An Operational Semantics and Type Safety Proof
for Multiple Inheritance in C4++ (CoreC++)

Daniel Wasserrab
Fakultat fir Mathematik und Informatik
Universitat Passau
http://www.infosun.fmi.uni-passau.de/st /staff /wasserra/

March 19, 2025

Abstract

We present an operational semantics and type safety proof for
multiple inheritance in C++. The semantics models the behavior of
method calls, field accesses, and two forms of casts. For explanations

see [1].
Contents
1 Auxiliary Definitions
1.1 distinct-fst
1.2 Using list-all2 for relations
2 CoreC+H+ types
3 CoreC++ values
4 Expressions 11
4.1 The expressions e 11
4.2 Free Variables o o 12
5 Class Declarations and Programs 12
6 The subclass relation 15

http://www.infosun.fmi.uni-passau.de/st/staff/wasserra/

7 Definition of Subobjects

7.1 General definitions

7.2 Subobjects according to Rossie-Friedman

7.3 Subobject handling and lemmas
74 Paths
7.5 Appending paths
7.6 The relation on paths
7.7 Member lookups

8 Objects and the Heap

81 Objects,
82 Heapo

9 Exceptions

9.1 Exceptions
9.2 System exceptions
9.3 opreallocated
9.4 start-heap

10 Syntax
11 Program State

12 Big Step Semantics

12.1 Therules
12.2 Final expressions

13 Small Step Semantics

13.1 Some pre-definitions
13.2 Therules
13.3 The reflexive transitive closure
13.4 Some easy lemmas

14 System Classes
15 The subtype relation

16 Well-typedness of CoreC++4 expressions

16.1 Therules
16.2 Easy consequenceso

17 Generic Well-formedness of programs

17.1 Well-formedness lemmas
17.2 Well-formedness subclass lemmas
17.3 Well-formedness leq path lemmas

17
17
17
23
29
29
30
30

33
33
34

34
34
35
35
36

36

37

37
37
42

45
45
45
50
51

54

54

55
55
o7

17.4 Lemmas concerning Subobjs
17.5 Well-formedness and appendPath
17.6 Path and program size
17.7 Well-formedness and Path
17.8 Well-formedness and member lookup
17.9 Well formedness and widen
17.10Well formedness and well typing

18 Weak well-formedness of CoreC+-+ programs

19 Equivalence of Big Step and Small Step Semantics
19.1 Some casts-lemmas
19.2 Small steps simulate bigstep
19.3 Cast e
19.4 LASS o o e
19.5 BinOp o . oL
19.6 FAcc
19.7 FAss o
19.8 55 o o o e
19.9 If . . . o o
19.10While
19.11Throw
19.12InitBlock
19.13Block
19.14List e
19.15Call
19.16The main Theorem
19.17Big steps simulates small step
19.18Equivalence Lo o

20 Definite assignment
20.1 Hypersets
20.2 Definite assignment

21 Runtime Well-typedness
21.1 Run time typeso L
21.2 Therules
21.3 Easy consequenceso ie e
21.4 Some interesting lemmaso

22 Conformance Relations for Proofs
22.1 Value conformance :<
22.2 Value list conformance [:<]
22.3 Field conformance (:<).

99

99

99
104
104
107
107
109
109
111
111
112
114
114
116
118
118
129
132
156

156
157
157

160
160
160
163
163

22.4 Heap conformance
22.5 Local variable conformance
22.6 Environment conformance
22.7 Type conformance

23 Progress of Small Step Semantics
23.1 Some pre-definitions L L oo
23.2 The theorem progress

24 Heap Extension
24.1 The Heap Extension

24.2 < and preallocated oo
24.3 <in Small- and BigStep oL
24.4 < and conformance e
24.5 < in the runtime type systemo

25 Well-formedness Constraints

26 Type Safety Proof
26.1 Basic preservation lemmas,
26.2 Subject reduction Lo
26.3 Lifting to —=
26.4 Liftingto=.
26.5 The final polish,

27 Determinism Proof
27.1 Some lemmas
27.2 The proof

28 Program annotation

29 Code generation for Semantics and Type System
29.1 General redefinitions oL oo
29.2 Code generation Lo
29.3 Examples

Bibliography

1 Auxiliary Definitions

theory Auxiliary
imports Complex-Main HOL— Library. While-Combinator
begin

declare
option.splits|split]

170
171
174

192
192
193
193
194
196

197

198
198
204
225
229
229

233
233
238

277

278
278
280
301

308

Let-def [simp)
subset-insertI2 [simp]
Cons-eq-map-conv [iff]

lemma nat-add-mazx-le[simp]:
((nenat) + mazij<m)=(mn+i<mAn+j<m)
by arith

lemma Suc-add-maz-le[simp]:
(Suc(n + maz i j) < m) = (Suc(n + i) < m A Suc(n + j) < m)
by arith

notation Some (<(|-])’)

lemma butlast-tasil:
butlast (XsQ[X,Y]) = XsQ[X]
by (induct Xs) auto

lemma butlast-noteq: Cs # [| = butlast Cs # Cs
by (induct Cs)simp-all

lemma app-hd-tl:[Cs # [|; Cs = Cs’ Q ¢l Cs] = Cs’' = [hd Cs]

apply (subgoal-tac [hd Cs] Q tl Cs = Cs' @ tl Cs)
apply fast

apply simp

done

lemma only-one-append:[C' ¢ set Cs; C' ¢ set Cs’; DsQ C'#Ds’ = CsQ C'#Cs]
= Cs = Ds A Cs' = Ds’

apply —
apply (simp add:append-eq-append-conv2)
apply (auto simp:in-set-conv-decomp)
apply (subgoal-tac hd (us @ C'#Ds") = C')
apply (case-tac us)
apply simp
apply fastforce
apply simp
apply (subgoal-tac hd (us @ C'#Ds") = C')
apply (case-tac us)
apply simp
apply fastforce

apply simp
apply (subgoal-tac hd (us @ C'#Cs’) = C)
apply (case-tac us)
apply simp
apply fastforce
apply (subgoal-tac hd(C'#Ds’) = C')
apply simp
apply (simp (no-asm))
apply (subgoal-tac hd (us @ C'#Cs’) = C’)
apply (case-tac us)
apply simp
apply fastforce
apply (subgoal-tac hd(C'#Ds’) = C’)
apply simp
apply (simp (no-asm))
done

definition pick :: 'a set = 'a where
pick A = SOME xz. ¢z € A

lemma pick-is-element:x € A = pick A € A
by (unfold pick-def,rule-tac z=xz in somel)

definition set2list :: 'a set = 'a list where
set2list A = fst (while (A(Es,S). S # {})
(A(Es,S). let © = pick S in (z#Es,S—{z}))
(0.4))

lemma card-pick:[finite A; A # {}] = Suc(card(A—{pick(A)})) = card A

by (drule card-Suc-Diff1,auto dest!:pick-is-element simp:ex-in-conv)

lemma set2list-prop:[finite A; A # {}] =
Jaxs. while (A\(Es,S). S # {})
(M(Es,S). let x = pick S in (z#FEs,S—{z}))
([,A4) = (zs,{}) A (set zs U {} = A)

apply (rule-tac P=(Azs. (set(fst xs) U snd zs = A)) and
r=measure (card o snd) in while-rule)
apply(auto dest:pick-is-element)
apply(auto dest:card-pick simp:ex-in-conv measure-def inv-image-def)
done

lemma set2list-correct:[finite A; A # {}; set2list A = zs] = set xs = A
by (auto dest:set2list-prop simp:set2list-def)

1.1 distinct-fst

definition distinct-fst :: (‘a x 'b) list = bool where
distinct-fst = distinct o map fst

lemma distinct-fst-Nil [simp]:
distinct-fst ||

apply (unfold distinct-fst-def)

apply (simp (no-asm))
done

lemma distinct-fst-Cons [simp]:
distinct-fst ((k,z)#kzs) = (distinct-fst kzs A (Vy. (kyy) ¢ set kxs))

apply (unfold distinct-fst-def)
apply (auto simp:image-def)
done

lemma map-of-Somel:
[distinct-fst kxs; (k,x) € set kxs | = map-of kzs k = Some z
by (induct kxs) (auto simp:fun-upd-apply)

1.2 Using list-all2 for relations

definition fun-of :: (‘a x 'b) set = 'a = 'b = bool where
fun-of S = Xxy. (z,y) € S

Convenience lemmas

declare fun-of-def [simp]

lemma rel-list-all2-Cons [iff]:
list-all2 (fun-of S) (ax#txs) (y#ys) =
((z,y) € S A list-all2 (fun-of S) zs ys)
by simp

lemma rel-list-all2-Cons1:
list-all2 (fun-of S) (axftxs) ys =
(3z zs. ys = z#2s A (z,2) € S A list-all2 (fun-of S) zs zs)
by (cases ys) auto

lemma rel-list-all2-Cons2:
list-all2 (fun-of S) xs (y#ys) =
(3z zs. xs = z#z2s A (z,y) € S A list-all2 (fun-of S) zs ys)
by (cases xs) auto

lemma rel-list-all2-refl:
(Az. (z,2) € §) = list-all2 (fun-of S) zs xs

by (simp add: list-ali2-refl)

lemma rel-list-all2-antisym:
[(Azy. [(z.y) € S; (y,2) € T] = z = y);
list-all2 (fun-of S) xs ys; list-all2 (fun-of T) ys xs | = zs = ys
by (rule list-all2-antisym) auto

lemma rel-list-all2-trans:
[Aabec [(ab) € R; (byc) € S] = (a,c) € T;
list-all2 (fun-of R) as bs; list-all2 (fun-of S) bs cs]
= list-all2 (fun-of T) as cs
by (rule list-all2-trans) auto

lemma rel-list-all2-update-cong:
[i<size xs; list-all2 (fun-of S) xs ys; (z,y) € S|
= list-all2 (fun-of S) (ws[i:=x]) (ys[i:=y])
by (simp add: list-all2-update-cong)

lemma rel-list-all2-nthD:
[list-all2 (fun-of S) zs ys; p < size xs | = (xslp,yslp) € S
by (drule list-all2-nthD) auto

lemma rel-list-all2I:

[length a = length b; An. n < length a = (aln,bln) € S | = list-all2 (fun-of
S)ab

by (erule list-all2-all-nthl) simp

declare fun-of-def [simp del]

end

2 CoreC++ types

theory Type imports Auziliary begin

type-synonym cname = string — class names
type-synonym mname = string — method name
type-synonym vname = string — names for local/field variables

definition this :: vname where
this = ""this"’

— types
datatype ty
= Void — type of statements
| Boolean
| Integer
| NT — null type

| Class cname — class type

datatype base — superclass
= Repeats cname — repeated (nonvirtual) inheritance
| Shares cname — shared (virtual) inheritance

primrec getbase :: base = cname where
getbase (Repeats C) = C
| getbase (Shares C) = C

primrec isRepBase :: base = bool where
isRepBase (Repeats C) = True
| isRepBase (Shares C') = False

primrec isShBase :: base = bool where
isShBase(Repeats C) = False
| isShBase(Shares C) = True

definition is-refT :: ty = bool where
issrefT T = T=NTV (3C. T = Class C)

lemma [iff]: is-refT NT
by (simp add:is-refT-def)

lemma [iff]: is-refT(Class C)
by (simp add:is-refT-def)

lemma refTFE:
[is-refT T; T = NT = Q; NC. T = Class C = Q]| = Q
by (auto simp add: is-refT-def)
lemma not-refTE:
[—is-refT T; T = Void V T = Boolean V T = Integer = Q | = Q
by (cases T, auto simp add: is-refT-def)

type-synonym
env = vname — ty

end

3 CoreC++ values

theory Value imports Type begin

type-synonym addr = nat
type-synonym path = cname list — Path-component in subobjects
type-synonym reference = addr x path

datatype val

= Unit — dummy result value of void expressions
| Null — null reference

| Bool bool — Boolean value

| Intg int — integer value

| Ref reference — Address on the heap and subobject-path

primrec the-Intg :: val = int where
the-Intg (Intg @) = i

primrec the-addr :: val = addr where
the-addr (Ref r) = fst r

primrec the-path :: val = path where
the-path (Ref r) = snd r

primrec default-val :: ty = val — default value for all types where
default-val Void = Unit

| default-val Boolean = Bool False

| default-val Integer = Intg 0

| default-val NT = Null

| default-val (Class C) = Null

lemma default-val-no-Ref:default-val T = Ref(a,Cs) = False
by(cases T)simp-all

primrec typeof :: val = ty option where
typeof Unit = Some Void

| typeof Null = Some NT

| typeof (Bool b) = Some Boolean

| typeof (Intg i) = Some Integer

| typeof (Ref r) = None

lemma [simp]: (typeof v = Some Boolean) = (3 b. v = Bool b)
by (induct v) auto

lemma [simp]: (typeof v = Some Integer) = (3i. v = Intg)
by (cases v) auto

lemma [simp]: (typeof v = Some NT) = (v = Null)
by (cases v) auto

lemma [simp]: (typeof v = Some Void) = (v = Unit)
by (cases v) auto

end

10

4 Expressions

theory Fxzpr imports Value begin

4.1 The expressions

datatype bop = Eq | Add — names of binary operations

datatype expr

= new cname — class instance creation
| Cast cname expr — dynamic type cast
| StatCast cname expr — static type cast
(<(-)-» [80,81] 80)
| Val val — value
| BinOp expr bop expr (x- «-» - [80,0,81] 80)
— binary operation
| Var vname — local variable
| LAss vname expr (<==- [70,70] 70)
— local assignment
| FAcc expr vname path («---{-}> [10,90,99] 90)

— field access

| FAss expr vname path expr — (<---{-} = - [10,70,99,70] 70)
— field assignment

| Call expr cname option mname expr list
— method call

| Block vname ty expr = -P)

| Seq expr expr (¢-;/ - [61,60] 60)

| Cond expr expr expr («if '(-)) -/ else - [80,79,79] 70)
| While expr expr (while '(-") -» [80,79] 70)

| throw expr

abbreviation (input)
DynCall :: expr = mname = expr list = expr («---'(-")> [90,99,0] 90) where
e-M(es) == Call e None M es

abbreviation (input)
StaticCall :: expr = cname = mname = expr list = expr
(¢<=+"(=1)-"(-")> [90,99,99,0] 90) where
e-(C::)M(es) == Call e (Some C) M es

The semantics of binary operators:

fun binop :: bop x wval x wval = wval option where
binop(Eq,v1,v2) = Some(Bool (vi = v3))

| binop(Add,Intg i1,Intg iz) = Some(Intg(i1+iz))

| binop(bop,v1,v2) = None

lemma [simp]:

(binop(Add,v1,v2) = Some v) = (Fiy ia. v1 = Intg i1 N\ vg = Inlg ia AN v =
Intg(i1+1i2))
apply/(cases v1)

11

apply auto
apply/(cases v2)
apply auto
done

lemma binop-not-ref|[simp]:
binop(bop,v1,v3) = Some (Ref r) = False
by (cases bop)auto

4.2 Free Variables

primrec
fv i expr = vname set
and fuvs :: expr list = vname set where
fo(new C) = {}
| fu(Cast Ce) = fuve
| fo((Che) = foe
| fo(Val v) = {}
| fu(er «bop» e2) = fuex U fu eq
| fo(Var V) = {V}
| Fo(V = e) = {V} U fue
| fo(e-F{Cs}) = fue
| fu(er-F{Cs}:=es) = fv e; U fu eq
| fu(Call e Copt M es) = fv e U fus es
| fo({V:T5 e}) = foe — {V}
| fU(elnez) Joer U fves
| fu(if (b) eq else ea) = fub U fuer U fu ey
| fo(while (b) e) = fob U fue
| fo(throw e) = fv e

| fos(l]) = {}
| fus(e#tes) = fv e U fus es

lemma [simp]: fuos(esy @ esa) = fus es; U fus ess
by (induct esy type:list) auto

lemma [simp]: fos(map Val vs) = {}
by (induct vs) auto

end

5 Class Declarations and Programs

theory Decl imports Expr begin

type-synonym
fdecl = vname x ty — field declaration

12

type-synonym

method = ty list X ty x (vname list X expr) — arg. types, return type, params,
body
type-synonym

mdecl = mname X method — method declaration
type-synonym

class = base list x fdecl list x mdecl list — class = superclasses, fields, methods
type-synonym

cdecl = cname X class — classa declaration
type-synonym

prog = cdecl list — program

translations
(type) fdecl <= (type) vname X ty
(type) mdecl <= (type) mname X ty list X ty x (vname list X expr)
(type) class <= (type) cname x fdecl list x mdecl list
(type) cdecl <= (type) cname x class
(type) prog <= (type) cdecl list

definition class :: prog = cname — class where
class = map-of

definition is-class :: prog = cname = bool where
is-class P C' = class P C # None

definition baseClasses :: base list = cname set where
baseClasses Bs = set ((map getbase) Bs)

definition RepBases :: base list = cname set where
RepBases Bs = set ((map getbase) (filter isRepBase Bs))

definition SharedBases :: base list = cname set where
SharedBases Bs = set ((map getbase) (filter isShBase Bs))

lemma not-getbase-repeats:
D ¢ set (map getbase xs) = Repeats D ¢ set xs
by (induct rule: list.induct, auto)

lemma not-getbase-shares:
D ¢ set (map getbase xs) = Shares D ¢ set xs
by (induct rule: list.induct, auto)

lemma RepBaseclass-isBaseclass:
[class P C = Some(Bs,fs,ms); Repeats D € set Bs]
= D € baseClasses Bs

13

by (simp add:baseClasses-def, induct rule: list.induct,
auto simp:not-getbase-repeats)

lemma ShBaseclass-isBaseclass:
[class P C = Some(Bs,fs,ms); Shares D € set Bs]
= D € baseClasses Bs
by (simp add:baseClasses-def, induct rule: list.induct,
auto simp:not-getbase-shares)

lemma base-repeats-or-shares:

[B € set Bs; D = getbase B]
—> Repeats D € set Bs V Shares D € set Bs
by (induct B rule:base.induct) simp+

lemma baseClasses-repeats-or-shares:

D € baseClasses Bs =—> Repeats D € set Bs V Shares D € set Bs
by (auto elim!:bexE base-repeats-or-shares

simp add:baseClasses-def image-def)

lemma finite-is-class: finite {C. is-class P C'}

apply (unfold is-class-def class-def)
apply (fold dom-def)

apply (rule finite-dom-map-of)
done

lemma finite-baseClasses:
class P C = Some(Bs,fs,ms) = finite (baseClasses Bs)

apply (unfold is-class-def class-def baseClasses-def)
apply clarsimp
done

definition is-type :: prog = ty = bool where
is-type P T =
(case T of Void = True | Boolean = True | Integer = True | NT = True
| Class C = is-class P C)

lemma is-type-simps [simp]:
is-type P Void N is-type P Boolean N is-type P Integer A
is-type P NT A is-type P (Class C) = is-class P C

by (simp add:is-type-def)

abbreviation
types P == Collect (CONST is-type P)

14

lemma typeof-lit-is-type:
typeof v = Some T = is-type P T
by (induct v) (auto)

end

6 The subclass relation

theory ClassRel imports Decl begin

— direct repeated subclass
inductive-set
subclsR :: prog = (cname X cname) set
and subclsR' :: prog = [cname, cname] = bool (- - <p - [71,71,71] 70)
for P :: prog
where
PF C <gr D= (C,D) € subclsR P
| subclsRI: [class P C' = Some (Bs,rest); Repeats(D) € set Bs] = P+ C < D

— direct shared subclass
inductive-set
subclsS :: prog = (cname X cname) set
and subclsS’ :: prog = [cname, cname] = bool («- F - <g - [71,71,71] 70)
for P :: prog
where
PF C <s D= (C,D) € subclsS P
| subclsSI: [class P C = Some (Bs,rest); Shares(D) € set Bs] = P+ C <g D

— direct subclass
inductive-set
subclsl :: prog = (cname X cname) set
and subclsl’ :: prog = [cname, cname] = bool («-+ - <1 - [71,71,71] 70)
for P :: prog
where
P+ C <'D=(C,D) € subcls1 P
| subclsil: [class P C = Some (Bs,rest); D € baseClasses Bs] = P+ C <! D

abbreviation
subcls i prog = [cname, cname] = bool («-+ - =<* - [71,71,71] 70) where
P+ C=*D=(C,D) € (subclst P)*

lemma subclsRD:

PF C <g D= 3fs ms Bs. (class P C = Some (Bs,fs,ms)) N\ (Repeats(D) €
set Bs)
by (auto elim: subclsR.cases)

15

lemma subclsSD:

Pt C <s D= 3fsms Bs. (class P C = Some (Bs,fs,ms)) A (Shares(D) € set
Bs)
by (auto elim: subclsS.cases)

lemma subcls1D:

P C <! D= 3fs ms Bs. (class P C = Some (Bs,fs,ms)) A (D € baseClasses
Bs)
by (auto elim: subclsl.cases)

lemma subclsR-subclsl:
PrC=<p D= PFC=<'D
by (auto elim!:subclsR.cases intro:subcls1l simp: RepBaseclass-isBaseclass)

lemma subclsS-subclsi:
PHC<s D= PFC<'D
by (auto elim!:subclsS.cases intro:subcls1l simp:ShBaseclass-isBaseclass)

lemma subclsI-subclsR-or-subclsS:
PFC<'D=P+C=<pDVPFC<=<gD

by (auto dest!:subcls1D intro:subclsRI
dest:baseClasses-repeats-or-shares subclsSI)

lemma finite-subcls1: finite (subclsl P)

apply (subgoal-tac subcls1 P = (SIGMA C: {C. is-class P C} .
{D. D € baseClasses (fst(the(class P C)))}))
prefer 2
apply (fastforce simp:is-class-def dest: subcls1D elim: subcls1l)
apply simp
apply(rule finite-Sigmal [OF finite-is-class])
apply (rule-tac B = baseClasses (fst (the (class P C))) in finite-subset)
apply (auto intro:finite-baseClasses simp:is-class-def)
done

lemma finite-subclsR: finite (subclsR P)
by (rule-tac B = subcls! P in finite-subset,
auto simp:subclsR-subclsl finite-subclsl)

lemma finite-subclsS: finite (subclsS P)
by (rule-tac B = subcls! P in finite-subset,
auto simp:subclsS-subcls1 finite-subcls1)

lemma subclsi-class:

Pr C =<' D= is-class P C
by (auto dest:subcls1D simp:is-class-def)

16

lemma subcls-is-class:
[PF D =* Cj;is-class P C]| = is-class P D
by (induct rule:rtrancl-induct,auto dest:subcls1-class)

end

7 Definition of Subobjects

theory SubObj
imports ClassRel
begin

7.1 General definitions

type-synonym
subobj = cname X path

definition mdc :: subobj = cname where
mde S = fst S

definition Ildc :: subobj = cname where
lde S = last (snd S)

lemma mdc-tuple [simp]: mde (C,Cs) = C
by (simp add:mdc-def)

lemma Ilde-tuple [simp]: lde (C,Cs) = last Cs
by (simp add:ldc-def)

7.2 Subobjects according to Rossie-Friedman

fun is-subobj :: prog = subobj = bool — legal subobject to class hierarchie where
is-subobj P (C, []) <— False
| is-subobj P (C, [D]) +— (is-class P C N C' = D)
VEX.PFC=X*XAPFX<gD)
| is-subobj P (C, D # E # Xs) = (let Ys=butlast (D # E # Xs);
Y=last (D # E # Xs);
X=last Ys
in is-subobj P (C, Ys) N PH X <p Y)

lemma subobj-auz-rev:
assumes 1:is-subobj P ((C,C'#rev CsQ[C'"))
shows is-subobj P ((C,C'#rev Cs))
proof —
obtain Cs’ where Cs’:Cs’ = rev Cs by simp
hence rev:Cs'Q[C"'] = rev CsQ[C"] by simp
from this obtain D Ds where DDs:Cs'Q[C"'] = D#Ds by (cases Cs') auto

17

with 7 rev have subo:is-subobj P ((C,C'#D#Ds)) by simp
from DDs have butlast (C'#D#Ds) = C'#Cs’' by (cases Cs') auto
with subo have is-subobj P ((C,C'#Cs")) by simp
with Cs’ show ?thesis by simp
qed

lemma subobj-aux:

assumes I:is-subobj P ((C,C'# CsQ[C"]))

shows is-subobj P ((C,C'#Cs))

proof —
from 1 obtain Cs’ where Cs”:Cs’ = rev Cs by simp
with 1 have is-subobj P ((C,C'#rev Cs'Q[C"])) by simp
hence is-subobj P ((C,C'#rev Cs')) by (rule subobj-aux-rev)
with Cs’ show ?thesis by simp

qed

lemma isSubobj-isClass:
assumes I:is-subobj P (R)
shows is-class P (mdc R)

proof —
obtain C’ Cs’ where R:R = (C’,Cs’) by(cases R) auto
with 1 have ne:Cs’ # [| by (cases Cs’) auto

from this obtain C"' Cs' where C'"'Cs":Cs’ = C"#Cs" by (cases Cs') auto

from this obtain Ds where Ds = rev Cs’’ by simp
with I R C'"Cs" have subol:is-subobj P ((C',C""#rev Ds)) by simp
with R show ?thesis
by (induct Ds,auto simp:mdc-def split:if-split-asm dest:subobj-auz,
auto elim:converse-rtranclE dest!:subclsS-subcls1 elim:subcls1-class)
qed

lemma isSubobjs-subclsR-rev:
assumes I:is-subobj P ((C,CsQ[D,D'|Q(rev Cs’)))
shows P+ D <p D’
using 1
proof (induct Cs’)
case Nil
from this obtain Cs’ X Y Xs where Cs’1:Cs’ = CsQ[D,D’]
and X = hd(CsQ[D,D']) and Y = hd(#(CsQ[D,D"))
and Xs = ¢#(t/(Cs@Q[D,D'))) by simp
hence Cs’2:Cs’ = X# Y#Xs by (cases Cs) auto
from Cs’1 have last:last Cs’ = D’ by simp

18

from Cs’1 have butlast:last(butlast Cs’) = D by (simp add:butlast-tail)
from Nil Cs'1 Cs’2 have is-subobj P ((C,X#Y#Xs)) by simp
with last butlast Cs’2 show ?case by simp
next
case (Cons C'"' Cs")
have IH:is-subobj P ((C, Cs @Q [D, D] @ rev Cs")) = P+ D <g D' by fact
from Cons obtain Cs’ X Y Xs where Cs’'1:Cs’ = CsQ[D,D'|Q(rev (C""#Cs"))

and X = hd(CsQ[D,D'|Q(rev (C""#Cs")))

and Y = hd(tl(CsQ[D,D"|Q(rev (C"#Cs'))))

and Xs = ¢l(tl(CsQ[D,D'|Q(rev (C"#Cs')))) by simp
hence Cs’2:Cs’ = X#Y#Xs by (cases Cs) auto
from Cons Cs'l Cs’2 have is-subobj P ((C,X#Y#Xs)) by simp
hence sub:is-subobj P ((C,butlast (X# Y#Xs))) by simp
from Cs’1 obtain F Es where Cs’'3:Cs’ = EsQ[E] by (cases Cs’) auto
with Cs’! have butlast: Es = CsQ[D,D'|Q(rev Cs'") by simp
from Cs’3 have butlast Cs' = Es by simp
with butlast have butlast Cs’ = CsQ[D,D"|Q(rev Cs') by simp
with Cs’2 sub have is-subobj P ((C,CsQ[D,D’|Q(rev Cs”)))

by simp
with [H show ?case by simp

qged

lemma isSubobjs-subclsR:
assumes I:is-subobj P ((C,CsQ[D,D'|QCs"))
shows P+ D <p D’

proof —
from 1 obtain Cs”’ where Cs'’ = rev Cs’ by simp
with 1 have is-subobj P ((C,CsQ[D,D’'|Q(rev Cs"))) by simp
thus ?thesis by (rule isSubobjs-subclsR-rev)

qed

lemma mdc-leq-ldc-auz:
assumes I:is-subobj P ((C,C'#rev Cs'))
shows P F C =* last (C'#rev Cs’)
using 1
proof (induct Cs’)
case Nil
from 1 have is-class P C
by (drule-tac R=(C,C'#rev Cs") in isSubobj-isClass, simp add:mdc-def)
with Nil show ?case
proof (cases C=C")
case True

19

thus ?thesis by simp
next
case Fulse
with Nil show %thesis
by (auto dest!:subclsS-subclsl)
qed
next
case (Cons C"" Cs")
have IH:is-subobj P ((C, C' # rev Cs")) = P+ C =<* last (C' # rev Cs"’)
and subo:is-subobj P ((C, C' # rev (C" # Cs"))) by fact+
hence is-subobj P ((C, C' # rev Cs”)) by (simp add:subobj-auz-rev)
with [H have rel:P F C <* last (C' # rev Cs”') by simp
from subo obtain D Ds where DDs:C' # rev Cs'' = DsQ[D)]
by (cases Cs") auto
hence C'# rev (C" # Cs') = DsQ[D,C"] by simp
with subo have is-subobj P ((C,DsQ[D,C"])) by (cases Ds) auto
hence P+ D <r C" by (rule-tac Cs’=[] in isSubobjs-subclsR) simp
hence rell:P + D <! C'"' by (rule subclsR-subcls1)
from DDs have D = last (C' # rev Cs') by simp
with rell have lastrell:P \ last (C' # rev Cs") <! C' by simp
with rel have P+ C <* C"
by (rule-tac b=last (C' # rev Cs') in rtrancl-into-rtrancl) simp
thus ?case by simp
qed

lemma mdc-leg-ldc:
assumes I:is-subobj P (R)
shows P+ mdec R <* ldec R

proof —
from 1 obtain C' Cs where R:R = (C,Cs) by (cases R) auto
with 1 have ne:Cs # [| by (cases Cs) auto
from this obtain C’ Cs’ where Cs:Cs = C'#Cs’ by (cases Cs) auto
from this obtain Cs’”’ where Cs":Cs’ = rev Cs’ by simp
with R Cs 1 have is-subobj P ((C,C'#rev Cs”)) by simp
hence rel:P - C <* last (C'#rev Cs') by (rule mdc-leg-ldc-auz)
from R Cs Cs’ have ldc:last (C'#rev Cs'’) = ldc R by(simp add:ldc-def)
from R have mdc R = C by(simp add:mdc-def)
with ldc rel show ?thesis by simp

qed

Next three lemmas show subobject property as presented in literature

lemma class-isSubobj:
is-class P C = is-subobj P ((C,[C]))
by simp

20

lemma repSubobj-isSubobj:
assumes I:is-subobj P ((C,XsQ[X])) and 2:PF X <p Y
shows is-subobj P ((C,XsQ[X,Y]))

using 1
proof —
obtain Cs D E Cs’ where Cs1:Cs = XsQ[X,Y] and D = hd(XsQ[X,Y])
and F = hd(#(XsQ[X,Y])) and Cs’' = ¢(H(XsQ[X,Y]))by simp
hence Cs2:Cs = D#E#Cs’ by (cases Xs) auto
with 1 Cs! have subobj-butlast:is-subobj P ((C,butlast(D#E# Cs’)))
by (simp add:butlast-tail)
with 2 Cs1 Cs2 have P & (last(butlast(D#E#Cs’))) <gr last(D#E#Cs’)
by (simp add:butlast-tail)
with subobj-butlast have is-subobj P ((C,(D#E#Cs’))) by simp
with Cs1 Cs2 show ?thesis by simp
qed

lemma shSubobj-isSubobj:
assumes 1: is-subobj P ((C,XsQ[X])) and 2:P+F X <g Y
shows is-subobj P ((C,[Y]))

using 1
proof —
from 1 have classC:is-class P C
by (drule-tac R=(C,XsQ[X]) in isSubobj-isClass, simp add:mdc-def)
from 1 have P+ C <* X
by (drule-tac R=(C,XsQ[X]) in mdc-leg-ldc, simp add:mdc-def ldc-def)
with classC 2 show ?thesis by fastforce
qed

Auxiliary lemmas

lemma build-rec-isSubobj-rev:
assumes I:is-subobj P ((D,D#rev Cs)) and 2: P+ C <z D
shows is-subobj P ((C,C#D#rev Cs))
using 1
proof (induct Cs)
case Nil
from 2 have is-class P C by (auto dest:subclsRD simp add:is-class-def)
with 1 2 show Zcase by simp
next
case (Cons C' Cs')
have suboD:is-subobj P ((D,D#rev (C'#Cs")))
and [H:is-subobj P ((D,D#rev Cs')) = is-subobj P ((C,C#D#rev Cs')) by
fact+
obtain E Fs where E:F = hd (rev (C'#Cs’)) and Es:Es = tl (rev (C'#Cs’))
by simp
with F have E-Es:rev (C'#Cs’) = E#Es by simp

21

with F Es have butlast:butlast (D#E#Es) = D#rev Cs’ by simp
from E-Es suboD have suboDE:is-subobj P ((D,D#E#ZEs)) by simp
hence is-subobj P ((D,butlast (D#E#Es))) by simp
with butlast have is-subobj P ((D,D#rev Cs")) by simp
with IH have suboCD:is-subobj P ((C, C#D4rev Cs')) by simp
from suboDE obtain Xs X Y Xs’ where Xs":Xs' = D#E#Es
and bb:Xs = butlast (butlast (D#E#FEs))
and [b:X = last(butlast (D#EF#Es)) and I:Y = last (D#E#Es) by simp
from this obtain Xs”’ where Xs':Xs" = XsQ[X] by simp
with bb b have Xs” = butlast (D#E#Es) by simp
with [have D#E#FEs = Xs""Q[Y] by simp
with Xs” have D#E#Fs = XsQ[X]Q[Y] by simp
with suboDE have is-subobj P ((D,XsQ[X,Y])) by simp
hence subR:P + X <r Y by(rule-tac Cs=Xs and Cs'=|] in isSubobjs-subclsR)
stmp
from E-Es Es have last (D#E#FEs) = C’ by simp
with subR 1b | butlast have P+ last(D#rev Cs') <g C’
by (auto split:if-split-asm)
with suboCD show ?Zcase by simp
qed

lemma build-rec-isSubobj:
assumes I:is-subobj P ((D,D#Cs)) and 2: P+ C <g D
shows is-subobj P ((C,C#D+#Cs))

proof —
obtain Cs’ where Cs’:Cs’ = rev Cs by simp
with ! have is-subobj P ((D,D#rev Cs')) by simp
with 2 have is-subobj P ((C,C#D+#rev Cs’))
by — (rule build-rec-isSubobj-rev)
with Cs’ show ?thesis by simp
qed

lemma isSubobj-isSubobj-isSubobj-rev:
assumes I:is-subobj P ((C,[D])) and 2:is-subobj P ((D,D#(rev Cs)))
shows is-subobj P ((C,D#(rev Cs)))
using 2
proof (induct Cs)
case Nil
with 1 show ?case by simp
next
case (Cons C' Cs)
have IH:is-subobj P ((D,D#rev Cs')) = is-subobj P ((C,D4trev Cs’))

22

and is-subobj P ((D,D#rev (C'#Cs’))) by fact+
hence suboD:is-subobj P ((D,D#rev Cs'Q[C"])) by simp
hence is-subobj P ((D,D#rev Cs’)) by (rule subobj-auz-rev)
with TH have suboC':is-subobj P ((C,D#trev Cs’)) by simp
obtain C’ where C": C"' = last (D # rev Cs’) by simp
moreover have D # rev Cs’ = butlast (D # rev Cs’) Q [last (D # rev Cs”)]
by (rule append-butlast-last-id [symmetric]) simp
ultimately have butlast: D # rev Cs’ = butlast (D #rev Cs’) @ [C]
by simp
hence butlast2: D#rev Cs'Q[C’] = butlast(D#rev Cs")Q[C"|Q[C’] by simp
with suboD have is-subobj P ((D,butlast(D#rev Cs")Q[C"Q[C))
by simp
with C' have subR:P + C" < C'
by (rule-tac Cs=butlast(D#rev Cs’) and Cs’=[] in isSubobjs-subclsR)simp
with C" suboC butlast have is-subobj P ((C,butlast(D#rev CsQ[C"|Q[C]))
by (auto intro:repSubobj-isSubobj simp del:butlast.simps)
with butlast2 have is-subobj P ((C,D#rev Cs'Q[C]))
by (cases Cs’)auto
thus ?case by simp
qed

lemma isSubobj-isSubobj-isSubobj:
assumes I:is-subobj P ((C,[D])) and 2:is-subobj P ((D,D#Cs))
shows is-subobj P ((C,D#Cs))

proof —
obtain Cs’ where Cs”:Cs’ = rev Cs by simp
with 2 have is-subobj P ((D,D#rev Cs’)) by simp
with ! have is-subobj P ((C,D#rev Cs’))
by — (rule isSubobj-isSubobj-isSubobj-rev)

with Cs’ show ?thesis by simp

qed

7.3 Subobject handling and lemmas

Subobjects consisting of repeated inheritance relations only:

inductive Subobjsg :: prog = cname = path = bool for P :: prog
where
SubobjsR-Base: is-class P C = Subobjsp P C [C]
| SubobjsR-Rep: [P+ C <gr D; Subobjsg P D Cs] = Subobjsg P C (C # Cs)

All subobjects:

inductive Subobjs :: prog = cname = path = bool for P :: prog
where
Subobjs-Rep: Subobjsgp P C Cs = Subobjs P C Cs
| Subobjs-Sh: [P+ C <* C'; P+ C’' <g D; Subobjsg P D Cs]
= Subobjs P C Cs

23

lemma Subobjs-Base:is-class P C = Subobjs P C [C]
by (fastforce intro:Subobjs-Rep SubobjsR-Base)

lemma SubobjsR-nonempty: Subobjsg P C Cs = Cs # |]
by (induct rule: Subobjsg.induct, simp-all)

lemma Subobjs-nonempty: Subobjs P C Cs = Cs # |]
by (erule Subobjs.induct)(erule SubobjsR-nonempty)+

lemma hd-SubobjsR:
Subobjsp P C Cs = 3Cs’. Cs = C#Cs’
by (erule Subobjsg.induct,simp+)

lemma SubobjsR-subclassRep:
Subobjsp P C Cs = (C,last Cs) € (subclsR P)*

apply (erule Subobjsg.induct)

apply simp

apply(simp add: SubobjsR-nonempty)
done

lemma SubobjsR-subclass: Subobjsg P C Cs = P+ C =<* last Cs

apply(erule Subobjsg.induct)

apply simp

apply(simp add: SubobjsR-nonempty)

apply (blast intro:subclsR-subcls1 rtrancl-trans)
done

lemma Subobjs-subclass: Subobjs P C Cs = P C <* last Cs

apply (erule Subobjs.induct)

apply(erule SubobjsR-subclass)

apply(erule rtrancl-trans)

apply(blast intro:subclsS-subclsl SubobjsR-subclass rtrancl-trans)
done

lemma Subobjs-notSubobjsR:

[Subobjs P C Cs; = Subobjsg P C Cs]
= dC'D.P+-C =*C'ANPF C'<s D A Subobjsg P D Cs
apply (induct rule: Subobjs.induct)

24

apply clarsimp

apply fastforce
done

lemma assumes subo:Subobjsp P (hd (Cs@Q C'#Cs’)) (Cs@Q C'#Cs’)
shows SubobjsR-Subobjs: Subobjs P C' (C'#Cs’)
using subo
proof (induct Cs)
case Nil
thus ?case by —(frule hd-SubobjsR,fastforce intro:Subobjs-Rep)
next
case (Cons D Ds)
have subo’:Subobjsg P (hd ((D#Ds) @ C'#Cs")) ((D#Ds) @ C'#Cs")
and [H:Subobjsg P (hd (Ds @ C'#Cs’)) (Ds @ C'#Cs") = Subobjs P C'
(C'4Cs") by fact+
from subo’ have Subobjsg P (hd (Ds Q@ C’' # Cs')) (Ds Q@ C’' # Cs)
apply —
apply (drule Subobjsg.cases)
apply auto
apply (rename-tac D)
apply (subgoal-tac D' = hd (Ds @ C' # Cs'))
apply (auto dest:hd-SubobjsR)
done
with IH show ?case by simp
qged

lemma Subobjs-Subobjs:Subobjs P C' (Cs@Q C'#Cs’) = Subobjs P C' (C'#Cs’)

apply —

apply (drule Subobjs.cases)

apply auto

apply (subgoal-tac C = hd(Cs Q@ C’ # Cs'))
apply (fastforce intro:SubobjsR-Subobjs)
apply (fastforce dest:hd-SubobjsR)

apply (subgoal-tac D = hd(Cs @ C' # Cs'))
apply (fastforce intro:SubobjsR-Subobjs)

apply (fastforce dest:hd-SubobjsR)

done

lemma SubobjsR-isClass:
assumes subo:Subobjsgp P C Cs
shows is-class P C

using subo
proof (induct rule:Subobjsg.induct)

25

case SubobjsR-Base thus ?case by assumption
next

case SubobjsR-Rep thus Zcase by (fastforce intro:subclsR-subcls1 subclsi-class)
qed

lemma Subobjs-isClass:
assumes subo:Subobjs P C Cs
shows is-class P C

using subo
proof (induct rule:Subobjs.induct)
case Subobjs-Rep thus ?case by (rule SubobjsR-isClass)
next
case (Subobjs-Sh C C' D Cs)
have leq:P - C <* C'and legS:P + C' <5 D by fact+
hence (C,D) € (subcls1 P)* by (fastforce intro:rtrancl-into-trancll subclsS-subcls1)
thus ?case by (induct rule:trancl-induct, fastforce intro:subcls1-class)
qed

lemma Subobjs-subclsR:
assumes subo:Subobjs P C' (CsQ[D,D'|QCs’)
shows P+ D < D'

using subo
proof —
from subo have Subobjs P D (D#D'#Cs’) by —(rule Subobjs-Subobjs,simp)
then obtain C’ where subo’:Subobjsg P C' (D#D'#Cs’)
by (induct rule:Subobjs.induct,blast+)
hence C’' = D by —(drule hd-SubobjsR,simp)
with subo’ have Subobjsg P D (D#D'#Cs’) by simp
thus ?thesis by (fastforce elim:Subobjsg.cases dest:hd-SubobjsR)
qed

lemma assumes subo:Subobjsg P (hd Cs) (CsQ[D]) and notempty:Cs # []
shows butlast-Subobjs-Rep:Subobjsg P (hd Cs) Cs
using subo notempty
proof (induct Cs)
case Nil thus ?case by simp
next
case (Cons C' Cs')
have subo:Subobjsg P (hd(C'#Cs")) ((C'#Cs")Q[D])
and IH:[Subobjsg P (hd Cs') (Cs'Q[D]); Cs’ # []] = Subobjsg P (hd Cs’)
Cs' by fact+
from subo have subo’:Subobjsg P C' (C'#Cs'Q[D]) by simp

26

show ?Zcase
proof (cases Cs' = [])
case True
with subo’ have Subobjsg P C' [C',D] by simp
hence is-class P C’ by(rule SubobjsR-isClass)
hence Subobjsg P C' [C'] by (rule SubobjsR-Base)
with True show ?thesis by simp
next
case Fulse
with subo’ obtain D’ where subo'":Subobjsg P D' (Cs'Q[D])
and subR:P + C’ <r D’
by (auto elim:Subobjsg.cases)
from Fualse subo’’ have hd:D' = hd Cs’
by (induct Cs’,auto dest:hd-SubobjsR)
with subo’ False IH have Subobjsg P (hd Cs’) Cs’ by simp
with subR hd have Subobjsg P C' (C'#Cs’) by (fastforce intro:SubobjsR-Rep)
thus ?thesis by simp
qed
qed

lemma assumes subo:Subobjs P C (CsQ[D]) and notempty:Cs # |]
shows butlast-Subobjs:Subobjs P C Cs

using subo
proof (rule Subobjs.cases,auto)
assume suboR:Subobjsp P C (CsQ[D]) and Subobjs P C (CsQ[D])
from suboR notempty have hd:C = hd Cs
by (induct Cs,auto dest:hd-SubobjsR)
with suboR notempty have Subobjsg P (hd Cs) Cs
by (fastforce intro:butlast-Subobjs-Rep)
with hd show Subobjs P C Cs by (fastforce intro:Subobjs-Rep)
next
fix C’ D’ assume leq:P + C <* C’ and subS:P + C' <g D’
and suboR:Subobjsg P D’ (Cs@Q[D]) and Subobjs P C' (CsQ[D])
from suboR notempty have hd:D’' = hd Cs
by (induct Cs,auto dest:hd-SubobjsR)
with suboR notempty have Subobjsp P (hd Cs) Cs
by (fastforce intro:butlast-Subobjs-Rep)
with hd leq subS show Subobjs P C' Cs
by (fastforce intro:Subobjs-Sh)
qed

lemma assumes subo:Subobjs P C (CsQ(rev Cs’)) and notempty:Cs # |]
shows rev-appendSubobj:Subobjs P C Cs

27

using subo
proof (induct Cs")
case Nil thus ?case by simp
next
case (Cons D Ds)
have subo’:Subobjs P C' (CsQrev(D#Ds))
and IH:Subobjs P C (CsQrev Ds) = Subobjs P C Cs by fact+
from notempty subo’ have Subobjs P C (CsQrev Ds)
by (fastforce intro:butlast-Subobjs)
with [H show ?case by simp
qed

lemma appendSubobj:
assumes subo:Subobjs P C' (CsQCs’) and notempty:Cs # |]
shows Subobjs P C' Cs

proof —
obtain Cs’’ where Cs":Cs" = rev Cs’ by simp
with subo have Subobjs P C' (CsQ(rev Cs")) by simp
with notempty show ?Zthesis by — (rule rev-appendSuboby)
qed

lemma SubobjsR-isSubobj:

Subobjsp P C Cs = is-subobj P ((C,Cs))
by (erule Subobjsg.induct,simp,

auto dest:hd-SubobjsR intro:build-rec-isSuboby)

lemma leq-SubobjsR-isSubobyj:
[PFH C=*C PF C'<s D; Subobjsg P D Cs]
= is-subobj P ((C,Cs))

apply (subgoal-tac is-subobj P ((C,[D])))
apply (frule hd-SubobjsR)

apply (drule SubobjsR-isSubobj)

apply (erule exFE)

apply (simp del: is-subobj.simps)
apply (erule isSubobj-isSubobj-isSubobj)
apply simp

apply auto

done

lemma Subobjs-isSubobj:
Subobjs P C Cs = is-subobj P ((C,Cs))

28

by (auto elim:Subobjs.induct SubobjsR-isSubobj
simp add:leq-SubobjsR-isSuboby)

7.4 Paths
7.5 Appending paths
Avoided name clash by calling one path Path.

definition path-via :: prog = cname = cname = path = bool (- - Path - to -
via - > [51,51,51,51] 50) where
P F Path C to D via Cs = Subobjs P C Cs A last Cs = D

definition path-unique :: prog = cname = cname = bool (<- = Path - to - unique)
[61,51,51] 50) where
P+ Path C to D unique = 3!Cs. Subobjs P C Cs A last Cs = D

definition appendPath :: path = path = path (infixr <@, 65) where
Cs @, Cs" = if (last Cs = hd Cs') then Cs Q (¢l Cs') else Cs’

lemma appendPath-last: Cs # [| = last Cs = last (Cs'@, Cs)
by (auto simp:appendPath-def last-append)(cases Cs, simp-all)+

inductive
casts-to :: prog = ty = wval = val = bool
(¢- F - casts - to - » [51,51,51,51] 50)
for P :: prog
where

casts-prim: ¥V C. T # Class C = P+ T casts v to v
| casts-null: P+ Class C casts Null to Null

| casts-ref: [P+ Path last Cs to C via Cs’; Ds = CsQ,Cs’ |
= P I Class C casts Ref(a,Cs) to Ref(a,Ds)

inductive
Casts-to :: prog = ty list = wval list = wval list = bool
(- F - Casts - to - » [51,61,51,51] 50)
for P :: prog
where

Casts-Nil: P+ [] Casts [] to []
| Casts-Cons: [P &+ T casts v to v'; P+ Ts Casts vs to vs']
= P+ (T#Ts) Casts (v#wvs) to (v'#wvs’)

29

lemma length-Casts-vs:
P+ Ts Casts vs to vs' = length Ts = length vs
by (induct rule: Casts-to.induct,simp-all)

lemma length-Casts-vs":
P+ Ts Casts vs to vs' = length Ts = length vs’
by (induct rule: Casts-to.induct,simp-all)

7.6 The relation on paths

inductive-set
leg-pathl :: prog = cname = (path X path) set
and leg-path1’ :: prog = cname = [path, path] = bool («-,-+ - ' - [71,71,71]
70)
for P :: prog and C :: cname
where
P,C+ Cs ! Ds = (Cs,Ds) € leg-pathl P C
| leg-pathRep: [Subobjs P C Cs; Subobjs P C Ds; Cs = butlast Ds]
= P,C+ CsC! Ds
| leg-pathSh: [Subobjs P C Cs; P+ last Cs <g D]
= P,CF Cs ! [D]

abbreviation

leg-path :: prog = cname = [path, path] = bool (¢-,-F - C - [71,71,71] 70)
where

P,C+ Cs C Ds = (Cs,Ds) € (leg-pathl P C)*

lemma leg-path-rep:

[Subobjs P C (Cs@Q[C]); Subobjs P C (CsQ[C’,C"))]
= P,C + (Cs@[C) ! (Cs@[C’,C"))
by (rule leg-pathRep,simp-all add:butlast-tail)

lemma leq-path-sh:

[Subobjs P C (Cs@Q[C']); P+ C' <5 C"]
= P,C + (Cs@[C)) ! [C]
by (erule leg-pathSh)simp

7.7 Member lookups

definition FieldDecls :: prog = cname = vname = (path X ty) set where
FieldDecls P C' F =
{(Cs,T). Subobjs P C Cs A (3 Bs fs ms. class P (last Cs) = Some(Bs,fs,ms)
A map-of fs F = Some T)}

definition LeastFieldDecl :: prog = cname = vname = ty = path = bool
(¢- F - has least -:- via -» [51,0,0,0,51] 50) where

30

P+ C has least F: T via Cs =
(Cs,T) € FieldDecls P C F A
(V(Cs",T') € FieldDecls P C F. P,C - Cs C Cs’)

definition MethodDefs :: prog = cname = mname = (path x method)set where
MethodDefs P C' M =
{(Cs,mthd). Subobjs P C Cs A\ (3 Bs fs ms. class P (last Cs) = Some(Bs,fs,ms)
A map-of ms M = Some mthd)}

— needed for well formed criterion
definition HasMethodDef :: prog = cname = mname = method = path = bool
(- - has - = - via - [51,0,0,0,51] 50) where
P+ C has M = mthd via Cs = (Cs,mthd) € MethodDefs P C M

definition LeastMethodDef :: prog = cname = mname = method = path = bool
(¢- F - has least - = - via - [51,0,0,0,51] 50) where
P+ C has least M = mthd via Cs =
(Cs,mthd) € MethodDefs P C M A
(V(Cs',mthd’) € MethodDefs P C M. P,C F Cs C Cs’)

definition MinimalMethodDefs :: prog = cname = mname = (path x method)set
where
MinimalMethodDefs P C' M =
{(Cs,mthd). (Cs,mthd) € MethodDefs P C M A
(V(Cs’;mthd"e MethodDefs P C M. P,C + Cs' C Cs — Cs' = Cs)}

definition OverriderMethodDefs :: prog = subobj = mname = (path x method)set
where
OverriderMethodDefs P R M =
{(Cs,mthd). 3 Cs’ mthd’. P & (ldc R) has least M = mthd’ via Cs" A
(Cs,mthd) € MinimalMethodDefs P (mdc R) M A
P,mdc R+ Cs C (snd R)@Q,Cs’}

definition FinalOverriderMethodDef :: prog = subobj = mname = method =
path = bool
(¢- F - has overrider - = - via - [51,0,0,0,51] 50) where
P+ R has overrider M = mthd via Cs =
(Cs,mthd) € OwverriderMethodDefs P R M A
card(OverriderMethodDefs P R M) = 1

inductive
SelectMethodDef :: prog = cname = path = mname = method = path = bool
(«- F '(-,-") selects - = - via - [51,0,0,0,0,51] 50)
for P :: prog
where

dyn-unique:

31

P & C has least M = mthd via Cs' = P + (C,Cs) selects M = mthd via Cs’

| dyn-ambiguous:
[V mthd Cs'. = P+ C has least M = mthd via Cs’;
P+ (C,Cs) has overrider M = mthd via Cs']
= P+ (C,Cs) selects M = mthd via Cs’

lemma sees-fields-fun:
(Cs,T) € FieldDecls P C F = (Cs,T’) € FieldDecls PCF = T =T’
by (fastforce simp:FieldDecls-def)

lemma sees-field-fun:
[P+ C has least F:T via Cs; P+ C has least F:T' via Cs]
= T =T

by (fastforce simp: LeastFieldDecl-def dest:sees-fields-fun)

lemma has-least-method-has-method:
P C has least M = mthd via Cs = P+ C has M = mthd via Cs
by (simp add:LeastMethodDef-def HasMethodDef-def)

lemma visible-methods-ezist:

(Cs,mthd) € MethodDefs P C M —>

(3 Bs fs ms. class P (last Cs) = Some(Bs,fs,ms) N map-of ms M = Some mthd)
by (auto simp:MethodDefs-def)

lemma sees-methods-fun:

(Cs,mthd) € MethodDefs P C M = (Cs,mthd’) € MethodDefs P C M = mthd
= mithd’
by (fastforce simp: MethodDefs-def)

lemma sees-method-fun:
[P F C has least M = mthd via Cs; P = C has least M = mthd’ via Cs]
= mithd = mthd’

by (fastforce simp: LeastMethodDef-def dest:sees-methods-fun)

lemma overrider-method-fun:
assumes overrider:P = (C,Cs) has overrider M = mthd via Cs’
and overrider:P + (C,Cs) has overrider M = mthd’ via Cs”
shows mthd = mthd’ A Cs' = Cs”
proof —
from overrider’ have omd:(Cs’';mthd’) € OverriderMethodDefs P (C,Cs) M
by (simp-all add:FinalOverriderMethodDef-def)
from overrider have (Cs’;mthd) € OverriderMethodDefs P (C,Cs) M

32

and card(OverriderMethodDefs P (C,Cs) M) = 1
by (simp-all add: FinalOverriderMethodDef-def)
hence V (Ds,mthd"") € OverriderMethodDefs P (C,Cs) M. (Cs’,mthd) = (Ds,mthd")
by (fastforce simp:card-Suc-eq)
with omd show ?thesis by fastforce
qed

end

8 Objects and the Heap

theory Objects imports SubObj begin

8.1 Objects
type-synonym

subo = (path x (vname — wal)) — subobjects realized on the heap
type-synonym
obj = cname X subo set — mdc and subobject

definition init-class-fieldmap :: prog = cname = (vname — val) where
init-class-fieldmap P C =
map-of (map (A\(F,T).(F,default-val T)) (fst(snd(the(class P C)))))

inductive
ingt-obj :: prog = cname = (path x (vname — wval)) = bool
for P :: prog and C :: cname
where
Subobjs P C Cs = init-obj P C (Cs,init-class-fieldmap P (last Cs))

lemma init-obj-nonempty: init-obj P C (Cs,fs) = Cs # |]
by (fastforce elim:init-obj.cases dest:Subobjs-nonempty)

lemma init-obj-no-Ref:

[init-obj P C (Cs,fs); fs F = Some(Ref(a’,Cs"))] = False

by (fastforce elim:init-obj.cases default-val-no-Ref
simp:init-class-fieldmap-def map-of-map)

lemma SubobjsSet-init-objSet:

{Cs. Subobjs P C Cs} = {Cs. Jvmap. init-obj P C (Cs,vmap)}
by (fastforce intro:init-obj.intros elim:init-obj.cases)

definition obj-ty :: 0bj = ty where
obj-ty obj = Class (fst obj)

33

— a new, blank object with default values in all fields:
definition blank :: prog = cname = obj where
blank P C = (C, Collect (init-obj P C))

lemma [simp]: obj-ty (C,S) = Class C
by (simp add: obj-ty-def)

8.2 Heap
type-synonym heap = addr — obj

abbreviation
cname-of :: heap = addr = cname where
cname-of hp a == fst (the (hp a))

definition new-Addr :: heap = addr option where
new-Addr h = if 3a. h a = None then Some(SOME a. h a = None) else None

lemma new-Addr-SomeD:
new-Addr h = Some a = h a = None
by (fastforce simp add:new-Addr-def split:if-splits intro:somel)

end

9 Exceptions

theory Fzxceptions imports Objects begin

9.1 Exceptions

definition NullPointer :: cname where
NullPointer = "'NullPointer'

definition ClassCast :: cname where
ClassCast = ""ClassCast’’

definition OutOfMemory :: cname where
OutOfMemory = " OutOfMemory’’

definition sys-zcpts :: cname set where
sys-zepts = {NullPointer, ClassCast, OutOfMemory}

definition addr-of-sys-xzcpt :: cname = addr where
addr-of-sys-zept s = if s = NullPointer then 0 else
if s = ClassCast then 1 else
if s = OutOfMemory then 2 else undefined

34

definition start-heap :: prog = heap where
start-heap P = Map.empty (addr-of-sys-zcpt NullPointer — blank P NullPointer,
addr-of-sys-zcpt ClassCast — blank P ClassCast,
addr-of-sys-zept OutOfMemory — blank P OutOfMemory)

definition preallocated :: heap = bool where
preallocated h =V C € sys-zcpts. 3S. h (addr-of-sys-zept C) = Some (C,S)

9.2 System exceptions

lemma [simp]:
NullPointer € sys-zcpts A OutOfMemory € sys-zepts A ClassCast € sys-zcepts
by (simp add: sys-zcpts-def)

lemma sys-zcpts-cases [consumes 1, cases set]:
[C € sys-zepts; P NullPointer; P OutOfMemory; P ClassCast] = P C
by (auto simp add: sys-xzcpts-def)

9.3 preallocated

lemma preallocated-dom [simp]:
[preallocated h; C € sys-xzcpts | = addr-of-sys-zcpt C € dom h
by (fastforce simp:preallocated-def dom-def)

lemma preallocatedD:
[preallocated h; C € sys-zepts | = 3S. h (addr-of-sys-zept C) = Some (C,S)
by (auto simp add: preallocated-def sys-zcpts-def)

lemma preallocatedE [elim?]:

[preallocated h; C € sys-zepts; NS. h (addr-of-sys-zept C) = Some(C,S) =
PhC]

= PhrC
by (fast dest: preallocatedD)

lemma cname-of-zcp [simp):
[preallocated h; C € sys-xzcpts | => cname-of h (addr-of-sys-zept C) = C
by (auto elim: preallocatedE)

lemma preallocated-start:
preallocated (start-heap P)
by (auto simp add: start-heap-def blank-def sys-xzcpts-def fun-upd-apply
addr-of-sys-zcpt-def preallocated-def)

35

9.4 start-heap

lemma start-Subobj:

[start-heap P a = Some(C, S); (Cs,fs) € S] = Subobjs P C Cs

by (fastforce elim:init-obj.cases simp:start-heap-def blank-def
fun-upd-apply split:if-split-asm)

lemma start-SuboSet:

[start-heap P a = Some(C, S); Subobjs P C' Cs] = 3 fs. (Cs,fs) € S

by (fastforce intro:init-obj.intros simp:start-heap-def blank-def
split:if-split-asm)

lemma start-init-obj: start-heap P a = Some(C,S) = S = Collect (init-obj P C')
by (auto simp:start-heap-def blank-def split:if-split-asm)

lemma start-subobj:
[start-heap P a = Some(C, S); Afs. (Cs, fs) € S] = Subobjs P C Cs
by (fastforce elim:init-obj.cases simp:start-heap-def blank-def
split:if-split-asm)

end

10 Syntax

theory Syntar imports Ezceptions begin

Syntactic sugar

abbreviation (input)
InitBlock :: vname = ty = expr = expr = expr («(1'{--:= -/ -})») where
InitBlock V T el e2 == {V:T; V := el;; e2}

abbreviation unit where unit == Val Unit
abbreviation null where null == Val Null
abbreviation ref r == Val(Ref r)
abbreviation true == Val(Bool True)
abbreviation false == Val(Bool False)

abbreviation
Throw :: reference = expr where
Throw r == throw(ref r)
abbreviation (input)
THROW :: cname = expr where
THROW x¢ == Throw(addr-of-sys-zcpt xc,[xc))

end

36

11 Program State

theory State imports Exceptions begin

type-synonym

locals = vname — wval — local vars, incl. params and “this”
type-synonym
state = heap x locals

definition hp :: state = heap where
hp = fst

definition lcl :: state = locals where
lel = snd

declare hp-def|[simp] lcl-def[simp]

end

12 Big Step Semantics

theory BigStep
imports Syntax State
begin

12.1 The rules

inductive
eval :: prog = env = expr = state = expr = state = bool

("" - ((1<"/'>) :>/ (1<'7/'>))> [51’05070’0] 81)

and evals :: prog = env = expr list = state = expr list = state = bool

(- B2/ 2/ (16-/-)) [61,0,0,0,0] 81)
for P :: prog
where

New:
[new-Addr h = Some a; h' = h(a—(C,Collect (init-obj P C))) |
— P.EF (new C,(h) = (ref (a]C]),(W,D)
| NewFail:
new-Addr h = None =
P.EF (new C, (h,0)) = (THROW OutOfMemory,(h,l))

| StaticUpCast:
[P,EF (es0) = {(ref (a,Cs),s1); P & Path last Cs to C via Cs’; Ds = CsQ,Cs’

= P,EF ((C)e,s0) = (ref (a,Ds),s1)

| StaticDownCast:

37

P.E + (e,s0) = (ref (a,CsQ[C]QCs’),s1)
= P,EF ((C)e,s0) = (ref (a,CsQ[C]),s1)

| StaticCastNull:
PaE }_ <67SO> = <null,sl> —t
P7E - <(|CI)€7SO> = <null,sl>

| StaticCastFail:
[P,Et+ (es0) = (ref (a,Cs),81); = P F (last Cs) <* C; C ¢ set Cs |
= P,EF ((C)e,s0) = (THROW ClassCast,s1)

| StaticCastThrow:
P.EF (e,s0) = (throw e’,s1) =
P.EF ((C)e,s0) = (throw e’,s1)

| StaticUpDynCast:
[P,E & (e,s0) = (ref(a,Cs),s1); P+ Path last Cs to C unique;
P+ Path last Cs to C via Cs"; Ds = CsQ,Cs’ |
= P,E F (Cast C e,s0) = (ref(a,Ds),s1)

| StaticDownDynCast:
P.E + (e,s0) = (ref (a,CsQ[C]QCs’),s1)
= P,E + (Cast C e,sp) = (ref (a,CsQ[C]),s1)

| DynCast:
[P,E & (e,s0) = (ref (a,Cs),(h,01)); h a = Some(D,S);
P & Path D to C via Cs'; P+ Path D to C unique |
= P,EF (Cast C e,s0) = (ref (a,Cs’),(h,l))

| DynCastNull:
P.E+ (e,50) = (null,s1) =
P,E + (Cast C e,s0) = (null,s1)

| DynCastFail:
[P.EF (e,s0)= (ref (a,Cs),(h,1)); h a = Some(D,S); = P+ Path D to C unique;
- P+ Path last Cs to C unique; C ¢ set Cs]
= P,E F (Cast C e,sg) = (null,(h,l))

| DynCastThrow:
P E (e,s50) = (throw e',s1) =
P,E + (Cast C e,s0) = (throw e’,s1)

| Val:
P.E \ (Val v,s) = (Val v,s)

| BinOp:
[P,EtF (e1,80) = (Val vy,81); P,E b {ea,81) = (Val va,82);
binop(bop,v1,v2) = Some v |
= P,EF (e1 «bop» e2,80)=(Val v,s2)

38

| BinOp Throwl :
P.E F (e1,5) = (throw e,s1) =
P,E t (e «bop» ea, so) = (throw e,s1)

| BinOp Throw2:
[P,EF {(e1,80) = (Val v1,81); P,E F (ea,81) = (throw e,s3) |
= P,E F (e1 «bop» ea,s0) = (throw e,ss)

| Var:
IV = Some v —
P.E+ (Var V (k1)) = (Val v,(h,0))

| LAss:
[P,Et+ (e,s0) = (Val v,(h,0l)); EV = Some T;
PFE T casts vto v I'=1(Vo')]
= P,EF (Vi=e,s0) = (Val v',(h,0))

| LAssThrow:
P,E + (e,s0) = (throw e’,8;) =
P.EF (V:=e,s0) = (throw e’,s1)

| FAcc:
[P,EF {es0) = (ref (a,Cs"),(h,1)); h a = Some(D,S);
Ds = Cs'@Q,Cs; (Ds,fs) € S; fs F = Some v |
= P,E F (e-F{Cs},s0) = (Val v,(h,0))

| FAceNull:
P.E+ (e,s0) = (null,s1) =
P,E + (e-F{Cs},s0) = (THROW NullPointer,s)

| FAceThrow:
P.E - (e,s0) = (throw e’,s1) =
P.E b (e-F{Cs},s0) = (throw e’ s1)

| FAss:
[P,Et* (e1,80) = (ref (a,Cs),s1); P,E + (e2,81) = (Val v,(ha,l2));
ho a = Some(D,S); P+ (last Cs’) has least F:T via Cs; P+ T casts v to v’;
Ds = Cs'Q, Cs; (Ds,fs) € S; fs' = fs(F—v');
§7= 8 — {(Ds.f9)} U {(Dsfs)}: ha' = ha(as(D,8)]
= P,EF (e1-F{Cs}:=eq,30) = (Val v’,(h2',l2))

| FAssNull:
[P,E & (e1,50) = (null,s1); P,EF (e2,s1) = (Valv,s0) | =
P.Et (e1-F{Cs}:=ez,50) = (THROW NullPointer,ss)

| FAssThrowl:

P.E + (e1,80) = (throw e';s1) =
P,Et (e1-F{Cs}:=e3,50) = (throw e’ s1)

39

| FAssThrow?2:
[P,Et (e1,80) = (Val v,81); P,E F (ea,s1) = (throw e’,s5) |
= P,EF (e1-F{Cs}:=eq,59) = (throw e’ s3)

| CallObjThrow:
P.E - (e,s0) = (throw e',s;) =
P,E + (Call e Copt M es,sp) = (throw e’,s1)

| CallParamsThrow:
[P,EF {(es0) = (Val v,s1); P,E F (es,s1) [=] (map Val vs Q throw ex # es’,s3)

= P,E F (Call e Copt M es,sp) = (throw ez,ss)

| Call:
[P,Et* (e,s0) = (ref (a,Cs),81); P,EF (ps,s1) [=] (map Val vs,(hz,l2));
ho a = Some(C,S); P+ last Cs has least M = (Ts',T',pns’,body’) via Ds;
P+ (C,Cs@,Ds) selects M = (Ts,T,pns,body) via Cs’; length vs = length pns;

P & Ts Casts vs to vs'; lo' = [this— Ref (a,Cs’), pns[—]vs’];

new-body = (case T’ of Class D = (D)body | - = body);

P,E(this— Class(last Cs’), pns[—]Ts) b (new-body,(ha,l2")) = (€’,(hs,l3))]
= P,EF (e-M(ps),s0) = (e’,(hs,l2))

| StaticCall:

[P,Et+ (e,s0) = (ref (a,Cs),81); P,E b (ps,s1) [=] (map Val vs,(ha,l2));
P+ Path (last Cs) to C unique; P+ Path (last Cs) to C via Cs"
P C has least M = (Ts,T,pns,body) via Cs’; Ds = (Cs@, Cs")@, Cs’;
length vs = length pns; P & Ts Casts vs to vs’;
Iy’ = [this—~Ref (a,Ds), pns[—]vs’];
P,E(this— Class(last Ds), pns[—]Ts) & (body,(ha,ls’)) = (e’,(hs,l3))]

= P,EF (e(C::)M(ps),s0) = (€',(h3,l2))

| CallNull:
[P,EF (e,50) = (null,s1); P,EF {(es,s1) [=] (map Val vs,s3)]
= P,E F (Call e Copt M es,sp) = (THROW NullPointer,ss)

| Block:
[[P,E(V —> T) [<60,(h0,lQ(V1:N0’n6))> = <€17(h1,11)> H =
P.E = ({V:T; eo},(hoslo)) = (e1,(h1,la(V:=lo V)))

| Seq:
[P,Et* (eo,80) = (Val v,s1); P,E F (e1,51) = (ea,82)]
= P,E | (eo;;e1,50) = (e2,52)

| SeqThrow:

P,E + (eq,80) = (throw e,s1) =
P,E + (eg;;e1,80)=(throw e,s1)

40

| CondT:
[P,Et* (es0) = (true,s1); P,E b {e1,81) = (e',s2)]
= P,EF (if (e) ey else ea,s0) = (€’,92)

| CondF:
[P,Et* (e,s0) = (false,s1); P,E & (ea,s1) = (e’,82) |
= P,EF (if (e) ey else ea,50) = (e€’,52)

CondThrow:
P,E + (e,s0) = (throw e',8;) =
P.EF (if (e) ey else es, s9) = (throw e’s1)

WhileF':
P,E+ (e,s0) = (false,s1) =
P,E + (while (e) ¢,s0) = (unit,s1)

WhileT

HP7E + <6750> = (true,51>; PaE F <C,81> = <Val U1732>;
P.E & (while (e) ¢,s2) = (es,s3) |

= P,E F (while (e) ¢,80) = (e3,83)

WhileCond Throw:
P.E+ (e,s0) = (throw e',s1) =
P.E b (while (e) ¢,s0) = (throw e’,s1)

| WhileBodyThrow:
[P,E & (e,s0) = (true,s1); P,E F (c,s1) = (throw e’,s2)]
= P,E F (while (e) ¢,50) = (throw e’,s3)

| Throw:
P,E+ (e,s0) = (ref r,s1) =
P,E + (throw e,so) = (Throw r,s1)

ThrowNull:
P.E + (e,50) = (null,s1) =
P,E + (throw e,sy) = (THROW NullPointer,s;)

ThrowThrow:
P.E + (e,s0) = (throw e’,s;) =
P.E b (throw e,s0) = (throw e’,s1)

| NVil:
P.EF([Ls) [=] ([9)

| Cons:
[P,EF {e,s0) = (Val v,s1); P,E F (es,s1) [=] (es’,s2)]
= P,E F (eftes,so) [=] (Val v # es’,s3)

| ConsThrow:

41

P.E+ (e, so) = (throw €', s;) =
P.E & (e#es, so) [=] (throw e’ # es, s1)

lemmas eval-evals-induct = eval-evals.induct [split-format (complete))
and eval-evals-inducts = eval-evals.inducts [split-format (complete)]

inductive-cases eval-cases [cases set]:
P.E b (new C,s) = (e',s’)

P.E + (Cast C e,s) = (e',s")
P.EF {(C)e,s) = (e',s")

P.EF (Val v,s) = (e',s")

P.EF (e; «bop» ea,s) = (e',s")
PEt (Var V,s) = (e',s")

P.EF (Vi=es) = (e,s)

P.E + (e-F{Cs},s) = (e',s")
P,E+ (e1-F{Cs}:=ea,s) = (e',s")
P.EF (e-M(es),s) = (e',s")

P.E F {e(Cx)M(es),5) = (e's')
P.EF ({V:T;e1},s) = (e',s")
P.E F (e1;;ea,8) = (e',s")

P,E & (if (e) e else ea,s) = (e',s")
P.E F (while (b) ¢,s) = (e’,s")
P.E F (throw e,s) = (e’,s")

inductive-cases evals-cases [cases set]:
P.EF([s) [=] ()
P.E I (e#es,s) [=] (e',s")

12.2 Final expressions

definition final :: expr = bool where
finale = (3v. e= Valv) vV (3r. e = Throw r)

definition finals:: expr list = bool where
finals es = (Jvs. es = map Val vs) V (Fvs r es’. es = map Val vs @ Throw r

4 es')

lemma [simp]: final(Val v)
by (simp add:final-def)

lemma [simp]: final(throw ¢) = (Ir. e = ref r)
by (simp add:final-def)

lemma finalE: [final e; Nv. e = Valv = @Q; Ar.e= Throwr = Q] = Q
by (auto simp:final-def)

lemma [iff]: finals ||
by (simp add:finals-def)

42

lemma [iff]: finals (Val v # es) = finals es

apply(clarsimp simp add:finals-def)
apply (rule iffT)
apply(erule disjE)
apply simp
apply(rule disjI2)
apply clarsimp
apply(case-tac vs)
apply simp
apply fastforce
apply(erule disjE)
apply (rule disjl1)
apply clarsimp
apply (rule disjI2)
apply clarsimp
apply(rule-tac x = v#vs in exl)
apply simp
done

lemma finals-app-mapliff]: finals (map Val vs Q es) = finals es
by (induct-tac vs, auto)

lemma [iff]: finals (map Val vs)
using finals-app-maplof vs [||by(simp)

lemma [iff]: finals (throw e # es) = (Ir. e = ref r)

apply(simp add:finals-def)
apply (rule iffI)

apply clarsimp
apply/(case-tac vs)

apply simp

apply fastforce

apply fastforce
done

lemma not-finals-Consl: — final e = — finals(e#es)

apply(auto simp add:finals-def final-def)
apply/(case-tac vs)

apply auto

done

lemma eval-final: P,E (e,s) = (e',s") = final e’
and evals-final: P,E & (es,s) [=] (es’,s") = finals es’

43

by (induct rule:eval-evals.inducts, simp-all)

lemma eval-lcl-incr: P,E = (e,(ho,lo)) = (e’,(h1,l1)) = dom Iy C dom Iy
and evals-lcl-incr: P,E F (es,(ho,lo)) [=] (es',(h1,l1)) = dom ly C dom [4
by (induct rule:eval-evals-inducts) (auto simp del:fun-upd-apply)

Only used later, in the small to big translation, but is already a good
sanity check:

lemma eval-finalld: final e = P,E F (e,s) = (e,s)
by (erule finalE) (fastforce intro: eval-evals.intros)+

lemma eval-finalsld:
assumes finals: finals es shows P,E F (es,s) [=] (es,s)

using finals
proof (induct es type: list)
case Nil show ?case by (rule eval-evals.intros)
next
case (Cons e es)
have hyp: finals es = P,E F (es,s) [=] (es,s)
and finals: finals (e # es) by fact+
show P.E (e # es,s) [=] (e # es,s)
proof cases
assume final e
thus %thesis
proof (cases rule: finalE)
fix v assume e: e = Val v
have P.E (Val v,s) = (Val v,s) by (simp add: eval-finalld)
moreover from finals e have P,E I (es,s) [=] (es,s) by(fast intro:hyp)
ultimately have P,E (Val v#es,s) [=] (Val v#es,s)
by (rule eval-evals.intros)
with e show ?thesis by simp
next
fix a assume e: e = Throw a
have P E + (Throw a,s) = (Throw a,s) by (simp add: eval-finalld)
hence P.E b (Throw a#es,s) [=] (Throw a#es,s) by (rule eval-evals.intros)
with e show ?thesis by simp
qed
next
assume - final e
with not-finals-Consl finals have Fualse by blast
thus ?thesis ..
qed
qed

lemma

44

eval-preserves-obj:P,E = (e,(h,0)) = (e',(h,l")) = (AS. h a = Some(D,S)
= 38" h' a = Some(D,S"))

and evals-preserves-obj:P,E + (es,(h,1)) [=] (es’,(h"l))

= (AS. h a = Some(D,S) = 35’. h' a = Some(D,S"))

by (induct rule:eval-evals-inducts)(fastforce dest:new-Addr-SomeD)+

end

13 Small Step Semantics

theory SmallStep imports Syntaz State begin

13.1 Some pre-definitions

fun blocks :: vname list x ty list x wval list X expr = expr
where
blocks-Cons:blocks(V# Vs, T#Ts, v#vs, €) = {V:T := Val v; blocks(Vs, Ts,vs,e)}

|
blocks-Nil: blocks([],[],[],e) = e

lemma blocks-old-induct:
fixes P :: vname list = ty list = wval list = expr = bool
shows
[Aaj ak al. P][] (aj # ak) al; Nad ae a b. P[] (ad # ae) b;
ANV Vsab. P(V # V.)Hab/\VVsTTsawP(# Vs) (T # Ts) [] aw;
ANV VsTTsvvse PVsTsvse= P (V# Vs) (T # s)(v#vs)e;/\e.P
000
— Puvwz
by (induction-schema) (pat-completeness, lexicographic-order)

lemma [simpl:
[size vs = size Vs; size Ts = size Vs | = fo(blocks(Vs, Ts,vs,e)) = fv e — set Vs

apply (induct rule:blocks-old-induct)
apply simp-all

apply blast

done

definition assigned :: vname = expr = bool where
assigned Ve = Jove' e = (V= Val v;; €)

13.2 The rules

inductive-set
red :: prog = (env x (expr x state) X (expr X state)) set
and reds :: prog = (env x (expr list x state) x (expr list x state)) set
and red’ :: prog = env = expr = state = expr = state = bool

45

(<_7' + ((1<'7/_>) %/ (1<_7/_>))> [51’0a070’0] 81)

and reds’ :: prog = env = expr list = state = expr list = state = bool

(<'7' + ((1<'7/'>) [_>]/ (1<'7/'>))> [5170707070] 81)

for P :: prog
where
P.Et (es) — (e's)) = (E,(e,9), e',s") € red P
| P,E F (es,s) [=] (es’,s"y = (E,(es,s), es’,s’) € reds P

| RedNew:
[new-Addr h = Some a; h' = h(a—(C,Collect (init-obj P C)))]
= P,E+ (new C, (b)) — (ref (a,[C]), (h',]))

| RedNewFail:
new-Addr h = None =
P,E+ (new C, (h,l)) — (THROW OutOfMemory, (h,l))

| StaticCastRed:
PEF {(e,s) = (e/;s') =
P.EF {((C)e, s) = ((C)e’, s")

| RedStaticCastNull:
P.E+ ((C)null, s) — (null,s)

| RedStaticUpCast:
[P+ Path last Cs to C via Cs’; Ds = CsQ,Cs’ |
= P.E+ ((C)(ref (a,Cs)), s) — (ref (a,Ds), s)

| RedStaticDownCast:
P.EF {(C)(ref (a,Cs@Q[C)QCs")), s) — (ref (a,CsQ[C)]), s)

| RedStaticCastFail:
[C ¢ set Cs; = P+ (last Cs) =* (]
= P,EF ((C)(ref (a,Cs)), s) — (THROW ClassCast, s)

| DynCastRed:
P.Et+ (es) — (e's") =
P.EF (Cast Ce, sy — (Cast C e, s’

| RedDynCastNull:
P,E + (Cast C null, s) — (null,s)

| RedStatic UpDynCast:
[P Path last Cs to C unique; P = Path last Cs to C via Cs'; Ds = CsQ,,Cs’]
= P,E + (Cast C(ref(a,Cs)),s) — (ref(a,Ds),s)

| RedStaticDownDynCast:
P,E+ (Cast C (ref (a,CsQ[C)QCS")), s) — (ref (a,CsQ[C]), s)

46

| RedDynCast:
[hp s a = Some(D,S); P+ Path D to C via Cs’;
P+ Path D to C unique |
= P,EF (Cast C (ref (a,Cs)), s) — (ref (a,Cs’), s)

| RedDynCastFail:
[hp s a = Some(D,S); = P+ Path D to C unique;
= P+ Path last Cs to C unique; C ¢ set Cs |
= P,E F (Cast C (ref (a,C9)), s) — (null, s)

| BinOpRed1:
P.Et+ (es) — (e's") =
P,E+ (e «bop» e, s) — (e’ «bop» ez, s')

| BinOpRed?2:
PEt+ (es) — (e's") =
P.E t ((Val vy) «bop» e, s) — ((Val v1) «bop» €', s”)

| RedBinOp:
binop(bop,v1,v2) = Some v =
P,E + ((Val vy) «bop» (Val vg), s) — (Val v,s)

| RedVar:
lels V= Some v =
P,E+ (Var V,s) — (Val v,s)

| LAssRed:
P EF (es) — (e/,s)) =
P.EF (Vi=es) = (Vi=e',s')

| RedLAss:
[EV = Some T; P+ T casts v to v'] =
P.E - (V:=(Val v),(h,0)) — (Val v',(h,I(V—v")))

| FAccRed:
P.Et+ (es) — (e's") =
P,E+ (e-F{Cs}, s) — (e"-F{Cs}, s’

| RedFAcc:
[hp s @ = Some(D,S); Ds = Cs'Q,Cs; (Ds,fs) € S; fs F' = Some v |
= P,EF ((ref (a,Cs"))-F{Cs}, s) = (Val v,s)

| RedFAccNull:
P.E + (null-F{Cs}, s) — (THROW NullPointer, s)

| FAssRedl:

PEt+ (es) — (e's") =
P,E+ (e-F{Cs}:=eq, s) — (e"F{Cs}:=ea, s')

47

| FAssRed2:
P.EF (es) — (e/,s') =
P.E & (Val v-F{Cs}:=e, s) — (Val v-F{Cs}:=e’, s')

| RedFAss:
[h a = Some(D,S); Pt (last Cs') has least F:T via Cs;

