
Conditional Transfer Rule: Reference Manual

Mihails Milehins

March 17, 2025

1

Abstract

The document presents a reference manual for the framework Conditional Transfer Rule:
a collection of experimental utilities for unoverloading [10] of definitions and synthesis of
conditional transfer rules [6] for the object logic Isabelle/HOL (e.g., see [13]) of the formal
proof assistant Isabelle [19] written in Isabelle/ML [17, 24].

2

Acknowledgements

The author would like to acknowledge the assistance that he received from the users
of the mailing list of Isabelle [1] in the form of answers given to his general queries. Spe-
cial thanks go to Fabian Immler for the development and implementation of the original
algorithm for unoverloading of definitions [7], for suggesting the original idea for the imple-
mentation of a framework for the relativization of definitions (the idea evolved from [8]) and
for providing an outline of the first feasible algorithm for this task (implemented as CTR II),
to Andrei Popescu for trying the software and providing feedback, to Kevin Kappelmann
for providing an explanation of certain aspects of [9], to Alexander Krauss for providing
an explanation of certain aspects of [10], to Andreas Lochbihler for providing an outline of
an improved algorithm for the relativization of definitions (not currently implemented), to
Andreas Lochbihler and Dmitriy Traytel for providing an explanation of the existing func-
tionality of the framework Conditional Parametricity [4]. Furthermore, the author would
like to acknowledge the positive impact of [21] and [24] on his ability to code in Isabelle/ML.
Moreover, the author would like to acknowledge the positive role that numerous Q&A posted
on the Stack Exchange network [2] played in the development of this work. The author would
also like to express gratitude to all members of his family and friends for their continuous
support.

3

Contents
1 Introduction 5

1.1 Background . 5
1.2 Structure and organization . 5

2 UD 6
2.1 Introduction . 6

2.1.1 Background . 6
2.1.2 Purpose and scope . 6
2.1.3 Related and previous work . 6

2.2 Theory . 6
2.3 Syntax . 7
2.4 Examples . 8

2.4.1 Type classes . 8
2.4.2 Low-level overloading . 8

3 CTR 10
3.1 Introduction . 10

3.1.1 Background . 10
3.1.2 Purpose and scope . 10
3.1.3 Related and previous work . 10

3.2 Theory . 11
3.3 Syntax . 11

3.3.1 Background . 11
3.3.2 ctr-relator . 11
3.3.3 ctr . 12

3.4 Examples . 13
3.4.1 CTR I . 13
3.4.2 CTR II . 14

References 16

4

1 Introduction
1.1 Background

The framework Conditional Transfer Rule (CTR) provides several experimental Isabelle/Isar
[26, 25, 23] commands that are aimed at the automation of unoverloading of definitions and
synthesis of conditional transfer rules in the object logic Isabelle/HOL of the formal proof
assistant Isabelle.

1.2 Structure and organization

The remainder of the reference manual is organized into two explicit sections, one for each
sub-framework of the CTR:

• Unoverload Definition (UD): automated elimination of sort constraints and unoverloading
of definitions

• Conditional Transfer Rule (CTR): automated synthesis of conditional transfer rules from
definitions

It should be noted that the abbreviation CTR will be used to refer both to the general framework
and the sub-framework.

5

2 UD
2.1 Introduction
2.1.1 Background

This section presents a reference manual for the sub-framework UD. The UD can be used for
the elimination of sort constraints (e.g., see [5]) and unoverloading of definitions in the object
logic Isabelle/HOL of the formal proof assistant Isabelle. The UD evolved from the author’s
work on an extension of the framework Types-To-Sets (see [12, 14, 8, 7], for a description of the
framework Types-To-Sets and [16] for a description of the author’s extension) and builds upon
certain ideas expressed in [10].

2.1.2 Purpose and scope

The primary functionality of the framework is available via the Isabelle/Isar command ud. This
command automates the processes of the elimination of sort constraints and unoverloading of
definitions. Thus, the command ud allows for the synthesis of the convenience constants and
theorems that are usually needed for the application of the derivation step 2 of the original
relativization algorithm of Types-To-Sets (see subsection 5.4 in [12]). However, it is expected
that the command can be useful for other purposes.

