Concentration Inequalities

Emin Karayel and Yong Kiam Tan*

December 6, 2023

Abstract

Concentration inequalities provide bounds on how a random variable (or a sum/composition of random variables) deviate from their expectation, usually based on moments/independence of the variables.

The most important concentration inequalities (the Markov, Chebyshev, and Hoelder inequalities and the Chernoff bounds) are already part of HOL-Probability. This entry collects more advanced results, such as Bennett's/Bernstein's Inequality, Bienaymé's Identity, Cantelli's Inequality, the Efron-Stein Inequality, McDiarmid's Inequality, and the Paley-Zygmund Inequality.

Contents

1 Preliminary results 1
2 Bennett's Inequality 7
3 Bienaymé's identity 19
4 Cantelli's Inequality 23
5 Efron-Stein Inequality 26
6 McDiarmid's inequality 34
7 Paley-Zygmund Inequality 53
1 Preliminary resultstheory Concentration-Inequalities-Preliminary
imports $L p . L p$
begin
Version of Cauchy-Schwartz for the Lebesgue integral:

[^0]
lemma cauchy-schwartz:

fixes $f g::-\Rightarrow$ real
assumes $f \in$ borel-measurable $M g \in$ borel-measurable M

shows integrable $M(\lambda x . f x * g x)$ (is ? A)
$\left(\int x . f x * g x \partial M\right) \leq\left(\int x .(f x) \subset 2 \partial M\right)$ powr $(1 / 2) *\left(\int x .(g\right.$
x) へ 2 $\partial M)$ powr (1/2) (is ? $L \leq ? R$)
proof -
show 0:?A
using assms by (intro Holder-inequality (1)[where $p=2$ and $q=2]$)
auto
have $? L \leq\left(\int x .|f x * g x| \partial M\right)$
using 0 by (intro integral-mono) auto
also have $\ldots \leq\left(\int x .|f x|\right.$ powr 2 2M) powr (1/2) $*\left(\int x .|g x|\right.$ powr
2 2M) powr (1/2)
using assms by (intro Holder-inequality(2)) auto
also have $\ldots=$? R by simp
finally show ? $L \leq ? R$ by simp
qed
Generalization of prob-space.indep-vars-iff-distr-eq-PiM':
lemma (in prob-space) indep-vars-iff-distr-eq-PiM ${ }^{\prime \prime}$:
fixes $I::$ ' i set and $X:: ' i \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} b$
assumes rv: $\bigwedge i . i \in I \Longrightarrow$ random-variable $\left(M^{\prime} i\right)(X i)$
shows indep-vars $M^{\prime} X I \longleftrightarrow$
distr $M\left(\Pi_{M} i \in I . M^{\prime} i\right)(\lambda x . \lambda i \in I . X i x)=\left(\Pi_{M} i \in I\right.$. distr
$\left.M\left(M^{\prime} i\right)(X i)\right)$
proof (cases $I=\{ \}$)
case True
have 0 : indicator $A(\lambda$-. undefined $)=$ emeasure (count-space $\{\lambda$-.
undefined $\}$) A (is ? $L=? R$)
if $A \subseteq\{\lambda$-. undefined $\}$ for $A::\left({ }^{\prime} i \Rightarrow{ }^{\prime} b\right)$ set
proof -
have $1: A \neq\{ \} \Longrightarrow A=\{\lambda$-. undefined $\}$
using that by auto
have $? R=$ of-nat ($\operatorname{card} A$)
using finite-subset that by (intro emeasure-count-space-finite that)
auto
also have $\ldots=? L$
using 1 by (cases $A=\{ \}$) auto
finally show ?thesis by simp
qed
have $\operatorname{distr} M\left(\Pi_{M} i \in I . M^{\prime} i\right)(\lambda x . \lambda i \in I . X i x)=$
distr M (count-space $\{\lambda$-. undefined $\}$) (λ-. (λ-. undefined $)$)
unfolding True PiM-empty by (intro distr-cong) (auto simp:restrict-def)

```
    also have ... = return (count-space {\lambda-. undefined })( }\lambda\mathrm{ -. undefined)
        by (intro distr-const) auto
    also have ... = count-space ({\lambda-. undefined } :: ('i }\mp@subsup{|}{}{\prime}b)\mathrm{ set)
    by (intro measure-eqI) (auto simp:0)
    also have ... = ( }\mp@subsup{\Pi}{M}{}i\inI\mathrm{ . distr M (M' i) (X i))
    unfolding True PiM-empty by simp
    finally have distr M (\Pi}\mp@subsup{M}{M}{}i\inI.\mp@subsup{M}{}{\prime}i)(\lambdax.\lambdai\inI.X i x )=(\mp@subsup{\Pi}{M}{}i\inI
distr M (M' i) (X i)) \longleftrightarrow True
    by simp
    also have ... \longleftrightarrow indep-vars M' X I
    unfolding indep-vars-def by (auto simp add: space-PiM indep-sets-def)
(auto simp add:True)
    finally show ?thesis by simp
next
    case False
    thus ?thesis
        by (intro indep-vars-iff-distr-eq-PiM' assms) auto
qed
lemma proj-indep:
    assumes }\bigwedgei.i\inI\Longrightarrow prob-space (Mi
    shows prob-space.indep-vars (PiM I M) M (\lambdai\omega.\omega i)I
proof -
    interpret prob-space (PiM I M)
        by (intro prob-space-PiM assms)
```



```
        by (intro distr-PiM-reindex assms) auto
    also have ... = Pi i I (\lambdai. distr (Pi⿱M I M) (Mi) (\lambda\omega. \omega i))
        by (intro PiM-cong refl distr-PiM-component[symmetric] assms)
    finally have
        distr (Pi M I M) (Pi M I M) (\lambdax. restrict x I) = Pi (M I (\lambdai. distr
(PiM
    by simp
    thus indep-vars M (\lambdai\omega.\omegai)I
        by (intro iffD2[OF indep-vars-iff-distr-eq-PiM'|]) simp-all
qed
lemma forall-Pi-to-PiE:
    assumes }\x.Px=P(\mathrm{ restrict x I)
    shows ( }\forallx\inPi I A. P x ) = ( \forallx 隹 IE I A. P x)
    using assms by (simp add:PiE-def Pi-def set-eq-iff, force)
lemma PiE-reindex:
    assumes inj-on f I
    shows PiE I (A\circf) = (\lambdaa. restrict (a\circf)I)`PiE (f`I)A (is
?lhs=?g'?rhs)
proof -
    have ?lhs \subseteq?g'?rhs
```

```
    proof (rule subsetI)
    fix }
    assume a:x\inPi}\mp@subsup{i}{E}{}I(A\circf
    define y where y-def:y=(\lambdak. if k\inf'I then x (the-inv-into I
fk) else undefined)
    have b:y \in PiE (f`I) A
        using a assms the-inv-into-f-eq[OF assms]
        by (simp add: y-def PiE-iff extensional-def)
    have c: x = (\lambdaa. restrict ( }a\circf)I)
        using a assms the-inv-into-f-eq extensional-arb
        by (intro ext, simp add:y-def PiE-iff, fastforce)
    show }x\in\mathrm{ ?g' ?rhs using b c by blast
    qed
    moreover have ?g'?rhs \subseteq?lhs
    by (rule image-subsetI, simp add:Pi-def PiE-def)
    ultimately show ?thesis by blast
qed
context prob-space
begin
lemma indep-sets-reindex:
    assumes inj-on f I
    shows indep-sets A (f`I) = indep-sets (\lambdai.A(fi))I
proof -
    have a: \Jg.J\subseteqI\Longrightarrow(\prodj\in\mp@subsup{f}{}{\prime}J.g j)=(\prodj\inJ.g(fj))
        by (metis assms prod.reindex-cong subset-inj-on)
    have b:J\subseteqI\Longrightarrow(\Pi}\mp@subsup{\Pi}{E}{}i\inJ.A(fi))=(\lambdaa.restrict (a\circf)J)'
PiE (f'J)A for }
    using assms inj-on-subset
    by (subst PiE-reindex[symmetric]) auto
    have c:\J.J\subseteqI\Longrightarrow finite ( }f\mathrm{ 'J) = finite J
    by (meson assms finite-image-iff inj-on-subset)
    show ?thesis
    by (simp add:indep-sets-def all-subset-image a c) (simp-all add:forall-Pi-to-PiE
b)
qed
lemma indep-vars-reindex:
    assumes inj-on f I
    assumes indep-vars M' X'(f`I)
    shows indep-vars (M'\circf) ( }\lambdak\omega.\mp@subsup{X}{}{\prime}(fk)\omega)
    using assms by (simp add:indep-vars-def2 indep-sets-reindex)
lemma indep-vars-cong-AE:
    assumes AE x in M. (\foralli\inI. X' ix = Y' ix)
```

```
    assumes indep-vars M' X'I
    assumes }\bigwedgei.i\inI\Longrightarrow random-variable ( M' i)( ( '' i
    shows indep-vars M' Y'I
proof -
    have a: AE x in M. (\lambdai\inI. Y' i x) = (\lambdai\inI. X' i x)
    by (rule AE-mp[OF assms(1)], rule AE-I2, simp cong:restrict-cong)
    have b: \bigwedgei. i\inI\Longrightarrow random-variable ( }\mp@subsup{M}{}{\prime}\mathrm{ i) ( ( }\mp@subsup{}{\prime}{\prime}i
        using assms(2) by (simp add:indep-vars-def2)
    have c: \bigwedgex. x 
        by (rule AE-mp[OF assms(1)], rule AE-I2, simp)
    have distr M (Pi M I M') (\lambdax. \lambdai\inI. Y'i}ix)=\operatorname{distr}M(P\mp@subsup{i}{M}{}I\mp@subsup{M}{}{\prime}
(\lambdax. \lambdai\inI. X' i x)
    by (intro distr-cong-AE measurable-restrict a b assms(3)) auto
    also have ... = Pi iM
        using assms b by (subst indep-vars-iff-distr-eq-PiM''[symmetric])
auto
    also have ... = Pi}\mp@subsup{M}{M}{}I(\lambdai.\operatorname{distr}M(\mp@subsup{M}{}{\prime}i)(\mp@subsup{Y}{}{\prime}i)
        by (intro PiM-cong distr-cong-AE c assms(3) b) auto
    finally have distr M (PiM I M') (\lambdax. \lambdai\inI. Y'ix) = Pi
distr M ( ( ' i
        by simp
    thus ?thesis
        using assms(3)
        by (subst indep-vars-iff-distr-eq-PiM'') auto
qed
end
Integrability of bounded functions on finite measure spaces:
lemma bounded-const: bounded \(((\lambda x\). \((c::\) real \())\) ' \(T)\)
by (intro bounded \(I[\) where \(B=\) norm \(c]\) ) auto
lemma bounded-exp:
fixes \(f\) :: ' \(a \Rightarrow\) real
assumes bounded \(((\lambda x . f x)\) ' \(T)\)
shows bounded \(((\lambda x . \exp (f x))\) ' \(T)\)
proof -
obtain \(m\) where \(\operatorname{norm}(f x) \leq m\) if \(x \in T\) for \(x\) using assms unfolding bounded-iff by auto
thus ?thesis
by (intro boundedI[where \(B=\exp m]\) ) fastforce
qed
lemma bounded-mult-comp:
fixes \(f::{ }^{\prime} a \Rightarrow\) real
assumes bounded \(\left(f^{\prime} T\right)\) bounded \(\left(g{ }^{\prime} T\right)\)
```

```
    shows bounded ((\lambdax. (fx)* (g x))` T)
proof -
    obtain m1 where norm ( f x ) \leqm1 m1 \geq0 if x\inT for x
        using assms unfolding bounded-iff by fastforce
    moreover obtain m2 where norm (gx)\leqm2 m2 \geq0 if x f T
for }
    using assms unfolding bounded-iff by fastforce
    ultimately show ?thesis
    by (intro boundedI[where B=m1*m2]) (auto intro!: mult-mono
simp:abs-mult)
qed
lemma bounded-sum:
    fixes f :: ' }i=>\mp@subsup{}{}{\prime}a=>\mathrm{ real
    assumes finite I
    assumes }\bigwedgei.i\inI\Longrightarrow\mathrm{ bounded (fi`}T
    shows bounded ((\lambdax. (\sumi\inI.fix))'T)
    using assms by (induction I) (auto intro:bounded-plus-comp bounded-const)
lemma (in finite-measure) bounded-int:
    fixes f :: ' }i=>\mp@subsup{}{}{\prime}a=>\mathrm{ real
    assumes bounded ((\lambda x.f (fst x) (snd x))'(T\times space M))
    shows bounded ((\lambdax. (\int\omega. (fx\omega)\partialM))'T)
proof -
    obtain m where }\xy.x\inT\Longrightarrowy\in\operatorname{space}M\Longrightarrow\operatorname{norm}(fxy
\leqm
            using assms unfolding bounded-iff by auto
    hence m:\x y. x\inT\Longrightarrowy\in\operatorname{space}M\Longrightarrownorm (fxy)\leqmax m
0
    by fastforce
    have norm (\int\omega.(fx\omega)\partialM)\leqmax m 0 * measure M (space M)
(is ?L\leq?R) if }x\inT\mathrm{ for }
    proof -
    have ?L}\leq(\int\omega.\operatorname{norm}(fx\omega)\partialM)\mathrm{ by simp
    also have .. \leq (\int\omega. max m 0 \partialM)
                using that m by (intro integral-mono') auto
    also have ... = ?R
                by simp
    finally show ?thesis by simp
    qed
    thus ?thesis
        by (intro boundedI[where B=max m 0 * measure M (space M)])
auto
qed
lemmas bounded-intros =
    bounded-minus-comp bounded-plus-comp bounded-mult-comp bounded-sum
```

```
finite-measure.bounded-int
    bounded-const bounded-exp
lemma (in prob-space) integrable-bounded:
    fixes f::- = ('b :: {banach,second-countable-topology})
    assumes bounded (f'space M)
    assumes }f\inM\mp@subsup{->}{M}{}\mathrm{ borel
    shows integrable Mf
proof -
    obtain m}\mathrm{ where norm (fx) sm if x f space M for x
        using assms(1) unfolding bounded-iff by auto
    thus ?thesis
        by (intro integrable-const-bound[where B=m] AE-I2 assms(2))
qed
end
```


2 Bennett's Inequality

In this section we verify Bennett's inequality [1] and a (weak) version of Bernstein's inequality as a corollary. Both inequalities give concentration bounds for sums of independent random variables. The statement and proofs follow a summary paper by Boucheron et al. [2].
theory Bennett-Inequality
imports Concentration-Inequalities-Preliminary
begin
context prob-space
begin
lemma indep-vars-Chernoff-ineq-ge:
assumes I : finite I
assumes ind: indep-vars (λ-. borel) X I
assumes sge: $s \geq 0$
assumes int: $\bigwedge i . i \in I \Longrightarrow$ integrable $M(\lambda x . \exp (s * X i x))$
shows prob $\left\{x \in\right.$ space $M .\left(\sum i \in I . X i x-\operatorname{expectation}(X i)\right) \geq$
$t\} \leq$
$\exp (-s * t) *$
$\left(\prod i \in I . \operatorname{expectation}(\lambda x . \exp (s *(X i x-\operatorname{expectation}(X i))))\right)$
proof (cases $s=0$)
case [simp]: True
thus ?thesis
by (simp add: prob-space)
next
case False
then have $s: s>0$ using sge by auto

```
have [measurable]: \(\bigwedge i . i \in I \Longrightarrow\) random-variable borel \(\binom{X}{i}\)
    using ind unfolding indep-vars-def by blast
    have indep1: indep-vars ( \(\lambda\)-. borel)
    \((\lambda i \omega\). \(\exp (s *(X i \omega-\) expectation \((X i)))) I\)
    apply (intro indep-vars-compose[OF ind, unfolded o-def])
    by auto
    define \(S\) where \(S=\left(\lambda x .\left(\sum i \in I . X i x-\operatorname{expectation}(X i)\right)\right)\)
    have int1: \(\bigwedge i . i \in I \Longrightarrow\)
            integrable \(M(\lambda \omega \cdot \exp (s *(X i \omega-\operatorname{expectation}(X i))))\)
    by (auto simp add: algebra-simps exp-diff int)
    have eprod: \(\bigwedge x . \exp (s * S x)=\left(\prod i \in I . \exp (s *(X i x-\right.\) expectation
( \(X i\)
    unfolding \(S\)-def
    by (simp add: assms(1) exp-sum vector-space-over-itself.scale-sum-right)
    from indep-vars-integrable[OF I indep1 int1]
    have intS: integrable \(M(\lambda x\). exp \((s * S x))\)
    unfolding eprod by auto
    then have si: set-integrable \(M(\) space \(M)(\lambda x . \exp (s * S x))\)
    unfolding set-integrable-def
    apply (intro integrable-mult-indicator)
    by auto
    from Chernoff-ineq-ge[OF s si]
    have prob \(\{x \in\) space \(M . S x \geq t\} \leq \exp (-s * t) *\left(\int x \in\right.\) space \(M\).
\(\exp (s * S x) \partial M)\)
    by auto
    also have \(\left(\int x \in\right.\) space \(\left.M \cdot \exp (s * S x) \partial M\right)=\operatorname{expectation}(\lambda x \cdot \exp (s\)
* \(S x)\) )
        unfolding set-integral-space \([O F\) intS \(]\) by auto
    also have \(\ldots=\) expectation \(\left(\lambda x . \prod i \in I . \exp (s *(X i x-\right.\) expectation
( \(X i\)
        unfolding \(S\)-def
    by (simp add: assms(1) exp-sum vector-space-over-itself.scale-sum-right)
    also have \(\ldots=\left(\prod i \in I\right.\). expectation \((\lambda x . \exp (s *(X i x-\) expectation
(Xis))))
        apply (intro indep-vars-lebesgue-integral[OF I indep1 int1]).
    finally show ?thesis
    unfolding \(S\)-def
    by auto
qed
```

```
definition bennett-h::real \(\Rightarrow\) real
    where bennett-h \(u=(1+u) * \ln (1+u)-u\)
lemma exp-sub-two-terms-eq:
    fixes \(x\) :: real
    shows exp \(x-x-1=\left(\sum n \cdot x \uparrow(n+2) / f a c t(n+2)\right)\)
        summable \(\left(\lambda n . x^{\wedge}(n+2) /\right.\) fact \(\left.(n+2)\right)\)
proof -
    have \(\left(\sum i<2\right.\). inverse \((\) fact \(\left.i) * x へ i\right)=1+x\)
        by (simp add:numeral-eq-Suc)
    thus exp \(x-x-1=\left(\sum n \cdot x\right.\) ( \(\left.n+2\right) /\) fact \(\left.(n+2)\right)\)
        unfolding exp-def
        apply (subst suminf-split-initial-segment \([\) where \(k=2]\) )
        by (auto simp add: summable-exp divide-inverse-commute)
    have summable ( \(\lambda n . x\) n \(/\) fact \(n\) )
        by (simp add: divide-inverse-commute summable-exp)
    then have summable ( \(\lambda n . x^{\wedge}(\) Suc \((\) Suc \(\left.n)) / \operatorname{fact}(S u c(S u c ~ n))\right)\)
        apply (subst summable-Suc-iff)
        apply (subst summable-Suc-iff)
        by auto
    thus summable \((\lambda n \cdot x \uparrow(n+2) /\) fact \((n+2))\) by auto
qed
lemma psi-mono:
    defines \(f \equiv(\lambda x\). \((\exp x-x-1)-x\)-2 / 2)
    assumes \(x y: a \leq(b::\) real \()\)
    shows \(f a \leq f b\)
proof -
    have 1: ( \(f\) has-real-derivative \((\exp x-x-1))(\) at \(x)\) for \(x\)
        unfolding \(f\)-def
        by (auto intro!: derivative-eq-intros)
    have 2: \(\wedge x . x \in\{a . . b\} \Longrightarrow 0 \leq \exp x-x-1\)
        by (smt (verit) exp-ge-add-one-self)
    from deriv-nonneg-imp-mono[OF \(12 x y]\)
    show ?thesis by auto
qed
lemma psi-inequality:
    assumes le: \(x \leq(y::\) real \() y \geq 0\)
    shows \(y\) ^2 \(*(\exp x-x-1) \leq x\) ^2 \(*(\exp y-y-1)\)
proof -
    have \(x\) : exp \(x-x-1=\left(\sum n \cdot\left(x^{\wedge}(n+2) /\right.\right.\) fact \(\left.\left.(n+2)\right)\right)\)
        summable ( \(\lambda n \cdot x\) ( \(n+2\) ) / fact ( \(n+2\) ) )
        using exp-sub-two-terms-eq.
```

```
have \(y\) : \(\exp y-y-1=\left(\sum n \cdot\left(y^{\wedge}(n+2) / f a c t(n+2)\right)\right)\)
    summable \(\left(\lambda n . y^{\wedge}(n+2) /\right.\) fact \(\left.(n+2)\right)\)
    using exp-sub-two-terms-eq.
```

```
    have \(l: y^{\wedge} 2 *(\exp x-x-1)=\left(\sum n \cdot y^{\wedge} 2 *(x \wedge(n+2) /\right.\) fact
```

