
Continued Fractions

Manuel Eberl

March 25, 2024

Abstract

This article provides a formalisation of continued fractions of real
numbers and their basic properties. It also contains a proof of the clas-
sic result that the irrational numbers with periodic continued fraction
expansions are precisely the quadratic irrationals, i. e. real numbers
that fulfil a non-trivial quadratic equation ax2 + bx + c = 0 with inte-
ger coefficients.

Particular attention is given to the continued fraction expansion of√
D for a non-square natural number D. Basic results about the length

and structure of its period are provided, along with an executable
algorithm to compute the period (and from it, the entire expansion).

This is then also used to provide a fairly efficient, executable,
and fully formalised algorithm to compute solutions to Pell’s equa-
tion x2 − Dy2 = 1. The performance is sufficiently good to find the
solution to Archimedes’s cattle problem in less than a second on a
typical computer. This involves the value D = 410286423278424, for
which the solution has over 200000 decimals.

Lastly, a derivation of the continued fraction expansions of Euler’s
number e and an executable function to compute continued fraction
expansions using interval arithmetic is also provided.

1

Contents
1 Continued Fractions 3

1.1 Auxiliary results . 3
1.2 Bounds on alternating decreasing sums 7
1.3 Non-canonical continued fractions 48
1.4 Approximation properties . 62
1.5 Efficient code for convergents 79
1.6 Computing the continued fraction expansion of a rational

number . 81

2 Quadratic Irrationals 84
2.1 Basic results on rationality of square roots 84
2.2 Definition of quadratic irrationals 86
2.3 Real solutions of quadratic equations 89
2.4 Periodic continued fractions and quadratic irrationals 91

3 The continued fraction expansion of e 105

4 Continued fraction expansions for square roots of naturals 113

5 Lifting solutions of Pell’s Equation 135
5.1 Auxiliary material . 136
5.2 The lifting mechanism . 139
5.3 Accelerated computation of the fundamental solution for non-

squarefree inputs . 140

6 The Connection between the continued fraction expansion
of square roots and Pell’s equation 144

7 Tests for Continued Fractions of Square Roots and Pell’s
Equation 152
7.1 Fundamental solutions of Pell’s equation 153
7.2 Tests for other operations . 154

8 Computing continued fraction expansions through interval
arithmetic 154

2

1 Continued Fractions
theory Continued-Fractions
imports

Complex-Main
Coinductive.Lazy-LList
Coinductive.Coinductive-Nat
HOL−Number-Theory.Fib
HOL−Library.BNF-Corec
Coinductive.Coinductive-Stream

begin

1.1 Auxiliary results
coinductive linfinite :: ′a llist ⇒ bool where

linfinite xs =⇒ linfinite (LCons x xs)

lemma l length-llist-of-stream [simp]: l length (l list-of-stream xs) = ∞
by (simp add: not-lfinite-llength)

lemma linfinite-conv-llength: linfinite xs ←→ l length xs = ∞
proof

assume linfinite xs
thus l length xs = ∞
proof (coinduction arbitrary: xs rule: enat-coinduct2)

fix xs :: ′a llist
assume l length xs 6= 0 linfinite xs
thus (∃ xs ′:: ′a llist. epred (l length xs) = l length xs ′ ∧ epred ∞ = ∞ ∧ linfinite

xs ′) ∨
epred (l length xs) = epred ∞

by (intro disjI1 exI [of - ltl xs]) (auto simp: linfinite.simps[of xs])
next

fix xs :: ′a llist assume linfinite xsthus (l length xs = 0) ←→ (∞ = (0::enat))
by (subst (asm) linfinite.simps) auto

qed
next

assume l length xs = ∞
thus linfinite xs
proof (coinduction arbitrary: xs)

case linfinite
thus ∃ xsa x.

xs = LCons x xsa ∧
((∃ xs. xsa = xs ∧ l length xs = ∞) ∨
linfinite xsa)

by (cases xs) (auto simp: eSuc-eq-infinity-iff)
qed

qed

definition lnth-default :: ′a ⇒ ′a llist ⇒ nat ⇒ ′a where
lnth-default dflt xs n = (if n < l length xs then lnth xs n else dflt)

3

lemma lnth-default-code [code]:
lnth-default dflt xs n =

(if lnull xs then dflt else if n = 0 then lhd xs else lnth-default dflt (ltl xs) (n −
1))
proof (induction n arbitrary: xs)

case 0
thus ?case

by (cases xs) (auto simp: lnth-default-def simp flip: zero-enat-def)
next

case (Suc n)
show ?case
proof (cases xs)

case LNil
thus ?thesis

by (auto simp: lnth-default-def)
next

case (LCons x xs ′)
thus ?thesis

by (auto simp: lnth-default-def Suc-ile-eq)
qed

qed

lemma enat-le-iff :
enat n ≤ m ←→ m = ∞ ∨ (∃m ′. m = enat m ′ ∧ n ≤ m ′)
by (cases m) auto

lemma enat-less-iff :
enat n < m ←→ m = ∞ ∨ (∃m ′. m = enat m ′ ∧ n < m ′)
by (cases m) auto

lemma real-of-int-divide-in-Ints-iff :
real-of-int a / real-of-int b ∈ � ←→ b dvd a ∨ b = 0

proof safe
assume real-of-int a / real-of-int b ∈ � b 6= 0
then obtain n where real-of-int a / real-of-int b = real-of-int n

by (auto simp: Ints-def)
hence real-of-int b ∗ real-of-int n = real-of-int a

using ‹b 6= 0› by (auto simp: field-simps)
also have real-of-int b ∗ real-of-int n = real-of-int (b ∗ n)

by simp
finally have b ∗ n = a

by linarith
thus b dvd a

by auto
qed auto

lemma frac-add-of-nat: frac (of-nat y + x) = frac x
unfolding frac-def by simp

4

lemma frac-add-of-int: frac (of-int y + x) = frac x
unfolding frac-def by simp

lemma frac-fraction: frac (real-of-int a / real-of-int b) = (a mod b) / b
proof −

have frac (a / b) = frac ((a mod b + b ∗ (a div b)) / b)
by (subst mod-mult-div-eq) auto

also have (a mod b + b ∗ (a div b)) / b = of-int (a div b) + a mod b / b
unfolding of-int-add by (subst add-divide-distrib) auto

also have frac . . . = frac (a mod b / b)
by (rule frac-add-of-int)

also have . . . = a mod b / b
by (simp add: floor-divide-of-int-eq frac-def)

finally show ?thesis .
qed

lemma Suc-fib-ge: Suc (fib n) ≥ n
proof (induction n rule: fib.induct)

case (3 n)
show ?case
proof (cases n < 2)

case True
thus ?thesis by (cases n) auto

next
case False
hence Suc (Suc (Suc n)) ≤ Suc n + n by simp
also have . . . ≤ Suc (fib (Suc n)) + Suc (fib n)

by (intro add-mono 3)
also have . . . = Suc (Suc (fib (Suc (Suc n))))

by simp
finally show ?thesis by (simp only: Suc-le-eq)

qed
qed auto

lemma fib-ge: fib n ≥ n − 1
using Suc-fib-ge[of n] by simp

lemma frac-diff-of-nat-right [simp]: frac (x − of-nat y) = frac x
using floor-diff-of-int[of x int y] by (simp add: frac-def)

lemma funpow-cycle:
assumes m > 0
assumes (f ^^ m) x = x
shows (f ^^ k) x = (f ^^ (k mod m)) x

proof (induction k rule: less-induct)
case (less k)
show ?case
proof (cases k < m)

5

case True
thus ?thesis using ‹m > 0› by simp

next
case False
hence k = (k − m) + m by simp
also have (f ^^ . . .) x = (f ^^ (k − m)) ((f ^^ m) x)

by (simp add: funpow-add)
also have (f ^^ m) x = x by fact
also have (f ^^ (k − m)) x = (f ^^ (k mod m)) x

using assms False by (subst less.IH) (auto simp: mod-geq)
finally show ?thesis .

qed
qed

lemma of-nat-ge-1-iff : of-nat n ≥ (1 :: ′a :: linordered-semidom) ←→ n > 0
using of-nat-le-iff [of 1 n] unfolding of-nat-1 by auto

lemma not-frac-less-0: ¬frac x < 0
by (simp add: frac-def not-less)

lemma frac-le-1: frac x ≤ 1
unfolding frac-def by linarith

lemma divide-in-Rats-iff1:
(x::real) ∈ � =⇒ x 6= 0 =⇒ x / y ∈ � ←→ y ∈ �

proof safe
assume ∗: x ∈ � x 6= 0 x / y ∈ �
from ∗(1,3) have x / (x / y) ∈ �

by (rule Rats-divide)
also from ∗ have x / (x / y) = y by simp
finally show y ∈ � .

qed (auto intro: Rats-divide)

lemma divide-in-Rats-iff2:
(y::real) ∈ � =⇒ y 6= 0 =⇒ x / y ∈ � ←→ x ∈ �

proof safe
assume ∗: y ∈ � y 6= 0 x / y ∈ �
from ∗(3,1) have x / y ∗ y ∈ �

by (rule Rats-mult)
also from ∗ have x / y ∗ y = x by simp
finally show x ∈ � .

qed (auto intro: Rats-divide)

lemma add-in-Rats-iff1: x ∈ � =⇒ x + y ∈ � ←→ y ∈ �
using Rats-diff [of x + y x] by auto

lemma add-in-Rats-iff2: y ∈ � =⇒ x + y ∈ � ←→ x ∈ �
using Rats-diff [of x + y y] by auto

6

lemma diff-in-Rats-iff1: x ∈ � =⇒ x − y ∈ � ←→ y ∈ �
using Rats-diff [of x x − y] by auto

lemma diff-in-Rats-iff2: y ∈ � =⇒ x − y ∈ � ←→ x ∈ �
using Rats-add[of x − y y] by auto

lemma frac-in-Rats-iff [simp]: frac x ∈ � ←→ x ∈ �
by (simp add: frac-def diff-in-Rats-iff2)

lemma filterlim-sequentially-shift:
filterlim (λn. f (n + m)) F sequentially ←→ filterlim f F sequentially

proof (induction m)
case (Suc m)
have filterlim (λn. f (n + Suc m)) F at-top ←→

filterlim (λn. f (Suc n + m)) F at-top by simp
also have . . . ←→ filterlim (λn. f (n + m)) F at-top

by (rule filterlim-sequentially-Suc)
also have . . . ←→ filterlim f F at-top

by (rule Suc.IH)
finally show ?case .

qed simp-all

1.2 Bounds on alternating decreasing sums
lemma alternating-decreasing-sum-bounds:

fixes f :: nat ⇒ ′a :: {linordered-ring, ring-1}
assumes m ≤ n

∧
k. k ∈ {m..n} =⇒ f k ≥ 0∧

k. k ∈ {m..<n} =⇒ f (Suc k) ≤ f k
defines S ≡ (λm. (

∑
k=m..n. (−1) ^ k ∗ f k))

shows if even m then S m ∈ {0..f m} else S m ∈ {−f m..0}
using assms(1)

proof (induction rule: inc-induct)
case (step m ′)
have [simp]: −a ≤ b ←→ a + b ≥ (0 :: ′a) for a b

by (metis le-add-same-cancel1 minus-add-cancel)
have [simp]: S m ′ = (−1) ^ m ′ ∗ f m ′ + S (Suc m ′)

using step.hyps unfolding S-def
by (subst sum.atLeast-Suc-atMost) simp-all

from step.hyps have nonneg: f m ′ ≥ 0
by (intro assms) auto

from step.hyps have mono: f (Suc m ′) ≤ f m ′

by (intro assms) auto
show ?case
proof (cases even m ′)

case True
hence 0 ≤ f (Suc m ′) + S (Suc m ′)

using step.IH by simp
also note mono
finally show ?thesis using True step.IH by auto

7

next
case False
with step.IH have S (Suc m ′) ≤ f (Suc m ′)

by simp
also note mono
finally show ?thesis using step.IH False by auto

qed
qed (insert assms, auto)

lemma alternating-decreasing-sum-bounds ′:
fixes f :: nat ⇒ ′a :: {linordered-ring, ring-1}
assumes m < n

∧
k. k ∈ {m..n−1} =⇒ f k ≥ 0∧

k. k ∈ {m..<n−1} =⇒ f (Suc k) ≤ f k
defines S ≡ (λm. (

∑
k=m..<n. (−1) ^ k ∗ f k))

shows if even m then S m ∈ {0..f m} else S m ∈ {−f m..0}
proof (cases n)

case 0
thus ?thesis using assms by auto

next
case (Suc n ′)
hence if even m then (

∑
k=m..n−1. (−1) ^ k ∗ f k) ∈ {0..f m}

else (
∑

k=m..n−1. (−1) ^ k ∗ f k) ∈ {−f m..0}
using assms by (intro alternating-decreasing-sum-bounds) auto

also have (
∑

k=m..n−1. (−1) ^ k ∗ f k) = S m
unfolding S-def by (intro sum.cong) (auto simp: Suc)

finally show ?thesis .
qed

lemma alternating-decreasing-sum-upper-bound:
fixes f :: nat ⇒ ′a :: {linordered-ring, ring-1}
assumes m ≤ n

∧
k. k ∈ {m..n} =⇒ f k ≥ 0∧

k. k ∈ {m..<n} =⇒ f (Suc k) ≤ f k
shows (

∑
k=m..n. (−1) ^ k ∗ f k) ≤ f m

using alternating-decreasing-sum-bounds[of m n f , OF assms] assms(1)
by (auto split: if-splits intro: order .trans[OF - assms(2)])

lemma alternating-decreasing-sum-upper-bound ′:
fixes f :: nat ⇒ ′a :: {linordered-ring, ring-1}
assumes m < n

∧
k. k ∈ {m..n−1} =⇒ f k ≥ 0∧

k. k ∈ {m..<n−1} =⇒ f (Suc k) ≤ f k
shows (

∑
k=m..<n. (−1) ^ k ∗ f k) ≤ f m

using alternating-decreasing-sum-bounds ′[of m n f , OF assms] assms(1)
by (auto split: if-splits intro: order .trans[OF - assms(2)])

lemma abs-alternating-decreasing-sum-upper-bound:
fixes f :: nat ⇒ ′a :: {linordered-ring, ring-1}
assumes m ≤ n

∧
k. k ∈ {m..n} =⇒ f k ≥ 0∧

k. k ∈ {m..<n} =⇒ f (Suc k) ≤ f k
shows |(

∑
k=m..n. (−1) ^ k ∗ f k)| ≤ f m (is abs ?S ≤ -)

8

using alternating-decreasing-sum-bounds[of m n f , OF assms]
by (auto split: if-splits simp: minus-le-iff)

lemma abs-alternating-decreasing-sum-upper-bound ′:
fixes f :: nat ⇒ ′a :: {linordered-ring, ring-1}
assumes m < n

∧
k. k ∈ {m..n−1} =⇒ f k ≥ 0∧

k. k ∈ {m..<n−1} =⇒ f (Suc k) ≤ f k
shows |(

∑
k=m..<n. (−1) ^ k ∗ f k)| ≤ f m

using alternating-decreasing-sum-bounds ′[of m n f , OF assms]
by (auto split: if-splits simp: minus-le-iff)

lemma abs-alternating-decreasing-sum-lower-bound:
fixes f :: nat ⇒ ′a :: {linordered-ring, ring-1}
assumes m < n

∧
k. k ∈ {m..n} =⇒ f k ≥ 0∧

k. k ∈ {m..<n} =⇒ f (Suc k) ≤ f k
shows |(

∑
k=m..n. (−1) ^ k ∗ f k)| ≥ f m − f (Suc m)

proof −
have (

∑
k=m..n. (−1) ^ k ∗ f k) = (

∑
k∈insert m {m<..n}. (−1) ^ k ∗ f k)

using assms by (intro sum.cong) auto
also have . . . = (−1) ^ m ∗ f m + (

∑
k∈{m<..n}. (−1) ^ k ∗ f k)

by auto
also have (

∑
k∈{m<..n}. (−1) ^ k ∗ f k) = (

∑
k∈{m..<n}. (−1) ^ Suc k ∗ f

(Suc k))
by (intro sum.reindex-bij-witness[of - Suc λi. i − 1]) auto

also have (−1)^m ∗ f m + . . . = (−1)^m ∗ f m − (
∑

k∈{m..<n}. (−1) ^ k ∗
f (Suc k))

by (simp add: sum-negf)
also have |. . . | ≥ |(−1)^m ∗ f m| − |(

∑
k∈{m..<n}. (−1) ^ k ∗ f (Suc k))|

by (rule abs-triangle-ineq2)
also have |(−1)^m ∗ f m| = f m

using assms by (cases even m) auto
finally have f m − |

∑
k = m..<n. (− 1) ^ k ∗ f (Suc k)|

≤ |
∑

k = m..n. (− 1) ^ k ∗ f k| .
moreover have f m − |(

∑
k∈{m..<n}. (−1) ^ k ∗ f (Suc k))| ≥ f m − f (Suc

m)
using assms by (intro diff-mono abs-alternating-decreasing-sum-upper-bound ′)

auto
ultimately show ?thesis by (rule order .trans[rotated])

qed

lemma abs-alternating-decreasing-sum-lower-bound ′:
fixes f :: nat ⇒ ′a :: {linordered-ring, ring-1}
assumes m+1 < n

∧
k. k ∈ {m..n} =⇒ f k ≥ 0∧

k. k ∈ {m..<n} =⇒ f (Suc k) ≤ f k
shows |(

∑
k=m..<n. (−1) ^ k ∗ f k)| ≥ f m − f (Suc m)

proof (cases n)
case 0
thus ?thesis using assms by auto

next

9

case (Suc n ′)
hence |(

∑
k=m..n−1. (−1) ^ k ∗ f k)| ≥ f m − f (Suc m)

using assms by (intro abs-alternating-decreasing-sum-lower-bound) auto
also have (

∑
k=m..n−1. (−1) ^ k ∗ f k) = (

∑
k=m..<n. (−1) ^ k ∗ f k)

by (intro sum.cong) (auto simp: Suc)
finally show ?thesis .

qed

lemma alternating-decreasing-suminf-bounds:
assumes

∧
k. f k ≥ (0 :: real)

∧
k. f (Suc k) ≤ f k

f −−−−→ 0
shows (

∑
k. (−1) ^ k ∗ f k) ∈ {f 0 − f 1..f 0}

proof −
have summable (λk. (−1) ^ k ∗ f k)

by (intro summable-Leibniz ′ assms)
hence lim: (λn.

∑
k≤n. (−1) ^ k ∗ f k) −−−−→ (

∑
k. (−1) ^ k ∗ f k)

by (auto dest: summable-LIMSEQ ′)
have bounds: (

∑
k=0..n. (− 1) ^ k ∗ f k) ∈ {f 0 − f 1..f 0}

if n > 0 for n
using alternating-decreasing-sum-bounds[of 1 n f] assms that
by (subst sum.atLeast-Suc-atMost) auto

note [simp] = atLeast0AtMost
note [intro!] = eventually-mono[OF eventually-gt-at-top[of 0]]

from lim have (
∑

k. (−1) ^ k ∗ f k) ≥ f 0 − f 1
by (rule tendsto-lowerbound) (insert bounds, auto)

moreover from lim have (
∑

k. (−1) ^ k ∗ f k) ≤ f 0
by (rule tendsto-upperbound) (use bounds in auto)

ultimately show ?thesis by simp
qed

lemma
assumes

∧
k. k ≥ m =⇒ f k ≥ (0 :: real)∧

k. k ≥ m =⇒ f (Suc k) ≤ f k f −−−−→ 0
defines S ≡ (

∑
k. (−1) ^ (k + m) ∗ f (k + m))

shows summable-alternating-decreasing: summable (λk. (−1) ^ (k + m) ∗ f (k
+ m))

and alternating-decreasing-suminf-bounds ′:
if even m then S ∈ {f m − f (Suc m) .. f m}

else S ∈ {−f m..f (Suc m) − f m} (is ?th1)
and abs-alternating-decreasing-suminf :

abs S ∈ {f m − f (Suc m)..f m} (is ?th2)
proof −

have summable: summable (λk. (−1) ^ k ∗ f (k + m))
using assms by (intro summable-Leibniz ′) (auto simp: filterlim-sequentially-shift)
thus summable (λk. (−1) ^ (k + m) ∗ f (k + m))
by (subst add.commute) (auto simp: power-add mult.assoc intro: summable-mult)

have S = (
∑

k. (−1) ^ m ∗ ((−1) ^ k ∗ f (k + m)))
by (simp add: S-def power-add mult-ac)

10

also have . . . = (−1) ^ m ∗ (
∑

k. (−1) ^ k ∗ f (k + m))
using summable by (rule suminf-mult)

finally have S = (− 1) ^ m ∗ (
∑

k. (− 1) ^ k ∗ f (k + m)) .
moreover have (

∑
k. (−1) ^ k ∗ f (k + m)) ∈

{f (0 + m) − f (1 + m) .. f (0 + m)}
using assms
by (intro alternating-decreasing-suminf-bounds)

(auto simp: filterlim-sequentially-shift)
ultimately show ?th1 by (auto split: if-splits)
thus ?th2 using assms(2)[of m] by (auto split: if-splits)

qed

lemma
assumes

∧
k. k ≥ m =⇒ f k ≥ (0 :: real)∧

k. k ≥ m =⇒ f (Suc k) < f k f −−−−→ 0
defines S ≡ (

∑
k. (−1) ^ (k + m) ∗ f (k + m))

shows alternating-decreasing-suminf-bounds-strict ′:
if even m then S ∈ {f m − f (Suc m)<..<f m}

else S ∈ {−f m<..<f (Suc m) − f m} (is ?th1)
and abs-alternating-decreasing-suminf-strict:

abs S ∈ {f m − f (Suc m)<..<f m} (is ?th2)
proof −

define S ′ where S ′ = (
∑

k. (−1) ^ (k + Suc (Suc m)) ∗ f (k + Suc (Suc m)))
have (λk. (−1) ^ (k + m) ∗ f (k + m)) sums S using assms unfolding S-def

by (intro summable-sums summable-Leibniz ′ summable-alternating-decreasing)
(auto simp: less-eq-real-def)

from sums-split-initial-segment[OF this, of 2]
have S ′: S ′ = S − (−1) ^ m ∗ (f m − f (Suc m))
by (simp-all add: sums-iff S ′-def algebra-simps lessThan-nat-numeral)

have if even (Suc (Suc m)) then S ′ ∈ {f (Suc (Suc m)) − f (Suc (Suc (Suc
m)))..f (Suc (Suc m))}

else S ′ ∈ {− f (Suc (Suc m))..f (Suc (Suc (Suc m))) − f (Suc (Suc m))}
unfolding S ′-def

using assms by (intro alternating-decreasing-suminf-bounds ′) (auto simp:
less-eq-real-def)

thus ?th1 using assms(2)[of Suc m] assms(2)[of Suc (Suc m)]
unfolding S ′ by (auto simp: algebra-simps)

thus ?th2 using assms(2)[of m] by (auto split: if-splits)
qed

datatype cfrac = CFrac int nat llist

quickcheck-generator cfrac constructors: CFrac

lemma type-definition-cfrac ′:
type-definition (λx. case x of CFrac a b ⇒ (a, b)) (λ(x,y). CFrac x y) UNIV
by (auto simp: type-definition-def split: cfrac.splits)

11

setup-lifting type-definition-cfrac ′

lift-definition cfrac-of-int :: int ⇒ cfrac is
λn. (n, LNil) .

lemma cfrac-of-int-code [code]: cfrac-of-int n = CFrac n LNil
by (auto simp: cfrac-of-int-def)

lift-definition cfrac-of-stream :: int stream ⇒ cfrac is
λxs. (shd xs, l list-of-stream (smap (λx. nat (x − 1)) (stl xs))) .

instantiation cfrac :: zero
begin
definition zero-cfrac where 0 = cfrac-of-int 0
instance ..
end

instantiation cfrac :: one
begin
definition one-cfrac where 1 = cfrac-of-int 1
instance ..
end

lift-definition cfrac-tl :: cfrac ⇒ cfrac is
λ(-, bs) ⇒ case bs of LNil ⇒ (1, LNil) | LCons b bs ′⇒ (int b + 1, bs ′) .

lemma cfrac-tl-code [code]:
cfrac-tl (CFrac a bs) =

(case bs of LNil ⇒ CFrac 1 LNil | LCons b bs ′⇒ CFrac (int b + 1) bs ′)
by (auto simp: cfrac-tl-def split: l list.splits)

definition cfrac-drop :: nat ⇒ cfrac ⇒ cfrac where
cfrac-drop n c = (cfrac-tl ^^ n) c

lemma cfrac-drop-Suc-right: cfrac-drop (Suc n) c = cfrac-drop n (cfrac-tl c)
by (simp add: cfrac-drop-def funpow-Suc-right del: funpow.simps)

lemma cfrac-drop-Suc-left: cfrac-drop (Suc n) c = cfrac-tl (cfrac-drop n c)
by (simp add: cfrac-drop-def)

lemma cfrac-drop-add: cfrac-drop (m + n) c = cfrac-drop m (cfrac-drop n c)
by (simp add: cfrac-drop-def funpow-add)

lemma cfrac-drop-0 [simp]: cfrac-drop 0 = (λx. x)
by (simp add: fun-eq-iff cfrac-drop-def)

lemma cfrac-drop-1 [simp]: cfrac-drop 1 = cfrac-tl
by (simp add: fun-eq-iff cfrac-drop-def)

12

lift-definition cfrac-length :: cfrac ⇒ enat is
λ(-, bs) ⇒ l length bs .

lemma cfrac-length-code [code]: cfrac-length (CFrac a bs) = l length bs
by (simp add: cfrac-length-def)

lemma cfrac-length-tl [simp]: cfrac-length (cfrac-tl c) = cfrac-length c − 1
by transfer (auto split: l list.splits)

lemma enat-diff-Suc-right [simp]: m − enat (Suc n) = m − n − 1
by (auto simp: diff-enat-def enat-1-iff split: enat.splits)

lemma cfrac-length-drop [simp]: cfrac-length (cfrac-drop n c) = cfrac-length c − n
by (induction n) (auto simp: cfrac-drop-def)

lemma cfrac-length-of-stream [simp]: cfrac-length (cfrac-of-stream xs) = ∞
by transfer auto

lift-definition cfrac-nth :: cfrac ⇒ nat ⇒ int is
λ(a :: int, bs :: nat llist). λ(n :: nat).

if n = 0 then a
else if n ≤ l length bs then int (lnth bs (n − 1)) + 1 else 1 .

lemma cfrac-nth-code [code]:
cfrac-nth (CFrac a bs) n = (if n = 0 then a else lnth-default 0 bs (n − 1) + 1)

proof −
have n > 0 −→ enat (n − Suc 0) < l length bs ←→ enat n ≤ l length bs

by (metis Suc-ile-eq Suc-pred)
thus ?thesis by (auto simp: cfrac-nth-def lnth-default-def)

qed

lemma cfrac-nth-nonneg [simp, intro]: n > 0 =⇒ cfrac-nth c n ≥ 0
by transfer auto

lemma cfrac-nth-nonzero [simp]: n > 0 =⇒ cfrac-nth c n 6= 0
by transfer (auto split: if-splits)

lemma cfrac-nth-pos[simp, intro]: n > 0 =⇒ cfrac-nth c n > 0
by transfer auto

lemma cfrac-nth-ge-1[simp, intro]: n > 0 =⇒ cfrac-nth c n ≥ 1
by transfer auto

lemma cfrac-nth-not-less-1[simp, intro]: n > 0 =⇒ ¬cfrac-nth c n < 1
by transfer (auto split: if-splits)

lemma cfrac-nth-tl [simp]: cfrac-nth (cfrac-tl c) n = cfrac-nth c (Suc n)
apply transfer
apply (auto split: l list.splits nat.splits simp: Suc-ile-eq lnth-LCons enat-0-iff

13

simp flip: zero-enat-def)
done

lemma cfrac-nth-drop [simp]: cfrac-nth (cfrac-drop n c) m = cfrac-nth c (m + n)
by (induction n arbitrary: m) (auto simp: cfrac-drop-def)

lemma cfrac-nth-0-of-int [simp]: cfrac-nth (cfrac-of-int n) 0 = n
by transfer auto

lemma cfrac-nth-gt0-of-int [simp]: m > 0 =⇒ cfrac-nth (cfrac-of-int n) m = 1
by transfer (auto simp: enat-0-iff)

lemma cfrac-nth-of-stream:
assumes sset (stl xs) ⊆ {0<..}
shows cfrac-nth (cfrac-of-stream xs) n = snth xs n
using assms

proof (transfer ′, goal-cases)
case (1 xs n)
thus ?case

by (cases xs; cases n) (auto simp: subset-iff)
qed

lift-definition cfrac :: (nat ⇒ int) ⇒ cfrac is
λf . (f 0, inf-llist (λn. nat (f (Suc n) − 1))) .

definition is-cfrac :: (nat ⇒ int) ⇒ bool where is-cfrac f ←→ (∀n>0. f n > 0)

lemma cfrac-nth-cfrac [simp]:
assumes is-cfrac f
shows cfrac-nth (cfrac f) n = f n
using assms unfolding is-cfrac-def by transfer auto

lemma l length-eq-infty-lnth: l length b = ∞ =⇒ inf-llist (lnth b) = b
by (simp add: l length-eq-infty-conv-lfinite)

lemma cfrac-cfrac-nth [simp]: cfrac-length c = ∞ =⇒ cfrac (cfrac-nth c) = c
by transfer (auto simp: l length-eq-infty-lnth)

lemma cfrac-length-cfrac [simp]: cfrac-length (cfrac f) = ∞
by transfer auto

lift-definition cfrac-of-list :: int list ⇒ cfrac is
λxs. if xs = [] then (0, LNil) else (hd xs, l list-of (map (λn. nat n − 1) (tl xs))) .

lemma cfrac-length-of-list [simp]: cfrac-length (cfrac-of-list xs) = length xs − 1
by transfer (auto simp: zero-enat-def)

14

lemma cfrac-of-list-Nil [simp]: cfrac-of-list [] = 0
unfolding zero-cfrac-def by transfer auto

lemma cfrac-nth-of-list [simp]:
assumes n < length xs and ∀ i∈{0<..<length xs}. xs ! i > 0
shows cfrac-nth (cfrac-of-list xs) n = xs ! n
using assms

proof (transfer , goal-cases)
case (1 n xs)
show ?case
proof (cases n)

case (Suc n ′)
with 1 have xs ! n > 0

using 1 by auto
hence int (nat (tl xs ! n ′) − Suc 0) + 1 = xs ! Suc n ′

using 1(1) Suc by (auto simp: nth-tl of-nat-diff)
thus ?thesis

using Suc 1(1) by (auto simp: hd-conv-nth zero-enat-def)
qed (use 1 in ‹auto simp: hd-conv-nth›)

qed

primcorec cfrac-of-real-aux :: real ⇒ nat llist where
cfrac-of-real-aux x =

(if x ∈ {0<..<1} then LCons (nat b1/xc − 1) (cfrac-of-real-aux (frac (1/x)))
else LNil)

lemma cfrac-of-real-aux-code [code]:
cfrac-of-real-aux x =

(if x > 0 ∧ x < 1 then LCons (nat b1/xc − 1) (cfrac-of-real-aux (frac (1/x)))
else LNil)

by (subst cfrac-of-real-aux.code) auto

lemma cfrac-of-real-aux-LNil [simp]: x /∈ {0<..<1} =⇒ cfrac-of-real-aux x = LNil
by (subst cfrac-of-real-aux.code) auto

lemma cfrac-of-real-aux-0 [simp]: cfrac-of-real-aux 0 = LNil
by (subst cfrac-of-real-aux.code) auto

lemma cfrac-of-real-aux-eq-LNil-iff [simp]: cfrac-of-real-aux x = LNil ←→ x /∈
{0<..<1}

by (subst cfrac-of-real-aux.code) auto

lemma lnth-cfrac-of-real-aux:
assumes n < l length (cfrac-of-real-aux x)
shows lnth (cfrac-of-real-aux x) (Suc n) = lnth (cfrac-of-real-aux (frac (1/x)))

n
using assms

15

apply (induction n arbitrary: x)
apply (subst cfrac-of-real-aux.code)
apply auto []

apply (subst cfrac-of-real-aux.code)
apply (auto)
done

lift-definition cfrac-of-real :: real ⇒ cfrac is
λx. (bxc, cfrac-of-real-aux (frac x)) .

lemma cfrac-of-real-code [code]: cfrac-of-real x = CFrac bxc (cfrac-of-real-aux (frac
x))

by (simp add: cfrac-of-real-def)

lemma eq-epred-iff : m = epred n ←→ m = 0 ∧ n = 0 ∨ n = eSuc m
by (cases m; cases n) (auto simp: enat-0-iff enat-eSuc-iff infinity-eq-eSuc-iff)

lemma epred-eq-iff : epred n = m ←→ m = 0 ∧ n = 0 ∨ n = eSuc m
by (cases m; cases n) (auto simp: enat-0-iff enat-eSuc-iff infinity-eq-eSuc-iff)

lemma epred-less: n > 0 =⇒ n 6= ∞ =⇒ epred n < n
by (cases n) (auto simp: enat-0-iff)

lemma cfrac-nth-of-real-0 [simp]:
cfrac-nth (cfrac-of-real x) 0 = bxc
by transfer auto

lemma frac-eq-0 [simp]: x ∈ � =⇒ frac x = 0
by simp

lemma cfrac-tl-of-real:
assumes x /∈ �
shows cfrac-tl (cfrac-of-real x) = cfrac-of-real (1 / frac x)
using assms

proof (transfer , goal-cases)
case (1 x)
hence int (nat b1 / frac xc − Suc 0) + 1 = b1 / frac xc

by (subst of-nat-diff) (auto simp: le-nat-iff frac-le-1)
with ‹x /∈ �› show ?case
by (subst cfrac-of-real-aux.code) (auto split: l list.splits simp: frac-lt-1)

qed

lemma cfrac-nth-of-real-Suc:
assumes x /∈ �
shows cfrac-nth (cfrac-of-real x) (Suc n) = cfrac-nth (cfrac-of-real (1 / frac

x)) n
proof −

have cfrac-nth (cfrac-of-real x) (Suc n) =
cfrac-nth (cfrac-tl (cfrac-of-real x)) n

16

by simp
also have cfrac-tl (cfrac-of-real x) = cfrac-of-real (1 / frac x)

by (simp add: cfrac-tl-of-real assms)
finally show ?thesis .

qed

fun conv :: cfrac ⇒ nat ⇒ real where
conv c 0 = real-of-int (cfrac-nth c 0)
| conv c (Suc n) = real-of-int (cfrac-nth c 0) + 1 / conv (cfrac-tl c) n

The numerator and denominator of a convergent:
fun conv-num :: cfrac ⇒ nat ⇒ int where

conv-num c 0 = cfrac-nth c 0
| conv-num c (Suc 0) = cfrac-nth c 1 ∗ cfrac-nth c 0 + 1
| conv-num c (Suc (Suc n)) = cfrac-nth c (Suc (Suc n)) ∗ conv-num c (Suc n) +
conv-num c n

fun conv-denom :: cfrac ⇒ nat ⇒ int where
conv-denom c 0 = 1
| conv-denom c (Suc 0) = cfrac-nth c 1
| conv-denom c (Suc (Suc n)) = cfrac-nth c (Suc (Suc n)) ∗ conv-denom c (Suc n)
+ conv-denom c n

lemma conv-num-rec:
n ≥ 2 =⇒ conv-num c n = cfrac-nth c n ∗ conv-num c (n − 1) + conv-num c

(n − 2)
by (cases n; cases n − 1) auto

lemma conv-denom-rec:
n ≥ 2 =⇒ conv-denom c n = cfrac-nth c n ∗ conv-denom c (n − 1) + conv-denom

c (n − 2)
by (cases n; cases n − 1) auto

fun conv ′ :: cfrac ⇒ nat ⇒ real ⇒ real where
conv ′ c 0 z = z
| conv ′ c (Suc n) z = conv ′ c n (real-of-int (cfrac-nth c n) + 1 / z)

Occasionally, it can be useful to extend the domain of conv-num and conv-denom
to −1 and −2.
definition conv-num-int :: cfrac ⇒ int ⇒ int where

conv-num-int c n = (if n = −1 then 1 else if n < 0 then 0 else conv-num c (nat
n))

definition conv-denom-int :: cfrac ⇒ int ⇒ int where
conv-denom-int c n = (if n = −2 then 1 else if n < 0 then 0 else conv-denom c

(nat n))

17

lemma conv-num-int-rec:
assumes n ≥ 0
shows conv-num-int c n = cfrac-nth c (nat n) ∗ conv-num-int c (n − 1) +

conv-num-int c (n − 2)
proof (cases n ≥ 2)

case True
define n ′ where n ′ = nat (n − 2)
have n: n = int (Suc (Suc n ′))

using True by (simp add: n ′-def)
show ?thesis

by (simp add: n conv-num-int-def nat-add-distrib)
qed (use assms in ‹auto simp: conv-num-int-def ›)

lemma conv-denom-int-rec:
assumes n ≥ 0
shows conv-denom-int c n = cfrac-nth c (nat n) ∗ conv-denom-int c (n − 1)

+ conv-denom-int c (n − 2)
proof −

consider n = 0 | n = 1 | n ≥ 2
using assms by force

thus ?thesis
proof cases

assume n ≥ 2
define n ′ where n ′ = nat (n − 2)
have n: n = int (Suc (Suc n ′))

using ‹n ≥ 2› by (simp add: n ′-def)
show ?thesis

by (simp add: n conv-denom-int-def nat-add-distrib)
qed (use assms in ‹auto simp: conv-denom-int-def ›)

qed

The number [a0; a1, a2, . . .] that the infinite continued fraction converges
to:
definition cfrac-lim :: cfrac ⇒ real where

cfrac-lim c =
(case cfrac-length c of ∞ ⇒ lim (conv c) | enat l ⇒ conv c l)

lemma cfrac-lim-code [code]:
cfrac-lim c =

(case cfrac-length c of enat l ⇒ conv c l
| - ⇒ Code.abort (STR ′′Cannot compute infinite continued fraction ′′) (λ-.

cfrac-lim c))
by (simp add: cfrac-lim-def split: enat.splits)

definition cfrac-remainder where cfrac-remainder c n = cfrac-lim (cfrac-drop n
c)

lemmas conv ′-Suc-right = conv ′.simps(2)

18

lemma conv ′-Suc-left:
assumes z > 0
shows conv ′ c (Suc n) z =

real-of-int (cfrac-nth c 0) + 1 / conv ′ (cfrac-tl c) n z
using assms

proof (induction n arbitrary: z)
case (Suc n z)
have conv ′ c (Suc (Suc n)) z =

conv ′ c (Suc n) (real-of-int (cfrac-nth c (Suc n)) + 1 / z)
by simp

also have . . . = cfrac-nth c 0 + 1 / conv ′ (cfrac-tl c) (Suc n) z
using Suc.prems by (subst Suc.IH) (auto intro!: add-nonneg-pos cfrac-nth-nonneg)
finally show ?case .

qed simp-all

lemmas [simp del] = conv ′.simps(2)

lemma conv ′-left-induct:
assumes

∧
c. P c 0 z

∧
c n. P (cfrac-tl c) n z =⇒ P c (Suc n) z

shows P c n z
using assms by (rule conv.induct)

lemma enat-less-diff-conv [simp]:
assumes a = ∞ ∨ b < ∞ ∨ c < ∞
shows a < c − (b :: enat) ←→ a + b < c
using assms by (cases a; cases b; cases c) auto

lemma conv-eq-conv ′: conv c n = conv ′ c n (cfrac-nth c n)
proof (cases n = 0)

case False
hence cfrac-nth c n > 0 by (auto intro!: cfrac-nth-pos)
thus ?thesis

by (induction c n rule: conv.induct) (simp-all add: conv ′-Suc-left)
qed simp-all

lemma conv-num-pos ′:
assumes cfrac-nth c 0 > 0
shows conv-num c n > 0
using assms by (induction n rule: fib.induct) (auto simp: intro!: add-pos-nonneg)

lemma conv-num-nonneg: cfrac-nth c 0 ≥ 0 =⇒ conv-num c n ≥ 0
by (induction c n rule: conv-num.induct)

(auto simp: intro!: mult-nonneg-nonneg add-nonneg-nonneg
intro: cfrac-nth-nonneg)

lemma conv-num-pos:
cfrac-nth c 0 ≥ 0 =⇒ n > 0 =⇒ conv-num c n > 0
by (induction c n rule: conv-num.induct)
(auto intro!: mult-pos-pos mult-nonneg-nonneg add-pos-nonneg conv-num-nonneg

19

cfrac-nth-pos
intro: cfrac-nth-nonneg simp: enat-le-iff)

lemma conv-denom-pos [simp, intro]: conv-denom c n > 0
by (induction c n rule: conv-num.induct)

(auto intro!: add-nonneg-pos mult-nonneg-nonneg cfrac-nth-nonneg
simp: enat-le-iff)

lemma conv-denom-not-nonpos [simp]: ¬conv-denom c n ≤ 0
using conv-denom-pos[of c n] by linarith

lemma conv-denom-not-neg [simp]: ¬conv-denom c n < 0
using conv-denom-pos[of c n] by linarith

lemma conv-denom-nonzero [simp]: conv-denom c n 6= 0
using conv-denom-pos[of c n] by linarith

lemma conv-denom-nonneg [simp, intro]: conv-denom c n ≥ 0
using conv-denom-pos[of c n] by linarith

lemma conv-num-int-neg1 [simp]: conv-num-int c (−1) = 1
by (simp add: conv-num-int-def)

lemma conv-num-int-neg [simp]: n < 0 =⇒ n 6= −1 =⇒ conv-num-int c n = 0
by (simp add: conv-num-int-def)

lemma conv-num-int-of-nat [simp]: conv-num-int c (int n) = conv-num c n
by (simp add: conv-num-int-def)

lemma conv-num-int-nonneg [simp]: n ≥ 0 =⇒ conv-num-int c n = conv-num c
(nat n)

by (simp add: conv-num-int-def)

lemma conv-denom-int-neg2 [simp]: conv-denom-int c (−2) = 1
by (simp add: conv-denom-int-def)

lemma conv-denom-int-neg [simp]: n < 0 =⇒ n 6= −2 =⇒ conv-denom-int c n =
0

by (simp add: conv-denom-int-def)

lemma conv-denom-int-of-nat [simp]: conv-denom-int c (int n) = conv-denom c n
by (simp add: conv-denom-int-def)

lemma conv-denom-int-nonneg [simp]: n ≥ 0 =⇒ conv-denom-int c n = conv-denom
c (nat n)

by (simp add: conv-denom-int-def)

lemmas conv-Suc [simp del] = conv.simps(2)

20

lemma conv ′-gt-1:
assumes cfrac-nth c 0 > 0 x > 1
shows conv ′ c n x > 1
using assms

proof (induction n arbitrary: c x)
case (Suc n c x)
from Suc.prems have pos: cfrac-nth c n > 0 using cfrac-nth-pos[of n c]

by (cases n = 0) (auto simp: enat-le-iff)
have 1 < 1 + 1 / x

using Suc.prems by simp
also have . . . ≤ cfrac-nth c n + 1 / x using pos

by (intro add-right-mono) (auto simp: of-nat-ge-1-iff)
finally show ?case

by (subst conv ′-Suc-right, intro Suc.IH)
(use Suc.prems in ‹auto simp: enat-le-iff ›)

qed auto

lemma enat-eq-iff : a = enat b ←→ (∃ a ′. a = enat a ′ ∧ a ′ = b)
by (cases a) auto

lemma eq-enat-iff : enat a = b ←→ (∃ b ′. b = enat b ′ ∧ a = b ′)
by (cases b) auto

lemma enat-diff-one [simp]: enat a − 1 = enat (a − 1)
by (cases enat (a − 1)) (auto simp flip: idiff-enat-enat)

lemma conv ′-eqD:
assumes conv ′ c n x = conv ′ c ′ n x x > 1 m < n
shows cfrac-nth c m = cfrac-nth c ′ m
using assms

proof (induction n arbitrary: m c c ′)
case (Suc n m c c ′)
have gt: conv ′ (cfrac-tl c) n x > 1 conv ′ (cfrac-tl c ′) n x > 1

by (rule conv ′-gt-1;
use Suc.prems in ‹force intro: cfrac-nth-pos simp: enat-le-iff ›)+

have eq: cfrac-nth c 0 + 1 / conv ′ (cfrac-tl c) n x =
cfrac-nth c ′ 0 + 1 / conv ′ (cfrac-tl c ′) n x

using Suc.prems by (subst (asm) (1 2) conv ′-Suc-left) auto
hence bcfrac-nth c 0 + 1 / conv ′ (cfrac-tl c) n xc =

bcfrac-nth c ′ 0 + 1 / conv ′ (cfrac-tl c ′) n xc
by (simp only:)

also from gt have floor (cfrac-nth c 0 + 1 / conv ′ (cfrac-tl c) n x) = cfrac-nth
c 0

by (intro floor-unique) auto
also from gt have floor (cfrac-nth c ′ 0 + 1 / conv ′ (cfrac-tl c ′) n x) = cfrac-nth

c ′ 0
by (intro floor-unique) auto

finally have [simp]: cfrac-nth c 0 = cfrac-nth c ′ 0 by simp

21

show ?case
proof (cases m)

case (Suc m ′)
from eq and gt have conv ′ (cfrac-tl c) n x = conv ′ (cfrac-tl c ′) n x

by simp
hence cfrac-nth (cfrac-tl c) m ′ = cfrac-nth (cfrac-tl c ′) m ′

using Suc.prems
by (intro Suc.IH [of cfrac-tl c cfrac-tl c ′]) (auto simp: o-def Suc enat-le-iff)

with Suc show ?thesis by simp
qed simp-all

qed simp-all

context
fixes c :: cfrac and h k
defines h ≡ conv-num c and k ≡ conv-denom c

begin

lemma conv ′-num-denom-aux:
assumes z: z > 0
shows conv ′ c (Suc (Suc n)) z ∗ (z ∗ k (Suc n) + k n) =

(z ∗ h (Suc n) + h n)
using z

proof (induction n arbitrary: z)
case 0
hence 1 + z ∗ cfrac-nth c 1 > 0

by (intro add-pos-nonneg) (auto simp: cfrac-nth-nonneg)
with 0 show ?case

by (auto simp add: h-def k-def field-simps conv ′-Suc-right max-def not-le)
next

case (Suc n)
have [simp]: h (Suc (Suc n)) = cfrac-nth c (n+2) ∗ h (n+1) + h n

by (simp add: h-def)
have [simp]: k (Suc (Suc n)) = cfrac-nth c (n+2) ∗ k (n+1) + k n

by (simp add: k-def)
define z ′ where z ′ = cfrac-nth c (n+2) + 1 / z
from ‹z > 0› have z ′ > 0

by (auto simp: z ′-def intro!: add-nonneg-pos cfrac-nth-nonneg)

have z ∗ real-of-int (h (Suc (Suc n))) + real-of-int (h (Suc n)) =
z ∗ (z ′ ∗ h (Suc n) + h n)

using ‹z > 0› by (simp add: algebra-simps z ′-def)
also have . . . = z ∗ (conv ′ c (Suc (Suc n)) z ′ ∗ (z ′ ∗ k (Suc n) + k n))

using ‹z ′ > 0› by (subst Suc.IH [symmetric]) auto
also have . . . = conv ′ c (Suc (Suc (Suc n))) z ∗

(z ∗ k (Suc (Suc n)) + k (Suc n))
unfolding z ′-def using ‹z > 0›
by (subst (2) conv ′-Suc-right) (simp add: algebra-simps)

finally show ?case ..