2.1.3 Related and previous work

The functionality provided by the command ud shares similarities with the functional-
ity provided by the algorithms for the elimination of sort constraints and elimination of
overloading that were presented in [10] and with the algorithm associated with the com-
mand unoverload definition that was proposed in [7]. Nonetheless, technically, unlike
unoverload definition, the command ud does not require the additional axiom UO asso-
ciated with Types-To-Sets for its operation (see [12], [7]), it uses the definitional axioms (e.g.,
see [10]) instead of arbitrary theorems supplied by the user and it is independent of the infras-
tructure associated with the axiomatic type classes [18, 22, 5].
It should also be mentioned that the Isabelle/ML code from the main distribution of Isabelle
was frequently reused during the development of the UD. Lastly, it should be mentioned that
the framework SpecCheck [9] was used for unit testing the framework UD.

2.2 Theory

The general references for this subsection are [10] and [13]. The command ud relies on a
restricted (non-recursive) variant of the classical overloading elimination algorithm that was
originally proposed in [10]. It is assumed that there exists a variable udwith that stores theorems
of the form cτ = cwith ∗̄, where cτ and cwith are distinct constant-instances and ∗̄ is a finite
sequence of uninterpreted constant-instances, such that, if cτ depends on a type variable αΥ,
with Υ being a type class [18, 22, 5] that depends on the overloaded constants ∗̄′, then ∗̄ contains
∗̄′ as a subsequence. Lastly, the binary operation ∪ is defined in a manner such that for any
sequences ∗̄ and ∗̄′, ∗̄∪ ∗̄′ is a sequence that consists of all elements of the union of the elements
of ∗̄ and ∗̄′ without duplication. Assuming an underlying well-formed definitional theory D, the
input to the algorithm is a constant-instance cσ. Given the constant-instance cσ, there exists
at most one definitional axiom cτ = φτ [∗̄] in D such that cσ ≤ cτ : otherwise the orthogonality of
D and, therefore, the well-formedness of D are violated (φ is assumed to be parameterized by
the types that it can have with respect to the type substitution operation, and ∗̄ in cτ = φτ [∗̄]

is a list of all uninterpreted constant-instances that occur in φτ [∗̄]).

6

If a definitional axiom cτ = φτ [∗̄] such that cσ ≤ cτ exists for the constant-instance cσ, then the
following derivation is applied to it by the algorithm

⊢ cτ = φτ [∗̄]

⊢ cσ = φσ [∗̄]
(1)

⊢ cσ = φwith [∗̄ ∪ ∗̄′]
(2)

⊢ cwith = (λf̄ . φwith [f̄])
(3)

⊢ cwith ?f̄ = φwith [?f̄]
(4)

⊢ cwith (∗̄ ∪ ∗̄′) = φwith [∗̄ ∪ ∗̄′]
(5)

⊢ cσ = cwith (∗̄ ∪ ∗̄′)
(6)

