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Abstract

CIMP extends the small imperative language IMP with control non-determinism and constructs for syn-
chronous message passing.
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1 Point-free notation

Typically we define predicates as functions of a state. The following provide a somewhat comfortable point-free
imitation of Isabelle/HOL’s operators.

abbreviation (input)
pred-K :: 'b = 'a = 'b («(-)») where
(f)y = As. f

abbreviation (input)
pred-not :: (‘a = bool) = 'a = bool («— - [40] 40) where
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—g = \s. a s

abbreviation (input)
pred-conj :: (‘a = bool) = (‘a = bool) = 'a = bool (infixr (A> 35) where
aNb=Xs.asNbs

abbreviation (input)
pred-disj :: ('a = bool) = (‘a = bool) = 'a = bool (infixr <V) 30) where
aVb=As.asVbs

abbreviation (input)
pred-implies :: (‘a = bool) = (‘a = bool) = 'a = bool (infixr (—» 25) where
a—>b=Xs.as — bs

abbreviation (input)
pred-iff = (Ya = bool) = ('a = bool) = 'a = bool (infixr +—> 25) where
a<—b=Xs.as<—bs

abbreviation (input)
pred-eq :: ('a = 'b) = (‘a = 'b) = 'a = bool (infix =) 40) where
a=b=Xs.as=15bs

abbreviation (input)
pred-member :: ('a = 'b) = (‘a = 'b set) = 'a = bool (infix <€ /0) where
ac€b=Xs.asebs

abbreviation (input)
pred-neq :: ('a = 'b) = (‘a = 'b) = 'a = bool (infix %> /0) where
aFb=Xs.as#bs

abbreviation (input)
pred-If :: ('a = bool) = ('a = 'b) = ('a = 'b) = 'a = 'b («(If (-)/ Then (-)/ Else (-))» [0, 0, 10] 10)
where If P Then x Else y = As. if P s then z s else y s

abbreviation (input)
pred-less :: ('a = 'biord) = (‘a = 'b) = 'a = bool (infix (<> 40) where
a< b=Xs.as<bs

abbreviation (input)
pred-le :: ('a = 'b::ord) = ('a = 'b) = 'a = bool (infix << 40) where
a<b=Xs.as<bs

abbreviation (input)
pred-plus :: ('a = 'b::plus) = ('a = 'b) = 'a = 'b (infixl <+> 65) where
a+b=Xs.as+ bs

abbreviation (input)
pred-minus :: (‘a = 'buminus) = (‘a = 'b) = ‘a = 'b (infix]l <—) 65) where
a—b=Xs.as—bs

abbreviation (input)
fun-fanout :: ('a = 'b) = ('a = '¢) = 'a = b x 'c (infix > 35) where
f<rg=Xz (fz, g2)

abbreviation (input)
pred-all :: ('b = 'a = bool) = 'a = bool (binder V> 10) where
V. Px=MXs.Vz. Pxs



abbreviation (input)
pred-ex :: ('b = 'a = bool) = 'a = bool (binder <3» 10) where
dz. Pxr=As. 3z. Pz s

abbreviation (input)
pred-app :: ('b = 'a = '¢) = (la = 'b) = 'a = 'c (infixl «$» 100) where
f8g=Xs.f(g9) s

abbreviation (input)
pred-subseteq :: ('a = 'b set) = (‘a = 'b set) = 'a = bool (infix «C> 50) where
ACB=)Xs. AsC Bs

abbreviation (input)
pred-union :: ('a = b set) = (‘a = 'b set) = 'a = 'b set (infixl <U> 65) where
aUb=Xs.asUbs

abbreviation (input)
pred-inter :: ('a = 'b set) = (‘a = 'b set) = 'a = 'b set (infix]l <Ny 65) where
aNb=AXs.asNbs

More application specific.

abbreviation (input)
pred-conjoin :: ('a = bool) list = 'a = bool where
pred-conjoin xs = foldr (A) zs (True)

abbreviation (input)
pred-disjoin :: ('a = bool) list = 'a = bool where
pred-disjoin xs = foldr (V) xs (False)

abbreviation (input)
pred-is-none :: (‘a = 'b option) = 'a = bool («<NULL -» [40] 40) where
NULL a = Xs. a s = None

abbreviation (input)
pred-empty :: ('a = 'b set) = 'a = bool (\EMPTY - [40] 40) where
EMPTY a = Xs. a s = {}

abbreviation (input)
pred-list-null :: (‘a = 'b list) = 'a = bool (<LIST'-NULL -» [40] 40) where
LIST-NULL a = Xs. a s = ||

abbreviation (input)
pred-list-append :: ('a = b list) = ('a = 'b list) = 'a = 'b list (infixr <@Q) 65) where
s @ ys = As. 25 $ @Q ys s

abbreviation (input)
pred-pair :: ('a = 'b) = (‘a = '¢) = 'a = 'b x 'c (infixr «®» 60) where
a®b=2MAs. (as,bs)

abbreviation (input)

pred-singleton :: (‘a = 'b) = 'a = b set where
pred-singleton © = As. {z s}

2 Infinite Sequences

Infinite sequences and some operations on them.

We use the customary function-based representation.



type-synonym ’'a seq = nat = 'a
type-synonym ’a seq-pred = 'a seq = bool

definition suffiz :: 'a seq = nat = 'a seq (infixl «|s> 60) where
olsi=XN.o (j+ 1)

primrec stake :: nat = 'a seq = 'a list where
stake 0 o = ||
| stake (Suc n) o = o 0 # staken (o |s 1)

primrec shift :: 'a list = 'a seq = 'a seq (infixr «Q—) 65) where
shift [| o = o
| shift (x # xs) o = (\i. case i of 0 = x | Suc i = shift zs o i)

abbreviation interval-syn (<-'(- — -')» [69, 0, 0] 70) where
o(i — j) = stake j (o |s @)

lemma suffiz-eval: (o |s i) j =0 (j + ©)
unfolding suffiz-def by simp

lemma suffiz-plus: o |s n|s m = o |s (m + n)
unfolding suffiz-def by (simp add: add.assoc)

lemma suffiz-commute: ((o |s n) |s m) = ((o |s m) |s n)
by (simp add: suffiz-plus add.commute)

lemma suffiz-plus-com: o |s m |s n =0 |s (m + n)
proof —

have o |s n |s m = o |s (m 4+ n) by (rule suffiz-plus)

then show o |s m [ n = o |s (m + n) by (simp add: suffiz-commute)
qed

lemma suffiz-zero: o |s 0 = o
unfolding suffiz-def by simp

lemma comp-suffiz: foo |si= (foo)|si
unfolding suffiz-def comp-def by simp

lemmas suffiz-simps|[simp] =
comp-suffix
suffiz-eval
suffiz-plus-com
suffix-zero

lemma length-stake[simp]: length (stake n s) = n
by (induct n arbitrary: s) auto

lemma shift-simps[simp]:

(zs @Q— o) 0 = (if zs =[] then o 0 else hd xs)

(zs Q— o) |5 Suc 0 = (if xs = [] then o |5 Suc 0 else tl s Q— o)
by (induct zs) auto

lemma stake-nil[simp]:
stake i o =[] «—i=10

by (cases i; clarsimp)

lemma stake-shift:



stake i (w Q— o) = take i w Q stake (i — length w) o
by (induct i arbitrary: w) (auto simp: neg-Nil-conv)

lemma shift-snth-less[simp]:
assumes ¢ < length xs
shows (zs Q— o) i = xs ! ¢
using assms
proof (induct i arbitrary: xs)
case (Suc i zs) then show ?case by (cases xs) simp-all
qed (simp add: hd-conv-nth nth-tl)

lemma shift-snth-ge[simp):
assumes i > length xs
shows (zs Q— o) i = o (i — length xs)
using assms
proof (induct i arbitrary: xs)
case (Suc i zs) then show ?case by (cases xs) simp-all
qed simp

lemma shift-snith:
(zs Q— o) i = (if < length zs then zs ! i else o (i — length zs))
by simp

lemma suffiz-shift:

(zs Q— o) |s ¢ = drop i s Q— (o |5 © — length xs)
proof (induct i arbitrary: xs)

case (Suc i zs) then show ?case by (cases xs) simp-all
qed simp

lemma stake-nth[simp]:
assumes ¢ < j
shows stake js!i=s1
using assms by (induct j arbitrary: s i) (simp-all add: nth-Cons’)

lemma stake-suffix-id:
stake i 0 Q— (0 |5 1) =0
by (induct i) (simp-all add: fun-eq-iff shift-snth split: nat.splits)

lemma id-stake-snth-suffix:
o = (stake i 0 Q [0 i]) Q— (0 |5 Suc )
using stake-suffiz-id
apply (metis Suc-diff-le append-Nil2 diff-is-0-eq length-stake lessI nat.simps(8) nat-le-linear shift-snth stake-nil
stake-shift take-Suc-conv-app-nth)
done

lemma stake-add[simp]:
stake i o Q stake j (o |s i) = stake (i + j) o
apply (induct i arbitrary: o)
apply simp
apply auto
apply (metis One-nat-def plus-1-eq-Suc suffiz-plus-com)
done

lemma stake-append: stake n (u Q— s) = take (min (length u) n) v @ stake (n — length u) s
proof (induct n arbitrary: u)
case (Suc n) then show ?Zcase
apply clarsimp
apply (cases u)



apply auto
done
qed auto

lemma stake-shift-stake-shift:

stake i 0 Q— stake j (o |s 1) Q@Q— 8 = stake (i + j) o Q—
apply (induct i arbitrary: o)

apply simp
apply auto
apply (metis One-nat-def plus-1-eq-Suc suffiz-plus-com)
done

lemma stake-suffix-drop:
stake i (o |5 j) = drop j (stake (i + j) o)
by (metis append-eq-conv-conj length-stake semiring-normalization-rules(24) stake-add)

lemma stake-suffiz:

assumes ¢ < j

shows stake j 0 Q— u |s i =0(i — j — i) Q— u
by (simp add: assms stake-suffiz-drop suffiz-shift)

2.1 Decomposing safety and liveness

Famously properties on infinite sequences can be decomposed into safety and liveness properties Alpern and
Schneider (1985); Schneider (1987). See Kindler (1994) for an overview.

definition safety :: 'a seq-pred = bool where
safety P «— (Vo. ~P 0 — (3. V(. =P (stake i 0 Q— f3)))

lemma safety-def2: — Contraposition gives the customary prefix-closure definition
safety P +— (Vo. (Vi. 35. P (stake i 0 @Q— (3)) — P o)
unfolding safety-def by blast

definition liveness :: 'a seqg-pred = bool where
liveness P «— (Va. 3o. P (v @Q— 0))

lemmas safetyl = iff D2[OF safety-def, rule-format]
lemmas safetyl2 = iff D2[OF safety-def2, rule-format]
lemmas liveness] = iffD2|OF liveness-def, rule-format]

lemma safety-False:
shows safety (Ao. False)
by (rule safetyl) simp

lemma safety- True:
shows safety (Ao. True)
by (rule safetyl) simp

lemma safety-state-prop:
shows safety (Ao. P (¢ 0))
by (rule safetyl) auto

lemma safety-invariant:
shows safety (Ao. Vi. P (o 1))
apply (rule safetyl)
apply clarsimp
apply (metis length-stake lessl shift-snth-less stake-nth)
done



lemma safety-transition-relation:
shows safety (Ao. Vi. (0 i,0 (i + 1)) € R)
apply (rule safetyl)
apply clarsimp
apply (metis (no-types, opaque-lifting) Suc-eq-plusl add.left-neutral add-Suc-right add-diff-cancel-left’ le-add1
list.sel(1) list.simps(3) shift-simps(1) stake.simps(2) stake-suffiz suffiz-def)
done

lemma safety-cony:
assumes safety P
assumes safety Q)
shows safety (P N Q)
using assms unfolding safety-def by blast

lemma safety-always-eventually|simplified):
assumes safety P
assumes Vi. 3j>i. 35. P (o(0 — j) Q— f)
shows P o

using assms unfolding safety-def2

apply —

apply (drule-tac =0 in spec)

apply clarsimp

apply (drule-tac z=1 in spec)

apply clarsimp

apply (rule-tac z=(stake j 0 Q— () |5 7 in ex])

apply (simp add: stake-shift-stake-shift stake-suffir)

done

lemma safety-disj:
assumes safety P
assumes safety Q)
shows safety (P V Q)
unfolding safety-def2 using assms
by (metis safety-always-eventually add-diff-cancel-right’ diff-le-self le-add-same-cancel?)