22

qed

lemma conv ′-num-denom:
assumes z > 0
shows conv ′ c (Suc (Suc n)) z =

(z ∗ h (Suc n) + h n) / (z ∗ k (Suc n) + k n)
proof −

have z ∗ real-of-int (k (Suc n)) + real-of-int (k n) > 0
using assms by (intro add-pos-nonneg mult-pos-pos) (auto simp: k-def)

with conv ′-num-denom-aux[of z n] assms show ?thesis
by (simp add: divide-simps)

qed

lemma conv-num-denom: conv c n = h n / k n
proof −

consider n = 0 | n = Suc 0 | m where n = Suc (Suc m)
using not0-implies-Suc by blast

thus ?thesis
proof cases

assume n = Suc 0
thus ?thesis

by (auto simp: h-def k-def field-simps max-def conv-Suc)
next

fix m assume [simp]: n = Suc (Suc m)
have conv c n = conv ′ c (Suc (Suc m)) (cfrac-nth c (Suc (Suc m)))

by (subst conv-eq-conv ′) simp-all
also have . . . = h n / k n

by (subst conv ′-num-denom) (simp-all add: h-def k-def)
finally show ?thesis .

qed (auto simp: h-def k-def)
qed

lemma conv ′-num-denom ′:
assumes z > 0 and n ≥ 2
shows conv ′ c n z = (z ∗ h (n − 1) + h (n − 2)) / (z ∗ k (n − 1) + k (n −

2))
using assms conv ′-num-denom[of z n − 2]
by (auto simp: eval-nat-numeral Suc-diff-Suc)

lemma conv ′-num-denom-int:
assumes z > 0
shows conv ′ c n z =

(z ∗ conv-num-int c (int n − 1) + conv-num-int c (int n − 2)) /
(z ∗ conv-denom-int c (int n − 1) + conv-denom-int c (int n − 2))

proof −
consider n = 0 | n = 1 | n ≥ 2 by force
thus ?thesis
proof cases

case 1

23

thus ?thesis using conv-num-int-neg1 by auto
next

case 2
thus ?thesis using assms by (auto simp: conv ′-Suc-right field-simps)

next
case 3
thus ?thesis using conv ′-num-denom ′[OF assms(1), of nat n]

by (auto simp: nat-diff-distrib h-def k-def)
qed

qed

lemma conv-nonneg: cfrac-nth c 0 ≥ 0 =⇒ conv c n ≥ 0
by (subst conv-num-denom)

(auto intro!: divide-nonneg-nonneg conv-num-nonneg simp: h-def k-def)

lemma conv-pos:
assumes cfrac-nth c 0 > 0
shows conv c n > 0

proof −
have conv c n = h n / k n

using assms by (intro conv-num-denom)
also from assms have . . . > 0 unfolding h-def k-def

by (intro divide-pos-pos) (auto intro!: conv-num-pos ′)
finally show ?thesis .

qed

lemma conv-num-denom-prod-diff :
k n ∗ h (Suc n) − k (Suc n) ∗ h n = (−1) ^ n
by (induction c n rule: conv-num.induct)

(auto simp: k-def h-def algebra-simps)

lemma conv-num-denom-prod-diff ′:
k (Suc n) ∗ h n − k n ∗ h (Suc n) = (−1) ^ Suc n
by (induction c n rule: conv-num.induct)

(auto simp: k-def h-def algebra-simps)

lemma
fixes n :: int
assumes n ≥ −2
shows conv-num-denom-int-prod-diff :

conv-denom-int c n ∗ conv-num-int c (n + 1) −
conv-denom-int c (n + 1) ∗ conv-num-int c n = (−1) ^ (nat (n + 2))

(is ?th1)
and conv-num-denom-int-prod-diff ′:

conv-denom-int c (n + 1) ∗ conv-num-int c n −
conv-denom-int c n ∗ conv-num-int c (n + 1) = (−1) ^ (nat (n + 3))

(is ?th2)
proof −

from assms consider n = −2 | n = −1 | n ≥ 0 by force

24

thus ?th1 using conv-num-denom-prod-diff [of nat n]
by cases (auto simp: h-def k-def nat-add-distrib)

moreover from assms have nat (n + 3) = Suc (nat (n + 2)) by (simp add:
nat-add-distrib)

ultimately show ?th2 by simp
qed

lemma coprime-conv-num-denom: coprime (h n) (k n)
proof (cases n)

case [simp]: (Suc m)
{

fix d :: int
assume d dvd h n and d dvd k n
hence abs d dvd abs (k n ∗ h (Suc n) − k (Suc n) ∗ h n)

by simp
also have . . . = 1

by (subst conv-num-denom-prod-diff) auto
finally have is-unit d by simp

}
thus ?thesis by (rule coprimeI)

qed (auto simp: h-def k-def)

lemma coprime-conv-num-denom-int:
assumes n ≥ −2
shows coprime (conv-num-int c n) (conv-denom-int c n)

proof −
from assms consider n = −2 | n = −1 | n ≥ 0 by force
thus ?thesis by cases (insert coprime-conv-num-denom[of nat n], auto simp: h-def

k-def)
qed

lemma mono-conv-num:
assumes cfrac-nth c 0 ≥ 0
shows mono h

proof (rule incseq-SucI)
show h n ≤ h (Suc n) for n
proof (cases n)

case 0
have 1 ∗ cfrac-nth c 0 + 1 ≤ cfrac-nth c (Suc 0) ∗ cfrac-nth c 0 + 1

using assms by (intro add-mono mult-right-mono) auto
thus ?thesis using assms by (simp add: le-Suc-eq Suc-le-eq h-def 0)

next
case (Suc m)
have 1 ∗ h (Suc m) + 0 ≤ cfrac-nth c (Suc (Suc m)) ∗ h (Suc m) + h m

using assms
by (intro add-mono mult-right-mono)

(auto simp: Suc-le-eq h-def intro!: conv-num-nonneg)
with Suc show ?thesis by (simp add: h-def)

qed

25

qed

lemma mono-conv-denom: mono k
proof (rule incseq-SucI)

show k n ≤ k (Suc n) for n
proof (cases n)

case 0
thus ?thesis by (simp add: le-Suc-eq Suc-le-eq k-def)

next
case (Suc m)
have 1 ∗ k (Suc m) + 0 ≤ cfrac-nth c (Suc (Suc m)) ∗ k (Suc m) + k m

by (intro add-mono mult-right-mono) (auto simp: Suc-le-eq k-def)
with Suc show ?thesis by (simp add: k-def)

qed
qed

lemma conv-num-leI : cfrac-nth c 0 ≥ 0 =⇒ m ≤ n =⇒ h m ≤ h n
using mono-conv-num by (auto simp: mono-def)

lemma conv-denom-leI : m ≤ n =⇒ k m ≤ k n
using mono-conv-denom by (auto simp: mono-def)

lemma conv-denom-lessI :
assumes m < n 1 < n
shows k m < k n

proof (cases n)
case [simp]: (Suc n ′)
show ?thesis
proof (cases n ′)

case [simp]: (Suc n ′′)
from assms have k m ≤ 1 ∗ k n ′ + 0

by (auto intro: conv-denom-leI simp: less-Suc-eq)
also have . . . ≤ cfrac-nth c n ∗ k n ′ + 0

using assms by (intro add-mono mult-mono) (auto simp: Suc-le-eq k-def)
also have . . . < cfrac-nth c n ∗ k n ′ + k n ′′ unfolding k-def

by (intro add-strict-left-mono conv-denom-pos assms)
also have . . . = k n by (simp add: k-def)
finally show ?thesis .

qed (insert assms, auto simp: k-def)
qed (insert assms, auto)

lemma conv-num-lower-bound:
assumes cfrac-nth c 0 ≥ 0
shows h n ≥ fib n unfolding h-def
using assms

proof (induction c n rule: conv-denom.induct)
case (3 c n)
hence conv-num c (Suc (Suc n)) ≥ 1 ∗ int (fib (Suc n)) + int (fib n)

using 3.prems unfolding conv-num.simps

26

by (intro add-mono mult-mono 3.IH) auto
thus ?case by simp

qed auto

lemma conv-denom-lower-bound: k n ≥ fib (Suc n)
unfolding k-def

proof (induction c n rule: conv-denom.induct)
case (3 c n)
hence conv-denom c (Suc (Suc n)) ≥ 1 ∗ int (fib (Suc (Suc n))) + int (fib (Suc

n))
using 3.prems unfolding conv-denom.simps
by (intro add-mono mult-mono 3.IH) auto

thus ?case by simp
qed (auto simp: Suc-le-eq)

lemma conv-diff-eq: conv c (Suc n) − conv c n = (−1) ^ n / (k n ∗ k (Suc n))
proof −

have pos: k n > 0 k (Suc n) > 0 unfolding k-def
by (intro conv-denom-pos)+

have conv c (Suc n) − conv c n =
(k n ∗ h (Suc n) − k (Suc n) ∗ h n) / (k n ∗ k (Suc n))

using pos by (subst (1 2) conv-num-denom) (simp add: conv-num-denom
field-simps)

also have k n ∗ h (Suc n) − k (Suc n) ∗ h n = (−1) ^ n
by (rule conv-num-denom-prod-diff)

finally show ?thesis by simp
qed

lemma conv-telescope:
assumes m ≤ n
shows conv c m + (

∑
i=m..<n. (−1) ^ i / (k i ∗ k (Suc i))) = conv c n

proof −
have (

∑
i=m..<n. (−1) ^ i / (k i ∗ k (Suc i))) =

(
∑

i=m..<n. conv c (Suc i) − conv c i)
by (simp add: conv-diff-eq assms del: conv.simps)

also have conv c m + . . . = conv c n
using assms by (induction rule: dec-induct) simp-all

finally show ?thesis .
qed

lemma fib-at-top: filterlim fib at-top at-top
proof (rule filterlim-at-top-mono)

show eventually (λn. fib n ≥ n − 1) at-top
by (intro always-eventually fib-ge allI)

show filterlim (λn::nat. n − 1) at-top at-top
by (subst filterlim-sequentially-Suc [symmetric])

(simp-all add: filterlim-ident)
qed

27

lemma conv-denom-at-top: filterlim k at-top at-top
proof (rule filterlim-at-top-mono)

show filterlim (λn. int (fib (Suc n))) at-top at-top
by (rule filterlim-compose[OF filterlim-int-sequentially])

(simp add: fib-at-top filterlim-sequentially-Suc)
show eventually (λn. fib (Suc n) ≤ k n) at-top

by (intro always-eventually conv-denom-lower-bound allI)
qed

lemma
shows summable-conv-telescope:

summable (λi. (−1) ^ i / (k i ∗ k (Suc i))) (is ?th1)
and cfrac-remainder-bounds:

|(
∑

i. (−1) ^ (i + m) / (k (i + m) ∗ k (Suc i + m)))| ∈
{1/(k m ∗ (k m + k (Suc m))) <..< 1 / (k m ∗ k (Suc m))} (is ?th2)

proof −
have [simp]: k n > 0 k n ≥ 0 ¬k n = 0 for n

by (auto simp: k-def)
have k-rec: k (Suc (Suc n)) = cfrac-nth c (Suc (Suc n)) ∗ k (Suc n) + k n for n

by (simp add: k-def)
have [simp]: a + b = 0 ←→ a = 0 ∧ b = 0 if a ≥ 0 b ≥ 0 for a b :: real

using that by linarith

define g where g = (λi. inverse (real-of-int (k i ∗ k (Suc i))))

{
fix m :: nat
have filterlim (λn. k n) at-top at-top and filterlim (λn. k (Suc n)) at-top at-top

by (force simp: filterlim-sequentially-Suc intro: conv-denom-at-top)+
hence lim: g −−−−→ 0

unfolding g-def of-int-mult
by (intro tendsto-inverse-0-at-top filterlim-at-top-mult-at-top

filterlim-compose[OF filterlim-real-of-int-at-top])
from lim have A: summable (λn. (−1) ^ (n + m) ∗ g (n + m)) unfolding

g-def
by (intro summable-alternating-decreasing)

(auto intro!: conv-denom-leI mult-nonneg-nonneg)

have 1 / (k m ∗ (real-of-int (k (Suc m)) + k m / 1)) ≤
1 / (k m ∗ (k (Suc m) + k m / cfrac-nth c (m+2)))

by (intro divide-left-mono mult-left-mono add-left-mono mult-pos-pos add-pos-pos
divide-pos-pos)

(auto simp: of-nat-ge-1-iff)
also have . . . = g m − g (Suc m)

by (simp add: g-def k-rec field-simps add-pos-pos)
finally have le: 1 / (k m ∗ (real-of-int (k (Suc m)) + k m / 1)) ≤ g m − g

(Suc m) by simp
have ∗: |(

∑
i. (−1) ^ (i + m) ∗ g (i + m))| ∈ {g m − g (Suc m) <..< g m}

using lim unfolding g-def

28

by (intro abs-alternating-decreasing-suminf-strict) (auto intro!: conv-denom-lessI)
also from le have . . . ⊆ {1 / (k m ∗ (k (Suc m) + k m)) <..< g m}

by (subst greaterThanLessThan-subseteq-greaterThanLessThan) auto
finally have B: |

∑
i. (− 1) ^ (i + m) ∗ g (i + m)| ∈

note A B
} note AB = this

from AB(1)[of 0] show ?th1 by (simp add: field-simps g-def)
from AB(2)[of m] show ?th2 by (simp add: g-def divide-inverse add-ac)

qed

lemma convergent-conv: convergent (conv c)
proof −

have convergent (λn. conv c 0 + (
∑

i<n. (−1) ^ i / (k i ∗ k (Suc i))))
using summable-conv-telescope
by (intro convergent-add convergent-const)

(simp-all add: summable-iff-convergent)
also have . . . = conv c
by (rule ext, subst (2) conv-telescope [of 0, symmetric]) (simp-all add: atLeast0LessThan)
finally show ?thesis .

qed

lemma LIMSEQ-cfrac-lim: cfrac-length c = ∞ =⇒ conv c −−−−→ cfrac-lim c
using convergent-conv by (auto simp: convergent-LIMSEQ-iff cfrac-lim-def)

lemma cfrac-lim-nonneg:
assumes cfrac-nth c 0 ≥ 0
shows cfrac-lim c ≥ 0

proof (cases cfrac-length c)
case infinity
have conv c −−−−→ cfrac-lim c

by (rule LIMSEQ-cfrac-lim) fact
thus ?thesis

by (rule tendsto-lowerbound)
(auto intro!: conv-nonneg always-eventually assms)

next
case (enat l)
thus ?thesis using assms

by (auto simp: cfrac-lim-def conv-nonneg)
qed

lemma sums-cfrac-lim-minus-conv:
assumes cfrac-length c = ∞
shows (λi. (−1) ^ (i + m) / (k (i + m) ∗ k (Suc i + m))) sums (cfrac-lim c −

conv c m)
proof −

have (λn. conv c (n + m) − conv c m) −−−−→ cfrac-lim c − conv c m
by (auto intro!: tendsto-diff LIMSEQ-cfrac-lim simp: filterlim-sequentially-shift

assms)

29

also have (λn. conv c (n + m) − conv c m) =
(λn. (

∑
i=0 + m..<n + m. (−1) ^ i / (k i ∗ k (Suc i))))

by (subst conv-telescope [of m, symmetric]) simp-all
also have . . . = (λn. (

∑
i<n. (−1) ^ (i + m) / (k (i + m) ∗ k (Suc i + m))))

by (subst sum.shift-bounds-nat-ivl) (simp-all add: atLeast0LessThan)
finally show ?thesis unfolding sums-def .

qed

lemma cfrac-lim-minus-conv-upper-bound:
assumes m ≤ cfrac-length c
shows |cfrac-lim c − conv c m| ≤ 1 / (k m ∗ k (Suc m))

proof (cases cfrac-length c)
case infinity
have cfrac-lim c − conv c m = (

∑
i. (−1) ^ (i + m) / (k (i + m) ∗ k (Suc i +

m)))
using sums-cfrac-lim-minus-conv infinity by (simp add: sums-iff)

also note cfrac-remainder-bounds[of m]
finally show ?thesis by simp

next
case [simp]: (enat l)
show ?thesis
proof (cases l = m)

case True
thus ?thesis by (auto simp: cfrac-lim-def k-def)

next
case False
let ?S = (

∑
i=m..<l. (−1) ^ i ∗ (1 / real-of-int (k i ∗ k (Suc i))))

have [simp]: k n ≥ 0 k n > 0 for n
by (simp-all add: k-def)

hence cfrac-lim c − conv c m = conv c l − conv c m
by (simp add: cfrac-lim-def)

also have . . . = ?S
using assms by (subst conv-telescope [symmetric, of m]) auto

finally have cfrac-lim c − conv c m = ?S .
moreover have |?S | ≤ 1 / real-of-int (k m ∗ k (Suc m))

unfolding of-int-mult using assms False
by (intro abs-alternating-decreasing-sum-upper-bound ′ divide-nonneg-nonneg

frac-le mult-mono)
(simp-all add: conv-denom-leI del: conv-denom.simps)

ultimately show ?thesis by simp
qed

qed

lemma cfrac-lim-minus-conv-lower-bound:
assumes m < cfrac-length c
shows |cfrac-lim c − conv c m| ≥ 1 / (k m ∗ (k m + k (Suc m)))

proof (cases cfrac-length c)
case infinity
have cfrac-lim c − conv c m = (

∑
i. (−1) ^ (i + m) / (k (i + m) ∗ k (Suc i +

30

m)))
using sums-cfrac-lim-minus-conv infinity by (simp add: sums-iff)

also note cfrac-remainder-bounds[of m]
finally show ?thesis by simp

next
case [simp]: (enat l)
let ?S = (

∑
i=m..<l. (−1) ^ i ∗ (1 / real-of-int (k i ∗ k (Suc i))))

have [simp]: k n ≥ 0 k n > 0 for n
by (simp-all add: k-def)

hence cfrac-lim c − conv c m = conv c l − conv c m
by (simp add: cfrac-lim-def)

also have . . . = ?S
using assms by (subst conv-telescope [symmetric, of m]) (auto simp: split:

enat.splits)
finally have cfrac-lim c − conv c m = ?S .

moreover have |?S | ≥ 1 / (k m ∗ (k m + k (Suc m)))
proof (cases m < cfrac-length c − 1)

case False
hence [simp]: m = l − 1 and l > 0 using assms

by (auto simp: not-less)
have 1 / (k m ∗ (k m + k (Suc m))) ≤ 1 / (k m ∗ k (Suc m))

unfolding of-int-mult
by (intro divide-left-mono mult-mono mult-pos-pos) (auto intro!: add-pos-pos)

also from ‹l > 0› have {m..<l} = {m} by auto
hence 1 / (k m ∗ k (Suc m)) = |?S |

by simp
finally show ?thesis .

next
case True
with assms have less: m < l − 1

by auto
have k m + k (Suc m) > 0

by (intro add-pos-pos) (auto simp: k-def)
hence 1 / (k m ∗ (k m + k (Suc m))) ≤ 1 / (k m ∗ k (Suc m)) − 1 / (k (Suc

m) ∗ k (Suc (Suc m)))
by (simp add: divide-simps) (auto simp: k-def algebra-simps)

also have . . . ≤ |?S |
unfolding of-int-mult using less
by (intro abs-alternating-decreasing-sum-lower-bound ′ divide-nonneg-nonneg

frac-le mult-mono)
(simp-all add: conv-denom-leI del: conv-denom.simps)

finally show ?thesis .
qed
ultimately show ?thesis by simp

qed

lemma cfrac-lim-minus-conv-bounds:
assumes m < cfrac-length c

31

shows |cfrac-lim c − conv c m| ∈ {1 / (k m ∗ (k m + k (Suc m)))..1 / (k m ∗
k (Suc m))}
using cfrac-lim-minus-conv-lower-bound[of m] cfrac-lim-minus-conv-upper-bound[of

m] assms
by auto

end

lemma conv-pos ′:
assumes n > 0 cfrac-nth c 0 ≥ 0
shows conv c n > 0
using assms by (cases n) (auto simp: conv-Suc intro!: add-nonneg-pos conv-pos)

lemma conv-in-Rats [intro]: conv c n ∈ �
by (induction c n rule: conv.induct) (auto simp: conv-Suc o-def)

lemma
assumes 0 < z1 z1 ≤ z2
shows conv ′-even-mono: even n =⇒ conv ′ c n z1 ≤ conv ′ c n z2

and conv ′-odd-mono: odd n =⇒ conv ′ c n z1 ≥ conv ′ c n z2
proof −

let ?P = (λn (f ::nat⇒real⇒real).
if even n then f n z1 ≤ f n z2 else f n z1 ≥ f n z2)

have ?P n (conv ′ c) using assms
proof (induction n arbitrary: z1 z2)

case (Suc n)
note z12 = Suc.prems
consider n = 0 | even n n > 0 | odd n by force
thus ?case
proof cases

assume n = 0
thus ?thesis using Suc by (simp add: conv ′-Suc-right field-simps)

next
assume n: even n n > 0
with Suc.IH have IH : conv ′ c n z1 ≤ conv ′ c n z2

if 0 < z1 z1 ≤ z2 for z1 z2 using that by auto
show ?thesis using Suc.prems n z12

by (auto simp: conv ′-Suc-right field-simps intro!: IH add-pos-nonneg
mult-nonneg-nonneg)

next
assume n: odd n
hence [simp]: n > 0 by (auto intro!: Nat.gr0I)
from n and Suc.IH have IH : conv ′ c n z1 ≥ conv ′ c n z2

if 0 < z1 z1 ≤ z2 for z1 z2 using that by auto
show ?thesis using Suc.prems n

by (auto simp: conv ′-Suc-right field-simps
intro!: IH add-pos-nonneg mult-nonneg-nonneg)

qed

32

qed auto
thus even n =⇒ conv ′ c n z1 ≤ conv ′ c n z2

odd n =⇒ conv ′ c n z1 ≥ conv ′ c n z2 by auto
qed

lemma
shows conv-even-mono: even n =⇒ n ≤ m =⇒ conv c n ≤ conv c m

and conv-odd-mono: odd n =⇒ n ≤ m =⇒ conv c n ≥ conv c m
proof −

assume even n
have A: conv c n ≤ conv c (Suc (Suc n)) if even n for n
proof (cases n = 0)

case False
with ‹even n› show ?thesis

by (auto simp add: conv-eq-conv ′ conv ′-Suc-right intro: conv ′-even-mono)
qed (auto simp: conv-Suc)

have B: conv c n ≤ conv c (Suc n) if even n for n
proof (cases n = 0)

case False
with ‹even n› show ?thesis

by (auto simp add: conv-eq-conv ′ conv ′-Suc-right intro: conv ′-even-mono)
qed (auto simp: conv-Suc)

show conv c n ≤ conv c m if n ≤ m for m
using that

proof (induction m rule: less-induct)
case (less m)
from ‹n ≤ m› consider m = n | even m m > n | odd m m > n

by force
thus ?case
proof cases

assume m: even m m > n
with ‹even n› have m ′: m − 2 ≥ n by presburger
with m have conv c n ≤ conv c (m − 2)

by (intro less.IH) auto
also have . . . ≤ conv c (Suc (Suc (m − 2)))

using m m ′ by (intro A) auto
also have Suc (Suc (m − 2)) = m

using m by presburger
finally show ?thesis .

next
assume m: odd m m > n
hence conv c n ≤ conv c (m − 1)

by (intro less.IH) auto
also have . . . ≤ conv c (Suc (m − 1))

using m by (intro B) auto
also have Suc (m − 1) = m

using m by simp

33

finally show ?thesis .
qed simp-all

qed
next

assume odd n
have A: conv c n ≥ conv c (Suc (Suc n)) if odd n for n

using that
by (auto simp add: conv-eq-conv ′ conv ′-Suc-right odd-pos intro!: conv ′-odd-mono)

have B: conv c n ≥ conv c (Suc n) if odd n for n using that
by (auto simp add: conv-eq-conv ′ conv ′-Suc-right odd-pos intro!: conv ′-odd-mono)

show conv c n ≥ conv c m if n ≤ m for m
using that

proof (induction m rule: less-induct)
case (less m)
from ‹n ≤ m› consider m = n | even m m > n | odd m m > n

by force
thus ?case
proof cases

assume m: odd m m > n
with ‹odd n› have m ′: m − 2 ≥ n m ≥ 2 by presburger+
from m and ‹odd n› have m = Suc (Suc (m − 2)) by presburger
also have conv c . . . ≤ conv c (m − 2)

using m m ′ by (intro A) auto
also have . . . ≤ conv c n

using m m ′ by (intro less.IH) auto
finally show ?thesis .

next
assume m: even m m > n
from m have m = Suc (m − 1) by presburger
also have conv c . . . ≤ conv c (m − 1)

using m by (intro B) auto
also have . . . ≤ conv c n

using m by (intro less.IH) auto
finally show ?thesis .

qed simp-all
qed

qed

lemma
assumes m ≤ cfrac-length c
shows conv-le-cfrac-lim: even m =⇒ conv c m ≤ cfrac-lim c

and conv-ge-cfrac-lim: odd m =⇒ conv c m ≥ cfrac-lim c
proof −

have if even m then conv c m ≤ cfrac-lim c else conv c m ≥ cfrac-lim c
proof (cases cfrac-length c)

case [simp]: infinity
show ?thesis
proof (cases even m)

34

case True
have eventually (λi. conv c m ≤ conv c i) at-top
using eventually-ge-at-top[of m] by eventually-elim (rule conv-even-mono[OF

True])
hence conv c m ≤ cfrac-lim c

by (intro tendsto-lowerbound[OF LIMSEQ-cfrac-lim]) auto
thus ?thesis using True by simp

next
case False
have eventually (λi. conv c m ≥ conv c i) at-top
using eventually-ge-at-top[of m] by eventually-elim (rule conv-odd-mono[OF

False])
hence conv c m ≥ cfrac-lim c

by (intro tendsto-upperbound[OF LIMSEQ-cfrac-lim]) auto
thus ?thesis using False by simp

qed
next

case [simp]: (enat l)
show ?thesis

using conv-even-mono[of m l c] conv-odd-mono[of m l c] assms
by (auto simp: cfrac-lim-def)

qed
thus even m =⇒ conv c m ≤ cfrac-lim c and odd m =⇒ conv c m ≥ cfrac-lim c

by auto
qed

lemma cfrac-lim-ge-first: cfrac-lim c ≥ cfrac-nth c 0
using conv-le-cfrac-lim[of 0 c] by (auto simp: less-eq-enat-def split: enat.splits)

lemma cfrac-lim-pos: cfrac-nth c 0 > 0 =⇒ cfrac-lim c > 0
by (rule less-le-trans[OF - cfrac-lim-ge-first]) auto

lemma conv ′-eq-iff :
assumes 0 ≤ z1 ∨ 0 ≤ z2
shows conv ′ c n z1 = conv ′ c n z2 ←→ z1 = z2

proof
assume conv ′ c n z1 = conv ′ c n z2
thus z1 = z2 using assms
proof (induction n arbitrary: z1 z2)

case (Suc n)
show ?case
proof (cases n = 0)

case True
thus ?thesis using Suc by (auto simp: conv ′-Suc-right)

next
case False
have conv ′ c n (real-of-int (cfrac-nth c n) + 1 / z1) =

conv ′ c n (real-of-int (cfrac-nth c n) + 1 / z2) using Suc.prems
by (simp add: conv ′-Suc-right)

35

hence real-of-int (cfrac-nth c n) + 1 / z1 = real-of-int (cfrac-nth c n) + 1 /
z2

by (rule Suc.IH)
(insert Suc.prems False, auto intro!: add-nonneg-pos add-nonneg-nonneg)

with Suc.prems show z1 = z2 by simp
qed

qed auto
qed auto

lemma conv-even-mono-strict:
assumes even n n < m
shows conv c n < conv c m

proof (cases m = n + 1)
case [simp]: True
show ?thesis
proof (cases n = 0)

case True
thus ?thesis using assms by (auto simp: conv-Suc)

next
case False
hence conv ′ c n (real-of-int (cfrac-nth c n)) 6=

conv ′ c n (real-of-int (cfrac-nth c n) + 1 / real-of-int (cfrac-nth c (Suc
n)))

by (subst conv ′-eq-iff) auto
with assms have conv c n 6= conv c m

by (auto simp: conv-eq-conv ′ conv ′-eq-iff conv ′-Suc-right field-simps)
moreover from assms have conv c n ≤ conv c m

by (intro conv-even-mono) auto

ultimately show ?thesis by simp
qed

next
case False
show ?thesis
proof (cases n = 0)

case True
thus ?thesis using assms

by (cases m) (auto simp: conv-Suc conv-pos)
next

case False
have 1 + real-of-int (cfrac-nth c (n+1)) ∗ cfrac-nth c (n+2) > 0

by (intro add-pos-nonneg) auto
with assms have conv c n 6= conv c (Suc (Suc n))

unfolding conv-eq-conv ′ conv ′-Suc-right using False
by (subst conv ′-eq-iff) (auto simp: field-simps)

moreover from assms have conv c n ≤ conv c (Suc (Suc n))
by (intro conv-even-mono) auto

ultimately have conv c n < conv c (Suc (Suc n)) by simp
also have . . . ≤ conv c m using assms ‹m 6= n + 1›

36

by (intro conv-even-mono) auto
finally show ?thesis .

qed
qed

lemma conv-odd-mono-strict:
assumes odd n n < m
shows conv c n > conv c m

proof (cases m = n + 1)
case [simp]: True
from assms have n > 0 by (intro Nat.gr0I) auto
hence conv ′ c n (real-of-int (cfrac-nth c n)) 6=

conv ′ c n (real-of-int (cfrac-nth c n) + 1 / real-of-int (cfrac-nth c (Suc n)))
by (subst conv ′-eq-iff) auto

hence conv c n 6= conv c m
by (simp add: conv-eq-conv ′ conv ′-Suc-right)

moreover from assms have conv c n ≥ conv c m
by (intro conv-odd-mono) auto

ultimately show ?thesis by simp
next

case False
from assms have n > 0 by (intro Nat.gr0I) auto
have 1 + real-of-int (cfrac-nth c (n+1)) ∗ cfrac-nth c (n+2) > 0

by (intro add-pos-nonneg) auto
with assms ‹n > 0› have conv c n 6= conv c (Suc (Suc n))

unfolding conv-eq-conv ′ conv ′-Suc-right
by (subst conv ′-eq-iff) (auto simp: field-simps)

moreover from assms have conv c n ≥ conv c (Suc (Suc n))
by (intro conv-odd-mono) auto

ultimately have conv c n > conv c (Suc (Suc n)) by simp
moreover have conv c (Suc (Suc n)) ≥ conv c m using assms False

by (intro conv-odd-mono) auto
ultimately show ?thesis by linarith

qed

lemma conv-less-cfrac-lim:
assumes even n n < cfrac-length c
shows conv c n < cfrac-lim c

proof (cases cfrac-length c)
case (enat l)
with assms show ?thesis by (auto simp: cfrac-lim-def conv-even-mono-strict)

next
case [simp]: infinity
from assms have conv c n < conv c (n + 2)

by (intro conv-even-mono-strict) auto
also from assms have . . . ≤ cfrac-lim c

by (intro conv-le-cfrac-lim) auto
finally show ?thesis .

qed

37

lemma conv-gt-cfrac-lim:
assumes odd n n < cfrac-length c
shows conv c n > cfrac-lim c

proof (cases cfrac-length c)
case (enat l)
with assms show ?thesis by (auto simp: cfrac-lim-def conv-odd-mono-strict)

next
case [simp]: infinity
from assms have cfrac-lim c ≤ conv c (n + 2)

by (intro conv-ge-cfrac-lim) auto
also from assms have . . . < conv c n

by (intro conv-odd-mono-strict) auto
finally show ?thesis .

qed

lemma conv-neq-cfrac-lim:
assumes n < cfrac-length c
shows conv c n 6= cfrac-lim c
using conv-gt-cfrac-lim[OF - assms] conv-less-cfrac-lim[OF - assms]
by (cases even n) auto

lemma conv-ge-first: conv c n ≥ cfrac-nth c 0
using conv-even-mono[of 0 n c] by simp

definition cfrac-is-zero :: cfrac ⇒ bool where cfrac-is-zero c ←→ c = 0

lemma cfrac-is-zero-code [code]: cfrac-is-zero (CFrac n xs) ←→ lnull xs ∧ n = 0
unfolding cfrac-is-zero-def lnull-def zero-cfrac-def cfrac-of-int-def
by (auto simp: cfrac-length-def)

definition cfrac-is-int where cfrac-is-int c ←→ cfrac-length c = 0

lemma cfrac-is-int-code [code]: cfrac-is-int (CFrac n xs) ←→ lnull xs
unfolding cfrac-is-int-def lnull-def by (auto simp: cfrac-length-def)

lemma cfrac-length-of-int [simp]: cfrac-length (cfrac-of-int n) = 0
by transfer auto

lemma cfrac-is-int-of-int [simp, intro]: cfrac-is-int (cfrac-of-int n)
unfolding cfrac-is-int-def by simp

lemma cfrac-is-int-iff : cfrac-is-int c ←→ (∃n. c = cfrac-of-int n)
proof −

have c = cfrac-of-int (cfrac-nth c 0) if cfrac-is-int c
using that unfolding cfrac-is-int-def by transfer auto

thus ?thesis

38

by auto
qed

lemma cfrac-lim-reduce:
assumes ¬cfrac-is-int c
shows cfrac-lim c = cfrac-nth c 0 + 1 / cfrac-lim (cfrac-tl c)

proof (cases cfrac-length c)
case [simp]: infinity
have 0 < cfrac-nth (cfrac-tl c) 0

by simp
also have . . . ≤ cfrac-lim (cfrac-tl c)

by (rule cfrac-lim-ge-first)
finally have (λn. real-of-int (cfrac-nth c 0) + 1 / conv (cfrac-tl c) n) −−−−→

real-of-int (cfrac-nth c 0) + 1 / cfrac-lim (cfrac-tl c)
by (intro tendsto-intros LIMSEQ-cfrac-lim) auto

also have (λn. real-of-int (cfrac-nth c 0) + 1 / conv (cfrac-tl c) n) = conv c ◦
Suc

by (simp add: o-def conv-Suc)
finally have ∗: conv c −−−−→ real-of-int (cfrac-nth c 0) + 1 / cfrac-lim (cfrac-tl

c)
by (simp add: o-def filterlim-sequentially-Suc)

show ?thesis
by (rule tendsto-unique[OF - LIMSEQ-cfrac-lim ∗]) auto

next
case [simp]: (enat l)
from assms obtain l ′ where [simp]: l = Suc l ′

by (cases l) (auto simp: cfrac-is-int-def zero-enat-def)
thus ?thesis

by (auto simp: cfrac-lim-def conv-Suc)
qed

lemma cfrac-lim-tl:
assumes ¬cfrac-is-int c
shows cfrac-lim (cfrac-tl c) = 1 / (cfrac-lim c − cfrac-nth c 0)
using cfrac-lim-reduce[OF assms] by simp

lemma cfrac-remainder-Suc ′:
assumes n < cfrac-length c
shows cfrac-remainder c (Suc n) ∗ (cfrac-remainder c n − cfrac-nth c n) = 1

proof −
have 0 < real-of-int (cfrac-nth c (Suc n)) by simp
also have cfrac-nth c (Suc n) ≤ cfrac-remainder c (Suc n)

using cfrac-lim-ge-first[of cfrac-drop (Suc n) c]
by (simp add: cfrac-remainder-def)

finally have . . . > 0 .

have cfrac-remainder c (Suc n) = cfrac-lim (cfrac-tl (cfrac-drop n c))

39

by (simp add: o-def cfrac-remainder-def cfrac-drop-Suc-left)
also have . . . = 1 / (cfrac-remainder c n − cfrac-nth c n) using assms
by (subst cfrac-lim-tl) (auto simp: cfrac-remainder-def cfrac-is-int-def enat-less-iff

enat-0-iff)
finally show ?thesis

using ‹cfrac-remainder c (Suc n) > 0›
by (auto simp add: cfrac-remainder-def field-simps)

qed

lemma cfrac-remainder-Suc:
assumes n < cfrac-length c
shows cfrac-remainder c (Suc n) = 1 / (cfrac-remainder c n − cfrac-nth c n)

proof −
have cfrac-remainder c (Suc n) = cfrac-lim (cfrac-tl (cfrac-drop n c))

by (simp add: o-def cfrac-remainder-def cfrac-drop-Suc-left)
also have . . . = 1 / (cfrac-remainder c n − cfrac-nth c n) using assms
by (subst cfrac-lim-tl) (auto simp: cfrac-remainder-def cfrac-is-int-def enat-less-iff

enat-0-iff)
finally show ?thesis .

qed

lemma cfrac-remainder-0 [simp]: cfrac-remainder c 0 = cfrac-lim c
by (simp add: cfrac-remainder-def)

context
fixes c h k x
defines h ≡ conv-num c and k ≡ conv-denom c and x ≡ cfrac-remainder c

begin

lemma cfrac-lim-eq-num-denom-remainder-aux:
assumes Suc (Suc n) ≤ cfrac-length c
shows cfrac-lim c ∗ (k (Suc n) ∗ x (Suc (Suc n)) + k n) = h (Suc n) ∗ x (Suc

(Suc n)) + h n
using assms

proof (induction n)
case 0
have cfrac-lim c 6= cfrac-nth c 0

using conv-neq-cfrac-lim[of 0 c] 0 by (auto simp: enat-le-iff)
moreover have cfrac-nth c 1 ∗ (cfrac-lim c − cfrac-nth c 0) 6= 1

using conv-neq-cfrac-lim[of 1 c] 0
by (auto simp: enat-le-iff conv-Suc field-simps)

ultimately show ?case using assms
by (auto simp: cfrac-remainder-Suc divide-simps x-def h-def k-def enat-le-iff)

(auto simp: field-simps)
next

case (Suc n)
have less: enat (Suc (Suc n)) < cfrac-length c

using Suc.prems by (cases cfrac-length c) auto
have ∗: x (Suc (Suc n)) 6= real-of-int (cfrac-nth c (Suc (Suc n)))

40

using conv-neq-cfrac-lim[of 0 cfrac-drop (n+2) c] Suc.prems
by (cases cfrac-length c) (auto simp: x-def cfrac-remainder-def)

hence cfrac-lim c ∗ (k (Suc (Suc n)) ∗ x (Suc (Suc (Suc n))) + k (Suc n)) =
(cfrac-lim c ∗ (k (Suc n) ∗ x (Suc (Suc n)) + k n)) / (x (Suc (Suc n)) −

cfrac-nth c (Suc (Suc n)))
unfolding x-def k-def h-def using less
by (subst cfrac-remainder-Suc) (auto simp: field-simps)

also have cfrac-lim c ∗ (k (Suc n) ∗ x (Suc (Suc n)) + k n) =
h (Suc n) ∗ x (Suc (Suc n)) + h n using less

by (intro Suc.IH) auto
also have (h (Suc n) ∗ x (Suc (Suc n)) + h n) / (x (Suc (Suc n)) − cfrac-nth c

(Suc (Suc n))) =
h (Suc (Suc n)) ∗ x (Suc (Suc (Suc n))) + h (Suc n) using ∗

unfolding x-def k-def h-def using less
by (subst (3) cfrac-remainder-Suc) (auto simp: field-simps)

finally show ?case .
qed

lemma cfrac-remainder-nonneg: cfrac-nth c n ≥ 0 =⇒ cfrac-remainder c n ≥ 0
unfolding cfrac-remainder-def by (rule cfrac-lim-nonneg) auto

lemma cfrac-remainder-pos: cfrac-nth c n > 0 =⇒ cfrac-remainder c n > 0
unfolding cfrac-remainder-def by (rule cfrac-lim-pos) auto

lemma cfrac-lim-eq-num-denom-remainder :
assumes Suc (Suc n) < cfrac-length c
shows cfrac-lim c = (h (Suc n) ∗ x (Suc (Suc n)) + h n) / (k (Suc n) ∗ x (Suc

(Suc n)) + k n)
proof −

have k (Suc n) ∗ x (Suc (Suc n)) + k n > 0
by (intro add-nonneg-pos mult-nonneg-nonneg)

(auto simp: k-def x-def intro!: conv-denom-pos cfrac-remainder-nonneg)
with cfrac-lim-eq-num-denom-remainder-aux[of n] assms show ?thesis

by (auto simp add: field-simps h-def k-def x-def)
qed

lemma abs-diff-successive-convs:
shows |conv c (Suc n) − conv c n| = 1 / (k n ∗ k (Suc n))

proof −
have [simp]: k n 6= 0 for n :: nat

unfolding k-def using conv-denom-pos[of c n] by auto
have conv c (Suc n) − conv c n = h (Suc n) / k (Suc n) − h n / k n

by (simp add: conv-num-denom k-def h-def)
also have . . . = (k n ∗ h (Suc n) − k (Suc n) ∗ h n) / (k n ∗ k (Suc n))

by (simp add: field-simps)
also have k n ∗ h (Suc n) − k (Suc n) ∗ h n = (−1) ^ n

unfolding h-def k-def by (intro conv-num-denom-prod-diff)
finally show ?thesis by (simp add: k-def)

qed

41

lemma conv-denom-plus2-ratio-ge: k (Suc (Suc n)) ≥ 2 ∗ k n
proof −

have 1 ∗ k n + k n ≤ cfrac-nth c (Suc (Suc n)) ∗ k (Suc n) + k n
by (intro add-mono mult-mono)

(auto simp: k-def Suc-le-eq intro!: conv-denom-leI)
thus ?thesis by (simp add: k-def)

qed

end

lemma conv ′-cfrac-remainder :
assumes n < cfrac-length c
shows conv ′ c n (cfrac-remainder c n) = cfrac-lim c
using assms

proof (induction n arbitrary: c)
case (Suc n c)
have conv ′ c (Suc n) (cfrac-remainder c (Suc n)) =

cfrac-nth c 0 + 1 / conv ′ (cfrac-tl c) n (cfrac-remainder c (Suc n))
using Suc.prems
by (subst conv ′-Suc-left) (auto intro!: cfrac-remainder-pos)

also have cfrac-remainder c (Suc n) = cfrac-remainder (cfrac-tl c) n
by (simp add: cfrac-remainder-def cfrac-drop-Suc-right)

also have conv ′ (cfrac-tl c) n . . . = cfrac-lim (cfrac-tl c)
using Suc.prems by (subst Suc.IH) (auto simp: cfrac-remainder-def enat-less-iff)
also have cfrac-nth c 0 + 1 / . . . = cfrac-lim c
using Suc.prems by (intro cfrac-lim-reduce [symmetric]) (auto simp: cfrac-is-int-def)
finally show ?case by (simp add: cfrac-remainder-def cfrac-drop-Suc-right)

qed auto

lemma cfrac-lim-rational [intro]:
assumes cfrac-length c < ∞
shows cfrac-lim c ∈ �
using assms by (cases cfrac-length c) (auto simp: cfrac-lim-def)

lemma linfinite-cfrac-of-real-aux:
x /∈ � =⇒ x ∈ {0<..<1} =⇒ linfinite (cfrac-of-real-aux x)

proof (coinduction arbitrary: x)
case (linfinite x)
hence 1 / x /∈ � using Rats-divide[of 1 1 / x] by auto
thus ?case using linfinite Ints-subset-Rats

by (intro disjI1 exI [of - nat b1/xc − 1] exI [of - cfrac-of-real-aux (frac (1/x))]
exI [of - frac (1/x)] conjI)

(auto simp: cfrac-of-real-aux.code[of x] frac-lt-1)
qed

lemma cfrac-length-of-real-irrational:
assumes x /∈ �
shows cfrac-length (cfrac-of-real x) = ∞

