Concurrent Refinement Algebra and Rely Quotients

Julian Fell and Ian Hayes and Andrius Velykis

June 11, 2019

Abstract

The concurrent refinement algebra developed here is designed to provide a foundation for rely/guarantee reasoning about concurrent programs. The algebra builds on a complete lattice of commands by providing sequential composition, parallel composition and a novel weak conjunction operator. The weak conjunction operator coincides with the lattice supremum providing its arguments are non-aborting, but aborts if either of its arguments do. Weak conjunction provides an abstract version of a guarantee condition as a guarantee process. We distinguish between models that distribute sequential composition over non-deterministic choice from the left (referred to as being conjunctive in the refinement calculus literature) and those that don't. Least and greatest fixed points of monotone functions are provided to allow recursion and iteration operators to be added to the language. Additional iteration laws are available for conjunctive models. The rely quotient of processes c and i is the process that, if executed in parallel with i implements c. It represents an abstract version of a rely condition generalised to a process.

Contents

1	Overview	4
2	Refinement Lattice	4
3	Sequential Operator 3.1 Basic sequential	7 7 8
4	Parallel Operator 4.1 Basic parallel operator	10 10 10
5	Weak Conjunction Operator 5.1 Distributed weak conjunction	12 13
6	Concurrent Refinement Algebra	14
8	Galois Connections and Fusion Theorems 7.1 Lower Galois connections 7.2 Greatest fixpoint fusion theorems 7.3 Upper Galois connections 7.4 Least fixpoint fusion theorems Iteration 8.1 Possibly infinite iteration 8.2 Finite iteration 8.3 Infinite iteration 8.4 Combined iteration	16 17 18 19 20 21 21 23 24 25
9	Sequential composition for conjunctive models	26
10	Infimum nat lemmas	28
11	Iteration for conjunctive models	30
12	Rely Quotient Operator 12.1 Basic rely quotient	35 35 39
13	Conclusions	42

A Differences to earlier paper

1 Overview

The theories provided here were developed in order to provide support for rely/guarantee concurrency [6, 5]. The theories provide a quite general concurrent refinement algebra that builds on a complete lattice of commands by adding sequential and parallel composition operators as well as recursion. A novel weak conjunction operator is also added as this allows one to build more general specifications. The theories are based on the paper by Hayes [3], however there are some differences that have been introduced to correct and simplify the algebra and make it more widely applicable. See the appendix for a summary of the differences.

The basis of the algebra is a complete lattice of commands (Section 2). Sections 3, 4 and 5 develop laws for sequential composition, parallel composition and weak conjunction, respectively, based on the refinement lattice. Section 6 brings the above theories together. Section 7 adds least and greatest fixed points and there associated laws, which allows finite, possibly infinite and strictly infinite iteration operators to be defined in Section 8 in terms of fixed points.

The above theories do not assume that sequential composition is conjunctive. Section 9 adds this assumption and derives a further set of laws for sequential composition and iterations.

Section 12 builds on the general theory to provide a rely quotient operator that can be used to provide a general rely/guarantee framework for reasoning about concurrent programs.

2 Refinement Lattice

```
theory Refinement-Lattice
imports
Main
HOL-Library.Lattice-Syntax
begin
```

The underlying lattice of commands is complete and distributive. We follow the refinement calculus tradition so that \sqcap is non-deterministic choice and $c \sqsubseteq d$ means c is refined (or implemented) by d.

```
declare [[show-sorts]]
```

Remove existing notation for quotient as it interferes with the rely quotient

```
no-notation Equiv-Relations.quotient (infixl '/'/ 90)
```

 ${\bf class}\ refinement\text{-}lattice = complete\text{-}distrib\text{-}lattice$

begin

The refinement lattice infimum corresponds to non-deterministic choice for commands.

```
abbreviation
 refine :: 'a \Rightarrow 'a \Rightarrow bool (infix \sqsubseteq 50)
where
 c \sqsubseteq d \equiv less-eq \ c \ d
abbreviation
 refine-strict :: 'a \Rightarrow 'a \Rightarrow bool (infix \sqsubset 50)
where
 c \sqsubset d \equiv less \ c \ d
Non-deterministic choice is monotonic in both arguments
lemma inf-mono-left: a \sqsubseteq b \Longrightarrow a \sqcap c \sqsubseteq b \sqcap c
 using inf-mono by auto
lemma inf-mono-right: c \sqsubseteq d \Longrightarrow a \sqcap c \sqsubseteq a \sqcap d
 using inf-mono by auto
Binary choice is a special case of choice over a set.
lemma Inf2-inf: \bigcap \{ fx \mid x. x \in \{c, d\} \} = fc \cap fd
proof -
 have \{fx \mid x. x \in \{c, d\}\} = \{fc, fd\} by blast
 then have \bigcap \{fx \mid x. x \in \{c, d\}\} = \bigcap \{fc, fd\} by simp
 also have ... = f c \sqcap f d by simp
 finally show ?thesis.
qed
Helper lemma for choice over indexed set.
lemma INF-Inf: (   x \in X. fx) = (  \{ fx \mid x. x \in X \})
 by (simp add: Setcompr-eq-image)
lemma (in –) INF-absorb-args: ( \bigcap i \ j. \ (f::nat \Rightarrow 'c::complete-lattice) \ (i+j)) = ( \bigcap k. \ f
proof (rule order-class.order.antisym)
 show ( \bigcap k. fk) \le ( \bigcap ij. f(i+j) )
   by (simp add: complete-lattice-class.INF-lower complete-lattice-class.le-INF-iff)
next
 have \bigwedge k. \exists i j. f(i+j) \leq f k
   by (metis add.left-neutral order-class.eq-iff)
 then have \bigwedge k. \exists i. (\bigcap j \cdot f(i+j)) \leq fk
```

```
by (meson UNIV-1 complete-lattice-class.INF-lower2) then show ( | ij.f(i+j) ) \le ( | k.fk ) by (simp add: complete-lattice-class.INF-mono) qed lemma (in -) nested-Collect: \{fy | y. y \in \{g | x| x. x \in X\}\} = \{f(g | x) | x. x \in X\} by blast A transition lemma for INF distributivity properties, going from Inf to IN
```

A transition lemma for INF distributivity properties, going from Inf to INF, qualified version followed by a straightforward one.

```
lemma Inf-distrib-INF-qual:
 fixes f :: 'a \Rightarrow 'a \Rightarrow 'a
 assumes qual: P \{d \mid x \mid x \in X\}
 assumes f-Inf-distrib: \bigwedge c\ D. P\ D \Longrightarrow f\ c\ (\bigcap\ D) = \bigcap\ \{f\ c\ d\ |\ d\ .\ d\in D\ \}
 proof -
 have f c ( | x \in X. dx) = f c ( | \{dx | x. x \in X\} ) by (simp add: INF-Inf)
 also have ... = (\bigcap \{f c dx | dx. dx \in \{d x | x. x \in X\}\}) by (simp add: qual f-Inf-distrib)
 also have ... = (\bigcap \{f c (d x) | x. x \in X\}) by (simp only: nested-Collect)
 also have ... = (\bigcap x \in X. f c (d x)) by (simp add: INF-Inf)
 finally show ?thesis.
qed
lemma Inf-distrib-INF:
 fixes f :: 'a \Rightarrow 'a \Rightarrow 'a
 assumes f-Inf-distrib: \bigwedge c\ D. f\ c\ (\bigcap\ D) = \bigcap\ \{f\ c\ d\ |\ d\ .\ d\in D\ \}
 shows f c (   x \in X.   dx) = (  x \in X.   fc ( dx) )
 by (simp add: Setcompr-eq-image f-Inf-distrib image-comp)
```

end

lemmas refine-trans = order.trans

More transitivity rules to make calculational reasoning smoother

```
declare ord-eq-le-trans[trans]
declare ord-le-eq-trans[trans]
declare dual-order.trans[trans]
```

abbreviation

```
dist-over-sup :: ('a::refinement-lattice \Rightarrow 'a) \Rightarrow bool where
```

```
dist-over-sup\ F \equiv (\forall\ X . F (|\ |\ X) = (|\ |x \in X. F (x)))
```

abbreviation

```
dist-over-inf :: ('a::refinement-lattice \Rightarrow 'a) \Rightarrow bool where dist-over-inf F \equiv (\forall X . F ( \bigcap X) = (\bigcap x \in X. F (x)))
```

end

3 Sequential Operator

theory Sequential imports Refinement-Lattice begin

3.1 Basic sequential

The sequential composition operator ";" is associative and has identity nil but it is not commutative. It has \bot as a left annihilator.

```
locale seq =
fixes seq :: 'a :: refinement-lattice \Rightarrow 'a \Rightarrow 'a \text{ (infixl }; 90)
assumes seq\text{-bot }[simp]: \bot ; c = \bot
locale nil =
fixes nil :: 'a :: refinement-lattice \ (nil)
```

The monoid axioms imply ";" is associative and has identity nil. Abort is a left annihilator of sequential composition.

```
locale sequential = seq + nil + seq: monoid seq nil begin
```

declare seq.assoc [algebra-simps, field-simps]

```
lemmas seq-assoc = seq.assoc | lemmas seq-nil-right = seq.right-neutral | lemmas seq-nil-left = seq.left-neutral
```

end

3.2 Distributed sequential

Sequential composition distributes across arbitrary infima from the right but only across the binary (finite) infima from the left and hence it is monotonic in both arguments. We consider left distribution first. Note that Section 9 considers the case in which the weak-seq-inf-distrib axiom is strengthened to an equality.

```
locale seq-distrib-left = sequential +
 assumes weak-seq-inf-distrib:
   (c::'a::refinement-lattice); (d_0 \sqcap d_1) \sqsubseteq (c;d_0 \sqcap c;d_1)
begin
Left distribution implies sequential composition is monotonic is its right argument
lemma seq-mono-right: c_0 \sqsubseteq c_1 \Longrightarrow d; c_0 \sqsubseteq d; c_1
 by (metis inf .absorb-iff2 le-inf-iff weak-seq-inf-distrib)
lemma seq-bot-right [simp]: c; \perp \sqsubseteq c
  by (metis bot.extremum seq.right-neutral seq-mono-right)
end
locale seq-distrib-right = sequential +
 assumes Inf-seq-distrib:
   begin
lemma INF-seq-distrib: (\bigcap c \in C. fc); d = (\bigcap c \in C. fc; d)
 using Inf-seq-distrib by (auto simp add: image-comp)
lemma inf-seq-distrib: (c_0 \sqcap c_1); d = (c_0; d \sqcap c_1; d)
proof -
 have (c_0 \sqcap c_1); d = (\prod \{c_0, c_1\}); d by simp
 also have ... = (\bigcap c \in \{c_0, c_1\}. c; d) by (fact Inf-seq-distrib)
 also have ... = (c_0; d) \sqcap (c_1; d) by simp
 finally show ?thesis.
qed
lemma seq-mono-left: c_0 \sqsubseteq c_1 \Longrightarrow c_0; d \sqsubseteq c_1; d
 by (metis inf .absorb-iff2 inf-seq-distrib)
lemma seq-top [simp]: \top ; c = \top
proof -
 have \top ; c = ( \bigcap a \in \{\}. \ a ; c)
```

```
by (metis Inf-empty Inf-seq-distrib)
 thus ?thesis
   by simp
qed
primrec seq-power :: 'a \Rightarrow nat \Rightarrow 'a \text{ (infixr }; ^80) \text{ where}
   seq-power-0: a ; ^0 = nil
 | seq-power-Suc: a; ^{\circ}Suc n = a; (a; ^{\circ}n)
notation (latex output)
 seq-power ((-<sup>-</sup>) [1000] 1000)
notation (HTML output)
 seq-power ((-<sup>-</sup>) [1000] 1000)
lemma seq-power-front: (a; \hat{n}); a = a; (a; \hat{n})
 by (induct n, simp-all add: seq-assoc)
lemma seq-power-split-less: i < j \Longrightarrow (b; \hat{j}) = (b; \hat{j}); (b; \hat{j}) = (b; \hat{j})
proof (induct j arbitrary: i type: nat)
 case 0
 thus ?case by simp
next
 case (Suc j)
 have b ; ^Suc j = b ; (b ; ^i) ; (b ; ^i (j - i))
   using Suc.hyps Suc.prems less-Suc-eq seq-assoc by auto
 also have ... = (b; \hat{i}); b; (b; \hat{i}) by (simp add: seq-power-front)
 also have ... = (b; \hat{i}); (b; \hat{i}) (Suc j - i)
   using Suc.prems Suc-diff-le seq-assoc by force
 finally show ?case.
qed
end
locale seq-distrib = seq-distrib-right + seq-distrib-left
begin
lemma seq-mono: c_1 \sqsubseteq d_1 \Longrightarrow c_2 \sqsubseteq d_2 \Longrightarrow c_1; c_2 \sqsubseteq d_1; d_2
 using seq-mono-left seq-mono-right by (metis inf.orderE le-infI2)
```

