An Operational Semantics and Type Safety Proof for Multiple Inheritance in C++ (CoreC++)

Daniel Wasserrab Fakultät für Mathematik und Informatik Universität Passau

http://www.infosun.fmi.uni-passau.de/st/staff/wasserra/

March 19, 2025

Abstract

We present an operational semantics and type safety proof for multiple inheritance in C++. The semantics models the behavior of method calls, field accesses, and two forms of casts. For explanations see [1].

Contents

1	Auxiliary Definitions1.1 distinct-fst1.2 Using list-all2 for relations	4 7 7		
2	CoreC++ types	8		
3	CoreC++ values			
4	Expressions 4.1 The expressions			
5	Class Declarations and Programs	12		
6	The subclass relation	15		

7	Defi	nition of Subobjects 1
	7.1	General definitions
	7.2	Subobjects according to Rossie-Friedman
	7.3	Subobject handling and lemmas
	7.4	Paths
	7.5	Appending paths
	7.6	The relation on paths
	7.7	Member lookups
8	Obj	ects and the Heap 3
	8.1	Objects
	8.2	Heap
9		eptions 3
	9.1	Exceptions
	9.2	System exceptions
	9.3	preallocated
	9.4	start-heap
10	Syn	tax 3
11	Pro	gram State 3
f 12	Big	Step Semantics 3
		The rules
	12.2	Final expressions
13	Sma	all Step Semantics 4
		Some pre-definitions
	13.2	The rules
	13.3	The reflexive transitive closure
	13.4	Some easy lemmas
14	Syst	sem Classes 5
15	The	subtype relation 5
-0	1110	Subty pe Telation
16		l-typedness of CoreC++ expressions 5
		The rules
	16.2	Easy consequences
17		eric Well-formedness of programs 5
		Well-formedness lemmas
		Well-formedness subclass lemmas 6
	17.3	Well-formedness leq_path lemmas 6

	17.4 Lemmas concerning Subobjs	65
	17.5 Well-formedness and appendPath	73
	17.6 Path and program size	74
	17.7 Well-formedness and Path	77
	17.8 Well-formedness and member lookup	86
	17.9 Well formedness and widen	96
	17.10 Well formedness and well typing $\dots \dots \dots \dots \dots$	96
18	Weak well-formedness of CoreC++ programs	99
19	Equivalence of Big Step and Small Step Semantics	99
	19.1 Some casts-lemmas	99
	19.2 Small steps simulate big step	
	19.3 Cast	
	19.4 LAss	
	19.5 BinOp	
	19.6 FAcc	
	19.7 FAss	
	19.8 ;;	
	19.9 If	
	19.10While	
	19.11Throw	
	19.12InitBlock	
	19.13Block	
	19.14List	
	19.15Call	
	19.16The main Theorem	
	19.17Big steps simulates small step	
	19.18Equivalence	
20	8	.56
	20.1 Hypersets	
	20.2 Definite assignment	157
21	Runtime Well-typedness 1	.60
	21.1 Run time types	160
	21.2 The rules	160
	21.3 Easy consequences	163
	21.4 Some interesting lemmas	
22	Conformance Relations for Proofs 1	.65
	22.1 Value conformance : \(\ldots \cdot \cdot \ldots \cdot \ldots \cdot \ldots \cdot \ldots \cdot \ldots \cdot \cdot \cdot \ldots \cdot \	
	22.1 Value list conformance $[:\le]$	
	· ·	168

	22.4 Heap conformance	
	22.5 Local variable conformance	. 168
	22.6 Environment conformance	. 169
	22.7 Type conformance	
00		4 = 0
23	Progress of Small Step Semantics	170
	23.1 Some pre-definitions	
	23.2 The theorem <i>progress</i>	. 174
24	Heap Extension	192
	24.1 The Heap Extension	. 192
	$24.2 \le \text{and preallocated} \dots \dots \dots \dots \dots \dots$	
	$24.3 \le \text{in Small- and BigStep} \dots \dots \dots$	
	$24.4 \le \text{and conformance} \dots \dots \dots \dots \dots \dots$	
	$24.5 \le \text{in the runtime type system}$	
	24.5 \(\sqrt{\text{in the runtime type system}} \)	130
25	Well-formedness Constraints	197
26	Type Safety Proof	198
	26.1 Basic preservation lemmas	. 198
	26.2 Subject reduction	
	26.3 Lifting to $\rightarrow *$	
	26.4 Lifting to \Rightarrow	
	26.5 The final polish	
07	Determine the Desert	000
27	Determinism Proof	233
	27.1 Some lemmas	
	27.2 The proof	. 238
28	Program annotation	277
29	Code generation for Semantics and Type System	278
	29.1 General redefinitions	
	29.2 Code generation	
	29.3 Examples	
	20.0 Examples	. 501
Bi	bliography	308
1	Auxiliary Definitions	
	·	
im	$egin{aligned} \mathbf{eory} & Auxiliary \ \mathbf{ports} & Complex-Main & HOL-Library. & While-Combinator \ \mathbf{gin} \end{aligned}$	
	${f clare}$ ${f ction.splits[split]}$	

```
Let-def[simp]
subset-insertI2 [simp]
Cons-eq-map-conv [iff]
lemma nat-add-max-le[simp]:
 ((n::nat) + max \ i \ j \le m) = (n + i \le m \land n + j \le m)
by arith
lemma Suc\text{-}add\text{-}max\text{-}le[simp]:
 (Suc(n + max \ i \ j) \le m) = (Suc(n + i) \le m \land Suc(n + j) \le m)
by arith
notation Some (\langle (|-|) \rangle)
lemma butlast-tail:
 butlast (Xs@[X,Y]) = Xs@[X]
by (induct Xs) auto
lemma butlast-noteq:Cs \neq [] \Longrightarrow butlast \ Cs \neq Cs
\mathbf{by}(induct\ Cs)simp-all
lemma app-hd-tl: [Cs \neq []; Cs = Cs' @ tl Cs] \implies Cs' = [hd Cs]
apply (subgoal-tac [hd Cs] @ tl Cs = Cs' @ tl Cs)
apply fast
apply simp
done
lemma only-one-append: [C' \notin set \ Cs; \ C' \notin set \ Cs'; \ Ds@ \ C' \# Ds' = \ Cs@ \ C' \# \ Cs]
\implies Cs = Ds \wedge Cs' = Ds'
 apply -
 apply (simp add:append-eq-append-conv2)
 apply (auto simp:in-set-conv-decomp)
    apply (subgoal-tac hd (us @ C' \# Ds') = C')
     apply (case-tac us)
     apply simp
     apply fastforce
    apply simp
   apply (subgoal-tac hd (us @ C' \# Ds') = C')
    apply (case-tac us)
     apply simp
    apply fastforce
```

```
apply simp
   apply (subgoal-tac hd (us @ C' \# Cs') = C')
   apply (case-tac us)
    apply simp
   apply fastforce
   apply (subgoal-tac hd(C' \# Ds') = C')
   apply simp
  apply (simp (no-asm))
  apply (subgoal-tac hd (us @ C' \# Cs') = C')
  apply (case-tac us)
   apply simp
  apply fastforce
  apply (subgoal-tac\ hd(C'\#Ds') = C')
  apply simp
  apply (simp (no-asm))
  done
definition pick :: 'a \ set \Rightarrow 'a \ where
 pick A \equiv SOME x. x \in A
lemma pick-is-element: x \in A \Longrightarrow pick A \in A
by (unfold pick-def,rule-tac x=x in some I)
definition set2list :: 'a set \Rightarrow 'a list where
  set2list A \equiv fst \ (while \ (\lambda(Es,S), S \neq \{\})
                      (\lambda(Es,S).\ let\ x=pick\ S\ in\ (x\#Es,S-\{x\}))
lemma card-pick: [finite A; A \neq \{\}] \Longrightarrow Suc(card(A - \{pick(A)\})) = card A
by (drule card-Suc-Diff1, auto dest!:pick-is-element simp:ex-in-conv)
lemma set2list-prop: [finite A; A \neq \{\}]] \Longrightarrow
  \exists xs. \ while \ (\lambda(Es,S). \ S \neq \{\})
            (\lambda(Es,S).\ let\ x = pick\ S\ in\ (x\#Es,S-\{x\}))
([],A) = (xs,\{\}) \land (set\ xs \cup \{\} = A)
apply(rule-tac P = (\lambda xs. (set(fst \ xs) \cup snd \ xs = A)) and
              r=measure (card o snd) in while-rule)
apply(auto dest:pick-is-element)
apply(auto dest:card-pick simp:ex-in-conv measure-def inv-image-def)
done
lemma set2list\text{-}correct: [finite A; A \neq \{\}; set2list A = xs] \Longrightarrow set xs = A
by (auto dest:set2list-prop simp:set2list-def)
```

```
1.1
         distinct-fst
definition distinct-fst :: ('a \times 'b) list \Rightarrow bool where
  distinct-fst \equiv distinct \circ map fst
lemma distinct-fst-Nil [simp]:
  distinct-fst []
apply (unfold distinct-fst-def)
apply (simp (no-asm))
done
lemma distinct-fst-Cons [simp]:
  distinct-fst ((k,x)\#kxs) = (distinct-fst kxs \land (\forall y. (k,y) \notin set kxs))
\mathbf{apply} \ (\mathit{unfold} \ \mathit{distinct-fst-def})
apply (auto simp:image-def)
done
lemma map\text{-}of\text{-}SomeI:
  \llbracket distinct\text{-}fst \ kxs; \ (k,x) \in set \ kxs \ \rrbracket \Longrightarrow map\text{-}of \ kxs \ k = Some \ x
by (induct kxs) (auto simp:fun-upd-apply)
1.2
         Using list-all2 for relations
definition fun-of :: ('a \times 'b) set \Rightarrow 'a \Rightarrow 'b \Rightarrow bool where
 fun-of S \equiv \lambda x \ y. \ (x,y) \in S
     Convenience lemmas
declare fun-of-def [simp]
lemma rel-list-all2-Cons [iff]:
  list-all2 (fun-of S) (x\#xs) (y\#ys) =
  ((x,y) \in S \land list\text{-all2} (fun\text{-}of S) xs ys)
  by simp
lemma rel-list-all2-Cons1:
  list-all2 (fun-of S) (x\#xs) ys =
  (\exists z \ zs. \ ys = z \# zs \land (x,z) \in S \land list-all 2 \ (fun-of \ S) \ xs \ zs)
  by (cases ys) auto
lemma rel-list-all2-Cons2:
  list-all2 (fun-of S) xs (y\#ys) =
  (\exists\,z\,\,zs.\,\,xs=z\#zs\,\wedge\,(z,y)\in S\,\wedge\,\mathit{list-all2}\,\,(\mathit{fun-of}\,\,S)\,\,\mathit{zs}\,\,\mathit{ys})
  by (cases xs) auto
lemma rel-list-all2-refl:
  (\bigwedge x. (x,x) \in S) \Longrightarrow list-all2 (fun-of S) xs xs
```

```
by (simp add: list-all2-refl)
\mathbf{lemma}\ \mathit{rel-list-all2-antisym}\colon
  \llbracket (\bigwedge x \ y. \ \llbracket (x,y) \in S; (y,x) \in T \rrbracket \Longrightarrow x = y);
     \textit{list-all2 (fun-of S) xs ys; list-all2 (fun-of T) ys xs} \ \rVert \Longrightarrow xs = ys
  by (rule list-all2-antisym) auto
\mathbf{lemma}\ \mathit{rel-list-all2-trans}\colon
  \llbracket \bigwedge a \ b \ c. \ \llbracket (a,b) \in R; \ (b,c) \in S \rrbracket \Longrightarrow (a,c) \in T;
    list-all2 \ (fun-of \ R) \ as \ bs; \ list-all2 \ (fun-of \ S) \ bs \ cs
  \implies list-all2 \ (fun-of \ T) \ as \ cs
  by (rule list-all2-trans) auto
\mathbf{lemma}\ \mathit{rel-list-all2-update-cong} :
  \llbracket i < size \ xs; \ list-all 2 \ (fun-of \ S) \ xs \ ys; \ (x,y) \in S \ \rrbracket
  \implies list\text{-}all2 \ (fun\text{-}of \ S) \ (xs[i:=x]) \ (ys[i:=y])
  by (simp add: list-all2-update-cong)
lemma rel-list-all2-nthD:
  \llbracket \ \textit{list-all2 (fun-of S) xs ys}; \ p < \textit{size xs} \ \rrbracket \Longrightarrow (\textit{xs!p,ys!p}) \in S
  by (drule list-all2-nthD) auto
lemma rel-list-all2I:
  \llbracket \ length \ a = length \ b; \land n. \ n < length \ a \Longrightarrow (a!n,b!n) \in S \ \rrbracket \Longrightarrow list-all 2 \ (fun-of
S) a b
  by (erule list-all2-all-nthI) simp
declare fun-of-def [simp del]
end
2
        CoreC++ types
theory Type imports Auxiliary begin
type-synonym cname = string — class names
\mathbf{type\text{-}synonym}\ \mathit{mname} = \mathit{string} - \mathrm{method}\ \mathrm{name}
type-synonym vname = string — names for local/field variables
definition this:: vname where
  this \equiv "this"
— types
datatype ty
                       — type of statements
  = Void
  | Boolean
  | Integer
  \mid NT
                      — null type
```

```
| Shares cname — shared (virtual) inheritance
primrec getbase :: base \Rightarrow cname where
  getbase (Repeats C) = C
\mid getbase (Shares C) = C
primrec isRepBase :: base \Rightarrow bool where
  isRepBase (Repeats C) = True
| isRepBase (Shares C) = False
primrec isShBase :: base \Rightarrow bool where
  isShBase(Repeats \ C) = False
| isShBase(Shares\ C) = True
definition is-refT :: ty \Rightarrow bool where
  is\text{-ref}T \ T \equiv T = NT \lor (\exists \ C. \ T = Class \ C)
lemma [iff]: is-refT NT
\mathbf{by}(simp\ add:is\text{-}refT\text{-}def)
lemma [iff]: is-refT(Class C)
\mathbf{by}(simp\ add:is-refT-def)
lemma refTE:
 \llbracket is\text{-refT }T;\ T=NT\Longrightarrow Q;\ \bigwedge C.\ T=\mathit{Class }C\Longrightarrow Q\ \rrbracket\Longrightarrow Q
by (auto simp add: is-refT-def)
lemma not-refTE:
 \llbracket \neg \textit{is-refT } T; \ T = \textit{Void} \lor T = \textit{Boolean} \lor T = \textit{Integer} \Longrightarrow Q \ \rrbracket \Longrightarrow Q
by (cases T, auto simp add: is-refT-def)
type-synonym
  env = vname \rightharpoonup ty
end
      CoreC++ values
3
theory Value imports Type begin
type-synonym \ addr = nat
type-synonym path = cname list
                                                    — Path-component in subobjects
type-synonym reference = addr \times path
```

| Class cname — class type

= Repeats cname — repeated (nonvirtual) inheritance

datatype base — superclass

```
datatype val
 = Unit
                   — dummy result value of void expressions
  Null
                  — null reference
                  — Boolean value
   Bool\ bool
  | Intq int
                  — integer value
 | Ref reference — Address on the heap and subobject-path
primrec the-Intg :: val \Rightarrow int where
  the-Intg (Intg\ i) = i
primrec the-addr :: val \Rightarrow addr where
  the\text{-}addr (Ref r) = fst r
primrec the-path :: val \Rightarrow path where
  the-path (Ref r) = snd r
primrec default-val :: ty \Rightarrow val — default value for all types where
  default-val Void
                         = Unit
 \textit{default-val Boolean} \quad = \textit{Bool False}
 default-val Integer = Intg \ 0
 default-val NT
                         = Null
 default-val (Class C) = Null
lemma default-val-no-Ref:default-val T = Ref(a, Cs) \Longrightarrow False
\mathbf{by}(\mathit{cases}\ T)\mathit{simp-all}
primrec typeof :: val \Rightarrow ty \ option \ \mathbf{where}
  typeof Unit
                = Some\ Void
               = Some NT
 typeof Null
 typeof(Bool b) = Some\ Boolean
 typeof(Intg\ i) = Some\ Integer
 typeof(Ref r) = None
lemma [simp]: (typeof\ v = Some\ Boolean) = (\exists\ b.\ v = Bool\ b)
\mathbf{by}(induct\ v)\ auto
lemma [simp]: (typeof\ v = Some\ Integer) = (\exists\ i.\ v = Intg\ i)
\mathbf{by}(cases\ v)\ auto
lemma [simp]: (typeof \ v = Some \ NT) = (v = Null)
\mathbf{by}(cases\ v)\ auto
lemma [simp]: (typeof\ v = Some\ Void) = (v = Unit)
\mathbf{by}(cases\ v)\ auto
end
```

4 Expressions

theory Expr imports Value begin

4.1 The expressions

```
datatype bop = Eq \mid Add
                                                                                         — names of binary operations
datatype expr
     = new \ cname
                                                                          — class instance creation
     | StatCast cname expr — static type cast
                                                                               (\langle (|-|)-\rangle [80,81] 80)
         Val\ val
                                                               — value
                                                                                             (\langle - \langle - \rangle \rangle -) [80,0,81] 80)
     | BinOp expr bop expr
           — binary operation
         Var vname
                                                                     — local variable
     | LAss vname expr
                                                                                           (\langle -:=-\rangle [70,70] 70)
            — local assignment
                                                                                             (\langle ---\{-\} \rangle [10,90,99] 90)
     | FAcc expr vname path
            — field access
     | FAss expr vname path expr (\leftarrow -\{-\} := \rightarrow [10,70,99,70],70)
            — field assignment
     | Call expr cname option mname expr list
              — method call
                                                                                     (\(\sigma'\{-:-; -\}\))
(\(\sigma;\sigma' -\times [61,60] 60\)
         Block vname ty expr
         Seq expr expr
                                                                                (\langle if '(-') - / else \rightarrow [80,79,79] 70)
         Cond expr expr expr
                                                                                         (\langle while '(-') \rightarrow [80,79] 70)
         While expr expr
      throw expr
abbreviation (input)
     DynCall :: expr \Rightarrow mname \Rightarrow expr \ list \Rightarrow expr \ (\langle ---'(-') \rangle \ [90,99,0] \ 90) \ \mathbf{where}
     e \cdot M(es) == Call \ e \ None \ M \ es
abbreviation (input)
     StaticCall :: expr \Rightarrow cname \Rightarrow mname \Rightarrow expr \ list \Rightarrow expr
            (\langle -\cdot'(-::')-'(-')\rangle [90,99,99,0] 90) where
     e \cdot (C::)M(es) == Call \ e \ (Some \ C) \ M \ es
           The semantics of binary operators:
fun binop :: bop \times val \times val \Rightarrow val \ option \ \mathbf{where}
     binop(Eq, v_1, v_2) = Some(Bool (v_1 = v_2))
    binop(Add,Intg\ i_1,Intg\ i_2) = Some(Intg(i_1+i_2))
| binop(bop, v_1, v_2) = None
lemma [simp]:
      (binop(Add,v_1,v_2)=Some\ v)=(\exists\ i_1\ i_2.\ v_1=Intg\ i_1\ \land\ v_2=Intg\ i_2\ \land\ v=Intg\ i_2\
Intg(i_1+i_2)
apply(cases v_1)
```

4.2 Free Variables

```
\begin{array}{c} \mathbf{primrec} \\ \mathit{fv} \; :: \; \mathit{expr} \end{array}
```

```
\Rightarrow vname set
 and fvs :: expr \ list \Rightarrow vname \ set \ where
 fv(new\ C) = \{\}
 fv(Cast \ C \ e) = fv \ e
  fv((C)e) = fv e
 fv(Val\ v) = \{\}
 fv(e_1 \otimes bop \otimes e_2) = fv e_1 \cup fv e_2
 fv(Var\ V) = \{V\}
 fv(V := e) = \{V\} \cup fv \ e
 fv(e \cdot F\{Cs\}) = fv e
 fv(e_1 \cdot F\{Cs\} := e_2) = fv \ e_1 \cup fv \ e_2
 fv(Call\ e\ Copt\ M\ es) = fv\ e\ \cup\ fvs\ es
 fv(\{V:T; e\}) = fv e - \{V\}
 fv(e_1;;e_2) = fv e_1 \cup fv e_2
 fv(if (b) e_1 else e_2) = fv b \cup fv e_1 \cup fv e_2
 fv(while (b) e) = fv b \cup fv e
| fv(throw e) = fv e
| fvs([]) = \{\}
|fvs(e\#es) = fv \ e \cup fvs \ es
lemma [simp]: fvs(es_1 @ es_2) = fvs es_1 \cup fvs es_2
by (induct\ es_1\ type:list) auto
lemma [simp]: fvs(map\ Val\ vs) = \{\}
by (induct vs) auto
```

end

5 Class Declarations and Programs

theory Decl imports Expr begin

```
\begin{array}{ll} \textbf{type-synonym} \\ \textit{fdecl} &= \textit{vname} \times \textit{ty} \end{array} \qquad \begin{array}{ll} --\text{field declaration} \end{array}
```

```
type-synonym
 method = ty \ list \times ty \times (vname \ list \times expr) — arg. types, return type, params,
body
type-synonym
 mdecl = mname \times method
                                                         — method declaration
type-synonym
  class = base\ list \times fdecl\ list \times mdecl\ list \ -- \ class = superclasses, fields, methods
type-synonym
  cdecl = cname \times class
                                                   — classa declaration
type-synonym
  prog = cdecl \ list
                                               — program
translations
  (type) fdecl \le (type) vname \times ty
  (type) \ mdecl <= (type) \ mname \times ty \ list \times ty \times (vname \ list \times expr)
  (type) class <= (type) cname \times fdecl list \times mdecl list
  (type) \ cdecl <= (type) \ cname \times class
  (type) prog <= (type) cdecl list
definition class :: prog \Rightarrow cname \rightharpoonup class where
  class \equiv map - of
definition is-class :: prog \Rightarrow cname \Rightarrow bool where
  is-class P C \equiv class <math>P C \neq None
definition baseClasses :: base list \Rightarrow cname set where
  baseClasses Bs \equiv set ((map \ getbase) \ Bs)
definition RepBases :: base list \Rightarrow cname set where
  RepBases\ Bs \equiv set\ ((map\ getbase)\ (filter\ isRepBase\ Bs))
definition SharedBases :: base list \Rightarrow cname set where
  SharedBases Bs \equiv set ((map \ getbase) \ (filter \ isShBase \ Bs))
{f lemma} not-getbase-repeats:
  D \notin set \ (map \ getbase \ xs) \Longrightarrow Repeats \ D \notin set \ xs
by (induct rule: list.induct, auto)
lemma not-getbase-shares:
  D \notin set (map \ getbase \ xs) \Longrightarrow Shares \ D \notin set \ xs
by (induct rule: list.induct, auto)
\mathbf{lemma}\ Rep Base class-is Base class:
  [class\ P\ C = Some(Bs,fs,ms);\ Repeats\ D \in set\ Bs]
\implies D \in baseClasses Bs
```

```
by (simp add:baseClasses-def, induct rule: list.induct,
  auto simp:not-getbase-repeats)
\mathbf{lemma}\ \mathit{ShBaseclass-isBaseclass:}
  [class\ P\ C = Some(Bs,fs,ms);\ Shares\ D \in set\ Bs]
\implies D \in baseClasses Bs
by (simp add:baseClasses-def, induct rule: list.induct,
  auto simp:not-getbase-shares)
{\bf lemma}\ base-repeats-or-shares:
  [B \in set Bs; D = getbase B]
\implies Repeats D \in set\ Bs \lor Shares\ D \in set\ Bs
\mathbf{by}(induct\ B\ rule:base.induct)\ simp+
{f lemma}\ base Classes-repeats-or-shares:
  D \in baseClasses \ Bs \Longrightarrow Repeats \ D \in set \ Bs \lor Shares \ D \in set \ Bs
by (auto elim!:bexE base-repeats-or-shares
  simp add:baseClasses-def image-def)
lemma finite-is-class: finite \{C. is\text{-class } P C\}
apply (unfold is-class-def class-def)
apply (fold dom-def)
apply (rule finite-dom-map-of)
done
{\bf lemma}\ finite-base Classes:
  class\ P\ C = Some(Bs,fs,ms) \Longrightarrow finite\ (baseClasses\ Bs)
apply (unfold is-class-def class-def baseClasses-def)
apply clarsimp
done
definition is-type :: prog \Rightarrow ty \Rightarrow bool where
  is-type P T \equiv
  (case\ T\ of\ Void \Rightarrow\ True\ |\ Boolean \Rightarrow\ True\ |\ Integer \Rightarrow\ True\ |\ NT \Rightarrow\ True
  | Class C \Rightarrow is\text{-}class P C)
lemma is-type-simps [simp]:
  is-type P Void \land is-type P Boolean \land is-type P Integer \land
  is-type P NT \wedge is-type P (Class C) = is-class P C
\mathbf{by}(simp\ add:is-type-def)
abbreviation
  types P == Collect (CONST is-type P)
```

```
lemma typeof-lit-is-type:
typeof v = Some \ T \Longrightarrow is-type P \ T
by (induct v) (auto)
```

6 The subclass relation

theory ClassRel imports Decl begin

```
    direct repeated subclass

inductive-set
  subclsR :: prog \Rightarrow (cname \times cname) set
  and subclsR' :: prog \Rightarrow [cname, cname] \Rightarrow bool ( \leftarrow \vdash \neg \prec_R \rightarrow [71,71,71] 70)
  for P :: prog
where
  P \vdash C \prec_R D \equiv (C,D) \in subclsR P
| subclsRI: [class\ P\ C = Some\ (Bs, rest);\ Repeats(D) \in set\ Bs]] \Longrightarrow P \vdash C \prec_R D
— direct shared subclass
inductive-set
  subclsS :: prog \Rightarrow (cname \times cname) set
  and subclsS' :: prog \Rightarrow [cname, cname] \Rightarrow bool ( \leftarrow \vdash \neg \prec_S \rightarrow [71,71,71] 70)
  for P :: prog
where
  P \vdash C \prec_S D \equiv (C,D) \in subclsS P
| subclsSI: [class\ P\ C = Some\ (Bs,rest);\ Shares(D) \in set\ Bs]] \Longrightarrow P \vdash C \prec_S D
 — direct subclass
inductive-set
  subcls1 :: prog \Rightarrow (cname \times cname) set
  and subcls1' :: prog \Rightarrow [cname, cname] \Rightarrow bool ( \leftarrow \vdash - \prec^1 \rightarrow \lceil 71, 71, 71 \rceil \rceil 70 )
  \mathbf{for}\ P :: prog
where
  P \vdash C \prec^1 D \equiv (C,D) \in subcls1 P
| subcls11: [class\ P\ C = Some\ (Bs, rest);\ D \in baseClasses\ Bs]] \Longrightarrow P \vdash C \prec^1 D
abbreviation
  subcls :: prog \Rightarrow [cname, cname] \Rightarrow bool( \leftarrow \vdash - \preceq^* \rightarrow [71,71,71] 70) where
  P \vdash C \preceq^* D \equiv (C,D) \in (subcls1\ P)^*
lemma subclsRD:
  P \vdash C \prec_R D \Longrightarrow \exists fs \ ms \ Bs. \ (class \ P \ C = Some \ (Bs,fs,ms)) \land (Repeats(D) \in
set Bs)
by(auto elim: subclsR.cases)
```

```
lemma subclsSD:
 P \vdash C \prec_S D \Longrightarrow \exists fs \ ms \ Bs. \ (class \ P \ C = Some \ (Bs,fs,ms)) \land (Shares(D) \in set
by(auto elim: subclsS.cases)
lemma subcls1D:
  P \vdash C \prec^1 D \Longrightarrow \exists fs \ ms \ Bs. \ (class \ P \ C = Some \ (Bs,fs,ms)) \land (D \in baseClasses)
Bs)
by(auto elim: subcls1.cases)
lemma subclsR-subcls1:
  P \vdash C \prec_R D \Longrightarrow P \vdash C \prec^1 D
by (auto elim!:subclsR.cases intro:subcls1I simp:RepBaseclass-isBaseclass)
lemma subclsS-subcls1:
  P \vdash C \prec_S D \Longrightarrow P \vdash C \prec^1 D
by (auto elim!:subclsS.cases intro:subcls1I simp:ShBaseclass-isBaseclass)
\mathbf{lemma}\ \mathit{subcls1-subclsR-or-subclsS} \colon
  P \vdash C \prec^1 D \Longrightarrow P \vdash C \prec_R D \lor P \vdash C \prec_S D
by (auto dest!:subcls1D intro:subclsRI
  dest:baseClasses-repeats-or-shares subclsSI)
lemma finite-subcls1: finite (subcls1 P)
apply(subgoal-tac\ subcls1\ P = (SIGMA\ C: \{C.\ is-class\ P\ C\}\ .
                     \{D.\ D \in baseClasses\ (fst(the(class\ P\ C)))\})\}
 prefer 2
 apply(fastforce simp:is-class-def dest: subcls1D elim: subcls1I)
apply simp
apply(rule finite-SigmaI [OF finite-is-class])
apply(rule-tac\ B = baseClasses\ (fst\ (the\ (class\ P\ C)))\ in\ finite-subset)
apply (auto intro:finite-baseClasses simp:is-class-def)
done
lemma finite-subclsR: finite (subclsR P)
\mathbf{by}(rule\text{-}tac\ B = subcls1\ P\ \mathbf{in}\ finite\text{-}subset,
  auto simp:subclsR-subcls1 finite-subcls1)
lemma finite-subclsS: finite (subclsS P)
\mathbf{by}(rule\text{-}tac\ B = subcls1\ P\ \mathbf{in}\ finite\text{-}subset,
  auto simp:subclsS-subcls1 finite-subcls1)
lemma subcls1-class:
  P \vdash C \prec^1 D \Longrightarrow is\text{-}class \ P \ C
by (auto dest:subcls1D simp:is-class-def)
```

```
 \begin{array}{l} \textbf{lemma} \ subcls-is\text{-}class: \\ \llbracket P \vdash D \preceq^* C; \ is\text{-}class \ P \ C \rrbracket \Longrightarrow is\text{-}class \ P \ D \\ \textbf{by} \ (induct \ rule:rtrancl\text{-}induct, auto \ dest:subcls1\text{-}class) \\ \end{array}
```

7 Definition of Subobjects

 $\begin{array}{l} \textbf{theory} \ SubObj\\ \textbf{imports} \ ClassRel\\ \textbf{begin} \end{array}$

7.1 General definitions

```
type-synonym subobj = cname \times path

definition mdc :: subobj \Rightarrow cname where mdc S = fst S

definition ldc :: subobj \Rightarrow cname where ldc S = last \ (snd S)

lemma mdc-tuple [simp]: mdc \ (C,Cs) = C
by (simp \ add:mdc-def)

lemma ldc-tuple [simp]: ldc \ (C,Cs) = last \ Cs
by (simp \ add:ldc-def)
```

7.2 Subobjects according to Rossie-Friedman

```
fun is-subobj :: prog \Rightarrow subobj \Rightarrow bool — legal subobject to class hierarchie where is-subobj P (C, []) \longleftrightarrow False | is-subobj P (C, [D]) \longleftrightarrow (is-class P C \land C = D) \lor (\exists X. P \vdash C \preceq^* X \land P \vdash X \prec_S D) | is-subobj P (C, D \# E \# Xs) = (let Ys=butlast (D \# E \# Xs); Y=last (D \# E \# Xs); X=last Ys in is-subobj P (C, Ys) \land P \vdash X \prec_R Y) lemma subobj-aux-rev: assumes 1:is-subobj P ((C, C'\#rev\ Cs@[C''])) shows is-subobj P ((C, C'\#rev\ Cs)) proof — obtain Cs' where Cs':Cs' = rev\ Cs by simp hence rev:Cs'@[C''] = rev\ Cs@[C''] by simp from this obtain D Ds where DDs:Cs'@[C''] = D\#Ds by (cases\ Cs') auto
```

```
with 1 rev have subo:is-subobj P((C, C' \# D \# Ds)) by simp
 from DDs have butlast (C' \# D \# Ds) = C' \# Cs' by (cases Cs') auto
 with subo have is-subobj P((C, C' \# Cs')) by simp
 with Cs' show ?thesis by simp
qed
lemma subobj-aux:
assumes 1:is-subobj P((C,C'\#Cs@[C'']))
shows is-subobj P((C, C' \# Cs))
proof -
 from 1 obtain Cs' where Cs': Cs' = rev Cs by simp
 with 1 have is-subobj P((C,C'\#rev\ Cs'@[C''])) by simp
 hence is-subobj P((C, C' \# rev \ Cs')) by (rule subobj-aux-rev)
 with Cs' show ?thesis by simp
qed
\mathbf{lemma}\ isSubobj\text{-}isClass:
assumes 1:is-subobj P(R)
shows is-class P \pmod{R}
proof -
 obtain C' Cs' where R:R = (C',Cs') by (cases R) auto
 with 1 have ne:Cs' \neq [] by (cases Cs') auto
 from this obtain C'' Cs'' where C''Cs'': Cs' = C'' \# Cs'' by (cases Cs') auto
 from this obtain Ds where Ds = rev Cs'' by simp
 with 1 R C"Cs" have subo1:is-subobj P ((C', C'' \# rev Ds)) by simp
 with R show ?thesis
   by (induct Ds, auto simp:mdc-def split:if-split-asm dest:subobj-aux,
    auto elim:converse-rtranclE dest!:subclsS-subcls1 elim:subcls1-class)
qed
lemma isSubobjs-subclsR-rev:
assumes 1:is-subobj P ((C,Cs@[D,D']@(rev Cs')))
shows P \vdash D \prec_R D'
using 1
proof (induct Cs')
 case Nil
 from this obtain Cs' X Y Xs where Cs'1:Cs' = Cs@[D,D']
   and X = hd(Cs@[D,D']) and Y = hd(tl(Cs@[D,D']))
   and Xs = tl(tl(Cs@[D,D'])) by simp
 hence Cs'2:Cs' = X \# Y \# Xs by (cases Cs) auto
 from Cs'1 have last:last Cs' = D' by simp
```

```
from Nil Cs'1 Cs'2 have is-subobj P((C,X \# Y \# Xs)) by simp
 with last butlast Cs'2 show ?case by simp
next
 case (Cons C'' Cs'')
 have IH:is-subobj P ( (C, Cs @ [D, D'] @ rev Cs')) \Longrightarrow P \vdash D \prec_R D' by fact
 from Cons obtain Cs' X Y Xs where Cs'1:Cs' = Cs@[D,D']@(rev (C''\#Cs''))
   and X = hd(Cs@[D,D']@(rev (C''\#Cs'')))
   and Y = hd(tl(Cs@[D,D']@(rev(C''\#Cs''))))
   and Xs = tl(tl(Cs@[D,D']@(rev(C''\#Cs'')))) by simp
 hence Cs'2:Cs' = X \# Y \# Xs by (cases Cs) auto
 from Cons Cs'1 Cs'2 have is-subobj P((C,X \# Y \# Xs)) by simp
 hence sub:is-subobj\ P\ ((C,butlast\ (X\#Y\#Xs))) by simp
 from Cs'1 obtain E Es where Cs'3:Cs' = Es@[E] by (cases Cs') auto
 with Cs'1 have butlast:Es = Cs@[D,D']@(rev Cs'') by simp
 from Cs'3 have but last Cs' = Es by simp
 with but last have but last Cs' = Cs@[D,D']@(rev Cs'') by simp
 with Cs'2 sub have is-subobj P((C,Cs@[D,D']@(rev\ Cs'')))
   by simp
 with IH show ?case by simp
\mathbf{qed}
lemma isSubobjs-subclsR:
assumes 1:is-subobj P ((C, Cs@[D, D']@Cs'))
shows P \vdash D \prec_R D'
proof -
 from 1 obtain Cs'' where Cs'' = rev Cs' by simp
 with 1 have is-subobj P((C,Cs@[D,D']@(rev\ Cs''))) by simp
 thus ?thesis by (rule isSubobjs-subclsR-rev)
qed
lemma mdc-leq-ldc-aux:
assumes 1:is-subobj P ((C, C' \# rev Cs'))
shows P \vdash C \leq^* last (C' \# rev Cs')
using 1
proof (induct Cs')
 case Nil
 from 1 have is-class P C
   by (drule-tac\ R=(C,C'\#rev\ Cs')\ in\ isSubobj-isClass,\ simp\ add:mdc-def)
 with Nil show ?case
   proof (cases C=C')
    case True
```

from Cs'1 have butlast:last(butlast Cs') = D by $(simp \ add:butlast-tail)$

```
thus ?thesis by simp
   next
     {f case}\ {\it False}
     with Nil show ?thesis
       by (auto dest!:subclsS-subcls1)
   qed
  next
   case (Cons C'' Cs'')
   have IH: is\text{-subobj } P \ (\ (C,\ C' \# rev\ Cs'')) \Longrightarrow P \vdash C \preceq^* last \ (C' \# rev\ Cs'')
     and subo:is-subobj P ( (C, C' \# rev (C'' \# Cs''))) by fact+
   hence is-subobj P ( (C, C' \# rev Cs'')) by (simp \ add:subobj-aux-rev)
   with IH have rel:P \vdash C \leq^* last (C' \# rev Cs'') by simp
   from subo obtain D Ds where DDs: C' \# rev Cs'' = Ds@[D]
     by (cases Cs'') auto
   hence C' \# rev (C'' \# Cs'') = Ds@[D,C''] by simp
   with subo have is-subobj P((C,Ds@[D,C''])) by (cases Ds) auto
   hence P \vdash D \prec_R C'' by (rule\text{-}tac\ Cs'=[] in isSubobjs\text{-}subclsR) simp
   hence rel1:P \vdash D \prec^1 C'' by (rule\ subcls R-subcls 1)
   from DDs have D = last (C' \# rev Cs'') by simp
   with rel1 have lastrel1:P \vdash last (C' \# rev Cs'') \prec^1 C'' by simp
   with rel have P \vdash C \preceq^* C''
     \mathbf{by}(rule\text{-}tac\ b=last\ (C' \# rev\ Cs'')\ \mathbf{in}\ rtrancl\text{-}into\text{-}rtrancl)\ simp
   thus ?case by simp
qed
lemma mdc-leq-ldc:
assumes 1:is-subobj P(R)
shows P \vdash mdc R \preceq^* ldc R
proof -
 from 1 obtain C Cs where R:R = (C,Cs) by (cases\ R) auto
 with 1 have ne: Cs \neq [] by (cases Cs) auto
 from this obtain C' Cs' where Cs: Cs = C' \# Cs' by (cases Cs) auto
 from this obtain Cs'' where Cs':Cs'' = rev Cs' by simp
 with R Cs 1 have is-subobj P ((C, C' \# rev \ Cs'')) by simp
 hence rel:P \vdash C \leq^* last (C'\#rev Cs'') by (rule \ mdc\text{-}leq\text{-}ldc\text{-}aux)
 from R Cs Cs' have ldc:last (C'#rev Cs'') = ldc R by(simp \ add:ldc-def)
  from R have mdc R = C by (simp \ add: mdc - def)
  with ldc rel show ?thesis by simp
qed
    Next three lemmas show subobject property as presented in literature
lemma class-isSubobj:
  is\text{-}class\ P\ C \Longrightarrow is\text{-}subobj\ P\ ((C,[C]))
by simp
```

```
lemma repSubobj-isSubobj:
assumes 1:is-subobj P((C,Xs@[X])) and 2:P \vdash X \prec_R Y
shows is-subobj P((C,Xs@[X,Y]))
using 1
proof -
 obtain Cs \ D \ E \ Cs' where Cs1:Cs = Xs@[X,Y] and D = hd(Xs@[X,Y])
   and E = hd(tl(Xs@[X,Y])) and Cs' = tl(tl(Xs@[X,Y]))by simp
 hence Cs2:Cs = D\#E\#Cs' by (cases\ Xs)\ auto
 with 1 Cs1 have subobj-butlast:is-subobj P((C,butlast(D\#E\#Cs')))
   by (simp add:butlast-tail)
 with 2 Cs1 Cs2 have P \vdash (last(butlast(D\#E\#Cs'))) \prec_R last(D\#E\#Cs')
   by (simp add:butlast-tail)
 with subobj-butlast have is-subobj P((C,(D\#E\#Cs'))) by simp
 with Cs1 Cs2 show ?thesis by simp
qed
lemma shSubobj-isSubobj:
assumes 1: is-subobj P((C,Xs@[X])) and 2:P \vdash X \prec_S Y
shows is-subobj P((C, [Y]))
using 1
proof -
 from 1 have classC:is-class P C
   by (drule-tac\ R=(C,Xs@[X])\ in\ isSubobj-isClass,\ simp\ add:mdc-def)
 from 1 have P \vdash C \prec^* X
   by (drule-tac\ R=(C,Xs@[X])\ in\ mdc-leq-ldc,\ simp\ add:mdc-def\ ldc-def)
 with classC 2 show ?thesis by fastforce
qed
    Auxiliary lemmas
\mathbf{lemma}\ \textit{build-rec-isSubobj-rev}:
assumes 1:is-subobj P ((D,D#rev Cs)) and 2: P \vdash C \prec_R D
shows is-subobj P((C, C \# D \# rev Cs))
using 1
proof (induct Cs)
 case Nil
 from 2 have is-class P C by (auto dest:subclsRD simp add:is-class-def)
 with 1 2 show ?case by simp
\mathbf{next}
 case (Cons C' Cs')
 have suboD:is-subobj\ P\ ((D,D\#rev\ (C'\#Cs')))
   and IH: is\text{-subobj } P ((D,D\#rev \ Cs')) \Longrightarrow is\text{-subobj } P ((C,C\#D\#rev \ Cs')) by
fact+
 obtain E Es where E:E = hd (rev (C' \# Cs')) and Es:Es = tl (rev (C' \# Cs'))
   by simp
 with E have E-Es:rev (C'\#Cs') = E\#Es by simp
```

```
with E Es have butlast: butlast (D\#E\#Es) = D\#rev\ Cs' by simp
 from E-Es suboD have suboDE:is-subobj P((D,D\#E\#Es)) by simp
 hence is-subobj P ((D,butlast (D\#E\#Es))) by simp
 with butlast have is-subobj P((D,D\#rev\ Cs')) by simp
 with IH have suboCD:is-subobj\ P\ (\ (C,\ C\#D\#rev\ Cs')) by simp
 from suboDE obtain Xs \ X \ Y \ Xs' where Xs':Xs' = D\#E\#Es
   and bb:Xs = butlast (butlast (D\#E\#Es))
   and lb:X = last(butlast (D\#E\#Es)) and l:Y = last (D\#E\#Es) by simp
 from this obtain Xs'' where Xs'':Xs'' = Xs@[X] by simp
 with bb lb have Xs'' = butlast (D\#E\#Es) by simp
 with l have D\#E\#Es = Xs''@[Y] by simp
 with Xs'' have D\#E\#Es = Xs@[X]@[Y] by simp
 with suboDE have is-subobj P ((D,Xs@[X,Y])) by simp
 hence subR:P \vdash X \prec_R Y by (rule-tac\ Cs=Xs\ and\ Cs'=[]\ in\ isSubobjs-subclsR)
simp
 from E-Es Es have last (D\#E\#Es) = C' by simp
 with subR lb l butlast have P \vdash last(D \# rev \ Cs') \prec_R C'
   by (auto split:if-split-asm)
 with suboCD show ?case by simp
qed
lemma build-rec-isSubobj:
assumes 1:is-subobj P((D,D\#Cs)) and 2: P \vdash C \prec_R D
shows is-subobj P ((C, C \# D \# Cs))
proof -
 obtain Cs' where Cs':Cs' = rev Cs by simp
 with 1 have is-subobj P((D,D\#rev\ Cs')) by simp
 with 2 have is-subobj P((C, C \# D \# rev \ Cs'))
   \mathbf{by} - (rule\ build-rec-isSubobj-rev)
 with Cs' show ?thesis by simp
qed
\mathbf{lemma}\ isSubobj-isSubobj-isSubobj-rev:
assumes 1:is-subobj P((C,[D])) and 2:is-subobj P((D,D\#(rev\ Cs)))
shows is-subobj P((C,D\#(rev\ Cs)))
using 2
proof (induct Cs)
{\bf case}\ {\it Nil}
with 1 show ?case by simp
 case (Cons C' Cs')
 have IH: is\text{-subobj } P ((D, D \# rev \ Cs')) \Longrightarrow is\text{-subobj } P ((C, D \# rev \ Cs'))
```

```
and is-subobj P((D,D\#rev(C'\#Cs'))) by fact+
 hence suboD: is-subobj P ((D,D\#rev Cs'@[C'])) by simp
 hence is-subobj P ((D,D\#rev\ Cs')) by (rule\ subobj-aux-rev)
 with IH have suboC: is-subobj P ((C,D\#rev Cs')) by simp
 obtain C'' where C'': C'' = last (D \# rev Cs') by simp
 moreover have D \# rev Cs' = butlast (D \# rev Cs') @ [last (D \# rev Cs')]
   by (rule append-butlast-last-id [symmetric]) simp
 ultimately have but last: D \# rev Cs' = but last (D \# rev Cs') @ [C'']
   by simp
 hence butlast2:D\#rev\ Cs'@[C'] = butlast(D\#rev\ Cs')@[C']@[C'] by simp
 with suboD have is-subobj P ((D,butlast(D\#rev\ Cs')@[C'']@[C']))
 with C'' have subR:P \vdash C'' \prec_R C'
   by (rule-tac\ Cs=butlast(D\#rev\ Cs')\ and\ Cs'=[]\ in\ isSubobjs-subclsR)simp
 with C'' suboC butlast have is-subobj P ((C,butlast(D\#rev\ Cs')@[C'']@[C']))
   by (auto intro:repSubobj-isSubobj simp del:butlast.simps)
 with butlast2 have is-subobj P((C,D\#rev\ Cs'@[C']))
   by (cases Cs') auto
 thus ?case by simp
qed
lemma isSubobj-isSubobj-isSubobj:
assumes 1:is-subobj P((C,[D])) and 2:is-subobj P((D,D\#Cs))
shows is-subobj P((C,D\#Cs))
proof -
 obtain Cs' where Cs':Cs' = rev Cs by simp
 with 2 have is-subobj P((D,D\#rev\ Cs')) by simp
 with 1 have is-subobj P((C,D\#rev\ Cs'))
 \mathbf{by} - (rule\ isSubobj-isSubobj-rev)
with Cs' show ?thesis by simp
qed
7.3
       Subobject handling and lemmas
Subobjects consisting of repeated inheritance relations only:
inductive Subobjs_R :: prog \Rightarrow cname \Rightarrow path \Rightarrow bool for P :: prog
where
 SubobjsR-Base: is-class P \ C \Longrightarrow Subobjs_R \ P \ C \ [C]
|SubobjsR-Rep: [P \vdash C \prec_R D; Subobjs_R P D Cs]| \Longrightarrow Subobjs_R P C (C \# Cs)
   All subobjects:
```

inductive Subobjs :: $prog \Rightarrow cname \Rightarrow path \Rightarrow bool$ **for** P :: prog

 $| Subobjs-Sh: [P \vdash C \leq^* C'; P \vdash C' \prec_S D; Subobjs_R P D Cs]|$

Subobjs- $Rep: Subobjs_R \ P \ C \ Cs \Longrightarrow Subobjs \ P \ C \ Cs$

 \implies Subobjs P C Cs

where

```
lemma Subobjs-Base:is-class P \ C \Longrightarrow Subobjs \ P \ C \ [C]
\mathbf{by}\ (fastforce\ intro:Subobjs-Rep\ SubobjsR-Base)
lemma SubobjsR-nonempty: Subobjs_R P C Cs \Longrightarrow Cs \neq []
by (induct rule: Subobjs_R.induct, simp-all)
lemma Subobjs-nonempty: Subobjs P \ C \ Cs \Longrightarrow Cs \neq []
by (erule Subobjs.induct)(erule SubobjsR-nonempty)+
lemma hd-SubobjsR:
  Subobjs_R \ P \ C \ Cs \Longrightarrow \exists \ Cs'. \ Cs = C \# Cs'
\mathbf{by}(erule\ Subobjs_R.induct,simp+)
lemma SubobjsR-subclassRep:
  Subobjs_R \ P \ C \ Cs \Longrightarrow (C, last \ Cs) \in (subclsR \ P)^*
apply(erule\ Subobjs_R.induct)
apply simp
apply(simp add: SubobjsR-nonempty)
done
lemma SubobjsR-subclass: Subobjs_R P C Cs \Longrightarrow P \vdash C \preceq^* last Cs
apply(erule\ Subobjs_R.induct)
apply simp
\mathbf{apply}(simp\ add:\ SubobjsR-nonempty)
apply(blast intro:subclsR-subcls1 rtrancl-trans)
done
lemma Subobjs-subclass: Subobjs P C Cs \Longrightarrow P \vdash C \preceq^* last Cs
apply(erule Subobjs.induct)
apply(erule SubobjsR-subclass)
apply(erule rtrancl-trans)
apply(blast intro:subclsS-subcls1 SubobjsR-subclass rtrancl-trans)
done
\mathbf{lemma}\ Subobjs-notSubobjsR:
  \llbracket Subobjs \ P \ C \ Cs; \ \neg \ Subobjs_R \ P \ C \ Cs 
Vert
\implies \exists C' D. P \vdash C \leq^* C' \land P \vdash C' \prec_S D \land Subobjs_R P D Cs
apply (induct rule: Subobjs.induct)
```

```
{\bf apply} \ \textit{fastforce}
done
lemma assumes subo:Subobjs_R \ P \ (hd \ (Cs@ \ C'\#Cs')) \ (Cs@ \ C'\#Cs')
 shows SubobjsR-Subobjs:Subobjs\ P\ C'\ (C'\#Cs')
 using subo
proof (induct Cs)
 case Nil
 thus ?case by -(frule\ hd\text{-}SubobjsR,fastforce\ intro:Subobjs\text{-}Rep)
next
 case (Cons D Ds)
 have subo':Subobjs_R \ P \ (hd \ ((D\#Ds) \ @ \ C'\#Cs')) \ ((D\#Ds) \ @ \ C'\#Cs')
    and IH:Subobjs_R P (hd (Ds @ C'\#Cs')) (Ds @ C'\#Cs') \Longrightarrow Subobjs P C'
(C' \# Cs') by fact +
 from subo' have Subobjs_R P (hd (Ds @ C' \# Cs')) (Ds @ C' \# Cs')
   apply -
   apply (drule\ Subobjs_R.cases)
   apply auto
   apply (rename-tac D')
   apply (subgoal-tac D' = hd (Ds @ C' \# Cs'))
   apply (auto dest:hd-SubobjsR)
   done
  with IH show ?case by simp
qed
lemma Subobjs-Subobjs:Subobjs P C (Cs@ C'\#Cs') \Longrightarrow Subobjs P C' (C'\#Cs')
 apply -
 apply (drule Subobjs.cases)
 apply auto
  apply (subgoal-tac C = hd(Cs @ C' \# Cs'))
   apply (fastforce intro:SubobjsR-Subobjs)
  apply (fastforce dest:hd-SubobjsR)
 \mathbf{apply} \ (\mathit{subgoal\text{-}tac} \ D = \mathit{hd}(\mathit{Cs} \ @ \ \mathit{C'} \ \# \ \mathit{Cs'}))
  apply (fastforce intro:SubobjsR-Subobjs)
 apply (fastforce dest:hd-SubobjsR)
 done
\mathbf{lemma}\ \mathit{SubobjsR-isClass}\text{:}
assumes subo:Subobjs_R P C Cs
shows is-class P C
using subo
proof (induct \ rule:Subobjs_R.induct)
```

apply clarsimp

```
case SubobjsR-Base thus ?case by assumption
 case SubobjsR-Rep thus ?case by (fastforce intro:subclsR-subcls1 subcls1-class)
qed
lemma Subobjs-isClass:
assumes subo:Subobjs\ P\ C\ Cs
shows is-class P C
using subo
proof (induct rule:Subobjs.induct)
 case Subobjs-Rep thus ?case by (rule SubobjsR-isClass)
next
 case (Subobjs-Sh C C' D Cs)
 have leq:P \vdash C \leq^* C' and leqS:P \vdash C' \prec_S D by fact+
 hence (C,D) \in (subcls1\ P)^+ by (fastforce\ intro:rtrancl-into-trancl1\ subclsS-subcls1)
 thus ?case by (induct rule:trancl-induct, fastforce intro:subcls1-class)
qed
lemma Subobjs-subclsR:
assumes subo:Subobjs\ P\ C\ (Cs@[D,D']@Cs')
shows P \vdash D \prec_R D'
using subo
proof -
 from subo have Subobjs P D (D\#D'\#Cs') by -(rule\ Subobjs-Subobjs,simp)
 then obtain C' where subo':Subobjs_R \ P \ C' \ (D\#D'\#Cs')
   by (induct rule:Subobjs.induct,blast+)
 hence C' = D by -(drule\ hd\text{-}SubobjsR,simp)
 with subo' have Subobjs<sub>R</sub> P D (D\#D'\#Cs') by simp
 thus ?thesis by (fastforce\ elim:Subobjs_R.cases\ dest:hd-Subobjs_R)
qed
lemma assumes subo:Subobjs_R \ P \ (hd \ Cs) \ (Cs@[D]) and notempty:Cs \neq []
 shows butlast-Subobjs-Rep:Subobjs<sub>R</sub> P (hd Cs) Cs
using subo notempty
proof (induct Cs)
 case Nil thus ?case by simp
\mathbf{next}
 case (Cons C' Cs')
 have subo:Subobjs_R P (hd(C'\#Cs')) ((C'\#Cs')@[D])
   and IH: [Subobjs_R \ P \ (hd \ Cs') \ (Cs'@[D]); \ Cs' \neq []] \implies Subobjs_R \ P \ (hd \ Cs')
Cs' by fact+
 from subo have subo':Subobjs_R \ P \ C' \ (C' \# Cs'@[D]) by simp
```

```
show ?case
 proof (cases Cs' = [])
   {\bf case}\  \, True
   with subo' have Subobjs_R P C' [C',D] by simp
   hence is-class P C' by(rule SubobjsR-isClass)
   hence Subobjs_R \ P \ C' \ [C'] by (rule \ Subobjs_R - Base)
   with True show ?thesis by simp
 next
   case False
   with subo' obtain D' where subo'':Subobjs_R \ P \ D' \ (Cs'@[D])
     and subR:P \vdash C' \prec_R D'
     by (auto elim:Subobjs<sub>R</sub>.cases)
   from False subo" have hd:D' = hd \ Cs'
     by (induct Cs',auto dest:hd-SubobjsR)
   with subo" False IH have Subobjs<sub>R</sub> P (hd Cs') Cs' by simp
   with subR hd have Subobjs_R P C' (C'\#Cs') by (fastforce\ intro:Subobjs_R-Rep)
   thus ?thesis by simp
 qed
qed
lemma assumes subo:Subobjs P C (Cs@[D]) and notempty:Cs \neq []
 shows butlast-Subobjs:Subobjs P C Cs
using subo
proof (rule Subobjs.cases, auto)
 assume suboR:Subobjs_R \ P \ C \ (Cs@[D]) and Subobjs \ P \ C \ (Cs@[D])
 from suboR notempty have hd:C = hd Cs
   by (induct\ Cs, auto\ dest:hd-SubobjsR)
 with suboR notempty have Subobjs<sub>R</sub> P (hd Cs) Cs
   \mathbf{by}(fastforce\ intro:butlast\text{-}Subobjs\text{-}Rep)
 with hd show Subobjs P C Cs by (fastforce intro:Subobjs-Rep)
 fix C'D' assume leq:P \vdash C \leq^* C' and subS:P \vdash C' \prec_S D'
 and suboR:Subobjs_R \ P \ D' \ (Cs@[D]) and Subobjs \ P \ C \ (Cs@[D])
 from suboR notempty have hd:D' = hd Cs
   by (induct Cs, auto dest:hd-SubobjsR)
 with suboR notempty have Subobjs_R P (hd Cs) Cs
   by(fastforce intro:butlast-Subobjs-Rep)
 with hd leq subS show Subobjs P C Cs
   \mathbf{by}(fastforce\ intro:Subobjs-Sh)
qed
```

```
using subo
proof(induct Cs')
  case Nil thus ?case by simp
  case (Cons D Ds)
 have subo':Subobjs\ P\ C\ (Cs@rev(D\#Ds))
   and IH:Subobjs\ P\ C\ (Cs@rev\ Ds) \Longrightarrow Subobjs\ P\ C\ Cs\ \mathbf{by}\ fact+
  from notempty subo' have Subobjs P C (Cs@rev Ds)
   by (fastforce intro:butlast-Subobjs)
  with IH show ?case by simp
qed
lemma appendSubobj:
assumes subo:Subobjs P C (Cs@Cs') and notempty:Cs \neq []
shows Subobjs P C Cs
proof -
  obtain Cs'' where Cs'':Cs'' = rev Cs' by simp
  with subo have Subobjs P C (Cs@(rev Cs'')) by simp
  with notempty show ?thesis by - (rule rev-appendSubobj)
qed
lemma SubobjsR-isSubobj:
  Subobjs_R \ P \ C \ Cs \Longrightarrow is\text{-}subobj \ P \ ((C,Cs))
\mathbf{by}(\mathit{erule}\ \mathit{Subobjs}_R.\mathit{induct},\mathit{simp},
  auto dest:hd-SubobjsR intro:build-rec-isSubobj)
\mathbf{lemma}\ \mathit{leq-Subobjs}R\text{-}\mathit{isSubobj}\text{:}
 \llbracket P \vdash C \preceq^* C'; P \vdash C' \prec_S D; Subobjs_R P D Cs \rrbracket
\implies is\text{-subobj } P\ ((C,Cs))
apply (subgoal-tac is-subobj P((C,[D])))
apply (frule hd-SubobjsR)
 \mathbf{apply}\ (\mathit{drule}\ \mathit{SubobjsR-isSubobj})
 apply (erule exE)
 apply (simp del: is-subobj.simps)
 apply (erule isSubobj-isSubobj-isSubobj)
apply simp
apply auto
done
lemma Subobjs-isSubobj:
  Subobjs P \ C \ Cs \Longrightarrow is\text{-subobj} \ P \ ((C,Cs))
```

```
by (auto elim:Subobjs.induct SubobjsR-isSubobj
simp add:leq-SubobjsR-isSubobj)
```

7.4 Paths

7.5 Appending paths

Avoided name clash by calling one path Path.

```
definition path-via :: prog \Rightarrow cname \Rightarrow cname \Rightarrow path \Rightarrow bool ( \leftarrow Path - to - via - > [51,51,51,51] 50) where
<math display="block">P \vdash Path \ C \ to \ D \ via \ Cs \equiv Subobjs \ P \ C \ Cs \land last \ Cs = D
definition path-unique :: prog \Rightarrow cname \Rightarrow cname \Rightarrow bool ( \leftarrow Path - to - unique > [51,51,51] 50) where
```

```
definition appendPath :: path \Rightarrow path \Rightarrow path (infixr \langle @_p \rangle 65) where Cs @_p Cs' \equiv if (last Cs = hd Cs') then Cs @ (tl Cs') else Cs'
```

 $P \vdash Path \ C \ to \ D \ unique \equiv \exists ! Cs. \ Subobjs \ P \ C \ Cs \land last \ Cs = D$

```
lemma appendPath-last: Cs \neq [] \implies last \ Cs = last \ (Cs'@_p Cs)
by(auto simp:appendPath-def last-append)(cases Cs, simp-all)+
```

inductive

```
casts-to :: prog \Rightarrow ty \Rightarrow val \Rightarrow val \Rightarrow bool
 ( \leftarrow \vdash - casts - to \rightarrow [51,51,51,51] \ 50 )
 for P :: prog
 where
```

casts-prim: \forall C. $T \neq$ Class $C \Longrightarrow P \vdash T$ casts v to v

 $\mid casts-null: P \vdash Class \ C \ casts \ Null \ to \ Null$

```
| casts-ref: [P \vdash Path \ last \ Cs \ to \ C \ via \ Cs'; \ Ds = Cs@_p Cs']

\implies P \vdash Class \ C \ casts \ Ref(a,Cs) \ to \ Ref(a,Ds)
```

inductive

```
Casts-to :: prog \Rightarrow ty \ list \Rightarrow val \ list \Rightarrow val \ list \Rightarrow bool (<- \vdash - Casts - to - > [51,51,51,51] 50) for P :: prog where
```

Casts-Nil: $P \vdash []$ Casts [] to []

| Casts-Cons:
$$[P \vdash T \text{ casts } v \text{ to } v'; P \vdash Ts \text{ Casts } vs \text{ to } vs']$$

 $\implies P \vdash (T \# Ts) \text{ Casts } (v \# vs) \text{ to } (v' \# vs')$

```
lemma length-Casts-vs:
  P \vdash Ts \ Casts \ vs \ to \ vs' \Longrightarrow length \ Ts = length \ vs
by (induct rule: Casts-to.induct, simp-all)
lemma length-Casts-vs':
  P \vdash Ts \ Casts \ vs \ to \ vs' \Longrightarrow length \ Ts = length \ vs'
by (induct rule: Casts-to.induct, simp-all)
7.6
         The relation on paths
inductive-set
  leq-path1 :: prog \Rightarrow cname \Rightarrow (path \times path) set
  and leq\text{-}path1' :: prog \Rightarrow cname \Rightarrow [path, path] \Rightarrow bool (<-,- \vdash - \sqsubset^1 -> [71,71,71]
  for P :: prog \text{ and } C :: cname
where
  P,C \vdash Cs \sqsubseteq^1 Ds \equiv (Cs,Ds) \in leq\text{-path1 } P C
| leq-pathRep: [ Subobjs P C Cs; Subobjs P C Ds; Cs = butlast Ds ] |
  \implies P, C \vdash Cs \sqsubset^1 Ds
| leg-pathSh: [ Subobjs P C Cs; P \vdash last Cs \prec_S D ] |
  \implies P, C \vdash Cs \sqsubset^1 [D]
abbreviation
  leg-path :: prog \Rightarrow cname \Rightarrow \lceil path, path \rceil \Rightarrow bool ( <-,- \vdash - \sqsubseteq -> \lceil 71,71,71 \rceil 70 )
where
  P,C \vdash Cs \sqsubseteq Ds \equiv (Cs,Ds) \in (leq-path1\ P\ C)^*
lemma leq-path-rep:
  \llbracket Subobjs \ P \ C \ (Cs@[C']); \ Subobjs \ P \ C \ (Cs@[C',C'']) \rrbracket
\Longrightarrow P,C \vdash (Cs@[C']) \sqsubset^1 (Cs@[C',C''])
\mathbf{by}(rule\ leq-pathRep,simp-all\ add:butlast-tail)
lemma leq-path-sh:
  \llbracket Subobjs \ P \ C \ (Cs@[C']); \ P \vdash C' \prec_S C'' \rrbracket
\implies P, C \vdash (Cs@\lceil C'\rceil) \sqsubseteq^1 \lceil C''\rceil
\mathbf{by}(\mathit{erule}\ \mathit{leq-pathSh})\mathit{simp}
7.7
         Member lookups
definition FieldDecls :: prog \Rightarrow cname \Rightarrow vname \Rightarrow (path \times ty) set where
  FieldDecls\ P\ C\ F \equiv
   \{(Cs,T).\ Subobjs\ P\ C\ Cs \land (\exists Bs\ fs\ ms.\ class\ P\ (last\ Cs) = Some(Bs,fs,ms)\}
```

definition LeastFieldDecl :: $prog \Rightarrow cname \Rightarrow vname \Rightarrow ty \Rightarrow path \Rightarrow bool$

 $(\leftarrow \vdash - has \ least \rightarrow \lnot via \rightarrow \lnot 51,0,0,0,51 \rbrack \ 50)$ where

 \land map-of fs F = Some T)

```
P \vdash C \text{ has least } F:T \text{ via } Cs \equiv
   (Cs,T) \in FieldDecls\ P\ C\ F\ \land
   (\forall (Cs', T') \in FieldDecls \ P \ C \ F. \ P, C \vdash Cs \sqsubseteq Cs')
definition MethodDefs :: prog \Rightarrow cname \Rightarrow mname \Rightarrow (path \times method)set where
  MethodDefs \ P \ C \ M \equiv
   \{(Cs, mthd). \ Subobjs \ P \ C \ Cs \land (\exists Bs \ fs \ ms. \ class \ P \ (last \ Cs) = Some(Bs,fs,ms)\}
                                         \land map\text{-}of \ ms \ M = Some \ mthd)
  — needed for well formed criterion
definition HasMethodDef :: prog \Rightarrow cname \Rightarrow mname \Rightarrow method \Rightarrow path \Rightarrow bool
    (\leftarrow \vdash -has - = -via \rightarrow [51,0,0,0,51] \ 50) where
  P \vdash C \text{ has } M = \text{mthd via } Cs \equiv (Cs, \text{mthd}) \in \text{MethodDefs } P \in M
definition LeastMethodDef :: prog \Rightarrow cname \Rightarrow mname \Rightarrow method \Rightarrow path \Rightarrow bool
    (\leftarrow \vdash - has \ least - = - via \rightarrow [51, 0, 0, 0, 51] \ 50) where
  P \vdash C \text{ has least } M = \text{mthd via } Cs \equiv
   (Cs, mthd) \in MethodDefs P C M \land
   (\forall (Cs', mthd') \in MethodDefs \ P \ C \ M. \ P, C \vdash Cs \sqsubseteq Cs')
definition MinimalMethodDefs :: prog \Rightarrow cname \Rightarrow mname \Rightarrow (path \times method)set
where
  MinimalMethodDefs\ P\ C\ M \equiv
      \{(Cs, mthd). (Cs, mthd) \in MethodDefs \ P \ C \ M \ \land \}
          (\forall (Cs', mthd') \in MethodDefs \ P \ C \ M. \ P, C \vdash Cs' \sqsubseteq Cs \longrightarrow Cs' = Cs) \}
definition OverriderMethodDefs:: proq \Rightarrow subobj \Rightarrow mname \Rightarrow (path \times method)set
where
  OverriderMethodDefs\ P\ R\ M \equiv
      \{(Cs, mthd). \exists Cs' \ mthd'. \ P \vdash (ldc \ R) \ has \ least \ M = mthd' \ via \ Cs' \land A \}
                         (Cs, mthd) \in MinimalMethodDefs \ P \ (mdc \ R) \ M \land
                         P, mdc \ R \vdash Cs \sqsubseteq (snd \ R)@_pCs'
definition FinalOverriderMethodDef :: prog <math>\Rightarrow subobj \Rightarrow mname \Rightarrow method \Rightarrow
path \Rightarrow bool
    (\leftarrow \vdash - has \ overrider - = - via \rightarrow [51, 0, 0, 0, 51] \ 50) where
  P \vdash R \text{ has overrider } M = \text{mthd via } Cs \equiv
      (Cs, mthd) \in OverriderMethodDefs P R M \land
       card(OverriderMethodDefs\ P\ R\ M) = 1
inductive
  SelectMethodDef :: prog \Rightarrow cname \Rightarrow path \Rightarrow mname \Rightarrow method \Rightarrow path \Rightarrow bool
     (\leftarrow \vdash '(\neg,\neg') \ selects \neg = \neg \ via \rightarrow [51,0,0,0,0,51] \ 50)
  for P :: prog
where
```

dyn-unique:

```
P \vdash C \text{ has least } M = \text{mthd via } Cs' \Longrightarrow P \vdash (C,Cs) \text{ selects } M = \text{mthd via } Cs'
| dyn-ambiguous:
    \llbracket \forall mthd \ Cs'. \ \neg \ P \vdash C \ has \ least \ M = mthd \ via \ Cs';
      P \vdash (C,Cs) \text{ has overrider } M = \text{mthd via } Cs'
  \implies P \vdash (C,Cs) \text{ selects } M = \text{mthd via } Cs'
lemma sees-fields-fun:
  (Cs,T) \in FieldDecls\ P\ C\ F \Longrightarrow (Cs,T') \in FieldDecls\ P\ C\ F \Longrightarrow T=T'
\mathbf{by}(fastforce\ simp:FieldDecls-def)
lemma sees-field-fun:
  \llbracket P \vdash C \text{ has least } F:T \text{ via } Cs; P \vdash C \text{ has least } F:T' \text{ via } Cs \rrbracket
  \implies T = T'
by (fastforce simp:LeastFieldDecl-def dest:sees-fields-fun)
lemma has-least-method-has-method:
  P \vdash C \text{ has least } M = \text{mthd via } Cs \Longrightarrow P \vdash C \text{ has } M = \text{mthd via } Cs
by (simp add:LeastMethodDef-def HasMethodDef-def)
{f lemma}\ visible	ext{-}methods	ext{-}exist:
  (Cs, mthd) \in MethodDefs \ P \ C \ M \Longrightarrow
  (\exists Bs \ fs \ ms. \ class \ P \ (last \ Cs) = Some(Bs,fs,ms) \land map-of \ ms \ M = Some \ mthd)
by(auto simp:MethodDefs-def)
lemma sees-methods-fun:
 (Cs,mthd) \in MethodDefs\ P\ C\ M \Longrightarrow (Cs,mthd') \in MethodDefs\ P\ C\ M \Longrightarrow mthd
= mthd'
by(fastforce simp:MethodDefs-def)
lemma sees-method-fun:
  \llbracket P \vdash C \text{ has least } M = \text{mthd via } Cs; P \vdash C \text{ has least } M = \text{mthd' via } Cs \rrbracket
  \implies mthd = mthd'
by (fastforce simp:LeastMethodDef-def dest:sees-methods-fun)
lemma overrider-method-fun:
assumes overrider: P \vdash (C, Cs) has overrider M = mthd \ via \ Cs'
 and overrider': P \vdash (C, Cs) has overrider M = mthd' via Cs''
shows mthd = mthd' \wedge Cs' = Cs''
proof -
  from overrider' have omd:(Cs'',mthd') \in OverriderMethodDefs\ P\ (C,Cs)\ M
    \mathbf{by}(simp-all\ add:FinalOverriderMethodDef-def)
 from overrider have (Cs',mthd) \in OverriderMethodDefs P(C,Cs) M
```

```
and card(OverriderMethodDefs\ P\ (C,Cs)\ M)=1
by(simp\text{-}all\ add\text{:}FinalOverriderMethodDef\text{-}def)
hence \forall\ (Ds,mthd'')\in OverriderMethodDefs\ P\ (C,Cs)\ M.\ (Cs',mthd)=(Ds,mthd'')
by(fastforce\ simp\text{:}card\text{-}Suc\text{-}eq)
with omd\ show\ ?thesis\ by\ fastforce
qed
```

8 Objects and the Heap

theory Objects imports SubObj begin

8.1 Objects

```
type-synonym
  subo = (path \times (vname \rightarrow val))
                                            — subobjects realized on the heap
type-synonym
  obj = cname \times subo set
                                            — mdc and subobject
definition init-class-fieldmap :: prog \Rightarrow cname \Rightarrow (vname \rightarrow val) where
  init-class-fieldmap P C \equiv
     map-of\ (map\ (\lambda(F,T).(F,default-val\ T))\ (fst(snd(the(class\ P\ C))))\ )
inductive
  init\text{-}obj :: prog \Rightarrow cname \Rightarrow (path \times (vname \rightarrow val)) \Rightarrow bool
  for P :: prog \text{ and } C :: cname
  Subobjs P \ C \ Cs \Longrightarrow init\text{-}obj \ P \ C \ (Cs,init\text{-}class\text{-}fieldmap \ P \ (last \ Cs))
lemma init-obj-nonempty: init-obj P \ C \ (Cs,fs) \Longrightarrow Cs \neq []
by (fastforce elim:init-obj.cases dest:Subobjs-nonempty)
lemma init-obj-no-Ref:
[init\text{-}obj\ P\ C\ (Cs,fs);\ fs\ F = Some(Ref(a',Cs'))] \Longrightarrow False
by (fastforce elim:init-obj.cases default-val-no-Ref
                  simp:init-class-fieldmap-def map-of-map)
\mathbf{lemma} \ \mathit{SubobjsSet-init-objSet} :
  \{Cs. \ Subobjs \ P \ C \ Cs\} = \{Cs. \ \exists \ vmap. \ init-obj \ P \ C \ (Cs, vmap)\}
by ( fastforce intro:init-obj.intros elim:init-obj.cases)
definition obj-ty :: obj \Rightarrow ty where
  obj-ty obj \equiv Class (fst obj)
```

```
— a new, blank object with default values in all fields:
definition blank :: prog \Rightarrow cname \Rightarrow obj where
 blank\ P\ C \equiv (C,\ Collect\ (init-obj\ P\ C))
lemma [simp]: obj-ty (C,S) = Class C
 by (simp add: obj-ty-def)
8.2
       Heap
type-synonym heap = addr \rightharpoonup obj
abbreviation
  cname\text{-}of:: heap \Rightarrow addr \Rightarrow cname \text{ where}
  cname-of\ hp\ a == fst\ (the\ (hp\ a))
definition new-Addr :: heap \Rightarrow addr option where
 new-Addr h \equiv if \exists a. h a = None then <math>Some(SOME \ a. h \ a = None) else None
lemma new-Addr-SomeD:
 new-Addr h = Some a \Longrightarrow h a = None
by(fastforce simp add:new-Addr-def split:if-splits intro:someI)
end
9
     Exceptions
theory Exceptions imports Objects begin
9.1
       Exceptions
definition NullPointer :: cname where
  NullPointer \equiv "NullPointer"
definition ClassCast :: cname where
```

 $ClassCast \equiv "ClassCast"$

definition OutOfMemory :: cname **where** $OutOfMemory \equiv "OutOfMemory"$

```
start-heap\ P \equiv Map.empty\ (addr-of-sys-xcpt\ NullPointer \mapsto blank\ P\ NullPointer,
                          addr-of-sys-xcpt ClassCast \mapsto blank \ P \ ClassCast,
                          addr-of-sys-xcpt OutOfMemory \mapsto blank \ P \ OutOfMemory)
definition preallocated :: heap \Rightarrow bool where
  preallocated h \equiv \forall C \in sys\text{-}xcpts. \exists S. \ h \ (addr-of\text{-}sys\text{-}xcpt \ C) = Some \ (C,S)
9.2
         System exceptions
lemma [simp]:
NullPointer \in sys\text{-}xcpts \land OutOfMemory \in sys\text{-}xcpts \land ClassCast \in sys\text{-}xcpts
\mathbf{by}(simp\ add:\ sys-xcpts-def)
lemma sys-xcpts-cases [consumes 1, cases set]:
  \llbracket C \in sys\text{-}xcpts; P \ NullPointer; P \ OutOfMemory; P \ ClassCast \rrbracket \implies P \ C
by (auto simp add: sys-xcpts-def)
9.3
         preallocated
lemma preallocated-dom [simp]:
  \llbracket preallocated \ h; \ C \in sys\text{-}xcpts \ \rrbracket \implies addr\text{-}of\text{-}sys\text{-}xcpt \ C \in dom \ h
\mathbf{by}\ (\mathit{fastforce}\ \mathit{simp:preallocated-def}\ \mathit{dom-def})
\mathbf{lemma}\ preallocatedD:
  \llbracket preallocated \ h; \ C \in sys\text{-}xcpts \ \rrbracket \Longrightarrow \exists S. \ h \ (addr\text{-}of\text{-}sys\text{-}xcpt \ C) = Some \ (C,S)
by(auto simp add: preallocated-def sys-xcpts-def)
lemma preallocatedE [elim?]:
  \llbracket preallocated\ h;\ C \in sys\text{-}xcpts;\ \bigwedge S.\ h\ (addr\text{-}of\text{-}sys\text{-}xcpt\ C) = Some(C,S) \Longrightarrow
P \ h \ C
  \implies P \ h \ C
by (fast dest: preallocatedD)
lemma cname-of-xcp [simp]:
  \llbracket preallocated \ h; \ C \in sys\text{-}xcpts \ \rrbracket \implies cname\text{-}of \ h \ (addr\text{-}of\text{-}sys\text{-}xcpt \ C) = C
by (auto elim: preallocatedE)
\mathbf{lemma}\ \mathit{preallocated}\text{-}\mathit{start}\text{:}
  preallocated (start-heap P)
by (auto simp add: start-heap-def blank-def sys-xcpts-def fun-upd-apply
                       addr-of-sys-xcpt-def preallocated-def)
```

definition start- $heap :: prog \Rightarrow heap$ where

```
9.4 start-heap
```

```
lemma start-Subobj:
\llbracket start\text{-}heap\ P\ a = Some(C,\ S);\ (Cs,fs) \in S \rrbracket \Longrightarrow Subobjs\ P\ C\ Cs
by (fastforce elim:init-obj.cases simp:start-heap-def blank-def
                                 fun-upd-apply split:if-split-asm)
\mathbf{lemma}\ start	ext{-}SuboSet:
\llbracket start-heap\ P\ a = Some(C,\ S);\ Subobjs\ P\ C\ Cs \rrbracket \Longrightarrow \exists fs.\ (Cs,fs) \in S
by (fastforce intro:init-obj.intros simp:start-heap-def blank-def
               split:if-split-asm)
lemma start-init-obj: start-heap P a = Some(C,S) \Longrightarrow S = Collect (init-obj <math>P C)
by (auto simp:start-heap-def blank-def split:if-split-asm)
lemma start-subobj:
  \llbracket start-heap \ P \ a = Some(C, S); \ \exists fs. \ (Cs, fs) \in S \rrbracket \Longrightarrow Subobjs \ P \ C \ Cs
by (fastforce elim:init-obj.cases simp:start-heap-def blank-def
                split:if-split-asm)
end
10
        Syntax
theory Syntax imports Exceptions begin
    Syntactic sugar
abbreviation (input)
  InitBlock :: vname \Rightarrow ty \Rightarrow expr \Rightarrow expr \Rightarrow expr (((1'\{-:-:=-;/-\}))) where
  InitBlock\ V\ T\ e1\ e2\ ==\ \{V:T;\ V:=\ e1;;\ e2\}
abbreviation unit where unit == Val\ Unit
abbreviation null where null == Val Null
abbreviation ref r == Val(Ref r)
abbreviation true == Val(Bool\ True)
abbreviation false == Val(Bool False)
abbreviation
  Throw :: reference \Rightarrow expr  where
  Throw \ r == throw(ref \ r)
abbreviation (input)
  THROW :: cname \Rightarrow expr  where
  THROW \ xc == Throw(addr-of-sys-xcpt \ xc,[xc])
```

11 Program State

theory State imports Exceptions begin

```
type-synonym locals = vname \rightharpoonup val — local vars, incl. params and "this" type-synonym state = heap \times locals

definition hp :: state \Rightarrow heap where hp \equiv fst

definition lcl :: state \Rightarrow locals where lcl \equiv snd

declare hp-def[simp] lcl-def[simp]
end
```

12 Big Step Semantics

```
theory BigStep
imports Syntax State
begin
```

12.1 The rules

```
inductive
   eval :: prog \Rightarrow env \Rightarrow expr \Rightarrow state \Rightarrow expr \Rightarrow state \Rightarrow bool
               (\langle -, - \vdash ((1\langle -, /- \rangle)) \Rightarrow / (1\langle -, /- \rangle)) \rangle [51, 0, 0, 0, 0] 81)
  and evals :: prog \Rightarrow env \Rightarrow expr \ list \Rightarrow state \Rightarrow expr \ list \Rightarrow state \Rightarrow bool
                 (\langle -, - \vdash ((1\langle -, /- \rangle)) \Rightarrow ]/(1\langle -, /- \rangle)) \rangle [51, 0, 0, 0, 0] 81)
   for P :: prog
where
   \llbracket new\text{-}Addr \ h = Some \ a; \ h' = h(a \mapsto (C, Collect \ (init\text{-}obj \ P \ C))) \ \rrbracket
   \implies P,E \vdash \langle new \ C,(h,l) \rangle \Rightarrow \langle ref \ (a,[C]),(h',l) \rangle
| NewFail:
   new-Addr h = None \Longrightarrow
   P,E \vdash \langle new \ C, \ (h,l) \rangle \Rightarrow \langle THROW \ OutOfMemory,(h,l) \rangle
| Static Up Cast:
  \llbracket \ P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle \mathit{ref} \ (a,\mathit{Cs}),s_1 \rangle; \ P \vdash \mathit{Path \ last \ Cs \ to \ C \ via \ Cs'}; \ \mathit{Ds} = \ \mathit{Cs}@_{p}\mathit{Cs'}
   \implies P,E \vdash \langle (C)e,s_0 \rangle \Rightarrow \langle ref(a,Ds),s_1 \rangle
| StaticDownCast:
```

```
P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ref (a,Cs@[C]@Cs'),s_1 \rangle
    \implies P,E \vdash \langle (C)e,s_0 \rangle \Rightarrow \langle ref(a,Cs@[C]),s_1 \rangle
| Static Cast Null:
   P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle null,s_1 \rangle \Longrightarrow
   P,E \vdash \langle (C) e, s_0 \rangle \Rightarrow \langle null, s_1 \rangle
| Static CastFail:
   \llbracket P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ref (a,Cs),s_1 \rangle; \neg P \vdash (last \ Cs) \preceq^* C; \ C \notin set \ Cs \ \rrbracket
   \implies P,E \vdash \langle (C) e, s_0 \rangle \Rightarrow \langle THROW \ Class Cast, s_1 \rangle
| Static Cast Throw:
   P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle throw \ e',s_1 \rangle \Longrightarrow
   P,E \vdash \langle (|C|)e,s_0 \rangle \Rightarrow \langle throw \ e',s_1 \rangle
| Static UpDynCast:
   \llbracket P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ref(a,Cs),s_1 \rangle; P \vdash Path \ last \ Cs \ to \ C \ unique;
      P \vdash Path \ last \ Cs \ to \ C \ via \ Cs'; \ Ds = \ Cs@_pCs' \ ]
   \implies P,E \vdash \langle Cast \ C \ e,s_0 \rangle \Rightarrow \langle ref(a,Ds),s_1 \rangle
| StaticDownDynCast:
   P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ref (a,Cs@[C]@Cs'),s_1 \rangle
    \implies P,E \vdash \langle Cast \ C \ e,s_0 \rangle \Rightarrow \langle ref \ (a,Cs@[C]),s_1 \rangle
\mid DynCast:
   \llbracket P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ref(a,Cs),(h,l) \rangle; h \ a = Some(D,S);
      P \vdash Path \ D \ to \ C \ via \ Cs'; \ P \vdash Path \ D \ to \ C \ unique \ 
   \implies P,E \vdash \langle Cast \ C \ e,s_0 \rangle \Rightarrow \langle ref \ (a,Cs'),(h,l) \rangle
| DynCastNull:
   P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle null,s_1 \rangle \Longrightarrow
   P,E \vdash \langle Cast \ C \ e,s_0 \rangle \Rightarrow \langle null,s_1 \rangle
| DynCastFail:
   \llbracket P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ref(a,Cs),(h,l) \rangle; h \ a = Some(D,S); \neg P \vdash Path \ D \ to \ C \ unique;
      \neg P \vdash Path\ last\ Cs\ to\ C\ unique;\ C \notin set\ Cs\ ]
   \implies P,E \vdash \langle Cast \ C \ e,s_0 \rangle \Rightarrow \langle null,(h,l) \rangle
| DynCastThrow:
   P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle throw \ e',s_1 \rangle \Longrightarrow
   P,E \vdash \langle Cast \ C \ e,s_0 \rangle \Rightarrow \langle throw \ e',s_1 \rangle
| Val:
   P,E \vdash \langle Val \ v,s \rangle \Rightarrow \langle Val \ v,s \rangle
\mid BinOp:
   [P,E \vdash \langle e_1,s_0 \rangle \Rightarrow \langle Val \ v_1,s_1 \rangle; \ P,E \vdash \langle e_2,s_1 \rangle \Rightarrow \langle Val \ v_2,s_2 \rangle;
      binop(bop, v_1, v_2) = Some \ v \ 
bracket
   \implies P,E \vdash \langle e_1 \otimes bop \rangle e_2,s_0 \rangle \Rightarrow \langle Val \ v,s_2 \rangle
```

```
| BinOpThrow1:
   P,E \vdash \langle e_1,s_0 \rangle \Rightarrow \langle throw \ e,s_1 \rangle \Longrightarrow
   P,E \vdash \langle e_1 \otimes bop \rangle \mid e_2, s_0 \rangle \Rightarrow \langle throw \mid e_1, s_1 \rangle
| BinOpThrow2:
   \llbracket P,E \vdash \langle e_1,s_0 \rangle \Rightarrow \langle Val \ v_1,s_1 \rangle; \ P,E \vdash \langle e_2,s_1 \rangle \Rightarrow \langle throw \ e,s_2 \rangle \ \rrbracket
   \implies P,E \vdash \langle e_1 \ "bop" \ e_2,s_0 \rangle \Rightarrow \langle throw \ e,s_2 \rangle
| Var:
   l\ V = Some\ v \Longrightarrow
   P,E \vdash \langle Var \ V,(h,l) \rangle \Rightarrow \langle Val \ v,(h,l) \rangle
\mid LAss:
   [P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle Val \ v,(h,l) \rangle; \ E \ V = Some \ T;
        P \vdash T \ casts \ v \ to \ v'; \ l' = l(V \mapsto v') \ \rceil
   \implies P,E \vdash \langle V := e, s_0 \rangle \Rightarrow \langle Val \ v', (h,l') \rangle
\mid LAssThrow:
   P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle throw \ e',s_1 \rangle \Longrightarrow
   P,E \vdash \langle V := e, s_0 \rangle \Rightarrow \langle throw \ e', s_1 \rangle
| FAcc:
   \llbracket P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ref(a,Cs'),(h,l) \rangle; h \ a = Some(D,S);
        Ds = Cs'@_p Cs; (Ds,fs) \in S; fs F = Some v 
   \implies P,E \vdash \langle e \cdot F\{Cs\}, s_0 \rangle \Rightarrow \langle Val\ v,(h,l) \rangle
| FAccNull:
   P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle null,s_1 \rangle \Longrightarrow
   P,E \vdash \langle e \cdot F\{Cs\}, s_0 \rangle \Rightarrow \langle THROW\ NullPointer, s_1 \rangle
| FAccThrow:
   P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle throw \ e',s_1 \rangle \Longrightarrow
   P,E \vdash \langle e \cdot F\{Cs\}, s_0 \rangle \Rightarrow \langle throw \ e', s_1 \rangle
   \llbracket P,E \vdash \langle e_1,s_0 \rangle \Rightarrow \langle ref(a,Cs'),s_1 \rangle; P,E \vdash \langle e_2,s_1 \rangle \Rightarrow \langle Val \ v,(h_2,l_2) \rangle;
        h_2 a = Some(D,S); P \vdash (last Cs') has least F:T via Cs; P \vdash T casts v to v';
        Ds = Cs'@_p Cs; (Ds,fs) \in S; fs' = fs(F \mapsto v');
        S' = S - \{(Ds,fs)\} \cup \{(Ds,fs')\}; h_2' = h_2(a \mapsto (D,S'))
   \implies P,E \vdash \langle e_1 \cdot F\{Cs\} := e_2, s_0 \rangle \Rightarrow \langle Val \ v', (h_2', l_2) \rangle
| FAssNull:
   \llbracket P,E \vdash \langle e_1,s_0 \rangle \Rightarrow \langle null,s_1 \rangle; P,E \vdash \langle e_2,s_1 \rangle \Rightarrow \langle Val\ v,s_2 \rangle \ \rrbracket \Longrightarrow
   P,E \vdash \langle e_1 \cdot F\{Cs\} := e_2, s_0 \rangle \Rightarrow \langle THROW\ NullPointer, s_2 \rangle
| FAssThrow1:
   P,E \vdash \langle e_1,s_0 \rangle \Rightarrow \langle throw \ e',s_1 \rangle \Longrightarrow
   P,E \vdash \langle e_1 \cdot F\{Cs\} := e_2, s_0 \rangle \Rightarrow \langle throw \ e', s_1 \rangle
```

```
| FAssThrow2:
   \llbracket P,E \vdash \langle e_1,s_0 \rangle \Rightarrow \langle Val \ v,s_1 \rangle; \ P,E \vdash \langle e_2,s_1 \rangle \Rightarrow \langle throw \ e',s_2 \rangle \ \rrbracket
   \implies P,E \vdash \langle e_1 \cdot F\{Cs\} := e_2, s_0 \rangle \Rightarrow \langle throw \ e', s_2 \rangle
| CallObjThrow:
   P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle throw \ e',s_1 \rangle \Longrightarrow
   P,E \vdash \langle Call \ e \ Copt \ M \ es,s_0 \rangle \Rightarrow \langle throw \ e',s_1 \rangle
\mid CallParamsThrow:
   \llbracket P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle Val\ v,s_1 \rangle;\ P,E \vdash \langle es,s_1 \rangle\ [\Rightarrow]\ \langle map\ Val\ vs\ @\ throw\ ex\ \#\ es',s_2 \rangle
     \implies P,E \vdash \langle Call \ e \ Copt \ M \ es,s_0 \rangle \Rightarrow \langle throw \ ex,s_2 \rangle
| Call:
   \llbracket P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ref(a,Cs),s_1 \rangle; P,E \vdash \langle ps,s_1 \rangle \models \rfloor \langle map\ Val\ vs,(h_2,l_2) \rangle;
        h_2 \ a = Some(C,S); \ P \vdash last \ Cs \ has \ least \ M = (Ts',T',pns',body') \ via \ Ds;
        P \vdash (C, Cs@_pDs) \text{ selects } M = (Ts, T, pns, body) \text{ via } Cs'; \text{ length } vs = \text{ length } pns;
        P \vdash Ts \ Casts \ vs \ to \ vs'; \ l_2' = [this \mapsto Ref \ (a, Cs'), \ pns[\mapsto] vs'];
        new\text{-}body = (\textit{case } T' \textit{ of Class } D \Rightarrow (|D|)body \quad | \text{ - } \Rightarrow \textit{body});
        P, E(this \mapsto Class(last \ Cs'), \ pns[\mapsto] Ts) \vdash \langle new-body, (h_2, l_2') \rangle \Rightarrow \langle e', (h_3, l_3) \rangle \ | 
   \implies P,E \vdash \langle e \cdot M(ps), s_0 \rangle \Rightarrow \langle e', (h_3, l_2) \rangle
| StaticCall:
   \llbracket P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ref(a,Cs),s_1 \rangle; P,E \vdash \langle ps,s_1 \rangle \models | \langle map\ Val\ vs,(h_2,l_2) \rangle;
        P \vdash Path (last Cs) \text{ to } C \text{ unique}; P \vdash Path (last Cs) \text{ to } C \text{ via } Cs'';
        P \vdash C \text{ has least } M = (Ts, T, pns, body) \text{ via } Cs'; Ds = (Cs@_pCs')@_pCs';
        length vs = length pns; P \vdash Ts Casts vs to vs';
        l_2' = [this \mapsto Ref (a,Ds), pns[\mapsto]vs'];
        P, E(this \mapsto Class(last\ Ds),\ pns[\mapsto]\ Ts) \vdash \langle body, (h_2, l_2') \rangle \Rightarrow \langle e', (h_3, l_3) \rangle \ |
   \implies P,E \vdash \langle e \cdot (C::)M(ps),s_0 \rangle \Rightarrow \langle e',(h_3,l_2) \rangle
| CallNull:
   \llbracket P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle null,s_1 \rangle; P,E \vdash \langle es,s_1 \rangle \models \langle map\ Val\ vs,s_2 \rangle \rrbracket
   \implies P,E \vdash \langle Call \ e \ Copt \ M \ es,s_0 \rangle \Rightarrow \langle THROW \ NullPointer,s_2 \rangle
   \llbracket P, E(V \mapsto T) \vdash \langle e_0, (h_0, l_0(V := None)) \rangle \Rightarrow \langle e_1, (h_1, l_1) \rangle \rrbracket \Longrightarrow
   P,E \vdash \langle \{V:T; e_0\}, (h_0, l_0) \rangle \Rightarrow \langle e_1, (h_1, l_1(V:=l_0\ V)) \rangle
   \llbracket P,E \vdash \langle e_0,s_0 \rangle \Rightarrow \langle Val\ v,s_1 \rangle;\ P,E \vdash \langle e_1,s_1 \rangle \Rightarrow \langle e_2,s_2 \rangle \ \rrbracket
   \implies P,E \vdash \langle e_0;;e_1,s_0 \rangle \Rightarrow \langle e_2,s_2 \rangle
| SeqThrow:
   P,E \vdash \langle e_0,s_0 \rangle \Rightarrow \langle throw \ e,s_1 \rangle \Longrightarrow
   P,E \vdash \langle e_0;;e_1,s_0 \rangle \Rightarrow \langle throw \ e,s_1 \rangle
```

$$| CondT: | P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle true,s_1 \rangle; P,E \vdash \langle e_1,s_1 \rangle \Rightarrow \langle e',s_2 \rangle |$$

$$\Rightarrow P,E \vdash \langle if \ (e) \ e_1 \ else \ e_2,s_0 \rangle \Rightarrow \langle e',s_2 \rangle |$$

$$| CondF: | P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle false,s_1 \rangle; P,E \vdash \langle e_2,s_1 \rangle \Rightarrow \langle e',s_2 \rangle |$$

$$\Rightarrow P,E \vdash \langle if \ (e) \ e_1 \ else \ e_2,s_0 \rangle \Rightarrow \langle e',s_2 \rangle |$$

$$| CondThrow: P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle throw \ e',s_1 \rangle \Rightarrow P,E \vdash \langle if \ (e) \ e_1 \ else \ e_2,s_0 \rangle \Rightarrow \langle throw \ e',s_1 \rangle |$$

$$| WhileF: P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle false,s_1 \rangle \Rightarrow P,E \vdash \langle while \ (e) \ c,s_0 \rangle \Rightarrow \langle unit,s_1 \rangle |$$

$$| WhileT: | P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle true,s_1 \rangle; P,E \vdash \langle c,s_1 \rangle \Rightarrow \langle Val \ v_1,s_2 \rangle; P,E \vdash \langle while \ (e) \ c,s_2 \rangle \Rightarrow \langle e_3,s_3 \rangle |$$

$$| WhileCondThrow: P,E \vdash \langle while \ (e) \ c,s_0 \rangle \Rightarrow \langle throw \ e',s_1 \rangle |$$

$$| P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle throw \ e',s_1 \rangle \Rightarrow P,E \vdash \langle while \ (e) \ c,s_0 \rangle \Rightarrow \langle throw \ e',s_2 \rangle |$$

$$| WhileBodyThrow: | P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle true,s_1 \rangle; P,E \vdash \langle c,s_1 \rangle \Rightarrow \langle throw \ e',s_2 \rangle |$$

$$| Throw: P,E \vdash \langle while \ (e) \ c,s_0 \rangle \Rightarrow \langle throw \ e',s_2 \rangle |$$

$$| ThrowNull: P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle throw \ e',s_1 \rangle \Rightarrow P,E \vdash \langle throw \ e,s_0 \rangle \Rightarrow \langle throw \ e',s_1 \rangle \Rightarrow P,E \vdash \langle throw \ e,s_0 \rangle \Rightarrow \langle throw \ e',s_1 \rangle \Rightarrow P,E \vdash \langle throw \ e,s_0 \rangle \Rightarrow \langle throw \ e',s_1 \rangle \Rightarrow P,E \vdash \langle throw \ e,s_0 \rangle \Rightarrow \langle throw \ e',s_1 \rangle \Rightarrow P,E \vdash \langle throw \ e,s_0 \rangle \Rightarrow \langle throw \ e',s_1 \rangle \Rightarrow P,E \vdash \langle throw \ e,s_0 \rangle \Rightarrow \langle throw \ e',s_1 \rangle \Rightarrow P,E \vdash \langle throw \ e,s_0 \rangle \Rightarrow \langle throw \ e',s_1 \rangle \Rightarrow P,E \vdash \langle throw \ e,s_0 \rangle \Rightarrow \langle throw \ e',s_1 \rangle \Rightarrow P,E \vdash \langle throw \ e,s_0 \rangle \Rightarrow \langle throw \ e',s_1 \rangle \Rightarrow P,E \vdash \langle throw \ e,s_0 \rangle \Rightarrow \langle throw \ e',s_1 \rangle \Rightarrow P,E \vdash \langle throw \ e,s_0 \rangle \Rightarrow \langle throw \ e',s_1 \rangle \Rightarrow P,E \vdash \langle throw \ e,s_0 \rangle \Rightarrow \langle throw \ e',s_1 \rangle \Rightarrow P,E \vdash \langle throw \ e,s_0 \rangle \Rightarrow \langle throw \ e',s_1 \rangle \Rightarrow P,E \vdash \langle throw \ e,s_0 \rangle \Rightarrow \langle throw \ e',s_1 \rangle \Rightarrow P,E \vdash \langle throw \ e,s_0 \rangle \Rightarrow \langle throw \ e',s_1 \rangle \Rightarrow P,E \vdash \langle throw \ e,s_0 \rangle \Rightarrow \langle throw \ e',s_1 \rangle \Rightarrow P,E \vdash \langle throw \ e,s_0 \rangle \Rightarrow \langle throw \ e',s_1 \rangle \Rightarrow P,E \vdash \langle throw \ e,s_0 \rangle \Rightarrow \langle throw \ e',s_1 \rangle \Rightarrow P,E \vdash \langle throw \ e,s_0 \rangle \Rightarrow \langle throw \ e',s_1 \rangle \Rightarrow P,E \vdash \langle throw \ e,s_0 \rangle \Rightarrow \langle throw \ e',s_1 \rangle \Rightarrow P,E \vdash \langle throw \ e,s_0 \rangle \Rightarrow \langle throw \ e',s_1 \rangle \Rightarrow P,E \vdash \langle throw \ e',s_1 \rangle \Rightarrow P,E \vdash \langle t$$

| ConsThrow:

```
P,E \vdash \langle e, s_0 \rangle \Rightarrow \langle throw \ e', s_1 \rangle \Longrightarrow P,E \vdash \langle e\#es, s_0 \rangle \ [\Rightarrow] \langle throw \ e' \# es, s_1 \rangle
```

lemmas eval-evals-induct = eval-evals.induct [split-format (complete)] **and** eval-evals-inducts = eval-evals.inducts [split-format (complete)]

```
inductive-cases eval-cases [cases set]:
```

$$P,E \vdash \langle new \ C,s \rangle \Rightarrow \langle e',s' \rangle$$

$$P,E \vdash \langle Cast \ C \ e,s \rangle \Rightarrow \langle e',s' \rangle$$

$$P,E \vdash \langle (C) \ e,s \rangle \Rightarrow \langle e',s' \rangle$$

$$P,E \vdash \langle Val \ v,s \rangle \Rightarrow \langle e',s' \rangle$$

$$P,E \vdash \langle Var \ V,s \rangle \Rightarrow \langle e',s' \rangle$$

$$P,E \vdash \langle Var \ V,s \rangle \Rightarrow \langle e',s' \rangle$$

$$P,E \vdash \langle Var \ V,s \rangle \Rightarrow \langle e',s' \rangle$$

$$P,E \vdash \langle Var \ V,s \rangle \Rightarrow \langle e',s' \rangle$$

$$P,E \vdash \langle Var \ V,s \rangle \Rightarrow \langle e',s' \rangle$$

$$P,E \vdash \langle Var \ V,s \rangle \Rightarrow \langle var \ V,s \rangle \Rightarrow \langle var \ V,s \rangle$$

$$P,E \vdash \langle var \ V,s \rangle \Rightarrow \langle var \ V,s \rangle \Rightarrow \langle var \ V,s \rangle$$

$$P,E \vdash \langle var \ V,s \rangle \Rightarrow \langle var \ V,s \rangle \Rightarrow \langle var \ V,s \rangle$$

$$P,E \vdash \langle var \ V,s \rangle \Rightarrow \langle var \ V,s \rangle \Rightarrow \langle var \ V,s \rangle$$

$$P,E \vdash \langle var \ V,s \rangle \Rightarrow \langle var \ V,s \rangle \Rightarrow \langle var \ V,s \rangle$$

$$P,E \vdash \langle var \ V,s \rangle \Rightarrow \langle var \ V,s \rangle \Rightarrow \langle var \ V,s \rangle$$

$$P,E \vdash \langle var \ V,s \rangle \Rightarrow \langle var \ V,s \rangle \Rightarrow \langle var \ V,s \rangle$$

$$P,E \vdash \langle var \ V,s \rangle \Rightarrow \langle var \ V,s \rangle \Rightarrow \langle var \ V,s \rangle$$

$$P,E \vdash \langle var \ V,s \rangle \Rightarrow \langle var \ V,s \rangle \Rightarrow \langle var \ V,s \rangle$$

$$P,E \vdash \langle var \ V,s \rangle \Rightarrow \langle var \ V,s \rangle \Rightarrow \langle var \ V,s \rangle$$

$$P,E \vdash \langle var \ V,s \rangle \Rightarrow \langle var \ V,s \rangle \Rightarrow \langle var \ V,s \rangle$$

$$P,E \vdash \langle var \ V,s \rangle \Rightarrow \langle var \ V,s \rangle \Rightarrow \langle var \ V,s \rangle$$

$$P,E \vdash \langle var \ V,s \rangle \Rightarrow \langle var \ V,s \rangle \Rightarrow \langle var \ V,s \rangle$$

$$P,E \vdash \langle var \ V,s \rangle \Rightarrow \langle var \ V,s \rangle \Rightarrow \langle var \ V,s \rangle$$

$$P,E \vdash \langle var \ V,s \rangle \Rightarrow \langle var \ V,s \rangle \Rightarrow \langle var \ V,s \rangle$$

$$P,E \vdash \langle var \ V,s \rangle \Rightarrow \langle var \ V,s \rangle \Rightarrow \langle var \ V,s \rangle$$

$$P,E \vdash \langle var \ V,s \rangle \Rightarrow \langle var \ V,s \rangle \Rightarrow \langle var \ V,s \rangle$$

$$P,E \vdash \langle var \ V,s \rangle \Rightarrow \langle var \ V,s \rangle \Rightarrow \langle var \ V,s \rangle$$

$$P,E \vdash \langle var \ V,s \rangle \Rightarrow \langle var \ V,s \rangle \Rightarrow \langle var \ V,s \rangle$$

$$P,E \vdash \langle var \ V,s \rangle \Rightarrow \langle var \ V,s \rangle \Rightarrow \langle var \ V,s \rangle$$

$$P,E \vdash \langle var \ V,s \rangle \Rightarrow \langle var \ V,s \rangle \Rightarrow \langle var \ V,s \rangle$$

$$P,E \vdash \langle var \ V,s \rangle \Rightarrow \langle var \ V,s \rangle \Rightarrow \langle var \ V,s \rangle$$

$$P,E \vdash \langle var \ V,s \rangle \Rightarrow \langle var \ V,s \rangle \Rightarrow \langle var \ V,s \rangle$$

$$P,E \vdash \langle var \ V,s \rangle \Rightarrow \langle var \ V,s \rangle \Rightarrow \langle var \ V,s \rangle$$

$$P,E \vdash \langle var \ V,s \rangle \Rightarrow \langle var \ V,s \rangle \Rightarrow \langle var \ V,s \rangle$$

$$P,E \vdash \langle var \ V,s \rangle \Rightarrow \langle var \ V,s \rangle \Rightarrow \langle var \ V,s \rangle$$

$$P,E \vdash \langle var \ V,s \rangle \Rightarrow \langle var \ V,s \rangle \Rightarrow \langle var \ V,s \rangle \Rightarrow \langle var \ V,s \rangle$$

$$P,E \vdash \langle var \ V,s \rangle \Rightarrow \langle var \ V,s \rangle$$

inductive-cases evals-cases [cases set]:

$$P,E \vdash \langle [],s \rangle \ [\Rightarrow] \ \langle e',s' \rangle$$

 $P,E \vdash \langle e\#es,s \rangle \ [\Rightarrow] \ \langle e',s' \rangle$

lemma [iff]: finals [] **by**(simp add:finals-def)

12.2 Final expressions

```
definition final :: expr \Rightarrow bool where

final e \equiv (\exists v. \ e = Val \ v) \lor (\exists r. \ e = Throw \ r)

definition finals:: expr \ list \Rightarrow bool where

finals es \equiv (\exists vs. \ es = map \ Val \ vs) \lor (\exists vs \ r \ es'. \ es = map \ Val \ vs @ Throw \ r \ \# \ es')

lemma [simp]: final(Val \ v)

by (simp \ add:final-def)

lemma [simp]: final(throw \ e) = (\exists \ r. \ e = ref \ r)

by (simp \ add:final-def)

lemma finalE: [final \ e; \ \land v. \ e = Val \ v \implies Q; \ \land r. \ e = Throw \ r \implies Q \ ] \implies Q

by (auto \ simp:final-def)
```

```
lemma [iff]: finals (Val v \# es) = finals es
apply(clarsimp simp add:finals-def)
apply(rule iffI)
apply(erule disjE)
 apply simp
 apply(rule disjI2)
 apply clarsimp
 \mathbf{apply}(\mathit{case-tac}\ \mathit{vs})
 apply simp
apply fastforce
apply(erule \ disjE)
apply (rule disjI1)
apply clarsimp
apply(rule disjI2)
apply clarsimp
apply(rule-tac\ x = v \# vs\ in\ exI)
apply simp
done
lemma finals-app-map[iff]: finals (map\ Val\ vs\ @\ es) = finals\ es
\mathbf{by}(induct\text{-}tac\ vs,\ auto)
lemma [iff]: finals (map Val vs)
using finals-app-map[of vs []]by(simp)
lemma [iff]: finals (throw e \# es) = (\exists r. e = ref r)
apply(simp add:finals-def)
apply(rule iffI)
apply clarsimp
apply(case-tac \ vs)
 apply simp
apply fastforce
{\bf apply} \ \textit{fastforce}
done
lemma not-finals-ConsI: \neg final e \Longrightarrow \neg finals(e \# e s)
apply(auto simp add:finals-def final-def)
apply(case-tac \ vs)
apply auto
done
lemma eval-final: P,E \vdash \langle e,s \rangle \Rightarrow \langle e',s' \rangle \Longrightarrow final \ e'
and evals-final: P,E \vdash \langle es,s \rangle \ [\Rightarrow] \ \langle es',s' \rangle \Longrightarrow finals \ es'
```

```
lemma eval-lcl-incr: P,E \vdash \langle e,(h_0,l_0) \rangle \Rightarrow \langle e',(h_1,l_1) \rangle \Longrightarrow dom \ l_0 \subseteq dom \ l_1
and evals-lcl-incr: P,E \vdash \langle es,(h_0,l_0)\rangle \Rightarrow \langle es',(h_1,l_1)\rangle \Rightarrow dom\ l_0 \subseteq dom\ l_1
by (induct rule:eval-evals-inducts) (auto simp del:fun-upd-apply)
     Only used later, in the small to big translation, but is already a good
sanity check:
lemma eval-finalId: final e \Longrightarrow P, E \vdash \langle e, s \rangle \Rightarrow \langle e, s \rangle
by (erule finalE) (fastforce intro: eval-evals.intros)+
lemma eval-finalsId:
assumes finals: finals es shows P,E \vdash \langle es,s \rangle \ [\Rightarrow] \ \langle es,s \rangle
  using finals
proof (induct es type: list)
  case Nil show ?case by (rule eval-evals.intros)
next
  case (Cons\ e\ es)
  have hyp: finals es \Longrightarrow P, E \vdash \langle es, s \rangle \ [ \Rightarrow ] \ \langle es, s \rangle
   and finals: finals (e \# es) by fact+
  show P,E \vdash \langle e \# es,s \rangle \ [\Rightarrow] \langle e \# es,s \rangle
  proof cases
    assume final e
    thus ?thesis
    proof (cases rule: finalE)
      \mathbf{fix}\ v\ \mathbf{assume}\ e{:}\ e = \mathit{Val}\ v
       have P,E \vdash \langle Val \ v,s \rangle \Rightarrow \langle Val \ v,s \rangle by (simp add: eval-finalId)
       moreover from finals e have P,E \vdash \langle es,s \rangle \Rightarrow \langle es,s \rangle by (fast intro:hyp)
       ultimately have P,E \vdash \langle Val \ v \# es, s \rangle \ [\Rightarrow] \ \langle Val \ v \# es, s \rangle
         by (rule eval-evals.intros)
       with e show ?thesis by simp
    next
       \mathbf{fix} \ a \ \mathbf{assume} \ e : \ e = Throw \ a
      have P,E \vdash \langle Throw \ a,s \rangle \Rightarrow \langle Throw \ a,s \rangle by (simp add: eval-finalId)
      hence P,E \vdash \langle Throw \ a\#es,s \rangle \ [\Rightarrow] \ \langle Throw \ a\#es,s \rangle \ by (rule \ eval-evals.intros)
       with e show ?thesis by simp
    qed
  next
    assume \neg final e
    with not-finals-ConsI finals have False by blast
    thus ?thesis ..
  qed
qed
```

lemma

```
\begin{array}{l} eval\text{-}preserves\text{-}obj\text{:}P,E \vdash \langle e,(h,l)\rangle \Rightarrow \langle e',(h',l')\rangle \Longrightarrow (\bigwedge S.\ h\ a = Some(D,S))\\ \Longrightarrow \exists\ S'.\ h'\ a = Some(D,S'))\\ \textbf{and}\ evals\text{-}preserves\text{-}obj\text{:}P,E \vdash \langle es,(h,l)\rangle\ [\Rightarrow]\ \langle es',(h',l')\rangle\\ \Longrightarrow (\bigwedge S.\ h\ a = Some(D,S) \Longrightarrow \exists\ S'.\ h'\ a = Some(D,S'))\\ \textbf{by}(induct\ rule:eval\text{-}evals\text{-}inducts)(fastforce\ dest:new\text{-}Addr\text{-}SomeD)+\\ \end{array}
```

end

13 Small Step Semantics

theory SmallStep imports Syntax State begin

13.1 Some pre-definitions

```
fun blocks :: vname list \times ty list \times val list \times expr \Rightarrow expr
where
 blocks-Cons:blocks(V \# Vs, T \# Ts, v \# vs, e) = \{V:T := Val v; blocks(Vs, Ts, vs, e)\}
 blocks-Nil: blocks([],[],[],e) = e
lemma blocks-old-induct:
fixes P :: vname \ list \Rightarrow ty \ list \Rightarrow val \ list \Rightarrow expr \Rightarrow bool
shows
  \llbracket \bigwedge aj \ ak \ al. \ P \ \llbracket \ (aj \# ak) \ al; \bigwedge ad \ ae \ a \ b. \ P \ \llbracket \ (ad \# ae) \ a \ b; 
  \bigwedge V Vs a b. P (V # Vs) [] a b; \bigwedge V Vs T Ts aw. P (V # Vs) (T # Ts) [] aw;
  \bigwedge V Vs T Ts v vs e. P Vs Ts vs e \Longrightarrow P (V # Vs) (T # Ts) (v # vs) e; \bigwedge e. P
[] [] [] e]
  \implies P \ u \ v \ w \ x
by (induction-schema) (pat-completeness, lexicographic-order)
lemma [simp]:
  \llbracket \text{ size } vs = \text{ size } Vs; \text{ size } Ts = \text{ size } Vs \rrbracket \implies fv(blocks(Vs, Ts, vs, e)) = fv \ e - \text{ set } Vs
apply(induct rule:blocks-old-induct)
apply simp-all
apply blast
done
definition assigned :: vname \Rightarrow expr \Rightarrow bool where
  assigned V e \equiv \exists v e'. e = (V := Val v;; e')
```

