib)

qed
ultimately have ((λr . Re (w r)) −−−→ degree q/2 ) at-top

by (auto dest!:tendsto-cong)
then show ?thesis unfolding w-def q-def g-def by blast

qed
ultimately show ?case by blast

qed

lemma Re-winding-number-poly-linepth:
fixes pp::complex poly
defines g ≡ (λr . poly pp o linepath (−r) (of-real r))
assumes lead-coeff pp=1 and no-real-zero:∀ x∈proots pp. Im x 6=0
shows ((λr . 2∗Re (winding-number (g r) 0 ) + cindex-pathE (g r) 0 ) −−−→ 0

) at-top
proof −

define p where p=map-poly Re pp
define q where q=map-poly Im pp
define f where f=(λt. poly q t / poly p t)
have sgnx-top:sgnx (poly p) at-top = 1

unfolding sgnx-poly-at-top sgn-pos-inf-def p-def using ‹lead-coeff pp=1 ›
by (subst lead-coeff-map-poly-nz,auto)

have not-g-image:0 /∈ path-image (g r) for r
proof (rule ccontr)

assume ¬ 0 /∈ path-image (g r)
then obtain x where poly pp x=0 x∈closed-segment (− of-real r) (of-real r)

unfolding g-def path-image-compose of-real-linepath by auto
then have Im x=0 x∈proots pp

using closed-segment-imp-Re-Im(2 ) unfolding proots-def by fastforce+
then show False using ‹∀ x∈proots pp. Im x 6=0 › by auto

qed
have arctan-f-tendsto:((λr . (arctan (f r) − arctan (f (−r))) / pi) −−−→ 0 )

at-top
proof (cases degree p>0 )

case True
have degree p>degree q
proof −

have degree p=degree pp
unfolding p-def using ‹lead-coeff pp=1 ›
by (auto intro:map-poly-degree-eq)

moreover then have degree q<degree pp
unfolding q-def using ‹lead-coeff pp=1 › True
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by (auto intro!:map-poly-degree-less)
ultimately show ?thesis by auto

qed
then have (f −−−→ 0 ) at-infinity

unfolding f-def using poly-divide-tendsto-0-at-infinity by auto
then have (f −−−→ 0 ) at-bot (f −−−→ 0 ) at-top
by (auto elim!:filterlim-mono simp add:at-top-le-at-infinity at-bot-le-at-infinity)
then have ((λr . arctan (f r))−−−→ 0 ) at-top ((λr . arctan (f (−r)))−−−→ 0 )

at-top
apply −
subgoal by (auto intro:tendsto-eq-intros)
subgoal

apply (subst tendsto-compose-filtermap[of - uminus,unfolded comp-def ])
by (auto intro:tendsto-eq-intros simp add:at-bot-mirror [symmetric])

done
then show ?thesis

by (auto intro:tendsto-eq-intros)
next

case False
obtain c where f=(λr . c)
proof −

have degree p=0 using False by auto
moreover have degree q≤degree p
proof −

have degree p=degree pp
unfolding p-def using ‹lead-coeff pp=1 ›
by (auto intro:map-poly-degree-eq)

moreover have degree q≤degree pp
unfolding q-def by simp

ultimately show ?thesis by auto
qed
ultimately have degree q=0 by simp
then obtain pa qa where p=[:pa:] q=[:qa:]

using ‹degree p=0 › by (meson degree-eq-zeroE)
then show ?thesis using that unfolding f-def by auto

qed
then show ?thesis by auto

qed
have [simp]:valid-path (g r) path (g r) finite-ReZ-segments (g r) 0 for r
proof −

show valid-path (g r) unfolding g-def
apply (rule valid-path-compose-holomorphic[where S=UNIV ])
by (auto simp add:of-real-linepath)

then show path (g r) using valid-path-imp-path by auto
show finite-ReZ-segments (g r) 0

unfolding g-def of-real-linepath using finite-ReZ-segments-poly-linepath by
simp

qed
have g-f-eq:Im (g r t) / Re (g r t) = (f o (λx. 2∗r∗x − r)) t for r t
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proof −
have Im (g r t) / Re (g r t) = Im ((poly pp o of-real o (λx. 2∗r∗x − r)) t)

/ Re ((poly pp o of-real o (λx. 2∗r∗x − r)) t)
unfolding g-def linepath-def comp-def
by (auto simp add:algebra-simps)

also have ... = (f o (λx. 2∗r∗x − r)) t
unfolding comp-def
by (simp only:Im-poly-of-real diff-0-right Re-poly-of-real f-def q-def p-def )

finally show ?thesis .
qed

have ?thesis when proots p={}
proof −

have ∀ F r in at-top. 2 ∗ Re (winding-number (g r) 0 ) + cindex-pathE (g r) 0
= (arctan (f r) − arctan (f (−r))) / pi

proof (rule eventually-at-top-linorderI [of 1 ])
fix r ::real assume r≥1
have image-pos:∀ p∈path-image (g r). 0<Re p
proof (rule ccontr)

assume ¬ (∀ p∈path-image (g r). 0 < Re p)
then obtain t where poly p t≤0

unfolding g-def path-image-compose of-real-linepath p-def
using Re-poly-of-real
apply (simp add:closed-segment-def )
by (metis not-less of-real-def real-vector .scale-scale scaleR-left-diff-distrib)

moreover have False when poly p t<0
proof −

have sgnx (poly p) (at-right t) = −1
using sgnx-poly-nz that by auto

then obtain x where x>t poly p x = 0
using sgnx-at-top-IVT [of p t] sgnx-top by auto

then have x∈proots p unfolding proots-def by auto
then show False using ‹proots p={}› by auto

qed
moreover have False when poly p t=0

using ‹proots p={}› that unfolding proots-def by auto
ultimately show False by linarith

qed
have Re (winding-number (g r) 0 ) = (Im (Ln (pathfinish (g r))) − Im (Ln

(pathstart (g r))))
/ (2 ∗ pi)

apply (rule Re-winding-number-half-right[of g r 0 ,simplified])
subgoal using image-pos by auto
subgoal by (auto simp add:not-g-image)
done

also have ... = (arctan (f r) − arctan (f (−r)))/(2∗pi)
proof −

have Im (Ln (pathfinish (g r))) = arctan (f r)
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proof −
have Re (pathfinish (g r)) > 0

by (auto intro: image-pos[rule-format])
then have Im (Ln (pathfinish (g r)))

= arctan (Im (pathfinish (g r)) / Re (pathfinish (g r)))
by (subst Im-Ln-eq,auto)

also have ... = arctan (f r)
unfolding path-defs by (subst g-f-eq,auto)

finally show ?thesis .
qed
moreover have Im (Ln (pathstart (g r))) = arctan (f (−r))
proof −

have Re (pathstart (g r)) > 0
by (auto intro: image-pos[rule-format])

then have Im (Ln (pathstart (g r)))
= arctan (Im (pathstart (g r)) / Re (pathstart (g r)))

by (subst Im-Ln-eq,auto)
also have ... = arctan (f (−r))

unfolding path-defs by (subst g-f-eq,auto)
finally show ?thesis .

qed
ultimately show ?thesis by auto

qed
finally have Re (winding-number (g r) 0 ) = (arctan (f r) − arctan (f

(−r)))/(2∗pi) .
moreover have cindex-pathE (g r) 0 = 0
proof −

have cindex-pathE (g r) 0 = cindex-pathE (poly pp o of-real o (λx. 2∗r∗x
− r)) 0

unfolding g-def linepath-def comp-def
by (auto simp add:algebra-simps)

also have ... = cindexE 0 1 (f o (λx. 2∗r∗x − r))
unfolding cindex-pathE-def comp-def
by (simp only:Im-poly-of-real diff-0-right Re-poly-of-real f-def q-def p-def )

also have ... = cindexE (−r) r f
apply (subst cindexE-linear-comp[of 2∗r 0 1 - −r ,simplified])
using ‹r≥1 › by auto

also have ... = 0
proof −

have jumpF f (at-left x) =0 jumpF f (at-right x) = 0 when x∈{−r ..r}
for x

proof −
have poly p x 6=0 using ‹proots p={}› unfolding proots-def by auto
then show jumpF f (at-left x) =0 jumpF f (at-right x) = 0

unfolding f-def by (auto intro!: jumpF-not-infinity continuous-intros)
qed
then show ?thesis unfolding cindexE-def by auto

qed
finally show ?thesis .
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qed
ultimately show 2 ∗ Re (winding-number (g r) 0 ) + cindex-pathE (g r) 0

= (arctan (f r) − arctan (f (−r))) / pi
unfolding path-defs by (auto simp add:field-simps)

qed
with arctan-f-tendsto show ?thesis by (auto dest:tendsto-cong)

qed
moreover have ?thesis when proots p 6={}
proof −

define max-r where max-r=Max (proots p)
define min-r where min-r=Min (proots p)
have max-r ∈proots p min-r ∈proots p min-r≤max-r and

min-max-bound:∀ p∈proots p. p∈{min-r ..max-r}
proof −

have p 6=0
proof −

have (0 ::real) 6= 1
by simp

then show ?thesis
by (metis (full-types) ‹p ≡ map-poly Re pp› assms(2 ) coeff-0 coeff-map-poly

one-complex.simps(1 ) zero-complex.sel(1 ))
qed
then have finite (proots p) by auto
then show max-r ∈proots p min-r ∈proots p

using Min-in Max-in that unfolding max-r-def min-r-def by fast+
then show ∀ p∈proots p. p∈{min-r ..max-r}

using Min-le Max-ge ‹finite (proots p)› unfolding max-r-def min-r-def by
auto

then show min-r≤max-r using ‹max-r∈proots p› by auto
qed
have ∀ F r in at-top. 2 ∗ Re (winding-number (g r) 0 ) + cindex-pathE (g r) 0

= (arctan (f r) − arctan (f (−r))) / pi
proof (rule eventually-at-top-linorderI [of max (norm max-r) (norm min-r) +

1 ])
fix r assume r-asm:max (norm max-r) (norm min-r) + 1 ≤ r
then have r 6=0 min-r>−r max-r<r by auto
define u where u=(min-r + r)/(2∗r)
define v where v=(max-r + r)/(2∗r)
have uv:u∈{0 ..1} v∈{0 ..1} u≤v

unfolding u-def v-def using r-asm ‹min-r≤max-r›
by (auto simp add:field-simps)

define g1 where g1=subpath 0 u (g r)
define g2 where g2=subpath u v (g r)
define g3 where g3=subpath v 1 (g r)
have path g1 path g2 path g3 valid-path g1 valid-path g2 valid-path g3

unfolding g1-def g2-def g3-def using uv
by (auto intro!:path-subpath valid-path-subpath)

define wc-add where wc-add = (λg. 2∗Re (winding-number g 0 ) + cin-
dex-pathE g 0 )
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have wc-add (g r) = wc-add g1 + wc-add g2 + wc-add g3
proof −
have winding-number (g r) 0 = winding-number g1 0 + winding-number g2

0 + winding-number g3 0
unfolding g1-def g2-def g3-def using ‹u∈{0 ..1}› ‹v∈{0 ..1}› not-g-image
by (subst winding-number-subpath-combine,simp-all)+

moreover have cindex-pathE (g r) 0 = cindex-pathE g1 0 + cindex-pathE
g2 0 + cindex-pathE g3 0

unfolding g1-def g2-def g3-def using ‹u∈{0 ..1}› ‹v∈{0 ..1}› ‹u≤v›
not-g-image

by (subst cindex-pathE-subpath-combine,simp-all)+
ultimately show ?thesis unfolding wc-add-def by auto

qed
moreover have wc-add g2=0
proof −

have 2 ∗ Re (winding-number g2 0 ) = − cindex-pathE g2 0
unfolding g2-def
apply (rule winding-number-cindex-pathE-aux)
subgoal using uv by (auto intro:finite-ReZ-segments-subpath)
subgoal using uv by (auto intro:valid-path-subpath)

subgoal using Path-Connected.path-image-subpath-subset ‹
∧

r . path (g
r)› not-g-image uv

by blast
subgoal unfolding subpath-def v-def g-def linepath-def using r-asm ‹max-r

∈proots p›
by (auto simp add:field-simps Re-poly-of-real p-def )

subgoal unfolding subpath-def u-def g-def linepath-def using r-asm ‹min-r
∈proots p›

by (auto simp add:field-simps Re-poly-of-real p-def )
done

then show ?thesis unfolding wc-add-def by auto
qed
moreover have wc-add g1=− arctan (f (−r)) / pi
proof −

have g1-pq:
Re (g1 t) = poly p (min-r∗t+r∗t−r)
Im (g1 t) = poly q (min-r∗t+r∗t−r)
Im (g1 t)/Re (g1 t) = (f o (λx. (min-r+r)∗x − r)) t
for t

proof −
have g1 t = poly pp (of-real (min-r∗t+r∗t−r))
using ‹r 6=0 › unfolding g1-def g-def linepath-def subpath-def u-def p-def

by (auto simp add:field-simps)
then show

Re (g1 t) = poly p (min-r∗t+r∗t−r)
Im (g1 t) = poly q (min-r∗t+r∗t−r)

unfolding p-def q-def
by (simp only:Re-poly-of-real Im-poly-of-real)+
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then show Im (g1 t)/Re (g1 t) = (f o (λx. (min-r+r)∗x − r)) t
unfolding f-def by (auto simp add:algebra-simps)

qed
have Re(g1 1 )=0

using ‹r 6=0 › Re-poly-of-real ‹min-r∈proots p›
unfolding g1-def subpath-def u-def g-def linepath-def
by (auto simp add:field-simps p-def )

have 0 /∈ path-image g1
by (metis (full-types) path-image-subpath-subset ‹

∧
r . path (g r)›

atLeastAtMost-iff g1-def le-less not-g-image subsetCE uv(1 ) zero-le-one)

have wc-add-pos:wc-add h = − arctan (poly q (− r) / poly p (−r)) / pi
when

Re-pos:∀ x∈{0 ..<1}. 0 < (Re ◦ h) x
and hp:∀ t. Re (h t) = c∗poly p (min-r∗t+r∗t−r)
and hq:∀ t. Im (h t) = c∗poly q (min-r∗t+r∗t−r)
and [simp]:c 6=0

and Re (h 1 ) = 0
and valid-path h
and h-img:0 /∈ path-image h
for h c

proof −
define f where f=(λt. c∗poly q t / (c∗poly p t))
define farg where farg= (if 0 < Im (h 1 ) then pi / 2 else − pi / 2 )
have Re (winding-number h 0 ) = (Im (Ln (pathfinish h))
− Im (Ln (pathstart h))) / (2 ∗ pi)

apply (rule Re-winding-number-half-right[of h 0 ,simplified])
subgoal using that ‹Re (h 1 ) = 0 › unfolding path-image-def

by (auto simp add:le-less)
subgoal using ‹valid-path h› .
subgoal using h-img .
done

also have ... = (farg − arctan (f (−r))) / (2 ∗ pi)
proof −

have Im (Ln (pathfinish h)) = farg
using ‹Re(h 1 )=0 › unfolding farg-def path-defs
apply (subst Im-Ln-eq)
subgoal using h-img unfolding path-defs by fastforce
subgoal by simp
done

moreover have Im (Ln (pathstart h)) = arctan (f (−r))
proof −

have pathstart h 6= 0
using h-img
by (metis pathstart-in-path-image)
then have Im (Ln (pathstart h)) = arctan (Im (pathstart h) / Re

(pathstart h))
using Re-pos[rule-format,of 0 ]
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by (simp add: Im-Ln-eq path-defs)
also have ... = arctan (f (−r))

unfolding f-def path-defs hp[rule-format] hq[rule-format]
by simp

finally show ?thesis .
qed
ultimately show ?thesis by auto

qed
finally have Re (winding-number h 0 ) = (farg − arctan (f (−r))) / (2 ∗

pi) .
moreover have cindex-pathE h 0 = (−farg/pi)
proof −

have cindex-pathE h 0 = cindexE 0 1 (f ◦ (λx. (min-r + r) ∗ x − r))
unfolding cindex-pathE-def using ‹c 6=0 ›
by (auto simp add:hp hq f-def comp-def algebra-simps)

also have ... = cindexE (−r) min-r f
apply (subst cindexE-linear-comp[where b=−r ,simplified])
using r-asm by auto

also have ... = − jumpF f (at-left min-r)
proof −

define right where right = {x. jumpF f (at-right x) 6= 0 ∧ − r ≤ x
∧ x < min-r}

define left where left = {x. jumpF f (at-left x) 6= 0 ∧ − r < x ∧ x
≤ min-r}

have ∗:jumpF f (at-right x) =0 jumpF f (at-left x) =0 when
x∈{−r ..<min-r} for x

proof −
have False when poly p x =0
proof −

have x≥min-r
using min-max-bound[rule-format,of x] that by auto

then show False using ‹x∈{−r ..<min-r}› by auto
qed
then show jumpF f (at-right x) =0 jumpF f (at-left x) =0
unfolding f-def by (auto intro!:jumpF-not-infinity continuous-intros)

qed
then have right = {}

unfolding right-def by force
moreover have left = (if jumpF f (at-left min-r) = 0 then {} else

{min-r})
unfolding left-def le-less using ∗ r-asm by force

ultimately show ?thesis
unfolding cindexE-def by (fold left-def right-def ,auto)

qed
also have ... = (−farg/pi)
proof −

have p-pos:c∗poly p x > 0 when x ∈ {− r<..<min-r} for x
proof −
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define hh where hh=(λt. min-r∗t+r∗t−r)
have (x+r)/(min-r+r) ∈ {0 ..<1}

using that r-asm by (auto simp add:field-simps)
then have 0 < c∗poly p (hh ((x+r)/(min-r+r)))

apply (drule-tac Re-pos[rule-format])
unfolding comp-def hp[rule-format] hq[rule-format] hh-def .