end

4 Parallel Operator

theory Parallel imports Refinement-Lattice begin

4.1 Basic parallel operator

The parallel operator is associative, commutative and has unit skip and has as an annihilator the lattice bottom.

```
locale skip =
fixes skip :: 'a::refinement-lattice \ (skip)

locale par =
fixes par :: 'a::refinement-lattice \Rightarrow 'a \Rightarrow 'a \ (infixl \parallel 75)
assumes abort-par: \perp \parallel c = \perp

locale parallel = par + skip + par: comm-monoid par skip
begin

lemmas [algebra-simps, field-simps] =
par.assoc
par.commute
par.left-commute

lemmas par-assoc = par.assoc
```

end

4.2 Distributed parallel

The parallel operator distributes across arbitrary non-empty infima.

```
 \begin{array}{l} \textbf{locale} \ par-distrib = parallel \ + \\ \textbf{assumes} \ par-Inf-distrib: \ D \neq \{\} \Longrightarrow c \parallel ( \ \square \ D) = ( \ \square \ d \in D. \ c \parallel d) \end{array}
```

begin

```
lemma Inf-par-distrib: D \neq \{\} \Longrightarrow (\bigcap D) \parallel c = (\bigcap d \in D. \ d \parallel c)
 using par-Inf-distrib par-commute by simp
lemma par-INF-distrib: X \neq \{\} \Longrightarrow c \parallel (\prod x \in X. \ dx) = (\prod x \in X. \ c \parallel dx)
 using par-Inf-distrib by (auto simp add: image-comp)
lemma INF-par-distrib: X \neq \{\} \Longrightarrow (\prod x \in X. dx) \parallel c = (\prod x \in X. dx \parallel c)
 using par-INF-distrib par-commute by (metis (mono-tags, lifting) INF-cong)
lemma INF-INF-par-distrib:
   X \neq \{\} \Longrightarrow Y \neq \{\} \Longrightarrow (\bigcap x \in X. \ c \ x) \parallel (\bigcap y \in Y. \ d \ y) = (\bigcap x \in X. \ \bigcap y \in Y. \ c \ x \parallel d \ y)
proof -
 assume nonempty-X: X \neq \{\}
 assume nonempty-Y: Y \neq \{\}
 have (   x \in X. \ c \ x ) \parallel (  y \in Y. \ d \ y ) = (  x \in X. \ c \ x \parallel (  y \in Y. \ d \ y ) )
   using INF-par-distrib by (metis nonempty-X)
 also have ... = ( | x \in X. | y \in Y. cx | dy ) using par-INF-distrib by (metis nonempty-Y)
 thus ?thesis by (simp add: calculation)
qed
lemma inf-par-distrib: (c_0 \sqcap c_1) \parallel d = (c_0 \parallel d) \sqcap (c_1 \parallel d)
proof -
 have (c_0 \sqcap c_1) \parallel d = (\prod \{c_0, c_1\}) \parallel d by simp
 also have ... = (\bigcap c \in \{c_0, c_1\}. c \mid\mid d) using Inf-par-distrib by (meson insert-not-empty)
 also have \dots = c_0 \parallel d \sqcap c_1 \parallel d by simp
 finally show ?thesis.
qed
lemma inf-par-distrib2: d \parallel (c_0 \sqcap c_1) = (d \parallel c_0) \sqcap (d \parallel c_1)
 using inf-par-distrib par-commute by auto
lemma inf-par-product: (a \sqcap b) \parallel (c \sqcap d) = (a \parallel c) \sqcap (a \parallel d) \sqcap (b \parallel c) \sqcap (b \parallel d)
 by (simp add: inf-commute inf-par-distrib inf-par-distrib2 inf-sup-aci(3))
lemma par-mono: c_1 \sqsubseteq d_1 \Longrightarrow c_2 \sqsubseteq d_2 \Longrightarrow c_1 \parallel c_2 \sqsubseteq d_1 \parallel d_2
 by (metis inf.orderE le-inf-iff order-refl inf-par-distrib par-commute)
end
end
```

5 Weak Conjunction Operator

theory Conjunction imports Refinement-Lattice begin

The weak conjunction operator \cap is similar to least upper bound (\sqcup) but is abort strict, i.e. the lattice bottom is an annihilator: $c \cap \bot = \bot$. It has identity the command chaos that allows any non-aborting behaviour.

```
locale chaos = fixes chaos :: 'a::refinement-lattice (chaos) |
locale conj = fixes conj :: 'a::refinement-lattice \Rightarrow 'a \Rightarrow 'a (infixl \cap 80) assumes conj-bot-right: c \cap \bot = \bot
```

Conjunction forms an idempotent, commutative monoid (i.e. a semi-lattice), with identity chaos.

locale conjunction = conj + chaos + conj: semilattice-neutr conj chaos

```
begin
```

```
lemmas [algebra-simps, field-simps] = conj.assoc conj.commute conj.left-commute

lemmas conj-assoc = conj.assoc lemmas conj-commute = conj.commute lemmas conj-idem = conj.idem lemmas conj-idem = conj.right-neutral lemmas conj-chaos-left = conj.left-neutral lemma conj-bot-left [simp]: \bot \cap c = \bot using conj-bot-right local.conj-commute by fastforce lemma conj-bot-right by auto lemma conj-distrib1: c \cap (d_0 \cap d_1) = (c \cap d_0) \cap (c \cap d_1)
```

by (*metis conj-assoc conj-commute conj-idem*)

end

5.1 Distributed weak conjunction

The weak conjunction operator distributes across arbitrary non-empty infima.

```
locale conj-distrib = conjunction +
 assumes Inf-conj-distrib: D \neq \{\} \Longrightarrow (\bigcap D) \cap c = (\bigcap d \in D. \ d \cap c)
begin
lemma conj-Inf-distrib: D \neq \{\} \Longrightarrow c \cap (\bigcap D) = (\bigcap d \in D. c \cap d)
 using Inf-conj-distrib conj-commute by auto
lemma inf-conj-distrib: (c_0 \sqcap c_1) \cap d = (c_0 \cap d) \cap (c_1 \cap d)
proof -
 have (c_0 \sqcap c_1) \cap d = (\prod \{c_0, c_1\}) \cap d by simp
 also have ... = (\bigcap c \in \{c_0, c_1\}. c \cap d) by (rule\ Inf-conj-distrib, simp)
 also have ... = (c_0 \cap d) \cap (c_1 \cap d) by simp
 finally show ?thesis.
qed
lemma inf-conj-product: (a \sqcap b) \cap (c \sqcap d) = (a \cap c) \cap (a \cap d) \cap (b \cap c) \cap (b \cap d)
 by (metis inf-conj-distrib conj-commute inf-assoc)
lemma conj-mono: c_0 \sqsubseteq d_0 \Longrightarrow c_1 \sqsubseteq d_1 \Longrightarrow c_0 \cap c_1 \sqsubseteq d_0 \cap d_1
 by (metis inf .absorb-iff1 inf-conj-product inf-right-idem)
lemma conj-mono-left: c_0 \sqsubseteq c_1 \Longrightarrow c_0 \cap d \sqsubseteq c_1 \cap d
 by (simp add: conj-mono)
lemma conj-mono-right: c_0 \sqsubseteq c_1 \Longrightarrow d \cap c_0 \sqsubseteq d \cap c_1
 by (simp add: conj-mono)
lemma conj-refine: c_0 \sqsubseteq d \Longrightarrow c_1 \sqsubseteq d \Longrightarrow c_0 \cap c_1 \sqsubseteq d
 by (metis conj-idem conj-mono)
lemma refine-to-conj: c \sqsubseteq d_0 \Longrightarrow c \sqsubseteq d_1 \Longrightarrow c \sqsubseteq d_0 \cap d_1
 by (metis conj-idem conj-mono)
lemma conjoin-non-aborting: chaos \sqsubseteq c \Longrightarrow d \sqsubseteq d \cap c
 by (metis conj-mono order.refl conj-chaos)
lemma conjunction-sup: c \cap d \sqsubseteq c \sqcup d
 by (simp add: conj-refine)
```

```
lemma conjunction-sup-nonaborting:

assumes chaos \sqsubseteq c and chaos \sqsubseteq d

shows c \cap d = c \cup d

proof (rule \ antisym)

show c \cup d \sqsubseteq c \cap d using assms(1) \ assms(2) \ conjoin-non-aborting local.conj-commute

by fastforce

next

show c \cap d \sqsubseteq c \cup d by (metis \ conjunction-sup)

qed

lemma conjoin-top: chaos \sqsubseteq c \Longrightarrow c \cap T = T

by (simp \ add: \ conjunction-sup-nonaborting)

end
```

6 Concurrent Refinement Algebra

This theory brings together the three main operators: sequential composition, parallel composition and conjunction, as well as the iteration operators.

```
theory CRA
imports
Sequential
Conjunction
Parallel
begin
```