$(n+2))$)
using x
apply (subst suminf-mult)
by auto
have ls: summable $\left(\lambda n . y^{\wedge} 2 *\left(x^{\wedge}(n+2) / f a c t(n+2)\right)\right)$
by (intro summable-mult $[$ OF $x(2)]$)
have $r: x$ ^2 $*(\exp y-y-1)=\left(\sum n \cdot x^{\wedge 2} *(y \wedge(n+2) /\right.$ fact
($n+2$)))
using y
apply (subst suminf-mult)
by auto
have rs: summable $\left(\lambda n . x^{\wedge} 2 *\left(y^{\wedge}(n+2) / f a c t(n+2)\right)\right)$
by (intro summable-mult $[$ OF y (2)])
have $|x| \leq|y| \vee|y|<|x|$ by auto
moreover \{
assume $|x| \leq|y|$
then have $x^{\wedge} n \leq y \widehat{n}$ for n
by (smt (verit, ccfv-threshold) bot-nat-0.not-eq-extremum le power-0
real-root-less-mono real-root-power-cancel root-abs-power)

by (simp add: mult-left-mono)
then have $y^{2} *\left(x^{\wedge}(n+2)\right) \leq x^{2} *\left(y^{\wedge}(n+2)\right)$ for n
by (metis (full-types) ab-semigroup-mult-class.mult-ac (1) mult.commute
power-add)
then have $y^{2} *\left(x^{\wedge}(n+2)\right) /$ fact $(n+2) \leq x^{2} *\left(y^{\wedge}(n+2)\right)$
/ fact ($n+2$) for n
by (meson divide-right-mono fact-ge-zero)
then have $\left(\sum n . y^{\wedge} 2 *\left(x^{\wedge}(n+2) /\right.\right.$ fact $\left.\left.(n+2)\right)\right) \leq\left(\sum n . x^{\wedge} 2 *\right.$
$\left(y^{\wedge}(n+2) /\right.$ fact $\left.\left.(n+2)\right)\right)$
apply (intro suminf-le[OF - ls rs])
by auto
then have y ^2 $*(\exp x-x-1) \leq x \wedge^{\wedge} 2 *(\exp y-y-1)$
using $l r$ by presburger
\}
moreover \{
assume ineq: $|y|<|x|$
from psi-mono[OF assms(1)]
have $(\exp x-x-1)-x$ の2 $/ 2 \leq(\exp y-y-1)-y$-2/2.
then have $y \wedge 2 *((\exp x-x-1)-x \wedge 2 / 2) \leq x \wedge 2 *((\exp y-$ $\left.y-1)-y^{\wedge} 2 / 2\right)$
by (smt (verit, best) ineq diff-divide-distrib exp-lower-Taylor-quadratic le(1) le(2) mult-nonneg-nonneg one-less-exp-iff power-zero-numeral prob-space.psi-mono prob-space-completion right-diff-distrib zero-le-power2)

```
    then have \(y\) ค2 \(*(\exp x-x-1) \leq x\) ค \(2 *(\exp y-y-1)\)
```

 by (simp add: mult.commute right-diff-distrib)
 \}
ultimately show ?thesis by auto
qed
lemma bennett-inequality-1:
assumes I : finite I
assumes ind: indep-vars (λ-. borel) $X I$
assumes intsq: $\bigwedge i . i \in I \Longrightarrow$ integrable $M\left(\lambda x .(X i x)^{\wedge}\right.$ 2)
assumes bnd: $\bigwedge i . i \in I \Longrightarrow A E x$ in $M . X i x \leq 1$
assumes $t: t \geq 0$
defines $V \equiv\left(\sum i \in I\right.$. expectation($\lambda x . X i x$ 亿 2$)$)
shows prob $\left\{x \in\right.$ space $M .\left(\sum i \in I . X i x-\operatorname{expectation}(X i)\right) \geq$
$t\} \leq$
$\exp (-V *$ bennett-h $(t / V))$
proof (cases $V=0$)
case True
then show ?thesis
by auto
next
case f : False
have $V \geq 0$
unfolding V-def
apply (intro sum-nonneg integral-nonneg-AE)
by auto
then have Vpos: $V>0$ using f by auto
define $l::$ real where $l=\ln (1+t / V)$
then have $l: l \geq 0$
using t Vpos by auto
have $r v[$ measurable $]: ~ \bigwedge i . i \in I \Longrightarrow$ random-variable borel $(X i)$
using ind unfolding indep-vars-def by blast
define ψ where $\psi=(\lambda x:$:real. $\exp (x)-x-1)$
have $r w: \exp y=1+y+\psi y$ for y unfolding ψ-def by auto
have ebnd: $\bigwedge i . i \in I \Longrightarrow$ $A E x$ in M. exp $(l * X i x) \leq \exp l$ apply (drule bnd)
using l by (auto simp add: mult-left-le)
have int: $\bigwedge i . i \in I \Longrightarrow$ integrable $M(\lambda x .(X i x))$
using rv intsq square-integrable-imp-integrable by blast
have intl: $\bigwedge i . i \in I \Longrightarrow$ integrable $M(\lambda x .(l * X i x))$ using int by blast
have intexpl: $\bigwedge i . i \in I \Longrightarrow$ integrable $M(\lambda x . \exp (l * X i x))$
apply (intro integrable-const-bound $[$ where $B=\exp l]$)
using ebnd by auto
have intpsi: $\bigwedge i . i \in I \Longrightarrow$ integrable $M(\lambda x . \psi(l * X i x))$
unfolding ψ-def
using intl intexpl by auto
have $* *: \bigwedge i . i \in I \Longrightarrow$
expectation $(\lambda x . \psi(l * X i x)) \leq \psi l * \operatorname{expectation}(\lambda x .(X i x) \wedge 2)$ proof -
fix i assume $i: i \in I$
then have $A E x$ in $M . l * X i x \leq l$
using ebnd by auto
then have $A E x$ in M. l^2 $* \psi(l * X i x) \leq(l * X i x)$ へ2 $* \psi l$ using psi-inequality $[O F-l]$ unfolding ψ-def
by auto
then have $A E x$ in $M . l$ ^2 $* \psi(l * X i x) \leq l$ ^2 $*(\psi l *(X i$
x) ^2)
by (auto simp add: field-simps)
then have $A E x$ in $M . \psi(l * X i x) \leq \psi l *(X i x) \wedge_{2}$
by (smt (verit, best) AE-cong ψ-def exp-eq-one-iff mult-cancel-left
mult-eq-0-iff mult-left-mono zero-eq-power2 zero-le-power2)
then have $A E x$ in $M .0 \leq \psi l *(X i x)^{\wedge} \sim-\psi(l * X i x)$
by auto
then have expectation $(\lambda x . \psi l *(X i x) \curvearrowright 2+(-\psi(l * X i x)))$ ≥ 0
by (simp add: integral-nonneg-AE)
also have expectation $\left(\lambda x . \psi l *(X i x)^{\wedge} 2+(-\psi(l * X i x))\right)=$ $\psi l *$ expectation $\left(\lambda x .(X i x)^{\wedge} 2\right)-$ expectation $(\lambda x . \psi(l * X i$
x))
apply (subst Bochner-Integration.integral-add)
using intpsi $[O F i]$ intsq[OF $i]$ by auto
finally show expectation $(\lambda x . \psi(l * X i x)) \leq \psi l *$ expectation (λx. ($\mathrm{X} i x)^{\text {^2 } 2) ~}$
by auto
qed
then have $*: \bigwedge i . i \in I \Longrightarrow$

```
        expectation }(\lambdax.\operatorname{exp}(l*Xix))
        exp (l*expectation (X i))*\operatorname{exp}(\psil*\operatorname{expectation ( }\lambdax.Xix^2))
    proof -
    fix }
    assume iI: i\inI
    have expectation ( }\lambdax.\operatorname{exp}(l*Xix))
        1+l* expectation ( }\lambdax.Xix)
        expectation ( }\lambdax.\psi(l*Xix)
        unfolding rw
        apply (subst Bochner-Integration.integral-add)
        using iI intl intpsi apply auto[2]
        apply (subst Bochner-Integration.integral-add)
        using intl iI prob-space by auto
    also have \ldots=l* expectation (Xi)+1+ expectation ( }\lambdax.\psi(
* X i x))
        by auto
    also have \ldots\leq1+l* expectation (X i) + \psi l* expectation ( }\lambdax\mathrm{ .
X i \^2)
            using **[OF iI] by auto
    also have ... \leqexp (l* expectation (X i))*\operatorname{exp}(\psil* expectation
(\lambdax. X i x^2))
    by (simp add: is-num-normalize(1) mult-exp-exp)
    finally show expectation ( }\lambdax.\operatorname{exp}(l*Xix))
        exp}(l*\operatorname{expectation (X i))*\operatorname{exp}(\psil*\operatorname{expectation ( }\lambdax.Xix^2))
        qed
        have (\prodi\inI. expectation ( }\lambdax.\operatorname{exp}(l*(Xix))))
            (\prodi\inI. exp (l* expectation (X i))* exp (\psil * expectation ( }\lambdax\mathrm{ .
X i x 2))
    by (auto intro!: prod-mono simp add:*)
    also have ... =
    (\prodi\inI. exp (l* expectation (X i)))*(\prodi\inI. exp (\psil* expectation
(\lambdax. X i x^2)))
    by (auto simp add: prod.distrib)
    finally have **:
            (\prodi\inI. expectation (\lambdax. exp (l* (X i x)))) \leq
            (\prodi\inI. exp (l* expectation (X i)))* exp (\psil*V)
            by (simp add: V-def I exp-sum sum-distrib-left)
    from indep-vars-Chernoff-ineq-ge[OF I ind l intexpl]
    have prob {x\in space M. (\sumi\inI.X ix - expectation (X i))\geqt}
\leq
    exp}(-l*t)
    (\prodi\inI. expectation (\lambdax. exp (l*(Xix - expectation (X i)))))
    by auto
    also have (\prodi\inI. expectation ( }\lambdax.\operatorname{exp}(l*)(Xix-\operatorname{expectation (X
i))))) =
    (\prodi\inI. expectation (\lambdax. exp (l* (Xix)))*\operatorname{exp}(-l* expectation
```

```
( \(X \quad i)\) )
    by (auto intro!: prod.cong simp add: field-simps exp-diff exp-minus-inverse)
    also have ... \(=\)
        \(\left(\prod i \in I . \exp (-l * \operatorname{expectation}(X i))\right) *\left(\prod i \in I\right.\). expectation \((\lambda x\).
\(\exp (l *(X i x))))\)
    by (auto simp add: prod.distrib)
    also have ... \(\leq\)
        \(\left(\prod i \in I . \exp (-l *\right.\) expectation \(\left.(X i))\right) *\left(\left(\prod i \in I\right.\right.\). exp \((l *\) expec-
tation \((X i))) * \exp (\psi l * V))\)
    apply (intro mult-left-mono[OF **])
    by (meson exp-ge-zero prod-nonneg)
    also have \(\ldots=\exp (\psi l * V)\)
    apply (simp add: prod.distrib [symmetric])
    by (smt (verit, ccfv-threshold) exp-minus-inverse prod.not-neutral-contains-not-neutral)
    finally have
    prob \(\left\{x \in\right.\) space \(\left.M .\left(\sum i \in I . X i x-\operatorname{expectation}(X i)\right) \geq t\right\} \leq\)
    \(\exp (\psi l * V-l * t)\)
    by (simp add:mult-exp-exp)
    also have \(\psi l * V-l * t=-V *\) bennett-h \((t / V)\)
    unfolding \(\psi\)-def l-def bennett-h-def
    apply (subst exp-ln)
    subgoal by (smt (verit) Vpos divide-nonneg-nonneg \(t\) )
    by (auto simp add: algebra-simps)
    finally show ?thesis .
qed
lemma real-AE-le-sum:
    assumes \(\bigwedge i . i \in I \Longrightarrow A E x\) in \(M . f i x \leq(g i x::\) real \()\)
    shows \(A E x\) in \(M .\left(\sum i \in I . f i x\right) \leq\left(\sum i \in I . g i x\right)\)
proof (cases)
    assume finite I
    with \(A E\)-finite-allI[OF this assms] have \(0: A E x\) in \(M .(\forall i \in I . f i x\)
\(\leq g i x)\) by auto
    show ?thesis by (intro eventually-mono[OF 0] sum-mono) auto
qed \(\operatorname{simp}\)
lemma real-AE-eq-sum:
    assumes \(\bigwedge i . i \in I \Longrightarrow A E x\) in M. \(f i x=(g i x::\) real \()\)
    shows \(A E x\) in \(M .\left(\sum i \in I . f i x\right)=\left(\sum i \in I . g i x\right)\)
proof -
    have 1: \(A E x\) in \(M .\left(\sum i \in I . f i x\right) \leq\left(\sum i \in I . g i x\right)\)
    apply (intro real-AE-le-sum)
    apply (drule assms)
    by auto
    have 2: \(A E x\) in \(M .\left(\sum i \in I . g i x\right) \leq\left(\sum i \in I . f i x\right)\)
    apply (intro real-AE-le-sum)
    apply (drule assms)
    by auto
    show ?thesis
```

using 12
by auto
qed

```
theorem bennett-inequality:
    assumes \(I\) : finite \(I\)
    assumes ind: indep-vars ( \(\lambda\)-. borel) X I
    assumes intsq: \(\bigwedge i . i \in I \Longrightarrow\) integrable \(M(\lambda x .(X i x) \uparrow\) 2 \()\)
    assumes bnd: \(\bigwedge i . i \in I \Longrightarrow A E x\) in \(M . X i x \leq B\)
    assumes \(t: t \geq 0\)
    assumes \(B: B>0\)
    defines \(V \equiv\left(\sum i \in I\right.\). expectation \(\left(\lambda x . X i x^{\wedge}\right.\) 2 \()\) )
    shows prob \(\left\{x \in\right.\) space \(M .\left(\sum i \in I . X i x-\right.\) expectation \(\left.(X i)\right) \geq\)
\(t\} \leq\)
    \(\exp (-V / B \wedge 2 *\) bennett-h \((t * B / V))\)
proof -
    define \(Y\) where \(Y=(\lambda i x . X i x / B)\)
    from indep-vars-compose[OF ind, where \(Y=\lambda i x . x / B]\)
    have 1: indep-vars ( \(\lambda\)-. borel) Y I
        unfolding \(Y\)-def by (auto simp add: o-def)
    have 2: \(\bigwedge i . i \in I \Longrightarrow\) integrable \(M\left(\lambda x .(Y i x)^{2}\right)\)
        unfolding \(Y\)-def apply (drule intsq)
        by (auto simp add: field-simps)
    have 3: \(\bigwedge i . i \in I \Longrightarrow A E x\) in \(M . Y i x \leq 1\)
        unfolding \(Y\)-def apply (drule bnd)
        using \(B\) by auto
    have \(4: 0 \leq t / B\) using \(t B\) by auto
    have rwi: \(\left(\sum i \in I . Y i x-\operatorname{expectation}(Y i)\right)=\)
        ( \(\left.\sum i \in I . X i x-\operatorname{expectation}(X i)\right) / B\) for \(x\)
        unfolding \(Y\)-def
        by (auto simp: diff-divide-distrib sum-divide-distrib)
    have rw2: expectation \(\left(\lambda x .(Y i x)^{2}\right)=\)
        expectation \(\left(\lambda x\right.\). \(\left.(X i x)^{2}\right) / B \wedge 2\) for \(i\)
        unfolding \(Y\)-def
        by (simp add: power-divide)
    have rw3:- \(\left(\sum i \in I\right.\). expectation \(\left.\left(\lambda x .(X i x)^{2}\right) / B^{\wedge} 2\right)=-V /\)
B~2
    unfolding \(V\)-def
    by (auto simp add: sum-divide-distrib)
    have \(t / B /\left(\sum i \in I\right.\). expectation \(\left(\lambda x .(X i x)^{2}\right) / B^{\wedge}\) 2 \()=\)
        \(t / B /(V / B ` 2)\)
        unfolding \(V\)-def
        by (auto simp add: sum-divide-distrib)
```

```
    then have rw4: t/ B/(\sumi\inI. expectation (\lambdax. (Xix)
=
        t*B / V
        by (simp add: power2-eq-square)
    have prob {x\in space M.t\leq(\sumi\inI.X i x - expectation (Xi))}
=
    prob{x\in space M.t/B\leq(\sumi\inI.X ix - expectation (Xi))/
B}
    by (smt (verit, best) B Collect-cong divide-cancel-right divide-right-mono)
    also have ... \leq
    exp (-V/ B
            bennett-h (t*B / V))
    using bennett-inequality-1[OF}
    unfolding rw1 rw2 rw3 rw4.
    finally show ?thesis.
qed
lemma bennett-h-bernstein-bound:
    assumes }x\geq
    shows bennett-h x \geqx^2 / (2* (1+x/3))
proof -
    have eq:x^2 / (2* (1+x/3))=3/2*x-9/2* (x/(x+3))
        using assms
        by (sos (() & ()))
    define g where g=(\lambdax. bennett-h x-(3/2*x-9/2*(x/
(x+3))))
    define g}\mp@subsup{g}{}{\prime}\mathrm{ where g}\mp@subsup{g}{}{\prime}=(\lambdax::real.
        ln(1+x)+27 / (2* (x+3)^2) - 3 / 2)
    define g" where g}\mp@subsup{g}{}{\prime\prime}=(\lambdax::\mathrm{ real.
        1/(1+x)-27 / (x+3)^3)
    have 54/((2*x+6)^2)=27 / (2* (x+3)2) (is ?L = ?R)
for }x\mathrm{ :: real
    proof -
        have ? L = 54 / (2`2 * (x+3)`2)
        unfolding power-mult-distrib[symmetric] by (simp add:algebra-simps)
        also have ... = ?R by simp
        finally show ?thesis by simp
    qed
    hence 1: x \geq0\Longrightarrow(g has-real-derivative (g' ( ) ) (at x) for x
    unfolding g-def g'-def bennett-h-def by (auto intro!: derivative-eq-intros
simp:power2-eq-square)
    have 2: }x\geq0\Longrightarrow(\mp@subsup{g}{}{\prime}\mathrm{ has-real-derivative ( }\mp@subsup{g}{}{\prime\prime}x)\mathrm{ ) (at x) for x
        unfolding }\mp@subsup{g}{}{\prime}-\mathrm{ def }\mp@subsup{g}{}{\prime\prime}\mathrm{ -def
        apply (auto intro!: derivative-eq-intros)[1]
```

```
    by (sos (() & ()))
    have gz: g 0 = 0
    unfolding g-def bennett-h-def by auto
    have g1z: g}\mp@subsup{g}{}{\prime}0=
        unfolding g'-def by auto
    have p2: g'"}x\geq0\mathrm{ if }x\geq0\mathrm{ for }
    proof -
    have 27* (1+x)\leq(x+3)^3
        using that unfolding power3-eq-cube by (auto simp:algebra-simps)
        hence 27/(x+3)^ 3\leq1/(1+x)
        using that by (subst frac-le-eq) (auto intro!:divide-nonpos-pos)
        thus ?thesis unfolding g}\mp@subsup{g}{}{\prime\prime}\mathrm{ -def by simp
    qed
    from deriv-nonneg-imp-mono[OF 2 p2 -]
    have }x\geq0\Longrightarrow\mp@subsup{g}{}{\prime}x\geq0\mathrm{ for }x\mathrm{ using g1z
    by (metis atLeastAtMost-iff)
    from deriv-nonneg-imp-mono[OF 1 this -]
    have }x\geq0\Longrightarrowgx\geq0\mathrm{ for }x\mathrm{ using gz
    by (metis atLeastAtMost-iff)
    thus ?thesis
    using assms eq g-def by force
qed
lemma sum-sq-exp-eq-zero-imp-zero:
    assumes finite I i\inI
    assumes intsq: integrable M ( }\lambdax.(Xix)^2
    assumes (\sumi\inI. expectation ( }\lambdax.Xix`2))=
    shows AE x in M. X ix = (0::real)
proof -
    have (\foralli\inI. expectation ( }\lambdax.Xi\mp@code{``Z})=0
        using assms
        apply (subst sum-nonneg-eq-0-iff[symmetric])
        by auto
```



```
        using assms(2) by blast
    thus ?thesis
        using integral-nonneg-eq-0-iff-AE[OF intsq]
        by auto
qed
corollary bernstein-inequality:
    assumes I: finite I
    assumes ind: indep-vars ( }\lambda\mathrm{ -. borel) X I
    assumes intsq: \bigwedgei.i\inI\Longrightarrow integrable M (\lambdax. (X ix)^2)
```

```
assumes bnd: \(\bigwedge i . i \in I \Longrightarrow A E x\) in \(M . X i x \leq B\)
assumes \(t: t \geq 0\)
assumes \(B\) : \(B>0\)
defines \(V \equiv\left(\sum i \in I\right.\). expectation \(\left(\lambda x . X i x^{\wedge}\right.\) 2) \()\)
shows prob \(\left\{x \in\right.\) space \(M .\left(\sum i \in I . X i x-\operatorname{expectation}(X i)\right) \geq\)
\(t\} \leq\)
    \(\exp (-(t\) ~2 \(/(2 *(V+t * B / 3))))\)
proof (cases \(V=0\) )
    case True
    then have \(1: \bigwedge i . i \in I \Longrightarrow A E x\) in \(M . X i x=0\)
    unfolding \(V\)-def
    using sum-sq-exp-eq-zero-imp-zero
    by (metis I intsq)
then have 2: \(\bigwedge i . i \in I \Longrightarrow\) expectation \((X i)=0\)
    using integral-eq-zero-AE by blast
    have \(A E x\) in M. \(\left(\sum i \in I . X i x-\operatorname{expectation}(X i)\right)=\left(\sum i \in I\right.\).
0)
    apply (intro real-AE-eq-sum)
    using 12
    by auto
then have \(*: A E x\) in \(M .\left(\sum i \in I . X i x-\operatorname{expectation}(X i)\right)=0\)
    by force
```

```
moreover \{
```

