Conditional normative reasoning as a fragment of HOL (Isabelle/HOL dataset)

Xavier Parent and Christoph Benzmüller

March 29, 2024

Abstract

We present a mechanisation of (preference-based) conditional normative reasoning. Our focus is on Åqvist's system \mathbf{E} for conditional obligation and its extensions. We present both a correspondence-theory-focused metalogical study and a use-case application to Parfit's repugnant conclusion, focusing on the mere addition paradox. Our contribution is explained in detail in [2]. This document presents a corresponding (but sligthly modified) Isabelle/HOL dataset.

Contents

1 Introduction 2
2 Shallow Embedding of Åqvist's system E 2
2.1 System E . 2
2.2 Properties . 4

3 Meta-Logical Study 6
3.1 Correspondence - Max rule 6
3.2 Correspondence - Opt Rule 9
3.3 Correspondence - Lewis' rule 11

4 The Mere Addition Paradox: Opt Rule 14
5 The Mere Addition Paradox: Lewis' rule 15
6 The Mere Addition Paradox: Max Rule 17
7 Conclusion 19

1 Introduction

In this document we present the Isabelle/HOL dataset associated with [2], in which "We report on the mechanization of (preference-based) conditional normative reasoning. Our focus is on Åquist's system \mathbf{E} for conditional obligation, and its extensions. Our mechanization is achieved via a shallow semantical embedding in Isabelle/HOL. We consider two possible uses of the framework. The first one is as a tool for meta-reasoning about the considered logic. We employ it for the automated verification of deontic correspondences (broadly conceived) and related matters, analogous to what has been previously achieved for the modal logic cube. The equivalence is automatically verified in one direction, leading from the property to the axiom. The second use is as a tool for assessing ethical arguments. We provide a computer encoding of a well-known paradox (or impossibility theorem) in population ethics, Parfit's repugnant conclusion." [2]

2 Shallow Embedding of Åqvist's system E

This is Aqvist's system E from the 2019 IfColog paper [1].

2.1 System E

theory $D D L c u b e$
imports Main
begin
nitpick-params [user-axioms,show-all,format=2] - Settings for model finder Nitpick
typedecl i - Possible worlds
type-synonym $\sigma=(i \Rightarrow b o o l)$
type-synonym $\alpha=i \Rightarrow \sigma$ — Type of betterness relation between worlds
type-synonym $\tau=\sigma \Rightarrow \sigma$
consts aw::i - Actual world
abbreviation etrue :: $\sigma(\top)$ where $\top \equiv \lambda w$. True
abbreviation efalse $:: \sigma(\perp)$ where $\perp \equiv \lambda w$. False
abbreviation enot :: $\sigma \Rightarrow \sigma(\neg-[52] 53)$ where $\neg \varphi \equiv \lambda w . \neg \varphi(w)$
abbreviation eand $:: \sigma \Rightarrow \sigma \Rightarrow \sigma(\operatorname{infixr} \wedge 51)$ where $\varphi \wedge \psi \equiv \lambda w . \varphi(w) \wedge \psi(w)$
abbreviation eor :: $\sigma \Rightarrow \sigma \Rightarrow \sigma($ infixr $\vee 50)$ where $\varphi \vee \psi \equiv \lambda w . \varphi(w) \vee \psi(w)$
abbreviation eimpf $:: \sigma \Rightarrow \sigma \Rightarrow \sigma(\operatorname{infixr} \rightarrow 49)$ where $\varphi \rightarrow \psi \equiv \lambda w . \varphi(w) \longrightarrow \psi(w)$
abbreviation $\operatorname{eimpb}:: \sigma \Rightarrow \sigma \Rightarrow \sigma(\operatorname{infixr} \leftarrow 49)$ where $\varphi \leftarrow \psi \equiv \lambda w . \psi(w) \longrightarrow \varphi(w)$
abbreviation eequ $:: \sigma \Rightarrow \sigma \Rightarrow \sigma(\operatorname{infixr} \leftrightarrow 48)$ where $\varphi \leftrightarrow \psi \equiv \lambda w . \varphi(w) \longleftrightarrow \psi(w)$

```
abbreviation ebox :: \(\sigma \Rightarrow \sigma(\square)\) where \(\square \varphi \equiv \lambda w . \forall v . \varphi(v)\)
abbreviation ddediomond :: \(\sigma \Rightarrow \sigma(\diamond)\) where \(\diamond \varphi \equiv \lambda w . \exists v . \varphi(v)\)
abbreviation evalid \(:: \sigma \Rightarrow\) bool \((\lfloor-\rfloor[8] 109)\) - Global validity
    where \(\lfloor p\rfloor \equiv \forall w . p w\)
abbreviation ecjactual :: \(\sigma \Rightarrow\) bool \(\left(\lfloor-\rfloor_{l}[7] 105\right)\) - Local validity in world aw
    where \(\lfloor p\rfloor_{l} \equiv p(a w)\)
consts \(r\) :: \(\alpha\) (infixr r 70) - Betterness relation
abbreviation esubset :: \(\sigma \Rightarrow \sigma \Rightarrow\) bool (infix \(\subseteq 53\) )
    where \(\varphi \subseteq \psi \equiv \forall x . \varphi x \longrightarrow \psi x\)
```