The decomposition is given by a form of closure.

definition M) :: ‘a seq-pred = 'a seq-pred where
M, P = (Xo.Vi. 3B. P (stake i 0 Q— f3))

definition Safe :: ‘a seq-pred = 'a seq-pred where
Safe P = (P V M, P)

definition Live :: 'a seq-pred = 'a seq-pred where
Live P = (P V =M, P)

lemma decomp:
P = (Safe P N\ Live P)
unfolding Safe-def Live-def by blast

lemma safe:
safety (Safe P)
unfolding Safe-def safety-def M ,-def
apply clarsimp
apply (simp add: stake-shift)
apply (rule-tac x=1i in exl)
apply clarsimp
apply (rule-tac x=i in exl)
apply clarsimp



done

lemma live:
liveness (Live P)
proof (rule livenessl)
fix a
have (3. P (a @— 3)) V =(35. P (o« @— )) by blast
also have ?this «— (35. P (a« @— B) V (Vv. =P (a @Q— v))) by blast
also have ... «+— (33. P (« @Q— ) V (Fi. i = length a A (V7. =P (stake i (a« Q— ) @Q— «)))) by (simp
add: stake-shift)
also have ... — (36. P (o« @Q— B3) Vv (Fi. (V7. =P (stake i (0« @Q— [3) Q— «)))) by blast
finally have 35. P (« @— ) V (34. V. = P (stake i (a« @Q— () Q— 7)) .
then show Jo. Live P (o @Q— o) unfolding Live-def M-def by simp
qed

Sistla (1994) proceeds to give a topological analysis of fairness. An absolute liveness property is a liveness property
whose complement is stable.

definition absolute-liveness :: 'a seq-pred = bool where — closed under prepending any finite sequence
absolute-liveness P «— (Jo. P o) AN Vo a. P o — P (o @Q— 0))

definition stable :: ‘a seq-pred = bool where — closed under suffixes
stable P +— (30. Po) A (NVo i. Po — P (o |s ©))

lemma absolute-liveness-liveness:
assumes absolute-liveness P
shows liveness P
using assms unfolding absolute-liveness-def liveness-def by blast

lemma stable-absolute-liveness:
assumes P o
assumes —P o’ — extra hypothesis
shows stable P «— absolute-liveness (— P)
using assms unfolding stable-def absolute-liveness-def
apply auto
apply (metis cancel-comm-monoid-add-class. diff-cancel drop-eq-Nil order-refl shift.simps(1) suffiz-shift suffiz-zero)
apply (metis stake-suffiz-id)
done

definition fairness :: ‘a seq-pred = bool where
fairness P <— stable P A absolute-liveness P

lemma fairness-safety:
assumes safety P
assumes fairness F
shows (Vo. F 0 — P o) «— (Vo. P o)
apply rule
using assms
apply clarsimp
unfolding safety-def fairness-def stable-def absolute-liveness-def
apply clarsimp
apply blast+
done



3 Linear Temporal Logic

To talk about liveness we need to consider infinitary behaviour on sequences. Traditionally future-time linear
temporal logic (LTL) is used to do this Manna and Pnueli (1991); Owicki and Lamport (1982).

The following is a straightforward shallow embedding of the now-traditional anchored semantics of LTL Manna
and Pnueli (1988). Some of it is adapted from the sophisticated TLA development in the AFP due to Grov and
Merz (2011).

Unlike Lamport (2002), include the next operator, which is convenient for stating rules. Sometimes it allows us
to ignore the system, i.e. to state rules as temporally valid (LTL-valid) rather than just temporally program valid
(LTL-cimp-), in Jackson’s terminology.

definition state-prop :: (‘a = bool) = 'a seq-pred (<[-]») where
[P] = (Ao. P (o 0))

definition nezt :: 'a seq-pred = 'a seq-pred («O-» [80] 80) where
(OP) = (Ao. P (o |s 1))

definition always :: 'a seq-pred = 'a seq-pred («O-» [80] 80) where
(OP) = (Ao. Vi. P (o |5 7))

definition until :: 'a seq-pred = 'a seq-pred = 'a seq-pred (infixr {U> 30) where
(PU Q)= (No.Ti. Q (o |si) N (VEk<i. P (o |s k)))

definition eventually :: 'a seq-pred = 'a seq-pred («O-» [80] 80) where
(CP) = ((True)y U P)

definition release :: 'a seq-pred = 'a seq-pred = 'a seq-pred (infixr «(R» 30) where

(PR Q)= (=(=PU=Q))

definition unless :: 'a seq-pred = 'a seq-pred = 'a seq-pred (infixr (W 30) where
(PWQ)=((PUQ) VDOP)

abbreviation (input)
pred-always-imp-syn :: 'a seq-pred = 'a seq-pred = 'a seq-pred (infixr «—) 25) where
P— @Q=0FP — Q)

lemmas defs =
state-prop-def
always-def
eventually-def
next-def
release-def
unless-def
until-def

lemma suffiz-state-prop[simp]:
shows [P] (0 |s i) = P (0 7)
unfolding defs by simp

lemma alwaysl[intro]:
assumes A\i. P (o |s )
shows (OP) o
unfolding defs using assms by blast

lemma alwaysD:
assumes (OP) o
shows P (o |5 ©)
using assms unfolding defs by blast



lemma alwaysE: [(OP) o; P (0 |s i) = Q] = @
unfolding defs by blast

lemma always-induct:

assumes P o

assumes (O(P — OP)) o

shows (OP) o
proof (rule alwaysI)

fix i from assms show P (o |5 ©)

unfolding defs by (induct i) simp-all

qed

lemma seq-comp:
fixes o :: 'a seq
fixes P :: 'b seg-pred
fixes f:: 'a="b
shows
(OP) (feo) <= (O(Aa. P (foo0))) o
(OP) (f o 0) «— (¢(Aa. P (fo0))) o
(PUQ) (f o)+ ((Ao. P(fOU))U()\aQ(fOU))))U

(PWQ) (foo)+— (M. P(fooa) W (Ao. Q (foor)) o
unfolding defs by simp-all

lemma nextl[intro]:
assumes P (o |s Suc 0)
shows (OP) o
using assms unfolding defs by simp

lemma untill [intro]:
assumes Q (o |s ©)
assumes Vk<i. P (o | k)
shows (PU Q) o
unfolding defs using assms by blast

lemma untilE:

assumes (P U Q) o

obtains ¢ where @ (o |s 7) and Vk<i. P (0 |5 k)
using assms unfolding until-def by blast

lemma eventuallyl [intro]:
assumes P (o |5 1)
shows (OP) o
unfolding eventually-def using assms by blast

lemma eventuallyE[elim):
assumes (COP) o
obtains ¢ where P (o |5 7)
using assms unfolding defs by (blast elim: untilE)

lemma unless-alwaysl:
assumes (O P) o
shows (P W Q) o
using assms unfolding defs by blast

lemma unless-untill:
assumes Q (o |5 j)
assumes \i. i < j = P (o |5 1)
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shows (P W Q) o
unfolding defs using assms by blast

lemma always-imp-refl]iff]:
shows (P — P) o
unfolding defs by blast

lemma always-imp-trans:
assumes (P — Q) o
assumes (Q — R) o
shows (P — R) o
using assms unfolding defs by blast

lemma always-imp-mp:
assumes (P — Q) o
assumes P o
shows @ o
using assms unfolding defs by (metis suffiz-zero)

lemma always-imp-mp-suffix:
assumes (P — Q) o
assumes P (o |5 1)
shows @ (o |s )

using assms unfolding defs by metis

Some basic facts and equivalences, mostly sanity.

lemma necessitation:
(As. Ps) = (OP) o
(As. Ps) = (OP) o
(As. Ps) = (PW Q) o
(As: @) = (PUQ) o
unfolding defs by auto

lemma cong:

(A\s. Ps=P's) = [P] = [P/]

(No. Po = P' o) = (OP) = (0P

(No. P o = P' o) = (OP) = (OP)

(No. P o = P' o) = (OP) = (OP/)

[Ne. Po=P o, No. Qo =Q' o] = (PU Q) =(P'U Q)

[Ne. Po=P o, No. Qo =Q' o] = (PW Q) =(P'W Q)
unfolding defs by auto

lemma norm[simp]:
[(False)] = (False)
[(True)] = (True)

(=[p]) = [—p]

(O(False)) = (False)
(O(True)) = (True)

(O(False)) = (False)
(O(True)) = (True)
11



—|DP)U=(<>(—|P))U
oo P)=(aP)

—~~

(O(False)) = (False)
(O(Truey) = (True)

(~> P) = (@ (= P))
(OO P) = (O P)

(P W (Fualse)) = (O P)

(~(PUQ)) o= ("PR=Q) o
((False) U P) = P

(P U (False)) = (False)

(P U (True)) = (True)

((True) U P) = (& P)
(PUPUQ) = (PUQ)
(~(PR Q) o= (~PU~Q) o
((False) R P) = (OP)

(P R (False)) = (False)
((True) R P) = P

(P R (True)) = (True)

unfolding defs

apply (auto simp: fun-eq-iff)

apply (metis suffiz-plus suffiz-zero)

apply (metis suffiz-plus suffiz-zero)
apply fastforce

apply force
apply (metis add.commute add-diff-inverse-nat less-diff-conv2 not-le)

apply (metis add.right-neutral not-less0)
apply force

apply fastforce
done

lemma always-conj-distrib: (O(P A Q)) = (OP A OQ)
unfolding defs by auto

lemma eventually-disj-distrib: (O(PV Q)) = (OPV <Q)
unfolding defs by auto

lemma always-eventually|elim!]:
assumes (OP) o
shows (OP) o

using assms unfolding defs by auto

lemma eventually-imp-conv-disj: (C(P — Q)) = (O(—P) V ©Q)
unfolding defs by auto

lemma cventually-imp-distrib:
(O(P — Q) = (OP — ©Q)
unfolding defs by auto

lemma unfold:
(O P)o=(PAOOP)o
(O P)o=(PVOOP)o
(PW Q) o=(QV(PAOPW Q) o
(PUQ o=(QV (PACPUQ)) o
12



(PRQo=(QAN(PVOPRQ)) o
unfolding defs
apply —
apply (metis (full-types) add.commute add-diff-inverse-nat less-one suffix-plus suffiz-zero)
apply (metis (full-types) One-nat-def add.right-neutral add-Suc-right lessl less-Suc-eq-0-disj suffiz-plus suffix-zero)

apply auto
apply fastforce
apply (metis grO-conv-Suc nat-neq-iff not-less-eq suffiz-zero)
apply (metis suffiz-zero)
apply force
using less-Suc-eq-0-disj apply fastforce
apply (metis gro-conv-Suc nat-neg-iff not-less0 suffiz-zero)

apply fastforce
apply (case-tac i; auto)

apply force
using less-Suc-eq-0-disj apply force

apply force
using less-Suc-eq-0-disj apply fastforce
apply fastforce
apply (case-tac i; auto)
done

lemma mono:
[(@P)o; No. Po = P'o] = (OP') o
[(OP) o; N\o. Po = P'o] = (OP) o
[(PUQ)o; No.Po= P o; No. Qo — Q' o] = (P'UQ)) 0o
[(PWQ)o;No. Po — P'o; No. Qo = Q' 0] = (P'W Q) o
unfolding defs by force+

lemma always-imp-mono:
[(OP) o; (P — P') o] = (QP)) o
[(OP) o; (P P') o] = (OP) o
[(PU Q) o; (P—P)o; (Q— Q) o] = (P'UQ)0o
[(PW Q) o; (P— P)o; (Q— Q) o] = (P’WQ)o
unfolding defs by force+

lemma next-conj-distrib:
(O(P A Q) =(OPANOQ)
unfolding defs by auto

lemma next-disj-distrib:
(O(PV Q) = (OPV OQ)
unfolding defs by auto

lemma until-next-distrib:
(O(PU Q) = (OPUOQ)
unfolding defs by (auto simp: fun-eq-iff)

lemma until-imp-eventually:
(PUQ)—CQ) o
unfolding defs by auto

lemma until-until-disj:
assumes (PU QU R) o
shows (PV Q)U R) o
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using assms unfolding defs

apply clarsimp

apply (metis (full-types) add-diff-inverse-nat nat-add-left-cancel-less)
done

lemma unless-unless-disj:
assumes (P W QW R) o
shows (PV Q) W R) o
using assms unfolding defs
apply auto
apply (metis add.commute add-diff-inverse-nat lel less-diff-conv2)
apply (metis add-diff-inverse-nat)
done

lemma until-conj-distrib:
(PANQUR)=((PUR)N(QUR))

unfolding defs

apply (auto simp: fun-eq-iff)

apply (metis dual-order.strict-trans nat-neq-iff')

done

lemma until-disj-distrib:
(PUQV R)=((PUQ)V (PUR))
unfolding defs by (auto simp: fun-eq-iff)

lemma eventually-until:

(OP) = (P U P)
unfolding defs
apply (auto simp: fun-eq-iff)
apply (case-tac P (z |5 0))
apply blast
apply (drule (1) ex-least-nat-less)
apply (metis le-simps(2))
done

lemma cventually-until-eventually:

(C(P U Q) =(CQ)
unfolding defs by force

lemma eventually-unless-until:

(PWQ)ACQ)=(PUQ)
unfolding defs by force

lemma eventually-always-imp-always-eventually:
assumes (COP) o
shows (OCP) o

using assms unfolding defs by (metis suffix-commute)

lemma cventually-always-next-stable:
assumes (OP) o
assumes (P < OP) o
shows (COP) o
using assms by (metis (no-types) eventuallyl alwaysD always-induct eventuallyE norm(15))

lemma next-stable-imp-eventually-always:
assumes (P < OP) o
shows (OP — <¢0OP) o

using assms eventually-always-next-stable by blast
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lemma always-eventually-always:
ooOP = oOP
unfolding defs by (clarsimp simp: fun-eq-iff) (metis add.left-commute semiring-normalization-rules(25))

lemma stable-unless:
assumes (P — O(PV Q)) o
shows (P — (PW Q)) o
using assms unfolding defs
apply —
apply (rule ccontr)
apply clarsimp
apply (drule (1) ex-least-nat-lessijwhere P=\j. =P (o |s i + j) for i, simplified))
apply clarsimp
apply (metis add-Suc-right le-less less-Suc-eq)
done

lemma unless-induct: — Rule WAIT from Manna and Pnueli (1995, Fig 3.3)
assumes [: (I — O(IV R)) o
assumes P: (P— IV R) o
assumes Q: (I — Q) o
shows (P— QW R) o

apply (intro alwaysI impl)

apply (erule impE[OF alwaysD[OF P]])

apply (erule disjE)

apply (rule always-imp-mono(4)where P=I and Q=R))
apply (erule mp[OF alwaysD][OF stable-unless|OF I]]])
apply (simp add: @ alwaysD)

apply blast

apply (simp add: unfold)

done

3.1 Leads-to and leads-to-via

Most of our assertions will be of the form As. A s — (<& C') s (pronounced “A leads to C”) or As. A s — (BU
C) s (“A leads to C via B”).

