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Abstract

This article provides a formalisation of continued fractions of real
numbers and their basic properties. It also contains a proof of the clas-
sic result that the irrational numbers with periodic continued fraction
expansions are precisely the quadratic irrationals, i.e. real numbers
that fulfil a non-trivial quadratic equation axz? + bz + ¢ = 0 with inte-
ger coeflicients.

Particular attention is given to the continued fraction expansion of
V/D for a non-square natural number D. Basic results about the length
and structure of its period are provided, along with an executable
algorithm to compute the period (and from it, the entire expansion).

This is then also used to provide a fairly efficient, executable,
and fully formalised algorithm to compute solutions to Pell’s equa-
tion &2 — Dy? = 1. The performance is sufficiently good to find the
solution to Archimedes’s cattle problem in less than a second on a
typical computer. This involves the value D = 410286423278424, for
which the solution has over 200000 decimals.

Lastly, a derivation of the continued fraction expansions of Euler’s
number e and an executable function to compute continued fraction
expansions using interval arithmetic is also provided.
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1 Continued Fractions

theory Continued-Fractions
imports
Complez-Main
Coinductive. Lazy-L List
Coinductive. Coinductive-Nat
HOL— Number-Theory. Fib
HOL—Library. BNF-Corec
Coinductive. Coinductive-Stream
begin

1.1 Auxiliary results

coinductive linfinite :: 'a llist = bool where
linfinite xs = linfinite (LCons x xs)

lemma llength-llist-of-stream [simp]: llength (llist-of-stream zs) = oo
by (simp add: not-lfinite-llength)

lemma linfinite-conv-llength: linfinite xs «—— llength xs = oo
proof
assume linfinite xs
thus llength xs = oo
proof (coinduction arbitrary: xs rule: enat-coinduct2)
fix zs :: ‘a llist
assume llength s # 0 linfinite xs
thus (Fas’::’a list. epred (llength xs) = llength zs’ A epred oo = oo A linfinite
xs’) Vv
epred (llength xs) = epred oo
by (intro disjl1 exI[of - ltl zs]) (auto simp: linfinite.simps|of ws])
next
fix xs :: ‘a llist assume linfinite zsthus (llength s = 0) «—— (00 = (0::enat))
by (subst (asm) linfinite.simps) auto
qed
next
assume llength s = oo
thus linfinite xs
proof (coinduction arbitrary: xs)
case linfinite
thus Jzsa z.
xs = LCons x xsa N
((Fzs. zsa = xs A llength zs = o0o) V
linfinite xsa)
by (cases xs) (auto simp: eSuc-eq-infinity-iff)
qed
qed

definition Inth-default :: 'a = 'a llist = nat = 'a where
Inth-default dfit xs n = (if n < llength zs then Inth xzs n else dfit)



lemma Inth-default-code [code]:
Inth-default dfit xs n =
(if Inull xs then dfit else if n = 0 then Ihd xs else Inth-default dfit (Itl xs) (n —
)
proof (induction n arbitrary: xs)
case ()
thus ?case
by (cases xs) (auto simp: Inth-default-def simp flip: zero-enat-def)
next
case (Suc n)
show ?Zcase
proof (cases xs)
case LNil
thus ?thesis
by (auto simp: Inth-default-def)
next
case (LCons z xs’)
thus ?thesis
by (auto simp: Inth-default-def Suc-ile-eq)
qged
qged

lemma enat-le-iff:
enatn < m<— m=o0oV (Im’". m=enat m' A n < m’)
by (cases m) auto

lemma enat-less-iff:
enatn < m<—— m=o00V (Im’. m = enat m' A n < m’)
by (cases m) auto

lemma real-of-int-divide-in-Ints-iff:
real-of-int a / real-of-int b € Z «—— b dvd a V b = 0
proof safe
assume real-of-int a / real-of-int b € Z b # 0
then obtain n where real-of-int a / real-of-int b = real-of-int n
by (auto simp: Ints-def)
hence real-of-int b * real-of-int n = real-of-int a
using <b # 0» by (auto simp: field-simps)
also have real-of-int b *x real-of-int n = real-of-int (b * n)
by simp
finally have b x n = a
by linarith
thus b dvd a
by auto
qed auto

lemma frac-add-of-nat: frac (of-nat y + z) = frac
unfolding frac-def by simp



lemma frac-add-of-int: frac (of-int y + z) = frac x
unfolding frac-def by simp

lemma frac-fraction: frac (real-of-int a / real-of-int b) = (a mod b) / b
proof —
have frac (a / b) = frac ((a mod b + b * (a div b)) / b)
by (subst mod-mult-div-eq) auto
also have (a mod b + b * (a div b)) / b = of-int (a div b) + a mod b / b
unfolding of-int-add by (subst add-divide-distrib) auto

also have frac ... = frac (a mod b / b)
by (rule frac-add-of-int)
also have ... = amodb /b

by (simp add: floor-divide-of-int-eq frac-def)
finally show ?thesis .
qed

lemma Suc-fib-ge: Suc (fib n) > n
proof (induction n rule: fib.induct)
case (3 n)
show Zcase
proof (cases n < 2)
case True
thus %thesis by (cases n) auto
next
case False
hence Suc (Suc (Suc n)) < Suc n + n by simp
also have ... < Suc (fib (Suc n)) + Suc (fib n)
by (intro add-mono 3)

also have ... = Suc (Suc (fib (Suc (Suc n))))
by simp
finally show ?thesis by (simp only: Suc-le-eq)
qed
qed auto

lemma fib-ge: fibn > n — 1
using Suc-fib-ge[of n] by simp

lemma frac-diff-of-nat-right [simpl: frac (z — of-nat y) = frac x
using floor-diff-of-int[of x int y] by (simp add: frac-def)

lemma funpow-cycle:

assumes m > 0

assumes (f ~ " m) z ==z

shows (f k) z=(f " (k mod m)) z
proof (induction k rule: less-induct)

case (less k)

show ?case

proof (cases k < m)



case True
thus ?thesis using «m > 0> by simp
next
case Fulse
hence k = (k — m) + m by simp
alsohave (f 7 ...)z= (" (k—m)) (f 7 m) )
by (simp add: funpow-add)
also have (f 7~ m) z = z by fact
also have (f 7~ (k — m)) z = (f 7~ (k mod m)) z
using assms False by (subst less.IH) (auto simp: mod-geq)
finally show %thesis .
qed
qed

lemma of-nat-ge-1-iff: of-nat n > (1 :: 'a :: linordered-semidom) «—— n > 0
using of-nat-le-iff [of 1 n] unfolding of-nat-1 by auto

lemma not-frac-less-0: —frac © < 0
by (simp add: frac-def not-less)

lemma frac-le-1: frac z < 1
unfolding frac-def by linarith

lemma divide-in-Rats-iff1:

(zireal) eQ=z#0=2/ycQ— yeQ
proof safe

assume ¢: t € Qzr £ 0z / yeQ

from x(1,3) have z / (z / y) € Q

by (rule Rats-divide)

also from * have z / (z / y) = y by simp

finally show y € Q .
qed (auto intro: Rats-divide)

lemma divide-in-Rats-iff2:

(yurea) eQ = y#0=2/ycQ— z€Q
proof safe

assume x: y € Qy £ 0z /yeqQ

from %(3,7) have z / y x y € Q

by (rule Rats-mult)

also from * have z / y x y = = by simp

finally show z € Q .
qged (auto intro: Rats-divide)

lemma add-in-Rats-iffl: 1 € Q =z + y € Q «—— y € Q
using Rats-diff[of = + y z] by auto

lemma add-in-Rats-iff2: ye Q =z 4+ y€ Q+«— 2z € Q
using Rats-diff[of x + y y] by auto



lemma diff-in-Rats-iff: 1 €c Q =2 -y € Q «— y € Q
using Rats-diff[of = x — y] by auto

lemma diff-in-Rats-iff2: ye Q =z —y€ Q«+«—— 2 € Q
using Rats-add]of x — y y] by auto

lemma frac-in-Rats-iff [simp]: fracz € Q «—— z € Q
by (simp add: frac-def diff-in-Rats-iff?2)

lemma filterlim-sequentially-shift:
filterlim (An. f (n + m)) F sequentially <« filterlim f F sequentially
proof (induction m)
case (Suc m)
have filterlim (An. f (n + Suc m)) F at-top «——
filterlim (An. f (Suc n + m)) F at-top by simp
also have ... «—— filterlim (An. f (n + m)) F at-top
by (rule filterlim-sequentially-Suc)
also have ... «—— filterlim f F at-top
by (rule Suc.IH)
finally show ?case .
qed simp-all

1.2 Bounds on alternating decreasing sums

lemma alternating-decreasing-sum-bounds:
fixes f :: nat = 'a :: {linordered-ring, ring-1}
assumes m < n Ak. k€ {m.n} = fk >0
Nk ke {m.<n} = f (Suck) < fk
defines S = (Am. O k=m..n. (—=1) "k« fk))
shows if even m then S m € {0..f m} else S m € {—f m..0}
using assms(1)
proof (induction rule: inc-induct)
case (step m’)
have [simp]: —a < b+—a+ b>(0: 'a)for ad
by (metis le-add-same-cancell minus-add-cancel)
have [simp]: S m' = (=1) “m'* fm'+ S (Suc m’)
using step.hyps unfolding S-def
by (subst sum.atLeast-Suc-atMost) simp-all
from step.hyps have nonneg: f m’ > 0
by (intro assms) auto
from step.hyps have mono: f (Suc m’) < fm’
by (intro assms) auto
show Zcase
proof (cases even m’)
case True
hence 0 < f (Suc m’) + § (Suc m’)
using step.IH by simp
also note mono
finally show ?thesis using True step.IH by auto



next
case Fulse
with step.IH have S (Suc m’) < f (Suc m’)
by simp
also note mono
finally show ?thesis using step.IH False by auto
qed
qed (insert assms, auto)

lemma alternating-decreasing-sum-bounds':
fixes f :: nat = 'a :: {linordered-ring, ring-1}
assumes m < n Ak. k€ {m.n—1} = fk >0
Nk ke {m.<n—1} = f (Suc k) < fk
defines S = (Am. (O k=m..<n. (=1) "k = fk))
shows if even m then S m € {0..f m} else S m € {—f m..0}
proof (cases n)
case (
thus ?thesis using assms by auto
next
case (Suc n')
hence if even m then (3 k=m..n—1. (—1) "k = fk) € {0..f m}
else (S k=m.n—1.(=1) "k * fk) € {—fm..0}
using assms by (intro alternating-decreasing-sum-bounds) auto
also have (> k=m..n—1. (1) "kxfk)=Sm
unfolding S-def by (intro sum.cong) (auto simp: Suc)
finally show ?thesis .
qged

lemma alternating-decreasing-sum-upper-bound:
fixes f :: nat = 'a :: {linordered-ring, ring-1}
assumes m < n Ak. k€ {m.n} = fk >0
Nk k€ {m.<n} = f (Suck) < fk
shows (O k=m..n. (—1) "kx*xfk)<fm
using alternating-decreasing-sum-bounds[of m n f, OF assms] assms(1)
by (auto split: if-splits intro: order.trans|OF - assms(2)])

lemma alternating-decreasing-sum-upper-bound’:
fixes [ :: nat = ’a :: {linordered-ring, ring-1}
assumes m < n Ak. k€ {m.n—1} = fk> 0
Nk ke {m.<n—1} = f (Suc k) < fk
shows (O k=m..<n.(=1) "kx*fk)<fm
using alternating-decreasing-sum-bounds’[of m n f, OF assms| assms(1)
by (auto split: if-splits intro: order.trans[OF - assms(2)])

lemma abs-alternating-decreasing-sum-upper-bound:
fixes f :: nat = 'a :: {linordered-ring, ring-1}
assumes m < n Ak. k€ {m.n} = fk >0
Nk k€ {m.<n} = f (Suck) < fk
shows |- k=m.n. (1) k= fk)] < fm (is abs 25 < -)



using alternating-decreasing-sum-bounds[of m n f, OF assms|
by (auto split: if-splits simp: minus-le-iff)

lemma abs-alternating-decreasing-sum-upper-bound’:
fixes f :: nat = 'a :: {linordered-ring, ring-1}
assumes m < n Ak. k€ {m.n—1} = fk >0
Nk ke {m.<n—1} = f (Suc k) < fk
shows |Y_k=m..<n. (=1) "kxfk)| <fm
using alternating-decreasing-sum-bounds’[of m n f, OF assms]
by (auto split: if-splits simp: minus-le-iff)

lemma abs-alternating-decreasing-sum-lower-bound:
fixes f :: nat = 'a :: {linordered-ring, ring-1}
assumes m < n Ak. k€ {m.n} = fk >0
Nk k€ {m.<n} = f (Suck) < fk
shows |- k=m.n. (=1) "k« fk)| > fm — f (Sucm)
proof —
have (> k=m..n. (—1) "k fk) = (O k€insert m {m<..n}. (=1) "k * fk)
using assms by (intro sum.cong) auto

also have ... = (—=1) "mx* fm+ O_ke{m<.n}. (=1) " k= fk)
by auto
also have (> ke{m<..n}. (=1) "k x fk) = O_ke{m..<n}. (—1) " Suck x f
(Suc k))
by (intro sum.reindez-bij-witness[of - Suc \i. i — 1]) auto
also have (—I) " m x fm + ... = (=1)"m * fm — (O ke{m..<n}. (—1) "k %
[ (Suc k)

by (simp add: sum-negf)
also have |...| > [(=1)"m x fm| — | ke{m..<n}. (—1) "k = f (Suc k))]
by (rule abs-triangle-ineq?2)
also have |(=1)"m x fm| = fm
using assms by (cases even m) auto
finally have fm — [>_ k= m..<n. (— 1) "k * f (Suc k)]
<PDk=m.n (—1) Tkxfkl.
moreover have fm — | ke{m..<n}. (1) "k = f (Suc k))| > fm — f (Suc
m)
using assms by (intro diff-mono abs-alternating-decreasing-sum-upper-bound’)
auto
ultimately show ?thesis by (rule order.trans[rotated))
qed

lemma abs-alternating-decreasing-sum-lower-bound’:

fixes f :: nat = 'a :: {linordered-ring, ring-1}

assumes m+1 < n Ak. k€ {m.n} = fk>0

Nk ke {m.<n} = f (Suck) < fk

shows | k=m..<n. (=1) "k fk)| > fm — f (Suc m)
proof (cases n)

case (

thus ?thesis using assms by auto
next



case (Suc n)
hence |} k=m..n—1. (—=1) "k x fk)| > fm — f (Suc m)
using assms by (intro abs-alternating-decreasing-sum-lower-bound) auto
also have (> k=m..n—1. (1) "k« fk) = (O k=m..<n. (1) " kx* fk)
by (intro sum.cong) (auto simp: Suc)
finally show ?thesis .
qed

lemma alternating-decreasing-suminf-bounds:
assumes Ak. fk > (0:: real) Nk. f (Suck) < fk
f——0
shows (>"k. (=1) "kxfk)e{f0— f1.f0}
proof —
have summable (A\k. (—1) "k = f k)
by (intro summable-Leibniz’ assms)
hence lim: (An. Y k<n. (=1) "kxfk) —— O k. (1) "k fk)
by (auto dest: summable-LIMSEQ’)
have bounds: (3 k=0..n. (— 1) "k« fk)e{f0— f1.f0}
if n > 0 for n
using alternating-decreasing-sum-bounds[of 1 n f] assms that
by (subst sum.atLeast-Suc-atMost) auto
note [simp|] = atLeast0AtMost
note [intro!] = eventually-mono[OF eventually-gt-at-top[of 0]]

from lim have (D> k. (=1) “kxfk)>f0—f1
by (rule tendsto-lowerbound) (insert bounds, auto)
moreover from lim have (3" k. (=1) “kx fk) < f0
by (rule tendsto-upperbound) (use bounds in auto)
ultimately show ?thesis by simp
qed

lemma
assumes Ak. k> m = fk > (0 :: real)
Ne. k> m=f (Suck) < fkf——o0
defines S = O k. (=1) “(k+ m) = f (k+ m))
shows summable-alternating-decreasing: summable (k. (—1) ~(k + m) = f (k
+ m))
and alternating-decreasing-suminf-bounds’:
if even m then S € {f m — f (Suc m) .. f m}
else S € {—f m..f (Suc m) — fm} (is ?thl)
and abs-alternating-decreasing-suminf:
abs S € {fm — f (Suc m)..f m} (is ?th2)
proof —
have summable: summable (\k. (—1) "k = f (k + m))
using assms by (intro summable-Leibniz’) (auto simp: filterlim-sequentially-shift)
thus summable (A\k. (—1) ~(k + m) * f (k + m))
by (subst add.commute) (auto simp: power-add mult.assoc intro: summable-mult)
have S = X k. (1) “mx ((—=1) “kx*f (k+ m)))
by (simp add: S-def power-add mult-ac)
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also have ... = (=1) “"mx O k. (=1) "k x f (k+ m))
using summable by (rule suminf-mult)
finally have S = (— 1) "mx* O k. (— 1) "kxf (k+ m)).
moreover have (3 k. (—1) "k« f (k+ m)) €
[ O+m—f(+m . f0+m)
using assms
by (intro alternating-decreasing-suminf-bounds)
(auto simp: filterlim-sequentially-shift)
ultimately show ?th1 by (auto split: if-splits)
thus ?th2 using assms(2)[of m] by (auto split: if-splits)
qged

lemma
assumes Ak. k> m = fk > (0 :: real)
Ne.k>m=f (Suck) < fkf——0
defines S = (D" k. (=1) “(k+ m) = f (k+ m))
shows alternating-decreasing-suminf-bounds-strict”:
if even m then S € {f m — f (Suc m)<..<fm}
else S € {—f m<..<f (Suc m) — fm} (is ?thl)
and abs-alternating-decreasing-sumingf-strict:
abs S € {fm — f (Suc m)<..<fm} (is ?th2)
proof —

define S’ where S' = (D" k. (—1) ~ (k + Suc (Suc m)) * f (k + Suc (Suc m)))
have (k. (—1) ~ (k + m) = f (k + m)) sums S using assms unfolding S-def
by (intro summable-sums summable-Leibniz’ summable-alternating-decreasing)

(auto simp: less-eq-real-def)
from sums-split-initial-segment[ OF this, of 2]
have S "= S5 — (1) “"m* (fm — f (Suc m))

by (simp-all add: sums-iff S’-def algebra-simps less Than-nat-numeral)
have if even (Suc (Suc m)) then S’ € {f (Suc (Suc m)) — f (Suc (Suc (Suc

m)))..f (Suc (Suc m))}

else S € {— f (Suc (Suc m))..f (Suc (Suc (Suc m))) — f (Suc (Suc m))}

unfolding S'-def

using assms by (intro alternating-decreasing-suminf-bounds’) (auto simp:

less-eq-real-def)
thus ?th1 using assms(2)[of Suc m] assms(2)[of Suc (Suc m)]
unfolding S’ by (auto simp: algebra-simps)
thus ?th2 using assms(2)[of m| by (auto split: if-splits)
qed

datatype cfrac = CFrac int nat llist
quickcheck-generator cfrac constructors: CFrac

lemma type-definition-cfrac’:

type-definition (Az. case x of CFrac a b = (a, b)) (A(z,y). CFrac x y) UNIV

by (auto simp: type-definition-def split: cfrac.splits)
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setup-lifting type-definition-cfrac’

lift-definition cfrac-of-int :: int = cfrac is
An. (n, LNil) .

lemma cfrac-of-int-code [code]: cfrac-of-int n = CFrac n LNil
by (auto simp: cfrac-of-int-def)

lift-definition cfrac-of-stream :: int stream = cfrac is
Azs. (shd xs, llist-of-stream (smap (Az. nat (x — 1)) (stl zs))) .

instantiation cfrac :: zero

begin

definition zero-cfrac where 0 = cfrac-of-int 0
instance ..

end

instantiation cfrac :: one

begin

definition one-cfrac where 1 = cfrac-of-int 1
instance ..

end

lift-definition cfrac-tl :: cfrac = cfrac is
A(-, bs) = case bs of LNil = (1, LNil) | LCons b bs' = (int b + 1, bs’) .

lemma cfrac-tl-code [code]:
cfrac-tl (CFrac a bs) =
(case bs of LNil = CFrac 1 LNil | LCons b bs'" = CFrac (int b + 1) bs’)
by (auto simp: cfrac-tl-def split: llist.splits)

definition cfrac-drop :: nat = cfrac = cfrac where
cfrac-drop n ¢ = (cfrac-tl "~ n) ¢

lemma cfrac-drop-Suc-right: cfrac-drop (Suc n) ¢ = cfrac-drop n (cfrac-tl c)
by (simp add: cfrac-drop-def funpow-Suc-right del: funpow.simps)

lemma cfrac-drop-Suc-left: cfrac-drop (Suc n) ¢ = cfrac-tl (cfrac-drop n c)
by (simp add: cfrac-drop-def)

lemma cfrac-drop-add: cfrac-drop (m + n) ¢ = cfrac-drop m (cfrac-drop n c)
by (simp add: cfrac-drop-def funpow-add)

lemma cfrac-drop-0 [simp]: cfrac-drop 0 = (Az. x)
by (simp add: fun-eq-iff cfrac-drop-def)

lemma cfrac-drop-1 [simpl: cfrac-drop 1 = cfrac-tl
by (simp add: fun-eq-iff cfrac-drop-def)
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lift-definition cfrac-length :: cfrac = enat is
A(-, bs) = llength bs .

lemma cfrac-length-code [code]: cfrac-length (CFrac a bs) = llength bs
by (simp add: cfrac-length-def)

lemma cfrac-length-tl [simp]: cfrac-length (cfrac-tl ¢) = cfrac-length ¢ — 1
by transfer (auto split: llist.splits)

lemma enat-diff-Suc-right [simp]: m — enat (Suc n) =m —n — 1
by (auto simp: diff-enat-def enat-1-iff split: enat.splits)

lemma cfrac-length-drop [simpl: cfrac-length (cfrac-drop n ¢) = cfrac-length ¢ — n
by (induction n) (auto simp: cfrac-drop-def)

lemma cfrac-length-of-stream [simpl: cfrac-length (cfrac-of-stream xzs) = oo
by transfer auto

lift-definition cfrac-nth :: cfrac = nat = int is
Aa iz int, bs 2 nat llist). A(n :: nat).
if n = 0 then a
else if n < llength bs then int (Inth bs (n — 1)) + 1 else 1.

lemma cfrac-nth-code [code]:
cfrac-nth (CFrac a bs) n = (if n = 0 then a else Inth-default 0 bs (n — 1) + 1)
proof —
have n > 0 — enat (n — Suc 0) < llength bs «—— enat n < llength bs
by (metis Suc-ile-eq Suc-pred)
thus ?thesis by (auto simp: cfrac-nth-def Inth-default-def)
qed

lemma cfrac-nth-nonneg [simp, introl: n > 0 = cfrac-nth ¢ n > 0
by transfer auto

lemma cfrac-nth-nonzero [simpl: n > 0 = cfrac-nth ¢ n # 0
by transfer (auto split: if-splits)

lemma cfrac-nth-pos[simp, intro]: n > 0 = cfrac-nth ¢ n > 0
by transfer auto

lemma cfrac-nth-ge-1[simp, intro|: n > 0 => cfrac-nth ¢ n > 1
by transfer auto

lemma cfrac-nth-not-less-1[simp, intro]: n > 0 = —¢frac-nth ¢ n < 1
by transfer (auto split: if-splits)

lemma cfrac-nth-tl [simp]: cfrac-nth (cfrac-tl ¢) n = cfrac-nth ¢ (Suc n)

apply transfer
apply (auto split: llist.splits nat.splits simp: Suc-ile-eq Inth-LCons enat-0-iff
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stmp flip: zero-enat-def)
done

lemma cfrac-nth-drop [simp]: cfrac-nth (cfrac-drop n ¢) m = cfrac-nth ¢ (m + n)
by (induction n arbitrary: m) (auto simp: cfrac-drop-def)

lemma cfrac-nth-0-of-int [simp|: cfrac-nth (cfrac-of-int n) 0 = n
by transfer auto

lemma cfrac-nth-gt0-of-int [simp]: m > 0 = cfrac-nth (cfrac-of-int n) m = 1
by transfer (auto simp: enat-0-iff)

lemma cfrac-nth-of-stream:
assumes sset (stl xs) C {0<..}
shows cfrac-nth (cfrac-of-stream xs) n = snth xs n
using assms
proof (transfer’, goal-cases)
case (1 zs n)
thus Zcase
by (cases xs; cases n) (auto simp: subset-iff)
qed

lift-definition cfrac :: (nat = int) = cfrac is

M. (f 0, inf-llist (An. nat (f (Suc n) — 1))) .
definition is-cfrac :: (nat = int) = bool where is-cfrac f «—— (Vn>0. fn > 0)
lemma cfrac-nth-cfrac [simpl:

assumes is-cfrac f

shows cfrac-nth (cfrac f) n = fn

using assms unfolding is-cfrac-def by transfer auto

lemma llength-eg-infty-Inth: llength b = co = inf-llist (Inth b) = b
by (simp add: llength-eg-infty-conv-Ifinite)

lemma cfrac-cfrac-nth [simp]: cfrac-length ¢ = oo = cfrac (cfrac-nth ¢) = ¢
by transfer (auto simp: llength-eg-infty-inth)

lemma cfrac-length-cfrac [simp]: cfrac-length (cfrac f) = oo
by transfer auto
lift-definition cfrac-of-list :: int list = cfrac is

Azs. if xs = [] then (0, LNil) else (hd xs, llist-of (map (An. nat n — 1) (tl zs))) .

lemma cfrac-length-of-list [simpl: cfrac-length (cfrac-of-list xs) = length xzs — 1
by transfer (auto simp: zero-enat-def)
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lemma cfrac-of-list-Nil [simp]: cfrac-of-list [| = 0
unfolding zero-cfrac-def by transfer auto

lemma cfrac-nth-of-list [simp]:
assumes n < length xs and Vie{0<..<length xs}. zs ! i > 0
shows cfrac-nth (cfrac-of-list xs) n = zs ! n
using assms
proof (transfer, goal-cases)
case (1 n zs)
show Zcase
proof (cases n)
case (Suc n')
with 1 have zs ! n > 0
using I by auto
hence int (nat (tl zs! n') — Suc 0) + 1 = zs ! Suc n’
using 1(1) Suc by (auto simp: nth-tl of-nat-diff)
thus ?thesis
using Suc 1(1) by (auto simp: hd-conv-nth zero-enat-def)
qed (use 1 in <auto simp: hd-conv-nthy)
qed

primcorec cfrac-of-real-aux :: real = nat llist where
cfrac-of-real-aux x =
(if ¢ € {0<..<1} then LCons (nat [1/z] — 1) (cfrac-of-real-auz (frac (1/z)))
else LNil)

lemma cfrac-of-real-auz-code [code]:
cfrac-of-real-aux x =
(if £ > 0 AN x < 1 then LCons (nat | 1/z] — 1) (cfrac-of-real-auz (frac (1/z)))
else LNil)
by (subst cfrac-of-real-auz.code) auto

lemma cfrac-of-real-auz-LNil [simp|: © ¢ {0<..<1} = cfrac-of-real-auz = LNil
by (subst cfrac-of-real-auz.code) auto

lemma cfrac-of-real-auz-0 [simp]: cfrac-of-real-aux 0 = LNil
by (subst cfrac-of-real-auz.code) auto

lemma cfrac-of-real-auz-eq-LNil-iff [simp: cfrac-of-real-auz © = LNil — z ¢
{0<..<1}
by (subst cfrac-of-real-auz.code) auto

lemma Inth-cfrac-of-real-auz:

assumes n < llength (cfrac-of-real-aux )

shows Inth (cfrac-of-real-auzx x) (Suc n) = Inth (cfrac-of-real-aux (frac (1/x)))
n

using assms
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apply (induction n arbitrary: x)
apply (subst cfrac-of-real-auz.code)
apply auto |]

apply (subst cfrac-of-real-auz.code)

apply (auto)
done

lift-definition cfrac-of-real :: real = cfrac is
Az. (|z], cfrac-of-real-auz (frac x)) .

lemma cfrac-of-real-code [code]: cfrac-of-real x = CFrac |z] (cfrac-of-real-auz (frac

z))
by (simp add: cfrac-of-real-def)

lemma eg-epred-iff: m = epred n «—— m = 0An= 0V n = eSucm
by (cases m; cases n) (auto simp: enat-0-iff enat-eSuc-iff infinity-eq-eSuc-iff)

lemma epred-eq-iff: epred n = m «—— m =0An=0V n = eSucm
by (cases m; cases n) (auto simp: enat-0-iff enat-eSuc-iff infinity-eq-eSuc-iff)

lemma epred-less: n > 0 = n # co = epred n < n
by (cases n) (auto simp: enat-0-iff)

lemma cfrac-nth-of-real-0 [simp):
cfrac-nth (cfrac-of-real x) 0 = |x]
by transfer auto

lemma frac-eq-0 [simpl: * € Z = frac x = 0
by simp

lemma cfrac-tl-of-real:
assumes ¢ ¢ Z
shows cfrac-tl (cfrac-of-real ) = cfrac-of-real (1 / frac x)
using assms
proof (transfer, goal-cases)
case (I z)
hence int (nat |1 / frac x| — Suc 0) + 1 = |1/ frac x|
by (subst of-nat-diff) (auto simp: le-nat-iff frac-le-1)
with <z ¢ Z» show ?case
by (subst cfrac-of-real-auz.code) (auto split: llist.splits simp: frac-lt-1)
qed

lemma cfrac-nth-of-real-Suc:
assumes z ¢ Z
shows  cfrac-nth (cfrac-of-real x) (Suc n) = cfrac-nth (cfrac-of-real (1 / frac
proof —
have cfrac-nth (cfrac-of-real z) (Suc n) =
cfrac-nth (cfrac-tl (cfrac-of-real z)) n
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by simp
also have cfrac-tl (cfrac-of-real ) = cfrac-of-real (1 / frac x)
by (simp add: cfrac-tl-of-real assms)
finally show ?thesis .
qed

fun conv :: c¢frac = nat = real where
conv ¢ 0 = real-of-int (cfrac-nth ¢ 0)
| conv ¢ (Suc n) = real-of-int (cfrac-nth ¢ 0) + 1 / conv (cfrac-tl ¢) n

The numerator and denominator of a convergent:

fun conv-num :: cfrac = nat = int where
conv-num ¢ 0 = cfrac-nth ¢ 0
| conv-num ¢ (Suc 0) = cfrac-nth ¢ 1 % cfrac-nth ¢ 0 + 1
| conv-num ¢ (Suc (Suc n)) = cfrac-nth ¢ (Suc (Suc n)) * conv-num ¢ (Suc n) +
conv-num ¢ n

fun conv-denom :: cfrac = nat = int where
conv-denom ¢ 0 = 1
| conv-denom ¢ (Suc 0) = cfrac-nth c 1
| conv-denom ¢ (Suc (Suc n)) = cfrac-nth ¢ (Suc (Suc n)) * conv-denom ¢ (Suc n)
+ conv-denom c n

lemma conv-num-rec:

n > 2 = conv-num ¢ n = cfrac-nth ¢ n % conv-num ¢ (n — 1) + conv-num c
(n—2)

by (cases n; cases n — 1) auto

lemma conv-denom-rec:
n > 2 = conv-denom ¢ n = cfrac-nth ¢ n * conv-denom ¢ (n — 1) + conv-denom
c(n—2)

by (cases n; cases n — 1) auto

fun conv’ :: ¢frac = nat = real = real where
conv’ ¢ 0z =z
| conv’ ¢ (Suc n) z = conv’ ¢ n (real-of-int (cfrac-nth ¢ n) + 1/ 2)

Occasionally, it can be useful to extend the domain of conv-num and conv-denom
to —1 and —2.

definition conv-num-int :: cfrac = int = int where
conv-num-int ¢ n = (if n = —1 then 1 else if n < 0 then 0 else conv-num ¢ (nat

n))

definition conv-denom-int :: cfrac = int = int where
conv-denom-int ¢ n = (if n = —2 then 1 else if n < 0 then 0 else conv-denom c
(nat n))
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lemma conv-num-int-rec:
assumes n > (
shows  conv-num-int ¢ n = cfrac-nth ¢ (nat n) * conv-num-int ¢ (n — 1) +
conv-num-int ¢ (n — 2)
proof (cases n > 2)
case True
define n’ where n’ = nat (n — 2)
have n: n = int (Suc (Suc n’))
using True by (simp add: n'-def)
show ?thesis
by (simp add: n conv-num-int-def nat-add-distrib)
qed (use assms in <auto simp: conv-num-int-def»)

lemma conv-denom-int-rec:
assumes n > (
shows conv-denom-int ¢ n = cfrac-nth ¢ (nat n) * conv-denom-int ¢ (n — 1)
+ conv-denom-int ¢ (n — 2)
proof —
consider n=0|n=1|n>2
using assms by force
thus ?thesis
proof cases
assume n > 2
define n’ where n’ = nat (n — 2)
have n: n = int (Suc (Suc n'))
using (n > 2» by (simp add: n’-def)
show ?thesis
by (simp add: n conv-denom-int-def nat-add-distrib)
qed (use assms in <auto simp: conv-denom-int-def)
qed

The number [ag; a1, ag, ...] that the infinite continued fraction converges
to:

definition cfrac-lim :: cfrac = real where
cfrac-lim ¢ =
(case cfrac-length ¢ of co = lim (conv ¢) | enat | = conv ¢ 1)

lemma cfrac-lim-code [code]:
cfrac-lim ¢ =
(case cfrac-length c of enat | = conv ¢l
| - = Code.abort (STR ""Cannot compute infinite continued fraction') (A-.
cfrac-lim c))
by (simp add: cfrac-lim-def split: enat.splits)

definition cfrac-remainder where cfrac-remainder ¢ n = cfrac-lim (cfrac-drop n

c)

lemmas conv’-Suc-right = conv’.simps(2)
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lemma conv’-Suc-left:
assumes z > 0
shows conv’ ¢ (Suc n) z =
real-of-int (cfrac-nth ¢ 0) + 1 / conv’ (cfrac-tl ¢) n z
using assms
proof (induction n arbitrary: z)
case (Suc n z)
have conv’ ¢ (Suc (Suc n)) z =
conv’ ¢ (Suc n) (real-of-int (cfrac-nth ¢ (Suc n)) + 1/ 2)
by simp
also have ... = cfrac-nth ¢ 0 + 1 / conv’ (cfrac-tl ¢) (Suc n) z
using Suc.prems by (subst Suc.IH) (auto intro!: add-nonneg-pos cfrac-nth-nonneg)
finally show ?Zcase .
qed simp-all

lemmas [simp del] = conv’.simps(2)

lemma conv’-left-induct:
assumes Ac. P c 0z Acn. P (cfrac-tl ¢) n z= P c (Sucn) 2z
shows Pcnz
using assms by (rule conv.induct)

lemma enat-less-diff-conv [simp):
assumes ¢ =00 V b < 00 V ¢ < 00
shows a<c— (b:enat) — a+b<c
using assms by (cases a; cases b; cases ¢) auto

lemma conv-eg-conv’: conv ¢ n = conv’ ¢ n (cfrac-nth ¢ n)
proof (cases n = 0)
case Fulse
hence cfrac-nth ¢ n > 0 by (auto introl: cfrac-nth-pos)
thus %thesis
by (induction ¢ n rule: conv.induct) (simp-all add: conv’-Suc-left)
qed simp-all

lemma conv-num-pos”:
assumes cfrac-nth ¢ 0 > 0
shows conv-num c¢n > 0
using assms by (induction n rule: fib.induct) (auto simp: introl: add-pos-nonneg)

lemma conv-num-nonneg: cfrac-nth ¢ 0 > 0 = conv-num c n > 0
by (induction ¢ n rule: conv-num.induct)
(auto simp: intro!: mult-nonneg-nonney add-nonneg-nonneg
intro: cfrac-nth-nonneg)

lemma conv-num-pos:
cfrac-nth ¢ 0 > 0 = n > 0 = conv-num cn > 0
by (induction ¢ n rule: conv-num.induct)
(auto intro!: mult-pos-pos mult-nonneg-nonneg add-pos-nonneg conv-num-nonneq
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cfrac-nth-pos
intro: cfrac-nth-nonneg simp: enat-le-iff)

lemma conv-denom-pos [simp, intro]: conv-denom ¢ n > 0
by (induction ¢ n rule: conv-num.induct)
(auto intro!: add-nonneg-pos mult-nonneg-nonneg cfrac-nth-nonneg
simp: enat-le-iff)

lemma conv-denom-not-nonpos [simp|: —conv-denom ¢ n < 0
using conv-denom-pos[of ¢ n] by linarith

lemma conv-denom-not-neg [simp|: —conv-denom ¢ n < 0
using conv-denom-pos|of ¢ n| by linarith

lemma conv-denom-nonzero [simp|: conv-denom ¢ n % 0
using conv-denom-pos[of ¢ n] by linarith

lemma conv-denom-nonneg [simp, intro|: conv-denom ¢ n > 0
using conv-denom-pos|of ¢ n] by linarith

lemma conv-num-int-neg! [simp]: conv-num-int ¢ (—1) = 1
by (simp add: conv-num-int-def)

lemma conv-num-int-neg [simp]: n < 0 = n # —1 = conv-num-int ¢ n = 0
by (simp add: conv-num-int-def)

lemma conv-num-int-of-nat [simp]: conv-num-int ¢ (int n) = conv-num c n
by (simp add: conv-num-int-def)

lemma conv-num-int-nonneg [simp]: n > 0 = conv-num-int ¢ n = conv-num c
(nat n)
by (simp add: conv-num-int-def)

lemma conv-denom-int-neg2 [simp|: conv-denom-int ¢ (—2) = 1
by (simp add: conv-denom-int-def)

lemma conv-denom-int-neg [simp]: n < 0 = n # —2 = conv-denom-int ¢ n =
0
by (simp add: conv-denom-int-def)

lemma conv-denom-int-of-nat [simp]: conv-denom-int ¢ (int n) = conv-denom ¢ n
by (simp add: conv-denom-int-def)

lemma conv-denom-int-nonneg [simp]: n > 0 => conv-denom-int ¢ n = conv-denom
¢ (nat n)

by (simp add: conv-denom-int-def)

lemmas conv-Suc [simp del] = conv.simps(2)
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lemma conv’-gt-1:
assumes cfrac-nth ¢ 0 > 0z > 1
shows conv’ cnz > 1
using assms
proof (induction n arbitrary: ¢ x)
case (Suc n c x)
from Suc.prems have pos: cfrac-nth ¢ n > 0 using cfrac-nth-pos[of n c]
by (cases n = 0) (auto simp: enat-le-iff)
have 1< 1+ 1/z
using Suc.prems by simp
also have ... < c¢frac-nth ¢ n + 1 / x using pos
by (intro add-right-mono) (auto simp: of-nat-ge-1-iff)
finally show ?case
by (subst conv’-Suc-right, intro Suc.IH)
(use Suc.prems in <auto simp: enat-le-iff»)
qed auto

lemma enat-eq-iff: a = enat b +—— (Fa’. a = enat a’ A a’ = b)
by (cases a) auto

lemma eg-enat-iff: enat a = b «—— (Ib". b = enat b’ A a = b)
by (cases b) auto

lemma enat-diff-one [simp]: enat a — 1 = enat (a — 1)
by (cases enat (a — 1)) (auto simp flip: idiff-enat-enat)

lemma conv’-eqD:
assumes conv’ cnz = conv' ¢'nzrz>1m<n
shows cfrac-nth ¢ m = cfrac-nth ¢’ m
using assms
proof (induction n arbitrary: m ¢ ¢’
case (Suc nm c ¢’
have gt: conv’ (¢frac-tl ¢) n x > 1 conv’ (cfrac-tl ¢y nx > 1
by (rule conv’-gt-1;
use Suc.prems in <force intro: cfrac-nth-pos simp: enat-le-iff»)+
have eq: cfrac-nth ¢ 0 + 1/ conv’ (cfrac-tl ¢) n z =
cfrac-nth ¢’ 0 + 1/ conv’ (cfrac-tl ¢) n z
using Suc.prems by (subst (asm) (1 2) conv’-Suc-left) auto
hence |cfrac-nth ¢ 0 + 1/ conv’ (cfrac-tl ¢) n x| =
|efrac-nth ¢’ 0 + 1/ conv’ (cfrac-tl ¢') n x|
by (simp only: )
also from gt have floor (c¢frac-nth ¢ 0 + 1/ conv’ (cfrac-tl ¢) n ) = cfrac-nth
c0
by (intro floor-unique) auto
also from gt have floor (cfrac-nth ¢’ 0 + 1/ conv’ (cfrac-tl ¢') n z) = cfrac-nth
¢ 0
by (intro floor-unique) auto
finally have [simp]: cfrac-nth ¢ 0 = cfrac-nth ¢’ 0 by simp
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show ?Zcase
proof (cases m)
case (Suc m’)
from eq and gt have conv’ (cfrac-tl ¢) n z = conv’ (cfrac-tl ¢’) n x
by simp
hence cfrac-nth (cfrac-tl ¢) m' = cfrac-nth (cfrac-tl ¢') m
using Suc.prems
by (intro Suc.IH|of cfrac-tl ¢ cfrac-tl ¢']) (auto simp: o-def Suc enat-le-iff)
with Suc show ?thesis by simp
qed simp-all
qed simp-all

/

context

fixes c :: cfrac and h k

defines h = conv-num ¢ and k = conv-denom ¢
begin

lemma conv’-num-denom-auz:
assumes z: z > 0
shows conv’ ¢ (Suc (Suc n)) z * (z * k (Suc n) + kn) =
(z % h (Sucn) + hn)
using z
proof (induction n arbitrary: z)
case ()
hence 1 + z x cfrac-nth ¢ 1 > 0
by (intro add-pos-nonneg) (auto simp: cfrac-nth-nonneg)
with 0 show Zcase
by (auto simp add: h-def k-def field-simps conv’-Suc-right maz-def not-le)
next
case (Suc n)
have [simp]: h (Suc (Suc n)) = cfrac-nth ¢ (n+2) * h (n+1) + h n
by (simp add: h-def)
have [simp]: k (Suc (Suc n)) = cfrac-nth ¢ (n+2) x k (n+1) + kn
by (simp add: k-def)
define 2z’ where 2’ = cfrac-nth ¢ (n+2) + 1/ 2
from <z > (> have 2’ > 0
by (auto simp: z’-def intro!: add-nonneg-pos cfrac-nth-nonneg)

have z * real-of-int (h (Suc (Suc n))) + real-of-int (h (Suc n)) =
z % (2/ % h (Sucn)+ hn)
using <z > 0» by (simp add: algebra-simps z'-def)

also have ... = z % (conv’ ¢ (Suc (Suc n)) 2’ % (2’ * k (Suc n) + k n))
using <z’ > 0) by (subst Suc.IH [symmetric]) auto
also have ... = conv’ ¢ (Suc (Suc (Suc n))) z *