moreover \{
assume $t>0$
assume $t>0$
then have prob $\left\{x \in\right.$ space $M .\left(\sum i \in I . X i x-\right.$ expectation $(X$
then have prob $\left\{x \in\right.$ space $M .\left(\sum i \in I . X i x-\right.$ expectation $(X$
i) $) \geq t\}=0$
i) $) \geq t\}=0$
apply (intro prob-eq-0-AE)
apply (intro prob-eq-0-AE)
using $*$ by auto
using $*$ by auto
then have ?thesis by auto
then have ?thesis by auto
\}
\}
ultimately show ?thesis
ultimately show ?thesis
apply (cases $t=0$) using t by auto
apply (cases $t=0$) using t by auto
next
next
case f : False
case f : False
have $V \geq 0$
have $V \geq 0$
unfolding V-def
unfolding V-def
apply (intro sum-nonneg integral-nonneg-AE)
apply (intro sum-nonneg integral-nonneg-AE)
by auto
by auto
then have $V: V>0$ using f by auto
then have $V: V>0$ using f by auto
have $t * B / V \geq 0$ using $t B V$ by auto
have $t * B / V \geq 0$ using $t B V$ by auto
from bennett-h-bernstein-bound[OF this]
from bennett-h-bernstein-bound[OF this]
have $(t * B / V)^{2} /(2 *(1+t * B / V / 3))$
have $(t * B / V)^{2} /(2 *(1+t * B / V / 3))$
\leq bennett-h $(t * B / V)$.
\leq bennett-h $(t * B / V)$.
then have $(-V / B$ ^2) $*$ bennett-h $(t * B / V) \leq$
then have $(-V / B$ ^2) $*$ bennett-h $(t * B / V) \leq$
$(-V / B \wedge 2) *\left((t * B / V)^{2} /(2 *(1+t * B / V / 3))\right)$

```
    \((-V / B \wedge 2) *\left((t * B / V)^{2} /(2 *(1+t * B / V / 3))\right)\)
```

```
    apply (subst mult-left-mono-neg)
    using B V by auto
    also have ...=
        ((-V / B`2) * (t*B / V)}\mp@subsup{)}{}{2})/(2*(1+t*B/V / 3)
        by auto
    also have ((-V/B`2)*(t*B/V)2})=-(t^2)/
    using VB by (auto simp add: field-simps power\-eq-square)
    finally have *: (-V/B`2) * bennett-h (t*B/V)\leq
        -(t`2) / (2*(V+t*B / 3))
        using V by (auto simp add: field-simps)
    from bennett-inequality[OF assms(1-6)]
    have prob {x\in space M. (\sumi\inI.Xix- expectation (Xi))\geqt}
\leq
    exp (-V / B`2 * bennett-h (t*B / V))
    using V-def by auto
    also have ... \leqexp(- (t^2/ (2* (V +t*B / 3))))
        using *
        by auto
    finally show?thesis.
qed
end
end
```


3 Bienaymé's identity

Bienaymé's identity [$5, \S 17$] can be used to deduce the variance of a sum of random variables, if their co-variance is known. A common use-case of the identity is the computation of the variance of the mean of pair-wise independent variables.

```
theory Bienaymes-Identity
    imports Concentration-Inequalities-Preliminary
begin
context prob-space
begin
lemma variance-divide:
    fixes f :: ' }a=>\mathrm{ real
    assumes integrable Mf
    shows variance ( }\lambda\omega.f\omega/r)=\mathrm{ variance f / r^2
    using assms
    by (subst Bochner-Integration.integral-divide[OF assms(1)])
    (simp add:diff-divide-distrib[symmetric] power\-eq-square algebra-simps)
```

definition covariance where

```
    covariance \(f g=\) expectation \((\lambda \omega .(f \omega-\) expectation \(f) *(g \omega-\)
expectation \(g\) )
lemma covariance-eq:
    fixes \(f::{ }^{\prime} a \Rightarrow\) real
    assumes \(f \in\) borel-measurable \(M g \in\) borel-measurable \(M\)
    assumes integrable \(M\left(\lambda \omega . f \omega^{\wedge} 2\right)\) integrable \(M\left(\lambda \omega . g \omega^{\wedge} 2\right)\)
    shows covariance \(f g=\) expectation \((\lambda \omega . f \omega * g \omega)-\) expectation \(f\)
* expectation \(g\)
proof -
    have integrable Mf using square-integrable-imp-integrable assms by
auto
    moreover have integrable \(M g\) using square-integrable-imp-integrable
assms by auto
    ultimately show ?thesis
            using assms cauchy-schwartz(1)[where \(M=M]\)
            by (simp add:covariance-def algebra-simps prob-space)
qed
lemma covar-integrable:
    fixes \(f g::\) ' \(a \Rightarrow\) real
    assumes \(f \in\) borel-measurable \(M g \in\) borel-measurable \(M\)
    assumes integrable \(M\left(\lambda \omega . f \omega^{\wedge} 2\right)\) integrable \(M\left(\lambda \omega . g \omega^{\wedge} 2\right)\)
    shows integrable \(M(\lambda \omega .(f \omega-\) expectation \(f) *(g \omega-\) expectation
g))
proof -
    have integrable \(M f\) using square-integrable-imp-integrable assms by
auto
    moreover have integrable \(M g\) using square-integrable-imp-integrable
assms by auto
    ultimately show ?thesis using assms cauchy-schwartz(1)[where
\(M=M]\) by (simp add: algebra-simps)
qed
lemma sum-square-int:
    fixes \(f::^{\prime} b \Rightarrow{ }^{\prime} a \Rightarrow\) real
    assumes finite \(I\)
    assumes \(\bigwedge i . i \in I \Longrightarrow f i \in\) borel-measurable \(M\)
    assumes \(\bigwedge i . i \in I \Longrightarrow\) integrable \(M\) ( \(\lambda \omega . f i \omega{ }^{\wedge}\) 2)
    shows integrable \(M\left(\lambda \omega .\left(\sum i \in I . f i \omega\right)^{2}\right)\)
proof -
    have integrable \(M\left(\lambda \omega . \sum i \in I . \sum j \in I . f j \omega * f i \omega\right)\)
        using assms
        by (intro Bochner-Integration.integrable-sum cauchy-schwartz(1)[where
\(M=M]\), auto)
    thus ?thesis
        by (simp add:power2-eq-square sum-distrib-left sum-distrib-right)
qed
```

```
theorem bienaymes-identity:
    fixes \(f::{ }^{\prime} b{ }^{\prime} a \Rightarrow\) real
    assumes finite \(I\)
    assumes \(\bigwedge i . i \in I \Longrightarrow f i \in\) borel-measurable \(M\)
    assumes \(\bigwedge i . i \in I \Longrightarrow\) integrable \(M\left(\lambda \omega . f i \omega^{\text {^2 }}\right.\) )
    shows
        variance \(\left(\lambda \omega .\left(\sum i \in I . f i \omega\right)\right)=\left(\sum i \in I .\left(\sum j \in I\right.\right.\). covariance
\((f i)(f j)))\)
proof -
    have \(a: \bigwedge i j . i \in I \Longrightarrow j \in I \Longrightarrow\)
        integrable \(M(\lambda \omega .(f i \omega-\operatorname{expectation}(f i)) *(f j \omega-\) expectation
(f j)))
    using assms covar-integrable by simp
    have variance \(\left(\lambda \omega .\left(\sum i \in I . f i \omega\right)\right)=\) expectation \(\left(\lambda \omega .\left(\sum i \in I . f\right.\right.\)
\(\left.i \omega-\operatorname{expectation}(f i))^{2}\right)\)
    using square-integrable-imp-integrable[OF assms(2,3)]
    by (simp add: Bochner-Integration.integral-sum sum-subtractf)
    also have \(\ldots=\) expectation \(\left(\lambda \omega .\left(\sum i \in I .\left(\sum j \in I\right.\right.\right.\).
        \((f i \omega-\operatorname{expectation}(f i)) *(f j \omega-\) expectation \((f j)))))\)
        by (simp add: power2-eq-square sum-distrib-right sum-distrib-left
    mult.commute)
    also have \(\ldots=\left(\sum i \in I .\left(\sum j \in I\right.\right.\). covariance \(\left.\left.(f i)(f j)\right)\right)\)
        using a by (simp add: Bochner-Integration.integral-sum covari-
ance-def)
    finally show? ?thesis by simp
qed
lemma covar-self-eq:
    fixes \(f::{ }^{\prime} a \Rightarrow\) real
    shows covariance \(f f=\) variance \(f\)
    by (simp add:covariance-def power2-eq-square)
lemma covar-indep-eq-zero:
    fixes \(f g::\) ' \(a \Rightarrow\) real
    assumes integrable \(M f\)
    assumes integrable \(M g\)
    assumes indep-var borel \(f\) borel \(g\)
    shows covariance \(f g=0\)
proof -
    have a:indep-var borel \(((\lambda t . t-\) expectation \(f) \circ f)\) borel \(((\lambda t . t-\)
expectation \(g) \circ g\) )
    by (rule indep-var-compose[OF assms(3)], auto)
    have b:expectation \((\lambda \omega .(f \omega-\) expectation \(f) *(g \omega-\) expectation
\(g))=0\)
    using a assms by (subst indep-var-lebesgue-integral, auto simp
add:comp-def prob-space)
```

thus ?thesis by (simp add:covariance-def)
lemma bienaymes-identity-2:
fixes $f::{ }^{\prime} b{ }^{\prime} a \Rightarrow$ real
assumes finite I
assumes $\bigwedge i . i \in I \Longrightarrow f i \in$ borel-measurable M
assumes $\bigwedge i . i \in I \Longrightarrow$ integrable $M\left(\lambda \omega . f i \omega^{\wedge}\right.$ 2)
shows variance $\left(\lambda \omega .\left(\sum i \in I . f i \omega\right)\right)=$
$\left(\sum i \in I\right.$. variance $\left.(f i)\right)+\left(\sum i \in I . \sum j \in I-\{i\}\right.$. covariance ($f i$) $(f j)$)
proof -
have variance $\left(\lambda \omega .\left(\sum i \in I . f i \omega\right)\right)=\left(\sum i \in I . \sum j \in I\right.$. covariance ($f i$) $(f j)$)
by (simp add: bienaymes-identity[OF $\operatorname{assms}(1,2,3)])$
also have $\ldots=\left(\sum i \in I\right.$. covariance $(f i)(f i)+\left(\sum j \in I-\{i\}\right.$. covariance $(f i)(f j))$)
using assms by (subst sum.insert[symmetric], auto simp add:insert-absorb)
also have $\ldots=\left(\sum i \in I\right.$. variance $\left.(f i)\right)+\left(\sum i \in I .\left(\sum j \in I-\{i\}\right.\right.$.
covariance $(f i)(f j))$)
by (simp add: covar-self-eq[symmetric] sum.distrib)
finally show ?thesis by simp
qed
theorem bienaymes-identity-pairwise-indep:
fixes $f::{ }^{\prime} b{ }^{\prime} a \Rightarrow$ real
assumes finite I
assumes $\bigwedge i . i \in I \Longrightarrow f i \in$ borel-measurable M
assumes $\bigwedge i . i \in I \Longrightarrow$ integrable $M\left(\lambda \omega . f i \omega{ }^{\wedge}\right.$ 2)
assumes $\bigwedge i j . i \in I \Longrightarrow j \in I \Longrightarrow i \neq j \Longrightarrow$ indep-var borel ($f i$)
borel ($f j$)
shows variance $\left(\lambda \omega .\left(\sum i \in I . f i \omega\right)\right)=\left(\sum i \in I . \operatorname{variance}(f i)\right)$
proof -
have $\bigwedge i j . i \in I \Longrightarrow j \in I-\{i\} \Longrightarrow$ covariance $(f i)(f j)=0$
using covar-indep-eq-zero assms(4) square-integrable-imp-integrable[OF
$\operatorname{assms}(2,3)]$ by auto
hence $a:\left(\sum i \in I . \sum j \in I-\{i\}\right.$. covariance $\left.(f i)(f j)\right)=0$
by simp
thus ?thesis by (simp add: bienaymes-identity-2[OF $\operatorname{assms}(1,2,3)])$
qed
lemma indep-var-from-indep-vars:
assumes $i \neq j$
assumes indep-vars $\left(\lambda-. M^{\prime}\right) f\{i, j\}$
shows indep-var $M^{\prime}(f i) M^{\prime}(f j)$
proof -
have a:inj (case-bool $i j$) using assms(1)
by (simp add: bool.case-eq-if inj-def)
have b:range (case-bool $i j)=\{i, j\}$
by (simp add: UNIV-bool insert-commute)

```
have c:indep-vars (\lambda-. M')f(range (case-bool i j)) using assms(2)
b by simp
    have True = indep-vars ( }\lambdax.\mp@subsup{M}{}{\prime})(\lambdax.f(case-bool i j x)) UNIV
    using indep-vars-reindex[OF a c]
    by (simp add:comp-def)
    also have ... = indep-vars ( }\lambdax\mathrm{ . case-bool M' M' x) ( }\lambdax\mathrm{ . case-bool (f
i) (fj) x) UNIV
    by (rule indep-vars-cong, auto simp:bool.case-distrib bool.case-eq-if)
    also have ... = ?thesis
    by (simp add: indep-var-def)
    finally show ?thesis by simp
qed
lemma bienaymes-identity-pairwise-indep-2:
    fixes f :: 'b }\mp@subsup{|}{}{\prime
    assumes finite I
    assumes \bigwedgei.i\inI\Longrightarrowfi\in borel-measurable M
    assumes }\bigwedgei.i\inI\Longrightarrow integrable M (\lambda\omega.fi |^2)
    assumes }\J.J\subseteqI\Longrightarrow\mathrm{ card J=2 # indep-vars ( }\lambda\mathrm{ -. borel) fJ
    shows variance (\lambda\omega. (\sumi\inI.fi\omega))}=(\sumi\inI.variance (fi)
    using assms(4)
    by (intro bienaymes-identity-pairwise-indep[OF assms(1,2,3)] in-
dep-var-from-indep-vars, auto)
lemma bienaymes-identity-full-indep:
    fixes f :: 'b > 'a m real
    assumes finite I
    assumes \i. i\inI\Longrightarrowfi\in borel-measurable M
    assumes }\bigwedgei.i\inI\Longrightarrow integrable M (\lambda\omega.fi\omega^2
    assumes indep-vars ( }\lambda\mathrm{ -. borel) fI
    shows variance ( }\lambda\omega.(\sumi\inI.fi\omega))=(\sumi\inI.variance (fi)
    by (intro bienaymes-identity-pairwise-indep-2[OF assms(1,2,3)] in-
dep-vars-subset[OF assms(4)])
    auto
end
end
```


4 Cantelli's Inequality

Cantelli's inequality [3] is an improvement of Chebyshev's inequality for one-sided tail bounds.