Locale sequential-parallel brings together the sequential and parallel operators and relates their identities.

```
locale sequential-parallel = seq-distrib + par-distrib + assumes \ nil-par-nil: nil \parallel nil \sqsubseteq nil and skip-nil: skip \sqsubseteq nil and skip-skip: skip \sqsubseteq skip; skip begin

lemma nil-absorb: nil \parallel nil = nil \ using \ nil-par-nil skip-nil par-skip by (metis \ inf \ .absorb-iff2 inf \ .orderE \ inf-par-distrib2)

lemma skip-absorb [simp]: skip; skip = skip by (metis \ antisym \ seq-mono-right seq-nil-right skip-skip \ skip-nil)
```

end

Locale conjunction-parallel brings together the weak conjunction and parallel operators and relates their identities. It also introduces the interchange axiom for conjunction and parallel.

```
locale conjunction-parallel = conj-distrib + par-distrib +
 assumes chaos-par-top: \top \sqsubseteq chaos \parallel \top
 assumes chaos-par-chaos: chaos \sqsubseteq chaos \parallel chaos
 assumes parallel-interchange: (c_0 \parallel c_1) \cap (d_0 \parallel d_1) \sqsubseteq (c_0 \cap d_0) \parallel (c_1 \cap d_1)
begin
lemma chaos-skip: chaos \sqsubseteq skip
proof -
 have chaos = (chaos \parallel skip) \cap (skip \parallel chaos) by simp
 then have ... \sqsubseteq (chaos \cap skip) \parallel (skip \cap chaos) using parallel-interchange by blast
 thus ?thesis by auto
qed
lemma chaos-par-chaos-eq: chaos \parallel chaos
 by (metis antisym chaos-par-chaos chaos-skip order-refl par-mono par-skip)
lemma nonabort-par-top: chaos \sqsubseteq c \Longrightarrow c \parallel \top = \top
 by (metis chaos-par-top par-mono top.extremum-uniqueI)
lemma skip-conj-top: skip \cap \top = \top
by (simp add: chaos-skip conjoin-top)
lemma conj-distrib2: c \sqsubseteq c \parallel c \Longrightarrow c \cap (d_0 \parallel d_1) \sqsubseteq (c \cap d_0) \parallel (c \cap d_1)
proof -
 assume c \sqsubseteq c \parallel c
 then have c \cap (d_0 \parallel d_1) \sqsubseteq (c \parallel c) \cap (d_0 \parallel d_1) by (metis conj-mono order.reft)
 thus ?thesis by (metis parallel-interchange refine-trans)
ged
```

end

Locale conjunction-sequential brings together the weak conjunction and sequential operators. It also introduces the interchange axiom for conjunction and sequential.

```
locale conjunction-sequential = conj-distrib + seq-distrib + assumes chaos-seq-chaos: chaos \sqsubseteq chaos; chaos assumes sequential-interchange: (c_0;c_1) \cap (d_0;d_1) \sqsubseteq (c_0 \cap d_0); (c_1 \cap d_1) begin
```

```
lemma chaos-nil: chaos \square nil
 by (metis conj-chaos local.conj-commute seq-nil-left seq-nil-right
     sequential-interchange)
lemma chaos-seq-absorb: chaos = chaos;chaos
proof (rule antisym)
 show chaos \sqsubseteq chaos; chaos by (simp add: chaos-seq-chaos)
next
 show chaos; chaos \sqsubseteq chaos using chaos-nil
   using seq-mono-left seq-nil-left by fastforce
qed
lemma seq-bot-conj: c; \perp \cap d \sqsubseteq (c \cap d); \perp
  by (metis (no-types) conj-bot-left seq-nil-right sequential-interchange)
lemma conj-seq-bot-right [simp]: c; \perp \cap c = c; \perp
proof (rule antisym)
 show lr: c; \perp \cap c \sqsubseteq c; \perp by (metis seq-bot-conj conj-idem)
next
 show rl: c; \bot \sqsubseteq c; \bot \cap c
   by (metis conj-idem conj-mono-right seq-bot-right)
qed
lemma conj-distrib3: c \sqsubseteq c; c \Longrightarrow c \cap (d_0; d_1) \sqsubseteq (c \cap d_0); (c \cap d_1)
proof -
 assume c \sqsubseteq c;c
 then have c \cap (d_0;d_1) \sqsubseteq (c;c) \cap (d_0;d_1) by (metis conj-mono order.refl)
 thus ?thesis by (metis sequential-interchange refine-trans)
qed
end
Locale cra brings together sequential, parallel and weak conjunction.
locale cra = sequential-parallel + conjunction-parallel + conjunction-sequential
```

7 Galois Connections and Fusion Theorems

theory Galois-Connections

end

imports Refinement-Lattice **begin**

The concept of Galois connections is introduced here to prove the fixed-point fusion lemmas. The definition of Galois connections used is quite simple but encodes a lot of information. The material in this section is largely based on the work of the Eindhoven Mathematics of Program Construction Group [1] and the reader is referred to their work for a full explanation of this section.

7.1 Lower Galois connections

```
lemma Collect-2set [simp]: \{F \mid x \mid x \mid x = a \lor x = b\} = \{F \mid a, F \mid b\}
 by auto
locale lower-galois-connections
begin
definition
 l-adjoint :: ('a::refinement-lattice \Rightarrow 'a) \Rightarrow ('a \Rightarrow 'a) (-\( ^\beta [201] 200)
where
 (F^{\flat}) x \equiv \prod \{y. x \sqsubseteq F y\}
lemma dist-inf-mono:
 assumes distF: dist-over-inf F
 shows mono F
proof
 fix x :: 'a and y :: 'a
 assume x \sqsubseteq y
 then have F x = F (x \sqcap y) by (simp add: le-iff-inf)
 also have \dots = F x \sqcap F y
 proof -
   from distF
   have F(\bigcap \{x, y\}) = \bigcap \{Fx, Fy\} by (drule\text{-}tac\ x = \{x, y\} \text{ in } spec, simp)
   then show F(x \sqcap y) = Fx \sqcap Fy by simp
 finally show F x \sqsubseteq F y by (metis le-iff-inf)
qed
lemma l-cancellation: dist-over-inf F \Longrightarrow x \sqsubseteq (F \circ F^{\flat}) x
proof -
 assume dist: dist-over-inf F
 define Y where Y = \{F \ y \mid y. \ x \sqsubseteq F \ y\}
```

```
define X where X = \{x\}
 have (\forall y \in Y. (\exists x \in X. x \sqsubseteq y)) using X-def Y-def CollectD singletonI by auto
 then have \square X \sqsubseteq \square Y by (simp add: Inf-mono)
 then have x \sqsubseteq \bigcap \{F \mid y \mid y \mid x \sqsubseteq F \mid y\} by (simp add: X-def Y-def)
 then have x \sqsubseteq F ( \bigcap \{y. x \sqsubseteq F y \}) by (simp add: dist le-INF-iff)
 thus ?thesis by (metis comp-def l-adjoint-def)
qed
lemma l-galois-connection: dist-over-inf F \Longrightarrow ((F^{\flat}) \ x \sqsubseteq y) \longleftrightarrow (x \sqsubseteq F \ y)
proof
 assume x \sqsubseteq F y
 then have \bigcap \{y. \ x \sqsubseteq F \ y\} \sqsubseteq y \ \textbf{by} \ (simp \ add: Inf-lower)
 thus (F^{\flat}) x \sqsubseteq y by (metis\ l\text{-}adjoint\text{-}def)
 assume dist: dist-over-inf F then have monoF: mono F by (simp add: dist-inf-mono)
 assume (F^{\flat}) x \sqsubseteq y then have a: F((F^{\flat}) x) \sqsubseteq F y by (simp \ add: monoD \ monoF)
 have x \sqsubseteq F((F^{\flat}) x) using dist l-cancellation by simp
 thus x \sqsubseteq F y using a by auto
qed
lemma v-simple-fusion: mono G \Longrightarrow \forall x. ((F \circ G) \ x \sqsubseteq (H \circ F) \ x) \Longrightarrow F (gfp \ G) \sqsubseteq gfp
 by (metis comp-eq-dest-lhs gfp-unfold gfp-upperbound)
```

7.2 Greatest fixpoint fusion theorems

Combining lower Galois connections and greatest fixed points allows elegant proofs of the weak fusion lemmas.

```
theorem fusion-gfp-geq:

assumes monoH: mono H

and distribF: dist-over-inf F

and comp-geq: \bigwedge x. ((H \circ F) \ x \sqsubseteq (F \circ G) \ x)

shows gfp H \sqsubseteq F (gfp G)

proof —

have (gfp \ H) \sqsubseteq (F \circ F^{\flat}) (gfp \ H) using distribF l-cancellation by simp

then have H (gfp \ H) \sqsubseteq H ((F \circ F^{\flat}) (gfp \ H)) by (simp add: monoD monoH)

then have H (gfp \ H) \sqsubseteq F ((G \circ F^{\flat}) (gfp \ H)) using comp-geq by (metis comp-def

refine-trans)

then have (F^{\flat}) (H (gfp \ H)) \sqsubseteq (G \circ F^{\flat}) (gfp \ H) using distribF by (metis (mono-tags)

l-galois-connection)

then have (F^{\flat}) (gfp \ H) \sqsubseteq (gfp \ G) by (metis comp-apply gfp-unfold gfp-upperbound

monoH)
```

```
thus gfp H \sqsubseteq F (gfp G) using distribF by (metis (mono-tags) l-galois-connection)
qed
theorem fusion-gfp-eq:
 assumes monoH: mono H and monoG: mono G
 and distF: dist-over-inf F
 and fgh-comp: \bigwedge x. ((F \circ G) x = (H \circ F) x)
 shows F(gfp G) = gfp H
proof (rule antisym)
 show F(gfp\ G) \sqsubseteq (gfp\ H) by (metis fgh-comp le-less v-simple-fusion monoG)
next
 have \bigwedge x. ((H \circ F) x \sqsubseteq (F \circ G) x) using fgh-comp by auto
 then show gfp H \sqsubseteq F (gfp G) using monoH distF fusion-gfp-geq by blast
qed
end
7.3
        Upper Galois connections
locale upper-galois-connections
begin
definition
 u-adjoint :: ('a::refinement-lattice \Rightarrow 'a) \Rightarrow ('a \Rightarrow 'a) (-# [201] 200)
 (F^{\#}) x \equiv | | \{ y. F y \sqsubseteq x \} |
lemma dist-sup-mono:
 assumes distF: dist-over-sup F
 shows mono F
proof
 fix x :: 'a and y :: 'a
 assume x \sqsubseteq y
 then have F y = F (x \sqcup y) by (simp add: le-iff-sup)
 also have \dots = F x \sqcup F y
 proof -
  from distF
  have F(||\{x, y\}) = ||\{Fx, Fy\}| by (drule-tac\ x = \{x, y\}| in spec, simp)
  then show F(x \sqcup y) = Fx \sqcup Fy by simp
 qed
 finally show F x \sqsubseteq F y by (metis le-iff-sup)
```

```
lemma u-cancellation: dist-over-sup F \Longrightarrow (F \circ F^{\#}) x \sqsubseteq x
proof -
 assume dist: dist-over-sup F
 define Y where Y = \{F \mid y \mid y . F \mid y \sqsubseteq x\}
 define X where X = \{x\}
 have (\forall y \in Y. (\exists x \in X. y \sqsubseteq x)) using X-def Y-def CollectD singletonI by auto
 then have | | Y \sqsubseteq | | X by (simp add: Sup-mono)
 then have | | \{Fy \mid y. Fy \sqsubseteq x\} \sqsubseteq x \text{ by } (simp \ add: X-def Y-def) |
 then have F(| \{y. F y \sqsubseteq x\}) \sqsubseteq x using SUP-le-iff dist by fastforce
 thus ?thesis by (metis comp-def u-adjoint-def)
qed
lemma u-galois-connection: dist-over-sup F \Longrightarrow (F \times \Box y) \longleftrightarrow (\times \Box (F^{\#}) y)
proof
 assume dist: dist-over-sup F then have monoF: mono F by (simp add: dist-sup-mono)
 assume x \sqsubseteq (F^{\#}) y then have a: F x \sqsubseteq F ((F^{\#}) y) by (simp\ add:\ monoD\ monoF)
 have F((F^{\#}) y) \sqsubseteq y using dist u-cancellation by simp
 thus F x \sqsubseteq y using a by auto
next
 assume F x \sqsubseteq y
 then have x \sqsubseteq | | \{x. Fx \sqsubseteq y\} by (simp add: Sup-upper)
 thus x \sqsubseteq (F^{\#}) y by (metis u-adjoint-def)
lemma u-simple-fusion: mono H \Longrightarrow \forall x. ((F \circ G) x \sqsubseteq (G \circ H) x) \Longrightarrow lfp F \sqsubseteq G (lfp H)
 by (metis comp-def lfp-lowerbound lfp-unfold)
```

