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Abstract
Automated Market Makers (AMMs) are one of the cornerstones of

decentralized finance. They enable users to exchange tokens without
the need for order books as would be the case in traditional finance.
They involve liquidity providers, whose tokens, usually called the quote
and base tokens, can be used in the swap process in exchange for a fee,
and liquidity takers who swap their tokens. The rules specifying the
quantities of tokens that can swapped and those that act as fees are
predefined and lead to several categories of AMMs.

Uniswap v3 introduced a new market-making design that improves
capital efficiency by allowing liquidity providers to allocate their as-
sets within selected price intervals. By concentrating liquidity over
narrower ranges, providers may earn higher fee income than in ear-
lier AMMs, where liquidity is generally distributed uniformly across
all prices. Owing to its success, this design was adopted by several
decentralized exchanges on various blockchains, including Trader Joe,
PancakeSwap v3, Sunswap v3, and Sushiswap v3. These protocols
are collectively referred to as Concentrated Liquidity Market Makers
(CLMMs). Despite differences in implementation details, such as fee
structures, tick spacing, or incentive mechanisms, they all rely on the
same underlying principles.

In practice, liquidity takers can thus interact with multiple CLMM
pools involving the same pair of tokens but different liquidity profiles
or fee structures. A crucial task for them is to understand how these
pools can be combined, both conceptually and computationally.

Based on the work in [1], we formalize several notions related to
CLMMs, and introduce several operations on such pools that permit to
derive an optimality result: if two pools admit the same fees, then the
defined transformations permit to determine the optimal quantities of
quote tokens to trade in each pool in order to recover as many base
tokens as possible.
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theory CLMM-Misc imports HOL−Analysis.Analysis

begin

1 Preliminary definitions and results
1.1 Misc
lemma diff-min-le:

assumes (a::real) ≤ b
and x ≤ y
shows min x b − min x a ≤ min y b − min y a

using assms by linarith

lemma sum-ex-strict-pos:
fixes f g :: ′i ⇒ ′a::ordered-cancel-comm-monoid-add

assumes finite A
and ∀ x∈A. 0 ≤ f x
and ∃ a∈A. 0 < f a

shows 0 < sum f A
proof −

obtain a where 0 < f a and a∈ A using assms by auto note aprop = this
define B where B = A − {a}
hence A = insert a B using aprop by auto
have 0 < f a using aprop by simp
also have ... ≤ f a + sum f B
proof −

have 0 ≤ sum f B
proof (rule sum-nonneg)

fix x
assume x∈ B
thus 0 ≤ f x using B-def assms by simp

qed
thus ?thesis by (simp add: add-increasing2 )

qed
also have ... = sum f (insert a B)
proof (rule sum.insert[symmetric])

show finite B using assms B-def by simp
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show a /∈ B using B-def by simp
qed
also have ... = sum f A using ‹A = insert a B› by simp
finally show ?thesis .

qed

lemma diff-inv-max-le:
assumes 0 < a
and (a::real) ≤ b
and x ≤ y

shows inverse (max y a) − inverse (max y b) ≤
inverse (max x a) − inverse (max x b)

proof (cases b ≤ y)
case True
thus ?thesis using assms by auto

next
case False
hence max y b = b by simp
have max x b = b using False assms by auto
show ?thesis using ‹max y b = b› assms by fastforce

qed

lemma int-interval-insert:
fixes a::int
assumes a ≤ b
shows {a..< (b+1 )} = insert b {a..< b}

proof
show {a..<b + 1} ⊆ insert b {a..<b}
proof

fix x
assume x ∈ {a..<b + 1}
show x ∈ insert b {a..<b}
proof (cases x = b)

case True
then show ?thesis by simp

next
case False
hence x < b using ‹x ∈ {a..<b + 1}› by simp
then show ?thesis using ‹x ∈ {a..<b + 1}› by simp

qed
qed

next
show insert b {a..<b} ⊆ {a..<b + 1} by (simp add: assms)

qed

lemma int-telescoping-sum:
fixes f ::int ⇒ ′a::ab-group-add
assumes a ≤ b
shows (

∑
i ∈{a..<b}. (f i − f (i+1 ))) = f a − (f b) using ‹a ≤ b›
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proof (induct rule: int-ge-induct )
case base
then show ?case by simp

next
case (step i)
have {a..<i + 1} = insert i {a..<i}

using int-interval-insert ‹a ≤ i› by simp
hence (

∑
i ∈ {a..<i + 1}. f i − f (i + 1 )) =

(
∑

i ∈ (insert i {a..<i}). f i − f (i + 1 )) by simp
also have ... = f i − f (i+1 ) + (

∑
i = a..<i. f i − f (i + 1 ))

by (rule sum.insert, auto)
also have ... = f i − f (i+1 ) + f a − f i using step by simp
also have ... = f a − f (i+1 ) by simp
finally show ?case .

qed

lemma int-telescoping-sum ′:
fixes f ::int ⇒ ′a::ab-group-add
assumes a ≤ b
shows (

∑
i ∈{a..<b}. (f (i+1 ) − f i)) = f b − (f a)

proof −
define g where g = (λx. − f x)
have (

∑
i ∈{a..<b}. (f (i+1 ) − f i)) = (

∑
i ∈{a..<b}. (g i − g (i+1 )))

by (rule sum.cong, auto simp add: g-def )
also have ... = g a − g b using assms int-telescoping-sum[of a b] by simp
also have ... = f b − f a using g-def by simp
finally show ?thesis .

qed

lemma int-telescoping-sum-le ′:
fixes f ::int ⇒ ′a::ab-group-add
assumes a ≤ b
shows (

∑
i ∈{a..b}. (f (i+1 ) − f i)) = f (b+1 ) − (f a)

proof −
have {a..b} = {a..< b+1} by auto
thus ?thesis using assms int-telescoping-sum ′[of a b+1 ] by simp

qed

lemma diff-sum-dcomp:
fixes f :: ′a ⇒ real
assumes finite A
and A = B ∪ C
and B ∩ C = {}

shows x + sum f A − (y + sum f B) = x + sum f C − y
proof −

have sum f A = sum f (B ∪ C ) using assms by simp
also have ... = sum f B + sum f C
proof (rule sum.union-inter-neutral)

show finite B using assms by simp
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show finite C using assms by simp
show ∀ x∈B ∩ C . f x = 0 using assms by simp

qed
finally have sum f A = sum f B + sum f C .
thus ?thesis by simp

qed

lemma sum-remove-el:
assumes finite A
and x∈ A
and B = A − {x}
shows sum f A = f x + sum f B

proof −
have A = insert x B using assms by auto
hence sum f A = sum f (insert x B) by simp
also have ... = f x + sum f B
proof (rule sum.insert)

show finite B using assms by simp
show x /∈ B using assms by simp

qed
finally show ?thesis .

qed

lemma int-set-bdd-above:
fixes X ::int set
assumes X 6= {}

and bdd-above X
shows Sup X ∈ X ∀ x ∈ X . x ≤ Sup X

proof −
from assms obtain x y where x ∈ X and X ⊆ {..y}

by (auto simp: bdd-above-def )
hence ∗: finite (X ∩ {x..y}) X ∩ {x..y} 6= {} and x ≤ y

by (auto simp: subset-eq)
have ∃ !x∈X . (∀ y∈X . y ≤ x)
proof

{ fix z assume z ∈ X
have z ≤ Max (X ∩ {x..y})
proof cases

assume x ≤ z with ‹z ∈ X› ‹X ⊆ {..y}› ∗(1 ) show ?thesis
by (auto intro!: Max-ge)

next
assume ¬ x ≤ z
then have z < x by simp
also have x ≤ Max (X ∩ {x..y})

using ‹x ∈ X› ∗(1 ) ‹x ≤ y› by (intro Max-ge) auto
finally show ?thesis by simp

qed }
note le = this
with Max-in[OF ∗] show
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ex: Max (X ∩ {x..y}) ∈ X ∧ (∀ z∈X . z ≤ Max (X ∩ {x..y}))
by auto
fix z assume ∗: z ∈ X ∧ (∀ y∈X . y ≤ z)
with le have z ≤ Max (X ∩ {x..y})

by auto
moreover have Max (X ∩ {x..y}) ≤ z

using ∗ ex by auto
ultimately show z = Max (X ∩ {x..y})

by auto
qed
hence Sup X ∈ X ∧ (∀ y∈X . y ≤ Sup X)
unfolding Sup-int-def by (rule theI ′)

thus Sup X ∈ X ∀ x ∈ X . x ≤ Sup X by auto
qed

definition wedge where
wedge f (i::int) sqp = (λn. if n ≤ i then f n else f (n−1 ))(i+1 :=sqp)

lemma wedge-arg-lt[simp]:
assumes n ≤ i
shows wedge f i sqp n = f n using assms unfolding wedge-def by simp

lemma wedge-arg-gt[simp]:
assumes i+1 < n
shows wedge f i sqp n = f (n−1 ) using assms unfolding wedge-def by simp

lemma wedge-arg-eq[simp]:
shows wedge f i sqp (i+1 ) = sqp unfolding wedge-def by simp

lemma wedge-strict-mono:
assumes strict-mono f
and f i < sqp
and sqp < f (i+1 )
and g = wedge f i sqp

shows strict-mono g unfolding strict-mono-def
proof (intro allI impI )

fix x y
assume (x::int) < y
show g x < g y
proof (cases y < i+1 )

case True
then show ?thesis

using ‹x < y› assms strict-mono-less by fastforce
next

case False
show ?thesis
proof (cases y = i+1 )

case True
hence wedge f i sqp y = sqp by simp
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have x ≤ i using True ‹x < y› by simp
hence wedge f i sqp x = f x by simp
then show ?thesis using ‹wedge f i sqp y = sqp› assms

by (metis ‹x ≤ i› monoE order-le-less-trans strict-mono-mono)
next

case False
hence i+1 < y using ‹¬ y < i+1 › by simp
hence wedge f i sqp y = f (y − 1 ) by simp
show ?thesis
proof (cases x = i+1 )

case True
then show ?thesis

by (metis (mono-tags, lifting) ‹wedge f i sqp y = f (y − 1 )›
‹x < y› assms(1 ) assms(3 ) assms(4 ) monoD order-less-le-subst1
strict-mono-on-imp-mono-on wedge-arg-eq zle-diff1-eq)

next
case False
then show ?thesis

by (metis ‹i + 1 < y› ‹x < y› assms(1 ) assms(4 ) diff-strict-right-mono
linorder-le-less-linear order-le-imp-less-or-eq strict-monoD
wedge-arg-gt wedge-arg-lt zle-diff1-eq zless-imp-add1-zle)

qed
qed

qed
qed

lemma wedge-gt:
assumes ∀ i. x < f i
and x < sqp
shows ∀ i. x < wedge f j sqp i
by (smt (verit) assms wedge-arg-eq wedge-arg-gt wedge-arg-lt)

lemma wedge-ge:
assumes ∀ i. x ≤ f i
and x ≤ sqp
shows ∀ i. x ≤ wedge f j sqp i
by (smt (verit) assms wedge-arg-eq wedge-arg-gt wedge-arg-lt)

lemma wedge-lt:
assumes ∀ i. f i < x
and sqp < x
shows ∀ i. wedge f j sqp i < x
by (smt (verit) assms wedge-arg-eq wedge-arg-gt wedge-arg-lt)

lemma wedge-le:
assumes ∀ i. f i ≤ x
and sqp ≤ x
shows ∀ i. wedge f j sqp i ≤ x
by (smt (verit) assms wedge-arg-eq wedge-arg-gt wedge-arg-lt)
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lemma wedge-images:
shows ∀ j. ∃ k. f j = wedge f i sqp k

proof
fix j
show ∃ k. f j = wedge f i sqp k
proof (cases j ≤ i)

case True
hence wedge f i sqp j = f j by simp
then show ?thesis by metis

next
case False
hence i+1 ≤ j by simp
hence wedge f i sqp (j+1 ) = f j by simp
then show ?thesis by metis

qed
qed

lemma wedge-images ′:
assumes A = {j. j ≤ i}
and B = {j. i+1 < j}

shows wedge f i sqp k ∈ f‘A ∪ (f‘((λi. i−1 )‘B)) ∪ {sqp}
proof (cases k ≤ i)

case True
hence wedge f i sqp k = f k by simp
hence wedge f i sqp k ∈ f‘A using assms True by simp
then show ?thesis by simp

next
case False
show ?thesis
proof (cases k = i+1 )

case True
then show ?thesis by simp

next
case False
hence i+1 < k using ‹¬ k ≤ i› by simp
then show ?thesis by (simp add: ‹i + 1 < k› assms(2 ))

qed
qed

lemma wedge-as-ubound:
assumes ∀ (r ::real). ∃ (i::int). r < f i
shows ∀ r . ∃ k. r < wedge f i sqp k using assms
by (metis wedge-images)

lemma wedge-as-lbound:
assumes ∀ (r ::real) > 0 . ∃ (i::int). f i < r
shows ∀ r > 0 . ∃ k. wedge f i sqp k < r using assms
by (metis wedge-images)
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lemma wedge-arg-prop:
shows {j. P (wedge f i sqp j)} ⊆ {j. j ≤ i ∧ P (f j)} ∪
{j. i+1 < j ∧ P (f (j−1 ))} ∪ {i+1}

proof
fix j
assume j∈ {j. P (wedge f i sqp j)}
hence pr : P (wedge f i sqp j) by auto
show j ∈ {j. j ≤ i ∧ P (f j)} ∪ {j. i+1 < j ∧ P (f (j−1 ))} ∪ {i+1}
proof (cases j ≤ i)

case True
hence wedge f i sqp j = f j by simp
then show ?thesis using pr True by simp

next
case False
show ?thesis
proof (cases j = i+1 )

case True
then show ?thesis using pr by simp

next
case False
hence i+1 < j using ‹¬ j ≤ i› by simp
hence wedge f i sqp j = f (j−1 ) by simp
then show ?thesis using pr ‹i+1 < j› by simp

qed
qed

qed

definition one-cpl where
one-cpl phi = (λ(i::int). (1 ::real) − (phi i))

definition gross-fct where
gross-fct f phi = (λi. f i / (one-cpl phi i))

lemma gross-fct-sgn:
assumes phi i < (1 ::real)
shows ((0 ::real) ≤ f i) ←→ (0 ≤ gross-fct f phi i) unfolding gross-fct-def
by (metis assms diff-ge-0-iff-ge eucl-less-le-not-le le-iff-diff-le-0

one-cpl-def zero-le-divide-iff )

lemma gross-fct-nz-eq:
assumes phi i 6= (1 ::real)
shows f i = 0 ←→ gross-fct f phi i = 0 using assms unfolding gross-fct-def
by (simp add: one-cpl-def )

lemma gross-fct-cong:
assumes f a = f ′ b
and phi a = phi ′ b

shows gross-fct f phi a = gross-fct f ′ phi ′ b using assms
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unfolding gross-fct-def by (simp add: one-cpl-def )

lemma gross-fct-zero-if :
assumes f a = 0
shows gross-fct f phi a = 0 using assms unfolding gross-fct-def by simp

definition fee-union where
fee-union (l1 ::real) l2 f1 f2 = (l1∗f1∗(1−f2 ) + l2∗f2∗(1−f1 ))/
(l1∗(1−f2 ) + l2∗(1−f1 ))

lemma fee-union-pos:
assumes 0 ≤ l1
and 0 ≤ l2
and 0 ≤ f1
and 0 ≤ f2
and f1 < 1
and f2 < 1

shows 0 ≤ fee-union l1 l2 f1 f2 using assms unfolding fee-union-def by simp

lemma fee-union-lt-1 :
assumes 0 ≤ l1
and 0 ≤ l2
and 0 ≤ f1
and 0 ≤ f2
and f1 < 1
and f2 < 1

shows fee-union l1 l2 f1 f2 < 1
proof (cases l1 = 0 )

case True
thus ?thesis unfolding fee-union-def by (simp add: assms(6 ))

next
case False
show ?thesis
proof (cases l2 = 0 )

case True
then show ?thesis unfolding fee-union-def by (simp add: assms(5 ))

next
case False
hence 0 < l1∗(1−f2 ) + l2∗(1−f1 ) using assms ‹¬ l1 = 0 ›

by (simp add: less-eq-real-def pos-add-strict)
moreover have l1∗f1∗(1−f2 ) + l2∗f2∗(1−f1 ) < l1∗(1−f2 ) + l2∗(1−f1 )

using assms False ‹¬ l1 = 0 ›
by (smt (verit, best) mult-less-cancel-left2 mult-less-cancel-right)

ultimately show ?thesis unfolding fee-union-def by simp
qed

qed

lemma diff-inv-le:
assumes 0 < (x::real)
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and x ≤ y
and y ≤ z

shows (y − x)/(z∗z) ≤ inverse x − inverse y
proof −

have 0 < y using assms by simp
hence 0 < z using assms by simp
have (y − x)/(z∗z) ≤ (y − x) / (x ∗ y) using assms

by (simp add: frac-le mult-mono)
also have ... = inverse x − inverse y

using ‹0 < x› ‹0 < y›
by (simp add: divide-real-def division-ring-inverse-diff )

finally show ?thesis .
qed

lemma diff-inv-le ′:
assumes 0 < (x::real)
and x ≤ y
and y ≤ z
and 0 ≤ a

shows a ∗ (y − x)/(z∗z) ≤ a ∗ (inverse x − inverse y)
proof −

have 0 < y using assms by simp
hence 0 < z using assms by simp
have (y − x)/(z∗z) ≤ (y − x) / (x ∗ y) using assms

by (simp add: frac-le mult-mono)
also have ... = inverse x − inverse y

using ‹0 < x› ‹0 < y›
by (simp add: divide-real-def division-ring-inverse-diff )

finally show ?thesis
by (metis assms(4 ) mult-left-mono times-divide-eq-right)

qed

lemma diff-inv-sum-le ′:
assumes ∀ i ∈ I . (0 ::real) < f i
and ∀ i ∈ I . f i ≤ f (i+1 )
and ∀ i∈ I . f (i+1 ) ≤ z
and ∀ i ∈ I . 0 ≤ g i
shows sum (λi. g i ∗ (f (i+1 ) − f i)) I / (z ∗ z) ≤

sum (λi. g i ∗ (inverse (f i) − inverse (f (i+1 )))) I
proof −

have sum (λi. g i ∗ (f (i+1 ) − f i)) I / (z ∗ z) =
sum (λi. g i ∗ (f (i+1 ) − f i)/ (z ∗ z)) I

by (rule sum-divide-distrib)
also have ... ≤ sum (λi. g i ∗ (inverse (f i) − inverse (f (i+1 )))) I
proof (rule sum-mono)

fix i
assume i ∈ I
show g i ∗ (f (i + 1 ) − f i) / (z ∗ z) ≤

g i ∗ (inverse (f i) − inverse (f (i + 1 )))
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by (rule diff-inv-le ′, (auto simp add: assms ‹i ∈ I ›))
qed
finally show ?thesis .

qed

lemma diff-inv-ge:
assumes 0 < (x::real)
and x ≤ y
and y ≤ z

shows inverse y − inverse z ≤ (z − y)/(x∗x)
proof −

have 0 < y using assms by simp
hence 0 < z using assms by simp
hence inverse y − inverse z = (z − y) / (y ∗ z)

using ‹0 < y› by (simp add: divide-real-def division-ring-inverse-diff )
also have ... ≤ (z − y)/(x∗x) using assms

by (simp add: frac-le mult-mono)
finally show ?thesis .

qed

lemma diff-inv-ge ′:
assumes 0 < (x::real)
and x ≤ y
and y ≤ z
and 0 ≤ a

shows a ∗ (inverse y − inverse z) ≤ a ∗ (z − y)/(x∗x)
proof −

have 0 < y using assms by simp
hence 0 < z using assms by simp
hence inverse y − inverse z = (z − y) / (y ∗ z)

using ‹0 < y› by (simp add: divide-real-def division-ring-inverse-diff )
also have ... ≤ (z − y)/(x∗x) using assms

by (simp add: frac-le mult-mono)
finally show ?thesis

by (metis assms(4 ) mult-left-mono times-divide-eq-right)
qed

lemma diff-inv-sum-ge ′:
assumes (0 ::real) < z
and ∀ i ∈ I . f i ≤ f (i+1 )
and ∀ i∈ I . z ≤ f i
and ∀ i ∈ I . 0 ≤ g i

shows sum (λi. g i ∗ (inverse (f i) − inverse (f (i+1 )))) I ≤
sum (λi. g i ∗ (f (i+1 ) − f i)) I / (z ∗ z)

proof −
have sum (λi. g i ∗ (inverse (f i) − inverse (f (i+1 )))) I ≤

sum (λi. g i ∗ (f (i+1 ) − f i)/ (z ∗ z)) I
proof (rule sum-mono)

fix i
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assume i ∈ I
show g i ∗ (inverse (f i) − inverse (f (i + 1 ))) ≤

g i ∗ (f (i + 1 ) − f i) / (z ∗ z)
by (rule diff-inv-ge ′, (auto simp add: assms ‹i ∈ I ›))

qed
also have ... = sum (λi. g i ∗ (f (i+1 ) − f i)) I / (z ∗ z)

by (rule sum-divide-distrib[symmetric])
finally show ?thesis .

qed

1.2 Support of a discrete function
definition nz-support where
nz-support f = {i. f i 6= 0}

lemma nz-supportD:
assumes i∈ nz-support f
shows f i 6= 0 using assms unfolding nz-support-def by simp

lemma wedge-finite-nz-support:
assumes finite (nz-support f )
shows finite (nz-support (wedge f i sqp))

proof −
define A where A = {j. j ≤ i ∧ f j 6= 0}
define B where B = {j. i+1 < j ∧ f (j−1 ) 6= 0}
have inc: nz-support (wedge f i sqp) ⊆ A ∪ B ∪ {i+1}

using wedge-arg-prop[of λx. x 6= 0 ]
unfolding nz-support-def A-def B-def by auto

have finite A using assms unfolding nz-support-def A-def by auto
have B⊆ (λj. j+1 )‘{j. f j 6= 0}
proof

fix j
assume j∈ B
hence i+1 < j and f (j−1 ) 6= 0 unfolding B-def by auto note asm = this
define k where k = j−1
hence f k 6= 0 using asm by simp
hence k ∈ {j. f j 6= 0} by simp
thus j ∈ (λj. j+1 )‘{j. f j 6= 0} using ‹k = j−1 › by force

qed
hence finite B using assms finite-surj unfolding nz-support-def by auto
thus ?thesis using assms ‹finite A› inc

by (meson finite.simps finite-UnI finite-subset)
qed

lemma gross-nz-support-eq:
assumes ∀ i ∈ nz-support f . phi i 6= 1
shows nz-support f = nz-support (gross-fct f phi)
using assms gross-fct-nz-eq gross-fct-zero-if unfolding nz-support-def
by blast
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definition idx-min where
idx-min f = Inf (nz-support f )

definition idx-max where
idx-max f = Sup (nz-support f )

lemma idx-max-bdd-above-ge:
fixes f :: ′a::conditionally-complete-linorder ⇒ ′b::zero
assumes f i 6= 0
and bdd-above (nz-support f )

shows i ≤ idx-max f
proof −

have i ∈ nz-support f unfolding nz-support-def using assms by simp
thus ?thesis unfolding idx-max-def

by (simp add: assms cSup-upper)
qed

lemma idx-min-bdd-below-le:
fixes f :: ′a::conditionally-complete-linorder ⇒ ′b::zero
assumes f i 6= 0
and bdd-below (nz-support f )

shows idx-min f ≤ i
proof −

have i ∈ nz-support f unfolding nz-support-def using assms by simp
thus ?thesis unfolding idx-min-def

by (simp add: assms cInf-lower)
qed

lemma idx-max-finite-ge:
fixes f :: ′a::conditionally-complete-linorder ⇒ ′b::zero
assumes f i 6= 0
and finite (nz-support f )

shows i ≤ idx-max f using assms
by (simp add: idx-max-bdd-above-ge)

lemma idx-min-finite-le:
fixes f :: ′a::conditionally-complete-linorder ⇒ ′b::zero
assumes f i 6= 0
and finite (nz-support f )

shows idx-min f ≤ i using assms
by (simp add: idx-min-bdd-below-le)

lemma idx-max-finite:
fixes f :: ′a::conditionally-complete-linorder ⇒ ′b::zero
assumes nz-support f 6= {}
and finite (nz-support f )

shows idx-max f = Max (nz-support f ) using assms unfolding idx-max-def
by (simp add: cSup-eq-Max)
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lemma idx-min-finite:
fixes f :: ′a::conditionally-complete-linorder ⇒ ′b::zero
assumes nz-support f 6= {}
and finite (nz-support f )

shows idx-min f = Min (nz-support f ) using assms unfolding idx-min-def
by (simp add: cInf-eq-Min)

lemma idx-max-finite-in:
fixes f :: ′a::conditionally-complete-linorder ⇒ ′b::zero
assumes nz-support f 6= {}
and finite (nz-support f )

shows f (idx-max f ) 6= 0 using assms idx-max-finite
by (metis Max-in nz-supportD)

lemma idx-min-finite-in:
fixes f :: ′a::conditionally-complete-linorder ⇒ ′b::zero
assumes nz-support f 6= {}
and finite (nz-support f )

shows f (idx-min f ) 6= 0 using assms idx-min-finite
by (metis Min-in nz-supportD)

lemma idx-max-finite-gt:
fixes f :: ′a::conditionally-complete-linorder ⇒ ′b::zero
assumes finite (nz-support f )

and idx-max f < i
shows f i = 0
proof −

have i /∈ nz-support f using assms idx-max-finite
by (metis Max-ge emptyE linorder-not-less)

thus ?thesis by (simp add: nz-support-def )
qed

lemma idx-min-finite-lt:
fixes f :: ′a::conditionally-complete-linorder ⇒ ′b::zero
assumes finite (nz-support f )

and i < idx-min f
shows f i = 0
proof −

have i /∈ nz-support f using assms idx-min-finite
by (metis Min-le emptyE linorder-not-less)

thus ?thesis by (simp add: nz-support-def )
qed

lemma idx-min-finite-max:
fixes f :: ′a::conditionally-complete-linorder ⇒ ′b::zero
assumes nz-support f 6= {}
and finite (nz-support f )
and

∧
j. j < i =⇒ f j = 0
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shows i ≤ idx-min f
proof (rule ccontr)

assume ¬ i ≤ idx-min f
hence idx-min f < i by simp
hence f (idx-min f ) = 0 using assms by simp
thus False using idx-min-finite-in assms by metis

qed

lemma idx-min-max-finite:
fixes f :: ′a::conditionally-complete-linorder ⇒ ′b::zero
assumes nz-support f 6= {}
and finite (nz-support f )

shows idx-min f≤ idx-max f
proof −

have idx-max f ∈ nz-support f
using idx-max-finite-in assms unfolding nz-support-def by simp

thus idx-min f ≤ idx-max f
using idx-min-finite-le assms unfolding nz-support-def by simp

qed

lemma idx-min-finiteI :
fixes f :: ′a::conditionally-complete-linorder ⇒ ′b::zero
assumes finite (nz-support f )
and f i 6= 0
and

∧
j. j < i=⇒ f j = 0

shows i = idx-min f
proof −

have nz-support f 6= {} using assms unfolding nz-support-def by auto
thus ?thesis

using assms idx-min-finite-le nless-le by (metis idx-min-finite-in)
qed

lemma idx-min-finite-ge:
fixes f :: ′a::conditionally-complete-linorder ⇒ ′b::zero
assumes finite (nz-support f )
and nz-support f 6= {}
and

∧
j. j ≤ i=⇒ f j = 0

shows i ≤ idx-min f
by (meson assms idx-min-finite-in nle-le)

lemma idx-max-finiteI :
fixes f :: ′a::conditionally-complete-linorder ⇒ ′b::zero
assumes finite (nz-support f )
and f i 6= 0
and

∧
j. j > i =⇒ f j = 0

shows i = idx-max f
proof −

have nz-support f 6= {} using assms unfolding nz-support-def by auto
thus ?thesis using assms
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by (meson idx-max-finite-gt idx-max-finite-in linorder-less-linear)
qed

lemma idx-max-finite-le:
fixes f :: ′a::conditionally-complete-linorder ⇒ ′b::zero
assumes finite (nz-support f )
and nz-support f 6= {}
and

∧
j. i≤ j =⇒ f j = 0

shows idx-max f ≤ i
using assms idx-max-finite-in linorder-linear by auto

definition idx-min-img where
idx-min-img g f = g (idx-min f )

lemma idx-min-img-eq:
assumes ∀ x. f x = 0 ←→ f ′ x = 0
shows idx-min-img g f = idx-min-img g f ′ unfolding idx-min-img-def using

assms
by (simp add: idx-min-def nz-support-def )

definition idx-max-img where
idx-max-img g f = g (idx-max f + 1 )

lemma idx-max-img-eq:
assumes ∀ x. f x = 0 ←→ f ′ x = 0
shows idx-max-img g f = idx-max-img g f ′ unfolding idx-max-img-def using

assms
by (simp add: idx-max-def nz-support-def )

lemma non-zero-liq-interv:
fixes i:: ′a::conditionally-complete-linorder
assumes finite (nz-support L)
and L i 6= 0
shows i ∈ {idx-min L .. idx-max L}
using assms idx-max-finite-ge idx-min-finite-le by auto

end
theory Grid-Information imports CLMM-Misc

begin
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2 Grid information
2.1 Definitions

A grid information consists of three functions defining the way a grid is
associated to (square root) prices, the liquidity on each price range and the
fees on each price range.
type-synonym grid-info = (int⇒ real) × (int⇒ real) × (int⇒real)

definition grd::grid-info ⇒ (int⇒ real) where
grd P = fst P

definition lq::grid-info ⇒ (int⇒ real) where
lq P = fst (snd P)

definition fee::grid-info ⇒ (int⇒ real) where
fee P = snd (snd P)

Although several results are formalized in a generalized setting, the pools of
interest are those admitting a finite range with nonzero liquidity.
definition finite-liq where
finite-liq P ←→ finite (nz-support (lq P))

lemma finite-liqI [intro]:
assumes finite {i. lq P i 6= 0}
shows finite-liq P using assms unfolding finite-liq-def nz-support-def
by simp

lemma finite-liqD:
assumes finite-liq P
shows finite {i. lq P i 6= 0} using assms
unfolding finite-liq-def nz-support-def
by simp

definition grd-min where
grd-min P = idx-min-img (grd P) (lq P)

definition grd-max where
grd-max P = idx-max-img (grd P) (lq P)

lemma grd-min-pos:
assumes nz-support (lq P) 6= {}
and

∧
i. 0 < grd P i

shows 0 < grd-min P
by (simp add: assms(2 ) idx-min-img-def grd-min-def )

lemma grd-max-gt:
assumes nz-support (lq P) 6= {}
and

∧
i. 0 < grd P i
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shows 0 < grd-max P
by (simp add: assms(2 ) idx-max-img-def grd-max-def )

locale finite-nz-support =
fixes L::int ⇒ real
assumes fin-nz-sup: finite (nz-support L)

locale finite-liq-pool =
fixes P
assumes fin-liq: finite-liq P

sublocale finite-liq-pool ⊆ finite-nz-support lq P
using fin-liq finite-liq-def finite-nz-support.intro by auto

context finite-liq-pool
begin

lemma idx-max-mem:
assumes nz-support (lq P) 6= {}

shows idx-max (lq P) ∈ nz-support (lq P)
proof −

have finite (nz-support (lq P))
by (simp add: fin-liq finite-liqD nz-support-def )

thus ?thesis using assms unfolding idx-max-def by (metis Max-in cSup-eq-Max)
qed

lemma idx-min-mem:
assumes nz-support (lq P) 6= {}

shows idx-min (lq P) ∈ nz-support (lq P)
proof −

have finite (nz-support (lq P))
by (simp add: fin-liq finite-liqD nz-support-def )

thus ?thesis using assms unfolding idx-min-def
by (metis finite-less-Inf-iff nless-le not-le-imp-less)

qed

lemma grd-min-max:
assumes nz-support (lq P) 6= {}
and mono (grd P)

shows grd-min P ≤ grd-max P
unfolding grd-min-def grd-max-def idx-min-img-def idx-max-img-def

idx-max-def
by (metis add.commute add-increasing assms fin-nz-sup idx-min-def

idx-min-mem le-cSup-finite zero-less-one-class.zero-le-one
monoD)

lemma finite-liq-gross-fct:
shows finite {i. gross-fct (lq P) (fee P) i 6= 0}
using finite-liqD fin-nz-sup unfolding gross-fct-def nz-support-def by auto

20



end

2.2 Gross and net token quantities
2.2.1 General definitions

We define generic functions that are afterwards instantiated to represent the
gross (resp. net) quantities of base (resp. quote) tokens in a pool.
definition rng-token where
rng-token = (λdff L (pi::real) i. ((L i)::real) ∗ (dff pi (i::int)))

lemma rng-token-pos:
assumes 0 ≤ L i
and 0 ≤ dff x i
shows 0 ≤ rng-token dff L x i unfolding rng-token-def
using zero-le-mult-iff assms by auto

lemma rng-token-continuous-on:
assumes continuous-on A (λpi. dff pi i)
shows continuous-on A (λpi. rng-token dff L pi i) unfolding rng-token-def
by (rule continuous-on-mult-left, simp add: assms)

(Anti)-monotonicity is preserved by the generic function rng-token.
lemma rng-token-mono:

assumes 0 ≤ L i
and mono (λpi. dff pi i)

shows mono (λpi. rng-token dff L pi i)
proof

fix x y::real
assume x ≤ y
show rng-token dff L x i ≤ rng-token dff L y i

unfolding rng-token-def
proof (rule ordered-comm-semiring-class.comm-mult-left-mono)

show 0 ≤ L i using assms by simp
show dff x i ≤ dff y i using assms monoD ‹x ≤ y› by auto

qed
qed

lemma rng-token-strict-mono:
assumes (0 ::real) < L i
and strict-mono (λpi. dff pi i)

shows strict-mono (λpi. rng-token dff L pi i)
proof

fix x y::real
assume x < y
hence dff x i < dff y i using assms strict-monoD by auto
thus rng-token dff L x i < rng-token dff L y i

using assms unfolding rng-token-def by simp
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qed

lemma rng-token-antimono:
assumes 0 ≤ L i
and antimono (λpi. dff pi i)

shows antimono (λpi. rng-token dff L pi i)
proof

fix x y::real
assume x ≤ y
show rng-token dff L y i ≤ rng-token dff L x i

unfolding rng-token-def
proof (rule ordered-comm-semiring-class.comm-mult-left-mono)

show 0 ≤ L i using assms by simp
show dff y i ≤ dff x i using assms antimonoD ‹x ≤ y› by auto

qed
qed

lemma rng-token-add:
assumes ∀ i. L i = L1 i + L2 i
shows rng-token dff L x i = rng-token dff L1 x i +

rng-token dff L2 x i
using assms unfolding rng-token-def
by (simp add: ring-class.ring-distribs(2 ))

The generic function for the gross or net token quantities on the entire pool
is obtained by summation of rng-token on all ranges.
definition gen-token where
gen-token = (λdff L pi. (infsum (rng-token dff L pi) UNIV ))

lemma gen-token-pos:
assumes ∀ i. 0 ≤ L i
and ∀ i. 0 ≤ dff x i

shows 0 ≤ gen-token dff L x unfolding gen-token-def
proof (rule infsum-nonneg)

show
∧

y. y ∈ UNIV =⇒ 0 ≤ rng-token dff L x y
using assms unfolding rng-token-def by simp

qed

lemma gen-token-mono:
assumes ∀ i. 0 ≤ L i
and ∀ x. rng-token dff L x summable-on UNIV
and ∀ i. mono (λpi. dff pi i)
shows mono (λpi. gen-token dff L pi)

proof
fix x y::real
assume x ≤ y
show gen-token dff L x ≤ gen-token dff L y unfolding gen-token-def
proof (rule infsum-mono)

show rng-token dff L x summable-on UNIV using assms by simp
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show rng-token dff L y summable-on UNIV using assms by simp
show

∧
i. i ∈ UNIV =⇒ rng-token dff L x i ≤ rng-token dff L y i

using rng-token-mono assms
by (meson ‹x ≤ y› monotoneD)

qed
qed

lemma gen-token-antimono:
assumes ∀ i. 0 ≤ L i
and ∀ x. rng-token dff L x summable-on UNIV
and ∀ i. antimono (λpi. dff pi i)
shows antimono (λpi. gen-token dff L pi)

proof
fix x y::real
assume x ≤ y
show gen-token dff L y ≤ gen-token dff L x unfolding gen-token-def
proof (rule infsum-mono)

show rng-token dff L x summable-on UNIV using assms by simp
show rng-token dff L y summable-on UNIV using assms by simp
show

∧
i. i ∈ UNIV =⇒ rng-token dff L y i ≤ rng-token dff L x i

proof −
fix i::int
assume i∈ UNIV
have antimono (λpi. rng-token dff L pi i)

using rng-token-antimono assms by simp
thus rng-token dff L y i ≤ rng-token dff L x i
using ‹x ≤ y› antimono-def by metis

qed
qed

qed

2.2.2 Finite support restriction
context finite-nz-support

begin

lemma finite-nonzero-summable:
shows rng-token dff L x summable-on UNIV

proof (rule finite-nonzero-values-imp-summable-on)
define rg where rg = rng-token dff L x
define Lnz where Lnz = {i. L i 6= 0}
have finite Lnz using fin-nz-sup unfolding Lnz-def

by (simp add: nz-support-def )
define Lz where Lz = UNIV − Lnz
have ∀ i∈ Lz. L i = 0 using Lnz-def Lz-def by simp
hence ∀ i∈ Lz. rg i = 0 unfolding rg-def rng-token-def by simp
hence ∀ i. rg i 6= 0 −→ i∈ Lnz using Lz-def Lnz-def by blast
show finite {x ∈ UNIV . rg x 6= 0}
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using ‹∀ i. rg i 6= 0 −→ i∈ Lnz› ‹finite Lnz›
by (metis (mono-tags, lifting) mem-Collect-eq rev-finite-subset subsetI )

qed

lemma gen-token-antimono-finite:
assumes ∀ i. 0 ≤ L i
and ∀ i. antimono (λpi. dff pi i)

shows antimono (λpi. gen-token dff L pi)
proof (rule gen-token-antimono)

show ∀ x. rng-token dff L x summable-on UNIV
using finite-nonzero-summable assms by simp

qed (simp add: assms)+

lemma gen-token-sum:
shows gen-token dff L x =

sum (rng-token dff L x) {i. L i 6= 0}
proof −

define rg where rg = rng-token dff L x
define Lnz where Lnz = {i. L i 6= 0}
have finite Lnz using fin-nz-sup

unfolding Lnz-def nz-support-def by simp
define Lz where Lz = UNIV − Lnz
have ∀ i∈ Lz. L i = 0 using Lnz-def Lz-def by simp
hence ∀ i∈ Lz. rg i = 0 unfolding rg-def rng-token-def by simp
have infsum rg UNIV = infsum rg (Lnz ∪ Lz) unfolding Lz-def Lnz-def

by simp
also have ... = infsum rg Lnz + infsum rg Lz
proof (rule infsum-Un-disjoint)

show rg summable-on Lz
using ‹∀ i∈ Lz. rg i = 0 › summable-on-0 [of Lz rg] by simp

show rg summable-on Lnz using ‹finite Lnz› by simp
show Lnz ∩ Lz = {} unfolding Lz-def by simp

qed
also have ... = infsum rg Lnz using infsum-0 ‹∀ i∈ Lz. rg i = 0 ›

by fastforce
also have ... = sum rg Lnz using ‹finite Lnz› by simp
finally show ?thesis using rg-def Lnz-def unfolding gen-token-def by simp

qed

lemma gen-token-continuous:
assumes ∀ i. continuous-on A (λpi. dff pi i)

shows continuous-on A (gen-token dff L)
proof −

have gen-token dff L =
(λpi. sum (rng-token dff L pi) {i. L i 6= 0})
using gen-token-sum assms by auto

moreover have continuous-on A
(λpi. sum (rng-token dff L pi) {i. L i 6= 0})

proof (rule continuous-on-sum)
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fix i::int
assume i ∈ {i. L i 6= 0}
show continuous-on A (λx. rng-token dff L x i)

by (rule rng-token-continuous-on, simp add: assms)
qed
ultimately show ?thesis by simp

qed

lemma gen-token-strict-mono:
assumes ∀ i. 0 ≤ L i
and nz-support L 6= {}
and ∀ i. strict-mono (λpi. dff pi i)
shows strict-mono (λpi. gen-token dff L pi)

proof
fix x y::real
assume x < y
define M where M = {i. L i 6= 0}
have gen-token dff L x = sum (rng-token dff L x) M

using gen-token-sum unfolding M-def by simp
also have ... < sum (rng-token dff L y) M
proof (rule sum-strict-mono)

show finite M
unfolding M-def by (metis fin-nz-sup nz-support-def )

show M 6= {} using assms unfolding nz-support-def M-def by simp
fix j
assume j ∈ M
hence 0 < L j using assms less-eq-real-def unfolding M-def by auto
hence strict-mono (λpi. rng-token dff L pi j)

using assms rng-token-strict-mono by simp
thus rng-token dff L x j < rng-token dff L y j

using ‹x < y› strict-monoD by auto
qed
also have ... = gen-token dff L y

using gen-token-sum unfolding M-def by simp
finally show gen-token dff L x < gen-token dff L y .

qed

lemma gen-token-add:
assumes ∀ i. L i = L1 i + L2 i
and ∀ i. 0 ≤ L1 i
and ∀ i. 0 ≤ L2 i
shows gen-token dff L x = gen-token dff L1 x + gen-token dff L2 x

proof −
have sub1 : {i. L1 i 6= 0} ⊆ {i. L i 6= 0}

by (simp add: Collect-mono add-nonneg-eq-0-iff assms)
have sub2 : {i. L2 i 6= 0} ⊆ {i. L i 6= 0}

by (simp add: Collect-mono add-nonneg-eq-0-iff assms)
have gen-token dff L x = sum (rng-token dff L x) {i. L i 6= 0}

using gen-token-sum by simp
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also have ... = sum (λi. rng-token dff L1 x i + rng-token dff L2 x i)
{i. L i 6= 0}

by (rule sum.cong, (simp add: assms rng-token-add)+)
also have ... = sum (rng-token dff L1 x) {i. L i 6= 0} +

sum (rng-token dff L2 x) {i. L i 6= 0}
by (rule sum.distrib)

also have ... = gen-token dff L1 x + gen-token dff L2 x
proof −

have gen-token dff L1 x = sum (rng-token dff L1 x) {i. L1 i 6= 0}
proof (rule finite-nz-support.gen-token-sum)

show finite-nz-support L1 using sub1 fin-nz-sup
by (metis finite-nz-support.intro nz-support-def rev-finite-subset)

qed
also have ... =

sum (rng-token dff L1 x) {i. L i 6= 0}
proof (rule sum.mono-neutral-left)

show finite {i. L i 6= 0}
using fin-nz-sup unfolding nz-support-def by simp

show {i. L1 i 6= 0} ⊆ {i. L i 6= 0} using sub1 by simp
show ∀ i∈{i. L i 6= 0} − {i. L1 i 6= 0}. rng-token dff L1 x i = 0

unfolding rng-token-def by simp
qed
finally have 1 : gen-token dff L1 x =

sum (rng-token dff L1 x) {i. L i 6= 0} .
have gen-token dff L2 x = sum (rng-token dff L2 x) {i. L2 i 6= 0}
proof (rule finite-nz-support.gen-token-sum)

show finite-nz-support L2 using sub2 fin-nz-sup
by (metis finite-nz-support.intro nz-support-def rev-finite-subset)

qed
also have ... = sum (rng-token dff L2 x) {i. L i 6= 0}
proof (rule sum.mono-neutral-left)

show finite {i. L i 6= 0}
using fin-nz-sup unfolding nz-support-def by simp

show {i. L2 i 6= 0} ⊆ {i. L i 6= 0} using sub2 by simp
show ∀ i∈{i. L i 6= 0} − {i. L2 i 6= 0}. rng-token dff L2 x i = 0

unfolding rng-token-def by simp
qed
finally have gen-token dff L2 x =

sum (rng-token dff L2 x) {i. L i 6= 0} .
thus ?thesis using 1 by simp

qed
finally show ?thesis .

qed

end
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2.3 Gross and net quantities of quote tokens
2.3.1 Generic functions for quote tokens
definition gamma-min-diff where
gamma-min-diff gamma =
(λ(pi::real) i. (min pi (gamma (i+(1 ::int)))) − (min pi (gamma i)))

lemma gamma-min-diff-pos:
assumes gamma i ≤ gamma (i+1 )
shows 0 ≤ gamma-min-diff gamma x i

proof −
show ?thesis
proof (cases x ≤ gamma i)

case True
hence min x (gamma i) = x by simp
have x ≤ gamma (i + 1 ) using True assms by simp
hence min x (gamma (i + 1 )) = x by simp
then show ?thesis using ‹min x (gamma i) = x›

unfolding gamma-min-diff-def by simp
next

case False
hence min x (gamma i) = gamma i by simp
show ?thesis
proof (cases x ≤ gamma (i + 1 ))

case True
hence min x (gamma (i + 1 )) = x by simp
then show ?thesis using ‹min x (gamma i) = gamma i› False

unfolding gamma-min-diff-def by simp
next

case False
hence min x (gamma (i + 1 )) = gamma (i+1 ) by simp
then show ?thesis using assms unfolding gamma-min-diff-def by simp

qed
qed

qed

lemma gamma-min-diff-continuous:
shows continuous-on A (λ(pi::real). gamma-min-diff gamma pi i)
unfolding gamma-min-diff-def

proof (rule continuous-on-diff )
show continuous-on A (λx. min x (gamma (i + 1 ))) using continuous-on-min

continuous-on-const continuous-on-id by blast
show continuous-on A (λx. min x (gamma i)) using continuous-on-min

continuous-on-const continuous-on-id by blast
qed

lemma gamma-min-diff-mono:
fixes gamma::int ⇒ real
assumes gamma i ≤ gamma (i+1 )

27



shows mono (λpi. gamma-min-diff gamma pi i)
unfolding gamma-min-diff-def

proof
fix x y::real
assume asm: x ≤ y
show min x (gamma (i + 1 )) − min x (gamma i) ≤

min y (gamma (i + 1 )) − min y (gamma i)
proof (rule diff-min-le)

show x ≤ y using asm .
show gamma i ≤ gamma (i + 1 ) using assms by simp

qed
qed

definition rng-gen-quote where
rng-gen-quote gamma = (λL pi i. rng-token (gamma-min-diff gamma) L pi i)

lemma rng-gen-quote-pos:
assumes 0 ≤ L i
and gamma i ≤ gamma (i+1 )
shows 0 ≤ rng-gen-quote gamma L x i unfolding rng-gen-quote-def
by (rule rng-token-pos, auto simp add: assms gamma-min-diff-pos)

lemma rng-gen-quote-continuous-on:
shows continuous-on A (λpi. rng-gen-quote gamma L pi i)
unfolding rng-gen-quote-def
by (rule rng-token-continuous-on, rule gamma-min-diff-continuous)

lemma rng-gen-quote-mono:
assumes 0 ≤ L i
and gamma i ≤ gamma (i+1 )
shows mono (λpi. rng-gen-quote gamma L pi i)

proof
fix x y::real
assume asm: x ≤ y
show rng-gen-quote gamma L x i ≤ rng-gen-quote gamma L y i

unfolding rng-gen-quote-def rng-token-def
proof (rule ordered-comm-semiring-class.comm-mult-left-mono)

show 0 ≤ L i using assms by simp
show gamma-min-diff gamma x i ≤ gamma-min-diff gamma y i

using gamma-min-diff-mono asm monoD assms by blast
qed

qed

definition gen-quote where
gen-quote = (λ gamma L pi. gen-token (gamma-min-diff gamma) L pi)

lemma gen-quote-zero:
assumes mono gamma
and

∧
i. gamma i < sqp =⇒ L i = 0
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shows gen-quote gamma L sqp = 0 unfolding gen-quote-def gen-token-def
proof (rule infsum-0 )

fix i
show rng-token (gamma-min-diff gamma) L sqp i = 0
proof (cases sqp ≤ gamma i)

case True
hence sqp ≤ gamma (i+1 ) using assms monoD

by (metis dual-order .trans zle-add1-eq-le zless-add1-eq)
hence gamma-min-diff gamma sqp i = 0

using True unfolding gamma-min-diff-def by simp
then show ?thesis unfolding rng-token-def by simp

next
case False
hence L i = 0 using assms by simp
then show ?thesis unfolding rng-token-def by simp

qed
qed

lemma gen-quote-pos:
assumes ∀ i. 0 ≤ L i
and ∀ i. gamma i ≤ gamma (i+1 )
shows 0 ≤ gen-quote gamma L x unfolding gen-quote-def
using gen-token-pos gamma-min-diff-pos assms by simp

lemma gen-quote-mono:
assumes ∀ i. 0 ≤ L i
and ∀ x. rng-token (gamma-min-diff gamma) L x summable-on UNIV
and ∀ i. gamma i ≤ gamma (i+1 )
shows mono (gen-quote gamma L) unfolding gen-quote-def

proof (rule gen-token-mono)
show ∀ i. mono (λpi. gamma-min-diff gamma pi i)

using gamma-min-diff-mono assms by simp
qed (simp add: assms)+

2.3.2 Finite support restriction
context finite-nz-support
begin

lemma gen-quote-mono-finite:
assumes ∀ i. 0 ≤ L i
and ∀ i. gamma i ≤ gamma (i+1 )

shows mono (gen-quote gamma L)
proof (rule gen-quote-mono)

show ∀ x. rng-token (gamma-min-diff gamma) L x summable-on UNIV
using finite-nonzero-summable assms by simp

qed (simp add: assms)+

lemma gen-quote-continuous:
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shows continuous-on A (gen-quote gamma L) unfolding gen-quote-def
proof (rule gen-token-continuous)

show ∀ i. continuous-on A (λpi. gamma-min-diff gamma pi i) using
gamma-min-diff-continuous by simp

qed

lemma gen-quote-IVT :
assumes (idx-min-img gamma L) ≤ (idx-max-img gamma L)
and gen-quote gamma L (idx-min-img gamma L) ≤ y
and y ≤ gen-quote gamma L (idx-max-img gamma L)

shows ∃ pi ≥ (idx-min-img gamma L). pi ≤ idx-max-img gamma L ∧
gen-quote gamma L pi = y

proof (rule IVT )
show ∀ pi. idx-min-img gamma L ≤ pi ∧ pi ≤ idx-max-img gamma L −→

isCont (gen-quote gamma L) pi
proof (intro allI impI )

fix pi
assume (idx-min-img gamma L) ≤ pi ∧ pi ≤ (idx-max-img gamma L)
show isCont (gen-quote gamma L) pi using gen-quote-continuous

by (simp add: continuous-on-eq-continuous-within assms)
qed

qed (simp add: assms)+

lemma gen-quote-ne:
assumes (idx-min-img gamma L) ≤ (idx-max-img gamma L)
and gen-quote gamma L (idx-min-img gamma L) ≤ y
and y ≤ gen-quote gamma L (idx-max-img gamma L)

shows (gen-quote gamma L)−‘ {y} 6= {} using gen-quote-IVT assms by blast

lemma finite-support-sum:
assumes

∧
i. L i = 0 =⇒ f L i = 0

shows infsum (rng-token dff (f L) x) UNIV =
sum (rng-token dff (f L) x) {i. L i 6= 0}

proof −
define rg where rg = rng-token dff (f L) x
define Lnz where Lnz = {i. L i 6= 0}
have finite Lnz using assms fin-nz-sup unfolding Lnz-def

by (simp add: nz-support-def )
define Lz where Lz = UNIV − Lnz
have ∀ i∈ Lz. (f L) i = 0 using assms Lnz-def Lz-def by simp
hence ∀ i∈ Lz. rg i = 0 unfolding rg-def rng-token-def by simp
have infsum rg UNIV = infsum rg (Lnz ∪ Lz) unfolding Lz-def Lnz-def

by simp
also have ... = infsum rg Lnz + infsum rg Lz
proof (rule infsum-Un-disjoint)

show rg summable-on Lz
using ‹∀ i∈ Lz. rg i = 0 › summable-on-0 [of Lz rg] by simp

show rg summable-on Lnz using ‹finite Lnz› by simp
show Lnz ∩ Lz = {} unfolding Lz-def by simp
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qed
also have ... = infsum rg Lnz using infsum-0 ‹∀ i∈ Lz. rg i = 0 ›

by fastforce
also have ... = sum rg Lnz using ‹finite Lnz› by simp
finally show ?thesis using rg-def Lnz-def by simp

qed

lemma gen-quote-plus:
assumes ∀ i. L i = L1 i + L2 i
and ∀ i. 0 ≤ L1 i
and ∀ i. 0 ≤ L2 i

shows gen-quote gam L x = gen-quote gam L1 x + gen-quote gam L2 x
using assms gen-token-add unfolding gen-quote-def by simp

end

2.4 Gross quote token quantity into a pool
2.4.1 Function specialization

When the quote tokens are added to a pool, fees are to be taken into account:
if a user adds a quantity q of tokens into a pool, the computation of the
amount of base tokens received is based in q · (1− ϕ).
definition rng-quote-gross where
rng-quote-gross P = rng-gen-quote (grd P) (gross-fct (lq P) (fee P))

lemma rng-quote-gross-pos:
assumes 0 ≤ gross-fct (lq P) (fee P) i
and grd P i ≤ grd P (i+1 )
shows 0 ≤ rng-quote-gross P pi i unfolding rng-quote-gross-def
using rng-gen-quote-pos assms by simp

lemma rng-quote-gross-continuous-on:
shows continuous-on A (λpi. rng-quote-gross P pi i)

unfolding rng-quote-gross-def using rng-gen-quote-continuous-on by simp

lemma rng-quote-gross-mono:
assumes 0 ≤ gross-fct (lq P) (fee P) i
and grd P i ≤ grd P (i+1 )
shows mono (λpi. rng-quote-gross P pi i) unfolding rng-quote-gross-def
using rng-gen-quote-mono assms by simp

definition quote-gross where
quote-gross P = gen-quote (grd P) (gross-fct (lq P) (fee P))

lemma quote-gross-pos:
assumes ∀ i. 0 ≤ gross-fct (lq P) (fee P) i
and ∀ i. grd P i ≤ grd P (i+1 )
shows 0 ≤ quote-gross P x unfolding quote-gross-def
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using gen-quote-pos assms by simp

lemma quote-gross-mono:
assumes ∀ i. 0 ≤ (lq P) i
and ∀ i. (fee P) i < 1
and ∀ i. (grd P) i ≤ (grd P) (i+1 )
and ∀ x. rng-token (gamma-min-diff (grd P)) (gross-fct (lq P) (fee P)) x

summable-on UNIV
shows mono (quote-gross P) unfolding quote-gross-def
proof (rule gen-quote-mono)

show ∀ i. 0 ≤ gross-fct (lq P) (fee P) i using gross-fct-sgn assms by blast
qed (simp add: assms)+

lemma gen-quote-grd-min:
assumes mono (grd P)
and finite (nz-support L)
and nz-support L 6= {}
and nz-support L = nz-support (lq P)

shows gen-quote (grd P) L (grd-min P) = 0
proof (rule gen-quote-zero)

fix i
assume grd P i < grd-min P
hence i < idx-min (lq P) unfolding grd-min-def idx-min-img-def

using assms(1 ) mono-strict-invE by blast
hence lq P i = 0 using assms idx-min-finite-lt by auto
hence i /∈ nz-support (lq P) unfolding nz-support-def by auto
thus L i = 0 using assms nz-support-def by fastforce

qed (simp add: assms)

Definition of the grid point that is reached in a pool for a given gross quantity
of quote tokens.
definition quote-reach where
quote-reach = (λP y.

if y = 0 then (grd-min P)
else Inf ((quote-gross P)−‘ {y}))

2.4.2 Restriction to pools with a finite liquidity
context finite-liq-pool

begin

lemma quote-gross-mono-finite:
assumes ∀ i. 0 ≤ (lq P) i
and ∀ i. (fee P) i < 1
and ∀ i. (grd P) i ≤ (grd P) (i+1 )

shows mono (quote-gross P)
proof (rule quote-gross-mono)

show ∀ x. rng-token (gamma-min-diff (grd P)) (gross-fct (lq P) (fee P)) x
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summable-on UNIV
proof

fix x
show rng-token (gamma-min-diff (grd P)) (gross-fct (lq P) (fee P)) x

summable-on UNIV
proof (rule finite-nz-support.finite-nonzero-summable)

show finite-nz-support (gross-fct (lq P) (fee P))
using assms finite-liq-gross-fct
by (simp add: finite-nz-support.intro nz-support-def )

qed
qed

qed (simp add: assms)+

lemma quote-gross-mono-finite ′:
assumes ∀ i. 0 ≤ (lq P) i
and ∀ i. (fee P) i < 1
and mono (grd P)

shows mono (quote-gross P)
proof (rule quote-gross-mono-finite)

show ∀ i. grd P i ≤ grd P (i+1 ) using assms monoD by fastforce
qed (simp add: assms)+

lemma quote-gross-continuous:
shows continuous-on A (quote-gross P) unfolding quote-gross-def
using gen-quote-continuous finite-liq-gross-fct fin-liq finite-liqD
by (simp add: finite-nz-support.gen-quote-continuous finite-nz-support.intro

nz-support-def )

lemma quote-gross-IVT :
assumes ∀ i. fee P i 6= 1
and grd-min P ≤ grd-max P
and quote-gross P (grd-min P) ≤ y
and y ≤ quote-gross P (grd-max P)

shows ∃ pi ≥ (grd-min P). pi ≤ (grd-max P) ∧
quote-gross P pi = y

proof −
have grd-min P = idx-min-img (grd P) (gross-fct (lq P) (fee P))

by (simp add: assms gross-fct-nz-eq idx-min-img-eq grd-min-def )
moreover have grd-max P = idx-max-img (grd P) (gross-fct (lq P) (fee P))

by (simp add: assms gross-fct-nz-eq idx-max-img-eq grd-max-def )
ultimately show ?thesis

using gen-quote-IVT finite-liq-gross-fct assms unfolding quote-gross-def
by (metis finite-nz-support.gen-quote-IVT finite-nz-support.intro

nz-support-def )
qed

lemma quote-gross-ne:
assumes ∀ i. fee P i 6= 1
and grd-min P ≤ grd-max P
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and quote-gross P (grd-min P) ≤ y
and y ≤ quote-gross P (grd-max P)

shows quote-gross P−‘ {y} 6= {} using quote-gross-IVT assms by blast

lemma quote-gross-grd-min:
assumes mono (grd P)

shows quote-gross P (grd-min P) = 0
using gen-quote-grd-min unfolding quote-gross-def
by (smt (verit) assms(1 ) fin-nz-sup gen-quote-zero gross-fct-zero-if

idx-min-finite-le idx-min-img-def monoD grd-min-def )

lemma quote-reach-mem:
assumes ∀ i. 0 ≤ lq P i
and ∀ i. fee P i < 1
and mono (grd P)
and 0 ≤ y
and y ≤ quote-gross P (grd-max P)

shows quote-reach P y ∈ quote-gross P−‘ {y}
proof (cases y = 0 )

case True
then show ?thesis

using quote-gross-grd-min assms unfolding quote-reach-def by simp
next

case False
hence quote-reach P y = Inf ((quote-gross P)−‘ {y})

unfolding quote-reach-def by simp
also have ... ∈ (quote-gross P)−‘ {y}
proof (rule closed-contains-Inf )

define X where X = (quote-gross P)−‘ {y}
show X 6= {}

using quote-gross-grd-min quote-gross-ne assms unfolding X-def
by (smt (verit) False mono-invE quote-gross-mono-finite ′)

show closed ((quote-gross P) −‘ {y})
proof (rule continuous-closed-vimage)

show closed {y} by simp
show

∧
x. isCont (quote-gross P) x using quote-gross-continuous assms

by (simp add: continuous-on-eq-continuous-within)
qed
show bdd-below ((quote-gross P) −‘ {y})
proof

fix x
assume x ∈ (quote-gross P) −‘ {y}
hence quote-gross P x = y by simp
hence quote-gross P (grd-min P) < quote-gross P x

using quote-gross-grd-min assms False by simp
moreover have mono (quote-gross P)
proof (rule quote-gross-mono-finite)

show ∀ i. grd P i ≤ grd P (i + 1 ) using assms(3 ) monoD by fastforce
qed (simp add: assms)+
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ultimately show (grd-min P) ≤ x using mono-invE assms by auto
qed

qed
finally show ?thesis .