moreover have hh ((x+r)/(min-r+r)) = x
unfolding hh-def using ‹min-r>−r›
apply (auto simp add:divide-simps)
by (auto simp add:algebra-simps)

ultimately show ?thesis by simp
qed

have c∗poly q min-r 6=0
using no-real-zero ‹c 6=0 ›

by (metis Im-complex-of-real UNIV-I ‹min-r ∈ proots p› cpoly-of-decompose

mult-eq-0-iff p-def poly-cpoly-of-real-iff proots-within-iff q-def )

moreover have ?thesis when c∗poly q min-r > 0
proof −
have 0 < Im (h 1 ) unfolding hq[rule-format] hp[rule-format] using

that by auto
moreover have jumpF f (at-left min-r) = 1/2
proof −

have ((λt. c∗poly p t) has-sgnx 1 ) (at-left min-r)
unfolding has-sgnx-def
apply (rule eventually-at-leftI [of −r ])
using p-pos ‹min-r>−r› by auto

then have filterlim f at-top (at-left min-r)
unfolding f-def
apply (subst filterlim-divide-at-bot-at-top-iff [of - c∗poly q min-r ])
using that ‹min-r∈proots p› by (auto intro!:tendsto-eq-intros)

then show ?thesis unfolding jumpF-def by auto
qed
ultimately show ?thesis unfolding farg-def by auto

qed
moreover have ?thesis when c∗poly q min-r < 0
proof −
have 0 > Im (h 1 ) unfolding hq[rule-format] hp[rule-format] using

that by auto
moreover have jumpF f (at-left min-r) = − 1/2
proof −

have ((λt. c∗poly p t) has-sgnx 1 ) (at-left min-r)
unfolding has-sgnx-def
apply (rule eventually-at-leftI [of −r ])
using p-pos ‹min-r>−r› by auto

then have filterlim f at-bot (at-left min-r)
unfolding f-def
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apply (subst filterlim-divide-at-bot-at-top-iff [of - c∗poly q min-r ])
using that ‹min-r∈proots p› by (auto intro!:tendsto-eq-intros)

then show ?thesis unfolding jumpF-def by auto
qed
ultimately show ?thesis unfolding farg-def by auto

qed
ultimately show ?thesis by linarith

qed
finally show ?thesis .

qed
ultimately show ?thesis unfolding wc-add-def f-def by (auto simp

add:field-simps)
qed

have ∀ x∈{0 ..<1}. (Re ◦ g1 ) x 6= 0
proof (rule ccontr)

assume ¬ (∀ x∈{0 ..<1}. (Re ◦ g1 ) x 6= 0 )
then obtain t where t-def :Re (g1 t) =0 t∈{0 ..<1}

unfolding path-image-def by fastforce
define m where m=min-r∗t+r∗t−r
have poly p m=0
proof −

have Re (g1 t) = Re (poly pp (of-real m))
unfolding m-def g1-def g-def linepath-def subpath-def u-def using

‹r 6=0 ›
by (auto simp add:field-simps)

then show ?thesis using t-def unfolding Re-poly-of-real p-def by auto
qed
moreover have m<min-r
proof −

have min-r+r>0 using r-asm by simp
then have (min-r + r)∗(t−1 )<0 using ‹t∈{0 ..<1}›

by (simp add: mult-pos-neg)
then show ?thesis unfolding m-def by (auto simp add:algebra-simps)

qed
ultimately show False using min-max-bound unfolding proots-def by

auto
qed
then have (∀ x∈{0 ..<1}. 0 < (Re ◦ g1 ) x) ∨ (∀ x∈{0 ..<1}. (Re ◦ g1 ) x

< 0 )
apply (elim continuous-on-neq-split)
using ‹path g1 › unfolding path-def
by (auto intro!:continuous-intros elim:continuous-on-subset)

moreover have ?thesis when ∀ x∈{0 ..<1}. (Re ◦ g1 ) x < 0
proof −

have wc-add (uminus o g1 ) = − arctan (f (− r)) / pi
unfolding f-def
apply (rule wc-add-pos[of - −1 ])

using g1-pq that ‹min-r ∈proots p› ‹valid-path g1 › ‹0 /∈ path-image g1 ›
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by (auto simp add:path-image-compose)
moreover have wc-add (uminus ◦ g1 ) = wc-add g1

unfolding wc-add-def cindex-pathE-def
apply (subst winding-number-uminus-comp)
using ‹valid-path g1 › ‹0 /∈ path-image g1 › by auto

ultimately show ?thesis by auto
qed
moreover have ?thesis when ∀ x∈{0 ..<1}. (Re ◦ g1 ) x > 0

unfolding f-def
apply (rule wc-add-pos[of - 1 ])
using g1-pq that ‹min-r ∈proots p› ‹valid-path g1 › ‹0 /∈ path-image g1 ›
by (auto simp add:path-image-compose)

ultimately show ?thesis by blast
qed
moreover have wc-add g3 = arctan (f r) / pi
proof −

have g3-pq:
Re (g3 t) = poly p ((r−max-r)∗t + max-r)
Im (g3 t) = poly q ((r−max-r)∗t + max-r)
Im (g3 t)/Re (g3 t) = (f o (λx. (r−max-r)∗x + max-r)) t
for t

proof −
have g3 t = poly pp (of-real ((r−max-r)∗t + max-r))
using ‹r 6=0 › ‹max-r<r› unfolding g3-def g-def linepath-def subpath-def

v-def p-def
by (auto simp add:algebra-simps)

then show
Re (g3 t) = poly p ((r−max-r)∗t + max-r)
Im (g3 t) = poly q ((r−max-r)∗t + max-r)

unfolding p-def q-def
by (simp only:Re-poly-of-real Im-poly-of-real)+

then show Im (g3 t)/Re (g3 t) = (f o (λx. (r−max-r)∗x + max-r)) t
unfolding f-def by (auto simp add:algebra-simps)

qed
have Re(g3 0 )=0

using ‹r 6=0 › Re-poly-of-real ‹max-r∈proots p›
unfolding g3-def subpath-def v-def g-def linepath-def
by (auto simp add:field-simps p-def )

have 0 /∈ path-image g3
proof −

have (1 ::real) ∈ {0 ..1}
by auto

then show ?thesis
using Path-Connected.path-image-subpath-subset ‹

∧
r . path (g r)› g3-def

not-g-image uv(2 ) by blast
qed

have wc-add-pos:wc-add h = arctan (poly q r / poly p r) / pi when
Re-pos:∀ x∈{0<..1}. 0 < (Re ◦ h) x
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and hp:∀ t. Re (h t) = c∗poly p ((r−max-r)∗t + max-r)
and hq:∀ t. Im (h t) = c∗poly q ((r−max-r)∗t + max-r)
and [simp]:c 6=0

and Re (h 0 ) = 0
and valid-path h
and h-img:0 /∈ path-image h
for h c

proof −
define f where f=(λt. c∗poly q t / (c∗poly p t))
define farg where farg= (if 0 < Im (h 0 ) then pi / 2 else − pi / 2 )
have Re (winding-number h 0 ) = (Im (Ln (pathfinish h))
− Im (Ln (pathstart h))) / (2 ∗ pi)

apply (rule Re-winding-number-half-right[of h 0 ,simplified])
subgoal using that ‹Re (h 0 ) = 0 › unfolding path-image-def

by (auto simp add:le-less)
subgoal using ‹valid-path h› .
subgoal using h-img .
done

also have ... = (arctan (f r) − farg) / (2 ∗ pi)
proof −

have Im (Ln (pathstart h)) = farg
using ‹Re(h 0 )=0 › unfolding farg-def path-defs
apply (subst Im-Ln-eq)
subgoal using h-img unfolding path-defs by fastforce
subgoal by simp
done

moreover have Im (Ln (pathfinish h)) = arctan (f r)
proof −

have pathfinish h 6= 0
using h-img
by (metis pathfinish-in-path-image)
then have Im (Ln (pathfinish h)) = arctan (Im (pathfinish h) / Re

(pathfinish h))
using Re-pos[rule-format,of 1 ]
by (simp add: Im-Ln-eq path-defs)

also have ... = arctan (f r)
unfolding f-def path-defs hp[rule-format] hq[rule-format]
by simp

finally show ?thesis .
qed
ultimately show ?thesis by auto

qed
finally have Re (winding-number h 0 ) = (arctan (f r) − farg) / (2 ∗ pi) .
moreover have cindex-pathE h 0 = farg/pi
proof −
have cindex-pathE h 0 = cindexE 0 1 (f ◦ (λx. (r−max-r)∗x + max-r))

unfolding cindex-pathE-def using ‹c 6=0 ›
by (auto simp add:hp hq f-def comp-def algebra-simps)
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also have ... = cindexE max-r r f
apply (subst cindexE-linear-comp)
using r-asm by auto

also have ... = jumpF f (at-right max-r)
proof −
define right where right = {x. jumpF f (at-right x) 6= 0 ∧ max-r ≤ x

∧ x < r}
define left where left = {x. jumpF f (at-left x) 6= 0 ∧ max-r < x ∧ x

≤ r}
have ∗:jumpF f (at-right x) =0 jumpF f (at-left x) =0 when

x∈{max-r<..r} for x
proof −

have False when poly p x =0
proof −

have x≤max-r
using min-max-bound[rule-format,of x] that by auto

then show False using ‹x∈{max-r<..r}› by auto
qed
then show jumpF f (at-right x) =0 jumpF f (at-left x) =0
unfolding f-def by (auto intro!:jumpF-not-infinity continuous-intros)

qed
then have left = {}

unfolding left-def by force
moreover have right = (if jumpF f (at-right max-r) = 0 then {} else

{max-r})
unfolding right-def le-less using ∗ r-asm by force

ultimately show ?thesis
unfolding cindexE-def by (fold left-def right-def ,auto)

qed
also have ... = farg/pi
proof −

have p-pos:c∗poly p x > 0 when x ∈ {max-r<..<r} for x
proof −

define hh where hh=(λt. (r−max-r)∗t + max-r)
have (x−max-r)/(r−max-r) ∈ {0<..1}

using that r-asm by (auto simp add:field-simps)
then have 0 < c∗poly p (hh ((x−max-r)/(r−max-r)))

apply (drule-tac Re-pos[rule-format])
unfolding comp-def hp[rule-format] hq[rule-format] hh-def .

moreover have hh ((x−max-r)/(r−max-r)) = x
unfolding hh-def using ‹max-r<r›
by (auto simp add:divide-simps)

ultimately show ?thesis by simp
qed

have c∗poly q max-r 6=0
using no-real-zero ‹c 6=0 ›

by (metis Im-complex-of-real UNIV-I ‹max-r ∈ proots p› cpoly-of-decompose
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mult-eq-0-iff p-def poly-cpoly-of-real-iff proots-within-iff q-def )

moreover have ?thesis when c∗poly q max-r > 0
proof −
have 0 < Im (h 0 ) unfolding hq[rule-format] hp[rule-format] using

that by auto
moreover have jumpF f (at-right max-r) = 1/2
proof −

have ((λt. c∗poly p t) has-sgnx 1 ) (at-right max-r)
unfolding has-sgnx-def
apply (rule eventually-at-rightI [of - r ])
using p-pos ‹max-r<r› by auto

then have filterlim f at-top (at-right max-r)
unfolding f-def
apply (subst filterlim-divide-at-bot-at-top-iff [of - c∗poly q max-r ])
using that ‹max-r∈proots p› by (auto intro!:tendsto-eq-intros)

then show ?thesis unfolding jumpF-def by auto
qed
ultimately show ?thesis unfolding farg-def by auto

qed
moreover have ?thesis when c∗poly q max-r < 0
proof −
have 0 > Im (h 0 ) unfolding hq[rule-format] hp[rule-format] using

that by auto
moreover have jumpF f (at-right max-r) = − 1/2
proof −

have ((λt. c∗poly p t) has-sgnx 1 ) (at-right max-r)
unfolding has-sgnx-def
apply (rule eventually-at-rightI [of - r ])
using p-pos ‹max-r<r› by auto

then have filterlim f at-bot (at-right max-r)
unfolding f-def
apply (subst filterlim-divide-at-bot-at-top-iff [of - c∗poly q max-r ])
using that ‹max-r∈proots p› by (auto intro!:tendsto-eq-intros)

then show ?thesis unfolding jumpF-def by auto
qed
ultimately show ?thesis unfolding farg-def by auto

qed
ultimately show ?thesis by linarith

qed
finally show ?thesis .

qed
ultimately show ?thesis unfolding wc-add-def f-def by (auto simp

add:field-simps)
qed

have ∀ x∈{0<..1}. (Re ◦ g3 ) x 6= 0
proof (rule ccontr)
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assume ¬ (∀ x∈{0<..1}. (Re ◦ g3 ) x 6= 0 )
then obtain t where t-def :Re (g3 t) =0 t∈{0<..1}

unfolding path-image-def by fastforce
define m where m=(r−max-r)∗t + max-r
have poly p m=0
proof −

have Re (g3 t) = Re (poly pp (of-real m))
unfolding m-def g3-def g-def linepath-def subpath-def v-def using ‹r 6=0 ›

by (auto simp add:algebra-simps)
then show ?thesis using t-def unfolding Re-poly-of-real p-def by auto

qed
moreover have m>max-r
proof −

have r−max-r>0 using r-asm by simp
then have (r − max-r)∗t>0 using ‹t∈{0<..1}›

by (simp add: mult-pos-neg)
then show ?thesis unfolding m-def by (auto simp add:algebra-simps)

qed
ultimately show False using min-max-bound unfolding proots-def by

auto
qed
then have (∀ x∈{0<..1}. 0 < (Re ◦ g3 ) x) ∨ (∀ x∈{0<..1}. (Re ◦ g3 ) x

< 0 )
apply (elim continuous-on-neq-split)
using ‹path g3 › unfolding path-def
by (auto intro!:continuous-intros elim:continuous-on-subset)

moreover have ?thesis when ∀ x∈{0<..1}. (Re ◦ g3 ) x < 0
proof −

have wc-add (uminus o g3 ) = arctan (f r) / pi
unfolding f-def
apply (rule wc-add-pos[of - −1 ])

using g3-pq that ‹max-r ∈proots p› ‹valid-path g3 › ‹0 /∈ path-image g3 ›
by (auto simp add:path-image-compose)

moreover have wc-add (uminus ◦ g3 ) = wc-add g3
unfolding wc-add-def cindex-pathE-def
apply (subst winding-number-uminus-comp)
using ‹valid-path g3 › ‹0 /∈ path-image g3 › by auto

ultimately show ?thesis by auto
qed
moreover have ?thesis when ∀ x∈{0<..1}. (Re ◦ g3 ) x > 0

unfolding f-def
apply (rule wc-add-pos[of - 1 ])
using g3-pq that ‹max-r ∈proots p› ‹valid-path g3 › ‹0 /∈ path-image g3 ›
by (auto simp add:path-image-compose)

ultimately show ?thesis by blast
qed
ultimately have wc-add (g r) = (arctan (f r) − arctan (f (−r))) / pi

by (auto simp add:field-simps)
then show 2 ∗ Re (winding-number (g r) 0 ) + cindex-pathE (g r) 0
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= (arctan (f r) − arctan (f (− r))) / pi
unfolding wc-add-def .

qed
with arctan-f-tendsto show ?thesis by (auto dest:tendsto-cong)

qed
ultimately show ?thesis by auto

qed

lemma proots-upper-cindex-eq:
assumes lead-coeff p=1 and no-real-roots:∀ x∈proots p. Im x 6=0
shows proots-upper p =

(degree p − cindex-poly-ubd (map-poly Im p) (map-poly Re p)) /2
proof (cases degree p = 0 )

case True
then obtain c where p=[:c:] using degree-eq-zeroE by blast
then have p-def :p=[:1 :] using ‹lead-coeff p=1 › by simp
have proots-count p {x. Im x>0} = 0 unfolding p-def proots-count-def by auto

moreover have cindex-poly-ubd (map-poly Im p) (map-poly Re p) = 0
apply (subst cindex-poly-ubd-code)
unfolding p-def

by (auto simp add:map-poly-pCons changes-R-smods-def changes-poly-neg-inf-def

changes-poly-pos-inf-def )
ultimately show ?thesis using True unfolding proots-upper-def by auto

next
case False
then have degree p>0 p 6=0 by auto
define w1 where w1=(λr . Re (winding-number (poly p ◦

(λx. complex-of-real (linepath (− r) (of-real r) x))) 0 ))
define w2 where w2=(λr . Re (winding-number (poly p ◦ part-circlepath 0 r 0

pi) 0 ))
define cp where cp=(λr . cindex-pathE (poly p ◦ (λx.

of-real (linepath (− r) (of-real r) x))) 0 )
define ci where ci=(λr . cindexE (−r) r (λx. poly (map-poly Im p) x/poly

(map-poly Re p) x))
define cubd where cubd =cindex-poly-ubd (map-poly Im p) (map-poly Re p)
obtain R where proots p ⊆ ball 0 R and R>0

using ‹p 6=0 › finite-ball-include[of proots p 0 ] by auto
have ((λr . w1 r +w2 r+ cp r / 2 −ci r/2 )
−−−→ real (degree p) / 2 − of-int cubd / 2 ) at-top

proof −
have t1 :((λr . 2 ∗ w1 r + cp r) −−−→ 0 ) at-top

using Re-winding-number-poly-linepth[OF assms] unfolding w1-def cp-def
by auto

have t2 :(w2 −−−→ real (degree p) / 2 ) at-top
using Re-winding-number-poly-part-circlepath[OF ‹degree p>0 ›,of 0 ] unfold-

ing w2-def by auto
have t3 :(ci −−−→ of-int cubd) at-top
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apply (rule tendsto-eventually)
using cindex-poly-ubd-eventually[of map-poly Im p map-poly Re p]
unfolding ci-def cubd-def by auto

from tendsto-add[OF tendsto-add[OF tendsto-mult-left[OF t3 ,of −1/2 ,simplified]

tendsto-mult-left[OF t1 ,of 1/2 ,simplified]]
t2 ]

show ?thesis by (simp add:algebra-simps)
qed
moreover have ∀ F r in at-top. w1 r +w2 r+ cp r / 2 −ci r/2 = proots-count

p {x. Im x>0}
proof (rule eventually-at-top-linorderI [of R])

fix r assume r≥R
then have r-ball:proots p ⊆ ball 0 r and r>0

using ‹R>0 › ‹proots p ⊆ ball 0 R› by auto
define ll where ll=linepath (− complex-of-real r) r
define rr where rr=part-circlepath 0 r 0 pi
define lr where lr = ll +++ rr
have img-ll:path-image ll ⊆ − proots p and img-rr : path-image rr ⊆ − proots

p
subgoal unfolding ll-def using ‹0 < r› closed-segment-degen-complex(2 )

no-real-roots by auto
subgoal unfolding rr-def using in-path-image-part-circlepath ‹0 < r› r-ball

by fastforce
done

have [simp]:valid-path (poly p o ll) valid-path (poly p o rr)
valid-path ll valid-path rr
pathfinish rr=pathstart ll pathfinish ll = pathstart rr

proof −
show valid-path (poly p o ll) valid-path (poly p o rr)

unfolding ll-def rr-def by (auto intro:valid-path-compose-holomorphic)
then show valid-path ll valid-path rr unfolding ll-def rr-def by auto
show pathfinish rr=pathstart ll pathfinish ll = pathstart rr

unfolding ll-def rr-def by auto
qed
have proots-count p {x. Im x>0} = (

∑
x∈proots p. winding-number lr x ∗

of-nat (order x p))
unfolding proots-count-def of-nat-sum
proof (rule sum.mono-neutral-cong-left)

show finite (proots p) proots-within p {x. 0 < Im x} ⊆ proots p
using ‹p 6=0 › by auto

next
have winding-number lr x=0 when x∈proots p − proots-within p {x. 0 < Im

x} for x
unfolding lr-def ll-def rr-def
proof (eval-winding,simp-all)

show ∗:x /∈ closed-segment (− complex-of-real r) (complex-of-real r)
using img-ll that unfolding ll-def by auto

show x /∈ path-image (part-circlepath 0 r 0 pi)
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using img-rr that unfolding rr-def by auto
have xr-facts:0 > Im x −r<Re x Re x<r cmod x<r
proof −

have Im x≤0 using that by auto
moreover have Im x 6=0 using no-real-roots that by blast
ultimately show 0 > Im x by auto

next
show cmod x<r using that r-ball by auto
then have |Re x| < r

using abs-Re-le-cmod[of x] by argo
then show −r<Re x Re x<r by linarith+

qed
then have cindex-pathE ll x = 1

using ‹r>0 › unfolding cindex-pathE-linepath[OF ∗] ll-def
by (auto simp add: mult-pos-neg)

moreover have cindex-pathE rr x=−1
unfolding rr-def using r-ball that
by (auto intro!: cindex-pathE-circlepath-upper)

ultimately show −cindex-pathE (linepath (− of-real r) (of-real r)) x =
cindex-pathE (part-circlepath 0 r 0 pi) x

unfolding ll-def rr-def by auto
qed
then show ∀ i∈proots p − proots-within p {x. 0 < Im x}.