Most of these rules are due to Jackson (1998) who used leads-to-via in a sequential setting. Others are due to
Manna and Pnueli (1991).

The leads-to-via connective is similar to the “ensures” modality of Chandy and Misra (1989, §3.4.4).

abbreviation (input)
leads-to :: 'a seq-pred = 'a seq-pred = 'a seq-pred (infixr <~ 25) where
Prs Q=P OQ

lemma leads-to-refi:
shows (P~ P) o
by (metis (no-types, lifting) necessitation(1) unfold(2))

lemma leads-to-trans:
assumes (P~ Q) o
assumes (Q ~ R) o
shows (P~ R) o
using assms unfolding defs by clarsimp (metis semiring-normalization-rules(25))

lemma leads-to-eventuallyE:
assumes (P~ Q) o
assumes (OP) o
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shows (¢Q) o
using assms unfolding defs by auto

lemma leads-to-mono:
assumes (P’ < P) o
assumes (Q — Q') o
assumes (P~ Q) o
shows (P'~ Q') o
using assms unfolding defs by clarsimp blast

lemma leads-to-eventually:
shows (P~ @Q — OP — Q) o
by (metis (no-types, lifting) alwaysl unfold(2))

lemma leads-to-disj:
assumes (P~ R) o
assumes (Q ~ R) o
shows ((PV @)~ R) o
using assms unfolding defs by simp

lemma leads-to-leads-to-viaE:
shows (P— PU Q) — P~ Q) o
unfolding defs by clarsimp blast

lemma leads-to-via-concl-weaken:
assumes (R < R') o
assumes (P— QU R) o
shows (P— QU R') o

using assms unfolding LTL.defs by force

lemma leads-to-via-trans:
assumes (A — BU C) o
assumes (C— DU FE) o
shows (A — (BV D)U E) o
proof (rule alwaysl, rule impl)
fix ¢ assume A (o |5 i) with assms show (BV D) U E) (o |5 i)
apply —
apply (erule alwaysE[where i=i))
apply clarsimp
apply (erule untilF)
apply clarsimp
apply (drule (1) always-imp-mp-suffiz)
apply (erule untilE)
apply clarsimp
apply (rule-tac i=ia + iaa in untill; simp add: ac-simps)
apply (metis (full-types) add.assoc lel le-Suc-ex nat-add-left-cancel-less)
done
qed

lemma leads-to-via-disj: — useful for case distinctions
assumes (P— QU R) o
assumes (P'— Q'U R) o
shows (PV P'— (QV Q)U R) o

using assms unfolding defs by (auto 10 0)

lemma leads-to-via-disj": — more like a chaining rule
assumes (A — BU C) o
assumes (C— DU E) o

16



shows (AV C— (BVD)U E) o
proof (rule alwaysl, rule impl, erule disjE)
fix ¢ assume A (o |5 i) with assms show (BV D) U E) (o |5 i)
apply —
apply (erule alwaysE[where i=i))
apply clarsimp
apply (erule untilE)
apply clarsimp
apply (drule (1) always-imp-mp-suffiz)
apply (erule untilF)
apply clarsimp
apply (rule-tac i=ia + iaa in untill; simp add: ac-simps)
apply (metis (full-types) add.assoc lel le-Suc-ex nat-add-left-cancel-less)
done
next
fix ¢ assume C (o |; i) with assms(2) show ((BV D) U E) (o |s 7)
apply —
apply (erule alwaysE[where i=i))
apply (simp add: mono)
done
qed

lemma leads-to-via-stable-augmentation:
assumes stable: (PN Q — OQ) o
assumes U: (A —> PU C) o
shows (AN Q) — PU(CANQ)) o
proof (intro alwaysl impl, elim conjk)
fix i assume AP: A (0 |5 1) Q (0 |5 7)
have Q (o |s (j + 7)) if Q (0 |s 7)) and Vk<j. P (o |s (k + 7)) for j
using that stable by (induct j; force simp: defs)
with U AP show (P U (Ao. C o AN Q 0)) (0 |s 7)
unfolding defs by clarsimp (metis (full-types) add.commute)
qed

lemma leads-to-via-wf:
assumes wf R
assumes indhyp: Nt. (AN [ =(t)] > BU(AN[§® (t) € (R)] V C)) o
shows (A — BU C) o
proof (intro alwaysI impl)
fix ¢ assume A (o |; i) with <wf R» show (BU C) (o |5 7)
proof (induct 6 (o i) arbitrary: i)
case (less i) with indhyp|where t=§ (o i)] show ?case
apply —
apply (drule alwaysD[where i=i))
apply clarsimp
apply (erule untilE)
apply (rename-tac j)
apply (erule disjE; clarsimp)
apply (drule-tac =1 + j in meta-spec; clarsimp)
apply (erule untilE; clarsimp)
apply (rename-tac j k)
apply (rule-tac i=j + k in untill)
apply (simp add: add.assoc)
apply clarsimp
apply (metis add.assoc add.commute add-diff-inverse-nat less-diff-conv2 not-le)
apply auto
done
qed
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qed

The well-founded response rule due to Manna and Pnueli (2010, Fig 1.23: WELL (well-founded response)), gener-
alised to an arbitrary set of assertions and sequence predicates.

o W1 generalised to be contingent.

o W2 is a well-founded set of assertions that by W1 includes P

lemma leads-to-wf:
fixes Is :: ('a seq-pred x ('a = 'b)) set
assumes wf (R :: 'b rel)
assumes W1: (O3 p. [(pefst “Is)] N (P —> ¢))) o
assumes W2:V (p, 0)els. (¢, d)€insert (Q, 60) Is. Vit. (p A [0 = (t)] ~ @' A [’ ® (t) € (R)]) o
shows (P~ Q) o
proof —
have (¢ A [0 = (t)] ~ Q) o if (¢, ) € Isfor p 0 ¢
using «wf R> that W2
apply (induct t arbitrary: ¢ 0)
unfolding LTL.defs split-def
apply clarsimp
apply (metis (no-types, opaque-lifting) ab-semigroup-add-class.add-ac(1) fst-eqD snd-conv surjective-pairing)
done
with W1 show ¢thesis
apply —
apply (rule alwaysl)
apply clarsimp
apply (erule-tac i=i in alwaysk)
apply clarsimp
using alwaysD suffiz-state-prop apply blast
done
qged

3.2 Fairness

A few renderings of weak fairness. van Glabbeek and Hofner (2019) call this "response to insistence" as a gener-
alisation of weak fairness.

definition weakly-fair :: 'a seq-pred = 'a seq-pred = 'a seq-pred where
weakly-fair enabled taken = (Denabled — <taken)

lemma weakly-fair-def2:
shows weakly-fair enabled taken = O(—O(enabled A —taken))
unfolding weakly-fair-def by (metis (full-types) always-conj-distrib norm(18))

lemma weakly-fair-def3:

shows weakly-fair enabled taken = (COenabled — OO taken)
unfolding weakly-fair-def2
apply (clarsimp simp: fun-eq-iff)

unfolding defs

apply auto

apply (metis (full-types) add.left-commute semiring-normalization-rules(25))
done

lemma weakly-fair-def/:
shows weakly-fair enabled taken = 0 (enabled — taken)
using weakly-fair-def2 by force
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lemma mp-weakly-fair:
assumes weakly-fair enabled taken o
assumes (Oenabled) o
shows (Otaken) o
using assms unfolding weakly-fair-def using always-imp-mp by blast

lemma always-weakly-fair:
shows O(weakly-fair enabled taken) = weakly-fair enabled taken
unfolding weakly-fair-def by simp

lemma eventually-weakly-fair:
shows < (weakly-fair enabled taken) = weakly-fair enabled taken
unfolding weakly-fair-def2 by (simp add: always-eventually-always)

lemma weakly-fair-weaken:

assumes (enabled’ — enabled) o

assumes (taken — taken’) o

shows (weakly-fair enabled taken — weakly-fair enabled’ taken') o
using assms unfolding weakly-fair-def defs by simp blast

lemma weakly-fair-unless-until:
shows (weakly-fair enabled taken A (enabled — enabled W taken)) = (enabled — enabled U taken)
unfolding defs weakly-fair-def
apply (auto simp: fun-eq-iff)
apply (metis add.right-neutral)
done

lemma stable-leads-to-eventually:
assumes (enabled — O(enabled V taken)) o
shows (enabled — (Denabled V Staken)) o
using assms unfolding defs
apply —
apply (rule ccontr)
apply clarsimp
apply (drule (1) ex-least-nat-lessijwhere P=M\j. = enabled (o |s i + j) for i, simplified])
apply clarsimp
apply (metis add-Suc-right lel less-irrefl-nat)
done

lemma weakly-fair-stable-leads-to:
assumes (weakly-fair enabled taken) o
assumes (enabled — O(enabled V taken)) o
shows (enabled ~ taken) o
using stable-leads-to-eventually[OF assms(2)] assms(1) unfolding defs weakly-fair-def

by (auto simp: fun-eq-iff)

lemma weakly-fair-stable-leads-to-via:
assumes (weakly-fair enabled taken) o
assumes (enabled — O(enabled V taken)) o
shows (enabled — enabled U taken) o
using stable-unless|OF assms(2)] assms(1) by (metis (mono-tags) weakly-fair-unless-until)

Similarly for strong fairness. van Glabbeek and Hofner (2019) call this "response to persistence" as a generalisation
of strong fairness.

definition strongly-fair :: 'a seq-pred = 'a seq-pred = 'a seq-pred where

strongly-fair enabled taken = (OO enabled — <taken)

lemma strongly-fair-def2:
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strongly-fair enabled taken = O(—0O(<Cenabled A —taken))
unfolding strongly-fair-def by (metis weakly-fair-def weakly-fair-def2)

lemma strongly-fair-def3:
strongly-fair enabled taken = (O enabled — O taken)
unfolding strongly-fair-def2 by (metis (full-types) always-eventually-always weakly-fair-def2 weakly-fair-def3)

lemma always-strongly-fair:
O(strongly-fair enabled taken) = strongly-fair enabled taken
unfolding strongly-fair-def by simp

lemma cventually-strongly-fair:
O (strongly-fair enabled taken) = strongly-fair enabled taken
unfolding strongly-fair-def2 by (simp add: always-eventually-always)

lemma strongly-fair-disj-distrib: — not true for weakly-fair
strongly-fair (enabledl V enabled?2) taken = (strongly-fair enabledl taken A strongly-fair enabled? taken)
unfolding strongly-fair-def defs
apply (auto simp: fun-eq-iff)
apply blast
apply blast
apply (metis (full-types) semiring-normalization-rules(25))
done

lemma strongly-fair-imp-weakly-fair:
assumes strongly-fair enabled taken o
shows weakly-fair enabled taken o
using assms unfolding strongly-fair-def3 weakly-fair-def3 by (simp add: eventually-always-imp-always-eventually)

lemma always-enabled-weakly-fair-strongly-fair:
assumes (Oenabled) o
shows weakly-fair enabled taken o = strongly-fair enabled taken o
using assms by (metis strongly-fair-def3 strongly-fair-imp-weakly-fair unfold(2) weakly-fair-def3)

3.3 Safety and liveness

Sistla (1994) shows some characterisations of LTL formulas in terms of safety and liveness. Note his (/) is actually
W).
See also Chang, Manna, and Pnueli (1992).

lemma safety-state-prop:
shows safety [ P]
unfolding defs by (rule safety-state-prop)

lemma safety-Next:
assumes safety P
shows safety (OP)
using assms unfolding defs safety-def
apply clarsimp
apply (metis (mono-tags) One-nat-def list.sel(3) nat.simps(3) stake.simps(2))
done

lemma safety-unless:
assumes safety P
assumes safety @
shows safety (P W Q)
proof (rule safetyl2)
fix 0 assume X: 38. (P W Q) (stake i 0 Q— [3) for i
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then show (P W Q) o
proof(cases Vij. 35. P (o(i — j) Q— 33))
case True
with (safety P> have Vi. P (o |s i) unfolding safety-def2 by blast
then show ?thesis by (blast intro: unless-alwaysl)
next
case Fulse
then obtain £ £’ where V3. = P (o(k — k') @Q— ) by clarsimp
then have Vi u. k + k' < i — =P ((stake i 0 Q— u) | k)
by (metis add.commute diff-add stake-shift-stake-shift stake-suffiz-drop suffix-shift)
then have Viu. k + k' < i A (PW Q) (stake i 0 Q— u) — (Im<k. Q ((stake i 0 Q— u) |s m) A (Vp<m.
P ((stake i o Q— u) |5 p)))
unfolding defs using lel by blast
then have Viu. k + k' < i A (PW Q) (stake i 0 Q— u) — (Im<k. Q (oc(m — i — m) Q— u) A (Vp<m.
P(o(p—i—p) Q- u)))
by (metis stake-suffiz add-leE nat-less-le order-trans)
then have Vi. 3n>i. Im<k. Ju. Q (c(m — n — m) Q— u) A (Vp<m. P (oc(p = n — p) Q@— u))
using X by (metis add.commute le-add1)
then have I3m<k. Vi. In>i. Ju. Q (c(m — n — m) Q— u) A (Vp<m. P (c(p — n — p) Q— u))
by (simp add: always-eventually-pigeonhole)
with <safety P <safety Q> show (P W Q) o
unfolding defs by (metis Nat.le-diff-conv2 add-leE safety-always-eventually)
qged
qed

lemma safety-always:
assumes safety P
shows safety (OP)
using assms by (metis norm(20) safety-def safety-unless)

lemma absolute-liveness-eventually:
shows absolute-liveness P <— (3o. P o) AN P = OP
unfolding absolute-liveness-def defs
by (metis cancel-comm-monoid-add-class.diff-cancel drop-eq-Nil order-refl shift.simps(1) stake-suffiz-id suffiz-shift
suffiz-zero)

lemma stable-always:
shows stable P «— (0. P o) N P =0OP
unfolding stable-def defs by (metis suffiz-zero)

To show that weakly-fair is a fairness property requires some constraints on enabled and taken:

it is reasonable to assume they are state formulas

e taken must be satisfiable

lemma fairness-weakly-fair:

assumes Js. taken s

shows fairness (weakly-fair [enabled] [taken])
unfolding fairness-def stable-def absolute-liveness-def weakly-fair-def
using assms
apply auto

apply (rule-tac x=\- .s in exl)

apply fastforce

apply (simp add: alwaysD)
apply (rule-tac z=\- .s in exl)
apply fastforce
apply (metis (full-types) absolute-liveness-def absolute-liveness-eventually eventually-weakly-fair weakly-fair-def)
done
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lemma fairness-strongly-fair:
assumes Js. taken s
shows fairness (strongly-fair [enabled] [taken))
unfolding fairness-def stable-def absolute-liveness-def strongly-fair-def
using assms
apply auto
apply (rule-tac x=\- .s in exl)
apply fastforce
apply (simp add: alwaysD)
apply (rule-tac z=A- .s in exl)
apply fastforce
apply (metis (full-types) absolute-liveness-def absolute-liveness-eventually eventually-weakly-fair weakly-fair-def)
done

4 CIMP syntax and semantics

We define a small sequential programming language with synchronous message passing primitives for describing
the individual processes. This has the advantage over raw transition systems in that it is programmer-readable,
includes sequential composition, supports a program logic and VCG (§5.1), etc. These processes are composed in
parallel at the top-level.