theory Cantelli-Inequality imports $H O L-$ Probability.Probability
begin

```
context prob-space
begin
lemma cantelli-arith:
    assumes a> (0::real)
    shows (V+(V/a)^2)/(a+(V/a) ^^2 = V/(a^2 + V) (is
?L=?R)
proof -
    have ?L = ((V*a^2 + V`2) / a^2) / ((a^2 + V)^2/a^2)
    using assms by (intro arg-cong2[where f=(/)]) (simp-all add:field-simps
power2-eq-square)
    also have \ldots=(V*a'a}+\mp@subsup{V}{}{2})/(\mp@subsup{a}{}{2}+V\mp@subsup{)}{}{2
        using assms unfolding divide-divide-times-eq by simp
    also have ... = V* (a^2 + V )/ (a^2 + V)^2
            by (intro arg-cong2[where f=(/)]) (simp-all add: algebra-simps
power2-eq-square)
    also have ... = ?R by (simp add:power2-eq-square)
    finally show ?thesis by simp
qed
theorem cantelli-inequality:
    assumes [measurable]: random-variable borel Z
    assumes intZsq: integrable M (\lambdaz. Z z`2)
    assumes a: a>0
    shows prob {z\in space M. Zz- expectation Z\geqa}\leq
        variance Z / (a^2 + variance Z)
proof -
    define }u\mathrm{ where }u=\mathrm{ variance Z / a
    have u:u\geq0
        unfolding u-def
        by (simp add: a divide-nonneg-pos)
    define }Y\mathrm{ where }Y=(\lambdaz.Zz+(-expectation Z)
    have random-variable borel ( }\lambdaz.|Yz+u|
        unfolding Y-def
    by auto
    then have ev: {z\in space M.a+u\leq|Yz+u|}\in events
    by auto
    have intZ:integrable M Z
    apply (subst square-integrable-imp-integrable[OF - intZsq])
    by auto
    then have i1: integrable M ( \lambdaz.( Zz- expectation Z +u) }\mp@subsup{)}{}{2
    unfolding power2-sum power2-diff using intZsq
    by auto
    have intY:integrable M Y
    unfolding Y-def using intZ by auto
    have intYsq:integrable M (\lambdaz.Y z`2)
    unfolding Y-def power2-sum using intZsq intZ by auto
```

```
have expectation \(Y=0\)
    unfolding \(Y\)-def
    apply (subst Bochner-Integration.integral-add[OF intZ])
    using prob-space by auto
    then have expectation \(\left(\lambda z .(Y z+u)^{\wedge} 2\right)=\)
    expectation \((\lambda z .(Y z) \wedge 2)+u^{\wedge} 2\)
    unfolding power2-sum
    apply (subst Bochner-Integration.integral-add[OF - -])
    using int \(Y\) int Ysq apply auto[2]
    apply (subst Bochner-Integration.integral-add[OF - -])
    using int \(Y\) int \(Y s q\) apply auto[2]
    using prob-space by auto
then have \(*\) : expectation \(\left(\lambda z .(Y z+u)^{\wedge} 2\right)=\) variance \(Z+u \wedge^{\wedge} 2\)
    unfolding \(Y\)-def by auto
    have
    prob \(\{z \in\) space \(M . Z z-\) expectation \(Z \geq a\}=\)
    \(\operatorname{prob}\{z \in\) space \(M . Y z+u \geq a+u\}\)
    apply (intro arg-cong[where \(f=\) prob])
    using \(Y\)-def by auto
also have \(\ldots \leq \operatorname{prob}\{z \in \operatorname{space} M . a+u \leq|Y z+u|\}\)
    apply (intro finite-measure-mono \([O F-e v]\) )
    by auto
    also have \(\ldots \leq\) expectation \(\left(\lambda z .(Y z+u)^{\wedge} 2\right) /(a+u)^{\wedge} 2\)
    apply (intro second-moment-method)
    unfolding \(Y\)-def using a u i1 by auto
    also have \(\ldots=\left((\right.\) variance \(Z)+u^{\wedge}\) 2 \() /(a+u)^{\text {^2 }}\)
        using * by auto
    also have \(\ldots=\) variance \(Z /(a\) ^2 + variance \(Z)\)
        unfolding \(u\)-def using \(a\) by (auto intro!: cantelli-arith)
    finally show ?thesis .
qed
corollary cantelli-inequality-neg:
    assumes [measurable]: random-variable borel \(Z\)
    assumes intZsq: integrable \(M(\lambda z . Z z \wedge 2)\)
    assumes \(a\) : \(a>0\)
    shows prob \(\{z \in\) space \(M . Z z-\) expectation \(Z \leq-a\} \leq\)
        variance \(Z /\left(a^{\wedge} 2+\right.\) variance \(\left.Z\right)\)
proof -
    define \(n Z\) where \([\) simp \(]: n Z=(\lambda z .-Z z)\)
    have \(v n Z\) : variance \(n Z=\) variance \(Z\)
        unfolding \(n Z\)-def
        by (auto simp add: power2-commute)
```

```
    have 1: random-variable borel nZ by auto
    have 2: integrable M (\lambdaz.(nZz)}\mp@subsup{)}{}{2
        using intZsq by auto
    from cantelli-inequality[OF 1 2 a]
    have prob {z\in space M.a\leqnZz- expectation nZ}\leq
        variance nZ / (a^2 + variance nZ)
        by auto
    thus ?thesis unfolding vnZ apply auto[1]
    by (smt (verit, del-insts) Collect-cong)
qed
end
end
```


5 Efron-Stein Inequality

In this section we verify the Efron-Stein inequality. The verified theorem is stated as Efron-Stein inequality for non-symmetric functions by Steele [8]. However most textbook refer to this version as "the Efron-Stein inequality". The original result that was shown by Efron and Stein is a tail bound for the variance of a symmetric functions of i.i.d. random variables [4].
theory Efron-Stein-Inequality
imports Concentration-Inequalities-Preliminary
begin

```
theorem efron-stein-inequality-distr:
    fixes \(f::-\Rightarrow\) real
    assumes finite \(I\)
    assumes \(\bigwedge i . i \in I \Longrightarrow\) prob-space ( \(M i\) )
    assumes integrable (PiM I M) \((\lambda x . f x\) 乞2) and \(f\)-meas: \(f \in\) borel-measurable
(PiM I M)
    shows prob-space.variance (PiM I M) \(f \leq\)
        \(\left(\sum i \in I .\left(\int x .(f(\lambda j . x(j\right.\right.\), False \())-f(\lambda j . x(j, j=i))) \wedge_{2}^{2}\) дPiM
\((I \times U N I V)(M \circ f s t))) / 2\)
    (is ? \(L \leq ? R\) )
proof -
    let \(? M=P i M(I \times(U N I V:: b o o l\) set \())(M \circ f s t)\)
    have prob: prob-space (PiM I M)
        using assms(2) by (intro prob-space-PiM) auto
    interpret prob-space? \(M\)
        using assms(2) by (intro prob-space-PiM) auto
    define \(n\) where \(n=\operatorname{card} I\)
```

obtain $q::-\Rightarrow$ nat where $q: b i j-b e t w ~ q I\{. .<n\}$
unfolding n-def using ex-bij-betw-finite-nat[OF assms(1)] atLeast0LessThan by auto

```
let ?. }=(\lambdanx.f(\lambdaj.x (j,qj<n))
let ?\tau = (\lambdan x.f (\lambdaj. x (j,qj=n)))
let ? }\sigma=(\lambdax.f(\lambdaj.x(j,\mathrm{ False ))}
let ? }\chi=(\lambdax.f(\lambdaj.x(j,True))
```

have meas-1: $(\lambda \omega . f(g \omega)) \in$ borel-measurable ?M
if $g \in P i_{M}(I \times U N I V)(M \circ f s t) \rightarrow_{M} P i_{M} I M$ for g
using that by (intro measurable-compose[OF - f-meas $]$)
have meas-2: $(\lambda x j . x(j, h j)) \in ? M \rightarrow_{M} P i_{M} I M$ for h
proof -
have ?thesis $\longleftrightarrow(\lambda x .(\lambda j \in I . x(j, h j))) \in ? M \rightarrow_{M} P i_{M} I M$
by (intro measurable-cong) (auto simp:space-PiM PiE-def exten-
sional-def)
also have $\ldots \longleftrightarrow$ True
unfolding eq-True
by (intro measurable-restrict measurable-PiM-component-rev) auto
finally show ?thesis by simp
qed
have int-1: integrable ? $M\left(\lambda x .(g x-h x)^{\text {^2 }}\right.$) $)$
if integrable ? $M\left(\lambda x .(g x)^{\wedge}\right.$ 2) integrable ? $M\left(\lambda x .(h x)^{\wedge}\right.$ 2)
and $g \in$ borel-measurable ?M $h \in$ borel-measurable ?M
for $g h::-\Rightarrow$ real
proof -
have integrable ? $M\left(\lambda x .(g x)^{\wedge} 2+(h x)^{\wedge 2}-2 *(g x * h x)\right)$
using that by (intro Bochner-Integration.integrable-add Bochner-Integration.integrable-diff
integrable-mult-right cauchy-schwartz(1))
thus ?thesis by (simp add:algebra-simps power2-eq-square)
qed
note meas-rules $=$ borel-measurable-add borel-measurable-times borel-measurable-diff
borel-measurable-power meas-1 meas-2
have f-int: integrable $\left(P i_{M} I M\right) f$
by (intro finite-measure.square-integrable-imp-integrable[OF - f-meas
$\operatorname{assms}(3)]$
prob-space.finite-measure prob)
moreover have integrable $\left(P i_{M} I M\right)(\lambda x . f($ restrict $x I))=$ inte-
grable $\left(P i_{M} I M\right) f$
by (intro Bochner-Integration.integrable-cong) (auto simp:space-PiM)
ultimately have f-int-2: integrable $\left(P i_{M} I M\right)(\lambda x . f($ restrict $x I))$
by simp

```
have cong: \(\left(\int x . g(\lambda j \in I . x(j, h j)) \partial ? M\right)=\left(\int x . g(\lambda j \cdot x(j, h j))\right.\)
\(\partial ? M)(\) is \(? L 1=? R 1)\)
    for \(g::-\Rightarrow\) real and \(h\)
    by (intro Bochner-Integration.integral-cong arg-cong[where \(f=g\) ]
refl)
(auto simp add:space-PiM PiE-def extensional-def restrict-def)
    have lift: \(\left(\int x . g x \partial P i M I M\right)=\left(\int x . g(\lambda j . x(j, h j)) \partial ? M\right)(\) is
? L1 = ?R1)
    if \(g \in\) borel-measurable \(\left(P i_{M} I M\right)\)
    for \(g::-\Rightarrow\) real and \(h\)
    proof -
    let ? \(J=(\lambda i .(i, h i))\) ' \(I\)
    have ?R1 \(=\left(\int x . g(\lambda j \in I . x(j, h j)) \partial ? M\right)\)
        by (intro cong[symmetric])
    also have \(\ldots=\left(\int x . g x\right.\) distr ? \(M(\) PiM I \((\lambda i .(M \circ f s t)(i, h i)))\)
\((\lambda x .(\lambda j \in I . x(j, h j))))\)
        using that
        by (intro integral-distr[symmetric] measurable-restrict measur-
able-component-singleton) auto
    also have \(\ldots=\left(\int x . g x \partial \operatorname{PiM} I(\lambda i .(M \circ f s t)(i, h i))\right)\)
        using assms(2)
            by (intro arg-cong2[where \(f=\) integral \(\left.^{L}\right]\) refl distr-PiM-reindex
inj-onI) auto
    also have \(\ldots=\) ? \(L 1\)
        by auto
    finally show ?thesis
        by \(\operatorname{simp}\)
    qed
    have lift-int: integrable ?M \((\lambda x . g(\lambda j . x(j, h j)))\) if integrable \(\left(P i_{M}\right.\)
\(I M) g\)
    for \(g::-\Rightarrow\) real and \(h\)
    proof -
    have 0:integrable (distr ?M (PiM I ( \(\lambda i\). \((M \circ f s t)(i, h i)))(\lambda x\). \((\lambda j\)
\(\in I . x(j, h j)))) g\)
            using that assms(2) by (subst distr-PiM-reindex) (auto in-
tro:inj-onI)
    have integrable ? \(M(\lambda x . g(\lambda j \in I . x(j, h j)))\)
            by (intro integrable-distr \([O F-0]\) measurable-restrict measur-
able-component-singleton) auto
    moreover have integrable ? \(M(\lambda x . g(\lambda j \in I . x(j, h j))) \longleftrightarrow\) ?thesis
            by (intro Bochner-Integration.integrable-cong refl arg-cong[where
\(f=g\) ] ext)
        (auto simp:PiE-def space-PiM extensional-def)
    ultimately show?thesis
        by \(\operatorname{simp}\)
    qed
```

note int-rules $=$ cauchy-schwartz(1) int-1 lift-int assms(3) f-int f-int-2
have $\left(\int x . g x \partial ? M\right)=\left(\int x . g(\lambda(j, v) . x(j, v \neq h j)) \partial ? M\right)($ is ?L1 $=$? R1)
if $g \in$ borel-measurable ? M for $g::-\Rightarrow$ real and h
proof -
have ?L1 $=\left(\int x . g x\right.$ distr ? $M(P i M(I \times U N I V)(\lambda i .(M \circ f s t)$ $(f s t i$, snd $i \neq h(f s t i))))$
$(\lambda x .(\lambda i \in I \times U N I V . x($ fst i, snd $i \neq h(f s t i)))))$
by (subst distr-PiM-reindex) (auto intro:inj-onI assms(2) simp:comp-def)
also have $\ldots=\left(\int x . g(\lambda i \in I \times U N I V . x(f s t i\right.$, snd $i \neq h(f s t i)))$ $\partial ? M)$
using that by (intro integral-distr measurable-restrict measur-able-component-singleton)
(auto simp:comp-def)
also have $\ldots=$? $R 1$
by (intro Bochner-Integration.integral-cong refl arg-cong[where $f=g$] ext)
(auto simp add:space-PiM PiE-def extensional-def restrict-def)
finally show ?thesis
by simp
qed
hence switch: $\left(\int x . g x \partial ? M\right)=\left(\int x . h x \partial ? M\right)$
if $\bigwedge x . h x=g(\lambda(j, v) . x(j, v \neq u j)) g \in$ borel-measurable ? M
for $g h::-\Rightarrow$ real and u
using that by simp
have 1: $\left(\int x .(? \sigma x) *(? \varphi i x-? \varphi(i+1) x) \partial ? M\right) \leq\left(\int x .(? \sigma x\right.$ - ? $\left.\tau i x)^{〔} 2 \partial ? M\right) / 2$
(is ? $L 1 \leq ? R 1$)
if $i<n$ for i
proof -
have ? L1 $=\left(\int x .(? \tau i x) *(? \varphi(i+1) x-? \varphi i x) \partial ? M\right)$
by (intro switch[of - $(\lambda j . q j=i)]$ arg-cong2[where $f=(*)]$
arg-cong2[where $f=(-)]$ arg-cong $[$ where $f=f]$ ext meas-rules) (auto intro:arg-cong)
hence ? $L 1=\left(? L 1+\left(\int x .(? \tau i x) *(? \varphi(i+1) x-? \varphi i x)\right.\right.$
$\partial ? M)$) / 2
by simp
also have $\ldots=\left(\int x .(? \sigma x) *(? \varphi i x-? \varphi(i+1) x)+(? \tau i x) *\right.$ $(? \varphi(i+1) x-? \varphi i x) \partial ? M) / 2$
by (intro Bochner-Integration.integral-add[symmetric] arg-cong2[where $f=(/)$] refl
int-rules meas-rules)
also have $\ldots=\left(\int x .(? \sigma x-? \tau i x) *(? \varphi i x-? \varphi(i+1) x)\right.$ ∂ ? $M) / 2$
by (intro arg-cong2[where $f=(/)$] Bochner-Integration.integral-cong)
(auto simp:algebra-simps)
 $x-$? $\varphi(i+1) x)^{\wedge} 2 \quad \partial$? $\left.M\right)$ powr $\left.(1 / 2)\right) / 2$
by (intro divide-right-mono cauchy-schwartz meas-rules int-rules) auto
also have $\ldots=\left(\left(\int x .(? \sigma x-? \tau i x)^{\wedge} 2 \quad \partial ? M\right) \operatorname{powr}(1 / 2) *\left(\int x .(? \sigma\right.\right.$ $x-? \tau$ i x) ^2 ∂ ? M) powr (1/2))/2
by (intro arg-cong2 $[$ where $f=(/)]$ arg-cong2 $[$ where $f=(*)]$ arg-cong2 $[$ where $f=($ powr $)]$ refl
switch $[$ of - $-(\lambda j . q j<i)]$ arg-cong2[where $f=$ power $]$ arg-cong2[where $f=(-)]$
arg-cong[where $f=f]$ ext meas-rules) (auto intro:arg-cong)
also have $\ldots=\left(\int x .(? \sigma x-? \tau i x)^{\wedge} 2 \partial ? M\right) / 2$
by (simp add:powr-add[symmetric])
finally show? ?thesis by simp
qed
have indep-vars $\left(M \circ f_{s t}\right)(\lambda i \omega \cdot \omega i)(I \times U N I V)$
using $\operatorname{assms}(2)$ by (intro proj-indep) auto
hence 2:indep-var $\left(P i_{M}(I \times\{\right.$ False $\left.\})(M \circ f s t)\right)(\lambda x . \lambda j \in I \times\{$ False $\}$. x j)
$\left(P i_{M}(I \times\{\right.$ True $\left.\})(M \circ f s t)\right)(\lambda x . \lambda j \in I \times\{$ True $\} . x j)$
by (intro indep-var-restrict $[$ where $I=I \times U N I V])$ auto
have indep-var
$\left(P i_{M} I M\right)((\lambda x .(\lambda i \in I . x(i$, False $))) \circ(\lambda x .(\lambda j \in I \times\{$ False $\} . x$ j)))
$\left(P i_{M} I M\right)((\lambda x .(\lambda i \in I . x(i, \operatorname{Tr} u e))) \circ(\lambda x .(\lambda j \in I \times\{\operatorname{Tr} u e\} . x$ j)))
by (intro indep-var-compose[OF 2] measurable-restrict measur-able-PiM-component-rev) auto
hence indep-var $\left(P i_{M} I M\right)(\lambda x .(\lambda j \in I . x(j$, False $)))\left(P i_{M} I M\right)$ ($\lambda x .(\lambda j \in I . x(j$, True $)))$
unfolding comp-def by (simp add:restrict-def cong:if-cong)
hence indep-var borel $(f \circ(\lambda x .(\lambda j \in I . x(j$, False $))))$ borel $(f \circ(\lambda x$. $(\lambda j \in I . x(j$, True $))))$
by (intro indep-var-compose $[$ OF $-\operatorname{assms}(4,4)]$) auto
hence indep:indep-var borel $(\lambda x . f(\lambda j \in I . x(j$, False $))$) borel $(\lambda x . f$
($\lambda j \in I . x(j$, True $)))$
by (simp add:comp-def)
have 3: $\omega(j, q j=q i)=\omega(j, j=i)$ if
$\omega \in \operatorname{PiE}(I \times U N I V)(\lambda i$. space $(M(f s t i))) i \in I$ for $i j \omega$
proof (cases $j \in I$)
case True
hence $(q j=q i)=(j=i)$
using that inj-onD[OF bij-betw-imp-inj-on[OF q]] by blast
thus ?thesis by simp
next

```
        case False
        hence }\omega(j,a)=\mathrm{ undefined for a
            using that unfolding PiE-def extensional-def by simp
        thus ?thesis by simp
    qed
```



```
        by (intro prob-space.variance-eq f-int assms(3) prob)
    also have ... = (\intx. (fx)^2 \partialPiMIM) - (\intx.fx \partialPiM I M)*
( \intx.fx \partialPiM I M)
    by (simp add:power2-eq-square)
    also have ... =(\intx. (?\sigma x)^2 \partial?M) - (\intx. ?\sigma x \partial?M)*(\intx. ?\chi
x \partial?M)
    by (intro arg-cong2[where f=(-)] lift arg-cong2[where f=(*)]
meas-rules f-meas)
    also have ... = (\intx. (?\sigma x)^2 \partial?M)-(\intx.f(\lambdaj\inI.x (j,False))
\partial?M)*( \intx.f(\lambdaj\inI. x (j,True)) \partial?M)
    by (intro arg-cong2[where f=(-)] arg-cong2 [where f=(*)] cong[symmetric]
refl)
    also have ... = (\intx. (?\sigma x)^2 \partial?M) - (\intx.f (\lambdaj\inI.x (j,False))*
f(\lambdaj\inI. x(j,True)) \partial?M)
    by (intro arg-cong2[where f=(-)] indep-var-lebesgue-integral[symmetric]
refl int-rules indep)
    also have ... = (\intx. (?\sigma x)* (?\varphi 0 x) \partial?M) - (\intx. (?\sigma x)* (?\varphi
nx) \partial?M)
    using bij-betw-apply[OF q] by (intro arg-cong2[where f=(-)]
arg-cong2[where f=(*)] ext
        arg-cong[where f=f] Bochner-Integration.integral-cong)
    (auto simp:space-PiM power2-eq-square PiE-def extensional-def)
    also have ... =(\sumi<n. (\intx. (?\sigma x)* (?\varphi i x) \partial?M) - (\int x.
(?\sigma x)* (?\varphi (Suc i) x) \partial?M))
    unfolding power2-eq-square by (intro sum-lessThan-telescope'[symmetric])
    also have ... =(\sumi<n. (\intx. (?\sigma x)* (?\varphi ix) - (?\sigma x)* (?\varphi
(Suc i) x) \partial?M))
            by (intro sum.cong Bochner-Integration.integral-diff[symmetric]
int-rules meas-rules) auto
    also have ... =(\sumi<n. (\intx. (?\sigma x)* (?\varphi ix - ?\varphi (i+1) x)
\partial?M))
        by (simp-all add:power2-eq-square algebra-simps)
    also have ...\leq(\sumi<n. ((\intx. (?\sigma x-?\tau ix)^2 \partial?M)) / 2)
        by (intro sum-mono 1) auto
    also have ... = (\sumi\inI.((\intx. (f (\lambdaj.x (j,False)) - f(\lambdaj.x (j,q
j=q i)))^2 \partial?M))/ 2)
    by (intro sum.reindex-bij-betw[OF q, symmetric])
    also have ... = (\sumi\inI. ((\intx. (f(\lambdaj.x (j,False)) - f(\lambdaj.x (j,q
j=qi)))^2 \partial?M)))/2
            unfolding sum-divide-distrib[symmetric] by simp
    also have ... = ?R
        using inj-onD[OF bij-betw-imp-inj-on[OF q]]
```