We introduce the opt and max rules. These express two candidate truthconditions for conditional obligation and permission.

```
abbreviation eopt :: \(\sigma \Rightarrow \sigma\) (opt<->) - opt rule
    where \(o p t\langle\varphi\rangle \equiv(\lambda v .((\varphi)(v) \wedge(\forall x .((\varphi)(x) \longrightarrow v \mathbf{r} x))))\)
abbreviation econdopt :: \(\sigma \Rightarrow \sigma \Rightarrow \sigma(\odot<-\mid->)\)
    where \(\odot\langle\psi \mid \varphi\rangle \equiv \lambda w\). opt \(\langle\varphi\rangle \subseteq \psi\)
abbreviation eperm \(:: \sigma \Rightarrow \sigma \Rightarrow \sigma(\mathcal{P}<-\mid->)\)
    where \(\mathcal{P}\langle\psi \mid \varphi\rangle \equiv \neg \odot<\neg \psi \mid \varphi>\) - permission is the dual of obligation
abbreviation emax :: \(\sigma \Rightarrow \sigma(\max <->)\) - max rule
    where \(\max \langle\varphi\rangle \equiv(\lambda v .((\varphi)(v) \wedge(\forall x .((\varphi)(x) \longrightarrow(x \mathbf{r} v \longrightarrow v \mathbf{r} x)))))\)
abbreviation econd \(:: \sigma \Rightarrow \sigma \Rightarrow \sigma(\bigcirc<-\mid->)\)
    where \(\bigcirc<\psi|\varphi\rangle \equiv \lambda w . \max \langle\varphi\rangle \subseteq \psi\)
abbreviation euncobl :: \(\sigma \Rightarrow \sigma(\bigcirc<->)\)
    where \(\bigcirc<\varphi\rangle \equiv \bigcirc<\varphi \mid \top>\)
abbreviation ddeperm :: \(\sigma \Rightarrow \sigma \Rightarrow \sigma(P<-\mid->)\)
    where \(P\langle\psi \mid \varphi\rangle \equiv \neg \bigcirc<\neg \psi|\varphi\rangle\)
```

A first consistency check is performed.
lemma True
nitpick [expect=genuine,satisfy] - model found
oops

We show that the max-rule and opt-rule do not coincide.

```
lemma \(\odot<\psi|\varphi\rangle \equiv \bigcirc<\psi|\varphi\rangle\)
    nitpick [expect=genuine,card \(i=1\) ] - counterexample found
    oops
```

David Lewis's truth conditions for the deontic modalities are introduced.
abbreviation lewcond :: $\sigma \Rightarrow \sigma \Rightarrow \sigma$ ($0<-\mid->$)
where $\circ<\psi|\varphi\rangle \equiv \lambda v .(\neg(\exists x .(\varphi)(x)) \vee$ $(\exists x .((\varphi)(x) \wedge(\psi)(x) \wedge(\forall y .((y \mathbf{r} x) \longrightarrow(\varphi)(y) \longrightarrow(\psi)(y))))))$
abbreviation lewperm :: $\sigma \Rightarrow \sigma \Rightarrow \sigma\left(\int<-\mid->\right)$
where $\int\langle\psi \mid \varphi\rangle \equiv \neg \circ<\neg \psi|\varphi\rangle$
Kratzer's truth conditions for the deontic modalities are introduced.

```
abbreviation kratcond :: \sigma=>\sigma=>\sigma (\ominus<-|->)
    where }\ominus<\psi|\varphi> \equiv\lambdav. ((\forallx. ((\varphi)(x)
```



```
abbreviation kratperm :: \sigma=>\sigma=>\sigma (}\times<-|->
    where }\times<\psi|\varphi\rangle\equiv\neg\ominus<\neg\psi|\varphi
```


2.2 Properties

Extensions of \mathbf{E} are obtained by putting suitable constraints on the betterness relation.

These are the standard properties of the betterness relation.
abbreviation reflexivity $\equiv(\forall x . x \mathbf{r} x)$
abbreviation transitivity $\equiv(\forall x y z .(x \mathbf{r} y \wedge y \mathbf{r} z) \longrightarrow x \mathbf{r} z)$
abbreviation totality $\equiv(\forall x y .(x \mathbf{r} y \vee y \mathbf{r} x))$
4 versions of Lewis's limit assumption can be distinguished.
abbreviation mlimitedness $\equiv(\forall \varphi .(\exists x .(\varphi) x) \longrightarrow(\exists x . \max <\varphi>x))$
abbreviation msmoothness \equiv
$(\forall \varphi x .((\varphi) x \longrightarrow(\max <\varphi>x \vee(\exists y .(y \mathbf{r} x \wedge \neg(x \mathbf{r} y) \wedge \max <\varphi>y)))))$
abbreviation olimitedness $\equiv(\forall \varphi .(\exists x .(\varphi) x) \longrightarrow(\exists x$. opt $<\varphi>x))$
abbreviation osmoothness \equiv
$(\forall \varphi x .((\varphi) x \longrightarrow(o p t<\varphi>x \vee(\exists y .(y \mathbf{r} x \wedge \neg(x \mathbf{r} y) \wedge$ opt $<\varphi>y)))))$
Weaker forms of transitivity can be defined. They require the notion of transitive closure.

```
definition transitive :: \(\alpha \Rightarrow\) bool
    where transitive Rel \(\equiv \forall x y z\). Rel \(x y \wedge \operatorname{Rel} y z \longrightarrow \operatorname{Rel} x z\)
definition sub-rel :: \(\alpha \Rightarrow \alpha \Rightarrow\) bool
    where sub-rel Rel1 Rel2 \(\equiv \forall u v\). Rel1 \(u v \longrightarrow\) Rel2 \(u v\)
definition assfactor :: \(\alpha \Rightarrow \alpha\)
    where assfactor Rel \(\equiv \lambda u\) v. Rel \(u v \wedge \neg \operatorname{Rel} v u\)
```