CIMP is inspired by IMP, as presented by Winskel (1993) and Nipkow and Klein (2014), and the classical process
algebras CCS (Milner 1980, 1989) and CSP (Hoare 1985). Note that the algebraic properties of this language
have not been developed.

As we operate in a concurrent setting, we need to provide a small-step semantics (§4.2), which we give in the style
of structural operational semantics (SOS) as popularised by Plotkin (2004). The semantics of a complete system
(§4.3) is presently taken simply to be the states reachable by interleaving the enabled steps of the individual
processes, subject to message passing rendezvous. We leave a trace or branching semantics to future work.

This theory contains all the trusted definitions. The soundness of the other theories supervenes upon this one.

4.1 Syntax

Programs are represented using an explicit (deep embedding) of their syntax, as the semantics needs to track the
progress of multiple threads of control. Each (atomic) basic command (§?7) is annotated with a ‘location, which
we use in our assertions (§4.4). These locations need not be unique, though in practice they likely will be.
Processes maintain local states of type 'state. These can be updated with arbitrary relations of 'state = ’state set
with LocalOp, and conditions of type 's = bool are similarly shallowly embedded. This arrangement allows the
end-user to select their own level of atomicity.

The sequential composition operator and control constructs are standard. We add the infinite looping construct
Loop so we can construct single-state reactive systems; this has implications for fairness assertions.

type-synonym s bexp = s = bool

datatype (‘answer, 'location, 'question, 'state) com

= Request 'location 'state = 'question ‘answer = 'state = 'state set (<{-} Request - -» [0, 70, 70] 71)
| Response 'location 'question = 'state = ('state X 'answer) set («{-} Response -» [0, 70] 71)
ocalOp 'location 'state = 'state se -} LocalOp -» [0,
LocalOp 'location 'stat 'state set LocalO 0, 70] 71

| Condl  'location 'state bexp (‘answer, 'location, 'question, 'state) com (<{-} IF - THEN - FI» [0, 0, 0] 71)
| Cond2  location 'state bexp (‘answer, 'location, 'question, 'state) com

("answer, 'location, 'question, 'state) com ({-} IF -/ THEN -/ ELSE -/ FI, |0,
0,0, 0] 71)
| Loop  ('answer, 'location, 'question, 'state) com («<LOOP DO -/ OD» [0] 71)
| While  'location 'state bexp (‘answer, 'location, 'question, 'state) com (<{-} WHILE -/ DO -/ ODs [0, 0, 0]
71)
| Seq (‘answer, 'location, 'question, 'state) com
("answer, 'location, 'question, 'state) com (infixr ;> 69)
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| Choose  ('answer, 'location, 'question, 'state) com
("answer, 'location, 'question, 'state) com (infix] «®» 68)

We provide a one-armed conditional as it is the common form and avoids the need to discover a label for an
internal SKIP and/or trickier proofs about the VCG.

In contrast to classical process algebras, we have local state and distinct request and response actions. These
provide an interface to Isabelle/HOL’s datatypes that avoids the need for binding (ala the m-calculus of Milner
(1989)) or large non-deterministic sums (ala CCS (Milner 1980, §2.8)). Intuitively the requester poses a 'question
with a Request command, which upon rendezvous with a responder’s Response command receives an ‘answer. The
'question is a deterministic function of the requester’s local state, whereas responses can be non-deterministic. Note
that CIMP does not provide a notion of channel; these can be modelled by a judicious choice of 'question.

We also provide a binary external choice operator (@) (infix (€)). Internal choice can be recovered in combination
with local operations (see Milner (1980, §2.3)).

We abbreviate some common commands: SKIP is a local operation that does nothing, and the floor brackets

simplify deterministic LocalOps. We also adopt some syntax magic from Makarius’s Hoare and Multiquote theories
in the Isabelle/HOL distribution.

abbreviation SKIP-syn («{-}/ SKIP»> [0] 71) where
{i} SKIP = {|l} LocalOp (As. {s})

abbreviation (input) DetLocalOp :: 'location = ('state = 'state)
= (‘answer, 'location, 'question, 'state) com ({-} |-]> [0, 0] 71) where

ik L] = I} LocalOp (As. {f s})

syntax
-quote 2’0 = (Ya = 'b) (x«-» [0] 1000)
-antiquote =2 ('a = 'b) = 'b (<"~ [1000] 1000)
-Assign it "location = idt = 'b = (‘answer, 'location, 'question, 'state) com («({-} “-:=/-) [0, 0, 70] 71)

-NonDetAssign :: 'location = idt = 'b set = ('answer, 'location, 'question, 'state) com («({-} "-:€/ - [0, 0,
70] 71)

abbreviation (input) NonDetAssign :: 'location = (("val = 'val) = 'state = 'state) = ('state = 'val set)

= (‘answer, 'location, 'question, 'state) com where
NonDetAssign | upd es = {l[} LocalOp (As. { upd (e) s |e. e € es s })

translations
{i} "z := e => CONST DetLocalOp | «’(-update-name x (A-. €))»
{i} "z :€ es => CONST NonDetAssign | (-update-name ) «es»

parse-translation <
let
fun antiquote-tr i (Const (Q{syntaz-const -antiquote}, -) $
(t as Const (Q{syntaz-const -antiquote}, -) $ -)) = skip-antiquote-tr i t
| antiquote-tr i (Const (Q{syntaz-const -antiquote}, -) $ t) =
antiquote-tr i t $ Bound i
| antiquote-tr i (t $ u) = antiquote-tr i t $ antiquote-tr i u
| antiquote-tr i (Abs (z, T, t)) = Abs (z, T, antiquote-tr (i + 1) t)
| antiquote-tr - a = a
and skip-antiquote-tr i ((c as Const (Q{syntaz-const -antiquote}, -)) $ t) =
¢ $ skip-antiquote-tr i t
| skip-antiquote-tr i t = antiquote-tr i t;

fun quote-tr [t] = Abs (s, dummyT, antiquote-tr 0 (Term.incr-boundvars 1 t))
| quote-tr ts = raise TERM (quote-tr, ts);
in [(Q{syntaz-const -quote}, K quote-tr)] end
)
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4.2 Process semantics

Here we define the semantics of a single process’s program. We begin by defining the type of externally-visible
behaviour:

datatype (‘answer, 'question) seq-label
= sl-Internal (<)
| sl-Send 'question 'answer (<«-, -»»)
| sl-Receive 'question 'answer (<»-, -«»)

We define a labelled transition system (an LTS) using an execution-stack style of semantics that avoids special
treatment of the SKIPs introduced by a traditional small step semantics (such as Winskel (1993, Chapter 14))
when a basic command is executed. This was suggested by Thomas Sewell; Pitts (2002) gave a semantics to an
MTL-like language using this approach.

We record the location of the command that was executed to support fairness constraints.

type-synonym (‘answer, 'location, 'question, 'state) local-state
= (answer, 'location, 'question, 'state) com list x 'location option x 'state

inductive
small-step :: (‘answer, 'location, 'question, 'state) local-state
= ('answer, 'question) seq-label
= (‘answer, 'location, 'question, 'state) local-state = bool (- —_ - [55, 0, 56] 55)
where
[ o = action s; s € val B s | = ({l}} Request action val # cs, -, 5) =4, gy (cs, Some l, s')
| (s, B) € action o s = ({I} Response action # cs, -, 5) =, g (cs, Some 1, s')

| s"€ R s = ({l} LocalOp R # cs, -, s) —+ (cs, Some 1, s')

| b s = ({I} IF b THEN ¢ FI # cs, -, s) =+ (¢ # cs, Some [, s)
| =b s = ({I} IF b THEN c FI # cs, -, s) =+ (cs, Some [, s)

| b s = ({I} IF b THEN c1 ELSE c2 FI # cs, -, s) =+ (c1 # cs, Some [, s)
| b s = ({I}} IF b THEN c1 ELSE c2 FI # cs, -, s) =+ (¢2 # cs, Some 1, s)

| (¢ # LOOP DO ¢ OD # cs, s) —q (cs', s') = (LOOP DO ¢ OD # cs, s) —q (cs, s

| b s = ({I} WHILE b DO ¢ OD # cs, -, s) —; (¢ # {l} WHILE b DO ¢ OD # cs, Some l, s)
| = bs= ({I{} WHILE b DO ¢ OD # cs, -, s) —r (cs, Some I, s)

| (c1 # c2 # cs, 8) —a (s, s) = (cl;; c2 # cs, 5) —q (cs', §)

| Choosel: (c1 # ¢s, s) —a (cs', s") = (c1 @ c2 # ¢s, s) —a (cs', s

| Choose2: (c2 # cs, s) —q (cs', s") = (c1 & c2 # cs, s) —q (cs', s

The following projections operate on local states. These should not appear to the end-user.

abbreviation ¢cPGM :: ('answer, 'location, 'question, 'state) local-state = ('answer, 'location, 'question, 'state)
com list where
cPGM = fst

abbreviation ¢TKN :: (‘answer, 'location, 'question, 'state) local-state = 'location option where
¢TKN s = fst (snd s)

abbreviation c¢LST :: ('answer, 'location, 'question, 'state) local-state = 'state where
cLST s = snd (snd s)

4.3 System steps

A global state maps process names to process’ local states. One might hope to allow processes to have distinct
types of local state, but there remains no good solution yet in a simply-typed setting; see Schirmer and Wenzel
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(2009).

type-synonym (‘answer, 'location, 'proc, 'question, 'state) global-state
= 'proc = (‘answer, 'location, 'question, 'state) local-state

type-synonym ('proc, 'state) local-states
= 'proc = ’state

An execution step of the overall system is either any enabled internal 7 step of any process, or a communication
rendezvous between two processes. For the latter to occur, a Request action must be enabled in process p1, and
a Response action in (distinct) process p2, where the request/response labels a and 8 (semantically) match.

We also track global communication history here to support assertional reasoning (see §5).

type-synonym (‘answer, 'question) event = 'question x 'answer
type-synonym (‘answer, 'question) history = (‘answer, 'question) event list

record (‘answer, 'location, 'proc, 'question, 'state) system-state =
GST :: (‘answer, 'location, 'proc, 'question, 'state) global-state
HST :: ('answer, 'question) history

inductive — This is a predicate of the current state, so the successor state comes first.
system-step :: 'proc set
= (‘answer, 'location, 'proc, 'question, 'state) system-state
= (‘answer, 'location, 'proc, 'question, 'state) system-state
= bool
where
LocalStep: | GST sh p —+ Is';y GST sh' = (GST sh)(p := Is"); HST sh’ = HST sh | = system-step {p} sh’ sh
| CommunicationStep: [ GST sh p —q, gy 51"y GST sh q =, g 182%5 p # ¢;
GST sh’ = (GST sh)(p := Is1', q :== 1s2"); HST sh’ = HST sh Q [(a, B)] | = system-step
{p, g} sh' sh

In classical process algebras matching communication actions yield 7 steps, which aids nested parallel composition
and the restriction operation (Milner 1980, §2.2). As CIMP does not provide either we do not need to hide
communication labels. In CCS/CSP it is not clear how one reasons about the communication history, and it
seems that assertional reasoning about these languages is not well developed.

We define predicates over communication histories and system states. These are uncurried to ease composition.

type-synonym (‘answer, 'location, "proc, 'question, 'state) state-pred
= (answer, 'location, 'proc, 'question, 'state) system-state = bool

The LST operator (written as a postfix |) projects the local states of the processes from a (‘answer, 'location,
'proc, 'question, 'state) system-state, i.e. it discards control location information.

Conversely the LSTP operator lifts predicates over local states into predicates over (‘answer, 'location, 'proc,
'question, 'state) system-state.

