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Abstract

The concurrent refinement algebra developed here is designed to provide
a foundation for rely/guarantee reasoning about concurrent programs. The
algebra builds on a complete lattice of commands by providing sequential
composition, parallel composition and a novel weak conjunction operator.
The weak conjunction operator coincides with the lattice supremum provid-
ing its arguments are non-aborting, but aborts if either of its arguments do.
Weak conjunction provides an abstract version of a guarantee condition as a
guarantee process. We distinguish between models that distribute sequential
composition over non-deterministic choice from the left (referred to as being
conjunctive in the refinement calculus literature) and those that don’t. Least
and greatest fixed points of monotone functions are provided to allow recur-
sion and iteration operators to be added to the language. Additional iteration
laws are available for conjunctive models. The rely quotient of processes
c and 17 is the process that, if executed in parallel with ¢ implements c. It
represents an abstract version of a rely condition generalised to a process.
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1 Overview

The theories provided here were developed in order to provide support for rely/guarantee
concurrency [6, 5]. The theories provide a quite general concurrent refinement al-
gebra that builds on a complete lattice of commands by adding sequential and
parallel composition operators as well as recursion. A novel weak conjunction
operator is also added as this allows one to build more general specifications. The
theories are based on the paper by Hayes [3], however there are some differences

that have been introduced to correct and simplify the algebra and make it more
widely applicable. See the appendix for a summary of the differences.

The basis of the algebra is a complete lattice of commands (Section 2). Sections 3,
4 and 5 develop laws for sequential composition, parallel composition and weak
conjunction, respectively, based on the refinement lattice. Section 6 brings the
above theories together. Section 7 adds least and greatest fixed points and there
associated laws, which allows finite, possibly infinite and strictly infinite iteration
operators to be defined in Section 8 in terms of fixed points.

The above theories do not assume that sequential composition is conjunctive. Sec-
tion 9 adds this assumption and derives a further set of laws for sequential com-
position and iterations.

Section 12 builds on the general theory to provide a rely quotient operator that
can be used to provide a general rely/guarantee framework for reasoning about
concurrent programs.

2 Refinement Lattice

theory Refinement-Lattice
imports
Main
HOL—Library.Lattice-Syntax
begin

The underlying lattice of commands is complete and distributive. We follow the
refinement calculus tradition so that 1 is non-deterministic choice and ¢ C d
means c is refined (or implemented) by d.

declare [[show-sorts]]

Remove existing notation for quotient as it interferes with the rely quotient

no-notation Equiv-Relations.quotient (infixl '/’/ 90)

class refinement-lattice = complete-distrib-lattice



begin

The refinement lattice infimum corresponds to non-deterministic choice for com-
mands.

abbreviation
refine :: 'a = 'a = bool (infix C 50)
where

cCd=less-eqcd

abbreviation

refine-strict :: 'a = 'a = bool (infix C 50)
where

cCd=lesscd

Non-deterministic choice is monotonic in both arguments

lemma inf-mono-left: a Cb=—aMNcC blc
using inf-mono by auto

lemma inf-mono-right: cCd =—allcCalld
using inf-mono by auto

Binary choice is a special case of choice over a set.

lemma Inf2-inf: [ |[{fx|x.x€{c,d}} =fcNfd
proof —
have { fx | x.x € {c,d}} = {fc, fd} by blast
then have [ |{ fx |x.x € {c,d}} =[]{fc, fd} by simp
also have ... = fc M fd by simp
finally show ’thesis .
qed

Helper lemma for choice over indexed set.

lemma INF-Inf: ([ |x€X.fx) = ([ 1{fx |x. x € X})
by (simp add: Setcompr-eq-image)

lemma (in —) INF-absorb-args: ([|ij. (f::nat = 'c::complete-lattice) (i + j)) = ([ k. f
K
proof (rule order-class.order.antisym)
show Tk £%) < (Tij.f (i +))
by (simp add: complete-lattice-class.INF-lower complete-lattice-class.le-INF-iff )
next
have A\k. Jij. f (i +j) <fk
by (metis add.left-neutral order-class.eq-iff')
then have A\k. 3i. ([).f (i +Jj)) <fk



by (meson UNIV-I complete-lattice-class INF-lower2)
then show ([ij.f (i +J)) < ([k. fk)
by (simp add: complete-lattice-class INF-mono)
qed

lemma (in —) nested-Collect: {fy |y.y € {gx|x. x e X}} ={f (g x) [x. x € X}
by blast

A transition lemma for INF distributivity properties, going from Inf to INF, qual-
ified version followed by a straightforward one.

lemma Inf-distrib-INF-qual:
fixesf::‘a='a="a
assumes qual: P {d x |x. x € X}
assumes f-Inf-distrib: N\c D. PD = fc ([| D) =[] {fcd|d.deD}
shows fc ([ |x€X.dx) = ([ |x€X. fc (dx))

proof —
have fc ([ |x€X. dx) =fc ([ ]{d x |x. x € X}) by (simp add: INF-Inf)
also have ... = ([ |{fcdx |dx. dx € {dx | x. x € X}}) by (simp add: qual f-Inf-distrib)
also have ... = ([ |{f ¢ (d x) |x. x € X}) by (simp only: nested-Collect)
also have ... = ([ |x€X. fc (d x)) by (simp add: INF-Inf)
finally show ?thesis .

qed

lemma Inf-distrib-INF:
fixesf::'a='a="a
assumes f-Inf-distrib: \c¢ D.fc ([| D) =[] {fcd|d.deD}
shows fc ([ |x€X.dx) = ([|x€X. fc (dx))
by (simp add: Setcompr-eq-image f-Inf-distrib image-comp)

end

lemmas refine-trans = order.trans

More transitivity rules to make calculational reasoning smoother

declare ord-eq-le-trans(trans]
declare ord-le-eq-trans(trans]
declare dual-order.trans(trans|

abbreviation
dist-over-sup :: (‘a::refinement-lattice = 'a) = bool
where



dist-over-sup F = (VY X . F (|| X) = (| Jx€X. F (x)))

abbreviation

dist-over-inf :: (‘a::refinement-lattice = 'a) = bool
where

dist-over-inf F= (Y X . F ([ X) = ([ |x€X. F (x)))

end

3 Sequential Operator

theory Sequential
imports Refinement-Lattice
begin

3.1 Basic sequential

[T L)

The sequential composition operator ;” is associative and has identity nil but it is
not commutative. It has | as a left annihilator.

locale seq =
fixes seq :: 'a::refinement-lattice = 'a = 'a (infixl ; 90)
assumes seq-bot [simp|: L ;c= 1

locale nil =
fixes nil :: 'a::refinement-lattice (nil)
The monoid axioms imply “;” is associative and has identity nil. Abort is a left
annihilator of sequential composition.
locale sequential = seq + nil + seq: monoid seq nil
begin

declare seq.assoc |algebra-simps, field-simps]

lemmas seq-assoc = seq.assoc
lemmas seq-nil-right = seq.right-neutral
lemmas seqg-nil-left = seq.left-neutral

end



3.2 Distributed sequential

Sequential composition distributes across arbitrary infima from the right but only
across the binary (finite) infima from the left and hence it is monotonic in both
arguments. We consider left distribution first. Note that Section 9 considers the
case in which the weak-seq-inf-distrib axiom is strengthened to an equality.

locale seq-distrib-left = sequential +
assumes weak-seq-inf-distrib:
(c::'a::refinement-lattice);(dy M dy) C (c;do Me;dy)
begin