13.2 The rules

```
inductive\text{-}set
```

```
red :: prog \Rightarrow (env \times (expr \times state) \times (expr \times state)) set

and reds :: prog \Rightarrow (env \times (expr \ list \times state) \times (expr \ list \times state)) set

and red' :: prog \Rightarrow env \Rightarrow expr \Rightarrow state \Rightarrow expr \Rightarrow state \Rightarrow bool
```

```
(\langle -, - \vdash ((1\langle -, /- \rangle) \rightarrow / (1\langle -, /- \rangle)) \rangle [51, 0, 0, 0, 0] 81)
   and reds' :: prog \Rightarrow env \Rightarrow expr \ list \Rightarrow state \Rightarrow expr \ list \Rightarrow state \Rightarrow bool
               (\langle -, - \vdash ((1\langle -, /- \rangle)) [\rightarrow] / (1\langle -, /- \rangle)) \rangle [51, 0, 0, 0, 0] 81)
   for P :: prog
where
   P,E \vdash \langle e,s \rangle \rightarrow \langle e',s' \rangle \equiv (E,(e,s), e',s') \in red P
|P,E \vdash \langle es,s \rangle [\rightarrow] \langle es',s' \rangle \equiv (E,(es,s), es',s') \in reds P
\mid RedNew:
   \llbracket new-Addr \ h = Some \ a; \ h' = h(a \mapsto (C,Collect \ (init-obj \ P \ C))) \ \rrbracket
   \implies P,E \vdash \langle new \ C, (h,l) \rangle \rightarrow \langle ref \ (a,[C]), (h',l) \rangle
\mid RedNewFail:
   new-Addr h = None \Longrightarrow
   P,E \vdash \langle new \ C, \ (h,l) \rangle \rightarrow \langle THROW \ OutOfMemory, \ (h,l) \rangle
| Static CastRed:
   P,E \vdash \langle e,s \rangle \rightarrow \langle e',s' \rangle \Longrightarrow
   P,E \vdash \langle (C)e, s \rangle \rightarrow \langle (C)e', s' \rangle
\mid RedStaticCastNull:
   P,E \vdash \langle (|C|) null, s \rangle \rightarrow \langle null, s \rangle
\mid RedStaticUpCast:
   \llbracket P \vdash Path \ last \ Cs \ to \ C \ via \ Cs'; \ Ds = Cs@_nCs' \ \rrbracket
   \implies P,E \vdash \langle ((C)(ref(a,Cs)), s \rangle \rightarrow \langle ref(a,Ds), s \rangle
\mid RedStaticDownCast:
   P,E \vdash \langle (C)(ref (a,Cs@[C]@Cs')), s \rangle \rightarrow \langle ref (a,Cs@[C]), s \rangle
\mid RedStaticCastFail:
  \llbracket C \notin set \ Cs; \ \neg \ P \vdash (last \ Cs) \preceq^* \ C \rrbracket
   \implies P,E \vdash \langle (C)(ref(a,Cs)), s \rangle \rightarrow \langle THROW\ ClassCast, s \rangle
| DynCastRed:
   P,E \vdash \langle e,s \rangle \rightarrow \langle e',s' \rangle \Longrightarrow
   P,E \vdash \langle Cast \ C \ e, \ s \rangle \rightarrow \langle Cast \ C \ e', \ s' \rangle
\mid RedDynCastNull:
   P,E \vdash \langle Cast \ C \ null, \ s \rangle \rightarrow \langle null, s \rangle
\mid RedStaticUpDynCast:
  \llbracket P \vdash Path \ last \ Cs \ to \ C \ unique; \ P \vdash Path \ last \ Cs \ to \ C \ via \ Cs'; \ Ds = Cs@_pCs' \ \rrbracket
   \implies P,E \vdash \langle Cast\ C(ref(a,Cs)),s \rangle \rightarrow \langle ref(a,Ds),s \rangle
\mid RedStaticDownDynCast:
   P,E \vdash \langle Cast \ C \ (ref \ (a,Cs@[C]@Cs')), \ s \rangle \rightarrow \langle ref \ (a,Cs@[C]), \ s \rangle
```

```
\mid RedDynCast:
  \llbracket hp \ s \ a = Some(D,S); P \vdash Path D \ to \ C \ via \ Cs'; \rrbracket
      P \vdash Path \ D \ to \ C \ unique \ ]
   \implies P,E \vdash \langle Cast \ C \ (ref \ (a,Cs)), \ s \rangle \rightarrow \langle ref \ (a,Cs'), \ s \rangle
\mid RedDynCastFail:
    \llbracket hp \ s \ a = Some(D,S); \neg P \vdash Path \ D \ to \ C \ unique;
      \neg P \vdash Path\ last\ Cs\ to\ C\ unique;\ C \notin set\ Cs\ ]
   \implies P,E \vdash \langle Cast \ C \ (ref \ (a,Cs)), \ s \rangle \rightarrow \langle null, \ s \rangle
\mid BinOpRed1:
    P,E \vdash \langle e,s \rangle \rightarrow \langle e',s' \rangle \Longrightarrow
   P,E \vdash \langle e \ \textit{``bop''} \ e_2, \ s \rangle \rightarrow \langle e' \ \textit{``bop''} \ e_2, \ s' \rangle
| BinOpRed2:
    P,E \vdash \langle e,s \rangle \rightarrow \langle e',s' \rangle \Longrightarrow
   P,E \vdash \langle (Val \ v_1) \ \&bop \ e, \ s \rangle \rightarrow \langle (Val \ v_1) \ \&bop \ e', \ s' \rangle
\mid RedBinOp:
   binop(bop, v_1, v_2) = Some \ v \Longrightarrow
    P,E \vdash \langle (Val \ v_1) \ \langle bop \rangle \ (Val \ v_2), \ s \rangle \rightarrow \langle Val \ v,s \rangle
\mid Red Var:
   lcl\ s\ V = Some\ v \Longrightarrow
   P,E \vdash \langle Var \ V,s \rangle \rightarrow \langle Val \ v,s \rangle
\mid LAssRed:
    P,E \vdash \langle e,s \rangle \rightarrow \langle e',s' \rangle \Longrightarrow
   P,E \vdash \langle V := e,s \rangle \rightarrow \langle V := e',s' \rangle
\mid RedLAss:
    \llbracket E \ V = Some \ T; \ P \vdash T \ casts \ v \ to \ v' \rrbracket \Longrightarrow
    P,E \vdash \langle V := (Val\ v),(h,l)\rangle \rightarrow \langle Val\ v',(h,l(V \mapsto v'))\rangle
| FAccRed:
   P,E \vdash \langle e,s \rangle \rightarrow \langle e',s' \rangle \Longrightarrow
   P,E \vdash \langle e \cdot F\{Cs\}, s \rangle \rightarrow \langle e' \cdot F\{Cs\}, s' \rangle
\mid RedFAcc:
    \llbracket hp \ s \ a = Some(D,S); \ Ds = Cs'@_pCs; \ (Ds,fs) \in S; \ fs \ F = Some \ v \ \rrbracket
   \implies P,E \vdash \langle (ref (a,Cs')) \cdot F\{Cs\}, s \rangle \rightarrow \langle Val v,s \rangle
RedFAccNull:
    P,E \vdash \langle null \cdot F\{Cs\}, s \rangle \rightarrow \langle THROW\ NullPointer, s \rangle
\mid FAssRed1:
   P,E \vdash \langle e,s \rangle \rightarrow \langle e',s' \rangle \Longrightarrow
   P,E \vdash \langle e \cdot F\{Cs\} := e_2, s \rangle \rightarrow \langle e' \cdot F\{Cs\} := e_2, s' \rangle
```

```
| FAssRed2:
      P,E \vdash \langle e,s \rangle \rightarrow \langle e',s' \rangle \Longrightarrow
        P,E \vdash \langle Val \ v \cdot F\{Cs\} := e, \ s \rangle \rightarrow \langle Val \ v \cdot F\{Cs\} := e', \ s' \rangle
 | RedFAss:
[h \ a = Some(D,S); P \vdash (last \ Cs') \ has \ least \ F: T \ via \ Cs;
      P \vdash T \ casts \ v \ to \ v'; \ Ds = Cs'@_nCs; \ (Ds,fs) \in S \implies
    P,E \vdash \langle (ref(a,Cs')) \cdot F\{Cs\} := (Val\ v), (h,l) \rangle \rightarrow \langle Val\ v', (h(a \mapsto (D,insert\ (Ds,fs(F \mapsto v')))) \rangle \rightarrow \langle Val\ v', (h(a \mapsto (D,insert\ (Ds,fs(F \mapsto v')))) \rangle \rightarrow \langle Val\ v', (h(a \mapsto (D,insert\ (Ds,fs(F \mapsto v')))) \rangle \rightarrow \langle Val\ v', (h(a \mapsto (D,insert\ (Ds,fs(F \mapsto v')))) \rangle \rightarrow \langle Val\ v', (h(a \mapsto (D,insert\ (Ds,fs(F \mapsto v')))) \rangle \rightarrow \langle Val\ v', (h(a \mapsto (D,insert\ (Ds,fs(F \mapsto v')))) \rangle \rightarrow \langle Val\ v', (h(a \mapsto (D,insert\ (Ds,fs(F \mapsto v')))) \rangle \rightarrow \langle Val\ v', (h(a \mapsto (D,insert\ (Ds,fs(F \mapsto v')))) \rangle \rightarrow \langle Val\ v', (h(a \mapsto (D,insert\ (Ds,fs(F \mapsto v')))) \rangle \rightarrow \langle Val\ v', (h(a \mapsto (D,insert\ (Ds,fs(F \mapsto v')))) \rangle \rightarrow \langle Val\ v', (h(a \mapsto (D,insert\ (Ds,fs(F \mapsto v')))) \rangle \rightarrow \langle Val\ v', (h(a \mapsto (D,insert\ (Ds,fs(F \mapsto v')))) \rangle \rightarrow \langle Val\ v', (h(a \mapsto (D,insert\ (Ds,fs(F \mapsto v')))) \rangle \rightarrow \langle Val\ v', (h(a \mapsto (D,insert\ (Ds,fs(F \mapsto v')))) \rangle \rightarrow \langle Val\ v', (h(a \mapsto (D,insert\ (Ds,fs(F \mapsto v')))) \rangle \rightarrow \langle Val\ v', (h(a \mapsto (D,insert\ (Ds,fs(F \mapsto v')))) \rangle \rightarrow \langle Val\ v', (h(a \mapsto (D,insert\ (Ds,fs(F \mapsto v')))) \rangle \rightarrow \langle Val\ v', (h(a \mapsto (D,insert\ (Ds,fs(F \mapsto v')))) \rangle \rightarrow \langle Val\ v', (h(a \mapsto (D,insert\ (Ds,fs(F \mapsto v')))) \rangle \rightarrow \langle Val\ v', (h(a \mapsto (D,insert\ (Ds,fs(F \mapsto v')))) \rangle \rightarrow \langle Val\ v', (h(a \mapsto (D,insert\ (Ds,fs(F \mapsto v')))) \rangle \rightarrow \langle Val\ v', (h(a \mapsto (D,insert\ (Ds,fs(F \mapsto v')))) \rangle \rightarrow \langle Val\ v', (h(a \mapsto (D,insert\ (Ds,fs(F \mapsto v')))) \rangle \rightarrow \langle Val\ v', (h(a \mapsto (D,insert\ (Ds,fs(F \mapsto v')))) \rangle \rightarrow \langle Val\ v', (h(a \mapsto (D,insert\ (Ds,fs(F \mapsto v')))) \rangle \rightarrow \langle Val\ v', (h(a \mapsto (D,insert\ (Ds,fs(F \mapsto v')))) \rangle \rightarrow \langle Val\ v', (h(a \mapsto (D,insert\ (Ds,fs(F \mapsto v')))) \rangle \rightarrow \langle Val\ v', (h(a \mapsto (D,insert\ (Ds,fs(F \mapsto v')))) \rangle \rightarrow \langle Val\ v', (h(a \mapsto (D,insert\ (Ds,fs(F \mapsto v')))) \rangle \rightarrow \langle Val\ v', (h(a \mapsto (D,insert\ (Ds,fs(F \mapsto v')))) \rangle \rightarrow \langle Val\ v', (h(a \mapsto (D,insert\ (Ds,fs(F \mapsto v')))) \rangle \rightarrow \langle Val\ v', (h(a \mapsto (D,insert\ (Ds,fs(F \mapsto v')))) \rangle \rightarrow \langle Val\ v', (h(a \mapsto (D,insert))) \rangle \rightarrow \langle Val\ v',
(S - \{(Ds,fs)\})),l)\rangle
\mid RedFAssNull:
      P,E \vdash \langle null \cdot F\{Cs\} := Val\ v,\ s \rangle \rightarrow \langle THROW\ NullPointer,\ s \rangle
| CallObj:
      P,E \vdash \langle e,s \rangle \rightarrow \langle e',s' \rangle \Longrightarrow
      P,E \vdash \langle Call\ e\ Copt\ M\ es,s \rangle \rightarrow \langle Call\ e'\ Copt\ M\ es,s' \rangle
| CallParams:
      P,E \vdash \langle es,s \rangle [\rightarrow] \langle es',s' \rangle \Longrightarrow
        P,E \vdash \langle Call \ (Val \ v) \ Copt \ M \ es,s \rangle \rightarrow \langle Call \ (Val \ v) \ Copt \ M \ es',s' \rangle
\mid RedCall:
      \llbracket hp \ s \ a = Some(C,S); P \vdash last \ Cs \ has \ least \ M = (Ts',T',pns',body') \ via \ Ds;
            P \vdash (C, Cs@_pDs) \text{ selects } M = (Ts, T, pns, body) \text{ via } Cs';
           size \ vs = size \ pns; \ size \ Ts = size \ pns;
           bs = blocks(this \#pns, Class(last Cs') \#Ts, Ref(a, Cs') \#vs, body);
           new-body = (case\ T'\ of\ Class\ D \Rightarrow (|D|)bs\ |\ - \Rightarrow bs)
      \implies P,E \vdash \langle (ref (a,Cs)) \cdot M(map \ Val \ vs), \ s \rangle \rightarrow \langle new-body, \ s \rangle
\mid RedStaticCall:
      \[P \vdash Path \ (last \ Cs) \ to \ C \ unique; \ P \vdash Path \ (last \ Cs) \ to \ C \ via \ Cs'';\]
            P \vdash C \text{ has least } M = (Ts, T, pns, body) \text{ via } Cs'; Ds = (Cs@_pCs')@_pCs';
           size \ vs = size \ pns; \ size \ Ts = size \ pns
      \implies P,E \vdash \langle (ref (a,Cs)) \cdot (C::) M(map \ Val \ vs), \ s \rangle \rightarrow
                                   \langle blocks(this \#pns, Class(last\ Ds) \#Ts, Ref(a, Ds) \#vs, body),\ s \rangle
\mid RedCallNull:
      P,E \vdash \langle Call \ null \ Copt \ M \ (map \ Val \ vs),s \rangle \rightarrow \langle THROW \ NullPointer,s \rangle
| BlockRedNone:
     \llbracket P, E(V \mapsto T) \vdash \langle e, (h, l(V := None)) \rangle \rightarrow \langle e', (h', l') \rangle; l' V = None; \neg assigned
 V e \parallel
      \implies P,E \vdash \langle \{V:T; e\}, (h,l) \rangle \rightarrow \langle \{V:T; e'\}, (h',l'(V:=l\ V)) \rangle
\mid BlockRedSome:
      \llbracket P, E(V \mapsto T) \vdash \langle e, (h, l(V := None)) \rangle \rightarrow \langle e', (h', l') \rangle; l' V = Some v;
              \neg assigned V \in \mathbb{I}
      \implies P,E \vdash \langle \{V:T; e\}, (h,l) \rangle \rightarrow \langle \{V:T:=Val\ v; e'\}, (h',l'(V:=l\ V)) \rangle
```

```
| InitBlockRed:
   \llbracket P, E(V \mapsto T) \vdash \langle e, (h, l(V \mapsto v')) \rangle \rightarrow \langle e', (h', l') \rangle; l' V = Some \ v'';
        P \vdash T \ casts \ v \ to \ v' \ ]
    \implies P,E \vdash \langle \{V:T:=Val\ v;\ e\},\ (h,l)\rangle \rightarrow \langle \{V:T:=Val\ v'';\ e'\},\ (h',l'(V:=l)\}
 V))\rangle
\mid RedBlock:
   P,E \vdash \langle \{V:T; \ Val \ u\}, \ s \rangle \rightarrow \langle Val \ u, \ s \rangle
\mid RedInitBlock:
    P \vdash T \ casts \ v \ to \ v' \Longrightarrow P, E \vdash \langle \{V:T:=Val\ v;\ Val\ u\},\ s \rangle \rightarrow \langle Val\ u,\ s \rangle
\mid SeqRed:
   P,E \vdash \langle e,s \rangle \rightarrow \langle e',s' \rangle \Longrightarrow
   P,E \vdash \langle e;;e_2, s \rangle \rightarrow \langle e';;e_2, s' \rangle
\mid RedSeg:
   P,E \vdash \langle (Val\ v);;e_2,\ s \rangle \rightarrow \langle e_2,\ s \rangle
| CondRed:
   P,E \vdash \langle e,s \rangle \rightarrow \langle e',s' \rangle \Longrightarrow
   P,E \vdash \langle if (e) \ e_1 \ else \ e_2, \ s \rangle \rightarrow \langle if (e') \ e_1 \ else \ e_2, \ s' \rangle
\mid RedCondT:
   P,E \vdash \langle if \ (true) \ e_1 \ else \ e_2, \ s \rangle \rightarrow \langle e_1, \ s \rangle
\mid RedCondF:
   P,E \vdash \langle if \ (false) \ e_1 \ else \ e_2, \ s \rangle \rightarrow \langle e_2, \ s \rangle
\mid RedWhile:
   P,E \vdash \langle while(b) \ c, \ s \rangle \rightarrow \langle if(b) \ (c;;while(b) \ c) \ else \ unit, \ s \rangle
| ThrowRed:
   P,E \vdash \langle e,s \rangle \rightarrow \langle e',s' \rangle \Longrightarrow
   P,E \vdash \langle throw \ e, \ s \rangle \rightarrow \langle throw \ e', \ s' \rangle
\mid RedThrowNull:
   P,E \vdash \langle throw\ null,\ s \rangle \rightarrow \langle THROW\ NullPointer,\ s \rangle
| ListRed1:
   P,E \vdash \langle e,s \rangle \rightarrow \langle e',s' \rangle \Longrightarrow
   P,E \vdash \langle e\#es,s \rangle [\rightarrow] \langle e'\#es,s' \rangle
| ListRed2:
   P,E \vdash \langle es,s \rangle [\rightarrow] \langle es',s' \rangle \Longrightarrow
   P,E \vdash \langle Val \ v \ \# \ es,s \rangle \ [\rightarrow] \langle Val \ v \ \# \ es',s' \rangle
```

— Exception propagation

```
DynCastThrow: P,E \vdash \langle Cast \ C \ (Throw \ r), \ s \rangle \rightarrow \langle Throw \ r, \ s \rangle
  StaticCastThrow: P,E \vdash \langle (C)(Throw r), s \rangle \rightarrow \langle Throw r, s \rangle
  BinOpThrow1: P,E \vdash \langle (Throw \ r) \ \langle bop \rangle \ e_2, \ s \rangle \rightarrow \langle Throw \ r, \ s \rangle
  BinOpThrow2: P,E \vdash \langle (Val\ v_1) \ \langle bop \rangle \ (Throw\ r),\ s \rangle \rightarrow \langle Throw\ r,\ s \rangle
  LAssThrow: P.E \vdash \langle V := (Throw \ r), \ s \rangle \rightarrow \langle Throw \ r, \ s \rangle
  FAccThrow: P,E \vdash \langle (Throw \ r) \cdot F\{Cs\}, \ s \rangle \rightarrow \langle Throw \ r, \ s \rangle
  FAssThrow1: P,E \vdash \langle (Throw \ r) \cdot F\{Cs\} := e_2, \ s \rangle \rightarrow \langle Throw \ r,s \rangle
  FAssThrow2: P,E \vdash \langle Val \ v \cdot F \{ Cs \} := (Throw \ r), \ s \rangle \rightarrow \langle Throw \ r, \ s \rangle
  CallThrowObj: P,E \vdash \langle Call \ (Throw \ r) \ Copt \ M \ es, \ s \rangle \rightarrow \langle Throw \ r, \ s \rangle
  CallThrowParams: \llbracket es = map \ Val \ vs @ Throw \ r \# \ es' \rrbracket
   \implies P,E \vdash \langle Call \ (Val \ v) \ Copt \ M \ es, \ s \rangle \rightarrow \langle Throw \ r, \ s \rangle
  BlockThrow: P,E \vdash \langle \{V:T; Throw \ r\}, \ s \rangle \rightarrow \langle Throw \ r, \ s \rangle
  InitBlockThrow: P \vdash T \ casts \ v \ to \ v'
   \implies P,E \vdash \langle \{V:T:=Val\ v;\ Throw\ r\},\ s\rangle \rightarrow \langle Throw\ r,\ s\rangle
  SeqThrow: P,E \vdash \langle (Throw \ r);;e_2,\ s \rangle \rightarrow \langle Throw \ r,\ s \rangle
  CondThrow: P,E \vdash \langle if \ (Throw \ r) \ e_1 \ else \ e_2, \ s \rangle \rightarrow \langle Throw \ r, \ s \rangle
  Throw Throw: P,E \vdash \langle throw(Throw r), s \rangle \rightarrow \langle Throw r, s \rangle
lemmas red-reds-induct = red-reds.induct [split-format (complete)]
  and red-reds-inducts = red-reds.inducts [split-format (complete)]
inductive-cases [elim!]:
 P,E \vdash \langle V := e,s \rangle \rightarrow \langle e',s' \rangle
 P,E \vdash \langle e1;;e2,s \rangle \rightarrow \langle e',s' \rangle
declare Cons-eq-map-conv [iff]
lemma P,E \vdash \langle e,s \rangle \rightarrow \langle e',s' \rangle \Longrightarrow True
and reds-length: P,E \vdash \langle es,s \rangle [\rightarrow] \langle es',s' \rangle \Longrightarrow length \ es = length \ es'
by (induct rule: red-reds.inducts) auto
              The reflexive transitive closure
13.3
definition Red :: prog \Rightarrow env \Rightarrow ((expr \times state) \times (expr \times state)) set
  where Red P E = {((e,s),e',s'). P,E \vdash \langle e,s \rangle \rightarrow \langle e',s' \rangle}
definition Reds :: proq \Rightarrow env \Rightarrow ((expr \ list \times state) \times (expr \ list \times state)) set
   where Reds\ P\ E = \{((es,s),es',s').\ P,E \vdash \langle es,s\rangle\ [\rightarrow]\ \langle es',s'\rangle\}
lemma[simp]: ((e,s),e',s') \in Red\ P\ E = P,E \vdash \langle e,s \rangle \rightarrow \langle e',s' \rangle
by (simp add:Red-def)
lemma[simp]: ((es,s),es',s') \in Reds \ P \ E = P,E \vdash \langle es,s \rangle \ [\rightarrow] \ \langle es',s' \rangle
by (simp add:Reds-def)
```

abbreviation

```
Step :: prog \Rightarrow env \Rightarrow expr \Rightarrow state \Rightarrow expr \Rightarrow state \Rightarrow bool
             (\langle -, - \vdash ((1\langle -, /- \rangle)) \rightarrow */ (1\langle -, /- \rangle)) \rangle [51, 0, 0, 0, 0] 81) where
   P,E \vdash \langle e,s \rangle \to * \langle e',s' \rangle \equiv ((e,s), e',s') \in (Red\ P\ E)^*
abbreviation
   Steps::prog \Rightarrow env \Rightarrow expr\ list \Rightarrow state \Rightarrow expr\ list \Rightarrow state \Rightarrow bool
             (\langle -, - \vdash ((1 \langle -, /- \rangle)) [\rightarrow] */ (1 \langle -, /- \rangle)) \rangle [51, 0, 0, 0, 0] 81) where
   P,E \vdash \langle es,s \rangle \ [\rightarrow] * \langle es',s' \rangle \equiv ((es,s), es',s') \in (Reds \ P \ E)^*
lemma converse-rtrancl-induct-red[consumes 1]:
assumes P,E \vdash \langle e,(h,l) \rangle \rightarrow * \langle e',(h',l') \rangle
and \bigwedge e \ h \ l. R \ e \ h \ l \ e \ h \ l
and \bigwedge e_0 \ h_0 \ l_0 \ e_1 \ h_1 \ l_1 \ e' \ h' \ l'.
         \llbracket P,E \vdash \langle e_0,(h_0,l_0) \rangle \rightarrow \langle e_1,(h_1,l_1) \rangle; R e_1 h_1 l_1 e' h' l' \rrbracket \Longrightarrow R e_0 h_0 l_0 e' h'
shows R e h l e' h' l'
proof -
   { \mathbf{fix} \ s \ s'
     assume reds: P,E \vdash \langle e,s \rangle \rightarrow * \langle e',s' \rangle
         and base: \bigwedge e \ s. R \ e \ (hp \ s) \ (lcl \ s) \ e \ (hp \ s) \ (lcl \ s)
         and IH: \bigwedge e_0 \ s_0 \ e_1 \ s_1 \ e' \ s'.
              \llbracket P,E \vdash \langle e_0, s_0 \rangle \to \langle e_1, s_1 \rangle; R e_1 (hp s_1) (lcl s_1) e' (hp s') (lcl s') \rrbracket
              \implies R \ e_0 \ (hp \ s_0) \ (lcl \ s_0) \ e' \ (hp \ s') \ (lcl \ s')
     from reds have R e (hp s) (lcl s) e' (hp s') (lcl s')
     proof (induct rule:converse-rtrancl-induct2)
       case refl show ?case by(rule base)
     next
        case (step \ e_0 \ s_0 \ e \ s)
        have Red:((e_0,s_0),e,s) \in Red\ P\ E
          and R:R \ e \ (hp \ s) \ (lcl \ s) \ e' \ (hp \ s') \ (lcl \ s') by fact+
        from IH[OF Red[simplified] R] show ?case.
     qed
     }
  with assms show ?thesis by fastforce
qed
lemma steps-length:P,E \vdash \langle es,s \rangle [\rightarrow] * \langle es',s' \rangle \Longrightarrow length \ es = length \ es'
by(induct rule:rtrancl-induct2, auto intro:reds-length)
13.4
             Some easy lemmas
lemma [iff]: \neg P,E \vdash \langle [],s \rangle [\rightarrow] \langle es',s' \rangle
\mathbf{by}(\mathit{blast\ elim}: \mathit{reds.cases})
lemma [iff]: \neg P,E \vdash \langle Val \ v,s \rangle \rightarrow \langle e',s' \rangle
```

```
by(fastforce elim: red.cases)
lemma [iff]: \neg P,E \vdash \langle Throw \ r,s \rangle \rightarrow \langle e',s' \rangle
by(fastforce elim: red.cases)
lemma red-lcl-incr: P,E \vdash \langle e,(h_0,l_0) \rangle \rightarrow \langle e',(h_1,l_1) \rangle \Longrightarrow dom \ l_0 \subseteq dom \ l_1
and P,E \vdash \langle es,(h_0,l_0)\rangle [\rightarrow] \langle es',(h_1,l_1)\rangle \Longrightarrow dom \ l_0 \subseteq dom \ l_1
by (induct rule: red-reds-inducts) (auto simp del:fun-upd-apply)
lemma red-lcl-add: P,E \vdash \langle e,(h,l) \rangle \rightarrow \langle e',(h',l') \rangle \Longrightarrow (\bigwedge l_0. P,E \vdash \langle e,(h,l_0++l) \rangle
\rightarrow \langle e', (h', l_0 + + l') \rangle)
and P,E \vdash \langle es,(h,l) \rangle [\rightarrow] \langle es',(h',l') \rangle \Longrightarrow (\bigwedge l_0. P,E \vdash \langle es,(h,l_0++l) \rangle [\rightarrow] \langle es',(h',l_0++l') \rangle)
proof (induct rule:red-reds-inducts)
  case RedLAss thus ?case by(auto intro:red-reds.intros simp del:fun-upd-apply)
next
  case RedStaticDownCast thus ?case by(fastforce intro:red-reds.intros)
next
  case RedStaticUpDynCast thus ?case by(fastforce intro:red-reds.intros)
next
  case RedStaticDownDynCast thus ?case by(fastforce\ intro:red-reds.intros)
next
  case RedDynCast thus ?case by(fastforce intro:red-reds.intros)
next
  case RedDynCastFail thus ?case by(fastforce intro:red-reds.intros)
next
  case RedFAcc thus ?case by(fastforce intro:red-reds.intros)
next
  case RedFAss thus ?case by (fastforce intro:red-reds.intros)
next
  case RedCall thus ?case by (fastforce intro!:red-reds.RedCall)
next
  case RedStaticCall thus ?case by(fastforce intro:red-reds.intros)
  case (InitBlockRed E V T e h l v' e' h' l' v'' v l_0)
  have IH: \bigwedge l_0. P, E(V \mapsto T) \vdash \langle e, (h, l_0 ++ l(V \mapsto v')) \rangle \rightarrow \langle e', (h', l_0 ++ l') \rangle
    and l'V: l'V = Some \ v'' and casts:P \vdash T \ casts \ v \ to \ v' by fact+
  from IH have IH': P,E(V \mapsto T) \vdash \langle e,(h,(l_0 ++ l)(V \mapsto v')) \rangle \rightarrow \langle e',(h',l_0 ++ l)(V \mapsto v') \rangle
l'\rangle
    by simp
  have (l_0 ++ l')(V := (l_0 ++ l) V) = l_0 ++ l'(V := l V)
    \mathbf{by}(rule\ ext)(simp\ add:map-add-def)
  with red-reds.InitBlockRed[OF IH' - casts] l'V show ?case
    \mathbf{by}(simp\ del:fun-upd-apply)
  case (BlockRedNone \ E \ V \ T \ e \ h \ l \ e' \ h' \ l' \ l_0)
  have IH: \Lambda l_0. P, E(V \mapsto T) \vdash \langle e, (h, l_0 + + l(V := None)) \rangle \rightarrow \langle e', (h', l_0 + + l(V := None)) \rangle
```

```
l'\rangle
    and l'V: l' V = None and unass: \neg assigned V e by fact+
  have l_0(V := None) ++ l(V := None) = (l_0 ++ l)(V := None)
   \mathbf{by}(simp\ add:fun-eq-iff\ map-add-def)
  hence IH': P, E(V \mapsto T) \vdash \langle e, (h, (l_0++l)(V := None)) \rangle \rightarrow \langle e', (h', l_0(V := None)) \rangle
None) ++ l')
    using IH[of l_0(V := None)] by simp
  have (l_0(V := None) ++ l')(V := (l_0 ++ l) V) = l_0 ++ l'(V := l V)
    \mathbf{by}(simp\ add:fun-eq-iff\ map-add-def)
  with red-reds.BlockRedNone[OF IH' - unass] l'V show ?case
    \mathbf{by}(simp\ add:\ map-add-def)
  case (BlockRedSome\ E\ V\ T\ e\ h\ l\ e'\ h'\ l'\ v\ l_0)
  have IH: \bigwedge l_0. P, E(V \mapsto T) \vdash \langle e, (h, l_0 ++ l(V := None)) \rangle \rightarrow \langle e', (h', l_0 ++ l(V := None)) \rangle
    and l'V: l'V = Some v and unass: \neg assigned V e by fact+
  have l_0(V := None) ++ l(V := None) = (l_0 ++ l)(V := None)
    \mathbf{by}(simp\ add:fun-eq-iff\ map-add-def)
  hence IH': P, E(V \mapsto T) \vdash \langle e, (h, (l_0++l)(V := None)) \rangle \rightarrow \langle e', (h', l_0(V := None)) \rangle
None ++ l')
    using IH[of l_0(V := None)] by simp
  have (l_0(V := None) ++ l')(V := (l_0 ++ l) V) = l_0 ++ l'(V := l V)
    \mathbf{by}(simp\ add:fun-eq-iff\ map-add-def)
  with red-reds.BlockRedSome[OF IH' - unass] l'V show ?case
    \mathbf{by}(simp\ add:map-add-def)
next
qed (simp-all add:red-reds.intros)
lemma Red-lcl-add:
assumes P, E \vdash \langle e, (h, l) \rangle \rightarrow * \langle e', (h', l') \rangle shows P, E \vdash \langle e, (h, l_0 + + l) \rangle \rightarrow * \langle e', (h', l_0 + + l') \rangle
using assms
proof(induct rule:converse-rtrancl-induct-red)
 case 1 thus ?case by simp
  case 2 thus ?case
    by(auto dest: red-lcl-add intro: converse-rtrancl-into-rtrancl simp:Red-def)
qed
lemma
red-preserves-obj: \llbracket P,E \vdash \langle e,(h,l) \rangle \rightarrow \langle e',(h',l') \rangle; h \ a = Some(D,S) \rrbracket
 \implies \exists S'. \ h' \ a = Some(D,S')
and reds-preserves-obj: [P,E \vdash \langle es,(h,l) \rangle \rightarrow ] \langle es',(h',l') \rangle; h \ a = Some(D,S)
  \implies \exists S'. \ h' \ a = Some(D,S')
by (induct rule:red-reds-inducts) (auto dest:new-Addr-SomeD)
```

14 System Classes

theory SystemClasses imports Exceptions begin

This theory provides definitions for the system exceptions.

```
 \begin{aligned} & \textbf{definition} \ \textit{NullPointerC} :: \textit{cdecl} \ \textbf{where} \\ & \textit{NullPointerC} \equiv (\textit{NullPointer}, ([],[],[])) \end{aligned} \\ & \textbf{definition} \ \textit{ClassCastC} :: \textit{cdecl} \ \textbf{where} \\ & \textit{ClassCastC} \equiv (\textit{ClassCast}, ([],[],[])) \end{aligned} \\ & \textbf{definition} \ \textit{OutOfMemoryC} :: \textit{cdecl} \ \textbf{where} \\ & \textit{OutOfMemoryC} \equiv (\textit{OutOfMemory}, ([],[],[])) \end{aligned} \\ & \textbf{definition} \ \textit{SystemClasses} :: \textit{cdecl} \ \textit{list} \ \textbf{where} \\ & \textit{SystemClasses} \equiv [\textit{NullPointerC}, \ \textit{ClassCastC}, \ \textit{OutOfMemoryC}] \end{aligned}
```

end

15 The subtype relation

theory TypeRel imports SubObj begin

```
inductive
```

```
\begin{array}{ll} \textit{widen} & :: \textit{prog} \Rightarrow \textit{ty} \Rightarrow \textit{ty} \Rightarrow \textit{bool} \; ( \textit{``-} \vdash \textit{-} \leq \textit{-} ) & [71,71,71] \; \textit{70} ) \\ \textbf{for} \; P :: \textit{prog} \\ \textbf{where} \\ \textit{widen-refl}[\textit{iff}] : \; P \vdash T \leq T \\ | \; \textit{widen-subcls:} \quad P \vdash \textit{Path} \; \textit{C} \; \textit{to} \; \textit{D} \; \textit{unique} \Longrightarrow P \vdash \textit{Class} \; \textit{C} \leq \textit{Class} \; \textit{D} \\ | \; \textit{widen-null}[\textit{iff}] : \; P \vdash \textit{NT} \leq \textit{Class} \; \textit{C} \end{array}
```

abbreviation

```
widens :: prog \Rightarrow ty \ list \Rightarrow ty \ list \Rightarrow bool
(\(\lambda - \mathbb{H} - [\leq] -\rangle [71,71,71] \(70\)\) where
widens P Ts Ts' \(\equiv \list list-all2 \) (widen P) Ts Ts'
```

inductive-simps [iff]:

```
\begin{array}{l} P \vdash T \leq Void \\ P \vdash T \leq Boolean \\ P \vdash T \leq Integer \\ P \vdash Void \leq T \\ P \vdash Boolean \leq T \\ P \vdash Integer \leq T \\ P \vdash T \leq NT \end{array}
```

lemmas widens-refl [iff] = list-all2-refl [of widen P, OF widen-refl] for P lemmas widens-Cons [iff] = list-all2-Cons1 [of widen P] for P

end

16 Well-typedness of CoreC++ expressions

theory WellType imports Syntax TypeRel begin

16.1 The rules

```
inductive
  WT :: [prog, env, expr , ty ] \Rightarrow bool
           ( \leftarrow, - \vdash - :: \rightarrow [51, 51, 51]50 )
  and WTs :: [prog, env, expr \ list, ty \ list] \Rightarrow bool
           (\leftarrow, -\vdash -[::] \rightarrow [51, 51, 51]50)
  for P :: prog
where
  WTNew:
  is-class P \ C \Longrightarrow
  P,E \vdash new \ C :: Class \ C
\mid WTDynCast:
  \llbracket P,E \vdash e :: Class D; is\text{-}class P C; \rrbracket
     P \vdash Path \ D \ to \ C \ unique \lor (\forall \ Cs. \ \neg \ P \vdash Path \ D \ to \ C \ via \ Cs)
  \implies P,E \vdash Cast \ C \ e :: Class \ C
\mid WTStaticCast:
  \llbracket P,E \vdash e :: Class \ D; \ is\text{-}class \ P \ C; 
     P \vdash Path \ D \ to \ C \ unique \lor
   (P \vdash C \preceq^* D \land (\forall Cs. P \vdash Path \ C \ to \ D \ via \ Cs \longrightarrow Subobjs_R \ P \ C \ Cs)) \ | \!|
  \implies P,E \vdash (C)e :: Class C
\mid WTVal:
  typeof\ v = Some\ T \Longrightarrow
  P,E \vdash Val \ v :: T
\mid WTVar:
  E \ V = Some \ T \Longrightarrow
  P,E \vdash Var \ V :: T
\mid WTBinOp:
  [\![P,E \vdash e_1 :: T_1; P,E \vdash e_2 :: T_2;
      \mathit{case\ bop\ of}\ \mathit{Eq} \Rightarrow \mathit{T}_1 = \mathit{T}_2 \, \land \, \mathit{T} = \mathit{Boolean}
                  \mid Add \Rightarrow T_1 = Integer \land T_2 = Integer \land T = Integer \mid
  \implies P,E \vdash e_1 \ "bop" \ e_2 :: T
| WTLAss:
```

```
\llbracket E \ V = Some \ T; \ P,E \vdash e :: T'; P \vdash T' \leq T \rrbracket
  \implies P,E \vdash V := e :: T
| WTFAcc:
  \llbracket P,E \vdash e :: Class \ C; \ P \vdash C \ has \ least \ F:T \ via \ Cs \rrbracket
  \implies P,E \vdash e \cdot F\{Cs\} :: T
| WTFAss:
  \llbracket P,E \vdash e_1 :: Class \ C; \ P \vdash C \ has \ least \ F:T \ via \ Cs;
     P,E \vdash e_2 :: T'; P \vdash T' \leq T
  \implies P,E \vdash e_1 \cdot F\{Cs\} := e_2 :: T
\mid WTStaticCall:
  \llbracket P,E \vdash e :: Class C'; P \vdash Path C' to C unique; \rrbracket
     P \vdash C \text{ has least } M = (Ts, T, m) \text{ via } Cs; P, E \vdash es [::] Ts'; P \vdash Ts' [\leq] Ts
  \implies P,E \vdash e \cdot (C::)M(es) :: T
\mid WTCall:
  \llbracket P,E \vdash e :: Class \ C; \ P \vdash C \ has \ least \ M = (Ts,T,m) \ via \ Cs;
     P,E \vdash es [::] Ts'; P \vdash Ts' [\leq] Ts 
  \implies P,E \vdash e \cdot M(es) :: T
| WTBlock:
  \llbracket \text{ is-type } P \text{ } T; \text{ } P,E(V \mapsto T) \vdash e :: T' \rrbracket
  \implies P,E \vdash \{V:T; e\} :: T'
\mid WTSeq:
  [\![ P,E \vdash e_1 :: T_1; P,E \vdash e_2 :: T_2 ]\!]
  \implies P,E \vdash e_1;;e_2 :: T_2
| WTCond:
  \llbracket P,E \vdash e :: Boolean; P,E \vdash e_1 :: T; P,E \vdash e_2 :: T \rrbracket
  \implies P,E \vdash if (e) e_1 else e_2 :: T
| WTWhile:
  \llbracket P,E \vdash e :: Boolean; P,E \vdash c :: T \rrbracket
  \implies P,E \vdash while (e) \ c :: Void
| WTThrow:
  P,E \vdash e :: Class \ C \implies
  P,E \vdash throw \ e :: \ Void
— well-typed expression lists
\mid WTNil:
  P,E \vdash [] [::] []
| WTCons:
```

```
\llbracket \ P,E \vdash e :: \ T; \ P,E \vdash es \ [::] \ \mathit{Ts} \ \rrbracket
  \implies P,E \vdash e\#es [::] T\#Ts
declare WT-WTs.intros[intro!] WTNil[iff]
lemmas WT-WTs-induct = WT-WTs.induct [split-format (complete)]
 and WT-WTs-inducts = WT-WTs.inducts [split-format (complete)]
16.2
          Easy consequences
lemma [iff]: (P,E \vdash [] [::] Ts) = (Ts = [])
apply(rule iffI)
apply (auto elim: WTs.cases)
done
lemma [iff]: (P,E \vdash e \# es [::] T \# Ts) = (P,E \vdash e :: T \land P,E \vdash es [::] Ts)
apply(rule iffI)
apply (auto elim: WTs.cases)
done
lemma [iff]: (P,E \vdash (e\#es) [::] Ts) =
 (\exists U \ Us. \ Ts = U \# Us \land P, E \vdash e :: U \land P, E \vdash es [::] \ Us)
apply(rule iffI)
apply (auto elim: WTs.cases)
done
lemma [iff]: \bigwedge Ts. (P,E \vdash es_1 @ es_2 [::] Ts) =
 (\exists \textit{Ts}_1 \textit{Ts}_2. \textit{Ts} = \textit{Ts}_1 @ \textit{Ts}_2 \land \textit{P}, \textit{E} \vdash \textit{es}_1 [::] \textit{Ts}_1 \land \textit{P}, \textit{E} \vdash \textit{es}_2 [::] \textit{Ts}_2)
apply(induct \ es_1 \ type:list)
apply simp
apply clarsimp
apply(erule thin-rl)
apply (rule iffI)
apply clarsimp
apply(rule \ exI)+
 apply(rule\ conjI)
 prefer 2 apply blast
\mathbf{apply} \ simp
apply fastforce
```

done

```
lemma [iff]: P,E \vdash Val\ v :: T = (typeof\ v = Some\ T)
apply(rule iffI)
apply (auto elim: WT.cases)
done
lemma [iff]: P,E \vdash Var\ V :: T = (E\ V = Some\ T)
apply(rule iffI)
apply (auto elim: WT.cases)
done
lemma [iff]: P,E \vdash e_1;;e_2 :: T_2 = (\exists T_1. P,E \vdash e_1::T_1 \land P,E \vdash e_2::T_2)
apply(rule iffI)
apply (auto elim: WT.cases)
done
lemma [iff]: (P,E \vdash \{V:T; e\} :: T') = (is-type P T \land P,E(V \mapsto T) \vdash e :: T')
apply(rule iffI)
apply (auto elim: WT.cases)
done
inductive-cases WT-elim-cases[elim!]:
  P,E \vdash new \ C :: T
  P,E \vdash Cast \ C \ e :: T
  P,E \vdash (C)e :: T
  P,E \vdash e_1 \ll bop \gg e_2 :: T
  P,E \vdash V := e :: T
  P,E \vdash e \cdot F\{Cs\} :: T
  P,E \vdash e \cdot F\{Cs\} := v :: T
  P,E \vdash e \cdot M(ps) :: T
  P,E \vdash e \cdot (C::)M(ps) :: T
  P,E \vdash if(e) e_1 else e_2 :: T
  P,E \vdash while (e) c :: T
  P,E \vdash throw \ e :: T
lemma wt-env-mono:
  P,E \vdash e :: T \Longrightarrow (\bigwedge E'. E \subseteq_m E' \Longrightarrow P,E' \vdash e :: T) and
 P,E \vdash es [::] Ts \Longrightarrow (\bigwedge E'. E \subseteq_m E' \Longrightarrow P,E' \vdash es [::] Ts)
```

```
apply(induct rule: WT-WTs-inducts)
apply(simp add: WTNew)
apply(fastforce simp: WTDynCast)
apply(fastforce\ simp:\ WTStaticCast)
\mathbf{apply}(fastforce\ simp:\ WTVal)
apply(simp add: WTVar map-le-def dom-def)
apply(fastforce simp: WTBinOp)
apply(force simp:map-le-def)
apply(fastforce simp: WTFAcc)
\mathbf{apply}(\mathit{fastforce\ simp}:\ \mathit{WTFAss})
apply(fastforce simp: WTCall)
apply(fastforce simp: WTStaticCall)
apply(fastforce simp: map-le-def WTBlock)
apply(fastforce simp: WTSeq)
apply(fastforce simp: WTCond)
apply(fastforce simp: WTWhile)
apply(fastforce simp: WTThrow)
apply(simp add: WTNil)
apply(simp add: WTCons)
done
lemma WT-fv: P,E \vdash e :: T \Longrightarrow fv \ e \subseteq dom \ E
and P,E \vdash es [::] Ts \Longrightarrow fvs \ es \subseteq dom \ E
\mathbf{apply}(\mathit{induct}\ \mathit{rule} : \mathit{WT-WTs.inducts})
apply(simp-all del: fun-upd-apply)
apply fast+
done
end
```

17 Generic Well-formedness of programs

```
\begin{array}{l} \textbf{theory} \ \ WellForm \\ \textbf{imports} \ \ SystemClasses \ \ TypeRel \ \ WellType \\ \textbf{begin} \end{array}
```

This theory defines global well-formedness conditions for programs but does not look inside method bodies. Well-typing of expressions is defined elsewhere (in theory *WellType*).

```
CoreC++ allows covariant return types  \textbf{type-synonym} \ \textit{wf-mdecl-test} = \textit{prog} \Rightarrow \textit{cname} \Rightarrow \textit{mdecl} \Rightarrow \textit{bool}
```

```
definition wf-fdecl :: prog \Rightarrow fdecl \Rightarrow bool where wf-fdecl P \equiv \lambda(F,T). is-type P T
```

```
definition wf-mdecl :: wf-mdecl-test \Rightarrow wf-mdecl-test where
  wf-mdecl wf-md P C \equiv \lambda(M, Ts, T, mb).
  (\forall T \in set \ Ts. \ is-type \ P \ T) \land is-type \ P \ T \land T \neq NT \land wf-md \ P \ C \ (M,Ts,T,mb)
definition wf-cdecl :: wf-mdecl-test \Rightarrow prog \Rightarrow cdecl \Rightarrow bool where
  wf-cdecl wf-md P \equiv \lambda(C,(Bs,fs,ms)).
  (\forall M \ mthd \ Cs. \ P \vdash C \ has \ M = mthd \ via \ Cs \longrightarrow
                   (\exists mthd' Cs'. P \vdash (C,Cs) has overrider M = mthd' via Cs')) \land
  (\forall f \in set \ fs. \ wf\text{-}fdecl \ P \ f) \land distinct\text{-}fst \ fs \land f
  (\forall m \in set \ ms. \ wf\text{-}mdecl \ wf\text{-}md \ P \ C \ m) \land distinct\text{-}fst \ ms \land 
  (\forall D \in baseClasses Bs.
    \textit{is-class} \ P \ D \ \land \ \neg \ P \vdash D \ \preceq^* \ C \ \land
    (\forall (M, Ts, T, m) \in set \ ms.
       \forall Ts' T' m' Cs. P \vdash D has M = (Ts', T', m') via Cs \longrightarrow
                           Ts' = Ts \wedge P \vdash T < T')
definition wf-syscls :: prog \Rightarrow bool where
  wf-syscls P \equiv sys-xcpts \subseteq set(map\ fst\ P)
definition wf-prog :: wf-mdecl-test \Rightarrow prog \Rightarrow bool where
  wf-prog wf-md P \equiv wf-syscls P \land distinct-fst P \land dist
                           (\forall c \in set \ P. \ wf\text{-}cdecl \ wf\text{-}md \ P \ c)
17.1
             Well-formedness lemmas
lemma class-wf:
  \llbracket class\ P\ C = Some\ c;\ wf-prog\ wf-md\ P \rrbracket \implies wf-cdecl\ wf-md\ P\ (C,c)
apply (unfold wf-prog-def class-def)
apply (fast dest: map-of-SomeD)
done
lemma is-class-xcpt:
  \llbracket C \in sys\text{-}xcpts; wf\text{-}prog wf\text{-}md P \rrbracket \implies is\text{-}class P C
  apply (simp add: wf-prog-def wf-syscls-def is-class-def class-def)
  apply (fastforce intro!: map-of-SomeI)
  done
lemma is-type-pTs:
assumes wf-prog wf-md P and (C,S,fs,ms) \in set P and (M,Ts,T,m) \in set ms
shows set Ts \subseteq types P
proof
  from assms have wf-mdecl wf-md P C (M, Ts, T, m)
```

```
by (unfold wf-prog-def wf-cdecl-def) auto
  hence \forall t \in set \ Ts. \ is-type \ P \ t \ \mathbf{by} \ (unfold \ wf-mdecl-def) \ auto
  moreover fix t assume t \in set Ts
  ultimately have is-type P t by blast
  thus t \in types P..
\mathbf{qed}
17.2
           Well-formedness subclass lemmas
lemma subcls1-wfD:
  \llbracket P \vdash C \prec^1 D; \text{ wf-prog wf-md } P \rrbracket \Longrightarrow D \neq C \land (D,C) \notin (\text{subcls1 } P)^+
\mathbf{apply}(\ \mathit{frule}\ \mathit{r-into-trancl})
apply( drule subcls1D)
\mathbf{apply}(\mathit{clarify})
apply( drule (1) class-wf)
apply( unfold wf-cdecl-def baseClasses-def)
apply(force simp add: reflcl-trancl [THEN sym] simp del: reflcl-trancl)
lemma wf-cdecl-supD:
  \llbracket \textit{wf-cdecl wf-md P } (\textit{C},\textit{Bs},\textit{r}); \textit{D} \in \textit{baseClasses Bs} \rrbracket \Longrightarrow \textit{is-class P D}
by (auto simp: wf-cdecl-def baseClasses-def)
lemma subcls-asym:
  \llbracket \text{ wf-prog wf-md } P; (C,D) \in (\text{subcls1 } P)^+ \rrbracket \Longrightarrow (D,C) \notin (\text{subcls1 } P)^+
\mathbf{apply}(\mathit{erule}\ \mathit{trancl.cases})
apply(fast dest!: subcls1-wfD)
apply(fast dest!: subcls1-wfD intro: trancl-trans)
done
lemma subcls-irrefl:
  \llbracket \text{ wf-prog wf-md } P; (C,D) \in (\text{subcls1 } P)^+ \rrbracket \Longrightarrow C \neq D
apply (erule trancl-trans-induct)
apply (auto dest: subcls1-wfD subcls-asym)
done
```

 $\llbracket (C,D) \in (subcls1\ P)^*; wf\text{-prog } wf\text{-md } P; (D,C) \in (subcls1\ P)^* \rrbracket \implies C = D$

lemma subcls-asym2:

```
apply (induct rule:rtrancl.induct)
\mathbf{apply} \ \mathit{simp}
apply (drule rtrancl-into-trancl1)
apply simp
apply (drule subcls-asym)
apply simp
apply(drule rtranclD)
apply simp
done
lemma acyclic-subcls1:
  wf-prog wf-md P \Longrightarrow acyclic (subcls1 P)
apply (unfold acyclic-def)
apply (fast dest: subcls-irrefl)
done
lemma wf-subcls1:
  wf-prog wf-md P \Longrightarrow wf ((subcls1 \ P)^{-1})
{\bf apply} \ ({\it rule \ finite-acyclic-wf-converse})
apply (rule finite-subcls1)
apply (erule acyclic-subcls1)
done
 \llbracket \text{ wf-prog wf-md } P; \bigwedge C. \ \forall \ D. \ (C,D) \in (\text{subcls1 } P)^+ \longrightarrow Q \ D \Longrightarrow Q \ C \ \rrbracket \Longrightarrow Q 
lemma subcls-induct:
  (is ?A \Longrightarrow PROP ?P \Longrightarrow -)
proof -
  assume p: PROP ?P
  assume ?A thus ?thesis apply -
apply(drule wf-subcls1)
apply(drule wf-trancl)
\mathbf{apply}(\mathit{simp\ only:\ trancl\text{-}converse})
apply(erule-tac\ a=C\ in\ wf-induct)
apply(rule p)
apply(auto)
done
qed
```

17.3 Well-formedness leq_path lemmas

```
lemma last-leq-path:
assumes leq:P,C \vdash Cs \sqsubseteq^1 Ds and wf:wf-prog\ wf-md\ P
shows P \vdash last \ Cs \prec^1 \ last \ Ds
using leq
proof (induct rule:leq-path1.induct)
 fix Cs Ds assume suboCs:Subobjs P C Cs and suboDs:Subobjs P C Ds
 and butlast:Cs = butlast Ds
 from suboDs have notempty:Ds \neq [] by -(drule\ Subobjs-nonempty)
 with but last have DsCs:Ds = Cs @ [last Ds] by simp
 from suboCs have notempty: Cs \neq [] by -(drule\ Subobjs-nonempty)
 with DsCs have Ds = ((butlast Cs) @ [last Cs]) @ [last Ds] by simp
  with suboDs have Subobjs P C ((butlast Cs) @ [last Cs,last Ds])
 thus P \vdash last \ Cs \prec^1 \ last \ Ds by (fastforce intro:subclsR-subcls1 Subobjs-subclsR)
  fix Cs\ D assume P \vdash last\ Cs \prec_S D
 thus P \vdash last \ Cs \prec^1 \ last \ [D] by (fastforce intro:subclsS-subcls1)
qed
lemma last-leq-paths:
assumes leq:(Cs,Ds) \in (leq-path1\ P\ C)^+ and wf:wf-prog\ wf-md\ P
shows (last Cs, last Ds) \in (subcls1\ P)^+
using leq
proof (induct rule:trancl.induct)
 fix Cs Ds assume P, C \vdash Cs \sqsubseteq^1 Ds
 thus (last\ Cs,\ last\ Ds) \in (subcls1\ P)^+ using wf
   by (fastforce intro:r-into-trancl elim:last-leq-path)
next
 fix Cs \ Cs' \ Ds assume (last Cs, last Cs') \in (subcls1 \ P)^+
   and P,C \vdash Cs' \sqsubseteq^1 Ds
 thus (last\ Cs,\ last\ Ds) \in (subcls1\ P)^+ using wf
   by (fastforce dest:last-leq-path)
qed
lemma leq-path1-wfD:
\llbracket P,C \vdash Cs \sqsubseteq^1 Cs'; wf\text{-prog } wf\text{-md } P \rrbracket \implies Cs \neq Cs' \land (Cs',Cs) \notin (leq\text{-path1 } P)
\overline{C})+
apply (rule\ conjI)
apply (erule leq-path1.cases)
 apply simp
 apply (drule-tac\ Cs=Ds\ in\ Subobjs-nonempty)
```

```
apply (rule butlast-noteq) apply assumption
 apply clarsimp
 apply (drule subclsS-subcls1)
apply (drule subcls1-wfD) apply simp-all
apply clarsimp
apply (frule last-leq-path)
apply simp
apply (drule last-leq-paths)
apply simp
apply (drule-tac r=subcls1 P in r-into-trancl)
apply (drule subcls-asym)
apply auto
done
lemma leq-path-asym:
[(Cs,Cs') \in (leq-path1\ P\ C)^+;\ wf-prog\ wf-md\ P] \Longrightarrow (Cs',Cs) \notin (leq-path1\ P\ C)^+
apply(erule tranclE)
apply(fast dest!:leq-path1-wfD)
apply(fast dest!:leq-path1-wfD intro: trancl-trans)
done
lemma leq-path-asym2: \llbracket P,C \vdash Cs \sqsubseteq Cs'; P,C \vdash Cs' \sqsubseteq Cs; wf-prog wf-md P \rrbracket \Longrightarrow
Cs = Cs'
apply (induct rule:rtrancl.induct)
apply simp
apply (drule rtrancl-into-trancl1)
apply simp
apply (drule leq-path-asym)
apply simp
apply (drule-tac \ a=c \ and \ b=a \ in \ rtranclD)
apply simp
done
\mathbf{lemma}\ leq	ext{-}path	ext{-}Subobjs:
\llbracket P,C \vdash [C] \sqsubseteq Cs; is\text{-}class\ P\ C; wf\text{-}prog\ wf\text{-}md\ P \rrbracket \Longrightarrow Subobjs\ P\ C\ Cs
 \mathbf{by} \ (induct \ rule: rtrancl-induct, auto \ intro: Subobjs-Base \ elim!: leq-path 1. cases,
        auto\ dest!: Subobjs-subclass\ intro!: Subobjs-Sh\ SubobjsR-Base\ dest!: subclsSD
             intro: wf\text{-}cdecl\text{-}supD \ class\text{-}wf \ ShBaseclass\text{-}isBaseclass \ subclsSI)
```

17.4 Lemmas concerning Subobjs

```
lemma Subobj-last-isClass: \llbracket wf\text{-prog }wf\text{-md }P; \text{ Subobjs }P \text{ }C \text{ }Cs \rrbracket \implies is\text{-class }P \text{ }(last
apply (frule Subobjs-isClass)
apply (drule Subobjs-subclass)
apply (drule rtranclD)
apply (erule disjE)
apply simp
apply clarsimp
apply (erule trancl-induct)
apply (fastforce dest:subcls1D class-wf elim:wf-cdecl-supD)
apply (fastforce dest:subcls1D class-wf elim:wf-cdecl-supD)
done
\mathbf{lemma}\ converse\text{-}SubobjsR\text{-}Rep:
 \llbracket Subobjs_R \ P \ C \ Cs; \ P \vdash last \ Cs \prec_R \ C'; \ wf-prog \ wf-md \ P \rrbracket
\implies Subobjs_R \ P \ C \ (Cs@[C'])
apply (induct\ rule:Subobjs_R.induct)
apply (frule subclsR-subcls1)
{\bf apply}\;(fastforce\;dest!:subcls1D\;class-wf\,wf-cdecl-supD\;SubobjsR-Base\;SubobjsR-Rep)
apply (fastforce elim:SubobjsR-Rep simp: SubobjsR-nonempty split:if-split-asm)
done
lemma converse-Subobjs-Rep:
  \llbracket Subobjs \ P \ C \ Cs; \ P \vdash last \ Cs \prec_R \ C'; \ wf-prog \ wf-md \ P \rrbracket
\implies Subobjs \ P \ C \ (Cs@[C'])
by (induct rule: Subobjs.induct, fastforce dest: converse-SubobjsR-Rep Subobjs-Rep,
 fastforce dest:converse-SubobjsR-Rep Subobjs-Sh)
lemma is Subobj-Subobjs-rev:
assumes subo:is-subobj P ((C,C'\#rev Cs')) and wf:wf-prog wf-md P
shows Subobjs P C (C'#rev Cs')
using subo
proof (induct Cs')
 case Nil
 show ?case
 proof (cases C=C')
   case True
   have is-subobj P((C, C' \# rev [])) by fact
   with True have is-subobj P((C,[C])) by simp
   hence is-class P C
```

```
by (fastforce elim:converse-rtranclE dest:subclsS-subcls1 elim:subcls1-class)
   with True show ?thesis by (fastforce intro:Subobjs-Base)
 next
   case False
   have is-subobj P((C, C' \# rev \parallel)) by fact
   with False obtain D where sup:P \vdash C \preceq^* D and subS:P \vdash D \prec_S C'
     by fastforce
   with wf have is-class P C'
     by (fastforce dest:subclsS-subcls1 subcls1D class-wf elim:wf-cdecl-supD)
   hence Subobjs_R \ P \ C' \ [C'] by (fastforce \ elim:Subobjs_R-Base)
   with sup subS have Subobjs P C [C'] by -(erule Subobjs-Sh, simp)
   thus ?thesis by simp
 qed
\mathbf{next}
 case (Cons C'' Cs'')
 have IH: is-subobj P ((C, C' \# rev \ Cs'')) \Longrightarrow Subobjs \ P \ C \ (C' \# rev \ Cs'')
   and subo: is-subobj \stackrel{\frown}{P} ((C, C' \# rev(C'' \# Cs''))) by fact+
 obtain Ds' where Ds':Ds' = rev Cs'' by simp
 obtain D Ds where DDs:D\#Ds = Ds'@[C''] by (cases Ds') auto
 with Ds' subo have is-subobj P((C, C' \# D \# Ds)) by simp
 hence subobl: is\text{-}subobj\ P\ ((C,butlast(C'\#D\#Ds)))
   and subRbl:P \vdash last(butlast(C'\#D\#Ds)) \prec_R last(C'\#D\#Ds) by simp+
 with DDs Ds' have is-subobj P((C, C' \# rev \ Cs'')) by (simp \ del: is-subobj.simps)
 with IH have suborev:Subobjs P C (C'#rev Cs'') by simp
 from subRbl\ DDs\ Ds' have subR:P \vdash last(C'\#rev\ Cs'') \prec_R C'' by simp
 with suborev wf show ?case by (fastforce dest:converse-Subobjs-Rep)
qed
lemma isSubobj-Subobjs:
assumes subo: is-subobj P((C,Cs)) and wf: wf-prog\ wf-md\ P
shows Subobjs P C Cs
using subo
proof (induct Cs)
 case Nil
 thus ?case by simp
next
 case (Cons C' Cs')
 have subo: is-subobj \ P \ ((C, C' \# Cs')) by fact
 obtain Cs'' where Cs'':Cs'' = rev Cs' by simp
 with subo have is-subobj P((C, C' \# rev \ Cs'')) by simp
 with wf have Subobjs P C (C'\#rev\ Cs'') by - (rule isSubobj-Subobjs-rev)
 with Cs" show ?case by simp
qed
```

```
lemma is Subobj-eq-Subobjs:
  wf-prog wf-md P \Longrightarrow is-subobj P ((C,Cs)) = (Subobjs P C Cs)
\mathbf{by}(auto\ elim:isSubobj-Subobjs\ Subobjs-isSubobj)
{f lemma} subo-trans-subcls:
 assumes subo:Subobjs P C (Cs@ C'#rev Cs')
 shows \forall C'' \in set \ Cs'. \ (C',C'') \in (subcls1\ P)^+
using subo
proof (induct Cs')
 case Nil
 thus ?case by simp
next
 case (Cons D Ds)
 have IH:Subobjs P C (Cs @ C' # rev Ds) \Longrightarrow
         \forall C'' \in set \ Ds. \ (C', \ C'') \in (subcls1\ P)^+
   and Subobjs P C (Cs @ C' \# rev (D \# Ds)) by fact+
 hence subo': Subobjs P C (Cs@ C'#rev Ds @ [D]) by simp
 hence Subobjs P C (Cs@ C'\#rev\ Ds)
   by -(rule\ appendSubobj, simp-all)
  with IH have set: \forall C'' \in set \ Ds. \ (C', C'') \in (subcls1 \ P)^+ \ by \ simp
 hence revset: \forall C'' \in set \ (rev \ Ds). \ (C', C'') \in (subcls1 \ P)^+ \ by \ simp
 have (C',D) \in (subcls1\ P)^+
 proof (cases Ds = [])
   case True
   with subo' have Subobjs\ P\ C\ (Cs@[C',D]) by simp
   thus ?thesis
     by (fastforce intro: subclsR-subcls1 Subobjs-subclsR)
 next
   case False
   with revset have hd:(C',hd\ Ds)\in (subcls1\ P)^+
     apply -
     apply (erule ballE)
     apply simp
     apply (simp add:in-set-conv-decomp)
     apply (erule-tac x=[] in allE)
     apply (erule-tac x=tl \ Ds \ in \ all E)
     apply simp
     done
   from False subo' have (hd Ds, D) \in (subcls1 P)^+
     apply (cases Ds)
     apply simp
     apply simp
     apply (rule r-into-trancl)
     apply (rule subclsR-subcls1)
     apply (rule-tac Cs = Cs @ C' \# rev \ list \ in \ Subobjs-subcls R)
     apply simp
```

```
done
   with hd show ?thesis by (rule trancl-trans)
 qed
 with set show ?case by simp
qed
lemma unique1:
 assumes subo:Subobjs\ P\ C\ (Cs@\ C'\#Cs') and wf:wf-prog\ wf-md\ P
 shows C' \notin set \ Cs'
proof -
 obtain Ds where Ds:Ds = rev Cs' by simp
 with subo have Subobjs P C (Cs@ C'#rev Ds) by simp
 with Ds subo have \forall C'' \in set \ Cs'. \ (C',C'') \in (subcls1\ P)^+
   by (fastforce dest:subo-trans-subcls)
 with wf have \forall C'' \in set \ Cs'. \ C' \neq C''
   by (auto dest:subcls-irrefl)
 thus ?thesis by fastforce
qed
{f lemma}\ subo-subcls-trans:
 assumes subo:Subobjs\ P\ C\ (Cs@\ C'\#Cs')
 shows \forall C'' \in set \ Cs. \ (C'',C') \in (subcls1\ P)^+
proof -
 from wf subo have \bigwedge C''. C'' \in set \ Cs \Longrightarrow (C'',C') \in (subcls1\ P)^+
   apply (auto simp:in-set-conv-decomp)
   apply (case-tac zs)
   apply (fastforce intro: subclsR-subcls1 Subobjs-subclsR)
   apply simp
   apply (rule-tac b=a in trancl-rtrancl-trancl)
   apply (fastforce intro: subclsR-subcls1 Subobjs-subclsR)
   apply (subgoal-tac P \vdash a \leq^* last (a \# list @ [C']))
   apply simp
   apply (rule Subobjs-subclass)
   apply (rule-tac C=C and Cs=ys @[C''] in Subobjs-Subobjs)
   apply (rule-tac\ Cs'=Cs'\ in\ appendSubobj)
   apply simp-all
   done
 thus ?thesis by fastforce
qed
```

lemma unique2:

```
assumes subo:Subobjs\ P\ C\ (Cs@\ C'\#Cs') and wf:wf\text{-}prog\ wf\text{-}md\ P
 shows C' \notin set Cs
proof -
 from subo wf have \forall C'' \in set \ Cs. \ (C'',C') \in (subcls1\ P)^+
   by (fastforce dest:subo-subcls-trans)
 with wf have \forall C'' \in set \ Cs. \ C' \neq C''
   by (auto dest:subcls-irrefl)
 thus ?thesis by fastforce
qed
lemma mdc-hd-path:
assumes subo:Subobjs P C Cs and set: C \in set Cs and wf: wf-prog wf-md P
shows C = hd \ Cs
proof -
 from subo set obtain Ds Ds' where Cs:Cs = Ds@ C\#Ds'
   by (auto simp:in-set-conv-decomp)
 then obtain Cs' where Cs':Cs' = rev Ds by simp
 with Cs subo have subo':Subobjs P C ((rev Cs')@ C#Ds') by simp
 thus ?thesis
 proof (cases Cs')
   {\bf case}\ Nil
   with Cs Cs' show ?thesis by simp
 next
   case (Cons\ X\ Xs)
   with subo' have suboX: Subobjs P C ((rev Xs)@[X,C]@Ds') by simp
   hence leq:P \vdash X \prec^1 C
    by (fastforce intro:subclsR-subcls1 Subobjs-subclsR)
   from suboX wf have P \vdash C \preceq^* last ((rev Xs)@[X])
     by (fastforce intro:Subobjs-subclass appendSubobj)
   with leq have (C,C) \in (subcls1\ P)^+ by simp
   with wf show ?thesis by (fastforce dest:subcls-irrefl)
 qed
qed
lemma mdc-eq-last:
 assumes subo:Subobjs\ P\ C\ Cs and last:last\ Cs=C and wf:wf-prog\ wf-md\ P
shows Cs = [C]
proof -
 from subo have notempty: Cs \neq [] by -(drule\ Subobjs\text{-}nonempty)
 hence lastset:last \ Cs \in set \ Cs
   apply (auto simp add:in-set-conv-decomp)
```

```
apply (rule-tac x=butlast \ Cs \ in \ exI)
   apply (rule-tac x=[] in exI)
   apply simp
   done
  with last have C: C \in set \ Cs \ by \ simp
  with subo wf have hd: C = hd \ Cs \ by -(rule \ mdc-hd-path)
  then obtain Cs' where Cs':Cs' = tl \ Cs by simp
  thus ?thesis
  proof (cases Cs')
   case Nil
   with hd subo Cs' show ?thesis by (fastforce dest:Subobjs-nonempty hd-Cons-tl)
 next
   case (Cons D Ds)
   with Cs' hd notempty have Cs: Cs = C \# D \# Ds by simp
   with subo have Subobjs P C (C\#D\#Ds) by simp
  with wf have notset: C \notin set (D \# Ds) by -(rule-tac \ Cs = [] in \ unique1, simp-all)
   from Cs last have last Cs = last (D \# Ds) by simp
   hence last Cs \in set (D \# Ds)
     apply (auto simp add:in-set-conv-decomp)
     apply (erule-tac x=butlast Ds in allE)
     apply (erule-tac x=[] in allE)
     apply simp
     done
   with last have C \in set (D \# Ds) by simp
   with notset show ?thesis by simp
  qed
qed
lemma assumes leq:P \vdash C \preceq^* D and wf:wf\text{-}prog\ wf\text{-}md\ P
 shows subcls-leq-path: \exists Cs. P, C \vdash [C] \sqsubseteq Cs@[D]
using leq
proof (induct rule:rtrancl.induct)
 fix C show \exists Cs. P, C \vdash [C] \sqsubseteq Cs@[C] by (rule-tac \ x=[] \ in \ exI, simp)
next
 fix C C' D assume leq': P \vdash C \preceq^* C' and IH: \exists Cs. P, C \vdash [C] \sqsubseteq Cs@[C']
   and sub:P \vdash C' \prec^1 D
 from sub have is-class P C' by (rule subcls1-class)
  with leq' have class: is-class P C by (rule subcls-is-class)
  from IH obtain Cs where steps:P,C \vdash [C] \sqsubseteq Cs@[C'] by auto
 hence subo:Subobjs \ P \ C \ (Cs@[C']) using class \ wf
   by (fastforce intro:leq-path-Subobjs)
  { assume P \vdash C' \prec_R D
   with subo wf have Subobjs P \ C \ (Cs@[C',D])
     by (fastforce dest:converse-Subobjs-Rep)
   with subo have P,C \vdash (Cs@[C']) \sqsubseteq^1 (Cs@[C']@[D])
     by (fastforce intro:leq-path-rep) }
```

```
moreover
  { assume P \vdash C' \prec_S D
   with subo have P,C \vdash (Cs@[C']) \sqsubseteq^1 [D] by (rule leq-path-sh) }
  ultimately show \exists Cs. P, C \vdash [C] \sqsubseteq Cs@[D] using sub steps
   apply (auto dest!:subcls1-subclsR-or-subclsS)
   apply (rule-tac x = Cs@[C'] in exI) apply simp
   apply (rule-tac \ x=[] \ in \ exI) apply simp
   done
qed
lemma assumes subo:Subobjs P C (rev Cs) and wf:wf-prog wf-md P
 shows subobjs-rel-rev:P, C \vdash [C] \sqsubseteq (rev \ Cs)
using subo
proof (induct Cs)
 case Nil
 thus ?case by (fastforce dest:Subobjs-nonempty)
  case (Cons C' Cs')
 have subo':Subobjs\ P\ C\ (rev\ (C'\#Cs'))
   and IH:Subobjs\ P\ C\ (rev\ Cs') \Longrightarrow P,C \vdash [C] \sqsubseteq rev\ Cs' by fact+
  from subo' have class: is-class P C by(rule Subobjs-isClass)
 show ?case
 proof (cases Cs' = [])
   case True hence empty: Cs' = [].
   with subo' have subo'':Subobjs P C [C'] by simp
   thus ?thesis
   proof (cases C = C')
     case True
     with empty show ?thesis by simp
   next
     {\bf case}\ \mathit{False}
     with subo'' obtain D D' where leq:P \vdash C \preceq^* D and subS:P \vdash D \prec_S D'
      and suboR:Subobjs_R P D' [C']
      by (auto elim:Subobjs.cases dest:hd-SubobjsR)
     from suboR have C':C' = D' by (fastforce\ dest:hd\text{-}SubobjsR)
     from leq wf obtain Ds where steps:P, C \vdash [C] \sqsubseteq Ds@[D]
      by (auto dest:subcls-leq-path)
     hence suboSteps:Subobjs\ P\ C\ (Ds@[D]) using class\ wf
      apply (induct rule:rtrancl-induct)
       apply (erule Subobjs-Base)
      apply (auto elim!:leq-path1.cases)
      apply (subgoal-tac\ Subobjs_R\ P\ D\ [D])
       apply (fastforce dest:Subobjs-subclass intro:Subobjs-Sh)
      apply (fastforce dest!:subclsSD intro:SubobjsR-Base wf-cdecl-supD
                                      class-wf ShBaseclass-isBaseclass)
      done
```

```
hence step:P,C \vdash (Ds@[D]) \sqsubseteq^1 [D'] using subS by (rule\ leq-path-sh)
     with steps empty False C' show ?thesis by simp
   qed
  next
   case False
   with subo' have subo'':Subobjs P C (rev Cs')
     by (fastforce intro:butlast-Subobjs)
   with IH have steps:P,C \vdash [C] \sqsubseteq rev\ Cs' by simp
   from subo' subo'' have P, C \vdash rev \ Cs' \sqsubseteq^1 rev \ (C' \# Cs')
     by (fastforce intro:leq-pathRep)
   with steps show ?thesis by simp
 qed
qed
lemma subobjs-rel:
assumes subo:Subobjs P C Cs and wf:wf-prog wf-md P
shows P, C \vdash [C] \sqsubseteq Cs
proof -
  obtain Cs' where Cs': Cs' = rev \ Cs by simp
  with subo have Subobjs P C (rev Cs') by simp
 hence P, C \vdash [C] \sqsubseteq rev \ Cs' \ using \ wf \ by \ (rule \ subobjs-rel-rev)
  with Cs' show ?thesis by simp
qed
lemma assumes wf:wf-prog wf-md P
 shows leq-path-last: \llbracket P,C \vdash Cs \sqsubseteq Cs'; last Cs = last Cs' \rrbracket \Longrightarrow Cs = Cs'
proof(induct rule:rtrancl-induct)
 \mathbf{show}\ \mathit{Cs} = \mathit{Cs}\ \mathbf{by}\ \mathit{simp}
\mathbf{next}
 fix Cs' Cs"
 assume leqs:P,C \vdash Cs \sqsubseteq Cs' and leq:P,C \vdash Cs' \sqsubseteq^1 Cs''
   and last:last Cs = last Cs''
   and IH:last\ Cs = last\ Cs' \Longrightarrow Cs = Cs'
  from leq wf have sup1:P \vdash last Cs' \prec^1 last Cs''
   \mathbf{by}(rule\ last-leq-path)
  { assume Cs = Cs'
   with last have eq:last Cs'' = last Cs' by simp
   with eq wf sup1 have Cs = Cs'' by (fastforce\ dest:subcls1-wfD) }
  moreover
  { assume (Cs, Cs') \in (leq\text{-}path1\ P\ C)^+
   hence sub:(last\ Cs, last\ Cs') \in (subcls1\ P)^+ using wf
     by(rule last-leq-paths)
   with sup1 last have (last Cs'', last Cs'') \in (subcls1\ P)^+ by simp
```

```
with wf have Cs = Cs'' by (fastforce\ dest:subcls-irrefl) }
 ultimately show Cs = Cs'' using leqs
   by(fastforce dest:rtranclD)
qed
17.5
        Well-formedness and appendPath
lemma appendPath1:
 \llbracket Subobjs \ P \ C \ Cs; \ Subobjs \ P \ (last \ Cs) \ Ds; \ last \ Cs \neq hd \ Ds 
Vert
\implies Subobjs \ P \ C \ Ds
\mathbf{apply}(subgoal\text{-}tac \neg Subobjs_R \ P \ (last \ Cs) \ Ds)
apply (subgoal-tac \exists C' D. P \vdash last Cs \preceq^* C' \land P \vdash C' \prec_S D \land Subobjs_R P D
Ds)
 apply clarsimp
 apply (drule Subobjs-subclass)
 apply (subgoal-tac P \vdash C \leq^* C')
  apply (erule-tac C'=C' and D=D in Subobjs-Sh)
   apply simp
  apply simp
 apply fastforce
apply (erule Subobjs-notSubobjsR)
apply simp
apply (fastforce dest:hd-SubobjsR)
done
lemma appendPath2-rev:
assumes subo1:Subobjs P C Cs and subo2:Subobjs P (last Cs) (last Cs#rev Ds)
 and wf:wf-prog wf-md P
shows Subobjs P C (Cs@(tl (last Cs\#rev Ds)))
using subo2
proof (induct Ds)
 case Nil
 with subo1 show ?case by simp
 case (Cons D' Ds')
 have IH:Subobjs P (last Cs) (last Cs#rev Ds')
   \implies Subobjs P C (Cs@tl(last Cs#rev Ds'))
   and subo:Subobjs P (last Cs) (last Cs#rev (D'#Ds')) by fact+
 from subo have Subobjs P (last Cs) (last Cs#rev Ds')
   by (fastforce intro:butlast-Subobjs)
 with IH have subo':Subobjs P C (Cs@tl(last Cs#rev Ds'))
   by simp
 have last:last(last\ Cs\#rev\ Ds') = last\ (Cs@tl(last\ Cs\#rev\ Ds'))
```

obtain C' Cs' where C': C' = last(last Cs # rev Ds') and

by (cases Ds')auto

```
Cs' = butlast(last Cs \# rev Ds') by simp
 then have Cs' @ [C'] = last Cs \# rev Ds'
   using append-butlast-last-id by blast
 hence last Cs\#rev\ (D'\#Ds') = Cs'@[C',D'] by simp
 with subo have Subobis P (last Cs) (Cs'@[C',D']) by (cases Cs') auto
 hence P \vdash C' \prec_R D' by - (rule\ Subobjs\text{-}subclsR, simp)
 with C' last have P \vdash last (Cs@tl(last Cs\#rev Ds')) \prec_R D' by simp
 with subo' wf have Subobjs P C ((Cs@tl(last\ Cs\#rev\ Ds'))@[D'])
   by (erule-tac\ Cs=(Cs@tl(last\ Cs\#rev\ Ds')) in converse-Subobjs-Rep)\ simp
 thus ?case by simp
qed
lemma appendPath2:
assumes subo1:Subobjs P C Cs and subo2:Subobjs P (last Cs) Ds
 and eq:last \ Cs = hd \ Ds and wf:wf-prog \ wf-md \ P
shows Subobjs\ P\ C\ (Cs@(tl\ Ds))
using subo2
proof (cases Ds)
 {f case} Nil
 with subo1 show ?thesis by simp
next
 case (Cons D' Ds')
 with subo2 eq have subo:Subobjs P (last Cs) (last Cs#Ds') by simp
 obtain Ds'' where Ds'':Ds'' = rev Ds' by simp
 with subo have Subobjs P (last Cs) (last Cs#rev Ds'') by simp
 with subo1 wf have Subobjs P C (Cs@(tl (last Cs#rev Ds")))
   by -(rule\ appendPath2-rev)
 with Ds" eq Cons show ?thesis by simp
qed
lemma Subobjs-appendPath:
 [Subobjs \ P \ C \ Cs; \ Subobjs \ P \ (last \ Cs) \ Ds; wf-prog \ wf-md \ P]
\implies Subobjs \ P \ C \ (Cs@_nDs)
by(fastforce elim:appendPath2 appendPath1 simp:appendPath-def)
17.6
        Path and program size
lemma assumes subo:Subobjs\ P\ C\ Cs and wf:wf\text{-}prog\ wf\text{-}md\ P
 shows path-contains-classes: \forall C' \in set \ Cs. \ is\text{-class} \ P \ C'
using subo
proof clarsimp
 fix C' assume subo:Subobjs\ P\ C\ Cs and set:C'\in set\ Cs
 from set obtain Ds Ds' where Cs:Cs = Ds@C'\#Ds'
```

```
by (fastforce simp:in-set-conv-decomp)
 with Cs show is-class P C'
 proof (cases Ds = [])
   {\bf case}\ {\it True}
   with Cs subo have subo': Subobjs P C (C'#Ds') by simp
   thus ?thesis by (rule Subobjs.cases,
     auto dest:hd-SubobjsR intro:SubobjsR-isClass)
 \mathbf{next}
   case False
   then obtain C'' Cs'' where Cs'':Cs'' = butlast Ds
    and last:C'' = last Ds by auto
   with False have Ds:Ds = Cs''@[C''] by simp
   with Cs subo have subo': Subobjs P C (Cs''@[C'',C']@Ds')
    by simp
   hence P \vdash C'' \prec_R C' by (fastforce\ intro: isSubobjs-subclsR\ Subobjs-isSubobj)
   with wf show ?thesis
    by (fastforce dest!:subclsRD
                intro:wf-cdecl-supD class-wf RepBaseclass-isBaseclass subclsSI)
 qed
qed
lemma path-subset-classes: [Subobjs P C Cs; wf-prog wf-md P]
 \implies set \ Cs \subseteq \{C. \ is\text{-}class \ P \ C\}
by (auto dest:path-contains-classes)
lemma assumes subo:Subobjs P C (rev Cs) and wf:wf-prog wf-md P
 shows rev-path-distinct-classes:distinct Cs
 using subo
proof (induct Cs)
 case Nil thus ?case by(fastforce dest:Subobjs-nonempty)
next
 case (Cons C' Cs')
 have subo':Subobjs\ P\ C\ (rev(C'\#Cs'))
   and IH:Subobjs\ P\ C\ (rev\ Cs') \Longrightarrow distinct\ Cs'\ {\bf by}\ fact+
 show ?case
 proof (cases Cs' = [])
   case True thus ?thesis by simp
 next
   case False
   hence rev:rev \ Cs' \neq [] by simp
   from subo' have subo'':Subobjs\ P\ C\ (rev\ Cs'@[C']) by simp
   hence Subobjs P C (rev Cs') using rev wf
     by(fastforce dest:appendSubobj)
   with IH have dist:distinct Cs' by simp
   from subo'' wf have C' \notin set (rev Cs')
     \mathbf{by}(fastforce\ dest:unique2)
   with dist show ?thesis by simp
```

```
qed
qed
lemma assumes subo:Subobjs P C Cs and wf:wf-prog wf-md P
 shows path-distinct-classes:distinct Cs
proof -
 obtain Cs' where Cs': Cs' = rev Cs by simp
 with subo have Subobjs P C (rev Cs') by simp
 with wf have distinct Cs'
   by -(rule\ rev-path-distinct-classes)
 with Cs' show ?thesis by simp
qed
lemma assumes wf:wf-prog wf-md P
 shows prog-length:length P = card \{C. is-class P C\}
proof -
 from wf have dist-fst:distinct-fst P by (simp add:wf-prog-def)
 hence distinct P by (simp add:distinct-fst-def,induct P,auto)
 hence card-set:card (set P) = length P by (rule distinct-card)
 from dist-fst have set:\{C. is-class P C\} = fst '(set P)
   by (simp add:is-class-def class-def, auto simp:distinct-fst-def,
    auto dest:map-of-eq-Some-iff intro!:image-eqI)
 from dist-fst have card(fst '(set P)) = card (set P)
   by(auto intro:card-image simp:distinct-map distinct-fst-def)
 with card-set set show ?thesis by simp
qed
lemma assumes subo:Subobjs P C Cs and wf:wf-prog wf-md P
 shows path-length: length Cs \leq length P
proof -
 from subo wf have distinct Cs by (rule path-distinct-classes)
 hence card-eq-length: card (set Cs) = length Cs by (rule distinct-card)
 from subo wf have card (set Cs) \leq card {C. is-class P C}
   by (auto dest:path-subset-classes intro:card-mono finite-is-class)
 with card-eq-length have length Cs \leq card \{C. is\text{-}class P C\} by simp
 with wf show ?thesis by(fastforce dest:prog-length)
qed
```

```
lemma empty-path-empty-set: \{Cs. \ Subobjs \ P \ C \ Cs \land length \ Cs \leq 0\} = \{\}
by (auto dest:Subobjs-nonempty)
lemma split-set-path-length: \{Cs. \ Subobjs \ P \ C \ Cs \land length \ Cs \leq Suc(n)\} =
\{Cs. \ Subobjs \ P \ C \ Cs \land length \ Cs \le n\} \cup \{Cs. \ Subobjs \ P \ C \ Cs \land length \ Cs = n\}
Suc(n)
by auto
lemma empty-list-set:\{xs. \ set \ xs \subseteq F \land xs = []\} = \{[]\}
by auto
lemma suc-n-union-of-union:\{xs. \ set \ xs \subseteq F \land length \ xs = Suc \ n\} = (UN \ x:F.
UN \ xs : \{xs. \ set \ xs \leq F \land length \ xs = n\}. \ \{x\#xs\})
by (auto simp:length-Suc-conv)
lemma max-length-finite-set:finite F \Longrightarrow finite\{xs. set \ xs \le F \land length \ xs = n\}
by(induct n,simp add:empty-list-set, simp add:suc-n-union-of-union)
lemma path-length-n-finite-set:
wf-prog wf-md P \Longrightarrow finite\{Cs. Subobjs P C Cs \land length Cs = n\}
by (rule-tac B = \{Cs. set \ Cs \le \{C. is-class \ P \ C\} \land length \ Cs = n\} in finite-subset,
  auto dest:path-contains-classes intro:max-length-finite-set simp:finite-is-class)
lemma path-finite-leq:
wf-prog wf-md P \Longrightarrow finite\{Cs. \ Subobjs \ P \ C \ Cs \land length \ Cs \le length \ P\}
 by (induct (length P), simp only:empty-path-empty-set,
   auto intro:path-length-n-finite-set simp:split-set-path-length)
lemma path-finite:wf-prog wf-md P \Longrightarrow finite\{Cs. Subobjs P C Cs\}
by (subgoal-tac \{Cs. Subobjs P C Cs\} =
  \{Cs. \ Subobjs \ P \ C \ Cs \land length \ Cs \leq length \ P\},\
  auto intro:path-finite-leg path-length)
17.7
         Well-formedness and Path
lemma path-via-reverse:
 assumes path-via:P \vdash Path \ C \ to \ D \ via \ Cs \ and \ wf:wf-prog \ wf-md \ P
 shows \forall Cs'. P \vdash Path D \text{ to } C \text{ via } Cs' \longrightarrow Cs = [C] \land Cs' = [C] \land C = D
proof -
  from path-via have subo:Subobjs P C Cs and last:last Cs = D
   \mathbf{by}(simp\ add:path-via-def)+
  hence leq:P \vdash C \leq^* D by(fastforce\ dest:Subobjs-subclass)
  { fix Cs' assume P \vdash Path D to C via <math>Cs'
   hence subo':Subobjs\ P\ D\ Cs' and last':last\ Cs'=C
     \mathbf{by}(simp\ add:path-via-def)+
   hence leq':P \vdash D \leq^* C by (fastforce\ dest:Subobjs\text{-}subclass)
   with leq wf have CeqD:C = D by (rule \ subcls-asym2)
  moreover have Cs: Cs = [C] using CeqD subo last wf by(fastforce\ intro: mdc-eq-last)
  moreover have Cs' = [C] using CeqD subo' last' wf by (fastforce intro:mdc-eq-last)
```

```
ultimately have Cs = [C] \land Cs' = [C] \land C = D by simp }
  thus ?thesis by blast
qed
lemma path-hd-appendPath:
 assumes path:P,C \vdash Cs \sqsubseteq Cs'@_pCs and last:last Cs' = hd Cs
 and notemptyCs:Cs \neq [] and notemptyCs':Cs' \neq [] and wf:wf-prog\ wf-md\ P
 shows Cs' = [hd \ Cs]
using path
proof -
 from path notemptyCs last have path2:P,C \vdash Cs \sqsubseteq Cs'@ tl Cs
   by (simp add:appendPath-def)
 thus ?thesis
 proof (auto dest!:rtranclD)
   assume Cs = Cs'@tl Cs
   with notemptyCs show Cs' = [hd \ Cs] by (rule \ app-hd-tl)
   assume trancl:(Cs, Cs'@tl Cs) \in (leq-path1 P C)^+
   from notemptyCs' last have butlastLast:Cs' = butlast Cs' @ [hd Cs]
     by -(drule\ append-butlast-last-id,simp)
   with trancl have trancl': (Cs, (butlast Cs' @ [hd Cs]) @ tl Cs) \in (leq-path1 P
C)^+
     by simp
   from notemptyCs have (butlast Cs' @ [hd Cs]) @ tl Cs = butlast Cs' @ Cs
   with trancl' have (Cs, butlast Cs' @ Cs) \in (leq-path1 P C)^+ by simp
   hence (last Cs, last (butlast Cs' @ Cs)) \in (subcls1 P)<sup>+</sup> using wf
     by (rule last-leq-paths)
   with notemptyCs have (last Cs, last Cs) \in (subcls1 P)<sup>+</sup>
     by -(drule-tac \ xs=butlast \ Cs' \ in \ last-appendR, simp)
   with wf show ?thesis by (auto dest:subcls-irrefl)
 qed
qed
lemma path-via-C: \llbracket P \vdash Path \ C \ to \ C \ via \ Cs; \ wf-prog \ wf-md \ P \rrbracket \implies Cs = \lceil C \rceil
by (fastforce intro:mdc-eq-last simp:path-via-def)
lemma assumes wf:wf-prog wf-md P
 and path-via:P \vdash Path \ last \ Cs \ to \ C \ via \ Cs'
 and path-via':P \vdash Path \ last \ Cs \ to \ C \ via \ Cs''
 and appendPath: Cs = Cs@_p Cs'
shows appendPath-path-via: Cs = Cs@_{p}Cs''
proof -
 from path-via have notempty: Cs' \neq []
```

```
by(fastforce intro!:Subobjs-nonempty simp:path-via-def)
  { assume eq:last \ Cs = hd \ Cs'
   and Cs:Cs = Cs@tl Cs'
   from Cs have tl Cs' = [] by simp
   with eq notempty have Cs' = [last \ Cs]
     by -(drule\ hd\text{-}Cons\text{-}tl,simp) }
  moreover
  { assume Cs = Cs'
   with wf path-via have Cs' = [last \ Cs]
     \mathbf{by}(\textit{fastforce intro}: \textit{mdc-eq-last simp}: \textit{path-via-def}) \ \}
  ultimately have eq:Cs' = [last \ Cs] using appendPath
   \mathbf{by}(simp\ add:appendPath-def,split\ if-split-asm,simp-all)
  with path-via have C = last \ Cs
   by(simp add:path-via-def)
  with wf path-via' have Cs'' = [last \ Cs]
   by simp(rule\ path-via-C)
  thus ?thesis by (simp add:appendPath-def)
qed
lemma subo-no-path:
  assumes subo:Subobjs P C' (Cs @ C#Cs') and wf:wf-prog wf-md P
 and notempty: Cs' \neq []
 shows \neg P \vdash Path \ last \ Cs' \ to \ C \ via \ Ds
proof
 assume P \vdash Path\ last\ Cs'\ to\ C\ via\ Ds
 hence subo':Subobjs\ P\ (last\ Cs')\ Ds and last:last\ Ds=C
   by (auto simp:path-via-def)
 hence notemptyDs:Ds \neq [] by -(drule\ Subobjs-nonempty)
  then obtain D' Ds' where D'Ds':Ds = D' \# Ds' by (cases Ds) auto
 from subo have suboC: Subobjs P C (C \# Cs') by (rule\ Subobjs-Subobjs)
  with wf subo' notempty have suboapp: Subobjs P C ((C \# Cs')@_pDs)
   by -(rule\ Subobjs-appendPath, simp-all)
  with notemptyDs last have last':last ((C \# Cs')@_nDs) = C
   by -(drule-tac\ Cs'=(C\#Cs')\ in\ appendPath-last,simp)
  from notemptyDs have (C \# Cs')@_pDs \neq []
   by (simp add:appendPath-def)
  with last' have C \in set ((C \# Cs')@_n Ds)
   \mathbf{apply} \ (\mathit{auto} \ \mathit{simp} \ \mathit{add} : \mathit{in\text{-}set\text{-}conv\text{-}decomp})
   apply (rule-tac \ x=butlast((C\#Cs')@_pDs) \ in \ exI)
   apply (rule-tac \ x=[] \ in \ exI)
   apply (drule append-butlast-last-id)
   apply simp
   done
  with subsapp wf have hd: C = hd ((C \# Cs')@_p Ds) by -(rule \ mdc-hd-path)
  thus False
 proof (cases last (C \# Cs') = hd Ds)
```

```
case True
 hence eq:(C \# Cs')@_pDs = (C \# Cs')@(tl\ Ds) by (simp\ add:appendPath-def)
 \mathbf{show} \ ?thesis
 proof (cases Ds')
   case Nil
   with D'Ds' have Ds:Ds = [D'] by simp
   with last have C = D' by simp
   with True notempty Ds have last (C \# Cs') = C by simp
   with notempty have last Cs' = C by simp
   with notempty have Cset: C \in set \ Cs'
    apply (auto simp add:in-set-conv-decomp)
    apply (rule-tac x=butlast Cs' in exI)
    apply (rule-tac x=[] in exI)
    apply (drule append-butlast-last-id)
    apply simp
    done
   from subo wf have C \notin set \ Cs' by (rule unique1)
   with Cset show ?thesis by simp
   case (Cons\ X\ Xs)
   with D'Ds' have tlnotempty:tl Ds \neq [] by simp
   with Cons last D'Ds' have last (tl Ds) = C by simp
   with thnotempty have C \in set (th Ds)
    apply (auto simp add:in-set-conv-decomp)
    apply (rule-tac x=butlast (tl Ds) in exI)
    apply (rule-tac x=[] in exI)
    apply (drule append-butlast-last-id)
    apply simp
    done
   hence Cset: C \in set (Cs'@(tl Ds)) by simp
   from suboapp eq wf have C \notin set (Cs'@(tl Ds))
    by (subgoal-tac Subobjs P C (C\#(Cs@(tl Ds))),
      rule-tac \ Cs=[] \ \mathbf{in} \ unique1, simp-all)
   with Cset show ?thesis by simp
 qed
next
 case False
 with notemptyDs have eq:(C \# Cs')@_pDs = Ds by (simp\ add:appendPath-def)
 with subo' last have lastleq:P \vdash last \ Cs' \preceq^* \ C
   by (fastforce dest:Subobjs-subclass)
 from notempty obtain X Xs where X:X = last Cs' and Xs = butlast Cs'
   by auto
 with notempty have XXs:Cs' = Xs@[X] by simp
 hence CleqX:(C,X) \in (subcls1\ P)^+
 proof (cases Xs)
   case Nil
   with suboC XXs have Subobjs P C [C,X] by simp
   thus ?thesis
    apply -
```

```
apply (rule subclsR-subcls1)
      apply (rule-tac \ Cs=[] \ in \ Subobjs-subclsR)
      apply simp
      done
   next
     case (Cons\ Y\ Ys)
     with subo C XXs have subo'':Subobjs P C ([C,Y]@Ys@[X]) by simp
     hence plus:(C,Y) \in (subcls1\ P)^+
      apply -
      apply (rule r-into-trancl)
      apply (rule subclsR-subcls1)
      apply (rule-tac\ Cs=[]\ in\ Subobjs-subclsR)
      apply simp
      done
     from subo'' have P \vdash Y \prec^* X
      apply -
      apply (subgoal-tac Subobjs P \ C \ ([C]@Y\#(Ys@[X])))
       apply (drule Subobjs-Subobjs)
       apply (drule-tac\ C=Y\ in\ Subobjs-subclass) apply simp-all
      done
     with plus show ?thesis by (fastforce elim:trancl-rtrancl-trancl)
   from lastleq X have leq:P \vdash X \leq^* C by simp
   with Cleq X have (C,C) \in (subcls1\ P)^+
     by (rule trancl-trancl-trancl)
   with wf show ?thesis by (fastforce dest:subcls-irreft)
 ged
qed
lemma leq-implies-path:
 assumes leq:P \vdash C \leq^* D and class: is\text{-}class P C
 and wf:wf-prog wf-md P
shows \exists Cs. P \vdash Path C to D via Cs
using leq class
proof(induct rule:rtrancl.induct)
 fix C assume is-class P C
 thus \exists Cs. P \vdash Path C to C via Cs
   by (rule-tac \ x=[C] \ in \ exI, fastforce \ intro: Subobjs-Base \ simp: path-via-def)
 fix C C' D assume CleqC':P \vdash C \preceq^* C' and C'leqD:P \vdash C' \prec^1 D
   and classC:is-class\ P\ C and IH:is-class\ P\ C \Longrightarrow \exists\ Cs.\ P\vdash Path\ C\ to\ C'\ via
Cs
 from IH[OF\ class C] obtain Cs where subo:Subobjs\ P\ C\ Cs and last:last\ Cs=
   by (auto simp:path-via-def)
```

apply (rule r-into-trancl)

```
with C'legD show \exists Cs. P \vdash Path C to D via Cs
 proof (auto dest!:subcls1-subclsR-or-subclsS)
   assume P \vdash last \ Cs \prec_R D
   with subo have Subobjs P C (Cs@[D]) using wf
     by (rule converse-Subobjs-Rep)
   thus ?thesis by (fastforce simp:path-via-def)
 next
   assume subS:P \vdash last \ Cs \prec_S D
   from CleqC' last have Cleqlast:P \vdash C \leq^* last Cs by simp
   from subS have classLast:is-class P (last Cs)
     by (auto intro:subcls1-class subclsS-subcls1)
   then obtain Bs fs ms where class P (last Cs) = Some(Bs,fs,ms)
     by (fastforce simp:is-class-def)
   hence classD:is-class P D using subS wf
     by (auto intro:wf-cdecl-supD dest:class-wf dest!:subclsSD
             elim:ShBaseclass-isBaseclass)
   with Cleglast subS have Subobjs P C [D]
     by (fastforce intro:Subobjs-Sh SubobjsR-Base)
   thus ?thesis by (fastforce simp:path-via-def)
 qed
qed
{f lemma}\ least-method-implies-path-unique:
assumes least:P \vdash C has least M = (Ts,T,m) via Cs and wf:wf-prog wf-md P
shows P \vdash Path \ C \ to \ (last \ Cs) \ unique
proof (auto simp add:path-unique-def)
 from least have Subobjs P C Cs
   by (simp add:LeastMethodDef-def MethodDefs-def)
 thus \exists Cs'. Subobjs P C Cs' \land last Cs' = last Cs
   by fastforce
next
 fix Cs' Cs"
 assume suboCs':Subobjs P C Cs' and suboCs'':Subobjs P C Cs''
   and lastCs':last Cs' = last Cs and lastCs'':last Cs'' = last Cs
 from suboCs' have notemptyCs':Cs' \neq [] by (rule\ Subobjs-nonempty)
 from suboCs'' have notemptyCs'':Cs'' \neq [] by (rule\ Subobjs-nonempty)
 from least have suboCs:Subobjs P C Cs
   and all: \forall Ds. Subobjs \ P \ C \ Ds \ \land
    (\exists Ts \ T \ m \ Bs \ ms. \ (\exists fs. \ class \ P \ (last \ Ds) = Some \ (Bs, fs, ms)) \land
              map\text{-}of\ ms\ M = Some(Ts, T, m)) \longrightarrow P, C \vdash Cs \sqsubseteq Ds
   by (auto simp:LeastMethodDef-def MethodDefs-def)
 from least obtain Bs fs ms T Ts m where
  class: class P(last Cs) = Some(Bs, fs, ms) and map:map-of ms M = Some(Ts, T, m)
   by (auto simp:LeastMethodDef-def MethodDefs-def intro:that)
 from suboCs' lastCs' class map all have pathCs':P,C \vdash Cs \sqsubseteq Cs'
```

```
by simp
  with wf lastCs' have eq:Cs = Cs' by (fastforce\ intro: leq-path-last)
  from suboCs'' lastCs'' class map all have pathCs'':P,C \vdash Cs \sqsubseteq Cs''
  with wf lastCs'' have Cs = Cs'' by (fastforce\ intro: leq-path-last)
  with eq show Cs' = Cs'' by simp
qed
lemma least-field-implies-path-unique:
assumes least:P \vdash C has least F:T via Cs and wf:wf-prog wf-md P
shows P \vdash Path \ C \ to \ (hd \ Cs) \ unique
proof (auto simp add:path-unique-def)
 from least have Subobjs P C Cs
   \mathbf{by}\ (simp\ add:LeastFieldDecl-def\ FieldDecls-def)
  hence Subobjs \ P \ C \ ([hd \ Cs]@tl \ Cs)
   \mathbf{by} - (frule\ Subobjs-nonempty, simp)
  with wf have Subobjs P C [hd Cs]
   by (fastforce intro:appendSubobj)
  thus \exists Cs'. Subobjs P C Cs' \land last Cs' = hd Cs
   by fastforce
\mathbf{next}
 fix Cs' Cs"
 assume suboCs':Subobjs P C Cs' and suboCs'':Subobjs P C Cs''
   and lastCs':last Cs' = hd Cs and lastCs'':last Cs'' = hd Cs
  from suboCs' have notemptyCs':Cs' \neq [] by (rule\ Subobjs-nonempty)
  from suboCs'' have notemptyCs'':Cs'' \neq [] by (rule\ Subobjs-nonempty)
  from least have suboCs:Subobjs P C Cs
   and all: \forall Ds. Subobjs \ P \ C \ Ds \ \land
    (\exists T Bs fs. (\exists ms. class P (last Ds) = Some (Bs, fs, ms)) \land
               map\text{-}of\ fs\ F = Some\ T) \longrightarrow P, C \vdash Cs \sqsubseteq Ds
   by (auto simp:LeastFieldDecl-def FieldDecls-def)
 from least obtain Bs fs ms T where
   class: class P (last Cs) = Some(Bs, fs, ms) and map:map-of fs F = Some T
   by (auto simp:LeastFieldDecl-def FieldDecls-def)
  from suboCs have notemptyCs:Cs \neq [] by (rule\ Subobjs-nonempty)
  \mathbf{from} \ suboCs \ notemptyCs \ \mathbf{have} \ suboHd: Subobjs \ P \ (hd \ Cs) \ (hd \ Cs\#tl \ Cs)
   by -(rule-tac\ C=C\ and\ Cs=[]\ in\ Subobjs-Subobjs,simp)
  with suboCs' notempty Cs last Cs' wf have suboCs'App:Subobjs P C (Cs'@_pCs)
   by -(rule\ Subobjs-appendPath,simp-all)
  from suboHd suboCs" notemptyCs lastCs" wf
 have suboCs''App:Subobjs\ P\ C\ (Cs''@_pCs)
   by -(rule\ Subobjs-appendPath, simp-all)
 from suboCs'App all class map notemptyCs have pathCs':P,C \vdash Cs \sqsubseteq Cs'@_pCs
  by -(erule-tac\ x=Cs'@_p\ Cs\ in\ all\ E, drule-tac\ Cs'=Cs'\ in\ append\ Path-last, simp)
```

```
from suboCs''App all class map notemptyCs have pathCs'':P,C \vdash Cs \sqsubseteq Cs''@_pCs
  by -(erule-tac\ x=Cs''@_p\ Cs\ in\ all\ E, drule-tac\ Cs'=Cs''\ in\ append\ Path-last, simp)
 from pathCs' lastCs' notemptyCs notemptyCs' wf have Cs':Cs' = [hd \ Cs]
   by (rule path-hd-appendPath)
 from pathCs'' lastCs'' notemptyCs notemptyCs'' wf have Cs'' = [hd \ Cs]
   by (rule path-hd-appendPath)
  with Cs' show Cs' = Cs'' by simp
qed
lemma least-field-implies-path-via-hd:
\llbracket P \vdash C \text{ has least } F:T \text{ via } Cs; \text{ wf-prog wf-md } P \rrbracket
\implies P \vdash Path \ C \ to \ (hd \ Cs) \ via \ [hd \ Cs]
apply (simp add:LeastFieldDecl-def FieldDecls-def)
apply clarsimp
apply (simp add:path-via-def)
apply (frule Subobjs-nonempty)
apply (rule-tac Cs'=tl\ Cs in appendSubobj)
apply auto
done
\mathbf{lemma}\ \mathit{path-C-to-C-unique} \colon
\llbracket wf\text{-prog }wf\text{-md }P; \text{ is-class }P \ C \rrbracket \Longrightarrow P \vdash Path \ C \text{ to } C \text{ unique}
apply (unfold path-unique-def)
apply (rule-tac a=[C] in ex11)
apply (auto intro:Subobjs-Base mdc-eq-last)
done
lemma leqR-SubobjsR: [(C,D) \in (subclsR\ P)^*; is-class\ P\ C; wf-prog\ wf-md\ P]]
\implies \exists Cs. Subobjs_R P C (Cs@[D])
apply (induct rule:rtrancl-induct)
apply (drule SubobjsR-Base)
apply (rule-tac x=[] in exI)
apply simp
apply (auto dest:converse-SubobjsR-Rep)
done
lemma assumes path-unique:P \vdash Path \ C \ to \ D \ unique \ and \ leq:<math>P \vdash C \preceq^* C'
 and leqR:(C',D) \in (subclsR\ P)^* and wf:wf-prog\ wf-md\ P
 shows P \vdash Path \ C \ to \ C' \ unique
```

```
proof -
 from path-unique have is-class P C
   by (auto intro:Subobjs-isClass simp:path-unique-def)
 with leq wf obtain Cs where path-via:P \vdash Path \ C \ to \ C' \ via \ Cs
   by (auto dest:leg-implies-path)
 with wf have classC':is-class P C'
   by (fastforce intro:Subobj-last-isClass simp:path-via-def)
 with leqR wf obtain Cs' where subo:Subobjs_R P C' Cs' and last:last Cs' = D
   by (auto\ dest: leqR-SubobjsR)
 hence hd:hd \ Cs' = C'
   by (fastforce\ dest:hd\text{-}SubobjsR)
 with path-via subo wf have suboApp:Subobjs P C (Cs@tl Cs')
   by (auto dest!:Subobjs-Rep dest:Subobjs-appendPath
             simp:path-via-def appendPath-def)
 hence last': last (Cs@tl Cs') = D
   proof (cases the Cs' = [])
     case True
     with subo hd last have C' = D
      by (subgoal-tac\ Cs' = [C'], auto\ dest!: SubobjsR-nonempty\ hd-Cons-tl)
     with path-via have last Cs = D
      by (auto simp:path-via-def)
     with True show ?thesis by simp
   next
     case False
     from subo have Cs':Cs' = hd \ Cs' \# tl \ Cs'
      by (auto dest:SubobjsR-nonempty)
     from False have last(hd \ Cs'\#tl \ Cs') = last \ (tl \ Cs')
      by (rule last-ConsR)
     with False Cs' last show ?thesis by simp
   qed
 with path-unique suboApp
 have all: \forall Ds. Subobjs P \ C \ Ds \land last \ Ds = D \longrightarrow Ds = Cs@tl \ Cs'
   by (auto simp add:path-unique-def)
 { fix Cs'' assume path-via2:P \vdash Path \ C \ to \ C' \ via \ Cs'' and noteq:Cs'' \neq Cs
   with suboApp have last (Cs''@tl Cs') = D
   proof (cases the Cs' = [])
     case True
     with subo hd last have C' = D
      by (subgoal-tac\ Cs' = [C'], auto\ dest!: SubobjsR-nonempty\ hd-Cons-tl)
     with path-via2 have last Cs'' = D
      by (auto simp:path-via-def)
     with True show ?thesis by simp
   next
     case False
     from subo have Cs':Cs' = hd \ Cs' \# tl \ Cs'
      by (auto dest:SubobjsR-nonempty)
     from False have last(hd\ Cs'\#tl\ Cs') = last\ (tl\ Cs')
      by (rule last-ConsR)
     with False Cs' last show ?thesis by simp
```

```
qed
    with path-via2 noteq have False using all subo hd wf
     apply (auto simp:path-via-def)
     apply (drule Subobjs-Rep)
     apply (drule Subobjs-appendPath)
     apply (auto simp:appendPath-def)
     done }
  with path-via show ?thesis
   by (auto simp:path-via-def path-unique-def)
qed
17.8
          Well-formedness and member lookup
lemma has-path-has:
\llbracket P \vdash Path \ D \ to \ C \ via \ Ds; \ P \vdash C \ has \ M = (Ts, T, m) \ via \ Cs; \ wf-prog \ wf-md \ P \rrbracket
  \implies P \vdash D \text{ has } M = (Ts, T, m) \text{ via } Ds@_pCs
\mathbf{by}\ (\mathit{clarsimp\ simp:} Has \textit{MethodDef-def\ MethodDefs-def\ ,} frule\ Subobjs-nonempty,
        drule-tac Cs'=Ds in appendPath-last,
        fastforce intro:Subobjs-appendPath simp:path-via-def)
lemma has-least-wf-mdecl:
  \llbracket \text{ wf-prog wf-md } P; P \vdash C \text{ has least } M = m \text{ via } Cs \rrbracket
\implies wf-mdecl wf-md P (last Cs) (M,m)
\mathbf{by}(fastforce\ dest:visible-methods-exist\ class-wf\ map-of-SomeD
                 simp: LeastMethodDef-def wf-cdecl-def)
lemma has-overrider-wf-mdecl:
  \llbracket wf\text{-prog } wf\text{-md } P; P \vdash (C,Cs) \text{ has overrider } M = m \text{ via } Cs' \rrbracket
\implies wf-mdecl wf-md P (last Cs') (M,m)
\mathbf{by}(fastforce\ dest:visible-methods-exist\ map-of-SomeD\ class-wf
                simp:FinalOverriderMethodDef-def\ OverriderMethodDefs-def
                     MinimalMethodDefs-def wf-cdecl-def)
lemma select-method-wf-mdecl:
  \llbracket wf\text{-prog } wf\text{-md } P; P \vdash (C,Cs) \text{ selects } M = m \text{ via } Cs' \rrbracket
\implies wf-mdecl wf-md P (last Cs') (M,m)
\mathbf{by}(fastforce\ elim:SelectMethodDef.induct
                 intro:has-least-wf-mdecl has-overrider-wf-mdecl)
{f lemma}\ {\it wf-sees-method-fun}:
\llbracket P \vdash C \text{ has least } M = \text{mthd via } Cs; P \vdash C \text{ has least } M = \text{mthd' via } Cs';
  wf-prog wf-md P
  \implies mthd = mthd' \land Cs = Cs'
```

```
apply (auto simp:LeastMethodDef-def)
apply (erule-tac x=(Cs', mthd') in ballE)
apply (erule-tac x=(Cs, mthd) in ballE)
apply auto
apply (drule leq-path-asym2) apply simp-all
apply (rule sees-methods-fun) apply simp-all
apply (erule-tac x=(Cs', mthd') in ballE)
apply (erule-tac x=(Cs, mthd) in ballE)
apply (auto intro:leq-path-asym2)
done
lemma wf-select-method-fun:
  assumes wf:wf-proq wf-md P
  shows \llbracket P \vdash (C,Cs) \text{ selects } M = \text{mthd via } Cs'; P \vdash (C,Cs) \text{ selects } M = \text{mthd'}
via Cs''
  \implies mthd = mthd' \land Cs' = Cs''
proof(induct rule:SelectMethodDef.induct)
  case (dyn\text{-}unique\ C\ M\ mthd\ Cs'\ Cs)
 have P \vdash (C, Cs) selects M = mthd' via Cs''
   and P \vdash C has least M = mthd via Cs' by fact +
  thus ?case
  proof(induct rule:SelectMethodDef.induct)
   case (dyn\text{-}unique\ D\ M'\ mthd'\ Ds'\ Ds)
   have P \vdash D has least M' = mthd' via Ds'
     and P \vdash D has least M' = mthd via Cs' by fact+
   with wf show ?case
     by -(rule\ wf\text{-}sees\text{-}method\text{-}fun,simp\text{-}all)
 next
   case (dyn-ambiguous D M' Ds mthd' Ds')
   have \forall mthd \ Cs'. \neg P \vdash D \ has \ least \ M' = mthd \ via \ Cs'
     and P \vdash D has least M' = mthd via Cs' by fact +
   thus ?case by blast
 qed
next
  case (dyn-ambiguous C M Cs mthd Cs')
 have P \vdash (C, Cs) selects M = mthd' via Cs''
   and P \vdash (C, Cs) has overrider M = mthd \ via \ Cs'
   and \forall mthd \ Cs'. \ \neg \ P \vdash C \ has \ least \ M = mthd \ via \ Cs' \ by \ fact +
  thus ?case
  \mathbf{proof}(induct\ rule:SelectMethodDef.induct)
   case (dyn\text{-}unique\ D\ M'\ mthd'\ Ds'\ Ds)
   have P \vdash D has least M' = mthd' via Ds'
     and \forall mthd \ Cs'. \ \neg \ P \vdash D \ has \ least \ M' = mthd \ via \ Cs' \ by \ fact +
   thus ?case by blast
   case (dyn-ambiguous D M' Ds mthd' Ds')
   have P \vdash (D, Ds) has overrider M' = mthd' via Ds'
```

```
and P \vdash (D, Ds) has overrider M' = mthd \ via \ Cs' by fact+
   thus ?case by(fastforce dest:overrider-method-fun)
 qed
qed
lemma least-field-is-type:
assumes field:P \vdash C \text{ has least } F:T \text{ via } Cs \text{ and } wf:wf\text{-}prog \text{ } wf\text{-}md \text{ } P
shows is-type P T
proof -
 from field have (Cs,T) \in FieldDecls \ P \ C \ F
   by (simp add:LeastFieldDecl-def)
 from this obtain Bs fs ms
   where map\text{-}of fs F = Some T
   and class: class P (last Cs) = Some (Bs,fs,ms)
   by (auto simp add:FieldDecls-def)
 hence (F,T) \in set\ fs\ by\ (simp\ add:map-of-SomeD)
  with class wf show ?thesis
   by(fastforce dest!: class-wf simp: wf-cdecl-def wf-fdecl-def)
qed
lemma least-method-is-type:
assumes method: P \vdash C \ has \ least \ M = (Ts, T, m) \ via \ Cs \ and \ wf: wf-prog \ wf-md \ P
shows is-type P T
proof
 from method have (Cs, Ts, T, m) \in MethodDefs P C M
   by (simp add:LeastMethodDef-def)
 from this obtain Bs fs ms
   where map-of ms M = Some(Ts, T, m)
   and class: class P (last Cs) = Some (Bs, fs, ms)
   by (auto simp add:MethodDefs-def)
 hence (M, Ts, T, m) \in set \ ms \ by (simp \ add:map-of-SomeD)
 with class wf show ?thesis
   by(fastforce dest!: class-wf simp: wf-cdecl-def wf-mdecl-def)
\mathbf{qed}
\mathbf{lemma}\ \mathit{least-overrider-is-type}\colon
assumes method:P \vdash (C,Cs) has overrider M = (Ts,T,m) via Cs'
 and wf:wf-prog wf-md P
shows is-type P T
```

```
proof -
 from method have (Cs', Ts, T, m) \in MethodDefs P C M
   \mathbf{by}(\mathit{clarsimp\ simp:FinalOverriderMethodDef-def\ OverriderMethodDefs-def}
                   MinimalMethodDefs-def)
 from this obtain Bs fs ms
   where map-of ms M = Some(Ts, T, m)
   and class: class P (last Cs') = Some (Bs,fs,ms)
   by (auto simp add:MethodDefs-def)
 hence (M, Ts, T, m) \in set \ ms \ by \ (simp \ add:map-of-Some D)
  with class wf show ?thesis
   by(fastforce dest!: class-wf simp: wf-cdecl-def wf-mdecl-def)
qed
lemma select-method-is-type:
\llbracket P \vdash (C,Cs) \text{ selects } M = (Ts,T,m) \text{ via } Cs'; \text{ wf-prog wf-md } P \rrbracket \Longrightarrow \text{is-type } P T
\mathbf{by}(auto\ elim: SelectMethodDef. cases
           intro:least-method-is-type least-overrider-is-type)
lemma base-subtype:
\llbracket wf\text{-}cdecl \ wf\text{-}md \ P \ (C,Bs,fs,ms); \ C' \in baseClasses \ Bs;
  P \vdash C' \text{ has } M = (Ts', T', m') \text{ via } Cs@_p[D]; (M, Ts, T, m) \in set \text{ } ms]
 \implies Ts' = Ts \land P \vdash T \leq T'
apply (simp add:wf-cdecl-def)
apply clarsimp
apply (rotate-tac-1)
apply (erule-tac x=C' in ballE)
apply clarsimp
apply (rotate-tac-1)
apply (erule-tac x=(M, Ts, T, m) in ballE)
 apply clarsimp
 apply (erule-tac x = Ts' in allE)
 apply (erule-tac x=T' in allE)
 apply (auto simp:HasMethodDef-def)
apply (erule-tac x=fst m' in allE)
apply (erule-tac x=snd m' in allE)
apply (erule-tac x = Cs@_p[D] in allE)
apply simp
apply (erule-tac x=fst m' in allE)
apply (erule-tac x=snd m' in allE)
apply (erule-tac x = Cs@_p[D] in allE)
apply simp
done
```

```
lemma subclsPlus-subtype:
 assumes classD:class\ P\ D=Some(Bs',fs',ms')
 and mapMs':map-of\ ms'\ M = Some(Ts', T', m')
 and leq:(C,D) \in (subcls1\ P)^+ and wf:wf-prog\ wf-md\ P
shows \forall Bs \ fs \ ms \ Ts \ T \ m. \ class \ P \ C = Some(Bs,fs,ms) \ \land \ map-of \ ms \ M =
Some(Ts, T, m)
   \longrightarrow Ts' = Ts \land P \vdash T \leq T'
using leq classD mapMs'
proof (erule-tac a=C and b=D in converse-trancl-induct)
 \mathbf{fix} \ C
 assume CleqD:P \vdash C \prec^1 D and classD1:class\ P\ D = Some(Bs',fs',ms')
  { fix Bs fs ms Ts T m
    assume classC:class\ P\ C\ =\ Some(Bs,fs,ms) and mapMs:map-of\ ms\ M\ =\ 
Some(Ts, T, m)
   from classD1 \ mapMs' have hasViaD:P \vdash D \ has \ M = (Ts', T', m') \ via \ [D]
   \textbf{by} \ (fastforce \ intro: Subobjs\text{-}Base \ simp: HasMethodDef-def \ MethodDefs-def \ is\text{-}class\text{-}def))
   from CleqD classC have base:D \in baseClasses Bs
     by (fastforce dest:subcls1D)
   from classC wf have cdecl: wf-cdecl wf-md P (C, Bs, fs, ms)
     by (rule class-wf)
   from classC mapMs have (M, Ts, T, m) \in set ms
     by -(drule\ map-of-SomeD)
   with cdecl base has ViaD have Ts' = Ts \land P \vdash T \leq T'
     by -(rule-tac\ Cs=[D]\ in\ base-subtype, auto\ simp:appendPath-def) }
  thus \forall Bs \ fs \ ms \ Ts \ T \ m. \ class \ P \ C = Some(Bs, fs, ms) \land map-of \ ms \ M =
Some(Ts, T, m)
            \rightarrow Ts' = Ts \land P \vdash T \leq T' by blast
next
 fix C C'
 assume classD1:class\ P\ D=Some(Bs',fs',ms') and CleqC':P\vdash C\prec^1\ C'
   and subcls:(C',D) \in (subcls1\ P)^+
   and IH: \forall Bs \ fs \ ms \ Ts \ T \ m. \ class \ P \ C' = Some(Bs,fs,ms) \ \land
                       map\text{-}of\ ms\ M = Some(Ts, T, m) \longrightarrow
                Ts' = Ts \wedge P \vdash T \leq T'
  { fix Bs fs ms Ts T m
    assume classC:class\ P\ C\ =\ Some(Bs,fs,ms) and mapMs:map-of\ ms\ M\ =\ 
Some(Ts, T, m)
   from classD1 \ mapMs' have hasViaD:P \vdash D \ has \ M = (Ts', T', m') \ via \ [D]
   by (fastforce intro:Subobjs-Base simp:HasMethodDef-def MethodDefs-def is-class-def)
   from subcls have C'leqD:P \vdash C' \preceq^* D by simp
   from class C wf CleqC' have is-class P C
     by (fastforce intro:wf-cdecl-supD class-wf dest:subcls1D)
   with C'leqD wf obtain Cs where P \vdash Path C' to D via Cs
     by (auto dest!:leq-implies-path simp:is-class-def)
   hence has Via: P \vdash C' has M = (Ts', T', m') via Cs@_p[D] using has ViaD wf
     by (rule has-path-has)
   from CleqC' class C have base: C' \in baseClasses Bs
     by (fastforce dest:subcls1D)
```

```
from classC wf have cdecl:wf-cdecl wf-md P (C,Bs,fs,ms)
     by (rule class-wf)
   from classC\ mapMs have (M, Ts, T, m) \in set\ ms
     by -(drule\ map-of-SomeD)
   with cdecl base has Via have Ts' = Ts \land P \vdash T \leq T'
     \mathbf{by}(rule\ base-subtype) }
  thus \forall Bs fs ms Ts T m. class P C = Some(Bs, fs, ms) \land map-of ms M =
Some(Ts, T, m)
            \longrightarrow Ts' = Ts \land P \vdash T \leq T' by blast
qed
lemma leq-method-subtypes:
  assumes leq:P \vdash D \leq^* C and least:P \vdash D has least M = (Ts',T',m') via Ds
 and wf: wf-proq \ wf-md \ P
 shows \forall Ts \ T \ m \ Cs. \ P \vdash C \ has \ M = (Ts, T, m) \ via \ Cs \longrightarrow
                     Ts = Ts' \wedge P \vdash T' < T
using assms
proof (induct rule:rtrancl.induct)
 \mathbf{fix} \ C
 assume Cleast: P \vdash C has least M = (Ts', T', m') via Ds
  { fix Ts T m Cs
   assume Chas:P \vdash C has M = (Ts,T,m) via Cs
   with Cleast have path:P,C \vdash Ds \sqsubseteq Cs
     by (fastforce simp:LeastMethodDef-def HasMethodDef-def)
    { assume Ds = Cs
     with Cleast Chas have Ts = Ts' \wedge T' = T
       by (auto simp:LeastMethodDef-def HasMethodDef-def MethodDefs-def)
     hence Ts = Ts' \land P \vdash T' \leq T by auto \}
   moreover
   { assume (Ds,Cs) \in (leq\text{-}path1\ P\ C)^+
     hence subcls:(last\ Ds, last\ Cs) \in (subcls1\ P)^+ using wf
       \mathbf{by} -(rule\ last-leq-paths)
     from Chas obtain Bs fs ms where class P (last Cs) = Some(Bs,fs,ms)
       and map-of ms M = Some(Ts, T, m)
       by (auto simp: HasMethodDef-def MethodDefs-def)
     hence ex: \forall Bs' fs' ms' Ts' T' m'. class P (last Ds) = Some(Bs', fs', ms') \land As
       map\text{-}of\ ms'\ M = Some(Ts', T', m') \longrightarrow Ts = Ts' \land P \vdash T' \leq T
       using subcls wf
       \mathbf{by}\ -(\mathit{rule}\ \mathit{subclsPlus-subtype}, \mathit{auto})
     from Cleast obtain Bs' fs' ms' where class P(last Ds) = Some(Bs',fs',ms')
       and map-of ms' M = Some(Ts', T', m')
       by (auto simp:LeastMethodDef-def MethodDefs-def)
     with ex have Ts = Ts' and P \vdash T' \leq T by auto }
     ultimately have Ts = Ts' and P \vdash T' \leq T using path
       by (auto dest!:rtranclD) }
  thus \forall Ts \ T \ m \ Cs. \ P \vdash C \ has \ M = (Ts, \ T, \ m) \ via \ Cs \longrightarrow
```

```
Ts = Ts' \wedge P \vdash T' < T
   by (simp add:HasMethodDef-def MethodDefs-def)
\mathbf{next}
 fix D C' C
 assume DleqC':P \vdash D \leq^* C' and C'leqC:P \vdash C' \prec^1 C
 and Dleast:P \vdash D has least M = (Ts', T', m') via Ds
 and IH: [P \vdash D \text{ has least } M = (Ts', T', m') \text{ via } Ds; \text{ wf-prog wf-md } P]
  \implies \forall Ts \ T \ m \ Cs. \ P \vdash C' \ has \ M = (Ts, \ T, \ m) \ via \ Cs \longrightarrow
           Ts = Ts' \wedge P \vdash T' \leq T
  { fix Ts T m Cs
   assume Chas: P \vdash C \ has \ M = (Ts, T, m) \ via \ Cs
   from Dleast have classD:is-class P D
     \mathbf{by}\ (auto\ intro: Subobjs-isClass\ simp: LeastMethodDef-def\ MethodDefs-def)
   from DleqC' C'leqC have P \vdash D \preceq^* C by simp
   then obtain Cs' where P \vdash Path D to C via Cs' using classD wf
     by (auto dest:leg-implies-path)
   hence Dhas:P \vdash D \ has \ M = (Ts,T,m) \ via \ Cs'@_pCs \ using \ Chas \ wf
     by (fastforce intro:has-path-has)
   with Dleast have path:P,D \vdash Ds \sqsubseteq Cs'@_pCs
     by (auto simp:LeastMethodDef-def HasMethodDef-def)
    { assume Ds = Cs'@_pCs
     with Dleast Dhas have Ts = Ts' \wedge T' = T
       by (auto simp:LeastMethodDef-def HasMethodDef-def MethodDefs-def)
     hence Ts = Ts' \wedge T' = T by auto }
   moreover
    { assume (Ds, Cs'@_p Cs) \in (leq\text{-}path1\ P\ D)^+
     hence subcls: (last\ Ds, last\ (Cs'@_pCs)) \in (subcls1\ P)^+ using wf
       by -(rule\ last-leq-paths)
    from Dhas obtain Bs fs ms where class P (last (Cs'@_pCs)) = Some(Bs,fs,ms)
       and map-of ms M = Some(Ts, T, m)
       by (auto simp: HasMethodDef-def MethodDefs-def)
     hence ex: \forall Bs' fs' ms' Ts' T' m'. class P (last Ds) = Some(Bs',fs',ms') \land
               map\text{-}of\ ms'\ M = Some(Ts', T', m') \longrightarrow
                   Ts = Ts' \wedge P \vdash T' \leq T
       using subcls wf
       by -(rule\ subclsPlus-subtype, auto)
    from Dleast obtain Bs' fs' ms' where class P(last Ds) = Some(Bs', fs', ms')
       and map-of ms' M = Some(Ts', T', m')
       by (auto simp:LeastMethodDef-def MethodDefs-def)
     with ex have Ts = Ts' and P \vdash T' \leq T by auto }
   ultimately have Ts = Ts' and P \vdash T' \leq T using path
     by (auto dest!:rtranclD) }
  thus \forall Ts \ T \ m \ Cs. \ P \vdash C \ has \ M = (Ts, \ T, \ m) \ via \ Cs \longrightarrow
           Ts = Ts' \land P \vdash T' \leq T
   by simp
qed
```

```
lemma leq-methods-subtypes:
  assumes leq: P \vdash D \leq^* C and least: (Ds, (Ts', T', m')) \in Minimal Method Defs P
DM
 and wf:wf-prog wf-md P
 shows \forall Ts \ T \ m \ Cs \ Cs'. \ P \vdash Path \ D \ to \ C \ via \ Cs' \land P,D \vdash Ds \sqsubseteq Cs'@_{p}Cs \land Cs
\neq [] \land
                       P \vdash C \ has \ M = (Ts, T, m) \ via \ Cs
                              \longrightarrow Ts = Ts' \land P \vdash T' \leq T
using assms
proof (induct rule:rtrancl.induct)
 \mathbf{fix} \ C
 assume Cleast:(Ds,(Ts',T',m')) \in MinimalMethodDefs\ P\ C\ M
  { fix Ts T m Cs Cs
   assume path':P \vdash Path \ C \ to \ C \ via \ Cs'
     and leq-path:P, C \vdash Ds \sqsubseteq Cs' @_p Cs and notempty: Cs \neq []
     and Chas:P \vdash C has M = (Ts, T, m) via Cs
   from path' wf have Cs':Cs' = [C] by (rule path-via-C)
   from leq-path Cs' notempty have leq':P,C \vdash Ds \sqsubseteq Cs
     by(auto simp:appendPath-def split:if-split-asm)
    \{ assume Ds = Cs \}
     with Cleast Chas have Ts = Ts' \wedge T' = T
       by (auto simp:MinimalMethodDefs-def HasMethodDef-def MethodDefs-def)
     hence Ts = Ts' \wedge P \vdash T' \leq T by auto \}
   moreover
   { assume (Ds,Cs) \in (leq\text{-}path1\ P\ C)^+
     hence subcls: (last Ds, last Cs) \in (subcls1 P)<sup>+</sup> using wf
       by -(rule\ last-leq-paths)
     from Chas obtain Bs fs ms where class P (last Cs) = Some(Bs,fs,ms)
       and map-of ms M = Some(Ts, T, m)
       by (auto simp: HasMethodDef-def MethodDefs-def)
     hence ex: \forall Bs' fs' ms' Ts' T' m'. class P (last Ds) = Some(Bs',fs',ms') \land
       map\text{-}of\ ms'\ M = Some(Ts', T', m') \longrightarrow Ts = Ts' \land P \vdash T' \leq T
       using subcls wf
       by -(rule\ subclsPlus-subtype, auto)
     from Cleast obtain Bs' fs' ms' where class P (last Ds) = Some(Bs',fs',ms')
       and map-of ms' M = Some(Ts', T', m')
       by (auto simp:MinimalMethodDefs-def MethodDefs-def)
     with ex have Ts = Ts' and P \vdash T' \leq T by auto }
     ultimately have Ts = Ts' and P \vdash T' \leq T using leq'
       by (auto dest!:rtranclD) }
 thus \forall Ts T m Cs Cs'. P \vdash Path \ C \ to \ C \ via \ Cs' \land P, C \vdash Ds \sqsubseteq Cs' @_p \ Cs \land Cs
\neq [] \land
                      P \vdash C \text{ has } M = (Ts, T, m) \text{ via } Cs \longrightarrow
                          Ts = Ts' \land P \vdash T' \leq T \text{ by } blast
\mathbf{next}
 fix D C' C
```

```
assume DleqC':P \vdash D \leq^* C' and C'leqC:P \vdash C' \prec^1 C
   and Dleast:(Ds, Ts', T', m') \in MinimalMethodDefs P D M
   and IH: [(Ds, Ts', T', m') \in MinimalMethodDefs P D M; wf-prog wf-md P]
   \implies \forall Ts \ T \ m \ Cs \ Cs'. \ P \vdash Path \ D \ to \ C' \ via \ Cs' \land
             P,D \vdash Ds \sqsubseteq Cs' @_n Cs \land Cs \neq [] \land P \vdash C' has M = (Ts, T, m) via
Cs \longrightarrow
                           Ts = Ts' \wedge P \vdash T' \leq T
  { fix Ts T m Cs Cs'
   assume path:P \vdash Path D to C via Cs'
     and leq-path:P,D \vdash Ds \sqsubseteq Cs' @_p Cs
     and notempty: Cs \neq []
     and Chas:P \vdash C \ has \ M = (Ts,T,m) \ via \ Cs
   from Dleast have classD:is-class P D
     by (auto intro:Subobjs-isClass simp:MinimalMethodDefs-def MethodDefs-def)
   from path have Dhas:P \vdash D \ has \ M = (\mathit{Ts},T,m) \ via \ \mathit{Cs'}@_p\mathit{Cs} \ using \ \mathit{Chas} \ \mathit{wf}
     by (fastforce intro:has-path-has)
   { assume Ds = Cs'@_nCs
     with Dleast Dhas have Ts = Ts' \wedge T' = T
       by (auto simp: MinimalMethodDefs-def HasMethodDef-def MethodDefs-def)
     hence Ts = Ts' \wedge T' = T by auto }
   moreover
    { assume (Ds, Cs'@_p Cs) \in (leq\text{-}path1\ P\ D)^+
     hence subcls: (last Ds, last (Cs'@_pCs)) \in (subcls1\ P)^+ using wf
       by -(rule\ last-leg-paths)
    from Dhas obtain Bs fs ms where class P (last (Cs'@_nCs)) = Some(Bs,fs,ms)
       and map-of ms M = Some(Ts, T, m)
       by (auto simp: HasMethodDef-def MethodDefs-def)
     hence ex: \forall Bs' fs' ms' Ts' T' m'. class P (last Ds) = Some(Bs',fs',ms') \land A
                map\text{-}of\ ms'\ M = Some(Ts', T', m') \longrightarrow
                   Ts = Ts' \wedge P \vdash T' \leq T
       using subcls wf
       by -(rule\ subclsPlus-subtype, auto)
     from Dleast obtain Bs' fs' ms' where class P (last Ds) = Some(Bs',fs',ms')
       and map-of ms' M = Some(Ts', T', m')
       by (auto simp:MinimalMethodDefs-def MethodDefs-def)
     with ex have Ts = Ts' and P \vdash T' \leq T by auto }
   ultimately have Ts = Ts' and P \vdash T' \leq T using leq-path
     by (auto dest!:rtranclD) }
 thus \forall Ts \ T \ m \ Cs \ Cs'. \ P \vdash Path \ D \ to \ C \ via \ Cs' \land P,D \vdash Ds \sqsubseteq Cs' @_p \ Cs \land \ Cs
\neq [] \land
                  P \vdash C \ has \ M = (Ts, T, m) \ via \ Cs \longrightarrow
                         Ts = Ts' \wedge P \vdash T' < T
   \mathbf{by} blast
qed
```