qed

lemma quote-gross-inv-strict-mono:
assumes mono (quote-gross P)
and quote-gross P sqp ′ < y
and sqp ∈ quote-gross P −‘ {y}

shows sqp ′ < sqp
proof (rule ccontr)

assume asm: ¬ sqp ′ < sqp
have quote-gross P sqp ′ < y using assms by simp
also have ... = quote-gross P sqp using assms by simp
also have ... ≤ quote-gross P sqp ′ using asm assms mono-strict-invE by auto
finally show False using assms by simp

qed

lemma quote-gross-inv-bounded:
assumes mono (quote-gross P)
and quote-gross P (grd-min P) < y
and y < quote-gross P (grd-max P)

shows ∀ sqp ′ ∈ quote-gross P −‘ {y}.
dist (grd-min P) sqp ′ ≤ grd-max P − grd-min P

proof
fix sqp ′

assume sqp ′ ∈ quote-gross P −‘ {y}
hence grd-min P ≤ sqp ′ using quote-gross-inv-strict-mono assms by fastforce
have sqp ′ ≤ grd-max P

using quote-gross-inv-strict-mono assms ‹sqp ′ ∈ quote-gross P −‘ {y}›
by fastforce

have dist (grd-min P) sqp ′ = sqp ′ − (grd-min P) using ‹grd-min P ≤ sqp ′›
by (simp add: dist-real-def )

thus dist (grd-min P) sqp ′ ≤ grd-max P − grd-min P
by (simp add: ‹sqp ′ ≤ grd-max P›)

qed

lemma quote-gross-bdd-below:
assumes mono (quote-gross P)
and quote-gross P (grd-min P) < y
shows bdd-below (quote-gross P −‘{y}) using assms
by (metis bdd-below.I mono-strict-invE order-less-imp-le vimage-singleton-eq)

lemma quote-reach-le:
assumes ∀ i. 0 ≤ lq P i
and ∀ i. fee P i < 1
and mono (grd P)
and 0 < y
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and sqp ∈ quote-gross P −‘{y}
shows quote-reach P y ≤ sqp
proof −

define sqp ′ where sqp ′ = quote-reach P y
define X where X = quote-gross P −‘ {y}
hence sqp ′ = Inf X

using assms unfolding sqp ′-def quote-reach-def by simp
have ∀ x∈ X . Inf X ≤ x
proof

fix x
assume x∈ X
show Inf X ≤ x
proof (rule cInf-lower)

show x∈ X using ‹x∈ X› .
show bdd-below X using assms quote-gross-bdd-below quote-gross-grd-min

X-def
by (simp add: quote-gross-mono-finite ′)

qed
qed
thus ?thesis using assms X-def ‹sqp ′ = Inf X› sqp ′-def by auto

qed

lemma quote-reach-gross-le:
assumes ∀ i. 0 ≤ lq P i
and ∀ i. fee P i < 1
and mono (grd P)
and grd-min P ≤ sqp

shows quote-reach P (quote-gross P sqp) ≤ sqp
proof (cases quote-gross P sqp = 0 )

case True
then show ?thesis using assms(4 ) quote-reach-def by presburger

next
case False
then show ?thesis using quote-reach-le assms

by (metis mono-invE nle-le order-le-imp-less-or-eq quote-gross-grd-min
quote-gross-mono-finite ′ vimage-singleton-eq)

qed

lemma quote-gross-reach-eq:
assumes ∀ i. 0 ≤ lq P i
and ∀ i. fee P i < 1
and mono (grd P)
and 0 ≤ y
and y ≤ quote-gross P (grd-max P)

shows quote-gross P (quote-reach P y) = y
using assms quote-reach-mem by simp

lemma quote-reach-ge:
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assumes ∀ i. 0 ≤ lq P i
and ∀ i. fee P i < 1
and mono (grd P)
and grd-min P ≤ grd-max P
and 0 < y
and y ≤ quote-gross P (grd-max P)

shows grd-min P ≤ quote-reach P y
proof (rule ccontr)

assume ¬ grd-min P ≤ quote-reach P y
hence quote-gross P (quote-reach P y) ≤ quote-gross P (grd-min P)

by (smt (verit) assms quote-gross-inv-strict-mono quote-gross-mono-finite ′

quote-gross-grd-min quote-reach-mem)
hence y ≤ quote-gross P (grd-min P) using assms quote-gross-reach-eq by simp
thus False using assms

by (simp add: quote-gross-grd-min)
qed

end

2.5 Net quote token quantity in a pool
2.5.1 Function specialization

There are no fees to take into account when tokens are withdrawn from a
pool.
definition rng-quote-net where
rng-quote-net P = rng-gen-quote (grd P) (lq P)

lemma rng-quote-net-pos:
assumes 0 ≤ (lq P) i
and grd P i ≤ grd P (i+1 )
shows 0 ≤ rng-quote-net P x i unfolding rng-quote-net-def
using rng-gen-quote-pos assms by simp

lemma rng-quote-net-continuous-on:
shows continuous-on A (λpi. rng-quote-net P pi i)

unfolding rng-quote-net-def using rng-gen-quote-continuous-on by simp

lemma rng-quote-net-mono:
assumes 0 ≤ (lq P) i
and grd P i ≤ grd P (i+1 )
shows mono (λpi. rng-quote-net P pi i) unfolding rng-quote-net-def
using rng-gen-quote-mono assms by simp

definition quote-net where
quote-net P = gen-quote (grd P) (lq P)

lemma quote-net-pos:
assumes ∀ i. 0 ≤ (lq P) i
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and ∀ i. grd P i ≤ grd P (i+1 )
shows 0 ≤ quote-net P x unfolding quote-net-def
using gen-quote-pos assms by simp

lemma quote-net-mono:
assumes ∀ i. 0 ≤ (lq P) i
and ∀ i. (fee P) i < 1
and ∀ i. (grd P) i ≤ (grd P) (i+1 )
and ∀ x. rng-token (gamma-min-diff (grd P)) (lq P) x summable-on UNIV
shows mono (quote-net P) unfolding quote-net-def
using gen-quote-mono assms by simp

2.5.2 Restriction to pools with a finite liquidity
context finite-liq-pool
begin

lemma quote-net-continuous:
shows continuous-on A (quote-net P) unfolding quote-net-def
using gen-quote-continuous finite-liqD by simp

lemma quote-net-IVT :
assumes ∀ i. fee P i 6= 1
and grd-min P ≤ grd-max P
and quote-net P (grd-min P) ≤ y
and y ≤ quote-net P (grd-max P)

shows ∃ pi ≥ (grd-min P). pi ≤ (grd-max P) ∧
quote-net P pi = y
using gen-quote-IVT assms finite-liqD
unfolding quote-net-def grd-min-def grd-max-def by simp

lemma quote-net-ne:
assumes ∀ i. fee P i 6= 1
and grd-min P ≤ grd-max P
and quote-net P (grd-min P) ≤ y
and y ≤ quote-net P (grd-max P)

shows quote-net P−‘ {y} 6= {} using quote-net-IVT assms by blast

lemma quote-net-mono-finite-liq:
assumes ∀ i. 0 ≤ (lq P) i
and ∀ i. (fee P) i < 1
and ∀ i. (grd P) i ≤ (grd P) (i+1 )
shows mono (quote-net P) unfolding quote-net-def
using gen-quote-mono-finite finite-liqD assms by simp

end
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2.6 Gross and net quantities of base tokens
2.6.1 Generic functions for base tokens
definition inv-gamma-max-diff where
inv-gamma-max-diff = (λgamma (pi::real) i. inverse (max pi (gamma i)) −

inverse (max pi (gamma (i+(1 ::int)))))

lemma inv-max-pos:
assumes 0 < a
and (a::real) ≤ b
shows 0 ≤ inverse (max x a) − inverse (max x b)

proof (cases b ≤ x)
case True
thus ?thesis using assms by auto

next
case False
hence max x b = b by simp
show ?thesis
proof (cases a ≤ x)

case True
hence max x a = x by simp
then show ?thesis using ‹max x b = b› False using assms by fastforce

next
case False
hence max x a = a by simp
then show ?thesis

by (simp add: ‹max x b = b› assms le-imp-inverse-le)
qed

qed

lemma inv-gamma-max-diff-pos:
assumes gamma i ≤ gamma (i +(1 ::int))
and 0 < gamma i
shows 0 ≤ inv-gamma-max-diff gamma x i unfolding inv-gamma-max-diff-def
by (rule inv-max-pos, (simp add: assms)+)

lemma inv-gamma-max-diff-continuous:
assumes gamma i ≤ gamma (i +(1 ::int))
and 0 < gamma i
shows continuous-on A (λpi. inv-gamma-max-diff gamma pi i)
unfolding inv-gamma-max-diff-def

proof (rule continuous-on-diff )
show continuous-on A (λx. inverse (max x (gamma i)))
proof (rule continuous-on-inverse)

show continuous-on A (λx. max x (gamma i)) using continuous-on-max
continuous-on-const continuous-on-id by blast
show ∀ x∈A. max x (gamma i) 6= 0 using assms

by (metis leD max.cobounded2 )
qed
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show continuous-on A (λx. inverse (max x (gamma (i+1 ))))
proof (rule continuous-on-inverse)

show continuous-on A (λx. max x (gamma (i+1 ))) using continuous-on-max
continuous-on-const continuous-on-id by blast
show ∀ x∈A. max x (gamma (i+1 )) 6= 0 using assms by force

qed
qed

lemma inv-gamma-max-diff-antimono:
assumes gamma i ≤ gamma (i +(1 ::int))
and 0 < gamma i
shows antimono (λpi. inv-gamma-max-diff gamma pi i)
unfolding inv-gamma-max-diff-def

proof
fix x y::real
assume asm: x ≤ y
show inverse (max y (gamma i)) − inverse (max y (gamma (i + 1 ))) ≤

inverse (max x (gamma i)) − inverse (max x (gamma (i + 1 )))
proof (rule diff-inv-max-le)

show x ≤ y using asm .
show gamma i ≤ gamma (i + 1 ) using assms by simp
show 0 < gamma i using assms by simp

qed
qed

definition rng-gen-base where
rng-gen-base =
(λgamma L pi i. rng-token (inv-gamma-max-diff gamma) L pi i)

lemma rng-gen-base-pos:
assumes gamma i ≤ gamma (i +(1 ::int))
and 0 < gamma i
and 0 ≤ L i
shows 0 ≤ rng-gen-base gamma L x i unfolding rng-gen-base-def
by (rule rng-token-pos, auto simp add: assms inv-gamma-max-diff-pos)

lemma rng-gen-base-continuous-on:
assumes gamma i ≤ gamma (i +(1 ::int))
and 0 < gamma i

shows continuous-on A (λpi. rng-gen-base gamma L pi i) unfolding rng-gen-base-def
by (rule rng-token-continuous-on,

simp add: inv-gamma-max-diff-continuous assms)

lemma rng-gen-base-antimono:
assumes gamma i ≤ gamma (i +(1 ::int))
and 0 < gamma i
and 0 ≤ L i
shows antimono (λpi. rng-gen-base gamma L pi i)

proof
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fix x y::real
assume asm: x ≤ y
show rng-gen-base gamma L y i ≤ rng-gen-base gamma L x i

unfolding rng-gen-base-def rng-token-def
proof (rule ordered-comm-semiring-class.comm-mult-left-mono)

show 0 ≤ L i using assms by simp
show inv-gamma-max-diff gamma y i ≤ inv-gamma-max-diff gamma x i
using inv-gamma-max-diff-antimono[of gamma] asm antimonoD assms by auto

qed
qed

definition gen-base where
gen-base = (λgamma L pi. gen-token (inv-gamma-max-diff gamma) L pi)

lemma gen-base-pos:
assumes ∀ i. gamma i ≤ gamma (i +(1 ::int))
and ∀ i. 0 < gamma i
and ∀ i. 0 ≤ L i
shows 0 ≤ gen-base gamma L x unfolding gen-base-def
using gen-token-pos inv-gamma-max-diff-pos assms by simp

lemma gen-base-antimono:
assumes ∀ x. rng-token (inv-gamma-max-diff gamma) L x summable-on UNIV
and ∀ i. gamma i ≤ gamma (i +(1 ::int))
and ∀ i. 0 < gamma i
and ∀ i. 0 ≤ L i
shows antimono (gen-base gamma L) using gen-token-antimono assms

inv-gamma-max-diff-antimono
by (simp add: gen-base-def )

lemma gen-base-zero:
assumes mono gamma
and

∧
i. sqp < gamma (i+1 ) =⇒ L i = 0

shows gen-base gamma L sqp = 0 unfolding gen-base-def gen-token-def
proof (rule infsum-0 )

fix i
show rng-token (inv-gamma-max-diff gamma) L sqp i = 0
proof (cases gamma (i+1 ) ≤ sqp)

case True
hence gamma i ≤ sqp by (smt (verit) assms(1 ) mono-invE)
hence inv-gamma-max-diff gamma sqp i = 0

using True unfolding inv-gamma-max-diff-def by simp
then show ?thesis unfolding rng-token-def by simp

next
case False
hence L i = 0 using assms by simp
then show ?thesis unfolding rng-token-def by simp

qed
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qed

lemma gen-base-grd-max:
assumes mono (grd P)
and finite (nz-support L)
and nz-support L 6= {}
and nz-support L = nz-support (lq P)

shows gen-base (grd P) L (grd-max P) = 0
proof (rule gen-base-zero)

fix i
assume grd-max P < grd P (i + 1 )
hence idx-max (lq P) < i unfolding grd-max-def idx-max-img-def

using assms(1 )mono-strict-invE by fastforce
hence lq P i = 0 using assms idx-max-finite-gt by auto
hence i /∈ nz-support (lq P) unfolding nz-support-def by auto
thus L i = 0 using assms nz-support-def by fastforce

qed (simp add: assms)

2.6.2 Finite support restriction
context finite-nz-support
begin

lemma gen-base-continuous:
assumes ∀ i. gamma i ≤ gamma (i +(1 ::int))
and ∀ i. 0 < gamma i
shows continuous-on A (gen-base gamma L) unfolding gen-base-def
using gen-token-continuous inv-gamma-max-diff-continuous assms by simp

lemma gen-base-IVT :
assumes ∀ i. gamma i ≤ gamma (i +(1 ::int))
and ∀ i. 0 < gamma i
and (idx-min-img gamma L) ≤ (idx-max-img gamma L)
and gen-base gamma L (idx-max-img gamma L) ≤ y
and y ≤ gen-base gamma L (idx-min-img gamma L)

shows ∃ pi ≥ (idx-min-img gamma L). pi ≤ (idx-max-img gamma L) ∧
gen-base gamma L pi = y

proof (rule IVT2 )
show ∀ pi. idx-min-img gamma L ≤ pi ∧ pi ≤ idx-max-img gamma L −→

isCont (gen-base gamma L) pi
proof (intro allI impI )

fix pi
assume (idx-min-img gamma L) ≤ pi ∧ pi ≤ (idx-max-img gamma L)
show isCont (gen-base gamma L) pi using gen-base-continuous assms

by (simp add: continuous-on-eq-continuous-within)
qed

qed (simp add: assms)+

lemma gen-base-ne:
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assumes ∀ i. gamma i ≤ gamma (i +(1 ::int))
and ∀ i. 0 < gamma i
and (idx-min-img gamma L) ≤ (idx-max-img gamma L)
and gen-base gamma L (idx-max-img gamma L) ≤ y
and y ≤ gen-base gamma L (idx-min-img gamma L)

shows (gen-base gamma L)−‘ {y} 6= {} using gen-base-IVT assms by blast

lemma gen-base-antimono-finite:
assumes ∀ i. gamma i ≤ gamma (i +(1 ::int))
and ∀ i. 0 < gamma i
and ∀ i. 0 ≤ L i

shows antimono (gen-base gamma L)
proof (rule gen-base-antimono)

show ∀ x. rng-token (inv-gamma-max-diff gamma) L x summable-on UNIV
using finite-nonzero-summable assms by simp

qed (simp add: assms)+

lemma gen-base-gross:
assumes ∀ i. L i = L1 i + L2 i
and ∀ i. 0 ≤ L1 i
and ∀ i. 0 ≤ L2 i

shows gen-base gam L x = gen-base gam L1 x + gen-base gam L2 x
using assms gen-token-add unfolding gen-base-def by simp

end

2.7 Gross base token quantity in a pool
2.7.1 Function specialization
definition rng-base-gross where
rng-base-gross P = rng-gen-base (grd P) (gross-fct (lq P) (fee P))

lemma rng-base-gross-pos:
assumes 0 ≤ gross-fct (lq P) (fee P) i
and grd P i ≤ grd P (i+1 )
and 0 < grd P i
shows 0 ≤ rng-base-gross P x i unfolding rng-base-gross-def
using rng-gen-base-pos assms by simp

lemma rng-base-gross-continuous-on:
assumes grd P i ≤ grd P (i+1 )
and 0 < grd P i
shows continuous-on A (λpi. rng-base-gross P pi i)
unfolding rng-base-gross-def
using rng-gen-base-continuous-on assms by simp

lemma rng-base-gross-mono:
assumes 0 ≤ gross-fct (lq P) (fee P) i
and grd P i ≤ grd P (i+1 )
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and 0 < grd P i
shows antimono (λpi. rng-base-gross P pi i) unfolding rng-base-gross-def
using rng-gen-base-antimono assms by simp

definition base-gross where
base-gross P = gen-base (grd P) (gross-fct (lq P) (fee P))

lemma base-gross-pos:
assumes ∀ i. 0 ≤ gross-fct (lq P) (fee P) i
and ∀ i. grd P i ≤ grd P (i+1 )
and ∀ i. 0 < grd P i
shows 0 ≤ base-gross P x unfolding base-gross-def
using gen-base-pos assms by simp

lemma base-gross-antimono:
assumes ∀ i. 0 ≤ (lq P) i
and ∀ i. (fee P) i < 1
and ∀ i. (grd P) i ≤ (grd P) (i+1 )
and ∀ i. 0 < grd P i
and ∀ x. rng-token (inv-gamma-max-diff (grd P)) (gross-fct (lq P) (fee P)) x

summable-on UNIV
shows antimono (base-gross P) unfolding base-gross-def
proof (rule gen-base-antimono)

show ∀ i. 0 ≤ gross-fct (lq P) (fee P) i using gross-fct-sgn assms by blast
qed (simp add: assms)+

lemma base-gross-grd-max:
assumes mono (grd P)
and finite (nz-support (lq P))

shows base-gross P (grd-max P) = 0
using gen-base-grd-max assms gen-base-zero gross-fct-zero-if

idx-max-finite-ge idx-max-img-def monoD grd-max-def
unfolding quote-gross-def
by (smt (z3 ) base-gross-def )

definition base-reach where
base-reach = (λP y.

if y = 0
then (grd-max P)
else Sup ((base-gross P)−‘ {y}))

2.7.2 Restriction to pools with a finite liquidity
context finite-liq-pool
begin

lemma base-gross-continuous:
assumes ∀ i. grd P i ≤ grd P (i+1 )
and ∀ i. 0 < grd P i
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shows continuous-on A (base-gross P) unfolding base-gross-def
proof (rule finite-nz-support.gen-base-continuous)

show finite-nz-support (gross-fct (lq P) (fee P))
using finite-liq-gross-fct
by (simp add: finite-nz-support.intro nz-support-def )

qed (simp add: assms)+

lemma base-gross-IVT :
assumes ∀ i. grd P i ≤ grd P (i+1 )
and ∀ i. 0 < grd P i
and ∀ i. fee P i 6= 1
and grd-min P ≤ grd-max P
and base-gross P (grd-max P) ≤ y
and y ≤ base-gross P (grd-min P)

shows ∃ pi ≥ (grd-min P). pi ≤ (grd-max P) ∧
base-gross P pi = y

proof −
define L ′ where L ′ = gross-fct (lq P) (fee P)
have 1 : grd-min P = idx-min-img (grd P) L ′

by (simp add: assms gross-fct-nz-eq idx-min-img-eq grd-min-def L ′-def )
have 2 : grd-max P = idx-max-img (grd P) L ′

by (simp add: assms gross-fct-nz-eq idx-max-img-eq grd-max-def L ′-def )
have ∃ pi≥idx-min-img (grd P) L ′.

pi ≤ idx-max-img (grd P) L ′ ∧ gen-base (grd P) L ′ pi = y
proof (rule finite-nz-support.gen-base-IVT )

show idx-min-img (grd P) L ′ ≤ idx-max-img (grd P) L ′ using 1 2 assms by
simp

show gen-base (grd P) L ′ (idx-max-img (grd P) L ′) ≤ y using 2 assms
by (simp add: L ′-def base-gross-def )

show y ≤ gen-base (grd P) L ′ (idx-min-img (grd P) L ′) using 1 assms
by (simp add: L ′-def base-gross-def )

show finite-nz-support L ′ using L ′-def finite-liq-gross-fct
by (simp add: finite-nz-support.intro nz-support-def )

qed (simp add: assms)+
thus ?thesis by (simp add: 1 2 L ′-def base-gross-def )

qed

lemma base-gross-ne:
assumes ∀ i. grd P i ≤ grd P (i+1 )
and ∀ i. 0 < grd P i
and ∀ i. fee P i 6= 1
and grd-min P ≤ grd-max P
and base-gross P (grd-max P) ≤ y
and y ≤ base-gross P (grd-min P)

shows base-gross P−‘ {y} 6= {} using base-gross-IVT assms by blast

lemma base-gross-antimono-finite:
assumes ∀ i. 0 ≤ (lq P) i
and ∀ i. grd P i ≤ grd P (i+1 )
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and ∀ i. 0 < grd P i
and ∀ i. (fee P) i < 1

shows antimono (base-gross P) unfolding base-gross-def
proof (rule finite-nz-support.gen-base-antimono-finite)

show ∀ i. 0 ≤ gross-fct (lq P) (fee P) i
using gross-fct-sgn assms by blast

show finite-nz-support (gross-fct (lq P) (fee P))
by (simp add: finite-liq-gross-fct finite-nz-support-def nz-support-def )

qed (simp add: assms)+

lemma base-reach-mem:
assumes ∀ i. grd P i ≤ grd P (i+1 )
and ∀ i. 0 < grd P i
and ∀ i. fee P i < 1
and ∀ i. 0 ≤ lq P i
and mono (grd P)
and grd-min P ≤ grd-max P
and 0 ≤ y
and y ≤ base-gross P (grd-min P)

shows base-reach P y ∈ base-gross P−‘ {y}
proof (cases y = 0 )

case True
then show ?thesis unfolding base-reach-def

by (simp add: assms(5 ) base-gross-grd-max fin-nz-sup)
next

case False
hence base-reach P y = Sup ((base-gross P)−‘ {y})

unfolding base-reach-def by simp
also have ... ∈ (base-gross P)−‘ {y}
proof (rule closed-contains-Sup)

have antimono (base-gross P) using base-gross-antimono-finite assms by simp
define X where X = (base-gross P)−‘ {y}
show X 6= {} using base-gross-ne assms unfolding X-def

by (metis add-cancel-left-right add-less-same-cancel1 base-gross-grd-max
fin-nz-sup less-int-code(1 ) mono-strict-invE)

show closed ((base-gross P) −‘ {y})
proof (rule continuous-closed-vimage)

show closed {y} by simp
show

∧
x. isCont (base-gross P) x using base-gross-continuous

by (simp add: continuous-on-eq-continuous-within assms)
qed
show bdd-above ((base-gross P) −‘ {y})
proof

fix x
assume x ∈ (base-gross P) −‘ {y}
hence base-gross P x = y by simp
hence base-gross P (grd-max P) < base-gross P x

using assms False
by (simp add: base-gross-grd-max fin-nz-sup)
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thus x ≤ (grd-max P) using ‹antimono (base-gross P)›
by (metis antimonoD incseq-const less-eq-real-def less-irrefl-nat

mono-strict-invE nle-le)
qed

qed
finally show ?thesis .

qed

lemma base-gross-dwn:
assumes ∀ i. grd P i ≤ grd P (i+1 )
and ∀ i. 0 < grd P i
and ∀ i. fee P i < 1
and ∀ i. 0 ≤ lq P i
and mono (grd P)
and grd-min P ≤ grd-max P
and 0 ≤ y
and y ≤ base-gross P (grd-min P)

shows base-gross P (base-reach P y) = y
using assms base-reach-mem by simp

end

2.8 Net base token quantity in a pool
2.8.1 Function specialization
definition rng-base-net where
rng-base-net P = rng-gen-base (grd P) (lq P)

lemma rng-base-net-pos:
assumes grd P i ≤ grd P (i +(1 ::int))
and 0 < grd P i
and 0 ≤ lq P i
shows 0 ≤ rng-base-net P x i unfolding rng-base-net-def
using rng-gen-base-pos assms by simp

lemma rng-base-net-continuous-on:
assumes grd P i ≤ grd P (i +(1 ::int))
and 0 < grd P i
shows continuous-on A (λpi. rng-base-net P pi i)

unfolding rng-base-net-def using rng-gen-base-continuous-on assms by simp

lemma rng-base-net-mono:
assumes grd P i ≤ grd P (i +(1 ::int))
and 0 < grd P i
and 0 ≤ lq P i
shows antimono (λpi. rng-base-net P pi i) unfolding rng-base-net-def
using rng-gen-base-antimono assms by simp

definition base-net where
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base-net P = gen-base (grd P) (lq P)

lemma base-net-pos:
assumes ∀ i. grd P i ≤ grd P (i +(1 ::int))
and ∀ i. 0 < grd P i
and ∀ i. 0 ≤ lq P i
shows 0 ≤ base-net P x unfolding base-net-def
using gen-base-pos assms by simp

2.8.2 Restriction to pools with a finite liquidity
context finite-liq-pool
begin

lemma base-net-continuous:
assumes ∀ i. grd P i ≤ grd P (i +(1 ::int))
and ∀ i. 0 < grd P i
shows continuous-on A (base-net P) unfolding base-net-def
using gen-base-continuous assms finite-liqD by simp

lemma base-net-IVT :
assumes ∀ i. grd P i ≤ grd P (i +(1 ::int))
and ∀ i. 0 < grd P i
and grd-min P ≤ grd-max P
and base-net P (grd-max P) ≤ y
and y ≤ base-net P (grd-min P)

shows ∃ pi ≥ (grd-min P). pi ≤ (grd-max P) ∧
base-net P pi = y
using gen-base-IVT assms finite-liqD
unfolding base-net-def grd-min-def grd-max-def by simp

lemma base-net-ne:
assumes ∀ i. grd P i ≤ grd P (i +(1 ::int))
and ∀ i. 0 < grd P i
and grd-min P ≤ grd-max P
and base-net P (grd-max P) ≤ y
and y ≤ base-net P (grd-min P)

shows base-net P−‘ {y} 6= {} using base-net-IVT assms by blast

lemma base-net-antimono-finite:
assumes ∀ i. grd P i ≤ grd P (i +(1 ::int))
and ∀ i. 0 < grd P i
and ∀ i. 0 ≤ lq P i
shows antimono (base-net P) unfolding base-net-def
using gen-base-antimono-finite finite-liqD assms by simp

end
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2.9 Swapping tokens, market depth and slippage

Given a grid point π and a quantity y of quote tokens to add to the pool,
this function computes the amount of base tokens that are retrieved from
the pool.
definition quote-swap where
quote-swap P = (λpi y.

base-net P pi − base-net P (quote-reach P (y + quote-gross P pi)))

Given a grid point π and a quantity x of base tokens to add to the pool,
this function computes the amount of quote tokens that are retrieved from
the pool.
definition base-swap where
base-swap P = (λpi x.

quote-net P pi − quote-net P (base-reach P (x + base-gross P pi)))

The market depth in a pool takes as arguments two grid points π and π′,
and returns the amounts of base or quote tokens that have to be added to
the pool for its state to get from π to π′.
definition mkt-depth where
mkt-depth P = (λ pi pi ′. if pi < pi ′ then (base-net P pi − base-net P pi ′)

else (quote-net P pi − quote-net P pi ′))

Base and quote slippages relate the amount of tokens withdrawn from the
pool from those given by an infinitesimally small amount of tokens and that
can be deduced from the grid point.
definition quote-slippage where
quote-slippage P = (λpi y. y/(quote-swap P pi y ∗ pi ∗ pi) − 1 )

definition base-slippage where
base-slippage P = (λpi x. base-swap P pi x/(x ∗ pi ∗ pi) − 1 )

2.10 Identical profiles
definition id-grid-on where
id-grid-on P P ′ I ←→ (∀ i∈ I . grd P i = grd P ′ i)

lemma id-grid-onI [intro]:
assumes

∧
i. i∈ I =⇒ grd P i = grd P ′ i

shows id-grid-on P P ′ I using assms unfolding id-grid-on-def by simp

lemma id-grid-onD[dest]:
assumes id-grid-on P P ′ I
and i∈ I

shows grd P i = grd P ′ i using assms unfolding id-grid-on-def by simp

lemma id-grid-on-comm:
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assumes id-grid-on P P ′ I
shows id-grid-on P ′ P I
using assms unfolding id-grid-on-def by simp

lemma id-grid-on-mono:
assumes id-grid-on P P ′ I
and I ′ ⊆ I

shows id-grid-on P P ′ I ′ using assms unfolding id-grid-on-def by auto

definition same-nz-liq-on where
same-nz-liq-on P P ′ I ←→ id-grid-on P P ′ I ∧

(∀ i ∈ I . (lq P i = 0 ) ←→ (lq P ′ i = 0 ))

lemma same-nz-liq-onI [intro]:
assumes id-grid-on P P ′ I
and

∧
i. i∈ I =⇒ ((lq P i = 0 ) ←→ (lq P ′ i = 0 ))

shows same-nz-liq-on P P ′ I using assms unfolding same-nz-liq-on-def by simp

lemma same-nz-liq-onD[dest]:
assumes same-nz-liq-on P P ′ I
and i∈ I

shows grd P i = grd P ′ i (lq P i = 0 ) ←→ (lq P ′ i = 0 )
using assms unfolding same-nz-liq-on-def by auto

lemma same-nz-liq-on-comm:
assumes same-nz-liq-on P P ′ I
shows same-nz-liq-on P ′ P I
using assms id-grid-on-comm unfolding same-nz-liq-on-def by simp

lemma same-nz-liq-on-mono:
assumes same-nz-liq-on P P ′ I
and I ′⊆ I
shows same-nz-liq-on P P ′ I ′

using assms id-grid-on-mono unfolding same-nz-liq-on-def
by (meson id-grid-on-comm in-mono)

definition fee-diff-on where
fee-diff-on P P ′ I ←→ id-grid-on P P ′ I ∧ (∀ i ∈ I . lq P i = lq P ′ i)

lemma fee-diff-onI [intro]:
assumes id-grid-on P P ′ I
and

∧
i. i∈ I =⇒ lq P i = lq P ′ i

shows fee-diff-on P P ′ I
using assms unfolding fee-diff-on-def by simp

lemma fee-diff-onD[dest]:
assumes fee-diff-on P P ′ I
shows id-grid-on P P ′ I ∀ i ∈ I . lq P i = lq P ′ i

proof−
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show id-grid-on P P ′ I
using assms unfolding fee-diff-on-def by simp

show ∀ i∈I . lq P i = lq P ′ i
using assms unfolding fee-diff-on-def by simp

qed

lemma fee-diff-on-nz-liq:
assumes fee-diff-on P P ′ I
shows same-nz-liq-on P P ′ I unfolding same-nz-liq-on-def

proof
show id-grid-on P P ′ I using assms fee-diff-onD(1 ) by simp
show ∀ i∈I . (lq P i = 0 ) = (lq P ′ i = 0 ) using assms fee-diff-onD(2 ) by simp

qed

lemma fee-diff-on-comm:
assumes fee-diff-on P P ′ I
shows fee-diff-on P ′ P I
using assms fee-diff-on-def id-grid-on-comm by simp

lemma fee-diff-on-mono:
assumes fee-diff-on P P ′ I
and I ′⊆ I
shows fee-diff-on P P ′ I ′

using assms id-grid-on-mono unfolding fee-diff-on-def by blast

3 Grid refinement

We define the notion of pool refinement, that characterizes when a pool
admits a finer price grid than another one but exhibits the same behavior.

3.1 Encompassement properties
definition encomp-at where
encomp-at gamma1 gamma2 i k ≡ gamma2 k ≤ gamma1 i ∧

gamma1 (i+1 ) ≤ gamma2 (k+1 )

lemma encomp-atD1 :
assumes encomp-at gamma1 gamma2 i k
shows gamma2 k ≤ gamma1 i
using assms unfolding encomp-at-def by simp

lemma encomp-atD2 :
assumes encomp-at gamma1 gamma2 i k
shows gamma1 (i+1 ) ≤ gamma2 (k+1 )
using assms unfolding encomp-at-def by simp

lemma encomp-atI [intro]:
assumes gamma2 k ≤ gamma1 i
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and gamma1 (i+1 ) ≤ gamma2 (k+1 )
shows encomp-at gamma1 gamma2 i k using assms unfolding encomp-at-def by
simp

definition encompassed where
encompassed gamma1 gamma2 k = {i::int. encomp-at gamma1 gamma2 i k}

lemma encompassed-convex:
assumes (i::int) ∈ encompassed gamma1 gamma2 k
and j ∈ encompassed gamma1 gamma2 k
and i ≤ l
and l ≤ j
and mono gamma1

shows l ∈ encompassed gamma1 gamma2 k unfolding encompassed-def encomp-at-def
proof

have gamma2 k ≤ gamma1 i using assms encompassed-def encomp-at-def by
blast

hence gamma2 k ≤ gamma1 l using assms
by (meson dual-order .trans monotoneD)

have gamma1 (j+1 ) ≤ gamma2 (k+1 )
using assms encompassed-def encomp-at-def by blast

hence gamma1 (l+1 ) ≤ gamma2 (k+1 )
using assms dual-order .trans monoD by fastforce

thus gamma2 k ≤ gamma1 l ∧ gamma1 (l + 1 ) ≤ gamma2 (k + 1 )
using ‹gamma2 k ≤ gamma1 l› by simp

qed

lemma encompassed-interval:
assumes mono gamma1
and finite (encompassed gamma1 gamma2 k)
and encompassed gamma1 gamma2 k 6= {}

shows encompassed gamma1 gamma2 k =
{Min (encompassed gamma1 gamma2 k).. Max (encompassed gamma1 gamma2

k)}
proof

define E where E = (encompassed gamma1 gamma2 k)
define m where m = Min E
define M where M = Max E
have m∈ E using m-def E-def assms by simp
have M ∈ E using M-def E-def assms by simp
show {m..M} ⊆ E
proof

fix x
assume x∈ {m..M}
hence m ≤ x ∧ x ≤ M by simp
show x∈ E using assms encompassed-convex

E-def ‹M ∈ E› ‹m ∈ E› ‹m ≤ x ∧ x ≤ M › by blast
qed
show E ⊆ {m..M} using m-def M-def assms
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by (simp add: E-def subset-eq)
qed

lemma encomp-at-idx-leq:
fixes gamma1 ::int ⇒ real and gamma2 ::int ⇒ real
assumes strict-mono (gamma1 ::int ⇒ real)
and mono (gamma2 ::int ⇒ real)
and encomp-at gamma1 gamma2 i k
and gamma2 k ′ ≤ gamma1 i

shows k ′ ≤ k
proof (rule ccontr)

assume ¬ k ′ ≤ k
hence k < k ′ by simp
hence k+1 ≤ k ′ by simp
hence gamma2 (k+1 ) ≤ gamma2 k ′ using assms

by (simp add: monotoneD)
hence gamma1 (i+1 ) ≤ gamma2 k ′ using assms encomp-atD2 by fastforce
hence gamma1 (i+1 ) ≤ gamma1 i using assms by simp
thus False using assms(1 ) by (simp add: strict-mono-less-eq)

qed

lemma encomp-at-unique:
assumes strict-mono (gamma1 ::int ⇒ real)
and mono (gamma2 ::int ⇒ real)
and encomp-at gamma1 gamma2 i k
and encomp-at gamma1 gamma2 i k ′

shows k = k ′

proof −
have k ≤ k ′ using assms encomp-at-idx-leq

by (simp add: encomp-atD1 )
moreover have k ′ ≤ k using assms encomp-at-idx-leq

by (simp add: encomp-atD1 )
ultimately show ?thesis by simp

qed

lemma encomp-at-unique ′:
assumes strict-mono (gamma1 ::int ⇒ real)
and mono (gamma2 ::int ⇒ real)
and encomp-at gamma1 gamma2 i k
and gamma2 k ′ ≤ gamma1 i
and gamma1 i < gamma2 (k ′+1 )

shows k = k ′

proof (rule ccontr)
assume k 6= k ′

have k ′ ≤ k using assms encomp-at-idx-leq by simp
hence k ′ < k using ‹k 6= k ′› by simp
hence k ′+1 ≤ k by simp
hence gamma2 (k ′+1 ) ≤ gamma2 k using assms monoE by blast
moreover have gamma2 k < gamma2 (k ′+1 )
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using assms encomp-atD1 by fastforce
ultimately show False by simp

qed

lemma encomp-at-refl:
fixes gamma:: ′a::{one, plus}⇒ real
shows encomp-at gamma gamma i i

proof
show gamma i ≤ gamma i by simp
show gamma (i+1 ) ≤ gamma (i+1 ) by simp

qed

3.2 Finer price grids
definition finer-range:: (int ⇒ real) ⇒ (int ⇒ real) ⇒ bool where
finer-range gamma1 gamma2 ≡ (∀ i. ∃ k. encomp-at gamma1 gamma2 i k)

definition finer-grid where
finer-grid P1 P2 ≡ finer-range (grd P1 ) (grd P2 )

lemma finer-grid-range[simp]:
assumes finer-grid P1 P2
shows finer-range (grd P1 ) (grd P2 )
using assms unfolding finer-grid-def by simp

definition coarse-idx where
coarse-idx gamma1 gamma2 i =
(THE k. encomp-at gamma1 gamma2 i k)

definition finer-idx-bound where
finer-idx-bound gamma1 gamma2 i =
(THE k. gamma1 k = gamma2 (coarse-idx gamma1 gamma2 i))

lemma finer-range-refl:
shows finer-range gamma gamma using encomp-at-refl
unfolding finer-range-def by auto

locale finer-ranges =
fixes gamma1 ::int ⇒ real and gamma2 ::int ⇒ real
assumes stm: strict-mono gamma1
and mon: mono gamma2
and fin: finer-range gamma1 gamma2

begin

lemma encomp-idx-unique:
shows ∃ !k. encomp-at gamma1 gamma2 i k

proof −
have ex: ∃ k. encomp-at gamma1 gamma2 i k
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using stm mon fin unfolding finer-range-def by simp
{

fix k k ′

assume encomp-at gamma1 gamma2 i k ′

and encomp-at gamma1 gamma2 i k
hence k = k ′ using encomp-at-unique stm mon fin by auto

}
thus ?thesis using ex by auto

qed

lemma coarse-idx-bounds:
shows encomp-at gamma1 gamma2 i (coarse-idx gamma1 gamma2 i)
proof −

define P where P = (λk. encomp-at gamma1 gamma2 i k)
have P (coarse-idx gamma1 gamma2 i) unfolding P-def coarse-idx-def

by (metis (no-types, lifting) encomp-idx-unique the-equality)
thus ?thesis using P-def by simp

qed

lemma encompassed-bounds:
shows i ∈ encompassed gamma1 gamma2 (coarse-idx gamma1 gamma2 i)
using fin coarse-idx-bounds unfolding encompassed-def by auto

lemma encompassed-unique:
assumes i ∈ encompassed gamma1 gamma2 k
shows k = coarse-idx gamma1 gamma2 i
using assms coarse-idx-bounds encompassed-def encomp-idx-unique by blast

lemma encompassed-inj:
assumes k 6= k ′

shows encompassed gamma1 gamma2 k ∩ encompassed gamma1 gamma2 k ′ =
{}
proof (rule ccontr)

assume encompassed gamma1 gamma2 k ∩ encompassed gamma1 gamma2 k ′ 6=
{}

hence ∃ i. i ∈ encompassed gamma1 gamma2 k ∩ encompassed gamma1 gamma2
k ′

by auto
from this obtain i where i ∈ encompassed gamma1 gamma2 k and

i ∈ encompassed gamma1 gamma2 k ′ by auto
hence k = k ′ using encompassed-unique by auto
thus False using assms by simp

qed

lemma coarse-idx-eq:
assumes gamma2 k ′ ≤ gamma1 i
and gamma1 i < gamma2 (k ′+1 )

shows k ′ = coarse-idx gamma1 gamma2 i
proof (rule ccontr)
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assume k ′ 6= coarse-idx gamma1 gamma2 i
define k where k = coarse-idx gamma1 gamma2 i
have gam: encomp-at gamma1 gamma2 i k

using k-def assms by (simp add: coarse-idx-bounds)
hence k ′ ≤ k

using stm mon fin assms encomp-at-idx-leq encomp-idx-unique by blast
hence k ′ < k using ‹k ′6= coarse-idx gamma1 gamma2 i› k-def by simp
hence k ′+1 ≤ k by simp
hence gamma2 (k ′+1 ) ≤ gamma2 k using assms stm mon monoE by blast
moreover have gamma2 k < gamma2 (k ′+1 )

using assms gam ‹k ′ 6= coarse-idx gamma1 gamma2 i› encomp-idx-unique
k-def encomp-atD1 by fastforce

ultimately show False by simp
qed

lemma coarse-idx-reached:
assumes gamma1 m ≤ gamma2 k
and gamma2 k < gamma1 M
and k = coarse-idx gamma1 gamma2 i

shows ∃ j. gamma1 j = gamma2 k
proof (rule ccontr)

assume ¬(∃ j. gamma1 j = gamma2 k)
hence ∀ j. gamma1 j 6= gamma2 k by simp
have gamma2 k ≤ gamma1 i using coarse-idx-bounds assms

by (simp add: encomp-atD1 )
define X where X = gamma1‘{j. m ≤ j ∧ gamma1 j ≤ gamma2 k}
have gamma1 m∈ X using assms X-def by simp
hence X 6= {} by auto
have X ⊆ gamma1‘{m..M}
proof

fix x
assume x∈ X
hence ∃ l. l∈ {j. m ≤ j ∧ gamma1 j ≤ gamma2 k} ∧ x = gamma1 l

unfolding X-def by auto
from this obtain l where m ≤ l and gamma1 l ≤ gamma2 k

and x = gamma1 l by auto
hence l ≤ M using assms stm

by (meson linorder-not-less nle-le order-trans strict-mono-less-eq)
hence l ∈ {m..M} using ‹m ≤ l› by simp
thus x ∈ gamma1 ‘ {m..M} using ‹x = gamma1 l› by simp

qed
hence finite X using finite-surj by blast
hence Sup X ∈ X

by (metis ‹X 6= {}› infinite-growing le-cSup-finite less-cSupD nless-le)
hence ∃ l. l∈ {j. m ≤ j ∧ gamma1 j ≤ gamma2 k} ∧ Sup X = gamma1 l

unfolding X-def by auto
from this obtain l where m ≤ l and gamma1 l ≤ gamma2 k

and Sup X = gamma1 l by auto
hence gamma1 l < gamma2 k using ‹∀ j. gamma1 j 6= gamma2 k›
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by (simp add: less-eq-real-def )
have bdd-above X unfolding X-def using assms by auto
have gamma1 l < gamma1 (l+1 ) using assms stm by (simp add: monotoneD)
hence gamma1 (l+1 ) /∈ X using ‹Sup X = gamma1 l› cSup-upper ‹bdd-above

X›
by fastforce

hence gamma2 k < gamma1 (l+1 ) using ‹m≤ l› unfolding X-def
by fastforce

show False
proof (cases gamma2 (k−1 ) ≤ gamma1 l)

case True
hence k−1 = coarse-idx gamma1 gamma2 l

using ‹gamma1 l < gamma2 k› coarse-idx-eq assms encomp-atI by simp
hence gamma1 (l+1 ) ≤ gamma2 k using coarse-idx-bounds assms

by (metis (mono-tags, opaque-lifting) add-diff-cancel diff-add-eq
encomp-atD2 )

then show ?thesis using ‹gamma2 k < gamma1 (l+1 )› by simp
next

case False
hence gamma1 l < gamma2 (k−1 ) by simp
define k ′ where k ′ = coarse-idx gamma1 gamma2 l
have gam2 : gamma2 k ′ ≤ gamma1 l ∧ gamma1 (l+1 ) ≤ gamma2 (k ′+1 )

using assms k ′-def encomp-atD1 encomp-atD2 coarse-idx-bounds
by metis

hence gamma2 k ′ < gamma2 (k−1 ) using ‹gamma1 l < gamma2 (k−1 )› by
simp

hence k ′ < k−1 using assms stm mon mono-strict-invE by blast
have gamma2 k < gamma2 (k ′+1 )

using gam2 ‹gamma2 k < gamma1 (l+1 )› by simp
hence k < k ′+1 using assms stm mon mono-strict-invE by blast
then show ?thesis using ‹k ′ < k−1 › by simp

qed
qed

lemma coarse-idx-reached-unique:
assumes gamma1 m ≤ gamma2 k
and gamma2 k < gamma1 M
and k = coarse-idx gamma1 gamma2 i

shows ∃ !j. gamma1 j = gamma2 k
proof −

have ∃ j. gamma1 j = gamma2 k using assms coarse-idx-reached by simp
from this obtain j where gamma1 j = gamma2 k by auto
{

fix i
assume gamma1 i = gamma2 k
hence gamma1 i = gamma1 j using ‹gamma1 j = gamma2 k› by simp
hence i = j using assms stm by (simp add: strict-mono-eq)

}
thus ?thesis using ‹gamma1 j = gamma2 k› by blast
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qed

lemma encomp-idx-mono:
assumes i < j
and encomp-at gamma1 gamma2 i k
and encomp-at gamma1 gamma2 j l
and k 6= l
shows k < l

proof (rule ccontr)
assume ¬ k < l
hence l ≤ k by simp
hence l < k using assms by simp
hence l+1 ≤ k by simp
hence gamma2 (l+1 ) ≤ gamma2 k using mon

by (meson leD linorder-le-less-linear mono-strict-invE)
also have ... ≤ gamma1 i using encomp-atD1 [of gamma1 gamma2 ] assms

by simp
also have ... < gamma1 (i+1 ) using stm

by (simp add: strict-mono-less)
also have ... ≤ gamma1 j using assms stm strict-mono-less-eq

zless-imp-add1-zle by blast
also have ... < gamma1 (j+1 ) using stm

by (simp add: strict-mono-less)
also have ... ≤ gamma2 (l+1 ) using assms encomp-atD2 [of gamma1 gamma2 ]

by simp
finally show False by simp

qed

lemma encomp-idx-mono ′:
assumes i ≤ j
and encomp-at gamma1 gamma2 i k
and encomp-at gamma1 gamma2 j l

shows k ≤ l
proof (cases i = j)

case True
then show ?thesis

using assms encomp-idx-unique by auto
next

case False
hence i < j using assms by simp
show ?thesis
proof (cases k = l)

case True
then show ?thesis by simp

next
case False
then show ?thesis using ‹i < j› assms encomp-idx-mono[of i j k l]

by simp
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qed
qed

lemma encomp-idx-mono-conv:
assumes k < l
and encomp-at gamma1 gamma2 i k
and encomp-at gamma1 gamma2 j l
shows i < j

proof (rule ccontr)
assume ¬ i < j
hence j < i using assms ‹¬ i < j› encomp-at-unique

linorder-less-linear mon stm by blast
hence l < k using encomp-idx-mono assms by simp
thus False using assms by simp

qed

lemma finer-idx-bound-eq:
assumes gamma1 m ≤ gamma2 (coarse-idx gamma1 gamma2 i)
and gamma2 (coarse-idx gamma1 gamma2 i) < gamma1 M

shows gamma1 (finer-idx-bound gamma1 gamma2 i) =
gamma2 (coarse-idx gamma1 gamma2 i)

proof −
define P where P = (λi. gamma1 (finer-idx-bound gamma1 gamma2 i) =

gamma2 (coarse-idx gamma1 gamma2 i))
have P i unfolding P-def finer-idx-bound-def
proof (rule theI ′, rule coarse-idx-reached-unique)

show gamma1 m ≤ gamma2 (coarse-idx gamma1 gamma2 i) using assms by
simp

show gamma2 (coarse-idx gamma1 gamma2 i) < gamma1 M using assms by
simp

qed (simp add: assms)
thus ?thesis using assms P-def by simp

qed

lemma finer-idx-bound-exists-eq:
assumes ∃m. gamma1 m ≤ gamma2 (coarse-idx gamma1 gamma2 i)
and ∃M . gamma2 (coarse-idx gamma1 gamma2 i) < gamma1 M

shows gamma1 (finer-idx-bound gamma1 gamma2 i) =
gamma2 (coarse-idx gamma1 gamma2 i) using assms finer-idx-bound-eq by auto

lemma finer-idx-bound-eq ′:
assumes i ∈ encompassed gamma1 gamma2 k
and gamma1 m ≤ gamma2 k
and gamma2 k < gamma1 M

shows gamma1 (finer-idx-bound gamma1 gamma2 i) = gamma2 k
proof −

have k = coarse-idx gamma1 gamma2 i using encompassed-unique assms by
simp

thus ?thesis using finer-idx-bound-eq assms by simp
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qed

lemma finer-idx-bound-exists-eq ′:
assumes i ∈ encompassed gamma1 gamma2 k
and ∃m. gamma1 m ≤ gamma2 k
and ∃M . gamma2 k < gamma1 M

shows gamma1 (finer-idx-bound gamma1 gamma2 i) = gamma2 k
using assms finer-idx-bound-eq ′ by auto

lemma finer-idx-bound-mem:
assumes gamma1 m ≤ gamma2 (coarse-idx gamma1 gamma2 i)
and gamma2 (coarse-idx gamma1 gamma2 i + 1 ) ≤ gamma1 M
and gamma2 (coarse-idx gamma1 gamma2 i) 6=

gamma2 (coarse-idx gamma1 gamma2 i + 1 )
shows finer-idx-bound gamma1 gamma2 i ∈

encompassed gamma1 gamma2 (coarse-idx gamma1 gamma2 i)
proof −

define k where k = coarse-idx gamma1 gamma2 i
have gamma2 k < gamma2 (k+1 ) using mon assms

by (metis k-def less-eq-real-def monotoneD zle-add1-eq-le zless-add1-eq)
hence gamma2 k < gamma1 M using assms k-def by simp
define idx where idx = finer-idx-bound gamma1 gamma2 i
have gamma1 idx = gamma2 k

using assms finer-idx-bound-eq idx-def k-def ‹gamma2 k < gamma1 M ›
by simp

hence gamma1 (idx + 1 ) ≤ gamma2 (k+1 )
by (metis ‹gamma2 k < gamma2 (k + 1 )› coarse-idx-bounds coarse-idx-eq

encomp-at-def less-eq-real-def )
thus ?thesis

using ‹gamma1 idx = gamma2 k› coarse-idx-eq encompassed-bounds
idx-def k-def

by (metis ‹gamma2 k < gamma2 (k + 1 )› order-refl)
qed

lemma finer-idx-bound-reached:
assumes gamma1 m ≤ gamma2 (coarse-idx gamma1 gamma2 i)
and gamma2 (coarse-idx gamma1 gamma2 i) < gamma1 M
and gamma1 i = gamma2 (coarse-idx gamma1 gamma2 i)

shows i = finer-idx-bound gamma1 gamma2 i
using assms coarse-idx-reached-unique finer-idx-bound-eq by blast

lemma finer-idx-bound-leq:
assumes gamma1 m ≤ gamma2 (coarse-idx gamma1 gamma2 i)
and gamma2 (coarse-idx gamma1 gamma2 i) < gamma1 M

shows finer-idx-bound gamma1 gamma2 i ≤ i
proof−

have gamma1 (finer-idx-bound gamma1 gamma2 i) =
gamma2 (coarse-idx gamma1 gamma2 i)
using assms finer-idx-bound-eq by simp
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also have ... ≤ gamma1 i using assms coarse-idx-bounds
by (simp add: encomp-atD1 )

finally have gamma1 (finer-idx-bound gamma1 gamma2 i) ≤ gamma1 i .
thus ?thesis using assms stm by (simp add: strict-mono-less-eq)

qed

lemma finer-idx-bound-proj:
assumes i ∈ encompassed gamma1 gamma2 k
and j ∈ encompassed gamma1 gamma2 k
and gamma1 m ≤ gamma2 k
and gamma2 k < gamma1 M

shows finer-idx-bound gamma1 gamma2 i = finer-idx-bound gamma1 gamma2 j
proof (rule ccontr)

define fi where fi = finer-idx-bound gamma1 gamma2 i
define fj where fj = finer-idx-bound gamma1 gamma2 j
assume fi 6= fj
have gamma1 fi = gamma2 k using finer-idx-bound-eq ′ assms fi-def by simp
moreover have gamma1 fj = gamma2 k

using finer-idx-bound-eq ′ assms fj-def by simp
ultimately show False using stm by (metis ‹fi 6= fj› strict-mono-eq)

qed

lemma finer-idx-bound-min:
assumes i ∈ encompassed gamma1 gamma2 k
and j ∈ encompassed gamma1 gamma2 k
and gamma1 m ≤ gamma2 k
and gamma2 k < gamma1 M

shows finer-idx-bound gamma1 gamma2 i ≤ j
using assms finer-idx-bound-proj finer-idx-bound-leq
by (metis encompassed-unique)

lemma coarse-idx-finer-bound:
assumes gamma1 m ≤ gamma2 (coarse-idx gamma1 gamma2 i)
and gamma2 (coarse-idx gamma1 gamma2 i) < gamma1 M

shows coarse-idx gamma1 gamma2 (finer-idx-bound gamma1 gamma2 i) =
coarse-idx gamma1 gamma2 i

proof −
define j where j = finer-idx-bound gamma1 gamma2 i
define k where k = coarse-idx gamma1 gamma2 i
have j ≤ i

using j-def assms finer-ranges.finer-idx-bound-leq finer-ranges-axioms
by blast

hence gamma1 (j+1 ) ≤ gamma1 (i+1 ) using stm
by (simp add: strict-mono-less-eq)

hence gamma1 (j+1 ) ≤ gamma2 (k+1 )
using k-def encomp-atD2 coarse-idx-bounds order .trans by metis

moreover have gamma2 k ≤ gamma1 j using assms k-def j-def
by (simp add: finer-idx-bound-eq)

ultimately show ?thesis using k-def j-def encomp-at-unique
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using assms stm mon coarse-idx-bounds encomp-atI by blast
qed

lemma finer-idx-bound-invol:
assumes gamma1 m ≤ gamma2 (coarse-idx gamma1 gamma2 i)
and gamma2 (coarse-idx gamma1 gamma2 i) < gamma1 M

shows finer-idx-bound gamma1 gamma2 (finer-idx-bound gamma1 gamma2 i) =
finer-idx-bound gamma1 gamma2 i
using assms coarse-idx-finer-bound finer-idx-bound-eq finer-idx-bound-reached
by auto

lemma reached-imp-coarse:
assumes gamma1 i = gamma2 k
and gamma2 k 6= gamma2 (k+1 )

shows gamma1 (i+1 ) ≤ gamma2 (k+1 )
proof (rule ccontr)

assume ¬ gamma1 (i + 1 ) ≤ gamma2 (k + 1 )
hence asm: gamma2 (k+1 ) < gamma1 (i+1 ) by simp
have gamma2 k < gamma2 (k+1 ) using assms mon

by (metis linorder-neqE-linordered-idom mono-strict-invE
order .asym zless-add1-eq)

have ∃ j. encomp-at gamma1 gamma2 i j
using fin finer-range-def by simp

hence ∃ j. gamma2 j ≤ gamma1 i ∧ gamma1 (i+1 ) ≤ gamma2 (j+1 )
using encomp-atD1 encomp-atD2 by blast

from this obtain j where gamma2 j ≤ gamma1 i
and gamma1 (i+1 ) ≤ gamma2 (j+1 )
by auto note jpr = this

have gamma2 j ≤ gamma2 k using jpr assms by simp
moreover have gamma2 (k+1 ) < gamma2 (j+1 ) using jpr asm by simp
ultimately show False using mon

by (metis assms(2 ) dual-order .trans mono-strict-invE monotoneD
order-antisym-conv zle-add1-eq-le zless-add1-eq)

qed

lemma less-imp-coarse:
assumes gamma1 m < gamma2 k
and gamma2 k ≤ gamma1 M
and gamma2 k 6= gamma2 (k+1 )

shows ∃ i. encomp-at gamma1 gamma2 i k
proof (rule ccontr)

assume ¬(∃ i. encomp-at gamma1 gamma2 i k)
hence asm: ∀ i. gamma1 i < gamma2 k ∨ gamma2 (k+1 ) < gamma1 (i+1 )

using not-le-imp-less unfolding encomp-at-def by auto
define B where B = {i. m ≤ i ∧ gamma1 i < gamma2 k}
define A where A = {i. gamma2 (k+1 ) < gamma1 (i+1 )}
have m ∈ B using assms B-def by simp
define j1 where j1 = Sup B + 1
have ∀ j∈ B. m≤ j using B-def stm by simp
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moreover have ∀ j∈ B. j ≤ M
using assms stm B-def linorder-not-less strict-monoD by fastforce

ultimately have B⊆ {m..M} by auto
hence finite B using finite-subset by auto
hence Sup B ∈ B

by (metis ‹m ∈ B› dual-order .strict-iff-order finite-imp-Sup-less
le-cSup-finite)

hence j1 /∈ B
using ‹finite B› j1-def le-cSup-finite zle-add1-eq-le by blast

hence j1 ∈ A using asm A-def B-def ‹Sup B ∈ B› j1-def by force
hence gamma2 (k+1 ) < gamma1 (j1 + 1 ) using A-def by simp
have ∃ l. gamma2 l ≤ gamma1 j1 ∧ gamma1 (j1+1 ) ≤ gamma2 (l+1 )

using fin finer-range-def encomp-atD1 encomp-atD2 by metis
from this obtain l1 where gamma2 l1 ≤ gamma1 j1

and gamma1 (j1 + 1 ) ≤ gamma2 (l1+1 )
by auto note lppr = this

show False
proof (cases gamma2 (k+1 ) ≤ gamma1 j1 )

case True
define j where j = Sup B
have j1 = j+1 using j-def j1-def by simp
have ∃ l. gamma2 l ≤ gamma1 j ∧ gamma1 (j+1 ) ≤ gamma2 (l+1 )

using fin finer-range-def encomp-atD1 encomp-atD2 by metis
from this obtain l where gamma2 l ≤ gamma1 j

and gamma1 (j + 1 ) ≤ gamma2 (l+1 )
by auto note lpr = this

have gamma2 l < gamma2 k using ‹Sup B ∈ B› j-def lpr
by (simp add: B-def )

hence l < k using mon mono-strict-invE by blast
hence l+1 ≤ k by simp
hence gamma2 (l+1 ) ≤ gamma2 k using mon

by (meson leI less-le-not-le mono-strict-invE)
moreover have gamma2 (k+1 ) ≤ gamma2 (l+1 )

using lpr True ‹j1 = j + 1 › dual-order .trans by blast
ultimately have gamma2 (k+1 ) ≤ gamma2 k by simp
hence gamma2 (k+1 ) = gamma2 k

using mon
by (meson assms(3 ) dual-order .order-iff-strict mono-strict-invE

order-less-imp-not-less zless-add1-eq)
thus ?thesis using assms by simp

next
case False
hence gamma1 j1 < gamma2 (k+1 ) by simp
have gamma2 (k+1 ) < gamma2 (l1 + 1 ) using lppr ‹j1∈ A› A-def by auto
hence k +1 < l1+ 1 using mon mono-strict-invE by blast
hence k+1 ≤ l1 by simp
hence gamma2 (k+1 ) ≤ gamma2 l1 using mon by (simp add: monotoneD)
hence gamma1 j1 < gamma2 l1 using ‹gamma1 j1 < gamma2 (k+1 )› by

simp
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thus ?thesis using lppr by simp
qed

qed

lemma ex-coarse-rep:
assumes gamma1 m ≤ gamma2 k
and gamma2 k ≤ gamma1 M
and gamma2 k 6= gamma2 (k+1 )

shows ∃ i. encomp-at gamma1 gamma2 i k
proof (cases gamma1 m = gamma2 k)

case True
then show ?thesis using assms reached-imp-coarse

by (metis encomp-at-def )
next

case False
hence gamma1 m < gamma2 k using assms by simp
then show ?thesis using less-imp-coarse assms by simp

qed

lemma encompassed-ne:
assumes gamma1 m ≤ gamma2 k
and gamma2 k ≤ gamma1 M
and gamma2 k 6= gamma2 (k+1 )

shows encompassed gamma1 gamma2 k 6= {}
using assms ex-coarse-rep unfolding encompassed-def by simp

lemma encompassed-ne ′:
assumes ∃m. gamma1 m ≤ gamma2 k
and ∃M . gamma2 k ≤ gamma1 M
and gamma2 k 6= gamma2 (k+1 )

shows encompassed gamma1 gamma2 k 6= {}
using assms encompassed-ne by auto

lemma encompassed-finite:
assumes gamma1 m ≤ gamma2 k
and gamma2 (k+1 ) ≤ gamma1 M
and gamma2 k 6= gamma2 (k+1 )

shows finite (encompassed gamma1 gamma2 k)
proof −

have gamma2 k < gamma2 (k+1 ) using mon assms
by (metis linorder-neqE-linordered-idom mono-strict-invE

order .asym zless-add1-eq)
hence lt: gamma2 k < gamma1 M using assms by simp
have encompassed gamma1 gamma2 k 6= {} using assms encompassed-ne lt

by (meson nless-le)
hence ∃ i. i ∈ encompassed gamma1 gamma2 k by auto
from this obtain i where i ∈ encompassed gamma1 gamma2 k by auto
hence k = coarse-idx gamma1 gamma2 i using encompassed-unique by simp
define j where j = finer-idx-bound gamma1 gamma2 i
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hence gamma1 j = gamma2 k
using finer-idx-bound-eq assms ‹k = coarse-idx gamma1 gamma2 i› lt
by simp

have ∀ l∈ encompassed gamma1 gamma2 k. j ≤ l
using finer-idx-bound-min j-def assms ‹i ∈ encompassed gamma1 gamma2 k› lt
by auto

moreover have ∀ l∈ encompassed gamma1 gamma2 k. l < M
proof

fix l
assume l∈ encompassed gamma1 gamma2 k
hence gamma1 (l+1 ) ≤ gamma1 M using encomp-at-def assms

by (metis (mono-tags, opaque-lifting) coarse-idx-bounds
dual-order .strict-trans2 encompassed-unique linorder-not-le)

thus l < M using stm
by (simp add: strict-mono-less-eq)

qed
ultimately have encompassed gamma1 gamma2 k ⊆ {j..< M} by auto
thus ?thesis by (simp add: finite-subset)

qed

lemma encompassed-finite ′:
assumes ∃m. gamma1 m ≤ gamma2 k
and ∃M . gamma2 (k+1 ) ≤ gamma1 M
and gamma2 k 6= gamma2 (k+1 )

shows finite (encompassed gamma1 gamma2 k) using assms encompassed-finite
by auto

lemma encompassed-Min-in:
assumes gamma1 m ≤ gamma2 k
and gamma2 (k+1 ) ≤ gamma1 M
and gamma2 k 6= gamma2 (k+1 )

shows Min (encompassed gamma1 gamma2 k) ∈ encompassed gamma1 gamma2 k
proof −

define j where j = Min (encompassed gamma1 gamma2 k)
have gamma2 k ≤ gamma2 (k+1 ) using mon by (simp add: monoD)
hence gamma2 k ≤ gamma1 M using assms by simp
hence encompassed gamma1 gamma2 k 6= {} using assms encompassed-ne by

simp
thus j∈ encompassed gamma1 gamma2 k

using encompassed-finite encompassed-ne j-def assms by simp
qed

lemma encompassed-Max-in:
assumes gamma1 m ≤ gamma2 k
and gamma2 (k+1 ) ≤ gamma1 M
and gamma2 k 6= gamma2 (k+1 )

shows Max (encompassed gamma1 gamma2 k) ∈ encompassed gamma1 gamma2 k
proof −

define j where j = Max (encompassed gamma1 gamma2 k)
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have gamma2 k ≤ gamma2 (k+1 ) using mon by (simp add: monoD)
hence gamma2 k ≤ gamma1 M using assms by simp
hence encompassed gamma1 gamma2 k 6= {} using assms encompassed-ne by

simp
thus j∈ encompassed gamma1 gamma2 k

using encompassed-finite encompassed-ne j-def assms by simp
qed

lemma encompassed-min-gamma-eq:
assumes gamma1 m ≤ gamma2 k
and gamma2 (k+1 ) ≤ gamma1 M
and gamma2 k 6= gamma2 (k+1 )

shows gamma1 (Min (encompassed gamma1 gamma2 k)) = gamma2 k
proof −

have gamma2 k < gamma2 (k+1 ) using mon assms
by (metis less-eq-real-def monotoneD zle-add1-eq-le zless-add1-eq)

hence gamma2 k < gamma1 M using assms by simp
define me where me = Min (encompassed gamma1 gamma2 k)
define fb where fb = finer-idx-bound gamma1 gamma2 me
have fb ∈ encompassed gamma1 gamma2 k using fb-def finer-idx-bound-mem
by (metis assms(1 ) assms(2 ) assms(3 ) encompassed-Min-in encompassed-unique

me-def )
hence me ≤ fb using me-def

using assms finer-ranges.encompassed-finite finer-ranges-axioms by auto
have me ∈ encompassed gamma1 gamma2 k

using encompassed-Min-in[of m k M ] assms me-def by simp
hence fb ≤ me using finer-idx-bound-min assms ‹gamma2 k < gamma1 M ›

fb-def
by blast

hence fb = me using ‹me ≤ fb› by simp
thus ?thesis using assms fb-def ‹gamma2 k < gamma1 M ›