(z % k (Suc (Suc n)) + k (Suc n))
unfolding z’-def using <z > 0»
by (subst (2) conv’-Suc-right) (simp add: algebra-simps)
finally show ?case ..
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qed

lemma conv’-num-denom:
assumes z > ()
shows conv’ ¢ (Suc (Suc n)) z =
(z% h (Sucn)+ hn)/(zxk(Sucn) + kn)
proof —
have z * real-of-int (k (Suc n)) + real-of-int (k n) > 0
using assms by (intro add-pos-nonneg mult-pos-pos) (auto simp: k-def)
with conv’-num-denom-auz|of z n] assms show ?thesis
by (simp add: divide-simps)
qed

lemma conv-num-denom: convcn=nhn/kn
proof —
consider n = 0 | n = Suc 0 | m where n = Suc (Suc m)
using not0-implies-Suc by blast
thus ?thesis
proof cases
assume n = Suc 0
thus ?thesis
by (auto simp: h-def k-def field-simps maz-def conv-Suc)
next
fix m assume [simp]: n = Suc (Suc m)
have conv ¢ n = conv’ ¢ (Suc (Suc m)) (cfrac-nth ¢ (Suc (Suc m)))
by (subst conv-eq-conv’) simp-all
alsohave ... =hn /kn
by (subst conv’-num-denom) (simp-all add: h-def k-def)
finally show ?thesis .
qed (auto simp: h-def k-def)
qed

lemma conv’-num-denom:

assumes z > 0 and n > 2

shows conv'ecnz=(zxh(n—1)4+h(n—2)/(zxk(n—1)+k(n—
2))

using assms conv’-num-denom[of z n — 2]

by (auto simp: eval-nat-numeral Suc-diff-Suc)

lemma conv’-num-denom-int:
assumes z > 0
shows conv’ ¢cnz =
(z % conv-num-int ¢ (int n — 1) + conv-num-int ¢ (int n — 2)) /
(z * conv-denom-int ¢ (int n — 1) + conv-denom-int ¢ (int n — 2))
proof —
consider n = 0| n=1]|n> 2Dby force
thus ?thesis
proof cases
case I
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thus ?thesis using conv-num-int-neg! by auto
next
case 2
thus ?thesis using assms by (auto simp: conv’-Suc-right field-simps)
next
case 3
thus ?thesis using conv’-num-denom’[OF assms(1), of nat n]
by (auto simp: nat-diff-distrib h-def k-def)
qed
qed

lemma conv-nonneg: cfrac-nth ¢ 0 > 0 = convcn > 0
by (subst conv-num-denom)
(auto intro!: divide-nonneg-nonneg conv-num-nonneg simp: h-def k-def)

lemma conv-pos:
assumes cfrac-nth ¢ 0 > 0
shows conven >0
proof —
have conven=hn/kn
using assms by (intro conv-num-denom)
also from assms have ... > 0 unfolding h-def k-def
by (intro divide-pos-pos) (auto introl: conv-num-pos’)
finally show ?thesis .
qed

lemma conv-num-denom-prod-diff:
kEns*h (Sucn) —k (Sucn)«hn=(-1) "n
by (induction ¢ n rule: conv-num.induct)
(auto simp: k-def h-def algebra-simps)

lemma conv-num-denom-prod-diff’:
k (Sucn)*«hn—Fknsxh (Sucn)=(—1) " Sucn
by (induction ¢ n rule: conv-num.induct)
(auto simp: k-def h-def algebra-simps)

lemma
fixes n :: int
assumes n > —2
shows  conv-num-denom-int-prod-diff:
conv-denom-int ¢ n * conv-num-int ¢ (n + 1) —
conv-denom-int ¢ (n + 1) * conv-num-int ¢ n = (—1) ~ (nat (n + 2))
(is ?thl)
and conv-num-denom-int-prod-diff -
conv-denom-int ¢ (n + 1) x conv-num-int ¢ n —
conv-denom-int ¢ n * conv-num-int ¢ (n + 1) = (—=1) " (nat (n + 3))
(is ?th2)
proof —
from assms consider n = —2 | n = —1| n > 0 by force
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thus ?th1 using conv-num-denom-prod-diff[of nat n]
by cases (auto simp: h-def k-def nat-add-distrib)
moreover from assms have nat (n + 3) = Suc (nat (n + 2)) by (simp add:
nat-add-distrib)
ultimately show ?th2 by simp
qed

lemma coprime-conv-num-denom: coprime (h n) (k n)
proof (cases n)
case [simp]: (Suc m)
{
fix d :: int
assume d dvd h n and d dvd k n
hence abs d dvd abs (k n * h (Suc n) — k (Suc n) * h n)
by simp
also have ... = 1
by (subst conv-num-denom-prod-diff) auto
finally have is-unit d by simp
}
thus ?thesis by (rule coprimel)
qed (auto simp: h-def k-def)

lemma coprime-conv-num-denom-int:
assumes n > —2
shows coprime (conv-num-int ¢ n) (conv-denom-int ¢ n)

proof —

from assms consider n = —2 | n = —1| n > 0 by force

thus ?thesis by cases (insert coprime-conv-num-denom|of nat n|, auto simp: h-def
k-def)
qed

lemma mono-conv-num:
assumes cfrac-nth ¢ 0 > 0
shows mono h
proof (rule incseg-Sucl)
show h n < h (Suc n) for n
proof (cases n)
case (
have 1 x cfrac-nth ¢ 0 + 1 < cfrac-nth ¢ (Suc 0) * cfrac-nth ¢ 0 + 1
using assms by (intro add-mono mult-right-mono) auto
thus ?thesis using assms by (simp add: le-Suc-eq Suc-le-eq h-def 0)
next
case (Suc m)
have 1 x h (Suc m) + 0 < cfrac-nth ¢ (Suc (Suc m)) * h (Suc m) + h m
using assms
by (intro add-mono mult-right-mono)
(auto simp: Suc-le-eq h-def introl: conv-num-nonneg)
with Suc show ?thesis by (simp add: h-def)
qed
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qed

lemma mono-conv-denom: mono k
proof (rule incseq-Sucl)
show k n < k (Suc n) for n
proof (cases n)
case (
thus ?thesis by (simp add: le-Suc-eq Suc-le-eq k-def)
next
case (Suc m)
have 1 x k (Suc m) + 0 < cfrac-nth ¢ (Suc (Suc m)) * k (Suc m) + km
by (intro add-mono mult-right-mono) (auto simp: Suc-le-eq k-def)
with Suc show ?thesis by (simp add: k-def)
qed
qed

lemma conv-num-lel: cfrac-nth ¢ 0 > 0 = m < n=—=hm < hn
using mono-conv-num by (auto simp: mono-def)

lemma conv-denom-lel: m < n = km < kn
using mono-conv-denom by (auto simp: mono-def)

lemma conv-denom-lessI:
assumes m < nl<mn
shows km < kn
proof (cases n)
case [simp]: (Suc n’)
show ?thesis
proof (cases n’)
case [simp]: (Suc n”)
from assms have km < 1 x kn’+ 0
by (auto intro: conv-denom-lel simp: less-Suc-eq)
also have ... < cfrac-nthcnx kn’ + 0
using assms by (intro add-mono mult-mono) (auto simp: Suc-le-eq k-def)
also have ... < cfrac-nth ¢ n * kn’ + k n' unfolding k-def
by (intro add-strict-left-mono conv-denom-pos assms)
also have ... = k n by (simp add: k-def)
finally show %thesis .
qed (insert assms, auto simp: k-def)
qed (insert assms, auto)

lemma conv-num-lower-bound:
assumes cfrac-nth ¢ 0 > 0
shows h n > fib n unfolding h-def
using assms
proof (induction ¢ n rule: conv-denom.induct)
case (3 ¢ n)
hence conv-num ¢ (Suc (Suc n)) > 1 x int (fib (Suc n)) + int (fib n)
using 3.prems unfolding conv-num.simps
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by (intro add-mono mult-mono 3.IH) auto
thus ?case by simp
qed auto

lemma conv-denom-lower-bound: k n > fib (Suc n)
unfolding k-def
proof (induction ¢ n rule: conv-denom.induct)
case (3 ¢ n)
hence conv-denom ¢ (Suc (Suc n)) > 1 x int (fib (Suc (Suc n))) + int (fib (Suc
n))
using 3.prems unfolding conv-denom.simps
by (intro add-mono mult-mono 3.IH) auto
thus ?case by simp
qed (auto simp: Suc-le-eq)

lemma conv-diff-eq: conv ¢ (Suc n) — conven = (—1) “n/ (knxk (Sucn))
proof —
have pos: kn > 0k (Suc n) > 0 unfolding k-def
by (intro conv-denom-pos)+
have conv ¢ (Suc n) — conv ¢ n =
(knxh (Sucn) —k (Sucn)*xhn)/ (kn=*k (Sucn))
using pos by (subst (1 2) conv-num-denom) (simp add: conv-num-denom
field-simps)
also have kn x h (Sucn) — k (Sucn) * hn=(—1) " n
by (rule conv-num-denom-prod-diff)
finally show ?thesis by simp
qged

lemma conv-telescope:
assumes m < n
shows convem + (3 i=m.<n. (=1) "¢/ (kixk (Suci))) = conven
proof —
have (> i=m..<n. (=1) i/ (ki * k (Suc 1)) =
(> i=m..<n. conv ¢ (Suc i) — conv ¢ i)
by (simp add: conv-diff-eq assms del: conv.simps)
also have conv c m + ... = convcn
using assms by (induction rule: dec-induct) simp-all
finally show ?thesis .
qed

lemma fib-at-top: filterlim fib at-top at-top
proof (rule filterlim-at-top-mono)
show eventually (An. fib n > n — 1) at-top
by (intro always-eventually fib-ge alll)
show filterlim (An::nat. n — 1) at-top at-top
by (subst filterlim-sequentially-Suc [symmetric])
(simp-all add: filterlim-ident)
qed

27



lemma conv-denom-at-top: filterlim k at-top at-top
proof (rule filterlim-at-top-mono)
show filterlim (An. int (fib (Suc n))) at-top at-top
by (rule filterlim-compose|OF filterlim-int-sequentially])
(simp add: fib-at-top filterlim-sequentially-Suc)
show eventually (An. fib (Suc n) < kn) at-top
by (intro always-eventually conv-denom-lower-bound alll)
qed

lemma
shows summable-conv-telescope:
summable (Ai. (—1) "4 / (ki * k (Suci))) (is 2thl)
and cfrac-remainder-bounds:
(2. (=1) “(i+ m) / (k(i4+ m)*k (Suci+ m)))| €
{1/(km * (km + k (Suc m))) <..< 1/ (km*k (Suc m))} (is 7th2)
proof —
have [simp]: kn > 0kn > 0-kn = 0for n
by (auto simp: k-def)
have k-rec: k (Suc (Suc n)) = cfrac-nth ¢ (Suc (Suc n)) * k (Suc n) + k n for n
by (simp add: k-def)
have [simp]: a + b=0— a=0Ab=0ifa > 0b> 0for a b :: real
using that by linarith

define g where g = (\i. inverse (real-of-int (k i * k (Suc 7))))

{

fix m :: nat
have filterlim (An. k n) at-top at-top and filterlim (An. k (Suc n)) at-top at-top
by (force simp: filterlim-sequentially-Suc intro: conv-denom-at-top)+
hence lim: g —— 0
unfolding g-def of-int-mult
by (intro tendsto-inverse-0-at-top filterlim-at-top-mult-at-top
filterlim-compose[OF filterlim-real-of-int-at-top])
from lim have A: summable (An. (—1) ~ (n + m) * g (n + m)) unfolding
g-def
by (intro summable-alternating-decreasing)
(auto introl: conv-denom-lel mult-nonneg-nonneg)

have 1 / (k m * (real-of-int (k (Suc m)) + km / 1)) <
1/ (km* (k (Suc m) + km / cfrac-nth ¢ (m+2)))
by (intro divide-left-mono mult-left-mono add-left-mono mult-pos-pos add-pos-pos
divide-pos-pos)
(auto simp: of-nat-ge-1-iff)
also have ... = g m — g (Suc m)
by (simp add: g-def k-rec field-simps add-pos-pos)
finally have le: 1 / (k m * (real-of-int (k (Suc m)) + km / 1)) < gm — g
(Suc m) by simp
have *: |[(>Ji. (=1) (i + m) x g (¢ + m))| € {g m — g (Suc m) <..< g m}
using lim unfolding g¢-def
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by (intro abs-alternating-decreasing-suminf-strict) (auto introl: conv-denom-lessI)
also from le have ... C {1/ (km % (k (Suc m) + k m)) <..< g m}
by (subst greaterThanLessThan-subseteq-greater ThanLessThan) auto
finally have B: [> 4. (— 1) “(i+ m)*xg (i + m)| € ... .
note A B
} note AB = this

from AB(1)[of 0] show ?thl by (simp add: field-simps g-def)
from AB(2)[of m] show ?th2 by (simp add: g-def divide-inverse add-ac)
qed

lemma convergent-conv: convergent (conv c)
proof —
have convergent (An. conv ¢ 0 + (> i<n. (—=1) ~i / (ki k (Suc 7))))
using summable-conv-telescope
by (intro convergent-add convergent-const)
(simp-all add: summable-iff-convergent)
also have ... = conv ¢
by (rule ext, subst (2) conv-telescope [of 0, symmetric]) (simp-all add: atLeastOLessThan)
finally show ?thesis .
qed

lemma LIMSEQ-cfrac-lim: cfrac-length ¢ = oo = conv ¢ —— cfrac-lim ¢
using convergent-conv by (auto simp: convergent-LIMSEQ-iff cfrac-lim-def)

lemma cfrac-lim-nonneg:
assumes cfrac-nth ¢ 0 > 0
shows cfrac-lim ¢ > 0
proof (cases cfrac-length c)
case infinity
have conv ¢ —— cfrac-lim ¢
by (rule LIMSEQ-cfrac-lim) fact
thus ?thesis
by (rule tendsto-lowerbound)
(auto introl: conv-nonneg always-eventually assms)
next
case (enat l)
thus ?thesis using assms
by (auto simp: cfrac-lim-def conv-nonneg)
qed

lemma sums-cfrac-lim-minus-conv:

assumes cfrac-length ¢ = oo

shows (\i. (=1) ~(i+ m) / (k (¢« + m) * k (Suc i + m))) sums (cfrac-lim ¢ —
conv ¢ m)
proof —

have (An. conv ¢ (n + m) — conv ¢ m) —— cfrac-lim ¢ — conv ¢ m

by (auto intro!: tendsto-diff LIMSEQ-cfrac-lim simp: filterlim-sequentially-shift

assms)
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also have (An. conv ¢ (n + m) — conv ¢ m) =
(An. O2i=0+ m.<n + m. (=1) " i/ (kixk (Suci))))
by (subst conv-telescope [of m, symmetric]) simp-all
also have ... = (An. O i<n. (=1) “(i+ m) / (k (i + m) = k (Suc i + m))))
by (subst sum.shift-bounds-nat-ivl) (simp-all add: atLeastOLessThan)
finally show ?thesis unfolding sums-def .
qed

lemma cfrac-lim-minus-conv-upper-bound:
assumes m < cfrac-length c
shows |cfrac-lim ¢ — conv ¢ m| < 1/ (km = k (Suc m))
proof (cases cfrac-length c)
case infinity
have cfrac-lim ¢ — conv cm = (> 4. (=1) “ (i +m) / (k (i + m) = k (Suc i +
m)))
using sums-cfrac-lim-minus-conv infinity by (simp add: sums-iff)
also note cfrac-remainder-bounds[of m]
finally show ?thesis by simp
next
case [simp]: (enat 1)
show ?thesis
proof (cases | = m)
case True
thus %thesis by (auto simp: cfrac-lim-def k-def)
next
case Fulse
let 25 = (O"i=m..<l. (—1) " i * (1 / real-of-int (ki * k (Suc 7))))
have [simp]: kn > 0k n > 0 for n
by (simp-all add: k-def)
hence cfrac-lim ¢ — conv ¢ m = conv ¢l — conv ¢ m
by (simp add: cfrac-lim-def)
also have ... = 25
using assms by (subst conv-telescope [symmetric, of m]) auto
finally have cfrac-lim ¢ — conv ¢ m = 25 .
moreover have |?S| < 1/ real-of-int (k- m % k (Suc m))
unfolding of-int-mult using assms False
by (intro abs-alternating-decreasing-sum-upper-bound’ divide-nonneg-nonneg
frac-le mult-mono)
(simp-all add: conv-denom-lel del: conv-denom.simps)
ultimately show ?thesis by simp
qed
qged

lemma cfrac-lim-minus-conv-lower-bound:
assumes m < cfrac-length c
shows |cfrac-lim ¢ — conv e m| > 1/ (km x (km + k (Suc m)))
proof (cases cfrac-length c)
case infinity
have cfrac-lim ¢ — convem = (> i. (=1) “(i+ m) / (k (i + m) *x k (Suc i +
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m)
using sums-cfrac-lim-minus-conv infinity by (simp add: sums-iff)
also note cfrac-remainder-bounds[of m]
finally show ?thesis by simp
next
case [simp]: (enat l)
let 25 = (> i=m..<l. (—1) ~i* (1 / real-of-int (ki * k (Suc i))))
have [simp]: kn > 0kn > 0 for n
by (simp-all add: k-def)
hence cfrac-lim ¢ — conv ¢ m = conv ¢l — conv cm
by (simp add: cfrac-lim-def)
also have ... = 25
using assms by (subst conv-telescope [symmetric, of m]) (auto simp: split:
enat.splits)
finally have cfrac-lim ¢ — conv ¢ m = %5 .

moreover have |?5] > 1 / (km *x (km + k (Suc m)))
proof (cases m < cfrac-length ¢ — 1)
case Fulse
hence [simp]: m =1 — 1 and [ > 0 using assms
by (auto simp: not-less)
have 1 / (km x (km 4+ k (Sucm))) < 1/ (km x k (Suc m))
unfolding of-int-mult
by (intro divide-left-mono mult-mono mult-pos-pos) (auto introl: add-pos-pos)
also from </ > 0» have {m..<l} = {m} by auto
hence 1 / (km * k (Suc m)) = | %S|
by simp
finally show ?thesis .
next
case True
with assms have less: m < | — 1
by auto
have k m + k (Suc m) > 0
by (intro add-pos-pos) (auto simp: k-def)
hence 1/ (km x (km + k (Suc m))) <1/ (km=x*k (Sucm)) — 1/ (k (Suc
m) * k (Suc (Suc m)))
by (simp add: divide-simps) (auto simp: k-def algebra-simps)
also have ... < |?29]
unfolding of-int-mult using less
by (intro abs-alternating-decreasing-sum-lower-bound’ divide-nonneg-nonneg
frac-le mult-mono)
(simp-all add: conv-denom-lel del: conv-denom.simps)
finally show %thesis .
qed
ultimately show ?thesis by simp
qed

lemma cfrac-lim-minus-conv-bounds:
assumes m < cfrac-length c
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shows |cfrac-lim ¢ — convem| € {1/ (km* (km + k (Suc m)))..1 / (km x
k (Suc m))}

using cfrac-lim-minus-conv-lower-bound|of m] cfrac-lim-minus-conv-upper-bound|of
m] assms

by auto

end

lemma conv-pos':
assumes n > 0 cfrac-nth ¢ 0 > 0
shows convecn >0
using assms by (cases n) (auto simp: conv-Suc intro!: add-nonneg-pos conv-pos)

lemma conv-in-Rats [intro]: conv ¢ n € Q
by (induction ¢ n rule: conv.induct) (auto simp: conv-Suc o-def)

lemma
assumes 0 < z1 z1 < 22
shows conv’-even-mono: even n = conv’ ¢ n z1 < conv’ ¢ n 22
and conv’-odd-mono: odd n => conv’ ¢ n z1 > conv’ ¢ n 22
proof —
let 2P = (An (f::nat=real=real).
if even n then fn 21 < fn 22 else fnzl > fn 22)
have ?P n (conv’ ¢) using assms
proof (induction n arbitrary: z1 z2)
case (Suc n)
note 212 = Suc.prems
consider n = 0 | even n n > 0 | odd n by force
thus ?case
proof cases
assume n = 0
thus ?thesis using Suc by (simp add: conv’-Suc-right field-simps)
next
assume n: even n n > 0
with Suc.IH have IH: conv’' ¢ n z1 < conv’ ¢ n 22
if 0 < 21 21 < 22 for z1 z2 using that by auto
show ?thesis using Suc.prems n 212
by (auto simp: conv’-Suc-right field-simps intro!: IH add-pos-nonneg
mult-nonneg-nonneg)
next
assume n: odd n
hence [simp]: n > 0 by (auto introl: Nat.groI)
from n and Suc.IH have IH: conv’ ¢ n 21 > conv’ ¢ n 22
if 0 < 21 21 < 22 for z1 22 using that by auto
show ?thesis using Suc.prems n
by (auto simp: conv’-Suc-right field-simps
intro!: IH add-pos-nonneg mult-nonneg-nonneq)
qed
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qged auto
thus even n = conv’ ¢ n 21 < conv’ ¢ n 22
odd n = conv’ ¢ n z1 > conv’ ¢ n 22 by auto
qed

lemma
shows conv-even-mono: even n = n < m = conv ¢ n < conv ¢ m
and conv-odd-mono: oddn — n < m — conv cn > convcm
proof —
assume even n
have A: conv ¢ n < conv ¢ (Suc (Suc n)) if even n for n
proof (cases n = 0)
case Fulse
with <even ny show %thesis
by (auto simp add: conv-eq-conv’ conv’-Suc-right intro: conv’-even-mono)
qed (auto simp: conv-Suc)

have B: conv ¢ n < conv ¢ (Suc n) if even n for n
proof (cases n = 0)
case Fulse
with <even n) show ?thesis
by (auto simp add: conv-eq-conv’ conv’-Suc-right intro: conv’-even-mono)
qed (auto simp: conv-Suc)

show conv ¢ n < conv ¢ m if n < m for m
using that
proof (induction m rule: less-induct)
case (less m)
from «n < m» consider m = n | even m m > n | odd m m > n
by force
thus Zcase
proof cases
assume m: even m m > n
with <even n» have m”: m — 2 > n by presburger
with m have conv ¢ n < conv ¢ (m — 2)
by (intro less.IH) auto
also have ... < conv ¢ (Suc (Suc (m — 2)))
using m m’ by (intro A) auto
also have Suc (Suc (m — 2)) = m
using m by presburger
finally show ?Zthesis .
next
assume m: odd m m > n
hence conv ¢ n < conv ¢ (m — 1)
by (intro less.IH) auto
also have ... < conv ¢ (Suc (m — 1))
using m by (intro B) auto
also have Suc (m — 1) = m
using m by simp
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finally show ?thesis .

qed simp-all

qed
next

assume odd n
have A: conv ¢ n > conv ¢ (Suc (Suc n)) if odd n for n

using that

by (auto simp add: conv-eq-conv’ conv’-Suc-right odd-pos introl: conv’-odd-mono)
have B: conv ¢ n > conv ¢ (Suc n) if odd n for n using that

by (auto simp add: conv-eq-conv’ conv’-Suc-right odd-pos introl: conv’-odd-mono)

show conv ¢ n > conv ¢ m if n < m for m
using that
proof (induction m rule: less-induct)
case (less m)
from «n < m» consider m = n | even m m > n | odd m m > n
by force
thus ?case
proof cases
assume m: odd m m > n
with <odd n» have m” m — 2 > n m > 2 by presburger+
from m and <odd n» have m = Suc (Suc (m — 2)) by presburger
also have conv ¢ ... < conv ¢ (m — 2)
using m m’ by (intro A) auto
also have ... < convecn
using m m’ by (intro less.IH) auto
finally show ?thesis .
next
assume m: even m m > n
from m have m = Suc (m — 1) by presburger
also have conv ¢ ... < conv c (m — 1)
using m by (intro B) auto
also have ... < convecn
using m by (intro less.IH) auto
finally show ?thesis .
qed simp-all
qed
qed

lemma
assumes m < cfrac-length c
shows conv-le-cfrac-lim: even m = conv ¢ m < cfrac-lim c
and conv-ge-cfrac-lim: odd m = conv ¢ m > cfrac-lim c
proof —
have if even m then conv ¢ m < cfrac-lim c else conv ¢ m > cfrac-lim c
proof (cases cfrac-length c)
case [simp]: infinity
show ?thesis
proof (cases even m)

34



case True
have eventually (\i. conv ¢ m < conv ¢ i) at-top
using eventually-ge-at-top[of m| by eventually-elim (rule conv-even-mono[OF

True))

hence conv ¢ m < cfrac-lim ¢
by (intro tendsto-lowerbound[OF LIMSEQ-cfrac-lim]) auto

thus ?thesis using True by simp

next

case Fulse
have eventually (Ai. conv ¢ m > conv ¢ i) at-top
using eventually-ge-at-top[of m] by eventually-elim (rule conv-odd-mono[OF

Falsel)
hence conv ¢ m > cfrac-lim ¢
by (intro tendsto-upperbound|OF LIMSEQ-cfrac-lim]) auto

thus ?thesis using Fulse by simp
qed
next
case [simp]: (enat 1)
show ?thesis
using conv-even-monolof m I c| conv-odd-monolof m 1l c] assms
by (auto simp: cfrac-lim-def)
qed
thus even m = conv ¢ m < cfrac-lim c and odd m = conv ¢ m > cfrac-lim c
by auto
qed

lemma cfrac-lim-ge-first: cfrac-lim ¢ > cfrac-nth ¢ 0
using conv-le-cfrac-lim[of 0 c] by (auto simp: less-eq-enat-def split: enat.splits)

lemma cfrac-lim-pos: cfrac-nth ¢ 0 > 0 = cfrac-lim ¢ > 0
by (rule less-le-trans|OF - cfrac-lim-ge-first]) auto

lemma conv’-eq-iff:
assumes 0 < z1 V 0 < 22
shows conv’ ¢ n z1 = conv’ cn 22 «—— 21 = 22

proof
assume conv’ ¢ n z1 = conv’ ¢ n 22

thus 2! = 22 using assms
proof (induction n arbitrary: z1 z2)
case (Suc n)
show ?Zcase
proof (cases n = 0)
case True
thus ?thesis using Suc by (auto simp: conv’-Suc-right)
next

case Fulse
have conv’ ¢ n (real-of-int (cfrac-nth ¢ n) + 1/ z1) =
conv’ ¢ n (real-of-int (cfrac-nth ¢ n) + 1 / 22) using Suc.prems

by (simp add: conv’-Suc-right)
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hence real-of-int (cfrac-nth ¢ n) + 1/ 21 = real-of-int (cfrac-nth ¢ n) + 1/

22
by (rule Suc.IH)
(insert Suc.prems Fualse, auto introl: add-nonneg-pos add-nonneg-nonneg)
with Suc.prems show z1 = 22 by simp
qed
qged auto
qed auto

lemma conv-even-mono-strict:
assumes even n n < m
shows conv ¢ n < conv cm
proof (cases m = n + 1)
case [simp|: True
show ?thesis
proof (cases n = 0)
case True
thus %thesis using assms by (auto simp: conv-Suc)
next
case Fulse
hence conv’ ¢ n (real-of-int (cfrac-nth ¢ n)) #
conv’ ¢ n (real-of-int (cfrac-nth ¢ n) + 1 / real-of-int (cfrac-nth ¢ (Suc
o)
by (subst conv’-eq-iff) auto

with assms have conv ¢ n # conv ¢ m

by (auto simp: conv-eq-conv’ conv’-eq-iff conv’-Suc-right field-simps)
moreover from assms have conv ¢ n < conv ¢ m

by (intro conv-even-mono) auto

ultimately show ?thesis by simp
qed
next
case Fulse
show ?thesis
proof (cases n = 0)
case True
thus ?thesis using assms
by (cases m) (auto simp: conv-Suc conv-pos)
next
case Fulse
have 1 + real-of-int (cfrac-nth ¢ (n+1)) * cfrac-nth ¢ (n+2) > 0
by (intro add-pos-nonneg) auto
with assms have conv ¢ n # conv ¢ (Suc (Suc n))
unfolding conv-eg-conv’ conv’-Suc-right using False
by (subst conv’-eq-iff) (auto simp: field-simps)
moreover from assms have conv ¢ n < conv ¢ (Suc (Suc n))
by (intro conv-even-mono) auto
ultimately have conv ¢ n < conv ¢ (Suc (Suc n)) by simp
also have ... < conv ¢ m using assms <m # n + I»
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by (intro conv-even-mono) auto
finally show ?thesis .
qed
qed

lemma conv-odd-mono-strict:
assumes odd nn < m
shows conv ¢ n > convcm
proof (cases m = n + 1)
case [simp|: True
from assms have n > 0 by (intro Nat.gr0I) auto
hence conv’ ¢ n (real-of-int (cfrac-nth ¢ n)) #
conv’ ¢ n (real-of-int (cfrac-nth ¢ n) + 1 / real-of-int (cfrac-nth ¢ (Suc n)))
by (subst conv’-eg-iff) auto
hence conv ¢ n # conv ¢ m
by (simp add: conv-eg-conv’ conv’-Suc-right)
moreover from assms have conv ¢ n > conv cm
by (intro conv-odd-mono) auto
ultimately show ?thesis by simp
next
case False
from assms have n > 0 by (intro Nat.gr0I) auto
have 1 + real-of-int (cfrac-nth ¢ (n+1)) * cfrac-nth ¢ (n+2) > 0
by (intro add-pos-nonneg) auto
with assms <n > 0> have conv ¢ n # conv ¢ (Suc (Suc n))
unfolding conv-eg-conv’ conv’-Suc-right
by (subst conv’-eq-iff) (auto simp: field-simps)
moreover from assms have conv ¢ n > conv ¢ (Suc (Suc n))
by (intro conv-odd-mono) auto
ultimately have conv ¢ n > conv ¢ (Suc (Suc n)) by simp
moreover have conv ¢ (Suc (Suc n)) > conv ¢ m using assms False
by (intro conv-odd-mono) auto
ultimately show ?thesis by linarith
qed

lemma conv-less-cfrac-lim:
assumes even n n < cfrac-length ¢
shows conv ¢ n < cfrac-lim ¢
proof (cases cfrac-length c)
case (enat l)
with assms show ?thesis by (auto simp: cfrac-lim-def conv-even-mono-strict)
next
case [simp]: infinity
from assms have conv ¢ n < conv ¢ (n + 2)
by (intro conv-even-mono-strict) auto
also from assms have ... < cfrac-lim ¢
by (intro conv-le-cfrac-lim) auto
finally show ?thesis .
qed
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lemma conv-gt-cfrac-lim:
assumes odd n n < cfrac-length ¢
shows conv ¢ n > cfrac-lim ¢
proof (cases cfrac-length c)
case (enat l)
with assms show ?thesis by (auto simp: cfrac-lim-def conv-odd-mono-strict)
next
case [simp]: infinity
from assms have cfrac-lim ¢ < conv ¢ (n + 2)
by (intro conv-ge-cfrac-lim) auto
also from assms have ... < conv cn
by (intro conv-odd-mono-strict) auto
finally show ?thesis .
qed

lemma conv-neg-cfrac-lim:
assumes n < cfrac-length c
shows conv ¢ n # cfrac-lim ¢
using conv-gt-cfrac-lim[OF - assms| conv-less-cfrac-lim[OF - assms]
by (cases even n) auto

lemma conv-ge-first: conv ¢ n > cfrac-nth ¢ 0
using conv-even-monolof 0 n c] by simp

definition cfrac-is-zero :: cfrac = bool where cfrac-is-zero ¢ «—— ¢ = 0

lemma cfrac-is-zero-code [code]: cfrac-is-zero (CFrac n xs) «— Inull xs A n = 0
unfolding cfrac-is-zero-def Inull-def zero-cfrac-def cfrac-of-int-def
by (auto simp: cfrac-length-def)

definition cfrac-is-int where cfrac-is-int ¢ «— cfrac-length ¢ = 0

lemma cfrac-is-int-code [code]: cfrac-is-int (CFrac n xs) «—— Inull s
unfolding cfrac-is-int-def Inull-def by (auto simp: cfrac-length-def)

lemma cfrac-length-of-int [simpl: cfrac-length (cfrac-of-int n) = 0
by transfer auto

lemma cfrac-is-int-of-int [simp, intro): cfrac-is-int (cfrac-of-int n)
unfolding cfrac-is-int-def by simp

lemma cfrac-is-int-iff: cfrac-is-int ¢ «—— (I n. ¢ = cfrac-of-int n)
proof —
have ¢ = cfrac-of-int (cfrac-nth ¢ 0) if cfrac-is-int ¢
using that unfolding cfrac-is-int-def by transfer auto
thus ?thesis
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by auto
qed

lemma cfrac-lim-reduce:
assumes —cfrac-is-int ¢
shows cfrac-lim ¢ = cfrac-nth ¢ 0 + 1 / cfrac-lim (cfrac-tl c)
proof (cases cfrac-length c)
case [simp]: infinity
have 0 < cfrac-nth (cfrac-tl ¢) 0
by simp
also have ... < cfrac-lim (cfrac-tl c)
by (rule cfrac-lim-ge-first)
finally have (An. real-of-int (cfrac-nth ¢ 0) + 1 / conv (c¢frac-tl ¢) n) ——
real-of-int (cfrac-nth ¢ 0) + 1/ cfrac-lim (cfrac-tl c)
by (intro tendsto-intros LIMSEQ-cfrac-lim) auto
also have (An. real-of-int (cfrac-nth ¢ 0) + 1/ conv (cfrac-tl ¢) n) = conv ¢ o
Suc
by (simp add: o-def conv-Suc)
finally have x: conv ¢ ——— real-of-int (cfrac-nth ¢ 0) + 1 / cfrac-lim (cfrac-tl

c)
by (simp add: o-def filterlim-sequentially-Suc)
show ?thesis
by (rule tendsto-unique[ OF - LIMSEQ-cfrac-lim *]) auto
next
case [simp]: (enat 1)
from assms obtain [’ where [simp]: | = Suc I
by (cases 1) (auto simp: cfrac-is-int-def zero-enat-def)
thus ?thesis
by (auto simp: cfrac-lim-def conv-Suc)
qed

lemma cfrac-lim-ti:
assumes —cfrac-is-int ¢
shows  cfrac-lim (cfrac-tl ¢) = 1/ (¢frac-lim ¢ — cfrac-nth ¢ 0)
using cfrac-lim-reduce|OF assms] by simp

lemma cfrac-remainder-Suc’:
assumes n < cfrac-length c
shows cfrac-remainder ¢ (Suc n) * (cfrac-remainder ¢ n — cfrac-nth ¢ n) = 1
proof —
have 0 < real-of-int (cfrac-nth ¢ (Suc n)) by simp
also have cfrac-nth ¢ (Suc n) < cfrac-remainder ¢ (Suc n)
using cfrac-lim-ge-first[of cfrac-drop (Suc n) |
by (simp add: cfrac-remainder-def)
finally have ... > 0.

have cfrac-remainder ¢ (Suc n) = cfrac-lim (cfrac-tl (cfrac-drop n c))
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by (simp add: o-def cfrac-remainder-def cfrac-drop-Suc-left)

also have ... = 1/ (¢frac-remainder ¢ n — cfrac-nth ¢ n) using assms
by (subst cfrac-lim-tl) (auto simp: cfrac-remainder-def cfrac-is-int-def enat-less-iff
enat-0-iff )

finally show ?thesis
using <cfrac-remainder ¢ (Suc n) > 0
by (auto simp add: cfrac-remainder-def field-simps)
qed

lemma cfrac-remainder-Suc:
assumes n < cfrac-length c
shows cfrac-remainder ¢ (Suc n) = 1 / (cfrac-remainder ¢ n — cfrac-nth ¢ n)
proof —
have cfrac-remainder ¢ (Suc n) = cfrac-lim (cfrac-tl (cfrac-drop n c))
by (simp add: o-def cfrac-remainder-def cfrac-drop-Suc-left)

also have ... = 1 / (cfrac-remainder ¢ n — cfrac-nth ¢ n) using assms

by (subst cfrac-lim-tl) (auto simp: cfrac-remainder-def cfrac-is-int-def enat-less-iff
enat-0-iff )

finally show ?thesis .
qed

lemma cfrac-remainder-0 [simp|: cfrac-remainder ¢ 0 = cfrac-lim c
by (simp add: cfrac-remainder-def)

context

fixes chkzx

defines h = conv-num ¢ and k = conv-denom ¢ and x = cfrac-remainder c
begin

lemma cfrac-lim-eq-num-denom-remainder-auz:
assumes Suc (Suc n) < cfrac-length ¢
shows cfrac-lim ¢ * (k (Suc n) * x (Suc (Suc n)) + kn) = h (Suc n) * z (Suc
(Sucn)) + hn
using assms
proof (induction n)
case ()
have cfrac-lim ¢ # cfrac-nth ¢ 0
using conv-neg-cfrac-lim[of 0 c] 0 by (auto simp: enat-le-iff)
moreover have cfrac-nth ¢ 1 x (cfrac-lim ¢ — cfrac-nth ¢ 0) # 1
using conv-neq-cfrac-lim[of 1 ¢] 0
by (auto simp: enat-le-iff conv-Suc field-simps)
ultimately show ?case using assms
by (auto simp: cfrac-remainder-Suc divide-simps z-def h-def k-def enat-le-iff)
(auto simp: field-simps)
next
case (Suc n)
have less: enat (Suc (Suc n)) < cfrac-length ¢
using Suc.prems by (cases cfrac-length ¢) auto
have *: z (Suc (Suc n)) # real-of-int (cfrac-nth ¢ (Suc (Suc n)))
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using conv-neq-cfrac-lim[of 0 cfrac-drop (n+2) c] Suc.prems
by (cases cfrac-length c) (auto simp: z-def cfrac-remainder-def)
hence cfrac-lim ¢ * (k (Suc (Suc n)) * z (Suc (Suc (Suc n))) + k (Suc n)) =
(efrac-lim ¢ = (k (Suc n) * x (Suc (Suc n)) + kn)) / (x (Suc (Suc n)) —
cfrac-nth ¢ (Suc (Suc n)))
unfolding z-def k-def h-def using less
by (subst cfrac-remainder-Suc) (auto simp: field-simps)
also have cfrac-lim ¢ * (k (Suc n) x © (Suc (Suc n)) + kn) =
h (Suc n) * x (Suc (Suc n)) + h n using less
by (intro Suc.IH) auto
also have (h (Suc n) * z (Suc (Suc n)) + hn) / (z (Suc (Suc n)) — cfrac-nth c
(Suc (Suc n))) =
h (Suc (Suc n)) * z (Suc (Suc (Suc n))) + h (Suc n) using *
unfolding z-def k-def h-def using less
by (subst (8) cfrac-remainder-Suc) (auto simp: field-simps)
finally show ?case .
qed

lemma cfrac-remainder-nonneg: cfrac-nth ¢ n > 0 = cfrac-remainder ¢ n > 0
unfolding cfrac-remainder-def by (rule cfrac-lim-nonneg) auto

lemma cfrac-remainder-pos: cfrac-nth ¢ n > 0 = cfrac-remainder ¢ n > 0
unfolding cfrac-remainder-def by (rule cfrac-lim-pos) auto

lemma cfrac-lim-eq-num-denom-remainder:
assumes Suc (Suc n) < cfrac-length ¢
shows cfrac-lim ¢ = (h (Suc n) * z (Suc (Suc n)) + hn) / (k (Suc n) * x (Suc
(Suc n)) + kn)
proof —
have k (Suc n) * z (Suc (Suc n)) + kn > 0
by (intro add-nonneg-pos mult-nonneg-nonneg)
(auto simp: k-def z-def intro!: conv-denom-pos cfrac-remainder-nonneg)
with cfrac-lim-eq-num-denom-remainder-aux|of n| assms show ?thesis
by (auto simp add: field-simps h-def k-def z-def)
qed

lemma abs-diff-successive-convs:
shows |conv ¢ (Suc n) — convcn| =1/ (kn=*k (Sucn))
proof —
have [simp]: k n # 0 for n :: nat
unfolding k-def using conv-denom-pos|of ¢ n] by auto
have conv ¢ (Suc n) — conv e n = h (Sucn) / k (Sucn) —hn/kn
by (simp add: conv-num-denom k-def h-def)
also have ... = (kn x h (Sucn) — k (Suc n) * hn) / (kn =k (Suc n))
by (simp add: field-simps)
also have kn % h (Suc n) — k (Sucn) x hn=(-1) " n
unfolding h-def k-def by (intro conv-num-denom-prod-diff)
finally show ?thesis by (simp add: k-def)
qed
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lemma conv-denom-plus2-ratio-ge: k (Suc (Suc n)) > 2 x kn
proof —
have 1 x kn + kn < cfrac-nth ¢ (Suc (Suc n)) * k (Suc n) + kn
by (intro add-mono mult-mono)
(auto simp: k-def Suc-le-eq intro!: conv-denom-lel)
thus ?thesis by (simp add: k-def)
qed

end

lemma conv’-cfrac-remainder:
assumes n < cfrac-length c
shows conv’ ¢ n (¢frac-remainder ¢ n) = cfrac-lim ¢
using assms
proof (induction n arbitrary: c)
case (Suc n c)
have conv’ ¢ (Suc n) (cfrac-remainder ¢ (Suc n)) =
cfrac-nth ¢ 0 + 1/ conv’ (¢frac-tl ¢) n (cfrac-remainder ¢ (Suc n))
using Suc.prems
by (subst conv’-Suc-left) (auto introl: cfrac-remainder-pos)
also have cfrac-remainder ¢ (Suc n) = cfrac-remainder (cfrac-tl ¢) n
by (simp add: cfrac-remainder-def cfrac-drop-Suc-right)

also have conv’ (cfrac-tl ¢) n ... = cfrac-lim (cfrac-tl c)
using Suc.prems by (subst Suc.IH) (auto simp: cfrac-remainder-def enat-less-iff)
also have cfrac-nth ¢ 0 + 1/ ... = cfrac-lim ¢

using Suc.prems by (intro cfrac-lim-reduce [symmetric]) (auto simp: cfrac-is-int-def)
finally show ?case by (simp add: cfrac-remainder-def cfrac-drop-Suc-right)
qed auto

lemma cfrac-lim-rational [introl:
assumes cfrac-length ¢ < oo
shows cfrac-lim c € Q
using assms by (cases cfrac-length c) (auto simp: cfrac-lim-def)

lemma linfinite-cfrac-of-real-auz:

z ¢ Q = z € {0<..<1} = linfinite (cfrac-of-real-auz x)
proof (coinduction arbitrary: x)

case (linfinite x)

hence ! / z ¢ Q using Rats-divide[of 1 1 / z] by auto

thus ?case using linfinite Ints-subset-Rats

by (intro disjl1 exI[of - nat |1/x] — 1] exI[of - cfrac-of-real-aux (frac (1/x))]
exl[of - frac (1/z)] conjI)
(auto simp: cfrac-of-real-auz.code[of x| frac-lt-1)

