CIMP

Peter Gammie

March 17, 2025

Abstract

CIMP extends the small imperative language IMP with control non-determinism and constructs for synchronous message passing.

Contents

1	Point-free notation	1
2	Infinite Sequences 2.1 Decomposing safety and liveness	3
3	Linear Temporal Logic 3.1 Leads-to and leads-to-via	9 15 18 20
4	CIMP syntax and semantics 4.1 Syntax	22 22 23 24 25
5	State-based invariants 5.0.1 Relating reachable states to the initial programs 5.1 Simple-minded Hoare Logic/VCG for CIMP 5.1.1 VCG rules 5.1.2 Cheap non-interference rules	27 31 36 39 41
6	One locale per process	42
7	Example: a one-place buffer	43
8	Example: an unbounded buffer	45
9	Concluding remarks	47
\mathbf{R}	eferences	49

1 Point-free notation

Typically we define predicates as functions of a state. The following provide a somewhat comfortable point-free imitation of Isabelle/HOL's operators.

```
abbreviation (input)

pred-K :: 'b \Rightarrow 'a \Rightarrow 'b \ (\langle \langle - \rangle \rangle) where \langle f \rangle \equiv \lambda s. \ f

abbreviation (input)
```

pred-not :: $('a \Rightarrow bool) \Rightarrow 'a \Rightarrow bool (\neg \rightarrow [40] 40)$ where

```
\neg a \equiv \lambda s. \ \neg a \ s
```

abbreviation (input)

$$pred\text{-}conj :: ('a \Rightarrow bool) \Rightarrow ('a \Rightarrow bool) \Rightarrow 'a \Rightarrow bool (infixr < \land > 35) where $a \land b \equiv \lambda s. \ a \ s \land b \ s$$$

abbreviation (input)

$$pred$$
- $disj$:: $('a \Rightarrow bool) \Rightarrow ('a \Rightarrow bool) \Rightarrow 'a \Rightarrow bool$ (infixr $\langle \lor \rangle$ 30) where $a \lor b \equiv \lambda s. \ a \ s \lor b \ s$

abbreviation (input)

$$pred\text{-}implies :: ('a \Rightarrow bool) \Rightarrow ('a \Rightarrow bool) \Rightarrow 'a \Rightarrow bool (infixr \longleftrightarrow 25) \text{ where } a \longrightarrow b \equiv \lambda s. \ a \ s \longrightarrow b \ s$$

abbreviation (input)

$$pred\text{-}iff:: ('a \Rightarrow bool) \Rightarrow ('a \Rightarrow bool) \Rightarrow 'a \Rightarrow bool (infixr \longleftrightarrow 25) \text{ where } a \longleftrightarrow b \equiv \lambda s. \ a \ s \longleftrightarrow b \ s$$

abbreviation (input)

$$pred-eq :: ('a \Rightarrow 'b) \Rightarrow ('a \Rightarrow 'b) \Rightarrow 'a \Rightarrow bool (infix \iff 40)$$
 where $a = b \equiv \lambda s.$ $a = b = b$

abbreviation (input)

pred-member ::
$$('a \Rightarrow 'b) \Rightarrow ('a \Rightarrow 'b \ set) \Rightarrow 'a \Rightarrow bool \ (\textbf{infix} \iff 40) \ \textbf{where}$$
 $a \in b \equiv \lambda s. \ a \ s \in b \ s$

abbreviation (input)

pred-neq ::
$$('a \Rightarrow 'b) \Rightarrow ('a \Rightarrow 'b) \Rightarrow 'a \Rightarrow bool (infix \langle \neq \rangle 40)$$
 where $a \neq b \equiv \lambda s$. $a s \neq b s$

abbreviation (input)

pred-If ::
$$('a \Rightarrow bool) \Rightarrow ('a \Rightarrow 'b) \Rightarrow ('a \Rightarrow 'b) \Rightarrow 'a \Rightarrow 'b (\langle (If (-)/ Then (-)/ Else (-)) \rangle [0, 0, 10] 10)$$

where If P Then x Else $y \equiv \lambda s$. if P s then x s else y s

abbreviation (input)

pred-less ::
$$('a \Rightarrow 'b :: ord) \Rightarrow ('a \Rightarrow 'b) \Rightarrow 'a \Rightarrow bool (infix <<> 40) where $a < b \equiv \lambda s. \ a \ s < b \ s$$$

abbreviation (input)

pred-le :: ('a
$$\Rightarrow$$
 'b::ord) \Rightarrow ('a \Rightarrow 'b) \Rightarrow 'a \Rightarrow bool (infix \leq 40) where a $<$ b \equiv λs . a s \leq b s

abbreviation (input)

$$pred$$
- $plus :: ('a \Rightarrow 'b::plus) \Rightarrow ('a \Rightarrow 'b) \Rightarrow 'a \Rightarrow 'b \text{ (infixl } \leftrightarrow 65) \text{ where } a + b \equiv \lambda s. \ a \ s + b \ s$

abbreviation (input)

pred-minus ::
$$('a \Rightarrow 'b :: minus) \Rightarrow ('a \Rightarrow 'b) \Rightarrow 'a \Rightarrow 'b \text{ (infixl} \longleftrightarrow 65) \text{ where } a - b \equiv \lambda s. \ a \ s - b \ s$$

abbreviation (input)

fun-fanout ::
$$('a \Rightarrow 'b) \Rightarrow ('a \Rightarrow 'c) \Rightarrow 'a \Rightarrow 'b \times 'c \text{ (infix } \langle \bowtie \rangle 35) \text{ where } f \bowtie g \equiv \lambda x. \ (f x, g x)$$

abbreviation (input)

$$pred-all :: ('b \Rightarrow 'a \Rightarrow bool) \Rightarrow 'a \Rightarrow bool (binder \langle \forall \rangle 10) \text{ where}$$

 $\forall x. P x \equiv \lambda s. \forall x. P x s$

abbreviation (input) $pred\text{-}ex :: ('b \Rightarrow 'a \Rightarrow bool) \Rightarrow 'a \Rightarrow bool \text{ (binder } \exists \land 10) \text{ where}$ $\exists x. P x \equiv \lambda s. \exists x. P x s$ abbreviation (input) $pred-app :: ('b \Rightarrow 'a \Rightarrow 'c) \Rightarrow ('a \Rightarrow 'b) \Rightarrow 'a \Rightarrow 'c \text{ (infixl } \$ \\$\) 100) where $f \$ q \equiv \lambda s. f(q s) s$ abbreviation (input) pred-subseteq :: $('a \Rightarrow 'b \ set) \Rightarrow ('a \Rightarrow 'b \ set) \Rightarrow 'a \Rightarrow bool \ (infix <math>\langle C \rangle \ 50)$ where $A \subseteq B \equiv \lambda s. \ A \ s \subseteq B \ s$ abbreviation (input) pred-union :: $('a \Rightarrow 'b \ set) \Rightarrow ('a \Rightarrow 'b \ set) \Rightarrow 'a \Rightarrow 'b \ set \ (infixl \leftrightarrow 65)$ where $a \cup b \equiv \lambda s. \ a \ s \cup b \ s$ abbreviation (input) $pred\text{-}inter :: ('a \Rightarrow 'b \ set) \Rightarrow ('a \Rightarrow 'b \ set) \Rightarrow 'a \Rightarrow 'b \ set \ (infixl \iff 65) \ where$ $a \cap b \equiv \lambda s. \ a \ s \cap b \ s$ More application specific. abbreviation (input) pred-conjoin :: (' $a \Rightarrow bool$) $list \Rightarrow 'a \Rightarrow bool$ where pred-conjoin $xs \equiv foldr (\land) xs \langle True \rangle$ abbreviation (input) pred-disjoin :: ('a \Rightarrow bool) list \Rightarrow 'a \Rightarrow bool where pred-disjoin $xs \equiv foldr (\lor) xs \langle False \rangle$ abbreviation (input) pred-is-none :: $('a \Rightarrow 'b \ option) \Rightarrow 'a \Rightarrow bool (\langle NULL \rightarrow [40] \ 40)$ where $NULL\ a \equiv \lambda s.\ a\ s = None$ abbreviation (input) $pred\text{-}empty :: ('a \Rightarrow 'b \ set) \Rightarrow 'a \Rightarrow bool (\langle EMPTY \rightarrow [40] \ 40) \text{ where}$ $EMPTY \ a \equiv \lambda s. \ a \ s = \{\}$

abbreviation (input)

pred-list-null :: ('a
$$\Rightarrow$$
 'b list) \Rightarrow 'a \Rightarrow bool ($\langle LIST'-NULL \rightarrow [40] \ 40$) where LIST-NULL $a \equiv \lambda s$. $a s = []$

abbreviation (input)

pred-list-append ::
$$('a \Rightarrow 'b \ list) \Rightarrow ('a \Rightarrow 'b \ list) \Rightarrow 'a \Rightarrow 'b \ list \ (infixr <@> 65) where $xs @ ys \equiv \lambda s. \ xs \ s @ ys \ s$$$

abbreviation (input)

$$pred\text{-}pair :: ('a \Rightarrow 'b) \Rightarrow ('a \Rightarrow 'c) \Rightarrow 'a \Rightarrow 'b \times 'c \text{ (infixr } \langle \otimes \rangle \text{ } 60) \text{ where } a \otimes b \equiv \lambda s. \ (a s, \ b \ s)$$

abbreviation (input)

pred-singleton ::
$$('a \Rightarrow 'b) \Rightarrow 'a \Rightarrow 'b$$
 set where pred-singleton $x \equiv \lambda s$. $\{x \ s\}$

2 Infinite Sequences

Infinite sequences and some operations on them.

We use the customary function-based representation.

```
type-synonym 'a seq = nat \Rightarrow 'a
type-synonym 'a seq-pred = 'a seq \Rightarrow bool
definition suffix :: 'a seq \Rightarrow nat \Rightarrow 'a seq (infix) \langle |_s \rangle 60) where
  \sigma \mid_s i \equiv \lambda j. \ \sigma \ (j+i)
primrec stake :: nat \Rightarrow 'a seq \Rightarrow 'a list where
  stake \theta \sigma = 0
\mid stake (Suc \ n) \ \sigma = \sigma \ 0 \ \# \ stake \ n \ (\sigma \mid_s 1)
primrec shift :: 'a list \Rightarrow 'a seq \Rightarrow 'a seq (infixr \langle @-\rangle 65) where
  shift [ ] \sigma = \sigma
| shift (x \# xs) \sigma = (\lambda i. case i of 0 \Rightarrow x | Suc i \Rightarrow shift xs \sigma i)
abbreviation interval-syn (\langle -'(- \to -') \rangle [69, 0, 0] 70) where
  \sigma(i \to j) \equiv stake \ j \ (\sigma \mid_s i)
lemma suffix-eval: (\sigma \mid_s i) j = \sigma (j + i)
unfolding suffix-def by simp
lemma suffix-plus: \sigma \mid_s n \mid_s m = \sigma \mid_s (m+n)
unfolding suffix-def by (simp add: add.assoc)
lemma suffix-commute: ((\sigma \mid_s n) \mid_s m) = ((\sigma \mid_s m) \mid_s n)
by (simp add: suffix-plus add.commute)
lemma suffix-plus-com: \sigma \mid_s m \mid_s n = \sigma \mid_s (m+n)
proof -
  have \sigma \mid_s n \mid_s m = \sigma \mid_s (m + n) by (rule suffix-plus)
  then show \sigma \mid_s m \mid_s n = \sigma \mid_s (m+n) by (simp add: suffix-commute)
qed
lemma suffix-zero: \sigma \mid_s \theta = \sigma
unfolding suffix-def by simp
lemma comp-suffix: f \circ \sigma \mid_{s} i = (f \circ \sigma) \mid_{s} i
unfolding suffix-def comp-def by simp
lemmas suffix-simps[simp] =
  comp-suffix
  suffix-eval
  suffix-plus-com
  suffix-zero
lemma length-stake[simp]: length (stake n s) = n
by (induct n arbitrary: s) auto
lemma shift-simps[simp]:
   (xs @ - \sigma) 0 = (if xs = [] then \sigma 0 else hd xs)
   (xs @ - \sigma) \mid_s Suc 0 = (if xs = [] then \sigma \mid_s Suc 0 else tl xs @ - \sigma)
by (induct xs) auto
lemma stake-nil[simp]:
  stake i \sigma = [] \longleftrightarrow i = 0
by (cases i; clarsimp)
```

lemma stake-shift:

```
stake \ i \ (w @ - \sigma) = take \ i \ w @ stake \ (i - length \ w) \ \sigma
by (induct i arbitrary: w) (auto simp: neg-Nil-conv)
lemma shift-snth-less[simp]:
 assumes i < length xs
 shows (xs @ - \sigma) i = xs ! i
using assms
proof(induct \ i \ arbitrary: \ xs)
 case (Suc i xs) then show ?case by (cases xs) simp-all
qed (simp add: hd-conv-nth nth-tl)
lemma shift-snth-ge[simp]:
 assumes i \geq length xs
 shows (xs @ - \sigma) i = \sigma (i - length xs)
using assms
proof(induct \ i \ arbitrary: \ xs)
 case (Suc i xs) then show ?case by (cases xs) simp-all
qed simp
lemma shift-snth:
 (xs @ - \sigma) i = (if i < length xs then xs ! i else \sigma (i - length xs))
by simp
lemma suffix-shift:
 (xs @ - \sigma) \mid_s i = drop \ i \ xs @ - (\sigma \mid_s i - length \ xs)
proof(induct i arbitrary: xs)
 case (Suc i xs) then show ?case by (cases xs) simp-all
qed simp
lemma stake-nth[simp]:
 assumes i < j
 shows stake j s ! i = s i
using assms by (induct j arbitrary: s i) (simp-all add: nth-Cons')
lemma stake-suffix-id:
 stake i \sigma @- (\sigma \mid_s i) = \sigma
by (induct i) (simp-all add: fun-eq-iff shift-snth split: nat.splits)
lemma id-stake-snth-suffix:
 \sigma = (stake \ i \ \sigma \ @ \ [\sigma \ i]) \ @ - \ (\sigma \ |_s \ Suc \ i)
using stake-suffix-id
apply (metis Suc-diff-le append-Nil2 diff-is-0-eq length-stake lessI nat.simps(3) nat-le-linear shift-snth stake-nil
stake-shift take-Suc-conv-app-nth)
done
lemma stake-add[simp]:
 stake \ i \ \sigma \ @ \ stake \ j \ (\sigma \mid_s i) = stake \ (i + j) \ \sigma
apply (induct i arbitrary: \sigma)
apply simp
apply auto
apply (metis One-nat-def plus-1-eq-Suc suffix-plus-com)
lemma stake-append: stake \ n \ (u \ @-s) = take \ (min \ (length \ u) \ n) \ u \ @ \ stake \ (n - length \ u) \ s
proof (induct \ n \ arbitrary: \ u)
 case (Suc \ n) then show ?case
   apply clarsimp
   apply (cases \ u)
```

```
apply auto
   done
qed auto
lemma stake-shift:
 stake i \sigma @- stake j (\sigma |_s i) @- \beta = stake (i + j) \sigma @- \beta
apply (induct i arbitrary: \sigma)
apply simp
apply auto
apply (metis One-nat-def plus-1-eq-Suc suffix-plus-com)
lemma stake-suffix-drop:
  stake \ i \ (\sigma \mid_s j) = drop \ j \ (stake \ (i + j) \ \sigma)
by (metis append-eq-conv-conj length-stake semiring-normalization-rules (24) stake-add)
lemma stake-suffix:
 assumes i \leq j
 shows stake j \sigma @-u|_s i = \sigma(i \rightarrow j - i) @-u
by (simp add: assms stake-suffix-drop suffix-shift)
2.1
       Decomposing safety and liveness
Famously properties on infinite sequences can be decomposed into safety and liveness properties Alpern and
Schneider (1985); Schneider (1987). See Kindler (1994) for an overview.
definition safety :: 'a seq-pred \Rightarrow bool where
 safety P \longleftrightarrow (\forall \sigma. \neg P \ \sigma \longrightarrow (\exists i. \forall \beta. \neg P \ (stake \ i \ \sigma @ - \beta)))
lemma safety-def2: — Contraposition gives the customary prefix-closure definition
 safety P \longleftrightarrow (\forall \sigma. (\forall i. \exists \beta. P (stake i \sigma @-\beta)) \longrightarrow P \sigma)
unfolding safety-def by blast
definition liveness :: 'a seq-pred \Rightarrow bool where
 liveness P \longleftrightarrow (\forall \alpha. \exists \sigma. P (\alpha @ - \sigma))
lemmas safetyI = iffD2[OF\ safety-def,\ rule-format]
lemmas safetyI2 = iffD2[OF\ safety-def2,\ rule-format]
lemmas livenessI = iffD2[OF\ liveness-def,\ rule-format]
lemma safety-False:
 shows safety (\lambda \sigma. False)
by (rule\ safetyI)\ simp
lemma safety-True:
 shows safety (\lambda \sigma. True)
by (rule\ safetyI)\ simp
lemma safety-state-prop:
 shows safety (\lambda \sigma. P (\sigma \theta))
by (rule\ safetyI)\ auto
lemma safety-invariant:
 shows safety (\lambda \sigma. \ \forall i. \ P \ (\sigma \ i))
apply (rule \ safetyI)
apply clarsimp
apply (metis length-stake lessI shift-snth-less stake-nth)
done
```

```
lemma safety-transition-relation:
 shows safety (\lambda \sigma. \ \forall i. \ (\sigma \ i, \ \sigma \ (i+1)) \in R)
apply (rule safetyI)
apply clarsimp
apply (metis (no-types, opaque-lifting) Suc-eq-plus1 add.left-neutral add-Suc-right add-diff-cancel-left' le-add1
list.sel(1)\ list.simps(3)\ shift-simps(1)\ stake.simps(2)\ stake-suffix\ suffix-def)
done
lemma safety-conj:
 assumes safety P
 assumes safety Q
 shows safety (P \land Q)
using assms unfolding safety-def by blast
lemma safety-always-eventually[simplified]:
 assumes safety P
 assumes \forall i. \exists j \geq i. \exists \beta. P (\sigma(\theta \rightarrow j) @-\beta)
 shows P \sigma
using assms unfolding safety-def2
apply -
apply (drule-tac x=\sigma in spec)
apply clarsimp
apply (drule-tac \ x=i \ in \ spec)
apply clarsimp
apply (rule-tac x=(stake\ j\ \sigma\ @-\ \beta)\mid_s\ i\ \mathbf{in}\ exI)
apply (simp add: stake-shift-stake-shift stake-suffix)
done
lemma safety-disj:
 assumes safety P
 assumes safety Q
 shows safety (P \lor Q)
unfolding safety-def2 using assms
by (metis safety-always-eventually add-diff-cancel-right' diff-le-self le-add-same-cancel2)
The decomposition is given by a form of closure.
definition M_p :: 'a \ seq\text{-}pred \Rightarrow 'a \ seq\text{-}pred \ \textbf{where}
  M_p P = (\lambda \sigma. \ \forall i. \ \exists \beta. \ P \ (stake \ i \ \sigma @ - \beta))
definition Safe :: 'a seq-pred \Rightarrow 'a seq-pred where
 Safe P = (P \vee M_p P)
definition Live :: 'a seq-pred \Rightarrow 'a seq-pred where
 Live P = (P \lor \neg M_p P)
lemma decomp:
  P = (Safe \ P \land Live \ P)
unfolding Safe-def Live-def by blast
lemma safe:
 safety (Safe P)
unfolding Safe\text{-}def safety\text{-}def M_p\text{-}def
apply clarsimp
apply (simp add: stake-shift)
apply (rule-tac \ x=i \ in \ exI)
apply clarsimp
apply (rule-tac \ x=i \ in \ exI)
apply clarsimp
```