winding-number lr i ∗ of-nat (order i p) = 0
by auto

next
fix x assume x-asm:x ∈ proots-within p {x. 0 < Im x}
have winding-number lr x=1 unfolding lr-def ll-def rr-def
proof (eval-winding,simp-all)

show ∗:x /∈ closed-segment (− complex-of-real r) (complex-of-real r)
using img-ll x-asm unfolding ll-def by auto

show x /∈ path-image (part-circlepath 0 r 0 pi)
using img-rr x-asm unfolding rr-def by auto

have xr-facts:0 < Im x −r<Re x Re x<r cmod x<r
proof −

show 0 < Im x using x-asm by auto
next

show cmod x<r using x-asm r-ball by auto
then have |Re x| < r

using abs-Re-le-cmod[of x] by argo
then show −r<Re x Re x<r by linarith+

qed
then have cindex-pathE ll x = −1

using ‹r>0 › unfolding cindex-pathE-linepath[OF ∗] ll-def
by (auto simp add: mult-less-0-iff )

moreover have cindex-pathE rr x=−1
unfolding rr-def using r-ball x-asm
by (auto intro!: cindex-pathE-circlepath-upper)

ultimately show − of-real (cindex-pathE (linepath (− of-real r) (of-real
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r)) x) −
of-real (cindex-pathE (part-circlepath 0 r 0 pi) x) = 2

unfolding ll-def rr-def by auto
qed
then show of-nat (order x p) = winding-number lr x ∗ of-nat (order x p) by

auto
qed
also have ... = 1/(2∗pi∗i) ∗ contour-integral lr (λx. deriv (poly p) x / poly p

x)
apply (subst argument-principle-poly[of p lr ])
using ‹p 6=0 › img-ll img-rr unfolding lr-def ll-def rr-def
by (auto simp add:path-image-join)

also have ... = winding-number (poly p ◦ lr) 0
apply (subst winding-number-comp[of UNIV poly p lr 0 ])
using ‹p 6=0 › img-ll img-rr unfolding lr-def ll-def rr-def
by (auto simp add:path-image-join path-image-compose)

also have ... = Re (winding-number (poly p ◦ lr) 0 )
proof −

have winding-number (poly p ◦ lr) 0 ∈ Ints
apply (rule integer-winding-number)
using ‹p 6=0 › img-ll img-rr unfolding lr-def
by (auto simp add:path-image-join path-image-compose path-compose-join

pathstart-compose pathfinish-compose valid-path-imp-path)
then show ?thesis by (simp add: complex-eqI complex-is-Int-iff )

qed
also have ... = Re (winding-number (poly p ◦ ll) 0 ) + Re (winding-number

(poly p ◦ rr) 0 )
unfolding lr-def path-compose-join using img-ll img-rr
apply (subst winding-number-join)
by (auto simp add:valid-path-imp-path path-image-compose pathstart-compose

pathfinish-compose)
also have ... = w1 r +w2 r

unfolding w1-def w2-def ll-def rr-def of-real-linepath by auto
finally have of-nat (proots-count p {x. 0 < Im x}) = complex-of-real (w1 r +

w2 r) .
then have proots-count p {x. 0 < Im x} = w1 r + w2 r

using of-real-eq-iff by fastforce
moreover have cp r = ci r
proof −

define f where f=(λx. Im (poly p (of-real x)) / Re (poly p x))
have cp r = cindex-pathE (poly p ◦ (λx. 2∗r∗x − r)) 0

unfolding cp-def linepath-def by (auto simp add:algebra-simps)
also have ... = cindexE 0 1 (f o (λx. 2∗r∗x − r))

unfolding cp-def ci-def cindex-pathE-def f-def comp-def by auto
also have ... = cindexE (−r) r f

apply (subst cindexE-linear-comp[of 2∗r 0 1 f −r ,simplified])
using ‹r>0 › by auto

also have ... = ci r
unfolding ci-def f-def Im-poly-of-real Re-poly-of-real by simp
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finally show ?thesis .
qed
ultimately show w1 r + w2 r + cp r / 2 − ci r / 2 = real (proots-count p

{x. 0 < Im x})
by auto

qed
ultimately have ((λr ::real. real (proots-count p {x. 0 < Im x}))
−−−→ real (degree p) / 2 − of-int cubd / 2 ) at-top

by (auto dest: tendsto-cong)
then show ?thesis

apply (subst (asm) tendsto-const-iff )
unfolding cubd-def proots-upper-def by auto

qed

lemma cindexE-roots-on-horizontal-border :
fixes a::complex and s::real
defines g≡linepath a (a + of-real s)
assumes pqr :p = q ∗ r and r-monic:lead-coeff r=1 and r-proots:∀ x∈proots r .

Im x=Im a
shows cindexE lb ub (λt. Im ((poly p ◦ g) t) / Re ((poly p ◦ g) t)) =

cindexE lb ub (λt. Im ((poly q ◦ g) t) / Re ((poly q ◦ g) t))
using assms

proof (induct r arbitrary:p rule:poly-root-induct-alt)
case 0
then have False

by (metis Im-complex-of-real UNIV-I imaginary-unit.simps(2 ) proots-within-0
zero-neq-one)

then show ?case by simp
next

case (no-proots r)
then obtain b where b 6=0 r=[:b:]

using fundamental-theorem-of-algebra-alt by blast
then have r=1 using ‹lead-coeff r = 1 › by simp
with ‹p = q ∗ r› show ?case by simp

next
case (root b r)
then have ?case when s=0

using that(1 ) unfolding cindex-pathE-def by (simp add:cindexE-constI )
moreover have ?case when s 6=0
proof −

define qrg where qrg = poly (q∗r) ◦ g
have cindexE lb ub (λt. Im ((poly p ◦ g) t) / Re ((poly p ◦ g) t))

= cindexE lb ub (λt. Im (qrg t ∗ (g t − b)) / Re (qrg t ∗ (g t − b)))
unfolding qrg-def ‹p = q ∗ ([:− b, 1 :] ∗ r)› comp-def
by (simp add:algebra-simps)

also have ... = cindexE lb ub
(λt. ((Re a + t ∗ s − Re b )∗ Im (qrg t)) /

((Re a + t ∗ s − Re b )∗ Re (qrg t)))
proof −
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have Im b = Im a
using ‹∀ x∈proots ([:− b, 1 :] ∗ r). Im x = Im a› by auto

then show ?thesis
unfolding cindex-pathE-def g-def linepath-def
by (simp add:algebra-simps)

qed
also have ... = cindexE lb ub (λt. Im (qrg t) / Re (qrg t))
proof (rule cindexE-cong[of {t. Re a + t ∗ s − Re b = 0}])

show finite {t. Re a + t ∗ s − Re b = 0}
proof (cases Re a= Re b)

case True
then have {t. Re a + t ∗ s − Re b = 0} = {0}

using ‹s 6=0 › by auto
then show ?thesis by auto

next
case False
then have {t. Re a + t ∗ s − Re b = 0} = {(Re b − Re a) / s}

using ‹s 6=0 › by (auto simp add:field-simps)
then show ?thesis by auto

qed
next

fix x assume asm:x /∈ {t. Re a + t ∗ s − Re b = 0}
define tt where tt=Re a + x ∗ s − Re b
have tt 6=0 using asm unfolding tt-def by auto
then show tt ∗ Im (qrg x) / (tt ∗ Re (qrg x)) = Im (qrg x) / Re (qrg x)

by auto
qed
also have ... = cindexE lb ub (λt. Im ((poly q ◦ g) t) / Re ((poly q ◦ g) t))

unfolding qrg-def
proof (rule root(1 ))

show lead-coeff r = 1
by (metis lead-coeff-mult lead-coeff-pCons(1 ) mult-cancel-left2 one-poly-eq-simps(2 )

root.prems(2 ) zero-neq-one)
qed (use root in simp-all)
finally show ?thesis .

qed
ultimately show ?case by auto

qed

lemma poly-decompose-by-proots:
fixes p :: ′a::idom poly
assumes p 6=0
shows ∃ q r . p = q ∗ r ∧ lead-coeff q=1 ∧ (∀ x∈proots q. P x) ∧ (∀ x∈proots r .
¬P x) using assms
proof (induct p rule:poly-root-induct-alt)

case 0
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then show ?case by simp
next

case (no-proots p)
then show ?case

apply (rule-tac x=1 in exI )
apply (rule-tac x=p in exI )
by (simp add:proots-def )

next
case (root a p)
then obtain q r where pqr :p = q ∗ r and leadq:lead-coeff q=1

and qball:∀ a∈proots q. P a and rball:∀ x∈proots r . ¬ P x
using mult-zero-right by metis

have ?case when P a
apply (rule-tac x=[:− a, 1 :] ∗ q in exI )
apply (rule-tac x=r in exI )
using pqr qball rball that leadq unfolding lead-coeff-mult
by (auto simp add:algebra-simps)

moreover have ?case when ¬ P a
apply (rule-tac x=q in exI )
apply (rule-tac x=[:− a, 1 :] ∗r in exI )
using pqr qball rball that leadq unfolding lead-coeff-mult
by (auto simp add:algebra-simps)

ultimately show ?case by blast
qed

lemma proots-upper-cindex-eq ′:
assumes lead-coeff p=1
shows proots-upper p = (degree p − proots-count p {x. Im x=0}

− cindex-poly-ubd (map-poly Im p) (map-poly Re p)) /2
proof −

have p 6=0 using assms by auto
from poly-decompose-by-proots[OF this,of λx. Im x 6=0 ]
obtain q r where pqr :p = q ∗ r and leadq:lead-coeff q=1

and qball: ∀ x∈proots q. Im x 6=0 and rball:∀ x∈proots r . Im x =0
by auto

have real-of-int (proots-upper p) = proots-upper q + proots-upper r
using ‹p 6=0 › unfolding proots-upper-def pqr by (auto simp add:proots-count-times)

also have ... = proots-upper q
proof −

have proots-within r {z. 0 < Im z} = {}
using rball by auto

then have proots-upper r =0
unfolding proots-upper-def proots-count-def by simp

then show ?thesis by auto
qed
also have ... = (degree q − cindex-poly-ubd (map-poly Im q) (map-poly Re q))

/ 2
by (rule proots-upper-cindex-eq[OF leadq qball])

also have ... = (degree p − proots-count p {x. Im x=0}
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− cindex-poly-ubd (map-poly Im p) (map-poly Re p)) /2
proof −

have degree q = degree p − proots-count p {x. Im x=0}
proof −

have degree p= degree q + degree r
unfolding pqr
apply (rule degree-mult-eq)
using ‹p 6= 0 › pqr by auto

moreover have degree r = proots-count p {x. Im x=0}
unfolding degree-proots-count proots-count-def

proof (rule sum.cong)
fix x assume x ∈ proots-within p {x. Im x = 0}
then have Im x=0 by auto
then have order x q = 0

using qball order-0I by blast
then show order x r = order x p

using ‹p 6=0 › unfolding pqr by (simp add: order-mult)
next

show proots r = proots-within p {x. Im x = 0}
unfolding pqr proots-within-times using qball rball by auto

qed
ultimately show ?thesis by auto

qed
moreover have cindex-poly-ubd (map-poly Im q) (map-poly Re q)

= cindex-poly-ubd (map-poly Im p) (map-poly Re p)
proof −

define iq rq ip rp where iq = map-poly Im q and rq=map-poly Re q
and ip=map-poly Im p and rp = map-poly Re p

have cindexE (− x) x (λx. poly iq x / poly rq x)
= cindexE (− x) x (λx. poly ip x / poly rp x) for x

proof −
have lead-coeff r = 1

using pqr leadq ‹lead-coeff p=1 › by (simp add: coeff-degree-mult)
then have cindexE (− x) x (λt. Im (poly p (t ∗R 1 )) / Re (poly p (t ∗R

1 ))) =
cindexE (− x) x (λt. Im (poly q (t ∗R 1 )) / Re (poly q (t ∗R 1 )))

using cindexE-roots-on-horizontal-border [OF pqr ,of 0 −x x 1
,unfolded linepath-def comp-def ,simplified] rball by simp

then show ?thesis
unfolding scaleR-conv-of-real iq-def ip-def rq-def rp-def
by (simp add:Im-poly-of-real Re-poly-of-real)

qed
then have ∀ F r ::real in at-top.

real-of-int (cindex-poly-ubd iq rq) = cindex-poly-ubd ip rp
using eventually-conj[OF cindex-poly-ubd-eventually[of iq rq]

cindex-poly-ubd-eventually[of ip rp]]
by (elim eventually-mono,auto)

then show ?thesis
apply (fold iq-def rq-def ip-def rp-def )
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by simp
qed
ultimately show ?thesis by auto

qed
finally show ?thesis by simp

qed

lemma proots-within-upper-squarefree:
assumes rsquarefree p
shows card (proots-within p {x. Im x >0}) = (let

pp = smult (inverse (lead-coeff p)) p;
pI = map-poly Im pp;
pR = map-poly Re pp;
g = gcd pR pI

in
nat ((degree p − changes-R-smods g (pderiv g) − changes-R-smods pR

pI ) div 2 )
)

proof −
define pp where pp = smult (inverse (lead-coeff p)) p
define pI where pI = map-poly Im pp
define pR where pR = map-poly Re pp
define g where g = gcd pR pI
have card (proots-within p {x. Im x >0}) = proots-upper p
unfolding proots-upper-def using card-proots-within-rsquarefree[OF assms] by

auto
also have ... = proots-upper pp

unfolding proots-upper-def pp-def
apply (subst proots-count-smult)
using assms by auto

also have ... = (degree pp − proots-count pp {x. Im x = 0} − cindex-poly-ubd
pI pR) div 2

proof −
define rr where rr = proots-count pp {x. Im x = 0}
define cpp where cpp = cindex-poly-ubd pI pR
have ∗:proots-upper pp = (degree pp − rr − cpp) / 2

apply (rule proots-upper-cindex-eq ′[of pp,folded rr-def cpp-def pR-def pI-def ])
unfolding pp-def using assms by auto

also have ... = (degree pp − rr − cpp) div 2
proof (subst real-of-int-div)

define tt where tt=int (degree pp − rr) − cpp
have real-of-int tt=2∗proots-upper pp

by (simp add:∗[folded tt-def ])
then show even tt by (metis dvd-triv-left even-of-nat of-int-eq-iff of-int-of-nat-eq)
qed simp
finally show ?thesis unfolding rr-def cpp-def by simp

qed
also have ... = (degree pp − changes-R-smods g (pderiv g)
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− cindex-poly-ubd pI pR) div 2
proof −

have rsquarefree pp
using assms rsquarefree-smult-iff unfolding pp-def
by (metis inverse-eq-imp-eq inverse-zero leading-coeff-neq-0 rsquarefree-0 )

from card-proots-within-rsquarefree[OF this]
have proots-count pp {x. Im x = 0} = card (proots-within pp {x. Im x = 0})

by simp
also have ... = card (proots-within pp (unbounded-line 0 1 ))
proof −

have {x. Im x = 0} = unbounded-line 0 1
unfolding unbounded-line-def
apply auto
subgoal for x

apply (rule-tac x=Re x in exI )
by (metis complex-is-Real-iff of-real-Re of-real-def )

done
then show ?thesis by simp

qed
also have ... = changes-R-smods g (pderiv g)
unfolding card-proots-unbounded-line[of 0 1 pp,simplified,folded pI-def pR-def ]

g-def
by (auto simp add:Let-def sturm-R[symmetric])

finally have proots-count pp {x. Im x = 0} = changes-R-smods g (pderiv g) .
moreover have degree pp ≥ proots-count pp {x. Im x = 0}

by (metis ‹rsquarefree pp› proots-count-leq-degree rsquarefree-0 )
ultimately show ?thesis

by auto
qed
also have ... = (degree p − changes-R-smods g (pderiv g)

− changes-R-smods pR pI ) div 2
using cindex-poly-ubd-code unfolding pp-def by simp

finally have card (proots-within p {x. 0 < Im x}) = (degree p − changes-R-smods
g (pderiv g) −

changes-R-smods pR pI ) div 2 .
then show ?thesis unfolding Let-def

apply (fold pp-def pR-def pI-def g-def )
by (simp add: pp-def )

qed

lemma proots-upper-code1 [code]:
proots-upper p =
(if p 6= 0 then

(let pp=smult (inverse (lead-coeff p)) p;
pI=map-poly Im pp;
pR=map-poly Re pp;
g = gcd pI pR

in
nat ((degree p − nat (changes-R-smods-ext g (pderiv g)) − changes-R-smods
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pR pI ) div 2 )
)

else
Code.abort (STR ′′proots-upper fails when p=0 . ′′) (λ-. proots-upper p))

proof −
define pp where pp = smult (inverse (lead-coeff p)) p
define pI where pI = map-poly Im pp
define pR where pR=map-poly Re pp
define g where g = gcd pI pR
have ?thesis when p=0

using that by auto
moreover have ?thesis when p 6=0
proof −

have pp 6=0 unfolding pp-def using that by auto
define rr where rr=int (degree pp − proots-count pp {x. Im x = 0}) −

cindex-poly-ubd pI pR
have lead-coeff p 6=0 using ‹p 6=0 › by simp
then have proots-upper pp = rr / 2 unfolding rr-def

apply (rule-tac proots-upper-cindex-eq ′[of pp, folded pI-def pR-def ])
unfolding pp-def lead-coeff-smult by auto

then have proots-upper pp = nat (rr div 2 ) by linarith
moreover have

rr = degree p − nat (changes-R-smods-ext g (pderiv g)) − changes-R-smods
pR pI

proof −
have degree pp = degree p unfolding pp-def by auto
moreover have proots-count pp {x. Im x = 0} = nat (changes-R-smods-ext

g (pderiv g))
proof −

have {x. Im x = 0} = unbounded-line 0 1
unfolding unbounded-line-def by (simp add: complex-eq-iff )

then show ?thesis
using proots-unbounded-line[of 0 1 pp,simplified, folded pI-def pR-def ]