Left distribution implies sequential composition is monotonic is its right argument

lemma seg-mono-right: co Ccy = d;coEd;cy
by (metis inf .absorb-iff2 le-inf-iff weak-seq-inf-distrib)

lemma seq-bot-right [simp]: ¢; 1. C ¢
by (metis bot.extremum seq.right-neutral seq-mono-right)

end

locale seq-distrib-right = sequential +
assumes Inf-seq-distrib:
([ C); d = ([](c::"a::refinement-lattice)€C. c ; d)
begin

lemma INF-seq-distrib: ([ |c€C.fc);d = ([|ceC.fc;d)
using Inf-seq-distrib by (auto simp add: image-comp)

lemma inf-seq-distrib: (co Mc1) ;d = (co;dMecy ;d)
proof —
have (co M c1) ;d = ([] {co, c1}) ; d by simp
also have ... = ([ |c€{co, c1}. ¢ ; d) by (fact Inf-seq-distrib)
also have ... = (¢o ; d) M (c1 ; d) by simp
finally show ’thesis .
qed

lemma seg-mono-left: co Ccy = co;dCcy;d
by (metis inf .absorb-iff2 inf-seq-distrib)

lemma seq-top [simp|: T ;¢=T
proof —
have T ;c= ([lae{}.a;¢)



by (metis Inf-empty Inf-seq-distrib)
thus ?thesis
by simp
qed

primrec seq-power :: 'a = nat = 'a (infixr " 80) where
seq-power-0: a " 0 = nil
| seq-power-Suc: a’"Sucn=a; (a’"n)

notation (/atex output)
seq-power ((-) [1000] 1000)

notation (HTML output)
seq-power ((-") [1000] 1000)

lemma seq-power-front: (a*"n);a=a; (a’"n)
by (induct n, simp-all add: seq-assoc)

lemma seq-power-split-less: i < j=—= (b’"j) = (b3"i) ; (b*" (j —i))
proof (induct j arbitrary: i type: nat)
case 0
thus ?case by simp
next
case (Suc j)
have b " Sucj=0b; (b i); (b (j—1i))
using Suc.hyps Suc.prems less-Suc-eq seq-assoc by auto
alsohave ... = (b'"i) ;b ; (b (j — i)) by (simp add: seq-power-front)
alsohave ... = (b:"i) ; (b*" (Sucj —i))
using Suc.prems Suc-diff-le seq-assoc by force
finally show ’case .
qed

end

locale seq-distrib = seq-distrib-right 4 seq-distrib-left
begin

lemma seg-mono: c; C di = c3 E do = c1;c0 E dy;ds
using seq-mono-left seq-mono-right by (metis inf .orderE le-infl2)

end



end

4 Parallel Operator

theory Parallel
imports Refinement-Lattice
begin

4.1 Basic parallel operator

The parallel operator is associative, commutative and has unit skip and has as an
annihilator the lattice bottom.

locale skip =

fixes skip :: 'a::refinement-lattice (skip)

locale par =
fixes par :: 'a::refinement-lattice = 'a = 'a (infixl || 75)
assumes abort-par: L ||c= L1

locale parallel = par + skip + par: comm-monoid par skip
begin

lemmas [algebra-simps, field-simps| =
par.assoc

par.commute

par.left-commute

lemmas par-assoc = par.assoc
lemmas par-commute = par.commute
lemmas par-skip = par.right-neutral

lemmas par-skip-left = par.left-neutral

end

4.2 Distributed parallel

The parallel operator distributes across arbitrary non-empty infima.

locale par-distrib = parallel +
assumes par-Inf-distrib: D # {} = ¢ || ([ | D) = ([ |d€D. ¢ || d)

begin
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lemma Inf-par-distrib: D # {} = ([ | D) || ¢ = ([ ]de€D. d || ¢)
using par-Inf-distrib par-commute by simp

lemma par-INF-distrib: X # {} = c || ([ |x€X. d x) = ([ |x€X. ¢ || d x)
using par-Inf-distrib by (auto simp add: image-comp)

lemma INF-par-distrib: X # {} = ([ |x€X.dx) || c = ([]x€X.dx || ¢)
using par-INF-distrib par-commute by (metis (mono-tags, lifting) INF-cong)

lemma INF-INF-par-distrib:
X#{ =Y #{} = ([1xeX. cx) [ ([1TyeY. dy) = ([1xeX.[]yeY.cx || dy)
proof —
assume nonempty-X: X # {}
assume nonempty-Y: Y # {}

have ([ [x€X.cx) || ([1yeY.dy) = ([|x€X. cx || ([|y€Y.dy))
using INF-par-distrib by (metis nonempty-X)

also have ... = ([ |xeX.[|y€Y. cx || dy) using par-INF-distrib by (metis nonempty-Y )
thus ?thesis by (simp add: calculation)
qed

lemma inf-par-distrib: (co Mc1) || d = (co || d) M (c1 || d)

proof —
have (coMc1) || d=([] {co, c1}) || d by simp
also have ... = ([ | c € {co, c1}. ¢ || d) using Inf-par-distrib by (meson insert-not-empty)
also have ... = ¢¢ || d M ¢y || d by simp
finally show ?thesis .
qed

lemma inf-par-distrib2: d || (coMc1) = (d || co) M (d || ¢1)
using inf-par-distrib par-commute by auto

lemma inf-par-product: (aMb) || (cMd)=(al|c)N(a|d)T(b|c)n(b]d)
by (simp add: inf-commute inf-par-distrib inf-par-distrib2 inf-sup-aci(3))

lemma par-mono: ¢y CTdy = co Cdy = c1 || ca Cdy || da
by (metis inf .orderE le-inf-iff order-refl inf-par-distrib par-commute)

end
end
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5 Weak Conjunction Operator

theory Conjunction
imports Refinement-Lattice
begin

The weak conjunction operator M is similar to least upper bound (L!) but is abort
strict, i.e. the lattice bottom is an annihilator: ¢ m L = L. It has identity the
command chaos that allows any non-aborting behaviour.

locale chaos =
fixes chaos :: 'a::refinement-lattice  (chaos)

locale conj =
fixes conj :: 'a::refinement-lattice = 'a = 'a (infixl M 80)
assumes conj-bot-right: cm L = |

Conjunction forms an idempotent, commutative monoid (i.e. a semi-lattice), with
identity chaos.

locale conjunction = conj + chaos + conj: semilattice-neutr conj chaos

begin

lemmas [algebra-simps, field-simps] =
conj.assoc
conj.commute
conj.left-commute

lemmas conj-assoc = conj.assoc

lemmas conj-commute = conj.commute
lemmas conj-idem = conj.idem

lemmas conj-chaos = conj.right-neutral
lemmas conj-chaos-left = conj.left-neutral

lemma conj-bot-left [simp]: L mc= L
using conj-bot-right local.conj-commute by fastforce

lemma conj-not-bot:amb+# | = a# L Nb# L
using conj-bot-right by auto

lemma conj-distribl: ¢ M (do Mdy) = (c Mdp) M (¢ M dy)
by (metis conj-assoc conj-commute conj-idem)

end

12



5.1 Distributed weak conjunction

The weak conjunction operator distributes across arbitrary non-empty infima.

locale conj-distrib = conjunction +
assumes Inf-conj-distrib: D # {} = ([ | D) mc¢ = ([ |deD.d M c)

begin

lemma conj-Inf-distrib: D # {} = cm ([ | D) = ([ |d€D. cmd)
using Inf-conj-distrib conj-commute by auto

lemma inf-conj-distrib: (co Mc1) Md = (coMmd) M (c1 Md)
proof —
have (coMc1) Md = ([] {co, c1}) Md by simp
also have ... = ([ | ¢ € {co, c1}. ¢ M d) by (rule Inf-conj-distrib, simp)
also have ... = (co M d) M (c1 M d) by simp
finally show ’thesis .
qed

lemma inf-conj-product: (aMb) M (cMd)=(amc)N(amd)M(bmc) M (bmd)
by (metis inf-conj-distrib conj-commute inf-assoc)

lemma conj-mono: co Edy = ¢y Edy = coMcy E dy Md;
by (metis inf .absorb-iff1 inf-conj-product inf-right-idem)

lemma conj-mono-left: co Cc1 = coMdEc1 mMd
by (simp add: conj-mono)

lemma conj-mono-right: co Cc;1 = dMco EdMcy
by (simp add: conj-mono)

lemma conj-refine: coCd=—c1 Cd=—coMc1 Cd
by (metis conj-idem conj-mono)

lemma refine-to-conj: cCdy = cC di = cC dypMd;
by (metis conj-idem conj-mono)

lemma conjoin-non-aborting: chaos ©T c =—=d C d M c
by (metis conj-mono order.refl conj-chaos)

lemma conjunction-sup: c md C ¢ LU d
by (simp add: conj-refine)

13



lemma conjunction-sup-nonaborting:
assumes chaos C ¢ and chaos C d
showscmd=clUd
proof (rule antisym)
show ¢ U d C ¢ M d using assms(1) assms(2) conjoin-non-aborting local.conj-commute
by fastforce
next
show ¢ M d C ¢ U d by (metis conjunction-sup)
qed

lemma conjoin-top: chaosCc=—=cm T =T
by (simp add: conjunction-sup-nonaborting)

end

end

6 Concurrent Refinement Algebra

This theory brings together the three main operators: sequential composition, par-
allel composition and conjunction, as well as the iteration operators.

theory CRA
imports
Sequential
Conjunction
Parallel
begin

Locale sequential-parallel brings together the sequential and parallel operators and
relates their identities.

locale sequential-parallel = seq-distrib + par-distrib +
assumes nil-par-nil: nil || nil C nil
and skip-nil: skip C nil
and skip-skip: skip C skip;skip

begin

lemma nil-absorb: nil || nil = nil using nil-par-nil skip-nil par-skip
by (metis inf .absorb-iff2 inf .orderE inf-par-distrib2)

lemma skip-absorb [simp): skip;skip = skip
by (metis antisym seq-mono-right seq-nil-right skip-skip skip-nil)

