A Proof from THE BOOK: The Partial Fraction
Expansion of the Cotangent

Manuel Eberl

March 19, 2025

Abstract

In this article, I formalise a proof from THE BOOK [1, Chapter 23];
namely a formula that was called ‘one of the most beautiful formulas
involving elementary functions’:

I (1 1
t(rz) = —
mcot(mz) z+;(z+n+z—n)

The proof uses Herglotz’s trick to show the real case and analytic
continuation for the complex case.

Contents

1 The Partial-Fraction Formula for the Cotangent Function
1.1 Auxiliary lemmas
1.2 Definition of auxiliary function
1.3 Holomorphicity and continuity
1.4 Functional equations
1.5 Thelimitat 0.
1.6 Finalresult o

1 The Partial-Fraction Formula for the Cotangent
Function

theory Cotangent-PFD-Formula
imports HOL— Complez-Analysis. Complez-Analysis HOL— Real-Asymp. Real-Asymp

begin

1.1 Auxiliary lemmas

lemma uniformly-on-image:
uniformly-on (f ¢ A) g = filtercomap (Ah. h o f) (uniformly-on A (g o f))
unfolding uniformly-on-def by (simp add: filtercomap-INF)

lemma uniform-limit-image:
uniform-limit (f ¢ A) g h F «— uniform-limit A Az y. gz (fy)) Az. h (fz)) F
by (simp add: uniformly-on-image filterlim-filtercomap-iff o-def)

lemma Ints-add-iff! [simpl: c € Z —= 2+ yE€Z +— y € Z
by (metis Ints-add Ints-diff add.commute add-diff-cancel-right’)

lemma Ints-add-iff2 [simp]: y € Z —= z+ yE€Z +— € Z
by (metis Ints-add Ints-diff add-diff-cancel-right’)

If a set is discrete (i.e. the difference between any two points is bounded
from below), it has no limit points:

lemma discrete-imp-not-islimpt:
assumes e: 0 < e
and d:Vz € S.Vye S. distyz<e—y==x
shows —z islimpt S
proof
assume z islimpt S
hence z islimpt S — {z}
by (meson islimpt-punctured)
moreover from assms have closed (S — {z})
by (intro discrete-imp-closed) auto
ultimately show Fulse
unfolding closed-limpt by blast
qed

In particular, the integers have no limit point:

lemma Ints-not-limpt: —~((x :: 'a :: real-normed-algebra-1) islimpt Z.)

by (rule discrete-imp-not-islimpt[of 1]) (auto elim!: Ints-cases simp: dist-of-int)
The following lemma allows evaluating telescoping sums of the form

o0

S (f(n) - F(n+k))

n=0

where f(n) — 0, i.e. where all terms except for the first k£ are cancelled by
later summands.

lemma sums-long-telescope:
fixes f :: nat = 'a :: {topological-group-add, topological-comm-monoid-add, ab-group-add}
assumes lim: f —— 0
shows (An. fn — f (n 4+ ¢)) sums (3 k<c. fk) (is - sums ¢5)
proof —
thm tendsto-diff
have (AN. 25 — O n<e. f (N +n))) —— 25 — 0
by (intro tendsto-intros tendsto-null-sum filterlim-compose| OF assms]; real-asymp)
hence (AN. 25 — (3> n<ec. f (N + n))) —— 25
by simp
moreover have eventually (AN. 25 — D n<c. f (N + n)) = O_n<N. fn —
f (n+ ¢))) sequentially
using eventually-ge-at-top|of c]
proof eventually-elim
case (elim N)
have (> n<N.fn—f(n+¢) = (O_n<N.fn) — (O n<N.f(n+ c))
by (simp only: sum-subtractf)
also have (> n<N. fn) = >_ne{.<c} U {c.<N}. fn)
using elim by (intro sum.cong) auto
also have ... = (> n<c. fn) + (> ne{c.<N}. fn)
by (subst sum.union-disjoint) auto
also have (D n<N. f (n + ¢)) = (0. ne{c..<N+c}. fn)
using elim by (intro sum.reindex-bij-witness[of - An. n — ¢ An. n + ¢|) auto

also have ... = (}_ ne{c.<N}JU{N..<N+c}. fn)
using elim by (intro sum.cong) auto
also have ... = (D ne{c..<N}. fn) + O ne{N..<N+c}. fn)

by (subst sum.union-disjoint) auto
also have (> ne{N..<N+c}. fn) = (> n<e. f (N + n))
by (intro sum.reindex-bij-witness[of - An. n + N An. n — NJ) auto
finally show ?Zcase
by simp
qed
ultimately show ?thesis
unfolding sums-def by (rule Lim-transform-eventually)
qged

1.2 Definition of auxiliary function

The following function is the infinite sum appearing on the right-hand side
of the cotangent formula. It can be written either as

—(1 1
Z<x+n+x—n>

n=1

> 1

2z —_.
>
n=1

or as

3

definition cot-pfd :: 'a :: {real-normed-field, banach} = 'a where
cot-pfdz = (D n. 2xx / (z =2 — of-nat (Suc n) ~ 2))

The sum in the definition of cot-pfd converges uniformly on compact sets.
This implies, in particular, that cot-pfd is holomorphic (and thus also con-
tinuous).

