Conditional Simplification

Mihails Milehins

March 17, 2025

Abstract

The document presents a reference manual for the framework Conditional Simplification
(CS): a collection of experimental general-purpose methods for the object logic Isabelle/HOL
(e.g., see [1]) of the formal proof assistant Isabelle [4]. The methods that are provided in
the collection offer the functionality that is similar to certain aspects of the functionality
provided by the standard proof methods [8] of Isabelle that combine classical reasoning and
rewriting/simplification, but use a different approach for rewriting/simplification. More
specifically, the methods provided in the collection allow for the side conditions of the rewrite
rules to be solved via intro-resolution.

Acknowledgements

The author would like to acknowledge the assistance that he received from the users of
the mailing list of Isabelle in the form of answers given to his general queries.

Furthermore, the author would like to acknowledge the positive impact of [6] and [7] on
his ability to code in Isabelle/ML [2, 7]. Moreover, the author would like to acknowledge the
positive role that numerous Q&A posted on the Stack Exchange network (especially Stack
Overflow and TeX Stack Exchange) played in the development of this work.

The author would also like to express gratitude to all members of his family and friends
for their continuous support.

https://lists.cam.ac.uk/mailman/listinfo/cl-isabelle-users

Contents

1 Introduction

1.1 Background

1.2 Purpose and SCOpe

1.3 Related and previous work L
2 Syntax

3 Known issues and limitations

References

1 Introduction

1.1 Background

This document presents a reference manual for the framework CS. The framework CS is a
collection of experimental tactics and associated proof methods aimed at the automation of
conditional simplification in the object logic Isabelle/HOL of the formal proof assistant Isa-
belle. The methods that are provided in the collection offer the functionality that is similar
to certain aspects of the functionality provided by the standard proof methods of Isabelle that
combine classical reasoning and simplification (e.g., the method auto [3, 8]), but there are no-
table differences. More specifically, the methods provided in the collection allow for the side
conditions of the rewrite rules to be solved via intro-resolution.

1.2 Purpose and scope

The primary functionality of the framework is available via the proof methods cs-concl-step,
cs-prems-atom-step and cs-intro-step. The methods cs-concl-step and cs-prems-atom-step ac-
cept a collection of (conditional) rewrite rules and execute one rewrite step on the conclusion or
a premise of some goal, respectively. The application of the rewrite step produces new goals that
are associated with the premises of the rewrite rules. These goals are meant to be discharged
via a recursive application of either cs-intro-step or cs-concl-step. The procedure outlined above
was automated and made available as part of the proof methods cs-concl and cs-prems.

1.3 Related and previous work

No claim with regard to the originality of the algorithms used in the methods implemented
as part of the CS is made and, due to the experimental and evolving nature of this work,
a comprehensive literature review is considered to be outside its scope. Therefore, the only
contributions claimed by the author are the implementation of the algorithms associated with
the methods provided as part of the CS in Isabelle/ML [2, 7] and their integration with the
Isabelle/Isar infrastructure.
The implementation of the methods associated with the framework builds upon the existing
infrastructure of Isabelle and provides only a very thin layer of additional or alternative func-
tionality. As such, it may be possible to achieve integration of the functionality offered by the
CS with the standard infrastructure for classical reasoning and simplification in Isabelle.
It should also be mentioned that the Isabelle/ML code from the main distribution of Isabelle2020
and from The Isabelle/ML Cookbook [6] was frequently reused (with amendments) during the
development of the library. Some particular examples of such reuse include
o The adoption of the code for the tactic remdups-tac from the file ~/ Tools/ Intuitionistic. ML.
o The adoption of the code presented in subsection 3.3 of [6] for higher-order matching and
unification.

2 Syntax

This section presents the syntactic categories that are associated with the methods cs-concl-step,
cs-intro-step, cs-intro-search, cs-concl, cs-prems-atom-step and cs-prems. It is important to note
that the presentation is only approximate.

cs-concl-step @ method
cs-intro-step : method
cs-intro-search : method
cs-concl : method
cs-prems-atom-step : method
cs-prems : method

cs_concl_step @7
cs_intro_step @7

cs_intro_searc@ @7
[cs-match |

cs_concl cs-match cs-18
cs-ist_simple
cs_prems_atom_steia) @7

|

1

]

i

[

1

@ cs-match cS-18

cs-match

g cs-intro H cS-stmp Q

cS-18

CS-8Tmp

(evsimp)- ()| s

cs-intro

(esimro)(- s

cs-concl-step (cs-shallow) thms performs a single rewrite step of the conclusion of some goal
using the collection of the rewrite rules thms. The rewriting is performed via the intro-
resolution with the rewrite rule stated in an altered form: the application of cs-concl-step
may produce new subgoals that are associated with the premises of the applied rewrite
rule. If the optional argument cs-shallow is provided during the invocation of the proof
method, then backtracking and all of the related infrastructure is disabled during the
invocation of the method (disabling the infrastructure associated with backtracking can
result in improved performance).