7.4 Least fixpoint fusion theorems

Combining upper Galois connections and least fixed points allows elegant proofs of the strong fusion lemmas.

```
theorem fusion-lfp-leq:

assumes monoH: mono H

and distribF: dist-over-sup F

and comp-leq: \bigwedge x. \ ((F \circ G) \ x \sqsubseteq (H \circ F) \ x)

shows F \ (lfp \ G) \sqsubseteq (lfp \ H)

proof —

have ((F \circ F^{\#}) \ (lfp \ H)) \sqsubseteq lfp \ H using distribF u-cancellation by simp

then have H \ ((F \circ F^{\#}) \ (lfp \ H)) \sqsubseteq H \ (lfp \ H) by (simp add: monoD monoH)

then have F \ ((G \circ F^{\#}) \ (lfp \ H)) \sqsubseteq H \ (lfp \ H) using comp-leq by (metis comp-def

refine-trans)
```

```
then have (G \circ F^{\#}) (lfp H) \sqsubseteq (F^{\#}) (H (lfp H)) using distribF by (metis (mono-tags)
u-galois-connection)
 then have (lfp\ G) \sqsubseteq (F^{\#})\ (lfp\ H) by (metis comp-def def-lfp-unfold lfp-lowerbound
 thus F(lfp G) \sqsubseteq (lfp H) using distribF by (metis (mono-tags) u-galois-connection)
qed
theorem fusion-lfp-eq:
 assumes monoH: mono H and monoG: mono G
 and distF: dist-over-sup F
 and fgh-comp: \bigwedge x. ((F \circ G) x = (H \circ F) x)
 shows F(lfp G) = (lfp H)
proof (rule antisym)
 show lfp H \sqsubseteq F (lfp G) by (metis monoG fgh-comp eq-iff upper-galois-connections.u-simple-fusion)
next
 have \bigwedge x. (F \circ G) x \sqsubseteq (H \circ F) x using fgh-comp by auto
 then show F(lfp G) \sqsubseteq (lfp H) using monoH distF fusion-lfp-leq by blast
qed
end
end
```

8 Iteration

```
theory Iteration
imports
Galois-Connections
CRA
begin
```

8.1 Possibly infinite iteration

Iteration of finite or infinite steps can be defined using a least fixed point.

 $\label{eq:locale} \textbf{locale} \ \textit{finite-or-infinite-iteration} = \textit{seq-distrib} + \textit{upper-galois-connections} \\ \textbf{begin}$

```
definition
```

```
iter :: 'a \Rightarrow 'a \ (-^{\omega} [103] \ 102)

where

c^{\omega} \equiv lfp \ (\lambda \ x. \ nil \cap c;x)
```

```
by (meson inf-mono order-refl seq-mono-right mono-def)
This fixed point definition leads to the two core iteration lemmas: folding and
induction.
theorem iter-unfold: c^{\omega} = nil \sqcap c; c^{\omega}
 using iter-def iter-step-mono lfp-unfold by auto
lemma iter-induct-nil: nil \sqcap c;x \sqsubseteq x \Longrightarrow c^{\omega} \sqsubseteq x
 by (simp add: iter-def lfp-lowerbound)
lemma iter0: c^{\omega} \sqsubseteq nil
 by (metis iter-unfold sup.orderI sup-inf-absorb)
lemma iter1: c^{\omega} \sqsubseteq c
 by (metis inf-le2 iter0 iter-unfold order.trans seq-mono-right seq-nil-right)
lemma iter2 [simp]: c^{\omega}; c^{\omega} = c^{\omega}
proof (rule antisym)
 show c^{\omega};c^{\omega} \sqsubseteq c^{\omega} using iter0 seq-mono-right by fastforce
next
 have a: nil \sqcap c; c^{\omega}; c^{\omega} \sqsubseteq nil \sqcap c; c^{\omega} \sqcap c; c^{\omega}; c^{\omega}
    by (metis inf-greatest inf-le2 inf-mono iter0 order-refl seq-distrib-left.seq-mono-right
seq-distrib-left-axioms seq-nil-right)
 then have b: \ldots = c^{\omega} \sqcap c; c^{\omega}; c^{\omega} using iter-unfold by auto
 then have c: ... = (nil \sqcap c; c^{\omega}); c^{\omega} by (simp \ add: inf-seq-distrib)
 thus c^{\omega} \sqsubseteq c^{\omega}; c^{\omega} using a iter-induct-nil iter-unfold seq-assoc by auto
qed
lemma iter-mono: c \sqsubseteq d \Longrightarrow c^{\omega} \sqsubseteq d^{\omega}
proof -
 assume c \sqsubseteq d
 then have nil \sqcap c; d^{\omega} \sqsubseteq d; d^{\omega} by (metis inf.absorb-iff2 inf-left-commute inf-seq-distrib)
 then have nil \sqcap c; d^{\omega} \sqsubseteq d^{\omega} by (metis inf.bounded-iff inf-sup-ord(1) iter-unfold)
 thus ?thesis by (simp add: iter-induct-nil)
qed
lemma iter-abort: \perp = nil^{\omega}
 by (simp add: antisym iter-induct-nil)
lemma nil-iter: T^{\omega} = nil
  by (metis (no-types) inf-top.right-neutral iter-unfold seq-top)
```

lemma iter-step-mono: mono $(\lambda x. nil \sqcap c;x)$

8.2 Finite iteration

Iteration of a finite number of steps (Kleene star) is defined using the greatest fixed point.

```
locale finite-iteration = seq-distrib + lower-galois-connections
begin
definition
 fiter :: 'a \Rightarrow 'a \ (-^* \ [101] \ 100)
 c^* \equiv gfp \ (\lambda \ x. \ nil \ \sqcap c;x)
lemma fin-iter-step-mono: mono (\lambda x. nil \Box c;x)
 by (meson inf-mono order-refl seq-mono-right mono-def)
This definition leads to the two core iteration lemmas: folding and induction.
lemma fiter-unfold: c^* = nil \sqcap c; c^*
 using fiter-def gfp-unfold fin-iter-step-mono by auto
lemma fiter-induct-nil: x \sqsubseteq nil \sqcap c; x \Longrightarrow x \sqsubseteq c^*
 by (simp add: fiter-def gfp-upperbound)
lemma fiter0: c^* \sqsubseteq nil
 by (metis fiter-unfold inf.cobounded1)
lemma fiter1: c^* \sqsubseteq c
 by (metis fiter0 fiter-unfold inf-le2 order.trans seq-mono-right seq-nil-right)
lemma fiter-induct-eq: c^*; d = gfp(\lambda x. c; x \sqcap d)
proof -
 define F where F = (\lambda x. x;d)
 define G where G = (\lambda x. nil \sqcap c;x)
 define H where H = (\lambda x. c; x \sqcap d)
  have FG: F \circ G = (\lambda \ x. \ c; x; d \sqcap d) by (simp add: F-def G-def comp-def inf-commute
inf-seq-distrib)
 have HF: H \circ F = (\lambda \ x. \ c; x; d \sqcap d) by (metis comp-def seq-assoc H-def F-def)
```

have adjoint: dist-over-inf F using Inf-seq-distrib F-def by simp

```
have monoH: mono H
  by (metis H-def inf-mono-left monoI seq-distrib-left.seq-mono-right seq-distrib-left-axioms)
 have monoG: mono G by (metis G-def inf-mono-right mono-def seq-mono-right)
 have \forall x. ((F \circ G) x = (H \circ F) x) using FG HF by simp
 then have F(gfp G) = gfp H using adjoint monoG monoH fusion-gfp-eq by blast
  then have (gfp (\lambda x. nil \sqcap c;x));d = gfp (\lambda x. c;x \sqcap d) using F-def G-def H-def
inf-commute by simp
 thus ?thesis by (metis fiter-def)
qed
theorem fiter-induct: x \sqsubseteq d \sqcap c; x \Longrightarrow x \sqsubseteq c^*; d
proof -
 assume x \sqsubseteq d \sqcap c; x
 then have x \sqsubseteq c; x \sqcap d using inf-commute by simp
 then have x \sqsubseteq gfp \ (\lambda \ x. \ c; x \sqcap d) by (simp add: gfp-upperbound)
 thus ?thesis by (metis (full-types) fiter-induct-eq)
qed
lemma fiter2 [simp]: c^*:c^* = c^*
proof -
 have lr: c^*; c^* \sqsubseteq c^* using fiter0 seq-mono-right seq-nil-right by fastforce
 have rl: c^* \sqsubseteq c^*; c^* by (metis fiter-induct fiter-unfold inf.right-idem order-refl)
 thus ?thesis by (simp add: antisym lr)
qed
lemma fiter3 [simp]: (c^*)^* = c^*
by (metis dual-order.refl fiter0 fiter1 fiter2 fiter-induct inf.commute inf-absorb1 seq-nil-right)
lemma fiter-mono: c \sqsubseteq d \Longrightarrow c^* \sqsubseteq d^*
proof -
 assume c \sqsubseteq d
  then have c^* \sqsubseteq nil \sqcap d; c^* by (metis fiter0 fiter1 fiter2 inf.bounded-iff refine-trans
seq-mono-left)
 thus ?thesis by (metis seq-nil-right fiter-induct)
ged
```

8.3 Infinite iteration

end

Iteration of infinite number of steps can be defined using a least fixed point.

```
\label{eq:locale} \textbf{locale} \ in \textit{finite-iteration} = \textit{seq-distrib} + \textit{lower-galois-connections} \\ \textbf{begin}
```

```
definition
 infiter :: 'a \Rightarrow 'a (-\infty [105] 106)
where
 c^{\infty} \equiv lfp (\lambda x. c;x)
lemma infiter-step-mono: mono (\lambda x. c;x)
 by (meson inf-mono order-refl seq-mono-right mono-def)
This definition leads to the two core iteration lemmas: folding and induction.
theorem infiter-unfold: c^{\infty} = c;c^{\infty}
 using infiter-def infiter-step-mono lfp-unfold by auto
lemma infiter-induct: c; x \sqsubseteq x \Longrightarrow c^{\infty} \sqsubseteq x
 by (simp add: infiter-def lfp-lowerbound)
theorem infiter-unfold-any: c^{\infty} = (c^{\uparrow}); c^{\infty}
proof (induct i)
 case 0
 thus ?case by simp
next
 case (Suc i)
 thus ?case using infiter-unfold seq-assoc seq-power-Suc by auto
ged
lemma infiter-annil: c^{\infty};x = c^{\infty}
proof -
 have \forall a. (\bot :: 'a) \sqsubseteq a
   by auto
 thus ?thesis
   by (metis (no-types) eq-iff inf.cobounded2 infiter-induct infiter-unfold inf-sup-ord(1)
seq-assoc seq-bot weak-seq-inf-distrib seq-nil-right)
qed
end
```