by (intro arg-cong2 $[$ where $f=(/)]$ arg-cong2 $[$ where $f=(-)]$ arg-cong2 $[$ where $f=$ power $]$
arg-cong $[$ where $f=f]$ Bochner-Integration.integral-cong sum.cong
refl ext 3)
(auto simp add:space-PiM)
finally show ?thesis
by simp
qed
theorem (in prob-space) efron-stein-inequality-classic:
fixes $f::-\Rightarrow$ real
assumes finite I
assumes indep-vars $\left(M^{\prime} \circ f s t\right) X(I \times(U N I V::$ bool set $))$
assumes $f \in$ borel-measurable (PiM I M')
assumes integrable $M\left(\lambda \omega . f(\lambda i \in I . X(i, F a l s e) \omega) \wedge^{2}\right)$
assumes $\bigwedge i . i \in I \Longrightarrow \operatorname{distr} M\left(M^{\prime} i\right)(X(i, \operatorname{True}))=\operatorname{distr} M\left(M^{\prime}\right.$
i) $(X$ (i, False $))$
shows variance $(\lambda \omega . f(\lambda i \in I . X(i$, False $) \omega)) \leq$
$\left(\sum j \in I\right.$. expectation $(\lambda \omega .(f(\lambda i \in I . X(i, F a l s e) \omega)-f(\lambda i \in I . X$ $\left.(i, i=j) \omega))^{\text {-2 }}\right) /$ /2
(is ? $L \leq ? R$)
proof -
let ? $D=\operatorname{distr} M\left(\right.$ PiMI $\left.M^{\prime}\right)(\lambda \omega . \lambda i \in I . X(i$, False $) \omega)$
let $? M=\operatorname{PiM} I\left(\lambda i\right.$. distr $M\left(M^{\prime} i\right)(X(i$, False $\left.))\right)$
let $? N=P i M(I \times(U N I V::$ bool set $))\left(\left(\lambda i\right.\right.$. distr $M\left(M^{\prime} i\right)(X$ $(i$, False $\left.))) \circ f_{s t}\right)$
have $r v$: random-variable $\left(M^{\prime} i\right)(X(i, j))$ if $i \in I$ for $i j$ using assms(2) that unfolding indep-vars-def by auto

```
    have proj-meas: \((\lambda x j . x(j, h j)) \in P i_{M}(I \times U N I V)\left(M^{\prime} \circ f s t\right)\)
\(\rightarrow_{M} P i_{M} I M^{\prime}\)
    for \(h::-\Rightarrow\) bool
    proof -
        have ?thesis \(\longleftrightarrow(\lambda x .(\lambda j \in I . x(j, h j))) \in P i_{M}(I \times U N I V)\)
( \(\left.M^{\prime} \circ f s t\right) \rightarrow_{M} P i_{M} I M^{\prime}\)
            by (intro measurable-cong) (auto simp:space-PiM PiE-def exten-
sional-def)
    also have \(\ldots \longleftrightarrow\) True
            unfolding eq-True
        by (intro measurable-restrict measurable-PiM-component-rev) auto
        finally show ?thesis by simp
    qed
```

note meas-rules $=$ borel-measurable-add borel-measurable-times borel-measurable-diff proj-meas
borel-measurable-power assms(3) measurable-restrict measurable-compose[OF

- assms(3)]

```
    have indep-vars ((M'\circfst)\circ (\lambdai. (i, False))) (\lambdai. X (i, False)) I
    by (intro indep-vars-reindex indep-vars-subset[OF assms(2)] inj-onI)
auto
    hence indep-vars M'(\lambdai. X (i, False)) I by (simp add: comp-def)
    hence 0:?D = PiM I ( \lambdai. distr M ( M' i) (X (i,False)))
    by (intro iffD1[OF indep-vars-iff-distr-eq-PiM'] rv)
    have distr M(M'(fst x)) (X (fst x, False)) = distr M (M'(fst x))
(X x)
        if }x\inI\timesUNIV for x
        using that assms(5) by (cases x, cases snd x) auto
    hence 1:?N = PiM (I ×UNIV ) (\lambdai. distr M ((M'\circfst) i) (X i))
        using assms(3) by (intro PiM-cong refl) (simp add:comp-def)
    also have ... = distr M (PiM (I × UNIV) (M'\circfst)) (\lambdax. \lambdai\inI }
UNIV. X i x)
    using rv by (intro iffD1[OF indep-vars-iff-distr-eq-PiM'\prime, symmet-
ric] assms(2)) auto
    finally have 2:?N = distr M (PiM (I × UNIV ) (M'\circ fst)) (\lambdax.
\lambdai\inI > UNIV. X i x)
    by simp
```

have 3: integrable $\left(P i_{M} I\left(\lambda i\right.\right.$. distr $M\left(M^{\prime} i\right)(X(i$, False $\left.\left.))\right)\right)(\lambda x$. $\left.(f x)^{2}\right)$
unfolding 0 [symmetric] by (intro iffD2[OF integrable-distr-eq] meas-rules assms rv)
have $? L=\left(\int x .(f x-\operatorname{expectation}(\lambda \omega . f(\lambda i \in I . X(i, F a l s e) \omega)))^{\wedge}\right.$ 2 $\partial ? D)$
using rv by (intro integral-distr[symmetric] meas-rules measur-able-restrict) auto
also have..$=$ prob-space.variance ? $D f$
by (intro arg-cong $\left[\right.$ where $f=$ integral L ? $\left.D\right] \arg$-cong2 $[$ where $f=(-)]$ arg-cong2 [where $f=$ power]
refl ext integral-distr[symmetric] measurable-restrict rv assms(3))
also have $\ldots=$ prob-space.variance ? $M f$
unfolding 0 by simp
also have $\ldots \leq\left(\sum i \in I .\left(\int x .(f(\lambda j . x(j\right.\right.$, False $))-f(\lambda j . x(j, j=$ i))) ~2 ∂ ? N)) / 2
using assms(3) by (intro efron-stein-inequality-distr prob-space-distr rv assms(1) 3) auto
also have $\ldots=\left(\sum i \in I\right.$. expectation $(\lambda \omega .(f(\lambda j .(\lambda i \in I \times U N I V . X i$
$\omega)(j$, False) $)-$
$\left.\left.f(\lambda j .(\lambda i \in I \times U N I V . X i \omega)(j, j=i)))^{2}\right)\right) / 2$
using $r v$ unfolding 2
by (intro sum.cong arg-cong2[where $f=(/)]$ integral-distr refl meas-rules) auto
also have ... $=$? R

```
    by (simp add:restrict-def)
    finally show ?thesis
    by simp
qed
end
```


6 McDiarmid's inequality

In this section we verify McDiarmid's inequality [6, Lemma 1.2]. In the source and also further sources sometimes refer to the result as the "independent bounded differences" inequality.

```
theory McDiarmid-Inequality
    imports Concentration-Inequalities-Preliminary
begin
lemma Collect-restr-cong:
    assumes \(A=B\)
    assumes \(\bigwedge x . x \in A \Longrightarrow P x=Q x\)
    shows \(\{x \in A . P x\}=\{x \in B . Q x\}\)
    using assms by auto
lemma ineq-chain:
    fixes \(h::\) nat \(\Rightarrow\) real
    assumes \(\bigwedge i . i<n \Longrightarrow h(i+1) \leq h i\)
    shows \(h n \leq h 0\)
    using assms by (induction \(n\) ) force +
lemma restrict-subset-eq:
    assumes \(A \subseteq B\)
    assumes restrict \(f B=\) restrict \(g B\)
    shows restrict \(f A=\) restrict \(g A\)
    using assms unfolding restrict-def by (meson subsetD)
```

Bochner Integral version of Hoeffding's Lemma using interval-bounded-random-variable.Hoeffdin
lemma (in prob-space) Hoeffdings-lemma-bochner:
assumes $l>0$ and E0: expectation $f=0$
assumes random-variable borel f
assumes $A E x$ in M. $f x \in\{a$..b::real $\}$
shows expectation $(\lambda x$. $\exp (l * f x)) \leq \exp \left(l^{2} *(b-a)^{2} / 8\right)$ (is
$? L \leq ? R)$
proof -
interpret interval-bounded-random-variable $M f a b$
using assms by (unfold-locales) auto
have integrable $M(\lambda x$. exp $(l * f x))$
using $\operatorname{assms}(1,3,4)$ by (intro integrable-const-bound $[$ where $B=\exp$
$(l * b)])$ simp-all

```
    hence ennreal (?L) = (\int + x. exp (l*fx)\partialM)
    by (intro nn-integral-eq-integral[symmetric]) auto
    also have ... \leqennreal (?R)
    by (intro Hoeffdings-lemma-nn-integral-0 assms)
finally have 0:ennreal (?L) \leq ennreal ?R
    by simp
show ?thesis
proof (cases ?L \geq0)
    case True
    thus ?thesis using 0 by simp
next
    case False
    hence ?L}\leq0\mathrm{ by simp
    also have ... \leq?R by simp
    finally show ?thesis by simp
    qed
qed
lemma (in prob-space) Hoeffdings-lemma-bochner-2:
    assumes l>0 and E0: expectation f}=
    assumes random-variable borel f
    assumes }\xy.{x,y}\subseteq\mathrm{ space }M\Longrightarrow|fx-fy|\leq(c::real
    shows expectation (\lambda\overline{x}.\operatorname{exp}(l*fx))\leq\operatorname{exp}(l^2* * 2 2 / 8) (is ?L
\leq?R)
proof -
    define a :: real where }a=(INF x\in space M.f f
    define b :: real where b=a+c
    obtain }\omega\mathrm{ where }\omega:\omega\in\mathrm{ space M using not-empty by auto
    hence 0:f' space M}\not={}\mathrm{ by auto
    have 1:c=b-a unfolding b-def by simp
    have bdd-below (f ' space M)
        using \omega assms(4) unfolding abs-le-iff
    by (intro bdd-belowI[where m=f \omega-c]) (auto simp add:algebra-simps)
    hence fx\geqa if x\in space M for x unfolding a-def by (intro
cINF-lower that)
    moreover have fx\leqb if x-space: x f space M for x
    proof (rule ccontr)
    assume }\neg(fx\leqb
    hence a:f }x>a+c\mathrm{ unfolding b-def by simp
    have fy\geqfx-c if y\inspace M for y
            using that x-space assms(4) unfolding abs-le-iff by (simp
add:algebra-simps)
    hence f x - c \leqa unfolding a-def using cInf-greatest[OF 0] by
auto
            thus False using a by simp
    qed
```

```
    ultimately have fx\in{a..b} if x\in space M for x using that by
auto
    hence AE x in M. fx\in{a..b} by simp
    thus ?thesis unfolding 1 by (intro Hoeffdings-lemma-bochner assms(1,2,3))
qed
lemma (in prob-space) Hoeffdings-lemma-bochner-3:
    assumes expectation f}=
    assumes random-variable borel f
    assumes \x y. {x,y}\subseteq space M\Longrightarrow |fx-fy|\leq(c::real)
    shows expectation (\lambdax. exp (l*fx))\leq\operatorname{exp}(l`2*c^2 / 8) (is ?L
s?R)
proof -
    consider (a) l>0|(b)l=0|(c)l<0
        by argo
    then show ?thesis
    proof (cases)
        case a thus ?thesis by (intro Hoeffdings-lemma-bochner-2 assms)
auto
    next
        case b thus ?thesis by simp
    next
        case c
        have ?L = expectation ( }\lambdax.\operatorname{exp}((-l)*(-fx))) by sim
            also have ... \leqexp ((-l)~2 * c2/8) using c assms by (intro
Hoeffdings-lemma-bochner-2) auto
            also have ... = ?R by simp
            finally show ?thesis by simp
    qed
qed
Version of product-sigma-finite.product-integral-singleton without the condition that \(M i\) has to be sigma finite for all \(i\) :
```

```
lemma product-integral-singleton:
```

lemma product-integral-singleton:
fixes f :: - - -::{banach, second-countable-topology}
fixes f :: - - -::{banach, second-countable-topology}
assumes sigma-finite-measure (M i)
assumes sigma-finite-measure (M i)
assumes f}\in\mathrm{ borel-measurable (M i)
assumes f}\in\mathrm{ borel-measurable (M i)
shows}(\intx.f(xi)\partial(PiM{i}M))=(\intx.fx\partial(Mi))(is ?L
shows}(\intx.f(xi)\partial(PiM{i}M))=(\intx.fx\partial(Mi))(is ?L
?R)
?R)
proof -
proof -
define M' where M' }\mp@subsup{M}{}{\prime}=(\mathrm{ if }j=i then M i else count-space {undefined})
define M' where M' }\mp@subsup{M}{}{\prime}=(\mathrm{ if }j=i then M i else count-space {undefined})
for }
for }
interpret product-sigma-finite M'
interpret product-sigma-finite M'
using assms(1) unfolding product-sigma-finite-def M'-def
using assms(1) unfolding product-sigma-finite-def M'-def
by (auto intro!:sigma-finite-measure-count-space-finite)
by (auto intro!:sigma-finite-measure-count-space-finite)
have ?}L=\intx.f(xi)\partial(PiM {i} M'
have ?}L=\intx.f(xi)\partial(PiM {i} M'
by (intro Bochner-Integration.integral-cong PiM-cong) (simp-all

```
        by (intro Bochner-Integration.integral-cong PiM-cong) (simp-all
```

```
\(\left.a d d: M^{\prime}-d e f\right)\)
    also have \(\ldots=\left(\int x . f x \partial\left(M^{\prime} i\right)\right)\)
    using assms(2) by (intro product-integral-singleton) (simp add:M'-def)
    also have ... \(=\) ? \(R\)
        by (intro Bochner-Integration.integral-cong PiM-cong) (simp-all
\(\left.a d d: M^{\prime}-d e f\right)\)
    finally show?thesis by simp
qed
```

Version of product-sigma-finite.product-integral-fold without the condition that $M i$ has to be sigma finite for all i :

```
lemma product-integral-fold:
    fixes f::- = -::{banach, second-countable-topology}
```

 assumes \(\bigwedge i . i \in I \cup J \Longrightarrow\) sigma-finite-measure (\(M i\))
 assumes \(I \cap J=\{ \}\)
 assumes finite \(I\)
 assumes finite \(J\)
 assumes integrable \((P i M(I \cup J) M) f\)
 shows \(\left(\int x . f x \partial P i M(I \cup J) M\right)=\left(\int x .\left(\int y . f(\right.\right.\) merge \(I J(x, y))\)
 $\partial P i M J M) \partial P i M I M)($ is $? L=? R)$
and integrable (PiM I M) $\left(\lambda x .\left(\int y . f(\right.\right.$ merge $I J(x, y)) \partial P i M J$
$M)$) (is ?I)
and $A E x$ in PiM I M. integrable (PiM J M) ($\lambda y . f$ (merge I
$J(x, y))$) (is ? T)
proof -
define M^{\prime} where $M^{\prime} i=($ if $i \in I \cup J$ then M i else count-space
$\{$ undefined $\}$) for i
interpret product-sigma-finite M^{\prime}
using assms(1) unfolding product-sigma-finite-def M^{\prime}-def
by (auto intro!:sigma-finite-measure-count-space-finite)
interpret pair-sigma-finite $P i_{M} I M^{\prime} P i_{M} J M^{\prime}$
using $\operatorname{assms}(3,4)$ sigma-finite unfolding pair-sigma-finite-def by
blast
have 0: integrable $\left(P i_{M}(I \cup J) M^{\prime}\right) f=$ integrable $\left(P i_{M}(I \cup J)\right.$
M) f
by (intro Bochner-Integration.integrable-cong PiM-cong) (simp-all
add: $\left.M^{\prime}-d e f\right)$
have $? L=\left(\int x . f x \partial P i M(I \cup J) M^{\prime}\right)$
by (intro Bochner-Integration.integral-cong PiM-cong) (simp-all
$\left.a d d: M^{\prime}-d e f\right)$
also have $\ldots=\left(\int x .\left(\int y . f(\right.\right.$ merge $\left.I J(x, y)) \partial P i M J M^{\prime}\right) \partial P i M I$
M^{\prime})
using $\operatorname{assms}(5)$ by (intro product-integral-fold assms(2,3,4)) (simp
add:0)
also have...$=$? R

```
    by (intro Bochner-Integration.integral-cong PiM-cong) (simp-all
add:M'-def)
    finally show ?L = ?R by simp
    have integrable (Pi}\mp@subsup{M}{M}{}(I\cupJ)\mp@subsup{M}{}{\prime})f=\mathrm{ integrable (PiM I M' 囚 M
PiM J M') (\lambdax.f (merge I J x))
    using assms(5) apply (subst distr-merge[OF assms(2,3,4),symmetric])
    by (intro integrable-distr-eq) (simp-all add:0[symmetric])
    hence 1:integrable (PiM I M' 囚 m PiM J M') ( \lambdax.f (merge I J
x))
    using assms(5) 0 by simp
    hence integrable (PiM I M') (\lambdax. (\inty.f (merge I J(x,y)) \partialPiM J
M'))(is ?I')
    by (intro integrable-fst') auto
    moreover have ? I' = ?I
    by (intro Bochner-Integration.integrable-cong PiM-cong ext Bochner-Integration.integral-cong)
        (simp-all add:M'-def)
    ultimately show ?I
        by simp
    have AEx in Pi IM I M'. integrable (Pi⿱M J M') (\lambday.f (merge I J
(x,y))) (is ?T')
    by (intro AE-integrable-fst'[OF 1])
    moreover have ? T' = ?T
        by (intro arg-cong2[where f=almost-everywhere] PiM-cong ext
Bochner-Integration.integrable-cong)
        (simp-all add:M'-def)
    ultimately show ?T
        by simp
qed
lemma product-integral-insert:
    fixes f::- = -::{banach, second-countable-topology}
    assumes }\k.k\in{i}\cupJ\Longrightarrow\mathrm{ sigma-finite-measure (M k)
    assumes i\not\inJ
    assumes finite J
    assumes integrable (PiM (insert i J) M) f
    shows (\intx.fx \partialPiM (insert i J)M) = (\intx. (\inty.f (y(i:= x))
\partialPiMJM)}\partialMi)(is? ? L=?R
proof -
    note meas-cong = iffD1[OF measurable-cong]
    have integrable (PiM {i} M) (\lambdax. (\inty.f(merge {i} J (x,y)) \partialPiM
J M)
    using assms by (intro product-integral-fold) auto
    hence 0:(\lambdax.(\inty.f(merge {i} J (x,y)) \partialPiMJ M)) \in borel-measurable
(PiM {i} M)
    using borel-measurable-integrable by simp
```