‹pp 6=0 ›
by (auto simp:Let-def g-def gcd.commute)

qed
moreover have cindex-poly-ubd pI pR = changes-R-smods pR pI

using cindex-poly-ubd-code by auto
ultimately show ?thesis unfolding rr-def by auto

qed
moreover have proots-upper pp = proots-upper p

unfolding pp-def proots-upper-def
apply (subst proots-count-smult)
using that by auto

ultimately show ?thesis
unfolding Let-def using that
apply (fold pp-def pI-def pR-def g-def )
by argo

qed
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ultimately show ?thesis by blast
qed

lemma proots-upper-card-code[code]:
proots-upper-card p = (if p=0 then 0 else

(let
pf = p div (gcd p (pderiv p));
pp = smult (inverse (lead-coeff pf )) pf ;
pI = map-poly Im pp;
pR = map-poly Re pp;
g = gcd pR pI

in
nat ((degree pf − changes-R-smods g (pderiv g) − changes-R-smods pR

pI ) div 2 )
))

proof (cases p=0 )
case True
then show ?thesis unfolding proots-upper-card-def using infinite-halfspace-Im-gt

by auto
next

case False
define pf pp pI pR g where

pf = p div (gcd p (pderiv p))
and pp = smult (inverse (lead-coeff pf )) pf
and pI = map-poly Im pp
and pR = map-poly Re pp
and g = gcd pR pI

have proots-upper-card p = proots-upper-card pf
proof −

have proots-within p {x. 0 < Im x} = proots-within pf {x. 0 < Im x}
unfolding proots-within-def using poly-gcd-pderiv-iff [of p,folded pf-def ]
by auto

then show ?thesis unfolding proots-upper-card-def by auto
qed
also have ... = nat ((degree pf − changes-R-smods g (pderiv g) − changes-R-smods

pR pI ) div 2 )
using proots-within-upper-squarefree[OF rsquarefree-gcd-pderiv[OF ‹p 6=0 ›]

,unfolded Let-def ,folded pf-def ,folded pp-def pI-def pR-def g-def ]
unfolding proots-upper-card-def by blast

finally show ?thesis unfolding Let-def
apply (fold pf-def ,fold pp-def pI-def pR-def g-def )
using False by auto

qed

2.14 Polynomial roots on a general half-plane
the number of roots of polynomial p, counted with multiplicity, on the left
half plane of the vector b − a.
definition proots-half ::complex poly ⇒ complex ⇒ complex ⇒ nat where
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proots-half p a b = proots-count p {w. Im ((w−a) / (b−a)) > 0}

lemma proots-half-empty:
assumes a=b
shows proots-half p a b = 0

unfolding proots-half-def using assms by auto

lemma proots-half-proots-upper :
assumes a 6=b p 6=0
shows proots-half p a b= proots-upper (pcompose p [:a, (b−a):])

proof −
define q where q=[:a, (b − a):]
define f where f=(λx. (b−a)∗x+ a)
have (

∑
r∈proots-within p {w. Im ((w−a) / (b−a)) > 0}. order r p)

= (
∑

r∈proots-within (p ◦p q) {z. 0 < Im z}. order r (p ◦pq))
proof (rule sum.reindex-cong[of f ])

have inj f
using assms unfolding f-def inj-on-def by fastforce

then show inj-on f (proots-within (p ◦p q) {z. 0 < Im z})
by (elim inj-on-subset,auto)

next
show proots-within p {w. Im ((w−a) / (b−a)) > 0} = f ‘ proots-within (p ◦p

q) {z. 0 < Im z}
proof safe

fix x assume x-asm:x ∈ proots-within p {w. Im ((w−a) / (b−a)) > 0}
define xx where xx=(x −a) / (b − a)
have poly (p ◦p q) xx = 0

unfolding q-def xx-def poly-pcompose using assms x-asm by auto
moreover have Im xx > 0

unfolding xx-def using x-asm by auto
ultimately have xx ∈ proots-within (p ◦p q) {z. 0 < Im z} by auto
then show x ∈ f ‘ proots-within (p ◦p q) {z. 0 < Im z}

apply (intro rev-image-eqI [of xx])
unfolding f-def xx-def using assms by auto

next
fix x assume x ∈ proots-within (p ◦p q) {z. 0 < Im z}
then show f x ∈ proots-within p {w. 0 < Im ((w−a) / (b − a))}

unfolding f-def q-def using assms
apply (auto simp add:poly-pcompose)
by (auto simp add:algebra-simps)

qed
next

fix x assume x ∈ proots-within (p ◦p q) {z. 0 < Im z}
show order (f x) p = order x (p ◦p q) using ‹p 6=0 ›
proof (induct p rule:poly-root-induct-alt)

case 0
then show ?case by simp

next
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case (no-proots p)
have order (f x) p = 0

apply (rule order-0I )
using no-proots by auto

moreover have order x (p ◦p q) = 0
apply (rule order-0I )
unfolding poly-pcompose q-def using no-proots by auto

ultimately show ?case by auto
next

case (root c p)
have order (f x) ([:− c, 1 :] ∗ p) = order (f x) [:−c,1 :] + order (f x) p

apply (subst order-mult)
using root by auto

also have ... = order x ([:− c, 1 :] ◦p q) + order x (p ◦p q)
proof −

have order (f x) [:− c, 1 :] = order x ([:− c, 1 :] ◦p q)
proof (cases f x=c)

case True
have [:− c, 1 :] ◦p q = smult (b−a) [:−x,1 :]

using True unfolding q-def f-def pcompose-pCons by auto
then have order x ([:− c, 1 :] ◦p q) = order x (smult (b−a) [:−x,1 :])

by auto
then have order x ([:− c, 1 :] ◦p q) = 1

apply (subst (asm) order-smult)
using assms order-power-n-n[of - 1 ,simplified] by auto

moreover have order (f x) [:− c, 1 :] = 1
using True order-power-n-n[of - 1 ,simplified] by auto

ultimately show ?thesis by auto
next

case False
have order (f x) [:− c, 1 :] = 0

apply (rule order-0I )
using False unfolding f-def by auto

moreover have order x ([:− c, 1 :] ◦p q) = 0
apply (rule order-0I )
using False unfolding f-def q-def poly-pcompose by auto

ultimately show ?thesis by auto
qed
moreover have order (f x) p = order x (p ◦p q)

apply (rule root)
using root by auto

ultimately show ?thesis by auto
qed
also have ... = order x (([:− c, 1 :] ∗ p) ◦p q)

unfolding pcompose-mult
apply (subst order-mult)
subgoal

unfolding q-def using assms(1 ) pcompose-eq-0 root.prems
by (metis One-nat-def degree-pCons-eq-if mult-eq-0-iff
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one-neq-zero pCons-eq-0-iff right-minus-eq)
by simp

finally show ?case .
qed

qed
then show ?thesis unfolding proots-half-def proots-upper-def proots-count-def

q-def
by auto

qed

lemma proots-half-code1 [code]:
proots-half p a b = (if a 6=b then

if p 6=0 then proots-upper (p ◦p [:a, b − a:])
else Code.abort (STR ′′proots-half fails when p=0 . ′′)
(λ-. proots-half p a b)

else 0 )
proof −

have ?thesis when a=b
using proots-half-empty that by auto

moreover have ?thesis when a 6=b p=0
using that by auto

moreover have ?thesis when a 6=b p 6=0
using proots-half-proots-upper [OF that] that by auto

ultimately show ?thesis by auto
qed

end

theory Count-Circle imports
Count-Half-Plane

begin

2.15 Polynomial roots within a circle (open ball)
definition proots-ball::complex poly ⇒ complex ⇒ real ⇒ nat where

proots-ball p z0 r = proots-count p (ball z0 r)

— Roots counted WITHOUT multiplicity
definition proots-ball-card ::complex poly ⇒ complex ⇒ real ⇒ nat where

proots-ball-card p z0 r = card (proots-within p (ball z0 r))

lemma proots-ball-code1 [code]:
proots-ball p z0 r = ( if r ≤ 0 then

0
else if p 6=0 then
proots-upper (fcompose (p ◦p [:z0 , of-real r :]) [:i,−1 :] [:i,1 :])

else
Code.abort (STR ′′proots-ball fails when p=0 . ′′)
(λ-. proots-ball p z0 r)
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)
proof (cases p=0 ∨ r≤0 )

case False
have proots-ball p z0 r = proots-count (p ◦p [:z0 , of-real r :]) (ball 0 1 )

unfolding proots-ball-def
apply (rule proots-uball-eq[THEN arg-cong])
using False by auto

also have ... = proots-upper (fcompose (p ◦p [:z0 , of-real r :]) [:i,−1 :] [:i,1 :])
unfolding proots-upper-def
apply (rule proots-ball-plane-eq[THEN arg-cong])
using False pcompose-eq-0 [of p [:z0 , of-real r :]]
by (simp add: pcompose-eq-0 )

finally show ?thesis using False by auto
qed (auto simp:proots-ball-def ball-empty)

lemma proots-ball-card-code1 [code]:
proots-ball-card p z0 r =

( if r ≤ 0 ∨ p=0 then
0

else
proots-upper-card (fcompose (p ◦p [:z0 , of-real r :]) [:i,−1 :] [:i,1 :])

)
proof (cases p=0 ∨ r≤0 )

case True
moreover have ?thesis when r≤0
proof −

have proots-within p (ball z0 r) = {}
by (simp add: ball-empty that)

then show ?thesis unfolding proots-ball-card-def using that by auto
qed
moreover have ?thesis when r>0 p=0

unfolding proots-ball-card-def using that infinite-ball[of r z0 ]
by auto

ultimately show ?thesis by argo
next

case False
then have p 6=0 r>0 by auto

have proots-ball-card p z0 r = card (proots-within (p ◦p [:z0 , of-real r :]) (ball 0
1 ))

unfolding proots-ball-card-def
by (rule proots-card-uball-eq[OF ‹r>0 ›, THEN arg-cong])

also have ... = proots-upper-card (fcompose (p ◦p [:z0 , of-real r :]) [:i,−1 :] [:i,1 :])
unfolding proots-upper-card-def
apply (rule proots-card-ball-plane-eq[THEN arg-cong])
using False pcompose-eq-0 [of p [:z0 , of-real r :]] by (simp add: pcompose-eq-0 )

finally show ?thesis using False by auto
qed
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2.16 Polynomial roots on a circle (sphere)
definition proots-sphere::complex poly ⇒ complex ⇒ real ⇒ nat where

proots-sphere p z0 r = proots-count p (sphere z0 r)

— Roots counted WITHOUT multiplicity
definition proots-sphere-card ::complex poly ⇒ complex ⇒ real ⇒ nat where

proots-sphere-card p z0 r = card (proots-within p (sphere z0 r))

lemma proots-sphere-card-code1 [code]:
proots-sphere-card p z0 r =

( if r=0 then
(if poly p z0=0 then 1 else 0 )

else if r < 0 ∨ p=0 then
0

else
(if poly p (z0−r) =0 then 1 else 0 ) +

proots-unbounded-line-card (fcompose (p ◦p [:z0 , of-real r :]) [:i,−1 :]
[:i,1 :])

0 1
)

proof −
have ?thesis when r=0
proof −

have proots-within p {z0} = (if poly p z0 = 0 then {z0} else {})
by auto

then show ?thesis unfolding proots-sphere-card-def using that by simp
qed
moreover have ?thesis when r 6=0 r < 0 ∨ p=0
proof −

have ?thesis when r<0
proof −

have proots-within p (sphere z0 r) = {}
by (auto simp add: ball-empty that)

then show ?thesis unfolding proots-sphere-card-def using that by auto
qed
moreover have ?thesis when r>0 p=0

unfolding proots-sphere-card-def using that infinite-sphere[of r z0 ]
by auto

ultimately show ?thesis using that by argo
qed
moreover have ?thesis when r>0 p 6=0
proof −

define pp where pp = p ◦p [:z0 , of-real r :]
define ppp where ppp=fcompose pp [:i, − 1 :] [:i, 1 :]

have pp 6=0 unfolding pp-def using that pcompose-eq-0
by force

have proots-sphere-card p z0 r = card (proots-within pp (sphere 0 1 ))
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unfolding proots-sphere-card-def pp-def
by (rule proots-card-usphere-eq[OF ‹r>0 ›, THEN arg-cong])

also have ... = card (proots-within pp {−1} ∪ proots-within pp (sphere 0 1 −
{−1}))

by (simp add: insert-absorb proots-within-union)
also have ... = card (proots-within pp {−1}) + card (proots-within pp (sphere

0 1 − {−1}))
apply (rule card-Un-disjoint)
using ‹pp 6=0 › by auto

also have ... = card (proots-within pp {−1}) + card (proots-within ppp {x. 0
= Im x})

using proots-card-sphere-axis-eq[OF ‹pp 6=0 ›,folded ppp-def ] by simp
also have ... = (if poly p (z0−r) =0 then 1 else 0 ) + proots-unbounded-line-card

ppp 0 1
proof −

have proots-within pp {−1} = (if poly p (z0−r) =0 then {−1} else {})
unfolding pp-def by (auto simp:poly-pcompose)

then have card (proots-within pp {−1}) = (if poly p (z0−r) =0 then 1 else
0 )

by auto
moreover have {x. Im x = 0} = unbounded-line 0 1

unfolding unbounded-line-def
apply auto
by (metis complex-is-Real-iff of-real-Re of-real-def )

then have card (proots-within ppp {x. 0 = Im x})
= proots-unbounded-line-card ppp 0 1

unfolding proots-unbounded-line-card-def by simp
ultimately show ?thesis by auto

qed
finally show ?thesis

apply (fold pp-def ,fold ppp-def )
using that by auto

qed
ultimately show ?thesis by auto

qed

2.17 Polynomial roots on a closed ball
definition proots-cball::complex poly ⇒ complex ⇒ real ⇒ nat where

proots-cball p z0 r = proots-count p (cball z0 r)

— Roots counted WITHOUT multiplicity
definition proots-cball-card ::complex poly ⇒ complex ⇒ real ⇒ nat where

proots-cball-card p z0 r = card (proots-within p (cball z0 r))

lemma proots-cball-card-code1 [code]:
proots-cball-card p z0 r =

( if r=0 then
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(if poly p z0=0 then 1 else 0 )
else if r < 0 ∨ p=0 then

0
else
( let pp=fcompose (p ◦p [:z0 , of-real r :]) [:i,−1 :] [:i,1 :]

in
(if poly p (z0−r) =0 then 1 else 0 )
+ proots-unbounded-line-card pp 0 1
+ proots-upper-card pp

)
)

proof −
have ?thesis when r=0
proof −

have proots-within p {z0} = (if poly p z0 = 0 then {z0} else {})
by auto

then show ?thesis unfolding proots-cball-card-def using that by simp
qed
moreover have ?thesis when r 6=0 r < 0 ∨ p=0
proof −

have ?thesis when r<0
proof −

have proots-within p (cball z0 r) = {}
by (auto simp add: ball-empty that)

then show ?thesis unfolding proots-cball-card-def using that by auto
qed
moreover have ?thesis when r>0 p=0

unfolding proots-cball-card-def using that infinite-cball[of r z0 ]
by auto

ultimately show ?thesis using that by argo
qed
moreover have ?thesis when p 6=0 r>0
proof −

define pp where pp=fcompose (p ◦p [:z0 , of-real r :]) [:i,−1 :] [:i,1 :]

have proots-cball-card p z0 r = card (proots-within p (sphere z0 r)
∪ proots-within p (ball z0 r))

unfolding proots-cball-card-def
apply (simp add:proots-within-union)
by (metis Diff-partition cball-diff-sphere sphere-cball)

also have ... = card (proots-within p (sphere z0 r)) + card (proots-within p
(ball z0 r))

apply (rule card-Un-disjoint)
using ‹p 6=0 › by auto

also have ... = (if poly p (z0−r) =0 then 1 else 0 ) + proots-unbounded-line-card
pp 0 1

+ proots-upper-card pp
using proots-sphere-card-code1 [of p z0 r ,folded pp-def ,unfolded proots-sphere-card-def ]
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proots-ball-card-code1 [of p z0 r ,folded pp-def ,unfolded proots-ball-card-def ]
that

by simp
finally show ?thesis

apply (fold pp-def )
using that by auto

qed
ultimately show ?thesis by auto

qed

end

theory Count-Rectangle imports Count-Line
begin

Counting roots in a rectangular area can be in a purely algebraic ap-
proach without introducing (analytic) winding number (winding-number)
nor the argument principle ([[open ?s; connected ?s; ?f holomorphic-on ?s
− ?poles; ?h holomorphic-on ?s; valid-path ?g; pathfinish ?g = pathstart
?g; path-image ?g ⊆ ?s − {w ∈ ?s. ?f w = 0 ∨ w ∈ ?poles}; ∀ z. z /∈ ?s
−→ winding-number ?g z = 0 ; finite {w ∈ ?s. ?f w = 0 ∨ w ∈ ?poles};
∀ p∈?s ∩ ?poles. is-pole ?f p]] =⇒ contour-integral ?g (λx. deriv ?f x ∗ ?h
x / ?f x) = complex-of-real (2 ∗ pi) ∗ i ∗ (

∑
p∈{w ∈ ?s. ?f w = 0 ∨ w

∈ ?poles}. winding-number ?g p ∗ ?h p ∗ complex-of-int (zorder ?f p))).
This has been illustrated by Michael Eisermann [1]. We lightly make use
of winding-number here only to shorten the proof of one of the technical
lemmas.