In step 1, the previously established property cσ ≤ cτ is used to create the (extended variant of
the) type substitution map ρ such that σ = ρ (τ) (see [11]) and perform the type substitution in
cτ = φτ [∗̄] to obtain cσ = φσ [∗̄]; in step 2, the collection of theorems udwith is unfolded, using it
as a term rewriting system, possibly introducing further uninterpreted constants ∗̄′; in step 3,
the term on the right-hand side of the theorem is processed by removing the sort constraints from
all type variables that occur in it, replacing every uninterpreted constant-instance (this excludes
all built-in constants of Isabelle/HOL) that occurs in it by a fresh term variable, and applying
the abstraction until the resulting term is closed: this term forms the right-hand side of a new
definitional axiom of a fresh constant cwith (if the conditions associated with the definitional
principles of Isabelle/HOL [13] are satisfied); step 4 is justified by the beta-contraction; step 5
is a substitution of the uninterpreted constants ∗̄ ∪ ∗̄′; step 6 follows trivially from the results
of the application of steps 2 and 5.
The implementation of the command ud closely follows the steps of the algorithm outlined
above. Thus, at the end of the successful execution, the command declares the constant cwith
and stores the constant-instance definition that is obtained at the end of step 3 of the algorithm
UD; furthermore, the command adds the theorem that is obtained after the execution of step 6
of the algorithm to udwith.
Unlike the classical overloading elimination algorithm, the algorithm employed in the implemen-
tation of the command ud is not recursive. Thus, the users are responsible for maintaining an
adequate collection of theorems udwith. Nonetheless, in this case, the users can provide their own
unoverloaded constants cwith and the associated theorems cσ = cwith ∗̄ for any constant-instance
cσ. From the perspective of the relativization algorithm associated with Types-To-Sets this
can be useful because there is no guarantee that the automatically synthesized constants cwith
will possess desirable parametricity characteristics (e.g., see [11] and [8]). Unfortunately, the
implemented algorithm still suffers from the fundamental limitation that was already outlined
in [10], [12] and [14]: it does not offer a solution for handling the constants whose types contain
occurrences of the type constructors whose type definitions contain occurrences of unresolvable
overloading.

2.3 Syntax

This subsection presents the syntactic categories that are associated with the command ud. It
is important to note that the presentation is only approximate.

ud ∶ theory → theory

7

ud
�� ��

� binding

�

const �
�mixfix

�

ud (b) const (mixfix) provides access to the algorithm for the elimination of sort constraints and
unoverloading of definitions that was described in subsection 2.2. The optional binding
b is used for the specification of the names of the entities added by the command to
the theory and the optional argument mixfix is used for the specification of the concrete
inner syntax for the constant in the usual manner (e.g., see [25]). If either b or mixfix
are not specified by the user, then the command introduces sensible defaults. Following
the specification of the definition of the constant, an additional theorem that establishes
the relationship between the newly introduced constant and the constant provided by the
user as an input is established and added to the dynamic fact ud-with.

2.4 Examples

In this subsection, some of the capabilities of the UD are demonstrated by example. The
examples that are presented in this subsection are expected to be sufficient for beginning an
independent exploration of the framework, but do not cover the entire spectrum of the func-
tionality and the problems that one may encounter while using it.

2.4.1 Type classes
definition mono where

mono f ←→ (∀ x y. x ≤ y Ð→ f x ≤ f y)

We begin the exploration of the capabilities of the framework by considering the constant
UD-Reference.mono. It is defined as

mono f = (∀ x y. x ≤ y Ð→ f x ≤ f y)

for any f ∶∶ ′a∶∶order ⇒ ′b∶∶order. The constants is unoverloaded using the command ud:
ud ‹mono›

The invocation of the command above declares the constant mono.with that is defined as

mono.with less-eq less-eqa ≡ λf . ∀ x y. less-eqa x y Ð→ less-eq (f x) (f y)

and provides the theorem mono.with given by

UD-Reference.mono ≡ mono.with (≤) (≤).

The theorems establish the relationship between the unoverloaded constant mono.with and
the overloaded constant UD-Reference.mono: both theorems are automatically added to the
dynamic fact ud-with.

2.4.2 Low-level overloading

The following example closely follows Example 5 in section 5.2. in [10].
consts pls ∶∶ ′a ⇒ ′a ⇒ ′a

overloading
pls-nat ≡ pls∶∶nat ⇒ nat ⇒ nat

8

pls-times ≡ pls∶∶ ′a × ′b ⇒ ′a × ′b ⇒ ′a × ′b
begin
definition pls-nat ∶∶ nat ⇒ nat ⇒ nat where pls-nat a b = a + b
definition pls-times ∶∶ ′a × ′b ⇒ ′a × ′b ⇒ ′a × ′b

where pls-times ≡ λx y. (pls (fst x) (fst y), pls (snd x) (snd y))
end

ud pls-nat ‹pls∶∶nat ⇒ nat ⇒ nat›
ud pls-times ‹pls∶∶ ′a × ′b ⇒ ′a × ′b ⇒ ′a × ′b›

As expected, two new unoverloaded constants are produced via the invocations of the command
ud above. The first constant, pls-nat.with, corresponds to pls∶∶nat ⇒ nat ⇒ nat and is given
by

pls-nat.with ≡ (+),

the second constant, pls-times.with, corresponds to

pls∶∶ ′a × ′b ⇒ ′a × ′b ⇒ ′a × ′b

and is given by

pls-times.with pls plsa ≡ λx y. (plsa (fst x) (fst y), pls (snd x) (snd y)).