qed

lemma cfrac-length-of-real-irrational:

assumes z ¢ Q
shows cfrac-length (cfrac-of-real ) = 0o
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proof (insert assms, transfer, clarify)
fix z :: real assume z ¢ Q
thus llength (cfrac-of-real-auz (frac x)) = oo
using linfinite-cfrac-of-real-auz|of frac x] Ints-subset-Rats
by (auto simp: linfinite-conv-llength frac-it-1)
qed

lemma cfrac-length-of-real-reduce:

assumes z ¢ Z

shows cfrac-length (cfrac-of-real ) = eSuc (cfrac-length (cfrac-of-real (1 / frac
2)))

using assms

by (transfer, subst cfrac-of-real-auz.code) (auto simp: frac-lt-1)

lemma cfrac-length-of-real-int [simp): © € Z = cfrac-length (cfrac-of-real x) = 0
by transfer auto

lemma conv-cfrac-of-real-le-ge:
assumes n < cfrac-length (cfrac-of-real x)
shows if even n then conv (cfrac-of-real z) n < x else conv (cfrac-of-real x) n
>z
using assms
proof (induction n arbitrary: x)
case (Suc n z)
hence [simp]: © ¢ Z
using Suc by (auto simp: enat-0-iff)
let %2’ =1/ fracz
have enat n < cfrac-length (cfrac-of-real (1 / frac z))
using Suc.prems by (auto simp: cfrac-length-of-real-reduce simp flip: eSuc-enat)
hence IH: if even n then conv (cfrac-of-real ?x') n < %z’ else 2z’ < conv
(¢frac-of-real ?z") n
using Suc.prems by (intro Suc.IH) auto
have remainder-pos: conv (cfrac-of-real ?z') n > 0
by (rule conv-pos) (auto simp: frac-le-1)
show ?Zcase
proof (cases even n)
case True
have z < real-of-int |z| + frac
by (simp add: frac-def)
also have frac © < 1 / conv (cfrac-of-real ?z') n
using IH True remainder-pos frac-gt-0-iff [of ] by (simp add: field-simps)
finally show ?thesis using True
by (auto simp: conv-Suc cfrac-tl-of-real)
next
case Fulse
have real-of-int |z] + 1 / conv (cfrac-of-real ?x') n < real-of-int | x| + frac
using IH False remainder-pos frac-gt-0-iff [of z] by (simp add: field-simps)
also have ... =z
by (simp add: frac-def)
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finally show ?thesis using False
by (auto simp: conv-Suc cfrac-tl-of-real)
qed
qed auto

lemma cfrac-lim-of-real [simp: cfrac-lim (cfrac-of-real ) = x
proof (cases cfrac-length (cfrac-of-real x))
case (enat l)
hence conv (cfrac-of-real z) | = x
proof (induction | arbitrary: x)
case (
hence =z € Z
using cfrac-length-of-real-reduce zero-enat-def by fastforce
thus ?case by (auto elim: Ints-cases)
next
case (Suc | x)
hence [simp|: = ¢ Z
by (auto simp: enat-0-iff)
have eSuc (cfrac-length (cfrac-of-real (1 ]/ frac x))) = enat (Suc [)
using Suc.prems by (auto simp: cfrac-length-of-real-reduce)
hence conv (cfrac-of-real (1 / frac x)) 1l =1/ frac x
by (intro Suc.IH) (auto simp flip: eSuc-enat)

thus ?case
by (simp add: conv-Suc cfrac-tl-of-real frac-def)
qed
thus ?thesis by (simp add: enat cfrac-lim-def)
next

case [simp|: infinity
have lim: conv (cfrac-of-real x) —— cfrac-lim (cfrac-of-real x)
by (simp add: LIMSEQ-cfrac-lim)
have cfrac-lim (cfrac-of-real ) < z
proof (rule tendsto-upperbound)
show (An. conv (cfrac-of-real z) (n * 2)) —— cfrac-lim (cfrac-of-real x)
by (intro filterlim-compose[OF lim| mult-nat-right-at-top) auto
show eventually (An. conv (cfrac-of-real z) (n * 2) < z) at-top
using conv-cfrac-of-real-le-ge[of n x 2 x for n] by (intro always-eventually)
auto
qed auto
moreover have cfrac-lim (cfrac-of-real z) > x
proof (rule tendsto-lowerbound)
show (An. conv (cfrac-of-real ) (Suc (n * 2))) —— cfrac-lim (cfrac-of-real
z)

by (intro filterlim-compose[ OF lim] filterlim-compose|OF filterlim-Suc]
mult-nat-right-at-top) auto
show eventually (An. conv (cfrac-of-real ) (Suc (n * 2)) > x) at-top
using conv-cfrac-of-real-le-ge[of Suc (n * 2) x for n| by (intro always-eventually)
auto
qed auto
ultimately show ?thesis by (rule antisym)
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qed

lemma Ints-add-left-cancel: x € Z — v+ y € Z «—— y € Z
using Ints-diff [of © + y z] by auto

lemma Ints-add-right-cancel: y € Z — v+ y € Z «—— z € Z
using Ints-diff[of z + y y] by auto

lemma cfrac-of-real-conv':
fixes m n :: nat
assumes z > I m < n
shows cfrac-nth (cfrac-of-real (conv’ ¢ n z)) m = cfrac-nth ¢ m
using assms
proof (induction n arbitrary: ¢ m)
case (Suc n ¢ m)
from Suc.prems have gt-1: 1 < conv’ (¢frac-tl ¢) n x
by (intro conv’-gt-1) (auto simp: enat-le-iff intro: cfrac-nth-pos)
show ?Zcase
proof (cases m)
case (
thus ?thesis using gt-1 Suc.prems
by (simp add: conv’-Suc-left nat-add-distrib floor-eq-iff)
next
case (Suc m’)
from gt-1 have 1 / conv’ (cfrac-tl ¢) n xz € {0<..<1}
by auto
have 1 / conv’ (¢frac-tl¢c) nz ¢ Z
proof
assume 1 / conv’ (cfrac-tl ¢) nz € Z
then obtain k :: int where k: 1 / conv’ (¢cfrac-tl ¢) n x = of-int k
by (elim Ints-cases)
have real-of-int k € {0<..<1}
using gt-1 by (subst k [symmetric]) auto
thus Fulse by auto
qed
hence not-int: real-of-int (cfrac-nth ¢ 0) + 1 / conv’ (cfrac-tl ¢) nz ¢ Z
by (subst Ints-add-left-cancel) (auto simp: field-simps elim!: Ints-cases)
have cfrac-nth (cfrac-of-real (conv’ ¢ (Suc n) x)) m =
cfrac-nth (cfrac-of-real (of-int (cfrac-nth ¢ 0) + 1/ conv’ (cfrac-tl ¢) n x))
(Suc m’)
using «z > 1> by (subst conv’-Suc-left) (auto simp: Suc)
also have ... = cfrac-nth (cfrac-of-real (1 / frac (1 / conv’ (cfrac-tl ¢) n z)))
m/
using <z > v Suc not-int by (subst cfrac-nth-of-real-Suc) (auto simp:
frac-add-of-int)
also have 1 / conv’ (cfrac-tl ¢) n z € {0<..<I} using gt-1
by (auto simp: field-simps)
hence frac (1 / conv’ (cfrac-tl ¢) nz) = 1/ conv’ (¢cfrac-tl ¢) n x
by (subst frac-eq) auto
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hence 1/ frac (1 / conv’ (cfrac-tl ¢) n ) = conv’ (cfrac-tl ¢) n x
by simp
also have cfrac-nth (cfrac-of-real ...) m’ = cfrac-nth ¢ m
using Suc.prems by (subst Suc.IH) (auto simp: Suc enat-le-iff)
finally show ?thesis .
qed
qed simp-all

lemma cfrac-lim-irrational:
assumes [simp|: cfrac-length ¢ = 0o
shows cfrac-lim ¢ ¢ Q
proof
assume cfrac-lim ¢ € Q
then obtain « :: int and b :: nat where ab: b > 0 cfrac-limc=a /b
by (auto simp: Rats-eg-int-div-nat)
define h and k where h = conv-num ¢ and k = conv-denom ¢

have filterlim (Am. conv-denom ¢ (Suc m)) at-top at-top

using conv-denom-at-top filterlim-Suc by (rule filterlim-compose)
then obtain m where m: conv-denom ¢ (Suc m) > b + 1

by (auto simp: filterlim-at-top eventually-at-top-linorder)

have «: (axkm —bxhm)/ (km=xb =a/b—hm/km
using <b > 0» by (simp add: field-simps k-def)

have |cfrac-lim ¢ — conv e m| = |(ax km — bx hm) / (km x b)|
by (subst *) (auto simp: ab h-def k-def conv-num-denom)
alsohave ... =Jaxkm —bxhm|/ (km =)

by (simp add: k-def)
finally have eq: |cfrac-lim ¢ — conv ¢ m| = of-int |a * km — b * h m| / of-int
(km=xb).

have |cfrac-lim ¢ — conv ¢ m| x (km * b) # 0
using conv-neg-cfrac-lim[of m c] <b > 0> by (auto simp: k-def)
also have |cfrac-lim ¢ — conv ¢ m| x (km = b) = of-int |a x k m — b x h m|
using <b > 0» by (subst eq) (auto simp: k-def)
finally have |a * k m — b x h m| > [ by linarith
hence real-of-int |a x k. m — b x h m| > 1 by linarith
hence 1 / of-int (km * b) < of-int |a x k m — b * h m| / real-of-int (k m * b)
using <b > 0» by (intro divide-right-mono) (auto simp: k-def)
also have ... = |c¢frac-lim ¢ — conv ¢ m)|
by (rule eq [symmetric))
also have ... < 1 / real-of-int (conv-denom ¢ m * conv-denom ¢ (Suc m))
by (intro cfrac-lim-minus-conv-upper-bound) auto
also have ... = 1/ (real-of-int (k m) * real-of-int (k (Suc m)))
by (simp add: k-def)
also have ... < 1 / (real-of-int (k m) * real b)
using m b > O»
by (intro divide-strict-left-mono mult-strict-left-mono) (auto simp: k-def)
finally show Fulse by simp
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qed

lemma cfrac-infinite-iff: cfrac-length ¢ = co «—— cfrac-lim ¢ ¢ Q
using cfrac-lim-irrational[of c] cfrac-lim-rational[of ¢] by auto

lemma cfrac-lim-rational-iff: cfrac-lim ¢ € Q «— cfrac-length ¢ # oo
using cfrac-lim-irrational]of ¢| cfrac-lim-rational|of c] by auto

lemma cfrac-of-real-infinite-iff [simp|: cfrac-length (cfrac-of-real ) = 00 «—— z ¢
Q
by (simp add: cfrac-infinite-iff)

lemma cfrac-remainder-rational-iff [simp]:
cfrac-remainder ¢ n € Q «—— cfrac-length ¢ < oo
proof —
have cfrac-remainder ¢ n € Q «— cfrac-lim (cfrac-drop n ¢) € Q
by (simp add: cfrac-remainder-def)
also have ... «— cfrac-length ¢ # oo
by (cases cfrac-length c) (auto simp add: cfrac-lim-rational-iff)
finally show ?thesis by simp
qed

lift-definition cfrac-cons :: int = cfrac = cfrac is
Aa bs. case bs of (b, bs) = if b < 0 then (1, LNil) else (a, LCons (nat (b — 1))
bs) .

lemma cfrac-nth-cons:
assumes cfrac-nth x 0 > 1
shows cfrac-nth (cfrac-cons a x) n = (if n = 0 then a else cfrac-nth  (n — 1))
using assms
proof (transfer, goal-cases)
case (1 z an)
obtain b bs where [simp]: z = (b, bs)
by (cases x)
show ?case using 1
by (cases llength bs) (auto simp: Inth-LCons eSuc-enat le-imp-diff-is-add split:
nat.splits)
qed

lemma cfrac-length-cons [simpl:
assumes cfrac-nth x 0 > 1
shows cfrac-length (cfrac-cons a ) = eSuc (cfrac-length x)
using assms by transfer auto

lemma cfrac-tl-cons [simp]:
assumes cfrac-nth z 0 > 1
shows cfrac-tl (cfrac-cons a z) = x
using assms by transfer auto
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lemma cfrac-cons-tl:
assumes —cfrac-is-int
shows cfrac-cons (cfrac-nth x 0) (cfrac-tl ) = x
using assms unfolding cfrac-is-int-def
by transfer (auto split: llist.splits)

1.3 Non-canonical continued fractions

As we will show later, every irrational number has a unique continued frac-
tion expansion. Every rational number z, however, has two different expan-
sions: The canonical one ends with some number n (which is not equal to 1
unless z = 1) and a non-canonical one which ends with n — 1, 1.

We now define this non-canonical expansion analogously to the canonical
one before and show its characteristic properties:

e The length of the non-canonical expansion is one greater than that of
the canonical one.

o If the expansion is infinite, the non-canonical and the canonical one
coincide.

o The coefficients of the expansions are all equal except for the last two.
The last coefficient of the non-canonical expansion is always 1, and the
second to last one is the last of the canonical one minus 1.

lift-definition cfrac-canonical :: cfrac = bool is
Az, xs). —lfinite xs V Inull s V llast s # 0 .

lemma cfrac-canonical [code]:
cfrac-canonical (CFrac x xs) «—— Inull zs V llast xs # 0 V —lfinite xs
by (auto simp add: cfrac-canonical-def)

lemma cfrac-canonical-iff:
cfrac-canonical ¢ «——
cfrac-length ¢ € {0, oo} V cfrac-nth ¢ (the-enat (cfrac-length c)) # 1
proof (transfer, clarify, goal-cases)
case (1 z xs)
show ?Zcase
by (cases llength xs)
(auto simp: llast-def enat-0 Ifinite-conv-llength-enat split: nat.splits)
qed

lemma [last-cfrac-of-real-auz-nonzero:
assumes [lfinite (cfrac-of-real-aux x) —lnull (cfrac-of-real-auz x)
shows llast (cfrac-of-real-auz z) # 0
using assms

proof (induction cfrac-of-real-aux x arbitrary: x rule: lfinite-induct)
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case (LCons )
from LCons.prems have z € {0<..<1}
by (subst (asm) cfrac-of-real-auz.code) (auto split: if-splits)
show ?Zcase
proof (cases 1 | z € Z)
case Fulse
thus ?thesis using LCons
by (auto simp: llast-LCons frac-lt-1 cfrac-of-real-auz.code|of z])
next
case True
then obtain n where n: 1 / z = of-int n
by (elim Ints-cases)
have 1 / © > 1 using <z € -» by auto
with n have n > 1 by simp
from n have z = 1 / of-int n
using «n > D) <z € - by (simp add: field-simps)
with «n > 1) show ?thesis
using LCons cfrac-of-real-auz.code|of z] by (auto simp: llast-LCons frac-it-1)
qed
qed auto

lemma cfrac-canonical-of-real [intro]: cfrac-canonical (cfrac-of-real x)
by (transfer fizing: z) (use llast-cfrac-of-real-auz-nonzero|of frac z] in force)

primcorec cfrac-of-real-alt-auz :: real = nat llist where
cfrac-of-real-alt-auxr © =
(if x € {0<..<1} then
if 1/ x € Z then
LCons (nat |1/z] — 2) (LCons 0 LNil)
else LCons (nat |1/xz] — 1) (cfrac-of-real-alt-auz (frac (1/z)))
else LNil)

lemma cfrac-of-real-auz-alt-LNil [simp]: © ¢ {0<..<1} = cfrac-of-real-alt-auz =
= LNil
by (subst cfrac-of-real-alt-auz.code) auto

lemma cfrac-of-real-auz-alt-0 [simpl: cfrac-of-real-alt-aux 0 = LNil
by (subst cfrac-of-real-alt-auz.code) auto

lemma cfrac-of-real-auz-alt-eq-LNil-iff [simp]: cfrac-of-real-alt-auz x = LNil «——
z ¢ {0<.<1}
by (subst cfrac-of-real-alt-auz.code) auto

lift-definition cfrac-of-real-alt :: real = cfrac is
At. if ¢ € Z then (|z] — 1, LCons 0 LNil) else (|z], cfrac-of-real-alt-aux (frac

lemma cfrac-tl-of-real-alt:
assumes z ¢ Z
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shows cfrac-tl (cfrac-of-real-alt ) = cfrac-of-real-alt (1 / frac x)
using assms
proof (transfer, goal-cases)
case (1 z)
show Zcase
proof (cases 1 / frac z € Z.)
case Fulse
from 1 have int (nat |1 / frac x| — Suc 0) + 1 = |1/ frac z]
by (subst of-nat-diff) (auto simp: le-nat-iff frac-le-1)
with Fualse show ?thesis
using <z ¢ Z»
by (subst cfrac-of-real-alt-auz.code) (auto split: llist.splits simp: frac-lt-1)
next
case True
then obtain n where 1 / frac x = of-int n
by (auto simp: Ints-def)
moreover have 1 / frac z > 1
using 1 by (auto simp: divide-simps frac-lt-1)
ultimately have 1 / fracz > 2
by simp
hence int (nat |1/ fracz| — 2) + 2 = |1/ frac x|
by (subst of-nat-diff) (auto simp: le-nat-iff frac-le-1)
thus ?thesis
using <z ¢ Z»
by (subst cfrac-of-real-alt-auz.code) (auto split: llist.splits simp: frac-lt-1)
qged
qged

lemma cfrac-nth-of-real-alt-Suc:
assumes z ¢ Z
shows cfrac-nth (cfrac-of-real-alt x) (Suc n) = cfrac-nth (cfrac-of-real-alt (1 /
frac z)) n
proof —
have cfrac-nth (cfrac-of-real-alt ) (Suc n) =
cfrac-nth (cfrac-tl (cfrac-of-real-alt z)) n
by simp
also have cfrac-tl (cfrac-of-real-alt x) = cfrac-of-real-alt (1 / frac x)
by (simp add: cfrac-tl-of-real-alt assms)
finally show ?thesis .
qed

lemma cfrac-nth-gt0-of-real-int [simp]:
m > 0 = cfrac-nth (cfrac-of-real (of-int n)) m = 1
by transfer (auto simp: Inth-LCons eSuc-def enat-0-iff split: nat.splits)

lemma cfrac-nth-0-of-real-alt-int [simp):

cfrac-nth (cfrac-of-real-alt (of-int n)) 0 = n — 1
by transfer auto
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lemma cfrac-nth-gt0-of-real-alt-int [simp]:
m > 0 = cfrac-nth (cfrac-of-real-alt (of-int n)) m = 1
by transfer (auto simp: Inth-LCons eSuc-def split: nat.splits)

lemma [length-cfrac-of-real-alt-aux:
assumes z € {0<..<I}
shows llength (cfrac-of-real-alt-aux x) = eSuc (llength (cfrac-of-real-auz x))
using assms
proof (coinduction arbitrary: = rule: enat-coinduct)
case (FEg-enat x)
show ?case
proof (cases 1 | x € Z)
case Fulse
with Eg-enat have frac (1 / z) € {0<..<1}
by (auto intro: frac-lt-1)
hence Jz’. llength (cfrac-of-real-alt-aux (frac (1 / ))) =
llength (cfrac-of-real-alt-auzx z") N
llength (cfrac-of-real-aux (frac (1 / x))) = llength (cfrac-of-real-auzx z')

0<z' ANz’ <1
by (intro exI[of - frac (1 / z)]) auto
thus ?thesis using Fualse Eq-enat
by (auto simp: cfrac-of-real-alt-auz.code|of x| cfrac-of-real-aux.code|of z])
qed (use Eq-enat in <auto simp: cfrac-of-real-alt-auz.code|of x| cfrac-of-real-aux.code|of
z))

qged

lemma cfrac-length-of-real-alt:
cfrac-length (cfrac-of-real-alt x) = eSuc (cfrac-length (cfrac-of-real x))
by transfer (auto simp: llength-cfrac-of-real-alt-auz frac-t-1)

lemma cfrac-of-real-alt-auz-eq-reqular:
assumes z € {0<..<1} llength (cfrac-of-real-aux z) = oo
shows cfrac-of-real-alt-aux x = cfrac-of-real-auz
using assms
proof (coinduction arbitrary: x)
case (Fq-llist x)
hence 3z’. cfrac-of-real-aux (frac (1 / z)) =
cfrac-of-real-aux ' A
cfrac-of-real-alt-auz (frac (1 / z)) =
cfrac-of-real-alt-auz ' N 0 < z' A ' < 1 A llength (cfrac-of-real-auz z') =
00
by (intro exI[of - frac (1 / z)])
(auto simp: cfrac-of-real-auz.code[of x| cfrac-of-real-alt-auz.code|of x
eSuc-eg-infinity-iff frac-lt-1)
with Fq-llist show ?case
by (auto simp: eSuc-eg-infinity-iff)
qed
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lemma cfrac-of-real-alt-irrational [simp]:
assumes z ¢ Q
shows cfrac-of-real-alt © = cfrac-of-real x
proof —
from assms have cfrac-length (cfrac-of-real x) = 0o
using cfrac-length-of-real-irrational by blast
with assms show ?thesis
by transfer
(use Ints-subset-Rats in
<auto introl: cfrac-of-real-alt-auz-eg-regular simp: frac-lt-1 llength-cfrac-of-real-alt-auzy)
qged

lemma cfrac-nth-of-real-alt-0:
cfrac-nth (cfrac-of-real-alt ) 0 = (if x € Z then |z] — I else [z])
by transfer auto

lemma cfrac-nth-of-real-alt:
fixes n :: nat and z :: real
defines ¢ = cfrac-of-real x
defines ¢’ = cfrac-of-real-alt x
defines [ = cfrac-length ¢
shows cfrac-nth ¢’ n =
(if enat n = [ then
cfrac-nth ¢ n — 1
else if enat n = | + 1 then
1
else
cfrac-nth ¢ n)
unfolding c-def c¢’-def I-def
proof (induction n arbitrary: x rule: less-induct)
case (less n)
consider ¢ Q|z€Z|n=0x€Q—27Z|n"wheren=Sucn ' 2€Q -2
by (cases n) auto
thus ?case
proof cases
assume z ¢ Q
thus ?thesis
by (auto simp: cfrac-length-of-real-irrational)
next
assume z € Z
thus ?thesis
by (auto simp: Ints-def one-enat-def zero-enat-def)
next
assume x: n =0z € Q — Z
have enat 0 # cfrac-length (cfrac-of-real z) + 1
using zero-enat-def by auto
moreover have enat 0 # cfrac-length (cfrac-of-real x)
using * cfrac-length-of-real-reduce zero-enat-def by auto
ultimately show ?thesis using *
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by (auto simp: cfrac-nth-of-real-alt-0)
next
fix n’ assume *: n = Sucn'z€ Q - Z
from less.IH [of n' 1 / frac z] and x show ?thesis
by (auto simp: cfrac-nth-of-real-Suc cfrac-nth-of-real-alt-Suc cfrac-length-of-real-reduce

eSuc-def one-enat-def enat-0-iff split: enat.splits)
qed
qed

lemma cfrac-of-real-length-eq-0-iff: cfrac-length (cfrac-of-real ) = 0 «—— =z € Z
by transfer (auto simp: frac-lt-1)

lemma conv’-cong:
assumes (Ak. k < n = cfrac-nth ¢ k = cfrac-nth ¢’ k) n =
shows conv’ cnx = conv’ ¢’ n'y
using assms(1) unfolding assms(2,3) [symmetric]
by (induction n arbitrary: z) (auto simp: conv’-Suc-right)

|
3
S
I
<

lemma conv-cong:
assumes (Ak. k < n = cfrac-nth ¢ k = cfrac-nth ¢' k) n = n’'
shows conv ¢ n = conv ¢’ n’
using assms(1) unfolding assms(2) [symmetric|
by (induction n arbitrary: ¢ ¢’) (auto simp: conv-Suc)

lemma conv’-cfrac-of-real-alt:

assumes enat n < cfrac-length (cfrac-of-real x)

shows conv’ (c¢frac-of-real-alt ©) n y = conv’ (cfrac-of-real ) n y
proof (cases cfrac-length (cfrac-of-real z))

case infinity

thus “thesis by auto
next

case [simp]: (enat 1)

with assms show ?thesis

by (intro conv’-cong refl; subst cfrac-nth-of-real-alt) (auto simp: one-enat-def)

qed

lemma cfrac-lim-of-real-alt [simp]: cfrac-lim (cfrac-of-real-alt ©) = x
proof (cases cfrac-length (cfrac-of-real z))
case infinity
thus ?thesis by auto
next
case (enat l)
thus ?thesis
proof (induction | arbitrary: x)
case (
hence z € Z
using cfrac-of-real-length-eq-0-iff zero-enat-def by auto
thus ?2case
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by (auto simp: Ints-def cfrac-lim-def cfrac-length-of-real-alt eSuc-def conv-Suc)
next
case (Suc l z)
hence x: —cfrac-is-int (cfrac-of-real-alt x) x ¢ Z.
by (auto simp: cfrac-is-int-def cfrac-length-of-real-alt Ints-def zero-enat-def
eSuc-def)
hence cfrac-lim (cfrac-of-real-alt x) =
of-int |z| + 1/ cfrac-lim (cfrac-tl (cfrac-of-real-alt x))
by (subst cfrac-lim-reduce) (auto simp: cfrac-nth-of-real-alt-0)
also have cfrac-length (cfrac-of-real (1 / frac z)) =1
using Suc.prems x by (metis cfrac-length-of-real-reduce eSuc-enat eSuc-inject)
hence 1 / cfrac-lim (cfrac-tl (cfrac-of-real-alt x)) = frac x
by (subst cfrac-tl-of-real-alt[OF %(2)], subst Suc) (use Suc.prems * in auto)
also have real-of-int |x] + frac z = x
by (simp add: frac-def)
finally show ?case .
qed
qed

lemma cfrac-eql:
assumes cfrac-length ¢ = cfrac-length ¢’ and An. cfrac-nth ¢ n = cfrac-nth ¢’ n
shows ¢ = ¢’
proof (use assms in transfer, safe, goal-cases)
case (1 a zs b ys)
from 1(2)[of 0] show ?case
by auto
next
case (2 a zs b ys)
define f where f = (Azs n. if enat (Suc n) < llength xs then int (Inth zs n) +
1 else 1)
have Vn. fzsn = fysn
using 2(2)[of Suc n for n] by (auto simp: f-def cong: if-cong)
with 2(1) show zs = ys
proof (coinduction arbitrary: xs ys)
case (FEq-llist xs ys)
show ?Zcase
proof (cases Inull xs V Inull ys)
case Fulse
from Fulse have *: enat (Suc 0) < llength ys
using Suc-ile-eq zero-enat-def by auto
have llength (Itl xs) = llength (It ys)
using Fq-llist by (cases xs; cases ys) auto
moreover have [hd zs = lhd ys
using False x Eq-llist(1) spec|OF Eq-llist(2), of 0]
by (auto simp: f-def Inth-0-conv-lhd)
moreover have f (Itl zs) n = f (Itl ys) n for n
using Fq-llist(1) x spec[OF Eq-llist(2), of Suc n]
by (cases xs; cases ys) (auto simp: f-def Suc-ile-eq split: if-splits)
ultimately show ?Zthesis
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using Fualse by auto
next
case True
thus “thesis
using Fq-llist(1) by auto
qed
qed
qed

lemma cfrac-eq-0I:
assumes cfrac-lim ¢ = 0 cfrac-nth ¢ 0 > 0
shows c¢=10
proof —
have x: cfrac-is-int c
proof (rule ccontr)
assume *: —cfrac-is-int ¢
from *x have conv ¢ 0 < cfrac-lim c
by (intro conv-less-cfrac-lim) (auto simp: cfrac-is-int-def simp flip: zero-enat-def)
hence cfrac-nth ¢ 0 < 0
using assms by simp
thus Fulse
using assms by simp
qed
from * assms have cfrac-nth ¢ 0 = 0
by (auto simp: cfrac-lim-def cfrac-is-int-def)
from x and this show ¢ =0
unfolding zero-cfrac-def cfrac-is-int-def by transfer auto
qed

lemma cfrac-eq-11:
assumes cfrac-lim ¢ = 1 cfrac-nth ¢ 0 # 0
shows ¢ =1
proof —
have *: cfrac-is-int c
proof (rule ccontr)
assume *: —cfrac-is-int ¢
from * have conv ¢ 0 < cfrac-lim c
by (intro conv-less-cfrac-lim) (auto simp: cfrac-is-int-def simp flip: zero-enat-def)
hence cfrac-nth ¢ 0 < 0
using assms by simp

have cfrac-lim ¢ = real-of-int (cfrac-nth ¢ 0) + 1 / cfrac-lim (cfrac-tl c)
using * by (subst cfrac-lim-reduce) auto
also have real-of-int (cfrac-nth ¢ 0) < 0
using <cfrac-nth ¢ 0 < 0> by simp
also have 1 / cfrac-lim (cfrac-tl ¢) < 1
proof —
have 1 < cfrac-nth (cfrac-tl ¢) 0
by auto
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also have ... < cfrac-lim (cfrac-tl c)
by (rule cfrac-lim-ge-first)
finally show ?thesis by simp
qed
finally show Fulse
using assms by simp
qed

from * assms have cfrac-nth ¢ 0 = 1
by (auto simp: cfrac-lim-def cfrac-is-int-def)
from * and this show ¢ = 1
unfolding one-cfrac-def cfrac-is-int-def by transfer auto
qed

lemma cfrac-coinduct [coinduct type: cfrac):
assumes R cI c2
assumes [H: A\cl c2. R ¢l ¢2 =
cfrac-is-int c1 = cfrac-is-int c2 N
cfrac-nth c1 0 = cfrac-nth c2 0 N
(—efrac-is-int ¢l — —cfrac-is-int ¢c2 — R (cfrac-tl c1) (cfrac-tl c2))
shows c¢1 = c2
proof (rule cfrac-eql)
show cfrac-nth c1 n = cfrac-nth c2 n for n
using assms(1)
proof (induction n arbitrary: c1 c2)
case (
from IH[OF this| show Zcase
by auto
next
case (Suc n)
thus ?Zcase
using IH by (metis cfrac-is-int-iff cfrac-nth-0-of-int cfrac-nth-tl)
qed
next
show cfrac-length c1 = cfrac-length c2
using assms(1)
proof (coinduction arbitrary: c1 c2 rule: enat-coinduct)
case (Eg-enat c1 c2)
show ?Zcase
proof (cases cfrac-is-int c1)
case True
thus ?thesis
using IH[OF Eqg-enat(1)] by (auto simp: cfrac-is-int-def)
next
case Fulse
with TH[OF Eg-enat(1)] have xx: —c¢frac-is-int ¢1 R (cfrac-tl c1) (cfrac-tl c2)
by auto
have x: (cfrac-length c1 = 0) = (cfrac-length ¢2 = 0)
using IH[OF Eq-enat(1)] by (auto simp: cfrac-is-int-def)
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show ?thesis
by (intro conjl impl disjI1 *, rule exI[of - cfrac-tl c1], rule exI[of - cfrac-tl
c2])
(use #x in <auto simp: epred-conv-minus)
qed
qed
qed

lemma cfrac-nth-0-cases:
cfrac-nth ¢ 0 = | cfrac-lim ¢| V cfrac-nth ¢ 0 = |cfrac-lim ¢] — 1 A cfrac-tl ¢
=1
proof (cases cfrac-is-int c)
case True
hence cfrac-nth ¢ 0 = | cfrac-lim c|
by (auto simp: cfrac-lim-def cfrac-is-int-def)
thus ?thesis by blast
next
case Fulse
note not-int = this
have bounds: 1 / cfrac-lim (cfrac-tl ¢) > 0 N 1/ cfrac-lim (cfrac-tl ¢) < 1
proof —
have 1 < c¢frac-nth (cfrac-tl ¢) 0
by simp
also have ... < cfrac-lim (cfrac-tl c)
by (rule cfrac-lim-ge-first)
finally show ?thesis
using False by (auto simp: cfrac-lim-nonneg)
qed

thus ?thesis
proof (cases cfrac-lim (cfrac-tl ¢) = 1)
case Fulse
have |cfrac-lim ¢| = cfrac-nth ¢ 0 + |1/ cfrac-lim (cfrac-tl c)|
using not-int by (subst cfrac-lim-reduce) auto
also have 1 / cfrac-lim (cfrac-tl ¢) > 0 N 1/ cfrac-lim (cfrac-tl ¢) < 1
using bounds Fualse by (auto simp: divide-simps)
hence |1 / cfrac-lim (cfrac-tl ¢)] = 0
by linarith
finally show ?thesis by simp
next
case True
have cfrac-nth ¢ 0 = |cfrac-lim ¢| — 1
using not-int True by (subst cfrac-lim-reduce) auto
moreover have cfrac-tl ¢ = 1
using True by (intro cfrac-eq-1I) auto
ultimately show ?thesis by blast
qed
qed
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lemma cfrac-length-1 [simp): cfrac-length 1 = 0
unfolding one-cfrac-def by simp

lemma cfrac-nth-1 [simpl: cfrac-nth 1 m = 1
unfolding one-cfrac-def by transfer (auto simp: enat-0-iff)

lemma cfrac-lim-1 [simpl: cfrac-lim 1 = 1
by (auto simp: cfrac-lim-def)

lemma cfrac-nth-0-not-int:
assumes cfrac-lim ¢ ¢ Z
shows cfrac-nth ¢ 0 = | cfrac-lim c|
proof —
have cfrac-tl ¢ # 1
proof
assume eq: cfrac-tl ¢ = 1
have —cfrac-is-int c
using assms by (auto simp: cfrac-lim-def cfrac-is-int-def)
hence cfrac-lim ¢ = of-int | cfrac-nth ¢ 0] + 1
using eq by (subst cfrac-lim-reduce) auto
hence cfrac-lim ¢ € Z
by auto
with assms show Fualse by auto
qed
with cfrac-nth-0-cases|of ¢] show ?thesis by auto
qged

lemma cfrac-of-real-cfrac-lim-irrational:
assumes cfrac-lim ¢ ¢ Q
shows cfrac-of-real (cfrac-lim ¢) = ¢
proof (rule cfrac-eql)
from assms show cfrac-length (cfrac-of-real (cfrac-lim c¢)) = cfrac-length ¢
using cfrac-lim-rational-iff by auto
next
fix n
show cfrac-nth (cfrac-of-real (cfrac-lim ¢)) n = cfrac-nth ¢ n
using assms
proof (induction n arbitrary: c)
case (0 ¢)
thus ?case
using Ints-subset-Rats by (subst cfrac-nth-0-not-int) auto
next
case (Suc n c)
from Suc.prems have [simp]: cfrac-lim ¢ ¢ Z
using Ints-subset-Rats by blast
have cfrac-nth (cfrac-of-real (cfrac-lim c)) (Suc n) =
cfrac-nth (cfrac-tl (cfrac-of-real (cfrac-lim ¢))) n
by (simp flip: cfrac-nth-tl)
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also have cfrac-tl (cfrac-of-real (cfrac-lim ¢)) = cfrac-of-real (1 / frac (cfrac-lim

o)
using Suc.prems Ints-subset-Rats by (subst cfrac-tl-of-real) auto
also have 1 / frac (cfrac-lim ¢) = cfrac-lim (cfrac-tl c)
using Suc.prems by (subst cfrac-lim-tl) (auto simp: frac-def cfrac-is-int-def
cfrac-nth-0-not-int)
also have cfrac-nth (cfrac-of-real (cfrac-lim (cfrac-tl ¢))) n = cfrac-nth ¢ (Suc
")
using Suc.prems by (subst Suc.IH) (auto simp: cfrac-lim-rational-iff)
finally show ?case .
qed
qed

lemma cfrac-eql-first:
assumes —cfrac-is-int ¢ ~cfrac-is-int c’
assumes cfrac-nth ¢ 0 = cfrac-nth ¢’ 0 and cfrac-tl ¢ = cfrac-tl ¢’
shows ¢ = ¢’
using assms unfolding cfrac-is-int-def
by transfer (auto split: llist.splits)

lemma cfrac-is-int-of-real-iff: cfrac-is-int (cfrac-of-real ©) —— x € Z
unfolding cfrac-is-int-def by transfer (use frac-lt-1 in auto)

lemma cfrac-not-is-int-of-real-alt: —cfrac-is-int (cfrac-of-real-alt x)
unfolding cfrac-is-int-def by transfer (auto simp: frac-lt-1)

lemma cfrac-tl-of-real-alt-of-int [simp]: cfrac-tl (cfrac-of-real-alt (of-int n)) = 1
unfolding one-cfrac-def by transfer auto

lemma cfrac-is-intl:
assumes cfrac-nth ¢ 0 > | cfrac-lim ¢| and cfrac-lim ¢ € Z
shows cfrac-is-int ¢
proof (rule ccontr)
assume *: —cfrac-is-int ¢
from x have conv ¢ 0 < cfrac-lim c
by (intro conv-less-cfrac-lim) (auto simp: cfrac-is-int-def simp flip: zero-enat-def)
with assms show Fulse
by (auto simp: Ints-def)
qed

lemma cfrac-eq-of-intl:
assumes cfrac-nth ¢ 0 > | cfrac-lim c¢| and cfrac-lim ¢ € Z
shows ¢ = cfrac-of-int | cfrac-lim c|
proof —
from assms have int: cfrac-is-int ¢
by (intro cfrac-is-intl) auto
have [simp]: cfrac-lim ¢ = cfrac-nth ¢ 0
using int by (simp add: cfrac-lim-def cfrac-is-int-def)
from int have ¢ = cfrac-of-int (cfrac-nth ¢ 0)
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unfolding cfrac-is-int-def by transfer auto
also from assms have cfrac-nth ¢ 0 = | cfrac-lim c|
using int by auto
finally show ?thesis .
qed

lemma cfrac-lim-of-int [simp]: cfrac-lim (cfrac-of-int n) = of-int n
by (simp add: cfrac-lim-def)

lemma cfrac-of-real-of-int [simp]: cfrac-of-real (of-int n) = cfrac-of-int n
by transfer auto

lemma cfrac-of-real-of-nat [simp|: cfrac-of-real (of-nat n) = cfrac-of-int (int n)
by transfer auto

lemma cfrac-int-cases:
assumes cfrac-lim ¢ = of-int n
shows ¢ = cfrac-of-int n V ¢ = cfrac-of-real-alt (of-int n)
proof —
from cfrac-nth-0-cases|of c] show ?thesis
proof (rule disj-forward)
assume eq: cfrac-nth ¢ 0 = | cfrac-lim c|
have ¢ = cfrac-of-int | cfrac-lim c|
using assms eq by (intro cfrac-egq-of-intl) auto
with assms eq show ¢ = cfrac-of-int n
by simp
next
assume *: cfrac-nth ¢ 0 = | cfrac-lim ¢| — 1 A cfrac-tl ¢ = 1
have —cfrac-is-int c
using * by (auto simp: cfrac-is-int-def cfrac-lim-def)
hence cfrac-length ¢ = eSuc (cfrac-length (cfrac-tl c))
by (subst cfrac-length-tl; cases cfrac-length c)
(auto simp: cfrac-is-int-def eSuc-def enat-0-iff split: enat.splits)
also have cfrac-tl ¢ = 1
using * by auto
finally have cfrac-length ¢ = 1
by (simp add: eSuc-def one-enat-def)
show ¢ = cfrac-of-real-alt (of-int n)
by (rule cfrac-eql-first)
(use <—cfrac-is-int ¢» % assms in <auto simp: cfrac-not-is-int-of-real-alt»)
qed
qged

lemma cfrac-cases:
¢ € {cfrac-of-real (cfrac-lim c), cfrac-of-real-alt (cfrac-lim c)}
proof (cases cfrac-length c)
case infinity
hence cfrac-lim ¢ ¢ Q
by (simp add: cfrac-lim-irrational)
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thus ?thesis
using cfrac-of-real-cfrac-lim-irrational by simp
next
case (enat [)
thus ?thesis
proof (induction | arbitrary: c)
case (0 ¢)
hence ¢ = cfrac-of-real (cfrac-nth ¢ 0)
by transfer (auto simp flip: zero-enat-def)
with 0 show ?case by (auto simp: cfrac-lim-def)
next
case (Sucl ¢)
show ?Zcase
proof (cases cfrac-lim ¢ € Z)
case True
thus ?thesis
using cfrac-int-cases|of c|] by (force simp: Ints-def)
next
case [simp|: False
have —cfrac-is-int c
using Suc.prems by (auto simp: cfrac-is-int-def enat-0-iff)
show ?thesis
using cfrac-nth-0-cases|of |
proof (elim disjE conjE)
assume *: cfrac-nth ¢ 0 = |cfrac-lim ¢| — 1 cfrac-tl ¢ = 1
hence cfrac-lim c € Z
using <—c¢frac-is-int ¢» by (subst cfrac-lim-reduce) auto
thus ?thesis
by (auto simp: cfrac-int-cases)
next
assume eq: cfrac-nth ¢ 0 = | cfrac-lim c|
have cfrac-tl ¢ = cfrac-of-real (cfrac-lim (cfrac-tl ¢)) Vv
cfrac-tl ¢ = cfrac-of-real-alt (cfrac-lim (cfrac-tl ¢))
using Suc.IH|[of cfrac-tl c| Suc.prems by auto
hence ¢ = cfrac-of-real (cfrac-lim c) Vv
¢ = cfrac-of-real-alt (cfrac-lim c)
proof (rule disj-forward)
assume eq”: cfrac-tl ¢ = cfrac-of-real (cfrac-lim (cfrac-tl c))
show ¢ = cfrac-of-real (cfrac-lim c)
by (rule cfrac-eql-first)
(use <—cfrac-is-int ¢ eq eq in
cauto simp: cfrac-is-int-of-real-iff cfrac-tl-of-real cfrac-lim-tl frac-def»)
next
assume eq”: cfrac-tl ¢ = cfrac-of-real-alt (cfrac-lim (cfrac-tl c))
have eq”: cfrac-nth (cfrac-of-real-alt (cfrac-lim ¢)) 0 = | cfrac-lim c|
using Suc.prems by (subst cfrac-nth-of-real-alt-0) auto
show ¢ = cfrac-of-real-alt (cfrac-lim c)
by (rule cfrac-eql-first)
(use <—cefrac-is-int ¢ eq eq’ eq” in
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cauto simp: cfrac-not-is-int-of-real-alt cfrac-tl-of-real-alt cfrac-lim-tl

frac-def>)

qed

thus “thesis by simp

qed
qed
qed

qed

lemma cfrac-lim-eq-iff:
assumes cfrac-length ¢ = oo V cfrac-length ¢’ = oo
shows cfrac-lim ¢ = cfrac-lim ¢’ «—— c = ¢’
proof
assume *: cfrac-lim ¢ = cfrac-lim ¢’
hence cfrac-of-real (cfrac-lim ¢) = cfrac-of-real (cfrac-lim c’)
by (simp only:)
thus ¢ = ¢/
using assms %
by (subst (asm) (1 2) cfrac-of-real-cfrac-lim-irrational)
(auto simp: cfrac-infinite-iff)
qed auto

lemma floor-cfrac-remainder:
assumes cfrac-length ¢ = oo
shows | c¢frac-remainder ¢ n| = cfrac-nth ¢ n
by (metis add.left-neutral assms cfrac-length-drop cfrac-lim-eq-iff idiff-infinity
cfrac-lim-of-real cfrac-nth-drop cfrac-nth-of-real-0 cfrac-remainder-def)