In HOL the transitive closure of a relation can be defined in a single line - Here we apply the construction to the betterness relation and its strict variant.

```
definition \(t c r\)
    where \(t c r \equiv \lambda x y . \forall Q\). transitive \(Q \longrightarrow(\) sub-rel \(r Q \longrightarrow Q x y)\)
definition tcr-strict
    where tcr-strict \(\equiv \lambda x y . \forall Q\). transitive \(Q\)
                \(\longrightarrow(s u b-r e l(\lambda u v . u \mathbf{r} v \wedge \neg v \mathbf{r} u) Q \longrightarrow Q x y)\)
```

Quasi-transitivity requires the strict betterness relation is transitive.
abbreviation Quasitransit
where Quasitransit $\equiv \forall x y z$. (assfactor $r x y \wedge$

```
assfactor r y z)\longrightarrow assfactor r x z
```

Suzumura consistency requires that cycles with at least one non-strict betterness link are ruled out.

```
abbreviation Suzumura
    where Suzumura \equiv\forallxy.tcr x y \longrightarrow(y\mathbf{r}x\longrightarrowx\mathbf{r}y)
```

theorem T1: Suzumura $\equiv \forall x y$. tcr $x y \longrightarrow \neg(y \mathbf{r} x \wedge \neg(x \mathbf{r} y))$ by simp

Acyclicity requires that cycles where all the links are strict are ruled out.
abbreviation loopfree
where loopfree $\equiv \forall x y$. tcr-strict $x y \longrightarrow(y \mathbf{r} x \longrightarrow x \mathbf{r} y)$
Interval order is the combination of reflexivity and Ferrers.

```
abbreviation Ferrers
    where Ferrers }\equiv(\forallxyzu.(x\mathbf{r}u\wedgey\mathbf{r}z)\longrightarrow(x\mathbf{r}z\veey\mathbf{r}u)
theorem T2:
    assumes Ferrers and reflexivity - fact overlooked in the literature
    shows totality
    - sledgehammer
    by (simp add: assms(1) assms(2))
```

We study the relationships between these candidate weakenings of transitivity.

theorem T3:

assumes transitivity
shows Suzumura

- sledgehammer
by (metis assms sub-rel-def tcr-def transitive-def)
theorem T4:
assumes transitivity
shows Quasitransit
- sledgehammer
by (metis assfactor-def assms)
theorem T5:
assumes Suzumura
shows loopfree
- sledgehammer
by (metis (no-types, lifting) assms sub-rel-def tcr-def tcr-strict-def)
theorem T6:
assumes Quasitransit

```
shows loopfree
    - sledgehammer
    by (smt (verit, best) assfactor-def assms sub-rel-def tcr-strict-def transitive-def)
theorem T7:
    assumes reflexivity and Ferrers
    shows Quasitransit
    - sledgehammer
    by (metis assfactor-def assms)
```


3 Meta-Logical Study

3.1 Correspondence - Max rule

The inference rules of \mathbf{E} preserve validity in all models.

```
lemma \(M P: \llbracket\lfloor\varphi\rfloor ;\lfloor\varphi \rightarrow \psi\rfloor \rrbracket \Longrightarrow\lfloor\psi\rfloor\)
    - sledgehammer
    by \(\operatorname{simp}\)
lemma \(N E C:\lfloor\varphi\rfloor \Longrightarrow\lfloor\square \varphi\rfloor\)
    - sledgehammer
    by \(\operatorname{simp}\)
\(\square\) is an S5 modality
lemma \(C\)-1-refl: \(\lfloor\square \varphi \rightarrow \varphi\rfloor\)
    - sledgehammer
    by \(\operatorname{simp}\)
lemma C-1-trans: \(\lfloor\square \varphi \rightarrow(\square(\square \varphi))\rfloor\)
    - sledgehammer
    by \(\operatorname{simp}\)
lemma \(C\)-1-sym: \(\lfloor\varphi \rightarrow(\square(\diamond \varphi))\rfloor\)
    - sledgehammer
    by \(\operatorname{simp}\)
All the axioms of \(\mathbf{E}\) hold - they do not correspond to a property of the betterness relation.
lemma Abs: \(\lfloor\bigcirc<\psi|\varphi>\rightarrow \square \bigcirc<\psi| \varphi\rangle\rfloor\)
    - sledgehammer
    by blast
lemma Nec: \(\lfloor\square \psi \rightarrow \bigcirc<\psi \mid \varphi>\rfloor\)
    - sledgehammer
    by blast
lemma Ext: \(\left\lfloor\square\left(\varphi_{1} \leftrightarrow \varphi_{2}\right) \rightarrow\left(\bigcirc<\psi\left|\varphi_{1}>\leftrightarrow \bigcirc<\psi\right| \varphi_{2}>\right)\right\rfloor\)
    - sledgehammer
```

```
by simp
lemma Id: \O<\varphi|\varphi>\rfloor
    - sledgehammer
    by blast
lemma Sh: \lfloor\bigcirc<\psi|\mp@subsup{\varphi}{1}{}\wedge\mp@subsup{\varphi}{2}{}>>\bigcirc<<(\mp@subsup{\varphi}{2}{}->\psi)|\mp@subsup{\varphi}{1}{}>\rfloor
    - sledgehammer
    by blast
```



```
    - sledgehammer
    by blast
The axioms of the stronger systems do not hold in general.
```

```
lemma \(\lfloor\diamond \varphi \rightarrow(\bigcirc<\psi|\varphi>\rightarrow P<\psi| \varphi>)\rfloor\)
```