P T casts v to v'; Ds = Cs'Q,Cs; (Ds,fs) € §] =

P.EF ((ref (a,Cs"))-F{Cs}:=(Valv), (h,1)) = (Valv’, (h(a — (D,insert (Ds,fs(F—v"))
(8~ {(Ds. 1))

| RedFAssNull:
P.E + (null-F{Cs}:=Val v, sy — (THROW NullPointer, s)

| CallObj:
P.Et+ (es) — (e's") =
P,E + (Call e Copt M es,s) — (Call e’ Copt M es,s")

| CallParams:
PE F (es,s) [—~] (es’,sy =
P,E + (Call (Val v) Copt M es,s) — (Call (Val v) Copt M es’ s’)

| RedCall:
[hp s a = Some(C,S); P+ last Cs has least M = (Ts',T’,pns’,body’) via Ds;
P+ (C,CsQp,Ds) selects M = (Ts,T,pns,body) via Cs’;
size vs = size pns; size Ts = size pns;
bs = blocks(this#pns,Class(last Cs")# Ts,Ref (a,Cs’)#vs,body);
new-body = (case T' of Class D = (D)bs | - = bs)]
= P,E F ((ref (a,Cs))-M(map Val vs), s) — (new-body, s)

| RedStaticCall:
[P& Path (last Cs) to C unique; P+ Path (last Cs) to C via Cs"
P C has least M = (Ts,T,pns,body) via Cs’; Ds = (CsQ, Cs")@, Cs";
size vs = size pns; size Ts = size pns |
= P,EF ((ref (a,Cs))-(C::)M(map Val vs), s) —
(blocks(this#tpns, Class(last Ds)# Ts,Ref(a,Ds)#vs,body), s)

| RedCallNull:

P.E F (Call null Copt M (map Val vs),s) — (THROW NullPointer,s)
| BlockRedNone:

[P,E(V — T)F (e, (hI(V:=None))) — (e, (h',l")); I' V = None; — assigned
Vel

= P, EF {V:T; e}, (B1) = {V:T; e}, (WI(V :=1V)))

| BlockRedSome:
[P,E(V = T)F (e, (hI(V:=None))) — (e, (h',1")); " V = Some v;
— assigned V e]
= P, EF {V:T; e}, (h0)) = {V:T := Valv; e}, (BI(V :=1V)))

48

| InitBlockRed:
[P,E(V — T)F (e, (hI(V=v")) = (e, (B1)); " V = Some v
PFE T casts v to v']
= P E+ {V:T := Val v; e}, (b)) — {V:T := Val v’ €'}, (BI(V =1
)

| RedBlock:
PE v ({V:T; Val u}, s) — (Val u, s)

| RedInitBlock:
PF Tcasts vtov = P,EF ({V:T := Val v; Val u}, s) — (Val u, s)

| SeqRed:
P.EF (es) — (e,s") =
P,E + (e;;eq, s) — (€';;ea, s")

| RedSeq:
P7E + <(Val v);;627 S> - <€2a S>

| CondRed:
P.EtF (es) — (e's") =
P.EF (if (e) ey else ea, s) — (if (€) ey else ey, s)

| RedCondT:
P,E & (if (true) ey else ea, s) — (eq,)

| RedCondF:
P.E b (if (false) ey else ea, s) — (e, s)

| RedWhile:
P,E = (while(b) ¢, sy — (if (b) (c;;while(d) ¢) else unit, s)

| ThrowRed:
P.Et (es) — (e's") =
P.E + (throw e, s) — (throw e, s)

| Red ThrowNull:
P.E F (throw null, s) — (THROW NullPointer, s)

| ListRed1:
P.Et+ (es) — (e's)) =
P,E & (e#es,s) [—] (e'#es,s’)
| ListRed2:
P.EF (es,s) [—] (es’,s) =
PEF (Val v # es,s) [=] (Val v # es’,s)

— Exception propagation

49

| DynCastThrow: P,E + (Cast C (Throw r), s) — (Throw r, s)
| StaticCastThrow: P,.E + ((C)(Throw r), s) — (Throw r, s)
| BinOpThrowl: P,E & ((Throw r) «bop» ea, s) — (Throw r, s)
| BinOpThrow2: P,E F ((Val v1) «bop» (Throw r), sy — {Throw r, s)
| LAssThrow: P,E & (V:=(Throw r), s) — (Throw r, s)
| FAccThrow: P,E & ((Throw r)-F{Cs}, s) — (Throw r, s)
| FAssThrowl: P,E & ((Throw r)-F{Cs}:=e3, s) — (Throw r,s)
| FAssThrow2: P,E + (Val v-F{Cs}:=(Throw r), s) — (Throw r, s)
| CallThrowObj: P,E + (Call (Throw r) Copt M es, s) — (Throw r, s)
| CallThrowParams: [es = map Val vs @ Throw r # es’]
= P,E + (Call (Val v) Copt M es, sy — (Throw r, s)
| BlockThrow: P,E & ({V:T; Throw r}, s) — (Throw r, s)
| InitBlockThrow: P+ T casts v to v’
= P, E+ {V:T := Val v; Throw r}, s) — (Throw r, s)
| SeqThrow: P,E & ((Throw r);;ea, sy — {Throw r, s)
| CondThrow: P,E + (if (Throw r) ey else ez, s) — (Throw r, s)
| ThrowThrow: P,E F (throw(Throw r), s} — {Throw r, s)

lemmas red-reds-induct = red-reds.induct [split-format (complete))
and red-reds-inducts = red-reds.inducts [split-format (complete)]

inductive-cases [elim!]:

PEF (V:=es) — (e,s))

P.EF (el;;e2,8) — (e',s)

declare Cons-eg-map-conv [iff]
lemma P.E b (e,s) — (e’;s") = True

and reds-length:P,E F (es,s) [—=] (es’,;s'y = length es = length es’
by (induct rule: red-reds.inducts) auto

13.3 The reflexive transitive closure

definition Red :: prog = env = ((expr x state) x (expr x state)) set
where Red P E = {((e,9),e',s"). P,E F (e,s) — (e',;s"}}

definition Reds :: prog = env = ((expr list x state) x (expr list x state)) set
where Reds P E = {((es,s),es’,s’). P,E F (es,s) [—=] (es’,;s")}

lemmal[simpl: ((e,s),e;s") € Red P E = P,E - (e,s) — (e',s')
by (simp add:Red-def)

lemmalsimp]: ((es,s),es’;s") € Reds P E = P,E I (es,s) [—] (es’,s’)
by (simp add:Reds-def)

abbreviation

50

Step :: prog = env = expr = state = expr = state = bool
(<-- F ((1(-,/-)) ==/ (1{-,/-))» [51,0,0,0,0] 81) where
P.E F (e,s) == (e/,s") = ((e,s), e';s') € (Red P E)*

abbreviation
Steps :: prog = env = expr list = state = expr list = state = bool
(¢ b ((1(/7)) [/ (1(-/)) [51,0,0,0,0] 81) where
P.E F (es,s) [=]x (es’;s"y = ((es,s), es’,s’) € (Reds P E)*

lemma converse-rtrancl-induct-red[consumes 1]:
assumes P.E I (e,(h,0)) —x* (e/,(h',l))
and Aehl.Rehlehl
and /\60 ho ZU el h1 ll 6/ h/ l/.
[[P,E H <€0,(h0,l0)> — <€1,(h1,ll>>; Rel by It e’ b’ l/]] = R eg ho lp e’ h'
l/
shows Rehle h'l’

proof —
{fixss'
assume reds: P,E F (e,s) —x (e’,s")
and base: Aes. R e (hp s) (lcl s) e (hp s) (Il s)
and IH: Ney so e1 51 e’ s'.
[P,EtF {eo,s0) — {e1,51); R ex (hp s1) (lel s1) e’ (hp s') (lel s)]
= R ey (hp so) (Il so) €' (hp s') (lcl s’)
from reds have R e (hp s) (lcl s) e’ (hp s') (lcl s')
proof (induct rule:converse-rtrancl-induct2)
case refl show ?case by(rule base)
next
case (step ey sp € s)
have Red:((eg,0),¢,s) € Red P E
and R:R e (hp s) (lcl s) €’ (hp s') (lcl ') by fact+
from TH[OF Red[simplified] R] show Zcase .
qed
}
with assms show ?thesis by fastforce
qed

lemma steps-length: P, E b {(es,s) [—=]* (es’,s’) = length es = length es’
by (induct rule:rtrancl-induct2,auto intro:reds-length)

13.4 Some easy lemmas

lemma [iff]: = P,E + ([],s) [—] (es’,s")

by (blast elim: reds.cases)

lemma [iff]: = P,E + (Val v,s) — (e’,s')

o1

by (fastforce elim: red.cases)

lemma [iff]: = P,E + (Throw r,s) — {(e',s’)
by (fastforce elim: red.cases)

lemma red-icl-incr: P,E = (e,(ho,lo)) — (e’,(h1,l1)) = dom Iy C dom I3
and P,E (es,(ho,lo)) [=] (es’,(h1,l1)) = dom Iy C dom Iy
by (induct rule: red-reds-inducts) (auto simp del: fun-upd-apply)

lemma red-lcl-add: P,E + {(e,(h,])) — (e/,(h,l")) = (Alo. P,E F (e,(h,lo++1))
- <€/7(hlvl0++l/)>)
and P,E + (es,(h,0)) [=] (es’,(h",l)) = (Alo. P,E F {es,(h,lo++1)) [=] {es’,(h'lo++1")))

proof (induct rule:red-reds-inducts)
case RedLAss thus ?case by(auto intro:red-reds.intros simp del:fun-upd-apply)
next
case RedStaticDownCast thus Zcase by(fastforce intro:red-reds.intros)
next
case RedStaticUpDynCast thus ?case by(fastforce intro:red-reds.intros)
next
case RedStaticDownDynCast thus ?case by (fastforce intro:red-reds.intros)
next
case RedDynCast thus ?case by(fastforce intro:red-reds.intros)
next
case RedDynCastFail thus ?case by(fastforce intro:red-reds.intros)
next
case RedFAcc thus ?case by(fastforce intro:red-reds.intros)
next
case RedFAss thus ?case by (fastforce intro:red-reds.intros)
next
case RedCall thus Zcase by (fastforce introl:red-reds. RedCall)
next
case RedStaticCall thus ?case by(fastforce intro:red-reds.intros)
next
case (InitBlockRed EV T ehlv' e’ b1 v vly)
have IH: Nlo. P,E(V — T) F (e,(h, lo ++ IV — v)) — (e’ ,(h, lo ++ 1))
and I'V: I’ V = Some v"" and casts:P = T casts v to v’ by fact+
from /H have IH: P,E(V — T)F (e,(h, (Io ++ D)(V = v')) = (e',(h'lp ++
1)
by simp
have (lop ++ IV :=(lo ++ 1) V) =lg ++ I'(V :=1V)
by (rule ext)(simp add:map-add-def)
with red-reds. InitBlockRed|OF IH' - casts] 'V show ?case
by (simp del:fun-upd-apply)
next
case (BlockRedNone E VT ehle h'l'l)
have IH: Aly. P,E(V — T) (e,(h, lo ++ (V := None))) — (e',(h', lo ++

52

)
and I'V: I’ V = None and unass: — assigned V e by fact+
have ly(V := None) ++ I(V := None) = (lo ++ I)(V := None)
by (simp add:fun-eq-iff map-add-def)
hence IH": P,E(V — T) F (e,(h, (lo++1)(V := None))) — (e,(h', lo(V =
None) ++ 1))
using IH|[of lo(V := None)| by simp
have (Io(V := None) ++ I\ (V= (lo ++ 1) V) =lo ++ I'(V :=1V)
by (simp add:fun-eq-iff map-add-def)
with red-reds. BlockRedNone[OF TH' - unass] 'V show ?case
by (simp add: map-add-def)
next
case (BlockRedSome E'V T e hle' h'l' vlp)
have IH: Aly. P,E(V — T) F (e, (h, lo ++ I(V := None))) — (e',(h', lp ++
1)
and I'V: I’ V = Some v and unass: — assigned V e by fact+
have [y(V := None) ++ I(V := None) = (lo ++)(V := None)
by (simp add:fun-eq-iff map-add-def)
hence IH": P.E(V — T) F (e,(h, (lo++1)(V := None))) — (e',(h', lo(V :=
None) ++ 1))
using IH|[of lo(V := None)| by simp
have (Io(V := None) ++ IV :=(lg ++ 1) V) = lg ++ I'(V :=1 V)
by (simp add:fun-eq-iff map-add-def)
with red-reds. BlockRedSome|OF IH' - unass] I'V show Zcase
by (simp add:map-add-def)
next
qed (simp-all add:red-reds.intros)

lemma Red-lcl-add:
assumes P.E+ (e,(h,l)) —x* (e',(h',l")) shows P,E F (e,(h,lo++1)) —x* (e',(h'lo++1"))
using assms
proof (induct rule:converse-rtrancl-induct-red)

case 1 thus ?case by simp
next

case 2 thus Zcase

by(auto dest: red-lcl-add intro: converse-rtrancl-into-rtrancl simp: Red-def)

qed

lemma

red-preserves-obj:[P,E t {e,(h,0)) — (e’,(h',l")); h a = Some(D,S)]
= 35" h' a = Some(D,S")

and reds-preserves-obj:[P,E t (es,(h,1)) [=] (es’,(R",l")); h a = Some(D,S)]
= 38" h' a = Some(D,S’)

by (induct rule:red-reds-inducts) (auto dest:new-Addr-SomeD)

93

end

14 System Classes

theory SystemClasses imports Fxceptions begin

This theory provides definitions for the system exceptions.

definition NullPointerC :: cdecl where
NullPointerC = (NullPointer, ([1,[],[]))

definition ClassCastC :: cdecl where
ClassCastC = (ClassCast, ([],[,]]))

definition OutOfMemoryC' :: cdecl where
OutOfMemoryC = (OutOfMemory, ([],[I.[]))

definition SystemClasses :: cdecl list where
SystemClasses = [NullPointerC, ClassCastC, OutOfMemoryC)

end

15 The subtype relation

theory TypeRel imports SubObj begin

inductive
widen :: prog = ty = ty = bool («-F - < - [71,71,71] 70)
for P :: prog

where

widen-refl[iff]: P+ T < T
| widen-subcls: P & Path C to D unique = P F Class C < Class D
| widen-nullliff]: P+ NT < Class C

abbreviation
widens :: prog = ty list = ty list = bool
(«- - [<] - [71,71,71] 70) where
widens P Ts Ts' = list-all2 (widen P) Ts Ts’

inductive-simps [iff]:

P+ T < Void

P+ T < Boolean
P+ T < Integer
PrE Void < T

P F Boolean < T
P+ Integer < T
P+T<<NT

54

lemmas widens-refl [iff] = list-all2-refl [of widen P, OF widen-refi] for P
lemmas widens-Cons [iff]| = list-ali2-Consl [of widen P] for P

end

16 Well-typedness of CoreC++ expressions

theory WellType imports Syntaz TypeRel begin

16.1 The rules

inductive

WT :: [prog,env,expr ty] = bool
(¢--F -0 [51,51,51]150)
and WTs :: [prog,env,expr list,ty list] = bool

(¢--F - [:] - [51,561,51]50)
for P :: prog
where
WTNew:

is-class P C =
P EF new C :: Class C

WTDynCast:
[P,E & e :: Class D; is-class P C;

P+ Path D to C unique V (V Cs. = P+ Path D to C via Cs)]
= P,E+ Cast C e :: Class C

WTStaticCast:
[P,E & e :: Class D; is-class P C;
P F Path D to C unique V
(PF C =<* DA (VCs. Pt Path Cto D via Cs — Subobjsg P C Cs)) |
= P,EF (C)e :: Class C

WTVal:
typeof v = Some T —>
PEF Valv: T

WTVar:
EV = Some T =
PEF VarV:T

WTBinOp:
[[P,E H €1 Tl; P,E - €g 1l T2;
case bop of Eq = T1 = To N T = Boolean
| Add = T, = Integer N Ty = Integer N T = Integer |
= P,E | ey «bop» ex :: T

WTLAss:

95

[EV =SomeT; PEFex:T;,PFT <T]
— PEF Vi=e: T

| WTFAcc:
[P,EF e:: Class C; P+ C has least F:T via Cs]
= P,EtF eF{Cs} T

| WT'FAss:
[P,Et e :: Class C; P& C has least F:T via Cs;
PEFe =T, PHT <T]
= P,Et e -F{Cs}:=ex = T

| WTStaticCall:
[P,Et e:: Class C’; P &+ Path C' to C unique;
PF C has least M = (Ts,T,m) via Cs; P,E - es [:] Ts"; P+ Ts' [<] Ts]
= P,EF e(C::)M(es) = T

| WTClall:
[P,Et‘ e:: Class C; P+ C hasleast M = (Ts,T,m) via Cs;
PEFes[:] Ts'y PF Ts' [<] Ts]
— P,EF eM(es):: T

| WTBlock:
[is-type P T; PE(V— T)F e T']
= PEF{V:T;e}:: T’

| WTSeq:
[P,EF e1::T1; P,EF ex:To]
= P, EF eyeq it Ty

| WT'Cond:
[P,Et e:: Boolean; P,Et e1:T; P,EF ea:T]
= P,EF if (e) ey else eg :: T
| WTWhile:
[P,Et e:: Boolean; P,Et c::T]
= P,E F while (e) ¢ :: Void
| WT'Throw:

PEF e:: Class C =
P,E = throw e :: Void

— well-typed expression lists

| WTNil:
PEF[[

| WTCons:

o6

[PEF-e: T, PEF es[:] Ts]
= P,EF eftes [::] T#Ts

declare WT-WTs.intros[intro!] WTNil[iff]

lemmas WT-WTs-induct = WT-WTs.induct [split-format (complete)]
and WT-WTs-inducts = WT-WTs.inducts [split-format (complete))

16.2 Easy consequences
lemma [iff]: (P,EF [[] Ts) = (Ts =)

apply (rule iffI)
apply (auto elim: WTs.cases)
done

lemma [iff]: (P,E & ef#tes [:] T#Ts) = (P,Et e T AN PEF es [:x] Ts)

apply (rule iffI)
apply (auto elim: WTs.cases)
done

lemma [iff]: (P,E (efes) [:] Ts) =
(3UUs. Ts= U#UsANP,EF e UNPEF es[:] Us)

apply (rule iffI)
apply (auto elim: WTs.cases)
done

lemma [iff]: ATs. (P,E F es1 Q esy [:2] Ts) =
(3Tsy Tsy. Ts = Tsy Q Tsg A PE & esy [1] Tsy A P,E F esa]::] Tsa)

apply (induct esy type:list)
apply simp

apply clarsimp

apply (erule thin-rl)

apply (rule iff)
apply clarsimp
apply(rule exl)+
apply(rule conjI)
prefer 2 apply blast
apply simp

apply fastforce

done

o7

lemma [iff]: P,E+F Valv :: T = (typeof v = Some T)

apply (rule iffT)
apply (auto elim: WT.cases)
done

lemma [iff]: P,EF Var V :: T = (EV = Some T)

apply (rule iffI)
apply (auto elim: WT.cases)
done

lemma [iff]: P,EF ejj;e0 = To = (3T1. P.EF e1::T1 AN P,EF e3::T5)

apply (rule iffI)
apply (auto elim: WT.cases)
done

lemma [iff]: (P,EF {V:T; e} :: T') = (is-type P T N P, E(V—=T) F e:: T

apply(rule iffI)
apply (auto elim: WT.cases)
done

inductive-cases WT-elim-cases[elim!]:
PEFnewC:: T
PEF Cast Ce:: T
PEF (Che: T
P.E e; «bop» eg == T
PEF Vi=exT
PEV eF{Cs} = T
PEF eF{Cs} :=v:T
PEF eM(ps) = T
PEF e(C::)M(ps) = T
P.EtF if (e) ey else ey T
P,E \ while (e) ¢ :: T
P.E ‘- throwe:: T

lemma wt-env-mono:
PEre:T=— (ANE.EC, E'= PE'Fe: T)and
PEF es[:) Ts= (NE. EC,, B/ = P,E'\ es [::] Ts)

o8

apply (induct rule: WT-WTs-inducts)
apply(simp add: WTNew)
apply (fastforce simp: WTDynCast)
apply (fastforce simp: WTStaticCast)
apply (fastforce simp: WTVal)
apply(simp add: WTVar map-le-def dom-def)
apply (fastforce simp: WTBinOp)
apply (force simp:map-le-def)
apply (fastforce simp: WTFAcc)

apply (fastforce simp: WTFAss)

apply (fastforce simp: WTCall)

apply (fastforce simp: WTStaticCall)
apply (fastforce simp: map-le-def WTBlock)
apply (fastforce simp: WTSeq)

apply (fastforce simp: WTCond)

apply (fastforce simp: WT While)

apply (fastforce simp: WT Throw)
apply(simp add: WTNil)

apply(simp add: WTCons)

done

lemma WT-fv: PEF e:: T = fve C dom E
and P,E I es [:)] Ts = fuvs es C dom FE

apply (induct rule: WT-WTs.inducts)
apply(simp-all del: fun-upd-apply)
apply fast+

done

end

17 Generic Well-formedness of programs

theory WellForm
imports SystemClasses TypeRel WellType
begin

This theory defines global well-formedness conditions for programs but does
not look inside method bodies. Well-typing of expressions is defined else-
where (in theory WellType).

CoreC++ allows covariant return types

type-synonym wf-mdecl-test = prog = cname = mdecl = bool

definition wf-fdecl :: prog = fdecl = bool where
wf-fdecl P = XN(F,T). is-type P T

99

definition wf-mdecl :: wf-mdecl-test = wf-mdecl-test where
wf-mdecl wf-md P C = A(M,Ts,T,mb).
(V Teset Ts. is-type P T) A is-type P T N T # NT A wf-md P C (M,Ts,T,mb)

definition wf-cdecl :: wf-mdecl-test = prog = cdecl = bool where
wf-cdecl wf-md P = X(C,(Bs,fs,ms)).
(VM mthd Cs. P = C has M = mthd via Cs —»
(Imthd’ Cs’. P+ (C,Cs) has overrider M = mthd’ via Cs’)) A
(V feset fs. wf-fdecl P f) A distinct-fst fs A
(V meset ms. wf-mdecl wf-md P C m) A distinct-fst ms A
(VD € baseClasses Bs.
is-class PD AN - P+ D =<* C A
(V(M,Ts, T,m)Eset ms.
VTs'" T'm' Cs. P+ D has M = (Ts",T',m") via Cs —
Ts'= Ts AP+ T < T)

definition wf-syscls :: prog = bool where
wf-syscls P = sys-zepts C set(map fst P)

definition wf-prog :: wf-mdecl-test = prog = bool where
wf-prog wf-md P = wf-syscls P A\ distinct-fst P N\
(V¢ € set P. wf-cdecl wf-md P ¢)

17.1 Well-formedness lemmas

lemma class-wf:
[class P C = Some ¢; wf-prog wf-md P] = wf-cdecl wf-md P (C,c)

apply (unfold wf-prog-def class-def)
apply (fast dest: map-of-SomeD)
done

lemma is-class-zcpt:
[C € sys-zepts; wf-prog wf-md P | = is-class P C

apply (simp add: wf-prog-def wf-syscls-def is-class-def class-def)
apply (fastforce introl: map-of-Somel)
done

lemma is-type-pTs:
assumes wf-prog wf-md P and (C,S,fs,ms) € set P and (M,Ts,T,m) € set ms
shows set Ts C types P
proof
from assms have wf-mdecl wf-md P C (M,Ts,T,m)

60

by (unfold wf-prog-def wf-cdecl-def) auto
hence Vit € set Ts. is-type P ¢ by (unfold wf-mdecl-def) auto
moreover fix ¢t assume t € set Ts
ultimately have is-type P t by blast
thus ¢ € types P ..
qed

17.2 Well-formedness subclass lemmas

lemma subcls1-wfD:
[P+ C <! D; wf-prog wf-md P | = D # C A (D,C) ¢ (subclsl P)*

apply(frule r-into-trancl)

apply(drule subcls1D)

apply (clarify)

apply(drule (1) class-wf)

apply(unfold wf-cdecl-def baseClasses-def)

apply (force simp add: reflcl-trancl [THEN sym] simp del: reflcl-trancl)
done

lemma wf-cdecl-supD:
[wf-cdecl wf-md P (C,Bs,r); D € baseClasses Bs] = is-class P D
by (auto simp: wf-cdecl-def baseClasses-def)

lemma subcls-asym:
[wf-prog wf-md P; (C,D) € (subcls1 P)™ | = (D,C) ¢ (subclsl P)*

apply(erule trancl.cases)

apply(fast dest!: subcls1-wfD)

apply(fast dest!: subcls1-wfD intro: trancl-trans)
done

lemma subcls-irrefi:
[wf-prog wf-md P; (C,D) € (subcls1 P)T] = C # D

apply (erule trancl-trans-induct)
apply (auto dest: subcls1-wfD subcls-asym)
done

lemma subcls-asym2:

[(C,D) € (subclst P)*; wf-prog wf-md P; (D,C) € (subcls1 P)* | = C =D

61

apply (induct rule:rtrancl.induct)
apply simp

apply (drule rtrancl-into-trancll)
apply simp

apply (drule subcls-asym,)

apply simp

apply(drule rtranclD)

apply simp

done

lemma acyclic-subclsi:
wf-prog wf-md P = acyclic (subclsl P)

apply (unfold acyclic-def)
apply (fast dest: subcls-irrefl)
done

lemma wf-subclsi:
wf-prog wf-md P = wf ((subcls1 P)~1)

apply (rule finite-acyclic-wf-converse)
apply (rule finite-subcls?)

apply (erule acyclic-subcls1)

done

lemma subcls-induct:
[wf-prog wf-md P; NC.V D. (C,D) € (subcls] P)* — Q@ D = Q C']
c

(is A = PROP ?P = -)

proof —

assume p: PROP P

assume ?A thus ?thesis apply —
apply(drule wf-subcls)
apply(drule wf-trancl)
apply(simp only: trancl-converse)
apply(erule-tac a = C in wf-induct)
apply/(rule p)
apply (auto)
done
qed

62

= @

17.3 Well-formedness leq_path lemmas

lemma last-leq-path:
assumes leq:P,C - Cs C' Ds and wf:wf-prog wf-md P
shows P F last Cs <! last Ds

using leq
proof (induct rule:leg-pathl .induct)
fix Cs Ds assume suboCs:Subobjs P C Cs and suboDs:Subobjs P C Ds
and butlast: Cs = butlast Ds
from suboDs have notempty:Ds # [| by —(drule Subobjs-nonempty)
with butlast have DsCs:Ds = Cs Q [last Ds| by simp
from suboCs have notempty:Cs # [] by —(drule Subobjs-nonempty)
with DsCs have Ds = ((butlast Cs) Q [last Cs]) Q [last Ds] by simp
with suboDs have Subobjs P C ((butlast Cs) Q [last Cs,last Ds])
by simp
thus P I last Cs <! last Ds by (fastforce intro:subclsR-subcls1 Subobjs-subclsR)
next
fix Cs D assume P + last Cs <g D
thus P + last Cs <! last [D] by (fastforce intro:subclsS-subcls1)
qed

lemma last-leq-paths:
assumes leq:(Cs,Ds) € (leg-path1 P C)* and wf:wf-prog wf-md P
shows (last Cs,last Ds) € (subclsl P)™

using leq
proof (induct rule:trancl.induct)
fix Cs Ds assume P,C F Cs ! Ds
thus (last Cs, last Ds) € (subcls1 P)" using wf
by (fastforce intro:r-into-trancl elim:last-leq-path)
next
fix Cs Cs’ Ds assume (last Cs, last Cs’) € (subclsl P)*
and P,C + Cs’ ! Ds
thus (last Cs, last Ds) € (subcls1 P)T using wf
by (fastforce dest:last-leq-path)
qed

lemma leq-path1-wfD:
[P,CF Cs ! Cs; wf-prog wf-md P | = Cs # Cs' A (Cs',Cs) ¢ (leg-pathl P
c)*

apply (rule congl)
apply (erule leg-pathl.cases)
apply simp
apply (drule-tac Cs=Ds in Subobjs-nonempty)

63

apply (rule butlast-noteq) apply assumption
apply clarsimp
apply (drule subclsS-subcls1)
apply (drule subcls1-wfD) apply simp-all
apply clarsimp
apply (frule last-leg-path)
apply simp
apply (drule last-leg-paths)
apply simp
apply (drule-tac r=subcls1 P in r-into-trancl)
apply (drule subcls-asym,)
apply auto
done

lemma leg-path-asym:
[(Cs,Cs’) € (leg-pathl P C)*; wf-prog wf-md P] = (Cs',Cs) ¢ (leg-path1 P C)*

apply (erule tranclE)

apply(fast dest!:leq-pathi-wfD)

apply (fast dest!:leq-path1-wfD intro: trancl-trans)
done

lemma leg-path-asym2:[P,C + Cs C Cs’; P,C' + Cs' C Cs; wf-prog wf-md P] =
Cs = Cs’

apply (induct rule:rtrancl.induct)

apply simp

apply (drule rtrancl-into-trancll)

apply simp

apply (drule leg-path-asym)

apply simp

apply (drule-tac a=c and b=aq in rtranclD)
apply simp

done

lemma leg-path-Subobjs:
[P,C + [C] CE Cs; is-class P C; wf-prog wf-md P] = Subobjs P C Cs
by (induct rule:rtrancl-induct,auto intro:Subobjs-Base elim!:leg-pathl .cases,
auto dest!:Subobjs-subclass intro!:Subobjs-Sh SubobjsR-Base dest!:subclsSD
intro:wf-cdecl-supD class-wf ShBaseclass-isBaseclass subclsSIT)

64

17.4 Lemmas concerning Subobjs

lemma Subobj-last-isClass:[wf-prog wf-md P; Subobjs P C Cs]| = is-class P (last
Cs)

apply (frule Subobjs-isClass)

apply (drule Subobjs-subclass)

apply (drule rtranclD)

apply (erule disjE)

apply simp

apply clarsimp

apply (erule trancl-induct)

apply (fastforce dest:subcls1D class-wf elim:wf-cdecl-supD)
apply (fastforce dest:subcls1D class-wf elim:wf-cdecl-supD)
done

lemma converse-SubobjsR-Rep:
[Subobjsg P C Cs; P\ last Cs < C'; wf-prog wf-md P]
= Subobjsg P C (CsQ[C])

apply (induct rule:Subobjsg.induct)

apply (frule subclsR-subcls1)

apply (fastforce dest!:subcls1D class-wf wf-cdecl-supD SubobjsR-Base SubobjsR-Rep)
apply (fastforce elim:SubobjsR-Rep simp: SubobjsR-nonempty split:if-split-asm)
done

lemma converse-Subobjs-Rep:
[Subobjs P C Cs; P\ last Cs <g C'; wf-prog wf-md P]

= Subobjs P C' (CsQ[C])

by (induct rule:Subobjs.induct, fastforce dest:converse-SubobjsR-Rep Subobjs-Rep,
fastforce dest:converse-SubobjsR-Rep Subobjs-Sh)

lemma isSubobj-Subobjs-rev:
assumes subo:is-subobj P ((C,C'#rev Cs’)) and wf:wf-prog wf-md P
shows Subobjs P C (C'#rev Cs’)
using subo
proof (induct Cs’)
case Nil
show ?Zcase
proof (cases C=C")
case True
have is-subobj P ((C,C'#rev [])) by fact
with True have is-subobj P ((C,[C])) by simp
hence is-class P C

65

by (fastforce elim:converse-rtranclE dest:subclsS-subcls elim:subcls1-class)
with True show ?thesis by (fastforce intro:Subobjs-Base)
next
case Fualse
have is-subobj P ((C,C'#rev [])) by fact
with False obtain D where sup:P - C <* D and subS:P + D <g C’
by fastforce
with wf have is-class P C'
by (fastforce dest:subclsS-subclsl subcls1D class-wf elim:wf-cdecl-supD)
hence Subobjsg P C' [C'] by (fastforce elim:SubobjsR-Base)
with sup subS have Subobjs P C [C'] by —(erule Subobjs-Sh, simp)
thus ?thesis by simp
qed
next
case (Cons C" Cs")
have IH:is-subobj P ((C,C'#rev Cs')) = Subobjs P C (C'#rev Cs”)
and subo:is-subobj P ((C,C'#rev(C'"# Cs"))) by fact+
obtain Ds’ where Ds":Ds’ = rev Cs’ by simp
obtain D Ds where DDs:D#Ds = Ds'Q[C"] by (cases Ds') auto
with Ds’ subo have is-subobj P ((C,C'#D#Ds)) by simp
hence subobl:is-subobj P ((C,butlast(C'# D#Ds)))
and subRbl:P + last(butlast(C'#D#Ds)) <gr last(C'#D#Ds) by simp+
with DDs Ds’ have is-subobj P ((C,C'#rev Cs')) by (simp del: is-subobj.simps)
with TH have suborev:Subobjs P C (C'#rev Cs') by simp
from subRbl DDs Ds’ have subR:P \ last(C'#rev Cs'") <g C'" by simp
with suborev wf show ?case by (fastforce dest:converse-Subobjs-Rep)
qged

lemma isSubobj-Subobjs:
assumes subo:is-subobj P ((C,Cs)) and wf:wf-prog wf-md P
shows Subobjs P C' Cs

using subo
proof (induct Cs)
case Nil
thus ?case by simp
next
case (Cons C' Cs')
have subo:is-subobj P ((C,C'#Cs’)) by fact
obtain Cs’’ where Cs":Cs" = rev Cs’ by simp
with subo have is-subobj P ((C,C'#rev Cs")) by simp
with wf have Subobjs P C' (C'#rev Cs") by — (rule isSubobj-Subobjs-rev)
with Cs”’ show ?case by simp
qed

66

lemma isSubobj-eq-Subobjs:
wf-prog wf-md P = is-subobj P ((C,Cs)) = (Subobjs P C Cs)
by (auto elim:isSubobj-Subobjs Subobjs-isSuboby)

lemma subo-trans-subcls:
assumes subo:Subobjs P C (CsQ C'#rev Cs’)
shows V C"" € set Cs'. (C',C") € (subcls1 P)™

using subo
proof (induct Cs’)
case Nil
thus ?case by simp
next
case (Cons D Ds)
have IH:Subobjs P C' (Cs Q@ C' # rev Ds) =
vV C"eset Ds. (C', C") € (subclsl P)*+
and Subobjs P C (Cs @ C' # rev (D # Ds)) by fact+
hence subo”:Subobjs P C (CsQ C'#rev Ds @ [D]) by simp
hence Subobjs P C (Cs@ C'#rev Ds)
by —(rule appendSubobj,simp-all)
with IH have set:V C"'eset Ds. (C’, C'"') € (subcls1 P)* by simp
hence revset:¥ C"’eset (rev Ds). (C’, C") € (subclsl P)t by simp
have (C',D) € (subcls! P)*
proof (cases Ds = |])
case True
with subo’ have Subobjs P C' (CsQ[C’,D]) by simp
thus ?thesis
by (fastforce intro: subclsR-subclsl Subobjs-subclsR)
next
case Fulse
with revset have hd:(C’,hd Ds) € (subclsl P)*
apply —
apply (erule ballFE)
apply simp
apply (simp add:in-set-conv-decomp)
apply (erule-tac z=[] in allE)
apply (erule-tac x=tl Ds in allF)
apply simp
done
from Fulse subo’ have (hd Ds,D) € (subclsl P)*
apply (cases Ds)
apply simp
apply simp
apply (rule r-into-trancl)
apply (rule subclsR-subclsl)
apply (rule-tac Cs=Cs Q@ C’ # rev list in Subobjs-subclsR)

apply simp

67

done
with hd show ?thesis by (rule trancl-trans)
qed
with set show ?case by simp
qed

lemma uniquel:
assumes subo:Subobjs P C (Cs@Q C'#Cs’) and wf:wf-prog wf-md P
shows C' ¢ set Cs’

proof —
obtain Ds where Ds:Ds = rev Cs’ by simp
with subo have Subobjs P C' (Cs@Q C'#rev Ds) by simp
with Ds subo have V C'' € set Cs’. (C',C"") € (subcls1 P)*
by (fastforce dest:subo-trans-subcls)
with wf have VC'"' € set Cs’. C' # C"
by (auto dest:subcls-irrefl)
thus ?thesis by fastforce
qed

lemma subo-subcls-trans:
assumes subo:Subobjs P C (Cs@Q C'#Cs”)
shows V C"" € set Cs. (C",C") € (subcls1 P)™

proof —
from wf subo have \C". C" € set Cs = (C",C") € (subcls1 P)™
apply (auto simp:in-set-conv-decomp)
apply (case-tac zs)
apply (fastforce intro: subclsR-subclsl Subobjs-subclsR)
apply simp
apply (rule-tac b=a in trancl-rtrancl-trancl)
apply (fastforce intro: subclsR-subclsl Subobjs-subclsR)
apply (subgoal-tac P & a =<* last (a # list Q [C]))
apply simp
apply (rule Subobjs-subclass)
apply (rule-tac C=C and Cs= ys Q[C"] in Subobjs-Subobjs)
apply (rule-tac Cs'=Cs’ in appendSubobj)
apply simp-all
done
thus ?thesis by fastforce
qed

lemma unique2:

68

assumes subo:Subobjs P C (Cs@Q C'#Cs’) and wf:wf-prog wf-md P
shows C’ ¢ set Cs

proof —
from subo wf have V C" € set Cs. (C",C") € (subcls1 P)™
by (fastforce dest:subo-subcls-trans)
with wf have VC'" € set Cs. C' # C"
by (auto dest:subcls-irrefl)
thus ?thesis by fastforce
qed

lemma mdc-hd-path:
assumes subo:Subobjs P C Cs and set:C € set Cs and wf:wf-prog wf-md P
shows C' = hd Cs

proof —
from subo set obtain Ds Ds’ where Cs:Cs = Ds@Q C#Ds’
by (auto simp:in-set-conv-decomp)
then obtain Cs’ where Cs:Cs’ = rev Ds by simp
with Cs subo have subo”:Subobjs P C ((rev Cs"YQ C#Ds’) by simp
thus ?thesis
proof (cases Cs')
case Nil
with Cs Cs’ show ?thesis by simp
next
case (Cons X Xs)
with subo’ have suboX:Subobjs P C ((rev Xs)Q[X,C|QDs’) by simp
hence leg:P + X <! C
by (fastforce intro:subclsR-subcls1 Subobjs-subclsR)
from suboX wf have P F C =<* last ((rev Xs)Q[X])
by (fastforce intro:Subobjs-subclass appendSubobj)
with leq have (C,C) € (subcls1 P)" by simp
with wf show ?thesis by (fastforce dest:subcls-irrefl)
qged
qed

lemma mdc-eq-last:
assumes subo:Subobjs P C' Cs and last:last Cs = C and wf:wf-prog wf-md P
shows Cs = [C]

proof —
from subo have notempty:Cs # [| by — (drule Subobjs-nonempty)
hence lastset:last Cs € set Cs
apply (auto simp add:in-set-conv-decomyp)

69

apply (rule-tac z=butlast Cs in exI)
apply (rule-tac z=[] in exl)
apply simp
done
with last have C:C € set Cs by simp
with subo wf have hd:C = hd Cs by —(rule mdc-hd-path)
then obtain Cs’ where Cs":Cs’ = tl Cs by simp
thus ?thesis
proof (cases Cs')
case Nil
with hd subo Cs’ show ?thesis by (fastforce dest:Subobjs-nonempty hd-Cons-tl)
next
case (Cons D Ds)
with Cs’ hd notempty have Cs:Cs=C#D#Ds by simp
with subo have Subobjs P C' (C#D#Ds) by simp
with wf have notset:C ¢ set (D# Ds) by —(rule-tac Cs=[] in uniquel ,simp-all)
from Cs last have last Cs = last (D#Ds) by simp
hence last Cs € set (D#Ds)
apply (auto simp add:in-set-conv-decomp)
apply (erule-tac z=butlast Ds in allE)
apply (erule-tac z=[] in allE)
apply simp
done
with last have C € set (D#Ds) by simp
with notset show ?thesis by simp
qged
qed

lemma assumes leq:P - C <* D and wf:wf-prog wf-md P
shows subcls-leg-path:3 Cs. P,C + [C] C CsQ[D]

using leq
proof (induct rule:rtrancl.induct)
fix C show 3 Cs. P,C I [C] C CsQ[C] by (rule-tac =[] in exI,simp)
next
fix C C' D assume leg"P - C <* C"and [H:3Cs. P,C - [C] C CsQ[C']
and sub:P + C' <! D
from sub have is-class P C' by (rule subclsi-class)
with leq’ have class: is-class P C' by (rule subcls-is-class)
from [H obtain Cs where steps:P,C + [C] C CsQ[C’] by auto
hence subo:Subobjs P C' (CsQ[C"]) using class wf
by (fastforce intro:leq-path-Subobjs)
{ assume P+ C' <y D
with subo wf have Subobjs P C' (CsQ[C’,D])
by (fastforce dest:converse-Subobjs-Rep)
with subo have P,C - (Cs@[C") C! (Cs@[C’|Q[D])
by (fastforce intro:leg-path-rep) }

70

moreover
{ assume P+ C' <s D
with subo have P,C - (CsQ[C]) ! [D] by (rule leg-path-sh) }
ultimately show 3 Cs. P,C' - [C] C CsQ[D] using sub steps
apply (auto dest!:subcls1-subclsR-or-subclsS)
apply (rule-tac z=Cs@Q[C'] in ezl) apply simp
apply (rule-tac z=[] in exl) apply simp
done
qed

lemma assumes subo:Subobjs P C (rev Cs) and wf:wf-prog wf-md P
shows subobjs-rel-rev: P,C' + [C] E (rev Cs)
using subo
proof (induct Cs)
case Nil
thus ?case by (fastforce dest:Subobjs-nonempty)
next
case (Cons C' Cs)
have subo’:Subobjs P C (rev (C'#Cs"))
and [H:Subobjs P C (rev Cs') = P,C' F [C] C rev Cs’ by fact+
from subo’ have class: is-class P C by(rule Subobjs-isClass)
show ?Zcase
proof (cases Cs' = [])
case True hence empty:Cs' =[] .
with subo’ have subo’”:Subobjs P C [C'] by simp
thus ?thesis
proof (cases C = C)
case True
with empty show ?thesis by simp
next
case Fulse
with subo’’ obtain D D’ where leq:P - C <* D and subS:P +F D <g D’
and suboR:Subobjsg P D' [C]
by (auto elim:Subobjs.cases dest:hd-SubobjsR)
from suboR have C":C’ = D’ by (fastforce dest:hd-SubobjsR)
from leq wf obtain Ds where steps:P,C' - [C] C DsQ[D)]
by (auto dest:subcls-leg-path)
hence suboSteps:Subobjs P C (DsQ[D)]) using class wf
apply (induct rule:rtrancl-induct)
apply (erule Subobjs-Base)
apply (auto elim!:leg-pathl.cases)
apply (subgoal-tac Subobjsp P D [D])
apply (fastforce dest:Subobjs-subclass intro:Subobjs-Sh)
apply (fastforce dest!:subclsSD intro:SubobjsR-Base wf-cdecl-supD
class-wf ShBaseclass-isBaseclass)
done

71

hence step:P,C + (Ds@[D]) ! [D'] using subS by (rule leq-path-sh)
with steps empty False C' show ?thesis by simp
qed
next
case Fulse
with subo’ have subo’”:Subobjs P C' (rev Cs’)
by (fastforce intro:butlast-Subobjs)
with IH have steps:P,C F [C] C rev Cs’ by simp
from subo’ subo” have P,C + rev Cs' =1 rev (C'#Cs’)
by (fastforce intro:leq-pathRep)
with steps show ?thesis by simp
qed
qed

lemma subobjs-rel:
assumes subo:Subobjs P C Cs and wf:wf-prog wf-md P
shows P,C'F [C] C Cs

proof —
obtain Cs’ where Cs:Cs’ = rev Cs by simp
with subo have Subobjs P C (rev Cs’) by simp
hence P,C + [C] C rev Cs’ using wf by (rule subobjs-rel-rev)
with Cs’ show ?thesis by simp
qed

lemma assumes wf:wf-prog wf-md P
shows leg-path-last:[P,C + Cs T Cs’; last Cs = last Cs'] = Cs = Cs’

proof (induct rule:rtrancl-induct)
show Cs = Cs by simp
next
fix Cs' Cs”
assume legs:P,C - Cs T Cs’ and leq:P,C + Cs' ! Cs”
and last:last Cs = last Cs"’
and [H:last Cs = last Cs' = Cs = (s’
from leq wf have supl:P F last Cs’ <! last Cs"
by (rule last-leq-path)
{ assume Cs = Cs’
with last have eq:last Cs"’ = last Cs’ by simp
with eq wf supl have Cs = Cs'' by(fastforce dest:subcls1-wfD) }
moreover
{ assume (Cs,Cs’) € (leg-pathl P C)*
hence sub:(last Cs,last Cs') € (subclsl P)* using wf
by (rule last-leg-paths)
with sup! last have (last Cs”last Cs"') € (subclsl P)* by simp

72

with wf have Cs = Cs'' by(fastforce dest:subcls-irrefl) }
ultimately show Cs = Cs’’ using legs
by (fastforce dest:rtranclD)
qed

17.5 Well-formedness and appendPath

lemma appendPathl:
[Subobjs P C Cs; Subobjs P (last Cs) Ds; last Cs # hd Ds]
— Subobjs P C Ds

apply (subgoal-tac = Subobjsg P (last Cs) Ds)
apply (subgoal-tac 3C’' D. P & last Cs <* C' AN P+ C' <g D A Subobjsg P D
Ds)
apply clarsimp
apply (drule Subobjs-subclass)
apply (subgoal-tac P+ C <* C)
apply (erule-tac C'=C" and D=D in Subobjs-Sh)
apply simp
apply simp
apply fastforce
apply (erule Subobjs-notSubobjsR)
apply simp
apply (fastforce dest:hd-SubobjsR)
done

lemma appendPath2-rev:
assumes subol:Subobjs P C' Cs and subo2:Subobjs P (last Cs) (last Cs#rev Ds)
and wf:wf-prog wf-md P
shows Subobjs P C (CsQ(tl (last Cs#rev Ds)))
using subo?2
proof (induct Ds)
case Nil
with subol show ?Zcase by simp
next
case (Cons D’ Ds’)
have IH:Subobjs P (last Cs) (last Cs#rev Ds’)
= Subobjs P C (CsQtl(last Cs#rev Ds'))
and subo:Subobjs P (last Cs) (last Cs#rev (D'#Ds")) by fact+
from subo have Subobjs P (last Cs) (last Cs#rev Ds’)
by (fastforce intro:butlast-Subobjs)
with TH have subo’:Subobjs P C (CsQtl(last Cs#rev Ds’))
by simp
have last:last(last Cs#rev Ds') = last (CsQtl(last Cs#rev Ds’))
by (cases Ds’)auto
obtain C’ Cs’ where C":C' = last(last Cs#rev Ds) and

73

Cs’ = butlast(last Cs#rev Ds’) by simp
then have Cs’ @ [C'] = last Cs # rev Ds’
using append-butlast-last-id by blast
hence last Cs#rev (D'#Ds’) = Cs’Q[C',D’] by simp
with subo have Subobjs P (last Cs) (Cs'Q[C’,D"]) by (cases Cs’) auto
hence P+ C’ <r D' by — (rule Subobjs-subclsR,simp)
with C’ last have P + last (CsQtl(last Cs#rev Ds’)) <g D' by simp
with subo’ wf have Subobjs P C ((CsQtl(last Cs#rev Ds’))Q[D])
by (erule-tac Cs=(CsQtl(last Cs#rev Ds’)) in converse-Subobjs-Rep) simp
thus “case by simp
qed

lemma appendPath2:

assumes subol:Subobjs P C Cs and subo2:Subobjs P (last Cs) Ds
and eq:last Cs = hd Ds and wf:wf-prog wf-md P

shows Subobjs P C (CsQ(tl Ds))

using subo?2
proof (cases Ds)
case Nil
with subol show ?thesis by simp
next
case (Cons D’ Ds’)
with subo2 eq have subo:Subobjs P (last Cs) (last Cs#Ds’) by simp
obtain Ds’”’ where Ds’:Ds'’ = rev Ds’ by simp
with subo have Subobjs P (last Cs) (last Cs#rev Ds'') by simp
with subol wf have Subobjs P C (CsQ(l (last Cs#rev Ds'’)))
by —(rule appendPath2-rev)
with Ds’ eq Cons show ?thesis by simp
qed

lemma Subobjs-appendPath:
[Subobjs P C Cs; Subobjs P (last Cs) Ds;wf-prog wf-md P]
= Subobjs P C (CsQ,Ds)
by (fastforce elim:appendPath? appendPathl simp:appendPath-def)

17.6 Path and program size

lemma assumes subo:Subobjs P C Cs and wf:wf-prog wf-md P
shows path-contains-classes:¥ C' € set Cs. is-class P C'
using subo

proof clarsimp

fix C'’ assume subo:Subobjs P C Cs and set:C’ € set Cs
from set obtain Ds Ds’ where Cs:Cs = DsQC'#Ds’

74

by (fastforce simp:in-set-conv-decomp)
with Cs show is-class P C'
proof (cases Ds = |])
case True
with Cs subo have subo’:Subobjs P C' (C'#Ds’) by simp
thus %thesis by (rule Subobjs.cases,
auto dest:hd-SubobjsR intro:SubobjsR-isClass)
next
case Fulse
then obtain C”' Cs” where Cs':Cs" = butlast Ds
and last:C'"' = last Ds by auto
with False have Ds:Ds = Cs”"Q[C''] by simp
with Cs subo have subo”:Subobjs P C' (Cs""Q[C",C"|@QDs’)
by simp
hence P+ C'" < C’ by(fastforce intro:isSubobjs-subclsR Subobjs-isSuboby)
with wf show ?thesis
by (fastforce dest!:subclsRD
intro:wf-cdecl-supD class-wf RepBaseclass-isBaseclass subclsST)
qed
qed

lemma path-subset-classes:[Subobjs P C Cs; wf-prog wf-md P]
= set Cs C {C. is-class P C}
by (auto dest:path-contains-classes)

lemma assumes subo:Subobjs P C (rev Cs) and wf:wf-prog wf-md P
shows rev-path-distinct-classes:distinct Cs
using subo
proof (induct Cs)
case Nil thus ?case by(fastforce dest:Subobjs-nonempty)
next
case (Cons C' Cs')
have subo”:Subobjs P C (rev(C'#Cs"))
and [H:Subobjs P C (rev Cs") = distinct Cs' by fact+
show ?Zcase

proof (cases Cs' = [])

case True thus ?thesis by simp
next

case Fulse

hence rev:rev Cs’ # [| by simp
from subo’ have subo’":Subobjs P C (rev Cs'Q[C]) by simp
hence Subobjs P C (rev Cs’) using rev wf
by (fastforce dest:appendSuboby)
with IH have dist:distinct Cs’ by simp
from subo’ wf have C’ ¢ set (rev Cs')
by (fastforce dest:unique2)
with dist show ?thesis by simp

75

qed
qed

lemma assumes subo:Subobjs P C' Cs and wf:wf-prog wf-md P
shows path-distinct-classes:distinct Cs

proof —
obtain Cs’ where Cs’:Cs’ = rev Cs by simp
with subo have Subobjs P C (rev Cs’) by simp
with wf have distinct Cs’
by —(rule rev-path-distinct-classes)
with Cs’ show ?thesis by simp
qed

lemma assumes wf:wf-prog wf-md P
shows prog-length:length P = card {C. is-class P C}

proof —
from wf have dist-fst:distinct-fst P by (simp add:wf-prog-def)
hence distinct P by (simp add:distinct-fst-def ;induct P,auto)
hence card-set:card (set P) = length P by (rule distinct-card)
from dist-fst have set:{C. is-class P C} = fst ‘ (set P)
by (simp add:is-class-def class-def ,auto simp:distinct-fst-def,
auto dest:map-of-eq-Some-iff intro':image-eql)
from dist-fst have card(fst ‘ (set P)) = card (set P)
by (auto intro:card-image simp:distinct-map distinct-fst-def)
with card-set set show ?thesis by simp
qed

lemma assumes subo:Subobjs P C' Cs and wf:wf-prog wf-md P
shows path-length:length Cs < length P

proof —
from subo wf have distinct Cs by (rule path-distinct-classes)
hence card-eq-length:card (set Cs) = length Cs by (rule distinct-card)
from subo wf have card (set Cs) < card {C. is-class P C'}

by (auto dest:path-subset-classes intro:card-mono finite-is-class)

with card-eg-length have length Cs < card {C. is-class P C'} by simp
with wf show ?thesis by (fastforce dest:prog-length)

qed

76

lemma empty-path-empty-set:{ Cs. Subobjs P C' Cs A length Cs < 0} = {}
by (auto dest:Subobjs-nonempty)

lemma split-set-path-length:{ Cs. Subobjs P C Cs A length Cs < Suc(n)} =

{Cs. Subobjs P C Cs A length Cs < n} U {Cs. Subobjs P C Cs A length Cs =
Suc(n)}

by auto

lemma empty-list-set:{xs. set xs C F A zs = [|} = {[]}
by auto

lemma suc-n-union-of-union:{zs. set rs C F A length zs = Suc n} = (UN x:F.
UN zs : {xs. set s < F A length s = n}. {z#azs})
by (auto simp:length-Suc-conv)

lemma maz-length-finite-set:finite F = finite{xs. set s <= F A length xs = n}
by (induct n,simp add:empty-list-set, simp add:suc-n-union-of-union)

lemma path-length-n-finite-set:

wf-prog wf-md P = finite{ Cs. Subobjs P C' Cs A length Cs = n}

by (rule-tac B={Cs. set Cs <= {C. is-class P C'} A length Cs = n} in finite-subset,
auto dest:path-contains-classes intro:maz-length-finite-set simp:finite-is-class)

lemma path-finite-leg:
wf-prog wf-md P = finite{ Cs. Subobjs P C' Cs A length Cs < length P}
by (induct (length P), simp only:empty-path-empty-set,
auto intro:path-length-n-finite-set simp:split-set-path-length)

lemma path-finite:wf-prog wf-md P = finite{ Cs. Subobjs P C Cs}
by (subgoal-tac {Cs. Subobjs P C Cs} =

{Cs. Subobjs P C Cs A length Cs < length P},

auto intro:path-finite-leq path-length)

17.7 Well-formedness and Path

lemma path-via-reverse:
assumes path-via:P = Path C to D via Cs and wf:wf-prog wf-md P
shows V Cs’. P+ Path D to C via Cs' — Cs = [C] AN Cs'=[C] AN C =D
proof —
from path-via have subo:Subobjs P C' Cs and last:last Cs = D
by (simp add:path-via-def)+
hence leq:P F C <* D by/(fastforce dest:Subobjs-subclass)
{ fix Cs’ assume P + Path D to C via Cs’
hence subo’:Subobjs P D Cs’ and last”last Cs' = C
by (simp add:path-via-def)+
hence leq: P + D <* C by(fastforce dest:Subobjs-subclass)
with leq wf have CeqD:C = D by(rule subcls-asym?2)
moreover have Cs:Cs = [C] using CeqD subo last wf by (fastforce intro:mdc-eq-last)
moreover have Cs’ = [C] using CeqD subo’ last’ wf by (fastforce intro:mdc-eq-last)

77

ultimately have Cs = [C] A Cs’ = [C] A C = D by simp }
thus ?thesis by blast
qed

lemma path-hd-appendPath:
assumes path:P,C + Cs C Cs'Q,Cs and last:last Cs' = hd Cs
and notemptyCs:Cs # [| and notemptyCs’:Cs’ # [and wf:wf-prog wf-md P
shows Cs’ = [hd C¥]

using path
proof —
from path notemptyCs last have path2:P,C + Cs C Cs'Q tl Cs
by (simp add:appendPath-def)
thus ?thesis
proof (auto dest!:rtranclD)
assume Cs = Cs'Q ¢l Cs
with notemptyCs show Cs’ = [hd Cs] by (rule app-hd-tl)
next
assume trancl:(Cs,Cs'Q tl Cs) € (leg-pathl P C)*
from notemptyCs’ last have butlastLast:Cs’ = butlast Cs’ Q [hd Cs]
by —(drule append-butlast-last-id,simp)
with trancl have trancl”:(Cs, (butlast Cs’ @Q [hd Cs]) @ tl Cs) € (leg-pathl P
a)t
by simp
from notemptyCs have (butlast Cs’ Q [hd Cs]) Q tl Cs = butlast Cs’ Q Cs
by simp
with trancl’ have (Cs, butlast Cs’ Q@ Cs) € (leg-path1 P C)™ by simp
hence (last Cs, last (butlast Cs’ @ Cs)) € (subcls1 P)T using wf
by (rule last-leg-paths)
with notemptyCs have (last Cs, last Cs) € (subclsl P)*
by —(drule-tac zs=butlast Cs’ in last-appendR,simp)
with wf show ?thesis by (auto dest:subcls-irrefl)
qed
qed

lemma path-via-C: [P + Path C to C via Cs; wf-prog wf-md P] = Cs = [C]
by (fastforce intro:mdc-eg-last simp:path-via-def)

lemma assumes wf:wf-prog wf-md P
and path-via:P + Path last Cs to C via Cs’
and path-via”:P + Path last Cs to C via Cs''
and appendPath:Cs = Cs@Q,Cs’

shows appendPath-path-via:Cs = CsQ, Cs"

proof —
from path-via have notempty:Cs’ # ||

78

by (fastforce introl:Subobjs-nonempty simp:path-via-def)
{ assume eq:last Cs = hd Cs’
and Cs:Cs = CsQtl Cs’
from Cs have tl Cs’ = [] by simp
with eq notempty have Cs’ = [last Cs]
by —(drule hd-Cons-tl,simp) }
moreover
{ assume Cs = Cs’
with wf path-via have Cs’ = [last Cs]
by (fastforce intro:mdc-eg-last simp:path-via-def) }
ultimately have eq:Cs’ = [last Cs| using appendPath
by (simp add:appendPath-def ,split if-split-asm,simp-all)
with path-via have C = last Cs
by (simp add:path-via-def)
with wf path-via’ have Cs" = [last Cs]
by simp(rule path-via-C')
thus ?thesis by (simp add:appendPath-def)
qed

lemma subo-no-path:
assumes subo:Subobjs P C' (Cs @ C#Cs’) and wf:wf-prog wf-md P
and notempty:Cs’ # ||
shows — Pt Path last Cs' to C via Ds

proof
assume P + Path last Cs’ to C via Ds
hence subo”:Subobjs P (last Cs") Ds and last:last Ds = C
by (auto simp:path-via-def)
hence notemptyDs:Ds # [| by —(drule Subobjs-nonempty)
then obtain D’ Ds’ where D'Ds’:Ds = D'#Ds’ by(cases Ds)auto
from subo have suboC:Subobjs P C (C#Cs') by (rule Subobjs-Subobjs)
with wf subo’ notempty have suboapp:Subobjs P C ((C# Cs")@, Ds)
by —(rule Subobjs-appendPath,simp-all)
with notemptyDs last have last"last ((C#Cs\@Q,Ds) = C
by —(drule-tac Cs'=(C#Cs’) in appendPath-last,simp)
from notemptyDs have (C#Cs")@Q,Ds # [|
by (simp add:appendPath-def)
with last’ have C € set ((C#Cs’)@,Ds)
apply (auto simp add:in-set-conv-decomp)
apply (rule-tac z=butlast((C# Cs")Q,Ds) in exl)
apply (rule-tac =[] in exl)
apply (drule append-butlast-last-id)
apply simp
done
with suboapp wf have hd:C = hd ((C#Cs’)@Q,Ds) by —(rule mdc-hd-path)
thus False
proof (cases last (C#Cs’) = hd Ds)

79

case True
hence eq:(C#Cs’)Q,Ds = (C#Cs")Q(tl Ds) by (simp add:appendPath-def)
show ?thesis
proof (cases Ds’)
case Nil
with D’Ds’ have Ds:Ds = [D’] by simp
with last have C = D’ by simp
with True notempty Ds have last (C#Cs’) = C by simp
with notempty have last Cs’ = C by simp
with notempty have Cset:C € set Cs'
apply (auto simp add:in-set-conv-decomp)
apply (rule-tac z=butlast Cs' in exl)
apply (rule-tac z=[] in exI)
apply (drule append-butlast-last-id)
apply simp
done
from subo wf have C ¢ set Cs’ by (rule uniquel)
with Cset show ?thesis by simp
next
case (Cons X Xs)
with D'Ds’ have tlnotempty:tl Ds # [| by simp
with Cons last D'Ds’ have last (tl Ds) = C by simp
with tinotempty have C € set (tl Ds)
apply (auto simp add:in-set-conv-decomp)
apply (rule-tac z=butlast (¢l Ds) in exl)
apply (rule-tac z=[] in exl)
apply (drule append-butlast-last-id)
apply simp
done
hence Cset:C € set (Cs'Q(¢l Ds)) by simp
from suboapp eq wf have C ¢ set (Cs’Q(¢l Ds))
by (subgoal-tac Subobjs P C (C#(Cs'Q(tl Ds))),
rule-tac Cs=[] in uniquel ,simp-all)
with Cset show ?thesis by simp
qed
next
case False
with notemptyDs have eq:(C#Cs")@,Ds = Ds by (simp add:appendPath-def)
with subo’ last have lastleq:P + last Cs’ <* C
by (fastforce dest:Subobjs-subclass)
from notempty obtain X Xs where X:X = last Cs’ and Xs = butlast Cs’
by auto
with notempty have XXs:Cs' = XsQ[X] by simp
hence ClegX:(C,X) € (subcls1 P)*
proof (cases Xs)
case Nil
with suboC XXs have Subobjs P C [C,X] by simp
thus ?thesis

apply —

80

apply (rule r-into-trancl)
apply (rule subclsR-subcls1)
apply (rule-tac Cs=[] in Subobjs-subclsR)
apply simp
done
next
case (Cons Y Ys)
with suboC XXs have subo’:Subobjs P C ([C,Y]QYsQ[X]) by simp
hence plus:(C,Y) € (subcls! P)*
apply —
apply (rule r-into-trancl)
apply (rule subclsR-subcls1)
apply (rule-tac Cs=[] in Subobjs-subclsR)
apply simp
done
from subo’’ have P+ Y <* X
apply —
apply (subgoal-tac Subobjs P C ([ClQY#(YsQ[X])))
apply (drule Subobjs-Subobjs)
apply (drule-tac C=Y in Subobjs-subclass) apply simp-all
done
with plus show ?thesis by (fastforce elim:trancl-rtrancl-trancl)
qed
from lastleq X have leq:P - X <* C by simp
with ClegX have (C,C) € (subclsl P)*
by (rule trancl-rtrancl-trancl)
with wf show ?thesis by (fastforce dest:subcls-irrefl)
qed
qed

lemma leq-implies-path:
assumes leq:P - C <* D and class: is-class P C
and wf:wf-prog wf-md P

shows 3 Cs. P+ Path C to D via Cs

using leq class
proof (induct rule:rtrancl.induct)
fix C' assume is-class P C
thus 3 Cs. P+ Path C to C via Cs
by (rule-tac ©=[C] in exl,fastforce intro:Subobjs-Base simp:path-via-def)
next
fix C C’ D assume CleqC":P + C =<* C'and C'legD:P +~ C' <! D
and classC:is-class P C and I[H:is-class P C = 3 (Cs. P + Path C to C' via
Cs
from IH[OF classC] obtain Cs where subo:Subobjs P C' Cs and last:last Cs =
C/
by (auto simp:path-via-def)

81

with C'legD show 3 Cs. P = Path C to D via Cs
proof (auto dest!:subcls1-subclsR-or-subclsS)
assume P + last Cs <g D
with subo have Subobjs P C' (CsQ[D]) using wf
by (rule converse-Subobjs-Rep)
thus %thesis by (fastforce simp:path-via-def)
next
assume subS:P + last Cs <g D
from CleqC’ last have Cleglast:P = C <* last Cs by simp
from subS have classLast:is-class P (last Cs)
by (auto intro:subclsi-class subclsS-subcls?)
then obtain Bs fs ms where class P (last Cs) = Some(Bs,fs,ms)
by (fastforce simp:is-class-def)
hence classD:is-class P D using subS wf
by (auto intro:wf-cdecl-supD dest: class-wf dest!:subclsSD
elim:ShBaseclass-isBaseclass)
with Cleglast subS have Subobjs P C [D]
by (fastforce intro:Subobjs-Sh SubobjsR-Base)
thus %thesis by (fastforce simp:path-via-def)
qed
qed

lemma least-method-implies-path-unique:
assumes least:P = C has least M = (Ts,T,m) via Cs and wf:wf-prog wf-md P
shows P b Path C to (last Cs) unique

proof (auto simp add:path-unique-def)

from least have Subobjs P C Cs
by (simp add:LeastMethodDef-def MethodDefs-def)
thus 3 Cs’. Subobjs P C Cs’ A last Cs’ = last Cs
by fastforce
next

fix Cs’ Cs”
assume suboCs’:Subobjs P C Cs’ and suboCs'":Subobjs P C Cs’’
and lastCs"last Cs" = last Cs and lastCs'":last Cs"" = last Cs
from suboCs’ have notemptyCs’:Cs’ # [| by (rule Subobjs-nonempty)
from suboCs’’ have notemptyCs':Cs"" # [| by (rule Subobjs-nonempty)
from least have suboCs:Subobjs P C' Cs
and all:V Ds. Subobjs P C Ds A
(3Ts T m Bs ms. (3 fs. class P (last Ds) = Some (Bs, fs, ms)) A
map-of ms M = Some(Ts,T,m)) — P,C + Cs C Ds
by (auto simp:LeastMethodDef-def MethodDefs-def)
from least obtain Bs fs ms T Ts m where
class: class P (last Cs) = Some(Bs, fs, ms) and map:map-of ms M = Some(Ts,T,m)
by (auto simp:LeastMethodDef-def MethodDefs-def intro:that)
from suboCs’ lastCs’ class map all have pathCs:P,C = Cs C Cs’

82

by simp
with wf lastCs’ have eq:Cs = Cs’ by(fastforce intro:leq-path-last)
from suboCs” lastCs'" class map all have pathCs":P,C + Cs C Cs”
by simp
with wf lastCs' have Cs = Cs'' by(fastforce intro:leq-path-last)
with eq show Cs’ = Cs’’ by simp
qed

lemma least-field-implies-path-unique:
assumes least:P = C has least F:T via Cs and wf:wf-prog wf-md P
shows P & Path C to (hd Cs) unique

proof (auto simp add:path-unique-def)

from least have Subobjs P C Cs
by (simp add:LeastFieldDecl-def FieldDecls-def)
hence Subobjs P C ([hd Cs|Qtl Cs)
by — (frule Subobjs-nonempty,simp)
with wf have Subobjs P C [hd Cs]
by (fastforce intro:appendSubobj)
thus 3 Cs’. Subobjs P C Cs’ A last Cs’ = hd Cs
by fastforce
next

fix Cs' Cs”
assume suboCs’:Subobjs P C Cs’ and suboCs'":Subobjs P C Cs’’
and lastCs"last Cs’ = hd Cs and lastCs'":last Cs" = hd Cs
from suboCs’ have notemptyCs’:Cs’ # [| by (rule Subobjs-nonempty)
from suboCs'’ have notemptyCs':Cs"' # [| by (rule Subobjs-nonempty)
from least have suboCs:Subobjs P C' Cs
and all:V Ds. Subobjs P C' Ds A
(3T Bs fs. (Ims. class P (last Ds) = Some (Bs, fs, ms)) A
map-of fs F = Some T) — P,C F Cs C Ds
by (auto simp: LeastFieldDecl-def FieldDecls-def)
from least obtain Bs fs ms T where
class: class P (last Cs) = Some(Bs, fs, ms) and map:map-of fs F = Some T
by (auto simp:LeastFieldDecl-def FieldDecls-def)
from suboCs have notemptyCs:Cs # [| by (rule Subobjs-nonempty)
from suboCs notemptyCs have suboHd:Subobjs P (hd Cs) (hd Cs#tl Cs)
by —(rule-tac C=C and Cs=[| in Subobjs-Subobjs,simp)
with suboCs’ notemptyCs lastCs’ wf have suboCs'App:Subobjs P C' (Cs'@, Cs)
by —(rule Subobjs-appendPath,simp-all)
from suboHd suboCs' notemptyCs lastCs" wf
have suboCs"'App:Subobjs P C' (Cs"'Q,Cs)
by —(rule Subobjs-appendPath,simp-all)

from suboCs’App all class map notemptyCs have pathCs"P,C' + Cs T Cs'Q,Cs
by —(erule-tac z=Cs'Q, Cs in allE,drule-tac Cs'=Cs’ in appendPath-last,simp)

83

from suboCs"'App all class map notemptyCs have pathCs':P,C' - Cs C Cs"'@, Cs
by —(erule-tac z=Cs"@Q, Cs in allE,drule-tac Cs'=Cs'"in appendPath-last,simp)

from pathCs’ lastCs’ notemptyCs notemptyCs’ wf have Cs”:Cs’ = [hd Cs]
by (rule path-hd-appendPath)

from pathCs’ lastCs" notemptyCs notemptyCs'’ wf have Cs' = [hd Cs]
by (rule path-hd-appendPath)

with Cs’ show Cs’ = Cs’' by simp

qed

lemma least-field-implies-path-via-hd:
[P+ C has least F: T via Cs; wf-prog wf-md P]
= P F Path C to (hd Cs) via [hd Cs]

apply (simp add: LeastFieldDecl-def FieldDecls-def)
apply clarsimp

apply (simp add:path-via-def)

apply (frule Subobjs-nonempty)

apply (rule-tac Cs’=tl Cs in appendSuboby)

apply auto

done

lemma path-C-to-C-unique:
[wf-prog wf-md P; is-class P C] = P + Path C to C unique

apply (unfold path-unique-def)

apply (rule-tac a=[C] in exII)

apply (auto intro:Subobjs-Base mdc-eq-last)
done

lemma leqR-SubobjsR:[(C,D) € (subclsR P)*; is-class P C; wf-prog wf-md P]
= 3 Cs. Subobjsg P C (CsQ[D])

apply (induct rule:rtrancl-induct)

apply (drule SubobjsR-Base)

apply (rule-tac z=[] in exI)

apply simp

apply (auto dest:converse-SubobjsR-Rep)
done

lemma assumes path-unique:P = Path C to D unique and leq:P - C <* C’
and legR:(C',D) € (subclsR P)* and wf:wf-prog wf-md P
shows P + Path C to C’ unique

84

proof —
from path-unique have is-class P C
by (auto intro:Subobjs-isClass simp:path-unique-def)
with leq wf obtain Cs where path-via:P & Path C to C' via Cs
by (auto dest:leg-implies-path)
with wf have classC"is-class P C’
by (fastforce intro:Subobj-last-isClass simp:path-via-def)
with leqR wf obtain Cs’ where subo:Subobjsg P C' Cs’ and last:last Cs’ = D
by (auto dest:leqR-SubobjsR)
hence hd:hd Cs' = C’
by (fastforce dest:hd-SubobjsR)
with path-via subo wf have suboApp:Subobjs P C (CsQtl Cs’)
by (auto dest!:Subobjs-Rep dest:Subobjs-appendPath
simp:path-via-def appendPath-def)
hence last”:last (CsQtl Cs’) = D
proof (cases tl Cs’ = [])
case True
with subo hd last have C' = D
by (subgoal-tac Cs’ = [C'],auto dest!:SubobjsR-nonempty hd-Cons-tl)
with path-via have last Cs = D
by (auto simp:path-via-def)
with True show ?thesis by simp
next
case Fualse
from subo have Cs":Cs’ = hd Cs'#tl Cs’
by (auto dest:SubobjsR-nonempty)
from Fulse have last(hd Cs'#tl Cs’) = last (1 Cs’)
by (rule last-ConsR)
with Fualse Cs’ last show ?thesis by simp
qed
with path-unique suboApp
have all:V Ds. Subobjs P C' Ds A last Ds = D — Ds = Cs@tl Cs’
by (auto simp add:path-unique-def)
{ fix Cs"’ assume path-via2:P + Path C to C' via Cs'" and noteq:Cs" # Cs
with suboApp have last (Cs""@tl Cs’) = D
proof (cases tl Cs’ = [])
case True
with subo hd last have C' = D
by (subgoal-tac Cs’ = [C'],auto dest!:SubobjsR-nonempty hd-Cons-tl)
with path-via2 have last Cs"' = D
by (auto simp:path-via-def)
with True show ?thesis by simp
next
case Fulse
from subo have Cs":Cs’ = hd Cs'#tl Cs’
by (auto dest:SubobjsR-nonempty)
from False have last(hd Cs'#tl Cs") = last (tl Cs’)
by (rule last-ConsR)
with False Cs’ last show ?thesis by simp

85

qed

with path-via2 noteq have Fualse using all subo hd wf
apply (auto simp:path-via-def)
apply (drule Subobjs-Rep)
apply (drule Subobjs-appendPath)
apply (auto simp:appendPath-def)
done }

with path-via show ?thesis
by (auto simp:path-via-def path-unique-def)
qged

17.8 Well-formedness and member lookup

lemma has-path-has:
[P+ Path D to C via Ds; P+ C has M = (Ts,T,m) via Cs; wf-prog wf-md P]
= PF Dhas M = (T5,T,m) via DsQ,Cs
by (clarsimp simp: HasMethodDef-def MethodDefs-def ,frule Subobjs-nonempty,
drule-tac Cs'=Ds in appendPath-last,
fastforce intro:Subobjs-appendPath simp:path-via-def)

lemma has-least-wf-mdecl:
[wf-prog wf-md P; P+ C has least M = m via Cs |
= wf-mdecl wf-md P (last Cs) (M,m)
by (fastforce dest:visible-methods-exist class-wf map-of-SomeD
simp: LeastMethodDef-def wf-cdecl-def)

lemma has-overrider-wf-mdecl:
[wf-prog wf-md P; P (C,Cs) has overrider M = m via Cs']
= wf-mdecl wf~md P (last Cs") (M,m)
by (fastforce dest:visible-methods-ezist map-of-SomeD class-wf
simp: FinalOverriderMethodDef-def OverriderMethodDefs-def
MinimalMethodDefs-def wf-cdecl-def)

lemma select-method-wf-mdecl:
[wf-prog wf-md P; P+ (C,Cs) selects M = m via Cs’]
= wf-mdecl wf-md P (last Cs’) (M,m)
by (fastforce elim:SelectMethodDef.induct
intro:has-least-wf-mdecl has-overrider-wf-mdecl)

lemma wf-sees-method-fun:

[P+ C has least M = mthd via Cs; P+ C has least M = mthd’ via Cs',
wf-prog wf-md P]
= mithd = mthd’ AN Cs = Cs’

86

apply (auto simp:LeastMethodDef-def)
apply (erule-tac x=(Cs', mthd’) in ballE)
apply (erule-tac =(Cs, mthd) in ballE)
apply auto

apply (drule leg-path-asym?2) apply simp-all
apply (rule sees-methods-fun) apply simp-all
apply (erule-tac x=(Cs', mthd’) in ballE)
apply (erule-tac =(Cs, mthd) in ballE)
apply (auto intro:leg-path-asym?2)

done

lemma wf-select-method-fun:
assumes wf:wf-prog wf-md P
shows [P + (C,Cs) selects M = mthd via Cs’; P+ (C,Cs) selects M = mthd’
via Cs"’]
= mthd = mthd’ N Cs’ = Cs”’
proof (induct rule:SelectMethodDef .induct)
case (dyn-unique C' M mthd Cs’ Cs)
have P\ (C, Cs) selects M = mthd’ via Cs"
and P+ C has least M = mthd via Cs’ by fact+
thus ?case
proof (induct rule:SelectMethodDef .induct)
case (dyn-unique D M’ mthd’ Ds’ Ds)
have P + D has least M’ = mthd’ via Ds'
and P+ D has least M' = mthd via Cs’ by fact+
with wf show Zcase
by —(rule wf-sees-method-fun,simp-all)
next
case (dyn-ambiguous D M' Ds mthd’' Ds’)
have Vmthd Cs’. = P+ D has least M’ = mthd via Cs’
and P+ D has least M' = mthd via Cs’ by fact+
thus ?case by blast
qed
next
case (dyn-ambiguous C M Cs mthd Cs")
have P - (C, Cs) selects M = mthd’ via Cs"’
and P + (C, Cs) has overrider M = mthd via Cs’
and V mthd Cs’. = P+ C has least M = mthd via Cs’ by fact+
thus ?Zcase
proof (induct rule:SelectMethodDef .induct)
case (dyn-unique D M’ mthd’ Ds’ Ds)
have P F D has least M’ = mithd’ via Ds'
and V mthd Cs’. = P+ D has least M’ = mthd via Cs’ by fact+
thus ?case by blast
next
case (dyn-ambiguous D M' Ds mthd’ Ds’)
have P+ (D, Ds) has overrider M' = mthd’ via Ds’

87

and Pt (D, Ds) has overrider M’ = mthd via Cs’ by fact+
thus ?case by(fastforce dest:overrider-method-fun)
qed
qed

lemma least-field-is-type:
assumes field:P = C has least F:T via Cs and wf:wf-prog wf-md P
shows is-type P T

proof —
from field have (Cs,T) € FieldDecls P C' F
by (simp add: LeastFieldDecl-def)
from this obtain Bs fs ms
where map-of fs F' = Some T
and class: class P (last Cs) = Some (Bs,fs,ms)
by (auto simp add:FieldDecls-def)
hence (F,T) € set fs by (simp add:map-of-SomeD)
with class wf show ?thesis
by (fastforce dest!: class-wf simp: wf-cdecl-def wf-fdecl-def)
qed

lemma least-method-is-type:
assumes method:P - C has least M = (Ts,T,m) via Cs and wf:wf-prog wf-md P
shows is-type P T

proof —
from method have (Cs,Ts,T,m) € MethodDefs P C M
by (simp add:LeastMethodDef-def)
from this obtain Bs fs ms
where map-of ms M = Some(Ts,T,m)
and class: class P (last Cs) = Some (Bs,fs,ms)
by (auto simp add:MethodDefs-def)
hence (M,Ts,T,m) € set ms by (simp add:map-of-SomeD)
with class wf show Zthesis
by (fastforce dest!: class-wf simp: wf-cdecl-def wf-mdecl-def)
qed

lemma least-overrider-is-type:

assumes method:P + (C,Cs) has overrider M = (Ts,T,m) via Cs’
and wf:wf-prog wf-md P

shows is-type P T

88

proof —
from method have (Cs’,Ts,T,m) € MethodDefs P C M
by (clarsimp simp: FinalOverriderMethodDef-def OverriderMethodDefs-def
MinimalMethodDefs-def)
from this obtain Bs fs ms
where map-of ms M = Some(Ts,T,m)
and class: class P (last Cs’) = Some (Bs,fs,ms)
by (auto simp add:MethodDefs-def)
hence (M,Ts,T,m) € set ms by (simp add:map-of-SomeD)
with class wf show ?thesis
by (fastforce dest!: class-wf simp: wf-cdecl-def wf-mdecl-def)
qed

lemma select-method-is-type:
[PF (C,Cs) selects M = (Ts, T,m) via Cs’; wf-prog wf-md P] = is-type P T
by (auto elim:SelectMethodDef .cases

intro:least-method-is-type least-overrider-is-type)

lemma base-subtype:

[wf-cdecl wf-md P (C,Bs,fs,ms); C' € baseClasses Bs;
P+ C"has M = (Ts',T',m") via CsQ,[D]; (M,Ts,T,m)€eset ms]
= Ts'=Ts \NP+T<T’

apply (simp add:wf-cdecl-def)
apply clarsimp
apply (rotate-tac —1)
apply (erule-tac z=C" in ballE)
apply clarsimp
apply (rotate-tac —1)
apply (erule-tac x=(M, Ts, T, m) in ballE)
apply clarsimp
apply (erule-tac z=Ts' in allE)
apply (erule-tac t=T' in allE)
apply (auto simp:HasMethodDef-def)
apply (erule-tac x=fst m’ in allE)
apply (erule-tac x=snd m' in allE)
apply (erule-tac x=CsQ,[D] in allE)
apply simp
apply (erule-tac z=fst m’ in allF)
apply (erule-tac x=snd m' in allE)
apply (erule-tac z=CsQ,[D] in allE)
apply simp
done

89

lemma subclsPlus-subtype:
assumes classD:class P D = Some(Bs’,fs’;ms’)
and mapMs’:map-of ms’ M = Some(Ts',T',m’)
and leq:(C,D) € (subcls1 P)™ and wf:wf-prog wf-md P
shows V Bs fs ms Ts T m. class P C = Some(Bs,fs,ms) N map-of ms M =
Some(Ts, T,m)
— Ts'=Ts NP+ T < T’

using leq classD mapMs'
proof (erule-tac a=C and b=D in converse-trancl-induct)
fix C
assume ClegD:P = C <! D and classD1:class P D = Some(Bs’,fs’,ms’)
{ fix Bs fs ms Ts T'm
assume classC:class P C = Some(Bs,fs,ms) and mapMs:map-of ms M =
Some(Ts, T,m)
from classD1 mapMs’ have hasViaD:P = D has M = (Ts',T',m’) via [D]
by (fastforce intro:Subobjs-Base simp: HasMethodDef-def MethodDefs-def is-class-def)
from ClegD classC have base:D € baseClasses Bs
by (fastforce dest:subcls1D)
from classC wf have cdecl:wf-cdecl wf-md P (C,Bs,fs,ms)
by (rule class-wf)
from classC mapMs have (M, Ts,T,m)€Eset ms
by —(drule map-of-SomeD)
with cdecl base hasViaD have Ts' = Ts N P+ T < T’
by —(rule-tac Cs=[D] in base-subtype,auto simp:appendPath-def) }
thus V Bs fs ms Ts T m. class P C = Some(Bs, fs, ms) A map-of ms M =
Some(Ts, T,m)
— Ts'=Ts N P+ T < T' by blast
next
fix C C'
assume classD1:class P D = Some(Bs',fs’,ms’) and CleqgC"P + C <! C'
and subcls:(C',D) € (subclsl P)*
and IH:Y Bs fs ms Ts T m. class P C' = Some(Bs,fs,ms) A
map-of ms M = Some(Ts,T,m) —
Ts'=Ts NPHT < T’
{ fix Bs fsms Ts T m
assume classC:class P C = Some(Bs,fs,ms) and mapMs:map-of ms M =
Some(Ts, T,m)
from classD1 mapMs’ have hasViaD:P = D has M = (Ts',T',m’) via [D]
by (fastforce intro:Subobjs-Base simp: HasMethodDef-def MethodDefs-def is-class-def)
from subcls have C'leqD:P + C’ =* D by simp
from classC wf CleqC’ have is-class P C'
by (fastforce intro:wf-cdecl-supD class-wf dest:subcls1D)
with C'leqgD wf obtain Cs where P - Path C' to D via Cs
by (auto dest!:leg-implies-path simp:is-class-def)
hence hasVia:P = C' has M = (Ts’,T',m") via CsQ,[D] using hasViaD wf
by (rule has-path-has)
from CleqC’ classC have base:C' € baseClasses Bs
by (fastforce dest:subcls1D)