have $1:\left(\lambda x .\left(\int y . f(y(i:=(x i))) \partial P i M J M\right)\right) \in$ borel-measurable (PiM \{i\} M)
by (intro meas-cong $[O F-0]$ Bochner-Integration.integral-cong arg-cong[where $f=f]$)
(auto simp add:space-PiM merge-def fun-upd-def PiE-def exten-sional-def)
have $\left(\lambda x .\left(\int y . f(y(i:=(\lambda i \in\{i\} . x) i)) \partial P i M J M\right)\right) \in$ borel-measurable ($M i$)
by (intro measurable-compose $[O F-1$, where $f=(\lambda x .(\lambda i \in\{i\} . x))]$ measurable-restrict) auto
hence 2: $\left(\lambda x\right.$. $\left.\left(\int y . f(y(i:=x)) \partial P i M J M\right)\right) \in$ borel-measurable ($M i$) by simp
have $? L=\left(\int x . f x \partial P i M(\{i\} \cup J) M\right)$ by simp
also have $\ldots=\left(\int x .\left(\int y . f\right.\right.$ (merge $\left.\left.\{i\} J(x, y)\right) \partial P i M J M\right) \partial P i M$ $\{i\} M$)
using $\operatorname{assms}(2,4)$ by (intro product-integral-fold assms(1,3)) auto also have $\ldots=\left(\int x .\left(\int y . f(y(i:=(x i))) \partial\right.\right.$ PiM J M) ∂ PiM $\{i\}$ M)
by (intro Bochner-Integration.integral-cong refl arg-cong[where $f=f]$)
(auto simp add:space-PiM merge-def fun-upd-def PiE-def exten-sional-def)
also have $\ldots=? R$
using $\operatorname{assms}(1,4)$ by (intro product-integral-singleton assms(1) 2) auto
finally show ?thesis by simp
qed
lemma product-integral-insert-rev:
fixes $f::-\Rightarrow-::\{$ banach, second-countable-topology $\}$
assumes $\bigwedge k . k \in\{i\} \cup J \Longrightarrow$ sigma-finite-measure $(M k)$
assumes $i \notin J$
assumes finite J
assumes integrable (PiM (insert i J) M) f
shows $\left(\int x . f x \partial P i M(\right.$ insert $\left.i J) M\right)=\left(\int y .\left(\int x . f(y(i:=x))\right.\right.$
∂M i) $\partial P i M J M)($ is $? L=? R)$
proof -
have $? L=\left(\int x . f x \partial P i M(J \cup\{i\}) M\right)$ by simp
also have $\ldots=\left(\int x\right.$. $\left(\int y . f(\right.$ merge $\left.J\{i\}(x, y)) \partial P i M\{i\} M\right) \partial P i M$ $J M$)
using $\operatorname{assms}(2,4)$ by (intro product-integral-fold assms(1,3)) auto also have $\ldots=\left(\int x .\left(\int y . f(x(i:=(y i))) \partial P i M\{i\} M\right) \partial P i M J\right.$ M)
unfolding merge-singleton[OF assms(2)]
by (intro Bochner-Integration.integral-cong refl arg-cong[where $f=f]$)
(metis PiE-restrict assms(2) restrict-upd space-PiM)
also have $\ldots=$? R
using $\operatorname{assms}(1,4)$ by (intro Bochner-Integration.integral-cong prod-uct-integral-singleton) auto
finally show ?thesis by simp
qed
lemma merge-empty[simp]:
merge $\} I(y, x)=$ restrict $x I$
merge $I\}(y, x)=$ restrict $y I$
unfolding merge-def restrict-def by auto
lemma merge-cong:
assumes restrict $x 1 I=$ restrict $x 2 I$
assumes restrict y1 $J=$ restrict y2 J
shows merge $I J(x 1, y 1)=$ merge $I J(x 2, y 2)$
using assms unfolding merge-def restrict-def
by (intro ext) (smt (verit, best) case-prod-conv)
lemma restrict-merge:
restrict (merge $I J x) K=\operatorname{merge}(I \cap K)(J \cap K) x$
unfolding restrict-def merge-def by (intro ext) (auto simp:case-prod-beta)
lemma map-prod-measurable:
assumes $f \in M \rightarrow_{M} M^{\prime}$
assumes $g \in N \rightarrow_{M} N^{\prime}$
shows map-prod $f g \in M \bigotimes_{M} N \rightarrow_{M} M^{\prime} \bigotimes_{M} N^{\prime}$
using assms by (subst measurable-pair-iff) simp
lemma mc-diarmid-inequality-aux:
fixes $f::\left(\right.$ nat $\left.\Rightarrow{ }^{\prime} a\right) \Rightarrow$ real
fixes n :: nat
assumes $\bigwedge i . i<n \Longrightarrow$ prob-space $(M i)$
assumes $\bigwedge i x y . i<n \Longrightarrow\{x, y\} \subseteq$ space $(\operatorname{PiM}\{. .<n\} M) \Longrightarrow$
$(\forall j \in\{. .<n\}-\{i\} . x j=y j) \Longrightarrow|f x-f y| \leq c i$
assumes f-meas: $f \in$ borel-measurable $(\operatorname{PiM}\{. .<n\} M)$ and ε-gt- 0 : $\varepsilon>0$
shows $\mathcal{P}\left(\omega\right.$ in PiM $\{. .<n\} M . f \omega-\left(\int \xi . f \xi \partial P i M\{. .<n\} M\right) \geq$ $\varepsilon) \leq \exp \left(-\left(2 * \varepsilon^{\wedge}\right.\right.$ 2 $) /\left(\sum i<n \text {. (} c i\right)^{\wedge}$ ~2 $\left.)\right)$
(is ? $L \leq ? R$)
proof -
define h where $h k=\left(\lambda \xi .\left(\int \omega . f\right.\right.$ (merge $\left.\{. .<k\}\{k . .<n\}(\xi, \omega)\right)$ ∂ PiM $\{k . .<n\} M)$) for k
define $t:$ real where $t=4 * \varepsilon /\left(\sum i<n .(c i)^{\wedge}\right.$ ~ $)$
define V where $V i \xi=h($ Suc $i) \xi-h i \xi$ for $i \xi$
obtain $x 0$ where $x 0: x 0 \in \operatorname{space}(P i M\{. .<n\} M)$
using prob-space.not-empty[OF prob-space-PiM] assms(1) by fastforce

```
have delta: }|fx-fy|\leqci\mathrm{ if }i<
    x \inPiE {..<n} (\lambdai. space (M i)) y \in PiE {..<n} (\lambdai. space (M
i))
    restrict x ({..<n}-{i})= restrict y ({..<n}-{i})
    for x y i
    proof (rule assms(2)[OF that(1)], goal-cases)
    case 1
    then show ?case using that(2,3) unfolding space-PiM by auto
    next
    case 2
    then show ?case using that(4) by (intro ballI) (metis restrict-apply')
    qed
    have c-ge-0:c j\geq0 if j<n for j
    proof -
    have 0}\leq|fx0-fx0| by sim
    also have ... \leqcjusing x0 unfolding space-PiM by (intro delta
that) auto
    finally show ?thesis by simp
    qed
    hence sum-c-ge-0:(\sumi<n.(c i)^2) \geq0 by (meson sum-nonneg
zero-le-power2)
    hence t-ge-0:t\geq0 using \varepsilon-gt-0 unfolding t-def by simp
    note borel-rules =
    borel-measurable-sum measurable-compose[OF - borel-measurable-exp]
    borel-measurable-times
    note int-rules=
    prob-space-PiM assms(1) borel-rules
    prob-space.integrable-bounded bounded-intros
    have h-n:hn\xi=f\xi}\mathrm{ if }\xi\in\operatorname{space}(\operatorname{PiM {..<n} M) for }
proof -
    have hn \xi=(\int\omega.f(\lambdai\in{..<n}.\xi i) \partialPiM {} M)
        unfolding h-def using leD
    by (intro Bochner-Integration.integral-cong PiM-cong arg-cong[where
f=f] restrict-cong)
        auto
    also have ... =f (restrict \xi {..<n})
        unfolding PiM-empty by simp
    also have ... =f \xi
        using that unfolding space-PiM PiE-def
        by (simp add: extensional-restrict)
    finally show ?thesis
        by simp
qed
```

```
    have h-0:h 0 \xi=( \int\omega.f\omega \partialPiM {..<n} M) for \xi
    unfolding h-def by (intro Bochner-Integration.integral-cong PiM-cong
refl)
    (simp-all add:space-PiM atLeastOLessThan)
    have h-cong: hj\omega=hj\xi if restrict }\omega{..<j}=restrict \xi{..<j
for j }\omega
    using that unfolding h-def
        by (intro Bochner-Integration.integral-cong refl arg-cong[where
f=f] merge-cong) auto
    have h-meas: h i borel-measurable (PiM I M) if i\leqn{..<i}\subseteqI
for iI
    proof -
        have 0:{..<n}={..<i}\cup{i..<n}
            using that(1) by auto
    have 1:merge {..<i} {i..<n}= merge {..<i} {i..<n} ○ map-prod
(\lambdax. restrict x {..<i}) id
        unfolding merge-def map-prod-def restrict-def comp-def
        by (intro ext) (auto simp:case-prod-beta')
```



```
Pi
            unfolding 0 by (subst 1) (intro measurable-comp[OF - measur-
able-merge] map-prod-measurable
            measurable-ident measurable-restrict-subset that(2))
    hence }(\lambdax.f(\mathrm{ merge {..<i} {i..<n} x)) G borel-measurable (Pi
IM 囚 M Pi M {i..<n} M)
            by (intro measurable-compose[OF - f-meas])
    thus ?thesis
    unfolding h-def by (intro sigma-finite-measure.borel-measurable-lebesgue-integral
                prob-space-imp-sigma-finite prob-space-PiM assms(1)) (auto
simp:case-prod-beta')
    qed
    have merge-space-aux:merge {..<j} {j..<n} u\in(\Pi}\mp@subsup{\Pi}{E}{}i\in{..<n}.spac
(M i))
    if j\leqn fst u\inPi{..<j} (\lambdai. space (Mi)) snd u\inPi {j..<n}
(\lambdai. space (Mi))
    for u j
proof -
    have merge {..<j} {j..<n} (fst u, snd u)\in(PiE ({..<j}\cup{j..<n})
(\lambdai. space (M i)))
            using that by (intro iffD2[OF PiE-cancel-merge]) auto
            also have ... = (\Pi}\mp@subsup{\Pi}{E}{}i\in{..<n}.space (M i)
            using that by (intro arg-cong2[where f=PiE] refl) auto
    finally show ?thesis by simp
qed
```

```
have merge-space:merge \(\{. .<j\}\{j . .<n\}(u, v) \in\left(\Pi_{E} i \in\{. .<n\}\right.\). space
(Mi))
    if \(j \leq n u \in \operatorname{PiE}\{. .<j\}(\lambda i\). space \((M i)) v \in \operatorname{PiE}\{j . .<n\}(\lambda i\).
space ( \(M i\) )
    for \(u v j\)
    using that by (intro merge-space-aux) (simp-all add:PiE-def)
    have delta': \(|f x-f y| \leq\left(\sum i<n . c i\right)\)
    if \(x \in \operatorname{PiE}\{. .<n\}(\lambda i\). space \((M i)) y \in \operatorname{PiE}\{. .<n\}(\lambda i\). space \((M\)
i)) for \(x y\)
    proof -
    define \(m\) where \(m i=\) merge \(\{. .<i\}\{i . .<n\}(x, y)\) for \(i\)
    have 0: \(z \in \operatorname{Pi} I(\lambda i\). space \((M i))\) if \(z \in \operatorname{PiE}\{. .<n\}\) ( \(\lambda i\). space
(Mi))
            \(I \subseteq\{. .<n\}\) for \(z I\)
            using that unfolding PiE-def by auto
    have 3: \(\{. .<\) Suc \(i\} \cap(\{. .<n\}-\{i\})=\{. .<i\}\)
        \(\{\) Suc \(i . .<n\} \cap(\{. .<n\}-\{i\})=\{\) Suc \(i . .<n\}\)
        \(\{. .<i\} \cap(\{. .<n\}-\{i\})=\{. .<i\}\)
        \(\{i . .<n\} \cap(\{. .<n\}-\{i\})=\{\) Suc \(i . .<n\}\)
        if \(i<n\) for \(i\)
        using that by auto
    have \(|f x-f y|=\left|f(m n)-f\left(\begin{array}{ll}m & 0\end{array}\right)\right|\)
        using that unfolding \(m\)-def by (simp add:atLeast0LessThan)
    also have \(\ldots=\left|\sum i<n . f(m(S u c i))-f(m i)\right|\)
        by (subst sum-lessThan-telescope) simp
    also have \(\ldots \leq\left(\sum i<n .|f(m(S u c i))-f(m i)|\right)\)
        by \(\operatorname{simp}\)
    also have \(\ldots \leq\left(\sum i<n . c i\right)\)
    using that unfolding \(m\)-def by (intro delta sum-mono merge-space-aux
0 subsetI)
            (simp-all add:restrict-merge 3)
        finally show ?thesis
        by \(\operatorname{simp}\)
qed
have norm \((f x) \leq\) norm \((f x 0)+\operatorname{sum} c\{. .<n\}\) if \(x \in \operatorname{space}\left(P i_{M}\right.\)
\(\{. .<n\} M)\) for \(x\)
    proof -
    have \(|f x-f x 0| \leq \operatorname{sum} c\{. .<n\}\)
        using \(x 0\) that unfolding space-PiM by (intro delta') auto
    thus ?thesis
        by \(\operatorname{simp}\)
qed
hence \(f\)-bounded: bounded ( \(f\) 'space (PiM \(\{. .<n\} M)\) )
```

by $\left(\right.$ intro boundedI $\left[\right.$ where $\left.\left.B=\operatorname{norm}(f x 0)+\left(\sum i<n . c i\right)\right]\right)$ auto
have f-merge-bounded:
bounded $\left((\lambda \omega .(f(\right.$ merge $\{. .<j\}\{j . .<n\}(u, \omega))))$ 'space $\left(P i_{M}\right.$ $\{j . .<n\} M)$)
if $j \leq n u \in \operatorname{PiE}\{. .<j\}(\lambda i$. space $(M i))$ for $u j$
proof -
have $(\lambda \omega$. merge $\{. .<j\}\{j . .<n\}(u, \omega))$ 'space $\left(P i_{M}\{j . .<n\} M\right)$ $\subseteq \operatorname{space}\left(P i_{M}\{. .<n\} M\right)$
using that unfolding space-PiM
by (intro image-subsetI merge-space) auto
thus ?thesis
by (subst image-image $[$ of f, symmetric $]$) (intro bounded-subset $[O F$ f-bounded] image-mono)
qed
have f-merge-meas-aux:
$(\lambda \omega . f($ merge $\{. .<j\}\{j . .<n\}(u, \omega))) \in$ borel-measurable $\left(P i_{M}\right.$ $\{j . .<n\} M)$
if $j \leq n u \in P i\{. .<j\}(\lambda i$. space $(M i))$ for $j u$ proof -
have $0:\{. .<n\}=\{. .<j\} \cup\{j . .<n\}$
using that(1) by auto
have 1: merge $\{. .<j\}\{j . .<n\}(u, \omega)=\operatorname{merge}\{. .<j\}\{j . .<n\}$
(restrict $u\{. .<j\}, \omega$) for ω
by (intro merge-cong) auto
have $(\lambda \omega$. merge $\{. .<j\}\{j . .<n\}(u, \omega)) \in P i_{M}\{j . .<n\} M \rightarrow_{M}$ $P i_{M}\{. .<n\} M$
using that unfolding 01
by (intro measurable-compose[OF - measurable-merge] measur-able-Pair1)
(simp add:space-PiM)
thus ?thesis
by (intro measurable-compose[OF-f-meas])
qed
have f-merge-meas: $(\lambda \omega . f($ merge $\{. .<j\}\{j . .<n\}(u, \omega))) \in$ borel-measurable $\left(P i_{M}\{j . .<n\} M\right)$
if $j \leq n u \in \operatorname{PiE}\{. .<j\}(\lambda i$. space $(M i))$ for $j u$
using that unfolding PiE-def by (intro f-merge-meas-aux) auto
have h-bounded: bounded ($h i$ 'space (PiM I M))
if h-bounded-assms: $i \leq n\{. .<i\} \subseteq I$ for $i I$
proof -
have merge $\{. .<i\}\{i . .<n\} x \in$ space $\left(P i_{M}\{. .<n\} M\right)$
if $x \in\left(\Pi_{E} i \in I\right.$. space $\left.(M i)\right) \times\left(\Pi_{E} i \in\{i . .<n\}\right.$. space $\left.(M i)\right)$ for
using that h-bounded-assms unfolding space-PiM by (intro merge-space-aux)
(auto simp: PiE-def mem-Times-iff)
hence bounded $((\lambda x . f($ merge $\{. .<i\}\{i . .<n\} x))$ '
$\left(\left(\Pi_{E} i \in I\right.\right.$. space $\left.(M i)\right) \times\left(\Pi_{E} i \in\{i . .<n\}\right.$. space $\left.\left.\left.(M i)\right)\right)\right)$
by (subst image-image[of f,symmetric $]$)
(intro bounded-subset[OF f-bounded] image-mono image-subsetI)
thus ?thesis
using that unfolding h-def
by (intro prob-space.finite-measure finite-measure.bounded-int int-rules)
(auto simp:space-PiM PiE-def)
qed
have V-bounded: bounded (V i'space (PiM I M))
if $i<n\{. .<i+1\} \subseteq I$ for $i I$
using that unfolding V-def by (intro bounded-intros h-bounded) auto
have V-upd-bounded: bounded $((\lambda x . V j(\xi(j:=x)))$ 'space $(M j))$
if V-upd-bounded-assms: $\xi \in \operatorname{space}\left(P i_{M}\{. .<j\} M\right) j<n$ for $j \xi$
proof -
have $\xi(j:=v) \in \operatorname{space}\left(P i_{M}\{. .<j+1\} M\right)$ if $v \in \operatorname{space}(M j)$ for v
using V-upd-bounded-assms that unfolding space-PiM PiE-def extensional-def Pi-def by auto
thus ?thesis
using that unfolding image-image $[$ of $\operatorname{Vj}(\lambda x .(\xi(j:=x)))$,symmetric]
by (intro bounded-subset[OF V-bounded $[$ of $j\{. .<j+1\}]]$ that image-mono) auto qed
have h-step: $h j \omega=\int \tau . h(j+1)(\omega(j:=\tau)) \partial M j($ is ? $L 1=? R 1)$
if $\omega \in$ space $(\operatorname{PiM}\{. .<j\} M) j<n$ for $j \omega$
proof -
have $0:(\lambda x . f($ merge $\{. .<j\}\{j . .<n\}(\omega, x))) \in$ borel-measurable $\left(P i_{M}\{j . .<n\} M\right)$
using that unfolding space-PiM by (intro f-merge-meas) auto
have 1: insert $j\{S u c j . .<n\}=\{j . .<n\}$
using that by auto
have 2: bounded $((\lambda x .(f$ (merge $\{. .<j\}\{j . .<n\}(\omega, x))))$ ' space $\left.\left(P i_{M}\{j . .<n\} M\right)\right)$
using that by (intro f-merge-bounded) (simp-all add: space-PiM)
have $? L 1=\left(\int \xi . f(\right.$ merge $\{. .<j\}\{j . .<n\}(\omega, \xi)) \partial P i M$ (insert j $\{j+1 . .<n\}) M$)
unfolding h-def using that by (intro Bochner-Integration.integral-cong refl PiM-cong) auto
also have..$=\left(\int \tau .\left(\int \xi . f(\right.\right.$ merge $\{. .<j\}\{j . .<n\}(\omega,(\xi(j:=\tau))))$ $\partial P i M\{j+1 . .<n\} M) \partial M j)$
using that (1,2) 012 by (intro product-integral-insert prob-space-imp-sigma-finite $\operatorname{assms}(1)$
int-rules f-merge-meas) (simp-all)
also have $\ldots=$? $R 1$
using that(2) unfolding h-def
by (intro Bochner-Integration.integral-cong arg-cong[where $f=f]$
ext) (auto simp:merge-def)
finally show ?thesis
by simp
qed
have V-meas: $V i \in$ borel-measurable (PiM I M) if $i<n\{. .<i+1\}$ $\subseteq I$ for $i I$
unfolding V-def using that by (intro borel-measurable-diff h-meas) auto
have V-upd-meas: $(\lambda x . V j(\xi(j:=x))) \in$ borel-measurable $(M j)$
if $j<n \xi \in \operatorname{space}\left(P i_{M}\{. .<j\} M\right)$ for $j \xi$
using that by (intro measurable-compose[OF - V-meas[where $I=$ insert $j\{. .<j\}]]$ measurable-component-update) auto
have V-cong:
$V j \omega=V j \xi$ if restrict $\omega\{. .<(j+1)\}=$ restrict $\xi\{. .<(j+1)\}$ for $j \omega \xi$
using that restrict-subset-eq[OF - that] unfolding V-def
by (intro arg-cong2[where $f=(-)]$-cong) simp-all
have $\exp -V:\left(\int \omega \cdot V j(\xi(j:=\omega)) \partial M j\right)=0($ is $? L 1=0)$
if $j<n \xi \in$ space $(\operatorname{PiM}\{. .<j\} M)$ for $j \xi$
proof -
have fun-upd ξj 'space $(M j) \subseteq$ space $\left(P i_{M}(\right.$ insert $\left.j\{. .<j\}) M\right)$
using that unfolding space-PiM by (intro image-subsetI PiE-fun-upd) auto
hence 0 :bounded $((\lambda x . h(S u c j)(\xi(j:=x)))$ 'space $(M j))$
unfolding image-image[of h (Suc j) $\lambda x . \xi(j:=x)$,symmetric]
using that
by (intro bounded-subset[OF h-bounded $[$ where $i=j+1$ and $I=\{. .<j+1\}]]$ image-mono)
(auto simp:lessThan-Suc)
have $1:(\lambda x . h(S u c j)(\xi(j:=x))) \in$ borel-measurable $(M j)$
using h-meas that by (intro measurable-compose[OF - h-meas[where $I=$ insert $j\{. .<j\}]]$