lemma $\lfloor\diamond \varphi \rightarrow(\bigcirc<\psi|\varphi>\rightarrow P<\psi| \varphi>)\rfloor$
nitpick [expect=genuine,card $i=3$] - counterexample found
nitpick [expect=genuine,card $i=3$] - counterexample found
oops
oops
lemma $\lfloor(\bigcirc<\psi|\varphi>\wedge \bigcirc<\chi| \varphi>) \rightarrow \bigcirc<\chi \mid \varphi \wedge \psi>\rfloor$
lemma $\lfloor(\bigcirc<\psi|\varphi>\wedge \bigcirc<\chi| \varphi>) \rightarrow \bigcirc<\chi \mid \varphi \wedge \psi>\rfloor$
nitpick [expect=genuine,card $i=3$] - counterexample found
nitpick [expect=genuine,card $i=3$] - counterexample found
oops
oops
lemma $\lfloor\bigcirc<\chi \mid(\varphi \vee \psi)>\rightarrow((\bigcirc<\chi \mid \varphi>) \vee(\bigcirc<\chi \mid \psi>))\rfloor$
lemma $\lfloor\bigcirc<\chi \mid(\varphi \vee \psi)>\rightarrow((\bigcirc<\chi \mid \varphi>) \vee(\bigcirc<\chi \mid \psi>))\rfloor$
nitpick [expect=genuine,card $i=3$] - counterexample found
nitpick [expect=genuine,card $i=3$] - counterexample found
oops

```
    oops
```

Now we identify a number of correspondences under the max rule. Only the direction property $=>$ axiom is verified.

Max-limitedness corresponds to D^{*}, the distinctive axiom of \mathbf{F}. The first implies the second, but not the other around.

```
theorem T8:
    assumes mlimitedness
    shows \(D *:\lfloor\diamond \varphi \rightarrow \bigcirc<\psi|\varphi>\rightarrow P<\psi| \varphi>\rfloor\)
    - sledgehammer
    by (metis assms)
```


lemma

```
    assumes \(D *:\lfloor\diamond \varphi \rightarrow \neg(\bigcirc<\psi|\varphi>\wedge \bigcirc<\neg \psi| \varphi>)\rfloor\)
    shows mlimitedness
    nitpick [expect=genuine,card \(i=3\) ] - counterexample found
    oops
```

Smoothness implies cautious monotony, the distinctive axiom of $\mathbf{F}+(\mathrm{CM})$, but not the other way around.

theorem T9:

assumes msmoothness
shows $C M:\lfloor(\bigcirc<\psi|\varphi>\wedge \bigcirc<\chi| \varphi>) \rightarrow \bigcirc<\chi \mid \varphi \wedge \psi>\rfloor$

- sledgehammer
using assms by force
lemma
assumes $C M:\lfloor(\bigcirc<\psi|\varphi>\wedge \bigcirc<\chi| \varphi>) \rightarrow \bigcirc<\chi \mid \varphi \wedge \psi>\rfloor$
shows msmoothness
nitpick [expect=genuine,card $i=3$] - counterexample found oops

Interval order corresponds to disjunctive rationality, the distinctive axiom of $\mathbf{F}+(\mathrm{DR})$, but not the other way around.

lemma

 assumes reflexivity shows $D R:\lfloor\bigcirc<\chi \mid \varphi \vee \psi>\rightarrow(\bigcirc<\chi|\varphi>\vee \bigcirc<\chi| \psi>)\rfloor$ nitpick [expect=genuine,card $i=3$] - counterexample found oopstheorem T10:
assumes reflexivity and Ferrers
shows $D R:\lfloor\bigcirc<\chi \mid(\varphi \vee \psi)>\rightarrow(\bigcirc<\chi|\varphi>\vee \bigcirc<\chi| \psi>)\rfloor$

- sledgehammer
by (metis assms(1) assms(2))
lemma
assumes $D R:\lfloor\bigcirc<\chi \mid \varphi \vee \psi>\rightarrow(\bigcirc<\chi|\varphi>\vee \bigcirc<\chi| \psi>)\rfloor$
shows reflexivity
nitpick [expect=genuine,card $i=1$] — counterexample found
oops

lemma

assumes $D R:\lfloor\bigcirc<\chi \mid \varphi \vee \psi>\rightarrow(\bigcirc<\chi|\varphi>\vee \bigcirc<\chi| \psi>)\rfloor$
shows Ferrers
nitpick [expect=genuine,card $i=2$] - counterexample found oops

Transitivity and totality jointly correspond to the Spohn axiom (Sp), the distinctive axiom of system \mathbf{G}, but not vice-versa. They also jointly correspond to a principle of transitivity for the betterness relation on formulas, but the converse fails.

lemma

assumes transitivity
shows $S p:\lfloor(P<\psi|\varphi>\wedge \bigcirc<(\psi \rightarrow \chi)| \varphi>) \rightarrow \bigcirc<\chi \mid(\varphi \wedge \psi)>\rfloor$
nitpick [expect=genuine,card $i=3$] - counterexample found
oops

lemma

assumes totality
shows $S p:\lfloor(P<\psi|\varphi>\wedge \bigcirc<(\psi \rightarrow \chi)| \varphi>) \rightarrow \bigcirc<\chi \mid(\varphi \wedge \psi)>\rfloor$
nitpick [expect=genuine, card $i=3$] - counterexample found

oops

theorem T11:
assumes transitivity and totality
shows Sp: $\lfloor(P<\psi|\varphi>\wedge \bigcirc<(\psi \rightarrow \chi)| \varphi>) \rightarrow \bigcirc<\chi \mid(\varphi \wedge \psi)>\rfloor$