Predicates that do not depend on control locations were termed universal assertions by Levin and Gries (1981,

§3.6).

type-synonym (’proc, 'state) local-state-pred
= ('proc, 'state) local-states = bool

definition LST :: (‘answer, 'location, 'proc, 'question, 'state) system-state
= ('proc, 'state) local-states (<-}» [1000] 1000) where
sl = c¢LST o GST s

abbreviation (input) LSTP :: ('proc, 'state) local-state-pred
= (‘answer, 'location, 'proc, 'question, 'state) state-pred where
LSTP P = Xs. P sl
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4.4 Control predicates

Following Lamport (1980)!, we define the at predicate, which holds of a process when control resides at that
location. Due to non-determinism processes can be at a set of locations; it is more like “a statement with this
location is enabled”, which incidentally handles non-unique locations. Lamport’s language is deterministic, so he
doesn’t have this problem. This also allows him to develop a stronger theory about his control predicates.

type-synonym ‘location label = 'location set

primrec
atC :: ('answer, 'location, 'question, 'state) com = 'location label
where
atC (I} Request action val) = {I}
| atC ({I} Response action) = {1}
| atC ({I} LocalOp f) = {I}
| atC (Ji} IF - THEN - FI) = {I}
| atC ({I} IF - THEN - ELSE - FI) = {1}
| atC ({I} WHILE - DO - OD) = {l}
| atC' (LOOP DO ¢ OD) = atC ¢
| atC (cl1;; ¢2) = atC cl
| atC (c1 @ ¢2) = atC ¢l U atC c2

primrec atCs :: (‘answer, 'location, 'question, 'state) com list = 'location label where
atCs [| = {}
| atCs (¢ # -) = atC ¢

We provide the following definitions to the end-user.
AT maps process names to a predicate that is true of locations where control for that process resides, and the

abbreviation at provides a conventional way to use it. The constant atS specifies that control for process p resides
at one of the given locations. This stands in for, and generalises, the in predicate of Lamport (1980).

definition AT :: (‘answer, 'location, 'proc, 'question, 'state) system-state = 'proc = 'location label where
AT s p = atCs (¢cPGM (GST s p))

abbreviation at :: 'proc = 'location = ('answer, 'location, 'proc, 'question, 'state) state-pred where
atpls=1€ AT sp

definition atS :: ‘proc = 'location set = (‘answer, 'location, 'proc, 'question, 'state) state-pred where
atSplss = (Jl€ls. at p 1 s)

definition atLs :: 'proc = 'location label set = (‘answer, 'location, "proc, 'question, 'state) state-pred where
atLs p labels s = (AT s p € labels)

abbreviation (input) atL :: 'proc = 'location label = ('answer, 'location, 'proc, 'question, 'state) state-pred
where

atL p label = atLs p {label}

definition atPLs :: (‘proc x ’location label) set = ('answer, 'location, 'proc, 'question, 'state) state-pred where
atPLs pls = (VY p label. ((p, label) € pls) — atL p label)

The constant taken provides a way of identifying which transition was taken. It is somewhat like Lamport’s after,
but not quite due to the presence of non-determinism here. This does not work well for invariants or preconditions.

definition taken :: 'proc = 'location = (‘answer, 'location, "proc, 'question, 'state) state-pred where
taken p l s <— ¢TKN (GST s p) = Some [

'Manna and Pnueli (1995) also develop a theory of locations. I think Lamport attributes control predicates to Owicki in her PhD
thesis (under Gries). I did not find a treatment of procedures. Manna and Pnueli (1991) observe that a notation for making assertions
over sets of locations reduces clutter significantly.
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A process is terminated if it not at any control location.

abbreviation (input) terminated :: 'proc = (‘answer, 'location, 'proc, 'question, 'state) state-pred where
terminated p = atL p {}

A complete system consists of one program per process, and a (global) constraint on their initial local states.
From these we can construct the set of initial global states and all those reachable by system steps (§4.3).

type-synonym (‘answer, 'location, 'proc, 'question, 'state) programs
= 'proc = (‘answer, 'location, 'question, 'state) com

record (‘answer, 'location, 'proc, 'question, 'state) pre-system =
PGMs :: (‘answer, 'location, 'proc, 'question, 'state) programs
INIT :: ('proc, 'state) local-state-pred

definition
initial-state :: (‘answer, 'location, 'proc, 'question, 'state, 'ext) pre-system-ext
= ('answer, 'location, 'proc, 'question, 'state) global-state
= bool
where
initial-state sys s = ((Vp. cPGM (s p) = [PGMs sys p] A ¢TKN (s p) = None) A INIT sys (cLST o s))

We construct infinite runs of a system by allowing stuttering, i.e., arbitrary repetitions of states following Lamport
(2002, Chapter 8), by taking the reflexive closure of the system-step relation. Therefore terminated programs
infinitely repeat their final state (but note our definition of terminated processes in §4.4).

Some accounts define stuttering as the finite repetition of states. With or without this constraint prerun contains
junk in the form of unfair runs, where particular processes do not progress.

definition

system-step-reflclp :: ("answer, 'location, 'proc, 'question, 'state) system-state seq-pred
where

system-step-reflclp o «— (Ash sh’. A pls. system-step pls sh’ sh)== (o 0) (o 1)

definition
prerun :: ("answer, 'location, 'proc, 'question, 'state, 'ext) pre-system-ext
= (‘answer, 'location, 'proc, 'question, 'state) system-state seq-pred
where
prerun sys = ((Ao. initial-state sys (GST (o 0)) AN HST (o 0) = []) A Osystem-step-reficip)

definition — state-based invariants only
prerun-valid :: (‘answer, 'location, 'proc, 'question, 'state, 'ext) pre-system-ext
= (‘answer, 'location, 'proc, 'question, 'state) state-pred = bool (¢- F=pre - [11, 0] 11)
where
(sys Epre p) «— (Vo. prerun sys o — (O[p]) o)

A run of a system is a prerun that satisfies the FAIR requirement. Typically this would include weak fairness for
every transition of every process.

record (‘answer, 'location, 'proc, 'question, 'state) system =
("answer, 'location, 'proc, 'question, 'state) pre-system
+ FAIR :: ("answer, 'location, 'proc, 'question, 'state) system-state seq-pred

definition
run :: ("answer, 'location, 'proc, 'question, 'state) system
= (‘answer, 'location, 'proc, 'question, 'state) system-state seq-pred
where
run sys = (prerun sys A FAIR sys)

definition
valid :: (‘answer, 'location, 'proc, 'question, 'state) system
= (‘answer, 'location, 'proc, 'question, 'state) system-state seq-pred = bool («- = - [11, 0] 11)
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where
(sys E @) «— (Vo. run sys o — ¢ o)

5 State-based invariants

We provide a simple-minded verification condition generator (VCG) for this language, providing support for
establishing state-based invariants. It is just one way of reasoning about CIMP programs and is proven sound wrt
to the CIMP semantics.

Our approach follows Lamport (1980); Lamport and Schneider (1984) (and the later Lamport (2002)) and closely
related work by Apt, Francez, and de Roever (1980), Cousot and Cousot (1980) and Levin and Gries (1981), who
suggest the incorporation of a history variable. Cousot and Cousot (1980) apparently contains a completeness
proof. Lamport mentions that this technique was well-known in the mid-80s when he proposed the use of prophecy
variables?. See also de Roever, de Boer, Hannemann, Hooman, Lakhnech, Poel, and Zwiers (2001) for an extended
discussion of some of this.

declare small-step.intros|intro]

inductive-cases small-step-inv:
({1} Request action val # cs, ls) —4 s’
({I} Response action # cs, ls) —q s
({1} LocalOp R # cs, ls) —4 s’
({I} IF b THEN c¢ FI # cs, Is) —4 s’
({I} IF b THEN c1 ELSE c2 FI # cs, ls) —¢ s’
({I} WHILE b DO ¢ OD # cs, ls) —4 s’
(LOOP DO ¢ OD # ¢s, ls) —4 s’

lemma small-step-stuck:
= ([, 8) =a ¢
by (auto elim: small-step.cases)

declare system-step.intros|intro]

By default we ask the simplifier to rewrite atS using ambient AT information.

lemma atS-state-weak-cong[congl:
AT sp= AT s'p = atSpls s +— atSpls s’
by (auto simp: atS-def)

We provide an incomplete set of basic rules for label sets.

lemma atS-simps:
—atSpA{}s
atSp{l} s<— atpls
latpls;lels] = atSplss
(Mi.atpls — 1 ¢ ls) = —atSplss
by (auto simp: atS-def)

lemma atS-mono:
fatS pls s;ls Cls] = atSpls's
by (auto simp: atS-def)

lemma atS-un:
atSp (1Ul) s«— atSplsVatSpl's
by (auto simp: atS-def)

lemma atLs-disj-union[simp]:
(atLs p label0 V atLs p labell) = atLs p (label0 U labell )
unfolding atLs-def by simp

2https://lamport.azurewebsites.net /pubs/pubs.html
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lemma atLs-insert-disj:
atLs p (insert [ label0) = (atL p IV atLs p label0)
by simp

lemma small-step-terminated:
s =g 8" = atCs (fst s) = {} = atCs (fst s’) = {}
by (induct pred: small-step) auto

lemma atC-not-empty:

atC ¢ # {}
by (induct ¢) auto

lemma atCs-empty:
atCs cs = {} «— cs = |]
by (induct cs) (auto simp: atC-not-empty)

lemma terminated-no-commands:
assumes terminated p sh
shows 3s. GST sh p = ([], s)
using assms unfolding atLs-def AT-def by (metis atCs-empty prod.collapse singletonD)

lemma terminated-GST-stable:
assumes system-step q sh’ sh
assumes terminated p sh
shows GST sh p = GST sh’ p
using assms by (auto dest!: terminated-no-commands simp: small-step-stuck elim!: system-step.cases)

lemma terminated-stable:
assumes system-step q sh’ sh
assumes terminated p sh
shows terminated p sh’
using assms unfolding atLs-def AT-def
by (fastforce split: if-splits prod.splits
dest: small-step-terminated
elim!: system-step.cases)

lemma system-step-pls-nonempty:
assumes system-step pls sh’ sh
shows pls # {}

using assms by cases simp-all

lemma system-step-no-change:
assumes system-step ps sh’ sh
assumes p ¢ ps
shows GST sh! p = GST sh p

using assms by cases simp-all

lemma initial-stateD:

assumes initial-state sys s

shows AT ((GST = s, HST = [])) = atC o PGMs sys A INIT sys ((GST = s, HST = [|)){ A (Vp l. —taken
pl (GST = s, HST = []))
using assms unfolding initial-state-def split-def o-def LST-def AT-def taken-def by simp

lemma initial-states-initial[iff]:
assumes initial-state sys s
shows at p | ((GST = s, HST =) <— [ € atC (PGMs sys p)
using assms unfolding initial-state-def split-def AT-def by simp
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definition
reachable-state :: (‘answer, 'location, 'proc, 'question, 'state, 'ext) pre-system-ext
= ('answer, 'location, 'proc, 'question, 'state) state-pred
where
reachable-state sys s «— (o i. prerun sys o AN o i = s)

lemma reachable-stateF:
assumes reachable-state sys sh
assumes Ao i. prerun sys 0 = P (o 1)
shows P sh
using assms unfolding reachable-state-def by blast

lemma prerun-reachable-state:
assumes prerun sys o
shows reachable-state sys (o 1)
using assms unfolding prerun-def LTL.defs system-step-reficlp-def reachable-state-def by auto

lemma reachable-state-induct[consumes 1, case-names init LocalStep CommunicationStep, induct set: reach-
able-state]:

assumes 7: reachable-state sys sh

assumes i: \s. initial-state sys s = P (GST = s, HST = [])

assumes [: A\sh ls’ p. [reachable-state sys sh; P sh; GST sh p —+ Is] = P (GST = (GST sh)(p :=Is"), HST
= HST sh|

assumes c: A\sh ls1'1s2’ pl p2 o B.

[reachable-state sys sh; P sh;
GST sh pl —q, gy 81" GST sh p2 —,, g 1s2% p1 # p2]
= P (GST = (GST sh)(pl := Is1’, p2 := 1s2"), HST = HST sh Q [(«, B)])

shows P sh
using r
proof (rule reachable-stateE)

fix o i assume prerun sys o show P (o i)

proof (induct i)

case 0 from (prerun sys o> show ?case
unfolding prerun-def by (metis (full-types) i old.unit.exhaust system-state.surjective)
next
case (Suc i) with «prerun sys o) show ?case

unfolding prerun-def LTL.defs system-step-reficlp-def reachable-state-def
apply clarsimp
apply (drule-tac x=i in spec)
apply (erule disjE; clarsimp)
apply (erule system-step.cases; clarsimp)

apply (metis (full-types) <prerun sys o> [ old.unit.exhaust prerun-reachable-state system-state.surjective)
apply (metis (full-types) <prerun sys o> ¢ old.unit.exhaust prerun-reachable-state system-state.surjective)
done

qed
qed

lemma prerun-valid-Truel:
shows sys =pre (True)
unfolding prerun-valid-def by simp

lemma prerun-valid-conjl:
assumes sys =pre P

assumes sys =pre @
shows sys =pre PN Q
using assms unfolding prerun-valid-def always-def by simp
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lemma valid-prerun-lift:
assumes sys =pre [
shows sys = O[]
using assms unfolding prerun-valid-def valid-def run-def by blast

lemma prerun-valid-induct:
assumes N\o. prerun sys o = [I] o
assumes N\o. prerun sys 0 = ([I] — (O[I])) o
shows sys =pre [
unfolding prerun-valid-def using assms by (simp add: always-induct)

lemma prerun-validl:
assumes As. reachable-state sys s = I s
shows sys |=pre [
unfolding prerun-valid-def using assms by (simp add: alwaysl prerun-reachable-state)

lemma prerun-validE:
assumes reachable-state sys s
assumes sys =pre [
shows [ s
using assms unfolding prerun-valid-def
by (metis alwaysE reachable-stateE suffix-state-prop)

5.0.1 Relating reachable states to the initial programs

To usefully reason about the control locations presumably embedded in the single global invariant, we need to
link the programs we have in reachable state s to the programs in the initial states. The fragments function
decomposes the program into statements that can be directly executed (§77). We also compute the locations we
could be at after executing that statement as a function of the process’s local state.