1.4 Approximation properties

In this section, we will show that convergents of the continued fraction ex-
pansion of a number z are good approximations of z, and in a certain sense,
the reverse holds as well.
lemma sgn-of-int:

sgn (of-int x =2 'a :: {linordered-idom}) = of-int (sgn x)

by (auto simp: sgn-if)

lemma conv-ge-one: cfrac-nth ¢ 0 > 0 = conv cn > 1
by (rule order.trans|OF - conv-ge-first]) auto

context

fixes c h k

defines h = conv-num ¢ and k = conv-denom c
begin

lemma abs-diff-le-abs-add:
fixes x y :: real
assumes £ > 0 ANy >0Vzz< O0ANy<0
shows |z — y| < |z + y|
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using assms by linarith

lemma abs-diff-less-abs-add:
fixes = y :: real
assumes £ > 0 ANy >0V <O0ANy<O0
shows |z — y| < |z + ]
using assms by linarith

lemma abs-diff-le-imp-same-sign:
assumes |t — y| < d d < |y|
shows sgn x = sgn (y::real)
using assms by (auto simp: sgn-if)

lemma conv-nonpos:

assumes cfrac-nth ¢ 0 < 0

shows conven <0
proof (cases n)

case ()

thus ?thesis using assms by auto
next

case [simp]: (Suc n’)

have conv ¢ n = real-of-int (cfrac-nth ¢ 0) + 1 / conv (cfrac-tl ¢) n

by (simp add: conv-Suc)
also have ... < -1+ 1/ 1
using assms by (intro add-mono divide-left-mono) (auto introl: conv-pos

conv-ge-one)

finally show ?thesis by simp
qed

/

lemma cfrac-lim-nonpos:

assumes cfrac-nth ¢ 0 < 0

shows cfrac-lim ¢ < 0
proof (cases cfrac-length c)

case infinity

show ?thesis using LIMSEQ-cfrac-lim[OF infinity]

by (rule tendsto-upperbound) (use assms in <auto simp: conv-nonpos))

next

case (enat l)

thus ?thesis by (auto simp: cfrac-lim-def conv-nonpos assms)
qed

lemma conv-num-nonpos:
assumes cfrac-nth ¢ 0 < 0
shows hn <0
proof (induction n rule: fib.induct)
case 2
have cfrac-nth ¢ (Suc 0) * cfrac-nth ¢ 0 < 1 % cfrac-nth ¢ 0
using assms by (intro mult-right-mono-neg) auto
also have ... + 1 < 0 using assms by auto
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finally show ?case by (auto simp: h-def)
next
case (3 n)
have cfrac-nth ¢ (Suc (Suc n)) * h (Suc n) < 0
using 3 by (simp add: mult-nonneg-nonpos)
also have ... + hn < 0
using 3 by simp
finally show ?case
by (auto simp: h-def)
qed (use assms in <auto simp: h-def»)

lemma conv-best-approximation-auz:
cfrac-limec> 0N hn>0V cfrac-limc < 0N hn <20
proof (cases cfrac-nth ¢ 0 > 0)

case True

from True have 0 < conv ¢ 0
by simp

also have ... < cfrac-lim c

by (rule conv-le-cfrac-lim) (auto simp: enat-0)
finally have cfrac-lim ¢ > 0 .
moreover from True have hn > 0
unfolding h-def by (intro conv-num-nonneg)
ultimately show ?thesis by (simp add: sgn-if)
next
case Fulse
thus ?thesis
using cfrac-lim-nonpos conv-num-nonpos|of n] by (auto simp: h-def)
qed

lemma conv-best-approximation-ex:
fixes a b :: int and z :: real
assumes n < cfrac-length c
assumes 0 < band b < k n and coprime a b and n > 0
assumes (a, b) # (hn, kn)
assumes —(cfrac-length ¢ = 1 A n = 0)
assumes Suc n # cfrac-length ¢ V cfrac-canonical ¢
defines z = cfrac-lim ¢
shows |kn*xz — hn|<|b*z—
proof (cases |a| = |h n| A b=k n)
case True
with assms have [simp]: a = —h n
by (auto simp: abs-if split: if-splits)
have kn > 0
by (auto simp: k-def)
show ?thesis
proof (cases x = 0)
case True
hence ¢ = cfrac-of-real 0 V ¢ = cfrac-of-real-alt 0
unfolding z-def by (metis cfrac-cases empty-iff insert-iff)
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hence Fulse

proof
assume c = cfrac-of-real 0
thus Fualse
using assms by (auto simp: enat-0-iff h-def k-def)
next

assume [simp|: ¢ = cfrac-of-real-alt 0
hence n=0Vv n=1
using assms by (auto simp: cfrac-length-of-real-alt enat-0-iff k-def h-def
eSuc-def)
thus Fulse
using assms True
by (elim disjE) (auto simp: cfrac-length-of-real-alt enat-0-iff k-def h-def
eSuc-def
cfrac-nth-of-real-alt one-enat-def split: if-splits)
qed
thus ?thesis ..
next
case Fulse
have h n # 0
using True assms(6) h-def by auto
hencex > 0ANhn>0Vz<OANhn<O
using <z # 0> conv-best-approzimation-auz[of n] unfolding z-def by auto
hence |real-of-int (k n) *x © — real-of-int (h n)| < |real-of-int (k n) * = +
real-of-int (h n)]
using <k n > O»
by (intro abs-diff-less-abs-add) (auto simp: not-le zero-less-mult-iff mult-less-0-iff)
thus ?thesis using True by auto
qed
next
case Fulse
note x = this
show ?thesis
proof (cases n = cfrac-length c)
case True
hence z = conv c n
by (auto simp: cfrac-lim-def x-def split: enat.splits)
alsohave ... =hn /kn
by (auto simp: h-def k-def conv-num-denom)
finally have z: . = hn / kn .
hence |k n*xxz — hn| =20
by (simp add: k-def)
also have b x = # a
proof
assume b x r = a
hence of-int (h n) * of-int b = of-int (k n) * (of-int a :: real)
using assms True by (auto simp: field-simps k-def x)
hence of-int (h n x b) = (of-int (kn % a) :: real)
by (simp only: of-int-mult)
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hence hnx b=kn=x*a
by linarith
hence hn=aAkn=10
using assms by (subst (asm) coprime-crossproduct’)
(auto simp: h-def k-def coprime-conv-num-denom,)
thus False using True Fualse by simp
qed
hence 0 < |b * z — q]
by simp
finally show ?%thesis .
next
case Fulse
define s where s = (—1) "n* (a*x kn — bx hn)
define r where r = (—1) “n x (b * h (Suc n) — a * k (Suc n))
have k n < k (Suc n)
unfolding k-def by (intro conv-denom-lel) auto

have r x hn + s *x h (Suc n) =
(=1) " Sucn*ax(k(Sucn)*xhn—Fknsx*h (Sucn))
by (simp add: s-def r-def algebra-simps h-def k-def)
also have ... = a using assms unfolding h-def k-def
by (subst conv-num-denom-prod-diff") (auto simp: algebra-simps)
finally have eql: 7« hn + s x h (Sucn) =a .

have r x kn + s * k (Suc n) =
(=1) “Sucnx*bx(k(Sucn)*xhn—Fknxh (Sucn))
by (simp add: s-def r-def algebra-simps h-def k-def)
also have ... = b using assms unfolding h-def k-def
by (subst conv-num-denom-prod-diff ') (auto simp: algebra-simps)
finally have eq2: r x kn + s« k (Sucn) = b .

have k n < k (Suc n)
using «n > 0 by (auto simp: k-def intro: conv-denom-lessI)

have r # 0
proof
assume 7 = (
hence a * k (Suc n) = b x h (Suc n) by (simp add: r-def)
hence abs (a * k (Suc n)) = abs (h (Suc n) * b) by (simp only: mult-ac)
hence *: abs (h (Suc n)) = abs a A k (Sucn) = b
unfolding abs-mult h-def k-def using coprime-conv-num-denom assms
by (subst (asm) coprime-crossproduct-int) auto
with <k n < k (Suc n)) and b < k n» show Fulse by auto
qed

have s # 0

proof
assume s = (
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hence a x kn = b x h n by (simp add: s-def)
hence abs (a * k n) = abs (h n x b) by (simp only: mult-ac)
hence b = k n A |a] = |h n| unfolding abs-mult h-def k-def using co-
prime-conv-num-denom assms
by (subst (asm) coprime-crossproduct-int) auto
with * show Fulse by simp
qed

have r x kn + s * k (Suc n) = b by fact
also have ... € {0<..<k (Suc n)} using assms <k n < k (Suc n)> by auto
finally have *: 7« kn + s* k (Sucn) € ... .

have opposite-signsl: r > 0N s < OV r < 0As>0
proof (cases r > 0; cases s > 0)
assume r > (0 s > 0
hence 0 % (kn) + 1 % (k (Sucn)) <rsxkn+ s=*k (Sucn)
using <s # 0 by (intro add-mono mult-mono) (auto simp: k-def)
with x show ?thesis by auto
next
assume —(r > 0) (s > 0)
hence r * kn + s x k (Sucn) < 0
by (intro add-nonpos-nonpos mult-nonpos-nonneg) (auto simp: k-def)
with x show ?thesis by auto
qed (insert «r # 0> s # 0>, auto)

have r # 1
proof
assume [simp]: 7 = 1
have b = r x kn + s x k (Suc n)
using «r x kn + s *x k (Sucn) = b ..
also have s x k (Suc n) < (—1) x k (Suc n)
using opposite-signs1 by (intro mult-right-mono) (auto simp: k-def)
also have r x kn + (—1) x k (Suc n) = kn — k (Suc n)
by simp
also have ... < 0
unfolding k-def by (auto intro!: conv-denom-lel)
finally show Fulse using <b > 0 by simp
qed

have enat n < cfrac-length ¢ enat (Suc n) < cfrac-length c
using assms False by (cases cfrac-length c; simp)+

hence conv cn > x A conv ¢ (Sucn) <z V conven<zA conve (Sucn) >z
using conv-ge-cfrac-lim[of n c] conv-ge-cfrac-lim[of Suc n ¢

conv-le-cfrac-lim[of n c] conv-le-cfrac-lim[of Suc n c] assms

by (cases even n) auto

hence opposite-signs2: kn«z — hn> 0Nk (Sucn) *x — h (Sucn) <0V

knsxx—hn<O0Ak(Sucn)*z— h(Sucn) >0

using assms conv-denom-pos[of ¢ n] conv-denom-pos|of ¢ Suc n]
by (auto simp: k-def h-def conv-num-denom field-simps)
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from opposite-signs1 opposite-signs2 have same-signs:
rx(knsxz—hn)>0ANsx*(k(Sucn)*xz—h(Sucn)) >0V
r+(knxx—hn)<O0As*(k(Sucn)*z—h (Sucn)) <0
by (auto intro: mult-nonpos-nonneg mult-nonneg-nonpos mult-nonneg-nonneg
mult-nonpos-nonpos)

show ?thesis
proof (cases Suc n = cfrac-length c)
case True
have z: z = h (Suc n) / k (Suc n)
(

using True[symmetric] by (auto simp: cfrac-lim-def h-def k-def conv-num-denom

x-def)
have r # —1
proof
assume [simp]: 7 = —1
have r x kn + s x k (Sucn) = b
by fact

also have b < k (Suc n)

using <b < k n» and <k n < k (Suc n)» by simp
finally have (s — 1) * k (Suc n) < kn

by (simp add: algebra-simps)
also have kn < 1 * k (Suc n)

by (simp add: k-def conv-denom-lel)
finally have s < 2

by (subst (asm) mult-less-cancel-right) (auto simp: k-def)
moreover from opposite-signsl have s > 0 by auto
ultimately have [simp]: s = I by simp

have b = (c¢frac-nth ¢ (Sucn) — 1) x kn + k (n — 1)
using eg2 <n > 0» by (cases n) (auto simp: k-def algebra-simps)
also have cfrac-nth ¢ (Suc n) > 1
proof —
have cfrac-canonical c
using assms True by auto
hence cfrac-nth ¢ (Suc n) # 1
using True[symmetric] by (auto simp: cfrac-canonical-iff enat-0-iff)
moreover have cfrac-nth ¢ (Suc n) > 0
by auto
ultimately show cfrac-nth ¢ (Suc n) > 1
by linarith
qged
hence (cfrac-nth ¢ (Sucn) — 1) xkn+k(n—1)>1xkn+k(n— 1)
by (intro add-mono mult-right-mono) (auto simp: k-def)
finally have b > kn
using conv-denom-pos[of ¢ n — 1] unfolding k-def by linarith
with assms show Fualse by simp
qed
with «r # I» <r # 0> have |r| > 1
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by auto

from <s # (> have kn * z # hn
using conv-num-denom-prod-diff [of ¢ n]
by (auto simp: x field-simps k-def h-def simp flip: of-int-mult)

hence I x |[knxx — hn| <|r|x|knxz— hn
using <|r| > 1> by (intro mult-strict-right-mono) auto

also have ... = |r| % |k n x 2 — h n| + 0 by simp

also have ... <|r* (kn+*xz — hn)| + |s* (k (Suc n) x z — h (Suc n))|
unfolding abs-mult of-int-abs using conv-denom-pos|of ¢ Suc n] <s # 0>
by (intro add-left-mono mult-nonneg-nonneg) (auto simp: field-simps k-def)

alsohave ... = |r*« (knxxz — hn)+ sx* (k(Sucn)*xz— h (Sucn))|
using same-signs by auto

also have ... = |(r«xkn+ sxk (Sucn)) *z— (r+hn+ s*h (Sucn))|
by (simp add: algebra-simps)

also have ... = |b * z — q

unfolding eq! eq2 by simp
finally show ?thesis by simp
next
case Fulse
from assms have Suc n < cfrac-length ¢
using False <Suc n < cfrac-length ¢» by force
have I x [knxz — hn| <|r|*|knx*xz— hn
using «r # 0» by (intro mult-right-mono) auto
also have ... = |r| % |k n* z — h n| + 0 by simp
also have z # h (Suc n) / k (Suc n)
using conv-neg-cfrac-lim[of Suc n c] «(Suc n < cfrac-length ¢
by (auto simp: conv-num-denom h-def k-def z-def)
hence |s * (k (Suc n) *x z — h (Suc n))| > 0
using <s # 0> by (auto simp: field-simps k-def)
also have |r| * [knxz — hn| + ... <
|r* (knxx—hn)|+|sx* (k(Sucn)*z— h (Sucn))
unfolding abs-mult of-int-abs by (intro add-left-mono mult-nonneg-nonneg)
auto

also have ... = |r* (kn*xz — hn)+ s* (k (Sucn)*z— h (Sucn))|
using same-signs by auto

alsohave ... = |(rxkn+ sxk (Sucn)) *x — (r+*hn+ sxh (Sucn))|
by (simp add: algebra-simps)

also have ... = |b x z — q

unfolding eq! eq2 by simp
finally show ?thesis by simp
qged
qed
qed

lemma conv-best-approximation-ex-weak:
fixes a b :: int and z :: real
assumes n < cfrac-length c
assumes 0 < b and b < k (Suc n) and coprime a b
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defines z = cfrac-lim ¢
shows |knxz— hn| <|b*xz— g
proof (cases |a] = |h n| A b=k n)
case True
note x = this
show ?thesis
proof (cases sgn a = sgn (h n))
case True
with x have [simp]: a = h n
by (auto simp: abs-if split: if-splits)
thus ?thesis using * by auto
next
case Fulse
with True have [simp]: a = —h n
by (auto simp: abs-if split: if-splits)
have |real-of-int (k n) * © — real-of-int (h n)| < |real-of-int (k n) * x +
real-of-int (h n)|
unfolding z-def using conv-best-approzimation-auz|of n]
by (intro abs-diff-le-abs-add) (auto simp: k-def not-le zero-less-mult-iff)
thus ?thesis using True by auto
qged
next
case Fulse
note x = this
show ?thesis
proof (cases n = cfrac-length c)
case True
hence = = conv ¢ n
by (auto simp: cfrac-lim-def z-def split: enat.splits)
also have ... = hn/kn
by (auto simp: h-def k-def conv-num-denom)
finally show ?thesis by (auto simp: k-def)
next
case Fulse
define s where s = (—1) "n* (ax kn — bx hn)
define r where r = (—1) “n * (b * h (Suc n) — a * k (Suc n))

have r x hn + s x h (Suc n) =
(=1) " Sucn*ax(k(Sucn)*xhn—Fknx*h (Sucn))
by (simp add: s-def r-def algebra-simps h-def k-def)
also have ... = a using assms unfolding h-def k-def
by (subst conv-num-denom-prod-diff ") (auto simp: algebra-simps)
finally have eql: 7 x hn + s+« h (Sucn) =a .

have r x kn + s x k (Suc n) =
(=1) " Sucn*xbx* (k(Sucn)*hn—knxh (Sucn))
by (simp add: s-def r-def algebra-simps h-def k-def)
also have ... = b using assms unfolding h-def k-def
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by (subst conv-num-denom-prod-diff ") (auto simp: algebra-simps)
finally have eq2: r x kn + s x k (Sucn) =1b.

have r # 0
proof
assume 7 = (
hence a * k (Suc n) = b x h (Suc n) by (simp add: r-def)
hence abs (a * k (Suc n)) = abs (h (Suc n) * b) by (simp only: mult-ac)
hence b = k (Suc n) unfolding abs-mult h-def k-def using coprime-conv-num-denom
assms
by (subst (asm) coprime-crossproduct-int) auto
with assms show Fualse by simp
qed

have s # 0
proof
assume s = 0
hence a x kn = b x h n by (simp add: s-def)
hence abs (a * k n) = abs (h n x b) by (simp only: mult-ac)
hence b = k n A |a] = |h n| unfolding abs-mult h-def k-def using co-
prime-conv-num-denom assms
by (subst (asm) coprime-crossproduct-int) auto
with * show Fulse by simp
qed

have r x kn + s« k (Suc n) = b by fact
also have ... € {0<..<k (Suc n)} using assms by auto
finally have «: 7« kn + sx k (Sucn) € ... .

have opposite-signsl: r > 0N s < OV r < 0As>0
proof (cases r > 0; cases s > 0)
assume r > (s > 0
hence 0 % (kn) + 1 % (k (Sucn)) <rsxkn+ s=*k (Sucn)
using s # () by (intro add-mono mult-mono) (auto simp: k-def)
with x show ?thesis by auto
next
assume —(r > 0) (s > 0)
hence r « kn + s x k (Sucn) < 0
by (intro add-nonpos-nonpos mult-nonpos-nonneg) (auto simp: k-def)
with x show ?thesis by auto
qged (insert <r # 0> <s # 0>, auto)

have enat n < cfrac-length ¢ enat (Suc n) < cfrac-length ¢
using assms False by (cases cfrac-length c; simp)+
hence convcn > x A conv ¢ (Sucn) <z Vconven <z A conve (Sucn) >z
using conv-ge-cfrac-lim[of n c] conv-ge-cfrac-lim[of Suc n ¢
conv-le-cfrac-lim[of n ¢] conv-le-cfrac-lim[of Suc n c] assms
by (cases even n) auto
hence opposite-signs2: kn « x — hn > 0 ANk (Sucn) x x — h (Sucn) < 0V
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knsxx—hn<O0ANk(Sucn)*z— h (Sucn) >0
using assms conv-denom-pos|of ¢ n] conv-denom-pos|of ¢ Suc n|
by (auto simp: k-def h-def conv-num-denom field-simps)

from opposite-signs1 opposite-signs2 have same-signs:
rx(knxxz—hn)>0Asx*(k(Sucn)*xz—h(Sucn)) >0V
r+(knxx—hn)<O0Asx*(k(Sucn)*z— h (Sucn)) <0
by (auto intro: mult-nonpos-nonneg mult-nonneg-nonpos mult-nonneg-nonneg
mult-nonpos-nonpos)

have I x |[knxz — hn| <|r|*|kn*z— hnl
using «r # 0 by (intro mult-right-mono) auto

also have ... = |r| x |k n x 2 — h n| + 0 by simp

also have ... < |r* (knx*z — hn)| + |s=* (k (Suc n) x z — h (Suc n))|
unfolding abs-mult of-int-abs using conv-denom-pos|of ¢ Suc n] <s # O
by (intro add-left-mono mult-nonneg-nonneg) (auto simp: field-simps k-def)

also have ... = |r*x (kn*x — hn)+ sx (k(Sucn) xz— h (Sucn))
using same-signs by auto

also have ... = |[(r+kn + sxk (Sucn)) *xz — (r«hn+ s=*h (Sucn))
by (simp add: algebra-simps)

also have ... = |b* 2 — ¢

unfolding eq! eq2 by simp
finally show ?thesis by simp
qed
qed

lemma cfrac-canonical-reduce:
cfrac-canonical ¢ «——
cfrac-is-int ¢ V —cfrac-is-int ¢ A cfrac-tl ¢ # 1 N\ cfrac-canonical (cfrac-tl c)
unfolding cfrac-is-int-def one-cfrac-def
by transfer (auto simp: cfrac-canonical-def llast-LCons split: if-splits split: llist.splits)

lemma cfrac-nth-0-conv-floor:
assumes cfrac-canonical ¢ V cfrac-length ¢ # 1
shows cfrac-nth ¢ 0 = | cfrac-lim c|
proof (cases cfrac-is-int c)
case True
thus ?thesis
by (auto simp: cfrac-lim-def cfrac-is-int-def)
next
case Fulse
show ?thesis
proof (cases cfrac-length ¢ = 1)
case True
hence cfrac-canonical ¢ using assms by auto
hence cfrac-tl ¢ # 1 using Fulse
by (subst (asm) cfrac-canonical-reduce) auto
thus ?thesis
using cfrac-nth-0-cases[of c] by auto
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next
case Fulse
hence cfrac-length ¢ > 1
using <—cfrac-is-int c»
by (cases cfrac-length ¢) (auto simp: cfrac-is-int-def one-enat-def zero-enat-def)
have cfrac-tl ¢ # 1
proof
assume cfrac-tl ¢ = 1
have 0 < cfrac-length ¢ — 1
proof (cases cfrac-length c)
case [simp]: (enat [)
have cfrac-length ¢ — 1 = enat (I — 1)
by auto
also have ... > enat 0
using <cfrac-length ¢ > 1> by (simp add: one-enat-def)
finally show ?thesis by (simp add: zero-enat-def)

qed auto
also have ... = cfrac-length (cfrac-tl c)
by simp
also have cfrac-tl ¢ = 1
by fact
finally show Fulse by simp
qed
thus ?thesis using cfrac-nth-0-cases|of c] by auto
qed

qged

lemma conv-best-approximation-ex-nat:
fixes a b :: nat and z :: real
assumes n < cfrac-length ¢ 0 < b b < k (Suc n) coprime a b
shows |k n * cfrac-lim ¢ — h n| < |b * cfrac-lim ¢ — q
using conv-best-approzimation-ez-weak| OF assms(1), of b a] assms by auto

lemma abs-mult-nonneg-left:
assumes z > (0 :: 'a :: {ordered-ab-group-add-abs, idom-abs-sgn})
shows =z x |y| = |2z x y|
proof —
from assms have © = |z| by simp
also have ... * |y| = |z * y| by (simp add: abs-mult)
finally show ?thesis .
qed

Any convergent of the continued fraction expansion of z is a best approxi-
mation of z, i.e. there is no other number with a smaller denominator that
approximates it better.
lemma conv-best-approximation:

fixes a b :: int and z :: real

assumes n < cfrac-length c
assumes 0 < band b < k n and coprime a b
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defines z = cfrac-lim ¢
shows |z — convcn| < |z — a/ b
proof —
have b < k n by fact
also have k n < k (Suc n)
unfolding k-def by (intro conv-denom-lel) auto
finally have x: b < k (Suc n) by simp
have |t — conven|=|knxxz —hn|/kn
using conv-denom-pos|of ¢ n] assms(1)
by (auto simp: conv-num-denom field-simps k-def h-def)

also have ... < |b x z — a| / k n unfolding z-def using assms x*
by (intro divide-right-mono conv-best-approzimation-ex-weak) auto
also from assms have ... < |bxz — a| / b
by (intro divide-left-mono) auto
also have ... = |z — a / b| using assms by (simp add: field-simps)
finally show ?thesis .
qed

lemma conv-denom-partition:
assumes y > 0
shows 3ln. y € {kn..<k (Suc n)}

proof (rule ex-exll)
from conv-denom-at-top[of c] assms have x: In. kn > y + 1

by (auto simp: k-def filterlim-at-top eventually-at-top-linorder)

define n where n = (LEAST n. kn >y + 1)
from Leastl-ex[OF %] have n: kn > y by (simp add: Suc-le-eq n-def)
from n and assms have n > 0 by (intro Nat.gr0I) (auto simp: k-def)

have k (n — 1) <y
proof (rule ccontr)
assume —k (n — 1) < y
hence k (n — 1) > y + 1 by auto
hence n — 1 > n unfolding n-def by (rule Least-le)
with <n > () show Fulse by simp
qed

with n and <n > O0» have y € {k (n — 1)..<k (Suc (n — 1))} by auto

thus 3n. y € {k n..<k (Suc n)} by blast
next
fix m n
assume y € {k m..<k (Suc m)} y € {k n..<k (Suc n)}
thus m = n
proof (induction m n rule: linorder-wlog)
case (le m n)
show m = n
proof (rule ccontr)
assume m # n
with le have k£ (Suc m) < kn
unfolding k-def by (intro conv-denom-lel assms) auto
with le show Fulse by auto
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qed
qged auto
qed

A fraction that approximates a real number z sufficiently well (in a certain
sense) is a convergent of its continued fraction expansion.

lemma frac-is-convergentl:

fixes a b :: int and z :: real

defines z = cfrac-lim ¢

assumes b > 0 and coprime a band |z — a / b| < 1/ (2 * b?)

shows 3Jn. enat n < cfrac-length ¢ A (a, b) = (h n, kn)
proof (cases a = 0)

case True

with assms have [simp]: a = 0b = 1

by auto

show ?thesis
proof (cases © 0 :: real rule: linorder-cases)
case greater
hence 0 < zz < 1/2
using assms by auto
hence z ¢ Z
by (auto simp: Ints-def)
hence cfrac-nth ¢ 0 = |z
using assms by (subst cfrac-nth-0-not-int) (auto simp: z-def)
also from «z > 0) <x < 1/2> have ... = 0
by linarith
finally have (a, b) = (h 0, k 0)
by (auto simp: h-def k-def)
thus %thesis by (intro exl[of - 0]) (auto simp flip: zero-enat-def)
next
case less
hence z < 0z > —1/2
using assms by auto
hence z ¢ Z
by (auto simp: Ints-def)
hence not-int: —cfrac-is-int ¢
by (auto simp: cfrac-is-int-def z-def cfrac-lim-def)
have cfrac-nth ¢ 0 = |z]
using <z ¢ Z» assms by (subst cfrac-nth-0-not-int) (auto simp: z-def)
also from <z < 0» <z > —1/2> have ... = —1
by linarith
finally have [simp]: cfrac-nth ¢ 0 = —1 .
have cfrac-nth ¢ (Suc 0) = cfrac-nth (cfrac-tl ¢) 0
by simp
have cfrac-lim (cfrac-tl ¢) =1/ (z + 1)
using not-int by (subst cfrac-lim-tl) (auto simp: x-def)
also from <z < 0» <x > —1/2) have ... € {I<..<2}
by (auto simp: divide-simps)
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finally have *: cfrac-lim (cfrac-tl ¢) € {1<..<2} .
have cfrac-nth (cfrac-tl ¢) 0 = | cfrac-lim (cfrac-tl c)]
using * by (subst cfrac-nth-0-not-int) (auto simp: Ints-def)
also have ... = 1
using * by (simp, linarith?)
finally have (a, b)) = (h 1, k 1)
by (auto simp: h-def k-def)
moreover have cfrac-length ¢ > 1
using not-int
by (cases cfrac-length c) (auto simp: cfrac-is-int-def one-enat-def zero-enat-def)
ultimately show ?thesis by (intro exl[of - 1]) (auto simp: one-enat-def)
next
case equal
show ?thesis
using cfrac-nth-0-cases|of c]
proof
assume cfrac-nth ¢ 0 = | cfrac-lim c|
with equal have (a, b) = (h 0, k 0)
by (simp add: z-def h-def k-def)
thus ?thesis by (intro exl[of - 0]) (auto simp flip: zero-enat-def)

next
assume *: cfrac-nth ¢ 0 = | cfrac-lim ¢] — 1 A cfrac-tl ¢ = 1
have [simp]: cfrac-nth ¢ 0 = —1

using * equal by (auto simp: z-def)
from * have —cfrac-is-int ¢
by (auto simp: cfrac-is-int-def cfrac-lim-def floor-minus)
have cfrac-nth ¢ 1 = cfrac-nth (cfrac-tl ¢) 0
by auto
also have cfrac-tl ¢ = 1
using * by auto
finally have cfrac-nth ¢ 1 = 1
by simp
hence (a, b)) = (h 1, k 1)
by (auto simp: h-def k-def)
moreover from (—cfrac-is-int ¢» have cfrac-length ¢ > 1
by (cases cfrac-length ¢) (auto simp: one-enat-def zero-enat-def cfrac-is-int-def)
ultimately show ?thesis
by (intro exl[of - 1]) (auto simp: one-enat-def)
qed
qed
next
case Fulse
hence a-nz: a # 0 by auto

have z # 0
proof
assume [simp]: x = 0
hence |a| /b< 1/ (2xb " 2)
using assms by simp
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hence |a| < 1/ (2 % D)
using assms by (simp add: field-simps power2-eq-square)
also have ... <1/ 2
using assms by (intro divide-left-mono) auto
finally have a = 0 by auto
with <a # 0> show False by simp
qed

show ?thesis
proof (rule ccontr)
assume no-convergent: Pn. enat n < cfrac-length ¢ A (a, b) = (h n, k n)
from assms have 3!r. b € {k r..<k (Suc r)}
by (intro conv-denom-partition) auto
then obtain r where r: b € {k r..<k (Suc r)} by auto
have kr > 0
using conv-denom-pos[of ¢ 1] assms by (auto simp: k-def)

show Fulse
proof (cases enat v < cfrac-length c)
case Fulse
then obtain | where [: cfrac-length ¢ = enat |
by (cases cfrac-length ¢) auto
have k[ < kr
using Fulse | unfolding k-def by (intro conv-denom-lel) auto
also have ... < b
using 7 by simp
finally have b > k[ .

have z = conv ¢ [

by (auto simp: z-def cfrac-lim-def )
hence z-eq: t = hl/ k1l

by (auto simp: conv-num-denom h-def k-def)
have k[ > 0

by (simp add: k-def)

have bx klx|hl/kl—a /b <kl /] (2xb)
using assms x-eq <k 1 > 0> by (auto simp: field-simps power2-eq-square)
alsohave b« kil |hil/kl—a/bl=1bxklx(hl/kl—a/Db)
using <b > 0 <k 1 > 0» by (subst abs-mult) auto
also have ... = of-int |bx hl — a* k||
using <b > 0) <k [ > 0» by (simp add: algebra-simps)
also have k1 / (2 b) < 1
using <b > k > <b > 0> by auto
finally have a x k1 = b * hl
by linarith
moreover have coprime (h 1) (k)
unfolding h-def k-def by (simp add: coprime-conv-num-denom,)
ultimately have (a, b) = (h I, k I)
using <coprime a by using a-nz <b > 0> <kl > 0O»
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by (subst (asm) coprime-crossproduct’) (auto simp: coprime-commute)
with no-convergent and [ show Fulse
by auto

next

case True
have krx|c — hr /kr|=|krxz— hr
using <k r > 0» by (simp add: field-simps)
also have |k rxxz — hr| < |b*xz — 4
using assms r True unfolding z-def by (intro conv-best-approzimation-ex-weak)
auto
also have ... = b« |z — a / b
using <b > 0» by (simp add: field-simps)
also have ... < bx (1/(2x* b?))
using b > O by (intro mult-strict-left-mono assms) auto
finally have less: |[x — conver| < 1/ (2% bx*kr)
using <k r > 0> and <b > 0> and assms
by (simp add: field-simps power2-eq-square conv-num-denom h-def k-def)

have [z — a / b| < 1/ (2 * b?) by fact
alsohave ... =1/ (2*b) % (1/b)

by (simp add: power2-eq-square)
also have ... < 1/ (2% ) * (Ja| / b)

using a-nz assms by (intro mult-left-mono divide-right-mono) auto
also have ... < 1/ 1 (|a| /D)

using a-nz assms

by (intro mult-strict-right-mono divide-left-mono divide-strict-left-mono)
auto

also have ... = |a / b| using assms by simp
finally have sgn z = sgn (a / b)

by (auto simp: sgn-if split: if-splits)
hence sgn = = sgn a using assms by (auto simp: sgn-of-int)
hencea>0ANz>0Va<O0Nz<0

by (auto simp: sgn-if split: if-splits)
moreover have hr > 0Nz >0V hr<0ANz<0

using conv-best-approzimation-auz|of ] by (auto simp: h-def z-def)
ultimately have signs: hr > 0ANa>0Vhr<0ANa<0

using <z # 0> by auto

with no-convergent assms assms True have |hr| # |a| V b # kr
by (auto simp: h-def k-def)

hence |h r| % |b] # |a| * |k r| unfolding h-def k-def

using assms coprime-conv-num-denom|of ¢ r]

by (subst coprime-crossproduct-int) auto
hence |h 7| * b # |a| * k r using assms by (simp add: k-def)
hence kr+«a —hr+xb# 0

using signs by (auto simp: algebra-simps)
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hence |k r * a — h r *x b| > 1 by presburger
hence real-of-int 1 / (kr«b) < |kr+xa—hr=«0b/ (krxb)
using assms
by (intro divide-right-mono, subst of-int-le-iff) (auto simp: k-def)
also have ... = |(real-of-int (kr) x a — hrxb)/ (krxb)
using assms by (simp add: k-def)
also have (real-of-int (kr)*a —hrxbd)/ (krxb) =a/b— convcr
using assms <k r > 0» by (simp add: h-def k-def conv-num-denom field-simps)

also have |a / b — convecr|=|(x — conver) — (z — a /b))
by (simp add: algebra-simps)
also have ... < |z — convcr|+ |z — a/ b

by (rule abs-triangle-ineqs)

alsohave ... < 1/ (2xbxkr)+ 1/ (2%
by (intro add-strict-mono assms less)

finally have kr > b
using <b > O and <k r > 0 by (simp add: power2-eq-square field-simps)

with r show Fualse by auto

qed
qed
qed

end

1.5 Efficient code for convergents

function conv-gen :: (nat = int) = int X int x nat = nat = int where
conv-gen ¢ (a, b, n) N =
(if n > N then b else conv-gen ¢ (b, b * ¢ n + a, Suc n) N)
by auto
termination by (relation measure (A(-, (-, -, n), N). Suc N — n)) auto

lemmas [simp del] = conv-gen.simps

lemma conv-gen-auz-simps [simp):
n > N = conv-gen ¢ (a, b, n) N = b
n < N = conv-gen ¢ (a, b, n) N = conv-gen ¢ (b, b x ¢ n + a, Suc n) N
by (subst conv-gen.simps, simp)+

lemma conv-num-eq-conv-gen-aux:
Sucn < N = conv-num ¢ n = b x cfrac-nth c n + o =
conv-num ¢ (Suc n) = conv-num ¢ n * cfrac-nth ¢ (Suc n) + b =
conv-num ¢ N = conv-gen (cfrac-nth ¢) (a, b, n) N
proof (induction cfrac-nth ¢ (a, b, n) N arbitrary: ¢ a b n rule: conv-gen.induct)
case (I abn Nc)
show ?Zcase
proof (cases Suc (Suc n) < N)
case True
thus ?thesis
by (subst 1) (insert 1.prems, auto)
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next
case Fulse
thus ?thesis using 1
by (auto simp: not-le less-Suc-eq)
qed
qed

lemma conv-denom-eq-conv-gen-aux:
Suc n < N = conv-denom ¢ n = b * cfrac-nth ¢ n + « =
conv-denom ¢ (Suc n) = conv-denom ¢ n % cfrac-nth ¢ (Suc n) + b =
conv-denom ¢ N = conv-gen (cfrac-nth ¢) (a, b, n) N
proof (induction cfrac-nth ¢ (a, b, n) N arbitrary: ¢ a b n rule: conv-gen.induct)
case (I abn Nc)
show ?Zcase
proof (cases Suc (Suc n) < N)
case True
thus ?thesis
by (subst 1) (insert 1.prems, auto)
next
case Fulse
thus Zthesis using 1
by (auto simp: not-le less-Suc-eq)
qed
qed

lemma conv-num-code [code]: conv-num ¢ n = conv-gen (cfrac-nth ¢) (0, 1, 0) n
using conv-num-eq-conv-gen-auz[of 0 n ¢ 1 0] by (cases n) simp-all

lemma conv-denom-code [code]: conv-denom ¢ n = conv-gen (cfrac-nth c) (1, 0,
0) n
using conv-denom-eg-conv-gen-auz[of 0 n ¢ 0 1] by (cases n) simp-all

definition conv-num-fun where conv-num-fun ¢ = conv-gen ¢ (0, 1, 0)
definition conv-denom-fun where conv-denom-fun ¢ = conv-gen ¢ (1, 0, 0)

lemma
assumes is-cfrac c
shows  conv-num-fun-eq: conv-num-fun ¢ n = conv-num (cfrac ¢) n
and conv-denom-fun-eq: conv-denom-fun ¢ n = conv-denom (cfrac ¢) n
proof —
from assms have cfrac-nth (cfrac ¢) = ¢
by (intro ext) simp-all
thus conv-num-fun ¢ n = conv-num (cfrac ¢) n and conv-denom-fun ¢ n =
conv-denom (cfrac ¢) n
by (simp-all add: conv-num-fun-def conv-num-code conv-denom-fun-def conv-denom-code)
qed
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1.6 Computing the continued fraction expansion of a rational
number

function cfrac-list-of-rat :: int X int = int list where
cfrac-list-of-rat (a, b) =
(if b = 0 then [0]
else a div b # (if a mod b = 0 then [] else cfrac-list-of-rat (b, a mod b)))
by auto
termination
by (relation measure (A(a,b). nat (abs b))) (auto simp: abs-mod-less)

lemmas [simp del] = cfrac-list-of-rat.simps

lemma cfrac-list-of-rat-correct:
(let zs = cfrac-list-of-rat (a, b); ¢ = cfrac-of-real (a / b)
in length s = cfrac-length ¢ + 1 A (Vi<length xs. xs | i = cfrac-nth ¢ 7))
proof (induction (a, b) arbitrary: a b rule: cfrac-list-of-rat.induct)
case (1 ab)
show ?Zcase
proof (cases b = 0)
case True
thus ?thesis
by (subst cfrac-list-of-rat.simps) (auto simp: one-enat-def)
next
case Fulse
define ¢ where ¢ = cfrac-of-real (a / b)
define ¢’ where ¢’ = cfrac-of-real (b / (a mod b))
define zs’ where zs’ = (if a mod b = 0 then || else cfrac-list-of-rat (b, a mod

b))

define zs where zs = a div b # xs’

have [simp]: cfrac-nth ¢ 0 = a div b
by (auto simp: c-def floor-divide-of-int-eq)

obtain [ where [: cfrac-length ¢ = enat [
by (cases cfrac-length c) (auto simp: c-def)

have length zs = | + 1 A (Vi<length zs. zs | i = cfrac-nth c i)
proof (cases b dvd a)
case True
thus ?thesis using [
by (auto simp: Let-def xs-def zs’-def c-def of-int-divide-in-Ints one-enat-def
enat-0-iff )
next
case Fulse
have [ # 0
using [ False cfrac-of-real-length-eq-0-iff [of a / b] <b # O»
by (auto simp: c-def zero-enat-def real-of-int-divide-in-Ints-iff intro!: Nat.gr0I)
have c¢”: ¢’ = cfrac-tl c
using False (b # 0> unfolding c’-def c-def
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by (subst cfrac-tl-of-real) (auto simp: real-of-int-divide-in-Ints-iff frac-fraction)
from 1 have enat (length zs’) = cfrac-length ¢’ + 1
and zs”: Vi<length xs’. xs’ ! i = cfrac-nth ¢’ i
using <b # 0) <—b dvd &> by (auto simp: Let-def xs’-def ¢'-def)

have enat (length zs’) = cfrac-length ¢’ + 1

by fact

also have ... = enatl — 1+ 1
using ¢’ [ by simp

also have ... = enat (I — 1 + 1)

by (metis enat-diff-one one-enat-def plus-enat-simps(1))
alsohave | — 1 + 1 =1

using <[ # 0» by simp
finally have [simp]: length zs’ = 1

by simp

from zs’ show ?thesis
by (auto simp: zs-def nth-Cons ¢’ split: nat.splits)
qed
thus ?thesis using [ Fulse
by (subst cfrac-list-of-rat.simps) (simp-all add: xs-def xs'-def c-def one-enat-def)
qed
qed

lemma conv-num-cong:
assumes (Ak. k < n = cfrac-nth ¢ k = cfrac-nth ¢' k) n = n’'
shows conv-num ¢ n = conv-num ¢’ n
proof —
have conv-num ¢ n = conv-num ¢’ n
using assms(1)
by (induction n arbitrary: rule: conv-num.induct) simp-all
thus ?thesis using assms(2)
by simp
qed

lemma conv-denom-cong:
assumes (Ak. k < n = cfrac-nth ¢ k = cfrac-nth ¢' k) n = n’'
shows conv-denom ¢ n = conv-denom ¢’ n'
proof —
have conv-denom ¢ n = conv-denom ¢’ n
using assms(1)
by (induction n arbitrary: rule: conv-denom.induct) simp-all
thus ?thesis using assms(2)
by simp
qed

lemma cfrac-lim-diff-le:

assumes VYV k<Suc n. cfrac-nth c1 k = cfrac-nth c2 k
assumes n < cfrac-length c1 n < cfrac-length c2
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shows |cfrac-lim ¢l — cfrac-lim c2| < 2 / (conv-denom c1 n * conv-denom cl
(Suc n))
proof —
define d where d = (Ak. conv-denom c1 k)
have |cfrac-lim c1 — cfrac-lim c2| < |cfrac-lim c1 — conv c1 n| + |cfrac-lim c2
— conv ¢l n]
by linarith
also have |cfrac-lim ¢l — conv cI n| < 1/ (dn * d (Suc n))
unfolding d-def using assms
by (intro cfrac-lim-minus-conv-upper-bound) auto
also have conv ¢ n = conv c2 n
using assms by (intro conv-cong) auto
also have |cfrac-lim ¢2 — conv c2 n| < 1/ (conv-denom c2 n * conv-denom c2
(Suc n))
using assms unfolding d-def by (intro cfrac-lim-minus-conv-upper-bound)
auto
also have conv-denom c2n = dn
unfolding d-def using assms by (intro conv-denom-cong) auto
also have conv-denom ¢2 (Suc n) = d (Suc n)
unfolding d-def using assms by (intro conv-denom-cong) auto
alsohave 1 / (dn* d (Sucn)) + 1/ (dnxd (Sucn)) =2/ (dnx*d (Sucn))
by simp
finally show ?thesis
by (simp add: d-def)
qed

lemma of-int-lel: n < m = (of-int n :: 'a :: linordered-idom) < of-int m
by simp

lemma cfrac-lim-diff-le”:
assumes V k<Suc n. cfrac-nth c1 k = cfrac-nth c2 k
assumes n < cfrac-length c1 n < cfrac-length c2
shows |cfrac-lim c1 — cfrac-lim c2| < 2 / (fib (n+1) * fib (n+2))
proof —
have |cfrac-lim c1 — cfrac-lim ¢2| < 2 / (conv-denom c1 n x conv-denom c1 (Suc
")
by (rule cfrac-lim-diff-le) (use assms in auto)
also have ... < 2/ (int (fib (Suc n)) * int (fib (Suc (Suc n))))
unfolding of-nat-mult of-int-mult
by (intro divide-left-mono mult-mono mult-pos-pos of-int-lel conv-denom-lower-bound)
(auto introl: fib-neg-0-nat simp del: fib.simps)

also have ... = 2/ (fib (n+1) * fib (n+2))
by simp
finally show ?thesis .
qed
end