- sledgehammer
by (metis assms)
theorem T12:
assumes transitivity and totality
shows transit: $\lfloor(P<\varphi|\varphi \vee \psi>\wedge P<\psi| \psi \vee \chi>) \rightarrow P<\varphi \mid(\varphi \vee \chi)>\rfloor$
- sledgehammer
by (metis assms(1) assms(2))
lemma
assumes $S p:\lfloor(P<\psi|\varphi>\wedge \bigcirc<(\psi \rightarrow \chi)| \varphi>) \rightarrow \bigcirc<\chi \mid(\varphi \wedge \psi)>\rfloor$ shows totality
nitpick [expect=genuine,card $i=1$] - counterexample found oops

lemma

assumes $S p:\lfloor(P<\psi|\varphi>\wedge \bigcirc<(\psi \rightarrow \chi)| \varphi>) \rightarrow \bigcirc<\chi \mid(\varphi \wedge \psi)>\rfloor$ shows transitivity
nitpick [expect=genuine,card $i=2$] - counterexample found oops

3.2 Correspondence - Opt Rule

Opt-limitedness corresponds to D , but not vice-versa.
theorem T13:
assumes olimitedness
shows $D:\lfloor\diamond \varphi \rightarrow \odot<\psi|\varphi>\rightarrow \mathcal{P}<\psi| \varphi\rangle\rfloor$

- sledgehammer
by (simp add: assms)

lemma

assumes $D:\lfloor\diamond \varphi \rightarrow \odot<\psi|\varphi\rangle \rightarrow \mathcal{P}<\psi|\varphi\rangle\rfloor$
shows olimitedness
nitpick [expect=genuine,card $i=1$] - counterexample found oops

Smoothness implies cautious monotony, but not vice-versa.

theorem T14:

assumes osmoothness
shows $C M^{\prime}:\lfloor(\odot<\psi|\varphi>\wedge \odot<\chi| \varphi>) \rightarrow \odot<\chi \mid \varphi \wedge \psi>\rfloor$

- sledgehammer
using assms by force
lemma

```
assumes \(C M:\lfloor(\odot<\psi|\varphi>\wedge \odot<\chi| \varphi>) \rightarrow \odot<\chi \mid \varphi \wedge \psi>\rfloor\)
shows osmoothness
nitpick [expect=genuine, card \(i=1\) ] — counterexample found
oops
```

Transitivity (on worlds) implies Sp and transitivity (on formulas), but not vice-versa.

```
theorem T15:
    assumes transitivity
    shows Sp
    - sledgehammer
    by (metis assms)
theorem T16:
    assumes transitivity
    shows Trans': \lfloor( \mathcal{P}<\varphi||\vee\psi> ^\mathcal{P}<\psi|\psi\vee\xi> ) ->\mathcal{P}<\varphi|\varphi\vee\xi>\rfloor
    - sledgehammer
    by (metis assms)
lemma
    assumes Sp: \lfloor(\mathcal{P}<\psi|\varphi>^\odot<(\psi->\chi)|\varphi> ) }->\odot<\chi|(\varphi\wedge\psi)>
    assumes Trans: \lfloor( \mathcal{P}<\varphi||\varphi\vee\psi>\wedge\mathcal{P}<\psi|\psi\vee\xi>) }->\mathcal{P}<\varphi|\varphi\vee\xi>
    shows transitivity
    nitpick [expect=genuine,card i=2] - counterexample found
    oops
```

Interval order implies disjunctive rationality, but not vice-versa.

lemma

 assumes reflexivity
 shows \(D R^{\prime}:\lfloor\odot<\chi \mid \varphi \vee \psi>\rightarrow(\odot<\chi|\varphi>\vee \odot<\chi| \psi>)\rfloor\)
 nitpick [expect=genuine,card \(i=3\)] — counterexample found
 oops
 theorem T17:
assumes reflexivity and Ferrers
shows $D R^{\prime}:\lfloor\odot<\chi \mid \varphi \vee \psi>\rightarrow(\odot<\chi|\varphi>\vee \odot<\chi| \psi>)\rfloor$
- sledgehammer
by (metis assms(2))
lemma
assumes $D R:\lfloor\odot<\chi \mid \varphi \vee \psi>\rightarrow(\odot<\chi|\varphi>\vee \odot<\chi| \psi>)\rfloor$
shows reflexivity
nitpick [expect=genuine,card $i=1$] - counterexample found
oops
lemma
assumes $D R:\lfloor\odot<\chi \mid \varphi \vee \psi>\rightarrow(\odot<\chi|\varphi>\vee \odot<\chi| \psi>)\rfloor$
shows Ferrers
nitpick [expect=genuine,card $i=2$] - counterexample found

oops

3.3 Correspondence - Lewis' rule

We have deontic explosion under the max rule

```
theorem \(D E X:\lfloor(\diamond \varphi \wedge \bigcirc<\psi|\varphi>\wedge \bigcirc<\neg \psi| \varphi>) \rightarrow \bigcirc<\chi \mid \varphi>\rfloor\)
    - sledgehammer
    by blast
```

But no deontic explosion under Lewis' rule.

```
lemma \(D E X:\lfloor(\diamond \varphi \wedge \circ<\psi|\varphi>\wedge \circ<\neg \psi| \varphi>) \rightarrow \circ<\chi \mid \varphi>\rfloor\)
    nitpick [expect=genuine, card \(i=2\) ] - counterexample found
    oops
```

The three rules are equivalent when the betterness relation meets all the standard properties.
theorem T18:
assumes mlimitedness and transitivity and totality
shows $\lfloor 0<\psi|\varphi>\leftrightarrow \odot<\psi| \varphi>\rfloor$