done

```
lemma live:
  liveness (Live P)
proof(rule\ livenessI)
  have (\exists \beta. \ P \ (\alpha @ - \beta)) \lor \neg (\exists \beta. \ P \ (\alpha @ - \beta)) by blast
  also have ?this \longleftrightarrow (\exists \beta. P (\alpha @ - \beta) \lor (\forall \gamma. \neg P (\alpha @ - \gamma))) by blast
  also have ... \longleftrightarrow (\exists \beta. \ P \ (\alpha @ - \beta) \lor (\exists i. \ i = length \ \alpha \land (\forall \gamma. \ \neg P \ (stake \ i \ (\alpha @ - \beta) @ - \gamma)))) by (simp)
add: stake-shift)
  also have ... \longrightarrow (\exists \beta. \ P \ (\alpha @ - \beta) \lor (\exists i. \ (\forall \gamma. \neg P \ (stake \ i \ (\alpha @ - \beta) @ - \gamma)))) by blast
  finally have \exists \beta. \ P \ (\alpha @ - \beta) \lor (\exists i. \ \forall \gamma. \neg P \ (stake \ i \ (\alpha @ - \beta) @ - \gamma)).
  then show \exists \sigma. Live P (\alpha @ - \sigma) unfolding Live-def M_p-def by simp
qed
Sistla (1994) proceeds to give a topological analysis of fairness. An absolute liveness property is a liveness property
whose complement is stable.
definition absolute-liveness: 'a seq-pred \Rightarrow bool where — closed under prepending any finite sequence
  absolute-liveness P \longleftrightarrow (\exists \sigma. \ P \ \sigma) \land (\forall \sigma \ \alpha. \ P \ \sigma \longrightarrow P \ (\alpha @ - \sigma))
definition stable :: 'a seq-pred \Rightarrow bool where — closed under suffixes
  stable P \longleftrightarrow (\exists \sigma. \ P \ \sigma) \land (\forall \sigma \ i. \ P \ \sigma \longrightarrow P \ (\sigma \mid_s i))
lemma absolute-liveness-liveness:
  assumes absolute-liveness P
  shows liveness P
using assms unfolding absolute-liveness-def liveness-def by blast
{f lemma}\ stable-absolute-liveness:
  assumes P \sigma
  assumes \neg P \ \sigma' — extra hypothesis
  shows stable P \longleftrightarrow absolute\text{-liveness} (\neg P)
using assms unfolding stable-def absolute-liveness-def
apply auto
apply (metis cancel-comm-monoid-add-class.diff-cancel drop-eq-Nil order-refl shift.simps(1) suffix-shift suffix-zero)
apply (metis stake-suffix-id)
done
definition fairness :: 'a seq-pred \Rightarrow bool where
  fairness\ P \longleftrightarrow stable\ P \land absolute\mbox{-liveness}\ P
lemma fairness-safety:
  assumes safety P
  assumes fairness F
  shows (\forall \sigma. \ F \ \sigma \longrightarrow P \ \sigma) \longleftrightarrow (\forall \sigma. \ P \ \sigma)
apply rule
using assms
apply clarsimp
unfolding safety-def fairness-def stable-def absolute-liveness-def
apply clarsimp
apply blast+
done
```

3 Linear Temporal Logic

To talk about liveness we need to consider infinitary behaviour on sequences. Traditionally future-time linear temporal logic (LTL) is used to do this Manna and Pnueli (1991); Owicki and Lamport (1982).

The following is a straightforward shallow embedding of the now-traditional anchored semantics of LTL Manna and Pnueli (1988). Some of it is adapted from the sophisticated TLA development in the AFP due to Grov and Merz (2011).

Unlike Lamport (2002), include the next operator, which is convenient for stating rules. Sometimes it allows us to ignore the system, i.e. to state rules as temporally valid (LTL-valid) rather than just temporally program valid (LTL-cimp-), in Jackson's terminology.

```
definition state-prop :: ('a \Rightarrow bool) \Rightarrow 'a seq-pred (\langle \lceil - \rceil \rangle) where
  [P] = (\lambda \sigma. \ P \ (\sigma \ \theta))
definition next :: 'a seq-pred \Rightarrow 'a seq-pred (\langle \bigcirc \rightarrow [80] \ 80) where
  (\bigcirc P) = (\lambda \sigma. \ P \ (\sigma \mid_{s} 1))
definition always :: 'a seq-pred \Rightarrow 'a seq-pred (\langle \Box - \rangle [80] 80) where
  (\Box P) = (\lambda \sigma. \ \forall i. \ P \ (\sigma \mid_s i))
definition until :: 'a seq-pred \Rightarrow 'a seq-pred (infixr \langle U \rangle 30) where
  (P \ \mathcal{U} \ Q) = (\lambda \sigma. \ \exists i. \ Q \ (\sigma \mid_{s} i) \land (\forall k < i. \ P \ (\sigma \mid_{s} k)))
definition eventually :: 'a seq-pred \Rightarrow 'a seq-pred (\langle \diamond - \rangle [80] 80) where
  (\lozenge P) = (\langle \mathit{True} \rangle \ \mathcal{U} \ P)
definition release :: 'a seq-pred \Rightarrow 'a seq-pred (infixr \langle \mathcal{R} \rangle 30) where
  (P \mathcal{R} Q) = (\neg(\neg P \mathcal{U} \neg Q))
definition unless :: 'a seq-pred \Rightarrow 'a seq-pred (infixr \langle W \rangle 30) where
  (P \mathcal{W} Q) = ((P \mathcal{U} Q) \vee \Box P)
abbreviation (input)
  pred-always-imp-syn :: 'a seq-pred \Rightarrow 'a seq-pred (infixr \iff 25) where
  P \hookrightarrow Q \equiv \Box(P \longrightarrow Q)
lemmas defs =
  state-prop-def
  always-def
  eventually-def
  next-def
  release-def
  unless-def
  until-def
lemma suffix-state-prop[simp]:
  shows \lceil P \rceil \ (\sigma \mid_s i) = P \ (\sigma \ i)
unfolding defs by simp
lemma alwaysI[intro]:
  assumes \bigwedge i. P(\sigma \mid_s i)
  shows (\Box P) \sigma
unfolding defs using assms by blast
lemma alwaysD:
  assumes (\Box P) \sigma
  shows P(\sigma \mid_s i)
using assms unfolding defs by blast
```

```
lemma alwaysE: \llbracket (\Box P) \ \sigma; \ P \ (\sigma \mid_s i) \Longrightarrow Q \rrbracket \Longrightarrow Q
unfolding defs by blast
lemma always-induct:
  assumes P \sigma
  assumes (\Box(P \longrightarrow \bigcirc P)) \sigma
  shows (\Box P) \sigma
proof(rule alwaysI)
  fix i from assms show P(\sigma \mid_s i)
    unfolding defs by (induct i) simp-all
qed
lemma seq-comp:
  fixes \sigma :: 'a \ seq
  fixes P :: 'b \textit{ seq-pred}
  fixes f :: 'a \Rightarrow 'b
  shows
    (\Box P) \ (f \circ \sigma) \longleftrightarrow (\Box (\lambda \sigma. \ P \ (f \circ \sigma))) \ \sigma
    (\lozenge P) \ (f \circ \sigma) \longleftrightarrow (\lozenge (\lambda \sigma. \ P \ (f \circ \sigma))) \ \sigma
    (P \ \mathcal{U} \ Q) \ (f \circ \sigma) \longleftrightarrow ((\lambda \sigma. \ P \ (f \circ \sigma)) \ \mathcal{U} \ (\lambda \sigma. \ Q \ (f \circ \sigma))) \ \sigma
    (P \ \mathcal{W} \ Q) \ (f \circ \sigma) \longleftrightarrow ((\lambda \sigma. \ P \ (f \circ \sigma)) \ \mathcal{W} \ (\lambda \sigma. \ Q \ (f \circ \sigma))) \ \sigma
unfolding defs by simp-all
lemma nextI[intro]:
  assumes P(\sigma \mid_s Suc \theta)
  shows (\bigcirc P) \sigma
using assms unfolding defs by simp
lemma untilI[intro]:
  assumes Q (\sigma \mid_s i)
  assumes \forall k < i. P (\sigma \mid_{s} k)
  shows (P \ \mathcal{U} \ Q) \ \sigma
unfolding defs using assms by blast
lemma untilE:
  assumes (P \mathcal{U} Q) \sigma
  obtains i where Q(\sigma \mid_s i) and \forall k < i. P(\sigma \mid_s k)
using assms unfolding until-def by blast
lemma eventuallyI[intro]:
  assumes P(\sigma \mid_s i)
  shows (\lozenge P) \ \sigma
unfolding eventually-def using assms by blast
lemma eventuallyE[elim]:
  assumes (\lozenge P) \sigma
  obtains i where P(\sigma \mid_s i)
using assms unfolding defs by (blast elim: untilE)
lemma unless-alwaysI:
  assumes (\Box P) \sigma
  shows (P \mathcal{W} Q) \sigma
using assms unfolding defs by blast
lemma unless-untilI:
  assumes Q(\sigma \mid_s j)
  assumes \bigwedge i. i < j \Longrightarrow P(\sigma \mid_s i)
```

```
shows (P \mathcal{W} Q) \sigma
unfolding defs using assms by blast
lemma always-imp-refl[iff]:
   shows (P \hookrightarrow P) \sigma
unfolding defs by blast
lemma always-imp-trans:
   assumes (P \hookrightarrow Q) \sigma
   assumes (Q \hookrightarrow R) \sigma
   shows (P \hookrightarrow R) \sigma
using assms unfolding defs by blast
lemma always-imp-mp:
   assumes (P \hookrightarrow Q) \sigma
   assumes P \sigma
   shows Q \sigma
using assms unfolding defs by (metis suffix-zero)
lemma always-imp-mp-suffix:
   assumes (P \hookrightarrow Q) \sigma
   assumes P(\sigma \mid_s i)
   shows Q (\sigma \mid_s i)
using assms unfolding defs by metis
Some basic facts and equivalences, mostly sanity.
lemma necessitation:
   (\bigwedge s. \ P \ s) \Longrightarrow (\Box P) \ \sigma
   (\bigwedge s. \ P \ s) \Longrightarrow (\lozenge P) \ \sigma
   (\bigwedge s. \ P \ s) \Longrightarrow (P \ \mathcal{W} \ Q) \ \sigma
   (\bigwedge s. \ Q \ s) \Longrightarrow (P \ \mathcal{U} \ Q) \ \sigma
unfolding defs by auto
lemma cong:
   (\bigwedge s. \ P \ s = P' \ s) \Longrightarrow \lceil P \rceil = \lceil P' \rceil
   (\land \sigma. \ P \ \sigma = P' \ \sigma) \Longrightarrow (\Box P) = (\Box P')
   (\bigwedge \sigma. \ P \ \sigma = P' \ \sigma) \Longrightarrow (\lozenge P) = (\lozenge P')
   (\land \sigma. \ P \ \sigma = P' \ \sigma) \Longrightarrow (\bigcirc P) = (\bigcirc P')
   \llbracket \bigwedge \sigma. \ P \ \sigma = P' \ \sigma; \ \bigwedge \sigma. \ Q \ \sigma = Q' \ \sigma \rrbracket \Longrightarrow (P \ \mathcal{U} \ Q) = (P' \ \mathcal{U} \ Q')
   \llbracket \bigwedge \sigma. \ P \ \sigma = P' \ \sigma; \ \bigwedge \sigma. \ Q \ \sigma = Q' \ \sigma \rrbracket \Longrightarrow (P \ \mathcal{W} \ Q) = (P' \ \mathcal{W} \ Q')
unfolding defs by auto
lemma norm[simp]:
   \lceil \langle False \rangle \rceil = \langle False \rangle
   \lceil \langle \mathit{True} \rangle \rceil = \langle \mathit{True} \rangle
   (\neg \lceil p \rceil) = \lceil \neg p \rceil
   (\lceil p \rceil \land \lceil q \rceil) = \lceil p \land q \rceil
   (\lceil p \rceil \vee \lceil q \rceil) = \lceil p \vee q \rceil
   (\lceil p \rceil \longrightarrow \lceil q \rceil) = \lceil p \longrightarrow q \rceil
   (\lceil p \rceil \ \sigma \land \lceil q \rceil \ \sigma) = \lceil p \land q \rceil \ \sigma
   (\lceil p \rceil \ \sigma \lor \lceil q \rceil \ \sigma) = \lceil p \lor q \rceil \ \sigma
   (\lceil p \rceil \ \sigma \longrightarrow \lceil q \rceil \ \sigma) = \lceil p \longrightarrow q \rceil \ \sigma
   (\bigcirc\langle False \rangle) = \langle False \rangle
   (\bigcirc\langle \mathit{True}\rangle) = \langle \mathit{True}\rangle
   (\Box \langle False \rangle) = \langle False \rangle
```