90

from classC wf have cdecl:wf-cdecl wf-md P (C,Bs,fs,ms)
by (rule class-wf)
from classC mapMs have (M,Ts,T,m)€set ms
by —(drule map-of-SomeD)
with cdecl base hasVia have Ts' = Ts N P+ T < T'
by (rule base-subtype) }
thus V Bs fs ms Ts T m. class P C = Some(Bs, fs, ms) A map-of ms M =
Some(Ts, T,m)
— Ts'=Ts AN P+ T < T’ by blast
qed

lemma leqg-method-subtypes:
assumes leg:P = D <* C and least:P = D has least M = (Ts',T',m’) via Ds
and wf:wf-prog wf-md P
shows VTs Tm Cs. P+ C has M = (Ts,T,m) via Cs —
Ts=Ts' N\PFT'<T
using assms
proof (induct rule:rtrancl.induct)
fix C
assume Cleast:P & C has least M = (Ts',T';m") via Ds
{ fix Ts Tm Cs
assume Chas:P = C has M = (Ts,T,m) via Cs
with Cleast have path:P,C + Ds C Cs
by (fastforce simp:LeastMethodDef-def HasMethodDef-def)
{ assume Ds = Cs
with Cleast Chas have Ts = Ts' AN T' =T
by (auto simp:LeastMethodDef-def HasMethodDef-def MethodDefs-def)
hence Ts = Ts' A P+ T' < T by auto }
moreover
{ assume (Ds,Cs) € (leg-path1 P C)*
hence subcls:(last Ds,last Cs) € (subcls1 P)* using wf
by —(rule last-leg-paths)
from Chas obtain Bs fs ms where class P (last Cs) = Some(Bs,fs,ms)
and map-of ms M = Some(Ts, T,m)
by (auto simp:HasMethodDef-def MethodDefs-def)
hence ex:V Bs’ fs’ ms’ Ts' T' m'. class P (last Ds) = Some(Bs',fs’;ms") A
map-of ms’ M = Some(Ts',\T':m') — Ts = Ts' N\PFT'< T
using subcls wf
by —(rule subclsPlus-subtype,auto)
from Cleast obtain Bs’ fs’ ms’ where class P (last Ds) = Some(Bs’,fs’;ms’)

and map-of ms’ M = Some(Ts',T',m’)
by (auto simp:LeastMethodDef-def MethodDefs-def)
with ez have Ts = Ts’and P+ T’ < T by auto }
ultimately have Ts = Ts’and P+ T’ < T using path
by (auto destl:rtranclD) }
thus VTs Tm Cs. P+ C has M = (Ts, T, m) via Cs —

91

Ts=Ts' NP+ T'<T
by (simp add:HasMethodDef-def MethodDefs-def)
next
fixDC'C
assume DlegC’:P + D <* C'and C'leqC:P - C' <! C
and Dieast:P + D has least M = (Ts’,T'/m") via Ds
and IH:[P + D has least M = (Ts’,T';m") via Ds; wf-prog wf-md P]
= VIsTmCs. P-C'"has M = (15, T, m) via Cs —
Ts=Ts' NP+ T'<T
{ fix Ts Tm Cs
assume Chas:P + C has M = (Ts,T,m) via Cs
from Dleast have classD:is-class P D
by (auto intro:Subobjs-isClass simp: LeastMethodDef-def MethodDefs-def)
from DleqC’ C'leqC have P+ D <* C by simp
then obtain Cs’ where P + Path D to C via Cs’ using classD wf
by (auto dest:leg-implies-path)
hence Dhas:P = D has M = (Ts,T,m) via Cs'Q,Cs using Chas wf
by (fastforce intro:has-path-has)
with Dleast have path:P,D - Ds T Cs'Q,Cs
by (auto simp: LeastMethodDef-def HasMethodDef-def)
{ assume Ds = Cs'Q,Cs
with Dleast Dhas have Ts = Ts' A T/ =T
by (auto simp:LeastMethodDef-def HasMethodDef-def MethodDefs-def)
hence Ts = Ts' A T' = T by auto }
moreover
{ assume (Ds,Cs'Q,Cs) € (leg-pathl P D)*
hence subcls:(last Ds,last (Cs'Q,Cs)) € (subclsl P)* using wf
by —(rule last-leg-paths)
from Dhas obtain Bs fs ms where class P (last (Cs'Q, Cs)) = Some(Bs,fs,ms)

and map-of ms M = Some(Ts, T,m)
by (auto simp:HasMethodDef-def MethodDefs-def)
hence ex:V Bs' fs' ms" Ts" T' m'. class P (last Ds) = Some(Bs’,fs’;ms’) A
map-of ms’ M = Some(Ts’,T';m") —
Ts=Ts'ANP+-T'<T
using subcls wf
by —(rule subclsPlus-subtype,auto)
from Dleast obtain Bs’ fs’ ms’ where class P (last Ds) = Some(Bs',fs’;ms")

and map-of ms’ M = Some(Ts',T',m’)
by (auto simp:LeastMethodDef-def MethodDefs-def)
with ez have Ts = Ts’and P+ T’ < T by auto }
ultimately have Ts = Ts’and P+ T’ < T using path
by (auto dest!:rtranclD) }
thus VTs T m Cs. P+ Chas M = (Ts, T, m) via Cs —
Ts=Ts'NP+T'<T
by simp
qed

92

lemma leg-methods-subtypes:
assumes leq:P + D <* C and least:(Ds,(Ts’,T',m’)) € MinimalMethodDefs P
DM
and wf:wf-prog wf-md P
shows V Ts T'm Cs Cs’. P - Path D to C via Cs' AN P,D - Ds C Cs'@Q,Cs A Cs
#IA
PF Chas M = (Ts,T,m) via Cs
— Ts=Ts'ANP+T'<T
using assms
proof (induct rule:rtrancl.induct)
fix C
assume Cleast:(Ds,(Ts',T';m’)) € MinimalMethodDefs P C M
{ fix Ts Tm Cs Cs’
assume path”:P + Path C to C via Cs’
and leg-path:P,C + Ds C Cs’ @, Cs and notempty:Cs # ||
and Chas:P + C has M = (T5,T,m) via Cs
from path’ wf have Cs:Cs’ = [C] by(rule path-via-C')
from leq-path Cs’ notempty have leq:P,C + Ds E Cs
by (auto simp:appendPath-def split:if-split-asm)
{ assume Ds = Cs
with Cleast Chas have Ts = Ts' AN T' =T
by (auto simp:MinimalMethodDefs-def HasMethodDef-def MethodDefs-def)
hence Ts = Ts' A P+ T' < T by auto }
moreover
{ assume (Ds,Cs) € (leg-path1 P C)*
hence subcls:(last Ds,last Cs) € (subcls1 P)* using wf
by —(rule last-leg-paths)
from Chas obtain Bs fs ms where class P (last Cs) = Some(Bs,fs,ms)
and map-of ms M = Some(Ts, T,m)
by (auto simp:HasMethodDef-def MethodDefs-def)
hence ex:V Bs' fs' ms" Ts" T' m'. class P (last Ds) = Some(Bs’,fs’;ms’) A
map-of ms’ M = Some(Ts",\ T'm") — Ts = Ts' \P+T'<T
using subcls wf
by —(rule subclsPlus-subtype,auto)
from Cleast obtain Bs’ fs’ ms’ where class P (last Ds) = Some(Bs’,fs’;ms’)

and map-of ms’ M = Some(Ts',T',m’)
by (auto simp:MinimalMethodDefs-def MethodDefs-def)
with ez have Ts = Ts’and P+ T’ < T by auto }
ultimately have Ts = Ts’and P+ T' < T using leq’
by (auto destl:rtranclD) }
thus VTs Tm Cs Cs'. P+ Path Cto C via Cs'" AN P,C = Ds T Cs’ @, Cs A Cs
#lA
PF Chas M = (Ts, T, m) via Cs —
Ts = Ts' A P+ T' < T by blast
next

fix DC'C

93

assume DiegC"P - D =* C'and C'leqC:P - C' <! C
and Dleast:(Ds, Ts', T', m') € MinimalMethodDefs P D M
and [H:[(Ds,Ts’,T';m’) € MinimalMethodDefs P D M; wf-prog wf-md P]
= VTs Tm Cs Cs'. P+ Path D to C' via Cs' A
PDFDsC Cs'Q, Cs AN Cs#[|ANPF C' has M = (Ts, T, m) via
Cs —
Ts=Ts' NP+ T'<T
{ fix Ts Tm Cs Cs’
assume path:P = Path D to C via Cs'
and leg-path:P,D = Ds C Cs’ @, Cs
and notempty:Cs # |]
and Chas:P + C has M = (T5,T,m) via Cs
from Dleast have classD:is-class P D
by (auto intro:Subobjs-isClass simp: MinimalMethodDefs-def MethodDefs-def)
from path have Dhas:P = D has M = (Ts,T,m) via Cs'Q,Cs using Chas wf
by (fastforce intro:has-path-has)
{ assume Ds = Cs'Q,Cs
with Dleast Dhas have Ts = Ts' AN T' =T
by (auto simp:MinimalMethodDefs-def HasMethodDef-def MethodDefs-def)
hence Ts = Ts' A T' = T by auto }
moreover
{ assume (Ds,Cs'Q,Cs) € (leg-pathl P D)*
hence subcls:(last Ds,last (Cs'Q,Cs)) € (subclsl] P)* using wf
by —(rule last-leg-paths)
from Dhas obtain Bs fs ms where class P (last (Cs'@Q, Cs)) = Some(Bs,fs,ms)

and map-of ms M = Some(Ts,T,m)
by (auto simp:HasMethodDef-def MethodDefs-def)
hence ex:V Bs' fs' ms" Ts' T' m'. class P (last Ds) = Some(Bs',fs';ms’) A
map-of ms’ M = Some(Ts", T',m") —
Ts=Ts'ANPFT'<T
using subcls wf
by —(rule subclsPlus-subtype,auto)
from Dleast obtain Bs’ fs’ ms’ where class P (last Ds) = Some(Bs’,fs';ms’)

and map-of ms’ M = Some(Ts',T',m’)
by (auto simp:MinimalMethodDefs-def MethodDefs-def)
with ex have Ts = Ts’and P+ T' < T by auto }
ultimately have Ts = Ts’and P+ T’ < T using leg-path
by (auto dest!:rtranclD) }
thus VTs Tm Cs Cs'. P+ Path D to C via Cs' N P,D+ Ds T Cs' @, Cs A Cs
A
PF Chas M = (Ts, T, m) via Cs —
Ts=Ts' NP+ T'<T
by blast
qed

lemma select-least-methods-subtypes:

94

assumes select-method:P + (C,CsQ, Ds) selects M = (Ts,T,pns,body) via Cs’
and least-method:P + last Cs has least M = (Ts’,T',pns’,body’) via Ds
and path:P = Path C to (last Cs) via Cs
and wf:wf-prog wf-md P
shows Ts' = Ts NP+ T < T’
using select-method
proof —
from path have sub:P + C <* last Cs
by (fastforce intro:Subobjs-subclass simp:path-via-def)
from least-method have has:P last Cs has M = (Ts',T',pns’,body’) via Ds
by (rule has-least-method-has-method)
from select-method show ?thesis
proof cases
case dyn-unique
hence dyn:P b C has least M = (Ts,T,pns,body) via Cs’ by simp
with sub has wf show Zthesis
by —(drule leg-method-subtypes,assumption,simp,blast)+
next
case dyn-ambiguous
hence overrider:P = (C,Cs@,Ds) has overrider M = (Ts,T,pns,body) via Cs’
by simp
from least-method have notempty:Ds # |]
by (auto introl:Subobjs-nonempty simp: LeastMethodDef-def MethodDefs-def)
have last Cs = hd Ds = last (Cs Q tl Ds) = last Ds
proof(cases tl Ds = [])
case True
assume last:last Cs = hd Ds
with True notempty have Ds = [last Cs] by (fastforce dest:hd-Cons-tl)
hence last Ds = last Cs by simp
with True show ?thesis by simp
next
case Fulse
assume last:last Cs = hd Ds
from notempty False have last (tl Ds) = last Ds
by —(drule hd-Cons-tl,drule-tac x=hd Ds in last-ConsR,simp)
with Fualse show ?thesis by simp
qged
hence eq:(Cs @, Ds) Q, [last Ds] = (Cs @, Ds)
by (simp add:appendPath-def)
from least-method wf
have P + last Ds has least M = (Ts',T',pns’,body’) via [last Ds]
by (auto dest:Subobj-last-isClass intro:Subobjs-Base subobjs-rel
simp: LeastMethodDef-def MethodDefs-def)
with notempty
have P last (CsQy,Ds) has least M = (Ts',T',pns’,body’) via [last Ds]
by —(drule-tac Cs'=Cs in appendPath-last,simp)
with overrider wf eq have (Cs’,Ts, T,pns,body) € MinimalMethodDefs P C M
and P,C Cs'C Cs @, Ds
by —(auto simp:FinalOverriderMethodDef-def OverriderMethodDefs-def,

95

drule wf-sees-method-fun,auto)
with sub wf path notempty has show #thesis
by —(drule leg-methods-subtypes,simp-all,blast)+
qed
qed

lemma wf-syscls:
set SystemClasses C set P = wf-syscls P
by (simp add: image-def SystemClasses-def wf-syscls-def sys-zcpts-def
NullPointerC-def ClassCastC-def OutOfMemoryC-def,force intro:conjl)

17.9 Well formedness and widen

lemma Class-widen: [P & Class C < T; wf-prog wf-md P; is-class P C
— dD. T = Class D N P+ Path C to D unique

apply (ind-cases P+ Class C < T)
apply (auto intro:path-C-to-C-unique)
done

lemma Class-widen-Class [iff]: [wf-prog wf-md P; is-class P C] =
(Pt Class C < Class D) = (P & Path C to D unique)

apply (rule iffT)

apply (ind-cases P+ Class C < Class D)

apply (auto elim: widen-subcls intro:path-C-to-C-unique)
done

lemma widen-Class: [wf-prog wf-md P; is-class P O] =
(PF T < Class C) =
(T=NTV (3D. T = Class D N P+ Path D to C unique))

apply(induct T') apply (auto intro:widen-subcls)
apply (ind-cases P+ Class D < Class C for D) apply (auto intro:path-C-to-C-unique)
done

17.10 Well formedness and well typing

lemma assumes wf:wf-prog wf-md P
shows WT-determ: PEF e T — (AT PEF e T' = T =T
and WTs-determ: P,E + es [::] Ts = (ATs". P,EF es [:] Ts' = Ts = Ts')

proof (induct rule: WT-WTs-inducts)
case (WTDynCast E e D C)
have P,E + Cast C e :: T' by fact
thus ?case by (fastforce elim: WT.cases)

96

next
case (WTStaticCast E e D C)
have P.EF (C)e :: T' by fact
thus ?case by (fastforce elim: WT.cases)
next
case (WTBinOp E ey Ty e T2 bop T)
have bop:case bop of Eq = T1 = Te A T = Boolean
| Add = T = Integer N Ty = Integer AN T = Integer
and wt:P,E e; «bop» ez :: T' by fact+
from wt obtain T1’ T2' where
bop':case bop of BEq = T1' = T2’ A T' = Boolean
| Add = T1' = Integer N T2' = Integer A T' = Integer
by auto
from bop show ?case
proof (cases bop)
assume Fq:bop = Eq
with bop have T = Boolean by auto
with Eq bop’ show ?thesis by simp
next
assume Add:bop = Add
with bop have T = Integer
by auto
with Add bop’ show ?thesis by simp
qed
next
case (WTLAss EV T e T' T")
have P.EF Vi=e:: T"
and F V = Some T by fact+
thus ?case by auto
next
case (WTFAcc Ee CF T Cs)
have IH:AT' P.EF e:: T'= Class C = T’
and least:P = C has least F: T via Cs
and wt:P,E + e-F{Cs} :: T' by fact+
from wt obtain C’ where wte:P,E + e :: Class C’
and least”:P + C' has least F:T' via Cs by auto
from IH[OF wte’] have C = C' by simp
with least least’ show ?Zcase
by (fastforce simp:sees-field-fun)
next
case (WTFAss Eey CF T Csey T'T)
have least:P - C has least F: T via Cs
and wt:P,E & e;-F{Cs} == ey :: T"
and IH:\S. P,E}F e; :: S = Class C = S by fact+
from wt obtain C’ where wte:P,E + ey :: Class C’
and least”:P = C' has least F:T'" via Cs by auto
from IH[OF wte’] have C = C' by simp
with least least’ show ?Zcase
by (fastforce simp:sees-field-fun)

97

next
case (WTCall E e C M Ts T pns body Cs es Ts')
have IH:AT'. P.EF e T'= Class C = T’
and least:P b C has least M = (Ts, T, pns, body) via Cs
and wt:P,E F e-M(es) :: T' by fact+
from wt obtain C’/ Ts' pns’ body’ Cs’ where wte.P,E F ¢ :: Class C'
and least P & C' has least M = (Ts’,T,pns’,body") via Cs’ by auto
from IH[OF wte’] have C = C' by simp
with least least’ wf show ?case by (auto dest:wf-sees-method-fun)
next
case (WTStaticCall E e C' C M Ts T pns body Cs es Ts")
have IH:AT'. P.EF e T' = Class C' =T’
and unique:P = Path C' to C unique
and least:P &+ C has least M = (Ts, T, pns, body) via Cs
and wt:P,E F e-(C::)M(es) :: T' by fact+
from wt obtain Ts' pns’ body’ Cs’
where Pt C has least M = (Ts’,T',pns’,body’) via Cs’' by auto
with least wf show ?case by (auto dest:wf-sees-method-fun)
next
case WTBlock thus ?case by (clarsimp simp del:fun-upd-apply)
next
case (WTSeq E e; Ty ex To)
have IH:AT'. P.EF es = T' = Ty = T'
and wt:P,E - ey;; eg it T by fact+
from wt have wt:P,E + ey :: T' by auto
from IH[OF wt'] show ?case .
next
case (WTCond E e e; T e3)
have IH:A\S. P.EtF e 2 S = T =28
and wt:P,E & if (e) ey else ea :: T' by fact+
from wt have P,E F e; :: T' by auto
from IH[OF this] show ?case .
next
case (WTCons E e T es T5)
have [HeAT'. PEF e T'=— T =T’
and [Hes:\Ts'. P,E & es [::] Ts' = Ts = Ts'
and wt:P,E F e # es [::] Ts' by fact+
from wt show ?case
proof (cases Ts’)
case Nil with wt show ?thesis by simp
next
case (Cons T" Ts”)
with wt have wte"P,E - e :: T' and wtes"P,E + es [:] Ts"
by auto
from IHe|OF wte'] IHes|OF wtes’] Cons show ?Zthesis by simp
qed
qed clarsimp+

end

98

18 Weak well-formedness of CoreC++ programs

theory WWellForm imports WellForm Ezpr begin

definition wwf-mdecl :: prog = cname = mdecl = bool where

wwf-mdecl P C = XM, Ts, T,(pns,body)).

length Ts = length pns A distinct pns A this ¢ set pns A fu body C {this} U set
pns

lemma wwf-mdecl[simp]:

wwf-mdecl P C (M, Ts, T ,pns,body) =

(length Ts = length pns A distinct pns A this ¢ set pns A fv body C {this} U set
pns)
by (simp add:wwf-mdecl-def)

abbreviation
wwf-prog :: prog = bool where
wwf-prog == wf-prog wwf-mdecl

end

19 Equivalence of Big Step and Small Step Seman-
tics

theory Fquivalence imports BigStep SmallStep WWellForm begin

19.1 Some casts-lemmas

lemma assumes wf:wf-prog wf-md P
shows casts-casts:
P Tcastsvtov' = PF T casts v’ to v’

proof (induct rule:casts-to.induct)
case casts-prim thus ?case by(rule casts-to.casts-prim)
next
case (casts-null C') thus Zcase by(rule casts-to.casts-null)
next
case (casts-ref Cs C Cs' Ds a)
have path-via:P = Path last Cs to C via Cs’ and Ds:Ds = Cs Q, Cs’ by fact+
with wf have last Cs’ = C and Cs’ # [] and class: is-class P C
by (auto introl:Subobjs-nonempty Subobj-last-isClass simp:path-via-def)
with Ds have last:last Ds = C
by —(drule-tac Cs’ = Cs in appendPath-last,simp)
hence Ds""Ds = Ds @, [C] by(simp add:appendPath-def)
from last class have P+ Path last Ds to C via [C]
by (fastforce intro:Subobjs-Base simp:path-via-def)
with Ds’ show Zcase by (fastforce intro:casts-to.casts-ref)

99

qed

lemma casts-casts-eq:
[Pt T casts v to v; P F T casts v to v’; wf-prog wf-md P | = v = v’

apply —
apply (erule casts-to.cases)
apply clarsimp
apply(erule casts-to.cases)
apply simp
apply simp
apply (simp (asm-lr))
apply(erule casts-to.cases)
apply simp
apply simp
apply simp
apply simp
apply (erule casts-to.cases)
apply simp
apply simp
apply clarsimp
apply(erule appendPath-path-via)
by auto

lemma assumes wf:wf-prog wf-md P

shows None-lcl-casts-values:

P.EF (e (h0)) — (e ,(h])) =
(AV. [l V = None; EV = Some T; I’ V= Some v']
= P+ T casts v’ to v’)

and P,E (es,(h,0)) [=] (es’,(h'|l")) =
(AV. [l V = None; EV = Some T; I’ V = Some v']
= P+ T casts v’ to v’)

proof (induct rule:red-reds-inducts)

case (RedLAss EV T' ww' h1 V')

have env:E V = Some T' and env:E V' = Some T
and ;] V' = None and lupd:(I(V — w’)) V' = Some v’
and casts:P + T' casts w to w’ by fact+

show ?Zcase

proof(cases V = V)
case True
with lupd have v":v’ = w’ by simp
from True env env’ have T = T' by simp

with v’ casts wf show ?thesis by(fastforce intro:casts-casts)
next

100

case Fulse
with lupd have | V' = Some v’ by(fastforce split:if-split-asm)
with [show ?thesis by simp
qed
next
case (BlockRedNone E VT ehle' h'l' V')
have [:l V' = None
and 'upd:(I'(V :=1V)) V' = Some v’ and env:E V' = Some T
and ITH:AV'. [(I(V := None)) V' = None; (E(V — T')) V' = Some T;
1" V= Some v']
= Pt T casts v’ to v’ by fact+
show ?Zcase
proof(cases V = V)
case True
with ['upd | show ?thesis by fastforce
next
case Fulse
with | ['upd have Inew:(I(V := None)) V' = None
and 'new:l’ V' = Some v’ by (auto split:if-split-asm)
from env False have env”:.(E(V — T')) V' = Some T by fastforce
from IH[OF Inew env’ I'new] show ?thesis .
qed
next
case (BlockRedSome EV T ehle' h'l' v V')
have I:l V' = None
and 'upd:(I(V :=1V)) V' = Some v’ and env:E V' = Some T
and ITH:AV'. [(I(V := None)) V' = None; (E(V — T')) V' = Some T;
I" V= Some v']
= P+ T casts v’ to v’ by fact+
show Zcase
proof(cases V = V)
case True
with [l'upd show ?thesis by fastforce
next
case Fulse
with | 'upd have Inew:(I(V := None)) V' = None
and 'new:l’ V' = Some v’ by (auto split:if-split-asm)
from env False have env”:.(E(V +— T')) V' = Some T by fastforce
from IH[OF Inew env’ I'new| show ?thesis .
qed
next
case (InitBlockRed E VT e hlw’ e’ h' ' w" w V')
have I:l V' = None
and 'upd:(I'(V :=1V)) V' = Some v’ and env:E V' = Some T
and IH:AV'. [((V — w')) V' = None; (E(V — T')) V' = Some T;
" V= Some v']
= P+ T casts v’ to v’ by fact+
show ?case
proof(cases V = V)

101

case True
with [l'upd show ?thesis by fastforce

next
case Fulse
with | 'upd have Inew:(I(V — w’)) V' = None

and l'new:l’ V' = Some v’ by (auto split:if-split-asm)

from env False have env":.(E(V +— T')) V' = Some T by fastforce
from IH[OF Inew env’ l'new] show ?thesis .

qed

qed (auto intro:casts-casts wf)

lemma assumes wf:wf-prog wf-md P
shows Some-lcl-casts-values:
P.EF {(e(h1)) — (e ,(h])) =
(AV. [l V = Some v; EV = Some T;
P T casts v" to v; I’ V= Some v']
= PF T casts v’ to v’
and P,E | (es,(h,0)) [=] (es,(h',l")) =
(ANV. [l V = Some v; EV = Some T;
P F T casts v’ to v; I’ V = Some v]
= P T casts v’ to v')

proof (induct rule:red-reds-inducts)
case (RedNew h a h' C'E1V)
have [1:1 V = Some v and [2:] V = Some v’
and casts:P + T casts v’ to v by fact+
from [1 12 have eq:v = v’ by simp
with casts wf show ?Zcase by(fastforce intro:casts-casts)
next
case (RedLAss EV T' ww' h1 V')
have I:] V' = Some v and lupd:(I(V — w’)) V' = Some v’
and T'casts:P = T’ casts w to w’
and env:E V = Some T’ and env:E V' = Some T
and casts:P + T casts v'' to v by fact+
show ?case
proof (cases V = V')
case True
with lupd have v":v’ = w’ by simp
from True env env’ have T = T' by simp
with T’casts v/ wf show ?thesis by(fastforce intro:casts-casts)
next
case Fulse
with [lupd have v = v’ by (auto split:if-split-asm)
with casts wf show ?Zthesis by(fastforce intro:casts-casts)
qed
next

case (RedFAss ha D S Cs' FT' Csww' Ds fs E1V)

102

have [1:1 V = Some v and [2:] V = Some v’
and hp:h a = Some(D, S)
and T'casts:P = T’ casts w to w’
and casts:P + T casts v'' to v by fact+
from [1 12 have eq:v = v’ by simp
with casts wf show ?Zcase by(fastforce intro:casts-casts)
next
case (BlockRedNone E VT ehle h'l' V')
have [":l'’ V = None and l:l V' = Some v
and 'upd:(I(V :=1V)) V' = Some v’ and env:E V' = Some T
and casts:P = T casts v'' to v
and IH:AV'. [(I(V := None)) V' = Some v; (E(V +— T')) V' = Some T;
Pt Tcasts v tov; 1" V' = Some v']
= P+ T casts v’ to v’ by fact+
show ?Zcase
proof(cases V = V)
case True
with [’ ['upd have | V = Some v’ by auto
with True [have eq:v = v’ by simp
with casts wf show ?Zthesis by (fastforce intro:casts-casts)
next
case Fulse
with | ['upd have Inew:(I(V := None)) V' = Some v
and 'new:l’ V' = Some v’ by (auto split:if-split-asm)
from env False have env”:.(E(V — T')) V' = Some T by fastforce
from IH[OF Inew env’ casts I'new] show ?Zthesis .
qed
next
case (BlockRedSome E' VT ehle' h'l w V)
have "I’ V = Some w and I:] V' = Some v
and 'upd:(I(V :=1V)) V' = Some v’ and env:E V' = Some T
and casts:P = T casts v'' to v
and IH:AV'. [(I(V := None)) V' = Some v; (E(V +— T')) V' = Some T;
Pt T casts v towv; 1" V' = Some v']
= P+ T casts v’ to v’ by fact+
show ?Zcase
proof(cases V = V)
case True
with I’ l'upd have | V = Some v’ by auto
with True [have eq:v = v’ by simp
with casts wf show ?thesis by (fastforce intro:casts-casts)
next
case Fulse
with | 'upd have Inew:(I(V := None)) V' = Some v
and 'new:l’ V' = Some v’ by (auto split:if-split-asm)
from env False have env’:(E(V +— T')) V' = Some T by fastforce
from IH[OF Inew env’ casts I'new] show ?thesis .
qged
next

103

case (InitBlockRed E VT e hlw’ e’ h' ' w" w V')
have I:] V' = Some v and 1.l V = Some w"’
and ['upd:(I'(V :=1V)) V' = Some v' and env:E V' = Some T
and casts:P = T casts v'' to v
and IH:AV'. [(I(V — w’) V' = Some v; (E(V — T')) V' = Some T,
PtE Tcastsv” towv ;1" V' = Some v]
= Pt T casts v’ to v’ by fact+
show Zcase
proof(cases V = V)
case True
with I’ l'upd have | V = Some v’ by auto
with True [have eq:v = v’ by simp
with casts wf show ?Zthesis by(fastforce intro:casts-casts)
next
case False
with [['upd have Inew:(I(V — w’)) V' = Some v
and l'new:l’ V' = Some v’ by (auto split:if-split-asm)
from env False have env’:(E(V +— T')) V' = Some T by fastforce
from IH[OF Inew env’ casts I'new] show Zthesis .
qed
qed (auto intro:casts-casts wf)

19.2 Small steps simulate big step
19.3 Cast

lemma StaticCastReds:
P.EF (e,s) == (e;s) = P,EF ((C)e,s) —* ((C]e',s))

apply (erule rtrancl-induct2)
apply blast

apply(erule rtrancl-into-rtrancl)
apply (simp add:StaticCastRed)
done

lemma StaticCastRedsNull:
P.E+ (e,s) —* (null,s"y = P,EF ((C)e,s) == (null,s")

apply(rule rtrancl-into-rtrancl)
apply (erule StaticCastReds)
apply(simp add:RedStaticCastNull)
done

lemma StaticUpCastReds:
[P,EF (e,s) —x* (ref(a,Cs),s"y; Pt Path last Cs to C via Cs’; Ds = Cs@,Cs’]
= P,E+ {(C)e,s) == (ref(a,Ds),s")

apply(rule rtrancl-into-rtrancl)

104

apply(erule StaticCastReds)
apply (fastforce intro: RedStatic Up Cast)
done

lemma StaticDownCastReds:
P.E F (e,5) —x (ref(a,CsQ[C]QCs’),s")
= P,E+ ((C)e,s) —x* (ref(a,CsQ[C]),s")

apply(rule rtrancl-into-rtrancl)

apply(erule StaticCastReds)

apply simp

apply(subgoal-tac P,E + {(C)ref(a,CsQ[C)QCs’),s"y — (ref(a,CsQ[C]),s"))
apply simp

apply(rule RedStaticDownCast)

done

lemma StaticCastRedsFail:
[P,Et+ (e,s) —x (ref(a,Cs),s"); C ¢ set Cs; = P (last Cs) =* C']
= P,EF+ ((C)e,s) =+ (THROW ClassCast,s")

apply(rule rtrancl-into-rtrancl)
apply(erule StaticCastReds)

apply (fastforce intro: RedStaticCastFail)
done

lemma StaticCastRedsThrow:
[P,EF {e,s) = (Throw r,s") | = P,E + ((C)e,s) —=* (Throw r,s")

apply(rule rtrancl-into-rtrancl)
apply(erule StaticCastReds)

apply(simp add:red-reds.StaticCast Throw)
done

lemma DynCastReds:
P,Et+ (e,s) —x* (e's") = P,E F (Cast C e,s) —x (Cast C e',s")

apply(erule rtrancl-induct2)
apply blast

apply (erule rtrancl-into-rtrancl)
apply (simp add:DynCastRed)
done

lemma DynCastRedsNull:
P.E+ (e,s) —x* (null,s") = P,E F (Cast C e,s) —x (null,s")

105

apply(rule rtrancl-into-rtrancl)
apply(erule DynCastReds)
apply(simp add: RedDynCastNull)
done

lemma DynCastRedsRef:
[P,E+ (e,s) = (ref(a,Cs),s"); hp s’ a = Some (D,S); P+ Path D to C via Cs’,
P & Path D to C unique]
= P,E F (Cast C e,s) —x* (ref(a,Cs’),s")

apply(rule rtrancl-into-rtrancl)
apply(erule DynCastReds)
apply (fastforce intro: RedDynCast)
done

lemma StaticUpDynCastReds:
[P,Et+ (e,s) —x (ref(a,Cs),s”); P F Path last Cs to C unique;
P Path last Cs to C via Cs’; Ds = CsQ,,Cs’ |
= P,E + (Cast C e,s) —x* (ref(a,Ds),s")

apply(rule rtrancl-into-rtrancl)

apply (erule DynCastReds)

apply (fastforce intro: RedStatic Up DynCast)
done

lemma StaticDownDynCastReds:
P.E + (e,s) —x (ref(a,CsQ[C]QCs’),s")
= P,EF (Cast C e,s) —x (ref(a,CsQ[C]),s")

apply(rule rtrancl-into-rtrancl)

apply(erule DynCastReds)

apply simp

apply (subgoal-tac P,E + (Cast C (ref(a,CsQ[C]QCs")),s"y — (ref(a,CsQ[C]),s"))
apply simp

apply(rule RedStaticDownDynCast)

done

lemma DynCastRedsFail:
[P,EF (e,s) —x (ref(a,Cs),s"); hp s’ a = Some (D,S); = P &+ Path D to C
unique;
= P+ Path last Cs to C unique; C ¢ set Cs |
= P,EF (Cast C e,s) —x (null,s")

apply(rule rtrancl-into-rtrancl)

106

apply(erule DynCastReds)
apply (fastforce intro: RedDynCastFail)
done

lemma DynCastRedsThrow:
[P,Et* (e,s) —=* (Throw r,s"y | = P,E + (Cast C e,s) —x (Throw r,s’)

apply(rule rtrancl-into-rtrancl)
apply(erule DynCastReds)

apply(simp add:red-reds. DynCast Throw)
done

19.4 LAss

lemma LAssReds:
P.EF (es) =% (e/,s'y = P,EF (Vi=e,s) =% (Vi=e',s)

apply (erule rtrancl-induct2)
apply blast

apply(erule rtrancl-into-rtrancl)
apply(simp add:LAssRed)
done

lemma LAssRedsVal:
[P,Et+ (es) = (Val v,(h',l")); EV = Some T; Pt T casts v to v’
= P,EF (Vi=e,s) =x (Val v',(hI'(Vi=0"))

apply(rule rtrancl-into-rtrancl)
apply(erule LAssReds)
apply(simp add:RedLAss)
done

lemma LAssRedsThrow:
[P,EF {e,s) = (Throw r,s") | = P,E+ { Vi=e,s) —* (Throw r,s’)

apply(rule rtrancl-into-rtrancl)
apply(erule LAssReds)

apply(simp add:red-reds. LAssThrow)
done

19.5 BinOp

lemma BinOplReds:
P.EF (es) —x (e',s")y = P,EF (e «bop» ea, s) —x* (e’ «bop» ez, s')

apply (erule rtrancl-induct?2)
apply blast

107

apply (erule rtrancl-into-rtrancl)
apply(simp add:BinOpRed1)
done

lemma BinOp2Reds:
P.EF (e,s) —x (e;s'y = P,EF ((Val v) «bop» e, s) == ((Val v) «bop» €', s')

apply (erule rtrancl-induct2)
apply blast

apply(erule rtrancl-into-rtrancl)
apply(simp add:BinOpRed2)
done

lemma BinOpRedsVal:
[P,Et (e1,80) = (Val vi,s1); P,E & (ea,81) —* (Val va,82);
binop(bop,v1,v2) = Some v |
= P,EF (e1 «bop» ea, so) —* (Val v,s2)

apply(rule rtrancl-trans)
apply(erule BinOp1Reds)
apply(rule rtrancl-into-rtrancl)
apply(erule BinOp2Reds)
apply(simp add:RedBinOp)
done

lemma BinOpRedsThrow? :
P,Et+ (e,s) = (Throw r,s") = P,E F (e «bop» ez, s) = (Throw r, s’)

apply(rule rtrancl-into-rtrancl)
apply(erule BinOp1Reds)

apply(simp add:red-reds. BinOp Throwl)
done

lemma BinOpRedsThrow?2:
[P,Et (e1,50) = (Val vi,s1); P,E & (ea,81) —* (Throw r,s2)]
= P,EF (e1 «bop» ea, so) —* (Throw r,s2)

apply(rule rtrancl-trans)

apply(erule BinOp1Reds)

apply(rule rtrancl-into-rtrancl)
apply(erule BinOp2Reds)

apply(simp add:red-reds. BinOp Throw?2)
done

108

19.6 FAcc

lemma FAccReds:
P,Et+ (e,s) = (e's") = P,E+ (e-F{Cs}, s) =« (e-F{Cs}, s

apply (erule rtrancl-induct2)
apply blast

apply(erule rtrancl-into-rtrancl)
apply(simp add:FAccRed)
done

lemma FAccRedsVal:
[P,E E {e,s) —x (ref(a,Cs"),s"); hp s' a = Some(D,S);
Ds = Cs'@,Cs; (Ds,fs) € S; fs F = Some v |
= P,E + (e-F{Cs},s) == (Val v,s")

apply(rule rtrancl-into-rtrancl)
apply(erule FAccReds)

apply (fastforce intro: RedFAcc)
done

lemma FAccRedsNull:
P,E + (e,s) = (null,s") = P,E F (e-F{Cs},s) —* (THROW NullPointer,s’)

apply(rule rtrancl-into-rtrancl)
apply(erule FAccReds)
apply(simp add: RedFAccNull)
done

lemma FAccRedsThrow:
P.E & {(e,s) = (Throw r,s"y = P,E (e-F{Cs},s) —* (Throw r,s’)

apply(rule rtrancl-into-rtrancl)
apply(erule FAccReds)

apply(simp add:red-reds. FAcc Throw)
done

19.7 FAss

lemma FAssReds1:
P,Et+ (e,s) = (e's") = P,EF (e-F{Cs}:=e3, s) —x (e F{Cs}:=eq, s')

apply (erule rtrancl-induct2)
apply blast

apply(erule rtrancl-into-rtrancl)

apply(simp add:FAssRed1)

done

109

lemma FAssReds2:
P,EF (e,s) —x (e',s") = P,E + (Val v-F{Cs}:=e, s) —* (Val v-F{Cs}:=¢’,
s')

apply (erule rtrancl-induct2)
apply blast

apply(erule rtrancl-into-rtrancl)
apply(simp add:FAssRed?2)
done

lemma FAssRedsVal:
[P,Et (e1,80) == (ref(a,Cs’),s1); P,E b (ea,81) —* (Val v,(ha,l2));
ho a = Some(D,S); P+ (last Cs’) has least F:T via Cs; P+ T casts v to v';
Ds = Cs'@,Cs; (Ds,fs) € S| =
P.Et (e1-F{Cs}:=eq, so) —*
(Val v’,(he(a—(D,insert (Ds,fs(F—v")) (S — {(Ds.fs)}))),l2))

apply(rule rtrancl-trans)
apply(erule FAssReds1)
apply(rule rtrancl-into-rtrancl)
apply(erule FAssReds?2)
apply (fastforce intro: RedFAss)
done

lemma FAssRedsNull:
[P,Et (e1,80) = (null,s1); P,EF (e3,81) —x (Val v,89) | =
P,E + (e1-F{Cs}:=ea, s9) =+ (THROW NullPointer, s3)

apply(rule rtrancl-trans)
apply(erule FAssReds1)
apply(rule rtrancl-into-rtrancl)
apply(erule FAssReds2)
apply(simp add: RedFAssNull)
done

lemma FAssRedsThrowl:
P,E + (e,s) = (Throw r,s"y = P,E F (e-F{Cs}:=ea, s) —* (Throw r, s')

apply(rule rtrancl-into-rtrancl)
apply(erule FAssReds1)

apply(simp add:red-reds. FAssThrowl)
done

110

lemma FAssRedsThrow?2:
[P,Et (e1,80) =+ (Val v,s1); P,E F (ea,s1) =+ (Throw r,s3) |
= P,EF (e1-F{Cs}:=eq,50) —* (Throw r,s3)

apply(rule rtrancl-trans)

apply(erule FAssReds1)

apply(rule rtrancl-into-rtrancl)
apply(erule FAssReds?2)

apply(simp add:red-reds. FAss Throw2)
done

19.8 3

lemma SegReds:
P.Et+ (es) = (e's"y = P, EF (e;;ea, s) —* (e';;eq, 8')

apply (erule rtrancl-induct2)
apply blast

apply(erule rtrancl-into-rtrancl)
apply(simp add:SeqRed)

done

lemma SeqRedsThrow:
P.E + (e,s) —* (Throw r,s"y = P,E & (e;;e2, sy —* (Throw r, s')

apply(rule rtrancl-into-rtrancl)
apply(erule SeqReds)

apply(simp add:red-reds.SeqThrow)
done

lemma SeqReds2:
[P,EF (e1,50) —* (Val v1,81); P,E b (ea,81) —x (e2',82) | = P,E F (e1;;e2,
s0) —* (ea’,89)

apply(rule rtrancl-trans)

apply(erule SeqReds)

apply (rule-tac b=(ez2,s1) in converse-rtrancl-into-rtrancl)
apply(simp add:RedSeq)

apply assumption

done

199 If

lemma CondReds:
P.EF (es) —x (e'.s") = P,EF (if (e) ey else ea,8) —x (if (e') e1 else ea,s”)

apply (erule rtrancl-induct?2)
apply blast

111

apply (erule rtrancl-into-rtrancl)
apply(simp add: CondRed)
done

lemma CondRedsThrow:
P.E + (e,s) —* (Throw r,s"y = P,E & (if (e) ey else e, s) —* (Throw r,s’)

apply(rule rtrancl-into-rtrancl)
apply(erule CondReds)

apply(simp add:red-reds. Cond Throw)
done

lemma CondReds2T:
[P,E + (e,s0) —x (true,s1); P,E F (e1, s1) —x* (e',s2) | = P,E F (if (e) e1
else eq, sy —x (€,89)

apply(rule rtrancl-trans)

apply (erule CondReds)

apply (rule-tac b=(ey, s1) in converse-rtrancl-into-rtrancl)
apply(simp add:RedCondT)

apply assumption

done

lemma CondReds2F'
[P,E & (e,s0) —= (false,s1); P,E & (ea, s1) —x (e/;s2) | = P,E F (if (€) €1
else e, so) —* (e’ s9)

apply(rule rtrancl-trans)

apply(erule CondReds)

apply(rule-tac b=(ez, s1) in converse-rtrancl-into-rtrancl)
apply(simp add:RedCondF)

apply assumption

done

19.10 While

lemma WhileFReds:
P.E F (b,s) —x* (false,s"y = P,E \ (while (b) ¢,s) —= (unit,s’)

apply (rule-tac b=(if (b) (c;;while(b) c¢) else unit, s) in converse-rtrancl-into-rtrancl)
apply(simp add: RedWhile)

apply(rule rtrancl-into-rtrancl)

apply(erule CondReds)

apply(simp add:RedCondF)

done

112

lemma WhileRedsThrow:
P.E + (b,s) =% (Throw r,s"y = P,E (while (b) ¢,s) —* (Throw r,s’)

apply (rule-tac b=(if (b) (c;;while(b) c) else unit, s) in converse-rtrancl-into-rtrancl)
apply(simp add:Red While)

apply(rule rtrancl-into-rtrancl)

apply(erule CondReds)

apply(simp add:red-reds. Cond Throw)

done

lemma WhileTReds:

[P,E (bso) = (true,s1); P,E F (¢,81) =% (Val v1,82); P,E - (while (b) ¢,s2)
—x (e,83)]

= P,E F (while (b) ¢,50) —* (e,s3)

apply (rule-tac b=(if (b) (c;;while(d) c) else unit, sg) in converse-rtrancl-into-rtrancl)
apply(simp add: Red While)

apply (rule rtrancl-trans)

apply(erule CondReds)

apply (rule-tac b=(c;;while(b) c¢,s1) in converse-rtrancl-into-rtrancl)
apply(simp add:RedCondT)

apply(rule rtrancl-trans)

apply (erule SeqReds)

apply (rule-tac b=(while(b) c,s2) in converse-rtrancl-into-rtrancl)
apply(simp add:RedSeq)

apply assumption

done

lemma WhileTRedsThrow:
[P,Et (b,so) —* (true,s1); P,E - {c,s1) =% (Throw r,s3) |
= P,E F (while (b) ¢,50) —* (Throw r,s2)

apply (rule-tac b=(if (b) (c;;while(b) c) else unit, so) in converse-rtrancl-into-rtrancl)
apply(simp add: RedWhile)

apply(rule rtrancl-trans)

apply(erule CondReds)

apply (rule-tac b=(c;;while(b) c,s1) in converse-rtrancl-into-rtrancl)
apply(simp add:RedCondT)

apply(rule rtrancl-trans)

apply(erule SeqReds)

apply(rule-tac b=(Throw r,s2) in converse-rtrancl-into-rtrancl)
apply(simp add:red-reds.SeqThrow)

apply simp

done

113

19.11 Throw

lemma ThrowReds:
P,E+ (e,s) = (e's") = P,E + (throw e,s) —* (throw e’,s’)

apply (erule rtrancl-induct2)
apply blast

apply(erule rtrancl-into-rtrancl)

apply(simp add: ThrowRed)

done

lemma ThrowRedsNull:
P.,E F (e,s) —x (null,s"y = P,E F (throw e,s) —x (THROW NullPointer,s’)

apply(rule rtrancl-into-rtrancl)
apply(erule ThrowReds)
apply(simp add: Red ThrowNull)
done

lemma ThrowRedsThrow:
P.E + (e,s) —* (Throw r,s"y = P,E F (throw e,s) —* (Throw r,s’)

apply(rule rtrancl-into-rtrancl)
apply(erule ThrowReds)

apply(simp add:red-reds. ThrowThrow)
done

19.12 InitBlock

lemma assumes wf:wf-prog wf-md P
shows InitBlockReds-aux:
PE(V = T)F (es) —x (e/s) =
VhIbh U v s = (hi(V—v)) —
PF T casts vtov — s' = (h'l')) —
(Fv" w. P,EF ({V:T := Val v; e},(h,l)) —=
{V:T = Valv"; '}, (WU(V:=(1 V)))) A
Pt T casts v"" to w)
proof (erule converse-rtrancl-induct2)
{fixhlIh l'vv'
assume s’ = (h, [(V — v')) and s’ = (h', I')
hence h:h = h' and "]’ = I(V — v') by simp-all
hence P,E + ({V:T; V:=Val v;; e'},(h, 1)) —x
{V:.T; Vi=Val v;; e'},(B', '(V :=1V)))
by (fastforce simp: fun-upd-same simp del:fun-upd-apply) }
hence VA I h'l' v v’
s"=(h, (V = v)) —
PF T casts v to v/ —
s'=ML1) —

114

PEF ({V:T; Vi=Val v;; e'},(h, 1)) —x
{V:T; Vi=Val v;; e'},(B, (V=1 V))) A
PE T casts v to v’
by auto
thus VA I h'l' v v’
=(h, (V=) —
P+ T castsvtov —>
s'=(h, 1) —
(Fv” w. P,EF {V:T; V:=Val v;; e'},(h, 1))
{Vv.T; V:=Val v's; e}, (0, (V-
P+ T casts v to w)

Ly
=1V A

by auto
next
fixese’s
assume Red:((e,s),e”,s"") € Red P (E(V — T))
and reds:P,E(V T) E (e”s") —x (e,s)
and IHVh IRl v o'
"= (h, [V = v)) —
PE T casts v to v/ —
s'=(h, 1) —
(Fv" w. P.EF {V:T; V:=Val v;; e''},(h, 1)) —x
{V:T; V:i=Val v"; e’},(B, (V=1 V) A
P+ T casts v to w)

11

{fixhiIh'I'vv
assume s:s = (h, I(V — v')) and ss' = (n', l")
and casts:P = T casts v to v’
obtain A’ I” where s":s” = (h"|l") by (cases s'’) auto
with Red s have V € dom "' by (fastforce dest:red-lcl-incr)
then obtain v"’ where [':1"” V = Some v"’ by auto
with Red s s casts
have step:P,E & ({V:T := Val v; e},(h, 1)) —
(VT = Val v "}, (R"JI(V :=1V)))
by (fastforce intro:[nitBlockRed)
from Red s s"' 1" casts wf
have casts"P b T casts v'’ to v’ by(fastforce intro:Some-Icl-casts-values)
with IH s’ s’ I"” obtain v w
where P.E - ({V:T := Valv"; '}, (W I"(V :=1V))) =
{V:T := Val v'"" e’} (R, (V=1 V))) A
P+ T casts v"" to w
apply simp
apply (erule-tac z = 1"(V := 1 V) in allE)
apply (erule-tac z = v in allE)
apply (erule-tac x = v'' in allE)
by (auto intro:ext)
with step have 3v” w. P.E - ({V:T; V:=Val v;; e},(h, 1)) —x
{V:.T; Vi=Val v"; e}, (B, (V=1 V) A
PF T casts v"” to w
apply(rule-tac z=v"" in exl)
apply auto

115

apply (rule converse-rtrancl-into-rtrancl)
by simp-all }
thus VAL A" 1" v o'
s=(h, (V = v)) —
PF T casts vtov —
s'= (1) —
(Fv"” w. P,EF {V:T; V:=Val v;; e},(h, 1)) —x
{V:.T; Vi=Val v"; e}, (B, (V=1 V) A
P F T casts v to w)
by auto
qged

lemma InitBlockReds:
[P.E(V — T)F (e, (hI(Vi=v")) —x (e, (hI"));
P & T casts v to v’; wf-prog wf-md P | =
v w. PEF ({V:T := Val v e}, (h,0)) ==
(VT = Val v e}, (BU(V:=(V) A
PF T casts v to w
by (blast dest:InitBlockReds-aur)

lemma InitBlockRedsFinal:
assumes reds:P. E(V +— T) F (e,(h,I(Vi=v))) —x (e/,(h1))
and final:final e’ and casts:P = T casts v to v’
and wf:wf-prog wf-md P
shows P.E = ({V:T := Val v; e}, (b)) == (e/,(h, I'(V :=1V)))
proof —
from reds casts wf obtain v/ and w
where steps:P,E = ({V:T := Val v; e},(h,0)) —x
{V:T := Val v e}, (BI(V:=(1 V))))
and casts”"P F T casts v’ to w
by (auto dest:InitBlockReds)
from final casts casts’
have step:P,E = ({V:T := Val v'; e'}, (B U(V:=(1V)))) —
(e! (R == 1 V)))
by (auto elim!:finalE intro: RedInitBlock InitBlockThrow)
from step steps show ?thesis
by (fastforce intro:rtrancl-into-rtrancl)
qed

19.13 Block

lemma BlockRedsFinal:
assumes reds: P, E(V — T) F (ep,s0) —* (ea,(ha,l2)) and fin: final ey
and wf:wf-prog wf-md P
shows /\ho lo. S0 = (ho,lo(VZ:NOTLE)) - P,E F <{ VT, 60},(h0,lo)> —>% <62,(h27l2(VZ:lo
V)

116

using reds
proof (induct rule:converse-rtrancl-induct2)
case refl thus ?case
by (fastforce intro:finalE[OF fin] RedBlock Block Throw
simp del: fun-upd-apply)
next
case (step ey Sp €1 1)
have Red: ((eg,50),€1,51) € Red P (E(V — T))
and reds: P, E(V — T) F (e1,s1) =% (ea,(ha,l2))
and TH: Ahl. s1 = (hI(V := None))
= P,EF {V:T; e1},(h,1)) —x* (ea,(ha, lo(V :=1V)))
and so: so = (ho, lo(V := None)) by fact+
obtain h; l; where s1: s1 = (h1,l1) by fastforce
show ?Zcase
proof cases
assume assigned V eg
then obtain v e where ey: e¢g = V:= Val v;; e
by (unfold assigned-def)blast
from Red ey sy obtain v’ where e1: e; = Val v';e
and s1: 81 = (hg, lo(V — 0')) and casts:P & T casts v to v’
by auto
from e; fin have e; # ey by (auto simp:final-def)
then obtain e’ s’ where redl: P E(V — T) F (e1,s1) — (e’,s")
and reds” P,E(V — T)F (e/;s") —x (ea,(ha,l2))
using converse-rtranclE2[OF reds] by simp blast
from redl e; have es” ¢/ = e s’ = 51 by auto
show ?thesis using ey s1 es’ reds’
by (fastforce intro!: InitBlockRedsFinal[OF - fin casts wf]
stmp del: fun-upd-apply)
next
assume unass: — assigned V eg
show ?thesis
proof (casesly V)
assume None: [V = None
hence .P7E = <{ VZT; 6(]}7(h(),lo)> — <{ VZT; 61}7(h1, 11(V = l() V))>
using sg s1 Red by(simp add: BlockRedNone|OF - - unass])
moreover
have P,E = <{ V:T; 81},(]11, ll(V = l() V))> —k <62,(h2, ZQ(V = lo V))>
using IH[of - I1(V = ly V)] s1 None by(simp add:fun-upd-idem)
ultimately show Zcase
by (rule-tac b=({ V:T; e1 },(h1, i (V :=ly V))) in converse-rtrancl-into-rtrancl,simp)
next
fix v assume Some: I; V = Some v
with Red Some sy s1 wf
have casts:P = T casts v to v
by (fastforce intro: None-lcl-casts-values)
from Some
have P E + ({V:T;eo},(ho,lo)) = {V:T = Val v; e1},(h1,i(V := 1y V)))
using so s1 Red by(simp add: BlockRedSome[OF - - unass))

117

moreover
have P.E+ ({V:T := Val v; e1},(h1,li(Vi= 1o V))) —=
<€2,(h2712(VZ:l() V))>
using InitBlockRedsFinal[OF - fin casts wf,of - - 1(V:=ly V) V]
Some reds s1
by (simp add:fun-upd-idem,)
ultimately show Zcase
by (rule-tac b=({ V:T; V:=Val v;; e1 },(h1, l1(V :=ly V))) in converse-rtrancl-into-rtrancl,simp)
qed
qged
qged

19.14 List

lemma ListReds1:
P.EF (es) —x (e,s") = P,Et (eftes,s) [=]x (¢/ # es,s)

apply (erule rtrancl-induct2)
apply blast

apply(erule rtrancl-into-rtrancl)

apply(simp add:ListRed1)

done

lemma ListReds?:
P.E - (es,s) [=]* (es’,s") = P,EF (Val v # es,s) [=]x (Val v # es',s’)

apply(erule rtrancl-induct?2)
apply blast

apply (erule rtrancl-into-rtrancl)
apply(simp add:ListRed2)
done

lemma ListRedsVal:
[[P7E + <6750> do <Va’l ’U7$1>; PaE - <6’5751> [_)]* <€S/,S2>]]
= P,EF (e#es,s0) [=]x (Val v # es’,sq)

apply(rule rtrancl-trans)
apply(erule ListReds1)
apply(erule ListReds2)
done

19.15 Call

First a few lemmas on what happens to free variables during redction.

lemma assumes wf: wwf-prog P
shows Red-fv: P,E = (e,(h,l)) — (e/,(B"l")) = foe' C fve
and P,EF (es,(h,l)) [=] (es’,(h"l")) = fus es’ C fus es

118

proof (induct rule:red-reds-inducts)
case (RedCall hla C S Cs M Ts'" T’ pns’ body’ Ds Ts T pns body Cs’ vs bs
new-body E)
hence fv body C {this} U set pns
using assms by(fastforce dest!:select-method-wf-mdecl simp:wf-mdecl-def)
with RedCall.hyps show ?case
by(cases T') auto
next
case (RedStaticCall Cs C Cs” M Ts T pns body Cs' Ds vs E a a’ b)
hence fv body C {this} U set pns
using assms by (fastforce dest!:has-least-wf-mdecl simp:wf-mdecl-def)
with RedStaticCall.hyps show ?case
by auto
qed auto

lemma Red-dom-Icl:
PEF (e,(h0)) — (e ,(h'l")) = dom I’ C dom I U fv e and
P,E + (es,(h,)) [=] (es’,(h',l")) = dom I’ C dom I U fvs es

proof (induct rule:red-reds-inducts)

case RedLAss thus ?case by(force split:if-splits)
next

case CallParams thus ?case by(force split:if-splits)
next

case BlockRedNone thus ?case by clarsimp (fastforce split:if-splits)
next

case BlockRedSome thus ?case by clarsimp (fastforce split:if-splits)
next

case InitBlockRed thus ?case by clarsimp (fastforce split:if-splits)
qed auto

lemma Reds-dom-Icl:
[wwf-prog P; P,E + {e,(h,l)) —* (e/,(R,1"))] = dom I’ C dom l U fve

apply(erule converse-rtrancl-induct-red)
apply blast

apply(blast dest: Red-fv Red-dom-lcl)
done

Now a few lemmas on the behaviour of blocks during reduction.

lemma override-on-upd-lemma:
(override-on f (g(a—b)) A)(a := g a) = override-on f g (insert a A)

apply/(rule ext)
apply(simp add:override-on-def)

119

done

declare fun-upd-apply[simp del] map-upds-twist[simp del]

lemma assumes wf:wf-prog wf-md P

shows blocksReds:

Nlo E vs'. [length Vs = length Ts; length vs = length Ts;
distinct Vs; a0 15 i/ B/W; P & Ts Casts vs to vs';
P,E(Vs [—] Ts) F (e, (ho,lo(Vs [—] vs’)) —x* (e’, (h1,l1))]

= Fus”. P,E b (blocks(Vs, Ts,vs,e), (ho,lp)) —*

(blocks(Vs, Ts,vs",e"), (h1,override-on Iy ly (set Vs))) A
(Jws. P+ Ts Casts vs" to ws) N\ length vs = length vs’’

proof (induct Vs Ts vs e rule:blocks-old-induct)
case (5 V Vs T Ts v s e)
have lengthl:length (V#Vs) = length (T#T5)
and length2:length (v#wvs) = length (T#T5s)
and dist:distinct (V#Vs)
and casts:P - (T#7Ts) Casts (v#vs) to vs’
and reds:P,E(V# Vs [—] T#Ts) F (e,(ho,lo(V# Vs [—=] vs’)) —x* (e’,(h1,l1))
and [H:\ly E vs”. [length Vs = length Ts; length vs = length Ts;
distinct Vs; P = Ts Casts vs to vs'’;
P.E(Vs [=] Ts) F {e,(ho,lo(Vs [—] vs”))) —x* (e',(h1,01))]
= Fws”. P,E (blocks (Vs,Ts,vs,e),(ho,lp)) —*
(blocks (Vs,Ts,vs"e’),(hy1, override-on Iy ly (set Vs))) A
(Jws. P+ Ts Casts vs" to ws) N\ length vs = length vs'' by fact+
from lengthl have lengthl’:length Vs = length Ts by simp
from length2 have length2':length vs = length Ts by simp
from dist have dist’:distinct Vs by simp
from casts obtain z zs where vs":vs’ = z#xs
by (cases vs’,auto dest:length-Casts-vs’)
with reds
have reds " P,E(V — T, Vs [=] Ts) F (e,(ho,lo(V +— z, Vs [=] x3)))
—>%k <€/,(h1,l1)>
by simp
from casts vs’ have casts”:P F Ts Casts vs to s
and cast:P + T casts v to x
by (auto elim:Casts-to.cases)
from [H[OF lengthl’ length2’ dist’ casts’ reds’)
obtain vs"" ws
where blocks:P,E(V — T) & (blocks (Vs, Ts, vs, €),(ho, lo(V +— z))) —x
(blocks (Vs, Ts, vs", €'),(h1, override-on i1 (lo(V +— x)) (set Vs)))
and castsws:P = Ts Casts vs'' to ws
and lengthvs'":length vs = length vs"’ by auto
from InitBlockReds|OF blocks cast’ wf] obtain v"’ w where
blocks"P,E v ({V:T; V:=Val v;; blocks (Vs, Ts, vs, €)},(ho, lg)) —*

120

{V:T; V:=Val v"; blocks (Vs, Ts, vs", e')},
(h1, (override-on Iy (lo(V — x)) (set Vs))(V =1y V)))
and P+ T casts v’ to w by auto
with castsws have P = T#Ts Casts v''#vs’ to w#ws
by —(rule Casts-Cons)
with blocks’ lengthuvs’ show Zcase
by (rule-tac z=v"#vs" in exl,auto simp:override-on-upd-lemma)
next
case (6 e)
have casts:P + [| Casts || to vs’
and step:P,E([] [=] []) F (e,(ho, lo([] [=] vs")) —x* (e',(h1, l1)) by fact+
from casts have vs’ = [| by(fastforce dest:length-Casts-vs’)
with step have P,E = (e (hg, lp)) —* (€’,(h1, l1)) by simp
with casts show ?case by auto
qed simp-all

lemma assumes wf:wf-prog wf-md P
shows blocksFinal:
NE Lvs'. [length Vs = length Ts; length vs = length Ts;

WG T6 155/ B/l final e; P & Ts Casts vs to vs' | =
P.E + (blocks(Vs, Ts,vs,e), (h,l)) == (e, (h,0))

proof (induct Vs Ts vs e rule:blocks-old-induct)
case (5 V Vs T Ts v s e)
have lengthl:length (V # Vs) = length (T # T5)
and length2:length (v # vs) = length (T # Ts)
and final:final e and casts:P &= T # Ts Casts v # vs to vs’
and TH:A\E | vs'. [length Vs = length Ts; length vs = length Ts; final e;
P F Ts Casts vs to vs']
= P,E F (blocks (Vs, Ts, vs, €),(h, 1)) —x (e,(h, 1)) by fact+
from lengthl length?2
have lengthl’:length Vs = length Ts and length2’:length vs = length Ts
by simp-all
from casts obtain z zs where vs":.vs’ = z#xs
by (cases vs’,auto dest:length-Casts-vs’)
with casts have casts”:P - Ts Casts vs to s
and cast”:P - T casts v to
by (auto elim: Casts-to.cases)
from InitBlockReds|OF IH[OF lengthl’ length2’ final casts’] cast’ wf, of V']
obtain v’ w
where blocks:P,E = ({V:T; V:=Val v;; blocks (Vs, Ts, vs, €)},(h, 1)) —x
{V:.T; V:=Val v';; e},(h,0))
and P+ T casts v'’ to w by auto blast
with final have P,E F ({V:T; V:=Val v';; e},(h,1)) — (e,(h,l))
by (auto elim!:finalE intro: RedInitBlock InitBlockThrow)
with blocks show Zcase

by —(rule-tac b=({V:T; V:=Valv"; e},(h, 1)) in rtrancl-into-rtrancl,simp-all)

121

qed auto

lemma assumes wfmd:wf-prog wf-md P
and wf: length Vs = length Ts length vs = length Ts distinct Vs
and casts:P = Ts Casts vs to vs’
and reds: P,E(Vs [—] Ts) F (e, (ho, lo(Vs [—] vs”)) —x (e/, (h1, 1))
and fin: final e’ and 12: Iy = override-on 1y ly (set Vs)
shows blocksRedsFinal: P,E + (blocks(Vs, Ts,vs,e), (ho, lo)) —x* (€', (h1,l2))

proof —
obtain vs’’ ws where blocks:P,E = (blocks(Vs, Ts,vs,e), (ho, lp)) —*
(blocks(Vs, Ts,vs",e"), (h1,l2))
and length:length vs = length vs'
and casts”:P + Ts Casts vs"' to ws
using (2 blocksReds|OF wfmd wf casts reds]
by auto
have P.E b (blocks(Vs, Ts,vs",e), (h1,l2)) —= (€', (h1,l2))
using blocksFinal|OF wfmd - - fin casts’] wf length by simp
with blocks show ?thesis by simp
qged

An now the actual method call reduction lemmas.

lemma CallRedsObj:
P.EF (e5s) —x (e/,s)) =
P,E + (Call e Copt M es,s) —x (Call e’ Copt M es,s")

apply (erule rtrancl-induct2)
apply blast

apply (erule rtrancl-into-rtrancl)

apply(simp add: CallObj)

done

lemma CallRedsParams:
P.E I (es,s) [—=]* (es’,s) =
P,E+ (Call (Val v) Copt M es,s) —x (Call (Val v) Copt M es’,s’)

apply (erule rtrancl-induct2)
apply blast

apply (erule rtrancl-into-rtrancl)
apply(simp add: CallParams)
done

lemma cast-lcl:

122

P.EF ((C)(Val v),(h,1)) = (Val v',(h])) =
P.EF {((C)(Val v),(h,1")) — (Val v',(h,1’)

apply (erule red.cases)

apply(auto intro:red-reds.intros)

apply(subgoal-tac P,E+ {(|C|)ref (a,CsQ[C|QCSs"),(h,1")) — (ref (a,CsQ[C]),(h,1"))
apply simp

apply(rule RedStaticDownCast)

done

lemma cast-env:
P.EF {((C)(Val v),(h,1)) = (Val v',(h])) =
P.E"F {((C)(Val v),(h,1)) = (Val v’,(h,]))

apply(erule red.cases)

apply(auto intro:red-reds.intros)

apply (subgoal-tac P,E'+ ((C)ref (a,CsQ[C|QCs"),(h,1)) — (ref (a,CsQ[C]),(h,1)))
apply simp

apply(rule RedStaticDownCast)

done

lemma Cast-step-Cast-or-fin:
P.EF ((C)e,s) —x* (e',s"y = final e’ vV (Fe”. ¢/’ = (C)e")
by (induct rule:rtrancl-induct2,auto elim:red.cases simp:final-def)

lemma Cast-red:P,E + (e,s) —* (e',;s") =
(Ae1. [e = (C)eo; e’ = (C)er] = P,E + (eq,s) —x (e1,5"))

proof (induct rule:rtrancl-induct2)
case refl thus ?case by simp
next
case (step €'’ 5" e’ s')
have step: P,E F (e,s) —x (e”,s")
and Red:((e"’, s"), e/, s') € Red P E
and cast:e = (C)eg and cast”.e’ = (C) ey
and IH:\ey. [e = (C)eo; ' = (C)er] = P,E + (eg,s) == (e1,s") by fact+
from Red have red:P.E = (e''s") — (e',s") by simp
from step cast have final e”’ vV (ex. ¢/’ = (C)ex)
by simp(rule Cast-step-Cast-or-fin)
thus Zcase
proof(rule disjF)
assume final e’
with red show ?thesis by(auto simp:final-def)
next
assume Jez. e’ = (C)ex
then obtain ex where e’:e’ = (C) ez by blast
with cast’ red have P,E F (ex,s") — (e1,s)

123

by (auto elim:red.cases)
with [H[OF cast e'] show ?Zthesis
by (rule-tac b=(ex,s’") in rtrancl-into-rtrancl,simp-all)
qed
qed

lemma Cast-final:[P,E + {(C)e,s) == (e’,s); final ¢]] =
Je' s”. P,EF (e,s) =« (e”;s"y N P,EF ((C)e”,s"y = (e',s") A final e”’

proof (induct rule:rtrancl-induct2)
case refl thus ?case by (simp add:final-def)
next
case (step €'’ 5" e’ s')
have stepPE F (GCDe s) —x (e')s")
and Red:((e", s”), €/,)eRedPE
and ﬁnal:ﬁnal e’
and IH:final ¢!’ =
Jdex sz. P,E F (e,s) —* (ex,szy N P,E F ((C)ex,sz) — (e",s") A final ex by
fact+
from Red have red:P,E (e's") — (e',s") by simp
from step have final e” V (Fex. e = (C)ex) by(rule Cast-step-Cast-or-fin)
thus Zcase
proof(rule disjE)
assume final e'’
with red show ?thesis by(auto simp:final-def)
next
assume Jez. e’ = (C)ex
then obtain ex where e':e’’ = (C|) ez by blast
with red final have final':final ex
by (auto elim:red.cases simp:final-def)
from step e’ have P,E I {(e,s) —x* (ex,s")
by (fastforce intro: Cast-red)
with e’ red final’ show ?thesis by blast
qed
qed

lemma Cast-final-eq:
assumes red:P,E F ((C)e,(h,1)) — (e',(h,]))
and final:final e and final’:final e’
shows P,E’'+ {((C)e,(h,l")) — (e’ ,(h,]")

proof —
from red final show ?thesis
proof(auto simp:final-def)
fix v assume P.E ((|C|)(Val v), ()) = (e/,(h,0))
with final’ show P,E'+ ((|C)(Val v),(h,1") — (e',(h,0l"))
proof (auto simp:final-def)

124

fix v’ assume P.E ((C|))(Val v),(h,0)) — (Val v',(h,1))
thus P, E'+ ((C)(Val v),(h,0l")) — (Val v',(h,0))
by (auto intro:cast-lcl cast-env)
next
fix a Cs assume P,E + ((C)(Val v),(h,1)) — (Throw (a,Cs),(h,l))
thus P.E'+ ((C)(Val v),(h,l")) = (Throw (a,Cs),(h,l"))
by (auto elim:red.cases intro: RedStatic CastFail)
qed
next
fix a Cs assume P,E + ((|C)(Throw (a,Cs)),(h,0)) — (e’,(h,]))
with final’ show P.E'+ ((C)(Throw (a,Cs)),(h,1")) — {(e’,(h,l"))
proof (auto simp:final-def)
fix v assume P,E + ((C)(Throw (a,Cs)),(h,l)) — (Val v,(h,1))
thus P, E'+ ((C)(Throw (a,Cs)),(h,l")) — (Val v,(h,l’))
by (auto elim:red.cases)
next
fix o’ Cs’
assume P E F ((C)(Throw (a,Cs)),(h,1)) — (Throw (a’,Cs’),(h,l))
thus P,E'+ ((C)(Throw (a,Cs)),(h,l")) = (Throw (a’,Cs’),(h,1"))
by (auto elim:red.cases intro:red-reds.Static Cast Throw)
qed
qed
qed

lemma CallRedsFinal:
assumes wwf: wwf-prog P
and P.E F (e,s0) —x (ref(a,Cs),s1)
P.E & {es,s1) [—=]x {(map Val vs,(ha,l2))
and hp: hy a = Some(C,S)
and method: P+ last Cs has least M = (Ts',T',pns’,body’) via Ds
and select: P F (C,Cs@,Ds) selects M = (Ts,T,pns,body) via Cs’
and size: size vs = size pns
and casts: P + Ts Casts vs to vs’
and ly" Iy = [this — Ref(a,Cs’), pns[—]vs’]
and body-case:new-body = (case T' of Class D = (D)body | - = body)
and body: P,E(this — Class (last Cs’), pns [—=] Ts) b (new-body,(ha,l2’)) —
<€f,(h3,lg)>
and final:final ef
shows P.E + (e-M(es), so) —* (ef,(hs,l2))
proof —
have wf: size Ts = size pns A distinct pns A\ this & set pns
and wt: fv body C {this} U set pns
using assms by (fastforce dest!:select-method-wf-mdecl simp:wf-mdecl-def)+
have dom I3 C {this} U set pns
using Reds-dom-Icl[OF wwf body| wt Iy’ set-take-subset body-case
by (cases T') force+
hence eqly: override-on (la++I13) la ({this} U set pns) = Io

125

by (fastforce simp add:map-add-def override-on-def fun-eg-iff)
from wuwyf select have is-class P (last Cs’)
by (auto elim!:SelectMethodDef.cases intro:Subobj-last-isClass
simp: LeastMethodDef-def FinalOverriderMethodDef-def
OverriderMethodDefs-def MinimalMethodDefs-def MethodDefs-def)
hence Pt Class (last Cs’) casts Ref(a,Cs’) to Ref(a,Cs")
by (auto introl: casts-ref Subobjs-Base simp:path-via-def appendPath-def)
with casts
have casts”:P & Class (last Cs')#Ts Casts Ref(a,Cs’)#vs to Ref(a,Cs")#vs’
by —(rule Casts-Cons)
have 1:P,E + (e-M(es),s0) —* ((ref(a,Cs))-M(es),s1) by (rule CallRedsObj)(rule
assms(2))
have 2:P,FE F ((ref(a,Cs))-M(es),s1) —*
((ref(a,Cs))-M(map Val vs),(ha,l2))
by (rule CallRedsParams)(rule assms(3))
from body| THEN Red-lcl-add, of l5]
have body": P,E(this — Class (last Cs'), pns [—] T5) F
(new-body,(hz,la(this— Ref(a,Cs"), pns[—]vs’))) == (ef,(hs,la++I13))
by (simp add:ls")
show ?thesis
proof(cases ¥V C. T'# Class C)
case True
hence P.E \- ((ref(a,Cs))-M(map Val vs), (ha,l2)) —
(blocks(this#pns,Class(last Cs")# Ts,Ref (a,Cs’)#vs,body), (ha,l2))
using hp method select size wf
by —(rule RedCall,auto,cases T auto)
hence 3:P,F + {(ref(a,Cs))-M(map Val vs), (ha,lz)) —*
(blocks(this#tpns, Class(last Cs’)# Ts,Ref (a,Cs’)#tvs,body), (ha,ls))
by (simp add:r-into-rtrancl)
have P .E b (blocks(this#pns,Class(last Cs’)# Ts,Ref(a,Cs’)#vs,body),(ha,l2))
—x
(ef ,(hs,override-on (lo++I13) lo ({this} U set pns)))
using True wf body’ wwf size final casts’ body-case
by —(rule-tac vs'=Ref(a,Cs")#vs" in blocksRedsFinal,simp-all,cases T’ auto)
with 1 2 3 show ?thesis using eqls
by simp
next
case Fulse
then obtain D where T": T’ = Class D by auto
with final body’ body-case obtain s’ ¢’ where
body'":P,E(this — Class (last Cs’),pns [—] Ts) F
(body,(ha,la(this— Ref(a,Cs’), pns[—]vs’))) —x* (e',s”)
and final’:final e’
and cast:P,E(this — Class (last Cs’), pns [—=] Ts) F {((D)e’,s") —
<6f7(h3,12—|—+13)>
by (cases T')(auto dest: Cast-final)
from T’ have P,E + ((ref(a,Cs))-M(map Val vs), (ha,l2)) —
(| D) blocks(this#pns,Class(last Cs")# Ts,Ref (a,Cs")#wvs,body), (ha,l2))
using hp method select size wf

126

by —(rule RedCall,auto)
hence 3:P,E - ((ref(a,Cs))-M(map Val vs), (ha,l2)) —x
((D) blocks(this#pns,Class(last Cs")# Ts,Ref (a,Cs")#vs,body),(hz,l2))
by (simp add:r-into-rtrancl)
from cast final have eq:s’ = (h3,la++13)
by (auto elim:red.cases simp:final-def)
hence P,E b (blocks(this#pns, Class (last Cs")#Ts, Ref(a,Cs’)#vs,body),
(h2,l2))
—x (e',(hs,override-on (la++13) la ({this} U set pns)))
using wf body’’ wwf size final’ casts’
by —(rule-tac vs'=Ref(a,Cs")#wvs’ in blocksRedsFinal,simp-all)
hence P,E \- ((D)) (blocks(this#pns, Class(last Cs"\# Ts,Ref (a,Cs’)#vs,body)),(ha,l2))
—x ((D)e’,(hs,override-on (la++1s) la ({this} U set pns)))
by (rule StaticCastReds)
moreover
have P,E + ((D)e’,(hs,override-on (la++13) la ({this} U set pns))) —
(ef ,(hs,override-on (la++13) la ({this} U set pns)))
using eq cast final final’
by (fastforce intro: Cast-final-eq)
ultimately
have P,E + ((D)(blocks(this#pns, Class (last Cs"\# Ts, Ref(a,Cs")#vs,body)),

(ha,l2)) —= (ef,(hs,override-on (lo++l13) lo ({this} U set pns)))
by (rule-tac b=((D)e’,(hs,override-on (lo++13) la ({this} U set pns)))
in rtrancl-into-rtrancl,simp-all)
with 1 2 3 show ?thesis using eqls
by simp
qed
qed

lemma StaticCallRedsFinal:
assumes wwf: wwf-prog P
and P.E + (e,s0) —x (ref(a,Cs),s1)

P.E + (es,s1) [—]* (map Val vs,(ha,l2))
and path-unique: P & Path (last Cs) to C unique
and path-via: P - Path (last Cs) to C via Cs”’
and Ds: Ds = (Cs@,Cs"")@,Cs’
and least: P+ C has least M = (Ts,T,pns,body) via Cs’
and size: size vs = size pns
and casts: P + Ts Casts vs to vs’
and ly" Iy = [this — Ref(a,Ds), pns[—]vs/]
and body: P,E(this— Class(last Ds), pns[—|Ts) F (body,(ha,l2")) —* (ef,(hs,l3))
and final:final ef
shows P.E t- (e:(C::)M(es), so) —=* (ef,(hs,l2))
proof —

have wf: size Ts = size pns A distinct pns A\ this ¢ set pns A
(V Teset Ts. is-type P T)
and wt: fv body C {this} U set pns

127

using assms by (fastforce dest!:has-least-wf-mdecl simp:wf-mdecl-def)+
have dom I3 C {this} U set pns
using Reds-dom-lcl[OF wuwf body] wt Iy’ set-take-subset
by force
hence eqly: override-on (la++I13) la ({this} U set pns) = Io
by (fastforce simp add:map-add-def override-on-def fun-eg-iff)
from wuwf least have Cs’ # |]
by (auto elim!:Subobjs-nonempty simp: LeastMethodDef-def MethodDefs-def)
with Ds have last Cs’ = last Ds by(fastforce intro:appendPath-last)
with wwf least have is-class P (last Ds)
by (auto dest:Subobj-last-isClass simp: LeastMethodDef-def MethodDefs-def)
hence P + Class (last Ds) casts Ref(a,Ds) to Ref(a,Ds)
by (auto introl: casts-ref Subobjs-Base simp:path-via-def appendPath-def)
with casts
have casts”:P & Class (last Ds)# Ts Casts Ref(a,Ds)#vs to Ref(a,Ds)#wvs’
by —(rule Casts-Cons)
have 1:PE + (e:(C::)M(es),s0) —* ((ref(a,Cs))-(C::)M(es),s1)
by (rule CallRedsObj)(rule assms(2))
have 2:P,F F ((ref(a,Cs))-(C::)M(es),s1) —x
((ref(a,Cs))-(C::) M (map Val vs),(ha,l2))
by (rule CallRedsParams)(rule assms(3))
from body|THEN Red-lcl-add, of ls)
have body": P,E(this— Class(last Ds), pns[—]Ts) -
(body,(ha,la(this— Ref(a,Ds), pns[—]vs’))) == (ef,(hs,la++I13))
by (simp add:ls")
have P,E + {((ref(a,Cs))-(C::)M(map Val vs), (ha,l2)) —
(blocks(this#pns, Class (last Ds)#Ts, Ref(a,Ds)#tvs, body), (ha,l2))
using path-unique path-via least size wf Ds
by —(rule RedStaticCall,auto)
hence 3:P,E ((ref(a,Cs))-(C::)M(map Val vs), (he,l2)) —*
(blocks(this#pns,Class(last Ds)# Ts,Ref (a,Ds)#wvs,body), (ha,l2))
by (simp add:r-into-rtrancl)
have P,E + (blocks(this#pns,Class(last Ds)# Ts,Ref (a,Ds)#vs,body),(ha,l2)) —=

(ef ,(hs,override-on (la++I13) lo ({this} U set pns)))
using wf body’ wwf size final casts’
by —(rule-tac vs'=Ref(a,Ds)#vs" in blocksRedsFinal,simp-all)
with 1 2 3 show ?thesis using eqly
by simp
qed

lemma CallRedsThrowParams:
[P,Et+ (e,s0) = (Val v,81);
P.EF (es,s1) [=]* (map Val vs1 @ Throw ex # esa,s2) |
= P,E F (Call e Copt M es,sg) —* (Throw ezx,ss)

apply(rule rtrancl-trans)

128

apply(erule CallRedsObj)
apply(rule rtrancl-into-rtrancl)
apply(erule CallRedsParams)
apply(simp add: CallThrowParams)
done

lemma CallReds ThrowObj:
P,E & {(e,s9) —* (Throw ex,s;) = P,E t (Call e Copt M es,sg) —* (Throw
er,s1)

apply(rule rtrancl-into-rtrancl)
apply(erule CallRedsObj)
apply(simp add: CallThrowOby)
done

lemma CallRedsNull:
[P,E & (e,s0) = (null,s1); P,E + (es,s1) [—=]* (map Val vs,s2) |
= P,E F (Call e Copt M es,sq) —* (THROW NullPointer,ss)

apply(rule rtrancl-trans)
apply (erule CallRedsObj)
apply(rule rtrancl-into-rtrancl)
apply(erule CallRedsParams)
apply(simp add: RedCallNull)
done