lemma uniform-limit-cot-pfd-complex:
assumes R > 0
shows uniform-limit (cball 0 R :: compler set)
(ANz. > n<N.2xz /("2 — of-nat (Sucn) ~ 2)) cot-pfd sequentially
unfolding cot-pfd-def
proof (rule Weierstrass-m-test-ev)
have eventually (AN. of-nat (N + 1) > R) at-top
by real-asymp
thus Vg N in sequentially. ¥ (z::complex)€cball 0 R. norm (2 x z [/ (z ~ 2 —
of-nat (Suc N) ~2)) <
2%« R/ (real (N+1) " 2—-R"2)
proof eventually-elim
case (elim N)
show ?Zcase
proof safe
fix x :: compler assume z: x € cball O R
have (1 + real N)*> — R* < norm ((1 + of-nat N :: complez) ~ 2) — norm
(z 7 2)
using z by (auto intro: power-mono simp: norm-power simp flip: of-nat-Suc)
also have ... < norm (z? — (1 + of-nat N :: complez)?)
by (metis norm-minus-commute norm-triangle-ineq2)
finally show norm (2 * = / (2> — (of-nat (Suc N))?)) < 2 * R / (real (N
+1) "2-R "2
unfolding norm-mult norm-divide using <R > 0» = elim
by (intro mult-mono frac-le) (auto intro: power-strict-mono)
qed
qed
next
show summable (AN. 2 x R / (real (N + 1) ~2 — R~ 2))
proof (rule summable-comparison-test-bigo)
show (AN. 2« R / (real (N + 1) "2 — R ~2)) € OOAN. 1/ real N~ 2)
by real-asymp
next
show summable (An. norm (1 / real n ~ 2))
using inverse-power-summable[of 2] by (simp add: field-simps)
qed
qed

lemma sums-cot-pfd-complez:
fixes x :: complex
shows (An. 2 x x / (x ~ 2 — of-nat (Suc n) ~ 2)) sums cot-pfd =
using tendsto-uniform-limitI [OF uniform-limit-cot-pfd-complex[of norm z], of z]
by (simp add: sums-def)

lemma sums-cot-pfd-complezx’-aux:
fixes z :: ‘a :: {banach, real-normed-field, field-char-0}
assumes z ¢ Z — {0}
shows 2«1z /(z ™2 — of-nat (Sucn) ~2) =
1/ (z + of-nat (Suc n)) + 1 / (z — of-nat (Suc n))
proof —
have neql: z + of-nat (Suc n) # 0
using assms by (subst add-eq-0-iff2) (auto simp del: of-nat-Suc)
have neq2: © — of-nat (Suc n) # 0
using assms by (auto simp del: of-nat-Suc)
have neq3: © = 2 — of-nat (Sucn) ~2 # 0
using assms by (auto simp del: of-nat-Suc simp: power2-eq-iff)
show ?thesis using neql neq2 neqs
by (simp add: divide-simps del: of-nat-Suc) (auto simp: power2-eq-square alge-
bra-simps)
qed

lemma sums-cot-pfd-complex’:

fixes = :: complex

assumes z ¢ Z — {0}

shows (An. 1 / (z + of-nat (Suc n)) + 1 / (z — of-nat (Suc n))) sums cot-pfd
x

using sums-cot-pfd-complex|of x| sums-cot-pfd-complex’-auz[OF assms] by simp

lemma summable-cot-pfd-complex:
fixes x :: complex
shows summable (An. 2 x z / (z ~ 2 — of-nat (Suc n) ~ 2))
using sums-cot-pfd-complezx|of z] by (simp add: sums-iff)

lemma summable-cot-pfd-real:
fixes z :: real
shows summable (An. 2 x z / (z ~ 2 — of-nat (Suc n) ~ 2))
proof —
have summable (An. complez-of-real (2 x z / (z ~ 2 — of-nat (Suc n) ~ 2)))
using summable-cot-pfd-complex|of of-real x| by simp
also have ?this +— ?thesis
by (rule summable-of-real-iff)
finally show ?thesis .
qed

lemma sums-cot-pfd-real:
fixes z :: real
shows (An. 2 x ¢ / (z = 2 — of-nat (Suc n) ~ 2)) sums cot-pfd =
using summable-cot-pfd-real]of z] by (simp add: cot-pfd-def sums-iff)

lemma cot-pfd-complex-of-real [simp]: cot-pfd (complex-of-real) = of-real (cot-pfd

z)

using sums-of-real|OF sums-cot-pfd-reallof x|, where ?'a = complex]

sums-cot-pfd-complex|of of-real x| sums-unique2 by auto

lemma uniform-limit-cot-pfd-real:
assumes R > (0
shows uniform-limit (cball 0 R :: real set)
(ANz. > n<N. 2%z / (z 2 — of-nat (Sucn) ~ 2)) cot-pfd sequentially
proof —
have uniform-limit (cball 0 R)
(AN z. Re (3_n<N. 2 xz / (z = 2 — of-nat (Suc n) ~ 2))) (Az. Re
(cot-pfd x)) sequentially
by (intro uniform-limit-intros uniform-limit-cot-pfd-complex assms)
hence uniform-limit (of-real ‘ cball 0 R)
(AN z. Re (O _n<N. 2 xz / (x = 2 — of-nat (Suc n) ~ 2))) (Az. Re
(cot-pfd x)) sequentially
by (rule uniform-limit-on-subset) auto
thus ?thesis
by (simp add: uniform-limit-image)
qed