 $(\Box \langle \mathit{True} \rangle) = \langle \mathit{True} \rangle$

```
(\neg \Box P) \sigma = (\Diamond (\neg P)) \sigma
  (\Box\Box P) = (\Box P)
  (\Diamond \langle False \rangle) = \langle False \rangle
  (\lozenge\langle \mathit{True}\rangle) = \langle \mathit{True}\rangle
  (\neg \diamondsuit P) = (\Box (\neg P))
  (\Diamond \Diamond P) = (\Diamond P)
  (P \mathcal{W} \langle False \rangle) = (\Box P)
  (\neg (P \ \mathcal{U} \ Q)) \ \sigma = (\neg P \ \mathcal{R} \ \neg Q) \ \sigma
  (\langle False \rangle \ \mathcal{U} \ P) = P
  (P \ \mathcal{U} \ \langle False \rangle) = \langle False \rangle
  (P \ \mathcal{U} \ \langle \mathit{True} \rangle) = \langle \mathit{True} \rangle
  (\langle True \rangle \ \mathcal{U} \ P) = (\diamondsuit \ P)
  (P \mathcal{U} (P \mathcal{U} Q)) = (P \mathcal{U} Q)
  (\neg (P \mathcal{R} Q)) \sigma = (\neg P \mathcal{U} \neg Q) \sigma
  (\langle False \rangle \ \mathcal{R} \ P) = (\Box P)
  (P \mathcal{R} \langle False \rangle) = \langle False \rangle
  (\langle True \rangle \mathcal{R} P) = P
  (P \mathcal{R} \langle True \rangle) = \langle True \rangle
unfolding defs
apply (auto simp: fun-eq-iff)
apply (metis suffix-plus suffix-zero)
apply (metis suffix-plus suffix-zero)
  apply fastforce
  apply force
apply (metis add.commute add-diff-inverse-nat less-diff-conv2 not-le)
apply (metis add.right-neutral not-less0)
  apply force
  apply fastforce
done
lemma always-conj-distrib: (\Box(P \land Q)) = (\Box P \land \Box Q)
unfolding defs by auto
lemma eventually-disj-distrib: (\Diamond(P \lor Q)) = (\Diamond P \lor \Diamond Q)
unfolding defs by auto
lemma always-eventually[elim!]:
  assumes (\Box P) \sigma
  shows (\lozenge P) \sigma
using assms unfolding defs by auto
lemma eventually-imp-conv-disj: (\Diamond(P \longrightarrow Q)) = (\Diamond(\neg P) \lor \Diamond Q)
unfolding defs by auto
lemma eventually-imp-distrib:
  (\Diamond(P \longrightarrow Q)) = (\Box P \longrightarrow \Diamond Q)
unfolding defs by auto
lemma unfold:
  (\Box P) \ \sigma = (P \land \bigcirc \Box P) \ \sigma
  (\diamondsuit P) \ \sigma = (P \lor \bigcirc \diamondsuit P) \ \sigma
  (P \mathcal{W} Q) \sigma = (Q \vee (P \wedge \bigcirc (P \mathcal{W} Q))) \sigma
  (P \mathcal{U} Q) \sigma = (Q \vee (P \wedge \bigcirc (P \mathcal{U} Q))) \sigma
```

```
(P \mathcal{R} Q) \sigma = (Q \land (P \lor \bigcirc (P \mathcal{R} Q))) \sigma
unfolding defs
apply -
apply (metis (full-types) add.commute add-diff-inverse-nat less-one suffix-plus suffix-zero)
apply (metis (full-types) One-nat-def add.right-neutral add-Suc-right less I less-Suc-eq-0-disj suffix-plus suffix-zero)
apply auto
  apply fastforce
  apply (metis gr0-conv-Suc nat-neq-iff not-less-eq suffix-zero)
  apply (metis suffix-zero)
  apply force
  using less-Suc-eq-0-disj apply fastforce
  apply (metis qr0-conv-Suc nat-neq-iff not-less0 suffix-zero)
  apply fastforce
  apply (case-tac i; auto)
  apply force
  using less-Suc-eq-0-disj apply force
  apply force
  using less-Suc-eq-0-disj apply fastforce
  apply fastforce
  apply (case-tac i; auto)
done
lemma mono:
  \llbracket (\Box P) \ \sigma; \ \land \sigma. \ P \ \sigma \Longrightarrow \ P' \ \sigma \rrbracket \Longrightarrow (\Box P') \ \sigma
  \llbracket (\lozenge P) \ \sigma ; \ \bigwedge \sigma . \ P \ \sigma \Longrightarrow \ P' \ \sigma \rrbracket \Longrightarrow (\lozenge P') \ \sigma
  \llbracket (P \ \mathcal{U} \ Q) \ \sigma; \ \bigwedge \sigma. \ P \ \sigma \Longrightarrow P' \ \sigma; \ \bigwedge \sigma. \ Q \ \sigma \Longrightarrow Q' \ \sigma \rrbracket \Longrightarrow (P' \ \mathcal{U} \ Q') \ \sigma
  \llbracket (P \ \mathcal{W} \ Q) \ \sigma; \ \land \sigma. \ P \ \sigma \Longrightarrow P' \ \sigma; \ \land \sigma. \ Q \ \sigma \Longrightarrow Q' \ \sigma \rrbracket \Longrightarrow (P' \ \mathcal{W} \ Q') \ \sigma
unfolding defs by force+
lemma always-imp-mono:
  \llbracket (\Box P) \ \sigma; \ (P \hookrightarrow P') \ \sigma \rrbracket \Longrightarrow (\Box P') \ \sigma
  \llbracket (\lozenge P) \ \sigma; \ (P \hookrightarrow P') \ \sigma \rrbracket \Longrightarrow (\lozenge P') \ \sigma
  \llbracket (P \ \mathcal{U} \ Q) \ \sigma; \ (P \hookrightarrow P') \ \sigma; \ (Q \hookrightarrow Q') \ \sigma \rrbracket \Longrightarrow (P' \ \mathcal{U} \ Q') \ \sigma
  \llbracket (P \ \mathcal{W} \ Q) \ \sigma; \ (P \hookrightarrow P') \ \sigma; \ (Q \hookrightarrow Q') \ \sigma \rrbracket \Longrightarrow (P' \ \mathcal{W} \ Q') \ \sigma
unfolding defs by force+
lemma next-conj-distrib:
  (\bigcirc(P \land Q)) = (\bigcirc P \land \bigcirc Q)
unfolding defs by auto
lemma next-disj-distrib:
  (\bigcirc(P \lor Q)) = (\bigcirc P \lor \bigcirc Q)
unfolding defs by auto
lemma until-next-distrib:
  (\bigcirc(P\ \mathcal{U}\ Q)) = (\bigcirc P\ \mathcal{U}\ \bigcirc Q)
unfolding defs by (auto simp: fun-eq-iff)
lemma until-imp-eventually:
  ((P \ \mathcal{U} \ Q) \longrightarrow \Diamond Q) \ \sigma
unfolding defs by auto
lemma until-until-disj:
  assumes (P \mathcal{U} Q \mathcal{U} R) \sigma
  shows ((P \lor Q) \ \mathcal{U} \ R) \ \sigma
```

```
using assms unfolding defs
apply clarsimp
apply (metis (full-types) add-diff-inverse-nat nat-add-left-cancel-less)
done
lemma unless-unless-disj:
 assumes (P \mathcal{W} Q \mathcal{W} R) \sigma
 shows ((P \vee Q) \mathcal{W} R) \sigma
using assms unfolding defs
apply auto
apply (metis add.commute add-diff-inverse-nat leI less-diff-conv2)
apply (metis add-diff-inverse-nat)
done
lemma until-conj-distrib:
 ((P \land Q) \ \mathcal{U} \ R) = ((P \ \mathcal{U} \ R) \land (Q \ \mathcal{U} \ R))
unfolding defs
apply (auto simp: fun-eq-iff)
apply (metis dual-order.strict-trans nat-neg-iff)
done
lemma until-disj-distrib:
 (P \mathcal{U} (Q \vee R)) = ((P \mathcal{U} Q) \vee (P \mathcal{U} R))
unfolding defs by (auto simp: fun-eq-iff)
lemma eventually-until:
 (\lozenge P) = (\neg P \ \mathcal{U} \ P)
unfolding defs
apply (auto simp: fun-eq-iff)
apply (case-tac P(x \mid_s \theta))
apply blast
apply (drule (1) ex-least-nat-less)
apply (metis\ le\text{-}simps(2))
done
lemma eventually-until-eventually:
 (\diamondsuit(P\ \mathcal{U}\ Q)) = (\diamondsuit Q)
unfolding defs by force
lemma eventually-unless-until:
 ((P \mathcal{W} Q) \land \Diamond Q) = (P \mathcal{U} Q)
unfolding defs by force
lemma eventually-always-imp-always-eventually:
 assumes (\Diamond \Box P) \sigma
 shows (\Box \Diamond P) \sigma
using assms unfolding defs by (metis suffix-commute)
lemma eventually-always-next-stable:
 assumes (\lozenge P) \sigma
 assumes (P \hookrightarrow \bigcirc P) \sigma
 shows (\Diamond \Box P) \sigma
using assms by (metis (no-types) eventually I always D always-induct eventually E norm (15))
lemma next-stable-imp-eventually-always:
 assumes (P \hookrightarrow \bigcirc P) \ \sigma
 shows (\lozenge P \longrightarrow \lozenge \square P) \sigma
using assms eventually-always-next-stable by blast
```

```
lemma always-eventually-always:
 \Diamond \Box \Diamond P = \Box \Diamond P
unfolding defs by (clarsimp simp: fun-eq-iff) (metis add.left-commute semiring-normalization-rules(25))
lemma stable-unless:
 assumes (P \hookrightarrow \bigcirc (P \lor Q)) \sigma
 shows (P \hookrightarrow (P \mathcal{W} Q)) \sigma
using assms unfolding defs
apply -
apply (rule ccontr)
apply clarsimp
apply (drule (1) ex-least-nat-less[where P=\lambda j. \neg P (\sigma \mid_s i+j) for i, simplified])
apply clarsimp
apply (metis add-Suc-right le-less less-Suc-eq)
done
lemma unless-induct: — Rule WAIT from Manna and Pnueli (1995, Fig 3.3)
 assumes I: (I \hookrightarrow \bigcirc (I \lor R)) \sigma
 assumes P: (P \hookrightarrow I \lor R) \sigma
 assumes Q: (I \hookrightarrow Q) \sigma
 shows (P \hookrightarrow Q \mathcal{W} R) \sigma
apply (intro alwaysI impI)
apply (erule \ impE[OF \ alwaysD[OF \ P]])
apply (erule \ disjE)
apply (rule always-imp-mono(4)[where P=I and Q=R])
  apply (erule mp[OF alwaysD[OF stable-unless[OF I]]])
 apply (simp \ add: \ Q \ alwaysD)
apply blast
apply (simp add: unfold)
done
3.1
       Leads-to and leads-to-via
Most of our assertions will be of the form \lambda s. A s \longrightarrow (\Diamond C) s (pronounced "A leads to C") or \lambda s. A s \longrightarrow (B \mathcal{U})
C) s ("A leads to C via B").
Most of these rules are due to Jackson (1998) who used leads-to-via in a sequential setting. Others are due to
Manna and Pnueli (1991).
The leads-to-via connective is similar to the "ensures" modality of Chandy and Misra (1989, §3.4.4).
abbreviation (input)
 leads-to :: 'a seq-pred \Rightarrow 'a seq-pred (infixr \langle \sim \rangle 25) where
 P \leadsto Q \equiv P \hookrightarrow \Diamond Q
lemma leads-to-refl:
 shows (P \leadsto P) \sigma
by (metis\ (no-types,\ lifting)\ necessitation(1)\ unfold(2))
lemma leads-to-trans:
 assumes (P \leadsto Q) \sigma
 assumes (Q \leadsto R) \sigma
 shows (P \leadsto R) \sigma
using assms unfolding defs by clarsimp (metis semiring-normalization-rules (25))
lemma leads-to-eventuallyE:
 assumes (P \leadsto Q) \sigma
 assumes (\lozenge P) \sigma
```

```
shows (\diamondsuit Q) \sigma
using assms unfolding defs by auto
lemma leads-to-mono:
  assumes (P' \hookrightarrow P) \sigma
  assumes (Q \hookrightarrow Q') \sigma
  assumes (P \leadsto Q) \sigma
  shows (P' \leadsto Q') \sigma
using assms unfolding defs by clarsimp blast
lemma leads-to-eventually:
  shows (P \leadsto Q \longrightarrow \Diamond P \longrightarrow \Diamond Q) \sigma
by (metis (no-types, lifting) always I unfold (2))
lemma leads-to-disj:
  assumes (P \leadsto R) \sigma
  assumes (Q \leadsto R) \sigma
  shows ((P \lor Q) \leadsto R) \sigma
using assms unfolding defs by simp
lemma leads-to-leads-to-viaE:
  shows ((P \hookrightarrow P \mathcal{U} Q) \longrightarrow P \leadsto Q) \sigma
unfolding defs by clarsimp blast
lemma leads-to-via-concl-weaken:
  assumes (R \hookrightarrow R') \sigma
  assumes (P \hookrightarrow Q \mathcal{U} R) \sigma
  shows (P \hookrightarrow Q \mathcal{U} R') \sigma
using assms unfolding LTL.defs by force
lemma leads-to-via-trans:
  assumes (A \hookrightarrow B \ \mathcal{U} \ C) \ \sigma
  assumes (C \hookrightarrow D \mathcal{U} E) \sigma
  shows (A \hookrightarrow (B \lor D) \ \mathcal{U} \ E) \ \sigma
proof(rule\ alwaysI,\ rule\ impI)
  fix i assume A (\sigma \mid_s i) with assms show ((B \lor D) \mathcal{U} E) (\sigma \mid_s i)
    apply -
    apply (erule \ alwaysE[\mathbf{where} \ i=i])
    apply clarsimp
    apply (erule untilE)
    apply clarsimp
    apply (drule\ (1)\ always-imp-mp-suffix)
    apply (erule untilE)
    apply clarsimp
    apply (rule-tac i=ia + iaa in untilI; simp add: ac-simps)
    apply (metis (full-types) add.assoc leI le-Suc-ex nat-add-left-cancel-less)
    done
qed
lemma leads-to-via-disj: — useful for case distinctions
  assumes (P \hookrightarrow Q \mathcal{U} R) \sigma
  assumes (P' \hookrightarrow Q' \mathcal{U} R) \sigma
  shows (P \lor P' \hookrightarrow (Q \lor Q') \ \mathcal{U} \ R) \ \sigma
using assms unfolding defs by (auto 10 0)
lemma leads-to-via-disj': — more like a chaining rule
  assumes (A \hookrightarrow B \ \mathcal{U} \ C) \ \sigma
  assumes (C \hookrightarrow D \mathcal{U} E) \sigma
```

```
shows (A \lor C \hookrightarrow (B \lor D) \ \mathcal{U} \ E) \ \sigma
proof(rule alwaysI, rule impI, erule disjE)
 fix i assume A (\sigma \mid_s i) with assms show ((B \lor D) U E) (\sigma \mid_s i)
    apply -
   apply (erule alwaysE[\mathbf{where}\ i=i])
   apply clarsimp
   apply (erule untilE)
   apply clarsimp
   apply (drule (1) always-imp-mp-suffix)
   apply (erule untilE)
   apply clarsimp
   apply (rule-tac i=ia + iaa in untilI; simp add: ac-simps)
    apply (metis (full-types) add.assoc leI le-Suc-ex nat-add-left-cancel-less)
    done
next
 fix i assume C (\sigma \mid_s i) with assms(2) show ((B \lor D) \mathcal{U} E) (\sigma \mid_s i)
   apply -
   apply (erule alwaysE[where i=i])
   apply (simp add: mono)
    done
qed
lemma leads-to-via-stable-augmentation:
 assumes stable: (P \land Q \hookrightarrow \bigcirc Q) \sigma
 assumes U: (A \hookrightarrow P \ \mathcal{U} \ C) \ \sigma
 shows ((A \land Q) \hookrightarrow P \ \mathcal{U} \ (C \land Q)) \ \sigma
proof(intro\ alwaysI\ impI,\ elim\ conjE)
 fix i assume AP: A (\sigma \mid_s i) Q (\sigma \mid_s i)
 have Q(\sigma \mid_s (j+i)) if Q(\sigma \mid_s i) and \forall k < j. P(\sigma \mid_s (k+i)) for j
    using that stable by (induct j; force simp: defs)
 with UAP show (P \mathcal{U} (\lambda \sigma. C \sigma \wedge Q \sigma)) (\sigma \mid_s i)
    unfolding defs by clarsimp (metis (full-types) add.commute)
qed
lemma leads-to-via-wf:
 assumes wf R
 assumes indhyp: \bigwedge t. (A \land \lceil \delta = \langle t \rangle \rceil \hookrightarrow B \ \mathcal{U} \ (A \land \lceil \delta \otimes \langle t \rangle \in \langle R \rangle \rceil \lor C)) \ \sigma
 shows (A \hookrightarrow B \ \mathcal{U} \ C) \ \sigma
proof(intro alwaysI impI)
 fix i assume A (\sigma \mid_s i) with \langle wf R \rangle show (B \mathcal{U} C) (\sigma \mid_s i)
 proof (induct \delta (\sigma i) arbitrary: i)
    case (less i) with indhyp[where t=\delta (\sigma i)] show ?case
      apply –
      apply (drule \ alwaysD[\mathbf{where} \ i=i])
      apply clarsimp
      apply (erule untilE)
      apply (rename-tac\ j)
      apply (erule disjE; clarsimp)
      apply (drule-tac \ x=i+j \ in \ meta-spec; \ clarsimp)
       apply (erule untilE; clarsimp)
       apply (rename-tac\ j\ k)
       apply (rule-tac\ i=j+k\ in\ untilI)
       apply (simp add: add.assoc)
       apply clarsimp
       apply (metis add.assoc add.commute add-diff-inverse-nat less-diff-conv2 not-le)
      apply auto
      done
 qed
```

qed

The well-founded response rule due to Manna and Pnueli (2010, Fig 1.23: WELL (well-founded response)), generalised to an arbitrary set of assertions and sequence predicates.

- W1 generalised to be contingent.
- W2 is a well-founded set of assertions that by W1 includes P

```
lemma leads-to-wf:
  fixes Is :: ('a \ seq\text{-}pred \times ('a \Rightarrow 'b)) \ set
  assumes wf (R :: 'b rel)
  assumes W1: (\Box(\exists \varphi. [\langle \varphi \in fst ' Is \rangle] \land (P \longrightarrow \varphi))) \sigma
  assumes W2: \forall (\varphi, \delta) \in Is. \exists (\varphi', \delta') \in insert (Q, \delta\theta) \ Is. \ \forall t. \ (\varphi \land [\delta = \langle t \rangle] \leadsto \varphi' \land [\delta' \otimes \langle t \rangle \in \langle R \rangle]) \ \sigma
  shows (P \leadsto Q) \sigma
proof -
  have (\varphi \land [\delta = \langle t \rangle] \rightsquigarrow Q) \sigma \text{ if } (\varphi, \delta) \in Is \text{ for } \varphi \delta t
    using \langle wf R \rangle that W2
    apply (induct t arbitrary: \varphi \delta)
    unfolding LTL.defs split-def
    apply clarsimp
    apply (metis (no-types, opaque-lifting) ab-semigroup-add-class.add-ac(1) fst-eqD snd-conv surjective-pairing)
    done
  with W1 show ?thesis
    apply -
    apply (rule alwaysI)
    apply clarsimp
    apply (erule-tac\ i=i\ in\ alwaysE)
    apply clarsimp
    using alwaysD suffix-state-prop apply blast
    done
qed
         Fairness
A few renderings of weak fairness. van Glabbeek and Höfner (2019) call this "response to insistence" as a gener-
alisation of weak fairness.
```

3.2

```
definition weakly-fair :: 'a seq-pred \Rightarrow 'a seq-pred \Rightarrow 'a seq-pred where
 weakly-fair enabled taken = (\Box enabled \hookrightarrow \Diamond taken)
lemma weakly-fair-def2:
 shows weakly-fair enabled taken = \Box(\neg\Box(enabled \land \neg taken))
unfolding weakly-fair-def by (metis (full-types) always-conj-distrib norm(18))
lemma weakly-fair-def3:
 shows weakly-fair enabled taken = (\lozenge \Box enabled \longrightarrow \Box \lozenge taken)
unfolding weakly-fair-def2
apply (clarsimp simp: fun-eq-iff)
unfolding defs
apply auto
apply (metis (full-types) add.left-commute semiring-normalization-rules(25))
done
lemma weakly-fair-def4:
 shows weakly-fair enabled taken = \Box \Diamond (enabled \longrightarrow taken)
using weakly-fair-def2 by force
```

```
lemma mp-weakly-fair:
 assumes weakly-fair enabled taken \sigma
 assumes (\Box enabled) \sigma
 shows (\diamondsuit taken) \sigma
using assms unfolding weakly-fair-def using always-imp-mp by blast
lemma always-weakly-fair:
 shows \Box (weakly-fair enabled taken) = weakly-fair enabled taken
unfolding weakly-fair-def by simp
lemma eventually-weakly-fair:
 shows \Diamond (weakly-fair enabled taken) = weakly-fair enabled taken
unfolding weakly-fair-def2 by (simp add: always-eventually-always)
lemma weakly-fair-weaken:
 assumes (enabled' \hookrightarrow enabled) \sigma
 assumes (taken \hookrightarrow taken') \sigma
 shows (weakly-fair enabled taken \hookrightarrow weakly-fair enabled taken) \sigma
using assms unfolding weakly-fair-def defs by simp blast
lemma weakly-fair-unless-until:
 shows (weakly-fair enabled taken \land (enabled \hookrightarrow enabled \mathcal{W} taken)) = (enabled \hookrightarrow enabled \mathcal{U} taken)
unfolding defs weakly-fair-def
apply (auto simp: fun-eq-iff)
apply (metis add.right-neutral)
done
lemma stable-leads-to-eventually:
 assumes (enabled \hookrightarrow \bigcirc (enabled \vee taken)) \sigma
 shows (enabled \hookrightarrow (\square enabled \lor \diamondsuit taken)) \sigma
using assms unfolding defs
apply -
apply (rule ccontr)
apply clarsimp
apply (drule (1) ex-least-nat-less[where P=\lambda j. \neg enabled (\sigma \mid_s i+j) for i, simplified])
apply clarsimp
apply (metis add-Suc-right leI less-irrefl-nat)
done
lemma weakly-fair-stable-leads-to:
 assumes (weakly-fair enabled taken) \sigma
 assumes (enabled \hookrightarrow \bigcirc (enabled \vee taken)) \sigma
 shows (enabled \rightsquigarrow taken) \sigma
using stable-leads-to-eventually [OF assms(2)] assms(1) unfolding defs weakly-fair-def
by (auto simp: fun-eq-iff)
lemma weakly-fair-stable-leads-to-via:
  assumes (weakly-fair enabled taken) \sigma
 assumes (enabled \hookrightarrow \bigcirc (enabled \vee taken)) \sigma
 shows (enabled \hookrightarrow enabled \mathcal{U} taken) \sigma
using stable-unless [OF\ assms(2)]\ assms(1) by (metis\ (mono-tags) weakly-fair-unless-until)
Similarly for strong fairness. van Glabbeek and Höfner (2019) call this "response to persistence" as a generalisation
of strong fairness.
definition strongly-fair :: 'a seq-pred \Rightarrow 'a seq-pred \Rightarrow 'a seq-pred where
 strongly-fair\ enabled\ taken = (\Box \Diamond enabled \hookrightarrow \Diamond taken)
lemma strongly-fair-def2:
```

```
strongly-fair\ enabled\ taken = \Box(\neg\Box(\Diamond enabled \land \neg taken))
unfolding strongly-fair-def by (metis weakly-fair-def weakly-fair-def2)
lemma strongly-fair-def3:
 strongly-fair\ enabled\ taken = (\Box \Diamond enabled \longrightarrow \Box \Diamond taken)
unfolding strongly-fair-def2 by (metis (full-types) always-eventually-always weakly-fair-def2 weakly-fair-def3)
lemma always-strongly-fair:
 \Box(strongly-fair\ enabled\ taken) = strongly-fair\ enabled\ taken
unfolding strongly-fair-def by simp
lemma eventually-strongly-fair:
  \Diamond(strongly\text{-}fair\ enabled\ taken) = strongly\text{-}fair\ enabled\ taken
unfolding strongly-fair-def2 by (simp add: always-eventually-always)
lemma strongly-fair-disj-distrib: — not true for weakly-fair
 strongly-fair (enabled1 \vee enabled2) taken = (strongly-fair enabled1 taken \wedge strongly-fair enabled2 taken)
unfolding strongly-fair-def defs
apply (auto simp: fun-eq-iff)
 apply blast
 apply blast
 apply (metis (full-types) semiring-normalization-rules(25))
done
lemma strongly-fair-imp-weakly-fair:
 assumes strongly-fair enabled taken \sigma
 shows weakly-fair enabled taken \sigma
using assms unfolding strongly-fair-def3 weakly-fair-def3 by (simp add: eventually-always-imp-always-eventually)
lemma always-enabled-weakly-fair-strongly-fair:
 assumes (\Box enabled) \sigma
 shows weakly-fair enabled taken \sigma = strongly-fair enabled taken \sigma
using assms by (metis strongly-fair-def3 strongly-fair-imp-weakly-fair unfold(2) weakly-fair-def3)
3.3
      Safety and liveness
Sistla (1994) shows some characterisations of LTL formulas in terms of safety and liveness. Note his (\mathcal{U}) is actually
(\mathcal{W}).
See also Chang, Manna, and Pnueli (1992).
lemma safety-state-prop:
 shows safety \lceil P \rceil
unfolding defs by (rule safety-state-prop)
lemma safety-Next:
 assumes safety P
 shows safety (\bigcirc P)
using assms unfolding defs safety-def
apply clarsimp
apply (metis (mono-tags) One-nat-def list.sel(3) nat.simps(3) stake.simps(2))
done
lemma safety-unless:
 assumes safety P
 assumes safety Q
 shows safety (P \mathcal{W} Q)
proof(rule safetyI2)
 fix \sigma assume X: \exists \beta. (P \mathcal{W} Q) (stake i \sigma @ - \beta) for i
```

```
then show (P \mathcal{W} Q) \sigma
  proof (cases \forall i j. \exists \beta. P (\sigma(i \rightarrow j) @ - \beta))
    case True
    with \langle safety P \rangle have \forall i. P (\sigma \mid_s i) unfolding safety-def2 by blast
    then show ?thesis by (blast intro: unless-alwaysI)
  next
    case False
    then obtain k \ k' where \forall \beta. \neg P \ (\sigma(k \to k') @-\beta) by clarsimp
    then have \forall i \ u. \ k + k' \leq i \longrightarrow \neg P \ ((stake \ i \ \sigma \ @-u) \mid_s k)
      by (metis add.commute diff-add stake-shift-stake-shift stake-suffix-drop suffix-shift)
   then have \forall i \ u. \ k + k' \leq i \land (P \ W \ Q) \ (stake \ i \ \sigma \ @-u) \longrightarrow (\exists \ m \leq k. \ Q \ ((stake \ i \ \sigma \ @-u) \ |_s \ m) \land (\forall \ p < m.
P ((stake \ i \ \sigma \ @- \ u) \mid_s \ p)))
      unfolding defs using leI by blast
    then have \forall i \ u. \ k + k' \leq i \land (P \ W \ Q) \ (stake \ i \ \sigma @-u) \longrightarrow (\exists \ m \leq k. \ Q \ (\sigma(m \rightarrow i - m) @-u) \land (\forall \ p < m.
P\left(\sigma(p \to i - p) @- u\right)\right)
      by (metis stake-suffix add-leE nat-less-le order-trans)
    then have \forall i. \exists n \geq i. \exists m \leq k. \exists u. \ Q \ (\sigma(m \rightarrow n - m) @-u) \land (\forall p < m. \ P \ (\sigma(p \rightarrow n - p) @-u))
      using X by (metis add.commute le-add1)
    then have \exists m \leq k. \ \forall i. \ \exists n \geq i. \ \exists u. \ Q \ (\sigma(m \to n - m) \ @-u) \land (\forall p < m. \ P \ (\sigma(p \to n - p) \ @-u))
      by (simp add: always-eventually-pigeonhole)
    with \langle safety \ P \rangle \langle safety \ Q \rangle show (P \ W \ Q) \ \sigma
        unfolding defs by (metis Nat.le-diff-conv2 add-leE safety-always-eventually)
  qed
qed
lemma safety-always:
  assumes safety P
  shows safety (\Box P)
using assms by (metis norm(20) safety-def safety-unless)
lemma absolute-liveness-eventually:
  shows absolute-liveness P \longleftrightarrow (\exists \sigma. \ P \ \sigma) \land P = \Diamond P
unfolding absolute-liveness-def defs
\textbf{by} \ (\textit{metis cancel-comm-monoid-add-class.diff-cancel drop-eq-Nil order-refl shift.simps} (1) \ stake-suffix-id \ suffix-shift
suffix-zero)
lemma stable-always:
  shows stable P \longleftrightarrow (\exists \sigma. \ P \ \sigma) \land P = \Box P
unfolding stable-def defs by (metis suffix-zero)
To show that weakly-fair is a fairness property requires some constraints on enabled and taken:
    • it is reasonable to assume they are state formulas
    • taken must be satisfiable
lemma fairness-weakly-fair:
  assumes \exists s. \ taken \ s
  shows fairness (weakly-fair [enabled] [taken])
unfolding fairness-def stable-def absolute-liveness-def weakly-fair-def
using assms
apply auto
   apply (rule-tac x=\lambda- .s in exI)
   apply fastforce
  apply (simp add: alwaysD)
 apply (rule-tac x=\lambda- .s in exI)
 apply fastforce
apply (metis (full-types) absolute-liveness-def absolute-liveness-eventually eventually-weakly-fair weakly-fair-def)
```