19.16 The main Theorem

lemma assumes wwf: wwf-prog P
shows big-by-small: P,E \- (e,s) = (e's") = P,E \ (e,s) —x (e',s")
and bigs-by-smalls: P,E + (es,s) [=] (es’,s"y = P,E F (es,s) [=]* (es’,s”)

proof (induct rule: eval-evals.inducts)

case New thus ?case by (auto simp:RedNew)
next

case NewFuil thus ?case by (auto simp:RedNewFuail)
next

case StaticUpCast thus ?case by(simp add:Static UpCastReds)
next

case StaticDownCast thus ?case by (simp add:StaticDownCastReds)
next

case StaticCastNull thus ?case by (simp add:StaticCastRedsNull)
next

case StaticCastFail thus Zcase by(simp add:StaticCastRedsFail)
next

129

case StaticCastThrow thus ?case by (auto dest!:eval-final simp:StaticCastReds Throw)
next

case StaticUpDynCast thus ?case by(simp add:StaticUpDynCastReds)
next

case StaticDownDynCast thus ?case by(simp add:StaticDownDynCastReds)
next

case DynCast thus ?case by(fastforce intro: DynCastRedsRef)
next

case DynCastNull thus ?case by(simp add:DynCastRedsNull)
next

case DynCastFail thus ?case by(fastforce intro!: DynCastRedsFuail)
next

case DynCastThrow thus ?case by(auto dest!:eval-final simp: DynCastReds Throw)
next

case Val thus ?case by simp
next

case BinOp thus ?case by (fastforce simp:BinOpRedsVal)
next

case BinOpThrow! thus ?case by(fastforce dest!:eval-final simp: BinOpRed-
sThrowl)
next

case BinOpThrow2 thus ?case by(fastforce dest!:eval-final simp: BinOpRed-
sThrow?2)
next

case Var thus ?case by (fastforce simp:RedVar)
next

case LAss thus ?case by(fastforce simp: LAssRedsVal)
next

case LAssThrow thus Zcase by(fastforce dest!:eval-final simp: LAssRedsThrow)
next

case FAcc thus ?case by(fastforce intro: FAccRedsVal)
next

case FAccNull thus ?case by (simp add:FAccRedsNull)
next

case FAccThrow thus ?case by(fastforce dest!:eval-final simp: FAccRedsThrow)
next

case FAss thus ?case by (fastforce simp:FAssRedsVal)
next

case FAssNull thus ?case by(fastforce simp: FAssRedsNull)
next

case FAssThrowl! thus ?case by(fastforce dest!:eval-final simp: FAssRedsThrowl)
next

case FAssThrow2 thus ?case by/(fastforce dest!:eval-final simp: FAssReds Throw?2)
next

case CallObjThrow thus ?case by (fastforce dest!: eval-final simp: CallReds ThrowObj)
next

case CallNull thus ?case thm CallRedsNull by(simp add: CallRedsNull)
next

case CallParamsThrow thus ?case

130

by (fastforce dest!:evals-final simp: CallReds ThrowParams)
next
case (Call E e sy a Cs sy psvs hy los CS M Ts' T pns’ body’ Ds Ts T pns
body Cs’ vs’ Iy’ new-body e’ hs I3)
have IHe: P,E + (e,s0) —* (ref(a,Cs),s1)
and [Hes: P,E + (ps,s1) [=]* (map Val vs,(ha,l2))
and hga: he a = Some(C,S)
and method: P + last Cs has least M = (Ts’,T',pns’,body’) via Ds
and select: P + (C,CsQ,Ds) selects M = (Ts,T,pns,body) via Cs’
and same-length: length vs = length pns
and casts: P = Ts Casts vs to vs’
and lp" Iy = [this — Ref (a,Cs’), pns[—]vs]
and body-case: new-body = (case T’ of Class D = (D) body | - = body)
and eval-body: P,E(this — Class (last Cs’), pns [—] Ts) b
(new-body,(h2, l2')) = (e',(hs, l3))
and [Hbody: P,E(this — Class (last Cs’), pns [—] Ts) F
(new-body,(ha, l2)) —* (e',(hs, l3)) by fact+
from wuwf select same-length have lengthTs:length Ts = length vs
by (fastforce dest!:select-method-wf-mdecl simp:wf-mdecl-def)
show P E b (e-M(ps),s0) —* (€e’,(h3, l2))
using method select same-length Iy’ hoa casts body-case
IHbody eval-final|OF eval-body)
by (fastforce introl: CallRedsFinal| OF wwf IHe IHes])
next
case (StaticCall E e so a Cs s1 ps vs ha ly C Cs” M Ts T pns body Cs’
Ds vs' I3" €’ hg I3)
have [He: P,E F (e,s0) —* (ref(a,Cs),s1)
and [Hes: P,E - (ps,s1) [—]* {(map Val vs,(ha,l3))
and path-unique: P = Path last Cs to C unique
and path-via: P & Path last Cs to C via Cs”’
and least: P - C has least M = (Ts, T, pns, body) via Cs’
and Ds: Ds = (Cs @, Cs") @, Cs’
and same-length: length vs = length pns
and casts: P+ Ts Casts vs to vs’
and ly": Iy’ = [this — Ref (a,Ds), pns[—]vs’|
and eval-body: P,E(this — Class (last Ds), pns [—] Ts) -
(body,(ha, 12")) = (€',(hs, 13))
and IHbody: P,E(this — Class (last Ds), pns [—] Ts) b
(body,(ha, 1)) —+ (¢’ (hs, I3)) by fact+
from wuwf least same-length have lengthTs:length Ts = length vs
by (fastforce dest!:has-least-wf-mdecl simp:wf-mdecl-def)
show P,E b (e:(C::)M(ps),s0) —x* {e’,(h3, l2))
using path-unique path-via least Ds same-length o' casts
IHbody eval-final[OF eval-body|
by (fastforce introl:StaticCallRedsFinal| OF wwf IHe IHes])
next
case Block with wwf show ?case by(fastforce simp: BlockRedsFinal dest:eval-final)
next
case Seq thus ?case by (fastforce simp:SeqReds2)

131

next

case SeqThrow thus ?Zcase by(fastforce dest!:eval-final simp: SeqRedsThrow)
next

case CondT thus ?case by(fastforce simp:CondReds2T)
next

case CondF thus ?case by(fastforce simp:CondReds2F)
next

case CondThrow thus ?case by(fastforce dest!:eval-final simp: CondRedsThrow)
next

case WhileF thus ?case by (fastforce simp: WhileFReds)
next

case WhileT thus ?case by(fastforce simp: WhileTReds)
next

case WhileCondThrow thus Zcase by(fastforce dest!:eval-final simp: WhileRed-
sThrow)
next

case WhileBodyThrow thus ?case by (fastforce dest!:eval-final simp: WhileTRed-
sThrow)
next

case Throw thus ?case by(fastforce simp: ThrowReds)
next

case ThrowNull thus ?case by(fastforce simp: ThrowRedsNull)
next

case ThrowThrow thus ?case by(fastforce dest!:eval-final simp: ThrowReds Throw)
next

case Nil thus ?case by simp
next

case Cons thus ?case

by (fastforce introl: Cons-eq-appendI | OF refl refl] ListRedsVal)

next

case ConsThrow thus ?case by(fastforce elim: ListReds!)
qed

19.17 Big steps simulates small step
The big step equivalent of Red While:

lemma unfold-while:
P.E = (while(b) ¢,s) = (e';s"y = P,EF (if(b) (c;;while(d) c) else (unit),s) =
(e,s)

proof
assume P FE b (while (b) ¢,s) = (e’,s")
thus P.E F (if (b) (¢;; while (b) ¢) else unit,s) = (e’,s”)
by cases (fastforce intro: eval-evals.intros)+
next
assume P, E t (if (b) (¢;; while (b) c) else unit,s) = (e’,s”)
thus P,F b (while (b) ¢,s) = (e’,s")
proof (cases)
fix ex

132

assume e’ ¢’ = throw ez
assume P E F (b,s) = (throw ez,s’)
hence P,E - (while(b) ¢,s) = (throw ex,s’y by (rule WhileCondThrow)
with e’ show ?thesis by simp
next
fix S1
assume eval-false: P,E & (b,s) = (false,s1)
and eval-unit: P,E F (unit,s1) = (e’,s’)
with eval-unit have s’ = s; ¢/ = unit by (auto elim: eval-cases)
moreover from eval-false have P,E - (while (b) ¢,s) = (unit,s1)
by — (rule WhileF, simp)
ultimately show ¢thesis by simp
next
fix s;
assume eval-true: P,E F (b,s) = (true,s;)
and eval-rest: P,E b (c;; while (b) ¢,s1)=(e’,s)
from eval-rest show ?thesis
proof (cases)
fix so v
assume P.E F (c¢,81) = (Val v1,82) P,E F (while (b) ¢,82) = (e',s")
with eval-true show P,E = (while(b) c,s) = (e’,s"y by (rule WhileT)
next
fix ex
assume P.E F (c,s1) = (throw ex,s’) e/ = throw ex
with eval-true show P,E - (while(b) c,s) = (e',s')
by (iprover intro: WhileBody Throw)
qed
qed
qed

lemma blocksEval:
NTs vs 11" E. [size ps = size Ts; size ps = size vs;
P.E b (blocks(ps, Ts,vs,e),(h,l)) = (e/,(h",l"))]
= 3 1" vs’. P,E(ps [~] Ts) F (e,(h,I(ps[—]vs"))) = (e/,(R",I")) A
P+ Ts Casts vs to vs' A length vs' = length vs

proof (induct ps)
case Nil then show ?case by(fastforce intro: Casts-Nil)
next
case (Cons p ps’)
have length-eqs: length (p # ps’) = length Ts
length (p # ps’) = length vs
and [H:\Ts vs 11’ E. [length ps’ = length Ts; length ps’ = length vs;
P.E + (blocks (ps’, Ts,vs,e),(h,0)) = (e’,(h",l"))]
= J1" vs". P,E(ps’ [—] Ts) F (e,(h,l(ps’ [—] vs")) = (e/,(h, I")) A
P+ Ts Casts vs to vs' A length vs' = length vs by fact+
then obtain T Ts' where Ts: Ts = T#Ts' by (cases Ts) simp

133

obtain v vs’ where vs: vs = v#uvs’ using length-eqs by (cases vs) simp
with length-eqs Ts have lengthl:length ps’ = length Ts'
and length2:length ps’ = length vs’ by simp-all
have P,E b (blocks (p # ps’, Ts, vs, e),(h,1)) = (e',(h', I")) by fact
with Ts vs
have blocks:P,E + ({p:T := Val v; blocks (ps’,Ts',vs’,e)},(h,1)) = (e’ (k')
by simp
then obtain v’ where
eval-ps”s P,E(p — T) t (blocks (ps',Ts’,vs’,e),(h,l(p—0v"))) = (e',(h,I")
and """ I'=1""(p:=l1 p)
and casts:P - T casts v to v’
by (auto elim!: eval-cases simp:fun-upd-same)
from [H[OF lengthl length2 eval-ps’] obtain [’ vs’ where
P.E(p— T, ps' [—] Ts') F (e, (h, l(p—v’, ps'[—]vs"))) =
(e,(h",1"))
and P+ Ts' Casts vs’ to vs"’
and length vs'' = length vs' by auto
with Ts vs casts show ?case
by —(rule-tac x=1""in ezl rule-tac x=v'#vs" in ezl simp,
rule Casts-Cons)

l///

qed

lemma CastblocksEval:
NTs vs 11" E. [size ps = size Ts; size ps = size vs;
P.E + ((C')(blocks(ps, Ts,vs,e)),(h,1)) = (e',(h
= 3 1" vs’. P,E(ps [—] Ts) F ((C')e,(h,l(ps[—]vs’))) =
P+ Ts Casts vs to vs’ A length vs' = length vs

W)
<€/,(h/7l”)> A

proof (induct ps)
case Nil then show ?case by(fastforce intro: Casts-Nil)
next
case (Cons p ps’)
have length-egs: length (p # ps’) = length Ts
length (p # ps’) = length vs by fact+
then obtain T Ts’ where Ts: Ts = T#Ts' by (cases Ts) simp
obtain v vs’ where vs: vs = v#uvs’ using length-eqs by (cases vs) simp
with length-eqs Ts have lengthl:length ps’ = length Ts'
and length2:length ps’ = length vs’ by simp-all
have P,E t ((C')(blocks (p # ps’, Ts, vs, €)),(h,0)) = (e',(h’, ")) by fact
moreover
{ fix a Cs Cs’
assume blocks: P, E F (blocks(p#ps’, Ts,vs,e),(h,0l)) = (ref (a,Cs),(h’,l"))
and path-via:P = Path last Cs to C' via Cs’
and e’:e’ = ref(a,CsQ,Cs’)
from blocks length-eqs obtain 1" vs'’
where eval:P,E(p#ps’ [—] Ts) b (e,(h,l(p#ps'[—]vs"))) =
(ref (a,C),(B1"))

134

and casts:P + Ts Casts vs to vs'
and length:length vs'' = length vs
by —(drule blocksEval,auto)
from ewval path-via have
P.E(p#ps'[—]Ts) F ((C')e,(h,l(p#ps—=]vs"))) = (ref(a,CsQ,Cs"),(h",1"))
by (auto intro:StaticUpCast)
with e’ casts length have ?case by simp blast }
moreover
{ fix a Cs Cs’
assume blocks:P.E + (blocks(p#ps’, Ts,vs,e),(h,0)) =
(ref (a,Cs@QC'# Cs’),(h',1")
and e"e’ = ref (a,CsQ[C))
from blocks length-eqs obtain [vs'’
where eval:P,E(p#ps’ [=] Ts) b (e,(h,l(p#ps'[—]vs"))) =
(ref (a,CsQC'# Cs’),(h',l"))
and casts:P = Ts Casts vs to vs"’
and length:length vs'' = length vs
by —(drule blocksEval,auto)
from eval have P,E(p#ps'[—]Ts) F ((C')e,(h,l(p#ps[—]vs"))) =
(ref(a,Cs@[C),(R",1"))
by (auto intro:StaticDownCast)
with e’ casts length have ?case by simp blast }
moreover
{ assume P,E + (blocks(p#ps',Ts,vs,e),(h,0)) = (null,(h',l"))
and e’e’ = null
with length-eqs obtain "’ vs"’
where eval:P,E(p#ps’ [—=] Ts) b (e,(h,l(p#ps'[—]vs"))) =
(null,(h',1"))
and casts:P - Ts Casts vs to vs'’
and length:length vs'' = length vs
by —(drule blocksFval,auto)
from eval have P,E(p#ps’ [—] Ts) F ((C')e,(h,l(p#ps—=]vs"))) =
(null,(h',l"))
by (auto intro:StaticCastNull)
with e’ casts length have ?case by simp blast }
moreover
{ fix a Cs
assume blocks:P,E F (blocks(p#ps’, Ts,vs,e),(h,0l)) = (ref (a,Cs),(h’l"))
and notin:C' ¢ set Cs and leq:— P + (last Cs) =* C’
and c’:e’ = THROW ClassCast
from blocks length-eqs obtain 1" vs'’
where eval:P,E(p#ps’ [=] Ts) b (e,(h,l(p#ps'[—]vs"))) =
(ref (a,Cs),(n",1"))
and casts:P + Ts Casts vs to vs'
and length:length vs'’' = length vs
by —(drule blocksEval,auto)
from eval notin leq have
P,E(p#ps'|—]T5) = ((C')e,(h,[(p#ps'[—]vs"))) =
(THROW ClassCast,(h',l"))

135

by (auto intro:StaticCastFuail)
with e’ casts length have ?case by simp blast }
moreover
{ fix r assume P,E - (blocks(p#ps’, Ts,vs,e),(h,0)) = (throw r,(h'l"))
and e”e’ = throw r
with length-eqs obtain [vs”’
where eval:P,E(p#ps’ [—=] Ts) b (e,(h,l(p#ps'[—]vs"))) =
(throw r,(h',l"))
and casts:P = Ts Casts vs to vs"
and length:length vs'' = length vs
by —(drule blocksEval,auto)
from eval have
P.E(peps 1] T9) b (') e, (b pttps -] us")) =
(throw r,(h',1"))
by (auto intro:eval-evals.Static Cast Throw)
with e’ casts length have ?case by simp blast }
ultimately show ?case
by —(erule eval-cases,fastforce+)
qed

lemma
assumes wf: wwf-prog P
shows eval-restrict-lcl:

P.EF (e,(h0)) = (e'(B)I")) = (AW. foe C W = P,EF (e(hlW)) =
(e",(R"L'|'W)))
and P.EF (es,(h,0)) [=] (es’,(h,l)) = (AW. fvs es C W = P,E | (es,(h,l|‘W))
(=] (es', (W11 W)))

proof (induct rule:eval-evals-inducts)
case (Block EVT €0 ho lo €1 h,1 ll)
have IH: N\W. foeg C W =
P.E(V — T)F (eo,(ho,lo(V:=None)|‘W)) = (e1,(h1,l1|‘W)) by fact

have fo({V:T; ey}) C W by fact

hence fv eg — {V} C W by simp-all

hence fv ey C insert VW by fast

with TH[OF this]

have P.E(V — T) | (eo,(ho, (lo| W)(V := None))) = (e1,(h1, l1|‘insert V-W))

by fastforce

from eval-evals. Block| OF this] show ?Zcase by fastforce
next

case Seq thus ?case by simp (blast intro:eval-evals.Seq)
next

case New thus Zcase by (simp add:eval-evals.intros)
next

case NewFuil thus Zcase by (simp add:eval-evals.intros)
next

136

case StaticUpCast thus ?case by simp (blast intro: eval-evals.Static Up Cast)
next

case (StaticDownCast E e hla Cs C Cs' h' 1)

have IH:AW. fve C W =

P.EF (e, (h,l | W)) = (ref(a,CsQ[C|QCs"),(h"I" |* W)) by fact

have fv ((C)e) C W by fact

hence fv e C W by simp

from IH[OF this] show ?Zcase by(rule eval-evals.StaticDownCast)
next

case StaticCastNull thus ?case by simp (blast intro:eval-evals.StaticCastNull)
next

case StaticCastFail thus ?case by simp (blast intro:eval-evals.StaticCastFail)
next

case StaticCastThrow thus ?case by (simp add:eval-evals.intros)
next

case DynCast thus ?case by simp (blast intro:eval-evals. DynCast)
next

case StaticUpDynCast thus ?case by simp (blast intro: eval-evals.Static Up DynCast)
next

case (StaticDownDynCast E e h la Cs C Cs" h' ')

have IH:AW. fve C W =

P.EF (e,(h,l |* W)) = (ref(a,Cs@Q[ClQCs"),(R",l" |* W)) by fact

have fv (Cast C e) C W by fact

hence fv e C W by simp

from [H[OF this| show ?case by(rule eval-evals.StaticDownDynCast)
next

case DynCastNull thus ?case by simp (blast intro:eval-evals. DynCastNull)
next

case DynCastFail thus ?case by simp (blast intro:eval-evals. DynCastFail)
next

case DynCastThrow thus ?case by(simp add:eval-evals.intros)
next

case Val thus %case by(simp add:eval-evals.intros)
next

case BinOp thus ?case by simp (blast intro:eval-evals. BinOp)
next

case BinOpThrow! thus ?case by simp (blast intro:eval-evals. BinOp Throwl)
next

case BinOpThrow?2 thus ?case by simp (blast intro:eval-evals. BinOp Throw2)
next

case Var thus ?case by(simp add:eval-evals.intros)
next

case (LAss Ee hg lo vh 1V T o'l

have IH: A\W. fve C W = P,E F (e,(ho,lo|‘W)) = (Val v,(h,l| ‘W))

and env:E V = |T] and casts:P b T casts v to v’
and [simpl: I = I(V — v) by fact+

have fv (V:=e) C W by fact

hence fv: fve C W and VinW: V € W by auto

from eval-evals.LAss|OF IH[OF fv] - casts] env VinW

137

show ?case by fastforce
next
case LAssThrow thus Zcase by(fastforce intro: eval-evals.LAssThrow)
next
case FAcc thus ?case by simp (blast intro: eval-evals. FAcc)
next
case FAccNull thus ?case by (fastforce intro: eval-evals. FAccNull)
next
case FAccThrow thus ?case by(fastforce intro: eval-evals. FAcc Throw)
next
case (FAss Ee; hla Cs'"h'l'ea vhy lo DSF T Cswv' Dsfs fs' S hy! W)
have IH1: A\W. fvey C W = P.E\ (e1,(h, I|'W)) = (ref (a, Cs'),(h', I'|'W))
and [H2: N\W. fves C W = P,E F (ea,(h', U'|'W)) = (Val v,(ha, lo|‘W))
and fu:fv (e;-F{Cs} := e3) C W
and h:hy a = Some(D,S) and Ds:Ds = Cs’ @, Cs
and S:(Ds,fs) € S and fs"fs' = fs(F — v’)
and S"S'= S — {(Ds, fs)} U {(Ds, fs")}
and h':hy' = ha(a — (D, S7))
and field:P + last Cs’ has least F:T via Cs
and casts:P = T casts v to v’ by fact+
from fv have fvl:fv e; C W and fv2:fv ea C W by auto
from eval-evals. FAss[OF IH1[OF fvl] IH2[OF fv2] - field casts] h Ds S fs' S" h'
show ?case by simp
next
case FAssNull thus ?case by simp (blast intro: eval-evals. FAssNull)
next
case FAssThrowl thus fcase by simp (blast intro: eval-evals. FAssThrowl)
next
case FAssThrow2 thus ?case by simp (blast intro: eval-evals. FAssThrow?2)
next
case CallObjThrow thus ?case by simp (blast intro: eval-evals.intros)
next
case CallNull thus ?case by simp (blast intro: eval-evals. CallNull)
next
case CallParamsThrow thus ?case
by simp (blast intro: eval-evals. CallParamsThrow)
next
case (Call Eehg lyo a Cs hy Iy psws hg Iy CS M Ts' T pns’
body’ Ds Ts T pns body Cs' vs' ls" new-body e’ hg I3 W)
have IHe: A\W. fve C W = P,E F (e,(ho,lo| ‘W)) = (ref(a,Cs),(h1,l1] ‘W))
and IHps: A\W. fus ps C W = P,EF (ps,(h1,l1|‘W)) [=] (map Val vs,(ha,la] ‘W))
and THbd: A\W. fv new-body C W = P,E(this — Class (last Cs'), pns [—]
Ts) F
(new-body, (halo/| W) = (€, (hs,Is] ‘W)
and hga: he a = Some (C,S)
and method: P+ last Cs has least M = (Ts’,T',pns’,body’) via Ds
and select:P + (C,CsQ,Ds) selects M = (Ts,T,pns,body) via Cs’
and same-len: size vs = size pns
and casts:P = Ts Casts vs to vs'

138

and lp": Iy’ = [this — Ref(a,Cs’), pns [—] vs']
and body-case: new-body = (case T' of Class D = (D)body | - = body) by
fact+
have fv (e-M(ps)) C W by fact
hence fve: fv e C W and fups: fus(ps) C W by auto
have wfmethod: size Ts = size pns A this ¢ set pns and
fubd: fv body C {this} U set pns
using select wf by(fastforce dest!:select-method-wf-mdecl simp:wf-mdecl-def)+
from fvbd body-case have fubd':fv new-body C {this} U set pns
by(cases T') auto
from l;' have I’ | ({this} U set pns) = [this — Ref (a, Cs’), pns [—] vs]
by (auto introl:ext simp:restrict-map-def fun-upd-def)
with eval-evals. Call|OF IHe[OF fve] IHps[OF fups] - method select same-len
casts - body-case IHbd[OF fubd']] haa
show ?case by simp
next
case (StaticCall E e hy lp a Cs hy Iy ps vs hy lo C Cs” M Ts T pns body
Cs' Dsvs' ly" €' hg I3 W)
have IHe: A\W. fve C W = P, E F (e,(ho,lo| W)) = (ref(a,Cs),(h1,l1|‘W))
and [Hps: A\W. fus ps C W = P,EF (ps,(h1,l1|‘W)) [=] (map Val vs,(ha,lz] ‘W))
and THbd: AW. fv body C W = P,E(this — Class (last Ds), pns [—] Ts)
(body,(ha,lz/| ‘W) = (e',(hs,ls| ‘W)
and path-unique: P = Path last Cs to C unique
and path-via: P & Path last Cs to C via Cs”
and least: P+ C has least M = (Ts, T, pns, body) via Cs’
and Ds: Ds = (Cs @, Cs”") @, Cs’
and same-len: size vs = size pns
and casts:P = Ts Casts vs to vs’
and Iy lo' = [this — Ref(a,Ds), pns [—] vs] by fact+
have fv (e:(C::)M(ps)) C W by fact
hence fve: fv e C W and fups: fuos(ps) C W by auto
have wfmethod: size Ts = size pns A this ¢ set pns and
fobd: fu body C {this} U set pns
using least wf by(fastforce dest!:has-least-wf-mdecl simp:wf-mdecl-def)+
from fvbd have fobd’.fv body C {this} U set pns
by auto
from ly' have I’ | ({this} U set pns) = [this — Ref(a,Ds), pns [—] vs’]
by (auto introl:ext simp:restrict-map-def fun-upd-def)
with eval-evals.StaticCall]OF IHe[OF fve] IHps|OF fups] path-unique path-via
least Ds same-len casts - IHbd[OF fubd]]
show ?case by simp
next
case SeqThrow thus ?case by simp (blast intro: eval-evals.SeqThrow)
next
case CondT thus ?case by simp (blast intro: eval-evals. CondT)
next
case CondF thus ?case by simp (blast intro: eval-evals. CondF)
next
case CondThrow thus ?case by simp (blast intro: eval-evals. Cond Throw)

139

next

case WhileF thus Zcase by simp (blast intro: eval-evals. WhileF")
next

case WhileT thus ?case by simp (blast intro: eval-evals. WhileT)
next

case WhileCondThrow thus Zcase by simp (blast intro: eval-evals. WhileCond Throw)
next

case WhileBodyThrow thus ?case by simp (blast intro: eval-evals. While Body Throw)
next

case Throw thus ?case by simp (blast intro: eval-evals. Throw)
next

case ThrowNull thus ?case by simp (blast intro: eval-evals. ThrowNull)
next

case ThrowThrow thus ?case by simp (blast intro: eval-evals. ThrowThrow)
next

case Nil thus ?case by (simp add: eval-evals. Nil)
next

case Cons thus ?case by simp (blast intro: eval-evals. Cons)
next

case ConsThrow thus ?case by simp (blast intro: eval-evals. Cons Throw)
qed

lemma eval-notfree-unchanged:

assumes wf:wwf-prog P

shows P.E & (e,(h,0)) = (", (B)I")) = (ANV. V& foe= 1"V =1V)
and P.E (es,(h,0)) [=] (es’, (A1) = (ANV. V & fuses= 1"V =17V)

proof (induct rule:eval-evals-inducts)
case LAss thus Zcase by(simp add:fun-upd-apply)
next
case Block thus ?case
by (simp only: fun-upd-apply split:if-splits) fastforce
qed simp-all

lemma eval-closed-lcl-unchanged:
assumes wf:wwf-prog P
and eval: P,E F (e,(h,0])) = (e’,(h"l))
and fu:fv e = {}

shows [/ = [

proof —
from wf eval have A\V. V ¢ fuve = 1" V =1 V by (rule eval-notfree-unchanged)
with fuv have AV. ' V =1V by simp
thus ?thesis by (simp add:fun-eq-iff)

qed

140

declare split-paired-All [simp del] split-paired-Ex [simp del]

declaration <K (Simplifier.map-ss (fn ss => ss delloop split-all-tac))»
setup <map-theory-claset (fn ctzt => ctat delSWrapper split-all-tac)»

lemma list-eval- Throw:
assumes cval-e: P,E F (throw z,s) = (e’,s")
shows P.E (map Val vs Q throw x # es’,s) [=] (map Val vs Q e’ # es’,s’)

proof —
from ewval-e
obtain a where ¢’ ¢/ = Throw a
by (cases) (auto dest!: eval-final)

fix es
have Avs. es = map Val vs Q throw © # es’
= P,E F (es,s)[=](map Val vs Q e’ # es’,s’)
proof (induct es type: list)
case Nil thus ?case by simp
next
case (Cons e es vs)
have e-es: e # es = map Val vs Q throw x # es’ by fact
show P, E - (e # es,s) [=] (map Val vs Q e’ # es’,s’)
proof (cases vs)
case Nil
with e-es obtain e=throw z es=es’ by simp
moreover from eval-¢ e’
have P,E - (throw z # es,s) [=] (Throw a # es,s)
by (iprover intro: ConsThrow)
ultimately show ?thesis using Nil ¢’ by simp
next
case (Cons v vs’)
have vs: vs = v # vs’ by fact
with e-es obtain
e: e=Val v and es:es= map Val vs' Q throw = # es’
by simp
from e
have P.E I (e,s) = (Val v,s)
by (iprover intro: eval-evals. Val)
moreover from es
have P,E I (es,s) [=] (map Val vs’ Q e’ # es’ s’y
by (rule Cons.hyps)
ultimately show

141

P.E & (e#es,s) [=] (map Val vs @ e’ # es’,s”)
using vs by (auto intro: eval-evals. Cons)
qed
qed

thus ?thesis
by simp
qed

The key lemma:

lemma
assumes wf: wwf-prog P
shows extend-1-eval:

P.EF (ess) — (e"s"y = (A\s' e’ P,EF (e"s") = (e/;sy = P,EF (e,s) =
(e'5)
and extend-1-evals:

P.E (es,t) [=] (es”,t"y = (A\t’ es’. P,E F (es";t") [=] (es';t’) = P,E +
(es,t) [=] (es',t"))

proof (induct rule: red-reds.inducts)
case RedNew thus ?case by (iprover elim: eval-cases intro: eval-evals.intros)
next
case RedNewFuil thus ?case by (fastforce elim: eval-cases intro: eval-evals.intros)
next
case (StaticCastRed E e s e’ s" C s’ ') thus ?case
by —(erule eval-cases,auto intro:eval-evals.intros,
subgoal-tac P,E + (e' 8"y = (ref(a,CsQ[C|QCs’),s"),
rule-tac Cs'=Cs’ in StaticDownCast,auto)
next
case RedStaticCastNull thus ?case
by (fastforce elim: eval-cases intro: eval-evals.intros)
next
case RedStaticUpCast thus ?case
by (fastforce elim: eval-cases intro: eval-evals.intros)
next
case RedStaticDownCast thus Zcase
by (fastforce elim: eval-cases intro: eval-evals.intros)
next
case RedStaticCastFail thus ?case
by (fastforce elim: eval-cases intro: eval-evals.intros)
next
case RedStaticUpDynCast thus ?case
by (fastforce elim: eval-cases intro: eval-evals.intros)
next
case RedStaticDownDynCast thus ?case
by (fastforce elim: eval-cases intro: eval-evals.intros)
next
case (DynCastRed E e s e'' s” C s’ €')
have eval:P,E + (Cast C e",s") = (e',s')

142

and IH:\ex sz. P,E & (e"|s") = (ex,st) = P,E F (e,s) = (ex,sz) by fact+
moreover
{fix Cs Cs" a
assume P E F (e”s") = (ref (a, Cs Q@ C # Cs'),s")
from IH[OF this] have P,E F (e,s) = (ref (a, CsQ[C|QCs’),s"y by simp
hence P,F \ (Cast C e,s) = (ref (a, CsQ[C]),s") by (rule StaticDownDynCast)
}
ultimately show ?case by —(erule eval-cases,auto intro: eval-evals.intros)
next
case RedDynCastNull thus ?case by (iprover elim:eval-cases intro:eval-evals.intros)
next
case (RedDynCast s a D S C Cs" E Cs s’ e')
thus ?case by (cases s)(auto elim!:eval-cases intro: eval-evals.intros)
next
case (RedDynCastFail s a D S C Cs E s" e
thus ?case by (cases s)(auto elim!: eval-cases intro: eval-evals.intros)
next
case BinOpRedl thus ?case by —(erule eval-cases,auto intro: eval-evals.intros)
next
case BinOpRed?2
thus ?case by (fastforce elim!:eval-cases intro:eval-evals.intros eval-finalld)
next
case RedBinOp thus ?case by (iprover elim:eval-cases intro:eval-evals.intros)
next
case (RedVar s Vv E s’ e')
thus ?case by (cases s)(fastforce elim:eval-cases intro:eval-evals.intros)
next
case LAssRed thus ?case by —(erule eval-cases,auto intro:eval-evals.intros)
next
case RedL Ass
thus ?case by (fastforce elim:eval-cases intro:eval-evals.intros)
next
case FAccRed thus ?case by —(erule eval-cases,auto intro:eval-evals.intros)
next
case (RedFAcc s a D S Ds Cs' Cs fs F v E s’ ¢’)
thus ?case by (cases s)(fastforce elim:eval-cases intro:eval-evals.intros)
next
case RedFAccNull thus ?case by (fastforce elim!:eval-cases intro: eval-evals.intros)
next
case (FAssRedl E ey s e;’ s F Cs ey s’ €)
have eval:P,.E + (e;-F{Cs} := es,8"y = (e',s")
and IH:\ex sz. P,E+ (e1',s") = (ex,s1) = P,E | (e1,s) = (ex,sz) by fact+
{fix Cs'" DS Tafshyly sy vo
assume ref:P,E & (e1',s") = (ref (a, Cs'),s1)
and rest:P,E + (ea,s1) = (Val v,(ha, l2)) h2 a = | (D, 5)]
P+ last Cs’ has least F:T via Cs P+ T casts v to v’
(Cs’@, Cs, fs) € S
from IH[OF ref] have P,E F (e1,s) = (ref (a, Cs’),s1) .
with rest have P,E F <61 F{Cs} := eq,s) =

143

(Val v',(he(a — (D,insert (Cs'Q, Cs,fs(F — v"))(S — {(Cs'@, Cs,fs)}))),l2))
by—(rule FAss,simp-all) }
moreover
{ fix s1 v
assume null:P,E + (e1’;s""y = (null,s1)
and rest:P,E F (eq,s1) = (Val v,s")
from [H[OF null] have P,E & {e1,s) = (null,s1) .
with rest have P.E & (e1-F{Cs} := ea,s) = (THROW NullPointer,s’)
by—(rule FAssNull,simp-all) }
moreover
{ fix ¢’ assume throw:P,E F (e1',s"") = (throw e’,s")
from IH[OF throw] have P.E - (e1,s) = (throw e’;s’) .
hence P,E \ (e1-F{Cs} := ea,s) = (throw e’,s’)
by—(rule eval-evals. FAssThrowl ,simp-all) }
moreover
{fixe' sy v
assume val:P,E F (e1',s") = (Val v,s1)
and rest:P,E (e2,s1) = (throw e’,s’)
from IH[OF wal] have P, E | (e1,s) = (Val v,s1) .
with rest have P,E b (e1-F{Cs} := eq,s) = (throw e’,s’)
by—(rule eval-evals. FAss Throw2,simp-all) }
ultimately show ?case using eval
by —(erule eval-cases,auto)
next
case (FAssRed2 E e; s es’ s v F Cs s’ e')
have eval: P,.E + (Val v-F{Cs} := ey',s"") = (e’,s")
and IH:\ex sx. P,E (e3',s") = (ex,sx) = P,E I (e2,8) = (ex,sx) by fact+
{fix Cs'" DS Talfshyly sy v v
assume vall:P.E F (Val v,s") = (ref (a,Cs’),s1)
and val2:P,E t (e2',s1) = (Val v',(ha, 12))
and rest:hs a = [(D, S)| P * last Cs' has least F: T via Cs
P+ T casts v’ to v’ (Cs'Q,Cs,fs) € S
from vall have s":s; = s" by —(erule eval-cases)
with vall have P.E + (Val v,s) = (ref (a,Cs"),s)
by (fastforce elim:eval-cases intro:eval-finalld)
also from TH[OF wval2[simplified s']] have P,E - (es,s) = (Val v’,(he, l2)) .
ultimately have P.E + (Val v-F{Cs} := ea,s) =
(Val v",(he(a—(D,insert(Cs'Q, Cs,fs(F +— v"))(S — {(Cs'Q, Cs,fs)}))),l2))
using rest by —(rule FAss,simp-all) }
moreover
{ fix s; v’
assume vall:P,E + (Val v,s"") = (null,sy)
and val2:P.E \ (e3',s1) = (Val v',s”)
from wvall have s”:s; = s" by —(erule eval-cases)
with vall have P,E F (Val v,s) = (null,s)
by (fastforce elim:eval-cases intro:eval-finalld)
also from IH[OF wval2[simplified s'']] have P,E (es,s) = (Val v’,s’) .
ultimately have P.E + (Val v-F{Cs} := ea,s) = (THROW NullPointer,s')
by —(rule FAssNull,simp-all) }

144

moreover
{ fix r assume val:P,E + (Val v,s") = (throw r,s’)
hence s'":s"" = s’ by —(erule eval-cases,simp)
with val have P,E - (Val v-F{Cs} := ea,s) = (throw r,s’)
by —(rule eval-evals. FAssThrowl ,erule eval-cases,simp) }
moreover
{fix rs; v
assume vall:P.E F (Val v,s") = (Val v',s1)
and val2:P,E F (e3',51) = (throw r,s’)
from vall have s':s; = s” by —(erule eval-cases)
with vall have P,E + (Val v,s) = (Val v',s)
by (fastforce elim:eval-cases intro:eval-finalld)
also from IH[OF val2[simplified s']] have P,E F (ea,s) = (throw r,s’) .
ultimately have P,E (Val v-F{Cs} := es,s) = (throw r,s’)
by —(rule eval-evals. FAssThrow2,simp-all) }
ultimately show ?case using eval
by —(erule eval-cases,auto)
next
case (RedFAssha D S Cs' F T Csvv' Dsfs Els'e’)
have val: P,F + (Val v',(h(a — (D,insert (Ds,fs(F — v"))(S — {(Ds,fs)}))),]))
=
(e's")
and rest:h a = [(D, S)] P F last Cs’ has least F:T via Cs
P+ T casts v to v’ Ds = Cs’ @, Cs (Ds, fs) € S by fact+
from val have s’ = (h(a — (D, insert (Ds,fs(F — v’)) (S — {(Ds,f$)}))),l)
and ¢’ = Val v’ by —(erule eval-cases,simp-all)+
with rest show ?case apply simp
by (rule FAss,simp-all)(rule eval-finalld,simp)+
next
case RedFAssNull
thus ?case by (fastforce elim!: eval-cases intro: eval-evals.intros)
next
case (CallObj E e s e’ s’ Copt M es s e”)
thus Zcase
apply —
apply(cases Copt,simp)
by (erule eval-cases,auto intro:eval-evals.intros)+
next
case (CallParams E es s es’ s" v Copt M s’ e')
have call:P,E F (Call (Val v) Copt M es’,s"y = (e’,s')
and [H:\esz sz. P,E b (es’s") [=] (esx,sx) = P,E I (es,s) [=] (esz,sz) by
fact+
show ?case
proof(cases Copt)
case None with call have eval: P,E + (Val v-M(es’),s") = (e',s") by simp
from eval show ?thesis
proof (rule eval-cases)
fix r assume P,E + (Val v,s""y = (throw r,s’) e’ = throw r
with None show P.E = (Call (Val v) Copt M es,s) = (e’,s")

145

by (fastforce elim:eval-cases)
next
fix es’ rsx v’ vs
assume val: P,E F (Val v,8"y = (Val v’,sz)
and evals:P,E (es',sz) [=] (map Val vs Q throw r # es's’)
and e"e’ = throw r
have val"P.E + (Val v,s) = (Val v,s) by(rule Val)
from val have eq:v’ = v A s" = sz by —(erule eval-cases,simp)
with IH evals have P.E F (es,s) [=] (map Val vs Q throw r # es’,s’)
by simp
with eq CallParamsThrow|OF val’] e’ None
show P,E (Call (Val v) Copt M es,s) = (e',s”)
by fastforce
next
fix C Cs Cs'" Ds ST T' Ts Ts' a body body’ hy hs ly I3 pns pns’ sy vs vs’
assume val: P,E F (Val v,s8") = (ref(a,Cs),s1)
and evals:P,E = (es’,s1) [=] (map Val vs,(hz,l2))
and hp:he a = Some(C, S)
and method: P \ last Cs has least M = (Ts',T',pns’,body’) via Ds
and select:P = (C,CsQ,Ds) selects M = (Ts,T,pns,body) via Cs’
and length:length vs = length pns
and casts:P F Ts Casts vs to vs’
and body: P,E(this — Class (last Cs’), pns [—] Ts) +
(case T of Class D = (D))body | - = body,(hz,[this — Ref(a,Cs’),pns [—] vs']))
= <el7(h3> l3)>
and s”s’ = (h3, l2)
from val have val:P,E + (Val v,s) = (ref(a,Cs),s)
and eq:s” = s; A v = Ref(a,Cs)
by (auto elim:eval-cases intro: Val)
from body obtain new-body
where body-case:new-body = (case T’ of Class D = (D) body | - = body)
and body":P,E(this — Class (last Cs’), pns [—] Ts) +
(new-body,(ha,[this — Ref(a,Cs"),pns [—] vs'])) = (e’,(hs, l3))
by simp
from eq IH evals have P.E & (es,s) [=] (map Val vs,(he,l2)) by simp
with eq Call[OF val’ - - method select length casts - body-case]
hp body’ s’ None
show P.E + (Call (Val v) Copt M es,s) = (e’,s"y by fastforce
next
fix s1 vs
assume val: P,E F (Val v,8") = (null,s)
and evals:P,E + (es',s1) [=] (map Val vs,s’)
and e":e’ = THROW NullPointer
from val have val”P,E F (Val v,s) = (null,s)
and eq:s” = s1 A v = Null
by (auto elim:eval-cases intro: Val)
from eq IH evals have P,E | (es,s) [=] (map Val vs,s’) by simp
with eq CaliNull[OF val’] ¢’ None
show P.E + (Call (Val v) Copt M es,s) = (e’,s"y by fastforce

146

qed
next
case (Some C) with call have eval: P,E F (Val v-(C::)M(es’),s"") = (e’,s)
by simp
from eval show ?thesis
proof (rule eval-cases)
fix r assume P,E + (Val v,s""y = (throw r,s") ¢’ = throw r
with Some show P.E b (Call (Val v) Copt M es,s) = (e’,s")
by (fastforce elim:eval-cases)
next
fix es" rsx v’ vs
assume val:P,E F (Val v,s"y = (Val v’,sz)
and evals:P,E + (es’;sz) [=] (map Val vs @ throw r # es's’)
and e’e’ = throw r
have val".P.E + (Val v,s) = (Val v,s) by(rule Val)
from val have eq:v’ = v A 8" = sz by —(erule eval-cases,simp)
with IH evals have P.E + (es,s) [=] (map Val vs Q throw r # es'’,s’)
by simp
with eq CallParamsThrow|OF val’] e’ Some
show P,E + (Call (Val v) Copt M es,s) = (e’,s")
by fastforce
next
fix Cs Cs’ Cs” T Ts a body ho h3z Iy I3 pns s; vs vs’
assume val:P.E = (Val v,s") = (ref (a,Cs),s1)
and evals:P,E + (es',s1) [=] (map Val vs,(ha,l2))
and path-unique: P &= Path last Cs to C unique
and path-via:P = Path last Cs to C via Cs'"’
and least:P v C has least M = (Ts, T, pns, body) via Cs’
and length:length vs = length pns
and casts:P b Ts Casts vs to vs’
and body: P,E(this — Class (last ((Cs @, Cs'") @, Cs")), pns [—] Ts) -
(body,(he,[this — Ref(a,(CsQ,Cs"")@,Cs"),pns [—] vs'])) = (e’,(hs,l3))
and s":s' = (hg,lg)
from val have val”.P,E + (Val v,s) = (ref(a,Cs),s)
and eq:s” = s1 A v = Ref(a,Cs)
by (auto elim:eval-cases intro: Val)
from eq IH evals have P,E | (es,s) [=] (map Val vs,(ha2,l2)) by simp
with eq StaticCall[OF val’ - path-unique path-via least - - casts - body]
length s’ Some
show P,E (Call (Val v) Copt M es,s) = (e',s"y by fastforce
next
fix s; vs
assume val:P.E = (Val v,s") = (null,s1)
and evals:P.E = (es',s1) [=] (map Val vs,s’)
and e”:e’ = THROW NullPointer
from val have val”.P,E + (Val v,s) = (null,s)
and eq:s”’ = s; A v = Null
by (auto elim:eval-cases intro: Val)
from eq IH evals have P,E + (es,s) [=] (map Val vs,s”) by simp

147

with eq CaliNull[OF val’] e’ Some
show P,F + (Call (Val v) Copt M es,s) = (e,s”)
by fastforce
qed
qged
next
case (RedCall s a C'S Cs M Ts' T' pns’ body’ Ds Ts T pns body Cs’ vs
bs new-body E s’ e’
obtain & | where s’ = (h,l) by(cases s’) auto
have P,E t (ref(a,Cs),s) = (ref(a,Cs),s) by (rule eval-evals.intros)
moreover
have finals: finals(map Val vs) by simp
obtain hs l; where s: s = (hg,l2) by (cases s)
with finals have P,E (map Val vs,s) [=] (map Val vs,(ha,l2))
by (iprover intro: eval-finalsld)
moreover from s have hya:hy a = Some (C,S) using RedCall by simp
moreover have method: P+ last Cs has least M = (Ts',T' pns’,body’) via Ds
by fact
moreover have select:P = (C,CsQ, Ds) selects M = (Ts, T ,pns,body) via Cs’ by
fact
moreover have blocks:bs = blocks(this#pns,Class(last Cs’)# Ts,Ref (a,Cs")#vs,body)
by fact
moreover have body-case:new-body = (case T’ of Class D = (D)bs | - = bs)
by fact
moreover have same-leny: length Ts = length pns
and this-distinct: this ¢ set pns and fv: fv body C {this} U set pns
using select wf by (fastforce dest!:select-method-wf-mdecl simp:wf-mdecl-def)+
have same-len: length vs = length pns by fact
moreover
obtain h3 I3 where s”: s’ = (hs,l3) by (cases s”)
have eval-blocks:P,E + (new-body,s) = (e’,s") by fact
hence id: I3 = I; using fv s s’ same-len; same-len wf blocks body-case
by(cases T')(auto elim!: eval-closed-lcl-unchanged)
from same-len; have same-len’:length(this#pns) = length(Class (last Cs’)#T5s)

by simp
from same-len, same-len
have same-leny:length(this#pns) = length(Ref(a,Cs")#vs) by simp
from eval-blocks
have eval-blocks”:P,E F (new-body,(ha,l2)) = (e’,(hs,l3)) using s s’ by simp
have casts-unique: \vs’. P+ Class (last Cs"\# Ts Casts Ref(a,Cs")#wvs to vs’
= vs’ = Ref(a,Cs")#tl vs’
using wf
by —(erule Casts-to.cases,auto elim!:casts-to.cases dest!:mdc-eq-last
simp:path-via-def appendPath-def)
have 31" vs’ new-body’. P,E(this— Class(last Cs’), pns[—]Ts) -
(new-body’,(ha,la(this # pns[—]Ref(a,Cs")#vs’))) = (e/,(hs, I")) A
P+ Class(last Cs")# Ts Casts Ref(a,Cs’)#tvs to Ref(a,Cs")#vs’ A
length vs' = length vs A fv new-body’ C {this} U set pns A

148

new-body’ = (case T’ of Class D = (D))body | - = body)
proof(cases V C. T’ # Class C)
case True
with same-len’ same-lens eval-blocks’ casts-unique body-case blocks
obtain " vs’
where body: P,E(this— Class(last Cs’), pns[—]Ts) b
(boy, (ho, bs(this 4 pnsli—+| Ref(a,C5"}4tvs"))) = (¢/,(hs, 1))
and casts:P b Class(last Cs’)#Ts Casts Ref(a,Cs’)#vs to Ref(a,Cs")#vs’
and lengthvs':length vs’ = length vs
by —(drule-tac vs=Ref(a,Cs’)#vs in blocksFEval,assumption,cases T,
auto simp:length-Suc-conv,blast)
with fv True show ?thesis by(cases T') auto
next
case Fulse
then obtain D where T T’ = Class D by auto
with same-len’ same-lens eval-blocks’ casts-unique body-case blocks
obtain "' vs’
where body: P,E(this— Class(last Cs’), pns[—]|Ts)
(| D) body,(ha,la(this # pns[—]Ref(a,Cs")#vs"))) =
<€/7(h3, l”)>
and casts:P F Class(last Cs")# Ts Casts Ref(a,Cs")#vs to Ref(a,Cs")#vs’
and lengthvs':length vs’ = length vs
by — (drule-tac vs=Ref(a,Cs")#wvs in CastblocksEval,
assumption,simp,clarsimp simp:length-Suc-conv,auto)
from fv have fv ((D))body) C {this} U set pns
by simp
with body casts lengthvs’ T' show ?thesis by auto
qed
then obtain [vs’ new-body’
where body: P,E(this— Class(last Cs’), pns[—]Ts) +
(new-body’,(ha,la(this # pns[—|Ref(a,Cs")#vs"))) = (e’,(h3, I"))
and casts:P + Class(last Cs’)# Ts Casts Ref(a,Cs")#vs to Ref(a,Cs’)#vs’
and lengthvs’:length vs' = length vs
and body-case”:new-body’ = (case T' of Class D = (D)body | - = body)
and fv':fv new-body’ C {this} U set pns
by auto
from same-lensy lengthvs’
have same-lens:length (this # pns) = length (Ref (a, Cs’) # vs’) by simp
from restrict-map-upds|OF same-lens,of set(this#pns) ls]
have ly(this # pns[—|Ref(a,Cs")#vs")| (set(this#pns)) =
[this # pns[—|Ref(a,Cs")#vs’] by simp
with eval-restrict-lcl[OF wf body fv'] this-distinct same-len; same-len
have P,E(this— Class(last Cs'), pns[—]Ts) F
(new-body’,(ha,[this # pns[—]Ref(a,Cs")#vs'])) = (e',(hs, I"|(set(this#pns))))
by simp
with casts obtain [y’ I3’ vs’ where
P+ Ts Casts vs to vs'
and P,E(this— Class(last Cs"), pns[—]Ts) F
(new-body’,(ha2,l2")) = (e’,(hs,l3"))

149

and Iy’ = [this— Ref (a,Cs’),pns[—]vs]
by (auto elim: Casts-to.cases)
ultimately have P,E ((ref(a,Cs))-M(map Val vs),s) = (e’,(hs,l2))
using body-case’
by —(rule Call,simp-all)
with s’ id show ?case by simp
next
case (RedStaticCall Cs C Cs" M Ts T pns body Cs’ Ds vs E a s s’ e)
have P,E b (ref(a,Cs),s) = (ref(a,Cs),s) by (rule eval-evals.intros)
moreover
have finals: finals(map Val vs) by simp
obtain hs Iy where s: s = (hg,l2) by (cases s)
with finals have P,E = (map Val vs,s) [=] (map Val vs,(ha,l2))
by (iprover intro: eval-finalsld)
moreover have path-unique: P & Path last Cs to C unique by fact
moreover have path-via:P & Path last Cs to C via Cs’' by fact
moreover have least:P F C has least M = (Ts, T, pns, body) via Cs’ by fact
moreover have same-leny: length Ts = length pns
and this-distinct: this ¢ set pns and fu: fv body C {this} U set pns
using least wf by (fastforce dest!:has-least-wf-mdecl simp:wf-mdecl-def)+
moreover have same-len:length vs = length pns by fact
moreover have Ds:Ds = (Cs @, Cs'') @, Cs’ by fact
moreover
obtain h3 I3 where s”: s’ = (hs,l3) by (cases s”)
have eval-blocks: P,E + (blocks(this#pns,Class(last Ds)# Ts,Ref (a,Ds)#vs,body),s)
= (e',s"y by fact
hence id: I3 = I> using fv s s’ same-len; same-len wf
by(auto elim!: eval-closed-lcl-unchanged)
from same-len; have same-len”.length(this#pns) = length(Class (last Ds)#T5s)
by simp
from same-len, same-len
have same-leny:length(this#pns) = length(Ref(a,Ds)#vs) by simp
from ewal-blocks
have eval-blocks”:P,E + (blocks(this#pns,Class(last Ds)# Ts,Ref (a,Ds)#vs,body),
(h2,l2)) = (e’,(hs,l3)) using s s’ by simp
have casts-unique: \vs’. P & Class (last Ds)# Ts Casts Ref(a,Ds)#vs to vs’
= vs’ = Ref(a,Ds)#tl vs’
using wf
by —(erule Casts-to.cases,auto elim!:casts-to.cases dest!:mdc-eg-last
simp:path-via-def appendPath-def)
from same-len’ same-lensy eval-blocks’ casts-unique
obtain [vs’ where body: P,E(this— Class(last Ds), pns[—]Ts) F
(body,(ha,la(this # pns[—]Ref(a,Ds)#uvs"))) = (e',(hs, I"))
and casts:P + Class(last Ds)# Ts Casts Ref(a,Ds)#vs to Ref(a,Ds)#wvs’
and lengthvs’:length vs' = length vs
by —(drule-tac vs=Ref(a,Ds)#wvs in blocksEval,auto simp:length-Suc-conv,blast)
from same-lensy lengthvs’
have same-lens:length (this # pns) = length (Ref(a,Ds) # vs’) by simp
from restrict-map-upds|OF same-leng,of set(this#pns) ls]

150

have ly(this # pns|—|Ref (a,Ds)#wvs’)| (set(this#pns)) =
[this # pns[—]Ref(a,Ds)#vs’]| by simp
with eval-restrict-lcl|OF wf body fv] this-distinct same-len, same-len
have P,E(this— Class(last Ds), pns[—]Ts) +
(body,(ha,[this#pns [—] Ref(a,Ds)#wvs'))) = (e’,(hs, | (set(this#pns))))
by simp
with casts obtain Iy’ I3’ vs’ where
P+ Ts Casts vs to vs’
and P,E(this — Class(last Ds),pns [—] Ts) & (body,(ha,l2")) = (e’,(hs,l37))
and Iy’ = [this — Ref(a,Ds),pns [—] vs']
by (auto elim: Casts-to.cases)
ultimately have P.E - ((ref(a,Cs))-(C::)M(map Val vs),s) = (e’,(hs,l2))
by —(rule StaticCall,simp-all)
with s’ id show ?case by simp
next
case RedCallNull
thus ?case
by (fastforce elim: eval-cases intro: eval-evals.intros eval-finalsld)
next
case BlockRedNone
thus Zcase
by (fastforce elim!: eval-cases intro: eval-evals.intros
simp add: fun-upd-same fun-upd-idem)
next
case (BlockRedSome E VT ehle h'l' vs'e)
have eval: P.E = ({V:T:=Val v; "},(h/, I'(V :=1V))) = ('8
and red:P,E(V — T) F (e,(h, I(V := None))) — (e" (b, 1))
and notassigned:— assigned V e and 1":l' V = Some v
and IH:Nex sz. P,E(V — T)F (e (b, ") = (ezx,50) =
PE(V — T)F (e,(h, I(V := None))) = (ex,sz) by fact+
from !’ have l'upd:l'(V — v) = I’ by (rule map-upd-triv)
from wf red I’ have casts:P = T casts v to v
apply —
apply(erule-tac V=V in None-lcl-casts-values)
by (simp add:fun-upd-same)+
from eval obtain h'' 1"
where P, E(V — T) F (V:=Val v;; e",(h,l'(V:=None))) = (e/,(h",I"")) A
s'= (R"I(V:=1L V)
by (fastforce elim:eval-cases simp:fun-upd-same fun-upd-idem)
moreover
{ fix T' ho lp v v"
assume eval P, E(V — T) F (", (ho,lo(V — v"))) = (e/,(h", I"))
and val:P,E(V — T) F (Val v,(h’, I'(V := None))) = (Val v',(ho,lp))
and env:(E(V — T)) V = Some T' and casts" P = T' casts v’ to v"’
from env have TeqT":T = T' by (simp add:fun-upd-same)
from val have eq:v = v/ A b/ = hy A l'(V := None) =
by —(erule eval-cases,simp)
with casts casts’ wf TeqT' have v = v’
by clarsimp(rule casts-casts-eq)

151

with eq eval’
have P.E(V — T)F (e (b, I'(V — v))) = (e/,(h", I"))
by clarsimp }
ultimately have P,E(V — T) F (e" (R I'(V — v))) = (e/,(h",l"))
and s:s' = (W I""(V:=1 V))
apply auto
apply(erule eval-cases)
apply(erule eval-cases) apply auto
apply(erule eval-cases) apply auto
apply (erule eval-cases) apply auto
done
with {'upd have eval’:P,E(V v T) - {e",(h'1)) = (e',(h",1"))
by simp
from IH[OF eval”] have P, E(V — T) F (e,(h, I(V := None))) = (e/,(h", 1))

with s’ show ?Zcase by(fastforce intro:Block)
next
case (InitBlockRed EV T ehlv' e’ h'1'v" vs'e)
have eval: P.E - {V:T:=Val v"; "}, (b, I(V :=1V))) = (e/,s)
and red:P,E(V — T) F {(e,(h, (V — v))) = (e” (h’7)
and casts:P = T casts v to v’ and 1:l" V = Some v"’
and IH:Aex sxz. P,E(V — T)F (" (h', l')) = (ex,sz) =
P.E(V — T)F (e(h, (V — v')) = (ex,sz) by fact+
from !’ have 'upd:l'(V — v"") = I’ by (rule map-upd-triv)
from wf casts have P+ T casts v’ to v’ by(rule casts-casts)
with wf red I’ have casts"P + T casts v'’ to v'’
apply —
apply(erule-tac V=V in Some-lcl-casts-values)
by (simp add:fun-upd-same)+
from eval obtain A’/ 1"
where P E(V — T) F (V:=Val v'; e”,(h,l'(V:=None))) = (e’,(h",I")) A
s'= (R"I(V:=1L V)
by (fastforce elim:eval-cases simp:fun-upd-same fun-upd-idem)
moreover
{ ﬁx T/ ,U///
assume eval P, E(V — T) F (" (W, I'(V — v")) = (e/,(h", 1))
and env:(E(V — T)) V = Some T’ and casts":P + T’ casts v"’ to v'"
from env have T = T' by (simp add:fun-upd-same)
with casts’ casts” wf have v/ = v'" by szmp(rule casts-casts-eq)
with eval’ have PE(V — T)F (e' (b, I'(V — v"))) = (e/,(h", I"")) by simp
}
ultimately have P, E(V — T) F (e" (R I'(V — v"))) = (e',(h",l"))
and ss' = (W I"(V:=1 V))
by (auto elim!:eval-cases)
with ["upd have eval’:P,E(V — T) F (e",(h"l")) = (e/,(h"]"))
by simp
from [H[OF eval’
have evale:P,E(V — T) F (e,(h, [V — v')) = (e/,(R", ")) .

from casts

152

have P,E(V — T) F (V:=Val v,(h,l(V:=None))) = (Val v',(h,I(V — v’)))
by —(rule-tac I=I(V:=None) in LAss,
auto intro:eval-evals.intros simp:fun-upd-same)
with evale s’ show ?case by(fastforce intro:Block Seq)
next
case (RedBlock EV T v s s'e)
have P,E + (Val v,s) = (e’,s’) by fact
then obtain s”: s'=s and e”: e’=Val v
by cases simp
obtain & [where s: s=(h,l) by (cases s)
have P,E(V — T) t (Val v,(h,l(V:=None))) = (Val v,(h,l(V:=None)))
by (rule eval-evals.intros)
hence P.E = ({V:T;Val v},(h,1)) = (Val v,(h,(I(V:=None))(V:=Il V)))
by (rule eval-evals. Block)
thus P,E+ ({V:T; Val v},s) = (e,s)
using s s’ e’
by simp
next
case (RedInitBlock Tvv' E Vuss'e)
have P,F + (Val u,s) = (e’,s) and casts:P F T casts v to v’ by fact+
then obtain s s’ = s and e’ e’=Val u by cases simp
obtain h [where s: s=(h,l) by (cases s)
have val:P,E(V — T) F (Val v,(h,l(V:=None))) = (Val v,(h,l(V:=None)))
by (rule eval-evals.intros)
with casts
have P,E(V — T) F (V:=Val v,(h,l(V:=None))) = (Val v',(h,I(V — v’)))
by —(rule-tac I=I(V:=None) in LAss,auto simp:fun-upd-same)
hence P.E - ({V:T :=Val v; Val u},(h,0)) = (Val u,(h, (I{(Vi=0") (V=1 V)))
by (fastforce intro!: eval-evals.intros)
thus ?case using s s’ e’ by simp
next
case SeqRed thus Zcase by (fastforce elim: eval-cases intro: eval-evals.intros)
next
case RedSeq thus ?case by (fastforce elim: eval-cases intro: eval-evals.intros)
next
case CondRed thus ?case by (fastforce elim: eval-cases intro: eval-evals.intros)
next
case RedCondT thus ?case by (fastforce elim: eval-cases intro: eval-evals.intros)
next
case RedCondF thus ?case by (fastforce elim: eval-cases intro: eval-evals.intros)
next
case Red While
thus ?case by (auto simp add: unfold-while intro:eval-evals.intros elim:eval-cases)
next
case ThrowRed thus ?case by (fastforce elim: eval-cases intro: eval-evals.intros)
next
case RedThrowNull
thus ?case by —(auto elim!:eval-cases intro!:eval-evals. ThrowNull eval-finalld)
next

153

case ListRed! thus ?case by (fastforce elim: evals-cases intro: eval-evals.intros)
next
case ListRed?2
thus ?case by (fastforce elim!: evals-cases eval-cases
intro: eval-evals.intros eval-finalld)
next
case StaticCastThrow
thus ?case by (fastforce elim: eval-cases intro: eval-evals.intros)
next
case DynCastThrow
thus ?case by (fastforce elim: eval-cases intro: eval-evals.intros)
next
case BinOpThrowl thus Zcase by (fastforce elim: eval-cases intro: eval-evals.intros)
next
case BinOpThrow?2 thus ?case by (fastforce elim: eval-cases intro: eval-evals.intros)
next
case LAssThrow thus ?case by (fastforce elim: eval-cases intro: eval-evals.intros)
next
case FAccThrow thus ?case by (fastforce elim: eval-cases intro: eval-evals.intros)
next
case FAssThrowl! thus ?case by (fastforce elim: eval-cases intro: eval-evals.intros)
next
case FAssThrow2 thus ?case by (fastforce elim: eval-cases intro: eval-evals.intros)
next
case CallThrowObj thus ?case by (fastforce elim: eval-cases intro: eval-evals.intros)
next
case (CallThrowParams es vs v es’ E v Copt M s s’ e')
have P,E F (Val v,s) = (Val v,s) by (rule eval-evals.intros)
moreover
have es: es = map Val vs @ Throw r # es’ by fact
have eval-e: P,E + (Throw r,s) = (e’,;s") by fact
then obtain s s’ = s and e¢” ¢/ = Throw r
by cases (auto elim!:eval-cases)
with list-eval-Throw [OF eval-€] es
have P .E b (es,s) [=] (map Val vs @ Throw r # es’,s’) by simp
ultimately have P,E + (Call (Val v) Copt M es,s) = (Throw r,s’)
by (rule eval-evals. CallParamsThrow)
thus Zcase using e’ by simp
next
case (BlockThrow EV T rs s’ e’
have P,E b (Throw r, s) = {(e’,;s") by fact
then obtain s s’ = s and e¢” ¢/ = Throw r
by cases (auto elim!:eval-cases)
obtain h [where s: s=(h,l) by (cases s)
have P.E(V +— T) F (Throw r, (h,l(V:=None))) = (Throw r, (h,l(V:=None)))
by (simp add:eval-evals.intros eval-finalld)
hence P,E + ({V:T;Throw r},(h,0)) = (Throw r, (h,(I(V:=None))(V:=l V)))
by (rule eval-evals. Block)
thus P,E+ ({V:T; Throw r},s) = (e’,s’) using s s’ ¢’ by simp

154

next
case (InitBlockThrow T vv' E Vrss'e’)
have P.E b (Throw r,s) = (e’,s) and casts:P = T casts v to v’ by fact+
then obtain s s’ = s and e ¢/ = Throw r
by cases (auto elim!:eval-cases)
obtain h [where s: s = (h,]) by (cases s)
have P,E(V — T) F (Val v,(h,l(V:=None))) = (Val v,(h,l(V:=None)))
by (rule eval-evals.intros)
with casts
have P,E(V — T) F (V:=Val v,(h,I(V := None))) = (Val v',(h,I(V — v')))
by —(rule-tac I=I(V:=None) in LAss,auto simp:fun-upd-same)
hence P.E+ ({V:T := Val v; Throw r},(h,l)) = (Throw r, (h, (I(V—v)(V:=]
V)))
by (fastforce intro:eval-evals.intros)
thus P,E - ({V:T := Val v; Throw r},s) = (e’,s") using s s’ ¢’ by simp
next
case SeqThrow thus ?case by (fastforce elim: eval-cases intro: eval-evals.intros)
next
case CondThrow thus ?case by (fastforce elim: eval-cases intro: eval-evals.intros)
next
case ThrowThrow thus ?case by (fastforce elim: eval-cases intro: eval-evals.intros)
qged

declare split-paired-All [simp] split-paired-Ez [simp]
setup «map-theory-claset (fn ctzt => ctat addSbefore (split-all-tac, split-all-tac))»
setup <map-theory-simpset (fn ctazt => ctat addloop (split-all-tac, split-all-tac))»

Its extension to —*:

lemma extend-eval:

assumes wf: wwf-prog P

and reds: P.E + (e,s) =« (e”,s") and eval-rest: P,E\ (e"s") = (e',s")
shows P.E I (e,s) = (e'/s")

using reds eval-rest

apply (induct rule: converse-rtrancl-induct2)
apply simp

apply simp

apply (rule extend-1-eval)

apply (rule wf)

apply assumption+

done

lemma extend-evals:
assumes wf: wwf-prog P
and reds: P,E + (es,s) [=]x (es”,s") and eval-rest: P.E F (es” sy [=] (es’,s’)

155

shows P.E I (es,s) [=] (es’,s)

using reds eval-rest

apply (induct rule: converse-rtrancl-induct2)
apply simp

apply simp

apply (rule extend-1-evals)

apply (rule wf)

apply assumption+

done

Finally, small step semantics can be simulated by big step semantics:

theorem

assumes wf: wwf-prog P

shows small-by-big: [P,E F (e,s) =« (e',s"); final '] = P,E \ (e,s) = (e',s")
and [P,E F (es,s) [=]* (es’;s”); finals es'] = P,E - (es,s) [=] (es’,s’

proof —
note wf
moreover assume P F F (e;s) —x (e/,s')
moreover assume final e’
then have P,F F (e';s") = (e',s')
by (rule eval-finalld)
ultimately show P,E I (e,s)=(e’,s")
by (rule extend-eval)
next
note wf
moreover assume P F + (es,s) [=]x (es',s”)
moreover assume finals es’
then have P FE F (es’,s”) [=] (es’,s”)
by (rule eval-finalsld)
ultimately show P.E I (es,s) [=] (es’;s”)
by (rule extend-evals)
qed

19.18 Equivalence

And now, the crowning achievement:

corollary big-iff-small:

wwf-prog P —

P.EF (es) = (e/;s')y = (P,EF (e,s) —=x* (e’ sy A final €'
by (blast dest: big-by-small eval-final small-by-big)

end

20 Definite assignment

theory DefAss

156

imports BigStep
begin
20.1 Hypersets

type-synonym hyperset = vname set option

definition hyperUn :: hyperset = hyperset = hyperset (infixl (L) 65) where
AU B = case A of None = None
| lA] = (case B of None = None | |B] = |A U B])

definition hyperInt :: hyperset = hyperset = hyperset (infixl 7> 70) where
AN B = case A of None = B
| l[A] = (case B of None = |A] | |B] = |A N B))

definition hyperDiff1 :: hyperset = vname = hyperset (infixl «©) 65) where
A6 a = case A of None = None | |A] = |A — {a}]

definition hyper-isin :: vname = hyperset = bool (infix (€€» 50) where
a€e A = case A of None = True | |[A] = a € A

definition hyper-subset :: hyperset = hyperset = bool (infix <C» 50) where
A C B = case B of None = True
| |B] = (case A of None = False | |A| = A C B)

lemmas hyperset-defs =
hyperUn-def hyperInt-def hyperDiff1-def hyper-isin-def hyper-subset-def

lemma [simp]: [{} UA=A AN AU [{}] =4
by (simp add:hyperset-defs)

lemma [simp]: |A] U |B] =AU B|] A |A] ©a=|A— {a}]
by (simp add:hyperset-defs)

lemma [simp]: None LI A = None A A U None = None
by (simp add:hyperset-defs)

lemma [simp]: a €€ None A None & a = None
by (simp add:hyperset-defs)

lemma hyperUn-assoc: (AU B) U C =AU (BUC)
by (simp add:hyperset-defs Un-assoc)

lemma hyper-insert-comm: A U |{a}] = [{a}] U A AN AU (|{a}] U B) = [{a}]

U (AU B)
by (simp add:hyperset-defs)

20.2 Definite assignment

primrec A :: expr = hyperset and As :: expr list = hyperset where

157

A (new C) = [{}] |

A (Cast Ce) = A e |

A((Che) = Ace|

A (Valv) = [{}] |

A (e1 «bop» e2) = A eg U A ea|

A (Var V) = [{}] |

A (LAss Ve)=[{V}]UAe|

A (e-F{Cs}) = A e|

A (e1-F{Cs}:=e3) = A ey U A ey |

A (Call e Copt M es) = A el As es |
A{V:T;e})=Aeo V|

A (erze2) = Aeg U A ey |

A (if (e) eg else ea) = AelU (Aer MAe) |
A (while (b) €) = A b |

A (throw e) = None |

As () = [} |

As (e#es) = A el As es

primrec D :: expr = hyperset = bool and Ds :: expr list = hyperset = bool
where
D (new C) A = True |

D (Cast Ce) A=DeA|

D ((Cle)y A=DeA|

D (Valv) A = True |

D (e1 «bop» ea) A= (D eg AND ex (AU A ey)) |
D (Var V) A= (V €€ A) |

D (LAss Ve) A=D e A |

D (eeF{Cs}) A=DeA|

D (e1-F{Cs}:=e3) A= (D et AND ea (AU A e7)) |
D (Call e Copt Mes) A= (D eAANDses (AU Ae)) |
D ({V:T; e})A De(Ac V)|

D(el,,eg) (DelAADEQ (AUA@l))‘

D (if (e) eq else e3) A =
DeANDea (AUAe) ADex (AU Ae) |
D(whlle() c) A=(DeAANDc(AU Ae)) |

D (throwe) A=D e A |

Ds ([]) A = True |
Ds (e#es) A= (D eANDses (AU A e))

lemma As-map-Val[simp]: As (map Val vs) = [{}]
by (induct vs) simp-all

lemma D-append[iff]: NA. Ds (es Q es’) A = (Dses AN Dses’ (AU As es))
by (induct es type:list) (auto simp:hyperUn-assoc)

lemma A-f: NA. Ae=[A] = AC fve

158

and AA. Ases=|A] = A C fuses

apply(induct e and es rule: A.induct As.induct)
apply (simp-all add:hyperset-defs)

apply blast+

done

lemma sqUn-lem: AC A’=— AU BLC A'UB
by (simp add:hyperset-defs) blast

lemma diff-lem: AC A= ASbCZ A'Cb
by (simp add:hyperset-defs) blast

lemma D-mono: NA A" AC A’= D e A= D (ezexpr) A’
and Ds-mono: NA A’ AC A’ = Ds es A = Ds (es:expr list) A’

apply (induct e and es rule: D.induct Ds.induct)
apply simp

apply simp

apply simp

apply simp

apply simp apply (iprover dest:sqUn-lem)
apply (fastforce simp add:hyperset-defs)
apply simp

apply simp

apply simp apply (iprover dest:sqUn-lem)
apply simp apply (iprover dest:sqUn-lem)
apply simp apply (iprover dest:diff-lem)
apply simp apply (iprover dest:sqUn-lem)
apply simp apply (iprover dest:sqUn-lem)
apply simp apply (iprover dest:sqUn-lem)
apply simp

apply simp

apply simp

apply (iprover dest:sqUn-lem)

done

lemma D-mono: D e A= AC A= D e A’
and Ds-mono” Ds es A = AC A’ = Dses A’
by (blast intro: D-mono, blast intro:Ds-mono)

end

159

21 Runtime Well-typedness

theory WellTypeRT imports WellType begin

21.1 Run time types

primrec typeof-h :: prog = heap = val = ty option (:- F typeof.)) where
P + typeofy, Unit = Some Void
| P+ typeofy, Null = Some NT
| P+ typeof}, (Bool b) = Some Boolean
| P+ typeofy, (Intg ©) = Some Integer
| P+ typeofy, (Ref r) = (case h (the-addr (Ref r)) of None = None
| Some(C,S) = (if Subobjs P C (the-path(Ref r)) then
Some(Class(last(the-path(Ref r))))
else None))

lemma type-eq-type: typeof v = Some T = P typeof} v = Some T
by (induct v)auto

lemma typeof-Void [simp]: P+ typeofy, v = Some Void = v = Unit
by (induct v,auto split:if-split-asm)

lemma typeof-NT [simp]: P typeof}, v = Some NT = v = Null
by (induct v,auto split:if-split-asm,)

lemma typeof-Boolean [simp]: P & typeof, v = Some Boolean = 3b. v = Bool b
by (induct v,auto split:if-split-asm)

lemma typeof-Integer [simpl: P & typeofy, v = Some Integer = 3i. v = Intg i
by (induct v,auto split:if-split-asm)

lemma typeof-Class-Subo:

P - typeof, v = Some (Class C) =

Ja Cs D S. v = Ref(a,Cs) A h a = Some(D,S) N Subobjs P D Cs A last Cs = C
by (induct v,auto split:if-split-asm)

21.2 The rules

inductive
WTrt :: [prog,env,heap,expr, ty | = bool
(e b= 5 [51,51,51)50)
and WTrts :: [prog,env,heap,expr list,ty list] = bool

(¢-y-- F - [:] - [61,51,51]50)
for P :: prog
where
WTrtNew:

is-class P C —
P,E.h F new C : Class C

160

| WTrtDynCast:
[P,E,ht e: T; is-refT T; is-class P C'|
= P,Eh + Cast C e: Class C

| WTrtStaticCast:
[P,E,ht e: T; is-refT T; is-class P C'|
= P,E.ht- (C)e: Class C

| WTrtVal:
P+ typeofy, v = Some T =
PELRE Valv: T

| WTrtVar:
EV = Some T =
PEhRE Var V: T

| WTrtBinOp:
[P,Elht ey : Ty; P,EhE es: To
case bop of Eq = T = Boolean
| Add = T, = Integer N Ty = Integer A T = Integer |
= P,Eh ey «bop» ex : T

| WTrtLAss:
[EV =SomeT; PEhte:T;PFHT' <T]
= P,EhtF Vi=e: T

| WTrtFAcc:
[P,E.ht e: Class C; Cs # [|; P+ C has least F:T via Cs |
— PEhF eF{Cs): T

| WTrtFAceNT:
PEhte: NT = PEht eF{Cs}: T

| WTrtFAss:

[P,E,h F €1 : Class C; Cs # [];
Pt C has least F:T via Cs; PElhbes: T, PHT' < T1]
= P,E.ht e;-F{Cs}:=ex : T

| WTrtFAssNT:
[P.Eht e : NT; PEh: en: T P T' < T]
= P,E.ht e1-F{Cs}h:=ex : T
| WTrtCall:
[P,E.ht e: Class C; P& C has least M = (Ts,T,m) via Cs;
PEhtes|:] T8, PE Ts' [<] Ts]
= P,E.ht eM(es): T

| WTrtStaticCall:

161

[P,E,h & e: Class C'; P+ Path C' to C unique;
P+ C has least M = (Ts,T,m) via Cs;
PEhtes|:] Ts; PE Ts' [<] Ts]

= P,E.ht e (C:)M(es) : T

WTrtCallNT:
[P,E.ht e: NT; PEht es[] TS = P,E,h - Call e Copt Mes: T

WTrtBlock:
[P,E(V—T),ht e: T is-type P T] =
P,EhEA{V:T;e}: T’

WTrtSeq:
[P,E.ht ey : Ty; PEhtey:To] = P,Ehb erjea: To

WTrtCond:
[P,E,h & e: Boolean; P,E.ht e : T; PEhlE ex: T]
= P Ehtif (e) e; elseea : T

| WTrtWhile:
[P,E,h t e: Boolean; P,E.ht c: T]
= P,E,h + while(e) ¢ : Void

| WTrtThrow:
[P,E.ht e: T is-refT T]
— P, EhtF throwe: T

| WTrtNil:
P.EAE]

| WTrtCons:
[PE.hte:T; PEhFes|] Ts] = P,Eht e#es [[] T#Ts

declare
WTrt-WTrts.intros|[intro!]
WTHtNiliff

declare
WTrtFAcc[rule del] WTrtFAceNT [rule del]
WTrtFAss[rule del] WTrtFAssNT[rule del]
WTrtCall[rule del] WTrtCalINT[rule del)

lemmas WTrt-induct = WTrt-WTrts.induct [split-format (complete)]
and WTrt-inducts = WTrt-WTrts.inducts [split-format (complete)]

162

21.3 Easy consequences

inductive-simps [iff]:
PELF[[] Ts
P,Eh b eftes [:] T#Ts
P.E.ht (eftes))] Ts
PELE Valv: T
PElRE VarV:T
P,E,h F €156 T2
P,EhtEA{V:T;e}: T’

lemma [simp]: V Ts. (P,E,h - es; @ esg [:] Ts) =
(3Tsy Tsy. Ts = Tsy Q Tsg A P, EhE esy [}] Tsy & P,E,h b esy [:] Ts2)

apply (induct-tac esy)
apply simp
apply clarsimp
apply(erule thin-rl)
apply (rule iffT)
apply clarsimp
apply(rule exl)+
apply(rule conjI)
prefer 2 apply blast
apply simp
apply fastforce
done

inductive-cases WTrt-elim-cases[elim!]:

PEhAF newC: T
PELFE Cast Ce: T
PEhF (Che: T

P .EhF eq «bop» ex : T
PEWF Vi=e: T
P,Eht eF{Cs}: T
PEht eF{Cs} :=v:T
P.Eht e-M(es): T
PEhF e(C:)M(es): T
PEhtif (e) ep elseey: T
P,E,h b while(e) ¢: T
P,EhF throwe: T

21.4 Some interesting lemmas

lemma WTrts- Val[simp]:
NTs. (P,E.h = map Val vs [:] T5)
Ts)

(map (Av. (P + typeofy,) v) vs = map Some

163

apply (induct vs)
apply fastforce
apply/(case-tac T5)
apply simp
apply simp

done

lemma WTrts-same-length: \Ts. P,E,h t es [:] Ts = length es = length Ts
by (induct es type:list)auto

lemma WTrt-env-mono:
PEhte: T= (NE.EC,, E'= P,E''ht e: T)and
PEhtes[] Ts= (ANE. EC,, E'!= P,E’ht es[] Ts)

apply (induct rule: WTrt-inducts)

apply(simp add: WTrtNew)

apply (fastforce simp: WTrtDynCast)

apply (fastforce simp: WTrtStaticCast)

apply (fastforce simp: WTrtVal)

apply(simp add: WTrtVar map-le-def dom-def)
apply (fastforce simp add: WTrtBinOp)

apply (force simp:map-le-def)

apply (fastforce simp: WTrtFAcc)
apply(simp add: WTrtFAccNT)
apply (fastforce simp: WTrtFAss)
apply (fastforce simp: WTrtFAssNT)
apply (fastforce simp: WTrtCall)
apply (fastforce simp: WTrtStaticCall)
apply (fastforce simp: WTrtCalINT)
apply (fastforce simp: map-le-def)
apply (fastforce)

apply (fastforce simp: WTrtCond)
apply (fastforce simp: WTrtWhile)
apply (fastforce simp: WTrtThrow)
apply(simp add: WTrtNil)
apply(simp add: WTrtCons)

done

lemma WT-implies-WTrt: PEVF e:: T — P, EhtFe: T
and WTs-implies-WTrts: P,E & es [::] Ts = P,E,h es []] Ts

proof (induct rule: WT-WTs-inducts)

case WTVal thus ?case by (fastforce dest:type-eq-type)
next

case WTBinOp thus ?case by (fastforce split:bop.splits)

164

next
case WTFAcc thus ?case
by (fastforce introl: WTrtFAcc dest:Subobjs-nonempty
simp: LeastFieldDecl-def FieldDecls-def)
next
case WTFAss thus ?case
by (fastforce introl: WTrtFAss dest:Subobjs-nonempty
simp: LeastFieldDecl-def FieldDecls-def)
next
case WTCall thus ?case by (fastforce intro: WTrtCall)
qed (auto simp del: fun-upd-apply)

end

22 Conformance Relations for Proofs

theory Conform
imports Fxceptions WellTypeRT

begin
primrec conf :: prog = heap = val = ty = bool («-,-F -:< - [51,51,51,51]
50) where
Phtow Void = (P + typeof, v = Some Void)
| P,h v :< Boolean = (P F typeof, v = Some Boolean)

| Phwv:< NT = (P I typeofy, v = Some NT)
| P.h v :< (Class C) = (P typeof), v = Some(Class C) V P F typeofy, v =
Some NT)

:<
<
| P,h v :< Integer = (P F typeofy, v = Some Integer)
<
<

definition fconf :: prog = heap = (‘a — wal) = ('a — ty) = bool («-,-+ - '(:<")
- [61,51,51,51] 50) where

Pht v, ()T, =

VFDT. Ty, FD = Some T — (3. vy, FD = Some v A P,h v :< T)

definition oconf :: prog = heap = obj = bool (<-,-F - /> [51,51,51] 50) where
P.h k= obj / = let (C,S) = obj in
(V Cs. Subobjs P C Cs — (3!fs’. (Cs,fs’) € S)) A
(V Cs fs'. (Cs,fs’) € S — Subobjs P C Cs A
(3fs Bs ms. class P (last Cs) = Some (Bs,fs,ms) A
P.h k= fs' (:<) map-of fs))

definition hconf :: prog = heap = bool («-F - /> [51,51] 50) where
Pthy =
(Va obj. h a = Some obj — P,h = 0bj /) A preallocated h

definition lconf :: prog = heap = (‘a — wval) = (‘a — ty) = bool (¢-,- b -

'(:<")e - [51,51,51,51] 50) where
th F Um (:S)w Tm =

165

VVov vy V=>Smev— 3T. Ty, V=SomeTANPhtv:<T)

abbreviation
confs :: prog = heap = wal list = ty list = bool
(¢-- F - [:<] > [51,51,51,51] 50) where
P.hF s [:<] Ts = list-all2 (conf P h) vs Ts

22.1 Value conformance :<

lemma conf-Null [simp]: P,h b Null :< T = PENT T
by(cases T) simp-all

lemma typeof-conf([simp]: P & typeofy, v = Some T = P,hF v:< T
by (cases T) auto

lemma typeof-lit-conf[simp]: typeof v = Some T — Ph - v:< T
by (rule typeof-conf[OF type-eq-type])

lemma defval-conf[simp): is-type P T —> P,h F default-val T :< T
by(cases T) auto

lemma typeof-notclass-heap:

VC. T # Class C = (Pt typeof, v = Some T) = (P I typeof, v = Some
7)
by(cases T)(auto dest:typeof-Void typeof-NT typeof-Boolean typeof-Integer)

lemma assumes h:h a = Some(C,S)
shows conf-upd-obj: (P,h(a—(C,S") Fv:< T)= (Pht v:<T)

proof(cases T')
case Void
hence (P + typeofh(aH(aS/)) v = Some T) = (P typeofy, v = Some T)
by (fastforce intro:typeof-notclass-heap)
with Void show ?thesis by simp
next
case Boolean

hence (P + typeofh(aH

by (fastforce intro!:typeof-notclass-heap)
with Boolean show ?thesis by simp
next
case Integer
hence (P F typeofh(

(C,8)) V= Some T) = (P F typeofy, v = Some T)

a—(C,87) U = Some T) = (P F typeof), v = Some T)
by (fastforce introl:typeof-notclass-heap)
with Integer show ?thesis by simp
next

case NT

166

hence (P + typeofh(aH(C §n) V= Some T) = (P F typeofy, v = Some T)
by (fastforce intro:typeof-notclass-heap)
with NT show ?thesis by simp
next
case (Class C)
{ assume P + typeofh(a — (C, 8 V= Some(Class C")
with » have P F typeof;, v = Some(Class C’)
by (cases v) (auto split:if-split-asm) }
hence 1:P + typeofh(a —(C,8Y) U= Some(Class C') =
P I typeof, v = Some(Class C') by simp
{ assume type:P typeofh(a — (C, 8 V= Some NT
and typenot:P & typeofy, v # Some NT
have VC. NT # Class C by simp
with type have P & typeof, v = Some NT by(fastforce dest:typeof-notclass-heap)
with typenot have P & typeof, v = Some(Class C') by simp }
hence 2:[P typeofh(a = (C, 8)) V= Some NT; P typeofy, v # Some NT|
—
P+ typeof, v = Some(Class C') by simp
{ assume P F typeofy, v = Some(Class C’)
with h have P I typeofh(a — (C, 8 V= Some(Class C")
by (cases v) (auto split:if-split-asm) }
hence 3:P + typeof;, v = Some(Class C') =
P+ typeofh(a = (C,8) V= Some(Class C') by simp
{ assume typenot:P + typeofh(a — (C, 8) %+ Some NT
and type: P & typeofs, v = Some NT
have VC. NT # Class C by simp
with type have P F typeofh(a = (C,) U= Some NT
by (fastforce dest:typeof-notclass-heap)
with typenot have P + typeofh(a - (C, 8 V= Some(Class C") by simp }
hence 4:[P F typeofh(a — (C, 8) Y # Some NT; P F typeofy, v = Some NT|
—
P+ typeofh(a = (C,8) V= Some(Class C') by simp
from Class show ?thesis by (auto intro:1 2 3 /)
qed

lemma conf-NT [iff]: P,h - v :< NT = (v = Null)
by fastforce

22.2 Value list conformance [:<]
lemma confs-rev: P.ht rev s <] t = (P,h F s [:<] rev t)

apply rule
apply (rule subst [OF list-all2-rev])

apply simp
apply (rule subst [OF list-all2-rev])

167

apply simp
done

lemma confs-Cons2: Ph b xs <] y#ys = (T2 25. 2s = z#2s N Ph b 2 : <y A
P.h = zs [:<] ys)
by (rule list-ali2-Cons2)

22.3 Field conformance (:<)

lemma fconf-init-fields:
class P C = Some(Bs,fs,ms) = P,h & init-class-fieldmap P C (:<) map-of fs

apply (unfold feconf-def init-class-fieldmap-def)
apply clarsimp

apply (rule exI)

apply (rule congl)

apply (simp add:map-of-map)
apply(case-tac T)

apply simp-all

done

22.4 Heap conformance

lemma hconfD: [P+ h +/; h a = Some obj | = P,h - obj \/

apply (unfold hconf-def)

apply (fast)
done

lemma hconf-Subobjs:
[h a = Some(C,S); (Cs, fs) € S; P+ h /] = Subobjs P C Cs

apply (unfold hconf-def)
apply clarsimp

apply (erule-tac x=a in allF)
apply (erule-tac z=C in allF)
apply (erule-tac z=S in allFE)
apply clarsimp

apply (unfold oconf-def)

apply fastforce
done

22.5 Local variable conformance

lemma [conf-upd:
[Phb (L) E; PAbv:<T;EV =S8omeT] = Pht (Vo) (:<)y F

168

apply (unfold lconf-def)
apply auto
done

lemma lconf-empty[iff]: P,h b Map.empty (:<),, E
by (simp add:lconf-def)

lemma lconf-upd2: [P,h b1 (:<)y E; P,h kv :< T] = PhF (Vo) (<)
E(Ve—T)
by (simp add:lconf-def)

22.6 Environment conformance

definition envconf :: prog = env = bool (<-+ - /> [51,51] 50) where
PHE/=VVT.EV = SomeT — is-type P T

22.7 Type conformance

primrec
type-conf :: prog = env = heap = expr = ty = bool
(4= F = :yp - [51,51,51]50)
where
type-conf-Void: PEhAF e:np Void <— (P,E,hF e: Void)
| type-conf-Boolean: P,E.h & e :np Boolean <— (P,E,h = e : Boolean)
| type-conf-Integer: P,E.h & e : 7 Integer <— (P,E,h - e : Integer)
| type-conf-NT: P,Eht e:jp NT +— (P,E,he: NT)
| type-conf-Class: P,E.ht e :yp Class C +—
(P,E.h+e: Class CV P,E.h - e: NT)

fun
types-conf :: prog = env = heap = expr list = ty list = bool
(¢=-- F - [y - [51,51,51]50)
where
P,E.h [] [:]NT [] +— True
| P,E,h - (e#es) [y (T#T5) «—
(P,E.h - eyp T AN PELE es [y T9)
| P,E,ht= es [}|y7 Ts «— False

lemma wi-same-type-typecony:
PEhFe:T= PEhtFe:nyp T
by(cases T) auto

lemma wits-same-types-typesconf:

P,E,h b es [:] Ts = types-conf P E h es Ts
proof (induct Ts arbitrary: es)

case Nil thus ?case by (auto elim: WTrts.cases)
next

case (Cons T' Ts")

have wtes:P,E.h F es [:] T'#Ts’

169

and IH:A\es. P,Eh F es [:] Ts' = types-conf P E h es Ts' by fact+
from wtes obtain e’ es’ where es:es = e'#es’ by(cases es) auto
with wtes have wte:P,E.h b e’ : T’ and wtes”:P,E.h - es’ [:] Ts’
by simp-all
from TH[OF wtes’] wte’ es show ?case by (fastforce intro:wt-same-type-typeconf)
qed

lemma types-conf-smaller-types:
Nes Ts. [length es = length TS’ types-conf P E h es Ts'; P+ Ts' [<] Ts |
= 3Ts". P.E.htes[]] TS N PF Ts" [<] Ts

proof (induct Ts’)
case Nil thus ?case by simp
next
case (Cons S Ss)
have length:length es = length(S+#Ss)
and types-conf:types-conf P E h es (S#5Ss)
and subs:P - (S#5Ss) [<] Ts
and IH:\es Ts. [length es = length Ss; types-conf P E h es Ss; P F Ss [<] T4]
= 3 Ts". P,E.htes[] Ts" AN P+ Ts" [<] Ts by fact+
from subs obtain U Us where Ts:Ts = U# Us by(cases Ts) auto
from length obtain e’ es’ where es:es = e'#es’ by(cases es) auto
with types-conf have type:P,E,h \ e’ :yp S
and type’:types-conf P E h es’ Ss by simp-all
from subs Ts have subs":P - Ss [<] Us and sub:P + S < U
by (simp-all add:fun-of-def)
from sub type obtain T’ where step:P,Eh-¢': T" NP+ T" < U
by (cases S,auto,cases U,auto)
from length es have length es’ = length Ss by simp
from IH[OF this type' subs’] obtain Ts”
where P.Eh - es' [[] Ts"" AN PF Ts" [<] Us
by auto
with step have P, E.h F (e'#es’) [}] (T"#T8") N P+ (T"#Ts") [<] (U#Us)
by (auto simp:fun-of-def)
with es Ts show ?case by blast
qed

end

23 Progress of Small Step Semantics

theory Progress imports Equivalence DefAss Conform begin

170

23.1 Some pre-definitions

lemma final-refE:

[P,E,h t e: Class C; final e;
Nr.e=refr = Q;
Nr.e=Throwr = Q] = @

by (simp add:final-def ,auto,case-tac v,auto)

lemma finalRefE:
[P,E,h & e: T; is-refT T; final ¢
e = null = @
Ar.e=refr = @
Nr. e = Throw r = Q] = Q

apply (cases T)
apply (simp add:is-refT-def)+
apply (simp add:final-def)
apply (erule disjE)
apply clarsimp
apply (erule ezE)+
apply fastforce
apply (auto simp:final-def is-refT-def)
apply (case-tac v)
apply auto
done

lemma subF:
[PEH T < T is-type P T'; wf-prog wf-md P;
[T=T;VC. T=# Class C | = @
ANC D.[T = Class C; T' = Class D; P & Path C to D unique | = Q;
NC.[T=NT;T'=ClassC] = Q] = @

apply(cases T)

apply auto

apply(drule-tac T = T in widen-Class)
apply auto

done

lemma assumes wf:wf-prog wf-md P
and typeof: P+ typeofy, v = Some T’
and type:is-type P T
shows sub-casts:P + T' < T = Jv'. P+ T casts v to v’

proof(erule subE)

from type show is-type P T .
next

from wf show wf-prog wf-md P .