2.18 Misc
lemma proots-count-const:

assumes c 6=0
shows proots-count [:c:] s = 0
unfolding proots-count-def using assms by auto

lemma proots-count-nzero:
assumes

∧
x. x∈s =⇒ poly p x 6=0

shows proots-count p s = 0
unfolding proots-count-def
by(rule sum.neutral) (use assms in auto)

lemma complex-box-ne-empty:
fixes a b::complex
shows

cbox a b 6= {} ←→ (Re a ≤ Re b ∧ Im a ≤ Im b)
box a b 6= {} ←→ (Re a < Re b ∧ Im a < Im b)

by (auto simp add:box-ne-empty Basis-complex-def )
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2.19 Counting roots in a rectangle
definition proots-rect ::complex poly ⇒ complex ⇒ complex ⇒ nat where

proots-rect p lb ub = proots-count p (box lb ub)

definition proots-crect ::complex poly ⇒ complex ⇒ complex ⇒ nat where
proots-crect p lb ub = proots-count p (cbox lb ub)

definition proots-rect-ll ::complex poly ⇒ complex ⇒ complex ⇒ nat where
proots-rect-ll p lb ub = proots-count p (box lb ub ∪ {lb}

∪ open-segment lb (Complex (Re ub) (Im lb))
∪ open-segment lb (Complex (Re lb) (Im ub)))

definition proots-rect-border ::complex poly ⇒ complex ⇒ complex ⇒ nat where
proots-rect-border p a b = proots-count p (path-image (rectpath a b))

definition not-rect-vertex::complex ⇒ complex ⇒ complex ⇒ bool where
not-rect-vertex r a b = (r 6=a ∧ r 6= Complex (Re b) (Im a) ∧ r 6=b ∧ r 6=Complex

(Re a) (Im b))

definition not-rect-vanishing :: complex poly ⇒ complex ⇒ complex ⇒ bool where
not-rect-vanishing p a b = (poly p a 6=0 ∧ poly p (Complex (Re b) (Im a)) 6= 0

∧ poly p b 6=0 ∧ poly p (Complex (Re a) (Im b)) 6= 0 )

lemma cindexP-rectpath-edge-base:
assumes Re a < Re b Im a < Im b

and not-rect-vertex r a b
and r∈path-image (rectpath a b)

shows cindexP-pathE [:−r ,1 :] (rectpath a b) = −1
proof −

have r-nzero:r 6=a r 6=Complex (Re b) (Im a) r 6=b r 6=Complex (Re a) (Im b)
using ‹not-rect-vertex r a b› unfolding not-rect-vertex-def by auto

define rr where rr = [:−r ,1 :]
have rr-linepath:cindexP-pathE rr (linepath a b)

= cindex-pathE (linepath (a − r) (b−r)) 0 for a b
unfolding rr-def
unfolding cindexP-lineE-def cindexP-pathE-def poly-linepath-comp

by (simp add:poly-pcompose comp-def linepath-def scaleR-conv-of-real alge-
bra-simps)

have cindexP-pathE-eq:cindexP-pathE rr (rectpath a b) =
cindexP-pathE rr (linepath a (Complex (Re b) (Im a)))
+ cindexP-pathE rr (linepath (Complex (Re b) (Im a)) b)
+ cindexP-pathE rr (linepath b (Complex (Re a) (Im b)))
+ cindexP-pathE rr (linepath (Complex (Re a) (Im b)) a)

unfolding rectpath-def Let-def
by ((subst cindex-poly-pathE-joinpaths

|subst finite-ReZ-segments-joinpaths
|intro path-poly-comp conjI );
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(simp add:poly-linepath-comp finite-ReZ-segments-poly-of-real path-compose-join

pathfinish-compose pathstart-compose poly-pcompose)?)+

have (Im r = Im a ∧ Re a < Re r ∧ Re r < Re b)
∨ (Re r = Re b ∧ Im a < Im r ∧ Im r < Im b)
∨ (Im r = Im b ∧ Re a < Re r ∧ Re r < Re b)
∨ (Re r = Re a ∧ Im a < Im r ∧ Im r < Im b)

proof −
have r ∈ closed-segment a (Complex (Re b) (Im a))

∨ r ∈ closed-segment (Complex (Re b) (Im a)) b
∨ r ∈ closed-segment b (Complex (Re a) (Im b))
∨ r ∈ closed-segment (Complex (Re a) (Im b)) a

using ‹r∈path-image (rectpath a b)›
unfolding rectpath-def Let-def
by (subst (asm) path-image-join;simp)+

then show ?thesis
by (smt (verit, del-insts) assms(1 ) assms(2 ) r-nzero
closed-segment-commute closed-segment-imp-Re-Im(1 ) closed-segment-imp-Re-Im(2 )

complex.sel(1 ) complex.sel(2 ) complex-eq-iff )
qed
moreover have cindexP-pathE rr (rectpath a b) = −1

if Im r = Im a Re a < Re r Re r < Re b
proof −

have cindexP-pathE rr (linepath a (Complex (Re b) (Im a))) = 0
unfolding rr-linepath
apply (rule cindex-pathE-linepath-on)
using closed-segment-degen-complex(2 ) that(1 ) that(2 ) that(3 ) by auto

moreover have cindexP-pathE rr (linepath (Complex (Re b) (Im a)) b) = 0
unfolding rr-linepath
apply (subst cindex-pathE-linepath)
subgoal using closed-segment-imp-Re-Im(1 ) that(3 ) by fastforce
subgoal using that assms unfolding Let-def by auto
done

moreover have cindexP-pathE rr (linepath b (Complex (Re a) (Im b))) = −1
unfolding rr-linepath
apply (subst cindex-pathE-linepath)
subgoal using assms(2 ) closed-segment-imp-Re-Im(2 ) that(1 ) by fastforce
subgoal using that assms unfolding Let-def by auto
done

moreover have cindexP-pathE rr (linepath (Complex (Re a) (Im b)) a) = 0
unfolding rr-linepath
apply (subst cindex-pathE-linepath)
subgoal using closed-segment-imp-Re-Im(1 ) that(2 ) by fastforce
subgoal using that assms unfolding Let-def by auto
done

ultimately show ?thesis unfolding cindexP-pathE-eq by auto
qed

155



moreover have cindexP-pathE rr (rectpath a b) = −1
if Re r = Re b Im a < Im r Im r < Im b

proof −
have cindexP-pathE rr (linepath a (Complex (Re b) (Im a))) = −1/2

unfolding rr-linepath
apply (subst cindex-pathE-linepath)
subgoal using closed-segment-imp-Re-Im(2 ) that(2 ) by fastforce
subgoal using that assms unfolding Let-def by auto
done

moreover have cindexP-pathE rr (linepath (Complex (Re b) (Im a)) b) = 0
unfolding rr-linepath
apply (rule cindex-pathE-linepath-on)
using closed-segment-degen-complex(1 ) that(1 ) that(2 ) that(3 ) by auto

moreover have cindexP-pathE rr (linepath b (Complex (Re a) (Im b))) =
−1/2

unfolding rr-linepath
apply (subst cindex-pathE-linepath)
subgoal using closed-segment-imp-Re-Im(2 ) that(3 ) by fastforce
subgoal using that assms unfolding Let-def by auto
done

moreover have cindexP-pathE rr (linepath (Complex (Re a) (Im b)) a) = 0
unfolding rr-linepath
apply (subst cindex-pathE-linepath)
subgoal using assms(1 ) closed-segment-imp-Re-Im(1 ) that(1 ) by fastforce
subgoal using that assms unfolding Let-def by auto
done

ultimately show ?thesis unfolding cindexP-pathE-eq by auto
qed
moreover have cindexP-pathE rr (rectpath a b) = −1

if Im r = Im b Re a < Re r Re r < Re b
proof −

have cindexP-pathE rr (linepath a (Complex (Re b) (Im a))) = −1
unfolding rr-linepath
apply (subst cindex-pathE-linepath)
subgoal using assms(2 ) closed-segment-imp-Re-Im(2 ) that(1 ) by fastforce
subgoal using that assms unfolding Let-def by auto
done

moreover have cindexP-pathE rr (linepath (Complex (Re b) (Im a)) b) = 0
unfolding rr-linepath
apply (subst cindex-pathE-linepath)
subgoal using closed-segment-imp-Re-Im(1 ) that(3 ) by force
subgoal using that assms unfolding Let-def by auto
done

moreover have cindexP-pathE rr (linepath b (Complex (Re a) (Im b))) = 0
unfolding rr-linepath
apply (rule cindex-pathE-linepath-on)

by (smt (verit, del-insts) Im-poly-hom.base.hom-zero Re-poly-hom.base.hom-zero
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closed-segment-commute closed-segment-degen-complex(2 ) complex.sel(1 )
complex.sel(2 ) minus-complex.simps(1 ) minus-complex.simps(2 ) that(1 )

that(2 ) that(3 ))
moreover have cindexP-pathE rr (linepath (Complex (Re a) (Im b)) a) = 0

unfolding rr-linepath
apply (subst cindex-pathE-linepath)
subgoal using closed-segment-imp-Re-Im(1 ) that(2 ) by fastforce
subgoal using that assms unfolding Let-def by auto
done

ultimately show ?thesis unfolding cindexP-pathE-eq by auto
qed
moreover have cindexP-pathE rr (rectpath a b) = −1

if Re r = Re a Im a < Im r Im r < Im b
proof −

have cindexP-pathE rr (linepath a (Complex (Re b) (Im a))) = −1/2
unfolding rr-linepath
apply (subst cindex-pathE-linepath)
subgoal using closed-segment-imp-Re-Im(2 ) that(2 ) by fastforce
subgoal using that assms unfolding Let-def by auto
done

moreover have cindexP-pathE rr (linepath (Complex (Re b) (Im a)) b) = 0
unfolding rr-linepath
apply (subst cindex-pathE-linepath)
subgoal using assms(1 ) closed-segment-imp-Re-Im(1 ) that(1 ) by fastforce
subgoal using that assms unfolding Let-def by auto
done

moreover have cindexP-pathE rr (linepath b (Complex (Re a) (Im b))) =
−1/2

unfolding rr-linepath
apply (subst cindex-pathE-linepath)
subgoal using closed-segment-imp-Re-Im(2 ) that(3 ) by fastforce
subgoal using that assms unfolding Let-def by auto
done

moreover have cindexP-pathE rr (linepath (Complex (Re a) (Im b)) a) = 0
unfolding rr-linepath
apply (rule cindex-pathE-linepath-on)
by (smt (verit) Im-poly-hom.base.hom-zero Re-poly-hom.base.hom-zero

closed-segment-commute closed-segment-degen-complex(1 ) complex.sel(1 )
complex.sel(2 ) minus-complex.simps(1 ) minus-complex.simps(2 ) that(1 )

that(2 ) that(3 ))
ultimately show ?thesis unfolding cindexP-pathE-eq by auto

qed
ultimately show ?thesis unfolding rr-def by auto

qed

lemma cindexP-rectpath-vertex-base:
assumes Re a < Re b Im a < Im b

and ¬ not-rect-vertex r a b
shows cindexP-pathE [:−r ,1 :] (rectpath a b) = −1/2
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proof −
have r-cases:r=a ∨ r=Complex (Re b) (Im a)∨ r=b ∨ r=Complex (Re a) (Im

b)
using ‹¬ not-rect-vertex r a b› unfolding not-rect-vertex-def by auto

define rr where rr = [:−r ,1 :]
have rr-linepath:cindexP-pathE rr (linepath a b)

= cindex-pathE (linepath (a − r) (b−r)) 0 for a b
unfolding rr-def
unfolding cindexP-lineE-def cindexP-pathE-def poly-linepath-comp

by (simp add:poly-pcompose comp-def linepath-def scaleR-conv-of-real alge-
bra-simps)

have cindexP-pathE-eq:cindexP-pathE rr (rectpath a b) =
cindexP-pathE rr (linepath a (Complex (Re b) (Im a)))
+ cindexP-pathE rr (linepath (Complex (Re b) (Im a)) b)
+ cindexP-pathE rr (linepath b (Complex (Re a) (Im b)))
+ cindexP-pathE rr (linepath (Complex (Re a) (Im b)) a)

unfolding rectpath-def Let-def
by ((subst cindex-poly-pathE-joinpaths

|subst finite-ReZ-segments-joinpaths
|intro path-poly-comp conjI );

(simp add:poly-linepath-comp finite-ReZ-segments-poly-of-real path-compose-join

pathfinish-compose pathstart-compose poly-pcompose)?)+

have cindexP-pathE rr (rectpath a b) = −1/2
if r=a

proof −
have cindexP-pathE rr (linepath a (Complex (Re b) (Im a))) = 0

unfolding rr-linepath
apply (rule cindex-pathE-linepath-on)
by (simp add: that)

moreover have cindexP-pathE rr (linepath (Complex (Re b) (Im a)) b) = 0
unfolding rr-linepath
apply (subst cindex-pathE-linepath)
subgoal using assms(1 ) closed-segment-imp-Re-Im(1 ) that by fastforce
subgoal using that assms unfolding Let-def by auto
done

moreover have cindexP-pathE rr (linepath b (Complex (Re a) (Im b))) =
−1/2

unfolding rr-linepath
apply (subst cindex-pathE-linepath)
subgoal using assms(2 ) closed-segment-imp-Re-Im(2 ) that(1 ) by fastforce
subgoal using that assms unfolding Let-def by auto
done

moreover have cindexP-pathE rr (linepath (Complex (Re a) (Im b)) a) = 0
unfolding rr-linepath
apply (rule cindex-pathE-linepath-on)
by (simp add: that)
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ultimately show ?thesis unfolding cindexP-pathE-eq by auto
qed
moreover have cindexP-pathE rr (rectpath a b) = −1/2

if r=Complex (Re b) (Im a)
proof −

have cindexP-pathE rr (linepath a (Complex (Re b) (Im a))) = 0
unfolding rr-linepath
apply (rule cindex-pathE-linepath-on)
by (simp add: that)

moreover have cindexP-pathE rr (linepath (Complex (Re b) (Im a)) b) = 0
unfolding rr-linepath
apply (rule cindex-pathE-linepath-on)
by (simp add: that)

moreover have cindexP-pathE rr (linepath b (Complex (Re a) (Im b))) =
−1/2

unfolding rr-linepath
apply (subst cindex-pathE-linepath)
subgoal using assms(2 ) closed-segment-imp-Re-Im(2 ) that(1 ) by fastforce
subgoal using that assms unfolding Let-def by auto
done

moreover have cindexP-pathE rr (linepath (Complex (Re a) (Im b)) a) = 0
unfolding rr-linepath
apply (subst cindex-pathE-linepath)
subgoal using assms(1 ) closed-segment-imp-Re-Im(1 ) that by fastforce
subgoal by (smt (z3 ) complex.sel(1 ) minus-complex.simps(1 ))
done

ultimately show ?thesis unfolding cindexP-pathE-eq by auto
qed
moreover have cindexP-pathE rr (rectpath a b) = −1/2

if r=b
proof −

have cindexP-pathE rr (linepath a (Complex (Re b) (Im a))) = −1/2
unfolding rr-linepath
apply (subst cindex-pathE-linepath)
subgoal using assms(2 ) closed-segment-imp-Re-Im(2 ) that by fastforce
subgoal using assms(1 ) assms(2 ) that by auto
done

moreover have cindexP-pathE rr (linepath (Complex (Re b) (Im a)) b) = 0
unfolding rr-linepath
apply (rule cindex-pathE-linepath-on)
by (simp add: that)

moreover have cindexP-pathE rr (linepath b (Complex (Re a) (Im b))) = 0
unfolding rr-linepath
apply (rule cindex-pathE-linepath-on)
by (simp add: that)

moreover have cindexP-pathE rr (linepath (Complex (Re a) (Im b)) a) = 0
unfolding rr-linepath
apply (subst cindex-pathE-linepath)
subgoal using assms(1 ) closed-segment-imp-Re-Im(1 ) that by fastforce
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subgoal by (smt (z3 ) complex.sel(1 ) minus-complex.simps(1 ))
done

ultimately show ?thesis unfolding cindexP-pathE-eq by auto
qed
moreover have cindexP-pathE rr (rectpath a b) = −1/2

if r=Complex (Re a) (Im b)
proof −

have cindexP-pathE rr (linepath a (Complex (Re b) (Im a))) = −1/2
unfolding rr-linepath
apply (subst cindex-pathE-linepath)
subgoal using assms(2 ) closed-segment-imp-Re-Im(2 ) that by fastforce
subgoal using assms(1 ) assms(2 ) that by auto
done

moreover have cindexP-pathE rr (linepath (Complex (Re b) (Im a)) b) = 0
unfolding rr-linepath
apply (subst cindex-pathE-linepath)
subgoal using assms(1 ) closed-segment-imp-Re-Im(1 ) that by fastforce
subgoal by (smt (z3 ) complex.sel(1 ) minus-complex.simps(1 ))
done

moreover have cindexP-pathE rr (linepath b (Complex (Re a) (Im b))) = 0
unfolding rr-linepath
apply (rule cindex-pathE-linepath-on)
by (simp add: that)

moreover have cindexP-pathE rr (linepath (Complex (Re a) (Im b)) a) = 0
unfolding rr-linepath
apply (rule cindex-pathE-linepath-on)
by (simp add: that)

ultimately show ?thesis unfolding cindexP-pathE-eq by auto
qed
ultimately show ?thesis using r-cases unfolding rr-def by auto

qed

lemma cindexP-rectpath-interior-base:
assumes r∈box a b
shows cindexP-pathE [:−r ,1 :] (rectpath a b) = −2

proof −
have inbox:Re r ∈ {Re a<..<Re b} ∧ Im r ∈ {Im a<..<Im b}

using ‹r∈box a b› unfolding in-box-complex-iff by auto
then have r-nzero:r 6=a r 6=Complex (Re b) (Im a) r 6=b r 6=Complex (Re a) (Im

b)
by auto

have Re a < Re b Im a < Im b
using ‹r∈box a b› complex-box-ne-empty by blast+

define rr where rr = [:−r ,1 :]
have rr-linepath:cindexP-pathE rr (linepath a b)

= cindex-pathE (linepath (a − r) (b−r)) 0 for a b
unfolding rr-def
unfolding cindexP-lineE-def cindexP-pathE-def poly-linepath-comp
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by (simp add:poly-pcompose comp-def linepath-def scaleR-conv-of-real alge-
bra-simps)

have cindexP-pathE rr (rectpath a b) =
cindexP-pathE rr (linepath a (Complex (Re b) (Im a)))
+ cindexP-pathE rr (linepath (Complex (Re b) (Im a)) b)
+ cindexP-pathE rr (linepath b (Complex (Re a) (Im b)))
+ cindexP-pathE rr (linepath (Complex (Re a) (Im b)) a)

unfolding rectpath-def Let-def
by ((subst cindex-poly-pathE-joinpaths

|subst finite-ReZ-segments-joinpaths
|intro path-poly-comp conjI );