done

```
lemma fairness-strongly-fair:
    assumes \exists s. taken s
    shows fairness (strongly-fair \lceil enabled \rceil \lceil taken \rceil)
unfolding fairness-def stable-def absolute-liveness-def strongly-fair-def
using assms
apply auto
    apply (rule-tac x=\lambda- .s in exI)
    apply fastforce
    apply (simp add: alwaysD)
apply (rule-tac x=\lambda- .s in exI)
apply fastforce
apply (metis (full-types) absolute-liveness-def absolute-liveness-eventually eventually-weakly-fair weakly-fair-def)
done
```

4 CIMP syntax and semantics

We define a small sequential programming language with synchronous message passing primitives for describing the individual processes. This has the advantage over raw transition systems in that it is programmer-readable, includes sequential composition, supports a program logic and VCG (§5.1), etc. These processes are composed in parallel at the top-level.

CIMP is inspired by IMP, as presented by Winskel (1993) and Nipkow and Klein (2014), and the classical process algebras CCS (Milner 1980, 1989) and CSP (Hoare 1985). Note that the algebraic properties of this language have not been developed.

As we operate in a concurrent setting, we need to provide a small-step semantics (§4.2), which we give in the style of *structural operational semantics* (SOS) as popularised by Plotkin (2004). The semantics of a complete system (§4.3) is presently taken simply to be the states reachable by interleaving the enabled steps of the individual processes, subject to message passing rendezvous. We leave a trace or branching semantics to future work.

This theory contains all the trusted definitions. The soundness of the other theories supervenes upon this one.

4.1 Syntax

Programs are represented using an explicit (deep embedding) of their syntax, as the semantics needs to track the progress of multiple threads of control. Each (atomic) basic command (§??) is annotated with a 'location, which we use in our assertions (§4.4). These locations need not be unique, though in practice they likely will be.

Processes maintain local states of type 'state. These can be updated with arbitrary relations of 'state \Rightarrow 'state set with LocalOp, and conditions of type 's \Rightarrow bool are similarly shallowly embedded. This arrangement allows the end-user to select their own level of atomicity.

The sequential composition operator and control constructs are standard. We add the infinite looping construct *Loop* so we can construct single-state reactive systems; this has implications for fairness assertions.

```
type-synonym 's bexp = 's \Rightarrow bool
```

```
datatype ('answer, 'location, 'question, 'state) com
                                                                                                  (\langle \{ \} - \} | Request - - \rangle [0, 70, 70] 71)
  = Request 'location 'state \Rightarrow 'question 'answer \Rightarrow 'state \Rightarrow 'state set
                                                                                                   (\langle \{ - \} | Response \rightarrow [0, 70] 71)
  | Response 'location 'question \Rightarrow 'state \Rightarrow ('state \times 'answer) set
  | LocalOp 'location 'state \Rightarrow 'state set
                                                                                           (\langle \{ \} - \} \ LocalOp \rightarrow [0, 70] \ 71)
   Cond1
                'location 'state bexp ('answer, 'location, 'question, 'state) com (\{\{-\}\}\ IF - THEN - FI\} [0, 0, 0] 71)
  | Cond2
                'location 'state bexp ('answer, 'location, 'question, 'state) com
                            ('answer, 'location, 'question, 'state) com
                                                                                             (\langle \{ \} \} | IF - / THEN - / ELSE - / FI \rangle [0,
0, 0, 0  71)
                                                                                               (\langle LOOP \ DO \ -/ \ OD \rangle \ [\theta] \ 71)
               ('answer, 'location, 'question, 'state) com
  Loop
   While
               'location' state\ bexp\ ('answer,\ 'location,\ 'question,\ 'state)\ com\ (\langle \{-\}\}\ WHILE\ -/\ DO\ -/\ OD >\ [0,\ 0,\ 0]
71)
              ('answer, 'location, 'question, 'state) com
  | Seq
              ('answer, 'location, 'question, 'state) com
                                                                                               (infixr \langle ;; \rangle 69)
```

```
| Choose ('answer, 'location, 'question, 'state) com
('answer, 'location, 'question, 'state) com
(infixl \iff 68)
```

We provide a one-armed conditional as it is the common form and avoids the need to discover a label for an internal *SKIP* and/or trickier proofs about the VCG.

In contrast to classical process algebras, we have local state and distinct request and response actions. These provide an interface to Isabelle/HOL's datatypes that avoids the need for binding (ala the π -calculus of Milner (1989)) or large non-deterministic sums (ala CCS (Milner 1980, §2.8)). Intuitively the requester poses a 'question with a Request command, which upon rendezvous with a responder's Response command receives an 'answer. The 'question is a deterministic function of the requester's local state, whereas responses can be non-deterministic. Note that CIMP does not provide a notion of channel; these can be modelled by a judicious choice of 'question.

We also provide a binary external choice operator (\oplus) (infix (\oplus)). Internal choice can be recovered in combination with local operations (see Milner (1980, §2.3)).

We abbreviate some common commands: SKIP is a local operation that does nothing, and the floor brackets simplify deterministic LocalOps. We also adopt some syntax magic from Makarius's Hoare and Multiquote theories in the Isabelle/HOL distribution.

```
abbreviation SKIP-syn (\langle \{ - \} / SKIP \rangle [0] \%) where
  \{l\}\ SKIP \equiv \{l\}\ LocalOp\ (\lambda s.\ \{s\})
abbreviation (input) DetLocalOp :: 'location \Rightarrow ('state \Rightarrow 'state)
                                    \Rightarrow ('answer, 'location, 'question, 'state) com (\langle \{ - \} \} \mid - | \rangle [0, 0] 71) where
  \{l\} \mid f \mid \equiv \{l\} \mid LocalOp (\lambda s. \{f s\})
syntax
                  b \Rightarrow ('a \Rightarrow 'b) (\langle \langle - \rangle \rangle [0] 1000)
  -quote
                  :: ('a \Rightarrow 'b) \Rightarrow 'b ( \langle ' \rightarrow [1000] \ 1000)
  -antiquote
                  :: 'location \Rightarrow idt \Rightarrow 'b \Rightarrow ('answer, 'location, 'question, 'state) \ com (\langle \{\{\}-\}\} '-:=/-\} \rangle [0, 0, 70] 71)
  -Assign
  -NonDetAssign: 'location \Rightarrow idt \Rightarrow 'b \ set \Rightarrow ('answer, 'location, 'question, 'state) \ com (\langle \{\{-\}\} \ '-: \in / - \} \rangle) \ [0, 0, 0]
70 71
abbreviation (input) NonDetAssign: 'location \Rightarrow (('val \Rightarrow 'val) \Rightarrow 'state \Rightarrow 'state) \Rightarrow ('state \Rightarrow 'val set)
                                     ⇒ ('answer, 'location, 'question, 'state) com where
  NonDetAssign\ l\ upd\ es \equiv \{l\}\ LocalOp\ (\lambda s.\ \{\ upd\ \langle e\rangle\ s\ | e.\ e\in es\ s\ \})
translations
  \{l\} \ 'x := e => CONST\ DetLocalOp\ l \ ((-update-name\ x\ (\lambda-.\ e)))
  \{l\} \ 'x :\in es => CONST \ NonDetAssign \ l \ (-update-name \ x) \ «es»
parse-translation <
  let
    fun antiquote-tr i (Const (@\{syntax-const - antiquote\}, -) $
          (t \ as \ Const \ (@\{syntax-const \ -antiquote\}, \ -) \ \$ \ -)) = skip-antiquote-tr \ i \ t
      | antiquote-tr i (Const (@{syntax-const - antiquote}, -) $ t) =
          antiquote\text{-}tr\ i\ t\ \$\ Bound\ i
       antiquote-tr i (t $ u) = antiquote-tr i t $ antiquote-tr i u
        antiquote-tr i (Abs(x, T, t)) = Abs(x, T, antiquote-tr(i + 1) t)
       antiquote-tr - a = a
    and skip-antiquote-tr i ((c as Const (@\{syntax-const - antiquote\}, -)) $t) =
          c \ \$ \ skip\text{-}antiquote\text{-}tr \ i \ t
      | skip-antiquote-tr i t = antiquote-tr i t;
    fun quote-tr [t] = Abs (s, dummyT, antiquote-tr 0 (Term.incr-boundvars 1 t))
      | quote-tr ts = raise TERM (quote-tr, ts);
  in [(@{syntax-const -quote}, K quote-tr)] end
```

4.2 Process semantics

Here we define the semantics of a single process's program. We begin by defining the type of externally-visible behaviour:

```
datatype ('answer, 'question) seq-label
= sl-Internal (\langle \tau \rangle)
| sl-Send 'question 'answer (\langle \langle \cdot, - \rangle \rangle)
| sl-Receive 'question 'answer (\langle \rangle -, - \langle \rangle)
```

We define a *labelled transition system* (an LTS) using an execution-stack style of semantics that avoids special treatment of the *SKIP*s introduced by a traditional small step semantics (such as Winskel (1993, Chapter 14)) when a basic command is executed. This was suggested by Thomas Sewell; Pitts (2002) gave a semantics to an ML-like language using this approach.

We record the location of the command that was executed to support fairness constraints.

```
type-synonym ('answer, 'location, 'question, 'state) local-state
= ('answer, 'location, 'question, 'state) com list × 'location option × 'state
```

```
inductive
```

where

```
\llbracket \alpha = action \ s; \ s' \in val \ \beta \ s \ \rrbracket \Longrightarrow (\{\{l\}\} \ Request \ action \ val \ \# \ cs, \ -, \ s) \to_{\alpha\alpha, \ \beta\alpha} (cs, \ Some \ l, \ s') | (s', \beta) \in action \ \alpha \ s \Longrightarrow (\{\{l\}\} \ Response \ action \ \# \ cs, \ -, \ s) \to_{\alpha\alpha, \ \beta\alpha} (cs, \ Some \ l, \ s')
```

```
\mid s' \in R \ s \Longrightarrow (\{\{l\}\} \ LocalOp \ R \ \# \ cs, \ \neg, \ s) \rightarrow_{\tau} (cs, \ Some \ l, \ s')
```

```
 \mid b \mid s \Longrightarrow (\{l\} \mid F \mid b \mid THEN \mid c \mid FI \mid \# \mid cs, \neg, s) \rightarrow_{\tau} (c \mid \# \mid cs, Some \mid l, s)  \mid \neg b \mid s \Longrightarrow (\{l\} \mid F \mid b \mid THEN \mid c \mid FI \mid \# \mid cs, \neg, s) \rightarrow_{\tau} (cs, Some \mid l, s)
```

```
 \mid b \mid s \Longrightarrow (\{l\} \mid F \mid b \mid THEN \mid c1 \mid ELSE \mid c2 \mid FI \mid \# \mid cs, \neg, s) \rightarrow_{\tau} (c1 \mid \# \mid cs, \mid Some \mid l, \mid s)   \mid \neg b \mid s \Longrightarrow (\{l\} \mid F \mid b \mid THEN \mid c1 \mid ELSE \mid c2 \mid FI \mid \# \mid cs, \neg, s) \rightarrow_{\tau} (c2 \mid \# \mid cs, \mid Some \mid l, \mid s)
```

```
|(c \# LOOP\ DO\ c\ OD\ \#\ cs,\ s) \rightarrow_{\alpha} (cs',\ s') \Longrightarrow (LOOP\ DO\ c\ OD\ \#\ cs,\ s) \rightarrow_{\alpha} (cs',\ s')
```

$$\mid b \mid s \Longrightarrow (\{ \mid l \} \mid WHILE \mid b \mid DO \mid c \mid OD \mid \# \mid cs, \neg, \mid s) \rightarrow_{\tau} (c \mid \# \mid l \mid WHILE \mid b \mid DO \mid c \mid CD \mid \# \mid cs, \mid s)$$

$$\mid \neg \mid b \mid s \Longrightarrow (\{ \mid l \mid WHILE \mid b \mid DO \mid c \mid CD \mid \# \mid cs, \neg, \mid s) \rightarrow_{\tau} (cs, \mid Some \mid l, \mid s)$$

$$|(c1 \# c2 \# cs, s) \rightarrow_{\alpha} (cs', s') \Longrightarrow (c1;; c2 \# cs, s) \rightarrow_{\alpha} (cs', s')$$

```
| Choose1: (c1 \# cs, s) \rightarrow_{\alpha} (cs', s') \Longrightarrow (c1 \oplus c2 \# cs, s) \rightarrow_{\alpha} (cs', s')
| Choose2: (c2 \# cs, s) \rightarrow_{\alpha} (cs', s') \Longrightarrow (c1 \oplus c2 \# cs, s) \rightarrow_{\alpha} (cs', s')
```

The following projections operate on local states. These should not appear to the end-user.

abbreviation cPGM :: ('answer, 'location, 'question, 'state) local-state \Rightarrow ('answer, 'location, 'question, 'state) com list **where** $cPGM \equiv fst$

```
abbreviation cTKN :: ('answer, 'location, 'question, 'state) local-state \Rightarrow 'location option where cTKN s \equiv fst (snd s)
```

```
abbreviation cLST :: ('answer, 'location, 'question, 'state) local-state \Rightarrow 'state where cLST s \equiv snd \ (snd \ s)
```

4.3 System steps

A global state maps process names to process' local states. One might hope to allow processes to have distinct types of local state, but there remains no good solution yet in a simply-typed setting; see Schirmer and Wenzel

```
(2009).
```

```
type-synonym ('answer, 'location, 'proc, 'question, 'state) global-state
= 'proc ⇒ ('answer, 'location, 'question, 'state) local-state

type-synonym ('proc, 'state) local-states
= 'proc ⇒ 'state
```

An execution step of the overall system is either any enabled internal τ step of any process, or a communication rendezvous between two processes. For the latter to occur, a *Request* action must be enabled in process p1, and a *Response* action in (distinct) process p2, where the request/response labels α and β (semantically) match.