The theorems that establish the relationship between the overloaded and the unoverloaded
constants are given by

pls ≡ pls-nat.with

and

pls ≡ pls-times.with pls pls.

The definitions of the constants pls-nat.with and pls-times.with are consistent with the ones
suggested in [10]. Nonetheless, of course, it is important to keep in mind that the command ud
has a more restricted scope of applicability than the algorithm suggested in [10].

9

3 CTR
3.1 Introduction
3.1.1 Background

This section presents a reference manual for the sub-framework CTR that can be used for
the automated synthesis of conditional transfer rules. The CTR evolved from the frameworks
Conditional Parametricity (CP) [4] and Types-To-Sets that are available as part of the main
distribution of Isabelle. However, it does not require either the axiom LT or the axiom UO asso-
ciated with the Types-To-Sets for its operation. The CTR introduces the following Isabelle/Isar
commands:

ctr ∶ local-theory → local-theory
ctr-relator ∶ local-theory → local-theory

3.1.2 Purpose and scope

The primary functionality of the CTR is available via the command ctr. The command ctr,
given a definition of a constant, attempts to provide a conditional transfer rule for this constant,
possibly under arbitrary user-defined side conditions. The process of the synthesis of a transfer
rule for a constant may or may not involve the declaration and synthesis of a definition of a new
(relativized) constant. The command provides an interface for the application of two plausible
algorithms for the synthesis of the transfer rules that have a restricted and overlapping scope of
applicability. The first algorithm (CTR I) was developed and implemented in [4]. An outline of
the second algorithm (CTR II) was proposed in [15] and [8]: CTR II relies on the functionality
of the transfer-prover (see subsection 4.6 in [11]). More details about CTR II are given in the
next subsection.
The command ctr-relator can be used for the registration of the, so-called, ctr-relators that
need to be provided for every non-nullary type constructor that occurs in the type of the
constant-instance whose definition is passed as an argument to CTR II. However, as a fallback
solution, the command ctr may use the relators that are associated with the standard BNF
infrastructure of Isabelle/HOL (e.g., see [20]). The only necessary condition for the registration
of the ctr-relators is that they must satisfy the type-constraint associated with the action of a
BNF on relations (e.g., see [20] or [3]).

3.1.3 Related and previous work

As already mentioned, the CTR evolved from the framework CP that is available as part of the
main distribution of Isabelle. Furthermore, CTR provides an interface to the main function-
ality associated with the framework CP and builds upon many ideas that could be associated
with it. The primary reason for the development of the command ctr instead of extending
the implementation of the existing command parametric-constant provided as part of the
CP was the philosophy of non-intervention with the development version of Isabelle that was
adopted at the onset of the design of the CTR. Perhaps, in the future, the functionality of the
aforementioned commands can be integrated.
It should also be mentioned that the Isabelle/ML code from the main distribution of Isabelle
was frequently reused during the development of CTR. Lastly, it should be mentioned that the
framework SpecCheck [9] was used for unit testing the framework CTR.