42

proof (insert assms, transfer , clarify)
fix x :: real assume x /∈ �
thus l length (cfrac-of-real-aux (frac x)) = ∞

using linfinite-cfrac-of-real-aux[of frac x] Ints-subset-Rats
by (auto simp: linfinite-conv-llength frac-lt-1)

qed

lemma cfrac-length-of-real-reduce:
assumes x /∈ �
shows cfrac-length (cfrac-of-real x) = eSuc (cfrac-length (cfrac-of-real (1 / frac

x)))
using assms
by (transfer , subst cfrac-of-real-aux.code) (auto simp: frac-lt-1)

lemma cfrac-length-of-real-int [simp]: x ∈ � =⇒ cfrac-length (cfrac-of-real x) = 0
by transfer auto

lemma conv-cfrac-of-real-le-ge:
assumes n ≤ cfrac-length (cfrac-of-real x)
shows if even n then conv (cfrac-of-real x) n ≤ x else conv (cfrac-of-real x) n
≥ x

using assms
proof (induction n arbitrary: x)

case (Suc n x)
hence [simp]: x /∈ �

using Suc by (auto simp: enat-0-iff)
let ?x ′ = 1 / frac x
have enat n ≤ cfrac-length (cfrac-of-real (1 / frac x))
using Suc.prems by (auto simp: cfrac-length-of-real-reduce simp flip: eSuc-enat)
hence IH : if even n then conv (cfrac-of-real ?x ′) n ≤ ?x ′ else ?x ′ ≤ conv

(cfrac-of-real ?x ′) n
using Suc.prems by (intro Suc.IH) auto

have remainder-pos: conv (cfrac-of-real ?x ′) n > 0
by (rule conv-pos) (auto simp: frac-le-1)

show ?case
proof (cases even n)

case True
have x ≤ real-of-int bxc + frac x

by (simp add: frac-def)
also have frac x ≤ 1 / conv (cfrac-of-real ?x ′) n

using IH True remainder-pos frac-gt-0-iff [of x] by (simp add: field-simps)
finally show ?thesis using True

by (auto simp: conv-Suc cfrac-tl-of-real)
next

case False
have real-of-int bxc + 1 / conv (cfrac-of-real ?x ′) n ≤ real-of-int bxc + frac x

using IH False remainder-pos frac-gt-0-iff [of x] by (simp add: field-simps)
also have . . . = x

by (simp add: frac-def)

43

finally show ?thesis using False
by (auto simp: conv-Suc cfrac-tl-of-real)

qed
qed auto

lemma cfrac-lim-of-real [simp]: cfrac-lim (cfrac-of-real x) = x
proof (cases cfrac-length (cfrac-of-real x))

case (enat l)
hence conv (cfrac-of-real x) l = x
proof (induction l arbitrary: x)

case 0
hence x ∈ �

using cfrac-length-of-real-reduce zero-enat-def by fastforce
thus ?case by (auto elim: Ints-cases)

next
case (Suc l x)
hence [simp]: x /∈ �

by (auto simp: enat-0-iff)
have eSuc (cfrac-length (cfrac-of-real (1 / frac x))) = enat (Suc l)

using Suc.prems by (auto simp: cfrac-length-of-real-reduce)
hence conv (cfrac-of-real (1 / frac x)) l = 1 / frac x

by (intro Suc.IH) (auto simp flip: eSuc-enat)
thus ?case

by (simp add: conv-Suc cfrac-tl-of-real frac-def)
qed
thus ?thesis by (simp add: enat cfrac-lim-def)

next
case [simp]: infinity
have lim: conv (cfrac-of-real x) −−−−→ cfrac-lim (cfrac-of-real x)

by (simp add: LIMSEQ-cfrac-lim)
have cfrac-lim (cfrac-of-real x) ≤ x
proof (rule tendsto-upperbound)

show (λn. conv (cfrac-of-real x) (n ∗ 2)) −−−−→ cfrac-lim (cfrac-of-real x)
by (intro filterlim-compose[OF lim] mult-nat-right-at-top) auto

show eventually (λn. conv (cfrac-of-real x) (n ∗ 2) ≤ x) at-top
using conv-cfrac-of-real-le-ge[of n ∗ 2 x for n] by (intro always-eventually)

auto
qed auto
moreover have cfrac-lim (cfrac-of-real x) ≥ x
proof (rule tendsto-lowerbound)

show (λn. conv (cfrac-of-real x) (Suc (n ∗ 2))) −−−−→ cfrac-lim (cfrac-of-real
x)

by (intro filterlim-compose[OF lim] filterlim-compose[OF filterlim-Suc]
mult-nat-right-at-top) auto

show eventually (λn. conv (cfrac-of-real x) (Suc (n ∗ 2)) ≥ x) at-top
using conv-cfrac-of-real-le-ge[of Suc (n ∗ 2) x for n] by (intro always-eventually)

auto
qed auto
ultimately show ?thesis by (rule antisym)

44

qed

lemma Ints-add-left-cancel: x ∈ � =⇒ x + y ∈ � ←→ y ∈ �
using Ints-diff [of x + y x] by auto

lemma Ints-add-right-cancel: y ∈ � =⇒ x + y ∈ � ←→ x ∈ �
using Ints-diff [of x + y y] by auto

lemma cfrac-of-real-conv ′:
fixes m n :: nat
assumes x > 1 m < n
shows cfrac-nth (cfrac-of-real (conv ′ c n x)) m = cfrac-nth c m
using assms

proof (induction n arbitrary: c m)
case (Suc n c m)
from Suc.prems have gt-1: 1 < conv ′ (cfrac-tl c) n x

by (intro conv ′-gt-1) (auto simp: enat-le-iff intro: cfrac-nth-pos)
show ?case
proof (cases m)

case 0
thus ?thesis using gt-1 Suc.prems

by (simp add: conv ′-Suc-left nat-add-distrib floor-eq-iff)
next

case (Suc m ′)
from gt-1 have 1 / conv ′ (cfrac-tl c) n x ∈ {0<..<1}

by auto
have 1 / conv ′ (cfrac-tl c) n x /∈ �
proof

assume 1 / conv ′ (cfrac-tl c) n x ∈ �
then obtain k :: int where k: 1 / conv ′ (cfrac-tl c) n x = of-int k

by (elim Ints-cases)
have real-of-int k ∈ {0<..<1}

using gt-1 by (subst k [symmetric]) auto
thus False by auto

qed
hence not-int: real-of-int (cfrac-nth c 0) + 1 / conv ′ (cfrac-tl c) n x /∈ �

by (subst Ints-add-left-cancel) (auto simp: field-simps elim!: Ints-cases)
have cfrac-nth (cfrac-of-real (conv ′ c (Suc n) x)) m =

cfrac-nth (cfrac-of-real (of-int (cfrac-nth c 0) + 1 / conv ′ (cfrac-tl c) n x))
(Suc m ′)

using ‹x > 1› by (subst conv ′-Suc-left) (auto simp: Suc)
also have . . . = cfrac-nth (cfrac-of-real (1 / frac (1 / conv ′ (cfrac-tl c) n x)))

m ′

using ‹x > 1› Suc not-int by (subst cfrac-nth-of-real-Suc) (auto simp:
frac-add-of-int)

also have 1 / conv ′ (cfrac-tl c) n x ∈ {0<..<1} using gt-1
by (auto simp: field-simps)

hence frac (1 / conv ′ (cfrac-tl c) n x) = 1 / conv ′ (cfrac-tl c) n x
by (subst frac-eq) auto

45

hence 1 / frac (1 / conv ′ (cfrac-tl c) n x) = conv ′ (cfrac-tl c) n x
by simp

also have cfrac-nth (cfrac-of-real . . .) m ′ = cfrac-nth c m
using Suc.prems by (subst Suc.IH) (auto simp: Suc enat-le-iff)

finally show ?thesis .
qed

qed simp-all

lemma cfrac-lim-irrational:
assumes [simp]: cfrac-length c = ∞
shows cfrac-lim c /∈ �

proof
assume cfrac-lim c ∈ �
then obtain a :: int and b :: nat where ab: b > 0 cfrac-lim c = a / b

by (auto simp: Rats-eq-int-div-nat)
define h and k where h = conv-num c and k = conv-denom c

have filterlim (λm. conv-denom c (Suc m)) at-top at-top
using conv-denom-at-top filterlim-Suc by (rule filterlim-compose)

then obtain m where m: conv-denom c (Suc m) ≥ b + 1
by (auto simp: filterlim-at-top eventually-at-top-linorder)

have ∗: (a ∗ k m − b ∗ h m) / (k m ∗ b) = a / b − h m / k m
using ‹b > 0› by (simp add: field-simps k-def)

have |cfrac-lim c − conv c m| = |(a ∗ k m − b ∗ h m) / (k m ∗ b)|
by (subst ∗) (auto simp: ab h-def k-def conv-num-denom)

also have . . . = |a ∗ k m − b ∗ h m| / (k m ∗ b)
by (simp add: k-def)

finally have eq: |cfrac-lim c − conv c m| = of-int |a ∗ k m − b ∗ h m| / of-int
(k m ∗ b) .

have |cfrac-lim c − conv c m| ∗ (k m ∗ b) 6= 0
using conv-neq-cfrac-lim[of m c] ‹b > 0› by (auto simp: k-def)

also have |cfrac-lim c − conv c m| ∗ (k m ∗ b) = of-int |a ∗ k m − b ∗ h m|
using ‹b > 0› by (subst eq) (auto simp: k-def)

finally have |a ∗ k m − b ∗ h m| ≥ 1 by linarith
hence real-of-int |a ∗ k m − b ∗ h m| ≥ 1 by linarith
hence 1 / of-int (k m ∗ b) ≤ of-int |a ∗ k m − b ∗ h m| / real-of-int (k m ∗ b)

using ‹b > 0› by (intro divide-right-mono) (auto simp: k-def)
also have . . . = |cfrac-lim c − conv c m|

by (rule eq [symmetric])
also have . . . ≤ 1 / real-of-int (conv-denom c m ∗ conv-denom c (Suc m))

by (intro cfrac-lim-minus-conv-upper-bound) auto
also have . . . = 1 / (real-of-int (k m) ∗ real-of-int (k (Suc m)))

by (simp add: k-def)
also have . . . < 1 / (real-of-int (k m) ∗ real b)

using m ‹b > 0›
by (intro divide-strict-left-mono mult-strict-left-mono) (auto simp: k-def)

finally show False by simp

46

qed

lemma cfrac-infinite-iff : cfrac-length c = ∞ ←→ cfrac-lim c /∈ �
using cfrac-lim-irrational[of c] cfrac-lim-rational[of c] by auto

lemma cfrac-lim-rational-iff : cfrac-lim c ∈ � ←→ cfrac-length c 6= ∞
using cfrac-lim-irrational[of c] cfrac-lim-rational[of c] by auto

lemma cfrac-of-real-infinite-iff [simp]: cfrac-length (cfrac-of-real x) = ∞ ←→ x /∈
�

by (simp add: cfrac-infinite-iff)

lemma cfrac-remainder-rational-iff [simp]:
cfrac-remainder c n ∈ � ←→ cfrac-length c < ∞

proof −
have cfrac-remainder c n ∈ � ←→ cfrac-lim (cfrac-drop n c) ∈ �

by (simp add: cfrac-remainder-def)
also have . . . ←→ cfrac-length c 6= ∞

by (cases cfrac-length c) (auto simp add: cfrac-lim-rational-iff)
finally show ?thesis by simp

qed

lift-definition cfrac-cons :: int ⇒ cfrac ⇒ cfrac is
λa bs. case bs of (b, bs) ⇒ if b ≤ 0 then (1, LNil) else (a, LCons (nat (b − 1))

bs) .

lemma cfrac-nth-cons:
assumes cfrac-nth x 0 ≥ 1
shows cfrac-nth (cfrac-cons a x) n = (if n = 0 then a else cfrac-nth x (n − 1))
using assms

proof (transfer , goal-cases)
case (1 x a n)
obtain b bs where [simp]: x = (b, bs)

by (cases x)
show ?case using 1

by (cases llength bs) (auto simp: lnth-LCons eSuc-enat le-imp-diff-is-add split:
nat.splits)
qed

lemma cfrac-length-cons [simp]:
assumes cfrac-nth x 0 ≥ 1
shows cfrac-length (cfrac-cons a x) = eSuc (cfrac-length x)
using assms by transfer auto

lemma cfrac-tl-cons [simp]:
assumes cfrac-nth x 0 ≥ 1
shows cfrac-tl (cfrac-cons a x) = x
using assms by transfer auto

47

lemma cfrac-cons-tl:
assumes ¬cfrac-is-int x
shows cfrac-cons (cfrac-nth x 0) (cfrac-tl x) = x
using assms unfolding cfrac-is-int-def
by transfer (auto split: l list.splits)

1.3 Non-canonical continued fractions

As we will show later, every irrational number has a unique continued frac-
tion expansion. Every rational number x, however, has two different expan-
sions: The canonical one ends with some number n (which is not equal to 1
unless x = 1) and a non-canonical one which ends with n− 1, 1.
We now define this non-canonical expansion analogously to the canonical
one before and show its characteristic properties:

• The length of the non-canonical expansion is one greater than that of
the canonical one.

• If the expansion is infinite, the non-canonical and the canonical one
coincide.

• The coefficients of the expansions are all equal except for the last two.
The last coefficient of the non-canonical expansion is always 1, and the
second to last one is the last of the canonical one minus 1.

lift-definition cfrac-canonical :: cfrac ⇒ bool is
λ(x, xs). ¬lfinite xs ∨ lnull xs ∨ l last xs 6= 0 .

lemma cfrac-canonical [code]:
cfrac-canonical (CFrac x xs) ←→ lnull xs ∨ l last xs 6= 0 ∨ ¬lfinite xs
by (auto simp add: cfrac-canonical-def)

lemma cfrac-canonical-iff :
cfrac-canonical c ←→

cfrac-length c ∈ {0, ∞} ∨ cfrac-nth c (the-enat (cfrac-length c)) 6= 1
proof (transfer , clarify, goal-cases)

case (1 x xs)
show ?case

by (cases llength xs)
(auto simp: l last-def enat-0 lfinite-conv-llength-enat split: nat.splits)

qed

lemma l last-cfrac-of-real-aux-nonzero:
assumes lfinite (cfrac-of-real-aux x) ¬lnull (cfrac-of-real-aux x)
shows l last (cfrac-of-real-aux x) 6= 0
using assms

proof (induction cfrac-of-real-aux x arbitrary: x rule: lfinite-induct)

48

case (LCons x)
from LCons.prems have x ∈ {0<..<1}

by (subst (asm) cfrac-of-real-aux.code) (auto split: if-splits)
show ?case
proof (cases 1 / x ∈ �)

case False
thus ?thesis using LCons

by (auto simp: l last-LCons frac-lt-1 cfrac-of-real-aux.code[of x])
next

case True
then obtain n where n: 1 / x = of-int n

by (elim Ints-cases)
have 1 / x > 1 using ‹x ∈ -› by auto
with n have n > 1 by simp
from n have x = 1 / of-int n

using ‹n > 1› ‹x ∈ -› by (simp add: field-simps)
with ‹n > 1› show ?thesis
using LCons cfrac-of-real-aux.code[of x] by (auto simp: l last-LCons frac-lt-1)

qed
qed auto

lemma cfrac-canonical-of-real [intro]: cfrac-canonical (cfrac-of-real x)
by (transfer fixing: x) (use llast-cfrac-of-real-aux-nonzero[of frac x] in force)

primcorec cfrac-of-real-alt-aux :: real ⇒ nat llist where
cfrac-of-real-alt-aux x =

(if x ∈ {0<..<1} then
if 1 / x ∈ � then

LCons (nat b1/xc − 2) (LCons 0 LNil)
else LCons (nat b1/xc − 1) (cfrac-of-real-alt-aux (frac (1/x)))

else LNil)

lemma cfrac-of-real-aux-alt-LNil [simp]: x /∈ {0<..<1} =⇒ cfrac-of-real-alt-aux x
= LNil

by (subst cfrac-of-real-alt-aux.code) auto

lemma cfrac-of-real-aux-alt-0 [simp]: cfrac-of-real-alt-aux 0 = LNil
by (subst cfrac-of-real-alt-aux.code) auto

lemma cfrac-of-real-aux-alt-eq-LNil-iff [simp]: cfrac-of-real-alt-aux x = LNil ←→
x /∈ {0<..<1}

by (subst cfrac-of-real-alt-aux.code) auto

lift-definition cfrac-of-real-alt :: real ⇒ cfrac is
λx. if x ∈ � then (bxc − 1, LCons 0 LNil) else (bxc, cfrac-of-real-alt-aux (frac

x)) .

lemma cfrac-tl-of-real-alt:
assumes x /∈ �

49

shows cfrac-tl (cfrac-of-real-alt x) = cfrac-of-real-alt (1 / frac x)
using assms

proof (transfer , goal-cases)
case (1 x)
show ?case
proof (cases 1 / frac x ∈ �)

case False
from 1 have int (nat b1 / frac xc − Suc 0) + 1 = b1 / frac xc

by (subst of-nat-diff) (auto simp: le-nat-iff frac-le-1)
with False show ?thesis

using ‹x /∈ �›
by (subst cfrac-of-real-alt-aux.code) (auto split: l list.splits simp: frac-lt-1)

next
case True
then obtain n where 1 / frac x = of-int n

by (auto simp: Ints-def)
moreover have 1 / frac x > 1

using 1 by (auto simp: divide-simps frac-lt-1)
ultimately have 1 / frac x ≥ 2

by simp
hence int (nat b1 / frac xc − 2) + 2 = b1 / frac xc

by (subst of-nat-diff) (auto simp: le-nat-iff frac-le-1)
thus ?thesis

using ‹x /∈ �›
by (subst cfrac-of-real-alt-aux.code) (auto split: l list.splits simp: frac-lt-1)

qed
qed

lemma cfrac-nth-of-real-alt-Suc:
assumes x /∈ �
shows cfrac-nth (cfrac-of-real-alt x) (Suc n) = cfrac-nth (cfrac-of-real-alt (1 /

frac x)) n
proof −

have cfrac-nth (cfrac-of-real-alt x) (Suc n) =
cfrac-nth (cfrac-tl (cfrac-of-real-alt x)) n

by simp
also have cfrac-tl (cfrac-of-real-alt x) = cfrac-of-real-alt (1 / frac x)

by (simp add: cfrac-tl-of-real-alt assms)
finally show ?thesis .

qed

lemma cfrac-nth-gt0-of-real-int [simp]:
m > 0 =⇒ cfrac-nth (cfrac-of-real (of-int n)) m = 1
by transfer (auto simp: lnth-LCons eSuc-def enat-0-iff split: nat.splits)

lemma cfrac-nth-0-of-real-alt-int [simp]:
cfrac-nth (cfrac-of-real-alt (of-int n)) 0 = n − 1
by transfer auto

50

lemma cfrac-nth-gt0-of-real-alt-int [simp]:
m > 0 =⇒ cfrac-nth (cfrac-of-real-alt (of-int n)) m = 1
by transfer (auto simp: lnth-LCons eSuc-def split: nat.splits)

lemma l length-cfrac-of-real-alt-aux:
assumes x ∈ {0<..<1}
shows l length (cfrac-of-real-alt-aux x) = eSuc (l length (cfrac-of-real-aux x))
using assms

proof (coinduction arbitrary: x rule: enat-coinduct)
case (Eq-enat x)
show ?case
proof (cases 1 / x ∈ �)

case False
with Eq-enat have frac (1 / x) ∈ {0<..<1}

by (auto intro: frac-lt-1)
hence ∃ x ′. l length (cfrac-of-real-alt-aux (frac (1 / x))) =

l length (cfrac-of-real-alt-aux x ′) ∧
l length (cfrac-of-real-aux (frac (1 / x))) = l length (cfrac-of-real-aux x ′)

∧
0 < x ′ ∧ x ′ < 1

by (intro exI [of - frac (1 / x)]) auto
thus ?thesis using False Eq-enat

by (auto simp: cfrac-of-real-alt-aux.code[of x] cfrac-of-real-aux.code[of x])
qed (use Eq-enat in ‹auto simp: cfrac-of-real-alt-aux.code[of x] cfrac-of-real-aux.code[of

x]›)
qed

lemma cfrac-length-of-real-alt:
cfrac-length (cfrac-of-real-alt x) = eSuc (cfrac-length (cfrac-of-real x))
by transfer (auto simp: l length-cfrac-of-real-alt-aux frac-lt-1)

lemma cfrac-of-real-alt-aux-eq-regular :
assumes x ∈ {0<..<1} l length (cfrac-of-real-aux x) = ∞
shows cfrac-of-real-alt-aux x = cfrac-of-real-aux x
using assms

proof (coinduction arbitrary: x)
case (Eq-llist x)
hence ∃ x ′. cfrac-of-real-aux (frac (1 / x)) =

cfrac-of-real-aux x ′ ∧
cfrac-of-real-alt-aux (frac (1 / x)) =
cfrac-of-real-alt-aux x ′ ∧ 0 < x ′ ∧ x ′ < 1 ∧ l length (cfrac-of-real-aux x ′) =

∞
by (intro exI [of - frac (1 / x)])

(auto simp: cfrac-of-real-aux.code[of x] cfrac-of-real-alt-aux.code[of x]
eSuc-eq-infinity-iff frac-lt-1)

with Eq-llist show ?case
by (auto simp: eSuc-eq-infinity-iff)

qed

51

lemma cfrac-of-real-alt-irrational [simp]:
assumes x /∈ �
shows cfrac-of-real-alt x = cfrac-of-real x

proof −
from assms have cfrac-length (cfrac-of-real x) = ∞

using cfrac-length-of-real-irrational by blast
with assms show ?thesis

by transfer
(use Ints-subset-Rats in

‹auto intro!: cfrac-of-real-alt-aux-eq-regular simp: frac-lt-1 llength-cfrac-of-real-alt-aux›)
qed

lemma cfrac-nth-of-real-alt-0:
cfrac-nth (cfrac-of-real-alt x) 0 = (if x ∈ � then bxc − 1 else bxc)
by transfer auto

lemma cfrac-nth-of-real-alt:
fixes n :: nat and x :: real
defines c ≡ cfrac-of-real x
defines c ′ ≡ cfrac-of-real-alt x
defines l ≡ cfrac-length c
shows cfrac-nth c ′ n =

(if enat n = l then
cfrac-nth c n − 1

else if enat n = l + 1 then
1

else
cfrac-nth c n)

unfolding c-def c ′-def l-def
proof (induction n arbitrary: x rule: less-induct)

case (less n)
consider x /∈ � | x ∈ � | n = 0 x ∈ � − � | n ′ where n = Suc n ′ x ∈ � − �

by (cases n) auto
thus ?case
proof cases

assume x /∈ �
thus ?thesis

by (auto simp: cfrac-length-of-real-irrational)
next

assume x ∈ �
thus ?thesis

by (auto simp: Ints-def one-enat-def zero-enat-def)
next

assume ∗: n = 0 x ∈ � − �
have enat 0 6= cfrac-length (cfrac-of-real x) + 1

using zero-enat-def by auto
moreover have enat 0 6= cfrac-length (cfrac-of-real x)

using ∗ cfrac-length-of-real-reduce zero-enat-def by auto
ultimately show ?thesis using ∗

52

by (auto simp: cfrac-nth-of-real-alt-0)
next

fix n ′ assume ∗: n = Suc n ′ x ∈ � − �
from less.IH [of n ′ 1 / frac x] and ∗ show ?thesis
by (auto simp: cfrac-nth-of-real-Suc cfrac-nth-of-real-alt-Suc cfrac-length-of-real-reduce

eSuc-def one-enat-def enat-0-iff split: enat.splits)
qed

qed

lemma cfrac-of-real-length-eq-0-iff : cfrac-length (cfrac-of-real x) = 0 ←→ x ∈ �
by transfer (auto simp: frac-lt-1)

lemma conv ′-cong:
assumes (

∧
k. k < n =⇒ cfrac-nth c k = cfrac-nth c ′ k) n = n ′ x = y

shows conv ′ c n x = conv ′ c ′ n ′ y
using assms(1) unfolding assms(2,3) [symmetric]
by (induction n arbitrary: x) (auto simp: conv ′-Suc-right)

lemma conv-cong:
assumes (

∧
k. k ≤ n =⇒ cfrac-nth c k = cfrac-nth c ′ k) n = n ′

shows conv c n = conv c ′ n ′

using assms(1) unfolding assms(2) [symmetric]
by (induction n arbitrary: c c ′) (auto simp: conv-Suc)

lemma conv ′-cfrac-of-real-alt:
assumes enat n ≤ cfrac-length (cfrac-of-real x)
shows conv ′ (cfrac-of-real-alt x) n y = conv ′ (cfrac-of-real x) n y

proof (cases cfrac-length (cfrac-of-real x))
case infinity
thus ?thesis by auto

next
case [simp]: (enat l ′)
with assms show ?thesis

by (intro conv ′-cong refl; subst cfrac-nth-of-real-alt) (auto simp: one-enat-def)
qed

lemma cfrac-lim-of-real-alt [simp]: cfrac-lim (cfrac-of-real-alt x) = x
proof (cases cfrac-length (cfrac-of-real x))

case infinity
thus ?thesis by auto

next
case (enat l)
thus ?thesis
proof (induction l arbitrary: x)

case 0
hence x ∈ �

using cfrac-of-real-length-eq-0-iff zero-enat-def by auto
thus ?case

53

by (auto simp: Ints-def cfrac-lim-def cfrac-length-of-real-alt eSuc-def conv-Suc)
next

case (Suc l x)
hence ∗: ¬cfrac-is-int (cfrac-of-real-alt x) x /∈ �

by (auto simp: cfrac-is-int-def cfrac-length-of-real-alt Ints-def zero-enat-def
eSuc-def)

hence cfrac-lim (cfrac-of-real-alt x) =
of-int bxc + 1 / cfrac-lim (cfrac-tl (cfrac-of-real-alt x))

by (subst cfrac-lim-reduce) (auto simp: cfrac-nth-of-real-alt-0)
also have cfrac-length (cfrac-of-real (1 / frac x)) = l
using Suc.prems ∗ by (metis cfrac-length-of-real-reduce eSuc-enat eSuc-inject)

hence 1 / cfrac-lim (cfrac-tl (cfrac-of-real-alt x)) = frac x
by (subst cfrac-tl-of-real-alt[OF ∗(2)], subst Suc) (use Suc.prems ∗ in auto)

also have real-of-int bxc + frac x = x
by (simp add: frac-def)

finally show ?case .
qed

qed

lemma cfrac-eqI :
assumes cfrac-length c = cfrac-length c ′ and

∧
n. cfrac-nth c n = cfrac-nth c ′ n

shows c = c ′

proof (use assms in transfer , safe, goal-cases)
case (1 a xs b ys)
from 1(2)[of 0] show ?case

by auto
next

case (2 a xs b ys)
define f where f = (λxs n. if enat (Suc n) ≤ l length xs then int (lnth xs n) +

1 else 1)
have ∀n. f xs n = f ys n

using 2(2)[of Suc n for n] by (auto simp: f-def cong: if-cong)
with 2(1) show xs = ys
proof (coinduction arbitrary: xs ys)

case (Eq-llist xs ys)
show ?case
proof (cases lnull xs ∨ lnull ys)

case False
from False have ∗: enat (Suc 0) ≤ l length ys

using Suc-ile-eq zero-enat-def by auto
have l length (ltl xs) = l length (ltl ys)

using Eq-llist by (cases xs; cases ys) auto
moreover have lhd xs = lhd ys

using False ∗ Eq-llist(1) spec[OF Eq-llist(2), of 0]
by (auto simp: f-def lnth-0-conv-lhd)

moreover have f (ltl xs) n = f (ltl ys) n for n
using Eq-llist(1) ∗ spec[OF Eq-llist(2), of Suc n]
by (cases xs; cases ys) (auto simp: f-def Suc-ile-eq split: if-splits)

ultimately show ?thesis

54

using False by auto
next

case True
thus ?thesis

using Eq-llist(1) by auto
qed

qed
qed

lemma cfrac-eq-0I :
assumes cfrac-lim c = 0 cfrac-nth c 0 ≥ 0
shows c = 0

proof −
have ∗: cfrac-is-int c
proof (rule ccontr)

assume ∗: ¬cfrac-is-int c
from ∗ have conv c 0 < cfrac-lim c
by (intro conv-less-cfrac-lim) (auto simp: cfrac-is-int-def simp flip: zero-enat-def)
hence cfrac-nth c 0 < 0

using assms by simp
thus False

using assms by simp
qed
from ∗ assms have cfrac-nth c 0 = 0

by (auto simp: cfrac-lim-def cfrac-is-int-def)
from ∗ and this show c = 0

unfolding zero-cfrac-def cfrac-is-int-def by transfer auto
qed

lemma cfrac-eq-1I :
assumes cfrac-lim c = 1 cfrac-nth c 0 6= 0
shows c = 1

proof −
have ∗: cfrac-is-int c
proof (rule ccontr)

assume ∗: ¬cfrac-is-int c
from ∗ have conv c 0 < cfrac-lim c
by (intro conv-less-cfrac-lim) (auto simp: cfrac-is-int-def simp flip: zero-enat-def)
hence cfrac-nth c 0 < 0

using assms by simp

have cfrac-lim c = real-of-int (cfrac-nth c 0) + 1 / cfrac-lim (cfrac-tl c)
using ∗ by (subst cfrac-lim-reduce) auto

also have real-of-int (cfrac-nth c 0) < 0
using ‹cfrac-nth c 0 < 0› by simp

also have 1 / cfrac-lim (cfrac-tl c) ≤ 1
proof −

have 1 ≤ cfrac-nth (cfrac-tl c) 0
by auto

55

also have . . . ≤ cfrac-lim (cfrac-tl c)
by (rule cfrac-lim-ge-first)

finally show ?thesis by simp
qed
finally show False

using assms by simp
qed

from ∗ assms have cfrac-nth c 0 = 1
by (auto simp: cfrac-lim-def cfrac-is-int-def)

from ∗ and this show c = 1
unfolding one-cfrac-def cfrac-is-int-def by transfer auto

qed

lemma cfrac-coinduct [coinduct type: cfrac]:
assumes R c1 c2
assumes IH :

∧
c1 c2. R c1 c2 =⇒

cfrac-is-int c1 = cfrac-is-int c2 ∧
cfrac-nth c1 0 = cfrac-nth c2 0 ∧
(¬cfrac-is-int c1 −→ ¬cfrac-is-int c2 −→ R (cfrac-tl c1) (cfrac-tl c2))

shows c1 = c2
proof (rule cfrac-eqI)

show cfrac-nth c1 n = cfrac-nth c2 n for n
using assms(1)

proof (induction n arbitrary: c1 c2)
case 0
from IH [OF this] show ?case

by auto
next

case (Suc n)
thus ?case

using IH by (metis cfrac-is-int-iff cfrac-nth-0-of-int cfrac-nth-tl)
qed

next
show cfrac-length c1 = cfrac-length c2

using assms(1)
proof (coinduction arbitrary: c1 c2 rule: enat-coinduct)

case (Eq-enat c1 c2)
show ?case
proof (cases cfrac-is-int c1)

case True
thus ?thesis

using IH [OF Eq-enat(1)] by (auto simp: cfrac-is-int-def)
next

case False
with IH [OF Eq-enat(1)] have ∗∗: ¬cfrac-is-int c1 R (cfrac-tl c1) (cfrac-tl c2)

by auto
have ∗: (cfrac-length c1 = 0) = (cfrac-length c2 = 0)

using IH [OF Eq-enat(1)] by (auto simp: cfrac-is-int-def)

56

show ?thesis
by (intro conjI impI disjI1 ∗, rule exI [of - cfrac-tl c1], rule exI [of - cfrac-tl

c2])
(use ∗∗ in ‹auto simp: epred-conv-minus›)

qed
qed

qed

lemma cfrac-nth-0-cases:
cfrac-nth c 0 = bcfrac-lim cc ∨ cfrac-nth c 0 = bcfrac-lim cc − 1 ∧ cfrac-tl c

= 1
proof (cases cfrac-is-int c)

case True
hence cfrac-nth c 0 = bcfrac-lim cc

by (auto simp: cfrac-lim-def cfrac-is-int-def)
thus ?thesis by blast

next
case False
note not-int = this
have bounds: 1 / cfrac-lim (cfrac-tl c) ≥ 0 ∧ 1 / cfrac-lim (cfrac-tl c) ≤ 1
proof −

have 1 ≤ cfrac-nth (cfrac-tl c) 0
by simp

also have . . . ≤ cfrac-lim (cfrac-tl c)
by (rule cfrac-lim-ge-first)

finally show ?thesis
using False by (auto simp: cfrac-lim-nonneg)

qed

thus ?thesis
proof (cases cfrac-lim (cfrac-tl c) = 1)

case False
have bcfrac-lim cc = cfrac-nth c 0 + b1 / cfrac-lim (cfrac-tl c)c

using not-int by (subst cfrac-lim-reduce) auto
also have 1 / cfrac-lim (cfrac-tl c) ≥ 0 ∧ 1 / cfrac-lim (cfrac-tl c) < 1

using bounds False by (auto simp: divide-simps)
hence b1 / cfrac-lim (cfrac-tl c)c = 0

by linarith
finally show ?thesis by simp

next
case True
have cfrac-nth c 0 = bcfrac-lim cc − 1

using not-int True by (subst cfrac-lim-reduce) auto
moreover have cfrac-tl c = 1

using True by (intro cfrac-eq-1I) auto
ultimately show ?thesis by blast

qed
qed

57

lemma cfrac-length-1 [simp]: cfrac-length 1 = 0
unfolding one-cfrac-def by simp

lemma cfrac-nth-1 [simp]: cfrac-nth 1 m = 1
unfolding one-cfrac-def by transfer (auto simp: enat-0-iff)

lemma cfrac-lim-1 [simp]: cfrac-lim 1 = 1
by (auto simp: cfrac-lim-def)

lemma cfrac-nth-0-not-int:
assumes cfrac-lim c /∈ �
shows cfrac-nth c 0 = bcfrac-lim cc

proof −
have cfrac-tl c 6= 1
proof

assume eq: cfrac-tl c = 1
have ¬cfrac-is-int c

using assms by (auto simp: cfrac-lim-def cfrac-is-int-def)
hence cfrac-lim c = of-int bcfrac-nth c 0c + 1

using eq by (subst cfrac-lim-reduce) auto
hence cfrac-lim c ∈ �

by auto
with assms show False by auto

qed
with cfrac-nth-0-cases[of c] show ?thesis by auto

qed

lemma cfrac-of-real-cfrac-lim-irrational:
assumes cfrac-lim c /∈ �
shows cfrac-of-real (cfrac-lim c) = c

proof (rule cfrac-eqI)
from assms show cfrac-length (cfrac-of-real (cfrac-lim c)) = cfrac-length c

using cfrac-lim-rational-iff by auto
next

fix n
show cfrac-nth (cfrac-of-real (cfrac-lim c)) n = cfrac-nth c n

using assms
proof (induction n arbitrary: c)

case (0 c)
thus ?case

using Ints-subset-Rats by (subst cfrac-nth-0-not-int) auto
next

case (Suc n c)
from Suc.prems have [simp]: cfrac-lim c /∈ �

using Ints-subset-Rats by blast
have cfrac-nth (cfrac-of-real (cfrac-lim c)) (Suc n) =

cfrac-nth (cfrac-tl (cfrac-of-real (cfrac-lim c))) n
by (simp flip: cfrac-nth-tl)

58

also have cfrac-tl (cfrac-of-real (cfrac-lim c)) = cfrac-of-real (1 / frac (cfrac-lim
c))

using Suc.prems Ints-subset-Rats by (subst cfrac-tl-of-real) auto
also have 1 / frac (cfrac-lim c) = cfrac-lim (cfrac-tl c)

using Suc.prems by (subst cfrac-lim-tl) (auto simp: frac-def cfrac-is-int-def
cfrac-nth-0-not-int)

also have cfrac-nth (cfrac-of-real (cfrac-lim (cfrac-tl c))) n = cfrac-nth c (Suc
n)

using Suc.prems by (subst Suc.IH) (auto simp: cfrac-lim-rational-iff)
finally show ?case .

qed
qed

lemma cfrac-eqI-first:
assumes ¬cfrac-is-int c ¬cfrac-is-int c ′

assumes cfrac-nth c 0 = cfrac-nth c ′ 0 and cfrac-tl c = cfrac-tl c ′

shows c = c ′

using assms unfolding cfrac-is-int-def
by transfer (auto split: l list.splits)

lemma cfrac-is-int-of-real-iff : cfrac-is-int (cfrac-of-real x) ←→ x ∈ �
unfolding cfrac-is-int-def by transfer (use frac-lt-1 in auto)

lemma cfrac-not-is-int-of-real-alt: ¬cfrac-is-int (cfrac-of-real-alt x)
unfolding cfrac-is-int-def by transfer (auto simp: frac-lt-1)

lemma cfrac-tl-of-real-alt-of-int [simp]: cfrac-tl (cfrac-of-real-alt (of-int n)) = 1
unfolding one-cfrac-def by transfer auto

lemma cfrac-is-intI :
assumes cfrac-nth c 0 ≥ bcfrac-lim cc and cfrac-lim c ∈ �
shows cfrac-is-int c

proof (rule ccontr)
assume ∗: ¬cfrac-is-int c
from ∗ have conv c 0 < cfrac-lim c
by (intro conv-less-cfrac-lim) (auto simp: cfrac-is-int-def simp flip: zero-enat-def)
with assms show False

by (auto simp: Ints-def)
qed

lemma cfrac-eq-of-intI :
assumes cfrac-nth c 0 ≥ bcfrac-lim cc and cfrac-lim c ∈ �
shows c = cfrac-of-int bcfrac-lim cc

proof −
from assms have int: cfrac-is-int c

by (intro cfrac-is-intI) auto
have [simp]: cfrac-lim c = cfrac-nth c 0

using int by (simp add: cfrac-lim-def cfrac-is-int-def)
from int have c = cfrac-of-int (cfrac-nth c 0)

59

unfolding cfrac-is-int-def by transfer auto
also from assms have cfrac-nth c 0 = bcfrac-lim cc

using int by auto
finally show ?thesis .

qed

lemma cfrac-lim-of-int [simp]: cfrac-lim (cfrac-of-int n) = of-int n
by (simp add: cfrac-lim-def)

lemma cfrac-of-real-of-int [simp]: cfrac-of-real (of-int n) = cfrac-of-int n
by transfer auto

lemma cfrac-of-real-of-nat [simp]: cfrac-of-real (of-nat n) = cfrac-of-int (int n)
by transfer auto

lemma cfrac-int-cases:
assumes cfrac-lim c = of-int n
shows c = cfrac-of-int n ∨ c = cfrac-of-real-alt (of-int n)

proof −
from cfrac-nth-0-cases[of c] show ?thesis
proof (rule disj-forward)

assume eq: cfrac-nth c 0 = bcfrac-lim cc
have c = cfrac-of-int bcfrac-lim cc

using assms eq by (intro cfrac-eq-of-intI) auto
with assms eq show c = cfrac-of-int n

by simp
next

assume ∗: cfrac-nth c 0 = bcfrac-lim cc − 1 ∧ cfrac-tl c = 1
have ¬cfrac-is-int c

using ∗ by (auto simp: cfrac-is-int-def cfrac-lim-def)
hence cfrac-length c = eSuc (cfrac-length (cfrac-tl c))

by (subst cfrac-length-tl; cases cfrac-length c)
(auto simp: cfrac-is-int-def eSuc-def enat-0-iff split: enat.splits)

also have cfrac-tl c = 1
using ∗ by auto

finally have cfrac-length c = 1
by (simp add: eSuc-def one-enat-def)

show c = cfrac-of-real-alt (of-int n)
by (rule cfrac-eqI-first)

(use ‹¬cfrac-is-int c› ∗ assms in ‹auto simp: cfrac-not-is-int-of-real-alt›)
qed

qed

lemma cfrac-cases:
c ∈ {cfrac-of-real (cfrac-lim c), cfrac-of-real-alt (cfrac-lim c)}

proof (cases cfrac-length c)
case infinity
hence cfrac-lim c /∈ �

by (simp add: cfrac-lim-irrational)

60

thus ?thesis
using cfrac-of-real-cfrac-lim-irrational by simp

next
case (enat l)
thus ?thesis
proof (induction l arbitrary: c)

case (0 c)
hence c = cfrac-of-real (cfrac-nth c 0)

by transfer (auto simp flip: zero-enat-def)
with 0 show ?case by (auto simp: cfrac-lim-def)

next
case (Suc l c)
show ?case
proof (cases cfrac-lim c ∈ �)

case True
thus ?thesis

using cfrac-int-cases[of c] by (force simp: Ints-def)
next

case [simp]: False
have ¬cfrac-is-int c

using Suc.prems by (auto simp: cfrac-is-int-def enat-0-iff)
show ?thesis

using cfrac-nth-0-cases[of c]
proof (elim disjE conjE)

assume ∗: cfrac-nth c 0 = bcfrac-lim cc − 1 cfrac-tl c = 1
hence cfrac-lim c ∈ �

using ‹¬cfrac-is-int c› by (subst cfrac-lim-reduce) auto
thus ?thesis

by (auto simp: cfrac-int-cases)
next

assume eq: cfrac-nth c 0 = bcfrac-lim cc
have cfrac-tl c = cfrac-of-real (cfrac-lim (cfrac-tl c)) ∨

cfrac-tl c = cfrac-of-real-alt (cfrac-lim (cfrac-tl c))
using Suc.IH [of cfrac-tl c] Suc.prems by auto

hence c = cfrac-of-real (cfrac-lim c) ∨
c = cfrac-of-real-alt (cfrac-lim c)

proof (rule disj-forward)
assume eq ′: cfrac-tl c = cfrac-of-real (cfrac-lim (cfrac-tl c))
show c = cfrac-of-real (cfrac-lim c)

by (rule cfrac-eqI-first)
(use ‹¬cfrac-is-int c› eq eq ′ in
‹auto simp: cfrac-is-int-of-real-iff cfrac-tl-of-real cfrac-lim-tl frac-def ›)

next
assume eq ′: cfrac-tl c = cfrac-of-real-alt (cfrac-lim (cfrac-tl c))
have eq ′′: cfrac-nth (cfrac-of-real-alt (cfrac-lim c)) 0 = bcfrac-lim cc

using Suc.prems by (subst cfrac-nth-of-real-alt-0) auto
show c = cfrac-of-real-alt (cfrac-lim c)

by (rule cfrac-eqI-first)
(use ‹¬cfrac-is-int c› eq eq ′ eq ′′ in

61

‹auto simp: cfrac-not-is-int-of-real-alt cfrac-tl-of-real-alt cfrac-lim-tl
frac-def ›)

qed
thus ?thesis by simp

qed
qed

qed
qed

lemma cfrac-lim-eq-iff :
assumes cfrac-length c = ∞ ∨ cfrac-length c ′ = ∞
shows cfrac-lim c = cfrac-lim c ′←→ c = c ′

proof
assume ∗: cfrac-lim c = cfrac-lim c ′

hence cfrac-of-real (cfrac-lim c) = cfrac-of-real (cfrac-lim c ′)
by (simp only:)

thus c = c ′

using assms ∗
by (subst (asm) (1 2) cfrac-of-real-cfrac-lim-irrational)

(auto simp: cfrac-infinite-iff)
qed auto

lemma floor-cfrac-remainder :
assumes cfrac-length c = ∞
shows bcfrac-remainder c nc = cfrac-nth c n
by (metis add.left-neutral assms cfrac-length-drop cfrac-lim-eq-iff idiff-infinity

cfrac-lim-of-real cfrac-nth-drop cfrac-nth-of-real-0 cfrac-remainder-def)

1.4 Approximation properties

In this section, we will show that convergents of the continued fraction ex-
pansion of a number x are good approximations of x, and in a certain sense,
the reverse holds as well.
lemma sgn-of-int:

sgn (of-int x :: ′a :: {linordered-idom}) = of-int (sgn x)
by (auto simp: sgn-if)

lemma conv-ge-one: cfrac-nth c 0 > 0 =⇒ conv c n ≥ 1
by (rule order .trans[OF - conv-ge-first]) auto

context
fixes c h k
defines h ≡ conv-num c and k ≡ conv-denom c

begin

lemma abs-diff-le-abs-add:
fixes x y :: real
assumes x ≥ 0 ∧ y ≥ 0 ∨ x ≤ 0 ∧ y ≤ 0
shows |x − y| ≤ |x + y|

62

using assms by linarith

lemma abs-diff-less-abs-add:
fixes x y :: real
assumes x > 0 ∧ y > 0 ∨ x < 0 ∧ y < 0
shows |x − y| < |x + y|
using assms by linarith

lemma abs-diff-le-imp-same-sign:
assumes |x − y| ≤ d d < |y|
shows sgn x = sgn (y::real)
using assms by (auto simp: sgn-if)

lemma conv-nonpos:
assumes cfrac-nth c 0 < 0
shows conv c n ≤ 0

proof (cases n)
case 0
thus ?thesis using assms by auto

next
case [simp]: (Suc n ′)
have conv c n = real-of-int (cfrac-nth c 0) + 1 / conv (cfrac-tl c) n ′

by (simp add: conv-Suc)
also have . . . ≤ −1 + 1 / 1

using assms by (intro add-mono divide-left-mono) (auto intro!: conv-pos
conv-ge-one)

finally show ?thesis by simp
qed

lemma cfrac-lim-nonpos:
assumes cfrac-nth c 0 < 0
shows cfrac-lim c ≤ 0

proof (cases cfrac-length c)
case infinity
show ?thesis using LIMSEQ-cfrac-lim[OF infinity]

by (rule tendsto-upperbound) (use assms in ‹auto simp: conv-nonpos›)
next

case (enat l)
thus ?thesis by (auto simp: cfrac-lim-def conv-nonpos assms)

qed

lemma conv-num-nonpos:
assumes cfrac-nth c 0 < 0
shows h n ≤ 0

proof (induction n rule: fib.induct)
case 2
have cfrac-nth c (Suc 0) ∗ cfrac-nth c 0 ≤ 1 ∗ cfrac-nth c 0

using assms by (intro mult-right-mono-neg) auto
also have . . . + 1 ≤ 0 using assms by auto