‹fb ∈ encompassed gamma1 gamma2 k› me-def finer-idx-bound-eq ′[of fb]
by simp

qed

lemma encompassed-min-gamma-eq ′:
assumes ∃m. gamma1 m ≤ gamma2 k
and ∃M . gamma2 (k+1 ) ≤ gamma1 M
and gamma2 k 6= gamma2 (k+1 )

shows gamma1 (Min (encompassed gamma1 gamma2 k)) = gamma2 k
using assms encompassed-min-gamma-eq by auto

lemma coarse-idx-upper :
assumes gamma2 k < gamma1 j
and j /∈ encompassed gamma1 gamma2 k

shows k < coarse-idx gamma1 gamma2 j
proof (rule ccontr)

define k ′ where k ′ = coarse-idx gamma1 gamma2 j
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assume ¬ k < coarse-idx gamma1 gamma2 j
hence k ′ ≤ k using k ′-def by simp
have j∈ encompassed gamma1 gamma2 k ′

by (simp add: encompassed-bounds k ′-def )
hence k ′6= k using assms by auto
hence k ′ < k using ‹k ′ ≤ k› by simp
hence k ′+1 < k+1 by simp
have ¬ encomp-at gamma1 gamma2 j k using assms encompassed-def by auto
hence ¬ gamma2 k ≤ gamma1 j ∨ ¬ gamma1 (j + 1 ) ≤ gamma2 (k + 1 )

using encomp-atI by auto
hence ¬ gamma1 (j + 1 ) ≤ gamma2 (k + 1 ) using assms by simp
hence gamma2 (k+1 ) < gamma1 (j+1 ) by simp
moreover have gamma1 (j+1 ) ≤ gamma2 (k ′ + 1 )

using ‹j∈ encompassed gamma1 gamma2 k ′› coarse-idx-bounds
encomp-at-def k ′-def

by blast
ultimately have gamma2 (k+1 ) < gamma2 (k ′+1 ) by simp
thus False using ‹k ′+1 < k+1 › mon mono-strict-invE by fastforce

qed

lemma encompassed-max-Suc-eq:
assumes gamma1 m ≤ gamma2 k
and gamma2 (k+1 ) ≤ gamma1 M
and gamma2 k 6= gamma2 (k+1 )
and gamma2 (k+1 ) 6= gamma2 (k+2 )
shows Max (encompassed gamma1 gamma2 k) + 1 ∈

encompassed gamma1 gamma2 (k+1 )
proof −

define j where j = Max (encompassed gamma1 gamma2 k)
have j∈ encompassed gamma1 gamma2 k

using encompassed-Max-in j-def assms by simp
hence gamma1 (j+1 ) ≤ gamma2 (k+1 ) using encompassed-def encomp-at-def

by blast
have gamma1 j < gamma1 (j+1 ) using stm

by (simp add: strict-mono-less)
hence gamma2 k < gamma1 (j+1 )

using ‹j∈ encompassed gamma1 gamma2 k› encomp-at-def
by (metis coarse-idx-bounds dual-order .trans encompassed-unique

less-eq-real-def nle-le)
have gamma2 (k+1 ) ≤ gamma2 (k+2 ) using mon

by (simp add: monotoneD)
hence gamma2 (k+1 ) < gamma2 (k+2 ) using assms by simp
define k ′ where k ′ = coarse-idx gamma1 gamma2 (j+1 )
have gamma2 k ′ ≤ gamma1 (j+1 ) using k ′-def

by (simp add: coarse-idx-bounds encomp-atD1 )
hence gamma2 k ′ ≤ gamma2 (k+1 ) using ‹gamma1 (j+1 ) ≤ gamma2 (k+1 )›

by simp
have j+1 /∈ encompassed gamma1 gamma2 k using j-def

by (meson Max-ge assms encompassed-finite linorder-not-less zless-add1-eq)

67



hence k < k ′ using coarse-idx-upper k ′-def ‹gamma2 k < gamma1 (j+1 )› by
simp

hence k+1 ≤ k ′ by simp
hence gamma2 (k+1 ) ≤ gamma2 k ′ using mon by (simp add: monoD)
hence gamma2 k ′ = gamma2 (k+1 ) using ‹gamma2 k ′ ≤ gamma2 (k+1 )› by

simp
hence gamma2 k ′ < gamma2 (k+2 ) using ‹gamma2 (k+1 ) < gamma2 (k+2 )›

by simp
hence k ′ ≤ k+1 using mon mono-strict-invE by fastforce
hence k ′ = k+1 using ‹k+1 ≤ k ′› by simp
thus ?thesis using j-def encompassed-bounds k ′-def by fastforce

qed

lemma encompassed-max-Suc-gamma-eq:
assumes gamma1 m ≤ gamma2 k
and gamma2 (k+2 ) ≤ gamma1 M
and gamma2 k 6= gamma2 (k+1 )
and gamma2 (k+1 ) 6= gamma2 (k+2 )

shows gamma1 (Max (encompassed gamma1 gamma2 k) + 1 ) = gamma2 (k+1 )
proof −

have gamma2 (k+1 ) ≤ gamma2 (k+2 ) using assms mon
by (simp add: monotoneD)

hence gamma2 (k+1 ) ≤ gamma1 M using assms by simp
have gamma2 k ≤ gamma2 (k+1 ) using assms mon

by (simp add: monotoneD)
hence gamma1 m ≤ gamma2 (k+1 ) using assms by simp
have maxin: Max (encompassed gamma1 gamma2 k) ∈

encompassed gamma1 gamma2 k
using encompassed-Max-in assms ‹gamma2 (k+1 ) ≤ gamma1 M › by simp

define sm where sm = Max (encompassed gamma1 gamma2 k)+1
have sm ∈ encompassed gamma1 gamma2 (k+1 )

using encompassed-max-Suc-eq sm-def assms ‹gamma2 (k+1 ) ≤ gamma1 M ›
by simp

have sm = Min (encompassed gamma1 gamma2 (k+1 ))
proof (rule Min-eqI [symmetric])

show finite (encompassed gamma1 gamma2 (k + 1 ))
proof (rule encompassed-finite)

show gamma1 m ≤ gamma2 (k+1 ) using ‹gamma1 m ≤ gamma2 (k+1 )› .
show gamma2 (k + 1 ) 6= gamma2 (k + 1 + 1 ) using assms

by (simp add: add.assoc)
show gamma2 (k + 1 + 1 ) ≤ gamma1 M using ‹gamma2 (k+2 ) ≤ gamma1

M ›
by (simp add: add.assoc)

qed
show sm ∈ encompassed gamma1 gamma2 (k + 1 )

using ‹sm ∈ encompassed gamma1 gamma2 (k + 1 )› .
fix j
assume j∈ encompassed gamma1 gamma2 (k+1 )
hence coarse-idx gamma1 gamma2 j = k+1
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using encompassed-unique by auto
show sm ≤ j
proof (rule ccontr)

assume ¬ sm ≤ j
hence j < sm by simp
hence j ≤ Max (encompassed gamma1 gamma2 k) using sm-def by simp
hence k+1 ≤ k
proof (rule encomp-idx-mono ′)

show encomp-at gamma1 gamma2 j (k + 1 )
using ‹j∈ encompassed gamma1 gamma2 (k+1 )› unfolding encom-

passed-def
by auto
show encomp-at gamma1 gamma2 (Max (encompassed gamma1 gamma2

k)) k
using maxin unfolding encompassed-def by auto

qed
thus False by simp

qed
qed
thus ?thesis using sm-def

by (metis ‹sm ∈ encompassed gamma1 gamma2 (k + 1 )› coarse-idx-bounds
dual-order .order-iff-strict encomp-atD1 encomp-atD2 encompassed-unique
less-le-not-le maxin)

qed

lemma encompassed-max-Suc-gamma-eq ′:
assumes ∃m. gamma1 m ≤ gamma2 k
and ∃M . gamma2 (k+2 ) ≤ gamma1 M
and gamma2 k 6= gamma2 (k+1 )
and gamma2 (k+1 ) 6= gamma2 (k+2 )

shows gamma1 (Max (encompassed gamma1 gamma2 k) + 1 ) = gamma2 (k+1 )
using assms encompassed-max-Suc-gamma-eq by auto

end

lemma coarse-idx-refl:
fixes gamma::int ⇒ real
assumes strict-mono gamma
shows i = coarse-idx gamma gamma i

proof (rule finer-ranges.coarse-idx-eq)
show finer-ranges gamma gamma unfolding finer-ranges-def
proof (intro conjI )

show strict-mono gamma using assms by simp
thus mono gamma by (simp add: strict-mono-mono)
show finer-range gamma gamma using finer-range-refl by simp

qed
show gamma i ≤ gamma i by simp
show gamma i < gamma (i+1 ) using assms unfolding strict-mono-def by

simp
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qed

3.3 Pools with finer grids and coinciding profiles
definition pool-coarse-idx where
pool-coarse-idx = (λP1 P2 i. coarse-idx (grd P1 ) (grd P2 ) i)

lemma pool-coarse-idxD:
assumes k = pool-coarse-idx P1 P2 i
shows k = coarse-idx (grd P1 ) (grd P2 ) i
using assms unfolding pool-coarse-idx-def by simp

definition pool-finer-idx-bound where
pool-finer-idx-bound = (λP1 P2 i. finer-idx-bound (grd P1 ) (grd P2 ) i)

lemma pool-finer-idx-boundD:
assumes l = pool-finer-idx-bound P1 P2 i
shows l = finer-idx-bound (grd P1 ) (grd P2 ) i
using assms unfolding pool-finer-idx-bound-def by simp

definition finer-pool where
finer-pool P1 P2 ≡ finer-grid P1 P2 ∧
(∀ i. lq P1 i = lq P2 (pool-coarse-idx P1 P2 i)) ∧
(∀ i. fee P1 i = fee P2 (pool-coarse-idx P1 P2 i))

lemma finer-poolI [intro]:
assumes finer-range (grd P1 ) (grd P2 )
and (∀ i. lq P1 i = lq P2 (pool-coarse-idx P1 P2 i))
and (∀ i. fee P1 i = fee P2 (pool-coarse-idx P1 P2 i))

shows finer-pool P1 P2
using assms unfolding finer-pool-def finer-grid-def by simp

lemma finer-poolD:
assumes finer-pool P1 P2 shows
finer-range (grd P1 ) (grd P2 )
∀ i. lq P1 i = lq P2 (pool-coarse-idx P1 P2 i)
∀ i. fee P1 i = fee P2 (pool-coarse-idx P1 P2 i)
using assms unfolding finer-pool-def by auto

lemma finer-pool-refl:
assumes strict-mono (grd P)
shows finer-pool P P

proof
show finer-range (grd P) (grd P) using finer-range-refl by simp
have i: ∀ i. pool-coarse-idx P P i = i

using coarse-idx-refl assms unfolding pool-coarse-idx-def by simp
thus ∀ i. lq P i = lq P (pool-coarse-idx P P i) by simp
show ∀ i. fee P i = fee P (pool-coarse-idx P P i) using i by simp

qed
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locale finer-pools =
fixes P1 P2
assumes fin-pool: finer-pool P1 P2

begin

lemma finer-pool-grid:
shows finer-range (grd P1 ) (grd P2 ) using fin-pool unfolding finer-pool-def
by simp

lemma finer-pool-liq:
shows ∀ i. lq P1 i = lq P2 (pool-coarse-idx P1 P2 i)
using fin-pool unfolding finer-pool-def
by simp

lemma finer-pool-fee:
shows ∀ i. fee P1 i = fee P2 (pool-coarse-idx P1 P2 i)
using fin-pool unfolding finer-pool-def
by simp

lemma encompassed-liq-eq:
assumes strict-mono (grd P1 )
and mono (grd P2 )

and i ∈ encompassed (grd P1 ) (grd P2 ) k
shows lq P1 i = lq P2 k
proof −

have k = coarse-idx (grd P1 ) (grd P2 ) i
using assms finer-ranges.encompassed-unique finer-pool-grid
by (simp add: finer-ranges.intro)

thus ?thesis using finer-pool-liq assms pool-coarse-idx-def by metis
qed

lemma encompassed-fee-eq:
assumes strict-mono (grd P1 )
and mono (grd P2 )

and i ∈ encompassed (grd P1 ) (grd P2 ) k
shows fee P1 i = fee P2 k
proof −

have k = coarse-idx (grd P1 ) (grd P2 ) i
using assms finer-ranges.encompassed-unique finer-pool-grid
by (simp add: finer-ranges.intro)

thus ?thesis using finer-pool-fee assms pool-coarse-idx-def by metis
qed

lemma sum-rng-token:
assumes strict-mono (grd P1 )
and mono (grd P2 )
and grd P1 m1 ≤ grd P2 k
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and grd P2 (k+1 ) ≤ grd P1 M1
and grd P2 k 6= grd P2 (k + 1 )
and

∧
a b. a ∈ encompassed (grd P1 ) (grd P2 ) b =⇒

g (lq P1 ) a = g ′ (lq P2 ) b
and ∀ i ∈ encompassed (grd P1 ) (grd P2 ) k. dff x i = f (i+1 ) − f i

shows sum (rng-token dff (g (lq P1 )) x)
(encompassed (grd P1 ) (grd P2 ) k) =
(g ′ (lq P2 )) k ∗ (f (Max (encompassed (grd P1 ) (grd P2 ) k) + 1 ) −
f (Min (encompassed (grd P1 ) (grd P2 ) k)))

proof −
interpret finer-ranges grd P1 grd P2

using assms finer-pool-grid by (simp add: finer-ranges-def )
define Ek where Ek = encompassed (grd P1 ) (grd P2 ) k
define m where m = Min Ek
define M where M = Max Ek
have m ≤ M using m-def M-def encompassed-Min-in encompassed-Max-in assms

by (metis Ek-def Min.coboundedI encompassed-finite)
have Ek = {m..M} unfolding Ek-def m-def M-def

proof (rule encompassed-interval)
show mono (grd P1 )

by (simp add: assms strict-mono-on-imp-mono-on)
show finite (encompassed (grd P1 ) (grd P2 ) k)

using encompassed-finite assms by blast
show encompassed (grd P1 ) (grd P2 ) k 6= {}

using encompassed-ne assms encompassed-Max-in by fastforce
qed

have (
∑

i∈Ek. (g (lq P1 )) i ∗ dff x i) = (
∑

i∈Ek. (g ′ (lq P2 )) k ∗ dff x i)
proof (rule sum.cong)

fix i
assume i ∈ Ek
hence g (lq P1 ) i = g ′ (lq P2 ) k using assms Ek-def by simp
thus (g (lq P1 )) i ∗ dff x i = (g ′ (lq P2 )) k ∗ dff x i by simp

qed simp
also have ... = (g ′ (lq P2 )) k ∗ (

∑
i∈Ek. dff x i)

by (simp add: sum-distrib-left)
also have ... = (g ′ (lq P2 )) k ∗ (

∑
i∈{m..M}. dff x i) using ‹Ek = {m..M}›

by simp
also have ... = (g ′ (lq P2 )) k ∗ (f (M+1 ) − f m)
proof −

have (
∑

i∈{m..M}. dff x i) = (
∑

i∈{m..M}. (f (i+1 ) − f i))
proof (rule sum.cong)

fix y
assume y∈ {m..M}
thus dff x y = f (y+1 ) − f y using assms ‹Ek = {m..M}› Ek-def by simp

qed simp
also have ... = f (M+1 ) − f m using int-telescoping-sum-le ′ ‹m ≤ M ›

by auto
finally show ?thesis by simp

qed

72



finally have (
∑

i∈Ek. (g (lq P1 )) i ∗ dff x i) =
(g ′ (lq P2 )) k ∗ (f (M+1 ) − f m) .

thus ?thesis unfolding Ek-def M-def m-def rng-token-def by simp
qed

lemma sum-rng-gen-quote:
assumes strict-mono (grd P1 )
and mono (grd P2 )
and grd P1 m1 ≤ grd P2 k
and grd P2 (k+2 ) ≤ grd P1 M1
and grd P2 k 6= grd P2 (k + 1 )
and grd P2 (k+1 ) 6= grd P2 (k + 2 )
and

∧
a b. a ∈ encompassed (grd P1 ) (grd P2 ) b =⇒

f (lq P1 ) a = f ′ (lq P2 ) b
shows sum (rng-gen-quote (grd P1 ) (f (lq P1 )) x)
(encompassed (grd P1 ) (grd P2 ) k) =
rng-gen-quote (grd P2 ) (f ′ (lq P2 )) x k

proof −
interpret finer-ranges grd P1 grd P2

using assms finer-pool-grid by (simp add: finer-ranges-def )
have grd P2 (k+1 ) ≤ grd P2 (k+2 ) using mon

by (simp add: monotoneD)
hence grd P2 (k + 1 ) ≤ grd P1 M1 using assms by simp
have sum (rng-gen-quote (grd P1 ) (f (lq P1 )) x)

(encompassed (grd P1 ) (grd P2 ) k) =
(f ′ (lq P2 )) k ∗
(min x ((grd P1 ) (Max (encompassed (grd P1 ) (grd P2 ) k) + 1 )) −
min x ((grd P1 ) (Min (encompassed (grd P1 ) (grd P2 ) k))))

unfolding rng-gen-quote-def
proof (rule sum-rng-token)

show grd P1 m1 ≤ grd P2 k using assms by simp
show grd P2 (k + 1 ) ≤ grd P1 M1 using ‹grd P2 (k + 1 ) ≤ grd P1 M1 › .
show grd P2 k 6= grd P2 (k + 1 ) using assms by simp
show ∀ i∈encompassed (grd P1 ) (grd P2 ) k.

gamma-min-diff (grd P1 ) x i = min x (grd P1 (i + 1 ))− min x (grd P1 i)
unfolding gamma-min-diff-def by simp

show
∧

a b. a ∈ encompassed (grd P1 ) (grd P2 ) b =⇒
f (lq P1 ) a = f ′ (lq P2 ) b using assms
by simp

qed (simp add: assms)+
also have ... = (f ′ (lq P2 )) k ∗ (min x (grd P2 (k+1 )) − min x (grd P2 k))
proof −

have (grd P1 ) (Min (encompassed (grd P1 ) (grd P2 ) k)) = grd P2 k
by (meson assms encompassed-min-gamma-eq ‹grd P2 (k + 1 ) ≤ grd P1 M1 ›)

moreover have (grd P1 ) (Max (encompassed (grd P1 ) (grd P2 ) k) + 1 ) =
grd P2 (k+1 )
using assms encompassed-max-Suc-gamma-eq by auto

ultimately show ?thesis by simp
qed
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finally show ?thesis
unfolding rng-token-def gamma-min-diff-def rng-gen-quote-def .

qed

lemma sum-rng-gen-base:
assumes strict-mono (grd P1 )
and mono (grd P2 )
and grd P1 m1 ≤ grd P2 k
and grd P2 (k+2 ) ≤ grd P1 M1
and grd P2 k 6= grd P2 (k + 1 )
and grd P2 (k+1 ) 6= grd P2 (k + 2 )
and

∧
a b. a ∈ encompassed (grd P1 ) (grd P2 ) b =⇒

f (lq P1 ) a = f ′ (lq P2 ) b
shows sum (rng-gen-base (grd P1 ) (f (lq P1 )) x)
(encompassed (grd P1 ) (grd P2 ) k) =
rng-gen-base (grd P2 ) (f ′ (lq P2 )) x k

proof −
interpret finer-ranges grd P1 grd P2

using assms finer-pool-grid by (simp add: finer-ranges-def )
have grd P2 (k+1 ) ≤ grd P2 (k+2 ) using mon

by (simp add: monotoneD)
hence grd P2 (k + 1 ) ≤ grd P1 M1 using assms by simp
have sum (rng-gen-base (grd P1 ) (f (lq P1 )) x)

(encompassed (grd P1 ) (grd P2 ) k) =
(f ′ (lq P2 )) k ∗
(−inverse (max x ((grd P1 ) (Max (encompassed (grd P1 ) (grd P2 ) k) + 1 )))

−
(−inverse (max x ((grd P1 ) (Min (encompassed (grd P1 ) (grd P2 ) k))))))

unfolding rng-gen-base-def
proof (rule sum-rng-token)

show grd P1 m1 ≤ grd P2 k using assms by simp
show grd P2 (k + 1 ) ≤ grd P1 M1 using ‹grd P2 (k + 1 ) ≤ grd P1 M1 › .
show grd P2 k 6= grd P2 (k + 1 ) using assms by simp
show ∀ i∈encompassed (grd P1 ) (grd P2 ) k.

inv-gamma-max-diff (grd P1 ) x i =
− inverse (max x (grd P1 (i + 1 ))) − − inverse (max x (grd P1 i))
unfolding inv-gamma-max-diff-def by simp

show
∧

a b. a ∈ encompassed (grd P1 ) (grd P2 ) b =⇒
f (lq P1 ) a = f ′ (lq P2 ) b using assms by simp

qed (simp add: assms)+
also have ... = (f ′ (lq P2 )) k ∗
(inverse (max x ((grd P1 ) (Min (encompassed (grd P1 ) (grd P2 ) k)))) −
inverse (max x ((grd P1 ) (Max (encompassed (grd P1 ) (grd P2 ) k) + 1 ))))
by simp

also have ... = (f ′ (lq P2 )) k ∗
(inverse (max x (grd P2 k)) − inverse (max x (grd P2 (k+1 ))))

proof −
have (grd P1 ) (Min (encompassed (grd P1 ) (grd P2 ) k)) = grd P2 k
by (meson assms encompassed-min-gamma-eq ‹grd P2 (k + 1 ) ≤ grd P1 M1 ›)
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moreover have (grd P1 ) (Max (encompassed (grd P1 ) (grd P2 ) k) + 1 ) =
grd P2 (k+1 )
using assms encompassed-max-Suc-gamma-eq by auto

ultimately show ?thesis by simp
qed
finally show ?thesis

unfolding rng-token-def inv-gamma-max-diff-def rng-gen-base-def .
qed

lemma finer-imp-finite-liq:
assumes strict-mono (grd P1 )
and mono (grd P2 )
and finite-liq P2
and

∧
k. lq P2 k 6= 0 =⇒ finite (encompassed (grd P1 ) (grd P2 ) k)

shows finite-liq P1
proof −

interpret finer-ranges grd P1 grd P2
using assms finer-pool-grid by (simp add: finer-ranges-def )

have {i. lq P1 i 6= 0} ⊆
(
⋃

(encompassed (grd P1 ) (grd P2 ) ‘ {k. lq P2 k 6= 0}))
proof

fix i
assume i∈ {i. lq P1 i 6= 0}
hence lq P1 i 6= 0 by simp
define k where k = coarse-idx (grd P1 ) (grd P2 ) i
have i ∈ encompassed (grd P1 ) (grd P2 ) k using k-def encompassed-bounds

by simp
moreover have lq P2 k 6= 0 using ‹lq P1 i 6= 0 › k-def finer-pool-liq

by (metis pool-coarse-idx-def )
ultimately show i ∈ (

⋃
(encompassed (grd P1 ) (grd P2 )‘ {k. lq P2 k 6= 0}))

by auto
qed
thus ?thesis

by (metis (mono-tags, lifting) assms(3 ) assms(4 ) finite-UN-I
finite-liqD finite-liqI finite-subset mem-Collect-eq)

qed

lemma finer-imp-finite-liq ′:
assumes finer-pool P1 P2
and strict-mono (grd P1 )
and mono (grd P2 )
and finite-liq P1
and finite {k. encompassed (grd P1 ) (grd P2 ) k = {}}
shows finite-liq P2

proof −
interpret finer-ranges grd P1 grd P2

using assms finer-pool-grid by (simp add: finer-ranges-def )
have {k. lq P2 k 6= 0} ⊆
{k. encompassed (grd P1 ) (grd P2 ) k = {}} ∪

75



coarse-idx (grd P1 ) (grd P2 ) ‘{i. lq P1 i 6= 0}
proof

fix k
assume k∈ {i. lq P2 i 6= 0}
hence lq P2 k 6= 0 by simp
show k ∈ {k. encompassed (grd P1 ) (grd P2 ) k = {}} ∪

coarse-idx (grd P1 ) (grd P2 ) ‘{i. lq P1 i 6= 0}
proof

assume asm: k /∈ coarse-idx (grd P1 ) (grd P2 ) ‘ {i. lq P1 i 6= 0}
show k ∈ {k. encompassed (grd P1 ) (grd P2 ) k = {}}
proof (rule ccontr)

assume k /∈ {k. encompassed (grd P1 ) (grd P2 ) k = {}}
hence encompassed (grd P1 ) (grd P2 ) k 6= {} by simp
hence ∃ i. i ∈ encompassed (grd P1 ) (grd P2 ) k by auto
from this obtain i where i ∈ encompassed (grd P1 ) (grd P2 ) k by auto
hence k = coarse-idx (grd P1 ) (grd P2 ) i

by (simp add: encompassed-unique)
hence lq P1 i 6= 0

using assms ‹lq P2 k 6= 0 › finer-pool-liq pool-coarse-idx-def
by presburger

hence k ∈ coarse-idx (grd P1 ) (grd P2 ) ‘ {i. lq P1 i 6= 0}
using ‹k = coarse-idx (grd P1 ) (grd P2 ) i› by blast

thus False using asm by simp
qed

qed
qed
moreover have finite (coarse-idx (grd P1 ) (grd P2 ) ‘{i. lq P1 i 6= 0})

using assms finite-liqD by auto
ultimately show ?thesis using assms

by (metis finite-UnI finite-liqI rev-finite-subset)
qed

end

3.4 Spanning grids
definition span-grid where
span-grid P ←→ strict-mono (grd P) ∧ (∀ i. 0 < grd P i) ∧

(∀ r>0 . ∃ i. grd P i < r) ∧ (∀ r . ∃ i. r < grd P i)

lemma span-gridD:
assumes span-grid P
shows strict-mono (grd P) ∀ i. 0 < grd P i
∀ r>0 . ∃ i. grd P i < r ∀ r . ∃ i. r < grd P i

using assms unfolding span-grid-def by simp+

lemma span-gridI [intro]:
assumes strict-mono (grd P)
and ∀ i. 0 < grd P i
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and ∀ r>0 . ∃ i. grd P i < r
and ∀ r . ∃ i. r < grd P i

shows span-grid P using assms unfolding span-grid-def by simp

lemma span-grid-eq:
assumes span-grid P
and grd P = grd P ′

shows span-grid P ′ using assms unfolding span-grid-def by simp

locale finer-spanning-pool = finer-pools +
assumes span: span-grid P1

begin

lemma finer-spanning-gt:
shows ∃ i. r < grd P2 i
proof −

have ∃ i. r < grd P1 i using span span-gridD by simp
from this obtain i where r < grd P1 i by auto
hence r < grd P1 (i+1 ) using span

by (metis dual-order .strict-trans less-add-one monotoneD
span-gridD(1 ))

have ∃ k. encomp-at (grd P1 ) (grd P2 ) i k using span finer-range-def
finer-pool-grid by simp

from this obtain k where encomp-at (grd P1 ) (grd P2 ) i k by auto
hence grd P1 (i+1 ) ≤ grd P2 (k+1 ) using encomp-atD2 [of grd P1 - i k]

by simp
hence r < grd P2 (k+1 ) using ‹r < grd P1 (i + 1 )› by auto
thus ?thesis by auto

qed

lemma finer-spanning-lt:
assumes 0 < r

shows ∃ i. grd P2 i < r
proof −

have ∃ i. grd P1 i < r using assms finer-pool-grid span-gridD
by (simp add: span)

from this obtain i where grd P1 i < r by auto
have ∃ k. encomp-at (grd P1 ) (grd P2 ) i k using assms finer-pool-grid span

by (simp add: finer-range-def )
from this obtain k where encomp-at (grd P1 ) (grd P2 ) i k by auto
hence grd P2 k ≤ grd P1 i using encomp-atD1 [of grd P1 - i k]

by simp
hence grd P2 k < r using ‹grd P1 i < r› by auto
thus ?thesis by auto

qed

lemma finer-span-grid:
assumes ∀ i. 0 < grd P2 i
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and strict-mono (grd P2 )
shows span-grid P2
proof

show strict-mono (grd P2 ) using assms by simp
show ∀ i. 0 < grd P2 i using assms by simp
show ∀ r . ∃ i. r < grd P2 i using finer-spanning-gt assms by simp
show ∀ r>0 . ∃ i. grd P2 i < r using finer-spanning-lt assms by simp

qed

end

locale finer-two-spanning-pools = finer-spanning-pool +
assumes span2 : span-grid P2

sublocale finer-two-spanning-pools ⊆ finer-ranges grd P1 grd P2
proof (rule finer-ranges.intro)

show strict-mono (grd P1 ) using span span-gridD by simp
show mono (grd P2 ) using span span2

by (simp add: span-gridD(1 ) strict-mono-on-imp-mono-on)
show finer-range (grd P1 ) (grd P2 ) using finer-pool-grid by simp

qed

context finer-two-spanning-pools
begin

lemma spanning-sum-rng-gen-quote:
assumes

∧
a b. a ∈ encompassed (grd P1 ) (grd P2 ) b =⇒

f (lq P1 ) a = f ′ (lq P2 ) b
shows sum (rng-gen-quote (grd P1 ) (f (lq P1 )) x)
(encompassed (grd P1 ) (grd P2 ) k) =
rng-gen-quote (grd P2 ) (f ′ (lq P2 )) x k

proof −
have b: strict-mono (grd P1 ) using assms span-gridD span by simp
have c: mono (grd P2 ) using span2 span-gridD

by (simp add: strict-mono-mono)
have d: grd P2 k 6= grd P2 (k + 1 ) using span2 span-gridD

by (simp add: strict-mono-eq)
have e: grd P2 (k + 1 ) 6= grd P2 (k + 2 ) using span2 span-gridD

by (simp add: strict-mono-eq)
have ∃m. grd P1 m ≤ grd P2 k using span2 span-gridD span

by (meson order-less-imp-le)
moreover have ∃M . grd P2 k ≤ grd P1 M using assms span-gridD span

by (meson order-less-imp-le)
ultimately show ?thesis using sum-rng-gen-quote[OF b c - - d e]

by (meson assms less-eq-real-def span span-gridD(4 ))
qed

lemma spanning-sum-rng-gen-base:
assumes

∧
a b. a ∈ encompassed (grd P1 ) (grd P2 ) b =⇒
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f (lq P1 ) a = f ′ (lq P2 ) b
shows sum (rng-gen-base (grd P1 ) (f (lq P1 )) x)
(encompassed (grd P1 ) (grd P2 ) k) =
rng-gen-base (grd P2 ) (f ′ (lq P2 )) x k

proof −
have b: strict-mono (grd P1 ) using assms span span-gridD by simp
have c: mono (grd P2 ) using span2 span-gridD

by (simp add: strict-mono-mono)
have d: grd P2 k 6= grd P2 (k + 1 ) using span2 span-gridD

by (simp add: strict-mono-eq)
have e: grd P2 (k + 1 ) 6= grd P2 (k + 2 ) using span2 span-gridD

by (simp add: strict-mono-eq)
have ∃m. grd P1 m ≤ grd P2 k using span2 span span-gridD

by (meson order-less-imp-le)
moreover have ∃M . grd P2 k ≤ grd P1 M using assms span span-gridD

by (meson order-less-imp-le)
ultimately show ?thesis using sum-rng-gen-base[OF b c - - d e]

by (meson assms span less-eq-real-def span-grid-def )
qed

lemma span-grid-encompassed:
shows finite (encompassed (grd P1 ) (grd P2 ) k)
proof (rule finer-ranges.encompassed-finite ′)

show ∃m. grd P1 m ≤ grd P2 k using span2 span span-gridD
by (meson order-less-imp-le)

show ∃M . grd P2 (k+1 ) ≤ grd P1 M using span2 span span-gridD
by (meson order-less-imp-le)

show grd P2 k 6= grd P2 (k + 1 ) using span2 span-gridD(1 )
by (simp add: strict-mono-eq)

show finer-ranges (grd P1 ) (grd P2 ) unfolding finer-ranges-def
by (simp add: finer-pool-grid span span2 span-gridD(1 )

strict-mono-mono)
qed

lemma span-grids-finite-liq:
assumes finite-liq P2

shows finite-liq P1
proof (rule finer-imp-finite-liq)

show strict-mono (grd P1 ) using assms span span-gridD by simp
show finite-liq P2 using assms by simp
show mono (grd P2 ) using assms span2 span-gridD

by (simp add: strict-mono-on-imp-mono-on)
show

∧
k. lq P2 k 6= 0 =⇒ finite (encompassed (grd P1 ) (grd P2 ) k)

using assms span-grid-encompassed finer-pool-grid by simp
qed

lemma span-grids-ex-le:
shows ∃m. grd P1 m ≤ grd P2 k
by (meson span span2 linorder-le-less-linear order .asym
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span-gridD(2 ) span-gridD(3 ))

lemma span-grids-ex-ge:
shows ∃M . grd P2 k ≤ grd P1 M

by (meson span nless-le span-gridD(4 ))

lemma span-grids-encompassed-ne:
shows encompassed (grd P1 ) (grd P2 ) k 6= {}
proof (rule encompassed-ne ′)

show ∃m. grd P1 m ≤ grd P2 k using span-grids-ex-le span by simp
show ∃M . grd P2 k ≤ grd P1 M using span-grids-ex-ge span by simp
show grd P2 k 6= grd P2 (k + 1 ) using span2 span-gridD

by (simp add: strict-mono-eq)
qed

end

3.5 Spanning grids and finite liquidity
locale finer-two-span-finite-liq = finer-two-spanning-pools +

assumes fin-liq: finite-liq P1

sublocale finer-two-span-finite-liq ⊆ finite-liq-pool P1
by (unfold-locales, (simp add: fin-liq))

lemma (in finer-two-span-finite-liq) span-grids-finite-liq ′:
shows finite-liq P2
proof (rule finer-imp-finite-liq ′)

show finer-pool P1 P2 using fin-pool fin-pool by simp
show strict-mono (grd P1 ) using span span-gridD by simp
show finite-liq P1 using fin-liq by simp
show mono (grd P2 ) using span2 span-gridD

by (simp add: strict-mono-on-imp-mono-on)
have ∀ k. encompassed (grd P1 ) (grd P2 ) k 6= {}

using span-grids-encompassed-ne
by (simp add: finer-pool-grid)

thus finite {k. encompassed (grd P1 ) (grd P2 ) k = {}} by simp
qed

sublocale finer-two-span-finite-liq ⊆ finite-liq-pool P2
by (unfold-locales, (simp add: span-grids-finite-liq ′))

context finer-two-span-finite-liq
begin

lemma finer-pool-encompassed-Union:
shows (

⋃
(encompassed (grd P1 ) (grd P2 ) ‘{i. lq P2 i 6= 0})) =

{i. lq P1 i 6= 0}
proof
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show
⋃

(encompassed (grd P1 ) (grd P2 ) ‘{i. lq P2 i 6= 0}) ⊆ {i. lq P1 i 6= 0}
proof

fix j
assume j ∈

⋃
(encompassed (grd P1 ) (grd P2 ) ‘ {i. lq P2 i 6= 0})

hence ∃ k. lq P2 k 6= 0 ∧ j ∈ encompassed (grd P1 ) (grd P2 ) k by auto
from this obtain k where lq P2 k 6= 0 and

j ∈ encompassed (grd P1 ) (grd P2 ) k by auto
hence k = pool-coarse-idx P1 P2 j

using pool-coarse-idx-def encompassed-unique by metis
hence lq P1 j = lq P2 k using span-grids-finite-liq ′ finer-pool-liq

by simp
hence lq P1 j 6= 0 using ‹lq P2 k 6= 0 › by simp
thus j∈ {i. lq P1 i 6= 0} by simp

qed
show {i. lq P1 i 6= 0} ⊆

⋃
(encompassed (grd P1 ) (grd P2 )‘ {i. lq P2 i 6= 0})

proof
fix j
assume j∈ {i. lq P1 i 6= 0}
hence lq P1 j 6= 0 by simp
hence lq P2 (pool-coarse-idx P1 P2 j) 6= 0

using pool-coarse-idx-def finer-pool-liq by simp
hence pool-coarse-idx P1 P2 j ∈ {i. lq P2 i 6= 0} by simp
moreover have j ∈ encompassed (grd P1 ) (grd P2 ) (pool-coarse-idx P1 P2 j)

using encompassed-bounds unfolding pool-coarse-idx-def by auto
ultimately show j ∈

⋃
(encompassed (grd P1 ) (grd P2 )‘ {i. lq P2 i 6= 0})

by auto
qed

qed

lemma spanning-finer-gen-quote-eq:
assumes

∧
a b. a ∈ encompassed (grd P1 ) (grd P2 ) b =⇒

f (lq P1 ) a = f ′ (lq P2 ) b
and

∧
i. lq P2 i = 0 =⇒ f ′ (lq P2 ) i = 0

and
∧

i. lq P1 i = 0 =⇒ f (lq P1 ) i = 0
shows gen-quote (grd P1 ) (f (lq P1 )) x = gen-quote (grd P2 ) (f ′ (lq P2 )) x

proof −
define rg2 where rg2 = rng-token (gamma-min-diff (grd P2 )) (f ′ (lq P2 )) x
define Lnz2 where Lnz2 = {i. lq P2 i 6= 0}
define Lnz1 where Lnz1 = {i. lq P1 i 6= 0}
have finite-liq P1 using fin-liq by simp
have sm:

∧
x k. sum (rng-gen-quote (grd P1 ) (f (lq P1 )) x)

(encompassed (grd P1 ) (grd P2 ) k) =
rng-gen-quote (grd P2 ) (f ′ (lq P2 )) x k
using spanning-sum-rng-gen-quote assms by simp

have gen-quote (grd P2 ) (f ′ (lq P2 )) x = sum rg2 Lnz2
unfolding gen-quote-def gen-token-def rg2-def Lnz2-def
by (rule finite-support-sum, (simp add: assms)+)

also have ... = sum (λk. sum (rng-gen-quote (grd P1 ) (f (lq P1 )) x)
(encompassed (grd P1 ) (grd P2 ) k)) Lnz2
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proof (rule sum.cong)
show

∧
xa. xa ∈ Lnz2 =⇒ rg2 xa = sum (rng-gen-quote (grd P1 ) (f (lq P1 ))

x)
(encompassed (grd P1 ) (grd P2 ) xa)

proof −
fix k
assume k∈ Lnz2
show rg2 k = sum (rng-gen-quote (grd P1 ) (f (lq P1 )) x)
(encompassed (grd P1 ) (grd P2 ) k)

using sm unfolding rg2-def rng-gen-quote-def by simp
qed

qed simp
also have ... = sum (rng-gen-quote (grd P1 ) (f (lq P1 )) x)
(
⋃

(encompassed (grd P1 ) (grd P2 ) ‘ Lnz2 ))
proof (rule sum.UNION-disjoint[symmetric])

show finite Lnz2 using Lnz2-def span-grids-finite-liq ′ finite-liqD
by simp

show ∀ i∈Lnz2 . finite (encompassed (grd P1 ) (grd P2 ) i)
using assms span-grid-encompassed
by (simp add: finer-pool-grid)

show ∀ i∈Lnz2 . ∀ j∈Lnz2 . i 6= j −→
encompassed (grd P1 ) (grd P2 ) i ∩ encompassed (grd P1 ) (grd P2 ) j = {}
using encompassed-inj by simp

qed
also have ... = sum (rng-gen-quote (grd P1 ) (f (lq P1 )) x) Lnz1
proof −

have (
⋃

(encompassed (grd P1 ) (grd P2 ) ‘ Lnz2 )) = Lnz1
using finer-pool-encompassed-Union Lnz1-def Lnz2-def assms by simp

thus ?thesis by simp
qed
also have ... = infsum (rng-gen-quote (grd P1 ) (f (lq P1 )) x) UNIV

unfolding Lnz1-def rng-gen-quote-def
proof (rule finite-nz-support.finite-support-sum[symmetric])

show finite-nz-support (lq P1 )
using fin-liq finite-liq-def finite-nz-support.intro by auto

qed (simp add: assms)
finally show ?thesis unfolding gen-quote-def gen-token-def rng-gen-quote-def

by simp
qed

lemma spanning-finer-gen-base-eq:
assumes

∧
a b. a ∈ encompassed (grd P1 ) (grd P2 ) b =⇒

f (lq P1 ) a = f ′ (lq P2 ) b
and

∧
i. lq P2 i = 0 =⇒ f ′ (lq P2 ) i = 0

and
∧

i. lq P1 i = 0 =⇒ f (lq P1 ) i = 0
shows gen-base (grd P1 ) (f (lq P1 )) x = gen-base (grd P2 ) (f ′ (lq P2 )) x

proof −
define rg2 where rg2 =rng-token (inv-gamma-max-diff (grd P2 )) (f ′ (lq P2 ))

x
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define Lnz2 where Lnz2 = {i. lq P2 i 6= 0}
define Lnz1 where Lnz1 = {i. lq P1 i 6= 0}
have finite-liq P1 using fin-liq by simp
have sm:

∧
x k. sum (rng-gen-base (grd P1 ) (f (lq P1 )) x)

(encompassed (grd P1 ) (grd P2 ) k) =
rng-gen-base (grd P2 ) (f ′ (lq P2 )) x k
using spanning-sum-rng-gen-base assms by simp

have gen-base (grd P2 ) (f ′ (lq P2 )) x = sum rg2 Lnz2
unfolding gen-base-def gen-token-def rg2-def Lnz2-def
by (rule finite-support-sum, (simp add: assms)+)

also have ... = sum (λk. sum (rng-gen-base (grd P1 ) (f (lq P1 )) x)
(encompassed (grd P1 ) (grd P2 ) k)) Lnz2

proof (rule sum.cong)
show

∧
xa. xa ∈ Lnz2 =⇒ rg2 xa = sum (rng-gen-base (grd P1 ) (f (lq P1 )) x)

(encompassed (grd P1 ) (grd P2 ) xa)
proof −

fix k
assume k∈ Lnz2
show rg2 k = sum (rng-gen-base (grd P1 ) (f (lq P1 )) x)
(encompassed (grd P1 ) (grd P2 ) k)

using sm unfolding rg2-def rng-gen-base-def by simp
qed

qed simp
also have ... = sum (rng-gen-base (grd P1 ) (f (lq P1 )) x)
(
⋃

(encompassed (grd P1 ) (grd P2 ) ‘ Lnz2 ))
proof (rule sum.UNION-disjoint[symmetric])

show finite Lnz2 using Lnz2-def assms finite-liqD
span-grids-finite-liq ′ by auto

show ∀ i∈Lnz2 . finite (encompassed (grd P1 ) (grd P2 ) i)
using assms span-grid-encompassed
by (simp add: finer-pool-grid)

show ∀ i∈Lnz2 . ∀ j∈Lnz2 . i 6= j −→
encompassed (grd P1 ) (grd P2 ) i ∩ encompassed (grd P1 ) (grd P2 ) j = {}
using encompassed-inj by simp

qed
also have ... = sum (rng-gen-base (grd P1 ) (f (lq P1 )) x) Lnz1
proof −

have (
⋃

(encompassed (grd P1 ) (grd P2 ) ‘ Lnz2 )) = Lnz1
using finer-pool-encompassed-Union Lnz1-def Lnz2-def assms by simp

thus ?thesis by simp
qed
also have ... = infsum (rng-gen-base (grd P1 ) (f (lq P1 )) x) UNIV

unfolding Lnz1-def rng-gen-base-def
proof (rule finite-nz-support.finite-support-sum[symmetric])

show finite-nz-support (lq P1 )
using fin-liq finite-liq-def finite-nz-support.intro by auto

qed (simp add: assms)
finally show ?thesis unfolding gen-base-def gen-token-def rng-gen-base-def
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by simp
qed

end

end
theory CLMM-Description imports Grid-Information

begin

4 CLMM description

Definition of CLMMs (Concentrated Liquidity Market Makers)

4.1 Preliminary results
definition clmm-dsc where
clmm-dsc P ←→ (span-grid P) ∧ (finite-liq P) ∧ (∀ i. 0 ≤ lq P i) ∧
(∀ i. 0 ≤ fee P i) ∧ (∀ i. fee P i < 1 )

lemma clmm-dscI [intro]:
assumes span-grid P
and finite-liq P
and ∀ i. 0 ≤ lq P i
and ∀ i. 0 ≤ fee P i
and ∀ i. fee P i < 1

shows clmm-dsc P using assms unfolding clmm-dsc-def by simp

lemma clmm-dsc-span-grid:
assumes clmm-dsc P
shows span-grid P using assms unfolding clmm-dsc-def by simp

lemma clmm-dsc-grid[simp]:
assumes clmm-dsc P
shows strict-mono (grd P) (∀ i. 0 < grd P i)
(∀ r>0 . ∃ i. grd P i < r) (∀ r . ∃ i. r < grd P i)

using assms unfolding clmm-dsc-def span-grid-def by simp+

lemma clmm-dsc-grd-Suc:
assumes clmm-dsc P
shows grd P i < grd P (i+1 ) using assms clmm-dsc-grid(1 ) strict-mono-def
by (simp add: strict-mono-less)

lemma clmm-dsc-grd-smono:
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assumes clmm-dsc P
and i < j
shows grd P i < grd P j using assms clmm-dsc-grid(1 )
by (simp add: strict-monoD)

lemma clmm-dsc-grd-mono:
assumes clmm-dsc P
and i ≤ j
shows grd P i ≤ grd P j using assms clmm-dsc-grd-smono
by (metis linorder-not-less nle-le)

lemma clmm-dsc-liq:
assumes clmm-dsc P
shows finite-liq P 0 ≤ lq P i using assms unfolding clmm-dsc-def by simp+

lemma clmm-dsc-fees:
assumes clmm-dsc P
shows (∀ i. 0 ≤ fee P i) ∧ (∀ i. fee P i < 1 ) using assms
unfolding clmm-dsc-def by simp

lemma clmm-dsc-fees-neq-1 :
assumes clmm-dsc P
shows ∀ i. fee P i 6= 1

by (metis assms clmm-dsc-def less-numeral-extra(4 ))

lemma clmm-dsc-gross-liq:
assumes clmm-dsc P
shows nz-support (gross-fct (lq P) (fee P)) = nz-support (lq P)

using gross-nz-support-eq clmm-dsc-fees assms
by (metis less-numeral-extra(4 ))

lemma clmm-dsc-gross-liq-zero-iff :
assumes clmm-dsc P
shows (lq P i = 0 ) ←→ (gross-fct (lq P) (fee P) i = 0 )
by (simp add: assms clmm-dsc-fees-neq-1 gross-fct-nz-eq)

lemma gross-liq-gt:
assumes clmm-dsc P
and lq P i 6= 0
and L = gross-fct (lq P) (fee P)

shows 0 < L i using assms
by (metis clmm-dsc-fees clmm-dsc-liq(2 ) dual-order .irrefl

gross-fct-nz-eq gross-fct-sgn order .order-iff-strict)

lemma gross-liq-ge:
assumes clmm-dsc P
and L = gross-fct (lq P) (fee P)

shows 0 ≤ L i using assms
by (meson clmm-dsc-fees clmm-dsc-liq(2 ) gross-fct-sgn)
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lemma rng-quote-net-ge:
assumes clmm-dsc P
shows 0 ≤ lq P i ∗ (grd P (i+1 ) − grd P i)
by (simp add: assms clmm-dsc-grd-mono clmm-dsc-liq(2 ))

lemma rng-quote-gross-ge:
assumes clmm-dsc P
and L = gross-fct (lq P) (fee P)
shows 0 ≤ L i ∗ (grd P (i+1 ) − grd P i)
using assms clmm-dsc-grd-mono gross-liq-ge by auto

lemma clmm-quote-gross-pos:
assumes clmm-dsc P

shows 0 ≤ quote-gross P sqp using quote-gross-pos assms
by (meson clmm-dsc-fees clmm-dsc-grd-mono clmm-dsc-liq(2 ) gross-fct-sgn

zle-add1-eq-le zless-add1-eq)

lemma clmm-quote-gross-mono:
assumes clmm-dsc P
shows mono (quote-gross P)

proof −
interpret finite-liq-pool P

by (simp add: assms clmm-dsc-liq(1 ) finite-liq-pool-def )
show ?thesis
proof (rule quote-gross-mono-finite)

show ∀ i. 0 ≤ lq P i using assms clmm-dsc-liq by simp
show ∀ i. fee P i < 1 using assms clmm-dsc-fees by simp
show ∀ i. grd P i ≤ grd P (i + 1 ) using assms clmm-dsc-grid span-gridD

by (simp add: strict-mono-leD)
qed

qed

lemma quote-gross-imp-sqp-lt:
assumes clmm-dsc P
and quote-gross P sqp < quote-gross P sqp ′

shows sqp < sqp ′

using assms clmm-quote-gross-mono mono-strict-invE by blast

lemma clmm-quote-net-mono:
assumes clmm-dsc P
shows mono (quote-net P)

proof −
interpret finite-liq-pool P

by (simp add: assms clmm-dsc-liq(1 ) finite-liq-pool-def )
show ?thesis
proof (rule quote-net-mono-finite-liq)

show ∀ i. 0 ≤ lq P i using assms clmm-dsc-liq by simp
show ∀ i. fee P i < 1 using assms clmm-dsc-fees by simp
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show ∀ i. grd P i ≤ grd P (i + 1 ) using assms clmm-dsc-grid span-gridD
by (simp add: strict-mono-leD)

qed
qed

lemma clmm-base-gross-antimono:
assumes clmm-dsc P
shows antimono (base-gross P)

proof −
interpret finite-liq-pool P

by (simp add: assms clmm-dsc-liq(1 ) finite-liq-pool-def )
show ?thesis
proof (rule base-gross-antimono-finite)

show ∀ i. 0 ≤ lq P i using assms clmm-dsc-liq by simp
show ∀ i. fee P i < 1 using assms clmm-dsc-fees by simp
show ∀ i. grd P i ≤ grd P (i + 1 ) using assms clmm-dsc-grid span-gridD

by (simp add: strict-mono-leD)
show ∀ i. 0 < grd P i using assms clmm-dsc-grid span-gridD by simp

qed
qed

lemma clmm-base-net-antimono:
assumes clmm-dsc P
shows antimono (base-net P)

proof −
interpret finite-liq-pool P

by (simp add: assms clmm-dsc-liq(1 ) finite-liq-pool-def )
show ?thesis
proof (rule base-net-antimono-finite)

show ∀ i. 0 ≤ lq P i using assms clmm-dsc-liq by simp
show ∀ i. grd P i ≤ grd P (i + 1 ) using assms clmm-dsc-grid span-gridD

by (simp add: strict-mono-leD)
show ∀ i. 0 < grd P i using assms clmm-dsc-grid span-gridD by simp

qed
qed

lemma liq-grd-min:
assumes clmm-dsc P
and nz-support (lq P) 6= {}

shows 0 < grd-min P using grd-min-pos assms by simp

lemma liq-grd-min-max:
assumes clmm-dsc P
and nz-support (lq P) 6= {}

shows grd-min P < grd-max P
proof −

have finite-liq-pool P
by (simp add: assms(1 ) clmm-dsc-liq(1 ) finite-liq-pool.intro)

hence idx-min (lq P) ≤ idx-max (lq P)
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using idx-min-max-finite assms clmm-dsc-def finite-liq-def by auto
thus ?thesis using assms

unfolding grd-min-def grd-max-def idx-min-img-def idx-max-img-def
by (simp add: clmm-dsc-grd-smono)

qed

definition rng-blw where
rng-blw P prc = {i. grd P i ≤ prc}

lemma rng-blw-mem[simp]:
assumes i ∈ rng-blw P prc
shows grd P i ≤ prc using assms unfolding rng-blw-def by simp

lemma rng-blw-bdd-above:
assumes clmm-dsc P
shows bdd-above (rng-blw P prc) unfolding rng-blw-def

proof −
have span-grid P using assms clmm-dsc-def by simp
thus bdd-above {i. grd P i ≤ prc} unfolding bdd-above-def span-grid-def

by (metis dual-order .trans less-eq-real-def mem-Collect-eq
strict-mono-less-eq)

qed

lemma rng-blw-ne:
assumes clmm-dsc P
and 0 < prc
shows rng-blw P prc 6= {}

proof −
have ∃ i. grd P i < prc using assms clmm-dsc-grid span-grid-def by simp
thus ?thesis unfolding rng-blw-def using less-eq-real-def by auto

qed

definition lower-tick where
lower-tick P prc = Sup (rng-blw P prc)

lemma grd-lower-tick-cong:
assumes grd P1 = grd P2
shows lower-tick P1 sqp = lower-tick P2 sqp
using assms unfolding lower-tick-def rng-blw-def by simp

lemma lower-tick-mem:
assumes clmm-dsc P
and 0 < prc
shows lower-tick P prc ∈ rng-blw P prc unfolding lower-tick-def

proof (rule int-set-bdd-above)
show rng-blw P prc 6= {} using rng-blw-ne assms by simp
show bdd-above (rng-blw P prc) using rng-blw-bdd-above assms by simp

qed
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lemma lower-tick-geq:
assumes clmm-dsc P
and 0 < prc

shows grd P (lower-tick P prc) ≤ prc
using assms lower-tick-mem unfolding rng-blw-def by simp

lemma lower-tick-geq ′:
assumes clmm-dsc P
and i ∈ rng-blw P prc

shows i ≤ lower-tick P prc unfolding lower-tick-def
proof (rule cSup-upper)

show i ∈ rng-blw P prc using assms by simp
show bdd-above (rng-blw P prc) using assms rng-blw-bdd-above by simp

qed

lemma lower-tick-ubound:
assumes clmm-dsc P
and i = lower-tick P prc
shows prc < grd P (i+1 )

proof (rule ccontr)
assume ¬ prc < grd P (i + 1 )
hence grd P (i + 1 ) ≤ prc by simp
hence i+1 ∈ (rng-blw P prc) unfolding rng-blw-def by auto
hence i+1 ≤ i using assms lower-tick-geq ′ by blast
thus False by simp

qed

lemma lower-tick-lbound:
assumes clmm-dsc P
and 0 < prc
and i = lower-tick P prc

shows grd P i ≤ prc unfolding lower-tick-def
proof −

have lower-tick P prc ∈ rng-blw P prc unfolding lower-tick-def
proof (rule int-set-bdd-above(1 ))

show bdd-above (rng-blw P prc) using assms rng-blw-bdd-above by simp
show rng-blw P prc 6= {} using assms rng-blw-ne by simp

qed
thus grd P i ≤ prc using assms by simp

qed

lemma lower-tick-lt:
assumes clmm-dsc P
and 0 < sqp ′

and i = lower-tick P sqp
and j = lower-tick P sqp ′

and i < j
shows sqp < sqp ′

proof −
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have i+1 ≤ j using assms by simp
have sqp < grd P (i+1 ) using assms lower-tick-ubound by simp
also have ... ≤ grd P j using assms clmm-dsc-grid span-gridD(1 )

by (simp add: strict-mono-less-eq)
also have ... ≤ sqp ′ using assms lower-tick-lbound by simp
finally show ?thesis .

qed

lemma lower-tick-lt ′:
assumes clmm-dsc P
and 0 < sqp ′

and i = lower-tick P sqp
and j = lower-tick P sqp ′

and sqp ′ < sqp
and grd P i = sqp

shows j < i
proof −

have j ≤ i using assms lower-tick-lt by fastforce
moreover have j 6= i
proof (rule ccontr)

assume ¬ j 6= i
hence sqp ≤ sqp ′ using assms lower-tick-lbound by blast
thus False using assms by simp

qed
ultimately show ?thesis by simp

qed

lemma lower-tick-mono:
assumes clmm-dsc P
and 0 < sqp
and i = lower-tick P sqp
and j = lower-tick P sqp ′

and sqp ≤ sqp ′

shows i ≤ j
using assms lower-tick-lt by fastforce

lemma lower-tick-eq:
assumes clmm-dsc P
and grd P i = sqp

shows lower-tick P sqp = i
proof −

define j where j = lower-tick P sqp
have i ∈ rng-blw P sqp using assms unfolding rng-blw-def by auto
hence i ≤ j using assms lower-tick-geq ′ unfolding j-def by simp
moreover have j ≤ i
proof (rule ccontr)

assume ¬ j≤ i
hence i+1 ≤ j by simp
have sqp = grd P i using assms by simp
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also have ... < grd P (i+1 ) using assms clmm-dsc-grd-Suc by blast
also have ... ≤ grd P j

using ‹i+1 ≤ j› by (simp add: assms(1 ) clmm-dsc-grd-mono)
also have ... ≤ sqp

using assms clmm-dsc-grid(2 ) j-def lower-tick-lbound by blast
finally have sqp < sqp .
thus False by simp

qed
ultimately show j = i by simp

qed

lemma lower-tick-charact:
assumes clmm-dsc P
and grd P i ≤ sqp
and sqp < grd P (i+1 )

shows lower-tick P sqp = i
proof (rule ccontr)

assume lower-tick P sqp 6= i
hence i < lower-tick P sqp

by (metis assms(1 ,2 ) clmm-dsc-grid(2 ) lower-tick-eq lower-tick-mono
order-le-imp-less-or-eq)

hence i+1 ≤ lower-tick P sqp by simp
hence grd P (i+1 ) ≤ grd P (lower-tick P sqp)

by (simp add: assms(1 ) clmm-dsc-grd-mono)
also have ... ≤ sqp

by (meson assms(1 ,2 ) clmm-dsc-grid(2 ) lower-tick-lbound order-less-le-trans)
finally have grd P (i+1 ) ≤ sqp .
thus False using assms by simp

qed

lemma lower-tick-grd-min:
assumes strict-mono (grd P)

shows idx-min (lq P) = lower-tick P (grd-min P)
proof −

define A where A = {i. grd P i ≤ grd P (idx-min (lq P))}
have idx-min (lq P) ∈ A using A-def by simp
moreover have ∀ i∈ A. i ≤ idx-min (lq P) unfolding A-def using assms

by (simp add: strict-mono-less-eq)
ultimately show ?thesis

unfolding A-def lower-tick-def rng-blw-def grd-min-def idx-min-img-def
by (metis cSup-eq-maximum)

qed

lemma lower-tick-grd-max:
assumes strict-mono (grd P)
shows idx-max (lq P) + 1 = lower-tick P (grd-max P)

proof −
define A where A = {i. grd P i ≤ grd P (idx-max (lq P) + 1 )}
have idx-max (lq P) + 1 ∈ A using A-def by simp
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moreover have ∀ i∈ A. i ≤ idx-max (lq P) + 1 unfolding A-def using assms
by (simp add: strict-mono-less-eq)

ultimately show ?thesis
unfolding A-def lower-tick-def rng-blw-def grd-max-def idx-max-img-def
by (metis cSup-eq-maximum)

qed

lemma grd-max-gt-if :
assumes clmm-dsc P
and i = lower-tick P sqp
and lq P i 6= 0

shows sqp < grd-max P
proof −

have fin: finite (nz-support (lq P))
by (meson assms(1 ) clmm-dsc-liq(1 ) finite-liq-def )

have sqp < grd P (i+1 ) using assms lower-tick-ubound by auto
also have ... ≤ grd-max P
proof −

have i ≤ idx-max (lq P) using assms
by (simp add: fin idx-max-finite-ge)

thus ?thesis unfolding grd-max-def idx-max-img-def
by (simp add: assms(1 ) clmm-dsc-grd-mono)

qed
finally show ?thesis .