(simp add:poly-linepath-comp finite-ReZ-segments-poly-of-real path-compose-join

pathfinish-compose pathstart-compose poly-pcompose)?)+
also have ... = −2
proof −

have cindexP-pathE rr (linepath a (Complex (Re b) (Im a))) = −1
unfolding rr-linepath
apply (subst cindex-pathE-linepath)
subgoal using closed-segment-imp-Re-Im(2 ) inbox by fastforce
using inbox by auto

moreover have cindexP-pathE rr (linepath (Complex (Re b) (Im a)) b) = 0
unfolding rr-linepath
apply (subst cindex-pathE-linepath)
subgoal using closed-segment-imp-Re-Im(1 ) inbox by fastforce
using inbox by auto

moreover have cindexP-pathE rr (linepath b (Complex (Re a) (Im b))) = −1
unfolding rr-linepath
apply (subst cindex-pathE-linepath)
subgoal using closed-segment-imp-Re-Im(2 ) inbox by fastforce
using inbox by auto

moreover have cindexP-pathE rr (linepath (Complex (Re a) (Im b)) a) = 0
unfolding rr-linepath
apply (subst cindex-pathE-linepath)
subgoal using closed-segment-imp-Re-Im(1 ) inbox by fastforce
using inbox by auto

ultimately show ?thesis by auto
qed
finally show ?thesis unfolding rr-def .

qed

lemma cindexP-rectpath-outside-base:
assumes Re a < Re b Im a < Im b

and r /∈cbox a b
shows cindexP-pathE [:−r ,1 :] (rectpath a b) = 0

proof −
have not-cbox:¬ (Re r ∈ {Re a..Re b} ∧ Im r ∈ {Im a..Im b})
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using ‹r /∈cbox a b› unfolding in-cbox-complex-iff by auto
then have r-nzero:r 6=a r 6=Complex (Re b) (Im a) r 6=b r 6=Complex (Re a) (Im

b)
using assms by auto

define rr where rr = [:−r ,1 :]
have rr-linepath:cindexP-pathE rr (linepath a b)

= cindex-pathE (linepath (a − r) (b−r)) 0 for a b
unfolding rr-def
unfolding cindexP-lineE-def cindexP-pathE-def poly-linepath-comp

by (simp add:poly-pcompose comp-def linepath-def scaleR-conv-of-real alge-
bra-simps)

have cindexP-pathE rr (rectpath a b) =
cindexP-pathE rr (linepath a (Complex (Re b) (Im a)))
+ cindexP-pathE rr (linepath (Complex (Re b) (Im a)) b)
+ cindexP-pathE rr (linepath b (Complex (Re a) (Im b)))
+ cindexP-pathE rr (linepath (Complex (Re a) (Im b)) a)

unfolding rectpath-def Let-def
by ((subst cindex-poly-pathE-joinpaths

|subst finite-ReZ-segments-joinpaths
|intro path-poly-comp conjI );

(simp add:poly-linepath-comp finite-ReZ-segments-poly-of-real path-compose-join

pathfinish-compose pathstart-compose poly-pcompose)?)+
have cindexP-pathE rr (rectpath a b) = cindex-pathE (poly rr ◦ rectpath a b) 0

unfolding cindexP-pathE-def by simp
also have ... = − 2 ∗ winding-number (poly rr ◦ rectpath a b) 0

— We don’t need winding-number to finish the proof, but thanks to Cauthy’s
Index theorem (i.e., [[finite-ReZ-segments ?g ?z; valid-path ?g; ?z /∈ path-image
?g; pathfinish ?g = pathstart ?g]] =⇒ winding-number ?g ?z = complex-of-real (−
cindex-pathE ?g ?z / 2 )) we can make the proof shorter.

proof −
have winding-number (poly rr ◦ rectpath a b) 0

= − cindex-pathE (poly rr ◦ rectpath a b) 0 / 2
proof (rule winding-number-cindex-pathE)

show finite-ReZ-segments (poly rr ◦ rectpath a b) 0
using finite-ReZ-segments-poly-rectpath .

show valid-path (poly rr ◦ rectpath a b)
using valid-path-poly-rectpath .

show 0 /∈ path-image (poly rr ◦ rectpath a b)
by (smt (z3 ) DiffE add.right-neutral add-diff-cancel-left ′ add-uminus-conv-diff

assms(1 ) assms(2 ) assms(3 ) basic-cqe-conv1 (1 ) diff-add-cancel imageE
mult.right-neutral

mult-zero-right path-image-compose path-image-rectpath-cbox-minus-box
poly-pCons rr-def )

show pathfinish (poly rr ◦ rectpath a b) = pathstart (poly rr ◦ rectpath a b)
by (simp add: pathfinish-compose pathstart-compose)
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qed
then show ?thesis by auto

qed
also have ... = 0
proof −

have winding-number (poly rr ◦ rectpath a b) 0 = 0
proof (rule winding-number-zero-outside)

have path-image (poly rr ◦ rectpath a b) = poly rr ‘ path-image (rectpath a b)
using path-image-compose by simp

also have ... = poly rr ‘ (cbox a b − box a b)
apply (subst path-image-rectpath-cbox-minus-box)
using assms(1 ,2 ) by (simp|blast)+

also have ... ⊆ (λx. x −r) ‘ cbox a b
unfolding rr-def by (simp add: image-subset-iff )

finally show path-image (poly rr ◦ rectpath a b) ⊆ (λx. x −r) ‘ cbox a b .
show 0 /∈ (λx. x − r) ‘ cbox a b using assms(3 ) by force
show path (poly rr ◦ rectpath a b) by (simp add: path-poly-comp)
show convex ((λx. x − r) ‘ cbox a b)

using convex-box(1 ) convex-translation-subtract-eq by blast
show pathfinish (poly rr ◦ rectpath a b) = pathstart (poly rr ◦ rectpath a b)

by (simp add: pathfinish-compose pathstart-compose)
qed
then show ?thesis by simp

qed
finally show ?thesis unfolding rr-def by simp

qed

lemma cindexP-rectpath-add-one-root:
assumes Re a < Re b Im a < Im b

and not-rect-vertex r a b
and not-rect-vanishing p a b

shows cindexP-pathE ([:−r ,1 :]∗p) (rectpath a b) =
cindexP-pathE p (rectpath a b)

+ (if r∈box a b then −2 else if r∈path-image (rectpath a b) then − 1 else
0 )
proof −

define rr where rr = [:−r ,1 :]
have rr-nzero:poly rr a 6=0 poly rr (Complex (Re b) (Im a)) 6=0

poly rr b 6=0 poly rr (Complex (Re a) (Im b)) 6=0
using ‹not-rect-vertex r a b› unfolding rr-def not-rect-vertex-def by auto

have p-nzero:poly p a 6=0 poly p (Complex (Re b) (Im a)) 6=0
poly p b 6=0 poly p (Complex (Re a) (Im b)) 6=0

using ‹not-rect-vanishing p a b› unfolding not-rect-vanishing-def by auto

define cindp where cindp = (λp a b.
cindexP-lineE p a (Complex (Re b) (Im a))
+ cindexP-lineE p (Complex (Re b) (Im a)) b
+ cindexP-lineE p b (Complex (Re a) (Im b))
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+ cindexP-lineE p (Complex (Re a) (Im b)) a
)

define cdiff where cdiff = (λrr p a b.
cdiff-aux rr p a (Complex (Re b) (Im a))
+ cdiff-aux rr p (Complex (Re b) (Im a)) b
+ cdiff-aux rr p b (Complex (Re a) (Im b))
+ cdiff-aux rr p (Complex (Re a) (Im b)) a

)

have cindexP-pathE (rr∗p) (rectpath a b) =
cindexP-pathE (rr∗p) (linepath a (Complex (Re b) (Im a)))
+ cindexP-pathE (rr∗p) (linepath (Complex (Re b) (Im a)) b)
+ cindexP-pathE (rr∗p) (linepath b (Complex (Re a) (Im b)))
+ cindexP-pathE (rr∗p) (linepath (Complex (Re a) (Im b)) a)

unfolding rectpath-def Let-def
by ((subst cindex-poly-pathE-joinpaths

|subst finite-ReZ-segments-joinpaths
|intro path-poly-comp conjI );

(simp add:poly-linepath-comp finite-ReZ-segments-poly-of-real path-compose-join

pathfinish-compose pathstart-compose poly-pcompose)?)+
also have ... = cindexP-lineE (rr∗p) a (Complex (Re b) (Im a))

+ cindexP-lineE (rr∗p) (Complex (Re b) (Im a)) b
+ cindexP-lineE (rr∗p) b (Complex (Re a) (Im b))
+ cindexP-lineE (rr∗p) (Complex (Re a) (Im b)) a

unfolding cindexP-lineE-def by simp
also have ... = cindp rr a b + cindp p a b + cdiff rr p a b/2

unfolding cindp-def cdiff-def
by (subst cindexP-lineE-times;

(use rr-nzero p-nzero one-complex.code imaginary-unit.code in simp)?)+
also have ... = cindexP-pathE p (rectpath a b) +(if r∈box a b then −2 else

if r∈path-image (rectpath a b) then − 1 else 0 )
proof −

have cindp rr a b = cindexP-pathE rr (rectpath a b)
unfolding rectpath-def Let-def cindp-def cindexP-lineE-def
by ((subst cindex-poly-pathE-joinpaths

|subst finite-ReZ-segments-joinpaths
|intro path-poly-comp conjI );

(simp add:poly-linepath-comp finite-ReZ-segments-poly-of-real path-compose-join

pathfinish-compose pathstart-compose poly-pcompose)?)+
also have ... = (if r∈box a b then −2 else

if r∈path-image (rectpath a b) then − 1 else 0 )
proof −

have ?thesis if r∈box a b
using cindexP-rectpath-interior-base rr-def that by presburger

moreover have ?thesis if r /∈box a b r∈path-image (rectpath a b)
using cindexP-rectpath-edge-base[OF assms(1 ,2 ,3 )] that unfolding rr-def

by auto
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moreover have ?thesis if r /∈box a b r /∈path-image (rectpath a b)
proof −

have r /∈cbox a b
using that assms(1 ) assms(2 ) path-image-rectpath-cbox-minus-box by auto

then show ?thesis unfolding rr-def
using assms(1 ) assms(2 ) cindexP-rectpath-outside-base that(1 ) that(2 )

by presburger
qed
ultimately show ?thesis by auto

qed
finally have cindp rr a b = (if r∈box a b then −2 else

if r∈path-image (rectpath a b) then − 1 else 0 ) .
moreover have cindp p a b = cindexP-pathE p (rectpath a b)

unfolding rectpath-def Let-def cindp-def cindexP-lineE-def
by ((subst cindex-poly-pathE-joinpaths

|subst finite-ReZ-segments-joinpaths
|intro path-poly-comp conjI );

(simp add:poly-linepath-comp finite-ReZ-segments-poly-of-real path-compose-join

pathfinish-compose pathstart-compose poly-pcompose)?)+
moreover have cdiff rr p a b = 0

unfolding cdiff-def cdiff-aux-def by simp
ultimately show ?thesis by auto

qed
finally show ?thesis unfolding rr-def .

qed

lemma proots-rect-cindexP-pathE :
assumes Re a < Re b Im a < Im b

and not-rect-vanishing p a b
shows proots-rect p a b = −(proots-rect-border p a b +cindexP-pathE p (rectpath

a b)) / 2
using ‹not-rect-vanishing p a b›

proof (induct p rule:poly-root-induct-alt)
case 0
then have False unfolding not-rect-vanishing-def by auto
then show ?case by simp

next
case (no-proots p)
then obtain c where pc:p=[:c:] c 6=0

by (meson fundamental-theorem-of-algebra-alt)
have cindexP-pathE p (rectpath a b) = 0

using pc by (auto intro:cindexP-pathE-const)
moreover have proots-rect p a b = 0 proots-rect-border p a b = 0

using pc proots-count-const
unfolding proots-rect-def proots-rect-border-def by auto

ultimately show ?case by auto
next

case (root r p)
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define rr where rr=[:−r ,1 :]

have hyps:real (proots-rect p a b) =
−(proots-rect-border p a b + cindexP-pathE p (rectpath a b)) / 2

apply (rule root(1 ))
by (meson not-rect-vanishing-def poly-mult-zero-iff root.prems)

have cind-eq:cindexP-pathE (rr ∗ p) (rectpath a b) =
cindexP-pathE p (rectpath a b) +
(if r ∈ box a b then − 2 else if r ∈ path-image (rectpath a b) then − 1

else 0 )
proof (rule cindexP-rectpath-add-one-root[OF assms(1 ,2 ),of r p,folded rr-def ])

show not-rect-vertex r a b
using not-rect-vanishing-def not-rect-vertex-def root.prems by auto

show not-rect-vanishing p a b
using not-rect-vanishing-def root.prems by force

qed

have rect-eq:proots-rect (rr ∗ p) a b = proots-rect p a b
+ (if r∈box a b then 1 else 0 )

proof −
have proots-rect (rr ∗ p) a b

= proots-count rr (box a b) + proots-rect p a b
unfolding proots-rect-def
apply (rule proots-count-times)
by (metis not-rect-vanishing-def poly-0 root.prems rr-def )

moreover have proots-count rr (box a b) = (if r∈box a b then 1 else 0 )
using proots-count-pCons-1-iff rr-def by blast

ultimately show ?thesis by auto
qed

have border-eq:proots-rect-border (rr ∗ p) a b =
proots-rect-border p a b

+ (if r ∈ path-image (rectpath a b) then 1 else 0 )
proof −

have proots-rect-border (rr ∗ p) a b = proots-count rr (path-image (rectpath a
b))

+ proots-rect-border p a b
unfolding proots-rect-border-def
apply (rule proots-count-times)
by (metis not-rect-vanishing-def poly-0 root.prems rr-def )

moreover have proots-count rr (path-image (rectpath a b))
= (if r ∈ path-image (rectpath a b) then 1 else 0 )

using proots-count-pCons-1-iff rr-def by blast
ultimately show ?thesis by auto

qed

have ?case if r ∈ box a b
proof −
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have proots-rect (rr ∗ p) a b = proots-rect p a b + 1
unfolding rect-eq using that by auto

moreover have proots-rect-border (rr ∗ p) a b = proots-rect-border p a b
unfolding border-eq using that
using assms(1 ) assms(2 ) path-image-rectpath-cbox-minus-box by auto
moreover have cindexP-pathE (rr ∗ p) (rectpath a b) = cindexP-pathE p

(rectpath a b) − 2
using cind-eq that by auto

ultimately show ?thesis using hyps
by (fold rr-def ) simp

qed
moreover have ?case if r /∈ box a b r ∈ path-image (rectpath a b)
proof −

have proots-rect (rr ∗ p) a b = proots-rect p a b
unfolding rect-eq using that by auto

moreover have proots-rect-border (rr ∗ p) a b = proots-rect-border p a b + 1
unfolding border-eq using that
using assms(1 ) assms(2 ) path-image-rectpath-cbox-minus-box by auto
moreover have cindexP-pathE (rr ∗ p) (rectpath a b) = cindexP-pathE p

(rectpath a b) − 1
using cind-eq that by auto

ultimately show ?thesis using hyps
by (fold rr-def ) auto

qed
moreover have ?case if r /∈ box a b r /∈ path-image (rectpath a b)
proof −

have proots-rect (rr ∗ p) a b = proots-rect p a b
unfolding rect-eq using that by auto

moreover have proots-rect-border (rr ∗ p) a b = proots-rect-border p a b
unfolding border-eq using that
using assms(1 ) assms(2 ) path-image-rectpath-cbox-minus-box by auto
moreover have cindexP-pathE (rr ∗ p) (rectpath a b) = cindexP-pathE p

(rectpath a b)
using cind-eq that by auto

ultimately show ?thesis using hyps
by (fold rr-def ) auto

qed
ultimately show ?case by auto

qed

2.20 Code generation
lemmas Complex-minus-eq = minus-complex.code

lemma cindexP-pathE-rect-smods:
fixes p::complex poly and lb ub::complex
assumes ab-le:Re lb < Re ub Im lb < Im ub

and not-rect-vanishing p lb ub
shows cindexP-pathE p (rectpath lb ub) =
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(let p1 = pcompose p [:lb, Complex (Re ub − Re lb) 0 :];
pR1 = map-poly Re p1 ; pI1 = map-poly Im p1 ; gc1 = gcd pR1 pI1 ;
p2 = pcompose p [:Complex (Re ub) (Im lb), Complex 0 (Im ub − Im

lb):];
pR2 = map-poly Re p2 ; pI2 = map-poly Im p2 ; gc2 = gcd pR2 pI2 ;
p3 = pcompose p [:ub, Complex (Re lb − Re ub) 0 :];
pR3 = map-poly Re p3 ; pI3 = map-poly Im p3 ; gc3 = gcd pR3 pI3 ;
p4 = pcompose p [:Complex (Re lb) (Im ub), Complex 0 (Im lb − Im

ub):];
pR4 = map-poly Re p4 ; pI4 = map-poly Im p4 ; gc4 = gcd pR4 pI4

in
(changes-alt-itv-smods 0 1 (pR1 div gc1 ) (pI1 div gc1 )

+ changes-alt-itv-smods 0 1 (pR2 div gc2 ) (pI2 div gc2 )
+ changes-alt-itv-smods 0 1 (pR3 div gc3 ) (pI3 div gc3 )
+ changes-alt-itv-smods 0 1 (pR4 div gc4 ) (pI4 div gc4 )
) / 2 ) (is ?L=?R)

proof −
have cindexP-pathE p (rectpath lb ub) =

cindexP-lineE p lb (Complex (Re ub) (Im lb))
+ cindexP-lineE (p) (Complex (Re ub) (Im lb)) ub
+ cindexP-lineE (p) ub (Complex (Re lb) (Im ub))
+ cindexP-lineE (p) (Complex (Re lb) (Im ub)) lb

unfolding rectpath-def Let-def cindexP-lineE-def
by ((subst cindex-poly-pathE-joinpaths

|subst finite-ReZ-segments-joinpaths
|intro path-poly-comp conjI );

(simp add:poly-linepath-comp finite-ReZ-segments-poly-of-real path-compose-join

pathfinish-compose pathstart-compose poly-pcompose)?)+
also have ... = ?R

apply (subst (1 2 3 4 )cindexP-lineE-changes)
subgoal using assms(3 ) not-rect-vanishing-def by fastforce
subgoal by (smt (verit) assms(2 ) complex.sel(2 ))
subgoal by (metis assms(1 ) complex.sel(1 ) order-less-irrefl)
subgoal by (smt (verit) assms(2 ) complex.sel(2 ))
subgoal by (metis assms(1 ) complex.sel(1 ) order-less-irrefl)
subgoal unfolding Let-def by (simp-all add:Complex-minus-eq)
done

finally show ?thesis .
qed

lemma open-segment-Im-equal:
assumes Re x 6= Re y Im x=Im y
shows open-segment x y = {z. Im z = Im x