 ${\bf lemma}\ select\text{-}least\text{-}methods\text{-}subtypes:$

```
assumes select-method:P \vdash (C, Cs@_pDs) selects M = (Ts, T, pns, body) via Cs'
 and least-method: P \vdash last \ Cs \ has \ least \ M = (Ts', T', pns', body') \ via \ Ds
 and path:P \vdash Path \ C \ to \ (last \ Cs) \ via \ Cs
 and wf:wf-prog wf-md P
 shows Ts' = Ts \land P \vdash T < T'
using select-method
proof -
  from path have sub:P \vdash C \preceq^* last Cs
   \mathbf{by}(fastforce\ intro:Subobjs\text{-}subclass\ simp:path\text{-}via\text{-}def)
  from least-method have has:P \vdash last \ Cs \ has \ M = (Ts', T', pns', body') \ via \ Ds
   \mathbf{by}(rule\ has\text{-}least\text{-}method\text{-}has\text{-}method)
  from select-method show ?thesis
 proof cases
   case dyn-unique
   hence dyn:P \vdash C has least M = (Ts, T, pns, body) via Cs' by simp
   with sub has wf show ?thesis
     by -(drule\ leg-method-subtypes, assumption, simp, blast)+
  next
   case dyn-ambiguous
   hence overrider: P \vdash (C, Cs@_nDs) has overrider M = (Ts, T, pns, body) via Cs'
     by simp
   from least-method have notempty:Ds \neq []
     \mathbf{by}(auto\ intro!:Subobjs-nonempty\ simp:LeastMethodDef-def\ MethodDefs-def)
   have last Cs = hd Ds \Longrightarrow last (Cs @ tl Ds) = last Ds
   \mathbf{proof}(cases\ tl\ Ds = [])
     case True
     assume last:last Cs = hd Ds
     with True notempty have Ds = [last \ Cs] by (fastforce \ dest:hd-Cons-tl)
     hence last Ds = last Cs by simp
     with True show ?thesis by simp
   next
     case False
     assume last:last \ Cs = hd \ Ds
     from notempty False have last (tl Ds) = last Ds
       by -(drule\ hd\text{-}Cons\text{-}tl,drule\text{-}tac\ x=hd\ Ds\ in\ last\text{-}ConsR,simp)
     with False show ?thesis by simp
   qed
   hence eq:(Cs @_p Ds) @_p [last Ds] = (Cs @_p Ds)
     \mathbf{by}(simp\ add:appendPath-def)
   from least-method wf
   have P \vdash last \ Ds \ has \ least \ M = (Ts', T', pns', body') \ via \ [last \ Ds]
     \mathbf{by}(\mathit{auto}\ \mathit{dest}: \mathit{Subobj-last-isClass}\ \mathit{intro}: \mathit{Subobjs-Base}\ \mathit{subobjs-rel}
       simp:LeastMethodDef-def MethodDefs-def)
   with notempty
   have P \vdash last (Cs@_pDs) has least M = (Ts', T', pns', body') via [last Ds]
     by -(drule-tac\ Cs'=Cs\ in\ appendPath-last,simp)
   with overrider wf eq have (Cs', Ts, T, pns, body) \in MinimalMethodDefs P C M
     and P,C \vdash Cs' \sqsubseteq Cs @_p Ds
     \mathbf{by}\ -(auto\ simp: Final Overrider Method Def-def\ Overrider Method Defs-def,
```

```
drule wf-sees-method-fun, auto)
   with sub wf path notempty has show ?thesis
     \mathbf{by} -(drule\ leq-methods-subtypes, simp-all, blast)+
qed
lemma wf-syscls:
  set\ SystemClasses\subseteq set\ P\Longrightarrow wf\text{-}syscls\ P
by (simp add: image-def SystemClasses-def wf-syscls-def sys-xcpts-def
         NullPointerC-def ClassCastC-def OutOfMemoryC-def, force\ intro:conjI)
17.9
         Well formedness and widen
lemma Class-widen: [P \vdash Class\ C < T;\ wf\text{-proq}\ wf\text{-md}\ P;\ is\text{-}class\ P\ C]
    \Rightarrow \exists D. T = Class D \land P \vdash Path C to D unique
apply (ind-cases P \vdash Class \ C \leq T)
apply (auto intro:path-C-to-C-unique)
done
lemma Class-widen-Class [iff]: \llbracket wf\text{-prog } wf\text{-md } P; is\text{-class } P \ C \rrbracket \Longrightarrow
  (P \vdash Class\ C \leq Class\ D) = (P \vdash Path\ C\ to\ D\ unique)
apply (rule iffI)
apply (ind-cases P \vdash Class C \leq Class D)
apply (auto elim: widen-subcls intro:path-C-to-C-unique)
done
lemma widen-Class: \llbracket wf\text{-prog } wf\text{-md } P; is\text{-class } P \ C \rrbracket \Longrightarrow
  (P \vdash T \leq Class \ C) =
   (T = NT \lor (\exists D. T = Class D \land P \vdash Path D to C unique))
apply(induct T) apply (auto intro:widen-subcls)
apply (ind-cases P \vdash Class\ D \leq Class\ C for D) apply (auto intro:path-C-to-C-unique)
done
           Well formedness and well typing
lemma assumes wf:wf-prog wf-md P
shows WT-determ: P,E \vdash e :: T \Longrightarrow (\bigwedge T'. P,E \vdash e :: T' \Longrightarrow T = T')
and WTs-determ: P,E \vdash es [::] Ts \Longrightarrow (\bigwedge Ts', P,E \vdash es [::] Ts' \Longrightarrow Ts = Ts')
proof(induct rule:WT-WTs-inducts)
 case (WTDynCast\ E\ e\ D\ C)
 have P,E \vdash Cast \ C \ e :: T' by fact
  thus ?case by (fastforce elim: WT.cases)
```

```
next
 case (WTStaticCast\ E\ e\ D\ C)
 have P,E \vdash (C)e :: T' by fact
  thus ?case by (fastforce elim: WT.cases)
  case (WTBinOp \ E \ e_1 \ T_1 \ e_2 \ T_2 \ bop \ T)
 have bop:case bop of Eq \Rightarrow T_1 = T_2 \land T = Boolean
   \mid Add \Rightarrow T_1 = Integer \land T_2 = Integer \land T = Integer
   and wt:P,E \vdash e_1 \ll bop \gg e_2 :: T' by fact+
  from wt obtain T1' T2' where
   bop':case\ bop\ of\ Eq \Rightarrow\ T1'=\ T2'\land\ T'=\ Boolean
   \mid Add \Rightarrow T1' = Integer \land T2' = Integer \land T' = Integer
   by auto
 from bop show ?case
 proof (cases bop)
   assume Eq:bop = Eq
   with bop have T = Boolean by auto
   with Eq bop' show ?thesis by simp
   assume Add:bop = Add
   with bop have T = Integer
     by auto
   with Add bop' show ?thesis by simp
  qed
\mathbf{next}
  case (WTLAss E V T e T' T'')
 have P,E \vdash V := e :: T''
   and E V = Some T by fact +
 thus ?case by auto
next
  case (WTFAcc \ E \ e \ C \ F \ T \ Cs)
 have IH: \bigwedge T'. P,E \vdash e :: T' \Longrightarrow Class C = T'
   \mathbf{and}\ \mathit{least}{:}P \vdash \mathit{C}\ \mathit{has}\ \mathit{least}\ \mathit{F}{:}\mathit{T}\ \mathit{via}\ \mathit{Cs}
   and wt:P,E \vdash e \cdot F\{Cs\} :: T' by fact+
 from wt obtain C' where wte':P,E \vdash e :: Class C'
   and least':P \vdash C' has least F:T' via Cs by auto
 from IH[OF\ wte'] have C=C' by simp
  with least least' show ?case
   by (fastforce simp:sees-field-fun)
next
  case (WTFAss E e_1 C F T Cs e_2 T' T'')
  have least:P \vdash C has least F:T via Cs
   and wt:P,E \vdash e_1 \cdot F\{Cs\} := e_2 :: T''
   and IH: \land S. P, E \vdash e_1 :: S \Longrightarrow Class C = S by fact+
  from wt obtain C' where wte':P,E \vdash e_1 :: Class C'
   and least': P \vdash C' has least F: T'' via Cs by auto
  from IH[OF\ wte'] have C = C' by simp
  with least least' show ?case
   by (fastforce simp:sees-field-fun)
```

```
next
  case (WTCall E e C M Ts T pns body Cs es Ts')
 have IH: \bigwedge T'. P,E \vdash e :: T' \Longrightarrow Class C = T'
   and least:P \vdash C has least M = (Ts, T, pns, body) via Cs
   and wt:P,E \vdash e \cdot M(es) :: T' by fact+
  from wt obtain C' Ts' pns' body' Cs' where wte':P,E \vdash e :: Class C'
   and least':P \vdash C' has least M = (Ts', T', pns', body') via Cs' by auto
  from IH[OF\ wte'] have C = C' by simp
  with least least' wf show ?case by (auto dest:wf-sees-method-fun)
next
  case (WTStaticCall E e C' C M Ts T pns body Cs es Ts')
 have IH: \bigwedge T'. P,E \vdash e :: T' \Longrightarrow Class C' = T'
   and unique:P \vdash Path C' to C unique
   and least:P \vdash C has least M = (Ts, T, pns, body) via Cs
   and wt:P,E \vdash e \cdot (C::)M(es) :: T' by fact+
 from wt obtain Ts' pns' body' Cs'
   where P \vdash C has least M = (Ts', T', pns', body') via Cs' by auto
  with least wf show ?case by (auto dest:wf-sees-method-fun)
  case WTBlock thus ?case by (clarsimp simp del:fun-upd-apply)
next
  case (WTSeq E e_1 T_1 e_2 T_2)
 have IH: \bigwedge T'. P,E \vdash e_2 :: T' \Longrightarrow T_2 = T'
   and wt:P,E \vdash e_1;; e_2 :: T' by fact+
 from wt have wt':P,E \vdash e_2 :: T' by auto
  from IH[OF wt'] show ?case.
 case (WTCond E \ e \ e_1 \ T \ e_2)
 have IH: \land S. \ P, E \vdash e_1 :: S \Longrightarrow T = S
   and wt:P,E \vdash if (e) e_1 else e_2 :: T' by fact+
 from wt have P,E \vdash e_1 :: T' by auto
 from IH[OF this] show ?case.
next
  case (WTCons E e T es Ts)
 have IHe: \bigwedge T'. P,E \vdash e :: T' \Longrightarrow T = T'
   and IHes: \bigwedge Ts'. P,E \vdash es [::] Ts' \Longrightarrow Ts = Ts'
   and wt:P,E \vdash e \# es [::] Ts' by fact+
  from wt show ?case
  proof (cases Ts')
   case Nil with wt show ?thesis by simp
 next
   \mathbf{case} \,\,(\mathit{Cons}\,\,T^{\prime\prime}\,\,\mathit{Ts^{\prime\prime}})
   with wt have wte':P,E \vdash e :: T'' and wtes':P,E \vdash es [::] Ts''
   from IHe[OF wte'] IHes[OF wtes'] Cons show ?thesis by simp
  qed
qed clarsimp+
```

end

18 Weak well-formedness of CoreC++ programs

theory WWellForm imports WellForm Expr begin

```
definition wwf-mdecl :: prog \Rightarrow cname \Rightarrow mdecl \Rightarrow bool where wwf-mdecl P C \equiv \lambda(M,Ts,T,(pns,body)). length Ts = length pns \wedge distinct pns \wedge this \notin set pns \wedge fv body \subseteq \{this\} \cup set pns

lemma wwf-mdecl[simp]: wwf-mdecl P C (M,Ts,T,pns,body) = (length Ts = length pns \wedge distinct pns \wedge this \notin set pns \wedge fv body \subseteq \{this\} \cup set pns)

by (simp \ add:wwf-mdecl-def)

abbreviation wwf-prog :: prog \Rightarrow bool where wwf-prog := wf-prog \ wwf-mdecl
end
```

19 Equivalence of Big Step and Small Step Semantics

theory Equivalence imports BigStep SmallStep WWellForm begin

19.1 Some casts-lemmas

```
lemma assumes wf:wf-prog wf-md P
shows casts-casts:
P \vdash T \ casts \ v \ to \ v' \Longrightarrow P \vdash T \ casts \ v' \ to \ v'
proof(induct rule: casts-to.induct)
 case casts-prim thus ?case by(rule casts-to.casts-prim)
next
  case (casts-null C) thus ?case by(rule casts-to.casts-null)
  case (casts-ref Cs C Cs' Ds a)
 have path-via: P \vdash Path \ last \ Cs \ to \ C \ via \ Cs' \ and \ Ds: Ds = Cs \ @_p \ Cs' \ by \ fact +
  with wf have last Cs' = C and Cs' \neq [] and class: is-class P
   by(auto intro!:Subobjs-nonempty Subobj-last-isClass simp:path-via-def)
  with Ds have last:last Ds = C
   by -(drule-tac\ Cs'=Cs\ in\ appendPath-last,simp)
 hence Ds':Ds = Ds @_p [C] by(simp\ add:appendPath-def)
  from last class have P \vdash Path\ last\ Ds\ to\ C\ via\ [C]
   \mathbf{by}(fastforce\ intro:Subobjs\text{-}Base\ simp:path-via-def})
  with Ds' show ?case by(fastforce intro:casts-to.casts-ref)
```

```
lemma casts-casts-eq:
\llbracket P \vdash T \text{ casts } v \text{ to } v; P \vdash T \text{ casts } v \text{ to } v'; \text{ wf-prog wf-md } P \rrbracket \Longrightarrow v = v'
 apply -
 apply(erule casts-to.cases)
    apply clarsimp
   \mathbf{apply}(\mathit{erule}\ \mathit{casts-to.cases})
      apply simp
    apply simp
    apply (simp\ (asm-lr))
   apply(erule casts-to.cases)
    apply simp
    apply simp
  apply simp
  apply simp
  apply(erule casts-to.cases)
   apply simp
  apply simp
  apply clarsimp
  apply(erule appendPath-path-via)
 by auto
lemma assumes wf:wf-prog wf-md P
{f shows} None-lcl-casts-values:
P,E \vdash \langle e,(h,l) \rangle \rightarrow \langle e',(h',l') \rangle \Longrightarrow
 (\bigwedge V. \llbracket l \ V = None; E \ V = Some \ T; l' \ V = Some \ v' \rrbracket
  \implies P \vdash T \ casts \ v' \ to \ v'
and P,E \vdash \langle es,(h,l)\rangle [\rightarrow] \langle es',(h',l')\rangle \Longrightarrow
 (\bigwedge V. [l \ V = None; E \ V = Some \ T; l' \ V = Some \ v']
  \implies P \vdash T \ casts \ v' \ to \ v'
proof(induct rule:red-reds-inducts)
  case (RedLAss\ E\ V\ T'\ w\ w'\ h\ l\ V')
  have env:E\ V = Some\ T' and env':E\ V' = Some\ T
    and l:l\ V' = None\ and\ lupd:(l(V \mapsto w'))\ V' = Some\ v'
    and casts:P \vdash T' casts w to w' by fact+
  show ?case
 \mathbf{proof}(cases\ V = V')
    {\bf case}\ {\it True}
    with lupd have v':v'=w' by simp
    from True env env' have T = T' by simp
    with v' casts wf show ?thesis by(fastforce intro:casts-casts)
  next
```

```
case False
   with lupd have l\ V' = Some\ v'\ by(fastforce\ split:if\text{-}split\text{-}asm)
   with l show ?thesis by simp
 qed
next
 case (BlockRedNone E V T' e h l e' h' l' V')
 have l:l\ V'=None
   and l'upd:(l'(V:=l\ V))\ V'=Some\ v' and env:E\ V'=Some\ T
   and IH: \bigwedge V'. [(l(V := None)) \ V' = None; (E(V \mapsto T')) \ V' = Some \ T;
                l' V' = Some v'
          \implies P \vdash T \ casts \ v' \ to \ v' \ by \ fact +
 show ?case
 proof(cases V = V')
   case True
   with l'upd l show ?thesis by fastforce
 next
   case False
   with l 'upd have lnew:(l(V := None)) V' = None
     and l'new:l' \ V' = Some \ v' by (auto split:if-split-asm)
   from env False have env': (E(V \mapsto T')) V' = Some T by fastforce
   from IH[OF lnew env' l'new] show ?thesis.
 qed
\mathbf{next}
 case (BlockRedSome E V T' e h l e' h' l' v V')
 have l:l\ V'=None
   and l'upd:(l'(V:=l\ V))\ V'=Some\ v' and env:E\ V'=Some\ T
   and IH: \bigwedge V'. [(l(V := None)) \ V' = None; (E(V \mapsto T')) \ V' = Some \ T;
               l' V' = Some v'
          \implies P \vdash T \ casts \ v' \ to \ v' \ by \ fact +
 show ?case
 proof(cases V = V')
   case True
   with l l'upd show ?thesis by fastforce
 next
   case False
   with l 'upd have lnew:(l(V := None)) V' = None
     and l'new:l' \ V' = Some \ v' by (auto split:if-split-asm)
   from env False have env': (E(V \mapsto T')) V' = Some T by fastforce
   from IH[OF lnew env' l'new] show ?thesis.
 qed
\mathbf{next}
 case (InitBlockRed E V T' e h l w' e' h' l' w'' w V')
 have l:l\ V'=None
   and l'upd:(l'(V:=l\ V))\ V'=Some\ v' and env:E\ V'=Some\ T
   and IH: \bigwedge V'. [(l(V \mapsto w')) \ V' = None; (E(V \mapsto T')) \ V' = Some \ T;
                l' V' = Some v'
          \implies P \vdash T \ casts \ v' \ to \ v' \ by \ fact +
 show ?case
 proof(cases V = V')
```

```
case True
   with l l'upd show ?thesis by fastforce
 next
   case False
   with l 'upd have lnew:(l(V \mapsto w')) V' = None
     and l'new:l' \ V' = Some \ v' by (auto split:if-split-asm)
   from env False have env': (E(V \mapsto T')) V' = Some T by fastforce
   from IH[OF lnew env' l'new] show ?thesis.
  qed
qed (auto intro:casts-casts wf)
lemma assumes wf:wf-prog wf-md P
shows Some-lcl-casts-values:
P,E \vdash \langle e,(h,l)\rangle \rightarrow \langle e',(h',l')\rangle \Longrightarrow
 (\bigwedge V. \ [l \ V = Some \ v; E \ V = Some \ T;
     P \vdash T \ casts \ v'' \ to \ v; \ l' \ V = Some \ v''
  \implies P \vdash T \ casts \ v' \ to \ v'
and P,E \vdash \langle es,(h,l)\rangle [\rightarrow] \langle es',(h',l')\rangle \Longrightarrow
 (\bigwedge V. \ [l \ V = Some \ v; E \ V = Some \ T;
     P \vdash T \ casts \ v'' \ to \ v; \ l' \ V = Some \ v''
  \implies P \vdash T \ casts \ v' \ to \ v'
proof(induct rule:red-reds-inducts)
  case (RedNew\ h\ a\ h'\ C'\ E\ l\ V)
 have l1:l \ V = Some \ v \ and \ l2:l \ V = Some \ v'
   and casts:P \vdash T \ casts \ v'' \ to \ v \ by \ fact+
 from l1 l2 have eq:v = v' by simp
 with casts wf show ?case by(fastforce intro:casts-casts)
next
  case (RedLAss\ E\ V\ T'\ w\ w'\ h\ l\ V')
 have l:l\ V' = Some\ v and lupd:(l(V \mapsto w'))\ V' = Some\ v'
   and T'casts:P \vdash T' casts w to w'
   and env:E\ V = Some\ T' and env':E\ V' = Some\ T
   and casts:P \vdash T \ casts \ v'' \ to \ v \ by \ fact+
 show ?case
 proof (cases V = V')
   case True
   with lupd have v':v'=w' by simp
   from True env env' have T = T' by simp
   with T'casts v' wf show ?thesis by(fastforce intro:casts-casts)
 next
   case False
   with l \ lupd have v = v' by (auto split:if-split-asm)
   with casts wf show ?thesis by(fastforce intro:casts-casts)
 ged
next
 case (RedFAss h a D S Cs' F T' Cs w w' Ds fs E l V)
```

```
have l1:l \ V = Some \ v \ and \ l2:l \ V = Some \ v'
   and hp:h \ a = Some(D, S)
   and T'casts:P \vdash T' casts w to w'
   and casts:P \vdash T casts v'' to v by fact+
  from l1 l2 have eq: v = v' by simp
  with casts wf show ?case by(fastforce intro:casts-casts)
next
  case (BlockRedNone E V T' e h l e' h' l' V')
  have l':l' \ V = None \ and \ l:l \ V' = Some \ v
   and l'upd:(l'(V:=l\ V))\ V'=Some\ v' and env:E\ V'=Some\ T
   and casts:P \vdash T casts v'' to v
   and IH: \bigwedge V'. \lceil (l(V := None)) \ V' = Some \ v; \ (E(V \mapsto T')) \ V' = Some \ T;
               P \vdash T \ casts \ v'' \ to \ v \ ; \ l' \ V' = Some \ v''
          \implies P \vdash T \ casts \ v' \ to \ v' \ by \ fact +
  show ?case
  \mathbf{proof}(\mathit{cases}\ V = V')
   case True
   with l' l'upd have l V = Some v' by auto
   with True l have eq: v = v' by simp
   with casts wf show ?thesis by(fastforce intro:casts-casts)
  next
   case False
   with l l'upd have lnew:(l(V := None)) V' = Some v
     and l'new:l' \ V' = Some \ v' by (auto split:if-split-asm)
   from env False have env':(E(V \mapsto T')) V' = Some T by fastforce
   from IH[OF lnew env' casts l'new] show ?thesis.
 qed
next
  case (BlockRedSome E V T' e h l e' h' l' w V')
 have l':l' \ V = Some \ w and l:l \ V' = Some \ v
   and l'upd:(l'(V:=l\ V))\ V'=Some\ v' and env:E\ V'=Some\ T
   and casts:P \vdash T \ casts \ v'' \ to \ v
   and IH: \bigwedge V'. [(l(V := None)) \ V' = Some \ v; \ (E(V \mapsto T')) \ V' = Some \ T;
                P \vdash T \ casts \ v'' \ to \ v \ ; \ l' \ V' = Some \ v''
          \implies P \vdash T \ casts \ v' \ to \ v' \ \mathbf{by} \ fact +
 show ?case
 proof(cases V = V')
   case True
   with l' l'upd have l V = Some v' by auto
   with True l have eq: v = v' by simp
   with casts wf show ?thesis by(fastforce intro:casts-casts)
  \mathbf{next}
   case False
   with l l'upd have lnew:(l(V := None)) V' = Some v
     and l'new:l' \ V' = Some \ v' by (auto split:if-split-asm)
   from env False have env': (E(V \mapsto T')) V' = Some T by fastforce
   from IH[OF lnew env' casts l'new] show ?thesis.
  qed
next
```

```
case (InitBlockRed\ E\ V\ T'\ e\ h\ l\ w'\ e'\ h'\ l'\ w''\ w\ V')
  have l:l\ V' = Some\ v and l':l'\ V = Some\ w''
    and l'upd:(l'(V:=l\ V))\ V'=Some\ v' and env:E\ V'=Some\ T
    \mathbf{and}\ \mathit{casts}{:}P \vdash \mathit{T}\ \mathit{casts}\ v^{\prime\prime}\ \mathit{to}\ \mathit{v}
    and IH: \bigwedge V'. [(l(V \mapsto w')) \ V' = Some \ v; (E(V \mapsto T')) \ V' = Some \ T;
                    P \vdash T \ casts \ v'' \ to \ v \ ; \ l' \ V' = Some \ v''
             \implies P \vdash T \ casts \ v' \ to \ v' \ by \ fact +
  show ?case
  \mathbf{proof}(cases\ V = V')
    {f case} True
    with l' l'upd have l V = Some v' by auto
    with True l have eq: v = v' by simp
    with casts wf show ?thesis by(fastforce intro:casts-casts)
  next
    case False
    with l 'lupd have lnew:(l(V \mapsto w')) V' = Some v
      and l'new:l' \ V' = Some \ v' by (auto split:if-split-asm)
    from env False have env': (E(V \mapsto T')) V' = Some T by fastforce
    from IH[OF lnew env' casts l'new] show ?thesis.
  qed
qed (auto intro:casts-casts wf)
19.2
           Small steps simulate big step
19.3
           Cast
\mathbf{lemma}\ \mathit{StaticCastReds} :
  P,E \vdash \langle e,s \rangle \to * \langle e',s' \rangle \Longrightarrow P,E \vdash \langle ((C))e,s \rangle \to * \langle ((C))e',s' \rangle
apply(erule rtrancl-induct2)
apply blast
apply(erule rtrancl-into-rtrancl)
apply (simp add:StaticCastRed)
done
{\bf lemma}\ StaticCastRedsNull:
  P,E \vdash \langle e,s \rangle \to * \langle null,s' \rangle \Longrightarrow P,E \vdash \langle ((C)(e,s)) \to * \langle null,s' \rangle
apply(rule rtrancl-into-rtrancl)
apply(erule StaticCastReds)
apply(simp add:RedStaticCastNull)
done
lemma StaticUpCastReds:
  \llbracket P,E \vdash \langle e,s \rangle \rightarrow * \langle ref(a,Cs),s' \rangle; P \vdash Path \ last \ Cs \ to \ C \ via \ Cs'; Ds = Cs@_p Cs' \rrbracket
  \implies P,E \vdash \langle ((C))e,s \rangle \rightarrow * \langle ref(a,Ds),s' \rangle
apply(rule\ rtrancl-into-rtrancl)
```

```
apply(erule StaticCastReds)
apply(fastforce\ intro:RedStaticUpCast)
done
\mathbf{lemma}\ StaticDownCastReds:
   P,E \vdash \langle e,s \rangle \rightarrow * \langle ref(a,Cs@[C]@Cs'),s' \rangle
  \implies P.E \vdash \langle (C)e,s \rangle \rightarrow * \langle ref(a,Cs@[C]),s' \rangle
apply(rule\ rtrancl-into-rtrancl)
 apply(erule StaticCastReds)
apply simp
\mathbf{apply}(subgoal\text{-}tac\ P,E \vdash \langle (C)ref(a,Cs@[C]@Cs'),s'\rangle \rightarrow \langle ref(a,Cs@[C]),s'\rangle)
apply simp
apply(rule\ RedStaticDownCast)
done
\mathbf{lemma}\ StaticCastRedsFail:
  \llbracket \ P,E \vdash \langle e,s \rangle \to \ast \langle \mathit{ref}(a,\mathit{Cs}),s' \rangle; \ C \not\in \mathit{set} \ \mathit{Cs}; \ \neg \ P \vdash (\mathit{last} \ \mathit{Cs}) \ \underline{\prec}^\ast \ C \ \rrbracket
  \implies P,E \vdash \langle (C) e,s \rangle \rightarrow * \langle THROW \ Class \ Cast,s' \rangle
apply(rule\ rtrancl-into-rtrancl)
 apply(erule StaticCastReds)
apply(fastforce\ intro:RedStaticCastFail)
done
\mathbf{lemma}\ \mathit{StaticCastRedsThrow}:
  \llbracket P,E \vdash \langle e,s \rangle \to * \langle Throw \ r,s' \rangle \ \rrbracket \Longrightarrow P,E \vdash \langle ( \lVert C \lVert e,s \rangle \to * \langle Throw \ r,s' \rangle
apply(rule rtrancl-into-rtrancl)
apply(erule StaticCastReds)
apply(simp\ add:red-reds.StaticCastThrow)
done
lemma DynCastReds:
  P,E \vdash \langle e,s \rangle \rightarrow * \langle e',s' \rangle \Longrightarrow P,E \vdash \langle Cast \ C \ e,s \rangle \rightarrow * \langle Cast \ C \ e',s' \rangle
apply(erule rtrancl-induct2)
apply blast
\mathbf{apply}(\mathit{erule}\ \mathit{rtrancl-into-rtrancl})
apply (simp add:DynCastRed)
done
\mathbf{lemma}\ DynCastRedsNull:
   P,E \vdash \langle e,s \rangle \rightarrow * \langle null,s' \rangle \Longrightarrow P,E \vdash \langle Cast \ C \ e,s \rangle \rightarrow * \langle null,s' \rangle
```

```
\mathbf{apply}(\mathit{rule}\ \mathit{rtrancl-into-rtrancl})
apply(erule DynCastReds)
apply(simp add:RedDynCastNull)
done
lemma DynCastRedsRef:
  \llbracket P,E \vdash \langle e,s \rangle \rightarrow * \langle ref(a,Cs),s' \rangle; \ hp \ s' \ a = Some \ (D,S); \ P \vdash Path \ D \ to \ C \ via \ Cs';
      P \vdash Path \ D \ to \ C \ unique \ 
 \implies P,E \vdash \langle Cast \ C \ e,s \rangle \rightarrow * \langle ref(a,Cs'),s' \rangle
apply(rule rtrancl-into-rtrancl)
apply(erule DynCastReds)
\mathbf{apply}(fastforce\ intro:RedDynCast)
done
lemma Static UpDyn CastReds:
  \llbracket P,E \vdash \langle e,s \rangle \rightarrow * \langle ref(a,Cs),s' \rangle; P \vdash Path \ last \ Cs \ to \ C \ unique;
  P \vdash Path\ last\ Cs\ to\ C\ via\ Cs';\ Ds = Cs@_pCs'
  \implies P,E \vdash \langle Cast \ C \ e,s \rangle \rightarrow * \langle ref(a,Ds),s' \rangle
apply(rule\ rtrancl-into-rtrancl)
 apply(erule DynCastReds)
\mathbf{apply}(\mathit{fastforce\ intro}: RedStaticUpDynCast)
done
\mathbf{lemma}\ StaticDownDynCastReds:
  P,E \vdash \langle e,s \rangle \rightarrow * \langle ref(a,Cs@[C]@Cs'),s' \rangle
  \implies P,E \vdash \langle Cast \ C \ e,s \rangle \rightarrow * \langle ref(a,Cs@[C]),s' \rangle
apply(rule rtrancl-into-rtrancl)
apply(erule DynCastReds)
apply simp
\mathbf{apply}(subgoal\text{-}tac\ P,E \vdash \langle Cast\ C\ (ref(a,Cs@[C]@Cs')),s'\rangle \rightarrow \langle ref(a,Cs@[C]),s'\rangle)
apply simp
apply(rule\ RedStaticDownDynCast)
done
lemma DynCastRedsFail:
   \llbracket P,E \vdash \langle e,s \rangle \rightarrow * \langle ref(a,Cs),s' \rangle; \ hp \ s' \ a = Some \ (D,S); \ \neg \ P \vdash Path \ D \ to \ C
unique;
    \neg P \vdash Path\ last\ Cs\ to\ C\ unique;\ C \notin set\ Cs\ ]
  \implies P,E \vdash \langle Cast \ C \ e,s \rangle \rightarrow * \langle null,s' \rangle
apply(rule rtrancl-into-rtrancl)
```

```
apply(erule DynCastReds)
apply(fastforce\ intro:RedDynCastFail)
done
lemma DynCastRedsThrow:
  \llbracket P,E \vdash \langle e,s \rangle \rightarrow * \langle Throw \ r,s' \rangle \rrbracket \Longrightarrow P,E \vdash \langle Cast \ C \ e,s \rangle \rightarrow * \langle Throw \ r,s' \rangle
apply(rule\ rtrancl-into-rtrancl)
apply(erule DynCastReds)
\mathbf{apply}(simp\ add:red\text{-}reds.DynCastThrow)
done
19.4
            LAss
\mathbf{lemma}\ LAssReds:
  P,E \vdash \langle e,s \rangle \rightarrow * \langle e',s' \rangle \Longrightarrow P,E \vdash \langle V := e,s \rangle \rightarrow * \langle V := e',s' \rangle
apply(erule rtrancl-induct2)
apply blast
apply(erule rtrancl-into-rtrancl)
apply(simp\ add:LAssRed)
done
\mathbf{lemma}\ LAssRedsVal:
  \llbracket P,E \vdash \langle e,s \rangle \rightarrow * \langle Val\ v,(h',l') \rangle;\ E\ V = Some\ T;\ P \vdash T\ casts\ v\ to\ v' \rrbracket
  \implies P.E \vdash \langle V := e, s \rangle \rightarrow * \langle Val \ v', (h', l'(V \mapsto v')) \rangle
apply(rule rtrancl-into-rtrancl)
apply(erule LAssReds)
apply(simp\ add:RedLAss)
done
\mathbf{lemma}\ LAssRedsThrow:
  \llbracket P,E \vdash \langle e,s \rangle \to * \langle Throw \ r,s' \rangle \ \rrbracket \Longrightarrow P,E \vdash \langle \ V := e,s \rangle \to * \langle Throw \ r,s' \rangle
apply(rule\ rtrancl-into-rtrancl)
\mathbf{apply}(\mathit{erule}\ \mathit{LAssReds})
apply(simp add:red-reds.LAssThrow)
done
            BinOp
19.5
lemma BinOp1Reds:
  P,E \vdash \langle e,s \rangle \rightarrow * \langle e',s' \rangle \Longrightarrow P,E \vdash \langle e \otimes bop \otimes e_2, s \rangle \rightarrow * \langle e' \otimes bop \otimes e_2, s' \rangle
apply(erule rtrancl-induct2)
 apply blast
```

```
apply(erule rtrancl-into-rtrancl)
apply(simp add:BinOpRed1)
done
lemma BinOp2Reds:
  P,E \vdash \langle e,s \rangle \rightarrow * \langle e',s' \rangle \Longrightarrow P,E \vdash \langle (Val\ v) \ "bop"\ e,\ s \rangle \rightarrow * \langle (Val\ v) \ "bop"\ e',\ s' \rangle
apply(erule rtrancl-induct2)
apply blast
\mathbf{apply}(\mathit{erule}\ \mathit{rtrancl-into-rtrancl})
apply(simp\ add:BinOpRed2)
done
lemma BinOpRedsVal:
  \llbracket P,E \vdash \langle e_1,s_0 \rangle \rightarrow * \langle Val \ v_1,s_1 \rangle; \ P,E \vdash \langle e_2,s_1 \rangle \rightarrow * \langle Val \ v_2,s_2 \rangle;
      binop(bop, v_1, v_2) = Some \ v \ ]
  \implies P,E \vdash \langle e_1 \ll bop \rangle \mid e_2, s_0 \rangle \rightarrow \ast \langle Val \ v,s_2 \rangle
apply(rule\ rtrancl-trans)
apply(erule BinOp1Reds)
apply(rule\ rtrancl-into-rtrancl)
apply(erule BinOp2Reds)
apply(simp\ add:RedBinOp)
done
lemma BinOpRedsThrow1:
  P,E \vdash \langle e,s \rangle \rightarrow \ast \langle \mathit{Throw}\ r,s' \rangle \Longrightarrow P,E \vdash \langle e \ \ \ \ \ \ \ \ \ e_2,\ s \rangle \rightarrow \ast \langle \mathit{Throw}\ r,\ s' \rangle
apply(rule rtrancl-into-rtrancl)
apply(erule BinOp1Reds)
apply(simp add:red-reds.BinOpThrow1)
done
lemma BinOpRedsThrow2:
  \llbracket P,E \vdash \langle e_1,s_0 \rangle \rightarrow * \langle Val\ v_1,s_1 \rangle;\ P,E \vdash \langle e_2,s_1 \rangle \rightarrow * \langle Throw\ r,s_2 \rangle \rrbracket
  \implies P,E \vdash \langle e_1 \otimes bop \rangle e_2, s_0 \rangle \rightarrow * \langle Throw r, s_2 \rangle
\mathbf{apply}(\mathit{rule}\ \mathit{rtrancl-trans})
apply(erule BinOp1Reds)
\mathbf{apply}(\mathit{rule}\ \mathit{rtrancl-into-rtrancl})
apply(erule BinOp2Reds)
apply(simp add:red-reds.BinOpThrow2)
done
```

19.6 FAcc

```
lemma FAccReds:
  P,E \vdash \langle e,s \rangle \rightarrow * \langle e',s' \rangle \Longrightarrow P,E \vdash \langle e \cdot F\{Cs\}, s \rangle \rightarrow * \langle e' \cdot F\{Cs\}, s' \rangle
apply(erule rtrancl-induct2)
apply blast
apply(erule rtrancl-into-rtrancl)
apply(simp add:FAccRed)
done
\mathbf{lemma}\ \mathit{FAccRedsVal}:
  \llbracket P,E \vdash \langle e,s \rangle \rightarrow * \langle ref(a,Cs'),s' \rangle; hp s' a = Some(D,S);
     Ds = Cs'@_pCs; (Ds,fs) \in S; fs F = Some v
  \implies P.E \vdash \langle e \cdot F\{Cs\}, s \rangle \rightarrow * \langle Val\ v, s' \rangle
apply(rule\ rtrancl-into-rtrancl)
apply(erule FAccReds)
apply (fastforce intro:RedFAcc)
done
lemma FAccRedsNull:
  P,E \vdash \langle e,s \rangle \rightarrow * \langle null,s' \rangle \Longrightarrow P,E \vdash \langle e \cdot F\{Cs\},s \rangle \rightarrow * \langle THROW\ NullPointer,s' \rangle
apply(rule rtrancl-into-rtrancl)
apply(erule FAccReds)
\mathbf{apply}(simp\ add:RedFAccNull)
done
{f lemma} FAccRedsThrow:
  P,E \vdash \langle e,s \rangle \rightarrow * \langle Throw \ r,s' \rangle \Longrightarrow P,E \vdash \langle e \cdot F\{Cs\},s \rangle \rightarrow * \langle Throw \ r,s' \rangle
apply(rule\ rtrancl-into-rtrancl)
apply(erule FAccReds)
apply(simp\ add:red-reds.FAccThrow)
done
19.7
            FAss
lemma FAssReds1:
  P,E \vdash \langle e,s \rangle \rightarrow * \langle e',s' \rangle \Longrightarrow P,E \vdash \langle e \cdot F\{Cs\} := e_2, s \rangle \rightarrow * \langle e' \cdot F\{Cs\} := e_2, s' \rangle
apply(erule rtrancl-induct2)
apply blast
apply(erule rtrancl-into-rtrancl)
apply(simp add:FAssRed1)
done
```

```
lemma FAssReds2:
  P,E \vdash \langle e,s \rangle \rightarrow * \langle e',s' \rangle \Longrightarrow P,E \vdash \langle Val\ v \cdot F\{Cs\} := e,\ s \rangle \rightarrow * \langle Val\ v \cdot F\{Cs\} := e',
apply(erule rtrancl-induct2)
apply blast
\mathbf{apply}(\mathit{erule}\ \mathit{rtrancl}\text{-}\mathit{into}\text{-}\mathit{rtrancl})
apply(simp add:FAssRed2)
done
\mathbf{lemma}\ \mathit{FAssRedsVal} :
   \llbracket P,E \vdash \langle e_1,s_0 \rangle \rightarrow * \langle ref(a,Cs'),s_1 \rangle; P,E \vdash \langle e_2,s_1 \rangle \rightarrow * \langle Val\ v,(h_2,l_2) \rangle;
     h_2 a = Some(D,S); P \vdash (last Cs') has least F:T via Cs; P \vdash T casts v to v';
     Ds = Cs'@_pCs; (Ds,fs) \in S  \implies
  P,E \vdash \langle e_1 \cdot F\{Cs\} := e_2, s_0 \rangle \rightarrow *
          \langle Val\ v', (h_2(a \mapsto (D, insert\ (Ds, fs(F \mapsto v'))\ (S - \{(Ds, fs)\}))), l_2) \rangle
apply(rule rtrancl-trans)
apply(erule FAssReds1)
apply(rule\ rtrancl-into-rtrancl)
apply(erule FAssReds2)
apply(fastforce intro:RedFAss)
done
\mathbf{lemma}\ \mathit{FAssRedsNull}:
  \llbracket P,E \vdash \langle e_1,s_0 \rangle \to * \langle null,s_1 \rangle; P,E \vdash \langle e_2,s_1 \rangle \to * \langle Val\ v,s_2 \rangle \rrbracket \Longrightarrow
  P,E \vdash \langle e_1 \cdot F\{Cs\} := e_2, s_0 \rangle \rightarrow * \langle THROW \ NullPointer, s_2 \rangle
apply(rule rtrancl-trans)
apply(erule FAssReds1)
apply(rule rtrancl-into-rtrancl)
apply(erule FAssReds2)
apply(simp add:RedFAssNull)
done
\mathbf{lemma}\ \mathit{FAssRedsThrow1}:
  P,E \vdash \langle e,s \rangle \rightarrow * \langle Throw \ r,s' \rangle \Longrightarrow P,E \vdash \langle e \cdot F\{Cs\} := e_2, \ s \rangle \rightarrow * \langle Throw \ r, \ s' \rangle
\mathbf{apply}(\mathit{rule}\ \mathit{rtrancl-into-rtrancl})
apply(erule FAssReds1)
apply(simp add:red-reds.FAssThrow1)
done
```

```
lemma FAssRedsThrow2:
   \llbracket P,E \vdash \langle e_1,s_0 \rangle \rightarrow * \langle Val \ v,s_1 \rangle; \ P,E \vdash \langle e_2,s_1 \rangle \rightarrow * \langle Throw \ r,s_2 \rangle \ \rrbracket
   \implies P,E \vdash \langle e_1 \cdot F\{Cs\} := e_2, s_0 \rangle \rightarrow * \langle Throw \ r, s_2 \rangle
apply(rule rtrancl-trans)
 apply(erule FAssReds1)
apply(rule\ rtrancl-into-rtrancl)
 apply(erule FAssReds2)
apply(simp add:red-reds.FAssThrow2)
done
19.8
              ;;
lemma SeqReds:
   P,E \vdash \langle e,s \rangle \to * \langle e',s' \rangle \Longrightarrow P,E \vdash \langle e;;e_2, s \rangle \to * \langle e';;e_2, s' \rangle
apply(erule rtrancl-induct2)
 apply blast
apply(erule rtrancl-into-rtrancl)
apply(simp add:SeqRed)
done
\mathbf{lemma}\ \mathit{SeqRedsThrow}:
   P,E \vdash \langle e,s \rangle \rightarrow * \langle Throw \ r,s' \rangle \Longrightarrow P,E \vdash \langle e;;e_2,\ s \rangle \rightarrow * \langle Throw \ r,\ s' \rangle
\mathbf{apply}(\mathit{rule}\ \mathit{rtrancl-into-rtrancl})
 apply(erule SeqReds)
apply(simp add:red-reds.SeqThrow)
done
lemma SeqReds2:
   \llbracket P,E \vdash \langle e_1,s_0 \rangle \to * \langle Val \ v_1,s_1 \rangle; \ P,E \vdash \langle e_2,s_1 \rangle \to * \langle e_2',s_2 \rangle \ \rrbracket \Longrightarrow P,E \vdash \langle e_1;;e_2,s_1 \rangle \to * \langle e_1',s_2 \rangle
s_0\rangle \to *\langle e_2', s_2\rangle
apply(rule rtrancl-trans)
 apply(erule SeqReds)
apply(rule-tac\ b=(e_2,s_1)\ in\ converse-rtrancl-into-rtrancl)
 apply(simp \ add:RedSeq)
apply assumption
done
19.9
             If
lemma CondReds:
   P,E \vdash \langle e,s \rangle \rightarrow * \langle e',s' \rangle \Longrightarrow P,E \vdash \langle if (e) \ e_1 \ else \ e_2,s \rangle \rightarrow * \langle if (e') \ e_1 \ else \ e_2,s' \rangle
apply(erule rtrancl-induct2)
 apply blast
```

```
apply(erule rtrancl-into-rtrancl)
apply(simp add:CondRed)
done
lemma CondRedsThrow:
  P,E \vdash \langle e,s \rangle \rightarrow * \langle Throw \ r,s' \rangle \Longrightarrow P,E \vdash \langle if \ (e) \ e_1 \ else \ e_2, \ s \rangle \rightarrow * \langle Throw \ r,s' \rangle
apply(rule\ rtrancl-into-rtrancl)
apply(erule CondReds)
apply(simp add:red-reds.CondThrow)
done
lemma CondReds2T:
  \llbracket P,E \vdash \langle e,s_0 \rangle \rightarrow * \langle true,s_1 \rangle; P,E \vdash \langle e_1, s_1 \rangle \rightarrow * \langle e',s_2 \rangle \rrbracket \implies P,E \vdash \langle if (e) e_1 \rangle
else e_2, s_0 \rightarrow * \langle e', s_2 \rangle
apply(rule rtrancl-trans)
apply(erule CondReds)
apply(rule-tac\ b=(e_1,\ s_1)\ in\ converse-rtrancl-into-rtrancl)
apply(simp\ add:RedCondT)
apply assumption
done
lemma CondReds2F:
  \llbracket P,E \vdash \langle e,s_0 \rangle \rightarrow * \langle false,s_1 \rangle; \ P,E \vdash \langle e_2,\ s_1 \rangle \rightarrow * \langle e',s_2 \rangle \ \rrbracket \implies P,E \vdash \langle if \ (e) \ e_1 \rangle
else e_2, s_0 \rightarrow * \langle e', s_2 \rangle
apply(rule rtrancl-trans)
apply(erule CondReds)
apply(rule-tac\ b=(e_2,\ s_1)\ in\ converse-rtrancl-into-rtrancl)
apply(simp\ add:RedCondF)
apply assumption
done
19.10
             While
{\bf lemma}\ \textit{WhileFReds}:
  P,E \vdash \langle b,s \rangle \rightarrow * \langle false,s' \rangle \Longrightarrow P,E \vdash \langle while \ (b) \ c,s \rangle \rightarrow * \langle unit,s' \rangle
apply(rule-tac\ b=(if(b)\ (c;;while(b)\ c)\ else\ unit,\ s)\ in\ converse-rtrancl-into-rtrancl)
apply(simp\ add:RedWhile)
apply(rule\ rtrancl-into-rtrancl)
\mathbf{apply}(\mathit{erule}\ \mathit{CondReds})
apply(simp\ add:RedCondF)
done
```

```
\mathbf{lemma}\ \mathit{WhileRedsThrow} :
  P,E \vdash \langle b,s \rangle \rightarrow * \langle Throw \ r,s' \rangle \Longrightarrow P,E \vdash \langle while \ (b) \ c,s \rangle \rightarrow * \langle Throw \ r,s' \rangle
apply(rule-tac\ b=(if(b)\ (c;;while(b)\ c)\ else\ unit,\ s)\ in\ converse-rtrancl-into-rtrancl)
apply(simp add:RedWhile)
apply(rule\ rtrancl-into-rtrancl)
apply(erule CondReds)
apply(simp add:red-reds.CondThrow)
done
{f lemma} While TReds:
  \llbracket P,E \vdash \langle b,s_0 \rangle \rightarrow * \langle true,s_1 \rangle; P,E \vdash \langle c,s_1 \rangle \rightarrow * \langle Val\ v_1,s_2 \rangle; P,E \vdash \langle while\ (b)\ c,s_2 \rangle
\rightarrow * \langle e, s_3 \rangle
  \implies P.E \vdash \langle while (b) c, s_0 \rangle \rightarrow * \langle e, s_3 \rangle
apply(rule-tac\ b=(if(b)\ (c;;while(b)\ c)\ else\ unit,\ s_0)\ in\ converse-rtrancl-into-rtrancl)
apply(simp add:RedWhile)
apply(rule rtrancl-trans)
apply(erule CondReds)
apply(rule-tac\ b=(c;;while(b)\ c,s_1)\ in\ converse-rtrancl-into-rtrancl)
 apply(simp\ add:RedCondT)
apply(rule rtrancl-trans)
apply(erule SeqReds)
\mathbf{apply}(\mathit{rule-tac}\ b = (\mathit{while}(b)\ \mathit{c}, \mathit{s}_2)\ \mathbf{in}\ \mathit{converse-rtrancl-into-rtrancl})
apply(simp\ add:RedSeq)
apply assumption
done
lemma While TReds Throw:
  \llbracket P,E \vdash \langle b,s_0 \rangle \rightarrow * \langle true,s_1 \rangle; P,E \vdash \langle c,s_1 \rangle \rightarrow * \langle Throw \ r,s_2 \rangle \rrbracket
  \implies P,E \vdash \langle while \ (b) \ c,s_0 \rangle \rightarrow * \langle Throw \ r,s_2 \rangle
apply(rule-tac\ b=(if(b)\ (c;;while(b)\ c)\ else\ unit,\ s_0)\ in\ converse-rtrancl-into-rtrancl)
\mathbf{apply}(simp\ add:RedWhile)
apply(rule rtrancl-trans)
apply(erule CondReds)
apply(rule-tac\ b=(c;;while(b)\ c,s_1)\ in\ converse-rtrancl-into-rtrancl)
apply(simp\ add:RedCondT)
apply(rule rtrancl-trans)
apply(erule SeqReds)
apply(rule-tac\ b=(Throw\ r,s_2)\ in\ converse-rtrancl-into-rtrancl)
apply(simp add:red-reds.SeqThrow)
apply simp
done
```

19.11 Throw

```
\mathbf{lemma} \ \mathit{ThrowReds} :
  P,E \vdash \langle e,s \rangle \rightarrow * \langle e',s' \rangle \Longrightarrow P,E \vdash \langle throw \ e,s \rangle \rightarrow * \langle throw \ e',s' \rangle
apply(erule rtrancl-induct2)
apply blast
apply(erule rtrancl-into-rtrancl)
apply(simp add:ThrowRed)
done
lemma ThrowRedsNull:
  P,E \vdash \langle e,s \rangle \rightarrow * \langle null,s' \rangle \Longrightarrow P,E \vdash \langle throw \ e,s \rangle \rightarrow * \langle THROW \ NullPointer,s' \rangle
apply(rule\ rtrancl-into-rtrancl)
 apply(erule ThrowReds)
apply(simp add:RedThrowNull)
done
lemma ThrowRedsThrow:
  P,E \vdash \langle e,s \rangle \rightarrow * \langle Throw \ r,s' \rangle \Longrightarrow P,E \vdash \langle throw \ e,s \rangle \rightarrow * \langle Throw \ r,s' \rangle
apply(rule rtrancl-into-rtrancl)
apply(erule ThrowReds)
apply(simp\ add:red-reds.ThrowThrow)
done
19.12
              InitBlock
lemma assumes wf:wf-prog wf-md P
{f shows}\ InitBlockReds-aux:
P, E(V \mapsto T) \vdash \langle e, s \rangle \rightarrow * \langle e', s' \rangle \Longrightarrow
  \forall h \ l \ h' \ l' \ v \ v'. \ s = (h, l(V \mapsto v')) \longrightarrow
                       P \vdash T \ casts \ v \ to \ v' \longrightarrow s' = (h', l') \longrightarrow
                       (\exists v'' w. P,E \vdash \langle \{V:T:=Val\ v;\ e\},(h,l)\rangle \rightarrow *
                                      \langle \{V:T:=Val\ v'';\ e'\},(h',l'(V:=(l\ V)))\rangle \wedge
                                  P \vdash T \ casts \ v'' \ to \ w
proof (erule converse-rtrancl-induct2)
  { \mathbf{fix} \ h \ l \ h' \ l' \ v \ v'
    assume s' = (h, l(V \mapsto v')) and s' = (h', l')
    hence h:h=h' and l':l'=l(V\mapsto v') by simp-all
    hence P,E \vdash \langle \{V:T; V:=Val\ v;;\ e'\},(h,\ l)\rangle \rightarrow *
                    \langle \{ V:T; \ V:=Val \ v;; \ e' \}, (h', \ l'(V:=l \ V)) \rangle
       by(fastforce simp: fun-upd-same simp del:fun-upd-apply) }
  hence \forall h \ l \ h' \ l' \ v \ v'.
          s' = (h, l(V \mapsto v')) \longrightarrow
             P \vdash T \ casts \ v \ to \ v' \longrightarrow
               s' = (h', l') \longrightarrow
```

```
P,E \vdash \langle \{V:T; V:=Val\ v;;\ e'\},(h,\ l)\rangle \rightarrow *
                          \langle \{ \mathit{V} : \mathit{T}; \; \mathit{V} := \mathit{Val} \; v;; \; e' \}, (h', \; l'(\mathit{V} \; := \; l \; \mathit{V})) \rangle \; \wedge \\
                  P \vdash T \ casts \ v \ to \ v'
    by auto
  thus \forall h \ l \ h' \ l' \ v \ v'.
        s' = (h, l(V \mapsto v')) \longrightarrow
           P \vdash T \ casts \ v \ to \ v' \longrightarrow
             s' = (h', l') \longrightarrow
                (\exists v'' w. P, E \vdash \langle \{V:T; V:=Val v;; e'\}, (h, l)\rangle \rightarrow *
                                   \langle \{ V: T; \ V:= Val \ v''; \ e' \}, (h', \ l'(V:=l \ V)) \rangle \wedge
                           P \vdash T \ casts \ v'' \ to \ w
    by auto
next
  fix e \ s \ e^{\prime\prime} \ s^{\prime\prime}
  assume Red:((e,s),e'',s'') \in Red\ P\ (E(V \mapsto T))
    and reds:P,E(V \mapsto T) \vdash \langle e'',s'' \rangle \rightarrow * \langle e',s' \rangle
    and IH: \forall h \ l \ h' \ l' \ v \ v'.
             s'' = (h, l(V \mapsto v')) \longrightarrow
                P \vdash T \ casts \ v \ to \ v' \longrightarrow
                  s' = (h', l') \longrightarrow
                     (\exists v'' w. P,E \vdash \langle \{V:T; V:=Val v;; e''\},(h, l)\rangle \rightarrow *
                                        \langle \{ V: T; \ V:= Val \ v''; \ e' \}, (h', \ l'(V:=l \ V)) \rangle \wedge
                                P \vdash T \ casts \ v'' \ to \ w)
  { fix h l h' l' v v'
    assume s:s = (h, l(V \mapsto v')) and s':s' = (h', l')
       and casts:P \vdash T \ casts \ v \ to \ v'
    obtain h'' l'' where s'':s'' = (h'',l'') by (cases s'') auto
    with Red s have V \in dom \ l'' by (fastforce dest:red-lcl-incr)
    then obtain v'' where l'':l'' V = Some v'' by auto
    with Red s s'' casts
    have step:P,E \vdash \langle \{V:T:=Val\ v;\ e\},(h,\ l)\rangle \rightarrow
                 \langle \{ V: T := Val \ v''; \ e'' \}, \ (h'', l''(V := l \ V)) \rangle
       by(fastforce intro:InitBlockRed)
    from Red\ s\ s^{\prime\prime}\ l^{\prime\prime}\ casts\ wf
    have casts': P \vdash T \ casts \ v'' \ to \ v'' \ by(fastforce \ intro: Some-lcl-casts-values)
    with IH s'' s' l'' obtain v''' w
       where P,E \vdash \langle \{V:T:=Val\ v'';\ e''\},\ (h'',l''(V:=l\ V))\rangle \rightarrow *
                       \langle \{V:T:=Val\ v''';\ e'\}, (h',\ l'(V:=l\ V))\rangle \wedge
                P \vdash \overrightarrow{T} casts \ v''' \ to \ w
       apply simp
       apply (erule-tac x = l''(V := l \ V) in allE)
       apply (erule-tac \ x = v'' \ in \ all E)
       apply (erule-tac x = v'' in allE)
       \mathbf{by}(auto\ intro:ext)
     with step have \exists v'' w. P,E \vdash \langle \{V:T; V:=Val\ v;;\ e\},(h,\ l)\rangle \rightarrow *
                                           \langle \{ V: T; \ V:=Val \ v''; \ e' \}, (h', \ l'(V:=l \ V)) \rangle \wedge
                                   P \vdash T \ casts \ v'' \ to \ w
       apply(rule-tac \ x=v''' \ in \ exI)
       apply auto
```

```
apply (rule converse-rtrancl-into-rtrancl)
       by simp-all }
  thus \forall h \ l \ h' \ l' \ v \ v'.
               s = (h, l(V \mapsto v')) \longrightarrow
               P \vdash T \ casts \ v \ to \ v' \longrightarrow
               s' = (h', l') \longrightarrow
               (\exists v'' w. P,E \vdash \langle \{V:T; V:=Val v;; e\},(h, l)\rangle \rightarrow *
                                  \langle \{ V: T; \ V:=Val \ v''; \ e' \}, (h', \ l'(V:=l \ V)) \rangle \wedge
                           P \vdash T \ casts \ v'' \ to \ w
    by auto
qed
\mathbf{lemma}\ \mathit{InitBlockReds}:
 \llbracket P, E(V \mapsto T) \vdash \langle e, (h, l(V \mapsto v')) \rangle \rightarrow * \langle e', (h', l') \rangle;
   P \vdash T \ casts \ v \ to \ v'; \ wf-prog \ wf-md \ P \ ] \Longrightarrow
  \exists v'' w. P,E \vdash \langle \{V:T:=Val\ v;\ e\},\ (h,l)\rangle \rightarrow *
                 \langle \{V:T:=Val\ v'';\ e'\},\ (h',l'(V:=(l\ V)))\rangle \wedge
            P \vdash T \ casts \ v^{\prime\prime} \ to \ w
by(blast dest:InitBlockReds-aux)
lemma InitBlockRedsFinal:
  assumes reds:P,E(V \mapsto T) \vdash \langle e,(h,l(V \mapsto v'))\rangle \rightarrow *\langle e',(h',l')\rangle
  and final:final e' and casts:P \vdash T casts v to v'
  and wf:wf-prog wf-md P
  shows P,E \vdash \langle \{V:T:=Val\ v;\ e\},(h,l)\rangle \rightarrow *\langle e',(h',\ l'(V:=l\ V))\rangle
proof -
  from reds casts wf obtain v'' and w
    where steps:P,E \vdash \langle \{V:T:=Val\ v;\ e\},(h,l)\rangle \rightarrow *
                             \langle \{V:T:=Val\ v'';\ e'\},\ (h',l'(V:=(l\ V)))\rangle
    and casts':P \vdash T casts v'' to w
    by (auto dest:InitBlockReds)
  from final casts casts'
  have step:P,E \vdash \langle \{V:T:=Val\ v'';\ e'\},\ (h',l'(V:=(l\ V)))\rangle \rightarrow
                        \langle e', (h', l'(V := l \ V)) \rangle
    by(auto elim!:finalE intro:RedInitBlock InitBlockThrow)
  from step steps show ?thesis
    \mathbf{by}(fastforce\ intro:rtrancl-into-rtrancl)
qed
              Block
19.13
\mathbf{lemma}\ BlockRedsFinal:
assumes reds: P,E(V \mapsto T) \vdash \langle e_0, s_0 \rangle \rightarrow * \langle e_2, (h_2, l_2) \rangle and fin: final e_2
  and wf:wf-prog wf-md P
shows \bigwedge h_0 \ l_0. \ s_0 = (h_0, l_0(V := None)) \Longrightarrow P, E \vdash \langle \{V : T; \ e_0\}, (h_0, l_0) \rangle \rightarrow * \langle e_2, (h_2, l_2(V := l_0), h_0, l_0) \rangle
V))\rangle
```

```
using reds
proof (induct rule:converse-rtrancl-induct2)
  case refl thus ?case
    by(fastforce intro:finalE[OF fin] RedBlock BlockThrow
                simp del:fun-upd-apply)
next
  case (step \ e_0 \ s_0 \ e_1 \ s_1)
  have Red: ((e_0, s_0), e_1, s_1) \in Red\ P\ (E(V \mapsto T))
  and reds: P,E(V \mapsto T) \vdash \langle e_1,s_1 \rangle \rightarrow * \langle e_2,(h_2,l_2) \rangle
  and IH: \bigwedge h \ l. \ s_1 = (h, l(V := None))
                \implies P,E \vdash \langle \{V:T; e_1\},(h,l)\rangle \rightarrow *\langle e_2,(h_2, l_2(V:=l\ V))\rangle
  and s_0: s_0 = (h_0, l_0(V := None)) by fact +
  obtain h_1 l_1 where s_1: s_1 = (h_1, l_1) by fastforce
  show ?case
  proof cases
    assume assigned V e_0
    then obtain v e where e_0: e_0 = V := Val v; e
      by (unfold assigned-def)blast
    from Red e_0 s<sub>0</sub> obtain v' where e_1: e_1 = Val \ v';; e
      and s_1: s_1 = (h_0, l_0(V \mapsto v')) and casts: P \vdash T casts v to v'
      by auto
    from e_1 fin have e_1 \neq e_2 by (auto simp:final-def)
    then obtain e' s' where red1: P, E(V \mapsto T) \vdash \langle e_1, s_1 \rangle \rightarrow \langle e', s' \rangle
      and reds': P,E(V \mapsto T) \vdash \langle e',s' \rangle \rightarrow * \langle e_2,(h_2,l_2) \rangle
      using converse-rtranclE2[OF reds] by simp blast
    from red1 e_1 have es': e' = e s' = s_1 by auto
    show ?thesis using e_0 s_1 es' reds'
        by(fastforce intro!: InitBlockRedsFinal[OF - fin casts wf]
                    simp\ del:fun-upd-apply)
  next
    assume unass: \neg assigned V e_0
    show ?thesis
    proof (cases l_1 V)
      assume None: l_1 \ V = None
      hence P,E \vdash \langle \{V:T; e_0\}, (h_0, l_0) \rangle \rightarrow \langle \{V:T; e_1\}, (h_1, l_1(V:=l_0, V)) \rangle
        using s_0 s_1 Red by (simp\ add:\ BlockRedNone[OF - - unass])
      moreover
      have P,E \vdash \langle \{V:T; e_1\}, (h_1, l_1(V:=l_0 V)) \rangle \rightarrow * \langle e_2, (h_2, l_2(V:=l_0 V)) \rangle
        using IH[of - l_1(V := l_0 \ V)] s_1 None by(simp add:fun-upd-idem)
      ultimately show ?case
     by (rule-tac\ b=(\{V:T;\ e_1\},(h_1,\ l_1(V:=l_0\ V))) in converse-rtrancl-into-rtrancl,simp)
    next
      fix v assume Some: l_1 \ V = Some \ v
      with Red Some s_0 s_1 wf
      have casts:P \vdash T casts v to v
       \mathbf{by}(fastforce\ intro:None-lcl-casts-values)
      from Some
      have P,E \vdash \langle \{V:T;e_0\},(h_0,l_0)\rangle \rightarrow \langle \{V:T:=Val\ v;\ e_1\},(h_1,l_1(V:=l_0\ V))\rangle
        using s_0 s_1 Red by(simp add: BlockRedSome[OF - - unass])
```

```
moreover
       have P,E \vdash \langle \{V:T:=Val\ v;\ e_1\}, (h_1,l_1(V:=l_0\ V)) \rangle \rightarrow *
                   \langle e_2, (h_2, l_2(V)) = l_0 V) \rangle
         using InitBlockRedsFinal[OF - fin \ casts \ wf, of - - l_1(V:=l_0 \ V) \ V]
            Some reds s_1
         by (simp add:fun-upd-idem)
       ultimately show ?case
      \mathbf{by}(rule-tac\ b=(\{\ V:T;\ V:=Val\ v;;\ e_1\},(h_1,\ l_1(\ V:=l_0\ V)))\ \mathbf{in}\ converse-rtrancl-into-rtrancl,simp)
    qed
  qed
qed
19.14
             List
lemma ListReds1:
  P,E \vdash \langle e,s \rangle \rightarrow * \langle e',s' \rangle \Longrightarrow P,E \vdash \langle e\#es,s \rangle [\rightarrow] * \langle e'\#es,s' \rangle
apply(erule rtrancl-induct2)
apply blast
apply(erule rtrancl-into-rtrancl)
apply(simp add:ListRed1)
done
lemma ListReds2:
  P,E \vdash \langle es,s \rangle [\rightarrow] * \langle es',s' \rangle \Longrightarrow P,E \vdash \langle Val\ v\ \#\ es,s \rangle [\rightarrow] * \langle Val\ v\ \#\ es',s' \rangle
apply(erule rtrancl-induct2)
apply blast
apply(erule rtrancl-into-rtrancl)
apply(simp add:ListRed2)
done
lemma ListRedsVal:
  \llbracket P,E \vdash \langle e,s_0 \rangle \rightarrow * \langle Val \ v,s_1 \rangle; \ P,E \vdash \langle es,s_1 \rangle \ [\rightarrow] * \langle es',s_2 \rangle \ \rrbracket
  \implies P,E \vdash \langle e\#es,s_0 \rangle \ [\rightarrow] * \langle Val \ v \ \# \ es',s_2 \rangle
apply(rule rtrancl-trans)
 \mathbf{apply}(\mathit{erule\ ListReds1})
apply(erule ListReds2)
done
19.15
              Call
First a few lemmas on what happens to free variables during redction.
lemma assumes wf: wwf-prog P
shows Red-fv: P,E \vdash \langle e,(h,l) \rangle \rightarrow \langle e',(h',l') \rangle \Longrightarrow fv \ e' \subseteq fv \ e
```

and $P,E \vdash \langle es,(h,l)\rangle [\rightarrow] \langle es',(h',l')\rangle \Longrightarrow fvs \ es' \subseteq fvs \ es$

```
proof (induct rule:red-reds-inducts)
  case (RedCall h l a C S Cs M Ts' T' pns' body' Ds Ts T pns body Cs' vs bs
new-body E)
 hence fv \ body \subseteq \{this\} \cup set \ pns
   using assms by(fastforce dest!:select-method-wf-mdecl simp:wf-mdecl-def)
  with RedCall.hyps show ?case
   \mathbf{by}(cases\ T')\ auto
\mathbf{next}
  case (RedStaticCall Cs C Cs" M Ts T pns body Cs Ds vs E a a' b)
  hence fv \ body \subseteq \{this\} \cup set \ pns
   \mathbf{using} \ assms \ \mathbf{by} (\textit{fastforce dest}! : \textit{has-least-wf-mdecl simp} : \textit{wf-mdecl-def})
  with RedStaticCall.hyps show ?case
   by auto
\mathbf{qed} auto
lemma Red-dom-lcl:
  P,E \vdash \langle e,(h,l) \rangle \rightarrow \langle e',(h',l') \rangle \Longrightarrow dom \ l' \subseteq dom \ l \cup fv \ e \ and
  P,E \vdash \langle es,(h,l) \rangle \ [\rightarrow] \ \langle es',(h',l') \rangle \Longrightarrow dom \ l' \subseteq dom \ l \cup fvs \ es
proof (induct rule:red-reds-inducts)
  case RedLAss thus ?case by(force split:if-splits)
next
  case CallParams thus ?case by(force split:if-splits)
next
  case BlockRedNone thus ?case by clarsimp (fastforce split:if-splits)
next
  case BlockRedSome thus ?case by clarsimp (fastforce split:if-splits)
next
  case InitBlockRed thus ?case by clarsimp (fastforce split:if-splits)
qed auto
lemma Reds-dom-lcl:
  \llbracket wwf\text{-prog } P; P,E \vdash \langle e,(h,l) \rangle \rightarrow * \langle e',(h',l') \rangle \rrbracket \Longrightarrow dom \ l' \subseteq dom \ l \cup fv \ e
apply(erule converse-rtrancl-induct-red)
apply blast
apply(blast dest: Red-fv Red-dom-lcl)
done
    Now a few lemmas on the behaviour of blocks during reduction.
lemma override-on-upd-lemma:
  (override-on f (g(a \mapsto b)) A)(a := g a) = override-on f g (insert a A)
apply(rule\ ext)
apply(simp add:override-on-def)
```

done

declare fun-upd-apply[simp del] map-upds-twist[simp del]

```
lemma assumes wf:wf-prog wf-md P
     shows blocksReds:
     \bigwedge l_0 \ E \ vs'. \llbracket \ length \ Vs = length \ Ts; \ length \ vs = length \ Ts;
                    \textit{distinct Vs}; \; \forall / T \not = \ell / T 
                    P, E(Vs \mapsto Ts) \vdash \langle e, (h_0, l_0(Vs \mapsto vs')) \rangle \rightarrow \langle e', (h_1, l_1) \rangle
     \implies \exists \ vs''. \ P,E \vdash \langle blocks(\ Vs,Ts,vs,e),\ (h_0,l_0)\rangle \rightarrow *
                                               \langle blocks(Vs, Ts, vs'', e'), (h_1, override-on l_1 l_0 (set Vs)) \rangle \wedge
                                (\exists ws. P \vdash Ts \ Casts \ vs'' \ to \ ws) \land length \ vs = length \ vs''
proof(induct Vs Ts vs e rule:blocks-old-induct)
     case (5 V Vs T Ts v vs e)
     have length1:length (V \# Vs) = length (T \# Ts)
         and length2:length (v \# vs) = length (T \# Ts)
         and dist:distinct\ (V \# Vs)
         and casts:P \vdash (T \# Ts) \ Casts \ (v \# vs) \ to \ vs'
         and reds:P,E(V \# Vs \mapsto T \# Ts) \vdash \langle e,(h_0,l_0(V \# Vs \mapsto vs'))\rangle \rightarrow \langle e',(h_1,l_1)\rangle
         and IH: \Lambda l_0 \ E \ vs''. [length Vs = length \ Ts; length vs = length \ Ts;
                 distinct Vs; P \vdash Ts \ Casts \ vs \ to \ vs'';
                 P,E(Vs \mapsto Ts) \vdash \langle e,(h_0,l_0(Vs \mapsto vs''))\rangle \rightarrow \langle e',(h_1,l_1)\rangle 
                   \implies \exists vs''. P,E \vdash \langle blocks (Vs,Ts,vs,e),(h_0,l_0) \rangle \rightarrow *
                                                             \langle blocks \ (Vs, Ts, vs'', e'), (h_1, override-on \ l_1 \ l_0 \ (set \ Vs)) \rangle \wedge
                                               (\exists ws. P \vdash Ts \ Casts \ vs'' \ to \ ws) \land length \ vs = length \ vs'' \ \mathbf{by} \ fact +
     from length1 have length1': length Vs = length Ts by simp
     from length2 have length2': length vs = length Ts by simp
     from dist have dist': distinct Vs by simp
     from casts obtain x xs where vs':vs' = x \# xs
         by(cases vs',auto dest:length-Casts-vs')
     with reds
     have reds': P, E(V \mapsto T, Vs [\mapsto] Ts) \vdash \langle e, (h_0, l_0(V \mapsto x, Vs [\mapsto] xs)) \rangle
                                                                                        \rightarrow * \langle e', (h_1, l_1) \rangle
     from casts vs' have casts':P \vdash Ts Casts vs to <math>xs
         and cast':P \vdash T \ casts \ v \ to \ x
         by(auto elim: Casts-to.cases)
     from IH[OF length1' length2' dist' casts' reds']
     obtain vs'' ws
         where blocks: P, E(V \mapsto T) \vdash \langle blocks (Vs, Ts, vs, e), (h_0, l_0(V \mapsto x)) \rangle \rightarrow *
                                \langle blocks\ (Vs,\ Ts,\ vs'',\ e'), (h_1,\ override-on\ l_1\ (l_0(V\mapsto x))\ (set\ Vs))\rangle
         and castsws:P \vdash Ts Casts vs'' to ws
         and lengthvs'': length vs = length vs'' by auto
     from InitBlockReds[OF blocks cast' wf] obtain v" w where
          blocks':P,E \vdash \langle \{V:T; V:=Val\ v;;\ blocks\ (Vs,\ Ts,\ vs,\ e)\},(h_0,\ l_0)\rangle \rightarrow *
```

```
\langle \{ V:T; \ V:=Val \ v''; \ blocks \ (Vs, \ Ts, \ vs'', \ e') \},
                   (h_1, (override-on \ l_1 \ (l_0(V \mapsto x)) \ (set \ Vs))(V := l_0 \ V)))
   and P \vdash T casts v'' to w by auto
  with castsws have P \vdash T \# Ts \ Casts \ v'' \# vs'' \ to \ w \# ws
   by -(rule Casts-Cons)
  with blocks' lengthvs'' show ?case
   by(rule-tac x=v''\#vs'' in exI, auto simp:override-on-upd-lemma)
\mathbf{next}
  case (6 \ e)
  have casts:P \vdash [] Casts [] to vs'
   and step:P,E([] \mapsto ] []) \vdash \langle e,(h_0, l_0([] \mapsto ] vs')) \rangle \rightarrow * \langle e',(h_1, l_1) \rangle by fact+
  from casts have vs' = [] by (fastforce dest:length-Casts-vs')
  with step have P,E \vdash \langle e,(h_0, l_0) \rangle \rightarrow * \langle e',(h_1, l_1) \rangle by simp
  with casts show ?case by auto
qed simp-all
lemma assumes wf:wf-prog wf-md P
 shows blocksFinal:
 \bigwedge E \ l \ vs'. [ length Vs = length \ Ts; length vs = length \ Ts;
          P,E \vdash \langle blocks(Vs,Ts,vs,e), (h,l) \rangle \rightarrow * \langle e, (h,l) \rangle
proof(induct Vs Ts vs e rule:blocks-old-induct)
  case (5 V Vs T Ts v vs e)
  have length1:length (V \# Vs) = length (T \# Ts)
   and length2:length (v \# vs) = length (T \# Ts)
   and final:final e and casts:P \vdash T \# Ts \ Casts \ v \# vs \ to \ vs'
   and IH: \bigwedge E \ l \ vs'. [length Vs = length \ Ts; length vs = length \ Ts; final e;
                  P \vdash Ts \ Casts \ vs \ to \ vs'
                 \implies P,E \vdash \langle blocks \ (Vs, Ts, vs, e), (h, l) \rangle \rightarrow * \langle e, (h, l) \rangle  by fact+
  from length1 length2
  have length1': length Vs = length Ts and length2': length vs = length Ts
   by simp-all
  from casts obtain x xs where vs':vs' = x \# xs
   by(cases vs',auto dest:length-Casts-vs')
  with casts have casts':P \vdash Ts Casts vs to xs
   and cast':P \vdash T \ casts \ v \ to \ x
   bv(auto elim: Casts-to.cases)
  from InitBlockReds[OF IH[OF length1' length2' final casts'] cast' wf, of V l]
  obtain v'' w
   where blocks: P,E \vdash \langle \{V:T; V:=Val\ v;; blocks\ (Vs,\ Ts,\ vs,\ e)\},(h,\ l) \rangle \rightarrow *
                       \langle \{ V:T; V:=Val \ v''; e \}, (h,l) \rangle
   and P \vdash T casts v'' to w by auto blast
  with final have P,E \vdash \langle \{V:T; V:=Val\ v''; e\}, (h,l) \rangle \rightarrow \langle e, (h,l) \rangle
   by(auto elim!:finalE intro:RedInitBlock InitBlockThrow)
  with blocks show ?case
   by -(rule-tac\ b=(\{V:T;\ V:=Val\ v'';;\ e\},(h,\ l)) in rtrancl-into-rtrancl,simp-all)
```

```
lemma assumes wfmd:wf-prog wf-md P
  and wf: length Vs = length Ts length vs = length Ts distinct Vs
  and casts:P \vdash Ts \ Casts \ vs \ to \ vs'
  and reds: P, E(Vs \mapsto Ts) \vdash \langle e, (h_0, l_0(Vs \mapsto vs')) \rangle \rightarrow \langle e', (h_1, l_1) \rangle
  and fin: final e' and l2: l_2 = override-on l_1 l_0 (set Vs)
shows blocksRedsFinal: P,E \vdash \langle blocks(Vs,Ts,vs,e), (h_0, l_0) \rangle \rightarrow * \langle e', (h_1,l_2) \rangle
proof -
  obtain vs'' ws where blocks:P,E \vdash \langle blocks(Vs,Ts,vs,e), (h_0, l_0) \rangle \rightarrow *
                                     \langle blocks(Vs, Ts, vs'', e'), (h_1, l_2) \rangle
    and length:length\ vs = length\ vs''
    and casts':P \vdash Ts \ Casts \ vs'' \ to \ ws
    using l2 blocksReds[OF wfmd wf casts reds]
     by auto
   have P,E \vdash \langle blocks(Vs,Ts,vs'',e'), (h_1,l_2) \rangle \rightarrow * \langle e', (h_1,l_2) \rangle
     using blocksFinal[OF wfmd - - fin casts'] wf length by simp
   with blocks show ?thesis by simp
qed
     An now the actual method call reduction lemmas.
lemma CallRedsObj:
 P,E \vdash \langle e,s \rangle \rightarrow * \langle e',s' \rangle \Longrightarrow
  P,E \vdash \langle Call\ e\ Copt\ M\ es,s \rangle \rightarrow * \langle Call\ e'\ Copt\ M\ es,s' \rangle
apply(erule rtrancl-induct2)
apply blast
apply(erule rtrancl-into-rtrancl)
apply(simp add:CallObj)
done
\mathbf{lemma} \ \mathit{CallRedsParams} :
 P,E \vdash \langle es,s \rangle [\rightarrow] * \langle es',s' \rangle \Longrightarrow
  P,E \vdash \langle Call \ (Val \ v) \ Copt \ M \ es,s \rangle \rightarrow * \langle Call \ (Val \ v) \ Copt \ M \ es',s' \rangle
apply(erule rtrancl-induct2)
apply blast
apply(erule rtrancl-into-rtrancl)
apply(simp add:CallParams)
done
```

lemma cast-lcl:

```
P,E \vdash \langle (C)(Val\ v),(h,l)\rangle \rightarrow \langle Val\ v',(h,l)\rangle \Longrightarrow
   P,E \vdash \langle (C)(Val\ v),(h,l')\rangle \rightarrow \langle Val\ v',(h,l')\rangle
apply(erule red.cases)
\mathbf{apply}(\mathit{auto\ intro}:\mathit{red}-\mathit{red}s.\mathit{intro}s)
\mathbf{apply}(subgoal\text{-}tac\ P, E \vdash \langle (C)ref\ (a, Cs@[C]@Cs'), (h, l')\rangle \rightarrow \langle ref\ (a, Cs@[C]), (h, l')\rangle)
apply \ simp
apply(rule RedStaticDownCast)
done
lemma cast-env:
  P,E \vdash \langle ((C)(Val\ v),(h,l)\rangle \rightarrow \langle Val\ v',(h,l)\rangle \Longrightarrow
   P,E' \vdash \langle (C)(Val\ v),(h,l)\rangle \rightarrow \langle Val\ v',(h,l)\rangle
apply(erule red.cases)
apply(auto intro:red-reds.intros)
\mathbf{apply}(subgoal\text{-}tac\ P, E' \vdash \langle ((C))ref\ (a, Cs@[C]@Cs'), (h, l)\rangle \rightarrow \langle ref\ (a, Cs@[C]), (h, l)\rangle)
apply simp
apply(rule\ RedStaticDownCast)
done
lemma Cast-step-Cast-or-fin:
P,E \vdash \langle (C)e,s \rangle \rightarrow * \langle e',s' \rangle \Longrightarrow final \ e' \lor (\exists \ e''. \ e' = (C)e'')
by(induct rule:rtrancl-induct2, auto elim:red.cases simp:final-def)
lemma Cast-red:P,E \vdash \langle e,s \rangle \rightarrow * \langle e',s' \rangle \Longrightarrow
  (\bigwedge e_1. \llbracket e = (C) e_0; e' = (C) e_1 \rrbracket \Longrightarrow P, E \vdash \langle e_0, s \rangle \to * \langle e_1, s' \rangle)
proof(induct rule:rtrancl-induct2)
  case refl thus ?case by simp
next
  case (step \ e^{\prime\prime} \ s^{\prime\prime} \ e^{\prime} \ s^{\prime})
  have step:P,E \vdash \langle e,s \rangle \rightarrow * \langle e'',s'' \rangle
     and Red:((e'', s''), e', s') \in Red P E
     and cast: e = (C)e_0 and cast': e' = (C)e_1
    and IH: \land e_1. [e = (C)e_0; e'' = (C)e_1] \Longrightarrow P, E \vdash \langle e_0, s \rangle \to \langle e_1, s'' \rangle by fact +
  from Red have red:P,E \vdash \langle e'',s'' \rangle \rightarrow \langle e',s' \rangle by simp
  from step cast have final e'' \lor (\exists ex. \ e'' = (C)ex)
     by simp(rule\ Cast-step-Cast-or-fin)
  thus ?case
  \mathbf{proof}(\mathit{rule}\ \mathit{disj}E)
     assume final e''
     with red show ?thesis by(auto simp:final-def)
  next
     assume \exists ex. e'' = (C)ex
     then obtain ex where e'':e'' = (C)ex by blast
     with cast' red have P,E \vdash \langle ex,s'' \rangle \rightarrow \langle e_1,s' \rangle
```

```
by(auto elim:red.cases)
     with IH[OF cast e''] show ?thesis
       \mathbf{by}(rule\text{-}tac\ b=(ex,s'')\ \mathbf{in}\ rtrancl\text{-}into\text{-}rtrancl,simp\text{-}all)
  qed
qed
lemma Cast-final: [P,E \vdash \langle (C)e,s \rangle \rightarrow * \langle e',s' \rangle; final e'] \Longrightarrow
\exists e^{\prime\prime} s^{\prime\prime}. P,E \vdash \langle e,s \rangle \rightarrow * \langle e^{\prime\prime},s^{\prime\prime} \rangle \land P,E \vdash \langle ((C))e^{\prime\prime},s^{\prime\prime} \rangle \rightarrow \langle e^{\prime},s^{\prime} \rangle \land final e^{\prime\prime}
proof(induct rule:rtrancl-induct2)
  case refl thus ?case by (simp add:final-def)
\mathbf{next}
  case (step e'' s'' e' s')
  have step:P,E \vdash \langle ((C))e,s \rangle \rightarrow * \langle e'',s'' \rangle
     and Red:((e'', s''), e', s') \in Red P E
     and final:final e'
     and IH:final\ e''\Longrightarrow
    \exists ex \ sx. \ P,E \vdash \langle e,s \rangle \rightarrow * \langle ex,sx \rangle \land P,E \vdash \langle ((C)(ex,sx)) \rightarrow \langle e'',s'' \rangle \land final \ ex \ by
  from Red have red:P,E \vdash \langle e'',s'' \rangle \rightarrow \langle e',s' \rangle by simp
  from step have final e'' \lor (\exists ex. e'' = (C)ex) by (rule Cast-step-Cast-or-fin)
  thus ?case
  proof(rule \ disjE)
     assume final e''
     with red show ?thesis by(auto simp:final-def)
  next
    assume \exists ex. e'' = (C)ex
     then obtain ex where e'':e'' = (C)ex by blast
     with red final have final':final ex
       by(auto elim:red.cases simp:final-def)
     from step e'' have P,E \vdash \langle e,s \rangle \rightarrow * \langle ex,s'' \rangle
       \mathbf{by}(fastforce\ intro:Cast-red)
     with e'' red final' show ?thesis by blast
  qed
qed
lemma Cast-final-eq:
  assumes red:P,E \vdash \langle (C)e,(h,l)\rangle \rightarrow \langle e',(h,l)\rangle
  and final:final e and final':final e'
  shows P,E' \vdash \langle (C) e,(h,l') \rangle \rightarrow \langle e',(h,l') \rangle
proof -
  from red final show ?thesis
  proof(auto simp:final-def)
     fix v assume P,E \vdash \langle (C)(Val\ v),(h,l)\rangle \rightarrow \langle e',(h,l)\rangle
     with final' show P,E' \vdash \langle (C)(Val\ v),(h,l')\rangle \rightarrow \langle e',(h,l')\rangle
     proof(auto simp:final-def)
```

```
fix v' assume P,E \vdash \langle (|C|)(Val\ v),(h,l)\rangle \rightarrow \langle Val\ v',(h,l)\rangle
       thus P,E' \vdash \langle (|C|)(Val\ v),(h,l')\rangle \rightarrow \langle Val\ v',(h,l')\rangle
         by(auto intro:cast-lcl cast-env)
       fix a Cs assume P,E \vdash \langle (|C|)(Val\ v),(h,l)\rangle \rightarrow \langle Throw\ (a,Cs),(h,l)\rangle
       thus P,E' \vdash \langle (|C|)(Val\ v),(h,l')\rangle \rightarrow \langle Throw\ (a,Cs),(h,l')\rangle
         by(auto elim:red.cases intro!:RedStaticCastFail)
    qed
  next
    fix a Cs assume P,E \vdash \langle (|C|)(Throw\ (a,Cs)),(h,l)\rangle \rightarrow \langle e',(h,l)\rangle
    with final' show P,E' \vdash \langle (C)(Throw\ (a,Cs)),(h,l')\rangle \rightarrow \langle e',(h,l')\rangle
    proof(auto simp:final-def)
       fix v assume P,E \vdash \langle (C)(Throw\ (a,Cs)),(h,l)\rangle \rightarrow \langle Val\ v,(h,l)\rangle
       thus P, E' \vdash \langle (|C|)(Throw\ (a, Cs)), (h, l') \rangle \rightarrow \langle Val\ v, (h, l') \rangle
         by(auto elim:red.cases)
    \mathbf{next}
       fix a' Cs'
      assume P,E \vdash \langle (C)(Throw\ (a,Cs)),(h,l)\rangle \rightarrow \langle Throw\ (a',Cs'),(h,l)\rangle
       thus P,E' \vdash \langle (|C|)(Throw\ (a,Cs)),(h,l')\rangle \rightarrow \langle Throw\ (a',Cs'),(h,l')\rangle
         by(auto elim:red.cases intro:red-reds.StaticCastThrow)
    qed
  \mathbf{qed}
qed
\mathbf{lemma} \ \mathit{CallRedsFinal} :
assumes wwf: wwf-prog P
and P,E \vdash \langle e,s_0 \rangle \rightarrow * \langle ref(a,Cs),s_1 \rangle
       P,E \vdash \langle es,s_1 \rangle [\rightarrow] * \langle map \ Val \ vs,(h_2,l_2) \rangle
and hp: h_2 \ a = Some(C,S)
and method: P \vdash last \ Cs \ has \ least \ M = (Ts', T', pns', body') \ via \ Ds
and select: P \vdash (C, Cs@_pDs) selects M = (Ts, T, pns, body) via Cs'
and size: size vs = size pns
and casts: P \vdash Ts \ Casts \ vs \ to \ vs'
and l_2': l_2' = [this \mapsto Ref(a, Cs'), pns[\mapsto]vs']
and body-case:new-body = (case T' of Class D \Rightarrow (D)body \mid - \Rightarrow body)
and body: P,E(this \mapsto Class\ (last\ Cs'),\ pns\ [\mapsto]\ Ts) \vdash \langle new-body,(h_2,l_2')\rangle \rightarrow *
\langle ef,(h_3,l_3)\rangle
and final:final ef
shows P,E \vdash \langle e \cdot M(es), s_0 \rangle \rightarrow * \langle ef,(h_3,l_2) \rangle
proof
  have wf: size Ts = size pns \land distinct pns \land this \notin set pns
    and wt: fv \ body \subseteq \{this\} \cup set \ pns
    using assms by(fastforce dest!:select-method-wf-mdecl simp:wf-mdecl-def)+
  have dom\ l_3 \subseteq \{this\} \cup set\ pns
    using Reds-dom-lcl[OF wwf body] wt l2' set-take-subset body-case
    by (cases T') force+
  hence eql<sub>2</sub>: override-on (l_2++l_3) l_2 (\{this\} \cup set\ pns) = l_2
```

```
by(fastforce simp add:map-add-def override-on-def fun-eq-iff)
  from wwf select have is-class P (last Cs')
    \mathbf{by}\ (\mathit{auto}\ elim! : SelectMethodDef. \mathit{cases}\ intro: Subobj-last-isClass
              simp: Least Method Def-def\ Final Overrider Method Def-def
                    OverriderMethodDefs-def MinimalMethodDefs-def MethodDefs-def)
  hence P \vdash Class (last Cs') casts Ref(a, Cs') to Ref(a, Cs')
    by(auto intro!: casts-ref Subobjs-Base simp:path-via-def appendPath-def)
  with casts
  have casts':P \vdash Class\ (last\ Cs') \# Ts\ Casts\ Ref(a,Cs') \# vs\ to\ Ref(a,Cs') \# vs'
    by -(rule\ Casts-Cons)
 have 1:P,E \vdash \langle e \cdot M(es), s_0 \rangle \rightarrow * \langle (ref(a,Cs)) \cdot M(es), s_1 \rangle by(rule\ CallRedsObj)(rule\ CallRedsObj)
assms(2))
  have 2:P,E \vdash \langle (ref(a,Cs)) \cdot M(es), s_1 \rangle \rightarrow *
                  \langle (ref(a,Cs)) \cdot M(map\ Val\ vs), (h_2,l_2) \rangle
    \mathbf{by}(rule\ CallRedsParams)(rule\ assms(3))
  from body[THEN Red-lcl-add, of <math>l_2]
  have body': P,E(this \mapsto Class\ (last\ Cs'),\ pns\ [\mapsto]\ Ts) \vdash
              \langle new\text{-}body, (h_2, l_2(this \mapsto Ref(a, Cs'), pns[\mapsto]vs')) \rangle \rightarrow * \langle ef, (h_3, l_2 + + l_3) \rangle
    by (simp \ add: l_2')
  show ?thesis
  \mathbf{proof}(cases \ \forall \ C. \ T' \neq Class \ C)
    case True
    hence P,E \vdash \langle (ref(a,Cs)) \cdot M(map\ Val\ vs), (h_2,l_2) \rangle \rightarrow
                  \langle blocks(this \#pns, Class(last\ Cs') \#Ts, Ref(a, Cs') \#vs, body),\ (h_2, l_2) \rangle
      using hp method select size wf
      by -(rule\ RedCall, auto, cases\ T', auto)
    hence 3:P,E \vdash \langle (ref(a,Cs)) \cdot M(map\ Val\ vs), (h_2,l_2) \rangle \rightarrow *
                     \langle blocks(this \#pns, Class(last\ Cs') \#Ts, Ref(a, Cs') \#vs, body), (h_2, l_2) \rangle
      bv(simp add:r-into-rtrancl)
    have P,E \vdash \langle blocks(this \#pns, Class(last\ Cs') \#Ts, Ref(a,Cs') \#vs,body), (h_2,l_2) \rangle
                 \langle ef, (h_3, override-on\ (l_2++l_3)\ l_2\ (\{this\} \cup set\ pns)) \rangle
      using True wf body' wwf size final casts' body-case
      by -(rule-tac\ vs'=Ref(a,Cs')\#vs'\ in\ blocksRedsFinal,simp-all,cases\ T',auto)
    with 1 2 3 show ?thesis using eql<sub>2</sub>
      by simp
  next
    case False
    then obtain D where T':T' = Class D by auto
    with final body' body-case obtain s' e' where
      body'':P,E(this \mapsto Class\ (last\ Cs'),pns\ [\mapsto]\ Ts) \vdash
                              \langle body, (h_2, l_2(this \mapsto Ref(a, Cs'), pns[\mapsto]vs')) \rangle \rightarrow * \langle e', s' \rangle
      and final':final e'
      and cast:P,E(this \mapsto Class\ (last\ Cs'),\ pns\ [\mapsto]\ Ts) \vdash \langle (D) e',s' \rangle \rightarrow
                                                                 \langle ef, (h_3, l_2 + + l_3) \rangle
      \mathbf{by}(\mathit{cases}\ T')(\mathit{auto}\ \mathit{dest}:\mathit{Cast-final})
    from T' have P.E \vdash \langle (ref(a,Cs)) \cdot M(map\ Val\ vs), (h_2,l_2) \rangle \rightarrow
                \langle (D) blocks(this \# pns, Class(last Cs') \# Ts, Ref(a, Cs') \# vs, body), (h_2, l_2) \rangle
      using hp method select size wf
```

```
hence 3:P,E \vdash \langle (ref(a,Cs)) \cdot M(map\ Val\ vs),\ (h_2,l_2) \rangle \rightarrow *
                 \langle (D) blocks(this \#pns, Class(last\ Cs') \#Ts, Ref(a, Cs') \#vs, body), (h_2, l_2) \rangle
      \mathbf{by}(simp\ add:r\text{-}into\text{-}rtrancl)
    from cast final have eq:s'=(h_3,l_2++l_3)
      by(auto elim:red.cases simp:final-def)
      hence P,E \vdash \langle blocks(this \#pns, Class (last Cs') \#Ts, Ref(a,Cs') \#vs,body),
(h_2,l_2)\rangle
                   \rightarrow * \langle e', (h_3, override-on \ (l_2++l_3) \ l_2 \ (\{this\} \cup set \ pns)) \rangle
      using wf body" wwf size final' casts'
      by -(rule-tac\ vs'=Ref(a,Cs')\#vs'\ in\ blocksRedsFinal,simp-all)
   hence P, E \vdash \langle (|D|)(blocks(this \#pns, Class(last Cs') \#Ts, Ref(a, Cs') \#vs, body)), (h_2, l_2) \rangle
               \rightarrow * \langle (D)e', (h_3, override-on\ (l_2++l_3)\ l_2\ (\{this\} \cup set\ pns)) \rangle
      by(rule StaticCastReds)
    moreover
    have P,E \vdash \langle (|D|)e', (h_3, override-on\ (l_2++l_3)\ l_2\ (\{this\} \cup set\ pns)) \rangle \rightarrow
                  \langle ef, (h_3, override-on\ (l_2++l_3)\ l_2\ (\{this\} \cup set\ pns)) \rangle
      using eq cast final final'
      \mathbf{by}(fastforce\ intro: Cast-final-eq)
    ultimately
    have P,E \vdash \langle (|D|)(blocks(this \#pns, Class (last Cs') \#Ts, Ref(a,Cs') \#vs,body)),
                    \langle (h_2, l_2) \rangle \rightarrow * \langle ef, (h_3, override-on (l_2++l_3) l_2 (\{this\} \cup set pns)) \rangle
      \mathbf{by}(rule\text{-}tac\ b=((D)e',(h_3,override\text{-}on\ (l_2++l_3)\ l_2\ (\{this\}\cup\ set\ pns)))
         in rtrancl-into-rtrancl, simp-all)
    with 1 2 3 show ?thesis using eql<sub>2</sub>
      by simp
  qed
qed
lemma StaticCallRedsFinal:
assumes wwf: wwf-prog P
and P,E \vdash \langle e,s_0 \rangle \rightarrow * \langle ref(a,Cs),s_1 \rangle
      P,E \vdash \langle es,s_1 \rangle [\rightarrow] * \langle map \ Val \ vs,(h_2,l_2) \rangle
and path-unique: P \vdash Path (last Cs) to C unique
and path-via: P \vdash Path (last Cs) to C via Cs''
and Ds: Ds = (Cs@_pCs'')@_pCs'
and least: P \vdash C has least M = (Ts, T, pns, body) via Cs'
and size: size vs = size pns
and casts: P \vdash Ts \ Casts \ vs \ to \ vs'
and l_2': l_2' = [this \mapsto Ref(a,Ds), pns[\mapsto]vs']
and body: P,E(this \mapsto Class(last\ Ds),\ pns[\mapsto]\ Ts) \vdash \langle body,(h_2,l_2')\rangle \rightarrow * \langle ef,(h_3,l_3)\rangle
and final:final ef
shows P,E \vdash \langle e \cdot (C::)M(es), s_0 \rangle \rightarrow * \langle ef,(h_3,l_2) \rangle
proof -
  have wf: size Ts = size pns \land distinct pns \land this \notin set pns \land
             (\forall T \in set Ts. is-type P T)
    and wt: fv \ body \subseteq \{this\} \cup set \ pns
```

by $-(rule\ RedCall, auto)$

```
using assms by(fastforce dest!:has-least-wf-mdecl simp:wf-mdecl-def)+
  have dom\ l_3 \subseteq \{this\} \cup set\ pns
    using Reds-dom-lcl[OF wwf body] wt <math>l_2' set-take-subset
    by force
  hence eql<sub>2</sub>: override-on (l_2++l_3) l_2 (\{this\} \cup set\ pns) = l_2
    by(fastforce simp add:map-add-def override-on-def fun-eq-iff)
  from wwf least have Cs' \neq []
    by (auto elim!:Subobjs-nonempty simp:LeastMethodDef-def MethodDefs-def)
  with Ds have last Cs' = last Ds by (fastforce\ intro:appendPath-last)
  with wwf least have is-class P (last Ds)
    \mathbf{by}(auto\ dest: Subobj-last-isClass\ simp: LeastMethodDef-def\ MethodDefs-def)
  hence P \vdash Class (last Ds) casts Ref(a,Ds) to Ref(a,Ds)
    by(auto introl:casts-ref Subobjs-Base simp:path-via-def appendPath-def)
  with casts
  have casts':P \vdash Class\ (last\ Ds) \# Ts\ Casts\ Ref(a,Ds) \# vs\ to\ Ref(a,Ds) \# vs'
    \mathbf{by} -(rule Casts-Cons)
  have 1:P,E \vdash \langle e \cdot (C::)M(es),s_0 \rangle \rightarrow * \langle (ref(a,Cs)) \cdot (C::)M(es),s_1 \rangle
    \mathbf{by}(rule\ CallRedsObj)(rule\ assms(2))
  have 2:P,E \vdash \langle (ref(a,Cs))\cdot (C::)M(es),s_1\rangle \rightarrow *
                  \langle (ref(a,Cs))\cdot (C::)M(map\ Val\ vs),(h_2,l_2)\rangle
    \mathbf{by}(rule\ CallRedsParams)(rule\ assms(3))
  from body[THEN Red-lcl-add, of <math>l_2]
  have body': P,E(this \mapsto Class(last\ Ds),\ pns[\mapsto]\ Ts) \vdash
               \langle body, (h_2, l_2(this \mapsto Ref(a, Ds), pns[\mapsto]vs')) \rangle \rightarrow * \langle ef, (h_3, l_2 + + l_3) \rangle
    by (simp \ add: l_2')
  have P,E \vdash \langle (ref(a,Cs)) \cdot (C::) M(map\ Val\ vs),\ (h_2,l_2) \rangle \rightarrow
               \langle blocks(this \#pns, Class (last Ds) \#Ts, Ref(a,Ds) \#vs, body), (h_2,l_2) \rangle
    using path-unique path-via least size wf Ds
    by -(rule\ RedStaticCall, auto)
  hence 3:P,E \vdash \langle (ref(a,Cs))\cdot (C::)M(map\ Val\ vs), (h_2,l_2)\rangle \rightarrow *
                     \langle blocks(this \#pns, Class(last\ Ds) \#Ts, Ref(a, Ds) \#vs, body), (h_2, l_2) \rangle
    \mathbf{by}(simp\ add:r\text{-}into\text{-}rtrancl)
 have P,E \vdash \langle blocks(this \#pns, Class(last\ Ds) \#Ts, Ref(a,Ds) \#vs, body), (h_2,l_2) \rangle \rightarrow *
                 \langle ef, (h_3, override-on\ (l_2++l_3)\ l_2\ (\{this\} \cup set\ pns)) \rangle
    using wf body' wwf size final casts'
    by -(rule-tac\ vs'=Ref(a,Ds)\#vs'\ in\ blocksRedsFinal,simp-all)
  with 1 2 3 show ?thesis using eql<sub>2</sub>
    by simp
qed
lemma CallRedsThrowParams:
  \llbracket P,E \vdash \langle e,s_0 \rangle \rightarrow * \langle Val \ v,s_1 \rangle;
    P,E \vdash \langle es,s_1 \rangle \ [\rightarrow] * \langle map\ Val\ vs_1 @ Throw\ ex\ \#\ es_2,s_2 \rangle \ ]
  \implies P,E \vdash \langle Call \ e \ Copt \ M \ es,s_0 \rangle \rightarrow * \langle Throw \ ex,s_2 \rangle
apply(rule rtrancl-trans)
```

```
apply(erule CallRedsObj)
apply(rule\ rtrancl-into-rtrancl)
  apply(erule CallRedsParams)
apply(simp add:CallThrowParams)
done
lemma CallRedsThrowObj:
        P,E \vdash \langle e,s_0 \rangle \rightarrow * \langle Throw \ ex,s_1 \rangle \Longrightarrow P,E \vdash \langle Call \ e \ Copt \ M \ es,s_0 \rangle \rightarrow * \langle Throw \ es,s_0 \rangle \rightarrow * \langle Thr
ex,s_1\rangle
apply(rule rtrancl-into-rtrancl)
  apply(erule CallRedsObj)
apply(simp add:CallThrowObj)
done
lemma CallRedsNull:
        \llbracket P,E \vdash \langle e,s_0 \rangle \to * \langle null,s_1 \rangle; P,E \vdash \langle es,s_1 \rangle [\to] * \langle map \ Val \ vs,s_2 \rangle \ \rrbracket
      \implies P,E \vdash \langle Call \ e \ Copt \ M \ es,s_0 \rangle \rightarrow * \langle THROW \ NullPointer,s_2 \rangle
apply(rule\ rtrancl-trans)
   apply(erule CallRedsObj)
apply(rule rtrancl-into-rtrancl)
  apply(erule CallRedsParams)
apply(simp add:RedCallNull)
done
19.16
                                          The main Theorem
lemma assumes wwf: wwf-prog P
shows big-by-small: P,E \vdash \langle e,s \rangle \Rightarrow \langle e',s' \rangle \Longrightarrow P,E \vdash \langle e,s \rangle \rightarrow * \langle e',s' \rangle
and bigs-by-smalls: P,E \vdash \langle es,s \rangle \ [\Rightarrow] \ \langle es',s' \rangle \Longrightarrow P,E \vdash \langle es,s \rangle \ [\to] * \langle es',s' \rangle
proof (induct rule: eval-evals.inducts)
       case New thus ?case by (auto simp:RedNew)
next
        case NewFail thus ?case by (auto simp:RedNewFail)
        case Static Up Cast thus ?case by(simp add:Static Up CastReds)
next
       case StaticDownCast thus ?case by(simp add:StaticDownCastReds)
next
       case Static CastNull thus ?case by(simp add:Static CastRedsNull)
next
       case Static CastFail thus ?case by(simp add:Static CastRedsFail)
next
```

```
case Static Cast Throw thus ?case by(auto dest!:eval-final simp:Static Cast Reds Throw)
next
 case StaticUpDynCast thus ?case by(simp add:StaticUpDynCastReds)
 case StaticDownDynCast thus ?case by(simp add:StaticDownDynCastReds)
next
 case DynCast thus ?case by(fastforce intro:DynCastRedsRef)
next
 case DynCastNull thus ?case by(simp add:DynCastRedsNull)
next
 case DynCastFail thus ?case by(fastforce intro!:DynCastRedsFail)
next
case DynCastThrow thus ?case by(auto dest!:eval-final simp:DynCastRedsThrow)
next
 case Val thus ?case by simp
next
 case BinOp thus ?case by(fastforce simp:BinOpRedsVal)
  case BinOpThrow1 thus ?case by(fastforce dest!:eval-final simp: BinOpRed-
sThrow1)
next
  case BinOpThrow2 thus ?case by(fastforce dest!:eval-final simp: BinOpRed-
sThrow2)
next
 case Var thus ?case by (fastforce simp:RedVar)
next
 case LAss thus ?case by(fastforce simp: LAssRedsVal)
next
 case LAssThrow thus ?case by(fastforce dest!:eval-final simp: LAssRedsThrow)
next
 case FAcc thus ?case by(fastforce intro:FAccRedsVal)
next
 case FAccNull thus ?case by(simp add:FAccRedsNull)
next
 case FAccThrow thus ?case by(fastforce dest!:eval-final simp:FAccRedsThrow)
next
 case FAss thus ?case by(fastforce simp:FAssRedsVal)
next
 case FAssNull thus ?case by(fastforce simp:FAssRedsNull)
next
 case FAssThrow1 thus ?case by(fastforce dest!:eval-final simp:FAssRedsThrow1)
next
 case FAssThrow2 thus ?case by(fastforce dest!:eval-final simp:FAssRedsThrow2)
next
 case CallObjThrow thus ?case by(fastforce dest!:eval-final simp: CallRedsThrowObj)
 case CallNull thus ?case thm CallRedsNull by(simp add:CallRedsNull)
next
 case CallParamsThrow thus ?case
```

```
by(fastforce dest!:evals-final simp:CallRedsThrowParams)
next
  \mathbf{case} \,\,(\mathit{Call}\,\,E\,\,e\,\,s_0\,\,a\,\,\mathit{Cs}\,\,s_1\,\,\mathit{ps}\,\,\mathit{vs}\,\,h_2\,\,l_2\,\,\mathit{C}\,\,S\,\,M\,\,\mathit{Ts'}\,\,\mathit{T'}\,\,\mathit{pns'}\,\,\mathit{body'}\,\,\mathit{Ds}\,\,\mathit{Ts}\,\,\mathit{T}\,\,\mathit{pns}
               body \ Cs' \ vs' \ l_2' \ new-body \ e' \ h_3 \ l_3)
  have IHe: P,E \vdash \langle e,s_0 \rangle \rightarrow * \langle ref(a,Cs),s_1 \rangle
    and IHes: P,E \vdash \langle ps,s_1 \rangle \ [\rightarrow] * \langle map \ Val \ vs,(h_2,l_2) \rangle
    and h_2a: h_2a = Some(C,S)
    and method: P \vdash last \ Cs \ has \ least \ M = (Ts', T', pns', body') \ via \ Ds
    and select: P \vdash (C, Cs@_pDs) selects M = (Ts, T, pns, body) via Cs^2
    and same-length: length vs = length pns
    and casts: P \vdash Ts \ Casts \ vs \ to \ vs
    and l_2': l_2' = [this \mapsto Ref(a, Cs'), pns[\mapsto]vs']
    and body-case: new-body = (case T' of Class D \Rightarrow (|D|) body | - \Rightarrow body)
    and eval-body: P,E(this \mapsto Class\ (last\ Cs'),\ pns\ [\mapsto]\ Ts) \vdash
                         \langle new\text{-}body, (h_2, l_2') \rangle \Rightarrow \langle e', (h_3, l_3) \rangle
    and IHbody: P,E(this \mapsto Class (last Cs'), pns [\mapsto] Ts) \vdash
                         \langle new\text{-}body, (h_2, l_2') \rangle \rightarrow * \langle e', (h_3, l_3) \rangle by fact+
  from wwf select same-length have length Ts:length Ts = length vs
    by (fastforce dest!:select-method-wf-mdecl simp:wf-mdecl-def)
  show P,E \vdash \langle e \cdot M(ps), s_0 \rangle \rightarrow * \langle e', (h_3, l_2) \rangle
    using method select same-length l_2' h_2a casts body-case
       IHbody \ eval	ext{-}final[OF \ eval	ext{-}body]
    \mathbf{by}(fastforce\ intro!:CallRedsFinal[OF\ wwf\ IHe\ IHes])
next
  case (Static Call E e s_0 a Cs s_1 ps vs h_2 l_2 C Cs'' M Ts T pns body Cs'
                      Ds \ vs' \ l_2' \ e' \ h_3 \ l_3)
 have IHe: P,E \vdash \langle e,s_0 \rangle \rightarrow * \langle ref(a,Cs),s_1 \rangle
   and IHes: P,E \vdash \langle ps,s_1 \rangle \ [\rightarrow] * \langle map \ Val \ vs,(h_2,l_2) \rangle
   and path-unique: P \vdash Path \ last \ Cs \ to \ C \ unique
   and path-via: P \vdash Path \ last \ Cs \ to \ C \ via \ Cs''
   and least: P \vdash C has least M = (Ts, T, pns, body) via Cs'
   and Ds: Ds = (Cs @_p Cs') @_p Cs'
   and same-length: length vs = length pns
   and casts: P \vdash Ts \ Casts \ vs \ to \ vs'
   and l_2': l_2' = [this \mapsto Ref (a,Ds), pns[\mapsto]vs']
   and eval-body: P,E(this \mapsto Class\ (last\ Ds),\ pns\ [\mapsto]\ Ts) \vdash
                             \langle body, (h_2, l_2') \rangle \Rightarrow \langle e', (h_3, l_3) \rangle
   and IHbody: P, E(this \mapsto Class (last Ds), pns [\mapsto] Ts) \vdash
                         \langle body, (h_2, l_2') \rangle \rightarrow * \langle e', (h_3, l_3) \rangle by fact +
 from wwf least same-length have length Ts: length Ts = length vs
    by (fastforce dest!:has-least-wf-mdecl simp:wf-mdecl-def)
  show P,E \vdash \langle e \cdot (C::)M(ps), s_0 \rangle \rightarrow * \langle e', (h_3, l_2) \rangle
    using path-unique path-via least Ds same-length l_2 casts
       IHbody \ eval	ext{-}final[OF \ eval	ext{-}body]
    by(fastforce intro!:StaticCallRedsFinal[OF wwf IHe IHes])
 case Block with wwf show ?case by(fastforce simp: BlockRedsFinal dest:eval-final)
next
  case Seq thus ?case by(fastforce simp:SeqReds2)
```

```
next
 case SeqThrow thus ?case by(fastforce dest!:eval-final simp: SeqRedsThrow)
next
  case CondT thus ?case by(fastforce simp:CondReds2T)
next
  case CondF thus ?case by(fastforce simp:CondReds2F)
next
  case CondThrow thus ?case by(fastforce dest!:eval-final simp:CondRedsThrow)
next
  case While F thus ?case by(fastforce simp: While F Reds)
\mathbf{next}
 case While T thus ?case by(fastforce simp: While TReds)
next
  case WhileCondThrow thus ?case by(fastforce dest!:eval-final simp: WhileRed-
sThrow
 case WhileBodyThrow thus ?case by (fastforce dest!:eval-final simp: WhileTRed-
sThrow)
next
 case Throw thus ?case by(fastforce simp: ThrowReds)
next
  case ThrowNull thus ?case by(fastforce simp:ThrowRedsNull)
 case Throw Throw thus ?case by(fastforce dest!:eval-final simp: Throw Reds Throw)
next
  case Nil thus ?case by simp
next
 case Cons thus ?case
   by(fastforce intro!: Cons-eq-appendI[OF refl refl] ListRedsVal)
 case ConsThrow thus ?case by(fastforce elim: ListReds1)
qed
           Big steps simulates small step
19.17
The big step equivalent of RedWhile:
lemma unfold-while:
  P,E \vdash \langle while(b) \ c,s \rangle \Rightarrow \langle e',s' \rangle = P,E \vdash \langle if(b) \ (c;;while(b) \ c) \ else \ (unit),s \rangle \Rightarrow
\langle e',s'\rangle
proof
 assume P,E \vdash \langle while (b) c,s \rangle \Rightarrow \langle e',s' \rangle
 thus P,E \vdash \langle if(b)(c); while(b)c\rangle else unit,s\rangle \Rightarrow \langle e',s'\rangle
   by cases (fastforce intro: eval-evals.intros)+
  assume P,E \vdash \langle if(b)(c); while(b)c) else unit,s \rangle \Rightarrow \langle e',s' \rangle
```

thus $P,E \vdash \langle while \ (b) \ c,s \rangle \Rightarrow \langle e',s' \rangle$