63

finally show ?case by (auto simp: h-def)
next

case (3 n)
have cfrac-nth c (Suc (Suc n)) ∗ h (Suc n) ≤ 0

using 3 by (simp add: mult-nonneg-nonpos)
also have . . . + h n ≤ 0

using 3 by simp
finally show ?case

by (auto simp: h-def)
qed (use assms in ‹auto simp: h-def ›)

lemma conv-best-approximation-aux:
cfrac-lim c ≥ 0 ∧ h n ≥ 0 ∨ cfrac-lim c ≤ 0 ∧ h n ≤ 0

proof (cases cfrac-nth c 0 ≥ 0)
case True
from True have 0 ≤ conv c 0

by simp
also have . . . ≤ cfrac-lim c

by (rule conv-le-cfrac-lim) (auto simp: enat-0)
finally have cfrac-lim c ≥ 0 .
moreover from True have h n ≥ 0

unfolding h-def by (intro conv-num-nonneg)
ultimately show ?thesis by (simp add: sgn-if)

next
case False
thus ?thesis

using cfrac-lim-nonpos conv-num-nonpos[of n] by (auto simp: h-def)
qed

lemma conv-best-approximation-ex:
fixes a b :: int and x :: real
assumes n ≤ cfrac-length c
assumes 0 < b and b ≤ k n and coprime a b and n > 0
assumes (a, b) 6= (h n, k n)
assumes ¬(cfrac-length c = 1 ∧ n = 0)
assumes Suc n 6= cfrac-length c ∨ cfrac-canonical c
defines x ≡ cfrac-lim c
shows |k n ∗ x − h n| < |b ∗ x − a|

proof (cases |a| = |h n| ∧ b = k n)
case True
with assms have [simp]: a = −h n

by (auto simp: abs-if split: if-splits)
have k n > 0

by (auto simp: k-def)
show ?thesis
proof (cases x = 0)

case True
hence c = cfrac-of-real 0 ∨ c = cfrac-of-real-alt 0

unfolding x-def by (metis cfrac-cases empty-iff insert-iff)

64

hence False
proof

assume c = cfrac-of-real 0
thus False

using assms by (auto simp: enat-0-iff h-def k-def)
next

assume [simp]: c = cfrac-of-real-alt 0
hence n = 0 ∨ n = 1

using assms by (auto simp: cfrac-length-of-real-alt enat-0-iff k-def h-def
eSuc-def)

thus False
using assms True

by (elim disjE) (auto simp: cfrac-length-of-real-alt enat-0-iff k-def h-def
eSuc-def

cfrac-nth-of-real-alt one-enat-def split: if-splits)
qed
thus ?thesis ..

next
case False
have h n 6= 0

using True assms(6) h-def by auto
hence x > 0 ∧ h n > 0 ∨ x < 0 ∧ h n < 0

using ‹x 6= 0› conv-best-approximation-aux[of n] unfolding x-def by auto
hence |real-of-int (k n) ∗ x − real-of-int (h n)| < |real-of-int (k n) ∗ x +

real-of-int (h n)|
using ‹k n > 0›

by (intro abs-diff-less-abs-add) (auto simp: not-le zero-less-mult-iff mult-less-0-iff)
thus ?thesis using True by auto

qed
next

case False
note ∗ = this
show ?thesis
proof (cases n = cfrac-length c)

case True
hence x = conv c n

by (auto simp: cfrac-lim-def x-def split: enat.splits)
also have . . . = h n / k n

by (auto simp: h-def k-def conv-num-denom)
finally have x: x = h n / k n .
hence |k n ∗ x − h n| = 0

by (simp add: k-def)
also have b ∗ x 6= a
proof

assume b ∗ x = a
hence of-int (h n) ∗ of-int b = of-int (k n) ∗ (of-int a :: real)

using assms True by (auto simp: field-simps k-def x)
hence of-int (h n ∗ b) = (of-int (k n ∗ a) :: real)

by (simp only: of-int-mult)

65

hence h n ∗ b = k n ∗ a
by linarith

hence h n = a ∧ k n = b
using assms by (subst (asm) coprime-crossproduct ′)

(auto simp: h-def k-def coprime-conv-num-denom)
thus False using True False by simp

qed
hence 0 < |b ∗ x − a|

by simp
finally show ?thesis .

next
case False

define s where s = (−1) ^ n ∗ (a ∗ k n − b ∗ h n)
define r where r = (−1) ^ n ∗ (b ∗ h (Suc n) − a ∗ k (Suc n))
have k n ≤ k (Suc n)

unfolding k-def by (intro conv-denom-leI) auto

have r ∗ h n + s ∗ h (Suc n) =
(−1) ^ Suc n ∗ a ∗ (k (Suc n) ∗ h n − k n ∗ h (Suc n))

by (simp add: s-def r-def algebra-simps h-def k-def)
also have . . . = a using assms unfolding h-def k-def

by (subst conv-num-denom-prod-diff ′) (auto simp: algebra-simps)
finally have eq1: r ∗ h n + s ∗ h (Suc n) = a .

have r ∗ k n + s ∗ k (Suc n) =
(−1) ^ Suc n ∗ b ∗ (k (Suc n) ∗ h n − k n ∗ h (Suc n))

by (simp add: s-def r-def algebra-simps h-def k-def)
also have . . . = b using assms unfolding h-def k-def

by (subst conv-num-denom-prod-diff ′) (auto simp: algebra-simps)
finally have eq2: r ∗ k n + s ∗ k (Suc n) = b .

have k n < k (Suc n)
using ‹n > 0› by (auto simp: k-def intro: conv-denom-lessI)

have r 6= 0
proof

assume r = 0
hence a ∗ k (Suc n) = b ∗ h (Suc n) by (simp add: r-def)
hence abs (a ∗ k (Suc n)) = abs (h (Suc n) ∗ b) by (simp only: mult-ac)
hence ∗: abs (h (Suc n)) = abs a ∧ k (Suc n) = b

unfolding abs-mult h-def k-def using coprime-conv-num-denom assms
by (subst (asm) coprime-crossproduct-int) auto

with ‹k n < k (Suc n)› and ‹b ≤ k n› show False by auto
qed

have s 6= 0
proof

assume s = 0

66

hence a ∗ k n = b ∗ h n by (simp add: s-def)
hence abs (a ∗ k n) = abs (h n ∗ b) by (simp only: mult-ac)

hence b = k n ∧ |a| = |h n| unfolding abs-mult h-def k-def using co-
prime-conv-num-denom assms

by (subst (asm) coprime-crossproduct-int) auto
with ∗ show False by simp

qed

have r ∗ k n + s ∗ k (Suc n) = b by fact
also have . . . ∈ {0<..<k (Suc n)} using assms ‹k n < k (Suc n)› by auto
finally have ∗: r ∗ k n + s ∗ k (Suc n) ∈

have opposite-signs1: r > 0 ∧ s < 0 ∨ r < 0 ∧ s > 0
proof (cases r ≥ 0; cases s ≥ 0)

assume r ≥ 0 s ≥ 0
hence 0 ∗ (k n) + 1 ∗ (k (Suc n)) ≤ r ∗ k n + s ∗ k (Suc n)

using ‹s 6= 0› by (intro add-mono mult-mono) (auto simp: k-def)
with ∗ show ?thesis by auto

next
assume ¬(r ≥ 0) ¬(s ≥ 0)
hence r ∗ k n + s ∗ k (Suc n) ≤ 0

by (intro add-nonpos-nonpos mult-nonpos-nonneg) (auto simp: k-def)
with ∗ show ?thesis by auto

qed (insert ‹r 6= 0› ‹s 6= 0›, auto)

have r 6= 1
proof

assume [simp]: r = 1
have b = r ∗ k n + s ∗ k (Suc n)

using ‹r ∗ k n + s ∗ k (Suc n) = b› ..
also have s ∗ k (Suc n) ≤ (−1) ∗ k (Suc n)

using opposite-signs1 by (intro mult-right-mono) (auto simp: k-def)
also have r ∗ k n + (−1) ∗ k (Suc n) = k n − k (Suc n)

by simp
also have . . . ≤ 0

unfolding k-def by (auto intro!: conv-denom-leI)
finally show False using ‹b > 0› by simp

qed

have enat n ≤ cfrac-length c enat (Suc n) ≤ cfrac-length c
using assms False by (cases cfrac-length c; simp)+

hence conv c n ≥ x ∧ conv c (Suc n) ≤ x ∨ conv c n ≤ x ∧ conv c (Suc n) ≥ x
using conv-ge-cfrac-lim[of n c] conv-ge-cfrac-lim[of Suc n c]

conv-le-cfrac-lim[of n c] conv-le-cfrac-lim[of Suc n c] assms
by (cases even n) auto

hence opposite-signs2: k n ∗ x − h n ≥ 0 ∧ k (Suc n) ∗ x − h (Suc n) ≤ 0 ∨
k n ∗ x − h n ≤ 0 ∧ k (Suc n) ∗ x − h (Suc n) ≥ 0

using assms conv-denom-pos[of c n] conv-denom-pos[of c Suc n]
by (auto simp: k-def h-def conv-num-denom field-simps)

67

from opposite-signs1 opposite-signs2 have same-signs:
r ∗ (k n ∗ x − h n) ≥ 0 ∧ s ∗ (k (Suc n) ∗ x − h (Suc n)) ≥ 0 ∨
r ∗ (k n ∗ x − h n) ≤ 0 ∧ s ∗ (k (Suc n) ∗ x − h (Suc n)) ≤ 0

by (auto intro: mult-nonpos-nonneg mult-nonneg-nonpos mult-nonneg-nonneg
mult-nonpos-nonpos)

show ?thesis
proof (cases Suc n = cfrac-length c)

case True
have x: x = h (Suc n) / k (Suc n)
using True[symmetric] by (auto simp: cfrac-lim-def h-def k-def conv-num-denom

x-def)
have r 6= −1
proof

assume [simp]: r = −1
have r ∗ k n + s ∗ k (Suc n) = b

by fact
also have b < k (Suc n)

using ‹b ≤ k n› and ‹k n < k (Suc n)› by simp
finally have (s − 1) ∗ k (Suc n) < k n

by (simp add: algebra-simps)
also have k n ≤ 1 ∗ k (Suc n)

by (simp add: k-def conv-denom-leI)
finally have s < 2

by (subst (asm) mult-less-cancel-right) (auto simp: k-def)
moreover from opposite-signs1 have s > 0 by auto
ultimately have [simp]: s = 1 by simp

have b = (cfrac-nth c (Suc n) − 1) ∗ k n + k (n − 1)
using eq2 ‹n > 0› by (cases n) (auto simp: k-def algebra-simps)

also have cfrac-nth c (Suc n) > 1
proof −

have cfrac-canonical c
using assms True by auto

hence cfrac-nth c (Suc n) 6= 1
using True[symmetric] by (auto simp: cfrac-canonical-iff enat-0-iff)

moreover have cfrac-nth c (Suc n) > 0
by auto

ultimately show cfrac-nth c (Suc n) > 1
by linarith

qed
hence (cfrac-nth c (Suc n) − 1) ∗ k n + k (n − 1) ≥ 1 ∗ k n + k (n − 1)

by (intro add-mono mult-right-mono) (auto simp: k-def)
finally have b > k n

using conv-denom-pos[of c n − 1] unfolding k-def by linarith
with assms show False by simp

qed
with ‹r 6= 1› ‹r 6= 0› have |r | > 1

68

by auto

from ‹s 6= 0› have k n ∗ x 6= h n
using conv-num-denom-prod-diff [of c n]
by (auto simp: x field-simps k-def h-def simp flip: of-int-mult)

hence 1 ∗ |k n ∗ x − h n| < |r | ∗ |k n ∗ x − h n|
using ‹|r | > 1› by (intro mult-strict-right-mono) auto

also have . . . = |r | ∗ |k n ∗ x − h n| + 0 by simp
also have . . . ≤ |r ∗ (k n ∗ x − h n)| + |s ∗ (k (Suc n) ∗ x − h (Suc n))|

unfolding abs-mult of-int-abs using conv-denom-pos[of c Suc n] ‹s 6= 0›
by (intro add-left-mono mult-nonneg-nonneg) (auto simp: field-simps k-def)

also have . . . = |r ∗ (k n ∗ x − h n) + s ∗ (k (Suc n) ∗ x − h (Suc n))|
using same-signs by auto

also have . . . = |(r ∗ k n + s ∗ k (Suc n)) ∗ x − (r ∗ h n + s ∗ h (Suc n))|
by (simp add: algebra-simps)

also have . . . = |b ∗ x − a|
unfolding eq1 eq2 by simp

finally show ?thesis by simp
next

case False
from assms have Suc n < cfrac-length c

using False ‹Suc n ≤ cfrac-length c› by force
have 1 ∗ |k n ∗ x − h n| ≤ |r | ∗ |k n ∗ x − h n|

using ‹r 6= 0› by (intro mult-right-mono) auto
also have . . . = |r | ∗ |k n ∗ x − h n| + 0 by simp
also have x 6= h (Suc n) / k (Suc n)

using conv-neq-cfrac-lim[of Suc n c] ‹Suc n < cfrac-length c›
by (auto simp: conv-num-denom h-def k-def x-def)

hence |s ∗ (k (Suc n) ∗ x − h (Suc n))| > 0
using ‹s 6= 0› by (auto simp: field-simps k-def)

also have |r | ∗ |k n ∗ x − h n| + . . . ≤
|r ∗ (k n ∗ x − h n)| + |s ∗ (k (Suc n) ∗ x − h (Suc n))|

unfolding abs-mult of-int-abs by (intro add-left-mono mult-nonneg-nonneg)
auto

also have . . . = |r ∗ (k n ∗ x − h n) + s ∗ (k (Suc n) ∗ x − h (Suc n))|
using same-signs by auto

also have . . . = |(r ∗ k n + s ∗ k (Suc n)) ∗ x − (r ∗ h n + s ∗ h (Suc n))|
by (simp add: algebra-simps)

also have . . . = |b ∗ x − a|
unfolding eq1 eq2 by simp

finally show ?thesis by simp
qed

qed
qed

lemma conv-best-approximation-ex-weak:
fixes a b :: int and x :: real
assumes n ≤ cfrac-length c
assumes 0 < b and b < k (Suc n) and coprime a b

69

defines x ≡ cfrac-lim c
shows |k n ∗ x − h n| ≤ |b ∗ x − a|

proof (cases |a| = |h n| ∧ b = k n)
case True
note ∗ = this
show ?thesis
proof (cases sgn a = sgn (h n))

case True
with ∗ have [simp]: a = h n

by (auto simp: abs-if split: if-splits)
thus ?thesis using ∗ by auto

next
case False
with True have [simp]: a = −h n

by (auto simp: abs-if split: if-splits)
have |real-of-int (k n) ∗ x − real-of-int (h n)| ≤ |real-of-int (k n) ∗ x +

real-of-int (h n)|
unfolding x-def using conv-best-approximation-aux[of n]
by (intro abs-diff-le-abs-add) (auto simp: k-def not-le zero-less-mult-iff)

thus ?thesis using True by auto
qed

next
case False
note ∗ = this
show ?thesis
proof (cases n = cfrac-length c)

case True
hence x = conv c n

by (auto simp: cfrac-lim-def x-def split: enat.splits)
also have . . . = h n / k n

by (auto simp: h-def k-def conv-num-denom)
finally show ?thesis by (auto simp: k-def)

next
case False

define s where s = (−1) ^ n ∗ (a ∗ k n − b ∗ h n)
define r where r = (−1) ^ n ∗ (b ∗ h (Suc n) − a ∗ k (Suc n))

have r ∗ h n + s ∗ h (Suc n) =
(−1) ^ Suc n ∗ a ∗ (k (Suc n) ∗ h n − k n ∗ h (Suc n))

by (simp add: s-def r-def algebra-simps h-def k-def)
also have . . . = a using assms unfolding h-def k-def

by (subst conv-num-denom-prod-diff ′) (auto simp: algebra-simps)
finally have eq1: r ∗ h n + s ∗ h (Suc n) = a .

have r ∗ k n + s ∗ k (Suc n) =
(−1) ^ Suc n ∗ b ∗ (k (Suc n) ∗ h n − k n ∗ h (Suc n))

by (simp add: s-def r-def algebra-simps h-def k-def)
also have . . . = b using assms unfolding h-def k-def

70

by (subst conv-num-denom-prod-diff ′) (auto simp: algebra-simps)
finally have eq2: r ∗ k n + s ∗ k (Suc n) = b .

have r 6= 0
proof

assume r = 0
hence a ∗ k (Suc n) = b ∗ h (Suc n) by (simp add: r-def)
hence abs (a ∗ k (Suc n)) = abs (h (Suc n) ∗ b) by (simp only: mult-ac)

hence b = k (Suc n) unfolding abs-mult h-def k-def using coprime-conv-num-denom
assms

by (subst (asm) coprime-crossproduct-int) auto
with assms show False by simp

qed

have s 6= 0
proof

assume s = 0
hence a ∗ k n = b ∗ h n by (simp add: s-def)
hence abs (a ∗ k n) = abs (h n ∗ b) by (simp only: mult-ac)

hence b = k n ∧ |a| = |h n| unfolding abs-mult h-def k-def using co-
prime-conv-num-denom assms

by (subst (asm) coprime-crossproduct-int) auto
with ∗ show False by simp

qed

have r ∗ k n + s ∗ k (Suc n) = b by fact
also have . . . ∈ {0<..<k (Suc n)} using assms by auto
finally have ∗: r ∗ k n + s ∗ k (Suc n) ∈

have opposite-signs1: r > 0 ∧ s < 0 ∨ r < 0 ∧ s > 0
proof (cases r ≥ 0; cases s ≥ 0)

assume r ≥ 0 s ≥ 0
hence 0 ∗ (k n) + 1 ∗ (k (Suc n)) ≤ r ∗ k n + s ∗ k (Suc n)

using ‹s 6= 0› by (intro add-mono mult-mono) (auto simp: k-def)
with ∗ show ?thesis by auto

next
assume ¬(r ≥ 0) ¬(s ≥ 0)
hence r ∗ k n + s ∗ k (Suc n) ≤ 0

by (intro add-nonpos-nonpos mult-nonpos-nonneg) (auto simp: k-def)
with ∗ show ?thesis by auto

qed (insert ‹r 6= 0› ‹s 6= 0›, auto)

have enat n ≤ cfrac-length c enat (Suc n) ≤ cfrac-length c
using assms False by (cases cfrac-length c; simp)+

hence conv c n ≥ x ∧ conv c (Suc n) ≤ x ∨ conv c n ≤ x ∧ conv c (Suc n) ≥ x
using conv-ge-cfrac-lim[of n c] conv-ge-cfrac-lim[of Suc n c]

conv-le-cfrac-lim[of n c] conv-le-cfrac-lim[of Suc n c] assms
by (cases even n) auto

hence opposite-signs2: k n ∗ x − h n ≥ 0 ∧ k (Suc n) ∗ x − h (Suc n) ≤ 0 ∨

71

k n ∗ x − h n ≤ 0 ∧ k (Suc n) ∗ x − h (Suc n) ≥ 0
using assms conv-denom-pos[of c n] conv-denom-pos[of c Suc n]
by (auto simp: k-def h-def conv-num-denom field-simps)

from opposite-signs1 opposite-signs2 have same-signs:
r ∗ (k n ∗ x − h n) ≥ 0 ∧ s ∗ (k (Suc n) ∗ x − h (Suc n)) ≥ 0 ∨
r ∗ (k n ∗ x − h n) ≤ 0 ∧ s ∗ (k (Suc n) ∗ x − h (Suc n)) ≤ 0

by (auto intro: mult-nonpos-nonneg mult-nonneg-nonpos mult-nonneg-nonneg
mult-nonpos-nonpos)

have 1 ∗ |k n ∗ x − h n| ≤ |r | ∗ |k n ∗ x − h n|
using ‹r 6= 0› by (intro mult-right-mono) auto

also have . . . = |r | ∗ |k n ∗ x − h n| + 0 by simp
also have . . . ≤ |r ∗ (k n ∗ x − h n)| + |s ∗ (k (Suc n) ∗ x − h (Suc n))|

unfolding abs-mult of-int-abs using conv-denom-pos[of c Suc n] ‹s 6= 0›
by (intro add-left-mono mult-nonneg-nonneg) (auto simp: field-simps k-def)

also have . . . = |r ∗ (k n ∗ x − h n) + s ∗ (k (Suc n) ∗ x − h (Suc n))|
using same-signs by auto

also have . . . = |(r ∗ k n + s ∗ k (Suc n)) ∗ x − (r ∗ h n + s ∗ h (Suc n))|
by (simp add: algebra-simps)

also have . . . = |b ∗ x − a|
unfolding eq1 eq2 by simp

finally show ?thesis by simp
qed

qed

lemma cfrac-canonical-reduce:
cfrac-canonical c ←→

cfrac-is-int c ∨ ¬cfrac-is-int c ∧ cfrac-tl c 6= 1 ∧ cfrac-canonical (cfrac-tl c)
unfolding cfrac-is-int-def one-cfrac-def
by transfer (auto simp: cfrac-canonical-def llast-LCons split: if-splits split: l list.splits)

lemma cfrac-nth-0-conv-floor :
assumes cfrac-canonical c ∨ cfrac-length c 6= 1
shows cfrac-nth c 0 = bcfrac-lim cc

proof (cases cfrac-is-int c)
case True
thus ?thesis

by (auto simp: cfrac-lim-def cfrac-is-int-def)
next

case False
show ?thesis
proof (cases cfrac-length c = 1)

case True
hence cfrac-canonical c using assms by auto
hence cfrac-tl c 6= 1 using False

by (subst (asm) cfrac-canonical-reduce) auto
thus ?thesis

using cfrac-nth-0-cases[of c] by auto

72

next
case False
hence cfrac-length c > 1

using ‹¬cfrac-is-int c›
by (cases cfrac-length c) (auto simp: cfrac-is-int-def one-enat-def zero-enat-def)
have cfrac-tl c 6= 1
proof

assume cfrac-tl c = 1
have 0 < cfrac-length c − 1
proof (cases cfrac-length c)

case [simp]: (enat l)
have cfrac-length c − 1 = enat (l − 1)

by auto
also have . . . > enat 0

using ‹cfrac-length c > 1› by (simp add: one-enat-def)
finally show ?thesis by (simp add: zero-enat-def)

qed auto
also have . . . = cfrac-length (cfrac-tl c)

by simp
also have cfrac-tl c = 1

by fact
finally show False by simp

qed
thus ?thesis using cfrac-nth-0-cases[of c] by auto

qed
qed

lemma conv-best-approximation-ex-nat:
fixes a b :: nat and x :: real
assumes n ≤ cfrac-length c 0 < b b < k (Suc n) coprime a b
shows |k n ∗ cfrac-lim c − h n| ≤ |b ∗ cfrac-lim c − a|
using conv-best-approximation-ex-weak[OF assms(1), of b a] assms by auto

lemma abs-mult-nonneg-left:
assumes x ≥ (0 :: ′a :: {ordered-ab-group-add-abs, idom-abs-sgn})
shows x ∗ |y| = |x ∗ y|

proof −
from assms have x = |x| by simp
also have . . . ∗ |y| = |x ∗ y| by (simp add: abs-mult)
finally show ?thesis .

qed

Any convergent of the continued fraction expansion of x is a best approxi-
mation of x, i.e. there is no other number with a smaller denominator that
approximates it better.
lemma conv-best-approximation:

fixes a b :: int and x :: real
assumes n ≤ cfrac-length c
assumes 0 < b and b < k n and coprime a b

73

defines x ≡ cfrac-lim c
shows |x − conv c n| ≤ |x − a / b|

proof −
have b < k n by fact
also have k n ≤ k (Suc n)

unfolding k-def by (intro conv-denom-leI) auto
finally have ∗: b < k (Suc n) by simp
have |x − conv c n| = |k n ∗ x − h n| / k n

using conv-denom-pos[of c n] assms(1)
by (auto simp: conv-num-denom field-simps k-def h-def)

also have . . . ≤ |b ∗ x − a| / k n unfolding x-def using assms ∗
by (intro divide-right-mono conv-best-approximation-ex-weak) auto

also from assms have . . . ≤ |b ∗ x − a| / b
by (intro divide-left-mono) auto

also have . . . = |x − a / b| using assms by (simp add: field-simps)
finally show ?thesis .

qed

lemma conv-denom-partition:
assumes y > 0
shows ∃ !n. y ∈ {k n..<k (Suc n)}

proof (rule ex-ex1I)
from conv-denom-at-top[of c] assms have ∗: ∃n. k n ≥ y + 1

by (auto simp: k-def filterlim-at-top eventually-at-top-linorder)
define n where n = (LEAST n. k n ≥ y + 1)
from LeastI-ex[OF ∗] have n: k n > y by (simp add: Suc-le-eq n-def)
from n and assms have n > 0 by (intro Nat.gr0I) (auto simp: k-def)

have k (n − 1) ≤ y
proof (rule ccontr)

assume ¬k (n − 1) ≤ y
hence k (n − 1) ≥ y + 1 by auto
hence n − 1 ≥ n unfolding n-def by (rule Least-le)
with ‹n > 0› show False by simp

qed
with n and ‹n > 0› have y ∈ {k (n − 1)..<k (Suc (n − 1))} by auto
thus ∃n. y ∈ {k n..<k (Suc n)} by blast

next
fix m n
assume y ∈ {k m..<k (Suc m)} y ∈ {k n..<k (Suc n)}
thus m = n
proof (induction m n rule: linorder-wlog)

case (le m n)
show m = n
proof (rule ccontr)

assume m 6= n
with le have k (Suc m) ≤ k n

unfolding k-def by (intro conv-denom-leI assms) auto
with le show False by auto

74

qed
qed auto

qed

A fraction that approximates a real number x sufficiently well (in a certain
sense) is a convergent of its continued fraction expansion.
lemma frac-is-convergentI :

fixes a b :: int and x :: real
defines x ≡ cfrac-lim c
assumes b > 0 and coprime a b and |x − a / b| < 1 / (2 ∗ b2)
shows ∃n. enat n ≤ cfrac-length c ∧ (a, b) = (h n, k n)

proof (cases a = 0)
case True
with assms have [simp]: a = 0 b = 1

by auto

show ?thesis
proof (cases x 0 :: real rule: linorder-cases)

case greater
hence 0 < x x < 1/2

using assms by auto
hence x /∈ �

by (auto simp: Ints-def)
hence cfrac-nth c 0 = bxc

using assms by (subst cfrac-nth-0-not-int) (auto simp: x-def)
also from ‹x > 0› ‹x < 1/2› have . . . = 0

by linarith
finally have (a, b) = (h 0, k 0)

by (auto simp: h-def k-def)
thus ?thesis by (intro exI [of - 0]) (auto simp flip: zero-enat-def)

next
case less
hence x < 0 x > −1/2

using assms by auto
hence x /∈ �

by (auto simp: Ints-def)
hence not-int: ¬cfrac-is-int c

by (auto simp: cfrac-is-int-def x-def cfrac-lim-def)
have cfrac-nth c 0 = bxc

using ‹x /∈ �› assms by (subst cfrac-nth-0-not-int) (auto simp: x-def)
also from ‹x < 0› ‹x > −1/2› have . . . = −1

by linarith
finally have [simp]: cfrac-nth c 0 = −1 .
have cfrac-nth c (Suc 0) = cfrac-nth (cfrac-tl c) 0

by simp
have cfrac-lim (cfrac-tl c) = 1 / (x + 1)

using not-int by (subst cfrac-lim-tl) (auto simp: x-def)
also from ‹x < 0› ‹x > −1/2› have . . . ∈ {1<..<2}

by (auto simp: divide-simps)

75

finally have ∗: cfrac-lim (cfrac-tl c) ∈ {1<..<2} .
have cfrac-nth (cfrac-tl c) 0 = bcfrac-lim (cfrac-tl c)c

using ∗ by (subst cfrac-nth-0-not-int) (auto simp: Ints-def)
also have . . . = 1

using ∗ by (simp, linarith?)
finally have (a, b) = (h 1, k 1)

by (auto simp: h-def k-def)
moreover have cfrac-length c ≥ 1

using not-int
by (cases cfrac-length c) (auto simp: cfrac-is-int-def one-enat-def zero-enat-def)
ultimately show ?thesis by (intro exI [of - 1]) (auto simp: one-enat-def)

next
case equal
show ?thesis

using cfrac-nth-0-cases[of c]
proof

assume cfrac-nth c 0 = bcfrac-lim cc
with equal have (a, b) = (h 0, k 0)

by (simp add: x-def h-def k-def)
thus ?thesis by (intro exI [of - 0]) (auto simp flip: zero-enat-def)

next
assume ∗: cfrac-nth c 0 = bcfrac-lim cc − 1 ∧ cfrac-tl c = 1
have [simp]: cfrac-nth c 0 = −1

using ∗ equal by (auto simp: x-def)
from ∗ have ¬cfrac-is-int c

by (auto simp: cfrac-is-int-def cfrac-lim-def floor-minus)
have cfrac-nth c 1 = cfrac-nth (cfrac-tl c) 0

by auto
also have cfrac-tl c = 1

using ∗ by auto
finally have cfrac-nth c 1 = 1

by simp
hence (a, b) = (h 1, k 1)

by (auto simp: h-def k-def)
moreover from ‹¬cfrac-is-int c› have cfrac-length c ≥ 1
by (cases cfrac-length c) (auto simp: one-enat-def zero-enat-def cfrac-is-int-def)
ultimately show ?thesis

by (intro exI [of - 1]) (auto simp: one-enat-def)
qed

qed
next

case False
hence a-nz: a 6= 0 by auto

have x 6= 0
proof

assume [simp]: x = 0
hence |a| / b < 1 / (2 ∗ b ^ 2)

using assms by simp

76

hence |a| < 1 / (2 ∗ b)
using assms by (simp add: field-simps power2-eq-square)

also have . . . ≤ 1 / 2
using assms by (intro divide-left-mono) auto

finally have a = 0 by auto
with ‹a 6= 0› show False by simp

qed

show ?thesis
proof (rule ccontr)

assume no-convergent: @ n. enat n ≤ cfrac-length c ∧ (a, b) = (h n, k n)
from assms have ∃ !r . b ∈ {k r ..<k (Suc r)}

by (intro conv-denom-partition) auto
then obtain r where r : b ∈ {k r ..<k (Suc r)} by auto
have k r > 0

using conv-denom-pos[of c r] assms by (auto simp: k-def)

show False
proof (cases enat r ≤ cfrac-length c)

case False
then obtain l where l: cfrac-length c = enat l

by (cases cfrac-length c) auto
have k l ≤ k r

using False l unfolding k-def by (intro conv-denom-leI) auto
also have . . . ≤ b

using r by simp
finally have b ≥ k l .

have x = conv c l
by (auto simp: x-def cfrac-lim-def l)

hence x-eq: x = h l / k l
by (auto simp: conv-num-denom h-def k-def)

have k l > 0
by (simp add: k-def)

have b ∗ k l ∗ |h l / k l − a / b| < k l / (2∗b)
using assms x-eq ‹k l > 0› by (auto simp: field-simps power2-eq-square)

also have b ∗ k l ∗ |h l / k l − a / b| = |b ∗ k l ∗ (h l / k l − a / b)|
using ‹b > 0› ‹k l > 0› by (subst abs-mult) auto

also have . . . = of-int |b ∗ h l − a ∗ k l|
using ‹b > 0› ‹k l > 0› by (simp add: algebra-simps)

also have k l / (2 ∗ b) < 1
using ‹b ≥ k l› ‹b > 0› by auto

finally have a ∗ k l = b ∗ h l
by linarith

moreover have coprime (h l) (k l)
unfolding h-def k-def by (simp add: coprime-conv-num-denom)

ultimately have (a, b) = (h l, k l)
using ‹coprime a b› using a-nz ‹b > 0› ‹k l > 0›

77

by (subst (asm) coprime-crossproduct ′) (auto simp: coprime-commute)
with no-convergent and l show False

by auto

next

case True
have k r ∗ |x − h r / k r | = |k r ∗ x − h r |

using ‹k r > 0› by (simp add: field-simps)
also have |k r ∗ x − h r | ≤ |b ∗ x − a|
using assms r True unfolding x-def by (intro conv-best-approximation-ex-weak)

auto
also have . . . = b ∗ |x − a / b|

using ‹b > 0› by (simp add: field-simps)
also have . . . < b ∗ (1 / (2 ∗ b2))

using ‹b > 0› by (intro mult-strict-left-mono assms) auto
finally have less: |x − conv c r | < 1 / (2 ∗ b ∗ k r)

using ‹k r > 0› and ‹b > 0› and assms
by (simp add: field-simps power2-eq-square conv-num-denom h-def k-def)

have |x − a / b| < 1 / (2 ∗ b2) by fact
also have . . . = 1 / (2 ∗ b) ∗ (1 / b)

by (simp add: power2-eq-square)
also have . . . ≤ 1 / (2 ∗ b) ∗ (|a| / b)

using a-nz assms by (intro mult-left-mono divide-right-mono) auto
also have . . . < 1 / 1 ∗ (|a| / b)

using a-nz assms
by (intro mult-strict-right-mono divide-left-mono divide-strict-left-mono)

auto
also have . . . = |a / b| using assms by simp
finally have sgn x = sgn (a / b)

by (auto simp: sgn-if split: if-splits)
hence sgn x = sgn a using assms by (auto simp: sgn-of-int)
hence a ≥ 0 ∧ x ≥ 0 ∨ a ≤ 0 ∧ x ≤ 0

by (auto simp: sgn-if split: if-splits)
moreover have h r ≥ 0 ∧ x ≥ 0 ∨ h r ≤ 0 ∧ x ≤ 0

using conv-best-approximation-aux[of r] by (auto simp: h-def x-def)
ultimately have signs: h r ≥ 0 ∧ a ≥ 0 ∨ h r ≤ 0 ∧ a ≤ 0

using ‹x 6= 0› by auto

with no-convergent assms assms True have |h r | 6= |a| ∨ b 6= k r
by (auto simp: h-def k-def)

hence |h r | ∗ |b| 6= |a| ∗ |k r | unfolding h-def k-def
using assms coprime-conv-num-denom[of c r]
by (subst coprime-crossproduct-int) auto

hence |h r | ∗ b 6= |a| ∗ k r using assms by (simp add: k-def)
hence k r ∗ a − h r ∗ b 6= 0

using signs by (auto simp: algebra-simps)

78

hence |k r ∗ a − h r ∗ b| ≥ 1 by presburger
hence real-of-int 1 / (k r ∗ b) ≤ |k r ∗ a − h r ∗ b| / (k r ∗ b)

using assms
by (intro divide-right-mono, subst of-int-le-iff) (auto simp: k-def)

also have . . . = |(real-of-int (k r) ∗ a − h r ∗ b) / (k r ∗ b)|
using assms by (simp add: k-def)

also have (real-of-int (k r) ∗ a − h r ∗ b) / (k r ∗ b) = a / b − conv c r
using assms ‹k r > 0› by (simp add: h-def k-def conv-num-denom field-simps)
also have |a / b − conv c r | = |(x − conv c r) − (x − a / b)|

by (simp add: algebra-simps)
also have . . . ≤ |x − conv c r | + |x − a / b|

by (rule abs-triangle-ineq4)
also have . . . < 1 / (2 ∗ b ∗ k r) + 1 / (2 ∗ b2)

by (intro add-strict-mono assms less)
finally have k r > b

using ‹b > 0› and ‹k r > 0› by (simp add: power2-eq-square field-simps)
with r show False by auto

qed
qed

qed

end

1.5 Efficient code for convergents
function conv-gen :: (nat ⇒ int) ⇒ int × int × nat ⇒ nat ⇒ int where

conv-gen c (a, b, n) N =
(if n > N then b else conv-gen c (b, b ∗ c n + a, Suc n) N)

by auto
termination by (relation measure (λ(-, (-, -, n), N). Suc N − n)) auto

lemmas [simp del] = conv-gen.simps

lemma conv-gen-aux-simps [simp]:
n > N =⇒ conv-gen c (a, b, n) N = b
n ≤ N =⇒ conv-gen c (a, b, n) N = conv-gen c (b, b ∗ c n + a, Suc n) N
by (subst conv-gen.simps, simp)+

lemma conv-num-eq-conv-gen-aux:
Suc n ≤ N =⇒ conv-num c n = b ∗ cfrac-nth c n + a =⇒

conv-num c (Suc n) = conv-num c n ∗ cfrac-nth c (Suc n) + b =⇒
conv-num c N = conv-gen (cfrac-nth c) (a, b, n) N

proof (induction cfrac-nth c (a, b, n) N arbitrary: c a b n rule: conv-gen.induct)
case (1 a b n N c)
show ?case
proof (cases Suc (Suc n) ≤ N)

case True
thus ?thesis

by (subst 1) (insert 1.prems, auto)

79

next
case False
thus ?thesis using 1

by (auto simp: not-le less-Suc-eq)
qed

qed

lemma conv-denom-eq-conv-gen-aux:
Suc n ≤ N =⇒ conv-denom c n = b ∗ cfrac-nth c n + a =⇒

conv-denom c (Suc n) = conv-denom c n ∗ cfrac-nth c (Suc n) + b =⇒
conv-denom c N = conv-gen (cfrac-nth c) (a, b, n) N

proof (induction cfrac-nth c (a, b, n) N arbitrary: c a b n rule: conv-gen.induct)
case (1 a b n N c)
show ?case
proof (cases Suc (Suc n) ≤ N)

case True
thus ?thesis

by (subst 1) (insert 1.prems, auto)
next

case False
thus ?thesis using 1

by (auto simp: not-le less-Suc-eq)
qed

qed

lemma conv-num-code [code]: conv-num c n = conv-gen (cfrac-nth c) (0, 1, 0) n
using conv-num-eq-conv-gen-aux[of 0 n c 1 0] by (cases n) simp-all

lemma conv-denom-code [code]: conv-denom c n = conv-gen (cfrac-nth c) (1, 0,
0) n

using conv-denom-eq-conv-gen-aux[of 0 n c 0 1] by (cases n) simp-all

definition conv-num-fun where conv-num-fun c = conv-gen c (0, 1, 0)
definition conv-denom-fun where conv-denom-fun c = conv-gen c (1, 0, 0)

lemma
assumes is-cfrac c
shows conv-num-fun-eq: conv-num-fun c n = conv-num (cfrac c) n

and conv-denom-fun-eq: conv-denom-fun c n = conv-denom (cfrac c) n
proof −

from assms have cfrac-nth (cfrac c) = c
by (intro ext) simp-all

thus conv-num-fun c n = conv-num (cfrac c) n and conv-denom-fun c n =
conv-denom (cfrac c) n

by (simp-all add: conv-num-fun-def conv-num-code conv-denom-fun-def conv-denom-code)
qed

80

1.6 Computing the continued fraction expansion of a rational
number

function cfrac-list-of-rat :: int × int ⇒ int list where
cfrac-list-of-rat (a, b) =

(if b = 0 then [0]
else a div b # (if a mod b = 0 then [] else cfrac-list-of-rat (b, a mod b)))

by auto
termination

by (relation measure (λ(a,b). nat (abs b))) (auto simp: abs-mod-less)

lemmas [simp del] = cfrac-list-of-rat.simps

lemma cfrac-list-of-rat-correct:
(let xs = cfrac-list-of-rat (a, b); c = cfrac-of-real (a / b)

in length xs = cfrac-length c + 1 ∧ (∀ i<length xs. xs ! i = cfrac-nth c i))
proof (induction (a, b) arbitrary: a b rule: cfrac-list-of-rat.induct)

case (1 a b)
show ?case
proof (cases b = 0)

case True
thus ?thesis

by (subst cfrac-list-of-rat.simps) (auto simp: one-enat-def)
next

case False
define c where c = cfrac-of-real (a / b)
define c ′ where c ′ = cfrac-of-real (b / (a mod b))
define xs ′ where xs ′ = (if a mod b = 0 then [] else cfrac-list-of-rat (b, a mod

b))
define xs where xs = a div b # xs ′

have [simp]: cfrac-nth c 0 = a div b
by (auto simp: c-def floor-divide-of-int-eq)

obtain l where l: cfrac-length c = enat l
by (cases cfrac-length c) (auto simp: c-def)

have length xs = l + 1 ∧ (∀ i<length xs. xs ! i = cfrac-nth c i)
proof (cases b dvd a)

case True
thus ?thesis using l

by (auto simp: Let-def xs-def xs ′-def c-def of-int-divide-in-Ints one-enat-def
enat-0-iff)

next
case False
have l 6= 0

using l False cfrac-of-real-length-eq-0-iff [of a / b] ‹b 6= 0›
by (auto simp: c-def zero-enat-def real-of-int-divide-in-Ints-iff intro!: Nat.gr0I)
have c ′: c ′ = cfrac-tl c

using False ‹b 6= 0› unfolding c ′-def c-def

81

by (subst cfrac-tl-of-real) (auto simp: real-of-int-divide-in-Ints-iff frac-fraction)
from 1 have enat (length xs ′) = cfrac-length c ′ + 1

and xs ′: ∀ i<length xs ′. xs ′ ! i = cfrac-nth c ′ i
using ‹b 6= 0› ‹¬b dvd a› by (auto simp: Let-def xs ′-def c ′-def)

have enat (length xs ′) = cfrac-length c ′ + 1
by fact

also have . . . = enat l − 1 + 1
using c ′ l by simp

also have . . . = enat (l − 1 + 1)
by (metis enat-diff-one one-enat-def plus-enat-simps(1))

also have l − 1 + 1 = l
using ‹l 6= 0› by simp

finally have [simp]: length xs ′ = l
by simp

from xs ′ show ?thesis
by (auto simp: xs-def nth-Cons c ′ split: nat.splits)

qed
thus ?thesis using l False
by (subst cfrac-list-of-rat.simps) (simp-all add: xs-def xs ′-def c-def one-enat-def)

qed
qed

lemma conv-num-cong:
assumes (

∧
k. k ≤ n =⇒ cfrac-nth c k = cfrac-nth c ′ k) n = n ′

shows conv-num c n = conv-num c ′ n
proof −

have conv-num c n = conv-num c ′ n
using assms(1)
by (induction n arbitrary: rule: conv-num.induct) simp-all

thus ?thesis using assms(2)
by simp

qed

lemma conv-denom-cong:
assumes (

∧
k. k ≤ n =⇒ cfrac-nth c k = cfrac-nth c ′ k) n = n ′

shows conv-denom c n = conv-denom c ′ n ′

proof −
have conv-denom c n = conv-denom c ′ n

using assms(1)
by (induction n arbitrary: rule: conv-denom.induct) simp-all

thus ?thesis using assms(2)
by simp

qed

lemma cfrac-lim-diff-le:
assumes ∀ k≤Suc n. cfrac-nth c1 k = cfrac-nth c2 k
assumes n ≤ cfrac-length c1 n ≤ cfrac-length c2

82

shows |cfrac-lim c1 − cfrac-lim c2| ≤ 2 / (conv-denom c1 n ∗ conv-denom c1
(Suc n))
proof −

define d where d = (λk. conv-denom c1 k)
have |cfrac-lim c1 − cfrac-lim c2| ≤ |cfrac-lim c1 − conv c1 n| + |cfrac-lim c2
− conv c1 n|

by linarith
also have |cfrac-lim c1 − conv c1 n| ≤ 1 / (d n ∗ d (Suc n))

unfolding d-def using assms
by (intro cfrac-lim-minus-conv-upper-bound) auto

also have conv c1 n = conv c2 n
using assms by (intro conv-cong) auto

also have |cfrac-lim c2 − conv c2 n| ≤ 1 / (conv-denom c2 n ∗ conv-denom c2
(Suc n))

using assms unfolding d-def by (intro cfrac-lim-minus-conv-upper-bound)
auto

also have conv-denom c2 n = d n
unfolding d-def using assms by (intro conv-denom-cong) auto

also have conv-denom c2 (Suc n) = d (Suc n)
unfolding d-def using assms by (intro conv-denom-cong) auto

also have 1 / (d n ∗ d (Suc n)) + 1 / (d n ∗ d (Suc n)) = 2 / (d n ∗ d (Suc n))
by simp

finally show ?thesis
by (simp add: d-def)

qed

lemma of-int-leI : n ≤ m =⇒ (of-int n :: ′a :: linordered-idom) ≤ of-int m
by simp

lemma cfrac-lim-diff-le ′:
assumes ∀ k≤Suc n. cfrac-nth c1 k = cfrac-nth c2 k
assumes n ≤ cfrac-length c1 n ≤ cfrac-length c2
shows |cfrac-lim c1 − cfrac-lim c2| ≤ 2 / (fib (n+1) ∗ fib (n+2))

proof −
have |cfrac-lim c1 − cfrac-lim c2| ≤ 2 / (conv-denom c1 n ∗ conv-denom c1 (Suc

n))
by (rule cfrac-lim-diff-le) (use assms in auto)

also have . . . ≤ 2 / (int (fib (Suc n)) ∗ int (fib (Suc (Suc n))))
unfolding of-nat-mult of-int-mult

by (intro divide-left-mono mult-mono mult-pos-pos of-int-leI conv-denom-lower-bound)
(auto intro!: fib-neq-0-nat simp del: fib.simps)

also have . . . = 2 / (fib (n+1) ∗ fib (n+2))
by simp

finally show ?thesis .
qed

end

83

2 Quadratic Irrationals
theory Quadratic-Irrationals
imports

Continued-Fractions
HOL−Computational-Algebra.Computational-Algebra
HOL−Library.Discrete
Coinductive.Coinductive-Stream

begin

lemma snth-cycle:
assumes xs 6= []
shows snth (cycle xs) n = xs ! (n mod length xs)

proof (induction n rule: less-induct)
case (less n)
have snth (shift xs (cycle xs)) n = xs ! (n mod length xs)
proof (cases n < length xs)

case True
thus ?thesis

by (subst shift-snth-less) auto
next

case False
have 0 < length xs

using assms by simp
also have . . . ≤ n

using False by simp
finally have n > 0 .