- sledgehammer
by (smt (z3) assms)
theorem T19:
assumes mlimitedness and transitivity and totality
shows $\lfloor 0<\psi|\varphi\rangle \leftrightarrow \bigcirc\langle\psi \mid \varphi\rangle\rfloor$
- sledgehammer
by (smt (z3) assms)
These are the axioms of \mathbf{E} that do not call for a property

```
theorem Abs': \(\lfloor 0<\psi|\varphi>\rightarrow \square 0<\psi| \varphi>\rfloor\)
    - sledgehammer
    by auto
theorem Nec': \(\lfloor\square \psi \rightarrow 0<\psi|\varphi\rangle\rfloor\)
    - sledgehammer
    by auto
theorem Ext': \(\left\lfloor\square\left(\varphi_{1} \leftrightarrow \varphi_{2}\right) \rightarrow\left(0<\psi\left|\varphi_{1}>\leftrightarrow 0<\psi\right| \varphi_{2}>\right)\right\rfloor\)
    - sledgehammer
    by auto
theorem \(I d^{\prime}:\lfloor 0<\varphi \mid \varphi>\rfloor\)
    - sledgehammer
    by auto
theorem \(S h^{\prime}:\left\lfloor 0<\psi\left|\varphi_{1} \wedge \varphi_{2}>\rightarrow 0<\left(\varphi_{2} \rightarrow \psi\right)\right| \varphi_{1}>\right\rfloor\)
    - sledgehammer
    by auto
```

One axiom of \mathbf{E}, and the distinctive axioms of its extensions are invalidated in the absence of a property of the betterness relation.

```
lemma }D:\lfloor\diamond\varphi->(0<\psi|\varphi\rangle->\int\langle\psi|\varphi>)
    nitpick [expect=genuine,card i=2] - counterexample found
    oops
lemma Sp: \lfloor( \int<\psi|\varphi> ^०< (\psi->\chi)|\varphi>) ->0<\chi|(\varphi\wedge\psi)>\rfloor
    nitpick [expect=genuine,card i=3] - counterexample found
    oops
lemma COK:\lfloor0<(\mp@subsup{\psi}{1}{}->\mp@subsup{\psi}{2}{})|\varphi>->(0<\mp@subsup{\psi}{1}{}|\varphi>->0<\mp@subsup{\psi}{2}{}|\varphi>)\rfloor
    nitpick [expect=genuine,card i=2] - counterexample found
    oops
lemma CM: \lfloor(0<\psi|\varphi>\wedge0<\chi|\varphi>)->0<\chi|\varphi\wedge\psi>\rfloor
    nitpick [expect=genuine,card i=2] - counterexample found
    oops
```

Totality implies the distinctive axiom of \mathbf{F}, but not vice-versa.

```
theorem T20:
    assumes totality
    shows \(\left\lfloor\diamond \varphi \rightarrow\left(0\langle\psi \mid \varphi\rangle \rightarrow \int\langle\psi \mid \varphi\rangle\right)\right\rfloor\)
    - sledgehammer
    using assms by blast
lemma
    assumes \(\left\lfloor\diamond \varphi \rightarrow\left(0\langle\psi \mid \varphi\rangle \rightarrow \int\langle\psi \mid \varphi\rangle\right)\right\rfloor\)
    shows totality
    nitpick [expect=genuine,card \(i=3\) ] - counterexample found
    oops
```

Transitivity implies the distinctive axioms of \mathbf{G}, but not vice-versa.
theorem T21:
assumes transitivity
shows $S p^{\prime \prime}:\left\lfloor\left(\int<\psi|\varphi\rangle \wedge 0<(\psi \rightarrow \chi) \mid \varphi>\right) \rightarrow 0<\chi \mid(\varphi \wedge \psi)>\right\rfloor$
- sledgehammer
using assms by blast
theorem T22:
assumes transitivity
shows $\operatorname{Tr}^{\prime \prime}:\left\lfloor\left(\int\langle\varphi| \varphi \vee \psi>\wedge \int\langle\psi| \psi \vee \chi>\right) \rightarrow \int\langle\varphi| \varphi \vee \chi>\right\rfloor$
- sledgehammer
using assms by blast
lemma
assumes $S p^{\prime \prime}:\left\lfloor\left(\int\langle\psi \mid \varphi\rangle \wedge \circ<(\psi \rightarrow \chi) \mid \varphi>\right) \rightarrow 0<\chi \mid(\varphi \wedge \psi)>\right\rfloor$
shows transitivity
nitpick - counterexample found

oops

```
lemma
    assumes Tr'\prime: \lfloor(\int<\varphi|\varphi\vee\psi>^\<<\psi|\psi\vee\chi>)->\int<\varphi|\varphi\vee\chi>\rfloor
    shows transitivity
    nitpick - counterexample found
    oops
lemma
    assumes transitivity
```



```
    nitpick [expect=genuine,card i=2] - counterexample found
    oops
lemma
assumes totality
```



```
nitpick [expect=genuine,card i=3] - counterexample found
oops
```

Transitivity and totality imply an axiom of \mathbf{E} and the distinctive axiom of $\mathbf{F}+\mathrm{CM}$, but not vice-versa.
theorem T23:
assumes transitivity and totality
shows COK $^{\prime}:\left\lfloor 0<\left(\psi_{1} \rightarrow \psi_{2}\right) \mid \varphi>\rightarrow\left(0<\psi_{1}\left|\varphi>\rightarrow 0<\psi_{2}\right| \varphi>\right)\right\rfloor$

- sledgehammer
by (smt (verit, ccfv-SIG) assms(1) assms(2))

lemma

assumes COK $^{\prime}:\left\lfloor 0<\left(\psi_{1} \rightarrow \psi_{2}\right) \mid \varphi>\rightarrow\left(0<\psi_{1}\left|\varphi>\rightarrow 0<\psi_{2}\right| \varphi>\right)\right\rfloor$
shows transitivity and totality
nitpick [expect=genuine,card $i=3$] - counterexample found
oops
theorem T24:
assumes transitivity and totality
shows $C M^{\prime \prime}:\lfloor(\circ<\psi|\varphi>\wedge \circ<\chi| \varphi>) \rightarrow 0<\chi \mid \varphi \wedge \psi>\rfloor$