 $\begin{array}{c} \mathbf{proof} \ (\mathit{cases}) \\ \mathbf{fix} \ \mathit{ex} \end{array}$

```
assume e': e' = throw ex
     assume P,E \vdash \langle b,s \rangle \Rightarrow \langle throw \ ex,s' \rangle
     hence P,E \vdash \langle while(b) \ c,s \rangle \Rightarrow \langle throw \ ex,s' \rangle by (rule WhileCondThrow)
     with e' show ?thesis by simp
  next
     fix s_1
     assume eval-false: P,E \vdash \langle b,s \rangle \Rightarrow \langle false,s_1 \rangle
    and eval-unit: P,E \vdash \langle unit, s_1 \rangle \Rightarrow \langle e', s' \rangle
     with eval-unit have s' = s_1 e' = unit by (auto elim: eval-cases)
     moreover from eval-false have P,E \vdash \langle while (b) c,s \rangle \Rightarrow \langle unit,s_1 \rangle
       \mathbf{by} - (rule\ WhileF,\ simp)
     ultimately show ?thesis by simp
  next
     fix s_1
     assume eval-true: P,E \vdash \langle b,s \rangle \Rightarrow \langle true,s_1 \rangle
     and eval-rest: P,E \vdash \langle c; while (b) c,s_1 \rangle \Rightarrow \langle e',s' \rangle
     from eval-rest show ?thesis
     proof (cases)
       fix s_2 v_1
       assume P,E \vdash \langle c,s_1 \rangle \Rightarrow \langle Val \ v_1,s_2 \rangle \ P,E \vdash \langle while \ (b) \ c,s_2 \rangle \Rightarrow \langle e',s' \rangle
       with eval-true show P,E \vdash \langle while(b) \ c,s \rangle \Rightarrow \langle e',s' \rangle by (rule While T)
     \mathbf{next}
       \mathbf{fix} \ ex
       assume P,E \vdash \langle c,s_1 \rangle \Rightarrow \langle throw \ ex,s' \rangle \ e' = throw \ ex
       with eval-true show P,E \vdash \langle while(b) \ c,s \rangle \Rightarrow \langle e',s' \rangle
          by (iprover intro: WhileBodyThrow)
     qed
  ged
qed
lemma blocksEval:
  \bigwedge Ts \ vs \ l \ l' \ E. [size ps = size \ Ts; size \ ps = size \ vs;
                         P,E \vdash \langle blocks(ps,Ts,vs,e),(h,l)\rangle \Rightarrow \langle e',(h',l')\rangle
     \implies \exists l'' vs'. P, E(ps \mapsto Ts) \vdash \langle e, (h, l(ps \mapsto vs')) \rangle \Rightarrow \langle e', (h', l'') \rangle \land
                        P \vdash Ts \ Casts \ vs \ to \ vs' \land \ length \ vs' = \ length \ vs
proof (induct ps)
  case Nil then show ?case by(fastforce intro:Casts-Nil)
next
  case (Cons p ps')
  have length-eqs: length (p \# ps') = length Ts
                        length (p \# ps') = length vs
     and IH: \bigwedge Ts \ vs \ l \ l' \ E. [length ps' = length \ Ts; length ps' = length \ vs;
                                    P, E \vdash \langle blocks\ (ps', Ts, vs, e), (h, l) \rangle \Rightarrow \langle e', (h', l') \rangle \|
  \implies \exists \ l'' \ vs'. \ P, E(ps' [\mapsto] \ Ts) \vdash \langle e, (h, l(ps' [\mapsto] \ vs')) \rangle \Rightarrow \langle e', (h', \ l'') \rangle \land 
                    P \vdash Ts \ Casts \ vs \ to \ vs' \land \ length \ vs' = \ length \ vs \ \mathbf{by} \ fact +
  then obtain T Ts' where Ts: Ts = T \# Ts' by (cases Ts) simp
```

```
obtain v vs' where vs: vs = v \# vs' using length-eqs by (cases vs) simp
     with length-eqs Ts have length 1:length ps' = length Ts'
          and length2:length ps' = length vs' by simp-all
     have P,E \vdash \langle blocks\ (p \# ps',\ Ts,\ vs,\ e),(h,l) \rangle \Rightarrow \langle e',(h',\ l') \rangle by fact
     have blocks:P,E \vdash \langle \{p:T := Val\ v;\ blocks\ (ps',Ts',vs',e)\},(h,l) \rangle \Rightarrow \langle e',(h',l') \rangle
          by simp
     then obtain l''' v' where
           eval\text{-}ps': P, E(p \mapsto T) \vdash \langle blocks(ps', Ts', vs', e), (h, l(p \mapsto v')) \rangle \Rightarrow \langle e', (h', l''') \rangle
          and l''': l'=l'''(p:=l p)
          and casts:P \vdash T casts v to v'
          by(auto elim!: eval-cases simp:fun-upd-same)
     from IH[OF length1 length2 eval-ps'] obtain l'' vs'' where
          P,E(p \mapsto T, ps' [\mapsto] Ts') \vdash \langle e,(h, l(p \mapsto v', ps' [\mapsto] vs'')) \rangle \Rightarrow
                                                                                                    \langle e', (h', l'') \rangle
          and P \vdash Ts' \ Casts \ vs' \ to \ vs''
          and length \ vs'' = length \ vs' by auto
     with Ts vs casts show ?case
          by -(rule-tac \ x=l'' \ in \ exI, rule-tac \ x=v'\#vs'' \ in \ exI, simp,
                       rule Casts-Cons)
qed
\mathbf{lemma}\ \mathit{CastblocksEval} \colon
     \bigwedge Ts \ vs \ l \ l' \ E. [size \ ps = size \ Ts; \ size \ ps = size \ vs;
                                                P,E \vdash \langle (C')(blocks(ps,Ts,vs,e)),(h,l)\rangle \Rightarrow \langle e',(h',l')\rangle
          \implies \exists l'' vs'. P, E(ps \mapsto Ts) \vdash \langle (C') e, (h, l(ps \mapsto vs')) \rangle \Rightarrow \langle e', (h', l'') \rangle \land (C') e, (h, l(ps \mapsto vs')) \rangle \Rightarrow \langle e', (h', l'') \rangle \land (C') e, (h, l(ps \mapsto vs')) \rangle \Rightarrow \langle e', (h', l'') \rangle \land (C') e, (h, l(ps \mapsto vs')) \rangle \Rightarrow \langle e', (h', l'') \rangle \land (C') e, (h, l(ps \mapsto vs')) \rangle \Rightarrow \langle e', (h', l'') \rangle \land (C') e, (h, l(ps \mapsto vs')) \rangle \Rightarrow \langle e', (h', l'') \rangle \land (C') e, (h, l(ps \mapsto vs')) \rangle \Rightarrow \langle e', (h', l'') \rangle \land (C') e, (h, l(ps \mapsto vs')) \rangle \Rightarrow \langle e', (h', l'') \rangle \land (C') e, (h, l(ps \mapsto vs')) \rangle \Rightarrow \langle e', (h', l'') \rangle \land (C') e, (h, l(ps \mapsto vs')) \rangle \Rightarrow \langle e', (h', l'') \rangle \land (C') e, (h, l(ps \mapsto vs')) \rangle \Rightarrow \langle e', (h', l'') \rangle \land (C') e, (h, l(ps \mapsto vs')) \rangle \Rightarrow \langle e', (h', l'') \rangle \land (C') e, (h, l(ps \mapsto vs')) \rangle \Rightarrow \langle e', (h', l'') \rangle \land (C') e, (h, l(ps \mapsto vs')) \rangle \Rightarrow \langle e', (h', l'') \rangle \land (C') e, (h, l(ps \mapsto vs')) \rangle \Rightarrow \langle e', (h', l'') \rangle \land (C') e, (h, l(ps \mapsto vs')) \rangle \Rightarrow \langle e', (h', l'') \rangle \land (C') e, (h, l(ps \mapsto vs')) \rangle \Rightarrow \langle e', (h', l'') \rangle \land (C') e, (h, l(ps \mapsto vs')) \rangle \Rightarrow \langle e', (h', l'') \rangle \land (C') e, (h', l'') \rangle \Rightarrow \langle e', (h', l'') \rangle \land (C') e, (h', l'') \rangle \langle e', (h', l'') \rangle \rangle \Rightarrow \langle e', (h', l'') \rangle \langle e', (h', l'') \rangle \rangle \langle e', (h', l'') \rangle \langle
                                                P \vdash Ts \ Casts \ vs \ to \ vs' \land \ length \ vs' = \ length \ vs
proof (induct ps)
     case Nil then show ?case by(fastforce intro:Casts-Nil)
next
     case (Cons \ p \ ps')
    have length-eqs: length (p \# ps') = length Ts
                                                length (p \# ps') = length vs by fact +
     then obtain T Ts' where Ts: Ts = T \# Ts' by (cases Ts) simp
     obtain v \ vs' where vs: vs = v \# vs' using length-eqs by (cases vs) simp
     with length-eqs Ts have length 1:length ps' = length Ts'
          and length2: length ps' = length vs' by simp-all
     have P,E \vdash \langle (C')(blocks\ (p \# ps',\ Ts,\ vs,\ e)),(h,l)\rangle \Rightarrow \langle e',(h',\ l')\rangle by fact
     moreover
     { fix a Cs Cs'
          assume blocks:P,E \vdash \langle blocks(p\#ps',Ts,vs,e),(h,l)\rangle \Rightarrow \langle ref(a,Cs),(h',l')\rangle
               and path-via:P \vdash Path \ last \ Cs \ to \ C' \ via \ Cs'
               and e':e' = ref(a, Cs@_p Cs')
          from blocks length-egs obtain l'' vs''
               where eval: P, E(p \# ps' [\mapsto] Ts) \vdash \langle e, (h, l(p \# ps' [\mapsto] vs'')) \rangle \Rightarrow
                                                                                    \langle ref(a,Cs),(h',l'')\rangle
```

```
and casts:P \vdash Ts \ Casts \ vs \ to \ vs''
    and length: length \ vs'' = length \ vs
    \mathbf{by} -(drule\ blocksEval, auto)
  from eval path-via have
    P, E(p \# ps' \mapsto Ts) \vdash \langle (C') e, (h, l(p \# ps' \mapsto vs')) \rangle \Rightarrow \langle ref(a, Cs@_p Cs'), (h', l'') \rangle
    by(auto intro:StaticUpCast)
  with e' casts length have ?case by simp blast }
moreover
{ fix a Cs Cs'
  assume blocks:P,E \vdash \langle blocks(p \# ps', Ts, vs, e), (h, l) \rangle \Rightarrow
                          \langle ref (a, Cs@C' \# Cs'), (h', l') \rangle
    and e':e' = ref(a, Cs@[C'])
  from blocks length-eqs obtain l''vs''
    where eval:P,E(p\#ps' \mapsto Ts) \vdash \langle e,(h,l(p\#ps' \mapsto vs'))\rangle \Rightarrow
                                   \langle ref (a, Cs@C' \# Cs'), (h', l'') \rangle
    and casts:P \vdash Ts \ Casts \ vs \ to \ vs''
    and length:length \ vs'' = length \ vs
    by -(drule\ blocksEval, auto)
  from eval have P,E(p\#ps'[\mapsto]Ts) \vdash \langle (|C'|)e,(h,l(p\#ps'[\mapsto]vs''))\rangle \Rightarrow
                                                 \langle ref(a, Cs@[C']), (h', l'') \rangle
    by(auto intro:StaticDownCast)
  with e' casts length have ?case by simp blast }
moreover
{ assume P,E \vdash \langle blocks(p \# ps', Ts, vs, e), (h, l) \rangle \Rightarrow \langle null, (h', l') \rangle}
  and e':e' = null
  with length-eqs obtain l^{\prime\prime} vs^{\prime\prime}
    where eval:P,E(p\#ps'[\mapsto] Ts) \vdash \langle e,(h,l(p\#ps'[\mapsto]vs''))\rangle \Rightarrow
                                   \langle null, (h', l'') \rangle
    and casts:P \vdash Ts \ Casts \ vs \ to \ vs''
    and length:length \ vs'' = length \ vs
    by -(drule\ blocksEval, auto)
  from eval have P, E(p \# ps' [\mapsto] Ts) \vdash \langle (C') e, (h, l(p \# ps' [\mapsto] vs'')) \rangle \Rightarrow
                                                   \langle null, (h', l'') \rangle
    by(auto intro:StaticCastNull)
  with e' casts length have ?case by simp blast }
moreover
\{  fix a  Cs 
  assume blocks: P,E \vdash \langle blocks(p \# ps', Ts, vs, e), (h, l) \rangle \Rightarrow \langle ref(a, Cs), (h', l') \rangle
    and notin: C' \notin set \ Cs and leq: \neg P \vdash (last \ Cs) \preceq^* C'
    and e':e' = THROW\ Class Cast
  from blocks length-eqs obtain l'' vs''
    where eval: P, E(p \# ps' [\mapsto] Ts) \vdash \langle e, (h, l(p \# ps' [\mapsto] vs'')) \rangle \Rightarrow
                                   \langle ref(a,Cs),(h',l'')\rangle
    and casts:P \vdash Ts \ Casts \ vs \ to \ vs''
    and length: length \ vs'' = length \ vs
    \mathbf{by} - (drule \ blocksEval, auto)
  from eval notin leg have
    P, E(p \# ps'[\mapsto] Ts) \vdash \langle (C') e, (h, l(p \# ps'[\mapsto] vs'')) \rangle \Rightarrow
                           \langle THROW\ ClassCast,(h',l'')\rangle
```

```
by(auto intro:StaticCastFail)
              with e' casts length have ?case by simp blast }
       moreover
       { fix r assume P,E \vdash \langle blocks(p \# ps', Ts, vs, e), (h, l) \rangle \Rightarrow \langle throw r, (h', l') \rangle
             and e':e' = throw r
                 with length-eqs obtain l'' vs''
                    where eval:P,E(p\#ps'[\mapsto] Ts) \vdash \langle e,(h,l(p\#ps'[\mapsto]vs''))\rangle \Rightarrow
                                                                                                                 \langle throw \ r, (h', l'') \rangle
                    and casts:P \vdash Ts \ Casts \ vs \ to \ vs''
                    and length: length \ vs'' = length \ vs
                    by -(drule\ blocksEval, auto)
             from eval have
                    P, E(p\#ps'[\mapsto] \mathit{Ts}) \vdash \langle (|C'|)e, (h, l(p\#ps'[\mapsto] vs'')) \rangle \Rightarrow
                                                                                        \langle throw \ r, (h', l'') \rangle
                    by(auto intro:eval-evals.StaticCastThrow)
             with e' casts length have ?case by simp blast }
       ultimately show ?case
             by -(erule\ eval\text{-}cases, fastforce+)
qed
lemma
assumes wf: wwf-prog P
shows eval-restrict-lcl:
         P,E \vdash \langle e,(h,l) \rangle \Rightarrow \langle e',(h',l') \rangle \Longrightarrow (\bigwedge W. \text{ for } e \subseteq W \Longrightarrow P,E \vdash \langle e,(h,l) : W \rangle \Rightarrow P,E \vdash \langle e,(h,l) 
\langle e', (h', l'| W) \rangle
and P,E \vdash \langle es,(h,l) \rangle [\Rightarrow] \langle es',(h',l') \rangle \Longrightarrow (\bigwedge W. \text{ fvs } es \subseteq W \Longrightarrow P,E \vdash \langle es,(h,l) \cdot W \rangle)
[\Rightarrow] \langle es', (h', l'| `W) \rangle)
proof(induct rule:eval-evals-inducts)
       case (Block E V T e_0 h_0 l_0 e_1 h_1 l_1)
      have IH: \bigwedge W. fv \ e_0 \subseteq W \Longrightarrow
                                                    P,E(V \mapsto T) \vdash \langle e_0,(h_0,l_0(V:=None)| `W) \rangle \Rightarrow \langle e_1,(h_1,l_1| `W) \rangle by fact
      have fv(\{V:T; e_0\}) \subseteq W by fact
      hence fv \ e_0 - \{V\} \subseteq W \ \text{by } simp\text{-}all
      hence fv \ e_0 \subseteq insert \ V \ W \ by fast
       with IH[OF this]
     have P,E(V \mapsto T) \vdash \langle e_0,(h_0,(l_0|'W)(V:=None))\rangle \Rightarrow \langle e_1,(h_1,l_1|'insert\ V\ W)\rangle
             by fastforce
       from eval-evals.Block[OF this] show ?case by fastforce
       case Seq thus ?case by simp (blast intro:eval-evals.Seq)
next
       case New thus ?case by(simp add:eval-evals.intros)
       case NewFail thus ?case by(simp add:eval-evals.intros)
next
```

```
case StaticUpCast thus ?case by simp (blast intro:eval-evals.StaticUpCast)
next
  case (StaticDownCast E e h l a Cs C Cs' h' l')
  have IH: \bigwedge W. for e \subseteq W \Longrightarrow
               P,E \vdash \langle e,(h,l \mid 'W) \rangle \Rightarrow \langle ref(a,Cs@[C]@Cs'),(h',l' \mid 'W) \rangle by fact
  have fv((C)e) \subseteq W by fact
  hence fv \ e \subseteq W by simp
  from IH[OF this] show ?case by(rule eval-evals.StaticDownCast)
next
  case StaticCastNull thus ?case by simp (blast intro:eval-evals.StaticCastNull)
\mathbf{next}
  case StaticCastFail thus ?case by simp (blast intro:eval-evals.StaticCastFail)
next
  case Static Cast Throw thus ?case by(simp add:eval-evals.intros)
next
  case DynCast thus ?case by simp (blast intro:eval-evals.DynCast)
next
 case Static UpDynCast thus ?case by simp (blast intro:eval-evals.Static UpDynCast)
next
  case (StaticDownDynCast E e h l a Cs C Cs' h' l')
  have IH: \bigwedge W. for e \subseteq W \Longrightarrow
               P,E \vdash \langle e,(h,l \mid 'W) \rangle \Rightarrow \langle ref(a,Cs@[C]@Cs'),(h',l' \mid 'W) \rangle by fact
  have fv (Cast \ C \ e) \subseteq W by fact
  hence fv \ e \subseteq W by simp
  from IH[OF this] show ?case by(rule eval-evals.StaticDownDynCast)
next
  case DynCastNull thus ?case by simp (blast intro:eval-evals.DynCastNull)
next
  case DynCastFail thus ?case by simp (blast intro:eval-evals.DynCastFail)
next
  case DynCastThrow thus ?case by(simp add:eval-evals.intros)
next
  case Val thus ?case by(simp add:eval-evals.intros)
next
  case BinOp thus ?case by simp (blast intro:eval-evals.BinOp)
next
  case BinOpThrow1 thus ?case by simp (blast intro:eval-evals.BinOpThrow1)
next
  case BinOpThrow2 thus ?case by simp (blast intro:eval-evals.BinOpThrow2)
next
  case Var thus ?case by(simp add:eval-evals.intros)
next
  case (LAss E \ e \ h_0 \ l_0 \ v \ h \ l \ V \ T \ v' \ l')
  have IH: \bigwedge W. fv \in W \Longrightarrow P, E \vdash \langle e, (h_0, l_0| `W) \rangle \Rightarrow \langle Val \ v, (h, l| `W) \rangle
   and env:E\ V = \lfloor T \rfloor and casts:P \vdash T\ casts\ v\ to\ v'
   and [simp]: l' = l(V \mapsto v') by fact +
  have fv (V:=e) \subseteq W by fact
  hence \mathit{fv}: \mathit{fv}\ e \subseteq \mathit{W}\ \text{and}\ \mathit{VinW}: \mathit{V} \in \mathit{W}\ \text{by}\ \mathit{auto}
  from eval-evals.LAss[OF\ IH[OF\ fv]\ -\ casts]\ env\ VinW
```

```
show ?case by fastforce
next
  case LAssThrow thus ?case by(fastforce intro: eval-evals.LAssThrow)
  case FAcc thus ?case by simp (blast intro: eval-evals.FAcc)
next
  case FAccNull thus ?case by(fastforce intro: eval-evals.FAccNull)
next
  case FAccThrow thus ?case by(fastforce intro: eval-evals.FAccThrow)
next
  case (FAss E e_1 h l a Cs' h' l' e_2 v h_2 l_2 D S F T Cs v' Ds fs fs' S' h_2' W)
 have IH1: \bigwedge W. fv e_1 \subseteq W \Longrightarrow P, E \vdash \langle e_1, (h, l| W) \rangle \Longrightarrow \langle ref(a, Cs'), (h', l'| W) \rangle
    and IH2: \bigwedge W. for e_2 \subseteq W \Longrightarrow P, E \vdash \langle e_2, (h', l'| W) \rangle \Rightarrow \langle Val \ v, (h_2, l_2| W) \rangle
    and fv:fv (e_1 \cdot F\{Cs\} := e_2) \subseteq W
   and h:h_2 a = Some(D,S) and Ds:Ds = Cs' @_p Cs
    and S:(Ds,fs) \in S and fs':fs' = fs(F \mapsto v')
   and S':S' = S - \{(Ds, fs)\} \cup \{(Ds, fs')\}
    and h':h_2' = h_2(a \mapsto (D, S'))
   and field:P \vdash last Cs' has least F:T via Cs
    and casts:P \vdash T casts v to v' by fact+
  from fv have fv1:fv e_1 \subseteq W and fv2:fv e_2 \subseteq W by auto
  from eval-evals. FAss[OF IH1[OF fv1] IH2[OF fv2] - field casts] h Ds S fs' S' h'
  show ?case by simp
next
  case FAssNull thus ?case by simp (blast intro: eval-evals.FAssNull)
next
  case FAssThrow1 thus ?case by simp (blast intro: eval-evals.FAssThrow1)
next
  case FAssThrow2 thus ?case by simp (blast intro: eval-evals.FAssThrow2)
next
  case CallObjThrow thus ?case by simp (blast intro: eval-evals.intros)
next
  case CallNull thus ?case by simp (blast intro: eval-evals.CallNull)
next
  case CallParamsThrow thus ?case
    by simp (blast intro: eval-evals.CallParamsThrow)
next
  case (Call E \ e \ h_0 \ l_0 \ a \ Cs \ h_1 \ l_1 \ ps \ vs \ h_2 \ l_2 \ C \ S \ M \ Ts' \ T' \ pns'
             body' Ds Ts T pns body Cs' vs' l<sub>2</sub>' new-body e' h<sub>3</sub> l<sub>3</sub> W)
  have IHe: \bigwedge W. for e \subseteq W \Longrightarrow P, E \vdash \langle e, (h_0, l_0| `W) \rangle \Rightarrow \langle ref(a, Cs), (h_1, l_1| `W) \rangle
  and IHps: \bigwedge W. fvs ps \subseteq W \Longrightarrow P, E \vdash \langle ps, (h_1, l_1| `W) \rangle \ [\Rightarrow] \langle map \ Val \ vs, (h_2, l_2| `W) \rangle
    and IHbd: \bigwedge W. fv new-body \subseteq W \Longrightarrow P, E(this \mapsto Class (last Cs'), pns [\mapsto]
Ts) \vdash
                                     \langle new\text{-}body, (h_2, l_2'| `W) \rangle \Rightarrow \langle e', (h_3, l_3| `W) \rangle
    and h_2a: h_2a = Some(C,S)
    and method: P \vdash last \ Cs \ has \ least \ M = (Ts', T', pns', body') \ via \ Ds
    and select: P \vdash (C, Cs@_pDs) selects M = (Ts, T, pns, body) via Cs'
    and same-len: size \ vs = size \ pns
    and casts:P \vdash Ts \ Casts \ vs \ to \ vs'
```

```
and l_2': l_2' = [this \mapsto Ref(a, Cs'), pns [\mapsto] vs']
    and body-case: new-body = (case T' of Class D \Rightarrow (D)body \mid - \Rightarrow body) by
fact+
  have fv(e \cdot M(ps)) \subseteq W by fact
  hence fve: fv e \subseteq W and fvps: fvs(ps) \subseteq W by auto
  have wfmethod: size Ts = size \ pns \land this \notin set \ pns and
       fvbd: fv\ body \subseteq \{this\} \cup set\ pns
    using select wf by (fastforce dest!:select-method-wf-mdecl simp:wf-mdecl-def)+
  from fvbd body-case have fvbd':fv new-body \subseteq \{this\} \cup set pns
    \mathbf{by}(cases\ T')\ auto
  from l_2' have l_2' | '(\{this\} \cup set\ pns) = [this \mapsto Ref\ (a,\ Cs'),\ pns\ [\mapsto]\ vs']
    by (auto intro!:ext simp:restrict-map-def fun-upd-def)
  with eval-evals. Call [OF IHe [OF fve] IHps [OF fvps] - method select same-len
                          casts - body-case IHbd[OF\ fvbd']]\ h_2a
  show ?case by simp
  case (StaticCall E e h_0 l_0 a Cs h_1 l_1 ps vs h_2 l_2 C Cs" M Ts T pns body
                   Cs' Ds vs' l_2' e' h_3 l_3 W
  have IHe: \bigwedge W. for e \subseteq W \Longrightarrow P, E \vdash \langle e, (h_0, l_0| `W) \rangle \Rightarrow \langle ref(a, Cs), (h_1, l_1| `W) \rangle
  and IHps: \bigwedge W. fvs \ ps \subseteq W \Longrightarrow P, E \vdash \langle ps, (h_1, l_1 \mid `W) \rangle \ [\Rightarrow] \langle map \ Val \ vs, (h_2, l_2 \mid `W) \rangle
   and IHbd: \bigwedge W. for body \subseteq W \Longrightarrow P, E(this \mapsto Class\ (last\ Ds),\ pns\ [\mapsto]\ Ts) \vdash
                                    \langle body, (h_2, l_2'| `W) \rangle \Rightarrow \langle e', (h_3, l_3| `W) \rangle
   and path-unique: P \vdash Path \ last \ Cs \ to \ C \ unique
    and path-via: P \vdash Path\ last\ Cs\ to\ C\ via\ Cs''
    and least: P \vdash C has least M = (Ts, T, pns, body) via Cs'
    and Ds: Ds = (Cs @_p Cs') @_p Cs'
    and same-len: size vs = size pns
    and casts:P \vdash Ts \ Casts \ vs \ to \ vs'
    and l_2': l_2' = [this \mapsto Ref(a,Ds), pns [\mapsto] vs'] by fact+
  have fv (e \cdot (C::)M(ps)) \subseteq W by fact
  hence fve: fv e \subseteq W and fvps: fvs(ps) \subseteq W by auto
  have wfmethod: size Ts = size \ pns \land this \notin set \ pns and
       fvbd: fv\ body \subseteq \{this\} \cup set\ pns
    using least wf by(fastforce dest!:has-least-wf-mdecl simp:wf-mdecl-def)+
  from fvbd have fvbd':fv body \subseteq \{this\} \cup set pns
  from l_2' have l_2' | '(\{this\} \cup set\ pns) = [this \mapsto Ref(a,Ds),\ pns\ [\mapsto]\ vs']
    by (auto intro!:ext simp:restrict-map-def fun-upd-def)
  with eval-evals. Static Call [OF IHe [OF fve] IHps [OF fvps] path-unique path-via
                                least Ds same-len casts - IHbd[OF fvbd']
  show ?case by simp
next
  case SeqThrow thus ?case by simp (blast intro: eval-evals.SeqThrow)
next
  case CondT thus ?case by simp (blast intro: eval-evals. CondT)
  case CondF thus ?case by simp (blast intro: eval-evals.CondF)
next
  case CondThrow thus ?case by simp (blast intro: eval-evals.CondThrow)
```

```
next
 case While F thus ?case by simp (blast intro: eval-evals. While F)
next
 case While T thus ?case by simp (blast intro: eval-evals. While T)
next
 case WhileCondThrow thus ?case by simp (blast intro: eval-evals. WhileCondThrow)
next
 case WhileBodyThrow thus ?case by simp (blast intro: eval-evals. WhileBodyThrow)
next
  case Throw thus ?case by simp (blast intro: eval-evals. Throw)
\mathbf{next}
 case ThrowNull thus ?case by simp (blast intro: eval-evals. ThrowNull)
next
 case ThrowThrow thus ?case by simp (blast intro: eval-evals.ThrowThrow)
next
 case Nil thus ?case by (simp add: eval-evals.Nil)
next
 case Cons thus ?case by simp (blast intro: eval-evals.Cons)
 case ConsThrow thus ?case by simp (blast intro: eval-evals.ConsThrow)
qed
lemma eval-notfree-unchanged:
assumes wf:wwf-proq P
shows P,E \vdash \langle e,(h,l) \rangle \Rightarrow \langle e',(h',l') \rangle \Longrightarrow (\bigwedge V. \ V \notin fv \ e \Longrightarrow l' \ V = l \ V)
and P,E \vdash \langle es,(h,l) \rangle \Rightarrow \langle es',(h',l') \rangle \Rightarrow \langle V, V \notin fvs \ es \Rightarrow l' \ V = l \ V \rangle
proof(induct rule:eval-evals-inducts)
 case LAss thus ?case by(simp add:fun-upd-apply)
 case Block thus ?case
   by (simp only:fun-upd-apply split:if-splits) fastforce
qed simp-all
lemma eval-closed-lcl-unchanged:
 assumes wf:wwf-prog P
 and eval:P,E \vdash \langle e,(h,l)\rangle \Rightarrow \langle e',(h',l')\rangle
 and fv:fv e = \{\}
 shows l' = l
proof -
 from wf eval have \bigwedge V. V \notin fv \in A V = l V by (rule eval-not free-unchanged)
 with fv have \bigwedge V. l' V = l V by simp
 thus ?thesis by(simp add:fun-eq-iff)
qed
```

```
declare split-paired-All [simp del] split-paired-Ex [simp del]
declaration \langle K \ (Simplifier.map-ss \ (fn \ ss => ss \ delloop \ split-all-tac)) \rangle
\mathbf{setup} \ \langle map\text{-}theory\text{-}claset\ (fn\ ctxt => ctxt\ delSWrapper\ split-all-tac) \rangle
lemma list-eval-Throw:
assumes eval-e: P,E \vdash \langle throw \ x,s \rangle \Rightarrow \langle e',s' \rangle
shows P,E \vdash \langle map \ Val \ vs @ \ throw \ x \# \ es',s \rangle \ [\Rightarrow] \ \langle map \ Val \ vs @ \ e' \# \ es',s' \rangle
proof -
  from eval-e
  obtain a where e': e' = Throw a
    by (cases) (auto dest!: eval-final)
    \mathbf{fix} \ es
    have \bigwedge vs. \ es = map \ Val \ vs @ throw x \# es'
            \implies P,E \vdash \langle es,s \rangle [\Rightarrow] \langle map \ Val \ vs @ e' \# \ es',s' \rangle
    proof (induct es type: list)
      case Nil thus ?case by simp
    next
      case (Cons e es vs)
      have e-es: e \# es = map \ Val \ vs @ throw \ x \# es' by fact
      show P,E \vdash \langle e \# es,s \rangle \ [\Rightarrow] \langle map \ Val \ vs @ e' \# es',s' \rangle
      proof (cases vs)
        case Nil
        with e-es obtain e=throw \ x \ es=es' by simp
        moreover from eval-e e'
        have P,E \vdash \langle throw \ x \ \# \ es,s \rangle \ [\Rightarrow] \ \langle Throw \ a \ \# \ es,s' \rangle
           by (iprover intro: ConsThrow)
        ultimately show ?thesis using Nil e' by simp
      next
         case (Cons v vs')
        have vs: vs = v \# vs' by fact
        with e-es obtain
           e: e=Val\ v\ \mathbf{and}\ es: es=\ map\ Val\ vs'\ @\ throw\ x\ \#\ es'
           by simp
        from e
        have P,E \vdash \langle e,s \rangle \Rightarrow \langle Val \ v,s \rangle
          by (iprover intro: eval-evals. Val)
        moreover from es
        have P,E \vdash \langle es,s \rangle \ [\Rightarrow] \ \langle map \ Val \ vs' @ \ e' \# \ es',s' \rangle
           by (rule Cons.hyps)
        ultimately show
```

```
P,E \vdash \langle e \# es,s \rangle \ [\Rightarrow] \ \langle map \ Val \ vs @ e' \# es',s' \rangle
           using vs by (auto intro: eval-evals.Cons)
      qed
    qed
  thus ?thesis
    by simp
qed
     The key lemma:
lemma
assumes wf: wwf\text{-}prog P
shows extend-1-eval:
  P,E \vdash \langle e,s \rangle \rightarrow \langle e'',s'' \rangle \Longrightarrow (\bigwedge s' e'. P,E \vdash \langle e'',s'' \rangle \Rightarrow \langle e',s' \rangle \Longrightarrow P,E \vdash \langle e,s \rangle \Rightarrow
\langle e', s' \rangle
and extend-1-evals:
  P,E \vdash \langle es,t \rangle [\rightarrow] \langle es'',t'' \rangle \Longrightarrow (\bigwedge t' es'. P,E \vdash \langle es'',t'' \rangle [\Rightarrow] \langle es',t' \rangle \Longrightarrow P,E \vdash
\langle es, t \rangle \Rightarrow \langle es', t' \rangle
proof (induct rule: red-reds.inducts)
 case RedNew thus ?case by (iprover elim: eval-cases intro: eval-evals.intros)
next
 case RedNewFail thus ?case by (fastforce elim: eval-cases intro: eval-evals.intros)
next
  case (Static CastRed E e s e'' s'' C s' e') thus ?case
    by -(erule\ eval\text{-}cases, auto\ intro:eval\text{-}evals.intros,
          subgoal-tac\ P,E \vdash \langle e'',s'' \rangle \Rightarrow \langle ref(a,Cs@[C]@Cs'),s' \rangle,
          rule-tac Cs' = Cs' in StaticDownCast, auto)
next
  case RedStaticCastNull thus ?case
    by (fastforce elim: eval-cases intro: eval-evals.intros)
  case RedStaticUpCast thus ?case
    by (fastforce elim: eval-cases intro: eval-evals.intros)
\mathbf{next}
  case RedStaticDownCast thus ?case
    by (fastforce elim: eval-cases intro: eval-evals.intros)
next
  case RedStaticCastFail thus ?case
    by (fastforce elim: eval-cases intro: eval-evals.intros)
next
  case RedStaticUpDynCast thus ?case
    by (fastforce elim: eval-cases intro: eval-evals.intros)
  case RedStaticDownDynCast thus ?case
    by (fastforce elim: eval-cases intro: eval-evals.intros)
  case (DynCastRed\ E\ e\ s\ e^{\prime\prime}\ s^{\prime\prime}\ C\ s^{\prime}\ e^{\prime})
  have eval:P,E \vdash \langle Cast \ C \ e'',s'' \rangle \Rightarrow \langle e',s' \rangle
```

```
and IH: \land ex \ sx. \ P, E \vdash \langle e'', s'' \rangle \Rightarrow \langle ex, sx \rangle \Longrightarrow P, E \vdash \langle e, s \rangle \Rightarrow \langle ex, sx \rangle by fact+
  moreover
  { fix Cs Cs' a
    assume P,E \vdash \langle e'',s'' \rangle \Rightarrow \langle ref (a, Cs @ C \# Cs'),s' \rangle
    from IH[OF this] have P,E \vdash \langle e,s \rangle \Rightarrow \langle ref (a, Cs@[C]@Cs'),s' \rangle by simp
   hence P,E \vdash \langle Cast \ C \ e,s \rangle \Rightarrow \langle ref \ (a, \ Cs@[C]),s' \rangle by (rule \ StaticDownDynCast)
  ultimately show ?case by -(erule eval-cases, auto intro: eval-evals.intros)
next
 case RedDynCastNull thus ?case by (iprover elim:eval-cases intro:eval-evals.intros)
next
  case (RedDynCast\ s\ a\ D\ S\ C\ Cs'\ E\ Cs\ s'\ e')
  thus ?case by (cases s)(auto elim!:eval-cases intro:eval-evals.intros)
  case (RedDynCastFail s a D S C Cs E s'' e'')
  thus ?case by (cases s)(auto elim!: eval-cases intro: eval-evals.intros)
  case BinOpRed1 thus ?case by -(erule eval-cases, auto intro: eval-evals.intros)
next
  case BinOpRed2
  thus ?case by (fastforce elim!:eval-cases intro:eval-evals.intros eval-finalId)
  case RedBinOp thus ?case by (iprover elim:eval-cases intro:eval-evals.intros)
next
  case (RedVar\ s\ V\ v\ E\ s'\ e')
  thus ?case by (cases s)(fastforce elim:eval-cases intro:eval-evals.intros)
  case LAssRed thus ?case by -(erule eval-cases, auto intro: eval-evals.intros)
next
  {\bf case}\ \mathit{RedLAss}
  thus ?case by (fastforce elim:eval-cases intro:eval-evals.intros)
  case FAccRed thus ?case by -(erule eval-cases, auto intro: eval-evals.intros)
next
  case (RedFAcc s a D S Ds Cs' Cs fs F v E s' e')
  thus ?case by (cases s)(fastforce elim:eval-cases intro:eval-evals.intros)
next
 case RedFAccNull thus ?case by (fastforce elim!:eval-cases intro:eval-evals.intros)
next
  case (FAssRed1 \ E \ e_1 \ s \ e_1' \ s'' \ F \ Cs \ e_2 \ s' \ e')
  have eval:P,E \vdash \langle e_1' \cdot F\{Cs\} := e_2,s'' \rangle \Rightarrow \langle e',s' \rangle
   and IH: \land ex \ sx. \ P, E \vdash \langle e_1', s'' \rangle \Rightarrow \langle ex, sx \rangle \Longrightarrow P, E \vdash \langle e_1, s \rangle \Rightarrow \langle ex, sx \rangle \ \text{by} \ fact +
  { fix Cs' D S T a fs h_2 l_2 s_1 v v'
    assume ref:P,E \vdash \langle e_1',s'' \rangle \Rightarrow \langle ref(a,Cs'),s_1 \rangle
      and rest: P, E \vdash \langle e_2, s_1 \rangle \Rightarrow \langle Val \ v, (h_2, l_2) \rangle \ h_2 \ a = \lfloor (D, S) \rfloor
      P \vdash last \ Cs' \ has \ least \ F: T \ via \ Cs \ P \vdash T \ casts \ v \ to \ v'
      (Cs' @_n Cs, fs) \in S
    from IH[OF ref] have P,E \vdash \langle e_1,s \rangle \Rightarrow \langle ref (a, Cs'),s_1 \rangle.
    with rest have P,E \vdash \langle e_1 \cdot F\{Cs\} := e_2,s \rangle \Rightarrow
```

```
\langle Val\ v', (h_2(a \mapsto (D, insert\ (Cs'@_p\ Cs, fs(F \mapsto v'))(S - \{(Cs'@_p\ Cs, fs)\})), l_2) \rangle
        by-(rule FAss,simp-all) }
  moreover
   { \mathbf{fix} \ s_1 \ v
     assume null: P, E \vdash \langle e_1', s'' \rangle \Rightarrow \langle null, s_1 \rangle
        and rest:P,E \vdash \langle e_2,s_1 \rangle \Rightarrow \langle Val\ v,s' \rangle
     from IH[OF \ null] have P,E \vdash \langle e_1,s \rangle \Rightarrow \langle null,s_1 \rangle.
     with rest have P,E \vdash \langle e_1 \cdot F\{Cs\} := e_2,s \rangle \Rightarrow \langle THROW\ NullPointer,s' \rangle
        by-(rule FAssNull,simp-all) }
   moreover
   { fix e' assume throw:P,E \vdash \langle e_1',s'' \rangle \Rightarrow \langle throw \ e',s' \rangle
     from IH[OF\ throw] have P,E \vdash \langle e_1,s \rangle \Rightarrow \langle throw\ e',s' \rangle.
     hence P,E \vdash \langle e_1 \cdot F\{Cs\} := e_2,s \rangle \Rightarrow \langle throw \ e',s' \rangle
        by-(rule eval-evals.FAssThrow1,simp-all) }
   moreover
   { fix e' s_1 v
     assume val:P,E \vdash \langle e_1',s'' \rangle \Rightarrow \langle Val \ v,s_1 \rangle
        and rest:P,E \vdash \langle e_2,s_1 \rangle \Rightarrow \langle throw \ e',s' \rangle
     from IH[OF\ val] have P,E \vdash \langle e_1,s \rangle \Rightarrow \langle Val\ v,s_1 \rangle.
     with rest have P,E \vdash \langle e_1 \cdot F\{Cs\} := e_2,s \rangle \Rightarrow \langle throw \ e',s' \rangle
        by-(rule\ eval-evals.FAssThrow2,simp-all) }
   ultimately show ?case using eval
     by -(erule\ eval\text{-}cases, auto)
next
   case (FAssRed2 \ E \ e_2 \ s \ e_2' \ s'' \ v \ F \ Cs \ s' \ e')
   have eval:P,E \vdash \langle Val \ v \cdot F\{Cs\} := e_2',s'' \rangle \Rightarrow \langle e',s' \rangle
    and IH: \bigwedge ex \ sx. \ P, E \vdash \langle e_2', s'' \rangle \Rightarrow \langle ex, sx \rangle \Longrightarrow P, E \vdash \langle e_2, s \rangle \Rightarrow \langle ex, sx \rangle \ \mathbf{by} \ fact +
   { fix Cs' D S T a fs h_2 l_2 s_1 v' v''
     assume val1:P,E \vdash \langle Val \ v,s'' \rangle \Rightarrow \langle ref \ (a,Cs'),s_1 \rangle
        and val2:P,E \vdash \langle e_2',s_1 \rangle \Rightarrow \langle Val \ v',(h_2,\ l_2) \rangle
        and rest:h_2 a = |(D, S)| P \vdash last Cs' has least F: T via Cs
                    P \vdash T \ casts \ v' \ to \ v'' \ (Cs'@_p Cs,fs) \in S
     from val1 have s'':s_1 = s'' by -(erule\ eval\text{-}cases)
     with val1 have P,E \vdash \langle Val \ v,s \rangle \Rightarrow \langle ref \ (a,Cs'),s \rangle
       by(fastforce elim:eval-cases intro:eval-finalId)
     also from IH[OF\ val2[simplified\ s'']] have P,E \vdash \langle e_2,s \rangle \Rightarrow \langle Val\ v',(h_2,\ l_2) \rangle.
     ultimately have P,E \vdash \langle Val \ v \cdot F \{ Cs \} := e_2,s \rangle \Rightarrow
            \langle Val\ v^{\prime\prime}, (h_2(a\mapsto (D,insert(Cs^\prime@_pCs,fs(F\mapsto v^\prime))(S-\{(Cs^\prime@_pCs,fs)\})),l_2)\rangle
        using rest by -(rule\ FAss, simp-all) }
   moreover
   { fix s_1 v'
     assume val1:P,E \vdash \langle Val \ v,s'' \rangle \Rightarrow \langle null,s_1 \rangle
       and val2:P,E \vdash \langle e_2',s_1 \rangle \Rightarrow \langle Val\ v',s' \rangle
     from val1 have s'':s_1 = s'' by -(erule\ eval\text{-}cases)
     with val1 have P,E \vdash \langle Val \ v,s \rangle \Rightarrow \langle null,s \rangle
        \mathbf{by}(fastforce\ elim:eval-cases\ intro:eval-finalId)
     also from IH[OF \ val2[simplified \ s'']] have P,E \vdash \langle e_2,s \rangle \Rightarrow \langle Val \ v',s' \rangle.
     ultimately have P,E \vdash \langle Val \ v \cdot F \{ Cs \} := e_2, s \rangle \Rightarrow \langle THROW \ NullPointer, s' \rangle
        by -(rule\ FAssNull, simp-all) }
```

```
moreover
  { fix r assume val:P,E \vdash \langle Val \ v,s'' \rangle \Rightarrow \langle throw \ r,s' \rangle}
    hence s'':s'' = s' by -(erule\ eval\text{-}cases, simp)
    with val have P,E \vdash \langle Val \ v \cdot F\{Cs\} := e_2,s \rangle \Rightarrow \langle throw \ r,s' \rangle
       by -(rule\ eval-evals.FAssThrow1,erule\ eval-cases,simp)
  moreover
  { fix r s_1 v'
    assume val1:P,E \vdash \langle Val \ v,s'' \rangle \Rightarrow \langle Val \ v',s_1 \rangle
       and val2:P,E \vdash \langle e_2',s_1 \rangle \Rightarrow \langle throw r,s' \rangle
    from val1 have s'':s_1 = s'' by -(erule\ eval\text{-}cases)
    with val1 have P,E \vdash \langle Val \ v,s \rangle \Rightarrow \langle Val \ v',s \rangle
       \mathbf{by}(fastforce\ elim:eval-cases\ intro:eval-finalId)
    also from IH[OF\ val2[simplified\ s'']] have P,E \vdash \langle e_2,s \rangle \Rightarrow \langle throw\ r,s' \rangle.
    ultimately have P,E \vdash \langle Val \ v \cdot F\{Cs\} := e_2,s \rangle \Rightarrow \langle throw \ r,s' \rangle
       by -(rule\ eval-evals.FAssThrow2,simp-all) }
  ultimately show ?case using eval
    by -(erule\ eval\text{-}cases, auto)
\mathbf{next}
  case (RedFAss h a D S Cs' F T Cs v v' Ds fs E l s' e')
  have val:P,E \vdash \langle Val\ v',(h(a \mapsto (D,insert\ (Ds,fs(F \mapsto v'))(S - \{(Ds,fs)\}))),l)\rangle
                     \langle e',s'\rangle
    and rest:h \ a = |(D, S)| \ P \vdash last \ Cs' \ has \ least \ F:T \ via \ Cs
               P \vdash T \ casts \ v \ to \ v' \ Ds = Cs' @_p \ Cs \ (Ds, fs) \in S \ \mathbf{by} \ fact +
  from val have s' = (h(a \mapsto (D, insert (Ds, fs(F \mapsto v')) (S - \{(Ds, fs)\}))), l)
    and e' = Val \ v' by -(erule \ eval\text{-}cases, simp\text{-}all) +
  with rest show ?case apply simp
    \mathbf{by}(rule\ FAss, simp-all)(rule\ eval-finalId, simp) +
next
  case RedFAssNull
  thus ?case by (fastforce elim!: eval-cases intro: eval-evals.intros)
  case (CallObj E e s e' s' Copt M es s'' e'')
  thus ?case
    apply -
    apply(cases Copt, simp)
    \mathbf{by}(\textit{erule eval-cases}, \textit{auto intro:eval-evals.intros}) +
  case (CallParams E es s es' s'' v Copt M s' e')
  have call: P,E \vdash \langle Call \ (Val \ v) \ Copt \ M \ es',s'' \rangle \Rightarrow \langle e',s' \rangle
    and IH: \land esx \ sx. \ P, E \vdash \langle es', s'' \rangle \ [\Rightarrow] \ \langle esx, sx \rangle \Longrightarrow P, E \vdash \langle es, s \rangle \ [\Rightarrow] \ \langle esx, sx \rangle \ \mathbf{by}
fact+
  show ?case
    proof(cases Copt)
    case None with call have eval:P,E \vdash \langle Val \ v \cdot M(es'), s'' \rangle \Rightarrow \langle e',s' \rangle by simp
    from eval show ?thesis
    proof(rule eval-cases)
       fix r assume P,E \vdash \langle Val \ v,s'' \rangle \Rightarrow \langle throw \ r,s' \rangle \ e' = throw \ r
       with None show P,E \vdash \langle Call \ (Val \ v) \ Copt \ M \ es,s \rangle \Rightarrow \langle e',s' \rangle
```

```
\mathbf{by}(fastforce\ elim:eval-cases)
next
   fix es'' r sx v' vs
   assume val:P,E \vdash \langle Val \ v,s'' \rangle \Rightarrow \langle Val \ v',sx \rangle
     and evals: P,E \vdash \langle es',sx \rangle [\Rightarrow] \langle map \ Val \ vs @ \ throw \ r \# \ es'',s' \rangle
     and e':e' = throw r
   have val':P,E \vdash \langle Val \ v,s \rangle \Rightarrow \langle Val \ v,s \rangle \ \mathbf{by}(rule \ Val)
   from val have eq: v' = v \wedge s'' = sx by -(erule\ eval\text{-}cases, simp)
   with IH evals have P,E \vdash \langle es,s \rangle \Rightarrow \langle map \ Val \ vs @ throw \ r \# es'',s' \rangle
   with eq CallParamsThrow[OF val'] e' None
   show P,E \vdash \langle Call \ (Val \ v) \ Copt \ M \ es,s \rangle \Rightarrow \langle e',s' \rangle
     by fastforce
\mathbf{next}
   fix C Cs Cs' Ds S T T' Ts Ts' a body body' h<sub>2</sub> h<sub>3</sub> l<sub>2</sub> l<sub>3</sub> pns pns' s<sub>1</sub> vs vs'
   assume val:P,E \vdash \langle Val \ v,s'' \rangle \Rightarrow \langle ref(a,Cs),s_1 \rangle
     and evals:P,E \vdash \langle es', s_1 \rangle \ [\Rightarrow] \ \langle map \ Val \ vs, (h_2, l_2) \rangle
     and hp:h_2 a = Some(C, S)
     and method:P \vdash last\ Cs\ has\ least\ M = (Ts', T', pns', body')\ via\ Ds
     and select: P \vdash (C, Cs@_pDs) selects M = (Ts, T, pns, body) via Cs'
     and length: length \ vs = length \ pns
     and casts:P \vdash Ts \ Casts \ vs \ to \ vs'
     and body:P,E(this \mapsto Class\ (last\ Cs'),\ pns\ [\mapsto]\ Ts) \vdash
\langle case\ T'\ of\ Class\ D \Rightarrow (|D|)\ body\ |\ - \Rightarrow body, (h_2, [this \mapsto Ref(a, Cs'), pns\ [\mapsto]\ vs']) \rangle
     \Rightarrow \langle e', (h_3, l_3) \rangle
     and s':s' = (h_3, l_2)
   from val have val':P,E \vdash \langle Val \ v,s \rangle \Rightarrow \langle ref(a,Cs),s \rangle
     and eq:s'' = s_1 \wedge v = Ref(a, Cs)
     by(auto elim:eval-cases intro:Val)
   from body obtain new-body
     where body-case:new-body = (case T' of Class D \Rightarrow (|D|)body | - \Rightarrow body)
     and body': P, E(this \mapsto Class (last Cs'), pns [\mapsto] Ts) \vdash
      \langle new\text{-}body, (h_2, [this \mapsto Ref(a, Cs'), pns [\mapsto] vs']) \rangle \Rightarrow \langle e', (h_3, l_3) \rangle
     by simp
   from eq IH evals have P,E \vdash \langle es,s \rangle \Rightarrow | \langle map \ Val \ vs,(h_2,l_2) \rangle  by simp
   with eq Call[OF val' - - method select length casts - body-case]
         hp body' s' None
   show P,E \vdash \langle Call \ (Val \ v) \ Copt \ M \ es,s \rangle \Rightarrow \langle e',s' \rangle by fastforce
next
   fix s_1 \ vs
  assume val:P,E \vdash \langle Val \ v,s'' \rangle \Rightarrow \langle null,s_1 \rangle
     and evals:P,E \vdash \langle es',s_1 \rangle \ [\Rightarrow] \langle map \ Val \ vs,s' \rangle
     and e':e' = THROW NullPointer
   from val have val':P,E \vdash \langle Val \ v,s \rangle \Rightarrow \langle null,s \rangle
     and eq:s'' = s_1 \wedge v = Null
     \mathbf{by}(auto\ elim:eval\text{-}cases\ intro:Val)
   from eq IH evals have P,E \vdash \langle es,s \rangle \ [\Rightarrow] \ \langle map \ Val \ vs,s' \rangle by simp
   with eq CallNull[OF val'] e' None
   show P,E \vdash \langle Call\ (Val\ v)\ Copt\ M\ es,s \rangle \Rightarrow \langle e',s' \rangle by fastforce
```

```
qed
next
  case (Some C) with call have eval:P,E \vdash \langle Val \ v \cdot (C::)M(es'),s'' \rangle \Rightarrow \langle e',s' \rangle
    by simp
  from eval show ?thesis
  proof(rule eval-cases)
    fix r assume P,E \vdash \langle Val \ v,s'' \rangle \Rightarrow \langle throw \ r,s' \rangle \ e' = throw \ r
    with Some show P,E \vdash \langle Call \ (Val \ v) \ Copt \ M \ es,s \rangle \Rightarrow \langle e',s' \rangle
       \mathbf{by}(fastforce\ elim:eval-cases)
 \mathbf{next}
    \mathbf{fix} \ es'' \ r \ sx \ v' \ vs
    assume val:P,E \vdash \langle Val \ v,s'' \rangle \Rightarrow \langle Val \ v',sx \rangle
       and evals:P,E \vdash \langle es',sx \rangle \ [\Rightarrow] \ \langle map \ Val \ vs @ \ throw \ r \ \# \ es'',s' \rangle
       and e':e' = throw r
    have val': P, E \vdash \langle Val \ v, s \rangle \Rightarrow \langle Val \ v, s \rangle by(rule \ Val)
    from val have eq: v' = v \wedge s'' = sx by -(erule\ eval\text{-}cases, simp)
    with IH evals have P,E \vdash \langle es,s \rangle [\Rightarrow] \langle map \ Val \ vs @ throw \ r \# es'',s' \rangle
       by simp
    with eq CallParamsThrow[OF val'] e' Some
    show P,E \vdash \langle Call\ (Val\ v)\ Copt\ M\ es,s \rangle \Rightarrow \langle e',s' \rangle
       by fastforce
 \mathbf{next}
    \mathbf{fix} \ \mathit{Cs} \ \mathit{Cs'} \ \mathit{Cs''} \ \mathit{T} \ \mathit{Ts} \ \mathit{a} \ \mathit{body} \ \mathit{h}_2 \ \mathit{h}_3 \ \mathit{l}_2 \ \mathit{l}_3 \ \mathit{pns} \ \mathit{s}_1 \ \mathit{vs} \ \mathit{vs'}
    assume val:P,E \vdash \langle Val \ v,s'' \rangle \Rightarrow \langle ref \ (a,Cs),s_1 \rangle
       and evals:P,E \vdash \langle es',s_1 \rangle \ [\Rightarrow] \ \langle map \ Val \ vs,(h_2,l_2) \rangle
       and path-unique:P \vdash Path \ last \ Cs \ to \ C \ unique
       and path-via:P \vdash Path\ last\ Cs\ to\ C\ via\ Cs''
       and least: P \vdash C has least M = (Ts, T, pns, body) via Cs'
       and length:length\ vs = length\ pns
       and casts:P \vdash Ts \ Casts \ vs \ to \ vs'
       and body:P,E(this \mapsto Class\ (last\ ((Cs @_p\ Cs')\ @_p\ Cs')),\ pns\ [\mapsto]\ Ts) \vdash
           \langle body, (h_2, [this \mapsto Ref(a, (Cs@_pCs')@_pCs'), pns [\mapsto] vs']) \rangle \Rightarrow \langle e', (h_3, l_3) \rangle
       and s':s' = (h_3, l_2)
    from val have val':P,E \vdash \langle Val \ v,s \rangle \Rightarrow \langle ref(a,Cs),s \rangle
       and eq:s'' = s_1 \wedge v = Ref(a, Cs)
       by(auto elim:eval-cases intro:Val)
    from eq IH evals have P,E \vdash \langle es,s \rangle \models | \langle map \ Val \ vs,(h_2,l_2) \rangle by simp
    with eq StaticCall[OF val' - path-unique path-via least - - casts - body]
           length s' Some
    show P,E \vdash \langle Call \ (Val \ v) \ Copt \ M \ es,s \rangle \Rightarrow \langle e',s' \rangle by fastforce
  next
    fix s_1 vs
    assume val:P,E \vdash \langle Val \ v,s'' \rangle \Rightarrow \langle null,s_1 \rangle
       and evals: P, E \vdash \langle es', s_1 \rangle \ [\Rightarrow] \ \langle map \ Val \ vs, s' \rangle
       and e':e' = THROW NullPointer
    from val have val':P,E \vdash \langle Val \ v,s \rangle \Rightarrow \langle null,s \rangle
       and eq:s'' = s_1 \wedge v = Null
       by(auto elim:eval-cases intro:Val)
    from eq IH evals have P,E \vdash \langle es,s \rangle \ [\Rightarrow] \ \langle map \ Val \ vs,s' \rangle by simp
```

```
with eq CallNull[OF val'] e' Some
             show P,E \vdash \langle Call \ (Val \ v) \ Copt \ M \ es,s \rangle \Rightarrow \langle e',s' \rangle
                 by fastforce
         qed
    ged
next
     case (RedCall s a C S Cs M Ts' T' pns' body' Ds Ts T pns body Cs' vs
                                   bs new-body E s' e'
    obtain h l where s' = (h, l) by (cases s') auto
    have P,E \vdash \langle ref(a,Cs),s \rangle \Rightarrow \langle ref(a,Cs),s \rangle by (rule eval-evals.intros)
    moreover
    have finals: finals(map Val vs) by simp
     obtain h_2 l_2 where s: s = (h_2, l_2) by (cases\ s)
     with finals have P,E \vdash \langle map \ Val \ vs,s \rangle \ [\Rightarrow] \langle map \ Val \ vs,(h_2,l_2) \rangle
        by (iprover intro: eval-finalsId)
     moreover from s have h_2a:h_2 a = Some (C,S) using RedCall by simp
     moreover have method: P \vdash last \ Cs \ has \ least \ M = (Ts', T', pns', body') \ via \ Ds
by fact
    moreover have select: P \vdash (C, Cs@_pDs) selects M = (Ts, T, pns, body) via Cs' by
   moreover have blocks:bs = blocks(this \#pns, Class(last Cs') \#Ts, Ref(a, Cs') \#vs, body)
by fact
     moreover have body-case:new-body = (case\ T'\ of\ Class\ D \Rightarrow (|D|)bs\ |\ - \Rightarrow bs)
by fact
     moreover have same-len_1: length Ts = length pns
     and this-distinct: this \notin set pns and fv: fv body \subseteq {this} \cup set pns
        using select wf by (fastforce dest!:select-method-wf-mdecl simp:wf-mdecl-def)+
     have same-len: length vs = length pns by fact
    moreover
    obtain h_3 l_3 where s': s' = (h_3, l_3) by (cases s')
    have eval-blocks: P, E \vdash \langle new\text{-body}, s \rangle \Rightarrow \langle e', s' \rangle by fact
     hence id: l_3 = l_2 using fv s s' same-len l_3 same-len l_3 blocks body-case
        \mathbf{by}(cases\ T')(auto\ elim!:\ eval-closed-lcl-unchanged)
    from same-len<sub>1</sub> have same-len':length(this#pns) = length(Class (last Cs')#Ts)
        by simp
    from same-len_1 same-len
    have same-len_2:length(this\#pns) = length(Ref(a,Cs')\#vs) by simp
     from eval-blocks
     have eval-blocks': P,E \vdash \langle new\text{-body},(h_2,l_2)\rangle \Rightarrow \langle e',(h_3,l_3)\rangle using s \ s' by simp
     have casts-unique: \bigwedge vs'. P \vdash Class (last Cs')# Ts Casts Ref(a, Cs')#vs to vs'
                                                            \implies vs' = Ref(a, Cs') \# tl \ vs'
        using wf
        by -(erule\ Casts-to.cases, auto\ elim!:casts-to.cases\ dest!:mdc-eq-last
                                                                                  simp:path-via-def appendPath-def)
    have \exists l'' \ vs' \ new-body'. \ P, E(this \mapsto Class(last \ Cs'), \ pns[\mapsto] Ts) \vdash
                              \langle new\text{-}body', (h_2, l_2(this \# pns[\mapsto]Ref(a, Cs')\#vs'))\rangle \Rightarrow \langle e', (h_3, l'')\rangle \wedge
           P \vdash Class(last \ Cs') \# Ts \ Casts \ Ref(a, Cs') \# vs \ to \ Ref(a, Cs') \# vs' \land A
          length \ vs' = length \ vs \land fv \ new-body' \subseteq \{this\} \cup set \ pns \land body' \subseteq \{this\} \cup set \ pns \cap body'
```

```
new-body' = (case \ T' \ of \ Class \ D \Rightarrow (|D|)body \ | \ - \ \Rightarrow \ body)
\mathbf{proof}(cases \ \forall \ C. \ T' \neq Class \ C)
 {f case} True
  with same-len' same-len<sub>2</sub> eval-blocks' casts-unique body-case blocks
 obtain l''vs'
    where body: P, E(this \mapsto Class(last Cs'), pns[\mapsto] Ts) \vdash
                   \langle body, (h_2, l_2(this \# pns[\mapsto]Ref(a, Cs') \# vs')) \rangle \Rightarrow \langle e', (h_3, l'') \rangle
    and casts:P \vdash Class(last Cs') \# Ts Casts Ref(a, Cs') \# vs to Ref(a, Cs') \# vs'
    and lengthvs': length vs' = length vs
    by -(drule-tac\ vs=Ref(a,Cs')\#vs\ in\ blocksEval,assumption,cases\ T',
         auto simp:length-Suc-conv, blast)
 with fv True show ?thesis by(cases T') auto
next
 case False
 then obtain D where T':T' = Class\ D by auto
  with same-len' same-len<sub>2</sub> eval-blocks' casts-unique body-case blocks
 obtain l'' vs'
    where body:P,E(this \mapsto Class(last Cs'), pns[\mapsto] Ts) \vdash
                   \langle (|D|) body, (h_2, l_2(this \# pns[\mapsto] Ref(a, Cs') \# vs')) \rangle \Rightarrow
                   \langle e', (h_3, l'') \rangle
    and casts:P \vdash Class(last Cs') \# Ts Casts Ref(a, Cs') \# vs to Ref(a, Cs') \# vs'
    and lengthvs': length vs' = length vs
    by - (drule-tac \ vs=Ref(a,Cs')\#vs \ in \ CastblocksEval,
          assumption, simp, clarsimp simp:length-Suc-conv, auto)
 from fv have fv ((D)body) \subseteq \{this\} \cup set\ pns
    by simp
 with body casts lengthvs' T' show ?thesis by auto
ged
then obtain l'' vs' new-body'
 where body: P, E(this \mapsto Class(last Cs'), pns[\mapsto] Ts) \vdash
             \langle new\text{-}body', (h_2, l_2(this \# pns[\mapsto]Ref(a, Cs') \# vs')) \rangle \Rightarrow \langle e', (h_3, l'') \rangle
 and casts:P \vdash Class(last Cs') \# Ts Casts Ref(a, Cs') \# vs to Ref(a, Cs') \# vs'
 and lengthvs': length vs' = length vs
 and body-case':new-body' = (case T' of Class D \Rightarrow (D)body \mid -\Rightarrow body)
 and fv':fv \ new-body' \subseteq \{this\} \cup set \ pns
 by auto
from same-len<sub>2</sub> lengthvs'
have same-len3:length (this # pns) = length (Ref (a, Cs') # vs') by simp
from restrict-map-upds [OF same-len_3, of set(this #pns) l_2]
have l_2(this \# pns[\mapsto]Ref(a,Cs')\#vs')| '(set(this#pns)) =
        [this \# pns[\mapsto]Ref(a,Cs')\#vs'] by simp
with eval-restrict-lcl[OF \ wf \ body \ fv'] this-distinct same-len same-len
have P, E(this \mapsto Class(last \ Cs'), \ pns[\mapsto] Ts) \vdash
 \langle new\text{-}body', (h_2, [this \# pns[\mapsto]Ref(a, Cs')\#vs']) \rangle \Rightarrow \langle e', (h_3, l'')'(set(this\#pns))) \rangle
 by simp
with casts obtain l_2' l_3' vs' where
      P \vdash Ts \ Casts \ vs \ to \ vs'
 and P,E(this \mapsto Class(last Cs'), pns[\mapsto] Ts) \vdash
                                     \langle new\text{-}body', (h_2, l_2') \rangle \Rightarrow \langle e', (h_3, l_3') \rangle
```

```
and l_2' = [this \mapsto Ref(a, Cs'), pns[\mapsto]vs']
   \mathbf{by}(auto\ elim: Casts-to. cases)
  ultimately have P,E \vdash \langle (ref(a,Cs)) \cdot M(map\ Val\ vs),s \rangle \Rightarrow \langle e',(h_3,l_2) \rangle
   using body-case'
   by -(rule\ Call, simp-all)
  with s' id show ?case by simp
next
  case (RedStaticCall Cs C Cs" M Ts T pns body Cs' Ds vs E a s s' e')
  have P,E \vdash \langle ref(a,Cs),s \rangle \Rightarrow \langle ref(a,Cs),s \rangle by (rule eval-evals.intros)
  moreover
  have finals: finals(map Val vs) by simp
  obtain h_2 l_2 where s: s = (h_2, l_2) by (cases s)
  with finals have P,E \vdash \langle map \ Val \ vs,s \rangle \ [\Rightarrow] \ \langle map \ Val \ vs,(h_2,l_2) \rangle
   by (iprover intro: eval-finalsId)
  moreover have path-unique:P \vdash Path \ last \ Cs \ to \ C \ unique \ by \ fact
  moreover have path-via:P \vdash Path \ last \ Cs \ to \ C \ via \ Cs'' by fact
  moreover have least:P \vdash C has least M = (Ts, T, pns, body) via Cs' by fact
  moreover have same-len_1: length Ts = length pns
  and this-distinct: this \notin set pns and fv: fv body \subseteq {this} \cup set pns
   using least wf by (fastforce dest!:has-least-wf-mdecl simp:wf-mdecl-def)+
  moreover have same-len:length vs = length pns by fact
  moreover have Ds:Ds = (Cs @_p Cs') @_p Cs' by fact
  moreover
  obtain h_3 l_3 where s': s' = (h_3, l_3) by (cases s')
 \mathbf{have}\ eval\text{-}blocks: P, E \vdash \langle blocks(this\#pns, Class(last\ Ds)\#Ts, Ref(a, Ds)\#vs, body), s \rangle
                      \Rightarrow \langle e', s' \rangle by fact
  hence id: l_3 = l_2 using fv s s' same-len<sub>1</sub> same-len wf
   by(auto elim!: eval-closed-lcl-unchanged)
  from same-len_1 have same-len': length(this #pns) = length(Class (last Ds) #Ts)
   by simp
  from same-len_1 same-len
  have same-len_2: length(this \# pns) = length(Ref(a,Ds) \# vs) by simp
  from eval-blocks
 have eval-blocks':P, E \vdash \langle blocks(this \#pns, Class(last Ds) \# Ts, Ref(a, Ds) \# vs, body),
                              (h_2,l_2)\rangle \Rightarrow \langle e',(h_3,l_3)\rangle using s s' by simp
 have casts-unique: \bigwedge vs'. P \vdash Class\ (last\ Ds) \# Ts\ Casts\ Ref(a,Ds) \# vs\ to\ vs'
                           \implies vs' = Ref(a,Ds) \# tl \ vs'
   using wf
   by -(erule Casts-to.cases, auto elim!:casts-to.cases dest!:mdc-eq-last
                                     simp:path-via-def appendPath-def)
  from same-len' same-len<sub>2</sub> eval-blocks' casts-unique
  obtain l''' vs' where body: P, E(this \mapsto Class(last Ds), pns[\mapsto] Ts) \vdash
               \langle body, (h_2, l_2(this \# pns[\mapsto]Ref(a, Ds)\#vs')) \rangle \Rightarrow \langle e', (h_3, l'') \rangle
   and casts:P \vdash Class(last\ Ds) \# Ts\ Casts\ Ref(a,Ds) \# vs\ to\ Ref(a,Ds) \# vs'
   and lengthvs': length vs' = length vs
  by -(drule-tac\ vs=Ref(a,Ds)\#vs\ in\ blocksEval, auto\ simp:length-Suc-conv, blast)
  from same-len2 lengthvs'
  have same-len3:length (this # pns) = length (Ref(a,Ds) # vs') by simp
  from restrict-map-upds[OF same-len_3, of set(this #pns) <math>l_2]
```

```
have l_2(this \# pns[\mapsto]Ref(a,Ds)\#vs')| '(set(this#pns)) =
           [this # pns[\mapsto]Ref(a,Ds)#vs'] by simp
  with eval-restrict-lcl[OF wf body fv] this-distinct same-len<sub>1</sub> same-len
  have P, E(this \mapsto Class(last\ Ds),\ pns[\mapsto]\ Ts) \vdash
   \langle body, (h_2, [this \#pns [\mapsto] Ref(a, Ds) \#vs']) \rangle \Rightarrow \langle e', (h_3, l'') (set(this \#pns))) \rangle
    bv simp
  with casts obtain l_2' l_3' vs' where
        P \vdash Ts \ Casts \ vs \ to \ vs'
    and P,E(this \mapsto Class(last\ Ds),pns\ [\mapsto]\ Ts) \vdash \langle body,(h_2,l_2')\rangle \Rightarrow \langle e',(h_3,l_3')\rangle
    and l_2' = [this \mapsto Ref(a,Ds), pns [\mapsto] vs']
    \mathbf{by}(auto\ elim: Casts-to. cases)
  ultimately have P,E \vdash \langle (ref(a,Cs)) \cdot (C::) M(map\ Val\ vs), s \rangle \Rightarrow \langle e',(h_3,l_2) \rangle
    by -(rule\ StaticCall, simp-all)
  with s' id show ?case by simp
next
  case RedCallNull
  thus ?case
    by (fastforce elim: eval-cases intro: eval-evals.intros eval-finalsId)
  case BlockRedNone
  thus ?case
    by (fastforce elim!: eval-cases intro: eval-evals.intros
                  simp\ add: fun-upd-same\ fun-upd-idem)
next
  case (BlockRedSome E V T e h l e'' h' l' v s' e')
  have eval:P,E \vdash \langle \{V:T:=Val\ v;\ e''\},(h',\ l'(V:=l\ V))\rangle \Rightarrow \langle e',s'\rangle
    and red:P,E(V \mapsto T) \vdash \langle e,(h, l(V := None)) \rangle \rightarrow \langle e'',(h', l') \rangle
    and notassigned: \neg assigned V e and l':l' V = Some v
    and IH: \land ex \ sx. \ P, E(V \mapsto T) \vdash \langle e'', (h', l') \rangle \Rightarrow \langle ex, sx \rangle \Longrightarrow
                       P, E(V \mapsto T) \vdash \langle e, (h, l(V := None)) \rangle \Rightarrow \langle ex, sx \rangle by fact +
  from l' have l'upd: l'(V \mapsto v) = l' by (rule\ map-upd-triv)
  from wf red l' have casts:P \vdash T casts v to v
    apply -
    apply(erule-tac\ V=V\ in\ None-lcl-casts-values)
    \mathbf{by}(simp\ add:fun-upd-same)+
  from eval obtain h'' l''
  where P,E(V \mapsto T) \vdash \langle V := Val \ v ;; \ e'', (h', l'(V := None)) \rangle \Rightarrow \langle e', (h'', l'') \rangle \wedge
    s' = (h'', l''(V := l V))
    by (fastforce elim:eval-cases simp:fun-upd-same fun-upd-idem)
  moreover
  { fix T' h_0 l_0 v' v''
    assume eval': P, E(V \mapsto T) \vdash \langle e'', (h_0, l_0(V \mapsto v'')) \rangle \Rightarrow \langle e', (h'', l'') \rangle
      and val:P,E(V \mapsto T) \vdash \langle Val \ v,(h', \ l'(V := None)) \rangle \Rightarrow \langle Val \ v',(h_0,l_0) \rangle
      and env:(E(V \mapsto T)) \ V = Some \ T' and casts':P \vdash T' casts v' to v''
    from env have TeqT':T = T' by (simp \ add:fun-upd-same)
    from val have eq: v = v' \wedge h' = h_0 \wedge l'(V := None) = l_0
      \mathbf{bv} -(erule eval-cases, simp)
    with casts casts' wf TeqT' have v = v''
      by clarsimp(rule casts-casts-eq)
```

```
with eq eval'
    have P, E(V \mapsto T) \vdash \langle e'', (h', l'(V \mapsto v)) \rangle \Rightarrow \langle e', (h'', l'') \rangle
      by clarsimp }
  ultimately have P, E(V \mapsto T) \vdash \langle e'', (h', l'(V \mapsto v)) \rangle \Rightarrow \langle e', (h'', l'') \rangle
    and s':s' = (h'', l''(V:=l\ V))
    apply auto
    apply(erule eval-cases)
     apply(erule eval-cases) apply auto
    apply(erule eval-cases) apply auto
    apply(erule eval-cases) apply auto
    done
  with l'upd have eval'':P,E(V \mapsto T) \vdash \langle e'',(h',l')\rangle \Rightarrow \langle e',(h'',l'')\rangle
    by simp
  from IH[OF\ eval''] have P,E(V\mapsto T)\vdash \langle e,(h,\ l(V:=None))\rangle \Rightarrow \langle e',(h'',\ l'')\rangle
  with s' show ?case by(fastforce intro:Block)
next
  case (InitBlockRed E V T e h l v' e" h' l' v" v s' e')
  have eval: P,E \vdash \langle \{V:T:=Val\ v'';\ e''\},(h',\ l'(V:=l\ V))\rangle \Rightarrow \langle e',s'\rangle
    and red:P,E(V \mapsto T) \vdash \langle e,(h, l(V \mapsto v')) \rangle \rightarrow \langle e'',(h', l') \rangle
    and casts:P \vdash T \ casts \ v \ to \ v' \ and \ l':l' \ V = Some \ v''
    and IH: \land ex \ sx. \ P, E(V \mapsto T) \vdash \langle e'', (h', l') \rangle \Rightarrow \langle ex, sx \rangle \Longrightarrow
                        P,E(V \mapsto T) \vdash \langle e,(h, l(V \mapsto v')) \rangle \Rightarrow \langle ex,sx \rangle by fact+
  from l' have l'upd:l'(V \mapsto v'') = l' by (rule map-upd-triv)
  from wf casts have P \vdash T casts v' to v' by (rule casts-casts)
  with wf red l' have casts':P \vdash T casts v'' to v''
    apply -
    apply(erule-tac\ V=V\ in\ Some-lcl-casts-values)
    \mathbf{by}(simp\ add:fun-upd-same)+
  from eval obtain h^{\prime\prime} l^{\prime\prime}
  where P,E(V \mapsto T) \vdash \langle V := Val \ v''; e'', (h',l'(V := None)) \rangle \Rightarrow \langle e', (h'',l'') \rangle \wedge
    s' = (h'', l''(V := l V))
    by (fastforce elim:eval-cases simp:fun-upd-same fun-upd-idem)
  moreover
  { fix T'v'''
    assume eval':P,E(V \mapsto T) \vdash \langle e'',(h',l'(V \mapsto v'''))\rangle \Rightarrow \langle e',(h'',l'')\rangle
      and env:(E(V \mapsto T)) \ V = Some \ T' and casts'':P \vdash T' casts v'' to v'''
    from env have T = T' by (simp\ add:fun-upd-same)
    with casts' casts'' wf have v'' = v''' by simp(rule\ casts-casts-eq)
    with eval' have P, E(V \mapsto T) \vdash \langle e'', (h', l'(V \mapsto v'')) \rangle \Rightarrow \langle e', (h'', l'') \rangle by simp
}
  ultimately have P, E(V \mapsto T) \vdash \langle e'', (h', l'(V \mapsto v'')) \rangle \Rightarrow \langle e', (h'', l'') \rangle
    and s':s' = (h'', l''(V:=l\ V))
    by(auto elim!:eval-cases)
 with l'upd have eval":P,E(V \mapsto T) \vdash \langle e'',(h',l') \rangle \Rightarrow \langle e',(h'',l'') \rangle
    by simp
  from IH[OF eval"]
  have evale:P,E(V\mapsto T)\vdash \langle e,(h,\ l(V\mapsto v'))\rangle \Rightarrow \langle e',(h'',\ l'')\rangle.
  from casts
```

```
have P,E(V \mapsto T) \vdash \langle V := Val \ v,(h,l(V := None)) \rangle \Rightarrow \langle Val \ v',(h,l(V \mapsto v')) \rangle
    by -(rule-tac\ l=l(V:=None)\ in\ LAss,
         auto intro: eval-evals.intros simp:fun-upd-same)
  with evale s' show ?case by(fastforce intro:Block Seq)
next
  case (RedBlock \ E \ V \ T \ v \ s \ s' \ e')
  have P,E \vdash \langle Val \ v,s \rangle \Rightarrow \langle e',s' \rangle by fact
  then obtain s': s'=s and e': e'=Val\ v
    by cases simp
  obtain h l where s: s=(h,l) by (cases\ s)
  have P,E(V \mapsto T) \vdash \langle Val \ v,(h,l(V:=None)) \rangle \Rightarrow \langle Val \ v,(h,l(V:=None)) \rangle
    by (rule eval-evals.intros)
  hence P,E \vdash \langle \{V:T; Val\ v\}, (h,l) \rangle \Rightarrow \langle Val\ v, (h,(l(V:=None))(V:=l\ V)) \rangle
   by (rule eval-evals.Block)
  thus P,E \vdash \langle \{V:T; \ Val \ v\},s \rangle \Rightarrow \langle e',s' \rangle
    using s s' e'
    by simp
\mathbf{next}
  case (RedInitBlock \ T \ v \ v' \ E \ V \ u \ s \ s' \ e')
  have P,E \vdash \langle Val \ u,s \rangle \Rightarrow \langle e',s' \rangle and casts:P \vdash T \ casts \ v \ to \ v' by fact+
  then obtain s': s' = s and e': e' = Val \ u by cases simp
  obtain h l where s: s=(h,l) by (cases\ s)
  have val:P,E(V \mapsto T) \vdash \langle Val \ v,(h,l(V:=None)) \rangle \Rightarrow \langle Val \ v,(h,l(V:=None)) \rangle
    by (rule eval-evals.intros)
  with casts
  have P,E(V \mapsto T) \vdash \langle V := Val \ v,(h,l(V := None)) \rangle \Rightarrow \langle Val \ v',(h,l(V \mapsto v')) \rangle
    by -(rule-tac\ l=l(V:=None)\ in\ LAss, auto\ simp:fun-upd-same)
  hence P,E \vdash \langle \{V:T:=Val\ v;\ Val\ u\},(h,l)\rangle \Rightarrow \langle Val\ u,(h,\ (l(V\mapsto v'))(V:=l\ V))\rangle
    by (fastforce intro!: eval-evals.intros)
  thus ?case using s s' e' by simp
  case SeqRed thus ?case by (fastforce elim: eval-cases intro: eval-evals.intros)
next
  case RedSeq thus ?case by (fastforce elim: eval-cases intro: eval-evals.intros)
  case CondRed thus ?case by (fastforce elim: eval-cases intro: eval-evals.intros)
\mathbf{next}
 case RedCondT thus ?case by (fastforce elim: eval-cases intro: eval-evals.intros)
 case RedCondF thus ?case by (fastforce elim: eval-cases intro: eval-evals.intros)
next
  case RedWhile
 thus ?case by (auto simp add: unfold-while intro:eval-evals.intros elim:eval-cases)
next
 case ThrowRed thus ?case by (fastforce elim: eval-cases intro: eval-evals.intros)
next
  \mathbf{case}\ RedThrowNull
  thus ?case by -(auto elim!:eval-cases intro!:eval-evals. ThrowNull eval-finalId)
next
```

```
case ListRed1 thus ?case by (fastforce elim: evals-cases intro: eval-evals.intros)
next
  {\bf case}\ {\it ListRed2}
  thus ?case by (fastforce elim!: evals-cases eval-cases
                         intro: eval-evals.intros eval-finalId)
next
  case StaticCastThrow
  thus ?case by (fastforce elim: eval-cases intro: eval-evals.intros)
next
  case DynCastThrow
  thus ?case by (fastforce elim: eval-cases intro: eval-evals.intros)
 case BinOpThrow1 thus ?case by (fastforce elim: eval-cases intro: eval-evals.intros)
next
 case BinOpThrow2 thus ?case by (fastforce elim: eval-cases intro: eval-evals.intros)
 case LAssThrow thus ?case by (fastforce elim: eval-cases intro: eval-evals.intros)
next
 case FAccThrow thus ?case by (fastforce elim: eval-cases intro: eval-evals.intros)
 case FAssThrow1 thus ?case by (fastforce elim: eval-cases intro: eval-evals.intros)
next
 case FAssThrow2 thus ?case by (fastforce elim: eval-cases intro: eval-evals.intros)
next
 case CallThrowObj thus ?case by (fastforce elim: eval-cases intro: eval-evals.intros)
next
  case (CallThrowParams es vs r es' E v Copt M s s' e')
  have P,E \vdash \langle Val \ v,s \rangle \Rightarrow \langle Val \ v,s \rangle by (rule eval-evals.intros)
  moreover
  have es: es = map \ Val \ vs @ Throw \ r \# \ es' by fact
  have eval-e: P,E \vdash \langle Throw \ r,s \rangle \Rightarrow \langle e',s' \rangle by fact
  then obtain s': s' = s and e': e' = Throw r
   by cases (auto elim!:eval-cases)
  with list-eval-Throw [OF eval-e] es
  have P,E \vdash \langle es,s \rangle \ [\Rightarrow] \ \langle map \ Val \ vs @ Throw \ r \ \# \ es',s' \rangle by simp
  ultimately have P,E \vdash \langle Call \ (Val \ v) \ Copt \ M \ es,s \rangle \Rightarrow \langle Throw \ r,s' \rangle
   by (rule eval-evals. CallParamsThrow)
  thus ?case using e' by simp
next
  case (BlockThrow E V T r s s' e')
  have P,E \vdash \langle Throw \ r, \ s \rangle \Rightarrow \langle e',s' \rangle by fact
  then obtain s': s' = s and e': e' = Throw r
   by cases (auto elim!:eval-cases)
  obtain h l where s: s=(h,l) by (cases\ s)
 have P, E(V \mapsto T) \vdash \langle Throw \ r, \ (h, l(V := None)) \rangle \Rightarrow \langle Throw \ r, \ (h, l(V := None)) \rangle
   by (simp add:eval-evals.intros eval-finalId)
  hence P,E \vdash \langle \{V:T;Throw\ r\},(h,l)\rangle \Rightarrow \langle Throw\ r,\ (h,(l(V:=None))(V:=l\ V))\rangle
   by (rule eval-evals.Block)
  thus P,E \vdash \langle \{V:T; Throw \ r\}, s \rangle \Rightarrow \langle e', s' \rangle using s \ s' \ e' by simp
```

```
case (InitBlockThrow\ T\ v\ v'\ E\ V\ r\ s\ s'\ e')
  have P,E \vdash \langle Throw \ r,s \rangle \Rightarrow \langle e',s' \rangle and casts:P \vdash T \ casts \ v \ to \ v' by fact+
  then obtain s': s' = s and e': e' = Throw r
    by cases (auto elim!:eval-cases)
  obtain h l where s: s = (h,l) by (cases\ s)
  have P, E(V \mapsto T) \vdash \langle Val \ v, (h, l(V := None)) \rangle \Rightarrow \langle Val \ v, (h, l(V := None)) \rangle
    by (rule eval-evals.intros)
  with casts
  have P, E(V \mapsto T) \vdash \langle V := Val \ v, (h, l(V := None)) \rangle \Rightarrow \langle Val \ v', (h, l(V \mapsto v')) \rangle
    by -(rule-tac\ l=l(V:=None)\ in\ LAss, auto\ simp:fun-upd-same)
 hence P, E \vdash \langle \{V: T:= Val\ v;\ Throw\ r\}, (h, l) \rangle \Rightarrow \langle Throw\ r,\ (h,\ (l(V \mapsto v'))(V := l)\} \rangle
V))\rangle
    \mathbf{by}(fastforce\ intro:eval-evals.intros)
  thus P,E \vdash \langle \{V:T:=Val\ v;\ Throw\ r\},s \rangle \Rightarrow \langle e',s' \rangle using s\ s'\ e' by simp
  case SeqThrow thus ?case by (fastforce elim: eval-cases intro: eval-evals.intros)
next
 case CondThrow thus ?case by (fastforce elim: eval-cases intro: eval-evals.intros)
 case Throw Throw thus ?case by (fastforce elim: eval-cases intro: eval-evals.intros)
qed
declare split-paired-All [simp] split-paired-Ex [simp]
setup \land map-theory-claset (fn \ ctxt => ctxt \ addSbefore (split-all-tac, split-all-tac))
setup \langle map-theory-simpset (fn \ ctxt => ctxt \ addloop \ (split-all-tac, \ split-all-tac)) \rangle
     Its extension to \rightarrow *:
lemma extend-eval:
assumes wf: wwf-prog P
and reds: P,E \vdash \langle e,s \rangle \rightarrow * \langle e'',s'' \rangle and eval-rest: P,E \vdash \langle e'',s'' \rangle \Rightarrow \langle e',s' \rangle
shows P,E \vdash \langle e,s \rangle \Rightarrow \langle e',s' \rangle
using reds eval-rest
apply (induct rule: converse-rtrancl-induct2)
apply \ simp
apply simp
apply (rule extend-1-eval)
apply (rule wf)
apply assumption+
done
lemma extend-evals:
assumes wf: wwf-prog P
and reds: P,E \vdash \langle es,s \rangle [\rightarrow] * \langle es'',s'' \rangle and eval-rest: P,E \vdash \langle es'',s'' \rangle [\Rightarrow] \langle es',s' \rangle
```

next

```
shows P,E \vdash \langle es,s \rangle \ [\Rightarrow] \ \langle es',s' \rangle
\mathbf{using}\ \mathit{reds}\ \mathit{eval\text{-}rest}
apply (induct rule: converse-rtrancl-induct2)
apply simp
apply simp
apply (rule extend-1-evals)
apply (rule wf)
apply assumption +
done
      Finally, small step semantics can be simulated by big step semantics:
theorem
assumes wf: wwf-prog P
shows small-by-big: \llbracket P,E \vdash \langle e,s \rangle \to * \langle e',s' \rangle; final e' \rrbracket \Longrightarrow P,E \vdash \langle e,s \rangle \Rightarrow \langle e',s' \rangle
and [P,E \vdash \langle es,s \rangle [\rightarrow] * \langle es',s' \rangle; finals es' = P,E \vdash \langle es,s \rangle [\Rightarrow] \langle es',s' \rangle
proof -
  note wf
  moreover assume P,E \vdash \langle e,s \rangle \rightarrow * \langle e',s' \rangle
  moreover assume final e'
  then have P,E \vdash \langle e',s' \rangle \Rightarrow \langle e',s' \rangle
    by (rule eval-finalId)
  ultimately show P,E \vdash \langle e,s \rangle \Rightarrow \langle e',s' \rangle
     by (rule extend-eval)
\mathbf{next}
  note wf
  moreover assume P,E \vdash \langle es,s \rangle [\rightarrow] * \langle es',s' \rangle
  moreover assume finals es'
  then have P,E \vdash \langle es',s' \rangle \Rightarrow \langle es',s' \rangle
    by (rule eval-finalsId)
  ultimately show P,E \vdash \langle es,s \rangle \Rightarrow \langle es',s' \rangle
     by (rule extend-evals)
qed
19.18
               Equivalence
And now, the crowning achievement:
corollary big-iff-small:
  wwf-prog P \Longrightarrow
  P,E \vdash \langle e,s \rangle \Rightarrow \langle e',s' \rangle = (P,E \vdash \langle e,s \rangle \rightarrow * \langle e',s' \rangle \land final e')
by(blast dest: big-by-small eval-final small-by-big)
```

20 Definite assignment

theory DefAss

end

```
imports BigStep
begin
```

20.1 Hypersets

 $type-synonym \ hyperset = vname \ set \ option$

definition hyperUn :: hyperset \Rightarrow hyperset \Rightarrow hyperset (infix1 \iff 65) where $A \sqcup B \equiv case \ A \ of \ None \Rightarrow None$ $| \ |A| \Rightarrow (case \ B \ of \ None \Rightarrow None \ | \ |B| \Rightarrow |A \cup B|)$

definition hyperInt :: hyperset \Rightarrow hyperset \Rightarrow hyperset (infix1 $\langle \cap \rangle$ 70) where $A \cap B \equiv case \ A \ of \ None \Rightarrow B$ $| \ |A| \Rightarrow (case \ B \ of \ None \Rightarrow |A| \ | \ |B| \Rightarrow |A \cap B|)$

definition $hyperDiff1 :: hyperset \Rightarrow vname \Rightarrow hyperset \quad (infix1 \leftrightarrow 65)$ where $A \ominus a \equiv case \ A \ of \ None \Rightarrow None \mid |A| \Rightarrow |A - \{a\}|$

definition hyper-isin :: $vname \Rightarrow hyperset \Rightarrow bool$ (infix $\langle \in \in \rangle$ 50) where $a \in \in A \equiv case \ A \ of \ None \Rightarrow True \ | \ |A| \Rightarrow a \in A$

definition hyper-subset :: hyperset \Rightarrow hyperset \Rightarrow bool (infix $\langle \sqsubseteq \rangle$ 50) where $A \sqsubseteq B \equiv case \ B \ of \ None \Rightarrow True$ $|\ |B| \Rightarrow (case \ A \ of \ None \Rightarrow False \ |\ |A| \Rightarrow A \subseteq B)$

lemmas hyperset-defs =

hyperUn-def hyperInt-def hyperDiff1-def hyper-isin-def hyper-subset-def

lemma [simp]: $\lfloor \{ \} \rfloor \sqcup A = A \land A \sqcup \lfloor \{ \} \rfloor = A$ **by** $(simp\ add:hyperset-defs)$

lemma $[simp]: \lfloor A \rfloor \sqcup \lfloor B \rfloor = \lfloor A \cup B \rfloor \land \lfloor A \rfloor \ominus a = \lfloor A - \{a\} \rfloor$ **by** $(simp\ add:hyperset-defs)$

lemma [simp]: $None \sqcup A = None \land A \sqcup None = None$ **by**($simp\ add:hyperset-defs$)

lemma [simp]: $a \in \in None \land None \ominus a = None$ **by**($simp\ add:hyperset-defs$)

lemma hyperUn-assoc: $(A \sqcup B) \sqcup C = A \sqcup (B \sqcup C)$ by(simp add:hyperset-defs Un-assoc)

lemma hyper-insert-comm: $A \sqcup \lfloor \{a\} \rfloor = \lfloor \{a\} \rfloor \sqcup A \land A \sqcup (\lfloor \{a\} \rfloor \sqcup B) = \lfloor \{a\} \rfloor \sqcup (A \sqcup B)$ by (simp add:hyperset-defs)

20.2 Definite assignment

primrec $A :: expr \Rightarrow hyperset$ and $As :: expr list \Rightarrow hyperset$ where

```
\mathcal{A}\ (new\ C) = \lfloor \{\}\rfloor\ |
\mathcal{A} (Cast \ C \ e) = \mathcal{A} \ e \mid
\mathcal{A} ((C)e) = \mathcal{A} e \mid
\mathcal{A}(Val\ v) = |\{\}|
\mathcal{A} (e_1 \otimes bop \otimes e_2) = \mathcal{A} e_1 \sqcup \mathcal{A} e_2 \mid
\mathcal{A}(Var\ V) = |\{\}|
\mathcal{A} (LAss \ V \ e) = |\{V\}| \sqcup \mathcal{A} \ e \mid
\mathcal{A}\left(e \cdot F\{Cs\}\right) = \mathcal{A}\left[e\right]
\mathcal{A} (e_1 \cdot F\{Cs\} := e_2) = \mathcal{A} e_1 \sqcup \mathcal{A} e_2 \mid
\mathcal{A} (Call \ e \ Copt \ M \ es) = \mathcal{A} \ e \sqcup \mathcal{A} s \ es \mid
\mathcal{A}(\{V:T;e\}) = \mathcal{A}e \ominus V
\mathcal{A}\left(e_1;;e_2\right) = \mathcal{A}\left[e_1 \sqcup \mathcal{A}\left[e_2\right]\right]
\mathcal{A} (if (e) e_1 else e_2) = \mathcal{A} e \sqcup (\mathcal{A} e_1 \sqcap \mathcal{A} e_2) |
\mathcal{A} (while (b) e) = \mathcal{A} b
A (throw e) = None
\mathcal{A}s ([]) = \lfloor \{\} \rfloor
\mathcal{A}s\ (e\#es) = \mathcal{A}\ e \sqcup \mathcal{A}s\ es
primrec \mathcal{D} :: expr \Rightarrow hyperset \Rightarrow bool and \mathcal{D}s :: expr list \Rightarrow hyperset \Rightarrow bool
where
\mathcal{D} (new C) A = True \mid
\mathcal{D}(Cast\ C\ e)\ A = \mathcal{D}\ e\ A
\mathcal{D}((C)e) A = \mathcal{D} e A
\mathcal{D}(Val\ v)\ A = True\ |
\mathcal{D} (e_1 \ll bop \gg e_2) A = (\mathcal{D} e_1 A \wedge \mathcal{D} e_2 (A \sqcup \mathcal{A} e_1)) \mid
\mathcal{D}(Var\ V)\ A = (V \in A)
\mathcal{D}(LAss\ V\ e)\ A = \mathcal{D}\ e\ A
\mathcal{D}\left(e\cdot F\{Cs\}\right)A=\mathcal{D}\ e\ A
\mathcal{D} (e_1 \cdot F\{Cs\} := e_2) A = (\mathcal{D} e_1 A \wedge \mathcal{D} e_2 (A \sqcup \mathcal{A} e_1)) \mid
\mathcal{D} (Call e Copt M es) A = (\mathcal{D} \ e \ A \land \mathcal{D} s \ e s \ (A \sqcup \mathcal{A} \ e))
\mathcal{D}(\{V:T;e\}) A = \mathcal{D} e(A \ominus V) \mid
\mathcal{D}(e_1;;e_2) A = (\mathcal{D} e_1 A \wedge \mathcal{D} e_2 (A \sqcup \mathcal{A} e_1)) \mid
\mathcal{D} (if (e) e_1 else e_2) A =
  (\mathcal{D} \ e \ A \wedge \mathcal{D} \ e_1 \ (A \sqcup \mathcal{A} \ e) \wedge \mathcal{D} \ e_2 \ (A \sqcup \mathcal{A} \ e)) \mid
\mathcal{D} (while (e) c) A = (\mathcal{D} \ e \ A \land \mathcal{D} \ c \ (A \sqcup \mathcal{A} \ e))
\mathcal{D} (throw e) A = \mathcal{D} e A \mid
\mathcal{D}s ([]) A = True
\mathcal{D}s \ (e \# es) \ A = (\mathcal{D} \ e \ A \wedge \mathcal{D}s \ es \ (A \sqcup \mathcal{A} \ e))
lemma As-map-Val[simp]: As (map \ Val \ vs) = |\{\}|
by (induct vs) simp-all
lemma D-append[iff]: \bigwedge A. \mathcal{D}s (es @ es') A = (\mathcal{D}s \ es \ A \land \mathcal{D}s \ es' \ (A \sqcup \mathcal{A}s \ es))
by (induct es type:list) (auto simp:hyperUn-assoc)
```

lemma A-fv: $\bigwedge A$. A $e = |A| \Longrightarrow A \subseteq fv$ e

```
and \bigwedge A. As \ es = |A| \Longrightarrow A \subseteq fvs \ es
apply(induct \ e \ and \ es \ rule: A.induct \ As.induct)
apply (simp-all add:hyperset-defs)
apply blast+
done
lemma sqUn-lem: A \sqsubseteq A' \Longrightarrow A \sqcup B \sqsubseteq A' \sqcup B
\mathbf{by}(simp\ add:hyperset\text{-}defs)\ blast
lemma diff-lem: A \sqsubseteq A' \Longrightarrow A \ominus b \sqsubseteq A' \ominus b
\mathbf{by}(simp\ add:hyperset\text{-}defs)\ blast
lemma D-mono: \bigwedge A \ A'. \ A \sqsubseteq A' \Longrightarrow \mathcal{D} \ e \ A \Longrightarrow \mathcal{D} \ (e::expr) \ A'
and Ds-mono: \bigwedge A \ A'. A \sqsubseteq A' \Longrightarrow \mathcal{D}s \ es \ A \Longrightarrow \mathcal{D}s \ (es::expr \ list) \ A'
apply(induct \ e \ and \ es \ rule: \mathcal{D}.induct \ \mathcal{D}s.induct)
apply simp
apply simp
apply simp
apply simp
apply simp apply (iprover dest:sqUn-lem)
apply (fastforce simp add:hyperset-defs)
apply simp
apply simp
apply simp apply (iprover dest:sqUn-lem)
apply simp apply (iprover dest:sqUn-lem)
apply simp apply (iprover dest:diff-lem)
apply simp apply (iprover dest:sqUn-lem)
apply simp apply (iprover dest:sqUn-lem)
apply simp apply (iprover dest:sqUn-lem)
apply simp
apply simp
apply simp
apply (iprover dest:sqUn-lem)
done
lemma D-mono': \mathcal{D} e A \Longrightarrow A \sqsubseteq A' \Longrightarrow \mathcal{D} e A'
and Ds-mono': \mathcal{D}s es A \Longrightarrow A \sqsubseteq A' \Longrightarrow \mathcal{D}s es A'
by(blast intro:D-mono, blast intro:Ds-mono)
```

end

21 Runtime Well-typedness

theory WellTypeRT imports WellType begin

21.1 Run time types

```
primrec typeof-h :: prog \Rightarrow heap \Rightarrow val \Rightarrow ty option (\langle - \vdash typeof_- \rangle) where
  P \vdash typeof_h Unit
                            = Some\ Void
 P \vdash \mathit{typeof}_h \ \mathit{Null}
                              = Some NT
 P \vdash typeof_h (Bool \ b) = Some \ Boolean
 P \vdash typeof_h (Intg \ i) = Some \ Integer
\mid P \vdash typeof_h \ (Ref \ r) = (case \ h \ (the - addr \ (Ref \ r)) \ of \ None \Rightarrow None
                               |Some(C,S)| \Rightarrow (if Subobjs \ P \ C \ (the\text{-path}(Ref \ r)) \ then
                                      Some(Class(last(the-path(Ref r))))
                                                 else None))
lemma type-eq-type: typeof v = Some \ T \Longrightarrow P \vdash typeof_h \ v = Some \ T
\mathbf{by}(induct\ v)auto
lemma typeof-Void [simp]: P \vdash typeof_h \ v = Some \ Void \Longrightarrow v = Unit
\mathbf{by}(induct\ v, auto\ split: if-split-asm)
lemma typeof-NT [simp]: P \vdash typeof_h \ v = Some \ NT \Longrightarrow v = Null
by(induct v,auto split:if-split-asm)
lemma typeof-Boolean [simp]: P \vdash typeof_h \ v = Some \ Boolean \Longrightarrow \exists \ b. \ v = Bool \ b
\mathbf{by}(induct\ v, auto\ split:if\text{-}split\text{-}asm)
lemma typeof-Integer [simp]: P \vdash typeof_h \ v = Some \ Integer \Longrightarrow \exists \ i. \ v = Intg \ i
by(induct v,auto split:if-split-asm)
\mathbf{lemma}\ type of \text{-} Class\text{-} Subo:
P \vdash typeof_h \ v = Some \ (Class \ C) \Longrightarrow
```

 $\exists a \ Cs \ D \ S. \ v = Ref(a, Cs) \land h \ a = Some(D, S) \land Subobjs \ P \ D \ Cs \land last \ Cs = C$

21.2 The rules

 $\mathbf{by}(induct\ v, auto\ split:if\text{-}split\text{-}asm)$

```
inductive
```

```
WTrt :: [prog,env,heap,expr, ty] \Rightarrow bool ( <-,-,- \vdash -: -> [51,51,51]50) and WTrts :: [prog,env,heap,expr\ list,ty\ list] \Rightarrow bool ( <-,-,- \vdash -:] \rightarrow [51,51,51]50) for P :: prog where WTrtNew: is\text{-}class\ P\ C \implies P,E,h \vdash new\ C : Class\ C
```

```
| WTrtDynCast:
  \llbracket P,E,h \vdash e : T; is\text{-ref}T \ T; is\text{-class} \ P \ C \rrbracket
  \implies P,E,h \vdash Cast \ C \ e : Class \ C
| WTrtStaticCast:
  \llbracket P,E,h \vdash e : T; is\text{-ref}T \ T; is\text{-class} \ P \ C \ \rrbracket
  \implies P, E, h \vdash (C)e : Class C
|WTrtVal:
  P \vdash typeof_h \ v = Some \ T \Longrightarrow
  P,E,h \vdash Val \ v : T
| WTrt Var:
  E \ V = Some \ T \Longrightarrow
  P,E,h \vdash Var V : T
| WTrtBinOp:
  [P,E,h \vdash e_1 : T_1; P,E,h \vdash e_2 : T_2;]
      case bop of Eq \Rightarrow T = Boolean
                 |Add \Rightarrow T_1 = Integer \land T_2 = Integer \land T = Integer
  \implies P,E,h \vdash e_1 \ll bop \gg e_2 : T
| WTrtLAss:
  \llbracket E \ V = Some \ T; \ P,E,h \vdash e : T'; \ P \vdash T' \leq T \rrbracket
  \implies P,E,h \vdash V := e : T
| WTrtFAcc:
\llbracket P,E,h \vdash e : Class \ C; \ Cs \neq \llbracket \rrbracket; \ P \vdash C \ has \ least \ F:T \ via \ Cs \ \rrbracket
  \implies P,E,h \vdash e \cdot F\{Cs\} : T
| WTrtFAccNT:
  P,E,h \vdash e: NT \Longrightarrow P,E,h \vdash e \cdot F\{Cs\}: T
| WTrtFAss:
\llbracket P,E,h \vdash e_1 : Class \ C; \ Cs \neq \llbracket \rrbracket;
  P \vdash C \text{ has least } F: T \text{ via } Cs; P, E, h \vdash e_2 : T'; P \vdash T' \leq T
  \implies P,E,h \vdash e_1 \cdot F\{Cs\} := e_2 : T
\mid WTrtFAssNT:
  \llbracket P,E,h \vdash e_1 : NT; P,E,h \vdash e_2 : T'; P \vdash T' \leq T \rrbracket
  \implies P,E,h \vdash e_1 \cdot F\{Cs\} := e_2 : T
| WTrtCall:
  \llbracket P,E,h \vdash e : Class \ C; \ P \vdash C \ has \ least \ M = (Ts,T,m) \ via \ Cs;
      P,E,h \vdash es [:] Ts'; P \vdash Ts' [\leq] Ts 
  \implies P, E, h \vdash e \cdot M(es) : T
\mid WTrtStaticCall:
```

```
\llbracket P,E,h \vdash e : Class \ C'; \ P \vdash Path \ C' \ to \ C \ unique; \rrbracket
     P \vdash C \text{ has least } M = (Ts, T, m) \text{ via } Cs;
     P,E,h \vdash es [:] Ts'; P \vdash Ts' [\leq] Ts 
  \implies P.E.h \vdash e \cdot (C::)M(es) : T
| WTrtCallNT:
  \llbracket P,E,h \vdash e:NT;\ P,E,h \vdash es\ [:]\ Ts \rrbracket \Longrightarrow P,E,h \vdash Call\ e\ Copt\ M\ es:T
| WTrtBlock:
  \llbracket P, E(V \mapsto T), h \vdash e : T'; \textit{ is-type } P \ T \rrbracket \Longrightarrow
  P,E,h \vdash \{V:T; e\}: T'
\mid WTrtSeq:
  \llbracket P,E,h \vdash e_1 : T_1; P,E,h \vdash e_2 : T_2 \rrbracket \implies P,E,h \vdash e_1;;e_2 : T_2 \rrbracket
| WTrtCond:
  \llbracket P,E,h \vdash e : Boolean; P,E,h \vdash e_1 : T; P,E,h \vdash e_2 : T \rrbracket
  \implies P, E, h \vdash if (e) e_1 else e_2 : T
| WTrt While:
  \llbracket P,E,h \vdash e : Boolean; P,E,h \vdash c : T \rrbracket
  \implies P,E,h \vdash while(e) \ c : Void
| WTrtThrow:
  \llbracket P,E,h \vdash e : T'; \textit{is-refT } T' \rrbracket
 \implies P,E,h \vdash throw \ e : T
| WTrtNil:
P,E,h \vdash [] [:] []
| WTrtCons:
 \llbracket P,E,h \vdash e:T; P,E,h \vdash es [:] Ts \rrbracket \implies P,E,h \vdash e\#es [:] T\#Ts
declare
   WTrt-WTrts.intros[intro!]
   WTrtNil[iff]
declare
  WTrtFAcc[rule del] WTrtFAccNT[rule del]
  WTrtFAss[rule del] WTrtFAssNT[rule del]
  WTrtCall[rule\ del]\ WTrtCallNT[rule\ del]
lemmas \ WTrt	ext{-}induct = WTrt	ext{-}WTrts.induct \ [split	ext{-}format \ (complete)]
  and WTrt-inducts = WTrt-WTrts.inducts [split-format (complete)]
```