10

3.2 Theory

Assume the existence of an underlying well-formed definitional theory D and a context Γ;
assume the existence of a map ctrRel from a finite set of non-nullary type constructors to rela-
tors, mapping each non-nullary type constructor in its domain to a valid relator for this type
constructor. The inputs to CTR II are a constant-instance definition ⊢ c?γ̄ K = φ [?γ̄] of the
constant-instance c?γ̄ K and the map trp from the set of all schematic type variables in ?γ̄ to the
set of (fixed) binary relations xα→β→B in Γ with non-overlapping type variables (?γ̄ corresponds
to a sequence of all distinct type variables that occur in the type ?γ̄ K , while K , applied using
a postfix notation, contains all information about the type constructors of the type ?γ̄ K , such
that the non-nullary type constructors associated with K form a subset of the domain of ctrRel).
CTR II consists of three parts: synthesis of a parametricity relation, synthesis of a transfer rule
and post-processing.
Synthesis of a parametricity relation. An outline of an algorithm for the conversion of a
type to a parametricity relation is given in subsection 4.1.1 in [11]. Thus, every nullary type
constructor in ?γ̄ K is replaced by the identity relation =, every non-nullary type constructor
κ in ?γ̄ K is replaced by its corresponding relator ctrRel (κ) and every type variable ?γ in ?γ̄ K
is replaced by trp (?γ), obtaining the parametricity relation Rᾱ K→β̄ K→B.
Synthesis of a transfer rule. First, the goal R φ [ᾱ] φ [β̄] is created in Γ and an attempt to
prove it is made using the algorithm associated with the method transfer-prover . If the proof is
successful, nothing else needs to be done in this part. Otherwise, an attempt to find a solution
for ?a in R (?aᾱ K) φ [β̄] is made, once again, using the transfer-prover . The result of the
successful completion of the synthesis is a transfer rule Γ ⊢ R ψ [ᾱ, x̄] φ [β̄], where x̄ is used to
denote a sequence of typed variables, each of which occurs free in the context Γ (the success of
this part is not guaranteed).
Post-processing. If ψ [ᾱ, x̄] = φ [ᾱ] after the successful completion of part 2 of the algorithm,
then the definitions of the constant-instances cᾱ K and cβ̄ K are folded, resulting in the deduc-
tion Γ ⊢ R cᾱ K cβ̄ K . Otherwise, if ψ [ᾱ, x̄] ≠ φ [ᾱ], then a new constant d is declared such
that ⊢ dσ[?ᾱ] = (λx̄. ψ [?ᾱ, x̄]), where σ is determined uniquely by x̄ and ?ᾱ K . In this case,
Γ ⊢ R ψ [ᾱ, x̄] φ [β̄] can be restated as Γ ⊢ R (dσ[ᾱ] x̄) cβ̄ K . This result can be exported to
the global theory context and forms a conditional transfer rule for c?γ̄ K .
CTR II can perform the synthesis of the transfer rules for constants under arbitrary user-defined
side conditions automatically. However, the algorithm guarantees neither that it can identify
whether a transfer rule exists for a given constant under a given set of side conditions, nor that
it will be found if it does exist.

3.3 Syntax
3.3.1 Background

This subsection presents the syntactic categories that are associated with the command ctr and
closely related auxiliary commands and attributes. It is important to note that the presentation
is only approximate.

3.3.2 ctr-relator

ctr-relator ∶ local-theory → local-theory

ctr relator
�� �term

11

ctr-relator c saves the ctr-relator c to a database of ctr-relators for future reference. A
ctr-relator is defined as any constant that has the type of the form

(α1⇒β1⇒�)⇒. . .⇒(αn⇒βn⇒�)⇒(α1. . . αn)κ⇒(β1. . . βn)κ⇒�,

where α1. . . αn and β1. . . βn are distinct type variables, n is a positive integer and κ is a
type constructor.

3.3.3 ctr

ctr ∶ local-theory → local-theory

ctr
�� � parametricity

�� ��
� relativization

�� �rlt

�

in-def

rlt

�
� synthesis

�

�
� cce

�

trp

synthesis

synthesis
�� ��

� thm

�

cce

fixes
�� �vars�

�assumes
�� � props�

� and
�� �

�

�

trp

�
� trp

�� � (
���type-var term)

����
� and

�� �
�

�

in-def

�
� binding :

���
�

thm �
�mixfix

�

�
� and

�

ctr provides access to two algorithms for the automated synthesis of the transfer rules and the
relativization of constants based on their definitions.
parametricity indicates that CTR I needs to be invoked by the command.