∧ Re z ∈ open-segment (Re x) (Re y)}
proof −

have open-segment x y = (λu. (1 − u) ∗R x + u ∗R y) ‘ {0<..<1}
unfolding open-segment-image-interval
using assms by auto
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also have ... = (λu. Complex (Re x + u ∗ (Re y − Re x))
(Im y)) ‘ {0<..<1}

apply (subst (1 2 3 4 ) complex-surj[symmetric])
using assms by (simp add:scaleR-conv-of-real algebra-simps)

also have ... = {z. Im z = Im x ∧ Re z ∈ open-segment (Re x) (Re y)}
proof −

have Re x + u ∗ (Re y − Re x) ∈ open-segment (Re x) (Re y)
if Re x 6= Re y Im x = Im y 0 < u u < 1 for u

proof −
define yx where yx = Re y − Re x
have Re y = yx + Re x yx >0 ∨ yx<0

unfolding yx-def using that by auto
then show ?thesis

unfolding open-segment-eq-real-ivl
using that mult-pos-neg by auto

qed
moreover have z ∈ (λxa. Complex (Re x + xa ∗ (Re y − Re x)) (Im y))

‘ {0<..<1}
if Im x = Im y Im z = Im y Re z ∈ open-segment (Re x) (Re y) for z
apply (rule rev-image-eqI [of (Re z − Re x)/(Re y − Re x)])
subgoal

using that unfolding open-segment-eq-real-ivl
by (auto simp:divide-simps)

subgoal using ‹Re x 6= Re y› complex-eq-iff that(2 ) by auto
done

ultimately show ?thesis using assms by auto
qed
finally show ?thesis .

qed

lemma open-segment-Re-equal:
assumes Re x = Re y Im x 6=Im y
shows open-segment x y = {z. Re z = Re x

∧ Im z ∈ open-segment (Im x) (Im y)}
proof −

have open-segment x y = (λu. (1 − u) ∗R x + u ∗R y) ‘ {0<..<1}
unfolding open-segment-image-interval
using assms by auto

also have ... = (λu. Complex (Re y) (Im x + u ∗ (Im y − Im x))
) ‘ {0<..<1}

apply (subst (1 2 3 4 ) complex-surj[symmetric])
using assms by (simp add:scaleR-conv-of-real algebra-simps)

also have ... = {z. Re z = Re x ∧ Im z ∈ open-segment (Im x) (Im y)}
proof −

have Im x + u ∗ (Im y − Im x) ∈ open-segment (Im x) (Im y)
if Im x 6= Im y Re x = Re y 0 < u u < 1 for u

proof −
define yx where yx = Im y − Im x
have Im y = yx + Im x yx >0 ∨ yx<0
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unfolding yx-def using that by auto
then show ?thesis

unfolding open-segment-eq-real-ivl
using that mult-pos-neg by auto

qed
moreover have z ∈ (λxa. Complex (Re y) (Im x + xa ∗ (Im y − Im x)) )

‘ {0<..<1}
if Re x = Re y Re z = Re y Im z ∈ open-segment (Im x) (Im y) for z
apply (rule rev-image-eqI [of (Im z − Im x)/(Im y − Im x)])
subgoal

using that unfolding open-segment-eq-real-ivl
by (auto simp:divide-simps)

subgoal using ‹Im x 6= Im y› complex-eq-iff that(2 ) by auto
done

ultimately show ?thesis using assms by auto
qed
finally show ?thesis .

qed

lemma Complex-eq-iff :
x = Complex y z ←→ Re x = y ∧ Im x = z
Complex y z = x ←→ Re x = y ∧ Im x = z
by auto

lemma proots-rect-border-eq-lines:
fixes p::complex poly and lb ub::complex
assumes ab-le:Re lb < Re ub Im lb < Im ub

and not-van:not-rect-vanishing p lb ub
shows proots-rect-border p lb ub =

proots-line p lb (Complex (Re ub) (Im lb))
+ proots-line p (Complex (Re ub) (Im lb)) ub
+ proots-line p ub (Complex (Re lb) (Im ub))
+ proots-line p (Complex (Re lb) (Im ub)) lb

proof −
have p 6=0

using not-rect-vanishing-def not-van order-root by blast

define l1 l2 l3 l4 where l1 = open-segment lb (Complex (Re ub) (Im lb))
and l2 = open-segment (Complex (Re ub) (Im lb)) ub
and l3 = open-segment ub (Complex (Re lb) (Im ub))
and l4 = open-segment (Complex (Re lb) (Im ub)) lb

have ll-eq:
l1 = {z. Im z ∈ {Im lb} ∧ Re z ∈ {Re lb<..<Re ub}}
l2 = {z. Re z ∈ {Re ub} ∧ Im z ∈ {Im lb<..<Im ub}}
l3 = {z. Im z ∈ {Im ub} ∧ Re z ∈ {Re lb<..<Re ub}}
l4 = {z. Re z ∈ {Re lb} ∧ Im z ∈ {Im lb<..<Im ub}}
subgoal unfolding l1-def

apply (subst open-segment-Im-equal)
using assms unfolding open-segment-eq-real-ivl by auto
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subgoal unfolding l2-def
apply (subst open-segment-Re-equal)
using assms unfolding open-segment-eq-real-ivl by auto

subgoal unfolding l3-def
apply (subst open-segment-Im-equal)
using assms unfolding open-segment-eq-real-ivl by auto

subgoal unfolding l4-def
apply (subst open-segment-Re-equal)
using assms unfolding open-segment-eq-real-ivl by auto

done

have ll-disj: l1 ∩ l2 = {} l1 ∩ l3 = {} l1 ∩ l4 = {}
l2 ∩ l3 = {} l2 ∩ l4 = {} l3 ∩ l4 = {}

using assms unfolding ll-eq by auto

have proots-rect-border p lb ub = proots-count p
({z. Re z ∈ {Re lb, Re ub} ∧ Im z ∈ {Im lb..Im ub}} ∪
{z. Im z ∈ {Im lb, Im ub} ∧ Re z ∈ {Re lb..Re ub}})

unfolding proots-rect-border-def
apply (subst path-image-rectpath)
using assms(1 ,2 ) by auto

also have ... = proots-count p
({z. Re z ∈ {Re lb, Re ub} ∧ Im z ∈ {Im lb<..<Im ub}} ∪
{z. Im z ∈ {Im lb, Im ub} ∧ Re z ∈ {Re lb<..<Re ub}}
∪ {lb,Complex (Re ub) (Im lb), ub,Complex (Re lb) (Im ub)})

apply (rule arg-cong2 [where f=proots-count])
unfolding not-rect-vanishing-def using assms(1 ,2 ) complex.exhaust-sel
by (auto simp add:order .order-iff-strict intro:complex-eqI )

also have ... = proots-count p
({z. Re z ∈ {Re lb, Re ub} ∧ Im z ∈ {Im lb<..<Im ub}} ∪
{z. Im z ∈ {Im lb, Im ub} ∧ Re z ∈ {Re lb<..<Re ub}})
+ proots-count p
({lb,Complex (Re ub) (Im lb), ub,Complex (Re lb) (Im ub)})

apply (subst proots-count-union-disjoint)
using ‹p 6=0 › by auto

also have ... = proots-count p
({z. Re z ∈ {Re lb, Re ub} ∧ Im z ∈ {Im lb<..<Im ub}} ∪
{z. Im z ∈ {Im lb, Im ub} ∧ Re z ∈ {Re lb<..<Re ub}})

proof −
have proots-count p

({lb,Complex (Re ub) (Im lb), ub,Complex (Re lb) (Im ub)}) = 0
apply (rule proots-count-nzero)
using not-van unfolding not-rect-vanishing-def by auto

then show ?thesis by auto
qed
also have ... = proots-count p (l1 ∪ l2 ∪ l3 ∪ l4 )

apply (rule arg-cong2 [where f=proots-count])
unfolding ll-eq by auto

also have ... = proots-count p l1
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+ proots-count p l2
+ proots-count p l3
+ proots-count p l4

using ll-disj ‹p 6=0 ›
by (subst proots-count-union-disjoint;

(simp add:Int-Un-distrib Int-Un-distrib2 )?)+
also have ... = proots-line p lb (Complex (Re ub) (Im lb))

+ proots-line p (Complex (Re ub) (Im lb)) ub
+ proots-line p ub (Complex (Re lb) (Im ub))
+ proots-line p (Complex (Re lb) (Im ub)) lb

unfolding proots-line-def l1-def l2-def l3-def l4-def by simp-all
finally show ?thesis .

qed

lemma proots-rect-border-smods:
fixes p::complex poly and lb ub::complex
assumes ab-le:Re lb < Re ub Im lb < Im ub

and not-van:not-rect-vanishing p lb ub
shows proots-rect-border p lb ub =

(let p1 = pcompose p [:lb, Complex (Re ub − Re lb) 0 :];
pR1 = map-poly Re p1 ; pI1 = map-poly Im p1 ; gc1 = gcd pR1 pI1 ;
p2 = pcompose p [:Complex (Re ub) (Im lb), Complex 0 (Im ub − Im

lb):];
pR2 = map-poly Re p2 ; pI2 = map-poly Im p2 ; gc2 = gcd pR2 pI2 ;
p3 = pcompose p [:ub, Complex (Re lb − Re ub) 0 :];
pR3 = map-poly Re p3 ; pI3 = map-poly Im p3 ; gc3 = gcd pR3 pI3 ;
p4 = pcompose p [:Complex (Re lb) (Im ub), Complex 0 (Im lb − Im

ub):];
pR4 = map-poly Re p4 ; pI4 = map-poly Im p4 ; gc4 = gcd pR4 pI4

in
nat (changes-itv-smods-ext 0 1 gc1 (pderiv gc1 )

+ changes-itv-smods-ext 0 1 gc2 (pderiv gc2 )
+ changes-itv-smods-ext 0 1 gc3 (pderiv gc3 )
+ changes-itv-smods-ext 0 1 gc4 (pderiv gc4 )
) ) (is ?L=?R)

proof −
have proots-rect-border p lb ub = proots-line p lb (Complex (Re ub) (Im lb))

+ proots-line p (Complex (Re ub) (Im lb)) ub
+ proots-line p ub (Complex (Re lb) (Im ub))
+ proots-line p (Complex (Re lb) (Im ub)) lb

apply (rule proots-rect-border-eq-lines)
by fact+

also have ... = ?R
proof −

define p1 pR1 pI1 gc1 C1 where pp1 :
p1 = pcompose p [:lb, Complex (Re ub − Re lb) 0 :]
pR1 = map-poly Re p1
pI1 = map-poly Im p1
gc1 = gcd pR1 pI1
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and
C1=changes-itv-smods-ext 0 1 gc1 (pderiv gc1 )

define p2 pR2 pI2 gc2 C2 where pp2 :
p2 = pcompose p [:Complex (Re ub) (Im lb), Complex 0 (Im ub − Im lb):]
pR2 = map-poly Re p2
pI2 = map-poly Im p2
gc2 = gcd pR2 pI2
and
C2=changes-itv-smods-ext 0 1 gc2 (pderiv gc2 )

define p3 pR3 pI3 gc3 C3 where pp3 :
p3 =pcompose p [:ub, Complex (Re lb − Re ub) 0 :]
pR3 = map-poly Re p3
pI3 = map-poly Im p3
gc3 = gcd pR3 pI3
and
C3=changes-itv-smods-ext 0 1 gc3 (pderiv gc3 )

define p4 pR4 pI4 gc4 C4 where pp4 :
p4 = pcompose p [:Complex (Re lb) (Im ub), Complex 0 (Im lb − Im ub):]
pR4 = map-poly Re p4
pI4 = map-poly Im p4
gc4 = gcd pR4 pI4
and
C4=changes-itv-smods-ext 0 1 gc4 (pderiv gc4 )

have poly gc1 0 6=0 poly gc1 1 6=0
poly gc2 0 6=0 poly gc2 1 6=0
poly gc3 0 6=0 poly gc3 1 6=0
poly gc4 0 6=0 poly gc4 1 6=0

unfolding pp1 pp2 pp3 pp4 poly-gcd-0-iff
using not-van[unfolded not-rect-vanishing-def ]
by (simp flip:Re-poly-of-real Im-poly-of-real add:poly-pcompose

; simp add: Complex-eq-iff zero-complex.code plus-complex.code)+

have proots-line p lb (Complex (Re ub) (Im lb)) = nat C1
apply (subst proots-line-smods)
using not-van assms(1 ,2 )
unfolding not-rect-vanishing-def C1-def pp1 Let-def
by (simp-all add:Complex-eq-iff Complex-minus-eq)

moreover have proots-line p (Complex (Re ub) (Im lb)) ub = nat C2
apply (subst proots-line-smods)
using not-van assms(1 ,2 )
unfolding not-rect-vanishing-def C2-def pp2 Let-def
by (simp-all add:Complex-eq-iff Complex-minus-eq)

moreover have proots-line p ub (Complex (Re lb) (Im ub)) = nat C3
apply (subst proots-line-smods)
using not-van assms(1 ,2 )
unfolding not-rect-vanishing-def C3-def pp3 Let-def
by (simp-all add:Complex-eq-iff Complex-minus-eq)

moreover have proots-line p (Complex (Re lb) (Im ub)) lb = nat C4
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apply (subst proots-line-smods)
using not-van assms(1 ,2 )
unfolding not-rect-vanishing-def C4-def pp4 Let-def
by (simp-all add:Complex-eq-iff Complex-minus-eq)

moreover have C1 ≥0 C2 ≥0 C3 ≥0 C4≥0
unfolding C1-def C2-def C3-def C4-def
by (rule changes-itv-smods-ext-geq-0 ;(fact|simp))+

ultimately have proots-line p lb (Complex (Re ub) (Im lb))
+ proots-line p (Complex (Re ub) (Im lb)) ub
+ proots-line p ub (Complex (Re lb) (Im ub))
+ proots-line p (Complex (Re lb) (Im ub)) lb
= nat (C1+C2+C3+C4 )

by linarith
also have ... = ?R

unfolding C1-def C2-def C3-def C4-def pp1 pp2 pp3 pp4 Let-def
by simp

finally show ?thesis .
qed
finally show ?thesis .

qed

lemma proots-rect-smods:
assumes Re lb < Re ub Im lb < Im ub

and not-van:not-rect-vanishing p lb ub
shows proots-rect p lb ub = (

let p1 = pcompose p [:lb, Complex (Re ub − Re lb) 0 :];
pR1 = map-poly Re p1 ; pI1 = map-poly Im p1 ; gc1 = gcd pR1 pI1 ;
p2 = pcompose p [:Complex (Re ub) (Im lb), Complex 0 (Im ub − Im

lb):];
pR2 = map-poly Re p2 ; pI2 = map-poly Im p2 ; gc2 = gcd pR2 pI2 ;
p3 = pcompose p [:ub, Complex (Re lb − Re ub) 0 :];
pR3 = map-poly Re p3 ; pI3 = map-poly Im p3 ; gc3 = gcd pR3 pI3 ;
p4 = pcompose p [:Complex (Re lb) (Im ub), Complex 0 (Im lb − Im

ub):];
pR4 = map-poly Re p4 ; pI4 = map-poly Im p4 ; gc4 = gcd pR4 pI4

in
nat (− (changes-alt-itv-smods 0 1 (pR1 div gc1 ) (pI1 div gc1 )
+ changes-alt-itv-smods 0 1 (pR2 div gc2 ) (pI2 div gc2 )
+ changes-alt-itv-smods 0 1 (pR3 div gc3 ) (pI3 div gc3 )
+ changes-alt-itv-smods 0 1 (pR4 div gc4 ) (pI4 div gc4 )
+ 2∗changes-itv-smods-ext 0 1 gc1 (pderiv gc1 )
+ 2∗changes-itv-smods-ext 0 1 gc2 (pderiv gc2 )
+ 2∗changes-itv-smods-ext 0 1 gc3 (pderiv gc3 )
+ 2∗changes-itv-smods-ext 0 1 gc4 (pderiv gc4 )) div 4 )

)
proof −

define p1 pR1 pI1 gc1 C1 D1 where pp1 :
p1 = pcompose p [:lb, Complex (Re ub − Re lb) 0 :]
pR1 = map-poly Re p1
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pI1 = map-poly Im p1
gc1 = gcd pR1 pI1

and C1=changes-itv-smods-ext 0 1 gc1 (pderiv gc1 )
and D1=changes-alt-itv-smods 0 1 (pR1 div gc1 ) (pI1 div gc1 )

define p2 pR2 pI2 gc2 C2 D2 where pp2 :
p2 = pcompose p [:Complex (Re ub) (Im lb), Complex 0 (Im ub − Im lb):]
pR2 = map-poly Re p2
pI2 = map-poly Im p2
gc2 = gcd pR2 pI2

and C2=changes-itv-smods-ext 0 1 gc2 (pderiv gc2 )
and D2=changes-alt-itv-smods 0 1 (pR2 div gc2 ) (pI2 div gc2 )

define p3 pR3 pI3 gc3 C3 D3 where pp3 :
p3 =pcompose p [:ub, Complex (Re lb − Re ub) 0 :]
pR3 = map-poly Re p3
pI3 = map-poly Im p3
gc3 = gcd pR3 pI3

and C3=changes-itv-smods-ext 0 1 gc3 (pderiv gc3 )
and D3=changes-alt-itv-smods 0 1 (pR3 div gc3 ) (pI3 div gc3 )

define p4 pR4 pI4 gc4 C4 D4 where pp4 :
p4 = pcompose p [:Complex (Re lb) (Im ub), Complex 0 (Im lb − Im ub):]
pR4 = map-poly Re p4
pI4 = map-poly Im p4
gc4 = gcd pR4 pI4

and C4=changes-itv-smods-ext 0 1 gc4 (pderiv gc4 )
and D4=changes-alt-itv-smods 0 1 (pR4 div gc4 ) (pI4 div gc4 )

have poly gc1 0 6=0 poly gc1 1 6=0
poly gc2 0 6=0 poly gc2 1 6=0
poly gc3 0 6=0 poly gc3 1 6=0
poly gc4 0 6=0 poly gc4 1 6=0

unfolding pp1 pp2 pp3 pp4 poly-gcd-0-iff
using not-van[unfolded not-rect-vanishing-def ]
by (simp flip:Re-poly-of-real Im-poly-of-real add:poly-pcompose