21.3 Easy consequences

Ts)

```
inductive-simps [iff]:
  P,E,h \vdash [] [:] Ts
  P,E,h \vdash e\#es [:] T\#Ts
  P,E,h \vdash (e\#es) [:] Ts
  P,E,h \vdash Val \ v : T
  P,E,h \vdash Var V : T
  P,E,h \vdash e_1;;e_2 : T_2
  P,E,h \vdash \{V:T; e\}: T'
lemma [simp]: \forall Ts. (P,E,h \vdash es_1 @ es_2 [:] Ts) =
  (\exists Ts_1 \ Ts_2. \ Ts = Ts_1 \ @ \ Ts_2 \land P, E, h \vdash es_1 \ [:] \ Ts_1 \ \& \ P, E, h \vdash es_2 \ [:] \ Ts_2)
apply(induct-tac\ es_1)
apply simp
\mathbf{apply} \ \mathit{clarsimp}
apply(erule thin-rl)
apply (rule iffI)
apply clarsimp
apply(rule\ exI)+
 apply(rule\ conjI)
 prefer 2 apply blast
apply \ simp
{\bf apply} \ \textit{fastforce}
\mathbf{done}
inductive-cases WTrt-elim-cases[elim!]:
  P,E,h \vdash new \ C : T
  P,E,h \vdash Cast \ C \ e : T
  P,E,h \vdash (C)e : T
  P,E,h \vdash e_1 \ll bop \gg e_2 : T
  P,E,h \vdash V := e : T
  P,E,h \vdash e {\boldsymbol{\cdot}} F\{\mathit{Cs}\} : T
  P,E,h \vdash e \cdot F\{Cs\} := v : T
  P,E,h \vdash e \cdot M(es) : T
  P,E,h \vdash e \cdot (C::)M(es) : T
  P,E,h \vdash if (e) e_1 else e_2 : T
  P,E,h \vdash while(e) \ c : T
  P,E,h \vdash throw \ e : T
21.4
           Some interesting lemmas
lemma WTrts-Val[simp]:
\bigwedge Ts. \ (P, E, h \vdash map \ Val \ vs \ [:] \ Ts) = (map \ (\lambda v. \ (P \vdash typeof_h) \ v) \ vs = map \ Some
```

```
apply(induct vs)
apply fastforce
apply(case-tac Ts)
apply simp
apply simp
done
lemma WTrts-same-length: \bigwedge Ts. P,E,h \vdash es [:] Ts \Longrightarrow length \ es = length \ Ts
by(induct es type:list)auto
\mathbf{lemma} \ \mathit{WTrt-env-mono}:
  P,E,h \vdash e: T \Longrightarrow (\bigwedge E'. E \subseteq_m E' \Longrightarrow P,E',h \vdash e: T) and
 P,E,h \vdash es \ [:] \ Ts \Longrightarrow (\bigwedge E'. \ E \subseteq_m E' \Longrightarrow P,E',h \vdash es \ [:] \ Ts)
apply(induct rule: WTrt-inducts)
apply(simp add: WTrtNew)
apply(fastforce\ simp:\ WTrtDynCast)
apply(fastforce simp: WTrtStaticCast)
apply(fastforce simp: WTrtVal)
apply(simp add: WTrtVar map-le-def dom-def)
apply(fastforce simp add: WTrtBinOp)
apply (force simp:map-le-def)
apply(fastforce simp: WTrtFAcc)
apply(simp add: WTrtFAccNT)
apply(fastforce simp: WTrtFAss)
apply(fastforce simp: WTrtFAssNT)
apply(fastforce simp: WTrtCall)
apply(fastforce\ simp:\ WTrtStaticCall)
apply(fastforce simp: WTrtCallNT)
apply(fastforce simp: map-le-def)
apply(fastforce)
apply(fastforce simp: WTrtCond)
apply(fastforce simp: WTrtWhile)
apply(fastforce simp: WTrtThrow)
\mathbf{apply}(simp\ add:\ WTrtNil)
apply(simp add: WTrtCons)
done
lemma WT-implies-WTrt: P,E \vdash e :: T \Longrightarrow P,E,h \vdash e : T
and WTs-implies-WTrts: P,E \vdash es [::] Ts \Longrightarrow P,E,h \vdash es [:] Ts
proof(induct rule: WT-WTs-inducts)
 case WTVal thus ?case by (fastforce dest:type-eq-type)
next
 case WTBinOp thus ?case by (fastforce split:bop.splits)
```

```
next
  case WTFAcc thus ?case
    \mathbf{by}(fastforce\ intro!:WTrtFAcc\ dest:Subobjs-nonempty
                     simp:LeastFieldDecl-def\ FieldDecls-def)
next
  case WTFAss thus ?case
    by(fastforce intro!: WTrtFAss dest:Subobjs-nonempty
                     simp:LeastFieldDecl-def FieldDecls-def)
next
  {\bf case}\ WTCall\ {\bf thus}\ ?case\ {\bf by}\ (fastforce\ intro:WTrtCall)
qed (auto simp del:fun-upd-apply)
end
22
           Conformance Relations for Proofs
theory Conform
imports Exceptions WellTypeRT
begin
primrec conf :: prog \Rightarrow heap \Rightarrow val \Rightarrow ty \Rightarrow bool \quad (\leftarrow, -\vdash -: \leq \rightarrow [51, 51, 51, 51])
50) where
  P,h \vdash v :\leq Void
                                 = (P \vdash typeof_h \ v = Some \ Void)
\mid P, h \vdash v :\leq Boolean = (P \vdash typeof_h \ v = Some \ Boolean)
 P, h \vdash v : \leq \mathit{Integer} = (P \vdash \mathit{typeof}_h \ v = \mathit{Some} \ \mathit{Integer})
\mid P,h \vdash v :\leq NT
                               = (P \vdash typeof_h \ v = Some \ NT)
\mid P,h \vdash v : \leq (Class \ C) = (P \vdash typeof_h \ v = Some(Class \ C) \lor P \vdash typeof_h \ v = Class \ C)
Some NT)
\mathbf{definition} \; \mathit{fconf} :: \mathit{prog} \Rightarrow \mathit{heap} \Rightarrow ('a \rightharpoonup \mathit{val}) \Rightarrow ('a \rightharpoonup \mathit{ty}) \Rightarrow \mathit{bool} \; (``-,- \vdash - '(:\leq'))
\rightarrow [51,51,51,51] 50) where
  P,h \vdash v_m \ (:\leq) \ T_m \equiv
  \forall FD \ T. \ T_m \ FD = Some \ T \longrightarrow (\exists v. \ v_m \ FD = Some \ v \land P, h \vdash v : \leq T)
definition oconf :: prog \Rightarrow heap \Rightarrow obj \Rightarrow bool (\langle -, - \vdash - \checkmark \rangle [51,51,51] 50) where
  P,h \vdash obj \sqrt{\equiv let(C,S) = obj in}
       (\forall \textit{Cs. Subobjs P C Cs} \longrightarrow (\exists !\textit{fs'. } (\textit{Cs,fs'}) \in \textit{S})) \ \land \\
       (\forall Cs fs'. (Cs,fs') \in S \longrightarrow Subobjs P C Cs \land
                       (\exists fs \ Bs \ ms. \ class \ P \ (last \ Cs) = Some \ (Bs,fs,ms) \ \land
                                      P,h \vdash fs' (:<) map-of fs)
definition hconf :: prog \Rightarrow heap \Rightarrow bool ( \leftarrow \vdash - \checkmark ) [51,51] 50) where
  P \vdash h \sqrt{\equiv}
  (\forall a \ obj. \ h \ a = Some \ obj \longrightarrow P, h \vdash obj \ \sqrt{}) \land preallocated \ h
definition lconf :: prog \Rightarrow heap \Rightarrow ('a \rightarrow val) \Rightarrow ('a \rightarrow ty) \Rightarrow bool (<-,- \vdash -
```

 $((:\leq')_w \to [51,51,51,51] \ 50)$ where

 $P,h \vdash v_m \ (:\leq)_w \ T_m \equiv$

```
\forall V \ v. \ v_m \ V = Some \ v \longrightarrow (\exists \ T. \ T_m \ V = Some \ T \land P, h \vdash v : \leq T)
```

```
abbreviation
  confs::prog \Rightarrow heap \Rightarrow val\ list \Rightarrow ty\ list \Rightarrow bool
           (\langle -, - \vdash - [: \leq] \rightarrow [51, 51, 51, 51] \ 50) where
  P,h \vdash vs \ [:\leq] \ Ts \equiv list-all \ (conf \ P \ h) \ vs \ Ts
           Value conformance :≤
22.1
lemma conf-Null [simp]: P,h \vdash Null :\leq T = P \vdash NT \leq T
\mathbf{by}(cases\ T)\ simp-all
\textbf{lemma} \ \textit{typeof-conf}[\textit{simp}] \colon P \vdash \textit{typeof}_h \ v = \textit{Some} \ T \Longrightarrow P, h \vdash v : \leq T
by (cases T) auto
lemma typeof-lit-conf[simp]: typeof v = Some \ T \Longrightarrow P, h \vdash v \leq T
by (rule typeof-conf[OF type-eq-type])
lemma defval-conf[simp]: is-type P \ T \Longrightarrow P, h \vdash default-val \ T : \leq T
\mathbf{by}(cases\ T)\ auto
{f lemma}\ type of 	ext{-}not class-heap:
  \forall C. \ T \neq Class \ C \Longrightarrow (P \vdash typeof_h \ v = Some \ T) = (P \vdash typeof_{h'} \ v = Some
\mathbf{by}(cases\ T)(auto\ dest:typeof\text{-}Void\ typeof\text{-}NT\ typeof\text{-}Boolean\ typeof\text{-}Integer)
lemma assumes h:h \ a = Some(C,S)
  shows conf-upd-obj: (P,h(a\mapsto(C,S')) \vdash v \leq T) = (P,h \vdash v \leq T)
proof(cases T)
  case Void
  hence (P \vdash typeof_{h(a \mapsto (C,S'))} \ v = Some \ T) = (P \vdash typeof_h \ v = Some \ T)
    by(fastforce intro!:typeof-notclass-heap)
  with Void show ?thesis by simp
\mathbf{next}
  case Boolean
  hence (P \vdash typeof_{h(a \mapsto (C,S'))} \ v = Some \ T) = (P \vdash typeof_h \ v = Some \ T)
    by(fastforce intro!:typeof-notclass-heap)
  with Boolean show ?thesis by simp
next
  case Integer
  \mathbf{hence}\ (P \vdash \mathit{typeof}_{h(a \mapsto (C,S'))}\ v = \mathit{Some}\ T) = (P \vdash \mathit{typeof}_h\ v = \mathit{Some}\ T)
    \mathbf{by}(fastforce\ intro!:typeof-notclass-heap)
  with Integer show ?thesis by simp
next
```

case NT

```
hence (P \vdash typeof_{h(a \mapsto (C,S'))} \ v = Some \ T) = (P \vdash typeof_h \ v = Some \ T)
   by(fastforce intro!:typeof-notclass-heap)
  with NT show ?thesis by simp
next
  case (Class C')
  { assume P \vdash typeof_{h(a \mapsto (C, S'))} \ v = Some(Class C')
    with h have P \vdash typeof_h \ v = Some(Class \ C')
     by (cases v) (auto split:if-split-asm) }
  hence 1:P \vdash typeof_{h(a \mapsto (C, S'))} v = Some(Class C') \Longrightarrow
          P \vdash typeof_h \ v = Some(Class \ C') \ \mathbf{by} \ simp
  { assume type:P \vdash typeof_{h(a \mapsto (C, S'))} v = Some \ NT
   and typenot:P \vdash typeof_h \ v \neq Some \ NT
   have \forall C. NT \neq Class C by simp
   with type have P \vdash typeof_h \ v = Some \ NT \ \mathbf{by}(fastforce \ dest:typeof-notclass-heap)
   with typenot have P \vdash typeof_h \ v = Some(Class \ C') by simp \}
  hence 2: [P \vdash typeof_{h(a \mapsto (C, S'))} \ v = Some \ NT; \ P \vdash typeof_h \ v \neq Some \ NT]
    P \vdash typeof_h \ v = Some(Class \ C') \ \mathbf{by} \ simp
  { assume P \vdash typeof_h \ v = Some(Class \ C')
    with h have P \vdash typeof_{h(a \mapsto (C, S'))} v = Some(Class C')
     by (cases v) (auto split:if-split-asm) }
  hence 3:P \vdash typeof_h \ v = Some(Class \ C') \Longrightarrow
          P \vdash typeof_{h(a \mapsto (C, S'))} v = Some(Class C') by simp
  { assume typenot: P \vdash typeof_{h(a \mapsto (C, S'))} \ v \neq Some \ NT
   and type:P \vdash typeof_h \ v = Some \ NT
   have \forall C. NT \neq Class C by simp
   with type have P \vdash typeof_{h(a \mapsto (C, S'))} v = Some NT
     \mathbf{by}(\textit{fastforce dest:typeof-notclass-heap})
   with typenot have P \vdash typeof_{h(a \mapsto (C, S'))} v = Some(Class C') by simp \}
 hence 4: [P \vdash typeof_{h(a \mapsto (C, S'))} \ v \neq Some \ NT; \ P \vdash typeof_h \ v = Some \ NT]
    P \vdash typeof_{h(a \mapsto (C, S'))} v = Some(Class C') by simp
  from Class show ?thesis by (auto intro:1 2 3 4)
qed
lemma conf-NT [iff]: P,h \vdash v \leq NT = (v = Null)
by fastforce
22.2
          Value list conformance [:\leq]
lemma confs-rev: P,h \vdash rev \ s \ [:\leq] \ t = (P,h \vdash s \ [:\leq] \ rev \ t)
  apply rule
  apply (rule subst [OF list-all2-rev])
  apply simp
  apply (rule subst [OF list-all2-rev])
```

```
apply simp
 done
P,h \vdash zs \ [:\leq] \ ys)
by (rule list-all2-Cons2)
22.3
         Field conformance (:\leq)
lemma fconf-init-fields:
\mathit{class}\ P\ C = \mathit{Some}(\mathit{Bs,fs,ms}) \Longrightarrow \mathit{P,h} \vdash \mathit{init-class-fieldmap}\ P\ C\ (:\leq)\ \mathit{map-of}\ \mathit{fs}
\mathbf{apply}(\mathit{unfold}\;\mathit{fconf-def}\;\mathit{init-class-fieldmap-def})
apply clarsimp
apply (rule exI)
apply (rule conjI)
apply (simp add:map-of-map)
apply(case-tac T)
apply simp-all
done
22.4
         Heap conformance
lemma hconfD: [P \vdash h \checkmark; h \ a = Some \ obj] \implies P,h \vdash obj \checkmark
apply (unfold hconf-def)
apply (fast)
done
\mathbf{lemma}\ \mathit{hconf-Subobjs} :
\llbracket h \ a = Some(C,S); \ (Cs, fs) \in S; \ P \vdash h \ \sqrt{\rrbracket} \Longrightarrow Subobjs \ P \ C \ Cs
apply (unfold hconf-def)
\mathbf{apply} \ \mathit{clarsimp}
apply (erule-tac \ x=a \ in \ all E)
apply (erule-tac x=C in allE)
apply (erule-tac x=S in allE)
apply clarsimp
apply (unfold oconf-def)
apply fastforce
done
```

22.5 Local variable conformance

```
 \begin{array}{l} \textbf{lemma} \ \textit{lconf-upd} : \\ \llbracket \ P, h \vdash l \ (:\leq)_w \ E; \ P, h \vdash v \ :\leq \ T; \ E \ V = Some \ T \ \rrbracket \Longrightarrow P, h \vdash l \ (V \mapsto v) \ (:\leq)_w \ E \end{array}
```

```
apply (unfold lconf-def)
apply auto
done
lemma lconf-empty[iff]: P,h \vdash Map.empty (:\leq)_w E
by(simp add:lconf-def)
lemma lconf-upd2: [P,h \vdash l (:\leq)_w E; P,h \vdash v :\leq T] \implies P,h \vdash l(V \mapsto v) (:\leq)_w
E(V \mapsto T)
by(simp add:lconf-def)
           Environment conformance
definition envconf :: prog \Rightarrow env \Rightarrow bool ( \leftarrow \vdash - \checkmark ) [51,51] 50 ) where
  P \vdash E \sqrt{\equiv} \forall V T. E V = Some T \longrightarrow is-type P T
22.7
            Type conformance
primrec
  type\text{-}conf::prog \Rightarrow env \Rightarrow heap \Rightarrow expr \Rightarrow ty \Rightarrow bool
    (\langle -, -, - \vdash - :_{NT} \rightarrow [51, 51, 51]50)
where
  type-conf-Void:
                               P,E,h \vdash e :_{NT} Void \longleftrightarrow (P,E,h \vdash e : Void)
  \mid type\text{-}conf\text{-}Boolean : P,E,h \vdash e :_{NT} Boolean \longleftrightarrow (P,E,h \vdash e : Boolean)
    \textit{type-conf-Integer} : \textit{P,E,h} \; \vdash \; e :_{NT} \; \textit{Integer} \; \longleftrightarrow \; (\textit{P,E,h} \; \vdash \; e : \textit{Integer})
                                                                  \longleftrightarrow (P,\!E,\!h \vdash e:NT)
    type\text{-}conf\text{-}NT:
                               P,E,h \vdash e:_{NT} NT
  | \textit{ type-conf-Class:} \quad P,E,h \vdash e:_{NT} \textit{Class } C \longleftrightarrow
                                  (P,E,h \vdash e : Class \ C \lor P,E,h \vdash e : NT)
  types\text{-}conf::prog \Rightarrow env \Rightarrow heap \Rightarrow expr\ list \Rightarrow ty\ list \Rightarrow bool
    (\langle -, -, - \vdash - [:]_{NT} \rightarrow [51, 51, 51] 50)
where
  P,E,h \vdash [] [:]_{NT} [] \longleftrightarrow True
  \mid P,E,h \vdash (e\#es) \mid : \mid_{NT} (T\#Ts) \longleftrightarrow
       (P,E,h \vdash e:_{NT} T \land P,E,h \vdash es [:]_{NT} Ts)
  \mid P,E,h \vdash es \mid : \mid_{NT} Ts \longleftrightarrow False
lemma wt-same-type-typeconf:
P,E,h \vdash e : T \Longrightarrow P,E,h \vdash e :_{NT} T
\mathbf{by}(cases\ T)\ auto
lemma wts-same-types-typesconf:
  P,E,h \vdash es [:] Ts \Longrightarrow types-conf P E h es Ts
proof(induct Ts arbitrary: es)
  case Nil thus ?case by (auto elim: WTrts.cases)
next
  case (Cons T' Ts')
  have wtes:P,E,h \vdash es [:] T' \# Ts'
```

```
and IH: \land es. \ P, E, h \vdash es \ [:] \ Ts' \Longrightarrow types-conf \ P \ E \ h \ es \ Ts' by fact+
  from wtes obtain e' es' where es:es = e' \# es' by (cases \ es) auto
  with wtes have wte':P,E,h \vdash e': T' and wtes':P,E,h \vdash es' [:] Ts'
   by simp-all
 from IH[OF wtes'] wte' es show ?case by (fastforce intro:wt-same-type-typeconf)
qed
lemma types-conf-smaller-types:
\implies \exists Ts''. P,E,h \vdash es [:] Ts'' \land P \vdash Ts'' [\leq] Ts
proof(induct Ts')
 case Nil thus ?case by simp
next
  case (Cons S Ss)
 have length: length \ es = length(S \# Ss)
   and types-conf:types-conf P E h es (S \# Ss)
   and subs:P \vdash (S\#Ss) \leq Ts
   and IH: \land es\ Ts. [length es = length\ Ss;\ types-conf\ P\ E\ h\ es\ Ss;\ P \vdash Ss\ [\leq]\ Ts]
   \implies \exists \ Ts''. \ P,E,h \vdash es \ [:] \ Ts'' \land P \vdash Ts'' \ [\leq] \ Ts \ \textbf{by} \ fact+
  from subs obtain U Us where Ts: Ts = U \# Us \ \mathbf{by}(cases \ Ts) auto
  from length obtain e' es' where es:es = e' \# es' by (cases \ es) auto
  with types-conf have type:P,E,h \vdash e':_{NT} S
   and type':types-conf P E h es' Ss by simp-all
  from subs Ts have subs': P \vdash Ss \leq U and sub: P \vdash S \leq U
   by (simp-all add:fun-of-def)
  from sub type obtain T'' where step:P,E,h \vdash e': T'' \land P \vdash T'' \leq U
   \mathbf{by}(cases\ S, auto, cases\ U, auto)
  from length es have length es' = length Ss by simp
  from IH[OF this type' subs'] obtain Ts"
   where P,E,h \vdash es' [:] Ts'' \land P \vdash Ts'' [\leq] Us
   by auto
  with step have P,E,h \vdash (e'\#es') [:] (T''\#Ts'') \land P \vdash (T''\#Ts'') [\leq] (U\#Us)
   by (auto simp:fun-of-def)
 with es Ts show ?case by blast
qed
```

 \mathbf{end}

23 Progress of Small Step Semantics

theory Progress imports Equivalence DefAss Conform begin

23.1 Some pre-definitions

```
lemma final-refE:
  [P,E,h \vdash e : Class \ C; final \ e;]
    \bigwedge r. \ e = ref \ r \Longrightarrow Q;
    \bigwedge r. \ e = Throw \ r \Longrightarrow Q \ ] \Longrightarrow Q
\mathbf{by} \ (simp \ add:final-def, auto, case-tac \ v, auto)
lemma finalRefE:
  \llbracket P, E, h \vdash e : T; is\text{-ref}T \ T; final \ e;
  e = null \Longrightarrow Q;
  \bigwedge r. \ e = ref \ r \Longrightarrow Q;
  \bigwedge r. \ e = Throw \ r \Longrightarrow Q \implies Q
apply (cases T)
\mathbf{apply} \ (simp \ add{:} is{-}refT{-}def) +
apply (simp add:final-def)
 apply (erule disjE)
 apply clarsimp
apply (erule \ exE)+
apply fastforce
apply (auto simp:final-def is-refT-def)
apply (case-tac \ v)
apply auto
done
lemma subE:
  \llbracket P \vdash T \leq T'; \text{ is-type } P T'; \text{ wf-prog wf-md } P;
     \llbracket T = T'; \forall C. \ T \neq Class \ C \ \rrbracket \Longrightarrow Q;
     \bigwedge^* C \ D. \ \llbracket \ T = Class \ C; \ T' = \overset{\text{\tiny "Class D}}{Class D}; \ P \vdash Path \ C \ to \ D \ unique \ \rrbracket \Longrightarrow Q;
     \bigwedge C. \llbracket T = NT; T' = Class \ C \ \rrbracket \Longrightarrow Q \ \rrbracket \Longrightarrow Q
apply(cases T')
apply auto
apply(drule-tac\ T = T\ in\ widen-Class)
apply auto
done
lemma assumes wf:wf-prog wf-md P
  and \textit{typeof}: P \vdash \textit{typeof}_h \ v = \textit{Some} \ T'
  and type:is-type P T
shows sub-casts: P \vdash T' \leq T \Longrightarrow \exists v'. P \vdash T \ casts \ v \ to \ v'
proof(erule \ subE)
  from type show is-type P T .
\mathbf{next}
  from wf show wf-prog wf-md P.
```

```
next
  assume T' = T and \forall C. T' \neq Class C
  thus \exists v'. P \vdash T \ casts \ v \ to \ v' \ \mathbf{by}(fastforce \ intro: casts-prim)
  \mathbf{fix} \ C \ D
  assume T':T' = Class\ C and T:T = Class\ D
    and path-unique:P \vdash Path \ C \ to \ D \ unique
  from T' typeof obtain a Cs where v:v=Ref(a,Cs) and last:last Cs=C
    by(auto dest!:typeof-Class-Subo)
  from last path-unique obtain Cs' where P \vdash Path last Cs to D via Cs'
    \mathbf{by}(auto\ simp:path-unique-def\ path-via-def)
  hence P \vdash Class \ D \ casts \ Ref(a, Cs) \ to \ Ref(a, Cs@_p Cs')
    by -(rule\ casts-ref, simp-all)
  with T v show \exists v'. P \vdash T casts v to v' by auto
next
  \mathbf{fix} \ C
  assume T' = NT and T:T = Class\ C
  with type of have v = Null by simp
  with T show \exists v'. P \vdash T casts v to v' by (fastforce intro:casts-null)
qed
     Derivation of new induction scheme for well typing:
inductive
   WTrt' :: [prog, env, heap, expr,
                                                        ] \Rightarrow bool
         (\langle -, -, - \vdash - : " - \rangle \quad [51, 51, 51] 50)
  and WTrts':: [prog,env,heap,expr\ list,ty\ list] \Rightarrow bool
         (\langle -, -, - \vdash - [:''] \rightarrow [51, 51, 51]50)
  for P :: prog
where
  is\text{-}class\ P\ C \Longrightarrow\ P,E,h \vdash new\ C : 'Class\ C
| [is\text{-}class\ P\ C;\ P,E,h \vdash e :'\ T;\ is\text{-}refT\ T] |
   \implies P, E, h \vdash Cast \ C \ e :' \ Class \ C
| [is\text{-}class \ P \ C; \ P,E,h \vdash e :' \ T; \ is\text{-}refT \ T] |
   \implies P,E,h \vdash (C)e : 'Class C
 P \vdash typeof_h \ v = Some \ T \Longrightarrow P, E, h \vdash Val \ v : 'T
 E \ V = Some \ T \implies P,E,h \vdash Var \ V : 'T
| [P,E,h \vdash e_1 : 'T_1; P,E,h \vdash e_2 : 'T_2;]
    case bop of Eq \Rightarrow T = Boolean
    \mid \mathit{Add} \Rightarrow \mathit{T}_1 = \mathit{Integer} \, \land \, \mathit{T}_2 = \mathit{Integer} \, \land \, \mathit{T} = \mathit{Integer} \, \, \|
   \implies P,E,h \vdash e_1 \ll bop \gg e_2 : T
| [P,E,h \vdash Var \ V : T; P,E,h \vdash e : T' \ N)/\#/N/s; P \vdash T' \leq T ]|
   \implies P,E,h \vdash V := e :' T
| \; \llbracket P,E,h \vdash e : ' \; \textit{Class} \; \; C; \; \textit{Cs} \neq \; \llbracket ]; \; P \vdash \; C \; \textit{has least} \; F : T \; \textit{via} \; \; \textit{Cs} \rrbracket
  \implies P,E,h \vdash e \cdot F\{Cs\} : 'T
 P,E,h \vdash e : 'NT \Longrightarrow P,E,h \vdash e \cdot F\{Cs\} : 'T
| [P,E,h \vdash e_1 : 'Class \ C; \ Cs \neq []; \ P \vdash C \ has \ least \ F:T \ via \ Cs;
    P,E,h \vdash e_2 :' T'; P \vdash T' \leq T
  \implies P,E,h \vdash e_1 \cdot F\{Cs\} := e_2 : 'T
| [P,E,h \vdash e_1:'NT; P,E,h \vdash e_2:'T'; P \vdash T' \leq T]|
```

```
\implies P,E,h \vdash e_1 \cdot F\{Cs\} := e_2 :' T
| [P,E,h \vdash e : 'Class \ C; \ P \vdash C \ has \ least \ M = (Ts,T,m) \ via \ Cs;
    P,E,h \vdash es \ [:'] \ Ts'; \ P \vdash Ts' \ [\leq] \ Ts \ ]
    \implies P,E,h \vdash e \cdot M(es) : 'T
| [P,E,h \vdash e :' Class C'; P \vdash Path C' to C unique;]
    P \vdash C \text{ has least } M = (Ts, T, m) \text{ via } Cs;
    P,E,h \vdash es [:'] Ts'; P \vdash Ts' [\leq] Ts 
    \implies P,E,h \vdash e \cdot (C::)M(es) : 'T
 \llbracket P,E,h \vdash e : 'NT; P,E,h \vdash es [:'] Ts \rrbracket \Longrightarrow P,E,h \vdash Call \ e \ Copt \ M \ es : 'T
  \llbracket P \vdash typeof_h \ v = Some \ T'; \ P, E(V \mapsto T), h \vdash e_2 : 'T_2; \ P \vdash T' \leq T; \ \textit{is-type} \ P \ T' 
   \implies P,E,h \vdash \{V:T:=Val\ v;\ e_2\}:'T_2
| [P,E(V \mapsto T),h \vdash e :'T'; \neg assigned V e; is-type P T ]|
   \implies P,E,h \vdash \{V:T; e\} : 'T'
 \llbracket P,E,h \vdash e_1 : 'T_1; P,E,h \vdash e_2 : 'T_2 \rrbracket \implies P,E,h \vdash e_1;;e_2 : 'T_2
\llbracket P,E,h \vdash e :' Boolean; P,E,h \vdash e_1:'T; P,E,h \vdash e_2:'T \rrbracket
   \implies P,E,h \vdash if (e) e_1 else e_2 :' T
| [P,E,h \vdash e :' Boolean; P,E,h \vdash c :' T]|
   \implies P,E,h \vdash while(e) \ c :' \ Void
| [P,E,h \vdash e :' T'; is\text{-ref}T T'] \implies P,E,h \vdash throw e :' T
\mid P,E,h \vdash [] [:'] []
| \parallel P,E,h \vdash e : 'T; P,E,h \vdash es [: 'Ts \parallel \implies P,E,h \vdash e\#es [: 'T\#Ts]
lemmas WTrt'-induct = WTrt'-WTrts'.induct [split-format (complete)]
  and WTrt'-inducts = WTrt'-WTrts'.inducts [split-format (complete)]
inductive-cases WTrt'-elim-cases[elim!]:
  P,E,h \vdash V := e : 'T
     ... and some easy consequences:
lemma [iff]: P,E,h \vdash e_1;;e_2:'T_2 = (\exists T_1. P,E,h \vdash e_1:'T_1 \land P,E,h \vdash e_2:'T_2)
apply(rule iffI)
apply (auto elim: WTrt'.cases intro!: WTrt'-WTrts'.intros)
done
lemma [iff]: P,E,h \vdash Val\ v :' T = (P \vdash typeof_h\ v = Some\ T)
apply(rule iffI)
apply (auto elim: WTrt'.cases intro!:WTrt'-WTrts'.intros)
done
lemma [iff]: P,E,h \vdash Var \ V :' \ T = (E \ V = Some \ T)
```

```
apply(rule\ iffI)
apply (auto elim: WTrt'.cases intro!:WTrt'-WTrts'.intros)
done
lemma wt-wt': P,E,h \vdash e : T \Longrightarrow P,E,h \vdash e : T
and wts-wts': P,E,h \vdash es [:] Ts \Longrightarrow P,E,h \vdash es [:'| Ts
proof (induct rule:WTrt-inducts)
 case (WTrtBlock E V T h e T')
 thus ?case
   apply(case-tac \ assigned \ V \ e)
   apply(auto intro: WTrt'-WTrts'.intros
         simp add:fun-upd-same assigned-def simp del:fun-upd-apply)
qed(auto intro: WTrt'-WTrts'.intros simp del:fun-upd-apply)
lemma wt'-wt: P,E,h \vdash e : 'T \Longrightarrow P,E,h \vdash e : T
and wts'-wts: P,E,h \vdash es [:] Ts \Longrightarrow P,E,h \vdash es [:] Ts
apply (induct rule: WTrt'-inducts)
apply (fastforce intro: WTrt-WTrts.intros)+
done
corollary wt'-iff-wt: (P,E,h \vdash e : 'T) = (P,E,h \vdash e : T)
by(blast intro:wt-wt' wt'-wt)
\textbf{corollary} \ \textit{wts'-iff-wts:} \ (P,E,h \vdash \textit{es} \ [:'] \ \textit{Ts}) = (P,E,h \vdash \textit{es} \ [:] \ \textit{Ts})
by(blast intro:wts-wts' wts'-wts)
lemmas WTrt-inducts2 = WTrt'-inducts [unfolded wt'-iff-wt wts'-iff-wts,
  case-names WTrtNew WTrtDynCast WTrtStaticCast WTrtVal WTrtVar WTrt-
BinOv
  WTrtLAss WTrtFAcc WTrtFAccNT WTrtFAss WTrtFAssNT WTrtCall WTrt-
StaticCall\ WTrtCallNT
  WTrtInitBlock\ WTrtBlock\ WTrtSeq\ WTrtCond\ WTrtWhile\ WTrtThrow
  WTrtNil WTrtCons, consumes 1]
23.2
         The theorem progress
lemma mdc-leq-dyn-type:
P,E,h \vdash e : T \Longrightarrow
 \forall C \ a \ Cs \ D \ S. \ T = Class \ C \land e = ref(a, Cs) \land h \ a = Some(D, S) \longrightarrow P \vdash D \preceq^*
```

```
and P,E,h \vdash es [:] Ts \Longrightarrow
 \forall \ T \ \mathit{Ts'} \ e \ es' \ \mathit{C} \ a \ \mathit{Cs} \ \mathit{D} \ \mathit{S}. \ \mathit{Ts} = \ \mathit{T\#Ts'} \ \land \ es = \ e\#es' \ \land
                          T = Class \ C \land e = ref(a, Cs) \land h \ a = Some(D, S)
proof (induct rule: WTrt-inducts2)
  case (WTrtVal\ h\ v\ T\ E)
  have type:P \vdash typeof_h \ v = Some \ T \ \mathbf{by} \ fact
  { fix C a Cs D S
   assume T = Class\ C and Val\ v = ref(a, Cs) and h\ a = Some(D, S)
   with type have Subobjs P D Cs and C = last Cs by (auto split:if-split-asm)
   hence P \vdash D \leq^* C by simp (rule Subobjs-subclass) }
 thus ?case by blast
qed auto
lemma appendPath-append-last:
 assumes notempty:Ds \neq []
 \mathbf{shows}(Cs @_p Ds) @_p [last Ds] = (Cs @_p Ds)
proof -
  have last Cs = hd Ds \Longrightarrow last (Cs @ tl Ds) = last Ds
  \mathbf{proof}(cases\ tl\ Ds = [])
   {f case} True
   assume last:last Cs = hd Ds
   with True notempty have Ds = [last \ Cs] by (fastforce \ dest:hd-Cons-tl)
   hence last Ds = last Cs by simp
   with True show ?thesis by simp
  \mathbf{next}
   case False
   assume last:last Cs = hd Ds
   from notempty False have last (tl Ds) = last Ds
     by -(drule\ hd\text{-}Cons\text{-}tl, drule\text{-}tac\ x=hd\ Ds\ in\ last\text{-}ConsR, simp)
   with False show ?thesis by simp
  qed
  thus ?thesis by(simp add:appendPath-def)
qed
theorem assumes wf: wwf\text{-}prog P
shows progress: P,E,h \vdash e : T \Longrightarrow
\langle e',s'\rangle)
and P,E,h \vdash es [:] Ts \Longrightarrow
(\land l. \parallel P \vdash h \lor; P \vdash E \lor; \mathcal{D}s \ es \ | \ dom \ l \mid; \neg \ finals \ es \parallel \implies \exists \ es' \ s'. \ P,E \vdash \langle es,(h,l) \rangle
[\rightarrow] \langle es', s' \rangle
```

```
proof (induct rule: WTrt-inducts2)
 case (WTrtNew\ C\ E\ h)
 show ?case
 proof cases
   assume \exists a. h a = None
   with WTrtNew show ?thesis
     by (fastforce del:exE intro!:RedNew simp:new-Addr-def)
   assume \neg(\exists a. h \ a = None)
   with WTrtNew show ?thesis
     by(fastforce intro:RedNewFail simp add:new-Addr-def)
 qed
next
  case (WTrtDynCast\ C\ E\ h\ e\ T)
 have wte: P,E,h \vdash e: T and refT: is-refT T and class: is-class P C
   and IH: \Lambda l. [P \vdash h \ \sqrt{}; P \vdash E \ \sqrt{}; \mathcal{D} \ e \ [dom \ l]; \neg \ final \ e]
              \implies \exists e' \ s'. \ P,E \vdash \langle e,(h,l) \rangle \rightarrow \langle e',s' \rangle
   and D: \mathcal{D} (Cast \ C \ e) \ | \ dom \ l |
   and hconf: P \vdash h \sqrt{\text{and } envconf}: P \vdash E \sqrt{\text{by } fact}+
  from D have De: \mathcal{D} e | dom l | by auto
 show ?case
 proof cases
   assume final e
   with wte refT show ?thesis
   proof (rule finalRefE)
     assume e = null thus ?case by(fastforce intro:RedDynCastNull)
   next
     fix r assume e = ref r
     then obtain a Cs where ref:e = ref(a, Cs) by (cases \ r) auto
     with wte obtain D S where h:h \ a = Some(D,S) by auto
     show ?thesis
     proof (cases P \vdash Path \ D \ to \ C \ unique)
       case True
       then obtain Cs' where path:P \vdash Path D \text{ to } C \text{ via } Cs'
         by (fastforce simp:path-via-def path-unique-def)
       then obtain Ds where Ds = appendPath Cs Cs' by simp
       with h path True ref show ?thesis by (fastforce intro:RedDynCast)
     next
       case False
       hence path-not-unique: \neg P \vdash Path \ D \ to \ C \ unique.
       show ?thesis
       proof(cases P \vdash Path last Cs to C unique)
         case True
         then obtain Cs' where P \vdash Path\ last\ Cs\ to\ C\ via\ Cs'
          by(auto simp:path-via-def path-unique-def)
         with True ref show ?thesis by(fastforce intro:RedStaticUpDynCast)
         case False
         hence path-not-unique':\neg P \vdash Path \ last \ Cs \ to \ C \ unique.
```

```
thus ?thesis
          \mathbf{proof}(\mathit{cases}\ C \notin \mathit{set}\ \mathit{Cs})
            case False
            then obtain Ds Ds' where Cs = Ds@[C]@Ds'
             by (auto simp:in-set-conv-decomp)
            with ref show ?thesis by(fastforce intro:RedStaticDownDynCast)
         \mathbf{next}
           {f case} True
            with path-not-unique path-not-unique' h ref
           show ?thesis by (fastforce intro:RedDynCastFail)
       qed
     qed
   next
      \mathbf{fix} \ r \ \mathbf{assume} \ e = \mathit{Throw} \ r
      thus ?thesis by(blast intro!:red-reds.DynCastThrow)
   qed
  next
   assume nf: \neg final e
   from IH[OF hconf envconf De nf] show ?thesis by (blast intro:DynCastRed)
  qed
\mathbf{next}
  case (WTrtStaticCast \ C \ E \ h \ e \ T)
  have wte: P,E,h \vdash e : T and refT: is-refT T and class: is-class P C
  and IH: \land l. \llbracket P \vdash h \ \sqrt{;} \ P \vdash E \ \sqrt{;} \ \mathcal{D} \ e \ \lfloor dom \ l \rfloor; \ \neg \ final \ e \rrbracket
                \implies \exists e' s'. P,E \vdash \langle e,(h,l) \rangle \rightarrow \langle e',s' \rangle
  and D: \mathcal{D}((C|e) \mid dom \mid l)
   and hconf: P \vdash h \sqrt{\text{and } envconf}: P \vdash E \sqrt{\text{by } fact}+
  from D have De: \mathcal{D} \ e \ |\ dom \ l\ |\ by auto
  show ?case
  proof cases
   assume final e
   with wte refT show ?thesis
   proof (rule finalRefE)
    assume e = null with class show ?case by(fastforce intro:RedStaticCastNull)
     fix r assume e = ref r
      then obtain a Cs where ref:e = ref(a, Cs) by (cases \ r) auto
      with wte wf have class:is-class P (last Cs)
       by (auto intro:Subobj-last-isClass split:if-split-asm)
      show ?thesis
      \mathbf{proof}(cases\ P \vdash (last\ Cs) \preceq^* C)
       case True
       with class wf obtain Cs' where P \vdash Path\ last\ Cs\ to\ C\ via\ Cs'
          by(fastforce dest:leq-implies-path)
        with True ref show ?thesis by(fastforce intro:RedStaticUpCast)
      next
       case False
       have notleq: \neg P \vdash last \ Cs \preceq^* C \ by fact
```

```
thus ?thesis
       \mathbf{proof}(\mathit{cases}\ C \notin \mathit{set}\ \mathit{Cs})
        case False
        then obtain Ds Ds' where Cs = Ds@[C]@Ds'
          by (auto simp:in-set-conv-decomp)
        with ref show ?thesis
          \mathbf{by}(fastforce\ intro:RedStaticDownCast)
       next
        case True
        with ref notleq show ?thesis by (fastforce intro:RedStaticCastFail)
     qed
   \mathbf{next}
     \mathbf{fix} \ r \ \mathbf{assume} \ e = \mathit{Throw} \ r
     \textbf{thus} \ ?thesis \ \textbf{by}(\textit{blast intro}!:red\textit{-}reds.StaticCastThrow)
   qed
 next
   assume nf: \neg final e
   from IH[OF hconf envconf De nf] show ?thesis by (blast intro:StaticCastRed)
 qed
next
  case WTrtVal thus ?case by(simp add:final-def)
next
  case WTrtVar thus ?case by(fastforce intro:RedVar simp:hyper-isin-def)
\mathbf{next}
  case (WTrtBinOp E h e1 T1 e2 T2 bop T')
 have bop:case bop of Eq \Rightarrow T' = Boolean
                   \mid Add \Rightarrow T1 = Integer \land T2 = Integer \land T' = Integer
   and wte1:P,E,h \vdash e1:T1 and wte2:P,E,h \vdash e2:T2 by fact+
 show ?case
 proof cases
   assume final e1
   thus ?thesis
   proof (rule finalE)
     fix v1 assume e1 [simp]:e1 = Val v1
     show ?thesis
     proof cases
       assume final e2
       thus ?thesis
       proof (rule finalE)
        fix v2 assume e2 [simp]: e2 = Val v2
        show ?thesis
        proof (cases bop)
          assume bop = Eq
          thus ?thesis using WTrtBinOp by(fastforce intro:RedBinOp)
        next
          assume Add:bop = Add
          with e1 e2 wte1 wte2 bop obtain i1 i2
            where v1 = Intg \ i1 and v2 = Intg \ i2
```

```
by (auto dest!:typeof-Integer)
          with Add obtain v where binop(bop,v1,v2) = Some \ v \ by \ simp
          with e1 e2 show ?thesis by (fastforce intro:RedBinOp)
        qed
      next
        fix \ a \ assume \ e2 = Throw \ a
        thus ?thesis by(auto intro:red-reds.BinOpThrow2)
      qed
     next
      assume ¬ final e2 with WTrtBinOp show ?thesis
        by simp (fast intro!:BinOpRed2)
     qed
   \mathbf{next}
    \mathbf{fix} \ r \ \mathbf{assume} \ e1 = Throw \ r
    thus ?thesis by simp (fast intro:red-reds.BinOpThrow1)
   qed
 next
   assume ¬ final e1 with WTrtBinOp show ?thesis
     by simp (fast intro:BinOpRed1)
 qed
next
 case (WTrtLAss\ E\ h\ V\ T\ e\ T')
 have wte:P,E,h \vdash e:T'
   and wtvar:P,E,h \vdash Var V : T
   and sub:P \vdash T' \leq T
   and envconf:P \vdash E \sqrt{\mathbf{by}} fact +
 from envconf wtvar have type:is-type P T \mathbf{by}(auto simp:envconf-def)
 show ?case
 proof cases
   assume fin:final\ e
   from fin show ?case
   proof (rule finalE)
    fix v assume e:e = Val v
     from sub type wf show ?case
     proof(rule \ subE)
      assume eq: T' = T and \forall C. T' \neq Class C
      hence P \vdash T casts v to v
        by simp(rule\ casts-prim)
      with wte wtvar eq e show ?thesis
        by(auto intro!:RedLAss)
     next
      fix CD
      assume T':T' = Class\ C and T:T = Class\ D
        and path-unique:P \vdash Path \ C \ to \ D \ unique
      from wte e T' obtain a Cs where ref: e = ref(a, Cs)
        and last:last \ Cs = C
        by (auto dest!:typeof-Class-Subo)
      from path-unique obtain Cs' where path-via:P \vdash Path \ C \ to \ D \ via \ Cs'
        by(auto simp:path-unique-def path-via-def)
```

```
with last have P \vdash Class\ D\ casts\ Ref(a,Cs)\ to\ Ref(a,Cs@_pCs')
        by (fastforce intro:casts-ref simp:path-via-def)
       with wte wtvar T ref show ?thesis
        by(auto intro!:RedLAss)
     next
      \mathbf{fix} \ C
      assume T':T'=NT and T:T=Class C
      with wte e have null: e = null by auto
      have P \vdash Class \ C \ casts \ Null \ to \ Null
        by -(rule\ casts-null)
       with wte wtvar T null show ?thesis
        \mathbf{by}(auto\ intro!:RedLAss)
     qed
   next
     \mathbf{fix} \ r \ \mathbf{assume} \ e = \mathit{Throw} \ r
     thus ?thesis by(fastforce intro:red-reds.LAssThrow)
   qed
 next
   assume \neg final e with WTrtLAss show ?thesis
     by simp (fast intro:LAssRed)
 ged
next
 case (WTrtFAcc \ E \ h \ e \ C \ Cs \ F \ T)
 have wte: P, E, h \vdash e: Class C
   and field: P \vdash C has least F:T via Cs
   and notemptyCs:Cs \neq []
   and hconf: P \vdash h \sqrt{\text{by } fact} +
 show ?case
 proof cases
   assume final e
   with wte show ?thesis
   proof (rule final-refE)
     fix r assume e: e = ref r
     then obtain a Cs' where ref:e = ref(a, Cs') by (cases \ r) auto
     with wto obtain D S where h:h a = Some(D,S) and suboD:Subobjs P D
Cs'
      and last: last Cs' = C
      by (fastforce split:if-split-asm)
     from field obtain Bs fs ms
      where class: class P (last Cs) = Some(Bs,fs,ms)
      and fs:map-of\ fs\ F=Some\ T
      by (fastforce simp:LeastFieldDecl-def FieldDecls-def)
     obtain Ds where Ds:Ds = Cs'@_p Cs by simp
     with notempty Cs class have class': class P (last Ds) = Some(Bs,fs,ms)
      by (drule-tac\ Cs'=Cs'\ in\ appendPath-last)\ simp
     from field suboD last Ds wf have subo:Subobjs P D Ds
     \mathbf{by}(fastforce\ intro:Subobjs-appendPath\ simp:LeastFieldDecl-def\ FieldDecls-def)
     with hconf h have P,h \vdash (D,S) \lor by (auto simp:hconf-def)
     with class' subo obtain fs' where S:(Ds,fs') \in S
```

```
and P,h \vdash fs' \ (:\leq) \ map\text{-}of \ fs
      apply (auto simp:oconf-def)
      apply (erule-tac x=Ds in allE)
      apply auto
      apply (erule-tac x=Ds in allE)
      apply (erule-tac x=fs' in allE)
      apply auto
      done
     with fs obtain v where fs' F = Some v
      by (fastforce simp:fconf-def)
     with h last Ds S
     have P,E \vdash \langle (ref (a,Cs')) \cdot F\{Cs\}, (h,l) \rangle \rightarrow \langle Val v,(h,l) \rangle
      by (fastforce intro:RedFAcc)
     with ref show ?thesis by blast
   next
     fix r assume e = Throw r
     thus ?thesis by(fastforce intro:red-reds.FAccThrow)
   qed
 next
   assume \neg final e with WTrtFAcc show ?thesis
     by(fastforce intro!:FAccRed)
  qed
\mathbf{next}
 case (WTrtFAccNT E h e F Cs T)
 show ?case
 proof cases
   assume final e - e is null or throw
   with WTrtFAccNT show ?thesis
     \mathbf{by}(fastforce\ simp:final-def\ intro:\ RedFAccNull\ red-reds.FAccThrow
               dest!:typeof-NT)
 next
   assume \neg final e - e reduces by IH
   with WTrtFAccNT show ?thesis by simp (fast intro:FAccRed)
  qed
next
 case (WTrtFAss E h e_1 C Cs F T e_2 T')
 have wte1:P,E,h \vdash e_1: Class C
   and wte2:P,E,h \vdash e_2:T'
   and field:P \vdash C \text{ has least } F:T \text{ via } Cs
   and notemptyCs:Cs \neq []
   and sub:P \vdash T' \leq T
   and hconf:P \vdash h \bigvee by fact +
  from field wf have type:is-type P T by(rule least-field-is-type)
 show ?case
 proof cases
   assume final e_1
   with wte1 show ?thesis
   proof (rule final-refE)
     fix r assume e1: e_1 = ref r
```

```
show ?thesis
proof cases
 assume final e_2
 thus ?thesis
 proof (rule finalE)
   fix v assume e2:e_2 = Val v
   from e1 obtain a Cs' where ref:e_1 = ref(a, Cs') by (cases r) auto
   with wte1 obtain D S where h:h a = Some(D,S)
     and suboD: Subobjs P D Cs' and last: last Cs' = C
     by (fastforce split:if-split-asm)
   from field obtain Bs fs ms
     where class: class P (last Cs) = Some(Bs,fs,ms)
     and fs:map-of\ fs\ F=Some\ T
     by (fastforce simp:LeastFieldDecl-def FieldDecls-def)
   obtain Ds where Ds:Ds = Cs'@_nCs by simp
   with notempty Cs class have class': class P (last Ds) = Some(Bs,fs,ms)
     by (drule-tac\ Cs'=Cs'\ in\ appendPath-last)\ simp
   from field suboD last Ds wf have subo:Subobjs P D Ds
     \mathbf{by}(fastforce\ intro:Subobjs-appendPath
       simp:LeastFieldDecl-def\ FieldDecls-def)
   with hconf h have P,h \vdash (D,S) \lor by (auto simp:hconf-def)
   with class' subo obtain fs' where S:(Ds,fs') \in S
     by (auto simp:oconf-def)
   from sub type wf show ?thesis
   proof(rule subE)
     assume eq: T' = T and \forall C. T' \neq Class C
     hence P \vdash T casts v to v
       by simp(rule\ casts-prim)
     with h last field Ds notemptyCs S eq
     have P,E \vdash \langle (ref (a,Cs')) \cdot F\{Cs\} := (Val \ v), (h,l) \rangle \rightarrow
       \langle Val\ v,\ (h(a\mapsto (D,insert\ (Ds,fs'(F\mapsto v))\ (S-\{(Ds,fs')\})),l)\rangle
       by (fastforce intro:RedFAss)
     with ref e2 show ?thesis by blast
   next
     fix C'D'
     assume T':T' = Class\ C' and T:T = Class\ D'
     and path-unique: P \vdash Path \ C' \ to \ D' \ unique
     from wte2\ e2\ T' obtain a'\ Cs'' where ref2:e_2=ref(a',Cs'')
      and last': last Cs'' = C'
       by (auto dest!:typeof-Class-Subo)
     from path-unique obtain Ds' where P \vdash Path C' to D' via Ds'
      \mathbf{by}(auto\ simp:path-via-def\ path-unique-def)
     with last'
     have casts: P \vdash Class\ D' casts Ref(a', Cs'') to Ref(a', Cs''@_pDs')
      by (fastforce intro:casts-ref simp:path-via-def)
     obtain v' where v' = Ref(a', Cs''@_pDs') by simp
     with h last field Ds notemptyCs S ref e2 ref2 T casts
     have P,E \vdash \langle (ref (a,Cs')) \cdot F\{Cs\} := (Val \ v), (h,l) \rangle \rightarrow
               \langle Val\ v', (h(a \mapsto (D, insert\ (Ds, fs'(F \mapsto v'))(S - \{(Ds, fs')\})), l) \rangle
```

```
by (fastforce intro:RedFAss)
          with ref e2 show ?thesis by blast
        next
          fix C'
          assume T':T'=NT and T:T=Class\ C'
          from e2 wte2 T' have null:e_2 = null by auto
          have casts:P \vdash Class C' casts Null to Null
            by -(rule\ casts-null)
          obtain v' where v' = Null by simp
          with h last field Ds notemptyCs S ref e2 null T casts
          have P,E \vdash \langle (ref (a,Cs')) \cdot F\{Cs\} := (Val \ v), (h,l) \rangle \rightarrow
                \langle Val\ v',\ (h(a\mapsto (D,insert\ (Ds,fs'(F\mapsto v'))\ (S-\{(Ds,fs')\})),l)\rangle
            by (fastforce intro:RedFAss)
          with ref e2 show ?thesis by blast
        qed
       next
        \mathbf{fix} \ r \ \mathbf{assume} \ e_2 = \mathit{Throw} \ r
        thus ?thesis using e1 by(fastforce intro:red-reds.FAssThrow2)
       qed
     next
       assume \neg final e_2 with WTrtFAss e_1 show ?thesis
        by simp (fast intro!:FAssRed2)
     qed
   next
     \mathbf{fix} \ r \ \mathbf{assume} \ e_1 = \mathit{Throw} \ r
     thus ?thesis by(fastforce intro:red-reds.FAssThrow1)
   qed
 next
   assume \neg final e_1 with WTrtFAss show ?thesis
     by simp (blast intro!:FAssRed1)
 qed
next
 case (WTrtFAssNT E h e_1 e_2 T' T F Cs)
 show ?case
 proof cases
   assume e1: final e_1 - e_1 is null or throw
   show ?thesis
   proof cases
     assume final e_2 - e_2 is Val or throw
     with WTrtFAssNT e1 show ?thesis
       \mathbf{by}(fastforce\ simp:final-def\ intro:RedFAssNull\ red-reds.FAssThrow1
                                    red-reds.FAssThrow2 dest!:typeof-NT)
   \mathbf{next}
     assume \neg final e_2 — e_2 reduces by IH
     with WTrtFAssNT e1 show ?thesis
       by (fastforce simp:final-def intro!:red-reds.FAssRed2 red-reds.FAssThrow1)
   qed
 next
   assume \neg final e_1 — e_1 reduces by IH
```

```
with WTrtFAssNT show ?thesis by (fastforce intro:FAssRed1)
  qed
next
  case (WTrtCall E h e C M Ts T pns body Cs es Ts')
  have wte: P,E,h \vdash e: Class C
   and method:P \vdash C \text{ has least } M = (\textit{Ts}, \textit{T}, \textit{pns}, \textit{body}) \text{ via } \textit{Cs}
   and wtes: P,E,h \vdash es [:] Ts'and sub: P \vdash Ts' [\leq] Ts
   and IHes: \bigwedge l. [P \vdash h \ \sqrt; P \vdash E \ \sqrt; \mathcal{D}s \ es \ \lfloor dom \ l \rfloor; \neg \ finals \ es]
             \implies \exists \ es' \ s'. \ P,E \vdash \langle es,(h,l) \rangle \ [\rightarrow] \ \langle es',s' \rangle
   and hconf: P \vdash h \sqrt{\text{and } envconf}: P \vdash E \sqrt{}
   and D: \mathcal{D}(e \cdot M(es)) \lfloor dom \ l \rfloor by fact +
  show ?case
  proof cases
   assume final:final e
   with wte show ?thesis
   proof (rule final-refE)
     fix r assume ref: e = ref r
     show ?thesis
     proof cases
       assume es: \exists vs. \ es = map \ Val \ vs
       from ref obtain a Cs' where ref:e = ref(a, Cs') by (cases r) auto
       with wte obtain D S where h:h \ a = Some(D,S) and suboD:Subobjs \ P \ D
Cs'
         and last: last Cs' = C
         by (fastforce split:if-split-asm)
       from wte ref h have subcls:P \vdash D \leq^* C by -(drule\ mdc\text{-}leg\text{-}dyn\text{-}type,auto)
       from method have has:P \vdash C has M = (Ts, T, pns, body) via Cs
           by(rule has-least-method-has-method)
       from es obtain vs where vs:es = map \ Val \ vs by auto
       obtain Cs" Ts" T' pns' body' where
         ass:P \vdash (D,Cs'@_pCs) \ selects \ M = (Ts'',T',pns',body') \ via \ Cs'' \land
          length Ts'' = length \ pns' \land length \ vs = length \ pns' \land P \vdash T' < T
     proof (cases \exists Ts'' T' pns' body' Ds. P \vdash D has least M = (Ts'', T', pns', body')
via Ds)
         {f case} True
         then obtain Ts" T' pns' body' Cs"
           where least: P \vdash D has least M = (Ts'', T', pns', body') via Cs''
         hence select:P \vdash (D,Cs'@_pCs) selects\ M = (Ts'',T',pns',body') via\ Cs''
           \mathbf{by}(rule\ dyn\text{-}unique)
         from subcls least wf has have Ts = Ts'' and leq:P \vdash T' \leq T
           \mathbf{by} -(drule leq-method-subtypes, simp-all, blast)+
         hence length Ts = length Ts'' by (simp add: list-all2-iff)
         with sub have length Ts' = length Ts'' by (simp \ add: list-all \ 2-iff)
         with WTrts-same-length [OF\ wtes]\ vs have length:length vs = length\ Ts''
           by simp
         from has-least-wf-mdecl[OF wf least]
         have lengthParams:length Ts'' = length pns' by (simp add:wf-mdecl-def)
         with length have length vs = length pns' by simp
```

```
with select lengthParams leq show ?thesis using that by blast
   next
     case False
     hence non-dyn:\forall Ts'' T' pns' body' Ds.
         \neg P \vdash D \text{ has least } M = (Ts'', T', pns', body') \text{ via } Ds \text{ by } auto
     from suboD last have path:P \vdash Path D to C via Cs'
       \mathbf{by}(simp\ add:path-via-def)
     from method have notempty: Cs \neq []
       \mathbf{by}(fastforce\ intro!:Subobjs-nonempty)
                 simp:LeastMethodDef-def\ MethodDefs-def)
     from suboD have class: is-class P D by(rule Subobjs-isClass)
     from suboD last have path:P \vdash Path D to C via Cs'
       by(simp add:path-via-def)
     with method wf have P \vdash D has M = (Ts, T, pns, body) via Cs'@_pCs
       \mathbf{by}(auto\ intro: has-path-has\ has-least-method-has-method)
     with class wf obtain Cs" Ts" T' pns' body' where overrider:
       P \vdash (D, Cs'@_pCs) \text{ has overrider } M = (Ts'', T', pns', body') \text{ via } Cs''
       by(auto dest!:class-wf simp:is-class-def wf-cdecl-def,blast)
     with non-dyn
     have select: P \vdash (D, Cs'@_nCs) selects M = (Ts'', T', pns', body') via Cs''
       \mathbf{by}-(rule dyn-ambiguous, simp-all)
     from notempty have eq:(Cs' @_p Cs) @_p [last Cs] = (Cs' @_p Cs)
       \mathbf{by}(rule\ appendPath-append-last)
     from method wf
     have P \vdash last \ Cs \ has \ least \ M = (Ts, T, pns, body) \ via \ [last \ Cs]
       by(auto dest:Subobj-last-isClass intro:Subobjs-Base subobjs-rel
              simp:LeastMethodDef-def MethodDefs-def)
     with notempty
     have P \vdash last(Cs'@_pCs) has least M = (Ts, T, pns, body) via [last Cs]
       by -(drule-tac\ Cs'=Cs'\ in\ appendPath-last,simp)
     with overrider wf eq
     have (Cs'', (Ts'', T', pns', body')) \in MinimalMethodDefs P D M
       and P,D \vdash Cs'' \sqsubseteq Cs'@_pCs
       by(auto simp:FinalOverriderMethodDef-def OverriderMethodDefs-def)
         (drule\ wf\text{-}sees\text{-}method\text{-}fun, auto)
     with subcls wf notempty has path have Ts = Ts'' and leq:P \vdash T' \leq T
       \mathbf{by} -(drule leg-methods-subtypes, simp-all, blast)+
     hence length Ts = length Ts'' by (simp add: list-all2-iff)
     with sub have length Ts' = length Ts'' by (simp add: list-all2-iff)
     with WTrts-same-length [OF\ wtes]\ vs have length:length vs = length\ Ts''
       by simp
     from select-method-wf-mdecl[OF wf select]
     have lengthParams: length Ts'' = length pns' by (simp add: wf-mdecl-def)
     with length have length vs = length pns' by simp
     with select lengthParams leq show ?thesis using that by blast
   qed
   obtain new-body where case T of Class D \Rightarrow
   new-body = (D)blocks(this\#pns', Class(last\ Cs'')\#Ts'', Ref(a, Cs'')\#vs, body')
|-\Rightarrow new-body = blocks(this\#pns', Class(last Cs'')\#Ts'', Ref(a, Cs'')\#vs, body')
```

```
\mathbf{by}(cases\ T)\ auto
       with h method last ass ref vs
         show ?thesis by (auto intro!:exI RedCall)
       assume \neg(\exists vs. es = map \ Val \ vs)
       hence not-all-Val: \neg(\forall e \in set \ es. \ \exists \ v. \ e = \ Val \ v)
         \mathbf{by}(simp\ add:ex\text{-}map\text{-}conv)
       let ?ves = takeWhile (\lambda e. \exists v. e = Val v) es
       let ?rest = drop While (\lambda e. \exists v. e = Val v) es
       let ?ex = hd ?rest let ?rst = tl ?rest
       from not-all-Val have nonempty: ?rest \neq [] by auto
       hence es: es = ?ves @ ?ex # ?rst by simp
       have \forall e \in set ?ves. \exists v. e = Val v by(fastforce dest:set-takeWhileD)
       then obtain vs where ves: ?ves = map \ Val \ vs
         using ex-map-conv by blast
       show ?thesis
       proof cases
         assume final ?ex
         moreover from nonempty have \neg(\exists v. ?ex = Val v)
          by(auto simp:neq-Nil-conv simp del:dropWhile-eq-Nil-conv)
            (simp\ add:drop\ While-eq-Cons-conv)
         ultimately obtain r' where ex-Throw: ?ex = Throw r'
           \mathbf{by}(fast\ elim!:finalE)
         show ?thesis using ref es ex-Throw ves
           \mathbf{by}(fastforce\ intro:red-reds.\ CallThrowParams)
       \mathbf{next}
         assume not-fin: \neg final ?ex
         have finals es = finals(?ves @ ?ex # ?rst) using es
          by(rule arg-cong)
         also have \dots = finals(?ex # ?rst) using ves by simp
         finally have finals es = finals(?ex # ?rst).
         hence \neg finals es using not-finals-ConsI[OF not-fin] by blast
         thus ?thesis using ref D IHes[OF hconf envconf]
           \mathbf{by}(fastforce\ intro!:CallParams)
       qed
     qed
   next
     \mathbf{fix} \ r \ \mathbf{assume} \ e = Throw \ r
     with WTrtCall.prems show ?thesis by(fast intro!:red-reds.CallThrowObj)
   qed
 next
   assume \neg final e
   with WTrtCall show ?thesis by simp (blast intro!: CallObj)
 qed
\mathbf{next}
  case (WTrtStaticCall E h e C' C M Ts T pns body Cs es Ts')
 have wte: P,E,h \vdash e: Class C'
   and path-unique:P \vdash Path \ C' \ to \ C \ unique
   and method:P \vdash C \ has \ least \ M = (Ts, T, pns, body) \ via \ Cs
```

```
and wtes: P,E,h \vdash es [:] Ts'and sub: P \vdash Ts' [\leq] Ts
 and IHes: \land l.
          \llbracket P \vdash h \ \sqrt{;} \ envconf \ P \ E; \ \mathcal{D}s \ es \ | \ dom \ l \ |; \ \neg \ finals \ es \ |
          \implies \exists es' s'. P,E \vdash \langle es,(h,l) \rangle [\rightarrow] \langle es',s' \rangle
 and hconf: P \vdash h \sqrt{\text{and } envconf: envconf} P E
 and D: \mathcal{D} (e \cdot (C::)M(es)) \mid dom \ l \mid \mathbf{by} \ fact +
show ?case
proof cases
 assume final:final e
 with wte show ?thesis
 proof (rule final-refE)
   fix r assume ref: e = ref r
   show ?thesis
   proof cases
     assume es: \exists vs. \ es = map \ Val \ vs
     from ref obtain a Cs' where ref:e = ref(a, Cs') by (cases r) auto
     with wte have last:last Cs' = C'
       by (fastforce split:if-split-asm)
     with path-unique obtain Cs"
       where path-via: P \vdash Path \ (last \ Cs') \ to \ C \ via \ Cs''
       by (auto simp add:path-via-def path-unique-def)
     obtain Ds where Ds:Ds = (Cs'@_pCs'')@_pCs by simp
     from es obtain vs where vs:es = map \ Val \ vs by auto
     from sub have length Ts' = length Ts by (simp add: list-all2-iff)
     with WTrts-same-length [OF\ wtes]\ vs have length:length vs = length\ Ts
       by simp
     from has-least-wf-mdecl[OF wf method]
     have lengthParams:length Ts = length pns by (simp add:wf-mdecl-def)
     with method last path-unique path-via Ds length ref vs show ?thesis
       by (auto intro!:exI RedStaticCall)
   next
     assume \neg(\exists vs. es = map \ Val \ vs)
     hence not-all-Val: \neg(\forall e \in set \ es. \ \exists \ v. \ e = \ Val \ v)
       \mathbf{by}(simp\ add:ex-map-conv)
     let ?ves = takeWhile (\lambda e. \exists v. e = Val v) es
     let ?rest = drop While (\lambda e. \exists v. e = Val v) es
     let ?ex = hd ?rest let ?rst = tl ?rest
     from not-all-Val have nonempty: ?rest \neq [] by auto
     hence es: es = ?ves @ ?ex # ?rst by simp
     have \forall e \in set ?ves. \exists v. e = Val v by(fastforce dest:set-takeWhileD)
     then obtain vs where ves: ?ves = map \ Val \ vs
       using ex-map-conv by blast
     show ?thesis
     proof cases
       assume final ?ex
       moreover from nonempty have \neg(\exists v. ?ex = Val v)
         bv(auto simp:neg-Nil-conv simp del:dropWhile-eg-Nil-conv)
           (simp add:dropWhile-eq-Cons-conv)
       ultimately obtain r' where ex-Throw: ?ex = Throw r'
```

```
by(fast elim!:finalE)
        show ?thesis using ref es ex-Throw ves
         \mathbf{by}(fastforce\ intro:red-reds.CallThrowParams)
        assume not-fin: ¬ final ?ex
        have finals es = finals(?ves @ ?ex # ?rst) using es
         \mathbf{by}(rule\ arg\text{-}cong)
        also have \dots = finals(?ex # ?rst) using ves by simp
        finally have finals es = finals(?ex # ?rst).
        hence ¬ finals es using not-finals-ConsI[OF not-fin] by blast
        thus ?thesis using ref D IHes[OF hconf envconf]
         \mathbf{by}(fastforce\ intro!:CallParams)
      qed
    qed
   next
    fix r assume e = Throw r
   with WTrtStaticCall.prems show ?thesis by(fast intro!:red-reds.CallThrowObj)
   qed
 next
   assume \neg final e
   with WTrtStaticCall show ?thesis by simp (blast intro!:CallObj)
 qed
\mathbf{next}
 case (WTrtCallNT E h e es Ts Copt M T)
 show ?case
 proof cases
   assume final e
   moreover
   { fix v assume e: e = Val v
    hence e = null using WTrtCallNT by simp
    have ?case
    proof cases
      assume finals es
      moreover
      { fix vs assume es = map \ Val \ vs
     with WTrtCallNT e have ?thesis by(fastforce intro: RedCallNull dest!:typeof-NT)
}
      moreover
      { fix vs \ a \ es' assume es = map \ Val \ vs @ Throw \ a \# \ es'
       with WTrtCallNT e have ?thesis by(fastforce intro: CallThrowParams) }
      ultimately show ?thesis by(fastforce simp:finals-def)
      assume \neg finals es — es reduces by IH
      with WTrtCallNT e show ?thesis by(fastforce intro: CallParams)
    qed
   }
   moreover
   { fix r assume e = Throw r
    with WTrtCallNT have ?case by(fastforce intro: CallThrowObj) }
```

```
ultimately show ?thesis by(fastforce simp:final-def)
  next
    assume \neg final e - e reduces by IH
    with WTrtCallNT show ?thesis by (fastforce intro:CallObj)
  ged
next
  case (WTrtInitBlock\ h\ v\ T'\ E\ V\ T\ e_2\ T_2)
  have IH2: \land l. \llbracket P \vdash h \ \checkmark; \ P \vdash E(V \mapsto T) \ \checkmark; \ \mathcal{D} \ e_2 \ \lfloor dom \ l \rfloor; \ \neg \ final \ e_2 \rrbracket \Longrightarrow \exists \ e' \ s'. \ P, E(V \mapsto T) \vdash \langle e_2, (h, l) \rangle \rightarrow \langle e', s' \rangle
    and typeof:P \vdash typeof_h \ v = Some \ T'
    and type:is-type P T and sub:P \vdash T' \leq T
    and hconf: P \vdash h \sqrt{\text{and } envconf}: P \vdash E \sqrt{}
    and D: \mathcal{D} \{V:T := Val\ v;\ e_2\} \lfloor dom\ l \rfloor by fact+
  from wf typeof type sub obtain v' where casts: P \vdash T casts v to v'
    \mathbf{by}(auto\ dest:sub-casts)
  show ?case
  proof cases
    assume fin:final\ e_2
    with casts show ?thesis
      \mathbf{by}(fastforce\ elim:finalE\ intro:RedInitBlock\ red-reds.InitBlockThrow)
    assume not-fin2: \neg final e_2
    from D have D2: \mathcal{D} \ e_2 \ |\ dom(l(V \mapsto v'))| by (auto simp:hyperset-defs)
    from enveconf type have P \vdash E(V \mapsto T) \checkmark by(auto simp:envconf-def)
    from IH2[OF hconf this D2 not-fin2]
    obtain h' l' e' where red2: P, E(V \mapsto T) \vdash \langle e_2, (h, l(V \mapsto v')) \rangle \rightarrow \langle e', (h', l') \rangle
    from red-lcl-incr[OF red2] have V \in dom \ l' by auto
    with red2 casts show ?thesis by(fastforce intro:InitBlockRed)
  qed
next
  case (WTrtBlock E V T h e T')
  have IH: \bigwedge l. [P \vdash h \ \sqrt{;} \ P \vdash E(V \mapsto T) \ \sqrt{;} \ \mathcal{D} \ e \ \lfloor dom \ l \rfloor; \neg \ final \ e]
                   \implies \exists e' \ s'. \ P, E(V \mapsto T) \vdash \langle e, (h, l) \rangle \rightarrow \langle e', s' \rangle
   and unass: \neg assigned V e and type:is-type P T
   and hconf: P \vdash h \sqrt{\text{and } envconf}: P \vdash E \sqrt{}
    and D: \mathcal{D} \{V:T; e\} \mid dom \ l \mid \mathbf{by} \ fact +
  show ?case
  proof cases
    assume final e
    thus ?thesis
    proof (rule finalE)
      fix v assume e = Val \ v \ \text{with type show ?thesis by}(fast \ intro:RedBlock)
    next
      \mathbf{fix} \ r \ \mathbf{assume} \ e = \mathit{Throw} \ r
      with type show ?thesis by(fast intro:red-reds.BlockThrow)
    ged
  next
    assume not-fin: \neg final e
```

```
from D have De: \mathcal{D} e |dom(l(V:=None))| by (simp\ add:hyperset-defs)
   from enveconf type have P \vdash E(V \mapsto T) \checkmark by(auto simp:envconf-def)
   from IH[OF hconf this De not-fin]
   obtain h' l' e' where red: P, E(V \mapsto T) \vdash \langle e, (h, l(V := None)) \rangle \rightarrow \langle e', (h', l') \rangle
     by auto
   show ?thesis
   proof (cases l' V)
     assume l' V = None
     with red unass show ?thesis by(blast intro: BlockRedNone)
     fix v assume l' V = Some v
     with red unass type show ?thesis by(blast intro: BlockRedSome)
   qed
 qed
next
 case (WTrtSeq E h e_1 T_1 e_2 T_2)
 show ?case
 proof cases
   assume final e_1
   thus ?thesis
     by(fast elim:finalE intro:intro:RedSeq red-reds.SeqThrow)
 \mathbf{next}
   assume \neg final e_1 with WTrtSeq show ?thesis
     by simp (blast intro:SeqRed)
 \mathbf{qed}
next
 case (WTrtCond E h e e_1 T e_2)
 have wt: P, E, h \vdash e: Boolean by fact
 show ?case
 proof cases
   assume final e
   thus ?thesis
   proof (rule finalE)
     fix v assume val: e = Val v
   then obtain b where v: v = Bool \ b using wt by (fastforce dest:typeof-Boolean)
     show ?thesis
     proof (cases b)
       case True with val v show ?thesis by(auto intro:RedCondT)
       case False with val v show ?thesis by(auto intro:RedCondF)
     qed
   next
     \mathbf{fix} \ r \ \mathbf{assume} \ e = Throw \ r
     thus ?thesis by(fast intro:red-reds.CondThrow)
   qed
 next
   assume \neg final e with WTrtCond show ?thesis
     by simp (fast intro: CondRed)
 qed
```

```
next
  case WTrtWhile show ?case by(fast intro:RedWhile)
next
  case (WTrtThrow\ E\ h\ e\ T'\ T)
 show ?case
  proof cases
    assume final e — Then e must be throw or null
    with WTrtThrow show ?thesis
      \mathbf{by}(fastforce\ simp:final-def\ is-refT-def
                   intro: red-reds.\ Throw\ Throw\ red-reds.\ Red\ Throw\ Null
                   dest!:typeof-NT typeof-Class-Subo)
 next
    assume \neg final e — Then e must reduce
    with WTrtThrow show ?thesis by simp (blast intro: ThrowRed)
  qed
next
  case WTrtNil thus ?case by simp
next
  case (WTrtCons\ E\ h\ e\ T\ es\ Ts)
 have IHe: \bigwedge l. [P \vdash h \ \sqrt{}; P \vdash E \ \sqrt{}; \mathcal{D} \ e \ | dom \ l \ |; \neg final \ e]
                \implies \exists e' s'. P,E \vdash \langle e,(h,l) \rangle \rightarrow \langle e',s' \rangle
   and IHes: \bigwedge l. [P \vdash h \ \sqrt; P \vdash E \ \sqrt; \mathcal{D}s \ es \ \lfloor dom \ l \rfloor; \neg \ finals \ es]
             \implies \exists \ es' \ s'. \ P,E \vdash \langle es,(h,l) \rangle \ [\rightarrow] \ \langle es',s' \rangle
   and hconf: P \vdash h \sqrt{\text{and } envconf}: P \vdash E \sqrt{}
    and D: \mathcal{D}s \ (e\#es) \mid dom \ l \mid
  and not-fins: \neg finals(e \# es) by fact+
  have De: \mathcal{D} \ e \ |\ dom\ l\ |\ and\ Des: \mathcal{D} s \ es \ (|\ dom\ l\ |\ \sqcup \mathcal{A} \ e)
    using D by auto
  show ?case
  proof cases
    assume final e
    thus ?thesis
    proof (rule finalE)
      \mathbf{fix} \ v \ \mathbf{assume} \ e : e = Val \ v
      hence Des': Ds es | dom \ l | using De Des by auto
      have not-fins-tl: ¬ finals es using not-fins e by simp
      show ?thesis using e IHes[OF hconf envconf Des' not-fins-tl]
        by (blast intro!:ListRed2)
    \mathbf{next}
      \mathbf{fix} \ r \ \mathbf{assume} \ e = Throw \ r
      hence False using not-fins by simp
      thus ?thesis ..
    qed
  next
    assume \neg final e
    from IHe[OF hconf envconf De this] show ?thesis by(fast intro!:ListRed1)
  ged
qed
```

24 Heap Extension

theory HeapExtension imports Progress begin

24.1 The Heap Extension

```
definition hext :: heap \Rightarrow heap \Rightarrow bool ( < - <math>\le - > [51,51] \ 50 ) where
  h \leq h' \equiv \forall a \ C \ S. \ h \ a = Some(C,S) \longrightarrow (\exists S'. \ h' \ a = Some(C,S'))
lemma hextI: \forall \ a \ C \ S. \ h \ a = Some(C,S) \longrightarrow (\exists \ S'. \ h' \ a = Some(C,S')) \Longrightarrow h \trianglelefteq
h'
apply (unfold hext-def)
apply auto
done
lemma hext\text{-}objD: \llbracket h \leq h'; h \ a = Some(C,S) \rrbracket \Longrightarrow \exists S'. \ h' \ a = Some(C,S')
apply (unfold hext-def)
apply (force)
done
lemma hext-refl [iff]: h \leq h
\mathbf{apply} \ (\mathit{rule} \ \mathit{hext} I)
apply (fast)
done
lemma hext-new [simp]: h \ a = None \Longrightarrow h \le h(a \mapsto x)
apply (rule hextI)
apply (auto simp:fun-upd-apply)
done
lemma hext-trans: \llbracket h \leq h'; h' \leq h'' \rrbracket \Longrightarrow h \leq h''
apply (rule hextI)
apply (fast dest: hext-objD)
done
```

```
lemma hext-upd-obj: h \ a = Some \ (C,S) \Longrightarrow h \le h(a \mapsto (C,S'))
apply (rule hextI)
apply (auto simp:fun-upd-apply)
done
24.2
           \triangleleft and preallocated
lemma preallocated-hext:
  \llbracket preallocated \ h; \ h \leq h' \rrbracket \Longrightarrow preallocated \ h'
by (simp add: preallocated-def hext-def)
lemmas preallocated-upd-obj = preallocated-hext [OF - hext-upd-obj]
lemmas preallocated-new = preallocated-hext [OF - hext-new]
24.3

        ≤ in Small- and BigStep

lemma red-hext-incr: P,E \vdash \langle e,(h,l) \rangle \rightarrow \langle e',(h',l') \rangle \implies h \leq h'
  and reds-hext-incr: P,E \vdash \langle es,(h,l) \rangle [\rightarrow] \langle es',(h',l') \rangle \implies h \leq h'
proof(induct rule:red-reds-inducts)
  case RedNew thus ?case
    by(fastforce dest:new-Addr-SomeD simp:hext-def split:if-splits)
  case RedFAss thus ?case by(simp add:hext-def split:if-splits)
qed simp-all
lemma step-hext-incr: P,E \vdash \langle e,s \rangle \rightarrow * \langle e',s' \rangle \implies hp \ s \leq hp \ s'
proof(induct rule:converse-rtrancl-induct2)
  case refl thus ?case by(rule hext-refl)
next
  case (step e s e^{\prime\prime} s'')
  have Red:((e, s), e'', s'') \in Red P E
    and hext:hp \ s^{\prime\prime} \leq hp \ s^{\prime} by fact+
  from Red have P,E \vdash \langle e,s \rangle \rightarrow \langle e'',s'' \rangle by simp
  hence hp \ s \trianglelefteq hp \ s''
    \mathbf{by}(\mathit{cases}\ s, \mathit{cases}\ s^{\prime\prime})(\mathit{auto}\ \mathit{dest:red-hext-incr})
  with hext show ?case by—(rule hext-trans)
qed
lemma steps-hext-incr: P,E \vdash \langle es,s \rangle \ [\rightarrow] * \langle es',s' \rangle \implies hp \ s \subseteq hp \ s'
proof(induct rule:converse-rtrancl-induct2)
  case refl thus ?case by(rule hext-refl)
```

next

```
case (step \ es \ s \ es'' \ s'')
  have Reds:((es, s), es'', s'') \in Reds P E
    and hext:hp \ s'' \le hp \ s' by fact+
  from Reds have P,E \vdash \langle es,s \rangle [\rightarrow] \langle es'',s'' \rangle by simp
  hence hp \ s \trianglelefteq hp \ s''
    \mathbf{by}(cases\ s, cases\ s'', auto\ dest:reds-hext-incr)
  with hext show ?case by—(rule hext-trans)
qed
lemma eval-hext: P,E \vdash \langle e,(h,l) \rangle \Rightarrow \langle e',(h',l') \rangle \Longrightarrow h \leq h'
and evals-hext: P,E \vdash \langle es,(h,l)\rangle \ [\Rightarrow] \ \langle es',(h',l')\rangle \Longrightarrow h \trianglelefteq h'
proof (induct rule:eval-evals-inducts)
  case New thus ?case
    by(fastforce intro!: hext-new intro:someI simp:new-Addr-def
                 split:if-split-asm simp del:fun-upd-apply)
next
  case FAss thus ?case
    by(auto simp:sym[THEN hext-upd-obj] simp del:fun-upd-apply
             elim!: hext-trans)
qed (auto elim!: hext-trans)
24.4
           \leq and conformance
lemma conf-hext: h \leq h' \Longrightarrow P, h \vdash v :\leq T \Longrightarrow P, h' \vdash v :\leq T
\mathbf{by}(\mathit{cases}\ T)(\mathit{induct}\ v, \mathit{auto}\ \mathit{dest:}\ \mathit{hext-objD}\ \mathit{split:if-split-asm}) +
lemma confs-hext: P,h \vdash vs [:<] Ts \Longrightarrow h \triangleleft h' \Longrightarrow P,h' \vdash vs [:<] Ts
by (erule list-all2-mono, erule conf-hext, assumption)
lemma fconf-hext: [P,h \vdash fs (:\leq) E; h \leq h'] \implies P,h' \vdash fs (:\leq) E
apply (unfold fconf-def)
apply (fast elim: conf-hext)
done
lemmas fconf-upd-obj = fconf-hext [OF - hext-upd-obj]
lemmas fconf-new = fconf-hext [OF - hext-new]
lemma oconf-hext: P,h \vdash obj \bigvee \Longrightarrow h \leq h' \Longrightarrow P,h' \vdash obj \bigvee
apply (auto simp:oconf-def)
apply (erule allE)
```

```
apply (erule-tac x=Cs in allE)
apply (erule-tac \ x=fs' \ in \ all E)
apply (fastforce elim:fconf-hext)
done
lemmas oconf-new = oconf-hext [OF - hext-new]
lemmas oconf-upd-obj = oconf-hext [OF - hext-upd-obj]
lemma hconf-new: [P \vdash h \lor ; h \ a = None; P, h \vdash obj \lor ] \implies P \vdash h(a \mapsto obj) \lor
by (unfold hconf-def) (auto intro: oconf-new preallocated-new)
lemma [P \vdash h \ \sqrt{;} \ h' = h(a \mapsto (C, Collect \ (init\text{-}obj \ P \ C))); \ h \ a = None; \ wf\text{-}prog
wf-md P
 \implies P \vdash h' \sqrt{}
apply (simp add:hconf-def oconf-def)
apply auto
    apply (rule-tac x=init-class-fieldmap P (last Cs) in exI)
    apply (rule init-obj.intros)
    apply assumption
   apply (erule init-obj.cases)
   apply clarsimp
   apply (erule init-obj.cases)
   apply clarsimp
  apply (erule-tac \ x=a \ in \ all E)
  apply clarsimp
  apply (erule init-obj.cases)
  apply simp
 apply (erule-tac x=a in allE)
 apply clarsimp
 apply (erule init-obj.cases)
 apply clarsimp
 apply (drule Subobj-last-isClass)
  apply simp
 apply (auto simp:is-class-def)
 apply (rule fconf-init-fields)
 apply auto
apply (erule-tac x=aa in allE)
apply (erule-tac x=aaa in allE)
apply (erule-tac x=b in allE)
apply clarsimp
apply (rotate-tac-1)
apply (erule-tac x=Cs in all E)
apply (erule-tac x=fs' in allE)
apply clarsimp thm fconf-new
apply (erule fconf-new)
apply simp
apply (rule preallocated-new)
```

```
apply simp-all
done
lemma hconf-upd-obj:
\llbracket P \vdash h\sqrt{;} \ h \ a = Some(C,S); \ P,h \vdash (C,S')\sqrt{\ } \rrbracket \Longrightarrow P \vdash h(a \mapsto (C,S'))\sqrt{\ }
by (unfold hconf-def) (auto intro: oconf-upd-obj preallocated-upd-obj)
lemma lconf-hext: [P,h \vdash l \ (:\leq)_w \ E; \ h \leq h'] \implies P,h' \vdash l \ (:\leq)_w \ E
apply (unfold lconf-def)
apply (fast elim: conf-hext)
done
         \leq in the runtime type system
24.5
lemma hext-typeof-mono: [\![ h \leq h'; P \vdash typeof_h \ v = Some \ T \ ]\!] \Longrightarrow P \vdash typeof_{h'}
v = Some T
apply(cases v)
   apply simp
  apply simp
 apply simp
apply simp
apply(fastforce simp:hext-def)
done
lemma WTrt-hext-mono: P,E,h \vdash e: T \Longrightarrow (\bigwedge h'. h \trianglelefteq h' \Longrightarrow P,E,h' \vdash e: T)
and WTrts-hext-mono: P,E,h \vdash es [:] Ts \Longrightarrow (\bigwedge h'. h \subseteq h' \Longrightarrow P,E,h' \vdash es [:] Ts)
apply(induct rule: WTrt-inducts)
apply(simp add: WTrtNew)
apply(fastforce intro: WTrtDynCast)
apply(fastforce intro: WTrtStaticCast)
apply(fastforce simp: WTrtVal dest:hext-typeof-mono)
\mathbf{apply}(simp\ add:\ WTrtVar)
apply(fastforce simp add: WTrtBinOp)
apply(fastforce simp add: WTrtLAss)
apply(fastforce simp: WTrtFAcc del:WTrt-WTrts.intros WTrt-elim-cases)
apply(simp add: WTrtFAccNT)
{\bf apply}(\textit{fastforce simp: WTrtFAss del:WTrt-WTrts.intros\ WTrt-elim-cases})
apply(fastforce simp: WTrtFAssNT del: WTrt-WTrts.intros WTrt-elim-cases)
{\bf apply}(\textit{fastforce simp: WTrtCall del: WTrt-WTrts.intros\ WTrt-elim-cases})
\mathbf{apply}(fastforce\ simp:\ WTrtStaticCall\ del:WTrt-WTrts.intros\ WTrt-elim-cases)
apply(fastforce simp: WTrtCallNT del:WTrt-WTrts.intros WTrt-elim-cases)
apply(fastforce)
```

```
apply(fastforce simp add: WTrtSeq)
apply(fastforce simp add: WTrtCond)
apply(fastforce simp add: WTrtWhile)
apply(fastforce simp add: WTrtThrow)
apply(simp add: WTrtNil)
apply(simp add: WTrtCons)
done
```

end

25 Well-formedness Constraints

 ${\bf theory}\ \mathit{CWellForm}\ \mathbf{imports}\ \mathit{WellForm}\ \mathit{WWellForm}\ \mathit{WellTypeRT}\ \mathit{DefAss}\ \mathbf{begin}$

```
definition wf-C-mdecl :: prog \Rightarrow cname \Rightarrow mdecl \Rightarrow bool where
  wf-C-mdecl P C \equiv \lambda(M, Ts, T, (pns, body)).
  length Ts = length pns \land
  distinct\ pns\ \land
  this \notin set \ pns \ \land
  P,[this \mapsto Class \ C,pns[\mapsto] \ Ts] \vdash body :: T \land
  \mathcal{D} \ body \ |\{this\} \cup set \ pns|
lemma wf-C-mdecl[simp]:
  wf-C-mdecl P C (M, Ts, T, pns, body) <math>\equiv
  (length Ts = length pns \land
  distinct\ pns\ \land
  this \notin set\ pns\ \land
  P,[this \mapsto Class \ C,pns[\mapsto] \ Ts] \ \vdash \ body :: \ T \ \land
  \mathcal{D} \ body \ |\{this\} \cup set \ pns|\}
\mathbf{by}(simp\ add:wf\text{-}C\text{-}mdecl\text{-}def)
abbreviation
  wf-C-prog :: prog \Rightarrow bool where
  wf-C-prog == wf-prog wf-C-mdecl
lemma wf-C-prog-wf-C-mdecl:
  \llbracket \ \textit{wf-C-prog}\ P;\ (\textit{C,Bs,fs,ms}) \in \textit{set}\ P;\ m \in \textit{set}\ \textit{ms}\ \rrbracket
  \implies wf-C-mdecl P C m
apply (simp add: wf-prog-def)
apply (simp add: wf-cdecl-def)
apply (erule\ conjE)+
apply (drule bspec, assumption)
```

end

26 Type Safety Proof

theory TypeSafe imports HeapExtension CWellForm begin

26.1 Basic preservation lemmas

```
lemma assumes wf:wwf-prog P and casts:P \vdash T casts v to v'
 and typeof:P \vdash typeof_h \ v = Some \ T' and leq:P \vdash T' \leq T
 shows casts-conf:P,h \vdash v':\leq T
proof -
 { fix a' C Cs S'
   assume leq:P \vdash Class\ (last\ Cs) \leq T and subo:Subobjs\ P\ C\ Cs
    and casts': P \vdash T \ casts \ Ref \ (a', Cs) \ to \ v' \ and \ h:h \ a' = Some(C, S')
   from subo wf have is-class P (last Cs) by(fastforce intro:Subobj-last-isClass)
   with leq wf obtain C' where T:T = Class C'
    and path-unique:P \vdash Path (last Cs) to C' unique
     by(auto dest:Class-widen)
   from path-unique obtain Cs' where path-via:P \vdash Path (last Cs) to C' via Cs'
     by(auto simp:path-via-def path-unique-def)
   with T path-unique casts' have v':v' = Ref(a', Cs@_pCs')
     by -(erule casts-to.cases, auto simp:path-unique-def path-via-def)
   from subo path-via wf have Subobjs P C (Cs@_pCs')
     and last (Cs@_pCs') = C'
     apply(auto intro:Subobjs-appendPath simp:path-via-def)
```

```
apply(drule-tac\ Cs=Cs'\ in\ Subobjs-nonempty)
      by(rule sym[OF appendPath-last])
    with T h v' have ?thesis by auto }
  with casts typeof wf typeof leq show ?thesis
   by(cases v, auto elim:casts-to.cases split:if-split-asm)
qed
theorem assumes wf:wwf-prog P
shows red-preserves-hconf:
  P,E \vdash \langle e,(h,l) \rangle \rightarrow \langle e',(h',l') \rangle \Longrightarrow (\bigwedge T. \llbracket P,E,h \vdash e : T; P \vdash h \checkmark \rrbracket \Longrightarrow P \vdash h'
and reds-preserves-hconf:
  P,E \vdash \langle es,(h,l) \rangle [\rightarrow] \langle es',(h',l') \rangle \Longrightarrow (\bigwedge Ts. \llbracket P,E,h \vdash es \llbracket : \rrbracket Ts; P \vdash h \checkmark \rrbracket \Longrightarrow
P \vdash h' \sqrt{)}
proof (induct rule:red-reds-inducts)
  case (RedNew\ h\ a\ h'\ C\ E\ l)
  have new: new-Addr h = Some \ a and h':h' = h(a \mapsto (C, Collect \ (init-obj \ P
(C)))
   and hconf: P \vdash h \sqrt{\text{and } wt\text{-}New: P, E, h} \vdash new C: T \text{ by } fact +
  from new have None: h \ a = None \ by(rule \ new-Addr-SomeD)
  with wf have oconf:P,h \vdash (C, Collect (init-obj P C)) \checkmark
   apply (auto simp:oconf-def)
   apply (rule-tac x=init-class-fieldmap P (last Cs) in exI)
   by (fastforce intro:init-obj.intros fconf-init-fields
                 elim: init-obj.cases dest!:Subobj-last-isClass simp:is-class-def)+
  thus ?case using h' None by(fast intro: hconf-new[OF hconf])
next
  case (RedFAss h a D S Cs' F T Cs v v' Ds fs' E l T')
  let ?fs' = fs'(F \mapsto v')
  let ?S' = insert (Ds, ?fs') (S - \{(Ds, fs')\})
  have ha:h \ a = Some(D,S) and hconf:P \vdash h \ \sqrt{}
   and field:P \vdash last Cs' has least F:T via Cs
   and casts:P \vdash T casts v to v'
   and Ds:Ds = Cs' @_p Cs and S:(Ds,fs') \in S
   and wte:P,E,h \vdash ref(a,Cs') \cdot F\{Cs\} := Val\ v:T' by fact+
  from wte have P \vdash last \ Cs' \ has \ least \ F:T' \ via \ Cs \ by \ (auto \ split:if-split-asm)
  with field have eq: T = T' by (rule sees-field-fun)
  with casts wte wf have conf:P,h \vdash v':\leq T'
   by(auto intro:casts-conf)
  from heave oconf:P,h \vdash (D,S) \checkmark by (fastforce simp:heanf-def)
  with S have suboD: Subobjs P D Ds by (fastforce simp:oconf-def)
  from field obtain Bs fs ms
   where subo:Subobjs P (last Cs') Cs
   and class: class P (last Cs) = Some(Bs,fs,ms)
   and map:map-of\ fs\ F=Some\ T
   \mathbf{by}\ (\mathit{auto}\ \mathit{simp} : \mathit{LeastFieldDecl-def}\ \mathit{FieldDecls-def})
```

```
from Ds subo have last:last Cs = last Ds
   \mathbf{by} (\textit{fastforce dest:} Subobjs\text{-}nonempty\ intro:} append Path\text{-}last\ simp: append Path\text{-}last)
  with class have classDs:class P (last Ds) = Some(Bs,fs,ms) by simp
  with S suboD oconf have P,h \vdash fs' (:\leq) map-of fs
    apply (auto simp:oconf-def)
    apply (erule allE)
    apply (erule-tac x=Ds in allE)
    apply (erule-tac x=fs' in allE)
    apply clarsimp
    done
  with map conf eq have fconf:P,h \vdash fs'(F \mapsto v') (:\leq) map-of fs
    by (simp add:fconf-def)
  from oconf have \forall Cs fs'. (Cs,fs') \in S \longrightarrow Subobjs P D Cs \land
                     (\exists fs \ Bs \ ms. \ class \ P \ (last \ Cs) = Some \ (Bs,fs,ms) \land 
                                  P,h \vdash fs' \ (:\leq) \ map-of \ fs)
    \mathbf{by}(simp\ add:oconf-def)
  with suboD classDs fconf
  have oconf': \forall Cs \ fs'. \ (Cs,fs') \in ?S' \longrightarrow Subobjs \ P \ D \ Cs \ \land
                     (\exists fs \ Bs \ ms. \ class \ P \ (last \ Cs) = Some \ (Bs,fs,ms) \land 
                                  P,h \vdash fs' \ (:\leq) \ map-of \ fs)
    by auto
  from oconf have all: \forall Cs. Subobjs \ P \ D \ Cs \longrightarrow (\exists !fs'. \ (Cs,fs') \in S)
    \mathbf{by}(simp\ add:oconf-def)
  with S have \forall Cs. Subobjs P D Cs \longrightarrow (\exists !fs'. (Cs,fs') \in ?S') by blast
  with oconf' have oconf':P,h \vdash (D,?S') \sqrt{\phantom{a}}
    by (simp add:oconf-def)
  with hconf ha show ?case by (rule hconf-upd-obj)
next
  case (CallObj E e h l e' h' l' Copt M es) thus ?case by (cases Copt) auto
\mathbf{next}
  case (CallParams E es h l es' h' l' v Copt M) thus ?case by (cases Copt) auto
  case (RedCallNull E Copt M vs h l) thus ?case by (cases Copt) auto
qed auto
theorem assumes wf:wwf-prog P
shows red-preserves-lconf:
  P,E \vdash \langle e,(h,l)\rangle \rightarrow \langle e',(h',l')\rangle \Longrightarrow
  (\bigwedge T. \parallel P, E, h \vdash e: T; P, h \vdash l \ (:\leq)_w \ E; P \vdash E \ \sqrt{\parallel} \implies P, h' \vdash l' \ (:\leq)_w \ E)
and reds-preserves-lconf:
  P,E \vdash \langle es,(h,l) \rangle \ [\rightarrow] \ \langle es',(h',l') \rangle \Longrightarrow
  (\bigwedge Ts. \llbracket P, E, h \vdash es[:] Ts; P, h \vdash l \ (:\leq)_w E; P \vdash E \checkmark \rrbracket \Longrightarrow P, h' \vdash l' \ (:\leq)_w E)
proof(induct rule:red-reds-inducts)
  case RedNew thus ?case
    by(fast intro:lconf-hext red-hext-incr[OF red-reds.RedNew])
```

```
next
  case (RedLAss\ E\ V\ T\ v\ v'\ h\ l\ T')
 have casts:P \vdash T casts v to v' and env:E V = Some T
   and wt:P,E,h \vdash V:=Val\ v:T' and lconf:P,h \vdash l\ (:\leq)_w\ E by fact+
 from wt env have eq: T = T' by auto
  with casts wt wf have conf:P,h \vdash v':\leq T'
   \mathbf{by}(auto\ intro: casts-conf)
  with lconf env eq show ?case
   by (simp del:fun-upd-apply)(erule lconf-upd,simp-all)
next
 case RedFAss thus ?case
   by(auto intro:lconf-hext red-hext-incr[OF red-reds.RedFAss]
        simp del:fun-upd-apply)
next
  case (BlockRedNone E V T e h l e' h' l' T')
 have red:P,E(V \mapsto T) \vdash \langle e,(h, l(V := None)) \rangle \rightarrow \langle e',(h', l') \rangle
   and IH: \bigwedge T''. [P,E(V \mapsto T),h \vdash e:T'';P,h \vdash l(V:=None) (:\leq)_w E(V \mapsto T)]
T);
                    envconf P(E(V \mapsto T))
                  \implies P,h' \vdash l' (:\leq)_w E(V \mapsto T)
   and lconf: P,h \vdash l \ (:\leq)_w \ E and wte: P,E,h \vdash \{V:T;\ e\}: T'
   and envconf:envconf P E by fact+
  from lconf-hext[OF lconf red-hext-incr[OF red]]
  have lconf':P,h'\vdash l\ (:\leq)_w\ E.
  from wte have wte':P,E(V\mapsto T),h\vdash e:T' and type:is-type\ P\ T
   by (auto elim: WTrt.cases)
  from envconf type have envconf':envconf P(E(V \mapsto T))
   by(auto simp:envconf-def)
  from lconf have P,h \vdash (l(V := None)) (:\leq)_w E(V \mapsto T)
   by (simp add:lconf-def fun-upd-apply)
  from IH[OF \ wte' \ this \ envconf'] have P,h' \vdash l' \ (:\leq)_w \ E(V \mapsto T).
  with lconf' show ?case
   by (fastforce simp:lconf-def fun-upd-apply split:if-split-asm)
  case (BlockRedSome E V T e h l e' h' l' v T')
 have red:P,E(V \mapsto T) \vdash \langle e,(h, l(V := None)) \rangle \rightarrow \langle e',(h', l') \rangle
    and IH: \bigwedge T''. [P, E(V \mapsto T), h \vdash e : T''; P, h \vdash l(V := None) (:\leq)_w E(V \mapsto T)
T);
                    envconf P(E(V \mapsto T))
                  \implies P,h' \vdash l' (:\leq)_w E(V \mapsto T)
   and lconf: P, h \vdash l \ (:\leq)_w \ E \ \text{and} \ wte: P, E, h \vdash \{V:T; \ e\} : T'
   and envconf:envconf P E by fact+
  from lconf-hext[OF\ lconf\ red-hext-incr[OF\ red]]
 have lconf':P,h'\vdash l\ (:\leq)_w\ E.
 from wte have wte':P,E(V\mapsto T),h\vdash e:T' and type:is-type\ P\ T
   by (auto elim: WTrt.cases)
  from envconf type have envconf': envconf P(E(V \mapsto T))
   by(auto simp:envconf-def)
 from lconf have P,h \vdash (l(V := None)) (:\leq)_w E(V \mapsto T)
```

```
by (simp add:lconf-def fun-upd-apply)
  from IH[OF wte' this envconf'] have P,h' \vdash l' (:\leq)_w E(V \mapsto T).
  with lconf' show ?case
   by (fastforce simp:lconf-def fun-upd-apply split:if-split-asm)
  case (InitBlockRed E V T e h l v' e' h' l' v'' v T')
  have red: P,E(V \mapsto T) \vdash \langle e, (h, l(V \mapsto v')) \rangle \rightarrow \langle e', (h', l') \rangle
     and IH: \bigwedge T''. [P, E(V \mapsto T), h \vdash e : T''; P, h \vdash l(V \mapsto v') (:\leq)_w E(V \mapsto v')]
T);
                      envconf P(E(V \mapsto T))
                  \implies P,h' \vdash l' \ (:\leq)_w \ E(V \mapsto T)
   and lconf:P,h \vdash l \ (:\leq)_w \ E \ \text{and} \ l':l' \ V = Some \ v''
   and wte:P,E,h \vdash \{V:T; V:=Val\ v;;\ e\}:T'
   and casts:P \vdash T \ casts \ v \ to \ v' and envconf:envconf \ P \ E \ by \ fact+
  from lconf-hext[OF lconf red-hext-incr[OF red]]
  have lconf':P,h' \vdash l (:<)_w E.
  from wte obtain T'' where wte':P,E(V\mapsto T),h\vdash e:T'
   and wt:P,E(V \mapsto T),h \vdash V:=Val\ v:T''
   and type:is-type P T
   by (auto elim: WTrt.cases)
  from envconf type have envconf':envconf P (E(V \mapsto T))
   \mathbf{by}(auto\ simp:envconf-def)
  from wt have T'' = T by auto
  with wf casts wt have P, h \vdash v' :\leq T
   by(auto intro:casts-conf)
  with lconf have P, h \vdash l(V \mapsto v') \ (:\leq)_w \ E(V \mapsto T)
   by -(rule\ lconf-upd2)
  from IH[OF \ wte' \ this \ envconf'] have P,h' \vdash l' \ (:\leq)_w \ E(V \mapsto T).
  with lconf' show ?case
   by (fastforce simp:lconf-def fun-upd-apply split:if-split-asm)
  case (CallObj E e h l e' h' l' Copt M es) thus ?case by (cases Copt) auto
next
  case (CallParams E es h l es' h' l' v Copt M) thus ?case by (cases Copt) auto
  case (RedCallNull E Copt M vs h l) thus ?case by (cases Copt) auto
qed auto
    Preservation of definite assignment more complex and requires a few
lemmas first.
lemma [iff]: \bigwedge A. \llbracket length Vs = length Ts; length vs = length Ts \rrbracket \Longrightarrow
\mathcal{D} (blocks (Vs, Ts, vs, e)) A = \mathcal{D} e (A \sqcup |set Vs|)
apply(induct Vs Ts vs e rule:blocks-old-induct)
apply(simp-all add:hyperset-defs)
done
lemma red-lA-incr: P,E \vdash \langle e,(h,l) \rangle \rightarrow \langle e',(h',l') \rangle \Longrightarrow |dom \ l| \sqcup \mathcal{A} \ e \sqsubseteq |dom \ l'|
```

```
\sqcup \mathcal{A} e'
 and reds-lA-incr: P,E \vdash \langle es,(h,l) \rangle [\rightarrow] \langle es',(h',l') \rangle \Longrightarrow \lfloor dom \ l \rfloor \sqcup As \ es \sqsubseteq \lfloor dom \rfloor 
l'| \sqcup \mathcal{A}s \ es'
 apply (induct rule:red-reds-inducts)
 apply (simp-all del: fun-upd-apply add: hyperset-defs)
 apply blast
 apply blast
 apply blast
 apply blast
  apply blast
  apply blast
  apply blast
  apply auto
  done
     Now preservation of definite assignment.
lemma assumes wf: wf-C-proq P
shows red-preserves-defass:
  P,E \vdash \langle e,(h,l) \rangle \rightarrow \langle e',(h',l') \rangle \Longrightarrow \mathcal{D} \ e \ |\ dom\ l\ | \Longrightarrow \mathcal{D} \ e' \ |\ dom\ l'\ |
and P,E \vdash \langle es,(h,l) \rangle [\rightarrow] \langle es',(h',l') \rangle \Longrightarrow \mathcal{D}s \ es \ \lfloor dom \ l \rfloor \Longrightarrow \mathcal{D}s \ es' \ \lfloor dom \ l' \rfloor
proof (induct rule:red-reds-inducts)
  case BinOpRed1 thus ?case by (auto elim!: D-mono[OF red-lA-incr])
\mathbf{next}
  case FAssRed1 thus ?case by (auto elim!: D-mono[OF red-lA-incr])
next
  case CallObj thus ?case by (auto elim!: Ds-mono[OF red-lA-incr])
next
  case (RedCall h l a C S Cs M Ts' T' pns' body' Ds Ts T pns body Cs'
                vs \ bs \ new-body \ E
  thus ?case
  apply (auto dest!:select-method-wf-mdecl[OF wf] simp:wf-mdecl-def elim!:D-mono')
    apply(cases T') apply auto
    by (rule-tac \ A=|\ insert\ this\ (set\ pns)|\ in\ D-mono, clarsimp\ simp: hyperset-defs,
          assumption)+
next
  case RedStaticCall thus ?case
    apply (auto dest!:has-least-wf-mdecl[OF wf] simp:wf-mdecl-def elim!:D-mono')
    \mathbf{by}(auto\ simp:hyperset-defs)
  case InitBlockRed thus ?case
   \mathbf{by}(\mathit{auto}\ \mathit{simp:hyperset-defs}\ \mathit{elim}!: D\text{-}\mathit{mono'}\ \mathit{simp}\ \mathit{del:fun-upd-apply})
  case BlockRedNone thus ?case
    by(auto simp:hyperset-defs elim!:D-mono' simp del:fun-upd-apply)
next
  case BlockRedSome thus ?case
    by (auto simp:hyperset-defs elim!:D-mono' simp del:fun-upd-apply)
next
```

```
case SeqRed thus ?case by (auto elim!: D-mono[OF red-lA-incr])
next
  case CondRed thus ?case by (auto elim!: D-mono[OF red-lA-incr])
  case RedWhile thus ?case by(auto simp:hyperset-defs elim!:D-mono')
next
  case ListRed1 thus ?case by (auto elim!: Ds-mono[OF red-lA-incr])
qed (auto simp:hyperset-defs)
     Combining conformance of heap and local variables:
definition sconf :: prog \Rightarrow env \Rightarrow state \Rightarrow bool ( <-,- \vdash - \checkmark > [51,51,51]50) where
  P,E \vdash s \checkmark \equiv let (h,l) = s \ in \ P \vdash h \checkmark \land P,h \vdash l \ (:\leq)_w \ E \land P \vdash E \checkmark
lemma red-preserves-sconf:
  \llbracket P,E \vdash \langle e,s \rangle \rightarrow \langle e',s' \rangle; \ P,E,hp \ s \vdash e : T; \ P,E \vdash s \ \sqrt{;} \ \textit{wwf-prog} \ P \rrbracket
\implies P,E \vdash s' \sqrt{}
by(fastforce intro:red-preserves-hconf red-preserves-lconf
             simp add:sconf-def)
lemma reds-preserves-sconf:
  \llbracket P,E \vdash \langle es,s \rangle [\rightarrow] \langle es',s' \rangle; P,E,hp \ s \vdash es \ [:] \ Ts; P,E \vdash s \ \sqrt{;} \ wwf-prog \ P \rrbracket
\implies P,E \vdash s' \sqrt{}
\mathbf{by}(fastforce\ intro:reds-preserves-hconf\ reds-preserves-lconf
             simp add:sconf-def)
26.2
           Subject reduction
lemma wt-blocks:
 \bigwedge E. \llbracket length \ Vs = length \ Ts; length \ vs = length \ Ts;
         \forall T' \in set \ Ts. \ is-type \ P \ T' \implies
        (P,E,h \vdash blocks(Vs,Ts,vs,e) : T) =
  (P,E(Vs[\mapsto]Ts),h \vdash e:T \land
  (\exists \textit{Ts'}. \textit{map} (P \vdash \textit{typeof}_h) \textit{vs} = \textit{map Some Ts'} \land P \vdash \textit{Ts'} [\leq] \textit{Ts}))
proof(induct Vs Ts vs e rule:blocks-old-induct)
  \mathbf{case} \ (5 \ V \ Vs \ T' \ Ts \ v \ vs \ e)
  have length: length (V \# Vs) = length (T' \# Ts) length (v \# vs) = length (T' \# Ts)
    and type: \forall S \in set (T' \# Ts). is-type P S
    and IH: \Lambda E. [length Vs = length Ts; length vs = length Ts;
                    \forall S \in set \ Ts. \ is-type \ P \ S
     \implies (P, E, h \vdash blocks (Vs, Ts, vs, e) : T) =
          (P,E(Vs \mapsto Ts),h \vdash e: T \land
            (\exists \ \mathit{Ts'}. \ \mathit{map} \ P \vdash \mathit{typeof}_h \ \mathit{vs} = \mathit{map} \ \mathit{Some} \ \mathit{Ts'} \land P \vdash \mathit{Ts'} \, [\leq] \ \mathit{Ts})) \ \mathbf{by} \ \mathit{fact} +
  from type have type T': is-type P T' and type Y': Y \in S set Y is type Y Y
    by simp-all
  from length have length Vs = length Ts length vs = length Ts
```