12

relativization indicates that CTR II needs to be invoked by the command.
synthesis thm indicates that the relativization of the inputs needs to be performed and

post-processed using the simplifier with the collection of rewrite rules stated as the
fact thm. If the optional argument thm is not provided, then the default simpset is
used for post-processing. If the keyword synthesis is omitted, then no attempt to
perform the relativization is made. The keyword synthesis is relevant only for CTR
II.

trp (?a1 A1) and . . . and (?an An) indicates that the type variable that has the
indexname ?ai (1≤i≤n, n is a non-negative integer) is meant to correspond to the
binary relation Ai in the parametricity relation constructed by the command prior
to the statement of the transfer rule (for further information see subsection 4.1 in
[11]). This is relevant only for CTR II.

in (b∶) def-thm (mixfix) is used for the specification of the input to the algorithms
that are associated with the command ctr. def-thm is meant to be a fact that
consists of exactly one theorem of the form A ?a1. . .?an ≃ f ?a1. . .?an, where A is a
constant, ≃ is either meta- or object-equality, n is a non-negative integer, ?a1. . .?an
are schematic variables and f is a suitable formula in n arguments (however, there
are further implicit restrictions). If a new constant is introduced by the command,
then the optional argument mixfix is used for the specification of the concrete inner
syntax for the constant in the usual manner (e.g. see [25]). The optional binding
b is used for the specification of the names of the entities that are provided after
the successful execution of the command. It is hoped that the algorithm chosen for
the specification of the names is sufficiently intuitive and does not require further
explanation. If either b or mixfix are not specified by the user, then the command
introduces sensible defaults. Multiple theorems may be provided after the keyword
in, employing the keyword and as a separator. In this case, the parameterized
algorithm associated with the command is applied repeatedly to each input theorem
in the order of their specification from left to right and the local context is augmented
incrementally.

3.4 Examples

In this subsection, some of the capabilities of the CTR are demonstrated by example. The
examples that are presented in this subsection are expected to be sufficient to begin an inde-
pendent exploration of the framework, but do not cover the entire spectrum of the functionality
and the problems that one may encounter while using it.
The examples that are presented in this subsection continue the example of the application of
the command ud to the definition of the constant UD-Reference.mono that was presented in
subsection 2.4.

3.4.1 CTR I

As already explained, the command ctr can be used to invoke the algorithm associated with
the command parametric-constant for the synthesis of a transfer rule for a given constant.
For example, the invocation of
ctr parametricity

in mono∶ mono.with-def

generates the transfer rule mono-transfer :

If bi-total A and (A ===> A ===> (=)) (≤) (≤) and
(B ===> B ===> (=)) (≤) (≤) then

13

((A ===> B) ===> (=)) order-class.mono order-class.mono.

A detailed explanation of the underlying algorithm can be found in [4].

3.4.2 CTR II

The first example in this subsection demonstrates how CTR II can be used to produce a para-
metricity property identical to the one produced by CTR I above:
ctr relativization

fixes A1 ∶∶ ′a ⇒ ′b ⇒ bool and A2 ∶∶ ′c ⇒ ′d ⇒ bool
assumes [transfer-rule]∶ bi-total A1
trp (? ′a A1) and (? ′b A2)
in mono ′∶ mono.with-def

This produces the theorem mono ′.transfer :

If bi-total A1 then
((A2 ===> A2 ===> (=)) ===>
(A1 ===> A1 ===> (=)) ===> (A1 ===> A2) ===> (=))
mono.with mono.with.

which is identical to the theorem mono-transfer generated by CTR I.