from False have snth (shift xs (cycle xs)) n = snth (cycle xs) (n − length xs)
by (subst shift-snth-ge) auto

also have . . . = xs ! ((n − length xs) mod length xs)
using assms ‹n > 0› by (intro less) auto

also have (n − length xs) mod length xs = n mod length xs
using False by (simp add: mod-if)

finally show ?thesis .
qed
also have shift xs (cycle xs) = cycle xs

by (rule cycle-decomp [symmetric]) fact
finally show ?case .

qed

2.1 Basic results on rationality of square roots
lemma inverse-in-Rats-iff [simp]: inverse (x :: real) ∈ � ←→ x ∈ �

by (auto simp: inverse-eq-divide divide-in-Rats-iff1)

lemma nonneg-sqrt-nat-or-irrat:
assumes x ^ 2 = real a and x ≥ 0
shows x ∈ � ∨ x /∈ �

proof safe

84

assume x /∈ � and x ∈ �
from Rats-abs-nat-div-natE [OF this(2)]

obtain p q :: nat where q-nz [simp]: q 6= 0 and abs x = p / q and coprime:
coprime p q .

with ‹x ≥ 0› have x: x = p / q
by simp

with assms have real (q ^ 2) ∗ real a = real (p ^ 2)
by (simp add: field-simps)

also have real (q ^ 2) ∗ real a = real (q ^ 2 ∗ a)
by simp

finally have p ^ 2 = q ^ 2 ∗ a
by (subst (asm) of-nat-eq-iff) auto

hence q ^ 2 dvd p ^ 2
by simp

hence q dvd p
by simp

with coprime have q = 1
by auto

with x and ‹x /∈ �› show False
by simp

qed

A square root of a natural number is either an integer or irrational.
corollary sqrt-nat-or-irrat:

assumes x ^ 2 = real a
shows x ∈ � ∨ x /∈ �

proof (cases x ≥ 0)
case True
with nonneg-sqrt-nat-or-irrat[OF assms this]

show ?thesis by (auto simp: Nats-altdef2)
next

case False
from assms have (−x) ^ 2 = real a

by simp
moreover from False have −x ≥ 0

by simp
ultimately have −x ∈ � ∨ −x /∈ �

by (rule nonneg-sqrt-nat-or-irrat)
thus ?thesis

by (auto simp: Nats-altdef2 minus-in-Ints-iff)
qed

corollary sqrt-nat-or-irrat ′:
sqrt (real a) ∈ � ∨ sqrt (real a) /∈ �
using nonneg-sqrt-nat-or-irrat[of sqrt a a] by auto

The square root of a natural number n is again a natural number iff n is a
perfect square.

corollary sqrt-nat-iff-is-square:

85

sqrt (real n) ∈ � ←→ is-square n
proof

assume sqrt (real n) ∈ �
then obtain k where sqrt (real n) = real k by (auto elim!: Nats-cases)
hence sqrt (real n) ^ 2 = real (k ^ 2) by (simp only: of-nat-power)
also have sqrt (real n) ^ 2 = real n by simp
finally have n = k ^ 2 by (simp only: of-nat-eq-iff)
thus is-square n by blast

qed (auto elim!: is-nth-powerE)

corollary irrat-sqrt-nonsquare: ¬is-square n =⇒ sqrt (real n) /∈ �
using sqrt-nat-or-irrat ′[of n] by (auto simp: sqrt-nat-iff-is-square)

lemma sqrt-of-nat-in-Rats-iff : sqrt (real n) ∈ � ←→ is-square n
using irrat-sqrt-nonsquare[of n] sqrt-nat-iff-is-square[of n] Nats-subset-Rats by

blast

lemma Discrete-sqrt-altdef : Discrete.sqrt n = nat bsqrt nc
proof −

have real (Discrete.sqrt n ^ 2) ≤ sqrt n ^ 2
by simp

hence Discrete.sqrt n ≤ sqrt n
unfolding of-nat-power by (rule power2-le-imp-le) auto

moreover have real (Suc (Discrete.sqrt n) ^ 2) > real n
unfolding of-nat-less-iff by (rule Suc-sqrt-power2-gt)

hence real (Discrete.sqrt n + 1) ^ 2 > sqrt n ^ 2
unfolding of-nat-power by simp

hence real (Discrete.sqrt n + 1) > sqrt n
by (rule power2-less-imp-less) auto

hence Discrete.sqrt n + 1 > sqrt n by simp
ultimately show ?thesis by linarith

qed

2.2 Definition of quadratic irrationals

Irrational real numbers x that satisfy a quadratic equation ax2 + bx + c = 0
with a, b, c not all equal to 0 are called quadratic irrationals. These are of
the form p + q

√
d for rational numbers p, q and a positive integer d.

inductive quadratic-irrational :: real ⇒ bool where
x /∈ � =⇒ real-of-int a ∗ x ^ 2 + real-of-int b ∗ x + real-of-int c = 0 =⇒

a 6= 0 ∨ b 6= 0 ∨ c 6= 0 =⇒ quadratic-irrational x

lemma quadratic-irrational-sqrt [intro]:
assumes ¬is-square n
shows quadratic-irrational (sqrt (real n))
using irrat-sqrt-nonsquare[OF assms]
by (intro quadratic-irrational.intros[of sqrt n 1 0 −int n]) auto

lemma quadratic-irrational-uminus [intro]:

86

assumes quadratic-irrational x
shows quadratic-irrational (−x)
using assms

proof induction
case (1 x a b c)
thus ?case by (intro quadratic-irrational.intros[of −x a −b c]) auto

qed

lemma quadratic-irrational-uminus-iff [simp]:
quadratic-irrational (−x) ←→ quadratic-irrational x
using quadratic-irrational-uminus[of x] quadratic-irrational-uminus[of −x] by

auto

lemma quadratic-irrational-plus-int [intro]:
assumes quadratic-irrational x
shows quadratic-irrational (x + of-int n)
using assms

proof induction
case (1 x a b c)
define x ′ where x ′ = x + of-int n
define a ′ b ′ c ′ where

a ′ = a and b ′ = b − 2 ∗ of-int n ∗ a and
c ′ = a ∗ of-int n ^ 2 − b ∗ of-int n + c

from 1 have 0 = a ∗ (x ′ − of-int n) ^ 2 + b ∗ (x ′ − of-int n) + c
by (simp add: x ′-def)

also have . . . = a ′ ∗ x ′ ^ 2 + b ′ ∗ x ′ + c ′

by (simp add: algebra-simps a ′-def b ′-def c ′-def power2-eq-square)
finally have . . . = 0 ..
moreover have x ′ /∈ �

using 1 by (auto simp: x ′-def add-in-Rats-iff2)
moreover have a ′ 6= 0 ∨ b ′ 6= 0 ∨ c ′ 6= 0

using 1 by (auto simp: a ′-def b ′-def c ′-def)
ultimately show ?case
by (intro quadratic-irrational.intros[of x + of-int n a ′ b ′ c ′]) (auto simp: x ′-def)

qed

lemma quadratic-irrational-plus-int-iff [simp]:
quadratic-irrational (x + of-int n) ←→ quadratic-irrational x
using quadratic-irrational-plus-int[of x n]

quadratic-irrational-plus-int[of x + of-int n −n] by auto

lemma quadratic-irrational-minus-int-iff [simp]:
quadratic-irrational (x − of-int n) ←→ quadratic-irrational x
using quadratic-irrational-plus-int-iff [of x −n]
by (simp del: quadratic-irrational-plus-int-iff)

lemma quadratic-irrational-plus-nat-iff [simp]:
quadratic-irrational (x + of-nat n) ←→ quadratic-irrational x
using quadratic-irrational-plus-int-iff [of x int n]

87

by (simp del: quadratic-irrational-plus-int-iff)

lemma quadratic-irrational-minus-nat-iff [simp]:
quadratic-irrational (x − of-nat n) ←→ quadratic-irrational x
using quadratic-irrational-plus-int-iff [of x −int n]
by (simp del: quadratic-irrational-plus-int-iff)

lemma quadratic-irrational-plus-1-iff [simp]:
quadratic-irrational (x + 1) ←→ quadratic-irrational x
using quadratic-irrational-plus-int-iff [of x 1]
by (simp del: quadratic-irrational-plus-int-iff)

lemma quadratic-irrational-minus-1-iff [simp]:
quadratic-irrational (x − 1) ←→ quadratic-irrational x
using quadratic-irrational-plus-int-iff [of x −1]
by (simp del: quadratic-irrational-plus-int-iff)

lemma quadratic-irrational-plus-numeral-iff [simp]:
quadratic-irrational (x + numeral n) ←→ quadratic-irrational x
using quadratic-irrational-plus-int-iff [of x numeral n]
by (simp del: quadratic-irrational-plus-int-iff)

lemma quadratic-irrational-minus-numeral-iff [simp]:
quadratic-irrational (x − numeral n) ←→ quadratic-irrational x
using quadratic-irrational-plus-int-iff [of x −numeral n]
by (simp del: quadratic-irrational-plus-int-iff)

lemma quadratic-irrational-inverse:
assumes quadratic-irrational x
shows quadratic-irrational (inverse x)
using assms

proof induction
case (1 x a b c)
from 1 have x 6= 0 by auto
have 0 = (real-of-int a ∗ x2 + real-of-int b ∗ x + real-of-int c) / x ^ 2

by (subst 1) simp
also have . . . = real-of-int c ∗ (inverse x) ^ 2 + real-of-int b ∗ inverse x +

real-of-int a
using ‹x 6= 0› by (simp add: field-simps power2-eq-square)

finally have . . . = 0 ..
thus ?case using 1

by (intro quadratic-irrational.intros[of inverse x c b a]) auto
qed

lemma quadratic-irrational-inverse-iff [simp]:
quadratic-irrational (inverse x) ←→ quadratic-irrational x
using quadratic-irrational-inverse[of x] quadratic-irrational-inverse[of inverse x]
by (cases x = 0) auto

88

lemma quadratic-irrational-cfrac-remainder-iff :
quadratic-irrational (cfrac-remainder c n) ←→ quadratic-irrational (cfrac-lim c)

proof (cases cfrac-length c = ∞)
case False
thus ?thesis

by (auto simp: quadratic-irrational.simps)
next

case [simp]: True
show ?thesis
proof (induction n)

case (Suc n)
from Suc.prems have cfrac-remainder c (Suc n) =

inverse (cfrac-remainder c n − of-int (cfrac-nth c n))
by (subst cfrac-remainder-Suc) (auto simp: field-simps)

also have quadratic-irrational . . . ←→ quadratic-irrational (cfrac-remainder c
n)

by simp
also have . . . ←→ quadratic-irrational (cfrac-lim c)

by (rule Suc.IH)
finally show ?case .

qed auto
qed

2.3 Real solutions of quadratic equations

For the next result, we need some basic properties of real solutions to
quadratic equations.
lemma quadratic-equation-reals:

fixes a b c :: real
defines f ≡ (λx. a ∗ x ^ 2 + b ∗ x + c)
defines discr ≡ (b^2 − 4 ∗ a ∗ c)
shows {x. f x = 0} =

(if a = 0 then
(if b = 0 then if c = 0 then UNIV else {} else {−c/b})

else if discr ≥ 0 then {(−b + sqrt discr) / (2 ∗ a), (−b − sqrt discr) /
(2 ∗ a)}

else {}) (is ?th1)
proof (cases a = 0)

case [simp]: True
show ?th1
proof (cases b = 0)

case [simp]: True
hence {x. f x = 0} = (if c = 0 then UNIV else {})

by (auto simp: f-def)
thus ?th1 by simp

next
case False
hence {x. f x = 0} = {−c / b} by (auto simp: f-def field-simps)
thus ?th1 using False by simp

89

qed
next

case [simp]: False
show ?th1
proof (cases discr ≥ 0)

case True
{

fix x :: real
have f x = a ∗ (x − (−b + sqrt discr) / (2 ∗ a)) ∗ (x − (−b − sqrt discr) /

(2 ∗ a))
using True by (simp add: f-def field-simps discr-def power2-eq-square)

also have . . . = 0 ←→ x ∈ {(−b + sqrt discr) / (2 ∗ a), (−b − sqrt discr)
/ (2 ∗ a)}

by simp
finally have f x = 0 ←→

}
hence {x. f x = 0} = {(−b + sqrt discr) / (2 ∗ a), (−b − sqrt discr) / (2 ∗

a)}
by blast

thus ?th1 using True by simp
next

case False
{

fix x :: real
assume x: f x = 0
have 0 ≤ (x + b / (2 ∗ a)) ^ 2 by simp
also have f x = a ∗ ((x + b / (2 ∗ a)) ^ 2 − b ^ 2 / (4 ∗ a ^ 2) + c / a)

by (simp add: field-simps power2-eq-square f-def)
with x have (x + b / (2 ∗ a)) ^ 2 − b ^ 2 / (4 ∗ a ^ 2) + c / a = 0

by simp
hence (x + b / (2 ∗ a)) ^ 2 = b ^ 2 / (4 ∗ a ^ 2) − c / a

by (simp add: algebra-simps)
finally have 0 ≤ (b2 / (4 ∗ a2) − c / a) ∗ (4 ∗ a2)

by (intro mult-nonneg-nonneg) auto
also have . . . = b2 − 4 ∗ a ∗ c by (simp add: field-simps power2-eq-square)
also have . . . < 0 using False by (simp add: discr-def)
finally have False by simp

}
hence {x. f x = 0} = {} by auto
thus ?th1 using False by simp

qed
qed

lemma finite-quadratic-equation-solutions-reals:
fixes a b c :: real
defines discr ≡ (b^2 − 4 ∗ a ∗ c)
shows finite {x. a ∗ x ^ 2 + b ∗ x + c = 0} ←→ a 6= 0 ∨ b 6= 0 ∨ c 6= 0
by (subst quadratic-equation-reals)

(auto simp: discr-def card-eq-0-iff infinite-UNIV-char-0 split: if-split)

90

lemma card-quadratic-equation-solutions-reals:
fixes a b c :: real
defines discr ≡ (b^2 − 4 ∗ a ∗ c)
shows card {x. a ∗ x ^ 2 + b ∗ x + c = 0} =

(if a = 0 then
(if b = 0 then 0 else 1)

else if discr ≥ 0 then if discr = 0 then 1 else 2 else 0) (is ?th1)
by (subst quadratic-equation-reals)

(auto simp: discr-def card-eq-0-iff infinite-UNIV-char-0 split: if-split)

lemma card-quadratic-equation-solutions-reals-le-2:
card {x :: real. a ∗ x ^ 2 + b ∗ x + c = 0} ≤ 2
by (subst card-quadratic-equation-solutions-reals) auto

lemma quadratic-equation-solution-rat-iff :
fixes a b c :: int and x y :: real
defines f ≡ (λx::real. a ∗ x ^ 2 + b ∗ x + c)
defines discr ≡ nat (b ^ 2 − 4 ∗ a ∗ c)
assumes a 6= 0 f x = 0
shows x ∈ � ←→ is-square discr

proof −
define discr ′ where discr ′ ≡ real-of-int (b ^ 2 − 4 ∗ a ∗ c)
from assms have x ∈ {x. f x = 0} by simp
with ‹a 6= 0› have discr ′ ≥ 0 unfolding discr ′-def f-def of-nat-diff

by (subst (asm) quadratic-equation-reals) (auto simp: discr-def split: if-splits)
hence ∗: sqrt (discr ′) = sqrt (real discr) unfolding of-int-0-le-iff discr-def

discr ′-def
by (simp add: algebra-simps nat-diff-distrib)

from ‹x ∈ {x. f x = 0}› have x = (−b + sqrt discr) / (2 ∗ a) ∨ x = (−b − sqrt
discr) / (2 ∗ a)

using ‹a 6= 0› ∗ unfolding discr ′-def f-def
by (subst (asm) quadratic-equation-reals) (auto split: if-splits)

thus ?thesis using ‹a 6= 0›
by (auto simp: sqrt-of-nat-in-Rats-iff divide-in-Rats-iff2 diff-in-Rats-iff2 diff-in-Rats-iff1)

qed

2.4 Periodic continued fractions and quadratic irrationals

We now show the main result: A positive irrational number has a periodic
continued fraction expansion iff it is a quadratic irrational.
In principle, this statement naturally also holds for negative numbers, but
the current formalisation of continued fractions only supports non-negative
numbers. It also holds for rational numbers in some sense, since their con-
tinued fraction expansion is finite to begin with.
theorem periodic-cfrac-imp-quadratic-irrational:

assumes [simp]: cfrac-length c = ∞
and period: l > 0

∧
k. k ≥ N =⇒ cfrac-nth c (k + l) = cfrac-nth c k

91

shows quadratic-irrational (cfrac-lim c)
proof −

define h ′ and k ′ where h ′ = conv-num-int (cfrac-drop N c)
and k ′ = conv-denom-int (cfrac-drop N c)

define x ′ where x ′ = cfrac-remainder c N

have c-pos: cfrac-nth c n > 0 if n ≥ N for n
proof −

from assms(1,2) have cfrac-nth c (n + l) > 0 by auto
with assms(3)[OF that] show ?thesis by simp

qed
have k ′-pos: k ′ n > 0 if n 6= −1 n ≥ −2 for n

using that by (auto simp: k ′-def conv-denom-int-def intro!: conv-denom-pos)
have k ′-nonneg: k ′ n ≥ 0 if n ≥ −2 for n

using that by (auto simp: k ′-def conv-denom-int-def intro!: conv-denom-pos)
have cfrac-nth c (n + (N + l)) = cfrac-nth c (n + N) for n

using period(2)[of n + N] by (simp add: add-ac)
have cfrac-drop (N + l) c = cfrac-drop N c
by (rule cfrac-eqI) (use period(2)[of n + N for n] in ‹auto simp: algebra-simps›)

hence x ′-altdef : x ′ = cfrac-remainder c (N + l)
by (simp add: x ′-def cfrac-remainder-def)

have x ′-pos: x ′ > 0 unfolding x ′-def
using c-pos by (intro cfrac-remainder-pos) auto

define A where A = (k ′ (int l − 1))
define B where B = k ′ (int l − 2) − h ′ (int l − 1)
define C where C = −(h ′ (int l − 2))

have pos: (k ′ (int l − 1) ∗ x ′ + k ′ (int l − 2)) > 0
using x ′-pos ‹l > 0›
by (intro add-pos-nonneg mult-pos-pos) (auto intro!: k ′-pos k ′-nonneg)

have cfrac-remainder c N = conv ′ (cfrac-drop N c) l (cfrac-remainder c (l +
N))

unfolding cfrac-remainder-def cfrac-drop-add
by (subst (2) cfrac-remainder-def [symmetric]) (auto simp: conv ′-cfrac-remainder)
hence x ′ = conv ′ (cfrac-drop N c) l x ′

by (subst (asm) add.commute) (simp only: x ′-def [symmetric] x ′-altdef [symmetric])
also have . . . = (h ′ (int l − 1) ∗ x ′ + h ′ (int l − 2)) / (k ′ (int l − 1) ∗ x ′ + k ′

(int l − 2))
using conv ′-num-denom-int[OF x ′-pos, of - l] unfolding h ′-def k ′-def
by (simp add: mult-ac)

finally have x ′ ∗ (k ′ (int l − 1) ∗ x ′ + k ′ (int l − 2)) = (h ′ (int l − 1) ∗ x ′ +
h ′ (int l − 2))

using pos by (simp add: divide-simps)
hence quadratic: A ∗ x ′ ^ 2 + B ∗ x ′ + C = 0

by (simp add: algebra-simps power2-eq-square A-def B-def C-def)
moreover have x ′ /∈ � unfolding x ′-def

by auto
moreover have A > 0 using ‹l > 0› by (auto simp: A-def intro!: k ′-pos)

92

ultimately have quadratic-irrational x ′ using ‹x ′ /∈ �›
by (intro quadratic-irrational.intros[of x ′ A B C]) simp-all

thus ?thesis
using assms by (simp add: x ′-def quadratic-irrational-cfrac-remainder-iff)

qed

lift-definition pperiodic-cfrac :: nat list ⇒ cfrac is
λxs. if xs = [] then (0, LNil) else

(int (hd xs), l list-of-stream (cycle (map (λn. n− 1) (tl xs @ [hd xs])))) .

definition periodic-cfrac :: int list ⇒ int list ⇒ cfrac where
periodic-cfrac xs ys = cfrac-of-stream (Stream.shift xs (Stream.cycle ys))

lemma periodic-cfrac-Nil [simp]: pperiodic-cfrac [] = 0
unfolding zero-cfrac-def by transfer auto

lemma cfrac-length-pperiodic-cfrac [simp]:
xs 6= [] =⇒ cfrac-length (pperiodic-cfrac xs) = ∞
by transfer auto

lemma cfrac-nth-pperiodic-cfrac:
assumes xs 6= [] and 0 /∈ set xs
shows cfrac-nth (pperiodic-cfrac xs) n = xs ! (n mod length xs)
using assms

proof (transfer , goal-cases)
case (1 xs n)
show ?case
proof (cases n)

case (Suc n ′)
have int (cycle (tl (map (λn. n − 1) xs) @ [hd (map (λn. n − 1) xs)]) !! n ′) +

1 =
int (stl (cycle (map (λn. n − 1) xs)) !! n ′) + 1

by (subst cycle.sel(2) [symmetric]) (rule refl)
also have . . . = int (cycle (map (λn. n − 1) xs) !! n) + 1

by (simp add: Suc del: cycle.sel)
also have . . . = int (xs ! (n mod length xs) − 1) + 1

by (simp add: snth-cycle ‹xs 6= []›)
also have xs ! (n mod length xs) ∈ set xs

using ‹xs 6= []› by (auto simp: set-conv-nth)
with 1 have xs ! (n mod length xs) > 0

by (intro Nat.gr0I) auto
hence int (xs ! (n mod length xs) − 1) + 1 = int (xs ! (n mod length xs))

by simp
finally show ?thesis

using Suc 1 by (simp add: hd-conv-nth map-tl)
qed (use 1 in ‹auto simp: hd-conv-nth›)

qed

93

definition pperiodic-cfrac-info :: nat list ⇒ int × int × intwhere
pperiodic-cfrac-info xs =

(let l = length xs;
h = conv-num-fun (λn. xs ! n);
k = conv-denom-fun (λn. xs ! n);
A = k (l − 1);
B = h (l − 1) − (if l = 1 then 0 else k (l − 2));
C = (if l = 1 then −1 else −h (l − 2))

in (B^2−4∗A∗C , B, 2 ∗ A))

lemma conv-gen-cong:
assumes ∀ k∈{n..N}. f k = f ′ k
shows conv-gen f (a,b,n) N = conv-gen f ′ (a,b,n) N
using assms

proof (induction N − n arbitrary: a b n N)
case (Suc d n N a b)
have conv-gen f (b, b ∗ f n + a, Suc n) N = conv-gen f ′ (b, b ∗ f n + a, Suc n)

N
using Suc(2,3) by (intro Suc) auto

moreover have f n = f ′ n
using bspec[OF Suc.prems, of n] Suc(2) by auto

ultimately show ?case
by (subst (1 2) conv-gen.simps) auto

qed (auto simp: conv-gen.simps)

lemma
assumes ∀ k≤n. c k = cfrac-nth c ′ k
shows conv-num-fun-eq ′: conv-num-fun c n = conv-num c ′ n

and conv-denom-fun-eq ′: conv-denom-fun c n = conv-denom c ′ n
proof −

have conv-num c ′ n = conv-gen (cfrac-nth c ′) (0, 1, 0) n
unfolding conv-num-code ..

also have . . . = conv-gen c (0, 1, 0) n
unfolding conv-num-fun-def using assms by (intro conv-gen-cong) auto

finally show conv-num-fun c n = conv-num c ′ n
by (simp add: conv-num-fun-def)

next
have conv-denom c ′ n = conv-gen (cfrac-nth c ′) (1, 0, 0) n

unfolding conv-denom-code ..
also have . . . = conv-gen c (1, 0, 0) n

unfolding conv-denom-fun-def using assms by (intro conv-gen-cong) auto
finally show conv-denom-fun c n = conv-denom c ′ n

by (simp add: conv-denom-fun-def)
qed

lemma gcd-minus-commute-left: gcd (a − b :: ′a :: ring-gcd) c = gcd (b − a) c
by (metis gcd.commute gcd-neg2 minus-diff-eq)

lemma gcd-minus-commute-right: gcd c (a − b :: ′a :: ring-gcd) = gcd c (b − a)

94

by (metis gcd-neg2 minus-diff-eq)

lemma periodic-cfrac-info-aux:
fixes D E F :: int
assumes pperiodic-cfrac-info xs = (D, E , F)
assumes xs 6= [] 0 /∈ set xs
shows cfrac-lim (pperiodic-cfrac xs) = (sqrt D + E) / F

and D > 0 and F > 0
proof −

define c where c = pperiodic-cfrac xs
have [simp]: cfrac-length c = ∞

using assms by (simp add: c-def)
define h and k where h = conv-num-int c and k = conv-denom-int c
define x where x = cfrac-lim c
define l where l = length xs

define A where A = (k (int l − 1))
define B where B = k (int l − 2) − h (int l − 1)
define C where C = −(h (int l − 2))
define discr where discr = B ^ 2 − 4 ∗ A ∗ C

have l > 0
using assms by (simp add: l-def)

have c-pos: cfrac-nth c n > 0 for n
using assms by (auto simp: c-def cfrac-nth-pperiodic-cfrac set-conv-nth)

have x-pos: x > 0
unfolding x-def by (intro cfrac-lim-pos c-pos)

have h-pos: h n > 0 if n > −2 for n
using that unfolding h-def by (auto simp: conv-num-int-def intro: conv-num-pos ′

c-pos)
have k-pos: k n > 0 if n > −1 for n

using that unfolding k-def by (auto simp: conv-denom-int-def)
have k-nonneg: k n ≥ 0 for n

unfolding k-def by (auto simp: conv-denom-int-def)

have pos: (k (int l − 1) ∗ x + k (int l − 2)) > 0
using x-pos ‹l > 0›
by (intro add-pos-nonneg mult-pos-pos) (auto intro!: k-pos k-nonneg)

have cfrac-drop l c = c
using assms by (intro cfrac-eqI) (auto simp: c-def cfrac-nth-pperiodic-cfrac

l-def)

have x = conv ′ c l (cfrac-remainder c l)
unfolding x-def by (rule conv ′-cfrac-remainder [symmetric]) auto

also have . . . = conv ′ c l x
unfolding cfrac-remainder-def ‹cfrac-drop l c = c› x-def ..

finally have x = conv ′ c l x .
also have . . . = (h (int l − 1) ∗ x + h (int l − 2)) / (k (int l − 1) ∗ x + k (int

l − 2))

95

using conv ′-num-denom-int[OF x-pos, of - l] unfolding h-def k-def
by (simp add: mult-ac)

finally have x ∗ (k (int l − 1) ∗ x + k (int l − 2)) = (h (int l − 1) ∗ x + h
(int l − 2))

using pos by (simp add: divide-simps)
hence quadratic: A ∗ x ^ 2 + B ∗ x + C = 0

by (simp add: algebra-simps power2-eq-square A-def B-def C-def)

have A > 0 using ‹l > 0› by (auto simp: A-def intro!: k-pos)
have discr-altdef : discr = (k (int l−2) − h (int l−1)) ^ 2 + 4 ∗ k (int l−1) ∗ h

(int l−2)
by (simp add: discr-def A-def B-def C-def)

have 0 < 0 + 4 ∗ A ∗ 1
using ‹A > 0› by simp

also have 0 + 4 ∗ A ∗ 1 ≤ discr
unfolding discr-altdef A-def using h-pos[of int l − 2] ‹l > 0›
by (intro add-mono mult-mono order .refl k-nonneg mult-nonneg-nonneg) auto

finally have discr > 0 .

have x ∈ {x. A ∗ x ^ 2 + B ∗ x + C = 0}
using quadratic by simp

hence x-cases: x = (−B − sqrt discr) / (2 ∗ A) ∨ x = (−B + sqrt discr) / (2
∗ A)

unfolding quadratic-equation-reals of-int-diff using ‹A > 0›
by (auto split: if-splits simp: discr-def)

have B ^ 2 < discr
unfolding discr-def by (auto intro!: mult-pos-pos k-pos h-pos ‹l > 0› simp:

A-def C-def)
hence |B| < sqrt discr

using ‹discr > 0› by (simp add: real-less-rsqrt)

have x = (if x ≥ 0 then (sqrt discr − B) / (2 ∗ A) else −(sqrt discr + B) / (2
∗ A))

using x-cases
proof

assume x: x = (−B − sqrt discr) / (2 ∗ A)
have (−B − sqrt discr) / (2 ∗ A) < 0

using ‹|B| < sqrt discr› ‹A > 0› by (intro divide-neg-pos) auto
also note x[symmetric]
finally show ?thesis using x by simp

next
assume x: x = (−B + sqrt discr) / (2 ∗ A)
have (−B + sqrt discr) / (2 ∗ A) > 0

using ‹|B| < sqrt discr› ‹A > 0› by (intro divide-pos-pos) auto
also note x[symmetric]
finally show ?thesis using x by simp

qed

96

also have x ≥ 0 ←→ floor x ≥ 0
by auto

also have floor x = floor (cfrac-lim c)
by (simp add: x-def)

also have . . . = cfrac-nth c 0
by (subst cfrac-nth-0-conv-floor) auto

also have . . . = int (hd xs)
using assms unfolding c-def by (subst cfrac-nth-pperiodic-cfrac) (auto simp:

hd-conv-nth)
finally have x-eq: x = (sqrt discr − B) / (2 ∗ A)

by simp

define h ′ where h ′ = conv-num-fun (λn. int (xs ! n))
define k ′ where k ′ = conv-denom-fun (λn. int (xs ! n))
have num-eq: h ′ i = h i

if i < l for i using that assms unfolding h ′-def h-def
by (subst conv-num-fun-eq ′[where c ′ = c]) (auto simp: c-def l-def cfrac-nth-pperiodic-cfrac)
have denom-eq: k ′ i = k i

if i < l for i using that assms unfolding k ′-def k-def
by (subst conv-denom-fun-eq ′[where c ′ = c]) (auto simp: c-def l-def cfrac-nth-pperiodic-cfrac)

have 1: h (int l − 1) = h ′ (l − 1)
by (subst num-eq) (use ‹l > 0› in ‹auto simp: of-nat-diff ›)

have 2: k (int l − 1) = k ′ (l − 1)
by (subst denom-eq) (use ‹l > 0› in ‹auto simp: of-nat-diff ›)

have 3: h (int l − 2) = (if l = 1 then 1 else h ′ (l − 2))
using ‹l > 0› num-eq[of l − 2] by (auto simp: h-def nat-diff-distrib)

have 4: k (int l − 2) = (if l = 1 then 0 else k ′ (l − 2))
using ‹l > 0› denom-eq[of l − 2] by (auto simp: k-def nat-diff-distrib)

have pperiodic-cfrac-info xs =
(let A = k (int l − 1);

B = h (int l − 1) − (if l = 1 then 0 else k (int l − 2));
C = (if l = 1 then −1 else − h (int l − 2))

in (B2 − 4 ∗ A ∗ C , B, 2 ∗ A))
unfolding pperiodic-cfrac-info-def Let-def using 1 2 3 4 ‹l > 0›
by (auto simp: num-eq denom-eq h ′-def k ′-def l-def of-nat-diff)

also have . . . = (B2 − 4 ∗ A ∗ C , −B, 2 ∗ A)
by (simp add: Let-def A-def B-def C-def h-def k-def algebra-simps power2-commute)
finally have per-eq: pperiodic-cfrac-info xs = (discr , −B, 2 ∗ A)

by (simp add: discr-def)

show x = (sqrt (real-of-int D) + real-of-int E) / real-of-int F
using per-eq assms by (simp add: x-eq)

show D > 0 F > 0
using assms per-eq ‹discr > 0› ‹A > 0› by auto

qed

We can now compute surd representations for (purely) periodic continued

97

fractions, e.g. [1, 1, 1, . . .] =
√

5+1
2 :

value pperiodic-cfrac-info [1]

We can now compute surd representations for periodic continued fractions,
e.g. [1, 1, 1, 1, 6] =

√
13+3
4 :

value pperiodic-cfrac-info [1,1,1,1,6]

With a little bit of work, one could also easily derive from this a version for
non-purely periodic continued fraction.

Next, we show that any quadratic irrational has a periodic continued fraction
expansion.
theorem quadratic-irrational-imp-periodic-cfrac:

assumes quadratic-irrational (cfrac-lim e)
obtains N l where l > 0 and

∧
n m. n ≥ N =⇒ cfrac-nth e (n + m ∗ l) =

cfrac-nth e n
and cfrac-remainder e (N + l) = cfrac-remainder e N
and cfrac-length e = ∞

proof −
have [simp]: cfrac-length e = ∞

using assms by (auto simp: quadratic-irrational.simps)
note [intro] = assms(1)
define x where x = cfrac-lim e
from assms obtain a b c :: int where

nontrivial: a 6= 0 ∨ b 6= 0 ∨ c 6= 0 and
root: a ∗ x^2 + b ∗ x + c = 0 (is ?f x = 0)

by (auto simp: quadratic-irrational.simps x-def)

define f where f = ?f
define h and k where h = conv-num e and k = conv-denom e
define X where X = cfrac-remainder e
have [simp]: k i > 0 k i 6= 0 for i

using conv-denom-pos[of e i] by (auto simp: k-def)
have k-leI : k i ≤ k j if i ≤ j for i j

by (auto simp: k-def intro!: conv-denom-leI that)
have k-nonneg: k n ≥ 0 for n

by (auto simp: k-def)
have k-ge-1: k n ≥ 1 for n

using k-leI [of 0 n] by (simp add: k-def)

define R where R = conv e
define A where A = (λn. a ∗ h (n − 1) ^ 2 + b ∗ h (n − 1) ∗ k (n − 1) + c
∗ k (n − 1) ^ 2)

define B where B = (λn. 2 ∗ a ∗ h (n − 1) ∗ h (n − 2) + b ∗ (h (n − 1) ∗ k
(n − 2) + h (n − 2) ∗ k (n − 1)) + 2 ∗ c ∗ k (n − 1) ∗ k (n − 2))

define C where C = (λn. a ∗ h (n − 2) ^ 2 + b ∗ h (n − 2) ∗ k (n − 2) + c
∗ k (n − 2) ^ 2)

98

define A ′ where A ′ = nat b2 ∗ |a| ∗ |x| + |a| + |b|c
define B ′ where B ′ = nat b(3 / 2) ∗ (2 ∗ |a| ∗ |x| + |b|) + 9 / 4 ∗ |a|c

have [simp]: X n /∈ � for n unfolding X-def
by simp

from this[of 0] have [simp]: x /∈ �
unfolding X-def by (simp add: x-def)

have a 6= 0
proof

assume a = 0
with root and nontrivial have x = 0 ∨ x = −c / b

by (auto simp: divide-simps add-eq-0-iff)
hence x ∈ � by (auto simp del: ‹x /∈ �›)
thus False by simp

qed

have bounds: (A n, B n, C n) ∈ {−A ′..A ′} × {−B ′..B ′} × {−A ′..A ′}
and X-root: A n ∗ X n ^ 2 + B n ∗ X n + C n = 0 if n: n ≥ 2 for n

proof −
define n ′ where n ′ = n − 2
have n ′: n = Suc (Suc n ′) using ‹n ≥ 2› unfolding n ′-def by simp
have ∗: of-int (k (n − Suc 0)) ∗ X n + of-int (k (n − 2)) 6= 0
proof

assume of-int (k (n − Suc 0)) ∗ X n + of-int (k (n − 2)) = 0
hence X n = −k (n − 2) / k (n − 1) by (auto simp: divide-simps mult-ac)
also have . . . ∈ � by auto
finally show False by simp

qed

let ?denom = (k (n − 1) ∗ X n + k (n − 2))
have 0 = 0 ∗ ?denom ^ 2 by simp
also have 0 ∗ ?denom ^ 2 = (a ∗ x ^ 2 + b ∗ x + c) ∗ ?denom ^ 2 using root

by simp
also have . . . = a ∗ (x ∗ ?denom) ^ 2 + b ∗ ?denom ∗ (x ∗ ?denom) + c ∗

?denom ∗ ?denom
by (simp add: algebra-simps power2-eq-square)

also have x ∗ ?denom = h (n − 1) ∗ X n + h (n − 2)
using cfrac-lim-eq-num-denom-remainder-aux[of n − 2 e] ‹n ≥ 2›
by (simp add: numeral-2-eq-2 Suc-diff-Suc x-def k-def h-def X-def)

also have a ∗ . . . ^ 2 + b ∗ ?denom ∗ . . . + c ∗ ?denom ∗ ?denom = A n ∗
X n ^ 2 + B n ∗ X n + C n

by (simp add: A-def B-def C-def power2-eq-square algebra-simps)
finally show A n ∗ X n ^ 2 + B n ∗ X n + C n = 0 ..

have f-abs-bound: |f (R n)| ≤ (2 ∗ |a| ∗ |x| + |b|) ∗ (1 / (k n ∗ k (Suc n))) +
|a| ∗ (1 / (k n ∗ k (Suc n))) ^ 2 for n

proof −
have |f (R n)| = |?f (R n) − ?f x| by (simp add: root f-def)

99

also have ?f (R n) − ?f x = (R n − x) ∗ (2 ∗ a ∗ x + b) + (R n − x) ^ 2
∗ a

by (simp add: power2-eq-square algebra-simps)
also have |. . . | ≤ |(R n − x) ∗ (2 ∗ a ∗ x + b)| + |(R n − x) ^ 2 ∗ a|

by (rule abs-triangle-ineq)
also have . . . = |2 ∗ a ∗ x + b| ∗ |R n − x| + |a| ∗ |R n − x| ^ 2

by (simp add: abs-mult)
also have . . . ≤ |2 ∗ a ∗ x + b| ∗ (1 / (k n ∗ k (Suc n))) + |a| ∗ (1 / (k n ∗

k (Suc n))) ^ 2
unfolding x-def R-def using cfrac-lim-minus-conv-bounds[of n e]
by (intro add-mono mult-left-mono power-mono) (auto simp: k-def)

also have |2 ∗ a ∗ x + b| ≤ 2 ∗ |a| ∗ |x| + |b|
by (rule order .trans[OF abs-triangle-ineq]) (auto simp: abs-mult)

hence |2 ∗ a ∗ x + b| ∗ (1 / (k n ∗ k (Suc n))) + |a| ∗ (1 / (k n ∗ k (Suc
n))) ^ 2 ≤

. . . ∗ (1 / (k n ∗ k (Suc n))) + |a| ∗ (1 / (k n ∗ k (Suc n))) ^ 2
by (intro add-mono mult-right-mono) (auto intro!: mult-nonneg-nonneg

k-nonneg)
finally show |f (R n)| ≤ . . .

by (simp add: mult-right-mono add-mono divide-left-mono)
qed

have h-eq-conv-k: h i = R i ∗ k i for i
using conv-denom-pos[of e i] unfolding R-def
by (subst conv-num-denom) (auto simp: h-def k-def)

have A n = k (n − 1) ^ 2 ∗ f (R (n − 1)) for n
by (simp add: algebra-simps A-def n ′ k-def power2-eq-square h-eq-conv-k f-def)

have A-bound: |A i| ≤ A ′ if i > 0 for i
proof −

have k i > 0
by simp

hence k i ≥ 1
by linarith

have A i = k (i − 1) ^ 2 ∗ f (R (i − 1))
by (simp add: algebra-simps A-def k-def power2-eq-square h-eq-conv-k f-def)

also have |. . . | = k (i − 1) ^ 2 ∗ |f (R (i − 1))|
by (simp add: abs-mult f-def)

also have . . . ≤ k (i − 1) ^ 2 ∗ ((2 ∗ |a| ∗ |x| + |b|) ∗ (1 / (k (i − 1) ∗ k
(Suc (i − 1)))) +

|a| ∗ (1 / (k (i − 1) ∗ k (Suc (i − 1)))) ^ 2)
by (intro mult-left-mono f-abs-bound) auto

also have . . . = k (i − 1) / k i ∗ (2 ∗ |a| ∗ |x| + |b|) + |a| / k i ^ 2 using
‹i > 0›

by (simp add: power2-eq-square field-simps)
also have . . . ≤ 1 ∗ (2 ∗ |a| ∗ |x| + |b|) + |a| / 1 using ‹i > 0› ‹k i ≥ 1›

by (intro add-mono divide-left-mono mult-right-mono)
(auto intro!: k-leI one-le-power simp: of-nat-ge-1-iff)

also have . . . = 2 ∗ |a| ∗ |x| + |a| + |b| by simp

100

finally show ?thesis unfolding A ′-def by linarith
qed

have C n = A (n − 1) by (simp add: A-def C-def n ′)
hence C-bound: |C n| ≤ A ′ using A-bound[of n − 1] n by simp

have B n = k (n − 1) ∗ k (n − 2) ∗
(f (R (n − 1)) + f (R (n − 2)) − a ∗ (R (n − 1) − R (n − 2)) ^ 2)

by (simp add: B-def h-eq-conv-k algebra-simps power2-eq-square f-def)
also have |. . . | = k (n − 1) ∗ k (n − 2) ∗

|f (R (n − 1)) + f (R (n − 2)) − a ∗ (R (n − 1) − R (n − 2))
^ 2|

by (simp add: abs-mult k-nonneg)
also have . . . ≤ k (n − 1) ∗ k (n − 2) ∗

(((2 ∗ |a| ∗ |x| + |b|) ∗ (1 / (k (n − 1) ∗ k (Suc (n − 1)))) +
|a| ∗ (1 / (k (n − 1) ∗ k (Suc (n − 1)))) ^ 2) +
((2 ∗ |a| ∗ |x| + |b|) ∗ (1 / (k (n − 2) ∗ k (Suc (n − 2)))) +
|a| ∗ (1 / (k (n − 2) ∗ k (Suc (n − 2)))) ^ 2) +
|a| ∗ |R (Suc (n − 2)) − R (n − 2)| ^ 2) (is - ≤ - ∗ (?S1 +

?S2 + ?S3))
by (intro mult-left-mono order .trans[OF abs-triangle-ineq4] order .trans[OF

abs-triangle-ineq]
add-mono f-abs-bound order .refl)

(insert n, auto simp: abs-mult Suc-diff-Suc numeral-2-eq-2 k-nonneg)
also have |R (Suc (n − 2)) − R (n − 2)| = 1 / (k (n − 2) ∗ k (Suc (n − 2)))

unfolding R-def k-def by (rule abs-diff-successive-convs)
also have of-int (k (n − 1) ∗ k (n − 2)) ∗ (?S1 + ?S2 + |a| ∗ . . . ^ 2) =

(k (n − 2) / k n + 1) ∗ (2 ∗ |a| ∗ |x| + |b|) +
|a| ∗ (k (n − 2) / (k (n − 1) ∗ k n ^ 2) + 2 / (k (n − 1) ∗ k (n −

2)))
(is - = ?S) using n by (simp add: field-simps power2-eq-square numeral-2-eq-2

Suc-diff-Suc)
also {

have A: 2 ∗ real-of-int (k (n − 2)) ≤ of-int (k n)
using conv-denom-plus2-ratio-ge[of e n − 2] n
by (simp add: numeral-2-eq-2 Suc-diff-Suc k-def)

have fib (Suc 2) ≤ k 2 unfolding k-def by (intro conv-denom-lower-bound)
also have . . . ≤ k n by (intro k-leI n)
finally have k n ≥ 2 by (simp add: numeral-3-eq-3)
hence B: of-int (k (n − 2)) ∗ 2 ^ 2 ≤ (of-int (k (n − 1)) ∗ (of-int (k n))2 ::

real)
by (intro mult-mono power-mono) (auto intro: k-leI k-nonneg)

have C : 1 ∗ 1 ≤ real-of-int (k (n − 1)) ∗ of-int (k (n − 2)) using k-ge-1
by (intro mult-mono) (auto simp: Suc-le-eq of-nat-ge-1-iff k-nonneg)

note A B C
}
hence ?S ≤ (1 / 2 + 1) ∗ (2 ∗ |a| ∗ |x| + |b|) + |a| ∗ (1 / 4 + 2)

by (intro add-mono mult-right-mono mult-left-mono) (auto simp: field-simps)
also have . . . = (3 / 2) ∗ (2 ∗ |a| ∗ |x| + |b|) + 9 / 4 ∗ |a| by simp

101

finally have B-bound: |B n| ≤ B ′ unfolding B ′-def by linarith
from A-bound[of n] B-bound C-bound n
show (A n, B n, C n) ∈ {−A ′..A ′} × {−B ′..B ′} × {−A ′..A ′} by auto

qed

have A-nz: A n 6= 0 if n ≥ 1 for n
using that

proof (induction n rule: dec-induct)
case base
show ?case
proof

assume A 1 = 0
hence real-of-int (A 1) = 0 by simp
also have real-of-int (A 1) =

real-of-int a ∗ of-int (cfrac-nth e 0) ^ 2 +
real-of-int b ∗ cfrac-nth e 0 + real-of-int c

by (simp add: A-def h-def k-def)
finally have root ′: . . . = 0 .

have cfrac-nth e 0 ∈ � by auto
also from root ′ and ‹a 6= 0› have ?this ←→ is-square (nat (b2 − 4 ∗ a ∗ c))

by (intro quadratic-equation-solution-rat-iff) auto
also from root and ‹a 6= 0› have . . . ←→ x ∈ �

by (intro quadratic-equation-solution-rat-iff [symmetric]) auto
finally show False using ‹x /∈ �› by contradiction

qed
next

case (step m)
hence nz: C (Suc m) 6= 0 by (simp add: C-def A-def)
show A (Suc m) 6= 0
proof

assume [simp]: A (Suc m) = 0
have X (Suc m) > 0 unfolding X-def

by (intro cfrac-remainder-pos) auto
with X-root[of Suc m] step.hyps nz have X (Suc m) = −C (Suc m) / B (Suc

m)
by (auto simp: divide-simps mult-ac)

also have . . . ∈ � by auto
finally show False by simp

qed
qed

have finite ({−A ′..A ′} × {−B ′..B ′} × {−A ′..A ′}) by auto
from this and bounds have finite ((λn. (A n, B n, C n)) ‘ {2..})

by (blast intro: finite-subset)
moreover have infinite ({2..} :: nat set) by (simp add: infinite-Ici)
ultimately have ∃ k1∈{2..}. infinite {n ∈ {2..}. (A n, B n, C n) = (A k1, B

k1, C k1)}
by (intro pigeonhole-infinite)