; simp add: Complex-eq-iff zero-complex.code plus-complex.code)+
have C1≥0 C2≥0 C3≥0 C4≥0

unfolding C1-def C2-def C3-def C4-def
by (rule changes-itv-smods-ext-geq-0 ;(fact|simp))+

define CC DD where CC=C1 + C2 + C3 + C4
and DD=D1 + D2 + D3 + D4

have real (proots-rect p lb ub) = − (real (proots-rect-border p lb ub)
+ cindexP-pathE p (rectpath lb ub)) / 2

apply (rule proots-rect-cindexP-pathE)
by fact+

also have ... = −(nat CC + DD / 2 ) / 2
proof −

have proots-rect-border p lb ub = nat CC
apply (rule proots-rect-border-smods[

of lb ub p,
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unfolded Let-def ,
folded pp1 pp2 pp3 pp4 ,
folded C1-def C2-def C3-def C4-def ,
folded CC-def ])

by fact+
moreover have cindexP-pathE p (rectpath lb ub) = (real-of-int DD) / 2

apply (rule cindexP-pathE-rect-smods[
of lb ub p,
unfolded Let-def ,
folded pp1 pp2 pp3 pp4 ,
folded D1-def D2-def D3-def D4-def ,
folded DD-def ])

by fact+
ultimately show ?thesis by auto

qed
also have ... = − (DD + 2∗CC ) /4

by (simp add: CC-def ‹0 ≤ C1 › ‹0 ≤ C2 › ‹0 ≤ C3 › ‹0 ≤ C4 ›)
finally have real (proots-rect p lb ub)

= real-of-int (− (DD + 2 ∗ CC )) / 4 .
then have proots-rect p lb ub = nat (− (DD + 2 ∗ CC ) div 4 )

by simp
then show ?thesis unfolding Let-def

apply (fold pp1 pp2 pp3 pp4 )
apply (fold C1-def C2-def C3-def C4-def D1-def D2-def D3-def D4-def )
by (simp add:CC-def DD-def )

qed

lemma proots-rect-code[code]:
proots-rect p lb ub =

(if Re lb < Re ub ∧ Im lb < Im ub then
if not-rect-vanishing p lb ub then
(
let p1 = pcompose p [:lb, Complex (Re ub − Re lb) 0 :];

pR1 = map-poly Re p1 ; pI1 = map-poly Im p1 ; gc1 = gcd pR1 pI1 ;
p2 = pcompose p [:Complex (Re ub) (Im lb), Complex 0 (Im ub − Im

lb):];
pR2 = map-poly Re p2 ; pI2 = map-poly Im p2 ; gc2 = gcd pR2 pI2 ;
p3 = pcompose p [:ub, Complex (Re lb − Re ub) 0 :];
pR3 = map-poly Re p3 ; pI3 = map-poly Im p3 ; gc3 = gcd pR3 pI3 ;
p4 = pcompose p [:Complex (Re lb) (Im ub), Complex 0 (Im lb − Im

ub):];
pR4 = map-poly Re p4 ; pI4 = map-poly Im p4 ; gc4 = gcd pR4 pI4

in
nat (− (changes-alt-itv-smods 0 1 (pR1 div gc1 ) (pI1 div gc1 )
+ changes-alt-itv-smods 0 1 (pR2 div gc2 ) (pI2 div gc2 )
+ changes-alt-itv-smods 0 1 (pR3 div gc3 ) (pI3 div gc3 )
+ changes-alt-itv-smods 0 1 (pR4 div gc4 ) (pI4 div gc4 )
+ 2∗changes-itv-smods-ext 0 1 gc1 (pderiv gc1 )
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+ 2∗changes-itv-smods-ext 0 1 gc2 (pderiv gc2 )
+ 2∗changes-itv-smods-ext 0 1 gc3 (pderiv gc3 )
+ 2∗changes-itv-smods-ext 0 1 gc4 (pderiv gc4 )) div 4 )

)
else Code.abort (STR ′′proots-rect: the polynomial should not vanish

at the four vertices for now ′′) (λ-. proots-rect p lb ub)
else 0 )

proof (cases Re lb < Re ub ∧ Im lb < Im ub ∧ not-rect-vanishing p lb ub)
case False
have ?thesis if ¬ (Re lb < Re ub) ∨ ¬ ( Im lb < Im ub)
proof −

have box lb ub = {} using that by (metis complex-box-ne-empty(2 ))
then show ?thesis

unfolding proots-rect-def
using proots-count-emtpy that by fastforce

qed
then show ?thesis using False by auto

next
case True
then show ?thesis

apply (subst proots-rect-smods)
unfolding Let-def by simp-all

qed

lemma proots-rect-ll-rect:
assumes Re lb < Re ub Im lb < Im ub

and not-van:not-rect-vanishing p lb ub
shows proots-rect-ll p lb ub = proots-rect p lb ub

+ proots-line p lb (Complex (Re ub) (Im lb))
+ proots-line p lb (Complex (Re lb) (Im ub))

proof −
have p 6=0

using not-rect-vanishing-def not-van order-root by blast

define l1 l4 where l1 = open-segment lb (Complex (Re ub) (Im lb))
and l4 = open-segment lb (Complex (Re lb) (Im ub))

have ll-eq:
l1 = {z. Im z ∈ {Im lb} ∧ Re z ∈ {Re lb<..<Re ub}}
l4 = {z. Re z ∈ {Re lb} ∧ Im z ∈ {Im lb<..<Im ub}}
subgoal unfolding l1-def

apply (subst open-segment-Im-equal)
using assms unfolding open-segment-eq-real-ivl by auto

subgoal unfolding l4-def
apply (subst open-segment-Re-equal)
using assms unfolding open-segment-eq-real-ivl by auto

done

have ll-disj: l1 ∩ l4 = {} box lb ub ∩ {lb} = {}

177



box lb ub ∩ l1 = {} box lb ub ∩ l4 = {}
l1 ∩ {lb} = {} l4 ∩ {lb} = {}
using assms unfolding ll-eq
by (auto simp:in-box-complex-iff )

have proots-rect-ll p lb ub = proots-count p (box lb ub)
+ proots-count p {lb}
+ proots-count p l1
+ proots-count p l4

unfolding proots-rect-ll-def using ll-disj ‹p 6=0 ›
apply (fold l1-def l4-def )
by (subst proots-count-union-disjoint

;(simp add:Int-Un-distrib Int-Un-distrib2 del: Un-insert-right)?)+
also have ... = proots-rect p lb ub

+ proots-line p lb (Complex (Re ub) (Im lb))
+ proots-line p lb (Complex (Re lb) (Im ub))

proof −
have proots-count p {lb} = 0

by (metis not-rect-vanishing-def not-van proots-count-nzero singleton-iff )
then show ?thesis

unfolding proots-rect-def l1-def l4-def proots-line-def by simp
qed
finally show ?thesis .

qed

lemma proots-rect-ll-smods:
assumes Re lb < Re ub Im lb < Im ub

and not-van:not-rect-vanishing p lb ub
shows proots-rect-ll p lb ub = (

let p1 = pcompose p [:lb, Complex (Re ub − Re lb) 0 :];
pR1 = map-poly Re p1 ; pI1 = map-poly Im p1 ; gc1 = gcd pR1 pI1 ;
p2 = pcompose p [:Complex (Re ub) (Im lb), Complex 0 (Im ub − Im

lb):];
pR2 = map-poly Re p2 ; pI2 = map-poly Im p2 ; gc2 = gcd pR2 pI2 ;
p3 = pcompose p [:ub, Complex (Re lb − Re ub) 0 :];
pR3 = map-poly Re p3 ; pI3 = map-poly Im p3 ; gc3 = gcd pR3 pI3 ;
p4 = pcompose p [:Complex (Re lb) (Im ub), Complex 0 (Im lb − Im

ub):];
pR4 = map-poly Re p4 ; pI4 = map-poly Im p4 ; gc4 = gcd pR4 pI4

in
nat (− (changes-alt-itv-smods 0 1 (pR1 div gc1 ) (pI1 div gc1 )
+ changes-alt-itv-smods 0 1 (pR2 div gc2 ) (pI2 div gc2 )
+ changes-alt-itv-smods 0 1 (pR3 div gc3 ) (pI3 div gc3 )
+ changes-alt-itv-smods 0 1 (pR4 div gc4 ) (pI4 div gc4 )
− 2∗changes-itv-smods-ext 0 1 gc1 (pderiv gc1 )
+ 2∗changes-itv-smods-ext 0 1 gc2 (pderiv gc2 )
+ 2∗changes-itv-smods-ext 0 1 gc3 (pderiv gc3 )
− 2∗changes-itv-smods-ext 0 1 gc4 (pderiv gc4 )) div 4 ))

proof −

178



have p 6=0
using not-rect-vanishing-def not-van order-root by blast

define l1 l4 where l1 = open-segment lb (Complex (Re ub) (Im lb))
and l4 = open-segment lb (Complex (Re lb) (Im ub))

have l4-alt:l4 = open-segment (Complex (Re lb) (Im ub)) lb
unfolding l4-def by (simp add: open-segment-commute)

have ll-eq:
l1 = {z. Im z ∈ {Im lb} ∧ Re z ∈ {Re lb<..<Re ub}}
l4 = {z. Re z ∈ {Re lb} ∧ Im z ∈ {Im lb<..<Im ub}}
subgoal unfolding l1-def

apply (subst open-segment-Im-equal)
using assms unfolding open-segment-eq-real-ivl by auto

subgoal unfolding l4-def
apply (subst open-segment-Re-equal)
using assms unfolding open-segment-eq-real-ivl by auto

done

have ll-disj: l1 ∩ l4 = {} box lb ub ∩ {lb} = {}
box lb ub ∩ l1 = {} box lb ub ∩ l4 = {}
l1 ∩ {lb} = {} l4 ∩ {lb} = {}
using assms unfolding ll-eq
by (auto simp:in-box-complex-iff )

define p1 pR1 pI1 gc1 C1 D1 where pp1 :
p1 = pcompose p [:lb, Complex (Re ub − Re lb) 0 :]
pR1 = map-poly Re p1
pI1 = map-poly Im p1
gc1 = gcd pR1 pI1

and C1=changes-itv-smods-ext 0 1 gc1 (pderiv gc1 )
and D1=changes-alt-itv-smods 0 1 (pR1 div gc1 ) (pI1 div gc1 )

define p2 pR2 pI2 gc2 C2 D2 where pp2 :
p2 = pcompose p [:Complex (Re ub) (Im lb), Complex 0 (Im ub − Im lb):]
pR2 = map-poly Re p2
pI2 = map-poly Im p2
gc2 = gcd pR2 pI2

and C2=changes-itv-smods-ext 0 1 gc2 (pderiv gc2 )
and D2=changes-alt-itv-smods 0 1 (pR2 div gc2 ) (pI2 div gc2 )

define p3 pR3 pI3 gc3 C3 D3 where pp3 :
p3 =pcompose p [:ub, Complex (Re lb − Re ub) 0 :]
pR3 = map-poly Re p3
pI3 = map-poly Im p3
gc3 = gcd pR3 pI3

and C3=changes-itv-smods-ext 0 1 gc3 (pderiv gc3 )
and D3=changes-alt-itv-smods 0 1 (pR3 div gc3 ) (pI3 div gc3 )

define p4 pR4 pI4 gc4 C4 D4 where pp4 :
p4 = pcompose p [:Complex (Re lb) (Im ub), Complex 0 (Im lb − Im ub):]
pR4 = map-poly Re p4
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pI4 = map-poly Im p4
gc4 = gcd pR4 pI4

and C4=changes-itv-smods-ext 0 1 gc4 (pderiv gc4 )
and D4=changes-alt-itv-smods 0 1 (pR4 div gc4 ) (pI4 div gc4 )

have poly gc1 0 6=0 poly gc1 1 6=0
poly gc2 0 6=0 poly gc2 1 6=0
poly gc3 0 6=0 poly gc3 1 6=0
poly gc4 0 6=0 poly gc4 1 6=0

unfolding pp1 pp2 pp3 pp4 poly-gcd-0-iff
using not-van[unfolded not-rect-vanishing-def ]
by (simp flip:Re-poly-of-real Im-poly-of-real add:poly-pcompose

; simp add: Complex-eq-iff zero-complex.code plus-complex.code)+
have CC-pos:C1≥0 C2≥0 C3≥0 C4≥0

unfolding C1-def C2-def C3-def C4-def
by (rule changes-itv-smods-ext-geq-0 ;(fact|simp))+

define CC DD where CC= C2 + C3 − C4 − C1
and DD=D1 + D2 + D3 + D4

define p1 p2 p3 p4 where pp:p1=proots-line p lb (Complex (Re ub) (Im lb))
p2 = proots-line p (Complex (Re ub) (Im lb)) ub
p3 = proots-line p ub (Complex (Re lb) (Im ub))
p4 = proots-line p (Complex (Re lb) (Im ub)) lb

have p4-alt:p4 = proots-line p lb (Complex (Re lb) (Im ub))
unfolding pp by (simp add: proots-line-commute)

have real (proots-rect-ll p lb ub) = real (proots-rect p lb ub) + p1 + p4
unfolding pp by (simp add: proots-rect-ll-rect[OF assms] proots-line-commute)

also have ... = (p1 + p4 − real p2 − real p3 − cindexP-pathE p (rectpath lb
ub)) / 2

proof −
have real (proots-rect p lb ub) = − (real (proots-rect-border p lb ub)

+ cindexP-pathE p (rectpath lb ub)) / 2
apply (rule proots-rect-cindexP-pathE)
by fact+

also have ... = − (p1 + p2 + p3 + p4 + cindexP-pathE p (rectpath lb ub)) /
2

using proots-rect-border-eq-lines[OF assms,folded pp] by simp
finally have real (proots-rect p lb ub) =

− (real (p1 + p2 + p3 + p4 )
+ cindexP-pathE p (rectpath lb ub)) / 2 .

then show ?thesis by auto
qed
also have ... = (nat C1 + nat C4 − real (nat C2 ) − real (nat C3 )

− ((real-of-int DD) / 2 )) / 2
proof −

have p1 = nat C1 p2 = nat C2 p3 = nat C3 p4 = nat C4
using not-van[unfolded not-rect-vanishing-def ] assms(1 ,2 )
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unfolding pp C1-def pp1 C2-def pp2 C3-def pp3 C4-def pp4
by (subst proots-line-smods

;simp-all add:Complex-eq-iff Let-def Complex-minus-eq)+
moreover have cindexP-pathE p (rectpath lb ub) = (real-of-int DD) / 2

apply (rule cindexP-pathE-rect-smods[
of lb ub p,
unfolded Let-def ,
folded pp1 pp2 pp3 pp4 ,
folded D1-def D2-def D3-def D4-def ,
folded DD-def ])

by fact+
ultimately show ?thesis by presburger

qed
also have ... = −(DD + 2∗CC ) / 4
unfolding CC-def using CC-pos by (auto simp add:divide-simps algebra-simps)

finally have real (proots-rect-ll p lb ub)
= real-of-int (− (DD + 2 ∗ CC )) / 4 .

then have proots-rect-ll p lb ub
= nat (− (DD + 2 ∗ CC ) div 4 )

by simp
then show ?thesis

unfolding Let-def
apply (fold pp1 pp2 pp3 pp4 )
apply (fold C1-def C2-def C3-def C4-def D1-def D2-def D3-def D4-def )
by (simp add:CC-def DD-def )

qed

lemma proots-rect-ll-code[code]:
proots-rect-ll p lb ub =

(if Re lb < Re ub ∧ Im lb < Im ub then
if not-rect-vanishing p lb ub then
(
let p1 = pcompose p [:lb, Complex (Re ub − Re lb) 0 :];

pR1 = map-poly Re p1 ; pI1 = map-poly Im p1 ; gc1 = gcd pR1 pI1 ;
p2 = pcompose p [:Complex (Re ub) (Im lb), Complex 0 (Im ub − Im

lb):];
pR2 = map-poly Re p2 ; pI2 = map-poly Im p2 ; gc2 = gcd pR2 pI2 ;
p3 = pcompose p [:ub, Complex (Re lb − Re ub) 0 :];
pR3 = map-poly Re p3 ; pI3 = map-poly Im p3 ; gc3 = gcd pR3 pI3 ;
p4 = pcompose p [:Complex (Re lb) (Im ub), Complex 0 (Im lb − Im

ub):];
pR4 = map-poly Re p4 ; pI4 = map-poly Im p4 ; gc4 = gcd pR4 pI4

in
nat (− (changes-alt-itv-smods 0 1 (pR1 div gc1 ) (pI1 div gc1 )
+ changes-alt-itv-smods 0 1 (pR2 div gc2 ) (pI2 div gc2 )
+ changes-alt-itv-smods 0 1 (pR3 div gc3 ) (pI3 div gc3 )
+ changes-alt-itv-smods 0 1 (pR4 div gc4 ) (pI4 div gc4 )
− 2∗changes-itv-smods-ext 0 1 gc1 (pderiv gc1 )
+ 2∗changes-itv-smods-ext 0 1 gc2 (pderiv gc2 )
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+ 2∗changes-itv-smods-ext 0 1 gc3 (pderiv gc3 )
− 2∗changes-itv-smods-ext 0 1 gc4 (pderiv gc4 )) div 4 )

)
else Code.abort (STR ′′proots-rect-ll: the polynomial should not vanish

at the four vertices for now ′′) (λ-. proots-rect-ll p lb ub)
else Code.abort (STR ′′proots-rect-ll: the box is improper ′′)

(λ-. proots-rect-ll p lb ub))
proof (cases Re lb < Re ub ∧ Im lb < Im ub ∧ not-rect-vanishing p lb ub)

case False
then show ?thesis using False by auto

next
case True
then show ?thesis

apply (subst proots-rect-ll-smods)
unfolding Let-def by simp-all

qed

end

3 Procedures to count the number of complex roots
in various areas

theory Count-Complex-Roots imports
Count-Half-Plane
Count-Line
Count-Circle
Count-Rectangle

begin

end

4 Some examples for complex root counting
theory Count-Complex-Roots-Examples

imports Count-Complex-Roots
begin

value proots-rect [:2∗i,0 ,i:] (Complex (−1 ) 0 ) (Complex 2 2 )

value proots-rect [:−1 ,−2∗i,1 :]
(Complex (−1 ) 0 ) (Complex 2 2 )

value proots-rect-ll [:−1 ,1 :]
(Complex (−1 ) 0 ) (Complex 2 2 )
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value proots-half [:1−i,2−i,1 :]
0 (Complex 0 1 )

value proots-half [:1−i,2−i,1 :] (Complex 0 1 ) 0

value [code] proots-ball ([:−2 ,1 :]∗[:−2 ,1 :]∗[:−3 ,1 :]) 0 4

end
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