171

next
assume 7' = T and VC. T’ # Class C
thus 3v’. P F T casts v to v’ by(fastforce intro: casts-prim)
next
fix C D
assume T T' = Class C and T:T = Class D
and path-unique: P = Path C to D unique
from T’ typeof obtain a Cs where v:v = Ref(a,Cs) and last:last Cs = C
by (auto dest!:typeof-Class-Subo)
from last path-unique obtain Cs’ where P + Path last Cs to D via Cs’
by (auto simp:path-unique-def path-via-def)
hence P + Class D casts Ref(a,Cs) to Ref(a,CsQ, Cs’)
by —(rule casts-ref,simp-all)
with T v show 3v’. P+ T casts v to v’ by auto
next
fix C
assume 7' = NT and T:T = Class C
with typeof have v = Null by simp
with T show 3v’. P+ T casts v to v’ by(fastforce intro: casts-null)
qed

Derivation of new induction scheme for well typing:

inductive
WTrt' :: [prog,env,heap,expr, ty] = bool
(=== F -2 [51,51,51]50)
and WTrts":: [prog,env,heap,expr list,ty list] = bool
(tomp- F - ["] - [51,51,51]50)
for P :: prog
where
is-class P C = P,E.h+ new C :’ Class C
| [is-class P C; P,E\h & e ' T; is-refT T
= P,E,ht Cast Ce:’ Class C
| [is-class P C; P,E.,h e ' T; is-refT T]
= P,E,ht (C)e:’ Class C
| P+ typeofy, v= Some T = P,E.h+ Valv:' T
| EV = Some T = P,Eht Var V. T
| [P,E,h b ey ' T1; P,Eh b eg ! To
case bop of Eq = T = Boolean
| Add = T, = Integer N Ty = Integer N T = Integer |
= P,Eht e «bop» eg ' T
| | P,E,h b Var V' T; PEh e T' J/#/ms, P T < T]
= P Eht Vi=e:' T
| [P,E,h e Class C; Cs # [|; P+ C has least F:T via Cs]
— PEhtF eF{Cs}:' T
| P.Eshte:' N = P,EhtF eF{Cs}:' T
| [P,E.ht e ' Class C; Cs # [|; P+ C has least F:T via Cs;
PEht e THhPET' <T]
= P,E.ht e-F{Csh:=ey ' T
| [P,E,h F er:'NT; P.EJhF e ' T, PF T'< T]

172

= P,E.ht e1-F{Cs}:=ey ' T
| [P,E,h b e’ Class C; P+ C has least M = (Ts,T,m) via Cs;
PEhtes[] Ts';, PE Ts' [<] Ts]
= P,E,h k- eM(es):' T
| [P,E,h b e’ Class C'; P+ Path C' to C unique;
P+ C has least M = (Ts,T,m) via Cs;
PEhtes[] Ts"y PE Ts' [<] Ts]
= P,Eht e(C:)M(es) ' T
[P,E.hF e NT; PE.htes[] Ts) = P,E,h + Call e Copt Mes:' T
[P+ typeofy, v= Some T'; P,E(V—=T)ht ex: To; PF T' < T; is-type P T

|

|

]
= P,ELF{V:T := Valv; e} :' To

| [PLE(V=T),h b e:" T’ — assigned V e; is-type P T |
= PELE{V:T;e}: T’

| [P,E,ht e T1; PLEhtb ey To] = P,EhE erjen:’ To

| [P,E,h & e:' Boolean; P,E.ht e1:' T; P,EhE e’ T
= P,Ehtif (e) eg else ey :’ T

| [P,E,h & e:' Boolean; P,E.ht c¢:' T]
= P,E,h F while(e) ¢ :’ Void

| [P,E,h b e T is-refT T = P,E,ht throwe:' T

| P.ERE [T (]
|[P,E.hte: T; PEht es]'] Ts] = P,Eht e#es] T#Ts

lemmas WTrt'-induct = WTrt'-WTrts’.induct [split-format (complete)]
and WTrt'-inducts = WTrt'-WTrts'.inducts [split-format (complete))

inductive-cases WTrt'-elim-cases|elim!]:
PEREV :=e:!T

. and some easy consequences:

lemma [iff]: P,E,ht ey55e0 ' To = (3T1. PE,hF ey’ Ty AN P, ERE ex:’ Ta)

apply (rule iffI)
apply (auto elim: WTrt'.cases introl: WTrt'-WTrts'.intros)
done

lemma [iff]: P,E,h - Valv ' T = (P + typeofy, v = Some T)

apply (rule iffI)
apply (auto elim: WTrt'.cases introl: WTrt'-WTrts'.intros)
done

lemma [iff]: P,E,h = Var V ./ T = (EV = Some T)

173

apply (rule iffI)
apply (auto elim: WTrt'.cases introl: WTrt'-WTrts'.intros)
done

lemma wt-wt: P, E.hte: T = PEhte:' T
and wits-wts”: P,Eh b es ;] Ts = P,E.h F es] Ts

proof (induct rule: WTrt-inducts)
case (WTrtBlock EV T he T')
thus ?case
apply(case-tac assigned V e)
apply (auto intro: WTrt'-WTrts'.intros
simp add:fun-upd-same assigned-def simp del:fun-upd-apply)
done
qed(auto intro: WTrt'-WTrts'.intros simp del:fun-upd-apply)

lemma wt’-wt: PEh+-e:' T = P Ehte: T
and wts’-wts: P,E\h - es [/] Ts = P,E,h t- es [:] Ts

apply (induct rule: WTrt'-inducts)
apply (fastforce intro: WTrt-WTrts.intros)+
done

corollary wt’-iff-wt: (P,E.h e T) = (P,E.hte: T)
by (blast intro:wt-wt’ wt’-wt)

corollary wts’-iff-wts: (P,E,h - es)] Ts) = (P,E,h b es []] T5)
by (blast intro:wts-wts’ wts’-wts)

lemmas WTrt-inducts2 = WTrt'-inducts [unfolded wt’-iff-wt wts’-iff-wts,
case-names WTrtNew WTrtDynCast WTrtStaticCast WTrtVal WTrtVar WTrt-
BinOp
WTrtLAss WTrtFAcc WTrtFAcceNT WTrtFAss WTrtFAssNT WTrtCall WTrt-
StaticCall WTrtCallINT
WTrtInitBlock WTrtBlock WTrtSeq WTrtCond WTrtWhile WTrtThrow
WTrtNil WTrtCons, consumes 1]

23.2 The theorem progress

lemma mdc-leg-dyn-type:
PERte: T =

VCaCsDS. T= Class C A e = ref(a,Cs) A ha = Some(D,S) — P+ D =<*
C

174

and P.EhF es [}] Ts =
VT Ts' ces’ Ca Cs DS. Ts = TH#Ts' A es = eftes’ A
T = Class C N e = ref(a,Cs) A h a = Some(D,S)
— PFD=x*C

proof (induct rule: WTrt-inducts2)
case (WTrtVal hv T E)
have type:P & typeof}, v = Some T by fact
{fix CaCsDS
assume T = Class C' and Val v = ref(a,Cs) and h a = Some(D,S)
with type have Subobjs P D Cs and C = last Cs by (auto split:if-split-asm)
hence P = D <* C by simp (rule Subobjs-subclass) }
thus ?case by blast
qed auto

lemma appendPath-append-last:
assumes notempty:Ds # [|
shows(Cs @, Ds) @, [last Ds| = (Cs @, Ds)

proof —
have last Cs = hd Ds = last (Cs Q tl Ds) = last Ds
proof(cases tl Ds = [])
case True
assume last:last Cs = hd Ds
with True notempty have Ds = [last Cs] by (fastforce dest:hd-Cons-tl)
hence last Ds = last Cs by simp
with True show ?thesis by simp
next
case False
assume last:last Cs = hd Ds
from notempty False have last (tl Ds) = last Ds
by —(drule hd-Cons-tl,drule-tac x=hd Ds in last-ConsR,simp)
with Fualse show ?thesis by simp
qed
thus ?thesis by(simp add:appendPath-def)
qged

theorem assumes wf: wwf-prog P

shows progress: P EhFe: T —

(NLIPFR;PEEL;Del|doml|;— finale] = Fe's’. P,EF (e, (hl)) —
(')

and P,EhF es[}] Ts =

(NLTPFR+; PEE/;Dses|doml]; - finals es] = TJes’ s". P,E+ (es,(h,l))
(=] (es’,s?)

175

proof (induct rule: WTrt-inducts2)
case (WTrtNew C E h)
show ?Zcase
proof cases
assume Ja. h a = None
with WTrtNew show ?thesis
by (fastforce del:exE intro!: RedNew simp:new-Addr-def)
next
assume —(Ja. h a = None)
with WTrtNew show ?thesis
by (fastforce intro: RedNewFail simp add:new-Addr-def)
qed
next
case (WTrtDynCast CE he T)
have wte: P E.h - e : T and refT: is-refT T and class: is-class P C
and IH: N\l. [P+ h «/; P+ E \/; D e |doml]; = final €]
= Je's. P,EF (e(hl)) — (e',s)
and D: D (Cast C e) [dom]
and hconf: P+ h +/ and envconf:P -+ E \/ by fact+
from D have De: D e |dom l| by auto
show ?Zcase
proof cases
assume final e
with wte refT show ?thesis
proof (rule finalRefF)
assume e = null thus ?case by(fastforce intro: RedDynCastNull)
next
fix r assume e = ref r
then obtain a Cs where ref:e = ref(a,Cs) by (cases 1) auto
with wte obtain D S where h:h a = Some(D,S) by auto
show ?thesis
proof (cases P+ Path D to C unique)
case True
then obtain Cs’ where path:P - Path D to C via Cs’
by (fastforce simp:path-via-def path-unique-def)
then obtain Ds where Ds = appendPath Cs Cs’ by simp
with h path True ref show ?thesis by (fastforce intro: RedDynCast)
next
case Fulse
hence path-not-unique:— P & Path D to C unique .
show ?thesis
proof(cases P & Path last Cs to C unique)
case True
then obtain Cs’ where P - Path last Cs to C via Cs’
by (auto simp:path-via-def path-unique-def)
with True ref show ?thesis by(fastforce intro: RedStatic UpDynCast)
next
case Fulse
hence path-not-unique’:— P + Path last Cs to C unique .

176

thus ?thesis
proof(cases C ¢ set Cs)
case Fulse
then obtain Ds Ds’ where Cs = Ds@Q[C]@QDs’
by (auto simp:in-set-conv-decomp)
with ref show ?thesis by(fastforce intro: RedStaticDownDynCast)
next
case True
with path-not-unique path-not-unique’ h ref
show ?thesis by (fastforce intro: RedDynCastFail)
qed
qed
qed
next
fix r assume e = Throw r
thus ?thesis by (blast intro:red-reds. DynCast Throw)
qed
next
assume nf: - final e
from TH[OF hconf envconf De nf] show ?thesis by (blast intro:DynCastRed)
qged
next
case (WTrtStaticCast C Eh e T)
have wte: P,E,h \- e : T and refT: is-refT’ T and class: is-class P C
and IH: \I. [P+ h/; P+ E /; D e |dom l]; = final €]
= Je’s. P,EF (e(h)) — (e,s)
and D: D ((C)e) [dom 1]
and hconf: P+ h +/ and envconf:P + E \/ by fact+
from D have De: D e |dom [| by auto
show ?Zcase
proof cases
assume final e
with wte refT show ?thesis
proof (rule finalRefE)
assume e = null with class show ?case by(fastforce intro: RedStaticCastNull)
next
fix r assume e = ref r
then obtain a Cs where ref:e = ref(a,Cs) by (cases) auto
with wte wf have class:is-class P (last Cs)
by (auto intro:Subobj-last-isClass split:if-split-asm)
show ?thesis
proof(cases P b (last Cs) <* C)
case True
with class wf obtain Cs’ where P - Path last Cs to C via Cs’
by (fastforce dest:leq-implies-path)
with True ref show ?thesis by(fastforce intro: RedStatic UpCast)
next
case Fulse
have notleq:— P - last Cs =* C by fact

177

thus ?thesis
proof(cases C ¢ set Cs)
case Fulse
then obtain Ds Ds’ where Cs = Ds@Q[C]@QDs’
by (auto simp:in-set-conv-decomp)
with ref show ?thesis
by (fastforce intro: RedStaticDownCast)
next
case True
with ref notleq show %thesis by (fastforce intro: RedStaticCastFail)
ged
qed
next
fix r assume e = Throw r
thus ?thesis by(blast introl:red-reds.StaticCast Throw)
qed
next
assume nf: - final e
from IH[OF hconf envconf De nf] show ?thesis by (blast intro:StaticCastRed)
qed
next
case WTrtVal thus ?case by(simp add:final-def)
next
case WTrtVar thus ?case by(fastforce intro: RedVar simp:hyper-isin-def)
next
case (WTrtBinOp E h el T1 e2 T2 bop T")
have bop:case bop of Eq = T' = Boolean
| Add = T1 = Integer N T2 = Integer N T' = Integer
and wtel:P,Eh+ el : T1 and wte2:P,Eh + e2 : T2 by fact+
show ?Zcase
proof cases
assume final el
thus ?thesis
proof (rule finalFE)
fix vl assume el [simpl:el = Val v1
show ?thesis
proof cases
assume final e2
thus ?thesis
proof (rule finalE)
fix v2 assume e2 [simp]:e2 = Val v2
show ?thesis
proof (cases bop)
assume bop = Eq
thus ?thesis using WTrtBinOp by (fastforce intro: RedBinOp)
next
assume Add:bop = Add
with el e2 wtel wte2 bop obtain il i2
where vl = Intg il and v2 = Intg i2

178

by (auto dest!:typeof-Integer)
with Add obtain v where binop(bop,v1,v2) = Some v by simp
with el e2 show ?thesis by (fastforce intro: RedBinOp)
qed
next
fix a assume e2 = Throw a
thus ?thesis by (auto intro:red-reds. BinOp Throw?2)
qed
next
assume - final e2 with WTrtBinOp show ?thesis
by simp (fast intro!: BinOpRed?2)
qed
next
fix r assume el = Throw r
thus ?thesis by simp (fast intro:red-reds. BinOp Throwl)
qed
next
assume — final el with WTrtBinOp show ?thesis
by simp (fast intro:BinOpRed1)
qed
next
case (WTrtLAss Eh V T e T')
have wte:P,E.h e : T’
and wtvar:P,E.h = Var V. T
and sub:PF T'< T
and envconf:P + E / by fact+
from envconf wtvar have type:is-type P T by(auto simp:envconf-def)
show ?Zcase
proof cases
assume fin:final e
from fin show ?case
proof (rule finalE)
fix v assume e:e = Val v
from sub type wf show Zcase
proof (rule subFE)
assume eq:T'= T and VC. T' # Class C
hence P + T casts v to v
by simp(rule casts-prim)
with wte wtvar eq e show ?thesis
by (auto introl: RedLAss)
next
fix C D
assume T"T' = Class C and T:T = Class D
and path-unique: P = Path C to D unique
from wite e T’ obtain a Cs where ref:e = ref(a,Cs)
and last:last Cs = C
by (auto dest!:typeof-Class-Subo)
from path-unique obtain Cs’ where path-via:P + Path C to D via Cs’
by (auto simp:path-unique-def path-via-def)

179

with last have P & Class D casts Ref(a,Cs) to Ref(a,CsQ,Cs’)
by (fastforce intro:casts-ref simp:path-via-def)
with wte wtvar T ref show ?thesis
by (auto introl: RedL Ass)
next
fix C
assume T"T'= NT and T:T = Class C
with wie e have null:e = null by auto
have P - Class C casts Null to Null
by —(rule casts-null)
with wte wtvar T null show ?thesis
by (auto introl: RedLAss)
qed
next
fix r assume e = Throw r
thus ?thesis by(fastforce intro:red-reds.LAss Throw)
qed
next
assume — final e with WTrtLAss show ?thesis
by simp (fast intro:LAssRed)
qged
next
case (WTrtFAcc Ehe C Cs F T)
have wte: P,E,h - e : Class C
and field: P+ C has least F:T via Cs
and notemptyCs:Cs # |]
and hconf: P+ h +/ by fact+
show ?Zcase
proof cases
assume final e
with wte show Zthesis
proof (rule final-refE)
fix r assume e: ¢ = ref r
then obtain o Cs’ where ref:e = ref(a,Cs’) by (cases r) auto
with wte obtain D S where h:h a = Some(D,S) and suboD:Subobjs P D
Cs’
and last:last Cs' = C
by (fastforce split:if-split-asm)
from field obtain Bs fs ms
where class: class P (last Cs) = Some(Bs,fs,ms)
and fs:map-of fs F = Some T
by (fastforce simp:LeastFieldDecl-def FieldDecls-def)
obtain Ds where Ds:Ds = Cs'@,Cs by simp
with notemptyCs class have class:class P (last Ds) = Some(Bs,fs,ms)
by (drule-tac Cs'=Cs’ in appendPath-last) simp
from field suboD last Ds wf have subo:Subobjs P D Ds
by (fastforce intro: Subobjs-appendPath simp: LeastFieldDecl-def FieldDecls-def)
with hconf h have P,h = (D,S) / by (auto simp:hconf-def)
with class’ subo obtain fs’ where S:(Ds,fs’) € S

180

and Pkt fs' (:<) map-of fs
apply (auto simp:oconf-def)
apply (erule-tac x=Ds in allE)
apply auto
apply (erule-tac z=Ds in allE)
apply (erule-tac z=fs" in allF)
apply auto
done
with fs obtain v where fs' F = Some v
by (fastforce simp:fconf-def)
with h last Ds S
have P.E - ((ref (a,Cs))-F{Cs}, (h,0)) — (Val v,(h,l))
by (fastforce intro:RedFAcc)
with ref show ?thesis by blast
next
fix r assume e = Throw r
thus ?thesis by(fastforce intro:red-reds. FAcc Throw)
qed
next
assume — final e with WTrtFAcc show ?thesis
by (fastforce intro!: FAccRed)
qed
next
case (WTrtFAceNT Eh e F Cs T)
show ?Zcase
proof cases
assume final e — e is null or throw
with WTrtFAccNT show ?thesis
by (fastforce simp:final-def intro: RedFAccNull red-reds. FAcc Throw
dest!:typeof-NT)
next
assume — final e — e reduces by TH
with WTrtFAceNT show ?thesis by simp (fast intro: FAccRed)
qed
next
case (WTrtFAss Eh ey C Cs F T es T')
have wtel:P,E.h = e : Class C
and wte2:P,E.h ey : T’
and field:P = C has least F:T via Cs
and notemptyCs:Cs # |]
and sub:PF T'< T
and hconf:P + h \/ by fact+
from field wf have type:is-type P T by(rule least-field-is-type)
show ?Zcase
proof cases
assume final ey
with wtel show ?thesis
proof (rule final-refE)
fix r assume el: e; = ref r

181

show ?thesis
proof cases
assume final ey
thus ?thesis
proof (rule finalE)
fix v assume e2:e; = Val v
from el obtain a Cs’ where ref:e; = ref(a,Cs’) by (cases r) auto
with wtel obtain D S where h:h a = Some(D,S)
and suboD:Subobjs P D Cs’ and last:last Cs’' = C
by (fastforce split:if-split-asm)
from field obtain Bs fs ms
where class: class P (last Cs) = Some(Bs,fs,ms)
and fs:map-of fs F = Some T
by (fastforce simp:LeastFieldDecl-def FieldDecls-def)
obtain Ds where Ds:Ds = Cs'Q,Cs by simp
with notemptyCs class have class’:class P (last Ds) = Some(Bs,fs,ms)
by (drule-tac Cs'=Cs’ in appendPath-last) simp
from field suboD last Ds wf have subo:Subobjs P D Ds
by (fastforce intro:Subobjs-appendPath
simp: LeastFieldDecl-def FieldDecls-def)
with hconf h have P.,h = (D,S) / by (auto simp:hconf-def)
with class’ subo obtain fs’ where S:(Ds,fs’) € S
by (auto simp:oconf-def)
from sub type wf show Zthesis
proof (rule subF)
assume eq:T' = T and VC. T' # Class C
hence P+ T casts v to v
by simp(rule casts-prim)
with h last field Ds notemptyCs S eq
have P,E + ((ref (a,Cs"))-F{Cs}:=(Val v), (h,1)) —
(Val v, (h(a — (D,insert (Ds,fs'(F—v)) (S — {(Ds,fs")}))),l))
by (fastforce intro: RedFAss)
with ref e2 show ?thesis by blast
next
fix C' D’
assume T"T'= Class C'and T:T = Class D’
and path-unique: P = Path C’ to D’ unique
from wte2 e2 T’ obtain a’ Cs” where ref2:eq = ref(a’,Cs"’)
and last”:last Cs"' = C’
by (auto dest!:typeof-Class-Subo)
from path-unique obtain Ds’ where P + Path C’ to D’ via Ds’
by (auto simp:path-via-def path-unique-def)
with last’
have casts:P & Class D' casts Ref(a’,Cs"’) to Ref(a’,Cs"'@,Ds’)
by (fastforce intro:casts-ref simp:path-via-def)
obtain v’ where v’ = Ref(a’,Cs""Q,Ds’) by simp
with h last field Ds notemptyCs S ref e2 ref2 T casts
have P,E + {((ref (a,Cs"))-F{Cs}:=(Val v), (h,])) —
(Val v',(h(a — (D,insert (Ds,fs'(F—v"))(S—{(Ds.fs")}))),l))

182

by (fastforce intro: RedFAss)
with ref e2 show ?thesis by blast
next
fix C'
assume T".T'= NT and T:T = Class C"'
from e2 wte2 T’ have null:e; = null by auto
have casts:P + Class C' casts Null to Null
by —(rule casts-null)
obtain v’ where v/ = Null by simp
with h last field Ds notemptyCs S ref €2 null T casts
have P,E + ((ref (a,Cs"))-F{Cs}:=(Val v), (h,])) —
(Val v', (h(a — (D,insert (Ds,fs'(F—v") (S — {(Ds,fs")}))),1))
by (fastforce intro: RedFAss)
with ref e2 show ?thesis by blast
qed
next
fix r assume ey = Throw r
thus %thesis using el by/(fastforce intro:red-reds. FAssThrow2)
qed
next
assume — final e with WTrtFAss el show ?thesis
by simp (fast intro!: FAssRed?2)
qed
next
fix r assume e; = Throw r
thus ?thesis by(fastforce intro:red-reds. FAss Throwl)
qed
next
assume — final e with WTrtFAss show ?thesis
by simp (blast introl: FAssRed1)
qed
next
case (WTrtFAssNT E h ey e T' T F Cs)
show ?Zcase
proof cases
assume el: final e; — ey is null or throw
show ?thesis
proof cases
assume final es — ey is Val or throw
with WTrtFAssNT el show ?thesis
by (fastforce simp:final-def intro: RedFAssNull red-reds. FAss Throwl
red-reds. FAss Throw2 dest!:typeof-NT)
next
assume - final es — eg reduces by TH
with WTrtFAssNT el show ?thesis
by (fastforce simp:final-def introl:red-reds. FAssRed?2 red-reds.FAss Throwl)
qed
next
assume - final e; — e; reduces by IH

183

with WTrtFAssNT show ?thesis by (fastforce intro:FAssRed1)
qed
next
case (WTrtCall Eh e C M Ts T pns body Cs es Ts’)
have wte: P,E,h F e : Class C
and method:P & C has least M = (Ts, T, pns, body) via Cs
and wtes: P,Eh F es [}] Ts'and sub: P+ Ts' [<] Ts
and [Hes: Al. [P+ h+/; P+ E \/; Ds es |[dom l]; = finals es]
= Jes’ s’. P,E + (es,(h,l)) [=] (es’,s)
and hconf: P+ h y/ and envconf:P + E /
and D: D (e-M(es)) |dom 1| by fact+
show ?Zcase
proof cases
assume final:final e
with wte show Zthesis
proof (rule final-refE)
fix r assume ref: e = ref r
show ?thesis
proof cases
assume es: Jvs. es = map Val vs
from ref obtain a Cs’ where ref:e = ref(a,Cs’) by (cases r) auto
with wte obtain D S where h:h a = Some(D,S) and suboD:Subobjs P D

Cs’
and last:last Cs' = C
by (fastforce split:if-split-asm)
from wte ref h have subcls:P = D <* C by —(drule mdc-leq-dyn-type,auto)
from method have has:P = C has M = (Ts, T,pns,body) via Cs
by (rule has-least-method-has-method)
from es obtain vs where vs:es = map Val vs by auto
obtain Cs'’ Ts' T' pns’ body’ where
ass:P = (D,Cs'Q,,Cs) selects M = (Ts",T’,pns’,body") via Cs" A
length Ts' = length pns’ A length vs = length pns’' AN P+ T' < T
proof (cases 3 Ts" T pns’ body’ Ds. P+ D has least M = (Ts”,T’,pns’,body")
via Ds)

case True
then obtain Ts” T’ pns’ body’ Cs"’
where least:P = D has least M = (Ts",T',pns’,body’) via Cs”
by auto
hence select:P - (D,Cs'Q, Cs) selects M = (Ts",T',pns’,body’) via Cs"
by (rule dyn-unique)
from subcls least wf has have Ts = Ts” and leq:P - T' < T
by —(drule leg-method-subtypes,simp-all,blast)+
hence length Ts = length Ts" by (simp add:list-all2-iff)
with sub have length Ts' = length Ts"' by (simp add:list-all2-iff)
with WTrts-same-length| OF wtes] vs have length:length vs = length Ts"
by simp
from has-least-wf-mdecl|OF wf least)
have lengthParams:length Ts" = length pns’ by (simp add:wf-mdecl-def)
with length have length vs = length pns’ by simp

184

with select lengthParams leq show ?thesis using that by blast
next
case Fulse
hence non-dyn:V Ts"" T’ pns’ body’ Ds.
= Pt D has least M = (Ts", T ,pns’body’) via Ds by auto
from suboD last have path:P + Path D to C via Cs’
by (simp add:path-via-def)
from method have notempty:Cs # ||
by (fastforce intro!:Subobjs-nonempty
simp: LeastMethodDef-def MethodDefs-def)
from suboD have class: is-class P D by(rule Subobjs-isClass)
from suboD last have path:P - Path D to C via Cs’
by (simp add:path-via-def)
with method wf have P+ D has M = (Ts,T,pns,body) via Cs'@,Cs
by (auto intro:has-path-has has-least-method-has-method)
with class wf obtain Cs” Ts"" T’ pns’ body’ where overrider:
P - (D,Cs'@,Cs) has overrider M = (Ts",T’,pns’,body’) via Cs"
by (auto dest!:class-wf simp:is-class-def wf-cdecl-def ,blast)
with non-dyn
have select:P + (D,Cs'@, Cs) selects M = (Ts",T",pns’,body’) via Cs”
by—(rule dyn-ambiguous,simp-all)
from notempty have eq:(Cs’ @, Cs) Q, [last Cs] = (Cs’ @, Cs)
by (rule appendPath-append-last)
from method wf
have P + last Cs has least M = (Ts,T,pns,body) via [last Cs]
by (auto dest:Subobj-last-isClass intro:Subobjs-Base subobjs-rel
simp: LeastMethodDef-def MethodDefs-def)
with notempty
have P last(Cs'@Q,Cs) has least M = (Ts, T ,pns,body) via [last Cs]
by —(drule-tac Cs'=Cs' in appendPath-last,simp)
with overrider wf eq
have (Cs”(Ts",T',pns’ body’)) € MinimalMethodDefs P D M
and P,DF Cs” C Cs'@Q,Cs
by (auto simp: FinalOverriderMethodDef-def OverriderMethodDefs-def)
(drule wf-sees-method-fun,auto)
with subcls wf notempty has path have Ts = Ts" and le¢:P F T' < T
by —(drule leg-methods-subtypes,simp-all,blast)+
hence length Ts = length Ts” by (simp add:list-all2-iff)
with sub have length Ts' = length Ts"' by (simp add:list-all2-iff)
with WTrts-same-length| OF wtes] vs have length:length vs = length Ts"
by simp
from select-method-wf-mdecl|OF wf select)
have lengthParams:length Ts" = length pns’ by (simp add:wf-mdecl-def)
with length have length vs = length pns’ by simp
with select lengthParams leq show ?thesis using that by blast
qed
obtain new-body where case T of Class D =
new-body = (D)) blocks(this#pns’,Class(last Cs'")# Ts" Ref (a,Cs")#vs,body’)
| - = new-body = blocks(this#pns’ Class(last Cs'")# Ts"' Ref (a,Cs’")#vs,body")

185

by(cases T) auto
with h method last ass ref vs
show ?thesis by (auto introl:ex] RedCall)
next
assume —(Jvs. es = map Val vs)
hence not-all-Val: (Ve € set es. v. e = Val v)
by (simp add:ex-map-conv)
let %ves = take While (Ae. 3v. e = Val v) es
let Zrest = dropWhile (Ae. Jv. e = Val v) es
let Yex = hd ?rest let ?rst = tl rest
from not-all-Val have nonempty: ?rest # || by auto
hence es: es = 7ves Q Zex # ?rst by simp
have Ve € set ?ves. Jv. e = Val v by(fastforce dest:set-take WhileD)
then obtain vs where ves: 2ves = map Val vs
using ez-map-conv by blast
show ?thesis
proof cases
assume final ?ex
moreover from nonempty have =(3v. Yex = Val v)
by (auto simp:neq-Nil-conv simp del:drop While-eq-Nil-conv)
(simp add:drop While-eq-Cons-conv)
ultimately obtain r’ where ez-Throw: ?ex = Throw r'
by (fast elim!:finalFE)
show ?thesis using ref es ex-Throw ves
by (fastforce intro:red-reds. CallThrowParams)
next
assume not-fin: = final ?ex
have finals es = finals(%ves Q Zex # %rst) using es
by (rule arg-cong)
also have ... = finals(%ex # %rst) using ves by simp
finally have finals es = finals(?ex # ?rst) .
hence — finals es using not-finals-ConsI[OF not-fin] by blast
thus %thesis using ref D IHes[OF hconf envconf)
by (fastforce introl: CallParams)
qed
qed
next
fix r assume e = Throw r
with WTrtCall.prems show ?thesis by(fast introl:red-reds. CallThrowObj)
qed
next
assume - final e
with WTrtCall show ?thesis by simp (blast intro!: CallObj)
qed
next
case (WTrtStaticCall Eh e C' C M Ts T pns body Cs es Ts')
have wte: P,E,h - e : Class C’
and path-unique: P = Path C' to C unique
and method:P & C has least M = (Ts, T, pns, body) via Cs

186

and wtes: P,Eh F es [}] Ts'and sub: P+ Ts' [<] Ts
and IHes: \l.
[P+ h+/; envconf P E; Ds es | dom 1|; = finals es]
= Jes’ s’. P,E F (es,(h,l)) [=] (es’,s)
and hconf: P+ h / and envconf:envconf P E
and D: D (e-(C::)M(es)) |dom 1] by fact+
show ?Zcase
proof cases
assume final:final e
with wte show Zthesis
proof (rule final-refE)
fix r assume ref: e = ref r
show ?thesis
proof cases
assume es: Jvs. es = map Val vs
from ref obtain a Cs’ where ref:e = ref(a,Cs’) by (cases r) auto
with wte have last:last Cs’' = C’
by (fastforce split:if-split-asm)
with path-unique obtain Cs’’
where path-via: P - Path (last Cs’) to C via Cs"
by (auto simp add:path-via-def path-unique-def)
obtain Ds where Ds:Ds = (Cs'@Q, Cs")@, Cs by simp
from es obtain vs where vs:es = map Val vs by auto
from sub have length Ts' = length Ts by (simp add:list-all2-iff)
with WTrts-same-length|OF wtes] vs have length:length vs = length Ts
by simp
from has-least-wf-mdecl|OF wf method)
have lengthParams:length Ts = length pns by (simp add:wf-mdecl-def)
with method last path-unique path-via Ds length ref vs show ¢thesis
by (auto introl:ex] RedStaticCall)
next
assume —(Jvs. es = map Val vs)
hence not-all-Val: =(V e € set es. Jv. e = Val v)
by (simp add:ex-map-conv)
let %ves = takeWhile (Ae. 3v. e = Val v) es
let %rest = dropWhile (Ae. Jv. e = Val v) es
let ?ex = hd ?rest let ?rst = tl ?rest
from not-all-Val have nonempty: ?rest # [| by auto
hence es: es = %ves Q Zex # ?rst by simp
have Ve € set 2ves. Jv. e = Val v by(fastforce dest:set-take WhileD)
then obtain vs where ves: 2ves = map Val vs
using ez-map-conv by blast
show ?thesis
proof cases
assume final ?ex
moreover from nonempty have =(3v. Yex = Val v)
by (auto simp:neq-Nil-conv simp del:drop While-eq-Nil-conv)
(simp add:drop While-eq-Cons-conv)
ultimately obtain r’ where ez-Throw: ?ex = Throw r'

187

by (fast elim!:finalFE)
show ?thesis using ref es ex-Throw ves
by (fastforce intro:red-reds. CallThrowParams)
next
assume not-fin: - final ?ex
have finals es = finals(%ves Q Zex # 9rst) using es
by (rule arg-cong)
also have ... = finals(%ex # ?rst) using ves by simp
finally have finals es = finals(?ex # ?rst) .
hence — finals es using not-finals-ConsI[OF not-fin] by blast
thus ?thesis using ref D IHes[OF hconf envconf]
by (fastforce introl: CallParams)
qged
qed
next
fix r assume e = Throw r
with WTrtStaticCall.prems show ?thesis by (fast intro':red-reds. CallThrowOby)
qed
next
assume — final e
with WTrtStaticCall show ?thesis by simp (blast introl: CallOby)
qed
next
case (WTrtCalINT E h e es Ts Copt M T)
show ?Zcase
proof cases
assume final e
moreover
{ fix v assume e: e = Val v
hence e = null using WTrtCalINT by simp
have ?case
proof cases
assume finals es
moreover
{ fix vs assume es = map Val vs
with WTrtCalINT e have ?thesis by (fastforce intro: RedCallNull dest!:typeof-NT)

moreover
{ fix vs a es’ assume es = map Val vs @ Throw a # es’
with WTrtCalINT e have ?thesis by (fastforce intro: CallThrowParams) }
ultimately show ?thesis by(fastforce simp:finals-def)
next
assume - finals es — es reduces by TH
with WTrtCalINT e show ?thesis by(fastforce intro: CallParams)
qed
}
moreover
{ fix r assume e = Throw r
with WTrtCalINT have ?Zcase by(fastforce intro: CallThrowObj) }

188

ultimately show ?thesis by (fastforce simp:final-def)
next
assume — final e — e reduces by TH
with WTrtCalINT show ?thesis by (fastforce intro: CallObj)
qed
next
case (WTrtInitBlock h v T' E'V T es T3)
have IH2: NI. [P+ h +/; P+ E(V — T) +/; D ez |dom l]; = final e2]
= Je's. P,E(V — T)F (es,(h1)) — (e',s")
and typeof:P + typeofy v = Some T’
and type:is-type P T and sub:P + T' < T
and hconf: P+ h +/ and envconf:P + E /
and D: D {V:T := Val v; e2} |dom 1] by fact+
from wf typeof type sub obtain v’ where casts:P = T casts v to v’
by (auto dest:sub-casts)
show ?Zcase
proof cases
assume fin:final es
with casts show ?thesis
by (fastforce elim:finalE intro: RedInitBlock red-reds.InitBlockThrow)
next
assume not-fin2: - final ey
from D have D2: D ey |dom(I(V—v"))]| by (auto simp:hyperset-defs)
from envconf type have P + E(V — T) \/ by(auto simp:envconf-def)
from TH2[OF hconf this D2 not-fin2)
obtain A’ !’ ¢’ where red2: P,E(V — T) F (ea,(h, (V=) — (e/,(h', I))
by auto
from red-lcl-incr[OF red2] have V € dom I’ by auto
with red?2 casts show Zthesis by (fastforce intro:InitBlockRed)
qed
next
case (WTrtBlock EV T he T')
have IH: Nl. [P+ h /; PE E(V — T) /; D e |dom l|; = final €]
= Je's". PE(V = T)F (e, (h,])) — (e',s"
and unass: — assigned V e and type:is-type P T
and hconf: P+ h / and envconf:P b E /
and D: D {V:T; e} |dom l] by fact+
show ?Zcase
proof cases
assume final e
thus ?thesis
proof (rule finalE)
fix v assume e = Val v with type show ?thesis by(fast intro: RedBlock)
next
fix r assume e = Throw r
with type show ?thesis by(fast intro:red-reds. BlockThrow)
qed
next
assume not-fin: = final e

189

from D have De: D e |dom(I(V:=None))| by(simp add:hyperset-defs)
from envconf type have P = E(V — T) \/ by(auto simp:envconf-def)
from IH[OF hconf this De not-fin]
obtain h' !’ ¢’ where red: P, E(V — T) F (e,(h,I(V:=None))) — (e’,(h',l’))
by auto
show ?thesis
proof (cases !’ V)
assume [’ V = None
with red unass show ?thesis by(blast intro: BlockRedNone)
next
fix v assume !’ V = Some v
with red unass type show ?thesis by(blast intro: BlockRedSome)
qed
qed
next
case (WTrtSeq E h ey Ty e Ts)
show ?Zcase
proof cases
assume final ey
thus ?thesis
by (fast elim:finalE intro:intro: RedSeq red-reds.SeqThrow)
next
assume — final e with WTrtSeq show ?thesis
by simp (blast intro:SeqRed)
qed
next
case (WTrtCond E h e ey T e3)
have wt: P,E,h - e : Boolean by fact
show ?Zcase
proof cases
assume final e
thus ?thesis
proof (rule finalFE)
fix v assume val: e = Val v
then obtain b where v: v = Bool b using wt by (fastforce dest:typeof-Boolean)
show ?thesis
proof (cases b)
case True with val v show ?thesis by (auto intro:RedCondT)
next
case Fulse with val v show ?thesis by (auto intro:RedCondF)
qed
next
fix r assume e = Throw r
thus ?thesis by(fast intro:red-reds. Cond Throw)
qed
next
assume — final e with WTrtCond show ?thesis
by simp (fast intro: CondRed)
qed

190

next
case WTrtWhile show ?Zcase by(fast intro: Red While)
next
case (WTrtThrow Eh e T' T)
show Zcase
proof cases
assume final e — Then e must be throw or null
with WTrtThrow show ?thesis
by (fastforce simp:final-def is-refT-def
intro:red-reds. ThrowThrow red-reds. Red ThrowNull
dest!:typeof-NT typeof-Class-Subo)
next
assume — final e — Then e must reduce
with WTrtThrow show ?thesis by simp (blast intro: ThrowRed)
qed
next
case WTrtNil thus ?case by simp
next
case (WTrtCons E h e T es Ts)
have IHe: \l. [P+ h+/; P+ E /; D e |dom l]; = final €]
= Je’s. P,EF (e(h)) — (e',s)
and IHes: NI. [P+ h /; PF E /; Ds es |dom l]; = finals es]
= Jes’ s P,E + (es,(h,1)) [=] (es’,s)
and hconf: P+ h / and envconf:P - E /
and D: Ds (eftes) |dom]
and not-fins: - finals(e # es) by fact+
have De: D e |dom] and Des: Ds es (|dom 1| U A e)
using D by auto
show ?Zcase
proof cases
assume final e
thus ?thesis
proof (rule finalFE)
fix v assume e: e = Val v
hence Des’: Ds es |dom 1] using De Des by auto
have not-fins-tl: — finals es using not-fins e by simp
show ?thesis using e IHes|OF hconf envconf Des' not-fins-tl]
by (blast intro!:ListRed2)
next
fix r assume e = Throw r
hence Fulse using not-fins by simp
thus ?thesis ..
qed
next
assume — final e
from IHe[OF hconf envconf De this] show ?thesis by(fast introl:ListRed1)
qed
qed

191

end

24 Heap Extension

theory HeapEztension
imports Progress
begin

24.1 The Heap Extension
definition hext :: heap = heap = bool («- < - [51,51] 50) where
h<h' = VaCS. ha= Some(C,S) — (35" h' a = Some(C,S"))
lemma hextl: Va CS. h a = Some(C,S) — (35" h' a = Some(C,S")) = h <
h/

apply (unfold hext-def)
apply auto
done

lemma hext-objD: [h < h'; b a = Some(C,S) | = 35’ b’/ a = Some(C,S")
apply (unfold hext-def)

apply (force)
done

lemma hext-refl [iff]: h < h
apply (rule hextl)

apply (fast)
done

lemma hext-new [simp]|: h a = None = h < h(a—x)
apply (rule hextl)

apply (auto simp:fun-upd-apply)

done

lemma hext-trans: [h QS h'; B/ QA"] = h < h"
apply (rule hextl)

apply (fast dest: hext-objD)
done

192

lemma hezt-upd-obj: h a = Some (C,S) = h < h(a—(C,S"))

apply (rule hextl)

apply (auto simp:fun-upd-apply)
done

24.2 < and preallocated

lemma preallocated-hext:
[preallocated h; h < h']| = preallocated h'
by (simp add: preallocated-def hext-def)

lemmas preallocated-upd-obj = preallocated-hext [OF - hext-upd-obj)
lemmas preallocated-new = preallocated-hext [OF - hext-newl]

24.3 < in Small- and BigStep

lemma red-hext-incr: P,E F (e,(h,0)) — (e’,(
and reds-hext-incr: P,E F (es,(h,0)) [=] (es

/

)y = h
l h'

l
W) =

= A
A =

/
h',
/
)

proof (induct rule:red-reds-inducts)
case RedNew thus ?case
by (fastforce dest:new-Addr-SomeD simp:hext-def split:if-splits)
next
case RedFAss thus ?case by(simp add:hext-def split:if-splits)
qed simp-all

lemma step-hext-incr: P.E - (e,s) == (e/s) = hp s <1 hp s’

proof (induct rule:converse-rtrancl-induct?2)
case refl thus ?case by(rule hext-refl)
next
case (step e s e’ s"')
have Red:((e, s), €'/, s") € Red P E
and hezt:hp s’ < hp s’ by fact+
from Red have P.E F (e,s) — (e’ s"") by simp
hence hp s < hp s
by (cases s,cases s')(auto dest:red-hext-incr)
with hext show %case by—(rule hext-trans)
qed

lemma steps-hext-incr: P,E b (es,s) [—=]* (es;s") = hp s < hp s’
proof (induct rule:converse-rtrancl-induct?2)

case refl thus ?case by (rule hext-refl)
next

193

case (step es s es’’ s'’)
have Reds:((es, s), es’’, s'") € Reds P E
and hezt:hp s < hp s’ by fact+
from Reds have P,E b (es,s) [—] (es”,s") by simp
hence hp s < hp s
by (cases s,cases s" auto dest:reds-hext-incr)
with hext show %case by—(rule hext-trans)
qed

lemma eval-hezt: P,E & (e,(h,0)) = (e/,(hl")) = h < b’
and evals-hext: P,E F (es,(hl)) [= "(h'1’

proof (induct rule:eval-evals-inducts)
case New thus ?case
by (fastforce intro!: hext-new intro:somel simp:new-Addr-def
split:if-split-asm simp del: fun-upd-apply)
next
case FAss thus ?case
by (auto simp:sym|THEN hext-upd-obj] simp del:fun-upd-apply
elim!: hext-trans)
qed (auto elim!: hext-trans)

24.4 < and conformance

lemma conf-hext: h A< h' = Phtv:< T = Ph'+v:<T
by (cases T)(induct v,auto dest: hext-objD split:if-split-asm)+

lemma confs-hext: P,h - vs <] Ts = h < h/ = P,h't vs [:<] T5s
by (erule list-all2-mono, erule conf-hext, assumption)

lemma feonf-hext: [P,h b fs (<) E;h < h'] = Ph'F fs (<) E
apply (unfold feconf-def)

apply (fast elim: conf-hext)
done

lemmas feonf-upd-obj = feconf-hext [OF - hext-upd-obj)
lemmas feonf-new = feonf-hext [OF - hext-new

lemma oconf-hext: P,h + obj / = h I b/ = P,h'F obj v/

apply (auto simp:oconf-def)
apply (erule allE)

194

apply (erule-tac x=Cs in allF)
apply (erule-tac z=fs" in allF)
apply (fastforce elim:fconf-hext)
done

lemmas oconf-new = oconf-hext [OF - hext-new)
lemmas oconf-upd-obj = oconf-hext [OF - hext-upd-obj]

lemma hconf-new: [P+ h \/; h a = None; P,h + obj /] = P+ h(a—obj) v/
by (unfold heconf-def) (auto intro: oconf-new preallocated-new)

lemma [P+ h/; ' = h(a — (C, Collect (init-obj P C))); h a = None; wf-prog
wf-md P]
= PFh
apply (simp add:hconf-def oconf-def)
apply auto
apply (rule-tac z=init-class-fieldmap P (last Cs) in exl)
apply (rule init-obj.intros)
apply assumption
apply (erule init-obj.cases)
apply clarsimp
apply (erule init-obj.cases)
apply clarsimp
apply (erule-tac z=a in allE)
apply clarsimp
apply (erule init-obj.cases)
apply simp
apply (erule-tac x=a in allE)
apply clarsimp
apply (erule init-obj.cases)
apply clarsimp
apply (drule Subobj-last-isClass)
apply simp
apply (auto simp:is-class-def)
apply (rule feonf-init-fields)
apply auto
apply (erule-tac x=aa in allF)
apply (erule-tac x=aaa in allE)
apply (erule-tac z=b in allE)
apply clarsimp
apply (rotate-tac —1)
apply (erule-tac x=Cs in allF)
apply (erule-tac z=fs" in allF)
apply clarsimp thm fconf-new
apply (erule feconf-new)
apply simp
apply (rule preallocated-new)

195

apply simp-all
done

lemma hconf-upd-obj:
[P+ hy/; ha= Some(C,S); P,h + (C,S))/] = P+ h(a—(C,5")/
by (unfold heconf-def) (auto intro: oconf-upd-obj preallocated-upd-obj)

lemma lconf-hext: [Ph b1 (:<)y E; h QA] = PR F1(:<)y E

apply (unfold lconf-def)
apply (fast elim: conf-hext)
done

24.5 < in the runtime type system

lemma hext-typeof-mono: [h < h's P = typeof, v = Some T | = P F typeof
v = Some T

apply/(cases v)
apply simp
apply simp
apply simp
apply simp
apply (fastforce simp:hext-def)
done

lemma WTrt-hext-mono: P Ehte: T — (AWM. h<h'=— PEh'Fe:T)
and WTrts-hext-mono: P,E.ht+ es ;] Ts = (Ah. h < h' = P,Eh'F es [}] Ts)

apply (induct rule: WTrt-inducts)
apply(simp add: WTrtNew)
apply (fastforce intro: WTrtDynCast)
apply (fastforce intro: WTrtStaticCast)
apply (fastforce simp: WTrtVal dest:hext-typeof-mono)
apply(simp add: WTrtVar)
apply (fastforce simp add: WTrtBinOp)
apply (fastforce simp add: WTrtLAss)
apply (fastforce simp: WTrtFAcc del: WTrt-WTrts.intros WTrt-elim-cases)
apply(simp add: WTrtFAccNT)
apply (fastforce simp: WTrtFAss del: WTrt-WTrts.intros WTrt-elim-cases)
apply (fastforce simp: WTrtFAssNT del: WTrt-WTrts.intros WTrt-elim-cases)
apply (fastforce simp: WTrtCall del: WTrt-WTrts.intros WTrt-elim-cases)
apply (fastforce simp: WTrtStaticCall del: WTrt-WTrts.intros WTrt-elim-cases)
apply (fastforce simp: WTrtCalINT del: WTrt- W Trts.intros WTrt-elim-cases)

(

apply (fastforce)

196

fastforce simp add: WTrtSeq)
fastforce simp add: WTrtCond)
fastforce simp add: WTrtWhile)
fastforce simp add: WTrtThrow)
simp add: WTrtNil)

simp add: WTrtCons)

apply
apply
apply
apply
apply
apply
done

NN NN N

end

25 Well-formedness Constraints

theory CWellForm imports WellForm WWellForm WellTypeRT DefAss begin

definition wf-C-mdecl :: prog = cname = mdecl = bool where
wf-C-mdecl P C = \M,Ts, T,(pns,body)).
length Ts = length pns A
distinct pns N
this & set pns N
P |[this— Class C,pns[—|Ts] b body :: T A
D body |{this} U set pns|

lemma wf-C-mdecl[simp]:
wf-C-mdecl P C (M, Ts,T,pns,body) =
(length Ts = length pns A
distinct pns A
this ¢ set pns A
P,[this— Class C,pns[—]Ts] - body :: T A
D body |{this} U set pns|)

by (simp add:wf-C-mdecl-def)

abbreviation
wf-C-prog :: prog = bool where
wf-C-prog == wf-prog wf-C-mdecl

lemma wf-C-prog-wf-C-mdecl:
[wf-C-prog P; (C,Bs,fs,ms) € set P; m € set ms |
= wf-C-mdecl P C'm

apply (simp add: wf-prog-def)
apply (simp add: wf-cdecl-def)
apply (erule conjE)+

apply (drule bspec, assumption)

197

apply simp

apply (erule conjE)+

apply (drule bspec, assumption)

apply (simp add: wf-mdecl-def split-beta)
done

lemma wf-mdecl-wwf-mdecl: wf-C-mdecl P C Md = wwf-mdecl P C Md
by (fastforce simp:wwf-mdecl-def dest!: WT-fv)

lemma wf-prog-wwf-prog: wf-C-prog P = wwf-prog P

apply(simp add:wf-prog-def wf-cdecl-def wf-mdecl-def)
apply (fast intro:wf-mdecl-wwf-mdecl)
done

end

26 Type Safety Proof

theory TypeSafe
imports HeapExtension CWellForm
begin

26.1 Basic preservation lemmas

lemma assumes wf:wwf-prog P and casts:P + T casts v to v’
and typeof:P & typeof), v = Some T’ and le¢:P - T' < T
shows casts-conf:P,h = v :< T

proof —
{fixa' CCs S’

assume leq:P = Class (last Cs) < T and subo:Subobjs P C Cs
and casts" P+ T casts Ref (a’,Cs) to v/ and h:h o’ = Some(C,S")

from subo wf have is-class P (last Cs) by(fastforce intro:Subobj-last-isClass)

with leq wf obtain C’ where T:T = Class C’
and path-unique:P + Path (last Cs) to C' unique
by (auto dest: Class-widen)

from path-unique obtain Cs’ where path-via:P & Path (last Cs) to C’ via Cs’
by (auto simp:path-via-def path-unique-def)

with T path-unique casts’ have v":v' = Ref (a’,Cs@,Cs’)
by —(erule casts-to.cases,auto simp:path-unique-def path-via-def)

from subo path-vie wf have Subobjs P C' (CsQ, Cs’)
and last (CsQ,Cs’) = C'
apply(auto intro:Subobjs-appendPath simp:path-via-def)

198

apply(drule-tac Cs=Cs’ in Subobjs-nonempty)
by (rule sym[OF appendPath-last])
with T h v’/ have ?thesis by auto }
with casts typeof wf typeof leq show ?thesis
by (cases v,auto elim:casts-to.cases split:if-split-asm)
qed

theorem assumes wf:wwf-prog P
shows red-preserves-hconf:

P.EF (e(hl)) — (e (W]1)) = (NT.[P,EhFe:T;P-h]= PEL
V)
and reds-preserves-hconf:

P.E+ (es,(hD)) [=] (es’,(hl)) = (ATs. [P,E,h - es[:] Ts; PE L] =
PER'Y)

proof (induct rule:red-reds-inducts)
case (RedNew h a h' C El)
have new: new-Addr h = Some a and h":h’ = h(a — (C, Collect (init-obj P
)
and hconf:P F h v/ and wi-New:P,E h = new C : T by fact+
from new have None: h a = None by(rule new-Addr-SomeD)
with wf have oconf:P,h = (C, Collect (init-obj P C)) /
apply (auto simp:oconf-def)
apply (rule-tac x=init-class-fieldmap P (last Cs) in exl)
by (fastforce intro:init-obj.intros feconf-init-fields
elim: init-obj.cases dest!:Subobj-last-isClass simp:is-class-def)+
thus ?case using h’ None by (fast intro: hconf-new[OF hconf])
next
case (RedFAssha D S Cs'" FT Csvv' Dsfs' E1T')
let ?fs' = fs'(F — v’)
let 25’ = insert (Ds, ?fs’) (S — {(Ds, fs")})
have ha:h a = Some(D,S) and hconf:P = h /
and field:P + last Cs’ has least F:T via Cs
and casts:P = T casts v to v’
and Ds:Ds = Cs’ @, Cs and S:(Ds,fs’) € S
and wte:P,E h - ref(a,Cs’)-F{Cs} :== Val v: T' by fact+
from wte have P I last Cs’ has least F:T' via Cs by (auto split:if-split-asm)
with field have eq:T = T’ by (rule sees-field-fun)
with casts wte wf have conf:P,ht v’ :< T'
by (auto intro:casts-conf)
from hconf ha have oconf:P.h - (D,S) \/ by (fastforce simp:hconf-def)
with S have suboD:Subobjs P D Ds by (fastforce simp:oconf-def)
from field obtain Bs fs ms
where subo:Subobjs P (last Cs’) Cs
and class: class P (last Cs) = Some(Bs,fs,ms)
and map:map-of fs F = Some T
by (auto simp:LeastFieldDecl-def FieldDecls-def)

199

from Ds subo have last:last Cs = last Ds
by (fastforce dest:Subobjs-nonempty intro:appendPath-last simp:appendPath-last)
with class have classDs:class P (last Ds) = Some(Bs,fs,ms) by simp
with S suboD oconf have P.h F fs' (:<) map-of fs
apply (auto simp:oconf-def)
apply (erule allF)
apply (erule-tac x=Ds in allE)
apply (erule-tac z=fs" in allF)
apply clarsimp
done
with map conf eq have feconf:P h - fs'(F — v') (:<) map-of fs
by (simp add:fconf-def)
from oconf have V Cs fs'. (Cs,fs') € S — Subobjs P D Cs A
(3 fs Bs ms. class P (last Cs) = Some (Bs,fs,ms) A
P.hE fs' (:<) map-of fs)
by (simp add:oconf-def)
with suboD classDs fconf
have oconf’V Cs fs'. (Cs,fs") € 25’ — Subobjs P D Cs A
(3fs Bs ms. class P (last Cs) = Some (Bs,fs,ms) A
P.h F fs' (:<) map-of fs)
by auto
from oconf have all:V Cs. Subobjs P D Cs — (3fs’. (Cs,fs") € 5)
by (simp add:oconf-def)
with S have V Cs. Subobjs P D Cs — (3fs". (Cs,fs') € 25') by blast
with oconf’ have oconf”:P,h & (D,?5") v/
by (simp add:oconf-def)
with hconf ha show ?case by (rule hconf-upd-obj)
next
case (CallObj E e hl e’ h' 1’ Copt M es) thus ?case by (cases Copt) auto
next
case (CallParams E es h l es’ h' I' v Copt M) thus ?case by (cases Copt) auto
next
case (RedCallNull E Copt M vs h 1) thus ?case by (cases Copt) auto
qed auto

theorem assumes wf:wwf-prog P
shows red-preserves-lconf:

P.E+ (e,(hl)) — (e ,(h"l") =

(NT.[P,EhtF eT; PhtI1(<)y E;PHFE] = PAFIU (<) E)
and reds-preserves-lconf:

P.E F (es,(h,0)) [=] (es’,(hl")) =

(ANTs. [P,E.h+ es[]|Ts; Phb1(:<)y EF; PHE /] = PhEI(:<)y E)

proof (induct rule:red-reds-inducts)
case RedNew thus Zcase
by (fast intro:lconf-hext red-hext-incr[OF red-reds. RedNew))

200

next
case (RedLAss EV Tvv' hl T
have casts:P = T casts v to v/ and env:E V = Some T
and wt:P,E,h - V:=Valv: T and lconf:P,h | (:<),, E by fact+
from wt env have eq:T = T’ by auto
with casts wt wf have conf:P,h + v':< T’
by (auto intro:casts-conf)
with lconf env eq show ?case
by (simp del: fun-upd-apply)(erule lconf-upd,simp-all)
next
case RedFAss thus ?case
by (auto intro:lconf-hext red-hext-incr[OF red-reds. Red FAss]
simp del: fun-upd-apply)
next
case (BlockRedNone E VT ehle h'l' T
have red:P,E(V — T) F (e,(h, I(V := None))) — (e',(h', 1))
and IH: NT". [P,E(V — T),hte: T"; P,h - I[(V:i=None) (:<)y, E(V —
T);
enveonf P (E(V +— T))]
— P01 (<) E(V > T)
and lconf: P,hF 1 (:<), E and wte: P,E.h = {V:T; e} : T’
and envconf:envconf P E by fact+
from lconf-hext|OF lconf red-hext-incr[OF red]]
have lconf:P,h' F 1 (:<)y E .
from wte have wte:P,E(V—T)hF e: T’ and type:is-type P T
by (auto elim: WTrt.cases)
from envconf type have envconf’.envconf P (E(V — T))
by (auto simp:envconf-def)
from lconf have P.h = (I(V := None)) (:<)y E(V—T)
by (simp add:lconf-def fun-upd-apply)
from [H[OF wte’ this envconf’] have P.h' 1" (:<),, E(V—=T) .
with lconf’ show Zcase
by (fastforce simp:lconf-def fun-upd-apply split:if-split-asm)
next
case (BlockRedSome E'V T ehle' h'l' v T
have red:P,E(V — T) F (e,(h, I(V := None))) — (e/,(h/, 1))
and IH: NT". [P,E(V — T),hke: T", P.ht I(V:=None) (:<), E(V
T);
enveonf P (E(V — T))]
— PR F U (<) B(V = T)
and lconf: P.hF 1 (:<), E and wte: P,E.h = {V:T; e} : T’
and envconf:envconf P E by fact+
from lconf-hext|OF lconf red-hext-incr[OF red]]
have lconf " P,h' F 1 (:<)y E .
from wte have wte:P,EF(V—T)hF e: T' and type:is-type P T
by (auto elim: W1Trt.cases)
from envconf type have envconf’.envconf P (E(V — T))
by (auto simp:envconf-def)
from lconf have P,h = (I(V := None)) (:<), E(V—T)

201

by (simp add:lconf-def fun-upd-apply)
from IH[OF wte’ this envconf’] have P.h' = 1" (:<),, E(V—T) .
with lconf’ show ?Zcase
by (fastforce simp:lconf-def fun-upd-apply split:if-split-asm)
next
case (InitBlockRed EV T ehlv' e’ h' 1" v v T
have red: P,E(V — T) F (e, (h, [(V=v)) — (e/,(B', I))
and [H: NT". [P.E(V = T)hFe: T" PhF IV s 0) (:<)w E(V
T);
enveonf P (E(V — T))]
= P FI(:<)y BE(V—T)
and lconf:P,h b 1 (:<),, E and 1"’ V = Some v”’
and wte:P,Eh - {V:T; V:=Val v;; e} : T’
and casts:P + T casts v to v’ and envconf:envconf P E by fact+
from lconf-hext|OF lconf red-hext-incr[OF red]]
have lconf :"P,h' F 1 (:<)y E .
from wte obtain T’ where wte"P,E(V—T),hF e: T’
and wt:P,E(V — T),ht Vi=Valv: T"
and type:is-type P T
by (auto elim: WTrt.cases)
from envconf type have envconf’.envconf P (E(V — T))
by (auto simp:envconf-def)
from wt have T = T by auto
with wf casts wt have P,h - v/ :< T
by (auto intro:casts-conf)
with lconf have P.h + (V — v') (:<),, E(V—T)
by —(rule lconf-upd2)
from [H[OF wte’ this envconf’] have P,h' 1" (:<), E(V — T) .
with Ilconf’ show ?Zcase
by (fastforce simp:lconf-def fun-upd-apply split:if-split-asm)
next
case (CallObj E e hle' bl Copt M es) thus ?case by (cases Copt) auto
next
case (CallParams E es h l es’ h' I’ v Copt M) thus ?case by (cases Copt) auto
next
case (RedCallNull E Copt M vs h 1) thus ?case by (cases Copt) auto
qed auto

Preservation of definite assignment more complex and requires a few
lemmas first.
lemma [iff]: AA. [length Vs = length Ts; length vs = length Ts] =
D (blocks (Vs,Ts,vs,e)) A =D e (AU |set Vs|)

apply (induct Vs Ts vs e rule:blocks-old-induct)
apply(simp-all add:hyperset-defs)
done

lemma red-lA-incr: P,E + (e,(h,1)) — (e',(hl")) = |dom] U A eC |doml'|

202

UAe'

and reds-lA-incr: P,E + {es,(h,0)) [=] {es’,(h',l")) = |dom l] U As es T |dom
Ul U Ases’

apply (induct rule:red-reds-inducts)

apply (simp-all del: fun-upd-apply add: hyperset-defs)

apply blast

apply blast

apply blast

apply blast

apply blast

apply blast

apply blast

apply auto

done

Now preservation of definite assignment.

lemma assumes wf: wf-C-prog P
shows red-preserves-defass:
P,E+ (e, (hl)y = (e (h,l)) = D e |dom | = D e’ |dom l'|
and P.E (es,(h,0)) [—] (es’,(h',l")) = Ds es |dom l| = Ds es’ |dom ']

proof (induct rule:red-reds-inducts)
case BinOpRedl thus ?case by (auto elim!: D-mono|OF red-l1A-incr])
next
case FAssRed1 thus ?case by (auto elim!: D-mono|OF red-l1A-incr])
next
case CallObj thus ?case by (auto elim!: Ds-mono[OF red-lA-incr))
next
case (RedCallhla CS Cs M Ts" T’ pns’ body’ Ds Ts T pns body Cs’
vs bs new-body F)
thus ?Zcase
apply (auto dest!:select-method-wf-mdecl|OF wf] simp:wf-mdecl-def elim!: D-mono’)
apply(cases T') apply auto
by (rule-tac A=|insert this (set pns)| in D-mono,clarsimp simp:hyperset-defs,
assumption)+
next
case RedStaticCall thus ?case
apply (auto dest!:has-least-wf-mdecl|OF wf] simp:wf-mdecl-def elim!: D-mono’)
by (auto simp:hyperset-defs)
next
case InitBlockRed thus ?case
by (auto simp:hyperset-defs elim!:D-mono’ simp del: fun-upd-apply)
next
case BlockRedNone thus Zcase
by (auto simp:hyperset-defs elim!: D-mono’ simp del:fun-upd-apply)
next
case BlockRedSome thus ?case
by (auto simp:hyperset-defs elim!:D-mono’ simp del: fun-upd-apply)
next

203

case SeqRed thus ?case by (auto elim!: D-mono|OF red-lA-incr))
next

case CondRed thus Zcase by (auto elim!: D-mono[OF red-lA-incr])
next

case RedWhile thus ?case by(auto simp:hyperset-defs elim!: D-mono’)
next

case ListRedl thus ?case by (auto elim!: Ds-mono[OF red-lA-incr])
qed (auto simp:hyperset-defs)

Combining conformance of heap and local variables:

definition sconf :: prog = env = state = bool («-,-F -/ [51,51,51]50) where
PEFsy = let(hl)=sinPFhyAPhFI(<)w EAPFE.

lemma red-preserves-sconf:
[P,EF (es)y — (es"); PEshp st e: T; P,E+ s/; wuf-prog P]
= P,EF s/

by (fastforce intro:red-preserves-hconf red-preserves-leonf
simp add:sconf-def)

lemma reds-preserves-sconf:
[P,E & (es,s) [=] (es’,s”); P,E.,hp s+ es [:] Ts; P,E & s +/; wwf-prog P]
= PEF s/

by (fastforce intro:reds-preserves-hconf reds-preserves-lconf
stmp add:sconf-def)

26.2 Subject reduction

lemma wit-blocks:
NE. [length Vs = length Ts; length vs = length Ts;
VT'e set Ts. is-type P T'] =
(P,E,h \ blocks(Vs, Ts,vs,e) : T) =
(P,E(Vs[=]Ts),h - e:T A
(3 Ts". map (P + typeofy,) vs = map Some Ts' A P+ Ts' [<] Ts))

proof (induct Vs Ts vs e rule:blocks-old-induct)
case (5 V Vs T' Tsvuse)
have length:length (V#Vs) = length (T'#1Ts) length (v#vs) = length (T'#T5s)
and type:V S € set (T'#Ts). is-type P S
and IH:\E. [length Vs = length Ts; length vs = length Ts;
VS € set Ts. is-type P S]
= (P,E,h - blocks (Vs, Ts, vs, €) : T) =
(P,E(Vs =] Ts),hte: T A
(3 Ts'. map P F typeof, vs = map Some Ts' A P+ Ts' [<] T5)) by fact+
from type have typeT "is-type P T' and type’V S € set Ts. is-type P S
by simp-all
from length have length Vs = length Ts length vs = length Ts
by simp-all

204

from [H[OF this type’] have eq:(P,E(V +— T'),h & blocks (Vs,Ts,vs,e) : T) =
(PLE(Ve—= T, Vs Ts),hte: T A
(3 Ts". map P F typeofy, vs = map Some Ts' A P+ Ts' [<] T%)) .
show ?Zcase
proof (rule iffT)
assume P E h b blocks (V# Vs, T'# Ts,v#vs,e) : T
then have wt:P,E(V — T'),h = V:=Valv: T’
and blocks:P,E(V +— T'),h b blocks (Vs,Ts,vs,e) : T by auto
from blocks eq obtain Ts’ where wte:P,E(V — T/, Vs [—=] Ts),h - e: T
and typeof:map P & typeofy, vs = map Some Ts' and subs:P + Ts' [<] Ts
by auto
from wt obtain T where P F typeofy, v = Some T''and P+ T" < T’
by auto
with wte typeof subs
show P E(V # Vs [—] T'# Ts),hte: T A
(3 Ts'. map P typeof, (v # vs) = map Some Ts’ AN P+ Ts' [<] (T' #
)
by auto
next
assume P E(V # Vs [—=]) T'# Ts),h-e: T A
(3 Ts". map P typeofp, (v # vs) = map Some Ts' A P+ Ts' [<] (T' # Ts))
then obtain Ts' where wte:P,E(V # Vs [—] T'# Ts),hte: T
and typeof:map P & typeofy, (v # vs) = map Some Ts’
and subs:P - Ts' [<] (T'#1T5s) by auto
from subs obtain U Us where Ts":Ts' = U+# Us by(cases T8’) auto
with wte typeof subs eq have blocks:P,E(V +— T'),h - blocks (Vs,Ts,vs,e) : T
by auto
from Ts' typeof subs have P - typeof; v = Some U
and P+ U < T’ by (auto simp:fun-of-def)
hence wtval:P,E(V — T'),h+ V:=Val v : T' by auto
with blocks typeT' show P,E,h b blocks (V# Vs, T'# Ts,v#tvs,e) : T by auto
qed
qed auto

theorem assumes wf: wf-C-prog P

shows subject-reduction2: P,E = (e,(h,l)) — (e/,(h',l")) =
(ANT.[P.EVF () ; PEhte:T] = PELF ¢ :ypT)

and subjects-reduction2: P,E F (es,(h,0)) [=] (es’,(h']l")) =
(ATs.] P,E - (h,0) \/; P,E,h\- es [}] Ts | = types-conf P E h' es’ Ts)

proof (induct rule:red-reds-inducts)
case (RedNew h a h' C El)
have new:new-Addr h = Some a and h":h' = h(a — (C, Collect (init-obj P C)))

and wt:P,E.h - new C : T by fact+
from wt have eq:T = Class C' and class: is-class P C' by auto

205

from class have subo:Subobjs P C [C] by(rule Subobjs-Base)
from h'have h’ a = Some(C, Collect (init-obj P C)) by (simp add:map-upd-Some-unfold)
with subo have P,E.h'F ref(a,[C]) : Class C by auto
with eq show ?case by auto
next
case (RedNewFuail h E C'l)
have sconf:P,E & (h, 1) \/ by fact
from wf have is-class P OutOfMemory
by (fastforce intro:is-class-zcpt wf-prog-wwf-prog)
hence preallocated h => P & typeof, (Ref (addr-of-sys-zcpt OutOfMemory,[OutOfMemory)))
= Some(Class OutOfMemory)
by (auto elim: preallocatedE dest!:preallocatedD Subobjs-Base)
with sconf have P, Eh - THROW OutOfMemory : T by(auto simp:sconf-def
hconf-def)
thus ?case by (fastforce intro:wt-same-type-typecony)
next
case (StaticCastRed E e hle' h'l' C)
have wt:P,E.h = (Cle: T
and IH:A\T'. [P,E+ (h])\/; P,E.hF e: T']
— P.EL e iyp T
and sconf:P,E & (h, l) / by fact+
from wt obtain T/ where wte:P,E.h t ¢ : T' and isref:is-refT T'
and class: is-class P C and T:T = Class C
by auto
from isref have P,E.L'F (C)e’ : Class C
proof (rule refTE)
assume T' = NT
with IH[OF sconf wte] isref class show ?thesis by auto
next
fix D assume T' = Class D
with TH[OF sconf wte] isref class show ?thesis by auto
qed
with T show Zcase by (fastforce intro:wt-same-type-typeconf)
next
case RedStaticCastNull
thus ?case by (auto elim: WTrt.cases)
next
case (RedStaticUpCast Cs C Cs’ Ds E a h 1)
have wt:P,E.h = (C)ref (a,Cs) : T
and path-via:P - Path last Cs to C via Cs’
and Ds:Ds = Cs @, Cs' by fact+
from wt have typeof:P & typeofy, (Ref(a,Cs)) = Some(Class(last Cs))
and class: is-class P C and T:T = Class C
by auto
from typeof obtain D S where h:h a = Some(D,S) and subo:Subobjs P D Cs
by (auto dest:typeof-Class-Subo split:if-split-asm)
from path-via subo wf Ds have Subobjs P D Ds and last:last Ds = C
by (auto introl:Subobjs-appendPath appendPath-last| THEN sym] Subobjs-nonempty
simp:path-via-def)

206

with h have P E,h F ref (a,Ds) : Class C by auto
with T show ?Zcase by (fastforce intro:wt-same-type-typeconf)
next
case (RedStaticDownCast E C a Cs Cs’' hl)
have P,E.h F (C)ref (a,CsQ[C|QCs") : T by fact
hence typeof: Pt typeofy, (Ref(a,CsQ[C1QCs")) = Some(Class(last(CsQ[C|QCs”)))
and class: is-class P C and T:T = Class C
by auto
from typeof obtain D S where h:h a = Some(D,S)
and subo:Subobjs P D (CsQ[C]|QCs’)
by (auto dest:typeof-Class-Subo split:if-split-asm)
from subo have Subobjs P D (CsQ[C]) by(fastforce intro:appendSubobj)
with h have P Eh F ref (a,CsQ[C]) : Class C by auto
with T show ?Zcase by (fastforce intro:wt-same-type-typeconf)
next
case (RedStaticCastFail C Cs E a hl)
have sconf:P,E + (h, l) \/ by fact
from wf have is-class P ClassCast
by (fastforce intro:is-class-zcpt wf-prog-wwf-prog)
hence preallocated h => P & typeof, (Ref (addr-of-sys-zcpt ClassCast,[ClassCast]))
= Some(Class ClassCast)
by (auto elim: preallocatedE dest!:preallocatedD Subobjs-Base)
with sconf have P, E.h = THROW ClassCast : T by(auto simp:sconf-def hconf-def)
thus ?case by (fastforce intro:wt-same-type-typeconf)
next
case (DynCastRed Eehle' h'l' C)
have wt:P,E.h = Cast Ce: T
and IH:A\T'. [P,E+ (h]) /; P,Eht e: T]
- P,E,h/ F e’ NT T
and sconf:P,E (h,) v/ by fact+
from wt obtain T/ where wte:P,E.h t ¢ : T' and isref:is-refT T'
and class: is-class P C and T:T = Class C
by auto
from isref have P,E b’ Cast C e’ : Class C
proof(rule refTE)
assume T'= NT
with TH[OF sconf wte] isref class show ?thesis by auto
next
fix D assume T’ = Class D
with TH[OF sconf wte] isref class show ?thesis by auto
qed
with T show ?case by (fastforce intro:wt-same-type-typeconf)
next
case RedDynCastNull
thus ?case by (auto elim: WTrt.cases)
next
case (RedDynCast hla D S C Cs' E Cs)
have wt:P,Eh F Cast C (ref (a,Cs)) : T
and path-via:P & Path D to C via Cs’