8.4 Combined iteration

The three different iteration operators can be combined to show that finite iteration refines finite-or-infinite iteration.

```
\begin{tabular}{l} \textbf{locale} iteration = finite-or-infinite-iteration + finite-iteration + finite-iteration + finite-iteration \\ \textbf{begin} \end{tabular}
```

```
lemma refine-iter: c^{\omega} \sqsubseteq c^{\star}
 by (metis seq-nil-right order.refl iter-unfold fiter-induct)
lemma iter-absorption [simp]: (c^{\omega})^* = c^{\omega}
proof (rule antisym)
 show (c^{\omega})^* \sqsubseteq c^{\omega} by (metis\ fiter\ l)
next
 show c^{\omega} \sqsubseteq (c^{\omega})^* by (metis fiter1 fiter-induct inf-left-idem iter2 iter-unfold seq-nil-right
sup.cobounded2 sup.orderE sup-commute)
qed
lemma infiter-inf-top: c^{\infty} = c^{\omega}; \top
proof -
 have lr: c^{\infty} \sqsubseteq c^{\omega} ; \top
 proof -
   have c : (c^{\omega} : \top) = nil : \top \sqcap c : c^{\omega} : \top
    using semigroup.assoc seq.semigroup-axioms by fastforce
   then show ?thesis
    by (metis (no-types) eq-refl finite-or-infinite-iteration.iter-unfold
      finite-or-infinite-iteration-axioms infiter-induct
       seq-distrib-right.inf-seq-distrib seq-distrib-right-axioms)
 qed
 have rl: c^{\omega} ; \top \sqsubseteq c^{\infty}
   by (metis inf-le2 infiter-annil infiter-unfold iter-induct-nil seq-mono-left)
 thus ?thesis using antisym-conv lr by blast
qed
lemma infiter-fiter-top:
 shows c^{\infty} \sqsubseteq c^{\star}; \top
 by (metis eq-iff fiter-induct inf-top-left infiter-unfold)
lemma inf-ref-infiter: c^{\omega} \sqsubseteq c^{\infty}
 using infiter-unfold iter-induct-nil by auto
end
end
```

9 Sequential composition for conjunctive models

theory Conjunctive-Sequential **imports** Sequential

begin

Sequential left-distributivity is only supported by conjunctive models but does not apply in general. The relational model is one such example.

```
\label{eq:locale} \textbf{locale} \ \textit{seq-finite-conjunctive} = \textit{seq-distrib-right} + \\
 assumes seq-inf-distrib: c;(d_0 \sqcap d_1) = c;d_0 \sqcap c;d_1
begin
sublocale seq-distrib-left
   by (simp add: seq-distrib-left.intro seq-distrib-left-axioms.intro
      seq-inf-distrib sequential-axioms)
end
locale seq-infinite-conjunctive = seq-distrib-right +
 assumes seq-Inf-distrib: D \neq \{\} \Longrightarrow c \; ; \; \square D = (\square d \in D. \; c \; ; d)
begin
sublocale seq-distrib
proof unfold-locales
 fix c::'a and d_0::'a and d_1::'a
 have \{d_0, d_1\} \neq \{\} by simp
 then have c : \bigcap \{d_0, d_1\} = \bigcap \{c : d \mid d. d \in \{d_0, d_1\}\} using seq-Inf-distrib
 proof -
   have \bigcap ((;) c ` \{d_0, d_1\}) = \bigcap \{c ; a | a. a \in \{d_0, d_1\}\}
    using INF-Inf by blast
   then show ?thesis
    using \langle \bigwedge (c::'a::refinement-lattice) D::'a::refinement-lattice set. <math>D \neq \{\} \Longrightarrow c \; ; \; \square D = \}
\neq \{\} by presburger
 qed
 also have ... = c ; d_0 \sqcap c ; d_1 by (simp only: Inf2-inf)
 finally show c ; (d_0 \sqcap d_1) \sqsubseteq c ; d_0 \sqcap c ; d_1 by simp
qed
lemma seq-INF-distrib: X \neq \{\} \Longrightarrow c \; ; \; (\bigcap x \in X. \; dx) = (\bigcap x \in X. \; c \; ; \; dx)
proof -
 assume xne: X \neq \{\}
 have a: c ; (\prod x \in X. dx) = c ; \prod (d'X) by auto
 also have b: ... = (\prod d \in (d \cdot X). c ; d) by (meson image-is-empty seq-Inf-distrib xne)
 also have c: ... = (\bigcap x \in X. \ c \ ; dx) by (simp add: image-comp)
 finally show ?thesis by (simp add: b image-comp)
```

```
qed
```

```
lemma seq-INF-distrib-UNIV: c : (   x.   dx ) = (   x.   c : dx )
 by (simp add: seq-INF-distrib)
lemma INF-INF-seq-distrib: Y \neq \{\} \Longrightarrow (\bigcap x \in X. \ c \ x) ; (\bigcap y \in Y. \ d \ y) = (\bigcap x \in X. \bigcap y \in Y.
cx;dy
 by (simp add: INF-seq-distrib seq-INF-distrib)
lemma INF-INF-seq-distrib-UNIV: (   x. cx) ; (  y. dy) = (  x.  y. cx ; dy)
 by (simp add: INF-INF-seq-distrib)
end
end
        Infimum nat lemmas
10
theory Infimum-Nat
imports
 Refinement-Lattice
begin
locale infimum-nat
begin
lemma INF-partition-nat3:
 fixes f :: nat \Rightarrow nat \Rightarrow 'a :: refinement-lattice
 shows (\prod j. fij) =
  (\prod j \in \{j. \ i = j\}. f i j) \sqcap
  (\prod j \in \{j. \ i < j\}. f i j) \sqcap
  (\prod j \in \{j, j < i\}, f i j)
proof -
 have univ-part: UNIV = \{j. \ i = j\} \cup \{j. \ i < j\} \cup \{j. \ j < i\} by auto
 (\prod j \in \{j. \ i = j\}. f i j) \sqcap
       (\prod j \in \{j. \ i < j\}. f i j) \sqcap
       with univ-part show?thesis by simp
qed
lemma INF-INF-partition-nat3:
 fixes f :: nat \Rightarrow nat \Rightarrow 'a :: refinement-lattice
```

```
shows ( \Box i. \Box j. fij) =
  ( \prod i. \prod j \in \{j. \ i < j\}. f i j) \sqcap
  proof -
 (\prod j \in \{j. \ i < j\}. f i j) \sqcap
                     (\prod j \in \{j, j < i\}, f i j))
  by (simp add: INF-partition-nat3)
 ( \prod i. \prod j \in \{j. \ i < j\}. f i j) \sqcap
            (\prod i. \prod j \in \{j. j < i\}. f i j)
  by (simp add: INF-inf-distrib)
 finally show ?thesis.
qed
lemma INF-nat-shift: ( \bigcap i \in \{i. \ 0 < i\}. fi) = ( \bigcap i. f (Suc \ i))
 by (metis greaterThan-0 greaterThan-def range-composition)
lemma INF-nat-minus:
 fixes f :: nat \Rightarrow 'a :: refinement-lattice
 apply (rule antisym)
 apply (rule INF-mono, simp)
 apply (metis add.right-neutral add-diff-cancel-left' add-less-cancel-left order-reft)
 apply (rule INF-mono, simp)
 by (meson order-refl zero-less-diff)
lemma INF-INF-guarded-switch:
 fixes f :: nat \Rightarrow nat \Rightarrow 'a :: refinement-lattice
 proof (rule antisym)
 have \bigwedge jj \ ii. \ jj < ii \Longrightarrow \exists i. \ \exists j < i. \ fj \ (i-j) \sqsubseteq fjj \ (ii-jj)
  by blast
 then have \bigwedge jj \ ii. \ jj < ii \Longrightarrow \exists i. \ (\bigcap j \in \{j. \ j < i\}. \ fj \ (i-j)) \sqsubseteq fjj \ (ii-jj)
  by (meson INF-lower mem-Collect-eq)
 then have \bigwedge jj \ ii. \ jj < ii \Longrightarrow (\prod i. \prod j \in \{j. \ j < i\}. \ fj \ (i-j)) \sqsubseteq fjj \ (ii-jj)
  by (meson UNIV-I INF-lower dual-order.trans)
 then have \forall j. ( \exists i : \exists j \in \{j. j < i\}. fj(i-j)) \subseteq ( \exists i \in \{ii. jj < ii\}. fjj(ii-jj))
  by (metis (mono-tags, lifting) INF-greatest mem-Collect-eq)
 by (simp add: INF-greatest)
```

```
by simp
next
 have \bigwedge ii jj. jj < ii \Longrightarrow \exists j. \exists i > j. fj (i - j) \sqsubseteq fjj (ii - jj)
  by blast
 then have \bigwedge ii jj. jj < ii \Longrightarrow \exists j. ( \bigcap i \in \{i. j < i\}. fj (i - j)) \sqsubseteq fjj (ii - jj)
  by (meson INF-lower mem-Collect-eq)
 then have \bigwedge ii jj. jj < ii \Longrightarrow (\prod j. \prod i \in \{i. j < i\}. fj (i - j)) \sqsubseteq fjj (ii - jj)
  by (meson UNIV-I INF-lower dual-order.trans)
 then have \bigwedge ii. ( \prod j. \prod i \in \{i. j < i\}. fj(i-j) ) \subseteq ( \prod jj \in \{jj. jj < ii\}. fjj(ii-jj) )
  by (metis (mono-tags, lifting) INF-greatest mem-Collect-eq)
 by (simp add: INF-greatest)
 by simp
qed
end
end
```

11 Iteration for conjunctive models

```
theory Conjunctive-Iteration
imports
Conjunctive-Sequential
Iteration
Infimum-Nat
begin
```

Sequential left-distributivity is only supported by conjunctive models but does not apply in general. The relational model is one such example.