83



2 Quadratic Irrationals

theory Quadratic-Irrationals
imports
Continued-Fractions
HOL—- Computational-Algebra. Computational-Algebra
HOL— Library. Discrete
Coinductive. Coinductive-Stream
begin

lemma snth-cycle:
assumes s # ||
shows snth (cycle zs) n = zs | (n mod length s)
proof (induction n rule: less-induct)
case (less n)
have snth (shift zs (cycle zs)) n = zs | (n mod length xs)
proof (cases n < length xs)
case True
thus ?thesis
by (subst shift-snth-less) auto
next
case Fulse
have 0 < length xs
using assms by simp
also have ... < n
using Fualse by simp
finally have n > 0 .

from Fualse have snth (shift xs (cycle xs)) n = snth (cycle xs) (n — length xs)
by (subst shift-snth-ge) auto
also have ... = zs ! ((n — length xs) mod length zs)
using assms «<n > 0» by (intro less) auto
also have (n — length xs) mod length xs = n mod length xs
using False by (simp add: mod-if)
finally show ?thesis .
qed
also have shift zs (cycle zs) = cycle xs
by (rule cycle-decomp [symmetric]) fact
finally show ?case .
qed

2.1 Basic results on rationality of square roots
lemma inverse-in-Rats-iff [simp]: inverse (z :: real) € Q «—— z € Q

by (auto simp: inverse-eq-divide divide-in-Rats-iff1)

lemma nonneg-sqrt-nat-or-irrat:
assumes £ 2 = real a and z > 0
shows ze€NVz¢Q

proof safe
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assume z ¢ N and z € Q
from Rats-abs-nat-div-natE[OF this(2)]
obtain p ¢ :: nat where ¢-nz [simp]: ¢ # 0 and abs x = p / q and coprime:
coprime p q .
with <z > 0» have z: 2 =p / ¢
by simp
with assms have real (¢ = 2) * real a = real (p ~ 2)
by (simp add: field-simps)
also have real (¢ ~ 2) * real a = real (¢ ~ 2 * a)
by simp
finally have p “2=¢q 2% a
by (subst (asm) of-nat-eq-iff) auto
hence ¢ ~ 2 dvdp ~ 2
by simp
hence ¢ dvd p
by simp
with coprime have q = 1
by auto
with z and «z ¢ N> show False
by simp
qed

A square root of a natural number is either an integer or irrational.

corollary sqrt-nat-or-irrat:
assumes z ~ 2 = real a
shows z€ZVaxé¢Q
proof (cases © > 0)
case True
with nonneg-sgrt-nat-or-irrat| OF assms this]
show ?thesis by (auto simp: Nats-altdef2)
next
case Fulse
from assms have (—z) ~ 2 = real a
by simp
moreover from Fualse have —x > 0
by simp
ultimately have —z ¢ NV —z ¢ Q
by (rule nonneg-sqrt-nat-or-irrat)
thus ?thesis
by (auto simp: Nats-altdef2 minus-in-Ints-iff)
qed

corollary sqrt-nat-or-irrat’”:
sqrt (real a) € NV sqrt (real a) ¢ Q
using nonneg-sqrt-nat-or-irrat[of sqrt a a] by auto

The square root of a natural number n is again a natural number iff n is a
perfect square.

corollary sqrt-nat-iff-is-square:
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sqrt (real n) € N «—— is-square n
proof
assume sqrt (real n) € N
then obtain k£ where sqrt (real n) = real k by (auto elim!: Nats-cases)
hence sqrt (real n) ~ 2 = real (k ~ 2) by (simp only: of-nat-power)
also have sqrt (real n) ~ 2 = real n by simp
finally have n = k£ ~ 2 by (simp only: of-nat-eq-iff)
thus is-square n by blast
qed (auto elim!: is-nth-powerE)

corollary irrat-sqri-nonsquare: —vis-square n = sqrt (real n) ¢ Q
using sqrt-nat-or-irrat’[of n] by (auto simp: sqrt-nat-iff-is-square)

lemma sqrt-of-nat-in-Rats-iff: sqrt (real n) € Q «— is-square n
using irrat-sqrt-nonsquare[of n] sqrt-nat-iff-is-square[of n] Nats-subset-Rats by
blast

lemma Discrete-sqrt-altdef: Discrete.sqrt n = nat | sqrt n]
proof —
have real (Discrete.sqrt n ~ 2) < sqrt n ~ 2
by simp
hence Discrete.sqrt n < sqrt n
unfolding of-nat-power by (rule power2-le-imp-le) auto
moreover have real (Suc (Discrete.sqrt n) ~ 2) > real n
unfolding of-nat-less-iff by (rule Suc-sqrt-power2-gt)
hence real (Discrete.sqrt n + 1) ~ 2 > sqrt n — 2
unfolding of-nat-power by simp
hence real (Discrete.sqrt n + 1) > sqrt n
by (rule power2-less-imp-less) auto
hence Discrete.sqrt n + 1 > sqrt n by simp
ultimately show ¢thesis by linarith
qed

2.2 Definition of quadratic irrationals

Irrational real numbers x that satisfy a quadratic equation az? +bz+¢ =0
with a, b, ¢ not all equal to 0 are called quadratic irrationals. These are of
the form p + ¢v/d for rational numbers p, ¢ and a positive integer d.
inductive quadratic-irrational :: real = bool where
z ¢ Q = real-of-int a x x ~ 2 + real-of-int b x x + real-of-int ¢ = 0 =
a0V b#0V c+# 0= quadratic-irrational x

lemma quadratic-irrational-sqrt [intro:
assumes —is-square n
shows quadratic-irrational (sqrt (real n))
using irrat-sqrt-nonsquare] OF assms]
by (intro quadratic-irrational.intros[of sqrt n 1 0 —int n]) auto

lemma quadratic-irrational-uminus [introl:
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assumes quadratic-irrational x

shows quadratic-irrational (—x)

using assms
proof induction

case (1 zabc)

thus ?case by (intro quadratic-irrational.intros[of —z a —b ¢]) auto
qed

lemma quadratic-irrational-uminus-iff [simp):

quadratic-irrational (—z) «— quadratic-irrational =

using quadratic-irrational-uminus|of x| quadratic-irrational-uminus[of —z| by
auto

lemma quadratic-irrational-plus-int [introl:
assumes quadratic-irrational x
shows quadratic-irrational (x + of-int n)
using assms
proof induction
case (I zabc)
define z’ where 7’ = 1 + of-int n
define o’ b’ ¢’ where
a'=aand b'=b — 2 of-int n x a and
¢c'=ax*ofintn "2 —bx*of-int n+ ¢
from 7 have 0 = a x (z' — of-int n) ~ 2 4+ b x (z/ — of-int n) + ¢
by (simp add: z'-def)
alsohave ... =a’'* 2’ "2+ b x 2’ + ¢’
by (simp add: algebra-simps a’-def b’-def ¢’-def power2-eq-square)
finally have ... = 0 ..
moreover have z’ ¢ Q
using 1 by (auto simp: z’-def add-in-Rats-iff2)
moreover have a’ # 0V b/ £ 0V ¢’ # 0
using 1 by (auto simp: a’-def b’-def ¢'-def)
ultimately show ?case
by (intro quadratic-irrational.intros[of = + of-int n a’ b’ ¢']) (auto simp: z’'-def)
qed

lemma quadratic-irrational-plus-int-iff [simp]:
quadratic-irrational (z + of-int n) «—— quadratic-irrational =
using quadratic-irrational-plus-int[of = n)
quadratic-irrational-plus-int[of  + of-int n —n] by auto

lemma quadratic-irrational-minus-int-iff [simp]:
quadratic-irrational (z — of-int n) «— quadratic-irrational
using quadratic-irrational-plus-int-iff [of * —n)]
by (simp del: quadratic-irrational-plus-int-iff)

lemma quadratic-irrational-plus-nat-iff [simp):

quadratic-irrational (z + of-nat n) «— quadratic-irrational
using quadratic-irrational-plus-int-iff [of x int n)
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by (simp del: quadratic-irrational-plus-int-iff)

lemma quadratic-irrational-minus-nat-iff [simp:
quadratic-irrational (x — of-nat n) «—— quadratic-irrational
using quadratic-irrational-plus-int-iff [of x —int n]
by (simp del: quadratic-irrational-plus-int-iff)

lemma quadratic-irrational-plus-1-iff [simp]:
quadratic-irrational (z + 1) «— quadratic-irrational x
using quadratic-irrational-plus-int-iff [of x 1]
by (simp del: quadratic-irrational-plus-int-iff)

lemma quadratic-irrational-minus-1-iff [simp]:
quadratic-irrational (z — 1) «— quadratic-irrational x
using quadratic-irrational-plus-int-iff [of x —1]
by (simp del: quadratic-irrational-plus-int-iff)

lemma quadratic-irrational-plus-numeral-iff [simpl:
quadratic-irrational (z + numeral n) «—— quadratic-irrational ©
using quadratic-irrational-plus-int-iff [of x numeral n]
by (simp del: quadratic-irrational-plus-int-iff)

lemma quadratic-irrational-minus-numeral-iff [simp]:
quadratic-irrational (z — numeral n) «—— quadratic-irrational ©
using quadratic-irrational-plus-int-iff [of * —numeral n)
by (simp del: quadratic-irrational-plus-int-iff )

lemma quadratic-irrational-inverse:
assumes quadratic-irrational x
shows quadratic-irrational (inverse x)
using assms
proof induction
case (I zabc)
from 1 have z # 0 by auto
have 0 = (real-of-int a x z*> + real-of-int b * x + real-of-int ¢) / x ~ 2
by (subst 1) simp
also have ... = real-of-int ¢ x (inverse ) ~ 2 + real-of-int b x inverse x +
real-of-int a
using «x # (> by
finally have ... =
thus ?case using 1
by (intro quadratic-irrational.intros[of inverse z ¢ b a)) auto
qged

(simp add: field-simps power2-eq-square)
0 ..

lemma quadratic-irrational-inverse-iff [simp]:
quadratic-irrational (inverse z) «—— quadratic-irrational ©
using quadratic-irrational-inverselof x| quadratic-irrational-inverse|of inverse x|
by (cases x = 0) auto
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lemma quadratic-irrational-cfrac-remainder-iff:
quadratic-irrational (cfrac-remainder ¢ n) «— quadratic-irrational (cfrac-lim c)
proof (cases cfrac-length ¢ = 00)
case Fulse
thus ?thesis
by (auto simp: quadratic-irrational.simps)
next
case [simp|: True
show ?thesis
proof (induction n)
case (Suc n)
from Suc.prems have cfrac-remainder ¢ (Suc n) =
inverse (cfrac-remainder ¢ n — of-int (cfrac-nth ¢ n))
by (subst cfrac-remainder-Suc) (auto simp: field-simps)
also have quadratic-irrational ... «—— quadratic-irrational (cfrac-remainder ¢
n)
by simp
also have ... «— quadratic-irrational (cfrac-lim c)
by (rule Suc.IH)
finally show ?case .
ged auto
qged

2.3 Real solutions of quadratic equations

For the next result, we need some basic properties of real solutions to
quadratic equations.

lemma quadratic-equation-reals:
fixes a b ¢ :: real
defines f = (Az.axz "2+ bx*xx + ¢)
defines discr = (72 — 4 % a % ¢)
shows {z. fz =0} =
(if a = 0 then
(if b = 0 then if ¢ = 0 then UNIV else {} else {—c/b})
else if discr > 0 then {(=b + sqrt discr) / (2 * a), (=b — sqrt discr) /
(25 )}
else {}) (is ?thi)
proof (cases a = 0)
case [simp|: True
show ?th1
proof (cases b = 0)
case [simp|: True
hence {z. fz = 0} = (if ¢ = 0 then UNIV else {})
by (auto simp: f-def)
thus ?th1 by simp
next
case Fulse
hence {z. fz = 0} = {—c / b} by (auto simp: f-def field-simps)
thus ?th1 using Fulse by simp
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qed
next
case [simp|: False
show ?thi
proof (cases discr > 0)
case True
{
fix z :: real
have fz = a * (z — (=b + sqrt discr) / (2 % a)) * (x — (—b — sqrt discr) /
(2 x a))
using True by (simp add: f-def field-simps discr-def power2-eq-square)
also have ... = 0 «— x € {(=b + sqrt discr) / (2 * a), (—b — sqrt discr)
/(2% a)}
by simp
finally have fz = 0 «— ... .
}
hence {z. fz = 0} = {(=b + sqrt discr) / (2 * a), (—b — sqrt discr) / (2 *
o)}
by blast
thus ?th1 using True by simp
next
case Fulse
{
fix z :: real
assume z: fz = 0
have 0 < (z + b/ (2 % a)) ~ 2 by simp
alsohave fr=ax*x ((z+b/(2%a)) "2—-b"2/(4*xa "2 +c/a)
by (simp add: field-simps power2-eq-square f-def)
with z have (z + b/ (2%a)) "2—-b "2/ (4xa " 2)+c/a=20
by simp
hence (t+ b/ (2%a) "2=0"2/(4*xa "2 —c/a
by (simp add: algebra-simps)
finally have 0 < (0% / (4 * a®) — ¢ / a) * (4 * a?)
by (intro mult-nonneg-nonneg) auto
also have ... = b? — / * a x ¢ by (simp add: field-simps power2-eq-square)
also have ... < 0 using False by (simp add: discr-def)
finally have Fulse by simp
}
hence {z. fz = 0} = {} by auto
thus ?th1 using Fulse by simp
qed
qed

lemma finite-quadratic-equation-solutions-reals:
fixes a b c :: real
defines discr = (72 — 4 * a % ¢)
shows finite {z.ax2x "2+ bxzx+c=0— a#0VbEOVc#0
by (subst quadratic-equation-reals)
(auto simp: discr-def card-eq-0-iff infinite-UNIV-char-0 split: if-split)
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lemma card-quadratic-equation-solutions-reals:
fixes a b ¢ :: real
defines discr = (072 — 4 % a * ¢)
shows card {z. axz "2+ b*xax+c=0} =
(if a = 0 then
(if b = 0 then 0 else 1)
else if discr > 0 then if discr = 0 then 1 else 2 else 0) (is ?th1)
by (subst quadratic-equation-reals)
(auto simp: discr-def card-eq-0-iff infinite- UNIV-char-0 split: if-split)

lemma card-quadratic-equation-solutions-reals-le-2:
card {z :real. axz "2+ bxzx+c=0} <2
by (subst card-quadratic-equation-solutions-reals) auto

lemma quadratic-equation-solution-rat-iff:
fixes a b ¢ :: int and z y :: real
defines f = (A\zureal. a x 2 "2+ b*x x4 ¢)
defines discr = nat (b ~2 — 4 % a * ¢)
assumes a # 0 fz = 0
shows 1= € Q «—— is-square discr
proof —
define discr’ where discr’ = real-of-int (b ~ 2 — 4 % a * ¢)
from assms have z € {z. fz = 0} by simp
with <a # 0> have discr’ > 0 unfolding discr’-def f-def of-nat-diff
by (subst (asm) quadratic-equation-reals) (auto simp: discr-def split: if-splits)
hence *: sqrt (discr’) = sqrt (real discr) unfolding of-int-0-le-iff discr-def
discr’-def
by (simp add: algebra-simps nat-diff-distrib)
from <z € {z. fz = 0}»> have x = (—=b + sqrt discr) / (2% a) V z = (—b — sqrt
diser) / (2 * a)
using <a # 0 x unfolding discr’-def f-def
by (subst (asm) quadratic-equation-reals) (auto split: if-splits)
thus %thesis using <a # 0»
by (auto simp: sqrt-of-nat-in-Rats-iff divide-in-Rats-iff2 diff-in- Rats-iff2 diff-in-Rats-iff1)
qed

2.4 Periodic continued fractions and quadratic irrationals

We now show the main result: A positive irrational number has a periodic
continued fraction expansion iff it is a quadratic irrational.

In principle, this statement naturally also holds for negative numbers, but
the current formalisation of continued fractions only supports non-negative
numbers. It also holds for rational numbers in some sense, since their con-
tinued fraction expansion is finite to begin with.

theorem periodic-cfrac-imp-quadratic-irrational:

assumes [simp|: cfrac-length ¢ = oo
and period: | > 0 \k. k > N = cfrac-nth ¢ (k + 1) = cfrac-nth c k
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shows quadratic-irrational (cfrac-lim c)
proof —
define b’ and k' where h' = conv-num-int (cfrac-drop N c)
and k' = conv-denom-int (cfrac-drop N c)
define z’ where 1’ = cfrac-remainder ¢ N

have c-pos: cfrac-nth ¢ n > 0 if n > N for n
proof —
from assms(1,2) have cfrac-nth ¢ (n + 1) > 0 by auto
with assms(3)[OF that] show ?thesis by simp
qed
have k'-pos: k'n > 0if n A —1n > —2 for n
using that by (auto simp: k’-def conv-denom-int-def introl: conv-denom-pos)
have k'-nonneg: k' n > 0 if n > —2 for n
using that by (auto simp: k’-def conv-denom-int-def introl: conv-denom-pos)
have cfrac-nth ¢ (n + (N + 1)) = c¢frac-nth ¢ (n + N) for n
using period(2)[of n + N] by (simp add: add-ac)
have cfrac-drop (N + 1) ¢ = cfrac-drop N ¢
by (rule cfrac-eql) (use period(2)[of n + N for n] in <auto simp: algebra-simps»)
hence z'-altdef: ¢/ = cfrac-remainder ¢ (N + )
by (simp add: z’-def cfrac-remainder-def)
have z’-pos: ' > 0 unfolding z’-def
using c-pos by (intro cfrac-remainder-pos) auto

define A where A = (k' (int | — 1))
define B where B =k’ (intl — 2) — b’/ (int | — 1)
define C where C = —(h/ (int | — 2))

have pos: (k' (intl — 1) x 2’ + k' (int | — 2)) > 0
using z’-pos <1 > 0»
by (intro add-pos-nonneg mult-pos-pos) (auto introl: k'-pos k'-nonneg)
have cfrac-remainder ¢ N = conv’ (cfrac-drop N ¢) 1 (cfrac-remainder ¢ (I +
)
unfolding cfrac-remainder-def cfrac-drop-add
by (subst (2) cfrac-remainder-def [symmetric]) (auto simp: conv’-cfrac-remainder)
hence z’ = conv’ (¢frac-drop N ¢) 1 z’
by (subst (asm) add.commute) (simp only: x'-def [symmetric] z'-altdef [symmetric])
alsohave ... = (W' (intl — 1) x '+ b’ (int 1 — 2)) / (K" (int 1 — 1) x 2" + k'
(int 1 — 2))
using conv’-num-denom-int|OF z'-pos, of - I unfolding h'-def k’-def
by (simp add: mult-ac)
finally have =’ * (k' (int 1 — 1) x o' + k' (int 1 — 2)) = (h' (int ] — 1) x 2’ +
' (int 1 — 2))
using pos by (simp add: divide-simps)
hence quadratic: A xx' 2+ Bxz' + C =0
by (simp add: algebra-simps power2-eq-square A-def B-def C-def)
moreover have 2z’ ¢ Q unfolding z’-def
by auto
moreover have A > 0 using <l > 0> by (auto simp: A-def intro!: k’-pos)
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ultimately have quadratic-irrational z’ using <z’ ¢ Q»
by (intro quadratic-irrational.introsjof ' A B C)) simp-all
thus ?thesis
using assms by (simp add: z'-def quadratic-irrational-cfrac-remainder-iff)
qed

lift-definition pperiodic-cfrac :: nat list = cfrac is
Azs. if xs =[] then (0, LNil) else
(int (hd xs), list-of-stream (cycle (map (An. n— 1) (tl zs Q [hd zs])))) .

definition periodic-cfrac :: int list = int list = cfrac where
periodic-cfrac zs ys = cfrac-of-stream (Stream.shift xs (Stream.cycle ys))

lemma periodic-cfrac-Nil [simp]: pperiodic-cfrac [| = 0
unfolding zero-cfrac-def by transfer auto

lemma cfrac-length-pperiodic-cfrac [simp]:
zs # [| = cfrac-length (pperiodic-cfrac xs) = oo
by transfer auto

lemma cfrac-nth-pperiodic-cfrac:
assumes zs # [| and 0 ¢ set xs
shows cfrac-nth (pperiodic-cfrac zs) n = zs ! (n mod length xs)
using assms
proof (transfer, goal-cases)
case (1 zs n)
show Zcase
proof (cases n)
case (Suc n')
have int (cycle (¢t (map (An. n — 1) zs) @ [hd (map (An. n — 1) zs)]) ! n’) +
1=
int (stl (cycle (map (An. n — 1) xs)) I n') + 1
by (subst cycle.sel(2) [symmetric]) (rule refl)

also have ... = int (cycle (map (An. n — 1) zs) !l n) + 1
by (simp add: Suc del: cycle.sel)
also have ... = int (zs ! (n mod length zs) — 1) + 1

by (simp add: snth-cycle <xs # []>)
also have zs | (n mod length zs) € set s
using <zs # [» by (auto simp: set-conv-nth)
with 1 have zs ! (n mod length zs) > 0
by (intro Nat.gr0I) auto
hence int (zs ! (n mod length xs) — 1) + 1 = int (xs ! (n mod length xs))
by simp
finally show ?thesis
using Suc 1 by (simp add: hd-conv-nth map-tl)
qged (use 1 in <auto simp: hd-conv-nth))
qed
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definition pperiodic-cfrac-info :: nat list = int x int x intwhere
pperiodic-cfrac-info xs =

(let I = length zs;
h = conv-num-fun (An. zs | n);
k = conv-denom-fun (An. zs ! n);
A=k (-1
B=h(l—1) — (ifl = 1then 0else k (I — 2));
C = (ifl = 1 then —1 else —h (I — 2))

in (B™2—/xAxC, B, 2 x A))

lemma conv-gen-cong:
assumes Vkike{n..N}. fk=f"k
shows conv-gen f (a,b,n) N = conv-gen f' (a,b,n) N
using assms
proof (induction N — n arbitrary: a b n N)
case (Suc dn N a b)
have conv-gen f (b, b * fn + a, Suc n) N = conv-gen f' (b, b * fn + a, Suc n)
N
using Suc(2,3) by (intro Suc) auto
moreover have fn=f'n
using bspec|OF Suc.prems, of n| Suc(2) by auto
ultimately show Zcase
by (subst (1 2) conv-gen.simps) auto
qed (auto simp: conv-gen.simps)

lemma
assumes YV k<n. c k = cfrac-nth ¢’ k
shows conv-num-fun-eq’: conv-num-fun ¢ n = conv-num ¢’ n
and conv-denom-fun-eq’: conv-denom-fun ¢ n = conv-denom c’ n
proof —
have conv-num ¢’ n = conv-gen (cfrac-nth ¢’) (0, 1, 0) n
unfolding conv-num-code ..
also have ... = conv-gen c (0, 1, 0) n
unfolding conv-num-fun-def using assms by (intro conv-gen-cong) auto
finally show conv-num-fun ¢ n = conv-num ¢’ n
by (simp add: conv-num-fun-def)
next
have conv-denom ¢’ n = conv-gen (cfrac-nth ¢') (1, 0, 0) n
unfolding conv-denom-code ..
also have ... = conv-gen c (1, 0, 0) n
unfolding conv-denom-fun-def using assms by (intro conv-gen-cong) auto
finally show conv-denom-fun ¢ n = conv-denom ¢’ n
by (simp add: conv-denom-fun-def)
qed

lemma ged-minus-commute-left: ged (a — b :: 'a :: ring-ged) ¢ = ged (b — a) ¢
by (metis ged.commute ged-neg2 minus-diff-eq)

lemma ged-minus-commaute-right: ged ¢ (a — b :: 'a :: ring-ged) = ged ¢ (b — a)
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by (metis ged-neg2 minus-diff-eq)

lemma periodic-cfrac-info-auz:
fixes D E F :: int
assumes pperiodic-cfrac-info xs = (D, E, F)
assumes xs £ [| 0 ¢ set s
shows cfrac-lim (pperiodic-cfrac zs) = (sqrt D + E) /| F
and D> (0and F > 0
proof —
define ¢ where ¢ = pperiodic-cfrac xs
have [simp]: cfrac-length ¢ = oo
using assms by (simp add: c-def)
define h and k where h = conv-num-int ¢ and k = conv-denom-int c
define z where = = cfrac-lim c
define [ where | = length s

define A where A = (k (int | — 1))

define B where B=Fk (intl — 2) — h (int | — 1)
define C where C = —(h (int | — 2))

define discr where discr = B ~ 2 — J« A x C

have [ > 0
using assms by (simp add: I-def)
have c-pos: cfrac-nth ¢ n > 0 for n
using assms by (auto simp: c-def cfrac-nth-pperiodic-cfrac set-conv-nth)
have z-pos: x > 0
unfolding z-def by (intro cfrac-lim-pos c-pos)
have h-pos: hn > 0if n > —2 for n
using that unfolding h-def by (auto simp: conv-num-int-def intro: conv-num-pos’
c-pos)
have k-pos: kn > 0if n > —1 for n
using that unfolding k-def by (auto simp: conv-denom-int-def)
have k-nonneg: kn > 0 for n
unfolding k-def by (auto simp: conv-denom-int-def)

have pos: (k (intl — 1)« x + k (int I — 2)) > 0
using z-pos <l > 0»
by (intro add-pos-nonneg mult-pos-pos) (auto introl: k-pos k-nonneg)
have cfrac-drop | ¢ = ¢
using assms by (intro cfrac-eql) (auto simp: c-def cfrac-nth-pperiodic-cfrac
l-def)

have z = conv’ ¢ I (¢frac-remainder c 1)
unfolding z-def by (rule conv’-cfrac-remainder|symmetric]) auto
also have ... = conv’ clx
unfolding cfrac-remainder-def <cfrac-drop | ¢ = ¢ x-def ..
finally have z = conv’ ¢l x .
alsohave ... = (h (intl — 1) xx+ h (intl — 2)) / (k (int ] — 1) * z + k (int
- 2))
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using conv’-num-denom-int[OF z-pos, of - || unfolding h-def k-def
by (simp add: mult-ac)
finally have z « (k (int l — 1) sz + k (int 1 — 2)) = (h (int 1 — 1) x ¢ + h
(int 1 — 2))
using pos by (simp add: divide-simps)
hence quadratic: A *z 2+ Bxz+ C =10
by (simp add: algebra-simps power2-eq-square A-def B-def C-def)

have A > 0 using <l > 0» by (auto simp: A-def intro!: k-pos)
have discr-altdef: discr = (k (int [=2) — h (int 1—=1)) ~2 + 4 * k (int I—1) x h
(int 1-2)
by (simp add: discr-def A-def B-def C-def)

have 0 < 0+ 4 * Ax 1

using <4 > 0» by simp
also have 0 + 4 * A x 1 < discr

unfolding discr-altdef A-def using h-pos[of int | — 2] <l > O»

by (intro add-mono mult-mono order.refl k-nonneg mult-nonneg-nonneg) auto
finally have discr > 0 .

have z € {z. Ax2z "2+ Bxaz+ C =0}
using quadratic by simp
hence z-cases: © = (=B — sqrt discr) / (2 %« A) V o = (=B + sqrt discr) | (2
x A)
unfolding quadratic-equation-reals of-int-diff using <A > 0»
by (auto split: if-splits simp: discr-def)

have B ™ 2 < discr
unfolding discr-def by (auto introl: mult-pos-pos k-pos h-pos <l > 0> simp:
A-def C-def)
hence |B| < sqrt discr
using «discr > ) by (simp add: real-less-rsqrt)

have z = (if x > 0 then (sqrt discr — B) / (2 = A) else —(sqrt discr + B) / (2
i A)
using z-cases
proof
assume z: £ = (—B — sqrt discr) / (2 x A)
have (—B — sqrt discr) / (2% A) < 0
using «|B| < sgrt discry <A > 0> by (intro divide-neg-pos) auto
also note z[symmetric|
finally show ?thesis using z by simp
next
assume z: ¢ = (—B + sqrt discr) |/ (2 % A)
have (—B + sqrt discr) / (2% A) > 0
using ¢|B| < sqrt discry <A > 0 by (intro divide-pos-pos) auto
also note z[symmetric]
finally show %thesis using z by simp
qed
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also have z > 0 «— floor z > 0
by auto

also have floor z = floor (cfrac-lim c)
by (simp add: z-def)

also have ... = cfrac-nth ¢ 0
by (subst cfrac-nth-0-conv-floor) auto
also have ... = int (hd xs)

using assms unfolding c-def by (subst cfrac-nth-pperiodic-cfrac) (auto simp:
hd-conv-nth)
finally have z-eq: © = (sqrt discr — B) / (2 = A)
by simp

define b’ where h' = conv-num-fun (An. int (zs! n))
define k' where k' = conv-denom-fun (An. int (zs! n))
have num-eq: b/ i = h i
if ¢ < [ for i using that assms unfolding h'-def h-def
by (subst conv-num-fun-eq’[where ¢’ = c|) (auto simp: c-def l-def cfrac-nth-pperiodic-cfrac)
have denom-eq: k' i = ki
if i < [ for ¢ using that assms unfolding k’-def k-def
by (subst conv-denom-fun-eq’[where ¢’ = ¢]) (auto simp: c-def I-def cfrac-nth-pperiodic-cfrac)

have 1: h (int 1 — 1) = h' (I — 1)
by (subst num-eq) (use <l > 0> in <auto simp: of-nat-diff»)
have 2: k (intl — 1) =k (I - 1)
by (subst denom-eq) (use <l > 0> in <auto simp: of-nat-diff>)
have 3: h (int | — 2) = (if l = 1 then 1 else h' (I — 2))
using <! > 0> num-eq[of Il — 2] by (auto simp: h-def nat-diff-distrib)
have 4: k (int I — 2) = (if l = 1 then 0 else k' (I — 2))
using <l > 0» denom-eqlof | — 2] by (auto simp: k-def nat-diff-distrib)

have pperiodic-cfrac-info xs =
(let A=k (intl — 1);
B=h(intl— 1) — (if l = 1 then 0 else k (int | — 2));
C = (ifl =1 then —1 else — h (int | — 2))
in (B?> — 4% Ax C, B, 2% A))
unfolding pperiodic-cfrac-info-def Let-def using 1 2 3 4 <l > 0>
by (auto simp: num-eq denom-eq h'-def k'-def I-def of-nat-diff)
also have ... = (B?> — /x Ax C, —B, 2 x A)
by (simp add: Let-def A-def B-def C-def h-def k-def algebra-simps power2-commute)
finally have per-eq: pperiodic-cfrac-info xs = (discr, —B, 2 * A)
by (simp add: discr-def)

show z = (sqrt (real-of-int D) + real-of-int E) / real-of-int F
using per-eq assms by (simp add: z-eq)
show D > 0F > 0
using assms per-eq <discr > 0» <A > 0» by auto
qed

We can now compute surd representations for (purely) periodic continued
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fractions, e.g. [1,1,1,...] = ¥5

value pperiodic-cfrac-info [1]

We can now compute surd representations for periodic continued fractions,
e.g. [I,1,1,1,6] = Y1343,

value pperiodic-cfrac-info [1,1,1,1,6]

With a little bit of work, one could also easily derive from this a version for
non-purely periodic continued fraction.

Next, we show that any quadratic irrational has a periodic continued fraction
expansion.

theorem quadratic-irrational-imp-periodic-cfrac:
assumes quadratic-irrational (cfrac-lim e)
obtains N [ where | > 0 and An m. n > N = cfrac-nth e (n + m * ) =
cfrac-nth e n
and cfrac-remainder e (N + 1) = cfrac-remainder e N
and cfrac-length e = oo
proof —
have [simp]: cfrac-length e = co
using assms by (auto simp: quadratic-irrational.simps)
note [intro] = assms(1)
define z where = = cfrac-lim e
from assms obtain a b ¢ :: int where
nontrivial: a # 0V b # 0V ¢ # 0 and
root: a* T 2+ bxxz+c=0 (s ?%fz=10)
by (auto simp: quadratic-irrational.simps z-def)

define f where f = ?f
define h and k£ where h = conv-num e and k = conv-denom e
define X where X = cfrac-remainder e
have [simp]: ki > 0k i # 0 for {

using conv-denom-pos|of e i] by (auto simp: k-def)
have k-lel: ki < kjif i < jfor ij

by (auto simp: k-def introl: conv-denom-lel that)
have k-nonneg: kn > 0 for n

by (auto simp: k-def)
have k-ge-1: kn > 1 for n

using k-lel[of 0 n] by (simp add: k-def)

define R where R = conv e

define A where A= (An.axh(n—1 "2+ bxh(n—10)*k(n—1+c¢
xk(n—1) ~2)

define Bwhere B=(An. 2+xaxh(n—1)«h(n—2+bx(h(n—1) %k
n—2)4h(n—2)xk(n—10)+2%xcxk(n—1) *k(n—2)

define C where C = (An.axh(n—2) "2+bxh(n—2)xk(n—2) +c¢
xk(n—2) "2
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define A’ where A’ = nat |2 * |a| * |z| + |a| + |b]]
define B’ where B’ = nat |(3 / 2) x (2 % |a| x |x| + |b]) + 9/ 4 * |a]]

have [simp]: X n ¢ Q for n unfolding X-def
by simp

from this[of 0] have [simp]: z ¢ Q
unfolding X-def by (simp add: z-def)

have a # 0
proof
assume aq = 0
with root and nontriviel have t = 0V 2 = —c / b

by (auto simp: divide-simps add-eq-0-iff)
hence z € Q by (auto simp del: «x ¢ Q»)
thus Fulse by simp
qed

have bounds: (A n, Bn, Cn) € {—A".A"} x {—-B"..B'} x {-A'.A"}
and X-root: AnxXn 2+Bn«sXn+Cn=0ifn n>2forn
proof —
define n’ where n’ =n — 2
have n”: n = Suc (Suc n') using «n > 2) unfolding n’-def by simp
have x: of-int (k (n — Suc 0)) * X n + of-int (k (n — 2)) # 0
proof
assume of-int (k (n — Suc 0)) x X n + of-int (k (n — 2)) =0
hence X n = —k (n — 2) / k (n — 1) by (auto simp: divide-simps mult-ac)
also have ... € Q by auto
finally show Fulse by simp
qed

let ?denom = (k(n— 1)« Xn+ k (n — 2)
have 0 = 0 * ?denom ~ 2 by simp
also have 0 % ?denom ~2 = (axx "2+ b* x + ¢) * ?denom ~ 2 using root
by simp
also have ... = a * (z * ?denom) ~ 2 + b x ?denom * (x * 2denom) + ¢ *
2denom * ?denom
by (simp add: algebra-simps power2-eq-square)
also have z x ?denom =h (n — )« Xn + h (n — 2)
using cfrac-lim-eq-num-denom-remainder-auzof n — 2 e] <n > 2»
by (simp add: numeral-2-eq-2 Suc-diff-Suc z-def k-def h-def X-def)
also have a * ... 2+ b x ?denom * ... + ¢ x ?denom * ?denom = A n *
Xn 24 BnxXn+ Cn
by (simp add: A-def B-def C-def power2-eq-square algebra-simps)
finally show An*x Xn "2+ Bn*xXn+ Cn=20..

have f-abs-bound: |f (R n)| < (2 * |a| * |z| + |b]) * (1 / (kn * k (Suc n))) +
la| * (1 / (kn =k (Sucn))) ~2for n
proof —
have |f (R n)| = |?f (R n) — ?f z| by (simp add: root f-def)
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also have ?f (Rn) — ?%fz=(Rn—xz)*x (2+xaxz+ b))+ (Rn—2x) 2

* a
by (simp add: power2-eq-square algebra-simps)
alsohave |...| <|(Rn—z)*x (2*xa*xx+ b)|+ |[(Rn—1z) " 2% q
by (rule abs-triangle-ineq)
alsohave ... = [2xa*xz+ b *x|Rn—z|+ |a|x|Rn— =z ~2

by (simp add: abs-mult)
alsohave ... < |2xaxz+ b *x (1 / (knxk (Sucn)))+ |al *(1/ (knx
k (Suc n))) ~ 2
unfolding z-def R-def using cfrac-lim-minus-conv-bounds|of n €]
by (intro add-mono mult-left-mono power-mono) (auto simp: k-def)
also have |2 x a x & + b| < 2 % |a|] = |z| + |b]
by (rule order.trans|OF abs-triangle-ineq]) (auto simp: abs-mult)
hence |2 x a x z + b x (1 / (kn* k (Sucn))) + |a| x (1 / (kn * k (Suc
n))) "2 <
ok (1/ (kn*xk (Sucn)) + |a| * (1/ (knx*k (Sucn))) ~ 2
by (intro add-mono mult-right-mono) (auto introl: mult-nonneg-nonneg
k-nonneg)
finally show |f (R n)| < ...
by (simp add: mult-right-mono add-mono divide-left-mono)
qed

have h-eq-conv-k: hi = R i ki for ¢
using conv-denom-pos|of e i| unfolding R-def
by (subst conv-num-denom) (auto simp: h-def k-def)

have An=k(n—1) 2% f (R (n— 1)) for n
by (simp add: algebra-simps A-def n’ k-def power2-eq-square h-eg-conv-k f-def)
have A-bound: |A i| < A"if i > 0 for i
proof —
have k¢ > 0
by simp
hence k7 > 1
by linarith
have Ai=Fk(i—1) "2« f (R (i — 1))
by (simp add: algebra-simps A-def k-def power2-eq-square h-eg-conv-k f-def)
alsohave |...| =k (i— 1) "2« |f (R (i — 1))
by (simp add: abs-mult f-def)
alsohave ... <k (i —1) "2« (2 |a| x|z| + |b)) x (1) (k(i— 1) =k
(Suc (i — 1)) +
la| « (1 / (k (i = 1) = k (Suc (i — 1)))) ~ 2)
by (intro mult-left-mono f-abs-bound) auto
alsohave ... =k (i — 1) / ki* (2x|a|l x|z| + |b]) + |a| / ki ~ 2 using
x> O
by (simp add: power2-eq-square field-simps)
also have ... < 1% (2 |a| * |z| + |b]) + |a| / 1 using <i > 0> <ki> D
by (intro add-mono divide-left-mono mult-right-mono)
(auto intro!: k-lel one-le-power simp: of-nat-ge-1-iff)
also have ... = 2 x |a| * |z| + |a| + |b] by simp
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finally show ?thesis unfolding A’-def by linarith
qed

have Cn = A (n — 1) by (simp add: A-def C-def n’)
hence C-bound: |C n| < A’ using A-bound[of n — 1] n by simp

have Bn=k(n— 1) xk (n — 2) *
(F(R(n—1D)+f(R(n—2)—ax(R(n—1)—R(n—2) "2
by (simp add: B-def h-eq-conv-k algebra-simps power2-eq-square f-def)
alsohave |...|=k(n — 1) x k (n — 2) %
| f(BWm—-0))+f(R(n-2)—ax(R(n—-1)—-R(n-2)
=2
by (simp add: abs-mult k-nonneg)
alsohave ... <k (n—1)xk(n— 2) %
(2 * lal * [o] + b)) = (1
lal « (1) (k(n— 1) %k (
(2 % [a] * Ja] + 18]) * (1
laf (1] (k (n — 2) » )
la] * |R (Suc (n — 2)) — R(n— 2)] ~2) (is - < - % (251 +
252 + 253))
by (intro mult-left-mono order.trans|OF abs-triangle-ineq4] order.trans|OF
abs-triangle-ineq|
add-mono f-abs-bound order.refl)
(insert n, auto simp: abs-mult Suc-diff-Suc numeral-2-eq-2 k-nonneg)
also have |R (Suc (n — 2)) — R(n—2)| =1/ (k(n— 2) * k (Suc (n — 2)))
unfolding R-def k-def by (rule abs-diff-successive-convs)
also have of-int (k (n — 1) x k (n — 2)) x (951 4+ 252 + |a| *x ... ~2) =
(k(n—2)/kn+ 1) (2x*|al x|z| + |b]) +
la| * (k(n—2)/ (k(n—1)xkn " 2)+ 2/ (k(n—1)*k(n—
2)
(is - = 25) using n by (simp add: field-simps power2-eq-square numeral-2-eq-2
Suc-diff-Suc)
also {
have A: 2 x real-of-int (k (n — 2)) < of-int (k n)
using conv-denom-plus2-ratio-gelof e n — 2] n
by (simp add: numeral-2-eq-2 Suc-diff-Suc k-def)
have fib (Suc 2) < k 2 unfolding k-def by (intro conv-denom-lower-bound)
also have ... < k n by (intro k-lel n)
finally have k n > 2 by (simp add: numeral-3-eq-3)
hence B: of-int (k (n — 2)) * 2 =2 < (of-int (k (n — 1)) * (of-int (k n))? =
real)
by (intro mult-mono power-mono) (auto intro: k-lel k-nonneg)
have C: 1 * 1 < real-of-int (k (n — 1)) * of-int (k (n — 2)) using k-ge-1
by (intro mult-mono) (auto simp: Suc-le-eq of-nat-ge-1-iff k-nonneg)
note A B C

hence 25 < (1 / 2+ 1) * (2 |a| * |z| +|b]) + |a| x (1 / 4+ 2)

by (intro add-mono mult-right-mono mult-left-mono) (auto simp: field-simps)
also have ... = (8 / 2) x (2% |a|] * |z] + |b]) + 9/ 4 * |a| by simp
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finally have B-bound: |B n| < B’ unfolding B’-def by linarith

from A-bound[of n] B-bound C-bound n

show (A n, Bn, Cn) € {—A".A'} x {—B'..B"} x {—A'".A'} by auto
qed

have A-nz: An# 0ifn > 1for n
using that
proof (induction n rule: dec-induct)
case base
show ?Zcase
proof
assume A 1 =0
hence real-of-int (A 1) = 0 by simp
also have real-of-int (A 1) =
real-of-int a * of-int (cfrac-nth e 0) ~ 2 +
real-of-int b x cfrac-nth e 0 + real-of-int ¢
by (simp add: A-def h-def k-def)
finally have root”: ... = 0.