Of course, there is very little value in trying to establish a parametricity property using CTR II
due to the availability of CTR I. However, it is often the case that the constant is not parametric
under a given set of side conditions. Nonetheless, in this case, it is often possible to define a
new relativized constant that is related to the original constant under the parametricity relation
associated with the original constant. It is expected that the most common application of CTR
II will be the synthesis of the relativized constants.
For example, suppose one desires to find a conditional transfer rule for the constant mono.with
such that (using the conventions from the previous example) the relation A1 is right total, but
not, necessarily, left total. While, under such restriction on the involved relations, the constant
mono.with is no longer conditionally parametric, its relativization exists and can be found using
the transfer prover. To automate the relativization process, the user merely needs to add the
keyword synthesis immediately after the keyword relativization:
ctr relativization

synthesis ctr-simps
fixes A1 ∶∶ ′a ⇒ ′b ⇒ bool and A2 ∶∶ ′c ⇒ ′d ⇒ bool
assumes [transfer-domain-rule]∶ Domainp A1 = (λx. x ∈ U1)

and [transfer-rule]∶ right-total A1
trp (? ′a A1) and (? ′b A2)
in mono-ow∶ mono.with-def

This produces the definition mono-ow-def :

mono-ow U1 less-eq less-eqa f ≡
∀ x∈U1. ∀ y∈U1. less-eqa x y Ð→ less-eq (f x) (f y)

and the theorem mono-ow.transfer :

If Domainp A1 = (λx. x ∈ U1) and right-total A1 then
((A2 ===> A2 ===> (=)) ===>
(A1 ===> A1 ===> (=)) ===> (A1 ===> A2) ===> (=))
(mono-ow U1) mono.with.

14

It should be noted that, given that the keyword synthesis was followed by the name of the
named collection of theorems ctr-simps, this collection was used in post-processing of the result
of the relativization. The users can omit simplification entirely by specifying the collection
ctr-blank instead of ctr-simps.

15

References

[1] Isabelle mailing-list, . URL https://lists.cam.ac.uk/pipermail/cl-isabelle-users/.

[2] Stack Exchange, . URL https://stackexchange.com/.

[3] J. C. Blanchette, L. Gheri, A. Popescu, and D. Traytel. Bindings as Bounded Natural
Functors. Proceedings of the ACM on Programming Languages, 3(POPL):22:1–22:34, 2019.

[4] J. Gilcher, A. Lochbihler, and D. Traytel. Conditional Parametricity in Isabelle/HOL. In
TABLEAUX/FroCoS/ITP, Brasília, Brazil, 2017.

[5] F. Haftmann and M. Wenzel. Constructive Type Classes in Isabelle. In T. Altenkirch and
C. McBride, editors, Types for Proofs and Programs, volume 4502, pages 160–174. Springer,
Heidelberg, 2007. ISBN 978-3-540-74464-1.

[6] B. Huffman and O. Kunčar. Lifting and Transfer: A Modular Design for Quotients in
Isabelle/HOL. In G. Gonthier and M. Norrish, editors, Certified Programs and Proofs,
volume 8307, pages 131–146. Springer, Heidelberg, 2013. ISBN 978-3-319-03545-1.

[7] F. Immler. Automation for unverloading definitions, 2019. URL http://isabelle.in.tum.de/
repos/isabelle/rev/ab5a8a2519b0.

[8] F. Immler and B. Zhan. Smooth Manifolds and Types to Sets for Linear Algebra in
Isabelle/HOL. In A. Mahboubi and M. O. Myreen, editors, Proceedings of the 8th ACM
SIGPLAN International Conference on Certified Programs and Proofs, CPP 2019, Cascais,
Portugal, CPP 2019, pages 65–77. ACM, New York, 2019. ISBN 978-1-4503-6222-1.

[9] K. Kappelmann, L. Bulwahn, and S. Willenbrink. SpecCheck - Specification-Based Testing
for Isabelle/ML. Archive of Formal Proofs, 2021.

[10] A. Krauss and A. Schropp. A Mechanized Translation from Higher-Order Logic to Set
Theory. In M. Kaufmann and L. C. Paulson, editors, Interactive Theorem Proving, volume
6172, pages 323–338. Springer, Heidelberg, 2010. ISBN 978-3-642-14051-8.

[11] O. Kunčar. Types, Abstraction and Parametric Polymorphism in Higher-Order Logic. PhD
thesis, Technische Universität München, Munich, 2015.