by simp-all

```
from IH[OF this type'] have eq:(P,E(V \mapsto T'),h \vdash blocks(Vs,Ts,vs,e):T) =
  (P,E(V \mapsto T', Vs [\mapsto] Ts), h \vdash e : T \land
   (\exists \ \mathit{Ts'}. \ \mathit{map} \ P \vdash \ \mathit{typeof}_h \ \mathit{vs} = \ \mathit{map} \ \mathit{Some} \ \mathit{Ts'} \land P \vdash \ \mathit{Ts'} \ [\leq] \ \mathit{Ts})) \ .
  show ?case
  proof(rule iffI)
    assume P,E,h \vdash blocks (V \# Vs, T' \# Ts, v \# vs, e) : T
    then have wt:P,E(V \mapsto T'),h \vdash V:=Val\ v:T'
       and blocks:P,E(V \mapsto T'),h \vdash blocks(Vs,Ts,vs,e):T by auto
    from blocks eq obtain Ts' where wte:P,E(V \mapsto T', Vs [\mapsto] Ts),h \vdash e:T
       and typeof:map \ P \vdash typeof_h \ vs = map \ Some \ Ts' \ and \ subs:P \vdash Ts' \ [\leq] \ Ts
    from wt obtain T'' where P \vdash typeof_h \ v = Some \ T'' and P \vdash T'' \le T'
       by auto
    with wte typeof subs
    show P,E(V \# Vs \mapsto T' \# Ts), h \vdash e : T \land
            (\exists Ts'. map P \vdash typeof_h (v \# vs) = map Some Ts' \land P \vdash Ts' [\leq] (T' \# vs)
Ts))
      by auto
  next
    assume P, E(V \# Vs [\mapsto] T' \# Ts), h \vdash e : T \land
      (\exists \textit{Ts'}. \textit{map } P \vdash \textit{typeof}_h (\textit{v \# vs}) = \textit{map Some Ts'} \land P \vdash \textit{Ts'} [\leq] (\textit{T' \# Ts}))
    then obtain Ts' where wte:P,E(V \# Vs [\mapsto] T' \# Ts),h \vdash e:T
       and typeof:map \ P \vdash typeof_h \ (v \# vs) = map \ Some \ Ts'
       and subs:P \vdash Ts' [\leq] (T' \# Ts) by auto
    from subs obtain U Us where Ts':Ts' = U \# Us by (cases Ts') auto
    \mathbf{with} \ \mathit{wte} \ \mathit{typeof} \ \mathit{subs} \ \mathit{eq} \ \mathbf{have} \ \mathit{blocks}: P, E(\mathit{V} \mapsto \mathit{T'}), h \vdash \mathit{blocks} \ (\mathit{Vs}, \mathit{Ts}, \mathit{vs}, e) : \mathit{T}
    from Ts' typeof subs have P \vdash typeof_h \ v = Some \ U
      and P \vdash U \leq T' by (auto simp:fun-of-def)
    hence wtval:P,E(V \mapsto T'),h \vdash V:=Val\ v:T' by auto
    with blocks type T' show P, E, h \vdash blocks (V \# Vs, T' \# Ts, v \# vs, e) : T by auto
  qed
qed auto
theorem assumes wf: wf\text{-}C\text{-}prog\ P
shows subject-reduction2: P,E \vdash \langle e,(h,l) \rangle \rightarrow \langle e',(h',l') \rangle \Longrightarrow
  (\bigwedge T. \ \llbracket \ P,E \vdash (h,l) \ \sqrt{;} \ P,E,h \vdash e : T \ \rrbracket \Longrightarrow P,E,h' \vdash e' :_{NT} \ T)
and subjects-reduction2: P,E \vdash \langle es,(h,l) \rangle \ [\rightarrow] \ \langle es',(h',l') \rangle \Longrightarrow
  (\bigwedge Ts. \llbracket P,E \vdash (h,l) \ \sqrt{;} \ P,E,h \vdash es \ [:] \ Ts \ \rrbracket \Longrightarrow types-conf \ P \ E \ h' \ es' \ Ts)
proof (induct rule:red-reds-inducts)
  case (RedNew\ h\ a\ h'\ C\ E\ l)
  have new:new-Addr h = Some \ a \ and \ h':h' = h(a \mapsto (C, Collect \ (init-obj \ P \ C)))
    and wt:P,E,h \vdash new C: T by fact+
  from wt have eq: T = Class \ C and class: is-class \ P \ C by auto
```

```
from class have subo: Subobjs P \ C \ [C] by (rule Subobjs-Base)
 \mathbf{from}\ h'\ \mathbf{have}\ h'\ a = Some(C,\ Collect\ (init\text{-}obj\ P\ C))\ \mathbf{by}(simp\ add:map\text{-}upd\text{-}Some\text{-}unfold)
 with subo have P,E,h' \vdash ref(a,[C]) : Class C by auto
  with eq show ?case by auto
next
  case (RedNewFail\ h\ E\ C\ l)
 have sconf:P,E \vdash (h, l) \checkmark by fact
  from wf have is-class P OutOfMemory
   by (fastforce intro:is-class-xcpt wf-prog-wwf-prog)
 \mathbf{hence}\ preallocated\ h \Longrightarrow P \vdash typeof_h\ (Ref\ (addr-of\text{-}sys\text{-}xcpt\ OutOfMemory, [OutOfMemory]))
= Some(Class\ OutOfMemory)
   by (auto elim: preallocatedE dest!:preallocatedD Subobjs-Base)
  with sconf have P,E,h \vdash THROW\ OutOfMemory: T\ by(auto\ simp:sconf-def
hconf-def)
 thus ?case by (fastforce intro:wt-same-type-typeconf)
  case (StaticCastRed E e h l e' h' l' C)
 have wt:P,E,h \vdash (C)e:T
   and IH: \bigwedge T'. \llbracket P,E \vdash (h,l) \ \sqrt{;} \ P,E,h \vdash e : T' \rrbracket
          \implies P,E,h' \vdash e' :_{NT} T'
   and sconf:P,E \vdash (h, l) \sqrt{\mathbf{by}} \ fact +
  from wt obtain T' where wte:P,E,h \vdash e: T' and isref:is-refT T'
   and class: is-class P C and T:T = Class C
   by auto
  from isref have P, E, h' \vdash (C)e' : Class C
  proof(rule \ refTE)
   assume T' = NT
   with IH[OF sconf wte] isref class show ?thesis by auto
  next
   fix D assume T' = Class D
   with IH[OF sconf wte] isref class show ?thesis by auto
  qed
  with T show ?case by (fastforce intro:wt-same-type-typeconf)
next
  {f case}\ RedStaticCastNull
 thus ?case by (auto elim: WTrt.cases)
next
  case (RedStaticUpCast Cs C Cs' Ds E a h l)
 have wt:P,E,h \vdash (C)ref(a,Cs):T
   and path-via:P \vdash Path\ last\ Cs\ to\ C\ via\ Cs'
   and Ds:Ds = Cs @_p Cs' by fact +
  \mathbf{from} \ wt \ \mathbf{have} \ typeof : P \vdash typeof_h \ (Ref(a,Cs)) = Some(Class(last \ Cs))
   and class: is-class P C and T: T = Class C
   by auto
  from typeof obtain D S where h:h a = Some(D,S) and subo:Subobjs P D Cs
   by (auto dest:typeof-Class-Subo split:if-split-asm)
  from path-via subo wf Ds have Subobjs P D Ds and last:last Ds = C
  by (auto intro!: Subobjs-appendPath appendPath-last[THEN sym] Subobjs-nonempty
          simp:path-via-def)
```

```
with h have P,E,h \vdash ref(a,Ds) : Class \ C by auto
 with T show ?case by (fastforce intro:wt-same-type-typeconf)
next
 case (RedStaticDownCast E C a Cs Cs' h l)
 have P,E,h \vdash (C)ref(a,Cs@[C]@Cs'): T by fact
 hence typeof: P \vdash typeof_h (Ref(a, Cs@[C]@Cs')) = Some(Class(last(Cs@[C]@Cs')))
   and class: is-class P C and T: T = Class C
 from type of obtain D S where h:h a = Some(D,S)
   and subo:Subobjs\ P\ D\ (Cs@[C]@Cs')
   by (auto dest:typeof-Class-Subo split:if-split-asm)
 from subo have Subobjs P D (Cs@[C]) by(fastforce intro:appendSubobj)
 with h have P,E,h \vdash ref(a,Cs@[C]) : Class C by auto
 with T show ?case by (fastforce intro:wt-same-type-typeconf)
next
 case (RedStaticCastFail C Cs E a h l)
 have sconf:P,E \vdash (h, l) \checkmark by fact
 from wf have is-class P ClassCast
   by (fastforce intro:is-class-xcpt wf-prog-wwf-prog)
 hence preallocated h \Longrightarrow P \vdash typeof_h (Ref (addr-of-sys-xcpt ClassCast, [ClassCast]))
= Some(Class\ ClassCast)
   by (auto elim: preallocatedE dest!:preallocatedD Subobjs-Base)
 with sconf have P,E,h \vdash THROW\ ClassCast: T\ by(auto\ simp:sconf-def\ hconf-def)
 thus ?case by (fastforce intro:wt-same-type-typeconf)
next
 case (DynCastRed\ E\ e\ h\ l\ e'\ h'\ l'\ C)
 have wt:P,E,h \vdash Cast \ C \ e : T
   and IH: \bigwedge T'. \llbracket P, E \vdash (h, l) \ \sqrt{;} \ P, E, h \vdash e : T' \rrbracket
          \implies P,E,h' \vdash e' :_{NT} T'
   and sconf:P,E \vdash (h,l) \checkmark by fact+
 from wt obtain T' where wte:P,E,h \vdash e: T' and isref:is-refT T'
   and class: is-class P C and T: T = Class C
   by auto
 from isref have P, E, h' \vdash Cast \ C \ e' : Class \ C
 proof(rule \ refTE)
   assume T' = NT
   with IH[OF sconf wte] isref class show ?thesis by auto
   fix D assume T' = Class D
   with IH[OF sconf wte] isref class show ?thesis by auto
 qed
 with T show ?case by (fastforce intro:wt-same-type-typeconf)
next
 case RedDynCastNull
 thus ?case by (auto elim: WTrt.cases)
next
 case (RedDynCast h l a D S C Cs' E Cs)
 have wt:P,E,h \vdash Cast \ C \ (ref \ (a,Cs)) : T
   and path-via:P \vdash Path D to C via Cs'
```

```
and hp:hp(h,l) \ a = Some(D,S) by fact+
  from wt have typeof:P \vdash typeof_h (Ref(a,Cs)) = Some(Class(last Cs))
   and class: is-class P C and T: T = Class C
   by auto
  from typeof hp have subo:Subobis P D Cs
   by (auto dest:typeof-Class-Subo split:if-split-asm)
  from path-via subo have Subobjs P D Cs'
   and last:last\ Cs'=C by (auto simp:path-via-def)
  with hp have P,E,h \vdash ref(a,Cs') : Class C by auto
  with T show ?case by (fastforce intro:wt-same-type-typeconf)
next
  case (RedStaticUpDynCast\ Cs\ C\ Cs'\ Ds\ E\ a\ h\ l)
 have wt:P,E,h \vdash Cast \ C \ (ref \ (a,Cs)) : T
   and path-via:P \vdash Path \ last \ Cs \ to \ C \ via \ Cs'
   and Ds:Ds = Cs @_p Cs' by fact +
 from wt have typeof: P \vdash typeof_h (Ref(a, Cs)) = Some(Class(last Cs))
   and class: is-class P C and T: T = Class C
   by auto
  from type of obtain D S where h:h a = Some(D,S) and subo:Subobjs P D Cs
   by (auto dest:typeof-Class-Subo split:if-split-asm)
  from path-via subo wf Ds have Subobjs P D Ds and last:last Ds = C
  \mathbf{by}(auto\ intro!:Subobjs-appendPath\ appendPath-last[THEN\ sym]\ Subobjs-nonempty
          simp:path-via-def)
  with h have P,E,h \vdash ref(a,Ds) : Class \ C by auto
  with T show ?case by (fastforce intro:wt-same-type-typeconf)
next
  case (RedStaticDownDynCast \ E \ C \ a \ Cs \ Cs' \ h \ l)
 have P,E,h \vdash Cast \ C \ (ref \ (a,Cs@[C]@Cs')) : T \ by fact
 hence typeof: P \vdash typeof_h (Ref(a, Cs@[C]@Cs')) = Some(Class(last(Cs@[C]@Cs')))
   and class: is-class P C and T: T = Class C
   by auto
 from type of obtain D S where h:h a = Some(D,S)
   and subo:Subobjs\ P\ D\ (Cs@[C]@Cs')
   by (auto dest:typeof-Class-Subo split:if-split-asm)
 from subo have Subobjs P D (Cs@[C]) by(fastforce\ intro:appendSubobj)
  with h have P,E,h \vdash ref(a,Cs@[C]) : Class C by auto
  with T show ?case by (fastforce intro:wt-same-type-typeconf)
  case RedDynCastFail thus ?case by fastforce
next
  case (BinOpRed1 \ E \ e \ h \ l \ e' \ h' \ l' \ bop \ e_2)
  have red:P,E \vdash \langle e,(h, l) \rangle \rightarrow \langle e',(h', l') \rangle
   and wt:P,E,h \vdash e \ll bop \gg e_2:T
   and IH: \bigwedge T'. \llbracket P,E \vdash (h,l) \ \sqrt{;} \ P,E,h \vdash e : T' \rrbracket
          \implies P,E,h' \vdash e' :_{NT} T'
   and sconf:P,E \vdash (h,l) \lor by fact+
  from wt obtain T_1 T_2 where wte:P,E,h \vdash e:T_1 and wte2:P,E,h \vdash e_2:T_2
   and binop:case bop of Eq \Rightarrow T = Boolean
                     \mid Add \Rightarrow T_1 = Integer \land T_2 = Integer \land T = Integer
```

```
by auto
 from WTrt-hext-mono[OF wte2 red-hext-incr[OF red]] have wte2':P,E,h' \vdash e<sub>2</sub>:
 have P, E, h' \vdash e' \ll bop \gg e_2 : T
 proof (cases bop)
   assume Eq:bop = Eq
   from IH[OF\ sconf\ wte] obtain T' where P,E,h' \vdash e' : T'
     by (cases T_1) auto
   with wte2' binop Eq show ?thesis by(cases bop) auto
  \mathbf{next}
   assume Add:bop = Add
   with binop have Intg: T_1 = Integer by simp
   with IH[OF\ sconf\ wte] have P,E,h'\vdash e':Integer\ by\ simp
   with wte2' binop Add show ?thesis by(cases bop) auto
  qed
  with binop show ?case by(cases bop) simp-all
next
  case (BinOpRed2 \ E \ e \ h \ l \ e' \ h' \ l' \ v_1 \ bop)
 have red:P,E \vdash \langle e,(h,l)\rangle \rightarrow \langle e',(h',l')\rangle
   and wt:P,E,h \vdash Val \ v_1 \ "bop" \ e:T
   and IH: \bigwedge T'. \llbracket P,E \vdash (h,l) \ \sqrt{;} \ P,E,h \vdash e : T' \rrbracket
           \implies P,E,h' \vdash e' :_{NT} T'
   and sconf:P,E \vdash (h,l) \lor by fact+
 from wt obtain T_1 T_2 where wtval:P,E,h \vdash Val \ v_1: T_1 and wte:P,E,h \vdash e:
T_2
   and binop:case bop of Eq \Rightarrow T = Boolean
                     \mid Add \Rightarrow T_1 = Integer \land T_2 = Integer \land T = Integer
   by auto
  from WTrt-hext-mono[OF wtval red-hext-incr[OF red]]
 have wtval':P,E,h' \vdash Val v_1 : T_1.
 have P, E, h' \vdash Val \ v_1 \ "bop" \ e' : T
 proof (cases bop)
   \mathbf{assume}\ \mathit{Eq:bop} = \mathit{Eq}
   from IH[OF\ sconf\ wte] obtain T' where P,E,h' \vdash e' : T'
     by (cases T_2) auto
   with wtval' binop Eq show ?thesis by(cases bop) auto
 next
   assume Add:bop = Add
   with binop have Intg: T_2 = Integer by simp
   with IH[OF\ sconf\ wte] have P,E,h'\vdash e':Integer\ by\ simp
   with wtval' binop Add show ?thesis by(cases bop) auto
 qed
  with binop show ?case by(cases bop) simp-all
\mathbf{next}
  case (RedBinOp\ bop\ v_1\ v_2\ v\ E\ a\ b) thus ?case
  proof (cases bop)
   case Eq thus ?thesis using RedBinOp by auto
 next
   case Add thus ?thesis using RedBinOp by auto
```

```
qed
next
  case (RedVar\ h\ l\ V\ v\ E)
 have l:lcl (h, l) V = Some v and sconf:P,E \vdash (h, l) \checkmark
   and wt:P,E,h \vdash Var V : T by fact+
 hence conf:P,h \vdash v :\leq T by(force\ simp:sconf-def\ lconf-def)
 show ?case
  \mathbf{proof}(cases \ \forall \ C. \ T \neq Class \ C)
   case True
   with conf have P \vdash typeof_h \ v = Some \ T \ by(cases \ T) auto
   hence P,E,h \vdash Val \ v : T \ \mathbf{by} \ auto
   thus ?thesis by(rule wt-same-type-typeconf)
 next
   {\bf case}\ \mathit{False}
   then obtain C where T:T = Class C by auto
   with conf have P \vdash typeof_h \ v = Some(Class \ C) \lor P \vdash typeof_h \ v = Some \ NT
     by simp
   with T show ?thesis by simp
 qed
next
  case (LAssRed\ E\ e\ h\ l\ e'\ h'\ l'\ V)
 have wt:P,E,h \vdash V:=e: T and sconf:P,E \vdash (h, l) \checkmark
    and IH: \bigwedge T'. \llbracket P,E \vdash (h, l) \ \sqrt{;} \ P,E,h \vdash e : T' \rrbracket \implies P,E,h' \vdash e' :_{NT} T' by
fact+
 from wt obtain T' where wte:P,E,h \vdash e: T' and env:E V = Some T
   and sub:P \vdash T' \leq T by auto
  from sconf env have is-type P T by (auto\ simp: sconf-def\ env conf-def)
  from sub this wf show ?case
 proof(rule subE)
   assume eq: T' = T and not class: \forall C. T' \neq Class C
   with IH[OF\ sconf\ wte] have P, E, h' \vdash e' : T\ by(cases\ T)\ auto
   with eq env have P,E,h' \vdash V := e' : T by auto
   with eq show ?thesis by(cases T) auto
 next
   \mathbf{fix} \ C \ D
   assume T':T' = Class\ C and T:T = Class\ D
     and path-unique:P \vdash Path \ C \ to \ D \ unique
   with IH[OF\ sconf\ wte] have P,E,h'\vdash e':Class\ C\lor P,E,h'\vdash e':NT
     by simp
   hence P,E,h' \vdash V := e' : T
   proof(rule disjE)
     assume P,E,h' \vdash e' : Class \ C
     with env T' sub show ?thesis by (fastforce intro: WTrtLAss)
   next
     assume P,E,h' \vdash e' : NT
     with env T show ?thesis by (fastforce intro: WTrtLAss)
    with T show ?thesis by(cases T) auto
 next
```

```
\mathbf{fix} \ C
   assume T':T'=NT and T:T=Class\ C
   with IH[OF\ sconf\ wte] have P,E,h'\vdash e':NT by simp
   with env T show ?thesis by (fastforce intro: WTrtLAss)
  ged
\mathbf{next}
  case (RedLAss\ E\ V\ T\ v\ v'\ h\ l\ T')
 have env:E \ V = Some \ T \ and \ casts:P \vdash T \ casts \ v \ to \ v'
   and sconf:P,E \vdash (h, l) \sqrt{\text{and } wt:P,E,h} \vdash V:=Val \ v:T' \text{ by } fact+
 show ?case
 \mathbf{proof}(cases \ \forall \ C. \ T \neq Class \ C)
   case True
   with casts wt env show ?thesis
     by(cases T',auto elim!:casts-to.cases)
 next
   case False
   then obtain C where T = Class C by auto
   with casts wt env wf show ?thesis
     by(auto elim!:casts-to.cases,
        auto intro!:sym[OF appendPath-last] Subobjs-nonempty split:if-split-asm
             simp:path-via-def, drule-tac\ Cs=Cs\ in\ Subobjs-appendPath, auto)
  qed
next
  case (FAccRed\ E\ e\ h\ l\ e'\ h'\ l'\ F\ Cs)
 have red:P,E \vdash \langle e,(h,l)\rangle \rightarrow \langle e',(h',l')\rangle
   and wt:P,E,h \vdash e \cdot F\{Cs\} : T
   and IH: \bigwedge T'. \llbracket P, E \vdash (h, l) \ \sqrt{;} \ P, E, h \vdash e : T' \rrbracket
           \implies P,E,h' \vdash e' :_{NT} T'
   and sconf:P,E \vdash (h,l) \lor by fact+
 from wt have P,E,h' \vdash e' \cdot F\{Cs\} : T
  \mathbf{proof}(rule\ WTrt\text{-}elim\text{-}cases)
   fix C assume wte: P,E,h \vdash e: Class C
     and field:P \vdash C \text{ has least } F:T \text{ via } Cs
     and notemptyCs:Cs \neq []
   from field have class: is-class P C
    by (fastforce intro:Subobjs-isClass simp add:LeastFieldDecl-def FieldDecls-def)
    from IH[OF sconf wte] have P,E,h' \vdash e' : NT \lor P,E,h' \vdash e' : Class C by
auto
   thus ?thesis
   proof(rule \ disjE)
     assume P,E,h' \vdash e' : NT
     thus ?thesis by (fastforce intro!: WTrtFAccNT)
     assume wte':P,E,h'\vdash e':Class\ C
     from wte' notemptyCs field show ?thesis by(rule WTrtFAcc)
   qed
  next
   assume wte: P,E,h \vdash e: NT
   from IH[OF\ sconf\ wte] have P,E,h'\vdash e':NT by auto
```

```
thus ?thesis by (rule WTrtFAccNT)
  qed
  thus ?case by (rule \ wt\text{-}same\text{-}type\text{-}typeconf)
  case (RedFAcc h l a D S Ds Cs' Cs fs' F v E)
 have h:hp(h,l) a = Some(D,S)
   and Ds:Ds = Cs'@_pCs and S:(Ds,fs') \in S
   and fs':fs' F = Some \ v \ and \ sconf:P,E \vdash (h,l) \ \sqrt{}
   and wte:P,E,h \vdash ref(a,Cs')\cdot F\{Cs\}: T by fact+
  from wte have field:P \vdash last \ Cs' \ has \ least \ F:T \ via \ Cs
   and notemptyCs:Cs \neq []
   by (auto split:if-split-asm)
  from h S sconf obtain Bs fs ms where classDs:class P (last Ds) = Some
(Bs,fs,ms)
   and fconf:P,h \vdash fs' (:\leq) map-of fs
   by (simp add:sconf-def hconf-def oconf-def) blast
 from field Ds have last Cs = last Ds
   by (fastforce intro!:appendPath-last Subobjs-nonempty
                  simp: LeastFieldDecl-def\ FieldDecls-def)
  with field classDs have map:map-of fs F = Some T
   by (simp add:LeastFieldDecl-def FieldDecls-def)
  with fconf fs' have conf:P,h \vdash v :\leq T
   by (simp\ add:fconf-def,erule-tac\ x=F\ in\ allE,fastforce)
  thus ?case by (cases T) auto
\mathbf{next}
  case (RedFAccNull\ E\ F\ Cs\ h\ l)
  have sconf:P,E \vdash (h, l) \checkmark by fact
 from wf have is-class P NullPointer
   by (fastforce intro:is-class-xcpt wf-prog-wwf-prog)
 \mathbf{hence}\ preallocated\ h \Longrightarrow P \vdash typeof\ _h\ (Ref\ (addr-of\text{-}sys\text{-}xcpt\ NullPointer,[NullPointer]))
= Some(Class\ NullPointer)
   by (auto elim: preallocatedE dest!:preallocatedD Subobjs-Base)
  with sconf have P,E,h \vdash THROW\ NullPointer : T\ by(auto\ simp:sconf-def
hconf-def)
 thus ?case by (fastforce intro:wt-same-type-typeconf wf-prog-wwf-prog)
  case (FAssRed1 E e h l e' h' l' F Cs e<sub>2</sub>)
 have red:P,E \vdash \langle e,(h,l)\rangle \rightarrow \langle e',(h',l')\rangle
   and wt:P,E,h \vdash e \cdot F\{Cs\} := e_2 : T
   and IH: \bigwedge T'. \llbracket P,E \vdash (h,l) \ \sqrt{;} \ P,E,h \vdash e : T' \rrbracket
           \implies P,E,h' \vdash e' :_{NT} T'
   and sconf:P,E \vdash (h,l) \lor by fact+
  from wt have P,E,h' \vdash e' \cdot F\{Cs\} := e_2 : T
 proof (rule WTrt-elim-cases)
   fix C T' assume wte: P, E, h \vdash e: Class <math>C
     and field:P \vdash C \text{ has least } F:T \text{ via } Cs
     and notemptyCs:Cs \neq []
     and wte2:P,E,h \vdash e_2: T' and sub:P \vdash T' \leq T
   have wte2': P,E,h' \vdash e_2 : T'
```

```
by(rule WTrt-hext-mono[OF wte2 red-hext-incr[OF red]])
   from IH[OF sconf wte] have P,E,h' \vdash e' : Class \ C \lor P,E,h' \vdash e' : NT
     by simp
   thus ?thesis
   proof(rule disjE)
     assume wte':P,E,h' \vdash e': Class C
     from wte' notemptyCs field wte2' sub show ?thesis by (rule WTrtFAss)
     assume wte':P,E,h' \vdash e':NT
     from wte' wte2' sub show ?thesis by (rule WTrtFAssNT)
   qed
  \mathbf{next}
   fix T' assume wte:P,E,h \vdash e:NT
     and wte2:P,E,h \vdash e_2: T' and sub:P \vdash T' \leq T
   have wte2': P,E,h' \vdash e_2 : T'
     by(rule WTrt-hext-mono[OF wte2 red-hext-incr[OF red]])
   from IH[OF\ sconf\ wte] have wte':P,E,h'\vdash e':NT by simp
   from wte' wte2' sub show ?thesis by (rule WTrtFAssNT)
  thus ?case by(rule wt-same-type-typeconf)
next
  case (FAssRed2 E e h l e' h' l' v F Cs)
 have red:P,E \vdash \langle e,(h,l)\rangle \rightarrow \langle e',(h',l')\rangle
   and wt:P,E,h \vdash Val\ v \cdot F\{Cs\} := e : T
   and IH: \bigwedge T'. \llbracket P, E \vdash (h, l) \ \sqrt{;} \ P, E, h \vdash e : T' \rrbracket
           \implies P,E,h' \vdash e' :_{NT} T'
   and sconf:P,E \vdash (h,l) \sqrt{\text{by } fact}+
  from wt have P,E,h' \vdash Val v \cdot F\{Cs\} := e' : T
 proof (rule WTrt-elim-cases)
   fix C T' assume wtval:P,E,h \vdash Val v : Class <math>C
     and field:P \vdash C \text{ has least } F:T \text{ via } Cs
     and notemptyCs:Cs \neq []
     and wte:P,E,h \vdash e:T
     and sub:P \vdash T' \leq T
   have wtval':P,E,h' \vdash Val \ v : Class \ C
     by(rule WTrt-hext-mono[OF wtval red-hext-incr[OF red]])
   from field wf have type:is-type P T by(rule least-field-is-type)
   from sub type wf show ?thesis
   proof(rule \ subE)
     assume T' = T and notclass: \forall C. T' \neq Class C
     from IH[OF\ sconf\ wte]\ not class\ \mathbf{have}\ wte':P,E,h'\vdash e':T'
       \mathbf{by}(cases\ T')\ auto
     from wtval' notemptyCs field wte' sub show ?thesis
       \mathbf{by}(rule\ WTrtFAss)
   \mathbf{next}
     fix C'D assume T':T' = Class\ C' and T:T = Class\ D
       and path-unique: P \vdash Path C' to D unique
     from IH[OF\ sconf\ wte]\ T' have P,E,h'\vdash e':Class\ C'\lor P,E,h'\vdash e':NT
       by simp
```

```
thus ?thesis
     proof(rule disjE)
      assume wte':P,E,h' \vdash e': Class\ C'
      from wtval' notemptyCs field wte' sub T' show ?thesis
        by (fastforce intro: WTrtFAss)
     \mathbf{next}
      assume wte':P,E,h' \vdash e':NT
      from wtval' notemptyCs field wte' sub T show ?thesis
        by (fastforce intro: WTrtFAss)
     qed
   next
     fix C' assume T':T'=NT and T:T=Class C'
     from IH[OF\ sconf\ wte]\ T' have wte':P,E,h'\vdash e':NT by simp
     from wtval' notemptyCs field wte' sub T show ?thesis
      by (fastforce intro: WTrtFAss)
   qed
 next
   fix T' assume wtval:P,E,h \vdash Val \ v:NT
     and wte:P,E,h \vdash e:T'
     and sub:P \vdash T' \leq T
   have wtval':P,E,h' \vdash Val\ v:NT
     by(rule WTrt-hext-mono[OF wtval red-hext-incr[OF red]])
   from IH[OF\ sconf\ wte]\ sub\ obtain\ T'' where wte':P,E,h'\vdash e':T''
     and sub': P \vdash T'' \leq T by (cases T', auto, cases T, auto)
   from wtval' wte' sub' show ?thesis
     \mathbf{by}(rule\ WTrtFAssNT)
 thus ?case by(rule wt-same-type-typeconf)
next
 case (RedFAss h a D S Cs' F T Cs v v' Ds fs E l T')
 let ?fs' = fs(F \mapsto v')
 let ?S' = insert (Ds, ?fs') (S - \{(Ds, fs)\})
 let ?h' = h(a \mapsto (D,?S'))
 have h:h \ a = Some(D,S) and casts:P \vdash T \ casts \ v \ to \ v'
   and field:P \vdash last Cs' has least F:T via Cs
   and wt:P,E,h \vdash ref(a,Cs')\cdot F\{Cs\} := Val\ v:T' by fact+
 from wt wf have type:is-type P T'
   by (auto dest:least-field-is-type split:if-split-asm)
 from wt field obtain T'' where wtval:P,E,h \vdash Val v:T'' and eq:T = T'
   and leq:P \vdash T'' \leq T'
   by (auto dest:sees-field-fun split:if-split-asm)
 from casts eq wtval show ?case
 proof(induct rule:casts-to.induct)
   case (casts-prim T_0 w)
   have T_0 = T' and \forall C. T_0 \neq Class C and wtval':P,E,h \vdash Val w : T'' by
fact+
   with leq have T' = T'' by (cases T', auto)
   with wtval' have P,E,h \vdash Val \ w : T' by simp
   with h have P,E,(h(a\mapsto (D,insert(Ds,fs(F\mapsto w))(S-\{(Ds,fs)\}))))\vdash Val\ w:
```

```
T'
      by(cases w,auto split:if-split-asm)
    thus P,E,(h(a\mapsto (D,insert(Ds,fs(F\mapsto w))(S-\{(Ds,fs)\}))))\vdash (Val\ w):_{NT}T'
      \mathbf{by}(rule\ wt\text{-}same\text{-}type\text{-}typeconf)
  next
    case (casts-null C'')
    have T':Class\ C''=T' by fact
    have P,E,(h(a\mapsto(D,insert(Ds,fs(F\mapsto Null))(S-\{(Ds,fs)\}))))\vdash null:NT
     by simp
    with sym[OF T']
    show P, E, (h(a \mapsto (D, insert(Ds, fs(F \mapsto Null))(S - \{(Ds, fs)\})))) \vdash null :_{NT} T'
      by simp
  next
    case (casts-ref Xs C'' Xs' Ds'' a')
    have Class C'' = T' and Ds'' = Xs @_n Xs'
      and P \vdash Path\ last\ Xs\ to\ C^{\prime\prime}\ via\ Xs^{\prime}
     and P,E,h \vdash ref(a', Xs) : T'' by fact +
    with wf have P,E,h \vdash ref(a',Ds''): T'
      by (auto intro!:appendPath-last[THEN sym] Subobjs-nonempty
        split:if-split-asm simp:path-via-def,
        drule-tac Cs=Xs in Subobjs-appendPath, auto)
    with h have P,E,(h(a\mapsto (D,insert(Ds,fs(F\mapsto Ref(a',Ds'')))(S-\{(Ds,fs)\}))))
\vdash
      ref(a',Ds''):T'
     by auto
    thus P,E,(h(a\mapsto(D,insert(Ds,fs(F\mapsto Ref(a',Ds'')))(S-\{(Ds,fs)\}))))
      ref(a',Ds''):_{NT}T'
      \mathbf{by}(rule\ wt\text{-}same\text{-}type\text{-}typeconf)
  qed
next
  case (RedFAssNull\ E\ F\ Cs\ v\ h\ l)
  have sconf:P,E \vdash (h, l) \checkmark by fact
  from wf have is-class P NullPointer
    by (fastforce intro:is-class-xcpt wf-prog-wwf-prog)
 hence preallocated h \Longrightarrow P \vdash typeof_h (Ref (addr-of-sys-xcpt NullPointer, [NullPointer]))
= Some(Class\ NullPointer)
    by (auto elim: preallocatedE dest!:preallocatedD Subobjs-Base)
  with sconf have P,E,h \vdash THROW\ NullPointer : T\ by(auto\ simp:sconf-def
hconf-def)
  thus ?case by (fastforce intro:wt-same-type-typeconf wf-prog-wwf-prog)
next
  case (CallObj E e h l e' h' l' Copt M es)
  have red: P,E \vdash \langle e,(h,l) \rangle \rightarrow \langle e',(h',l') \rangle
   and IH: \bigwedge T'. \llbracket P,E \vdash (h,l) \ \sqrt{;} \ P,E,h \vdash e : T' \rrbracket
                \implies P,E,h' \vdash e' :_{NT} T'
   and sconf: P,E \vdash (h,l) \bigvee and wt: P,E,h \vdash Call\ e\ Copt\ M\ es: T by fact+
  from wt have P,E,h' \vdash Call\ e'\ Copt\ M\ es:\ T
  proof(cases Copt)
    case None
```

```
with wt have P,E,h \vdash e \cdot M(es) : T by simp
   hence P,E,h' \vdash e' \cdot M(es) : T
   proof(rule WTrt-elim-cases)
     fix C Cs Ts Ts' m
     assume wte:P,E,h \vdash e: Class\ C
       and method:P \vdash C \text{ has least } M = (\textit{Ts}, \textit{T}, \textit{m}) \text{ via } \textit{Cs}
       and wtes:P,E,h \vdash es [:] Ts' and subs: P \vdash Ts' [\leq] Ts
     from IH[OF\ sconf\ wte] have P,E,h'\vdash e':NT\lor P,E,h'\vdash e':Class\ C by
auto
     thus ?thesis
     \mathbf{proof}(\mathit{rule}\ \mathit{disjE})
       assume wte':P,E,h'\vdash e':NT
       have P, E, h' \vdash es [:] Ts'
         by(rule WTrts-hext-mono[OF wtes red-hext-incr[OF red]])
       with wte' show ?thesis by(rule WTrtCallNT)
       assume wte':P,E,h' \vdash e': Class C
       have wtes':P,E,h' \vdash es [:] Ts'
         by(rule WTrts-hext-mono[OF wtes red-hext-incr[OF red]])
       from wte' method wtes' subs show ?thesis by(rule WTrtCall)
     qed
   \mathbf{next}
     fix Ts
     assume wte:P,E,h \vdash e:NT and wtes:P,E,h \vdash es [:] Ts
     from IH[OF\ sconf\ wte] have wte':P,E,h'\vdash e':NT by simp
     have P,E,h' \vdash es [:] Ts
       by(rule WTrts-hext-mono[OF wtes red-hext-incr[OF red]])
     with wte' show ?thesis by(rule WTrtCallNT)
   qed
   with None show ?thesis by simp
  \mathbf{next}
   case (Some\ C)
   with wt have P,E,h \vdash e \cdot (C::)M(es) : T by simp
   hence P,E,h' \vdash e' \cdot (C::)M(es) : T
   proof(rule WTrt-elim-cases)
     fix C' Cs Ts Ts' m
     assume wte:P,E,h \vdash e: Class\ C' and path-unique:P \vdash Path\ C' to C\ unique
       and method:P \vdash C \text{ has least } M = (Ts, T, m) \text{ via } Cs
       and wtes:P,E,h \vdash es [:] Ts' and subs:P \vdash Ts' [\leq] Ts
     from IH[OF\ sconf\ wte] have P,E,h'\vdash e':NT\lor P,E,h'\vdash e':Class\ C' by
auto
     thus ?thesis
     proof(rule \ disjE)
       assume wte':P,E,h' \vdash e':NT
       have P, E, h' \vdash es [:] Ts'
         by(rule WTrts-hext-mono[OF wtes red-hext-incr[OF red]])
       with wte' show ?thesis by(rule WTrtCallNT)
     next
       assume wte':P,E,h' \vdash e': Class\ C'
```

```
have wtes':P,E,h' \vdash es [:] Ts'
         by(rule WTrts-hext-mono[OF wtes red-hext-incr[OF red]])
        from wte' path-unique method wtes' subs show ?thesis by(rule WTrtStat-
icCall)
     qed
   \mathbf{next}
     \mathbf{fix} \ Ts
     assume wte:P,E,h \vdash e:NT and wtes:P,E,h \vdash es [:] Ts
     from IH[OF\ sconf\ wte] have wte':P,E,h'\vdash e':NT by simp
     have P,E,h' \vdash es [:] Ts
       by(rule WTrts-hext-mono[OF wtes red-hext-incr[OF red]])
     with wte' show ?thesis by(rule WTrtCallNT)
   qed
   with Some show ?thesis by simp
  qed
 thus ?case by (rule wt-same-type-typeconf)
  case (CallParams E es h l es' h' l' v Copt M)
 have reds: P,E \vdash \langle es,(h,l) \rangle [\rightarrow] \langle es',(h',l') \rangle
  and IH: \bigwedge Ts. \llbracket P,E \vdash (h,l) \ \sqrt{;} \ P,E,h \vdash es \ [:] \ Ts \rrbracket
               \implies types\text{-}conf\ P\ E\ h'\ es'\ Ts
   and sconf: P,E \vdash (h,l) \bigvee and wt: P,E,h \vdash Call \ (Val \ v) \ Copt \ M \ es : T \ by
fact+
  from wt have P,E,h' \vdash Call \ (Val \ v) \ Copt \ M \ es' : T
  proof(cases Copt)
   case None
   with wt have P,E,h \vdash (Val\ v) \cdot M(es) : T by simp
   hence P.E.h' \vdash Val \ v \cdot M(es') : T
   proof (rule WTrt-elim-cases)
     fix C Cs Ts Ts' m
     assume wte: P,E,h \vdash Val \ v : Class \ C
       and method:P \vdash C \ has \ least \ M = (Ts,T,m) \ via \ Cs
       and wtes: P,E,h \vdash es [:] Ts' and subs:P \vdash Ts' [\leq] Ts
     from wtes have length es = length Ts' by (rule WTrts-same-length)
     with reds have length es' = length Ts'
       by -(drule\ reds-length, simp)
     with IH[OF\ sconf\ wtes]\ subs\ obtain\ Ts'' where wtes':P,E,h'\vdash es'\ [:]\ Ts''
       and subs': P \vdash Ts'' [\leq] Ts  by (auto \ dest: types-conf-smaller-types)
     have wte':P,E,h' \vdash Val\ v: Class\ C
       by(rule WTrt-hext-mono[OF wte reds-hext-incr[OF reds]])
     from wte' method wtes' subs' show ?thesis
       \mathbf{by}(rule\ WTrtCall)
   \mathbf{next}
     \mathbf{fix} \ Ts
     assume wte:P,E,h \vdash Val \ v:NT
       and wtes:P,E,h \vdash es [:] Ts
     from wtes have length es = length Ts by(rule WTrts-same-length)
     with reds have length es' = length Ts
       \mathbf{by} -(drule\ reds-length,simp)
```

```
with IH[OF\ sconf\ wtes] obtain Ts' where wtes':P,E,h' \vdash es' [:] Ts'
      and P \vdash Ts' [\leq] Ts \ \mathbf{by}(auto \ dest:types-conf-smaller-types)
     have wte':P,E,h' \vdash Val \ v:NT
      by(rule WTrt-hext-mono[OF wte reds-hext-incr[OF reds]])
     from wte' wtes' show ?thesis by(rule WTrtCallNT)
   qed
   with None show ?thesis by simp
 next
   case (Some \ C)
   with wt have P,E,h \vdash (Val\ v) \cdot (C::)M(es) : T by simp
   hence P,E,h' \vdash (Val\ v) \cdot (C::)M(es') : T
   proof(rule WTrt-elim-cases)
     fix C' Cs Ts Ts' m
      assume wte:P,E,h \vdash Val \ v : Class \ C' and path-unique:P \vdash Path \ C' to C
unique
      and method: P \vdash C has least M = (Ts, T, m) via Cs
      and wtes: P, E, h \vdash es [:] Ts' and subs: P \vdash Ts' [\leq] Ts
     from wtes have length es = length Ts' by (rule WTrts-same-length)
     with reds have length es' = length Ts'
      by -(drule\ reds-length, simp)
     with IH[OF\ sconf\ wtes]\ subs\ obtain\ Ts'' where wtes':P,E,h'\vdash es'\ [:]\ Ts''
      and subs': P \vdash Ts'' [\leq] Ts \ \mathbf{by}(auto\ dest:types-conf-smaller-types)
     have wte':P,E,h' \vdash Val \ v : Class \ C'
      by(rule WTrt-hext-mono[OF wte reds-hext-incr[OF reds]])
     from wte' path-unique method wtes' subs' show ?thesis
      by(rule WTrtStaticCall)
   next
     \mathbf{fix} \ Ts
     assume wte:P,E,h \vdash Val \ v:NT
      and wtes:P,E,h \vdash es [:] Ts
     from wtes have length es = length Ts by(rule WTrts-same-length)
     with reds have length es' = length Ts
      by -(drule\ reds-length, simp)
     with IH[OF\ sconf\ wtes] obtain Ts' where wtes':P,E,h' \vdash es' [:] Ts'
      and P \vdash Ts' \leq Ts by (auto dest:types-conf-smaller-types)
     have wte':P,E,h' \vdash Val\ v:NT
      by(rule WTrt-hext-mono[OF wte reds-hext-incr[OF reds]])
     from wte' wtes' show ?thesis by(rule WTrtCallNT)
   qed
   with Some show ?thesis by simp
 qed
 thus ?case by (rule wt-same-type-typeconf)
 case (RedCall h l a C S Cs M Ts' T' pns' body' Ds Ts T pns body Cs'
             vs\ bs\ new-body\ E\ T^{\prime\prime})
 have hp:hp (h,l) a = Some(C,S)
   and method:P \vdash last\ Cs\ has\ least\ M = (Ts', T', pns', body')\ via\ Ds
   and select: P \vdash (C, Cs@_pDs) selects M = (Ts, T, pns, body) via Cs'
   and length1:length \ vs = length \ pns and length2:length \ Ts = length \ pns
```

```
and bs:bs = blocks(this \#pns, Class(last Cs') \#Ts, Ref(a, Cs') \#vs, body)
   and body-case:new-body = (case T' of Class D \Rightarrow (D)bs \mid - \Rightarrow bs)
   and wt:P,E,h \vdash ref(a,Cs) \cdot M(map\ Val\ vs): T'' by fact+
 from wt hp method wf obtain Ts"
   where wtref:P,E,h \vdash ref(a,Cs): Class(last Cs) and eg:T'' = T'
   and wtes:P,E,h \vdash map\ Val\ vs\ [:]\ Ts'' and subs:P \vdash Ts''\ [\leq]\ Ts'
   by(auto dest:wf-sees-method-fun split:if-split-asm)
 from select wf have is-class P (last Cs')
   \mathbf{by}(induct\ rule: SelectMethodDef.induct,
      auto\ intro: Subobj-last-is\ Class\ simp: Final Overrider Method Def-def
    Overrider Method Defs-def Minimal Method Defs-def Least Method Def-def Method-
Defs-def)
 with select-method-wf-mdecl[OF wf select]
 have length-pns:length (this\#pns) = length (Class(last Cs')\#Ts)
   and notNT: T \neq NT and type: \forall T \in set (Class(last Cs') \# Ts). is-type P T
   and wtabody:P,[this \mapsto Class(last Cs'),pns[\mapsto]Ts] \vdash body::T
   \mathbf{by}(auto\ simp: wf-mdecl-def)
 from wtes hp select
 have map:map (P \vdash typeof_h) (Ref(a, Cs') \# vs) = map Some (Class(last Cs') \# Ts'')
   by(auto elim:SelectMethodDef.cases split:if-split-asm
          simp:FinalOverriderMethodDef-def\ OverriderMethodDefs-def
               MinimalMethodDefs-def LeastMethodDef-def MethodDefs-def)
 from wtref hp have P \vdash Path \ C \ to \ (last \ Cs) \ via \ Cs
   by (auto simp:path-via-def split:if-split-asm)
 with select method wf have Ts' = Ts \land P \vdash T \leq T'
   by -(rule\ select\ -least\ -methods\ -subtypes, simp\ -all)
 hence eqs:Ts' = Ts and sub:P \vdash T \leq T' by auto
 from wf wtabody have P,Map.empty(this \mapsto Class(last Cs'),pns[\mapsto] Ts),h \vdash body:
T
   by -(rule\ WT-implies-WTrt, simp-all)
 hence wtbody:P,E(this\#pns \mapsto Class (last Cs')\#Ts),h \mapsto body:T
   by(rule WTrt-env-mono) simp
 from wtes have length vs = length Ts''
   by (fastforce dest: WTrts-same-length)
 with eqs subs
 have length-vs:length (Ref(a,Cs')\#vs) = length (Class(last Cs')\#Ts)
   by (simp add:list-all2-iff)
 from subs eqs have P \vdash (Class(last Cs') \# Ts'') [\leq] (Class(last Cs') \# Ts)
   by (simp add:fun-of-def)
 with wt-blocks[OF length-pns length-vs type] wtbody map eq
 have blocks:P,E,h \vdash blocks(this \#pns,Class(last Cs') \#Ts,Ref(a,Cs') \#vs,body):
T
   by auto
 have P,E,h \vdash new\text{-}body : T'
 \mathbf{proof}(cases \ \forall \ C. \ T' \neq Class \ C)
   case True
   with sub notNT have T = T' by (cases T') auto
   with blocks True body-case by show ?thesis by (cases T') auto
 next
```

```
case False
   then obtain D where T':T' = Class D by auto
   with method sub wf have class: is-class P D
     by (auto elim!:widen.cases dest:least-method-is-type
             intro:Subobj-last-isClass simp:path-unique-def)
   with blocks T' body-case bs class sub show ?thesis
     \mathbf{by}(cases\ T', auto, cases\ T, auto)
 with eq show ?case by(fastforce intro:wt-same-type-typeconf)
next
 case (RedStaticCall Cs C Cs" M Ts T pns body Cs' Ds vs E a h l T')
 have method:P \vdash C \ has \ least \ M = (Ts, T, pns, body) \ via \ Cs'
   and length1:length vs = length pns
   and length2:length Ts = length pns
   and path-unique:P \vdash Path \ last \ Cs \ to \ C \ unique
   and path-via:P \vdash Path \ last \ Cs \ to \ C \ via \ Cs''
   and Ds:Ds = (Cs @_p Cs'') @_p Cs'
   and wt:P,E,h \vdash ref(a,Cs)\cdot (C::)M(map\ Val\ vs): T' by fact+
 from wt method wf obtain Ts'
   where wtref:P,E,h \vdash ref(a,Cs): Class(last Cs)
   and wtes:P,E,h \vdash map \ Val \ vs \ [:] \ Ts' \ and \ subs:P \vdash Ts' \ [\leq] \ Ts
   and TeqT':T = T'
   by(auto dest:wf-sees-method-fun split:if-split-asm)
 from wtref obtain D S where hp:h \ a = Some(D,S) and subo:Subobjs \ P \ D \ Cs
   by (auto split:if-split-asm)
 from length1 length2
 have length-vs: length (Ref(a,Ds)\#vs) = length (Class (last Ds)\#Ts) by simp
 from length2 have length-pns:length (this\#pns) = length (Class (last Ds)\# Ts)
   by simp
 from method have Cs' \neq []
    by (fastforce introl: Subobjs-nonempty simp add: LeastMethodDef-def Method-
Defs-def
 with Ds have last:last Cs' = last Ds
   by (fastforce dest:appendPath-last)
 with method have is-class P (last Ds)
   by(auto simp:LeastMethodDef-def MethodDefs-def is-class-def)
 with last has-least-wf-mdecl[OF wf method]
 have wtabody: P,[this\#pns \mapsto] Class (last Ds)\#Ts] \vdash body :: T
   and type: \forall T \in set (Class(last Ds) \# Ts). is-type P T
   \mathbf{by}(auto\ simp: wf-mdecl-def)
 from path-via have suboCs":Subobjs P (last Cs) Cs"
   and lastCs'':last\ Cs''=\ C
   by (auto simp add:path-via-def)
 with subo wf have subo': Subobjs P D (Cs@_nCs'')
    \mathbf{by}(fastforce\ intro:\ Subobjs-appendPath)
  from lastCs'' suboCs'' have lastC:C = last(Cs@_pCs'')
    \mathbf{by} (fastforce dest:Subobjs-nonempty intro:appendPath-last)
 from method have Subobis P C Cs'
   \mathbf{by}\ (\mathit{auto}\ simp: LeastMethodDef-def}\ \mathit{MethodDefs-def})
```

```
with subo' wf last C have Subobjs P D ((Cs @_p Cs') @_p Cs')
   by (fastforce intro:Subobjs-appendPath)
  with Ds have suboDs:Subobjs P D Ds by simp
 from wtabody have P,Map.empty(this\#pns \mapsto Class (last Ds)\#Ts), h \mapsto body :
T
   by(rule WT-implies-WTrt)
  hence P, E(this \# pns \mapsto Class (last Ds) \# Ts), h \mapsto body : T
   \mathbf{by}(rule\ WTrt\text{-}env\text{-}mono)\ simp
  hence P,E,h \vdash blocks(this\#pns, Class (last Ds)\#Ts, Ref(a,Ds)\#vs, body) : T
   using wtes subs wt-blocks[OF length-pns length-vs type] hp suboDs
   by(auto simp add:rel-list-all2-Cons2)
  with TeqT' show ?case by (fastforce\ intro: wt\text{-}same\text{-}type\text{-}typeconf)
next
  case (RedCallNull\ E\ Copt\ M\ vs\ h\ l)
 have sconf:P,E \vdash (h, l) \checkmark by fact
 from wf have is-class P NullPointer
   by (fastforce intro:is-class-xcpt wf-prog-wwf-prog)
 hence preallocated h \Longrightarrow P \vdash typeof_h (Ref (addr-of-sys-xcpt NullPointer, [NullPointer]))
= Some(Class\ NullPointer)
   by (auto elim: preallocatedE dest!:preallocatedD Subobjs-Base)
  with sconf have P,E,h \vdash THROW\ NullPointer : T\ by(auto\ simp:sconf-def
hconf-def)
  thus ?case by (fastforce intro:wt-same-type-typeconf)
next
  case (BlockRedNone E V T e h l e' h' l' T')
 have IH: \bigwedge T'. \llbracket P, E(V \mapsto T) \vdash (h, l(V := None)) \ \sqrt{;} \ P, E(V \mapsto T), h \vdash e : T' \rrbracket
                \implies P, E(V \mapsto T), h' \vdash e' :_{NT} T'
   and sconf:P,E \vdash (h, l) \bigvee and wt:P,E,h \vdash \{V:T; e\}: T' by fact+
  from wt have type:is-type P T and wte:P,E(V \mapsto T),h \vdash e:T' by auto
 from sconf type have P, E(V \mapsto T) \vdash (h, l(V := None)) \checkmark
   by (auto simp:sconf-def lconf-def envconf-def)
  from IH[OF this wte] type show ?case by (cases T') auto
next
  case (BlockRedSome\ E\ V\ T\ e\ h\ l\ e'\ h'\ l'\ v\ T')
 have red:P,E(V \mapsto T) \vdash \langle e,(h, l(V := None)) \rangle \rightarrow \langle e',(h', l') \rangle
   and IH: \bigwedge T'. \llbracket P, E(V \mapsto T) \vdash (h, l(V := None)) \ \sqrt{P}, E(V \mapsto T), h \vdash e : T' \rrbracket
                 \implies P, E(V \mapsto T), h' \vdash e' :_{NT} T'
   and Some: l' \ V = Some \ v
   and sconf:P,E \vdash (h, l) \ \sqrt{\ }  and wt:P,E,h \vdash \{V:T; e\}:T' by fact+
  from wt have wte:P,E(V\mapsto T),h\vdash e:T' and type:is-type\ P\ T by auto
  with sconf wf red type have P,h' \vdash l' (:\leq)_w E(V \mapsto T)
   by -(auto\ simp:sconf-def,rule\ red-preserves-lconf,
        auto intro:wf-prog-wwf-prog simp:envconf-def lconf-def)
  hence conf:P,h'\vdash v:\leq T using Some
   \mathbf{by}(auto\ simp:lconf-def,erule-tac\ x=V\ \mathbf{in}\ allE,clarsimp)
  have wtval:P,E(V \mapsto T),h' \vdash V:=Val\ v:T
  proof(cases T)
   case Void with conf show ?thesis by auto
 next
```

```
case Boolean with conf show ?thesis by auto
  next
   case Integer with conf show ?thesis by auto
   case NT with conf show ?thesis by auto
  next
   case (Class\ C)
   with conf have P, E(V \mapsto T), h' \vdash Val \ v : T \lor P, E(V \mapsto T), h' \vdash Val \ v : NT
     by auto
   with Class show ?thesis by auto
  qed
  from sconf type have P, E(V \mapsto T) \vdash (h, l(V := None)) \checkmark
   by (auto simp:sconf-def lconf-def envconf-def)
  from IH[OF this wte] wtval type show ?case by(cases T') auto
next
  case (InitBlockRed E V T e h l v' e' h' l' v'' v T')
  have red:P,E(V \mapsto T) \vdash \langle e,(h, l(V \mapsto v')) \rangle \rightarrow \langle e',(h', l') \rangle
   and IH: \bigwedge T'. \llbracket P, E(V \mapsto T) \vdash (h, l(V \mapsto v')) \checkmark ; P, E(V \mapsto T), h \vdash e : T' \rrbracket
             \implies P, E(V \mapsto T), h' \vdash e' :_{NT} T'
   and Some: l' \ V = Some \ v'' and casts: P \vdash T \ casts \ v \ to \ v'
   and sconf:P,E \vdash (h, l) \bigvee \text{ and } wt:P,E,h \vdash \{V:T:=Val\ v;\ e\}: T' \text{ by } fact+
 from wt have wte:P,E(V \mapsto T),h \vdash e:T' and wtval:P,E(V \mapsto T),h \vdash V:=Val
v:T
   and type:is-type P T
   by auto
  from wf casts wtval have P, h \vdash v' :\leq T
   by(fastforce intro!:casts-conf wf-prog-wwf-prog)
  with sconf have lconf:P,h \vdash l(V \mapsto v') \ (:\leq)_w \ E(V \mapsto T)
   by (fastforce intro!:lconf-upd2 simp:sconf-def)
 from sconf type have envconf P(E(V \mapsto T)) by(simp add:sconf-def envconf-def)
 from red-preserves-lconf [OF wf-prog-wwf-prog [OF wf] red wte lconf this]
  have P,h' \vdash l' (:\leq)_w E(V \mapsto T).
  with Some have P,h' \vdash v'' :\leq T
   by (simp\ add:lconf-def,erule-tac\ x=V\ in\ allE,auto)
  hence wtval':P,E(V \mapsto T),h' \vdash V:=Val\ v'':T
   \mathbf{by}(cases\ T)\ auto
  from lconf sconf type have P, E(V \mapsto T) \vdash (h, l(V \mapsto v')) \checkmark
   by(auto simp:sconf-def envconf-def)
  from IH[OF this wte] wtval' type show ?case by(cases T') auto
next
  case RedBlock thus ?case by (fastforce intro:wt-same-type-typeconf)
next
  case RedInitBlock thus ?case by (fastforce intro:wt-same-type-typeconf)
next
  case (SeqRed\ E\ e\ h\ l\ e'\ h'\ l'\ e_2\ T)
  have red:P,E \vdash \langle e,(h, l) \rangle \rightarrow \langle e',(h', l') \rangle
   and IH: \bigwedge T'. \llbracket P,E \vdash (h, l) \ \sqrt{;} \ P,E,h \vdash e : T' \rrbracket \Longrightarrow P,E,h' \vdash e' :_{NT} T'
   and sconf:P,E \vdash (h, l) \bigvee and wt:P,E,h \vdash e;; e_2: T by fact+
  from wt obtain T' where wte:P,E,h \vdash e : T' and wte2:P,E,h \vdash e<sub>2</sub> : T by
```

```
from WTrt-hext-mono[OF wte2 red-hext-incr[OF red]] have wte2':P,E,h' \vdash e<sub>2</sub>:
T .
 from IH[OF\ sconf\ wte] obtain T'' where P,E,h' \vdash e' : T'' by (cases\ T') auto
  with wte2' have P,E,h' \vdash e';; e_2 : T by auto
  thus ?case by (rule \ wt\text{-}same\text{-}type\text{-}typeconf)
next
  case RedSeq thus ?case by (fastforce intro:wt-same-type-typeconf)
next
  case (CondRed\ E\ e\ h\ l\ e'\ h'\ l'\ e_1\ e_2)
 have red:P,E \vdash \langle e,(h, l) \rangle \rightarrow \langle e',(h', l') \rangle
   and IH: \bigwedge T. \llbracket P,E \vdash (h,l) \ \sqrt{;} \ P,E,h \vdash e : T \rrbracket
                   \implies P,E,h' \vdash e':_{NT} T
   and wt:P,E,h \vdash if (e) e_1 else e_2 : T
   and sconf:P,E \vdash (h,l) \sqrt{\text{by } fact} +
  from wt have wte:P,E,h \vdash e:Boolean
     and wte1:P,E,h \vdash e_1: T and wte2:P,E,h \vdash e_2: T by auto
 from IH[OF \ sconf \ wte] have wte':P,E,h' \vdash e':Boolean by auto
 from wte' WTrt-hext-mono[OF wte1 red-hext-incr[OF red]]
    WTrt-hext-mono[OF wte2 red-hext-incr[OF red]]
 have P, E, h' \vdash if (e') e_1 else e_2 : T
   by (rule WTrtCond)
  thus ?case by (rule \ wt\text{-}same\text{-}type\text{-}typeconf)
next
  case RedCondT thus ?case by (fastforce intro: wt-same-type-typeconf)
next
 case RedCondF thus ?case by (fastforce intro: wt-same-type-typeconf)
next
 case RedWhile thus ?case by (fastforce intro: wt-same-type-typeconf)
next
  case (ThrowRed\ E\ e\ h\ l\ e'\ h'\ l'\ T)
 have IH: \Lambda T. \llbracket P,E \vdash (h, l) \ \sqrt{;} \ P,E,h \vdash e : T \rrbracket \Longrightarrow P,E,h' \vdash e' :_{NT} T
   and sconf:P,E \vdash (h, l) \bigvee and wt:P,E,h \vdash throw e : T by fact+
  from wt obtain T' where wte:P,E,h \vdash e: T' and ref:is-refT T'
   by auto
 from ref have P,E,h' \vdash throw e' : T
 proof(rule refTE)
   assume T':T'=NT
   with wte have P,E,h \vdash e : NT by simp
   from IH[OF sconf this] ref T' show ?thesis by auto
  \mathbf{next}
   fix C assume T':T'=Class\ C
   with wte have P,E,h \vdash e : Class \ C by simp
   from IH[OF sconf this] have P,E,h' \vdash e' : Class \ C \lor P,E,h' \vdash e' : NT
     by simp
   thus ?thesis
   proof(rule disiE)
     assume wte':P,E,h' \vdash e': Class\ C
```

```
have is-refT (Class C) by simp
     with wte' show ?thesis by auto
   next
     assume wte':P,E,h' \vdash e':NT
     have is-refT NT by simp
     with wte' show ?thesis by auto
   qed
  qed
  thus ?case by (rule wt-same-type-typeconf)
next
  case (RedThrowNull\ E\ h\ l)
  have sconf:P,E \vdash (h, l) \lor by fact
  from wf have is-class P NullPointer
   by (fastforce intro:is-class-xcpt wf-prog-wwf-prog)
 hence preallocated h \Longrightarrow P \vdash typeof_h (Ref (addr-of-sys-xcpt NullPointer, [NullPointer]))
= Some(Class\ NullPointer)
   by (auto elim: preallocatedE dest!:preallocatedD Subobjs-Base)
  with sconf have P,E,h \vdash THROW\ NullPointer : T\ by(auto\ simp:sconf-def
hconf-def
  thus ?case by (fastforce intro:wt-same-type-typeconf wf-prog-wwf-prog)
next
  case (ListRed1 E e h l e' h' l' es Ts)
  have red:P,E \vdash \langle e,(h, l) \rangle \rightarrow \langle e',(h', l') \rangle
   and IH: \bigwedge T. \llbracket P, E \vdash (h, l) \ \sqrt{;} \ P, E, h \vdash e : T \rrbracket \Longrightarrow P, E, h' \vdash e' :_{NT} T
   and sconf:P,E \vdash (h, l) \sqrt{\text{ and } wt:P,E,h} \vdash e \# es [:] Ts by fact+
  from wt obtain U Us where Ts:Ts = U \# Us by (cases Ts) auto
  with wt have wte:P,E,h \vdash e:U and wtes:P,E,h \vdash es [:] Us by simp-all
  from WTrts-hext-mono[OF wtes red-hext-incr[OF red]]
  have wtes':P,E,h' \vdash es [:] Us.
  hence length es = length Us by (rule\ WTrts-same-length)
  with wtes' have types-conf P E h' es Us
   by (fastforce intro:wts-same-types-typesconf)
  with IH[OF sconf wte] Ts show ?case by simp
  case (ListRed2 \ E \ es \ h \ l \ es' \ h' \ l' \ v \ Ts)
 have reds:P,E \vdash \langle es,(h, l) \rangle [\rightarrow] \langle es',(h', l') \rangle
   and IH: \bigwedge Ts. \llbracket P, E \vdash (h, l) \ \sqrt{;} \ P, E, h \vdash es \ [:] \ Ts \rrbracket \implies types\text{-conf} \ P \ E \ h' \ es' \ Ts
   and sconf:P,E \vdash (h, l) \sqrt{\text{ and } wt:P,E,h} \vdash Val\ v\#es\ [:]\ Ts\ \text{by } fact+
  from wt obtain U Us where Ts:Ts = U \# Us by (cases Ts) auto
  with wt have wtval:P,E,h \vdash Val\ v:\ U and wtes:P,E,h \vdash es\ [:]\ Us by simp-all
  from WTrt-hext-mono[OF wtval reds-hext-incr[OF reds]]
  have P, E, h' \vdash Val \ v : U.
  hence P, E, h' \vdash (Val\ v) :_{NT} U by(rule\ wt\text{-}same\text{-}type\text{-}typeconf)
  with IH[OF sconf wtes] Ts show ?case by simp
\mathbf{next}
  case (CallThrowObj E h l Copt M es h' l')
  thus ?case by(cases Copt)(auto intro:wt-same-type-typeconf)
next
  case (CallThrowParams\ es\ vs\ h\ l\ es'\ E\ v\ Copt\ M\ h'\ l')
```

```
thus ?case by(cases Copt)(auto intro:wt-same-type-typeconf)
\mathbf{qed} (fastforce intro:wt-same-type-typeconf)+
corollary subject-reduction:
  \llbracket \text{ wf-C-prog } P; P,E \vdash \langle e,s \rangle \rightarrow \langle e',s' \rangle; P,E \vdash s \sqrt{; P,E,hp } s \vdash e:T \rrbracket
  \implies P,E,(hp\ s') \vdash e':_{NT} T
\mathbf{by}(cases\ s,\ cases\ s',\ fastforce\ dest:subject-reduction2)
corollary subjects-reduction:
  \llbracket wf\text{-}C\text{-}prog\ P;\ P,E \vdash \langle es,s \rangle\ [\rightarrow]\ \langle es',s' \rangle;\ P,E \vdash s\ \sqrt{;\ P,E,hp\ s} \vdash es[:]\ Ts\ \rrbracket
  \implies types\text{-}conf\ P\ E\ (hp\ s')\ es'\ Ts
by(cases s, cases s', fastforce dest:subjects-reduction2)
           Lifting to \rightarrow *
26.3
Now all these preservation lemmas are first lifted to the transitive closure
lemma step-preserves-sconf:
assumes wf: wf-C-prog P and step: P,E \vdash \langle e,s \rangle \rightarrow * \langle e',s' \rangle
shows \bigwedge T. \llbracket P,E,hp \ s \vdash e : T; P,E \vdash s \ \sqrt{\ } \rrbracket \Longrightarrow P,E \vdash s' \ \sqrt{\ }
using step
proof (induct rule:converse-rtrancl-induct2)
  case refl show ?case by fact
\mathbf{next}
  \mathbf{case}\ step
  thus ?case using wf
    apply simp
    \mathbf{apply}\ (\mathit{frule}\ \mathit{subject-reduction}[\mathit{OF}\ \mathit{wf}])
      apply (rule step.prems)
      apply (rule step.prems)
      apply (cases T)
      apply (auto dest:red-preserves-sconf intro:wf-prog-wwf-prog)
       done
qed
lemma steps-preserves-sconf:
assumes wf: wf-C-proq P and step: P,E \vdash \langle es,s \rangle [\rightarrow] * \langle es',s' \rangle
shows \bigwedge Ts. \llbracket P, E, hp \ s \vdash es \ [:] \ Ts; \ P, E \vdash s \ \sqrt{\ } \rrbracket \Longrightarrow P, E \vdash s' \ \sqrt{\ }
using step
proof (induct rule:converse-rtrancl-induct2)
  case refl show ?case by fact
next
  case (step \ es \ s \ es'' \ s'' \ Ts)
  have Reds:((es, s), es'', s'') \in Reds P E
    and reds:P,E \vdash \langle es'',s'' \rangle \ [\rightarrow] * \langle es',s' \rangle
```

```
and sconf:P,E \vdash s \checkmark
    and IH: \bigwedge Ts. \llbracket P, E, hp \ s'' \vdash es'' \ [:] \ Ts; \ P, E \vdash s'' \ \sqrt{\rrbracket} \Longrightarrow P, E \vdash s' \ \sqrt{\ by \ fact} +
  from Reds have reds1:P,E \vdash \langle es,s \rangle [\rightarrow] \langle es'',s'' \rangle by simp
  from subjects-reduction[OF wf this sconf wtes]
  have type:types-conf P E (hp s'') es'' Ts.
  from reds1 wtes sconf wf have sconf':P,E \vdash s'' \checkmark
    by(fastforce intro:wf-prog-wwf-prog reds-preserves-sconf)
  from type have \exists Ts'. P,E,hp \ s'' \vdash es'' \ [:] \ Ts'
  proof (induct Ts arbitrary: es'')
    \mathbf{fix} esi
    assume types-conf P E (hp s'') esi
    thus \exists Ts'. P, E, hp s'' \vdash esi [:] Ts'
    proof(induct esi)
      case Nil thus \exists Ts'. P,E,hp s'' \vdash [] [:] Ts' by simp
    next
      fix ex esx
      assume types-conf P \ E \ (hp \ s'') \ (ex\#esx) \ []
      thus \exists Ts'. P, E, hp \ s'' \vdash ex \# esx \ [:] Ts' by simp
    qed
  next
    \mathbf{fix} \ T' \ Ts' \ esi
    assume type':types-conf \ P \ E \ (hp \ s'') \ esi \ (T'\#Ts')
      and IH: \land es''. types-conf P E (hp s'') es'' Ts' \Longrightarrow
                       \exists Ts''. P,E,hp s'' \vdash es'' [:] Ts''
    from type' show \exists Ts'. P,E,hp s'' \vdash esi [:] Ts'
    proof(induct esi)
      case Nil thus \exists Ts'. P, E, hp \ s'' \vdash [] [:] Ts' by simp
    next
      fix ex esx
      assume types-conf P \ E \ (hp \ s'') \ (ex\#esx) \ (T'\#Ts')
      hence type':P,E,hp\ s'' \vdash ex:_{NT} T'
        and types':types-conf P E (hp s'') esx Ts' by simp-all
      from type' obtain Tx where type'':P,E,hp s'' \vdash ex : Tx
        \mathbf{by}(cases\ T')\ auto
      from IH[OF \ types'] obtain Tsx where P,E,hp \ s'' \vdash esx \ [:] \ Tsx by auto
      with type" show \exists Ts'. P,E,hp s" \vdash ex\#esx [:] Ts' by auto
    qed
  qed
  then obtain Ts' where P,E,hp \ s'' \vdash es'' [:] Ts' by blast
  from IH[OF this sconf'] show ?case.
qed
lemma step-preserves-defass:
assumes wf: wf-C-prog P and step: P,E \vdash \langle e,s \rangle \rightarrow * \langle e',s' \rangle
shows \mathcal{D} \ e \ |\ dom(lcl\ s)| \Longrightarrow \mathcal{D} \ e' \ |\ dom(lcl\ s')|
using step
```

and $wtes:P,E,hp \ s \vdash es \ [:] \ Ts$

```
proof (induct rule:converse-rtrancl-induct2)
  case refl thus ?case.
\mathbf{next}
  case (step \ e \ s \ e' \ s') thus ?case
    by(cases s,cases s')(auto dest:red-preserves-defass[OF wf])
qed
lemma step-preserves-type:
assumes wf: wf-C-prog P and step: P,E \vdash \langle e,s \rangle \rightarrow * \langle e',s' \rangle
shows \bigwedge T. \llbracket P,E \vdash s \sqrt{P,E,hp } s \vdash e:T \rrbracket
    \implies P,E,(hp\ s') \vdash e':_{NT} T
using step
proof (induct rule:converse-rtrancl-induct2)
 case refl thus ?case by -(rule\ wt\text{-}same\text{-}type\text{-}typeconf)
  case (step e s e'' s'' T) thus ?case using wf
    apply simp
   \mathbf{apply}\ (\mathit{frule}\ \mathit{subject-reduction}[\mathit{OF}\ \mathit{wf}])
    apply (auto dest!:red-preserves-sconf intro:wf-prog-wwf-prog)
    apply(cases T)
    apply fastforce+
    done
qed
    predicate to show the same lemma for lists
fun
  conformable :: ty \ list \Rightarrow ty \ list \Rightarrow bool
where
  conformable [] [] \longleftrightarrow True
  | conformable (T'' \# Ts'') (T' \# Ts') \longleftrightarrow (T'' = T')
     \vee (\exists C. T'' = NT \wedge T' = Class C)) \wedge conformable Ts'' Ts'
 \mid conformable - - \longleftrightarrow False
lemma types-conf-conf-types-conf:
  \llbracket types\text{-}conf\ P\ E\ h\ es\ Ts;\ conformable\ Ts\ Ts' \rrbracket \implies types\text{-}conf\ P\ E\ h\ es\ Ts'
proof (induct Ts arbitrary: Ts' es)
  case Nil thus ?case by (cases Ts') (auto split: if-split-asm)
  case (Cons T'' Ts")
  have type:types-conf \ P \ E \ h \ es \ (T'' \# Ts'')
    and conf:conformable (T'' # Ts'') Ts'
    and IH: \bigwedge Ts' es. [types-conf P E h es Ts''; conformable Ts'' Ts']
                   \implies types\text{-}conf\ P\ E\ h\ es\ Ts'\ \mathbf{by}\ fact+
  from type obtain e' es' where es:es = e' \# es' by (cases es) auto
  with type have type':P,E,h \vdash e':_{NT} T''
    and types': types-conf P E h es' Ts"
```

```
by simp-all
  from conf obtain U Us where Ts': Ts' = U \# Us by (cases Ts') auto
  with conf have disj: T'' = U \vee (\exists C. T'' = NT \wedge U = Class C)
    and conf':conformable Ts" Us
    bv simp-all
  from type' disj have P,E,h \vdash e':_{NT} U by auto
  with IH[OF types' conf'] Ts' es show ?case by simp
qed
lemma types-conf-Wtrt-conf:
  types-conf P E h es Ts \Longrightarrow \exists Ts'. P,E,h \vdash es [:] Ts' \land conformable Ts' Ts
proof (induct Ts arbitrary: es)
  case Nil thus ?case by (cases es) (auto split:if-split-asm)
next
  case (Cons T'' Ts'')
  have type:types-conf P E h es (T'' \# Ts'')
    and IH: \land es. \ types-conf \ P \ E \ h \ es \ Ts'' \Longrightarrow
                  \exists Ts'. P,E,h \vdash es [:] Ts' \land conformable Ts' Ts'' by fact+
  from type obtain e' es' where es:es = e' \# es' by (cases es) auto
  with type have type':P,E,h \vdash e':_{NT} T''
    and types': types-conf P E h es' Ts"
    by simp-all
  from type' obtain T' where P,E,h \vdash e' : T' and
    T' = T'' \vee (\exists C. \ T' = NT \wedge T'' = Class \ C)  by (cases \ T'') auto
  with IH[OF types'] es show ?case
    by (auto, rule-tac \ x=T'' \# Ts' \ in \ exI, simp, rule-tac \ x=NT \# Ts' \ in \ exI, simp)
qed
lemma steps-preserves-types:
assumes wf: wf-C-prog P and steps: P,E \vdash \langle es,s \rangle [\rightarrow] * \langle es',s' \rangle
shows \bigwedge Ts. \llbracket P,E \vdash s \sqrt{P,E,hp } s \vdash es [:] Ts \rrbracket
 \implies types\text{-}conf\ P\ E\ (hp\ s')\ es'\ Ts
using steps
proof (induct rule:converse-rtrancl-induct2)
  case refl thus ?case by -(rule\ wts\text{-}same\text{-}types\text{-}typesconf)
next
  case (step \ es \ s \ es'' \ s'' \ Ts)
  have Reds:((es, s), es'', s'') \in Reds P E
    and steps:P,E \vdash \langle es'',s'' \rangle [\rightarrow] * \langle es',s' \rangle
   and sconf:P,E \vdash s \sqrt{\text{ and } wtes:P,E,hp } s \vdash es \text{ [:] } \textit{Ts}
    and IH: \land Ts. \llbracket P, E \vdash s'' \lor , P, E, hp \ s'' \vdash es'' \ [:] \ Ts \ \rrbracket
               \implies types\text{-}conf\ P\ E\ (hp\ s')\ es'\ Ts\ \mathbf{by}\ fact+
  from Reds have step:P,E \vdash \langle es,s \rangle [\rightarrow] \langle es'',s'' \rangle by simp
  with wtes sconf wf have sconf': P,E \vdash s'' \checkmark
    by(auto intro:reds-preserves-sconf wf-prog-wwf-prog)
```

```
from wtes have length es = length Ts by(fastforce dest:WTrts-same-length) from step sconf wtes have type': types-conf P E (hp s'') es'' Ts by (rule subjects-reduction[OF wf]) then obtain Ts' where wtes'':P,E,hp s'' \vdash es'' [:] Ts' and conf:conformable Ts' Ts by (auto dest:types-conf-Wtrt-conf) from IH[OF\ sconf'\ wtes''] have types-conf P E (hp s') es' Ts'. with conf show ?case by(fastforce intro:types-conf-conf-types-conf) qed
```

26.4 Lifting to \Rightarrow

...and now to the big step semantics, just for fun.

lemma eval-preserves-sconf:

$$\llbracket \text{ wf-C-prog } P; \ P,E \vdash \langle e,s \rangle \Rightarrow \langle e',s' \rangle; \ P,E \vdash e :: T; \ P,E \vdash s \ \sqrt{\ } \rrbracket \Longrightarrow P,E \vdash s' \ \sqrt{\ }$$

by(blast intro:step-preserves-sconf big-by-small WT-implies-WTrt wf-prog-wwf-prog)

```
lemma evals-preserves-sconf:
```

```
\llbracket wf\text{-}C\text{-}prog\ P;\ P,E \vdash \langle es,s \rangle\ [\Rightarrow]\ \langle es',s' \rangle;\ P,E \vdash es\ [::]\ Ts;\ P,E \vdash s\ \sqrt{\ } \\ \Rightarrow P,E \vdash s'\ \sqrt \\ \mathbf{by}(blast\ intro:steps\text{-}preserves\text{-}sconf\ bigs\text{-}by\text{-}smalls\ WTs\text{-}implies\text{-}WTrts} \\ wf\text{-}prog\text{-}wwf\text{-}prog)
```

```
\begin{array}{l} \textbf{lemma} \ eval\text{-}preserves\text{-}type : \textbf{assumes} \ wf : wf\text{-}C\text{-}prog \ P \\ \textbf{shows} \ \llbracket \ P,E \vdash \langle e,s \rangle \Rightarrow \langle e',s' \rangle; \ P,E \vdash s \ \sqrt; \ P,E \vdash e :: T \ \rrbracket \\ \Longrightarrow P,E,(hp\ s') \vdash e':_{NT}\ T \\ \\ \textbf{using} \ wf \\ \textbf{by} \ (auto\ dest!:big\text{-}by\text{-}small[OF\ wf\text{-}prog\text{-}wwf\text{-}prog[OF\ wf]]}\ WT\text{-}implies\text{-}WTrt \\ intro:wf\text{-}prog\text{-}wwf\text{-}prog \\ dest!:step\text{-}preserves\text{-}type[OF\ wf]) \end{array}
```

```
 \begin{array}{l} \textbf{lemma} \ evals\text{-}preserves\text{-}types\text{:} \ \textbf{assumes} \ wf \colon wf\text{-}C\text{-}prog \ P \\ \textbf{shows} \ \llbracket \ P,E \vdash \langle es,s \rangle \ [\Rightarrow] \ \langle es',s' \rangle; \ P,E \vdash s \ \sqrt; \ P,E \vdash es \ [::] \ Ts \ \rrbracket \\ \implies types\text{-}conf \ P \ E \ (hp \ s') \ es' \ Ts \\ \textbf{using} \ wf \\ \textbf{by} \ (auto \ dest!:bigs\text{-}by\text{-}smalls[OF \ wf\text{-}prog\text{-}wwf\text{-}prog[OF \ wf]] \ WTs\text{-}implies\text{-}WTrts} \\ \quad intro: wf\text{-}prog\text{-}wwf\text{-}prog \\ \quad dest!:steps\text{-}preserves\text{-}types[OF \ wf]) \\ \end{array}
```

26.5 The final polish

The above preservation lemmas are now combined and packed nicely.

```
definition wf-config :: prog \Rightarrow env \Rightarrow state \Rightarrow expr \Rightarrow ty \Rightarrow bool (<-,-,- \vdash - : - \sqrt> [51,0,0,0,0]50) where
```

```
theorem Subject-reduction: assumes wf: wf-C-prog P
shows P,E \vdash \langle e,s \rangle \rightarrow \langle e',s' \rangle \Longrightarrow P,E,s \vdash e: T \checkmark
       \implies P,E,(hp\ s') \vdash e':_{NT} T
  using wf
  by (force elim!:red-preserves-sconf intro:wf-prog-wwf-prog
            dest:subject-reduction[OF wf] simp:wf-config-def)
theorem Subject-reductions:
assumes wf: wf-C-prog P and reds: P,E \vdash \langle e,s \rangle \rightarrow * \langle e',s' \rangle
shows \bigwedge T. P,E,s \vdash e : T \bigvee \Longrightarrow P,E,(hp s') \vdash e' :_{NT} T
using reds
proof (induct rule:converse-rtrancl-induct2)
  case refl thus ?case
    by (fastforce intro:wt-same-type-typeconf simp:wf-config-def)
  case (step \ e \ s \ e^{\prime\prime} \ s^{\prime\prime} \ T)
  have Red:((e, s), e'', s'') \in Red P E
    and IH: \bigwedge T. P,E,s'' \vdash e'' : T \bigvee \Longrightarrow P,E,(hp\ s') \vdash e' :_{NT} T
    and wte:P,E,s \vdash e: T \checkmark by fact+
  from Red have red:P,E \vdash \langle e,s \rangle \rightarrow \langle e'',s'' \rangle by simp
  from red-preserves-sconf[OF red] wte wf have sconf:P,E \vdash s'' \checkmark
    by(fastforce dest:wf-prog-wwf-prog simp:wf-config-def)
  from wf red wte have type-conf:P, E, (hp \ s'') \vdash e'' :_{NT} T
    \mathbf{by}(rule\ Subject\text{-}reduction)
  show ?case
  proof(cases T)
    case Void
    with type-conf have P,E,hp \ s'' \vdash e'' : T by simp
    with sconf have P,E,s'' \vdash e'' : T \lor by(simp \ add:wf\text{-}config\text{-}def)
    from IH[OF this] show ?thesis.
  next
    case Boolean
    with type-conf have P,E,hp \ s'' \vdash e'' : T by simp
    with sconf have P,E,s'' \vdash e'' : T \sqrt{\text{by}(simp add:wf-config-def)}
    from IH[OF this] show ?thesis.
  \mathbf{next}
    case Integer
    with type-conf have P,E,hp \ s'' \vdash e'' : T by simp
    with sconf have P,E,s'' \vdash e'' : T \checkmark by(simp add:wf-config-def)
    from IH[OF this] show ?thesis.
  next
    case NT
    with type-conf have P,E,hp \ s'' \vdash e'' : T by simp
```

 $P,E,s \vdash e:T \checkmark \equiv P,E \vdash s \checkmark \land P,E,hp \ s \vdash e:T$

```
with sconf have P,E,s'' \vdash e'' : T \lor by(simp add:wf-config-def)
    from IH[OF this] show ?thesis.
  next
    case (Class C)
    with type-conf have P.E.hp \ s'' \vdash e'' : T \lor P.E.hp \ s'' \vdash e'' : NT by simp
    thus ?thesis
    proof(rule disjE)
      assume P, E, hp \ s'' \vdash e'' : T
      with sconf have P,E,s'' \vdash e'' : T \lor \mathbf{by}(simp\ add:wf\text{-}config\text{-}def)
      from IH[OF this] show ?thesis.
   \mathbf{next}
      assume P,E,hp\ s^{\prime\prime}\vdash\ e^{\prime\prime}:NT
      with sconf have P,E,s'' \vdash e'' : NT \sqrt{by(simp\ add:wf\text{-}config\text{-}def)}
      from IH[OF\ this] have P,E,hp\ s'\vdash e':NT by simp
      with Class show ?thesis by simp
    qed
  qed
qed
\textbf{corollary} \ \textit{Progress} \text{:} \ \textbf{assumes} \ \textit{wf} \text{:} \ \textit{wf-C-prog} \ \textit{P}
shows [P,E,s \vdash e: T \lor; \mathcal{D} e \mid dom(lcl s)|; \neg final e] \implies \exists e' s'. P,E \vdash \langle e,s \rangle
\rightarrow \langle e', s' \rangle
using progress[OF wf-prog-wwf-prog[OF wf]]
by(auto simp:wf-config-def sconf-def)
corollary TypeSafety:
fixes s s' :: state
assumes wf:wf-C-prog\ P and sconf:P,E \vdash s\ \sqrt{} and wte:P,E \vdash e :: T
 and D:\mathcal{D} \in \lfloor dom(lcl\ s) \rfloor and step:P,E \vdash \langle e,s \rangle \to * \langle e',s' \rangle
 and nored: \neg(\exists e'' s''. P,E \vdash \langle e',s' \rangle \rightarrow \langle e'',s'' \rangle)
shows (\exists v. e' = Val \ v \land P, hp \ s' \vdash v : \leq T) \lor
      (\exists r. e' = Throw \ r \land the - addr \ (Ref \ r) \in dom(hp \ s'))
proof -
  from sconf wte wf have wf-config:P,E,s \vdash e : T \checkmark
    by(fastforce intro: WT-implies-WTrt simp:wf-config-def)
  with wf step have type-conf:P,E,(hp\ s') \vdash e':_{NT} T
    \mathbf{by}(rule\ Subject\text{-}reductions)
  from step-preserves-sconf[OF wf step wte[THEN WT-implies-WTrt] sconf] wf
  have sconf':P,E \vdash s' \sqrt{\text{by } simp}
  from wf step D have D':\mathcal{D} e' | dom(lcl\ s') | by(rule step-preserves-defass)
  show ?thesis
  proof(cases T)
    case Void
    with type-conf have wte':P,E,hp\ s'\vdash e':T by simp
    with sconf' have wf-config':P,E,s' \vdash e' : T \lor by(simp \ add:wf-config-def)
```

```
{ assume \neg final\ e'
   from Progress[OF wf wf-config' D' this] nored have False
     by simp }
 hence final e' by fast
 with wte' show ?thesis by(auto simp:final-def)
next
 case Boolean
 with type-conf have wte':P,E,hp \ s' \vdash e':T by simp
 with sconf' have wf-config':P,E,s' \vdash e': T \lor by(simp \ add:wf-config-def)
  { assume \neg final\ e'
   \mathbf{from}\ \mathit{Progress}[\mathit{OF}\ \mathit{wf}\ \mathit{wf\text{-}config'}\ \mathit{D'}\ \mathit{this}]\ \mathit{nored}\ \mathbf{have}\ \mathit{False}
     by simp }
 hence final e' by fast
 with wte' show ?thesis by(auto simp:final-def)
next
 case Integer
 with type-conf have wte':P,E,hp \ s' \vdash e':T by simp
 with sconf' have wf-config':P,E,s' \vdash e': T \sqrt by (simp\ add:wf-config-def)
  { assume \neg final\ e'
   from Progress[OF wf wf-config' D' this] nored have False
     by simp }
 hence final \ e' by fast
 with wte' show ?thesis by(auto simp:final-def)
next
 case NT
 with type-conf have wte':P,E,hp \ s' \vdash e':T by simp
 with sconf' have wf-config':P,E,s' \vdash e' : T \bigvee by(simp \ add:wf-config-def)
 { assume \neg final\ e'
   from Progress[OF wf wf-config' D' this] nored have False
     by simp }
 hence final e' by fast
 with wte' show ?thesis by(auto simp:final-def)
next
 case (Class C)
 with type-conf have wte':P,E,hp\ s'\vdash e':T\lor P,E,hp\ s'\vdash e':NT by simp
 thus ?thesis
 proof(rule \ disjE)
   assume wte':P,E,hp \ s' \vdash e':T
   with sconf' have wf-config':P,E,s' \vdash e' : T \lor by(simp \ add:wf-config-def)
   { assume \neg final\ e'
     from Progress[OF wf wf-config' D' this] nored have False
       by simp }
   hence final e' by fast
   with wte' show ?thesis by(auto simp:final-def)
   assume wte':P,E,hp\ s'\vdash e':NT
   with sconf' have wf-config':P,E,s' \vdash e' : NT \lor by(simp add:wf-config-def)
   { assume \neg final\ e'
     from Progress[OF wf wf-config' D' this] nored have False
```

```
by simp }
hence final e' by fast
with wte' Class show ?thesis by(auto simp:final-def)
qed
qed
qed
end
```

27 Determinism Proof

theory Determinism imports TypeSafe begin

27.1 Some lemmas

```
lemma maps-nth:
 [(E(xs \mapsto ys)) \ x = Some \ y; \ length \ xs = length \ ys; \ distinct \ xs]
  \implies \forall i. \ x = xs! i \land i < length \ xs \longrightarrow y = ys! i
proof (induct xs arbitrary: ys E)
 case Nil thus ?case by simp
next
  case (Cons \ x' \ xs')
 have map:(E(x' \# xs' [\mapsto] ys)) \ x = Some \ y
   and length: length (x' \# xs') = length ys
   and dist:distinct\ (x'\#xs')
   and IH: \bigwedge ys \ E. \ [(E(xs' \mapsto ys)) \ x = Some \ y; \ length \ xs' = length \ ys;
                   distinct xs'
        \implies \forall i. \ x = xs'! i \land i < length \ xs' \longrightarrow y = ys! i \ \textbf{by} \ fact +
  from length obtain y'ys' where ys:ys = y' # ys' by (cases ys) auto
  { fix i assume x:x = (x'\#xs')!i and i:i < length(x'\#xs')
   have y = ys!i
   proof(cases i)
     case 0 with x map ys dist show ?thesis by simp
   next
     case (Suc \ n)
     with x i have x':x = xs'!n and n:n < length xs' by simp-all
     from map ys have map': (E(x' \mapsto y', xs' \mapsto ys')) x = Some y by simp
     from length ys have length':length xs' = length ys' by simp
     from dist have dist': distinct xs' by simp
     from IH[OF map' length' dist']
     have \forall i. \ x = xs'!i \land i < length \ xs' \longrightarrow y = ys'!i.
     with x' n have y = ys'!n by simp
     with ys n Suc show ?thesis by simp
   qed }
  thus ?case by simp
qed
```

```
lemma nth-maps:[[length pns = length Ts; distinct pns; <math>i < length Ts]]
  \implies (E(pns \mapsto Ts)) (pns!i) = Some (Ts!i)
proof (induct i arbitrary: E pns Ts)
 case \theta
 have dist:distinct\ pns and length:length\ pns = length\ Ts
   and i-length: 0 < length Ts by fact +
  from i-length obtain T' Ts' where Ts: Ts = T' \# Ts' by (cases Ts) auto
  with length obtain p' pns' where pns = p' \# pns' by (cases pns) auto
  with Ts dist show ?case by simp
next
  case (Suc \ n)
 have i-length: Suc n < length Ts and dist: distinct pns
   and length:length pns = length Ts by fact+
 from Suc obtain T' Ts' where Ts:Ts = T' \# Ts' by (cases Ts) auto
  with length obtain p' pns' where pns:pns = p'\#pns' by (cases pns) auto
  with Ts length dist have length':length pns' = length Ts
   and dist':distinct\ pns' and notin:p' \notin set\ pns' by simp-all
 from i-length Ts have n-length:n < length Ts' by simp
 with length' dist' have map:(E(p' \mapsto T', pns' [\mapsto] Ts')) (pns'!n) = Some(Ts'!n)
 with notin have (E(p' \mapsto T', pns' [\mapsto] Ts')) p' = Some T' by simp
  with pns Ts map show ?case by simp
qed
lemma casts-casts-eq-result:
 fixes s :: state
 assumes casts:P \vdash T casts v to v' and casts':P \vdash T casts v to w'
 and type:is-type P T and wte:P,E \vdash e :: T' and leq:P \vdash T' \leq T
 and eval:P,E \vdash \langle e,s \rangle \Rightarrow \langle Val\ v,(h,l) \rangle and sconf:P,E \vdash s \checkmark
 and wf: wf-C-prog P
 shows v' = w'
\mathbf{proof}(\mathit{cases} \ \forall \ \mathit{C}. \ \mathit{T} \neq \mathit{Class} \ \mathit{C})
 case True
  with casts casts' show ?thesis
   by(auto elim:casts-to.cases)
next
  case False
  then obtain C where T:T = Class C by auto
  with type have is-class P C by simp
 with wf T leq have T' = NT \lor (\exists D. T' = Class D \land P \vdash Path D to C unique)
   by(simp add:widen-Class)
  thus ?thesis
 proof(rule \ disjE)
   assume T' = NT
   with wf eval sconf wte have v = Null
     by(fastforce dest:eval-preserves-type)
   with casts casts' show ?thesis by(fastforce elim:casts-to.cases)
 next
```

```
assume \exists D. T' = Class D \land P \vdash Path D to C unique
    then obtain D where T':T' = Class\ D
      and path-unique:P \vdash Path D \text{ to } C \text{ unique } \mathbf{by} \text{ auto}
    with wf eval sconf wte
   have P,E,h \vdash Val \ v : T' \lor P,E,h \vdash Val \ v : NT
      by(fastforce dest:eval-preserves-type)
    thus ?thesis
    proof(rule \ disjE)
      assume P, E, h \vdash Val \ v : T'
     with T' obtain a Cs C' S where h:h a = Some(C',S) and v:v = Ref(a,Cs)
        and last:last \ Cs = D
        \mathbf{by}(fastforce\ dest:typeof-Class-Subo)
      from casts' \ v \ last \ T obtain Cs' \ Ds where P \vdash Path \ D \ to \ C \ via \ Cs'
        and Ds = Cs@_p Cs' and w' = Ref(a,Ds)
        by(auto elim:casts-to.cases)
      with casts T v last path-unique show ?thesis
        by auto(erule casts-to.cases, auto simp:path-via-def path-unique-def)
    next
      assume P,E,h \vdash Val\ v:NT
      with wf eval sconf wte have v = Null
        \mathbf{by}(fastforce\ dest:eval-preserves-type)
      with casts casts' show ?thesis by(fastforce elim:casts-to.cases)
    qed
  qed
qed
lemma Casts-Casts-eq-result:
 assumes wf:wf-C-proq P
 shows \llbracket P \vdash Ts \ Casts \ vs \ to \ vs'; \ P \vdash Ts \ Casts \ vs \ to \ ws'; \ \forall \ T \in set \ Ts. \ is-type \ P
T;
          P,E \vdash es [::] Ts'; P \vdash Ts' [\leq] Ts; P,E \vdash \langle es,s \rangle [\Rightarrow] \langle map\ Val\ vs,(h,l) \rangle;
          P,E \vdash s \sqrt{1}
      \implies vs' = ws'
proof (induct vs arbitrary: vs' ws' Ts Ts' es s)
  case Nil thus ?case by (auto elim!: Casts-to.cases)
  case (Cons \ x \ xs)
  have CastsCons:P \vdash Ts \ Casts \ x \ \# \ xs \ to \ vs'
    and CastsCons':P \vdash Ts \ Casts \ x \ \# \ xs \ to \ ws'
    and type: \forall T \in set Ts. is-type P T
    and wtes:P,E \vdash es [::] Ts' and subs:P \vdash Ts' [\leq] Ts
    and evals:P,E \vdash \langle es,s \rangle \ [\Rightarrow] \ \langle map \ Val \ (x\#xs),(h,l) \rangle
   and sconf:P,E \vdash s \sqrt{}
    and IH: \land vs' ws' Ts Ts' es s.
    \llbracket P \vdash Ts \ Casts \ xs \ to \ vs'; \ P \vdash Ts \ Casts \ xs \ to \ ws'; \ \forall \ T \in set \ Ts. \ is-type \ P \ T;
     P,E \vdash es \ [::] \ Ts'; \ P \vdash Ts' \ [\leq] \ Ts; \ P,E \vdash \langle es,s \rangle \ [\Rightarrow] \ \langle map \ Val \ xs,(h,l) \rangle;
     P,E \vdash s \sqrt{||}
     \implies vs' = ws' by fact +
  from CastsCons obtain y ys S Ss where vs':vs' = y \# ys and Ts:Ts = S \# Ss
```

```
apply –
    apply(frule length-Casts-vs, cases Ts, auto)
    apply(frule length-Casts-vs', cases vs', auto)
  with CastsCons have casts:P \vdash S casts x to y and Casts:P \vdash Ss Casts xs to ys
    by(auto elim: Casts-to.cases)
  from Ts type have type':is-type P S and types':\forall T \in set Ss. is-type P T
  from Ts CastsCons' obtain z zs where ws':ws' = z\#zs
    by simp(frule\ length-Casts-vs', cases\ ws', auto)
  with Ts CastsCons' have casts': P \vdash S casts x to z
    and Casts': P \vdash Ss \ Casts \ xs \ to \ zs
    by(auto elim: Casts-to.cases)
  from Ts subs obtain U Us where Ts':Ts' = U \# Us and subs':P \vdash Us [\leq] Ss
    and sub:P \vdash U < S by (cases\ Ts', auto\ simp: fun-of-def)
  from wtes Ts' obtain e' es' where es:es = e' \# es' and wte':P,E \vdash e' :: U
    and wtes':P,E \vdash es' [::] Us by(cases es) auto
  with evals obtain h' l' where eval:P,E \vdash \langle e',s \rangle \Rightarrow \langle Val \ x,(h',l') \rangle
   and evals':P,E \vdash \langle es',(h',l')\rangle \ [\Rightarrow] \langle map \ Val \ xs,(h,l)\rangle
    by (auto elim:evals.cases)
  from wf eval wte' sconf have P,E \vdash (h',l') \checkmark by(rule eval-preserves-sconf)
  from IH[OF\ Casts\ Casts'\ types'\ wtes'\ subs'\ evals'\ this]\ {\bf have}\ eq:ys=zs.
  from casts casts' type' wte' sub eval sconf wf have y = z
    \mathbf{by}(rule\ casts\text{-}casts\text{-}eq\text{-}result)
  with eq vs' ws' show ?case by simp
qed
lemma Casts-conf: assumes wf: wf-C-prog P
  shows P \vdash Ts \ Casts \ vs \ to \ vs' \Longrightarrow
  (\bigwedge es\ s\ Ts'.\ [P,E \vdash es\ [::]\ Ts';\ P,E \vdash \langle es,s\rangle\ [\Rightarrow]\ \langle map\ Val\ vs,(h,l)\rangle;\ P,E \vdash s\ \sqrt{;}
             P \vdash Ts' [\leq] Ts] \Longrightarrow
     \forall i < length \ Ts. \ P,h \vdash vs'!i :\leq Ts!i)
proof(induct rule: Casts-to.induct)
  case Casts-Nil thus ?case by simp
next
  case (Casts-Cons T v v' Ts vs vs')
  have casts: P \vdash T \ casts \ v \ to \ v' \ and \ wtes: P, E \vdash es \ [::] \ Ts'
    and evals:P,E \vdash \langle es,s \rangle \ [\Rightarrow] \ \langle map \ Val \ (v \# vs),(h,l) \rangle
    and subs:P \vdash Ts' \leq (T \# Ts) and sconf:P,E \vdash s \sqrt{}
    and IH: \land es \ s \ Ts'. \llbracket P, E \vdash es \ [::] \ Ts'; \ P, E \vdash \langle es, s \rangle \ [\Rightarrow] \ \langle map \ Val \ vs, (h, l) \rangle;
                   P,E \vdash s \sqrt{;} P \vdash Ts' [\leq] Ts
               \implies \forall i < length \ Ts. \ P,h \vdash vs' ! \ i : \leq Ts ! \ i \ by \ fact +
  from subs obtain U Us where Ts':Ts' = U \# Us \ \mathbf{by}(cases \ Ts') auto
  with subs have sub':P \vdash U \leq T and subs':P \vdash Us [\leq] Ts
    by (simp-all add:fun-of-def)
  from wtes Ts' obtain e' es' where es:es = e' \# es' by (cases \ es) auto
  with Ts' wtes have wte':P,E \vdash e' :: U and wtes':P,E \vdash es' [::] Us by auto
```

```
from es evals obtain s' where eval':P,E \vdash \langle e',s \rangle \Rightarrow \langle Val \ v,s' \rangle
    and evals':P,E \vdash \langle es',s' \rangle \ [\Rightarrow] \ \langle map \ Val \ vs,(h,l) \rangle
    by(auto elim:evals.cases)
  from wf eval' wte' sconf have sconf': P, E \vdash s' \sqrt{\text{by}(\text{rule eval-preserves-sconf})}
  from evals' have hext:hp s' \subseteq h by (cases s', auto intro:evals-hext)
  from wf eval' sconf wte' have P,E,(hp\ s') \vdash Val\ v:_{NT} U
    \mathbf{by}(rule\ eval\text{-}preserves\text{-}type)
  with hext have wtrt:P,E,h \vdash Val\ v:_{NT}\ U
    \mathbf{by}(cases\ U, auto\ intro:hext-typeof-mono)
  from casts wtrt sub' have P, h \vdash v' :\leq T
  proof(induct rule:casts-to.induct)
    case (casts-prim T^{\prime\prime} v^{\prime\prime})
    have \forall C. T'' \neq Class \ C \ \text{and} \ P, E, h \vdash Val \ v'' :_{NT} U \ \text{and} \ P \vdash U \leq T'' \ \text{by}
fact+
    thus ?case by(cases T'') auto
    case (casts-null C) thus ?case by simp
  next
    case (casts-ref Cs C Cs' Ds a)
    have path:P \vdash Path \ last \ Cs \ to \ C \ via \ Cs'
      and Ds:Ds = Cs @_p Cs'
      \mathbf{and} \ \mathit{wtref} \mathpunct{:}\! P,\! E,\! h \vdash \mathit{ref} \ (\mathit{a},\ \mathit{Cs}) \vcentcolon_{\mathit{NT}} \mathit{U} \ \mathbf{by} \ \mathit{fact} +
    from wtref obtain D S where subo:Subobjs P D Cs and h:h a = Some(D,S)
      \mathbf{by}(cases\ U, auto\ split: if-split-asm)
    from path Ds have last: C = last Ds
      \mathbf{by}(fastforce\ intro!:appendPath-last\ Subobjs-nonempty\ simp:path-via-def)
    from subo path Ds wf have Subobjs P D Ds
      \mathbf{by}(fastforce\ intro:Subobjs-appendPath\ simp:path-via-def)
    with last h show ?case by simp
  qed
  with IH[OF wtes' evals' sconf' subs'] show ?case
    \mathbf{by}(auto\ simp:nth-Cons, case-tac\ i, auto)
\mathbf{qed}
lemma map-Val-throw-False:map Val vs = map Val vs @ throw ex # es <math>\Longrightarrow False
proof (induct vs arbitrary: ws)
  case Nil thus ?case by simp
next
  case (Cons v' vs')
  have eq:map\ Val\ (v'\#vs') = map\ Val\ ws\ @\ throw\ ex\ \#\ es
   and IH: \bigwedge ws'. map Val\ vs' = map\ Val\ ws' @ throw\ ex \# es \Longrightarrow False\ by\ fact +
  from eq obtain w' ws' where ws:ws = w' \# ws' by (cases \ ws) auto
  from eq have tl(map\ Val\ (v'\#vs')) = tl(map\ Val\ ws\ @\ throw\ ex\ \#\ es) by simp
  hence map Val\ vs' = tl(map\ Val\ ws\ @\ throw\ ex\ \#\ es) by simp
  with ws have map Val\ vs' = map\ Val\ ws' @ throw\ ex\ \#\ es\ by\ simp
  from IH[OF this] show ?case.
qed
```

```
lemma map-Val-throw-eq:map Val vs @ throw ex # es = map Val ws @ throw ex'
# es'
  \implies vs = ws \land ex = ex' \land es = es'
  apply(clarsimp simp:append-eq-append-conv2)
  apply(erule disjE)
   apply(case-tac\ us)
    apply(fastforce elim:map-injective simp:inj-on-def)
   apply(fastforce dest:map-Val-throw-False)
  apply(case-tac\ us)
   apply(fastforce elim:map-injective simp:inj-on-def)
  apply(fastforce dest:sym[THEN map-Val-throw-False])
  done
27.2
           The proof
lemma deterministic-biq-step:
assumes wf:wf-C-proq P
shows P,E \vdash \langle e,s \rangle \Rightarrow \langle e_1,s_1 \rangle \Longrightarrow
       (\bigwedge e_2 \ s_2 \ T. \ \llbracket P,E \vdash \langle e,s \rangle \Rightarrow \langle e_2,s_2 \rangle; \ P,E \vdash e :: \ T; \ P,E \vdash s \ \sqrt{\rrbracket}
        \implies e_1 = e_2 \land s_1 = s_2
  and P,E \vdash \langle es,s \rangle \ [\Rightarrow] \ \langle es_1,s_1 \rangle \Longrightarrow
        (\bigwedge es_2 \ s_2 \ Ts. \ \llbracket P,E \vdash \langle es,s \rangle \ [\Rightarrow] \ \langle es_2,s_2 \rangle; \ P,E \vdash es \ [::] \ Ts; \ P,E \vdash s \ \sqrt{\rrbracket}
        \implies es_1 = es_2 \land s_1 = s_2
proof (induct rule:eval-evals.inducts)
  case New thus ?case by(auto elim: eval-cases)
next
  case NewFail thus ?case by(auto elim: eval-cases)
next
  case (StaticUpCast\ E\ e\ s_0\ a\ Cs\ s_1\ C\ Cs'\ Ds\ e_2\ s_2)
  have eval:P,E \vdash \langle (C)e,s_0 \rangle \Rightarrow \langle e_2,s_2 \rangle
    and path-via:P \vdash Path \ last \ Cs \ to \ C \ via \ Cs' \ and \ Ds:Ds = Cs \ @_p \ Cs'
    and wt:P,E \vdash (C)e :: T \text{ and } sconf:P,E \vdash s_0 \checkmark
    and IH: \land e_2 \ s_2 \ T. \llbracket P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle e_2,s_2 \rangle; \ P,E \vdash e :: \ T; \ P,E \vdash s_0 \ \sqrt{\rrbracket}
             \implies ref(a,Cs) = e_2 \land s_1 = s_2 \text{ by } fact +
  from wt obtain D where class:is-class P C and wte:P,E \vdash e :: Class D
    and disj:P \vdash Path \ D \ to \ C \ unique \ \lor
               (P \vdash C \preceq^* D \land (\forall Cs. P \vdash Path \ C \ to \ D \ via \ Cs \longrightarrow Subobjs_R \ P \ C \ Cs))
    by auto
  from eval show ?case
  proof(rule eval-cases)
    fix Xs Xs' a'
    assume eval-ref:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ref(a',Xs),s_2 \rangle
      and path-via':P \vdash Path \ last \ Xs \ to \ C \ via \ Xs'
      and ref:e_2 = ref(a', Xs@_pXs')
    from IH[OF eval-ref wte sconf] have eq: a = a' \land Cs = Xs \land s_1 = s_2 by simp
    with wf eval-ref sconf wte have last:last Cs = D
      by(auto dest:eval-preserves-type split:if-split-asm)
    from disj show ref (a,Ds) = e_2 \wedge s_1 = s_2
```