have cfrac-nth e 0 € Q by auto
also from root’ and <a # 0> have ?this «— is-square (nat (b> — 4 * a * c))
by (intro quadratic-equation-solution-rat-iff) auto
also from root and <a # () have ... «—— z € Q
by (intro quadratic-equation-solution-rat-iff [symmetric]) auto
finally show Fulse using <z ¢ Q» by contradiction
qged
next
case (step m)
hence nz: C (Suc m) # 0 by (simp add: C-def A-def)
show A (Suc m) # 0
proof
assume [simp]: A (Suc m) = 0
have X (Suc m) > 0 unfolding X-def
by (intro cfrac-remainder-pos) auto
with X-root[of Suc m] step.hyps nz have X (Suc m) = —C (Suc m) / B (Suc
m)
by (auto simp: divide-simps mult-ac)
also have ... € Q by auto
finally show Fulse by simp
qed
qed

have finite ({—A"..A"} x {=B'..B’} x {—=A'..A"}) by auto
from this and bounds have finite (An. (A n, Bn, Cn)) ‘{2..})
by (blast intro: finite-subset)
moreover have infinite ({2..} :: nat set) by (simp add: infinite-Ici)
ultimately have 3k1€{2..}. infinite {n € {2..}. (A n, Bn, Cn) = (A ki, B
k1, C k1)}
by (intro pigeonhole-infinite)
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then obtain k0 where k0: k0 > 2 infinite {n € {2..}. (A n, Bn, Cn) = (4
k0, B k0, C k0)}
by auto
from infinite-countable-subset[OF this(2)] obtain ¢ :: nat = -
where g: inj g range g C {n€{2..}. (A n, Bn, Cn) = (A4 k0, B k0, C k0)} by
blast
hence g-ge-2: g k > 2 for k by auto
from g have [simp]: A (g k) = A k0B (gk) =Bk0C (gk)= Ckofor k
by auto

from ¢(1) have [simp]: g kI = g k2 «—— ki1 = k2 for k1 k2 by (auto simp:
inj-def)
define z where z = (4 k0, B k0, C k0)
let 2h = Xk. (A (g k), B(gk), C (gk))
from ¢ have g¢” distinct [9 1, 92,983 ?h0=2%?h1=2% 2=z
by (auto simp: z-def)
have fin: finite {x :: real. A kO« x ~ 2 + B k0 x z + C k0 = 0} using A-nz[of
k0] kO(1)
by (subst finite-quadratic-equation-solutions-reals) auto
from X-root[of g 0] X-root|of g 1] X-root[of g 2] g-ge-2 g
have (X oyg) ‘{0, 1,2} C{z. AkOxz "2+ BkOxz+ CkO= 0}
by auto
hence card (X o g) ‘{0, 1, 2}) < card ...
by (intro card-mono fin) auto
also have ... < 2
by (rule card-quadratic-equation-solutions-reals-le-2)
also have ... < card {0, 1, 2 :: nat} by simp
finally have —inj-on (X o g) {0, 1, 2}
by (rule pigeonhole)
then obtain mI m2 where
mi12: m1 € {0, 1, 2} m2 € {0, 1, 2} X (g mI1) = X (g m2) ml # m2
unfolding inj-on-def o-def by blast
define n and [ where n = min (g m1) (¢ m2) and [ = nat |int (g m1) — g m2|
with mi2¢g’'have : | > 0X (n+ 1) =Xn
by (auto simp: min-def nat-diff-distrib split: if-splits)

from [ have cfrac-lim (cfrac-drop (n + 1) e) = cfrac-lim (cfrac-drop n e)
by (simp add: X-def cfrac-remainder-def)

hence cfrac-drop (n + 1) e = cfrac-drop n e
by (simp add: cfrac-lim-eq-iff)

hence cfrac-nth (cfrac-drop (n + 1) €) = cfrac-nth (cfrac-drop n e)
by (simp only:)

hence period: cfrac-nth e (n + | + k) = cfrac-nth e (n + k) for k
by (simp add: fun-eq-iff add-ac)

have period: cfrac-nth e (k + 1) = cfrac-nth e k if k > n for k
using period|of k — n] that by (simp add: add-ac)

have period: cfrac-nth e (k + m x 1) = cfrac-nth e k if k > n for &k m
using that

proof (induction m)
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case (Suc m)
have cfrac-nth e (k + Suc m x 1) = cfrac-nth e (k + m x| + [)
by (simp add: algebra-simps)

also have ... = c¢frac-nth e (k + m * [)
using Suc.prems by (intro period) auto
also have ... = cfrac-nth e k

using Suc.prems by (intro Suc.IH) auto
finally show ?Zcase .
qed simp-all

from this and [ and that[of | n| show %thesis by (simp add: X-def)
qed

theorem periodic-cfrac-iff-quadratic-irrational:
assumes z ¢ Q z > 0
shows quadratic-irrational x «——
(ANIL 1> 0N (Yn>N. cfrac-nth (cfrac-of-real ) (n + 1) =
cfrac-nth (cfrac-of-real x) n))
proof safe
assume x: quadratic-irrational x
with assms have sx: quadratic-irrational (cfrac-lim (cfrac-of-real z)) by auto
obtain N [ where NI: [ > 0
Anm. N < n= cfrac-nth (cfrac-of-real ) (n + m * [) = cfrac-nth (cfrac-of-real
z)n
cfrac-remainder (cfrac-of-real x) (N + 1) = cfrac-remainder (cfrac-of-real ) N
cfrac-length (cfrac-of-real z) = oo
using quadratic-irrational-imp-periodic-cfrac [OF xx] by metis
show IN . I > 0 A (Vn>N. cfrac-nth (cfrac-of-real ) (n + 1) = cfrac-nth
(¢frac-of-real x) n)
by (rule exI[of - N|, rule exI[of - l]) (insert NI(1) NI(2)[of - 1], auto)
next
fix N[ assume [ > 0 Vn>N. cfrac-nth (cfrac-of-real z) (n + 1) = cfrac-nth
(¢frac-of-real ) n
hence quadratic-irrational (cfrac-lim (cfrac-of-real x)) using assms
by (intro periodic-cfrac-imp-quadratic-irrational[of - | N]) auto
with assms show quadratic-irrational
by simp
qed

The following result can e.g. be used to show that a number is not a
quadratic irrational.

lemma quadratic-irrational-cfrac-nth-range-finite:
assumes quadratic-irrational (cfrac-lim e)
shows finite (range (cfrac-nth e))
proof —
from quadratic-irrational-imp-periodic-cfrac|OF assms] obtain | N
where period: | > 0 Am n. n > N = cfrac-nth e (n + m * l) = cfrac-nth e n
by metis
have cfrac-nth e k € cfrac-nth e * {..<N+I} for k
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proof (cases k < N + 1)
case Fulse
define n m where n = N + (k — N) mod l and m = (k — N) div [
have cfrac-nth e n € cfrac-nth e * {_.<N+I}
using <l > 0» by (intro imagel) (auto simp: n-def)
also have cfrac-nth e n = cfrac-nth e (n + m * [)
by (subst period) (auto simp: n-def)
also have n + mx [ =k
using Fualse by (simp add: n-def m-def)
finally show ?%thesis .
qed auto
hence range (cfrac-nth €) C cfrac-nth e * {..<N+I}
by blast
thus ?thesis by (rule finite-subset) auto
qed

end

3 The continued fraction expansion of ¢

theory E-CPFrac
imports
HOL— Analysis. Analysis
Continued-Fractions
Quadratic-Irrationals
begin

lemma fact-real-at-top: filterlim (fact :: nat = real) at-top at-top
proof (rule filterlim-at-top-mono)
have real n < real (fact n) for n
unfolding of-nat-le-iff by (rule fact-ge-self)
thus eventually (An. real n < fact n) at-top by simp
qed (fact filterlim-real-sequentially)

lemma filterlim-div-nat-at-top:
assumes filterlim f at-top F m > 0
shows filterlim (\z. f z div m :: nat) at-top F
unfolding filterlim-at-top
proof
fix C :: nat
from assms(1) have eventually (Az. fz > C x m) F
by (auto simp: filterlim-at-top)
thus eventually (\z. fx divm > C) F
proof eventually-elim
case (elim x)
hence (C x m) divm < fx divm
by (intro div-le-mono)
thus ?case using «<m > 0» by simp
qed
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qed

The continued fraction expansion of e has the form [2;1,2,1,1,4,1,1,6,1,1,8,1,...]:

definition e-cfrac where
e-cfrac = cfrac (An. if n = 0 then 2 else if n mod 8 = 2 then 2 * (Suc n div 8)
else 1)

lemma cfrac-nth-e:

cfrac-nth e-cfrac n = (if n = 0 then 2 else if n mod 3 = 2 then 2 * (Suc n div 3)
else 1)

unfolding e-cfrac-def by (subst cfrac-nth-cfrac) (auto simp: is-cfrac-def)

lemma cfrac-length-e [simp|: cfrac-length e-cfrac = oo
by (simp add: e-cfrac-def)

The formalised proof follows the one from Proof Wiki [2].

context
fixes A B C :: nat = real and p ¢ :: nat = int and a :: nat = int
defines A = (An. integral {0..1} (Az. exp z * z "n*x (x — 1) " n / fact n))
and B = (An. integral {0..1} (A\z. exp x * x ~ Sucn * (x — 1) ~n / fact n))
and C = (An. integral {0..1} (Az. expx x z " nx (x — 1) ~ Sucn / fact n))
and p = (An. if n < 1 then 1 else conv-num e-cfrac (n — 2))
and ¢ = (An. if n = 0 then 1 else if n = 1 then 0 else conv-denom e-cfrac (n
~2))
and a = (An. if n mod 3 = 2 then 2 * (Suc n div 3) else 1)
begin

lemma
assumes n > 2
shows p-reccpn=a(n—2)xp(n—1)+p(n— 2 (is ?thi)
and grec: gn=a(n—2)xq(n— 1)+ q(n— 2) (is 2th2)
proof —
have n-minus-3: n — 3 = n — Suc (Suc (Suc 0))
by (simp add: numeral-3-eq-3)
consider n=2|n=38|n>/4
using assms by force
hence ?thi1 A\ ?th2
by cases (auto simp: p-def g-def cfrac-nth-e a-def conv-num-rec conv-denom-rec
n-minus-3)
thus ?th1 ?th2 by blast+
qed

lemma
assumes n > I
shows p-recO:p (3+*n)=p(8*xn—1)+p(3*xn—2)
and g¢recO0: g (3*xn)=q(3xn—1)+q(3xn—2)
proof —
define n’ where n’ = n — 1
from assms have (3 x n’ + 1) mod 3 # 2
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by presburger
also have (3« n'+ 1) =3 xn — 2
using assms by (simp add: n'-def)
finally show p (3xn)=p (3xn—1)+p(3*xn— 2)
g(8*xn)=qBxn—1)+q¢g(3xn—2)
using assms by (subst p-rec g-rec; simp add: a-def)+
qed

lemma
assumes n > 1
shows p-recl: p(8*xn+ 1)=2xintnxp(8*n)+p(3*xn— 1)
and qgrecl: g (Sxn+ 1) =2x%intn*xq(3*xn)+q(8*xn—1)
proof —
define n’ where n’ = n — 1
from assms have (3 x n’ + 2) mod 3 = 2
by presburger
also have (3« n’ + 2) =3+ n — 1
using assms by (simp add: n'-def)
finally show p (3xn+ 1) =2« intnxp (8*xn)+p(3*xn— 1)
g(Exn+1)=2xintn*xq(3xn)+q(3*xn—1
using assms by (subst p-rec g-rec; simp add: a-def)+
qged

lemma p-rec2: p (3*xn+ 2)=p(3*xn+ 1)+ p(3*n)
and g-rec2: ¢ (3xn+2)=q(8*xn+ 1)+ q (3 xn)
by (subst p-rec g-rec; simp add: a-def nat-mult-distrib nat-add-distrid)+

lemma A-0: A ) =ecxp1— 1and B-0: B0 =1and C-0: C0 =2 — exp 1
proof —
have (exp has-integral (exp 1 — exp 0)) {0..1::real}
by (intro fundamental-theorem-of-calculus)
(auto introl: derivative-eg-intros
simp flip: has-real-derivative-iff-has-vector-derivative)

thus A 0 = exp 1 — 1 by (simp add: A-def has-integral-iff)

have ((Az. exp z * x) has-integral (exp 1 % (1 — 1) — exp 0 % (0 — 1))) {0..1::real}
by (intro fundamental-theorem-of-calculus)
(auto introl: derivative-eg-intros
simp flip: has-real-derivative-iff-has-vector-derivative simp: algebra-simps)
thus B 0 = 1 by (simp add: B-def has-integral-iff)

have ((Az. exp z * (x — 1)) has-integral (exp 1 % (1 — 2) — exp 0 % (0 — 2)))
{0..1::real}
by (intro fundamental-theorem-of-calculus)
(auto introl: derivative-eg-intros
simp flip: has-real-derivative-iff-has-vector-derivative simp: algebra-simps)
thus C 0 = 2 — exp 1 by (simp add: C-def has-integral-iff)
qed
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lemma A-bound: norm (A n) < exp 1/ factn
proof —
have norm (expt xt “nx (t — 1) "n/ factn) < exp1x1 "nx1 "n/ fact
n
if t € {0..1} for t :: real using that unfolding norm-mult norm-divide
norm-power norm-fact
by (intro mult-mono divide-right-mono power-mono) auto
hence norm (A n) < exp 1 / fact n * (1 — 0)
unfolding A-def by (intro integral-bound) (auto introl: continuous-intros)
thus %thesis by simp
qged

lemma B-bound: norm (B n) < exp 1 / fact n
proof —
have norm (exp t x t “Sucn* (t — 1) "n / factn) < exp 1 x 1" Sucnx* 1"
n / fact n
if t € {0..1} for t :: real using that unfolding norm-mult norm-divide
norm-power norm-fact
by (intro mult-mono divide-right-mono power-mono) auto
hence norm (B n) < exp 1/ fact n * (1 — 0)
unfolding B-def by (intro integral-bound) (auto intro!: continuous-intros)
thus ?thesis by simp

qed
lemma C-bound: norm (C'n) < exp 1/ fact n
proof —
have norm (exp t x t “nx (t — 1) “Sucn / factn) < exp 1x1 "nx*x 1" Suc
n / fact n

if t € {0..1} for t :: real using that unfolding norm-mult norm-divide
norm-power norm-fact
by (intro mult-mono divide-right-mono power-mono) auto
hence norm (Cn) < exp 1/ fact n x (1 — 0)
unfolding C-def by (intro integral-bound) (auto intro!: continuous-intros)
thus ?thesis by simp
qed

lemma A-Suc: A (Sucn) = —-Bn— Cn
proof —
let 2g = Ax. x "~ Sucn* (x — 1) " Sucn * exp x / fact (Suc n)
have pos: fact n + real n x fact n > 0 by (intro add-pos-nonneg) auto
have A (Sucn) + Bn+ Cn =
integral {0..1} (Ax. exp z x x ~ Suc n * (x — 1) ~ Suc n / fact (Suc n) +
ezprxx Sucnx(x—1) "n/factn+ eprxz nx(x—1) "
Suc n / fact n)
unfolding A-def B-def C-def
apply (subst integral-add [symmetric])
subgoal
by (auto intro!: integrable-continuous-real continuous-intros)
subgoal
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by (auto intro!: integrable-continuous-real continuous-intros)
apply (subst integral-add [symmetric])
apply (auto intro!: integrable-continuous-real continuous-intros)
done
also have ... = integral {0..1} (Az. exp = / fact (Suc n) *
(x "Sucnx(x—1) "Sucn+ Sucnxxz Sucnx*(z—1) "n+
Sucnxx nx(z— 1) Sucn))
(is - = integral - ?f)
apply (simp add: divide-simps)
apply (simp add: field-simps)?
done
also have (?f has-integral (%9 1 — %g 0)) {0..1}
apply (intro fundamental-theorem-of-calculus)
subgoal
by simp
unfolding has-real-derivative-iff-has-vector-derivative [symmetric]
apply (rule derivative-eq-intros refl | simp)+
apply (simp add: algebra-simps) ?
done
hence integral {0..1} ?f = 0
by (simp add: has-integral-iff)
finally show ?thesis by simp
qed

lemma B-Suc: B (Sucn) = —2 % Suc n*x A (Sucn) + Cn

proof —
let 2g = Az. x “Sucnx (x — 1) ~(n+2) x exp x / fact (Suc n)
have pos: fact n + real n * fact n > 0 by (intro add-pos-nonneg) auto
have B (Suc n) + 2 % Sucn*x A (Sucn) — Cn =

integral {0..1} (A\z. exp x x 7 (n+2) * (x — 1) (n+1) / fact (Suc n) + 2
x Suc n *
expx xx  Sucnx (xr— 1) " Sucn / fact (Sucn) — expxxx " nx* (z
— 1) " Suc n / fact n)
unfolding A-def B-def C-def integral-mult-right [symmetric]
apply (subst integral-add [symmetric])
subgoal

by (auto introl: integrable-continuous-real continuous-intros)
subgoal

by (auto intro!: integrable-continuous-real continuous-intros)
apply (subst integral-diff [symmetric])

apply (auto intro!: integrable-continuous-real continuous-intros simp: mult-ac)
done

also have ... = integral {0..1} (Az. exp = / fact (Suc n) *
(7 (n+2) * (x — D) (n+1) + 2% Sucn*xz Sucnx*(z— 1)
Suc n —
Sucnxxz nx(z— 1) Sucn))
(is - = integral - 2f)
apply (simp add: divide-simps)
apply (simp add: field-simps)?
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done

also have (?f has-integral (%9 1 — %g 0)) {0..1}
apply (intro fundamental-theorem-of-calculus)
apply (simp; fail)
unfolding has-real-derivative-iff-has-vector-derivative [symmetric]
apply (rule derivative-eq-intros refl | simp)+
apply (simp add: algebra-simps) ?
done

hence integral {0..1} ?f = 0
by (simp add: has-integral-iff)

finally show ?thesis by (simp add: algebra-simps)

qed

lemma C-Suc: Cn=Bn—An
unfolding A-def B-def C-def
by (subst integral-diff [symmetric))
(auto introl: integrable-continuous-real continuous-intros simp: field-simps)

lemma unfold-add-numeral: ¢ * n + numeral b = Suc (¢ * n + pred-numeral b)
by simp

lemma ABC:
An=q(8xn)*xexpl—1p(3=*xn)A
Bn=p (Suc (3*n)) —q(Suc(3*n))*explA
Cn = p (Suc (Suc (3 * n))) — q (Suc (Suc (3 * n))) * exp 1
proof (induction n)
case (
thus ?case by (simp add: A-0 B-0 C-0 a-def p-def g-def cfrac-nth-¢)
next
case (Suc n)
note [simp] =
conjunctl[OF Suc.IH] conjunctl[OF conjunct2[OF Suc.IH]| conjunct2[OF con-
junct2|OF Suc.IH]]
have [simp]: 3 + m = Suc (Suc (Suc m)) for m by simp

have A" A (Suc n) = of-int (q (3 * Suc n)) * exp 1 — of-int (p (8 * Suc n))
unfolding A-Suc
by (subst p-recO g-rec0, simp)+ (auto simp: algebra-simps)
have B”: B (Suc n) = of-int (p (3 * Suc n + 1)) — of-int (q (3 * Suc n + 1)) *
exp 1
unfolding B-Suc
by (subst p-recl g-recl p-recO g¢-rec0, simp)—+ (auto simp: algebra-simps A-Suc)
have C': C (Suc n) = of-int (p (8xSuc n+2)) — of-int (g (3xSuc n+2)) * exp 1
unfolding A-Suc B-Suc C-Suc using p-rec2[of n] g-rec2[of n]
by ((subst p-rec2 g-rec2)+, (subst p-recO g-recO p-recl g-recl, simp)+)
(auto simp: algebra-simps A-Suc B-Suc)
from A’ B’ C' show ?case by simp
qed
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lemma g¢-pos: gn > 0if n # 1
using that by (auto simp: g-def)

lemma conv-diff-exp-bound: norm (exp 1 — pn / qn) < exp 1/ fact (n div 3)
proof (cases n = 1)
case Fulse
define n’ where n’ = n div 8
consider n mod 3 = 0| nmod 3 =1|nmod 3 =2
by force
hence diff [unfolded n'-def]: gn * exp 1 — pn =
(if n mod 3 = 0 then A n’ else if n mod 3 = 1 then —B n’ else —C' n’)
proof cases
assume n mod 3 = 0
hence 3 * n’ = n unfolding n’-def by presburger
with ABC[of n'] show ?thesis by auto
next
assume *: n mod 3 = 1
hence Suc (3 * n') = n unfolding n’-def by presburger
with x ABC[of n'| show ?thesis by auto
next
assume *: n. mod 3 = 2
hence Suc (Suc (3 * n’)) = n unfolding n’-def by presburger
with «+ ABC|of n'] show ?thesis by auto
qed

note [[linarith-split-limit = 0]
have norm ((¢gn xexp 1 — pn) / gn) < exp 1/ fact (n div 3) / 1 unfolding
diff norm-divide
using A-bound[of n div 3] B-bound[of n div 8] C-bound|of n div 3] q-pos|OF «n
4 1)
by (subst frac-le) (auto simp: of-nat-ge-1-iff)
also have (¢gn*exp 1l —pn)/gn=epl—pn/qn
using ¢-pos[OF «n # 1] by (simp add: divide-simps)
finally show ?thesis by simp
qed (auto simp: p-def g-def)

theorem e-cfrac: cfrac-lim e-cfrac = exp 1
proof —
have num: conv-num e-cfrac n = p (n + 2)
and denom: conv-denom e-cfrac n = ¢ (n + 2) for n
by (simp-all add: p-def q-def)

have (An.exp 1 —pn/qn) —— 0
proof (rule Lim-null-comparison)
show eventually (An. norm (exp 1 —pn [/ qgn) < exp 1/ fact (n div 3)) at-top
using conv-diff-exp-bound by (intro always-eventually) auto
show (An. exp 1 / fact (n div 3) :: real) —— 0
by (rule real-tendsto-divide-at-top tendsto-const filterlim-div-nat-at-top
filterlim-ident filterlim-compose|OF fact-real-at-top])+ auto
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qed
moreover have eventually (An. exp 1 — pn / gn = exp 1 — conv e-cfrac (n —
2)) at-top
using eventually-ge-at-top|of 2]
proof eventually-elim
case (elim n)
with num[of n — 2] denom[of n — 2] wf show Zcase
by (simp add: eval-nat-numeral Suc-diff-Suc conv-num-denom)
qed
ultimately have (An. exp 1 — conv e-cfrac (n — 2)) —— 0
using Lim-transform-eventually by fast
hence (An. exp 1 — (exp 1 — conv e-cfrac (Suc (Suc n) — 2))) —— exp 1 — 0
by (subst filterlim-sequentially-Suc)+ (intro tendsto-diff tendsto-const)
hence conv e-cfrac —— exp 1 by simp
moreover have conv e-cfrac —— cfrac-lim e-cfrac
by (intro LIMSEQ-cfrac-lim wf) auto
ultimately have exp I = cfrac-lim e-cfrac
by (rule LIMSEQ-unique)
thus ?thesis ..
qed

corollary e-cfrac-altdef: e-cfrac = cfrac-of-real (exp 1)
by (metis e-cfrac cfrac-infinite-iff cfrac-length-e cfrac-of-real-cfrac-lim-irrational)

This also provides us with a nice proof that e is not rational and not a
quadratic irrational either.

corollary expl-irrational: (exp 1 :: real) ¢ Q
by (metis cfrac-length-e e-cfrac cfrac-infinite-iff)

corollary ezpl-not-quadratic-irrational: —quadratic-irrational (exp 1 :: real)
proof —
have range (An. 2 x (int n + 1)) C range (cfrac-nth e-cfrac)
proof safe
fix n :: nat
have cfrac-nth e-cfrac (3+n+2) € range (cfrac-nth e-cfrac)
by blast
also have (3 * n + 2) mod 3 = 2
by presburger
hence cfrac-nth e-cfrac (3xn+2) = 2 % (int n + 1)
by (simp add: cfrac-nth-e)
finally show 2 x (int n + 1) € range (cfrac-nth e-cfrac) .
qed
moreover have infinite (range (An. 2 * (int n + 1)))
by (subst finite-image-iff) (auto introl: injI)
ultimately have infinite (range (cfrac-nth e-cfrac))
using finite-subset by blast
thus ?thesis using quadratic-irrational-cfrac-nth-range-finite[of e-cfrac]
by (auto simp: e-cfrac)
qged

112



end
end

4 Continued fraction expansions for square roots
of naturals

theory Sqrt-Nat-Cfrac

imports
Quadratic-Irrationals
HOL— Library. While-Combinator
HOL—- Library.[Array

begin

In this section, we shall explore the continued fraction expansion of D,
where D is a natural number.

lemma butlast-nth [simp]: n < length xs — 1 = butlast xs ! n = xs ! n
by (induction zs arbitrary: n) (auto simp: nth-Cons split: nat.splits)

The following is the length of the period in the continued fraction expansion
of /D for a natural number D.

definition sqrt-nat-period-length :: nat = nat where
sqrt-nat-period-length D =
(if is-square D then 0
else (LEAST 1.1 > 0 A (VY n. cfrac-nth (cfrac-of-real (sqrt D)) (Suc n + 1) =
cfrac-nth (cfrac-of-real (sqrt D)) (Suc n))))

Next, we define a more workable representation for the continued fraction
expansion of v/ D consisting of the period length, the natural number [V D],
and the content of the period.

definition sqrt-cfrac-info :: nat = nat x nat x nat list where
sqrt-cfrac-info D =
(sgrt-nat-period-length D, Discrete.sqrt D,
map (An. nat (cfrac-nth (cfrac-of-real (sqrt D)) (Suc n))) [0..<sqrt-nat-period-length
DJ)

lemma sqrt-nat-period-length-square [simp]: is-square D = sqrt-nat-period-length
D=0
by (auto simp: sqrit-nat-period-length-def)

definition sqrt-cfrac :: nat = cfrac
where sqri-cfrac D = cfrac-of-real (sqrt (real D))

context

fixes D D’ :: nat

defines D' = nat |sqrt D]
begin
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@ for p,

A number a = g € N is called a reduced quadratic surd if o > 1

and bara € (—1;0), where & denotes the conjugate @.

It is furthermore called associated to D if q divides D — p?.

definition red-assoc :: nat x nat = bool where
red-assoc = (A(p, q).
q>0NAqdvd (D— p?) A(sgrt D+ p)/ q>1N(=sqtD+p)/ q¢€
{-1<..<0})

The following two functions convert between a surd represented as a pair of
natural numbers and the actual real number and its conjugate:

definition surd-to-real :: nat x nat = real
where surd-to-real = (A(p, q). (sgrt D + p) / q)

definition surd-to-real-cnj :: nat x nat = real
where surd-to-real-cnj = (X(p, q). (—sqrt D + p) / q)

The next function performs a single step in the continued fraction expansion

of V/D.

definition sgri-remainder-step :: nat X nat = nat X nat where
sqrt-remainder-step = (A(p, q). let X = (p + D) div ¢; p' = X x ¢ — p in (p/,
(D — p?) div q))

. . . . 1
If we iterate this step function starting from the surd 7o/ Ve get the

entire expansion.

definition sqrt-remainder-surd :: nat = nat X nat
where sqrt-remainder-surd = (An. (sqrt-remainder-step " n) (D', D — D"?))

context

fixes sqrt-cfrac-nth :: nat = nat and [

assumes nonsquare: —is-square D

defines sqrt-cfrac-nth = (An. case sqrt-remainder-surd n of (p, q) = (D’ + p)
div q)

defines | = sqrt-nat-period-length D
begin

lemma D’-pos: D' > 0
using nonsquare by (auto simp: D'-def of-nat-ge-1-iff intro: Nat.groI)

lemma D’-sqr-less-D: D2 < D

proof —
have D' < sqrt D by (auto simp: D’-def)
hence real D' 2 < sqrt D ~ 2 by (intro power-mono) auto
also have ... = D by simp
finally have D < D by simp
moreover from nonsquare have D # D? by auto
ultimately show ?thesis by simp

qed
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lemma red-assoc-imp-irrat:

assumes red-assoc pq

shows  surd-to-real pq ¢ Q
proof

assume rat: surd-to-real pg € Q

with assms rat show Fualse using irrat-sqrt-nonsquare] OF nonsquare]

by (auto simp: field-simps red-assoc-def surd-to-real-def divide-in-Rats-iff2

add-in-Rats-iff1)
qed

lemma surd-to-real-cnj-irrat:

assumes red-assoc pq

shows  surd-to-real-cnj pqg ¢ Q
proof

assume rat: surd-to-real-cnj pg € Q

with assms rat show Fualse using irrat-sqrt-nonsquare] OF nonsquare]

by (auto simp: field-simps red-assoc-def surd-to-real-cnj-def divide-in-Rats-iff2

diff-in-Rats-iff1)
qed

lemma surd-to-real-nonneg [intro|: surd-to-real pg > 0
by (auto simp: surd-to-real-def case-prod-unfold divide-simps intro!: divide-nonneg-nonneg)

lemma surd-to-real-pos [introl: red-assoc pqg = surd-to-real pg > 0
by (auto simp: surd-to-real-def case-prod-unfold divide-simps red-assoc-def
intro!: divide-nonneg-nonneg)

lemma surd-to-real-nz [simp|: red-assoc pg = surd-to-real pg # 0
by (auto simp: surd-to-real-def case-prod-unfold divide-simps red-assoc-def
introl: divide-nonneg-nonneg)

lemma surd-to-real-cnj-nz [simp|: red-assoc pqg = surd-to-real-cnj pq # 0
using surd-to-real-cnj-irrat[of pq] by auto

lemma red-assoc-step:
assumes red-assoc pq
defines X = (D’ + fst pq) div snd pq
defines pq’ = sqri-remainder-step pq
shows red-assoc pq’
surd-to-real pq’ = 1/ frac (surd-to-real pq)
surd-to-real-cnj pg' = 1/ (surd-to-real-cnj pg — X)
X >0X *xsndpg<2x* D' X = nat |surd-to-real pq|
X = nat |—1 / surd-to-real-cnj pq’|
proof —
obtain p ¢ where [simp]: pq = (p, q) by (cases pq)
obtain p’ ¢’ where [simp]: pq’ = (p’, ¢) by (cases pq’)
define oo where a = (sqrt D + p) / ¢
define o’ where o’ = 1/ frac «
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define cnj-o’ where cnj-a’ = (—sqrt D + (X x ¢ — int p)) / (D — (X * ¢ —
int p)?) div q)
from assms(1) have o > 0 ¢ > 0
by (auto simp: a-def red-assoc-def)
from assms(1) nonsquare have o ¢ Q
by (auto simp: a-def red-assoc-def divide-in-Rats-iff2 add-in- Rats-iff2 irrat-sqrt-nonsquare)
hence a’-pos: frac a > 0 using Ints-subset-Rats by auto
from <pq’ = (p’, ¢’)» have p’-def: p’ = X * ¢ — p and ¢’-def: ¢’ = (D — p”)
div q
unfolding pq’-def sqrt-remainder-step-def X-def by (auto simp: Let-def add-ac)

have D' + p = |sqrt D + p]
by (auto simp: D’-def)
also have ... div int ¢ = |(sqrt D + p) / q|
by (subst floor-divide-real-eq-div [symmetric]) auto
finally have X-altdef: X = nat |(sqrt D + p) / q]
unfolding X-def zdiv-int [symmetric] by auto

have nz: sqrt (real D) + (X * ¢ — real p) # 0
proof
assume sqrt (real D) + (X * ¢ — real p) = 0
hence sqgrt (real D) = real p — X * ¢ by (simp add: algebra-simps)
also have ... € Q by auto
finally show Fulse using irrat-sqrt-nonsquare nonsquare by blast
qed

from assms(1) have real (p ~2) < sqrt D ~ 2
unfolding of-nat-power by (intro power-mono) (auto simp: red-assoc-def
field-simps)
also have sqrt D ~ 2 = D by simp
finally have p? < D by (subst (asm) of-nat-le-iff)

have fraca = a — X
by (simp add: X-altdef frac-def a-def)
also have ... = (sqgrt D — (X x ¢ — int p)) / ¢
using <q > 0» by (simp add: field-simps «-def)
finally have 1 / frac o = q / (sqrt D — (X * q — int p))

by simp
also have ... = g * (sqrt D + (X % ¢ — int p)) /
((sgrt D — (X * ¢ — int p)) = (sqrt D + (X * ¢ — int p))) (is - =
?A |/ ?B)

using nz by (subst mult-divide-mult-cancel-right) auto
also have ?B = real-of-int (D —intp ~ 2+ 2x X xpxqg—int X " 2xq " 2)
by (auto simp: algebra-simps power2-eg-square)
also have ¢ dvd (D — p ~ 2) using assms(1) by (auto simp: red-assoc-def)
with «p? < D) have int q dvd (int D — int p ~ 2)
unfolding of-nat-power [symmetric] by (subst of-nat-diff [symmetric]) auto
hence D —intp "2+ 2+« Xxpxqg—intX " 2xq 2=¢q=*((D—(X=xgq
— int p)?) div q)
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by (auto simp: power2-eg-square algebra-simps)
also have ?A / ... = (sqrt D + (X * q — int p)) / (D — (X * q — int p)?) div
q)
unfolding of-int-mult of-int-of-nat-eq
by (rule mult-divide-mult-cancel-left) (insert <q > 0>, auto)
finally have o”: o’ = ... by (simp add: «'-def)

have dvd: q dvd (D — (X * q — int p)?)
using assms(1) <int g dvd (int D — int p ~ 2)»
by (auto simp: power2-eg-square algebra-simps)

have X < (s¢rt D + p) / ¢ unfolding X-altdef by simp
moreover have X # (sqrt D + p) / q
proof
assume X = (sqgrt D + p) / ¢
hence sqrt D = ¢ x X — real p using <¢ > 0> by (auto simp: field-simps)
also have ... € Q by auto
finally show Fulse using irrat-sqrt-nonsquare[ OF nonsquare] by simp
qed
ultimately have X < (sqrt D + p) / ¢ by simp
hence x: (X % ¢ — int p) < sqrt D
using <q > 0> by (simp add: field-simps)
moreover
have pos: real-of-int (int D — (int X * int ¢ — int p)?) > 0
proof (cases X * ¢ > p)
case True
hence real p < real X * real ¢ unfolding of-nat-mult [symmetric] of-nat-le-iff

hence real-of-int ((X *x ¢ — int p) ~ 2) < sqrt D ~ 2 using x*
unfolding of-int-power by (intro power-strict-mono) auto
also have ... = D by simp
finally show ?thesis by simp
next
case Fulse
hence less: real X * real ¢ < real p
unfolding of-nat-mult [symmetric] of-nat-less-iff by auto
have (real X * real ¢ — real p)* = (real p — real X * real q)?
by (simp add: power2-eg-square algebra-simps)
also have ... < real p ~ 2 using less by (intro power-mono) auto
also have ... < sqrt D ~ 2
using <q > 0 assms(1) unfolding of-int-power
by (intro power-strict-mono) (auto simp: red-assoc-def field-simps)
also have ... = D by simp
finally show ?thesis by simp
qed
hence pos’: int D — (int X * int ¢ — int p)> > 0
by (subst (asm) of-int-0-less-iff)
from pos have real-of-int ((int D — (int X * int ¢ — int p)?) div q) > 0
using <qg > 0 dvd by (subst real-of-int-div) (auto introl: divide-pos-pos)
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ultimately have cnj-neg: cnj-a’ < 0 unfolding cnj-a’-def using dvd
unfolding of-int-0-less-iff by (intro divide-neg-pos) auto

have (p — sqrt D) / ¢ < 0
using assms(1) by (auto simp: red-assoc-def X-altdef le-nat-iff)
also have X > 1
using assms(1) by (auto simp: red-assoc-def X-altdef le-nat-iff)
hence 0 < real X — 1 by simp
finally have ¢ < sqrt D + int ¢ « X — p
using <q > 0> by (simp add: field-simps)
hence ¢ x (sqrt D — (int ¢ x X — p)) < (sqrt D + (int ¢ * X — p)) * (sqrt D
— (int g % X — p))
using * by (intro mult-strict-right-mono) (auto simp: red-assoc-def X-altdef
field-simps)
alsohave ... =D — (int g« X —p) ~ 2
by (simp add: power2-eg-square algebra-simps)
finally have cnj-a’ > —1
using dvd pos <q > 0»> by (simp add: real-of-int-div field-simps cnj-o’-def)

from cnj-neg and this have cnj-o’ € {—1<..<0} by auto
have o’ > 1 using <frac o > 0»
by (auto simp: o'-def field-simps frac-lt-1)

have 0 = 1 + (—1 :: real)
by simp
also have 1 + —1 < a’ + cnj-a’
using «cnj-a’ > —1» and <o’ > 1) by (intro add-strict-mono)
also have o’ + cnj-a’ = 2 * (real X * ¢ — real p) / ((int D — (int X = q — int
p)?) div int q)
by (simp add: ' cnj-o’-def add-divide-distrib [symmetric])
finally have real X * ¢ — real p > 0 using pos dvd <q > 0»
by (subst (asm) zero-less-divide-iff, subst (asm) (1 2 8) real-of-int-div)
(auto simp: field-simps)
hence real (X * q) > real p unfolding of-nat-mult by simp
hence p-less-Xq: p < X % q by (simp only: of-nat-less-iff)

from pos’ and p-less-Xq have int D > int ((X * ¢ — p)?)
by (subst of-nat-power) (auto simp: of-nat-diff)
hence pos’: D > (X x ¢ — p)? unfolding of-nat-less-iff .

from dvd have int q dvd int (D — (X * q¢ — p)?)

using p-less-Xq pos’ by (subst of-nat-diff) (auto simp: of-nat-diff)
with dvd have dvd”: q dvd (D — (X * q¢ — p)?)

by simp

have o’-altdef: o' = (sqrt D + p’) / ¢’

using dvd dvd’ pos’’ p-less-Xq o'

by (simp add: real-of-int-div p'-def q’-def real-of-nat-div mult-ac of-nat-diff)
have cnj-a’-altdef: cnj-a’ = (—sqrt D + p’) / ¢’
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using dvd dvd’ pos’’ p-less-Xq unfolding cnj-o’-def

by (simp add: real-of-int-div p’-def q’-def real-of-nat-div mult-ac of-nat-diff)
from dvd’ have dvd': ¢’ dvd (D — p”)

by (auto simp: mult-ac p’-def q'-def)
have real (D — p”) div q) > 0 unfolding p’-def

by (subst real-of-nat-div[OF dvd'], rule divide-pos-pos) (insert <q > 0> pos'

auto)

hence ¢’ > 0 unfolding ¢'-def of-nat-0-less-iff .

show red-assoc pq’ using <a’ > 1) and <cnj-a’ € -» and dvd"’ and <q’ > 0»
by (auto simp: red-assoc-def o'-altdef cnj-o’-altdef)

from assms(1) have real p < sqrt D
by (auto simp add: field-simps red-assoc-def)
hence p < D’ unfolding D’-def by linarith
with % have real (X * q) < sqrt (real D) + D’
by simp
thus X x snd pg < 2 * D’ unfolding D’-def <pq = (p, q)» snd-conv by linarith

have (sqrt D + p') / ¢’ = o’
by (rule o’-altdef [symmetric])
also have o' = 1 / frac ((sqrt D + p) / q)
by (simp add: o’-def a-def)
finally show surd-to-real pg’ = 1/ frac (surd-to-real pq) by (simp add: surd-to-real-def)
from <X > I» show X > 0 by simp
from X-altdef show X = nat |surd-to-real pq| by (simp add: surd-to-real-def)

have sqrt (real D) < real p + 1 * real q
using assms(1) by (auto simp: red-assoc-def field-simps)
also have ... < real p + real X * real q
using <X > O0» by (intro add-left-mono mult-right-mono) (auto simp: of-nat-ge-1-iff)
finally have sqrt (real D) < ... .

have real p < sqrt D
using assms(1) by (auto simp add: field-simps red-assoc-def)
also have ... < sgrt D + ¢ x X
by linarith
finally have less: real p < sqrt D + X * g by (simp add: algebra-simps)
moreover have D + px p' + X x g* sqrt D = g * ¢/ + p * sqrt D + p’ * sqrt
D+ Xxp'xgq
using dvd’ pos’ p-less-Xq «q > 0)> unfolding p’-def q'-def of-nat-mult of-nat-add
by (simp add: power2-eq-square field-simps of-nat-diff real-of-nat-div)
ultimately show x: surd-to-real-cnj pq’ = 1 / (surd-to-real-cnj pg — X)
using <q > 0 <q¢’ > 0> by (auto simp: surd-to-real-cnj-def field-simps)

have *x: a = nat |y] ifx > 0z < 1 real a + = = y for a :: nat and z y :: real
using that by linarith

from assms(1) have surd-to-real-cnj: surd-to-real-cnj (p, q) € {—1<..<0}
by (auto simp: surd-to-real-cnj-def red-assoc-def)
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have surd-to-real-cnj (p, q¢) < X
using assms(1) less by (auto simp: surd-to-real-cnj-def field-simps red-assoc-def)
hence real X = surd-to-real-cnj (p, q¢) — 1 / surd-to-real-cnj (p’, q¢’) using *
using surd-to-real-cnj-irrat assms(1) <red-assoc pg”"y by (auto simp: field-simps)
thus X = nat |—1 / surd-to-real-cnj pq’| using surd-to-real-cnj
by (intro xx[of —surd-to-real-cnj (p, q)]) auto
qed

lemma red-assoc-denom-2D:
assumes red-assoc (p, q)
defines X = (D' + p) div q
assumes X > D’
shows ¢ = 1
proof —
have X x ¢ < 2% D' X > 0
using red-assoc-step(4,5)[OF assms(1)] by (simp-all add: X-def)
note this(1)
also have 2 D' < 2% X
by (intro mult-strict-left-mono assms) auto
finally have ¢ < 2 using <X > 0> by simp
moreover from assms(1) have ¢ > 0 by (auto simp: red-assoc-def)
ultimately show ?thesis by simp
qed

lemma red-assoc-denom-1:
assumes red-assoc (p, 1)
shows p= D’
proof —
from assms have sqrt D > p sqrt D < real p + 1
by (auto simp: red-assoc-def)
thus p = D’ unfolding D’-def
by linarith
qed

lemma red-assoc-begin:
red-assoc (D', D — D")
surd-to-real (D', D — D) = 1/ frac (sqrt D)
surd-to-real-cnj (D', D — D) = —1 / (sqrt D + D)
proof —
have pos: D > 0 D' > 0
using nonsquare by (auto simp: D'-def of-nat-ge-1-iff intro!: Nat.gr0I)

have sqrt D # D’

using irrat-sqrt-nonsquare[OF nonsquare] by auto
moreover have sqrt D > 0 by simp
hence D’ < sqrt D unfolding D’-def by linarith
ultimately have less: D’ < sqrt D by simp

have sqrt D # D' + 1
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using irrat-sqrt-nonsquare[OF nonsquare] by auto
moreover have sqrt D > 0 by simp
hence D’ > sqrt D — 1 unfolding D’-def by linarith
ultimately have gt: D' > sqrt D — 1 by simp

from less have real D’ = 2 < sqrt D ~ 2 by (intro power-strict-mono) auto
also have ... = D by simp
finally have less”: D”? < D unfolding of-nat-power [symmetric] of-nat-less-iff .