- sledgehammer
by (metis assms)
lemma
assumes $C M^{\prime \prime}:\lfloor(0<\psi|\varphi>\wedge 0<\chi| \varphi>) \rightarrow 0<\chi \mid \varphi \wedge \psi>\rfloor$
shows transitivity and totality
nitpick [expect=genuine,card $i=3$] - counterexample found
oops
Under the opt rule transitivity alone imply Sp and Trans, but not vice-versa.
theorem T25:
assumes transitivity

```
shows \lfloor(\mathcal{P}<\psi|\varphi> ^\odot< (\psi->\chi)|\varphi>) ->\odot<\chi|(\varphi\wedge\psi)>\rfloor
    - sledgehammer
    by (metis assms)
lemma
    assumes transitivity
    shows \lfloor(\mathcal{P}<\varphi|\varphi\vee\psi>\wedge\mathcal{P}<\xi|\psi\vee\xi>)->\mathcal{P}<\xi|\varphi\vee\xi>\rfloor
    nitpick [expect=genuine,card i=2] - counterexample found
    oops
lemma
    assumes Sp: \lfloor( \mathcal{P}<\psi|\varphi>\wedge\odot< (\psi->\chi)|\varphi>) ->\odot<\chi|(\varphi\wedge\psi)>\rfloor
        and Trans: \lfloor(\mathcal{P}<\varphi|\varphi\vee\psi>\wedge\mathcal{P}<\xi|\psi\vee\xi>)}->\mathcal{P}<\xi|\varphi\vee\xi>
    shows transitivity
    nitpick [expect=genuine,card i=2] - counterexample found
    oops
end
```


4 The Mere Addition Paradox: Opt Rule

This section studies the mere addition paradox [3], when assuming the opt rule. The mere addition paradox is a smaller version of Parfit's repugnant conclusion.

We assess the well-known solution advocated by e.g. Temkin [4] among others, which consists in abandoning the transitivity of the betterness relation.

```
theory mere-addition-opt
    imports DDLcube
```

begin

```
consts A::\sigma Aplus::\sigma B::\sigma
```

Here is the formalization of the paradox.

axiomatization where

- A is striclty better than B

PO: $\lfloor(\neg \odot<\neg A|A \vee B>\wedge \odot<\neg B| A \vee B>)\rfloor$ and

- Aplus is at least as good as A

P1: $\lfloor\neg \odot<\neg$ Aplus $\mid A \vee$ Aplus $>\rfloor$ and

- B is strictly better than Aplus

P2: $\lfloor(\neg \odot<\neg B \mid$ Aplus $\vee B>\wedge \odot<\neg$ Aplus \mid Aplus $\vee B>)\rfloor$
Sledgehammer finds P0-P2 inconsistent given transitivity of the betterness relation in the models:
theorem T0:
assumes transitivity

```
shows False
- sledgehammer
by (metis P0 P1 P2 assms)
```

Nitpick shows consistency in the absence of transitivity:

```
theorem T1:
    True
    nitpick [satisfy,expect=genuine,card i=3] - model found
    oops
```

Now we consider what happens when transitivity is weakened suitably rather than abandoned wholesale. We show that this less radical solution is also possible, but that not all candidate weakenings are effective.

Sledgehammer confirms inconsistency in the presence of the interval order condition:

```
theorem T2:
    assumes reflexivity Ferrers
    shows False
    - sledgehammer
    by (metis P0 P1 P2 assms(2))
```

Nitpick shows consistency if transitivity is weakened into acyclicity or quasitransitivity:
theorem T3:
assumes loopfree
shows True
nitpick [satisfy,expect=genuine, card=3] - model found
oops
theorem T4:
assumes Quasitransit
shows True
nitpick [satisfy,expect=genuine, card=4] - model found
oops
end

5 The Mere Addition Paradox: Lewis' rule

We run the same queries as before, but using Lewis' rule. The outcome is pretty much the same. Thus, the choice between the opt rule and Lewis' rule does not make a difference.

```
theory mere-addition-lewis
```

 imports DDLcube
 begin
consts $a:: \sigma$ aplus $:: \sigma$ b $:: \sigma$

axiomatization where

- A is striclty better than B

PPPO: $\lfloor(\neg 0<\neg a|a \vee b>\wedge \circ<\neg b| a \vee b>)\rfloor$ and

- Aplus is at least as good as A

PPP1: \ᄀ0< ᄀaplus $\mid a \vee$ aplus $>\rfloor$ and
— B is strictly better than Aplus
PPP2: $\lfloor(\neg 0<\neg b|a p l u s \vee b>\wedge \circ<\neg a p l u s| a p l u s \vee b>)\rfloor$
Sledgehammer finds PPP0-PPP2 inconsistent given transitivity of the betterness relation in the models:
theorem T0:
assumes transitivity
shows False

- sledgehammer
by (metis PPP0 PPP1 PPP2 assms)
Nitpick shows consistency in the absence of transitivity:

```
lemma T1:
    True
    nitpick [satisfy,expect=genuine,card \(i=3\), show-all \(]\) - model found
    oops
```

Sledgehammer confirms inconsistency in the presence of the interval order condition:

```
theorem T2:
    assumes reflexivity Ferrers
    shows False
    - sledgehammer
    by (metis PPP0 PPP1 PPP2 assms(1) assms(2))
```