14



end

Locale conjunction-parallel brings together the weak conjunction and parallel op-
erators and relates their identities. It also introduces the interchange axiom for
conjunction and parallel.

locale conjunction-parallel = conj-distrib + par-distrib +

assumes chaos-par-top: T C chaos || T

assumes chaos-par-chaos: chaos C chaos || chaos

assumes parallel-interchange: (co || c1) M (do || d1) C (co Mdop) || (c1 M dy)
begin

lemma chaos-skip: chaos C skip

proof —
have chaos = (chaos || skip) @ (skip || chaos) by simp
then have . .. C (chaos M skip) || (skip M chaos) using parallel-interchange by blast
thus ?thesis by auto

qed

lemma chaos-par-chaos-eq: chaos = chaos || chaos
by (metis antisym chaos-par-chaos chaos-skip order-refl par-mono par-skip)

lemma nonabort-par-top: chaosCc = c || T =T
by (metis chaos-par-top par-mono top.extremum-uniquel )

lemma skip-conj-top: skipm T =T
by (simp add: chaos-skip conjoin-top)

lemma conj-distrib2: c C c || c = cM (do || d1) C (c M dp) || (c Mdy)

proof —
assume c C ¢ || ¢
then have ¢ M (dy || d1) C (c || ¢) M (do || d1) by (metis conj-mono order.refl)
thus ?thesis by (metis parallel-interchange refine-trans)

qed

end

Locale conjunction-sequential brings together the weak conjunction and sequen-
tial operators. It also introduces the interchange axiom for conjunction and se-
quential.

locale conjunction-sequential = conj-distrib + seq-distrib +

assumes chaos-seq-chaos: chaos T chaos;chaos

assumes sequential-interchange: (co;c1) M (do;d1) C (co Mdp);(c1 M dy)
begin

15



lemma chaos-nil: chaos C nil
by (metis conj-chaos local.conj-commute seq-nil-left seq-nil-right
sequential-interchange)

lemma chaos-seq-absorb: chaos = chaos;chaos
proof (rule antisym)
show chaos C chaos;chaos by (simp add: chaos-seq-chaos)
next
show chaos;chaos T chaos using chaos-nil
using seq-mono-left seq-nil-left by fastforce
qed

lemma seq-bot-conj: ¢; L. Md C (cmd);L
by (metis (no-types) conj-bot-left seq-nil-right sequential-interchange)

lemma conj-seq-bot-right [simpl: ¢; L. M c = c¢; L
proof (rule antisym)
show Ir: ¢;L M ¢ T c¢; L by (metis seq-bot-conj conj-idem)
next
showrl:c; 1 Cc;l mc
by (metis conj-idem conj-mono-right seq-bot-right)
qed

lemma conj-distrib3: ¢ C c;c = ¢ M (dp ; d1) C (c Mdy);(c Mdy)
proof —
assume c C c;c
then have ¢ M (do;d1) C (c;c) M (do;dy) by (metis conj-mono order.refl)
thus ?thesis by (metis sequential-interchange refine-trans)
qed

end

Locale cra brings together sequential, parallel and weak conjunction.

locale cra = sequential-parallel + conjunction-parallel + conjunction-sequential

end

7 Galois Connections and Fusion Theorems

theory Galois-Connections
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imports Refinement-Lattice
begin

The concept of Galois connections is introduced here to prove the fixed-point
fusion lemmas. The definition of Galois connections used is quite simple but
encodes a lot of information. The material in this section is largely based on the
work of the Eindhoven Mathematics of Program Construction Group [1] and the
reader is referred to their work for a full explanation of this section.

7.1 Lower Galois connections

lemma Collect-2set [simp]: {Fx|x.x=aV x=b}={Fa, Fb}
by auto

locale lower-galois-connections
begin

definition

l-adjoint :: (a::refinement-lattice = 'a) = (‘a = 'a) (-> [201] 200)
where

(F)x={y xC Fy}

lemma dist-inf-mono:
assumes distF: dist-over-inf F
shows mono F
proof
fixx:‘aandy:: ‘a
assume x L y
then have F x = F (x M y) by (simp add: le-iff-inf)
alsohave ... = FxM Fy
proof —
from distF
have F ([ |{x, y}) =[|{F x, F y} by (drule-tac x = {x, y} in spec, simp)
then show F (xMy) = Fx M Fy by simp
qed
finally show F x C F'y by (metis le-iff-inf)
qed

lemma [-cancellation: dist-over-inf F = x C (F o F’) x
proof —

assume dist: dist-over-inf F

define Y where Y = {Fy|y.xC Fy}

17



define X where X = {x}

have (V y € Y. (3 x € X. x C y)) using X-def Y-def CollectD singletonl by auto
then have [ | X C []| Y by (simp add: Inf-mono)
then have x C [ |{F y | y. x C F y} by (simp add: X-def Y-def)
then have x C F ([ |{y. x C F y}) by (simp add: dist le-INF-iff)
thus ?thesis by (metis comp-def l-adjoint-def’)
qed

lemma [-galois-connection: dist-over-inf F = (F’) x C y) +— (x C F y)
proof
assume x T F'y
then have [ |{y. x C Fy} C y by (simp add: Inf-lower)
thus (F°) x C y by (metis l-adjoint-def)
next
assume dist: dist-over-inf F then have monoF: mono F by (simp add: dist-inf-mono)
assume (F°) x C y then have a: F ((F*) x) C F 'y by (simp add: monoD monoF)
have x C F ((F®) x) using dist [-cancellation by simp
thus x C F y using a by auto
qed

lemma v-simple-fusion: mono G = Vx. (Fo G)xC (Ho F)x) = F (gfp G) C gfp
H
by (metis comp-eq-dest-lhs gfp-unfold gfp-upperbound)

7.2 Greatest fixpoint fusion theorems

Combining lower Galois connections and greatest fixed points allows elegant
proofs of the weak fusion lemmas.

theorem fusion-gfp-geq:

assumes monoH: mono H

and distribF: dist-over-inf F

and comp-geq: \x. (Ho F) xC (F o G) x)

shows gfp HC F (gfp G)
proof —

have (gfp H) C (F o F*) (gfp H) using distribF I-cancellation by simp

then have H (gfp H) C H ((F o F*) (gfp H)) by (simp add: monoD monoH)

then have H (gfp H) C F ((G o F°) (gfp H)) using comp-geq by (metis comp-def
refine-trans)

then have (F*) (H (gfp H)) C (G o F*) (gfp H) using distribF by (metis (mono-tags)
l-galois-connection)

then have (F°) (gfp H) C (gfp G) by (metis comp-apply gfp-unfold gfp-upperbound
monoH)

18



thus gfp H C F (gfp G) using distribF by (metis (mono-tags) I-galois-connection)
qed

theorem fusion-gfp-eq:

assumes monoH: mono H and monoG: mono G

and distF: dist-over-inf F

and fgh-comp: N\x. (Fo G)x= (Ho F) x)

shows F (gfp G) = gfp H
proof (rule antisym)

show F (gfp G) C (gfp H) by (metis fgh-comp le-less v-simple-fusion monoG)
next

have A\x. ((H o F) x C (F o G) x) using fgh-comp by auto

then show gfp H C F (gfp G) using monoH distF fusion-gfp-geq by blast
qed

end

7.3 Upper Galois connections

locale upper-galois-connections
begin

definition

u-adjoint :: ('a::refinement-lattice = 'a) = ('a = 'a) (-* [201] 200)
where

(F7)x=[I{y. FyCx}

lemma dist-sup-mono:
assumes distF: dist-over-sup F
shows mono F
proof
fixx:aandy: a
assume x C y
then have F y = F (x U y) by (simp add: le-iff-sup)
alsohave ... = FxUFy
proof —
from distF
have F (| |{x, y}) = | |{F x, F y} by (drule-tac x = {x, y} in spec, simp)
then show F (x U y) = Fx U Fy by simp
qed
finally show F x C F y by (metis le-iff-sup)
qed
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lemma u-cancellation: dist-over-sup F = (F o F#) x C x
proof —

assume dist: dist-over-sup F

define Y where Y = {Fy|y. Fy C x}

define X where X = {x}

have (V y€ Y. (3 x € X. y C x)) using X-def Y-def CollectD singletonl by auto
then have | | Y C | | X by (simp add: Sup-mono)
then have | |{Fy|y. FyC x} C x by (simp add: X-def Y-def)
then have F (| |{y. Fy C x}) C x using SUP-le-iff dist by fastforce
thus ?thesis by (metis comp-def u-adjoint-def)
qed

lemma u-galois-connection: dist-over-sup F = (Fx C y) +— (x C (F7) y)
proof
assume dist: dist-over-sup F then have monoF: mono F by (simp add: dist-sup-mono)
assume x C (F7) y then have a: F x T F ((F7) y) by (simp add: monoD monoF)
have F ((F*) y) C y using dist u-cancellation by simp
thus F x C y using a by auto
next
assume FxC y
then have x C | | {x. Fx C y} by (simp add: Sup-upper)
thus x C (F%) y by (metis u-adjoint-def)
qed

lemma u-simple-fusion: mono H =—=Vx. (FoG)xC (GoH)x) = Ilfp FC G (Ifp H)
by (metis comp-def lfp-lowerbound Ifp-unfold)