qed

4.2 Quote token addition and withdrawal in a CLMM
lemma (in finite-nz-support) clmm-gen-quote-sum:

assumes clmm-dsc P
and 0 < sqp
and j = lower-tick P sqp

shows gen-quote (grd P) L sqp =
L j ∗ (sqp − grd P j) +
sum (λ i. L i ∗ (grd P (i+1 ) − grd P i)) {i. L i 6= 0 ∧ i < j}

proof −
define df where df = gamma-min-diff (grd P)
define A where A = {i. L i 6= 0 ∧ i ≤ j}
define B where B = {i. L i 6= 0 ∧ j < i}
define C where C = {i. L i 6= 0 ∧ i < j}
have un: {i. L i 6= 0} = A ∪ B unfolding A-def B-def by auto
have inter : A ∩ B = {} unfolding A-def B-def by auto
have fin: finite {i. L i 6= 0} by (metis fin-nz-sup nz-support-def )
have gen-quote (grd P) L sqp =

sum (rng-token df L sqp) {i. L i 6= 0}
unfolding gen-quote-def df-def using gen-token-sum by simp

also have ... = sum (rng-token df L sqp) A + sum (rng-token df L sqp) B
by (metis empty-iff fin finite-Un inter sum.union-inter-neutral un)

also have ... = sum (rng-token df L sqp) A
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proof −
have ∀ i∈ B. rng-token df L sqp i = 0
proof

fix i
assume i ∈ B
have grd P i < grd P (i+1 ) using assms clmm-dsc-grid span-gridD

by (simp add: strict-mono-less)
have j + 1 ≤ i using ‹i ∈ B› assms unfolding B-def by simp
hence grd P (j +1 ) ≤ grd P i

using assms clmm-dsc-grid span-gridD
by (simp add: strict-mono-leD)

hence sqp < grd P i using lower-tick-ubound[of P] assms
by (metis dual-order .strict-trans nless-le)

hence sqp < grd P (i+1 ) using ‹grd P i < grd P (i+1 )› by simp
hence df sqp i = 0

using ‹sqp < grd P i› unfolding df-def gamma-min-diff-def by simp
thus rng-token df L sqp i = 0 unfolding rng-token-def by simp

qed
thus ?thesis by simp

qed
also have ... = rng-token df L sqp j + sum (rng-token df L sqp) C
proof (cases j ∈ A)

case True
hence A = {j} ∪ C unfolding A-def C-def by auto
hence sum (rng-token df L sqp) A = sum (rng-token df L sqp) ({j} ∪ C )

by simp
also have ... = sum (rng-token df L sqp) {j} + sum (rng-token df L sqp) C
proof (rule sum.union-inter-neutral)

show finite {j} by simp
show finite C using fin C-def by simp
show ∀ x∈{j} ∩ C . rng-token df L sqp x = 0 using C-def by simp

qed
also have ... = rng-token df L sqp j + sum (rng-token df L sqp) C by simp
finally show ?thesis .

next
case False
hence A = C unfolding A-def C-def using Collect-cong by fastforce
have L j = 0 using False A-def by auto
hence rng-token df L sqp j = 0 unfolding rng-token-def by simp
then show ?thesis using ‹A = C › by simp

qed
also have ... = L j ∗ (sqp − grd P j) + sum (rng-token df L sqp) C
proof −

have min sqp (grd P (j + 1 )) = sqp using assms lower-tick-ubound by simp
moreover have min sqp (grd P j) = grd P j

using assms lower-tick-lbound by simp
ultimately have rng-token df L sqp j = L j ∗ (sqp − grd P j)

unfolding rng-token-def df-def gamma-min-diff-def by simp
thus ?thesis by simp
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qed
also have ... = L j ∗ (sqp − grd P j) + sum (λ i. L i ∗ (grd P (i+1 ) − grd P

i)) C
proof −

have ∀ i ∈ C . rng-token df L sqp i = L i ∗ (grd P (i+1 ) − grd P i)
proof

fix i
assume i ∈ C
hence i+1 ≤ j unfolding C-def by auto
hence grd P (i+1 ) ≤ grd P j using assms clmm-dsc-grid(1 ) strict-monoD

by (metis linorder-le-less-linear nless-le)
hence grd P (i+1 ) ≤ sqp using lower-tick-lbound assms by fastforce
have grd P i < grd P (i+1 ) using assms clmm-dsc-grd-Suc by simp
hence grd P i ≤ sqp using ‹grd P (i+1 ) ≤ sqp› by simp
thus rng-token df L sqp i = L i ∗ (grd P (i+1 ) − grd P i)

unfolding df-def rng-token-def gamma-min-diff-def
using ‹grd P (i+1 ) ≤ sqp› by simp

qed
hence sum (rng-token df L sqp) C =

sum (λ i. L i ∗ (grd P (i+1 ) − grd P i)) C by simp
thus ?thesis unfolding df-def gamma-min-diff-def rng-token-def by simp

qed
finally show gen-quote (grd P) L sqp =

L j ∗ (sqp − grd P j) + sum (λ i. L i ∗ (grd P (i+1 ) − grd P i)) C .
qed

lemma clmm-gen-quote-grd-min:
assumes clmm-dsc P
and nz-support L 6= {}
and finite (nz-support L)
and nz-support L = nz-support (lq P)

shows gen-quote (grd P) L (grd-min P) = 0 using gen-quote-grd-min
by (meson assms clmm-dsc-grd-mono mono-onI )

lemma (in finite-nz-support) clmm-gen-quote-grd-min-le:
assumes clmm-dsc P
and nz-support L = nz-support (lq P)
and sqp ≤ grd-min P
and 0 < sqp

shows gen-quote (grd P) L sqp = 0
proof −

define j where j = lower-tick P sqp
hence j ≤ idx-min (lq P) using lower-tick-grd-min[of P] assms

by (simp add: lower-tick-mono)
have gen-quote (grd P) L sqp =

L j ∗ (sqp − grd P j) +
(
∑

i | L i 6= 0 ∧ i < j. L i ∗ (grd P (i + 1 ) − grd P i))
by (rule clmm-gen-quote-sum, (auto simp add: assms j-def ))

also have ... = L j ∗ (sqp − grd P j)
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proof −
have {i. L i 6= 0 ∧ i < j} = {}
proof −

have ∀ i < j. L i = 0 using ‹j <= idx-min (lq P)› idx-min-def
by (metis (mono-tags, opaque-lifting) assms(2 )

dual-order .strict-trans fin-nz-sup idx-min-finite-le nless-le)
thus ?thesis by auto

qed
hence (

∑
i | L i 6= 0 ∧ i < j. L i ∗ (grd P (i + 1 ) − grd P i)) = 0

by (metis sum-clauses(1 ))
thus ?thesis by simp

qed
also have ... = 0
proof (cases sqp = grd-min P)

case True
hence grd P j = grd-min P

using ‹j ≤ idx-min (lq P)› assms unfolding grd-min-def idx-min-img-def
by (simp add: j-def lower-tick-eq)

thus ?thesis using True by simp
next

case False
hence j < idx-min (lq P) using lower-tick-lt ′

by (metis ‹j ≤ idx-min (lq P)› assms(1 ) assms(4 ) assms(3 )
idx-min-img-def j-def leI lower-tick-lbound grd-min-def
verit-la-disequality)

hence L j = 0 unfolding idx-min-def nz-support-def
by (metis ‹j < idx-min (lq P)› assms(2 ) fin-nz-sup idx-min-def

idx-min-finite-le leD)
then show ?thesis by simp

qed
finally show ?thesis .

qed

lemma clmm-quote-gross-sum:
assumes clmm-dsc P
and 0 < sqp
and L = gross-fct (lq P) (fee P)
and j = lower-tick P sqp

shows quote-gross P sqp =
L j ∗ (sqp − grd P j) +
sum (λ i. L i ∗ (grd P (i+1 ) − grd P i)) {i. L i 6= 0 ∧ i < j}

proof −
interpret finite-nz-support L

using finite-liq-pool.finite-liq-gross-fct assms
by (metis clmm-dsc-liq(1 ) finite-liq-pool.intro finite-nz-support-def

nz-support-def )
show ?thesis unfolding quote-gross-def using clmm-gen-quote-sum assms by

simp
qed
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lemma clmm-quote-gross-grd-min:
assumes clmm-dsc P
and nz-support (lq P) 6= {}

shows quote-gross P (grd-min P) = 0 unfolding quote-gross-def
proof (rule clmm-gen-quote-grd-min)

show finite (nz-support (gross-fct (lq P) (fee P)))
using finite-liq-pool.finite-liq-gross-fct assms
by (metis clmm-dsc-liq(1 ) finite-liq-pool.intro nz-support-def )

show clmm-dsc P using assms by simp
show nz-support (gross-fct (lq P) (fee P)) = nz-support (lq P)

using clmm-dsc-gross-liq assms by simp
thus nz-support (gross-fct (lq P) (fee P)) 6= {} using assms by simp

qed

lemma clmm-quote-gross-grd-min-le:
assumes clmm-dsc P
and sqp ≤ grd-min P
and 0 < sqp

shows quote-gross P sqp = 0 unfolding quote-gross-def
proof (rule finite-nz-support.clmm-gen-quote-grd-min-le)

show finite-nz-support (gross-fct (lq P) (fee P))
using finite-liq-pool.finite-liq-gross-fct assms
by (metis clmm-dsc-liq(1 ) finite-liq-pool.intro finite-nz-support-def

nz-support-def )
show clmm-dsc P using assms by simp
show nz-support (gross-fct (lq P) (fee P)) = nz-support (lq P)

using clmm-dsc-gross-liq assms by simp
qed (simp add: assms)+

lemma clmm-quote-reach-zero:
assumes clmm-dsc P
and nz-support (lq P) 6= {}

shows quote-reach P 0 = grd-min P
using assms clmm-quote-gross-grd-min unfolding quote-reach-def by simp

lemma clmm-quote-reach-ge:
assumes clmm-dsc P
and nz-support (lq P) 6= {}
and 0 ≤ y
and y ≤ quote-gross P (grd-max P)

shows grd-min P ≤ (quote-reach P y)
proof −

interpret finite-liq-pool
by (simp add: assms(1 ) clmm-dsc-liq(1 ) finite-liq-pool.intro)

show ?thesis
proof (cases y = 0 )

case True
then show ?thesis using assms clmm-quote-reach-zero by simp
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next
case False
hence 0 < y using assms by simp
then show ?thesis using assms quote-reach-ge
by (simp add: clmm-dsc-fees clmm-dsc-liq(2 ) grd-min-max strict-mono-mono)

qed
qed

lemma clmm-quote-reach-pos:
assumes clmm-dsc P
and nz-support (lq P) 6= {}
and 0 ≤ y
and y ≤ quote-gross P (grd-max P)
and sqp = quote-reach P y

shows 0 < sqp
proof −

have 0 < grd-min P by (simp add: assms liq-grd-min)
thus 0 < sqp using assms clmm-quote-reach-ge by fastforce

qed

lemma clmm-quote-reach-mem:
assumes clmm-dsc P
and 0 ≤ y
and y ≤ quote-gross P (grd-max P)
and nz-support (lq P) 6= {}

shows quote-reach P y ∈ quote-gross P−‘ {y}
proof −

interpret finite-liq-pool
by (simp add: assms(1 ) clmm-dsc-liq(1 ) finite-liq-pool.intro)

show ?thesis
proof (rule quote-reach-mem)

show ∀ i. 0 ≤ lq P i using assms(1 ) clmm-dsc-def by simp
show ∀ i. fee P i < 1 using clmm-dsc-fees assms by simp
show mono (grd P)

by (simp add: assms(1 ) clmm-dsc-grd-mono monoI )
show 0 ≤ y using assms by simp
show y ≤ quote-gross P (grd-max P) using assms by simp

qed
qed

lemma clmm-quote-reach-le:
assumes clmm-dsc P
and nz-support (lq P) 6= {}
and 0 < y
and sqp ∈ quote-gross P −‘{y}
and sqp ′ = quote-reach P y

shows sqp ′ ≤ sqp
proof −

interpret finite-liq-pool
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by (simp add: assms(1 ) clmm-dsc-liq(1 ) finite-liq-pool.intro)
have qs: quote-gross P (grd-min P) = 0

using assms clmm-quote-gross-grd-min by simp
define sqp ′ where sqp ′ = quote-reach P y
define X where X = quote-gross P −‘ {y}
hence sqp ′ = Inf X

using assms qs unfolding sqp ′-def quote-reach-def by simp
have ∀ x∈ X . Inf X ≤ x
proof

fix x
assume x ∈ X
show Inf X ≤ x
proof (rule cInf-lower)

show x∈ X using ‹x∈ X› .
show bdd-below X
using assms quote-gross-bdd-below X-def clmm-quote-gross-mono qs by simp

qed
qed
thus ?thesis using assms X-def ‹sqp ′ = Inf X› sqp ′-def by auto

qed

lemma clmm-quote-net-sum:
assumes clmm-dsc P
and 0 < sqp
and L = lq P
and j = lower-tick P sqp

shows quote-net P sqp =
L j ∗ (sqp − grd P j) +
sum (λ i. L i ∗ (grd P (i+1 ) − grd P i)) {i. L i 6= 0 ∧ i < j}

proof −
interpret finite-nz-support L

using finite-liq-pool.finite-liq-gross-fct assms clmm-dsc-def
finite-liq-def finite-nz-support-def

by blast
show ?thesis unfolding quote-net-def using clmm-gen-quote-sum assms by simp

qed

lemma clmm-quote-net-grd-min:
assumes clmm-dsc P
and nz-support (lq P) 6= {}

shows quote-net P (grd-min P) = 0 unfolding quote-net-def
proof (rule clmm-gen-quote-grd-min)

show finite (nz-support (lq P))
using clmm-dsc-liq finite-liqD assms
unfolding finite-nz-support-def nz-support-def by simp

qed (auto simp add: assms)

lemma clmm-quote-gross-reach-eq:
assumes clmm-dsc P
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and nz-support (lq P) 6= {}
and 0 ≤ y
and y ≤ quote-gross P (grd-max P)

shows quote-gross P (quote-reach P y) = y
proof −

interpret finite-liq-pool
by (simp add: assms(1 ) clmm-dsc-liq(1 ) finite-liq-pool.intro)

show ?thesis
proof (rule quote-gross-reach-eq)

show ∀ i. 0 ≤ lq P i by (simp add: assms(1 ) clmm-dsc-liq(2 ))
show ∀ i. fee P i < 1 by (simp add: assms(1 ) clmm-dsc-fees)
show mono (grd P)

by (simp add: assms(1 ) clmm-dsc-grd-mono monoI )
show 0 ≤ y using assms by simp
show y ≤ quote-gross P (grd-max P) using assms by simp

qed
qed

definition gen-quote-diff where
gen-quote-diff P L sqp sqp ′ = gen-quote (grd P) L sqp ′ − gen-quote (grd P) L sqp

lemma (in finite-nz-support) clmm-gen-quote-diff-eq:
assumes clmm-dsc P
and j = lower-tick P sqp
and k = lower-tick P sqp ′

and 0 < sqp
and sqp ≤ sqp ′

and j < k
shows gen-quote-diff P L sqp sqp ′ = L k ∗ (sqp ′ − grd P k) +

sum (λ i. L i ∗ (grd P (i+1 ) − grd P i)) {i. L i 6= 0 ∧ j <i ∧ i < k} +
L j ∗ (grd P (j+1 ) − sqp)

proof −
have 0 < sqp using assms by simp
hence sqp < sqp ′ using lower-tick-lt assms by simp
hence 0 < sqp ′ using ‹0 < sqp› by simp
define A where A = {i. L i 6= 0 ∧ i < k}
define B where B = {i. L i 6= 0 ∧ i < j}
define C where C = {i. L i 6= 0 ∧ j ≤i ∧ i < k}
define Cj where Cj = {i. L i 6= 0 ∧ j <i ∧ i < k}
define df where df = (λ i. L i ∗ (grd P (i+1 ) − grd P i))
have finite A

unfolding A-def by (metis fin-nz-sup finite-Collect-conjI nz-support-def )
have A = B ∪ C using assms unfolding A-def B-def C-def by auto
have Cj = C − {j} unfolding C-def Cj-def by auto
have gen-quote-diff P L sqp sqp ′ = L k ∗ (sqp ′ − grd P k) +

sum df A − (L j ∗ (sqp − grd P j) + sum df B)
using assms ‹0 < sqp› clmm-gen-quote-sum ‹0 < sqp ′›
unfolding gen-quote-diff-def df-def A-def B-def by simp

also have ... = L k ∗ (sqp ′ − grd P k) + sum df C − L j ∗ (sqp − grd P j)
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proof (rule diff-sum-dcomp)
show finite A using ‹finite A› .
show A = B ∪ C using ‹A = B ∪ C › .
show B ∩ C = {} unfolding B-def C-def by auto

qed
also have ... = L k ∗ (sqp ′ − grd P k) + sum df Cj +

df j − L j ∗ (sqp − grd P j)
proof (cases j ∈ C )

case True
have sum df C = df j + sum df Cj
proof (rule sum-remove-el)

show finite C using ‹A = B ∪ C › ‹finite A› by simp
show j ∈ C using True .
show Cj = C − {j} using ‹Cj = C − {j}› .

qed
then show ?thesis by simp

next
case False
hence L j = 0 using assms unfolding C-def by auto
hence df j = 0 unfolding df-def by simp
moreover have Cj = C using False ‹Cj = C − {j}› by auto
ultimately show ?thesis by simp

qed
also have ... = L k ∗ (sqp ′ − grd P k) + sum df Cj +

L j ∗ (grd P (j+1 ) − sqp)
proof −

have df j − L j ∗ (sqp − grd P j) = L j ∗ (grd P (j+1 ) − sqp)
unfolding df-def by (simp add: right-diff-distrib)

thus ?thesis by simp
qed
finally show gen-quote-diff P L sqp sqp ′ = L k ∗ (sqp ′ − grd P k) + sum df Cj

+
L j ∗ (grd P (j+1 ) − sqp) .

qed

lemma (in finite-nz-support) clmm-gen-quote-diff-eq ′:
assumes clmm-dsc P
and j = lower-tick P sqp
and j = lower-tick P sqp ′

and 0 < sqp
and sqp ≤ sqp ′

and L ′ j = L j
shows gen-quote-diff P L sqp sqp ′ = L ′ j ∗ (sqp ′ − sqp)
proof −

have 0 < sqp using assms liq-grd-min[of P] by simp
hence 0 < sqp ′ using assms by simp
define A where A = {i. L i 6= 0 ∧ i < j}
define df where df = (λ i. L i ∗ (grd P (i+1 ) − grd P i))
have finite A
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unfolding A-def by (metis fin-nz-sup finite-Collect-conjI nz-support-def )
have gen-quote-diff P L sqp sqp ′ = L j ∗ (sqp ′ − grd P j) +

sum df A − (L j ∗ (sqp − grd P j) + sum df A)
using assms ‹0 < sqp› clmm-gen-quote-sum ‹0 < sqp ′›
unfolding gen-quote-diff-def df-def A-def by simp

also have ... = L j ∗ (sqp ′ − grd P j) − L j ∗ (sqp − grd P j) by simp
also have ... = L j ∗ (sqp ′ − sqp)

by (simp add: right-diff-distrib)
finally show gen-quote-diff P L sqp sqp ′ = L ′ j ∗ (sqp ′ − sqp)

using assms by simp
qed

lemma clmm-quote-gross-diff-eq:
assumes clmm-dsc P
and L = gross-fct (lq P) (fee P)
and j = lower-tick P sqp
and k = lower-tick P sqp ′

and 0 < sqp
and sqp ≤ sqp ′

and j < k
shows quote-gross P sqp ′ − quote-gross P sqp = L k ∗ (sqp ′ − grd P k) +

sum (λ i. L i ∗ (grd P (i+1 ) − grd P i)) {i. L i 6= 0 ∧ j <i ∧ i < k} +
L j ∗ (grd P (j+1 ) − sqp)

proof −
interpret finite-nz-support L

using finite-liq-pool.finite-liq-gross-fct assms
by (metis clmm-dsc-liq(1 ) finite-liq-pool.intro finite-nz-support-def

nz-support-def )
show ?thesis

using clmm-gen-quote-diff-eq assms
unfolding quote-gross-def gen-quote-diff-def by simp

qed

lemma clmm-rng-quote-strict-pos:
assumes clmm-dsc P
and L = gross-fct (lq P) (fee P)
and L i 6= 0

shows 0 < L i ∗ (grd P (i+1 ) − grd P i) using assms
by (metis add-0 clmm-dsc-grd-smono gross-liq-ge less-add-one less-diff-eq

less-eq-real-def zero-less-mult-iff )

lemma clmm-sum-rng-quote-pos:
assumes clmm-dsc P
and L = gross-fct (lq P) (fee P)

shows 0 ≤ sum (λ i. L i ∗ (grd P (i+1 ) − grd P i)) M
using sum-nonneg rng-quote-gross-ge assms
by (metis (mono-tags, lifting))

lemma clmm-sum-rng-quote-strict-pos:
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assumes clmm-dsc P
and L = gross-fct (lq P) (fee P)
and L i 6= 0
and i ∈ M
and finite M

shows 0 < sum (λ i. L i ∗ (grd P (i+1 ) − grd P i)) M
proof (rule sum-pos2 )

show finite M using assms by simp
show i∈ M using assms by simp
show 0 < L i ∗ (grd P (i + 1 ) − grd P i)

using assms clmm-rng-quote-strict-pos by simp
show

∧
i. i ∈ M =⇒ 0 ≤ L i ∗ (grd P (i + 1 ) − grd P i)

using assms rng-quote-gross-ge by simp
qed

lemma clmm-quote-gross-eq-sum-only-if :
assumes clmm-dsc P
and L = gross-fct (lq P) (fee P)
and j = lower-tick P sqp
and k = lower-tick P sqp ′

and 0 < sqp
and sqp ≤ sqp ′

and j < k
and quote-gross P sqp ′ = quote-gross P sqp
and j < i
and i < k

shows L i = 0
proof (rule ccontr)

assume L i 6= 0
define S where S = L k ∗ (sqp ′ − grd P k) +
sum (λ i. L i ∗ (grd P (i+1 ) − grd P i)) {i. L i 6= 0 ∧ j <i ∧ i < k} +
L j ∗ (grd P (j+1 ) − sqp)
have S = quote-gross P sqp ′ − quote-gross P sqp

unfolding S-def using clmm-quote-gross-diff-eq[OF assms(1−7 )] by simp
also have ... = 0 using assms by simp
finally have S = 0 .
have grd P k ≤ sqp ′

using assms lower-tick-mem by auto
have sqp < grd P (j+1 )

by (metis assms(1 ) assms(3 ) lower-tick-ubound)
have a: 0 ≤ L k ∗ (sqp ′ − grd P k)

using ‹grd P k ≤ sqp ′› clmm-dsc-liq(2 ) assms
by (simp add: gross-liq-ge)

have b: 0 ≤ L j ∗ (grd P (j+1 ) − sqp)
using ‹sqp < grd P (j+1 )›
by (metis assms(1 ) assms(2 ) diff-ge-0-iff-ge gross-liq-ge less-eq-real-def

split-mult-pos-le)
have c: 0 ≤ sum (λ i. L i ∗ (grd P (i+1 ) − grd P i))
{i. L i 6= 0 ∧ j <i ∧ i < k}
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using assms clmm-sum-rng-quote-pos by simp
hence sum (λ i. L i ∗ (grd P (i+1 ) − grd P i))
{i. L i 6= 0 ∧ j <i ∧ i < k} = 0

using a b c ‹S = 0 › S-def by simp
moreover have 0 < sum (λ i. L i ∗ (grd P (i+1 ) − grd P i))
{i. L i 6= 0 ∧ j <i ∧ i < k}

proof (rule clmm-sum-rng-quote-strict-pos)
show clmm-dsc P using assms by simp
show L = gross-fct (lq P) (fee P) using assms by simp
show L i 6= 0 using ‹L i 6= 0 › .
thus i ∈ {i. L i 6= 0 ∧ j < i ∧ i < k} using assms by simp
show finite {i. L i 6= 0 ∧ j < i ∧ i < k} by simp

qed
ultimately show False by simp

qed

lemma clmm-quote-gross-eq-sum-emp:
assumes clmm-dsc P
and L = gross-fct (lq P) (fee P)
and j = lower-tick P sqp
and k = lower-tick P sqp ′

and 0 < sqp
and sqp ≤ sqp ′

and j < k
and quote-gross P sqp ′ = quote-gross P sqp

shows {i. L i 6= 0 ∧ j <i ∧ i < k} = {}
proof (rule ccontr)

assume {i. L i 6= 0 ∧ j <i ∧ i < k} 6= {}
hence ∃ i. L i 6= 0 ∧ j < i ∧ i < k by auto
from this obtain i where L i 6= 0 and j < i and i < k by auto
hence L i = 0 using assms clmm-quote-gross-eq-sum-only-if by simp
thus False using ‹L i 6= 0 › by simp

qed

lemma clmm-quote-gross-eq-lower-only-if :
assumes clmm-dsc P
and L = gross-fct (lq P) (fee P)
and j = lower-tick P sqp
and k = lower-tick P sqp ′

and 0 < sqp
and sqp ≤ sqp ′

and j < k
and quote-gross P sqp ′ = quote-gross P sqp

shows L j = 0
proof (rule ccontr)

assume L j 6= 0
define S where S = L k ∗ (sqp ′ − grd P k) +
sum (λ i. L i ∗ (grd P (i+1 ) − grd P i)) {i. L i 6= 0 ∧ j <i ∧ i < k} +
L j ∗ (grd P (j+1 ) − sqp)
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have S = quote-gross P sqp ′ − quote-gross P sqp
unfolding S-def using clmm-quote-gross-diff-eq[OF assms(1−7 )] by simp

also have ... = 0 using assms by simp
finally have S = 0 .
have grd P k ≤ sqp ′

using assms lower-tick-mem by auto
have sqp < grd P (j+1 )

by (metis assms(1 ) assms(3 ) lower-tick-ubound)
have a: 0 ≤ L k ∗ (sqp ′ − grd P k)

using ‹grd P k ≤ sqp ′› clmm-dsc-liq(2 ) assms
by (simp add: gross-liq-ge)

have b: 0 ≤ L j ∗ (grd P (j+1 ) − sqp)
using ‹sqp < grd P (j+1 )›
by (metis assms(1 ) assms(2 ) diff-ge-0-iff-ge gross-liq-ge less-eq-real-def

split-mult-pos-le)
have c: 0 ≤ sum (λ i. L i ∗ (grd P (i+1 ) − grd P i))
{i. L i 6= 0 ∧ j <i ∧ i < k}
using assms clmm-sum-rng-quote-pos by simp

hence L j ∗ (grd P (j+1 ) − sqp) = 0
using a b c ‹S = 0 › S-def by linarith

moreover have 0 < L j ∗ (grd P (j+1 ) − sqp)
using ‹L j 6= 0 › ‹sqp < grd P (j+1 )› calculation by auto

ultimately show False by linarith
qed

lemma clmm-quote-gross-eq-upper-only-if :
assumes clmm-dsc P
and L = gross-fct (lq P) (fee P)
and j = lower-tick P sqp
and k = lower-tick P sqp ′

and 0 < sqp
and sqp ≤ sqp ′

and j < k
and quote-gross P sqp ′ = quote-gross P sqp

shows L k = 0 ∨ grd P k = sqp ′

proof (rule ccontr)
assume asm: ¬ (L k = 0 ∨ grd P k = sqp ′)
hence L k 6= 0 by simp
have grd P k 6= sqp using asm

using assms lower-tick-eq by fastforce
define S where S = L k ∗ (sqp ′ − grd P k) +
sum (λ i. L i ∗ (grd P (i+1 ) − grd P i)) {i. L i 6= 0 ∧ j <i ∧ i < k} +
L j ∗ (grd P (j+1 ) − sqp)
have S = quote-gross P sqp ′ − quote-gross P sqp

unfolding S-def using clmm-quote-gross-diff-eq[OF assms(1−7 )] by simp
also have ... = 0 using assms by simp
finally have S = 0 .
have grd P k < sqp ′

using assms lower-tick-mem ‹grd P k 6= sqp›
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by (metis asm linorder-not-less nle-le order .trans rng-blw-mem)
have sqp < grd P (j+1 )

by (metis assms(1 ) assms(3 ) lower-tick-ubound)
have a: 0 ≤ L k ∗ (sqp ′ − grd P k)

using ‹grd P k < sqp ′› clmm-dsc-liq(2 ) assms
by (simp add: gross-liq-ge)

have b: 0 ≤ L j ∗ (grd P (j+1 ) − sqp)
using ‹sqp < grd P (j+1 )›
by (metis assms(1 ) assms(2 ) diff-ge-0-iff-ge gross-liq-ge less-eq-real-def

split-mult-pos-le)
have c: 0 ≤ sum (λ i. L i ∗ (grd P (i+1 ) − grd P i))
{i. L i 6= 0 ∧ j <i ∧ i < k}
using assms clmm-sum-rng-quote-pos by simp

hence L k ∗ (sqp ′ − grd P k) = 0
using a b c ‹S = 0 › S-def by linarith

moreover have 0 < L k ∗ (sqp ′ − grd P k)
using ‹L k 6= 0 › ‹sqp < grd P (j+1 )› calculation asm by force

ultimately show False by linarith
qed

lemma clmm-quote-gross-diff-eq ′:
assumes clmm-dsc P
and L = gross-fct (lq P) (fee P)
and j = lower-tick P sqp
and j = lower-tick P sqp ′

and 0 < sqp
and sqp ≤ sqp ′

shows quote-gross P sqp ′ − quote-gross P sqp = L j ∗ (sqp ′ − sqp)
proof −

interpret finite-nz-support L
using finite-liq-pool.finite-liq-gross-fct assms
by (metis clmm-dsc-liq(1 ) finite-liq-pool.intro finite-nz-support-def

nz-support-def )
show ?thesis using clmm-gen-quote-diff-eq ′ assms

unfolding quote-gross-def gen-quote-diff-def by simp
qed

lemma clmm-quote-gross-eq-lower-only-if ′:
assumes clmm-dsc P
and L = gross-fct (lq P) (fee P)
and j = lower-tick P sqp
and j = lower-tick P sqp ′

and 0 < sqp
and sqp < sqp ′

and quote-gross P sqp ′ = quote-gross P sqp
shows L j = 0
proof −

have L j ∗ (sqp ′ − sqp) = quote-gross P sqp ′ − quote-gross P sqp
using assms clmm-quote-gross-diff-eq ′[OF assms(1−4 )] by simp
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also have ... = 0 using assms by simp
finally have L j ∗ (sqp ′ − sqp) = 0 .
thus ?thesis using assms by simp

qed

lemma clmm-quote-reach-grd-liq:
assumes clmm-dsc P
and nz-support (lq P) 6= {}
and 0 < y
and y ≤ quote-gross P (grd-max P)
and j = lower-tick P sqp
and grd P j = sqp
and sqp = quote-reach P y

shows lq P (j − 1 ) 6= 0
proof (rule ccontr)

assume ¬ lq P (j − 1 ) 6= 0
define L where L = gross-fct (lq P) (fee P)
have quote-gross P sqp = y using assms clmm-quote-gross-reach-eq by simp
have quote-gross P sqp − quote-gross P (grd P (j−1 )) =

L j ∗ (sqp − grd P j) +
(
∑

i | L i 6= 0 ∧ j − 1 < i ∧ i < j. L i ∗ (grd P (i + 1 ) − grd P i)) +
L (j − 1 ) ∗ (grd P (j − 1 + 1 ) − grd P (j − 1 ))

proof (rule clmm-quote-gross-diff-eq)
show clmm-dsc P using assms(1 ) by simp
show L = gross-fct (lq P) (fee P) using L-def by simp
show j − 1 = lower-tick P (grd P (j − 1 ))

using assms lower-tick-eq by presburger
show j = lower-tick P sqp using assms by simp
show 0 < grd P (j − 1 ) using assms by simp
show j − 1 < j by simp
show grd P (j − 1 ) ≤ sqp

using ‹j − 1 < j› assms(1 ) assms(6 ) clmm-dsc-grd-mono order-less-imp-le
by blast

qed
also have ... = 0
proof −

have L j ∗ (sqp − grd P j) = 0 using assms by simp
moreover have L (j − 1 ) ∗ (grd P (j − 1 + 1 ) − grd P (j − 1 )) = 0

using ‹¬ lq P (j − 1 ) 6= 0 › by (simp add: L-def gross-fct-zero-if )
moreover have (

∑
i | L i 6= 0 ∧ j − 1 < i ∧ i < j.

L i ∗ (grd P (i + 1 ) − grd P i)) = 0
proof −

have {i. L i 6= 0 ∧ j − 1 < i ∧ i < j} = {} by auto
thus ?thesis by (metis sum-clauses(1 ))

qed
ultimately show ?thesis by (simp add: assms(6 ))

qed
finally have quote-gross P sqp − quote-gross P (grd P (j−1 )) = 0 .
hence grd P (j−1 ) ∈ quote-gross P −‘{y}
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by (simp add: ‹quote-gross P sqp = y›)
hence sqp ≤ grd P (j−1 )

using assms clmm-quote-reach-le by simp
moreover have grd P (j−1 ) < sqp using assms

by (metis clmm-dsc-grd-smono order-refl zle-diff1-eq)
ultimately show False by simp

qed

lemma quote-gross-gt-grd-min:
assumes clmm-dsc P
and nz-support (lq P) 6= {}
and grd-min P < sqp

shows 0 < quote-gross P sqp
proof −

define L where L = gross-fct (lq P) (fee P)
define sqpm where sqpm = grd-min P
define j where j = lower-tick P (grd-min P)
define k where k = lower-tick P sqp
have j = idx-min (lq P) using lower-tick-grd-min

by (simp add: assms(1 ) j-def )
have lq P (idx-min (lq P)) 6= 0
proof (rule idx-min-finite-in)

show finite (nz-support (lq P))
using assms clmm-dsc-liq(1 ) finite-liq-def by auto

qed (simp add: assms)
hence lq P j 6= 0 using ‹j = idx-min (lq P)› by simp
hence 0 < L j using gross-liq-gt L-def assms by simp
show ?thesis
proof (cases k = j)

case True
have 0 < L j ∗ (sqp − sqpm) using ‹0 < L j› assms sqpm-def by simp
also have ... = quote-gross P sqp − quote-gross P sqpm
proof (rule clmm-quote-gross-diff-eq ′[symmetric])

show L = gross-fct (lq P) (fee P) using L-def by simp
show j = lower-tick P sqpm using j-def sqpm-def by simp
show j = lower-tick P sqp using True k-def by simp
show 0 < sqpm using assms unfolding sqpm-def

by (simp add: liq-grd-min)
show sqpm ≤ sqp using assms unfolding sqpm-def by simp

qed (simp add: assms)
also have ... = quote-gross P sqp
proof −

have quote-gross P sqpm = 0 unfolding sqpm-def
by (simp add: assms clmm-quote-gross-grd-min)

thus ?thesis by simp
qed
finally show 0 < quote-gross P sqp .

next
case False
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hence j < k unfolding j-def k-def
by (metis assms(1 ) assms(3 ) clmm-dsc-grid(2 ) idx-min-img-def

lower-tick-mono nless-le grd-min-def )
have 0 < L j ∗ (grd P (j+1 ) − sqpm)

using ‹0 < L j› assms(1 ) j-def lower-tick-ubound sqpm-def by auto
also have ... ≤ L k ∗ (sqp − grd P k) +

sum (λ i. L i ∗ (grd P (i+1 ) − grd P i)) {i. L i 6= 0 ∧ j <i ∧ i < k} +
L j ∗ (grd P (j+1 ) − sqpm)

proof −
have 0 ≤ L k ∗ (sqp − grd P k) using gross-liq-ge k-def

by (metis L-def assms(1 ) assms(2 ) assms(3 ) liq-grd-min
diff-ge-0-iff-ge k-def lower-tick-lbound order-less-trans
zero-le-mult-iff )

moreover have 0 ≤ sum (λ i. L i ∗ (grd P (i+1 ) − grd P i))
{i. L i 6= 0 ∧ j <i ∧ i < k}

proof (rule sum-nonneg)
fix n
assume n ∈ {i. L i 6= 0 ∧ j < i ∧ i < k}
thus 0 ≤ L n ∗ (grd P (n + 1 ) − grd P n)

by (simp add: L-def assms(1 ) rng-quote-gross-ge)
qed
ultimately show ?thesis by simp

qed
also have ... = quote-gross P sqp − quote-gross P sqpm
proof (rule clmm-quote-gross-diff-eq[symmetric])

show clmm-dsc P using assms by simp
show L = gross-fct (lq P) (fee P) using L-def by simp
show j < k using ‹j < k› .
show 0 < sqpm using assms sqpm-def by (simp add: liq-grd-min)
show sqpm ≤ sqp using sqpm-def assms by simp

qed (simp add: j-def k-def sqpm-def )+
also have ... = quote-gross P sqp
proof −

have quote-gross P sqpm = 0 unfolding sqpm-def
by (simp add: assms clmm-quote-gross-grd-min)

thus ?thesis by simp
qed
finally show 0 < quote-gross P sqp .

qed
qed

lemma quote-gross-pos-gt-grd-min:
assumes clmm-dsc P
and nz-support (lq P) 6= {}
and 0 < quote-gross P sqp

shows grd-min P < sqp
proof (rule ccontr)

assume ¬ grd-min P < sqp
hence quote-gross P sqp = 0 using assms
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by (metis quote-gross-imp-sqp-lt clmm-quote-gross-grd-min)
thus False using assms by simp

qed

lemma quote-gross-disj-gt:
assumes clmm-dsc P
and i = lower-tick P sqp
and j = lower-tick P sqp ′

and i ≤ k
and k < j
and lq P k 6= 0
and 0 < sqp
and 0 < sqp ′

shows quote-gross P sqp < quote-gross P sqp ′

proof −
define L where L = gross-fct (lq P) (fee P)
hence L k 6= 0 using assms gross-liq-gt by fastforce
have grd P j ≤ sqp ′ using assms by (simp add: lower-tick-lbound)
have sqp < grd P (i+1 ) using assms lower-tick-ubound by simp
have sqp < sqp ′ using lower-tick-lt assms by simp
hence eq: quote-gross P sqp ′ − quote-gross P sqp = L j ∗ (sqp ′ − grd P j) +

(
∑

n | L n 6= 0 ∧ i < n ∧ n < j. L n ∗ (grd P (n + 1 ) − grd P n)) +
L i ∗ (grd P (i + 1 ) − sqp)

using clmm-quote-gross-diff-eq assms L-def by simp
show ?thesis
proof (cases k = i)

case True
hence 0 < L i ∗ (grd P (i + 1 ) − sqp)

using L-def assms gross-liq-gt lower-tick-ubound by auto
also have ... ≤ L j ∗ (sqp ′ − grd P j) +

(
∑

n | L n 6= 0 ∧ i < n ∧ n < j. L n ∗ (grd P (n + 1 ) − grd P n)) +
L i ∗ (grd P (i + 1 ) − sqp)

proof −
have 0 ≤ L j ∗ (sqp ′ − grd P j)

using assms L-def gross-liq-ge lower-tick-lbound by auto
moreover have 0 ≤

(
∑

n | L n 6= 0 ∧ i < n ∧ n < j. L n ∗ (grd P (n + 1 ) − grd P n))
proof (rule sum-nonneg)

fix n
assume n ∈ {n. L n 6= 0 ∧ i < n ∧ n < j}
show 0 ≤ L n ∗ (grd P (n + 1 ) − grd P n)

by (simp add: L-def assms(1 ) rng-quote-gross-ge)
qed
ultimately show ?thesis by simp

qed
also have ... = quote-gross P sqp ′ − quote-gross P sqp using eq by simp
finally have 0 < quote-gross P sqp ′ − quote-gross P sqp .
then show ?thesis by simp

next
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case False
have 0 < (

∑
n | L n 6= 0 ∧ i < n ∧ n < j. L n ∗ (grd P (n + 1 ) − grd P n))

proof (rule sum-ex-strict-pos)
define M where M = {n. L n 6= 0 ∧ i < n ∧ n < j}
show finite M using M-def by simp
have k∈ M using assms False M-def ‹L k 6= 0 › by simp
moreover have 0 < L k ∗ (grd P (k+1 ) − grd P k)

using L-def assms clmm-dsc-grd-Suc gross-liq-gt by auto
ultimately show ∃ a∈M . 0 < L a ∗ (grd P (a + 1 ) − grd P a) by auto
show ∀ x∈M . 0 ≤ L x ∗ (grd P (x + 1 ) − grd P x)

by (simp add: L-def assms(1 ) rng-quote-gross-ge)
qed
also have ... ≤ L j ∗ (sqp ′ − grd P j) +

(
∑

n | L n 6= 0 ∧ i < n ∧ n < j. L n ∗ (grd P (n + 1 ) − grd P n)) +
L i ∗ (grd P (i + 1 ) − sqp)

proof −
have 0 ≤ L j ∗ (sqp ′ − grd P j)

using ‹grd P j ≤ sqp ′› L-def assms(1 ) gross-liq-ge by auto
moreover have 0 ≤ L i ∗ (grd P (i + 1 ) − sqp)

using ‹sqp < grd P (i+1 )› L-def assms(1 ) gross-liq-ge by auto
ultimately show ?thesis by simp

qed
also have ... = quote-gross P sqp ′ − quote-gross P sqp using eq by simp
finally have 0 < quote-gross P sqp ′ − quote-gross P sqp .
thus ?thesis by simp

qed
qed

lemma quote-gross-disj-gt ′:
assumes clmm-dsc P
and i = lower-tick P sqp
and j = lower-tick P sqp ′

and i < j
and lq P j 6= 0
and grd P j < sqp ′

and 0 < sqp
and 0 < sqp ′

shows quote-gross P sqp < quote-gross P sqp ′

proof −
define L where L = gross-fct (lq P) (fee P)
hence 0 < L j using assms gross-liq-gt by fastforce
have sqp < grd P (i+1 ) using assms lower-tick-ubound by simp
have sqp < sqp ′ using lower-tick-lt assms by simp
have 0 < L j ∗ (sqp ′ − grd P j) using assms ‹0 < L j› by simp
also have ... ≤ L j ∗ (sqp ′ − grd P j) +

(
∑

n | L n 6= 0 ∧ i < n ∧ n < j. L n ∗ (grd P (n + 1 ) − grd P n)) +
L i ∗ (grd P (i + 1 ) − sqp)

proof −
have 0 ≤ L i ∗ (grd P (i + 1 ) − sqp)
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using ‹sqp < grd P (i+1 )› L-def assms(1 ) gross-liq-ge by auto
moreover have 0 ≤

(
∑

n | L n 6= 0 ∧ i < n ∧ n < j. L n ∗ (grd P (n + 1 ) − grd P n))
proof (rule sum-nonneg)

fix n
assume n ∈ {n. L n 6= 0 ∧ i < n ∧ n < j}
show 0 ≤ L n ∗ (grd P (n + 1 ) − grd P n)

by (simp add: L-def assms(1 ) rng-quote-gross-ge)
qed
ultimately show ?thesis by simp

qed
also have ... = quote-gross P sqp ′ − quote-gross P sqp

using clmm-quote-gross-diff-eq ‹sqp < sqp ′› assms L-def by simp
finally have 0 < quote-gross P sqp ′ − quote-gross P sqp .
thus ?thesis by simp

qed

lemma quote-gross-lower-eq-gt:
assumes clmm-dsc P
and j = lower-tick P sqp
and j = lower-tick P sqp ′

and lq P j 6= 0
and 0 < sqp
and sqp < sqp ′

shows quote-gross P sqp < quote-gross P sqp ′

proof −
define L where L = gross-fct (lq P) (fee P)
hence 0 < L j using assms gross-liq-gt by fastforce
have sqp < sqp ′ using lower-tick-lt assms by simp
hence 0 < L j ∗ (sqp ′ − sqp) using assms ‹0 < L j› by simp
also have ... = quote-gross P sqp ′ − quote-gross P sqp

using clmm-quote-gross-diff-eq ′ assms L-def by simp
finally have 0 < quote-gross P sqp ′ − quote-gross P sqp .
thus ?thesis by simp

qed

lemma quote-reach-gt-grd-min:
assumes clmm-dsc P
and nz-support (lq P) 6= {}
and 0 < y
and y ≤ quote-gross P (grd-max P)
and sqp = quote-reach P y

shows grd-min P < sqp
proof (rule ccontr)

assume ¬ grd-min P < sqp
hence quote-gross P sqp ≤ quote-gross P (grd-min P)

using assms clmm-quote-gross-grd-min clmm-quote-gross-grd-min-le
clmm-quote-reach-pos

by auto
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hence y ≤ 0
by (metis assms(1 ) assms(2 ) assms(4 ) assms(5 ) clmm-quote-gross-grd-min

clmm-quote-gross-reach-eq linorder-le-cases)
thus False using assms by simp

qed

lemma sqp-lt-grd-max-imp-idx:
assumes clmm-dsc P
and nz-support (lq P) 6= {}
and 0 < sqp
and sqp < grd-max P
and i = lower-tick P sqp

shows i ≤ idx-max (lq P)
proof −

have lid: lower-tick P (grd-max P) = idx-max (lq P) + 1
by (simp add: assms(1 ) idx-max-img-def lower-tick-eq grd-max-def )

have i < lower-tick P (grd-max P)
proof (rule lower-tick-lt ′)

show clmm-dsc P using assms by simp
show 0 < sqp using assms by simp
show sqp < grd-max P using assms by simp
show grd P (lower-tick P (grd-max P)) = grd-max P

using lid by (simp add: idx-max-img-def grd-max-def )
show i = lower-tick P sqp using assms by simp

qed simp
also have ... = idx-max (lq P) + 1 using lid by simp
finally show ?thesis by simp

qed

lemma quote-gross-lt-grd-max:
assumes clmm-dsc P
and nz-support (lq P) 6= {}
and 0 < sqp
and sqp < grd-max P

shows quote-gross P sqp < quote-gross P (grd-max P)
proof (rule quote-gross-disj-gt)

define i where i = lower-tick P sqp
thus i = lower-tick P sqp .
define j where j = lower-tick P (grd-max P)
thus j = lower-tick P (grd-max P) .
define k where k = j − 1
show clmm-dsc P using assms by simp
show 0 < sqp using assms by simp
show 0 < grd-max P using assms by simp
show k < j unfolding k-def by simp
have j = idx-max (lq P) +1 using lower-tick-grd-max

by (simp add: assms(1 ) j-def )
have lq P (idx-max (lq P)) 6= 0
proof (rule idx-max-finite-in)
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show finite (nz-support (lq P))
using assms clmm-dsc-liq(1 ) finite-liq-def by auto

qed (simp add: assms)
hence lq P k 6= 0 using ‹j = idx-max (lq P) + 1 › k-def by simp
thus lq P (lower-tick P (grd-max P) − 1 ) 6= 0

by (simp add: j-def k-def )
have i < j
proof (rule lower-tick-lt ′[of P sqp])

show j = lower-tick P (grd P j) using j-def
by (simp add: assms(1 ) lower-tick-eq)

have grd-max P = grd P j
using ‹j = idx-max (lq P) +1 › grd-max-def idx-max-img-def by metis

thus sqp < grd P j using assms by simp
show i = lower-tick P sqp using i-def by simp

qed (simp add: assms k-def )+
thus lower-tick P sqp ≤ lower-tick P (grd-max P) − 1

using i-def j-def by simp
qed

lemma idx-max-gt-liq:
assumes clmm-dsc P
and j = idx-max (lq P)

shows ∀ k > j. lq P k = 0
proof (intro allI impI )

fix k
assume j < k
show lq P k = 0
proof (rule idx-max-finite-gt[of lq P])

show finite (nz-support (lq P))
using assms clmm-dsc-liq(1 ) finite-liq-def by simp

show idx-max (lq P) < k using assms ‹j < k› by simp
qed

qed

lemma idx-min-lt-liq:
assumes clmm-dsc P
and j = idx-min (lq P)

shows ∀ k < j. lq P k = 0
proof (intro allI impI )

fix k
assume k < j
show lq P k = 0
proof (rule idx-min-finite-lt[of lq P])

show finite (nz-support (lq P))
using assms clmm-dsc-liq(1 ) finite-liq-def by simp

show k< idx-min (lq P) using assms ‹k < j› by simp
qed

qed
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lemma quote-reach-le ′:
assumes clmm-dsc P
and grd-min P < sqp
and i = lower-tick P sqp
and lq P i 6= 0
and y = quote-gross P sqp

shows quote-reach P y ≤ sqp
proof −

interpret finite-liq-pool P
by (simp add: assms clmm-dsc-liq(1 ) finite-liq-pool-def )

show ?thesis
proof (rule quote-reach-le)

show ∀ i. 0 ≤ lq P i
by (simp add: assms(1 ) clmm-dsc-liq(2 ))

show sqp ∈ quote-gross P −‘ {y} using assms by simp
have 0 < quote-gross P sqp
proof (rule quote-gross-gt-grd-min)

show grd-min P < sqp using assms by simp
show nz-support (lq P) 6= {}

using assms unfolding nz-support-def by auto
qed (simp add: assms)
then show 0 < y using assms by simp
have quote-gross P sqp < quote-gross P (grd-max P)
proof (rule quote-gross-lt-grd-max)

have nz-support (lq P) 6= {}
using assms unfolding nz-support-def by auto

hence 0 < grd-min P using assms
by (simp add: liq-grd-min)

thus 0 < sqp using assms by simp
show sqp < grd-max P using assms grd-max-gt-if by simp
show nz-support (lq P) 6= {}

using assms unfolding nz-support-def by auto
qed (simp add: assms)+
show ∀ i. fee P i < 1 by (simp add: assms(1 ) clmm-dsc-fees)
show mono (grd P) by (simp add: assms(1 ) strict-mono-mono)

qed
qed

lemma quote-reach-gross-le:
assumes clmm-dsc P
and grd-min P ≤ sqp

shows quote-reach P (quote-gross P sqp) ≤ sqp
proof (rule finite-liq-pool.quote-reach-gross-le)

show finite-liq-pool P
by (simp add: assms(1 ) clmm-dsc-liq(1 ) finite-liq-pool.intro)

show ∀ i. 0 ≤ lq P i by (simp add: assms(1 ) clmm-dsc-liq(2 ))
show ∀ i. fee P i < 1 by (simp add: assms(1 ) clmm-dsc-fees)
show mono (grd P) by (simp add: assms(1 ) clmm-dsc-grd-mono monoI )
show grd-min P ≤ sqp using assms by simp
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qed

lemma quote-reach-strict-mono:
assumes clmm-dsc P
and nz-support (lq P) 6= {}
and 0 ≤ y1
and y1 < y2
and y2 ≤ quote-gross P (grd-max P)
and sqp = quote-reach P y1
and sqp ′ = quote-reach P y2

shows sqp < sqp ′

proof (rule ccontr)
assume ¬ sqp < sqp ′

hence quote-gross P sqp ′ ≤ quote-gross P sqp
using assms clmm-quote-gross-mono[of P] by (simp add: monoD)

hence y2 ≤ y1
using assms clmm-quote-gross-reach-eq by auto

thus False using assms by simp
qed

lemma quote-reach-mono:
assumes clmm-dsc P
and nz-support (lq P) 6= {}
and 0 ≤ y1
and y1 ≤ y2
and y2 ≤ quote-gross P (grd-max P)
and sqp = quote-reach P y1
and sqp ′ = quote-reach P y2

shows sqp ≤ sqp ′

proof (cases y1 = y2 )
case True
then show ?thesis using assms by simp

next
case False
hence y1 < y2 using assms by simp
then show ?thesis using assms quote-reach-strict-mono by fastforce

qed

lemma grd-max-quote-reach:
assumes clmm-dsc P
and nz-support (lq P) 6= {}

shows quote-reach P (quote-gross P (grd-max P)) = grd-max P
proof (rule ccontr)

define sqp where sqp = quote-reach P (quote-gross P (grd-max P))
hence eq: quote-gross P sqp = quote-gross P (grd-max P)

by (meson assms(1 ) assms(2 ) clmm-quote-gross-reach-eq liq-grd-min-max
dual-order .strict-trans linorder-le-less-linear order-less-irrefl
quote-gross-gt-grd-min)

define i where i = lower-tick P sqp
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assume sqp 6= grd-max P
hence sqp < grd-max P

using clmm-quote-reach-le
by (metis assms liq-grd-min-max order-le-imp-less-or-eq

quote-gross-gt-grd-min sqp-def vimage-singleton-eq)
have quote-gross P sqp < quote-gross P (grd-max P)
proof (rule quote-gross-lt-grd-max)

show 0 < sqp using clmm-quote-reach-pos[OF assms(1−2 )]
by (metis assms liq-grd-min-max linorder-le-less-linear order .asym

quote-gross-gt-grd-min sqp-def )
show sqp < grd-max P using ‹sqp < grd-max P› .

qed (simp add: assms)+
thus False using eq by simp

qed

lemma quote-reach-gt:
assumes clmm-dsc P
and nz-support (lq P) 6= {}
and 0 < y
and y + quote-gross P sqp ≤ quote-gross P (grd-max P)
and sqp ′ = quote-reach P (y + quote-gross P sqp)

shows sqp < sqp ′

proof (rule ccontr)
assume ¬ sqp < sqp ′

have y + quote-gross P sqp = quote-gross P sqp ′

using assms clmm-quote-gross-reach-eq
by (simp add: clmm-quote-gross-pos)

also have ... ≤ quote-gross P sqp
using assms ‹¬ sqp < sqp ′› quote-gross-imp-sqp-lt by fastforce

finally show False using assms by simp
qed

lemma lt-quote-gross-imp-up-price:
assumes clmm-dsc P
and nz-support (lq P) 6= {}
and 0 < y
and y ≤ quote-gross P (grd-max P)
and quote-gross P sqp < y
and sqp ′ = quote-reach P y

shows sqp < sqp ′

proof (rule ccontr)
assume ¬ sqp < sqp ′

have y = quote-gross P sqp ′

using assms clmm-quote-gross-reach-eq
by (simp add: clmm-quote-gross-pos)

also have ... ≤ quote-gross P sqp
using assms ‹¬ sqp < sqp ′› quote-gross-imp-sqp-lt by fastforce

finally show False using assms by simp
qed
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lemma quote-reach-add-gt:
assumes clmm-dsc P
and nz-support (lq P) 6= {}
and 0 < y
and y + quote-gross P sqp ≤ quote-gross P (grd-max P)
and sqp ′ = quote-reach P (y + quote-gross P sqp)

shows quote-gross P sqp < quote-gross P sqp ′

proof −
have 0 ≤ y + quote-gross P sqp

using assms clmm-quote-gross-pos by simp
hence quote-gross P sqp ′ = y + quote-gross P sqp

using assms clmm-quote-gross-reach-eq by simp
thus ?thesis using assms by simp

qed

lemma quote-reach-leq-grd-max:
assumes clmm-dsc P
and nz-support (lq P) 6= {}
and 0 ≤ y
and y ≤ quote-gross P (grd-max P)
and sqp = quote-reach P y

shows sqp ≤ grd-max P
using assms
by (metis quote-reach-mono grd-max-quote-reach

order-refl)

lemma quote-gross-grd-max-ge:
assumes clmm-dsc P
and nz-support (lq P) 6= {}
and grd-max P < sqp

shows quote-gross P sqp = quote-gross P (grd-max P)
proof −

define k where k = lower-tick P sqp
define j where j = idx-max (lq P) + 1
define L where L = gross-fct (lq P) (fee P)
have zer : ∀ k ≥ j. lq P k = 0 using assms idx-max-gt-liq j-def by simp
hence eq: ∀ k ≥ j. L k = 0

by (simp add: L-def gross-fct-zero-if )
have lower-tick P (grd-max P) = j

by (simp add: assms(1 ) lower-tick-grd-max j-def )
hence j ≤ k using assms

by (metis clmm-dsc-grid(2 ) k-def lower-tick-mono order-less-imp-le
grd-max-gt)

show ?thesis
proof (cases k = j)

case True
have quote-gross P sqp − quote-gross P (grd-max P) = L k ∗ (sqp − grd-max

P)
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proof (rule clmm-quote-gross-diff-eq ′)
show k = lower-tick P (grd-max P)

using ‹lower-tick P (grd-max P) = j›
by (simp add: assms(1 ) lower-tick-eq True)

show L = gross-fct (lq P) (fee P) using L-def by simp
show clmm-dsc P using assms by simp
show grd-max P ≤ sqp using assms by simp
show k = lower-tick P sqp using assms k-def by simp
show 0 < grd-max P using assms grd-max-gt by simp

qed
also have ... = 0

using zer L-def True by (simp add: gross-fct-zero-if )
finally have quote-gross P sqp − quote-gross P (grd-max P) = 0 .
then show ?thesis using assms by simp

next
case False
hence j < k using ‹j ≤ k› by simp
have quote-gross P sqp − quote-gross P (grd-max P) = L k ∗ (sqp − grd P k)

+
(
∑

i | L i 6= 0 ∧ j < i ∧ i < k. L i ∗ (grd P (i + 1 ) − grd P i)) +
L j ∗ (grd P (j + 1 ) − grd-max P)

proof (rule clmm-quote-gross-diff-eq)
show j = lower-tick P (grd-max P)

using ‹lower-tick P (grd-max P) = j› by simp
show L = gross-fct (lq P) (fee P) using L-def by simp
show clmm-dsc P using assms by simp
show grd-max P ≤ sqp using assms by simp
show k = lower-tick P sqp using assms k-def by simp
show 0 < grd-max P using assms grd-max-gt by simp
show j < k using ‹j < k› .

qed
also have ... = 0
proof −

have {i. L i 6= 0 ∧ j < i ∧ i < k} = {} using eq by auto
hence (

∑
i | L i 6= 0 ∧ j < i ∧ i < k. L i ∗ (grd P (i + 1 ) − grd P i)) = 0

by (metis (full-types) sum.empty)
moreover have L k = 0 using eq ‹j < k› by simp
moreover have L j ∗ (grd P (j + 1 ) − grd-max P) = 0 using eq by simp
ultimately show ?thesis by simp

qed
finally show ?thesis by simp

qed
qed

lemma quote-gross-grd-max-max:
assumes clmm-dsc P
and nz-support (lq P) 6= {}

shows quote-gross P sqp ≤ quote-gross P (grd-max P)
proof (cases sqp ≤ grd-max P)
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case True
then show ?thesis

using assms(1 ) quote-gross-imp-sqp-lt verit-comp-simplify1 (3 ) by blast
next

case False
then show ?thesis using assms quote-gross-grd-max-ge by simp

qed

lemma gross-grd-max-max ′:
assumes clmm-dsc P
and nz-support (lq P) 6= {}
and sqp < grd-max P

shows quote-gross P sqp < quote-gross P (grd-max P)
using assms quote-gross-grd-max-ge

by (metis antisym-conv3 liq-grd-min liq-grd-min-max order .strict-trans
quote-gross-gt-grd-min quote-gross-lt-grd-max quote-gross-pos-gt-grd-min)

lemma quote-reach-le-gross:
assumes clmm-dsc P
and 0 < y
and 0 < sqp
and y ≤ quote-gross P sqp
and sqp ≤ grd-max P
and sqp ′ = quote-reach P y
and nz-support (lq P) 6= {}

shows sqp ′ ≤ sqp
proof −

interpret finite-liq-pool P
by (simp add: assms clmm-dsc-liq(1 ) finite-liq-pool-def )

have lt: quote-gross P sqp ≤ quote-gross P (grd-max P)
by (simp add: assms(1 ) assms(7 ) quote-gross-grd-max-max)

show ?thesis
proof (cases y = quote-gross P sqp)

case True
then show ?thesis using clmm-quote-reach-le lt assms by simp

next
case False
hence y < quote-gross P sqp using assms by simp
hence quote-gross P sqp ′ < quote-gross P sqp

using assms clmm-quote-gross-reach-eq lt by auto
then show ?thesis

using assms(1 ) clmm-quote-gross-mono mono-invE by blast
qed

qed

lemma quote-net-diff-eq:
assumes clmm-dsc P
and L = lq P
and j = lower-tick P sqp
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and k = lower-tick P sqp ′

and 0 < sqp
and sqp ≤ sqp ′

and j < k
shows quote-net P sqp ′ − quote-net P sqp = L k ∗ (sqp ′ − grd P k) +

sum (λ i. L i ∗ (grd P (i+1 ) − grd P i)) {i. L i 6= 0 ∧ j <i ∧ i < k} +
L j ∗ (grd P (j+1 ) − sqp)

proof −
interpret finite-nz-support L

using finite-liq-pool.finite-liq-gross-fct assms clmm-dsc-def
finite-liq-def finite-nz-support-def

by blast
show ?thesis

using clmm-gen-quote-diff-eq assms
unfolding quote-net-def gen-quote-diff-def by simp

qed

lemma quote-net-diff-eq ′:
assumes clmm-dsc P
and L = lq P
and j = lower-tick P sqp
and j = lower-tick P sqp ′

and 0 < sqp
and sqp ≤ sqp ′

shows quote-net P sqp ′ − quote-net P sqp = L j ∗ (sqp ′ − sqp)
proof −

interpret finite-nz-support L
using finite-liq-pool.finite-liq-gross-fct assms clmm-dsc-def

finite-liq-def finite-nz-support-def
by blast

show ?thesis using clmm-gen-quote-diff-eq ′ assms
unfolding quote-net-def gen-quote-diff-def by simp

qed

4.3 Base token addition and withdrawal in a CLMM
lemma (in finite-nz-support) gen-base-sum:

assumes clmm-dsc P
and 0 < sqp
and j = lower-tick P sqp

shows gen-base (grd P) L sqp =
L j ∗ (inverse sqp − inverse (grd P (j+1 ))) +
sum (λi. L i ∗ (inverse (grd P i) − inverse (grd P (i+1 ))))
{i. L i 6= 0 ∧ j < i}

proof −
define df where df = inv-gamma-max-diff (grd P)
define A where A = {i. L i 6= 0 ∧ j ≤ i}
define B where B = {i. L i 6= 0 ∧ j > i}
define C where C = {i. L i 6= 0 ∧ j < i}
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have un: {i. L i 6= 0} = A ∪ B unfolding A-def B-def by auto
have inter : A ∩ B = {} unfolding A-def B-def by auto
have fin: finite {i. L i 6= 0} by (metis fin-nz-sup nz-support-def )
have gen-base (grd P) L sqp =

sum (rng-token df L sqp) {i. L i 6= 0}
unfolding gen-base-def df-def using gen-token-sum by simp

also have ... = sum (rng-token df L sqp) A + sum (rng-token df L sqp) B
by (metis empty-iff fin finite-Un inter sum.union-inter-neutral un)

also have ... = sum (rng-token df L sqp) A
proof −

have ∀ i∈ B. rng-token df L sqp i = 0
proof

fix i
assume i ∈ B
have grd P i < grd P (i+1 ) using assms clmm-dsc-grid span-gridD

by (simp add: strict-mono-less)
have i + 1 ≤ j using ‹i ∈ B› assms unfolding B-def by simp
hence grd P (i +1 ) ≤ grd P j

using assms clmm-dsc-grid span-gridD by (simp add: strict-mono-leD)
hence grd P (i+1 ) ≤ sqp using assms

by (meson dual-order .trans lower-tick-lbound)
hence grd P i < sqp using ‹grd P i < grd P (i+1 )› by simp
hence df sqp i = 0

using ‹grd P (i+1 ) ≤ sqp› unfolding df-def inv-gamma-max-diff-def by
simp

thus rng-token df L sqp i = 0 unfolding rng-token-def by simp
qed
thus ?thesis by simp

qed
also have ... = rng-token df L sqp j + sum (rng-token df L sqp) C
proof (cases j ∈ A)

case True
hence A = {j} ∪ C unfolding A-def C-def by auto
hence sum (rng-token df L sqp) A = sum (rng-token df L sqp) ({j} ∪ C )

by simp
also have ... = sum (rng-token df L sqp) {j} + sum (rng-token df L sqp) C
proof (rule sum.union-inter-neutral)

show finite {j} by simp
show finite C using fin C-def by simp
show ∀ x∈{j} ∩ C . rng-token df L sqp x = 0 using C-def by simp

qed
also have ... = rng-token df L sqp j + sum (rng-token df L sqp) C by simp
finally show ?thesis .

next
case False
hence A = C unfolding A-def C-def using Collect-cong by fastforce
have L j = 0 using False A-def by auto
hence rng-token df L sqp j = 0 unfolding rng-token-def by simp
then show ?thesis using ‹A = C › by simp
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qed
also have ... = L j ∗ (inverse sqp − inverse (grd P (j+1 ))) +

sum (rng-token df L sqp) C
proof −

have max sqp (grd P (j + 1 )) = grd P (j+1 )
using assms lower-tick-ubound by simp

moreover have max sqp (grd P j) = sqp
using assms lower-tick-lbound by simp

ultimately have rng-token df L sqp j =
L j ∗ (inverse sqp − inverse (grd P (j+1 )))

unfolding rng-token-def df-def inv-gamma-max-diff-def by simp
thus ?thesis by simp

qed
also have ... = L j ∗ (inverse sqp − inverse (grd P (j+1 ))) +

sum (λi. L i ∗ (inverse (grd P i) − inverse (grd P (i+1 )))) C
proof −

have ∀ i∈ C . rng-token df L sqp i =
L i ∗ (inverse (grd P i) − inverse (grd P (i+1 )))

proof
fix i
assume i∈ C
hence j+1 ≤ i using C-def by auto
hence grd P (j+1 ) ≤ grd P i using assms clmm-dsc-grid(1 ) strict-monoD

by (metis linorder-le-less-linear nless-le)
hence sqp ≤ grd P i using lower-tick-ubound assms by fastforce
hence sqp ≤ grd P (i+1 )

using clmm-dsc-grd-Suc assms dual-order .strict-trans2 order-less-imp-le
by blast

thus rng-token df L sqp i =
L i ∗ (inverse (grd P i) − inverse (grd P (i+1 )))

unfolding rng-token-def df-def inv-gamma-max-diff-def
using ‹sqp ≤ grd P i›
by simp

qed
hence sum (rng-token df L sqp) C =

sum (λi. L i ∗ (inverse (grd P i) − inverse (grd P (i+1 )))) C
by simp

thus ?thesis by simp
qed
finally show gen-base (grd P) L sqp =

L j ∗ (inverse sqp − inverse (grd P (j+1 ))) +
sum (λi. L i ∗ (inverse (grd P i) − inverse (grd P (i+1 )))) C .

qed

lemma (in finite-nz-support) gen-base-grd-max:
assumes clmm-dsc P
and nz-support L 6= {}
and nz-support L = nz-support (lq P)

shows gen-base (grd P) L (grd-max P) = 0

122



proof −
define j where j = lower-tick P (grd-max P)
hence j = idx-max (lq P) + 1 using lower-tick-grd-max[of P] assms by simp
have gen-base (grd P) L (grd-max P) =

L j ∗ (inverse (grd-max P) − inverse (grd P (j + 1 ))) +
(
∑

i | L i 6= 0 ∧ j < i.
L i ∗ (inverse (grd P i) − inverse (grd P (i + 1 ))))

proof (rule gen-base-sum)
show 0 < grd-max P
proof (rule grd-max-gt)

show nz-support (lq P) 6= {} using assms by simp
show

∧
i. 0 < grd P i using assms by simp

qed
qed (simp add: assms j-def )+
also have ... =0
proof −

have emp: {i. L i 6= 0 ∧ j ≤ i} = {}
proof −

have ∀ i ≥ j. L i = 0
proof (intro allI impI )

fix i
assume j ≤ i
hence idx-max (lq P) < i using ‹j = idx-max (lq P) + 1 › by simp
hence lq P i = 0

using idx-max-finite-ge[of lq P i] fin-nz-sup assms(3 ) by auto
thus L i = 0 using assms unfolding nz-support-def by auto

qed
thus ?thesis by auto

qed
hence a: L j ∗ (inverse (grd-max P) − inverse (grd P (j + 1 ))) = 0 by auto
have {i. L i 6= 0 ∧ j < i} = {} using emp by auto
hence (

∑
i | L i 6= 0 ∧ j < i.