102

then obtain k0 where k0: k0 ≥ 2 infinite {n ∈ {2..}. (A n, B n, C n) = (A
k0, B k0, C k0)}

by auto
from infinite-countable-subset[OF this(2)] obtain g :: nat ⇒ -

where g: inj g range g ⊆ {n∈{2..}. (A n, B n, C n) = (A k0, B k0, C k0)} by
blast

hence g-ge-2: g k ≥ 2 for k by auto
from g have [simp]: A (g k) = A k0 B (g k) = B k0 C (g k) = C k0 for k

by auto

from g(1) have [simp]: g k1 = g k2 ←→ k1 = k2 for k1 k2 by (auto simp:
inj-def)

define z where z = (A k0, B k0, C k0)
let ?h = λk. (A (g k), B (g k), C (g k))
from g have g ′: distinct [g 1, g 2, g 3] ?h 0 = z ?h 1 = z ?h 2 = z

by (auto simp: z-def)
have fin: finite {x :: real. A k0 ∗ x ^ 2 + B k0 ∗ x + C k0 = 0} using A-nz[of

k0] k0(1)
by (subst finite-quadratic-equation-solutions-reals) auto

from X-root[of g 0] X-root[of g 1] X-root[of g 2] g-ge-2 g
have (X ◦ g) ‘ {0, 1, 2} ⊆ {x. A k0 ∗ x ^ 2 + B k0 ∗ x + C k0 = 0}
by auto

hence card ((X ◦ g) ‘ {0, 1, 2}) ≤ card . . .
by (intro card-mono fin) auto

also have . . . ≤ 2
by (rule card-quadratic-equation-solutions-reals-le-2)

also have . . . < card {0, 1, 2 :: nat} by simp
finally have ¬inj-on (X ◦ g) {0, 1, 2}

by (rule pigeonhole)
then obtain m1 m2 where

m12: m1 ∈ {0, 1, 2} m2 ∈ {0, 1, 2} X (g m1) = X (g m2) m1 6= m2
unfolding inj-on-def o-def by blast

define n and l where n = min (g m1) (g m2) and l = nat |int (g m1) − g m2|
with m12 g ′ have l: l > 0 X (n + l) = X n

by (auto simp: min-def nat-diff-distrib split: if-splits)

from l have cfrac-lim (cfrac-drop (n + l) e) = cfrac-lim (cfrac-drop n e)
by (simp add: X-def cfrac-remainder-def)

hence cfrac-drop (n + l) e = cfrac-drop n e
by (simp add: cfrac-lim-eq-iff)

hence cfrac-nth (cfrac-drop (n + l) e) = cfrac-nth (cfrac-drop n e)
by (simp only:)

hence period: cfrac-nth e (n + l + k) = cfrac-nth e (n + k) for k
by (simp add: fun-eq-iff add-ac)

have period: cfrac-nth e (k + l) = cfrac-nth e k if k ≥ n for k
using period[of k − n] that by (simp add: add-ac)

have period: cfrac-nth e (k + m ∗ l) = cfrac-nth e k if k ≥ n for k m
using that

proof (induction m)

103

case (Suc m)
have cfrac-nth e (k + Suc m ∗ l) = cfrac-nth e (k + m ∗ l + l)

by (simp add: algebra-simps)
also have . . . = cfrac-nth e (k + m ∗ l)

using Suc.prems by (intro period) auto
also have . . . = cfrac-nth e k

using Suc.prems by (intro Suc.IH) auto
finally show ?case .

qed simp-all

from this and l and that[of l n] show ?thesis by (simp add: X-def)
qed

theorem periodic-cfrac-iff-quadratic-irrational:
assumes x /∈ � x ≥ 0
shows quadratic-irrational x ←→

(∃N l. l > 0 ∧ (∀n≥N . cfrac-nth (cfrac-of-real x) (n + l) =
cfrac-nth (cfrac-of-real x) n))

proof safe
assume ∗: quadratic-irrational x
with assms have ∗∗: quadratic-irrational (cfrac-lim (cfrac-of-real x)) by auto
obtain N l where Nl: l > 0∧

n m. N ≤ n =⇒ cfrac-nth (cfrac-of-real x) (n + m ∗ l) = cfrac-nth (cfrac-of-real
x) n

cfrac-remainder (cfrac-of-real x) (N + l) = cfrac-remainder (cfrac-of-real x) N
cfrac-length (cfrac-of-real x) = ∞
using quadratic-irrational-imp-periodic-cfrac [OF ∗∗] by metis

show ∃N l. l > 0 ∧ (∀n≥N . cfrac-nth (cfrac-of-real x) (n + l) = cfrac-nth
(cfrac-of-real x) n)

by (rule exI [of - N], rule exI [of - l]) (insert Nl(1) Nl(2)[of - 1], auto)
next

fix N l assume l > 0 ∀n≥N . cfrac-nth (cfrac-of-real x) (n + l) = cfrac-nth
(cfrac-of-real x) n

hence quadratic-irrational (cfrac-lim (cfrac-of-real x)) using assms
by (intro periodic-cfrac-imp-quadratic-irrational[of - l N]) auto

with assms show quadratic-irrational x
by simp

qed

The following result can e.g. be used to show that a number is not a
quadratic irrational.
lemma quadratic-irrational-cfrac-nth-range-finite:

assumes quadratic-irrational (cfrac-lim e)
shows finite (range (cfrac-nth e))

proof −
from quadratic-irrational-imp-periodic-cfrac[OF assms] obtain l N

where period: l > 0
∧

m n. n ≥ N =⇒ cfrac-nth e (n + m ∗ l) = cfrac-nth e n
by metis

have cfrac-nth e k ∈ cfrac-nth e ‘ {..<N+l} for k

104

proof (cases k < N + l)
case False
define n m where n = N + (k − N) mod l and m = (k − N) div l
have cfrac-nth e n ∈ cfrac-nth e ‘ {..<N+l}

using ‹l > 0› by (intro imageI) (auto simp: n-def)
also have cfrac-nth e n = cfrac-nth e (n + m ∗ l)

by (subst period) (auto simp: n-def)
also have n + m ∗ l = k

using False by (simp add: n-def m-def)
finally show ?thesis .

qed auto
hence range (cfrac-nth e) ⊆ cfrac-nth e ‘ {..<N+l}

by blast
thus ?thesis by (rule finite-subset) auto

qed

end

3 The continued fraction expansion of e

theory E-CFrac
imports

HOL−Analysis.Analysis
Continued-Fractions
Quadratic-Irrationals

begin

lemma fact-real-at-top: filterlim (fact :: nat ⇒ real) at-top at-top
proof (rule filterlim-at-top-mono)

have real n ≤ real (fact n) for n
unfolding of-nat-le-iff by (rule fact-ge-self)

thus eventually (λn. real n ≤ fact n) at-top by simp
qed (fact filterlim-real-sequentially)

lemma filterlim-div-nat-at-top:
assumes filterlim f at-top F m > 0
shows filterlim (λx. f x div m :: nat) at-top F
unfolding filterlim-at-top

proof
fix C :: nat
from assms(1) have eventually (λx. f x ≥ C ∗ m) F

by (auto simp: filterlim-at-top)
thus eventually (λx. f x div m ≥ C) F
proof eventually-elim

case (elim x)
hence (C ∗ m) div m ≤ f x div m

by (intro div-le-mono)
thus ?case using ‹m > 0› by simp

qed

105

qed

The continued fraction expansion of e has the form [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, . . .]:
definition e-cfrac where

e-cfrac = cfrac (λn. if n = 0 then 2 else if n mod 3 = 2 then 2 ∗ (Suc n div 3)
else 1)

lemma cfrac-nth-e:
cfrac-nth e-cfrac n = (if n = 0 then 2 else if n mod 3 = 2 then 2 ∗ (Suc n div 3)

else 1)
unfolding e-cfrac-def by (subst cfrac-nth-cfrac) (auto simp: is-cfrac-def)

lemma cfrac-length-e [simp]: cfrac-length e-cfrac = ∞
by (simp add: e-cfrac-def)

The formalised proof follows the one from Proof Wiki [2].
context

fixes A B C :: nat ⇒ real and p q :: nat ⇒ int and a :: nat ⇒ int
defines A ≡ (λn. integral {0..1} (λx. exp x ∗ x ^ n ∗ (x − 1) ^ n / fact n))

and B ≡ (λn. integral {0..1} (λx. exp x ∗ x ^ Suc n ∗ (x − 1) ^ n / fact n))
and C ≡ (λn. integral {0..1} (λx. exp x ∗ x ^ n ∗ (x − 1) ^ Suc n / fact n))
and p ≡ (λn. if n ≤ 1 then 1 else conv-num e-cfrac (n − 2))
and q ≡ (λn. if n = 0 then 1 else if n = 1 then 0 else conv-denom e-cfrac (n

− 2))
and a ≡ (λn. if n mod 3 = 2 then 2 ∗ (Suc n div 3) else 1)

begin

lemma
assumes n ≥ 2
shows p-rec: p n = a (n − 2) ∗ p (n − 1) + p (n − 2) (is ?th1)

and q-rec: q n = a (n − 2) ∗ q (n − 1) + q (n − 2) (is ?th2)
proof −

have n-minus-3: n − 3 = n − Suc (Suc (Suc 0))
by (simp add: numeral-3-eq-3)

consider n = 2 | n = 3 | n ≥ 4
using assms by force

hence ?th1 ∧ ?th2
by cases (auto simp: p-def q-def cfrac-nth-e a-def conv-num-rec conv-denom-rec

n-minus-3)
thus ?th1 ?th2 by blast+

qed

lemma
assumes n ≥ 1
shows p-rec0: p (3 ∗ n) = p (3 ∗ n − 1) + p (3 ∗ n − 2)

and q-rec0: q (3 ∗ n) = q (3 ∗ n − 1) + q (3 ∗ n − 2)
proof −

define n ′ where n ′ = n − 1
from assms have (3 ∗ n ′ + 1) mod 3 6= 2

106

by presburger
also have (3 ∗ n ′ + 1) = 3 ∗ n − 2

using assms by (simp add: n ′-def)
finally show p (3 ∗ n) = p (3 ∗ n − 1) + p (3 ∗ n − 2)

q (3 ∗ n) = q (3 ∗ n − 1) + q (3 ∗ n − 2)
using assms by (subst p-rec q-rec; simp add: a-def)+

qed

lemma
assumes n ≥ 1
shows p-rec1: p (3 ∗ n + 1) = 2 ∗ int n ∗ p (3 ∗ n) + p (3 ∗ n − 1)

and q-rec1: q (3 ∗ n + 1) = 2 ∗ int n ∗ q (3 ∗ n) + q (3 ∗ n − 1)
proof −

define n ′ where n ′ = n − 1
from assms have (3 ∗ n ′ + 2) mod 3 = 2

by presburger
also have (3 ∗ n ′ + 2) = 3 ∗ n − 1

using assms by (simp add: n ′-def)
finally show p (3 ∗ n + 1) = 2 ∗ int n ∗ p (3 ∗ n) + p (3 ∗ n − 1)

q (3 ∗ n + 1) = 2 ∗ int n ∗ q (3 ∗ n) + q (3 ∗ n − 1)
using assms by (subst p-rec q-rec; simp add: a-def)+

qed

lemma p-rec2: p (3 ∗ n + 2) = p (3 ∗ n + 1) + p (3 ∗ n)
and q-rec2: q (3 ∗ n + 2) = q (3 ∗ n + 1) + q (3 ∗ n)
by (subst p-rec q-rec; simp add: a-def nat-mult-distrib nat-add-distrib)+

lemma A-0: A 0 = exp 1 − 1 and B-0: B 0 = 1 and C-0: C 0 = 2 − exp 1
proof −

have (exp has-integral (exp 1 − exp 0)) {0..1::real}
by (intro fundamental-theorem-of-calculus)

(auto intro!: derivative-eq-intros
simp flip: has-real-derivative-iff-has-vector-derivative)

thus A 0 = exp 1 − 1 by (simp add: A-def has-integral-iff)

have ((λx. exp x ∗ x) has-integral (exp 1 ∗ (1 − 1) − exp 0 ∗ (0 − 1))) {0..1::real}
by (intro fundamental-theorem-of-calculus)

(auto intro!: derivative-eq-intros
simp flip: has-real-derivative-iff-has-vector-derivative simp: algebra-simps)

thus B 0 = 1 by (simp add: B-def has-integral-iff)

have ((λx. exp x ∗ (x − 1)) has-integral (exp 1 ∗ (1 − 2) − exp 0 ∗ (0 − 2)))
{0..1::real}

by (intro fundamental-theorem-of-calculus)
(auto intro!: derivative-eq-intros

simp flip: has-real-derivative-iff-has-vector-derivative simp: algebra-simps)
thus C 0 = 2 − exp 1 by (simp add: C-def has-integral-iff)

qed

107

lemma A-bound: norm (A n) ≤ exp 1 / fact n
proof −

have norm (exp t ∗ t ^ n ∗ (t − 1) ^ n / fact n) ≤ exp 1 ∗ 1 ^ n ∗ 1 ^ n / fact
n

if t ∈ {0..1} for t :: real using that unfolding norm-mult norm-divide
norm-power norm-fact

by (intro mult-mono divide-right-mono power-mono) auto
hence norm (A n) ≤ exp 1 / fact n ∗ (1 − 0)

unfolding A-def by (intro integral-bound) (auto intro!: continuous-intros)
thus ?thesis by simp

qed

lemma B-bound: norm (B n) ≤ exp 1 / fact n
proof −

have norm (exp t ∗ t ^ Suc n ∗ (t − 1) ^ n / fact n) ≤ exp 1 ∗ 1 ^ Suc n ∗ 1 ^
n / fact n

if t ∈ {0..1} for t :: real using that unfolding norm-mult norm-divide
norm-power norm-fact

by (intro mult-mono divide-right-mono power-mono) auto
hence norm (B n) ≤ exp 1 / fact n ∗ (1 − 0)

unfolding B-def by (intro integral-bound) (auto intro!: continuous-intros)
thus ?thesis by simp

qed

lemma C-bound: norm (C n) ≤ exp 1 / fact n
proof −

have norm (exp t ∗ t ^ n ∗ (t − 1) ^ Suc n / fact n) ≤ exp 1 ∗ 1 ^ n ∗ 1 ^ Suc
n / fact n

if t ∈ {0..1} for t :: real using that unfolding norm-mult norm-divide
norm-power norm-fact

by (intro mult-mono divide-right-mono power-mono) auto
hence norm (C n) ≤ exp 1 / fact n ∗ (1 − 0)

unfolding C-def by (intro integral-bound) (auto intro!: continuous-intros)
thus ?thesis by simp

qed

lemma A-Suc: A (Suc n) = −B n − C n
proof −

let ?g = λx. x ^ Suc n ∗ (x − 1) ^ Suc n ∗ exp x / fact (Suc n)
have pos: fact n + real n ∗ fact n > 0 by (intro add-pos-nonneg) auto
have A (Suc n) + B n + C n =

integral {0..1} (λx. exp x ∗ x ^ Suc n ∗ (x − 1) ^ Suc n / fact (Suc n) +
exp x ∗ x ^ Suc n ∗ (x − 1) ^ n / fact n + exp x ∗ x ^ n ∗ (x − 1) ^

Suc n / fact n)
unfolding A-def B-def C-def
apply (subst integral-add [symmetric])
subgoal

by (auto intro!: integrable-continuous-real continuous-intros)
subgoal

108

by (auto intro!: integrable-continuous-real continuous-intros)
apply (subst integral-add [symmetric])

apply (auto intro!: integrable-continuous-real continuous-intros)
done

also have . . . = integral {0..1} (λx. exp x / fact (Suc n) ∗
(x ^ Suc n ∗ (x − 1) ^ Suc n + Suc n ∗ x ^ Suc n ∗ (x − 1) ^ n +

Suc n ∗ x ^ n ∗ (x − 1) ^ Suc n))
(is - = integral - ?f)
apply (simp add: divide-simps)
apply (simp add: field-simps)?
done

also have (?f has-integral (?g 1 − ?g 0)) {0..1}
apply (intro fundamental-theorem-of-calculus)
subgoal

by simp
unfolding has-real-derivative-iff-has-vector-derivative [symmetric]
apply (rule derivative-eq-intros refl | simp)+
apply (simp add: algebra-simps)?
done

hence integral {0..1} ?f = 0
by (simp add: has-integral-iff)

finally show ?thesis by simp
qed

lemma B-Suc: B (Suc n) = −2 ∗ Suc n ∗ A (Suc n) + C n
proof −

let ?g = λx. x ^ Suc n ∗ (x − 1) ^ (n+2) ∗ exp x / fact (Suc n)
have pos: fact n + real n ∗ fact n > 0 by (intro add-pos-nonneg) auto
have B (Suc n) + 2 ∗ Suc n ∗ A (Suc n) − C n =

integral {0..1} (λx. exp x ∗ x^(n+2) ∗ (x − 1)^(n+1) / fact (Suc n) + 2
∗ Suc n ∗

exp x ∗ x ^ Suc n ∗ (x − 1) ^ Suc n / fact (Suc n) − exp x ∗ x ^ n ∗ (x
− 1) ^ Suc n / fact n)

unfolding A-def B-def C-def integral-mult-right [symmetric]
apply (subst integral-add [symmetric])
subgoal

by (auto intro!: integrable-continuous-real continuous-intros)
subgoal

by (auto intro!: integrable-continuous-real continuous-intros)
apply (subst integral-diff [symmetric])
apply (auto intro!: integrable-continuous-real continuous-intros simp: mult-ac)

done
also have . . . = integral {0..1} (λx. exp x / fact (Suc n) ∗

(x^(n+2) ∗ (x − 1)^(n+1) + 2 ∗ Suc n ∗ x ^ Suc n ∗ (x − 1) ^
Suc n −

Suc n ∗ x ^ n ∗ (x − 1) ^ Suc n))
(is - = integral - ?f)
apply (simp add: divide-simps)
apply (simp add: field-simps)?

109

done
also have (?f has-integral (?g 1 − ?g 0)) {0..1}

apply (intro fundamental-theorem-of-calculus)
apply (simp; fail)

unfolding has-real-derivative-iff-has-vector-derivative [symmetric]
apply (rule derivative-eq-intros refl | simp)+
apply (simp add: algebra-simps)?
done

hence integral {0..1} ?f = 0
by (simp add: has-integral-iff)

finally show ?thesis by (simp add: algebra-simps)
qed

lemma C-Suc: C n = B n − A n
unfolding A-def B-def C-def
by (subst integral-diff [symmetric])

(auto intro!: integrable-continuous-real continuous-intros simp: field-simps)

lemma unfold-add-numeral: c ∗ n + numeral b = Suc (c ∗ n + pred-numeral b)
by simp

lemma ABC :
A n = q (3 ∗ n) ∗ exp 1 − p (3 ∗ n) ∧
B n = p (Suc (3 ∗ n)) − q (Suc (3 ∗ n)) ∗ exp 1 ∧
C n = p (Suc (Suc (3 ∗ n))) − q (Suc (Suc (3 ∗ n))) ∗ exp 1

proof (induction n)
case 0
thus ?case by (simp add: A-0 B-0 C-0 a-def p-def q-def cfrac-nth-e)

next
case (Suc n)
note [simp] =

conjunct1[OF Suc.IH] conjunct1[OF conjunct2[OF Suc.IH]] conjunct2[OF con-
junct2[OF Suc.IH]]

have [simp]: 3 + m = Suc (Suc (Suc m)) for m by simp

have A ′: A (Suc n) = of-int (q (3 ∗ Suc n)) ∗ exp 1 − of-int (p (3 ∗ Suc n))
unfolding A-Suc
by (subst p-rec0 q-rec0, simp)+ (auto simp: algebra-simps)

have B ′: B (Suc n) = of-int (p (3 ∗ Suc n + 1)) − of-int (q (3 ∗ Suc n + 1)) ∗
exp 1

unfolding B-Suc
by (subst p-rec1 q-rec1 p-rec0 q-rec0, simp)+ (auto simp: algebra-simps A-Suc)

have C ′: C (Suc n) = of-int (p (3∗Suc n+2)) − of-int (q (3∗Suc n+2)) ∗ exp 1
unfolding A-Suc B-Suc C-Suc using p-rec2[of n] q-rec2[of n]
by ((subst p-rec2 q-rec2)+, (subst p-rec0 q-rec0 p-rec1 q-rec1, simp)+)

(auto simp: algebra-simps A-Suc B-Suc)
from A ′ B ′ C ′ show ?case by simp

qed

110

lemma q-pos: q n > 0 if n 6= 1
using that by (auto simp: q-def)

lemma conv-diff-exp-bound: norm (exp 1 − p n / q n) ≤ exp 1 / fact (n div 3)
proof (cases n = 1)

case False
define n ′ where n ′ = n div 3
consider n mod 3 = 0 | n mod 3 = 1 | n mod 3 = 2

by force
hence diff [unfolded n ′-def]: q n ∗ exp 1 − p n =

(if n mod 3 = 0 then A n ′ else if n mod 3 = 1 then −B n ′ else −C n ′)
proof cases

assume n mod 3 = 0
hence 3 ∗ n ′ = n unfolding n ′-def by presburger
with ABC [of n ′] show ?thesis by auto

next
assume ∗: n mod 3 = 1
hence Suc (3 ∗ n ′) = n unfolding n ′-def by presburger
with ∗ ABC [of n ′] show ?thesis by auto

next
assume ∗: n mod 3 = 2
hence Suc (Suc (3 ∗ n ′)) = n unfolding n ′-def by presburger
with ∗ ABC [of n ′] show ?thesis by auto

qed

note [[linarith-split-limit = 0]]
have norm ((q n ∗ exp 1 − p n) / q n) ≤ exp 1 / fact (n div 3) / 1 unfolding

diff norm-divide
using A-bound[of n div 3] B-bound[of n div 3] C-bound[of n div 3] q-pos[OF ‹n

6= 1›]
by (subst frac-le) (auto simp: of-nat-ge-1-iff)

also have (q n ∗ exp 1 − p n) / q n = exp 1 − p n / q n
using q-pos[OF ‹n 6= 1›] by (simp add: divide-simps)

finally show ?thesis by simp
qed (auto simp: p-def q-def)

theorem e-cfrac: cfrac-lim e-cfrac = exp 1
proof −

have num: conv-num e-cfrac n = p (n + 2)
and denom: conv-denom e-cfrac n = q (n + 2) for n
by (simp-all add: p-def q-def)

have (λn. exp 1 − p n / q n) −−−−→ 0
proof (rule Lim-null-comparison)
show eventually (λn. norm (exp 1 − p n / q n) ≤ exp 1 / fact (n div 3)) at-top

using conv-diff-exp-bound by (intro always-eventually) auto
show (λn. exp 1 / fact (n div 3) :: real) −−−−→ 0

by (rule real-tendsto-divide-at-top tendsto-const filterlim-div-nat-at-top
filterlim-ident filterlim-compose[OF fact-real-at-top])+ auto

111

qed
moreover have eventually (λn. exp 1 − p n / q n = exp 1 − conv e-cfrac (n −

2)) at-top
using eventually-ge-at-top[of 2]

proof eventually-elim
case (elim n)
with num[of n − 2] denom[of n − 2] wf show ?case

by (simp add: eval-nat-numeral Suc-diff-Suc conv-num-denom)
qed
ultimately have (λn. exp 1 − conv e-cfrac (n − 2)) −−−−→ 0

using Lim-transform-eventually by fast
hence (λn. exp 1 − (exp 1 − conv e-cfrac (Suc (Suc n) − 2))) −−−−→ exp 1 − 0

by (subst filterlim-sequentially-Suc)+ (intro tendsto-diff tendsto-const)
hence conv e-cfrac −−−−→ exp 1 by simp
moreover have conv e-cfrac −−−−→ cfrac-lim e-cfrac

by (intro LIMSEQ-cfrac-lim wf) auto
ultimately have exp 1 = cfrac-lim e-cfrac

by (rule LIMSEQ-unique)
thus ?thesis ..

qed

corollary e-cfrac-altdef : e-cfrac = cfrac-of-real (exp 1)
by (metis e-cfrac cfrac-infinite-iff cfrac-length-e cfrac-of-real-cfrac-lim-irrational)

This also provides us with a nice proof that e is not rational and not a
quadratic irrational either.
corollary exp1-irrational: (exp 1 :: real) /∈ �

by (metis cfrac-length-e e-cfrac cfrac-infinite-iff)

corollary exp1-not-quadratic-irrational: ¬quadratic-irrational (exp 1 :: real)
proof −

have range (λn. 2 ∗ (int n + 1)) ⊆ range (cfrac-nth e-cfrac)
proof safe

fix n :: nat
have cfrac-nth e-cfrac (3∗n+2) ∈ range (cfrac-nth e-cfrac)

by blast
also have (3 ∗ n + 2) mod 3 = 2

by presburger
hence cfrac-nth e-cfrac (3∗n+2) = 2 ∗ (int n + 1)

by (simp add: cfrac-nth-e)
finally show 2 ∗ (int n + 1) ∈ range (cfrac-nth e-cfrac) .

qed
moreover have infinite (range (λn. 2 ∗ (int n + 1)))

by (subst finite-image-iff) (auto intro!: injI)
ultimately have infinite (range (cfrac-nth e-cfrac))

using finite-subset by blast
thus ?thesis using quadratic-irrational-cfrac-nth-range-finite[of e-cfrac]

by (auto simp: e-cfrac)
qed

112

end
end

4 Continued fraction expansions for square roots
of naturals

theory Sqrt-Nat-Cfrac
imports

Quadratic-Irrationals
HOL−Library.While-Combinator
HOL−Library.IArray

begin

In this section, we shall explore the continued fraction expansion of
√

D,
where D is a natural number.
lemma butlast-nth [simp]: n < length xs − 1 =⇒ butlast xs ! n = xs ! n

by (induction xs arbitrary: n) (auto simp: nth-Cons split: nat.splits)

The following is the length of the period in the continued fraction expansion
of
√

D for a natural number D.
definition sqrt-nat-period-length :: nat ⇒ nat where

sqrt-nat-period-length D =
(if is-square D then 0
else (LEAST l. l > 0 ∧ (∀n. cfrac-nth (cfrac-of-real (sqrt D)) (Suc n + l) =

cfrac-nth (cfrac-of-real (sqrt D)) (Suc n))))

Next, we define a more workable representation for the continued fraction
expansion of

√
D consisting of the period length, the natural number b

√
Dc,

and the content of the period.
definition sqrt-cfrac-info :: nat ⇒ nat × nat × nat list where

sqrt-cfrac-info D =
(sqrt-nat-period-length D, Discrete.sqrt D,

map (λn. nat (cfrac-nth (cfrac-of-real (sqrt D)) (Suc n))) [0..<sqrt-nat-period-length
D])

lemma sqrt-nat-period-length-square [simp]: is-square D =⇒ sqrt-nat-period-length
D = 0

by (auto simp: sqrt-nat-period-length-def)

definition sqrt-cfrac :: nat ⇒ cfrac
where sqrt-cfrac D = cfrac-of-real (sqrt (real D))

context
fixes D D ′ :: nat
defines D ′ ≡ nat bsqrt Dc

begin

113

A number α =
√

D+p
q for p, q ∈ � is called a reduced quadratic surd if α > 1

and barα ∈ (−1; 0), where ᾱ denotes the conjugate −
√

D+p
q .

It is furthermore called associated to D if q divides D − p2.
definition red-assoc :: nat × nat ⇒ bool where

red-assoc = (λ(p, q).
q > 0 ∧ q dvd (D − p2) ∧ (sqrt D + p) / q > 1 ∧ (−sqrt D + p) / q ∈

{−1<..<0})

The following two functions convert between a surd represented as a pair of
natural numbers and the actual real number and its conjugate:
definition surd-to-real :: nat × nat ⇒ real

where surd-to-real = (λ(p, q). (sqrt D + p) / q)

definition surd-to-real-cnj :: nat × nat ⇒ real
where surd-to-real-cnj = (λ(p, q). (−sqrt D + p) / q)

The next function performs a single step in the continued fraction expansion
of
√

D.
definition sqrt-remainder-step :: nat × nat ⇒ nat × nat where

sqrt-remainder-step = (λ(p, q). let X = (p + D ′) div q; p ′ = X ∗ q − p in (p ′,
(D − p ′2) div q))

If we iterate this step function starting from the surd 1√
D−b

√
Dc , we get the

entire expansion.
definition sqrt-remainder-surd :: nat ⇒ nat × nat

where sqrt-remainder-surd = (λn. (sqrt-remainder-step ^^ n) (D ′, D − D ′2))

context
fixes sqrt-cfrac-nth :: nat ⇒ nat and l
assumes nonsquare: ¬is-square D
defines sqrt-cfrac-nth ≡ (λn. case sqrt-remainder-surd n of (p, q) ⇒ (D ′ + p)

div q)
defines l ≡ sqrt-nat-period-length D

begin

lemma D ′-pos: D ′ > 0
using nonsquare by (auto simp: D ′-def of-nat-ge-1-iff intro: Nat.gr0I)

lemma D ′-sqr-less-D: D ′2 < D
proof −

have D ′ ≤ sqrt D by (auto simp: D ′-def)
hence real D ′ ^ 2 ≤ sqrt D ^ 2 by (intro power-mono) auto
also have . . . = D by simp
finally have D ′2 ≤ D by simp
moreover from nonsquare have D 6= D ′2 by auto
ultimately show ?thesis by simp

qed

114

lemma red-assoc-imp-irrat:
assumes red-assoc pq
shows surd-to-real pq /∈ �

proof
assume rat: surd-to-real pq ∈ �
with assms rat show False using irrat-sqrt-nonsquare[OF nonsquare]

by (auto simp: field-simps red-assoc-def surd-to-real-def divide-in-Rats-iff2
add-in-Rats-iff1)
qed

lemma surd-to-real-cnj-irrat:
assumes red-assoc pq
shows surd-to-real-cnj pq /∈ �

proof
assume rat: surd-to-real-cnj pq ∈ �
with assms rat show False using irrat-sqrt-nonsquare[OF nonsquare]

by (auto simp: field-simps red-assoc-def surd-to-real-cnj-def divide-in-Rats-iff2
diff-in-Rats-iff1)
qed

lemma surd-to-real-nonneg [intro]: surd-to-real pq ≥ 0
by (auto simp: surd-to-real-def case-prod-unfold divide-simps intro!: divide-nonneg-nonneg)

lemma surd-to-real-pos [intro]: red-assoc pq =⇒ surd-to-real pq > 0
by (auto simp: surd-to-real-def case-prod-unfold divide-simps red-assoc-def

intro!: divide-nonneg-nonneg)

lemma surd-to-real-nz [simp]: red-assoc pq =⇒ surd-to-real pq 6= 0
by (auto simp: surd-to-real-def case-prod-unfold divide-simps red-assoc-def

intro!: divide-nonneg-nonneg)

lemma surd-to-real-cnj-nz [simp]: red-assoc pq =⇒ surd-to-real-cnj pq 6= 0
using surd-to-real-cnj-irrat[of pq] by auto

lemma red-assoc-step:
assumes red-assoc pq
defines X ≡ (D ′ + fst pq) div snd pq
defines pq ′ ≡ sqrt-remainder-step pq
shows red-assoc pq ′

surd-to-real pq ′ = 1 / frac (surd-to-real pq)
surd-to-real-cnj pq ′ = 1 / (surd-to-real-cnj pq − X)
X > 0 X ∗ snd pq ≤ 2 ∗ D ′ X = nat bsurd-to-real pqc
X = nat b−1 / surd-to-real-cnj pq ′c

proof −
obtain p q where [simp]: pq = (p, q) by (cases pq)
obtain p ′ q ′ where [simp]: pq ′ = (p ′, q ′) by (cases pq ′)
define α where α = (sqrt D + p) / q
define α ′ where α ′ = 1 / frac α

115

define cnj-α ′ where cnj-α ′ = (−sqrt D + (X ∗ q − int p)) / ((D − (X ∗ q −
int p)2) div q)

from assms(1) have α > 0 q > 0
by (auto simp: α-def red-assoc-def)

from assms(1) nonsquare have α /∈ �
by (auto simp: α-def red-assoc-def divide-in-Rats-iff2 add-in-Rats-iff2 irrat-sqrt-nonsquare)
hence α ′-pos: frac α > 0 using Ints-subset-Rats by auto
from ‹pq ′ = (p ′, q ′)› have p ′-def : p ′ = X ∗ q − p and q ′-def : q ′ = (D − p ′2)

div q
unfolding pq ′-def sqrt-remainder-step-def X-def by (auto simp: Let-def add-ac)

have D ′ + p = bsqrt D + pc
by (auto simp: D ′-def)

also have . . . div int q = b(sqrt D + p) / qc
by (subst floor-divide-real-eq-div [symmetric]) auto

finally have X-altdef : X = nat b(sqrt D + p) / qc
unfolding X-def zdiv-int [symmetric] by auto

have nz: sqrt (real D) + (X ∗ q − real p) 6= 0
proof

assume sqrt (real D) + (X ∗ q − real p) = 0
hence sqrt (real D) = real p − X ∗ q by (simp add: algebra-simps)
also have . . . ∈ � by auto
finally show False using irrat-sqrt-nonsquare nonsquare by blast

qed

from assms(1) have real (p ^ 2) ≤ sqrt D ^ 2
unfolding of-nat-power by (intro power-mono) (auto simp: red-assoc-def

field-simps)
also have sqrt D ^ 2 = D by simp
finally have p2 ≤ D by (subst (asm) of-nat-le-iff)

have frac α = α − X
by (simp add: X-altdef frac-def α-def)

also have . . . = (sqrt D − (X ∗ q − int p)) / q
using ‹q > 0› by (simp add: field-simps α-def)

finally have 1 / frac α = q / (sqrt D − (X ∗ q − int p))
by simp

also have . . . = q ∗ (sqrt D + (X ∗ q − int p)) /
((sqrt D − (X ∗ q − int p)) ∗ (sqrt D + (X ∗ q − int p))) (is - =

?A / ?B)
using nz by (subst mult-divide-mult-cancel-right) auto

also have ?B = real-of-int (D − int p ^ 2 + 2 ∗ X ∗ p ∗ q − int X ^ 2 ∗ q ^ 2)
by (auto simp: algebra-simps power2-eq-square)

also have q dvd (D − p ^ 2) using assms(1) by (auto simp: red-assoc-def)
with ‹p2 ≤ D› have int q dvd (int D − int p ^ 2)

unfolding of-nat-power [symmetric] by (subst of-nat-diff [symmetric]) auto
hence D − int p ^ 2 + 2 ∗ X ∗ p ∗ q − int X ^ 2 ∗ q ^ 2 = q ∗ ((D − (X ∗ q
− int p)2) div q)

116

by (auto simp: power2-eq-square algebra-simps)
also have ?A / . . . = (sqrt D + (X ∗ q − int p)) / ((D − (X ∗ q − int p)2) div

q)
unfolding of-int-mult of-int-of-nat-eq
by (rule mult-divide-mult-cancel-left) (insert ‹q > 0›, auto)

finally have α ′: α ′ = . . . by (simp add: α ′-def)

have dvd: q dvd (D − (X ∗ q − int p)2)
using assms(1) ‹int q dvd (int D − int p ^ 2)›
by (auto simp: power2-eq-square algebra-simps)

have X ≤ (sqrt D + p) / q unfolding X-altdef by simp
moreover have X 6= (sqrt D + p) / q
proof

assume X = (sqrt D + p) / q
hence sqrt D = q ∗ X − real p using ‹q > 0› by (auto simp: field-simps)
also have . . . ∈ � by auto
finally show False using irrat-sqrt-nonsquare[OF nonsquare] by simp

qed
ultimately have X < (sqrt D + p) / q by simp
hence ∗: (X ∗ q − int p) < sqrt D

using ‹q > 0› by (simp add: field-simps)
moreover
have pos: real-of-int (int D − (int X ∗ int q − int p)2) > 0
proof (cases X ∗ q ≥ p)

case True
hence real p ≤ real X ∗ real q unfolding of-nat-mult [symmetric] of-nat-le-iff

.
hence real-of-int ((X ∗ q − int p) ^ 2) < sqrt D ^ 2 using ∗

unfolding of-int-power by (intro power-strict-mono) auto
also have . . . = D by simp
finally show ?thesis by simp

next
case False
hence less: real X ∗ real q < real p

unfolding of-nat-mult [symmetric] of-nat-less-iff by auto
have (real X ∗ real q − real p)2 = (real p − real X ∗ real q)2

by (simp add: power2-eq-square algebra-simps)
also have . . . ≤ real p ^ 2 using less by (intro power-mono) auto
also have . . . < sqrt D ^ 2

using ‹q > 0› assms(1) unfolding of-int-power
by (intro power-strict-mono) (auto simp: red-assoc-def field-simps)

also have . . . = D by simp
finally show ?thesis by simp

qed
hence pos ′: int D − (int X ∗ int q − int p)2 > 0

by (subst (asm) of-int-0-less-iff)
from pos have real-of-int ((int D − (int X ∗ int q − int p)2) div q) > 0

using ‹q > 0› dvd by (subst real-of-int-div) (auto intro!: divide-pos-pos)

117

ultimately have cnj-neg: cnj-α ′ < 0 unfolding cnj-α ′-def using dvd
unfolding of-int-0-less-iff by (intro divide-neg-pos) auto

have (p − sqrt D) / q < 0
using assms(1) by (auto simp: red-assoc-def X-altdef le-nat-iff)

also have X ≥ 1
using assms(1) by (auto simp: red-assoc-def X-altdef le-nat-iff)

hence 0 ≤ real X − 1 by simp
finally have q < sqrt D + int q ∗ X − p

using ‹q > 0› by (simp add: field-simps)
hence q ∗ (sqrt D − (int q ∗ X − p)) < (sqrt D + (int q ∗ X − p)) ∗ (sqrt D
− (int q ∗ X − p))

using ∗ by (intro mult-strict-right-mono) (auto simp: red-assoc-def X-altdef
field-simps)

also have . . . = D − (int q ∗ X − p) ^ 2
by (simp add: power2-eq-square algebra-simps)

finally have cnj-α ′ > −1
using dvd pos ‹q > 0› by (simp add: real-of-int-div field-simps cnj-α ′-def)

from cnj-neg and this have cnj-α ′ ∈ {−1<..<0} by auto
have α ′ > 1 using ‹frac α > 0›

by (auto simp: α ′-def field-simps frac-lt-1)

have 0 = 1 + (−1 :: real)
by simp

also have 1 + −1 < α ′ + cnj-α ′

using ‹cnj-α ′ > −1› and ‹α ′ > 1› by (intro add-strict-mono)
also have α ′ + cnj-α ′ = 2 ∗ (real X ∗ q − real p) / ((int D − (int X ∗ q − int

p)2) div int q)
by (simp add: α ′ cnj-α ′-def add-divide-distrib [symmetric])

finally have real X ∗ q − real p > 0 using pos dvd ‹q > 0›
by (subst (asm) zero-less-divide-iff , subst (asm) (1 2 3) real-of-int-div)

(auto simp: field-simps)
hence real (X ∗ q) > real p unfolding of-nat-mult by simp
hence p-less-Xq: p < X ∗ q by (simp only: of-nat-less-iff)

from pos ′ and p-less-Xq have int D > int ((X ∗ q − p)2)
by (subst of-nat-power) (auto simp: of-nat-diff)

hence pos ′′: D > (X ∗ q − p)2 unfolding of-nat-less-iff .

from dvd have int q dvd int (D − (X ∗ q − p)2)
using p-less-Xq pos ′′ by (subst of-nat-diff) (auto simp: of-nat-diff)

with dvd have dvd ′: q dvd (D − (X ∗ q − p)2)
by simp

have α ′-altdef : α ′ = (sqrt D + p ′) / q ′

using dvd dvd ′ pos ′′ p-less-Xq α ′

by (simp add: real-of-int-div p ′-def q ′-def real-of-nat-div mult-ac of-nat-diff)
have cnj-α ′-altdef : cnj-α ′ = (−sqrt D + p ′) / q ′

118

using dvd dvd ′ pos ′′ p-less-Xq unfolding cnj-α ′-def
by (simp add: real-of-int-div p ′-def q ′-def real-of-nat-div mult-ac of-nat-diff)

from dvd ′ have dvd ′′: q ′ dvd (D − p ′2)
by (auto simp: mult-ac p ′-def q ′-def)

have real ((D − p ′2) div q) > 0 unfolding p ′-def
by (subst real-of-nat-div[OF dvd ′], rule divide-pos-pos) (insert ‹q > 0› pos ′′,

auto)
hence q ′ > 0 unfolding q ′-def of-nat-0-less-iff .

show red-assoc pq ′ using ‹α ′ > 1› and ‹cnj-α ′ ∈ -› and dvd ′′ and ‹q ′ > 0›
by (auto simp: red-assoc-def α ′-altdef cnj-α ′-altdef)

from assms(1) have real p < sqrt D
by (auto simp add: field-simps red-assoc-def)

hence p ≤ D ′ unfolding D ′-def by linarith
with ∗ have real (X ∗ q) < sqrt (real D) + D ′

by simp
thus X ∗ snd pq ≤ 2 ∗ D ′ unfolding D ′-def ‹pq = (p, q)› snd-conv by linarith

have (sqrt D + p ′) / q ′ = α ′

by (rule α ′-altdef [symmetric])
also have α ′ = 1 / frac ((sqrt D + p) / q)

by (simp add: α ′-def α-def)
finally show surd-to-real pq ′ = 1 / frac (surd-to-real pq) by (simp add: surd-to-real-def)
from ‹X ≥ 1› show X > 0 by simp
from X-altdef show X = nat bsurd-to-real pqc by (simp add: surd-to-real-def)

have sqrt (real D) < real p + 1 ∗ real q
using assms(1) by (auto simp: red-assoc-def field-simps)

also have . . . ≤ real p + real X ∗ real q
using ‹X > 0› by (intro add-left-mono mult-right-mono) (auto simp: of-nat-ge-1-iff)
finally have sqrt (real D) <

have real p < sqrt D
using assms(1) by (auto simp add: field-simps red-assoc-def)

also have . . . ≤ sqrt D + q ∗ X
by linarith

finally have less: real p < sqrt D + X ∗ q by (simp add: algebra-simps)
moreover have D + p ∗ p ′ + X ∗ q ∗ sqrt D = q ∗ q ′ + p ∗ sqrt D + p ′ ∗ sqrt

D + X ∗ p ′ ∗ q
using dvd ′ pos ′′ p-less-Xq ‹q > 0› unfolding p ′-def q ′-def of-nat-mult of-nat-add
by (simp add: power2-eq-square field-simps of-nat-diff real-of-nat-div)

ultimately show ∗: surd-to-real-cnj pq ′ = 1 / (surd-to-real-cnj pq − X)
using ‹q > 0› ‹q ′ > 0› by (auto simp: surd-to-real-cnj-def field-simps)

have ∗∗: a = nat byc if x ≥ 0 x < 1 real a + x = y for a :: nat and x y :: real
using that by linarith

from assms(1) have surd-to-real-cnj: surd-to-real-cnj (p, q) ∈ {−1<..<0}
by (auto simp: surd-to-real-cnj-def red-assoc-def)

119

have surd-to-real-cnj (p, q) < X
using assms(1) less by (auto simp: surd-to-real-cnj-def field-simps red-assoc-def)

hence real X = surd-to-real-cnj (p, q) − 1 / surd-to-real-cnj (p ′, q ′) using ∗
using surd-to-real-cnj-irrat assms(1) ‹red-assoc pq ′› by (auto simp: field-simps)

thus X = nat b−1 / surd-to-real-cnj pq ′c using surd-to-real-cnj
by (intro ∗∗[of −surd-to-real-cnj (p, q)]) auto

qed

lemma red-assoc-denom-2D:
assumes red-assoc (p, q)
defines X ≡ (D ′ + p) div q
assumes X > D ′

shows q = 1
proof −

have X ∗ q ≤ 2 ∗ D ′ X > 0
using red-assoc-step(4,5)[OF assms(1)] by (simp-all add: X-def)

note this(1)
also have 2 ∗ D ′ < 2 ∗ X

by (intro mult-strict-left-mono assms) auto
finally have q < 2 using ‹X > 0› by simp
moreover from assms(1) have q > 0 by (auto simp: red-assoc-def)
ultimately show ?thesis by simp

qed

lemma red-assoc-denom-1:
assumes red-assoc (p, 1)
shows p = D ′

proof −
from assms have sqrt D > p sqrt D < real p + 1

by (auto simp: red-assoc-def)
thus p = D ′ unfolding D ′-def

by linarith
qed

lemma red-assoc-begin:
red-assoc (D ′, D − D ′2)
surd-to-real (D ′, D − D ′2) = 1 / frac (sqrt D)
surd-to-real-cnj (D ′, D − D ′2) = −1 / (sqrt D + D ′)

proof −
have pos: D > 0 D ′ > 0

using nonsquare by (auto simp: D ′-def of-nat-ge-1-iff intro!: Nat.gr0I)

have sqrt D 6= D ′

using irrat-sqrt-nonsquare[OF nonsquare] by auto
moreover have sqrt D ≥ 0 by simp
hence D ′ ≤ sqrt D unfolding D ′-def by linarith
ultimately have less: D ′ < sqrt D by simp

have sqrt D 6= D ′ + 1

120

using irrat-sqrt-nonsquare[OF nonsquare] by auto
moreover have sqrt D ≥ 0 by simp
hence D ′ ≥ sqrt D − 1 unfolding D ′-def by linarith
ultimately have gt: D ′ > sqrt D − 1 by simp

from less have real D ′ ^ 2 < sqrt D ^ 2 by (intro power-strict-mono) auto
also have . . . = D by simp
finally have less ′: D ′2 < D unfolding of-nat-power [symmetric] of-nat-less-iff .