We also track global communication history here to support assertional reasoning (see §5).

```
type-synonym ('answer, 'question) event = 'question × 'answer
type-synonym ('answer, 'question) history = ('answer, 'question) event list

record ('answer, 'location, 'proc, 'question, 'state) system-state =
GST :: ('answer, 'location, 'proc, 'question, 'state) global-state
HST :: ('answer, 'question) history
```

inductive — This is a predicate of the current state, so the successor state comes first.

```
system\text{-}step :: 'proc \ set \\ \Rightarrow ('answer, 'location, 'proc, 'question, 'state) \ system\text{-}state \\ \Rightarrow ('answer, 'location, 'proc, 'question, 'state) \ system\text{-}state \\ \Rightarrow bool
```

where

```
LocalStep: \llbracket GST \ sh \ p \to_{\tau} ls'; \ GST \ sh' = (GST \ sh)(p := ls'); \ HST \ sh' = HST \ sh \ \rrbracket \Longrightarrow system-step \ \{p\} \ sh' \ sh \ | CommunicationStep: <math>\llbracket GST \ sh \ p \to_{\alpha\alpha, \ \beta} \ ls1'; \ GST \ sh \ q \to_{\alpha\alpha, \ \beta} \ ls2'; \ p \neq q;
GST \ sh' = (GST \ sh)(p := ls1', \ q := ls2'); \ HST \ sh' = HST \ sh \ @ \ [(\alpha, \ \beta)] \ \rrbracket \Longrightarrow system-step \ \{p, \ q\} \ sh' \ sh
```

In classical process algebras matching communication actions yield τ steps, which aids nested parallel composition and the restriction operation (Milner 1980, §2.2). As CIMP does not provide either we do not need to hide communication labels. In CCS/CSP it is not clear how one reasons about the communication history, and it seems that assertional reasoning about these languages is not well developed.

We define predicates over communication histories and system states. These are uncurried to ease composition.

```
type-synonym ('answer, 'location, 'proc, 'question, 'state) state-pred = ('answer, 'location, 'proc, 'question, 'state) system-state ⇒ bool
```

The LST operator (written as a postfix \downarrow) projects the local states of the processes from a ('answer, 'location, 'proc, 'question, 'state) system-state, i.e. it discards control location information.

Conversely the LSTP operator lifts predicates over local states into predicates over ('answer, 'location, 'proc, 'question, 'state) system-state.

Predicates that do not depend on control locations were termed *universal assertions* by Levin and Gries (1981, §3.6).

```
type-synonym ('proc, 'state) local-state-pred = ('proc, 'state) \ local-states \Rightarrow bool
definition LST :: ('answer, 'location, 'proc, 'question, 'state) system-state \Rightarrow ('proc, 'state) \ local-states \ (\leftarrow \downarrow ) \ [1000] \ 1000) \ \textbf{where}
s \downarrow = cLST \circ GST \ s
abbreviation (input) LSTP :: ('proc, 'state) local-state-pred \Rightarrow ('answer, 'location, 'proc, 'question, 'state) \ state-pred \ \textbf{where}
LSTP \ P \equiv \lambda s. \ P \ s \downarrow
```

4.4 Control predicates

Following Lamport $(1980)^1$, we define the at predicate, which holds of a process when control resides at that location. Due to non-determinism processes can be at a set of locations; it is more like "a statement with this location is enabled", which incidentally handles non-unique locations. Lamport's language is deterministic, so he doesn't have this problem. This also allows him to develop a stronger theory about his control predicates.

type-synonym 'location label = 'location set

```
primrec
atC :: ('answer, 'location, 'question, 'state) \ com \Rightarrow 'location \ label
where
atC (\{\{l\}\} \ Request \ action \ val) = \{l\}
| \ atC (\{\{l\}\} \ Response \ action) = \{l\}
| \ atC (\{\{l\}\} \ LocalOp \ f) = \{l\}
| \ atC (\{\{l\}\} \ IF - THEN - FI) = \{l\}
| \ atC (\{\{l\}\} \ IF - THEN - ELSE - FI) = \{l\}
| \ atC (\{\{l\}\} \ WHILE - DO - OD) = \{l\}
| \ atC (LOOP \ DO \ c \ OD) = atC \ c
| \ atC \ (c1;; \ c2) = atC \ c1
| \ atC \ (c1;; \ c2) = atC \ c1 \cup atC \ c2
| \ atCs \ (c1;; \ c2) = atC \ c1 \cup atC \ c2
```

We provide the following definitions to the end-user.

AT maps process names to a predicate that is true of locations where control for that process resides, and the abbreviation at provides a conventional way to use it. The constant atS specifies that control for process p resides at one of the given locations. This stands in for, and generalises, the in predicate of Lamport (1980).

```
definition AT :: ('answer, 'location, 'proc, 'question, 'state) system-state <math>\Rightarrow 'proc \Rightarrow 'location label where AT \ s \ p = atCs \ (cPGM \ (GST \ s \ p))
```

```
abbreviation at :: 'proc \Rightarrow 'location \Rightarrow ('answer, 'location, 'proc, 'question, 'state) state-pred where at p \mid s \equiv l \in AT \mid s \mid p
```

```
definition atS :: 'proc \Rightarrow 'location \ set \Rightarrow ('answer, 'location, 'proc, 'question, 'state) \ state-pred where <math>atS \ p \ ls \ s = (\exists \ l \in ls. \ at \ p \ l \ s)
```

```
definition atLs: 'proc \Rightarrow 'location \ label \ set \Rightarrow ('answer, 'location, 'proc, 'question, 'state) \ state-pred \ where atLs \ p \ labels \ s = (AT \ s \ p \in labels)
```

```
abbreviation (input) at L :: 'proc \Rightarrow 'location label \Rightarrow ('answer, 'location, 'proc, 'question, 'state) state-pred where
```

```
atL \ p \ label \equiv atLs \ p \ \{label\}
```

```
definition atPLs :: ('proc \times 'location \ label) \ set \Rightarrow ('answer, 'location, 'proc, 'question, 'state) \ state-pred \ \mathbf{where} atPLs \ pls = (\forall \ p \ label) \ \langle (p, \ label) \in pls \rangle \longrightarrow atL \ p \ label)
```

The constant *taken* provides a way of identifying which transition was taken. It is somewhat like Lamport's *after*, but not quite due to the presence of non-determinism here. This does not work well for invariants or preconditions.

```
definition taken :: 'proc \Rightarrow 'location \Rightarrow ('answer, 'location, 'proc, 'question, 'state) state-pred where <math>taken \ p \ l \ s \longleftrightarrow cTKN \ (GST \ s \ p) = Some \ l
```

¹Manna and Pnueli (1995) also develop a theory of locations. I think Lamport attributes control predicates to Owicki in her PhD thesis (under Gries). I did not find a treatment of procedures. Manna and Pnueli (1991) observe that a notation for making assertions over sets of locations reduces clutter significantly.

A process is terminated if it not at any control location.

```
abbreviation (input) terminated :: 'proc \Rightarrow ('answer, 'location, 'proc, 'question, 'state) state-pred where terminated p \equiv atL\ p {}
```

A complete system consists of one program per process, and a (global) constraint on their initial local states. From these we can construct the set of initial global states and all those reachable by system steps (§4.3).

```
type-synonym ('answer, 'location, 'proc, 'question, 'state) programs = 'proc ⇒ ('answer, 'location, 'question, 'state) com
```

```
record ('answer, 'location, 'proc, 'question, 'state) pre-system = PGMs :: ('answer, 'location, 'proc, 'question, 'state) programs INIT :: ('proc, 'state) local-state-pred
```

definition

```
initial-state :: ('answer, 'location, 'proc, 'question, 'state, 'ext) pre-system-ext

⇒ ('answer, 'location, 'proc, 'question, 'state) global-state

⇒ bool
```

where

```
initial-state sys s = ((\forall p. cPGM (s p) = [PGMs sys p] \land cTKN (s p) = None) \land INIT sys (cLST \circ s))
```

We construct infinite runs of a system by allowing stuttering, i.e., arbitrary repetitions of states following Lamport (2002, Chapter 8), by taking the reflexive closure of the *system-step* relation. Therefore terminated programs infinitely repeat their final state (but note our definition of terminated processes in §4.4).

Some accounts define stuttering as the *finite* repetition of states. With or without this constraint prerun contains junk in the form of unfair runs, where particular processes do not progress.

definition

```
system-step-reficlp :: ('answer, 'location, 'proc, 'question, 'state) system-state seq-pred where
system-step-reficlp \sigma \longleftrightarrow (\lambda sh \ sh'. \ \exists \ pls. \ system-step \ pls \ sh' \ sh)^{==} \ (\sigma \ \theta) \ (\sigma \ 1)
```

definition

```
prerun :: ('answer, 'location, 'proc, 'question, 'state, 'ext) pre-system-ext
⇒ ('answer, 'location, 'proc, 'question, 'state) system-state seq-pred
```

where

```
prerun sys = ((\lambda \sigma. initial\text{-state sys} (GST (\sigma \theta)) \wedge HST (\sigma \theta) = []) \wedge \Box system\text{-step-reflclp})
```

definition — state-based invariants only

```
prerun-valid :: ('answer, 'location, 'proc, 'question, 'state, 'ext) pre-system-ext 
 <math>\Rightarrow ('answer, 'location, 'proc, 'question, 'state) state-pred <math>\Rightarrow bool (\leftarrow \models_{pre} \rightarrow [11, 0] \ 11)
```

where

```
(sys \models_{pre} \varphi) \longleftrightarrow (\forall \sigma. prerun \ sys \ \sigma \longrightarrow (\Box \lceil \varphi \rceil) \ \sigma)
```

A run of a system is a prerun that satisfies the FAIR requirement. Typically this would include weak fairness for every transition of every process.

```
record ('answer, 'location, 'proc, 'question, 'state) system =
   ('answer, 'location, 'proc, 'question, 'state) pre-system
+ FAIR :: ('answer, 'location, 'proc, 'question, 'state) system-state seq-pred
```

definition

```
run :: ('answer, 'location, 'proc, 'question, 'state) \ system 
\Rightarrow ('answer, 'location, 'proc, 'question, 'state) \ system-state \ seq-pred
```

where

```
run \ sys = (prerun \ sys \land FAIR \ sys)
```

definition

```
valid :: ('answer, 'location, 'proc, 'question, 'state) \ system 
\Rightarrow ('answer, 'location, 'proc, 'question, 'state) \ system-state \ seq-pred \Rightarrow bool \ (\leftarrow \models \rightarrow \lceil 11, \ 0 \rceil \ 11)
```

```
(sys \models \varphi) \longleftrightarrow (\forall \sigma. \ run \ sys \ \sigma \longrightarrow \varphi \ \sigma)
```

5 State-based invariants

We provide a simple-minded verification condition generator (VCG) for this language, providing support for establishing state-based invariants. It is just one way of reasoning about CIMP programs and is proven sound wrt to the CIMP semantics.

Our approach follows Lamport (1980); Lamport and Schneider (1984) (and the later Lamport (2002)) and closely related work by Apt, Francez, and de Roever (1980), Cousot and Cousot (1980) and Levin and Gries (1981), who suggest the incorporation of a history variable. Cousot and Cousot (1980) apparently contains a completeness proof. Lamport mentions that this technique was well-known in the mid-80s when he proposed the use of prophecy variables². See also de Roever, de Boer, Hannemann, Hooman, Lakhnech, Poel, and Zwiers (2001) for an extended discussion of some of this.

declare small-step.intros[intro]

```
inductive-cases small-step-inv:
```

```
\{\{l\}\}\ Request\ action\ val\ \#\ cs,\ ls\} \rightarrow_a s'
```

- $\{\{l\}\}\ Response\ action\ \#\ cs,\ ls\} \rightarrow_a s'$
- $(\{l\}\ LocalOp\ R\ \#\ cs,\ ls) \rightarrow_a s'$
- ($\{l\}\ IF\ b\ THEN\ c\ FI\ \#\ cs,\ ls$) $\rightarrow_a s'$
- ($\{l\}\ IF\ b\ THEN\ c1\ ELSE\ c2\ FI\ \#\ cs,\ ls$) $\rightarrow_a s'$
- ($\{l\}\ WHILE\ b\ DO\ c\ OD\ \#\ cs,\ ls$) $\rightarrow_a s'$ (LOOP DO c OD $\#\ cs,\ ls$) $\rightarrow_a s'$

lemma small-step-stuck:

```
\neg ([], s) \rightarrow_{\alpha} c'
```

by (auto elim: small-step.cases)

declare system-step.intros[intro]

By default we ask the simplifier to rewrite atS using ambient AT information.

```
lemma atS-state-weak-cong[cong]:
```

```
AT \ s \ p = AT \ s' \ p \Longrightarrow atS \ p \ ls \ s \longleftrightarrow atS \ p \ ls \ s'
by (auto simp: atS-def)
```

We provide an incomplete set of basic rules for label sets.

lemma atS-simps:

```
\neg atS \ p \ \{\} \ s
atS \ p \ \{l\} \ s \longleftrightarrow at \ p \ l \ s
[at \ p \ l \ s; \ l \in ls]] \Longrightarrow atS \ p \ ls \ s
(\forall \ l. \ at \ p \ l \ s \longrightarrow l \notin ls) \Longrightarrow \neg atS \ p \ ls \ s
by \ (auto \ simp: \ atS-def)
```

lemma atS-mono:

```
\llbracket atS \ p \ ls \ s; \ ls \subseteq ls' \rrbracket \implies atS \ p \ ls' \ s
by (auto simp: atS-def)
```

lemma atS-un:

```
atS p (l \cup l') s \longleftrightarrow atS p l s \lor atS p l' s
by (auto simp: atS-def)
```

lemma atLs-disj-union[simp]:

```
(atLs\ p\ label0 \lor atLs\ p\ label1) = atLs\ p\ (label0 \cup label1) unfolding atLs-def by simp
```

²https://lamport.azurewebsites.net/pubs/pubs.html

```
lemma atLs-insert-disj:
 atLs\ p\ (insert\ l\ label0) = (atL\ p\ l\lor\ atLs\ p\ label0)
by simp
lemma small-step-terminated:
 s \to_x s' \Longrightarrow atCs (fst s) = \{\} \Longrightarrow atCs (fst s') = \{\}
by (induct pred: small-step) auto
lemma atC-not-empty:
 atC \ c \neq \{\}
by (induct c) auto
lemma atCs-empty:
 atCs \ cs = \{\} \longleftrightarrow cs = []
by (induct cs) (auto simp: atC-not-empty)
lemma terminated-no-commands:
 assumes terminated p sh
 shows \exists s. \ GST \ sh \ p = ([], \ s)
using assms unfolding atLs-def AT-def by (metis atCs-empty prod.collapse singletonD)
lemma terminated-GST-stable:
 assumes system-step q sh' sh
 assumes terminated p sh
 shows GST sh p = GST sh' p
using assms by (auto dest!: terminated-no-commands simp: small-step-stuck elim!: system-step.cases)
lemma terminated-stable:
 assumes system-step q sh' sh
 assumes terminated p sh
 shows terminated p sh'
using assms unfolding atLs-def AT-def
by (fastforce split: if-splits prod.splits
            dest: small-step-terminated
            elim!: system-step.cases)
lemma system-step-pls-nonempty:
 assumes system-step pls sh' sh
 shows pls \neq \{\}
using assms by cases simp-all
lemma system-step-no-change:
 assumes system-step ps sh' sh
 assumes p \notin ps
 shows GST sh' p = GST sh p
using assms by cases simp-all
lemma initial-stateD:
 assumes initial-state sys s
 shows AT (((GST = s, HST = [])) = atC \circ PGMs \ sys \wedge INIT \ sys (((GST = s, HST = []))\downarrow \wedge (\forall p \ l. \neg taken
p \ l \ (GST = s, HST = [])
using assms unfolding initial-state-def split-def o-def LST-def AT-def taken-def by simp
lemma initial-states-initial[iff]:
 assumes initial-state sys s
 shows at p l ((GST = s, HST = [])) <math>\longleftrightarrow l \in atC (PGMs \ sys \ p)
```

using assms unfolding initial-state-def split-def AT-def by simp

```
definition
 reachable-state :: ('answer, 'location, 'proc, 'question, 'state, 'ext) pre-system-ext
                   \Rightarrow ('answer, 'location, 'proc, 'question, 'state) state-pred
where
 reachable-state sys s \longleftrightarrow (\exists \sigma \ i. \ prerun \ sys \ \sigma \land \sigma \ i = s)
lemma reachable-stateE:
 assumes reachable-state sys sh
 assumes \wedge \sigma i. prerun sys \sigma \Longrightarrow P(\sigma i)
using assms unfolding reachable-state-def by blast
lemma prerun-reachable-state:
 assumes prerun sys \sigma
 shows reachable-state sys (\sigma i)
using assms unfolding prerun-def LTL.defs system-step-reftclp-def reachable-state-def by auto
lemma reachable-state-induct[consumes 1, case-names init LocalStep CommunicationStep, induct set: reach-
able-state]:
 assumes r: reachable-state sys sh
 assumes i: \bigwedge s. initial-state sys s \Longrightarrow P (GST = s, HST = [])
 assumes l: \land sh\ ls'\ p. [reachable-state sys sh; P\ sh;\ GST\ sh\ p \to_{\tau}\ ls'] \Longrightarrow P\ (|GST\ = (GST\ sh)(p:=ls'),\ HST
= HST sh
 assumes c: \bigwedge sh \ ls1' \ ls2' \ p1 \ p2 \ \alpha \ \beta.
                [reachable-state\ sys\ sh;\ P\ sh;
                GST \ sh \ p1 \rightarrow_{\alpha\alpha, \beta} ls1'; \ GST \ sh \ p2 \rightarrow_{\alpha\alpha, \beta} ls2'; \ p1 \neq p2
                   \implies P (GST = (GST sh)(p1 := ls1', p2 := ls2'), HST = HST sh @ [(\alpha, \beta)])
 shows P sh
using r
proof(rule\ reachable-stateE)
 fix \sigma i assume prerun sys \sigma show P(\sigma i)
 proof(induct i)
   case \theta from \langle prerun \ sys \ \sigma \rangle show ?case
     unfolding prerun-def by (metis (full-types) i old.unit.exhaust system-state.surjective)
   case (Suc i) with \langle prerun \ sys \ \sigma \rangle show ?case
unfolding prerun-def LTL.defs system-step-reflclp-def reachable-state-def
apply clarsimp
apply (drule-tac \ x=i \ in \ spec)
apply (erule disjE; clarsimp)
apply (erule system-step.cases; clarsimp)
apply (metis (full-types) \langle prerun\ sys\ \sigma \rangle l old unit.exhaust prerun-reachable-state system-state.surjective)
apply (metis (full-types) \langle prerun\ sys\ \sigma \rangle c old.unit.exhaust prerun-reachable-state system-state.surjective)
done
 qed
qed
lemma prerun-valid-TrueI:
 shows sys \models_{pre} \langle True \rangle
unfolding prerun-valid-def by simp
lemma prerun-valid-conjI:
 assumes sys \models_{pre} P
 assumes sys \models_{pre} Q
 shows sys \models_{pre} P \land Q
using assms unfolding prerun-valid-def always-def by simp
```

```
assumes sys \models_{pre} I
 shows sys \models \Box[I]
using assms unfolding prerun-valid-def valid-def run-def by blast
lemma prerun-valid-induct:
 assumes \wedge \sigma. prerun sys \sigma \Longrightarrow [I] \sigma
 assumes \land \sigma. prerun sys \sigma \Longrightarrow (\lceil I \rceil \hookrightarrow (\bigcirc \lceil I \rceil)) \sigma
 shows sys \models_{pre} I
unfolding prerun-valid-def using assms by (simp add: always-induct)
lemma prerun-validI:
 assumes \bigwedge s. reachable-state sys s \Longrightarrow I s
 shows sys \models_{pre} I
unfolding prerun-valid-def using assms by (simp add: alwaysI prerun-reachable-state)
lemma prerun-validE:
 assumes reachable-state sys s
 assumes sys \models_{nre} I
 shows Is
using assms unfolding prerun-valid-def
by (metis alwaysE reachable-stateE suffix-state-prop)
```

5.0.1 Relating reachable states to the initial programs

lemma valid-prerun-lift:

To usefully reason about the control locations presumably embedded in the single global invariant, we need to link the programs we have in reachable state s to the programs in the initial states. The fragments function decomposes the program into statements that can be directly executed (§??). We also compute the locations we could be at after executing that statement as a function of the process's local state.