moreover have real D' * (real D' — 1) < sqrt D * (sqrt D — 1)

using less pos

by (intro mult-strict-mono diff-strict-right-mono) (auto simp: of-nat-ge-1-iff)
hence D? + sqrt D < D' + D

by (simp add: field-simps power2-eq-square)
moreover have (sqrt D — 1) * sqrt D < real D' % (real D' + 1)

using pos gt by (intro mult-strict-mono) auto
hence D < sqrt D + D" + D' by (simp add: power2-eq-square field-simps)
ultimately show red-assoc (D', D — D"?)

by (auto simp: red-assoc-def field-simps of-nat-diff less)

have frac: frac (sqrt D) = sqrt D — D’ unfolding frac-def D’-def
by auto
show surd-to-real (D', D — D) = 1/ frac (sqrt D) unfolding surd-to-real-def
using less less’ pos by (subst frac) (auto simp: of-nat-diff power2-eq-square
field-simps)

have surd-to-real-cnj (D', D — D) = —((sqrt D — D') / (D — D"?))
using less less’ pos by (auto simp: surd-to-real-cnj-def field-simps)

also have real (D — D) = (sqrt D — D) * (sqrt D + D)
using less’ by (simp add: power2-eq-square algebra-simps of-nat-diff)

also have (sgrt D — D) /... =1/ (sqrt D + D’)
using less by (subst nonzero-divide-mult-cancel-left) auto

finally show surd-to-real-cnj (D', D — D"?) = —1 / (sqrt D + D’) by simp

qed

lemma cfrac-remainder-surd-to-real:
assumes red-assoc pq
shows cfrac-remainder (cfrac-of-real (surd-to-real pq)) n =
surd-to-real ((sqrt-remainder-step ~ n) pq)
using assms(1)
proof (induction n arbitrary: pq)
case 0
hence cfrac-lim (cfrac-of-real (surd-to-real pq)) = surd-to-real pq
by (intro cfrac-lim-of-real red-assoc-imp-irrat 0)
thus ?case using 0
by auto
next
case (Suc n)
obtain p ¢ where [simp|: pg = (p, ¢q) by (cases pq)
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have surd-to-real ((sqrt-remainder-step ~ Suc n) pq) =
surd-to-real ((sqri-remainder-step ~ n) (sqrt-remainder-step (p, q)))
by (subst funpow-Suc-right) auto
also have ... = cfrac-remainder (cfrac-of-real (surd-to-real (sqrt-remainder-step
(p, 9))) n
using red-assoc-step(1)[of (p, q)] Suc.prems
by (intro Suc.IH [symmetric]) (auto simp: sqri-remainder-step-def Let-def
add-ac)
also have surd-to-real (sqrt-remainder-step (p, q)) = 1 / frac (surd-to-real (p,
7))
using red-assoc-step(2)[of (p, q)] Suc.prems
by (auto simp: sqrt-remainder-step-def Let-def add-ac surd-to-real-def)
also have cfrac-of-real ... = cfrac-tl (cfrac-of-real (surd-to-real (p, q)))
using Suc.prems Ints-subset-Rats red-assoc-imp-irrat by (subst cfrac-tl-of-real)
auto
also have cfrac-remainder ... n = cfrac-remainder (cfrac-of-real (surd-to-real
(p, 0))) (Suc n)
by (simp add: cfrac-drop-Suc-right cfrac-remainder-def)
finally show ?case by simp
qed

lemma red-assoc-step’ [intro]: red-assoc pg = red-assoc (sqri-remainder-step pq)
using red-assoc-step(1)]of pq|
by (simp add: sqrt-remainder-step-def case-prod-unfold add-ac Let-def)

lemma red-assoc-steps [intro]: red-assoc pg = red-assoc ((sqrt-remainder-step ~

n) pq)
by (induction n) auto

lemma floor-sqri-less-sqrt: D' < sqrt D
proof —
have D’ < sqrt D unfolding D’-def by auto
moreover have sqrt D # D'
using irrat-sqrt-nonsquare[ OF nonsquare] by auto
ultimately show #¢thesis by auto
qed

lemma red-assoc-bounds:
assumes red-assoc pq
shows pq € (SIGMA p:{0<..D'}. {Suc D' — p..D' + p})
proof —
obtain p ¢ where [simp]: pq = (p, q) by (cases pq)
from assms have *: p < sqrt D
by (auto simp: red-assoc-def field-simps)
hence p: p < D’ unfolding D’-def by linarith
from assms have p > 0 by (auto introl: Nat.grOI simp: red-assoc-def)

have ¢ > sqrt D — p g < sqrt D + p
using assms by (auto simp: red-assoc-def field-simps)
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hence ¢ > D'+ 1 —-pqg< D' +p
unfolding D’-def by linarith-+
with p «p > () show ?thesis by simp
qed

lemma surd-to-real-cnj-eq-iff:
assumes red-assoc pq red-assoc pq’
shows surd-to-real-cnj pq = surd-to-real-cnj pq’ +—— pq = pq’
proof
assume eq: surd-to-real-cnj pqg = surd-to-real-cnj pq’
from assms have pos: snd pg > 0 snd pq’ > 0 by (auto simp: red-assoc-def)
have snd pg = snd pq’
proof (rule ccontr)
assume snd pq # snd pq’
with eq have sqrt D = (real (fst pq’ * snd pq) — fst pg * snd pq") / (real (snd
pq) — snd pq’)
using pos by (auto simp: field-simps surd-to-real-cnj-def case-prod-unfold)
also have ... € Q by auto
finally show Fualse using irrat-sqrt-nonsquare[OF nonsquare] by auto
qed
moreover from this eq pos have fst pq = fst pq’
by (auto simp: surd-to-real-cnj-def case-prod-unfold)
ultimately show pg = pq’ by (simp add: prod-eq-iff)
qed auto

lemma red-assoc-sqrt-remainder-surd [intro]: red-assoc (sqrt-remainder-surd n)
by (auto simp: sqrt-remainder-surd-def introl: red-assoc-begin)

lemma surd-to-real-sqrt-remainder-surd:
surd-to-real (sqrt-remainder-surd n) = cfrac-remainder (cfrac-of-real (sqrt D))
(Suc n)
proof (induction n)
case (
from nonsquare have D > 0 by (auto intro!: Nat.grOI)
with red-assoc-begin show ?case using nonsquare irrat-sqrt-nonsquare[ OF non-
square)
using Ints-subset-Rats cfrac-drop-Suc-right cfrac-remainder-def cfrac-tl-of-real
sqrt-remainder-surd-def by fastforce
next
case (Suc n)
have surd-to-real (sqrt-remainder-surd (Suc n)) =
surd-to-real (sqrt-remainder-step (sqrt-remainder-surd n))
by (simp add: sqrt-remainder-surd-def)
also have ... = 1/ frac (surd-to-real (sqrt-remainder-surd n))
using red-assoc-step| OF red-assoc-sqri-remainder-surd|of n]] by simp
also have surd-to-real (sqrt-remainder-surd n) =
cfrac-remainder (cfrac-of-real (sqrt D)) (Suc n) (is - = 2X)
by (rule Suc.IH)
also have | cfrac-remainder (cfrac-of-real (sqrt (real D))) (Suc n)| =
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cfrac-nth (cfrac-of-real (sqrt (real D))) (Suc n)
using irrat-sqri-nonsquare] OF nonsquare] by (intro floor-cfrac-remainder) auto
hence 1 / frac ?X = cfrac-remainder (cfrac-of-real (sqrt D)) (Suc (Suc n))
using irrat-sqrt-nonsquare] OF nonsquare]
by (subst cfrac-remainder-Suclof Suc n))
(simp-all add: frac-def cfrac-length-of-real-irrational)
finally show ?Zcase .
qed

lemma sqrt-cfrac: sqrt-cfrac-nth n = cfrac-nth (cfrac-of-real (sqrt D)) (Suc n)
proof —
have cfrac-nth (cfrac-of-real (sqrt D)) (Suc n) =
| cfrac-remainder (cfrac-of-real (sqrt D)) (Suc n)]
using irrat-sqrt-nonsquare]| OF nonsquare] by (subst floor-cfrac-remainder) auto
also have cfrac-remainder (cfrac-of-real (sqrt D)) (Suc n) = surd-to-real (sqrt-remainder-surd
n)
by (rule surd-to-real-sqrt-remainder-surd [symmetric])
also have nat | surd-to-real (sqrt-remainder-surd n)| = sqrt-cfrac-nth n
unfolding sqrt-cfrac-nth-def using red-assoc-step(6)[OF red-assoc-sqrt-remainder-surd|of
n]]
by (simp add: case-prod-unfold)
finally show ?thesis
by (simp add: nat-eq-iff)
qed

lemma sqrt-cfrac-pos: sqri-cfrac-nth k > 0
using red-assoc-step(4)|OF red-assoc-sqrt-remainder-surd|of k]
by (simp add: sqrt-cfrac-nth-def case-prod-unfold)

lemma snd-sqrt-remainder-surd-pos: snd (sqrt-remainder-surd n) > 0
using red-assoc-sqrt-remainder-surd|of n] by (auto simp: red-assoc-def)

lemma
shows period-nonempty: >0
and period-length-le-aux: | < D' % (D' + 1)
and sqrt-remainder-surd-periodic:  \n. sqrt-remainder-surd n = sqrt-remainder-surd
(n mod 1)
and sqrt-cfrac-periodic: \n. sqri-cfrac-nth n = sqrt-cfrac-nth (n mod I)
and sqrt-remainder-surd-smallest-period:
An. n € {0<..<l} = sqrt-remainder-surd n # sqrt-remainder-surd 0
and snd-sqrt-remainder-surd-gt-1:  An. n <l — 1 = snd (sqrt-remainder-surd
n) > 1
and sqri-cfrac-le: An. n <1l — 1= sqrt-cfrac-nth n < D’
and sqrt-remainder-surd-last: sqrt-remainder-surd (I — 1) = (D', 1)
and sqri-cfrac-last: sqrt-cfrac-nth (I — 1) = 2 « D’
and sgrt-cfrac-palindrome: An. n < 1 — 1 = sqrt-cfrac-nth (I — n — 2) =
sqrt-cfrac-nth n
and sqrt-cfrac-smallest-period:
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N U > 0 = (A\k. sqrt-cfrac-nth (k + U') = sqrt-cfrac-nth k) = 1’ > 1
proof —
note [simp| = sqrt-remainder-surd-def
define f where f = sqrt-remainder-surd
have «[intro]: red-assoc (f n) for n
unfolding f-def by (rule red-assoc-sqrt-remainder-surd)

define S where S = (SIGMA p:{0<..D’}. {Suc D' — p..D’ + p})
have [intro]: finite S by (simp add: S-def)
have card S = (> p=1..D’. 2 % p) unfolding S-def
by (subst card-Sigmal) (auto introl: sum.cong)
also have ... = D'« (D' + 1)
by (induction D) (auto simp: power2-eq-square)
finally have [simp]: card S = D’ x (D' + 1) .

have D'« (D' 4+ 1) + 1 = card {..D' « (D' + 1)} by simp
define k1 where
k1 = (LEAST k1. k1 < D'« (D' + 1) A (3k2. k2 < D'+ (D' + 1) AN k1 # k2
A fk1=[fk2)
define k2 where
k2 = (LEAST k2. k2 < D'« (D'+ 1) Nk1 # k2N fk1=[k2)

have f ‘{..D' x (D’ + 1)} C S unfolding S-def
using red-assoc-bounds[OF *] by blast
hence card (f “{..D' * (D' + 1)}) < card S
by (intro card-mono) auto
also have card S = D’ x (D' + 1) by simp
also have ... < card {.D' x (D' + 1)} by simp
finally have —inj-on f {..D’ x (D' + 1)}
by (rule pigeonhole)
hence 3k1. k1 < D'+ (D' + 1) A (3k2. k2 < D' % (D' + 1) A kI # k2 A f kI
=fk2)
by (auto simp: inj-on-def)
from Leastl-ex[OF this, folded k1-def]
have k1 < D'« (D' + 1) 3k2<D’x (D' + 1). k1 # k2 A f kI = [ k2 by auto
moreover from Leastl-ex[OF this(2), folded k2-def]
have k2 < D' x (D' 4+ 1) k1 # k2 f kI = f k2 by auto
moreover have k1 < k2
proof (rule ccontr)
assume —(k1 < k2)
hence k2 < D'« (D' + 1) AN (Fk2. k2’ < D'x (D' + 1) Nk2# k2" N fk2 =
fk2)
using k1 < D’ x (D’ + 1)) and <kl # k2 and «f k1 = f k2> by auto
hence kI < k2 unfolding kI-def by (rule Least-le)
with (k1 < k2)» show Fulse by simp
qed
ultimately have £k12: kI < k2 k2 < D'« (D' + 1) f ki1 = f k2 by auto

have [simp]: kI = 0
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proof (cases k1)

case (Suc k1)

define k2’ where k2' = k2 — 1

have Suc”: k2 = Suc k2’ using k12 by (simp add: k2'-def)

have nz: surd-to-real-cnj (sqrt-remainder-step (f k1)) # 0

surd-to-real-cnj (sqrt-remainder-step (f k2')) # 0

using surd-to-real-cnj-nz[|OF «[of k2]] surd-to-real-cnj-nz[OF «[of k1]]
by (simp-all add: f-def Suc Suc’)

define a where a = (D’ + fst (f k1)) div snd (f k1)

define o’ where o' = (D' + fst (f k1')) div snd (f k1)

define o where o = (D' + fst (f k2')) div snd (f k2')

have o’ = nat |— 1 / surd-to-real-cnj (sqrt-remainder-step (f k1'))]
using red-assoc-step| OF x[of k1']] by (simp add: a’-def)

also have sqrt-remainder-step (f k1') = f k1
by (simp add: Suc f-def)

also have f k1 = f k2 by fact

also have f k2 = sqrt-remainder-step (f k2') by (simp add: Suc’ f-def)

also have nat |— 1/ surd-to-real-cnj (sqri-remainder-step (f k2'))] = a”
using red-assoc-step| OF x[of k2] by (simp add: a’'-def)

finally have a’-a": o’ = a” .

have surd-to-real-cnj (f k2') # a"’
using surd-to-real-cnj-irrat[OF «[of k2']] by auto
hence surd-to-real-cnj (f k2') = 1 / surd-to-real-cnj (sqrt-remainder-step (f
k?/)) + a//
using red-assoc-step(3)[OF «[of k2], folded a''-def] nz
by (simp add: field-simps)
also have ... = 1 / surd-to-real-cnj (sqrt-remainder-step (f k1')) + a
using k12 by (simp add: a’-a” k12 Suc Suc’ f-def)
also have nz’: surd-to-real-cnj (f k1) # a’
using surd-to-real-cnj-irrat[OF *[of k1']] by auto
hence 1 / surd-to-real-cnj (sqrt-remainder-step (f k1’)) + o’ = surd-to-real-cnj
(f k1)
using red-assoc-step(3)|OF x[of k1], folded a’-def] nz nz’
by (simp add: field-simps)
finally have f k1’ = f k2’
by (subst (asm) surd-to-real-cnj-eg-iff) auto
with k12 have k1’ < D'+ (D' + 1) A (3k2<D’ % (D' + 1). k1’ # k2 A f k1’
— fh2)
by (auto simp: Suc Suc’ intro: exl|of - k2'))
hence k1 < k1’ unfolding ki1-def by (rule Least-le)
thus k1 = 0 by (simp add: Suc)
qged auto

!

have smallest-period: f k # f 0 if k € {0<..<k2} for k
proof

assume f k= f0

hence k < D'« (D'+ ) Nk1£kNfkl=fk
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using k12 that by auto
hence k2 < k unfolding k2-def by (rule Least-le)
with that show Fualse by auto
qed

have snd-f-gt-1: snd (fk) > 1if k < k2 — 1 for k
proof —
have snd (f k) # 1
proof
assume snd (f k) = 1
hence fk = (D', 1) using red-assoc-denom-1[of fst (f k)] *[of k]
by (cases f k) auto
hence sqrt-remainder-step (fk) = (D', D — D") by (auto simp: sqrt-remainder-step-def)
hence [ (Suc k) = f 0 by (simp add: f-def)
moreover have f (Suc k) # [0
using that by (intro smallest-period) auto
ultimately show Fulse by contradiction
qed
moreover have snd (f k) > 0 using *[of k| by (auto simp: red-assoc-def)
ultimately show ?thesis by simp
qged

have sqrt-cfrac-le: sqri-cfrac-nth k < D" if k < k2 — 1 for k
proof —
define p and ¢ where p = fst (f k) and ¢ = snd (f k)
have ¢ > 2 using snd-f-gt-1[of k] that by (auto simp: ¢-def)
also have sqrt-cfrac-nth k x ¢ < D' * 2
using red-assoc-step(5)[OF *[of k]
by (simp add: sqrt-cfrac-nth-def p-def q-def case-prod-unfold f-def)
finally show ?thesis by simp
qed

have last: f (k2 — 1) = (D/, 1)
proof —
define p and ¢ where p = fst (f (k2 — 1)) and q = snd (f (k2 — 1))
have pq: f (k2 — 1) = (p, q) by (simp add: p-def q-def)
have sqrt-remainder-step (f (k2 — 1)) = f (Suc (k2 — 1))
by (simp add: f-def)
also from k12 have Suc (k2 — 1) = k2 by simp
also have fk2 = f0
using k12 by simp
also have f 0 = (D', D — D") by (simp add: f-def)
finally have eq: sqrt-remainder-step (f (k2 — 1)) = (D', D — D) .

hence (D — D?) div ¢ = D — D" unfolding sqrt-remainder-step-def Let-def
bq
by auto
moreover have ¢ > 0 using *[of k2 — 1]
by (auto simp: red-assoc-def q-def)
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ultimately have ¢ = I using D’-sqr-less-D
by (subst (asm) div-eq-dividend-iff) auto
hence p = D’
using red-assoc-denom-1[of p] *[of k2 — 1] unfolding pq by auto
with <¢ = I» show f (k2 — 1) = (D', 1) unfolding pq by simp
qed

have period: sqrt-remainder-surd n = sqrt-remainder-surd (n mod k2) for n
unfolding sqrt-remainder-surd-def using k12 by (intro funpow-cycle) (auto
simp: f-def)
have period”: sqrt-cfrac-nth k = sqri-cfrac-nth (k mod k2) for k
using period[of k] by (simp add: sqrt-cfrac-nth-def)

have k2-le: | > k2 if | > 0 \k. sqrt-cfrac-nth (k + 1) = sqrt-cfrac-nth k for |
proof (rule ccontr)
assume *: —(] > k2)
hence sqrt-cfrac-nth (k2 — Suc l) = sqrt-cfrac-nth (k2 — 1)
using that(2)[of k2 — Suc l] by simp
also have ... = 2 x D’
using last by (simp add: sqrt-cfrac-nth-def f-def)
finally have 2 x D' = sqrt-cfrac-nth (k2 — Sucl) ..
also have ... < D’ using k12 that *
by (intro sqrt-cfrac-le diff-less-mono2) auto
finally show Fulse using D’-pos by simp
qed

have | = (LEAST 1. 0 < I A (V¥ n. int (sqri-cfrac-nth (n + 1)) = int (sqrt-cfrac-nth
n)))
using nonsquare unfolding sqrt-cfrac-def
by (simp add: l-def sqrt-nat-period-length-def sqrt-cfrac)
hence l-altdef: | = (LEAST 1. 0 < I A (V n. sqrt-cfrac-nth (n + 1) = sqrt-cfrac-nth
n))

by simp

have [simp]: D # 0 using nonsquare by (auto intro!: Nat.gr0I)
have 31. 1 > 0 A (Vk. sqrt-cfrac-nth (k 4+ 1) = sqrt-cfrac-nth k)
proof (rule exl, safe)

fix k show sqrt-cfrac-nth (k + k2) = sqrt-cfrac-nth k

using period’[of k] period’[of k + k2] k12 by simp

qed (insert k12, auto)
from Leastl-ex[OF this, folded l-altdef]
have I: | > 0 A\k. sqrt-cfrac-nth (k + 1) = sqrt-cfrac-nth k

by (simp-all add: sqrt-cfrac)

have | < k2 unfolding [-altdef

by (rule Least-le) (subst (1 2) period’, insert k12, auto)
moreover have k2 < [ using k2-le | by blast
ultimately have [simp]: | = k2 by auto
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define z’ where z/ = (A\k. —1 / surd-to-real-cnj (f k))
{
fix k£ :: nat
have nz: surd-to-real-cnj (f k) # 0 surd-to-real-cnj (f (Suc k)) # 0
using surd-to-real-cnj-nz[OF *, of k| surd-to-real-cnj-nz[OF *, of Suc k]
by (simp-all add: f-def)

have surd-to-real-cnj (f k) # sqrt-cfrac-nth k
using surd-to-real-cnj-irrat|OF «[of k]] by auto
hence z’ (Suc k) = sqrt-cfrac-nth k + 1 / ' k
using red-assoc-step(3)[OF «[of k]] nz
by (simp add: field-simps sqrt-cfrac-nth-def case-prod-unfold f-def x’-def)
} note z'-Suc = this

have z'-nz: z’ k # 0 for k

using surd-to-real-cnj-nz[OF «[of k]] by (auto simp: z'-def)
have z’-0: ' 0 = real D' + sqrt D

using red-assoc-begin by (simp add: z’'-def f-def)

define ¢’ where ¢’ = cfrac (An. sqrt-cfrac-nth (I — Suc n))
define ¢’ where ¢" = cfrac (An. if n = 0 then 2 x D’ else sqrt-cfrac-nth (n —
)
have nth-c’ [simp]: cfrac-nth ¢’ n = sqrt-cfrac-nth (I — Suc n) for n
unfolding c¢’-def by (subst cfrac-nth-cfrac) (auto simp: is-cfrac-def intro!:
sqrt-cfrac-pos)
have nth-c"’ [simp]: cfrac-nth ¢”" n = (if n = 0 then 2 x D' else sqrt-cfrac-nth (n
— 1)) for n
unfolding c¢”-def by (subst cfrac-nth-cfrac) (auto simp: is-cfrac-def introl:
sqrt-cfrac-pos)

have conv’ ¢’ n (' (I — n)) =z’ lif n < [for n
using that
proof (induction n)
case (Suc n)
have z' | = conv’ ¢’ n (2’ (I — n))
using Suc.prems by (intro Suc.IH [symmetric]) auto
also have | — n = Suc (I — Suc n)
using Suc.prems by simp

also have z’ ... = cfrac-nth ¢’ n + 1/ z’ (I — Suc n)
by (subst z'-Suc) simp
also have conv’ ¢’ n ... = conv’ ¢’ (Suc n) (z' (I — Suc n))

by (simp add: conv’-Suc-right)
finally show ?case ..
qed simp-all
from this[of I] have conv’-z'-0: conv’ ¢' 1 (z' 0) = 2’ 0
using k12 by (simp add: z'-def)

have cfrac-nth (cfrac-of-real (z’ 0)) n = cfrac-nth ¢"’ n for n
proof (cases n)
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case (
thus ?thesis by (simp add: z'-0 D’-def)
next
case (Suc n')
have sqrt D ¢ Z
using red-assoc-begin(1) red-assoc-begin(2) by auto
hence cfrac-nth (cfrac-of-real (real D' + sqrt (real D))) (Suc n') =
cfrac-nth (cfrac-of-real (sqrt (real D))) (Suc n')
by (simp add: cfrac-tl-of-real frac-add-of-nat Ints-add-left-cancel flip: cfrac-nth-tl)
thus ?thesis using x’-nz[of 0]
by (simp add: x’-0 sqrt-cfrac Suc)
qed

show sgqrt-cfrac-nth (I — n — 2) = sqrt-cfrac-nth n if n < 1 — 1 for n
proof —
have D > 1 using nonsquare by (cases D) (auto introl: Nat.grol)
hence D’ + sqrt D > 0 + 1 using D’-pos by (intro add-strict-mono) auto
hence z’ 0 > 1 by (auto simp: z'-0)
hence cfrac-nth ¢’ (Suc n) = cfrac-nth (cfrac-of-real (conv’ ¢’ 1 (z' 0))) (Suc

")
using «n < [ — 1) using cfrac-of-real-conv’ by auto
also have ... = cfrac-nth (cfrac-of-real (z’ 0)) (Suc n)

by (subst conv’-z'-0) auto
also have ... = cfrac-nth ¢"’ (Suc n) by fact
finally show sqrt-cfrac-nth (I — n — 2) = sqrt-cfrac-nth n
by simp
qed

show [ > 01 < D'* (D' + 1) using k12 by simp-all
show sgrt-remainder-surd n = sqrt-remainder-surd (n mod [)
sqrt-cfrac-nth n = sqrt-cfrac-nth (n mod 1) for n

using period|of n] period’[of n] by simp-all

show sqrt-remainder-surd n # sqri-remainder-surd 0 if n € {0<..<l} for n
using smallest-period|of n| that by (auto simp: f-def)

show snd (sqrt-remainder-surd n) > 1if n <1 — 1 for n
using that snd-f-gt-1[of n] by (simp add: f-def)

show f (I — 1) = (D', 1) and sqrt-cfrac-nth (I — 1) = 2 % D’
using last by (simp-all add: sqrt-cfrac-nth-def f-def)

show sqrt-cfrac-nth k < D"if k < [ — 1 for k
using sqrt-cfrac-le[of k| that by simp

show I’ > Lif I’ > 0 Ak. sqrt-cfrac-nth (k 4+ 1) = sqrt-cfrac-nth k for 1’
using k2-le[of '] that by auto

qed

theorem cfrac-sqrt-periodic:
cfrac-nth (cfrac-of-real (sqrt D)) (Suc n) =
cfrac-nth (cfrac-of-real (sqrt D)) (Suc (n mod 1))
using sqrt-cfrac-periodic[of n] by (metis sqrt-cfrac)
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theorem cfrac-sqri-le: n € {0<..<l} = cfrac-nth (cfrac-of-real (sqrt D)) n < D’
using sqrt-cfrac-le[of n — 1]
by (metis Suc-less-eq Suc-pred add.right-neutral greater ThanLess Than-iff of-nat-mono
period-nonempty plus-1-eq-Suc sqri-cfrac)

theorem cfrac-sqri-last: cfrac-nth (cfrac-of-real (sqrt D)) | = 2 x D’
using sqrt-cfrac-last by (metis One-nat-def Suc-pred period-nonempty sqrt-cfrac)

theorem cfrac-sqrt-palindrome:
assumes n € {0<..<[}
shows cfrac-nth (cfrac-of-real (sqrt D)) (I — n) = cfrac-nth (cfrac-of-real (sqrt
D)) n
proof —
have cfrac-nth (cfrac-of-real (sqrt D)) (I — n) = sqrt-cfrac-nth (I — n — 1)
using assms by (subst sqrt-cfrac) (auto simp: Suc-diff-Suc)

also have ... = sqrt-cfrac-nth (n — 1)
using assms by (subst sqrt-cfrac-palindrome [symmetric]) auto
also have ... = cfrac-nth (cfrac-of-real (sqrt D)) n

using assms by (subst sqrt-cfrac) auto
finally show ?thesis .
qed

lemma sqrt-cfrac-info-palindrome:
assumes sqrt-cfrac-info D = (a, b, cs)
shows rev (butlast cs) = butlast cs
proof (rule List.nth-equalityl; safe?)
fix i assume i < length (rev (butlast cs))
with period-nonempty have Suc i < length cs by simp
thus rev (butlast cs) ! i = butlast cs ! i
using assms cfrac-sqri-palindrome|of Suc i| period-nonempty unfolding I-def
by (auto simp: sqrt-cfrac-info-def rev-nth algebra-simps Suc-diff-Suc simp del:
cfrac.simps)
qed simp-all

lemma sqrt-cfrac-info-last:
assumes sqrt-cfrac-info D = (a, b, cs)
shows last cs = 2 x Discrete.sqrt D
proof —
from assms show ?thesis using period-nonempty cfrac-sqrt-last
by (auto simp: sqrt-cfrac-info-def last-map I-def D’-def Discrete-sqrt-altdef)
qed

The following lemmas allow us to compute the period of the expansion of
the square root:
lemma while-option-sqrt-cfrac:

defines step’ = (A(as, pq). (D' + fst pq) div snd pq # as, sqrt-remainder-step

pq))
defines b = (\(-, pq). snd pg # 1)

defines initial = ([] :: nat list, (D', D — D"))
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shows while-option b step’ initial =
Some (rev (map sqrt-cfrac-nth [0..<l —1]), (D', 1))
proof —
define P where
P = (A(as, pq). let n = length as
in n <l A pg= sqrt-remainder-surd n A as = rev (map
sqrt-cfrac-nth [0..<n]))
define p :: nat list x (nat x nat) = nat where p = (A(as, -). | — length as)
have [simp]: P initial using period-nonempty
by (auto simp: initial-def P-def sqrt-remainder-surd-def)
have step”: P (step’ s) A Suc (length (fst s)) < lif P sb s for s
proof (cases s)
case (fields as p q)
define n where n = length as
from that fields sqrt-remainder-surd-last have Suc n <
by (auto simp: b-def P-def Let-def n-def [symmetric])
moreover from that fields sqrt-remainder-surd-last have Suc n # 1
by (auto simp: b-def P-def Let-def n-def [symmetric])
ultimately have Suc n < [ by auto
with that fields sqrt-remainder-surd-last show P (step’ s) A Suc (length (fst
s)) < 1
by (simp add: b-def P-def Let-def n-def step’-def sqrt-cfrac-nth-def
sqrt-remainder-surd-def case-prod-unfold)
qed
have [simp]: length (fst (step’ s)) = Suc (length (fst s)) for s
by (simp add: step’-def case-prod-unfold)

have 3. while-option b step’ initial = Some x
proof (rule measure-while-option-Some)

fix s assume x: Psb s

from step’|[OF x] show P (step’ s) A p (step’ s) < p s

by (auto simp: b-def u-def case-prod-unfold intro!: diff-less-mono2)

qged auto
then obtain z where z: while-option b step’ initial = Some z ..
have P z by (rule while-option-rule|OF - z]) (insert step’, auto)
have —b x using while-option-stop|OF z] by auto

obtain as p ¢ where [simp]: z = (as, (p, q)) by (cases z)
define n where n = length as
have [simp]: ¢ = 1 using «—b x> by (auto simp: b-def)
have [simp]: p = D’ using (P 2
using red-assoc-denom-1[of p| by (auto simp: P-def Let-def)
have n < [ sqrt-remainder-surd (length as) = (D', Suc 0)
and as: as = rev (map sqri-cfrac-nth [0..<n]) using <P x>
by (auto simp: P-def Let-def n-def)
hence —(n < [ — 1)
using snd-sqrt-remainder-surd-gt-1[of n] by (intro notl) auto
with «<n < > have [simp]: n =1 — 1 by auto
show ?thesis by (simp add: as x)
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qed

lemma while-option-sqrt-cfrac-info:
defines step’ = (A(as, pq). ((D' + fst pq) div snd pq # as, sqrt-remainder-step
pa))
defines b = (A(-, pq). snd pq # 1)
defines initial = ([], (D', D — D"?))
shows sqrt-cfrac-info D =
(case while-option b step’ initial of
Some (as, -) = (Suc (length as), D', rev ((2 % D') # as)))
proof —
have nat (cfrac-nth (cfrac-of-real (sqrt (real D))) (Suc k)) = sqrt-cfrac-nth k for
k
by (metis nat-int sqrt-cfrac)
thus ?thesis unfolding assms while-option-sqrt-cfrac
using period-nonempty sqrt-cfrac-last
by (cases 1) (auto simp: sqri-cfrac-info-def D'-def I-def Discrete-sqrt-altdef)
qed

end
end

lemma sqri-nat-period-length-le: sqrt-nat-period-length D < nat |sqrt D| * (nat
|sqrt D] + 1)
by (cases is-square D) (use period-length-le-auz[of D] in auto)

lemma sqrt-nat-period-length-0-iff [simp]:
sqrt-nat-period-length D = 0 «— is-square D
using period-nonempty|of D] by (cases is-square D) auto

lemma sqrt-nat-period-length-pos-iff [simp):
sqrt-nat-period-length D > 0 «—— —is-square D
using period-nonempty|of D] by (cases is-square D) auto

lemma sqrt-cfrac-info-code [code]:
sqrt-cfrac-info D =
(let D' = Discrete.sqrt D
in if D = D then (0, D', [])
else
case while-option
(A~ pq). snd pq # 1)
(Mas, (p, q)). let X = (p+ D) div g, p' =X xq—p
in (X # as, p', (D — p”?) div q))
([]7 Dlv D — Da)
of Some (as, -) = (Suc (length as), D', rev ((2 * D) # as)))
proof —
define D’ where D’ = Discrete.sqrt D
show ?thesis
proof (cases is-square D)
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case True
hence D’ ~ 2 = D by (auto simp: D'-def elim!: is-nth-powerE)
thus ?thesis using True
by (simp add: D’-def Let-def sqrt-cfrac-info-def sqrt-nat-period-length-def)
next
case Fulse
hence D’ ™ 2 # D by (subst eq-commute) auto
thus ?thesis using while-option-sqri-cfrac-infoOF False]
by (simp add: sqrt-cfrac-info-def D’-def Let-def
case-prod-unfold Discrete-sqrt-altdef add-ac sqrt-remainder-step-def)
qed
qed

lemma sqrt-nat-period-length-code [code]:
sqrt-nat-period-length D = fst (sqrt-cfrac-info D)
by (simp add: sqrt-cfrac-info-def)

For efficiency reasons, it is often better to use an array instead of a list:

definition sqrt-cfrac-info-array where
sqrt-cfrac-info-array D = (case sqrt-cfrac-info D of (a, b, ¢) = (a, b, IArray c))

lemma fst-sqri-cfrac-info-array [simp]: fst (sqrt-cfrac-info-array D) = sqrt-nat-period-length
D
by (simp add: sqrt-cfrac-info-array-def sqrt-cfrac-info-def)

lemma snd-sqrt-cfrac-info-array [simp): fst (snd (sqrt-cfrac-info-array D)) = Dis-
crete.sqrt D
by (simp add: sqrt-cfrac-info-array-def sqrt-cfrac-info-def)

definition cfrac-sqrt-nth :: nat x nat X nat iarray = nat = nat where
cfrac-sqrt-nth info n =
(case info of (I, a0, as) = if n = 0 then a0 else as ! ((n — 1) mod 1))

lemma cfrac-sqrt-nth:
assumes —is-square D
shows cfrac-nth (cfrac-of-real (sqrt D)) n =
int (cfrac-sqrt-nth (sqrt-cfrac-info-array D) n) (is ?lhs = ?rhs)
proof (cases n)
case (Suc n')
define [ where | = sqrt-nat-period-length D
from period-nonempty|OF assms] have | > 0 by (simp add: I-def)
have cfrac-nth (cfrac-of-real (sqrt D)) (Suc n') =
cfrac-nth (cfrac-of-real (sqrt D)) (Suc (n’ mod 1)) unfolding I-def
using cfrac-sqrt-periodic[OF assms, of n'| by simp
also have ... = map (An. nat (cfrac-nth (cfrac-of-real (sqrt D)) (Suc n))) [0..<I]
!'(n' mod 1)
using <[ > 0> by (subst nth-map) auto
finally show ?thesis using Suc
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by (simp add: sqrt-cfrac-info-array-def sqri-cfrac-info-def I-def cfrac-sqri-nth-def)
qed (simp-all add: sqrt-cfrac-info-def sqrt-cfrac-info-array-def
Discrete-sqrt-altdef cfrac-sqrt-nth-def)

lemma sqrt-cfrac-code [code]:
sqrt-cfrac D =
(let info = sqrt-cfrac-info-array D;
(1, a0, -) = info
in if | = 0 then cfrac-of-int (int a0) else cfrac (cfrac-sqri-nth info))
proof (cases is-square D)
case True
hence sqgrt (real D) = of-int (Discrete.sqrt D)
by (auto elim!: is-nth-powerE)
thus ?thesis using True
by (auto simp: Let-def sqrt-cfrac-info-array-def sqrt-cfrac-info-def sqrt-cfrac-def)
next
case Fulse
have cfrac-sqrt-nth (sqrt-cfrac-info-array D) n > 0 if n > 0 for n
proof —
have int (cfrac-sqrt-nth (sqrt-cfrac-info-array D) n) > 0
using Fulse that by (subst cfrac-sqrt-nth [symmetric]) auto
thus ?thesis by simp
qed
moreover have sgrt D ¢ Q
using False irrat-sqrt-nonsquare by blast
ultimately have sqrt-cfrac D = cfrac (cfrac-sqri-nth (sqrt-cfrac-info-array D))
using cfrac-sqrt-nth|OF False]
by (intro cfrac-eql) (auto simp: sqrt-cfrac-def is-cfrac-def)
thus ?thesis
using False by (simp add: Let-def sqrt-cfrac-info-array-def sqrt-cfrac-info-def)
qed

As a test, we determine the continued fraction expansion of v/129, which is
[11;2,1,3,1,6,1,3,1,2,22] (a period length of 10):

value let info = sqrt-cfrac-info-array 129 in info
value sqrt-nat-period-length 129

We can also compute convergents of /129 and observe that the difference
between the square of the convergents and 129 vanishes quickly::

value map (conv (sqrt-cfrac 129)) [0..<10]
value map (An. |conv (sgri-cfrac 129) n ~ 2 — 129]) [0..<20]

end

5 Lifting solutions of Pell’s Equation

theory Pell-Lifting
imports Pell.Pell Pell.Pell-Algorithm
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begin

5.1 Auxiliary material

lemma (in pell) snth-pell-solutions: snth (pell-solutions D) n = nth-solution n
by (simp add: pell-solutions-def Let-def find-fund-sol-correct nonsquare-D nth-solution-def
pell-power-def pell-mul-commutes|of - fund-sol))

definition square-squarefree-part-nat :: nat = nat X nat where
square-squarefree-part-nat n = (square-part n, squarefree-part n)

lemma prime-factorization-squarefree-part:
assumes t # 0
shows prime-factorization (squarefree-part x) =
mset-set {p € prime-factors x. odd (multiplicity p x)} (is ?lhs = %rhs)
proof (rule multiset-eqI)
fix p show count ?lhs p = count ?rhs p
proof (cases prime p)
case Fulse
thus ?thesis by (auto simp: count-prime-factorization)
next
case True
have finite (prime-factors x) by simp
hence finite {p. p dvd z N prime p} using assms
by (subst (asm) prime-factors-dvd) (auto simp: conj-commute)
hence finite {p. p dvd = A prime p A odd (multiplicity p =)}
by (rule finite-subset [rotated]) auto
moreover have odd (n :: nat) < n mod 2 = Suc 0 for n by presburger
ultimately show ?thesis using assms
by (cases p dvd x; cases even (multiplicity p x))
(auto simp: count-prime-factorization prime-multiplicity-squarefree-part
in-prime-factors-iff not-dvd-imp-multiplicity-0)
qed
qed

lemma squarefree-part-nat:

squarefree-part (n :: nat) = ([[{p € prime-factors n. odd (multiplicity p n)})
proof (cases n = 0)

case Fulse

hence ([[{p € prime-factors n. odd (multiplicity p n)}) =

prod-mset (prime-factorization (squarefree-part n))
by (subst prime-factorization-squarefree-part) (auto simp: prod-unfold-prod-mset)
also have ... = squarefree-part n
by (intro prod-mset-prime-factorization-nat Nat.gr0I) auto

finally show ?thesis ..

qed auto

lemma prime-factorization-square-part:
assumes z # 0
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shows prime-factorization (square-part x) =
(>_ p € prime-factors x. replicate-mset (multiplicity p « div 2) p) (is ?lhs
= ?rhs)
proof (rule multiset-eql)
fix p show count ?lhs p = count ?rhs p
proof (cases prime p A p dvd x)
case Fulse
thus %thesis by (auto simp: count-prime-factorization count-sum
prime-multiplicity-square-part not-dvd-imp-multiplicity-0)
next
case True
thus ?thesis using assms
by (cases p dvd z)
(auto simp: count-prime-factorization prime-multiplicity-squarefree-part
in-prime-factors-iff count-sum prime-multiplicity-square-part)
qed
qed

lemma prod-mset-sum: prod-mset (sum f A) = (][ z€A. prod-mset (f z))
by (induction A rule: infinite-finite-induct) auto

lemma square-part-nat:
assumes n > 0
shows  square-part (n :: nat) = ([[p € prime-factors n. p ~ (multiplicity p n
div 2))
proof —
have ([[p € prime-factors n. p ~ (multiplicity p n div 2)) =
prod-mset (prime-factorization (square-part n)) using assms
by (subst prime-factorization-square-part) (auto simp: prod-unfold-prod-mset
prod-mset-sum)
also have ... = square-part n using assms
by (intro prod-mset-prime-factorization-nat Nat.gr0I) auto
finally show ?thesis ..
qed

lemma square-squarefree-part-nat-code [code):
square-squarefree-part-nat n = (if n = 0 then (0, 1)
else let ps = prime-factorization n
in (] peset-mset ps. p ~ (count ps p div 2)),
1 (Set.filter (Ap. odd (count ps p)) (set-mset ps))))
by (cases n = 0)
(auto simp: Let-def square-squarefree-part-nat-def squarefree-part-nat Set.filter-def

count-prime-factorization square-part-nat introl: prod.cong)
lemma square-part-nat-code [code-unfold):

square-part (n :: nat) = (if n = 0 then 0
else let ps = prime-factorization n in (][] pEset-mset ps. p ~ (count ps p div
2)))
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using square-squarefree-part-nat-codelof n]
by (simp add: square-squarefree-part-nat-def Let-def split: if-splits)

lemma squarefree-part-nat-code [code-unfold):
squarefree-part (n :: nat) = (if n = 0 then 1
else let ps = prime-factorization n in (][] (Set.filter (Ap. odd (count ps p))
(set-mset ps))))
using square-squarefree-part-nat-code|of n
by (simp add: square-squarefree-part-nat-def Let-def split: if-splits)

lemma is-nth-power-mult-nth-powerD:
assumes is-nth-power n (a * b “n) b > 0n > 0
shows is-nth-power n (a::nat)
proof —
from assms obtain k where k: k “n=axb " n
by (auto elim: is-nth-powerE)
with assms(2,3) have b dvd k
by (metis dvd-triv-right pow-divides-pow-iff)
then obtain | where £k = b * [
by auto
with k£ have a = | ~ n using assms(2)
by (simp add: power-mult-distrib)
thus ?thesis by auto
qed

lemma (in pell) fund-sol-eq-fstl:
assumes nontriv-solution (z, y)
assumes Az’ y'. nontriv-solution (z', y') = z < z
shows fund-sol = (z, y)
proof —
have z = fst fund-sol
using fund-sol-is-nontriv-solution assms(1) fund-sol-minimal’’[of (z, y)]
by (auto intro!: antisym assms(2)[of fst fund-sol snd fund-sol])
moreover from this have y = snd fund-sol
using assms(1) solutions-linorder-strict[of x y fst fund-sol snd fund-sol]
fund-sol-is-nontriv-solution
by (auto simp: nontriv-solution-imp-solution prod-eq-iff)
ultimately show ?thesis by simp
qed

/

lemma (in pell) fund-sol-eql-fst’:
assumes nontriv-solution xy
assumes Az’ y'. nontriv-solution (z', y") = fst xy < z’
shows fund-sol = zy
using fund-sol-eq-fstl|of fst zy snd xy] assms by simp

lemma (in pell) fund-sol-eq-sndl:
assumes nontriv-solution (z, y)

assumes Az’ y’. nontriv-solution (z'; y') = y < y’
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shows fund-sol = (z, y)
proof —
have y = snd fund-sol
using fund-sol-is-nontriv-solution assms(1) fund-sol-minimal”[of (z, y)]
by (auto introl: antisym assms(2)[of fst fund-sol snd fund-sol])
moreover from this have z = fst fund-sol
using assms(1) solutions-linorder-strict[of x y fst fund-sol snd fund-sol]
fund-sol-is-nontriv-solution
by (auto simp: nontriv-solution-imp-solution prod-eq-iff)
ultimately show ?thesis by simp
qged

lemma (in pell) fund-sol-eql-snd":
assumes nontriv-solution xy
assumes Az’ y'. nontriv-solution (z', y') = snd vy < y’
shows fund-sol = zy
using fund-sol-eq-sndI|[of fst xy snd zy] assms by simp

5.2 The lifting mechanism

The solutions of Pell’s equations for parameters D and a® D stand in cor-
respondence to one another: every solution (z, y) for parameter D can be
lowered to a solution (z, ay) for a®> D, and every solution of the form (z, ay)
for parameter a? D can be lifted to a solution (z, y) for parameter D.

locale pell-lift = pell +
fixes a D' :: nat
assumes nz: a > 0
defines D' = D * a2

begin

lemma nonsquare-D’: —is-square D’
using nonsquare-D is-nth-power-mult-nth-powerD[of 2 D a] nz by (auto simp:

D’-def)

definition lift-solution :: nat X nat = nat X nat where
lift-solution = (A(z, y). (z, y div a))

definition lower-solution :: nat X nat = nat X nat where
lower-solution = (A(z, y). (z, y * a))

definition liftable-solution :: nat X nat = bool where
liftable-solution = (A(z, y). a dvd y)

sublocale lift: pell D’
by unfold-locales (fact nonsquare-D")

lemma lift-solution-iff: lift.solution xy «—— solution (lower-solution zy)
unfolding solution-def lift.solution-def
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by (auto simp: lower-solution-def D’-def case-prod-unfold power-mult-distrib)

lemma [ift-solution:
assumes solution xy liftable-solution xy
shows lift.solution (lift-solution xy)
using assms unfolding solution-def lift.solution-def
by (auto simp: liftable-solution-def lift-solution-def D'-def case-prod-unfold power-mult-distrib
elim!: dvdE)

In particular, the fundamental solution for a? D is the smallest liftable so-

lution for D:

lemma [lift-fund-sol:
assumes An. 0 < n = n < m = —liftable-solution (nth-solution n)
assumes liftable-solution (nth-solution m) m > 0
shows lift.fund-sol = lift-solution (nth-solution m)
proof (rule lift. fund-sol-eql-fst’)
from assms have nontriv-solution (nth-solution m)
by (intro nth-solution-sound’)
hence lift-solution (nth-solution m) # (1, 0) using nz assms(2)
by (auto simp: lift-solution-def case-prod-unfold nontriv-solution-def liftable-solution-def)
with assms show lift.nontriv-solution (lift-solution (nth-solution m))
by (auto simp: lift.nontriv-solution-altdef intro: lift-solution)
next
fix 2’ y' :: nat
assume x: lift.nontriv-solution (z', y’)
hence nz": ' # 1 using nonsquare-D’
by (auto simp: lift.nontriv-solution-altdef lift.solution-def)
from x have solution (lower-solution (z’, y'))
by (simp add: lift-solution-iff lift.nontriv-solution-altdef)
hence lower-solution (z', y') € range nth-solution by (rule nth-solution-complete)
then obtain n where n: nth-solution n = lower-solution (z', y’) by auto
with nz’have n > 0 by (auto introl: Nat.gr0I simp: nth-solution-def lower-solution-def)
with n have liftable-solution (nth-solution n)
by (auto simp: liftable-solution-def lower-solution-def)
with <n > 0> and assms(1)[of n] have n > m by (cases n > m) auto
hence fst (nth-solution m) < fst (nth-solution n)
using strict-mono-less-eq| OF strict-mono-nth-solution(1)] by simp
thus fst (lift-solution (nth-solution m)) < z’
by (simp add: lift-solution-def lower-solution-def n case-prod-unfold)
qed

end

5.3 Accelerated computation of the fundamental solution for
non-squarefree inputs

Solving Pell’s equation for some D of the form a? D’ can be done by solving
it for D’ and then lifting the solution. Thus, if D is not squarefree, we can
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compute its squarefree decomposition a?> D’ with D’ squarefree and thus
speed up the computation (since D’ is smaller than D).