Eliding the bodies of IF and WHILE statements yields smaller (but equivalent) proof obligations.

type-synonym (‘answer, 'location, 'question, 'state) loc-comp
= 'state = 'location set

fun lconst :: 'location set = ('answer, 'location, 'question, 'state) loc-comp where
lconst Ip s = Ip

definition lcond :: 'location set = 'location set = 'state bexp
= ('answer, 'location, 'question, 'state) loc-comp where
lcond Ip Ip" b s = (if b s then Ip else Ip")

lemma Icond-split:
Q (leond lplp" b s) +— (bs— Qlp) AN (mbs— Qlp)
unfolding lcond-def by (simp split: if-splits)

lemma Icond-split-asm:
Q (leond lp lp" b s) «— = ((bsA=QIlp)V (=bsA - QlIlp)
unfolding lcond-def by (simp split: if-splits)

lemmas Icond-splits = lcond-split lcond-split-asm

fun
fragments :: ('answer, 'location, 'question, 'state) com
= 'location set
= ( ("answer, 'location, 'question, 'state) com
x ('answer, 'location, 'question, 'state) loc-comp ) set
where
fragments ({l} IF b THEN c FI) aft
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={ ({I} IF b THEN ¢’ FI, lcond (atC ¢) aft b) |c’. True }
U fragments c aft
| fragments ({I} IF b THEN c1 ELSE c2 FI) aft
= { ({I} IF b THEN c1’ ELSE ¢2' FI, lcond (atC c1) (atC ¢2) b) |c1’ ¢2'. True }
U fragments c1 aft U fragments c2 aft
| fragments (LOOP DO ¢ OD) aft = fragments ¢ (atC c)
| fragments ({I} WHILE b DO ¢ OD) aft
= fragments ¢ {I} U { ({I} WHILE b DO ¢’ OD, lcond (atC ¢) aft b) |¢. True }
| fragments (c1;; ¢2) aft = fragments c1 (atC c2) U fragments c2 aft
| fragments (c1 @ c2) aft = fragments c1 aft U fragments c2 aft
| fragments ¢ aft = { (c, lconst aft) }

fun

fragmentsL :: (‘answer, 'location, 'question, 'state) com list

= ( (Yanswer, 'location, 'question, 'state) com
x ('answer, 'location, 'question, 'state) loc-comp ) set

where

fragmentsL [| = {}
| fragmentsL [c] = fragments ¢ {}
| fragmentsL (¢ # ¢’ # cs) = fragments ¢ (atC ¢’) U fragmentsL (¢’ # cs)

abbreviation
fragmentsLS :: (‘answer, 'location, 'question, 'state) local-state
= ( (Yanswer, 'location, 'question, 'state) com
x ('answer, 'location, 'question, 'state) loc-comp ) set

where
fragmentsLS s = fragmentsL (cPGM s)

We show that taking system steps preserves fragments.

lemma small-step-fragmentsLS:

assumes s —o S’

shows fragmentsLS s’ C fragmentsLS s
using assms by induct (case-tac [!] cs, auto)

lemma reachable-state-fragmentsLS:
assumes reachable-state sys sh
shows fragmentsLS (GST sh p) C fragments (PGMs sys p) {}
using assms
by (induct rule: reachable-state-induct)
(auto simp: initial-state-def dest: subsetD[OF small-step-fragmentsLS])

inductive
basic-com :: (‘answer, 'location, 'question, 'state) com = bool
where
basic-com ({|l}} Request action val)
| basic-com ({l} Response action)
| basic-com ({l} LocalOp R)
| basic-com ({l} IF b THEN c FI)
| basic-com ({I}} IF b THEN c1 ELSE c2 FI)
| basic-com ({l} WHILE b DO ¢ OD)

lemma fragments-basic-com:
assumes (c', aft’) € fragments c aft
shows basic-com ¢’
using assms by (induct ¢ arbitrary: aft) (auto intro: basic-com.intros)

lemma fragmentsL-basic-com:
assumes (c’, aft’) € fragmentsL cs
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shows basic-com ¢’
using assms
apply (induct cs)
apply stmp
apply (case-tac cs)
apply (auto simp: fragments-basic-com)
done

To reason about system transitions we need to identify which basic statement gets executed next. To that end
we factor out the recursive cases of the small-step semantics into contexts, which isolate the basic-com commands
with immediate externally-visible behaviour. Note that non-determinism means that more than one basic-com
can be enabled at a time.

The representation of evaluation contexts follows Berghofer (2012). This style of operational semantics was
originated by Felleisen and Hieb (1992).

type-synonym (‘answer, 'location, 'question, 'state) ctxt
= (("answer, 'location, 'question, 'state) com = (‘answer, 'location, 'question, 'state) com)
X (('answer, 'location, 'question, 'state) com = ('answer, 'location, 'question, 'state) com list)

inductive-set
ctxt =2 (‘answer, 'location, 'question, 'state) ctxt set
where
C-Hole: (id, ([])) € ctat
| C-Loop: (E, fetat) € ctat = (Acl. LOOP DO E c1 OD, \cl. fetat ¢1 @Q [LOOP DO E c¢1 OD)) € ctat
| C-Seq: (E, fetxt) € ctat = (Acl. E cl3; ¢2, Acl. fetzt ¢l @Q [c2]) € ctat
| C-Choosel: (E, fctat) € ctat = (Ael. E cl @ c2, fetat) € ctat
| C-Choose2: (E, fctzt) € ctat = (Ac2. c1 & E 2, fetat) € clat

We can decompose a small step into a context and a basic-com.

fun

decompose-com :: ('answer, 'location, 'question, 'state) com

= ( ("answer, 'location, 'question, 'state) com
x ('answer, 'location, 'question, 'state) ctat ) set

where

decompose-com (LOOP DO c¢1 OD) = { (¢, At. LOOP DO ictxt t OD, At. fetxt t @ [LOOP DO ictzt t OD)) |c
fetxt ictxt. (c, ictat, fetat) € decompose-com cl }
| decompose-com (c1;; ¢2) = { (¢, At. ictat t;; ¢2, At. fetxt t Q [c2]) |c fetat ictat. (¢, ictat, fetat) € decompose-com
cl }
| decompose-com (c1 & c2) = { (¢, At. ictat t & c2, fetat) |c fetat ictat. (c, ictzt, fetat) € decompose-com c1 }

U { (¢, At. ¢l @ ictat t, fetat) |c fetzt ictat. (c, ictat, fetat) € decompose-com c2 '}

| decompose-com ¢ = {(¢, id, ([]))}

definition
decomposeLS :: (‘answer, 'location, 'question, 'state) local-state
= ( ("answer, 'location, 'question, 'state) com
X ((‘answer, 'location, 'question, 'state) com = ('answer, 'location, 'question, 'state) com)
X (("answer, 'location, 'question, 'state) com = (‘answer, 'location, 'question, 'state) com list) ) set
where
decomposeLS s = (case cPGM s of ¢ # - = decompose-com ¢ | - = {})

lemma ctxt-ing:
assumes (F, fctzt) € ctat
assumes Fz = Fy
shows z = y
using assms by (induct set: ctzt) auto

lemma decompose-com-non-empty: decompose-com ¢ # {}
by (induct ¢) auto
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lemma decompose-com-basic-com:
assumes (c/, ctats) € decompose-com ¢
shows basic-com ¢’
using assms by (induct ¢ arbitrary: ¢’ ctzts) (auto intro: basic-com.intros)

lemma decomposeLS-basic-com:
assumes (c/, ctzts) € decomposeLS s
shows basic-com ¢’
using assms unfolding decomposeLS-def by (simp add: decompose-com-basic-com split: list.splits)

lemma decompose-com-ctxt:
assumes (c/, ctats) € decompose-com ¢
shows ctats € ctat
using assms by (induct ¢ arbitrary: ¢’ ctrts) (auto intro: ctat.intros)

lemma decompose-com-ictxt:
assumes (c’, ictzt, fctat) € decompose-com ¢
shows ictzt ¢/ = ¢
using assms by (induct ¢ arbitrary: ¢’ ictzt fetzt) auto

lemma decompose-com-small-step:

assumes as: (¢’ # fetat ¢’ Q cs, s) —q 8’

assumes ds: (c/, ictat, fetzt) € decompose-com ¢

shows (¢ # cs, 8) —q 8’
using decompose-com-ctzt[OF ds| as decompose-com-ictxt|OF ds|
by (induct ictat fetxt arbitrary: c cs)

(cases s', fastforce simp: fun-eq-iff dest: ctxt-inj)+

theorem context-decompose:
s —q 8" — (3 (e, ictat, fetat) € decomposeLS s.
cPGM s = ictxt ¢ # tl (cPGM s)
A (¢ # fetzt ¢ Q tl (¢cPGM s), ¢cTKN s, cLST s) —¢q s’
A (VieatC c. ¢cTKN s’ = Some 1)) (is ?lhs = ?rhs)
proof (rule iffT)
assume ?lhs then show ?rhs
unfolding decomposeLS-def
proof (induct rule: small-step.induct)
case (Choosel c1 ¢s s a ¢s’ s’ ¢2) then show Zcase
apply clarsimp
apply (rename-tac c ictzt fetat)
apply (rule-tac x=(c, At. ictzt t ® c2, fetxt) in bexl)
apply auto
done
next
case (Choose2 c2 c¢s s a ¢s’ s’ ¢1) then show Zcase
apply clarsimp
apply (rename-tac c ictzt fetxt)
apply (rule-tac x=(c, At. ¢l @ ictxt t, fetat) in bexl)
apply auto
done
qed fastforce+
next
assume ?rhs then show ?lhs
unfolding decomposeLS-def
by (cases s) (auto split: list.splits dest: decompose-com-small-step)
qed

While we only use this result left-to-right (to decompose a small step into a basic one), this equivalence shows
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that we lose no information in doing so.

Decomposing a compound command preserves fragments too.

fun
loc-compC' :: (‘answer, 'location, 'question, 'state) com
= (‘answer, 'location, 'question, 'state) com list
= ('answer, 'location, 'question, 'state) loc-comp
where
loc-compC ({|l} IF b THEN c FI) cs = lcond (atC c) (atCs cs) b
| loc-compC ({I}} IF b THEN c1 ELSE c2 FI) cs = lcond (atC c1) (atC c2) b
| loc-compC (LOOP DO ¢ OD) cs = lconst (atC c)
| loc-compC ({I}} WHILE b DO ¢ OD) cs = lcond (atC c) (atCs cs) b
| loc-compC ¢ ¢s = lconst (atCs cs)

lemma decompose-fragments:

assumes (c, ictat, fetat) € decompose-com c0

shows (¢, loc-compC ¢ (fetxt ¢ Q cs)) € fragments c0 (atCs cs)
using assms
proof (induct c0 arbitrary: c ictzt fctat cs)

case (Loop c01 c ictzt fetxt cs)

from Loop.prems Loop.hyps(1)[where cs=ictzt ¢ # cs| show ?Zcase by (auto simp: decompose-com-ictzt)
next

case (Seq c01 c02 c ictxt fetat cs)

from Seq.prems Seq.hyps(1)[where cs=c02 # cs] show ?case by auto
qed auto

lemma at-decompose:
assumes (c, ictat, fetat) € decompose-com c0
shows atC ¢ C atC c0
using assms by (induct c0 arbitrary: c ictzt fctat; fastforce)

lemma at-decomposeLS:
assumes (c, ictzt, fetat) € decomposeLS s
shows atC ¢ C atCs (¢cPGM s)
using assms unfolding decomposeLS-def by (auto simp: at-decompose split: list.splits)

lemma decomposeLS-fragmentsLS:
assumes (c, ictzt, fetzt) € decomposeLS s
shows (¢, loc-compC ¢ (fetat ¢ Q tl (¢cPGM s))) € fragmentsLS s
using assms
proof(cases cPGM s)
case (Cons d ds)
with assms decompose-fragments|where cs=ds| show ?thesis
by (cases ds) (auto simp: decomposeLS-def)
qed (simp add: decomposeLS-def)

lemma small-step-loc-compC'"
assumes basic-com ¢
assumes (¢ # cs, ls) —q s’
shows loc-compC ¢ ¢s (snd ls) = atCs (¢cPGM Is’)
using assms by (fastforce elim: basic-com.cases elim!: small-step-inv split: lcond-splits)

The headline result allows us to constrain the initial and final states of a given small step in terms of the original
programs, provided the initial state is reachable.

theorem decompose-small-step:
assumes GST sh p —, ps’
assumes reachable-state sys sh
obtains ¢ cs aft
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where (¢, aft) € fragments (PGMs sys p) {}
and atC ¢ C atCs (cPGM (GST sh p))
and aft (cLST (GST sh p)) = atCs (cPGM ps’)
and (¢ # c¢s, cTKN (GST sh p), cLST (GST sh p)) —q ps’
and VlieatC c. ¢cTKN ps’' = Some |
using assms
apply —
apply (frule iff D1[OF context-decompose])
apply clarsimp
apply (frule decomposeLS-fragmentsLS)
apply (frule at-decomposeLS)
apply (frule (1) subsetD[OF reachable-state-fragmentsLS])
apply (frule decomposeLS-basic-com)
apply (frule (1) small-step-loc-compC')
apply simp
done

Reasoning by induction over the reachable states with decompose-small-step is quite tedious. We provide a very
simple VCG that generates friendlier local proof obligations in §5.1.