locale iteration-finite-conjunctive = seq-finite-conjunctive + iteration

begin

```
lemma isolation: c^{\omega} = c^{\star} \sqcap c^{\infty}

proof –

define F where F = (\lambda x. c^{\star} \sqcap x)

define G where G = (\lambda x. c; x)

define H where H = (\lambda x. nil \sqcap c; x)

have FG: F \circ G = (\lambda x. c^{\star} \sqcap c; x) using F-def G-def by auto
```

```
have HF: H \circ F = (\lambda x. \ nil \cap c; (c^* \cap x)) using F-def H-def by auto
 have adjoint: dist-over-sup F by (simp add: F-def inf-Sup)
 have monoH: mono H by (metis H-def inf-mono monoI order-refl seq-mono-right)
 have monoG: mono G by (metis G-def inf .absorb-iff2 monoI seq-inf-distrib)
 have \forall x. ((F \circ G) x = (H \circ F) x) using FG HF
   by (metis fiter-unfold inf-sup-aci(2) seq-inf-distrib)
 then have F(lfp G) = lfp H using adjoint monoH monoG fusion-lfp-eq by blast
 then have c^* \sqcap lfp \ (\lambda \ x. \ c;x) = lfp \ (\lambda \ x. \ nil \sqcap c;x)
   using F-def G-def H-def by blast
 thus ?thesis by (simp add: infiter-def iter-def)
lemma iter-induct-isolate: c^*;d \cap c^{\infty} = lfp \ (\lambda \ x. \ d \cap c;x)
proof -
 define F where F = (\lambda x. c^*; d \sqcap x)
 define G where G = (\lambda x. c;x)
 define H where H = (\lambda x. d \sqcap c;x)
 have FG: F \circ G = (\lambda x. c^*; d \sqcap c; x) using F-def by auto
 have HF: H \circ F = (\lambda x. d \sqcap c; c^*; d \sqcap c; x) using F-def H-def weak-seq-inf-distrib
  by (metis comp-apply inf .commute inf .left-commute seq-assoc seq-inf-distrib)
 have unroll: c^*;d = (nil \sqcap c; c^*);d using fiter-unfold by auto
 have distribute: c^*; d = d \cap c; c^*; d by (simp add: unroll inf-seq-distrib)
 have FGx: (F \circ G) x = d \cap c; c^*; d \cap c; x using FG distribute by simp
 have adjoint: dist-over-sup F by (simp add: F-def inf-Sup)
 have monoH: mono H by (metis H-def inf-mono monoI order-refl seq-mono-right)
 have monoG: mono G by (metis G-def inf .absorb-iff2 monoI seq-inf-distrib)
 have \forall x. ((F \circ G) x = (H \circ F) x) using FGx HF by (simp add: FG distribute)
 then have F(lfp G) = lfp H using adjoint monoH monoG fusion-lfp-eq by blast
 then have c^*; d \sqcap lfp (\lambda x. c; x) = lfp (\lambda x. d \sqcap c; x)
   using F-def G-def H-def by blast
 thus ?thesis by (simp add: infiter-def)
qed
lemma iter-induct-eq: c^{\omega}; d = lfp \ (\lambda \ x. \ d \sqcap c; x)
proof -
 have c^{\omega};d = c^{\star};d \cap c^{\infty};d by (simp add: isolation inf-seq-distrib)
 then have c^*; d \cap c^{\infty}; d = c^*; d \cap c^{\infty} by (simp add: infiter-annil)
 then have c^*; d \cap c^{\infty} = lfp \ (\lambda \ x. \ d \cap c; x) by (simp add: iter-induct-isolate)
```

```
thus ?thesis
    by (simp add: \langle c^{\omega} ; d = c^{\star} ; d \sqcap c^{\infty} ; d \rangle \langle c^{\star} ; d \sqcap c^{\infty} ; d = c^{\star} ; d \sqcap c^{\infty} \rangle)
qed
lemma iter-induct: d \sqcap c;x \sqsubseteq x \Longrightarrow c^{\omega};d \sqsubseteq x
  by (simp add: iter-induct-eq lfp-lowerbound)
lemma iter-isolate: c^*;d \cap c^\infty = c^\omega;d
  by (simp add: iter-induct-eq iter-induct-isolate)
lemma iter-isolate2: c:c^*:d \sqcap c^{\infty} = c:c^{\omega}:d
  by (metis infiter-unfold iter-isolate seq-assoc seq-inf-distrib)
lemma iter-decomp: (c \sqcap d)^{\omega} = c^{\omega}; (d;c^{\omega})^{\omega}
proof (rule antisym)
 have c;c^{\omega};(d;c^{\omega})^{\omega}\sqcap(d;c^{\omega})^{\omega}\sqsubseteq c^{\omega};(d;c^{\omega})^{\omega} by (metis inf-commute order.refl inf-seq-distrib
seq-nil-left iter-unfold)
 thus (c \sqcap d)^{\omega} \sqsubseteq c^{\omega}; (d;c^{\omega})^{\omega} by (metis inf.left-commute iter-induct-nil iter-unfold seq-assoc
inf-seq-distrib)
next
   have (c;(c \sqcap d)^{\omega} \sqcap d;(c \sqcap d)^{\omega}) \sqcap nil \sqsubseteq (c \sqcap d)^{\omega} by (metis inf-commute order.refl
inf-seq-distrib iter-unfold)
  then have a: c^{\omega}; (d; (c \sqcap d)^{\omega} \sqcap nil) \sqsubseteq (c \sqcap d)^{\omega}
  proof -
   have nil \sqcap d; (c \sqcap d)^{\omega} \sqcap c; (c \sqcap d)^{\omega} \sqsubseteq (c \sqcap d)^{\omega}
       by (metis eq-iff inf.semigroup-axioms inf-commute inf-seq-distrib iter-unfold semi-
group.assoc)
    thus ?thesis using iter-induct-eq by (metis inf-sup-aci(1) iter-induct)
  qed
  then have d;c^{\omega};(d;(c \sqcap d)^{\omega} \sqcap nil) \sqcap nil \sqsubseteq d;(c \sqcap d)^{\omega} \sqcap nil by (metis inf-mono order.refl
seq-assoc seq-mono)
  then have (d;c^{\omega})^{\omega} \sqsubseteq d;(c \sqcap d)^{\omega} \sqcap nil by (metis inf-commute iter-induct-nil)
  then have c^{\omega};(d;c^{\omega})^{\omega} \sqsubseteq c^{\omega};(d;(c \sqcap d)^{\omega} \sqcap nil) by (metis order.refl seq-mono)
  thus c^{\omega};(d;c^{\omega})^{\omega} \sqsubseteq (c \sqcap d)^{\omega} using a refine-trans by blast
ged
lemma iter-leapfrog-var: (c;d)^{\omega};c \sqsubseteq c;(d;c)^{\omega}
proof -
  have c \sqcap c;d;c;(d;c)^{\omega} \sqsubseteq c;(d;c)^{\omega}
    by (metis iter-unfold order-refl seq-assoc seq-inf-distrib seq-nil-right)
  thus ?thesis using iter-induct-eq by (metis iter-induct seq-assoc)
qed
```

```
lemma iter-leapfrog: c;(d;c)^{\omega} = (c;d)^{\omega};c
proof (rule antisym)
 show (c;d)^{\omega}; c \sqsubseteq c; (d;c)^{\omega} by (metis iter-leapfrog-var)
 have (d;c)^{\omega} \sqsubseteq ((d;c)^{\omega};d);c \sqcap nil by (metis inf.bounded-iff order.refl seq-assoc seq-mono
iter-unfold iter1 iter2)
 then have (d;c)^{\omega} \sqsubseteq (d;(c;d)^{\omega});c \sqcap nil by (metis inf.absorb-iff2 inf.boundedE inf-assoc
iter-leapfrog-var inf-seq-distrib)
 then have c_{:}(d;c)^{\omega} \sqsubseteq c_{:}(d;c;d)^{\omega}; c \sqcap nil; c \text{ using } inf.bounded\text{-}iff seq\text{-}assoc seq\text{-}mono\text{-}right
seq-nil-left seq-nil-right by fastforce
 thus c:(d;c)^{\omega} \sqsubseteq (c;d)^{\omega}:c by (metis inf-commute inf-seq-distrib iter-unfold)
qed
lemma fiter-leapfrog: c;(d;c)^* = (c;d)^*;c
proof -
 have lr: c; (d;c)^* \sqsubseteq (c;d)^*; c
 proof -
   have (d;c)^* = nil \sqcap d;c;(d;c)^*
    by (meson finite-iteration.fiter-unfold finite-iteration-axioms)
   then show ?thesis
    by (metis fiter-induct seq-assoc seq-distrib-left.weak-seq-inf-distrib
        seq-distrib-left-axioms seq-nil-right)
 ged
 have rl: (c;d)^*; c \sqsubseteq c; (d;c)^*
 proof -
   have a1: (c;d)^*; c = c \sqcap c; d; (c;d)^*; c
     by (metis finite-iteration.fiter-unfold finite-iteration-axioms
         inf-seq-distrib seq-nil-left)
   have a2: (c;d)^*; c \sqsubseteq c; (d;c)^* \longleftrightarrow c \sqcap c; d; (c;d)^*; c \sqsubseteq c; (d;c)^* by (simp add: a1)
   then have a3: ... \longleftrightarrow c; (nil \sqcap d; (c;d)^*;c) \sqsubseteq c; (d;c)^*
     by (metis a1 eq-iff fiter-unfold lr seq-assoc seq-inf-distrib seq-nil-right)
   have a4: (nil \sqcap d;(c;d)^*;c) \sqsubseteq (d;c)^* \Longrightarrow c; (nil \sqcap d;(c;d)^*;c) \sqsubseteq c;(d;c)^*
     using seq-mono-right by blast
   have a5: (nil \sqcap d; (c;d)^*;c) \sqsubseteq (d;c)^*
    proof -
      have fl: d; (c; d)^*; c \cap nil = d; ((c; d)^*; c) \cap nil \cap nil
         by (simp add: seq-assoc)
      have d ; c ; (d ; (c ; d)^* ; c \sqcap nil) = d ; ((c ; d)^* ; c)
        by (metis (no-types) a1 inf-sup-aci(1) seq-assoc
            seq-finite-conjunctive.seq-inf-distrib seq-finite-conjunctive-axioms
            seq-nil-right)
      then show ?thesis
         using f1 by (metis (no-types) finite-iteration.fiter-induct finite-iteration-axioms
```

```
inf.cobounded1 inf-sup-aci(1) seq-nil-right)
   qed
  thus ?thesis using a2 a3 a4 by blast
 thus ?thesis by (simp add: eq-iff lr)
qed
end
locale iteration-infinite-conjunctive = seq-infinite-conjunctive + <math>iteration + infimum-nat
begin
lemma fiter-seq-choice: c^* = (\prod i::nat. \ c^{;^*}i)
proof (rule antisym)
 show c^* \sqsubseteq (\prod i. c; \hat{i})
 proof (rule INF-greatest)
   \mathbf{fix} i
   show c^* \sqsubseteq c ; \hat{i}
    proof (induct i type: nat)
     show c^* \sqsubseteq c ? 0 by (simp add: fiter0)
    next
      case (Suc n)
     have c^* \sqsubseteq c; c^* by (metis fiter-unfold inf-le2)
     also have ... \sqsubseteq c; (c ; \hat{\ } n) using Suc.hyps by (simp only: seq-mono-right)
      also have ... = c; ^{\circ} Suc n by simp
      finally show c^* \sqsubseteq c; ^{^{\uparrow}}Suc n.
    qed
 qed
next
 have ( \square i. c; \hat{} i) \sqsubseteq (c; \hat{} 0) \sqcap ( \square i. c; \hat{} Suc i)
   by (meson INF-greatest INF-lower UNIV-I le-inf-iff)
 also have ... = nil \sqcap ( \prod i. c ; (c; \hat{i}) ) by simp
 also have ... = nil \sqcap c; (\prod i. c;^i) by (simp\ add: seq-INF-distrib)
 lemma fiter-seq-choice-nonempty: c ; c^* = (\prod i \in \{i. \ 0 < i\}. \ c^{\uparrow})
proof -
 have (\bigcap i \in \{i. \ 0 < i\}. \ c ; \hat{i}) = (\bigcap i. \ c ; \hat{i}) by (simp \ add: INF-nat-shift)
 also have ... = (   i. c ; (c; \hat{i}) ) by simp
```

```
also have ... = c; ( \square i. c; \hat{i}) by (simp \ add: seq-INF-distrib-UNIV)
 also have ... = c; c^* by (simp add: fiter-seq-choice)
 finally show ?thesis by simp
qed
end
locale conj-iteration = cra + iteration-infinite-conjunctive
begin
lemma conj-distrib4: c^* \cap d^* \sqsubseteq (c \cap d)^*
proof -
 have c^* \cap d^* = (nil \cap (c;c^*)) \cap d^* by (metis fiter-unfold)
 then have c^* \cap d^* = (nil \cap d^*) \cap ((c;c^*) \cap d^*) by (simp add: inf-conj-distrib)
  then have c^* \cap d^* \sqsubseteq nil \cap ((c;c^*) \cap (d;d^*)) by (metis conj-idem fiter0 fiter-unfold
inf.bounded-iff inf-le2 local.conj-mono)
 then have c^* \cap d^* \sqsubseteq nil \cap ((c \cap d); (c^* \cap d^*)) by (meson inf-mono-right order trans
sequential-interchange)
 thus ?thesis by (metis seq-nil-right fiter-induct)
qed
end
end
```