L i ∗ (inverse (grd P i) − inverse (grd P (i + 1 )))) = 0
by (metis (full-types) sum-clauses(1 ))

thus ?thesis using a by simp
qed
finally show ?thesis .

qed

lemma base-gross-sum:
assumes clmm-dsc P
and 0 < sqp
and L = gross-fct (lq P) (fee P)
and j = lower-tick P sqp

shows base-gross P sqp =
L j ∗ (inverse sqp − inverse (grd P (j+1 ))) +
sum (λi. L i ∗ (inverse (grd P i) − inverse (grd P (i+1 ))))
{i. L i 6= 0 ∧ j < i}
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proof −
interpret finite-nz-support L

using finite-liq-pool.finite-liq-gross-fct assms
by (metis clmm-dsc-liq(1 ) finite-liq-pool.intro finite-nz-support-def

nz-support-def )
show ?thesis unfolding base-gross-def using gen-base-sum assms by simp

qed

lemma clmm-base-gross-grd-max:
assumes clmm-dsc P
and nz-support (lq P) 6= {}

shows base-gross P (grd-max P) = 0 unfolding base-gross-def
proof (rule finite-nz-support.gen-base-grd-max)

show finite-nz-support (gross-fct (lq P) (fee P))
using finite-liq-pool.finite-liq-gross-fct assms
by (metis clmm-dsc-liq(1 ) finite-liq-pool.intro finite-nz-support-def

nz-support-def )
show clmm-dsc P using assms by simp
show nz-support (gross-fct (lq P) (fee P)) = nz-support (lq P)

using clmm-dsc-gross-liq assms by simp
thus nz-support (gross-fct (lq P) (fee P)) 6= {} using assms by simp

qed

lemma liq-base-reach-max:
assumes clmm-dsc P
and nz-support (lq P) 6= {}

shows base-reach P 0 = grd-max P
using assms clmm-base-gross-grd-max unfolding base-reach-def by simp

lemma base-net-sum:
assumes clmm-dsc P
and 0 < sqp
and L = lq P
and j = lower-tick P sqp

shows base-net P sqp =
L j ∗ (inverse sqp − inverse (grd P (j+1 ))) +
sum (λi. L i ∗ (inverse (grd P i) − inverse (grd P (i+1 ))))
{i. L i 6= 0 ∧ j < i}

proof −
interpret finite-nz-support L

using finite-liq-pool.finite-liq-gross-fct assms clmm-dsc-def finite-liq-def
finite-nz-support-def

by blast
show ?thesis unfolding base-net-def using gen-base-sum assms by simp

qed

definition gen-base-diff where
gen-base-diff P L sqp sqp ′ = gen-base (grd P) L sqp − gen-base (grd P) L sqp ′
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lemma (in finite-nz-support) gen-base-diff-eq:
assumes clmm-dsc P
and j = lower-tick P sqp
and k = lower-tick P sqp ′

and 0 < sqp
and sqp ≤ sqp ′

and j < k
shows gen-base-diff P L sqp sqp ′ =

L j ∗ (inverse sqp − inverse (grd P (j+1 ))) +
sum (λ i. L i ∗ (inverse (grd P i) − inverse (grd P (i+1 ))))
{i. L i 6= 0 ∧ j <i ∧ i < k} +
L k ∗ (inverse (grd P k) − inverse sqp ′)

proof −
have 0 < sqp using assms by simp
hence sqp < sqp ′ using lower-tick-lt assms by simp
hence 0 < sqp ′ using ‹0 < sqp› by simp
define A where A = {i. L i 6= 0 ∧ j < i}
define B where B = {i. L i 6= 0 ∧ k < i}
define C where C = {i. L i 6= 0 ∧ j <i ∧ i ≤ k}
define Ck where Ck = {i. L i 6= 0 ∧ j <i ∧ i < k}
define df where df = (λ i. L i ∗ (inverse (grd P i) − inverse (grd P (i+1 ))))
have finite A

unfolding A-def by (metis fin-nz-sup finite-Collect-conjI nz-support-def )
have A = B ∪ C using assms unfolding A-def B-def C-def by auto
have Ck = C − {k} unfolding C-def Ck-def by auto
have gen-base-diff P L sqp sqp ′ =

L j ∗ (inverse sqp − inverse (grd P (j+1 ))) +
sum df A − (L k ∗ (inverse sqp ′ − inverse (grd P (k+1 ))) + sum df B)

using assms ‹0 < sqp› gen-base-sum ‹0 < sqp ′›
unfolding gen-base-diff-def df-def A-def B-def by simp

also have ... = L j ∗ (inverse sqp − inverse (grd P (j+1 ))) +
sum df C − L k ∗ (inverse sqp ′ − inverse (grd P (k+1 )))

proof (rule diff-sum-dcomp)
show finite A using ‹finite A› .
show A = B ∪ C using ‹A = B ∪ C › .
show B ∩ C = {} unfolding B-def C-def by auto

qed
also have ... = L j ∗ (inverse sqp − inverse (grd P (j+1 ))) +

df k + sum df Ck − L k ∗ (inverse sqp ′ − inverse (grd P (k+1 )))
proof (cases k ∈ C )

case True
have sum df C = df k + sum df Ck
proof (rule sum-remove-el)

show finite C using ‹A = B ∪ C › ‹finite A› by simp
show k ∈ C using True .
show Ck = C − {k} using ‹Ck = C − {k}› .

qed
then show ?thesis by simp

next
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case False
hence L k = 0 using assms unfolding C-def by auto
hence df k = 0 unfolding df-def by simp
moreover have Ck = C using False ‹Ck = C − {k}› by auto
ultimately show ?thesis by simp

qed
also have ... = L j ∗ (inverse sqp − inverse (grd P (j+1 ))) + sum df Ck +

L k ∗ (inverse (grd P k) − inverse sqp ′)
proof −

have df k − L k ∗ (inverse sqp ′ − inverse (grd P (k+1 ))) =
L k ∗ (inverse (grd P k) − inverse sqp ′)

unfolding df-def by (simp add: right-diff-distrib)
thus ?thesis by simp

qed
finally show gen-base-diff P L sqp sqp ′ =

L j ∗ (inverse sqp − inverse (grd P (j+1 ))) + sum df Ck +
L k ∗ (inverse (grd P k) − inverse sqp ′) .

qed

lemma (in finite-nz-support) gen-base-diff-eq ′:
assumes clmm-dsc P
and j = lower-tick P sqp
and j = lower-tick P sqp ′

and 0 < sqp
and sqp ≤ sqp ′

shows gen-base-diff P L sqp sqp ′ = L j ∗ (inverse sqp − inverse sqp ′)
proof −

have 0 < sqp using assms by simp
hence 0 < sqp ′ using assms by simp
define A where A = {i. L i 6= 0 ∧ j < i}
define df where

df = (λ i. L i ∗ (inverse (grd P i) − inverse (grd P (i+1 ))))
have finite A

unfolding A-def by (metis fin-nz-sup finite-Collect-conjI nz-support-def )
have gen-base-diff P L sqp sqp ′ =

L j ∗ (inverse sqp − inverse (grd P (j+1 ))) + sum df A −
(L j ∗ (inverse sqp ′ − inverse (grd P (j+1 ))) + sum df A)

using assms ‹0 < sqp› gen-base-sum ‹0 < sqp ′›
unfolding gen-base-diff-def df-def A-def by simp

also have ... = L j ∗ (inverse sqp − inverse (grd P (j+1 ))) −
L j ∗ (inverse sqp ′ − inverse (grd P (j+1 )))

by simp
also have ... = L j ∗ (inverse sqp − inverse sqp ′)

by (simp add: right-diff-distrib)
finally show gen-base-diff P L sqp sqp ′ =

L j ∗ (inverse sqp − inverse sqp ′) .
qed

lemma lower-tick-lt-grd-min:
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assumes clmm-dsc P
and sqp < grd-min P
and 0 < sqp
and j = lower-tick P sqp
shows j < idx-min (lq P)

proof (rule ccontr)
have j ≤ idx-min (lq P) using lower-tick-grd-min[of P] assms

by (simp add: lower-tick-mono)
assume ¬ j < idx-min (lq P)
hence j = idx-min (lq P) using assms ‹j ≤ idx-min (lq P)› by simp
hence grd-min P = grd P j unfolding grd-min-def idx-min-img-def by simp
also have ... ≤ sqp using ‹j = lower-tick P sqp›

by (simp add: assms lower-tick-mem)
finally show False using assms by simp

qed

lemma (in finite-nz-support) gen-base-grd-min-le:
assumes clmm-dsc P
and nz-support L = nz-support (lq P)
and sqp < grd-min P
and 0 < sqp

shows gen-base (grd P) L sqp = gen-base (grd P) L (grd-min P)
proof −

define k where k = idx-min (lq P)
hence k = lower-tick P (grd-min P)

by (simp add: assms(1 ) idx-min-img-def lower-tick-eq grd-min-def )
have grd-min P = grd P k

using k-def grd-min-def idx-min-img-def by simp
define j where j = lower-tick P sqp
hence j < k using lower-tick-lt-grd-min[of P] assms k-def

by simp
have eq: ∀ i < k. L i = 0

using assms unfolding k-def idx-min-def
by (metis fin-nz-sup idx-min-def idx-min-finite-le leD)

have gen-base-diff P L sqp (grd-min P) =
L j ∗ (inverse sqp − inverse (grd P (j+1 ))) +
sum (λ i. L i ∗ (inverse (grd P i) − inverse (grd P (i+1 ))))
{i. L i 6= 0 ∧ j <i ∧ i < k} +
L k ∗ (inverse (grd P k) − inverse (grd-min P))

proof (rule gen-base-diff-eq)
show j = lower-tick P sqp using j-def by simp
show k = lower-tick P (grd-min P) using ‹k = lower-tick P (grd-min P)› .
show sqp ≤ grd-min P using assms by simp

qed (simp add: assms ‹j < k›)+
also have ... = 0
proof −

have {i. L i 6= 0 ∧ j <i ∧ i < k} = {} using eq by auto
hence sum (λ i. L i ∗ (inverse (grd P i) − inverse (grd P (i+1 ))))
{i. L i 6= 0 ∧ j <i ∧ i < k} = 0
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by (metis (full-types) sum.empty)
moreover have L j ∗ (inverse sqp − inverse (grd P (j+1 ))) = 0

using ‹j < k› eq by simp
moreover have L k ∗ (inverse (grd P k) − inverse (grd-min P)) = 0

using ‹grd-min P = grd P k› by simp
ultimately show ?thesis by linarith

qed
finally show ?thesis unfolding gen-base-diff-def by simp

qed

lemma base-net-grd-min-lt:
assumes clmm-dsc P
and sqp < grd-min P
and 0 < sqp

shows base-net P sqp = base-net P (grd-min P)
proof −

interpret finite-nz-support lq P
using assms(1 ) clmm-dsc-liq(1 ) finite-liq-def finite-nz-support.intro
by simp

show ?thesis
using assms gen-base-grd-min-le unfolding base-net-def by simp

qed

lemma base-net-grd-min-le:
assumes clmm-dsc P
and sqp ≤ grd-min P
and 0 < sqp

shows base-net P sqp = base-net P (grd-min P)
proof −

interpret finite-nz-support lq P
using assms(1 ) clmm-dsc-liq(1 ) finite-liq-def finite-nz-support.intro
by simp

show ?thesis
proof (cases sqp = grd-min P)

case True
then show ?thesis by simp

next
case False
then show ?thesis

using assms gen-base-grd-min-le unfolding base-net-def by simp
qed

qed

lemma base-gross-diff-eq:
assumes clmm-dsc P
and L = gross-fct (lq P) (fee P)
and j = lower-tick P sqp
and k = lower-tick P sqp ′

and 0 < sqp
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and sqp ≤ sqp ′

and j < k
shows base-gross P sqp − base-gross P sqp ′ =

L j ∗ (inverse sqp − inverse (grd P (j+1 ))) +
sum (λ i. L i ∗ (inverse (grd P i) − inverse (grd P (i+1 ))))
{i. L i 6= 0 ∧ j <i ∧ i < k} +
L k ∗ (inverse (grd P k) − inverse sqp ′)

proof −
interpret finite-nz-support L

using finite-liq-pool.finite-liq-gross-fct assms
by (metis clmm-dsc-liq(1 ) finite-liq-pool.intro finite-nz-support-def

nz-support-def )
show ?thesis

using gen-base-diff-eq assms
unfolding base-gross-def gen-base-diff-def by simp

qed

lemma base-gross-diff-eq ′:
assumes clmm-dsc P
and L = gross-fct (lq P) (fee P)
and j = lower-tick P sqp
and j = lower-tick P sqp ′

and 0 < sqp
and sqp ≤ sqp ′

shows base-gross P sqp − base-gross P sqp ′ = L j ∗ (inverse sqp − inverse sqp ′)
proof −

interpret finite-nz-support L
using finite-liq-pool.finite-liq-gross-fct assms
by (metis clmm-dsc-liq(1 ) finite-liq-pool.intro finite-nz-support-def

nz-support-def )
show ?thesis using gen-base-diff-eq ′ assms

unfolding base-gross-def gen-base-diff-def by simp
qed

lemma base-net-diff-eq:
assumes clmm-dsc P
and L = lq P
and j = lower-tick P sqp
and k = lower-tick P sqp ′

and 0 < sqp
and sqp ≤ sqp ′

and j < k
shows base-net P sqp − base-net P sqp ′ =

L j ∗ (inverse sqp − inverse (grd P (j+1 ))) +
sum (λ i. L i ∗ (inverse (grd P i) − inverse (grd P (i+1 ))))
{i. L i 6= 0 ∧ j <i ∧ i < k} +
L k ∗ (inverse (grd P k) − inverse sqp ′)

proof −
interpret finite-nz-support L
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using finite-liq-pool.finite-liq-gross-fct assms clmm-dsc-def
finite-liq-def finite-nz-support-def

by blast
show ?thesis

using gen-base-diff-eq assms
unfolding base-net-def gen-base-diff-def by simp

qed

lemma base-net-diff-eq ′:
assumes clmm-dsc P
and L = lq P
and j = lower-tick P sqp
and j = lower-tick P sqp ′

and 0 < sqp
and sqp ≤ sqp ′

shows base-net P sqp − base-net P sqp ′ = L j ∗ (inverse sqp − inverse sqp ′)
proof −

interpret finite-nz-support L
using finite-liq-pool.finite-liq-gross-fct assms clmm-dsc-def

finite-liq-def finite-nz-support-def
by blast

show ?thesis using gen-base-diff-eq ′ assms
unfolding base-net-def gen-base-diff-def by simp

qed

lemma cst-fee-base-gross-net-tick-eq:
assumes clmm-dsc P
and

∧
i. fee P i = phi

and j = lower-tick P sqp
and j = lower-tick P sqp ′

and 0 < sqp
and sqp ≤ sqp ′

shows base-net P sqp − base-net P sqp ′ =
(1 − phi) ∗ (base-gross P sqp − base-gross P sqp ′)

proof −
define L where L = gross-fct (lq P) (fee P)
have phi 6= 1 using assms clmm-dsc-fees by fastforce
have

∧
i. L i = lq P i / (1 − phi) using L-def

by (simp add: assms(2 ) gross-fct-def one-cpl-def )
hence leq:

∧
i. lq P i = (1 − phi) ∗ L i using assms ‹phi 6= 1 › by simp

have base-net P sqp − base-net P sqp ′ =
lq P j ∗ (inverse sqp − inverse sqp ′)

using assms base-net-diff-eq ′ by simp
also have ... = (1 − phi) ∗ L j ∗ (inverse sqp − inverse sqp ′)

using leq by simp
also have ... = (1 − phi) ∗ (L j ∗ (inverse sqp − inverse sqp ′)) by simp
also have ... = (1 − phi) ∗ (base-gross P sqp − base-gross P sqp ′)

using L-def assms base-gross-diff-eq ′ by auto
finally show ?thesis .
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qed

lemma cst-fee-base-gross-net-tick-lt:
assumes clmm-dsc P
and

∧
i. fee P i = phi

and j = lower-tick P sqp
and k = lower-tick P sqp ′

and 0 < sqp
and sqp ≤ sqp ′

and j < k
shows base-net P sqp − base-net P sqp ′ =

(1 − phi) ∗ (base-gross P sqp − base-gross P sqp ′)
proof −

have phi 6= 1 using assms clmm-dsc-fees by fastforce
define L where L = gross-fct (lq P) (fee P)
have

∧
i. L i = lq P i / (1 − phi) using L-def

by (simp add: assms(2 ) gross-fct-def one-cpl-def )
hence leq:

∧
i. lq P i = (1 − phi) ∗ L i using assms ‹phi 6= 1 › by simp

have base-net P sqp − base-net P sqp ′ =
(lq P) j ∗ (inverse sqp − inverse (grd P (j+1 ))) +
sum (λ i. (lq P) i ∗ (inverse (grd P i) − inverse (grd P (i+1 ))))
{i. (lq P) i 6= 0 ∧ j <i ∧ i < k} +
(lq P) k ∗ (inverse (grd P k) − inverse sqp ′)

using assms base-net-diff-eq by simp
also have ... =

(1 − phi) ∗ L j ∗ (inverse sqp − inverse (grd P (j+1 ))) +
sum (λ i. (1 − phi) ∗ L i ∗ (inverse (grd P i) − inverse (grd P (i+1 ))))
{i. (lq P) i 6= 0 ∧ j <i ∧ i < k} +
(1 − phi) ∗ L k ∗ (inverse (grd P k) − inverse sqp ′)

using leq by simp
also have ... =

(1 − phi) ∗ L j ∗ (inverse sqp − inverse (grd P (j+1 ))) +
(1 − phi) ∗ sum (λ i. L i ∗ (inverse (grd P i) − inverse (grd P (i+1 ))))
{i. (lq P) i 6= 0 ∧ j <i ∧ i < k} +
(1 − phi) ∗ L k ∗ (inverse (grd P k) − inverse sqp ′)

proof −
have sum (λ i. (1 − phi) ∗ L i ∗ (inverse (grd P i) − inverse (grd P (i+1 ))))
{i. (lq P) i 6= 0 ∧ j <i ∧ i < k} =
sum (λ i. (1 − phi) ∗( L i ∗ (inverse (grd P i) − inverse (grd P (i+1 )))))
{i. (lq P) i 6= 0 ∧ j <i ∧ i < k}

by (meson ab-semigroup-mult-class.mult-ac(1 ))
also have ... =

(1 − phi) ∗ sum (λ i. L i ∗ (inverse (grd P i) − inverse (grd P (i+1 ))))
{i. (lq P) i 6= 0 ∧ j <i ∧ i < k}

by (simp add: sum-distrib-left)
finally have sum (λ i. (1 − phi) ∗ L i ∗ (inverse (grd P i) − inverse (grd P

(i+1 ))))
{i. (lq P) i 6= 0 ∧ j <i ∧ i < k} =
(1 − phi) ∗ sum (λ i. L i ∗ (inverse (grd P i) − inverse (grd P (i+1 ))))
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{i. (lq P) i 6= 0 ∧ j <i ∧ i < k} .
thus ?thesis by simp

qed
also have ... =

(1 − phi) ∗ (L j ∗ (inverse sqp − inverse (grd P (j+1 )))) +
(1 − phi) ∗ sum (λ i. L i ∗ (inverse (grd P i) − inverse (grd P (i+1 ))))
{i. (lq P) i 6= 0 ∧ j <i ∧ i < k} +
(1 − phi) ∗ (L k ∗ (inverse (grd P k) − inverse sqp ′))

by simp
also have ... = (1 − phi) ∗

(L j ∗ (inverse sqp − inverse (grd P (j+1 ))) +
sum (λ i. L i ∗ (inverse (grd P i) − inverse (grd P (i+1 ))))
{i. (lq P) i 6= 0 ∧ j <i ∧ i < k} +
L k ∗ (inverse (grd P k) − inverse sqp ′))

by (simp add: ring-class.ring-distribs(1 ))
also have ... = (1 − phi) ∗ (base-gross P sqp − base-gross P sqp ′)
proof −

have L j ∗ (inverse sqp − inverse (grd P (j+1 ))) +
sum (λ i. L i ∗ (inverse (grd P i) − inverse (grd P (i+1 ))))
{i. (lq P) i 6= 0 ∧ j <i ∧ i < k} +
L k ∗ (inverse (grd P k) − inverse sqp ′) =
L j ∗ (inverse sqp − inverse (grd P (j+1 ))) +
sum (λ i. L i ∗ (inverse (grd P i) − inverse (grd P (i+1 ))))
{i. L i 6= 0 ∧ j <i ∧ i < k} +
L k ∗ (inverse (grd P k) − inverse sqp ′)

proof −
have {i. (lq P) i 6= 0 ∧ j <i ∧ i < k} = {i. L i 6= 0 ∧ j <i ∧ i < k}

using L-def assms(1 ) clmm-dsc-gross-liq-zero-iff by presburger
thus ?thesis by simp

qed
also have ... = base-gross P sqp − base-gross P sqp ′

using assms base-gross-diff-eq L-def by simp
finally have L j ∗ (inverse sqp − inverse (grd P (j+1 ))) +

sum (λ i. L i ∗ (inverse (grd P i) − inverse (grd P (i+1 ))))
{i. (lq P) i 6= 0 ∧ j <i ∧ i < k} +
L k ∗ (inverse (grd P k) − inverse sqp ′) =
base-gross P sqp − base-gross P sqp ′ .

thus ?thesis by simp
qed
finally show ?thesis .

qed

lemma cst-fee-base-gross-net:
assumes clmm-dsc P
and

∧
i. fee P i = phi

and 0 < sqp
and sqp ≤ sqp ′

shows base-net P sqp − base-net P sqp ′ =
(1 − phi) ∗ (base-gross P sqp − base-gross P sqp ′)
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proof (cases lower-tick P sqp = lower-tick P sqp ′)
case True
then show ?thesis using assms cst-fee-base-gross-net-tick-eq by simp

next
case False
hence lower-tick P sqp < lower-tick P sqp ′

using assms lower-tick-mono by fastforce
then show ?thesis using assms cst-fee-base-gross-net-tick-lt by simp

qed

lemma base-net-eq-only-if :
assumes clmm-dsc P
and j = lower-tick P sqp
and k = lower-tick P sqp ′

and 0 < sqp
and sqp ≤ sqp ′

and j < k
and quote-gross P sqp ′ = quote-gross P sqp

shows base-net P sqp ′ = base-net P sqp
proof −

define L where L = lq P
define L ′ where L ′ = gross-fct (lq P) (fee P)
have base-net P sqp − base-net P sqp ′ =

L j ∗ (inverse sqp − inverse (grd P (j+1 ))) +
sum (λ i. L i ∗ (inverse (grd P i) − inverse (grd P (i+1 ))))
{i. L i 6= 0 ∧ j <i ∧ i < k} +
L k ∗ (inverse (grd P k) − inverse sqp ′)

using assms base-net-diff-eq L-def by simp
also have ... = L j ∗ (inverse sqp − inverse (grd P (j+1 ))) +

L k ∗ (inverse (grd P k) − inverse sqp ′)
proof −

have {i. L i 6= 0 ∧ j <i ∧ i < k} = {}
using clmm-quote-gross-eq-sum-emp assms L-def clmm-dsc-gross-liq-zero-iff
by presburger

hence sum (λ i. L i ∗ (inverse (grd P i) − inverse (grd P (i+1 ))))
{i. L i 6= 0 ∧ j <i ∧ i < k} = 0

by (metis (full-types) sum-clauses(1 ))
thus ?thesis by simp

qed
also have ... = L k ∗ (inverse (grd P k) − inverse sqp ′)
proof −

have L ′ j = 0 using assms L ′-def clmm-quote-gross-eq-lower-only-if by simp
hence L j = 0

using L-def L ′-def clmm-dsc-gross-liq-zero-iff assms by simp
thus ?thesis by simp

qed
also have ... = 0
proof −

have L k ∗ (inverse (grd P k) − inverse sqp ′) = 0

133



using clmm-quote-gross-eq-upper-only-if assms L-def
clmm-dsc-gross-liq-zero-iff

by auto
thus ?thesis by simp

qed
finally show ?thesis by simp

qed

lemma base-net-eq-only-if ′:
assumes clmm-dsc P
and L = lq P
and j = lower-tick P sqp
and j = lower-tick P sqp ′

and 0 < sqp
and sqp ≤ sqp ′

and quote-gross P sqp = quote-gross P sqp ′

shows base-net P sqp = base-net P sqp ′

proof −
have base-net P sqp − base-net P sqp ′ = L j ∗ (inverse sqp − inverse sqp ′)

using base-net-diff-eq ′ assms by simp
also have ... = 0
proof (cases sqp = sqp ′)

case True
then show ?thesis by simp

next
case False
hence gross-fct (lq P) (fee P) j = 0

using assms clmm-quote-gross-eq-lower-only-if ′ by simp
hence L j = 0 using assms

by (simp add: clmm-dsc-gross-liq-zero-iff )
then show ?thesis by simp

qed
finally show ?thesis by simp

qed

lemma quote-gross-equiv-base-net:
assumes clmm-dsc P
and 0 < sqp
and sqp ≤ sqp ′

and quote-gross P sqp = quote-gross P sqp ′

shows base-net P sqp = base-net P sqp ′

proof (cases lower-tick P sqp = lower-tick P sqp ′)
case True
then show ?thesis

using assms base-net-eq-only-if ′[of P lq P - sqp sqp ′] by simp
next

case False
hence lower-tick P sqp < lower-tick P sqp ′

by (meson antisym-conv3 assms(1−3 ) leD lower-tick-lt)
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then show ?thesis using assms base-net-eq-only-if by simp
qed

lemma quote-gross-equiv-base-net ′:
assumes clmm-dsc P
and 0 < sqp
and 0 < sqp ′

and quote-gross P sqp = quote-gross P sqp ′

shows base-net P sqp = base-net P sqp ′

proof (cases sqp ≤ sqp ′)
case True
thus ?thesis using quote-gross-equiv-base-net assms by simp

next
case False
then show ?thesis using quote-gross-equiv-base-net assms

by (metis linorder-le-cases)
qed

lemma (in finite-nz-support) gen-quote-le-badd:
assumes clmm-dsc P
and

∧
i. 0 ≤ L i

and 0 < sqp
and sqp ≤ sqp ′

shows gen-quote-diff P L sqp sqp ′/(sqp ′ ∗ sqp ′) ≤ gen-base-diff P L sqp sqp ′

proof −
have 0 < sqp ′ using assms by simp
define j where j = lower-tick P sqp
define k where k = lower-tick P sqp ′

show ?thesis
proof (cases j = k)

case True
hence gen-quote-diff P L sqp sqp ′ / (sqp ′ ∗ sqp ′) =

L j ∗ (sqp ′ − sqp)/ (sqp ′ ∗ sqp ′)
using assms j-def k-def clmm-gen-quote-diff-eq ′ by simp

also have ... ≤ L j ∗ (inverse sqp − inverse sqp ′)
by (rule diff-inv-le ′, (auto simp add: assms))

also have ... = gen-base-diff P L sqp sqp ′

using assms j-def k-def gen-base-diff-eq ′ True by simp
finally show ?thesis .

next
case False
hence j < k using j-def k-def lower-tick-mono assms by fastforce
hence gen-quote-diff P L sqp sqp ′ / (sqp ′ ∗ sqp ′) =

(L k ∗ (sqp ′ − grd P k) +
(
∑

i | L i 6= 0 ∧ j < i ∧ i < k. L i ∗ (grd P (i + 1 ) − grd P i)) +
L j ∗ (grd P (j + 1 ) − sqp))/ (sqp ′ ∗ sqp ′)

using assms j-def k-def clmm-gen-quote-diff-eq by simp
also have ... = L k ∗ (sqp ′ − grd P k) / (sqp ′ ∗ sqp ′) +

(
∑

i | L i 6= 0 ∧ j < i ∧ i < k.
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L i ∗ (grd P (i + 1 ) − grd P i)) / (sqp ′ ∗ sqp ′) +
L j ∗ (grd P (j + 1 ) − sqp) / (sqp ′ ∗ sqp ′)

by (simp add: add-divide-distrib)
also have ... ≤ L k ∗ (inverse (grd P k) − inverse sqp ′) +

(
∑

i | L i 6= 0 ∧ j < i ∧ i < k.
L i ∗ (inverse (grd P i) − inverse (grd P (i + 1 )))) +
L j ∗ (inverse sqp − inverse (grd P (j + 1 )))

proof −
have (

∑
i | L i 6= 0 ∧ j < i ∧ i < k.

L i ∗ (grd P (i + 1 ) − grd P i)) / (sqp ′ ∗ sqp ′) ≤
(
∑

i | L i 6= 0 ∧ j < i ∧ i < k.
L i ∗ (inverse (grd P i) − inverse (grd P (i + 1 ))))

proof (rule diff-inv-sum-le ′)
show ∀ i∈{i. L i 6= 0 ∧ j < i ∧ i < k}. 0 < grd P i using assms by simp
show ∀ i∈{i. L i 6= 0 ∧ j < i ∧ i < k}. 0 ≤ L i using assms by simp
show ∀ i∈{i. L i 6= 0 ∧ j < i ∧ i < k}. grd P i ≤ grd P (i + 1 )

using assms clmm-dsc-grd-Suc[of P] less-eq-real-def by blast
{

fix i
assume i∈{i. L i 6= 0 ∧ j < i ∧ i < k}
hence i+1 ≤ k by simp
hence grd P (i+1 ) ≤ grd P k

using assms clmm-dsc-grid(1 ) strict-mono-leD by blast
hence grd P (i + 1 ) ≤ sqp ′

using k-def lower-tick-lbound assms ‹0 < sqp ′› by fastforce
}
thus ∀ i∈{i. L i 6= 0 ∧ j < i ∧ i < k}. grd P (i + 1 ) ≤ sqp ′ by simp

qed
moreover have L k ∗ (sqp ′ − grd P k) / (sqp ′ ∗ sqp ′) ≤

L k ∗ (inverse (grd P k) − inverse sqp ′)
proof (rule diff-inv-le ′)

show grd P k ≤ sqp ′ using k-def lower-tick-lbound assms by simp
qed (simp add: assms)+
moreover have L j ∗ (grd P (j + 1 ) − sqp) / (sqp ′ ∗ sqp ′) ≤

L j ∗ (inverse sqp − inverse (grd P (j + 1 )))
proof (rule diff-inv-le ′)

show sqp ≤ grd P (j + 1 )
using j-def lower-tick-ubound assms by fastforce

have j+1 ≤ k using ‹j < k› by simp
hence grd P (j+1 ) ≤ grd P k using assms

by (simp add: strict-mono-leD)
thus grd P (j + 1 ) ≤ sqp ′

using ‹j < k› k-def lower-tick-lbound assms ‹0 < sqp ′› by fastforce
qed (simp add: assms)+
ultimately show ?thesis by simp

qed
also have ... = L j ∗ (inverse sqp − inverse (grd P (j + 1 ))) +

(
∑

i | L i 6= 0 ∧ j < i ∧ i < k.
L i ∗ (inverse (grd P i) − inverse (grd P (i + 1 )))) +
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L k ∗ (inverse (grd P k) − inverse sqp ′)
by simp

also have ... = gen-base-diff P L sqp sqp ′

using assms ‹j < k› j-def k-def gen-base-diff-eq by simp
finally show ?thesis .

qed
qed

lemma (in finite-nz-support) gen-base-le-qadd:
assumes clmm-dsc P
and

∧
i. 0 ≤ L i

and 0 < sqp
and sqp ≤ sqp ′

shows gen-base-diff P L sqp sqp ′ ≤ gen-quote-diff P L sqp sqp ′/(sqp ∗ sqp)
proof −

define j where j = lower-tick P sqp
define k where k = lower-tick P sqp ′

show ?thesis
proof (cases j = k)

case True
hence gen-base-diff P L sqp sqp ′ = L j ∗ (inverse sqp − inverse sqp ′)

using assms j-def k-def gen-base-diff-eq ′ True by simp
also have ... ≤ L j ∗ (sqp ′ − sqp)/ (sqp ∗ sqp)

by (rule diff-inv-ge ′, (auto simp add: assms))
also have ... = gen-quote-diff P L sqp sqp ′ / (sqp ∗ sqp)

using assms j-def k-def clmm-gen-quote-diff-eq ′ True by simp
finally show ?thesis .

next
case False
hence j < k using j-def k-def lower-tick-mono assms by fastforce
hence gen-base-diff P L sqp sqp ′ =

L j ∗ (inverse sqp − inverse (grd P (j + 1 ))) +
(
∑

i | L i 6= 0 ∧ j < i ∧ i < k.
L i ∗ (inverse (grd P i) − inverse (grd P (i + 1 )))) +
L k ∗ (inverse (grd P k) − inverse sqp ′)

using assms j-def k-def gen-base-diff-eq by simp
also have ... = L k ∗ (inverse (grd P k) − inverse sqp ′) +

(
∑

i | L i 6= 0 ∧ j < i ∧ i < k.
L i ∗ (inverse (grd P i) − inverse (grd P (i + 1 )))) +
L j ∗ (inverse sqp − inverse (grd P (j + 1 )))

by simp
also have ... ≤ L k ∗ (sqp ′ − grd P k) / (sqp ∗ sqp) +

(
∑

i | L i 6= 0 ∧ j < i ∧ i < k.
L i ∗ (grd P (i + 1 ) − grd P i)) / (sqp ∗ sqp) +
L j ∗ (grd P (j + 1 ) − sqp) / (sqp ∗ sqp)

proof −
have (

∑
i | L i 6= 0 ∧ j < i ∧ i < k.

L i ∗ (inverse (grd P i) − inverse (grd P (i + 1 )))) ≤
(
∑

i | L i 6= 0 ∧ j < i ∧ i < k.
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L i ∗ (grd P (i + 1 ) − grd P i)) / (sqp ∗ sqp)
proof (rule diff-inv-sum-ge ′)

show 0 < sqp using assms by simp
show ∀ i∈{i. L i 6= 0 ∧ j < i ∧ i < k}. 0 ≤ L i using assms by simp
show ∀ i∈{i. L i 6= 0 ∧ j < i ∧ i < k}. grd P i ≤ grd P (i + 1 )

using assms clmm-dsc-grd-Suc[of P] less-eq-real-def by blast
{

fix i
assume i∈{i. L i 6= 0 ∧ j < i ∧ i < k}
hence j + 1 ≤ i by simp
hence grd P (j+1 ) ≤ grd P i using assms clmm-dsc-grid(1 )

by (simp add: strict-mono-leD)
hence sqp ≤ grd P i

using assms j-def lower-tick-ubound by fastforce
}
thus ∀ i∈{i. L i 6= 0 ∧ j < i ∧ i < k}. sqp ≤ grd P i by simp

qed
moreover have L k ∗ (inverse (grd P k) − inverse sqp ′) ≤

L k ∗ (sqp ′ − grd P k) / (sqp ∗ sqp)
proof (rule diff-inv-ge ′)

show grd P k ≤ sqp ′ using k-def lower-tick-lbound assms by simp
have j+1 ≤ k using ‹j < k› by simp
hence grd P (j+1 ) ≤ grd P k using clmm-dsc-grd-mono assms by simp
thus sqp ≤ grd P k using j-def lower-tick-ubound assms by fastforce

qed (simp add: assms)+
moreover have L j ∗ (inverse sqp − inverse (grd P (j + 1 ))) ≤

L j ∗ (grd P (j + 1 ) − sqp) / (sqp ∗ sqp)
proof (rule diff-inv-ge ′)

show sqp ≤ grd P (j + 1 )
using j-def lower-tick-ubound assms by fastforce

qed (simp add: assms)+
ultimately show ?thesis by simp

qed
also have ... = (L k ∗ (sqp ′ − grd P k) +

(
∑

i | L i 6= 0 ∧ j < i ∧ i < k. L i ∗ (grd P (i + 1 ) − grd P i)) +
L j ∗ (grd P (j + 1 ) − sqp))/ (sqp ∗ sqp)

by (simp add: add-divide-distrib)
also have ... = gen-quote-diff P L sqp sqp ′ / (sqp ∗ sqp)

using assms j-def k-def clmm-gen-quote-diff-eq ‹j < k› by simp
finally show ?thesis .

qed
qed

lemma quote-swap-grd-min-zero:
assumes clmm-dsc P
and nz-support (lq P) 6= {}
and grd-min P ≤ sqp
and sqp ≤ grd-max P
shows quote-swap P sqp 0 = 0
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proof −
define sqp ′ where sqp ′ = quote-reach P (0 + quote-gross P sqp)
have base-net P sqp = base-net P sqp ′

proof (rule quote-gross-equiv-base-net[symmetric])
show clmm-dsc P using assms by simp
show 0 < sqp ′

proof (rule clmm-quote-reach-pos)
show clmm-dsc P using assms by simp
show nz-support (lq P) 6= {} using assms by simp
show 0 ≤ 0 + quote-gross P sqp

by (simp add: assms(1 ) clmm-quote-gross-pos)
show sqp ′ = quote-reach P (0 + quote-gross P sqp)

using sqp ′-def by simp
show 0 + quote-gross P sqp ≤ quote-gross P (grd-max P)

by (metis add-0 assms(1 ) assms(4 ) quote-gross-imp-sqp-lt
less-eq-real-def nle-le)

qed
show sqp ′ ≤ sqp using sqp ′-def clmm-quote-reach-le assms

by (metis add-0 clmm-quote-gross-pos clmm-quote-reach-zero
order-le-imp-less-or-eq vimage-singleton-eq)

show quote-gross P sqp ′ = quote-gross P sqp
by (simp add: assms(1 ) assms(2 ) clmm-quote-gross-pos

quote-gross-grd-max-max clmm-quote-gross-reach-eq sqp ′-def )
qed
thus ?thesis unfolding quote-swap-def sqp ′-def by simp

qed

lemma quote-swap-zero:
assumes clmm-dsc P
and nz-support (lq P) 6= {}
and 0< sqp
and sqp ≤ grd-max P

shows quote-swap P sqp 0 = 0
proof (cases sqp < grd-min P)

case True
hence a: base-net P sqp = base-net P (grd-min P)

by (simp add: assms(1 ) assms(3 ) base-net-grd-min-lt)
have quote-gross P sqp = 0 using True

by (simp add: assms(1 ) assms(3 ) clmm-quote-gross-grd-min-le)
hence quote-reach P (0 + quote-gross P sqp) = grd-min P

using clmm-quote-reach-zero assms by simp
then show ?thesis using a unfolding quote-swap-def by simp

next
case False
then show ?thesis using assms quote-swap-grd-min-zero by simp

qed

lemma quote-swap-grd-min-zero ′:
assumes clmm-dsc P
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and nz-support (lq P) 6= {}
and grd-min P ≤ sqp
and quote-gross P sqp ≤ quote-gross P (grd-max P)
shows quote-swap P sqp 0 = 0

proof −
define sqp ′ where sqp ′ = quote-reach P (0 + quote-gross P sqp)
have base-net P sqp = base-net P sqp ′

proof (rule quote-gross-equiv-base-net[symmetric])
show clmm-dsc P using assms by simp
show 0 < sqp ′

proof (rule clmm-quote-reach-pos)
show clmm-dsc P using assms by simp
show nz-support (lq P) 6= {} using assms by simp
show 0 ≤ 0 + quote-gross P sqp

by (simp add: assms(1 ) clmm-quote-gross-pos)
show sqp ′ = quote-reach P (0 + quote-gross P sqp)

using sqp ′-def by simp
show 0 + quote-gross P sqp ≤ quote-gross P (grd-max P)

using assms by simp
qed
show sqp ′ ≤ sqp using sqp ′-def clmm-quote-reach-le assms

by (metis add-0 clmm-quote-gross-pos clmm-quote-reach-zero
order-le-imp-less-or-eq vimage-singleton-eq)

show quote-gross P sqp ′ = quote-gross P sqp
by (simp add: assms(1 ) assms(2 ) clmm-quote-gross-pos

quote-gross-grd-max-max clmm-quote-gross-reach-eq sqp ′-def )
qed
thus ?thesis unfolding quote-swap-def sqp ′-def by simp

qed

lemma quote-swap-zero ′:
assumes clmm-dsc P
and nz-support (lq P) 6= {}
and 0< sqp
and quote-gross P sqp ≤ quote-gross P (grd-max P)

shows quote-swap P sqp 0 = 0
proof (cases sqp < grd-min P)

case True
hence a: base-net P sqp = base-net P (grd-min P)

by (simp add: assms(1 ) assms(3 ) base-net-grd-min-lt)
have quote-gross P sqp = 0 using True

by (simp add: assms(1 ) assms(3 ) clmm-quote-gross-grd-min-le)
hence quote-reach P (0 + quote-gross P sqp) = grd-min P

using clmm-quote-reach-zero assms by simp
then show ?thesis using a unfolding quote-swap-def by simp

next
case False
then show ?thesis using assms quote-swap-grd-min-zero ′ by simp

qed
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lemma quote-swap-grd-min:
assumes clmm-dsc P
and nz-support (lq P) 6= {}
and sqp < grd-min P
and 0 < sqp

shows quote-swap P sqp y = quote-swap P (grd-min P) y
proof −

have quote-gross P sqp = quote-gross P (grd-min P) using assms
by (simp add: clmm-quote-gross-grd-min-le)

moreover have base-net P sqp = base-net P (grd-min P)
using base-net-grd-min-lt assms by simp

ultimately show ?thesis unfolding quote-swap-def by simp
qed

lemma quote-reach-gross-base-net:
assumes clmm-dsc P
and nz-support (lq P) 6= {}
and 0 < quote-gross P sqp
and sqp ′ = quote-reach P (quote-gross P sqp)

shows base-net P sqp ′ = base-net P sqp
proof (rule quote-gross-equiv-base-net)

have quote-gross P sqp ≤ quote-gross P (grd-max P)
using quote-gross-grd-max-max assms by simp

thus quote-gross P sqp ′ = quote-gross P sqp
using clmm-quote-gross-reach-eq assms by simp

show clmm-dsc P using assms by simp
show 0 < sqp ′

proof (rule clmm-quote-reach-pos)
show clmm-dsc P using assms by simp
show nz-support (lq P) 6= {} using assms by simp
show sqp ′ = quote-reach P (quote-gross P sqp)

using assms by simp
show 0 ≤ quote-gross P sqp

by (simp add: assms(1 ) clmm-quote-gross-pos)
show quote-gross P sqp ≤ quote-gross P (grd-max P)

using assms quote-gross-grd-max-max by simp
qed
show sqp ′ ≤ sqp using assms clmm-quote-reach-le by simp

qed

lemma quote-reach-base-net:
assumes clmm-dsc P
and nz-support (lq P) 6= {}
and 0 < sqp
and sqp ′ = quote-reach P (quote-gross P sqp)

shows base-net P sqp ′ = base-net P sqp
proof (cases quote-gross P sqp = 0 )

case True
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hence sqp ′ = grd-min P
by (simp add: assms clmm-quote-reach-zero)

have base-net P sqp = base-net P sqp ′

proof (rule quote-gross-equiv-base-net)
show sqp ≤ sqp ′ using ‹sqp ′ = grd-min P› True

by (metis assms(1 ) assms(2 ) linorder-not-less quote-gross-gt-grd-min
verit-comp-simplify1 (1 ))

show clmm-dsc P using assms by simp
show 0 < sqp using assms by simp
show quote-gross P sqp = quote-gross P sqp ′ using True
by (simp add: ‹sqp ′= grd-min P› assms(1 ) assms(2 ) clmm-quote-gross-grd-min)

qed
thus ?thesis by simp

next
case False
hence 0 < quote-gross P sqp

by (meson assms(1 ) clmm-quote-gross-pos leI order-antisym-conv)
then show ?thesis using assms quote-reach-gross-base-net by simp

qed

lemma base-le-quote-gross:
assumes clmm-dsc P ′

and 0 < sqp
and sqp ≤ sqp ′

shows base-gross P ′ sqp − base-gross P ′ sqp ′ ≤
(quote-gross P ′ sqp ′ − quote-gross P ′ sqp)/(sqp ∗ sqp)

proof −
define L where L = gross-fct (lq P ′) (fee P ′)
have base-gross P ′ sqp − base-gross P ′ sqp ′ = gen-base-diff P ′ L sqp sqp ′

using gen-base-diff-def base-gross-def L-def by simp
also have ... ≤ gen-quote-diff P ′ L sqp sqp ′ / (sqp ∗ sqp)
proof (rule finite-nz-support.gen-base-le-qadd)

show finite-nz-support L
using L-def assms(1 ) clmm-dsc-gross-liq clmm-dsc-liq(1 ) finite-liq-def

finite-nz-support.intro
by auto

show
∧

i. 0 ≤ L i using L-def assms(1 ) gross-liq-ge by simp
qed (simp add: assms)+
also have ... = (quote-gross P ′ sqp ′ − quote-gross P ′ sqp)/(sqp ∗ sqp)

using gen-quote-diff-def quote-gross-def L-def by simp
finally show ?thesis .

qed

lemma quote-le-base-gross:
assumes clmm-dsc P ′

and 0 < sqp
and sqp ≤ sqp ′

shows (quote-gross P ′ sqp ′ − quote-gross P ′ sqp)/(sqp ′ ∗ sqp ′) ≤
base-gross P ′ sqp − base-gross P ′ sqp ′
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proof −
define L where L = gross-fct (lq P ′) (fee P ′)
have (quote-gross P ′ sqp ′ − quote-gross P ′ sqp)/(sqp ′ ∗ sqp ′) =

gen-quote-diff P ′ L sqp sqp ′ / (sqp ′ ∗ sqp ′)
using gen-quote-diff-def quote-gross-def L-def by simp

also have ... ≤ gen-base-diff P ′ L sqp sqp ′

proof (rule finite-nz-support.gen-quote-le-badd)
show finite-nz-support L

using L-def assms(1 ) clmm-dsc-gross-liq clmm-dsc-liq(1 ) finite-liq-def
finite-nz-support.intro

by auto
show

∧
i. 0 ≤ L i using L-def assms(1 ) gross-liq-ge by simp

qed (simp add: assms)+
also have ... = base-gross P ′ sqp − base-gross P ′ sqp ′

using gen-base-diff-def base-gross-def L-def by simp
finally show ?thesis .

qed

lemma base-net-quote-ubound:
assumes clmm-dsc P ′

and
∧

i. fee P ′ i = phi
and phi < 1
and 0 < sqp
and sqp ≤ sqp ′

shows base-net P ′ sqp − base-net P ′ sqp ′ ≤
(1 − phi) ∗ (quote-gross P ′ sqp ′ − quote-gross P ′ sqp)/(sqp ∗ sqp)

proof −
have base-net P ′ sqp − base-net P ′ sqp ′ =

(1 − phi) ∗ (base-gross P ′ sqp − base-gross P ′ sqp ′)
by (rule cst-fee-base-gross-net, (auto simp add: assms))

also have ... ≤ (1 − phi) ∗ (quote-gross P ′ sqp ′ − quote-gross P ′ sqp)/(sqp ∗
sqp)

using base-le-quote-gross assms
by (metis ge-iff-diff-ge-0 less-eq-real-def mult-left-mono

times-divide-eq-right)
finally show ?thesis .

qed

lemma base-net-quote-lbound:
assumes clmm-dsc P ′

and
∧

i. fee P ′ i = phi
and 0 < sqp
and sqp ≤ sqp ′

shows (1 − phi) ∗ (quote-gross P ′ sqp ′ − quote-gross P ′ sqp)/(sqp ′ ∗ sqp ′) ≤
base-net P ′ sqp − base-net P ′ sqp ′

proof −
have phi < 1 using assms by (metis clmm-dsc-fees)
hence (1 − phi) ∗ (quote-gross P ′ sqp ′ − quote-gross P ′ sqp)/(sqp ′ ∗ sqp ′) ≤

(1 − phi) ∗ (base-gross P ′ sqp − base-gross P ′ sqp ′)

143



using quote-le-base-gross assms
by (metis diff-gt-0-iff-gt mult-le-cancel-left-pos times-divide-eq-right)

also have ... = base-net P ′ sqp − base-net P ′ sqp ′

by (rule cst-fee-base-gross-net[symmetric], (auto simp add: assms))
finally show ?thesis .

qed

4.4 Market depth and slippage for finer CLMMs
4.4.1 Finer pools
locale finer-clmm =

fixes P1 P2
assumes abs1 : clmm-dsc P1 and abs2 : clmm-dsc P2
and finer : finer-pool P1 P2

sublocale finer-clmm ⊆ finer-two-span-finite-liq
by (meson abs1 abs2 clmm-dsc-def finer finer-pools.intro

finer-spanning-pool.intro finer-spanning-pool-axioms.intro
finer-two-span-finite-liq.intro finer-two-span-finite-liq-axioms.intro
finer-two-spanning-pools.intro finer-two-spanning-pools-axioms.intro)

context finer-clmm
begin

lemma finer-base-net-eq:
shows base-net P1 = base-net P2
proof −

have
∧

a b. a ∈ encompassed (grd P1 ) (grd P2 ) b =⇒ lq P1 a = lq P2 b
using encompassed-liq-eq
by (simp add: mon stm)

thus ?thesis unfolding base-net-def
using spanning-finer-gen-base-eq[of λx. x λx. x]
clmm-dsc-grid clmm-dsc-liq by blast

qed

lemma finer-quote-net-eq:
shows quote-net P1 = quote-net P2
proof −

have
∧

a b. a ∈ encompassed (grd P1 ) (grd P2 ) b =⇒ lq P1 a = lq P2 b
using encompassed-liq-eq
by (simp add: mon stm)

thus ?thesis unfolding quote-net-def
using spanning-finer-gen-quote-eq[of λx. x λx. x]
clmm-dsc-grid clmm-dsc-liq by blast

qed

lemma finer-base-gross-eq:
shows base-gross P1 = base-gross P2
proof −
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have base-gross P1 = gen-base (grd P2 ) ((λx. gross-fct x (fee P2 )) (lq P2 ))
unfolding base-gross-def

proof
fix x
show gen-base (grd P1 ) ((λx. gross-fct x (fee P1 )) (lq P1 )) x =

gen-base (grd P2 ) ((λx. gross-fct x (fee P2 )) (lq P2 )) x
proof (rule spanning-finer-gen-base-eq)

show
∧

i. lq P2 i = 0 =⇒ gross-fct (lq P2 ) (fee P2 ) i = 0
using gross-fct-zero-if by simp

show
∧

i. lq P1 i = 0 =⇒ gross-fct (lq P1 ) (fee P1 ) i = 0
using gross-fct-zero-if by simp

show
∧

a b. a ∈ encompassed (grd P1 ) (grd P2 ) b =⇒
gross-fct (lq P1 ) (fee P1 ) a = gross-fct (lq P2 ) (fee P2 ) b

proof −
fix a b
assume asm: a ∈ encompassed (grd P1 ) (grd P2 ) b
hence lq P1 a = lq P2 b

by (simp add: span span2 encompassed-liq-eq
span-gridD(1 ) strict-mono-mono)

moreover have fee P1 a = fee P2 b
by (simp add: asm span span2 encompassed-fee-eq span-gridD(1 )

strict-mono-mono)
ultimately show gross-fct (lq P1 ) (fee P1 ) a =

gross-fct (lq P2 ) (fee P2 ) b
using gross-fct-cong by metis

qed
qed

qed
also have ... = base-gross P2 unfolding base-gross-def by simp
finally show ?thesis .

qed

lemma finer-quote-gross-eq:
shows quote-gross P1 = quote-gross P2
proof −

have quote-gross P1 = gen-quote (grd P2 ) ((λx. gross-fct x (fee P2 )) (lq P2 ))
unfolding quote-gross-def

proof
fix x
show gen-quote (grd P1 ) ((λx. gross-fct x (fee P1 )) (lq P1 )) x =

gen-quote (grd P2 ) ((λx. gross-fct x (fee P2 )) (lq P2 )) x
proof (rule spanning-finer-gen-quote-eq)

show
∧

i. lq P2 i = 0 =⇒ gross-fct (lq P2 ) (fee P2 ) i = 0
using gross-fct-zero-if by simp

show
∧

i. lq P1 i = 0 =⇒ gross-fct (lq P1 ) (fee P1 ) i = 0
using gross-fct-zero-if by simp

show
∧

a b. a ∈ encompassed (grd P1 ) (grd P2 ) b =⇒
gross-fct (lq P1 ) (fee P1 ) a = gross-fct (lq P2 ) (fee P2 ) b

proof −
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fix a b
assume asm: a ∈ encompassed (grd P1 ) (grd P2 ) b
hence lq P1 a = lq P2 b

by (simp add: span span2 encompassed-liq-eq span-gridD(1 )
strict-mono-mono)

moreover have fee P1 a = fee P2 b
by (simp add: asm span span2 encompassed-fee-eq span-gridD(1 )

strict-mono-mono)
ultimately show gross-fct (lq P1 ) (fee P1 ) a =

gross-fct (lq P2 ) (fee P2 ) b
using gross-fct-cong by metis

qed
qed

qed
also have ... = quote-gross P2 unfolding quote-gross-def by simp
finally show ?thesis .