1.3 Holomorphicity and continuity

lemma has-field-derivative-cot-pfd-complex:
fixes z :: complex
assumes z: z € —(Z—{0})
shows (cot-pfd has-field-derivative (—Polygamma 1 (1 + z) — Polygamma 1
(1 — 2) (at 2)
proof —
define f :: nat = compler = complex
where f = (AN z. > n<N. 2 xz / (x = 2 — of-nat (Suc n) ~ 2))
define f’ :: nat = complex = complex
where f' = (AN z. > n<N. —1/(z + of-nat (Suc n)) =2 — 1/(z — of-nat
(Sucn)) ~2)

have 3¢’ Vze— (Z — {0}). (cot-pfd has-field-derivative ¢’) (at) A (An. f'n
) —— g’z
proof (rule has-complex-derivative-uniform-sequence)
show open (—(Z — {0}) :: complex set)
by (intro open-Compl closed-subset-Ints) auto
next
fix n :: nat and z :: complex
assume z: z € —(Z — {0})
have nz: 22 — (of-nat (Suc n))? # 0 for n
proof
assume 72 — (of-nat (Suc n))? = 0
hence (of-nat (Suc n))? = z?
by algebra
hence z = of-nat (Suc n) V z = —of-nat (Suc n)
by (subst (asm) eq-commute, subst (asm) power2-eq-iff) auto
moreover have (of-nat (Suc n) :: complex) € Z (—of-nat (Suc n) :: complex)

ez
by (intro Ints-minus Ints-of-nat)+
ultimately show Fulse using z
by (auto simp del: of-nat-Suc)
qed

have nzl: z + of-nat (Suc k) # 0 for k

using z by (subst add-eq-0-iff2) (auto simp del: of-nat-Suc)
have nz2: © — of-nat (Suc k) # 0 for k

using = by (auto simp del: of-nat-Suc)

have ((Az. 2 x = / (2? — (of-nat (Suc k))?)) has-field-derivative
— 1/ (z + of-nat (Suc k))?> — 1 / (z — of-nat (Suc k))?) (at z) for k ::
nat
proof —
have ((Az. inverse (z + of-nat (Suc k)) + inverse (x — of-nat (Suc k)))
has-field-derivative
— inverse ((z + of-nat (Suc k)) ~ 2)— inverse ((z — of-nat (Suc k))) ~
2) (at x)
by (rule derivative-eg-intros refl nzl nz2)+ (simp add: power2-eq-square)
also have ?this «+— ?thesis
proof (intro DERIV-cong-ev)
have eventually (At. t € —(Z—{0})) (nhds z) using x
by (intro eventually-nhds-in-open open-Compl closed-subset-Ints) auto
thus eventually (At. inverse (¢t + of-nat (Suc k)) + inverse (t — of-nat (Suc
k) =
2 %t/ (12 — (of-nat (Suc k))?)) (nhds x)
proof eventually-elim
case (elim t)
thus ?case
using sums-cot-pfd-complexr’-auz|of t k] by (auto simp add: field-simps)
ged
qed (auto simp: field-simps)
finally show ?thesis .
qed
thus (f n has-field-derivative f' n x) (at)
unfolding f-def f’-def by (intro DERIV-sum,)
next
fix x :: compler assume x: T € —(Z—{0})
have open (—(Z—{0}) :: complex set)
by (intro open-Compl closed-subset-Ints) auto
then obtain r where r: r > 0 cball x r C —(Z—{0})
using z open-contains-cball by blast

have uniform-limit (cball x 1) f cot-pfd sequentially
using uniform-limit-cot-pfd-complex[of norm z + r] unfolding f-def
proof (rule uniform-limit-on-subset)
show cball x v C cball 0 (¢cmod z + r)
by (subst cball-subset-cball-iff) auto

qged (use <r > 0» in auto)
thus 3d>0. cball v d C — (Z — {0}) A uniform-limit (cball z d) f cot-pfd
sequentially
using r by (intro exI[of - r]) auto
qged
then obtain ¢’ where ¢" Az. z6—(Z — {0}) = (cot-pfd has-field-derivative
g’ ©) (ot 2)
Nz. 2€—(Z — {0}) = (Mn. f' nz) —— g’ z by blast

have (An. f' n z) —— —Polygamma 1 (1 + z) — Polygamma 1 (1 — z)
proof —
have (An. —inverse (((1 + z) + of-nat n) ~ Suc 1) —
inverse (((1 — z) + of-nat n) ~ Suc 1)) sums
(=((=1) ~ Suc 1 * Polygamma 1 (1 + z) / fact 1) —
(=1) = Suc 1 % Polygamma 1 (1 — z) / fact 1)
using z by (intro sums-diff sums-minus Polygamma-LIMSEQ) (auto simp:
add-eq-0-iff)
also have ... = —Polygamma 1 (1 + z) — Polygamma 1 (1 — z)
by simp
also have (An. —inverse (((1 + 2) + of-nat n) ~ Suc 1) — inverse (((1 — 2)
+ of-nat n) " Suc 1)) =
(An. —1/(z + of-nat (Suc n)) ~ 2 — 1/(z — of-nat (Suc n)) ~ 2)
by (simp add: f'-def field-simps power2-eq-square)
finally show ?thesis
unfolding sums-def f’-def .
qged
with ¢'(2)[OF z] have ¢’ z = —Polygamma 1 (1 + z) — Polygamma 1 (1 — z)
using LIMSEQ-unique by blast
with ¢'(1)[OF z] show ?thesis
by simp
qed