7.4 Least fixpoint fusion theorems

Combining upper Galois connections and least fixed points allows elegant proofs
of the strong fusion lemmas.

theorem fusion-lfp-leq:

assumes monoH: mono H

and distribF: dist-over-sup F

and comp-leq: \x. (Fo G)xC (Ho F) x)

shows F (Ifp G) C (Ifp H)
proof —

have ((F o F*") (Ifp H)) C Ifp H using distribF u-cancellation by simp

then have H ((F o F7*) (Ifp H)) C H (Ifp H) by (simp add: monoD monoH )

then have F ((G o F) (Ifp H)) C H (Ifp H) using comp-leq by (metis comp-def
refine-trans)
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then have (G o F7) (Ifp H) C (F7) (H (Ifp H)) using distribF by (metis (mono-tags)
u-galois-connection)

then have (Ifp G) C (F7) (Ifp H) by (metis comp-def def-lfp-unfold Ifp-lowerbound
monoH)

thus F (Ifp G) C (Ifp H) using distribF by (metis (mono-tags) u-galois-connection)
qed

theorem fusion-lfp-eq:

assumes monoH: mono H and monoG: mono G

and distF: dist-over-sup F

and fgh-comp: \x. (FoG)x= (HoF) x)

shows F (Ifp G) = (Ifp H)
proof (rule antisym)

show [fp H C F (Ifp G) by (metis monoG fgh-comp eq-iff upper-galois-connections.u-simple-fusion)
next

have A\x. (F o G) x C (H o F) x using fgh-comp by auto

then show F (Ifp G) C (Ifp H) using monoH distF fusion-lfp-leq by blast
qed

end
end

8 Iteration

theory Ilteration

imports
Galois-Connections
CRA

begin

8.1 Possibly infinite iteration

Iteration of finite or infinite steps can be defined using a least fixed point.

locale finite-or-infinite-iteration = seq-distrib + upper-galois-connections
begin

definition

iter :: 'a = 'a (-* [103] 102)
where

¢ =1fp (Ax. nil M ¢;x)
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lemma iter-step-mono: mono (A x. nil 1 ¢;x)
by (meson inf-mono order-refl seq-mono-right mono-def)

This fixed point definition leads to the two core iteration lemmas: folding and
induction.

theorem iter-unfold: ¢ = nil M c¢;c¥
using iter-def iter-step-mono lfp-unfold by auto

lemma iter-induct-nil: nil Mcx Ex = ¢ C x
by (simp add: iter-def lfp-lowerbound)

lemma iter0: c* C nil
by (metis iter-unfold sup.orderl sup-inf-absorb)

lemma iterl: ¢“ C ¢

by (metis inf-le2 iter0 iter-unfold order.trans seq-mono-right seq-nil-right)
lemma iter2 [simp]: ¢“;c* = ¢¥
proof (rule antisym)

show ¢“;:¢¥ C ¢ using iter0 seq-mono-right by fastforce
next

have a: nil M ¢;c¥;¢* C nil M ¢;c® M c;e ;e

by (metis inf-greatest inf-le2 inf-mono iter0 order-refl seq-distrib-left.seq-mono-right

seq-distrib-left-axioms seq-nil-right)

then have b: ... = ¢¥ M ¢;c¥;c” using iter-unfold by auto

then have c: ... = (nil M ¢;c¥);c” by (simp add: inf-seq-distrib)

thus ¢¥ C ¢¥;c¥ using a iter-induct-nil iter-unfold seq-assoc by auto

qed

lemma iter-mono: c C d = ¢* C d¥
proof —
assume c C d
then have nil M ¢;d” C d;d*” by (metis inf .absorb-iff2 inf-left-commute inf-seq-distrib)
then have nil M ¢;d* T d“ by (metis inf .bounded-iff inf-sup-ord(1) iter-unfold)
thus ?thesis by (simp add: iter-induct-nil)
qed

lemma iter-abort: | = nil”
by (simp add: antisym iter-induct-nil)

lemma nil-iter: T = nil
by (metis (no-types) inf-top.right-neutral iter-unfold seq-top)
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end

8.2 Finite iteration

Iteration of a finite number of steps (Kleene star) is defined using the greatest fixed
point.

locale finite-iteration = seq-distrib 4 lower-galois-connections
begin

definition

fiter :: 'a = 'a (-* [101] 100)
where

c*=gfp (Ax. nil M ¢;x)

lemma fin-iter-step-mono: mono (A x. nil M ¢;x)
by (meson inf-mono order-refl seq-mono-right mono-def)

This definition leads to the two core iteration lemmas: folding and induction.

lemma fiter-unfold: c* = nil 1 ¢;c*
using fiter-def gfp-unfold fin-iter-step-mono by auto

lemma fiter-induct-nil: x C nil M c;x = x E ¢*
by (simp add: fiter-def gfp-upperbound)

lemma fiter0: c* C nil
by (metis fiter-unfold inf .cobounded])

lemma fiterl: ¢* C ¢
by (metis fiterO fiter-unfold inf-le2 order.trans seq-mono-right seq-nil-right)

lemma fiter-induct-eq: ¢*;d = gfp (A x. c;x M d)
proof —

define F where F = () x. x;d)

define G where G = (\ x. nil M1 ¢;x)

define H where H = (A x. ¢c;x 1 d)

have FG: F o G = (A x. ¢;x;d 11.d) by (simp add: F-def G-def comp-def inf-commute
inf-seq-distrib)

have HF: H o F = (A x. ¢;x;d 11 d) by (metis comp-def seq-assoc H-def F-def)

have adjoint: dist-over-inf F using Inf-seq-distrib F-def by simp
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have monoH: mono H

by (metis H-def inf-mono-left monol seq-distrib-left.seq-mono-right seq-distrib-left-axioms)

have monoG: mono G by (metis G-def inf-mono-right mono-def seq-mono-right)

have V x. ((F o G) x = (H o F) x) using FG HF by simp

then have F (gfp G) = gfp H using adjoint monoG monoH fusion-gfp-eq by blast

then have (gfp (A x. nil M ¢;x));d = gfp (A x. ¢;x M d) using F-def G-def H-def

inf-commute by simp

thus ?thesis by (metis fiter-def')
qed

theorem fiter-induct: x C d M c;x = x C ¢*;d
proof —
assume x = d M cix
then have x C c;x I d using inf-commute by simp
then have x C gfp (\ x. ¢;x M d) by (simp add: gfp-upperbound)
thus ?thesis by (metis (full-types) fiter-induct-eq)
qed

lemma fiter2 [simp|: ¢*;¢* = ¢*

proof —
have Ir: ¢*;¢* C ¢* using fiter0 seq-mono-right seq-nil-right by fastforce
have rl: ¢* C ¢*;c* by (metis fiter-induct fiter-unfold inf .right-idem order-refl)
thus ?thesis by (simp add: antisym Ir)

qed

lemma fiter3 [simp|: (¢*)* = c*
by (metis dual-order.refl fiterO fiter1 fiter? fiter-induct inf .commute inf-absorb1 seq-nil-right)

lemma fiter-mono: c Cd = ¢* C d*
proof —
assume c C d
then have ¢* C nil M d;c* by (metis fiterO fiterl fiter2 inf.bounded-iff refine-trans
seq-mono-left)
thus ?thesis by (metis seq-nil-right fiter-induct)
qed

end

8.3 Infinite iteration

Iteration of infinite number of steps can be defined using a least fixed point.

locale infinite-iteration = seq-distrib 4 lower-galois-connections
begin
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definition

infiter :: 'a = 'a (-°° [105) 106)
where

¢ =1fp (A x. c;x)

lemma infiter-step-mono: mono (\ x. ¢;x)
by (meson inf-mono order-refl seq-mono-right mono-def)

This definition leads to the two core iteration lemmas: folding and induction.

theorem infiter-unfold: c> = c;c™
using infiter-def infiter-step-mono [fp-unfold by auto

lemma infiter-induct: c;x © x = ¢ C x
by (simp add: infiter-def lfp-lowerbound)

theorem infiter-unfold-any: ¢>° = (¢"i) ; ¢
proof (induct i)
case 0
thus ?case by simp
next
case (Suc i)
thus ?case using infiter-unfold seq-assoc seq-power-Suc by auto
qed

lemma infiter-annil: c>;x = ¢
proof —
haveVa. (L::a) Ca
by auto
thus ’thesis
by (metis (no-types) eq-iff inf .cobounded? infiter-induct infiter-unfold inf-sup-ord(1)
seq-assoc seq-bot weak-seq-inf-distrib seq-nil-right)

qed

end

8.4 Combined iteration
The three different iteration operators can be combined to show that finite iteration
refines finite-or-infinite iteration.