qed

lemma finer-mkt-depth:
shows mkt-depth P1 = mkt-depth P2

using finer-base-net-eq finer-quote-net-eq unfolding mkt-depth-def by pres-
burger

end

4.4.2 Finer CLMMs with nonzero liquidity
locale finer-clmm-ne = finer-clmm +

assumes nonempty-liq: nz-support (lq P1 ) 6= {}

context finer-clmm-ne
begin

lemma id-max-Max-eq:
assumes i1 = idx-max (lq P1 )
and k2 = pool-coarse-idx P1 P2 i1

shows i1 = Max (encompassed (grd P1 ) (grd P2 ) k2 )
proof (rule ccontr)

assume asm: i1 6= Max (encompassed (grd P1 ) (grd P2 ) k2 )
interpret finer-ranges grd P1 grd P2
proof (rule finer-ranges.intro)

show strict-mono (grd P1 ) using span span-gridD by simp
show mono (grd P2 ) using span2

by (simp add: span-gridD strict-mono-on-imp-mono-on)
show finer-range (grd P1 ) (grd P2 ) using assms

by (simp add: finer-pool-grid)
qed
have lq P1 (i1 + 1 ) = 0 using idx-max-finite-gt assms clmm-dsc-liq

finite-liqD nz-support-def nonempty-liq
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by (metis less-add-one fin-liq)
have i1 ∈ encompassed (grd P1 ) (grd P2 ) k2

using encompassed-bounds assms pool-coarse-idxD by auto
hence i1 < Max (encompassed (grd P1 ) (grd P2 ) k2 ) using asm

by (meson Max.coboundedI fin linorder-less-linear linorder-not-less
span-grid-encompassed)

hence i1 + 1 ≤ Max (encompassed (grd P1 ) (grd P2 ) k2 ) by simp
have Max (encompassed (grd P1 ) (grd P2 ) k2 ) ∈

encompassed (grd P1 ) (grd P2 ) k2
by (metis Max-in ‹i1 ∈ encompassed (grd P1 ) (grd P2 ) k2 ›

emptyE span-grid-encompassed)
hence i1 + 1 ∈ encompassed (grd P1 ) (grd P2 ) k2

using ‹i1 ∈ encompassed (grd P1 ) (grd P2 ) k2 › encompassed-convex
‹i1 + 1 ≤ Max (encompassed (grd P1 ) (grd P2 ) k2 )› stm strict-mono-mono
by fastforce

hence lq P1 (i1 + 1 ) = lq P2 k2
by (simp add: assms(2 ) encompassed-liq-eq mon stm)

also have ... = lq P1 i1
using ‹i1 ∈ encompassed (grd P1 ) (grd P2 ) k2 › assms finer-pool-liq
by auto

also have ... 6= 0 using span assms nonempty-liq fin-liq finite-liq-def
idx-max-finite-in by blast

finally show False using ‹lq P1 (i1 + 1 ) = 0 › by simp
qed

lemma id-min-Min-eq:
assumes i1 = idx-min (lq P1 )
and k2 = pool-coarse-idx P1 P2 i1

shows i1 = Min (encompassed (grd P1 ) (grd P2 ) k2 )
proof (rule ccontr)

assume asm: i1 6= Min (encompassed (grd P1 ) (grd P2 ) k2 )
have lq P1 (i1 − 1 ) = 0 using idx-min-finite-lt assms clmm-dsc-liq

finite-liqD nz-support-def nonempty-liq
by (metis order-refl fin-liq zle-diff1-eq)

have i1 ∈ encompassed (grd P1 ) (grd P2 ) k2
using encompassed-bounds assms pool-coarse-idxD by auto

hence Min (encompassed (grd P1 ) (grd P2 ) k2 ) < i1 using asm
by (meson Min.coboundedI fin linorder-less-linear linorder-not-less

span-grid-encompassed)
hence Min (encompassed (grd P1 ) (grd P2 ) k2 ) ≤ i1−1 by simp
have Min (encompassed (grd P1 ) (grd P2 ) k2 ) ∈

encompassed (grd P1 ) (grd P2 ) k2
by (metis Min-in ‹i1 ∈ encompassed (grd P1 ) (grd P2 ) k2 › emptyE

span-grid-encompassed)
hence i1 − 1 ∈ encompassed (grd P1 ) (grd P2 ) k2

using ‹i1 ∈ encompassed (grd P1 ) (grd P2 ) k2 › encompassed-convex
‹Min (encompassed (grd P1 ) (grd P2 ) k2 ) ≤ i1 − 1 › stm strict-mono-mono
by fastforce

hence lq P1 (i1 − 1 ) = lq P2 k2
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by (simp add: assms(2 ) encompassed-liq-eq mon stm)
also have ... = lq P1 i1

using ‹i1 ∈ encompassed (grd P1 ) (grd P2 ) k2 › assms finer-pool-liq
by auto

also have ... 6= 0 using assms fin-liq finite-liq-def idx-min-finite-in
nonempty-liq by blast

finally show False using ‹lq P1 (i1 − 1 ) = 0 › by simp
qed

lemma idx-max-Suc-grd-eq:
assumes i1 = idx-max (lq P1 )
and k2 = pool-coarse-idx P1 P2 i1

shows grd P1 (i1 + 1 ) = grd P2 (k2 + 1 )
proof −

have i1 = Max (encompassed (grd P1 ) (grd P2 ) k2 )
using id-max-Max-eq assms clmm-dsc-grid by simp

hence grd P1 (i1 + 1 ) = grd P1 (Max (encompassed (grd P1 ) (grd P2 ) k2 ) +
1 )

by simp
also have ... = grd P2 (k2+1 )
proof (rule encompassed-max-Suc-gamma-eq ′)

show ∃m. grd P1 m ≤ grd P2 k2
by (simp add: span-grids-ex-le)

show ∃M . grd P2 (k2 + 2 ) ≤ grd P1 M
by (simp add: span-grids-ex-ge)

show grd P2 k2 6= grd P2 (k2 + 1 ) using span2 span-gridD
by (simp add: strict-mono-eq)

show grd P2 (k2 + 1 ) 6= grd P2 (k2 + 2 ) using span2 span-gridD
by (simp add: strict-mono-eq)

qed
finally show ?thesis .

qed

lemma idx-min-grd-eq:
assumes i1 = idx-min (lq P1 )
and k2 = pool-coarse-idx P1 P2 i1

shows grd P1 i1 = grd P2 k2
unfolding grd-max-def idx-max-img-def

proof −
have i1 = Min (encompassed (grd P1 ) (grd P2 ) k2 )

using id-min-Min-eq assms clmm-dsc-grid by simp
hence grd P1 i1 = grd P1 (Min (encompassed (grd P1 ) (grd P2 ) k2 ))

by simp
also have ... = grd P2 k2
proof (rule encompassed-min-gamma-eq ′)

show ∃m. grd P1 m ≤ grd P2 k2 by (simp add: span-grids-ex-le)
show ∃M . grd P2 (k2 + 1 ) ≤ grd P1 M by (simp add: span-grids-ex-ge)
show grd P2 k2 6= grd P2 (k2 + 1 ) using span2 span-gridD

by (simp add: strict-mono-eq)
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qed
finally show ?thesis .

qed

lemma abs-finer-idx-max-coarse:
assumes clmm-dsc P1
and clmm-dsc P2
and finer-pool P1 P2
and nz-support (lq P1 ) 6= {}
and i1 = idx-max (lq P1 )
and k2 = pool-coarse-idx P1 P2 i1

shows k2 = idx-max (lq P2 )
proof −

define m2 where m2 = idx-max (lq P2 )
have lq P1 i1 6= 0

using assms(5 ) fin-liq finite-liq-def idx-max-finite-in nonempty-liq by blast
hence nz-support (lq P1 ) 6= {} unfolding nz-support-def by auto
have i1 ∈ encompassed (grd P1 ) (grd P2 ) k2

using encompassed-bounds assms pool-coarse-idxD by auto
hence lq P1 i1 = lq P2 k2

by (simp add: assms finer-pool-liq)
hence lq P2 k2 6= 0 using ‹lq P1 i1 6= 0 › by simp
hence nz-support (lq P2 ) 6= {} unfolding nz-support-def by auto
have finite-liq P1 using assms clmm-dsc-liq by simp
have finite-liq P2 using assms clmm-dsc-liq by simp
hence k2 ≤ m2 unfolding m2-def

using ‹lq P2 k2 6= 0 › idx-max-finite-ge finite-liq-def
by metis

have lq P2 m2 6= 0 using idx-max-finite-in m2-def
by (simp add: ‹finite-liq P2 › ‹nz-support (lq P2 ) 6= {}› idx-max-mem

nz-supportD)
show k2 = m2
proof (rule ccontr)

assume k2 6= m2
hence k2 < m2 using ‹k2 ≤m2 › by auto
have ∃ j1 . encomp-at (grd P1 ) (grd P2 ) j1 m2 using ex-coarse-rep

by (metis Max-in encompassed-unique finer-ranges.coarse-idx-bounds
finer-ranges-axioms span-grid-encompassed
span-grids-encompassed-ne)

from this obtain j1 where encomp-at (grd P1 ) (grd P2 ) j1 m2 by auto
hence lq P1 j1 = lq P2 m2

by (metis coarse-idx-bounds encomp-idx-unique finer-pool-liq
pool-coarse-idxD)

hence lq P1 j1 6= 0 using ‹lq P2 m2 6= 0 › by simp
hence j1 ∈ nz-support (lq P1 ) unfolding nz-support-def by simp
hence j1 ≤ i1 using assms ‹lq P1 j1 6= 0 › idx-max-finite-ge finite-liq-def

by (metis ‹finite-liq P1 ›)
moreover have i1 < j1

using encomp-idx-mono-conv ‹encomp-at (grd P1 ) (grd P2 ) j1 m2 ›
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‹k2 < m2 › assms(6 ) coarse-idx-bounds pool-coarse-idxD by presburger
ultimately show False by simp

qed
qed

lemma abs-finer-idx-min-coarse:
assumes i1 = idx-min (lq P1 )
and k2 = pool-coarse-idx P1 P2 i1

shows k2 = idx-min (lq P2 )
proof −

define m2 where m2 = idx-min (lq P2 )
have lq P1 i1 6= 0

using assms(1 ) fin-liq finite-liq-def idx-min-finite-in nonempty-liq by blast
hence nz-support (lq P1 ) 6= {} unfolding nz-support-def by auto
have i1 ∈ encompassed (grd P1 ) (grd P2 ) k2

using encompassed-bounds assms pool-coarse-idxD by auto
hence lq P1 i1 = lq P2 k2

by (simp add: assms finer-pool-liq)
hence lq P2 k2 6= 0 using ‹lq P1 i1 6= 0 › by simp
hence nz-support (lq P2 ) 6= {} unfolding nz-support-def by auto
have finite-liq P1 using fin-liq by simp
have finite-liq P2 using fin-liq by (simp add: span-grids-finite-liq ′)
hence m2 ≤ k2 unfolding m2-def

using ‹lq P2 k2 6= 0 › idx-min-finite-le finite-liq-def
by metis

have lq P2 m2 6= 0 using idx-max-finite-in m2-def
by (simp add: ‹finite-liq P2 › ‹nz-support (lq P2 ) 6= {}› idx-min-mem

nz-supportD)
show k2 = m2
proof (rule ccontr)

assume k2 6= m2
hence m2 < k2 using ‹m2 ≤k2 › by auto
have ∃ j1 . encomp-at (grd P1 ) (grd P2 ) j1 m2 using ex-coarse-rep

by (metis Max-in encompassed-unique finer-ranges.coarse-idx-bounds
finer-ranges-axioms span-grid-encompassed
span-grids-encompassed-ne)

from this obtain j1 where encomp-at (grd P1 ) (grd P2 ) j1 m2 by auto
hence lq P1 j1 = lq P2 m2

using coarse-idx-bounds encomp-idx-unique finer-pool-liq pool-coarse-idxD
by auto

hence lq P1 j1 6= 0 using ‹lq P2 m2 6= 0 › by simp
hence j1 ∈ nz-support (lq P1 ) unfolding nz-support-def by simp
hence i1 ≤ j1 using assms ‹lq P1 j1 6= 0 › idx-min-finite-le finite-liq-def

by (metis ‹finite-liq P1 ›)
moreover have j1 < i1

using encomp-idx-mono-conv ‹encomp-at (grd P1 ) (grd P2 ) j1 m2 ›
‹m2 < k2 › assms coarse-idx-bounds pool-coarse-idxD by presburger

ultimately show False by simp
qed
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qed

lemma abs-finer-idx-max-img-eq:
shows grd-max P1 = grd-max P2
proof −

define i1 where i1 = idx-max (lq P1 )
define k2 where k2 = pool-coarse-idx P1 P2 i1
have k2 = idx-max (lq P2 )

by (simp add: abs1 abs2 abs-finer-idx-max-coarse finer i1-def k2-def
nonempty-liq)

have grd-max P1 = grd P2 (k2 + 1 )
unfolding grd-max-def idx-max-img-def
using idx-max-Suc-grd-eq i1-def k2-def span by simp

also have ... = grd-max P2 using ‹k2 = idx-max (lq P2 )›
unfolding grd-max-def idx-max-img-def by simp

finally show ?thesis .
qed

lemma abs-finer-idx-min-img-eq:
shows grd-min P1 = grd-min P2
proof −

define i1 where i1 = idx-min (lq P1 )
define k2 where k2 = pool-coarse-idx P1 P2 i1
have k2 = idx-min (lq P2 )

by (simp add: abs-finer-idx-min-coarse i1-def k2-def )
have grd-min P1 = grd P2 k2

unfolding grd-min-def idx-min-img-def
using idx-min-grd-eq i1-def k2-def by simp

also have ... = grd-min P2 using ‹k2 = idx-min (lq P2 )›
unfolding grd-min-def idx-min-img-def by simp

finally show ?thesis .
qed

lemma finer-base-reach-eq:
shows base-reach P1 = base-reach P2 unfolding base-reach-def

using clmm-dsc-grid finer-base-gross-eq abs-finer-idx-max-img-eq by presburger

lemma finer-quote-reach-eq:
shows quote-reach P1 = quote-reach P2 unfolding quote-reach-def

using clmm-dsc-grid finer-quote-gross-eq abs-finer-idx-min-img-eq by presburger

lemma finer-base-slippage:
shows base-slippage P1 = base-slippage P2

unfolding base-slippage-def base-swap-def
using finer-quote-net-eq finer-base-reach-eq finer-base-gross-eq
by simp

lemma finer-quote-slippage:
shows quote-slippage P1 = quote-slippage P2
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unfolding quote-slippage-def quote-swap-def
using finer-base-net-eq finer-quote-reach-eq finer-quote-gross-eq
by simp

end

5 Inequalities related to fees
context finite-liq-pool
begin

lemma gross-fct-le:
assumes 0 ≤ f i
and phi i ≤ phi ′ i
and phi ′ i < 1

shows gross-fct f phi i ≤ gross-fct f phi ′ i
unfolding gross-fct-def one-cpl-def
by (metis assms diff-gt-0-iff-gt diff-left-mono frac-le linorder-not-less

order .asym)

lemma gross-fct-lt:
assumes 0 < f i
and phi i < phi ′ i
and phi ′ i < 1

shows gross-fct f phi i < gross-fct f phi ′ i
unfolding gross-fct-def one-cpl-def by (simp add: assms frac-less2 )

lemma fee-diff-same-base-net:
assumes clmm-dsc P
and clmm-dsc P ′

and I = {k. L k 6= 0 ∧ j ≤ k}
and fee-diff-on P P ′ I
and same-nz-liq-on P P ′ {k. j ≤ k}
and 0 < sqp
and j = lower-tick P sqp
and L = lq P
and lower-tick P sqp = lower-tick P ′ sqp

shows base-net P sqp = base-net P ′ sqp
proof −

define L ′ where L ′ = lq P ′

have eq: ∀ i∈ I . L i = L ′ i using assms L ′-def by auto
have base-net P sqp = L j ∗ (inverse sqp − inverse (grd P (j + 1 ))) +

(
∑

i | L i 6= 0 ∧ j < i. L i ∗ (inverse (grd P i) − inverse (grd P (i + 1 ))))
using assms base-net-sum by simp

also have ... = L ′ j ∗ (inverse sqp − inverse (grd P (j + 1 ))) +
(
∑

i | L i 6= 0 ∧ j < i. L i ∗ (inverse (grd P i) − inverse (grd P (i + 1 ))))
proof (cases j∈ I )

case True
then show ?thesis using eq by simp
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next
case False
hence L j = 0 using assms by simp
then show ?thesis using L ′-def assms(5 ,8 ) by auto

qed
also have ... = L ′ j ∗ (inverse sqp − inverse (grd P (j + 1 ))) +

(
∑

i | L ′ i 6= 0 ∧ j < i. L ′ i ∗ (inverse (grd P i) − inverse (grd P (i + 1 ))))
proof −

have (
∑

i | L i 6= 0 ∧ j< i.
L i ∗ (inverse (grd P i) − inverse (grd P (i + 1 )))) =
(
∑

i | L ′ i 6= 0 ∧ j < i.
L ′ i ∗ (inverse (grd P i) − inverse (grd P (i + 1 ))))

proof (rule sum.cong)
fix k
assume k ∈ {i. L ′ i 6= 0 ∧ j < i}
hence k∈ I using assms L ′-def same-nz-liq-on-def by auto
thus L k ∗ (inverse (grd P k) − inverse (grd P (k + 1 ))) =

L ′ k ∗ (inverse (grd P k) − inverse (grd P (k + 1 )))
using eq by simp

next
show {i. L i 6= 0 ∧ j < i} = {i. L ′ i 6= 0 ∧ j < i}
proof

show {i. L i 6= 0 ∧ j < i} ⊆ {i. L ′ i 6= 0 ∧ j < i}
using assms(3 ) eq by auto

next
show {i. L ′ i 6= 0 ∧ j < i} ⊆ {i. L i 6= 0 ∧ j < i}
proof

fix k
assume k ∈ {i. L ′ i 6= 0 ∧ j < i}
hence k∈ I using assms L ′-def same-nz-liq-on-def by auto
thus k ∈ {i. L i 6= 0 ∧ j < i}

using ‹k ∈ {i. L ′ i 6= 0 ∧ j < i}› eq by auto
qed

qed
qed
thus ?thesis by simp

qed
also have ... = L ′ j ∗ (inverse sqp − inverse (grd P ′ (j + 1 ))) +

(
∑

i | L ′ i 6= 0 ∧ j < i.
L ′ i ∗ (inverse (grd P ′ i) − inverse (grd P ′ (i + 1 ))))

proof −
have (

∑
i | L ′ i 6= 0 ∧ j < i.

L ′ i ∗ (inverse (grd P i) − inverse (grd P (i + 1 )))) =
(
∑

i | L ′ i 6= 0 ∧ j < i.
L ′ i ∗ (inverse (grd P ′ i) − inverse (grd P ′ (i + 1 ))))

proof (rule sum.cong)
fix x
assume x ∈ {i. L ′ i 6= 0 ∧ j < i}
hence x ∈ {k. j ≤ k} by auto
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hence grd P x = grd P ′ x using assms by (simp add: same-nz-liq-onD(1 ))
have x+1 ∈ {k. j ≤ k} using ‹x ∈ {i. L ′ i 6= 0 ∧ j < i}› by auto
hence grd P (x + 1 ) = grd P ′ (x + 1 )

using assms by (simp add: same-nz-liq-onD(1 ))
thus L ′ x ∗ (inverse (grd P x) − inverse (grd P (x + 1 ))) =

L ′ x ∗ (inverse (grd P ′ x) − inverse (grd P ′ (x + 1 )))
using ‹grd P x = grd P ′ x› by simp

qed simp
moreover have grd P (j + 1 ) = grd P ′ (j + 1 )

using same-nz-liq-onD(1 ) assms(5 ) by auto
ultimately show ?thesis by simp

qed
also have ... = base-net P ′ sqp

by (rule base-net-sum[symmetric], (auto simp add: assms L ′-def ))
finally show ?thesis .

qed

lemma fee-diff-le-imp-quote-gross:
assumes clmm-dsc P
and clmm-dsc P ′

and {k. L k 6= 0 ∧ k ≤ j} ⊆ I
and fee-diff-on P P ′ I
and same-nz-liq-on P P ′ {k. k ≤ j}
and 0 < sqp
and j = lower-tick P sqp
and L = gross-fct (lq P) (fee P)
and

∧
i. i ∈ I =⇒ fee P i ≤ fee P ′ i

and lower-tick P sqp = lower-tick P ′ sqp
shows quote-gross P sqp ≤ quote-gross P ′ sqp
proof −

define L ′ where L ′ = gross-fct (lq P ′) (fee P ′)
have pos: ∀ i∈ I . 0 ≤ L i using assms gross-liq-ge by simp
have le: ∀ i∈ I . L i ≤ L ′ i
proof

fix i
assume i ∈ I
hence lq P i = lq P ′ i using assms fee-diff-onD(2 ) by simp
hence L i = gross-fct (lq P ′) (fee P) i

using assms(8 ) gross-fct-cong by blast
also have ... ≤ L ′ i unfolding L ′-def
proof (rule gross-fct-le)

show 0 ≤ lq P ′ i by (simp add: assms(2 ) clmm-dsc-liq(2 ))
show fee P i ≤ fee P ′ i using ‹i ∈ I › assms by simp
show fee P ′ i < 1 by (simp add: assms(2 ) clmm-dsc-fees)

qed
finally show L i ≤ L ′ i .

qed
have quote-gross P sqp = L j ∗ (sqp − grd P j) +

(
∑

i | L i 6= 0 ∧ i < j. L i ∗ (grd P (i + 1 ) − grd P i))
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using assms clmm-quote-gross-sum by simp
also have ... ≤ L ′ j ∗ (sqp − grd P j) +

(
∑

i | L i 6= 0 ∧ i < j. L i ∗ (grd P (i + 1 ) − grd P i))
proof (cases j∈ I )

case True
then show ?thesis using lower-tick-lbound le pos

by (simp add: assms(1 ) assms(6 ) assms(7 ) mult-right-mono)
next

case False
hence L j = 0 using assms by auto
then show ?thesis

using L ′-def lower-tick-geq gross-liq-ge
by (simp add: assms(1 ,2 ,6 ,7 ))

qed
also have ... ≤ L ′ j ∗ (sqp − grd P j) +

(
∑

i | L i 6= 0 ∧ i < j. L ′ i ∗ (grd P (i + 1 ) − grd P i))
proof −

have (
∑

i | L i 6= 0 ∧ i < j. L i ∗ (grd P (i + 1 ) − grd P i)) ≤
(
∑

i | L i 6= 0 ∧ i < j. L ′ i ∗ (grd P (i + 1 ) − grd P i))
proof (rule sum-mono)

fix k
assume k ∈ {i. L i 6= 0 ∧ i < j}
hence k∈ I using assms by auto
thus L k ∗ (grd P (k + 1 ) − grd P k) ≤ L ′ k ∗ (grd P (k + 1 ) − grd P k)

using le
by (simp add: assms(1 ) clmm-dsc-grd-mono mult-right-mono)

qed
thus ?thesis by simp

qed
also have ... = L ′ j ∗ (sqp − grd P ′ j) +

(
∑

i | L ′ i 6= 0 ∧ i < j. L ′ i ∗ (grd P (i + 1 ) − grd P i))
proof −

have ziff : ∀ i∈ I . (L i = 0 ←→ L ′ i = 0 ) using assms le pos
by (metis L ′-def clmm-dsc-gross-liq-zero-iff fee-diff-onD(2 ))

have {i. L i 6= 0 ∧ i < j} = {i. L ′ i 6= 0 ∧ i < j}
proof

show {i. L i 6= 0 ∧ i < j} ⊆ {i. L ′ i 6= 0 ∧ i < j}
using ziff assms(3 ) by auto

show {i. L ′ i 6= 0 ∧ i < j} ⊆ {i. L i 6= 0 ∧ i < j}
proof

fix i
assume i ∈ {i. L ′ i 6= 0 ∧ i < j}
hence L ′ i 6= 0 and i < j by auto
hence L i 6= 0

using L ′-def same-nz-liq-onD(2 ) assms clmm-dsc-gross-liq-zero-iff
by (smt (verit, ccfv-threshold) mem-Collect-eq)

thus i ∈ {i. L i 6= 0 ∧ i < j} using ‹i < j› by auto
qed

qed
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moreover have grd P j = grd P ′ j using assms by auto
ultimately show ?thesis by simp

qed
also have ... = L ′ j ∗ (sqp − grd P ′ j) +

(
∑

i | L ′ i 6= 0 ∧ i < j. L ′ i ∗ (grd P ′ (i + 1 ) − grd P ′ i))
proof −

have (
∑

i | L ′ i 6= 0 ∧ i < j. L ′ i ∗ (grd P (i + 1 ) − grd P i)) =
(
∑

i | L ′ i 6= 0 ∧ i < j. L ′ i ∗ (grd P ′ (i + 1 ) − grd P ′ i))
proof (rule sum.cong)

fix x
assume x ∈ {i. L ′ i 6= 0 ∧ i < j}
hence x ∈ {k. k ≤ j} by auto
hence grd P x = grd P ′ x using assms by force
have x+1 ∈ {k. k ≤ j} using ‹x ∈ {i. L ′ i 6= 0 ∧ i < j}› by auto
hence grd P (x + 1 ) = grd P ′ (x + 1 ) using assms by force
thus L ′ x ∗ (grd P (x + 1 ) − grd P x) = L ′ x ∗ (grd P ′ (x + 1 ) − grd P ′ x)

using ‹grd P x = grd P ′ x› by simp
qed simp
thus ?thesis by simp

qed
also have ... = quote-gross P ′ sqp

by (rule clmm-quote-gross-sum[symmetric], (auto simp add: assms L ′-def ))
finally show ?thesis .

qed

lemma fee-diff-le-imp-quote-gross-mono:
assumes clmm-dsc P
and clmm-dsc P ′

and {k. L k 6= 0 ∧ k ≤ j} ⊆ I
and fee-diff-on P P ′ I
and same-nz-liq-on P P ′ {k. k ≤ j}
and 0 < sqp
and j = lower-tick P sqp
and L = gross-fct (lq P) (fee P)
and

∧
i. i ∈ I =⇒ fee P i ≤ fee P ′ i

and lower-tick P sqp = lower-tick P ′ sqp
and sqp ≤ sqp ′

shows quote-gross P sqp ≤ quote-gross P ′ sqp ′

proof −
have quote-gross P sqp ≤ quote-gross P ′ sqp

using assms fee-diff-le-imp-quote-gross by simp
also have ... ≤ quote-gross P ′ sqp ′

using clmm-quote-gross-mono[of P ′] monoD assms(2 ,11 ) by simp
finally show ?thesis .

qed

lemma fee-diff-quote-diff-expand:
assumes clmm-dsc P
and clmm-dsc P ′
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and L = gross-fct (lq P) (fee P)
and j = lower-tick P sqp
and k = lower-tick P sqp ′

and 0 < sqp
and sqp ≤ sqp ′

and j < k
and {m. L m 6= 0 ∧ j ≤ m ∧ m ≤ k} ⊆ I
and fee-diff-on P P ′ I
and same-nz-liq-on P P ′ {m. j ≤ m ∧ m ≤ k+1}
and

∧
i. i ∈ I =⇒ fee P i ≤ fee P ′ i

and lower-tick P sqp = lower-tick P ′ sqp
and lower-tick P sqp ′ = lower-tick P ′ sqp ′

shows quote-gross P sqp ′ − quote-gross P sqp ≤ quote-gross P ′ sqp ′ − quote-gross
P ′ sqp
proof −

define L ′ where L ′ = gross-fct (lq P ′) (fee P ′)
have pos: ∀ i∈ I . 0 ≤ L i using assms gross-liq-ge by simp
have le: ∀ i∈ I . L i ≤ L ′ i
proof

fix i
assume i ∈ I
hence lq P i = lq P ′ i using assms fee-diff-onD(2 ) by simp
hence L i = gross-fct (lq P ′) (fee P) i

using assms gross-fct-cong by blast
also have ... ≤ L ′ i unfolding L ′-def
proof (rule gross-fct-le)

show 0 ≤ lq P ′ i by (simp add: assms(2 ) clmm-dsc-liq(2 ))
show fee P i ≤ fee P ′ i using ‹i ∈ I › assms by simp
show fee P ′ i < 1 by (simp add: assms(2 ) clmm-dsc-fees)

qed
finally show L i ≤ L ′ i .

qed
have quote-gross P sqp ′ − quote-gross P sqp = L k ∗ (sqp ′ − grd P k) +
sum (λ i. L i ∗ (grd P (i+1 ) − grd P i)) {i. L i 6= 0 ∧ j <i ∧ i < k} +
L j ∗ (grd P (j+1 ) − sqp)

using assms clmm-quote-gross-diff-eq by simp
also have ... ≤ L ′ k ∗ (sqp ′ − grd P k) +

sum (λ i. L i ∗ (grd P (i+1 ) − grd P i)) {i. L i 6= 0 ∧ j <i ∧ i < k} +
L j ∗ (grd P (j+1 ) − sqp)
proof (cases k∈ I )

case True
then show ?thesis using lower-tick-lbound le pos
by (smt (verit, best) assms(1 ) assms(5 ) assms(6 ) assms(7 ) mult-right-mono)

next
case False
hence L k = 0 using assms by auto
then show ?thesis

using L ′-def lower-tick-geq gross-liq-ge assms(1 ,2 ,5−7 ) by auto
qed
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also have ... ≤ L ′ k ∗ (sqp ′ − grd P k) +
sum (λ i. L i ∗ (grd P (i+1 ) − grd P i)) {i. L i 6= 0 ∧ j <i ∧ i < k} +
L ′ j ∗ (grd P (j+1 ) − sqp)

proof (cases j∈ I )
case True
then show ?thesis using lower-tick-lbound le pos

by (simp add: assms(1 ) assms(4 ) lower-tick-ubound)
next

case False
hence L j = 0 using assms by auto
then show ?thesis

using L ′-def lower-tick-geq gross-liq-ge
by (smt (verit, ccfv-SIG) assms(1 ,2 ,4 ) lower-tick-ubound mult-right-mono)

qed
also have ... ≤ L ′ k ∗ (sqp ′ − grd P k) +

sum (λ i. L ′ i ∗ (grd P (i+1 ) − grd P i)) {i. L i 6= 0 ∧ j <i ∧ i < k} +
L ′ j ∗ (grd P (j+1 ) − sqp)

proof −
have sum (λ i. L i ∗ (grd P (i+1 ) − grd P i)) {i. L i 6= 0 ∧ j <i ∧ i < k} ≤

sum (λ i. L ′ i ∗ (grd P (i+1 ) − grd P i)) {i. L i 6= 0 ∧ j <i ∧ i < k}
proof (rule sum-mono)

fix i
assume i ∈ {i. L i 6= 0 ∧ j < i ∧ i < k}
hence i∈ I using assms by auto
thus L i ∗ (grd P (i + 1 ) − grd P i) ≤ L ′ i ∗ (grd P (i + 1 ) − grd P i)

using le
by (simp add: assms(1 ) clmm-dsc-grd-mono mult-right-mono)

qed
thus ?thesis by simp

qed
also have ... = L ′ k ∗ (sqp ′ − grd P ′ k) +

sum (λ i. L ′ i ∗ (grd P (i+1 ) − grd P i)) {i. L ′ i 6= 0 ∧ j <i ∧ i < k} +
L ′ j ∗ (grd P ′ (j+1 ) − sqp)

proof −
have ziff : ∀ i∈ I . (L i = 0 ←→ L ′ i = 0 ) using assms le pos

by (metis L ′-def clmm-dsc-gross-liq-zero-iff fee-diff-onD(2 ))
have {i. L i 6= 0 ∧ j <i ∧ i < k} = {i. L ′ i 6= 0 ∧ j <i ∧ i < k}
proof

show {i. L i 6= 0 ∧ j <i ∧ i < k} ⊆ {i. L ′ i 6= 0 ∧ j <i ∧ i < k}
using ziff assms(9 ) by auto

show {i. L ′ i 6= 0 ∧ j <i ∧ i < k} ⊆ {i. L i 6= 0 ∧ j <i ∧ i < k}
proof

fix i
assume i ∈ {i. L ′ i 6= 0 ∧ j <i ∧ i < k}
hence L ′ i 6= 0 and i < k and j < i by auto
hence L i 6= 0

using L ′-def same-nz-liq-onD(2 ) assms clmm-dsc-gross-liq-zero-iff
by (smt (verit, ccfv-threshold) mem-Collect-eq)

thus i ∈ {i. L i 6= 0 ∧ j <i ∧ i < k}
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using ‹i < k› ‹j < i› by simp
qed

qed
moreover have grd P k = grd P ′ k

using assms(11 ) assms(8 ) same-nz-liq-onD(1 ) by auto
moreover have grd P (j+1 ) = grd P ′ (j+1 )

using add1-zle-eq assms(11 ) assms(8 ) same-nz-liq-onD(1 ) by auto
ultimately show ?thesis by simp

qed
also have ... = L ′ k ∗ (sqp ′ − grd P ′ k) +

sum (λ i. L ′ i ∗ (grd P ′ (i+1 ) − grd P ′ i)) {i. L ′ i 6= 0 ∧ j <i ∧ i < k} +
L ′ j ∗ (grd P ′ (j+1 ) − sqp)

proof −
have sum (λ i. L ′ i ∗ (grd P (i+1 ) − grd P i)) {i. L ′ i 6= 0 ∧ j <i ∧ i < k}

=
sum (λ i. L ′ i ∗ (grd P ′ (i+1 ) − grd P ′ i)) {i. L ′ i 6= 0 ∧ j <i ∧ i < k}

proof (rule sum.cong)
fix x
assume x ∈ {i. L ′ i 6= 0 ∧ j < i ∧ i < k}
hence x ∈ {i. j ≤ i ∧ i ≤ k} by auto
hence grd P x = grd P ′ x using assms by force
have x+1 ∈ {i. j ≤ i ∧ i ≤ k}

using ‹x ∈ {i. L ′ i 6= 0 ∧ j < i ∧ i < k}› by auto
hence grd P (x + 1 ) = grd P ′ (x + 1 ) using assms by force
thus L ′ x ∗ (grd P (x + 1 ) − grd P x) = L ′ x ∗ (grd P ′ (x + 1 ) − grd P ′ x)

using ‹grd P x = grd P ′ x› by simp
qed simp
thus ?thesis by simp

qed
also have ... = quote-gross P ′ sqp ′ − quote-gross P ′ sqp
proof (rule clmm-quote-gross-diff-eq[symmetric])

show j < k using assms by simp
qed (simp add: assms L ′-def )+
finally show ?thesis .

qed

lemma fee-diff-quote-diff-expand ′:
assumes clmm-dsc P
and clmm-dsc P ′

and L = gross-fct (lq P) (fee P)
and j = lower-tick P sqp
and j = lower-tick P sqp ′

and 0 < sqp
and sqp ≤ sqp ′

and L j 6= 0 −→ j∈ I
and fee-diff-on P P ′ I
and

∧
i. i ∈ I =⇒ fee P i ≤ fee P ′ i

and lower-tick P sqp = lower-tick P ′ sqp
and lower-tick P sqp ′ = lower-tick P ′ sqp ′
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shows quote-gross P sqp ′ − quote-gross P sqp ≤ quote-gross P ′ sqp ′ − quote-gross
P ′ sqp
proof −

define L ′ where L ′ = gross-fct (lq P ′) (fee P ′)
have le: ∀ i∈ I . L i ≤ L ′ i
proof

fix i
assume i ∈ I
hence lq P i = lq P ′ i using assms fee-diff-onD(2 ) by simp
hence L i = gross-fct (lq P ′) (fee P) i

using assms gross-fct-cong by blast
also have ... ≤ L ′ i unfolding L ′-def
proof (rule gross-fct-le)

show 0 ≤ lq P ′ i by (simp add: assms(2 ) clmm-dsc-liq(2 ))
show fee P i ≤ fee P ′ i using ‹i ∈ I › assms by simp
show fee P ′ i < 1 by (simp add: assms(2 ) clmm-dsc-fees)

qed
finally show L i ≤ L ′ i .

qed
have quote-gross P sqp ′ − quote-gross P sqp = L j ∗ (sqp ′ − sqp)

using assms clmm-quote-gross-diff-eq ′ by simp
also have ... ≤ L ′ j ∗ (sqp ′ − sqp) using lower-tick-lbound le

by (metis L ′-def assms(2 ,7 ,8 ) diff-ge-0-iff-ge gross-liq-ge
mult.commute ordered-comm-semiring-class.comm-mult-left-mono)

also have ... = quote-gross P ′ sqp ′ − quote-gross P ′ sqp
proof (rule clmm-quote-gross-diff-eq ′[symmetric])

show clmm-dsc P ′ using assms by simp
show L ′ = gross-fct (lq P ′) (fee P ′) using L ′-def by simp
show j = lower-tick P ′ sqp using assms by simp
show j = lower-tick P ′ sqp ′ using assms by simp
show 0 < sqp using assms by simp
show sqp ≤ sqp ′ using assms by simp

qed
finally show ?thesis .

qed

lemma fee-diff-quote-diff-le:
assumes clmm-dsc P
and clmm-dsc P ′

and L = gross-fct (lq P) (fee P)
and j = lower-tick P sqp
and k = lower-tick P sqp ′

and 0 < sqp
and sqp ≤ sqp ′

and {m. L m 6= 0 ∧ j ≤ m ∧ m ≤ k} ⊆ I
and fee-diff-on P P ′ I
and same-nz-liq-on P P ′ {m. j ≤ m ∧ m ≤ k+1}
and

∧
i. i ∈ I =⇒ fee P i ≤ fee P ′ i

and lower-tick P sqp = lower-tick P ′ sqp
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and lower-tick P sqp ′ = lower-tick P ′ sqp ′

shows quote-gross P sqp ′ − quote-gross P sqp ≤ quote-gross P ′ sqp ′ − quote-gross
P ′ sqp
proof (cases j = k)

case True
have L j 6= 0 −→ j∈ I using True assms(8 ) by blast
then show ?thesis using assms True fee-diff-quote-diff-expand ′ by simp

next
case False
hence j < k using lower-tick-mono assms(1 ,4−7 ) by fastforce
then show ?thesis using fee-diff-quote-diff-expand assms by simp

qed

lemma same-nz-liq-on-nz-support:
assumes i ∈ I
and lq P i 6= 0
and same-nz-liq-on P P ′ I

shows nz-support (lq P ′) 6= {}
proof −

have lq P ′ i 6= 0 using assms by blast
thus ?thesis unfolding nz-support-def by auto

qed

lemma same-nz-liq-on-idx-max:
assumes finite-liq P ′

and nz-support (lq P) 6= {}
and I = {idx-min (lq P) .. idx-max (lq P) + 1}
and same-nz-liq-on P P ′ I

shows idx-max (lq P) ≤ idx-max (lq P ′)
proof −

define i where i = idx-max (lq P)
have i∈ I using i-def assms

by (simp add: fin-nz-sup idx-min-max-finite)
have lq P i 6= 0 using i-def by (simp add: assms(2 ) idx-max-mem nz-supportD)
hence lq P ′ i 6= 0 using same-nz-liq-onD(2 ) ‹i∈ I › assms by simp
thus i ≤ idx-max (lq P ′)

using idx-max-finite-ge assms(1 ) finite-liq-def by simp
qed

lemma same-nz-liq-on-grd-max:
assumes finite-liq P ′

and mono (grd P ′)
and nz-support (lq P) 6= {}
and I = {idx-min (lq P) .. idx-max (lq P) + 1}
and same-nz-liq-on P P ′ I

shows grd-max P ≤ grd-max P ′

proof −
have grd-max P = grd P (idx-max (lq P) + 1 )

using grd-max-def idx-max-img-def by simp
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also have ... = grd P ′ (idx-max (lq P) + 1 )
proof −

have idx-max (lq P) + 1 ∈ I
by (simp add: add.commute add-increasing assms(3 ,4 ) fin-nz-sup

idx-min-max-finite)
thus ?thesis using same-nz-liq-onD(1 ) assms by auto

qed
also have ... ≤ grd P ′ (idx-max (lq P ′) + 1 )
proof −

have idx-max (lq P) ≤ idx-max (lq P ′)
using assms same-nz-liq-on-idx-max by simp

thus ?thesis by (simp add: assms(2 ) monoD)
qed
finally show ?thesis unfolding grd-max-def idx-max-img-def by simp

qed

lemma same-nz-liq-on-lower-tick:
assumes clmm-dsc P
and clmm-dsc P ′

and same-nz-liq-on P P ′ {i. i ≤ j+1}
and 0 < sqp
and lower-tick P sqp ≤ j

shows lower-tick P ′ sqp = lower-tick P sqp
proof (rule lower-tick-charact)

define i where i = lower-tick P sqp
show clmm-dsc P ′ using assms by simp
have grd P ′ i = grd P i

using assms i-def by (simp add: same-nz-liq-onD(1 ))
also have ... ≤ sqp

by (simp add: assms(1 ,4 ) lower-tick-mem i-def )
finally show grd P ′ i ≤ sqp .
have sqp < grd P (i+1 )

by (simp add: assms(1 ) i-def lower-tick-ubound)
also have ... = grd P ′ (i+1 )

using assms i-def by (simp add: same-nz-liq-onD(1 ))
finally show sqp < grd P ′ (i+1 ) .

qed

lemma same-nz-liq-on-lower-tick ′:
assumes clmm-dsc P ′

and same-nz-liq-on P P ′ {i. i ≤ j}
and grd P j = sqp

shows lower-tick P ′ sqp = j
using assms lower-tick-eq same-nz-liq-onD(1 ) by auto

lemma fee-diff-le-grd-max:
assumes clmm-dsc P
and clmm-dsc P ′

and nz-support (lq P) 6= {}
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and {idx-min (lq P) .. idx-max (lq P) + 1} ⊆ I
and fee-diff-on P P ′ I
and same-nz-liq-on P P ′ {k. k ≤ idx-max (lq P) + 1}
and

∧
i. i ∈ I =⇒ fee P i ≤ fee P ′ i

shows quote-gross P (grd-max P) ≤ quote-gross P ′ (grd-max P)
proof −

define j where j = lower-tick P (grd-max P)
have j = idx-max (lq P) +1

by (simp add: assms(1 ) j-def lower-tick-grd-max)
hence grd P j = grd-max P unfolding grd-max-def idx-max-img-def by simp
define L where L = gross-fct (lq P) (fee P)
show quote-gross P (grd-max P) ≤ quote-gross P ′ (grd-max P)
proof (rule fee-diff-le-imp-quote-gross)

show j = lower-tick P (grd-max P) using j-def by simp
show L = gross-fct (lq P) (fee P) using L-def by simp
show 0 < grd-max P by (simp add: assms(1 ) assms(3 ) grd-max-gt)
have {k. L k 6= 0 ∧ k ≤ j} ⊆ {idx-min (lq P) .. idx-max (lq P)+1}
proof

fix k
assume k∈ {k. L k 6= 0 ∧ k ≤ j}
hence L k 6= 0 and k ≤ j by auto
hence k∈ {idx-min (lq P) .. idx-max (lq P)}
using non-zero-liq-interv L-def assms(1 ) clmm-dsc-gross-liq-zero-iff fin-nz-sup

by blast
thus k∈ {idx-min (lq P) .. idx-max (lq P)+1} by auto

qed
thus {k. L k 6= 0 ∧ k ≤ j} ⊆ I using assms by simp
show fee-diff-on P P ′ I using assms by simp
show same-nz-liq-on P P ′ {k. k ≤ j}

using assms ‹j = idx-max (lq P) +1 › by simp
show

∧
i. i ∈ I =⇒ fee P i ≤ fee P ′ i using assms by simp

show lower-tick P (grd-max P) = lower-tick P ′ (grd-max P)
using ‹grd P j = grd-max P› ‹same-nz-liq-on P P ′ {k. k ≤ j}› assms(2 ) j-def

same-nz-liq-on-lower-tick ′

by auto
qed (simp add: assms)+

qed

lemma fee-diff-le-grd-max ′:
assumes clmm-dsc P
and clmm-dsc P ′

and nz-support (lq P) 6= {}
and {idx-min (lq P) .. idx-max (lq P) + 1} ⊆ I
and fee-diff-on P P ′ I
and same-nz-liq-on P P ′ {k. k ≤ idx-max (lq P) + 1}
and

∧
i. i ∈ I =⇒ fee P i ≤ fee P ′ i

shows quote-gross P (grd-max P) ≤ quote-gross P ′ (grd-max P ′)
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proof −
have quote-gross P (grd-max P) ≤ quote-gross P ′ (grd-max P)

using assms fee-diff-le-grd-max by simp
also have ... ≤ quote-gross P ′ (grd-max P ′)
proof (rule clmm-quote-gross-mono[THEN monoD])

show clmm-dsc P ′ using assms by simp
show grd-max P ≤ grd-max P ′ using same-nz-liq-on-grd-max
by (meson assms(2−5 ) clmm-dsc-grd-mono clmm-dsc-liq(1 ) fee-diff-on-mono

fee-diff-on-nz-liq mono-onI )
qed
finally show ?thesis .

qed

lemma fee-diff-le-imp-quote-reach:
assumes clmm-dsc P
and clmm-dsc P ′

and nz-support (lq P) 6= {}
and {idx-min (lq P) .. idx-max (lq P) + 1} ⊆ I
and fee-diff-on P P ′ I
and same-nz-liq-on P P ′ {i. i ≤ idx-max (lq P) + 1}
and

∧
i. i ∈ I =⇒ fee P i ≤ fee P ′ i

and 0 < y
and y ≤ quote-gross P (grd-max P)

shows quote-reach P ′ y ≤ quote-reach P y
proof −

define sqp ′ where sqp ′ = quote-reach P ′ y
define sqp where sqp = quote-reach P y
define L where L = gross-fct (lq P) (fee P)
have nz-support (lq P ′) 6= {}
proof (rule same-nz-liq-on-nz-support)

have idx-min (lq P) ∈ {idx-min (lq P) .. idx-max (lq P) + 1}
using assms(3 ) fin-nz-sup idx-min-max-finite by fastforce

thus idx-min (lq P) ∈ I using assms by auto
show lq P (idx-min (lq P)) 6= 0

by (simp add: assms(3 ) idx-min-mem nz-supportD)
show same-nz-liq-on P P ′ I using assms fee-diff-on-nz-liq by simp

qed
have grd-max P ≤ grd-max P ′

by (meson assms(2−5 ) clmm-dsc-grid(1 ) clmm-dsc-liq(1 ) fee-diff-on-mono
fee-diff-on-nz-liq same-nz-liq-on-grd-max strict-mono-mono)

have 0 < grd-max P
by (meson assms(1 ) assms(3 ) liq-grd-min liq-grd-min-max

dual-order .strict-trans)
have quote-gross P ′ sqp ′ = y unfolding sqp ′-def
proof (rule clmm-quote-gross-reach-eq)

show clmm-dsc P ′ using assms by simp
show 0 ≤ y using assms by simp
show nz-support (lq P ′) 6= {} using ‹nz-support (lq P ′) 6= {}› .
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have y ≤ quote-gross P (grd-max P) using assms by simp
also have ... ≤ quote-gross P ′ (grd-max P ′)
proof (rule fee-diff-le-imp-quote-gross-mono[OF assms(1−2 )])

define j where j = lower-tick P (grd-max P)
hence j = idx-max (lq P) + 1

by (simp add: assms(1 ) idx-max-img-def lower-tick-eq grd-max-def )
show same-nz-liq-on P P ′ {k. k ≤ j}

using assms ‹j = idx-max (lq P) + 1 › by simp
show {k. L k 6= 0 ∧ k ≤ j} ⊆ I
proof

fix x
assume x ∈ {k. L k 6= 0 ∧ k ≤ j}
hence L x 6= 0 and x ≤ j by auto
hence idx-min (lq P) ≤ x

by (metis L-def assms(1 ) clmm-dsc-gross-liq-zero-iff
idx-min-lt-liq leI )

moreover have x ≤ idx-max (lq P)
using L-def ‹L x 6= 0 › fin-nz-sup gross-fct-zero-if idx-max-finite-ge
by blast

ultimately have x ∈ {idx-min (lq P) .. idx-max (lq P) + 1} by auto
thus x∈ I using assms by auto

qed
show fee-diff-on P P ′ I using assms by simp
show 0 < grd-max P using ‹0 < grd-max P› .
show grd-max P ≤ grd-max P ′ using ‹grd-max P ≤ grd-max P ′› .
show j = lower-tick P ′ (grd-max P) unfolding j-def
proof (rule same-nz-liq-on-lower-tick ′[symmetric])

show grd P (lower-tick P (grd-max P)) = grd-max P
using ‹j = idx-max (lq P) + 1 › unfolding j-def grd-max-def idx-max-img-def

by simp
show same-nz-liq-on P P ′ {i. i ≤lower-tick P (grd-max P)}

using ‹same-nz-liq-on P P ′ {k. k ≤ j}› j-def by auto
qed (simp add: assms)
show L = gross-fct (lq P) (fee P) unfolding L-def by simp
show

∧
i. i ∈ I =⇒ fee P i ≤ fee P ′ i using assms by simp

qed simp
finally show y ≤ quote-gross P ′ (grd-max P ′) .

qed
also have ... = quote-gross P sqp

using assms clmm-quote-gross-reach-eq sqp-def by simp
also have ... ≤ quote-gross P ′ sqp
proof (rule fee-diff-le-imp-quote-gross)

define k where k = lower-tick P sqp
thus k = lower-tick P sqp by simp
show 0 < sqp using clmm-quote-reach-pos assms sqp-def by simp
show fee-diff-on P P ′ I using assms by simp
show L = gross-fct (lq P) (fee P) using L-def by simp
show

∧
i. i ∈ I =⇒ fee P i ≤ fee P ′ i using assms by simp
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show {l. L l 6= 0 ∧ l ≤ k} ⊆ I
proof

fix x
assume x∈ {l. L l 6= 0 ∧ l ≤ k}
hence L x 6= 0 and x ≤ k by auto
hence idx-min (lq P) ≤ x

by (metis L-def assms(1 ) clmm-dsc-gross-liq-zero-iff idx-min-lt-liq
leI )

moreover have x ≤ idx-max (lq P) using ‹L x 6= 0 ›
by (metis L-def assms(1 ) idx-max-gt-liq gross-fct-zero-if leI )

ultimately have x ∈ {idx-min (lq P) .. idx-max (lq P) + 1} by auto
thus x∈ I using assms by auto

qed
have sqp ≤ grd-max P

by (metis ‹y = quote-gross P sqp› assms(1 ,3 ) quote-gross-grd-max-ge
grd-max-quote-reach order-less-irrefl sqp-def
verit-comp-simplify1 (3 ))

moreover have lower-tick P (grd-max P) = idx-max (lq P) + 1
by (simp add: assms(1 ) lower-tick-grd-max)

ultimately have k ≤ idx-max (lq P) +1 using k-def
by (metis ‹0 < sqp› assms(1 ) lower-tick-mono)

show same-nz-liq-on P P ′ {l. l ≤ k}
proof (rule same-nz-liq-on-mono)

show same-nz-liq-on P P ′ {i. i ≤ idx-max (lq P) + 1}
using assms by simp

show {l. l ≤ k} ⊆ {i. i ≤ idx-max (lq P) + 1}
using ‹k ≤ idx-max (lq P) +1 › by auto

qed
show k = lower-tick P ′ sqp
proof (cases sqp = grd-max P)

case True
hence k = idx-max (lq P) + 1 using k-def

by (simp add: ‹lower-tick P (grd-max P) = idx-max (lq P) + 1 ›)
show ?thesis
proof (rule same-nz-liq-on-lower-tick ′[symmetric])

show clmm-dsc P ′ using assms by simp
show same-nz-liq-on P P ′ {i. i ≤ k}

using assms ‹k = idx-max (lq P) + 1 › by simp
show grd P k = sqp

using k-def True ‹k = idx-max (lq P) + 1 ›
unfolding grd-max-def idx-max-img-def by simp

qed
next

case False
hence sqp < grd-max P using ‹sqp ≤ grd-max P› by simp
hence k < lower-tick P (grd-max P)

using ‹0 < sqp› ‹lower-tick P (grd-max P) = idx-max (lq P) + 1 ›
assms(1 ,3 ) sqp-lt-grd-max-imp-idx k-def

by auto
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hence k ≤ idx-max (lq P)
by (simp add: ‹lower-tick P (grd-max P) = idx-max (lq P) + 1 ›)

show ?thesis unfolding k-def
proof (rule same-nz-liq-on-lower-tick[symmetric])

show lower-tick P sqp ≤ idx-max (lq P)
using ‹k ≤ idx-max (lq P)› k-def by simp

show 0 < sqp using ‹0 < sqp› .
show same-nz-liq-on P P ′ {i. i ≤ idx-max (lq P) + 1} using assms by

simp
qed (simp add: assms)+

qed
qed (simp add: assms)+
finally have quote-gross P ′ sqp ′ ≤ quote-gross P ′ sqp .
define sqp2 where sqp2 = quote-reach P ′ (quote-gross P ′ sqp)
have sqp ′ ≤ sqp2
proof (rule quote-reach-mono)

show clmm-dsc P ′ using assms by simp
show nz-support (lq P ′) 6= {} using ‹nz-support (lq P ′) 6= {}› .
show 0 ≤ y using assms by simp
show y ≤ quote-gross P ′ sqp

using ‹y = quote-gross P sqp› ‹quote-gross P sqp ≤ quote-gross P ′ sqp› by
simp

show sqp ′ = quote-reach P ′ y using sqp ′-def by simp
show sqp2 = quote-reach P ′ (quote-gross P ′ sqp) using sqp2-def by simp
show quote-gross P ′ sqp ≤ quote-gross P ′ (grd-max P ′)
proof −

have sqp ≤ grd-max P
using sqp-def quote-reach-leq-grd-max
by (simp add: ‹0 ≤ y› assms(1 ,3 ,9 ))

also have ... ≤ grd-max P ′ using ‹grd-max P ≤ grd-max P ′› .
finally have sqp ≤ grd-max P ′ .
thus ?thesis

by (simp add: ‹nz-support (lq P ′) 6= {}› assms(2 )
quote-gross-grd-max-max)

qed
qed
also have ... ≤ sqp using clmm-quote-reach-le sqp2-def

using ‹nz-support (lq P ′) 6= {}› ‹quote-gross P ′ sqp ′ = y›
‹quote-gross P ′ sqp ′ ≤ quote-gross P ′ sqp› assms(2 ,8 )

by auto
finally show ?thesis unfolding sqp ′-def sqp-def .

qed

lemma same-nz-liq-on-if-simil:
assumes grd P = grd P ′

and nz-support (lq P) = nz-support (lq P ′)
shows same-nz-liq-on P P ′ I
proof

show id-grid-on P P ′ I using id-grid-onI assms by simp
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show
∧

i. i ∈ I =⇒ (lq P i = 0 ) = (lq P ′ i = 0 )
proof −

fix i
assume i ∈ I
have (i∈ nz-support (lq P)) ←→ (i ∈ nz-support (lq P ′)) using assms by simp
thus (lq P i = 0 ) = (lq P ′ i = 0 ) using nz-support-def by fastforce

qed
qed

lemma fee-diff-simil-base-net:
assumes clmm-dsc P
and clmm-dsc P ′

and nz-support (lq P) 6= {}
and {idx-min (lq P) .. idx-max (lq P) + 1} ⊆ I
and fee-diff-on P P ′ I
and nz-support (lq P) = nz-support (lq P ′)
and grd P = grd P ′

and grd-min P ≤ sqp
and sqp ≤ grd-max P

shows base-net P sqp = base-net P ′ sqp
proof (rule fee-diff-same-base-net)

define j where j = lower-tick P sqp
define L where L = lq P
show j = lower-tick P sqp using j-def by simp
show 0 < sqp using grd-min-pos

using assms(1 ) assms(3 ) assms(8 ) liq-grd-min order-less-le-trans by blast
show L = lq P using L-def by simp
show same-nz-liq-on P P ′ {k. lower-tick P sqp ≤ k}

using assms same-nz-liq-on-if-simil by simp
show fee-diff-on P P ′ {k. lq P k 6= 0 ∧ lower-tick P sqp ≤ k}
proof (rule fee-diff-on-mono)

show fee-diff-on P P ′ I using assms by simp
show {k. lq P k 6= 0 ∧ lower-tick P sqp ≤ k} ⊆ I
proof

fix k
assume k ∈ {k. lq P k 6= 0 ∧ lower-tick P sqp ≤ k}
hence L k 6= 0 and lower-tick P sqp ≤ k using L-def by auto
hence idx-min L ≤ k using L-def

by (metis assms(1 ) idx-min-lt-liq linorder-le-cases
order-le-imp-less-or-eq)

moreover have k ≤ idx-max L
using L-def ‹L k 6= 0 › fin-nz-sup idx-max-finite-ge by auto

ultimately have k ∈ {idx-min (lq P) .. idx-max (lq P) + 1}
using L-def by auto

thus k∈ I using assms by auto
qed

qed
show lower-tick P sqp = lower-tick P ′ sqp

using assms(7 ) grd-lower-tick-cong by blast
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qed (simp add: assms)+

lemma fee-diff-le-price-cmp:
assumes clmm-dsc P
and clmm-dsc P ′

and nz-support (lq P) 6= {}
and {idx-min (lq P) .. idx-max (lq P) + 1} ⊆ I
and fee-diff-on P P ′ I
and nz-support (lq P) = nz-support (lq P ′)
and grd P = grd P ′

and
∧

i. i ∈ I =⇒ fee P i ≤ fee P ′ i
and 0 < y
and y + quote-gross P sqp ≤ quote-gross P (grd-max P)
and grd-min P ≤ sqp
and sqp1 = quote-reach P (y + quote-gross P sqp)
and sqp2 = quote-reach P ′ (y + quote-gross P ′ sqp)

shows sqp2 ≤ sqp1
proof (rule quote-reach-le-gross)

define L where L = gross-fct (lq P) (fee P)
define j where j = lower-tick P sqp
define k where k = lower-tick P sqp1
have sqp < sqp1

using quote-reach-gt
by (simp add: assms(1 ) assms(10 ) assms(12 ) assms(3 ) assms(9 ))

have 0 < sqp
using assms
by (metis liq-grd-min less-add-same-cancel1 less-eq-real-def

pos-add-strict)
show sqp2 = quote-reach P ′ (y + quote-gross P ′ sqp) using assms by simp
have y + quote-gross P sqp = quote-gross P sqp1

using assms(1 ,3 ,9 ,10 ,12 ) clmm-quote-gross-pos clmm-quote-gross-reach-eq
by auto

hence y = quote-gross P sqp1 − quote-gross P sqp by simp
also have ... ≤ quote-gross P ′ sqp1 − quote-gross P ′ sqp
proof (rule fee-diff-quote-diff-le)

show clmm-dsc P using assms by simp
show clmm-dsc P ′ using assms by simp
show L = gross-fct (lq P) (fee P) using L-def by simp
show j = lower-tick P sqp using j-def by simp
show k = lower-tick P sqp1 using k-def by simp
show fee-diff-on P P ′ I using assms by simp
show same-nz-liq-on P P ′ {m. j ≤ m ∧ m ≤ k + 1}

by (simp add: assms(6 ) assms(7 ) same-nz-liq-on-if-simil)
show lower-tick P sqp = lower-tick P ′ sqp

by (meson assms(7 ) grd-lower-tick-cong)
show lower-tick P sqp1 = lower-tick P ′ sqp1

by (meson assms(7 ) grd-lower-tick-cong)
show

∧
i. i ∈ I =⇒ fee P i ≤ fee P ′ i using assms by simp

show 0 < sqp using ‹0 < sqp› .
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show {m. L m 6= 0 ∧ j ≤ m ∧ m ≤ k} ⊆ I
proof
fix m
assume m ∈ {m. L m 6= 0 ∧ j ≤ m ∧ m ≤ k}
hence L m 6= 0 using L-def by auto
hence idx-min (lq P) ≤ m using L-def

by (meson assms(1 ) clmm-dsc-gross-liq-zero-iff
idx-min-lt-liq leI )

moreover have m ≤ idx-max (lq P)
using L-def ‹L m 6= 0 › fin-nz-sup idx-max-finite-ge assms(1 )

clmm-dsc-gross-liq-zero-iff
by blast

ultimately have m ∈ {idx-min (lq P) .. idx-max (lq P) + 1}
using L-def by auto

thus m∈ I using assms by auto
qed
show sqp ≤ sqp1 using ‹sqp < sqp1 › by simp

qed
finally have y ≤ quote-gross P ′ sqp1 − quote-gross P ′ sqp .
thus y + quote-gross P ′ sqp ≤ quote-gross P ′ sqp1 by simp
show 0 < sqp1 using ‹0 < sqp› ‹sqp < sqp1 › by simp
show nz-support (lq P ′) 6= {} using assms by simp
show 0 < y + quote-gross P ′ sqp

by (simp add: add-strict-increasing assms(2 ) assms(9 )
clmm-quote-gross-pos)

show clmm-dsc P ′ using assms by simp
have sqp1 ≤ grd-max P

using quote-reach-leq-grd-max assms(1 ,3 ,9 ,10 ,12 )
clmm-quote-gross-pos

by auto
also have ... ≤ grd-max P ′ using same-nz-liq-on-grd-max

by (meson assms(2 ) assms(3 ) assms(6 ) assms(7 ) clmm-dsc-grd-mono
clmm-dsc-liq(1 ) mono-onI same-nz-liq-on-if-simil)

finally show sqp1 ≤ grd-max P ′ .
qed

lemma fee-diff-le-imp-quote-swap:
assumes clmm-dsc P
and clmm-dsc P ′

and nz-support (lq P) 6= {}
and {idx-min (lq P) .. idx-max (lq P) + 1} ⊆ I
and fee-diff-on P P ′ I
and nz-support (lq P) = nz-support (lq P ′)
and grd P = grd P ′

and
∧

i. i ∈ I =⇒ fee P i ≤ fee P ′ i
and 0 < y
and y + quote-gross P sqp ≤ quote-gross P (grd-max P)
and grd-min P ≤ sqp

shows quote-swap P ′ sqp y ≤ quote-swap P sqp y
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proof −
have leq: quote-reach P ′ (y + quote-gross P sqp) ≤

quote-reach P (y + quote-gross P sqp)
proof (rule fee-diff-le-imp-quote-reach[OF assms(1−5 )])

show 0 < y + quote-gross P sqp
by (simp add: add-pos-nonneg assms(1 ) assms(9 ) clmm-quote-gross-pos)

show y + quote-gross P sqp ≤ quote-gross P (grd-max P) using assms by simp
show

∧
i. i ∈ I =⇒ fee P i ≤ fee P ′ i using assms by simp

show same-nz-liq-on P P ′ {i. i ≤ idx-max (lq P) + 1}
using assms same-nz-liq-on-if-simil assms by simp

qed
have leq ′: quote-reach P ′ (y + quote-gross P ′ sqp) ≤

quote-reach P (y + quote-gross P sqp)
proof (rule fee-diff-le-price-cmp[OF assms(1−5 )])

show 0 < y using assms(9 ) .
show

∧
i. i ∈ I =⇒ fee P i ≤ fee P ′ i using assms by simp

show nz-support (lq P) = nz-support (lq P ′) using assms by simp
show grd P = grd P ′ using assms by simp
show grd-min P ≤ sqp using assms by simp
show y + quote-gross P sqp ≤ quote-gross P (grd-max P) using assms(10 ) .