5.1 Simple-minded Hoare Logic/VCG for CIMP

We do not develop a proper Hoare logic or full VCG for CIMP: this machinery merely packages up the subgoals
that arise from induction over the reachable states (§5). This is somewhat in the spirit of Ridge (2009).

Note that this approach is not compositional: it consults the original system to find matching communicating
pairs, and aft tracks the labels of possible successor statements. More serious Hoare logics are provided by Cousot
and Cousot (1989); Lamport (1980); Lamport and Schneider (1984).

Intuitively we need to discharge a proof obligation for either Requests or Responses but not both. Here we choose
to focus on Requests as we expect to have more local information available about these.

inductive
veg = (‘answer, 'location, 'proc, 'question, 'state) programs
= 'proc
= (‘answer, 'location, 'question, 'state) loc-comp
= ('answer, 'location, 'proc, 'question, 'state) state-pred
= (‘answer, 'location, 'question, 'state) com
= ('answer, 'location, 'proc, 'question, 'state) state-pred
= bool (¢-, -, -+/{-}/ -/ {-b [11,0,0,0,0,0] 11)
where
[ Aaft’ action’ s ps" p's’ 1" B s" p’.
[ pre s; ({U'} Response action’, aft’) € fragments (coms p’) {}; p # p’;
ps' € wval B (sl p); (p's’, B) € action’ (action (s p)) (sl p');
atpls; atp'ls;
AT s' = (AT s)(p := aft (si p), p":= aft’ (sl p);
s'l = sl(p := ps’, p’ = p's’);
taken p [ s";
HST s’ = HST s @ [(action (s} p), B)];
Vp''e—{p,p’}. GST s’ p"”" = GST s p”
| = post s’
| = coms, p, aft = {pre}} {I}} Request action val {post}
| [ A\sps’ s’
[ pre s; ps’ € f (sl p);
at p ls;
AT 8" 2 (AT $)(p = oft (5] p);
s’} = sl(p := ps’);
taken p 1 s”
HST s’ = HST s;
Vp"e—{p}. GST s' p"" = GST s p"
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| = post s’
| = coms, p, aft = {pre} {I} LocalOp f {post]}
[T As s
[ pre s,
at p ls;
AT s" = (AT s)(p == aft (sl p));
s’} = sl;
taken p [ s";
HST s' = HST s;
Vp''e—{p}. GST s’ p'"" = GST s p"
| = post s’
| = coms, p, aft = {pre}} {l} IF b THEN t FI {post}
[T As 8"
[ pre s;
at pls;
AT s' = (AT $)(p = aft (s p)):
s’} = sl;
taken p 1 s”
HST s’ = HST s;
Vp"e—{p}. GST s' p"" = GST s p"
| = post s’
| = coms, p, aft & {pre} {l} IF b THEN t ELSE e FI {post]
[T As s
[ pre s
at p ls;
AT s" = (AT s)(p == aft (s| p));
s’} = sl;
taken p 1 s
HST s’ = HST s;
Vp'e—{p}. GST s’ p'"" = GST s p"
| = post s’
| = coms, p, aft = {pre} {l} WHILE b DO ¢ OD {post]}
— There are no proof obligations for the following commands, but including them makes some basic rules hold
(§5.1.1):
| coms, p, aft & {pre]} {I} Response action {post|
| coms, p, aft = {pre} c1 ;; ¢2 {post]
| coms, p, aft & {pre} LOOP DO ¢ OD {post}
| coms, p, aft &= {pre} c1 & c2 {post]}

We abbreviate invariance with one-sided validity syntax.

abbreviation valid-inv («-, -, - +/ {-}/ - [11,0,0,0,0] 11) where
coms, p, aft = {I} ¢ = coms, p, aft = {I} ¢ {I}

inductive-cases vcg-inv:
coms, p, aft = {pre} {l} Request action val {postl
coms, p, aft = {pre}} {l} LocalOp f {post]
coms, p, aft = {pre} {I} IF b THEN t FI {post}
coms, p, aft = {pre} {l} IF b THEN t ELSE e FI {post|
coms, p, aft = {pre}} {l} WHILE b DO ¢ OD {post|
coms, p, aft = {pre} LOOP DO ¢ OD {post|
coms, p, aft = {prel} {l} Response action {post}
coms, p, aft = {pre} cl ;; c¢2 {postf}
coms, p, aft = {pre} Choose c1 c2 {postf}

We tweak fragments by omitting Responses, yielding fewer obligations

fun
veg-fragments’ :: (‘answer, 'location, 'question, 'state) com
= 'location set
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= ( ("answer, 'location, 'question, 'state) com
x ('answer, 'location, 'question, 'state) loc-comp ) set
where
veg-fragments’ ({l} Response action) aft = {}

| veg-fragments’ ({I}} IF b THEN c¢ FI) aft

= wcg-fragments’ ¢ aft

U{ ({I} IF b THEN c' FI, lcond (atC c) aft b) |¢’. True }
| veg-fragments’ ({I} IF b THEN c1 ELSE c2 FI) aft

= wveg-fragments’ c2 aft U veg-fragments’ cl1 aft

U{ (I} IF b THEN c1' ELSE ¢2' FI, lcond (atC c1) (atC c2) b) |c1’ c2'. True }
| veg-fragments’ (LOOP DO ¢ OD) aft = veg-fragments’ ¢ (atC c)
| veg-fragments’ ({I} WHILE b DO ¢ OD) aft

= wveg-fragments’ ¢ {1} U { ({I} WHILE b DO ¢’ OD, lcond (atC ¢) aft b) |c¢’. True }
| veg-fragments’ (¢l ;5 ¢2) aft = veg-fragments’ ¢2 aft U veg-fragments’ ¢l (atC ¢2)
| veg-fragments’ (c1 & ¢2) aft = veg-fragments’ ¢l aft U veg-fragments’ ¢2 aft
| veg-fragments’ ¢ aft = {(c, lconst aft)}

abbreviation
veg-fragments :: ("answer, 'location, 'question, 'state) com
= ( ("answer, 'location, 'question, 'state) com
x ('answer, 'location, 'question, 'state) loc-comp ) set
where
veg-fragments ¢ = veg-fragments’ ¢ {}

fun isResponse :: ('answer, 'location, 'question, 'state) com = bool where
isResponse ({l}} Response action) <— True
| isResponse - «— False

lemma fragments-vcg-fragments’”:
[ (¢, aft) € fragments ¢’ aft’; ~isResponse ¢ | = (¢, aft) € vcg-fragments’ ¢ aft’
by (induct ¢’ arbitrary: aft’) auto

lemma vcg-fragments’-fragments:
veg-fragments’ ¢’ aft’ C fragments ¢’ aft’
by (induct ¢’ arbitrary: aft’) (auto 10 0)

lemma VCG-step:
assumes V: Ap. VY (¢, aft) € veg-fragments (PGMs sys p). PGMs sys, p, aft = {pre} ¢ {post}
assumes S: system-step p sh’ sh
assumes R: reachable-state sys sh
assumes P: pre sh
shows post sh’
using S
proof cases
case LocalStep with P show ?thesis
apply —
apply (erule decompose-small-step| OF - R])
apply (frule fragments-basic-com)
apply (erule basic-com.cases)
apply (fastforce dest!: fragments-vcg-fragments’ V]rule-format]
elim: veg-inv elim!: small-step-inv
simp: LST-def AT-def taken-def fun-eq-iff )+
done
next
case CommunicationStep with P show ?thesis
apply —
apply (erule decompose-small-step] OF - R])
apply (erule decompose-small-step| OF - R])
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subgoal for ¢ cs aft ¢’ cs’ aft’
apply (frule fragments-basic-com[where c¢'=c])

apply (frule fragments-basic-com|where c¢'=c’])

apply (elim basic-com.cases; clarsimp elim!: small-step-inv)
apply (drule fragments-veg-fragments’)

apply (fastforce dest!: V[rule-format]

elim: veg-inv elim!: small-step-inv
simp: LST-def AT-def taken-def fun-eq-iff )+
done
done
qed

The user sees the conclusion of V for each element of veg-fragments.

lemma VCG-step-inv-stable:
assumes V: Ap. V¥ (¢, aft) € veg-fragments (PGMs sys p). PGMs sys, p, aft & {I|} ¢
assumes prerun sys o
shows ([I] — O[I]) o
apply (rule alwaysl)
apply clarsimp
apply (rule nextl)
apply clarsimp
using assms(2) unfolding prerun-def
apply clarsimp
apply (erule-tac i=i in alwaysk)
unfolding system-step-reficlp-def
apply clarsimp
apply (erule disjE; clarsimp)
using VCG-step[where pre=I and post=I] V assms(2) prerun-reachable-state
apply blast
done

lemma VCG:
assumes [: Vs. initial-state sys s — I ((GST = s, HST = |]))
assumes V: Ap. V (¢, aft) € veg-fragments (PGMs sys p). PGMs sys, p, aft & {I} ¢
shows sys |=pre [

apply (rule prerun-valid-induct)

apply (clarsimp simp: prerun-def state-prop-def)

apply (metis (full-types) I old.unit.exhaust system-state.surjective)

using VCG-step-inv-stable[OF V] apply blast

done

lemmas VCG-valid = valid-prerun-liftf|OF VCG, of sys I] for sys I

5.1.1 VCG rules

We can develop some (but not all) of the familiar Hoare rules; see Lamport (1980) and the sel.4/14.verified lemma
buckets for inspiration. We avoid many of the issues Lamport mentions as we only treat basic (atomic) commands.

context
fixes coms :: (‘answer, 'location, 'proc, 'question, 'state) programs
fixes p :: 'proc
fixes aft :: ("answer, 'location, 'question, 'state) loc-comp

begin

abbreviation
valid-syn :: (‘answer, 'location, 'proc, 'question, 'state) state-pred
= ('answer, 'location, 'question, 'state) com
= (‘answer, 'location, 'proc, 'question, 'state) state-pred = bool where
valid-syn P ¢ @ = coms, p, aft = {P} ¢ {Q}
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notation valid-syn (<{-}/ -/ {-)

abbreviation
valid-inv-syn :: (‘answer, 'location, 'proc, 'question, 'state) state-pred
= (‘answer, 'location, 'question, 'state) com = bool where
valid-inv-syn P ¢ = {P[} ¢ {P}
notation valid-inv-syn (<{-}/ -»)

lemma vcg-True:

{P} ¢ {{(True)}

by (cases c) (fastforce elim!: veg-inv intro: veg.intros)+

lemma vcg-cony:

[AIE e 4@k 41} ¢ {RY | = {1} ¢ {@ A R}

by (cases c) (fastforce elim!: vcg-inv intro: vcg.intros)+

lemma vcg-pre-imp:

[As. Ps—= Qs {Q} c{R} ] = {P} ¢ {R}

by (cases c) (fastforce elim!: vcg-inv intro: vcg.intros)+
lemmas vcg-pre = veg-pre-imp|rotated]

lemma vcg-post-imp:
[As @s = R s {P} c{Q} ] = {P} ¢ {R}

by (cases c) (fastforce elim!: vcg-inv intro: vcg.intros)+

lemma vcg-proplintrol:

1Pl e

by (cases c) (fastforce intro: vcg.intros)+

lemma vcg-drop-imp:
assumes { P} ¢ {Q}
shows {P} ¢ {R — Q|
using assms
by (cases c) (fastforce elim!: veg-inv intro: veg.intros)+

lemma vcg-conj-lift:
assumes z: {P} ¢ {Q}
assumes y: {P'} ¢ {Q}
shows {P AP} c{Q AN Q'
apply (rule veg-conj)
apply (rule veg-pre[OF x|, simp)
apply (rule veg-pre[OF yl, simp)
done

lemma vcg-disj-lift:
assumes z: {P} ¢ {Q}
assumes y: {P'} ¢ {Q}
shows {PVv P} c{QV Q'}
using assms
by (cases c) (fastforce elim!: veg-inv intro: veg.intros)+

lemma vcg-imp-lift:
assumes {P’} ¢ {— P}
assumes {Q'} ¢ {Q}
shows {P'V Q'} ¢ {P — Q|
by (simp only: imp-conv-disj veg-disj-lift[OF assms])
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lemma vcg-ex-lift:
assumes Az. {P z} ¢ {Q z|}
shows {\s. 3z. Pz s} ¢ {rs. Fz. Q z s}
using assms
by (cases c) (fastforce elim!: vcg-inv intro: vcg.intros)+

lemma vcg-all-lift:
assumes Az. {P z} ¢ {Q =z
shows {As. Vz. Pz s} ¢ {rs. Vz. Q z s}
using assms
by (cases c) (fastforce elim!: veg-inv intro: veg.intros)+

lemma vcg-name-pre-state:
assumes As. P s = {(=) s} ¢ {Q}
shows {P} ¢ {Q}
using assms
by (cases c) (fastforce elim!: vcg-inv intro: vcg.intros)+

lemma vcg-lift-comp:
assumes f: AP. {Xs. P (fs:: 'a = type)} ¢
assumes P: A\z. {Q z|} ¢ {P z|}
shows {As. Q (fs) s} ¢ {As. P (fs) s}
apply (rule vcg-name-pre-state)
apply (rename-tac s)
apply (rule veg-pre)
apply (rule vcg-post-imp[rotated))
apply (rule vcg-cong-lift)
apply (rule-tac z=f s in P)
apply (rule-tac P=\fs. fs = f s in f)
apply simp
apply simp
done

5.1.2 Cheap non-interference rules

These rules magically construct VCG lifting rules from the easier to prove eg-imp facts. We don’t actually use
these in the GC, but we do derive fun-upd equations using the same mechanism. Thanks to Thomas Sewell for
the requisite syntax magic.