Eliding the bodies of IF and WHILE statements yields smaller (but equivalent) proof obligations.

```
type-synonym ('answer, 'location, 'question, 'state) loc-comp
 = 'state \Rightarrow 'location set
fun lconst :: 'location set ⇒ ('answer, 'location, 'question, 'state) loc-comp where
 lconst\ lp\ s = lp
definition lcond :: 'location set \Rightarrow 'location set \Rightarrow 'state bexp
                  ⇒ ('answer, 'location, 'question, 'state) loc-comp where
 lcond lp lp' b s = (if b s then lp else lp')
lemma lcond-split:
  Q (lcond \ lp \ lp' \ b \ s) \longleftrightarrow (b \ s \longrightarrow Q \ lp) \land (\neg b \ s \longrightarrow Q \ lp')
unfolding lcond-def by (simp split: if-splits)
lemma lcond-split-asm:
  Q (lcond lp lp' b s) \longleftrightarrow \neg ((b s \land \neg Q lp) \lor (\neg b s \land \neg Q lp'))
unfolding lcond-def by (simp split: if-splits)
lemmas lcond-splits = lcond-split lcond-split-asm
fun
 fragments :: ('answer, 'location, 'question, 'state) com
             \Rightarrow 'location set
             ⇒ ( ('answer, 'location, 'question, 'state) com
```

× ('answer, 'location, 'question, 'state) loc-comp) set

where

fragments ($\{l\}$ IF b THEN c FI) aft

```
= \{ (\{l\} \ IF \ b \ THEN \ c' \ FI, \ lcond \ (atC \ c) \ aft \ b) \ | c'. \ True \ \}
       \cup fragments c aft
| fragments (\{l\} IF b THEN c1 ELSE c2 FI) aft
      = \{ (\{l\} \mid F \mid b \mid THEN \mid c1' \mid ELSE \mid c2' \mid FI, \mid lcond \mid (atC \mid c1) \mid (atC \mid c2) \mid b) \mid c1' \mid c2' \mid True \}
       \cup fragments c1 aft \cup fragments c2 aft
| fragments (LOOP DO c OD) aft = fragments c (atC c)
| fragments (\{l\} WHILE b DO c OD) aft
      = fragments c \{l\} \cup \{ (\{l\} \ WHILE \ b \ DO \ c' \ OD, \ lcond \ (atC \ c) \ aft \ b) \ | c'. \ True \}
| fragments (c1;; c2) aft = fragments c1 (atC c2) \cup fragments c2 aft
 fragments (c1 \oplus c2) aft = fragments c1 aft \cup fragments c2 aft
| fragments \ c \ aft = \{ (c, lconst \ aft) \}
fun
 fragmentsL :: ('answer, 'location, 'question, 'state) com list
             ⇒ ( ('answer, 'location, 'question, 'state) com
               × ('answer, 'location, 'question, 'state) loc-comp ) set
where
 fragmentsL [] = \{\}
 fragmentsL[c] = fragments[c]
| fragmentsL (c \# c' \# cs) = fragments c (atC c') \cup fragmentsL (c' \# cs)
abbreviation
 fragmentsLS :: ('answer, 'location, 'question, 'state) local-state
             ⇒ ( ('answer, 'location, 'question, 'state) com
               × ('answer, 'location, 'question, 'state) loc-comp ) set
where
 fragmentsLS \ s \equiv fragmentsL \ (cPGM \ s)
We show that taking system steps preserves fragments.
lemma small-step-fragmentsLS:
 assumes s \to_{\alpha} s'
 shows fragmentsLS s' \subseteq fragmentsLS s
using assms by induct (case-tac [!] cs, auto)
lemma reachable-state-fragments LS:
 assumes reachable-state sys sh
 shows fragmentsLS (GST \ sh \ p) \subseteq fragments (PGMs \ sys \ p) \{\}
using assms
by (induct rule: reachable-state-induct)
  (auto simp: initial-state-def dest: subsetD[OF small-step-fragmentsLS])
inductive
  basic\text{-}com :: ('answer, 'location, 'question, 'state) com \Rightarrow bool
where
  basic-com (\{l\} Request action val)
 basic\text{-}com (\{l\} Response action)
 basic\text{-}com (\{l\} LocalOp R)
 basic\text{-}com (\{l\}\ IF\ b\ THEN\ c\ FI)
 basic-com (\{l\} IF b THEN c1 ELSE c2 FI)
 basic\text{-}com (\{l\}\} WHILE b DO c OD)
lemma fragments-basic-com:
 assumes (c', aft') \in fragments \ c \ aft
 shows basic-com c'
using assms by (induct c arbitrary: aft) (auto intro: basic-com.intros)
lemma fragmentsL-basic-com:
 assumes (c', aft') \in fragmentsL \ cs
```

```
shows basic-com c'
using assms
apply (induct cs)
apply simp
apply (case-tac cs)
apply (auto simp: fragments-basic-com)
done
```

To reason about system transitions we need to identify which basic statement gets executed next. To that end we factor out the recursive cases of the *small-step* semantics into *contexts*, which isolate the *basic-com* commands with immediate externally-visible behaviour. Note that non-determinism means that more than one *basic-com* can be enabled at a time.

The representation of evaluation contexts follows Berghofer (2012). This style of operational semantics was originated by Felleisen and Hieb (1992).

```
type-synonym ('answer, 'location, 'question, 'state) ctxt
= (('answer, 'location, 'question, 'state) com \Rightarrow ('answer, 'location, 'question, 'state) com)
\times (('answer, 'location, 'question, 'state) com \Rightarrow ('answer, 'location, 'question, 'state) com list)
inductive-set
ctxt :: ('answer, 'location, 'question, 'state) ctxt set
where
C-Hole: (id, \langle [] \rangle) \in ctxt
| C-Loop: (E, fctxt) \in ctxt \Rightarrow (\lambda c1. \ LOOP\ DO\ E\ c1\ OD, \lambda c1. \ fctxt\ c1\ @\ [LOOP\ DO\ E\ c1\ OD]) \in ctxt
| C-Seq: (E, fctxt) \in ctxt \Rightarrow (\lambda c1. \ E\ c1;; c2, \lambda c1. \ fctxt\ c1\ @\ [c2]) \in ctxt
| C-Choose1: (E, fctxt) \in ctxt \Rightarrow (\lambda c1. \ E\ c1 \oplus c2, fctxt) \in ctxt
| C-Choose2: (E, fctxt) \in ctxt \Rightarrow (\lambda c2. \ c1 \oplus E\ c2, fctxt) \in ctxt
```

We can decompose a small step into a context and a basic-com.

fun

```
\begin{array}{l} \textit{decompose-com} :: (\textit{'answer, 'location, 'question, 'state}) \; \textit{com} \\ \Rightarrow (\; (\textit{'answer, 'location, 'question, 'state}) \; \textit{com} \\ & \times (\textit{'answer, 'location, 'question, 'state}) \; \textit{ctxt} \; ) \; \textit{set} \end{array}
```

where

```
decompose-com \ (LOOP\ DO\ c1\ OD) = \{\ (c,\ \lambda t.\ LOOP\ DO\ ictxt\ t\ OD,\ \lambda t.\ fctxt\ t\ @\ [LOOP\ DO\ ictxt\ t\ OD])\ |\ c fctxt\ ictxt.\ (c,\ ictxt,\ fctxt) \in decompose-com\ c1\ \} |\ decompose-com\ (c1;;\ c2) = \{\ (c,\ \lambda t.\ ictxt\ t;;\ c2,\ \lambda t.\ fctxt\ t\ @\ [c2])\ |\ c\ fctxt\ ictxt.\ (c,\ ictxt,\ fctxt) \in decompose-com\ c1\ \} |\ decompose-com\ (c1\ \oplus\ c2) = \{\ (c,\ \lambda t.\ ictxt\ t\ \oplus\ c2,\ fctxt)\ |\ c\ fctxt\ ictxt.\ (c,\ ictxt,\ fctxt) \in decompose-com\ c1\ \} |\ decompose-com\ c= \{(c,\ id,\ \langle ||\rangle)\}
```

definition

```
decomposeLS :: ('answer, 'location, 'question, 'state) \ local-state \\ \Rightarrow ( \ ('answer, 'location, 'question, 'state) \ com \\ \times ( ('answer, 'location, 'question, 'state) \ com \Rightarrow ('answer, 'location, 'question, 'state) \ com ) \\ \times ( ('answer, 'location, 'question, 'state) \ com \Rightarrow ('answer, 'location, 'question, 'state) \ com \ list) ) \ set
```

where

```
decomposeLS \ s = (case \ cPGM \ s \ of \ c \ \# \ - \Rightarrow \ decompose-com \ c \ | \ - \Rightarrow \{\})
```

```
lemma ctxt-inj:

assumes (E, fctxt) \in ctxt

assumes E x = E y

shows x = y

using assms by (induct\ set:\ ctxt) auto
```

```
lemma decompose-com-non-empty: decompose-com c \neq \{\} by (induct c) auto
```

```
lemma decompose-com-basic-com:
 assumes (c', ctxts) \in decompose-com c
 shows basic-com c'
using assms by (induct c arbitrary: c' ctxts) (auto intro: basic-com.intros)
\mathbf{lemma}\ decompose LS-basic-com:
 assumes (c', ctxts) \in decomposeLS s
 shows basic-com c'
using assms unfolding decomposeLS-def by (simp add: decompose-com-basic-com split: list.splits)
lemma decompose-com-ctxt:
 assumes (c', ctxts) \in decompose\text{-}com c
 shows ctxts \in ctxt
using assms by (induct c arbitrary: c' ctxts) (auto intro: ctxt.intros)
lemma decompose-com-ictxt:
 assumes (c', ictxt, fctxt) \in decompose\text{-}com c
 shows ictxt c' = c
using assms by (induct c arbitrary: c' ictxt fctxt) auto
lemma decompose-com-small-step:
 assumes as: (c' \# fctxt \ c' @ cs, s) \rightarrow_{\alpha} s'
 assumes ds: (c', ictxt, fctxt) \in decompose-com c
 shows (c \# cs, s) \rightarrow_{\alpha} s'
using decompose-com-ctxt[OF ds] as decompose-com-ictxt[OF ds]
by (induct ictxt fctxt arbitrary: c cs)
  (cases s', fastforce simp: fun-eq-iff dest: ctxt-inj)+
theorem context-decompose:
 s \to_{\alpha} s' \longleftrightarrow (\exists (c, ictxt, fctxt) \in decomposeLS s.
                  cPGM \ s = ictxt \ c \ \# \ tl \ (cPGM \ s)
                 \land (c # fctxt c @ tl (cPGM s), cTKN s, cLST s) \rightarrow_{\alpha} s'
                 \land (\forall l \in atC \ c. \ cTKN \ s' = Some \ l)) \ (is ?lhs = ?rhs)
\mathbf{proof}(\mathit{rule}\;\mathit{iffI})
 assume ?lhs then show ?rhs
 unfolding decomposeLS-def
 proof(induct rule: small-step.induct)
   case (Choose1 c1 cs s \alpha cs' s' c2) then show ?case
     apply clarsimp
     apply (rename-tac c ictxt fctxt)
     apply (rule-tac x=(c, \lambda t. ictxt \ t \oplus c2, fctxt) in bexI)
     apply auto
     done
 next
   case (Choose2 c2 cs s \alpha cs' s' c1) then show ?case
     apply clarsimp
     apply (rename-tac c ictxt fctxt)
     apply (rule-tac x=(c, \lambda t. \ c1 \oplus ictxt \ t, fctxt) in bexI)
     apply auto
     done
 \mathbf{qed}\ \mathit{fastforce} +
 assume ?rhs then show ?lhs
   unfolding decomposeLS-def
   by (cases s) (auto split: list.splits dest: decompose-com-small-step)
qed
```

While we only use this result left-to-right (to decompose a small step into a basic one), this equivalence shows

that we lose no information in doing so.

assumes GST sh $p \to_{\alpha} ps'$ assumes reachable-state sys sh

obtains c cs aft

Decomposing a compound command preserves fragments too.

```
fun
```

```
loc\text{-}compC :: ('answer, 'location, 'question, 'state) com
                         \Rightarrow ('answer, 'location, 'question, 'state) com list
                         ⇒ ('answer, 'location, 'question, 'state) loc-comp
where
 loc\text{-}compC ({|| l|} IF b THEN c FI) cs = lcond (atC c) (atCs cs) b
 loc\text{-}compC (\{l\}\} IF b THEN c1 ELSE c2 FI) cs = lcond (atC c1) (atC c2) b
 loc\text{-}compC (LOOP DO \ c \ OD) \ cs = lconst \ (atC \ c)
 loc\text{-}compC (\{l\}\ WHILE\ b\ DO\ c\ OD) cs = lcond\ (atC\ c)\ (atCs\ cs)\ b
 loc\text{-}compC\ c\ cs = lconst\ (atCs\ cs)
lemma decompose-fragments:
 assumes (c, ictxt, fctxt) \in decompose\text{-}com \ c\theta
 shows (c, loc\text{-}compC\ c\ (fctxt\ c\ @\ cs)) \in fragments\ c0\ (atCs\ cs)
using assms
proof(induct c0 arbitrary: c ictxt fctxt cs)
 case (Loop c01 c ictxt fctxt cs)
 from Loop.prems\ Loop.hyps(1) [where cs=ictxt\ c\ \#\ cs] show ?case by (auto simp: decompose-com-ictxt)
next
 case (Seq c01 c02 c ictxt fctxt cs)
 from Seq.prems Seq.hyps(1)[where cs=c02 \# cs] show ?case by auto
qed auto
lemma at-decompose:
 assumes (c, ictxt, fctxt) \in decompose\text{-}com \ c\theta
 shows atC \ c \subseteq atC \ c\theta
using assms by (induct c0 arbitrary: c ictxt fctxt; fastforce)
\mathbf{lemma} \ at\text{-}decomposeLS:
 assumes (c, ictxt, fctxt) \in decomposeLS s
 shows atC \ c \subseteq atCs \ (cPGM \ s)
using assms unfolding decomposeLS-def by (auto simp: at-decompose split: list.splits)
lemma decomposeLS-fragmentsLS:
 assumes (c, ictxt, fctxt) \in decomposeLS s
 shows (c, loc\text{-}compC\ c\ (fctxt\ c\ @\ tl\ (cPGM\ s))) \in fragmentsLS\ s
using assms
proof(cases \ cPGM \ s)
 case (Cons \ d \ ds)
 with assms decompose-fragments [where cs=ds] show ?thesis
   by (cases ds) (auto simp: decomposeLS-def)
qed (simp add: decomposeLS-def)
lemma small-step-loc-compC:
 assumes basic-com c
 assumes (c \# cs, ls) \rightarrow_{\alpha} ls'
 shows loc\text{-}compC \ c \ cs \ (snd \ ls) = atCs \ (cPGM \ ls')
using assms by (fastforce elim: basic-com.cases elim!: small-step-inv split: lcond-splits)
The headline result allows us to constrain the initial and final states of a given small step in terms of the original
programs, provided the initial state is reachable.
{\bf theorem}\ decompose\text{-}small\text{-}step\text{:}
```

```
where (c, aft) \in fragments (PGMs sys p) \{\}
     and atC \ c \subseteq atCs \ (cPGM \ (GST \ sh \ p))
     and aft (cLST (GST sh p)) = atCs (cPGM ps')
     and (c \# cs, cTKN (GST sh p), cLST (GST sh p)) \rightarrow_{\alpha} ps'
     and \forall l \in atC \ c. \ cTKN \ ps' = Some \ l
using assms
apply -
apply (frule iffD1[OF context-decompose])
apply clarsimp
apply (frule decomposeLS-fragmentsLS)
apply (frule at-decomposeLS)
apply (frule (1) subsetD[OF reachable-state-fragmentsLS])
apply (frule decomposeLS-basic-com)
apply (frule\ (1)\ small-step-loc-comp\ C)
apply simp
done
```

Reasoning by induction over the reachable states with *decompose-small-step* is quite tedious. We provide a very simple VCG that generates friendlier local proof obligations in §5.1.

5.1 Simple-minded Hoare Logic/VCG for CIMP

We do not develop a proper Hoare logic or full VCG for CIMP: this machinery merely packages up the subgoals that arise from induction over the reachable states (§5). This is somewhat in the spirit of Ridge (2009).

Note that this approach is not compositional: it consults the original system to find matching communicating pairs, and *aft* tracks the labels of possible successor statements. More serious Hoare logics are provided by Cousot and Cousot (1989); Lamport (1980); Lamport and Schneider (1984).

