
Constructor Functions

Lars Hupel

March 17, 2025

Abstract
Isabelle’s code generator performs various adaptations for target

languages. Among others, constructor applications have to be fully
saturated. That means that for constructor calls occuring as argu-
ments to higher-order functions, synthetic lambdas have to be inserted.
This entry provides tooling to avoid this construction altogether by in-
troducing constructor functions.

1 Introduction
theory Constructor-Funs

imports Main
keywords constructor-funs :: thy-decl

begin

Importing this theory adds a preprocessing step to the code generator: All
datatype constructors are replaced by functions, and all constructor calls
are replaced by function calls. For example, for the Suc constructor of nat,
a new constant with the same type and the definition suc ′ n = Suc n is
created. Then, all instances of Suc (except for in the constructor functions
themselves) are replaced. Note that the constructor functions are defined in
eta-long form.
Note that this does not affect constructors declared by code-datatype,
only datatype (and free-constructors).
The motivation for doing this is to avoid target-specific lambda-insertion by
the code generator. In some target languages, constructors cannot be used
as functions. As a consequence, terms like map Suc xs have to be printed
as map (fn x => Suc x) xs). This entails generation of fresh names outside
of the proof kernel. The transformation provided by this theory ensures
that all constructor calls are fully saturated. This makes supporting target
languages that forbid partially-applied constructor calls much easier.
The obvious downside is that this construction will usually degrade per-
formance of generated code. To some extent, an optimising compiler that
performs inlining can alleviate that.

1



2 Setup
〈ML〉

end

3 Usage
theory Test-Constructor-Funs
imports Constructor-Funs
begin

This entry provides a datatype plugin and a separate command. The plugin
runs by default on all defined datatypes, but it can be disabled individually:
datatype (plugins del: constructor-funs) ′a tree = Node | Fork ′a ′a tree list

context begin

The constructor-funs command can be used to add constructor functions
if the plugin has been disabled during datatype definition.
constructor-funs tree

end

Records are supported.
record ′a meep =

field1 :: ′a
field2 :: nat

Nested and mutual recursion are supported.
datatype

′a mlist1 = MNil1 | MCons1 ′a ′a mlist2 and
′a mlist2 = MNil2 | MCons2 ′a ′a mlist1

4 Examples
datatype ′a seq = Nil | Cons ′a ′a seq

fun app :: ′a seq ⇒ ′a seq ⇒ ′a seq where
app Nil ys = ys |
app (Cons x xs) ys = Cons x (app xs ys)

fun map where
map - Nil = Nil |
map f (Cons x xs) = Cons (f x) (map f xs)

definition bla = map (Cons True) Nil

2



The generated code never calls constructors directly, but only through reg-
ular functions. These functions are defined in eta-long form.
declare [[constructor-funs]]

export-code app bla plus-nat-inst.plus-nat in SML

export-code app bla plus-nat-inst.plus-nat checking SML Scala

end

3


	Introduction
	Setup
	Usage
	Examples