207

and hp:hp (h,0) a = Some(D,S) by fact+
from wt have typeof:P & typeofy, (Ref(a,Cs)) = Some(Class(last Cs))
and class: is-class P C and T:T = Class C
by auto
from typeof hp have subo:Subobjs P D Cs
by (auto dest:typeof-Class-Subo split:if-split-asm)
from path-via subo have Subobjs P D Cs’
and last:last Cs’ = C by (auto simp:path-via-def)
with hp have P,E h F ref (a,Cs") : Class C by auto
with T show ?case by (fastforce intro:wt-same-type-typeconf)
next
case (RedStaticUpDynCast Cs C Cs’ Ds E a h 1)
have wt:P,E.h = Cast C (ref (a,Cs)) : T
and path-via:P = Path last Cs to C via Cs’
and Ds:Ds = Cs @, Cs' by fact+
from wt have typeof:P & typeofy, (Ref(a,Cs)) = Some(Class(last Cs))
and class: is-class P C and T:T = Class C
by auto
from typeof obtain D S where h:h a = Some(D,S) and subo:Subobjs P D Cs
by (auto dest:typeof-Class-Subo split:if-split-asm)
from path-via subo wf Ds have Subobjs P D Ds and last:last Ds = C
by (auto introl:Subobjs-appendPath appendPath-last| THEN sym] Subobjs-nonempty
sitmp:path-via-def)
with h have P E,h & ref (a,Ds) : Class C by auto
with T show ?case by (fastforce intro:wt-same-type-typeconf)
next
case (RedStaticDownDynCast E C a Cs Cs’ h 1)
have P,E.h - Cast C (ref (a,CsQ[C|QCs") : T by fact
hence typeof: P |- typeof, (Ref (a,CsQ[C|QCs’)) = Some(Class(last(CsQ[C]Q(s’)))
and class: is-class P C and T:T = Class C
by auto
from typeof obtain D S where h:h a = Some(D,S)
and subo:Subobjs P D (CsQ[C]QCs’)
by (auto dest:typeof-Class-Subo split:if-split-asm)
from subo have Subobjs P D (CsQ[C]) by (fastforce intro:appendSubobj)
with h have P,F.h F ref (a,CsQ[C]) : Class C by auto
with T show ?case by (fastforce intro:wt-same-type-typeconf)
next
case RedDynCastFail thus ?case by fastforce
next
case (BinOpRedl E e hle' h'l bop es)
have red:P,.E + (e,(h, 1)) — (e/,(h', I"))
and wt:P,E.h - e «bop» eq : T
and IH:A\T'. [P,E+ (h1) \/; P,E,hF e: T
- P,E,h/ F e NT T
and sconf:P,E (h,) +/ by fact+
from wt obtain T Ty where wte:P,E.,h - ¢ : T1 and wte2:P,E,h b ey : To
and binop:case bop of Eq = T = Boolean
| Add = T, = Integer N Ty = Integer N T = Integer

208

by auto
from WTri-hext-mono|OF wte2 red-hext-incr|OF red)] have wte2”.P,E.h'\ eg :
T .
have P,E.h't e’ «bop» eg : T
proof (cases bop)
assume Fq:bop = Eq
from IH[OF sconf wte] obtain T’ where P,E.h'\ e’ : T’
by (cases T1) auto
with wte2’ binop Eq show ?thesis by(cases bop) auto
next
assume Add:bop = Add
with binop have Intg: T1 = Integer by simp
with TH[OF sconf wte] have P,E.h' b e’ : Integer by simp
with wte2’ binop Add show ?thesis by(cases bop) auto
qed
with binop show ?case by(cases bop) simp-all
next
case (BinOpRed2 E e h l e’ h' 1" v1 bop)
have red:P,E + (e,(h,0)) — (e/,(h"l"))
and wt:P,E.h = Val vy «bop» e : T
and IH:A\T'. [P,E+ (h1) \/; P,E.hF e: T
- P,E,h/ Fe NT T'
and sconf:P,E + (h,) v/ by fact+
from wt obtain T, T where wtval:P,E h - Val v : T1 and wte:P,E,h - e :
T,
and binop:case bop of Eq = T = Boolean
| Add = T, = Integer N Ty = Integer N T = Integer
by auto
from WTrt-hext-mono[OF wtval red-hext-incr[OF red]]
have wtval:P,E,h' = Val vy : Ty .
have P.E.h'+ Val v «bop» e’ : T
proof (cases bop)
assume Fq:bop = Fq
from [H[OF sconf wte] obtain T’ where P,E.h'F e’ : T’
by (cases Tq) auto
with wtval’ binop Eq show ?thesis by(cases bop) auto
next
assume Add:bop = Add
with binop have Intg: Ty = Integer by simp
with TH[OF sconf wte] have P,E.h' b e’ : Integer by simp
with wtval’ binop Add show ?thesis by(cases bop) auto
qed
with binop show ?case by(cases bop) simp-all
next
case (RedBinOp bop v vy v E a b) thus Zcase
proof (cases bop)
case Fq thus ?thesis using RedBinOp by auto
next
case Add thus ?thesis using RedBinOp by auto

209

qed
next
case (RedVar h 1 V v E)
have l:lcl (h, l) V = Some v and sconf:P,E + (h, 1) /
and wt:P,E.h = Var V : T by fact+
hence conf:Ph - v :< T by(force simp:sconf-def lconf-def)
show ?Zcase
proof(cases V C. T # Class C)
case True
with conf have P typeof), v = Some T by(cases T) auto
hence P,E.h = Val v : T by auto
thus %thesis by (rule wt-same-type-typeconf)
next
case Fulse
then obtain C where T:T = Class C by auto
with conf have P & typeof), v = Some(Class C) V P+ typeofy, v = Some NT
by simp
with T show ?thesis by simp
qed
next
case (LAssRed Eehle' h'l' V)
have wt:P,E,h + V:=e: T and sconf:P,E - (h,) \/
and I:\T'. [P.EF (h, 1) \/; P.EJh - e: T = P.Eh'F ¢ :yp T’ by
fact+
from wt obtain T’ where wte:P,E,h - e : T' and env:E V = Some T
and sub:P - T’ < T by auto
from sconf env have is-type P T by(auto simp:sconf-def envconf-def)
from sub this wf show Zcase
proof(rule subE)
assume eq:T' = T and notclass:V C. T' # Class C
with TH[OF sconf wte] have P,E.h'F e’ : T by(cases T) auto
with eq env have P,E,h'+ V:=e': T by auto
with eq show %thesis by(cases T) auto
next
fix CD
assume T"T'= Class C and T:T = Class D
and path-unique:P = Path C to D unique
with TH[OF sconf wte] have P,E.h'F e’ : Class C V P,E,h'F e’ : NT
by simp
hence P.Eh' ¢ V:i=e': T
proof(rule disjE)
assume P.E.h'F e’ : Class C
with env T’ sub show ?thesis by (fastforce intro: WTrtLAss)
next
assume P, Eh't e’ : NT
with env T show ?thesis by (fastforce intro: WTrtLAss)
qed
with T show ?thesis by(cases T) auto
next

210

fix C
assume T"T'= NT and T:T = Class C
with TH[OF sconf wte] have P,E.h'F e’ : NT by simp
with env T show ?thesis by (fastforce intro: WTrtLAss)
qed
next
case (RedLAss EV Tvv' hil T
have env:E V = Some T and casts:P &+ T casts v to v’
and sconf:P,E F (h, 1) \/ and wt:P,E.,h = V:=Val v : T' by fact+
show ?case
proof(cases V C. T # Class C)
case True
with casts wt env show ?thesis
by (cases T’ auto elim!:casts-to.cases)
next
case Fulse
then obtain C where T = Class C by auto
with casts wt env wf show #thesis
by (auto elim!:casts-to.cases,
auto introl:sym[OF appendPath-last] Subobjs-nonempty split:if-split-asm
simp:path-via-def ,drule-tac Cs=Cs in Subobjs-appendPath,auto)
qed
next
case (FAccRed Eehle' h'I' F Cs)
have red:P,E + (e,(h,0)) — (e’,(h"l"))
and wt:P,E,h - e-F{Cs} : T
and IH:A\T'. [P,E+ (h1) \/; P,E.hF e: T
- P,E,h/ Fe' NT T’
and sconf:P,E (h,) v/ by fact+
from wt have P,E,h'+ e"-F{Cs} : T
proof (rule WTrt-elim-cases)
fix C' assume wte: P,E,h + e : Class C
and field:P + C has least F:T via Cs
and notemptyCs:Cs # |]
from field have class: is-class P C
by (fastforce intro:Subobjs-isClass simp add: LeastFieldDecl-def FieldDecls-def)
from IH[OF sconf wte] have P.E.h'F ¢’ : NT vV P,E,h'F e’ : Class C by
auto
thus ?thesis
proof(rule disjE)
assume P, Eh'F e’ : NT
thus ?thesis by (fastforce introl: WTrtFAceNT)
next
assume wte”:P,E.h'+ e’ : Class C
from wte’ notemptyCs field show ?thesis by (rule WTrtFAcc)
qed
next
assume wte: P Eht e: NT
from [H[OF sconf wte] have P,E.h’'+ ¢’ : NT by auto

211

thus ?thesis by (rule WTrtFAceNT)
qed
thus ?case by(rule wt-same-type-typecony)
next
case (RedFAcc hla D S Ds Cs' Cs fs' F v E)
have h:hp (h,l) a = Some(D,S)
and Ds:Ds = Cs'@Q,Cs and S:(Ds,fs’) € S
and fs”:.fs’ F = Some v and sconf:P,E F (h,l) /
and wte:P,E,h b ref (a,Cs”)-F{Cs} : T by fact+
from wte have field:P last Cs' has least F:T via Cs
and notemptyCs:Cs # |]
by (auto split:if-split-asm)
from h S sconf obtain Bs fs ms where classDs:class P (last Ds) = Some
(Bs,fs,ms)
and feonf:P,h b fs' (:<) map-of fs
by (simp add:sconf-def hconf-def oconf-def) blast
from field Ds have last Cs = last Ds
by (fastforce intro!:appendPath-last Subobjs-nonempty
sitmp: LeastFieldDecl-def FieldDecls-def)
with field classDs have map:map-of fs F = Some T
by (simp add:LeastFieldDecl-def FieldDecls-def)
with feconf fs’ have conf:P,h b v :< T
by (simp add:fconf-def ,erule-tac t=F in allE,fastforce)
thus ?case by (cases T') auto
next
case (RedFAccNull E F Cs hl)
have sconf:P,E + (h, l) / by fact
from wf have is-class P NullPointer
by (fastforce intro:is-class-zcpt wf-prog-wwf-prog)
hence preallocated h => P & typeof, (Ref (addr-of-sys-zcpt NullPointer,| NullPointer]))
= Some(Class NullPointer)
by (auto elim: preallocatedE dest!:preallocatedD Subobjs-Base)
with sconf have P,E.h = THROW NullPointer : T by(auto simp:sconf-def
hconf-def)
thus ?case by (fastforce intro:wt-same-type-typeconf wf-prog-wwf-prog)
next
case (FAssRedl Eehle' h'l' F Cs es)
have red:P,E = (e,(h,1)) — (e’,(h",1"))
and wt:P,E.h - e.F{Cs} == ex: T
and IH:A\T'. [P,E+ (h])\/; P,E.hF e: T
= P,Eh'F e :yp T’
and sconf:P,E + (h,l) «/ by fact+
from wt have P, E.h'F ¢ F{Cs} :=ex: T
proof (rule WTrt-elim-cases)
fix C T’ assume wte: P,E.h - e : Class C
and field:P F C has least F': T via Cs
and notemptyCs:Cs # |]
and wte2:P,E,h ey : T'and sub:P - T' < T
have wte2”: P,E.h'F ey : T’

212

by (rule WTrt-hext-mono|OF wte2 red-hext-incr|OF red]])
from [H[OF sconf wte] have P,Eh'+ e': Class C V P,E,h'+ e’ : NT
by simp
thus ?thesis
proof (rule disjE)
assume wte":P,E.h'+ e’ : Class C
from wte’ notemptyCs field wte2’ sub show ?thesis by (rule WTrtFAss)
next
assume wte " P,Eh'F e’ : NT
from wte’ wte2' sub show ?thesis by (rule WTrtFAssNT)
qed
next
fix T’ assume wte:P,E.h e : NT
and wte2:P,Eh+ ey : T'and sub:P - T' < T
have wte2”: P Eh' & ey : T’
by (rule WTrt-hext-mono|OF wte2 red-hext-incr|OF red]])
from IH[OF sconf wte] have wte""P,E,h'F ¢’ : NT by simp
from wte’ wte2’ sub show ?thesis by (rule WTrtFAssNT)
qed
thus Zcase by(rule wt-same-type-typeconf)
next
case (FAssRed2 Eehle' h'1l' v F Cs)
have red:P,E (e,(h,0)) — (e’,(h',1")
and wt:P,E.h = Val v-F{Cs} :==e: T
and IH:A\T'. [P.E v (1) /; P.Eh - e: T7
- P,E,h/ Fe NT T'
and sconf:P,E & (h,0) \/ by fact+
from wt have P,E.h' - Val v-F{Cs}:=e': T
proof (rule WTrt-elim-cases)
fix C T/ assume wtval:P,E,h = Val v : Class C
and field:P + C has least F:T via Cs
and notemptyCs:Cs # |]
and wte:P,E,h - e: T’
and sub:P - T'< T
have wtval:P,E,h’' = Val v : Class C
by (rule WTrt-hext-mono|OF wtval red-hext-incr|OF red]])
from field wf have type:is-type P T by(rule least-field-is-type)
from sub type wf show ?thesis
proof (rule subE)
assume 7' = T and notclass:¥ C. T' # Class C
from TH[OF sconf wte] notclass have wte”:P,E.h'+ e’ : T’
by(cases T') auto
from wtval’ notemptyCs field wte’ sub show ?thesis
by (rule WTrtFAss)
next
fix C' D assume T"T' = Class C'and T:T = Class D
and path-unique: P & Path C' to D unique
from ITH[OF sconf wte] T' have P,E.,h'+ e’ : Class C'V P,Eh'F e’ : NT
by simp

213

thus ?thesis
proof (rule disjE)
assume wte:P,E.h' - ¢’ : Class C’
from wtval’ notemptyCs field wte’ sub T' show ?thesis
by (fastforce intro: WTrtFAss)
next
assume wte"P,Eh'F e’ : NT
from witval’ notemptyCs field wte’ sub T show ?thesis
by (fastforce intro: WTrtFAss)
qed
next
fix C'assume T".T'= NT and T:T = Class C’
from TH[OF sconf wte] T' have wte:P,E.h'F e’ : NT by simp
from wtval’ notemptyCs field wte’ sub T show ?thesis
by (fastforce intro: WTrtFAss)
qed
next
fix T’ assume wtval:P,E.h = Val v : NT
and wte:P,E,h - e : T'
and sub:P - T'< T
have wtval:P,E,h'+ Valv : NT
by (rule WTrt-hext-mono[OF wtval red-hext-incr|OF red]])
from IH[OF sconf wte] sub obtain T’ where wte.P,E.h'\ e’ : T"
and sub:P + T'" < T by (cases T',auto,cases T,auto)
from wival” wte’ sub’ show ?thesis
by (rule WTrtFAssNT)
qed
thus ?case by(rule wt-same-type-typecony)
next
case (RedFAssha DS Cs' FT Csvv' Dsfs E1T)
let ?fs' = fs(F — v’)
let 25’ = insert (Ds, ?fs’) (S — {(Ds, fs)})
let ?h' = h(a — (D,?S"))
have h:h a = Some(D,S) and casts:P = T casts v to v’
and field:P + last Cs’ has least F:T via Cs
and wt:P,E,h - ref (a,Cs’)-F{Cs} := Val v: T' by fact+
from wt wf have type:is-type P T’
by (auto dest:least-field-is-type split:if-split-asm)
from wt field obtain T’ where wtval:P,E,h = Valv : T" and eq:T = T
and le:P - T" < T'
by (auto dest:sees-field-fun split:if-split-asm)
from casts eq wtval show ?case
proof (induct rule: casts-to.induct)
case (casts-prim Toy w)
have Tqg = T'and VC. Ty # Class C and wtval."P,E.h - Val w : T'" by
fact+
with leg have T' = T'' by(cases T’ auto)
with wtval’ have P,E,h = Val w : T' by simp
with h have P E,(h(a—(D,insert(Ds,fs(F — w))(S—{(Ds,fs)})))) + Val w :

214

T/
by (cases w,auto split:if-split-asm,)
thus P,E,(h(a—(D,insert(Ds,fs(F — w))(S—{(Ds,fs)})))) F (Val w) :yp T’
by (rule wt-same-type-typeconyf)
next
case (casts-null C'")
have T':Class C'' = T' by fact
have P,E,(h(a—(D,insert(Ds,fs(F — Null))(S—{(Ds,fs)})))) F null : NT
by simp
with sym[OF T
show P,E.(h(a—(D,insert(Ds,fs(F — Null))(S—{(Ds,fs)})))) - null :yp T’
by simp
next
case (casts-ref Xs C"' Xs' Ds” a’)
have Class C" = T’ and Ds"" = Xs @, Xs’
and P b Path last Xs to C" via Xs'
and P.EhF ref (a’, Xs) : T" by fact+
with wf have P,F.h + ref (a’,Ds") : T’
by (auto intro:appendPath-last| THEN sym] Subobjs-nonempty
split:if-split-asm simp:path-via-def,
drule-tac Cs=Xs in Subobjs-appendPath,auto)
with h have P E,(h(a—(D,insert(Ds,fs(F — Ref(a’,Ds")))(S—{(Ds,fs)}))))
',
ref (a’,Ds") : T’
by auto
thus P,E,(h(a—(D,insert(Ds,fs(F — Ref(a’,Ds""))(S—{(Ds,fs)})))) F
ref (a’,Ds") :pjp T’
by (rule wt-same-type-typeconf)
qed
next
case (RedFAssNull E F Cs v h l)
have sconf:P,E + (h, l) / by fact
from wf have is-class P NullPointer
by (fastforce intro:is-class-zcpt wf-prog-wwf-prog)
hence preallocated h => P & typeof, (Ref (addr-of-sys-zcpt NullPointer,| NullPointer]))
= Some(Class NullPointer)
by (auto elim: preallocatedE dest!:preallocatedD Subobjs-Base)
with sconf have P,E.h = THROW NullPointer : T by(auto simp:sconf-def
hconf-def)
thus ?case by (fastforce intro:wt-same-type-typeconf wf-prog-wwf-prog)
next
case (CallObj Eehle' h'l' Copt M es)
have red: P,E + (e,(h,0)) — {(e/,(h"l"))
and IH: AT’ [P,EF (b)) \/; P,E.hFe: T
- P,E,h/ F e’ NT T'
and sconf: P,E F (h,0) / and wt: P,E.h = Call e Copt M es : T by fact+
from wt have P,E.h'+ Call ¢’ Copt M es: T
proof(cases Copt)
case None

215

with wt have P,E h - e:M(es) : T by simp
hence P,Eh' e'-M(es) : T
proof (rule WTrt-elim-cases)
fix C Cs Ts Ts' m
assume wte:P,E.h F e : Class C
and method:P & C has least M = (Ts, T, m) via Cs
and wtes:P,E h F es [:] Ts' and subs: P+ Ts' [<] Ts
from [H[OF sconf wte] have P,Eh'F e’ : NT v P,E.h'F e’ : Class C by
auto
thus 2thesis
proof (rule disjE)
assume wte"P,Eh'F e’ : NT
have P,Eh' es [:] Ts’
by (rule WTrts-hext-mono[OF wtes red-hext-incr[OF red]])
with wte’ show ?thesis by (rule WTrtCalINT)
next
assume wte:P,E.h' e’ : Class C
have wtes”.P,E.h'\- es [:] Ts'
by (rule WTrts-hext-mono|OF wtes red-hext-incr[OF red]])
from wte’ method wtes’ subs show ?thesis by(rule WTrtCall)
qed
next
fix Ts
assume wte:P,E.h F e : NT and wtes:P,E.h - es [:] Ts
from TH[OF sconf wte] have wte":P,E,h' - e’ : NT by simp
have P,E.h' |- es [:] Ts
by (rule WTrts-hext-mono[OF wtes red-hext-incr[OF red]])
with wte’ show ?thesis by (rule WTrtCalINT)
qed
with None show ?thesis by simp
next
case (Some C)
with wt have P,E.h - e:(C::)M(es) : T by simp
hence P, Eh't e-(C:)M(es) : T
proof (rule WTrt-elim-cases)
fix C' Cs Ts Ts' m
assume wte:P,E.h + e : Class C’ and path-unique:P & Path C' to C unique
and method:P & C has least M = (Ts, T, m) via Cs
and wtes:P,E h - es [:] Ts' and subs: P+ Ts' [<] Ts
from [H[OF sconf wte] have P,E.h’'F e’ : NT vV P,E.h'F ¢’ : Class C' by
auto
thus 2thesis
proof (rule disjE)
assume wte"P,Eh'F e’ : NT
have P,ELh' es [:] Ts’
by (rule WTrts-hext-mono|OF wtes red-hext-incr[OF red]])
with wte’ show ?thesis by (rule WTrtCallNT)
next
assume wte:P,E.h' - e’ : Class C'

216

have wtes".P,E b’ F es [}] Ts'
by (rule WTrts-hext-mono|[OF wtes red-hext-incr[OF red]])
from wte’ path-unique method wtes’ subs show ?thesis by(rule WTrtStat-
icCall)
qed
next
fix Ts
assume wte:P,E.h F e : NT and wtes:P,E.h - es [:] Ts
from TH[OF sconf wte] have wte":P,E,h'F e’ : NT by simp
have P,E.h' - es [:] Ts
by (rule WTrts-hext-mono[OF wtes red-hext-incr[OF red]])
with wte’ show ?thesis by (rule WTrtCalINT)
qed
with Some show ?thesis by simp
qed
thus ?case by (rule wt-same-type-typeconf)
next
case (CallParams E es h l es' h'l" v Copt M)
have reds: P,E = (es,(h,l)) [—=] (es’,(h',l"))
and TH: \T5. [P.E - (1) \/; PE.h F es [] T5]
= types-conf P E h' es’ Ts
and sconf: P,E + (h,0) v/ and wt: P,E.h - Call (Val v) Copt M es : T by
fact+
from wt have P.E,h'+ Call (Val v) Copt M es’: T
proof(cases Copt)
case None
with wt have P,E.ht (Val v)-M(es) : T by simp
hence P,E,h'+ Val v-M(es’) : T
proof (rule WTrt-elim-cases)
fix C Cs Ts Ts' m
assume wte: P,E.h = Val v : Class C
and method:P & C has least M = (Ts,T,m) via Cs
and wtes: P,E,h F es [}] Ts" and subs:P + Ts' [<] Ts
from wtes have length es = length Ts' by(rule WTrts-same-length)
with reds have length es’ = length Ts'
by —(drule reds-length,simp)
with TH[OF sconf wtes] subs obtain Ts'' where wtes:P,E.h' F es’ [:] Ts”
and subsP + Ts" [<] Ts by(auto dest:types-conf-smaller-types)
have wte”:P,E.,h' - Val v : Class C
by (rule WTrt-hext-mono| OF wte reds-hext-incr[OF reds]])
from wte’ method wtes’ subs’ show ?thesis
by (rule WTrtCall)
next
fix Ts
assume wte:P,Eh+ Valv: NT
and wtes:P,E.h - es [:] Ts
from wtes have length es = length Ts by (rule WTrts-same-length)
with reds have length es’ = length Ts
by —(drule reds-length,simp)

217

with TH[OF sconf wtes] obtain Ts’ where wtes":P,E.h'F es’ [:] T’
and P+ Ts' [<] Ts by(auto dest:types-conf-smaller-types)
have wte”:P,E,h'+ Valv : NT
by (rule WTrt-hext-mono|OF wte reds-hext-incr|OF reds)])
from wte’ wtes’ show ?thesis by (rule WTrtCalINT)
qed
with None show ?thesis by simp
next
case (Some C)
with wt have P,E,h - (Val v)-(C::)M(es) : T by simp
hence P,Eh'F (Val v)-(C::)M(es’) : T
proof (rule WTrt-elim-cases)
fix C' Cs Ts Ts' m
assume wte:P,E.h = Val v : Class C' and path-unique:P + Path C’ to C
unique
and method:P & C has least M = (Ts,T,m) via Cs
and wtes:P,E h F es [:] Ts' and subs: P+ Ts' [<] Ts
from wtes have length es = length Ts' by(rule WTrts-same-length)
with reds have length es’ = length Ts'
by —(drule reds-length,simp)
with TH[OF sconf wtes] subs obtain Ts'' where wtes:P,E.h' F es’ [:] Ts”
and subs”:P = Ts" [<] Ts by(auto dest:types-conf-smaller-types)
have wte”:P,E.h'+ Val v : Class C’
by (rule WTrt-hext-mono| OF wte reds-hext-incr[OF reds]])
from wte’ path-unique method wtes’ subs’ show ?thesis
by (rule WTrtStaticCall)
next
fix Ts
assume wte:P,Eh+ Valv: NT
and wtes:P,E.h - es [:] Ts
from wtes have length es = length Ts by (rule WTrts-same-length)
with reds have length es’ = length Ts
by —(drule reds-length,simp)
with IH[OF sconf wtes] obtain Ts’ where wtes:P,E.h' F es’ [:] Ts’
and P F Ts’ [<] Ts by(auto dest:types-conf-smaller-types)
have wte”:P,E,h'+ Valv: NT
by (rule WTrt-hext-mono|OF wte reds-hext-incr[OF reds]])
from wte’ wtes’ show ?thesis by (rule WTrtCallNT)
qed
with Some show ?thesis by simp
qed
thus ?case by (rule wt-same-type-typeconf)
next
case (RedCallhla CS Cs M Ts" T' pns’ body’ Ds Ts T pns body Cs’
vs bs new-body E T
have hp:hp (h,l) a = Some(C,S)
and method:P = last Cs has least M = (Ts',T',pns’,body’) via Ds
and select:P = (C,CsQ,Ds) selects M = (Ts,T,pns,body) via Cs’
and lengthl:length vs = length pns and length2:length Ts = length pns

218

and bs:bs = blocks(this#pns, Class(last Cs")# Ts,Ref (a,Cs")#vs,body)
and body-case:new-body = (case T' of Class D = (D)bs | - = bs)
and wt:P,E.h - ref (a,Cs)-M(map Val vs) : T" by fact+
from wt hp method wf obtain Ts'’
where wtref:P,E,h = ref (a,Cs) : Class (last Cs) and eq:T" = T’
and wtes:P,E h - map Val vs] Ts” and subs: P+ Ts" [<] Ts'
by (auto dest:wf-sees-method-fun split:if-split-asm)
from select wf have is-class P (last Cs’)
by (induct rule:SelectMethodDef .induct,
auto intro:Subobj-last-isClass simp: FinalOverriderMethodDef-def
OverriderMethodDefs-def MinimalMethodDefs-def LeastMethodDef-def Method-
Defs-def)
with select-method-wf-mdecl] OF wf select)
have length-pns:length (this#pns) = length (Class(last Cs")#Ts)
and notNT:T # NT and type:V T<set (Class(last Cs"\#TS). is-type P T
and wtabody: P,[this— Class(last Cs’),pns[—]Ts] b body :: T
by (auto simp:wf-mdecl-def)
from wtes hp select
have map:map (P & typeof},) (Ref(a,Cs")#vs) = map Some (Class(last Cs"\# Ts"")
by (auto elim:SelectMethodDef .cases split:if-split-asm
simp: FinalOverriderMethodDef-def OverriderMethodDefs-def
MinimalMethodDefs-def LeastMethodDef-def MethodDefs-def)
from wtref hp have P = Path C to (last Cs) via Cs
by (auto simp:path-via-def split:if-split-asm)
with select method wf have Ts' = Ts NP+ T < T’
by —(rule select-least-methods-subtypes,simp-all)
hence egs:Ts' = Ts and sub:P + T < T’ by auto
from wf wtabody have P,Map.empty(this— Class(last Cs'),pns[—]Ts),h - body :
T
by —(rule WT-implies-WTrt,simp-all)
hence wtbody: P,E(this#pns [—] Class (last Cs’)#Ts),h - body : T
by (rule WTrt-env-mono) simp
from wtes have length vs = length Ts"'
by (fastforce dest: WTrts-same-length)
with egs subs
have length-vs:length (Ref(a,Cs”)#vs) = length (Class(last Cs’)#T5s)
by (simp add:list-all2-iff)
from subs eqs have P + (Class(last Cs’)#Ts'") [<] (Class(last Cs’)#T5s)
by (simp add:fun-of-def)
with wi-blocks|OF length-pns length-vs type] wtbody map eq
have blocks:P,E,h = blocks(this#pns,Class(last Cs"\# Ts,Ref(a,Cs’)#vs,body) :
T
by auto
have P, E.h F new-body : T’
proof(cases V C. T’ # Class C)
case True
with sub notNT have T = T’ by (cases T') auto
with blocks True body-case bs show ?thesis by(cases T”) auto
next

219

case Fulse
then obtain D where T": T’ = Class D by auto
with method sub wf have class: is-class P D
by (auto elim!:widen.cases dest:least-method-is-type
intro:Subobj-last-isClass simp:path-unique-def)
with blocks T’ body-case bs class sub show ?thesis
by(cases T’ auto,cases T,auto)
qed
with eq show ?case by(fastforce intro:wt-same-type-typeconf)
next
case (RedStaticCall Cs C Cs"" M Ts T pns body Cs’ Ds vs Ea hl T
have method:P - C has least M = (Ts, T, pns, body) via Cs’
and lengthl1:length vs = length pns
and length2:length Ts = length pns
and path-unique: P = Path last Cs to C unique
and path-via: P - Path last Cs to C via Cs'’
and Ds:Ds = (Cs @, Cs') @, Cs’
and wt:P,E.h F ref (a,Cs)-(C::)M(map Val vs) : T' by fact+
from wt method wf obtain T’
where wiref:P,E,h = ref (a,Cs) : Class (last Cs)
and wtes:P,E,h b map Val vs [}] Ts’ and subs:P & Ts' [<] Ts
and TeqT" T = T'
by(auto dest:wf-sees-method-fun split:if-split-asm)
from wiref obtain D S where hp:h a = Some(D,S) and subo:Subobjs P D Cs
by (auto split:if-split-asm)
from lengthl length2
have length-vs: length (Ref(a,Ds)#wvs) = length (Class (last Ds)# Ts) by simp
from length2 have length-pns:length (this#pns) = length (Class (last Ds)# Ts)
by simp
from method have Cs’ # ||
by (fastforce introl:Subobjs-nonempty simp add:LeastMethodDef-def Method-
Defs-def)
with Ds have last:last Cs' = last Ds
by (fastforce dest:appendPath-last)
with method have is-class P (last Ds)
by (auto simp: LeastMethodDef-def MethodDefs-def is-class-def)
with last has-least-wf-mdecl| OF wf method]
have wtabody: P,[this#pns [—] Class (last Ds)#Ts] - body :: T
and type:V Teset (Class(last Ds)#T5). is-type P T
by (auto simp:wf-mdecl-def)
from path-via have suboCs’:Subobjs P (last Cs) Cs”
and lastCs’:last Cs"' = C
by (auto simp add:path-via-def)
with subo wf have subo”Subobjs P D (Cs@,Cs"’)
by (fastforce intro: Subobjs-appendPath)
from lastCs”’ suboCs'' have lastC:C = last(Cs@,Cs"’)
by (fastforce dest:Subobjs-nonempty intro:appendPath-last)
from method have Subobjs P C Cs’
by (auto simp:LeastMethodDef-def MethodDefs-def)

220

with subo’ wf lastC have Subobjs P D ((Cs @, Cs") @, Cs’)
by (fastforce intro:Subobjs-appendPath)
with Ds have suboDs:Subobjs P D Ds by simp
from wtabody have P,Map.empty(this#pns [—] Class (last Ds)#Ts),h F body :
T
by (rule WT-implies-WTrt)
hence P,E(this#pns [—] Class (last Ds)#Ts),h & body : T
by (rule WTrt-env-mono) simp
hence P,E,h b blocks(this#pns, Class (last Ds)# Ts, Ref(a,Ds)#vs, body) : T
using wtes subs wt-blocks|OF length-pns length-vs type] hp suboDs
by(auto simp add:rel-list-all2-Cons2)
with TeqT’ show ?case by/(fastforce intro:wt-same-type-typeconf)
next
case (RedCallNull E Copt M vs h 1)
have sconf:P,E + (h, 1) / by fact
from wf have is-class P NullPointer
by (fastforce intro:is-class-xcpt wf-prog-wwf-prog)
hence preallocated h => P & typeof, (Ref (addr-of-sys-zept NullPointer,| NullPointer]))
= Some(Class NullPointer)
by (auto elim: preallocatedE dest!:preallocatedD Subobjs-Base)
with sconf have P E.h = THROW NullPointer : T by(auto simp:sconf-def
hconf-def)
thus ?case by (fastforce intro:wt-same-type-typeconf)
next
case (BlockRedNone E VT ehle h'l' T
have IH:AT'. [P,E(V — T) & (h, I(V := None)) /; P,E(V— T),hke: T
- P,E(V = T),hll— e’ NT T'
and sconf:P,E + (h, 1) / and wt:P,Eh = {V:T; e} : T' by fact+
from wt have type:is-type P T and wte:P,E(V—T),h F e: T’ by auto
from sconf type have P,E(V — T) (h, I(V := None)) +/
by (auto simp:sconf-def lconf-def envconf-def)
from [H[OF this wte] type show ?case by (cases T') auto
next
case (BlockRedSome E'V T ehle' h'l' v T
have red:P,E(V +— T) F (e,(h, I(V := None))) — (e’,(h', 1))
and IH:\T'. [P,E(V — T)F (h, I(V := None)) /; P,E(V— T)hte: T
- P,E(V = T),h/ Fe' NT T'
and Some:l’ V = Some v
and sconf:P,E + (h, 1) / and wt:P,Eh = {V:T; e} : T' by fact+
from wt have wte:P,E(V—T),ht e: T’ and type:is-type P T by auto
with sconf wf red type have P,h' + I’ (:<),, E(V — T)
by —(auto simp:sconf-def ,rule red-preserves-lconf,
auto intro:wf-prog-wwf-prog simp:envconf-def lconf-def)
hence conf:P,h' F v :< T using Some
by (auto simp:lconf-def ,erule-tac =V in allE,clarsimp)
have wtval:P,E(V — T),h'F V:i=Valv: T
proof(cases T)
case Void with conf show ¢thesis by auto
next

221

case Boolean with conf show ?thesis by auto
next
case Integer with conf show ?thesis by auto
next
case NT with conf show ?thesis by auto
next
case (Class C)
with conf have P, E(V — T),h'F Valv: TV P,E(V — T),h'+ Valv: NT
by auto
with Class show ?thesis by auto
qed
from sconf type have P,E(V — T) (h, I(V := None)) v/
by (auto simp:sconf-def lconf-def envconf-def)
from [H[OF this wte] wtval type show ?case by(cases T') auto
next
case (InitBlockRed EV T ehlv' e’ h' 1" v" v T
have red:P,E(V — T) F (e,(h, [V — v')) — (e/,(h', I))
and IH:A\T'. [P,E(V — T)F (h, (V = v") /; P,E(V— T)hte: T
= PE(Ve— T)htFe :yp T
and Some:l’ V = Some v" and casts:P F T casts v to v’
and sconf:P,E + (h, 1) \/ and wt:P,E,h - {V:T := Val v; e} : T' by fact+
from wt have wte:P,E(V +— T),h - e: T and wtval:P,E(V +— T),h = V:=Val
v: T
and type:is-type P T
by auto
from wf casts wtval have P,h = v':< T
by (fastforce intro!: casts-conf wf-prog-wwf-prog)
with sconf have lconf:P.h = I(V — v') (:<)y E(V — T)
by (fastforce intro!:lconf-upd2 simp:sconf-def)
from sconf type have envconf P (E(V — T)) by(simp add:sconf-def envconf-def)
from red-preserves-lconf[OF wf-prog-wwf-prog| OF wf] red wte lconf this]
have P.A'H 1" (:<)y E(V — T) .
with Some have P,h'F v :< T
by (simp add:lconf-def ,erule-tac x=V in allE,auto)
hence wtval:"P,E(V — T),h'F V:=Valv": T
by(cases T) auto
from lconf sconf type have P,E(V — T) F (h, (V — v) /
by (auto simp:sconf-def envconf-def)
from [H[OF this wte] wtval’ type show ?Zcase by(cases T') auto
next
case RedBlock thus Zcase by (fastforce intro:wt-same-type-typeconf)
next
case RedInitBlock thus ?case by (fastforce intro:wt-same-type-typeconf)
next
case (SeqRed Eehle' h'l ey T)
have red:P,E + (e,(h, 1)) — (e/,(h', I"))
and II\T'. [P.EV (h, 1) \/; P.Eht e: T = P.EL' * ¢ iyp T’
and sconf:P,E & (h, 1) \/ and wt:P,E\h \- ¢e;; e2 : T by fact+
from wt obtain T’ where wte:P,E.h - ¢ : T/ and wte2:P,E.h F es : T by

222

auto
from WTri-hext-mono|OF wte2 red-hext-incr|OF red)] have wte2”.P,E.h'\ eg :
T.
from IH[OF sconf wte] obtain T where P,E,h'+ ¢’ : T' by(cases T') auto
with wte2’ have P,E,h' & ¢e';; e5 : T by auto
thus ?case by(rule wt-same-type-typecony)
next
case RedSeq thus ?case by (fastforce intro:wt-same-type-typecony)
next
case (CondRed E e hle' h'l' e e3)
have red:P,E = (e,(h, 1)) — {(e',(h', 1))
and IH: \T. [P,E+ (b)) /; P,Eht e: T]
- P,E,hl'_ e NT T
and wt:P,E.h & if (e) e else eq : T
and sconf:P,E + (h,l) «/ by fact+
from wt have wte:P,E,h F e : Boolean
and wtel:P,E.h - ey : T and wte2:P,Eh - es : T by auto
from [H[OF sconf wte] have wte”:P,E.h’'\- e’ : Boolean by auto
from wte’ WTrt-hext-mono| OF wtel red-hext-incr[OF red|]
WTrt-hext-mono[OF wte2 red-hext-incr[OF red]]
have P, E.h'+ if (e') ey else eg : T
by (rule WTrtCond)
thus ?case by(rule wt-same-type-typecony)
next
case RedCondT thus ?case by (fastforce intro: wt-same-type-typecony)
next
case RedCondF thus ?case by (fastforce intro: wt-same-type-typeconf)
next
case RedWhile thus ?case by (fastforce intro: wi-same-type-typeconf)
next
case (ThrowRed Eehle h'l' T)
have IH:AT. [P,EF+ (h, 1) \/; P.Ehte: T] = PEh'F e :yp T
and sconf:P.E - (h, 1) / and wt:P,E,h throw e : T by fact+
from wt obtain T’ where wte:P,E.h - e : T’ and ref:is-refT T'
by auto
from ref have P,E,h' & throw e’ : T
proof (rule refTE)
assume T"T'= NT
with wte have P,E.h - e : NT by simp
from [H[OF sconf this] ref T' show ?thesis by auto

next

fix C assume T"T' = Class C

with wte have P,E.h - e : Class C by simp

from [H[OF sconf this] have P,E.h'+ e': Class C V P,E.h'\ e’ : NT
by simp

thus ?thesis

proof (rule disjE)
assume wte":P,E.h'+ e’ : Class C

223

have is-refT (Class C) by simp
with wte’ show ?thesis by auto
next
assume wte:"P,E.h' e’ : NT
have is-refT NT by simp
with wte’ show ?thesis by auto
qed
qed
thus ?case by (rule wt-same-type-typeconf)
next
case (RedThrowNull E h)
have sconf:P,E & (h, l) \/ by fact
from wf have is-class P NullPointer
by (fastforce intro:is-class-zcpt wf-prog-wwf-prog)
hence preallocated h => P & typeof, (Ref (addr-of-sys-zcpt NullPointer,[NullPointer]))
= Some(Class NullPointer)
by (auto elim: preallocatedFE dest!:preallocatedD Subobjs-Base)
with sconf have P,E.h = THROW NullPointer : T by(auto simp:sconf-def
hconf-def)
thus ?case by (fastforce intro:wt-same-type-typeconf wf-prog-wwf-prog)
next
case (ListRedl Eehle h'l' es Ts)
have red:P,E (e,(h, 1)) — {(e/,(h’, 1))
and IH:\T. [P.EV: (h, 1) /; P.Eh b e: T] = P.EW F ¢ :yp T
and sconf:P,E F (h, 1) \/ and wt:P,E,h - e # es [:] Ts by fact+
from wt obtain U Us where Ts:Ts = U# Us by(cases Ts) auto
with wt have wte:P,E,h e : U and wtes:P,E,h - es [:] Us by simp-all
from WTrts-hext-mono[OF wtes red-hext-incr|OF red]]
have wtes.P,E,h' b es [:] Us .
hence length es = length Us by (rule WTrts-same-length)
with wtes’ have types-conf P E h' es Us
by (fastforce intro:wts-same-types-typesconf)
with TH[OF sconf wte] Ts show ?Zcase by simp
next
case (ListRed2 E es h les' h' 1" v Ts)
have reds:P,E t (es,(h, 1)) [=] (es’,(h’, 1))
and IH:A\Ts. [P,E + (h, 1) \/; P,E,h t es [:] Ts] = types-conf P E h' es’ Ts
and sconf:P,E & (h, 1) v/ and wt:P,E,h - Val v#es [:] Ts by fact+
from wt obtain U Us where Ts:Ts = U# Us by(cases Ts) auto
with wt have wtval:P,E,h & Val v : U and wtes:P,E,h - es [;] Us by simp-all
from WTrt-hext-mono| OF wtval reds-hext-incr|OF reds]]
have P Eh'F Valv: U.
hence P,E,h't (Val v) : yp U by(rule wt-same-type-typeconf)
with IH[OF sconf wtes] Ts show Zcase by simp
next
case (CallThrowObj E h | Copt M es h' 1’
thus ?case by(cases Copt)(auto intro:wt-same-type-typeconf)
next
case (CallThrowParams es vs h l es’ E v Copt M h'1")

224

thus Zcase by(cases Copt)(auto intro:wt-same-type-typeconf)
qed (fastforce intro:wt-same-type-typeconf)+

corollary subject-reduction:
[wf-C-prog P; P,E - (e,s) — (e';s"); P,E+ s+/; P,Ehp st eT]
= PE/(hps e :yp T

by(cases s, cases s', fastforce dest:subject-reduction?2)

corollary subjects-reduction:
[wf-C-prog P; P,E \ (es,s) [=] (es’,;s"y; P,E+ s+/; P,E,hp s b es[:]Ts]
= types-conf P E (hp s’) es’ Ts

by(cases s, cases s', fastforce dest:subjects-reduction?2)

26.3 Lifting to —x

Now all these preservation lemmas are first lifted to the transitive closure

lemma step-preserves-sconf:
assumes wf: wf-C-prog P and step: P,E F (e,s) —x (e’,s")
shows AT. [P,E.hp st e: T; P.EFs\/]|] = P,Et s/

using step
proof (induct rule:converse-rtrancl-induct2)
case refi show ?case by fact
next
case step
thus ?case using wf
apply simp
apply (frule subject-reduction] OF wf])
apply (rule step.prems)
apply (rule step.prems)
apply (cases T)
apply (auto dest:red-preserves-sconf intro:wf-prog-wwf-prog)
done
qed

lemma steps-preserves-sconf:
assumes wf: wf-C-prog P and step: P,E - (es,s) [=]x (es’,s”)
shows ATs. [P,E,hp st es[] Ts; PEF s/] = P,EF s’/

using step
proof (induct rule:converse-rtrancl-induct2)
case refl show ?case by fact
next
case (step es s es’’ s' Ts)
have Reds:((es, s), es’, s’) € Reds P E
and reds:P,E + {es" s") [=]* (es’,s”)

225

and wtes:P,E hp s - es [}] Ts
and sconf:P.E+ s/
and IH:A\Ts. [P,E,hp s"' - es” [:] Ts; P,EF s” \/] = P,E + s’/ by fact+
from Reds have reds!:P,E F (es,s) [=] (es”,s") by simp
from subjects-reduction[OF wf this sconf wtes]
have type:types-conf P E (hp s”') es’ Ts .
from reds! wtes sconf wf have sconf:P,E + s" +/
by (fastforce intro:wf-prog-wwf-prog reds-preserves-sconf)
from type have 3 Ts'. P,E hp s” b es” [}] Ts'
proof (induct Ts arbitrary: es’)
fix esi
assume types-conf P E (hp s") esi [|
thus 3 Ts'. P,E.hp s'' - esi [}] Ts’
proof (induct esi)
case Nil thus 3Ts'. P,E.hp s+ [] [:] T by simp
next
fix ex esx
assume types-conf P E (hp s”) (ex#tesz) ||
thus 3 Ts". P,E.hp s"' - ex#tesx [:] Ts' by simp
qed
next
fix T' Ts' esi
assume type’:types-conf P E (hp s') esi (T'#Ts')
and TH:\es”. types-conf P E (hp s"') es” Ts' =
3Ts"”. P,E,hp s" F es” [:] Ts"
from type’ show 3 Ts'. P,E.hp s’ esi [:] Ts’'
proof (induct esi)
case Nil thus 3 Ts". P,E.hp s"' || [:] Ts' by simp
next
fix ex esx
assume types-conf P E (hp s”) (ex#esz) (T'#Ts')
hence type:P,E.hp s'"' & ex :yp T’
and types”types-conf P E (hp s") esz Ts' by simp-all
from type’ obtain Tz where type’:P,E.hp s’ & ex : Tz
by(cases T') auto
from IH[OF types’| obtain Tsz where P,E.hp s” & esz [:] Tsz by auto
with type’’ show 3 Ts'. P,E hp s"' - ex#esx [:] Ts' by auto
qed
qed
then obtain Ts’ where P,E hp s'' - es” [:] Ts' by blast
from [H[OF this sconf’] show ?Zcase .
qged

lemma step-preserves-defass:
assumes wf: wf-C-prog P and step: P,E - (e,s) —x (e’,s)
shows D e |dom(lcl s)| = D e’ [dom(lcl s")]

using step

226

proof (induct rule:converse-rtrancl-induct2)
case refl thus ?case .
next
case (step e s e’ s) thus Zcase
by(cases s,cases s')(auto dest:red-preserves-defass|OF wf])
qed

lemma step-preserves-type:
assumes wf: wf-C-prog P and step: P,E F (e,s) —x (e’,s")
shows AT. [P,E+ s+/; P.Ehp st eT]

= P,E(hp s F e iy T

using step
proof (induct rule:converse-rtrancl-induct2)
case refl thus ?case by —(rule wt-same-type-typeconf)
next
case (step e s €'’ ' T) thus ?case using wf
apply simp
apply (frule subject-reduction] OF wf])
apply (auto dest!:red-preserves-sconf intro:wf-prog-wwf-prog)
apply(cases T)
apply fastforce+
done
qged

predicate to show the same lemma for lists

fun

conformable :: ty list = ty list = bool
where

conformable [| [| «+— True

| conformable (T"#Ts"") (T'#Ts") +— (T" = T’
vV (3C. T"=NT A T’ = Class C)) A conformable Ts" Ts’
| conformable - - «<— False

lemma types-conf-conf-types-conf:
[types-conf P E h es Ts; conformable Ts Ts'] = types-conf P E h es Ts’
proof (induct Ts arbitrary: Ts' es)
case Nil thus ?case by (cases Ts') (auto split: if-split-asm)
next
case (Cons T" Ts")
have type:types-conf P E h es (T"'#Ts")
and conf:conformable (T"#Ts"") Ts'
and TH:A\Ts’ es. [types-conf P E h es Ts'"; conformable Ts"' Ts']
= types-conf P E h es Ts' by fact+
from type obtain e’ es’ where es:es = e'#es’ by (cases es) auto
with type have type" P, E.h = e’ :yp T"
and types”: types-conf P E h es’ Ts"

227

by simp-all

from conf obtain U Us where Ts”: Ts' = U#Us by (cases Ts') auto

with conf have disj:T""'= UV (3C. T = NT A U = Class C)
and conf’:conformable Ts"' Us
by simp-all

from type’ disj have P,E,h t- e’ :pyp U by auto

with IH[OF types’ conf’] Ts' es show Zcase by simp

qed

lemma types-conf- Wirt-conf:
types-conf P E h es Ts = 3Ts'. P, E,h F es [:] Ts' A conformable Ts’ Ts
proof (induct Ts arbitrary: es)
case Nil thus ?case by (cases es) (auto split:if-split-asm)
next
case (Cons T" Ts")
have type:types-conf P E h es (T""#Ts")
and [H:\es. types-conf P E h es Ts" =
3Ts. P,E,ht es[:] TS’ A conformable Ts' Ts" by fact+
from type obtain e’ es’ where es:es = e'#es’ by (cases es) auto
with type have type " P,E.h e’ :yp T"
and types”: types-conf P E h es’ Ts"
by simp-all
from type’ obtain T/ where P,E,h t- ¢’ : T' and
T'=T"v (3C. T =NT AN T" = Class C) by(cases T'") auto
with IH[OF types’] es show ?case
by (auto,rule-tac x=T"#Ts' in exl simp,rule-tac t=NT#Ts' in exl simp)
qed

lemma steps-preserves-types:
assumes wf: wf-C-prog P and steps: P,E &= (es,s) [=]* (es’;s)
shows ATs. [P,E+ s +/; P,E.hp s+ es [:] T5]

= types-conf P E (hp s’) es’ Ts

using steps
proof (induct rule:converse-rtrancl-induct2)
case refl thus ?case by —(rule wts-same-types-typesconf)
next
case (step es s es’’ s" Ts)
have Reds:((es, s), es’’, s'") € Reds P E
and steps:P,E F (es”,s") [=] (es',s")
and sconf:P.E - s / and wtes:P,E.hp s es [:] Ts
and IH:A\Ts. [P,E+ s \/; P,E.hp s"" - es” [:] Ts]
= types-conf P E (hp s’) es’ Ts by fact+
from Reds have step: P,E | (es,s) [—=] (es”,s") by simp
with wtes sconf wf have sconf”.P,E t s"" \/
by (auto intro:reds-preserves-sconf wf-prog-wwf-prog)

228

from wtes have length es = length Ts by(fastforce dest: WTrts-same-length)
from step sconf wtes
have type”: types-conf P E (hp s'') es"" Ts
by (rule subjects-reduction[OF wf])
then obtain Ts’ where wtes’:P,E.hp s"' - es" [:] Ts’
and conf:conformable Ts" Ts by (auto dest:types-conf- Wirt-conf)
from IH[OF sconf’ wtes’| have types-conf P E (hp s') es’ Ts'.
with conf show ?case by(fastforce intro:types-conf-conf-types-conf)
qed

26.4 Lifting to =

...and now to the big step semantics, just for fun.

lemma eval-preserves-sconf:
[wf-C-prog P; P,E \ {e,s) = (e';s"); P,Et e:T; PEF s\/] = P,EF s’/

by (blast intro:step-preserves-sconf big-by-small WT-implies- WTrt wf-prog-wwf-prog)

lemma evals-preserves-sconf:
[wf-C-prog P; P,E & (es,s) [=] (es’,s”); P,E '+ es [:] Ts; PEF s /]
= PEF s/
by (blast intro:steps-preserves-sconf bigs-by-smalls WTs-implies- WTrts
wf-prog-wwf-prog)

lemma eval-preserves-type: assumes wf: wf-C-prog P
shows [P,E F (e,s) = (e/;s"); P,EF s+/; PEF exT]
= P,E,(hp s ke :yp T

using wf

by (auto dest!:big-by-small|OF wf-prog-wwf-prog| OF wf]] WT-implies-WTrt
intro:wf-prog-wwf-prog
dest!:step-preserves-type| OF wf])

lemma evals-preserves-types: assumes wf: wf-C-prog P
shows [P,E F (es,s) [=] (es',s); P,Et s+/; P,E+ es[:] Ts]
= types-conf P E (hp s’) es’ Ts
using wf
by (auto dest!:bigs-by-smalls|OF wf-prog-wwf-prog|OF wf]] WTs-implies-WTrts
intro:wf-prog-wwf-prog
dest!:steps-preserves-types| OF wf])

26.5 The final polish

The above preservation lemmas are now combined and packed nicely.

definition wf-config :: prog = env = state = expr = ty = bool (¢-,-,-F - : - \/»
[51,0,0,0,0]150) where

229

PEsteT = PEFsy/ANPEhste:T

theorem Subject-reduction: assumes wf: wf-C-prog P
shows P.E + (e;s) — (e's"y = P,Este: T/
= PE(hps)Fe :yp T

using wf
by (force elim!:red-preserves-sconf intro:wf-prog-wwf-prog
dest:subject-reduction| OF wf] simp:wf-config-def)

theorem Subject-reductions:
assumes wf: wf-C-prog P and reds: P,E + (e,s) —x (e’,s")
shows A\T. P, E;ste: T/ = PE/(hps)te :nyp T

using reds
proof (induct rule:converse-rtrancl-induct2)
case refl thus ?case
by (fastforce intro:wt-same-type-typeconf simp:wf-config-def)
next
case (step e s e’ s" T)
have Red:((e, s), €'/, s") € Red P E
and IH:A\T. P.Es" ke : T/ = PE(hps)be:yp T
and wte:P,E,;st+ e: T / by fact+
from Red have red:P,E = (e,s) — (e",s") by simp
from red-preserves-sconf[OF red] wte wf have sconf:P,E + s/
by (fastforce dest:wf-prog-wwf-prog simp:wf-config-def)
from wf red wte have type-conf:P,E,(hp s") F e" :yp T
by (rule Subject-reduction)
show ?Zcase
proof(cases T)
case Void
with type-conf have P,E,hp s’ + ¢ : T by simp
with sconf have P,E,s" b e’ : T \/ by(simp add:wf-config-def)
from IH[OF this] show ?Zthesis .
next
case Boolean
with type-conf have P,E,hp s’ ¢ : T by simp
with sconf have P, E,s" b e’ : T \/ by(simp add:wf-config-def)
from TH[OF this| show ?thesis .
next
case Integer
with type-conf have P,E,hp s’ + ¢ : T by simp
with sconf have P, E,s" b e’ : T \/ by(simp add:wf-config-def)
from IH[OF this| show ?Zthesis .
next
case NT
with type-conf have P,E hp s’ ¢’ : T by simp

230

with sconf have P, E.s" F e¢': T / by(simp add:wf-config-def)
from IH[OF this| show ?thesis .
next
case (Class C)
with type-conf have P,E.hp s’ ¢e': T vV P,E,hp s" F e¢': NT by simp
thus ?thesis
proof (rule disjE)
assume P.E hp s’ e’ : T
with sconf have P,E.s" & e': T \/ by(simp add:wf-config-def)
from IH[OF this] show ?Zthesis .
next
assume P.E.hp s'' e’ : NT
with sconf have P,E,s" \ e : NT +/ by(simp add:wf-config-def)
from TH[OF this| have P,E.hp s'F e’ : NT by simp
with Class show Zthesis by simp
qed
qed
qed

corollary Progress: assumes wf: wf-C-prog P
shows [P,E,;s Fe: T +/; D e |dom(lcl s)]; - final e] = e’ s". P,EF (e,s)
— (e',s")

using progress| OF wf-prog-wwf-prog| OF wf]]
by (auto simp:wf-config-def sconf-def)

corollary TypeSafety:
fixes s s’ :: state
assumes wf:wf-C-prog P and sconf:P,E + s \/ and wte:P,E+ e :: T
and D:D e |dom(lcl s)| and step:P,E - (e,s) —* (e’ s")
and nored:—(3 e’ s". P,E+ (e’ sy — (e”,s"))
shows (Jv. ¢/ = Valv A Php s'F v :< T) V
(3r. ¢’ = Throw r A the-addr (Ref r) € dom(hp s’))
proof —
from sconf wte wf have wf-config:P,E;st e: T +/
by (fastforce intro: WT-implies-WTrt simp:wf-config-def)
with wf step have type-conf:P . E,(hp s") b e’ :yp T
by (rule Subject-reductions)
from step-preserves-sconf[OF wf step wte] THEN WT-implies-WTrt] sconf] wf
have sconf"P,E F s’ \/ by simp
from wf step D have D"D e’ |dom(lcl s’)| by(rule step-preserves-defass)
show ?thesis
proof(cases T')
case Void
with type-conf have wte”:P,E.hp s’ e’ : T by simp
with sconf’ have wf-config""P,E,s't e’ : T \/ by(simp add:wf-config-def)

231

{ assume - final €’
from Progress|OF wf wf-config’ D' this] nored have Fulse
by simp }
hence final e’ by fast
with wte’ show ?thesis by(auto simp:final-def)
next
case Boolean
with type-conf have wte”.P,E.,hp s’ e’ : T by simp
with sconf’ have wf-config""P,E,s' - e’ : T \/ by(simp add:wf-config-def)
{ assume - final e’
from Progress|OF wf wf-config’ D' this] nored have False
by simp }
hence final e’ by fast
with wte’ show ?thesis by (auto simp:final-def)
next
case Integer
with type-conf have wte”.P,E.hp s’ e’ : T by simp
with sconf’ have wf-config""P,E,s' - e’ : T \/ by(simp add:wf-config-def)
{ assume - final e’
from Progress|OF wf wf-config’ D' this] nored have False
by simp }
hence final ¢’ by fast
with wte’ show ?thesis by(auto simp:final-def)
next
case NT
with type-conf have wte”:P,E.hp s'+ e’ : T by simp
with sconf’ have wf-config"P,E,s' - ¢’ : T \/ by(simp add:wf-config-def)
{ assume - final €’
from Progress|OF wf wf-config’ D’ this] nored have False
by simp }
hence final ¢’ by fast
with wte’ show ?thesis by(auto simp:final-def)
next
case (Class C)
with type-conf have wte".P,E.hp s'+¢e': T V P,E,hp s’ ¢’ : NT by simp
thus ?thesis
proof (rule disjE)
assume wte"P,E.hp s’ e’ : T
with sconf’ have wf-config:P,E,s' ¢’ : T \/ by(simp add:wf-config-def)
{ assume - final e’
from Progress|OF wf wf-config’ D’ this| nored have False
by simp }
hence final ¢’ by fast
with wte’ show ?thesis by(auto simp:final-def)
next
assume wte:P,E.hp s'+ e’ : NT
with sconf’ have wf-config"P,E,s' - e’ : NT \/ by(simp add:wf-config-def)
{ assume - final e’
from Progress|OF wf wf-config’ D’ this| nored have False

232

by simp }
hence final e’ by fast
with wte’ Class show ?thesis by (auto simp:final-def)
qed
qed
qed

end

27 Determinism Proof

theory Determinism
imports TypeSafe
begin

27.1 Some lemmas

lemma maps-nth:
[(E(zs [—] ys)) x = Some y; length xs = length ys; distinct xs]
= Vi.z = asli N i < length zs — y = ysli
proof (induct xs arbitrary: ys E)
case Nil thus ?case by simp
next
case (Cons z' xs’)
have map:(E(z’ # zs' [—] ys)) z = Some y
and length:length (z'#xs’) = length ys
and dist:distinct (z'#xs’)
and [H:A\ys E. [(E(zs’ [—] ys)) x = Some y; length xs’ = length ys;
distinct xs']
= Vi. z =z N i < length zs’ — y = ysli by fact+
from length obtain y’ ys’ where ys:ys = y'#ys’ by(cases ys) auto
{ fix ¢ assume z:z = (z'#xs")li and @:i < length(z'#xs’)
have y = ys!¢
proof (cases 7)
case 0 with z map ys dist show ?thesis by simp
next
case (Suc n)
with z i have 2”2z = zs'In and n:n < length xs’ by simp-all
from map ys have map”:(E(z' — y', zs’ [—=] ys")) x = Some y by simp
from length ys have length’:length xs’' = length ys' by simp
from dist have dist’.distinct xs’ by simp
from TH[OF map’ length’ dist’]
have Vi. z = zs'li A i < length s’ — y = ys'li .
with z’ n have y = ys''n by simp
with ys n Suc show ?thesis by simp
qed }
thus ?case by simp
qed

233

lemma nth-maps:[length pns = length Ts; distinct pns; i < length Ts]
= (E(pns [—] T5)) (pnsli) = Some (Tsli)
proof (induct i arbitrary: E pns TS)
case (
have dist:distinct pns and length:length pns = length Ts
and i-length:0 < length Ts by fact+
from i-length obtain T' Ts' where Ts:Ts = T'#Ts’ by(cases Ts) auto
with length obtain p’ pns’ where pns = p'#pns’ by(cases pns) auto
with Ts dist show ?case by simp
next
case (Suc n)
have i-length:Suc n < length Ts and dist:distinct pns
and length:length pns = length Ts by fact+
from Suc obtain T’ Ts’ where Ts:Ts = T'#Ts' by(cases Ts) auto
with length obtain p’ pns’ where pns:pns = p'#pns’ by(cases pns) auto
with Ts length dist have length’:length pns’ = length Ts’
and dist":distinct pns’ and notin:p’ ¢ set pns’ by simp-all
from i-length Ts have n-length:n < length Ts' by simp
with length’ dist’ have map:(E(p’ — T', pns’ [—] Ts')) (pns'In) = Some(Ts'In)
by fact
with notin have (E(p’ — T’, pns’ [—] Ts")) p’ = Some T' by simp
with pns Ts map show ?Zcase by simp
qed

lemma casts-casts-eq-result:
fixes s :: state
assumes casts:P F T casts v to v/ and casts”:P + T casts v to w’
and type:is-type P T and wte:P,E &+ e :: T'and leg:P - T' < T
and eval:P,E (e,s) = (Val v,(h,l)) and sconf:P,E + s \/
and wf:wf-C-prog P
shows v/ = w’
proof(cases V C. T # Class C)
case True
with casts casts’ show ?thesis
by (auto elim:casts-to.cases)
next
case Fulse
then obtain C where T:T = Class C by auto
with type have is-class P C' by simp
with wf T leg have T'= NT V (3D. T' = Class D A P+ Path D to C unique)
by (simp add:widen-Class)
thus ?thesis
proof(rule disjE)
assume T'= NT
with wf eval sconf wte have v = Null
by (fastforce dest:eval-preserves-type)
with casts casts’ show ?thesis by(fastforce elim:casts-to.cases)
next

234

assume 3D. T' = Class D N P+ Path D to C unique
then obtain D where T":T' = Class D
and path-unique: P = Path D to C unique by auto
with wf eval sconf wte
have PEht Valv: T'V P,E,h - Valv : NT
by (fastforce dest:eval-preserves-type)
thus ?thesis
proof(rule disjE)
assume P EhE Valv: T'
with 7' obtain a Cs C' S where h:h a = Some(C"’,S) and v:v = Ref(a,Cs)
and last:last Cs = D
by (fastforce dest:typeof-Class-Subo)
from casts’ v last T obtain Cs’ Ds where P = Path D to C via Cs’
and Ds = (Cs@,Cs’ and w’ = Ref(a,Ds)
by (auto elim:casts-to.cases)
with casts T v last path-unique show ?thesis
by auto(erule casts-to.cases,auto simp:path-via-def path-unique-def)
next
assume P.E.h = Valv : NT
with wf eval sconf wte have v = Null
by (fastforce dest:eval-preserves-type)
with casts casts’ show ?thesis by(fastforce elim:casts-to.cases)
qed
qed
qed

lemma Casts-Casts-eq-result:
assumes wf:wf-C-prog P
shows [P b+ Ts Casts vs to vs’; P+ Ts Casts vs to ws’; VT € set Ts. is-type P
T;
PEt es[:] Ts'; PH T8 [<] Ts; P,E (es,s) [=] (map Val vs,(h,0]));
PEF s+/]
= vs' = ws’
proof (induct vs arbitrary: vs' ws’ Ts Ts' es s)
case Nil thus ?case by (auto elim!:Casts-to.cases)
next
case (Cons z xs)
have CastsCons:P &+ Ts Casts x # zs to vs’
and CastsCons”.P = Ts Casts © # xs to ws’
and type:v T € set Ts. is-type P T
and wtes:P,E + es [::] Ts' and subs:P - Ts' [<] Ts
and evals:P,E t (es,s) [=] (map Val (z#xs),(h,l))
and sconf:P,E F s/
and IH:Avs' ws’ Ts Ts' es s.
[P+ Ts Casts zs to vs’; P+ Ts Casts zs to ws’; VT € set Ts. is-type P T;
PEVF es[:] Ts"; PH Ts' [<] Ts; P,E & {es,s) [=] (map Val zs,(h,0));
PEF s,/
= vs’ = ws’ by fact+
from CastsCons obtain y ys S Ss where vs":vs’ = y#ys and Ts:Ts = S#Ss

235

apply —
apply (frule length-Casts-vs,cases Ts,auto)
apply (frule length-Casts-vs’,cases vs’,auto)
done
with CastsCons have casts:P = S casts © to y and Casts:P = Ss Casts s to ys
by (auto elim: Casts-to.cases)
from Ts type have type’is-type P S and types'V T € set Ss. is-type P T
by auto
from Ts CastsCons’ obtain z zs where ws’:ws’ = 2#tzs
by simp(frule length-Casts-vs’,cases ws’,auto)
with Ts CastsCons’ have casts:P = S casts x to z
and Casts”:P = Ss Casts xs to zs
by (auto elim: Casts-to.cases)
from T5s subs obtain U Us where Ts:Ts' = U#Us and subs”:P - Us [<] Ss
and sub:P - U < S by(cases Ts',auto simp:fun-of-def)
from wtes Ts' obtain e’ es’ where es:es = e'#es’ and wte:"P,E e’ :: U
and wtes""P,E + es’ [::] Us by(cases es) auto
with evals obtain A’ I’ where eval: P,E = (e';s) = (Val z,(h'l"))
and evals:P,E - (es’,(h',l")) [=] (map Val zs,(h,l))
by (auto elim:evals.cases)
from wf eval wte’ sconf have P,E & (h',l") \/ by(rule eval-preserves-sconf)
from [H[OF Casts Casts’ types’ wtes’ subs’ evals’ this] have eq:ys = zs .
from casts casts’ type’ wie’ sub eval sconf wf have y = 2
by (rule casts-casts-eq-result)
with eq vs’ ws’ show Zcase by simp
qged

lemma Casts-conf: assumes wf: wf-C-prog P
shows P b Ts Casts vs to vs' =
(Nes s Ts". [P,E + es [:] Ts'; P,E F (es,s) [=] (map Val vs,(h,0)); P,EF s +/;
PF T [<] Ts] =
Vi < length Ts. P,ht vs'li :< Tsli)
proof (induct rule: Casts-to.induct)
case Casts-Nil thus ?case by simp
next
case (Casts-Cons T v v’ Ts vs vs’)
have casts:P + T casts v to v’ and wtes:P,E + es [::] Ts'
and evals:P,E + (es,s) [=] (map Val (v#vs),(h,0))
and subs:P - Ts' [<] (T#Ts) and sconf:P,E + s/
and [H:\es s Ts'.[P,E \ es [::] Ts'; P,E F (es,s) [=] (map Val vs,(h,l));
PEVF s+/; PF Ts' [<] T4
= Vi<length Ts. P,h - vs'! i :< Ts! i by fact+
from subs obtain U Us where Ts":Ts’ = U# Us by(cases Ts') auto
with subs have sub P+ U < T and subs:P + Us [<] Ts
by (simp-all add:fun-of-def)
from wtes Ts' obtain e’ es’ where es:es = e'#es’ by(cases es) auto
with Ts’ wtes have wte”"P,E + ¢’ :: U and wtes:P,E + es’ [::] Us by auto

236

from es evals obtain s’ where eval”P,E + (e',s) = (Val v,s")
and evals:P,E F (es',s) [=] (map Val vs,(h,l))
by (auto elim:evals.cases)
from wf eval’ wte’ sconf have sconf:P,E + s’ \/ by(rule eval-preserves-sconf)
from evals’ have hext:hp s' < h by(cases s',auto intro:evals-hext)
from wf eval’ sconf wte’ have P,E,(hp s') - Valv :jyp U
by (rule eval-preserves-type)
with hexrt have wtrt:P,E.h = Val v :jyp U
by (cases U,auto intro:hext-typeof-mono)
from casts wirt sub’ have P,h = v’ :< T
proof (induct rule:casts-to.induct)
case (casts-prim T'" v'’)
have VC. T" # Class C and P,E.h - Val v" :jyp U and P+ U < T" by
fact+
thus ?case by(cases T") auto
next
case (casts-null C') thus ?case by simp
next
case (casts-ref Cs C Cs' Ds a)
have path:P + Path last Cs to C via Cs’
and Ds:Ds = Cs @, Cs’
and wtref:P,E.h - ref (a, Cs) :jyp U by fact+
from wiref obtain D S where subo:Subobjs P D Cs and h:h a = Some(D,S)
by (cases U,auto split:if-split-asm)
from path Ds have last:C' = last Ds
by (fastforce introl:appendPath-last Subobjs-nonempty simp:path-via-def)
from subo path Ds wf have Subobjs P D Ds
by (fastforce intro:Subobjs-appendPath simp:path-via-def)
with last h show Zcase by simp
qed
with TH[OF wtes’ evals’ sconf’ subs’] show ?case
by (auto simp:nth-Cons,case-tac i,auto)
qed

lemma map- Val-throw-False:map Val vs = map Val ws Q throw ex # es = Fulse
proof (induct vs arbitrary: ws)
case Nil thus ?case by simp
next
case (Cons v’ vs’)
have eq:map Val (v'#vs’) = map Val ws Q throw ex # es
and IH:Aws'. map Val vs' = map Val ws' @ throw ex # es = False by fact+
from eq obtain w’ ws’ where ws:ws = w'#ws’ by(cases ws) auto
from eq have tl(map Val (v'#vs’)) = ti(map Val ws Q throw ex # es) by simp
hence map Val vs’ = ti(map Val ws Q throw ex # es) by simp
with ws have map Val vs’ = map Val ws’ @ throw ex # es by simp
from IH[OF this] show Zcase .
qed

237

lemma map- Val-throw-eq:map Val vs Q throw ex # es = map Val ws Q throw ez’
es’
= vs=ws A ex = ex' N\ es = es’
apply(clarsimp simp:append-eg-append-conv2)
apply(erule disjE)
apply(case-tac us)
apply (fastforce elim:map-injective simp:inj-on-def)
apply/(fastforce dest:map-Val-throw-False)
apply(case-tac us)
apply (fastforce elim:map-injective simp:ing-on-def)
apply (fastforce dest:sym|THEN map-Val-throw-False])
done

27.2 The proof

lemma deterministic-big-step:
assumes wf:wf-C-prog P
shows P.E I (e,s) = (e1,81) =
(Ne2 s2 T. [P,E F (e,8) = (ea,82); P,EF e:: T; P, EF s5./]
:>61:62/\81:SQ)
and P.E I (es,s) [=] (es1,s1) =
(Nesz s2 Ts. [P,E & (es,s) [=] (es2,82); P,E & es[:] Ts; P.EF s+/]
= es1 = esy A\ §1 = $2)
proof (induct rule:eval-evals.inducts)
case New thus Zcase by(auto elim: eval-cases)
next
case NewFuil thus ?case by(auto elim: eval-cases)
next
case (StaticUpCast E e sy a Cs s1 C Cs’ Ds ey $2)
have eval:P.E + {(C)e,s0) = (e2,52)
and path-via:P = Path last Cs to C via Cs’ and Ds:Ds = Cs @, Cs’
and wt:P,E F (C)e :: T and sconf:P,E F so v/
and IH:Nes so T. [P,E F (e,s9) = (e2,82); P,EF e:: T; P.EF s0 /]
= ref (a,Cs) = ea A 81 = $2 by fact+
from wt obtain D where class:is-class P C and wte:P,E + e :: Class D
and disj:P = Path D to C unique V
(P C =* DA (VCs. Pt Path Cto D via Cs — Subobjsp P C Cs))
by auto
from eval show ?case
proof (rule eval-cases)
fix Xs Xs’ o’
assume eval-ref:P,E = (e,s0) = (ref (a’,Xs),s2)
and path-via”:P & Path last Xs to C via Xs'
and ref:eq = ref (o', XsQ,Xs")
from IH[OF eval-ref wte sconf] have eq:a = a’ A Cs = Xs A\ s = s2 by simp
with wf eval-ref sconf wte have last:last Cs = D
by (auto dest:eval-preserves-type split:if-split-asm)
from disj show ref (a,Ds) = ea A s1 = $9
proof (rule disjE)

238

assume P F Path D to C unique
with path-via path-via’ eq last have Cs' = Xs'
by (fastforce simp add:path-via-def path-unique-def)
with eq ref Ds show ?thesis by simp
next
assume PF C <X* D A (VCs. P+ Path C to D via Cs — Subobjsgp P C
Cs)
with class wf obtain Cs’’ where P + Path C to D via Cs"
by (auto dest:leg-implies-path)
with path-via path-via’ wf eq last have Cs’ = Xs'
by (auto dest:path-via-reverse)
with eq ref Ds show ?thesis by simp
qed
next
fix Xs Xs' a’
assume eval-ref:P,E = (e,50) = (ref(a’,.XsQC#Xs'),s2)
and ref:ea = ref (a’,XsQ[C])
from TH[OF eval-ref wte sconf] have eq:a = a’ A Cs = XsQC#Xs' N s1 = s9
by simp
with wf eval-ref sconf wte obtain C'’ where
last:last Cs = D and Subobjs P C’ (XsQC#Xs")
by (auto dest:eval-preserves-type split:if-split-asm)
hence subo:Subobjs P C (C#Xs’) by(fastforce intro:Subobjs-Subobjs)
with eq last have leq:P = C <* D by(fastforce dest:Subobjs-subclass)
from path-via last have P+ D <* C
by (auto dest:Subobjs-subclass simp:path-via-def)
with leq wf have CeqD:C = D by(rule subcls-asym?2)
with last path-via wf have Cs’ = [D] by(fastforce intro:path-via-C')
with Ds last have Ds:Ds = Cs by(simp add:appendPath-def)
from subo CeqD last eq wf have Xs' = [| by(auto dest:mdc-eq-last)
with eq Ds’ ref show ref (a,Ds) = ex A s1 = s3 by simp
next
assume eval-null: P,E F (e,s0) = (null,s2)
from IH[OF eval-null wte sconf] show ref (a,Ds) = ex N\ s1 = s2 by simp
next
fix Xsa'
assume eval-ref:P,E + (e,50) = (ref(a’,Xs),s2) and notin:C ¢ set Xs
and notleq:— P F last Xs <* C and throw:eo = THROW ClassCast
from IH[OF eval-ref wte sconf] have eq:a = a’ A Cs = Xs A s1 = so by simp
with wf eval-ref sconf wte have last:last Cs = D and notempty:Cs # ||
by (auto dest!:eval-preserves-type Subobjs-nonempty split:if-split-asm)
from disj have C = D
proof (rule disjE)
assume path-unique: P = Path D to C unique
with last have P+ D <* C
by (fastforce dest:Subobjs-subclass simp:path-unique-def)
with notleq last eq show ?thesis by simp
next
assume ass:P + C <* D A

239

(V Cs. P+ Path Cto D via Cs — Subobjsp P C Cs)
with class wf obtain Cs’’ where path-via”P & Path C to D via Cs'
by (auto dest:leg-implies-path)
with path-via wf eq last have Cs’’ = [D]
by (fastforce dest:path-via-reverse)
with ass path-via’ have Subobjsg P C [D] by simp
thus ?thesis by (fastforce dest:hd-SubobjsR)
qed
with last notin eq notempty show ref (a,Ds) = es A s1 = $o
by (fastforce intro:last-in-set)
next
fix ¢’ assume eval-throw:P,E + (e,sq) = (throw e’,s2)
from IH[OF eval-throw wte sconf] show ref (a,Ds) = ea A s1 = sy by simp
qed
next
case (StaticDownCast E e sg a Cs C Cs' s1 ea s T)
have eval:P.E + {(C)e,s0) = (e2,52)
and eval".P,E - (e,s0) = (ref(a,CsQ[C|QCs’),s1)
and wt:P,.E F (C)e :: T and sconf:P,E + so +/
and [H:\ey so T. [P,E F (e,s50) = (e2,52); P,EF e T; P.EF 50 /]
= ref(a,CsQ[C)QCs") = ea A s1 = s3 by fact+
from wt obtain D where wte:P,E - e :: Class D
and disj:P + Path D to C unique V
(P C =* DA (VCs. Pt Path Cto D via Cs — Subobjsp P C Cs))
by auto
from eval show ?case
proof (rule eval-cases)
fix Xs Xs’' a’
assume eval-ref:P,E - (e,s0) = (ref(a’,Xs),s2)
and path-via:P = Path last Xs to C via Xs’
and ref:eq = ref (o', XsQ,Xs")
from [H[OF eval-ref wte sconf] have eq:a = a’ A CsQ[C]QCs" = Xs A s =
52
by simp
with wf eval-ref sconf wte obtain C’ where
last:last(C#Cs”") = D and Subobjs P C’ (CsQ[C]QCs’)
by (auto dest:eval-preserves-type split:if-split-asm)
hence P + Path C to D via C#Cs’
by (fastforce intro:Subobjs-Subobjs simp:path-via-def)
with eq last path-via wf have Xs' = [C] A Cs'=[] AN C =D
apply clarsimp
apply (split if-split-asm)
by (simp,drule path-via-reverse,simp,simp)—+
with ref eq show ref(a,CsQ[C]) = ex A s1 = so by(fastforce simp:appendPath-def)
next
fix Xs Xs’ a’
assume eval-ref:P,E - (e,50) = (ref(a’,XsQC#Xs'),s2)
and ref:es = ref (a’,XsQ[C])
from IH[OF eval-ref wte sconf] have eq:a = o’ A CsQ[C]|QCs' = Xs@QCH#Xs'

240

AN §1 = 82
by simp
with wf eval-ref sconf wte obtain C’ where
last:last(C#Xs") = D and subo:Subobjs P C’ (CsQ[C]QCs’)
by (auto dest:eval-preserves-type split:if-split-asm)
from subo wf have notin:C ¢ set Cs by —(rule unique2,simp)
from subo wf have C ¢ set Cs’ by —(rule uniquel ,simp,simp)
with notin eq have Cs = Xs A Cs’ = Xs'
by —(rule only-one-append,simp+)
with eq ref show ref(a,CsQ[C]) = e3 A $1 = s2 by simp
next
assume eval-null:P,E F (e,s0) = (null,s2)
from IH[OF eval-null wte sconf] show ref (a,CsQ[C]) = ez A s1 = s3 by simp
next
fix Xs a’
assume eval-ref:P,E + (e,s0) = (ref(a’,Xs),s2) and notin:C ¢ set Xs
from IH[OF eval-ref wte sconf] have a = o’ A CsQ[C]QCs" = Xs A s1 = s2
by simp
with notin show ref(a,CsQ[C]) = e2 A s1 = s2 by fastforce
next
fix e’ assume eval-throw:P,E t (e,s9) = (throw e’,s2)
from [H[OF eval-throw wte sconf] show ref (a,CsQ[C]) = ea A s1 = s by
stmp
qed
next
case (StaticCastNull E e sg s1 C ez so T)
have eval:P,E - {(C)e,s0) = (e2,52)
and wt:P,E F (C)e :: T and sconf:P,E & so v/
and IH:Nes so T. [P,E F (e,s9) = (e2,82); P,EF e:: T; P.EF s0/]
= null = ex A s1 = so by fact+
from wt obtain D where wte:P,E F e :: Class D by auto
from eval show ?case
proof(rule eval-cases)
fix Xs Xs’ a’
assume eval-ref:P,E - (e,s0) = (ref (a’,Xs),s2)
from TH[OF eval-ref wte sconf] show null = ex A s1 = so by simp
next
fix Xs Xs’ a’
assume eval-ref:P E - (e ;s0) = (ref(a’,XsQCH#Xs'),s2)
from TH[OF eval-ref wte sconf] show null = ex A s1 = so by simp
next
assume eval-null: P,E F (e,s0) = (null,s2) and ey = null
with TH[OF eval-null wte sconf] show null = ea A s1 = s3 by simp
next
fix Xs a’
assume eval-ref:P,E - (e,s0) = (ref(a’,Xs),s2)
from TH[OF eval-ref wte sconf] show null = ea A s1 = so by simp
next
fix ¢’ assume eval-throw:P,E t (e,sq) = (throw e’,s2)