locale iteration = finite-or-infinite-iteration + finite-iteration +
infinite-iteration
begin
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lemma refine-iter: ¢ C ¢*

by (metis seq-nil-right order.refl iter-unfold fiter-induct)
lemma iter-absorption [simp]: (¢*)* = ¢¥
proof (rule antisym)

show (¢¥)* C ¢* by (metis fiterl)
next

show ¢ C (¢*)* by (metis fiterl fiter-induct inf-left-idem iter2 iter-unfold seq-nil-right
sup.cobounded?2 sup.orderE sup-commute)
qed

lemma infiter-inf-top: ¢ =c“ ; T
proof —
havelr: c>* C ¥ ;T
proof —
havec; (¢¥;T)=nil; TMNc;c¥; T
using semigroup.assoc seq.semigroup-axioms by fastforce
then show ?thesis
by (metis (no-types) eq-refl finite-or-infinite-iteration.iter-unfold
finite-or-infinite-iteration-axioms infiter-induct
seq-distrib-right.inf-seq-distrib seq-distrib-right-axioms)
qed
have rl: ¢¥ ; T C ™
by (metis inf-le2 infiter-annil infiter-unfold iter-induct-nil seq-mono-left)
thus ’thesis using antisym-conv [r by blast
qed

lemma infiter-fiter-top:
shows ¢ C ¢*; T

by (metis eq-iff fiter-induct inf-top-left infiter-unfold)

lemma inf-ref-infiter: c* C ¢
using infiter-unfold iter-induct-nil by auto

end

end

9 Sequential composition for conjunctive models

theory Conjunctive-Sequential
imports Sequential
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begin

Sequential left-distributivity is only supported by conjunctive models but does not
apply in general. The relational model is one such example.

locale seq-finite-conjunctive = seq-distrib-right +
assumes seq-inf-distrib: ¢;(dp M dy) = ¢;dy M ¢;dy
begin

sublocale seq-distrib-left
by (simp add: seq-distrib-left.intro seq-distrib-left-axioms.intro
seq-inf-distrib sequential-axioms)
end

locale seq-infinite-conjunctive = seq-distrib-right +
assumes seq-Inf-distrib: D # {} = ¢ ;[ |D = ([ |d€D. c ; d)
begin

sublocale seq-distrib
proof unfold-locales
fix c::'a and dy::'a and d1::a
have {dy, d1} # {} by simp
then have ¢ ;[ |{do, d1} =[{c;d |d. d € {dy, d1}} using seq-Inf-distrib
proof —
have [] ((;) ¢ ‘{do,d1}) =[1{c;ala.a € {dy,d1}}
using INF-Inf by blast
then show ?thesis
using (/\ (c::'a::refinement-lattice) D::'a::refinement-lattice set. D # {} —> ¢ ;[ 1D =
([ d::"a::refinement-lattice€D. c ; d)) {dy:: a::refinement-lattice, dy ::'a::refinement-lattice }
# {} by presburger
qed
also have ... = ¢ ; do M ¢ ; dy by (simp only: Inf2-inf)
finally show ¢ ; (dy M d1) C ¢ ;dy Mc; dy by simp
qed

lemma seq-INF-distrib: X # {} = ¢ ; ([ |x€X. dx) = ([ |x€X. ¢ ; d x)
proof —
assume xne: X # {}
have a: c; ([ |x€X. dx) =c;[](d ‘X) by auto
also have b: ... = ([ |de(d ‘ X). c ; d) by (meson image-is-empty seq-Inf-distrib xne)
also have c: ... = ([ |x€X. ¢ ; d x) by (simp add: image-comp)
finally show ?thesis by (simp add: b image-comp)
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qed

lemma seq-INF-distrib-UNIV: ¢ ; ([ |x. d x) = ([ |x. ¢ ; d x)
by (simp add: seq-INF-distrib)

lemma INF-INF-seq-distrib: Y # {} = ([ |x€X. cx); ([ |yeY.dy) = ([ |x€X.[ |yeY.
cx;dy)
by (simp add: INF-seq-distrib seq-INF-distrib)

lemma INF-INF-seq-distrib-UNIV: ([ |x.cx); ([1y-dy) = (x.[|y.-cx;dy)
by (simp add: INF-INF-seq-distrib)

end

end

10 Infimum nat lemmas

theory Infimum-Nat
imports

Refinement-Lattice
begin

locale infimum-nat
begin

lemma INF-partition-nat3:
fixes f :: nat = nat = 'a::refinement-lattice
shows ([ ]j.fij) =
(Tjedi. i=jy-£ij)n
([jed-i<j}.fij)n
(1jedi.j<i}.fij)
proof —
have univ-part: UNIV = {j. i =j} U {j. i <j} U {j.j < i} by auto
have ([1j € {j. i =j} U {j.i <j} U {j.j < i}.fij) =
(el i =j}-fij)m
(jedi<j}-fijn
([jedj.j < i}.fij) by (metis INF-union)
with univ-part show ?thesis by simp
qed

lemma INF-INF-partition-nat3:
fixes f :: nat = nat = 'a::refinement-lattice
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shows ([ ]i.[1j.fij) =
(Mi. Njed. i=j-fij)n
(Mi. [jelj. i <j}.fij) M
(i 11jedi-j <t fij)
proof —
have (70 [1j./ij) = (Ti. (M€l i=j}.fij)
(el i <jt-fi) o
(jedj-i < ih-fi7)
by (simp add: INF-partition-nat3)
also have ... = ([']i. [ |je{j. i=j}.fij) N
(Mi.Njedi i <jb-fij)n
(i 1jedi-j < iy fij)
by (simp add: INF-inf-distrib)
finally show ’thesis .
qed

lemma INF-nat-shift: ([ |ie{i. 0 <i}.fi) = ([ ]i.f (Suci))
by (metis greaterThan-0 greaterThan-def range-composition)

lemma INF-nat-minus:
fixes f :: nat = 'a::refinement-lattice

shows ([ |je{j.i <j}.f (j—10) = ([|ke{k. 0 < k}.fk)

apply (rule antisym)

apply (rule INF-mono, simp)

apply (metis add.right-neutral add-diff-cancel-left’ add-less-cancel-left order-refl)

apply (rule INF-mono, simp)
by (meson order-refl zero-less-diff)

lemma INF-INF-guarded-switch:
fixes f :: nat = nat = 'a::refinement-lattice
shows (T [17€4).j < i}. 11 — i) = (TVj- Tieli. < i} £ (i — )
proof (rule antisym)
have \jj ii. jj < ii = 3i. 3j<i. fj (i — j) Tfjj (ii — jj)
by blast
then have Ajj ii. jj < ii = 3i. ((|jelj.j < i}.£j (i —j)) Tfjj (i — jj)
by (meson INF-lower mem-Collect-eq)
then have Ajj i. jj < it = ([i. [1je{j.j < i}.£j (i — ) T £ij (id — jj)
by (meson UNIV-I INF-lower dual-order.trans)
then have Ajj. (T1i. [1j€{j.j < i} £ (i — ) C (Tiiedii. j < ii}. £jj (it — )
by (metis (mono-tags, lifting) INF-greatest mem-Collect-eq)
then have ([i. [1j€{j.j < it £ (i — )) © (M. Niieii. jj < ii}. £ii (ii — )
by (simp add: INF-greatest)
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then show (Ti. [1j€{j.j < i}. £ (i — ) C (7). [lie{i.j < iy.£7 (i =)
by simp
next
have Aii j. jj < it = 3j. 3i>j.£j (i — ) T £j (ii — jj)
by blast
then have Aii jj. jj < ii = 3j. ((li€{i.j < i}.£j (i — j)) Tfjj (ii — jj)
by (meson INF-lower mem-Collect-eq)
then have Aii jj. jj < ii = ([1j. [1i€{i.j < i}.£j (i —})) Tfjj (ii — jj)
by (meson UNIV-I INF-lower dual-order.trans)
then have Aii. (7. [i{i. j < i} £ (i — ) © (ML i < iib. £ i — i)
by (metis (mono-tags, lifting) INF-greatest mem-Collect-eq)
then have (1), [i{i. j < i}-£J (i — ) C (M. [Viie i < ii}. £ i — i)
by (simp add: INF-greatest)
then show (Tj. [1i€{i.j < i}. £ (i — ) € (Mi- [l < i}-£ (i — )
by simp
qed

end

end

11 Iteration for conjunctive models

theory Conjunctive-Iteration

imports
Conjunctive-Sequential
Iteration
Infimum-Nat

begin

Sequential left-distributivity is only supported by conjunctive models but does not
apply in general. The relational model is one such example.