lemma has-field-derivative-cot-pfd-complez’ [derivative-intros|:
assumes (g has-field-derivative g') (at z within A) and gz ¢ Z — {0}
shows ((Az. cot-pfd (g z :: complex)) has-field-derivative
(= Polygamma 1 (1 + g x) — Polygamma 1 (1 — g x)) * g’) (at z within
4)
using DERIV-chain2[OF has-field-derivative-cot-pfd-complex assms(1)] assms(2)
by auto

lemma Polygamma-real-conv-complex: © # 0 = Polygamma n © = Re (Polygamma
n (of-real 1))
by (simp add: Polygamma-of-real)

lemma has-field-derivative-cot-pfd-real [derivative-intros|:
assumes (g has-field-derivative g') (at z within A) and gz ¢ Z — {0}
shows ((Az. cot-pfd (g z :: real)) has-field-derivative
(= Polygamma 1 (1 + g x) — Polygamma 1 (1 — g x)) * g') (at z within
4)

proof —
have *: complex-of-real (g z) ¢ Z — {0}
using assms(2) by auto
have #+: (I + gz)# 0 (1 —gz) # 0
using assms(2) by (auto simp: add-eq-0-iff)
have ((Az. Re ((cot-pfd o (Ax. of-real (g x))) z)) has-field-derivative
(= Polygamma 1 (1 + g x) — Polygamma 1 (1 — g z)) * g') (at x within
4)
by (rule derivative-eq-intros has-vector-derivative-real-field
field-vector-diff-chain-within assms refl)+
(use *x in <auto simp: Polygamma-real-conv-complex)
thus ?thesis
by simp
qed

lemma holomorphic-on-cot-pfd [holomorphic-intros]:
assumes A C —(Z—{0})
shows cot-pfd holomorphic-on A
proof —
have cot-pfd holomorphic-on (—(Z—{0}))
unfolding holomorphic-on-def
using has-field-derivative-cot-pfd-complex field-differentiable-at-within
field-differentiable-def by fast
thus ?thesis
by (rule holomorphic-on-subset) (use assms in auto)
qged

lemma holomorphic-on-cot-pfd’ [holomorphic-intros:
assumes f holomorphic-on A N\x. c € A = fa ¢ Z — {0}
shows (Az. cot-pfd (f z)) holomorphic-on A
using holomorphic-on-compose[OF assms(1) holomorphic-on-cot-pfd] assms(2)
by (auto simp: o-def)

lemma continuous-on-cot-pfd-complex [continuous-intros|:
assumes continuous-on A f Nz. 2€ A= fz¢ 2Z — {0}
shows continuous-on A (Az. cot-pfd (f x :: complex))
by (rule continuous-on-compose2[OF holomorphic-on-imp-continuous-on[OF
holomorphic-on-cot-pfd|OF order.refl]] assms(1)]) (use assms(2) in auto)

lemma continuous-on-cot-pfd-real [continuous-intros]:
assumes continuous-on A f N\z. 2€ A= fz¢ 7 — {0}
shows continuous-on A (Az. cot-pfd (f x :: real))
proof —
have continuous-on A (Az. Re (cot-pfd (of-real (f x))))
by (rule continuous-intros assms)+ (use assms in auto)
thus ?thesis
by simp
qed

1.4 Functional equations

In this section, we will show three few functional equations for the function
cot-pfd. The first one is trivial; the other two are a bit tedious and not very
insightful, so I will not comment on them.

cot-pfd is an odd function:

lemma cot-pfd-complex-minus [simp]: cot-pfd (—x :: complex) = —cot-pfd
proof —
have (An. 2 x (—z) / ((—z) ~ 2 — of-nat (Suc n) ~2)) =
(An. — (2 %z / (z~ 2 — of-nat (Suc n) ~ 2)))
by simp
also have ... sums —cot-pfd x
by (intro sums-minus sums-cot-pfd-complex)
finally show ?thesis
using sums-cot-pfd-complex|of —z| sums-unique2 by blast
qed

lemma cot-pfd-real-minus [simp]: cot-pfd (—z :: real) = —cot-pfd x
using cot-pfd-complex-minus|of of-real x
unfolding of-real-minus [symmetric] cot-pfd-complex-of-real of-real-eq-iff .

1 / z + cot-pfd z is periodic with period 1:

lemma cot-pfd-plus-1-complex:
assumes z ¢ Z
shows cot-pfd (x + 1 :: complex) = cot-pfdz — 1 /(x+ 1)+ 1/ z
proof —
have *: © = 2 # of-natn ~ 2 if ¢ Z for z :: complex and n
using that by (metis Ints-of-nat minus-in-Ints-iff power2-eq-iff)
have xx: z + of-nat n # 0 if x ¢ Z for = :: complez and n
using that by (metis Ints-0 Ints-add-iff2 Ints-of-nat)
have [simp]: © # 0
using assms by auto
have [simp]: z + 1 # 0
using assms by (metis xx of-nat-1)
have [simp]: z + 2 # 0
using sx[of z 2] assms by simp

have lim: (An. 1 / (z + of-nat (Suc n))) —— 0

by (intro tendsto-divide-0]OF tendsto-const] tendsto-add-filterlim-at-infinity| OF
tendsto-const)

filterlim-compose[OF tendsto-of-nat] filterlim-Suc)

have sumi: (An. 1 / (x + of-nat (Suc n)) — 1 / (z + of-nat (Suc n + 2)))

sums
>-n<2. 1/ (z + of-nat (Suc n)))
using sums-long-telescope[OF lim, of 2] by (simp add: algebra-simps)

have (An. 2 x z / (2% — (of-nat (Suc n))?) — 2 x (x + 1) / ((z + 1)72 —
(of-nat (Suc (Suc n)))?))