241

from [H[OF eval-throw wte sconf] show null = ey A s1 = so by simp
qed
next
case (StaticCastFail E e sg a Cs s1 C ey s9 T)
have eval:P.E F {(C)e,s0) = (e2,52)
and notleg:— P+ last Cs <* C and notin:C ¢ set Cs
and wt:P,E F (C)e :: T and sconf:P,E & so /
and IH:Nes so T. [P,E F (e,s9) = (e2,82); P,EF e:: T; P,EF s0+/]
= ref (a, Cs) = ea N\ s1 = $2 by fact+
from wt obtain D where wte:P,E F e :: Class D by auto
from eval show ?case
proof(rule eval-cases)
fix Xs Xs’ a’
assume eval-ref:P,E = (e,s0) = (ref (a’,Xs),s2)
and path-via:P = Path last Xs to C via Xs’
from IH[OF eval-ref wte sconf] have eq:a = a’ A Cs = Xs A\ s1 = s2 by simp
with path-via wf have P+ last Cs <* C
by (auto dest:Subobjs-subclass simp:path-via-def)
with notleq show THROW ClassCast = ez A\ s1 = s3 by simp
next
fix Xs Xs' a’
assume eval-ref: P E - (e,;s0) = (ref(a’,XsQCH#Xs'),s2)
from [H[OF eval-ref wte sconf] have a = a’ A Cs = XsQC#Xs' N\ s1 = s9
by simp
with notin show THROW ClassCast = es N\ s1 = so by simp
next
assume eval-null:P,E F (e,sp) = (null,ss)
from [H[OF eval-null wte sconf] show THROW ClassCast = es A s1 = s3 by
stmp
next
fix Xsa'
assume eval-ref:P,E - (e,s0) = (ref(a’,Xs),s2)
and throw:es = THROW ClassCast
from IH[OF eval-ref wte sconf] have a = a’ A Cs = Xs A s1 = 2
by simp
with throw show THROW ClassCast = e; A s1 = s by simp
next
fix e’ assume eval-throw:P,E = {e,s0) = (throw e’,s)
from ITH[OF eval-throw wte sconf] show THROW ClassCast = ea N\ s1 = s
by simp
qed
next
case (StaticCastThrow E e so €’ s1 C ez s T)
have eval:P.E + {(C)e,s0) = (e2,52)
and wt:P,E F (C)e :: T and sconf:P,E F so v/
and IH:Nes so T. [P,E F (e,s0) = (e2,82); P,EF e:: T; P.EF s0+/]
= throw e’ = ey A 51 = s by fact+
from wt obtain D where wte:P,E F e :: Class D by auto
from eval show ?case

242

proof(rule eval-cases)
fix Xs Xs’ a’
assume eval-ref:P,E - (e,s0) = (ref (a’,Xs),s2)
from TH[OF eval-ref wte sconf] show throw e’ = ea A s1 = so by simp
next
fix Xs Xs' a’
assume eval-ref:PE + (e ;s0) = (ref(a’,XsQCH#Xs'),s2)
from TH[OF eval-ref wte sconf] show throw e’ = e; A 51 = s by simp
next
assume eval-null: P,E F (e,s0) = (null,s2)
from IH[OF eval-null wte sconf] show throw e’ = ex A s1 = s2 by simp
next
fix Xs a’
assume eval-ref:P,E - (e,s0) = (ref(a’,Xs),s2)
from TH[OF eval-ref wte sconf] show throw e’ = e3 A s1 = s2 by simp
next
fix ¢’ assume eval-throw:P,E = (e,s9) = (throw e”,sq)
and throw:es = throw e’
from IH[OF eval-throw wte sconf] throw show throw e’ = es A s; = s3 by
stmp
qged
next
case (StaticUpDynCast E e so a Cs s1 C Cs’ Ds eg sa T)
have eval:P,E - (Cast C e,50) = (e2,2)
and path-via:P = Path last Cs to C via Cs’
and path-unique: P + Path last Cs to C unique
and Ds:Ds = CsQ,Cs" and wt:P,E - Cast C e :: T and sconf:P,E - sy +/
and IH:A\ez so T. [P,E * (e,50) = (ea,82); P,EF e T; PE}F so /]
= ref(a,Cs) = ea A 81 = s3 by fact+
from wt obtain D where wte:P,E F e :: Class D by auto
from eval show ?case
proof (rule eval-cases)
fix Xs Xs’' a’
assume eval-ref:P,E = (e,s0) = (ref (a’,Xs),s2)
and path-via”:P & Path last Xs to C via Xs'
and ref:eq = ref (o', XsQ,Xs")
from IH[OF eval-ref wte sconf] have eq:a = a’ A Cs = Xs A\ s1 = s2 by simp
with wf eval-ref sconf wte have last:last Cs = D
by (auto dest:eval-preserves-type split:if-split-asm)
with path-unique path-via path-via' eq have Xs' = Cs’
by (fastforce simp:path-via-def path-unique-def)
with eq Ds ref show ref (a, Ds) = es A s1 = s3 by simp
next
fix Xs Xs’' a’
assume eval-ref:P,E - (e,s0) = (ref(a’,XsQC#Xs"),s2)
and ref:eq = ref (a’,XsQ[C])
from TH[OF eval-ref wte sconf] have eq:a = a’ A Cs = XsQC#Xs' A s1 = $9
by simp
with wf eval-ref sconf wte obtain C’ where

243

last:last Cs = D and Subobjs P C' (XsQC#Xs')
by (auto dest:eval-preserves-type split:if-split-asm)
hence Subobjs P C (C#Xs') by(fastforce intro:Subobjs-Subobjs)
with last eq have P &+ Path C to D via C#Xs’
by (simp add:path-via-def)
with path-via wf last have Xs' =[] A Cs'=[C] AN C =D
by (fastforce dest:path-via-reverse)
with eq Ds ref show ref (a, Ds) = ea A s1 = s2 by (simp add:appendPath-def)
next
fix Xs Xs" D' Sa’ hl
assume eval-ref: P E = (e,s0) = (ref(a’,Xs),(h,0))
and h:h o’ = Some(D’,S) and path-via" P & Path D' to C via Xs’
and path-unique’:P - Path D’ to C unique and s2:s5 = (h,l)
and ref:es = ref(a’,Xs’)
from IH[OF eval-ref wte sconf] s2 have eq:a = a’ A Cs = Xs A s; = s3 by
stmp
with wf eval-ref sconf wte h have last Cs = D
and Subobjs P D' Cs
by (auto dest:eval-preserves-type split:if-split-asm)
with path-via wf have P+ Path D’ to C via CsQ,Cs’
by (fastforce intro:Subobjs-appendPath appendPath-last| THEN sym]
dest:Subobjs-nonempty simp:path-via-def)
with path-via’ path-unique’ Ds have Xs' = Ds
by (fastforce simp:path-via-def path-unique-def)
with eq ref show ref (a, Ds) = ex A s1 = so by simp
next
assume eval-null:P,E F (e,sp) = (null,ss)
from IH[OF eval-null wte sconf] show ref (a, Ds) = ea A s1 = so by simp
next
fix Xs D' Sa’ hl
assume eval-ref:P,E + (e,s0) = (ref(a’,Xs),(h,l))
and not-unique:— P Path last Xs to C unique and s2:s5 = (h,l)
from TH[OF eval-ref wte sconf] s2 have eq:a = a’ A Cs = Xs A\ s = s2 by
stmp
with path-unique not-unique show ref (a, Ds) = ea A s1 = so by simp
next
fix ¢’ assume eval-throw:P,E t (e,sq) = (throw e’,s2)
from IH[OF eval-throw wte sconf] show ref (a, Ds) = ea A s1 = s2 by simp
qed
next
case (StaticDownDynCast E e sy a Cs C Cs’ s1 ey s2 T)
have eval: P,E + (Cast C e,80) = (e2,82)
and wt:P,E + Cast C e :: T and sconf:P,E F sy /
and IH:Nez s T. [P,E * (e,50) = (ea,82); P,EF e:: T; PE}F so /]
= ref(a,CsQ[C]QCs") = ea A s1 = s2 by fact+
from wt obtain D where wte:P,E F e :: Class D by auto
from eval show ?case
proof (rule eval-cases)
fix Xs Xs' a’

244

assume eval-ref:P,E = (e,s0) = (ref(a’,Xs),s2)
and path-via:P + Path last Xs to C via Xs'
and ref:eq = ref (o', XsQ,Xs")
from [H[OF eval-ref wte sconf] have eq:a = a’ A CsQ[C]QCs" = Xs A s =
So
by simp
with wf eval-ref sconf wte obtain C'’' where
last:last(C#Cs’) = D and Subobjs P C' (CsQ[C|QCs’)
by (auto dest:eval-preserves-type split:if-split-asm)
hence P + Path C to D via C#Cs’
by (fastforce intro:Subobjs-Subobjs simp:path-via-def)
with eq last path-via wf have Xs' = [C] A Cs' =[] AN C =D
apply clarsimp
apply (split if-split-asm)
by (simp,drule path-via-reverse,simp,simp)+
with ref eq show ref(a,CsQ[C]) = ex A s1 = s2 by(fastforce simp:appendPath-def)
next
fix Xs Xs’ a’
assume eval-ref:P.E - (e,50) = (ref(a’,.XsQC#Xs'),s5)
and refies = ref (a’,XsQ[C])
from TH[OF eval-ref wte sconf] have eq:a = a’ A CsQ[C|QCs" = XsQC# Xs'
A\ S1 = S2
by simp
with wf eval-ref sconf wte obtain C’ where
last:last(C#Xs") = D and subo:Subobjs P C’ (CsQ[C]QCs’)
by (auto dest:eval-preserves-type split:if-split-asm)
from subo wf have notin:C ¢ set Cs by —(rule unique2,simp)
from subo wf have C ¢ set Cs’ by —(rule uniquel ,simp,simp)
with notin eq have Cs = Xs A Cs’ = Xs’
by —(rule only-one-append,simp+)
with eq ref show ref(a,CsQ[C]) = e3 A $1 = s2 by simp
next
fix Xs Xs" D' Sa’ hl
assume eval-ref:P,E - (e,s0) = (ref(a’,Xs),(h,l))
and h:h o’ = Some(D’,S) and path-via:P - Path D' to C via Xs'
and path-unique: P = Path D' to C unique and s2:s5 = (h,l)
and ref:es = ref(a’,Xs’)
from [H[OF eval-ref wte sconf] s2 have eq:a = o’ A CsQ[C]QCs" = Xs A 1
= S9
by simp
with wf eval-ref sconf wte h have Subobjs P D' (CsQ[C]|QCs")
by (auto dest:eval-preserves-type split:if-split-asm)
hence Subobjs P D' (CsQ[C]) by (fastforce intro:appendSubobj)
with path-via path-unique have Xs' = CsQ[C]
by (fastforce simp:path-via-def path-unique-def)
with eq ref show ref(a,CsQ[C]) = e3 A $1 = s2 by simp
next
assume eval-null: P,E F (e,s0) = (null,s2)
from IH[OF eval-null wte sconf] show ref (a,CsQ[C]) = e2 A s1 = s2 by simp

245

next
fix Xs D' Sa’ hl
assume eval-ref:P,E + (e,s0) = (ref(a’,Xs),(h,l))
and notin:C ¢ set Xs and s2:s9 = (h,l)
from IH[OF eval-ref wte sconf] s2 have a = o’ A CsQ[C]QCs" = Xs A 51 =
52
by simp
with notin show ref (a,CsQ[C]) = ea A s1 = s2 by fastforce
next
fix e’ assume eval-throw:P,E t {e,s9) = (throw e’,s2)
from IH[OF eval-throw wte sconf] show ref (a,CsQ[C]) = ea A s1 = s3 by
stmp
qed
next
case (DynCast Ee sp a CshlD S C Cs' ey so T)
have eval: P,E F (Cast C e,80) = (e2,82)
and path-via:P + Path D to C via Cs’ and path-unique:P F Path D to C unique
and h:h a = Some(D,S) and wt:P,E + Cast C e :: T and sconf:P,E F sy /
and IH:Nes so T. [P,E F (e,s9) = (e2,82); P,EF e:: T; P,EF s0+/]
= ref(a,Cs) = ea A (h,l) = s2 by fact+
from wt obtain D’ where wte:P,E + e :: Class D’ by auto
from eval show ?case
proof(rule eval-cases)
fix Xs Xs’ a’
assume eval-ref:P,E - (e,s0) = (ref(a’,Xs),s2)
and path-via’:P + Path last Xs to C via Xs'
and ref:eq = ref (a’,XsQ,Xs")
from [H[OF eval-ref wte sconf] have eq:a = o’ A Cs = Xs A (h,l) = s2 by
stmp
with wf eval-ref sconf wte h have last Cs = D’
and Subobjs P D Cs
by (auto dest:eval-preserves-type split:if-split-asm)
with path-via’ wf eq have P - Path D to C via XsQ,Xs'
by (fastforce intro:Subobjs-appendPath appendPath-last| THEN sym]
dest:Subobjs-nonempty simp:path-via-def)
with path-via path-unique have Cs’ = Xs@,Xs'
by (fastforce simp:path-via-def path-unique-def)
with ref eq show ref(a,Cs’) = ex A (h, I) = s3 by simp
next
fix Xs Xs’ a’
assume eval-ref:P.E - (e,s0) = (ref(a’,XsQC#Xs'),s2)
and refies = ref (a’,XsQ[C])
from IH[OF eval-ref wte sconf] have eq:a = a’ A Cs = XsQC#Xs' A (h,]) =
52
by simp
with wf eval-ref sconf wte h have Subobjs P D (XsQ[C|QXs')
by (auto dest:eval-preserves-type split:if-split-asm)
hence Subobjs P D (XsQ[C]) by(fastforce intro:appendSuboby)
with path-via path-unique have Cs’ = XsQ[C]

246

by (fastforce simp:path-via-def path-unique-def)
with eq ref show ref(a,Cs’) = ex A (h, I) = so by simp
next
fix Xs Xs'" D" S"a’ h'l'
assume eval-ref:P,E - (e,s0) = (ref(a’,Xs),(h"l"))
and h":h' o’ = Some(D",S’) and path-via”:P & Path D" to C via Xs'
and s2:s9 = (h',l') and ref:e; = ref(a’,Xs’)
from [H[OF eval-ref wte sconf] have eq:a = a’ AN Cs = Xs ANh=h' N1l =1
by simp
with h h' path-via path-via' path-unique s2 ref
show ref(a,Cs’) = ex A (h,]) = so
by (fastforce simp:path-via-def path-unique-def)
next
assume eval-null: P,E F (e,s0) = (null,ss)
from TH[OF eval-null wte sconf] show ref(a,Cs’) = ea A (h,l) = s2 by simp
next
fix Xs D" S§"a’ h'l'
assume eval-ref:P,E - (e,s0) = (ref(a’,Xs),(h',l"))
and h":h' o’ = Some(D",S’) and not-unique:— P - Path D' to C unique
from TH[OF eval-ref wte sconf] have eq:a = a’ A Cs = Xs ANh=h' N1 =1’
by simp
with h b’ path-unique not-unique show ref(a,Cs’) = es A (h,l) = so by simp
next
fix e’ assume eval-throw:P,E F (e,sp) = (throw e’,sq)
from IH|[OF eval-throw wte sconf] show ref (a,Cs’) = ex A (h,l) = s3 by simp
qged
next
case (DynCastNull E e sg s1 C ez sa T)
have eval:P,E + (Cast C e,50) = (e2,52)
and wt:P,E + Cast C e :: T and sconf:P,E + so /
and [H:Nes s T. [P,E * (e,50) = (ea,82); P,EF e:: T; PE}F so+/]
= null = e3 A s1 = so by fact+
from wt obtain D where wte:P,E F e :: Class D by auto
from eval show Zcase
proof(rule eval-cases)
fix Xs Xs’ a’
assume eval-ref:P,E - (e,s0) = (ref (a’,Xs),s2)
from IH[OF eval-ref wte sconf] show null = e A s1 = so by simp
next
fix Xs Xs’ a’
assume eval-ref:P.E - (e,s0) = (ref(a’,XsQC#Xs'),s2)
from TH[OF eval-ref wte sconf] show null = e A s1 = so by simp
next
fix Xs Xs" D' Sa’ hl
assume eval-ref:P,E + (e,s0) = (ref(a’,Xs),(h,1))
from TH[OF eval-ref wte sconf] show null = ex A s1 = so by simp
next
assume eval-null: P,E F (e,s0) = (null,s2) and ey = null
with TH[OF eval-null wte sconf] show null = es A s = sy by simp

247

next
fix Xs D' Sa’ hl
assume eval-ref:P,E (e,s0) = (ref(a’,Xs),(h,0)) and s2:s5 = (h,l)
from TH[OF eval-ref wte sconf] s2 show null = ea A s1 = so by simp
next
fix e’ assume eval-throw:P,E {e,s0) = (throw e’,s3)
from IH[OF eval-throw wte sconf] show null = ey A s1 = so by simp
qed
next
case (DynCastFail E e sg a CshlD S Ceg 55 T)
have eval:P,E - {Cast C e,sp) = (e2,82)
and h:h a = Some(D,S) and not-uniquel:— P+ Path D to C unique
and not-unique2:— P+ Path last Cs to C unique and notin:C ¢ set Cs
and wt:P,E + Cast C e :: T and sconf:P,E + so /
and IH:ANes s T. [P,E * (e,50) = (ea,82); P,EF e:: T; PEF so /]
= ref (a, Cs) = es A (h,l) = s3 by fact+
from wt obtain D’ where wite:P,E + e :: Class D’ by auto
from eval show Zcase
proof(rule eval-cases)
fix Xs Xs' a’
assume eval-ref:P,E - (e,s0) = (ref(a’,Xs),s2)
and path-unique: P = Path last Xs to C unique
from [H[OF eval-ref wte sconf] have eq:a = o’ A Cs = Xs A (h,l) = s2 by
stmp
with path-unique not-unique2 show null = e; A (h,l) = s3 by simp
next
fix Xs Xs' a’
assume eval-ref:PE - (e,;s0) = (ref(a’,XsQCH#Xs'),s2)
from TH[OF eval-ref wte sconf] have eq:a = a’ A Cs = XsQC#Xs’' A (h,]) =
So
by simp
with notin show null = es A (h,l) = s by fastforce
next
fix Xs Xs'" D" S"a’' h' I
assume eval-ref:P,E - (e,s0) = (ref(a’,Xs),(h"l))
and h’:h' o’ = Some(D",S’) and path-unique: P - Path D' to C unique
from TH[OF eval-ref wte sconf] have a = '’ A Cs = Xs ANh=h' N1 =1
by simp
with h h' not-uniquel path-unique show null = es A (h,l) = so by simp
next
assume eval-null: P,E F (e,s0) = (null,ss2)
from TH[OF eval-null wte sconf] show null = ex A (h,l) = so by simp
next
fix Xs D" S a' bl
assume eval-ref:P,E - (e,s0) = (ref(a’,Xs),(h",l"))
and null:e; = null and s2:50 = (h',l’)
from ITH[OF eval-ref wte sconf] null s2 show null = ex A (h,l) = so by simp
next
fix ¢’ assume eval-throw:P,E t (e,sq) = (throw e’,s2)

248

from IH[OF eval-throw wte sconf] show null = ez A (h,l) = so by simp
qed
next
case (DynCastThrow E e sy ¢’ s1 C ez s2 T)
have eval: P,E F (Cast C e,80) = (e2,82)
and wt:P,E + Cast C e :: T and sconf:P,E t sy /
and IH:Aez so T. [P,E * (e,50) = (ea,82); P,EF e T; PE}F so /]
= throw e/ = ey A s1 = 5o by fact+
from wt obtain D where wte:P,E F e :: Class D by auto
from eval show ?case
proof (rule eval-cases)
fix Xs Xs’' a’
assume eval-ref:P,E - (e,s0) = (ref (a’,Xs),s2)
from TH[OF eval-ref wte sconf] show throw e’ = ea A s1 = so by simp
next
fix Xs Xs' a’
assume eval-ref:P,E = (e,s0) = (ref(a’,.XsQC#Xs'),s3)
from [H[OF eval-ref wte sconf] show throw e’ = e; A s1 = s by simp
next
fix Xs Xs'" D" S"a’ h'l'
assume eval-ref:P,E - (e,s0) = (ref(a’,Xs),(h"l"))
from [H[OF eval-ref wte sconf] show throw e’ = ey A s1 = so by simp
next
assume eval-null:P,E F (e,s0) = (null,s2)
from TH[OF eval-null wte sconf] show throw e’ = ea A s1 = so by simp
next
fix Xs D" S"a' h' U
assume eval-ref:P,E = (e,s0) = (ref(a’,Xs),(h",l"))
from TH[OF eval-ref wte sconf] show throw e’ = e; A s1 = s by simp
next
fix e’ assume eval-throw:P,E (e,s9) = (throw e’ sq)
and throw:es = throw e’
from [H[OF eval-throw wte sconf] throw show throw e’ = ey A s1 = so by
stmp
qed
next
case Val thus ?case by(auto elim: eval-cases)
next
case (BinOp E e; sg v1 81 ez V2 S3 bop v ey’ so’ T)
have eval:P,E b (e1 «bop» ea,s0) = (ea2’,s2”)
and binop:binop (bop, vi, v2) = Some v
and wt:P,E F ey «bop» ez :: T and sconf:P,E & sy +/
and [H1:N\eisi T. [P,E & {e1,50) = (ei,si); P.EF e; = T; P EF 55 +/]
— Val vy = el N\ 81 = si
and IH2:N\ei si T. [P,E (ea,s1) = (ei,si); P,EF ex 2 T; P,EF 51 /]
= Val vy = ei A\ so = si by fact+
from wt obtain 71 T9 where wtel:P,E F ey :: T1 and wte2:P,E F ey :: T
by auto
from eval show ?case

249

proof(rule eval-cases)
fix s w wy; wa
assume eval-vall:P,E F (e1,s0) = (Val wy,s)
and eval-val2:P,E + (es,s) = (Val wa,s2”)
and binop”binop(bop,wy1,wz) = Some w and e2"es’ = Val w
from [H1[OF eval-vall wtel sconf] have wl:v; = wy and s:s = s; by simp-all
with wf eval-vall wtel sconf have P.E + s /
by (fastforce intro:eval-preserves-sconf)
from TH2[OF eval-val2[simplified s| wte2 this| have vy = wy and $2:55 = so’
by simp-all
with wl binop binop’ have w = v by simp
with e2’ 52 show Val v = ex’ A\ 59 = 55/ by simp
next
fix e assume eval-throw:P,E F (e1,s0) = (throw e,s5")

from IHI[OF eval-throw wtel sconf] show Val v = ex’ A s3 = s3” by simp
next

fix e sw
assume eval-val:P,E + (e1,s0) = (Val w,s)
and eval-throw:P,E + (ea,s) = (throw e,s2’)
from IHI[OF eval-val wtel sconf] have s:s = s; by simp-all
with wf eval-val wtel sconf have P.E - s1 /
by (fastforce intro:eval-preserves-sconf)
from TH2[OF eval-throw[simplified s| wte2 this] show Val v = e3’ A s9 = so’
by simp
qed
next
case (BinOpThrowl E ey sg e s1 bop e3 e’ s T)
have eval:P,E F (e1 «bop» e2,50) = (e2',52)
and wt:P,E F e; «bop» ey :: T and sconf:P,E + so /
and IH:Aei si T. [P,E + (e1,50) = (ei,si); P,EF e; = T; P,E+ 50 +/]
— throw e = ei A s; = si by fact+
from wt obtain Ty T3 where wtel:P.E - ey :: Ty by auto
from eval show ?case

proof(rule eval-cases)
fix s w wy wa
assume eval-val:P,E + (e1,s0) = (Val wy,s)

from TH[OF eval-val wtel sconf] show throw e = ex’ A s = s by simp
next

fix e’

assume eval-throw:P,E + (e1,s0) = (throw e’,s5) and throw:ey’ = throw e’
from IH[OF eval-throw wtel sconf] throw show throw e = ey’ A s1 = s2 by
simp
next
fix e sw
assume eval-val:P,E = (e1,s0) = (Val w,s)
from TH[OF eval-val wtel sconf] show throw e = ex’ A s1 = so by simp
qed
next

case (BinOpThrow2 E e sg v1 $1 €3 € So bop ex” so' T)

250

have eval:P,E F (e1 «bop» e2,50) = (e2',527)
and wt:P,E F e; «bop» ey :: T and sconf:P,E F so +/
and IH1:Neisi T. [P,E (e1,5) = (ei,si); P,EF e; : T; P,E+ 59 /]
— Val vy = et A\ s1 = st
and [H2:\ei si T. [P,E & (e3,51) = (ei,si); P.EF es = T; P EF 51 /]
= throw e = ei A\ so = si by fact+
from wt obtain 77 Ts where wtel:P,E + ey :: T1 and wte2:P,E F ey :: T
by auto
from eval show ?case
proof (rule eval-cases)
fix s w wy; wa
assume eval-vall:P,E & (e1,s0) = (Val wy,s)
and eval-val2:P,E b (es,s) = (Val wa,s2")
from [HI[OF eval-vall wtel sconf] have s:s = s; by simp-all
with wf eval-vall wtel sconf have P,E s1 /
by (fastforce intro:eval-preserves-sconf)
from TH2[OF eval-val2[simplified s| wte2 this| show throw e = ex’ N\ s3 = s3’
by simp
next
fix e’
assume eval-throw:P,E & (e1,s80) = (throw €’,s3’)
from [H1[OF eval-throw wtel sconf] show throw e = ex’ A so = s’ by simp
next
fix e/ sw
assume eval-val:P,E + (e1,s0) = (Val w,s)
and eval-throw:P,E + (ea,s) = (throw e’,s2)
and throw:es’ = throw e’
from [HI[OF eval-val wtel sconf] have s:s = s1 by simp-all
with wf eval-val wtel sconf have P,E F s1 /
by (fastforce intro:eval-preserves-sconf)
from TH2[OF eval-throw[simplified s| wte2 this] throw
show throw e = ey’ N s9 = 8o

by simp
qed
next
case Var thus ?case by(auto elim: eval-cases)
next

case (LAss Eeso vhlV Tv'l ex so3 T
have eval:P,E F (V:=e,s9) = (e2,52)
and env:E V = Some T and casts:P = T casts v to v" and 1":l' = I(V — v’
and wt:P,E + V:=e :: T' and sconf:P,E + sy v/
and [H:A\es s T. [P,E * (e,50) = (ea,82); P,EF e:: T; PE}F so /]
= Val v = e A (h,l) = s by fact+
from wt env obtain T" where wte:P,E + ¢ :: T" and leq¢:P - T" < T by
auto
from eval show ?case
proof (rule eval-cases)
fix UL 1" ww’
assume eval-val:P,E + (e,s0) = (Val w,(h’,l"”")) and env:E V = Some U

251

and casts” P+ U casts w to w’ and e2:e9 = Val w’
and s2:50 = (R, I"(V — w’))
from env env’ have UeqT:U = T by simp
from TH[OF eval-val wte sconf] have eq:v = w A h = h' Al = 1" by simp
from sconf env have is-type P T
by (clarsimp simp:sconf-def envconf-def)
with casts casts’ eq UeqT wte leq eval-val sconf wf have v/ = w’
by (auto intro: casts-casts-eq-result)
with e2 s2 1’ eq show Val v/ = ey A (h, ') = s by simp
next
fix e’ assume cval-throw:P,E = {e,s0) = (throw e’,s)
from TH[OF eval-throw wte sconf] show Val v’ = ez A (h, I') = s3 by simp
qed
next
case (LAssThrow E e s €' s Vey so T)
have eval:P,.E F (V:=e,s9) = (e2,52)
and wt:P,E + V:=e :: T and sconf:P,E \ sg v/
and IH:Nes so T. [P,E F (e,s0) = (e2,52); P,EF e:: T; P.EF s0+/]
= throw e’ = ey A 51 = 59 by fact+
from wt obtain T’ where wte:P,E + e :: T by auto
from eval show ?case
proof (rule eval-cases)
fix Uh' 1" ww'
assume eval-val: P,E + (e,s0) = (Val w,(h',l"))
from TH[OF eval-val wte sconf] show throw e’ = ey A s1 = so by simp
next
fix ex
assume eval-throw:P,E = (e,sp) = (throw ez,sy) and e2:ex = throw ex
from [H[OF eval-throw wte sconf] e2 show throw e’ = es A s1 = s3 by simp
qed
next
case (FAcc Eesga Cs"hlDSDsCsfsFuveysy T)
have eval:P,E + (e-F{Cs},sp) = (ea,52)
and eval".P,E + (e,s0) = (ref (a, Cs’),(h,1))
and h:h a = Some(D,S) and Ds:Ds = Cs'@Q, Cs
and S:(Ds,fs) € S and fs:fs F = Some v
and wt:P,E F e-F{Cs} :: T and sconf:P,E F sy \/
and [H:Nes s T. [P,E * (e,50) = (ea,82); P,EF e:: T; PE}F so /]
= ref (a, Cs’) = ea A (h,l) = s by fact+
from wt obtain C where wte:P,FE - e :: Class C by auto
from eval-preserves-sconf[OF wf eval’ wte sconf] h have oconf:P,h \ (D,S) v/
by (simp add:sconf-def hconf-def)
from eval show ?case
proof(rule eval-cases)
fix Xs'" D' S"a’ fs'" W' 1" v’
assume eval-ref:P,E - (e,s0) = (ref(a’,Xs’),(h",1"))
and h":h' o’ = Some(D’,S’) and S (Xs'Q,Cs,fs") € S’
and fs":fs’ F = Some v’ and e2:e5 = Val v’ and s2:s5 = (h',l’)
from IH[OF eval-ref wte sconf] h h’

252

have eqg:a = a’ N Cs' = Xs'" A\h=h"ANl=1'"AND=D'"ANS=S8"by simp
with oconf S S’ Ds have fs = fs’ by (auto simp:oconf-def)
with fs fs’ have v = v’ by simp
with e2 s2 eq show Val v = ex A (h,]) = s2 by simp
next
assume eval-null:P,E F (e,sp) = (null,sq)
from TH[OF eval-null wte sconf] show Val v = ex A (h,l) = s2 by simp
next
fix e’ assume eval-throw:P,E b {e,s9) = (throw e’,s5)
from IH[OF eval-throw wte sconf] show Val v = ex A (h,l) = s2 by simp
qed
next
case (FAceNull E e sy s1 F Cs eg s3 T)
have eval:P,E b (e-F{Cs},s0) = (ea,52)
and wt:P,E F e-F{Cs} :: T and sconf:P,E F sy /
and [H:A\es s T. [P,E * (e,50) = (ea,82); P,EF e:: T; PE}F so /]
= null = ex A s1 = s9 by fact+
from wt obtain C where wte:P,E - e :: Class C' by auto
from eval show Zcase
proof (rule eval-cases)
fix Xs" D' S"a’ fs" h' 1" v’
assume eval-ref:P.E - {(e,s0) = (ref(a’,Xs’),(h",l"))
from [H[OF eval-ref wte sconf] show THROW NullPointer = ex A s1 = 8o
by simp
next
assume eval-null:P,E (e,s0) = (null,s2) and e2:e; = THROW NullPointer
from IH[OF eval-null wte sconf] e2 show THROW NullPointer = ex A s1 =
52
by simp
next
fix e’ assume eval-throw:P,E t {e,s9) = (throw e’,s2)
from IH[OF eval-throw wte sconf] show THROW NullPointer = ex A $1 = 2
by simp
qed
next
case (FAccThrow E e sy e’ 1 F Cs e s T)
have eval: P,E + (e-F{Cs},sy) = (e3,52)
and wt:P,E F e-F{Cs} :: T and sconf:P,E F sp v/
and IH:Aez s; T. [P,E * (e,50) = (ea,82); P,EF e T; PE}F so /]
= throw e/ = ey A 51 = 59 by fact+
from wt obtain C where wte:P,E + e :: Class C by auto
from eval show ?case
proof (rule eval-cases)
fix Xs" D' S"a’' fs" h' 1" v’
assume eval-ref:P,E - (e,s0) = (ref(a’,Xs’),(h",l’))
from TH[OF eval-ref wte sconf] show throw e’ = e3 A s = s by simp
next
assume eval-null: P,E F (e,s0) = (null,s2)
from [H[OF eval-null wte sconf] show throw e’ = es A s = sy by simp

253

next
fix ez
assume eval-throw:P,E = (e,s9) = (throw ez,sy) and e2:e9 = throw ex
from TH[OF eval-throw wte sconf] e2 show throw e’ = es A s1 = s3 by simp
qged
next
case (FAss Ee; sp a Cs' sy eavhylo DSF T Csv' Dsfsfs’ S ha' ea’ s9 T
have eval:P,E t (e1-F{Cs} := ea,50) = (e2’,2)
and eval:P,E b (e1,80) = (ref(a,Cs’),s1)
and eval”:P,E F {es,81) = (Val v,(ha,l2))
and h2:hy a = Some(D, S)
and has-least:P + last Cs’ has least F:T via Cs
and casts:P + T casts v to v' and Ds:Ds = Cs'Q,Cs
and S:(Ds, fs) € S and fs".fs' = fs(F — v’)
and S:5'= 8 — {(Ds, fs)} U {(Ds, fs")}
and h2":hy' = hy(a — (D, §))
and wt:P,E & e;-F{Cs} := ey :: T' and sconf:P,E sy «/
and IH1:Nei si T. [P,E \ (e1,s0) = (ei,si); P,EtF e; = T; P,E+ 59 /]
= ref(a,Cs") = ei A s1 = si
and IH2:A\ei si T. [P,E (e2,51) = (ei,si); P,EF eq :: T; P,E* 51 /]
= Vol v = ei A (ha,la) = si by fact+
from wt obtain C T’ where wtel:P,E + e; :: Class C
and has-least’:P = C has least F:T' via Cs
and wte2:P,E + es :: T" and leq:P + T" < T’
by auto
from wf eval’ wtel sconf have last Cs' = C
by (auto dest!:eval-preserves-type split:if-split-asm)
with has-least has-least’ have TeqT":T = T'by (fastforce intro:sees-field-fun)
from eval show Zcase
proof(rule eval-cases)
fix Xs D'S" Ua'fs" hilswuw'
assume eval-ref:P,E - (e1,s0) = (ref(a’,Xs),s)
and eval-val:P,E & (ea,s) = (Val w,(h,l))
and h:h o’ = Some(D’,S")
and has-least’:P + last Xs has least F:U via Cs
and casts”"P F U casts w to w’
and S":(XsQ,Cs,fs'"") € S and e2"ey’ = Val w’
and s2:s0 = (h(a'— (D' insert (XsQ,Cs,fs""(F — w’))
(S"—{(Xs@, Cs fs") }))).0)
from [HI1[OF eval-ref wtel sconf] have eq:a = o’ A Cs’ = Xs A sy = s by
stmp
with wf eval-ref wtel sconf have sconf”:P,E & s1 /
by (fastforce intro:eval-preserves-sconf)
from [H2[OF - wte2 this] eval-val eq have eqv = w A h = hg Al = I3 by
auto
from has-least’’ eq has-least have UeqT:U = T by (fastforce intro:sees-field-fun)
from has-least wf have is-type P T by(rule least-field-is-type)
with casts casts’ eq eq’ UeqT TeqT' wte2 leq eval-val sconf’ wf have v'iv' = w’
by (auto introl: casts-casts-eq-result)

254

from eval-preserves-sconf|OF wf eval’ wte2 sconf’] h2
have oconf:P,hy & (D,S) +/
by (simp add:sconf-def hconf-def)
from eq eq’ h2 h have S = S’ by simp
with oconf eq S S’ §" Ds have fs = fs'' by (auto simp:oconf-def)
with h2’ h h2 eq eq’ s2 8’ Ds fs' v’ €2’ show Val v/ = ex’ A (ha',ls) = s
by simp
next
fix s w assume eval-null: P,E F (e1,s9) = (null,s)
from TH1[OF eval-null wtel sconf] show Val v’ = ex’ A (ha',l2) = s2 by simp
next
fix ez assume eval-throw:P,E & (e1,s0) = (throw ex,ss2)
from [HI[OF eval-throw wtel sconf] show Val v’ = ex’ A (ha',l2) = s2 by
stmp
next
fix ex s w
assume eval-val:P,E + (e1,s0) = (Val w,s)
and eval-throw:P,E F (e2,s) = (throw ex,s2)
from [HI[OF eval-val wtel sconf] have eq:s = s; by simp
with wf eval-val wtel sconf have sconf:P,E t s1 +/
by (fastforce intro: eval-preserves-sconf)
from [H2[OF eval-throw|simplified eq] wte2 this|
show Val v’ = ey’ A (he')l3) = so by simp
qed
next
case (FAssNull E ey so $1 e2 v so F Cs e3” s9' T)
have eval:P,E + (e1-F{Cs} := e2,80) = (e2’,s2")
and wt:P,E F e;:F{Cs} := ey :: T and sconf:P,E F so v/
and IH1:Nei si T. [P,E (e1,s) = (ei,si); P.EtF e; : T; P,E+ 59 /]
= null = ef A\ 51 = si
and [H2:\ei si T. [P,E b (e3,81) = (ei,si); P.EF es = T; P, EF 51 /]
= Val v = ei N\ s9 = si by fact+
from wt obtain C T’ where wtel:P,E + ey :: Class C
and wte2:P,E + e3 :: T by auto
from eval show Zcase
proof (rule eval-cases)
fix Xs D'S" Ua'fs" hilswuw'
assume eval-ref:P.E = (e1,s0) = (ref(a’,Xs),s)
from IHI1[OF eval-ref wtel sconf] show THROW NullPointer = e3’ A so =
32/
by simp
next
fix s w
assume eval-null:P,E & (e1,s0) = (null,s)
and eval-val:P,E + (ea,s) = (Val w,s2)
and e2’:ex’ = THROW NullPointer
from IHI[OF eval-null wtel sconf] have eq:s = s; by simp
with wf eval-null wtel sconf have sconf”:P,E = s1 \/
by (fastforce intro:eval-preserves-sconf)

255

from TH2[OF eval-val[simplified eq] wte2 this] e2’
show THROW NullPointer = ey’ N\ sy = s3’ by simp
next
fix ex assume eval-throw:P,E F (e1,s9) = (throw ex,ss”)
from IH1[OF eval-throw wtel sconf] show THROW NullPointer = ey’ A so

252/

by simp
next
fix ex s w
assume eval-val:P,E + (e1,s0) = (Val w,s)
and eval-throw:P,E t (es,s) = (throw er,ss”)
from [H1[OF eval-val wtel sconf] have eq:s = s1 by simp
with wf eval-val wtel sconf have sconf:P,E t s1 +/
by (fastforce intro:eval-preserves-sconf)
from TH2[OF eval-throw[simplified eq] wte2 this]
show THROW NullPointer = ez’ A so = s3’ by simp
qed
next
case (FAssThrow! E e; sy €’ s1 F Cs eg e3’ s5 T)
have eval:P,E F (e1-F{Cs} := e2,80) = (e2’,92)
and wt:P,E F e;-F{Cs} := ey :: T and sconf:P,E F sy +/
and [H:\ei si T. [P,E F {e1,80) = (ei,si); P,EF e; = T; P,EF 55 +/]
= throw e’ = ei A s = si by fact+
from wt obtain C' T" where wtel:P,E & ey :: Class C by auto
from eval show ?case
proof (rule eval-cases)
fix Xs D'S" Ua'fs" hilswuw'
assume eval-ref:P,E - (e1,s0) = (ref(a’,Xs),s)
from [H[OF eval-ref wtel sconf] show throw e’ = es’ A s1 = so by simp
next
fix s w
assume eval-null: P,E F (e1,s0) = (null,s)
from [H[OF eval-null wtel sconf] show throw e’ = ex’ A s = s3 by simp
next
fix ez
assume eval-throw:P,E + (e1,80) = (throw ex,s2) and e2’:ex’ = throw ex
from [H[OF eval-throw wtel sconf] e2’ show throw e/ = ex’ A 51 = s2 by
stmp
next
fix ex s w assume eval-val:P,E + (e1,s0) = (Val w,s)
from TH[OF eval-val wtel sconf] show throw e’ = ey’ A s1 = so by simp
qed
next
case (FAssThrow2 E ey so v 1 e3 €' s9 F Cs ex’ s3' T)
have eval:P,E b (e1-F{Cs} := ea,80) = (e2’,s27)
and wt:P,E b e1-F{Cs} := ey :: T and sconf:P,E + so +/
and [H1:Neisi T. [P,E b {e1,50) = (ei,si); P.EF e; = T; P, EF 55 +/]
= Valv=—el A 81 = si
and [H2:N\ei si T. [P,E & (e3,51) = (ei,si); P,EF ex = T; P EF 51 /]

256

= throw e’ = ei A sy = si by fact+
from wt obtain C T’ where wtel:P,E + e :: Class C
and wte2:P,E + es :: T by auto
from eval show ?case
proof (rule eval-cases)
fix Xs D'S" Ua'fs" hilswuw'
assume eval-ref:P,E = (e1,s0) = (ref(a’,Xs),s)
and eval-val:P,E & (ea,s) = (Val w,(h,l))
from IHI[OF eval-ref wtel sconf] have eq:s = s; by simp
with wf eval-ref wtel sconf have sconf:P,E & s1 +/
by (fastforce intro:eval-preserves-sconf)
from TH2[OF eval-val[simplified eq] wte2 this] show throw e’ = ex’ A s3 = s’
by simp
next
fix s w
assume eval-null: P,E F (e1,s0) = (null,s)
and eval-val:P,E F (e3,s) = (Val w,s3”)
from [H1[OF eval-null wtel sconf] have eq:s = s; by simp
with wf eval-null wtel sconf have sconf’:P,E - s1 /
by (fastforce intro:eval-preserves-sconf)
from TH2[OF eval-val[simplified eq] wte2 this] show throw e’ = ex’ A s3 = s’
by simp
next
fix ex assume eval-throw:P,E + (e1,50) = (throw ex,sy”)
from [HI[OF eval-throw wtel sconf] show throw e’ = es’ A\ s3 = s’ by simp
next
fix ex s w
assume eval-val:P,E + (e1,s0) = (Val w,s)
and eval-throw:P,E \ (e3,s) = (throw ezx,s2’) and e2”ey’ = throw ex
from [HI[OF eval-val wtel sconf] have eq:s = s; by simp
with wf eval-val wtel sconf have sconf:P,E t s1 +/
by (fastforce intro:eval-preserves-sconf)
from TH2[OF eval-throw[simplified eq] wte2 this] e2’
show throw e’ = ey’ A 59 = so’ by simp
qed
next
case (CallObjThrow E e sg e’ s1 Copt M es ey so T)
have eval:P,E = (Call e Copt M es,s0) = (e2,82)
and wt:P,E + Call e Copt M es :: T and sconf:P.E - sg /
and IH:Nes so T. [P,E F (e,s9) = (e2,82); P,EF e:: T; P.EF s0+/]
= throw e’ = ey A 51 = 59 by fact+
from wt obtain C' where wte:P,E F e :: Class C by(cases Copt)auto
show ?Zcase
proof(cases Copt)
assume Copt = None
with eval have P,E F (e-M(es),s0) = (e2,82) by simp
thus ?thesis
proof (rule eval-cases)
fix ex

257

assume eval-throw:P,E = (e,s9) = (throw ez,s3) and e2:ex = throw ex
from IH[OF eval-throw wte sconf] e2 show throw e/ = es A s1 = so by simp
next
fix es’ ex’ s w ws assume eval-val:P,E + (e,s0) = (Val w,s)
from TH[OF eval-val wte sconf] show throw e’ = ey A $1 = so by simp
next
fix C' Xs Xs' Ds’ S" U U’ Us Us’ a’ body’ body"" h b’ 11’ pns'" pns’”’
s ws ws’
assume eval-ref:P.E + (e,s0) = (ref(a’,Xs),s)
from TH[OF eval-ref wte sconf] show throw e’ = e3 A s1 = s2 by simp
next
fix s ws
assume eval-null:P,E & (e,so) = (null,s)
from TH[OF eval-null wte sconf] show throw e’ = es A s1 = s3 by simp
qed
next
fix C’ assume Copt = Some C’
with eval have P,E F (e-(C':)M(es),s0) = (ea,s2) by simp
thus ?thesis
proof (rule eval-cases)
fix ex
assume eval-throw:P,E F {e,s9) = (throw er,ss) and e2:ey = throw ez
from IH[OF eval-throw wte sconf] e2 show throw e’ = es N\ s1 = s by simp
next
fix es’ ex’ s w ws assume eval-val:P,E + (e,s0) = (Val w,s)
from TH[OF eval-val wte sconf] show throw e’ = ey A $1 = sg by simp
next
fix C" Xs Xs' Ds’ S" U U’ Us Us’ a’ body’ body'' h h' 11’ pns'’ pns’”’
s ws ws’
assume eval-ref:P.E = (e,s0) = (ref(a’,Xs),s)
from TH[OF eval-ref wte sconf] show throw e’ = e3 A s1 = s2 by simp
next
fix s ws
assume eval-null:P,E & {e,so) = (null,s)
from TH[OF eval-null wte sconf] show throw e’ = e5 A s1 = so by simp
qed
qged
next
case (CallParamsThrow E e sg v $1 es vs ex es’ so Copt M eg s2’ T)
have eval:P,E t (Call e Copt M es,sp) = (e2,52")
and wt:P,E F Call e Copt M es :: T and sconf:P,E = sy +/
and [H1:N\eisi T. [P,E b {e,s0) = (ei,si); P,EF e T; P,EF s5+/]
= Valv=©el N\ s = si
and TH2:\esi si Ts. [P,E \ (es,s1) [=] (esi,si); P,E & es [:1] Ts; P,E F s1 /]
= map Val vs Q throw ex # es’' = esi A\ so = si by fact+
from wt obtain C Ts where wte:P,E F e :: Class C and wtes:P,E & es [::] Ts
by (cases Copt)auto
show Zcase
proof(cases Copt)

258

assume Copt = None
with eval have P,E F (e-M(es),s0) = (e2,52) by simp
thus ?thesis
proof (rule eval-cases)
fix ez’ assume eval-throw:P,E F (e,s0) = (throw ex’,s3’)
from IH1[OF eval-throw wte sconf] show throw ex = ez N s5 = s3' by simp
next
fix es” ex’ s w ws
assume eval-val:P,E + (e,s0) = (Val w,s)
and evals-throw:P,E (es,s) [=] (map Val wsQthrow ex'#es’ s3”)
and e2:e; = throw ez’
from IH1[OF eval-val wte sconf] have eq:s = s; by simp
with wf eval-val wte sconf have sconf’:P,E - s1 \/
by (fastforce intro:eval-preserves-sconf)
from TH2[OF evals-throw[simplified eq] wtes this] e2
have vs = ws A ez = ez’ N es’' = es” N so = s/
by (fastforce dest:map-Val-throw-eq)
with e2 show throw ex = ey A so = s3’ by simp
next
fix C' Xs Xs' Ds' S'" U U’ Us Us’ a’ body’ body"" h h' 11’ pns'’ pns’"’
s ws ws'
assume eval-ref:P.E = {e,s0) = (ref(a’,Xs),s)
and evals-vals:P,E = (es,s) [=] (map Val ws,(h,1))
from THI[OF eval-ref wte sconf] have eq:s = s; by simp
with wf eval-ref wte sconf have sconf:P,E + s1 +/
by (fastforce intro:eval-preserves-sconf)
from TH2[OF evals-vals[simplified eq] wtes this)
show throw ex = ey N s3 = so/
by (fastforce dest:sym[THEN map- Val-throw-False])
next
fix s ws
assume eval-null:P,E F (e,s0) = (null,s)
and evals-vals:P,E = (es,s) [=] (map Val ws,s2")
and e2:eo = THROW NullPointer
from THI[OF eval-null wte sconf] have eq:s = s; by simp
with wf eval-null wte sconf have sconf”:P.E + s1 /
by (fastforce intro:eval-preserves-sconf)
from TH2[OF evals-vals[simplified eq] wtes this)
show throw ex = ea N s3 = 8o/
by (fastforce dest:sym[THEN map- Val-throw-False])
qed
next
fix ¢/ assume Copt = Some C’
with eval have P,E & (e-(C":)M(es),sp) = (ea,s2”) by simp
thus ?thesis
proof (rule eval-cases)
fix ex’ assume eval-throw:P,E F (e,s0) = (throw ex’,sy’)
from TH1[OF eval-throw wte sconf] show throw ex = e3 A s2 = s3’ by simp
next

259

fix es’” ex’ s w ws
assume eval-val:P.E + (e,s0) = (Val w,s)
and evals-throw:P,E + (es,s) [=] (map Val wsQthrow ex'#es',s2")
and e2:e; = throw ex’
from ITHI[OF eval-val wte sconf] have eq:s = s1 by simp
with wf eval-val wte sconf have sconf” P, E + s1 \/
by (fastforce intro:eval-preserves-sconf)
from IH2[OF evals-throw[simplified eq] wtes this] e2
have vs = ws N\ ex = ez’ N es' = es”' N 53 = 85/
by (fastforce dest:map-Val-throw-eq)
with e2 show throw ex = ex A so = s3’ by simp
next
fix C' Xs Xs' Ds’ S U U’ Us Us’ a’ body’ body”" h h' 11’ pns'’ pns'"’
s ws ws’
assume eval-ref:P.E + (e,s0) = (ref(a’,Xs),s)
and evals-vals:P,E = (es,s) [=] (map Val ws,(h,1))
from IH1[OF eval-ref wte sconf] have eq:s = s; by simp
with wf eval-ref wte sconf have sconf:P,E - s1 /
by (fastforce intro:eval-preserves-sconf)
from TH2[OF evals-vals[simplified eq] wtes this)
show throw ex = ey N s3 = 8o/
by (fastforce dest:sym[THEN map- Val-throw-False])
next
fix s ws
assume eval-null: P,E F (e,s0) = (null,s)
and evals-vals:P,E = (es,s) [=] (map Val ws,s2")
and e2:eo = THROW NullPointer
from IH1[OF eval-null wte sconf] have eq:s = s; by simp
with wf eval-null wte sconf have sconf”:P.E + s1 /
by (fastforce intro:eval-preserves-sconf)
from TH2[OF evals-vals[simplified eq] wtes this)
show throw ex = eg A s = 85’
by (fastforce dest:sym[THEN map- Val-throw-False])
qed
qed
next
case (Call E e sy a Cs s1 esvs ha lo CS M Ts" T' pns’ body’ Ds Ts T pns
body Cs’ vs' Iy’ new-body e’ hs I3 ex so T'')
have eval:P,E + (e-M(es),s0) = (e2,52)
and eval".P,E + (e,s0) = (ref(a,Cs),s1)
and eval”:P,E + (es,s1) [=] (map Val vs,(ha,l2)) and h2:hy a = Some(C,S)
and has-least:P + last Cs has least M = (Ts',T',pns’,body’) via Ds
and selects:P = (C,CsQ,Ds) selects M = (Ts,T,pns,body) via Cs’
and length:length vs = length pns and Casts:P - Ts Casts vs to vs'
and [2":ly’ = [this — Ref (a, Cs'), pns [—] vs']
and new-body:new-body = (case T’ of Class D = (D)body | - = body)
and eval-body: P,E(this — Class (last Cs"), pns [—] T8) -
(new-body,(ha,l2")) = (€’,(hs,l3))
and wt:P,E F e-M(es) :: T and sconf:P,E + so +/

260

and [H1:Aeisi T. [P,E & {e,s0) = (ei,si); P,EF e T; PEF s5+/]
= ref (a,Cs) = ei N\ s1 = si
and IH2:\esi si Ts. [P,E & (es,s1) [=] (esi,si); P,E F es [:] Ts; P,E F s1 /]
= map Val vs = esi A (ha,la) = si
and IH3:\ei si T.
[P,E(this — Class (last Cs’), pns [—=] Ts) F (new-body, (hg,lz’)> = (ei,si);
P,E(this — Class (last Cs’), pns [—] Ts) - new-body ::
P E(this — Class (last Cs"), pns [—] Ts) b (ha,l2) /]
= e’ = ei A (hs, l3) = si by fact+
from wt obtain D Ss Ss’ m Cs’’ where wte:P,E + e :: Class D
and has-least”:P & D has least M = (Ss,T",m) via Cs"
and wtes:P,E + es [::] Ss’ and subs:P F Ss’ [<] Ss by auto
from eval-preserves-type| OF wf eval’ sconf wte]
have last:last Cs = D by (auto split:if-split-asm)
with has-least has-least’ wf
have eq:Ts' = Ss A T' = T" A (pns’,body’) = m AN Ds = Cs"
by (fastforce dest:wf-sees-method-fun)
from wf selects have param-type:N T € set Ts. is-type P T
and return-type:is-type P T and TnotNT:T # NT
by (auto dest:select-method-wf-mdecl simp:wf-mdecl-def)
from selects wf have subo:Subobjs P C Cs’
by (induct rule:SelectMethodDef .induct,
auto simp:FinalOverriderMethodDef-def OverriderMethodDefs-def
MinimalMethodDefs-def LeastMethodDef-def MethodDefs-def)
with wf have class:is-class P (last Cs’) by (auto intro!:Subobj-last-isClass)
from eval’” have hext:hp s1 < hy by (cases s1,auto intro: evals-hext)
from wf eval’ sconf wte last have P,E,(hp s1) F ref(a,Cs) : yp Class(last Cs)
by —(rule eval-preserves-type,simp-all)
with hext have P,E hy = ref(a,Cs) :yp Class(last Cs)
by (auto intro: WTrt-hext-mono dest:hext-objD split:if-split-asm)
with h2 have Subobjs P C Cs by (auto split:if-split-asm)
hence P+ Path C to (last Cs) via Cs
by (auto simp:path-via-def split:if-split-asm)
with selects has-least wf have param-types:Ts' = Ts N P+ T < T’
by —(rule select-least-methods-subtypes,simp-all)
from wf selects have wt-body: P,[this— Class(last Cs’),pns[—]Ts] b body :: T
and this-not-pns:this ¢ set pns and length:length pns = length TS
and dist:distinct pns
by (auto dest!:select-method-wf-mdecl simp:wf-mdecl-def)
have P [this— Class(last Cs"),pns[—]Ts] - new-body :: T’
proof(cases 3C. T' = Class C)
case Fulse with wt-body new-body param-types show ?thesis by(cases T') auto
next
case True
then obtain D’ where T":T' = Class D’ by auto
with wf has-least have class:is-class P D’
by (fastforce dest:has-least-wf-mdecl simp:wf-mdecl-def)
with wf T/ ThotNT param-types obtain D' where T:T = Class D"
by (fastforce dest:widen-Class)

261

with wf return-type T' param-types have P = Path D" to D’ unique
by (simp add: Class-widen-Class)
with wt-body class T T' new-body show ?thesis by auto
qed
hence wt-new-body: P,E(this— Class(last Cs'),pns[—]Ts) - new-body :: T’
by (fastforce intro:wt-env-mono)
from eval show Zcase
proof(rule eval-cases)
fix ez’ assume eval-throw:P,E b (e,s9) = (throw ez’ s3)
from IHI[OF eval-throw wte sconf] show e’ = es A (hs, l2) = s2 by simp
next
fix es” ex' s w ws
assume eval-val:P,E += (e,s0) = (Val w,s)
and evals-throw:P,E + (es,s) [=] (map Val wsQthrow ex'#es'’,sa)
from IHI[OF eval-val wte sconf] have eq:s = s1 by simp
with wf eval-val wte sconf have sconf:P,E + s; /
by (fastforce intro:eval-preserves-sconf)
from IH2[OF evals-throw|simplified eq] wtes this| show e’ = ea A (hg, l2) = s2
by (fastforce dest:map-Val-throw-False)
next
fix C' Xs Xs' Ds’ S" U U’ Us Us" a’ body’ body"' h h' 11" pns"’ pns’’ s ws ws’
assume eval-ref:P.E = {e,s0) = (ref(a’,Xs),s)
and evals-vals:P,E = (es,s) [=] (map Val ws,(h,l))
and h:h o’ = Some(C’,S")
and has-least”:P F last Xs has least M = (Us',U’,pns’" body’"") via Ds’
and selects”:P F (C',XsQ,Ds’) selects M = (Us,U,pns",body"’) via Xs'
and length’:length ws = length pns’’ and Casts:P - Us Casts ws to ws'
and eval-body"P,E(this — Class (last Xs'), pns'' [—] Us) -
(case U’ of Class D = (D) body" | - = body",
(h,[this — Ref(a’.Xs"), pns" [—] ws’)) = (ea, (1))
and s2:s5 = (h',])
from IHI[OF eval-ref wte sconf] have eql:a = a’ A Cs = Xs and s:s = $;
by simp-all
with has-least has-least’” wf have eq2:T' = U’ A Ts' = Us’ A Ds = Ds’
by (fastforce dest:wf-sees-method-fun)
from s wf eval-ref wte sconf have sconf”:P,E - s1 \/
by (fastforce intro:eval-preserves-sconf)
from ITH2[OF evals-vals[simplified s] wtes this)
have eq3:vs = ws A ho = h AN ly =1
by (fastforce elim:map-injective simp:inj-on-def)
with eql h2 h have eq):C = C' A S = S’ by simp
with eql eq2 selects selects’ wf
have eg5:Ts = Us A T = U A pns’' = pns A body’ = body A Cs’ = Xs'
by simp(drule-tac mthd’=(Us,U,pns" ,body’") in wf-select-method-fun,auto)
with subs eq param-types have P + Ss’ [<] Us by simp
with wf Casts Casts’ param-type wtes evals-vals sconf’ s eq eq2 eq3 eqd
have eq6:vs’ = ws’
by (fastforce intro: Casts-Casts-eg-result)
with eval-body’ 12" eql eq2 eq3 eqd new-body

262

have eval-body’:P,E(this — Class(last Cs'), pns [—] Ts) -
(new-body,(ha,l2")) = (e2,(h",l"))
by fastforce
from wf evals-vals wtes sconf’ s eq3 have sconf':P,E b (ha,l2) v/
by (fastforce intro:evals-preserves-sconf)
have P, E(this — Class (last Cs’), pns [—] T8) & (ha,l2) /
proof (auto simp:sconf-def)
from sconf’” show P b hy \/ by(simp add:sconf-def)
next
{ fix V v assume map:[this — Ref (a,Cs’), pns [—] vs'] V = Some v
have 3 T. (E(this — Class (last Cs'), pns [—] T5)) V = Some T A
Phob-v:<T
proof(cases V € set (this#pns))
case Fulse with map show ?thesis by simp
next
case True
hence V = this V V € set pns by simp
thus ?thesis
proof(rule disjE)
assume V:V = this
with map this-not-pns have v = Ref(a,Cs’) by simp
with V h2 subo this-not-pns have
(E(this — Class (last Cs’),pns [—] Ts)) V = Some(Class (last Cs’))
and P,hy F v :< Class (last Cs’) by simp-all
thus ?thesis by simp
next
assume V € set pns
then obtain ¢ where V:V = pnsli and length-i:i < length pns
by (auto simp:in-set-conv-nth)
from Casts have length Ts = length vs’
by (induct rule: Casts-to.induct,auto)
with length have length pns = length vs' by simp
with map dist V length-i have v:v = vs'li by(fastforce dest:maps-nth)
from length dist length-i
have env:(E(this — Class (last Cs’), pns [—] T5)) (pnsli) = Some(Ts!7)
by (rule-tac E=E(this — Class (last Cs’)) in nth-maps,simp-all)
from wf Casts wtes subs eq param-types eval’ sconf’
have Vi < length Ts. P,ho b vs'li :< Tsli
by simp(rule Casts-conf,auto)
with length-i length env V v show ?thesis by simp
qed
qed }
thus P,hy F Iy’ (:<)y E(this — Class (last Cs’), pns [—] T5s)
using 12’ by (simp add:lconf-def)
next
{ fix V Tz assume env:(E(this — Class (last Cs’), pns [—=] T5)) V = Some
Tx
have is-type P Tx
proof(cases V € set (this#pns))

263

case Fulse
with env sconf’’ show ?thesis
by (clarsimp simp:sconf-def envconf-def)
next
case True
hence V = this V V € set pns by simp
thus ?thesis
proof(rule disjE)
assume V = this
with env this-not-pns have Tx = Class(last Cs’) by simp
with class show ?thesis by simp
next
assume V € set pns
then obtain ¢ where V:V = pnsli and length-i:i < length pns
by (auto simp:in-set-conv-nth)
with dist length env have Tz = Ts!i by(fastforce dest:maps-nth)
with length-i length have Tx € set Ts
by (fastforce simp:in-set-conv-nth)
with param-type show ?thesis by simp
qed
qed }
thus P+ E(this — Class (last Cs’), pns [—] Ts) v/ by (simp add:envconf-def)
qed
from IH3[OF eval-body" wt-new-body this| have e’ = ea A (hs, l3) = (R',l’) .
with eq3 s2 show e’ = ey A (hs,lz) = s2 by simp
next
fix s ws
assume eval-null:P,E F (e,s0) = (null,s)
from IH1[OF eval-null wte sconf] show e’ = ez A (hg,l2) = s2 by simp
qed
next
case (StaticCall E e s9 a Cs s1 es vs hy la C Cs” M Ts T pns body Cs’
Ds vs’ ly' e’ hg I3 ez 5o T)
have eval:P,E + (e-(C::)M(es),s0) = (e2,52)
and eval":P,E + (e,s0) = (ref(a,Cs),s1)
and eval”:P,E (es,s1) [=] (map Val vs,(ha, 1))
and path-unique: P = Path last Cs to C unique
and path-via:P = Path last Cs to C via Cs'’
and has-least:P = C has least M = (Ts,T,pns,body) via Cs’
and Ds:Ds = (Cs@,Cs")@,Cs’ and length:length vs = length pns
and Casts:P = Ts Casts vs to vs’
and 12”1y’ = [this — Ref (a, Ds), pns [—] vs]
and eval-body: P,E(this — Class (last Ds), pns [—] Ts) F
<50d?/ (h2,l2")) = (e',(hs,l3))
and wt:P,E b e-(C::)M(es) :: T’ and sconf:P,E + so +/
and IH1:Neisi T. [P,E (e,50) = (ei,si); P,EF e:: T; P,EF 5o +/]
= ref (a,Cs) = ei A\ s1 = si
and [H2:\esi si T5.
[P,E (es,s1) [=] (esi,si); P,EF es [:] Ts; P,EF s1 4/]

264

= map Val vs = esi A (ha,l2) = si
and [H3:\eisi T.
[P,E(this — Class (last Ds), pns [—] T5) b (body,(ha,l2”)) = (ei,si);
P,E(this — Class (last Ds), pns [—] Ts) F body :: T;
P,E(this — Class (last Ds), pns [—] T8) & (ha,l2’) V]
= ¢’ = ei A (hs, l3) = si by fact+
from wt has-least wf obtain C’ Ts' where wte:P,E + e :: Class C'
and wtes:P,E + es [::] Ts' and subs:P + Ts' [<] Ts
by (auto dest:wf-sees-method-fun)
from eval-preserves-type| OF wf eval’ sconf wte]
have last:last Cs = C' by (auto split:if-split-asm)
from wf has-least have param-type:N T € set Ts. is-type P T
and return-type:is-type P T and ThotNT:T # NT
by (auto dest:has-least-wf-mdecl simp:wf-mdecl-def)
from path-via have last"last Cs"' = last(Cs@Q,Cs"")
by (fastforce introl:appendPath-last Subobjs-nonempty simp:path-via-def)
from eval’” have hext:hp s; < hy by (cases s1,auto intro: evals-hext)
from wf eval’ sconf wte last have P,E,(hp s1) b ref(a,Cs) : yp Class(last Cs)
by —(rule eval-preserves-type,simp-all)
with hext have P,F hy - ref(a,Cs) :yp Class(last Cs)
by (auto intro: WTrt-hext-mono dest:hext-objD split:if-split-asm)
then obtain D S where h2:hy a = Some(D,S) and Subobjs P D Cs
by (auto split:if-split-asm)
with path-via wf have Subobjs P D (CsQ,Cs"”) and last Cs"" = C
by (auto intro:Subobjs-appendPath simp:path-via-def)
with has-least wf last’ Ds have subo:Subobjs P D Ds
by (fastforce intro:Subobjs-appendPath simp: LeastMethodDef-def MethodDefs-def)
with wf have class:is-class P (last Ds) by(auto introl:Subobj-last-isClass)
from has-least wf obtain D’ where Subobjs P D' Cs’
by (auto simp: LeastMethodDef-def MethodDefs-def)
with Ds have last-Ds:last Cs’ = last Ds
by (fastforce introl:appendPath-last Subobjs-nonempty)
with wf has-least have P, [this— Class(last Ds),pns[—]Ts] - body :: T
and this-not-pns:this ¢ set pns and length:length pns = length Ts
and dist:distinct pns
by (auto dest!:has-least-wf-mdecl simp:wf-mdecl-def)
hence wt-body: P,E(this— Class(last Ds),pns[—]|Ts) - body :: T
by (fastforce intro:wt-env-mono)
from eval show Zcase
proof(rule eval-cases)
fix ez’ assume eval-throw: P,E t (e,s9) = (throw ez’ s3)
from IHI[OF eval-throw wte sconf] show e’ = es A (hs, la) = s2 by simp
next
fix es” ex' s w ws
assume eval-val:P,E += (e,s0) = (Val w,s)
and evals-throw:P,E + (es,s) [=] (map Val wsQthrow ex'#es'’,sa)
from IHI[OF eval-val wte sconf] have eq:s = s1 by simp
with wf eval-val wte sconf have sconf:P,E + s1 /
by (fastforce intro:eval-preserves-sconf)

265

from IH2[OF evals-throw|[simplified eq] wtes this| show e’ = ea A (hg, l2) = s2
by (fastforce dest:map-Val-throw-False)
next
fix Xs Xs' Xs" U Us a’ body’ h b’ 11’ pns’ s ws ws’
assume eval-ref:P,E - (e,s0) = (ref(a’,Xs),s)
and evals-vals:P,E + (es,s) [=] (map Val ws,(h,l))
and path-unique’: P & Path last Xs to C unique
and path-via”:P & Path last Xs to C via Xs''
and has-least:P + C has least M = (Us,U,pns’,body’) via Xs'
and length’:length ws = length pns’
and Casts”.P F Us Casts ws to ws’
and eval-body":P,E(this — Class(last((XsQ,Xs")Q,Xs")),pns’ [—=] Us)
(body’,(h,[this — Ref(a’,(XsQ,Xs")Q,Xs"),pns’ [—] ws'])) = (e2,(R',l))
and s2:s5 = (h',])
from IHI[OF eval-ref wte sconf] have eql:a = a’ A Cs = Xs and s:s = $;
by simp-all
from has-least has-least’ wf
have eq2:T = U AN Ts = Us A Cs’ = Xs' A pns = pns’ A body = body’
by (fastforce dest:wf-sees-method-fun)
from s wf eval-ref wte sconf have sconf”:P,E - s1 \/
by (fastforce intro: eval-preserves-sconf)
from [H2[OF evals-vals[simplified s] wtes this]
have eq3:vs = ws A ho = h N ly =1
by (fastforce elim:map-injective simp:inj-on-def)
from path-unique path-via path-via’' eql have Cs’’ = Xs''
by (fastforce simp:path-unique-def path-via-def)
with Ds eql eq2 have Ds"Ds = (XsQ,Xs'')@Q,Xs' by simp
from wf Casts Casts’ param-type wtes subs evals-vals sconf’ s eq2 eq3
have eqj:vs’ = ws’
by (fastforce intro: Casts-Casts-eg-result)
with eval-body’ Ds’ 12’ eql eq2 eq3
have eval-body’:P,E(this — Class(last Ds),pns [—] Ts) -
(body,(ha,l")) = {ea, (A1)
by simp
from wf evals-vals wtes sconf’ s eq3 have sconf':P,E b (ha,ls) +/
by (fastforce intro:evals-preserves-sconf)
have P, E(this — Class (last Ds), pns [—] Ts) & (he,l2’) +/
proof (auto simp:sconf-def)
from sconf’ show P F hy / by(simp add:sconf-def)
next
{ fix V v assume map:[this — Ref (a,Ds), pns [—] vs’] V = Some v
have 3 T. (E(this — Class (last Ds), pns [—] Ts)) V = Some T A
Phybv:<T
proof(cases V € set (this#pns))
case Fulse with map show ?thesis by simp
next
case True
hence V = this V V € set pns by simp
thus ?thesis

266

proof(rule disjE)
assume V:V = this
with map this-not-pns have v = Ref(a,Ds) by simp
with V h2 subo this-not-pns have
(E(this — Class (last Ds),pns [—] Ts)) V = Some(Class (last Ds))
and P.he b v :< Class (last Ds) by simp-all
thus ?thesis by simp
next
assume V € set pns
then obtain 7 where V:V = pnsli and length-i:i < length pns
by (auto simp:in-set-conv-nth)
from Casts have length Ts = length vs’
by (induct rule: Casts-to.induct,auto)
with length have length pns = length vs' by simp
with map dist V length-i have v:v = vs'li by(fastforce dest:maps-nth)
from length dist length-i
have env:(E(this — Class (last Ds), pns [—] Ts)) (pnsli) = Some(Tsi)
by (rule-tac E=E(this — Class (last Ds)) in nth-maps,simp-all)
from wf Casts wtes subs eval’’ sconf’
have Vi < length Ts. P,ho &+ vs'li :< Tsli
by —(rule Casts-conf,auto)
with length-i length env V v show %thesis by simp
qed
qed }
thus P,hy F o' (:<)y E(this — Class (last Ds), pns [—] T5)
using 12’ by (simp add:lconf-def)
next
{ fix V Tz assume env:(E(this — Class (last Ds), pns [—] Ts)) V = Some
Tx
have is-type P Tx
proof(cases V € set (this#pns))
case Fulse
with env sconf’’ show ?thesis
by (clarsimp simp:sconf-def envconf-def)
next
case True
hence V = this V V € set pns by simp
thus ?thesis
proof(rule disjE)
assume V = this
with env this-not-pns have Tx = Class(last Ds) by simp
with class show ?thesis by simp
next
assume V € set pns
then obtain ¢ where V:V = pnsli and length-i:i < length pns
by (auto simp:in-set-conv-nth)
with dist length env have Tz = Tsli by(fastforce dest:maps-nth)
with length-i length have Tx € set Ts
by (fastforce simp:in-set-conv-nth)

267

with param-type show ?thesis by simp
qed
qed }
thus P - E(this — Class (last Ds), pns [—] Ts) v/ by (simp add:envconf-def)
qed
from [H3[OF eval-body'" wt-body this] have e’ = ey A (hg, l3) = (h',l') .
with eg3 s2 show e’ = es A (hs, l3) = so by simp
next
fix s ws
assume eval-null: P,E F (e,s0) = (null,s)
from IHI[OF eval-null wte sconf] show e’ = es A (hs,lz) = so by simp
qed
next
case (CallNull E e sy s1 es vs so Copt M ey s3' T)
have eval: P,E F (Call e Copt M es,sp) = (ea,827)
and wt:P,E F Call e Copt M es :: T and sconf:P,E + sy /
and [H1:A\eisi T. [P,E & {e,s0) = (ei,si); P,EF e T; P,EF s5+/]
= null = ei N\ 81 = si
and IH2:\esi si Ts. [P,E & (es,s1) [=] (esi,si); P,E F es [:] Ts; P,E F s1 /]
= map Val vs = esi N\ sy = si by fact+
from wt obtain C Ts where wte:P,E F e :: Class C and wtes:P,E & es [::] Ts
by (cases Copt)auto
show Zcase
proof(cases Copt)
assume Copt = None
with eval have P,E F (e-M(es),s0) = (e2,82") by simp
thus ?thesis
proof (rule eval-cases)
fix ez’ assume eval-throw:P,E + (e,so) = (throw ex’,s2’)
from IHI[OF eval-throw wte sconf] show THROW NullPointer = ez A sy =
52/
by simp
next
fix es’ ex’ s w ws
assume eval-val:P.E + (e,s0) = (Val w,s)
and evals-throw:P,E (es,s) [=] (map Val wsQthrow ex'#es’ sy’
from THI[OF eval-val wte sconf] have eq:s = s1 by simp
with wf eval-val wte sconf have sconf” P, E s1 \/
by (fastforce intro:eval-preserves-sconf)
from IH2[OF evals-throw(simplified eq] wtes this]
show THROW NullPointer = es A s3 = s’ by(fastforce dest:map-Val-throw-False)
next
fix C' Xs Xs' Ds’ S" U U’ Us Us’ a’ body’ body"' h h' 11’ pns'’ pns’”
s ws ws'
assume cval-ref:P,E - (e,s0) = (ref(a’,Xs),s)
from IHI1[OF eval-ref wte sconf] show THROW NullPointer = ez N sa =
52/
by simp
next

268

fix s ws
assume eval-null:P,E & (e,so) = (null,s)
and evals-vals:P,E + (es,s) [=] (map Val ws,s2’)
and e2:eo = THROW NullPointer
from ITHI[OF eval-null wte sconf] have eq:s = s1 by simp
with wf eval-null wte sconf have sconf:P.E - s1 v/
by (fastforce intro:eval-preserves-sconf)
from IH2[OF evals-vals[simplified eq] wtes this] e2
show THROW NullPointer = e3 A sy = s3’ by simp
qed
next
fix C’ assume Copt = Some C’
with eval have P,E F (e-(C'::)M(es),s0) = (ea2,82”) by simp
thus ?thesis
proof (rule eval-cases)
fix ez’ assume eval-throw:P,E F (e,s0) = (throw ex’,s2’)
from IH1[OF eval-throw wte sconf] show THROW NullPointer = ex A so =

!

52
by simp
next
fix es’ ex’ s w ws
assume eval-val: P, E + (e,s0) = (Val w,s)
and evals-throw:P.E + (es,s) [=] (map Val wsQthrow ex'#es’ sy’
from THI[OF eval-val wte sconf] have eq:s = s; by simp
with wf eval-val wte sconf have sconf’:P,E s1 \/
by (fastforce intro:eval-preserves-sconf)
from TH2[OF evals-throw[simplified eq] wtes this]
show THROW NullPointer = ea N so = so’ by(fastforce dest:map-Val-throw-False)
next
fix C' Xs Xs' Ds’ §'" U U’ Us Us’ a’ body” body’’ h h' 11’ pns'’ pns'"’
s ws ws'
assume eval-ref:P.E + (e,s0) = (ref(a’,Xs),s)
from IHI1[OF eval-ref wte sconf] show THROW NullPointer = ex N so =
82/
by simp
next
fix s ws
assume eval-null:P,E F (e,s0) = (null,s)
and evals-vals:P,E = (es,s) [=] (map Val ws,s2")
and e2:e = THROW NullPointer
from THI[OF eval-null wte sconf] have eq:s = s; by simp
with wf eval-null wte sconf have sconf”.P.E - s1 /
by (fastforce intro:eval-preserves-sconf)
from TH2[OF evals-vals[simplified eq] wtes this] e2
show THROW NullPointer = e3 N s3 = s3’ by simp
qed
qed
next

case (BlOCkZ EVT €0 ho lo €1 h1 ll €o So T’)

269

have eval: P,.E = ({V:T; eo},(ho, lo)) = (e2,52)
and wt:P.E F {V:T; eg} = T' and sconf:P,E + (ho, lo) v/
and IH:Neg so T'. [P,E(V — T) F (eg,(ho, lo(V := None))) = (e2,82);
PE(V s T)F e T PLE(V = T) F (ho, lo(V = None)) /]
= e; = ez A (hy, l1) = s2 by fact+
from wt have type:is-type P T and wte:P,E(V — T) F ¢y :: T' by auto
from sconf type have sconf:P,E(V +— T) F (ho, lo(V := None)) /
by (auto simp:sconf-def lconf-def envconf-def)
from eval obtain h [where
eval"P,E(V — T) F (eg,(ho,lo(V:=None))) = (ea,(h,l))
and s2:s2 = (h,I(V:=ly V)) by (auto elim:eval-cases)
from IH[OF eval’ wte sconf’] s2 show ?case by simp
next
case (Seq E eg sg v 81 €1 e3 82 e’ 89’ T)
have eval: P,E F (eg;; e1,80) = (e2’,s2”)
and wt:P,E + ep;; e; :: T and sconf:P,E b so /
and [H1:Neisi T. [P,E & {eg,s0) = (ei,si); P,EF ey :: T; P,EF 55 +/]
= Valv=-ei N\ s1 = si
and IH2:\ei si T. [P,E + (e1,51) = (ei,si); P,EF e; : T; PEF 51 /]
= ey = el A\ s9 = si by fact+
from wt obtain T’ where wte0:P,E + ¢y :: T' and wtel:P,E + e; :: T by
auto
from eval show Zcase
proof(rule eval-cases)
fix s w
assume eval-val:P,E + (eg,s0) = (Val w,s)
and eval:P,E F (e1,s) = (e3’,82")
from [H1[OF eval-val wte0 sconf] have eq:s = s1 by simp
with wf eval-val wte0 sconf have P,E F s /
by (fastforce intro:eval-preserves-sconf)
from TH2[OF eval’[simplified eq] wtel this] show es = ex’ A s9 = 537 .
next
fix ez assume eval-throw:P,E & (eg,s9) = (throw ez,s3”)
from [HI[OF eval-throw wted sconf] show ey = ex’ A so = so’ by simp
qed
next
case (SeqThrow E ey sp € s1 €1 €3 s T)
have eval:P,E = {ep;; e1,50) = (e2,52)
and wt:P,E + ep;; e1 :» T and sconf:P,E F so +/
and IH:\ei si T. [P,E + (eo,s0) = (ei,si); P,EF ey : T; P,E* 59 +/]
— throw e = ei A s; = si by fact+
from wt obtain T’ where wte0:P,E + ¢y :: T' by auto
from eval show ?case
proof(rule eval-cases)
fix s w
assume eval-val: P, E + (eg,s0) = (Val w,s)
from TH[OF eval-val wte0 sconf] show throw e = es A s1 = s3 by simp
next
fix ez

270

assume eval-throw:P,E & (eg,s0) = (throw ex,s2) and e2:eq = throw ez
from IH[OF eval-throw wte0 sconf] e2 show throw e = e3 A 51 = sy by simp
qed
next
case (CondT E e sp s1 e1 €' sa e e3’ 83" T)
have eval: P,E - (if (e) e else ea,s0) = (ea',s27)
and wt:P,E + if (e) e else ey :: T and sconf:P,E F sy /
and IH1:Nei si T. [P,E + (e,50) = (ei,si); P,EF e:: T; P,EF so+/]
= true = et A\ s = st
and [H2:N\ei si T. [P,E & (e1,51) = (ei,si); P.EF e = T; P, EF 51 /]
= e/ = ei N\ s9 = si by fact+
from wt have wte:P,FE e :: Boolean and wtel:P,FE + e :: T by auto
from eval show Zcase
proof (rule eval-cases)
fix s
assume eval-true:P,E F (e,s0) = (true,s) and eval”P,E F (e1,s) = (e2’,s2")
from [H1[OF eval-true wte sconf] have eq:s = s; by simp
with wf eval-true wte sconf have P,E F s1 /
by (fastforce intro:eval-preserves-sconf)
from TH2[OF eval’[simplified eq] wtel this] show e’ = ey’ A s9 = 82’
next
fix s assume eval-false:P.E = {e,s0) = (false,s)
from [H1[OF eval-false wte sconf] show e’ = ex’ A so = s’ by simp
next
fix ex assume eval-throw:P,E F (e,s0) = (throw ex,sy’)
from IHI[OF eval-throw wte sconf] show e’ = ex’ A s3 = s3’ by simp
qed
next
case (CondF E e sy s1 €3 €' 55 e1 ex’ s3' T)
have eval:P,E & (if (e) e1 else ea,s0) = (ea’,s2")
and wt:P,E & if (e) ey else ex :: T and sconf:P,E F sy +/
and [H1:Aeisi T. [P,E & (e,s0) = (ei,si); P,EF e T; P,EF s5+/]
= false = ei N\ 51 = si
and IH2:\ei si T. [P,E (ea,s1) = (ei,si); P,EF eq 2 T; PEF 51 /]
= ¢’ = ¢ei N\ s = si by fact+
from wt have wte:P,E F e :: Boolean and wte2:P,E & ey :: T by auto
from eval show ?case
proof (rule eval-cases)
fix s
assume eval-true:P,E F (e,s0) = (true,s)
from IHI[OF eval-true wte sconf] show e’ = ey’ A s5 = s2' by simp
next
fix s
assume eval-false: P E F (e,s0) = (false,s)
and eval:P,E F (e2,s) = (ea2,s27)
from [HI[OF eval-false wte sconf] have eq:s = s; by simp
with wf eval-false wte sconf have P,E t s +/
by (fastforce intro:eval-preserves-sconf)
from [H2[OF eval’[simplified eq] wte2 this| show e’ = ex” A s9 = so7 .