moreover have real D ′ ∗ (real D ′ − 1) < sqrt D ∗ (sqrt D − 1)
using less pos
by (intro mult-strict-mono diff-strict-right-mono) (auto simp: of-nat-ge-1-iff)

hence D ′2 + sqrt D < D ′ + D
by (simp add: field-simps power2-eq-square)

moreover have (sqrt D − 1) ∗ sqrt D < real D ′ ∗ (real D ′ + 1)
using pos gt by (intro mult-strict-mono) auto

hence D < sqrt D + D ′2 + D ′ by (simp add: power2-eq-square field-simps)
ultimately show red-assoc (D ′, D − D ′2)

by (auto simp: red-assoc-def field-simps of-nat-diff less)

have frac: frac (sqrt D) = sqrt D − D ′ unfolding frac-def D ′-def
by auto

show surd-to-real (D ′, D − D ′2) = 1 / frac (sqrt D) unfolding surd-to-real-def
using less less ′ pos by (subst frac) (auto simp: of-nat-diff power2-eq-square

field-simps)

have surd-to-real-cnj (D ′, D − D ′2) = −((sqrt D − D ′) / (D − D ′2))
using less less ′ pos by (auto simp: surd-to-real-cnj-def field-simps)

also have real (D − D ′2) = (sqrt D − D ′) ∗ (sqrt D + D ′)
using less ′ by (simp add: power2-eq-square algebra-simps of-nat-diff)

also have (sqrt D − D ′) / . . . = 1 / (sqrt D + D ′)
using less by (subst nonzero-divide-mult-cancel-left) auto

finally show surd-to-real-cnj (D ′, D − D ′2) = −1 / (sqrt D + D ′) by simp
qed

lemma cfrac-remainder-surd-to-real:
assumes red-assoc pq
shows cfrac-remainder (cfrac-of-real (surd-to-real pq)) n =

surd-to-real ((sqrt-remainder-step ^^ n) pq)
using assms(1)

proof (induction n arbitrary: pq)
case 0
hence cfrac-lim (cfrac-of-real (surd-to-real pq)) = surd-to-real pq

by (intro cfrac-lim-of-real red-assoc-imp-irrat 0)
thus ?case using 0

by auto
next

case (Suc n)
obtain p q where [simp]: pq = (p, q) by (cases pq)

121

have surd-to-real ((sqrt-remainder-step ^^ Suc n) pq) =
surd-to-real ((sqrt-remainder-step ^^ n) (sqrt-remainder-step (p, q)))

by (subst funpow-Suc-right) auto
also have . . . = cfrac-remainder (cfrac-of-real (surd-to-real (sqrt-remainder-step

(p, q)))) n
using red-assoc-step(1)[of (p, q)] Suc.prems

by (intro Suc.IH [symmetric]) (auto simp: sqrt-remainder-step-def Let-def
add-ac)

also have surd-to-real (sqrt-remainder-step (p, q)) = 1 / frac (surd-to-real (p,
q))

using red-assoc-step(2)[of (p, q)] Suc.prems
by (auto simp: sqrt-remainder-step-def Let-def add-ac surd-to-real-def)

also have cfrac-of-real . . . = cfrac-tl (cfrac-of-real (surd-to-real (p, q)))
using Suc.prems Ints-subset-Rats red-assoc-imp-irrat by (subst cfrac-tl-of-real)

auto
also have cfrac-remainder . . . n = cfrac-remainder (cfrac-of-real (surd-to-real

(p, q))) (Suc n)
by (simp add: cfrac-drop-Suc-right cfrac-remainder-def)

finally show ?case by simp
qed

lemma red-assoc-step ′ [intro]: red-assoc pq =⇒ red-assoc (sqrt-remainder-step pq)
using red-assoc-step(1)[of pq]
by (simp add: sqrt-remainder-step-def case-prod-unfold add-ac Let-def)

lemma red-assoc-steps [intro]: red-assoc pq =⇒ red-assoc ((sqrt-remainder-step ^^
n) pq)

by (induction n) auto

lemma floor-sqrt-less-sqrt: D ′ < sqrt D
proof −

have D ′ ≤ sqrt D unfolding D ′-def by auto
moreover have sqrt D 6= D ′

using irrat-sqrt-nonsquare[OF nonsquare] by auto
ultimately show ?thesis by auto

qed

lemma red-assoc-bounds:
assumes red-assoc pq
shows pq ∈ (SIGMA p:{0<..D ′}. {Suc D ′ − p..D ′ + p})

proof −
obtain p q where [simp]: pq = (p, q) by (cases pq)
from assms have ∗: p < sqrt D

by (auto simp: red-assoc-def field-simps)
hence p: p ≤ D ′ unfolding D ′-def by linarith
from assms have p > 0 by (auto intro!: Nat.gr0I simp: red-assoc-def)

have q > sqrt D − p q < sqrt D + p
using assms by (auto simp: red-assoc-def field-simps)

122

hence q ≥ D ′ + 1 − p q ≤ D ′ + p
unfolding D ′-def by linarith+

with p ‹p > 0› show ?thesis by simp
qed

lemma surd-to-real-cnj-eq-iff :
assumes red-assoc pq red-assoc pq ′

shows surd-to-real-cnj pq = surd-to-real-cnj pq ′←→ pq = pq ′

proof
assume eq: surd-to-real-cnj pq = surd-to-real-cnj pq ′

from assms have pos: snd pq > 0 snd pq ′ > 0 by (auto simp: red-assoc-def)
have snd pq = snd pq ′

proof (rule ccontr)
assume snd pq 6= snd pq ′

with eq have sqrt D = (real (fst pq ′ ∗ snd pq) − fst pq ∗ snd pq ′) / (real (snd
pq) − snd pq ′)

using pos by (auto simp: field-simps surd-to-real-cnj-def case-prod-unfold)
also have . . . ∈ � by auto
finally show False using irrat-sqrt-nonsquare[OF nonsquare] by auto

qed
moreover from this eq pos have fst pq = fst pq ′

by (auto simp: surd-to-real-cnj-def case-prod-unfold)
ultimately show pq = pq ′ by (simp add: prod-eq-iff)

qed auto

lemma red-assoc-sqrt-remainder-surd [intro]: red-assoc (sqrt-remainder-surd n)
by (auto simp: sqrt-remainder-surd-def intro!: red-assoc-begin)

lemma surd-to-real-sqrt-remainder-surd:
surd-to-real (sqrt-remainder-surd n) = cfrac-remainder (cfrac-of-real (sqrt D))

(Suc n)
proof (induction n)

case 0
from nonsquare have D > 0 by (auto intro!: Nat.gr0I)
with red-assoc-begin show ?case using nonsquare irrat-sqrt-nonsquare[OF non-

square]
using Ints-subset-Rats cfrac-drop-Suc-right cfrac-remainder-def cfrac-tl-of-real

sqrt-remainder-surd-def by fastforce
next

case (Suc n)
have surd-to-real (sqrt-remainder-surd (Suc n)) =

surd-to-real (sqrt-remainder-step (sqrt-remainder-surd n))
by (simp add: sqrt-remainder-surd-def)

also have . . . = 1 / frac (surd-to-real (sqrt-remainder-surd n))
using red-assoc-step[OF red-assoc-sqrt-remainder-surd[of n]] by simp

also have surd-to-real (sqrt-remainder-surd n) =
cfrac-remainder (cfrac-of-real (sqrt D)) (Suc n) (is - = ?X)

by (rule Suc.IH)
also have bcfrac-remainder (cfrac-of-real (sqrt (real D))) (Suc n)c =

123

cfrac-nth (cfrac-of-real (sqrt (real D))) (Suc n)
using irrat-sqrt-nonsquare[OF nonsquare] by (intro floor-cfrac-remainder) auto

hence 1 / frac ?X = cfrac-remainder (cfrac-of-real (sqrt D)) (Suc (Suc n))
using irrat-sqrt-nonsquare[OF nonsquare]
by (subst cfrac-remainder-Suc[of Suc n])

(simp-all add: frac-def cfrac-length-of-real-irrational)
finally show ?case .

qed

lemma sqrt-cfrac: sqrt-cfrac-nth n = cfrac-nth (cfrac-of-real (sqrt D)) (Suc n)
proof −

have cfrac-nth (cfrac-of-real (sqrt D)) (Suc n) =
bcfrac-remainder (cfrac-of-real (sqrt D)) (Suc n)c

using irrat-sqrt-nonsquare[OF nonsquare] by (subst floor-cfrac-remainder) auto
also have cfrac-remainder (cfrac-of-real (sqrt D)) (Suc n) = surd-to-real (sqrt-remainder-surd

n)
by (rule surd-to-real-sqrt-remainder-surd [symmetric])

also have nat bsurd-to-real (sqrt-remainder-surd n)c = sqrt-cfrac-nth n
unfolding sqrt-cfrac-nth-def using red-assoc-step(6)[OF red-assoc-sqrt-remainder-surd[of

n]]
by (simp add: case-prod-unfold)

finally show ?thesis
by (simp add: nat-eq-iff)

qed

lemma sqrt-cfrac-pos: sqrt-cfrac-nth k > 0
using red-assoc-step(4)[OF red-assoc-sqrt-remainder-surd[of k]]
by (simp add: sqrt-cfrac-nth-def case-prod-unfold)

lemma snd-sqrt-remainder-surd-pos: snd (sqrt-remainder-surd n) > 0
using red-assoc-sqrt-remainder-surd[of n] by (auto simp: red-assoc-def)

lemma
shows period-nonempty: l > 0

and period-length-le-aux: l ≤ D ′ ∗ (D ′ + 1)
and sqrt-remainder-surd-periodic:

∧
n. sqrt-remainder-surd n = sqrt-remainder-surd

(n mod l)
and sqrt-cfrac-periodic:

∧
n. sqrt-cfrac-nth n = sqrt-cfrac-nth (n mod l)

and sqrt-remainder-surd-smallest-period:∧
n. n ∈ {0<..<l} =⇒ sqrt-remainder-surd n 6= sqrt-remainder-surd 0

and snd-sqrt-remainder-surd-gt-1:
∧

n. n < l − 1 =⇒ snd (sqrt-remainder-surd
n) > 1

and sqrt-cfrac-le:
∧

n. n < l − 1 =⇒ sqrt-cfrac-nth n ≤ D ′

and sqrt-remainder-surd-last: sqrt-remainder-surd (l − 1) = (D ′, 1)
and sqrt-cfrac-last: sqrt-cfrac-nth (l − 1) = 2 ∗ D ′

and sqrt-cfrac-palindrome:
∧

n. n < l − 1 =⇒ sqrt-cfrac-nth (l − n − 2) =
sqrt-cfrac-nth n

and sqrt-cfrac-smallest-period:

124

∧
l ′. l ′ > 0 =⇒ (

∧
k. sqrt-cfrac-nth (k + l ′) = sqrt-cfrac-nth k) =⇒ l ′ ≥ l

proof −
note [simp] = sqrt-remainder-surd-def
define f where f = sqrt-remainder-surd
have ∗[intro]: red-assoc (f n) for n

unfolding f-def by (rule red-assoc-sqrt-remainder-surd)

define S where S = (SIGMA p:{0<..D ′}. {Suc D ′ − p..D ′ + p})
have [intro]: finite S by (simp add: S-def)
have card S = (

∑
p=1..D ′. 2 ∗ p) unfolding S-def

by (subst card-SigmaI) (auto intro!: sum.cong)
also have . . . = D ′ ∗ (D ′ + 1)

by (induction D ′) (auto simp: power2-eq-square)
finally have [simp]: card S = D ′ ∗ (D ′ + 1) .

have D ′ ∗ (D ′ + 1) + 1 = card {..D ′ ∗ (D ′ + 1)} by simp
define k1 where

k1 = (LEAST k1. k1 ≤ D ′ ∗ (D ′ + 1) ∧ (∃ k2. k2 ≤ D ′ ∗ (D ′ + 1) ∧ k1 6= k2
∧ f k1 = f k2))

define k2 where
k2 = (LEAST k2. k2 ≤ D ′ ∗ (D ′ + 1) ∧ k1 6= k2 ∧ f k1 = f k2)

have f ‘ {..D ′ ∗ (D ′ + 1)} ⊆ S unfolding S-def
using red-assoc-bounds[OF ∗] by blast

hence card (f ‘ {..D ′ ∗ (D ′ + 1)}) ≤ card S
by (intro card-mono) auto

also have card S = D ′ ∗ (D ′ + 1) by simp
also have . . . < card {..D ′ ∗ (D ′ + 1)} by simp
finally have ¬inj-on f {..D ′ ∗ (D ′ + 1)}

by (rule pigeonhole)
hence ∃ k1. k1 ≤ D ′ ∗ (D ′ + 1) ∧ (∃ k2. k2 ≤ D ′ ∗ (D ′ + 1) ∧ k1 6= k2 ∧ f k1

= f k2)
by (auto simp: inj-on-def)

from LeastI-ex[OF this, folded k1-def]
have k1 ≤ D ′ ∗ (D ′ + 1) ∃ k2≤D ′ ∗ (D ′ + 1). k1 6= k2 ∧ f k1 = f k2 by auto

moreover from LeastI-ex[OF this(2), folded k2-def]
have k2 ≤ D ′ ∗ (D ′ + 1) k1 6= k2 f k1 = f k2 by auto

moreover have k1 ≤ k2
proof (rule ccontr)

assume ¬(k1 ≤ k2)
hence k2 ≤ D ′ ∗ (D ′ + 1) ∧ (∃ k2 ′. k2 ′ ≤ D ′ ∗ (D ′ + 1) ∧ k2 6= k2 ′ ∧ f k2 =

f k2 ′)
using ‹k1 ≤ D ′ ∗ (D ′ + 1)› and ‹k1 6= k2› and ‹f k1 = f k2› by auto

hence k1 ≤ k2 unfolding k1-def by (rule Least-le)
with ‹¬(k1 ≤ k2)› show False by simp

qed
ultimately have k12: k1 < k2 k2 ≤ D ′ ∗ (D ′ + 1) f k1 = f k2 by auto

have [simp]: k1 = 0

125

proof (cases k1)
case (Suc k1 ′)
define k2 ′ where k2 ′ = k2 − 1
have Suc ′: k2 = Suc k2 ′ using k12 by (simp add: k2 ′-def)
have nz: surd-to-real-cnj (sqrt-remainder-step (f k1 ′)) 6= 0

surd-to-real-cnj (sqrt-remainder-step (f k2 ′)) 6= 0
using surd-to-real-cnj-nz[OF ∗[of k2]] surd-to-real-cnj-nz[OF ∗[of k1]]
by (simp-all add: f-def Suc Suc ′)

define a where a = (D ′ + fst (f k1)) div snd (f k1)
define a ′ where a ′ = (D ′ + fst (f k1 ′)) div snd (f k1 ′)
define a ′′ where a ′′ = (D ′ + fst (f k2 ′)) div snd (f k2 ′)
have a ′ = nat b− 1 / surd-to-real-cnj (sqrt-remainder-step (f k1 ′))c

using red-assoc-step[OF ∗[of k1 ′]] by (simp add: a ′-def)
also have sqrt-remainder-step (f k1 ′) = f k1

by (simp add: Suc f-def)
also have f k1 = f k2 by fact
also have f k2 = sqrt-remainder-step (f k2 ′) by (simp add: Suc ′ f-def)
also have nat b− 1 / surd-to-real-cnj (sqrt-remainder-step (f k2 ′))c = a ′′

using red-assoc-step[OF ∗[of k2 ′]] by (simp add: a ′′-def)
finally have a ′-a ′′: a ′ = a ′′ .

have surd-to-real-cnj (f k2 ′) 6= a ′′

using surd-to-real-cnj-irrat[OF ∗[of k2 ′]] by auto
hence surd-to-real-cnj (f k2 ′) = 1 / surd-to-real-cnj (sqrt-remainder-step (f

k2 ′)) + a ′′

using red-assoc-step(3)[OF ∗[of k2 ′], folded a ′′-def] nz
by (simp add: field-simps)

also have . . . = 1 / surd-to-real-cnj (sqrt-remainder-step (f k1 ′)) + a ′

using k12 by (simp add: a ′-a ′′ k12 Suc Suc ′ f-def)
also have nz ′: surd-to-real-cnj (f k1 ′) 6= a ′

using surd-to-real-cnj-irrat[OF ∗[of k1 ′]] by auto
hence 1 / surd-to-real-cnj (sqrt-remainder-step (f k1 ′)) + a ′ = surd-to-real-cnj

(f k1 ′)
using red-assoc-step(3)[OF ∗[of k1 ′], folded a ′-def] nz nz ′

by (simp add: field-simps)
finally have f k1 ′ = f k2 ′

by (subst (asm) surd-to-real-cnj-eq-iff) auto
with k12 have k1 ′ ≤ D ′ ∗ (D ′ + 1) ∧ (∃ k2≤D ′ ∗ (D ′ + 1). k1 ′ 6= k2 ∧ f k1 ′

= f k2)
by (auto simp: Suc Suc ′ intro!: exI [of - k2 ′])

hence k1 ≤ k1 ′ unfolding k1-def by (rule Least-le)
thus k1 = 0 by (simp add: Suc)

qed auto

have smallest-period: f k 6= f 0 if k ∈ {0<..<k2} for k
proof

assume f k = f 0
hence k ≤ D ′ ∗ (D ′ + 1) ∧ k1 6= k ∧ f k1 = f k

126

using k12 that by auto
hence k2 ≤ k unfolding k2-def by (rule Least-le)
with that show False by auto

qed

have snd-f-gt-1: snd (f k) > 1 if k < k2 − 1 for k
proof −

have snd (f k) 6= 1
proof

assume snd (f k) = 1
hence f k = (D ′, 1) using red-assoc-denom-1[of fst (f k)] ∗[of k]

by (cases f k) auto
hence sqrt-remainder-step (f k) = (D ′, D − D ′2) by (auto simp: sqrt-remainder-step-def)

hence f (Suc k) = f 0 by (simp add: f-def)
moreover have f (Suc k) 6= f 0

using that by (intro smallest-period) auto
ultimately show False by contradiction

qed
moreover have snd (f k) > 0 using ∗[of k] by (auto simp: red-assoc-def)
ultimately show ?thesis by simp

qed

have sqrt-cfrac-le: sqrt-cfrac-nth k ≤ D ′ if k < k2 − 1 for k
proof −

define p and q where p = fst (f k) and q = snd (f k)
have q ≥ 2 using snd-f-gt-1[of k] that by (auto simp: q-def)
also have sqrt-cfrac-nth k ∗ q ≤ D ′ ∗ 2

using red-assoc-step(5)[OF ∗[of k]]
by (simp add: sqrt-cfrac-nth-def p-def q-def case-prod-unfold f-def)

finally show ?thesis by simp
qed

have last: f (k2 − 1) = (D ′, 1)
proof −

define p and q where p = fst (f (k2 − 1)) and q = snd (f (k2 − 1))
have pq: f (k2 − 1) = (p, q) by (simp add: p-def q-def)
have sqrt-remainder-step (f (k2 − 1)) = f (Suc (k2 − 1))

by (simp add: f-def)
also from k12 have Suc (k2 − 1) = k2 by simp
also have f k2 = f 0

using k12 by simp
also have f 0 = (D ′, D − D ′2) by (simp add: f-def)
finally have eq: sqrt-remainder-step (f (k2 − 1)) = (D ′, D − D ′2) .

hence (D − D ′2) div q = D − D ′2 unfolding sqrt-remainder-step-def Let-def
pq

by auto
moreover have q > 0 using ∗[of k2 − 1]

by (auto simp: red-assoc-def q-def)

127

ultimately have q = 1 using D ′-sqr-less-D
by (subst (asm) div-eq-dividend-iff) auto

hence p = D ′

using red-assoc-denom-1[of p] ∗[of k2 − 1] unfolding pq by auto
with ‹q = 1› show f (k2 − 1) = (D ′, 1) unfolding pq by simp

qed

have period: sqrt-remainder-surd n = sqrt-remainder-surd (n mod k2) for n
unfolding sqrt-remainder-surd-def using k12 by (intro funpow-cycle) (auto

simp: f-def)
have period ′: sqrt-cfrac-nth k = sqrt-cfrac-nth (k mod k2) for k

using period[of k] by (simp add: sqrt-cfrac-nth-def)

have k2-le: l ≥ k2 if l > 0
∧

k. sqrt-cfrac-nth (k + l) = sqrt-cfrac-nth k for l
proof (rule ccontr)

assume ∗: ¬(l ≥ k2)
hence sqrt-cfrac-nth (k2 − Suc l) = sqrt-cfrac-nth (k2 − 1)

using that(2)[of k2 − Suc l] by simp
also have . . . = 2 ∗ D ′

using last by (simp add: sqrt-cfrac-nth-def f-def)
finally have 2 ∗ D ′ = sqrt-cfrac-nth (k2 − Suc l) ..
also have . . . ≤ D ′ using k12 that ∗

by (intro sqrt-cfrac-le diff-less-mono2) auto
finally show False using D ′-pos by simp

qed

have l = (LEAST l. 0 < l ∧ (∀n. int (sqrt-cfrac-nth (n + l)) = int (sqrt-cfrac-nth
n)))

using nonsquare unfolding sqrt-cfrac-def
by (simp add: l-def sqrt-nat-period-length-def sqrt-cfrac)

hence l-altdef : l = (LEAST l. 0 < l ∧ (∀n. sqrt-cfrac-nth (n + l) = sqrt-cfrac-nth
n))

by simp

have [simp]: D 6= 0 using nonsquare by (auto intro!: Nat.gr0I)
have ∃ l. l > 0 ∧ (∀ k. sqrt-cfrac-nth (k + l) = sqrt-cfrac-nth k)
proof (rule exI , safe)

fix k show sqrt-cfrac-nth (k + k2) = sqrt-cfrac-nth k
using period ′[of k] period ′[of k + k2] k12 by simp

qed (insert k12, auto)
from LeastI-ex[OF this, folded l-altdef]
have l: l > 0

∧
k. sqrt-cfrac-nth (k + l) = sqrt-cfrac-nth k

by (simp-all add: sqrt-cfrac)

have l ≤ k2 unfolding l-altdef
by (rule Least-le) (subst (1 2) period ′, insert k12, auto)

moreover have k2 ≤ l using k2-le l by blast
ultimately have [simp]: l = k2 by auto

128

define x ′ where x ′ = (λk. −1 / surd-to-real-cnj (f k))
{

fix k :: nat
have nz: surd-to-real-cnj (f k) 6= 0 surd-to-real-cnj (f (Suc k)) 6= 0

using surd-to-real-cnj-nz[OF ∗, of k] surd-to-real-cnj-nz[OF ∗, of Suc k]
by (simp-all add: f-def)

have surd-to-real-cnj (f k) 6= sqrt-cfrac-nth k
using surd-to-real-cnj-irrat[OF ∗[of k]] by auto

hence x ′ (Suc k) = sqrt-cfrac-nth k + 1 / x ′ k
using red-assoc-step(3)[OF ∗[of k]] nz
by (simp add: field-simps sqrt-cfrac-nth-def case-prod-unfold f-def x ′-def)

} note x ′-Suc = this

have x ′-nz: x ′ k 6= 0 for k
using surd-to-real-cnj-nz[OF ∗[of k]] by (auto simp: x ′-def)

have x ′-0: x ′ 0 = real D ′ + sqrt D
using red-assoc-begin by (simp add: x ′-def f-def)

define c ′ where c ′ = cfrac (λn. sqrt-cfrac-nth (l − Suc n))
define c ′′ where c ′′ = cfrac (λn. if n = 0 then 2 ∗ D ′ else sqrt-cfrac-nth (n −

1))
have nth-c ′ [simp]: cfrac-nth c ′ n = sqrt-cfrac-nth (l − Suc n) for n

unfolding c ′-def by (subst cfrac-nth-cfrac) (auto simp: is-cfrac-def intro!:
sqrt-cfrac-pos)

have nth-c ′′ [simp]: cfrac-nth c ′′ n = (if n = 0 then 2 ∗ D ′ else sqrt-cfrac-nth (n
− 1)) for n

unfolding c ′′-def by (subst cfrac-nth-cfrac) (auto simp: is-cfrac-def intro!:
sqrt-cfrac-pos)

have conv ′ c ′ n (x ′ (l − n)) = x ′ l if n ≤ l for n
using that

proof (induction n)
case (Suc n)
have x ′ l = conv ′ c ′ n (x ′ (l − n))

using Suc.prems by (intro Suc.IH [symmetric]) auto
also have l − n = Suc (l − Suc n)

using Suc.prems by simp
also have x ′ . . . = cfrac-nth c ′ n + 1 / x ′ (l − Suc n)

by (subst x ′-Suc) simp
also have conv ′ c ′ n . . . = conv ′ c ′ (Suc n) (x ′ (l − Suc n))

by (simp add: conv ′-Suc-right)
finally show ?case ..

qed simp-all
from this[of l] have conv ′-x ′-0: conv ′ c ′ l (x ′ 0) = x ′ 0

using k12 by (simp add: x ′-def)

have cfrac-nth (cfrac-of-real (x ′ 0)) n = cfrac-nth c ′′ n for n
proof (cases n)

129

case 0
thus ?thesis by (simp add: x ′-0 D ′-def)

next
case (Suc n ′)
have sqrt D /∈ �

using red-assoc-begin(1) red-assoc-begin(2) by auto
hence cfrac-nth (cfrac-of-real (real D ′ + sqrt (real D))) (Suc n ′) =

cfrac-nth (cfrac-of-real (sqrt (real D))) (Suc n ′)
by (simp add: cfrac-tl-of-real frac-add-of-nat Ints-add-left-cancel flip: cfrac-nth-tl)
thus ?thesis using x ′-nz[of 0]

by (simp add: x ′-0 sqrt-cfrac Suc)
qed

show sqrt-cfrac-nth (l − n − 2) = sqrt-cfrac-nth n if n < l − 1 for n
proof −

have D > 1 using nonsquare by (cases D) (auto intro!: Nat.gr0I)
hence D ′ + sqrt D > 0 + 1 using D ′-pos by (intro add-strict-mono) auto
hence x ′ 0 > 1 by (auto simp: x ′-0)
hence cfrac-nth c ′ (Suc n) = cfrac-nth (cfrac-of-real (conv ′ c ′ l (x ′ 0))) (Suc

n)
using ‹n < l − 1› using cfrac-of-real-conv ′ by auto

also have . . . = cfrac-nth (cfrac-of-real (x ′ 0)) (Suc n)
by (subst conv ′-x ′-0) auto

also have . . . = cfrac-nth c ′′ (Suc n) by fact
finally show sqrt-cfrac-nth (l − n − 2) = sqrt-cfrac-nth n

by simp
qed

show l > 0 l ≤ D ′ ∗ (D ′ + 1) using k12 by simp-all
show sqrt-remainder-surd n = sqrt-remainder-surd (n mod l)

sqrt-cfrac-nth n = sqrt-cfrac-nth (n mod l) for n
using period[of n] period ′[of n] by simp-all

show sqrt-remainder-surd n 6= sqrt-remainder-surd 0 if n ∈ {0<..<l} for n
using smallest-period[of n] that by (auto simp: f-def)

show snd (sqrt-remainder-surd n) > 1 if n < l − 1 for n
using that snd-f-gt-1[of n] by (simp add: f-def)

show f (l − 1) = (D ′, 1) and sqrt-cfrac-nth (l − 1) = 2 ∗ D ′

using last by (simp-all add: sqrt-cfrac-nth-def f-def)
show sqrt-cfrac-nth k ≤ D ′ if k < l − 1 for k

using sqrt-cfrac-le[of k] that by simp
show l ′ ≥ l if l ′ > 0

∧
k. sqrt-cfrac-nth (k + l ′) = sqrt-cfrac-nth k for l ′

using k2-le[of l ′] that by auto
qed

theorem cfrac-sqrt-periodic:
cfrac-nth (cfrac-of-real (sqrt D)) (Suc n) =
cfrac-nth (cfrac-of-real (sqrt D)) (Suc (n mod l))

using sqrt-cfrac-periodic[of n] by (metis sqrt-cfrac)

130

theorem cfrac-sqrt-le: n ∈ {0<..<l} =⇒ cfrac-nth (cfrac-of-real (sqrt D)) n ≤ D ′

using sqrt-cfrac-le[of n − 1]
by (metis Suc-less-eq Suc-pred add.right-neutral greaterThanLessThan-iff of-nat-mono

period-nonempty plus-1-eq-Suc sqrt-cfrac)

theorem cfrac-sqrt-last: cfrac-nth (cfrac-of-real (sqrt D)) l = 2 ∗ D ′

using sqrt-cfrac-last by (metis One-nat-def Suc-pred period-nonempty sqrt-cfrac)

theorem cfrac-sqrt-palindrome:
assumes n ∈ {0<..<l}
shows cfrac-nth (cfrac-of-real (sqrt D)) (l − n) = cfrac-nth (cfrac-of-real (sqrt

D)) n
proof −

have cfrac-nth (cfrac-of-real (sqrt D)) (l − n) = sqrt-cfrac-nth (l − n − 1)
using assms by (subst sqrt-cfrac) (auto simp: Suc-diff-Suc)

also have . . . = sqrt-cfrac-nth (n − 1)
using assms by (subst sqrt-cfrac-palindrome [symmetric]) auto

also have . . . = cfrac-nth (cfrac-of-real (sqrt D)) n
using assms by (subst sqrt-cfrac) auto

finally show ?thesis .
qed

lemma sqrt-cfrac-info-palindrome:
assumes sqrt-cfrac-info D = (a, b, cs)
shows rev (butlast cs) = butlast cs

proof (rule List.nth-equalityI ; safe?)
fix i assume i < length (rev (butlast cs))
with period-nonempty have Suc i < length cs by simp
thus rev (butlast cs) ! i = butlast cs ! i

using assms cfrac-sqrt-palindrome[of Suc i] period-nonempty unfolding l-def
by (auto simp: sqrt-cfrac-info-def rev-nth algebra-simps Suc-diff-Suc simp del:

cfrac.simps)
qed simp-all

lemma sqrt-cfrac-info-last:
assumes sqrt-cfrac-info D = (a, b, cs)
shows last cs = 2 ∗ Discrete.sqrt D

proof −
from assms show ?thesis using period-nonempty cfrac-sqrt-last

by (auto simp: sqrt-cfrac-info-def last-map l-def D ′-def Discrete-sqrt-altdef)
qed

The following lemmas allow us to compute the period of the expansion of
the square root:
lemma while-option-sqrt-cfrac:

defines step ′ ≡ (λ(as, pq). ((D ′ + fst pq) div snd pq # as, sqrt-remainder-step
pq))

defines b ≡ (λ(-, pq). snd pq 6= 1)
defines initial ≡ ([] :: nat list, (D ′, D − D ′2))

131

shows while-option b step ′ initial =
Some (rev (map sqrt-cfrac-nth [0..<l −1]), (D ′, 1))

proof −
define P where

P = (λ(as, pq). let n = length as
in n < l ∧ pq = sqrt-remainder-surd n ∧ as = rev (map

sqrt-cfrac-nth [0..<n]))
define µ :: nat list × (nat × nat) ⇒ nat where µ = (λ(as, -). l − length as)
have [simp]: P initial using period-nonempty

by (auto simp: initial-def P-def sqrt-remainder-surd-def)
have step ′: P (step ′ s) ∧ Suc (length (fst s)) < l if P s b s for s
proof (cases s)

case (fields as p q)
define n where n = length as
from that fields sqrt-remainder-surd-last have Suc n ≤ l

by (auto simp: b-def P-def Let-def n-def [symmetric])
moreover from that fields sqrt-remainder-surd-last have Suc n 6= l

by (auto simp: b-def P-def Let-def n-def [symmetric])
ultimately have Suc n < l by auto
with that fields sqrt-remainder-surd-last show P (step ′ s) ∧ Suc (length (fst

s)) < l
by (simp add: b-def P-def Let-def n-def step ′-def sqrt-cfrac-nth-def

sqrt-remainder-surd-def case-prod-unfold)
qed
have [simp]: length (fst (step ′ s)) = Suc (length (fst s)) for s

by (simp add: step ′-def case-prod-unfold)

have ∃ x. while-option b step ′ initial = Some x
proof (rule measure-while-option-Some)

fix s assume ∗: P s b s
from step ′[OF ∗] show P (step ′ s) ∧ µ (step ′ s) < µ s

by (auto simp: b-def µ-def case-prod-unfold intro!: diff-less-mono2)
qed auto
then obtain x where x: while-option b step ′ initial = Some x ..
have P x by (rule while-option-rule[OF - x]) (insert step ′, auto)
have ¬b x using while-option-stop[OF x] by auto

obtain as p q where [simp]: x = (as, (p, q)) by (cases x)
define n where n = length as
have [simp]: q = 1 using ‹¬b x› by (auto simp: b-def)
have [simp]: p = D ′ using ‹P x›

using red-assoc-denom-1[of p] by (auto simp: P-def Let-def)
have n < l sqrt-remainder-surd (length as) = (D ′, Suc 0)

and as: as = rev (map sqrt-cfrac-nth [0..<n]) using ‹P x›
by (auto simp: P-def Let-def n-def)

hence ¬(n < l − 1)
using snd-sqrt-remainder-surd-gt-1[of n] by (intro notI) auto

with ‹n < l› have [simp]: n = l − 1 by auto
show ?thesis by (simp add: as x)

132

qed

lemma while-option-sqrt-cfrac-info:
defines step ′ ≡ (λ(as, pq). ((D ′ + fst pq) div snd pq # as, sqrt-remainder-step

pq))
defines b ≡ (λ(-, pq). snd pq 6= 1)
defines initial ≡ ([], (D ′, D − D ′2))
shows sqrt-cfrac-info D =

(case while-option b step ′ initial of
Some (as, -) ⇒ (Suc (length as), D ′, rev ((2 ∗ D ′) # as)))

proof −
have nat (cfrac-nth (cfrac-of-real (sqrt (real D))) (Suc k)) = sqrt-cfrac-nth k for

k
by (metis nat-int sqrt-cfrac)

thus ?thesis unfolding assms while-option-sqrt-cfrac
using period-nonempty sqrt-cfrac-last
by (cases l) (auto simp: sqrt-cfrac-info-def D ′-def l-def Discrete-sqrt-altdef)

qed

end
end

lemma sqrt-nat-period-length-le: sqrt-nat-period-length D ≤ nat bsqrt Dc ∗ (nat
bsqrt Dc + 1)

by (cases is-square D) (use period-length-le-aux[of D] in auto)

lemma sqrt-nat-period-length-0-iff [simp]:
sqrt-nat-period-length D = 0 ←→ is-square D
using period-nonempty[of D] by (cases is-square D) auto

lemma sqrt-nat-period-length-pos-iff [simp]:
sqrt-nat-period-length D > 0 ←→ ¬is-square D
using period-nonempty[of D] by (cases is-square D) auto

lemma sqrt-cfrac-info-code [code]:
sqrt-cfrac-info D =

(let D ′ = Discrete.sqrt D
in if D ′2 = D then (0, D ′, [])

else
case while-option

(λ(-, pq). snd pq 6= 1)
(λ(as, (p, q)). let X = (p + D ′) div q; p ′ = X ∗ q − p

in (X # as, p ′, (D − p ′2) div q))
([], D ′, D − D ′2)

of Some (as, -) ⇒ (Suc (length as), D ′, rev ((2 ∗ D ′) # as)))
proof −

define D ′ where D ′ = Discrete.sqrt D
show ?thesis
proof (cases is-square D)

133

case True
hence D ′ ^ 2 = D by (auto simp: D ′-def elim!: is-nth-powerE)
thus ?thesis using True

by (simp add: D ′-def Let-def sqrt-cfrac-info-def sqrt-nat-period-length-def)
next

case False
hence D ′ ^ 2 6= D by (subst eq-commute) auto
thus ?thesis using while-option-sqrt-cfrac-info[OF False]

by (simp add: sqrt-cfrac-info-def D ′-def Let-def
case-prod-unfold Discrete-sqrt-altdef add-ac sqrt-remainder-step-def)

qed
qed

lemma sqrt-nat-period-length-code [code]:
sqrt-nat-period-length D = fst (sqrt-cfrac-info D)
by (simp add: sqrt-cfrac-info-def)

For efficiency reasons, it is often better to use an array instead of a list:
definition sqrt-cfrac-info-array where

sqrt-cfrac-info-array D = (case sqrt-cfrac-info D of (a, b, c) ⇒ (a, b, IArray c))

lemma fst-sqrt-cfrac-info-array [simp]: fst (sqrt-cfrac-info-array D) = sqrt-nat-period-length
D

by (simp add: sqrt-cfrac-info-array-def sqrt-cfrac-info-def)

lemma snd-sqrt-cfrac-info-array [simp]: fst (snd (sqrt-cfrac-info-array D)) = Dis-
crete.sqrt D

by (simp add: sqrt-cfrac-info-array-def sqrt-cfrac-info-def)

definition cfrac-sqrt-nth :: nat × nat × nat iarray ⇒ nat ⇒ nat where
cfrac-sqrt-nth info n =

(case info of (l, a0, as) ⇒ if n = 0 then a0 else as !! ((n − 1) mod l))

lemma cfrac-sqrt-nth:
assumes ¬is-square D
shows cfrac-nth (cfrac-of-real (sqrt D)) n =

int (cfrac-sqrt-nth (sqrt-cfrac-info-array D) n) (is ?lhs = ?rhs)
proof (cases n)

case (Suc n ′)
define l where l = sqrt-nat-period-length D
from period-nonempty[OF assms] have l > 0 by (simp add: l-def)
have cfrac-nth (cfrac-of-real (sqrt D)) (Suc n ′) =

cfrac-nth (cfrac-of-real (sqrt D)) (Suc (n ′ mod l)) unfolding l-def
using cfrac-sqrt-periodic[OF assms, of n ′] by simp

also have . . . = map (λn. nat (cfrac-nth (cfrac-of-real (sqrt D)) (Suc n))) [0..<l]
! (n ′ mod l)

using ‹l > 0› by (subst nth-map) auto
finally show ?thesis using Suc

134

by (simp add: sqrt-cfrac-info-array-def sqrt-cfrac-info-def l-def cfrac-sqrt-nth-def)
qed (simp-all add: sqrt-cfrac-info-def sqrt-cfrac-info-array-def

Discrete-sqrt-altdef cfrac-sqrt-nth-def)

lemma sqrt-cfrac-code [code]:
sqrt-cfrac D =

(let info = sqrt-cfrac-info-array D;
(l, a0, -) = info

in if l = 0 then cfrac-of-int (int a0) else cfrac (cfrac-sqrt-nth info))
proof (cases is-square D)

case True
hence sqrt (real D) = of-int (Discrete.sqrt D)

by (auto elim!: is-nth-powerE)
thus ?thesis using True
by (auto simp: Let-def sqrt-cfrac-info-array-def sqrt-cfrac-info-def sqrt-cfrac-def)

next
case False
have cfrac-sqrt-nth (sqrt-cfrac-info-array D) n > 0 if n > 0 for n
proof −

have int (cfrac-sqrt-nth (sqrt-cfrac-info-array D) n) > 0
using False that by (subst cfrac-sqrt-nth [symmetric]) auto

thus ?thesis by simp
qed
moreover have sqrt D /∈ �

using False irrat-sqrt-nonsquare by blast
ultimately have sqrt-cfrac D = cfrac (cfrac-sqrt-nth (sqrt-cfrac-info-array D))

using cfrac-sqrt-nth[OF False]
by (intro cfrac-eqI) (auto simp: sqrt-cfrac-def is-cfrac-def)

thus ?thesis
using False by (simp add: Let-def sqrt-cfrac-info-array-def sqrt-cfrac-info-def)

qed

As a test, we determine the continued fraction expansion of
√

129, which is
[11; 2, 1, 3, 1, 6, 1, 3, 1, 2, 22] (a period length of 10):
value let info = sqrt-cfrac-info-array 129 in info
value sqrt-nat-period-length 129

We can also compute convergents of
√

129 and observe that the difference
between the square of the convergents and 129 vanishes quickly::
value map (conv (sqrt-cfrac 129)) [0..<10]
value map (λn. |conv (sqrt-cfrac 129) n ^ 2 − 129|) [0..<20]

end

5 Lifting solutions of Pell’s Equation
theory Pell-Lifting

imports Pell.Pell Pell.Pell-Algorithm

135

begin

5.1 Auxiliary material
lemma (in pell) snth-pell-solutions: snth (pell-solutions D) n = nth-solution n
by (simp add: pell-solutions-def Let-def find-fund-sol-correct nonsquare-D nth-solution-def

pell-power-def pell-mul-commutes[of - fund-sol])

definition square-squarefree-part-nat :: nat ⇒ nat × nat where
square-squarefree-part-nat n = (square-part n, squarefree-part n)

lemma prime-factorization-squarefree-part:
assumes x 6= 0
shows prime-factorization (squarefree-part x) =

mset-set {p ∈ prime-factors x. odd (multiplicity p x)} (is ?lhs = ?rhs)
proof (rule multiset-eqI)

fix p show count ?lhs p = count ?rhs p
proof (cases prime p)

case False
thus ?thesis by (auto simp: count-prime-factorization)

next
case True
have finite (prime-factors x) by simp
hence finite {p. p dvd x ∧ prime p} using assms

by (subst (asm) prime-factors-dvd) (auto simp: conj-commute)
hence finite {p. p dvd x ∧ prime p ∧ odd (multiplicity p x)}

by (rule finite-subset [rotated]) auto
moreover have odd (n :: nat) ←→ n mod 2 = Suc 0 for n by presburger
ultimately show ?thesis using assms

by (cases p dvd x; cases even (multiplicity p x))
(auto simp: count-prime-factorization prime-multiplicity-squarefree-part

in-prime-factors-iff not-dvd-imp-multiplicity-0)
qed

qed

lemma squarefree-part-nat:
squarefree-part (n :: nat) = (

∏
{p ∈ prime-factors n. odd (multiplicity p n)})

proof (cases n = 0)
case False
hence (

∏
{p ∈ prime-factors n. odd (multiplicity p n)}) =

prod-mset (prime-factorization (squarefree-part n))
by (subst prime-factorization-squarefree-part) (auto simp: prod-unfold-prod-mset)
also have . . . = squarefree-part n

by (intro prod-mset-prime-factorization-nat Nat.gr0I) auto
finally show ?thesis ..

qed auto

lemma prime-factorization-square-part:
assumes x 6= 0

136

shows prime-factorization (square-part x) =
(
∑

p ∈ prime-factors x. replicate-mset (multiplicity p x div 2) p) (is ?lhs
= ?rhs)
proof (rule multiset-eqI)

fix p show count ?lhs p = count ?rhs p
proof (cases prime p ∧ p dvd x)

case False
thus ?thesis by (auto simp: count-prime-factorization count-sum

prime-multiplicity-square-part not-dvd-imp-multiplicity-0)
next

case True
thus ?thesis using assms

by (cases p dvd x)
(auto simp: count-prime-factorization prime-multiplicity-squarefree-part

in-prime-factors-iff count-sum prime-multiplicity-square-part)
qed

qed

lemma prod-mset-sum: prod-mset (sum f A) = (
∏

x∈A. prod-mset (f x))
by (induction A rule: infinite-finite-induct) auto

lemma square-part-nat:
assumes n > 0
shows square-part (n :: nat) = (

∏
p ∈ prime-factors n. p ^ (multiplicity p n

div 2))
proof −

have (
∏

p ∈ prime-factors n. p ^ (multiplicity p n div 2)) =
prod-mset (prime-factorization (square-part n)) using assms

by (subst prime-factorization-square-part) (auto simp: prod-unfold-prod-mset
prod-mset-sum)

also have . . . = square-part n using assms
by (intro prod-mset-prime-factorization-nat Nat.gr0I) auto

finally show ?thesis ..
qed

lemma square-squarefree-part-nat-code [code]:
square-squarefree-part-nat n = (if n = 0 then (0, 1)

else let ps = prime-factorization n
in ((

∏
p∈set-mset ps. p ^ (count ps p div 2)),∏
(Set.filter (λp. odd (count ps p)) (set-mset ps))))

by (cases n = 0)
(auto simp: Let-def square-squarefree-part-nat-def squarefree-part-nat Set.filter-def

count-prime-factorization square-part-nat intro!: prod.cong)

lemma square-part-nat-code [code-unfold]:
square-part (n :: nat) = (if n = 0 then 0

else let ps = prime-factorization n in (
∏

p∈set-mset ps. p ^ (count ps p div
2)))