Intuitively we need to discharge a proof obligation for either *Requests* or *Responses* but not both. Here we choose to focus on *Requests* as we expect to have more local information available about these.

inductive

```
vcg :: ('answer, 'location, 'proc, 'question, 'state) programs
         ⇒ ('answer, 'location, 'question, 'state) loc-comp
         ⇒ ('answer, 'location, 'proc, 'question, 'state) state-pred
         ⇒ ('answer, 'location, 'question, 'state) com
         ⇒ ('answer, 'location, 'proc, 'question, 'state) state-pred
         \Rightarrow bool( \langle -, -, - \vdash / \{ - \} / - / \{ - \} \rangle [11,0,0,0,0,0] 11)
where
  \llbracket \bigwedge aft' \ action' \ s \ ps' \ p's' \ l' \ \beta \ s' \ p'. \rrbracket
       \llbracket pre \ s; (\{l'\} \ Response \ action', \ aft') \in fragments \ (coms \ p') \ \{\}; \ p \neq p'; \}
         ps' \in val \ \beta \ (s \downarrow p); \ (p's', \beta) \in action' \ (action \ (s \downarrow p)) \ (s \downarrow p');
         at p l s; at p' l' s;
         AT s' = (AT s)(p := aft (s \downarrow p), p' := aft' (s \downarrow p'));
         s' \downarrow = s \downarrow (p := ps', p' := p's');
         taken p l s';
         HST \ s' = HST \ s \ @ [(action \ (s \downarrow p), \beta)];
         \forall p'' \in -\{p,p'\}. \ GST \ s' \ p'' = GST \ s \ p''
       ] \implies post s'
   ] \implies coms, p, aft \vdash \{pre\} \{l\} Request action val \{post\}\}
| [ ] \land s ps' s'.
       \llbracket pre \ s; \ ps' \in f \ (s \downarrow p); 
         at p \mid l \mid s;
         AT s' = (AT s)(p := aft (s \downarrow p));
         s' \downarrow = s \downarrow (p := ps');
         taken p l s';
         HST s' = HST s;
         \forall p'' \in -\{p\}. \ GST \ s' \ p'' = GST \ s \ p''
```

```
] \implies post s'
   ] \implies coms, p, aft \vdash \{pre\} \{l\} LocalOp f \{post\}\}
| [ ] \land s s'.
      \llbracket pre s;
        at p \mid l \mid s;
        AT s' = (AT s)(p := aft (s \downarrow p));
        s' \downarrow = s \downarrow;
        taken p l s';
        HST s' = HST s;
        \forall p'' \in -\{p\}. \ GST \ s' \ p'' = GST \ s \ p''
      \mathbb{I} \Longrightarrow post s'
   \mathbb{I} \implies coms, \ p, \ aft \vdash \{pre\} \ \{l\} \ IF \ b \ THEN \ t \ FI \ \{post\}
| [ ] \land s s'.
      \llbracket pre \ s;
        at p \mid l \mid s;
        AT s' = (AT s)(p := aft (s \downarrow p));
        s' \downarrow = s \downarrow;
        taken p l s';
        HST \ s' = HST \ s;
        \forall p'' \in -\{p\}. \ GST \ s' \ p'' = GST \ s \ p''
      ] \implies post s'
  ] \implies coms, p, aft \vdash \{pre\} \{l\} IF b THEN t ELSE e FI \{post\}\}
| [ ] \land s s'.
      \llbracket pre \ s;
        at p \mid l \mid s;
        AT s' = (AT s)(p := aft (s \downarrow p));
        s' \downarrow = s \downarrow;
        taken p l s';
        HST s' = HST s;
        \forall p'' \in -\{p\}. \ GST \ s' \ p'' = GST \ s \ p''
      ] \implies post s'
   \rrbracket \implies coms, \ p, \ aft \vdash \{pre\} \ \{l\} \ WHILE \ b \ DO \ c \ OD \ \{post\}\}
— There are no proof obligations for the following commands, but including them makes some basic rules hold
(§5.1.1):
 coms, p, aft \vdash \{pre\} \{l\} Response action \{post\}\}
 coms, p, aft \vdash \{pre\} \ c1 ;; c2 \{post\}
 coms, p, aft \vdash \{pre\} \ LOOP \ DO \ c \ OD \ \{post\}
 coms, p, aft \vdash \{pre\}\ c1 \oplus c2 \ \{post\}
We abbreviate invariance with one-sided validity syntax.
abbreviation valid-inv (\langle -, -, - \vdash / \{ - \} / \rightarrow [11, 0, 0, 0, 0] | 11 \} where
  coms, p, aft \vdash \{I\} \ c \equiv coms, p, aft \vdash \{I\} \ c \{I\}
inductive-cases vcq-inv:
  coms, p, aft \vdash \{pre\} \{l\} Request action val \{post\}\}
  coms, p, aft \vdash \{pre\} \{l\} LocalOp f \{post\}
  coms, p, aft \vdash \{pre\} \{l\} IF b THEN t FI \{post\}
  coms, p, aft \vdash \{pre\} \{l\} IF b THEN t ELSE e FI \{post\}\}
  coms, p, aft \vdash \{pre\} \{l\} WHILE b DO c OD \{post\}\}
  coms, p, aft \vdash \{pre\} \ LOOP \ DO \ c \ OD \ \{post\}
  coms, p, aft \vdash \{pre\} \{l\} Response action \{post\}\}
  coms, p, aft \vdash \{pre\} \ c1 ;; c2 \{post\}
  coms, p, aft \vdash \{pre\} \ Choose \ c1 \ c2 \ \{post\}
We tweak fragments by omitting Responses, yielding fewer obligations
```

fun

```
vcg-fragments' :: ('answer, 'location, 'question, 'state) com \Rightarrow 'location set
```

```
\Rightarrow ( ('answer, 'location, 'question, 'state) com
                × ('answer, 'location, 'question, 'state) loc-comp ) set
where
 vcg-fragments' (\{l\}\ Response\ action) aft = \{\}
| vcg\text{-}fragments'(\{l\} IF b THEN c FI) aft
      = vcg-fragments' c aft
      \cup \{ (\{l\} \ IF \ b \ THEN \ c' \ FI, \ lcond \ (atC \ c) \ aft \ b) \ | c'. \ True \ \} 
|vcg-fragments'(\{\{l\}\} IF b THEN c1 ELSE c2 FI)| aft
      = vcg-fragments' c2 aft \cup vcg-fragments' c1 aft
      \cup \{ (\{l\} \ IF \ b \ THEN \ c1' \ ELSE \ c2' \ FI, \ lcond \ (atC \ c1) \ (atC \ c2) \ b) \ | c1' \ c2'. \ True \} \}
|vcq-fragments' (LOOP DO c OD) aft = vcq-fragments' c (atC c)
| vcg-fragments'(\{\{l\}\} WHILE \ b \ DO \ c \ OD) \ aft
      = vcg-fragments' c \{l\} \cup \{ (\{l\} \ WHILE \ b \ DO \ c' \ OD, \ lcond \ (atC \ c) \ aft \ b) \ | c'. \ True \ \}
 vcg-fragments' (c1 ;; c2) aft = vcg-fragments' c2 aft \cup vcg-fragments' c1 (atC c2)
 vcq-fragments' (c1 \oplus c2) aft = vcq-fragments' c1 aft \cup vcq-fragments' c2 aft
| vcg-fragments' c \ aft = \{(c, lconst \ aft)\}
abbreviation
 vcq-fragments :: ('answer, 'location, 'question, 'state) com
                \Rightarrow ( ('answer, 'location, 'question, 'state) com
                   × ('answer, 'location, 'question, 'state) loc-comp ) set
where
 vcg-fragments c \equiv vcg-fragments' c \{ \}
fun isResponse :: ('answer, 'location, 'question, 'state) com <math>\Rightarrow bool where
 isResponse (\{l\} Response action) \longleftrightarrow True
| isResponse - \longleftrightarrow False
lemma fragments-vcg-fragments':
 \llbracket (c, aft) \in fragments \ c' \ aft'; \ \neg isResponse \ c \ \rrbracket \Longrightarrow (c, aft) \in vcg\text{-}fragments' \ c' \ aft'
by (induct c' arbitrary: aft') auto
lemma vcg-fragments'-fragments:
 vcg-fragments' c' aft' \subseteq fragments c' aft'
by (induct c' arbitrary: aft') (auto 10 0)
lemma VCG-step:
 assumes V: \Lambda p. \ \forall (c, aft) \in vcg\text{-}fragments (PGMs sys p). PGMs sys, p, aft <math>\vdash \{pre\}\ c \ \{post\}\}
 assumes S: system-step p sh' sh
 assumes R: reachable-state sys sh
 assumes P: pre sh
 shows post sh'
using S
proof cases
 case LocalStep with P show ?thesis
   apply –
   apply (erule decompose-small-step[OF - R])
   apply (frule fragments-basic-com)
   apply (erule basic-com.cases)
   apply (fastforce dest!: fragments-vcg-fragments' V[rule-format]
                    elim: vcg-inv elim!: small-step-inv
                    simp: LST-def AT-def taken-def fun-eq-iff)+
   done
next
 case CommunicationStep with P show ?thesis
   apply -
   apply (erule decompose-small-step[OF - R])
   apply (erule decompose-small-step[OF - R])
```

```
subgoal for c cs aft c' cs' aft'
   apply (frule fragments-basic-com[where c'=c])
   apply (frule fragments-basic-com[where c'=c'])
   apply (elim basic-com.cases; clarsimp elim!: small-step-inv)
   apply (drule fragments-vcg-fragments')
   apply (fastforce dest!: V[rule-format]
                   elim: vcq-inv elim!: small-step-inv
                   simp: LST-def AT-def taken-def fun-eq-iff)+
   done
   done
qed
The user sees the conclusion of V for each element of vcq-fragments.
lemma VCG-step-inv-stable:
 assumes V: \Lambda p. \ \forall (c, aft) \in vcg\text{-}fragments (PGMs sys p). PGMs sys, p, aft <math>\vdash \{I\} \ c
 assumes prerun sys \sigma
 shows (\lceil I \rceil \hookrightarrow \bigcirc \lceil I \rceil) \sigma
apply (rule alwaysI)
apply clarsimp
apply (rule nextI)
apply clarsimp
using assms(2) unfolding prerun-def
apply clarsimp
apply (erule-tac\ i=i\ in\ alwaysE)
unfolding system-step-reflclp-def
apply clarsimp
apply (erule disjE; clarsimp)
using VCG-step[where pre=I and post=I] V assms(2) prerun-reachable-state
done
lemma VCG:
 assumes I: \forall s. initial\text{-state sys } s \longrightarrow I ((GST = s, HST = []))
 assumes V: \Lambda p. \ \forall (c, aft) \in vcg\text{-}fragments (PGMs sys p). PGMs sys, p, aft <math>\vdash \{I\} \ c
 shows sys \models_{pre} I
apply (rule prerun-valid-induct)
apply (clarsimp simp: prerun-def state-prop-def)
apply (metis (full-types) I old.unit.exhaust system-state.surjective)
using VCG-step-inv-stable[OF V] apply blast
done
lemmas VCG-valid = valid-prerun-lift[OF VCG, of sys I] for sys I
5.1.1
        VCG rules
We can develop some (but not all) of the familiar Hoare rules; see Lamport (1980) and the seL4/l4.verified lemma
buckets for inspiration. We avoid many of the issues Lamport mentions as we only treat basic (atomic) commands.
context
 fixes coms :: ('answer, 'location, 'proc, 'question, 'state) programs
 fixes p :: 'proc
 fixes aft :: ('answer, 'location, 'question, 'state) loc-comp
begin
abbreviation
 valid-syn :: ('answer, 'location, 'proc, 'question, 'state) state-pred
           ⇒ ('answer, 'location, 'question, 'state) com
           \Rightarrow ('answer, 'location, 'proc, 'question, 'state) state-pred \Rightarrow bool where
```

valid-syn $P \ c \ Q \equiv coms, \ p, \ aft \vdash \{P\} \ c \ \{Q\}$

```
notation valid-syn (\langle \{-\}/ -/ \{-\} \rangle)
abbreviation
  valid-inv-syn :: ('answer, 'location, 'proc, 'question, 'state) state-pred
                 \Rightarrow ('answer, 'location, 'question, 'state) com \Rightarrow bool where
  valid-inv-syn P c \equiv \{P\} \ c \ \{P\}
notation valid-inv-syn (\langle \{-\}/-\rangle \rangle)
lemma vcg-True:
  \{P\}\ c\ \{\langle True \rangle\}
by (cases c) (fastforce elim!: vcg-inv intro: vcg.intros)+
lemma vcq-conj:
  by (cases c) (fastforce elim!: vcq-inv intro: vcq.intros)+
lemma vcg-pre-imp:
  [\![ \bigwedge s. \ P \ s \Longrightarrow Q \ s; \ \{Q\} \ c \ \{R\} \ ]\!] \Longrightarrow \{\![ P\} \ c \ \{R\} \}
by (cases c) (fastforce elim!: vcq-inv intro: vcq.intros)+
lemmas \ vcg-pre = vcg-pre-imp[rotated]
lemma vcg-post-imp:
  \llbracket \bigwedge s. \ Q \ s \Longrightarrow R \ s; \ \{P\} \ c \ \{Q\} \ \rrbracket \Longrightarrow \{P\} \ c \ \{R\}
by (cases c) (fastforce elim!: vcg-inv intro: vcg.intros)+
lemma vcg-prop[intro]:
  \{\langle P \rangle\} c
by (cases c) (fastforce intro: vcq.intros)+
lemma vcg-drop-imp:
  assumes \{P\} c \{Q\}
  shows \{P\}\ c\ \{R\longrightarrow Q\}
using assms
by (cases c) (fastforce elim!: vcg-inv intro: vcg.intros)+
lemma vcg-conj-lift:
  assumes x: \{P\} \ c \ \{Q\}
  assumes y: \{P'\}\ c \{Q'\}
               \{P \land P'\} \ c \ \{Q \land Q'\}
  shows
apply (rule vcq-conj)
apply (rule vcg-pre[OF x], simp)
apply (rule\ vcg\text{-}pre[OF\ y],\ simp)
done
lemma vcg-disj-lift:
  assumes x: \{P\} c \{Q\}
  assumes y: \{P'\}\ c\ \{Q'\}
               \{P \lor P'\}\ c\ \{Q \lor Q'\}
  shows
using assms
by (cases c) (fastforce elim!: vcg-inv intro: vcg.intros)+
lemma vcq-imp-lift:
  assumes \{P'\}\ c\ \{\neg\ P\}
  assumes \{Q'\}\ c\ \{Q\}
  shows \{P' \lor Q'\}\ c\ \{P \longrightarrow Q\}
```

by (simp only: imp-conv-disj vcq-disj-lift[OF assms])

```
lemma vcq-ex-lift:
 assumes \bigwedge x. \{P \ x\} \ c \ \{Q \ x\}
 shows \{ | \lambda s. \exists x. P x s \} \ c \ \{ | \lambda s. \exists x. Q x s \} \}
using assms
by (cases c) (fastforce elim!: vcq-inv intro: vcq.intros)+
lemma vcq-all-lift:
 assumes \bigwedge x. \{P \ x\} \ c \ \{Q \ x\}
 shows \{\lambda s. \ \forall \ x. \ P \ x \ s\} \ c \ \{\lambda s. \ \forall \ x. \ Q \ x \ s\}
using assms
by (cases c) (fastforce elim!: vcg-inv intro: vcg.intros)+
lemma vcq-name-pre-state:
 assumes \bigwedge s. P s \Longrightarrow \{(=) s\} c \{Q\}
 shows \{P\} c \{Q\}
using assms
by (cases c) (fastforce elim!: vcq-inv intro: vcq.intros)+
lemma vcq-lift-comp:
 assumes f: \Lambda P. \{\lambda s. P (f s :: 'a :: type)\} c
 assumes P: \Lambda x. \{Q x\} \ c \{P x\}
 shows \{\lambda s. \ Q \ (f \ s) \ s\} \ c \ \{\lambda s. \ P \ (f \ s) \ s\}
apply (rule vcg-name-pre-state)
apply (rename-tac\ s)
apply (rule vcg-pre)
apply (rule vcg-post-imp[rotated])
 apply (rule vcg-conj-lift)
  apply (rule-tac x=f s in P)
 apply (rule-tac P=\lambda fs.\ fs=f\ s\ \mathbf{in}\ f)
apply simp
apply simp
done
```

5.1.2 Cheap non-interference rules

These rules magically construct VCG lifting rules from the easier to prove eq-imp facts. We don't actually use these in the GC, but we do derive fun-upd equations using the same mechanism. Thanks to Thomas Sewell for the requisite syntax magic.

As these eq-imp facts do not usefully compose, we make the definition asymmetric (i.e., g does not get a bundle of parameters).

Note that these are effectively parametricity rules.

```
definition eq\text{-}imp :: ('a \Rightarrow 'b \Rightarrow 'c) \Rightarrow ('b \Rightarrow 'e) \Rightarrow bool \text{ where}
eq\text{-}imp \ f \ g \equiv (\forall s \ s'. \ (\forall x. \ f \ x \ s = f \ x \ s') \longrightarrow (g \ s = g \ s'))

lemma eq\text{-}impD:
[\![ \ eq\text{-}imp \ f \ g; \ \forall x. \ f \ x \ s = f \ x \ s' \ ]\!] \Longrightarrow g \ s = g \ s'
by (simp \ add: \ eq\text{-}imp\text{-}def)

lemma eq\text{-}imp\text{-}vcg:
assumes g: \ eq\text{-}imp \ f \ g
assumes f: \ \forall x \ P. \ \{P \circ (f \ x)\} \ c
shows \{P \circ g\} \ c
apply (rule \ vcg\text{-}name\text{-}pre\text{-}state)
apply (rule \ vcg\text{-}pre)
apply (rule \ vcg\text{-}post\text{-}imp[rotated])
apply (rule \ vcg\text{-}all\text{-}lift[\mathbf{where} \ 'a='a])
```

```
apply (rule-tac x=x and P=\lambda fs. fs=f x s in f[rule-format])
 apply simp
 apply (frule eq-impD[where f=f, OF g])
 apply simp
apply simp
done
lemma eq-imp-vcq-LST:
  assumes g: eq-imp f g
  assumes f: \forall x P. \{P \circ (f x) \circ LST\} c
  shows \{P \circ g \circ LST\} c
apply (rule vcg-name-pre-state)
apply (rename-tac\ s)
apply (rule vcg-pre)
apply (rule vcg-post-imp[rotated])
 apply (rule vcg-all-lift[where 'a='a])
 apply (rule-tac x=x and P=\lambda fs. fs = f x s \downarrow in f[rule-format])
 apply simp
 apply (frule eq-impD[where f=f, OF g])
 apply simp
apply simp
done
lemma eq-imp-fun-upd:
  assumes g: eq-imp f g
  assumes f: \forall x. f x (s(fld := val)) = f x s
  shows g(s(fld := val)) = g s
apply (rule\ eq\text{-}impD[OF\ g])
apply (rule f)
done
lemma curry-forall-eq:
  (\forall f. \ P \ f) = (\forall f. \ P \ (case-prod \ f))
by (metis case-prod-curry)
lemma pres-tuple-vcq:
  (\forall P. \{P \circ (\lambda s. (f s, g s))\} c)
    \longleftrightarrow ((\forall P. \{P \circ f\} \ c) \land (\forall P. \{P \circ g\} \ c))
apply (simp add: curry-forall-eq o-def)
apply safe
 apply fast
 apply fast
apply (rename-tac\ P)
apply (rule-tac f=f and P=\lambda fs s. P fs (q s) in vcq-lift-comp; simp)
done
lemma pres-tuple-vcg-LST:
  (\forall P. \{P \circ (\lambda s. (f s, g s)) \circ LST\}\} c)
    \longleftrightarrow ((\forall P. \{P \circ f \circ LST\} \ c) \land (\forall P. \{P \circ g \circ LST\} \ c))
apply (simp add: curry-forall-eq o-def)
apply safe
 apply fast
apply fast
apply (rename-tac\ P)
apply (rule-tac f=\lambda s. f \downarrow and P=\lambda f s s. P fs (g \mid s) for g \mid in \ vcg-lift-comp; simp)
done
no-notation valid-syn (\langle \{-\} / -/ \{-\} \rangle)
```

6 One locale per process

```
A sketch of what we're doing in ConcurrentGC, for quicker testing.
FIXME write some lemmas that further exercise the generated thms.
locale P1
begin
definition com :: (unit, string, unit, nat) com where
 com = \{ "A" \} \ WHILE ((<) \ 0) \ DO \{ "B" \} \ | \lambda s. \ s-1 | \ OD \}
intern-com com-def
print-theorems
locset-definition loop = \{B\}
print-theorems
thm locset-cache
definition assertion = atS False loop
end
thm locset-cache
locale P2
begin
thm locset-cache
definition com :: (unit, string, unit, nat) com where
 com = \{ "C" \} WHILE ((<) 0) DO \{ "A" \} | Suc | OD \}
intern-com com-def
locset-definition loop = \{A\}
print-theorems
end
thm locset-cache
primrec coms :: bool \Rightarrow (unit, string, unit, nat) com where
 coms\ False = P1.com
| coms True = P2.com
```

7 Example: a one-place buffer

To demonstrate the CIMP reasoning infrastructure, we treat the trivial one-place buffer example of Lamport and Schneider (1984, §3.3). Note that the semantics for our language is different to Lamport and Schneider's, who treated a historical variant of CSP (i.e., not the one in Hoare (1985)).