12 Rely Quotient Operator

The rely quotient operator is used to generalise a Jones-style rely condition to a process [5]. It is defined in terms of the parallel operator and a process i representing interference from the environment.

```
theory Rely-Quotient
imports
CRA
Conjunctive-Iteration
begin
```

12.1 Basic rely quotient

The rely quotient of a process c and an interference process i is the most general process d such that c is refined by $d \parallel i$. The following locale introduces the

definition of the rely quotient c//i as a non-deterministic choice over all processes d such that c is refined by $d \parallel i$.

```
locale rely-quotient = par-distrib + conjunction-parallel
begin
```

definition

```
rely-quotient :: 'a \Rightarrow 'a \Rightarrow 'a \text{ (infixl } '/'/85)
where
 c // i \equiv \prod \{ d. (c \sqsubseteq d \parallel i) \}
```

Any process c is implemented by itself if the interference is skip.

```
lemma quotient-identity: c // skip = c
proof -
 have c // skip = \prod \{ d. (c \sqsubseteq d \parallel skip) \} by (metis rely-quotient-def)
 then have c // skip = \prod \{ d. (c \sqsubseteq d) \} by (metis (mono-tags, lifting) Collect-cong
par-skip)
```

thus?thesis by (metis Inf-greatest Inf-lower2 dual-order.antisym dual-order.refl mem-Collect-eq)

qed

Provided the interference process i is non-aborting (i.e. it refines chaos), any process c is refined by its rely quotient with i in parallel with i. If interference i was allowed to be aborting then, because $(c//\bot) \parallel \bot$ equals \bot , it does not refine c in general.

```
theorem rely-quotient:
 assumes nonabort-i: chaos \sqsubseteq i
 shows c \sqsubseteq (c // i) \parallel i
proof -
 define D where D = \{ d \parallel i \mid d. (c \sqsubseteq d \parallel i) \}
 define C where C = \{c\}
 have (\forall d \in D. (\exists c \in C. c \sqsubseteq d)) using D-def C-def CollectD singletonI by auto
 then have \bigcap C \subseteq (\bigcap D) by (simp add: Inf-mono)
 then have c \sqsubseteq \bigcap \{ d \parallel i \mid d. (c \sqsubseteq d \parallel i) \} by (simp add: C-def D-def)
 also have ... = \bigcap \{ d \mid i \mid d. d \in \{d. (c \sqsubseteq d \mid i)\} \} by simp
 also have ... = ( | d \in \{d. (c \sqsubseteq d | i)\}. d | i) by (simp add: INF-Inf)
 also have ... = \prod \{ d \mid d. (c \sqsubseteq d \parallel i) \} \parallel i
 proof (cases \{d \mid d. (c \sqsubseteq d \parallel i)\} = \{\})
   assume \{d \mid d. (c \sqsubseteq d \parallel i)\} = \{\}
   then show (   d \in \{d. (c \sqsubseteq d \parallel i)\}. d \parallel i) =   \{d \mid d. (c \sqsubseteq d \parallel i)\} \parallel i
     using nonabort-i Collect-empty-eq top-greatest
          nonabort-par-top par-commute by fastforce
 next
   assume a: { d \mid d. (c \sqsubseteq d \parallel i)} \neq {}
```

```
have b: \{d. \ (c \sqsubseteq d \parallel i)\} \neq \{\} using a by blast then have (\bigcap d \in \{d. \ (c \sqsubseteq d \parallel i)\}. \ d \parallel i) = \bigcap \{\ d. \ (c \sqsubseteq d \parallel i)\} \parallel i using Inf-par-distrib by simp then show ?thesis by auto qed also have ... = (c \ //\ i) \parallel i by (metis\ rely-quotient-def) finally show ?thesis. qed
```

The following theorem represents the Galois connection between the parallel operator (upper adjoint) and the rely quotient operator (lower adjoint). This basic relationship is used to prove the majority of the theorems about rely quotient.

```
assumes nonabort-i: chaos \sqsubseteq i
 shows c // i \sqsubseteq d \longleftrightarrow c \sqsubseteq d \parallel i
proof
 assume a: c // i \sqsubseteq d
 have c \sqsubseteq (c // i) \parallel i using rely-quotient nonabort-i by simp
 thus c \sqsubseteq d \parallel i using par-mono a
   by (metis inf .absorb-iff2 inf-commute le-infI2 order-refl)
next
 assume b: c \sqsubseteq d \parallel i
 then have \bigcap { d. (c \sqsubseteq d \parallel i)} \sqsubseteq d by (simp \ add: Inf-lower)
 thus c // i \sqsubseteq d by (metis rely-quotient-def)
Refining the "numerator" in a quotient, refines the quotient.
lemma rely-mono:
 assumes c-refsto-d: c \sqsubseteq d
 shows (c // i) \sqsubseteq (d // i)
proof -
 have \bigwedge f. ((d \sqsubseteq f \parallel i) \Longrightarrow \exists e. (c \sqsubseteq e \parallel i) \land (e \sqsubseteq f))
   using c-refsto-d order.trans by blast
 then have b: \bigcap \{ e. (c \sqsubseteq e \parallel i) \} \sqsubseteq \bigcap \{ f. (d \sqsubseteq f \parallel i) \}
   by (metis Inf-mono mem-Collect-eq)
 show ?thesis using rely-quotient-def b by simp
qed
```

Refining the "denominator" in a quotient, gives a reverse refinement for the quotients. This corresponds to weaken rely condition law of Jones [5], i.e. assuming less about the environment.

```
lemma weaken-rely: assumes i-refsto-j: i \sqsubseteq j
```

theorem rely-refinement:

```
shows (c // j) \sqsubseteq (c // i)
proof -
 have \bigwedge f. ((c \sqsubseteq f \parallel i) \Longrightarrow \exists e. (c \sqsubseteq e \parallel j) \land (e \sqsubseteq f))
   using i-refsto-j order.trans
   by (metis inf .absorb-iff2 inf-le1 inf-par-distrib inf-sup-ord(2) par-commute)
 then have b: \bigcap \{ e. (c \sqsubseteq e \parallel j) \} \sqsubseteq \bigcap \{ f. (c \sqsubseteq f \parallel i) \}
   by (metis Inf-mono mem-Collect-eq)
 show ?thesis using rely-quotient-def b by simp
qed
lemma par-nonabort:
 assumes nonabort-i: chaos \sqsubseteq i
 assumes nonabort-j: chaos \sqsubseteq j
 shows chaos \sqsubseteq i \parallel j
 by (meson chaos-par-chaos nonabort-i nonabort-j order-trans par-mono)
Nesting rely quotients of j and i means the same as a single quotient which is the
parallel composition of i and j.
lemma nested-rely:
 assumes j-nonabort: chaos \sqsubseteq j
 shows ((c // j) // i) = c // (i || j)
proof (rule antisym)
 show ((c // j) // i) \sqsubseteq c // (i \parallel j)
 proof -
   have \bigwedge f. ((c \sqsubseteq f \parallel i \parallel j) \Longrightarrow \exists e. (c \sqsubseteq e \parallel j) \land (e \sqsubseteq f \parallel i)) by blast
   then have \bigcap \{ d. (\bigcap \{ e. (c \sqsubseteq e \parallel j) \} \sqsubseteq d \parallel i) \} \sqsubseteq \bigcap \{ f. (c \sqsubseteq f \parallel i \parallel j) \}
     by (simp add: Collect-mono Inf-lower Inf-superset-mono)
   thus ?thesis using local.rely-quotient-def par-assoc by auto
 qed
next
 show c // (i \parallel j) \sqsubseteq ((c // j) // i)
 proof –
   have c \sqsubseteq \bigcap \{ e. (c \sqsubseteq e \parallel j) \} \parallel j
     using j-nonabort local.rely-quotient-def rely-quotient by auto
   then have \bigwedge d \cdot \bigcap \{e \cdot (c \sqsubseteq e \parallel j)\} \sqsubseteq d \parallel i \implies (c \sqsubseteq d \parallel i \parallel j)
     by (meson j-nonabort order-trans rely-refinement)
   thus ?thesis
     by (simp add: Collect-mono Inf-superset-mono local.rely-quotient-def par-assoc)
 qed
qed
end
```

12.2 Distributed rely quotient

```
\label{eq:conjunction-sequential} \begin \\
```

The following is a fundamental law for introducing a parallel composition of process to refine a conjunction of specifications. It represents an abstract view of the parallel introduction law of Jones [5].

```
lemma introduce-parallel:

assumes nonabort-i: chaos \sqsubseteq i

assumes nonabort-j: chaos \sqsubseteq j

shows c \cap d \sqsubseteq (j \cap (c // i)) \parallel (i \cap (d // j))

proof —

have a: c \sqsubseteq (c // i) \parallel i using nonabort-i nonabort-j rely-quotient by auto

have b: d \sqsubseteq j \parallel (d // j) using rely-quotient par-commute

by (simp add: nonabort-j)

have c \cap d \sqsubseteq ((c // i) \parallel i) \cap (j \parallel (d // j)) using a b by (metis conj-mono)

also have interchange: c \cap d \sqsubseteq ((c // i) \cap j) \parallel (i \cap (d // j))

using parallel-interchange refine-trans calculation by blast

show ?thesis using interchange by (simp add: local.conj-commute)

qed
```