[12] O. Kunčar and A. Popescu. From Types to Sets by Local Type Definitions in Higher-Order
Logic. In J. C. Blanchette and S. Merz, editors, Interactive Theorem Proving, volume 9807,
pages 200–218. Springer, Heidelberg, 2016. ISBN 978-3-319-43144-4.

[13] O. Kunčar and A. Popescu. Comprehending Isabelle/HOL’s Consistency. In H. Yang,
editor, Programming Languages and Systems, volume 10201, pages 724–749. Springer, Hei-
delberg, 2017. ISBN 978-3-662-54433-4.

[14] O. Kunčar and A. Popescu. From Types to Sets by Local Type Definition in Higher-Order
Logic. Journal of Automated Reasoning, 62(2):237–260, 2019.

[15] P. Lammich. Automatic Data Refinement. In S. Blazy, C. Paulin-Mohring, and
D. Pichardie, editors, Interactive Theorem Proving, pages 84–99, Heidelberg, 2013.
Springer. ISBN 978-3-642-39634-2.

[16] M. Milehins. Extension of Types-To-Sets. Archive of Formal Proofs, 2021.

[17] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard ML (re-
vised). MIT Press, Cambridge, Massachusetts, 1997. ISBN 978-0-262-63181-5.

16

https://lists.cam.ac.uk/pipermail/cl-isabelle-users/
https://stackexchange.com/
http://isabelle.in.tum.de/repos/isabelle/rev/ab5a8a2519b0
http://isabelle.in.tum.de/repos/isabelle/rev/ab5a8a2519b0

[18] T. Nipkow and G. Snelting. Type Classes and Overloading Resolution via Order-Sorted
Unification. In J. Hughes, editor, Functional Programming Languages and Computer Archi-
tecture, volume 523 of Lecture Notes in Computer Science, pages 1–14. Springer, Heidelberg,
1991. ISBN 978-3-540-47599-6.

[19] L. C. Paulson. Natural Deduction as Higher-Order Resolution. The Journal of Logic
Programming, 3(3):237–258, 1986.

[20] D. Traytel, A. Popescu, and J. C. Blanchette. Foundational, Compositional (Co)datatypes
for Higher-Order Logic: Category Theory Applied to Theorem Proving. In 27th Annual
IEEE Symposium on Logic in Computer Science, pages 596–605, Dubrovnik, 2012. IEEE.

[21] C. Urban. The Isabelle Cookbook: A Gentle Tutorial for Programming Isabelle/ML. 2019.

[22] M. Wenzel. Type Classes and Overloading in Higher-Order Logic. In E. L. Gunter and
A. P. Felty, editors, Theorem Proving in Higher Order Logics, Lecture Notes in Computer
Science, pages 307–322. Springer, Heidelberg, 1997. ISBN 978-3-540-69526-4.

[23] M. Wenzel. Isar — A Generic Interpretative Approach to Readable Formal Proof Docu-
ments. In Y. Bertot, G. Dowek, L. Théry, A. Hirschowitz, and C. Paulin-Mohring, editors,
Theorem Proving in Higher Order Logics, volume 1690, pages 167–183. Springer, Heidel-
berg, 1999. ISBN 978-3-540-66463-5.

[24] M. Wenzel. The Isabelle/Isar Implementation. 2019.

[25] M. Wenzel. The Isabelle/Isar Reference Manual. 2019.

[26] M. M. Wenzel. Isabelle/Isar — A Versatile Environment for Human-Readable Formal
Proof Documents. PhD thesis, Technische Universität München, Munich, 2001.

17

	Introduction
	Background
	Structure and organization

	UD
	Introduction
	Background
	Purpose and scope
	Related and previous work

	Theory
	Syntax
	Examples
	Type classes
	Low-level overloading

	CTR
	Introduction
	Background
	Purpose and scope
	Related and previous work

	Theory
	Syntax
	Background
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ctr-relator
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ctr

	Examples
	CTR I
	CTR II

	References