qed simp+
have base-net P ′ (quote-reach P (y + quote-gross P sqp)) ≤

base-net P ′ (quote-reach P ′ (y + quote-gross P ′ sqp))
by (rule clmm-base-net-antimono[THEN antimonoD], (simp add: assms leq ′)+)

hence quote-swap P ′ sqp y ≤ base-net P ′ sqp −
base-net P ′ (quote-reach P (y + quote-gross P sqp))

unfolding quote-swap-def by simp
also have ... = quote-swap P sqp y

using fee-diff-simil-base-net assms unfolding quote-swap-def
by (smt (verit, ccfv-SIG) clmm-quote-gross-pos quote-reach-gt

quote-reach-leq-grd-max)
finally show quote-swap P ′ sqp y ≤ quote-swap P sqp y .

qed

lemma fee-ge-quote-swap-le:
assumes clmm-dsc P
and clmm-dsc P ′

and nz-support (lq P) 6= {}
and grd P = grd P ′

and lq P = lq P ′

and
∧

i. fee P i ≤ fee P ′ i
and 0 ≤ y
and 0 < sqp
and y + quote-gross P sqp ≤ quote-gross P (grd-max P)

shows quote-swap P ′ sqp y ≤ quote-swap P sqp y
proof (cases y = 0 )

case True
then show ?thesis using quote-swap-zero ′

using assms(1−3 ,5 ,8 ) quote-gross-grd-max-max by auto
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next
case False
show ?thesis
proof (cases grd-min P ≤ sqp)

case True
show ?thesis
proof (rule fee-diff-le-imp-quote-swap)

show fee-diff-on P P ′ {idx-min (lq P ′)..idx-max (lq P ′) + 1}
by (simp add: assms(5 ) assms(4 ) fee-diff-onI id-grid-onI )

show nz-support (lq P) 6= {} using assms by simp
show grd-min P ≤ sqp using True .
show 0 < y using assms ‹¬ y = 0 › by simp

qed (simp add: assms)+
next

case False
hence sqp < grd-min P ′

using assms unfolding grd-min-def idx-min-img-def idx-min-def by simp
have grd-min P = grd-min P ′

using assms unfolding grd-min-def idx-min-img-def idx-min-def by simp
have quote-swap P ′ sqp y = quote-swap P ′ (grd-min P ′) y

using ‹sqp < grd-min P ′› assms(2 ,3 ,5 ,8 ) quote-swap-grd-min by auto
also have ... ≤ quote-swap P (grd-min P ′) y
proof (rule fee-diff-le-imp-quote-swap)

show nz-support (lq P) 6= {} using assms(3 ,5 ) by simp
show fee-diff-on P P ′ {idx-min (lq P ′)..idx-max (lq P ′) + 1}

by (simp add: assms(5 ) assms(4 ) fee-diff-onI id-grid-onI )
show y + quote-gross P (grd-min P ′) ≤ quote-gross P (grd-max P)

using False assms(1 ,5 ,4 ,9 ,8 ) clmm-quote-gross-grd-min-le grd-min-def
by auto

show grd-min P ≤ grd-min P ′ using ‹grd-min P = grd-min P ′› by simp
show 0 < y using assms ‹¬ y = 0 › by simp

qed (simp add: assms)+
also have ... = quote-swap P sqp y

using quote-swap-grd-min
by (simp add: ‹grd-min P = grd-min P ′› ‹sqp < grd-min P ′› assms(1 ,3 ,8 ))

finally show ?thesis .
qed

qed

end

end
theory CLMM-Transformation imports CLMM-Description

begin

172



6 CLMM transformations
6.1 CLMM pool refinement

Given a pool P and a (square root) price π, the refinement operation consists
in defining a new grid (if necessary) in such a way that π is one of the bounds
on the grid.
definition refine where
refine P sqp = (let i = lower-tick P sqp in
(if (grd P i = sqp) then P else
(wedge (grd P) i sqp, wedge (lq P) i (lq P i), wedge (fee P) i (fee P i))))

lemma refine-eq:
assumes i = lower-tick P sqp
and grd P i = sqp

shows refine P sqp = P using assms unfolding refine-def Let-def by simp

lemma refine-lq:
assumes i = lower-tick P sqp
and grd P i 6= sqp
and P ′ = refine P sqp

shows lq P ′ = wedge (lq P) i (lq P i)
using assms unfolding Let-def refine-def lq-def by simp

lemma refine-fee:
assumes i = lower-tick P sqp
and grd P i 6= sqp
and P ′ = refine P sqp

shows fee P ′ = wedge (fee P) i (fee P i)
using assms unfolding Let-def refine-def fee-def by simp

lemma refine-grd:
assumes i = lower-tick P sqp
and P ′ = refine P sqp
and grd P i 6= sqp

shows grd P ′ = wedge (grd P) i sqp
using assms unfolding refine-def grd-def Let-def by simp

lemma refine-grd-cong:
assumes P1 = refine P sqp
and P2 = refine P ′ sqp
and grd P = grd P ′

shows grd P1 = grd P2
proof (cases grd P (lower-tick P sqp) = sqp)

case True
hence grd P ′ (lower-tick P ′ sqp) = sqp

using assms unfolding lower-tick-def rng-blw-def by simp
then show ?thesis using assms True unfolding refine-def Let-def by simp

next

173



case False
define i where i = lower-tick P sqp
hence i = lower-tick P ′ sqp

using assms unfolding lower-tick-def rng-blw-def by simp
have grd P1 = wedge (grd P) i sqp

using False assms unfolding refine-def grd-def i-def Let-def by simp
also have ... = wedge (grd P ′) i sqp using assms by simp
also have ... = grd P2

using False assms ‹i = lower-tick P ′ sqp›
unfolding refine-def grd-def i-def Let-def by simp

finally show ?thesis .
qed

lemma refine-grd-arg-le:
assumes i = lower-tick P sqp
and P ′ = refine P sqp
and j ≤ i

shows grd P ′ j = grd P j
proof (cases grd P (lower-tick P sqp) = sqp)

case True
hence P ′ = P using assms refine-eq by simp
then show ?thesis by simp

next
case False
hence grd P ′ = wedge (grd P) i sqp using assms refine-grd by simp
then show ?thesis using assms by simp

qed

lemma refine-grd-arg-gt:
assumes i = lower-tick P sqp
and P ′ = refine P sqp
and grd P (lower-tick P sqp) 6= sqp
and i < j

shows grd P ′ (j+1 ) = grd P j
proof −

have grd P ′ = wedge (grd P) i sqp using assms refine-grd by simp
then show ?thesis using assms by simp

qed

lemma refine-grd-arg-Suc:
assumes i = lower-tick P sqp
and P ′ = refine P sqp
and grd P (lower-tick P sqp) 6= sqp

shows grd P ′ (i+1 ) = sqp
proof −

have grd P ′ = wedge (grd P) i sqp using assms refine-grd by simp
then show ?thesis using assms by simp

qed
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lemma refine-fee-arg-le:
assumes i = lower-tick P sqp
and P ′ = refine P sqp
and j ≤ i

shows fee P ′ j = fee P j
proof (cases grd P (lower-tick P sqp) = sqp)

case True
hence P ′ = P using assms refine-eq by simp
then show ?thesis by simp

next
case False
hence fee P ′ = wedge (fee P) i (fee P i) using assms refine-fee by simp
then show ?thesis using assms by simp

qed

lemma refine-fee-arg-gt:
assumes i = lower-tick P sqp
and P ′ = refine P sqp
and grd P (lower-tick P sqp) 6= sqp
and i < j

shows fee P ′ (j+1 ) = fee P j
proof −

have fee P ′ = wedge (fee P) i (fee P i) using assms refine-fee by simp
then show ?thesis using assms by simp

qed

lemma refine-fee-arg-Suc:
assumes i = lower-tick P sqp
and P ′ = refine P sqp
and grd P (lower-tick P sqp) 6= sqp

shows fee P ′ (i+1 ) = fee P i
proof −

have fee P ′ = wedge (fee P) i (fee P i) using assms refine-fee by simp
then show ?thesis using assms by simp

qed

lemma refine-lq-arg-le:
assumes i = lower-tick P sqp
and P ′ = refine P sqp
and grd P i 6= sqp
and j ≤ i

shows lq P ′ j = lq P j
proof −

have lq P ′ = wedge (lq P) i (lq P i)
using refine-lq assms by simp

thus ?thesis using assms by simp
qed

lemma refine-lq-arg-gt:
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assumes i = lower-tick P sqp
and P ′ = refine P sqp
and grd P i 6= sqp
and i < j

shows lq P ′ (j+1 ) = lq P j
proof −

have lq P ′ = wedge (lq P) i (lq P i)
using refine-lq assms by simp

thus ?thesis using assms by simp
qed

lemma refine-lq-arg-Suc:
assumes i = lower-tick P sqp
and P ′ = refine P sqp
and grd P i 6= sqp

shows lq P ′ (i+1 ) = lq P i
proof −

have lq P ′ = wedge (lq P) i (lq P i)
using refine-lq assms by simp

thus ?thesis using assms by simp
qed

lemma refine-on-grd:
assumes clmm-dsc P
and grd P i = sqp
shows refine P sqp = P

proof −
have i = lower-tick P sqp using assms lower-tick-eq by simp
thus ?thesis using assms unfolding refine-def Let-def by simp

qed

lemma refine-encomp-at-grd:
assumes clmm-dsc P
and P ′ = refine P sqp
and grd P (lower-tick P sqp) = sqp

shows encomp-at (grd P ′) (grd P) j j
proof −

have P ′ = P using refine-on-grd assms by simp
have encomp-at (grd P ′) (grd P) j j
proof

show grd P j ≤ grd P ′ j using ‹P ′ = P› by simp
show grd P ′ (j + 1 ) ≤ grd P (j + 1 ) using ‹P ′ = P› by simp

qed
thus ?thesis by auto

qed

lemma refine-encomp-at-arg-le:
assumes clmm-dsc P
and P ′ = refine P sqp
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and i = lower-tick P sqp
and grd P i 6= sqp
and j ≤ i

shows encomp-at (grd P ′) (grd P) j j
proof −

have grd: grd P ′ = wedge (grd P) i sqp
using assms unfolding Let-def refine-def grd-def by simp

hence grd P ′ j = grd P j using ‹j ≤ i› by (simp add: grd)
moreover have grd P ′ (j+1 ) ≤ grd P (j+1 )
proof (cases j = i)

case True
hence grd P ′ (j+1 ) = sqp using grd by simp
also have ... < grd P (j+1 ) using ‹j = i› assms

by (meson lower-tick-ubound)
finally show grd P ′ (j+1 ) ≤ grd P (j+1 ) by simp

next
case False
hence grd P ′ (j+1 ) ≤ grd P (j+1 ) using ‹j ≤ i› grd by auto
then show ?thesis by simp

qed
ultimately show ?thesis using encomp-atI [of grd P j grd P ′ j] by simp

qed

lemma refine-encomp-at-arg-ge-Suc:
assumes clmm-dsc P
and P ′ = refine P sqp
and i = lower-tick P sqp
and grd P i 6= sqp
and i+1 ≤ j
and 0 < sqp

shows encomp-at (grd P ′) (grd P) j (j−1 )
proof −

have grd: grd P ′ = wedge (grd P) i sqp
using assms unfolding Let-def refine-def grd-def by simp

show ?thesis
proof (cases i+1 = j)

case True
hence grd P i ≤ grd P ′ j

using lower-tick-lbound assms grd
by (metis wedge-arg-eq)

moreover have grd P ′ (j+1 ) ≤ grd P (i+1 )
using True wedge-arg-gt[of i j+1 grd P sqp] grd
by (simp add: add.commute)

ultimately show ?thesis using encomp-atI True by auto
next

case False
hence grd P (j − 1 ) ≤ grd P ′ j using assms grd by fastforce
moreover have grd P ′ (j+1 ) ≤ grd P j using grd False assms by simp
ultimately show ?thesis using encomp-atI [of grd P j−1 ] by simp
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qed
qed

lemma refine-finer-range:
assumes clmm-dsc P
and 0 < sqp
and P ′ = refine P sqp

shows finer-range (grd P ′) (grd P)
proof −

define i where i = lower-tick P sqp
show ?thesis
proof (cases grd P i = sqp)

case True
then show ?thesis

using assms refine-encomp-at-grd i-def unfolding finer-range-def by metis
next

case False
show ?thesis unfolding finer-range-def
proof

fix j
show ∃ k. encomp-at (grd P ′) (grd P) j k
proof (cases j ≤ i)

case True
then show ?thesis

using refine-encomp-at-arg-le[of P P ′] assms i-def False by auto
next

case False
show ?thesis
proof (cases j = i+1 )

case True
then show ?thesis

using refine-encomp-at-arg-ge-Suc assms i-def
by (meson dual-order .refl refine-encomp-at-grd)

next
case False
hence i+1 < j using ‹¬ j ≤ i› by simp
then show ?thesis

using refine-encomp-at-arg-ge-Suc False assms i-def
by (meson refine-encomp-at-grd zle-add1-eq-le zless-add1-eq)

qed
qed

qed
qed

qed

lemma refine-finite-liq:
assumes finite-liq P
and P ′ = refine P sqp

shows finite-liq P ′
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proof (cases grd P (lower-tick P sqp) = sqp)
case True
then show ?thesis

using assms clmm-dsc-liq unfolding refine-def Let-def by simp
next

case False
define j where j = lower-tick P sqp
have grd: grd P ′ = wedge (grd P) j sqp using j-def assms False

unfolding refine-def Let-def grd-def by simp
have lq: lq P ′ = wedge (lq P) j (lq P j) using j-def assms False

unfolding refine-def Let-def lq-def by simp
show ?thesis

using grd wedge-finite-nz-support assms clmm-dsc-liq(1 )
unfolding finite-liq-def by (metis lq)

qed

lemma refine-clmm:
assumes clmm-dsc P
and 0 < sqp
and P ′ = refine P sqp

shows clmm-dsc P ′

proof (cases grd P (lower-tick P sqp) = sqp)
case True
then show ?thesis using assms unfolding refine-def Let-def by simp

next
case False
define j where j = lower-tick P sqp
hence grd P j ≤ sqp

by (simp add: assms lower-tick-lbound)
hence grd P j < sqp using False j-def by simp
have sqp < grd P (j+1 ) using j-def assms lower-tick-ubound by simp
have grd: grd P ′ = wedge (grd P) j sqp using j-def assms False

unfolding refine-def Let-def grd-def by simp
have lq: lq P ′ = wedge (lq P) j (lq P j) using j-def assms False

unfolding refine-def Let-def lq-def by simp
have fee: fee P ′ = wedge (fee P) j (fee P j) using j-def assms False

unfolding refine-def Let-def fee-def by simp
show ?thesis
proof

show span-grid P ′

proof
show strict-mono (grd P ′)
proof (rule wedge-strict-mono)

show grd P ′ = wedge (grd P) j sqp using grd .
show grd P j < sqp using ‹grd P j < sqp› .
show sqp < grd P (j+1 ) using ‹sqp < grd P (j+1 )› .
show strict-mono (grd P) using assms by simp

qed
show ∀ i. 0 < grd P ′ i
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using grd assms wedge-gt by (metis clmm-dsc-grid(2 ))
show ∀ r>0 . ∃ i. grd P ′ i < r

using grd wedge-as-lbound by (simp add: assms(1 ))
show ∀ r . ∃ i. r < grd P ′ i

using grd wedge-as-ubound by (simp add: assms(1 ))
qed
show ∀ i. 0 ≤ fee P ′ i using wedge-ge fee assms

by (metis clmm-dsc-fees)
show ∀ i. fee P ′ i < 1 using wedge-lt fee assms

by (metis clmm-dsc-fees)
show ∀ i. 0 ≤ lq P ′ i using wedge-ge lq assms

by (metis clmm-dsc-liq(2 ))
show finite-liq P ′

using refine-finite-liq assms clmm-dsc-liq by simp
qed

qed

lemma refine-lower-tick-idx:
assumes clmm-dsc P
and 0 < sqp
and i = lower-tick P sqp
and P ′ = refine P sqp
and grd P (lower-tick P sqp) 6= sqp

shows lower-tick P ′ sqp = i+1
proof −

have clmm-dsc P ′ using refine-clmm assms by simp
moreover have grd P ′ (i+1 ) = sqp

using refine-grd-arg-Suc assms by simp
ultimately show ?thesis using ‹clmm-dsc P ′› lower-tick-eq by simp

qed

lemma refine-ge-lower-tick-eq:
assumes clmm-dsc P
and 0 < sqp
and i = lower-tick P sqp ′

and P ′ = refine P sqp
and grd P (lower-tick P sqp) 6= sqp
and sqp ≤ sqp ′

and lower-tick P sqp = lower-tick P sqp ′

shows lower-tick P ′ sqp ′ = i+1
proof (rule lower-tick-charact)

show clmm-dsc P ′ using assms refine-clmm by simp
show grd P ′ (i + 1 ) ≤ sqp ′ by (metis assms(3−7 ) refine-grd-arg-Suc)
have sqp ′ < grd P (i+1 )

by (simp add: assms(1 ) assms(3 ) lower-tick-ubound)
also have ... = grd P ′ (i + 1 + 1 )

by (metis assms(3−5 ,7 )less-add-one refine-grd-arg-gt)
finally show sqp ′ < grd P ′ (i + 1 + 1 ) .

qed
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lemma refine-ge-lower-tick-gt:
assumes clmm-dsc P
and 0 < sqp
and sqp ≤ sqp ′

and i = lower-tick P sqp ′

and P ′ = refine P sqp
and grd P (lower-tick P sqp) 6= sqp
and lower-tick P sqp < lower-tick P sqp ′

shows lower-tick P ′ sqp ′ = i+1
proof (rule lower-tick-charact)

show clmm-dsc P ′ using assms refine-clmm by simp
define j where j = lower-tick P sqp
have sqp < sqp ′ using assms lower-tick-lt by simp
have grd P ′ = wedge (grd P) j sqp using assms j-def refine-grd by simp
hence grd P ′ (i+1 ) = grd P i using assms(4 ,7 ) j-def by force
also have ... ≤ sqp ′ using assms lower-tick-geq by simp
finally show grd P ′ (i+1 ) ≤ sqp ′ .
have sqp ′ < grd P (i+1 )

by (simp add: assms(1 ) assms(4 ) lower-tick-ubound)
also have ... = grd P ′ (i+1 + 1 )

by (metis assms(4−7 ) dual-order .strict-trans less-add-one refine-grd-arg-gt)
finally show sqp ′ < grd P ′ (i + 1 + 1 ) .

qed

lemma refine-ge-lower-tick:
assumes clmm-dsc P
and 0 < sqp
and sqp ≤ sqp ′

and i = lower-tick P sqp ′

and P ′ = refine P sqp
and grd P (lower-tick P sqp) 6= sqp

shows lower-tick P ′ sqp ′ = i+1
proof (cases lower-tick P sqp = lower-tick P sqp ′)

case True
then show ?thesis using assms refine-ge-lower-tick-eq by simp

next
case False
then show ?thesis using assms refine-ge-lower-tick-gt

by (smt (verit) lower-tick-mono)
qed

lemma refine-lower-tick:
assumes clmm-dsc P
and P ′ = refine P sqp
and 0 < sqp
shows grd P ′ (lower-tick P ′ sqp) = sqp

proof (cases grd P (lower-tick P sqp) = sqp)
case True
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then show ?thesis using refine-eq assms by simp
next

case False
define i where i = lower-tick P sqp
have grd P ′ = wedge (grd P) i sqp

using assms False refine-grd i-def by simp
hence grd P ′ (i+1 ) = sqp using wedge-arg-eq assms by simp
moreover have clmm-dsc P ′ using assms refine-clmm by simp
ultimately show ?thesis by (simp add: lower-tick-eq)

qed

lemma refine-finer-ranges:
assumes clmm-dsc P
and 0 < sqp
and P ′ = refine P sqp
shows finer-ranges (grd P ′) (grd P)

proof (rule finer-ranges.intro)
show strict-mono (grd P ′)

using refine-clmm clmm-dsc-grid assms by metis
show mono (grd P) using assms clmm-dsc-grid

by (simp add: strict-mono-mono)
show finer-range (grd P ′) (grd P) using assms refine-finer-range

by (metis)
qed

lemma refine-coarse-idx-grd:
assumes clmm-dsc P
and P ′ = refine P sqp
and grd P (lower-tick P sqp) = sqp

shows coarse-idx (grd P ′) (grd P) j = j
proof −

interpret finer-ranges grd P ′ grd P
using refine-finer-ranges[of P sqp P ′] assms
by (metis clmm-dsc-grid(2 ))

show ?thesis using coarse-idx-eq refine-encomp-at-grd assms
by (metis clmm-dsc-grd-Suc inf .cobounded1 inf .strict-order-iff

refine-on-grd)
qed

lemma refine-coarse-idx-arg-le:
assumes clmm-dsc P
and P ′ = refine P sqp
and i = lower-tick P sqp
and grd P i 6= sqp
and j ≤ i
and 0 < sqp

shows coarse-idx (grd P ′) (grd P) j = j
proof −

interpret finer-ranges grd P ′ grd P
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using refine-finer-ranges[of P sqp P ′] assms by metis
show ?thesis using coarse-idx-eq refine-encomp-at-arg-le assms

by (metis coarse-idx-bounds encomp-idx-unique)
qed

lemma refine-coarse-idx-arg-gt:
assumes clmm-dsc P
and 0 < sqp
and P ′ = refine P sqp
and i = lower-tick P sqp
and grd P i 6= sqp
and i+1 ≤ j

shows coarse-idx (grd P ′) (grd P) j = j−1
proof −

interpret finer-ranges grd P ′ grd P
using refine-finer-ranges[of P sqp P ′] assms by metis

show ?thesis
using coarse-idx-eq coarse-idx-bounds refine-encomp-at-arg-ge-Suc
by (metis assms encomp-idx-unique)

qed

lemma refine-lq-idx-neq:
assumes clmm-dsc P
and 0 < sqp
and P ′ = refine P sqp
and grd P (lower-tick P sqp) 6= sqp
shows lq P ′ j = lq P (pool-coarse-idx P ′ P j)

proof −
define i where i = lower-tick P sqp
fix j
{

assume j ≤ i
hence pool-coarse-idx P ′ P j = j

using refine-coarse-idx-arg-le assms i-def
unfolding pool-coarse-idx-def by simp

moreover have lq P ′ j = lq P j
using ‹j ≤ i› refine-lq assms i-def by simp

ultimately have pool-coarse-idx P ′ P j = j lq P ′ j = lq P j
by auto

} note a = this
{

assume i+1 ≤ j
hence pool-coarse-idx P ′ P j = j−1

using refine-coarse-idx-arg-gt assms i-def
unfolding pool-coarse-idx-def by simp

moreover have lq P ′ j = lq P (j−1 )
proof (cases i+1 = j)

case True
then show ?thesis using refine-lq assms wedge-arg-eq unfolding i-def
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by auto
next

case False
hence i+1 < j using ‹i+1 ≤ j› by simp
then show ?thesis using refine-lq assms wedge-arg-gt unfolding i-def

by simp
qed
ultimately have pool-coarse-idx P ′ P j = j−1 lq P ′ j = lq P (j−1 )

by auto
} note b = this
show lq P ′ j = lq P (pool-coarse-idx P ′ P j) using a b by fastforce

qed

lemma refine-fee-idx-neq:
assumes clmm-dsc P
and 0 < sqp
and P ′ = refine P sqp
and grd P (lower-tick P sqp) 6= sqp
shows fee P ′ j = fee P (pool-coarse-idx P ′ P j)

proof −
define i where i = lower-tick P sqp
fix j
{

assume j ≤ i
hence pool-coarse-idx P ′ P j = j

using refine-coarse-idx-arg-le assms i-def
unfolding pool-coarse-idx-def by simp

moreover have fee P ′ j = fee P j
using ‹j ≤ i› refine-fee assms i-def by simp

ultimately have pool-coarse-idx P ′ P j = j fee P ′ j = fee P j by auto
} note a = this
{

assume i+1 ≤ j
hence pool-coarse-idx P ′ P j = j−1

using refine-coarse-idx-arg-gt assms i-def
unfolding pool-coarse-idx-def by simp

moreover have fee P ′ j = fee P (j−1 )
proof (cases i+1 = j)

case True
then show ?thesis using refine-fee assms wedge-arg-eq unfolding i-def

by auto
next

case False
hence i+1 < j using ‹i+1 ≤ j› by simp
then show ?thesis using refine-fee assms wedge-arg-gt unfolding i-def

by simp
qed
ultimately have pool-coarse-idx P ′ P j = j−1 fee P ′ j = fee P (j−1 )

by auto
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} note b = this
show fee P ′ j = fee P (pool-coarse-idx P ′ P j) using a b by fastforce

qed

lemma refine-cst-fees:
assumes

∧
i. fee P i = phi

and P ′ = refine P sqp
shows

∧
i. fee P ′ i = phi

by (smt (verit, ccfv-SIG) assms refine-eq refine-fee refine-fee-arg-Suc
wedge-arg-gt wedge-arg-lt)

lemma refine-finer-neq:
assumes clmm-dsc P
and 0 < sqp
and P ′ = refine P sqp
and grd P (lower-tick P sqp) 6= sqp
shows finer-pool P ′ P

proof (intro finer-poolI conjI allI )
define i where i = lower-tick P sqp
show finer-range (grd P ′) (grd P) using refine-finer-range assms by simp
show

∧
j. lq P ′ j = lq P (pool-coarse-idx P ′ P j)

using refine-lq-idx-neq assms by simp
show

∧
j. fee P ′ j = fee P (pool-coarse-idx P ′ P j)

using refine-fee-idx-neq assms by simp
qed

lemma refine-finer :
assumes clmm-dsc P
and 0 < sqp
and P ′ = refine P sqp

shows finer-pool P ′ P
proof (cases grd P (lower-tick P sqp) = sqp)

case True
hence P ′ = P using assms refine-on-grd by simp
then show ?thesis using finer-pool-refl assms by simp

next
case False
then show ?thesis using assms refine-finer-neq by simp

qed

lemma refine-nz-lq-sub:
assumes clmm-dsc P
and 0 < sqp
and P ′ = refine P sqp

shows (λj. pool-coarse-idx P ′ P j) ‘ nz-support (lq P ′) ⊆
nz-support (lq P)

proof (cases grd P (lower-tick P sqp) = sqp)
case True
then show ?thesis using refine-eq assms coarse-idx-refl
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by (simp add: pool-coarse-idx-def )
next

case False
show ?thesis
proof

fix l
assume l∈ (λj. pool-coarse-idx P ′ P j) ‘ nz-support (lq P ′)
hence ∃ k ∈ nz-support (lq P ′). l = pool-coarse-idx P ′ P k by auto
from this obtain k where k ∈ nz-support (lq P ′)

and l = pool-coarse-idx P ′ P k by auto
hence lq P ′ k 6= 0 unfolding nz-support-def by simp
hence lq P l 6= 0

using assms ‹l = pool-coarse-idx P ′ P k› refine-lq-idx-neq False by simp
thus l ∈ nz-support (lq P) unfolding nz-support-def by simp

qed
qed

lemma refine-nz-lq-ne:
assumes clmm-dsc P
and P ′ = refine P sqp
and nz-support (lq P) 6= {}

shows nz-support (lq P ′) 6= {}
proof (cases grd P (lower-tick P sqp) = sqp)

case True
then show ?thesis using refine-eq assms by simp

next
case False
have ∃ j. j∈ (nz-support (lq P)) using assms by auto
from this obtain j where j ∈ nz-support (lq P) by auto
hence lq P j 6= 0 unfolding nz-support-def by simp
hence j∈ nz-support (lq P ′) ∨ j+1 ∈ nz-support (lq P ′)

unfolding nz-support-def
by (smt (verit) False assms(2 ) mem-Collect-eq refine-lq refine-lq-arg-gt

wedge-arg-lt)
thus nz-support (lq P ′) 6= {} by auto

qed

lemma refine-nz-lq-emp:
assumes clmm-dsc P
and P ′ = refine P sqp
and nz-support (lq P) = {}

shows nz-support (lq P ′) = {}
proof (cases grd P (lower-tick P sqp) = sqp)

case True
then show ?thesis using refine-eq assms by simp

next
case False
{

fix j
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have lq P j = 0 lq P (j−1 ) = 0
using assms unfolding nz-support-def by simp+

hence lq P ′ j = 0 using assms refine-lq-arg-le refine-lq-arg-gt
by (smt (verit, del-insts) False refine-lq wedge-arg-eq wedge-arg-gt)

}
thus ?thesis unfolding nz-support-def by simp

qed

lemma refine-idx-min-eq:
assumes clmm-dsc P
and P ′ = refine P sqp
and idx-min (lq P) ≤ lower-tick P sqp

shows idx-min (lq P ′) = idx-min (lq P)
proof −

interpret finite-liq-pool
by (simp add: assms(1 ) clmm-dsc-liq(1 ) finite-liq-pool.intro)

show ?thesis
proof (cases nz-support (lq P) = {})

case True
hence nz-support (lq P ′) = {} using assms refine-nz-lq-emp by simp
then show ?thesis by (simp add: True idx-min-def )

next
case False
show ?thesis
proof (rule idx-min-finiteI [symmetric])

define i where i = idx-min (lq P)
hence lq P i 6= 0 using False by (simp add: idx-min-mem nz-supportD)
thus lq P ′ i 6= 0 using refine-lq-arg-le assms

by (metis i-def refine-eq)
show finite (nz-support (lq P ′))

using assms refine-finite-liq clmm-dsc-liq unfolding finite-liq-def
by simp

fix j
assume j < i
hence lq P j = 0 using i-def

by (simp add: False fin-nz-sup idx-min-finite-lt)
thus lq P ′ j = 0 using refine-lq-arg-le assms

by (metis ‹j < i› dual-order .strict-trans1 i-def leD nle-le refine-on-grd)
qed

qed
qed

lemma refine-idx-min-Suc-eq:
assumes clmm-dsc P
and P ′ = refine P sqp
and nz-support (lq P) 6= {}
and grd P (lower-tick P sqp) 6= sqp
and lower-tick P sqp < idx-min (lq P)

shows idx-min (lq P ′) = idx-min (lq P) + 1
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proof −
interpret finite-liq-pool

by (simp add: assms(1 ) clmm-dsc-liq(1 ) finite-liq-pool.intro)
show ?thesis
proof (rule idx-min-finiteI [symmetric])

show finite (nz-support (lq P ′))
using assms refine-finite-liq clmm-dsc-liq unfolding finite-liq-def
by simp

define i where i = idx-min (lq P)
hence lq P i 6= 0 using assms by (simp add: idx-min-mem nz-supportD)
thus lq P ′ (i+1 ) 6= 0 using refine-lq-arg-gt assms i-def by simp
fix j
assume j < i + 1
hence lq P (j−1 ) = 0 using i-def

by (simp add: assms fin-nz-sup idx-min-finite-lt)
show lq P ′ j = 0
proof (cases j ≤ lower-tick P sqp)

case True
hence lq P j = 0 using assms

by (simp add: fin-nz-sup idx-min-finite-lt)
thus lq P ′ j = 0 using refine-lq-arg-le assms i-def True by simp

next
case False
show ?thesis
proof (cases j = lower-tick P sqp + 1 )

case True
then show ?thesis

using refine-lq-arg-Suc assms i-def ‹lq P (j − 1 ) = 0 › by simp
next

case False
hence lower-tick P sqp < j − 1 using ‹¬ j ≤ lower-tick P sqp› by simp
thus ?thesis

using ‹lq P (j−1 ) = 0 › refine-lq-arg-gt assms i-def by fastforce
qed

qed
qed

qed

lemma refine-grd-min:
assumes clmm-dsc P
and P ′ = refine P sqp
and nz-support (lq P) 6= {}

shows grd-min P = grd-min P ′

proof (cases grd P (lower-tick P sqp) = sqp)
case True
hence P = P ′ using assms refine-eq by simp
then show ?thesis by simp

next
case False
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define i where i = idx-min (lq P)
define k where k = lower-tick P sqp
show ?thesis
proof (cases i ≤ k)

case True
hence idx-min (lq P ′) = i

using i-def refine-idx-min-eq k-def assms by simp
moreover have grd P ′ i = grd P i

using refine-grd-arg-le assms k-def True by simp
ultimately show ?thesis unfolding grd-min-def idx-min-img-def i-def by simp

next
case False
hence idx-min (lq P ′) = i+1

using assms ‹grd P (lower-tick P sqp) 6= sqp› refine-idx-min-Suc-eq
k-def i-def

by simp
moreover have grd P ′ (i+1 ) = grd P i

using refine-grd-arg-gt[of lower-tick P sqp P sqp P ′ i] ‹¬ i ≤ k›
assms calculation i-def k-def refine-eq

by fastforce
ultimately show ?thesis unfolding grd-min-def idx-min-img-def i-def by simp

qed
qed

lemma refine-idx-max-eq:
assumes clmm-dsc P
and P ′ = refine P sqp
and idx-max (lq P) < lower-tick P sqp

shows idx-max (lq P ′) = idx-max (lq P)
proof −

interpret finite-liq-pool
by (simp add: assms(1 ) clmm-dsc-liq(1 ) finite-liq-pool.intro)

show ?thesis
proof (cases grd P (lower-tick P sqp) = sqp)

case True
hence P ′ = P using refine-eq assms by simp
then show ?thesis by simp

next
case False
show ?thesis
proof (cases nz-support (lq P) = {})

case True
hence nz-support (lq P ′) = {} using assms refine-nz-lq-emp by simp
then show ?thesis by (simp add: True idx-max-def )

next
case False
show ?thesis
proof (rule idx-max-finiteI [symmetric])

define i where i = idx-max (lq P)

189



hence lq P i 6= 0 using False by (simp add: idx-max-mem nz-supportD)
thus lq P ′ i 6= 0 using refine-lq-arg-le assms

by (metis i-def refine-on-grd zle-add1-eq-le zless-add1-eq)
show finite (nz-support (lq P ′))

using assms refine-finite-liq clmm-dsc-liq unfolding finite-liq-def
by simp

fix j
assume i < j
hence lq P j = 0 using i-def False fin-nz-sup idx-max-finite-gt by auto
show lq P ′ j = 0
proof (cases j ≤ lower-tick P sqp)

case True
then show ?thesis

by (metis ‹lq P j = 0 › assms(2 ) refine-eq refine-lq-arg-le)
next

case False
show ?thesis
proof (cases j = lower-tick P sqp + 1 )

case True
hence lq P ′ j = lq P (lower-tick P sqp)

using assms refine-lq-arg-Suc
by (metis ‹lq P j = 0 › fin-nz-sup idx-max-finite-gt refine-eq)

also have ... = 0
using assms idx-max-finite-gt by (metis fin-nz-sup)

finally show ?thesis .
next

case False
hence i < j−1 using i-def assms ‹¬ j ≤ lower-tick P sqp› by simp
have lq P ′ j = lq P (j−1 )

using refine-lq-arg-gt[of - P sqp P ′ j−1 ] False
‹¬ j ≤ lower-tick P sqp› ‹grd P (lower-tick P sqp) 6= sqp› assms

by simp
also have ... = 0

using ‹i < j−1 › i-def False fin-nz-sup idx-max-finite-gt by metis
finally show ?thesis .

qed
qed

qed
qed

qed
qed

lemma refine-idx-max-Suc-eq:
assumes clmm-dsc P
and P ′ = refine P sqp
and nz-support (lq P) 6= {}
and grd P (lower-tick P sqp) 6= sqp
and lower-tick P sqp ≤ idx-max (lq P)

shows idx-max (lq P ′) = idx-max (lq P) + 1
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proof −
interpret finite-liq-pool

by (simp add: assms(1 ) clmm-dsc-liq(1 ) finite-liq-pool.intro)
show ?thesis
proof (rule idx-max-finiteI [symmetric])

show finite (nz-support (lq P ′))
using assms refine-finite-liq clmm-dsc-liq unfolding finite-liq-def
by simp

define i where i = idx-max (lq P)
hence lq P i 6= 0 using assms by (simp add: idx-max-mem nz-supportD)
show lq P ′ (i+1 ) 6= 0
proof (cases i = lower-tick P sqp)

case True
then show ?thesis

using refine-lq-arg-Suc assms ‹lq P i 6= 0 › unfolding i-def by simp
next

case False
then show ?thesis using refine-lq-arg-gt assms ‹lq P i 6= 0 › i-def by simp

qed
fix j
assume i + 1 < j
hence lq P ′ j = lq P (j−1 )

using refine-lq-arg-gt[of - P - P ′ j−1 ] assms i-def ‹i + 1 < j›
fin-nz-sup i-def

by force
also have ... = 0 using i-def ‹i + 1 < j›

by (simp add: assms fin-nz-sup idx-max-finite-gt)
finally show lq P ′ j = 0 .

qed
qed

lemma refine-lower-tick-idx-max:
assumes clmm-dsc P
and 0 < sqp
and P ′ = refine P sqp
and nz-support (lq P) 6= {}
and lower-tick P sqp ≤ idx-max (lq P)

shows lower-tick P ′ sqp ≤ idx-max (lq P ′)
proof (cases grd P (lower-tick P sqp) = sqp)

case True
then show ?thesis using assms refine-eq by simp

next
case False
hence idx-max (lq P ′) = idx-max (lq P) + 1

using assms refine-idx-max-Suc-eq by simp
moreover have lower-tick P ′ sqp = lower-tick P sqp + 1

using False refine-lower-tick-idx
by (simp add: assms(1−3 ))

ultimately show ?thesis using assms by simp
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qed

lemma refine-grd-max:
assumes clmm-dsc P
and P ′ = refine P sqp
and nz-support (lq P) 6= {}

shows grd-max P = grd-max P ′

proof (cases grd P (lower-tick P sqp) = sqp)
case True
hence P = P ′ using assms refine-eq by simp
then show ?thesis by simp

next
case False
define i where i = idx-max (lq P)
define k where k = lower-tick P sqp
show ?thesis
proof (cases i < k)

case True
hence idx-max (lq P ′) = i

using i-def refine-idx-max-eq k-def assms by simp
moreover have grd P ′ (i+1 ) = grd P (i+1 )

using refine-grd-arg-le assms k-def True by simp
ultimately show ?thesis

unfolding grd-max-def idx-max-img-def i-def by simp
next

case False
hence idx-max (lq P ′) = i+1

using assms ‹grd P (lower-tick P sqp) 6= sqp› refine-idx-max-Suc-eq
k-def i-def

by simp
moreover have grd P ′ (i+2 ) = grd P (i+1 )

using refine-grd-arg-gt[of lower-tick P sqp P sqp P ′ i+1 ] ‹¬ i < k›
assms calculation i-def k-def refine-eq

by (metis is-num-normalize(1 ) one-add-one verit-comp-simplify1 (3 )
zle-add1-eq-le)

ultimately show ?thesis unfolding grd-max-def idx-max-img-def i-def
by (simp add: add.commute)

qed
qed

lemma refine-quote-gross:
assumes clmm-dsc P
and P ′ = refine P sqp
and 0 < sqp

shows quote-gross P ′ = quote-gross P
proof (rule finer-clmm.finer-quote-gross-eq)

show finer-clmm P ′ P
proof

show clmm-dsc P using assms by simp
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show clmm-dsc P ′ using assms refine-clmm by simp
show finer-pool P ′ P using assms refine-finer by simp

qed
qed

lemma refine-nonzero-liq:
assumes clmm-dsc P
and lower-tick P sqp ≤ i
and grd P (lower-tick P sqp) 6= sqp
and P ′ = refine P sqp
and L = lq P
and L ′ = lq P ′

shows {l. L ′ l 6= 0 ∧ i+1 < l} = (λi. i + 1 ) ‘ {k. L k 6= 0 ∧ i < k}
proof

show {l. L ′ l 6= 0 ∧ i+1 < l} ⊆ (λi. i + 1 ) ‘ {k. L k 6= 0 ∧ i < k}
proof

fix x
assume x ∈ {l. L ′ l 6= 0 ∧ i+1 < l}
hence L ′ x 6= 0 and i+1 < x by simp+
hence L ′ x = L (x−1 ) using assms(2−6 ) refine-lq by auto
moreover have i < x−1 using ‹i+1 < x› by simp
ultimately have x−1 ∈ {k. L k 6= 0 ∧ i < k} using ‹L ′ x 6= 0 › by auto
thus x ∈ (λi. i + 1 ) ‘ {k. L k 6= 0 ∧ i < k}

by (simp add: rev-image-eqI )
qed

next
show (λi. i + 1 ) ‘ {k. L k 6= 0 ∧ i < k} ⊆ {l. L ′ l 6= 0 ∧ i + 1 < l}
proof

fix x
assume x ∈ (λi. i + 1 ) ‘ {k. L k 6= 0 ∧ i < k}
hence ∃ y. y ∈ {k. L k 6= 0 ∧ i < k} ∧ x = y+1 by auto
from this obtain y where y ∈ {k. L k 6= 0 ∧ i < k} and x = y+1 by auto
hence L y 6= 0 and i < y by simp+
hence L ′ x 6= 0 using ‹x = y + 1 › assms(2−6 ) refine-lq-arg-gt by auto
moreover have i+1 < x using ‹x = y+1 › ‹i < y› by simp
ultimately show x∈ {l. L ′ l 6= 0 ∧ i + 1 < l} by auto

qed
qed

lemma refine-pool-base-net-grd-eq:
assumes clmm-dsc P
and nz-support (lq P) 6= {}
and P ′ = refine P sqp
and 0 < sqp
and sqp < grd-max P
and grd P (lower-tick P sqp) 6= sqp
and sqp ≤ sqp ′

shows base-net P ′ sqp ′ = base-net P sqp ′

proof −
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have clmm-dsc P ′ using assms refine-clmm by simp
define L where L = lq P
define L ′ where L ′ = lq P ′

define j where j = lower-tick P ′ sqp ′

define i where i = lower-tick P sqp ′

have lower-tick P sqp ≤ i using assms(1 ,4 ,7 ) i-def lower-tick-mono by auto
have j = i + 1 using refine-ge-lower-tick assms j-def i-def by simp
have base-net P ′ sqp ′ = L ′ j ∗ (inverse sqp ′ − inverse (grd P ′ (j + 1 ))) +

(
∑

l | L ′ l 6= 0 ∧ j < l.
L ′ l ∗ (inverse (grd P ′ l) − inverse (grd P ′ (l + 1 ))))

using base-net-sum j-def L ′-def assms ‹clmm-dsc P ′› by auto
also have ... = L i ∗ (inverse sqp ′ − inverse (grd P (i + 1 ))) +

(
∑

l | L ′ l 6= 0 ∧ j < l.
L ′ l ∗ (inverse (grd P ′ l) − inverse (grd P ′ (l + 1 ))))

proof −
have grd P ′ (j+1 ) = grd P (i+1 )

using refine-grd-arg-gt ‹j = i + 1 › assms(1 ,3 ,4 ,6 ,7 ) i-def lower-tick-mono
zle-add1-eq-le

by presburger
moreover have L i = L ′ j using refine-lq-arg-Suc ‹j = i + 1 ›
by (metis L ′-def L-def assms(1 ,3 ,4 ,6 ,7 ) i-def lower-tick-mono refine-lq-arg-gt

zle-add1-eq-le zless-add1-eq)
ultimately show ?thesis by simp

qed
also have ... = L i ∗ (inverse sqp ′ − inverse (grd P (i + 1 ))) +

(
∑

k | L k 6= 0 ∧ i < k.
L k ∗ (inverse (grd P k) − inverse (grd P (k + 1 ))))

proof −
have (

∑
l | L ′ l 6= 0 ∧ j < l.

L ′ l ∗ (inverse (grd P ′ l) − inverse (grd P ′ (l + 1 )))) =
(
∑

k | L k 6= 0 ∧ i < k.
L k ∗ (inverse (grd P k) − inverse (grd P (k + 1 ))))

proof (rule sum.reindex-cong)
define sc where sc = (λ(i::int). i + 1 )
show inj-on sc {k. L k 6= 0 ∧ i < k} using sc-def by simp
have {l. L ′ l 6= 0 ∧ i+1 < l} = (λi. i + 1 ) ‘ {k. L k 6= 0 ∧ i < k}
proof (rule refine-nonzero-liq)

show lower-tick P sqp ≤ i
using i-def assms(1 ,4 ,7 ) lower-tick-mono by auto

qed (simp add: assms L-def L ′-def )+
thus {i. L ′ i 6= 0 ∧ j < i} = (λi. i + 1 ) ‘ {k. L k 6= 0 ∧ i < k}

using ‹j = i+1 › by simp
fix x
assume asx: x ∈ {k. L k 6= 0 ∧ i < k}
hence L ′ (x + 1 ) = L x using ‹lower-tick P sqp ≤ i›

by (simp add: L ′-def L-def assms(3 ) assms(6 ) refine-lq-arg-gt)
moreover have grd P ′ (x + 1 ) = grd P x

using ‹lower-tick P sqp ≤ i› asx assms(3 ,6 ) refine-grd-arg-gt by auto

194



moreover have grd P ′ (x + 1 + 1 ) = grd P (x + 1 )
proof −

have i < x + 1 using asx by simp
thus ?thesis using ‹lower-tick P sqp ≤ i›

by (metis assms(3 ) assms(6 ) order .strict-trans refine-grd-arg-gt
zle-add1-eq-le zless-add1-eq)

qed
ultimately show L ′ (x + 1 ) ∗

(inverse (grd P ′ (x + 1 )) − inverse (grd P ′ (x + 1 + 1 ))) =
L x ∗ (inverse (grd P x) − inverse (grd P (x + 1 )))

by simp
qed
thus ?thesis by simp

qed
also have ... = base-net P sqp ′

using base-net-sum i-def L-def assms ‹clmm-dsc P ′› by auto
finally show ?thesis .

qed

lemma refine-base-net-eq:
assumes clmm-dsc P
and nz-support (lq P) 6= {}
and P ′ = refine P sqp
and 0 < sqp
and sqp < grd-max P
and sqp ≤ sqp ′

shows base-net P ′ sqp ′ = base-net P sqp ′

proof (cases grd P (lower-tick P sqp) = sqp)
case True
then show ?thesis by (simp add: assms(3 ) refine-eq)

next
case False
then show ?thesis using assms refine-pool-base-net-grd-eq by simp

qed

6.2 CLMM pool restriction and slice

The restriction operation intuitively consists in deleting all the liquidity
potentially available below the index provided as an argument.
definition restrict-pool where
restrict-pool i P =
(grd P,
(λj. if j < i then 0 else lq P j),
(λj. fee P j))

lemma restrict-pool-grd[simp]:
shows grd (restrict-pool i P) = grd P
unfolding restrict-pool-def grd-def by simp
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lemma restrict-pool-lower-tick:
assumes P ′ = restrict-pool i P
shows lower-tick P sqp = lower-tick P ′ sqp
using assms unfolding lower-tick-def rng-blw-def by simp

lemma restrict-pool-lt:
assumes j < i
shows lq (restrict-pool i P) j = 0 fee (restrict-pool i P) j = fee P j
using assms unfolding restrict-pool-def lq-def fee-def by auto

lemma restrict-pool-ge:
assumes i ≤ j
shows lq (restrict-pool i P) j = lq P j

fee (restrict-pool i P) j = fee P j
using assms unfolding restrict-pool-def lq-def fee-def by auto

lemma restrict-pool-lq-sub:
assumes P ′ = restrict-pool i P
shows nz-support (lq P ′) ⊆ nz-support (lq P)

proof
fix j
assume j ∈ nz-support (lq P ′)
hence i ≤ j

using restrict-pool-lt assms linorder-le-less-linear
unfolding nz-support-def by blast

hence lq P j 6= 0
by (metis ‹j ∈ nz-support (lq P ′)› assms nz-supportD restrict-pool-ge(1 ))

thus j ∈ nz-support (lq P) unfolding nz-support-def by auto
qed

lemma restrict-pool-finite-liq:
assumes finite-liq P
and P ′ = restrict-pool i P

shows finite-liq P ′ using restrict-pool-lq-sub assms unfolding finite-liq-def
by (metis rev-finite-subset)

lemma restrict-pool-nz-liq:
assumes finite-liq P
and P ′ = restrict-pool i P
and i ≤ idx-max (lq P)
and nz-support (lq P) 6= {}

shows nz-support (lq P ′) 6= {}
proof −

have lq P ′ (idx-max (lq P)) 6= 0
by (simp add: assms finite-liq-pool.idx-max-mem finite-liq-pool-def

nz-supportD restrict-pool-ge(1 ))
thus ?thesis unfolding nz-support-def by auto

qed
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lemma restrict-pool-idx-max:
assumes finite-liq P
and P ′ = restrict-pool i P
and i ≤ idx-max (lq P)
and nz-support (lq P) 6= {}

shows idx-max (lq P) = idx-max (lq P ′)
proof (rule idx-max-finiteI )

show finite (nz-support (lq P ′))
using assms finite-liq-def restrict-pool-finite-liq by simp

show lq P ′ (idx-max (lq P)) 6= 0
by (simp add: assms finite-liq-pool.idx-max-mem finite-liq-pool-def

nz-supportD restrict-pool-ge(1 ))
fix j
assume idx-max (lq P) < j
hence lq P j = 0

using assms(1 ) assms(4 ) finite-liq-def idx-max-finite-gt by blast
thus lq P ′ j = 0

using ‹idx-max (lq P) < j› assms(2 ) assms(3 ) restrict-pool-ge(1 ) by auto
qed

lemma restrict-pool-clmm:
assumes clmm-dsc P

and P ′ = restrict-pool i P
shows clmm-dsc P ′

proof
show span-grid P ′ using assms restrict-pool-grd span-grid-eq by auto
show finite-liq P ′

using assms restrict-pool-finite-liq clmm-dsc-liq by simp
show ∀ i. 0 ≤ lq P ′ i

by (metis assms clmm-dsc-liq(2 ) not-le-imp-less order-refl
restrict-pool-ge(1 ) restrict-pool-lt(1 ))

show ∀ i. 0 ≤ fee P ′ i
by (metis assms clmm-dsc-def leI restrict-pool-ge(2 )

restrict-pool-lt(2 ))
show ∀ i. fee P ′ i < 1

by (metis assms clmm-dsc-fees leI restrict-pool-ge(2 ) restrict-pool-lt(2 ))
qed

lemma restrict-pool-quote-gross-leq:
assumes mono (grd P)
and sqp ≤ grd P i
and P ′ = restrict-pool i P
shows quote-gross P ′ sqp = 0 unfolding quote-gross-def

proof (rule gen-quote-zero)
show mono (grd P ′) using assms restrict-pool-grd by simp
fix j
assume grd P ′ j < sqp
hence grd P j < sqp using restrict-pool-grd assms by simp
hence grd P j < grd P i using assms by simp
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hence j < i using assms mono-strict-invE by auto
hence lq P ′ j = 0 by (simp add: assms restrict-pool-lt)
thus gross-fct (lq P ′) (fee P ′) j = 0 unfolding gross-fct-def by simp

qed

lemma restrict-pool-quote-gross:
assumes clmm-dsc P
and P ′ = restrict-pool j P
and 0 < sqp
and j ≤ lower-tick P sqp

shows quote-gross P sqp − quote-gross P (grd P j) = quote-gross P ′ sqp
proof −

define L where L = gross-fct (lq P) (fee P)
define L ′ where L ′ = gross-fct (lq P ′) (fee P ′)
define k where k = lower-tick P sqp
have clmm-dsc P ′ using restrict-pool-clmm assms by simp
have eq: ∀ k ≥ j. L ′ k = L k

using restrict-pool-ge gross-fct-cong L ′-def L-def assms(2 ) by blast
have grd P k ≤ sqp using lower-tick-geq assms unfolding k-def by simp
have j = lower-tick P (grd P j)

by (simp add: assms(1 ) lower-tick-eq)
hence j = lower-tick P ′ (grd P j)

using restrict-pool-lower-tick[of P ′] assms by simp
have k = lower-tick P ′ sqp

using k-def assms restrict-pool-lower-tick by blast
show ?thesis
proof (cases j = k)

case True
have quote-gross P sqp − quote-gross P (grd P j) = L j ∗ (sqp − grd P j)

using clmm-quote-gross-diff-eq ′[of P L j]
by (metis L-def True ‹grd P k ≤ sqp› assms(1 ) clmm-dsc-grid(2 ) k-def

lower-tick-eq)
also have ... = L ′ j ∗ (sqp − grd P j) using eq by simp
also have ... = quote-gross P ′ sqp − quote-gross P ′ (grd P j)
proof (rule clmm-quote-gross-diff-eq ′[symmetric])

show clmm-dsc P ′ using ‹clmm-dsc P ′› .
show L ′ = gross-fct (lq P ′) (fee P ′) using L ′-def by simp
show j = lower-tick P ′ sqp

using True restrict-pool-lower-tick[of P ′] assms k-def by simp
show j = lower-tick P ′ (grd P j) using ‹j = lower-tick P ′ (grd P j)› .
show 0 < grd P j using assms by simp
show grd P j ≤ sqp using True ‹grd P k ≤ sqp› k-def by auto

qed
also have ... = quote-gross P ′ sqp

using assms restrict-pool-quote-gross-leq
by (simp add: strict-mono-mono)

finally show ?thesis .
next

case False
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define M where M = {l. L l 6= 0 ∧ j <l ∧ l < k}
define M ′ where M ′ = {l. L ′ l 6= 0 ∧ j <l ∧ l < k}
have M = M ′ using eq unfolding M-def M ′-def by auto
have quote-gross P sqp − quote-gross P (grd P j) = L k ∗ (sqp − grd P k) +

sum (λ l. L l ∗ (grd P (l+1 ) − grd P l)) M +
L j ∗ (grd P (j+1 ) − grd P j) unfolding M-def

proof (rule clmm-quote-gross-diff-eq)
show j < k using assms k-def False by simp
show L = gross-fct (lq P) (fee P) using L-def by simp
show j = lower-tick P (grd P j) using assms lower-tick-eq by simp
show clmm-dsc P using assms by simp
show k = lower-tick P sqp using k-def by simp
show 0 < grd P j using assms by simp
show grd P j ≤ sqp

using ‹grd P k ≤ sqp› ‹j < k› assms(1 ) clmm-dsc-grd-smono by fastforce
qed
also have ... = L ′ k ∗ (sqp − grd P ′ k) +

(
∑

l∈M ′. L ′ l ∗ (grd P ′ (l + 1 ) − grd P ′ l)) +
L ′ j ∗ (grd P ′ (j + 1 ) − grd P ′ j)

proof −
have L ′ k = L k using eq assms k-def by simp
moreover have L j = L ′ j using eq by simp
moreover have (

∑
k∈M . L ′ k ∗ (grd P ′ (k + 1 ) − grd P ′ k)) =

(
∑

k∈M . L k ∗ (grd P (k + 1 ) − grd P k))
using eq sum.cong M-def assms by simp

ultimately show ?thesis using assms ‹M = M ′› by simp
qed
also have ... = quote-gross P ′ sqp − quote-gross P ′ (grd P ′ j)

unfolding M ′-def
proof (rule clmm-quote-gross-diff-eq[symmetric])

show clmm-dsc P ′ using ‹clmm-dsc P ′› .
show L ′ = gross-fct (lq P ′) (fee P ′) using L ′-def by simp
show j = lower-tick P ′ (grd P ′ j)

using ‹j = lower-tick P (grd P j)›
by (simp add: ‹clmm-dsc P ′› lower-tick-eq)

show k = lower-tick P ′ sqp using ‹k = lower-tick P ′ sqp› .
show 0 < grd P ′ j by (simp add: ‹clmm-dsc P ′›)
show grd P ′ j ≤ sqp

using ‹j = lower-tick P (grd P j)› assms lower-tick-lt ′ by fastforce
show j < k using assms False k-def by simp

qed
also have ... = quote-gross P ′ sqp
proof −

have quote-gross P ′ (grd P ′ j) = 0
using assms restrict-pool-quote-gross-leq
by (simp add: strict-mono-mono)

thus ?thesis by simp
qed
finally show ?thesis .
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qed
qed

lemma restrict-pool-base-net-eq:
assumes clmm-dsc P
and nz-support (lq P) 6= {}
and P ′ = restrict-pool i P
and i ≤ idx-max (lq P)
and grd P i ≤ sqp ′

shows base-net P ′ sqp ′ = base-net P sqp ′

proof −
have clmm-dsc P ′ using assms restrict-pool-clmm by simp
have 0 < grd P i using assms by simp
hence 0 < sqp ′ using assms by linarith
define L where L = lq P
define L ′ where L ′ = lq P ′

define j where j = lower-tick P ′ sqp ′

have base-net P ′ sqp ′ = L ′ j ∗ (inverse sqp ′ − inverse (grd P ′ (j + 1 ))) +
(
∑

i | L ′ i 6= 0 ∧ j < i.
L ′ i ∗ (inverse (grd P ′ i) − inverse (grd P ′ (i + 1 ))))

using base-net-sum j-def L ′-def assms ‹clmm-dsc P ′› ‹0 < sqp ′› by auto
also have ... = L j ∗ (inverse sqp ′ − inverse (grd P (j + 1 ))) +

(
∑

i | L i 6= 0 ∧ j < i.
L i ∗ (inverse (grd P i) − inverse (grd P (i + 1 ))))

proof −
have grd:

∧
k. i < k =⇒ grd P k = grd P ′ k using assms by simp

have lq:
∧

k. j ≤ k =⇒ L k = L ′ k
by (metis L ′-def L-def ‹clmm-dsc P ′› assms(3 ) assms(5 ) clmm-dsc-grid(2 )

j-def lower-tick-eq lower-tick-lt order .trans restrict-pool-ge(1 )
restrict-pool-grd verit-comp-simplify1 (3 ))

hence L ′ j ∗ (inverse sqp ′ − inverse (grd P ′ (j + 1 ))) =
L j ∗ (inverse sqp ′ − inverse (grd P (j + 1 )))

using grd assms(3 ) by simp
moreover have (

∑
i | L ′ i 6= 0 ∧ j < i.