As these eg-imp facts do not usefully compose, we make the definition asymmetric (i.e., g does not get a bundle
of parameters).

Note that these are effectively parametricity rules.

definition eg-imp :: ('a = 'b = 'c) = (b = 'e) = bool where
eq-imp fg= (Vss'. Va. fes=fzs) — (gs=g5s')

lemma eg-impD:
[ eg-imp fg;Vx. frs=fas']=gs=gs
by (simp add: eq-imp-def)

/

lemma eg-imp-vcg:
assumes g: eq-imp f g
assumes f: Yz P. {P o (fz)} ¢
shows {P o g} ¢

apply (rule veg-name-pre-state)

apply (rename-tac s)

apply (rule veg-pre)

apply (rule vcg-post-imp[rotated))
apply (rule vcg-all-liftfwhere ‘a='a])
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apply (rule-tac x=x and P=M\fs. fs = f x s in f[rule-format))
apply simp
apply (frule eq-impD[where f=f, OF g|)
apply stmp
apply simp
done

lemma eg-imp-vcg-LST:
assumes ¢: eqg-imp [ g
assumes f: Yz P. {P o (fz) o LST} ¢
shows {P o g o LST|} ¢
apply (rule vcg-name-pre-state)
apply (rename-tac s)
apply (rule veg-pre)
apply (rule vcg-post-imp[rotated))
apply (rule vcg-all-liftfwhere 'a="a))
apply (rule-tac x=x and P=M\fs. fs = fx s} in f[rule-format))
apply simp
apply (frule eq-impD[where f=f, OF g|)
apply simp
apply simp
done

lemma eq-imp-fun-upd:
assumes g: eqg-imp f g
assumes f: Vz. fz (s(fld :== val)) = fz s
shows ¢ (s(fld .= val)) = g s

apply (rule eq-impD[OF g¢))

apply (rule f)

done

lemma curry-forall-eq:

(Vf. Pf)=(Vf. P (case-prod f))

by (metis case-prod-curry)

lemma pres-tuple-vcg:

(VP.{P o (As. (fs, g9))| ¢

+—— (VP.{P o flf¢) N(VP.{P o g} ¢))

apply (simp add: curry-forall-eq o-def)
apply safe

apply fast

apply fast
apply (rename-tac P)
apply (rule-tac f=f and P=M\fs s. P fs (g s) in veg-lift-comp; simp)
done

lemma pres-tuple-veg-LST:
(VP. {P o (As. (fs, gs)) o LST]} ¢)
+— (VP.{Pofo LST} ¢) N (VP.{P o go LST} ¢))
apply (simp add: curry-forall-eq o-def)
apply safe
apply fast

apply fast
apply (rename-tac P)

apply (rule-tac f=MAs. f s| and P=MAfs s. P fs (g s) for g in vcg-lift-comp; simp)
done

no-notation valid-syn (<{-}/ -/ {-}b>)
42



end

6 One locale per process

A sketch of what we’re doing in ConcurrentGC, for quicker testing.
FIXME write some lemmas that further exercise the generated thms.
locale P1

begin

definition com :: (unit, string, unit, nat) com where
com = {"A"} WHILE ((<) 0) DO {"B"} |Xs. s — 1| OD

intern-com com-def
print-theorems

locset-definition loop = { B}
print-theorems
thm locset-cache

definition assertion = atS Fualse loop
end
thm locset-cache

locale P2
begin

thm locset-cache

definition com :: (unit, string, unit, nat) com where

com = {"C"} WHILE ((<) 0) DO {"A"} |Suc| OD

intern-com com-def
locset-definition loop = {A}
print-theorems

end
thm locset-cache

primrec coms :: bool = (unit, string, unit, nat) com where
coms False = P1.com
| coms True = P2.com

7 Example: a one-place buffer

To demonstrate the CIMP reasoning infrastructure, we treat the trivial one-place buffer example of Lamport and
Schneider (1984, §3.3). Note that the semantics for our language is different to Lamport and Schneider’s, who
treated a historical variant of CSP (i.e., not the one in Hoare (1985)).

We introduce some syntax for fixed-topology (static channel-based) scenarios.
abbreviation

rev-syn :: 'location = 'channel = ('val = 'state = 'state)
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= (unit, 'location, 'channel x 'val, 'state) com («{-}/ - [0,0,81] 81)
where

{i} chof = {I} Response (A\q s. if fst ¢ = ch then {(f (snd q) s, ()} else {})

abbreviation
snd-syn :: 'location = 'channel = ('state = 'val)
= (unit, 'location, 'channel x 'val, 'state) com (4-}/ -<- [0,0,81] 81)
where
{i} chaf = {l} Request (As. (ch, fs)) (Aans s. {s})

These definitions largely follow Lamport and Schneider (1984). We have three processes communicating over two
channels. We enumerate program locations.

datatype ex-chname = £12 | £23
type-synonym ex-val = nat
type-synonym ex-ch = ex-chname X ezx-val
datatype ex-loc = r12 | r23 | s23 | s12
datatype ez-proc = p1 | p2 | p3

type-synonym ez-pgm = (unit, ex-loc, ex-ch, ex-val) com

type-synonym ez-pred = (unit, ex-loc, ex-proc, ex-ch, ex-val) state-pred
type-synonym ez-state = (unit, ex-loc, ex-proc, ex-ch, ex-val) system-state
type-synonym ez-sys = (unit, ex-loc, ex-proc, ex-ch, ex-val) system
type-synonym ez-history = (ex-ch X unit) list

We further specialise these for our particular example.

primrec
eL-COMS 11 eTL-Proc = er-pgm
where
ex-coms pl = {s12}} £12<id
| ex-coms p2 = LOOP DO {ri12}} £12>(A\v -. v) ;; {s23] £23<id OD
| ex-coms p3 = {r23[ £23>(A\v -. v)

Each process starts with an arbitrary initial local state.

abbreviation ez-init :: (ex-proc = ex-val) = bool where
ex-init = (True)

abbreviation sys :: ez-sys where
sys = (PGMs = ex-coms, INIT = ex-init, FAIR = (True))

The following adapts Kai Engelhardt’s, from his notes titled Proving an Asynchronous Message Passing Program
Correct, 2011. The history variable tracks the causality of the system, which I feel is missing in Lamport’s
treatment. We tack on Lamport’s invariant so we can establish Etern-pred.

abbreviation

filter-on-channel :: ex-chname = ez-state = ex-val list (<|-» [100] 101)
where

lch = map (snd o fst) o filter ((=) ch o fst o fst) o HST

definition IL :: ex-pred where
IL = pred-conjoin |
at p1 $12 —s LIST-NULL |£12
, terminated pl — |12 = (As. [s) p1])
,at p2ri2 — |£12 = |£23
,at p2 s23 — |£12 = [£23 @ (As. [s) p2]) A (As. sl pl = sl p2)
. at p3 128 — LIST-NULL |23
, terminated p8 — |£23 = (As. [s) p2]) A (As. 5| pl = sl p3)

]

If p& terminates, then it has p1’s value. This is stronger than Lamport and Schneider’s as we don’t ask that the
first process has also terminated.
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definition Etern-pred :: ex-pred where
Etern-pred = (terminated p3 — (As. s} pl = s] p3))

Proofs from here down.

lemma correct-system:
assumes IL sh
shows Etern-pred sh
using assms unfolding FEtern-pred-def IL-def by simp

lemma IL-p1: ex-coms, pl, lconst {} = {IL} {s12]} £12<(As. s)
apply (rule vcg.intros)

apply (rename-tac p’)

apply (case-tac p’; clarsimp simp: IL-def atLs-def)

done

lemma IL-p2: ex-coms, p2, lconst {r12} & {IL} {s23] £23<(Xs. s)
apply (rule vcg.intros)

apply (rename-tac p’)

apply (case-tac p'; clarsimp simp: IL-def)

done

lemma IL: sys F=pre 1L

apply (rule VCG)

apply (clarsimp simp: IL-def atLs-def dest!: initial-stateD)
apply (rename-tac p)

apply (case-tac p; clarsimp simp: IL-p1 IL-p2)

done

lemma [L-valid: sys = O[IL]
by (rule valid-prerun-lift| OF IL))

8 Example: an unbounded buffer

This is more literally Kai Engelhardt’s example from his notes titled Proving an Asynchronous Message Passing
Program Correct, 2011.

datatype ex-chname = £12 | £23
type-synonym ez-val = nat
type-synonym ex-ls = ex-val list
type-synonym ex-ch = ex-chname x ex-val
datatype ex-loc = c1 | r12 | r23 | s23 | s12
datatype ex-proc = pl | p2 | p3

type-synonym ez-pgm = (unit, ex-loc, ex-ch, ex-ls) com

type-synonym ez-pred = (unit, ex-loc, ex-proc, ex-ch, ex-ls) state-pred
type-synonym ez-state = (unit, ex-loc, ex-proc, ex-ch, ex-ls) system-state
type-synonym ez-sys = (unit, ex-loc, ex-proc, ex-ch, ex-ls) system
type-synonym ezx-history = (ex-ch x unit) list

The local state for the producer process contains all values produced; consider that ghost state.

abbreviation (input) snoc :: ‘a = 'a list = 'a list where snoc x xs = xs Q [z]

primrec ez-coms :: ex-proc = ex-pgm where
ex-coms pl = LOOP DO {cl1|} LocalOp (Axs. {snoc = zs |x. True}) ;; {s12]} £12<(last, id) OD
| ex-coms p2 = LOOP DO {ri12]} £12>snoc
® {c1l} IF (Xs. length s > 0) THEN {s23] £12<(hd, tl) FI
OD
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| ex-coms p8 = LOOP DO {r23}} £23>snoc OD

abbreviation ex-init :: (ex-proc = ex-ls) = bool where
ex-init s =V p. sp = |]

abbreviation sys :: ez-sys where
sys = (PGMs = ex-coms, INIT = ex-init, FAIR = (True))

abbreviation

filter-on-channel :: ex-chname = ex-state = ex-val list (<|-» [100] 101)
where

lch = map (snd o fst) o filter ((=) ch o fst o fst) o HST

definition I-pred :: ex-pred where
I-pred = pred-conjoin |
at pl c1 — |£12 = (Xs. s} pl)

, at p1 s12 —> (As. length (s) p1) > 0 A butlast (s} p1) = (|£12) s)
L 1€12 < (hs. s} p1)
, €12 = |£28 @ (As. s) p2)
, at p2 s23 —> (As. length (s} p2) > 0)
,(As. sb p3) = |€23
]

The local state of p8 is some prefix of the local state of p1.

definition Etern-pred :: ex-pred where
FEtern-pred = Xs. s| p8 < s| pl

lemma correct-system:
assumes [-pred s
shows Etern-pred s
using assms unfolding Etern-pred-def I-pred-def less-eq-list-def prefix-def by clarsimp

lemma p1-cl[simplified, intro]:
ex-coms, pl, lconst {s12} = {I-pred|} {c1|} LocalOp (Aws. { snoc x zs |z. True })
apply (rule vcg.intros)
apply (clarsimp simp: I-pred-def atS-def)
done

lemma p1-s12[simplified, intro:
ex-coms, pl, lconst {c1} b {I-pred]} {s12]} £12<(last, id)
apply (rule vcg.intros)
apply (rename-tac p’)
apply (case-tac p'; clarsimp)
apply (clarsimp simp: I-pred-def atS-def)
apply (metis Prefiz-Order.prefiz-snoc append.assoc append-butlast-last-id)
done

lemma p2-s23[simplified, intro:
ex-coms, p2, leconst {c1, r12} & {I-pred]} {s23} £12<(hd, tl)
apply (rule vcg.intros)
apply (rename-tac p’)
apply (case-tac p'; clarsimp)
done

lemma p2-pij[intro]:
ex-coms, p2, lcond {s23} {c1, r12} (As. s # [|) & {I-pred|} {c1|} IF (Xs. s # []) THEN ¢’ FI
apply (rule vcg.intros)
apply (clarsimp simp: I-pred-def atS-def split: lcond-splits)
46



done

lemma I: sys =pre I-pred

apply (rule VCG)

apply (clarsimp dest!: initial-stateD simp: I-pred-def atS-def)
apply (rename-tac p)

apply (case-tac p; auto)

done

lemma [-valid: sys = O I-pred]
by (rule valid-prerun-lift[OF I])

9 Concluding remarks

Previously Nipkow and Prensa Nieto (1999); Prensa Nieto (2002, 2003)? have developed the classical Owicki/Gries
and Rely-Guarantee paradigms for the verification of shared-variable concurrent programs in Isabelle/HOL. These
have been used to show the correctness of a garbage collector (Prensa Nieto and Esparza 2000).

We instead use synchronous message passing, which is significantly less explored. de Boer, de Roever, and
Hannemann (1999); ? provide compositional systems for terminating systems. We have instead adopted Lamport’s
paradigm of a single global invariant and local proof obligations as the systems we have in mind are tightly coupled
and it is not obvious that the proofs would be easier on a decomposed system; see 7, §1.6.6 for a concurring opinion.
Unlike the generic sequential program verification framework Simpl (Schirmer 2004), we do not support function

calls, or a sophisticated account of state spaces. Moreover we do no meta-theory beyond showing the simple VCG
is sound (§5.1).
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