locale iteration-finite-conjunctive = seq-finite-conjunctive + iteration
begin
lemma isolation: ¢ = ¢* M ¢
proof —
define F where F = (\ x. ¢* Mx)
define G where G = (\ x. ¢;x)
define H where H = (A x. nil M ¢;x)
have FG: F o G = (A x. ¢* M ¢;x) using F-def G-def by auto
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have HF: H o F = (A x. nil M ¢;(c* M x)) using F-def H-def by auto

have adjoint: dist-over-sup F by (simp add: F-def inf-Sup)
have monoH: mono H by (metis H-def inf-mono monol order-refl seq-mono-right)
have monoG: mono G by (metis G-def inf .absorb-iff2 monol seq-inf-distrib)

have V x. ((F o G) x = (H o F) x) using FG HF
by (metis fiter-unfold inf-sup-aci(2) seq-inf-distrib)
then have F (Ifp G) = lfp H using adjoint monoH monoG fusion-lfp-eq by blast
then have ¢* M Ifp (A x. ¢;x) = Ifp (A x. nil N ¢;x)
using F-def G-def H-def by blast
thus ?thesis by (simp add: infiter-def iter-def)
qed

lemma iter-induct-isolate: ¢*;d M ¢ = Ilfp (A x. d M ¢;x)
proof —

define F where F = (A x. ¢*;d M x)

define G where G = () x. ¢;x)

define H where H = (A x. d M ¢;x)

have FG: F o G = (A x. ¢*;d M ¢;x) using F-def G-def by auto

have HF: H o F = (A x. d M ¢;c*;d M ¢;x) using F-def H-def weak-seq-inf-distrib
by (metis comp-apply inf .commute inf .left-commute seq-assoc seq-inf-distrib)

have unroll: ¢*;d = (nil 1 ¢;c*);d using fiter-unfold by auto

have distribute: ¢*;d = d M ¢;c*;d by (simp add: unroll inf-seq-distrib)

have FGx: (F o G) x =d M ¢;c*;d M c;x using FG distribute by simp

have adjoint: dist-over-sup F by (simp add: F-def inf-Sup)
have monoH: mono H by (metis H-def inf-mono monol order-refl seq-mono-right)
have monoG: mono G by (metis G-def inf .absorb-iff2 monol seq-inf-distrib)

have V x. ((F o G) x = (H o F) x) using FGx HF by (simp add: FG distribute)
then have F (Ifp G) = lfp H using adjoint monoH monoG fusion-lfp-eq by blast
then have ¢*;d M Ifp (A x. ¢;x) = Ifp (A x. d M ¢;x)
using F-def G-def H-def by blast
thus ?thesis by (simp add: infiter-def’)
qed

lemma iter-induct-eq: ¢;d = lfp (A x. d M ¢;x)
proof —
have ¢“;d = ¢*;d M ¢*°;d by (simp add: isolation inf-seq-distrib)
then have ¢*;d M ¢*°;d = ¢*;d M ¢ by (simp add: infiter-annil)
then have ¢*;d M ¢™ = Ifp (A x. d M ¢;x) by (simp add: iter-induct-isolate)
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thus ’thesis
by (simp add: (¥ ;d=c*;dMc>®;d) «*;dMc™;d=c*;dMNc™)
qed

lemma iter-induct: d Mcx Cx = c¥;d C x
by (simp add: iter-induct-eq lfp-lowerbound)

lemma iter-isolate: ¢*;d M ™ = ¢*“;d
by (simp add: iter-induct-eq iter-induct-isolate)

lemma iter-isolate2: c;c*;d M ¢ = c;c¥;d
by (metis infiter-unfold iter-isolate seq-assoc seq-inf-distrib)

lemma iter-decomp: (¢ M d)¥ = ¢¥;(d;c)®
proof (rule antisym)
have c¢;c¥;(d;c”)“ M (d;c*)® C ¢¥;(d;c?)® by (metis inf-commute order.refl inf-seq-distrib
seq-nil-left iter-unfold)
thus (¢ Md)“ C ¢¥;(d;c*)“ by (metis inf .left-commute iter-induct-nil iter-unfold seq-assoc
inf-seq-distrib)
next
have (c;(c M d)* M d;(c M d)*) M nil C (c M d)¥ by (metis inf-commute order.refl
inf-seq-distrib iter-unfold)
then have a: ¢;(d;(c M d)* Mnil) C (cMd)¥
proof —
have nil N d;(c M d)* Ne;(cMd)* C (cMd)
by (metis eq-iff inf .semigroup-axioms inf-commute inf-seq-distrib iter-unfold semi-
group.assoc)
thus ?thesis using iter-induct-eq by (metis inf-sup-aci(1) iter-induct)
qed
then have d;c;(d;(c M d)¥ Mnil) M nil C d;(c M d)* M nil by (metis inf-mono order.refl
seq-assoc seq-mono)
then have (d;c*)“ C d;(c M d)“ M nil by (metis inf-commute iter-induct-nil)
then have ¢“;(d;c*)“ C ¢¥;(d;(c M d)* M nil) by (metis order.refl seq-mono)
thus ¢“;(d;c*)* C (c M d)“ using a refine-trans by blast
qed

lemma iter-leapfrog-var: (c;d)*;c C ¢;(d;c)®
proof —
have ¢ M ¢;d;c;(d;c)” C c¢;(dse)”
by (metis iter-unfold order-refl seq-assoc seq-inf-distrib seq-nil-right)
thus ?thesis using iter-induct-eq by (metis iter-induct seq-assoc)
qed
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lemma iter-leapfrog: c;(d;c)” = (¢;d)¥;c
proof (rule antisym)

show (c;d)“;c C c;(d;c)” by (metis iter-leapfrog-var)
next

have (d;c)¥ C ((d;c)¥;d);c M nil by (metis inf .bounded-iff order.refl seq-assoc seq-mono
iter-unfold iterl iter2)

then have (d;c)“ C (d;(c;d)¥);c M nil by (metis inf .absorb-iff2 inf .boundedE inf-assoc
iter-leapfrog-var inf-seq-distrib)

then have c;(d;c)* C c¢;d;(c;d)%;c M nil;c using inf .bounded-iff seq-assoc seq-mono-right
seq-nil-left seq-nil-right by fastforce

thus c;(d;c)* C (¢;d)¥;c by (metis inf-commute inf-seq-distrib iter-unfold)
qed

lemma fiter-leapfrog: c;(d;c)* = (¢;d)*;¢
proof —
have Ir: ¢;(d;c)* C (¢c;d)*;c
proof —
have (d;c)*=nilMd;c;(d;c)*
by (meson finite-iteration fiter-unfold finite-iteration-axioms)
then show ?thesis
by (metis fiter-induct seq-assoc seq-distrib-left.weak-seq-inf-distrib
seq-distrib-left-axioms seq-nil-right)
qed
have rl: (c;d)*;c C c;(d;c)*
proof —
have al: (c;d)*;c = ¢ M e;d;(c;d) e
by (metis finite-iteration. fiter-unfold finite-iteration-axioms
inf-seq-distrib seq-nil-left)
have a2: (¢;d)*;c C ¢;(d;e)* +— ¢ M e;d;(c;d)* ;e C c;(dse)* by (simp add: al)
then have a3: ... «— ¢;( nil M d;(c;d)*;c) C c¢;(dse)*
by (metis al eq-iff fiter-unfold Ir seq-assoc seq-inf-distrib seq-nil-right)
have a4: (nil M d;(c;d)*;c) C (d;c)* = ¢;( nil M d;(c;d)*;c) T c;(dse)*
using seq-mono-right by blast
have a5: (nil M d;(c;d)*;c) C (d;e)*
proof —
havefl:d; (c;d)*;cMnil=d; ((c;d)*;c) Mnil M nil
by (simp add: seq-assoc)
haved ;c;(d;(c;d) ;cMnil)=d; ((c;d)*;c)
by (metis (no-types) al inf-sup-aci(1) seq-assoc
seq-finite-conjunctive.seq-inf-distrib seq-finite-conjunctive-axioms
seq-nil-right)
then show ?thesis
using f1 by (metis (no-types) finite-iteration fiter-induct finite-iteration-axioms
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inf .cobounded] inf-sup-aci(1) seq-nil-right)
qed
thus ’thesis using a2 a3 a4 by blast
qed
thus ?thesis by (simp add: eq-iff Ir)
qed

end

locale iteration-infinite-conjunctive = seq-infinite-conjunctive + iteration + infimum-nat
begin