measurable-component-update) auto

have ? $L 1=\left(\int \omega \cdot h(S u c j)(\xi(j:=\omega))-h j \xi \partial M j\right)$ unfolding V-def
by (intro Bochner-Integration.integral-cong arg-cong2[where $f=(-)]$ refl h-cong) auto
also have $\ldots=\left(\int \omega . h(S u c j)(\xi(j:=\omega)) \partial M j\right)-\left(\int \omega . h j \xi \partial M\right.$ j)
using that by (intro Bochner-Integration.integral-diff int-rules 0

1) auto
also have ... $=0$
using that(1) assms(1) prob-space.prob-space unfolding h-step $[O F$
that(2,1)] by auto
finally show ?thesis
by simp
qed
have var-V: $|V j x-V j y| \leq c j$ (is ?L1 \leq ? R1)
if var-V-assms: $j<n\{x, y\} \subseteq$ space $(\operatorname{PiM}\{. .<j+1\} M)$ restrict $x\{. .<j\}=$ restrict $y\{. .<j\}$ for $x y j$
proof -
have x-ran: $x \in \operatorname{PiE}\{. .<j+1\}(\lambda i$. space $(M i))$ and y-ran: $y \in$ PiE $\{. .<j+1\}$ (λi. space ($M i$) using that(2) by (simp-all add:space-PiM)
have $0: j+1 \leq n$ using that by simp
have ? L1 $=|h(S u c j) x-h j y-(h(S u c j) y-h j y)|$
unfolding V-def by (intro arg-cong[where $f=a b s]$ arg-cong2[where $f=(-)]$ refl h-cong that)
also have $\ldots=|h(j+1) x-h(j+1) y|$
by simp
also have ... =
$\mid\left(\int \omega . f(\right.$ merge $\{. .<j+1\}\{j+1 . .<n\}(x, \omega))-f($ merge $\{. .<j+1\}$
$\{j+1 . .<n\}(y, \omega)) \partial P i M\{j+1 . .<n\} M) \mid$
using that unfolding h-def by (intro arg-cong[where $f=a b s]$
f-merge-meas $\left[\begin{array}{ll}O F & 0\end{array}\right] x$-ran
Bochner-Integration.integral-diff[symmetric] int-rules f-merge-bounded [OF
0] y-ran) auto
also have ... \leq
$\left(\int \omega . \mid f(\right.$ merge $\{. .<j+1\}\{j+1 . .<n\}(x, \omega))-f($ merge $\{. .<j+1\}$
$\{j+1 . .<n\}(y, \omega)) \mid \partial P i M\{j+1 . .<n\} M)$
by (intro integral-abs-bound)
also have $\ldots \leq\left(\int \omega . c j \partial P i M\{j+1 . .<n\} M\right)$
proof (intro Bochner-Integration.integral-mono' delta int-rules c-ge-0 ballI merge-space 0)
fix ω assume $\omega \in \operatorname{space}\left(P i_{M}\{j+1 . .<n\} M\right)$
have $\{. .<j+1\} \cap(\{. .<n\}-\{j\})=\{. .<j\}$
```
            using that by auto
            thus restrict (merge {..<j+1} {j+1..<n} (x,\omega))({..<n}-{j})
            restrict (merge {..<j+1} {j+1..<n} (y,\omega)) ({..<n}-{j})
            using that (1,3) less-antisym unfolding restrict-merge by (intro
merge-cong refl) auto
    qed (simp-all add: space-PiM that(1) x-ran[simplified] y-ran[simplified])
            also have ... = cj
            by (auto intro!:prob-space.prob-space prob-space-PiM assms(1))
            finally show ?thesis by simp
    qed
    have f \xi-(\int\omega.f\omega\partial(PiM {..<n} M))=(\sumi<n.Vi\xi) if \xi\in
space (PiM {..<n} M) for }
            using that unfolding V-def by (subst sum-lessThan-telescope)
(simp add: h-0 h-n)
```



```
    by (intro arg-cong2[where f=measure] refl Collect-restr-cong arg-cong2[where
f=(\leq)]) auto
    also have ... \leq\mathcal{P}(\xi\mathrm{ in PiM {..<n} M. exp (t* (\i<n.Vi }))}
exp}(t*\varepsilon)
    proof (intro finite-measure.finite-measure-mono subsetI prob-space.finite-measure
int-rules)
    show {\xi\inspace (Pi}\mp@subsup{M}{M}{{..<n} M). exp (t*\varepsilon)\leq\operatorname{exp}(t*(\sumi<n.
Vi\xi))}\in sets (Pi}\mp@subsup{i}{M}{{}{.<n}M
            using V-meas by measurable
    qed (auto intro!:mult-left-mono[OF - t-ge-0])
    also have ... \leq(\int\xi. exp (t*(\sumi<n.Vi\xi))\partialPiM {..<n} M)/ exp
(t*\varepsilon)
    by (intro integral-Markov-inequality-measure[where A={}] int-rules
V-bounded V-meas) auto
    also have ... = exp(t^2 * (\sumi\in{n..<n}.ci^2)/8-t*\varepsilon)*(\int\xi. exp(t*(\sumi
< n.V i \xi)) \partialPiM {..<n} M)
    by (simp add:exp-minus inverse-eq-divide)
    also have ... \leqexp(t^2 * (\sumi\in{0..<n}.ci^2)/8-t*\varepsilon)*(\int\xi. exp (t*(\sumi
< 0.V i \xi)) \partialPiM {..<0} M)
    proof (rule ineq-chain)
    fix j assume a:j<n
    let ?L1 = exp (t }\mp@subsup{t}{}{2}*(\sumi=j+1..<n.(ci\mp@subsup{)}{}{2})/8-t*\varepsilon
    let ?L2 = ?L1 * (\int\xi. exp (t* (\sumi<j+1.Vi\xi)) \partialPiM {..<j+1}
M)
    note V-upd-meas = V-upd-meas[OF a]
    have ?L2 =?L1*(\int\xi. exp (t*(\sumi<j.Vi\xi))*\operatorname{exp}(t*Vj\xi)
\partialPiM (insert j {..<j}) M)
            by (simp add:algebra-simps exp-add lessThan-Suc)
    also have ... = ?L1 *
        (\int\xi. (\int\omega. exp (t* (\sumi<j.Vi V (\xi(j:=\omega))))*\operatorname{exp}(t*Vj(\xi(j
```

```
\(:=\omega))) \partial M j) \partial P i M\{. .<j\} M)\)
```

using a by (intro product-integral-insert-rev arg-cong2[where $f=(*)$] int-rules
prob-space-imp-sigma-finite V-bounded V-meas) auto
also have $\ldots=? L 1 *\left(\int \xi \cdot\left(\int \omega . \exp \left(t *\left(\sum i<j . V i \xi\right)\right) * \exp (t * V j\right.\right.$ $(\xi(j:=\omega))) \partial M j) \partial P i M \quad\{. .<j\} M)$
by (intro arg-cong2[where $f=(*)$] Bochner-Integration.integral-cong arg-cong $[$ where $f=e x p]$ sum.cong V-cong restrict-fupd) auto
also have $\ldots=$? $L 1 *\left(\int \xi . \exp \left(t *\left(\sum i<j . V i \xi\right)\right) *\left(\int \omega \cdot \exp (t * V j\right.\right.$ $(\xi(j:=\omega))) \partial M j) \partial P i M\{. .<j\} M)$
using a by (intro arg-cong2[where $f=(*)$] Bochner-Integration.integral-cong refl

Bochner-Integration.integral-mult-right V-upd-meas V-upd-bounded int-rules) auto
also have $\ldots \leq ? L 1 * \int \xi \cdot \exp \left(t *\left(\sum i<j . V i \xi\right)\right) * \exp (t \wedge 2 * c$ j^2/8) $\partial P i M\{. .<j\} M$
proof (intro mult-left-mono integral-mono')
fix ξ assume $c: \xi \in \operatorname{space}\left(P i_{M}\{. .<j\} M\right)$
hence $b: \xi \in \operatorname{PiE}\{. .<j\}(\lambda i$. space $(M i))$
unfolding space-PiM by simp
moreover have $\xi(j:=v) \in \operatorname{PiE}\{. .<j+1\}(\lambda i$. space $(M i))$ if $v \in \operatorname{space}(M j)$ for v
using b that unfolding PiE-def extensional-def Pi-def by auto
ultimately show $\operatorname{LINT} \omega \mid M j$. exp $(t * V j(\xi(j:=\omega))) \leq \exp$ $\left(t^{2} *(c j)^{2} / 8\right)$
using V-upd-meas[OF c]
by (intro prob-space.Hoeffdings-lemma-bochner-3 exp-V var-V a int-rules)
(auto simp: space-PiM)
next
show integrable $\left(P i_{M}\{. .<j\} M\right)\left(\lambda x . \exp \left(t *\left(\sum i<j . V i x\right)\right) *\right.$ $\left.\exp \left(t^{2} *(c j)^{2} / 8\right)\right)$
using a by (intro int-rules V-bounded V-meas) auto
qed auto
also have $\ldots=? L 1 *\left(\left(\int \xi . \exp \left(t *\left(\sum i<j . V i \xi\right)\right) \partial P i M\{. .<j\}\right.\right.$ $\left.M) * \exp \left(t^{\wedge} 2 * c j^{\wedge} 2 / 8\right)\right)$
proof (subst Bochner-Integration.integral-mult-left)
show integrable $\left(P i_{M}\{. .<j\} M\right)\left(\lambda \xi . \exp \left(t *\left(\sum i<j . V i \xi\right)\right)\right)$
using a by (intro int-rules V-bounded V-meas) auto
qed auto
also have $\ldots=$
$\exp \left(t^{2} *\left(\sum i \in\right.\right.$ insert $\left.\left.j\{j+1 . .<n\} .(c i)^{2}\right) / 8-t * \varepsilon\right) *\left(\int \xi . \exp (t *\right.$ $\left.\left.\left(\sum i<j . V i \xi\right)\right) \partial P i M\{. .<j\} M\right)$
by (simp-all add:exp-add[symmetric] field-simps)
also have $\ldots=\exp \left(t^{2} *\left(\sum i=j . .<n .(c i)^{2}\right) / 8-t * \varepsilon\right) *\left(\int \xi . \exp (t *\right.$ $\left.\left.\left(\sum i<j . V i \xi\right)\right) \partial P i M\{. .<j\} M\right)$
using a by (intro arg-cong2[where $f=(*)$] arg-cong[where $f=e x p]$ refl arg-cong2
[where $f=(-)$] arg-cong2 [where $f=(/)]$ sum.cong) auto
finally show ? $L 2 \leq \exp \left(t^{2} *\left(\sum i=j . .<n .(c i)^{2}\right) / 8-t * \varepsilon\right) *\left(\int \xi . \exp \right.$

```
(t*(\sumi<j.V V \xi))\partialPiM {..<j} M)
            by simp
    qed
    also have ... = exp(t^2 * (\sumi<n.c i^2)/8-t*\varepsilon) by (simp add:PiM-empty
atLeast0LessThan)
    also have ... = exp(t*((t*(\sumi<n.c i^2)/8)-\varepsilon)) by (simp
add:algebra-simps power2-eq-square)
    also have .. = exp(t* (-\varepsilon/2)) using sum-c-ge-0 by (auto simp
add:divide-simps t-def)
    also have ... =?R unfolding t-def by (simp add:field-simps power2-eq-square)
    finally show ?thesis by simp
qed
theorem mc-diarmid-inequality-distr:
    fixes f :: (' }i=\mp@subsup{|}{}{\prime}a)=>\mathrm{ real
    assumes finite I
    assumes }\i.i\inI\Longrightarrow\mathrm{ prob-space (Mi)
    assumes \ixy.i\inI\Longrightarrow{x,y}\subseteq space (PiMIM)\Longrightarrow(\forallj\inI-{i}.
x j=yj)\Longrightarrow |fx-f y | cci
    assumes f-meas: f\in borel-measurable (PiM I M) and \varepsilon-gt-0: }\varepsilon>
    shows \mathcal{P}(\omega in PiM I M.f\omega-(\int\xi.f\xi\partialPiM I M)\geq\varepsilon)\leqexp
(-(2*&`2)/(\sumi\inI. (ci)^2))
        (is ?L\leq? }R\mathrm{ )
proof -
    define }n\mathrm{ where n= card I
    let ? q = from-nat-into I
    let ?r = to-nat-on I
    let ?f}=(\lambda\xi.f(\lambdai\inI.\xi(?r i))
```