10

sums (cot-pfd z — (cot-pfd (x + 1) — 2« (x + 1)/ ((z + 1)72 — (of-nat
(Suc 0) ~ 2))))
using sums-cot-pfd-complez|of z + 1]
by (intro sums-diff sums-cot-pfd-complex, subst sums-Suc-iff) auto
also have 2 x (x + 1) / ((z + 1)72 — (of-nat (Suc 0) ~2)) =2 (x+ 1)/
(z* (z + 2))
by (simp add: algebra-simps power2-eq-square)
also have (An. 2 * 2 / (2% — (of-nat (Suc n))?) —
2% (x+ 1)/ ((z+ 1)® — (of-nat (Suc (Suc n)))?)) =
(An. 1 / (x + of-nat (Suc n)) — 1 / (z + of-nat (Suc n + 2)))
using *[of z] *[of © + 1] *x[of x] *xx[of x + 1] assms
apply (intro ext)
apply (simp add: divide-simps del: of-nat-add of-nat-Suc)
apply (simp add: algebra-simps power2-eq-square)
done
finally have sum2: (An. 1 / (z + of-nat (Suc n)) — 1 / (z + of-nat (Suc n +
2))) sums
(cot-pfd x — cot-pfd (x + 1)+ 2* (x+ 1)/ (z * (z + 2)))
by (simp add: algebra-simps)

have cot-pfd x — cot-pfd (x + 1)+ 2 (x+ 1)/ (zx (x + 2)) =
O>-n<2. 1/ (z + of-nat (Suc n)))
using suml sum2 sums-unique2 by blast
hence cot-pfd z — cot-pfd (z + 1) =-2x«(x+ 1)/ (zx(x+2)+1/(z+
H+1/(z+2)
by (simp add: eval-nat-numeral divide-simps) algebra?
alsohave ... =1 /(z+1)—-1/z
by (simp add: divide-simps) algebra?
finally show ?thesis
by algebra
qed

lemma cot-pfd-plus-1-real:
assumes z ¢ Z
shows cot-pfd (x + 1 :: real) = cot-pfdac — 1 / (z+ 1)+ 1/ z
proof —
have cot-pfd (complez-of-real (x + 1)) = cot-pfd (of-real) — 1 / (of-real x +
1)+ 1/ of-real
using cot-pfd-plus-1-complex|of] assms by simp
also have ... = complez-of-real (cot-pfdx — 1 / (z + 1) + 1 / x)
by simp
finally show ?thesis
unfolding cot-pfd-complex-of-real of-real-eq-iff .
qed

cot-pfd satisfies the following functional equation:

- 1)1 (55

11

lemma cot-pfd-funeq-complex:

fixes x :: complex

assumes z ¢ Z

shows 2 x cot-pfd x = cot-pfd (x / 2) + cot-pfd (zx+ 1)/ 2)+ 2/ (z+ 1)
proof —

define [:: complex = nat = complex where f = (Az n. 1 / (x + of-nat (Suc
"))

define ¢ :: complex = nat = complex where g = (Az n. 1 / (z — of-nat (Suc
n)))

define h :: complex = nat = complex where h = (Azn. 2 x (fz (n+ 1)+ ¢

zn))

have sums: (An. fxn + g z n) sums cot-pfd z if « ¢ Z for z
unfolding f-def g-def using that by (intro sums-cot-pfd-complez’) auto

havez / 2 ¢ Z
proof
assume z / 2 € Z
hence 2 x (z / 2) € Z
by (intro Ints-mult) auto
thus Fulse using assms by simp
qed
moreover have (z + 1) / 2 ¢ Z
proof
assume (z+ 1)/ 2 €Z
hence 2 x ((zx + 1)/ 2)—1€Z
by (intro Ints-mult Ints-diff) auto
thus False using assms by (simp add: field-simps)
qed
ultimately have (An. (f (z / 2) n+ g (z/ 2)n) + (f (z+1) / 2) n+ g
((z+1) / 2) n)) sums
(cot-pfd (x| 2) + cot-pfd ((z + 1) / 2))

by (intro sums-add sums)

g)als; have (An. (f (z/ 2)n+g(x/ 2)n)+ (f ((z+1)/ 2) n+ g ((x+1) /
(An.hz(2+n)+hz(2xn+ 1))

proof

fix n :: nat

have (f (v / 2) n+ g (/ 2) n) + (/ (1) / 2) n+ g ((+1) / 2) n) =

@/ 2)n+[f(z+1)/2)n)+(g(z/2)n+g((z+1)/2)n)

by algebra

alsohave f (z / 2)n+f ((z+1)/2)n=2x%(fz (2xn+ 1)+ fz (2%
n+ 2))

by (simp add: f-def field-simps)
))alsohaveg(x/?)n—i—g((m—l—])/2)nz2*(gm(2*n)+gm(2*n+
1

by (simp add: g-def field-simps)

alsohave 2 x (fz (2xn+ 1)+ fz (2xn+2)+ ... =

12

hz(2+n)+hz(2xn+1)
unfolding h-def by (simp add: algebra-simps)
finally show (f (z / 2) n+ g (z / 2) n) + (f (z+1) / 2) n+ g ((z+1) /
2)n) =
hz (2xn)+hz(2xn+1).
qed
finally have sum1:
(An.hz (2xn)+ ha(2*xn+ 1)) sums (cot-pfd (z /] 2) + cot-pfd ((z + 1)
/ 2)).