271

next
fix ex assume eval-throw:P,E + (e,s0) = (throw ex,s2”)
from [HI[OF eval-throw wte sconf] show e’ = es’ A s3 = s3’ by simp
qed
next
case (CondThrow E e sy e’ s1 e1 e3 ex' s9 T)
have eval:P,E + (if (e) ey else e2,s0) = (e2’,52)
and wt:P,E F if (e) e else ex :: T and sconf:P,E F sy /
and [H:\ei si T. [P,E t {e,s0) = (ei,si); P,EF e T; PEF s9+/]
= throw e’ = ei A 51 = si by fact+
from wt have wte:P,E + e :: Boolean by auto
from eval show ?case
proof(rule eval-cases)
fix s
assume eval-true:P.E F (e,s0) = (true,s)
from TH[OF eval-true wte sconf] show throw e’ = ea’ A s1 = s2 by simp
next
fix s assume eval-false:P,E F (e,s0) = (false,s)
from TH[OF eval-false wte sconf] show throw e’ = es’ A 51 = so by simp
next
fix ex
assume eval-throw:P,E F {(e,s9) = (throw ex,s2) and e2’:ex’ = throw ex
from [H[OF eval-throw wte sconf] e2’ show throw e’ = ex’ A s1 = s3 by simp
qed
next
case (WhileF E e sy s1 c e2 53 T)
have eval:P,E = {while (e) ¢,s0) = (ea,82)
and wt:P,E + while () ¢ :: T and sconf:P,E F sy /
and IH:Nes so T. [P,E F (e,s9) = (e2,82); P,EF e:: T; P.EF s0/]
= false = e5 N\ s1 = so by fact+
from wt have wte:P,E + e :: Boolean by auto
from eval show ?case
proof(rule eval-cases)
assume eval-false:P,E F (e,s50) = (false,s2) and e2:e; = unit
from [H[OF eval-false wte sconf] e2 show unit = ex A s1 = so by simp
next
fix s " w
assume eval-true: P E F (e,s0) = (true,s)
from [H[OF eval-true wte sconf] show unit = ex A 51 = so by simp
next
fix ex assume eval-throw:P,E b (e,s0) = (throw ex,ss)
from TH[OF eval-throw wte sconf] show unit = ea A s1 = s2 by simp
next
fix er s
assume eval-true:P,E F (e,s0) = (true,s)
from TH[OF eval-true wte sconf] show unit = e3 A s = so by simp
qed
next
case (WhileT E e sy s1 ¢ v1 2 e3 s3 €3 s2' T)

272

have eval:P,E + (while (e) ¢,s0) = (e2,52")
and wt:P,E + while (e) ¢ :: T and sconf:P,E F sy /
and IH1:Neisi T. [P,E (e,50) = (ei,si); P,EF e:: T; P,EF so+/]
= true = et A\ 81 = Si
and IH2:A\ei si T. [P,E (c,51) = (ei,si); P,EF ¢ T; P,EF s14/]
= Val vy = el N\ s9 = st
and [H3:\ei si T. [P,E t (while (e) c,s2) = (ei,si); P,E - while (e) ¢ = T}
PEF s3]
= e3 = el A\ s3 = si by fact+
from wt obtain T’ where wte:P,E + e :: Boolean and wtc:P,E + ¢ :: T' by
auto
from eval show Zcase
proof(rule eval-cases)
assume eval-false:P.E F (e,s0) = (false,s3”)
from IHI[OF eval-false wte sconf] show ez = ex A s3 = s2’ by simp
next
fix s s’ w
assume eval-true:P,E F (e,s0) = (true,s)
and eval-val:P,E + (c,s) = (Val w,s’)
and eval-while:P,E b (while (e) ¢,8") = (ea,82")
from IHI[OF eval-true wte sconf] have eq:s = s; by simp
with wf eval-true wte sconf have sconf’:P,E F s1 /
by (fastforce intro:eval-preserves-sconf)
from [H2[OF eval-val[simplified eq] wtc this] have eq’:s’ = s5 by simp
with wf eval-val wtc sconf’ eq have P.E F s5 /
by (fastforce intro: eval-preserves-sconf)
from IH3[OF eval-while[simplified eq’] wt this] show es = ea A s3 = s2” .
next
fix ex assume eval-throw:P,E t (e,s0) = (throw ex,s2’)
from [H1[OF eval-throw wte sconf] show e3 = ez A s3 = 2’ by simp
next
fix ex s
assume eval-true:P,E F (e,s0) = (true,s)
and eval-throw:P,E + (c¢,s) = (throw ex,s3”’)
from [HI[OF eval-true wte sconf] have eq:s = s; by simp
with wf eval-true wte sconf have sconf”P,E & s1 /
by (fastforce intro:eval-preserves-sconf)
from IH2[OF eval-throw[simplified eq] wtc this] show e3 = ea A s3 = s3’ by
stmp
qed
next
case (WhileCondThrow E e sg e’ s1 c e3 s2 T)
have eval:P,E = {while (€) ¢,s0) = (ea,82)
and wt:P,E + while (e) ¢ :: T and sconf:P,E F sy v/
and IH:\ei si T. [P,E (e,s0) = (ei,si); P,EF e T; PEF sy +/]
= throw e’ = ei A\ s1 = si by fact+
from wt have wte:P,E + e :: Boolean by auto
from eval show ?case
proof (rule eval-cases)

273

assume eval-false:P,E F (e,s0) = (false,s2)
from [H[OF eval-false wte sconf] show throw e’ = es A s1 = s2 by simp

next

fix s s’ w

assume eval-true:P,E F (e,s0) = (true,s)

from IH[OF eval-true wte sconf] show throw e/ = ez N\ s1 = s by simp
next

fix ex
assume eval-throw:P,E & {(e,s9) = (throw ex,sy) and e2:e9 = throw ex

from TH[OF eval-throw wte sconf] e2 show throw e’ = ea A s1 = s3 by simp

next
fix er s
assume eval-true:P,E F (e,s0) = (true,s)
from TH[OF eval-true wte sconf] show throw e’ = es A s1 = s3 by simp
qed
next
case (WhileBodyThrow E e sg s1 ¢ e’ s2 e3 s2' T)
have eval:P,E b (while (e) ¢,s9) = {(e2,527)
and wt:P,E + while (e) ¢ :: T and sconf:P,E F sy v/
and [H1:N\eisi T. [P,E b {e,s0) = (ei,si); P,EF e T; PEF s5+/]
— true = et A\ §1 = St
and [H2:N\ei si T. [P,E & {c,s1) = (ei,si); P,EF c:: T; P.EF 51 /]
= throw e’ = ei A sy = si by fact+
from wt obtain T’/ where wte:P,E + e :: Boolean and wtc:P,E + ¢ :: T' by
auto
from eval show ?case
proof (rule eval-cases)
assume eval-false: P E F (e,s0) = (false,ss”)
from [HI[OF eval-false wte sconf] show throw e’ = es A\ so = s3’ by simp
next
fix s s’ w
assume eval-true:P,E F (e,s0) = (true,s)
and eval-val:P,E + (c,s) = (Val w,s’)
from [H1[OF eval-true wte sconf] have eq:s = s1 by simp
with wf eval-true wte sconf have sconf”P,E & s1 /
by (fastforce intro:eval-preserves-sconf)
from [H2[OF eval-val[simplified eq] wtc this| show throw e’ = ea A s3 = 3’
by simp
next
fix ex assume eval-throw:P,E t (e,s0) = (throw ex,s2”)
from [H1[OF eval-throw wte sconf] show throw e’ = ey A s5 = s’ by simp
next
fix ex s
assume eval-true:P,E F (e,s0) = (true,s)
and eval-throw:P,E + (c,s) = (throw ez,s2’) and e2:ex = throw ex
from [H1[OF eval-true wte sconf] have eq:s = s; by simp
with wf eval-true wte sconf have sconf”P,E & s1 /
by (fastforce intro:eval-preserves-sconf)
from TH2[OF eval-throw[simplified eq] wtc this] e2 show throw e’ = ex A 2 =

274

52/

by simp
qed
next
case (Throw E e sg 1 s1 ez s2 T)
have eval:P,E + (throw e,s0) = (e2,82)
and wt:P,E + throw e :: T and sconf:P,.E - sg v/
and IH:Nei si T. [P,E + (e,s0) = (ei,si); P,EF e T; PEF 5o +/]
= ref r = ei \ 51 = si by fact+
from wt obtain C where wte:P,E + e :: Class C by auto
from eval show ?case
proof(rule eval-cases)
fix r’
assume eval-ref:P,E = (e,s0) = (ref r',s2) and e2:e3 = Throw r’
from TH[OF eval-ref wte sconf] e2 show Throw r = e A s = s by simp
next
assume eval-null: P,E F (e,s0) = (null,s2)
from IH[OF eval-null wte sconf] show Throw r = ex A s1 = so by simp
next
fix ex assume eval-throw:P,E F (e,80) = (throw ex,ss)
from TH[OF eval-throw wte sconf] show Throw r = e3 A 81 = so by simp
qed
next
case (ThrowNull E e sy s1 e2 so T)
have eval: P,E F (throw e,sy) = (ea,s2)
and wt:P,E F throw e :: T and sconf:P,E + sy +/
and IH:\ei si T. [P,E F {(e,so) = (ei,si); P,EF e T; P,EF s5+/]
= null = ei A\ s1 = si by fact+
from wt obtain C where wte:P,FE - e :: Class C by auto
from eval show ?case
proof (rule eval-cases)
fix r’ assume eval-ref:P.E & (e,s0) = (ref r’,s2)
from [H[OF eval-ref wte sconf] show THROW NullPointer = ex A s1 = $g
by simp
next
assume eval-null: P,E (e,s0) = (null,s2) and e2:e; = THROW NullPointer
from TH[OF eval-null wte sconf] e2 show THROW NullPointer = es A $1 =
52
by simp
next
fix ex assume eval-throw:P,E b (e,s0) = (throw ex,ss)
from IH[OF eval-throw wte sconf] show THROW NullPointer = es A $1 = $2
by simp
qed
next
case (ThrowThrow E e sy €’ s1 €3 s2 T)
have eval: P,E + (throw e,sp) = (ea,s2)
and wt:P,E F throw e :: T and sconf:P,E + sy /
and [H:A\ei si T. [P,E F (e,s0) = (ei,si); P,EF e T; P,EF s5+/]

275

= throw e’ = ei A 51 = si by fact+
from wt obtain C where wte:P,E e :: Class C by auto
from eval show ?case
proof (rule eval-cases)
fix r’ assume eval-ref:P,E {e,s9) = (ref r',s2)
from IH[OF eval-ref wte sconf] show throw e’ = ey A s1 = so by simp
next
assume eval-null:P,E F (e,s0) = (null,s2)
from TH[OF eval-null wte sconf] show throw e’ = eq N s1 = so by simp
next
fix ex
assume eval-throw:P,E = (e,s9) = (throw ez,sy) and e2:ex = throw ex
from TH[OF eval-throw wte sconf] e2 show throw e’ = es A s1 = s3 by simp
qed
next
case Nil thus ?case by (auto elim:evals-cases)
next
case (Cons E e sy v s1 es es’ sy esy 8o’ T5)
have evals:P,E = (eftes,so) [=] (es2,52")
and wt:P,E b e#es [:] Ts and sconf:P,E + sy /
and [H1:Aeisi T. [P,E & {e,s0) = (ei,si); P,EF e T; P,EF s5+/]
= Valv=—ei N\ s1 = si
and TH2:\esi si Ts. [P,E \- (es,s1) [=] (esi,si); P,E & es [:1] Ts; P,E F s1 /]
= es’ = esi A\ s3 = si by fact+
from wt obtain T' Ts’ where Ts:Ts = T'#Ts' by(cases Ts) auto
with wt have wte:P,E e :: T' and wtes:P,E es [:1] Ts' by auto
from evals show ?case
proof(rule evals-cases)
fix es” s w
assume eval-val:P,E + (e,s0) = (Val w,s)
and evals-vals:P,E = (es,s) [=] (es”,s2”) and es2:eso = Val w#tes”
from IHI[OF eval-val wte sconf] have s:s = s; and v:v = w by simp-all
with wf eval-val wte sconf have P.E F s1 /
by (fastforce intro:eval-preserves-sconf)
from IH2[OF evals-vals[simplified s| wtes this] have es’ = es’’ A sa = s2” .
with es2 v show Val v # es’ = esy A s5 = 5o’ by simp
next
fix ex assume eval-throw:P,E F {e,sq) = (throw exr,ss”)
from [H1[OF eval-throw wte sconf] show Val v # es’ = esy A so = s3’ by
stmp
qed
next
case (ConsThrow E e sy e’ s1 es esy s3 T5)
have evals:P,E & (e#tes,s0) [=] (es2,52)
and wt:P,E + eftes [:] Ts and sconf:P,E + sy +/
and IH:Aei si T. [P,E + (e,s0) = (ei,si); P,EF e T; P,EtF 5o +/]
= throw e’ = ei A\ s1 = si by fact+
from wt obtain T’/ Ts' where Ts:Ts = T'#Ts’ by(cases Ts) auto
with wt have wte:P,E F e :: T' by auto

276

from evals show Zcase
proof(rule evals-cases)
fix es” s w
assume eval-val:P,E + (e,s0) = (Val w,s)
from TH[OF eval-val wte sconf] show throw e'#es = esa A s1 = s3 by simp
next
fix ex
assume eval-throw:P,E = (e,s9) = (throw ez,s3) and es2:esy = throw ex#es
from TH[OF eval-throw wte sconf] es2 show throw e'#tes = esy A s = s2 by
simp
qed
qed

end

28 Program annotation

theory Annotate imports WellType begin

abbreviation (output)
unanFAcc :: expr = vname = expr («(---)» [10,10] 90) where
unanFAcc e F == FAcc e F ||

abbreviation (output)
unanFAss :: expr = vname = expr = expr («(--- := -)» [10,0,90] 90) where
unanFAss e F e/ == FAss e F || ¢’

inductive
Anno :: [prog,env, expr , expr] = bool
(- -~ o [51,0,0,51]50)
and Annos :: [prog,env, expr list, expr list] = bool
(- F - o] = [51,0,0,51]50)
for P :: prog
where

AnnoNew: is-class P C = P,E + new C ~ new C
| AnnoCast: P,E+F e~ ¢ = P,EF Cast C e ~ Cast C e’
| AnnoStatCast: P,E + e ~ ¢’ = P,E + StatCast C' e ~ StatCast C e’
| AnnoVal: P,E + Val v ~ Val v
| AnnoVarVar: EV = |T| = P,EF Var V.~ Var V
| AnnoVarField: [E'V = None; E this = | Class C|; P+ C has least V:T via Cs

]
= P,EF Var V ~ Var this-V{Cs}
| AnnoBinOp:
[PEF el ~ el!; PEF e2~ e2']
= P,E el «bop» €2 ~ el’ «bop» e2’

277

| AnnoLAss:
PEFe~ e = PEF Vi=e~ Vi=e!
| AnnoFAcc:
[PEFe~ ey PEF e :: Class C; PF C hasleast F: T via Cs |
= P,E+ eF{[]} ~ e"F{Cs}
| AnnoFAss: | P,EF el ~ el’; P,EF €2~ 2/
P,Et el’:: Class C; Pt C has least F: T via Cs |
= P,EF el-F{[|]} := €2 ~ el F{Cs} := e2’
| AnnoCall:
[PEFe~ ey PEF es|~]es’]
= P,E | Call e Copt M es ~ Call ¢’ Copt M es’
| AnnoBlock:
PEV—T)Fe~e = PEFA{V:T; e}~ {V:T; e}
| AnnoComp: [P,Et el ~ el’; P,EtL e2 ~ e2']
= P,EtF el;e2 ~ el’;;e2’
| AnnoCond: [P,EF e~ e'; PEF el ~ el’; P EF €2~ e2']
= P,EF if (e) el else e2 ~ if () el’ else e2’
| AnnoLoop: [P,EF e~ e'; PEF c~ ¢']
= P,E b while () ¢ ~ while (e') ¢’
| AnnoThrow: P,E &+ e ~ ¢ = P,EF throw e ~ throw e’

| AnnoNil: P,E + [] [~] []
| AnnoCons: [P,E+ e~ e; P,EF es[~] es']
= P,E I e#es [~] e'#es’

end

29 Code generation for Semantics and Type Sys-
tem

theory FExecute
imports BigStep WellType
HOL- Library. A List-Mapping
HOL- Library. Code-Target-Numeral
begin

29.1 General redefinitions

inductive app :: ‘a list = 'a list = 'a list = bool
where

app [| ys ys
| app xs ys zs = app (x # xs) ys (x # 2s)

theorem app-eql: \ys zs. zs = xs Q ys = app s ys zs
apply (induct xs)
apply simp
apply (rule app.intros)
apply simp

278

apply (iprover intro: app.intros)
done

theorem app-eq2: app s ys zs = 28 = xs Q ys
by (erule app.induct) simp-all

theorem app-eq: app s ys zs = (zs = zs Q ys)
apply (rule iffI)
apply (erule app-eq2)
apply (erule app-eql)
done

code-pred
(modes:
i = 1= 1= bool, i = 1= o= bool, t = 0o = i = bool,
0= 1= 1= bool, 0o = 0= i = bool as reverse-app)

app

declare rtranclp-rtrancl-eq[code del)
lemmas [code-pred-intro] = rtranclp.rtrancl-refl converse-rtranclp-into-rtranclp

code-pred
(modes:
(i => 0 => bool) => i => i => bool,
(i => 0 => bool) => i => 0 => bool)
rtranclp

by (erule converse-rtranclpE) blast+

definition Set-project :: (a x 'b) set => 'a => 'b set
where Set-project A a = {b. (a, b) € A}

lemma Set-project-set [code]:

Set-project (set xs) a = set (List.map-filter (A(a’, b). if a = a’ then Some b else
None) xs)
by (auto simp add: Set-project-def map-filter-def intro: rev-image-eql split: if-split-asm)

Redefine map Val vs

inductive map-val :: expr list = wal list = bool
where
Nil: map-val [] []
| Cons: map-val xs ys => map-val (Val y # xs) (y # ys)

code-pred

(modes: i = i = bool, i = o = bool)
map-val

279

inductive map-val2 :: expr list = wval list = expr list = bool
where

Nil: map-val2]| [] []
| Cons: map-val2 xs ys zs = map-val2 (Val y # xs) (y # ys) zs
| Throw: map-val2 (throw e # xs) || (throw e # xs)

code-pred
(modes: i = i = i = bool, i = 0= 0 = bool)
map-val2

theorem map-val-conv: (xs = map Val ys) = map-val zs ys
theorem map-val2-conv:
(zs = map Val ys Q throw e # zs) = map-val2 zs ys (throw e # 2s)

29.2 Code generation

lemma subclsRp-code [code-pred-intro:

[class P C = |(Bs, rest)|; Predicate-Compile.contains (set Bs) (Repeats D) |
= subclsRp P C' D
by (auto intro: subclsRp.intros simp add: contains-def)

code-pred
(modes: i = i = i = bool, i = i = 0 = bool)
subclsRp
by (erule subclsRp.cases)(fastforce simp add: Predicate-Compile.contains-def)

lemma subclsR-code [code-pred-inline]:
Pt C <r D <— subclsRp P C D
by (simp add: subclsR-def)

lemma subclsSp-code [code-pred-intro]:

[class P C = [(Bs, rest)|; Predicate-Compile.contains (set Bs) (Shares D) | =
subclsSp P C' D
by (auto intro: subclsSp.intros simp add: Predicate-Compile.contains-def)

code-pred
(modes: i = i = i = bool, i = i = 0 = bool)
subclsSp
by (erule subclsSp.cases)(fastforce simp add: Predicate-Compile.contains-def)

declare SubobjsR-Base [code-pred-intro]
lemma SubobjsR-Rep-code [code-pred-intro|:

[subclsRp P C D; Subobjsg P D Cs] = Subobjsg P C (C # Cs)
by (simp add: SubobjsR-Rep subclsR-def)

code-pred

(modes: i = i = i = bool, i = i = 0 = bool)
Subobjsp

280

by (erule Subobjsg.cases)(auto simp add: subclsR-code)

lemma subclsIp-code [code-pred-intro:

[class P C = Some (Bs,rest); Predicate-Compile.contains (baseClasses Bs) D |
— subclsip P C D
by (auto intro: subclslp.intros simp add: Predicate-Compile.contains-def)

code-pred (modes: i = i = i = bool, i = i = 0 = bool)
subcls1p
by (fastforce elim!: subclsip.cases simp add: Predicate-Compile.contains-def)

declare Subobjs-Rep [code-pred-intro)
lemma Subobjs-Sh-code |code-pred-intro]:
[(subclsip P)xx C C'; subclsSp P C' D; Subobjsg P D Cs]
= Subobjs P C Cs
by (rule Subobjs-Sh)(simp-all add: rtrancl-def subcls1-def subclsS-def)

code-pred
(modes: i = i = i = bool, i = i = 0 = bool)
Subobjs
by (erule Subobjs.cases)(auto simp add: rtrancl-def subcls1-def subclsS-def)

definition widen-unique :: prog = cname = cname = path = bool
where widen-unique P C D Cs +— (V Cs’. Subobjs P C' Cs' — last Cs' = D —
Cs = Cs’)

code-pred [inductify, skip-proof] widen-unique .

lemma widen-subcls”:
[Subobjs P C Cs’; last Cs' = D; widen-unique P C' D Cs']
= P Class C < Class D
by (rule widen-subcls,auto simp:path-unique-def widen-unique-def)

declare
widen-refl [code-pred-intro]
widen-subcls’ [code-pred-intro widen-subcls]
widen-null [code-pred-introl

code-pred
(modes: i = i = i = bool)
widen
by (erule widen.cases)(auto simp add: path-unique-def widen-unique-def)

code-pred

(modes: i = i = i = 1= bool, i = i= 1= 0= bool, i = i = 0= i= bool,
i= 1= 0= 0= bool)

leg-pathlp

281

lemma leg-path-unfold: P,C + Cs C Ds <— (leg-pathip P C) x Cs Ds
by (simp add: leg-pathl-def rtrancl-def)

code-pred
(modes: i => i => i => 0=> bool, i => i => i =>i=> bool)
[inductify,skip-proof]
path-via

lemma path-unique-eq [code-pred-def]: P & Path C to D unique <—

(3 Cs. Subobjs P C Cs A last Cs = D A (V Cs’. Subobjs P C Cs’ — last Cs’ =
D — Cs = Cs'))
by (auto simp add: path-unique-def)

code-pred
(modes: i => { => 0 => bool, i => i => i => bool)
[inductify, skip-proof]
path-unique .

Redefine MethodDefs and FieldDecls

definition MethodDefs' :: prog = cname = mname = path = method = bool

where
MethodDefs' P C M Cs mthd = (Cs, mthd) € MethodDefs P C' M

lemma [code-pred-intro]:
Subobjs P C Cs = class P (last Cs) = | (Bs,fs,ms)| = map-of ms M = | mthd|
=
MethodDefs' P C M Cs mthd
by (simp add: MethodDefs-def MethodDefs’'-def)

code-pred
(modes: i = i = 1= 0= 0= bool, i = i = 1= 1= 1= bool)
MethodDefs’

by (fastforce simp add: MethodDefs-def MethodDefs'-def)

definition FieldDecls’ :: prog = cname = vname = path = ty = bool where
FieldDecls’ P C F Cs T = (Cs, T) € FieldDecls P C' F

lemma [code-pred-intro]:

Subobjs P C' Cs = class P (last Cs) = [(Bs,fs,ms)| = map-of fs F = |T]
.

FieldDecls’ P CF Cs T
by (simp add: FieldDecls-def FieldDecls’-def)

code-pred
(modes: i = i = 1= 0= 0= bool, i = i = 1= 1= 1= bool)
FieldDecls’

282

by (fastforce simp add: FieldDecls-def FieldDecls’-def)

definition MinimalMethodDefs' :: prog = cname = mname = path = method
= bool where

MinimalMethodDefs" P C M Cs mthd = (Cs, mthd) € MinimalMethodDefs P C
M

definition MinimalMethodDefs-unique :: prog = cname = mname = path = bool
where

MinimalMethodDefs-unique P C' M Cs <—

(V Cs’ mthd. MethodDefs' P C M Cs' mthd — (leg-pathip P C) " Cs’ Cs —
Cs’ = Cs)

code-pred [inductify, skip-proof] MinimalMethodDefs-unique .

lemma [code-pred-intro]:
MethodDefs' P C M Cs mthd = MinimalMethodDefs-unique P C M Cs =
MinimalMethodDefs' P C M Cs mthd
by (fastforce simp add:MinimalMethodDefs-def MinimalMethodDefs'-def Method-
Defs’-def MinimalMethodDefs-unique-def leq-path-unfold)

code-pred

(modes: ¢ = i = 1= 0= 0= bool)

MinimalMethodDefs'
by (fastforce simp add: MinimalMethodDefs-def MinimalMethodDefs'-def MethodDefs'-def
MinimalMethodDefs-unique-def leq-path-unfold)

definition LeastMethodDef-unique :: prog = cname = mname = path = bool
where

LeastMethodDef-unique P C M Cs <—

(V Cs’ mthd’. MethodDefs' P C M Cs’ mthd’ — (leg-pathlp P C) xx Cs Cs’)

code-pred [inductify, skip-proof] LeastMethodDef-unique .

lemma LeastMethodDef-unfold:

P+ C has least M = mthd via Cs <—

MethodDefs' P C M Cs mthd A LeastMethodDef-unique P C M Cs
by (fastforce simp add: LeastMethodDef-def MethodDefs'-def leg-path-unfold Least-
MethodDef-unique-def)

lemma LeastMethodDef-intro |[code-pred-intro):
[MethodDefs' P C M Cs mthd; LeastMethodDef-unique P C' M Cs |
= P I C has least M = mthd via Cs

by (simp add: LeastMethodDef-unfold LeastMethodDef-unique-def)

283

code-pred (modes: i => i => i => 0 => 0 => bool)
LeastMethodDef
by (simp add: LeastMethodDef-unfold LeastMethodDef-unique-def)

definition OverriderMethodDefs’ :: prog = subobj = mname = path = method
= bool where

OverriderMethodDefs’ P R M Cs mthd = (Cs, mthd) € QOuverriderMethodDefs P
RM

lemma Overrider! [code-pred-intro):
P+ (lde R) has least M = mthd’ via Cs' =
MinimalMethodDefs’ P (mdc R) M Cs mthd =
last (snd R) = hd Cs’ = (leg-pathlp P (mdc R)) ** Cs (snd R Q ¢l Cs') =
OverriderMethodDefs' P R M Cs mthd
apply(simp add: OverriderMethodDefs-def OverriderMethodDefs’-def MinimalMethod-
Defs’-def appendPath-def leg-path-unfold)
apply(rule-tac z=Cs" in exl)
apply clarsimp
apply(cases mthd’)
apply blast
done

lemma Overrider2 [code-pred-introl:
P+ (lde R) has least M = mthd' via Cs' =
MinimalMethodDefs’ P (mdec R) M Cs mthd =
last (snd R) # hd Cs’ = (leg-pathlp P (mdc R)) xx Cs Cs' =
OverriderMethodDefs' P R M Cs mthd
by (auto simp add: OverriderMethodDefs-def OverriderMethodDefs’-def MinimalMethod-
Defs’-def appendPath-def leg-path-unfold simp del: split-paired-Ezx)

code-pred

(modes: i = i=i=>0=>0=bool,i=i=i=1i= 0= bool,i=1i=1i=
0= 1= bool, i = 1= 1= 1= 1= bool)

OverriderMethodDefs'
apply (clarsimp simp add: OverriderMethodDefs'-def MinimalMethodDefs’-def Method-
Defs’-def OverriderMethodDefs-def appendPath-def leq-path-unfold)
apply(case-tac last xb = hd Cs’)

apply (simp)
apply (thin-tac PROP -)

apply(simp add: leg-path1-def)
done

definition WTDynCast-ex :: prog = cname = cname = bool
where WTDynCast-ex P D C +— (3 Cs. P+ Path D to C via Cs)

284

code-pred [inductify, skip-proof] WTDynCast-ex .

lemma WTDynCast-new:
[P,E & e :: Class D; is-class P C;
P & Path D to C unique V ~ WTDynCast-ex P D (1
= P,E | Cast C e : Class C
by (rule WTDynCast)(auto simp add: WTDynCast-ex-def)

definition WTStaticCast-sub :: prog = cname = cname = bool
where WTStaticCast-sub P C' D +—
P+ Path D to C unique V
((subclsip P) %« C D A (Y Cs. P+ Path C to D via Cs — Subobjsg P C Cs))

code-pred [inductify, skip-proof] WTStaticCast-sub .

lemma WTStaticCast-new:
[P,E & e :: Class D; is-class P C; WTStaticCast-sub P C' D |
= P,EF (C)e :: Class C
by (rule WTStaticCast)(auto simp add: WTStaticCast-sub-def subcls1-def rtrancl-def)

lemma WTBinOpl: | P,EF e :: T; P,EF ex:: T
= P,E I e1 «Eq» es :: Boolean
apply (rule WTBinOp)
apply assumption+
apply simp
done

lemma WTBinOp2: [P,E & ey :: Integer; P,E b e :: Integer]
= P,E b e; «Add» ey :: Integer
apply (rule WTBinOp)
apply assumption+
apply simp
done

lemma LeastFieldDecl-unfold [code-pred-def]:

P F C has least F:T via Cs <—

FieldDecls’ P C F Cs T N (Y Cs' T'. FieldDecls’ P C F Cs" T' — (leg-pathlp
P C)7%x Cs Cs’)
by (auto simp add: LeastFieldDecl-def FieldDecls’-def leg-path-unfold)

code-pred [inductify, skip-proof] LeastFieldDecl .

lemmas [code-pred-intro] = WT-WTs. WTNew
declare

WTDynCast-new|code-pred-intro WTDynCast-new)

WTStatic Cast-new|code-pred-intro WTStatic Cast-new)
lemmas [code-pred-intro] = WT-WTs. WTVal WT-WTs. WT Var

285

declare
WTBinOp1 [code-pred-intro WTBinOpl|
WTBinOp2 [code-pred-intro WTBinOp?2)
lemmas [code-pred-intro] =
WT-WTs.WTLAss WI-WTs. WTFAce WT-WTs. WTFAss WT-WTs. WTCall WT-
StaticCall
WT-WTs. WT'Block WT-WTs. WTSeq WT-W1Ts.WTCond WT-WTs.WITWhile WT-WTs.WTThrow
lemmas [code-pred-intro] = WT-WTs. WINil WT-WTs. WTCons

code-pred
(modes: WT: i = i = 1= i= bool, i = i= 1= 0= bool
and WTs: i = i = {= 1= bool, i = i= 1= 0= bool)
wT
proof —
case WT
from WT.prems show thesis
proof(cases (no-simp) rule: WT.cases)
case WTDynCast thus thesis
by (rule WT.WTDynCast-new|OF refl, unfolded WTDynCast-ex-def, simpli-
fied)
next
case WTStaticCast thus ?thesis
unfolding subclsi-def rtrancl-def mem-Collect-eq prod.case
by (rule WT.WTStaticCast-new|OF refl, unfolded WTStaticCast-sub-def])
next
case WTBinOp thus ?thesis
by (split bop.split-asm)(simp-all, (erule (4) WT.WTBinOp1[OF refl] WT.WTBinOp2|OF
refl)+)
qed(assumption|erule (2) WT.that|OF refi])+
next
case WTs
from WTs.prems show thesis
by (cases (no-simp) rule: WTs.cases)(assumption|erule (2) WTs.that[OF refl])+
qed

lemma casts-to-code [code-pred-intro]:
(case T of Class C = False | - = True) = P F T casts v to v
P = Class C casts Null to Null
[Subobjs P (last Cs) Cs’; last Cs' = C;
last Cs = hd Cs’; Cs @ ¢l Cs' = Ds]
= P I Class C casts Ref(a,Cs) to Ref(a,Ds)
[Subobjs P (last Cs) Cs’; last Cs' = C; last Cs # hd Cs']
= P+ Class C casts Ref(a,Cs) to Ref(a,Cs’)
by (auto intro: casts-to.intros simp add: path-via-def appendPath-def)

code-pred (modes: i = i = i = 0 = bool, i = i = i = ¢ = bool)
casts-to
apply(erule casts-to.cases)

apply(fastforce split: ty.splits)

286

apply simp
apply (fastforce simp add: appendPath-def path-via-def split: if-split-asm)
done

code-pred
(modes: i = i = i = 0 = bool, i = i = { = i = bool)
Casts-to

lemma card-eq-1-iff-exl: © € A = card A = 1 «— A = {z}
apply (rule iffI)
apply(rule equalityl)
apply(rule subsetl)
apply (subgoal-tac card {z, za} < card A)
apply(auto intro: ccontr)[1]
apply(rule card-mono)
apply simp-all
apply(metis Suc-n-not-n card.infinite)
done

lemma FinalOverriderMethodDef-unfold [code-pred-def]:
P F R has overrider M = mthd via Cs <—
OverriderMethodDefs’ P R M Cs mthd N
(V Cs" mthd’. OverriderMethodDefs' P R M Cs’ mthd' — Cs = Cs’ A\ mthd =
mthd’)
by (auto simp add: FinalOverriderMethodDef-def OverriderMethodDefs'-def card-eq-1-iff-ex1
stmp del: One-nat-def)

code-pred
(modes: i => i => i => 0 => 0 => bool)
[inductify, skip-proof]
FinalOverriderMethodDef

code-pred

(modes: i =>i=>i=>i=>0=>0=>bool,i=>i=>i=>i=>i=>i=>
bool)

[inductify]

SelectMethodDef

Isomorphic subo with mapping instead of a map

type-synonym subo’ = (path X (vname, val) mapping)
type-synonym obj’ = cname X subo’ set

lift-definition init-class-fieldmap’ :: prog = cname = (vname, val) mapping is
init-class-fieldmap .

287

lemma init-class-fieldmap’-code [code]:
init-class-fieldmap’ P C =
Mapping (map (MN(F,T).(F,default-val T)) (fst(snd(the(class P C)))))
by transfer(simp add: init-class-fieldmap-def)

lift-definition init-obj’ :: prog = cname = subo’ = bool is init-obj .

lemma init-obj’-intros [code-pred-intro):
Subobjs P C' Cs = init-obj’ P C (Cs, init-class-fieldmap’ P (last Cs))
by (transfer)(rule init-obj.intros)

code-pred
(modes: i = i = o0 = bool as init-obj-pred)
init-obj’

by transfer(erule init-obj.cases, blast)

lemma init-obj-pred-conv: set-of-pred (init-obj-pred P C) = Collect (init-obj’ P
)
by (auto elim: init-obj-predE intro: init-obj-predI)

lift-definition blank’ :: prog = cname = obj’ is blank .
lemma blank’-code [code]:
blank’ P C = (C, set-of-pred (init-obj-pred P C))
unfolding init-obj-pred-conv by transfer(simp add: blank-def)
type-synonym heap’ = addr — obj’
abbreviation
cname-of ' :: heap’ = addr = cname where
Nhp. cname-of " hp a == fst (the (hp a))
lift-definition new-Addr’ :: heap’ = addr option is new-Addr .
lift-definition start-heap’ :: prog = heap’ is start-heap .
lemma start-heap’-code [code:
start-heap’ P = Map.empty (addr-of-sys-zcpt NullPointer — blank’ P Null-
Pointer,
addr-of-sys-zcpt ClassCast — blank’ P ClassCast,
addr-of-sys-zcpt OutOfMemory — blank’ P OutOfMemory)
by transfer(simp add: start-heap-def)

type-synonym
state’ = heap’ x locals

lift-definition hp’ :: state’ = heap’ is hp .

288

lemma hp’-code [code]: hp' = fst
by transfer simp

lift-definition lcl’ :: state’ = locals is lcl .

lemma lcl-code [codel: lcl’ = snd
by transfer simp

lift-definition eval’ :: prog = env = expr = state’ = expr = state’ = bool
(e ((1(n]) ="/ (1)) [51,0,0,0,0] 81)
is eval .
lift-definition evals’ :: prog = env = expr list = state’ = expr list = state’ =

bool
' l(<-7- = ((2(-/-) ="/ (1(~/-)) [51,0,0,0,0] 81)

lemma New":
[new-Addr’ h = Some a; b’ = h(a—(blank’ P C)) |
= P,E F (new C,(h,0)) =' (ref (a,[C]),(R",]))

by transfer(unfold blank-def, rule New)

lemma NewFail’:

new-Addr’ h = None =

P,E+ (new C, (h,0)) =’ (THROW OutOfMemory,(h,l))
by transfer(rule NewFail)

lemma StaticUpCast':
[P.E\ (e,s0) =' (ref (a,Cs),s1); P+ Path last Cs to C via Cs’; Ds = CsQ,,Cs’

= P,EF ((C)e,s0) =’ (ref (a,Ds),s1)
by transfer(rule StaticUpCast)

lemma StaticDownCast’-new:
[P.E + (e,s0) =' (ref (a,Ds),s1); app Cs [C] Ds'; app Ds’ Cs’' Ds]
= P,EF ((C)e,s0) =' (ref(a,CsQ[C]),s1)

apply transfer

apply (rule StaticDownCast)

apply (simp add: app-eq)

done

lemma StaticCastNull”:
P.EF (e,50) =’ (null,s1) =
P.EF {((C)e,s0) = (null,sy)
by transfer(rule Static CastNull)

lemma StaticCastFail’-new:

[P.EF (es0)="(ref (a,Cs),s1); — (subclslp P) x (last Cs) C; C ¢ set Cs]
= P,EF {(C)e,s0) =' (THROW ClassCast,s)

289

apply transfer
by (fastforce intro:StaticCastFail simp add: rtrancl-def subcls1-def)

lemma StaticCastThrow':
P.E+ (e,s0) =' (throw e',s1) =
P.EF {((C)e,s0) = (throw e’ s1)
by transfer(rule StaticCast Throw)

lemma StaticUpDynCast':
[P,E F (e,s0) = (ref(a,Cs),s1); P+ Path last Cs to C unique;
P = Path last Cs to C via Cs’; Ds = Cs@Q,Cs’ |
= P,E F (Cast C e,s0) =' (ref(a,Ds),s1)
by transfer(rule StaticUpDynCast)

lemma StaticDownDynCast’-new:
[P,E & (e,s0) = (ref (a,Ds),s1); app Cs [C] Ds’; app Ds’ Cs’ Ds]
= P,E F (Cast C e,s9) =' (ref(a,CsQ[C]),s1)

apply transfer

apply (rule StaticDownDynCast)

apply (simp add: app-eq)

done

lemma DynCast":
[P,EF {e,s0) =' (ref (a,Cs),(h,01)); h a = Some(D,S);
P & Path D to C via Cs"; P+ Path D to C unique |
= P,E F (Cast C e,sg) =’ (ref (a,Cs"),(h,1))
by transfer(rule DynCast)

lemma DynCastNull’:
PE+ (e,s50) =' (null,s1) =
P,E + (Cast C e,s0) ="' (null,s1)
by transfer(rule DynCastNull)

lemma DynCastFail:
[P.Et* (es0)="(ref (a,Cs),(h,0)); h a = Some(D,S); = P+ Path D to C unique;
- P+ Path last Cs to C unique; C ¢ set Cs]
= P,E F (Cast C e,s9) =’ (null,(h,l))
by transfer(rule DynCastFail)

lemma DynCastThrow':
P.E F {(e,s0) = (throw €',s1) =
P,E + (Cast C e,s0) =’ (throw e’ s1)
by transfer(rule DynCastThrow)

lemma Val”:
P,E + (Val v,s) =' (Val v,s)
by transfer(rule Val)

lemma BinOp":

290

[P,Et* (e1,80) =' (Val vi,s1); P,E F (ea,81) =" (Val va,2);
binop(bop,v1,v2) = Some v |
= P,EF (e1 «bop» ea,s0)="(Val v,s2)
by transfer(rule BinOp)

lemma BinOpThrowl "

P.E t (e1,50) =' (throw e,s1) =

P.E F (e1 «bopy ez, so) =' (throw e,s1)
by transfer(rule BinOpThrowl)

lemma BinOpThrow2":
[P,Et* (e1,50) =' (Val vi,s1); P,E F {(ea,81) =" (throw e,s2) |
= P,EF (e1 «bop» ea,s0) =' (throw e,sa)

by transfer(rule BinOpThrow2)

lemma Var”:

IV = Some v =

P.E+ (Var V,(h,0)) =" (Val v,(h,1))
by transfer(rule Var)

lemma LAss”
[P,Et* (es0) ="' (Val v,(h,0)); EV = Some T;
PF T casts vto v I'=1(Viv')]
= P,EF (Vi=e,s0) =’ (Val v',(h,1"))
by (transfer) (erule (3) LAss)

lemma LAssThrow
P.E + (e,s0) =' (throw e',s1) =
P.EF (Vi=e,s0) =' (throw e',s1)
by transfer(rule LAssThrow)

lemma FAcc’-new:
[P,Et* (e,s0) =' (ref (a,Cs),(h,0)); h a = Some(D,S);
Ds = Cs'Q, Cs; Predicate-Compile.contains (Set-project S Ds) fs; Mapping.lookup
fs F = Some v]
= P,E F (e-F{Cs},s0) ="' (Val v,(h,l))
unfolding Set-project-def mem-Collect-eq Predicate-Compile.contains-def
by transfer(rule FAcc)

lemma FAccNull”:

P,E+ (e,50) =' (null,s1) =

P,E + (e-F{Cs},sp) =’ (THROW NullPointer,s;)
by transfer(rule FAccNull)

lemma FAccThrow”:
PE + (e,50) =' (throw e',s1) =
P,E + (e-F{Cs},sp) ="' (throw e’,s1)
by transfer(rule FAccThrow)

291

lemma FAss’-new:
[P,EF {e1,50) =" (ref (a,Cs"),s1); P,E F (ea,51) = (Val v,(ha,l2));
ha a = Some(D,S); P+ (last Cs') has least F:T via Cs; P &+ T casts v to v’
Ds = Cs'@Q,Cs; Predicate-Compile.contains (Set-project S Ds) fs; fs' = Map-
ping.update F v’ fs;
§'=8 = {(Ds.fs)} UA{(Ds.fs")}; ha’ = ha(a—(D,5"))]
= P,EF (e1-F{Cs}:=eq,50) = (Val v’,(h2',l2))
unfolding Predicate-Compile.contains-def Set-project-def mem-Collect-eq
by transfer(rule FAss)

lemma FAssNull”:
[P,Et* (e1,50) =' (null,s1); P,EF (ez,s1) ="' (Val v,82) | =
P.E b (e1-F{Cs}:=eq,80) =' (THROW NullPointer,ss)

by transfer(rule FAssNull)

lemma FAssThrowl "

P.E t (e1,50) =' (throw e',51) =

P.E b (e1-F{Cs}:=eq,50) =' (throw e’,s1)
by transfer(rule FAssThrowl)

lemma FAssThrow2':
[P,Et* (e1,80) =' (Val v,s1); P,E F (ea,s1) =' (throw e’,s2)]
= P,EF (e1-F{Cs}:=eq,50) =’ (throw e’,s2)

by transfer(rule FAssThrow?2)

lemma CallObjThrow':

P.E F (e,50) =' (throw e's1) =

P,E \ (Call e Copt M es,s0) =" (throw e’,s1)
by transfer(rule CallObjThrow)

lemma CallParamsThrow’-new:

[P,Et (es0) =’ (Val v,s1); P,E F {(es,s1) [=] (evs,s2);

map-val2 evs vs (throw ex # es’) |

= P,EF (Call e Copt M es,s0) =' (throw ex,s2)
apply transfer
apply (rule eval-evals. CallParamsThrow, assumption+)
apply(simp add: map-val2-conv[symmetric])
done

lemma Call’-new:
[P,EF (e,s0) =' (ref (a,Cs),s1); P,EF (ps,s1) [=7] (evs,(ha,l2));
map-val evs vs;
ho a = Some(C,S); P+ last Cs has least M = (Ts',T',pns’,body’) via Ds;
P+ (C,CsQ,Ds) selects M = (Ts,T,pns,body) via Cs'; length vs = length pns;

P Ts Casts vs to vs'; ly' = [this— Ref (a,Cs’), pns[—]vs’);

new-body = (case T’ of Class D = (D)body | - = body);

P,E(this— Class(last Cs’), pns[—]Ts) b (new-body,(ha,l2")) =" (e’,(hs,l3)) |
= P,E+ (e:M(ps),s0) ="' (e',(h3,l2))

292

apply transfer

apply(rule Call)

apply assumption+

apply(simp add: map-val-conv[symmetric))
apply assumption+

done

lemma StaticCall’-new:
[P,EF (e,s0) =' (ref (a,Cs),51); P,EF (ps,s1) [=] (evs,(ha,l2));
map-val evs vs;
P+ Path (last Cs) to C unique; P+ Path (last Cs) to C via Cs'’
P C has least M = (Ts,T,pns,body) via Cs’; Ds = (Cs@, Cs")@, Cs’;
length vs = length pns; P & Ts Casts vs to vs’;
Iy’ = [this—Ref (a,Ds), pns[—]vs’];
P,E(this— Class(last Ds), pns[—]Ts) F (body,(ha,l2")) =" (e’,(hs,l3))]
= P,EF (e:(C::)M(ps),s0) ="' (e',(h3,l2))
apply transfer
apply(rule StaticCall)
apply (assumption)+
apply(simp add: map-val-conv[symmetric))
apply assumption+
done

lemma CallNull’-new:
[P,Et (e,s0) =' (null,s1); P,EF {es,s1) [=] (evs,s2); map-val evs vs |
= P,E F (Call e Copt M es,sp) =’ (THROW NullPointer,ss)

apply transfer

apply(rule CallNull, assumption+)

apply(simp add: map-val-conv[symmetric|)

done

lemma Block’:
[[P,E(V — T) F <60,(h0,lo(VZ:N0n6))> =’ <61,(h1,ll)>]] —
P7E + <{ VTv eO}a(hOalo» =’ <€17(h1,11(V3:lo V))>

by transfer(rule Block)

lemma Seq”:
[P,Et* (eo,s0) =' (Val v,s1); P,E F (e1,51) ="' (€a,82) |
= P,E F (ep;;e1,50) = (e2,82)

by transfer(rule Seq)

lemma SeqThrow':
P.E F {eg,80) =' (throw e,s1) =
P.E F (eg;;e1,50)="(throw e,s1)
by transfer(rule SeqThrow)

lemma CondT"

[P,E & (e,s0) =' (true,s1); P,E F (e1,s1) =’ (€',82)]
= P,EF (if (e) ey else ea,s0) =’ (€’,82)

293

by transfer(rule CondT)

lemma CondF":
[P,Et* (e,s0) =' (false,s1); P,E + (ea,81) =’ (€’,82)]
= P,EF (if (e) ey else ea,59) ="' (€',52)

by transfer(rule CondF)

lemma CondThrow":

P.E F {(e,s0) = (throw €',s1) =

P,E + (if (e) e else ea, so) =' (throw €’,s1)
by transfer(rule CondThrow)

lemma WhileF":
P.EF (e,s0) =' (false,s1) =
P,E + (while (e) ¢,s9) =" (unit,s1)
by transfer(rule WhileF')

lemma WhileT"
[P,EF {(es0) =' (true,s1); P,E F {(c,s1) =’ (Val vq,82);
P,E + (while (e) ¢,s2) =’ (es3,83)]
= P,E F (while (e) ¢,s0) =’ (es,3)
by transfer(rule WhileT)

lemma WhileCondThrow":
P.E F {e,s0) =' (throw e’,s1) =
P,E + (while (e) ¢,s9) ="' (throw €’,s1)
by transfer(rule WhileCondThrow)

lemma WhileBodyThrow":
[P,EF {(es0) =' (true,s1); P,E F {(c,s81) ="' (throw e’,s2)]
= P,E F (while (e) ¢,s0) =’ (throw e’ s3)

by transfer(rule WhileBody Throw)

lemma Throw’:

PEt (es0) =' (ref r,s1) =

P,E \ (throw e,sg) =' (Throw r,s1)
by transfer(rule eval-evals. Throw)

lemma ThrowNull"

PE (es50) = (null,s1) =

P,E \ (throw e,sg) =’ (THROW NullPointer,sy)
by transfer(rule ThrowNull)

lemma ThrowThrow":
P.EF {(e,s0) =’ (throw e',s1) =
P.E + (throw e,so) =' (throw e’,s1)
by transfer(rule ThrowThrow)

lemma Nil’:

294

PEF([Ls) =7 ()
by transfer(rule eval-evals.Nil)

lemma Cons”:
[P.Et* (es0) =' (Val v,s1); P,E F (es,s1) [=] (es’,s2)]
= P,Et (e#es,s0) [='] (Val v # es’,s9)

by transfer(rule eval-evals. Cons)

lemma ConsThrow'":

P.E + (e, so) =' (throw €', s1) =

P.E & (e#es, so) [=] (throw e’ # es, s1)
by transfer(rule ConsThrow)

Axiomatic heap address model refinement

partial-function (option) lowest :: (nat = bool) = nat = nat option
where
[code]: lowest P n = (if P n then Some n else lowest P (Suc n))

axiomatization
where
new-Addr’-code [code]: new-Addr’ h = lowest (Option.is-none o h) 0
— admissible: a tightening of the specification of new-Addr’

lemma eval’-cases
[consumes 1,
case-names New NewkFail StaticUpCast StaticDownCast StaticCastNull Static-
CastFail
StaticCastThrow StaticUpDynCast StaticDownDynCast DynCast DynCastNull
DynCastFuail
DynCastThrow Val BinOp BinOpThrowl BinOpThrow2 Var LAss LAssThrow
FAcc FAceNull FAceThrow
FAss FAssNull FAssThrow!l FAssThrow2 CallObjThrow CallParamsThrow Call
StaticCall CallNull
Block Seq SeqThrow CondT CondF CondThrow WhileF WhileT WhileCondThrow
WhileBody Throw
Throw ThrowNull ThrowThrow:
assumes Pz - (y,2) =’ (u,v)
and NAhah/ CEl z=FE = y=new C = z=(h,) = u = ref (a, [C])
_—
v=(h',) = new-Addr' h = |a| = h' = h(a — blank’ P C) = thesis
and AWEClLz=F = y=new(C = z=(h,]) =
u = Throw (addr-of-sys-zcpt OutOfMemory, [OutOfMemory]) =
v = (h, l) = new-Addr' h = None = thesis
and AFespaCssy CCs'Ds.x=FE = y=(Cle = z=3s) =
u=ref (a, Ds) = v =35 = P,Et+ (e,50) =' (ref (a, Cs),51) =
P = Path last Cs to C via Cs' = Ds = Cs Q, Cs’ = thesis
and AEesgaCs CCs's;. e =FE= y=(Cle= z=5 = u=ref (a,
Cs @ [C]) =
v=s81 = P,EF (e,s0) =' (ref (a, Cs @ [C] Q@ Cs’),s1) = thesis

295

and AEesys1 C.a=FE = y=(Cle= z2=5) = u=nul = v=s
_—
P.EF (e,s0) =’ (null,s1) = thesis
and AEespaCssy C.z=E = y=(Cle= z=3 =
u = Throw (addr-of-sys-zept ClassCast, [ClassCast]) = v = s =
P.EF (e,s9) =’ (ref (a, Cs),s1) = (last Cs, C) ¢ (subcls1 P)* = C ¢ set
Cs = thesis
and AFespe’ s C.a=FE = y=(Cle = z=359 = u = throw e’ = v
= 8§ —
P.E + (e,50) =' (throw e’,s1) = thesis
and AEespaCssy CCs'Ds.x =FE = y=Cast Ce= 2=35) = u=
ref (a, Ds) =
v=s8 = P,Et (esy) =' (ref (a, Cs),81) = P+ Path last Cs to C unique
_—
P Path last Cs to C via Cs' = Ds = Cs Q, Cs’ = thesis
and AEespaCs CCs's;. e =FE = y= Cast Ce = z =35y =
u=ref (a, Cs Q[C]) = v =35 = P,EF (e,s0) =' (ref (a, Cs @ [C] @Q
Cs'),81) = thesis
and AEesyaCshlDSCCs . 2 =FE= y=Cast Ce = 2z =) =
u=ref (a, Cs") = v = (h,l) = P,Et (e;s0) =' (ref (a, Cs),(h, 1)) =
ha=|(D,S)] = Pt Path D to Cvia Cs' = P+ Path D to C unique =
thesis
and AFesps1 C.a=FE= y=Cast Ce = z2=5) = u=null = v =
§1 —
P.EF (e,s0) =' (null,s1) = thesis
and AEesyaCshlDSC. 2 =E= y=Cast Ce = z =89 = u = null
—
v=(h,l) = P,Et (e,s0) =' (ref (a, Cs),(h,)) = ha=|(D,S5) =
— P+ Path D to C unique = — P F Path last Cs to C unique — C ¢ set
Cs = thesis
and AEesye’' sy C.o =F = y= Cast Ce = z =59 = u = throw e’
— U = 5
= P,E F (e,s0) =' (throw e’,s1) = thesis
and AEvas.z2=FE=y=Vava= z=s= u= Valva = v=s—=
thesis
and AE e sp v1 81 €2 v2 S3 bop va. 1 = E = y = e «bop» ea = z = s =
u= Valva = v = s5 = P,EF (e1,5) = (Val v1,51) =
P.E + (e2,s1) = (Val va,s3) = binop (bop, vi, v2) = |va] = thesis
and AFej sgp e sy bop es. £ = E = y = e1 «bop» ea = 2z = s9 = u = throw
e — UV =8 —
P.EF (e1,80) =' (throw e,s1) = thesis
and A\F e; sp v1 81 €3 € 83 bop. x = F = y = e1 «bopn e = 2 = 59 = u
= throw e =
v =8 = P,EF (e1,80) =' (Val v1,51) = P,E I (ea,s1) =" (throw e,s2)
—> thesis
and Al VvwwEh z=FE=y=Var V= z=(h, 1) = u= Valva = v
=) =
1V = |va] = thesis
and AEespvahl VTVl . 2 =F = y=Vi=e= 2= 89 = u= Val v’

296

.
v=(h, ') = P,E}* (es0) =' (Val va,(h, 1)) =
EV=|T|= P+ Tcastsvatov = 1I'=1V — v) = thesis
and AEespe' sy V.o =F = y=Vi=e = 2z =3y = u = throwe = v
= 8§ —
P.E+ (e,s0) =' (throw e’,s1) = thesis
and AEesyaCs'"hlDSDsCsfs Fva. z=F = y=eF{Cs} = z= s
_—
uw= Valva = v = (h,l) = P,EF (es0) =’ (ref (a, Cs'),(h, |)) =
ha=|(D,S)] = Ds= Cs'"Q, Cs = (Ds, fs) € S = Mapping.lookup fs
F = |va] = thesis
and AEesyg sy FCs.o = FE = y=eF{Cs} = 2= =
u = Throw (addr-of-sys-xept NullPointer, [NullPointer]) =
v=1s8 = P,EF (es0) = (null,s;) = thesis
and AEespe' s FCs.z =FE = y=eF{Cs} = z2=35) = u
—— UV = §1 —>
P.E + (e,50) =' (throw e’,s1) = thesis
and A\E e sp a Cs' sy eavahylo DSF T Csv' Dsfsfs' S hy'
r=F= y=e-F{Cs} = ey = z2=8) = u=Valv' = v = (h', l2)
_—
P.E+ (e1,80) =' (ref (a, Cs'),s1) = P,E F (ea,s1) =' (Val va,(hz, l2)) =
ho a = |(D, S)] = Pt last Cs’ has least F:T via Cs =
P+ T casts va to v/ = Ds = Cs’' Q, Cs = (Ds, fs) € § = fs' =
Mapping.update F v’ fs =
S'=8 —{(Ds, fs)} U{(Ds, fs")} = ha' = ho(a — (D, S')) = thesis
and AE e sg s1 e2vase FCs.x =FE = y=e-F{Cs} := e = 2 =50 =
u = Throw (addr-of-sys-zcpt NullPointer, [NullPointer]) =
v =82 = P,Et (e1,5%) =' (null,;s1) = P,E * (ez,51) =' (Val va,s2) =
thesis
and AE e spe' sy FCsey. 2 = F = y=e-F{Cs} == eg =
z =8 = u = throw e’ = v =38 = P,EF (e1,5) =' (throw e’,8;) =
thesis
and AE e sopva sy ex €' s9 FCs.x =E = y=e-F{Cs} :=ea = 2= 59
.
u = throw e’ = v = s9 = P,E {(e1,80) =’ (Val va,s;) = P,E F (ea,s1)
=" (throw e',s0) =
thesis
and AFE e sy e’ s1 Copt M es. z = E = y = Call e Copt M es =
z =8 = u = throwe = v =39 = P,EF (es9) =' (throw e',s1) =
thesis
and A\FE e sy va s1 es vs ex es’ s5 Copt M. x = E = y = Call e Copt M es —>
z =8y = u = throw et = v = sg = P,E + (e,s9) =’ (Val va,s;) =
P.E+ (es,s1) [=7] (map Val vs @ throw ex # es’,sy) = thesis
and AE e sy a Cs sy psvs hy lo CS M Ts" T pns’ body’ Ds Ts T pns body Cs’
vs' Iy new-body e’
hs l3. 2 = E = y = Call e None M ps = 2z = sg = u = ¢/ = v = (h3,
lz) —
P,E+ (e,s0) =' (ref (a, Cs),81) = P,E F (ps,s1) [=] (map Val vs,(ha, l2))
.

throw e’

297

hy a = [(C, S)] = P F last Cs has least M = (Ts’, T', pns’, body’) via Ds
_—
P+ (C,Cs @, Ds) selects M = (Ts, T, pns, body) via Cs' = length vs =
length pns —>
P & Ts Casts vs to vs' = Iy’ = [this — Ref (a, Cs’), pns [—] vs] =
new-body = (case T' of Class D = (D)body | - = body) =
P,E(this — Class (last Cs’), pns [—] Ts) & (new-body,(ha, I27)) =" (e’,(hs, l3))
_—
thesis
and AE e sy a Cs sy psvshe lo CCs"" M Ts T pns body Cs’ Ds vs’ ly' e’ hg 3.
t=FE=y=Calle |C] Mps = z2=s) = u=¢' = v=(hs, h) =
P.EF (e,s0) =’ (ref (a, Cs),s1) = P,E F (ps,s1) [=] (map Val vs,(ha, 12))
_—
P + Path last Cs to C unique => P & Path last Cs to C via Cs"' =
Pt Chas least M = (Ts, T, pns, body) via Cs' = Ds = (Cs @, Cs"") @, Cs’
—
length vs = length pns = P + Ts Casts vs to vs’ =
lo" = [this — Ref (a, Ds), pns [—] vs] =
P E(this — Class (last Ds), pns [—] Ts) b (body,(he, l2")) =" (e/,(hs, l3)) =
thesis
and A\E e sy s1 es vs s3 Copt M. x = E = y = Call e Copt M es = z = 59
—
u = Throw (addr-of-sys-zcpt NullPointer, [NullPointer]) =
v =38 = P,EF (es0) = (null,s1) = P,E+ (es,s1) [='] (map Val vs,s3)
= thesis
and /\E V Teo ho lo el hl ll.
r=FE= y={V:T; o} = 2= (ho, lp) = u=¢ =
v=(h, W(V =1l V)) = P,E(V — T)F (e, (ho, lo(V := None))) ='
(e1,(h1, l1)) = thesis
and AE ey so va sy €1 €3 $2. 2 = E = y=e€p;; 61 = 2= 890 = u = ey —>
v =8 = P,Et (ey,s0) =' (Val va,s1) = P,E F (e1,81) =’ {e2,82) =
thesis
and AEeyspesier. 2 =FE = y=cep; 61 = 2= 8 — u= throw e =
V=8 —
P.E F (eg,80) =' (throw e,s1) = thesis
and AN\Eesysyer e saea.2=E= y=1if (€) ej else eg = 2z =50 = u
=e =
v =8 = P,Et (e5s0) = (true,s1) = P,E I {e1,s1) =’ (e',s9) = thesis
and AEesp sy ex e’ soer.z=F = y=if (e) e else eg = 2z = 590 =
u=-e = v=s = PELl (es9) =' (false,s1) = P,E+ (e2,51) =' (e,82)
= thesis
and AEesge' sy e ea.0=FE = y=if (e) e else e =
z =8 = u = throwe = v =3 = P,EF (es0) =' (throw e',s1) =
thesis
and AEesy sy c.o=FE = y=while () c = 2z =59 = u = unit = v
= 8§ —
P.E + (e,50) =' (false,s1) = thesis
and AEFesy sy cvy $2e383. 20 =FE = y=while (e) c = z=15) = u=
€3 —>

298

v =383 = P,EF (es0) = (true,s1) = P,EF (¢,s1) =' (Val vy,80) =
P.E b (while (e) c,s2) = (e3,s3) = thesis
and AEFesye sy c.e=FE = y=while (e) c = 2= 39y = u= throw e
— U = §1 —~
P.E + (e,50) =' (throw e’,s1) = thesis
and AEesy sy ce' sy. 2 = F = y= while (¢) ¢c = 2z = s = u = throw
e =
v =83 = P,EF (e,s0) =' (true,s1) = P,E F (¢,51) =' (throw e',s3) =
thesis
and AEesyrs. 2 =F = y=throwe —=
z=258 = u= Throwr = v=3s = P,Et (es9) =’ (ref r,s1) = thesis
and AEesy s1. 2 = FE = y = throwe = 2z = 59 =
u = Throw (addr-of-sys-xept NullPointer, [NullPointer]) =
v=s1 = P,EF (es0) = (null,s1) = thesis
and AEesye 5.2 =FE = y= throwe =
z =8 = u = throwe = v =3 = P,EF (es9) =' (throw e',s1) =
thesis
shows thesis
using assms
by (transfer)(erule eval.cases, unfold blank-def, assumption+)

/

lemmas [code-pred-intro] = New' NewFail' StaticUpCast’

declare StaticDownCast’-new|code-pred-intro StaticDownCast’]

lemmas [code-pred-intro] = StaticCastNull’

declare StaticCastFail’-new[code-pred-intro StaticCastFail’]

lemmas [code-pred-intro] = StaticCastThrow’ StaticUpDynCast’

declare
StaticDownDynCast’-new[code-pred-intro StaticDownDynCast’]
DynCast'[code-pred-intro DynCast’]

lemmas [code-pred-intro] = DynCastNull’

declare DynCastFail’[code-pred-intro DynCastFail’]

lemmas [code-pred-intro] = DynCastThrow’ Val' BinOp' BinOp Throwl’

declare BinOpThrow2’[code-pred-intro BinOpThrow2’)

lemmas [code-pred-intro] = Var' LAss’ LAssThrow’

declare FAcc’-new|code-pred-intro FAcc']

lemmas [code-pred-intro] = FAccNull' FAceThrow’

declare FAss’-new[code-pred-intro FAss')

lemmas [code-pred-intro] = FAssNull’ FAssThrow1’

declare FAssThrow2'[code-pred-intro FAssThrow2]

lemmas [code-pred-intro] = CallObjThrow’

declare
CallParamsThrow’-new[code-pred-intro CallParamsThrow’]
Call’-new[code-pred-intro Call’]
StaticCall’-new|code-pred-intro StaticCall’)
CallNull’-new|code-pred-intro CallNull'|

lemmas [code-pred-intro] = Block’ Seq’

declare SeqThrow’[code-pred-intro SeqThrow’)

lemmas [code-pred-intro] = CondT’

declare

299

CondF'[code-pred-intro CondF']
CondThrow[code-pred-intro CondThrow'|
lemmas [code-pred-intro| = WhileF'' WhileT’
declare
WhileCond Throw’[code-pred-intro WhileCond Throw’]
WhileBody Throw[code-pred-intro WhileBodyThrow’]

lemmas [code-pred-intro] = Throw'
declare ThrowNull'[code-pred-intro ThrowNull')
lemmas [code-pred-intro| = ThrowThrow’

lemmas [code-pred-intro] = Nil’ Cons’ ConsThrow’

code-pred
(modes: eval” i = i = i = i = 0 = o0 = bool as big-step
and evals: i = i = i = i = 0 = 0 = bool as big-steps)
eval’
proof —
case eval’
from eval’.prems show thesis
proof(cases (no-simp) rule: eval’-cases)
case (StaticDownCast E C e sy a Cs Cs’ s1)
moreover
have app a [Cs] (a @ [Cs]) app (a @ [Cs]) Cs’ (a @ [Cs] @ Cs")
by (simp-all add: app-eq)
ultimately show ?Zthesis by (rule eval’.StaticDownCast'|OF refl])
next
case StaticCastFail thus ?thesis
unfolding rtrancl-def subcls1-def mem-Collect-eq prod.case
by (rule eval’.StaticCastFail |OF refl])
next
case (StaticDownDynCast E e sy a Cs C Cs’ s1)
moreover have app Cs [C] (Cs Q [C]) app (Cs @ [C]) Cs’' (Cs @ [C] @ Cs”)
by (simp-all add: app-eq)
ultimately show thesis by(rule eval’.StaticDownDynCast’|OF refl])
next
case DynCast thus ?thesis by(rule eval’.DynCast'|OF refl])
next
case DynCastFuil thus ?thesis by (rule eval’.DynCastFail |OF refl])
next
case BinOpThrow2 thus ?thesis by(rule eval’.BinOp Throw2[OF refl])
next
case FAcc thus ?thesis
by (rule eval’. FAcc'|OF refl, unfolded Predicate-Compile.contains-def Set-project-def
mem-Collect-eq])
next
case FAss thus ?thesis
by (rule eval’. FAss'[|OF refl, unfolded Predicate-Compile.contains-def Set-project-def
mem-Collect-eq])
next
case FAssThrow2 thus ?thesis by(rule eval’.FAssThrow2'[OF refl])

300

next
case (CallParamsThrow E e sy v s1 es vs ex es’ so Copt M)
moreover have map-val2 (map Val vs Q throw ex # es’) vs (throw ex # es’)
by (simp add: map-val2-conv[symmetric])
ultimately show ?thesis by(rule eval’.CallParamsThrow’|OF refl])
next
case (Call E e sg a Cs sy ps vs)
moreover have map-val (map Val vs) vs by(simp add: map-val-conv[symmetric])
ultimately show ?thesis by—(rule eval’.Call’[OF refl])
next
case (StaticCall E e s9 a Cs s1 ps vs)
moreover have map-val (map Val vs) vs by(simp add: map-val-conv[symmetric])
ultimately show ?2thesis by—(rule eval’.StaticCall’|OF refi])
next
case (CallNull E e sy s1 es vs)
moreover have map-val (map Val vs) vs by(simp add: map-val-conv[symmetric])
ultimately show ?thesis by—(rule eval’.CallNull'[OF refl])
next
case SeqThrow thus ?thesis by(rule eval’.SeqThrow’|OF refl])
next
case CondF thus ?thesis by(rule eval’.CondF'|OF refl])
next
case CondThrow thus ?thesis by (rule eval’.CondThrow'|OF refl])
next
case WhileCondThrow thus ?thesis by(rule eval’. WhileCond Throw’[OF refl])
next
case WhileBodyThrow thus ?thesis by (rule eval’. WhileBodyThrow'[OF refl])
next
case ThrowNull thus ?thesis by (rule eval’. ThrowNull'[|OF refl])
qed(assumption|erule (4) eval'.that|OF refl])+
next
case evals’
from evals’.prems evals’.that] OF refl]
show thesis by transfer(erule evals.cases)
qed

29.3 Examples

declare [[values-timeout = 180]]

values [expected { Val (Intg 5)}]

{fst (e, s") | e’ s".

[l,Map.empty & ({""V":Integer; "V := Val(Intg 5);; Var ""V''},(Map.empty, Map.empty))
=’ (e, s}

values [ezpected { Val (Intg 11)}]
{fst (e, s") | e’ s".
[,Map.empty = ((Val(Intg 5)) «Add» (Val(Intg 6)),(Map.empty, Map.empty))
=’ (e, s}

301

values [ezpected { Val (Intg 83)}]
{fst (e/, 8") | e’ s
[,[""V""—Integer] = ((Var "V") «Add» (Val(Intg 6)),
(Map.empty,[”"V'"—Intg 77))) =' (e/, s")}

values [ezxpected {Some (Intg 6)}]
{lel’ (snd (€', ")) "V | e s’
LIV "= Integer] & (V' := Val(Intg 6),(Map.empty, Map.empty)) ="' (e’, s)}

values [expected {Some (Intg 12)}]
{lel’ (snd (€', s)) "mult” | e’ s
[I,I""V "= Integer,” a’'— Integer,”’b"— Integer, " mult " Integer]
FA{("a"” == Val(Intg 3));;("'b" == Val(Intg 4));;("mult” = Val(Intg 0));;
("V'" = Val(Intg 1));;
while (Var "V «Eq» Val(Intg 1))(("mult’ := Var "mult” «Add» Var ""b");;
("a" := Var "a" «Add» Val(Intg (— 1)));;
("V'" = (if (Var "a"" «Eq» Val(Intg 0)) Val(Intg 0) else Val(Intg 1)))),
(Map.empty, Map.empty)) ="' (e’, s)}

values [ezpected { Val (Intg 30)}]
{fst (e, s") | e’ s".
[,["a"v— Integer, ""b"v— Integer, "¢~ Integer, "cond’’— Boolean|
F("a" .= Val(Intg 17);; """ .= Val(Intg 13);;
"e' = Val(Intg 42);; "cond’ := trues;
if (Var "cond’) (Var "a” «Add» Var "'b") else (Var "o’ «Add» Var "c"),
(Map.empty,Map.empty)) ="' (e’,s")}

progOverrider examples

definition
classBottom :: cdecl where
classBottom = ("’ Bottom", [Repeats "'Left’’, Repeats '"Right'’],
[("z" Integer)],[])

definition

classLeft :: cdecl where

classLeft = ("Left", [Repeats ""Top"],[],[("'f", [Class ""Top", Integer|,Integer,
[V W Var this « "z {["'Left”," Top"|} «Add» Val (Intg 5))])

definition

classRight :: cdecl where

classRight = ("'Right”’, [Shares ""Right2",[],

[("f" [Class ""Top", Integer|, Integer,["" V"' .""W "], Var this - "'z {["'Right2"," Top"|}
«Add» Val (Intg 7)),("g"[],Class ""Left"[],new "'Left"’)])

definition
classRight2 :: cdecl where
classRight2 = (""Right2"’, [Repeats ""Top",]],
[("f") [Class ""Top", Integer|, Integer,["" V"' .""W "], Var this - "'z {["'Right2"," Top"|}

302

«Add» Val (Intg 9)),("g"\[],Class ""Top"[],new ""Top")])

definition
classTop :: cdecl where
classTop = (""Top”, ||, [(""z",Integer)],[])

definition
progOverrider :: cdecl list where
progOverrider = [classBottom, classLeft, classRight, classRight2, classTop)

values [ezpected { Val(Ref(0,["’Bottom",""Left’]))}] — dynCastSide
{fst (e, s") | e’ s".
progQuerrider,|"” V'~ Class "'Right''] F
("V'" := new "Bottom” ;; Cast "Left"” (Var ""V"),(Map.empty, Map.empty))
=’ (e, s}

values [expected { Val(Ref(0,["'Right']))}] — dynCastViaSh
{fst (e/, 8") | e’ s
progQuerrider,["” V"' Class "'Right2'] b
("V'" := new ""Right"" ;; Cast "Right"" (Var ""V"),(Map.empty, Map.empty))
N

values [expected { Val (Intg 42)}] — block
{fst (e/, 8") | e’ s
progOQuerrider,[” V"~ Integer]
F (V"= Val(Intg 42) 3; {""V":Class "Left”’; "V := new ""Bottom'’} ;; Var
//V//,
(Map.empty, Map.empty)) =' (e’, s")}

values [ezpected { Val (Intg 8)}] — staticCall
{fst (e/, ") | e’ s
progOQuverrider,[" V' — Class "'Right"",”” W"'— Class ''Bottom '
F("V" := new "Bottom'" ;; "W' := new "Bottom'" ;;
((Cast "Left"” (Var "W'))-""z"{["Left”," Top"} := Val(Intg 3));;
(Var "W"-(""Left":)"f"([Var "V Val(Intg 2)))),(Map.empty, Map.empty))
=’ (e, s}

values [expected { Val (Intg 12)}] — call
{fst (e, s") | e’ s".
progQuerrider,["” V"' Class "'Right2",” W'~ Class "' Left"’
F (V' .= new "Right" ;; "W'" := new "Left” ;;
(Var "V ([Var "W Val(Intg 42)])) «Adds (Var "W"-"f"([Var "V, Val(Intg
13)),

(Map.empty, Map.empty)) =' (e’, s")}

values [ezpected { Val(Intg 13)}] — callOverrider
{fst (e/, ") | e’ s
progOQverrider,[" V"' Class "'Right2",” W' Class "' Left"’]
F A"V := new "Bottom';; (Var V'« "z {[""Right2"," Top"} := Val(Intg

303

6));;
"W' = new "Left" ;; Var "V ([Var "W Val(Intg 42)]),
(Map.empty, Map.empty)) ="' (e’, s)}

values [ezpected { Val(Ref(1,]"'Left”,"" Top'))}] — callClass
{fst (e, s") | e’ s".
progQuerrider,[" V"' — Class "'Right2 "
F (V" := new "Right" ;; Var "V"-"¢"([]),(Map.empty, Map.empty)) =" (e,
)}

values [ezpected { Val(Intg 42)}] — fieldAss
{fst (e, s") | e’ s".
progOverrider,[” V' — Class ""Right2"
F{("V'" := new ""Right" ;;
(Var V""" Right2"," Top"|} := (Val(Intg 42))) ;;
(Var "V """ Right2"," Top"}),(Map.empty, Map.empty)) =' (e, s")}

typing rules
values [ezpected {Class '"Bottom'’}] — typeNew
{T. progOverrider,Map.empty - new ""Bottom" :: T}

values [ezpected {Class "'Left’’}] — typeDynCast
{T. progOverrider,Map.empty - Cast "Left’’ (new "Bottom’’) :: T}

values [ezpected {Class "'Left'’}] — typeStaticCast
{T. progOverrider,Map.empty = ("'Left”’) (new ""Bottom’) :: T}

values [ezpected {Integer}] — typeVal
{T. [|,Map.empty - Val(Intg 17) :: T}

values [expected {Integer}] — typeVar
{T. ,|"V" — Integer| & Var "V" :: T}

values [ezpected {Boolean}] — typeBinOp
{T. [,Map.empty & (Val(Intg 5)) «Eq» (Val(Intg 6)) :: T}

values [ezxpected {Class ""Top''}] — typeLAss
{T. progOverrider,|"" V"' — Class "Top"| = "V'" .= (new ""Left") :: T}

values [expected {Integer}] — typeFAcc
{T. progOverrider,Map.empty - (new "Right'")-"x"{["'Right2"," Top"} :: T}

values [expected {Integer}] — typeFAss
{T. progOverrider,Map.empty - (new "Right'")-"z"{[""Right2"," Top"|} :: T}

values [expected {Integer}] — typeStaticCall
{T. progOverrider,[""V"'— Class "Left"]
F V" = new "Left" ;; Var "V'-("Left"::)""f"([new ""Top”, Val(Intg 13)])
2 T}

304

values [ezpected { Class ""Top’'}] — typeCall
{T. progOverrider,|"” V"~ Class " Right2"
F "V = new "Right’ ;; Var "V'"."g"([]) = T}

values [expected {Class ""Top'"}] — typeBlock
{T. progOverrider,Map.empty & {""V":Class ""Top""; "V'" := new ""Left"’} :: T}

values [ezpected {Integer}] — typeCond
{T. [|,Map.empty & if (true) Val(Intg 6) else Val(Intg 9) :: T}

values [ezxpected { Void}] — typeWhile
{T. [|,Map.empty & while (false) Val(Intg 17) :: T}

values [expected { Void}] — typeThrow
{T. progOverrider,Map.empty - throw (new "'Bottom'’) :: T}

values [expected {Integer}] — typeBig
{T. progOverrider,["”" V"' Class "'Right2",” W'~ Class "' Left"’
F "V = new "Right" ;; "W' = new "Left" ;;
(Var "V ([Var "W, Val(Intg 7)])) «Addy (Var "W"f"([Var "V,
Val(Intg 13)]))
= T}

progDiamond examples

definition
classDiamondBottom :: cdecl where
classDiamondBottom = ("'Bottom", [Repeats "'Left", Repeats ""Right"],[("'z", Integer)],
[("g”, [],Integer, [|, Var this - "'z’ {["'Bottom"|} «Add» Val (Intg 5))])

definition
classDiamondLeft :: cdecl where
classDiamondLeft = ("'Left", [Repeats ""TopRep'',Shares " TopSh"],[],[])

definition
classDiamondRight :: cdecl where
classDiamondRight = ("'Right'’, [Repeats ""TopRep’,Shares ' TopSh",[],
[("f", [Integer], Boolean,["i"], Var "i" «Eq» Val (Intg 7))])

definition
classDiamondTopRep :: cdecl where
classDiamondTopRep = (""TopRep”, [, [(""z" Integer)],
[("g", [],Integer, [], Var this - "z'" {|" TopRep”|} «Add» Val (Intg 10))])

definition
classDiamondTopSh :: cdecl where
classDiamondTopSh = (""TopSh", ||,],
[("'f") [Integer], Boolean,|"'i"], Var "i"" «Eq» Val (Intg 3))])

305

definition

progDiamond :: cdecl list where

progDiamond = [classDiamondBottom, classDiamondLeft, classDiamondRight,
classDiamondTopRep, classDiamondTopSh]

values [expected { Val(Ref(0,[" Bottom","'Left’]))}] — castl
{fst (e, s") | e’ s".
progDiamond,["' V"= Class ""Left'| b (""V'" := new ""Bottom”,
(Map.empty,Map.empty)) =" (e’, s')}

values [expected { Val(Ref(0,["' TopSh']))}] — cast2
{fst (e, s") | e’ s".
progDiamond,[" V" Class ""TopSh"| & (""V" := new "'Bottom",
(Map.empty,Map.empty)) =" (e’, s’}

values [ezpected {}] — typeCast3 not typeable
{T. progDiamond,["" V' — Class ""TopRep'| = ""V'" := new ""Bottom'" :: T}

values [ezpected {
Val(Ref (0,]""Bottom”’, ""Left", ""TopRep'")),
Val(Ref (0,]""Bottom"’, ""Right”’, ""TopRep'"))
} — cast3
{fst (e, s") | e’ s".
progDiamond,["' V" Class ""TopRep’| & {""V'' := new ""Bottom",
(Map.empty, Map.empty)) ="' (e’, s}

values [ezpected { Val(Intg 17)}] — fieldAss
{fst (e, s") | e’ s".
progDiamond,["”V " Class "'Bottom’|
F{("V'" := new ""Bottom" ;;
((Var "V'")""2"{[""Bottom"} := (Val(Intg 17))) ;;
((Var "V'"-"2"{[""Bottom'}),(Map.empty, Map.empty)) =" (e',s")}

values [ezpected { Val Null}] — dynCastNull
{fst (e/, 8") | e’ s
progDiamond,Map.empty = (Cast ""Right’" null,(Map.empty, Map.empty)) =’
(e's))}

values [expected { Val (Ref(0, ["Right”]))}] — dynCastViaSh
{fst (e/, s") | e’ s
progDiamond,["' V"= Class ""TopSh"’|
F (V' := new "Right" ;; Cast "Right” (Var "V""),(Map.empty, Map.empty))
= (es}

values [ezpected { Val Null}] — dynCastFail
{fst (e/, 8") | e’ s
progDiamond,["' V" Class "' TopRep"’
F (V' := new "Right" ;; Cast ""Bottom’ (Var "V'"),(Map.empty,Map.empty))
='(es"}

306

values [ezpected { Val (Ref (0, [""Bottom”, ""Left"]))}] — dynCastSide
{fst (e/, 8") | e’ s
progDiamond,["' V" Class "' Right'’]
F{("V" := new "Bottom" ;; Cast ""Left” (Var "V'),(Map.empty,Map.empty))
=’ (e',s)}

failing g++ example

definition
classD :: cdecl where
classD = (""D", [Shares A", Shares "B", Repeats "'C",[],[])

definition
classC' :: cdecl where
classC = (""C", [Shares ""A"', Shares ""B",[],

[("f", [}, Integer.[], Val(Intg 42))])

definition
classB :: cdecl where
classB = (""B", [],1],
[("'f"",[) Integer], Val(Intg 17))])

definition
classA :: cdecl where
classA = ("A", [1,[]
[("f".[),Integer,[], Val(Intg 13))])

definition
ProgFuailing :: cdecl list where
ProgFuailing = [classA,classB,classC,classD]

values [expected { Val (Intg 42)}] — callFailGplusplus
{fst (e/, s") | e’ s
ProgFailing, Map.empty
}_ <{//V//:Cla88 //D//; //V// = new //D//;; Va/,,,. //‘/’//‘//f'//([])}7
(Map.empty,Map.empty)) ="' (e’, s}

end
theory CoreC++
imports Determinism Annotate Ezecute

begin

end

307

References

[1] Daniel Wasserrab, Tobias Nipkow, Gregor Snelting, and Frank Tip. An
operational semantics and type safety proof for multiple inheritance in
C++. In OOPSLA ’06: Proceedings of the 21st annual ACM SIGPLAN
conference on Object-oriented programming languages, systems, and ap-
plications, pages 345-362. ACM Press, 2006.

308

	Auxiliary Definitions
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 distinct-fst
	Using 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 list-all2 for relations

	CoreC++ types
	CoreC++ values
	Expressions
	The expressions
	Free Variables

	Class Declarations and Programs
	The subclass relation
	Definition of Subobjects
	General definitions
	Subobjects according to Rossie-Friedman
	Subobject handling and lemmas
	Paths
	Appending paths
	The relation on paths
	Member lookups

	Objects and the Heap
	Objects
	Heap

	Exceptions
	Exceptions
	System exceptions
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 preallocated
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 start-heap

	Syntax
	Program State
	Big Step Semantics
	The rules
	Final expressions

	Small Step Semantics
	Some pre-definitions
	The rules
	The reflexive transitive closure
	Some easy lemmas

	System Classes
	The subtype relation
	Well-typedness of CoreC++ expressions
	The rules
	Easy consequences

	Generic Well-formedness of programs
	Well-formedness lemmas
	Well-formedness subclass lemmas
	Well-formedness leq_path lemmas
	Lemmas concerning Subobjs
	Well-formedness and appendPath
	Path and program size
	Well-formedness and Path
	Well-formedness and member lookup
	Well formedness and widen
	Well formedness and well typing

	Weak well-formedness of CoreC++ programs
	Equivalence of Big Step and Small Step Semantics
	Some casts-lemmas
	Small steps simulate big step
	Cast
	LAss
	BinOp
	FAcc
	FAss
	;;
	If
	While
	Throw
	InitBlock
	Block
	List
	Call
	The main Theorem
	Big steps simulates small step
	Equivalence

	Definite assignment
	Hypersets
	Definite assignment

	Runtime Well-typedness
	Run time types
	The rules
	Easy consequences
	Some interesting lemmas

	Conformance Relations for Proofs
	Value conformance 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 :
	Value list conformance 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 [:]
	Field conformance 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 (:)
	Heap conformance
	Local variable conformance
	Environment conformance
	Type conformance

	Progress of Small Step Semantics
	Some pre-definitions
	The theorem 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 progress

	Heap Extension
	The Heap Extension
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 and preallocated
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 in Small- and BigStep
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 and conformance
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 in the runtime type system

	Well-formedness Constraints
	Type Safety Proof
	Basic preservation lemmas
	Subject reduction
	Lifting to 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 *
	Lifting to 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000
	The final polish

	Determinism Proof
	Some lemmas
	The proof

	Program annotation
	Code generation for Semantics and Type System
	General redefinitions
	Code generation
	Examples

	Bibliography