Nitpick shows consistency if transitivity is weakened into acyclicity or quasitransitivity:
theorem T3:
assumes loopfree
shows True
nitpick [satisfy,expect=genuine, card=3] - model found oops
theorem T4:
assumes Quasitransit
shows True
nitpick [satisfy,expect=genuine,card=4] - model found oops
end

6 The Mere Addition Paradox: Max Rule

There are surprising results with the max rule. Transitivity alone generates an inconsistencty only when combined with totality. What is more, given transitivity (or quasi-transitivity) alone, the formulas turn out to be all satisfiable in an infinite model.
theory mere-addition-max
imports DDLcube
begin
consts $A:: \sigma$ Aplus:: σ B:: σ i1 ::i i2 $:: i$ i3 ::i $i 4:: i ~ i 5:: i ~ i 6:: i ~ i 7:: i ~ i 8:: i$

axiomatization where

- A is striclty better than B

PP0: $\lfloor(\neg \bigcirc<\neg A|A \vee B>\wedge \bigcirc<\neg B| A \vee B>)\rfloor$ and

- Aplus is at least as good as A

PP1: $\lfloor\neg \bigcirc<\neg$ Aplus $\mid A \vee$ Aplus $>\rfloor$ and
-B is strictly better than Aplus
PP2: $\lfloor(\neg \bigcirc<\neg B \mid$ Aplus $\vee B>\wedge \bigcirc<\neg$ Aplus \mid Aplus $\vee B>)\rfloor$
Nitpick finds no finite model when the betterness relation is assumed to be transitive:
theorem T0:
assumes transitivity
shows True
nitpick [satisfy,expect=none] - no model found
oops
Nitpick shows consistency in the absence of transitivity:

```
theorem T1:
    shows True
    nitpick [satisfy,expect=genuine,card \(i=3\) ] - model found
    oops
```

Sledgehammer confirms inconsistency in the presence of the interval order condition:
theorem T2:
assumes reflexivity and Ferrers
shows False

- sledgehammer
by (metis PP0 PP1 PP2 assms(1) assms(2))
Nitpick shows consistency if transitivity is weakened into acyclicity:
theorem T3:
assumes loopfree
shows True

```
nitpick [satisfy,expect \(=\) genuine, card \(=3\) ] - model found
```

oops

If transitivity or quasi-transitivity is assumed, Nitpick shows inconsistency assuming a finite model of cardinality (up to) seven (if we provide the exact dependencies)-for higher cardinalities it returns a time out (depending on the computer it may prove falsity also for cardinality eight, etc.:

```
theorem T4:
    assumes
        transitivity and
        OnlyOnes: \(\forall y . y=i 1 \vee y=i 2 \vee y=i 3 \vee y=i 4 \vee y=i 5 \vee y=i 6 \vee y=i 7\)
    shows False
    using assfactor-def PP0 PP1 PP2 assms
- sledgehammer()
- proof found by Sledgehammer, but reconstruction fails
oops
theorem T5:
    assumes
        Quasitransit and
        OnlyOnes: \(\forall y . y=i 1 \vee y=i 2 \vee y=i 3 \vee y=i 4 \vee y=i 5 \vee y=i 6 \vee y=i 7\)
    shows False
using assfactor-def PP0 PP1 PP2 assms
- sledgehammer()
- proof found by Sledgehammer, but reconstruction fails
oops
```

Infinity is encoded as follows: there is a surjective mapping G from domain i to a proper subset M of domain i. Testing whether infinity holds in general Nitpick finds a countermodel:
abbreviation infinity $\equiv \exists M .(\exists z:: i . \neg(M z) \wedge(\exists G .(\forall y:: i .(\exists x .(M x) \wedge(G x)$ $=y)$))
lemma infinity nitpick[expect=genuine] oops - countermodel found
Now we run the same query under the assumption of (quasi-)transitivity: we do not get any finite countermodel reported anymore:

lemma

assumes transitivity
shows infinity

- nitpick - no countermodel found anymore; nitpicks runs out of time
- sledgehammer - but the provers are still too weak to prove it automatically;
see [2] for a pen and paper proof
oops
lemma
assumes Quasitransit
shows infinity
- nitpick - no countermodel found anymore; nitpicks runs out of time - sledgehammer - but the provers are still too weak to prove it automatically; see [2] for a pen and paper proof

oops

Transitivity and totality together give inconsistency:
theorem T0':
assumes transitivity and totality
shows False

- sledgehammer
by (metis PP0 PP1 PP2 assms(1) assms(2))
end

7 Conclusion

In this document we presented the Isabelle/HOL dataset associated with [2]. We described our shallow semantic embedding of Åqvist's dyadic deontic $\operatorname{logic} \mathbf{E}$ and its extensions. We showcased two key uses of the framework: first, for meta-reasoning about the logic, particularly for verifying deontic correspondences similar to modal logic; second, for assessing ethical arguments, exemplified by encoding Parfit's mere addition paradox, a smaller version of his so-called repugnant conclusion.

References

[1] C. Benzmüller, A. Farjami, and X. Parent. Åqvist's dyadic deontic logic E in HOL. Journal of Applied Logics - IfCoLoG Journal of Logics and their Applications (Special Issue: Reasoning for Legal AI), 6(5):733-755, 2019.
[2] X. Parent and C. Benzmüller. Conditional normative reasoning as a fragment of HOL. Submitted for journal publication, 2024. minor revisions, revision submitted, preprint: https://arxiv.org/abs/2308.10686.
[3] D. Parfit. Reasons and Persons. Oxford University Press, 1984.
[4] L. S. Temkin. Intransitivity and the mere addition paradox. Philosophy and Public Affairs, 16(2):138-187, 1987.