lemma fiter-seq-choice: ¢* = ([ |i::nat. ¢ ")
proof (rule antisym)
show ¢* C ([ ]i. ¢ ")
proof (rule INF-greatest)
fix i
show ¢* C ¢ i
proof (induct i type: nat)
case 0
show ¢* C ¢ "0 by (simp add: fiter0)
next
case (Suc n)
have ¢* C ¢ ; ¢* by (metis fiter-unfold inf-le2)
also have ... C ¢ ; (¢ " n) using Suc.hyps by (simp only: seq-mono-right)

also have ... = c " Suc n by simp
finally show ¢* C ¢ " Sucn.
qed
qed
next

have ([ ]i.c"i) C (¢'"0) T ([]i. ¢ " Suc i)
by (meson INF-greatest INF-lower UNIV-I le-inf-iff)
also have ... = nil 11 ([ ]i. ¢ ; (¢ *7i)) by simp
also have ... = nil M ¢ ; ([ ]i. ¢"i) by (simp add: seq-INF-distrib)
finally show ([ |i. ¢ *"i) C ¢* using fiter-induct by fastforce
qed

lemma fiter-seq-choice-nonempty: ¢ ; c* = ([ |i€{i. 0 < i}. ci"i)

proof —
have ([ |ie{i. 0 <i}.c?"i) = ([|i. ¢ " (Suci)) by (simp add: INF-nat-shift)
also have ... = ([']i. ¢; (¢ 3"i)) by simp
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also have ... = ¢ ; ([ |i. ¢ "i) by (simp add: seq-INF-distrib-UNIV)

also have ... = ¢ ; ¢* by (simp add: fiter-seq-choice)
finally show ’thesis by simp

qed

end

locale conj-iteration = cra + iteration-infinite-conjunctive
begin

lemma conj-distrib4: ¢* m d* C (c md)*
proof —

have ¢* M d* = (nil M (¢;¢*)) M d* by (metis fiter-unfold)

then have ¢* m d* = (nil M d*) M ((¢;c*) M d*) by (simp add: inf-conj-distrib)

then have ¢* m d* C nil N ((¢;¢*) M (d;d*)) by (metis conj-idem fiter0O fiter-unfold
inf .bounded-iff inf-le2 local.conj-mono)

then have ¢* M d* C nil M ((¢ M d);(c* M d*)) by (meson inf-mono-right order.trans
sequential-interchange)

thus ?thesis by (metis seq-nil-right fiter-induct)
qed

end

end

12 Rely Quotient Operator

The rely quotient operator is used to generalise a Jones-style rely condition to a
process [5]. It is defined in terms of the parallel operator and a process @ repre-
senting interference from the environment.

theory Rely-Quotient
imports
CRA
Conjunctive-Iteration
begin

12.1 Basic rely quotient

The rely quotient of a process c and an interference process ¢ is the most general
process d such that ¢ is refined by d || i. The following locale introduces the
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definition of the rely quotient ¢/ /i as a non-deterministic choice over all processes
d such that c is refined by d || i.

locale rely-quotient = par-distrib 4 conjunction-parallel
begin

definition
rely-quotient :: 'a = 'a = 'a (infixl ’/’/ 85)
where
c//i={d (cCd]|i)}
Any process c is implemented by itself if the interference is skip.

lemma quotient-identity: ¢ // skip = ¢
proof —

have ¢ // skip =[]{ d. (c C d | skip) } by (metis rely-quotient-def)

then have ¢ // skip =[]{ d. (c C d) } by (metis (mono-tags, lifting) Collect-cong
par-skip)

thus ?thesis by (metis Inf-greatest Inf-lower2 dual-order.antisym dual-order.refl mem-Collect-eq)

qed

Provided the interference process ¢ is non-aborting (i.e. it refines chaos), any
process c is refined by its rely quotient with ¢ in parallel with 7. If interference ¢
was allowed to be aborting then, because (¢ // L) || L equals L, it does not refine
c in general.

theorem rely-quotient:
assumes nonabort-i: chaos C i
showsc C (¢ // i) | i
proof —
define D where D = {d ||i|d. (cCd| i)}
define C where C = {c}
have (Vd € D. (3 c € C. ¢ C d)) using D-def C-def CollectD singletonl by auto
then have [ | C C ([ ] D) by (simp add: Inf-mono)
thenhavec C[]{d | i|d. (cCd| i)} by (simp add: C-def D-def)
alsohave...=[]{d|i|d.de{d. (cCd]|i)}} bysimp
alsohave ... = ([|d € {d. (cCd | i)}. d | i) by (simp add: INF-Inf)
alsohave ... =[|{d|d. (cCd| i)} i
proof (cases {d |d. (cCd| i)} ={})
assume {d |d. (cCd| i)} ={}
thenshow ([|d € {d. (cCd|i)}.d|i)=[]{d|d (cCdli}]i
using nonabort-i Collect-empty-eq top-greatest
nonabort-par-top par-commute by fastforce
next
assumea: {d|d. (cCd| i)} #{}
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have b: {d. (cCd | i)} # {} using a by blast
thenhave ([|de{d. (cCd|i)}.d|i)=[]{d (cCTd| i}
using Inf-par-distrib by simp

then show ?thesis by auto

qed

also have ... = (¢ // i) || i by (metis rely-quotient-def)

finally show ’thesis .

qed

The following theorem represents the Galois connection between the parallel op-
erator (upper adjoint) and the rely quotient operator (lower adjoint). This basic
relationship is used to prove the majority of the theorems about rely quotient.

theorem rely-refinement:
assumes nonabort-i: chaos C i
showsc //iCd<+—cCd]|i
proof
assume a:c //iCd
have ¢ C (c // i) || i using rely-quotient nonabort-i by simp
thus ¢ C d || i using par-mono a
by (metis inf .absorb-iff2 inf-commute le-infI2 order-refl)
next
assume b:cCd || i
then have [ |{ d. (c T d || i)} T d by (simp add: Inf-lower)
thus ¢ // i C d by (metis rely-quotient-def)
qed

Refining the “numerator” in a quotient, refines the quotient.

lemma rely-mono:
assumes c-refsto-d: ¢ = d
shows (¢ //i)C (d /] i)
proof —
have \f. (dCf i) =T e (cEei)A(eEf))
using c-refsto-d order.trans by blast
thenhave b:[[{e. (cCe || )}C [{f . dCTf i)}
by (metis Inf-mono mem-Collect-eq)
show ?thesis using rely-quotient-def b by simp
qed

Refining the “denominator” in a quotient, gives a reverse refinement for the quo-
tients. This corresponds to weaken rely condition law of Jones [5], i.e. assuming
less about the environment.

lemma weaken-rely:
assumes i-refsto-j: i C j
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shows (c //j) E (¢ // 1)
proof —
have A . (¢ Cf || 1) = 3 e. (cCe ) A (e 1))
using i-refsto-j order.trans
by (metis inf .absorb-iff2 inf-le1 inf-par-distrib inf-sup-ord(2) par-commute)
then have b: [1{ . (¢ C e | )} C [1{/- (¢ Cf || )}
by (metis Inf-mono mem-Collect-eq)
show ?thesis using rely-quotient-def b by simp
qed

lemma par-nonabort:
assumes nonabort-i: chaos C i
assumes nonabort-j: chaos C j
shows chaos C i || j
by (meson chaos-par-chaos nonabort-i nonabort-j order-trans par-mono)

Nesting rely quotients of 7 and ¢ means the same as a single quotient which is the
parallel composition of ¢ and j.

lemma nested-rely:
assumes j-nonabort: chaos C j
shows ((c // ) // i) =c // (i ]l
proof (rule antisym)
show ((c //j) // i) S e // (i]1))
proof —
have \f. (cEf [ i[lj) = T e (cCellj) A(e Ef | 1)) by blast
then have [1{ d. ([T{e. (c Ce [ )} Cd )} C M{f (cCf 1]}
by (simp add: Collect-mono Inf-lower Inf-superset-mono)
thus ’thesis using local.rely-quotient-def par-assoc by auto
qed
next
show c // (i |)) E ((c//)) /] 1)
proof —
havec C[[{e. (cEellj)} I/
using j-nonabort local.rely-quotient-def rely-quotient by auto
thenhave A\ d.[|{e. (cCel||/)}Cd|i = (cEd|i]))
by (meson j-nonabort order-trans rely-refinement)
thus ’thesis
by (simp add: Collect-mono Inf-superset-mono local.rely-quotient-def par-assoc)
qed
qed

end
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12.2 Distributed rely quotient

locale rely-distrib = rely-quotient + conjunction-sequential
begin

The following is a fundamental law for introducing a parallel composition of pro-
cess to refine a conjunction of specifications. It represents an abstract view of the
parallel introduction law of Jones [5].