have fx+ —— 0 unfolding f-def
by (intro tendsto-divide-0[OF tendsto-const]
tendsto-add-filterlim-at-infinity[OF tendsto-const|
filterlim-compose| OF tendsto-of-nat] filterlim-Suc)
hence (An. 2 x (fzn+gzn)+ 2% (fz (Sucn) — fzn)) sums (2 % cot-pfd
x4+ 2% (0 — fz0))
by (intro sums-add sums sums-mult telescope-sums assms)
also have (An. 2 x (fan+gan)+ 2 % (fz (Sucn) — fzn)) =ha
by (simp add: h-def algebra-simps fun-eq-iff)
finally have *: h z sums (2 * cot-pfd z — 2 = fx 0)
by simp

have (An. sum (h z) {n * 2..<n x 2 + 2}) sums (2 * cot-pfd x — 2 * fz 0)
using sums-group|OF x*, of 2] by simp
also have (An. sum (h z) {nx2..<nx2+2}) = (An. hx (2 *xn) + hz (2 xn+
)
by (simp add: mult-ac)
finally have sum2: (An. hz (2 xn) + hz (2 * n+ 1)) sums (2 x cot-pfd x —
2% fx0).

have cot-pfd (z / 2) + cot-pfd ((z + 1) / 2) = 2 % cot-pfdx — 2 x fz 0
using suml sum2 sums-unique2 by blast
alsohave 2 x fz 0 =2/ (x + 1)
by (simp add: f-def)
finally show ?thesis by algebra
qed

lemma cot-pfd-funeg-real:

fixes z :: real

assumes z ¢ Z

shows 2 x cot-pfd x = cot-pfd (x / 2) + cot-pfd (x+ 1)/ 2)+ 2/ (z+ 1)
proof —

have complex-of-real (2 * cot-pfd x) = 2 * cot-pfd (complex-of-real x)

by simp

also have ... = complex-of-real (cot-pfd (x| 2) + cot-pfd (z + 1)/ 2)+ 2/

(2 + 1))

using assms by (subst cot-pfd-funeq-complex) (auto simp flip: cot-pfd-complex-of-real)

finally show ?thesis
by (simp only: of-real-eq-iff)

13

qed

1.5 The limit at 0

lemma cot-pfd-real-tendsto-0: cot-pfd —0— (0 :: real)
proof —
have filterlim cot-pfd (nhds 0) (at (0 :: real) within ball 0 1)
proof (rule swap-uniform-limit)
show uniform-limit (ball 0 1)
(AN z. Y- n<N. 2 x z / (2% — (real (Suc n))?)) cot-pfd sequentially
using uniform-limit-cot-pfd-real| OF zero-le-one] by (rule uniform-limit-on-subset)
auto
have ((A\z. 2 x o / (2% — (real (Suc n))?)) —— 0) (at 0 within ball 0 1) for

proof (rule filterlim-mono)
show ((Az. 2 * z / (2% — (real (Suc n))?)) — 0) (at 0)
by real-asymp
qed (auto simp: at-within-le-at)
thus V ¢ N in sequentially.
((Az. Yon<N. 2 %z / (2% — (real (Suc n))?)) —— 0) (at 0 within ball
01)
by (intro always-eventually alll tendsto-null-sum)
qed auto
thus ?thesis
by (simp add: at-within-open-NO-MATCH)
qed

1.6 Final result

To show the final result, we first prove the real case using Herglotz’s trick,
following the presentation in ‘Proofs from THE BOOK". [1, Chapter 23].

lemma cot-pfd-formula-real:
assumes z ¢ Z
shows pi * cot (pi x x) = 1 / + cot-pfd z
proof —
have ev-not-int: eventually (\z. r z ¢ Z) (at z)
if filterlim r (at (r z)) (at z) for r :: real = real and z :: real
proof (rule eventually-compose-filterlim[OF - that])
show eventually (Az. z ¢ Z) (at (r x))
using Ints-not-limpt|of r x] islimpt-iff-eventually by blast
qed

We define the function h(z) as the difference of the left-hand side and right-
hand side. The left-hand side and right-hand side have singularities at the
integers, but we will later see that these can be removed as h tends to 0
there.

define f :: real = real where f = (Az. pi % cot (pi * x))
define ¢ :: real = real where g = (Az. 1 / = + cot-pfd x)

14

define h where h = (Az. if ¢ € Z then 0 else fz — g x)

have [simp]: hx = 0 if z € Z for ¢
using that by (simp add: h-def)

It is easy to see that the left-hand side and the right-hand side, and as a
consequence also our function h, are odd and periodic with period 1.

have odd-h: h (—z) = —h z for z

by (simp add: h-def minus-in-Ints-iff f-def g-def)
have per-f: f (z + 1) = fx for z

by (simp add: f-def algebra-simps cot-def)
have per-g: g (x + 1) =gz if 2 ¢ Z for z

using that by (simp add: g-def cot-pfd-plus-1-real)
interpret h: periodic-fun-simple’ h

by standard (auto simp: h-def per-f per-g)

h tends to 0 at 0 (and thus at all the integers).