137

using square-squarefree-part-nat-code[of n]
by (simp add: square-squarefree-part-nat-def Let-def split: if-splits)

lemma squarefree-part-nat-code [code-unfold]:
squarefree-part (n :: nat) = (if n = 0 then 1

else let ps = prime-factorization n in (
∏

(Set.filter (λp. odd (count ps p))
(set-mset ps))))

using square-squarefree-part-nat-code[of n]
by (simp add: square-squarefree-part-nat-def Let-def split: if-splits)

lemma is-nth-power-mult-nth-powerD:
assumes is-nth-power n (a ∗ b ^ n) b > 0 n > 0
shows is-nth-power n (a::nat)

proof −
from assms obtain k where k: k ^ n = a ∗ b ^ n

by (auto elim: is-nth-powerE)
with assms(2,3) have b dvd k

by (metis dvd-triv-right pow-divides-pow-iff)
then obtain l where k = b ∗ l

by auto
with k have a = l ^ n using assms(2)

by (simp add: power-mult-distrib)
thus ?thesis by auto

qed

lemma (in pell) fund-sol-eq-fstI :
assumes nontriv-solution (x, y)
assumes

∧
x ′ y ′. nontriv-solution (x ′, y ′) =⇒ x ≤ x ′

shows fund-sol = (x, y)
proof −

have x = fst fund-sol
using fund-sol-is-nontriv-solution assms(1) fund-sol-minimal ′′[of (x, y)]
by (auto intro!: antisym assms(2)[of fst fund-sol snd fund-sol])

moreover from this have y = snd fund-sol
using assms(1) solutions-linorder-strict[of x y fst fund-sol snd fund-sol]

fund-sol-is-nontriv-solution
by (auto simp: nontriv-solution-imp-solution prod-eq-iff)

ultimately show ?thesis by simp
qed

lemma (in pell) fund-sol-eqI-fst ′:
assumes nontriv-solution xy
assumes

∧
x ′ y ′. nontriv-solution (x ′, y ′) =⇒ fst xy ≤ x ′

shows fund-sol = xy
using fund-sol-eq-fstI [of fst xy snd xy] assms by simp

lemma (in pell) fund-sol-eq-sndI :
assumes nontriv-solution (x, y)
assumes

∧
x ′ y ′. nontriv-solution (x ′, y ′) =⇒ y ≤ y ′

138

shows fund-sol = (x, y)
proof −

have y = snd fund-sol
using fund-sol-is-nontriv-solution assms(1) fund-sol-minimal ′′[of (x, y)]
by (auto intro!: antisym assms(2)[of fst fund-sol snd fund-sol])

moreover from this have x = fst fund-sol
using assms(1) solutions-linorder-strict[of x y fst fund-sol snd fund-sol]

fund-sol-is-nontriv-solution
by (auto simp: nontriv-solution-imp-solution prod-eq-iff)

ultimately show ?thesis by simp
qed

lemma (in pell) fund-sol-eqI-snd ′:
assumes nontriv-solution xy
assumes

∧
x ′ y ′. nontriv-solution (x ′, y ′) =⇒ snd xy ≤ y ′

shows fund-sol = xy
using fund-sol-eq-sndI [of fst xy snd xy] assms by simp

5.2 The lifting mechanism

The solutions of Pell’s equations for parameters D and a2 D stand in cor-
respondence to one another: every solution (x, y) for parameter D can be
lowered to a solution (x, ay) for a2 D, and every solution of the form (x, ay)
for parameter a2 D can be lifted to a solution (x, y) for parameter D.
locale pell-lift = pell +

fixes a D ′ :: nat
assumes nz: a > 0
defines D ′ ≡ D ∗ a2

begin

lemma nonsquare-D ′: ¬is-square D ′

using nonsquare-D is-nth-power-mult-nth-powerD[of 2 D a] nz by (auto simp:
D ′-def)

definition lift-solution :: nat × nat ⇒ nat × nat where
lift-solution = (λ(x, y). (x, y div a))

definition lower-solution :: nat × nat ⇒ nat × nat where
lower-solution = (λ(x, y). (x, y ∗ a))

definition liftable-solution :: nat × nat ⇒ bool where
liftable-solution = (λ(x, y). a dvd y)

sublocale lift: pell D ′

by unfold-locales (fact nonsquare-D ′)

lemma lift-solution-iff : lift.solution xy ←→ solution (lower-solution xy)
unfolding solution-def lift.solution-def

139

by (auto simp: lower-solution-def D ′-def case-prod-unfold power-mult-distrib)

lemma lift-solution:
assumes solution xy liftable-solution xy
shows lift.solution (lift-solution xy)
using assms unfolding solution-def lift.solution-def
by (auto simp: liftable-solution-def lift-solution-def D ′-def case-prod-unfold power-mult-distrib

elim!: dvdE)

In particular, the fundamental solution for a2 D is the smallest liftable so-
lution for D:
lemma lift-fund-sol:

assumes
∧

n. 0 < n =⇒ n < m =⇒ ¬liftable-solution (nth-solution n)
assumes liftable-solution (nth-solution m) m > 0
shows lift.fund-sol = lift-solution (nth-solution m)

proof (rule lift.fund-sol-eqI-fst ′)
from assms have nontriv-solution (nth-solution m)

by (intro nth-solution-sound ′)
hence lift-solution (nth-solution m) 6= (1, 0) using nz assms(2)
by (auto simp: lift-solution-def case-prod-unfold nontriv-solution-def liftable-solution-def)
with assms show lift.nontriv-solution (lift-solution (nth-solution m))

by (auto simp: lift.nontriv-solution-altdef intro: lift-solution)
next

fix x ′ y ′ :: nat
assume ∗: lift.nontriv-solution (x ′, y ′)
hence nz ′: x ′ 6= 1 using nonsquare-D ′

by (auto simp: lift.nontriv-solution-altdef lift.solution-def)
from ∗ have solution (lower-solution (x ′, y ′))

by (simp add: lift-solution-iff lift.nontriv-solution-altdef)
hence lower-solution (x ′, y ′) ∈ range nth-solution by (rule nth-solution-complete)
then obtain n where n: nth-solution n = lower-solution (x ′, y ′) by auto
with nz ′ have n > 0 by (auto intro!: Nat.gr0I simp: nth-solution-def lower-solution-def)
with n have liftable-solution (nth-solution n)

by (auto simp: liftable-solution-def lower-solution-def)
with ‹n > 0› and assms(1)[of n] have n ≥ m by (cases n ≥ m) auto
hence fst (nth-solution m) ≤ fst (nth-solution n)

using strict-mono-less-eq[OF strict-mono-nth-solution(1)] by simp
thus fst (lift-solution (nth-solution m)) ≤ x ′

by (simp add: lift-solution-def lower-solution-def n case-prod-unfold)
qed

end

5.3 Accelerated computation of the fundamental solution for
non-squarefree inputs

Solving Pell’s equation for some D of the form a2 D ′ can be done by solving
it for D ′ and then lifting the solution. Thus, if D is not squarefree, we can

140

compute its squarefree decomposition a2 D ′ with D ′ squarefree and thus
speed up the computation (since D ′ is smaller than D).
The squarefree decomposition can only be computed (according to current
knowledge in mathematics) through the prime decomposition. However,
given how big the solutions are for even moderate values of D, it is usually
worth doing it if D is not squarefree.
lemma squarefree-part-of-square [simp]:
assumes is-square (x :: ′a :: {factorial-semiring, normalization-semidom-multiplicative})
assumes x 6= 0
shows squarefree-part x = unit-factor x

proof −
from assms obtain y where [simp]: x = y ^ 2

by (auto simp: is-nth-power-def)
have unit-factor x ∗ normalize x = squarefree-part x ∗ square-part x ^ 2

by (subst squarefree-decompose [symmetric]) auto
also have . . . = squarefree-part x ∗ normalize x

by (simp add: square-part-even-power normalize-power)
finally show ?thesis using assms

by (subst (asm) mult-cancel-right) auto
qed

lemma squarefree-part-1-imp-square:
assumes squarefree-part x = 1
shows is-square x

proof −
have is-square (square-part x ^ 2)

by auto
also have square-part x ^ 2 = squarefree-part x ∗ square-part x ^ 2

using assms by simp
also have . . . = x

by (rule squarefree-decompose [symmetric])
finally show ?thesis .

qed

definition find-fund-sol-fast where
find-fund-sol-fast D =

(let (a, D ′) = square-squarefree-part-nat D
in

if D ′ = 0 ∨ D ′ = 1 then (0, 0)
else if a = 1 then pell.fund-sol D
else map-prod id (λy. y div a)

(shd (sdrop-while (λ(-, y). y = 0 ∨ ¬a dvd y) (pell-solutions D ′))))

lemma find-fund-sol-fast: find-fund-sol D = find-fund-sol-fast D
proof (cases is-square D ∨ square-part D = 1)

case True
thus ?thesis

141

using squarefree-part-1-imp-square[of D]
by (cases D = 0)

(auto simp: find-fund-sol-correct find-fund-sol-fast-def
square-squarefree-part-nat-def square-test-correct unit-factor-nat-def)

next
case False
define D ′ a where D ′ = squarefree-part D and a = square-part D
have D > 0

using False by (intro Nat.gr0I) auto
have a > 0

using ‹D > 0› by (intro Nat.gr0I) (auto simp: a-def)
moreover have ¬is-square D ′

unfolding D ′-def
by (metis False is-nth-power-mult is-nth-power-nth-power squarefree-decompose)

ultimately interpret lift: pell-lift D ′ a D
using False ‹D > 0›
by unfold-locales (auto simp: D ′-def a-def squarefree-decompose [symmetric])

define i where i = (LEAST i. case lift.nth-solution i of (-, y) ⇒ y > 0 ∧ a dvd
y)

have ex: ∃ i. case lift.nth-solution i of (-, y) ⇒ y > 0 ∧ a dvd y
proof −

define sol where sol = lift.lift.fund-sol
have is-sol: lift.solution (lift.lower-solution sol)
unfolding sol-def using lift.lift.fund-sol-is-nontriv-solution lift.lift-solution-iff

by blast
then obtain j where j: lift.lower-solution sol = lift.nth-solution j

using lift.solution-iff-nth-solution by blast
have snd (lift.lower-solution sol) > 0
proof (rule Nat.gr0I)

assume ∗: snd (lift.lower-solution sol) = 0
have lift.solution (fst (lift.lower-solution sol), snd (lift.lower-solution sol))

using is-sol by simp
hence fst (lift.lower-solution sol) = 1

by (subst (asm) ∗) simp
with ∗ have lift.lower-solution sol = (1, 0)

by (cases lift.lower-solution sol) auto
hence fst sol = 1

unfolding lift.lower-solution-def by (auto simp: lift.lower-solution-def
case-prod-unfold)

thus False
unfolding sol-def
using lift.lift.fund-sol-is-nontriv-solution ‹D > 0›
by (auto simp: lift.lift.nontriv-solution-def)

qed
moreover have a dvd snd (lift.lower-solution sol)

by (auto simp: lift.lower-solution-def case-prod-unfold)
ultimately show ?thesis

using j by (auto simp: case-prod-unfold)

142

qed

define sol where sol = lift.nth-solution i
have sol: snd sol > 0 a dvd snd sol

using LeastI-ex[OF ex] by (simp-all add: sol-def i-def case-prod-unfold)
have i > 0

using sol by (intro Nat.gr0I) (auto simp: sol-def lift.nth-solution-def)

have find-fund-sol-fast D = map-prod id (λy. y div a)
(shd (sdrop-while (λ(-, y). y = 0 ∨ ¬a dvd y) (pell-solutions D ′)))

unfolding D ′-def a-def find-fund-sol-fast-def using False squarefree-part-1-imp-square[of
D]

by (auto simp: square-squarefree-part-nat-def)
also have sdrop-while (λ(-, y). y = 0 ∨ ¬a dvd y) (pell-solutions D ′) =

sdrop-while (Not ◦ (λ(-, y). y > 0 ∧ a dvd y)) (pell-solutions D ′)
by (simp add: o-def case-prod-unfold)

also have . . . = sdrop i (pell-solutions D ′)
using ex by (subst sdrop-while-sdrop-LEAST) (simp-all add: lift.snth-pell-solutions

i-def)
also have shd . . . = sol

by (simp add: lift.snth-pell-solutions sol-def)
finally have eq: find-fund-sol-fast D = map-prod id (λy. y div a) sol .

have lift.lift.fund-sol = lift.lift-solution sol
unfolding sol-def

proof (rule lift.lift-fund-sol)
show i > 0 by fact
show lift.liftable-solution (lift.nth-solution i)

using sol by (simp add: sol-def lift.liftable-solution-def case-prod-unfold)
next

fix j :: nat assume j: j > 0 j < i
show ¬lift.liftable-solution (lift.nth-solution j)
proof

assume liftable: lift.liftable-solution (lift.nth-solution j)
have snd (lift.nth-solution j) > 0
using ‹j > 0› by (metis gr0I lift.nontriv-solution-altdef lift.nth-solution-sound ′

lift.solution-0-snd-nat-iff prod.collapse)
hence case lift.nth-solution j of (-, y) ⇒ y > 0 ∧ a dvd y

using ‹j > 0› liftable by (auto simp: lift.liftable-solution-def)
hence i ≤ j

unfolding i-def by (rule Least-le)
thus False using ‹j < i› by simp

qed
qed
also have . . . = find-fund-sol-fast D

by (simp add: eq lift.lift-solution-def case-prod-unfold map-prod-def)
finally show ?thesis

using ‹D > 0› False by (simp add: find-fund-sol-correct)

143

qed

end

6 The Connection between the continued fraction
expansion of square roots and Pell’s equation

theory Pell-Continued-Fraction
imports

Sqrt-Nat-Cfrac
Pell.Pell-Algorithm
Polynomial-Factorization.Prime-Factorization
Pell-Lifting

begin

lemma irrational-times-int-eq-intD:
assumes p ∗ real-of-int a = real-of-int b
assumes p /∈ �
shows a = 0 ∧ b = 0

proof −
have a = 0
proof (rule ccontr)

assume a 6= 0
with assms(1) have p = b / a by (auto simp: field-simps)
also have . . . ∈ � by auto
finally show False using assms(2) by contradiction

qed
with assms show ?thesis by simp

qed

The solutions to Pell’s equation for some non-square D are linked to the
continued fraction expansion of

√
D, which we shall show here.

context
fixes D :: nat and c h k P Q l
assumes nonsquare: ¬is-square D
defines c ≡ cfrac-of-real (sqrt D)
defines h ≡ conv-num c and k ≡ conv-denom c
defines P ≡ fst ◦ sqrt-remainder-surd D and Q ≡ snd ◦ sqrt-remainder-surd D
defines l ≡ sqrt-nat-period-length D

begin

interpretation pell D
by unfold-locales fact+

lemma cfrac-length-infinite [simp]: cfrac-length c = ∞
proof −

have sqrt D /∈ �
using nonsquare by (simp add: irrat-sqrt-nonsquare)

144

thus ?thesis
by (simp add: c-def)

qed

lemma conv-num-denom-pell:
h 0 ^ 2 − D ∗ k 0 ^ 2 < 0
m > 0 =⇒ h m ^ 2 − D ∗ k m ^ 2 = (−1) ^ Suc m ∗ Q m

proof −
define D ′ where D ′ = Discrete.sqrt D
have h 0 ^ 2 − D ∗ k 0 ^ 2 = int (D ′ ^ 2) − int D

by (simp-all add: h-def k-def c-def Discrete-sqrt-altdef D ′-def)
also {

have int (D ′ ^ 2) − int D ≤ 0
using Discrete.sqrt-power2-le[of D] by (simp add: D ′-def)

moreover have D 6= D ′ ^ 2 using nonsquare by auto
ultimately have int (D ′ ^ 2) − int D < 0 by linarith

}
finally show h 0 ^ 2 − D ∗ k 0 ^ 2 < 0 .

next
assume m > 0
define n where n = m − 1
define α where α = cfrac-remainder c
define α ′ where α ′ = sqrt-remainder-surd D
have m: m = Suc n using ‹m > 0› by (simp add: n-def)
from nonsquare have D > 1

by (cases D) (auto intro!: Nat.gr0I)
from nonsquare have irrat: sqrt D /∈ �

using irrat-sqrt-nonsquare by blast
have [simp]: cfrac-lim c = sqrt D

using irrat ‹D > 1› by (simp add: c-def)
have α-pos: α n > 0 for n

unfolding α-def using wf ‹D > 1› cfrac-remainder-pos[of c n]
by (cases n = 0) auto

have α ′: α ′ n = (P n, Q n) for n by (simp add: α ′-def P-def Q-def)
have Q-pos: Q n > 0 for n

using snd-sqrt-remainder-surd-pos[OF nonsquare] by (simp add: Q-def)
have k-pos: k n > 0 for n

by (auto simp: k-def intro!: conv-denom-pos)
have k-nonneg: k n ≥ 0 for n

by (auto simp: k-def intro!: conv-denom-nonneg)

let ?A = (sqrt D + P (n + 1)) ∗ h (n + 1) + Q (n + 1) ∗ h n
let ?B = (sqrt D + P (n + 1)) ∗ k (n + 1) + Q (n + 1) ∗ k n
have ?B > 0 using k-pos Q-pos k-nonneg

by (intro add-nonneg-pos mult-nonneg-nonneg add-nonneg-nonneg) auto

have sqrt D = conv ′ c (Suc (Suc n)) (α (Suc (Suc n)))
unfolding α-def by (subst conv ′-cfrac-remainder) auto

also have . . . = (α (n + 2) ∗ h (n + 1) + h n) / (α (n + 2) ∗ k (n + 1) + k n)

145

using wf α-pos by (subst conv ′-num-denom) (simp-all add: h-def k-def)
also have α (n + 2) = surd-to-real D (α ′ (Suc n))

using surd-to-real-sqrt-remainder-surd[OF nonsquare, of Suc n]
by (simp add: α ′-def α-def c-def)

also have . . . = (sqrt D + P (Suc n)) / Q (Suc n) (is - = ?α)
by (simp add: α ′ surd-to-real-def)

also have ?α ∗ h (n + 1) + h n =
1 / Q (n + 1) ∗ ((sqrt D + P (n + 1)) ∗ h (n + 1) + Q (n + 1) ∗ h n)

using Q-pos by (simp add: field-simps)
also have ?α ∗ k (n + 1) + k n =

1 / Q (n + 1) ∗ ((sqrt D + P (n + 1)) ∗ k (n + 1) + Q (n + 1) ∗ k n)
(is - = ?f k) using Q-pos by (simp add: field-simps)

also have ?f h / ?f k = ((sqrt D + P (n + 1)) ∗ h (n + 1) + Q (n + 1) ∗ h n) /
((sqrt D + P (n + 1)) ∗ k (n + 1) + Q (n + 1) ∗ k n)

(is - = ?A / ?B) using Q-pos by (intro mult-divide-mult-cancel-left) auto
finally have sqrt D ∗ ?B = ?A

using ‹?B > 0› by (simp add: divide-simps)
moreover have sqrt D ∗ sqrt D = D by simp
ultimately have sqrt D ∗ (P (n + 1) ∗ k (n + 1) + Q (n + 1) ∗ k n − h (n +

1)) =
P (n + 1) ∗ h (n + 1) + Q (n + 1) ∗ h n − k (n + 1) ∗ D

unfolding of-int-add of-int-mult of-int-diff of-int-of-nat-eq of-nat-mult of-nat-add
by Groebner-Basis.algebra

from irrational-times-int-eq-intD[OF this] irrat
have 1: h (Suc n) = P (Suc n) ∗ k (Suc n) + Q (Suc n) ∗ k n
and 2: D ∗ k (Suc n) = P (Suc n) ∗ h (Suc n) + Q (Suc n) ∗ h n
by (simp-all del: of-nat-add of-nat-mult)

have h (Suc n) ∗ h (Suc n) − D ∗ k (Suc n) ∗ k (Suc n) =
Q (Suc n) ∗ (k n ∗ h (Suc n) − k (Suc n) ∗ h n)

by (subst 1, subst 2) (simp add: algebra-simps)
also have k n ∗ h (Suc n) − k (Suc n) ∗ h n = (−1) ^ n

unfolding h-def k-def by (rule conv-num-denom-prod-diff)
finally have h (Suc n) ^ 2 − D ∗ k (Suc n) ^ 2 = (−1) ^ n ∗ Q (Suc n)

by (simp add: power2-eq-square algebra-simps)
thus h m ^ 2 − D ∗ k m ^ 2 = (−1) ^ Suc m ∗ Q m

by (simp add: m)
qed

Every non-trivial solution to Pell’s equation is a convergent in the expansion
of
√

D:
theorem pell-solution-is-conv:

assumes x2 = Suc (D ∗ y2) and y > 0
shows (int x, int y) ∈ range (λn. (conv-num c n, conv-denom c n))

proof −
have ∃n. enat n ≤ cfrac-length c ∧ (int x, int y) = (conv-num c n, conv-denom

c n)
proof (rule frac-is-convergentI)

have gcd (x2) (y2) = 1 unfolding assms(1)

146

using gcd-add-mult[of y2 D 1] by (simp add: gcd.commute)
thus coprime (int x) (int y)

by (simp add: coprime-iff-gcd-eq-1)
next

from assms have D > 1
using nonsquare by (cases D) (auto intro!: Nat.gr0I)

hence pos: x + y ∗ sqrt D > 0 using assms
by (intro add-nonneg-pos) auto

from assms have real (x2) = real (Suc (D ∗ y2))
by (simp only: of-nat-eq-iff)

hence 1 = real x ^ 2 − D ∗ real y ^ 2
unfolding of-nat-power by simp

also have . . . = (x − y ∗ sqrt D) ∗ (x + y ∗ sqrt D)
by (simp add: field-simps power2-eq-square)

finally have ∗: x − y ∗ sqrt D = 1 / (x + y ∗ sqrt D)
using pos by (simp add: field-simps)

from pos have 0 < 1 / (x + y ∗ sqrt D)
by (intro divide-pos-pos) auto

also have . . . = x − y ∗ sqrt D by (rule ∗ [symmetric])
finally have less: y ∗ sqrt D < x by simp

have sqrt D − x / y = −((x − y ∗ sqrt D) / y)
using ‹y > 0› by (simp add: field-simps)

also have |. . . | = (x − y ∗ sqrt D) / y
using less by simp

also have (x − y ∗ sqrt D) / y = 1 / (y ∗ (x + y ∗ sqrt D))
using ‹y > 0› by (subst ∗) auto

also have . . . ≤ 1 / (y ∗ (y ∗ sqrt D + y ∗ sqrt D))
using ‹y > 0› ‹D > 1› pos less
by (intro divide-left-mono mult-left-mono add-right-mono mult-pos-pos) auto

also have . . . = 1 / (2 ∗ y2 ∗ sqrt D)
by (simp add: power2-eq-square)

also have . . . < 1 / (real (2 ∗ y2) ∗ 1) using ‹y > 0› ‹D > 1›
by (intro divide-strict-left-mono mult-strict-left-mono mult-pos-pos) auto

finally show |cfrac-lim c − int x / int y| < 1 / (2 ∗ int y ^ 2)
unfolding c-def using irrat-sqrt-nonsquare[of D] ‹¬is-square D› by simp

qed (insert assms irrat-sqrt-nonsquare[of D], auto simp: c-def)
thus ?thesis by auto

qed

Let l be the length of the period in the continued fraction expansion of
√

D
and let hi and ki be the numerator and denominator of the i-th convergent.
Then the non-trivial solutions of Pell’s equation are exactly the pairs of the
form (hlm−1, klm−1) for any m such that lm is even.
lemma nontriv-solution-iff-conv-num-denom:

nontriv-solution (x, y) ←→
(∃m>0. int x = h (l ∗ m − 1) ∧ int y = k (l ∗ m − 1) ∧ even (l ∗ m))

147

proof safe
fix m assume xy: x = h (l ∗ m − 1) y = k (l ∗ m − 1)

and lm: even (l ∗ m) and m: m > 0
have l: l > 0 using period-nonempty[OF nonsquare] by (auto simp: l-def)
from lm have l ∗ m 6= 1 by (intro notI) auto
with l m have lm ′: l ∗ m > 1 by (cases l ∗ m) auto

have (h (l ∗ m − 1))2 − D ∗ (k (l ∗ m − 1))2 =
(− 1) ^ Suc (l ∗ m − 1) ∗ int (Q (l ∗ m − 1))

using lm ′ by (intro conv-num-denom-pell) auto
also have (− 1) ^ Suc (l ∗ m − 1) = (1 :: int)

using lm l m by (subst neg-one-even-power) auto
also have Q (l ∗ m − 1) = Q ((l ∗ m − 1) mod l)

unfolding Q-def l-def o-def by (subst sqrt-remainder-surd-periodic[OF non-
square]) simp

also {
have l ∗ m − 1 = (m − 1) ∗ l + (l − 1)

using m l lm ′ by (cases m) (auto simp: mult-ac)
also have . . . mod l = (l − 1) mod l

by simp
also have . . . = l − 1

using l by (intro mod-less) auto
also have Q . . . = 1

using sqrt-remainder-surd-last[OF nonsquare] by (simp add: Q-def l-def)
finally have Q ((l ∗ m − 1) mod l) = 1 .

}
finally have h (l ∗ m − 1) ^ 2 = D ∗ k (l ∗ m − 1) ^ 2 + 1

unfolding of-nat-Suc by (simp add: algebra-simps)
hence h (l ∗ m − 1) ^ 2 = D ∗ k (l ∗ m − 1) ^ 2 + 1

by (simp only: of-nat-eq-iff)
moreover have k (l ∗ m − 1) > 0

unfolding k-def by (intro conv-denom-pos)
ultimately have nontriv-solution (int x, int y)

using xy by (simp add: nontriv-solution-def)
thus nontriv-solution (x, y)

by simp
next

assume nontriv-solution (x, y)
hence asm: x ^ 2 = Suc (D ∗ y ^ 2) y > 0

by (auto simp: nontriv-solution-def abs-square-eq-1 intro!: Nat.gr0I)
from asm have asm ′: int x ^ 2 = int D ∗ int y ^ 2 + 1
by (metis add.commute of-nat-Suc of-nat-mult of-nat-power-eq-of-nat-cancel-iff)

have l: l > 0 using period-nonempty[OF nonsquare] by (auto simp: l-def)
from pell-solution-is-conv[OF asm] obtain m where

xy: h m = x k m = y by (auto simp: c-def h-def k-def)

have m: m > 0
using asm ′ conv-num-denom-pell(1) xy by (intro Nat.gr0I) auto

have 1 = h m ^ 2 − D ∗ k m ^ 2

148

using asm ′ xy by simp
also have . . . = (− 1) ^ Suc m ∗ int (Q m)

using conv-num-denom-pell(2)[OF m] .
finally have ∗: (− 1) ^ Suc m ∗ int (Q m) = 1 ..
from ∗ have m ′: odd m ∧ Q m = 1

by (cases even m) auto

define n where n = Suc m div l
have l dvd Suc m
proof (rule ccontr)

assume ∗: ¬(l dvd Suc m)
have Q m = Q (m mod l)

unfolding Q-def l-def o-def by (subst sqrt-remainder-surd-periodic[OF non-
square]) simp

also {
have m mod l < l using ‹l > 0› by simp
moreover have Suc (m mod l) 6= l using ∗ l ‹m > 0›

using mod-Suc[of m l] by auto
ultimately have m mod l < l − 1 by simp
hence Q (m mod l) > 1 unfolding Q-def o-def l-def

by (rule snd-sqrt-remainder-surd-gt-1[OF nonsquare])
}
finally show False using m ′ by simp

qed
hence m-eq: Suc m = n ∗ l m = n ∗ l − 1

by (simp-all add: n-def)
hence n > 0 by (auto intro!: Nat.gr0I)
thus ∃n>0. int x = h (l ∗ n − 1) ∧ int y = k (l ∗ n − 1) ∧ even (l ∗ n)

using xy m-eq m ′ by (intro exI [of - n]) (auto simp: mult-ac)
qed

Consequently, the fundamental solution is (hn, kn) where n = l − 1 if l is
even and n = 2l − 1 otherwise:
lemma fund-sol-conv-num-denom:

defines n ≡ if even l then l − 1 else 2 ∗ l − 1
shows fund-sol = (nat (h n), nat (k n))

proof (rule fund-sol-eq-sndI)
have [simp]: h n ≥ 0 k n ≥ 0 for n

by (auto simp: h-def k-def c-def intro!: conv-num-nonneg)
show nontriv-solution (nat (h n), nat (k n))
by (subst nontriv-solution-iff-conv-num-denom, rule exI [of - if even l then 1 else

2])
(simp-all add: n-def mult-ac)

next
fix x y :: nat assume nontriv-solution (x, y)
then obtain m where m: m > 0 x = h (l ∗ m − 1) y = k (l ∗ m − 1) even (l
∗ m)

by (subst (asm) nontriv-solution-iff-conv-num-denom) auto
have l: l > 0 using period-nonempty[OF nonsquare] by (auto simp: l-def)

149

from m l have Suc n ≤ l ∗ m by (auto simp: n-def)
hence n ≤ l ∗ m − 1 by simp
hence k n ≤ k (l ∗ m − 1)

unfolding k-def c-def using irrat-sqrt-nonsquare[OF nonsquare]
by (intro conv-denom-leI) auto

with m show nat (k n) ≤ y by simp
qed

end

The following algorithm computes the fundamental solution (or the dummy
result (0, 0) if D is a square) fairly quickly by computing the continued
fraction expansion of

√
D and then computing the fundamental solution as

the appropriate convergent.
lemma find-fund-sol-code [code]:

find-fund-sol D =
(let info = sqrt-cfrac-info-array D;

l = fst info
in if l = 0 then (0, 0) else

let
c = cfrac-sqrt-nth info;
n = if even l then l − 1 else 2 ∗ l − 1

in
(nat (conv-num-fun c n), nat (conv-denom-fun c n)))

proof −
have ∗: is-cfrac (cfrac-sqrt-nth (sqrt-cfrac-info-array D)) if ¬is-square D

using that cfrac-sqrt-nth[of D] unfolding is-cfrac-def
by (metis cfrac-nth-nonzero neq0-conv of-nat-0 of-nat-0-less-iff)

have ∗∗: cfrac (λx. int (cfrac-sqrt-nth (sqrt-cfrac-info-array D) x)) = cfrac-of-real
(sqrt D)

if ¬is-square D
using that cfrac-sqrt-nth[of D] ∗ by (intro cfrac-eqI) auto

show ?thesis using ∗ ∗∗
by (auto simp: square-test-correct find-fund-sol-correct conv-num-fun-eq conv-denom-fun-eq

Let-def cfrac-sqrt-nth fund-sol-conv-num-denom conv-num-nonneg)
qed

lemma find-nth-solution-square [simp]: is-square D =⇒ find-nth-solution D n =
(0, 0)

by (simp add: find-nth-solution-def)

lemma fst-find-fund-sol-eq-0-iff [simp]: fst (find-fund-sol D) = 0 ←→ is-square D
proof (cases is-square D)

case False
then interpret pell D by unfold-locales
from False have find-fund-sol D = fund-sol by (simp add: find-fund-sol-correct)
moreover from fund-sol-is-nontriv-solution have fst fund-sol > 0

by (auto simp: nontriv-solution-def intro!: Nat.gr0I)
ultimately show ?thesis using False

150

by (simp add: find-fund-sol-def square-test-correct split: if-splits)
qed (auto simp: find-fund-sol-def square-test-correct)

Arbitrary solutions can now be computed as powers of the fundamental
solution.
lemma find-nth-solution-code [code]:

find-nth-solution D n =
(let xy = find-fund-sol D
in if fst xy = 0 then (0, 0) else efficient-pell-power D xy n)

proof (cases is-square D)
case False
then interpret pell D by unfold-locales
from fund-sol-is-nontriv-solution have fst fund-sol > 0

by (auto simp: nontriv-solution-def intro!: Nat.gr0I)
thus ?thesis using False

by (simp add: find-nth-solution-correct Let-def nth-solution-def pell-power-def
pell-mul-commutes[of - fund-sol] find-fund-sol-correct)

qed auto

lemma nth-solution-code [code]:
pell.nth-solution D n =

(let info = sqrt-cfrac-info-array D;
l = fst info

in if l = 0 then
Code.abort (STR ′′nth-solution is undefined for perfect square parameter . ′′)

(λ-. pell.nth-solution D n)
else

let
c = cfrac-sqrt-nth info;
m = if even l then l − 1 else 2 ∗ l − 1;
fund-sol = (nat (conv-num-fun c m), nat (conv-denom-fun c m))

in
efficient-pell-power D fund-sol n)

proof (cases is-square D)
case False
then interpret pell by unfold-locales
have ∗: is-cfrac (cfrac-sqrt-nth (sqrt-cfrac-info-array D))

using False cfrac-sqrt-nth[of D] unfolding is-cfrac-def
by (metis cfrac-nth-nonzero neq0-conv of-nat-0 of-nat-0-less-iff)

have ∗∗: cfrac (λx. int (cfrac-sqrt-nth (sqrt-cfrac-info-array D) x)) = cfrac-of-real
(sqrt D)

using False cfrac-sqrt-nth[of D] ∗ by (intro cfrac-eqI) auto

from False ∗ ∗∗ show ?thesis
by (auto simp: Let-def cfrac-sqrt-nth fund-sol-conv-num-denom nth-solution-def

pell-power-def pell-mul-commutes[of - (-, -)]
conv-num-fun-eq conv-denom-fun-eq conv-num-nonneg)

qed auto

151

lemma fund-sol-code [code]:
pell.fund-sol D = (let info = sqrt-cfrac-info-array D;

l = fst info
in if l = 0 then

Code.abort (STR ′′fund-sol is undefined for perfect square parameter . ′′)
(λ-. pell.fund-sol D)

else
let

c = cfrac-sqrt-nth info;
n = if even l then l − 1 else 2 ∗ l − 1

in
(nat (conv-num-fun c n), nat (conv-denom-fun c n)))

proof (cases is-square D)
case False
then interpret pell by unfold-locales
have ∗: is-cfrac (cfrac-sqrt-nth (sqrt-cfrac-info-array D))

using False cfrac-sqrt-nth[of D] unfolding is-cfrac-def
by (metis cfrac-nth-nonzero neq0-conv of-nat-0 of-nat-0-less-iff)

have ∗∗: cfrac (λx. int (cfrac-sqrt-nth (sqrt-cfrac-info-array D) x)) = cfrac-of-real
(sqrt D)

using False cfrac-sqrt-nth[of D] ∗ by (intro cfrac-eqI) auto

from False ∗ ∗∗ show ?thesis
by (auto simp: Let-def cfrac-sqrt-nth fund-sol-conv-num-denom nth-solution-def

pell-power-def pell-mul-commutes[of - (-, -)]
conv-num-fun-eq conv-denom-fun-eq conv-num-nonneg)

qed auto

end

7 Tests for Continued Fractions of Square Roots
and Pell’s Equation

theory Pell-Continued-Fraction-Tests
imports

Pell.Efficient-Discrete-Sqrt
HOL−Library.Code-Lazy
HOL−Library.Code-Target-Numeral
Pell-Continued-Fraction
Pell-Lifting

begin

code-lazy-type stream

lemma lnth-code [code]:
lnth xs 0 = (if lnull xs then undefined (0 :: nat) else lhd xs)
lnth xs (Suc n) = (if lnull xs then undefined (Suc n) else lnth (ltl xs) n)

152

by (auto simp: lnth.simps split: l list.splits)

value let c = sqrt-cfrac 1339 in map (cfrac-nth c) [0..<30]

fun arg-max-list where
arg-max-list - [] = undefined
| arg-max-list f (x # xs) =

foldl (λ(x, y) x ′. let y ′ = f x ′ in if y ′ > y then (x ′, y ′) else (x, y)) (x, f x) xs

value [code] sqrt-cfrac-info 17
value [code] sqrt-cfrac-info 1339
value [code] sqrt-cfrac-info 121
value [code] sqrt-nat-period-length 410286423278424

For which number D < 100000 does
√

D have the longest period?
value [code] arg-max-list sqrt-nat-period-length [0..<100000]

7.1 Fundamental solutions of Pell’s equation
value [code] pell.fund-sol 12
value [code] pell.fund-sol 13
value [code] pell.fund-sol 61
value [code] pell.fund-sol 661
value [code] pell.fund-sol 6661
value [code] pell.fund-sol 4729494

Project Euler problem #66: For which D < 1000 does Pell’s equation have
the largest fundamental solution?
value [code] arg-max-list (fst ◦ find-fund-sol) [0..<1001]

The same for D < 100000:
value [code] arg-max-list (fst ◦ find-fund-sol) [0..<100000]

The solution to the next example, which is at the core of Archimedes’ cattle
problem, is so big that termifying the result takes extremely long. Therefore,
we simply compute the number of decimal digits in the result instead.
fun log10-aux :: nat ⇒ nat ⇒ nat where

log10-aux acc n =
(if n ≥ 10000000000 then log10-aux (acc + 10) (n div 10000000000)
else if n = 0 then acc else log10-aux (Suc acc) (n div 10))

definition log10 where log10 = log10-aux 0

value [code] map-prod log10 log10 (pell.fund-sol 410286423278424)

Factoring out the square factor 93142 does yield a significant speed-up in
this case:

153

value [code] map-prod log10 log10 (find-fund-sol-fast 410286423278424)

7.2 Tests for other operations
value [code] pell.nth-solution 13 100
value [code] pell.nth-solution 4729494 3

value [code] stake 10 (pell-solutions 13)
value [code] stake 10 (pell-solutions 61)

value [code] pell.nth-solution 23 8

end

8 Computing continued fraction expansions through
interval arithmetic

theory Continued-Fraction-Approximation
imports

Complex-Main
HOL−Decision-Procs.Approximation
Coinductive.Coinductive-List
HOL−Library.Code-Lazy
HOL−Library.Code-Target-Numeral
Continued-Fractions

keywords approximate-cfrac :: diag
begin

The approximation package allows us to compute an enclosing interval for
a given real constant. From this, we are able to compute an initial fragment
of the continued fraction expansion of the number.
The algorithm essentially works by computing the continued fraction expan-
sion of the lower and upper bound simultaneously and stopping when the
results start to diverge.
This algorithm terminates because the lower and upper bounds, being ra-
tional numbers, have a finite continued fraction expansion.
definition float-to-rat :: float ⇒ int × int where

float-to-rat f = (if exponent f ≥ 0 then
(mantissa f ∗ 2 ^ nat (exponent f), 1) else (mantissa f , 2 ^ nat (−exponent

f)))

lemma float-to-rat: fst (float-to-rat f) / snd (float-to-rat f) = real-of-float f
by (auto simp: float-to-rat-def mantissa-exponent powr-int)

lemma snd-float-to-rat-pos [simp]: snd (float-to-rat f) > 0
by (simp add: float-to-rat-def)

154

function cfrac-from-approx :: int × int ⇒ int × int ⇒ int list where
cfrac-from-approx (nl, dl) (nu, du) =

(if nl = 0 ∨ nu = 0 ∨ dl = 0 ∨ du = 0 then []
else let l = nl div dl; u = nu div du

in if l 6= u then []
else l # (let m = nl mod dl in if m = 0 then [] else

cfrac-from-approx (du, nu mod du) (dl, m)))
by auto

termination proof (relation measure (λ((nl, dl), (nu, du)). nat (abs dl + abs
du)), goal-cases)

case (2 nl dl nu du)
hence |nl mod dl| + |nu mod du| < |dl| + |du|

by (intro add-strict-mono) (auto simp: abs-mod-less)
thus ?case using 2 by simp

qed auto

lemmas [simp del] = cfrac-from-approx.simps

lemma cfrac-from-approx-correct:
assumes x ∈ {fst l / snd l..fst u / snd u} and snd l > 0 and snd u > 0
assumes i < length (cfrac-from-approx l u)
shows cfrac-nth (cfrac-of-real x) i = cfrac-from-approx l u ! i
using assms

proof (induction l u arbitrary: i x rule: cfrac-from-approx.induct)
case (1 nl dl nu du i x)
from 1.prems have ∗: nl div dl = nu div du nl 6= 0 nu 6= 0 dl > 0 du > 0

by (auto simp: cfrac-from-approx.simps Let-def split: if-splits)
have bnl / dlc ≤ bxc bxc ≤ bnu / duc

using 1.prems(1) by (intro floor-mono; simp)+
hence nl div dl ≤ bxc bxc ≤ nu div du

by (simp-all add: floor-divide-of-int-eq)
with ∗ have bxc = nu div du

by linarith

show ?case
proof (cases i)

case 0
with 0 and ‹bxc = -› show ?thesis using 1.prems

by (auto simp: Let-def cfrac-from-approx.simps)
next

case [simp]: (Suc i ′)
from 1.prems ∗ have nl mod dl 6= 0

by (subst (asm) cfrac-from-approx.simps) (auto split: if-splits)
have frac-eq: frac x = x − nu div du

using ‹bxc = -› by (simp add: frac-def)

have frac x ≥ nl / dl − nl div dl
using ∗ 1.prems by (simp add: frac-eq)

155

also have nl / dl − nl div dl = (nl − dl ∗ (nl div dl)) / dl
using ∗ by (simp add: field-simps)

also have nl − dl ∗ (nl div dl) = nl mod dl
by (subst minus-div-mult-eq-mod [symmetric]) auto

finally have frac x ≥ (nl mod dl) / dl .

have nl mod dl ≥ 0
using ∗ by (intro pos-mod-sign) auto

with ‹nl mod dl 6= 0› have nl mod dl > 0
by linarith

hence 0 < (nl mod dl) / dl
using ∗ by (intro divide-pos-pos) auto

also have . . . ≤ frac x
by fact

finally have frac x > 0 .

have frac x ≤ nu / du − nu div du
using ∗ 1.prems by (simp add: frac-eq)

also have . . . = (nu − du ∗ (nu div du)) / du
using ∗ by (simp add: field-simps)

also have nu − du ∗ (nu div du) = nu mod du
by (subst minus-div-mult-eq-mod [symmetric]) auto

finally have frac x ≤ real-of-int (nu mod du) / real-of-int du .

have 0 < frac x
by fact

also have . . . ≤ (nu mod du) / du
by fact

finally have nu mod du > 0
using ∗ by (auto simp: field-simps)

have cfrac-nth (cfrac-of-real x) i = cfrac-nth (cfrac-tl (cfrac-of-real x)) i ′

by simp
also have cfrac-tl (cfrac-of-real x) = cfrac-of-real (1 / frac x)

using ‹frac x > 0› by (intro cfrac-tl-of-real) auto
also have cfrac-nth (cfrac-of-real (1 / frac x)) i ′ =

cfrac-from-approx (du, nu mod du) (dl, nl mod dl) ! i ′

proof (rule 1.IH [OF - refl refl - refl])
show ¬ (nl = 0 ∨ nu = 0 ∨ dl = 0 ∨ du = 0) ¬ nl div dl 6= nu div du
using 1.prems by (auto split: if-splits simp: Let-def cfrac-from-approx.simps)

next
show i ′ < length (cfrac-from-approx (du, nu mod du) (dl, nl mod dl)) using

1.prems
by (subst (asm) cfrac-from-approx.simps) (auto split: if-splits simp: Let-def)

next
have 1 / frac x ≤ dl / (nl mod dl)

using ‹frac x > 0› and ‹nl mod dl > 0› and ‹frac x ≥ (nl mod dl) / dl›
and ∗

by (auto simp: field-simps)

156

moreover have 1 / frac x ≥ du / (nu mod du)
using ‹frac x > 0› and ‹nu mod du > 0› and ‹frac x ≤ (nu mod du) / du›

and ∗
by (auto simp: field-simps)

ultimately show
1 / frac x ∈ {real-of-int (fst (du, nu mod du)) / real-of-int (snd (du, nu

mod du))..
real-of-int (fst (dl, nl mod dl)) / real-of-int (snd (dl, nl mod

dl))}
by simp

show snd (du, nu mod du) > 0 snd (dl, nl mod dl) > 0 and nl mod dl 6= 0
using ‹nu mod du > 0› and ‹nl mod dl > 0› by simp-all

qed
also have cfrac-from-approx (du, nu mod du) (dl, nl mod dl) ! i ′ =

cfrac-from-approx (nl, dl) (nu, du) ! i
using 1.prems ∗ ‹nl mod dl 6= 0› by (subst (2) cfrac-from-approx.simps) auto

finally show ?thesis .
qed

qed

definition cfrac-from-approx ′ :: float ⇒ float ⇒ int list where
cfrac-from-approx ′ l u = cfrac-from-approx (float-to-rat l) (float-to-rat u)

lemma cfrac-from-approx ′-correct:
assumes x ∈ {real-of-float l..real-of-float u}
assumes i < length (cfrac-from-approx ′ l u)
shows cfrac-nth (cfrac-of-real x) i = cfrac-from-approx ′ l u ! i
using assms unfolding cfrac-from-approx ′-def
by (intro cfrac-from-approx-correct) (auto simp: float-to-rat cfrac-from-approx ′-def)

definition approx-cfrac :: nat ⇒ floatarith ⇒ int list where
approx-cfrac prec e =

(case approx ′ prec e [] of
None ⇒ []
| Some ivl ⇒ cfrac-from-approx ′ (lower ivl) (upper ivl))

ML-file ‹approximation-cfrac.ML›

Now let us do some experiments:
value let prec = 34; c = cfrac-from-approx ′ (lb-pi prec) (ub-pi prec) in c
value let prec = 34; c = cfrac-from-approx ′ (lb-pi prec) (ub-pi prec)

in map (λn. (conv-num-fun ((!) c) n, conv-denom-fun ((!) c) n)) [0..<length
c]

approximate-cfrac prec: 200 pi
approximate-cfrac ln 2
approximate-cfrac exp 1
approximate-cfrac sqrt 129
approximate-cfrac (sqrt 13 + 3) / 4

157

approximate-cfrac arctan 1

approximate-cfrac 123 / 97
value cfrac-list-of-rat (123, 97)

end

References

[1] A. Khinchin and H. Eagle. Continued Fractions. Dover books on math-
ematics. Dover Publications, 1997.

[2] Proof Wiki.

158

	Continued Fractions
	Auxiliary results
	Bounds on alternating decreasing sums
	Non-canonical continued fractions
	Approximation properties
	Efficient code for convergents
	Computing the continued fraction expansion of a rational number

	Quadratic Irrationals
	Basic results on rationality of square roots
	Definition of quadratic irrationals
	Real solutions of quadratic equations
	Periodic continued fractions and quadratic irrationals

	The continued fraction expansion of e
	Continued fraction expansions for square roots of naturals
	Lifting solutions of Pell's Equation
	Auxiliary material
	The lifting mechanism
	Accelerated computation of the fundamental solution for non-squarefree inputs

	The Connection between the continued fraction expansion of square roots and Pell's equation
	Tests for Continued Fractions of Square Roots and Pell's Equation
	Fundamental solutions of Pell's equation
	Tests for other operations

	Computing continued fraction expansions through interval arithmetic