Rely quotients satisfy a range of distribution properties with respect to the other operators.

```
lemma distribute-rely-conjunction:
 assumes nonabort-i: chaos \sqsubseteq i
 shows (c \cap d) // i \subseteq (c // i) \cap (d // i)
proof -
 have c \cap d \subseteq ((c // i) \parallel i) \cap ((d // i) \parallel i) using conj-mono rely-quotient
   by (simp add: nonabort-i)
 then have c \cap d \sqsubseteq ((c // i) \cap (d // i)) \parallel (i \cap i)
   by (metis parallel-interchange refine-trans)
 then have c \cap d \subseteq ((c // i) \cap (d // i)) \parallel i by (metis conj-idem)
 thus ?thesis using rely-refinement by (simp add: nonabort-i)
qed
lemma distribute-rely-choice:
 assumes nonabort-i: chaos \sqsubseteq i
 shows (c \sqcap d) // i \sqsubseteq (c // i) \sqcap (d // i)
proof -
 have c \sqcap d \sqsubseteq ((c // i) \parallel i) \sqcap ((d // i) \parallel i)
   by (metis nonabort-i inf-mono rely-quotient)
 then have c \sqcap d \sqsubseteq ((c // i) \sqcap (d // i)) \parallel i by (metis inf-par-distrib)
 thus ?thesis by (metis nonabort-i rely-refinement)
```

```
qed
```

```
lemma distribute-rely-parallel1:
 assumes nonabort-i: chaos \sqsubseteq i
 assumes nonabort-j: chaos \sqsubseteq j
 shows (c \parallel d) // (i \parallel j) \sqsubseteq (c // i) \parallel (d // j)
proof -
 have (c \parallel d) \sqsubseteq ((c // i) \parallel i) \parallel ((d // j) \parallel j)
   using par-mono rely-quotient nonabort-i nonabort-j by simp
 then have (c \parallel d) \sqsubseteq (c // i) \parallel (d // j) \parallel j \parallel i by (metis par-assoc par-commute)
 thus ?thesis using par-assoc par-commute rely-refinement
   by (metis nonabort-i nonabort-j par-nonabort)
qed
lemma distribute-rely-parallel2:
 assumes nonabort-i: chaos \sqsubseteq i
 assumes i-par-i: i \parallel i \sqsubseteq i
 shows (c \parallel d) // i \sqsubseteq (c // i) \parallel (d // i)
proof -
 have (c \parallel d) // i \sqsubseteq ((c \parallel d) // (i \parallel i)) using assms(1) using weaken-rely
   by (simp add: i-par-i par-nonabort)
 thus ?thesis by (metis distribute-rely-parallel1 refine-trans nonabort-i)
qed
lemma distribute-rely-sequential:
 assumes nonabort-i: chaos \sqsubseteq i
 assumes (\forall c. (\forall d. ((c \parallel i); (d \parallel i) \sqsubseteq (c;d) \parallel i)))
 shows (c;d) // i \sqsubseteq (c // i);(d // i)
proof -
 have c;d \sqsubseteq ((c // i) \parallel i);((d // i) \parallel i)
   by (metis rely-quotient nonabort-i seq-mono)
 then have c;d \sqsubseteq (c // i); (d // i) \parallel i \text{ using } assms(2) \text{ by } (metis refine-trans)
 thus ?thesis by (metis rely-refinement nonabort-i)
qed
lemma distribute-rely-sequential-event:
 assumes nonabort-i: chaos \sqsubseteq i
 assumes nonabort-j: chaos \sqsubseteq j
 assumes nonabort-e: chaos \sqsubseteq e
 assumes (\forall c. (\forall d. ((c \parallel i);e;(d \parallel j) \sqsubseteq (c;e;d) \parallel (i;e;j))))
 shows (c;e;d) // (i;e;j) \sqsubseteq (c // i);e;(d // j)
proof -
 have c;e;d \sqsubseteq ((c // i) \parallel i);e;((d // j) \parallel j)
```

```
by (metis order.refl rely-quotient nonabort-i nonabort-j seq-mono)
 then have c;e;d \sqsubseteq ((c // i);e;(d // j)) \parallel (i;e;j) using assms
   by (metis refine-trans)
 thus ?thesis using rely-refinement nonabort-i nonabort-i nonabort-e
   by (simp add: Inf-lower local.rely-quotient-def)
qed
lemma introduce-parallel-with-rely:
 assumes nonabort-i: chaos \sqsubseteq i
 assumes nonabort-j0: chaos \sqsubseteq j_0
 assumes nonabort-j1: chaos \sqsubseteq j_1
 shows (c \cap d) // i \sqsubseteq (j_1 \cap (c // (j_0 \parallel i))) \parallel (j_0 \cap (d // (j_1 \parallel i)))
proof -
 have (c \cap d) // i \subseteq (c // i) \cap (d // i)
   by (metis distribute-rely-conjunction nonabort-i)
 then have (c \cap d) // i \subseteq (j_1 \cap ((c // i) // j_0)) \parallel (j_0 \cap ((d // i) // j_1))
   by (metis introduce-parallel nonabort-j0 nonabort-j1 inf-assoc inf.absorb-iff1)
 thus ?thesis by (simp add: nested-rely nonabort-i)
ged
lemma introduce-parallel-with-rely-guarantee:
 assumes nonabort-i: chaos \sqsubseteq i
 assumes nonabort-j0: chaos \sqsubseteq j_0
 assumes nonabort-j1: chaos \sqsubseteq j_1
 shows (j_1 || j_0) \cap (c \cap d) // i \subseteq (j_1 \cap (c // (j_0 || i))) || (j_0 \cap (d // (j_1 || i)))
proof -
 have (j_1 || j_0) \cap (c \cap d) // i \subseteq (j_1 || j_0) \cap ((j_1 \cap (c // (j_0 || i))) || (j_0 \cap (d // (j_1 || i))))
   by (metis introduce-parallel-with-rely nonabort-i nonabort-j0 nonabort-j1
     conj-mono order.refl)
 also have ... \sqsubseteq (j_1 \cap j_1 \cap (c //(j_0 \parallel i))) \parallel (j_0 \cap j_0 \cap (d //(j_1 \parallel i)))
   by (metis conj-assoc parallel-interchange)
 finally show ?thesis by (metis conj-idem)
qed
lemma wrap-rely-guar:
 assumes nonabort-rg: chaos \sqsubseteq rg
 and skippable: rg \sqsubseteq skip
 shows c \sqsubseteq rg \cap c // rg
proof -
 have c = c // skip by (simp add: quotient-identity)
 also have ... \sqsubseteq c // rg by (simp add: skippable weaken-rely nonabort-rg)
 also have ... \sqsubseteq rg \cap c // rg using conjoin-non-aborting conj-commute nonabort-rg
   by auto
```

```
finally show c \sqsubseteq rg \cap c // rg.
qed
end
locale rely-distrib-iteration = rely-distrib + iteration-finite-conjunctive
begin
lemma distribute-rely-iteration:
 assumes nonabort-i: chaos \sqsubseteq i
 assumes (\forall c. (\forall d. ((c \parallel i); (d \parallel i) \sqsubseteq (c;d) \parallel i)))
 shows (c^{\omega};d) // i \sqsubseteq (c // i)^{\omega};(d // i)
proof -
 have d \sqcap c : ((c // i)^{\omega}; (d // i) \parallel i) \sqsubseteq ((d // i) \parallel i) \sqcap ((c // i) \parallel i); ((c // i)^{\omega}; (d // i) \parallel i)
i)
   by (metis inf-mono order.refl rely-quotient nonabort-i seq-mono)
 also have ... \sqsubseteq ((d // i) \parallel i) \sqcap ((c // i); (c // i)^{\omega}; (d // i) \parallel i)
   using assms inf-mono-right seq-assoc by fastforce
 also have ... \sqsubseteq ((d // i) \sqcap (c // i); (c // i)^{\omega}; (d // i)) \parallel i
   by (simp add: inf-par-distrib)
 also have ... = ((c // i)^{\omega}; (d // i)) \| i
   by (metis iter-unfold inf-seq-distrib seq-nil-left)
 finally show ?thesis by (metis rely-refinement nonabort-i iter-induct)
qed
end
end
```

13 Conclusions

The theories presented here provide a quite abstract view of the rely/guarantee approach to concurrent program refinement. A trace semantics for this theory has been developed [2]. The concurrent refinement algebra is general enough to also form the basis of a more concrete rely/guarantee approach based on a theory of atomic steps and synchronous parallel and weak conjunction operators [4].

Acknowledgements. This research was supported by Australian Research Council Grant grant DP130102901 and EPSRC (UK) Taming Concurrency grant. This

research has benefited from feedback from Robert Colvin, Chelsea Edmonds, Ned Hoy, Cliff Jones, Larissa Meinicke, and Kirsten Winter.

A Differences to earlier paper

This appendix summarises the differences between these Isabelle theories and the earlier paper [3]. We list the changes to the axioms but not all the flow on effects to lemmas.

- 1. The earlier paper assumes c; $(d_0 \sqcap d_1) = (c; d_0) \sqcap (c; d_1)$ but here we separate the case where this is only a refinement from left to right (Section 3) from the equality case (Section 9).
- 3. The earlier paper assumes $c \cap (\bigsqcup D) = (\bigsqcup d \in D.c \cap d)$. In Section 5 that assumption is not made because it does not hold for the model we have in mind [2] but we do assume $c \cap \bot = \bot$.
- 4. In Section 6 we add the assumption $nil \sqsubseteq nil \parallel nil$ to locale sequential-parallel.
- 5. In Section 6 we add the assumption $\top \sqsubseteq chaos \parallel \top$.
- 6. In Section 6 we assume only $chaos \sqsubseteq chaos \parallel chaos$ whereas in the paper this is an equality (the reverse direction is straightforward to prove).
- 7. In Section 6 axiom chaos-skip ($chaos \sqsubseteq skip$) has been dropped because it can be proven as a lemma using the parallel-interchange axiom.
- 8. In Section 6 we add the assumption $chaos \sqsubseteq chaos$; chaos.
- 9. Section 9 assumes $D \neq \{\} \Rightarrow c ; \prod D = (\prod d \in D.c ; d)$. This distribution axiom is not considered in the earlier paper.
- 10. Because here parallel does not distribute over an empty non-deterministic choice (see point 2 above) in Section 12 the theorem rely-quotient needs to assume the interference process i is non-aborting (refines chaos). This also affects many lemmas in this section that depend on theorem rely-quotient.

References

- [1] C. Aarts, R. Backhouse, E. Boiten, H. Doombos, N. van Gasteren, R. van Geldrop, P. Hoogendijk, E. Voermans, and J. van der Woude. Fixed-point calculus. *Information Processing Letters*, 53:131–136, 1995. Mathematics of Program Construction Group.
- [2] R. J. Colvin, I. J. Hayes, and L. A. Meinicke. Designing a semantic model for a wide-spectrum language with concurrency. *Formal Aspects of Computing*, pages 1–22, 2016. Accepted 28 November 2016.
- [3] I. J. Hayes. Generalised rely-guarantee concurrency: An algebraic foundation. *Formal Aspects of Computing*, 28(6):1057–1078, November 2016.
- [4] I. J. Hayes, R. J. Colvin, L. A. Meinicke, K. Winter, and A. Velykis. An algebra of synchronous atomic steps. In J. Fitzgerald, C. Heitmeyer, S. Gnesi, and A. Philippou, editors, *FM 2016: Formal Methods: 21st International Symposium, Limassol, Cyprus, November 9-11, 2016, Proceedings*, volume 9995 of *Lecture Notes in Computer Science*, pages 352–369, Cham, November 2016. Springer International Publishing.
- [5] C. Jones. Tentative steps toward a development method for interfering programs. *ACM Transactions on Programming Languages and Systems*, 5(4):596–619, Oct. 1983.
- [6] C. B. Jones. *Development Methods for Computer Programs including a Notion of Interference*. PhD thesis, Oxford University, June 1981. Available as: Oxford University Computing Laboratory (now Computer Science) Technical Monograph PRG-25.