have h-lim: h —0— 0
proof (rule Lim-transform-eventually)
have eventually (Az. z ¢ Z) (at (0 :: real))
by (rule ev-not-int) real-asymp
thus eventually (Az::real. pi * cot (pi x x) — 1 / z — cot-pfd x = h x) (at 0)
by eventually-elim (simp add: h-def f-def g-def)
next
have (Az::real. pi x cot (pi xx) — 1 /) —0— 0
unfolding cot-def by real-asymp
hence (A\z::real. pi * cot (pi xz) — 1 / x — cot-pfdz) —0— 0 — 0
by (intro tendsto-intros cot-pfd-real-tendsto-0)
thus (Az. pi % cot (pixz) — 1 / x — cot-pfd) —0— 0
by simp
qed

This means that our A is in fact continuous everywhere:

have cont-h: continuous-on A h for A
proof —
have isCont h x for z
proof (cases z € Z)
case True
then obtain n where [simp]: * = of-int n
by (auto elim: Ints-cases)
show ?thesis unfolding isCont-def
by (subst at-to-0) (use h-lim in <simp add: filterlim-filtermap h.plus-of-int»)
next
case Fulse
have continuous-on (=Z) (\x. fz — g x)
by (auto simp: f-def g-def sin-times-pi-eq-0 mult.commutelof pi] introl:
continuous-intros)
hence isCont (A\z. fo — g z) x
by (rule continuous-on-interior)

15

(use False in <auto simp: interior-open open-Compl|OF closed-Ints])
also have eventually (A\y. y € —Z) (nhds z)
using False by (intro eventually-nhds-in-open) auto
hence eventually (A\z. fz — g © = h z) (nhds z)
by eventually-elim (auto simp: h-def)
hence isCont (Az. fz — g z) z +— isCont h x
by (rule isCont-cong)
finally show ?thesis .
qed
thus %thesis
by (simp add: continuous-at-imp-continuous-on)
qed
note [continuous-intros| = continuous-on-compose2[OF cont-h)

Through the functional equations of the sine and cosine function, we can
derive the following functional equation for f that holds for all non-integer
reals:

have e¢-f: fa=(f(z/2)+f ((z+ 1)/ 2)/ 2ifz ¢ Z for z
proof —
havez / 2 ¢ Z
using that by (metis Ints-add field-sum-of-halves)
hence nz1: sin (z/2 * pi) # 0
by (subst sin-times-pi-eq-0) auto

have (z + 1)/ 2 ¢ Z
proof

assume (z + 1) / 2 € Z

hence 2 x ((z+ 1)/ 2)—1€Z

by (intro Ints-mult Ints-diff) auto

thus False using that by (simp add: field-simps)
qed
hence nz2: sin ((z+1)/2 * pi) # 0

by (subst sin-times-pi-eq-0) auto

have nz3: sin (z * pi) # 0
using that by (subst sin-times-pi-eq-0) auto

have eq: sin (pi x) = 2 x sin (pi x x / 2) * cos (pi x x | 2)
cos (pi x x) = (cos (pi x x / 2))% — (sin (pi x z / 2))?
using sin-double|of pi * x / 2] cos-double[of pi x x |/ 2] by simp-all
show ?thesis using nzl nz2 nz3
apply (simp add: f-def cot-def field-simps)
apply (simp add: add-divide-distrib sin-add cos-add power2-eq-square eq alge-
bra-simps)
done
qged

The corresponding functional equation for cot-pfd that we have already
shown leads to the same functional equation for g as we just showed for

16

f:

have eg-g: gz =(g(z/ 2)+g((x+ 1)/ 2)) /) 2ifz ¢ Z for x
using cot-pfd-funeg-real|OF that] by (simp add: g-def)

This then leads to the same functional equation for A, and because h is
continuous everywhere, we can extend the validity of the equation to the
full domain.

have e¢-h: he = (h(z / 2)+ h((x + 1)/ 2))/ 2 for z
proof —
have eventually (Az. ¢ Z) (at) eventually (A\z. z / 2 ¢ Z) (at)
eventually (Az. (z + 1)/ 2 ¢ Z) (at x)
by (rule ev-not-int; real-asymp)+
hence eventually (Az. hx — (h(x / 2)+h((z+ 1)/ 2)/ 2 =0) (at)
proof eventually-elim
case (elim)
thus ?case using eq-f[of z] eq-g[of]
by (simp add: h-def field-simps)
qed
hence (A\z. ho — (h (z / 2)+h((z+ 1)/ 2))/ 2) —z— 0
by (simp add: tendsto-eventually)
moreover have continuous-on UNIV (Az. hz — (h (z / 2) + h ((z + 1) /
2)) / 2)
by (auto intro!: continuous-intros)
ultimately have hz — (h (z / 2) + h((z+ 1)/ 2)/ 2=0
by (meson LIM-unique UNIV-I continuous-on-def)
thus ?thesis
by simp
qed

Since h is periodic with period 1 and continuous, it must attain a global
maximum h somewhere in the interval [0,1]. Let’s call this maximum m
and let zp be some point in the interval [0, 1] such that h(zg) = m.