proof ($rule\ disjE$)

```
assume P \vdash Path D to C unique
     with path-via path-via' eq last have Cs' = Xs'
       \mathbf{by}(fastforce\ simp\ add:path-via-def\ path-unique-def)
     with eq ref Ds show ?thesis by simp
   next
      assume P \vdash C \preceq^* D \land (\forall Cs. P \vdash Path C to D via Cs \longrightarrow Subobjs_R P C
Cs
     with class wf obtain Cs'' where P \vdash Path \ C \ to \ D \ via \ Cs''
       by(auto dest:leq-implies-path)
     with path-via path-via' wf eq last have Cs' = Xs'
       by(auto dest:path-via-reverse)
     with eq ref Ds show ?thesis by simp
   qed
  next
   fix Xs Xs' a'
   assume eval-ref:P, E \vdash \langle e, s_0 \rangle \Rightarrow \langle ref(a', Xs@C \# Xs'), s_2 \rangle
     and ref:e_2 = ref(a',Xs@[C])
   from IH[OF \ eval\text{-ref} \ wte \ sconf] have eq: a = a' \land Cs = Xs@C\#Xs' \land s_1 = s_2
by simp
   with wf eval-ref sconf wte obtain C' where
     last:last\ Cs=D\ {\bf and}\ Subobjs\ P\ C'\ (Xs@C\#Xs')
     by(auto dest:eval-preserves-type split:if-split-asm)
   hence subo:Subobjs \ P \ C \ (C \# Xs') by (fastforce\ intro:Subobjs-Subobjs)
   with eq last have leq:P \vdash C \leq^* D by (fastforce\ dest:Subobjs-subclass)
   from path-via last have P \vdash D \preceq^* C
     by(auto dest:Subobjs-subclass simp:path-via-def)
   with leq wf have CeqD:C = D by (rule\ subcls-asym2)
   with last path-via wf have Cs' = [D] by (fastforce intro:path-via-C)
   with Ds last have Ds':Ds = Cs by (simp\ add:appendPath-def)
   from subo CeqD last eq wf have Xs' = [] by(auto dest:mdc-eq-last)
   with eq Ds' ref show ref (a,Ds) = e_2 \wedge s_1 = s_2 by simp
   assume eval-null:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle null,s_2 \rangle
   from IH[OF \ eval-null \ wte \ sconf] show ref(a,Ds) = e_2 \land s_1 = s_2 by simp
  next
   fix Xs \ a'
   assume eval\text{-ref}:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ref(a',Xs),s_2 \rangle and notin:C \notin set\ Xs
     and notleq: \neg P \vdash last Xs \preceq^* C and throw: e_2 = THROW ClassCast
   from IH[OF \ eval\text{-ref wte sconf}] have eq: a = a' \land Cs = Xs \land s_1 = s_2 by simp
   with wf eval-ref sconf wte have last:last Cs = D and notempty: Cs \neq []
     \mathbf{by}(\mathit{auto}\ \mathit{dest!} : \mathit{eval-preserves-type}\ \mathit{Subobjs-nonempty}\ \mathit{split} : \mathit{if-split-asm})
   from disj have C = D
   proof(rule \ disjE)
     assume path-unique:P \vdash Path D \text{ to } C \text{ unique}
     with last have P \vdash D \leq^* C
       \mathbf{by}(fastforce\ dest:Subobjs\text{-}subclass\ simp:path\text{-}unique\text{-}def)
     with notleg last eq show ?thesis by simp
   next
     assume ass:P \vdash C \preceq^* D \land
```

```
(\forall Cs. P \vdash Path \ C \ to \ D \ via \ Cs \longrightarrow Subobjs_R \ P \ C \ Cs)
      with class wf obtain Cs'' where path-via':P \vdash Path \ C \ to \ D \ via \ Cs''
        by(auto dest:leq-implies-path)
      with path-via wf eq last have Cs'' = [D]
        by(fastforce dest:path-via-reverse)
      with ass path-via' have Subobjs_R P C [D] by simp
      thus ?thesis by(fastforce dest:hd-SubobjsR)
    with last notin eq notempty show ref (a,Ds) = e_2 \wedge s_1 = s_2
      \mathbf{by}(fastforce\ intro:last-in-set)
  next
    fix e' assume eval-throw:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle throw \ e',s_2 \rangle
    from IH[OF eval-throw wte sconf] show ref (a,Ds) = e_2 \wedge s_1 = s_2 by simp
  qed
next
  case (StaticDownCast \ E \ e \ s_0 \ a \ Cs \ C \ Cs' \ s_1 \ e_2 \ s_2 \ T)
  have eval:P,E \vdash \langle (C)e,s_0 \rangle \Rightarrow \langle e_2,s_2 \rangle
    and eval':P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ref(a,Cs@[C]@Cs'),s_1 \rangle
    and wt:P,E \vdash (C)e :: T \text{ and } sconf:P,E \vdash s_0 \checkmark
   and IH: \bigwedge e_2 \ s_2 \ T. \llbracket P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle e_2,s_2 \rangle; \ P,E \vdash e :: \ T; \ P,E \vdash s_0 \ \sqrt{\rrbracket}
                       \implies ref(a, Cs@[C]@Cs') = e_2 \land s_1 = s_2 \text{ by } fact +
  from wt obtain D where wte:P,E \vdash e :: Class D
    and disj:P \vdash Path \ D \ to \ C \ unique \ \lor
              (P \vdash C \preceq^* D \land (\forall Cs. P \vdash Path \ C \ to \ D \ via \ Cs \longrightarrow Subobjs_R \ P \ C \ Cs))
    by auto
  from eval show ?case
  \mathbf{proof}(rule\ eval\text{-}cases)
    fix Xs Xs' a'
    assume eval-ref:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ref(a',Xs),s_2 \rangle
      and path-via:P \vdash Path\ last\ Xs\ to\ C\ via\ Xs'
      and ref:e_2 = ref(a', Xs@_pXs')
    from IH[OF eval-ref wte sconf] have eq:a = a' \land Cs@[C]@Cs' = Xs \land s_1 =
s_2
      by simp
    with wf eval-ref sconf wte obtain C' where
      last:last(C \# Cs') = D and Subobjs P C' (Cs@[C]@Cs')
      by(auto dest:eval-preserves-type split:if-split-asm)
    hence P \vdash Path \ C \ to \ D \ via \ C \# Cs'
      by(fastforce intro:Subobjs-Subobjs simp:path-via-def)
    with eq last path-via wf have Xs' = [C] \land Cs' = [] \land C = D
      apply clarsimp
      apply(split if-split-asm)
      \mathbf{by}(simp, drule\ path-via-reverse, simp, simp) +
  with ref eq show ref(a, Cs@[C]) = e_2 \wedge s_1 = s_2 by(fastforce simp:appendPath-def)
  next
    fix Xs Xs' a'
    assume eval-ref:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ref(a',Xs@C\#Xs'),s_2 \rangle
      and ref:e_2 = ref(a',Xs@[C])
    from IH[OF \ eval\text{-ref} \ wte \ sconf] have eq: a = a' \land Cs@[C]@Cs' = Xs@C\#Xs'
```

```
\wedge s_1 = s_2
      by simp
    with wf eval-ref sconf wte obtain C' where
      last: last(C \# Xs') = D and subo: Subobjs P C' (Cs@[C]@Cs')
      by(auto dest:eval-preserves-type split:if-split-asm)
    from subo wf have notin: C \notin set\ Cs\ by\ -(rule\ unique2, simp)
    from subo wf have C \notin set \ Cs' by -(rule \ unique1, simp, simp)
    with notin eq have Cs = Xs \wedge Cs' = Xs'
      by -(rule\ only\ one\ append, simp+)
    with eq ref show ref(a, Cs@[C]) = e_2 \land s_1 = s_2 by simp
  next
    assume eval-null:P, E \vdash \langle e, s_0 \rangle \Rightarrow \langle null, s_2 \rangle
   from IH[OF \ eval-null \ wte \ sconf] show ref(a, Cs@[C]) = e_2 \land s_1 = s_2 by simp
  next
    fix Xs \ a'
    assume eval-ref:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ref(a',Xs),s_2 \rangle and notin: C \notin set\ Xs
    from IH[OF eval-ref wte sconf] have a = a' \wedge Cs@[C]@Cs' = Xs \wedge s_1 = s_2
      by simp
    with notin show ref(a, Cs@[C]) = e_2 \wedge s_1 = s_2 by fastforce
  \mathbf{next}
    fix e' assume eval-throw:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle throw \ e',s_2 \rangle
    from IH[OF eval-throw wte sconf] show ref (a, Cs@[C]) = e_2 \wedge s_1 = s_2 by
simp
  qed
\mathbf{next}
  case (StaticCastNull\ E\ e\ s_0\ s_1\ C\ e_2\ s_2\ T)
  have eval:P,E \vdash \langle (|C|)e,s_0 \rangle \Rightarrow \langle e_2,s_2 \rangle
    and wt:P,E \vdash (C)e :: T \text{ and } sconf:P,E \vdash s_0 \checkmark
    and IH: \bigwedge e_2 \ s_2 \ T. \llbracket P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle e_2,s_2 \rangle; \ P,E \vdash e :: \ T; \ P,E \vdash s_0 \ \sqrt{\rrbracket}
                     \implies null = e_2 \land s_1 = s_2 \text{ by } fact +
  from wt obtain D where wte:P,E \vdash e :: Class D by auto
  from eval show ?case
  proof(rule eval-cases)
    fix Xs Xs' a'
    assume eval-ref:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ref(a',Xs),s_2 \rangle
    from IH[OF eval-ref wte sconf] show null = e_2 \wedge s_1 = s_2 by simp
  next
    fix Xs Xs' a'
    assume eval-ref:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ref(a',Xs@C\#Xs'),s_2 \rangle
    from IH[OF \ eval\text{-ref} \ wte \ sconf] show null = e_2 \land s_1 = s_2 by simp
  next
    assume eval-null:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle null,s_2 \rangle and e_2 = null
    with IH[OF eval-null wte sconf] show null = e_2 \wedge s_1 = s_2 by simp
  next
    fix Xs \ a'
    assume eval-ref:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ref(a',Xs),s_2 \rangle
    from IH[OF \ eval\text{-ref} \ wte \ sconf] show null = e_2 \land s_1 = s_2 by simp
  next
    fix e' assume eval-throw:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle throw \ e',s_2 \rangle
```

```
from IH[OF \ eval\text{-}throw \ wte \ sconf] \ \mathbf{show} \ null = e_2 \land s_1 = s_2 \ \mathbf{by} \ simp
  qed
next
  case (StaticCastFail \ E \ e \ s_0 \ a \ Cs \ s_1 \ C \ e_2 \ s_2 \ T)
  have eval:P,E \vdash \langle (C)e,s_0 \rangle \Rightarrow \langle e_2,s_2 \rangle
    and notleq: \neg P \vdash last \ Cs \preceq^* C \ and \ notin: C \notin set \ Cs
    and wt:P,E \vdash (C)e :: T \text{ and } sconf:P,E \vdash s_0 \checkmark
    and IH: \bigwedge e_2 \ s_2 \ T. \llbracket P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle e_2,s_2 \rangle; \ P,E \vdash e :: \ T; \ P,E \vdash s_0 \ \sqrt{\rrbracket}
                       \Longrightarrow ref(a, Cs) = e_2 \wedge s_1 = s_2 \text{ by } fact +
  from wt obtain D where wte:P,E \vdash e :: Class D by auto
  from eval show ?case
  \mathbf{proof}(rule\ eval\text{-}cases)
    fix Xs Xs' a'
    assume eval-ref:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ref(a',Xs),s_2 \rangle
      and path-via:P \vdash Path\ last\ Xs\ to\ C\ via\ Xs'
    from IH[OF eval-ref wte sconf] have eq: a = a' \land Cs = Xs \land s_1 = s_2 by simp
    with path-via wf have P \vdash last \ Cs \preceq^* C
      \mathbf{by}(auto\ dest:Subobjs\text{-}subclass\ simp:path\text{-}via\text{-}def)
    with notleg show THROW ClassCast = e_2 \wedge s_1 = s_2 by simp
  next
    fix Xs Xs' a'
    assume eval-ref:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ref(a',Xs@C\#Xs'),s_2 \rangle
     from IH[OF eval-ref wte sconf] have a = a' \wedge Cs = Xs@C \# Xs' \wedge s_1 = s_2
by simp
     with notin show THROW ClassCast = e_2 \wedge s_1 = s_2 by simp
  next
    assume eval-null:P, E \vdash \langle e, s_0 \rangle \Rightarrow \langle null, s_2 \rangle
    from IH[OF eval-null wte sconf] show THROW ClassCast = e_2 \wedge s_1 = s_2 by
simp
  next
    fix Xs \ a'
    assume eval-ref:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ref(a',Xs),s_2 \rangle
      and throw: e_2 = THROW\ Class Cast
    from IH[OF eval-ref wte sconf] have a = a' \wedge Cs = Xs \wedge s_1 = s_2
    with throw show THROW ClassCast = e_2 \wedge s_1 = s_2 by simp
  next
    fix e' assume eval-throw:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle throw \ e',s_2 \rangle
     from IH[OF eval-throw wte sconf] show THROW ClassCast = e_2 \wedge s_1 = s_2
by simp
  qed
next
  case (StaticCastThrow\ E\ e\ s_0\ e'\ s_1\ C\ e_2\ s_2\ T)
  have eval:P,E \vdash \langle (C)e,s_0 \rangle \Rightarrow \langle e_2,s_2 \rangle
    and wt:P,E \vdash (C)e :: T \text{ and } sconf:P,E \vdash s_0 \checkmark
    and IH: \land e_2 \ s_2 \ T. \llbracket P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle e_2,s_2 \rangle; \ P,E \vdash e :: T; \ P,E \vdash s_0 \ \sqrt{\rrbracket}
                     \implies throw \ e' = e_2 \wedge s_1 = s_2 \ \textbf{by} \ fact +
  from wt obtain D where wte:P,E \vdash e :: Class D by auto
  from eval show ?case
```

```
proof(rule eval-cases)
    fix Xs Xs' a'
    assume eval-ref:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ref(a',Xs),s_2 \rangle
    from IH[OF eval-ref wte sconf] show throw e' = e_2 \wedge s_1 = s_2 by simp
  next
    fix Xs Xs' a'
    assume eval-ref:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ref(a',Xs@C\#Xs'),s_2 \rangle
    from IH[OF eval-ref wte sconf] show throw e' = e_2 \wedge s_1 = s_2 by simp
  next
    assume eval-null:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle null,s_2 \rangle
    from IH[OF eval-null wte sconf] show throw e' = e_2 \wedge s_1 = s_2 by simp
  next
    fix Xs a'
    assume eval-ref:P, E \vdash \langle e, s_0 \rangle \Rightarrow \langle ref(a', Xs), s_2 \rangle
    from IH[OF eval-ref wte sconf] show throw e' = e_2 \wedge s_1 = s_2 by simp
    fix e'' assume eval-throw:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle throw \ e'',s_2 \rangle
      and throw: e_2 = throw e''
    from IH[OF eval-throw wte sconf] throw show throw e' = e_2 \wedge s_1 = s_2 by
simp
  qed
\mathbf{next}
  case (StaticUpDynCast \ E \ e \ s_0 \ a \ Cs \ s_1 \ C \ Cs' \ Ds \ e_2 \ s_2 \ T)
  have eval:P,E \vdash \langle Cast \ C \ e,s_0 \rangle \Rightarrow \langle e_2,s_2 \rangle
    and path-via:P \vdash Path \ last \ Cs \ to \ C \ via \ Cs'
    and path-unique:P \vdash Path \ last \ Cs \ to \ C \ unique
    and Ds:Ds = Cs@_pCs' and wt:P,E \vdash Cast\ C\ e :: T\ and\ sconf:P,E \vdash s_0\ \sqrt{}
    and IH: \land e_2 \ s_2 \ T. \llbracket P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle e_2,s_2 \rangle; \ P,E \vdash e :: T; \ P,E \vdash s_0 \ \sqrt{\rrbracket}
                     \implies ref(a,Cs) = e_2 \land s_1 = s_2 \text{ by } fact +
  from wt obtain D where wte:P,E \vdash e :: Class D by auto
  from eval show ?case
  proof(rule eval-cases)
    fix Xs Xs' a'
    assume eval-ref:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ref(a',Xs),s_2 \rangle
      and path-via': P \vdash Path\ last\ Xs\ to\ C\ via\ Xs'
      and ref:e_2 = ref(a', Xs@_nXs')
    from IH[OF eval-ref wte sconf] have eq:a = a' \wedge Cs = Xs \wedge s_1 = s_2 by simp
    with wf eval-ref sconf wte have last:last Cs = D
      by(auto dest:eval-preserves-type split:if-split-asm)
    with path-unique path-via path-via' eq have Xs' = Cs'
      \mathbf{by}(fastforce\ simp:path-via-def\ path-unique-def)
    with eq Ds ref show ref (a, Ds) = e_2 \wedge s_1 = s_2 by simp
  next
    fix Xs Xs' a'
    assume eval-ref:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ref(a',Xs@C\#Xs'),s_2 \rangle
      and ref:e_2 = ref(a',Xs@[C])
    from IH[OF eval-ref wte sconf] have eq:a = a' \wedge Cs = Xs@C \# Xs' \wedge s_1 = s_2
bv simp
    with wf eval-ref sconf wte obtain C' where
```

```
last:last \ Cs = D \ and \ Subobjs \ P \ C' \ (Xs@C\#Xs')
      by(auto dest:eval-preserves-type split:if-split-asm)
    hence Subobjs P C (C \# Xs') by (fastforce\ intro: Subobjs-Subobjs)
    with last eq have P \vdash Path \ C \ to \ D \ via \ C \# Xs'
      bv(simp add:path-via-def)
    with path-via wf last have Xs' = [] \land Cs' = [C] \land C = D
      \mathbf{by}(fastforce\ dest:path-via-reverse)
   with eq Ds ref show ref (a, Ds) = e_2 \wedge s_1 = s_2 by (simp\ add:appendPath-def)
  next
    fix Xs Xs' D' S a' h l
    assume eval\text{-}ref:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ref(a',Xs),(h,l) \rangle
      and h:h \ a' = Some(D',S) and path-via':P \vdash Path \ D' \ to \ C \ via \ Xs'
      and path-unique': P \vdash Path \ D' \ to \ C \ unique \ and \ s2: s_2 = (h, l)
      and ref:e_2 = ref(a',Xs')
    from IH[OF eval-ref wte sconf] s2 have eq:a = a' \wedge Cs = Xs \wedge s_1 = s_2 by
simp
    with wf eval-ref sconf wte h have last Cs = D
      and Subobjs P D' Cs
      by(auto dest:eval-preserves-type split:if-split-asm)
    with path-via wf have P \vdash Path D' to C via Cs@_pCs'
      \mathbf{by}(fastforce\ intro:Subobjs-appendPath\ appendPath-last[THEN\ sym]
                   dest:Subobjs-nonempty simp:path-via-def)
    with path-via' path-unique' Ds have Xs' = Ds
      \mathbf{by}(fastforce\ simp:path-via-def\ path-unique-def)
    with eq ref show ref (a, Ds) = e_2 \wedge s_1 = s_2 by simp
  next
    assume eval-null:P, E \vdash \langle e, s_0 \rangle \Rightarrow \langle null, s_2 \rangle
    from IH[OF eval-null wte sconf] show ref (a, Ds) = e_2 \wedge s_1 = s_2 by simp
  next
    fix Xs D' S a' h l
    assume eval\text{-}ref:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ref(a',Xs),(h,l) \rangle
      and not-unique: \neg P \vdash Path\ last\ Xs\ to\ C\ unique\ and\ s2: s_2 = (h,l)
    from IH[OF eval-ref wte sconf] s2 have eq:a = a' \wedge Cs = Xs \wedge s_1 = s_2 by
simp
    with path-unique not-unique show ref (a, Ds) = e_2 \wedge s_1 = s_2 by simp
    fix e' assume eval-throw:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle throw \ e',s_2 \rangle
    from IH[OF eval-throw wte sconf] show ref (a, Ds) = e_2 \wedge s_1 = s_2 by simp
  qed
next
  case (StaticDownDynCast\ E\ e\ s_0\ a\ Cs\ C\ Cs'\ s_1\ e_2\ s_2\ T)
  have eval:P,E \vdash \langle Cast \ C \ e,s_0 \rangle \Rightarrow \langle e_2,s_2 \rangle
    and wt:P,E \vdash Cast \ C \ e :: T \ and \ sconf:P,E \vdash s_0 \ \sqrt{\phantom{a}}
    and IH: \land e_2 \ s_2 \ T. \llbracket P, E \vdash \langle e, s_0 \rangle \Rightarrow \langle e_2, s_2 \rangle; \ P, E \vdash e :: \ T; \ P, E \vdash s_0 \ \sqrt{\rrbracket}
                    \implies ref(a, Cs@[C]@Cs') = e_2 \land s_1 = s_2 \text{ by } fact +
  from wt obtain D where wte:P,E \vdash e :: Class D by auto
  from eval show ?case
  proof(rule eval-cases)
    fix Xs Xs' a'
```

```
assume eval-ref:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ref(a',Xs),s_2 \rangle
     and path-via:P \vdash Path \ last \ Xs \ to \ C \ via \ Xs'
     and ref:e_2 = ref(a',Xs@_pXs')
    from IH[OF eval-ref wte sconf] have eq:a = a' \land Cs@[C]@Cs' = Xs \land s_1 = s_1
s_2
     by simp
    with wf eval-ref sconf wte obtain C' where
     last: last(C \# Cs') = D and Subobjs \ P \ C' \ (Cs@[C]@Cs')
     by(auto dest:eval-preserves-type split:if-split-asm)
   hence P \vdash Path \ C \ to \ D \ via \ C \# Cs'
     \mathbf{by}(fastforce\ intro:Subobjs-Subobjs\ simp:path-via-def)
   with eq last path-via wf have Xs' = [C] \land Cs' = [] \land C = D
     apply clarsimp
     apply(split if-split-asm)
     \mathbf{by}(simp, drule\ path-via-reverse, simp, simp) +
  with ref eq show ref (a, Cs@[C]) = e_2 \wedge s_1 = s_2 by (fastforce\ simp: appendPath-def)
  \mathbf{next}
   fix Xs Xs' a'
   assume eval-ref:P, E \vdash \langle e, s_0 \rangle \Rightarrow \langle ref(a', Xs@C \# Xs'), s_2 \rangle
     and ref:e_2 = ref(a',Xs@[C])
   from IH[OF \ eval\text{-ref} \ wte \ sconf] have eq: a = a' \land Cs@[C]@Cs' = Xs@C\#Xs'
\wedge s_1 = s_2
     by simp
    with wf eval-ref sconf wte obtain C' where
     last: last(C \# Xs') = D and subo: Subobjs P C' (Cs@[C]@Cs')
     by(auto dest:eval-preserves-type split:if-split-asm)
   from subo wf have notin: C \notin set\ Cs\ by\ -(rule\ unique2, simp)
   from subo wf have C \notin set Cs' by -(rule unique1, simp, simp)
   with notin eq have Cs = Xs \wedge Cs' = Xs'
     by -(rule\ only\ one\ append, simp+)
   with eq ref show ref(a, Cs@[C]) = e_2 \wedge s_1 = s_2 by simp
  next
   \mathbf{fix} \ Xs \ Xs' \ D' \ S \ a' \ h \ l
   assume eval-ref:P, E \vdash \langle e, s_0 \rangle \Rightarrow \langle ref(a', Xs), (h, l) \rangle
     and h:h \ a' = Some(D',S) and path-via:P \vdash Path \ D' \ to \ C \ via \ Xs'
     and path-unique: P \vdash Path \ D' \ to \ C \ unique \ and \ s2: s_2 = (h, l)
     and ref:e_2 = ref(a',Xs')
    from IH[OF eval-ref wte sconf] s2 have eq:a = a' \land Cs@[C]@Cs' = Xs \land s_1
= s_2
     by simp
   with wf eval-ref sconf wte h have Subobjs P D' (Cs@[C]@Cs')
     by(auto dest:eval-preserves-type split:if-split-asm)
   hence Subobjs P D' (Cs@[C]) by (fastforce intro:appendSubobj)
   with path-via path-unique have Xs' = Cs@[C]
     \mathbf{by}(fastforce\ simp:path-via-def\ path-unique-def)
    with eq ref show ref(a, Cs@[C]) = e_2 \wedge s_1 = s_2 by simp
   assume eval-null:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle null,s_2 \rangle
   from IH[OF eval-null wte sconf] show ref (a, Cs@[C]) = e_2 \wedge s_1 = s_2 by simp
```

```
next
    fix Xs D' S a' h l
    assume eval-ref:P, E \vdash \langle e, s_0 \rangle \Rightarrow \langle ref(a', Xs), (h, l) \rangle
      and notin: C \notin set Xs and s2:s_2 = (h,l)
    from IH[OF eval-ref wte sconf] s2 have a = a' \wedge Cs@[C]@Cs' = Xs \wedge s_1 =
s_2
      by simp
    with notin show ref (a, Cs@[C]) = e_2 \wedge s_1 = s_2 by fastforce
  next
    fix e' assume eval-throw:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle throw \ e',s_2 \rangle
    from IH[OF \ eval-throw \ wte \ sconf] show ref(a, Cs@[C]) = e_2 \land s_1 = s_2 by
simp
  qed
next
  case (DynCast\ E\ e\ s_0\ a\ Cs\ h\ l\ D\ S\ C\ Cs'\ e_2\ s_2\ T)
  have eval:P,E \vdash \langle Cast \ C \ e,s_0 \rangle \Rightarrow \langle e_2,s_2 \rangle
   and path-via:P \vdash Path \ D \ to \ C \ via \ Cs' and path-unique:P \vdash Path \ D \ to \ C \ unique
    and h:h a = Some(D,S) and wt:P,E \vdash Cast C e :: T and sconf:P,E \vdash s<sub>0</sub> \checkmark
    and IH: \land e_2 \ s_2 \ T. \llbracket P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle e_2,s_2 \rangle; \ P,E \vdash e :: T; \ P,E \vdash s_0 \ \sqrt{\rrbracket}
                    \implies ref(a,Cs) = e_2 \land (h,l) = s_2 \text{ by } fact +
  from wt obtain D' where wte:P,E \vdash e :: Class D' by auto
  from eval show ?case
  \mathbf{proof}(\mathit{rule}\ \mathit{eval\text{-}cases})
    fix Xs Xs' a'
    assume eval-ref:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ref(a',Xs),s_2 \rangle
      and path-via': P \vdash Path\ last\ Xs\ to\ C\ via\ Xs'
      and ref: e_2 = ref(a', Xs@_nXs')
    from IH[OF eval-ref wte sconf] have eq: a = a' \land Cs = Xs \land (h,l) = s_2 by
simp
    with wf eval-ref sconf wte h have last Cs = D'
      and Subobjs P D Cs
      by(auto dest:eval-preserves-type split:if-split-asm)
    with path-via' wf eq have P \vdash Path D \text{ to } C \text{ via } Xs@_pXs'
      by(fastforce intro:Subobjs-appendPath appendPath-last[THEN sym]
                   dest:Subobjs-nonempty simp:path-via-def)
    with path-via path-unique have Cs' = Xs@_nXs'
      \mathbf{by}(fastforce\ simp:path-via-def\ path-unique-def)
    with ref eq show ref(a, Cs') = e_2 \wedge (h, l) = s_2 by simp
  next
    fix Xs Xs' a'
    assume eval-ref:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ref(a',Xs@C\#Xs'),s_2 \rangle
      and ref:e_2 = ref(a',Xs@[C])
    from IH[OF eval-ref wte sconf] have eq: a = a' \wedge Cs = Xs@C\#Xs' \wedge (h,l) =
s_2
      by simp
    with wf eval-ref sconf wte h have Subobjs P D (Xs@[C]@Xs')
      by(auto dest:eval-preserves-type split:if-split-asm)
    hence Subobjs P D (Xs@[C]) by (fastforce\ intro:appendSubobj)
    with path-via path-unique have Cs' = Xs@[C]
```

```
\mathbf{by}(fastforce\ simp:path-via-def\ path-unique-def)
    with eq ref show ref(a,Cs') = e_2 \wedge (h, l) = s_2 by simp
  next
    fix Xs Xs' D'' S' a' h' l'
    assume eval-ref:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ref(a',Xs),(h',l') \rangle
      and h':h' \ a' = Some(D'',S') and path-via':P \vdash Path \ D'' \ to \ C \ via \ Xs'
      and s2:s_2=(h',l') and ref:e_2=ref(a',Xs')
    from IH[OF eval-ref wte sconf] have eq: a = a' \land Cs = Xs \land h = h' \land l = l'
      by simp
    with h h' path-via path-via' path-unique s2 ref
    show ref(a, Cs') = e_2 \wedge (h, l) = s_2
      \mathbf{by}(fastforce\ simp:path-via-def\ path-unique-def)
  next
    assume eval-null:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle null,s_2 \rangle
    from IH[OF eval-null wte sconf] show ref(a, Cs') = e_2 \wedge (h, l) = s_2 by simp
  \mathbf{next}
    fix Xs D'' S' a' h' l'
    assume eval-ref:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ref(a',Xs),(h',l') \rangle
      and h':h' \ a' = Some(D'',S') and not-unique:\neg P \vdash Path \ D'' to C unique
    from IH[OF eval-ref wte sconf] have eq: a = a' \land Cs = Xs \land h = h' \land l = l'
      by simp
    with h h' path-unique not-unique show ref(a,Cs') = e_2 \wedge (h,l) = s_2 by simp
    fix e' assume eval-throw:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle throw \ e',s_2 \rangle
   from IH[OF eval-throw wte sconf] show ref (a, Cs') = e_2 \wedge (h, l) = s_2 by simp
  qed
next
  case (DynCastNull\ E\ e\ s_0\ s_1\ C\ e_2\ s_2\ T)
  have eval:P,E \vdash \langle Cast \ C \ e,s_0 \rangle \Rightarrow \langle e_2,s_2 \rangle
    and wt:P,E \vdash Cast\ C\ e :: T\ and\ sconf:P,E \vdash s_0\ \sqrt{}
    and IH: \bigwedge e_2 \ s_2 \ T. \llbracket P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle e_2,s_2 \rangle; \ P,E \vdash e :: \ T; \ P,E \vdash s_0 \ \sqrt{\rrbracket}
                      \implies null = e_2 \land s_1 = s_2 \text{ by } fact +
  from wt obtain D where wte:P,E \vdash e :: Class D by auto
  from eval show ?case
  proof(rule eval-cases)
    fix Xs Xs' a'
    assume eval-ref:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ref(a',Xs),s_2 \rangle
    from IH[OF eval-ref wte sconf] show null = e_2 \wedge s_1 = s_2 by simp
  next
    fix Xs Xs' a'
    assume eval-ref:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ref(a',Xs@C\#Xs'),s_2 \rangle
    from IH[OF eval-ref wte sconf] show null = e_2 \wedge s_1 = s_2 by simp
    fix Xs Xs' D' S a' h l
    assume eval\text{-}ref:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ref(a',Xs),(h,l) \rangle
    from IH[OF \ eval\text{-ref} \ wte \ sconf] show null = e_2 \land s_1 = s_2 by simp
    assume eval-null:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle null,s_2 \rangle and e_2 = null
    with IH[OF eval-null wte sconf] show null = e_2 \wedge s_1 = s_2 by simp
```

```
next
    fix Xs D' S a' h l
    assume eval-ref:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ref(a',Xs),(h,l) \rangle and s2:s_2 = (h,l)
    from IH[OF eval-ref wte sconf] s2 show null = e_2 \wedge s_1 = s_2 by simp
  next
    fix e' assume eval-throw:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle throw \ e',s_2 \rangle
    from IH[OF \ eval\text{-}throw \ wte \ sconf] show null = e_2 \land s_1 = s_2 by simp
  qed
\mathbf{next}
  case (DynCastFail\ E\ e\ s_0\ a\ Cs\ h\ l\ D\ S\ C\ e_2\ s_2\ T)
  have eval:P,E \vdash \langle Cast \ C \ e,s_0 \rangle \Rightarrow \langle e_2,s_2 \rangle
    and h:h \ a = Some(D,S) and not-unique1:\neg P \vdash Path \ D \ to \ C \ unique
    and not-unique2:¬P \vdash Path\ last\ Cs\ to\ C\ unique\ and\ notin: C \notin set\ Cs
    and wt:P,E \vdash Cast\ C\ e :: T\ and\ sconf:P,E \vdash s_0\ \sqrt{}
    and IH: \land e_2 \ s_2 \ T. \llbracket P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle e_2,s_2 \rangle; \ P,E \vdash e :: T; \ P,E \vdash s_0 \ \sqrt{\rrbracket}
                    \implies ref(a, Cs) = e_2 \land (h,l) = s_2 \text{ by } fact +
  from wt obtain D' where wte:P,E \vdash e :: Class D' by auto
  from eval show ?case
  proof(rule\ eval\text{-}cases)
    fix Xs Xs' a'
    assume eval-ref:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ref(a',Xs),s_2 \rangle
      and path-unique:P \vdash Path \ last \ Xs \ to \ C \ unique
     from IH[OF eval-ref wte sconf] have eq: a = a' \land Cs = Xs \land (h,l) = s_2 by
simp
    with path-unique not-unique 2 show null = e_2 \wedge (h,l) = s_2 by simp
  next
    fix Xs Xs' a'
    assume eval-ref:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ref(a',Xs@C\#Xs'),s_2 \rangle
    from IH[OF eval-ref wte sconf] have eq:a = a' \wedge Cs = Xs@C\#Xs' \wedge (h,l) =
    with notin show null = e_2 \wedge (h,l) = s_2 by fastforce
  next
    fix Xs Xs' D'' S' a' h' l'
    assume eval-ref:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ref(a',Xs),(h',l') \rangle
      and h':h' \ a' = Some(D'',S') and path-unique:P \vdash Path \ D'' to C unique
    from IH[OF eval-ref wte sconf] have a = a' \wedge Cs = Xs \wedge h = h' \wedge l = l'
    with h h' not-unique1 path-unique show null = e_2 \wedge (h,l) = s_2 by simp
    assume eval-null:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle null,s_2 \rangle
    from IH[OF \ eval-null \ wte \ sconf] show null = e_2 \land (h,l) = s_2 by simp
  \mathbf{next}
    fix Xs D'' S' a' h' l'
    assume eval-ref:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ref(a',Xs),(h',l') \rangle
      and null: e_2 = null and s2: s_2 = (h', l')
    from IH[OF eval-ref wte sconf] null s2 show null = e_2 \wedge (h,l) = s_2 by simp
  next
    fix e' assume eval-throw:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle throw \ e',s_2 \rangle
```

```
from IH[OF eval-throw wte sconf] show null = e_2 \wedge (h,l) = s_2 by simp
  qed
next
  case (DynCastThrow\ E\ e\ s_0\ e'\ s_1\ C\ e_2\ s_2\ T)
  have eval:P,E \vdash \langle Cast \ C \ e,s_0 \rangle \Rightarrow \langle e_2,s_2 \rangle
    and wt:P,E \vdash Cast\ C\ e :: T\ and\ sconf:P,E \vdash s_0\ \sqrt{}
    and IH: \land e_2 \ s_2 \ T. \llbracket P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle e_2,s_2 \rangle; \ P,E \vdash e :: T; \ P,E \vdash s_0 \ \sqrt{\rrbracket}
                      \implies throw \ e' = e_2 \wedge s_1 = s_2 \ \textbf{by} \ fact +
  from wt obtain D where wte:P,E \vdash e :: Class D by auto
  from eval show ?case
  proof(rule\ eval\text{-}cases)
    fix Xs Xs' a'
    assume eval-ref:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ref(a',Xs),s_2 \rangle
    from IH[OF eval-ref wte sconf] show throw e' = e_2 \wedge s_1 = s_2 by simp
  next
    fix Xs Xs' a'
    assume eval-ref:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ref(a',Xs@C\#Xs'),s_2 \rangle
    from IH[OF eval-ref wte sconf] show throw e' = e_2 \wedge s_1 = s_2 by simp
    fix Xs Xs' D" S' a' h' l'
    assume eval-ref:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ref(a',Xs),(h',l') \rangle
    from IH[OF eval-ref wte sconf] show throw e' = e_2 \wedge s_1 = s_2 by simp
    assume eval-null:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle null,s_2 \rangle
    from IH[OF eval-null wte sconf] show throw e' = e_2 \wedge s_1 = s_2 by simp
  next
    fix Xs D'' S' a' h' l'
    assume eval-ref:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ref(a',Xs),(h',l') \rangle
    from IH[OF eval-ref wte sconf] show throw e' = e_2 \wedge s_1 = s_2 by simp
  next
    fix e'' assume eval-throw:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle throw \ e'',s_2 \rangle
      and throw: e_2 = throw e''
     from IH[OF eval-throw wte sconf] throw show throw e' = e_2 \wedge s_1 = s_2 by
simp
  qed
next
  case Val thus ?case by(auto elim: eval-cases)
  case (BinOp \ E \ e_1 \ s_0 \ v_1 \ s_1 \ e_2 \ v_2 \ s_2 \ bop \ v \ e_2' \ s_2' \ T)
  have eval:P,E \vdash \langle e_1 \otimes bop \rangle e_2,s_0 \rangle \Rightarrow \langle e_2',s_2' \rangle
    and binop:binop (bop, v_1, v_2) = Some v
    and wt:P,E \vdash e_1 \otimes bop \approx e_2 :: T \text{ and } sconf:P,E \vdash s_0 \checkmark
    and IH1: \land ei \ si \ T. \llbracket P,E \vdash \langle e_1,s_0 \rangle \Rightarrow \langle ei,si \rangle; \ P,E \vdash e_1 :: \ T; \ P,E \vdash s_0 \ \sqrt{\rrbracket}
                        \implies Val \ v_1 = ei \land s_1 = si
    and IH2: \land ei \ si \ T. \llbracket P,E \vdash \langle e_2,s_1 \rangle \Rightarrow \langle ei,si \rangle; \ P,E \vdash e_2 :: \ T; \ P,E \vdash s_1 \ \sqrt{\rrbracket}
                         \implies Val \ v_2 = ei \land s_2 = si \ \textbf{by} \ fact +
  from wt obtain T_1 T_2 where wte1:P,E \vdash e_1 :: T_1 and wte2:P,E \vdash e_2 :: T_2
    by auto
  from eval show ?case
```

```
proof(rule eval-cases)
    fix s w w_1 w_2
    assume eval-val1:P,E \vdash \langle e_1,s_0 \rangle \Rightarrow \langle Val \ w_1,s \rangle
      and eval-val2:P,E \vdash \langle e_2,s \rangle \Rightarrow \langle Val \ w_2,s_2 \rangle
      and binop':binop(bop, w_1, w_2) = Some \ w and e2':e_2' = Val \ w
    from IH1[OF eval-val1 wte1 sconf] have w1:v_1 = w_1 and s:s = s_1 by simp-all
    with wf eval-val1 wte1 sconf have P,E \vdash s_1 \checkmark
      \mathbf{by}(fastforce\ intro:eval-preserves-sconf)
    from IH2[OF eval-val2[simplified s] wte2 this] have v_2 = w_2 and s2:s_2 = s_2'
      by simp-all
    with w1 binop binop' have w = v by simp
    with e2' s2 show Val v = e_2' \wedge s_2 = s_2' by simp
  next
    fix e assume eval-throw:P,E \vdash \langle e_1, s_0 \rangle \Rightarrow \langle throw \ e, s_2 \rangle
    from IH1[OF eval-throw wte1 sconf] show Val v = e_2' \wedge s_2 = s_2' by simp
  next
    fix e s w
    assume eval-val:P,E \vdash \langle e_1,s_0 \rangle \Rightarrow \langle Val \ w,s \rangle
      and eval-throw: P,E \vdash \langle e_2,s \rangle \Rightarrow \langle throw \ e,s_2 \rangle
    from IH1[OF eval-val wte1 sconf] have s:s = s_1 by simp-all
    with wf eval-val wte1 sconf have P,E \vdash s_1 \checkmark
      \mathbf{by}(fastforce\ intro:eval-preserves-sconf)
    from IH2[OF eval-throw[simplified s] wte2 this] show Val v = e_2' \wedge s_2 = s_2'
      by simp
  \mathbf{qed}
next
  case (BinOpThrow1 \ E \ e_1 \ s_0 \ e \ s_1 \ bop \ e_2 \ e_2' \ s_2 \ T)
   have eval:P,E \vdash \langle e_1 \ll bop \rangle e_2,s_0 \rangle \Rightarrow \langle e_2',s_2 \rangle
     and wt:P,E \vdash e_1 \otimes bop \otimes e_2 :: T \text{ and } sconf:P,E \vdash s_0 \checkmark
     and IH: \land ei \ si \ T. \llbracket P,E \vdash \langle e_1, s_0 \rangle \Rightarrow \langle ei, si \rangle; \ P,E \vdash e_1 :: T; \ P,E \vdash s_0 \ \sqrt{\rrbracket}
                       \implies throw \ e = ei \land s_1 = si \ \mathbf{by} \ fact +
   from wt obtain T_1 T_2 where wte1:P,E \vdash e_1 :: T_1 by auto
  from eval show ?case
  proof(rule eval-cases)
    fix s w w_1 w_2
    assume eval-val:P,E \vdash \langle e_1,s_0 \rangle \Rightarrow \langle Val \ w_1,s \rangle
    from IH[OF eval-val wte1 sconf] show throw e = e_2' \wedge s_1 = s_2 by simp
  \mathbf{next}
    fix e'
    assume eval-throw:P,E \vdash \langle e_1,s_0 \rangle \Rightarrow \langle throw \ e',s_2 \rangle and throw:e_2' = throw \ e'
    from IH[OF eval-throw wte1 sconf] throw show throw e = e_2' \wedge s_1 = s_2 by
simp
  next
    assume eval-val:P,E \vdash \langle e_1, s_0 \rangle \Rightarrow \langle Val \ w, s \rangle
    from IH[OF eval-val wte1 sconf] show throw e = e_2' \wedge s_1 = s_2 by simp
  ged
next
  case (BinOpThrow2\ E\ e_1\ s_0\ v_1\ s_1\ e_2\ e\ s_2\ bop\ e_2'\ s_2'\ T)
```

```
have eval:P,E \vdash \langle e_1 \otimes bop \rangle \mid e_2,s_0 \rangle \Rightarrow \langle e_2',s_2' \rangle
    and wt:P,E \vdash e_1 \otimes bop \approx e_2 :: T \text{ and } sconf:P,E \vdash s_0 \checkmark
    and IH1: \land ei \ si \ T. \llbracket P,E \vdash \langle e_1,s_0 \rangle \Rightarrow \langle ei,si \rangle; \ P,E \vdash e_1 :: T; \ P,E \vdash s_0 \ \sqrt{\rrbracket}
                        \implies Val \ v_1 = ei \land s_1 = si
    and IH2: \land ei \ si \ T. \llbracket P,E \vdash \langle e_2,s_1 \rangle \Rightarrow \langle ei,si \rangle; \ P,E \vdash e_2 :: \ T; \ P,E \vdash s_1 \ \sqrt{\rrbracket}
                        \implies throw \ e = ei \land s_2 = si \ \mathbf{by} \ fact +
  from wt obtain T_1 T_2 where wte1:P,E \vdash e_1 :: T_1 and wte2:P,E \vdash e_2 :: T_2
    by auto
  from eval show ?case
  \mathbf{proof}(\mathit{rule}\ \mathit{eval\text{-}cases})
    fix s w w_1 w_2
    assume eval-val1:P,E \vdash \langle e_1,s_0 \rangle \Rightarrow \langle Val \ w_1,s \rangle
       and eval-val2:P,E \vdash \langle e_2,s \rangle \Rightarrow \langle Val \ w_2,s_2' \rangle
    from IH1[OF eval-val1 wte1 sconf] have s:s = s_1 by simp-all
    with wf eval-val1 wte1 sconf have P,E \vdash s_1 \checkmark
       by(fastforce intro:eval-preserves-sconf)
    from IH2[OF eval-val2[simplified s] wte2 this] show throw e = e_2' \wedge s_2 = s_2'
       by simp
  \mathbf{next}
    fix e'
    assume eval-throw:P,E \vdash \langle e_1,s_0 \rangle \Rightarrow \langle throw \ e',s_2 \rangle
    from IH1[OF eval-throw wte1 sconf] show throw e = e_2' \wedge s_2 = s_2' by simp
  next
    fix e'sw
    assume eval-val:P,E \vdash \langle e_1,s_0 \rangle \Rightarrow \langle Val \ w,s \rangle
       and eval-throw:P,E \vdash \langle e_2,s \rangle \Rightarrow \langle throw \ e',s_2' \rangle
       and throw: e_2' = throw e'
    from IH1[OF eval-val wte1 sconf] have s:s = s_1 by simp-all
    with wf eval-val wte1 sconf have P,E \vdash s_1 \checkmark
       \mathbf{by}(fastforce\ intro:eval-preserves-sconf)
    from IH2[OF eval-throw[simplified s] wte2 this] throw
    show throw e = e_2' \wedge s_2 = s_2'
       \mathbf{by} \ simp
  qed
next
  case Var thus ?case by(auto elim: eval-cases)
\mathbf{next}
  case (LAss E \ e \ s_0 \ v \ h \ l \ V \ T \ v' \ l' \ e_2 \ s_2 \ T')
  have eval:P,E \vdash \langle V:=e,s_0 \rangle \Rightarrow \langle e_2,s_2 \rangle
    and env: E V = Some \ T and casts: P \vdash T \ casts \ v \ to \ v' and l': l' = l(V \mapsto v')
    and wt:P,E \vdash V:=e :: T' and sconf:P,E \vdash s_0 \checkmark
    and IH: \land e_2 \ s_2 \ T. \llbracket P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle e_2,s_2 \rangle; \ P,E \vdash e :: T; \ P,E \vdash s_0 \ \sqrt{\rrbracket}
                        \implies Val\ v = e_2 \land (h,l) = s_2 \text{ by } fact +
  from wt env obtain T'' where wte:P,E \vdash e :: T'' and leq:P \vdash T'' \leq T by
auto
  from eval show ?case
  proof(rule eval-cases)
    fix U h' l'' w w'
    assume eval-val:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle Val \ w,(h',l'') \rangle and env':E \ V = Some \ U
```

```
and casts':P \vdash U \ casts \ w \ to \ w' \ and \ e2:e_2 = Val \ w'
      and s2:s_2 = (h', l''(V \mapsto w'))
    from env \ env' have UeqT:U = T by simp
    from IH[OF eval-val wte sconf] have eq: v = w \land h = h' \land l = l'' by simp
    from sconf env have is-type P T
      by(clarsimp simp:sconf-def envconf-def)
    with casts casts' eq UeqT wte leq eval-val sconf wf have v' = w'
      \mathbf{by}(auto\ intro: casts-casts-eq-result)
    with e2 s2 l' eq show Val v' = e_2 \wedge (h, l') = s_2 by simp
    fix e' assume eval-throw:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle throw \ e',s_2 \rangle
    from IH[OF eval-throw wte sconf] show Val v' = e_2 \wedge (h, l') = s_2 by simp
  qed
next
  case (LAssThrow E \ e \ s_0 \ e' \ s_1 \ V \ e_2 \ s_2 \ T)
  have eval:P,E \vdash \langle V:=e,s_0 \rangle \Rightarrow \langle e_2,s_2 \rangle
    and wt:P,E \vdash V:=e :: T \text{ and } sconf:P,E \vdash s_0 \checkmark
    and IH: \land e_2 \ s_2 \ T. \llbracket P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle e_2,s_2 \rangle; \ P,E \vdash e :: \ T; \ P,E \vdash s_0 \ \sqrt{\rrbracket}
                      \implies throw \ e' = e_2 \wedge s_1 = s_2 \ \textbf{by} \ fact +
  from wt obtain T'' where wte:P,E \vdash e :: T'' by auto
  from eval show ?case
  proof(rule\ eval\text{-}cases)
    \mathbf{fix}\ U\ h'\ l''\ w\ w'
    assume eval-val:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle Val \ w,(h',l'') \rangle
    from IH[OF eval-val wte sconf] show throw e' = e_2 \wedge s_1 = s_2 by simp
  next
    \mathbf{fix} \ ex
    assume eval-throw:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle throw \ ex,s_2 \rangle and e2:e_2 = throw \ ex
    from IH[OF eval-throw wte sconf] e2 show throw e' = e_2 \wedge s_1 = s_2 by simp
  qed
next
  case (FAcc E \ e \ s_0 a Cs' \ h \ l \ D \ S \ Ds \ Cs \ fs \ F \ v \ e_2 \ s_2 \ T)
  have eval:P,E \vdash \langle e \cdot F\{Cs\}, s_0 \rangle \Rightarrow \langle e_2, s_2 \rangle
    and eval': P, E \vdash \langle e, s_0 \rangle \Rightarrow \langle ref (a, Cs'), (h, l) \rangle
    and h:h \ a = Some(D,S) and Ds:Ds = Cs'@_p Cs
    and S:(Ds,fs) \in S and fs:fs F = Some v
    and wt:P,E \vdash e \cdot F\{Cs\} :: T \text{ and } sconf:P,E \vdash s_0 \checkmark
    and IH: \land e_2 \ s_2 \ T. \llbracket P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle e_2,s_2 \rangle; \ P,E \vdash e :: \ T; \ P,E \vdash s_0 \ \sqrt{\rrbracket}
                      \implies ref(a, Cs') = e_2 \land (h,l) = s_2 \text{ by } fact +
  from wt obtain C where wte:P,E \vdash e :: Class C by auto
  from eval-preserves-sconf[OF wf eval' wte sconf] h have oconf:P,h \vdash (D,S) \checkmark
    by(simp add:sconf-def hconf-def)
  from eval show ?case
  proof(rule eval-cases)
    fix Xs' D' S' a' fs' h' l' v'
    assume eval-ref:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ref(a',Xs'),(h',l') \rangle
    and h':h' a' = Some(D',S') and S':(Xs'@_pCs,fs') \in S'
    and fs':fs' F = Some \ v' and e2:e_2 = Val \ v' and s2:s_2 = (h',l')
    from IH[OF eval-ref wte sconf] h h'
```

```
have eq: a = a' \land Cs' = Xs' \land h = h' \land l = l' \land D = D' \land S = S' by simp
    with oconf S S' Ds have fs = fs' by (auto simp:oconf-def)
    with fs fs' have v = v' by simp
    with e2 s2 eq show Val v = e_2 \wedge (h,l) = s_2 by simp
    assume eval-null:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle null,s_2 \rangle
    from IH[OF eval-null wte sconf] show Val v = e_2 \wedge (h,l) = s_2 by simp
    fix e' assume eval-throw:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle throw \ e',s_2 \rangle
    from IH[OF \ eval\text{-}throw \ wte \ sconf] show Val \ v = e_2 \land (h,l) = s_2 by simp
  qed
next
  case (FAccNull\ E\ e\ s_0\ s_1\ F\ Cs\ e_2\ s_2\ T)
  have eval:P,E \vdash \langle e \cdot F\{Cs\}, s_0 \rangle \Rightarrow \langle e_2, s_2 \rangle
    and wt:P,E \vdash e \cdot F\{Cs\} :: T \text{ and } sconf:P,E \vdash s_0 \checkmark
    and IH: \land e_2 \ s_2 \ T. \llbracket P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle e_2,s_2 \rangle; \ P,E \vdash e :: \ T; \ P,E \vdash s_0 \ \sqrt{\rrbracket}
                       \implies null = e_2 \land s_1 = s_2 \text{ by } fact +
  from wt obtain C where wte:P,E \vdash e :: Class \ C by auto
  from eval show ?case
  proof(rule eval-cases)
    fix Xs' D' S' a' fs' h' l' v'
    assume eval-ref:P, E \vdash \langle e, s_0 \rangle \Rightarrow \langle ref(a', Xs'), (h', l') \rangle
     from IH[OF eval-ref wte sconf] show THROW NullPointer = e_2 \wedge s_1 = s_2
by simp
  next
    assume eval-null:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle null,s_2 \rangle and e2:e_2 = THROW\ NullPointer
    from IH[OF eval-null wte sconf] e2 show THROW NullPointer = e_2 \wedge s_1 =
s_2
       by simp
 \mathbf{next}
    fix e' assume eval-throw:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle throw \ e',s_2 \rangle
    from IH[OF eval-throw wte sconf] show THROW NullPointer = e_2 \wedge s_1 = s_2
by simp
  qed
  case (FAccThrow E e s_0 e' s_1 F Cs e_2 s_2 T)
  have eval:P,E \vdash \langle e \cdot F\{Cs\}, s_0 \rangle \Rightarrow \langle e_2, s_2 \rangle
    and wt:P,E \vdash e \cdot F\{Cs\} :: T \text{ and } sconf:P,E \vdash s_0 \checkmark
    and IH: \land e_2 \ s_2 \ T. \llbracket P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle e_2,s_2 \rangle; \ P,E \vdash e :: \ T; \ P,E \vdash s_0 \ \sqrt{\rrbracket}
                       \implies throw \ e' = e_2 \wedge s_1 = s_2 \ \mathbf{by} \ fact +
  from wt obtain C where wte:P,E \vdash e :: Class \ C by auto
  from eval show ?case
  \mathbf{proof}(rule\ eval\text{-}cases)
    fix Xs' D' S' a' fs' h' l' v'
    assume eval\text{-}ref:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ref(a',Xs'),(h',l') \rangle
    from IH[OF eval-ref wte sconf] show throw e' = e_2 \wedge s_1 = s_2 by simp
    assume eval-null:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle null,s_2 \rangle
    from IH[OF eval-null wte sconf] show throw e' = e_2 \wedge s_1 = s_2 by simp
```

```
next
    \mathbf{fix} \ ex
    assume eval-throw:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle throw \ ex,s_2 \rangle and e2:e_2 = throw \ ex
    from IH[OF \ eval-throw \ wte \ sconf] \ e2 \ show \ throw \ e' = e_2 \land s_1 = s_2 \ by \ simp
  ged
\mathbf{next}
  case (FAss E e_1 s_0 a Cs' s_1 e_2 v h_2 l_2 D S F T Cs v' Ds fs fs' S' h_2 ' e_2 ' s_2 T')
  have eval:P,E \vdash \langle e_1 \cdot F\{Cs\} := e_2,s_0 \rangle \Rightarrow \langle e_2',s_2 \rangle
    and eval':P,E \vdash \langle e_1,s_0 \rangle \Rightarrow \langle ref(a,Cs'),s_1 \rangle
    and eval'': P, E \vdash \langle e_2, s_1 \rangle \Rightarrow \langle Val \ v, (h_2, l_2) \rangle
    and h2:h_2 a = Some(D, S)
    and has-least: P \vdash last \ Cs' \ has \ least \ F: T \ via \ Cs
    and casts:P \vdash T \ casts \ v \ to \ v' \ and \ Ds:Ds = Cs'@_p Cs
    and S:(Ds, fs) \in S and fs':fs' = fs(F \mapsto v')
    and S':S' = S - \{(Ds, fs)\} \cup \{(Ds, fs')\}
    and h2':h_2' = h_2(a \mapsto (D, S'))
    and wt:P,E \vdash e_1 \cdot F\{Cs\} := e_2 :: T' \text{ and } sconf:P,E \vdash s_0 \checkmark
    and IH1: \land ei \ si \ T. \llbracket P,E \vdash \langle e_1,s_0 \rangle \Rightarrow \langle ei,si \rangle; \ P,E \vdash e_1 :: T; \ P,E \vdash s_0 \ \sqrt{\rrbracket}
                        \implies ref(a, Cs') = ei \land s_1 = si
    and IH2: \land ei \ si \ T. \llbracket P,E \vdash \langle e_2,s_1 \rangle \Rightarrow \langle ei,si \rangle; \ P,E \vdash e_2 :: \ T; \ P,E \vdash s_1 \ \sqrt{\rrbracket}
                       \implies Val \ v = ei \land (h_2, l_2) = si \ \mathbf{by} \ fact +
  from wt obtain C T'' where wte1:P,E \vdash e_1 :: Class C
    and has-least':P \vdash C has least F:T' via Cs
    and wte2:P,E \vdash e_2 :: T'' and leq:P \vdash T'' \leq T'
    by auto
  from wf eval' wte1 sconf have last Cs' = C
    by(auto dest!:eval-preserves-type split:if-split-asm)
  with has-least has-least have TeqT':T = T' by (fastforce\ intro:sees-field-fun)
  from eval show ?case
  proof(rule eval-cases)
    \mathbf{fix}\ \mathit{Xs}\ \mathit{D'}\ \mathit{S''}\ \mathit{U}\ \mathit{a'}\ \mathit{fs''}\ \mathit{h}\ \mathit{l}\ \mathit{s}\ \mathit{w}\ \mathit{w'}
    assume eval-ref:P,E \vdash \langle e_1, s_0 \rangle \Rightarrow \langle ref(a', Xs), s \rangle
      and eval-val:P,E \vdash \langle e_2,s \rangle \Rightarrow \langle Val \ w,(h,l) \rangle
      and h:h \ a' = Some(D',S'')
      and has-least": P \vdash last Xs has least F: U via Cs
      and casts':P \vdash U casts w to w'
      and S'':(Xs@_p Cs,fs'') \in S'' and e2':e_2' = Val w'
      and s2:s_2 = (h(a' \mapsto (D', insert (Xs@_pCs, fs''(F \mapsto w'))))
                                          (S'' - \{(Xs@_n Cs, fs'')\})), l)
     from IH1[OF eval-ref wte1 sconf] have eq:a = a' \wedge Cs' = Xs \wedge s_1 = s by
simp
    with wf eval-ref wte1 sconf have sconf': P,E \vdash s_1 \checkmark
      \mathbf{by}(fastforce\ intro:eval-preserves-sconf)
     from IH2[OF - wte2 this] eval-val eq have eq':v = w \wedge h = h_2 \wedge l = l_2 by
   from has-least '' eq has-least have UeqT: U = T by (fastforce\ intro: sees-field-fun)
    from has-least wf have is-type P T by(rule least-field-is-type)
    with casts casts' eq eq' UeqT TeqT' wte2 leq eval-val sconf' wf have v':v'=w'
      by(auto intro!:casts-casts-eq-result)
```

```
from eval-preserves-sconf[OF wf eval" wte2 sconf | h2
    have oconf:P,h_2 \vdash (D,S) \checkmark
      by(simp add:sconf-def hconf-def)
    from eq eq' h2 h have S = S'' by simp
    with oconf eq S S' S'' Ds have fs = fs'' by (auto simp:oconf-def)
    with h2'hh2'eq eq's2S'Dsfs'v'e2'show Valv'=e_2' \wedge (h_2',l_2)=s_2
       by simp
  \mathbf{next}
    fix s w assume eval-null: P,E \vdash \langle e_1,s_0 \rangle \Rightarrow \langle null,s \rangle
    from IH1[OF eval-null wte1 sconf] show Val v' = e_2' \wedge (h_2', l_2) = s_2 by simp
  next
    fix ex assume eval-throw: P,E \vdash \langle e_1,s_0 \rangle \Rightarrow \langle throw \ ex,s_2 \rangle
     from IH1[OF eval-throw wte1 sconf] show Val v' = e_2' \wedge (h_2', l_2) = s_2 by
simp
  next
    \mathbf{fix} \ ex \ s \ w
    assume eval-val:P,E \vdash \langle e_1,s_0 \rangle \Rightarrow \langle Val \ w,s \rangle
      and eval-throw:P,E \vdash \langle e_2,s \rangle \Rightarrow \langle throw \ ex,s_2 \rangle
    from IH1 [OF eval-val wte1 sconf] have eq:s = s_1 by simp
    with wf eval-val wte1 sconf have sconf': P,E \vdash s_1 \checkmark
       \mathbf{by}(fastforce\ intro:eval\text{-}preserves\text{-}sconf)
    from IH2[OF eval-throw[simplified eq] wte2 this]
    show Val v' = e_2' \wedge (h_2', l_2) = s_2 by simp
  qed
next
  case (FAssNull E e_1 s_0 s_1 e_2 v s_2 F Cs e_2' s_2' T)
  have eval:P,E \vdash \langle e_1 \cdot F\{Cs\} := e_2,s_0 \rangle \Rightarrow \langle e_2',s_2' \rangle
    and wt:P,E \vdash e_1 \cdot F\{Cs\} := e_2 :: T \text{ and } sconf:P,E \vdash s_0 \checkmark
    and IH1: \land ei \ si \ T. \llbracket P,E \vdash \langle e_1,s_0 \rangle \Rightarrow \langle ei,si \rangle; \ P,E \vdash e_1 :: T; \ P,E \vdash s_0 \ \sqrt{\rrbracket}
                         \implies null = ei \land s_1 = si
    and IH2: \bigwedge ei \ si \ T. \llbracket P,E \vdash \langle e_2,s_1 \rangle \Rightarrow \langle ei,si \rangle; \ P,E \vdash e_2 :: T; \ P,E \vdash s_1 \ \sqrt{\rrbracket}
                       \implies Val \ v = ei \land s_2 = si \ by \ fact +
  from wt obtain C T'' where wte1:P,E \vdash e_1 :: Class C
    and wte2:P,E \vdash e_2 :: T'' by auto
  from eval show ?case
  proof(rule eval-cases)
    \mathbf{fix}\ \mathit{Xs}\ \mathit{D'}\ \mathit{S''}\ \mathit{U}\ \mathit{a'}\ \mathit{fs''}\ \mathit{h}\ \mathit{l}\ \mathit{s}\ \mathit{w}\ \mathit{w'}
    assume eval-ref:P,E \vdash \langle e_1,s_0 \rangle \Rightarrow \langle ref(a',Xs),s \rangle
     from IH1[OF eval-ref wte1 sconf] show THROW NullPointer = e_2' \wedge s_2 =
s_2'
       by simp
  next
    \mathbf{fix} \ s \ w
    assume eval-null:P,E \vdash \langle e_1,s_0 \rangle \Rightarrow \langle null,s \rangle
       and eval-val:P,E \vdash \langle e_2,s \rangle \Rightarrow \langle Val \ w,s_2 \rangle
       and e2':e_2' = THROW NullPointer
    from IH1[OF eval-null wte1 sconf] have eq:s = s_1 by simp
    with wf eval-null wte1 sconf have sconf':P,E \vdash s<sub>1</sub> \checkmark
      \mathbf{by}(fastforce\ intro:eval-preserves-sconf)
```

```
from IH2[OF eval-val[simplified eq] wte2 this] e2'
     show THROW NullPointer = e_2' \wedge s_2 = s_2' by simp
     fix ex assume eval-throw: P,E \vdash \langle e_1,s_0 \rangle \Rightarrow \langle throw \ ex,s_2 \rangle
     from IH1[OF eval-throw wte1 sconf] show THROW NullPointer = e_2' \wedge s_2
       by simp
  next
     \mathbf{fix} \ ex \ s \ w
    assume eval-val:P,E \vdash \langle e_1, s_0 \rangle \Rightarrow \langle Val \ w, s \rangle
       and eval-throw: P, E \vdash \langle e_2, s \rangle \Rightarrow \langle throw \ ex, s_2' \rangle
     from IH1 [OF eval-val wte1 sconf] have eq:s = s_1 by simp
     with wf eval-val wte1 sconf have sconf':P,E \vdash s_1 \checkmark
       \mathbf{by}(fastforce\ intro:eval-preserves-sconf)
     from IH2[OF eval-throw[simplified eq] wte2 this]
     show THROW NullPointer = e_2' \wedge s_2 = s_2' by simp
  qed
next
  case (FAssThrow1 \ E \ e_1 \ s_0 \ e' \ s_1 \ F \ Cs \ e_2 \ e_2' \ s_2 \ T)
  have eval:P,E \vdash \langle e_1 \cdot F\{Cs\} := e_2,s_0 \rangle \Rightarrow \langle e_2',s_2 \rangle
     and wt:P,E \vdash e_1 \cdot F\{Cs\} := e_2 :: T \text{ and } sconf:P,E \vdash s_0 \checkmark
     and IH: \land ei \ si \ T. \llbracket P,E \vdash \langle e_1,s_0 \rangle \Rightarrow \langle ei,si \rangle; \ P,E \vdash e_1 :: \ T; \ P,E \vdash s_0 \ \sqrt{\rrbracket}
                         \implies throw \ e' = ei \land s_1 = si \ \mathbf{by} \ fact +
  from wt obtain C T'' where wte1:P,E \vdash e_1 :: Class <math>C by auto
  from eval show ?case
  proof(rule eval-cases)
     \mathbf{fix} \ \mathit{Xs} \ \mathit{D'} \ \mathit{S''} \ \mathit{U} \ \mathit{a'} \ \mathit{fs''} \ \mathit{h} \ \mathit{l} \ \mathit{s} \ \mathit{w} \ \mathit{w'}
     assume eval-ref:P,E \vdash \langle e_1,s_0 \rangle \Rightarrow \langle ref(a',Xs),s \rangle
     from IH[OF eval-ref wte1 sconf] show throw e' = e_2' \wedge s_1 = s_2 by simp
  next
     \mathbf{fix} \ s \ w
     assume eval-null:P,E \vdash \langle e_1,s_0 \rangle \Rightarrow \langle null,s \rangle
     from IH[OF eval-null wte1 sconf] show throw e' = e_2' \wedge s_1 = s_2 by simp
  \mathbf{next}
     \mathbf{fix} \ ex
     assume eval-throw:P,E \vdash \langle e_1, s_0 \rangle \Rightarrow \langle throw \ ex, s_2 \rangle and e2':e_2' = throw \ ex
     from IH[OF eval-throw wte1 sconf] e2' show throw e' = e_2' \wedge s_1 = s_2 by
simp
  next
     fix ex \ s \ w assume eval\text{-}val\text{:}P,E \vdash \langle e_1,s_0 \rangle \Rightarrow \langle \textit{Val} \ w,s \rangle
     from IH[OF eval-val wte1 sconf] show throw e' = e_2' \wedge s_1 = s_2 by simp
  qed
next
  case (FAssThrow2\ E\ e_1\ s_0\ v\ s_1\ e_2\ e'\ s_2\ F\ Cs\ e_2'\ s_2'\ T)
  have eval:P,E \vdash \langle e_1 \cdot F\{Cs\} := e_2,s_0 \rangle \Rightarrow \langle e_2',s_2' \rangle
     and wt:P,E \vdash e_1 \cdot F\{Cs\} := e_2 :: T \text{ and } sconf:P,E \vdash s_0 \checkmark
     and IH1: \land ei \ si \ T. \llbracket P,E \vdash \langle e_1,s_0 \rangle \Rightarrow \langle ei,si \rangle; \ P,E \vdash e_1 :: T; \ P,E \vdash s_0 \ \sqrt{\rrbracket}
                         \implies Val\ v = ei \land s_1 = si
     and IH2: \land ei \ si \ T. \llbracket P,E \vdash \langle e_2,s_1 \rangle \Rightarrow \langle ei,si \rangle; \ P,E \vdash e_2 :: \ T; \ P,E \vdash s_1 \ \sqrt{\rrbracket}
```

```
\implies throw \ e' = ei \land s_2 = si \ by \ fact +
from wt obtain C T'' where wte1:P,E \vdash e_1 :: Class C
  and wte2:P,E \vdash e_2 :: T'' by auto
from eval show ?case
proof(rule eval-cases)
  \mathbf{fix} \ \mathit{Xs} \ \mathit{D'} \ \mathit{S''} \ \mathit{U} \ \mathit{a'} \ \mathit{fs''} \ \mathit{h} \ \mathit{l} \ \mathit{s} \ \mathit{w} \ \mathit{w'}
  assume eval-ref:P,E \vdash \langle e_1, s_0 \rangle \Rightarrow \langle ref(a', Xs), s \rangle
    and eval-val:P,E \vdash \langle e_2,s \rangle \Rightarrow \langle Val \ w,(h,l) \rangle
  from IH1 [OF eval-ref wte1 sconf] have eq:s = s_1 by simp
  with wf eval-ref wte1 sconf have sconf':P,E \vdash s_1 \checkmark
    \mathbf{by}(fastforce\ intro:eval\text{-}preserves\text{-}sconf)
  from IH2[OF eval-val[simplified eq] wte2 this] show throw e' = e_2' \wedge s_2 = s_2'
    by simp
next
 \mathbf{fix} \ s \ w
  assume eval-null:P,E \vdash \langle e_1,s_0 \rangle \Rightarrow \langle null,s \rangle
    and eval-val:P,E \vdash \langle e_2,s \rangle \Rightarrow \langle Val \ w,s_2 \rangle
  from IH1[OF eval-null wte1 sconf] have eq:s = s_1 by simp
  with wf eval-null wte1 sconf have sconf': P,E \vdash s_1 \checkmark
    \mathbf{by}(fastforce\ intro:eval-preserves-sconf)
  from IH2[OF eval-val[simplified eq] wte2 this] show throw e' = e_2' \wedge s_2 = s_2'
    by simp
next
  fix ex assume eval-throw:P,E \vdash \langle e_1, s_0 \rangle \Rightarrow \langle throw \ ex, s_2 \rangle
  from IH1[OF eval-throw wte1 sconf] show throw e' = e_2' \wedge s_2 = s_2' by simp
next
  \mathbf{fix} \ ex \ s \ w
  assume eval-val:P,E \vdash \langle e_1,s_0 \rangle \Rightarrow \langle Val \ w,s \rangle
    and eval-throw:P,E \vdash \langle e_2,s \rangle \Rightarrow \langle throw \ ex,s_2' \rangle and e2':e_2' = throw \ ex
  from IH1[OF eval-val wte1 sconf] have eq:s = s_1 by simp
  with wf eval-val wte1 sconf have sconf': P,E \vdash s_1 \checkmark
    \mathbf{by}(fastforce\ intro:eval-preserves-sconf)
  from IH2[OF eval-throw[simplified eq] wte2 this] e2'
  show throw e' = e_2' \wedge s_2 = s_2' by simp
qed
case (CallObjThrow \ E \ e \ s_0 \ e' \ s_1 \ Copt \ M \ es \ e_2 \ s_2 \ T)
have eval:P,E \vdash \langle Call \ e \ Copt \ M \ es,s_0 \rangle \Rightarrow \langle e_2,s_2 \rangle
  and wt:P,E \vdash Call\ e\ Copt\ M\ es::T and sconf:P,E \vdash s_0\ \sqrt{}
  and IH: \land e_2 \ s_2 \ T. \llbracket P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle e_2,s_2 \rangle; \ P,E \vdash e :: \ T; \ P,E \vdash s_0 \ \sqrt{\rrbracket}
                     \implies throw \ e' = e_2 \land s_1 = s_2 \ \textbf{by} \ fact +
from wt obtain C where wte:P,E \vdash e :: Class C by(cases Copt)auto
show ?case
\mathbf{proof}(cases\ Copt)
  assume Copt = None
  with eval have P,E \vdash \langle e \cdot M(es), s_0 \rangle \Rightarrow \langle e_2, s_2 \rangle by simp
  thus ?thesis
  proof(rule eval-cases)
    \mathbf{fix} \ ex
```

```
assume eval-throw:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle throw \ ex,s_2 \rangle and e2:e_2 = throw \ ex
   from IH[OF eval-throw wte sconf] e2 show throw e' = e_2 \wedge s_1 = s_2 by simp
    fix es' \ ex' \ s \ w \ ws assume eval\text{-}val\text{:}P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle Val \ w,s \rangle
    from IH[OF eval-val wte sconf] show throw e' = e_2 \wedge s_1 = s_2 by simp
    fix C' Xs Xs' Ds' S' U U' Us Us' a' body'' body''' h h' l l' pns'' pns'''
    assume eval-ref:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ref(a',Xs),s \rangle
    from IH[OF eval-ref wte sconf] show throw e' = e_2 \wedge s_1 = s_2 by simp
  next
    \mathbf{fix} \ s \ ws
    assume eval-null:P, E \vdash \langle e, s_0 \rangle \Rightarrow \langle null, s \rangle
    from IH[OF eval-null wte sconf] show throw e' = e_2 \wedge s_1 = s_2 by simp
  qed
\mathbf{next}
  fix C' assume Copt = Some C'
  with eval have P,E \vdash \langle e \cdot (C'::)M(es), s_0 \rangle \Rightarrow \langle e_2, s_2 \rangle by simp
  thus ?thesis
  proof(rule eval-cases)
    \mathbf{fix} \ ex
    assume eval-throw:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle throw \ ex,s_2 \rangle and e2:e_2 = throw \ ex
   from IH[OF eval-throw wte sconf] e2 show throw e' = e_2 \wedge s_1 = s_2 by simp
  next
    fix es' \ ex' \ s \ w \ ws \ assume \ eval-val: P, E \vdash \langle e, s_0 \rangle \Rightarrow \langle Val \ w, s \rangle
    from IH[OF eval-val wte sconf] show throw e' = e_2 \wedge s_1 = s_2 by simp
    fix C'' Xs Xs' Ds' S' U U' Us Us' a' body'' body''' h h' l l' pns'' pns'''
         s ws ws'
    assume eval-ref:P, E \vdash \langle e, s_0 \rangle \Rightarrow \langle ref(a', Xs), s \rangle
    from IH[OF eval-ref wte sconf] show throw e' = e_2 \wedge s_1 = s_2 by simp
  next
    \mathbf{fix} \ s \ ws
    assume eval-null:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle null,s \rangle
    from IH[OF eval-null wte sconf] show throw e' = e_2 \wedge s_1 = s_2 by simp
  qed
qed
case (CallParamsThrow E \ e \ s_0 \ v \ s_1 \ es \ vs \ ex \ es' \ s_2 \ Copt \ M \ e_2 \ s_2' \ T)
have eval:P,E \vdash \langle Call \ e \ Copt \ M \ es,s_0 \rangle \Rightarrow \langle e_2,s_2 \rangle
  and wt:P,E \vdash Call\ e\ Copt\ M\ es::T and sconf:P,E \vdash s_0\ \sqrt{\phantom{a}}
  and IH1: \bigwedge ei \ si \ T. \llbracket P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ei,si \rangle; \ P,E \vdash e :: \ T; \ P,E \vdash s_0 \ \sqrt{\rrbracket}
                    \implies Val \ v = ei \land s_1 = si
 and IH2: \bigwedge esi\ si\ Ts. \llbracket P,E \vdash \langle es,s_1 \rangle \ [\Rightarrow] \ \langle esi,si \rangle;\ P,E \vdash es\ [::]\ Ts;\ P,E \vdash s_1\ \sqrt{\rrbracket}
                       \implies map Val vs @ throw ex # es' = esi \land s<sub>2</sub> = si by fact+
from wt obtain C Ts where wte:P,E \vdash e :: Class C and wtes:P,E \vdash es [::] Ts
  \mathbf{by}(cases\ Copt) auto
show ?case
proof(cases Copt)
```

```
assume Copt = None
 with eval have P,E \vdash \langle e \cdot M(es), s_0 \rangle \Rightarrow \langle e_2, s_2 \rangle by simp
 \mathbf{thus}~? the sis
 proof(rule eval-cases)
    fix ex' assume eval-throw:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle throw \ ex',s_2' \rangle
   from IH1[OF eval-throw wte sconf] show throw ex = e_2 \wedge s_2 = s_2' by simp
 \mathbf{next}
    fix es" ex' s w ws
   assume eval-val:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle Val \ w,s \rangle
      and evals-throw:P,E \vdash \langle es,s \rangle \ [\Rightarrow] \ \langle map \ Val \ ws@throw \ ex'\#es'',s_2' \rangle
      and e2:e_2 = throw \ ex'
    from IH1[OF eval-val wte sconf] have eq:s = s_1 by simp
    with wf eval-val wte sconf have sconf':P,E \vdash s<sub>1</sub> \checkmark
      \mathbf{by}(fastforce\ intro:eval-preserves-sconf)
    from IH2[OF evals-throw[simplified eq] wtes this] e2
    have vs = ws \wedge ex = ex' \wedge es' = es'' \wedge s_2 = s_2
      \mathbf{by}(fastforce\ dest:map-Val-throw-eq)
    with e2 show throw ex = e_2 \wedge s_2 = s_2' by simp
    fix C' Xs Xs' Ds' S' U U' Us Us' a' body'' body''' h h' l l' pns'' pns'''
    assume eval-ref:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ref(a',Xs),s \rangle
      and evals-vals:P,E \vdash \langle es,s \rangle \ [\Rightarrow] \ \langle map \ Val \ ws,(h,l) \rangle
    from IH1[OF eval-ref wte sconf] have eq:s = s_1 by simp
    with wf eval-ref wte sconf have sconf':P,E \vdash s<sub>1</sub> \checkmark
      \mathbf{by}(fastforce\ intro:eval\text{-}preserves\text{-}sconf)
    from IH2[OF evals-vals[simplified eq] wtes this]
    show throw ex = e_2 \wedge s_2 = s_2'
      by(fastforce dest:sym[THEN map-Val-throw-False])
 next
    \mathbf{fix} \ s \ ws
   assume eval-null:P, E \vdash \langle e, s_0 \rangle \Rightarrow \langle null, s \rangle
      and evals-vals:P,E \vdash \langle es,s \rangle \ [\Rightarrow] \ \langle map \ Val \ ws,s_2 \rangle
      and e2:e_2 = THROW NullPointer
    from IH1[OF eval-null wte sconf] have eq:s = s_1 by simp
    with wf eval-null wte sconf have sconf': P,E \vdash s_1 \sqrt{\phantom{a}}
      \mathbf{by}(fastforce\ intro:eval\text{-}preserves\text{-}sconf)
    from IH2[OF evals-vals[simplified eq] wtes this]
    show throw ex = e_2 \wedge s_2 = s_2'
      by(fastforce dest:sym[THEN map-Val-throw-False])
 qed
next
 fix C' assume Copt = Some C'
 with eval have P,E \vdash \langle e \cdot (C' ::) M(es), s_0 \rangle \Rightarrow \langle e_2, s_2 \rangle by simp
 thus ?thesis
 proof(rule\ eval\text{-}cases)
    fix ex' assume eval-throw:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle throw \ ex',s_2' \rangle
   from IH1[OF eval-throw wte sconf] show throw ex = e_2 \wedge s_2 = s_2' by simp
 next
```

```
fix es'' ex' s w ws
      assume eval-val:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle Val \ w,s \rangle
        and evals-throw:P,E \vdash \langle es,s \rangle [\Rightarrow] \langle map \ Val \ ws@throw \ ex'\#es'', s_2' \rangle
        and e2:e_2 = throw \ ex'
      from IH1[OF eval-val wte sconf] have eq:s = s_1 by simp
      with wf eval-val wte sconf have sconf': P,E \vdash s_1 \checkmark
        \mathbf{by}(fastforce\ intro:eval\text{-}preserves\text{-}sconf)
      from IH2[OF evals-throw[simplified eq] wtes this] e2
      have vs = ws \wedge ex = ex' \wedge es' = es'' \wedge s_2 = s_2
        by(fastforce dest:map-Val-throw-eq)
      with e2 show throw ex = e_2 \wedge s_2 = s_2' by simp
      fix C' Xs Xs' Ds' S' U U' Us Us' a' body'' body''' h h' l l' pns'' pns'''
           s ws ws'
      assume eval-ref:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ref(a',Xs),s \rangle
        and evals-vals:P,E \vdash \langle es,s \rangle \ [\Rightarrow] \ \langle map \ Val \ ws,(h,l) \rangle
      from IH1[OF eval-ref wte sconf] have eq:s = s_1 by simp
      with wf eval-ref wte sconf have sconf':P,E \vdash s<sub>1</sub> \checkmark
        \mathbf{by}(fastforce\ intro:eval-preserves-sconf)
      from IH2[OF evals-vals[simplified eq] wtes this]
      show throw ex = e_2 \wedge s_2 = s_2'
        by(fastforce dest:sym[THEN map-Val-throw-False])
    \mathbf{next}
      \mathbf{fix} \ s \ ws
      assume eval-null:P, E \vdash \langle e, s_0 \rangle \Rightarrow \langle null, s \rangle
        and evals-vals:P,E \vdash \langle es,s \rangle \ [\Rightarrow] \ \langle map \ Val \ ws,s_2 \rangle
        and e2:e_2 = THROW NullPointer
      from IH1[OF eval-null wte sconf] have eq:s = s_1 by simp
      with wf eval-null wte sconf have sconf':P,E \vdash s_1 \checkmark
        \mathbf{by}(fastforce\ intro:eval\text{-}preserves\text{-}sconf)
      from IH2[OF evals-vals[simplified eq] wtes this]
      show throw ex = e_2 \wedge s_2 = s_2'
        by(fastforce dest:sym[THEN map-Val-throw-False])
    qed
  qed
next
  case (Call E e s_0 a Cs s_1 es vs h_2 l_2 C S M Ts' T' pns' body' Ds Ts T pns
              body Cs' vs' l2' new-body e' h3 l3 e2 s2 T'')
  have eval:P,E \vdash \langle e \cdot M(es), s_0 \rangle \Rightarrow \langle e_2, s_2 \rangle
    and eval':P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ref(a,Cs),s_1 \rangle
    and eval'':P,E \vdash \langle es,s_1 \rangle \ [\Rightarrow] \ \langle map \ Val \ vs,(h_2,l_2) \rangle \ \text{and} \ h2:h_2 \ a = Some(C,S)
    and has-least: P \vdash last \ Cs \ has \ least \ M = (Ts', T', pns', body') \ via \ Ds
    and selects: P \vdash (C, Cs@_pDs) selects M = (Ts, T, pns, body) via Cs'
    and length:length\ vs = length\ pns and Casts:P \vdash Ts\ Casts\ vs\ to\ vs'
    and l2': l_2' = [this \mapsto Ref (a, Cs'), pns [\mapsto] vs']
    and new-body: new-body = (case\ T'\ of\ Class\ D \Rightarrow (D)body\ |\ - \Rightarrow body)
    and eval-body:P, E(this \mapsto Class (last Cs'), pns [\mapsto] Ts) \vdash
                                                 \langle new\text{-}body, (h_2, l_2') \rangle \Rightarrow \langle e', (h_3, l_3) \rangle
    and wt:P,E \vdash e \cdot M(es) :: T'' \text{ and } sconf:P,E \vdash s_0 \checkmark
```

```
and IH1: \land ei \ si \ T. \llbracket P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ei,si \rangle; \ P,E \vdash e :: \ T; \ P,E \vdash s_0 \ \sqrt{\rrbracket}
                   \implies ref(a, Cs) = ei \land s_1 = si
 and IH2: \land esi \ si \ Ts. \llbracket P,E \vdash \langle es,s_1 \rangle \ [\Rightarrow] \ \langle esi,si \rangle; \ P,E \vdash es \ [::] \ Ts; \ P,E \vdash s_1 \ \sqrt{\rrbracket}
                    \implies map \ Val \ vs = esi \land (h_2, l_2) = si
 and IH3: \land ei \ si \ T.
 \llbracket P, E(this \mapsto Class\ (last\ Cs'),\ pns\ [\mapsto]\ Ts) \vdash \langle new\text{-}body, (h_2, l_2') \rangle \Rightarrow \langle ei, si \rangle;
  P, E(this \mapsto Class \ (last \ Cs'), \ pns \ [\mapsto] \ Ts) \vdash new-body :: T;
  P, E(this \mapsto Class \ (last \ Cs'), \ pns \ [\mapsto] \ Ts) \vdash (h_2, l_2') \ \sqrt{}
\implies e' = ei \land (h_3, l_3) = si \text{ by } fact +
from wt obtain D Ss Ss' m Cs" where wte:P,E \vdash e :: Class D
 and has-least': P \vdash D has least M = (Ss, T'', m) via Cs''
 and wtes:P,E \vdash es [::] Ss' and subs:P \vdash Ss' [\leq] Ss by auto
from eval-preserves-type[OF wf eval' sconf wte]
have last:last \ Cs = D \ \mathbf{by} \ (auto \ split:if\text{-}split\text{-}asm)
with has-least has-least' wf
have eq: Ts' = Ss \wedge T' = T'' \wedge (pns', body') = m \wedge Ds = Cs''
 by(fastforce dest:wf-sees-method-fun)
from wf selects have param-type:\forall T \in set Ts. is-type P T
 and return-type:is-type P T and TnotNT: T \neq NT
 \mathbf{by}(auto\ dest:select-method-wf-mdecl\ simp:wf-mdecl-def)
from selects wf have subo:Subobjs P C Cs'
 \mathbf{by}(induct\ rule: SelectMethodDef.induct,
     auto\ simp: Final Overrider Method Def-def\ Overrider Method Defs-def
               MinimalMethodDefs-def LeastMethodDef-def MethodDefs-def)
with wf have class: is-class P (last Cs') by (auto intro!: Subobj-last-is Class)
from eval'' have hext:hp \ s_1 \le h_2 by (cases s_1, auto intro: evals-hext)
from wf eval' sconf wte last have P, E, (hp s_1) \vdash ref(a, Cs) :_{NT} Class(last Cs)
 \mathbf{by} -(rule eval-preserves-type,simp-all)
with hext have P,E,h_2 \vdash ref(a,Cs) :_{NT} Class(last Cs)
 by(auto intro: WTrt-hext-mono dest:hext-objD split:if-split-asm)
with h2 have Subobjs P C Cs by (auto split:if-split-asm)
hence P \vdash Path \ C \ to \ (last \ Cs) \ via \ Cs
 by (auto simp:path-via-def split:if-split-asm)
with selects has-least wf have param-types: Ts' = Ts \land P \vdash T \leq T'
 by -(rule\ select\ -least\ -methods\ -subtypes, simp\ -all)
from wf selects have wt-body:P,[this\mapstoClass(last Cs'),pns[\mapsto] Ts] \vdash body :: T
 and this-not-pns:this \notin set pns and length:length pns = length Ts
 and dist:distinct pns
 by(auto dest!:select-method-wf-mdecl simp:wf-mdecl-def)
have P,[this \mapsto Class(last\ Cs'),pns[\mapsto]Ts] \vdash\ new\text{-}body::\ T
\mathbf{proof}(cases \ \exists \ C. \ T' = Class \ C)
 case False with wt-body new-body param-types show ?thesis by (cases T') auto
next
 case True
 then obtain D' where T':T' = Class D' by auto
 with wf has-least have class:is-class P D'
    by(fastforce dest:has-least-wf-mdecl simp:wf-mdecl-def)
  with wf T' TnotNT param-types obtain D" where T:T = Class\ D''
    by(fastforce dest:widen-Class)
```

```
with wf return-type T' param-types have P \vdash Path D'' to D' unique
   by(simp add: Class-widen-Class)
  with wt-body class T T' new-body show ?thesis by auto
hence wt-new-body:P.E(this \mapsto Class(last Cs'), pns[\mapsto] Ts) \vdash new-body :: T'
 by(fastforce intro:wt-env-mono)
from eval show ?case
\mathbf{proof}(\mathit{rule}\ \mathit{eval\text{-}cases})
 fix ex' assume eval-throw:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle throw \ ex',s_2 \rangle
 from IH1[OF eval-throw wte sconf] show e' = e_2 \wedge (h_3, l_2) = s_2 by simp
next
 fix es'' ex' s w ws
 assume eval-val:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle Val \ w,s \rangle
   and evals-throw: P, E \vdash \langle es, s \rangle \ [\Rightarrow] \ \langle map \ Val \ ws@throw \ ex' \# es'', s_2 \rangle
 from IH1[OF eval-val wte sconf] have eq:s = s_1 by simp
 with wf eval-val wte sconf have sconf': P,E \vdash s_1 \checkmark
    by(fastforce intro:eval-preserves-sconf)
 from IH2[OF evals-throw[simplified eq] wtes this] show e' = e_2 \wedge (h_3, l_2) = s_2
    \mathbf{by}(fastforce\ dest:map-Val-throw-False)
 fix C' Xs Xs' Ds' S' U U' Us Us' a' body'' body''' h h' l l' pns'' pns''' s ws ws'
 assume eval-ref:P, E \vdash \langle e, s_0 \rangle \Rightarrow \langle ref(a', Xs), s \rangle
    and evals-vals:P,E \vdash \langle es,s \rangle \ [\Rightarrow] \ \langle map \ Val \ ws,(h,l) \rangle
    and h:h \ a' = Some(C',S')
    and has-least": P \vdash last \ Xs \ has \ least \ M = (Us', U', pns''', body''') \ via \ Ds'
    and selects': P \vdash (C', Xs@_pDs') selects M = (Us, U, pns'', body'') via Xs'
    and length':length ws = length pns'' and Casts':P \vdash Us Casts ws to ws'
    and eval-body': P,E(this \mapsto Class (last Xs'), pns'' [\mapsto] Us) \vdash
    \langle case\ U'\ of\ Class\ D \Rightarrow (D)\ body'' | \ - \Rightarrow\ body'',
      (h,[this \mapsto Ref(a',Xs'), pns'' [\mapsto] ws']) \Rightarrow \langle e_2,(h',l') \rangle
    and s2:s_2 = (h',l)
 from IH1[OF eval-ref wte sconf] have eq1:a = a' \wedge Cs = Xs and s:s = s_1
    by simp-all
  with has-least has-least" wf have eq2: T' = U' \wedge Ts' = Us' \wedge Ds = Ds'
    \mathbf{by}(fastforce\ dest: wf-sees-method-fun)
 from s wf eval-ref wte sconf have sconf': P,E \vdash s_1 \sqrt{\phantom{a}}
    \mathbf{by}(fastforce\ intro:eval-preserves-sconf)
 from IH2[OF evals-vals[simplified s] wtes this]
 have eq3:vs = ws \land h_2 = h \land l_2 = l
    \mathbf{by}(\textit{fastforce elim:map-injective simp:inj-on-def})
 with eq1 h2 h have eq4: C = C' \wedge S = S' by simp
 with eq1 eq2 selects selects' wf
 have eq5:Ts = Us \land T = U \land pns'' = pns \land body'' = body \land Cs' = Xs'
    by simp(drule-tac\ mthd'=(Us,U,pns'',body'') in wf-select-method-fun,auto)
 with subs eq param-types have P \vdash Ss' [\leq] Us by simp
  with wf Casts Casts' param-type wtes evals-vals sconf's eq eq2 eq3 eq5
 have eq\theta: vs' = ws'
    \mathbf{by}(fastforce\ intro: Casts-Casts-eq-result)
 with eval-body' l2' eq1 eq2 eq3 eq5 new-body
```

```
\langle new\text{-}body, (h_2, l_2') \rangle \Rightarrow \langle e_2, (h', l') \rangle
     by fastforce
   from wf evals-vals wtes sconf' s eq3 have sconf": P,E \vdash (h_2,l_2) \checkmark
     by(fastforce intro:evals-preserves-sconf)
   have P,E(this \mapsto Class\ (last\ Cs'),\ pns\ [\mapsto]\ Ts) \vdash (h_2,l_2')\ \sqrt{}
   proof(auto simp:sconf-def)
     from sconf'' show P \vdash h_2 \checkmark by(simp \ add:sconf-def)
   next
     { fix V \ v \ assume \ map:[this \mapsto Ref \ (a,Cs'), \ pns \ [\mapsto] \ vs'] \ V = Some \ v}
       have \exists T. (E(this \mapsto Class (last Cs'), pns [\mapsto] Ts)) V = Some T \land
                  P,h_2 \vdash v :\leq T
       \mathbf{proof}(\mathit{cases}\ V \in \mathit{set}\ (\mathit{this\#pns}))
         case False with map show ?thesis by simp
       next
         case True
         hence V = this \lor V \in set \ pns \ by \ simp
         thus ?thesis
         proof(rule \ disjE)
           assume V:V = this
           with map this-not-pns have v = Ref(a, Cs') by simp
           with V h2 subo this-not-pns have
             (E(this \mapsto Class (last Cs'), pns [\mapsto] Ts)) V = Some(Class (last Cs'))
             and P,h_2 \vdash v :\leq Class (last Cs') by simp-all
           thus ?thesis by simp
         next
           assume V \in set\ pns
           then obtain i where V:V = pns!i and length-i:i < length pns
             by(auto simp:in-set-conv-nth)
           from Casts have length Ts = length \ vs'
             \mathbf{by}(induct\ rule: Casts-to.induct, auto)
           with length have length pns = length \ vs' by simp
           with map dist V length-i have v:v = vs'!i by (fastforce dest:maps-nth)
           from length dist length-i
           have env:(E(this \mapsto Class\ (last\ Cs'),\ pns\ [\mapsto]\ Ts))\ (pns!i) = Some(Ts!i)
             \mathbf{by}(rule\text{-}tac\ E=E(this\mapsto Class\ (last\ Cs'))\ \mathbf{in}\ nth\text{-}maps,simp\text{-}all)
           from wf Casts wtes subs eq param-types eval" sconf'
           have \forall i < length \ Ts. \ P, h_2 \vdash vs'! i :\leq Ts! i
             by simp(rule\ Casts-conf, auto)
           with length-i length env V v show ?thesis by simp
         qed
     thus P,h_2 \vdash l_2' (:\leq)_w E(this \mapsto Class (last Cs'), pns [\mapsto] Ts)
       using l2' by(simp add:lconf-def)
     { fix V Tx assume env:(E(this \mapsto Class (last Cs'), pns [\mapsto] Ts)) V = Some
Tx
       have is-type P Tx
       \mathbf{proof}(\mathit{cases}\ V \in \mathit{set}\ (\mathit{this\#pns}))
```

have $eval\text{-}body'':P,E(this \mapsto Class(last Cs'), pns [\mapsto] Ts) \vdash$

```
case False
           with env sconf" show ?thesis
            by(clarsimp simp:sconf-def envconf-def)
           {f case}\ True
           hence V = this \lor V \in set \ pns \ by \ simp
           thus ?thesis
           proof(rule \ disjE)
             assume V = this
             with env this-not-pns have Tx = Class(last Cs') by simp
             with class show ?thesis by simp
           next
             assume V \in set\ pns
             then obtain i where V: V = pns!i and length-i:i < length pns
               by(auto simp:in-set-conv-nth)
             with dist length env have Tx = Ts!i by (fastforce dest:maps-nth)
             with length-i length have Tx \in set Ts
               \mathbf{by}(fastforce\ simp:in-set-conv-nth)
             with param-type show ?thesis by simp
           qed
        qed }
     thus P \vdash E(this \mapsto Class\ (last\ Cs'),\ pns\ [\mapsto]\ Ts)\ \sqrt{\ by\ (simp\ add:envconf-def)}
    from IH3[OF eval-body" wt-new-body this] have e' = e_2 \wedge (h_3, l_3) = (h', l').
    with eq3 s2 show e' = e_2 \wedge (h_3, l_2) = s_2 by simp
  next
    \mathbf{fix} \ s \ ws
    assume eval-null:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle null,s \rangle
    from IH1 [OF eval-null wte sconf] show e' = e_2 \wedge (h_3, l_2) = s_2 by simp
  qed
next
  case (StaticCall E e s_0 a Cs s_1 es vs h_2 l_2 C Cs'' M Ts T pns body Cs'
                    Ds \ vs' \ l_2' \ e' \ h_3 \ l_3 \ e_2 \ s_2 \ T'
  have eval:P,E \vdash \langle e \cdot (C::)M(es),s_0 \rangle \Rightarrow \langle e_2,s_2 \rangle
    and eval':P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ref(a,Cs),s_1 \rangle
    and eval'':P,E \vdash \langle es,s_1 \rangle \ [\Rightarrow] \langle map \ Val \ vs,(h_2, l_2) \rangle
    and path-unique:P \vdash Path \ last \ Cs \ to \ C \ unique
    and path-via:P \vdash Path\ last\ Cs\ to\ C\ via\ Cs''
    and has-least: P \vdash C has least M = (Ts, T, pns, body) via Cs'
    and Ds:Ds = (Cs@_p Cs')@_p Cs' and length:length vs = length pns
    and Casts:P \vdash Ts \ Casts \ vs \ to \ vs'
    and l2': l_2' = [this \mapsto Ref (a, Ds), pns [\mapsto] vs']
    and eval-body: P, E(this \mapsto Class (last Ds), pns [\mapsto] Ts) \vdash
                                                 \langle body, (h_2, l_2') \rangle \Rightarrow \langle e', (h_3, l_3) \rangle
    and wt:P,E \vdash e \cdot (C::)M(es) :: T' and sconf:P,E \vdash s_0 \checkmark
    and IH1: \bigwedge ei \ si \ T. \llbracket P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ei,si \rangle; \ P,E \vdash e :: \ T; \ P,E \vdash s_0 \ \sqrt{\rrbracket}
                      \implies ref(a, Cs) = ei \land s_1 = si
    and IH2: \(\rho esi \) si Ts.
              \llbracket P,E \vdash \langle es,s_1 \rangle \models | \langle esi,si \rangle; P,E \vdash es \models | Ts; P,E \vdash s_1 \downarrow \rceil
```

```
\implies map \ Val \ vs = esi \land (h_2, l_2) = si
 and IH3: \bigwedge ei \ si \ T.
 \llbracket P, E(this \mapsto Class \ (last \ Ds), \ pns \ [\mapsto] \ Ts) \vdash \langle body, (h_2, l_2') \rangle \Rightarrow \langle ei, si \rangle;
  P,E(this \mapsto Class\ (last\ Ds),\ pns\ [\mapsto]\ Ts) \vdash body ::\ T;
 P,E(this \mapsto Class\ (last\ Ds),\ pns\ [\mapsto]\ Ts) \vdash (h_2,l_2')\ \sqrt{\parallel}
                 \implies e' = ei \land (h_3, l_3) = si \text{ by } fact +
from wt has-least wf obtain C' Ts' where wte:P,E \vdash e :: Class C'
   and wtes:P,E \vdash es [::] Ts' and subs:P \vdash Ts' [\leq] Ts
 \mathbf{by}(auto\ dest: wf\text{-}sees\text{-}method\text{-}fun)
from eval-preserves-type[OF wf eval' sconf wte]
have last:last \ Cs = C' by (auto \ split:if-split-asm)
from wf has-least have param-type: \forall T \in set Ts. is-type P T
 and return-type:is-type P T and TnotNT: T \neq NT
 by(auto dest:has-least-wf-mdecl simp:wf-mdecl-def)
from path-via have last': last Cs'' = last(Cs@_nCs'')
 by(fastforce intro!:appendPath-last Subobjs-nonempty simp:path-via-def)
from eval" have hext:hp s_1 \leq h_2 by (cases s_1,auto intro: evals-hext)
from wf eval' sconf wte last have P,E,(hp\ s_1) \vdash ref(a,Cs):_{NT} Class(last\ Cs)
 by -(rule\ eval\text{-}preserves\text{-}type,simp\text{-}all)
with hext have P,E,h_2 \vdash ref(a,Cs) :_{NT} Class(last Cs)
 by(auto intro: WTrt-hext-mono dest:hext-objD split:if-split-asm)
then obtain D S where h2:h_2 a = Some(D,S) and Subobjs P D Cs
 by (auto split:if-split-asm)
with path-via wf have Subobjs P D (Cs@_nCs'') and last Cs'' = C
 by(auto intro:Subobjs-appendPath simp:path-via-def)
with has-least wf last' Ds have subo:Subobjs P D Ds
\mathbf{by}(fastforce\ intro:Subobjs-appendPath\ simp:LeastMethodDef-def\ MethodDefs-def)
with wf have class: is-class P (last Ds) by (auto intro!: Subobj-last-is Class)
from has-least wf obtain D' where Subobjs P D' Cs'
 \mathbf{by}(auto\ simp: LeastMethodDef-def\ MethodDefs-def)
with Ds have last-Ds:last Cs' = last Ds
 by(fastforce intro!:appendPath-last Subobjs-nonempty)
with wf has-least have P, [this \mapsto Class(last\ Ds), pns[\mapsto]\ Ts] \vdash body :: T
 and this-not-pns:this \notin set pns and length:length pns = length Ts
 and dist:distinct pns
 by(auto dest!:has-least-wf-mdecl simp:wf-mdecl-def)
hence wt-body:P,E(this \mapsto Class(last\ Ds),pns[\mapsto]\ Ts) \vdash body :: T
 by(fastforce intro:wt-env-mono)
from eval show ?case
\mathbf{proof}(\mathit{rule}\ \mathit{eval\text{-}cases})
 fix ex' assume eval-throw:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle throw \ ex',s_2 \rangle
 from IH1 [OF eval-throw wte sconf] show e' = e_2 \wedge (h_3, l_2) = s_2 by simp
next
 fix es'' ex' s w ws
 assume eval-val:P, E \vdash \langle e, s_0 \rangle \Rightarrow \langle Val \ w, s \rangle
   and evals-throw: P,E \vdash \langle es,s \rangle \ [\Rightarrow] \ \langle map \ Val \ ws@throw \ ex'\#es'',s_2 \rangle
 from IH1[OF eval-val wte sconf] have eq:s = s_1 by simp
  with wf eval-val wte sconf have sconf':P,E \vdash s<sub>1</sub> \checkmark
   \mathbf{by}(fastforce\ intro:eval-preserves-sconf)
```

```
from IH2[OF evals-throw[simplified eq] wtes this] show e' = e_2 \wedge (h_3, l_2) = s_2
   \mathbf{by}(fastforce\ dest:map-Val-throw-False)
next
 fix Xs Xs' Xs'' U Us a' body' h h' l l' pns' s ws ws'
 assume eval-ref:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ref(a',Xs),s \rangle
   and evals-vals:P,E \vdash \langle es,s \rangle \ [\Rightarrow] \ \langle map \ Val \ ws,(h,l) \rangle
   and path-unique':P \vdash Path \ last \ Xs \ to \ C \ unique
   and path-via': P \vdash Path\ last\ Xs\ to\ C\ via\ Xs''
   and has-least': P \vdash C has least M = (Us, U, pns', body') via Xs'
   and length': length ws = length pns'
   and Casts':P \vdash Us \ Casts \ ws \ to \ ws'
   and eval-body': P,E(this \mapsto Class(last((Xs@_pXs')@_pXs')),pns' [\mapsto] Us) \vdash
   \langle body', (h, [this \mapsto Ref(a', (Xs@_pXs')@_pXs'), pns' [\mapsto] ws']) \rangle \Rightarrow \langle e_2, (h', l') \rangle
   and s2:s_2 = (h',l)
 from IH1[OF eval-ref wte sconf] have eq1:a = a' \wedge Cs = Xs and s:s = s_1
   by simp-all
 from has-least has-least' wf
 have eq2: T = U \wedge Ts = Us \wedge Cs' = Xs' \wedge pns = pns' \wedge body = body'
   \mathbf{by}(fastforce\ dest: wf-sees-method-fun)
 from s wf eval-ref wte sconf have sconf': P,E \vdash s_1 \checkmark
   \mathbf{by}(fastforce\ intro:eval-preserves-sconf)
 from IH2[OF evals-vals[simplified s] wtes this]
 have eq3:vs = ws \land h_2 = h \land l_2 = l
   \mathbf{by}(fastforce\ elim:map-injective\ simp:inj-on-def)
 from path-unique path-via path-via' eq1 have Cs'' = Xs''
   by(fastforce simp:path-unique-def path-via-def)
 with Ds eq1 eq2 have Ds':Ds = (Xs@_nXs')@_nXs' by simp
 from wf Casts Casts' param-type wtes subs evals-vals sconf' s eq2 eq3
 have eq4:vs'=ws'
   \mathbf{by}(fastforce\ intro: Casts-Casts-eq-result)
 with eval-body' Ds' l2' eq1 eq2 eq3
 have eval\text{-}body'':P,E(this \mapsto Class(last\ Ds),pns\ [\mapsto]\ Ts) \vdash
                          \langle body, (h_2, l_2') \rangle \Rightarrow \langle e_2, (h', l') \rangle
   by simp
 from wf evals-vals wtes sconf' s eq3 have sconf'': P,E \vdash (h_2,l_2) \checkmark
   by(fastforce intro:evals-preserves-sconf)
 have P,E(this \mapsto Class\ (last\ Ds),\ pns\ [\mapsto]\ Ts) \vdash (h_2,l_2')\ \sqrt{}
 proof(auto simp:sconf-def)
   from sconf'' show P \vdash h_2 \sqrt{by(simp\ add:sconf-def)}
   { fix V \ v \ assume \ map:[this \mapsto Ref \ (a,Ds), \ pns \ [\mapsto] \ vs'] \ V = Some \ v}
     have \exists T. (E(this \mapsto Class (last Ds), pns [\mapsto] Ts)) V = Some T \land
                 P,h_2 \vdash v :\leq T
     \mathbf{proof}(\mathit{cases}\ V \in \mathit{set}\ (\mathit{this\#pns}))
       case False with map show ?thesis by simp
     next
       case True
       hence V = this \lor V \in set \ pns \ by \ simp
       thus ?thesis
```

```
proof(rule \ disjE)
          assume V:V = this
          with map this-not-pns have v = Ref(a,Ds) by simp
          with V h2 subo this-not-pns have
            (E(this \mapsto Class\ (last\ Ds), pns\ [\mapsto]\ Ts))\ V = Some(Class\ (last\ Ds))
            and P,h_2 \vdash v :\leq Class (last Ds) by simp-all
          thus ?thesis by simp
        next
          assume V \in set\ pns
          then obtain i where V:V = pns!i and length-i:i < length pns
            \mathbf{by}(auto\ simp:in-set-conv-nth)
          from Casts have length Ts = length \ vs'
            by(induct rule: Casts-to.induct, auto)
          with length have length pns = length \ vs' by simp
          with map dist V length-i have v:v = vs'!i by (fastforce dest:maps-nth)
          from length dist length-i
          have env:(E(this \mapsto Class\ (last\ Ds),\ pns\ [\mapsto]\ Ts))\ (pns!i) = Some(Ts!i)
            \mathbf{by}(rule\text{-}tac\ E=E(this\mapsto\ Class\ (last\ Ds))\ \mathbf{in}\ nth\text{-}maps,simp\text{-}all)
          from wf Casts wtes subs eval" sconf'
          have \forall i < length Ts. P, h_2 \vdash vs'!i : \leq Ts!i
            by -(rule\ Casts-conf, auto)
          with length-i length env V v show ?thesis by simp
        qed
      qed }
     thus P,h_2 \vdash l_2' (:\leq)_w E(this \mapsto Class (last Ds), pns [\mapsto] Ts)
      using l2' by(simp add:lconf-def)
     { fix V Tx assume env:(E(this \mapsto Class (last Ds), pns [\mapsto] Ts)) V = Some
Tx
      have is-type P Tx
      proof(cases\ V \in set\ (this \#pns))
        {f case} False
        with env sconf" show ?thesis
          by(clarsimp simp:sconf-def envconf-def)
      next
        case True
        hence V = this \lor V \in set \ pns \ by \ simp
        thus ?thesis
        proof(rule \ disjE)
          assume V = this
          with env this-not-pns have Tx = Class(last Ds) by simp
          with class show ?thesis by simp
        next
          assume V \in set\ pns
          then obtain i where V:V = pns!i and length-i:i < length pns
            \mathbf{by}(auto\ simp:in\text{-}set\text{-}conv\text{-}nth)
          with dist length env have Tx = Ts!i by (fastforce\ dest:maps-nth)
          with length-i length have Tx \in set Ts
            \mathbf{by}(fastforce\ simp:in-set-conv-nth)
```

```
with param-type show ?thesis by simp
           qed
         qed }
     thus P \vdash E(this \mapsto Class\ (last\ Ds),\ pns\ [\mapsto]\ Ts)\ \sqrt{\ by\ (simp\ add:envconf-def)}
    from IH3[OF eval-body" wt-body this] have e' = e_2 \wedge (h_3, l_3) = (h', l').
    with eq3 s2 show e' = e_2 \wedge (h_3, l_2) = s_2 by simp
  next
    \mathbf{fix} \ s \ ws
    assume eval-null:P, E \vdash \langle e, s_0 \rangle \Rightarrow \langle null, s \rangle
    from IH1[OF eval-null wte sconf] show e' = e_2 \wedge (h_3, l_2) = s_2 by simp
  qed
next
  case (CallNull E e s_0 s_1 es vs s_2 Copt M e_2 s_2' T)
  have eval:P,E \vdash \langle Call \ e \ Copt \ M \ es,s_0 \rangle \Rightarrow \langle e_2,s_2 \rangle
    and wt:P,E \vdash Call\ e\ Copt\ M\ es::\ T\ and\ sconf:P,E \vdash s_0\ \sqrt{}
    and IH1: \bigwedge ei \ si \ T. \llbracket P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ei,si \rangle; \ P,E \vdash e :: \ T; \ P,E \vdash s_0 \ \sqrt{\rrbracket}
    \implies null = ei \land s_1 = si
    and IH2: \land esi \ si \ Ts. \ \llbracket P,E \vdash \langle es,s_1 \rangle \ [\Rightarrow] \ \langle esi,si \rangle; \ P,E \vdash es \ [::] \ Ts; \ P,E \vdash s_1 \ \sqrt{\rrbracket}
    \implies map \ Val \ vs = esi \land s_2 = si \ \textbf{by} \ fact +
  from wt obtain C Ts where wte:P,E \vdash e :: Class C and wtes:P,E \vdash es [::] Ts
    \mathbf{by}(cases\ Copt) auto
  show ?case
  proof(cases Copt)
    assume Copt = None
    with eval have P,E \vdash \langle e \cdot M(es), s_0 \rangle \Rightarrow \langle e_2, s_2 \rangle by simp
    thus ?thesis
    proof(rule eval-cases)
      fix ex' assume eval-throw:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle throw \ ex',s_2' \rangle
      from IH1 [OF eval-throw wte sconf] show THROW NullPointer = e_2 \wedge s_2 =
s_2'
         by simp
    next
      \mathbf{fix} \ es' \ ex' \ s \ w \ ws
      assume eval-val:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle Val \ w,s \rangle
         and evals-throw: P,E \vdash \langle es,s \rangle \Rightarrow | \langle map \ Val \ ws@throw \ ex' \# es', s_2' \rangle
      from IH1[OF eval-val wte sconf] have eq:s = s_1 by simp
      with wf eval-val wte sconf have sconf': P,E \vdash s_1 \checkmark
         \mathbf{by}(fastforce\ intro:eval-preserves-sconf)
      from IH2[OF evals-throw[simplified eq] wtes this]
    show THROW NullPointer = e_2 \wedge s_2 = s_2' by (fastforce dest:map-Val-throw-False)
    next
      fix C' Xs Xs' Ds' S' U U' Us Us' a' body'' body''' h h' l l' pns'' pns'''
           s ws ws'
      assume eval-ref:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ref(a',Xs),s \rangle
       from IH1[OF eval-ref wte sconf] show THROW NullPointer = e_2 \wedge s_2 =
s_2'
         by simp
    next
```

```
\mathbf{fix} \ s \ ws
      assume eval-null:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle null,s \rangle
        and evals-vals:P,E \vdash \langle es,s \rangle \ [\Rightarrow] \ \langle map \ Val \ ws,s_2 \rangle
        and e2:e_2 = THROW NullPointer
      from IH1[OF eval-null wte sconf] have eq:s = s_1 by simp
      with wf eval-null wte sconf have sconf':P,E \vdash s_1 \checkmark
        \mathbf{by}(fast force\ intro:eval\mbox{-}preserves\mbox{-}sconf)
      from IH2[OF evals-vals[simplified eq] wtes this] e2
      show THROW NullPointer = e_2 \wedge s_2 = s_2' by simp
    qed
  next
    fix C' assume Copt = Some C'
    with eval have P,E \vdash \langle e \cdot (C'::)M(es), s_0 \rangle \Rightarrow \langle e_2, s_2' \rangle by simp
    thus ?thesis
    proof(rule eval-cases)
      fix ex' assume eval-throw:P, E \vdash \langle e, s_0 \rangle \Rightarrow \langle throw \ ex', s_2' \rangle
     from IH1 [OF eval-throw wte sconf] show THROW NullPointer = e_2 \wedge s_2 =
s_2'
        by simp
    \mathbf{next}
      fix es' ex' s w ws
      assume eval-val:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle Val \ w,s \rangle
        and evals-throw: P,E \vdash \langle es,s \rangle \Rightarrow \langle map \ Val \ ws@throw \ ex'\#es',s_2' \rangle
      from IH1[OF eval-val wte sconf] have eq:s = s_1 by simp
      with wf eval-val wte sconf have sconf': P,E \vdash s_1 \checkmark
        \mathbf{by}(fastforce\ intro:eval\text{-}preserves\text{-}sconf)
      from IH2[OF evals-throw[simplified eq] wtes this]
    show THROW NullPointer = e_2 \wedge s_2 = s_2' by (fastforce dest:map-Val-throw-False)
    \mathbf{next}
      fix C' Xs Xs' Ds' S' U U' Us Us' a' body'' body'' h h' l l' pns'' pns'''
          s ws ws'
      assume eval\text{-}ref:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ref(a',Xs),s \rangle
       from IH1[OF eval-ref wte sconf] show THROW NullPointer = e_2 \wedge s_2 =
s_2'
        by simp
    next
      \mathbf{fix} \ s \ ws
      assume eval-null:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle null,s \rangle
        and evals-vals:P,E \vdash \langle es,s \rangle \ [\Rightarrow] \ \langle map \ Val \ ws,s_2 \rangle
        and e2:e_2 = THROW NullPointer
      from IH1[OF eval-null wte sconf] have eq:s = s_1 by simp
      with wf eval-null wte sconf have sconf': P,E \vdash s_1 \checkmark
        \mathbf{by}(fastforce\ intro:eval\text{-}preserves\text{-}sconf)
      from IH2[OF evals-vals[simplified eq] wtes this] e2
      show THROW NullPointer = e_2 \wedge s_2 = s_2' by simp
    qed
  qed
next
  case (Block E V T e_0 h_0 l_0 e_1 h_1 l_1 e_2 s_2 T')
```

```
have eval:P,E \vdash \langle \{V:T; e_0\}, (h_0, l_0) \rangle \Rightarrow \langle e_2, s_2 \rangle
    and wt:P,E \vdash \{V:T; e_0\} :: T' \text{ and } sconf:P,E \vdash (h_0, l_0) \checkmark
    and IH: \land e_2 \ s_2 \ T'. \llbracket P, E(V \mapsto T) \vdash \langle e_0, (h_0, l_0(V := None)) \rangle \Rightarrow \langle e_2, s_2 \rangle;
                  P,E(V \mapsto T) \vdash e_0 :: T'; P,E(V \mapsto T) \vdash (h_0, l_0(V := None)) \sqrt{1}
    \implies e_1 = e_2 \wedge (h_1, l_1) = s_2 \text{ by } fact +
  from wt have type:is-type P T and wte:P,E(V \mapsto T) \vdash e<sub>0</sub> :: T' by auto
  from sconf type have sconf':P,E(V \mapsto T) \vdash (h_0, l_0(V := None)) \checkmark
    by(auto simp:sconf-def lconf-def envconf-def)
  from eval obtain h l where
     eval':P,E(V \mapsto T) \vdash \langle e_0,(h_0,l_0(V:=None))\rangle \Rightarrow \langle e_2,(h,l)\rangle
    and s2:s_2 = (h, l(V:=l_0 \ V)) by (auto elim:eval-cases)
  from IH[OF eval' wte sconf'] s2 show ?case by simp
next
  case (Seq E e_0 s_0 v s_1 e_1 e_2 s_2 e_2' s_2' T)
  have eval:P,E \vdash \langle e_0;; e_1,s_0 \rangle \Rightarrow \langle e_2',s_2' \rangle
    and wt:P,E \vdash e_0;; e_1 :: T \text{ and } sconf:P,E \vdash s_0 \sqrt{\phantom{a}}
    and IH1: \land ei \ si \ T. \llbracket P,E \vdash \langle e_0,s_0 \rangle \Rightarrow \langle ei,si \rangle; \ P,E \vdash e_0 :: T; \ P,E \vdash s_0 \ \sqrt{\rrbracket}
                         \implies Val \ v = ei \land s_1 = si
    and IH2: \bigwedge ei\ si\ T. \llbracket P,E \vdash \langle e_1,s_1 \rangle \Rightarrow \langle ei,si \rangle;\ P,E \vdash e_1 :: T;\ P,E \vdash s_1\ \sqrt{\rrbracket}
                          \implies e_2 = ei \land s_2 = si \text{ by } fact +
   from wt obtain T' where wte0:P,E \vdash e_0 :: T' and wte1:P,E \vdash e_1 :: T by
auto
  from eval show ?case
  proof(rule eval-cases)
    \mathbf{fix} \ s \ w
    assume eval-val:P,E \vdash \langle e_0,s_0 \rangle \Rightarrow \langle Val \ w,s \rangle
       and eval':P,E \vdash \langle e_1,s \rangle \Rightarrow \langle e_2',s_2' \rangle
    from IH1 [OF eval-val wte0 sconf] have eq:s = s_1 by simp
    with wf eval-val wte0 sconf have P,E \vdash s_1 \checkmark
       \mathbf{by}(fastforce\ intro:eval-preserves-sconf)
    from IH2[OF eval'[simplified eq] wte1 this] show e_2 = e_2' \wedge s_2 = s_2'.
    fix ex assume eval-throw:P,E \vdash \langle e_0, s_0 \rangle \Rightarrow \langle throw \ ex, s_2 \rangle
    from IH1[OF eval-throw wte0 sconf] show e_2 = e_2' \wedge s_2 = s_2' by simp
  qed
  case (SeqThrow\ E\ e_0\ s_0\ e\ s_1\ e_1\ e_2\ s_2\ T)
  have eval:P,E \vdash \langle e_0;; e_1,s_0 \rangle \Rightarrow \langle e_2,s_2 \rangle
    and wt:P,E \vdash e_0;; e_1 :: T \text{ and } sconf:P,E \vdash s_0 \checkmark
    and IH: \land ei \ si \ T. \llbracket P,E \vdash \langle e_0,s_0 \rangle \Rightarrow \langle ei,si \rangle; \ P,E \vdash e_0 :: \ T; \ P,E \vdash s_0 \ \sqrt{\rrbracket}
                          \implies throw \ e = ei \land s_1 = si \ \mathbf{by} \ fact +
  from wt obtain T' where wte\theta:P,E \vdash e_0 :: T' by auto
  from eval show ?case
  proof(rule\ eval\text{-}cases)
    \mathbf{fix}\ s\ w
    assume eval-val:P,E \vdash \langle e_0,s_0 \rangle \Rightarrow \langle Val \ w,s \rangle
    from IH[OF eval-val wte0 sconf] show throw e = e_2 \wedge s_1 = s_2 by simp
  next
    \mathbf{fix} \ ex
```

```
assume eval-throw:P,E \vdash \langle e_0,s_0 \rangle \Rightarrow \langle throw \ ex,s_2 \rangle and e2:e_2 = throw \ ex
    from IH[OF eval-throw wte0 sconf] e2 show throw e = e_2 \wedge s_1 = s_2 by simp
  qed
next
  case (CondT E e s_0 s_1 e_1 e' s_2 e_2 e_2' s_2' T)
  have eval:P,E \vdash \langle if(e) \ e_1 \ else \ e_2,s_0 \rangle \Rightarrow \langle e_2',s_2' \rangle
    and wt:P,E \vdash if (e) e_1 else e_2 :: T and sconf:P,E \vdash s_0 \checkmark
    and IH1: \bigwedge ei\ si\ T. \llbracket P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ei,si \rangle;\ P,E \vdash e ::\ T;\ P,E \vdash s_0\ \sqrt{\rrbracket}
                        \implies true = ei \land s_1 = si
    and IH2: \land ei \ si \ T. \llbracket P,E \vdash \langle e_1,s_1 \rangle \Rightarrow \langle ei,si \rangle; \ P,E \vdash e_1 :: \ T; \ P,E \vdash s_1 \ \sqrt{\rrbracket}
                        \implies e' = ei \land s_2 = si \text{ by } fact +
  from wt have wte:P,E \vdash e :: Boolean \text{ and } wte1:P,E \vdash e_1 :: T \text{ by } auto
  from eval show ?case
  proof(rule eval-cases)
    \mathbf{fix} \ s
    assume eval-true:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle true,s \rangle and eval':P,E \vdash \langle e_1,s \rangle \Rightarrow \langle e_2',s_2' \rangle
    from IH1 [OF eval-true wte sconf] have eq:s = s_1 by simp
    with wf eval-true wte sconf have P,E \vdash s_1 \checkmark
       \mathbf{by}(fastforce\ intro:eval\text{-}preserves\text{-}sconf)
    from IH2[OF eval'[simplified eq] wte1 this] show e' = e_2' \wedge s_2 = s_2'.
    fix s assume eval-false:P, E \vdash \langle e, s_0 \rangle \Rightarrow \langle false, s \rangle
    from IH1[OF eval-false wte sconf] show e' = e_2' \wedge s_2 = s_2' by simp
  next
    fix ex assume eval-throw:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle throw \ ex,s_2 \rangle
    from IH1[OF eval-throw wte sconf] show e' = e_2' \wedge s_2 = s_2' by simp
  qed
next
  case (CondF \ E \ e \ s_0 \ s_1 \ e_2 \ e' \ s_2 \ e_1 \ e_2' \ s_2' \ T)
  have eval:P,E \vdash \langle if (e) \ e_1 \ else \ e_2,s_0 \rangle \Rightarrow \langle e_2',s_2' \rangle
    and wt:P,E \vdash if (e) e_1 else e_2 :: T \text{ and } sconf:P,E \vdash s_0 \checkmark
    and IH1: \bigwedge ei\ si\ T. \llbracket P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ei,si \rangle;\ P,E \vdash e ::\ T;\ P,E \vdash s_0\ \sqrt{\rrbracket}
                         \implies false = ei \land s_1 = si
    and IH2: \land ei \ si \ T. \llbracket P,E \vdash \langle e_2,s_1 \rangle \Rightarrow \langle ei,si \rangle; \ P,E \vdash e_2 :: \ T; \ P,E \vdash s_1 \ \sqrt{\rrbracket}
                        \implies e' = ei \land s_2 = si \text{ by } fact +
  from wt have wte:P,E \vdash e :: Boolean and wte2:P,E \vdash e_2 :: T by auto
  from eval show ?case
  proof(rule\ eval\text{-}cases)
    \mathbf{fix} \ s
    assume eval-true:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle true,s \rangle
    from IH1 [OF eval-true wte sconf] show e' = e_2' \wedge s_2 = s_2' by simp
  next
    \mathbf{fix} \ s
    assume eval-false:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle false,s \rangle
       and eval':P,E \vdash \langle e_2,s \rangle \Rightarrow \langle e_2',s_2' \rangle
     from IH1[OF eval-false wte sconf] have eq:s = s_1 by simp
     with wf eval-false wte sconf have P,E \vdash s_1 \checkmark
       \mathbf{by}(fastforce\ intro:eval-preserves-sconf)
    from IH2[OF eval'[simplified eq] wte2 this] show e' = e_2' \wedge s_2 = s_2'.
```

```
next
    fix ex assume eval-throw:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle throw \ ex,s_2 \rangle
    from IH1[OF eval-throw wte sconf] show e' = e_2' \wedge s_2 = s_2' by simp
next
  case (CondThrow E e s_0 e' s_1 e_1 e_2 e_2' s_2 T)
  have eval:P,E \vdash \langle if (e) \ e_1 \ else \ e_2,s_0 \rangle \Rightarrow \langle e_2',s_2 \rangle
    and wt:P,E \vdash if (e) e_1 else e_2 :: T \text{ and } sconf:P,E \vdash s_0 \checkmark
    and IH: \land ei \ si \ T. \llbracket P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ei,si \rangle; \ P,E \vdash e :: \ T; \ P,E \vdash s_0 \ \sqrt{\rrbracket}
                       \implies throw \ e' = ei \land s_1 = si \ \mathbf{by} \ fact +
  from wt have wte:P,E \vdash e :: Boolean by auto
  from eval show ?case
  proof(rule eval-cases)
    \mathbf{fix} \ s
    assume eval-true:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle true,s \rangle
    from IH[OF eval-true wte sconf] show throw e' = e_2' \wedge s_1 = s_2 by simp
    fix s assume eval-false:P, E \vdash \langle e, s_0 \rangle \Rightarrow \langle false, s \rangle
    from IH[OF eval-false wte sconf] show throw e' = e_2' \wedge s_1 = s_2 by simp
  next
    \mathbf{fix} \ ex
    assume eval-throw:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle throw \ ex,s_2 \rangle and e2':e_2' = throw \ ex
    from IH[OF eval-throw wte sconf] e2' show throw e' = e_2' \wedge s_1 = s_2 by simp
  qed
\mathbf{next}
  case (While F E e s_0 s_1 c e_2 s_2 T)
  have eval:P,E \vdash \langle while (e) c,s_0 \rangle \Rightarrow \langle e_2,s_2 \rangle
    and wt:P,E \vdash while (e) c :: T \text{ and } sconf:P,E \vdash s_0 \checkmark
    and IH: \land e_2 \ s_2 \ T. \llbracket P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle e_2,s_2 \rangle; \ P,E \vdash e :: \ T; \ P,E \vdash s_0 \ \sqrt{\rrbracket}
                       \implies false = e_2 \land s_1 = s_2 \text{ by } fact +
  from wt have wte:P,E \vdash e :: Boolean by auto
  from eval show ?case
  proof(rule eval-cases)
    assume eval-false:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle false,s_2 \rangle and e2:e_2 = unit
    from IH[OF eval-false wte sconf] e2 show unit = e_2 \wedge s_1 = s_2 by simp
  next
    fix s s' w
    assume eval-true:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle true,s \rangle
    from IH[OF eval-true wte sconf] show unit = e_2 \wedge s_1 = s_2 by simp
    fix ex assume eval-throw: P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle throw \ ex,s_2 \rangle
    from IH[OF eval-throw wte sconf] show unit = e_2 \wedge s_1 = s_2 by simp
  next
    \mathbf{fix}\ ex\ s
    assume eval-true:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle true,s \rangle
    from IH[OF eval-true wte sconf] show unit = e_2 \wedge s_1 = s_2 by simp
  ged
next
  case (While T E e s_0 s_1 c v_1 s_2 e_3 s_3 e_2 s_2' T)
```

```
have eval:P,E \vdash \langle while (e) c,s_0 \rangle \Rightarrow \langle e_2,s_2 \rangle
    and wt:P,E \vdash while (e) \ c :: T \ and \ sconf:P,E \vdash s_0 \ \sqrt{\phantom{a}}
    and IH1: \bigwedge ei\ si\ T. \llbracket P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ei,si \rangle;\ P,E \vdash e :: T;\ P,E \vdash s_0\ \sqrt{\rrbracket}
                        \implies true = ei \land s_1 = si
    and IH2: \bigwedge ei \ si \ T. \llbracket P,E \vdash \langle c,s_1 \rangle \Rightarrow \langle ei,si \rangle; \ P,E \vdash c :: \ T; \ P,E \vdash s_1 \ \sqrt{\rrbracket}
                        \implies Val \ v_1 = ei \land s_2 = si
    and IH3: \land ei \ si \ T. \llbracket P,E \vdash \langle while \ (e) \ c,s_2 \rangle \Rightarrow \langle ei,si \rangle; P,E \vdash while \ (e) \ c :: T;
                              P,E \vdash s_2 \sqrt{\ }
                        \implies e_3 = ei \land s_3 = si \text{ by } fact +
  from wt obtain T' where wte:P,E \vdash e :: Boolean and wtc:P,E \vdash c :: T' by
auto
  from eval show ?case
  proof(rule eval-cases)
    assume eval-false:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle false,s_2 \rangle
    from IH1[OF eval-false wte sconf] show e_3 = e_2 \wedge s_3 = s_2' by simp
  next
    fix s s' w
    assume eval-true:P, E \vdash \langle e, s_0 \rangle \Rightarrow \langle true, s \rangle
       and eval-val:P,E \vdash \langle c,s \rangle \Rightarrow \langle Val \ w,s' \rangle
       and eval-while: P, E \vdash \langle while (e) c, s' \rangle \Rightarrow \langle e_2, s_2' \rangle
    from IH1[OF eval-true wte sconf] have eq:s = s_1 by simp
    with wf eval-true wte sconf have sconf':P,E \vdash s_1 \checkmark
       \mathbf{by}(\mathit{fastforce\ intro:eval-preserves-sconf})
   from IH2[OF eval-val[simplified eq] wtc this] have eq':s' = s_2 by simp
   with wf eval-val wtc sconf' eq have P,E \vdash s_2 \checkmark
      \mathbf{by}(fastforce\ intro:eval-preserves-sconf)
   from IH3[OF eval-while[simplified eq'] wt this] show e_3 = e_2 \wedge s_3 = s_2'.
 next
   fix ex assume eval-throw:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle throw \ ex,s_2 \rangle
   from IH1[OF eval-throw wte sconf] show e_3 = e_2 \wedge s_3 = s_2' by simp
 next
   \mathbf{fix} \ ex \ s
   assume eval-true:P, E \vdash \langle e, s_0 \rangle \Rightarrow \langle true, s \rangle
     and eval-throw:P,E \vdash \langle c,s \rangle \Rightarrow \langle throw \ ex,s_2 \rangle
    from IH1 [OF eval-true wte sconf] have eq:s = s_1 by simp
    with wf eval-true wte sconf have sconf': P,E \vdash s_1 \sqrt{\phantom{a}}
       \mathbf{by}(fastforce\ intro:eval-preserves-sconf)
    from IH2[OF eval-throw[simplified eq] wtc this] show e_3 = e_2 \wedge s_3 = s_2' by
simp
 qed
next
  case (WhileCondThrow E \ e \ s_0 \ e' \ s_1 \ c \ e_2 \ s_2 \ T)
  have eval:P,E \vdash \langle while (e) c,s_0 \rangle \Rightarrow \langle e_2,s_2 \rangle
    and wt:P,E \vdash while (e) \ c :: T \ and \ sconf:P,E \vdash s_0 \ \sqrt{\phantom{a}}
    and IH: \land ei \ si \ T. \llbracket P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ei,si \rangle; \ P,E \vdash e :: \ T; \ P,E \vdash s_0 \ \sqrt{\rrbracket}
                        \implies throw \ e' = ei \land s_1 = si \ \mathbf{by} \ fact +
  from wt have wte:P,E \vdash e :: Boolean by auto
  from eval show ?case
  proof(rule eval-cases)
```

```
assume eval-false:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle false,s_2 \rangle
    from IH[OF eval-false wte sconf] show throw e' = e_2 \wedge s_1 = s_2 by simp
  next
    fix s s' w
    assume eval-true:P, E \vdash \langle e, s_0 \rangle \Rightarrow \langle true, s \rangle
    from IH[OF eval-true wte sconf] show throw e' = e_2 \wedge s_1 = s_2 by simp
  \mathbf{next}
    \mathbf{fix} \ ex
    assume eval-throw:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle throw \ ex,s_2 \rangle and e2:e_2 = throw \ ex
    from IH[OF eval-throw wte sconf] e2 show throw e' = e_2 \wedge s_1 = s_2 by simp
  next
    fix ex s
    assume eval-true:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle true,s \rangle
    from IH[OF eval-true wte sconf] show throw e' = e_2 \wedge s_1 = s_2 by simp
  qed
next
  case (WhileBodyThrow E \ e \ s_0 \ s_1 \ c \ e' \ s_2 \ e_2 \ s_2' \ T)
  have eval:P,E \vdash \langle while (e) c,s_0 \rangle \Rightarrow \langle e_2,s_2 \rangle
    and wt:P,E \vdash while (e) c :: T \text{ and } sconf:P,E \vdash s_0 \checkmark
    and IH1: \bigwedge ei\ si\ T. \llbracket P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ei,si \rangle;\ P,E \vdash e ::\ T;\ P,E \vdash s_0\ \sqrt{\rrbracket}
                       \implies true = ei \land s_1 = si
    and IH2: \land ei \ si \ T. \llbracket P,E \vdash \langle c,s_1 \rangle \Rightarrow \langle ei,si \rangle; \ P,E \vdash c :: \ T; \ P,E \vdash s_1 \ \sqrt{\rrbracket}
                      \implies throw \ e' = ei \land s_2 = si \ \textbf{by} \ fact +
  from wt obtain T' where wte:P,E \vdash e :: Boolean and wtc:P,E \vdash c :: T' by
auto
  from eval show ?case
  proof(rule eval-cases)
    assume eval-false:P, E \vdash \langle e, s_0 \rangle \Rightarrow \langle false, s_2 \rangle
    from IH1[OF eval-false wte sconf] show throw e' = e_2 \wedge s_2 = s_2' by simp
  next
    fix s s' w
    assume eval-true:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle true,s \rangle
       and eval-val:P,E \vdash \langle c,s \rangle \Rightarrow \langle Val \ w,s' \rangle
    from IH1[OF eval-true wte sconf] have eq:s = s_1 by simp
    with wf eval-true wte sconf have sconf':P,E \vdash s<sub>1</sub> \checkmark
       by(fastforce intro:eval-preserves-sconf)
   from IH2[OF eval-val[simplified eq] wtc this] show throw e' = e_2 \wedge s_2 = s_2'
     by simp
 next
   fix ex assume eval-throw:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle throw \ ex,s_2 \rangle
   from IH1[OF eval-throw wte sconf] show throw e' = e_2 \wedge s_2 = s_2' by simp
 next
   \mathbf{fix} \ ex \ s
   assume eval-true:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle true,s \rangle
     and eval-throw:P,E \vdash \langle c,s \rangle \Rightarrow \langle throw \ ex,s_2 \rangle and e2:e_2 = throw \ ex
   from IH1[OF eval-true wte sconf] have eq:s = s_1 by simp
    with wf eval-true wte sconf have sconf': P,E \vdash s_1 \checkmark
       by(fastforce intro:eval-preserves-sconf)
   from IH2[OF eval-throw[simplified eq] wtc this] e2 show throw e' = e_2 \wedge s_2 =
```

```
by simp
 qed
  case (Throw E \ e \ s_0 \ r \ s_1 \ e_2 \ s_2 \ T)
  have eval:P,E \vdash \langle throw \ e,s_0 \rangle \Rightarrow \langle e_2,s_2 \rangle
     and wt:P,E \vdash throw \ e :: T \ and \ sconf:P,E \vdash s_0 \ \sqrt{}
     and IH: \land ei \ si \ T. \llbracket P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ei,si \rangle; \ P,E \vdash e :: T; \ P,E \vdash s_0 \ \sqrt{\rrbracket}
                        \implies ref \ r = ei \land s_1 = si \ \mathbf{by} \ fact +
  from wt obtain C where wte:P,E \vdash e :: Class \ C by auto
  from eval show ?case
  proof(rule eval-cases)
     fix r'
     assume eval-ref:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ref \ r',s_2 \rangle and e2:e_2 = Throw \ r'
     from IH[OF eval-ref wte sconf] e2 show Throw r = e_2 \wedge s_1 = s_2 by simp
     assume eval-null:P, E \vdash \langle e, s_0 \rangle \Rightarrow \langle null, s_2 \rangle
     from IH[OF eval-null wte sconf] show Throw r = e_2 \wedge s_1 = s_2 by simp
     fix ex assume eval-throw: P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle throw \ ex,s_2 \rangle
     from IH[OF eval-throw wte sconf] show Throw r = e_2 \wedge s_1 = s_2 by simp
  qed
next
  case (ThrowNull\ E\ e\ s_0\ s_1\ e_2\ s_2\ T)
  have eval:P,E \vdash \langle throw \ e,s_0 \rangle \Rightarrow \langle e_2,s_2 \rangle
     and wt:P,E \vdash throw \ e :: T \ and \ sconf:P,E \vdash s_0 \ \sqrt{\phantom{a}}
     and IH: \land ei \ si \ T. \llbracket P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ei,si \rangle; \ P,E \vdash e :: \ T; \ P,E \vdash s_0 \ \sqrt{\rrbracket}
                        \implies null = ei \land s_1 = si \text{ by } fact +
  from wt obtain C where wte:P,E \vdash e :: Class \ C by auto
  from eval show ?case
  proof(rule\ eval\text{-}cases)
    fix r' assume eval\text{-ref}:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ref \ r',s_2 \rangle
     from IH[OF \ eval\text{-ref} \ wte \ sconf] show THROW \ NullPointer = e_2 \land s_1 = s_2
by simp
  \mathbf{next}
     assume eval-null:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle null,s_2 \rangle and e2:e_2 = THROW\ NullPointer
     from IH[OF eval-null wte sconf] e2 show THROW NullPointer = e_2 \wedge s_1 =
       by simp
  \mathbf{next}
    \mathbf{fix} \ \mathit{ex} \ \mathbf{assume} \ \mathit{eval-throw} : P, E \vdash \langle \mathit{e}, \mathit{s}_0 \rangle \Rightarrow \langle \mathit{throw} \ \mathit{ex}, \mathit{s}_2 \rangle
     from IH[OF eval-throw wte sconf] show THROW NullPointer = e_2 \wedge s_1 = s_2
by simp
  qed
\mathbf{next}
  case (Throw Throw E e s_0 e' s_1 e_2 s_2 T)
  have eval:P,E \vdash \langle throw \ e,s_0 \rangle \Rightarrow \langle e_2,s_2 \rangle
     and wt:P,E \vdash throw \ e :: T \ and \ sconf:P,E \vdash s_0 \ \sqrt{}
     and IH: \land ei \ si \ T. \llbracket P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ei,si \rangle; \ P,E \vdash e :: T; \ P,E \vdash s_0 \ \sqrt{\rrbracket}
```

```
\implies throw \ e' = ei \land s_1 = si \ by \ fact +
  from wt obtain C where wte:P,E \vdash e :: Class \ C by auto
  from eval show ?case
  \mathbf{proof}(\mathit{rule}\ \mathit{eval\text{-}cases})
    fix r' assume eval-ref:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ref \ r',s_2 \rangle
    from IH[OF eval-ref wte sconf] show throw e' = e_2 \wedge s_1 = s_2 by simp
  next
    assume eval-null:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle null,s_2 \rangle
    from IH[OF eval-null wte sconf] show throw e' = e_2 \wedge s_1 = s_2 by simp
  next
    \mathbf{fix} \ ex
    assume eval-throw:P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle throw \ ex,s_2 \rangle and e2:e_2 = throw \ ex
    from IH[OF eval-throw wte sconf] e2 show throw e' = e_2 \wedge s_1 = s_2 by simp
  qed
next
  case Nil thus ?case by (auto elim:evals-cases)
  case (Cons \ E \ e \ s_0 \ v \ s_1 \ es \ es' \ s_2 \ es_2 \ s_2' \ Ts)
  have evals:P,E \vdash \langle e\#es,s_0 \rangle \ [\Rightarrow] \ \langle es_2,s_2' \rangle
    and wt:P,E \vdash e \# es [::]  Ts and sconf:P,E \vdash s_0 
    and IH1: \bigwedge ei\ si\ T. \llbracket P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ei,si \rangle;\ P,E \vdash e ::\ T;\ P,E \vdash s_0\ \sqrt{\rrbracket}
                       \implies Val \ v = ei \land s_1 = si
    and IH2: \land esi \ si \ Ts. \llbracket P,E \vdash \langle es,s_1 \rangle \ [\Rightarrow] \ \langle esi,si \rangle; \ P,E \vdash es \ [::] \ Ts; \ P,E \vdash s_1 \ \sqrt{\rrbracket}
                       \implies es' = esi \land s_2 = si \text{ by } fact +
  from wt obtain T' Ts' where Ts: Ts = T' \# Ts' by (cases Ts) auto
  with wt have wte:P,E \vdash e :: T' and wtes:P,E \vdash es [::] Ts' by auto
  from evals show ?case
  proof(rule evals-cases)
    \mathbf{fix}\ es''\ s\ w
    assume eval-val:P, E \vdash \langle e, s_0 \rangle \Rightarrow \langle Val \ w, s \rangle
       and evals-vals:P,E \vdash \langle es,s \rangle \ [\Rightarrow] \ \langle es'',s_2' \rangle and es2:es_2 = Val \ w\#es''
    from IH1[OF eval-val wte sconf] have s:s = s_1 and v:v = w by simp-all
    with wf eval-val wte sconf have P,E \vdash s_1 \checkmark
       \mathbf{by}(fastforce\ intro:eval-preserves-sconf)
    from IH2[OF evals-vals[simplified s] wtes this] have es' = es'' \wedge s_2 = s_2'.
    with es2 \ v show Val \ v \# es' = es_2 \land s_2 = s_2' by simp
  \mathbf{next}
    fix ex assume eval-throw:P, E \vdash \langle e, s_0 \rangle \Rightarrow \langle throw \ ex, s_2 \rangle
     from IH1[OF eval-throw wte sconf] show Val v \# es' = es_2 \land s_2 = s_2' by
simp
  qed
next
  case (ConsThrow E e s_0 e' s_1 e s e s_2 s_2 T s)
  have evals:P,E \vdash \langle e\#es,s_0 \rangle \ [\Rightarrow] \ \langle es_2,s_2 \rangle
    and wt:P,E \vdash e\#es [::] Ts and sconf:P,E \vdash s_0 \checkmark
    and IH: \land ei \ si \ T. \llbracket P,E \vdash \langle e,s_0 \rangle \Rightarrow \langle ei,si \rangle; \ P,E \vdash e :: T; \ P,E \vdash s_0 \ \sqrt{\rrbracket}
                       \implies throw \ e' = ei \land s_1 = si \ \mathbf{by} \ fact +
  from wt obtain T' Ts' where Ts: Ts = T' \# Ts' by (cases Ts) auto
  with wt have wte:P,E \vdash e :: T' by auto
```

```
from evals show ?case  \begin{array}{l} \mathbf{proof}(\mathit{rule}\;\mathit{evals\text{-}cases}) \\ \text{fix}\;\mathit{es''}\;\mathit{s}\;\mathit{w} \\ \text{assume}\;\mathit{eval\text{-}val\text{:}}P,E \vdash \langle e,s_0\rangle \Rightarrow \langle \mathit{Val}\;\mathit{w,s}\rangle \\ \text{from}\;\mathit{IH}[\mathit{OF}\;\mathit{eval\text{-}val}\;\mathit{wte}\;\mathit{sconf}]\;\mathbf{show}\;\mathit{throw}\;e'\#\mathit{es} = \mathit{es}_2 \wedge \mathit{s}_1 = \mathit{s}_2\;\mathbf{by}\;\mathit{simp} \\ \mathbf{next} \\ \text{fix}\;\mathit{ex} \\ \text{assume}\;\mathit{eval\text{-}throw\text{:}}P,E \vdash \langle e,s_0\rangle \Rightarrow \langle \mathit{throw}\;\mathit{ex,s}_2\rangle \;\mathbf{and}\;\mathit{es2\text{:}es}_2 = \mathit{throw}\;\mathit{ex\#es} \\ \text{from}\;\mathit{IH}[\mathit{OF}\;\mathit{eval\text{-}throw}\;\mathit{wte}\;\mathit{sconf}]\;\mathit{es2}\;\mathbf{show}\;\mathit{throw}\;e'\#\mathit{es} = \mathit{es}_2 \wedge \mathit{s}_1 = \mathit{s}_2\;\mathbf{by} \\ \mathit{simp} \\ \mathbf{qed} \\ \mathbf{qed} \\ \end{array}
```

end

28 Program annotation

theory Annotate imports WellType begin

```
abbreviation (output)
  unanFAcc :: expr \Rightarrow vname \Rightarrow expr (\langle (---) \rangle [10,10] 90) where
  unanFAcc \ e \ F == FAcc \ e \ F \ []
abbreviation (output)
  unanFAss :: expr \Rightarrow vname \Rightarrow expr \Rightarrow expr (\langle (--- := -) \rangle [10,0,90] 90) where
  unanFAss \ e \ F \ e' == FAss \ e \ F \ [] \ e'
inductive
  Anno :: [prog, env, expr , expr] \Rightarrow bool
          (\langle -, - \vdash - \rightsquigarrow - \rangle \quad [51, 0, 0, 51]50)
  and Annos :: [prog,env, expr list, expr list] \Rightarrow bool
          (\langle -, - \vdash - [ \leadsto ] \rightarrow [51, 0, 0, 51] 50)
  for P :: prog
where
  AnnoNew: is-class P \ C \implies P,E \vdash new \ C \leadsto new \ C
  Anno\mathit{Cast} \colon \mathit{P}, \mathit{E} \vdash \mathit{e} \leadsto \mathit{e'} \Longrightarrow \mathit{P}, \mathit{E} \vdash \mathit{Cast} \ \mathit{C} \ \mathit{e} \leadsto \mathit{Cast} \ \mathit{C} \ \mathit{e'}
  AnnoStatCast: P,E \vdash e \leadsto e' \Longrightarrow P,E \vdash StatCast \ C \ e \leadsto StatCast \ C \ e'
  Anno Val: P,E \vdash Val \ v \leadsto Val \ v
  Anno Var Var : E V = |T| \Longrightarrow P, E \vdash Var V \leadsto Var V
  Anno Var Field: [E \ V = None; E \ this = |Class \ C|; P \vdash C \ has \ least \ V: T \ via \ Cs]
                  \implies P,E \vdash Var\ V \rightsquigarrow Var\ this \cdot V\{Cs\}
\mid AnnoBinOp:
  \llbracket P,E \vdash e1 \leadsto e1'; P,E \vdash e2 \leadsto e2' \rrbracket
```

```
\mid AnnoLAss:
  P,E \vdash e \leadsto e' \Longrightarrow P,E \vdash V := e \leadsto V := e'
| AnnoFAcc:
  \llbracket P,E \vdash e \leadsto e'; P,E \vdash e' :: Class C; P \vdash C has least F:T via Cs \rrbracket
   \implies P,E \vdash e \cdot F\{[]\} \leadsto e' \cdot F\{Cs\}
| AnnoFAss: [P,E \vdash e1 \rightsquigarrow e1'; P,E \vdash e2 \rightsquigarrow e2';
                P, E \vdash e1' :: Class \ C; \ P \vdash C \ has \ least \ F: T \ via \ Cs \ ]
            \implies P,E \vdash e1 \cdot F\{[]\} := e2 \leadsto e1' \cdot F\{Cs\} := e2'
| AnnoCall:
  \llbracket P,E \vdash e \leadsto e'; P,E \vdash es [\leadsto] es' \rrbracket
    \implies P,E \vdash Call \ e \ Copt \ M \ es \sim Call \ e' \ Copt \ M \ es'
| AnnoBlock:
  P,E(V \mapsto T) \vdash e \leadsto e' \implies P,E \vdash \{V:T; e\} \leadsto \{V:T; e'\}
| AnnoComp: [P,E \vdash e1 \rightsquigarrow e1'; P,E \vdash e2 \rightsquigarrow e2']|
              \implies P.E \vdash e1;;e2 \rightsquigarrow e1';;e2'
| AnnoCond: \llbracket P,E \vdash e \leadsto e'; P,E \vdash e1 \leadsto e1'; P,E \vdash e2 \leadsto e2' \rrbracket
             \implies P,E \vdash if (e) \ e1 \ else \ e2 \leadsto if (e') \ e1' \ else \ e2'
| AnnoLoop: [ P,E \vdash e \leadsto e'; P,E \vdash c \leadsto c' ] |
            \implies P,E \vdash while (e) \ c \leadsto while (e') \ c'
\mid AnnoThrow: P,E \vdash e \leadsto e' \implies P,E \vdash throw e \leadsto throw e'
\mid AnnoNil: P,E \vdash [] [ \leadsto ] []
| AnnoCons: [ P,E \vdash e \leadsto e'; P,E \vdash es [\leadsto] es' ] |
             \implies P,E \vdash e\#es [\leadsto] e'\#es'
```