lemma introduce-parallel:
assumes nonabort-i: chaos C i
assumes nonabort-j: chaos C j
showscmd = (jm(c//i) [ im(d//j)
proof —
have a: ¢ C (¢ // i) || i using nonabort-i nonabort-j rely-quotient by auto
have b: d T j || (d // j) using rely-quotient par-commute
by (simp add: nonabort-j)
havecmd T ((¢c//i)||i)m(j| (d//j)) using a b by (metis conj-mono)
also have interchange: cmd & ((c // i) mj) || (i@ (d //]))
using parallel-interchange refine-trans calculation by blast
show ?thesis using interchange by (simp add: local.conj-commute)
qed

Rely quotients satisfy a range of distribution properties with respect to the other
operators.

lemma distribute-rely-conjunction:
assumes nonabort-i: chaos C |
shows (cmd) //i C (¢c//i)ym(d// i)
proof —
havecmd C ((c // i) | i) m((d//i) | i) using conj-mono rely-quotient
by (simp add: nonabort-i)
thenhavecMd C ((c//i)m(d // Q) || (imi)
by (metis parallel-interchange refine-trans)
thenhave c Md C ((c¢ //i)m(d // Q) || i by (metis conj-idem)
thus ?rhesis using rely-refinement by (simp add: nonabort-i)
qed

lemma distribute-rely-choice:
assumes nonabort-i: chaos T i

shows (cMd) //i T (¢ // i) (d ]/ i)

proof —
have 114 C ((c // ) 1) 1 ((d // §) || )
by (metis nonabort-i inf-mono rely-quotient)
then have c 1 d C ((c¢ // i) (d // Q) || i by (metis inf-par-distrib)
thus ?thesis by (metis nonabort-i rely-refinement)
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qed

lemma distribute-rely-parallell:
assumes nonabort-i: chaos C i
assumes nonabort-j: chaos C j
shows (c || d) // (i | /) T (¢ // )1l (d//))
proof —
have (c | d) C (¢ // i) 1) 1| ((d // ) 1)
using par-mono rely-quotient nonabort-i nonabort-j by simp
then have (c || d) C (¢ // i) || (d//J) || ]| i by (metis par-assoc par-commute)
thus ’thesis using par-assoc par-commute rely-refinement
by (metis nonabort-i nonabort-j par-nonabort)
qed

lemma distribute-rely-parallel?2:

assumes nonabort-i: chaos C i

assumes i-par-i: i || i C i

shows (c [[d) //i € (c// i) (d//1)
proof —

have (c || d) //iC ((c || d)// (i| i)) using assms(I) using weaken-rely

by (simp add: i-par-i par-nonabort)

thus ?thesis by (metis distribute-rely-parallell refine-trans nonabort-i)

qed

lemma distribute-rely-sequential:
assumes nonabort-i: chaos C i
assumes (V c. (V d. ((c || i);(d || i) C (¢;d) || ©)))
shows (cid) // i C (¢ // i):(d /] i
proof —
have cid C ((c // ) | i:((d // i) | 1
by (metis rely-quotient nonabort-i seq-mono)
then have ¢;d C (¢ // i) ; (d // i) || i using assms(2) by (metis refine-trans)
thus ?thesis by (metis rely-refinement nonabort-i)
qed

lemma distribute-rely-sequential-event:
assumes nonabort-i: chaos C i
assumes nonabort-j: chaos C j
assumes nonabort-e: chaos C e
assumes (¥ c. (7 d. ((c || ):es(d || ) C (cied) | (se)))
shows (ciesd) // (isef) C (c // i)ies(d //))
proof —
have ciesd C ((c // ) || iyies((d //J) I1)
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by (metis order.refl rely-quotient nonabort-i nonabort-j seq-mono)
then have c;e;d C ((c // i);e;(d /] J)) || (isey) using assms
by (metis refine-trans)
thus ’thesis using rely-refinement nonabort-i nonabort-j nonabort-e
by (simp add: Inf-lower local.rely-quotient-def)
qed

lemma introduce-parallel-with-rely:
assumes nonabort-i: chaos C i
assumes nonabort-j0: chaos C jj
assumes nonabort-j1: chaos T j;
shows (cmd) // i T (um(c// Goll ) Il Gom(d// Gulli))
proof —
have (cmd) //iC(c//i)ym(d /] i)
by (metis distribute-rely-conjunction nonabort-i)
then have (c A d) //i C (i1 (c // i) //jo) |l Go @ ((d // i) // 1))
by (metis introduce-parallel nonabort-jO nonabort-j1 inf-assoc inf .absorb-iff1)
thus ?thesis by (simp add: nested-rely nonabort-i)
qed

lemma introduce-parallel-with-rely-guarantee:
assumes nonabort-i: chaos C |
assumes nonabort-j0: chaos C jg
assumes nonabort-j1: chaos T j;
shows (j1 [|jo) m (cmd) //iE (i m(c// GollD)) Il Gom(d// Grlli))
proof —
have (j1 || jo) m (cmd) // i C ([l jo) @ (G @ (c// Go ll D)) Il Gom(d// (all4))))
by (metis introduce-parallel-with-rely nonabort-i nonabort-jO nonabort-j1
conj-mono order.refl)
also have ... C (j1 A ja (¢ // Go | i) || Go Mo A (d // G || )
by (metis conj-assoc parallel-interchange)
finally show ?thesis by (metis conj-idem)
qed

lemma wrap-rely-guar:
assumes nonabort-rg: chaos C rg
and skippable: rg T skip
showscCrgmce // rg
proof —
have ¢ = ¢ // skip by (simp add: quotient-identity)
also have ... C ¢ // rg by (simp add: skippable weaken-rely nonabort-rg)
also have ... C rg M ¢ // rg using conjoin-non-aborting conj-commute nonabort-rg
by auto

41



finally showc Crgmc // rg.
qed

end

locale rely-distrib-iteration = rely-distrib + iteration-finite-conjunctive
begin

lemma distribute-rely-iteration:
assumes nonabort-i: chaos C i
assumes (V c. (V d. ((c || );(d || i) C (¢5d) || ©)))
shows (c¢*;d) // i E (c //i);(d /] i)
proof —
)havedFIC; (/D<@ /iy 1) EWd// il e/ i)l i(e//)5d /] i)
i
by (metis inf-mono order.refl rely-quotient nonabort-i seq-mono)
also have .. C ((d // i) | 1)1 (¢ // (e // i)*3(d // i) || 1)
using assms inf-mono-right seq-assoc by fastforce
alsohave ... C ((d//i)M(c//i)(c//D)¥;(d /] i) ] i
by (simp add: inf-par-distrib)
also have ... = ((c¢ // i)¥;(d // i) || i
by (metis iter-unfold inf-seq-distrib seq-nil-left)
finally show ?thesis by (metis rely-refinement nonabort-i iter-induct)
qed

end

end

13 Conclusions

The theories presented here provide a quite abstract view of the rely/guarantee
approach to concurrent program refinement. A trace semantics for this theory has
been developed [2]. The concurrent refinement algebra is general enough to also
form the basis of a more concrete rely/guarantee approach based on a theory of
atomic steps and synchronous parallel and weak conjunction operators [4].
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A

Differences to earlier paper

This appendix summarises the differences between these Isabelle theories and the
earlier paper [3]. We list the changes to the axioms but not all the flow on effects
to lemmas.

10.

. The earlier paper assumes ¢;(doMd;) = (¢;do)M(c;d;) but here we separate

the case where this is only a refinement from left to right (Section 3) from
the equality case (Section 9).

. The earlier paper assumes ([ |C') || d = ([ ]¢ € C.c || d) but in Section 4

we assume this only for non-empty C' and furthermore assume that parallel
is abort strict,i.e. L || c=c.

. The earlier paper assumes ¢ (| | D) = (| |d € D.cmd). In Section 5 that

assumption is not made because it does not hold for the model we have in
mind [2] but we do assume cm L = L.

. In Section 6 we add the assumption nil C nil || nil to locale sequential-

parallel.
In Section 6 we add the assumption T C chaos || T.

In Section 6 we assume only chaos C chaos || chaos whereas in the paper
this is an equality (the reverse direction is straightforward to prove).

. In Section 6 axiom chaos-skip (chaos C skip) has been dropped because it

can be proven as a lemma using the parallel-interchange axiom.

. In Section 6 we add the assumption chaos C chaos ; chaos.

Section 9 assumes D # {} = ¢;[|D = ([ |d € D.c; d). This distribution
axiom is not considered in the earlier paper.

Because here parallel does not distribute over an empty non-deterministic
choice (see point 2 above) in Section 12 the theorem rely-quotient needs to
assume the interference process ¢ is non-aborting (refines chaos). This also
affects many lemmas in this section that depend on theorem rely-quotient.
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