We introduce some syntax for fixed-topology (static channel-based) scenarios.

abbreviation

```
rcv-syn :: 'location \Rightarrow 'channel \Rightarrow ('val \Rightarrow 'state \Rightarrow 'state)
```

```
\Rightarrow (unit, 'location, 'channel \times 'val, 'state) com (\langle \{-\}/ - \triangleright - \rangle [0,0,81] 81)
where
  \{l\}\ ch \not = \{l\}\ Response\ (\lambda q\ s.\ if\ fst\ q = ch\ then\ \{(f\ (snd\ q)\ s,\ ())\}\ else\ \{\}\}
abbreviation
  snd-syn :: 'location <math>\Rightarrow 'channel \Rightarrow ('state \Rightarrow 'val)
          \Rightarrow (unit, 'location, 'channel \times 'val, 'state) com (\langle \{-\}/ \neg \neg \rangle [0,0,81] 81)
where
  \{l\}\ ch \triangleleft f \equiv \{l\}\ Request\ (\lambda s.\ (ch, f s))\ (\lambda ans\ s.\ \{s\})
These definitions largely follow Lamport and Schneider (1984). We have three processes communicating over two
channels. We enumerate program locations.
datatype ex-chname = \xi 12 \mid \xi 23
type-synonym ex-val = nat
type-synonym ex-ch = ex-chname \times ex-val
datatype ex-loc = r12 | r23 | s23 | s12
datatype ex-proc = p1 \mid p2 \mid p3
type-synonym ex-pgm = (unit, ex-loc, ex-ch, ex-val) com
type-synonym ex-pred = (unit, ex-loc, ex-proc, ex-ch, ex-val) state-pred
type-synonym ex-state = (unit, ex-loc, ex-proc, ex-ch, ex-val) system-state
type-synonym ex-sys = (unit, ex-loc, ex-proc, ex-ch, ex-val) system
type-synonym ex-history = (ex-ch \times unit) list
We further specialise these for our particular example.
primrec
  ex\text{-}coms :: ex\text{-}proc \Rightarrow ex\text{-}pgm
where
  ex\text{-}coms \ p1 = \{s12\} \ \xi 12 \triangleleft id
 ex\text{-}coms \ p2 = LOOP \ DO \ \{r12\} \ \xi 12 \triangleright (\lambda v - v) \ ;; \ \{s23\} \ \xi 23 \triangleleft id \ OD \}
| ex\text{-}coms \ p3 = \{|r23|\} \ \xi 23 \triangleright (\lambda v - v)
Each process starts with an arbitrary initial local state.
abbreviation ex\text{-}init :: (ex\text{-}proc \Rightarrow ex\text{-}val) \Rightarrow bool \text{ where}
  ex-init \equiv \langle True \rangle
abbreviation sys :: ex-sys where
  sys \equiv (PGMs = ex\text{-}coms, INIT = ex\text{-}init, FAIR = \langle True \rangle)
The following adapts Kai Engelhardt's, from his notes titled Proving an Asynchronous Message Passing Program
Correct, 2011. The history variable tracks the causality of the system, which I feel is missing in Lamport's
treatment. We tack on Lamport's invariant so we can establish Etern-pred.
abbreviation
  filter-on-channel :: ex-chname \Rightarrow ex-state \Rightarrow ex-val \ list ( < \downarrow \rightarrow [100] \ 101)
where

ch \equiv map \ (snd \circ fst) \circ filter \ ((=) \ ch \circ fst \circ fst) \circ HST

definition IL :: ex-pred where
  IL = pred\text{-}conjoin
       at p1 s12 \longrightarrow LIST-NULL \\xi12
     , terminated p1 \longrightarrow \lfloor \xi 12 = (\lambda s. [s \downarrow p1])
     , at p2 \ r12 \longrightarrow \lfloor \xi 12 = \lfloor \xi 23 \rfloor
```

If p3 terminates, then it has p1's value. This is stronger than Lamport and Schneider's as we don't ask that the first process has also terminated.

, at $p2 \ s23 \longrightarrow \lfloor \xi 12 = \lfloor \xi 23 \ @ \ (\lambda s. \ [s \downarrow p2]) \land (\lambda s. \ s \downarrow p1 = s \downarrow p2)$

terminated $p3 \longrightarrow \lfloor \xi 23 = (\lambda s. [s \downarrow p2]) \land (\lambda s. s \downarrow p1 = s \downarrow p3)$

, at p3 r23 \longrightarrow LIST-NULL $\mid \xi 23 \mid$

```
definition Etern-pred :: ex-pred where
 Etern-pred = (terminated p3 \longrightarrow (\lambda s. \ s\downarrow p1 = s\downarrow p3))
Proofs from here down.
lemma correct-system:
 assumes IL sh
 shows Etern-pred sh
using assms unfolding Etern-pred-def IL-def by simp
lemma IL-p1: ex-coms, p1, lconst \{\} \vdash \{IL\} \{s12\} \xi 12 \triangleleft (\lambda s. s)
apply (rule vcq.intros)
apply (rename-tac p')
apply (case-tac p'; clarsimp simp: IL-def atLs-def)
done
lemma IL-p2: ex-coms, p2, lconst \{r12\} \vdash \{IL\} \{s23\} \xi 23 \triangleleft (\lambda s. s)
apply (rule vcg.intros)
apply (rename-tac p')
apply (case-tac p'; clarsimp simp: IL-def)
done
lemma IL: sys \models_{pre} IL
apply (rule VCG)
apply (clarsimp simp: IL-def atLs-def dest!: initial-stateD)
apply (rename-tac p)
apply (case-tac p; clarsimp simp: IL-p1 IL-p2)
done
lemma IL-valid: sys \models \Box \lceil IL \rceil
by (rule valid-prerun-lift[OF IL])
```

8 Example: an unbounded buffer

This is more literally Kai Engelhardt's example from his notes titled *Proving an Asynchronous Message Passing Program Correct*, 2011.

```
datatype ex-chname = \xi 12 \mid \xi 23
type-synonym \ ex-val = nat
type-synonym \ ex-ls = ex-val \ list
type-synonym ex-ch = ex-chname \times ex-val
datatype ex-loc = c1 | r12 | r23 | s23 | s12
datatype ex-proc = p1 \mid p2 \mid p3
type-synonym ex-pqm = (unit, ex-loc, ex-ch, ex-ls) com
type-synonym ex-pred = (unit, ex-loc, ex-proc, ex-ch, ex-ls) state-pred
type-synonym \ ex-state = (unit, \ ex-loc, \ ex-proc, \ ex-ch, \ ex-ls) \ system-state
type-synonym ex-sys = (unit, ex-loc, ex-proc, ex-ch, ex-ls) system
type-synonym ex-history = (ex-ch \times unit) list
The local state for the producer process contains all values produced; consider that ghost state.
abbreviation (input) snoc :: 'a \Rightarrow 'a \ list \Rightarrow 'a \ list \ \text{where} \ snoc \ x \ xs \equiv xs \ @ \ [x]
primrec ex\text{-}coms :: ex\text{-}proc \Rightarrow ex\text{-}pqm where
  ex-coms p1 = LOOP\ DO\ \{c1\}\ LocalOp\ (\lambda xs.\ \{snoc\ x\ xs\ | x.\ True\})\ ;;\ \{s12\}\ \xi12 \triangleleft (last,\ id)\ OD
| ex\text{-}coms \ p2 = LOOP \ DO \ \{r12\} \ \xi 12 \triangleright snoc
                     \oplus \{c1\} IF (\lambda s. length s > 0) THEN \{s23\} \xi 12 \triangleleft (hd, tl) FI
                    OD
```

```
| ex\text{-}coms p3 = LOOP DO \{ r23 \} \xi 23 \triangleright snoc OD \}
abbreviation ex\text{-}init :: (ex\text{-}proc \Rightarrow ex\text{-}ls) \Rightarrow bool where
  ex\text{-}init\ s \equiv \forall\ p.\ s\ p = []
abbreviation sys :: ex-sys where
 sys \equiv (PGMs = ex\text{-}coms, INIT = ex\text{-}init, FAIR = \langle True \rangle)
abbreviation
 filter-on-channel :: ex-chname \Rightarrow ex-state \Rightarrow ex-val \ list ( < \downarrow \rightarrow [100] \ 101)
  definition I-pred :: ex-pred where
 I-pred = pred-conjoin [
       at p1 c1 \longrightarrow \lfloor \xi 12 = (\lambda s. \ s\downarrow p1)
     , at p1 s12 \longrightarrow (\lambda s. length (s \downarrow p1) > 0 \wedge butlast (s \downarrow p1) = (\lfloor \xi 12 \rfloor s)
     , \mid \xi 12 \leq (\lambda s. \ s\downarrow \ p1)
     , \mid \xi 12 = \mid \xi 23 \otimes (\lambda s. \ s\downarrow p2)
     , at p2 \ s23 \longrightarrow (\lambda s. \ length \ (s\downarrow p2) > 0)
     , (\lambda s. \ s\downarrow \ p3) = |\xi 23|
The local state of p3 is some prefix of the local state of p1.
definition Etern-pred :: ex-pred where
 Etern\text{-}pred \equiv \lambda s. \ s\downarrow \ p3 \leq s\downarrow \ p1
lemma correct-system:
 assumes I-pred s
 shows Etern-pred s
using assms unfolding Etern-pred-def I-pred-def less-eq-list-def prefix-def by clarsimp
lemma p1-c1[simplified, intro]:
  ex-coms, p1, lconst \{s12\} \vdash \{I-pred\} \{c1\} LocalOp (\lambda xs. \{ snoc x xs | x. True \})
apply (rule vcg.intros)
apply (clarsimp simp: I-pred-def atS-def)
done
lemma p1-s12[simplified, intro]:
  ex-coms, p1, lconst <math>\{c1\} \vdash \{I-pred\} \{s12\} \xi 12 \triangleleft (last, id)
apply (rule vcg.intros)
apply (rename-tac p')
apply (case-tac p'; clarsimp)
apply (clarsimp simp: I-pred-def atS-def)
apply (metis Prefix-Order.prefix-snoc append.assoc append-butlast-last-id)
done
lemma p2-s23[simplified, intro]:
  ex-coms, p2, lconst \{c1, r12\} \vdash \{I-pred\} \{s23\} \xi 12 \triangleleft (hd, tl)
apply (rule vcg.intros)
apply (rename-tac p')
apply (case-tac p'; clarsimp)
done
lemma p2-pi4[intro]:
  ex-coms, p2, lcond {s23} {c1, r12} (\lambda s. s \neq []) \vdash \{I-pred\} \{c1\} IF (\lambda s. s \neq []) THEN c' FI
apply (rule vcq.intros)
apply (clarsimp simp: I-pred-def atS-def split: lcond-splits)
```

done

```
lemma I: sys \models_{pre} I\text{-}pred

apply (rule\ VCG)

apply (clarsimp\ dest!:\ initial\text{-}stateD\ simp:\ I\text{-}pred\text{-}def\ atS\text{-}def)

apply (rename\text{-}tac\ p)

apply (case\text{-}tac\ p;\ auto)

done

lemma I\text{-}valid:\ sys \models \Box \lceil I\text{-}pred \rceil

by (rule\ valid\text{-}prerun\text{-}lift[OF\ I])
```

9 Concluding remarks

Previously Nipkow and Prensa Nieto (1999); Prensa Nieto (2002, 2003)³ have developed the classical Owicki/Gries and Rely-Guarantee paradigms for the verification of shared-variable concurrent programs in Isabelle/HOL. These have been used to show the correctness of a garbage collector (Prensa Nieto and Esparza 2000).

We instead use synchronous message passing, which is significantly less explored. de Boer, de Roever, and Hannemann (1999); ? provide compositional systems for terminating systems. We have instead adopted Lamport's paradigm of a single global invariant and local proof obligations as the systems we have in mind are tightly coupled and it is not obvious that the proofs would be easier on a decomposed system; see ?, §1.6.6 for a concurring opinion. Unlike the generic sequential program verification framework Simpl (Schirmer 2004), we do not support function calls, or a sophisticated account of state spaces. Moreover we do no meta-theory beyond showing the simple VCG is sound (§5.1).

References

- B. Alpern and F. B. Schneider. Defining liveness. Information Processing Letters, 21(4):181-185, 1985. doi: 10.1016/0020-0190(85)90056-0.
- K. R. Apt, N. Francez, and W. P. de Roever. A proof system for communicating sequential processes. *ACM Transactions on Programming Languages and Systems*, 2(3):359–385, 1980. doi: 10.1145/357103.357110.
- S. Berghofer. A solution to the PoplMark challenge using de Bruijn indices in Isabelle/HOL. J. Autom. Reasoning, 49(3):303–326, 2012.
- K. M. Chandy and J. Misra. Parallel program design a foundation. Addison-Wesley, 1989. ISBN 978-0-201-05866-6.
- E. Y. Chang, Z. Manna, and A. Pnueli. Characterization of temporal property classes. In ICALP'1992, volume 623 of LNCS, pages 474–486. Springer, 1992. doi: $10.1007/3-540-55719-9 _97$.
- P. Cousot and R. Cousot. Semantic analysis of Communicating Sequential Processes (shortened version). In *ICALP*, volume 85 of *LNCS*, pages 119–133. Springer, 1980.
- P. Cousot and R. Cousot. A language independent proof of the soundness and completeness of generalized Hoare logic. *Information and Computation*, 80(2):165–191, February 1989.
- F. S. de Boer, W. P. de Roever, and U. Hannemann. The semantic foundations of a compositional proof method for synchronously communicating processes. In M. Kutylowski, L. Pacholski, and T. Wierzbicki, editors, *MFCS*, volume 1672 of *LNCS*, pages 343–353. Springer, 1999.
- W. P. de Roever, F. S. de Boer, U. Hannemann, J. Hooman, Y. Lakhnech, M. Poel, and J. Zwiers. Concurrency Verification: Introduction to Compositional and Noncompositional Methods, volume 54 of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 2001.

³The theories are in \$ISABELLE/src/HOL/Hoare_Parallel.

- M. Felleisen and R. Hieb. The revised report on the syntactic theories of sequential control and state. *Theoretical Computer Science*, 103(2):235–271, 1992. doi: 10.1016/0304-3975(92)90014-7.
- G. Grov and S. Merz. A definitional encoding of tla* in isabelle/hol. *Archive of Formal Proofs*, November 2011. ISSN 2150-914x. http://isa-afp.org/entries/TLA, Formal proof development.
- C.A.R. Hoare. Communicating Sequential Processes. International Series In Computer Science. Prentice-Hall, 1985. URL http://www.usingcsp.com/.
- P. B. Jackson. Verifying a garbage collection algorithm. In *TPHOLs*, volume 1479 of *LNCS*, pages 225–244. Springer, 1998. doi: 10.1007/BFb0055139.
- E. Kindler. Safety and liveness properties: A survey. Bulletin of the European Association for Theoretical Computer Science, 53(30):268–272, 6 1994. URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1. 43.8206&rep=rep1&type=pdf.
- L. Lamport. The "Hoare Logic" of concurrent programs. Acta Informatica, 14:21–37, 1980.
- L. Lamport. Specifying Systems, The TLA+ Language and Tools for Hardware and Software Engineers. Addison-Wesley, 2002.
- L. Lamport and F. B. Schneider. The "Hoare Logic" of CSP, and all that. ACM Transactions on Programming Languages and Systems, 6(2):281–296, 1984.
- G. Levin and D. Gries. A proof technique for communicating sequential processes. Acta Inf., 15:281–302, 1981.
- Z. Manna and A. Pnueli. The anchored version of the temporal framework. In J. W. de Bakker, W. P. de Roever, and G. Rozenberg, editors, *Linear Time, Branching Time and Partial Order in Logics and Models for Concurrency, School/Workshop, Noordwijkerhout, The Netherlands, May 30 June 3, 1988, Proceedings*, volume 354 of *LNCS*, pages 201–284. Springer, 1988. doi: 10.1007/BFb0013024.
- Z. Manna and A. Pnueli. Tools and rules for the practicing verifier. In R. F. Rashid, editor, *CMU Computer Science: A 25th Anniversary Commemorative*, pages 121–156. ACM Press and Addison-Wesley, 1991. Also Technical Report STAN-CS-90-1321.
- Z. Manna and A. Pnueli. Temporal verification of reactive systems Safety. Springer, 1995.
- Z. Manna and A. Pnueli. Temporal verification of reactive systems: Response. In *Time for Verification, Essays in Memory of Amir Pnueli*, volume 6200 of *LNCS*, pages 279–361. Springer, 2010. doi: 10.1007/978-3-642-13754-9_13.
- R. Milner. A Calculus of Communicating Systems. Springer, 1980.
- R. Milner. Communication and Concurrency. Prentice-Hall, Englewood Cliffs, NJ, 1989.
- T. Nipkow and G. Klein. Concrete Semantics: A Proof Assistant Approach. Springer, 2014. URL http://www.in.tum.de/~nipkow/Concrete-Semantics/.
- T. Nipkow and L. Prensa Nieto. Owicki/Gries in Isabelle/HOL. In J.-P. Finance, editor, *FASE*, volume 1577 of *LNCS*, pages 188–203. Springer, 1999.
- S. S. Owicki and L. Lamport. Proving liveness properties of concurrent programs. *ACM Transactions on Programming Languages and Systems*, 4(3):455–495, 1982. doi: 10.1145/357172.357178.
- A. M. Pitts. Operational semantics and program equivalence. In G. Barthe, P. Dybjer, and J. Saraiva, editors, *Applied Semantics, Advanced Lectures*, volume 2395 of *LNCS*, pages 378–412. Springer, 2002. International Summer School, APPSEM 2000, Caminha, Portugal, September 9–15, 2000.
- G. D. Plotkin. The origins of structural operational semantics. *Journal of Logic and Algebraic Programming*, 60-61:3–15, 2004.
- L. Prensa Nieto. Verification of Parallel Programs with the Owicki-Gries and Rely-Guarantee Methods in Is-abelle/HOL. PhD thesis, Technische Universität München, 2002.
- L. Prensa Nieto. The Rely-Guarantee method in Isabelle/HOL. In P. Degano, editor, ESOP'2003, volume 2618 of LNCS, pages 348–362. Springer, 2003.

- L. Prensa Nieto and J. Esparza. Verifying single and multi-mutator garbage collectors with Owicki/Gries in Isabelle/HOL. In M. Nielsen and B. Rovan, editors, *Mathematical Foundations of Computer Science (MFCS 2000)*, volume 1893 of *LNCS*, pages 619–628. Springer, 2000.
- T. Ridge. Verifying distributed systems: the operational approach. In *POPL'2009*, pages 429–440. ACM, 2009. doi: 10.1145/1480881.1480934.
- N. Schirmer. A verification environment for sequential imperative programs in isabelle/hol. In F. Baader and A. Voronkov, editors, *LPAR*, volume 3452 of *LNCS*, pages 398–414. Springer, 2004.
- N. Schirmer and M. Wenzel. State spaces the locale way. Electr. Notes Theor. Comput. Sci., 254:161–179, 2009.
- F. B. Schneider. Decomposing properties into safety and liveness using predicate logic. Technical Report 87-874, Department of Computer Science, Cornell University, October 1987.
- A. P. Sistla. Safety, liveness and fairness in temporal logic. Formal Aspects of Computing, 6(5):495–512, 1994. doi: 10.1007/BF01211865.
- R. J. van Glabbeek and P. Höfner. Progress, justness and fairness. *ACM Computing Surveys*, 2019. URL http://arxiv.org/abs/1810.07414v1.
- G. Winskel. The Formal Semantics of Programming Languages. MIT Press, Cambridge, MA, 1993.