The squarefree decomposition can only be computed (according to current
knowledge in mathematics) through the prime decomposition. However,
given how big the solutions are for even moderate values of D, it is usually
worth doing it if D is not squarefree.

lemma squarefree-part-of-square [simp]:
assumes is-square (z :: 'a :: { factorial-semiring, normalization-semidom-multiplicative})
assumes t # 0
shows squarefree-part © = unit-factor x
proof —
from assms obtain y where [simp]: x = y ~ 2
by (auto simp: is-nth-power-def)
have unit-factor x x normalize x = squarefree-part T * square-part x ~ 2
by (subst squarefree-decompose [symmetric]) auto
also have ... = squarefree-part © * normalize x
by (simp add: square-part-even-power normalize-power)
finally show ?thesis using assms
by (subst (asm) mult-cancel-right) auto
qged

lemma squarefree-part-1-imp-square:
assumes squarefree-part r = 1
shows is-square x
proof —
have is-square (square-part x ~ 2)
by auto
also have square-part x = 2 = squarefree-part © * square-part © ~ 2
using assms by simp
also have ... =z
by (rule squarefree-decompose [symmetric])
finally show ?thesis .
qed

definition find-fund-sol-fast where
find-fund-sol-fast D =

(let (a, D) = square-squarefree-part-nat D

in
if D=0V D' = 1 then (0, 0)
else if a = 1 then pell.fund-sol D
else map-prod id (\y. y div a)

(shd (sdrop-while (A(-, y). y = 0 V —a dvd y) (pell-solutions D"))))

lemma find-fund-sol-fast: find-fund-sol D = find-fund-sol-fast D
proof (cases is-square D V square-part D = 1)

case True

thus ?thesis
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using squarefree-part-1-imp-square[of D)
by (cases D = 0)
(auto simp: find-fund-sol-correct find-fund-sol-fast-def
square-squarefree-part-nat-def square-test-correct unit-factor-nat-def)
next
case Fulse
define D’ a where D’ = squarefree-part D and a = square-part D
have D > 0
using Fualse by (intro Nat.gr0I) auto
have a > 0
using <D > 0» by (intro Nat.grOI) (auto simp: a-def)
moreover have —is-square D’
unfolding D’-def
by (metis False is-nth-power-mult is-nth-power-nth-power squarefree-decompose)
ultimately interpret lift: pell-lift D' a D
using False <D > O
by unfold-locales (auto simp: D'-def a-def squarefree-decompose [symmetric])

define ¢ where ¢ = (LEAST i. case lift.nth-solution i of (-, y) = y > 0 A a dvd
y)
have ex: 3i. case lift.nth-solution i of (-, y) = y > 0 A a dvd y
proof —
define sol where sol = lift.lift.fund-sol
have is-sol: lift.solution (lift.lower-solution sol)
unfolding sol-def using lift.lift. fund-sol-is-nontriv-solution lift.lift-solution-iff
by blast
then obtain j where j: lift.lower-solution sol = lift.nth-solution j
using lift.solution-iff-nth-solution by blast
have snd (lift.lower-solution sol) > 0
proof (rule Nat.gr0I)
assume x: snd (lift.lower-solution sol) = 0
have lift.solution (fst (lift.lower-solution sol), snd (lift.lower-solution sol))
using is-sol by simp
hence fst (lift.lower-solution sol) = 1
by (subst (asm) *) simp
with x have lift.lower-solution sol = (1, 0)
by (cases lift.lower-solution sol) auto
hence fst sol = 1
unfolding lift.lower-solution-def by (auto simp: lift.lower-solution-def
case-prod-unfold)
thus Fulse
unfolding sol-def
using lift.lift. fund-sol-is-nontriv-solution <D > 0»
by (auto simp: lift.lift.nontriv-solution-def)
qed
moreover have a dvd snd (lift.lower-solution sol)
by (auto simp: lift.lower-solution-def case-prod-unfold)
ultimately show ?thesis
using j by (auto simp: case-prod-unfold)
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qed

define sol where sol = lift.nth-solution ¢
have sol: snd sol > 0 a dvd snd sol

using Leastl-ex|OF ex] by (simp-all add: sol-def i-def case-prod-unfold)
have i > 0

using sol by (intro Nat.gr0I) (auto simp: sol-def lift.nth-solution-def)

have find-fund-sol-fast D = map-prod id (Ay. y div a)
(shd (sdrop-while (A(-, y). y = 0V —a dvd y) (pell-solutions D")))
unfolding D'-def a-def find-fund-sol-fast-def using False squarefree-part-1-imp-square[of
)

by (auto simp: square-squarefree-part-nat-def)

also have sdrop-while (A(-, y). y = 0 V —a dvd y) (pell-solutions D) =
sdrop-while (Not o (A(-, y). y > 0 A a dvd y)) (pell-solutions D)
by (simp add: o-def case-prod-unfold)

also have ... = sdrop i (pell-solutions D’)

using ex by (subst sdrop-while-sdrop-LEAST) (simp-all add: lift.snth-pell-solutions
i-def)

also have shd ... = sol

by (simp add: lift.snth-pell-solutions sol-def)
finally have eq: find-fund-sol-fast D = map-prod id (\y. y div a) sol .

have [ift.lift. fund-sol = lift.lift-solution sol
unfolding sol-def
proof (rule lift.lift-fund-sol)
show ¢ > 0 by fact
show lift.liftable-solution (lift.nth-solution ©)
using sol by (simp add: sol-def lift.liftable-solution-def case-prod-unfold)
next
fix j :: nat assume j: j > 0j < i
show —lift.liftable-solution (lift.nth-solution j)
proof
assume liftable: lift.liftable-solution (lift.nth-solution j7)
have snd (lift.nth-solution j) > 0
using <j > 0> by (metis gr0l lift.nontriv-solution-altdef lift. nth-solution-sound’

lift.solution-0-snd-nat-iff prod.collapse)
hence case lift.nth-solution j of (-, y) = y > 0 A a dvd y
using <j > O liftable by (auto simp: lift.liftable-solution-def)
hence i < j
unfolding i-def by (rule Least-le)
thus Fulse using (j < > by simp
qed
qed
also have ... = find-fund-sol-fast D
by (simp add: eq lift.lift-solution-def case-prod-unfold map-prod-def)
finally show ?thesis
using <D > 0» False by (simp add: find-fund-sol-correct)
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qed

end

6 The Connection between the continued fraction
expansion of square roots and Pell’s equation

theory Pell-Continued-Fraction
imports
Sqrt-Nat-Cfrac
Pell. Pell-Algorithm
Polynomial-Factorization. Prime-Factorization
Pell-Lifting
begin

lemma irrational-times-int-eq-intD:
assumes p * real-of-int a = real-of-int b
assumes p ¢ Q
shows a=0Ab=10
proof —
have a = 0
proof (rule ccontr)
assume a # 0
with assms(1) have p = b / a by (auto simp: field-simps)
also have ... € Q by auto
finally show Fulse using assms(2) by contradiction
qed
with assms show ?thesis by simp
qed

The solutions to Pell’s equation for some non-square D are linked to the
continued fraction expansion of v/ D, which we shall show here.

context
fixes D :: natand ch k P QI
assumes nonsquare: —is-square D
defines ¢ = cfrac-of-real (sqrt D)
defines h = conv-num ¢ and k = conv-denom ¢
defines P = fst o sqrt-remainder-surd D and @ = snd o sqrt-remainder-surd D
defines | = sqrt-nat-period-length D
begin

interpretation pell D
by unfold-locales fact+

lemma cfrac-length-infinite [simp|: cfrac-length ¢ = oo
proof —
have sqrt D ¢ Q
using nonsquare by (simp add: irrat-sqrt-nonsquare)
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thus ?thesis
by (simp add: c-def)
qed

lemma conv-num-denom-pell:
ho~2—-Dxk0~2<0
m>0=hm 2—-—Dxkm ~2=(—1) " Sucmx @Qm
proof —
define D’ where D’ = Discrete.sqrt D
have h 0 "2 —-Dx k0~ 2=int (D' "2 — int D
by (simp-all add: h-def k-def c-def Discrete-sqrt-altdef D'-def)
also {
have int (D' 7 2) —int D < 0
using Discrete.sqrt-power2-le[of D] by (simp add: D’-def)
moreover have D # D’ ™ 2 using nonsquare by auto
ultimately have int (D’ ~ 2) — int D < 0 by linarith
}
finally show h 0 "2 — Dx k0 " 2<0.
next
assume m > (
define n where n = m — 1
define a where a = cfrac-remainder c
define o’ where o’ = sqrt-remainder-surd D
have m: m = Suc n using <m > 0 by (simp add: n-def)
from nonsquare have D > 1
by (cases D) (auto intro!: Nat.grOI)
from nonsquare have irrat: sqrt D ¢ Q
using irrat-sqrt-nonsquare by blast
have [simp]: cfrac-lim ¢ = sqrt D
using irrat <D > I by (simp add: c-def)
have a-pos: a« n > 0 for n
unfolding «a-def using wf <D > v cfrac-remainder-pos|of ¢ n]
by (cases n = 0) auto
have o”: o’ n = (P n, Q n) for n by (simp add: o’-def P-def Q-def)
have Q-pos: Q@ n > 0 for n
using snd-sqrt-remainder-surd-pos| OF nonsquare] by (simp add: Q-def)
have k-pos: kn > 0 for n
by (auto simp: k-def introl: conv-denom-pos)
have k-nonneg: k n > 0 for n
by (auto simp: k-def introl: conv-denom-nonneg)

let A= (sqrt D+ P(n+1)*h(n+1)+Q@(n+1)*xhn
let B=(sgrt D+ P(n+ 1) *xk(n+ 1)+ Q@(n+1)*xkn
have ?B > 0 using k-pos Q-pos k-nonneg
by (intro add-nonneg-pos mult-nonneg-nonneg add-nonneg-nonneg) auto

have sqrt D = conv’ ¢ (Suc (Suc n)) (a (Suc (Suc n)))

unfolding «a-def by (subst conv’-cfrac-remainder) auto
alsohave ... = (a(n+ 2)xh(n+ 1) +hn)/(a(n+ 2)xk(n+ 1)+ kn)
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using wf a-pos by (subst conv’-num-denom) (simp-all add: h-def k-def)
also have a (n + 2) = surd-to-real D (a’ (Suc n))
using surd-to-real-sqri-remainder-surd|OF nonsquare, of Suc n]
by (simp add: o'-def a-def c-def)
also have ... = (sgrt D + P (Suc n)) / Q (Suc n) (is - = %)
by (simp add: o’ surd-to-real-def)
also have a x h (n + 1) + hn =
1/Q(n+1)x((sqrtD+P (n+1)xh(n+1)+Q(n+1)*hn)
using @Q-pos by (simp add: field-simps)
also have 2a x k (n+ 1) + kn =
1/Q(n+1)x({(sgqrtD+P(n+1)xk(n+1)+ Q(n+1)*kn)
(is - = ?f k) using Q-pos by (simp add: field-simps)
also have ?fh / ?fk= ((sqrt D+ P (n+ 1)) xh(n+ 1)+ Q@ (n+ 1) xhn)/
((sgrt D+ P(n+ D) xk(n+ 1)+ Q(n+ 1)*kn)
(is - = ?A / ?B) using Q-pos by (intro mult-divide-mult-cancel-left) auto
finally have sqrt D x ?B = ?A
using «?B > 0» by (simp add: divide-simps)
moreover have sqrt D x sqrt D = D by simp
ultimately have sgrt D« (P (n+ 1)« k(n+ 1)+ Q(n+ 1) xkn — h (n +

1) =
Pn+DHsxh(n+1)+Q(n+1)xhn—Fk(n+ 1) %D
unfolding of-int-add of-int-mult of-int-diff of-int-of-nat-eq of-nat-mult of-nat-add
by Groebner-Basis.algebra
from irrational-times-int-eq-int D[ OF this] irrat
have 1: h (Suc n) = P (Suc n) x k (Suc n) + @ (Suc n) x kn
and 2: D x k (Suc n) = P (Suc n) * h (Suc n) + @ (Suc n) * hn
by (simp-all del: of-nat-add of-nat-mult)

have h (Suc n) * h (Suc n) — D x k (Suc n) *x k (Suc n) =
Q (Sucn) * (kn = h (Sucn) —k (Sucn)*hn)
by (subst 1, subst 2) (simp add: algebra-simps)
also have kn x h (Sucn) — k (Sucn) * hn=(=1) " n
unfolding h-def k-def by (rule conv-num-denom-prod-diff)
finally have h (Sucn) 2 — D x k (Sucn) ~2=(—1) “nx Q (Sucn)
by (simp add: power2-eq-square algebra-simps)
thushm “2—Dxkm 2= (—1) " Sucm=* Qm
by (simp add: m)
qed

Every non-trivial solution to Pell’s equation is a convergent in the expansion

of V/D:

theorem pell-solution-is-conv:

assumes 72 = Suc (D * y*) and y > 0

shows (int z, int y) € range (An. (conv-num ¢ n, conv-denom ¢ n))
proof —

have 3n. enat n < cfrac-length ¢ A (int z, int y) = (conv-num ¢ n, conv-denom
cn)

proof (rule frac-is-convergentl)

have gcd (2?) (y?) = 1 unfolding assms(1)
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using gcd-add-mult|of y*> D 1] by (simp add: ged.commute)
thus coprime (int z) (int y)

by (simp add: coprime-iff-gcd-eq-1)

next

from assms have D > 1

using nonsquare by (cases D) (auto intro!: Nat.grOI)
hence pos: © + y x sqrt D > 0 using assms

by (intro add-nonneg-pos) auto

from assms have real (22) = real (Suc (D x y?))
by (simp only: of-nat-eq-iff)

hence 1 = realx 2 — D * real y ~ 2
unfolding of-nat-power by simp

also have ... = (z — y % sqrt D) % (z + y * sqrt D)
by (simp add: field-simps power2-eq-square)

finally have x: © — y x sqrt D = 1 / (z + y * sqrt D)
using pos by (simp add: field-simps)

from pos have 0 < 1/ (z + y * sqrt D)

by (intro divide-pos-pos) auto
also have ... = z — y * sqrt D by (rule * [symmetric])
finally have less: y * sqrt D < x by simp

have sqrt D — z / y = —((x — y % sqrt D) / y)
using <y > 0> by (simp add: field-simps)
also have |...|=(z —y*xsqrt D) / y
using less by simp
also have (x — yx sqrt D) / y =1/ (y * (x + y * sqrt D))
using <y > 0> by (subst *) auto
also have ... < 1/ (y* (y % sqgrt D + y * sqrt D))
using <y > 0 <D > 1> pos less
by (intro divide-left-mono mult-left-mono add-right-mono mult-pos-pos) auto
also have ... = 1/ (2 % y? x sqrt D)
by (simp add: power2-eq-square)
also have ... < 1/ (real (2 * ) * 1) using <y > 0> <D > I
by (intro divide-strict-left-mono mult-strict-left-mono mult-pos-pos) auto
finally show |cfrac-lim ¢ — intx [/ inty| < 1/ (2% inty ~ 2)
unfolding c-def using irrat-sqrt-nonsquare[of D] <—is-square Dy by simp
qed (insert assms irrat-sqrt-nonsquare[of D], auto simp: c-def)
thus ?thesis by auto
qed

Let I be the length of the period in the continued fraction expansion of v/ D
and let h; and k; be the numerator and denominator of the i-th convergent.

Then the non-trivial solutions of Pell’s equation are exactly the pairs of the
form (hym—1, kim—1) for any m such that Im is even.

lemma nontriv-solution-iff-conv-num-denom:
nontriv-solution (z, y) «—
Fm>0.intc=h(lxm—1) Ainty=%k (I *m — 1) A even (I * m))
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proof safe
fix massume zy: c =h (Ixm — 1) y=k (Il * m — 1)
and Im: even (I * m) and m: m > 0
have I: | > 0 using period-nonempty| OF nonsquare] by (auto simp: I-def)
from [m have [ * m # 1 by (intro notl) auto
with [ m have Im" | * m > 1 by (cases | x m) auto

have (h (I m — 1))2 — D (k (I m — 1))? =
(— 1) “Suc (I+m—1)*xint (Q (I *xm— 1))
using Im' by (intro conv-num-denom-pell) auto
also have (— 1) "~ Suc (I *x m — 1) = (1 :: int)
using Im | m by (subst neg-one-even-power) auto
also have Q (Ixm — 1) = Q ((I * m — 1) mod I)
unfolding Q-def I-def o-def by (subst sqrt-remainder-surd-periodic|OF non-
square]) simp
also {
have l«m —1=(m — 1)« 1+ (I - 1)
using m [ Im’ by (cases m) (auto simp: mult-ac)

also have ... mod Il = (I — 1) mod |
by simp
also have ... =1 — 1
using [ by (intro mod-less) auto
also have @) ... = 1

using sqrt-remainder-surd-last|OF nonsquare] by (simp add: Q-def l-def)
finally have Q ((I * m — 1) mod 1) = 1.

finally have h (I+ m — 1) 2= Dxk(Ilxm—1) "2+ 1
unfolding of-nat-Suc by (simp add: algebra-simps)
hence h (l«xm — 1) "2=Dxk(I*m—1) "2+ 1
by (simp only: of-nat-eq-iff)
moreover have k (I x m — 1) > 0
unfolding k-def by (intro conv-denom-pos)
ultimately have nontriv-solution (int x, int y)
using zy by (simp add: nontriv-solution-def)
thus nontriv-solution (z, y)
by simp
next
assume nontriv-solution (z, y)
hence asm: © 2= Suc (D*xy ~2)y> 0
by (auto simp: nontriv-solution-def abs-square-eq-1 intro!: Nat.gr0l)
from asm have asm”: intz =~ 2=1int D x inty ~ 2 + 1
by (metis add.commute of-nat-Suc of-nat-mult of-nat-power-eq-of-nat-cancel-iff )
have I: | > 0 using period-nonempty| OF nonsquare] by (auto simp: I-def)
from pell-solution-is-conv[OF asm| obtain m where
zy: h m = z k m = y by (auto simp: c-def h-def k-def)

have m: m > 0
using asm’ conv-num-denom-pell(1) zy by (intro Nat.grOI) auto
have I=hm ~2—-Dxkm ~2
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using asm’ zy by simp
also have ... = (— 1) 7 Suc m * int (Q m)
using conv-num-denom-pell(2)[OF m] .
finally have *: (— 1) ~ Suc m * int (Q m) = 1 ..
from x* have m”: odd m A Q m = 1
by (cases even m) auto

define n where n = Suc m div [
have [ dvd Suc m
proof (rule ccontr)
assume *: —(l dvd Suc m)
have Q@ m = @ (m mod )
unfolding Q-def l-def o-def by (subst sqrt-remainder-surd-periodic| OF non-
square]) simp
also {
have m mod | < [ using «I > 0> by simp
moreover have Suc (m mod l) # [ using * [ <m > 0
using mod-Suc[of m ] by auto
ultimately have m mod | < | — 1 by simp
hence @ (m mod l) > 1 unfolding Q-def o-def I-def
by (rule snd-sqrt-remainder-surd-gt-1{OF nonsquare))
}

finally show Fualse using m’ by simp

qed

hence m-eq: Sucm=n*xIlm=nx1[— 1
by (simp-all add: n-def)

hence n > 0 by (auto intro!: Nat.grol)

thus I3n>0.intz=h(lxn— 1) ANinty=Fk (I*n— 1) A even (I *x n)
using zy m-eq m’ by (intro exlI|of - n]) (auto simp: mult-ac)

qed

Consequently, the fundamental solution is (hy, k,) where n = [ — 1 if [ is
even and n = 2! — 1 otherwise:

lemma fund-sol-conv-num-denom:
defines n = if even [ then | — 1 else 2 x | — 1
shows fund-sol = (nat (h n), nat (k n))
proof (rule fund-sol-eq-sndl)
have [simp]: hn > 0k n > 0 for n
by (auto simp: h-def k-def c-def intro!: conv-num-nonneg)
show nontriv-solution (nat (h n), nat (k n))
by (subst nontriv-solution-iff-conv-num-denom, rule exl|of - if even I then 1 else

2])
(simp-all add: n-def mult-ac)

next

fix z y :: nat assume nontriv-solution (z, y)

then obtain m where m: m > 0z =h (lxm — 1) y=k (I *x m — 1) even (I
% m)

by (subst (asm) nontriv-solution-iff-conv-num-denom) auto
have I: | > 0 using period-nonempty| OF nonsquare] by (auto simp: I-def)
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from m [ have Suc n < I * m by (auto simp: n-def)
hence n < [ x m — 1 by simp
hence kn <k (I« m — 1)
unfolding k-def c-def using irrat-sqrt-nonsquare| OF nonsquare]
by (intro conv-denom-lel) auto
with m show nat (k n) < y by simp
qed

end

The following algorithm computes the fundamental solution (or the dummy
result (0, 0) if D is a square) fairly quickly by computing the continued
fraction expansion of v/D and then computing the fundamental solution as
the appropriate convergent.

lemma find-fund-sol-code [code]:
find-fund-sol D =
(let info = sqrt-cfrac-info-array D;
I = fst info
in if L = 0 then (0, 0) else
let
¢ = cfrac-sqrt-nth info;
n = if even [ thenl — 1 else 2 x | — 1
m
(nat (conv-num-fun ¢ n), nat (conv-denom-fun ¢ n)))
proof —
have x: is-cfrac (cfrac-sqrt-nth (sqri-cfrac-info-array D)) if —is-square D
using that cfrac-sqrit-nth[of D] unfolding is-cfrac-def
by (metis cfrac-nth-nonzero neq0-conv of-nat-0 of-nat-0-less-iff)
have xx: cfrac (Az. int (cfrac-sqrt-nth (sqrt-cfrac-info-array D) x)) = cfrac-of-real
(sqrt D)
if —is-square D
using that cfrac-sqri-nth[of D] * by (intro cfrac-eql) auto
show ?thesis using * *x
by (auto simp: square-test-correct find-fund-sol-correct conv-num-fun-eq conv-denom-fun-eq
Let-def cfrac-sqri-nth fund-sol-conv-num-denom conv-num-nonneg)
qed

lemma find-nth-solution-square [simpl: is-square D = find-nth-solution D n =
(0, 0)
by (simp add: find-nth-solution-def)

lemma fst-find-fund-sol-eq-0-iff [simp]: fst (find-fund-sol D) = 0 «— is-square D
proof (cases is-square D)

case Fulse

then interpret pell D by unfold-locales

from False have find-fund-sol D = fund-sol by (simp add: find-fund-sol-correct)

moreover from fund-sol-is-nontriv-solution have fst fund-sol > 0

by (auto simp: nontriv-solution-def introl: Nat.gr0OI)
ultimately show ?thesis using Fulse
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by (simp add: find-fund-sol-def square-test-correct split: if-splits)
qed (auto simp: find-fund-sol-def square-test-correct)

Arbitrary solutions can now be computed as powers of the fundamental
solution.

lemma find-nth-solution-code [code]:
find-nth-solution D n =
(let zy = find-fund-sol D
in if fst xy = 0 then (0, 0) else efficient-pell-power D xy n)
proof (cases is-square D)
case Fulse
then interpret pell D by unfold-locales
from fund-sol-is-nontriv-solution have fst fund-sol > 0
by (auto simp: nontriv-solution-def introl: Nat.grOI)
thus ?thesis using Fulse
by (simp add: find-nth-solution-correct Let-def nth-solution-def pell-power-def
pell-mul-commutes|of - fund-sol] find-fund-sol-correct)
qed auto

lemma nth-solution-code [code]:
pell.nth-solution D n =
(let info = sqrt-cfrac-info-array D;
[ = fst info
in if | = 0 then
Code.abort (STR ''nth-solution is undefined for perfect square parameter.’")
(A-. pell.nth-solution D n)
else
let
¢ = cfrac-sqrt-nth info;
m = if even [ then | — 1 else 2 x | — 1;
fund-sol = (nat (conv-num-fun ¢ m), nat (conv-denom-fun ¢ m))
in
efficient-pell-power D fund-sol n)
proof (cases is-square D)
case Fulse
then interpret pell by unfold-locales
have «: is-cfrac (cfrac-sqrt-nth (sqrt-cfrac-info-array D))
using Fulse cfrac-sqrt-nth[of D] unfolding is-cfrac-def
by (metis cfrac-nth-nonzero neq0-conv of-nat-0 of-nat-0-less-iff)
have *x: cfrac (Az. int (cfrac-sqrt-nth (sqrt-cfrac-info-array D) x)) = cfrac-of-real
(sqrt D)
using Fulse cfrac-sqrt-nth[of D] x by (intro cfrac-eql) auto

from False x xx show ?thesis
by (auto simp: Let-def cfrac-sqrt-nth fund-sol-conv-num-denom nth-solution-def
pell-power-def pell-mul-commutes|of - (-, -)]
conv-num-fun-eq conv-denom-fun-eq conv-num-nonneg)
qged auto

151



lemma fund-sol-code [codel:
pell.fund-sol D = (let info = sqrt-cfrac-info-array D;
I = fst info
in if | = 0 then
Code.abort (STR "fund-sol is undefined for perfect square parameter.’’)
(A-. pell.fund-sol D)
else
let
¢ = cfrac-sqrt-nth info;
n = if even [ thenl — 1 else 2 x | — 1
m
(nat (conv-num-fun ¢ n), nat (conv-denom-fun ¢ n)))
proof (cases is-square D)
case Fulse
then interpret pell by unfold-locales
have *: is-cfrac (cfrac-sqrt-nth (sqri-cfrac-info-array D))
using Fulse cfrac-sqrt-nthof D] unfolding is-cfrac-def
by (metis cfrac-nth-nonzero neq0-conv of-nat-0 of-nat-0-less-iff)
have *x: cfrac (Az. int (cfrac-sqrt-nth (sqrt-cfrac-info-array D) x)) = cfrac-of-real
(sqrt D)
using Fulse cfrac-sqrt-nth[of D] x by (intro cfrac-eql) auto

from False * *x show ?thesis
by (auto simp: Let-def cfrac-sqrt-nth fund-sol-conv-num-denom nth-solution-def
pell-power-def pell-mul-commutes|of - (-, -)]
conv-num-fun-eq conv-denom-fun-eq conv-num-nonneg)
qed auto

end

7 Tests for Continued Fractions of Square Roots
and Pell’s Equation

theory Pell-Continued-Fraction-Tests
imports
Pell. Efficient-Discrete-Sqrt
HOL- Library. Code-Lazy
HOL- Library. Code- Target-Numeral
Pell-Continued-Fraction
Pell-Lifting
begin

code-lazy-type stream

lemma Inth-code [code]:
Inth zs 0 = (if Inull s then undefined (0 :: nat) else lhd xs)
Inth xs (Suc n) = (if Inull s then undefined (Suc n) else Inth (Itl zs) n)
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by (auto simp: Inth.simps split: llist.splits)

value let ¢ = sqrt-cfrac 1339 in map (cfrac-nth ¢) [0..<30]

fun arg-maz-list where
arg-maz-list - [| = undefined
| arg-maz-list f (x # zs) =
foldl (M(z, y) =’ let y' = fa'inif y' > y then (z', y') else (z, y)) (z, fz) xs

value [code] sqrt-cfrac-info 17

value [code] sqrt-cfrac-info 1339

value [code] sqrt-cfrac-info 121

value [code] sqrt-nat-period-length 410286423278424

For which number D < 100000 does v/D have the longest period?
value [code] arg-maz-list sqrt-nat-period-length [0..<100000]

7.1 Fundamental solutions of Pell’s equation

value [code] pell.fund-sol 12
value [code] pell.fund-sol 13
value [code] pell.fund-sol 61
value [code] pell.fund-sol 661
value [code] pell.fund-sol 6661
value [code] pell.fund-sol 472949/

Project Euler problem #66: For which D < 1000 does Pell’s equation have
the largest fundamental solution?

value [code] arg-maz-list (fst o find-fund-sol) [0..<1001]

The same for D < 100000:
value [code] arg-maz-list (fst o find-fund-sol) [0..<100000)
The solution to the next example, which is at the core of Archimedes’ cattle

problem, is so big that termifying the result takes extremely long. Therefore,
we simply compute the number of decimal digits in the result instead.

fun log10-auz :: nat = nat = nat where
log10-auz acc n =
(if n > 10000000000 then log10-auz (acc + 10) (n div 10000000000)
else if n = 0 then acc else logl0-auz (Suc acc) (n div 10))

definition log10 where log10 = logl0-aux 0

value [code] map-prod log10 log10 (pell.fund-sol 410286423278424)

Factoring out the square factor 93142 does yield a significant speed-up in
this case:
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value [code] map-prod log10 log10 (find-fund-sol-fast 410286423278424)

7.2 Tests for other operations

value [code] pell.nth-solution 18 100
value [code] pell.nth-solution 4729494 3

value [code] stake 10 (pell-solutions 15)
value [code] stake 10 (pell-solutions 61)

value [code] pell.nth-solution 23 8

end

8 Computing continued fraction expansions through
interval arithmetic

theory Continued-Fraction-Approximation
imports
Complex-Main
HOL—- Decision-Procs. Approzimation
Coinductive. Coinductive-List
HOL— Library. Code-Lazy
HOL- Library. Code-Target-Numeral
Continued-Fractions
keywords approximate-cfrac :: diag
begin

The approximation package allows us to compute an enclosing interval for
a given real constant. From this, we are able to compute an initial fragment
of the continued fraction expansion of the number.

The algorithm essentially works by computing the continued fraction expan-
sion of the lower and upper bound simultaneously and stopping when the
results start to diverge.

This algorithm terminates because the lower and upper bounds, being ra-
tional numbers, have a finite continued fraction expansion.

definition float-to-rat :: float = int x int where
float-to-rat f = (if exponent f > 0 then
(mantissa f * 2 ~ nat (exponent f), 1) else (mantissa f, 2 ~ nat (—exponent
)

lemma float-to-rat: fst (float-to-rat f) / snd (float-to-rat f) = real-of-float f
by (auto simp: float-to-rat-def mantissa-exponent powr-int)

lemma snd-float-to-rat-pos [simp): snd (float-to-rat f) > 0
by (simp add: float-to-rat-def)
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function cfrac-from-approx :: int X int = int X int = int list where
cfrac-from-approx (nl, dl) (nu, du) =
(ifnl=0Vnu=0Vdl=0V du= 0 then ||
else let | = nl div dl; u = nu div du
in if l # u then ||
else I # (let m = nl mod dl in if m = 0 then [] else
cfrac-from-approx (du, nu mod du) (dl, m)))
by auto
termination proof (relation measure (A((nl, dl), (nu, du)). nat (abs dl + abs
du)), goal-cases)
case (2 nl dl nu du)
hence |nl mod dl| + |nu mod du| < |dl| + |dul
by (intro add-strict-mono) (auto simp: abs-mod-less)
thus “case using 2 by simp
qed auto

lemmas [simp del] = cfrac-from-approx.simps

lemma cfrac-from-approz-correct:
assumes z € {fst | / snd l..fst u / snd u} and snd [ > 0 and snd u > 0
assumes i < length (cfrac-from-approx | u)
shows cfrac-nth (cfrac-of-real z) i = cfrac-from-approx l u ! i
using assms
proof (induction | u arbitrary: i x rule: cfrac-from-approz.induct)
case (1 nl dl nu du i x)
from 1.prems have x: nl div dl = nu div du nl # 0nu # 0 dl > 0 du > 0
by (auto simp: cfrac-from-approx.simps Let-def split: if-splits)
have |nl / dl] < |z] |z] < |nu / du]
using 1.prems(1) by (intro floor-mono; simp)+
hence nl div dl < |z] |z] < nu div du
by (simp-all add: floor-divide-of-int-eq)
with *« have |z| = nu div du
by linarith

show “case
proof (cases 7)

case (
with 0 and «<|z| = -» show ?%thesis using I1.prems
by (auto simp: Let-def cfrac-from-approx.simps)
next

case [simp]: (Suc ')
from 1.prems x have nl mod dl # 0

by (subst (asm) cfrac-from-approx.simps) (auto split: if-splits)
have frac-eq: frac x = x — nu div du

using ¢|z| = -» by (simp add: frac-def)

have frac x > nl / dl — nl div dl
using * I.prems by (simp add: frac-eq)
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also have nl / di — nl div dl = (nl — di  (nl div dl)) / di
using * by (simp add: field-simps)
also have nl — dl * (nl div dl) = nl mod dl
by (subst minus-div-mult-eg-mod [symmetric]) auto
finally have frac x > (nl mod dl) / dl .

have nl mod dl > 0
using * by (intro pos-mod-sign) auto
with «<nl mod dl # 0> have nl mod dl > 0
by linarith
hence 0 < (nl mod dl) / dl
using * by (intro divide-pos-pos) auto
also have ... < frac z
by fact
finally have frac z > 0 .

have frac z < nu / du — nu div du
using * I.prems by (simp add: frac-eq)
also have ... = (nu — du * (nu div du)) / du
using * by (simp add: field-simps)
also have nu — du * (nu div du) = nu mod du
by (subst minus-div-mult-eq-mod [symmetric]) auto
finally have frac z < real-of-int (nu mod du) / real-of-int du .

have 0 < frac x
by fact

also have ... < (nu mod du) / du
by fact

finally have nu mod du > 0
using * by (auto simp: field-simps)

have cfrac-nth (cfrac-of-real z) i = cfrac-nth (cfrac-tl (cfrac-of-real x)) i’
by simp
also have cfrac-tl (cfrac-of-real ©) = cfrac-of-real (1 / frac x)
using <frac > 0> by (intro cfrac-tl-of-real) auto
also have cfrac-nth (cfrac-of-real (1 ]/ frac x)) i’ =
cfrac-from-approz (du, nu mod du) (dl, nl mod dl) ! i’
proof (rule 1.TH[OF - refl refi - refl])
show = (nl=0V nu=0V dl=0V du= 0) - nldivdl # nu div du
using 1.prems by (auto split: if-splits simp: Let-def cfrac-from-approzx.simps)
next
show i’ < length (cfrac-from-approx (du, nu mod du) (dl, nl mod dl)) using
1.prems
by (subst (asm) cfrac-from-approx.simps) (auto split: if-splits simp: Let-def)
next
have 1 / frac x < dl / (nl mod dl)
using «frac x > 0» and <nl mod dl > 0» and <frac z > (nl mod dl) / dl»
and *
by (auto simp: field-simps)
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moreover have 1 / frac z > du / (nu mod du)
using <frac x > 0> and <nu mod du > 0 and «frac x < (nu mod du) / dw
and x*
by (auto simp: field-simps)
ultimately show
1/ frac z € {real-of-int (fst (du, nu mod du)) / real-of-int (snd (du, nu
mod du))..

d))}
by simp
show snd (du, nu mod du) > 0 snd (dl, nl mod dl) > 0 and nl mod dl # 0
using <nu mod du > 0> and <«nl mod dl > 0> by simp-all
qed
also have cfrac-from-approz (du, nu mod du) (dl, nl mod dl) ! i’ =
cfrac-from-approz (nl, dl) (nu, du) ! i
using I.prems * <nl mod dl # 0> by (subst (2) cfrac-from-approx.simps) auto
finally show ?thesis .
qed
qed

real-of-int (fst (dl, nl mod dl)) / real-of-int (snd (dl, nl mod

definition cfrac-from-approz’ :: float = float = int list where
cfrac-from-approx’ | uw = cfrac-from-approx (float-to-rat 1) (float-to-rat u)

lemma cfrac-from-approz’-correct:
assumes z € {real-of-float l..real-of-float u}
assumes i < length (cfrac-from-approz’ | u)
shows  cfrac-nth (cfrac-of-real z) i = cfrac-from-approz’ lu ! i
using assms unfolding cfrac-from-approz’-def
by (intro cfrac-from-approz-correct) (auto simp: float-to-rat cfrac-from-approz'-def)

definition approz-cfrac :: nat = floatarith = int list where
approz-cfrac prec e =
(case approzx’ prec e[| of
None = |]
| Some il = cfrac-from-approx’ (lower ivl) (upper il))

ML-file <approximation-cfrac. ML»

Now let us do some experiments:

value let prec = 34; ¢ = cfrac-from-approz’ (lb-pi prec) (ub-pi prec) in ¢
value let prec = 34; ¢ = cfrac-from-approz’ (lb-pi prec) (ub-pi prec)

in map (An. (conv-num-fun ((!) ¢) n, conv-denom-fun ((!) ¢) n)) [0..<length
q

approximate-cfrac prec: 200 pi
approximate-cfrac In 2
approximate-cfrac exp 1
approximate-cfrac sqrt 129
approximate-cfrac (sqrt 13 + 3) / 4
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approximate-cfrac arctan 1

approximate-cfrac 123 / 97
value cfrac-list-of-rat (123, 97)

end
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