cs-intro-step (cs-shallow) thms performs a single refinement step via intro-resolution. The op-
tional argument cs-shallow serves a purpose that is similar to its purpose in cs-concl-step.

cs-intro-search (cs-shallow) thms attempts to solve a single goal using a search procedure
based on the algorithm outlined in the description of the method cs-intro-step. The op-
tional argument cs-shallow serves a purpose that is similar to its purpose in cs-concl-step.

cs-concl (n) (1) (cs-full or cs-shallow) (cs-ist-simple) cs-simp : simp-thms cs-intro : in-
tro-thms attempts to solve a single goal using a search procedure that employs the method
applications cs-concl-step simp-thms and cs-intro-step intro-thms as individual steps. If
the optional argument cs-full is provided during the invocation of the proof method, all
possible rule-term matches are considered. Otherwise, only a single sensible default match
is used for every applicable rule-term pair. As before, if the optional argument cs-shallow
is provided during the invocation of the proof method, then backtracking and all of the
related infrastructure is disabled. If the optional argument cs-ist-simple is provided,
then the search space of the method is expanded by allowing backtracking after every
atomic step (the default behavior uses a tailor-made empirically established routine that
can be inferred from the implementation of the method). The optional positive integer
argument n can be used for the invocation of a built-in profiling tool: n represents the
number of trial runs of the method during profiling. The optional argument ! switches on
the verbose mode. In this mode, the individual steps that are invoked during the search
procedure associated with the method are printed.

cs-prems-atom-step (cs-shallow) thms performs a single rewrite step of the first premise
of some goal using the collection of the rewrite rules thms. The optional argument
cs-shallow serves a purpose that is similar to its purpose in cs-concl-step.

cs-prems (n) (1) (cs-full or cs-shallow) (cs-ist-simple) cs-simp : simp-thms cs-intro : in-
tro-thms repeatedly performs a single rewrite step of the first premise of some goal using
the collection of the rewrite rules simp-thms, followed by an attempt to solve all but the
final subgoal using the method application (cs-concl cs-simp : simp-thms cs-intro : in-
tro-thms). The optional arguments n, !, cs-full, cs-shallow and cs-ist-simple serve a
purpose that is similar to their purpose in cs-concl.

3 Known issues and limitations

The collection of the proof methods that are associated with the framework CS is a result of
experimentation during practical formalization work. The CS should be viewed as an idea or
a proposal for further development, rather than a finished product. The limitations and the
performance of the methods associated with the CS have not been investigated and there is little
guarantee that they will be suitable for any specific target application. It is also important to
note that the methods have only been tested extensively on the subgoals that do not contain
any explicit occurrences of the Isabelle/Pure [5] universal quantifier. Only very limited and
highly experimental support for the first-/higher-order reasoning is provided by the CS.

References

[1] O. Kuncar and A. Popescu. Comprehending Isabelle/HOL’s Consistency. In H. Yang, editor,
Programming Languages and Systems, volume 10201, pages 724-749. Springer, Heidelberg,
2017. ISBN 978-3-662-54433-4.

[2] R.Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard ML (revised).
MIT Press, Cambridge, Massachusetts, 1997. ISBN 978-0-262-63181-5.

[3] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant for Higher-Order
Logic. Springer Science & Business Media, Heidelberg, 2002. ISBN 978-3-540-43376-7.

[4] L. C. Paulson. Natural Deduction as Higher-Order Resolution. The Journal of Logic Pro-
gramming, 3(3):237-258, 1986.

[5] L. C. Paulson. The Foundation of a Generic Theorem Prover. Journal of Automated Rea-
soning, 5(3):363-397, 1989.

[6] C. Urban. The Isabelle Cookbook: A Gentle Tutorial for Programming Isabelle/ML. 2019.
[7] M. Wenzel. The Isabelle/Isar Implementation. 2019.

[8] M. Wenzel. The Isabelle/Isar Reference Manual. 2019.

	Introduction
	Background
	Purpose and scope
	Related and previous work

	Syntax
	Known issues and limitations
	References