29 Code generation for Semantics and Type System

```
\begin{array}{l} \textbf{theory} \ \textit{Execute} \\ \textbf{imports} \ \textit{BigStep} \ \textit{WellType} \\ \textit{HOL-Library}. \textit{AList-Mapping} \\ \textit{HOL-Library}. \textit{Code-Target-Numeral} \\ \textbf{begin} \end{array}
```

end

29.1 General redefinitions

```
inductive app :: 'a \ list \Rightarrow 'a \ list \Rightarrow 'a \ list \Rightarrow bool where app [] \ ys \ ys | \ app \ xs \ ys \ zs \Longrightarrow app \ (x \ \# \ xs) \ ys \ (x \ \# \ zs) theorem app\text{-}eq1: \bigwedge ys \ zs. \ zs = xs @ ys \Longrightarrow app \ xs \ ys \ zs apply (induct \ xs) apply simp apply (rule \ app.intros) apply simp apply simp
```

```
apply (iprover intro: app.intros)
  done
theorem app-eq2: app xs \ ys \ zs \Longrightarrow zs = xs \ @ \ ys
  by (erule app.induct) simp-all
theorem app-eq: app xs \ ys \ zs = (zs = xs \ @ \ ys)
  apply (rule iffI)
  apply (erule app-eq2)
  apply (erule app-eq1)
  done
code-pred
  (modes:
    i \Rightarrow i \Rightarrow i \Rightarrow bool, i \Rightarrow i \Rightarrow o \Rightarrow bool, i \Rightarrow o \Rightarrow i \Rightarrow bool,
    o \Rightarrow i \Rightarrow i \Rightarrow bool, o \Rightarrow o \Rightarrow i \Rightarrow bool as reverse-app)
  app
declare rtranclp-rtrancl-eq[code del]
lemmas [code-pred-intro] = rtranclp.rtrancl-refl converse-rtranclp-into-rtranclp
code-pred
  (modes:
   (i \Rightarrow o \Rightarrow bool) \Rightarrow i \Rightarrow i \Rightarrow bool,
   (i \Rightarrow o \Rightarrow bool) \Rightarrow i \Rightarrow o \Rightarrow bool)
  rtranclp
\mathbf{by}(\mathit{erule\ converse-rtranclpE})\ \mathit{blast}+
definition Set-project :: ('a \times 'b) set => 'a => 'b set
where Set-project A a = \{b. (a, b) \in A\}
lemma Set-project-set [code]:
  Set-project (set xs) a = set (List.map-filter (\lambda(a', b)). if a = a' then Some b else
None) xs)
by(auto simp add: Set-project-def map-filter-def intro: rev-image-eqI split: if-split-asm)
     Redefine map Val vs
inductive map-val :: expr\ list \Rightarrow val\ list \Rightarrow bool
where
  Nil: map-val [] []
| \ \textit{Cons: map-val xs ys} \Longrightarrow \textit{map-val (Val y \# \textit{xs}) (y \# \textit{ys})}
code-pred
  (modes: i \Rightarrow i \Rightarrow bool, i \Rightarrow o \Rightarrow bool)
  map-val
```

```
inductive map\text{-}val2 :: expr \ list \Rightarrow val \ list \Rightarrow expr \ list \Rightarrow bool
where
  Nil: map-val2 [] []
 Cons: map-val2 xs ys zs \Longrightarrow map-val2 (Val y # xs) (y # ys) zs
| Throw: map-val2 (throw e \# xs) | (throw e \# xs)
code-pred
  (modes: i \Rightarrow i \Rightarrow i \Rightarrow bool, i \Rightarrow o \Rightarrow o \Rightarrow bool)
  map-val2
theorem map-val-conv: (xs = map\ Val\ ys) = map-val\ xs\ ys
theorem map-val2-conv:
 (xs = map\ Val\ ys\ @\ throw\ e\ \#\ zs) = map\ Val\ xs\ ys\ (throw\ e\ \#\ zs)
29.2
          Code generation
lemma subclsRp-code [code-pred-intro]:
  [ class\ P\ C = |(Bs,\ rest)|;\ Predicate-Compile.contains\ (set\ Bs)\ (Repeats\ D)\ ] 
\implies subclsRp \ P \ C \ D
by(auto intro: subclsRp.intros simp add: contains-def)
code-pred
  (modes: i \Rightarrow i \Rightarrow i \Rightarrow bool, i \Rightarrow i \Rightarrow o \Rightarrow bool)
  subclsRp
by(erule subclsRp.cases)(fastforce simp add: Predicate-Compile.contains-def)
lemma subclsR-code [code-pred-inline]:
  P \vdash C \prec_R D \longleftrightarrow subclsRp \ P \ C \ D
by(simp add: subclsR-def)
lemma subclsSp-code [code-pred-intro]:
 \llbracket class\ P\ C = |(Bs,\ rest)|;\ Predicate-Compile.contains\ (set\ Bs)\ (Shares\ D)\ \rrbracket \Longrightarrow
subclsSp P C D
by(auto intro: subclsSp.intros simp add: Predicate-Compile.contains-def)
code-pred
  (modes: i \Rightarrow i \Rightarrow i \Rightarrow bool, i \Rightarrow i \Rightarrow o \Rightarrow bool)
  subclsSp
by(erule subclsSp.cases)(fastforce simp add: Predicate-Compile.contains-def)
declare SubobjsR-Base [code-pred-intro]
lemma SubobjsR-Rep-code [code-pred-intro]:
  \llbracket subclsRp \ P \ C \ D; \ Subobjs_R \ P \ D \ Cs \rrbracket \implies Subobjs_R \ P \ C \ (C \ \# \ Cs)
by(simp add: SubobjsR-Rep subclsR-def)
code-pred
  (modes: i \Rightarrow i \Rightarrow i \Rightarrow bool, i \Rightarrow i \Rightarrow o \Rightarrow bool)
  Subobjs_{R}
```

```
\mathbf{by}(erule\ Subobjs_R.cases)(auto\ simp\ add:\ subclsR-code)
lemma subcls1p-code [code-pred-intro]:
  \llbracket class\ P\ C = Some\ (Bs,rest);\ Predicate-Compile.contains\ (baseClasses\ Bs)\ D\ 
rbracket
\implies subcls1p \ P \ C \ D
by(auto intro: subcls1p.intros simp add: Predicate-Compile.contains-def)
code-pred (modes: i \Rightarrow i \Rightarrow bool, i \Rightarrow i \Rightarrow o \Rightarrow bool)
  subcls1p
\mathbf{by}(\textit{fastforce elim}!: \textit{subcls1p.cases simp add}: \textit{Predicate-Compile.contains-def})
declare Subobjs-Rep [code-pred-intro]
lemma Subobjs-Sh-code [code-pred-intro]:
   \llbracket \ (subcls1p\ P) \ \widehat{} **\ C\ C';\ subclsSp\ P\ C'\ D;\ Subobjs_R\ P\ D\ Cs \rrbracket 
  \implies Subobjs P C Cs
by(rule Subobjs-Sh)(simp-all add: rtrancl-def subcls1-def subcls5-def)
code-pred
  (modes: i \Rightarrow i \Rightarrow i \Rightarrow bool, i \Rightarrow i \Rightarrow o \Rightarrow bool)
by(erule Subobjs.cases)(auto simp add: rtrancl-def subcls1-def subcls5-def)
definition widen-unique :: prog \Rightarrow cname \Rightarrow cname \Rightarrow path \Rightarrow bool
where widen-unique P \ C \ D \ Cs \longleftrightarrow (\forall \ Cs'. \ Subobjs \ P \ C \ Cs' \longrightarrow last \ Cs' = D \longrightarrow
Cs = Cs'
code-pred [inductify, skip-proof] widen-unique.
lemma widen-subcls':
  [Subobjs \ P \ C \ Cs'; \ last \ Cs' = D; \ widen-unique \ P \ C \ D \ Cs']
\implies P \vdash Class \ C \leq Class \ D
by(rule widen-subcls, auto simp:path-unique-def widen-unique-def)
declare
  widen-refl [code-pred-intro]
  widen-subcls' [code-pred-intro widen-subcls]
  widen-null [code-pred-intro]
code-pred
  (modes: i \Rightarrow i \Rightarrow bool)
by(erule widen.cases)(auto simp add: path-unique-def widen-unique-def)
code-pred
  (modes: i \Rightarrow i \Rightarrow i \Rightarrow bool, i \Rightarrow i \Rightarrow o \Rightarrow bool, i \Rightarrow i \Rightarrow o \Rightarrow i \Rightarrow bool,
i \Rightarrow i \Rightarrow o \Rightarrow o \Rightarrow bool
  leq	ext{-}path1p
```

```
lemma leq-path-unfold: P,C \vdash Cs \sqsubseteq Ds \longleftrightarrow (leq-path1p\ P\ C) \hat{}** Cs\ Ds
by(simp add: leq-path1-def rtrancl-def)
code-pred
   (modes: i => i => i => o => bool, i => i => i => bool)
   [inductify, skip-proof]
   path-via
lemma path-unique-eq [code-pred-def]: P \vdash Path \ C \ to \ D \ unique \longleftrightarrow
  (\exists \ Cs. \ Subobjs \ P \ C \ Cs \land \ last \ Cs = D \land (\forall \ Cs'. \ Subobjs \ P \ C \ Cs' \longrightarrow last \ Cs' = D)
D \longrightarrow Cs = Cs'
by(auto simp add: path-unique-def)
code-pred
   (\mathit{modes}:\ i =>\ i =>\ o =>\ \mathit{bool},\ i =>\ i =>\ i =>\ \mathit{bool})
   [inductify, skip-proof]
   path-unique.
     Redefine MethodDefs and FieldDecls
definition MethodDefs' :: prog \Rightarrow cname \Rightarrow mname \Rightarrow path \Rightarrow method \Rightarrow bool
where
  MethodDefs' \ P \ C \ M \ Cs \ mthd \equiv (Cs, \ mthd) \in MethodDefs \ P \ C \ M
lemma [code-pred-intro]:
 Subobjs P \ C \ Cs \Longrightarrow class \ P \ (last \ Cs) = |(Bs,fs,ms)| \Longrightarrow map-of \ ms \ M = |mthd|
   MethodDefs' P C M Cs mthd
 by (simp add: MethodDefs-def MethodDefs'-def)
code-pred
  (modes: i \Rightarrow i \Rightarrow i \Rightarrow o \Rightarrow o \Rightarrow bool, i \Rightarrow i \Rightarrow i \Rightarrow i \Rightarrow bool)
  MethodDefs'
by(fastforce simp add: MethodDefs-def MethodDefs'-def)
definition FieldDecls' :: prog \Rightarrow cname \Rightarrow vname \Rightarrow path \Rightarrow ty \Rightarrow bool where
  FieldDecls' \ P \ C \ F \ Cs \ T \equiv (Cs, \ T) \in FieldDecls \ P \ C \ F
lemma [code-pred-intro]:
  Subobjs P \ C \ Cs \implies class \ P \ (last \ Cs) = \lfloor (Bs,fs,ms) \rfloor \implies map-of \ fs \ F = \lfloor T \rfloor
   FieldDecls' \ P \ C \ F \ Cs \ T
by (simp add: FieldDecls-def FieldDecls'-def)
code-pred
  (modes: i \Rightarrow i \Rightarrow i \Rightarrow o \Rightarrow o \Rightarrow bool, i \Rightarrow i \Rightarrow i \Rightarrow i \Rightarrow bool)
  FieldDecls'
```

```
definition MinimalMethodDefs' :: prog \Rightarrow cname \Rightarrow mname \Rightarrow path \Rightarrow method \Rightarrow bool where

<math>MinimalMethodDefs' P. C.M. Cs. mthd = (Cs. mthd) \in MinimalMethodDefs P. C.
```

 $\textit{MinimalMethodDefs'} \ P \ C \ M \ Cs \ mthd \equiv (\textit{Cs}, \ mthd) \in \textit{MinimalMethodDefs} \ P \ C \ M$

definition MinimalMethodDefs-unique :: $prog \Rightarrow cname \Rightarrow mname \Rightarrow path \Rightarrow bool$ where

```
\begin{array}{ll} \textit{MinimalMethodDefs-unique} \ P \ C \ M \ Cs \longleftrightarrow \\ (\forall \ Cs' \ mthd. \ MethodDefs' \ P \ C \ M \ Cs' \ mthd \longrightarrow (\textit{leq-path1p} \ P \ C) \ \hat{} ** \ Cs' \ Cs \longrightarrow \\ Cs' = \ Cs) \end{array}
```

 ${f code-pred}\ [inductify,\ skip-proof]\ Minimal Method Defs-unique$.

lemma [code-pred-intro]:

 $\begin{tabular}{ll} MethodDefs' P C M Cs mthd \implies MinimalMethodDefs-unique P C M Cs \implies MinimalMethodDefs' P C M Cs mthd \\ \end{tabular}$

 $\textbf{by} \ (fastforce \ simp \ add: Minimal Method Defs-def \ Minimal Method Defs'-def \ Method Defs'-def \ Minimal Method Defs-unique-def \ leq-path-unfold)$

code-pred

```
 \begin{array}{l} (\textit{modes: } i \Rightarrow i \Rightarrow i \Rightarrow o \Rightarrow o \Rightarrow \textit{bool}) \\ \textit{MinimalMethodDefs'} \end{array}
```

by(fastforce simp add:MinimalMethodDefs-def MinimalMethodDefs'-def MethodDefs'-def MinimalMethodDefs-unique-def leq-path-unfold)

definition LeastMethodDef-unique :: $prog \Rightarrow cname \Rightarrow mname \Rightarrow path \Rightarrow bool$ where

```
 LeastMethodDef-unique\ P\ C\ M\ Cs \longleftrightarrow \\ (\forall\ Cs'\ mthd'.\ MethodDefs'\ P\ C\ M\ Cs'\ mthd' \longrightarrow (leq-path1p\ P\ C)^***\ Cs\ Cs')
```

 $\mathbf{code\text{-}pred}$ [inductify, skip-proof] LeastMethodDef-unique.

 $\mathbf{lemma}\ LeastMethodDef$ -unfold:

```
P \vdash C \text{ has least } M = \text{mthd via } Cs \longleftrightarrow
```

 $MethodDefs' \ P \ C \ M \ Cs \ mthd \ \land \ LeastMethodDef-unique \ P \ C \ M \ Cs$

 $\mathbf{by} (fast force\ simp\ add:\ Least Method Def-def\ Method Defs'-def\ leq-path-unfold\ Least-Method Def-unique-def)$

lemma LeastMethodDef-intro [code-pred-intro]:

```
\llbracket MethodDefs' \ P \ C \ M \ Cs \ mthd; \ LeastMethodDef-unique \ P \ C \ M \ Cs \ \rrbracket \implies P \vdash C \ has \ least \ M = mthd \ via \ Cs
```

 $\mathbf{by}(simp\ add:\ LeastMethodDef\text{-}unfold\ LeastMethodDef\text{-}unique\text{-}def)$

```
code-pred (modes: i \Rightarrow i \Rightarrow o \Rightarrow o \Rightarrow bool)
  LeastMethodDef
\mathbf{by}(simp\ add:\ LeastMethodDef\text{-}unfold\ LeastMethodDef\text{-}unique\text{-}def)
definition OverriderMethodDefs' :: prog \Rightarrow subobj \Rightarrow mname \Rightarrow path \Rightarrow method
\Rightarrow bool \text{ where}
  OverriderMethodDefs' \ P \ R \ M \ Cs \ mthd \equiv (Cs, \ mthd) \in OverriderMethodDefs \ P
R M
lemma Overrider1 [code-pred-intro]:
  P \vdash (ldc \ R) \ has \ least \ M = mthd' \ via \ Cs' \Longrightarrow
   MinimalMethodDefs' \ P \ (mdc \ R) \ M \ Cs \ mthd \Longrightarrow
   \mathit{last}\;(\mathit{snd}\;R) = \mathit{hd}\;\mathit{Cs'} \Longrightarrow (\mathit{leq-path1p}\;P\;(\mathit{mdc}\;R)) \, \widehat{\ } \ast \ast \;\mathit{Cs}\;(\mathit{snd}\;R\;@\;\mathit{tl}\;\mathit{Cs'}) \Longrightarrow
   OverriderMethodDefs' P R M Cs mthd
apply(simp add: OverriderMethodDefs-def OverriderMethodDefs'-def MinimalMethod-
Defs'-def appendPath-def leq-path-unfold)
apply(rule-tac \ x=Cs' \ in \ exI)
apply clarsimp
apply(cases mthd')
apply blast
done
lemma Overrider2 [code-pred-intro]:
  P \vdash (ldc \ R) \ has \ least \ M = mthd' \ via \ Cs' \Longrightarrow
  MinimalMethodDefs' \ P \ (mdc \ R) \ M \ Cs \ mthd \Longrightarrow
   last (snd R) \neq hd Cs' \Longrightarrow (leg-path1p P (mdc R))^* * Cs Cs' \Longrightarrow
   OverriderMethodDefs' P R M Cs mthd
by(auto simp add:OverriderMethodDefs-def OverriderMethodDefs'-def MinimalMethod-
Defs'-def appendPath-def leq-path-unfold simp del: split-paired-Ex)
code-pred
 o \Rightarrow i \Rightarrow bool, i \Rightarrow i \Rightarrow i \Rightarrow i \Rightarrow bool
  OverriderMethodDefs'
apply(clarsimp simp add: OverriderMethodDefs'-def MinimalMethodDefs'-def Method-
Defs'-def OverriderMethodDefs-def appendPath-def leq-path-unfold)
apply(case-tac\ last\ xb = hd\ Cs')
apply(simp)
apply(thin-tac\ PROP\ -)
apply(simp\ add:\ leq-path1-def)
done
definition WTDynCast-ex :: prog \Rightarrow cname \Rightarrow cname \Rightarrow bool
where WTDynCast-ex\ P\ D\ C\longleftrightarrow (\exists\ Cs.\ P\vdash\ Path\ D\ to\ C\ via\ Cs)
```

```
code-pred [inductify, skip-proof] WTDynCast-ex.
\mathbf{lemma}\ \mathit{WTDynCast-new} :
  \llbracket P,E \vdash e :: Class D; is\text{-}class P C;
   P \vdash Path \ D \ to \ C \ unique \lor \neg \ WTDynCast-ex \ P \ D \ C
  \implies P,E \vdash Cast \ C \ e :: Class \ C
by(rule WTDynCast)(auto simp add: WTDynCast-ex-def)
definition WTStaticCast\text{-}sub :: prog \Rightarrow cname \Rightarrow cname \Rightarrow bool
where WTStaticCast-sub P \ C \ D \longleftrightarrow
  P \vdash Path \ D \ to \ C \ unique \lor
  ((subcls1p\ P)^** C\ D\ \land (\forall\ Cs.\ P\vdash Path\ C\ to\ D\ via\ Cs\longrightarrow Subobjs_R\ P\ C\ Cs))
code-pred [inductify, skip-proof] WTStaticCast-sub .
\mathbf{lemma}\ WTStaticCast-new:
  \llbracket P,E \vdash e :: Class \ D; \ is\text{-}class \ P \ C; \ WTStaticCast\text{-}sub \ P \ C \ D \ \rrbracket
  \implies P,E \vdash (|C|)e :: Class C
by (rule WTStaticCast)(auto simp add: WTStaticCast-sub-def subcls1-def rtrancl-def)
lemma WTBinOp1: \llbracket P,E \vdash e_1 :: T; P,E \vdash e_2 :: T \rrbracket
  \implies P,E \vdash e_1 \ll Eq \gg e_2 :: Boolean
 apply (rule WTBinOp)
 apply assumption+
 apply simp
 done
lemma WTBinOp2: \llbracket P,E \vdash e_1 :: Integer; P,E \vdash e_2 :: Integer \rrbracket
  \mathbf{apply} \ (\mathit{rule} \ \mathit{WTBinOp})
 apply assumption+
 apply simp
  done
lemma LeastFieldDecl-unfold [code-pred-def]:
  P \vdash C \ has \ least \ F:T \ via \ Cs \longleftrightarrow
   FieldDecls' \ P \ C \ F \ Cs \ T \land (\forall \ Cs' \ T'. \ FieldDecls' \ P \ C \ F \ Cs' \ T' \longrightarrow (leq-path1p)
P \ C) ^* * Cs \ Cs'
by(auto simp add: LeastFieldDecl-def FieldDecls'-def leq-path-unfold)
code-pred [inductify, skip-proof] LeastFieldDecl.
lemmas [code-pred-intro] = WT-WTs.WTNew
declare
  WTDynCast-new[code-pred-intro\ WTDynCast-new]
  WTStaticCast-new[code-pred-intro\ WTStaticCast-new]
lemmas [code-pred-intro] = WT-WTs. WTVal WT-WTs. WTVar
```

```
declare
  WTBinOp1[code-pred-intro\ WTBinOp1]
  WTBinOp2 [code-pred-intro WTBinOp2]
lemmas [code-pred-intro] =
 StaticCall
 WT-WTs. WTBlock WT-WTs. WTSeq WT-WTs. WTCond WT-WTs. WTWhile WT-WTs. WTThrow
lemmas [code-pred-intro] = WT-WTs. WTNil WT-WTs. WTCons
code-pred
 (modes: WT: i \Rightarrow i \Rightarrow i \Rightarrow bool, i \Rightarrow i \Rightarrow o \Rightarrow bool
  and WTs: i \Rightarrow i \Rightarrow i \Rightarrow bool, i \Rightarrow i \Rightarrow o \Rightarrow bool)
  WT
proof -
 case WT
 from WT.prems show thesis
 proof(cases (no-simp) rule: WT.cases)
   case WTDynCast thus thesis
     by (rule WT. WTDynCast-new[OF refl, unfolded WTDynCast-ex-def, simpli-
fied
 next
   case WTStaticCast thus ?thesis
     unfolding subcls1-def rtrancl-def mem-Collect-eq prod.case
     by(rule WT.WTStaticCast-new[OF refl, unfolded WTStaticCast-sub-def])
 next
   case WTBinOp thus ?thesis
   by(split bop.split-asm)(simp-all, (erule (4) WT.WTBinOp1[OF refl] WT.WTBinOp2[OF
ref[])+)
 qed(assumption|erule (2) WT.that[OF refl])+
next
 case WTs
 from WTs.prems show thesis
  by (cases (no-simp) rule: WTs.cases) (assumption|erule (2) WTs.that[OF refl])+
lemma casts-to-code [code-pred-intro]:
 (case\ T\ of\ Class\ C \Rightarrow False\ |\ -\Rightarrow\ True) \Longrightarrow P \vdash T\ casts\ v\ to\ v
 P \vdash Class \ C \ casts \ Null \ to \ Null
 [Subobjs P (last Cs) Cs'; last Cs' = C;
   last Cs = hd Cs'; Cs @ tl Cs' = Ds]
 \implies P \vdash Class \ C \ casts \ Ref(a,Cs) \ to \ Ref(a,Ds)
 [Subobjs \ P \ (last \ Cs) \ Cs'; \ last \ Cs' = C; \ last \ Cs \neq hd \ Cs']
 \implies P \vdash Class \ C \ casts \ Ref(a,Cs) \ to \ Ref(a,Cs')
by(auto intro: casts-to.intros simp add: path-via-def appendPath-def)
code-pred (modes: i \Rightarrow i \Rightarrow i \Rightarrow o \Rightarrow bool, i \Rightarrow i \Rightarrow i \Rightarrow bool)
 casts-to
apply(erule casts-to.cases)
 apply(fastforce split: ty.splits)
```

```
apply simp
apply(fastforce simp add: appendPath-def path-via-def split: if-split-asm)
done
code-pred
 (modes: i \Rightarrow i \Rightarrow i \Rightarrow o \Rightarrow bool, i \Rightarrow i \Rightarrow i \Rightarrow i \Rightarrow bool)
  Casts-to
\textbf{lemma} \ \textit{card-eq-1-iff-ex1} \colon x \in A \Longrightarrow \textit{card} \ A = 1 \longleftrightarrow A = \{x\}
apply(rule\ iffI)
apply(rule\ equalityI)
 apply(rule subsetI)
 apply(subgoal-tac\ card\ \{x,\ xa\} \le card\ A)
  apply(auto intro: ccontr)[1]
 apply(rule card-mono)
  apply simp-all
apply(metis Suc-n-not-n card.infinite)
done
\mathbf{lemma}\ \mathit{FinalOverriderMethodDef}\text{-}\mathit{unfold}\ [\mathit{code-pred-def}]:
  P \vdash R \text{ has overrider } M = \text{mthd via } Cs \longleftrightarrow
  Overrider Method Defs'\ P\ R\ M\ Cs\ mthd\ \land
  (\forall \ Cs' \ mthd'. \ OverriderMethodDefs' \ P \ R \ M \ Cs' \ mthd' \longrightarrow Cs = Cs' \land mthd =
mthd')
by(auto simp add: FinalOverriderMethodDef-def OverriderMethodDefs'-def card-eq-1-iff-ex1
simp del: One-nat-def)
code-pred
  (modes: i => i => i => o => bool)
  [inductify, skip-proof]
  Final Overrider Method Def
code-pred
  bool)
  [inductify]
  SelectMethodDef
    Isomorphic subo with mapping instead of a map
type-synonym subo' = (path \times (vname, val) \ mapping)
type-synonym obj' = cname \times subo' set
lift-definition init-class-fieldmap' :: prog \Rightarrow cname \Rightarrow (vname, val) mapping is
init-class-fieldmap.
```

```
lemma init-class-fieldmap'-code [code]:
    init-class-fieldmap' P C =
          Mapping (map (\lambda(F,T).(F,default-val\ T)) (fst(snd(the(class P\ C))))))
by transfer(simp add: init-class-fieldmap-def)
lift-definition init-obj':: prog \Rightarrow cname \Rightarrow subo' \Rightarrow bool is init-obj.
lemma init-obj'-intros [code-pred-intro]:
    Subobjs P \ C \ Cs \Longrightarrow init\text{-}obj' \ P \ C \ (Cs, init\text{-}class\text{-}fieldmap' \ P \ (last \ Cs))
\mathbf{by}(transfer)(rule\ init-obj.intros)
code-pred
    (modes: i \Rightarrow i \Rightarrow o \Rightarrow bool \ as \ init-obj-pred)
    init-obj'
by transfer(erule init-obj.cases, blast)
lemma init-obj-pred-conv: set-of-pred (init-obj-pred P C) = Collect <math>(init-obj' P
by(auto elim: init-obj-predE intro: init-obj-predI)
lift-definition blank' :: prog \Rightarrow cname \Rightarrow obj' is blank.
lemma blank'-code [code]:
    blank' P C = (C, set\text{-}of\text{-}pred (init\text{-}obj\text{-}pred P C))
unfolding init-obj-pred-conv by transfer(simp add: blank-def)
type-synonym heap' = addr \rightarrow obj'
abbreviation
    cname-of':: heap' \Rightarrow addr \Rightarrow cname  where
   \bigwedge hp.\ cname-of'\ hp\ a == fst\ (the\ (hp\ a))
lift-definition new-Addr' :: heap' \Rightarrow addr \ option \ is \ new-Addr.
lift-definition start-heap' :: prog \Rightarrow heap' is start-heap.
\mathbf{lemma} \ \mathit{start-heap'-code} \ [\mathit{code}] \colon
      start-heap' P = Map.empty (addr-of-sys-xcpt NullPointer \mapsto blank' P Null-of-sys-xcpt NullPointer \mapsto blank' P Null-of-sys-xcpt NullPointer in the system of t
Pointer,
                                                  addr-of-sys-xcpt ClassCast \mapsto blank' P ClassCast,
                                                  addr-of-sys-xcpt OutOfMemory \mapsto blank' \ P \ OutOfMemory)
by transfer(simp add: start-heap-def)
type-synonym
    state' = heap' \times locals
lift-definition hp' :: state' \Rightarrow heap' is hp.
```

```
lemma hp'-code [code]: hp' = fst
by transfer simp
lift-definition lcl' :: state' \Rightarrow locals is lcl.
lemma lcl-code [code]: lcl' = snd
by transfer simp
lift-definition eval' :: prog \Rightarrow env \Rightarrow expr \Rightarrow state' \Rightarrow expr \Rightarrow state' \Rightarrow bool
             (\langle -, - \vdash ((1\langle -, /- \rangle) \Rightarrow "/ (1\langle -, /- \rangle)) \rangle [51, 0, 0, 0, 0] 81)
lift-definition evals' :: prog \Rightarrow env \Rightarrow expr \ list \Rightarrow state' \Rightarrow expr \ list \Rightarrow state' \Rightarrow
bool
              (\langle -, - \vdash ((1\langle -, /- \rangle)) \Rightarrow'' | / (1\langle -, /- \rangle)) \rangle [51, 0, 0, 0, 0] 81)
  is evals.
lemma New':
  \llbracket new\text{-}Addr' h = Some \ a; \ h' = h(a \mapsto (blank' P \ C)) \ \rrbracket
  \implies P,E \vdash \langle new \ C,(h,l) \rangle \Rightarrow' \langle ref \ (a,[C]),(h',l) \rangle
by transfer(unfold blank-def, rule New)
lemma NewFail':
   new-Addr' h = None \Longrightarrow
   P,E \vdash \langle new \ C, \ (h,l) \rangle \Rightarrow' \langle THROW \ OutOfMemory,(h,l) \rangle
by transfer(rule NewFail)
lemma StaticUpCast':
  \llbracket P,E \vdash \langle e,s_0 \rangle \Rightarrow' \langle ref(a,Cs),s_1 \rangle; P \vdash Path\ last\ Cs\ to\ C\ via\ Cs';\ Ds = Cs@_pCs'
  \implies P,E \vdash \langle (|C|)e,s_0 \rangle \Rightarrow' \langle ref(a,Ds),s_1 \rangle
by transfer(rule StaticUpCast)
lemma StaticDownCast'-new:
  \llbracket P,E \vdash \langle e,s_0 \rangle \Rightarrow' \langle ref(a,Ds),s_1 \rangle; \ app \ Cs \ [C] \ Ds'; \ app \ Ds' \ Cs' \ Ds \rrbracket
  \implies P,E \vdash \langle (C)e,s_0\rangle \Rightarrow '\langle ref(a,Cs@[C]),s_1\rangle
apply transfer
apply (rule StaticDownCast)
apply (simp add: app-eq)
done
\mathbf{lemma}\ \mathit{StaticCastNull'}:
   P,E \vdash \langle e,s_0 \rangle \Rightarrow' \langle null,s_1 \rangle \Longrightarrow
  P,E \vdash \langle (C)e,s_0 \rangle \Rightarrow' \langle null,s_1 \rangle
by transfer(rule StaticCastNull)
lemma StaticCastFail'-new:
\llbracket P,E \vdash \langle e,s_0 \rangle \Rightarrow' \langle ref(a,Cs),s_1 \rangle; \neg (subcls1p\ P) \hat{} ** (last\ Cs)\ C;\ C \notin set\ Cs \rrbracket
  \implies P,E \vdash \langle (|C|)e,s_0 \rangle \Rightarrow' \langle THROW\ ClassCast,s_1 \rangle
```

```
apply transfer
by (fastforce intro:StaticCastFail simp add: rtrancl-def subcls1-def)
\mathbf{lemma}\ \mathit{StaticCastThrow'}:
   P,E \vdash \langle e,s_0 \rangle \Rightarrow' \langle throw \ e',s_1 \rangle \Longrightarrow
  P,E \vdash \langle (C)e,s_0 \rangle \Rightarrow' \langle throw \ e',s_1 \rangle
by transfer(rule StaticCastThrow)
lemma StaticUpDynCast':
  \llbracket P,E \vdash \langle e,s_0 \rangle \Rightarrow' \langle ref(a,Cs),s_1 \rangle; P \vdash Path \ last \ Cs \ to \ C \ unique;
     P \vdash Path\ last\ Cs\ to\ C\ via\ Cs';\ Ds = Cs@_pCs'
   \implies P,E \vdash \langle Cast \ C \ e,s_0 \rangle \Rightarrow' \langle ref(a,Ds),s_1 \rangle
by transfer(rule\ Static\ UpDynCast)
lemma StaticDownDynCast'-new:
   \llbracket P,E \vdash \langle e,s_0 \rangle \Rightarrow' \langle ref(a,Ds),s_1 \rangle; \ app \ Cs \ [C] \ Ds'; \ app \ Ds' \ Cs' \ Ds \rrbracket
   \implies P,E \vdash \langle Cast \ C \ e,s_0 \rangle \Rightarrow' \langle ref(a,Cs@[C]),s_1 \rangle
apply transfer
apply (rule StaticDownDynCast)
apply (simp add: app-eq)
done
lemma DynCast':
  [P,E \vdash \langle e,s_0 \rangle \Rightarrow' \langle ref(a,Cs),(h,l) \rangle; h \ a = Some(D,S);
     P \vdash Path \ D \ to \ C \ via \ Cs'; \ P \vdash Path \ D \ to \ C \ unique \ 
  \implies P,E \vdash \langle Cast \ C \ e,s_0 \rangle \Rightarrow' \langle ref \ (a,Cs'),(h,l) \rangle
by transfer(rule\ DynCast)
lemma DynCastNull':
  P,E \vdash \langle e,s_0 \rangle \Rightarrow' \langle null,s_1 \rangle \Longrightarrow
  P,E \vdash \langle Cast \ C \ e,s_0 \rangle \Rightarrow' \langle null,s_1 \rangle
by transfer(rule DynCastNull)
lemma DynCastFail':
  [P,E \vdash \langle e,s_0 \rangle \Rightarrow' \langle ref(a,Cs),(h,l) \rangle; h \ a = Some(D,S); \neg P \vdash Path \ D \ to \ C \ unique;
     \neg P \vdash Path\ last\ Cs\ to\ C\ unique;\ C \notin set\ Cs\ ]
  \implies P,E \vdash \langle Cast \ C \ e,s_0 \rangle \Rightarrow' \langle null,(h,l) \rangle
by transfer(rule DynCastFail)
lemma DynCastThrow':
  P,E \vdash \langle e,s_0 \rangle \Rightarrow' \langle throw \ e',s_1 \rangle \Longrightarrow
   P,E \vdash \langle Cast \ C \ e,s_0 \rangle \Rightarrow' \langle throw \ e',s_1 \rangle
by transfer(rule DynCastThrow)
lemma Val':
  P,E \vdash \langle Val \ v,s \rangle \Rightarrow' \langle Val \ v,s \rangle
by transfer(rule Val)
lemma BinOp':
```

```
\llbracket P,E \vdash \langle e_1,s_0 \rangle \Rightarrow' \langle Val \ v_1,s_1 \rangle; \ P,E \vdash \langle e_2,s_1 \rangle \Rightarrow' \langle Val \ v_2,s_2 \rangle;
     binop(bop, v_1, v_2) = Some \ v \ ]
   \implies P,E \vdash \langle e_1 \ll bop \rangle e_2,s_0 \rangle \Rightarrow \forall \langle Val \ v,s_2 \rangle
by transfer(rule BinOp)
lemma BinOpThrow1':
   P,E \vdash \langle e_1,s_0 \rangle \Rightarrow' \langle throw \ e,s_1 \rangle \Longrightarrow
   P,E \vdash \langle e_1 \ll bop \rangle \mid e_2, s_0 \rangle \Rightarrow ' \langle throw \mid e,s_1 \rangle
by transfer(rule BinOpThrow1)
lemma BinOpThrow2':
   \llbracket P,E \vdash \langle e_1,s_0 \rangle \Rightarrow' \langle Val \ v_1,s_1 \rangle; \ P,E \vdash \langle e_2,s_1 \rangle \Rightarrow' \langle throw \ e,s_2 \rangle \ \rrbracket
  \implies P,E \vdash \langle e_1 \ "bop" \ e_2,s_0 \rangle \Rightarrow ' \langle throw \ e,s_2 \rangle
by transfer(rule BinOpThrow2)
lemma Var':
   l\ V = Some\ v \Longrightarrow
   P,E \vdash \langle Var \ V,(h,l) \rangle \Rightarrow' \langle Val \ v,(h,l) \rangle
by transfer(rule Var)
lemma LAss':
   [P,E \vdash \langle e,s_0 \rangle \Rightarrow' \langle Val \ v,(h,l) \rangle; E \ V = Some \ T;
       P \vdash T \ casts \ v \ to \ v'; \ l' = l(V \mapsto v') \ \rrbracket
   \implies P,E \vdash \langle V := e, s_0 \rangle \Rightarrow' \langle Val \ v',(h,l') \rangle
by (transfer) (erule (3) LAss)
lemma LAssThrow':
   P,E \vdash \langle e,s_0 \rangle \Rightarrow' \langle throw \ e',s_1 \rangle \Longrightarrow
   P,E \vdash \langle V := e, s_0 \rangle \Rightarrow' \langle throw \ e', s_1 \rangle
by transfer(rule LAssThrow)
lemma FAcc'-new:
   \llbracket P,E \vdash \langle e,s_0 \rangle \Rightarrow' \langle ref(a,Cs'),(h,l) \rangle; h \ a = Some(D,S);
     Ds = Cs' @_p Cs; Predicate-Compile.contains (Set-project S Ds) fs; Mapping.lookup
fs F = Some v 
   \implies P,E \vdash \langle e \cdot F\{Cs\}, s_0 \rangle \Rightarrow' \langle Val \ v,(h,l) \rangle
unfolding Set-project-def mem-Collect-eq Predicate-Compile.contains-def
by transfer(rule FAcc)
lemma FAccNull':
   P,E \vdash \langle e,s_0 \rangle \Rightarrow' \langle null,s_1 \rangle \Longrightarrow
   P,E \vdash \langle e \cdot F\{Cs\}, s_0 \rangle \Rightarrow ' \langle THROW\ NullPointer, s_1 \rangle
by transfer(rule FAccNull)
lemma FAccThrow':
   P,E \vdash \langle e,s_0 \rangle \Rightarrow' \langle throw \ e',s_1 \rangle \Longrightarrow
   P,E \vdash \langle e \cdot F\{Cs\}, s_0 \rangle \Rightarrow' \langle throw \ e', s_1 \rangle
by transfer(rule FAccThrow)
```

```
lemma FAss'-new:
   \llbracket P,E \vdash \langle e_1,s_0 \rangle \Rightarrow' \langle ref (a,Cs'),s_1 \rangle; P,E \vdash \langle e_2,s_1 \rangle \Rightarrow' \langle Val \ v,(h_2,l_2) \rangle;
       h_2 \ a = Some(D,S); \ P \vdash (last \ Cs') \ has \ least \ F:T \ via \ Cs; \ P \vdash T \ casts \ v \ to \ v';
       Ds = Cs' @_p Cs; Predicate-Compile.contains (Set-project S Ds) fs; fs' = Map-
ping.update F v' fs;
       S' = S - \{(Ds,fs)\} \cup \{(Ds,fs')\}; h_2' = h_2(a \mapsto (D,S'))
   \implies P,E \vdash \langle e_1 \cdot F\{Cs\} := e_2, s_0 \rangle \Rightarrow' \langle Val \ v', (h_2', l_2) \rangle
unfolding Predicate-Compile.contains-def Set-project-def mem-Collect-eq
by transfer(rule FAss)
lemma FAssNull':
  \llbracket P,E \vdash \langle e_1,s_0 \rangle \Rightarrow' \langle null,s_1 \rangle; P,E \vdash \langle e_2,s_1 \rangle \Rightarrow' \langle Val\ v,s_2 \rangle \rrbracket \Longrightarrow
  P,E \vdash \langle e_1 \cdot F\{Cs\} := e_2, s_0 \rangle \Rightarrow' \langle THROW\ NullPointer, s_2 \rangle
by transfer(rule FAssNull)
lemma FAssThrow1':
   P,E \vdash \langle e_1,s_0 \rangle \Rightarrow' \langle throw \ e',s_1 \rangle \Longrightarrow
   P,E \vdash \langle e_1 \cdot F\{Cs\} := e_2, s_0 \rangle \Rightarrow' \langle throw \ e', s_1 \rangle
by transfer(rule FAssThrow1)
lemma FAssThrow2':
  \llbracket P,E \vdash \langle e_1,s_0 \rangle \Rightarrow' \langle Val\ v,s_1 \rangle;\ P,E \vdash \langle e_2,s_1 \rangle \Rightarrow' \langle throw\ e',s_2 \rangle\ \rrbracket
   \implies P,E \vdash \langle e_1 \cdot F\{Cs\} := e_2, s_0 \rangle \Rightarrow ' \langle throw \ e', s_2 \rangle
by transfer(rule FAssThrow2)
lemma CallObjThrow':
   P,E \vdash \langle e,s_0 \rangle \Rightarrow' \langle throw \ e',s_1 \rangle \Longrightarrow
   P,E \vdash \langle Call \ e \ Copt \ M \ es,s_0 \rangle \Rightarrow' \langle throw \ e',s_1 \rangle
by transfer(rule CallObjThrow)
{\bf lemma} \ {\it CallParamsThrow'-new}:
   \llbracket P,E \vdash \langle e,s0 \rangle \Rightarrow' \langle Val\ v,s1 \rangle;\ P,E \vdash \langle es,s1 \rangle \ [\Rightarrow'] \ \langle evs,s2 \rangle;
       map-val2 \ evs \ vs \ (throw \ ex \ \# \ es') \ ]
    \implies P,E \vdash \langle Call \ e \ Copt \ M \ es,s0 \rangle \Rightarrow' \langle throw \ ex,s2 \rangle
apply transfer
apply(rule eval-evals.CallParamsThrow, assumption+)
\mathbf{apply}(simp\ add:\ map\text{-}val2\text{-}conv[symmetric])
done
lemma Call'-new:
   \llbracket P,E \vdash \langle e,s_0 \rangle \Rightarrow' \langle ref(a,Cs),s_1 \rangle; P,E \vdash \langle ps,s_1 \rangle \models \uparrow \langle evs,(h_2,l_2) \rangle;
       map-val evs vs;
       h_2 \ a = Some(C,S); \ P \vdash last \ Cs \ has \ least \ M = (Ts',T',pns',body') \ via \ Ds;
      P \vdash (C, Cs@_pDs) \text{ selects } M = (Ts, T, pns, body) \text{ via } Cs'; \text{ length } vs = \text{ length } pns;
       P \vdash Ts \ Casts \ vs \ to \ vs'; \ l_2' = [this \mapsto Ref \ (a, Cs'), \ pns[\mapsto] vs'];
       new-body = (case T' of Class D \Rightarrow (|D|) body |- \Rightarrow body);
       P, E(this \mapsto Class(last \ Cs'), \ pns[\mapsto] \ Ts) \vdash \langle new\text{-}body, (h_2, l_2') \rangle \Rightarrow ' \langle e', (h_3, l_3) \rangle \ 
   \implies P,E \vdash \langle e \cdot M(ps), s_0 \rangle \Rightarrow' \langle e', (h_3, l_2) \rangle
```

```
apply transfer
apply(rule Call)
apply assumption +
apply(simp add: map-val-conv[symmetric])
apply assumption+
done
lemma StaticCall'-new:
   \llbracket P,E \vdash \langle e,s_0 \rangle \Rightarrow' \langle ref(a,Cs),s_1 \rangle; P,E \vdash \langle ps,s_1 \rangle \models \lceil \langle evs,(h_2,l_2) \rangle;
      map-val evs vs;
      P \vdash Path \ (last \ Cs) \ to \ C \ unique; \ P \vdash Path \ (last \ Cs) \ to \ C \ via \ Cs'';
      P \vdash C \text{ has least } M = (Ts, T, pns, body) \text{ via } Cs'; Ds = (Cs@_p Cs'')@_p Cs';
      length vs = length pns; P \vdash Ts Casts vs to vs';
      l_2' = [this \mapsto Ref (a,Ds), pns[\mapsto]vs'];
      P, E(this \mapsto Class(last\ Ds),\ pns[\mapsto]\ Ts) \vdash \langle body, (h_2, l_2') \rangle \Rightarrow' \langle e', (h_3, l_3) \rangle \ |
   \implies P.E \vdash \langle e \cdot (C::)M(ps), s_0 \rangle \Rightarrow' \langle e', (h_3, l_2) \rangle
apply transfer
apply(rule StaticCall)
apply(assumption) +
apply(simp add: map-val-conv[symmetric])
apply assumption+
done
lemma CallNull'-new:
  \llbracket P,E \vdash \langle e,s_0 \rangle \Rightarrow' \langle null,s_1 \rangle; P,E \vdash \langle es,s_1 \rangle \models' \langle evs,s_2 \rangle; map\text{-}val\ evs\ vs\ \rrbracket
   \implies P,E \vdash \langle Call \ e \ Copt \ M \ es,s_0 \rangle \Rightarrow' \langle THROW \ NullPointer,s_2 \rangle
apply transfer
apply(rule CallNull, assumption+)
apply(simp add: map-val-conv[symmetric])
done
lemma Block':
  \llbracket P, E(V \mapsto T) \vdash \langle e_0, (h_0, l_0(V := None)) \rangle \Rightarrow' \langle e_1, (h_1, l_1) \rangle \rrbracket \Longrightarrow
   P,E \vdash \langle \{V:T; e_0\}, (h_0, l_0) \rangle \Rightarrow' \langle e_1, (h_1, l_1(V:=l_0\ V)) \rangle
by transfer(rule Block)
lemma Seq':
   \llbracket P,E \vdash \langle e_0,s_0 \rangle \Rightarrow' \langle Val\ v,s_1 \rangle;\ P,E \vdash \langle e_1,s_1 \rangle \Rightarrow' \langle e_2,s_2 \rangle \ \rrbracket
   \implies P,E \vdash \langle e_0;;e_1,s_0 \rangle \Rightarrow' \langle e_2,s_2 \rangle
by transfer(rule Seq)
lemma SeqThrow':
   P,E \vdash \langle e_0,s_0 \rangle \Rightarrow' \langle throw \ e,s_1 \rangle \Longrightarrow
  P,E \vdash \langle e_0;;e_1,s_0 \rangle \Rightarrow '\langle throw \ e,s_1 \rangle
by transfer(rule SeqThrow)
lemma CondT':
  \llbracket P,E \vdash \langle e,s_0 \rangle \Rightarrow' \langle true,s_1 \rangle; P,E \vdash \langle e_1,s_1 \rangle \Rightarrow' \langle e',s_2 \rangle \rrbracket
  \implies P,E \vdash \langle if (e) \ e_1 \ else \ e_2,s_0 \rangle \Rightarrow ' \langle e',s_2 \rangle
```

```
by transfer(rule\ Cond\ T)
lemma CondF':
  \llbracket P,E \vdash \langle e,s_0 \rangle \Rightarrow' \langle false,s_1 \rangle; P,E \vdash \langle e_2,s_1 \rangle \Rightarrow' \langle e',s_2 \rangle \rrbracket
   \implies P,E \vdash \langle if (e) \ e_1 \ else \ e_2,s_0 \rangle \Rightarrow ' \langle e',s_2 \rangle
by transfer(rule CondF)
lemma CondThrow':
   P,E \vdash \langle e,s_0 \rangle \Rightarrow' \langle throw \ e',s_1 \rangle \Longrightarrow
   P,E \vdash \langle if (e) \ e_1 \ else \ e_2, \ s_0 \rangle \Rightarrow' \langle throw \ e',s_1 \rangle
\mathbf{by} \ transfer(rule \ CondThrow)
lemma WhileF':
   P,E \vdash \langle e,s_0 \rangle \Rightarrow' \langle false,s_1 \rangle \Longrightarrow
  P,E \vdash \langle while \ (e) \ c,s_0 \rangle \Rightarrow' \langle unit,s_1 \rangle
by transfer(rule WhileF)
lemma While T':
   [P,E \vdash \langle e,s_0 \rangle \Rightarrow' \langle true,s_1 \rangle; P,E \vdash \langle c,s_1 \rangle \Rightarrow' \langle Val \ v_1,s_2 \rangle;
       P,E \vdash \langle while \ (e) \ c,s_2 \rangle \Rightarrow' \langle e_3,s_3 \rangle \ ]
   \implies P,E \vdash \langle while \ (e) \ c,s_0 \rangle \Rightarrow' \langle e_3,s_3 \rangle
by transfer(rule While T)
lemma While Cond Throw':
   P,E \vdash \langle e,s_0 \rangle \Rightarrow' \langle throw \ e',s_1 \rangle \Longrightarrow
   P,E \vdash \langle while \ (e) \ c,s_0 \rangle \Rightarrow' \langle throw \ e',s_1 \rangle
by transfer(rule WhileCondThrow)
\mathbf{lemma} \ \mathit{WhileBodyThrow'}:
   \llbracket P,E \vdash \langle e,s_0 \rangle \Rightarrow' \langle true,s_1 \rangle; P,E \vdash \langle c,s_1 \rangle \Rightarrow' \langle throw \ e',s_2 \rangle \rrbracket
   \implies P,E \vdash \langle while \ (e) \ c,s_0 \rangle \Rightarrow' \langle throw \ e',s_2 \rangle
by transfer(rule WhileBodyThrow)
lemma Throw':
   P,E \vdash \langle e,s_0 \rangle \Rightarrow' \langle ref \ r,s_1 \rangle \Longrightarrow
   P,E \vdash \langle throw \ e,s_0 \rangle \Rightarrow' \langle Throw \ r,s_1 \rangle
by transfer(rule eval-evals. Throw)
lemma ThrowNull':
   P,E \vdash \langle e,s_0 \rangle \Rightarrow' \langle null,s_1 \rangle \Longrightarrow
   P,E \vdash \langle throw \ e,s_0 \rangle \Rightarrow' \langle THROW \ NullPointer,s_1 \rangle
by transfer(rule ThrowNull)
lemma ThrowThrow':
   P,E \vdash \langle e,s_0 \rangle \Rightarrow' \langle throw \ e',s_1 \rangle \Longrightarrow
  P,E \vdash \langle throw \ e,s_0 \rangle \Rightarrow' \langle throw \ e',s_1 \rangle
by transfer(rule ThrowThrow)
```

lemma Nil':

```
P,E \vdash \langle [],s \rangle \ [\Rightarrow'] \ \langle [],s \rangle
by transfer(rule eval-evals.Nil)
lemma Cons':
  \llbracket P,E \vdash \langle e,s_0 \rangle \Rightarrow' \langle Val \ v,s_1 \rangle; \ P,E \vdash \langle es,s_1 \rangle \ [\Rightarrow'] \langle es',s_2 \rangle \ \rrbracket
  \implies P,E \vdash \langle e\#es,s_0 \rangle \ [\Rightarrow'] \ \langle Val \ v \ \# \ es',s_2 \rangle
by transfer(rule eval-evals.Cons)
lemma ConsThrow':
  P,E \vdash \langle e, s_0 \rangle \Rightarrow' \langle throw \ e', s_1 \rangle \Longrightarrow
  P,E \vdash \langle e \# es, s_0 \rangle \ [\Rightarrow'] \ \langle throw \ e' \# es, s_1 \rangle
by transfer(rule ConsThrow)
     Axiomatic heap address model refinement
partial-function (option) lowest :: (nat \Rightarrow bool) \Rightarrow nat \Rightarrow nat option
where
  [code]: lowest P n = (if P n then Some n else lowest <math>P (Suc n))
axiomatization
where
  new-Addr'-code \ [code]: new-Addr' \ h = lowest \ (Option.is-none \circ h) \ 0
     — admissible: a tightening of the specification of new-Addr
lemma eval'-cases
  [consumes 1,
    case-names New NewFail StaticUpCast StaticDownCast StaticCastNull Static-
CastFail
     StaticCastThrow\ StaticUpDynCast\ StaticDownDynCast\ DynCast\ DynCastNull
DynCastFail
     DynCastThrow Val BinOp BinOpThrow1 BinOpThrow2 Var LAss LAssThrow
FAcc FAccNull FAccThrow
    FAss FAssNull FAssThrow1 FAssThrow2 CallObjThrow CallParamsThrow Call
StaticCall CallNull
   Block\ Seq\ Seq\ Throw\ CondT\ CondF\ CondThrow\ WhileF\ WhileT\ WhileCondThrow
While Body Throw
     Throw ThrowNull ThrowThrow]:
  assumes P, x \vdash \langle y, z \rangle \Rightarrow' \langle u, v \rangle
  and \bigwedge h \ a \ h' \ C \ E \ l. \ x = E \Longrightarrow y = new \ C \Longrightarrow z = (h, l) \Longrightarrow u = ref \ (a, [C])
     v = (h', l) \Longrightarrow new-Addr' h = |a| \Longrightarrow h' = h(a \mapsto blank' P C) \Longrightarrow thesis
  and \bigwedge h \ E \ C \ l. \ x = E \Longrightarrow y = new \ C \Longrightarrow z = (h, l) \Longrightarrow
    u = Throw (addr-of-sys-xcpt OutOfMemory, [OutOfMemory]) \Longrightarrow
    v = (h, l) \Longrightarrow new-Addr' h = None \Longrightarrow thesis
  and \bigwedge E e s_0 \ a \ Cs \ s_1 \ C \ Cs' \ Ds. \ x = E \Longrightarrow y = (|C|)e \Longrightarrow z = s_0 \Longrightarrow
    u = ref(a, Ds) \Longrightarrow v = s_1 \Longrightarrow P, E \vdash \langle e, s_0 \rangle \Longrightarrow \langle ref(a, Cs), s_1 \rangle \Longrightarrow
    P \vdash Path \ last \ Cs \ to \ C \ via \ Cs' \implies Ds = Cs \ @_p \ Cs' \implies thesis
  and \bigwedge E e s_0 \ a \ Cs \ C \ Cs' \ s_1. \ x = E \Longrightarrow y = (C)e \Longrightarrow z = s_0 \Longrightarrow u = ref \ (a, b)
Cs @ [C]) \Longrightarrow
    v = s_1 \Longrightarrow P, E \vdash \langle e, s_0 \rangle \Rightarrow' \langle ref (a, Cs @ [C] @ Cs'), s_1 \rangle \Longrightarrow thesis
```

```
and \bigwedge E \in s_0 \ s_1 \ C. x = E \Longrightarrow y = (C) \in s_0 \Longrightarrow u = null \Longrightarrow v = s_1
    P,E \vdash \langle e,s_0 \rangle \Rightarrow' \langle null,s_1 \rangle \Longrightarrow thesis
   and \bigwedge E e s_0 \ a \ Cs \ s_1 \ C. \ x = E \Longrightarrow y = (C)e \Longrightarrow z = s_0 \Longrightarrow
      u = Throw (addr-of-sys-xcpt ClassCast, [ClassCast]) \Longrightarrow v = s_1 \Longrightarrow
      P,E \vdash \langle e,s_0 \rangle \Rightarrow' \langle ref(a,Cs),s_1 \rangle \Longrightarrow (last\ Cs,C) \notin (subcls1\ P)^* \Longrightarrow C \notin set
Cs \Longrightarrow thesis
  and \bigwedge E e s_0 e' s_1 C. x = E \Longrightarrow y = (C)e \Longrightarrow z = s_0 \Longrightarrow u = throw e' \Longrightarrow v
= s_1 \Longrightarrow
      P,E \vdash \langle e,s_0 \rangle \Rightarrow' \langle throw \ e',s_1 \rangle \Longrightarrow thesis
   and \bigwedge E\ e\ s_0\ a\ Cs\ s_1\ C\ Cs'\ Ds.\ x=E\Longrightarrow y=Cast\ C\ e\Longrightarrow z=s_0\Longrightarrow u=s_0
ref(a, Ds) \Longrightarrow
     v = s_1 \Longrightarrow P, E \vdash \langle e, s_0 \rangle \Rightarrow' \langle ref(a, Cs), s_1 \rangle \Longrightarrow P \vdash Path\ last\ Cs\ to\ C\ unique
      P \vdash Path \ last \ Cs \ to \ C \ via \ Cs' \implies Ds = Cs \ @_p \ Cs' \implies thesis
   and \bigwedge E \ e \ s_0 \ a \ Cs \ C \ Cs' \ s_1. \ x = E \Longrightarrow y = Cast \ C \ e \Longrightarrow z = s_0 \Longrightarrow
      u = ref (a, Cs @ [C]) \Longrightarrow v = s_1 \Longrightarrow P, E \vdash \langle e, s_0 \rangle \Rightarrow' \langle ref (a, Cs @ [C] @
(Cs'),s_1\rangle \Longrightarrow thesis
   and \bigwedge E \ e \ s_0 \ a \ Cs \ h \ l \ D \ S \ C \ Cs'. \ x = E \Longrightarrow y = Cast \ C \ e \Longrightarrow z = s_0 \Longrightarrow
      u = ref(a, Cs') \Longrightarrow v = (h, l) \Longrightarrow P, E \vdash \langle e, s_0 \rangle \Longrightarrow \langle ref(a, Cs), (h, l) \rangle \Longrightarrow
     h \ a = \lfloor (D, S) \rfloor \Longrightarrow P \vdash Path \ D \ to \ C \ via \ Cs' \Longrightarrow P \vdash Path \ D \ to \ C \ unique \Longrightarrow
thesis
   and \bigwedge E \ e \ s_0 \ s_1 \ C. \ x = E \Longrightarrow y = Cast \ C \ e \Longrightarrow z = s_0 \Longrightarrow u = null \Longrightarrow v =
s_1 \Longrightarrow
      P,E \vdash \langle e,s_0 \rangle \Rightarrow' \langle null,s_1 \rangle \Longrightarrow thesis
  and \bigwedge E \ e \ s_0 \ a \ Cs \ h \ l \ D \ S \ C. \ x = E \Longrightarrow y = Cast \ C \ e \Longrightarrow z = s_0 \Longrightarrow u = null
      v = (h, l) \Longrightarrow P, E \vdash \langle e, s_0 \rangle \Rightarrow' \langle ref(a, Cs), (h, l) \rangle \Longrightarrow h \ a = |(D, S)| \Longrightarrow
      \neg P \vdash Path \ D \ to \ C \ unique \Longrightarrow \neg P \vdash Path \ last \ Cs \ to \ C \ unique \Longrightarrow C \notin set
Cs \Longrightarrow thesis
  and \bigwedge E \ e \ s_0 \ e' \ s_1 \ C. \ x = E \Longrightarrow y = Cast \ C \ e \Longrightarrow z = s_0 \Longrightarrow u = throw \ e'
\implies v = s_1
      \implies P,E \vdash \langle e,s_0 \rangle \Rightarrow' \langle throw \ e',s_1 \rangle \implies thesis
   and \bigwedge E \ va \ s. \ x = E \Longrightarrow y = Val \ va \Longrightarrow z = s \Longrightarrow u = Val \ va \Longrightarrow v = s \Longrightarrow
thesis
  and \bigwedge E e_1 s_0 v_1 s_1 e_2 v_2 s_2 bop va. x = E \Longrightarrow y = e_1 \text{ "bop"} e_2 \Longrightarrow z = s_0 \Longrightarrow
      u = Val \ va \Longrightarrow v = s_2 \Longrightarrow P, E \vdash \langle e_1, s_0 \rangle \Longrightarrow' \langle Val \ v_1, s_1 \rangle \Longrightarrow
      P,E \vdash \langle e_2,s_1 \rangle \Rightarrow' \langle Val \ v_2,s_2 \rangle \Longrightarrow binop \ (bop,\ v_1,\ v_2) = |va| \Longrightarrow thesis
  and \bigwedge E e_1 s_0 e s_1 bop e_2. x = E \Longrightarrow y = e_1 \text{ "bop" } e_2 \Longrightarrow z = s_0 \Longrightarrow u = throw
e \Longrightarrow v = s_1 \implies
      P,E \vdash \langle e_1,s_0 \rangle \Rightarrow' \langle throw \ e,s_1 \rangle \Longrightarrow thesis
  and \bigwedge E \ e_1 \ s_0 \ v_1 \ s_1 \ e_2 \ e \ s_2 \ bop. \ x = E \Longrightarrow y = e_1 \ \text{``bop''} \ e_2 \Longrightarrow z = s_0 \Longrightarrow u
= throw \ e \Longrightarrow
       v = s_2 \Longrightarrow P, E \vdash \langle e_1, s_0 \rangle \Rightarrow' \langle Val \ v_1, s_1 \rangle \Longrightarrow P, E \vdash \langle e_2, s_1 \rangle \Rightarrow' \langle throw \ e, s_2 \rangle
\implies thesis
  and \bigwedge l\ V\ va\ E\ h.\ x=E\Longrightarrow y=Var\ V\Longrightarrow z=(h,\ l)\Longrightarrow u=Val\ va\Longrightarrow v
= (h, l) \Longrightarrow
      l V = |va| \Longrightarrow thesis
   and \bigwedge E e s_0 \ va \ h \ l \ V \ T \ v' \ l'. \ x = E \Longrightarrow y = V := e \Longrightarrow z = s_0 \Longrightarrow u = Val \ v'
```

```
v = (h, l') \Longrightarrow P, E \vdash \langle e, s_0 \rangle \Rightarrow' \langle Val \ va, (h, l) \rangle \Longrightarrow
           E \ V = |T| \Longrightarrow P \vdash T \ casts \ va \ to \ v' \implies l' = l(V \mapsto v') \Longrightarrow thesis
     and \bigwedge E \in s_0 \in s_1 \setminus V. x = E \Longrightarrow y = V := e \Longrightarrow z = s_0 \Longrightarrow u = throw \in s_1 \Longrightarrow v = throw \in s_2 \Longrightarrow v = throw \in s_1 \Longrightarrow v = throw \in s_2 \Longrightarrow v = throw \in s_1 \Longrightarrow v = throw \in s_2 \Longrightarrow v = th
= s_1 \Longrightarrow
           P,E \vdash \langle e,s_0 \rangle \Rightarrow' \langle throw \ e',s_1 \rangle \Longrightarrow thesis
     and \bigwedge E \ e \ s_0 \ a \ Cs' \ h \ l \ D \ S \ Ds \ Cs \ fs \ F \ va. \ x = E \Longrightarrow y = e \cdot F\{Cs\} \Longrightarrow z = s_0
           u = Val \ va \Longrightarrow v = (h, l) \Longrightarrow P, E \vdash \langle e, s_0 \rangle \Rightarrow' \langle ref \ (a, Cs'), (h, l) \rangle \Longrightarrow
            h \ a = |(D, S)| \Longrightarrow Ds = Cs' @_p \ Cs \Longrightarrow (Ds, fs) \in S \Longrightarrow Mapping.lookup fs
F = |va| \Longrightarrow thesis
     and \bigwedge E \ e \ s_0 \ s_1 \ F \ Cs. \ x = E \Longrightarrow y = e \cdot F\{Cs\} \Longrightarrow z = s_0 \Longrightarrow
           u = Throw (addr-of-sys-xcpt NullPointer, [NullPointer]) \Longrightarrow
           v = s_1 \Longrightarrow P, E \vdash \langle e, s_0 \rangle \Longrightarrow' \langle null, s_1 \rangle \Longrightarrow thesis
     and \bigwedge E e s_0 e' s_1 F Cs. x = E \Longrightarrow y = e \cdot F\{Cs\} \Longrightarrow z = s_0 \Longrightarrow u = throw e'
\implies v = s_1 \implies
           P,E \vdash \langle e,s_0 \rangle \Rightarrow' \langle throw \ e',s_1 \rangle \Longrightarrow thesis
     and \bigwedge E \ e_1 \ s_0 \ a \ Cs' \ s_1 \ e_2 \ va \ h_2 \ l_2 \ D \ S \ F \ T \ Cs \ v' \ Ds \ fs \ fs' \ S' \ h_2'.
            x = E \Longrightarrow y = e_1 \cdot F\{Cs\} := e_2 \Longrightarrow z = s_0 \Longrightarrow u = Val\ v' \Longrightarrow v = (h_2', l_2)
            P,E \vdash \langle e_1,s_0 \rangle \Rightarrow' \langle ref(a,Cs'),s_1 \rangle \Longrightarrow P,E \vdash \langle e_2,s_1 \rangle \Rightarrow' \langle Val\ va,(h_2,l_2) \rangle \Longrightarrow
           h_2 \ a = |(D, S)| \Longrightarrow P \vdash last \ Cs' \ has \ least \ F: T \ via \ Cs \Longrightarrow
               P \vdash T \ casts \ va \ to \ v' \implies Ds = Cs' @_p \ Cs \implies (Ds, \ fs) \in S \implies fs' =
Mapping.update F v' fs \Longrightarrow
            S' = S - \{(Ds, fs)\} \cup \{(Ds, fs')\} \Longrightarrow h_2' = h_2(a \mapsto (D, S')) \Longrightarrow thesis
     and \bigwedge E \ e_1 \ s_0 \ s_1 \ e_2 \ va \ s_2 \ F \ Cs. \ x = E \Longrightarrow y = e_1 \cdot F\{Cs\} := e_2 \Longrightarrow z = s_0 \Longrightarrow
           u = Throw (addr-of-sys-xcpt NullPointer, [NullPointer]) \Longrightarrow
            v = s_2 \Longrightarrow P, E \vdash \langle e_1, s_0 \rangle \Rightarrow' \langle null, s_1 \rangle \Longrightarrow P, E \vdash \langle e_2, s_1 \rangle \Rightarrow' \langle Val\ va, s_2 \rangle \Longrightarrow
thesis
     and \bigwedge E e_1 s_0 e' s_1 F C s e_2. x = E \Longrightarrow y = e_1 \cdot F\{C s\} := e_2 \Longrightarrow
            z = s_0 \Longrightarrow u = throw \ e' \Longrightarrow v = s_1 \Longrightarrow P, E \vdash \langle e_1, s_0 \rangle \Longrightarrow' \langle throw \ e', s_1 \rangle \Longrightarrow
     and \bigwedge E e_1 s_0 va s_1 e_2 e' s_2 F Cs. x = E \Longrightarrow y = e_1 \cdot F\{Cs\} := e_2 \Longrightarrow z = s_0
            u = throw \ e' \Longrightarrow v = s_2 \Longrightarrow P, E \vdash \langle e_1, s_0 \rangle \Longrightarrow ' \langle Val \ va, s_1 \rangle \Longrightarrow P, E \vdash \langle e_2, s_1 \rangle
\Rightarrow' \langle throw \ e', s_2 \rangle \Longrightarrow
           thesis
     and \bigwedge E \ e \ s_0 \ e' \ s_1 \ Copt \ M \ es. \ x = E \Longrightarrow y = Call \ e \ Copt \ M \ es \Longrightarrow
            z = s_0 \Longrightarrow u = throw \ e' \Longrightarrow v = s_1 \Longrightarrow P, E \vdash \langle e, s_0 \rangle \Longrightarrow \langle throw \ e', s_1 \rangle \Longrightarrow
     and \bigwedge E \ e \ s_0 \ va \ s_1 \ es \ vs \ ex \ es' \ s_2 \ Copt \ M. \ x = E \Longrightarrow y = Call \ e \ Copt \ M \ es \Longrightarrow
           z = s_0 \Longrightarrow u = throw \ ex \Longrightarrow v = s_2 \Longrightarrow P, E \vdash \langle e, s_0 \rangle \Rightarrow' \langle Val \ va, s_1 \rangle \Longrightarrow
           P,E \vdash \langle es,s_1 \rangle \ [\Rightarrow'] \ \langle map \ Val \ vs @ throw \ ex \# \ es',s_2 \rangle \Longrightarrow thesis
     and \bigwedge E \ e \ s_0 \ a \ Cs \ s_1 \ ps \ vs \ h_2 \ l_2 \ C \ S \ M \ Ts' \ T' \ pns' \ body' \ Ds \ Ts \ T \ pns \ body \ Cs'
vs' l2' new-body e'
            h_3 \ l_3. \ x = E \Longrightarrow y = Call \ e \ None \ M \ ps \Longrightarrow z = s_0 \Longrightarrow u = e' \Longrightarrow v = (h_3, l_3)
l_2) =
           P,E \vdash \langle e,s_0 \rangle \Rightarrow' \langle ref(a, Cs),s_1 \rangle \Longrightarrow P,E \vdash \langle ps,s_1 \rangle [\Rightarrow'] \langle map\ Val\ vs,(h_2, l_2) \rangle
```

```
h_2 \ a = \lfloor (C, S) \rfloor \Longrightarrow P \vdash last \ Cs \ has \ least \ M = (Ts', T', pns', body') \ via \ Ds
       P \vdash (C, Cs @_p Ds) \ selects \ M = (Ts, \ T, \ pns, \ body) \ via \ Cs' \Longrightarrow length \ vs =
length pns \Longrightarrow
      P \vdash Ts \ Casts \ vs \ to \ vs' \implies l_2' = [this \mapsto Ref \ (a, \ Cs'), \ pns \ [\mapsto] \ vs'] \implies
      new-body = (case \ T' \ of \ Class \ D \Rightarrow (|D|)body \ | \ - \Rightarrow body) \Longrightarrow
     P, E(this \mapsto Class\ (last\ Cs'),\ pns\ [\mapsto]\ Ts) \vdash \langle new-body, (h_2,\ l_2') \rangle \Rightarrow ' \langle e', (h_3,\ l_3) \rangle
      thesis
  and \bigwedge E \ e \ s_0 \ a \ Cs \ s_1 \ ps \ vs \ h_2 \ l_2 \ C \ Cs'' \ M \ Ts \ T \ pns \ body \ Cs' \ Ds \ vs' \ l_2' \ e' \ h_3 \ l_3.
      x = E \Longrightarrow y = Call \ e \ \lfloor C \rfloor \ M \ ps \Longrightarrow z = s_0 \Longrightarrow u = e' \Longrightarrow v = (h_3, l_2) \Longrightarrow
      P,E \vdash \langle e,s_0 \rangle \Rightarrow' \langle ref(a, Cs),s_1 \rangle \Longrightarrow P,E \vdash \langle ps,s_1 \rangle [\Rightarrow'] \langle map \ Val \ vs,(h_2, l_2) \rangle
      P \vdash Path\ last\ Cs\ to\ C\ unique \Longrightarrow P \vdash Path\ last\ Cs\ to\ C\ via\ Cs'' \Longrightarrow
     P \vdash C \text{ has least } M = (Ts, T, pns, body) \text{ via } Cs' \Longrightarrow Ds = (Cs @_p Cs'') @_p Cs'
      length \ vs = length \ pns \Longrightarrow P \vdash Ts \ Casts \ vs \ to \ vs' \Longrightarrow
      l_2' = [this \mapsto Ref (a, Ds), pns [\mapsto] vs'] \Longrightarrow
      P, E(this \mapsto Class\ (last\ Ds),\ pns\ [\mapsto]\ Ts) \vdash \langle body, (h_2,\ l_2')\rangle \Rightarrow '\langle e', (h_3,\ l_3)\rangle \Longrightarrow
  and \bigwedge E \ e \ s_0 \ s_1 \ es \ vs \ s_2 \ Copt \ M. \ x = E \Longrightarrow y = Call \ e \ Copt \ M \ es \Longrightarrow z = s_0
      u = Throw (addr-of-sys-xcpt NullPointer, [NullPointer]) \Longrightarrow
      v = s_2 \Longrightarrow P, E \vdash \langle e, s_0 \rangle \Rightarrow' \langle null, s_1 \rangle \Longrightarrow P, E \vdash \langle es, s_1 \rangle \ [\Rightarrow'] \langle map \ Val \ vs, s_2 \rangle
\implies thesis
  and \bigwedge E \ V \ T \ e_0 \ h_0 \ l_0 \ e_1 \ h_1 \ l_1.
      x = E \Longrightarrow y = \{V:T; e_0\} \Longrightarrow z = (h_0, l_0) \Longrightarrow u = e_1 \Longrightarrow
       v = (h_1, l_1(V := l_0 \ V)) \Longrightarrow P, E(V \mapsto T) \vdash \langle e_0, (h_0, l_0(V := None)) \rangle \Rightarrow P
\langle e_1, (h_1, l_1) \rangle \Longrightarrow thesis
  and \bigwedge E e_0 s_0 va s_1 e_1 e_2 s_2. x = E \Longrightarrow y = e_0; e_1 \Longrightarrow z = s_0 \Longrightarrow u = e_2 \Longrightarrow
       v = s_2 \Longrightarrow P, E \vdash \langle e_0, s_0 \rangle \Rightarrow' \langle Val \ va, s_1 \rangle \Longrightarrow P, E \vdash \langle e_1, s_1 \rangle \Rightarrow' \langle e_2, s_2 \rangle \Longrightarrow
thesis
  and \bigwedge E \ e_0 \ s_0 \ e \ s_1 \ e_1. x = E \Longrightarrow y = e_0;; e_1 \Longrightarrow z = s_0 \Longrightarrow u = throw \ e \Longrightarrow
v = s_1 \Longrightarrow
      P,E \vdash \langle e_0, s_0 \rangle \Rightarrow' \langle throw \ e, s_1 \rangle \Longrightarrow thesis
   and \bigwedge E \ e \ s_0 \ s_1 \ e_1 \ e' \ s_2 \ e_2. x = E \Longrightarrow y = if \ (e) \ e_1 \ else \ e_2 \Longrightarrow z = s_0 \Longrightarrow u
= e' \Longrightarrow
      v = s_2 \Longrightarrow P, E \vdash \langle e, s_0 \rangle \Rightarrow' \langle true, s_1 \rangle \Longrightarrow P, E \vdash \langle e_1, s_1 \rangle \Rightarrow' \langle e', s_2 \rangle \Longrightarrow thesis
   and \bigwedge E \ e \ s_0 \ s_1 \ e_2 \ e' \ s_2 \ e_1. x = E \Longrightarrow y = if \ (e) \ e_1 \ else \ e_2 \Longrightarrow z = s_0 \Longrightarrow
      u = e' \Longrightarrow v = s_2 \Longrightarrow P, E \vdash \langle e, s_0 \rangle \Rightarrow' \langle false, s_1 \rangle \Longrightarrow P, E \vdash \langle e_2, s_1 \rangle \Rightarrow' \langle e', s_2 \rangle
\implies thesis
   and \bigwedge E e s_0 e' s_1 e_1 e_2. x = E \Longrightarrow y = if (e) e_1 else e_2 \Longrightarrow
       z = s_0 \Longrightarrow u = throw \ e' \Longrightarrow v = s_1 \Longrightarrow P, E \vdash \langle e, s_0 \rangle \Longrightarrow \langle throw \ e', s_1 \rangle \Longrightarrow
thesis
   and \bigwedge E \ e \ s_0 \ s_1 \ c. \ x = E \Longrightarrow y = while \ (e) \ c \Longrightarrow z = s_0 \Longrightarrow u = unit \Longrightarrow v
= s_1 \Longrightarrow
      P,E \vdash \langle e,s_0 \rangle \Rightarrow' \langle false,s_1 \rangle \Longrightarrow thesis
   and \bigwedge E \ e \ s_0 \ s_1 \ c \ v_1 \ s_2 \ e_3 \ s_3. x = E \Longrightarrow y = while \ (e) \ c \Longrightarrow z = s_0 \Longrightarrow u = s_0
e_3 \Longrightarrow
```

```
v = s_3 \Longrightarrow P, E \vdash \langle e, s_0 \rangle \Rightarrow' \langle true, s_1 \rangle \Longrightarrow P, E \vdash \langle c, s_1 \rangle \Rightarrow' \langle Val \ v_1, s_2 \rangle \Longrightarrow
    P,E \vdash \langle while \ (e) \ c,s_2 \rangle \Rightarrow ' \langle e_3,s_3 \rangle \Longrightarrow thesis
  and \bigwedge E \ e \ s_0 \ e' \ s_1 \ c. \ x = E \Longrightarrow y = while \ (e) \ c \Longrightarrow z = s_0 \Longrightarrow u = throw \ e'
\implies v = s_1 \implies
    P,E \vdash \langle e,s_0 \rangle \Rightarrow' \langle throw \ e',s_1 \rangle \Longrightarrow thesis
  and \bigwedge E \ e \ s_0 \ s_1 \ c \ e' \ s_2. x = E \Longrightarrow y = while \ (e) \ c \Longrightarrow z = s_0 \Longrightarrow u = throw
     v = s_2 \Longrightarrow P, E \vdash \langle e, s_0 \rangle \Rightarrow' \langle true, s_1 \rangle \Longrightarrow P, E \vdash \langle c, s_1 \rangle \Rightarrow' \langle throw \ e', s_2 \rangle \Longrightarrow
thesis
  and \bigwedge E \ e \ s_0 \ r \ s_1. x = E \Longrightarrow y = throw \ e \Longrightarrow
    z = s_0 \Longrightarrow u = Throw \ r \Longrightarrow v = s_1 \Longrightarrow P, E \vdash \langle e, s_0 \rangle \Longrightarrow \langle ref \ r, s_1 \rangle \Longrightarrow thesis
  and \bigwedge E \ e \ s_0 \ s_1. x = E \Longrightarrow y = throw \ e \Longrightarrow z = s_0 \Longrightarrow
    u = Throw (addr-of-sys-xcpt NullPointer, [NullPointer]) \Longrightarrow
    v = s_1 \Longrightarrow P, E \vdash \langle e, s_0 \rangle \Longrightarrow' \langle null, s_1 \rangle \Longrightarrow thesis
  and \bigwedge E \ e \ s_0 \ e' \ s_1. \ x = E \Longrightarrow y = throw \ e \Longrightarrow
     z = s_0 \implies u = throw \ e' \implies v = s_1 \implies P,E \vdash \langle e,s_0 \rangle \Rightarrow' \langle throw \ e',s_1 \rangle \implies
thesis
  shows thesis
using assms
by(transfer)(erule eval.cases, unfold blank-def, assumption+)
lemmas [code-pred-intro] = New' NewFail' Static Up Cast'
declare StaticDownCast'-new[code-pred-intro StaticDownCast']
lemmas [code-pred-intro] = Static CastNull'
declare StaticCastFail'-new[code-pred-intro StaticCastFail']
lemmas [code-pred-intro] = Static Cast Throw' Static Up Dyn Cast'
declare
  StaticDownDynCast'-new[code-pred-intro\ StaticDownDynCast']
  DynCast'[code-pred-intro DynCast']
lemmas [code-pred-intro] = DynCastNull'
declare DynCastFail'[code-pred-intro DynCastFail']
lemmas [code-pred-intro] = DynCastThrow' Val' BinOp' BinOpThrow1'
declare BinOpThrow2'[code-pred-intro BinOpThrow2']
lemmas [code-pred-intro] = Var' LAss' LAssThrow'
declare FAcc'-new[code-pred-intro FAcc']
lemmas [code-pred-intro] = FAccNull' FAccThrow'
declare FAss'-new[code-pred-intro FAss']
lemmas [code-pred-intro] = FAssNull' FAssThrow1'
declare FAssThrow2'[code-pred-intro FAssThrow2']
lemmas [code-pred-intro] = CallObjThrow'
declare
  CallParamsThrow'-new[code-pred-intro CallParamsThrow']
  Call'-new[code-pred-intro Call']
  StaticCall'-new[code-pred-intro StaticCall']
  CallNull'-new[code-pred-intro CallNull']
lemmas [code-pred-intro] = Block' Seq'
declare SeqThrow'[code-pred-intro SeqThrow']
lemmas [code-pred-intro] = CondT'
declare
```

```
CondF'[code-pred-intro CondF']
  CondThrow'[code-pred-intro CondThrow']
lemmas [code-pred-intro] = WhileF' WhileT'
declare
  While Cond Throw [code-pred-intro While Cond Throw]
  WhileBodyThrow'[code-pred-intro WhileBodyThrow']
lemmas [code-pred-intro] = Throw'
declare ThrowNull'[code-pred-intro ThrowNull']
lemmas [code-pred-intro] = Throw Throw'
lemmas [code-pred-intro] = Nil' Cons' ConsThrow'
code-pred
  (modes: eval': i \Rightarrow i \Rightarrow i \Rightarrow o \Rightarrow o \Rightarrow bool \ as \ big-step
  and evals': i \Rightarrow i \Rightarrow i \Rightarrow o \Rightarrow o \Rightarrow bool \ as \ big-steps)
 eval'
proof -
 case eval'
 from eval'.prems show thesis
 proof(cases (no-simp) rule: eval'-cases)
   case (StaticDownCast \ E \ C \ e \ s_0 \ a \ Cs \ Cs' \ s_1)
   have app \ a \ [Cs] \ (a \ @ \ [Cs]) \ app \ (a \ @ \ [Cs]) \ Cs' \ (a \ @ \ [Cs] \ @ \ Cs')
     \mathbf{by}(simp\text{-}all\ add:\ app\text{-}eq)
   ultimately show ?thesis by(rule eval'.StaticDownCast'[OF refl])
  next
   case StaticCastFail thus ?thesis
     unfolding rtrancl-def subcls1-def mem-Collect-eq prod.case
     by(rule eval'.StaticCastFail'[OF refl])
  next
   case (StaticDownDynCast\ E\ e\ s_0\ a\ Cs\ C\ Cs'\ s_1)
   \mathbf{moreover}\ \mathbf{have}\ \mathit{app}\ \mathit{Cs}\ [\mathit{C}]\ (\mathit{Cs}\ @\ [\mathit{C}])\ \mathit{app}\ (\mathit{Cs}\ @\ [\mathit{C}])\ \mathit{Cs'}\ (\mathit{Cs}\ @\ [\mathit{C}]\ @\ \mathit{Cs'})
     by(simp-all add: app-eq)
   ultimately show thesis by (rule eval'.StaticDownDynCast'[OF refl])
  next
   case DynCast thus ?thesis by(rule eval'.DynCast'[OF refl])
 next
   case DynCastFail thus ?thesis by(rule eval'.DynCastFail'[OF refl])
  next
   case BinOpThrow2 thus ?thesis by(rule eval'.BinOpThrow2'[OF refl])
  next
   case FAcc thus ?thesis
    \mathbf{by}(rule\ eval'.FAcc'|OF\ refl,\ unfolded\ Predicate-Compile.contains-def\ Set-project-def
mem-Collect-eq])
 next
   case FAss thus ?thesis
    by (rule eval'. FAss' OF refl, unfolded Predicate-Compile.contains-def Set-project-def
mem-Collect-eq])
 next
   case FAssThrow2 thus ?thesis by(rule eval'.FAssThrow2'[OF refl])
```

```
next
   case (CallParamsThrow E \ e \ s_0 \ v \ s_1 \ es \ vs \ ex \ es' \ s_2 \ Copt \ M)
   moreover have map-val2 (map Val vs @ throw ex \# es') vs (throw ex \# es')
     \mathbf{by}(simp\ add:\ map-val2-conv[symmetric])
   ultimately show ?thesis by(rule eval'.CallParamsThrow'[OF refl])
  next
   case (Call E \ e \ s_0 \ a \ Cs \ s_1 \ ps \ vs)
  moreover have map-val (map Val vs) vs by(simp add: map-val-conv[symmetric])
   ultimately show ?thesis by-(rule eval'.Call'[OF refl])
  \mathbf{next}
   case (StaticCall\ E\ e\ s_0\ a\ Cs\ s_1\ ps\ vs)
  moreover have map-val (map Val vs) vs by(simp add: map-val-conv[symmetric])
   ultimately show ?thesis by-(rule eval'.StaticCall'[OF refl])
 next
   case (CallNull\ E\ e\ s_0\ s_1\ es\ vs)
  moreover have map-val (map Val vs) vs by(simp add: map-val-conv[symmetric])
   ultimately show ?thesis by-(rule eval'. CallNull'[OF refl])
 next
   case SeqThrow thus ?thesis by(rule eval'.SeqThrow'[OF refl])
  next
   case CondF thus ?thesis by(rule eval'.CondF'[OF refl])
  next
    case CondThrow thus ?thesis by(rule eval'.CondThrow'[OF refl])
  next
   case WhileCondThrow thus ?thesis by(rule eval'.WhileCondThrow'[OF refl])
 next
   case WhileBodyThrow thus ?thesis by(rule eval'.WhileBodyThrow'[OF refl])
 next
   case ThrowNull thus ?thesis by(rule eval'.ThrowNull'[OF refl])
 \mathbf{qed}(\mathit{assumption}|\mathit{erule}~(4)~\mathit{eval'.that}[\mathit{OF}~\mathit{refl}]) +
next
 case evals'
 from evals'.prems evals'.that[OF refl]
 show thesis by transfer(erule evals.cases)
qed
29.3
         Examples
declare [[values-timeout = 180]]
values [expected { Val (Intg 5)}]
  \{fst \ (e', s') \mid e' s'.
  [], Map.empty \vdash \langle \{ "V": Integer; "V" := Val(Intg 5); Var "V" \}, (Map.empty, Map.empty) \rangle
\Rightarrow' \langle e', s' \rangle
values [expected { Val (Intg 11)}]
  \{fst \ (e', s') \mid e' s'.
    [], Map.empty \vdash \langle (Val(Intg\ 5)) \land (Add) \land (Val(Intg\ 6)), (Map.empty, Map.empty) \rangle
\Rightarrow' \langle e', s' \rangle
```

```
values [expected { Val (Intg 83)}]
  \{fst \ (e', s') \mid e' s'.
    [], ["V" \mapsto Integer] \vdash \langle (Var "V") \land Add \rangle (Val(Intg 6)),
                                         (Map.empty, ["V" \mapsto Intg \ \gamma\gamma]) \Rightarrow ' \langle e', s' \rangle \}
values [expected {Some (Intg 6)}]
  \{lcl' (snd (e', s')) "V" \mid e' s'.
    [], ["V" \mapsto Integer] \vdash \langle "V" := Val(Intg 6), (Map.empty, Map.empty) \rangle \Rightarrow '\langle e', s' \rangle \}
values [expected {Some (Intg 12)}]
  \{lcl' (snd (e', s')) "mult" \mid e' s'.
    [],["V"\mapsto Integer,"a"\mapsto Integer,"b"\mapsto Integer,"mult"\mapsto Integer]
    \vdash \langle ("a" := Val(Intg 3));; ("b" := Val(Intg 4));; ("mult" := Val(Intg 0));;
       ("V" := Val(Intg 1));;
      \textit{while } (\textit{Var "V"} \textit{ ``Eq" Val}(\textit{Intg 1})) ((\textit{"mult"} := \textit{Var "mult"} \textit{ ``Add" Var "b"});; \\
         ("a" := Var "a" «Add» Val(Intg (-1)));;
         ("V" := (if(Var" a" \& Eq) Val(Intg 0)) Val(Intg 0) else Val(Intg 1)))),
       (Map.empty, Map.empty) \Rightarrow ' \langle e', s' \rangle
values [expected { Val (Intg 30)}]
  \{fst \ (e', s') \mid e' s'.
    [],[''a''\mapsto Integer, ''b''\mapsto Integer, ''c''\mapsto Integer, ''cond''\mapsto Boolean]
    \vdash \langle "a" := Val(Intg\ 17);; "b" := Val(Intg\ 13);;
"c" := Val(Intg\ 42);; "cond" := true;;
       if (Var "cond") (Var "a" «Add» Var "b") else (Var "a" «Add» Var "c"),
       (Map.empty, Map.empty) \Rightarrow ' \langle e', s' \rangle 
    progOverrider examples
definition
  classBottom :: cdecl  where
  classBottom = ("Bottom", [Repeats "Left", Repeats "Right"],\\
                    [("x",Integer)],[])
definition
  classLeft :: cdecl where
\begin{array}{l} classLeft = ("Left", \ [Repeats \ "Top"], [], [("f", \ [Class \ "Top", \ Integer], Integer, ["V", "W"], Var \ this \cdot "x" \ \{["Left", "Top"]\} \ &Add \ &Val \ (Intg \ 5))]) \end{array}
definition
  classRight :: cdecl where
  classRight = ("Right", [Shares "Right2"], [],
  [("f", [Class"Top", Integer], Integer, ["V", "W"], Var this \cdot "x" \{ ["Right2", "Top"] \}
(Add) Val\ (Intg\ 7)), ("g", [], Class\ "Left", [], new\ "Left")])
definition
  classRight2 :: cdecl where
  classRight2 = ("Right2", [Repeats "Top"],[],
  [(''f'', [Class~''Top'', Integer], Integer, [''V'', ''W''], Var~this~ \cdot ''x''~\{[''Right2'', ''Top'']\}
```

```
(Add) Val\ (Intg\ 9), ("g", [], Class\ "Top", [], new\ "Top")])
definition
  classTop :: cdecl where
  classTop = ("Top", [], [("x", Integer)], [])
definition
  progOverrider :: cdecl list where
  progOverrider = [classBottom, classLeft, classRight, classRight2, classTop]
values [expected \{ Val(Ref(0,["Bottom","Left"])) \} ] — dynCastSide
  \{fst \ (e', s') \mid e' s'.
    progOverrider, ["V" \mapsto Class "Right"] \vdash
     \langle "V" := new "Bottom" ;; Cast "Left" (Var "V"), (Map.empty, Map.empty) \rangle
\Rightarrow' \langle e', s' \rangle
values [expected \{ Val(Ref(\theta, ["Right"])) \}] - dynCastViaSh
  \{fst \ (e', s') \mid e' s'.
    progOverrider, ["V" \mapsto Class "Right2"] \vdash
     \langle "V" := new "Right" ;; Cast "Right" (Var "V"), (Map.empty, Map.empty) \rangle
\Rightarrow' \langle e', s' \rangle
values [expected { Val (Intg 42)}] — block
  \{fst \ (e', s') \mid e' s'.
    progOverrider, ["V" \mapsto Integer]
    \vdash \langle "V" := Val(Intg \ 42) ;; \{ "V" : Class "Left"; "V" := new "Bottom" \} ;; Var
      (\mathit{Map.empty}, \mathit{Map.empty})\rangle \Rightarrow' \langle e', \, s' \rangle \}
values [expected { Val (Intg 8)}] — staticCall
  \{fst \ (e', s') \mid e' s'.
    progOverrider, ["V" \mapsto Class \ "Right", "W" \mapsto Class \ "Bottom"]
    \vdash \langle "V" := new "Bottom" ;; "W" := new "Bottom" ;;
       ((Cast "Left" (Var "W")) \cdot "x" \{ ["Left", "Top"] \} := Val(Intg 3));;
       (Var "W" \cdot ("Left"::)"f"([Var "V", Val(Intg 2)])), (Map.empty, Map.empty))
\Rightarrow' \langle e', s' \rangle
values [expected { Val (Intg 12)}] — call
  \{fst \ (e', s') \mid e' s'.
    progOverrider, [''V'' \mapsto Class \ ''Right2'', ''W'' \mapsto Class \ ''Left'']
    \vdash \langle "V" := new "Right" ;; "W" := new "Left" ;;
     (\mathit{Var} \ ''V'' \cdot ''f''([\mathit{Var} \ ''W'', \mathit{Val}(\mathit{Intg} \ 42)])) \ «\mathit{Add}» \ (\mathit{Var} \ ''W'' \cdot ''f''([\mathit{Var} \ ''V'', \mathit{Val}(\mathit{Intg} \ 42)]))) \ (\mathit{Var} \ ''W'' \cdot ''f'')
13)])),
       (Map.empty, Map.empty) \Rightarrow ' \langle e', s' \rangle 
values [expected { Val(Intg 13)}] — callOverrider
  \{fst \ (e', s') \mid e' s'.
    progOverrider, ["V" \mapsto Class "Right2", "W" \mapsto Class "Left"]
    \vdash \langle "V" := new "Bottom";; (Var "V" \cdot "x" \{ ["Right2", "Top"] \} := Val(Intg)
```

```
^{\prime\prime}W^{\,\prime\prime}:=\ new\ ^{\prime\prime}Left^{\,\prime\prime}\ ;;\ Var\ ^{\prime\prime}V^{\,\prime\prime}\cdot^{\prime\prime}f^{\,\prime\prime}([\ Var\ ^{\prime\prime}W^{\,\prime\prime},Val(Intg\ 42)]),
       (Map.empty, Map.empty) \Rightarrow ' \langle e', s' \rangle 
values [expected \{ Val(Ref(1,["Left","Top"])) \}] — callClass
  \{fst \ (e', s') \mid e' s'.
    progOverrider, ["V" \mapsto Class "Right2"]
    \vdash \langle "V" := new "Right" ;; Var "V" \cdot "g" ([]), (Map.empty, Map.empty) \rangle \Rightarrow '\langle e', \rangle
s'\rangle
values [expected { Val(Intg 42)}] — fieldAss
  \{fst \ (e', s') \mid e' s'.
    progOverrider, ["V" \mapsto Class "Right2"]
    \vdash \langle "V" := new "Right" ;;
        \begin{array}{l} (Var \ ''V'' \cdot ''x'' \{ [''Right2'', ''Top''] \} := (Val(Intg \ 42))) \ ;; \\ (Var \ ''V'' \cdot ''x'' \{ [''Right2'', ''Top''] \}), (Map.empty, Map.empty) \rangle \Rightarrow' \langle e', s' \rangle \} \end{array} 
     typing rules
values [expected {Class "Bottom"}] — typeNew
  \{T. progOverrider, Map.empty \vdash new "Bottom" :: T\}
values [expected {Class "Left"}] — typeDynCast
  \{T. progOverrider, Map.empty \vdash Cast "Left" (new "Bottom") :: T\}
values [expected { Class "Left"}] — typeStaticCast
  \{T. progOverrider, Map.empty \vdash ("Left") (new "Bottom") :: T\}
values [expected {Integer}] — typeVal
  \{T. [], Map.empty \vdash Val(Intg\ 17) :: T\}
values [expected {Integer}] — typeVar
  \{T. [], ["V" \mapsto Integer] \vdash Var "V" :: T\}
values [expected {Boolean}] — typeBinOp
  \{T. [], Map.empty \vdash (Val(Intg 5)) \land Eq \land (Val(Intg 6)) :: T\}
values [expected {Class "Top"}] — typeLAss
  \{T. progOverrider, ["V" \mapsto Class "Top"] \vdash "V" := (new "Left") :: T\}
values [expected {Integer}] — typeFAcc
  \{T. progOverrider, Map.empty \vdash (new "Right") \cdot "x" \{ ["Right2", "Top"] \} :: T \}
values [expected {Integer}] — typeFAss
  \{T. progOverrider, Map.empty \vdash (new "Right") \cdot "x" \{ ["Right2", "Top"] \} :: T \}
values [expected {Integer}] — typeStaticCall
  \{T. progOverrider, ["V" \mapsto Class "Left"]\}
       \vdash "V" := new "Left" ;; Var "V" \cdot ("Left" ::) "f" ([new "Top", Val(Intg 13)])
:: T
```

```
values [expected { Class "Top"}] — typeCall
  \{T. progOverrider, ["V" \mapsto Class "Right2"]\}
      \vdash "V" := new "Right" ;; Var "V" \cdot "g"([]) :: T
values [expected {Class "Top"}] — typeBlock
   \{\textit{T. progOverrider}, \textit{Map.empty} \vdash \{\textit{"V":Class "Top"}; \textit{"V"} := \textit{new "Left"}\} :: \textit{T}\} 
values [expected {Integer}] — typeCond
  \{T. [], Map.empty \vdash if (true) \ Val(Intg \ 6) \ else \ Val(Intg \ 9) :: T\}
values [expected { Void}] — typeWhile
  \{T. [], Map.empty \vdash while (false) \ Val(Intg \ 17) :: T\}
\mathbf{values} \ [\mathit{expected} \ \{\mathit{Void}\}] \ -- \ \mathsf{typeThrow}
  \{T. progOverrider, Map.empty \vdash throw (new "Bottom") :: T\}
values [expected {Integer}] — typeBig
  \{T.\ progOverrider, ["V" \mapsto Class\ "Right2", "W" \mapsto Class\ "Left"]\}
      \vdash "V" := new "Right" ;; "W" := new "Left" ;;
        (Var "V"·"f"([Var "W", Val(Intg 7)])) «Add» (Var "W"·"f"([Var "V",
Val(Intg \ 13)]))
      :: T
    progDiamond examples
definition
  class Diamond Bottom :: cdecl \ \mathbf{where}
 \begin{aligned} & classDiamondBottom = ("Bottom", [Repeats "Left", Repeats "Right"], [("x", Integer)], \\ & [("g", [], Integer, [], Var\ this \cdot "x"\ \{["Bottom"]\}\ & Add & Val\ (Intg\ 5))]) \end{aligned}
definition
  classDiamondLeft :: cdecl where
  classDiamondLeft = ("Left", [Repeats "TopRep", Shares "TopSh", [], [])
definition
  classDiamondRight :: cdecl where
  class Diamond Right = ("Right", [Repeats "Top Rep", Shares "Top Sh"], [], \\
    [("f", [Integer], Boolean, ["i"], Var"i" «Eq» Val (Intg 7))])
definition
  classDiamondTopRep :: cdecl where
  classDiamondTopRep = ("TopRep", [], [("x",Integer)],
   [(''g'',\,[],Integer,\,[],\,\,Var\,\,this\,\cdot\,\,''x''\,\,\{[''TopRep'']\}\,\,\, (Add)\,\,\,Val\,\,(Intg\,\,10))])
definition
  classDiamondTopSh :: cdecl where
  \begin{aligned} classDiamondTopSh &= ("TopSh", [], [], \\ &[("f", [Integer], Boolean, ["i"], Var "i" «Eq» Val (Intg 3))]) \end{aligned}
```

```
definition
  progDiamond :: cdecl \ list \ \mathbf{where}
  progDiamond = [classDiamondBottom, classDiamondLeft, classDiamondRight, ]
classDiamondTopRep, \ classDiamondTopSh]
values [expected \{ Val(Ref(0, ["Bottom", "Left"])) \}] - cast1
  \{fst \ (e', s') \mid e' s'.
   progDiamond, ["V" \mapsto Class "Left"] \vdash \langle "V" := new "Bottom",
                                                      (Map.empty, Map.empty) \Rightarrow ' \langle e', s' \rangle
values [expected \{ Val(Ref(0,["TopSh"])) \}] - cast2
  \{fst \ (e', s') \mid e' s'.
   progDiamond, ["V" \mapsto Class "TopSh"] \vdash \langle "V" := new "Bottom",
                                                      (Map.empty, Map.empty) \Rightarrow ' \langle e', s' \rangle 
values [expected {}] — typeCast3 not typeable
  \{T. progDiamond, ["V" \mapsto Class "TopRep"] \vdash "V" := new "Bottom" :: T\}
values [expected {
   Val(Ref(0, ["Bottom", "Left", "TopRep"])),
   Val(Ref(0,["Bottom","Right","TopRep"]))
  }] — cast3
  \{fst \ (e', s') \mid e' s'.
   progDiamond, [''V'' \mapsto Class \ ''TopRep''] \vdash \langle ''V'' := new \ ''Bottom''.
                                                      (Map.empty, Map.empty) \Rightarrow ' \langle e', s' \rangle
values [expected { Val(Intg 17)}] — fieldAss
  \{fst \ (e', s') \mid e' s'.
   progDiamond, [''V'' \mapsto Class \ ''Bottom'']
   \vdash \langle "V" := new "Bottom" ;;
      ((Var "V") \cdot "x" \{ ["Bottom"] \} := (Val(Intg 17))) ;;
       ((Var "V") \cdot "x" \{ ["Bottom"] \}), (Map.empty, Map.empty)) \Rightarrow ' \langle e', s' \rangle \}
values [expected { Val Null}}] — dynCastNull
  \{fst \ (e', s') \mid e' s'.
    progDiamond, Map.empty \vdash \langle Cast "Right" null, (Map.empty, Map.empty) \rangle \Rightarrow'
\langle e',s'\rangle
values [expected \{ Val (Ref(0, ["Right"])) \}] - dynCastViaSh
  \{fst \ (e', s') \mid e' s'.
   progDiamond, [''V'' \mapsto Class \ ''TopSh'']
   \vdash \langle "V" := new "Right" ;; Cast "Right" (Var "V"), (Map.empty, Map.empty) \rangle
\Rightarrow' \langle e', s' \rangle
values [expected { Val Null}] — dynCastFail
  \{fst \ (e', s') \mid e' s'.
   progDiamond, [''V'' \mapsto Class \ ''TopRep'']
   \vdash \langle "V" := new "Right" ; Cast "Bottom" (Var "V"), (Map.empty, Map.empty) \rangle
\Rightarrow' \langle e', s' \rangle
```

```
values [expected { Val (Ref(0, ["Bottom", "Left"]))}] — dynCastSide
 \{fst \ (e', s') \mid e' s'.
   progDiamond, ["V" \mapsto Class "Right"]
   \vdash \langle "V" := new "Bottom" ;; Cast "Left" (Var "V"), (Map.empty, Map.empty) \rangle
\Rightarrow'\langle e',s'\rangle}
    failing g++ example
definition
  classD :: cdecl where
  classD = ("D", [Shares "A", Shares "B", Repeats "C"],[],[])
definition
  classC :: cdecl where
  classC = ("C", [Shares "A", Shares "B"], [],
            [("f",[],Integer,[],Val(Intg\ 42))])
definition
  classB :: cdecl \ \mathbf{where}
 classB = ("B", [], [],
            [("f",[],Integer,[],Val(Intg\ 17))])
definition
  classA :: cdecl where
  classA = ("A", [], [],
            [("f",[],Integer,[],Val(Intg\ 13))])
definition
  ProgFailing :: cdecl list where
  ProgFailing = [classA, classB, classC, classD]
values [expected { Val (Intg 42)}] — callFailGplusplus
 \{fst \ (e', s') \mid e' s'.
   ProgFailing, Map.empty
   \vdash \langle \{ "V": Class"D"; "V" := new "D"; Var "V" \cdot "f"([]) \},
      (Map.empty, Map.empty) \Rightarrow ' \langle e', s' \rangle 
end
theory CoreC++
imports Determinism Annotate Execute
begin
\quad \mathbf{end} \quad
```

References

[1] Daniel Wasserrab, Tobias Nipkow, Gregor Snelting, and Frank Tip. An operational semantics and type safety proof for multiple inheritance in C++. In OOPSLA '06: Proceedings of the 21st annual ACM SIGPLAN conference on Object-oriented programming languages, systems, and applications, pages 345–362. ACM Press, 2006.