have $q:$ bij-betw ? $q\{. .<n\} I$ unfolding n-def by (intro bij-betw-from-nat-into-finite $\operatorname{assms}(1)$)
have r : bij-betw ?r $I\{. .<n\}$ unfolding n-def by (intro to-nat-on-finite $\operatorname{assms}(1)$)
have $[$ simp $]: ? q(? r x)=x$ if $x \in I$ for x
by (intro from-nat-into-to-nat-on that countable-finite assms(1))
have $[$ simp $]$: ?r $(? q x)=x$ if $x<n$ for x
using bij-betw-imp-surj-on[OF r] that by (intro to-nat-on-from-nat-into) auto
have $a: \bigwedge i . i \in\{. .<n\} \Longrightarrow$ prob-space $((M \circ ? q) i)$
unfolding comp-def by (intro assms(2) bij-betw-apply[OF q])
have b:PiM I M $=$ PiM I (λi. $(M \circ$? q) (?r $i)$) by (intro PiM-cong $)$
(simp-all add:comp-def)
also have $\ldots=\operatorname{distr}(\operatorname{PiM}\{. .<n\}(M \circ ? q))(\operatorname{PiM} I(\lambda i .(M \circ ? q)$
$(? r i)))(\lambda \omega . \lambda n \in I . \omega(? r n))$
using r unfolding bij-betw-def by (intro distr-PiM-reindex[symmetric] a) auto
finally have $c: \operatorname{PiM} I M=\operatorname{distr}(\operatorname{PiM}\{. .<n\}(M \circ ? q))(\operatorname{PiM} I$ $(\lambda i .(M \circ ? q)(? r i)))(\lambda \omega . \lambda n \in I . \omega(? r n))$
by simp
have $d:(\lambda n \in I . x(? r n)) \in \operatorname{space}\left(P i_{M} I M\right)$ if $4: x \in \operatorname{space}\left(P i_{M}\right.$ $\{. .<n\}(M \circ ? q))$ for x
proof -
have $x(? r i) \in \operatorname{space}(M i)$ if $i \in I$ for i
proof -
have ?r $i \in\{. .<n\}$ using bij-betw-apply $[$ OF $r]$ that by simp
hence $x($?r $i) \in$ space $((M \circ$?q) (?r $i))$ using that 4 PiE-mem
unfolding space-PiM by blast
thus ?thesis using that unfolding comp-def by simp qed
thus ?thesis unfolding space-PiM PiE-def by auto
qed
have ? $L=\mathcal{P}\left(\omega\right.$ in PiM $\{. .<n\}\left(M \circ\right.$?q). ?f $\omega-\left(\int \xi\right.$. f ξ PPiM I $M) \geq \varepsilon$)
proof (subst c, subst measure-distr, goal-cases)
case 1 thus ?case
by (intro measurable-restrict measurable-component-singleton bij-betw-apply[OF r])
next
case 2 thus ?case unfolding $b[$ symmetric $]$ by (intro measur-able-sets-Collect[OF f-meas]) auto
next
case 3 thus ?case using d by (intro arg-cong2[where $f=$ measure] refl) (auto simp:vimage-def)
qed
also have $\ldots=\mathcal{P}\left(\omega\right.$ in $\operatorname{PiM}\{. .<n\}\left(M \circ\right.$?q). ?f $\omega-\left(\int \xi\right.$. ?f ξ
$\partial \operatorname{PiM}\{. .<n\}(M \circ ? q)) \geq \varepsilon)$
proof (subst c, subst integral-distr, goal-cases)
case (1ω) thus ?case
by (intro measurable-restrict measurable-component-singleton
bij-betw-apply[OF r])
next
case (2 ω) thus ?case unfolding $b[$ symmetric $]$ by (rule f-meas)
next
case 3 thus ?case by simp
qed
also have $\ldots \leq \exp \left(-\left(2 * \varepsilon^{\wedge} 2\right) /\left(\sum i<n .(c(? q i))^{\wedge} 2\right)\right)$
proof (intro mc-diarmid-inequality-aux ε-gt-0, goal-cases)
case (1 i) thus ?case by (intro a) auto
next
case (2 ixy)
have $x($?r $j)=y(? r j)$ if $j \in I-\{? q i\}$ for j

```
    proof -
    have ?r j G {..<n} - {i} using that bij-betw-apply[OF r] by
auto
            thus ?thesis using 2 by simp
    qed
    hence }\forallj\inI-{?qi}.(\lambdai\inI.x(?r i)) j=(\lambdai\inI.y(?r i)) j by
auto
    thus ?case using 2 d by (intro assms(3) bij-betw-apply[OF q])
auto
    next
        case 3
    have (\lambdax.x (?r i)) \inPi}\mp@subsup{|}{M}{}{..<n}(M\circ?q)\mp@subsup{->}{M}{M}Mi\mathrm{ if }i\inI\mathrm{ for }
    proof -
    have 0:Mi=(M\circ?q) (?r i) using that by (simp add: comp-def)
    show ?thesis unfolding 0 by (intro measurable-component-singleton
bij-betw-apply[OF r] that)
    qed
    thus ?case by (intro measurable-compose[OF - f-meas] measur-
able-restrict)
    qed
    also have ... = ?R by (subst sum.reindex-bij-betw[OF q]) simp
    finally show ?thesis by simp
qed
lemma (in prob-space) mc-diarmid-inequality-classic:
    fixes f :: (' }i=\mp@subsup{|}{}{\prime}a)=>\mathrm{ real
    assumes finite I
    assumes indep-vars N X I
    assumes \ixy.i\inI\Longrightarrow{x,y}\subseteqspace(PiMIN)\Longrightarrow(\forallj\inI-{i}.
x j=y j)\Longrightarrow |fx-f y | cci
    assumes f-meas: f\in borel-measurable (PiM I N) and \varepsilon-gt-0: \varepsilon>0
```



```
\varepsilon)\leq exp (-(2*\varepsilon^2)/(\sumi\inI.(ci)^2))
    (is ?L}\leq?R
proof -
    note indep-imp = iffD1[OF indep-vars-iff-distr-eq-PiM']
    let ?O = \lambdai.distr M (Ni) (Xi)
    have a:distr M (Pi M I N) (\lambdax. \lambdai\inI.X i x) = Pi ( I I ?O
    using assms(2) unfolding indep-vars-def by (intro indep-imp[OF
- assms(2)]) auto
    have b: space (PiM I ?O) = space (PiM I N)
    by (metis (no-types, lifting) a space-distr)
    have (\lambdai\inI.X i \omega)\in space (Pi
            using assms(2) that unfolding indep-vars-def measurable-def
space-PiM by auto
    hence ?L = \mathcal{P}(\omega\mathrm{ in M. ( }\lambdai\inI.Xi\omega)\in space (P\mp@subsup{i}{M}{}IN)\wedgef(\lambdai\inI.
```

```
Xi\omega)-(\int\xi.f(\lambdai\inI.Xi\xi)\partialM)\geq\varepsilon)
    by (intro arg-cong2[where f=measure] Collect-restr-cong refl) auto
```



```
- (\int\xi.f (\lambdai\inI.Xi\xi)\partialM)\geq\varepsilon)
    proof (subst measure-distr, goal-cases)
        case 1 thus ?case using assms(2) unfolding indep-vars-def by
(intro measurable-restrict) auto
    next
    case 2 thus ?case unfolding space-distr by (intro measurable-sets-Collect[OF
f-meas]) auto
    next
        case 3 thus ?case by (simp-all add:Int-def conj-commute)
    qed
    also have ... = \mathcal{P}(\omega\mathrm{ in PiM I ?O.f }\omega-(\int\xi.f(\lambdai\inI. X i \xi) \partialM)
\geq)
    unfolding a by simp
    also have ... =\mathcal{P}(\omega\mathrm{ in PiM I ?O. f }\omega-(\int\xi.f\xi\partial distr M (Pi ( 
IN)}(\lambdax.\lambdai\inI.Xix))\geq\varepsilon
    proof (subst integral-distr[OF - f-meas], goal-cases)
        case (1 \omega) thus ?case using assms(2) unfolding indep-vars-def
by (intro measurable-restrict)auto
    next
        case 2 thus ?case by simp
    qed
    also have ... =\mathcal{P}(\omega\mathrm{ in PiM I ?O.f }\omega-(\int\xi.f\xi\partialP\mp@subsup{i}{M}{}I ?O)\geq
\varepsilon) unfolding a by simp
    also have ... \leq?R
        using f-meas assms(2) b unfolding indep-vars-def
        by (intro mc-diarmid-inequality-distr prob-space-distr assms(1)
\varepsilon-gt-0 assms(3)) auto
    finally show ?thesis by simp
qed
end
```


7 Paley-Zygmund Inequality

This section proves slight improvements of the Paley-Zygmund Inequality [7]. Unfortunately, the improvements are on Wikipedia with no citation.
theory Paley-Zygmund-Inequality imports $L p . L p$
begin
context prob-space
begin
theorem paley-zygmund-inequality-holder:

```
    assumes p:1< (p::real)
    assumes rv: random-variable borel Z
    assumes intZp: integrable M (\lambdaz. |Z z| powr p)
    assumes t:\vartheta\leq1
    assumes ZAEpos:AE z in M. Zz\geq0
    shows
        (expectation ( }\lambdax.|Zx-\vartheta*\mathrm{ expectation Z| powr p) powr (1 /
(p-1)))*
    prob {z\in space M. Zz>\vartheta* expectation Z}
        \geq((1-\vartheta) powr (p/(p-1))* expectation Z powr (p/(p-1)))
proof -
    have intZ: integrable M Z
        apply (subst bound-L1-Lp[OF - rv intZp])
        using p by auto
    define eZ where eZ = expectation Z
    have eZ \geq0
        unfolding eZ-def
        using ZAEpos intZ integral-ge-const prob-Collect-eq-1 by auto
    have ezp: expectation ( }\lambdax.|Zx-\vartheta*eZ| powr p)\geq
    by (meson Bochner-Integration.integral-nonneg powr-ge-pzero)
    have expectation (\lambdaz.Zz-\vartheta*eZ)=expectation ( }\lambdaz.Zz+(-
* eZ))
        by auto
    moreover have ... = expectation Z + expectation ( }\lambdaz.-\vartheta*eZ
        apply (subst Bochner-Integration.integral-add)
        using intZ by auto
    moreover have ... =eZ + (-\vartheta*eZ)
        apply (subst lebesgue-integral-const)
        using eZ-def prob-space by auto
    ultimately have *: expectation ( }\lambdaz.Zz-\vartheta*eZ)=eZ-\vartheta*eZ
        by linarith
    have ev: {z\in space M. \vartheta*eZ<Z Z}}\in\mathrm{ events
        using rv unfolding borel-measurable-iff-greater
        by auto
    define q}\mathrm{ where }q=p/(p-1
    have sqI:(indicat-real E x) powr q = indicat-real E (x::'a) for E x
        unfolding q-def
        by (metis indicator-simps(1) indicator-simps(2) powr-0 powr-one-eq-one)
    have bm1:(\lambdaz. (Zz-\vartheta*eZ)) \in borel-measurable M
        using borel-measurable-const borel-measurable-diff rv by blast
    have bm2: (\lambdaz. indicat-real {z\in space M. Zz>\vartheta*eZ}z)\in
borel-measurable M
```

using borel-measurable-indicator ev by blast
have integrable $M(\lambda x .|Z x+(-\vartheta * e Z)|$ powr $p)$
apply (intro Minkowski-inequality $[O F-r v-i n t Z p])$
using p by auto
then have int1: integrable $M(\lambda x .|Z x-\vartheta * e Z|$ powr $p)$ by auto
have integrable M
$(\lambda x .1 *$ indicat-real $\{z \in$ space $M . \vartheta * e Z<Z z\} x)$
apply (intro integrable-real-mult-indicator $[O F e v]$)
by auto
then have int2: integrable M
(λx. \mid indicat-real $\{z \in$ space $M . \vartheta * e Z<Z z\}$ x| powr q)
by (auto simp add: sqI)
have $p q: p>(0::$ real $) q>01 / p+1 / q=1$
unfolding q-def using p by (auto simp:divide-simps)
from Holder-inequality[OF pq bm1 bm2 int1 int2]
have hi: expectation $(\lambda x .(Z x-\vartheta * e Z) *$ indicat-real $\{z \in$ space
$M . \vartheta * e Z<Z z\} x)$
\leq expectation $(\lambda x .|Z x-\vartheta * e Z|$ powr $p)$ powr $(1 / p) *$ expectation (λx. \mid indicat-real $\{z \in$ space $M . \vartheta * e Z<Z z\} x \mid$ powr q) powr ($1 / q$)
by auto
have $e Z-\vartheta * e Z \leq$
expectation $(\lambda z .(Z z-\vartheta * e Z) *$ indicat-real $\{z \in$ space $M . Z z$ $>\vartheta * e Z\} z)$
unfolding $*$ [symmetric]
apply (intro integral-mono)
using intZ ev apply auto[1]
apply (auto intro!: integrable-real-mult-indicator simp add: intZ
ev) [1]
unfolding indicator-def of-bool-def
by (auto simp add: mult-nonneg-nonpos2)
also have ... \leq
expectation $(\lambda x .|Z x-\vartheta * e Z|$ powr $p)$ powr $(1 / p) *$ expectation $(\lambda x$. indicat-real $\{z \in$ space $M . \vartheta * e Z<Z z\} x)$ powr (1/q)
using $h i$ by (auto simp add: sqI)
finally have $e Z-\vartheta * e Z \leq$
expectation $(\lambda x .|Z x-\vartheta * e Z|$ powr $p)$ powr $(1 / p) *$
expectation (λx. indicat-real $\{z \in$ space $M . \vartheta * e Z<Z z\} x$) powr $(1 / q)$
by auto
then have $(e Z-\vartheta * e Z)$ powr $q \leq$
(expectation $(\lambda x .|Z x-\vartheta * e Z|$ powr $p)$ powr $(1 / p) *$
expectation (λx. indicat-real $\{z \in$ space $M . \vartheta * e Z<Z z\} x)$ powr (1 / q)) powr q
by (smt (verit, ccfv-SIG) <0 $\leq e Z\rangle$ mult-left-le-one-le powr-mono2 $p q(2)$ right-diff-distrib' t zero-le-mult-iff)
also have $\ldots=$
(expectation $(\lambda x .|Z x-\vartheta * e Z|$ powr $p)$ powr $(1 / p))$ powr $q *$
(expectation (λx. indicat-real $\{z \in$ space $M . \vartheta * e Z<Z z\} x)$ powr (1/q)) powr q
using powr-ge-pzero powr-mult by presburger
also have ... =
(expectation $(\lambda x .|Z x-\vartheta * e Z|$ powr $p)$ powr $(1 / p))$ powr $q *$
(expectation $(\lambda x$. indicat-real $\{z \in$ space $M . \vartheta * e Z<Z z\} x)$)
by (smt (verit, ccfv-SIG) Bochner-Integration.integral-nonneg di-vide-le-eq-1-pos indicator-pos-le nonzero-eq-divide-eq p powr-one powr-powr q-def)
also have...$=$
(expectation $(\lambda x .|Z x-\vartheta * e Z|$ powr $p)$ powr $(1 /(p-1))) *$
(expectation (λx. indicat-real $\{z \in$ space $M . \vartheta * e Z<Z z\} x)$)
by (smt (verit, ccfv-threshold) divide-divide-eq-right divide-self-if p powr-powr q-def times-divide-eq-left)
also have...$=$
(expectation $(\lambda x .|Z x-\vartheta * e Z|$ powr $p)$ powr $(1 /(p-1))) *$
$\operatorname{prob}\{z \in$ space $M . Z z>\vartheta * e Z\}$
by (simp add: ev)
finally have 1: $(e Z-\vartheta * e Z)$ powr $q \leq$
(expectation $(\lambda x .|Z x-\vartheta * e Z|$ powr $p)$ powr $(1 /(p-1))) *$ $\operatorname{prob}\{z \in$ space $M . Z z>\vartheta * e Z\}$ by linarith
have $(e Z-\vartheta * e Z)$ powr $q=((1-\vartheta) * e Z)$ powr q
by (simp add: mult.commute right-diff-distrib)
also have $\ldots=(1-\vartheta)$ powr $q * e Z$ powr q
by (simp add: $\langle 0 \leq e Z\rangle$ powr-mult $t)$
finally show ?thesis using 1 e Z-def q-def by force qed

```
corollary paley-zygmund-inequality:
    assumes rv: random-variable borel \(Z\)
    assumes intZsq: integrable \(M\left(\lambda z .(Z z)^{\wedge}\right.\) 2)
    assumes \(t: \vartheta \leq 1\)
    assumes Zpos: \(\bigwedge z . z \in\) space \(M \Longrightarrow Z z \geq 0\)
    shows
    (variance \(Z+(1-\vartheta) \wedge_{2} *(\) expectation \(\left.Z) \wedge 2\right) *\)
    \(\operatorname{prob}\{z \in\) space \(M . Z z>\vartheta *\) expectation \(Z\}\)
        \(\geq(1-\vartheta)^{\wedge} 2 *(\text { expectation } Z)^{\wedge} 2\)
proof -
```

```
have ZAEpos: \(A E z\) in \(M . Z z \geq 0\)
    by (simp add: Zpos)
define \(p\) where \(p=(2::\) real \()\)
have \(p 1: 1<p\) using \(p\)-def by auto
have integrable \(M(\lambda z .|Z z|\) powr \(p)\) unfolding \(p\)-def
    using intZsq by auto
    from paley-zygmund-inequality-holder[OF p1 rv this \(t\) ZAEpos]
    have \((1-\vartheta) \operatorname{powr}(p /(p-1)) *(\operatorname{expectation} Z \operatorname{powr}(p /(p-\)
1)))
    \(\leq\) expectation \((\lambda x . \mid Z x-\vartheta *\) expectation \(Z \mid\) powr \(p)\) powr \((1 /(p\)
\(-1))\) *
        \(\operatorname{prob}\{z \in\) space \(M . \vartheta *\) expectation \(Z<Z z\}\).
    then have \(h i:(1-\vartheta){ }^{2} 2 *(\text { expectation } Z)^{\wedge} \wedge_{2}^{2}\)
    \(\leq\) expectation \(\left(\lambda x\right.\). \(\left.(Z x-\vartheta * \text { expectation } Z)^{\wedge} 2\right) *\)
    prob \(\{z \in\) space \(M . \vartheta *\) expectation \(Z<Z z\}\)
    unfolding \(p\)-def by (auto simp add: Zpos \(t\) )
    have intZ: integrable \(M Z\)
    apply (subst square-integrable-imp-integrable[OF rv intZsq])
    by auto
define \(e Z\) where \(e Z=\) expectation \(Z\)
have \(e Z \geq 0\)
    unfolding \(e Z-d e f\)
    using Bochner-Integration.integral-nonneg Zpos by blast
have ezp: expectation \((\lambda x .|Z x-\vartheta * e Z|\) powr \(p) \geq 0\)
    by (meson Bochner-Integration.integral-nonneg powr-ge-pzero)
    have expectation \((\lambda z \cdot Z z-\vartheta * e Z)=\) expectation \((\lambda z \cdot Z z+(-\vartheta\)
* eZ))
    by auto
    also have \(\ldots=\) expectation \(Z+\operatorname{expectation}(\lambda z .-\vartheta * e Z)\)
    apply (subst Bochner-Integration.integral-add)
    using int \(Z\) by auto
also have \(\ldots=e Z+(-\vartheta * e Z)\)
    apply (subst lebesgue-integral-const)
    using eZ-def prob-space by auto
finally have \(*\) : expectation \((\lambda z . Z z-\vartheta * e Z)=e Z-\vartheta * e Z\)
    by linarith
have variance \(Z=\)
    variance \((\lambda z .(Z z-\vartheta * e Z))\)
    using \(* e Z\)-def by auto
also have ... =
    expectation \(\left(\lambda z .(Z z-\vartheta * e Z)^{\wedge}\right.\) 2)
    - \((\text { expectation }(\lambda x . Z x-\vartheta * e Z))^{2}\)
```

```
    apply (subst variance-eq)
    by (auto simp add: intZ power2-diff intZsq)
    also have \(\ldots=\) expectation \(\left(\lambda z .(Z z-\vartheta * e Z)^{\wedge} 2\right)-\left((1-\vartheta)^{\wedge} 2 *\right.\)
\(e Z^{\wedge}\) 2)
    unfolding * by (auto simp:algebra-simps power2-eq-square)
    finally have veq: expectation \(\left(\lambda z .(Z z-\vartheta * e Z)^{\wedge} 2\right)=(\) variance \(Z\)
\(\left.+(1-\vartheta) \wedge 2 * e Z^{`} 2\right)\)
    by linarith
    thus ?thesis
        using \(h i\) by (simp add: eZ-def)
qed
end
end
```


References

[1] G. Bennett. Probability inequalities for the sum of independent random variables. Journal of the American Statistical Association, 57(297):33-45, 1962.
[2] S. Boucheron, G. Lugosi, and O. Bousquet. Concentration inequalities. In O. Bousquet, U. von Luxburg, and G. Rätsch, editors, Advanced Lectures on Machine Learning, ML Summer Schools 2003, Canberra, Australia, February 2-14, 2003, Tübingen, Germany, August 4-16, 2003, Revised Lectures, volume 3176 of Lecture Notes in Computer Science, pages 208-240. Springer, 2003.
[3] F. P. Cantelli. Sui confini della probabilita. In Atti del Congresso Internazionale dei Matematici: Bologna del 3 al 10 de settembre di 1928, pages 47-60, 1929.
[4] B. Efron and C. Stein. The Jackknife Estimate of Variance. The Annals of Statistics, 9(3):586-596, 1981.
[5] M. Loève. Probability Theory I, chapter Sums of Independent Random Variables, pages 235-279. Springer New York, New York, NY, 1977.
[6] C. McDiarmid. Surveys in Combinatorics, 1989: Invited Papers at the Twelfth British Combinatorial Conference, chapter On the method of bounded differences, pages $148-188$. London Mathematical Society Lecture Note Series. Cambridge University Press, 1989.
[7] R. E. Paley and A. Zygmund. A note on analytic functions in the unit circle. In Mathematical Proceedings of the Cambridge Philosophical Society, volume 28, pages 266-272. Cambridge University Press, 1932.
[8] J. M. Steele. An Efron-Stein Inequality for Nonsymmetric Statistics. The Annals of Statistics, 14(2):753-758, 1986.

[^0]: *The authors contributed equally to this work.