define m where m = Sup (h ‘{0..1})
have m € h “{0..1}
unfolding m-def
proof (rule closed-contains-Sup)
have compact (h < {0..1})
by (intro compact-continuous-image cont-h) auto
thus bdd-above (h < {0..1}) closed (h “{0..1})
by (auto intro: compact-imp-closed compact-imp-bounded bounded-imp-bdd-above)
qged auto
then obtain 20 where 20: 20 € {0..1} hz0 = m
by blast

have h-le-m: h x < m for z
proof —
have h z = h (frac x)
unfolding frac-def by (rule h.minus-of-int [symmetric])

17

also have ... < m unfolding m-def
proof (rule c¢Sup-upper)
have frac x € {0..1}
using frac-lt-1]of x| by auto
thus h (frac x) € h *{0..1}
by blast
next
have compact (h < {0..1})
by (intro compact-continuous-image cont-h) auto
thus bdd-above (h ‘< {0..1})
by (auto intro: compact-imp-bounded bounded-imp-bdd-above)
qed
finally show ?thesis .
qed

Through the functional equation for h, we can show that if h attains its

maximum at some point z, it also attains it at %x By iterating this, it

attains the maximum at all points of the form 27 "xy.

have h-e¢g-m-iter-aux: h (z / 2) = m if hz = m for z
using eg-hlof x| that h-le-m[of z / 2] h-le-m[of (z + 1) / 2] by simp
have h-eqg-m-iter: h (0 / 2 "~ n) = m for n
proof (induction n)
case (Suc n)
have h (20 / 2 " Sucn)=h (20 /2 "n/ 2)
by (simp add: field-simps)
also have ... = m
by (rule h-eq-m-iter-auz) (use Suc.IH in auto)
finally show ?Zcase .
qged (use z0 in auto)

Since the sequence n — 27"z tends to 0 and h is continuous, we derive m
= 0.

have (An. h (20 / 2 "n)) —— h 0
by (rule continuous-on-tendsto-compose| OF cont-h[of UNIVY]) (force | real-asymp)+
moreover from h-eg-m-iter have (An. h (z0 / 2 " n)) —— m
by simp
ultimately have m = h 0
using tendsto-unique by force
hence m = 0
by simp

Since h is odd, this means that h is identically zero everywhere, and our
result follows.

have hz = 0
using h-le-m[of z] h-le-m[of —z] <m = 0» odd-h[of z] by linarith
thus ?thesis
using assms by (simp add: h-def f-def g-def)
qed

18

We now lift the result from the domain R\Z to C\Z. We do this by noting
that C\Z is connected and the point 5 is both in C\Z and a limit point of
R\Z.

lemma one-half-limit-point-Reals-minus-Ints: (1 / 2 :: complex) islimpt R — Z
proof (rule islimptl)
fix T :: complex set
assume 1 / 2 € T open T
then obtain r where r: r > 0ball (1 / 2) r C T
using open-contains-ball by blast
define y where y =1/ 2+ minr (1 / 2)/ 2
have y € {0<..<1}
using r by (auto simp: y-def)
hence complez-of-real y € R — Z
by (auto elim!: Ints-cases)
moreover have complex-of-real y # 1 | 2
proof
assume complez-of-real y = 1 / 2
also have 1 / 2 = complez-of-real (1 / 2)
by simp
finally have y = 1 / 2
unfolding of-real-eg-iff .
with r show Fulse
by (auto simp: y-def)
qed
moreover have complez-of-real y € ball (1 / 2) r
using «<r > 0» by (auto simp: y-def dist-norm)
with r have complex-of-real y € T
by blast
ultimately show 3ycR —Z. y€e TNy # 1/ 2
by blast
qed

theorem cot-pfd-formula-complex:
fixes z :: complex
assumes z ¢ Z
shows pi * cot (pi x 2) =1 / z + cot-pfd z
proof —
let 2f = Az::complex. pi * cot (pi x z) — 1 / z — cot-pfd z
have pi * cot (pi % 2) — 1 |/ z — cot-pfd z = 0
proof (rule analytic-continuation[where f = ?f])
show ?f holomorphic-on —Z
unfolding cot-def by (intro holomorphic-intros) (auto simp: sin-eq-0)
next
show open (—Z. :: complex set) connected (—Z. :: complex set)
by (auto intro!: path-connected-imp-connected path-connected-complement-countable
countable-int)
next
show R — Z C (—Z :: complex set)
by auto

19

next
show (1 / 2 :: complex) islimpt R — Z
by (rule one-half-limit-point- Reals-minus-Ints)
next
show 1 / (2 :: complex) € —Z
using fraction-not-in-ints[of 2 1, where ?'a = complex] by auto
next
show 2z € —Z
using assms by simp
next
show 9z =0if z€¢ R — Z for 2
proof —
have complez-of-real pi * cot (complex-of-real pi x z) — 1 | z — cot-pfd z =
complex-of-real (pi * cot (pi * Re z) — 1 |/ Re z — cot-pfd (Re z2))
using that by (auto elim!: Reals-cases simp: cot-of-real)
also have ... = 0
by (subst cot-pfd-formula-real) (use that in <auto elim!: Reals-cases)
finally show ?thesis .
qed
qed
thus ?thesis
by algebra
qed

end

References

[1] M. Aigner and G. M. Ziegler. Proofs from THE BOOK. Springer, 4th
edition, 2009.

20

	The Partial-Fraction Formula for the Cotangent Function
	Auxiliary lemmas
	Definition of auxiliary function
	Holomorphicity and continuity
	Functional equations
	The limit at 0
	Final result