L ′ i ∗ (inverse (grd P ′ i) − inverse (grd P ′ (i + 1 )))) =
(
∑

i | L i 6= 0 ∧ j < i.
L i ∗ (inverse (grd P i) − inverse (grd P (i + 1 ))))

proof (rule sum.cong)
show {i. L ′ i 6= 0 ∧ j < i} = {i. L i 6= 0 ∧ j < i}

using lq by auto
fix k
assume k ∈ {i. L i 6= 0 ∧ j < i}
thus L ′ k ∗ (inverse (grd P ′ k) − inverse (grd P ′ (k + 1 ))) =

L k ∗ (inverse (grd P k) − inverse (grd P (k + 1 )))
using lq grd assms(3 ) by simp

qed
ultimately show ?thesis by simp

qed
also have ... = base-net P sqp ′
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using base-net-sum L-def assms j-def ‹0 < sqp ′› restrict-pool-lower-tick
by presburger

finally show ?thesis .
qed

lemma restrict-pool-grd-min-le:
assumes clmm-dsc P
and nz-support (lq P) 6= {}
and P ′ = restrict-pool i P
and i ≤ idx-max (lq P)

shows i ≤ idx-min (lq P ′)
by (metis assms clmm-dsc-def finite-liq-def finite-subset idx-min-finite-in

leI restrict-pool-lq-sub restrict-pool-lt(1 ) restrict-pool-nz-liq)

definition slice-pool where
slice-pool P sqp = (let P ′ = refine P sqp in restrict-pool (lower-tick P ′ sqp) P ′)

lemma slice-poolD:
assumes P ′′ = refine P sqp

shows slice-pool P sqp = restrict-pool (lower-tick P ′′ sqp) P ′′

using assms unfolding slice-pool-def Let-def by simp

lemma slice-pool-clmm-dsc:
assumes clmm-dsc P
and 0 < sqp
and P ′ = slice-pool P sqp

shows clmm-dsc P ′

proof −
have clmm-dsc (restrict-pool (lower-tick (refine P sqp) sqp) (refine P sqp))
proof (rule restrict-pool-clmm)

show clmm-dsc (refine P sqp)
by (rule refine-clmm, (auto simp add: assms)+)

qed simp
thus ?thesis using assms unfolding slice-pool-def Let-def by simp

qed

lemma slice-pool-nz-liq:
assumes clmm-dsc P
and 0 < sqp
and P ′ = slice-pool P sqp
and lower-tick P sqp ≤ idx-max (lq P)
and nz-support (lq P) 6= {}

shows nz-support (lq P ′) 6= {}
proof (rule restrict-pool-nz-liq)

define Pr where Pr = refine P sqp
define i where i = lower-tick Pr sqp
show P ′ = restrict-pool i Pr

using slice-poolD assms Pr-def i-def by simp
show finite-liq Pr using Pr-def
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by (meson assms(1 ) clmm-dsc-def refine-finite-liq)
show nz-support (lq (refine P sqp)) 6= {}

using restrict-pool-nz-liq
by (meson assms(1 ) assms(5 ) refine-nz-lq-ne)

show i ≤ idx-max (lq Pr) using i-def Pr-def refine-lower-tick-idx-max
by (simp add: assms(1 ,2 ,4 ,5 ))

qed

lemma slice-pool-tick-idx-max:
assumes clmm-dsc P
and 0 < sqp
and P ′ = slice-pool P sqp
and lower-tick P sqp ≤ idx-max (lq P)
and nz-support (lq P) 6= {}

shows lower-tick P ′ sqp ≤ idx-max (lq P ′)
proof −

define Pr where Pr = refine P sqp
define i where i = lower-tick Pr sqp
have lower-tick P ′ sqp = i

using assms restrict-pool-lower-tick Pr-def i-def
unfolding slice-pool-def Let-def
by presburger

also have ... ≤ idx-max (lq Pr) using i-def Pr-def refine-lower-tick-idx-max
by (simp add: assms(1 ,2 ,4 ,5 ))

also have ... = idx-max (lq P ′)
using Pr-def assms(1−5 ) clmm-dsc-liq(1 ) refine-clmm refine-lower-tick-idx-max

refine-nz-lq-ne restrict-pool-idx-max slice-poolD
by presburger

finally show ?thesis .
qed

lemma slice-pool-nz-liq ′:
assumes clmm-dsc P
and P ′ = slice-pool P sqp
and nz-support (lq P) 6= {}
and 0 < sqp
and sqp < grd-max P

shows nz-support (lq P ′) 6= {}
proof −

have lower-tick P sqp < idx-max (lq P) + 1
proof (rule lower-tick-lt ′)

show clmm-dsc P using assms by simp
show 0 < sqp using assms by simp
show idx-max (lq P) + 1 = lower-tick P (grd-max P)

by (simp add: assms(1 ) idx-max-img-def lower-tick-eq grd-max-def )
show sqp < grd-max P using assms by simp
show grd P (idx-max (lq P) + 1 ) = grd-max P

unfolding grd-max-def idx-max-img-def by simp
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qed simp
thus ?thesis using slice-pool-nz-liq by (simp add: assms)

qed

lemma slice-pool-idx-min:
assumes clmm-dsc P
and 0 < sqp
and nz-support (lq P) 6= {}
and P ′ = slice-pool P sqp
and i = lower-tick P sqp
and i ≤ idx-max (lq P)

shows i ≤ idx-min (lq P ′)
proof (rule idx-min-finite-max)

show nz-support (lq P ′) 6= {} using assms slice-pool-nz-liq by simp
show finite (nz-support (lq P ′))

using assms clmm-dsc-liq(1 ) finite-liq-def slice-pool-clmm-dsc by simp
fix j
assume j < i
thus lq P ′ j = 0

by (metis assms(1 ,2 ,4 ,5 ) lower-tick-eq not-le-imp-less order .strict-trans2
order-less-imp-not-less refine-grd-arg-le refine-lower-tick
restrict-pool-lt(1 ) slice-poolD)

qed

lemma slice-pool-grd-min:
assumes clmm-dsc P
and 0 < sqp
and nz-support (lq P) 6= {}
and P ′ = slice-pool P sqp
and sqp < grd-max P

shows sqp ≤ grd-min P ′

proof −
define Pr where Pr = refine P sqp
define i where i = lower-tick Pr sqp
have P ′ = restrict-pool i Pr using i-def Pr-def

by (simp add: assms(4 ) slice-poolD)
hence i ≤ idx-min (lq P ′)

using restrict-pool-grd-min-le Pr-def assms(1−3 ,5 ) i-def refine-clmm
refine-lower-tick-idx-max refine-nz-lq-ne sqp-lt-grd-max-imp-idx

by presburger
moreover have grd P ′ i = sqp

using Pr-def ‹P ′ = restrict-pool i Pr› assms(1 ,2 ) i-def refine-lower-tick
by auto

ultimately show ?thesis using grd-min-def idx-min-img-def
by (metis Pr-def ‹P ′ = restrict-pool i Pr› assms(1 ,2 ) clmm-dsc-grd-mono

refine-clmm restrict-pool-clmm)
qed

lemma slice-pool-grd-max:
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assumes clmm-dsc P
and 0 < sqp
and nz-support (lq P) 6= {}
and P ′ = slice-pool P sqp
and lower-tick P sqp ≤ idx-max (lq P)

shows grd-max P = grd-max P ′ using assms slice-pool-tick-idx-max
proof −

define Pr where Pr = refine P sqp
have grd-max P = grd-max Pr using assms refine-grd-max Pr-def by simp
also have ... = grd-max P ′

using restrict-pool-idx-max Pr-def assms(1−5 ) clmm-dsc-liq(1 )
refine-finite-liq refine-lower-tick-idx-max refine-nz-lq-ne
slice-poolD

unfolding grd-max-def idx-max-img-def
by auto

finally show ?thesis .
qed

lemma slice-pool-grd-max ′:
assumes clmm-dsc P
and nz-support (lq P) 6= {}
and P ′ = slice-pool P sqp
and 0 < sqp
and sqp < grd-max P

shows grd-max P = grd-max P ′

proof −
define Pr where Pr = refine P sqp
have grd-max P = grd-max Pr using assms refine-grd-max Pr-def by simp
also have ... = grd-max P ′

using restrict-pool-idx-max Pr-def assms(1−5 )
clmm-dsc-liq(1 ) refine-finite-liq refine-lower-tick-idx-max refine-nz-lq-ne
slice-poolD restrict-pool-grd sqp-lt-grd-max-imp-idx

unfolding grd-max-def idx-max-img-def by auto
finally show ?thesis .

qed

lemma slice-pool-cst-fees:
assumes clmm-dsc P
and P ′ = slice-pool P sqp
and

∧
i. fee P i = phi

shows
∧

i. fee P ′ i = phi
by (metis assms(2 ,3 ) refine-cst-fees restrict-pool-ge(2 ) restrict-pool-lt(2 )

slice-poolD verit-comp-simplify1 (3 ))

lemma slice-pool-quote-gross-leq:
assumes clmm-dsc P
and 0 < sqp
and sqp ′ ≤ sqp
and P ′ = slice-pool P sqp
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shows quote-gross P ′ sqp ′ = 0
proof (rule restrict-pool-quote-gross-leq)

define Pr where Pr = refine P sqp
define i where i = lower-tick Pr sqp
show P ′ = restrict-pool i Pr using i-def Pr-def

by (simp add: assms(4 ) slice-poolD)
show mono (grd Pr) using Pr-def assms refine-clmm

by (simp add: clmm-dsc-grd-mono monoI )
show sqp ′ ≤ grd Pr i

using Pr-def assms(1−3 ) i-def refine-lower-tick by auto
qed

lemma slice-pool-quote-gross:
assumes clmm-dsc P
and 0 < sqp
and sqp ≤ sqp ′

and P ′ = slice-pool P sqp
shows quote-gross P ′ sqp ′ = quote-gross P sqp ′ − quote-gross P sqp
proof −

define Pr where Pr = refine P sqp
define i where i = lower-tick Pr sqp
have P ′ = restrict-pool i Pr using i-def Pr-def

by (simp add: assms(4 ) slice-poolD)
have quote-gross P ′ sqp ′ = quote-gross Pr sqp ′ − quote-gross Pr (grd Pr i)
proof (rule restrict-pool-quote-gross[symmetric])

show clmm-dsc Pr using Pr-def assms(1 ,2 ) refine-clmm by auto
show P ′ = restrict-pool i Pr using ‹P ′ = restrict-pool i Pr› .
show 0 < sqp ′ using assms by simp
show i ≤ lower-tick Pr sqp ′

using i-def ‹clmm-dsc Pr› assms(2 ,3 ) lower-tick-mono by auto
qed
also have ... = quote-gross Pr sqp ′ − quote-gross Pr sqp
proof −

have quote-gross Pr (grd Pr i) = quote-gross Pr sqp
using Pr-def assms(1 ,2 ) i-def refine-lower-tick by auto

thus ?thesis by simp
qed
also have ... = quote-gross P sqp ′ − quote-gross P sqp

using Pr-def assms(1 ,2 ) refine-quote-gross by auto
finally show ?thesis .

qed

lemma slice-pool-quote-gross-max-eq:
assumes clmm-dsc P
and P ′ = slice-pool P sqp
and nz-support (lq P) 6= {}
and 0 < sqp
and sqp < grd-max P
and i = lower-tick P sqp
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and grd P i = sqp
shows quote-gross P ′ (grd-max P ′) = quote-gross P (grd-max P) − quote-gross P
sqp
proof −

have grd-max P = grd-max P ′

by (simp add: assms slice-pool-grd-max ′)
define sqp ′ where sqp ′ = grd-max P
have quote-gross P ′ sqp ′ = quote-gross P sqp ′ − quote-gross P sqp

using slice-pool-quote-gross assms sqp ′-def by simp
thus ?thesis using ‹grd-max P = grd-max P ′› sqp ′-def by simp

qed

lemma slice-pool-quote-gross-inv:
assumes clmm-dsc P
and 0 < sqp
and nz-support (lq P) 6= {}
and sqp < grd-max P
and 0 < y
and P ′ = slice-pool P sqp

shows quote-gross P ′ −‘{y} = quote-gross P −‘{y + quote-gross P sqp}
proof

have clmm-dsc P ′ using assms slice-pool-clmm-dsc by simp
have nz-support (lq P ′) 6= {} using assms slice-pool-nz-liq ′ by simp
show quote-gross P ′ −‘ {y} ⊆ quote-gross P −‘ {y + quote-gross P sqp}
proof

fix sqp ′

assume asm: sqp ′ ∈ quote-gross P ′ −‘ {y}
hence y = quote-gross P ′ sqp ′ by simp
also have ... = quote-gross P sqp ′ − quote-gross P sqp

by (metis assms(1 ,2 ,5 ,6 ) calculation dual-order .irrefl nle-le
slice-pool-quote-gross slice-pool-quote-gross-leq)

finally have y = quote-gross P sqp ′ − quote-gross P sqp .
hence quote-gross P sqp ′ = y + quote-gross P sqp by simp
thus sqp ′ ∈ quote-gross P −‘ {y + quote-gross P sqp} by simp

qed
show quote-gross P −‘ {y + quote-gross P sqp} ⊆ quote-gross P ′ −‘ {y}
proof

fix sqp ′

assume asm: sqp ′ ∈ quote-gross P −‘ {y + quote-gross P sqp}
hence eq: quote-gross P sqp ′ = y + quote-gross P sqp by simp
hence sqp ≤ sqp ′

by (metis assms(1 ) assms(5 ) less-add-same-cancel2 order-less-imp-le
quote-gross-imp-sqp-lt)

have y = quote-gross P sqp ′ − quote-gross P sqp using eq assms by simp
also have ... = quote-gross P ′ sqp ′

proof (rule slice-pool-quote-gross[symmetric, of P], auto simp add: assms)
show sqp ≤ sqp ′ using ‹sqp ≤ sqp ′› .

qed
finally have y = quote-gross P ′ sqp ′ .
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thus sqp ′ ∈ quote-gross P ′ −‘ {y} by simp
qed

qed

lemma slice-pool-quote-reach:
assumes clmm-dsc P
and nz-support (lq P) 6= {}
and 0 < sqp
and sqp < grd-max P
and 0 < y
and P ′ = slice-pool P sqp

shows quote-reach P ′ y = quote-reach P (y + quote-gross P sqp)
proof −

have quote-reach P ′ y = Inf (quote-gross P ′ −‘ {y})
using assms clmm-quote-gross-grd-min slice-pool-clmm-dsc slice-pool-nz-liq ′

unfolding quote-reach-def by auto
also have ... = Inf (quote-gross P −‘ {y + quote-gross P sqp})

using assms slice-pool-quote-gross-inv by simp
also have ... = quote-reach P (y + quote-gross P sqp)

using assms unfolding quote-reach-def
by (metis add-pos-nonneg clmm-quote-gross-pos order-less-irrefl)

finally show ?thesis .
qed

lemma slice-pool-base-net-eq:
assumes clmm-dsc P
and nz-support (lq P) 6= {}
and P ′ = slice-pool P sqp
and 0 < sqp
and sqp < grd-max P
and sqp ≤ sqp ′

shows base-net P ′ sqp ′ = base-net P sqp ′

proof −
define Pr where Pr = refine P sqp
define i where i = lower-tick Pr sqp
hence i ≤ idx-max (lq Pr)

using Pr-def assms(1 ,2 ,4 ,5 ) refine-lower-tick-idx-max sqp-lt-grd-max-imp-idx
by presburger

have P ′ = restrict-pool i Pr using i-def Pr-def
by (simp add: assms(3 ) slice-poolD)

hence base-net P ′ sqp ′ = base-net Pr sqp ′

using restrict-pool-base-net-eq assms Pr-def ‹i ≤ idx-max (lq Pr)›
by (metis i-def refine-clmm refine-lower-tick refine-nz-lq-ne)

also have ... = base-net P sqp ′ using Pr-def assms refine-base-net-eq
by simp

finally show ?thesis .
qed
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lemma slice-pool-base-net-slice:
assumes clmm-dsc P
and nz-support (lq P) 6= {}
and i = lower-tick P sqp
and P ′ = slice-pool P sqp
and sqp < grd-max P
and grd P i = sqp
and sqp ′ ≤ sqp
and 0 < sqp ′

shows base-net P ′ sqp ′ = base-net P ′ sqp
proof −

have clmm-dsc P ′ using assms slice-pool-clmm-dsc by simp
have lower-tick P sqp ≤ idx-max (lq P)

by (metis assms(1 ) assms(2 ) assms(5 ) assms(6 ) clmm-dsc-grid(2 )
sqp-lt-grd-max-imp-idx)

hence sqp ≤ grd-min P ′ using assms slice-pool-grd-min by simp
hence sqp ′ ≤ grd-min P ′ using assms by simp
have base-net P ′ sqp ′ = base-net P ′ (grd-min P ′)

using base-net-grd-min-le ‹sqp ′ ≤ grd-min P ′› assms ‹clmm-dsc P ′›
by blast

also have ... = base-net P ′ sqp
using base-net-grd-min-le ‹sqp ≤ grd-min P ′› assms ‹clmm-dsc P ′›
by (metis clmm-dsc-grid(2 ))

finally show ?thesis .
qed

lemma slice-pool-quote-swap-gt-zero:
assumes clmm-dsc P
and nz-support (lq P) 6= {}
and grd P (lower-tick P sqp2 ) = sqp2
and P ′ = slice-pool P sqp2
and sqp1 ≤ sqp2
and 0 < y
and 0 <sqp1
and y + quote-gross P sqp2 ≤ quote-gross P (grd-max P)

shows quote-swap P ′ sqp1 y = quote-swap P sqp2 y
proof −

have clmm-dsc P ′ using slice-pool-clmm-dsc assms by simp
have sqp2 < grd-max P using assms quote-gross-imp-sqp-lt by simp
hence quote-gross P ′ sqp1 = 0

using assms slice-pool-quote-gross-leq by (simp add: strict-mono-mono)
hence qeq: quote-reach P ′ (y + quote-gross P ′ sqp1 ) =

quote-reach P (y + quote-gross P sqp2 )
using assms ‹sqp2 < grd-max P› slice-pool-quote-reach by simp

have sqp2 ≤ quote-reach P (y + quote-gross P sqp2 )
using quote-reach-gt[of P y sqp2 ] assms by simp

hence a: base-net P ′ (quote-reach P ′ (y + quote-gross P ′ sqp1 )) =
base-net P (quote-reach P (y + quote-gross P sqp2 ))

using qeq ‹sqp2 < grd-max P› assms slice-pool-base-net-eq by auto
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have base-net P ′ sqp1 = base-net P ′ sqp2 using slice-pool-base-net-slice
by (simp add: ‹sqp2 < grd-max P› assms)

also have ... = base-net P sqp2
using slice-pool-base-net-eq ‹sqp2 < grd-max P› assms
by auto

finally have base-net P ′ sqp1 = base-net P sqp2 .
thus ?thesis using a unfolding quote-swap-def by simp

qed

lemma slice-pool-quote-swap:
assumes clmm-dsc P
and nz-support (lq P) 6= {}
and grd P (lower-tick P sqp2 ) = sqp2
and P ′ = slice-pool P sqp2
and sqp1 ≤ sqp2
and sqp2 < grd-max P
and 0 ≤ y
and 0 < sqp1
and y + quote-gross P sqp2 ≤ quote-gross P (grd-max P)

shows quote-swap P ′ sqp1 y = quote-swap P sqp2 y
proof (cases y = 0 )

case True
have quote-swap P ′ sqp1 0 = 0
proof (rule quote-swap-zero)

show clmm-dsc P ′ using assms slice-pool-clmm-dsc by simp
show nz-support (lq P ′) 6= {}

by (metis assms(1−4 ) assms(6 ) clmm-dsc-grid(2 )
slice-pool-nz-liq ′)

show 0 < sqp1 using assms by simp
show sqp1 ≤ grd-max P ′ using assms slice-pool-grd-max ′ by simp

qed
also have ... = quote-swap P sqp2 0

using quote-swap-zero assms by simp
finally show ?thesis using True by simp

next
case False
then show ?thesis

using assms slice-pool-quote-swap-gt-zero by simp
qed

6.3 CLMM pool join

The join operation is meant to define a pool P on which swap operations
can be viewed as a combination of swap operations on its two arguments.
We use the convention that the pool fee is 0 on ranges where there is no
liquidity.
definition pool-fee-join where
pool-fee-join P1 P2 i = fee-union (lq P1 i) (lq P2 i) (fee P1 i) (fee P2 i)
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lemma pool-fee-join-com:
shows pool-fee-join P1 P2 i = pool-fee-join P2 P1 i
unfolding pool-fee-join-def fee-union-def
by (simp add: add.commute)

definition joint-pools where
joint-pools P P1 P2 ←→ (grd P) = (grd P1 ) ∧ (grd P) = (grd P2 ) ∧
(∀ i. lq P i = lq P1 i + lq P2 i) ∧
(∀ i. fee P i = pool-fee-join P1 P2 i)

definition pool-join where
pool-join P1 P2 =
(grd P1 , (λi. lq P1 i + lq P2 i), (λi. pool-fee-join P1 P2 i))

lemma joint-poolsI [intro]:
assumes grd P = grd P1
and grd P = grd P2
and

∧
i. lq P i = lq P1 i + lq P2 i

and
∧

i. fee P i = pool-fee-join P1 P2 i
shows joint-pools P P1 P2 using assms unfolding joint-pools-def by simp

lemma pool-join-joint:
assumes grd P1 = grd P2
and P = pool-join P1 P2
shows joint-pools P P1 P2 using assms unfolding pool-join-def
by (simp add: fee-def grd-def joint-pools-def lq-def )

lemma joint-pools-grids:
assumes joint-pools P P1 P2
shows (grd P) = (grd P1 ) (grd P) = (grd P2 )
using assms unfolding joint-pools-def by simp+

lemma joint-pools-lq:
assumes joint-pools P P1 P2
shows lq P i = lq P1 i + lq P2 i
using assms unfolding joint-pools-def by simp

lemma joint-pools-fee:
assumes joint-pools P P1 P2
shows fee P i = pool-fee-join P1 P2 i
using assms unfolding joint-pools-def by simp

lemma joint-pools-com:
assumes joint-pools P P1 P2
shows joint-pools P P2 P1

proof
show grd P = grd P2 using assms joint-pools-grids by simp
show grd P = grd P1 using assms joint-pools-grids by simp

210



fix i
show lq P i = lq P2 i + lq P1 i using assms joint-pools-lq by simp
show fee P i = pool-fee-join P2 P1 i

using pool-fee-join-com joint-pools-fee assms by simp
qed

lemma joint-pools-nz-liq-sub:
assumes joint-pools P P1 P2
shows nz-support (lq P) ⊆ nz-support (lq P1 ) ∪ (nz-support (lq P2 ))
unfolding nz-support-def

proof −
define F1 where F1 = {i. lq P1 i 6= 0}
define F2 where F2 = {i. lq P2 i 6= 0}
define F where F = {i. lq P i 6= 0}
show F ⊆ F1 ∪ F2
proof

fix i
assume i∈ F
hence lq P1 i + lq P2 i 6= 0 using F-def assms joint-pools-lq by auto
hence lq P1 i 6= 0 ∨ lq P2 i 6= 0 by simp
thus i ∈ F1 ∪ F2 using F1-def F2-def by auto

qed
qed

lemma joint-pools-nz-liq-sup:
assumes joint-pools P P1 P2
and

∧
i. 0 ≤ lq P1 i

and
∧

i. 0 ≤ lq P2 i
shows nz-support (lq P1 ) ∪ (nz-support (lq P2 )) ⊆ nz-support (lq P)
unfolding nz-support-def

proof −
define F1 where F1 = {i. lq P1 i 6= 0}
define F2 where F2 = {i. lq P2 i 6= 0}
define F where F = {i. lq P i 6= 0}
show F1 ∪ F2 ⊆ F
proof

fix j
assume j∈ F1∪ F2
hence lq P1 j 6= 0 ∨ lq P2 j 6= 0 unfolding F1-def F2-def by auto
hence lq P1 j + lq P2 j 6= 0 using joint-pools-lq

by (simp add: add-nonneg-eq-0-iff assms)
thus j ∈ F using F-def joint-pools-lq assms by auto

qed
qed

lemma joint-pools-nz-liq:
assumes joint-pools P P1 P2
and

∧
i. 0 ≤ lq P1 i

and
∧

i. 0 ≤ lq P2 i

211



shows nz-support (lq P1 ) ∪ (nz-support (lq P2 )) = nz-support (lq P)
using assms joint-pools-nz-liq-sup joint-pools-nz-liq-sub by blast

lemma clmm-joint-pools-nz-liq:
assumes clmm-dsc P1
and clmm-dsc P2
and joint-pools P P1 P2

shows nz-support (lq P1 ) ∪ (nz-support (lq P2 )) = nz-support (lq P)
using assms joint-pools-nz-liq by (simp add: clmm-dsc-liq(2 ))

lemma joint-pools-finite-liq:
assumes finite-liq P1
and finite-liq P2
and joint-pools P P1 P2

shows finite-liq P using assms joint-pools-nz-liq-sub
by (meson finite-UnI finite-liq-def rev-finite-subset)

lemma joint-pools-idx-min-min:
assumes clmm-dsc P1
and clmm-dsc P2
and joint-pools P P1 P2
and nz-support (lq P1 ) 6= {}
and idx-min (lq P1 ) ≤ idx-min (lq P2 )

shows idx-min (lq P) = idx-min (lq P1 )
proof (rule idx-min-finiteI [symmetric])

define i where i = idx-min (lq P1 )
show finite (nz-support (lq P))

using assms joint-pools-finite-liq by (meson clmm-dsc-def finite-liq-def )
have lq P1 i 6= 0 using i-def idx-min-finite-in

by (metis (full-types) ‹finite (nz-support (lq P))› assms(1−4 )
clmm-joint-pools-nz-liq finite-Un)

thus lq P i 6= 0
by (smt (verit) assms(1−3 ) clmm-dsc-liq(2 ) joint-pools-lq)

fix j
assume j < i
hence j < idx-min (lq P2 ) using assms i-def by simp
have lq P2 j = 0

using assms idx-min-finite-lt[of lq P2 j] clmm-dsc-liq finite-liq-def
by (simp add: ‹j < idx-min (lq P2 )›)

moreover have lq P1 j = 0
using ‹j < i› i-def idx-max-finite-gt[of lq P2 j]
by (simp add: assms idx-min-lt-liq)

ultimately show lq P j = 0
using assms(3 ) joint-pools-lq by auto

qed

lemma joint-pools-idx-min:
assumes clmm-dsc P1
and clmm-dsc P2
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and joint-pools P P1 P2
and nz-support (lq P1 ) 6= {}
and nz-support (lq P2 ) 6= {}

shows idx-min (lq P) = min (idx-min (lq P1 )) (idx-min (lq P2 ))
using joint-pools-idx-min-min
by (smt (z3 ) assms max-def nle-le joint-pools-com)

lemma joint-pools-idx-max-max:
assumes clmm-dsc P1
and clmm-dsc P2
and joint-pools P P1 P2
and nz-support (lq P2 ) 6= {}
and idx-max (lq P1 ) ≤ idx-max (lq P2 )

shows idx-max (lq P) = idx-max (lq P2 )
proof (rule idx-max-finiteI [symmetric])

define i where i = idx-max (lq P2 )
show finite (nz-support (lq P))

using assms joint-pools-finite-liq by (meson clmm-dsc-def finite-liq-def )
have lq P2 i 6= 0 using i-def idx-max-finite-in

by (metis (full-types) ‹finite (nz-support (lq P))› assms(1−4 )
clmm-joint-pools-nz-liq finite-Un)

thus lq P i 6= 0
by (smt (verit) assms(1−3 ) clmm-dsc-liq(2 ) joint-pools-lq)

fix j
assume i < j
hence idx-max (lq P1 ) < j using assms i-def by simp
have lq P1 j = 0

using assms idx-max-finite-gt[of lq P1 j] clmm-dsc-liq finite-liq-def
by (simp add: ‹idx-max (lq P1 ) < j›)

moreover have lq P2 j = 0
using ‹i < j› i-def idx-max-finite-gt[of lq P2 j]
by (simp add: assms(2 ) idx-max-gt-liq)

ultimately show lq P j = 0
using assms(3 ) joint-pools-lq by auto

qed

lemma joint-pools-idx-max:
assumes clmm-dsc P1
and clmm-dsc P2
and joint-pools P P1 P2
and nz-support (lq P1 ) 6= {}
and nz-support (lq P2 ) 6= {}

shows idx-max (lq P) = max (idx-max (lq P1 )) (idx-max (lq P2 ))
using joint-pools-idx-max-max
by (smt (z3 ) assms max-def nle-le joint-pools-com)

lemma joint-pools-clmm-dsc:
assumes clmm-dsc P1
and clmm-dsc P2
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and joint-pools P P1 P2
shows clmm-dsc P
proof

show span-grid P using assms clmm-dsc-grid[of P1 ] joint-pools-grids(1 )
by (simp add: span-grid-def )

show finite-liq P using assms joint-pools-finite-liq clmm-dsc-liq by meson
show ∀ i. 0 ≤ lq P i using assms joint-pools-lq clmm-dsc-liq(2 ) by simp
show ∀ i. 0 ≤ fee P i using assms joint-pools-fee fee-union-pos

by (simp add: clmm-dsc-def pool-fee-join-def )
show ∀ i. fee P i < 1 using assms joint-pools-fee fee-union-lt-1

by (simp add: clmm-dsc-def pool-fee-join-def )
qed

lemma join-gross-fct:
assumes clmm-dsc P1
and clmm-dsc P2
and joint-pools P P1 P2
shows gross-fct (lq P) (fee P) i = gross-fct (lq P1 ) (fee P1 ) i +

gross-fct (lq P2 ) (fee P2 ) i
proof (cases lq P i = 0 )

case True
hence lq P1 i + lq P2 i = 0

using assms(3 ) joint-pools-lq by auto
hence lq P1 i = 0 lq P2 i = 0

by (simp add: clmm-dsc-liq(2 ) add-nonneg-eq-0-iff assms(1 ) assms(2 ))+
then show ?thesis using True gross-fct-zero-if by auto

next
case False
define L where L = lq P
define F where F = fee P
define l1 where l1 = lq P1 i
define f1 where f1 = fee P1 i
define l2 where l2 = lq P2 i
define f2 where f2 = fee P2 i
define df where df = l1∗(1−f2 ) + l2∗(1−f1 )
have 0 ≤ l1 using assms l1-def clmm-dsc-liq by simp
have 0 < 1 − f2 using assms f2-def clmm-dsc-fees by simp
have 0 < 1 − f1 using assms f1-def clmm-dsc-fees by simp
have 0 ≤ l2 using assms l2-def clmm-dsc-liq by simp
have 0 < lq P i

using False ‹0 ≤ l1 › ‹0 ≤ l2 › assms(3 ) l1-def l2-def joint-pools-lq by auto
hence 0 < l1 ∨ 0 < l2 using assms joint-pools-lq l1-def l2-def by auto
hence 0 < df using df-def l1-def f2-def l2-def f1-def

by (smt (verit, best) ‹0 < 1 − f1 › ‹0 < 1 − f2 › ‹0 ≤ l1 › ‹0 ≤ l2 ›
mult-nonneg-nonneg mult-pos-pos)

have gross-fct (lq P) (fee P) i =
(l1 + l2 )/(one-cpl (pool-fee-join P1 P2 ) i)

using assms joint-pools-lq joint-pools-fee
unfolding gross-fct-def l1-def l2-def
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by (simp add: one-cpl-def )
also have ... = (l1 + l2 )/(1 − ((l1∗f1∗(1−f2 ) + l2∗f2∗(1−f1 ))/

df ))
using one-cpl-def pool-fee-join-def fee-union-def l1-def l2-def f1-def f2-def df-def
by simp

also have ... = (l1 + l2 )/((df − (l1∗f1∗(1−f2 ) + l2∗f2∗(1−f1 ))) / df )
proof −

have 1 − ((l1∗f1∗(1−f2 ) + l2∗f2∗(1−f1 )))/ df =
df /df − ((l1∗f1∗(1−f2 ) + l2∗f2∗(1−f1 )))/ df

using ‹0 < df › by simp
also have ... = (df − (l1∗f1∗(1−f2 ) + l2∗f2∗(1−f1 ))) / df

by (rule diff-divide-distrib[symmetric])
finally have 1 − ((l1∗f1∗(1−f2 ) + l2∗f2∗(1−f1 )))/ df =

(df − (l1∗f1∗(1−f2 ) + l2∗f2∗(1−f1 ))) / df .
thus ?thesis by simp

qed
also have ... = ((l1 + l2 ) ∗ df )/ (df − (l1∗f1∗(1−f2 ) + l2∗f2∗(1−f1 )))

by (rule divide-divide-eq-right)
also have ... = ((l1 + l2 ) ∗ df )/ ((l1 + l2 ) ∗ ((1 − f1 ) ∗ (1 − f2 )))
proof −

have df − (l1∗f1∗(1−f2 ) + l2∗f2∗(1−f1 )) =
l1∗(1−f2 ) + l2∗(1−f1 ) − l1∗f1∗(1−f2 ) − l2∗f2∗(1−f1 )

unfolding df-def by simp
also have ... = l1∗(1−f2 ) − l1∗f1∗(1−f2 ) + (l2∗(1−f1 ) − l2∗f2∗(1−f1 ))

by simp
also have ... = (l1 − l1 ∗ f1 ) ∗ (1 − f2 ) + (l2∗(1−f1 ) − l2∗f2∗(1−f1 ))

by (simp add: left-diff-distrib ′)
also have ... = (l1 − l1 ∗ f1 ) ∗ (1 − f2 ) + ((l2 − l2 ∗ f2 ) ∗ (1 − f1 ))

by (simp add: left-diff-distrib ′)
also have ... = l1 ∗ ((1 − f1 ) ∗ (1 − f2 )) + ((l2 − l2 ∗ f2 ) ∗ (1 − f1 ))

by (simp add: vector-space-over-itself .scale-right-diff-distrib)
also have ... = l1 ∗ ((1 − f1 ) ∗ (1 − f2 )) + (l2 ∗ ((1 − f2 ) ∗ (1 − f1 )))

by (simp add: vector-space-over-itself .scale-right-diff-distrib)
also have ... = l1 ∗ ((1 − f1 ) ∗ (1 − f2 )) + (l2 ∗ ((1 − f1 ) ∗ (1 − f2 )))

by simp
also have ... = (l1 + l2 ) ∗ ((1 − f1 ) ∗ (1 − f2 ))

by (simp add: distrib-right)
finally have df − (l1∗f1∗(1−f2 ) + l2∗f2∗(1−f1 )) =
(l1 + l2 ) ∗ ((1 − f1 ) ∗ (1 − f2 )) .

thus ?thesis by simp
qed
also have ... = df / ((1 − f1 ) ∗ (1 − f2 ))

using ‹0 < l1 ∨ 0 < l2 › ‹0 ≤ l1 › ‹0 ≤ l2 › by fastforce
also have ... = l1∗(1−f2 )/((1 − f1 ) ∗ (1 − f2 )) +

l2∗(1−f1 )/ ((1 − f1 ) ∗ (1 − f2 ))
using df-def by (simp add: add-divide-distrib)

also have ... = l1/(1−f1 ) + l2∗(1−f1 )/ ((1 − f1 ) ∗ (1 − f2 ))
using ‹0 < 1 − f2 › by auto

also have ... = l1/(1−f1 ) + l2/(1−f2 )
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using ‹0 < 1 − f1 › by auto
also have ... = gross-fct (lq P1 ) (fee P1 ) i +

gross-fct (lq P2 ) (fee P2 ) i
by (simp add: f1-def f2-def gross-fct-def l1-def l2-def one-cpl-def )

finally show ?thesis .
qed

lemma quote-gross-join:
assumes clmm-dsc P1
and clmm-dsc P2
and joint-pools P P1 P2

shows quote-gross P x = quote-gross P1 x + quote-gross P2 x
proof −

have quote-gross P x =
gen-quote (grd P) (gross-fct (lq P1 ) (fee P1 )) x +
gen-quote (grd P) (gross-fct (lq P2 ) (fee P2 )) x

unfolding quote-gross-def
proof (rule finite-nz-support.gen-quote-plus)

show finite-nz-support (gross-fct (lq P) (fee P))
using finite-liq-pool.finite-liq-gross-fct joint-pools-finite-liq assms
by (metis clmm-dsc-liq(1 ) finite-liq-pool.intro finite-nz-support-def

nz-support-def )
show ∀ i. 0 ≤ gross-fct (lq P1 ) (fee P1 ) i

using clmm-dsc-fees clmm-dsc-liq(2 ) assms(1 ) gross-fct-sgn by blast
show ∀ i. 0 ≤ gross-fct (lq P2 ) (fee P2 ) i

using clmm-dsc-fees clmm-dsc-liq(2 ) assms(2 ) gross-fct-sgn by blast
show ∀ i. gross-fct (lq P) (fee P) i = gross-fct (lq P1 ) (fee P1 ) i +

gross-fct (lq P2 ) (fee P2 ) i
using join-gross-fct assms by auto

qed
also have ... = quote-gross P1 x + quote-gross P2 x

using assms joint-pools-grids unfolding quote-gross-def by simp
finally show ?thesis .

qed

lemma quote-net-join:
assumes clmm-dsc P1
and clmm-dsc P2
and joint-pools P P1 P2

shows quote-net P x = quote-net P1 x + quote-net P2 x
proof −

have quote-net P x = gen-quote (grd P) (lq P1 ) x +
gen-quote (grd P) (lq P2 ) x

unfolding quote-net-def
proof (rule finite-nz-support.gen-quote-plus)

show finite-nz-support (lq P)
by (meson clmm-dsc-def assms finite-liq-def finite-nz-support-def

joint-pools-finite-liq)
show ∀ i. 0 ≤ lq P1 i using clmm-dsc-liq(2 ) assms(1 ) by auto
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show ∀ i. 0 ≤ lq P2 i by (simp add: clmm-dsc-liq(2 ) assms(2 ))
show ∀ i. lq P i = lq P1 i + lq P2 i by (simp add: assms(3 ) joint-pools-lq)

qed
also have ... = quote-net P1 x + quote-net P2 x

using assms joint-pools-grids unfolding quote-net-def by simp
finally show ?thesis .

qed

lemma base-gross-join:
assumes clmm-dsc P1
and clmm-dsc P2
and joint-pools P P1 P2

shows base-gross P x = base-gross P1 x + base-gross P2 x
proof −

have base-gross P x =
gen-base (grd P) (gross-fct (lq P1 ) (fee P1 )) x +
gen-base (grd P) (gross-fct (lq P2 ) (fee P2 )) x

unfolding base-gross-def
proof (rule finite-nz-support.gen-base-gross)

show finite-nz-support (gross-fct (lq P) (fee P))
using finite-liq-pool.finite-liq-gross-fct joint-pools-finite-liq assms
by (metis clmm-dsc-liq(1 ) finite-liq-pool.intro finite-nz-support-def

nz-support-def )
show ∀ i. 0 ≤ gross-fct (lq P1 ) (fee P1 ) i

using clmm-dsc-fees clmm-dsc-liq(2 ) assms(1 ) gross-fct-sgn by blast
show ∀ i. 0 ≤ gross-fct (lq P2 ) (fee P2 ) i

using clmm-dsc-fees clmm-dsc-liq(2 ) assms(2 ) gross-fct-sgn by blast
show ∀ i. gross-fct (lq P) (fee P) i = gross-fct (lq P1 ) (fee P1 ) i +

gross-fct (lq P2 ) (fee P2 ) i
using join-gross-fct assms by auto

qed
also have ... = base-gross P1 x + base-gross P2 x

using assms joint-pools-grids unfolding base-gross-def by simp
finally show ?thesis .

qed

lemma base-net-join:
assumes clmm-dsc P1
and clmm-dsc P2
and joint-pools P P1 P2

shows base-net P x = base-net P1 x + base-net P2 x
proof −

have base-net P x = gen-base (grd P) (lq P1 ) x +
gen-base (grd P) (lq P2 ) x

unfolding base-net-def
proof (rule finite-nz-support.gen-base-gross)

show finite-nz-support (lq P)
by (meson clmm-dsc-def assms finite-liq-def finite-nz-support-def

joint-pools-finite-liq)
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show ∀ i. 0 ≤ lq P1 i using clmm-dsc-liq(2 ) assms(1 ) by auto
show ∀ i. 0 ≤ lq P2 i by (simp add: clmm-dsc-liq(2 ) assms(2 ))
show ∀ i. lq P i = lq P1 i + lq P2 i by (simp add: assms(3 ) joint-pools-lq)

qed
also have ... = base-net P1 x + base-net P2 x

using assms joint-pools-grids unfolding base-net-def by simp
finally show ?thesis .

qed

lemma mkt-depth-join:
assumes clmm-dsc P1
and clmm-dsc P2
and joint-pools P P1 P2

shows mkt-depth P x x ′ = mkt-depth P1 x x ′ + mkt-depth P2 x x ′

using assms unfolding mkt-depth-def
by (simp add: quote-net-join base-net-join)

lemma joint-quote-gross-decomp:
assumes clmm-dsc P1
and clmm-dsc P2
and joint-pools P P1 P2
and nz-support (lq P) 6= {}
and grd-min P ≤ x
and 0 ≤ y
and y + quote-gross P x ≤ quote-gross P (grd-max P)
and x ′ = quote-reach P (y + quote-gross P x)
and y1 = quote-gross P1 x ′ − quote-gross P1 x
and y2 = quote-gross P2 x ′ − quote-gross P2 x

shows y = y1 + y2
proof −

interpret finite-liq-pool P
using assms joint-pools-finite-liq clmm-dsc-liq finite-liq-pool.intro
by blast

have clmm-dsc P using assms joint-pools-clmm-dsc[of P1 ] by simp
have y1 + y2 = quote-gross P1 x ′ + quote-gross P2 x ′ −

(quote-gross P1 x + quote-gross P2 x)
using assms by simp

also have ... = quote-gross P x ′ − quote-gross P x
using quote-gross-join assms by auto

also have ... = y
proof −

have quote-gross P (quote-reach P (y + quote-gross P x)) =
y + quote-gross P x

proof (rule quote-gross-reach-eq)
show ∀ i. fee P i < 1 using ‹clmm-dsc P›

by (simp add: clmm-dsc-fees)
show mono (grd P)

by (simp add: ‹clmm-dsc P› clmm-dsc-grd-mono monoI )
show 0 ≤ y + quote-gross P x
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by (simp add: ‹clmm-dsc P› assms(6 ) clmm-quote-gross-pos)
show y + quote-gross P x ≤ quote-gross P (grd-max P)

using assms by simp
show ∀ i. 0 ≤ lq P i

by (simp add: ‹clmm-dsc P› clmm-dsc-liq(2 ))
qed
thus ?thesis using assms by simp

qed
finally show ?thesis by simp

qed

lemma joint-quote-gross-decomp ′:
assumes clmm-dsc P1
and clmm-dsc P2
and joint-pools P P1 P2
and nz-support (lq P) 6= {}
and 0 ≤ y
and y ≤ quote-gross P (grd-max P)
and x ′ = quote-reach P y
and y1 = quote-gross P1 x ′

and y2 = quote-gross P2 x ′

shows y = y1 + y2
proof −

interpret finite-liq-pool P
using assms joint-pools-finite-liq clmm-dsc-liq finite-liq-pool.intro
by blast

have clmm-dsc P using assms joint-pools-clmm-dsc[of P1 ] by simp
have y1 + y2 = quote-gross P1 x ′ + quote-gross P2 x ′

using assms by simp
also have ... = quote-gross P x ′

using quote-gross-join assms by auto
also have ... = y
proof −

have quote-gross P (quote-reach P y) = y
proof (rule quote-gross-reach-eq)

show ∀ i. fee P i < 1 using ‹clmm-dsc P›
by (simp add: clmm-dsc-fees)

show mono (grd P)
by (simp add: ‹clmm-dsc P› clmm-dsc-grd-mono monoI )

show 0 ≤ y using assms by simp
show y ≤ quote-gross P (grd-max P) using assms by simp
show ∀ i. 0 ≤ lq P i by (simp add: ‹clmm-dsc P› clmm-dsc-liq(2 ))

qed
thus ?thesis using assms by simp

qed
finally show ?thesis by simp

qed

lemma joint-base-net-decomp ′:
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assumes clmm-dsc P1
and clmm-dsc P2
and joint-pools P P1 P2
and nz-support (lq P) 6= {}
and 0 ≤ y
and y ≤ quote-gross P (grd-max P)
and x ′ = quote-reach P y
and y1 = base-net P1 x ′

and y2 = base-net P2 x ′

shows base-net P x ′ = y1 + y2
proof −

interpret finite-liq-pool P
using assms joint-pools-finite-liq clmm-dsc-liq finite-liq-pool.intro
by blast

have clmm-dsc P using assms joint-pools-clmm-dsc[of P1 ] by simp
have y1 + y2 = base-net P1 x ′ + base-net P2 x ′

using assms by simp
also have ... = base-net P x ′

using base-net-join assms by auto
finally show ?thesis by simp

qed

lemma joint-base-gross-decomp:
assumes clmm-dsc P1
and clmm-dsc P2
and joint-pools P P1 P2
and nz-support (lq P) 6= {}
and x ≤ grd-max P
and 0 ≤ y
and y + base-gross P x ≤ base-gross P (grd-min P)
and x ′ = base-reach P (y + base-gross P x)
and y1 = base-gross P1 x ′ − base-gross P1 x
and y2 = base-gross P2 x ′ − base-gross P2 x

shows y = y1 + y2
proof −

interpret finite-liq-pool P
using assms joint-pools-finite-liq clmm-dsc-liq finite-liq-pool.intro
by blast

have clmm-dsc P using assms joint-pools-clmm-dsc[of P1 ] by simp
have y1 + y2 = base-gross P1 x ′ + base-gross P2 x ′ −

(base-gross P1 x + base-gross P2 x)
using assms by simp

also have ... = base-gross P x ′ − base-gross P x
using base-gross-join assms by auto

also have ... = y
proof −

have base-gross P (base-reach P (y + base-gross P x)) =
y + base-gross P x

proof (rule base-gross-dwn)

220



show ∀ i. fee P i < 1 using ‹clmm-dsc P› by (simp add: clmm-dsc-fees)
show mono (grd P) by (simp add: ‹clmm-dsc P› clmm-dsc-grd-mono monoI )

show grd-min P ≤ grd-max P
proof (rule grd-min-max)

show nz-support (lq P) 6= {} using assms by simp
show mono (grd P) using ‹clmm-dsc P› span-gridD clmm-dsc-grid

by (simp add: strict-mono-on-imp-mono-on)
qed
have base-gross P (grd-max P) ≤ base-gross P x

using assms clmm-base-gross-antimono ‹clmm-dsc P› antimonoD by blast
show 0 ≤ y + base-gross P x
using ‹base-gross P (grd-max P) ≤ base-gross P x› ‹mono (grd P)› assms(6 )

base-gross-grd-max fin-nz-sup
by simp

show y + base-gross P x ≤ base-gross P (grd-min P)
using assms by simp

show ∀ i. grd P i ≤ grd P (i + 1 )
using ‹clmm-dsc P› span-gridD clmm-dsc-grid
by (simp add: strict-mono-leD)

show ∀ i. 0 < grd P i
using ‹clmm-dsc P› span-gridD clmm-dsc-grid by presburger

show ∀ i. 0 ≤ lq P i
by (simp add: ‹clmm-dsc P› clmm-dsc-liq(2 ))

qed
thus ?thesis using assms by simp

qed
finally show ?thesis by simp

qed

definition join-pools where
join-pools P1 P2 =
(grd P1 ,
(λi. lq P1 i + lq P2 i),
(λi. pool-fee-join P1 P2 i))

lemma join-pools-grd[simp]:
assumes P = join-pools P1 P2
shows grd P = grd P1 using assms unfolding grd-def join-pools-def by simp

lemma join-pools-lq[simp]:
assumes P = join-pools P1 P2
shows lq P i = lq P1 i + lq P2 i
using assms unfolding lq-def join-pools-def by simp

lemma join-pools-fee[simp]:
assumes P = join-pools P1 P2
shows fee P i = pool-fee-join P1 P2 i
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using assms unfolding fee-def join-pools-def by simp

lemma join-joint-pools:
assumes grd P1 = grd P2
shows joint-pools (join-pools P1 P2 ) P1 P2

proof
show grd (join-pools P1 P2 ) = grd P1 by simp
show grd (join-pools P1 P2 ) = grd P2 using assms by simp
fix i
show lq (join-pools P1 P2 ) i = lq P1 i + lq P2 i by simp
show fee (join-pools P1 P2 ) i = pool-fee-join P1 P2 i by simp

qed

6.4 CLMM pool combination
definition pool-comb where
pool-comb P1 P2 sqp = (let P ′ = refine P1 sqp in

pool-join P ′ (slice-pool P2 sqp))

lemma pool-comb-joint:
assumes grd P1 = grd P2
shows joint-pools (pool-comb P1 P2 sqp) (refine P1 sqp)
(slice-pool P2 sqp) unfolding pool-comb-def Let-def

proof (rule pool-join-joint)
show grd (refine P1 sqp) = grd (slice-pool P2 sqp)

using refine-grd-cong[of refine P1 sqp] assms
by (simp add: slice-poolD)

qed simp+

lemma pool-comb-refined-joint-nz-liq:
assumes grd P1 = grd P2
and clmm-dsc P1
and clmm-dsc P2
and P = pool-comb P1 P2 sqp
and grd P1 (lower-tick P1 sqp) = sqp

shows nz-support (lq P) = nz-support (lq P1 ) ∪
(nz-support (lq (slice-pool P2 sqp)))

by (metis assms(1−5 ) clmm-dsc-grid(2 ) clmm-joint-pools-nz-liq pool-comb-joint

refine-eq slice-pool-clmm-dsc)

lemma pool-comb-joint-refined:
assumes grd P1 = grd P2
and grd P1 (lower-tick P1 sqp) = sqp
shows joint-pools (pool-comb P1 P2 sqp) P1
(slice-pool P2 sqp)

proof −
have eq: grd P2 (lower-tick P2 sqp) = sqp

by (metis assms(1 ) assms(2 ) grd-lower-tick-cong)
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have refine P1 sqp = P1 using assms refine-eq by simp
moreover have refine P2 sqp = P2 using assms eq refine-eq by simp
ultimately show ?thesis

using pool-join-joint assms unfolding pool-comb-def Let-def
by (metis pool-comb-def pool-comb-joint)

qed

lemma pool-comb-clmm-dsc:
assumes clmm-dsc P1
and clmm-dsc P2
and grd P1 = grd P2
and 0 < sqp
and P3 = pool-comb P1 P2 sqp

shows clmm-dsc P3 unfolding pool-comb-def Let-def
proof (rule joint-pools-clmm-dsc)

define P where P = refine P1 sqp
define P ′ where P ′ = slice-pool (refine P2 sqp) sqp
show clmm-dsc P using refine-clmm assms unfolding P-def by simp
show clmm-dsc P ′

proof (rule slice-pool-clmm-dsc)
show clmm-dsc (refine P2 sqp) using refine-clmm assms by simp
show 0 < sqp using assms by simp

qed (simp add: P ′-def )
show joint-pools P3 P P ′

using pool-join-joint assms P ′-def P-def pool-comb-joint
by (metis refine-eq refine-lower-tick slice-poolD)

qed

lemma pool-comb-grd-min:
assumes clmm-dsc P1
and clmm-dsc P2
and grd P1 = grd P2
and nz-support (lq P1 ) 6= {}
and nz-support (lq P2 ) 6= {}
and 0 < sqp
and sqp < grd-max P2
and P = pool-comb P1 P2 sqp

shows grd-min P = min (grd-min P1 ) (grd-min (slice-pool P2 sqp))
proof −

define i where i = idx-min (lq P)
define i1 where i1 = idx-min (lq (refine P1 sqp))
define i2 where i2 = idx-min (lq (slice-pool P2 sqp))
have clmm-dsc P using assms pool-comb-clmm-dsc[of P1 ] by simp
have i = min i1 i2 unfolding i-def i1-def i2-def
proof (rule joint-pools-idx-min)

show clmm-dsc (refine P1 sqp)
by (meson assms(1 ) assms(6 ) refine-clmm)

show clmm-dsc (slice-pool P2 sqp)
by (meson assms(2 ) assms(6 ) refine-clmm slice-pool-clmm-dsc)

223



show nz-support (lq (refine P1 sqp)) 6= {}
using assms(1 ) assms(4 ) refine-nz-lq-ne by auto

show nz-support (lq (slice-pool P2 sqp)) 6= {}
using assms slice-pool-nz-liq ′ clmm-dsc-liq(1 ) finite-liq-pool.intro

refine-grd-max refine-clmm refine-nz-lq-ne
by presburger

show joint-pools P (refine P1 sqp) (slice-pool P2 sqp)
by (metis assms(3 ,8 ) pool-comb-joint)

qed
have grd-min P = grd P i

using grd-min-def idx-min-img-def i-def by simp
also have ... = min (grd P i1 ) (grd P i2 )

using ‹i = min i1 i2 ›
by (metis ‹clmm-dsc P› clmm-dsc-grd-smono linorder-not-less min.absorb4

min.order-iff min.strict-order-iff )
also have ... = min (grd (refine P1 sqp) i1 )

(grd (slice-pool P2 sqp) i2 )
proof −

have grd (refine P1 sqp) = grd P using assms
by (metis pool-comb-joint joint-pools-grids(1 ))

moreover have grd (slice-pool P2 sqp) = grd P
by (metis assms(3 ) assms(8 ) pool-comb-joint joint-pools-def )

ultimately show ?thesis by simp
qed
also have ... = min (grd-min (refine P1 sqp))

(grd-min (slice-pool P2 sqp))
using i1-def i2-def unfolding grd-min-def idx-min-img-def by simp

also have ... = min (grd-min P1 ) (grd-min ( slice-pool P2 sqp))
using refine-grd-min assms by simp

finally show ?thesis .
qed

lemma pool-comb-le-grd-min:
assumes clmm-dsc P1
and clmm-dsc P2
and grd P1 = grd P2
and nz-support (lq P1 ) 6= {}
and nz-support (lq P2 ) 6= {}
and 0 < sqp
and sqp < grd-max P2
and grd-min P1 ≤ sqp
and P = pool-comb P1 P2 sqp

shows grd-min P = grd-min P1
proof −

have sqp ≤ grd-min (slice-pool P2 sqp)
by (rule slice-pool-grd-min, auto simp add: assms)

thus ?thesis using assms pool-comb-grd-min by simp
qed
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lemma pool-comb-grd-max:
assumes clmm-dsc P1
and clmm-dsc P2
and grd P1 = grd P2
and nz-support (lq P1 ) 6= {}
and nz-support (lq P2 ) 6= {}
and 0 < sqp
and sqp < grd-max P2
and P = pool-comb P1 P2 sqp

shows grd-max P = max (grd-max P1 ) (grd-max P2 )
proof −

define i where i = idx-max (lq P)
define i1 where i1 = idx-max (lq (refine P1 sqp))
define i2 where i2 = idx-max (lq (slice-pool P2 sqp))
have clmm-dsc P using assms pool-comb-clmm-dsc[of P1 ] by simp
have i = max i1 i2 unfolding i-def i1-def i2-def
proof (rule joint-pools-idx-max)

show clmm-dsc (refine P1 sqp)
by (meson assms(1 ) assms(6 ) refine-clmm)

show clmm-dsc (slice-pool P2 sqp)
by (meson assms(2 ) assms(6 ) refine-clmm slice-pool-clmm-dsc)

show nz-support (lq (refine P1 sqp)) 6= {}
using assms(1 ) assms(4 ) refine-nz-lq-ne by auto

show nz-support (lq (slice-pool P2 sqp)) 6= {}
using assms slice-pool-nz-liq ′ clmm-dsc-liq(1 ) finite-liq-pool.intro

refine-grd-max refine-clmm refine-nz-lq-ne
by presburger

show joint-pools P (refine P1 sqp) (slice-pool P2 sqp)
by (simp add: assms(3 ) assms(8 ) pool-comb-joint)

qed
hence i+1 = max (i1+1 ) (i2+1 ) by simp
have grd-max P = grd P (i+1 )

using grd-max-def idx-max-img-def i-def by simp
also have ... = max (grd P (i1+1 )) (grd P (i2+1 ))

using ‹i+1 = max (i1+1 ) (i2+1 )›
by (metis ‹clmm-dsc P› clmm-dsc-grd-mono max.orderE max-absorb2 nle-le)

also have ... = max (grd (refine P1 sqp) (i1+1 ))
(grd (slice-pool P2 sqp) (i2+1 ))

proof −
have grd (refine P1 sqp) = grd P using assms

by (metis pool-comb-joint joint-pools-grids(1 ))
moreover have grd (slice-pool P2 sqp) = grd P

by (metis assms(3 ) assms(8 ) pool-comb-joint joint-pools-def )
ultimately show ?thesis by simp

qed
also have ... = max (grd-max (refine P1 sqp))

(grd-max ( slice-pool P2 sqp))
using i1-def i2-def unfolding grd-max-def idx-max-img-def by simp

also have ... = max (grd-max P1 ) (grd-max P2 )
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using refine-grd-max slice-pool-grd-max ′ assms(1 ) assms(2 ) assms(4−7 )
refine-clmm refine-nz-lq-ne

by presburger
finally show ?thesis .

qed

lemma pool-comb-grd-max-slice:
assumes clmm-dsc P1
and clmm-dsc P2
and grd P1 = grd P2
and nz-support (lq P1 ) 6= {}
and nz-support (lq P2 ) 6= {}
and 0 < sqp
and sqp < grd-max P2
and P = pool-comb P1 P2 sqp

shows sqp < grd-max P
proof (cases grd-max P1 ≤ grd-max P2 )

case True
hence grd-max P = grd-max P2 using assms pool-comb-grd-max

by (metis max.absorb1 max.commute)
then show ?thesis using assms by simp

next
case False
hence grd-max P = grd-max P1 using assms pool-comb-grd-max

by (metis linorder-not-less max.absorb3 )
then show ?thesis using assms False by simp

qed

lemma pool-comb-quote-decomp:
assumes clmm-dsc P1
and clmm-dsc P2
and grd P1 = grd P2
and grd P1 (lower-tick P1 sqp) = sqp
and 0 < sqp
and sqp ′ ≤ grd-max P
and P = pool-comb P1 P2 sqp
and nz-support (lq P) 6= {}

shows quote-gross P sqp ′ = quote-gross P1 sqp ′ + quote-gross (slice-pool P2 sqp)
sqp ′

proof −
define P ′′ where P ′′ = slice-pool P2 sqp
have clmm-dsc P using pool-comb-clmm-dsc assms by simp
interpret finite-liq-pool

by (simp add: ‹clmm-dsc P› clmm-dsc-liq(1 ) finite-liq-pool.intro)
define sqp ′′ where sqp ′′ = quote-reach P (quote-gross P sqp ′)
have quote-gross P sqp ′ = quote-gross P sqp ′′ unfolding sqp ′′-def
proof (rule clmm-quote-gross-reach-eq[symmetric])

show clmm-dsc P using ‹clmm-dsc P› .
show nz-support (lq P) 6= {} using assms by simp
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show 0 ≤ quote-gross P sqp ′

using clmm-quote-gross-pos ‹clmm-dsc P› by simp
show quote-gross P sqp ′ ≤ quote-gross P (grd-max P)

using ‹clmm-dsc P› clmm-quote-gross-mono assms by (metis monoD)
qed
also have ... = quote-gross P1 sqp ′′ + quote-gross P ′′ sqp ′′

proof (rule joint-quote-gross-decomp ′)
show joint: joint-pools P P1 P ′′

using assms pool-comb-joint-refined unfolding P ′′-def by simp
show clmm-dsc P1 using assms by simp
show clmm-dsc P ′′

using refine-clmm slice-pool-clmm-dsc assms
unfolding P ′′-def by auto

show nz-support (lq P) 6= {} using assms by simp
show 0 ≤ quote-gross P sqp ′′

using clmm-quote-gross-pos ‹clmm-dsc P› by simp
show sqp ′′ = quote-reach P (quote-gross P sqp ′′)

using assms sqp ′′-def calculation by presburger
show quote-gross P sqp ′′ ≤ quote-gross P (grd-max P)

using assms clmm-quote-gross-mono ‹clmm-dsc P› monoD calculation
by metis

qed simp+
also have ... = quote-gross P1 sqp ′ + quote-gross P ′′ sqp ′

by (metis P ′′-def assms(1−5 ,7 ) calculation pool-comb-joint-refined
quote-gross-join slice-pool-clmm-dsc)

finally show quote-gross P sqp ′ = quote-gross P1 sqp ′ + quote-gross P ′′ sqp ′ .
qed

lemma pool-comb-quote-le-slice:
assumes clmm-dsc P1
and clmm-dsc P2
and grd P1 = grd P2
and grd P1 (lower-tick P1 sqp) = sqp
and 0 < sqp
and sqp ′ ≤ sqp
and sqp ≤ grd-max P
and P = pool-comb P1 P2 sqp
and nz-support (lq P) 6= {}

shows quote-gross P sqp ′ = quote-gross P1 sqp ′

proof −
have quote-gross P sqp ′ = quote-gross P1 sqp ′ +

quote-gross (slice-pool P2 sqp) sqp ′

using assms pool-comb-quote-decomp by simp
moreover have quote-gross (slice-pool P2 sqp) sqp ′ = 0

by (metis add-0 assms(2 ,5 ,6 ) clmm-quote-gross-pos quote-gross-imp-sqp-lt
eq-diff-eq ′ less-eq-real-def order-antisym-conv slice-pool-clmm-dsc
slice-pool-quote-gross)

ultimately show ?thesis by simp
qed
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lemma pool-comb-quote-diff-decomp:
assumes clmm-dsc P1
and clmm-dsc P2
and grd P1 = grd P2
and grd P1 (lower-tick P1 sqp) = sqp
and 0 < sqp
and 0 < sqp ′

and 0 < sqp1
and sqp ′ ≤ grd-max P
and sqp1 ≤ grd-max P
and P = pool-comb P1 P2 sqp
and nz-support (lq P) 6= {}

shows quote-gross P sqp ′ − quote-gross P sqp1 =
quote-gross P1 sqp ′− quote-gross P1 sqp1 +
quote-gross (slice-pool P2 sqp) sqp ′ − quote-gross (slice-pool P2 sqp) sqp1

proof −
define P ′′ where P ′′ = slice-pool P2 sqp
have clmm-dsc P using pool-comb-clmm-dsc assms by simp
interpret finite-liq-pool

by (simp add: ‹clmm-dsc P› clmm-dsc-liq(1 ) finite-liq-pool.intro)
have quote-gross P sqp ′ = quote-gross P1 sqp ′ + quote-gross P ′′ sqp ′

using assms P ′′-def pool-comb-quote-decomp by simp
moreover have quote-gross P sqp1 = quote-gross P1 sqp1 + quote-gross P ′′

sqp1
using assms P ′′-def pool-comb-quote-decomp by simp

ultimately show ?thesis unfolding P ′′-def by linarith
qed

lemma pool-comb-base-net-plus:
assumes clmm-dsc P1
and clmm-dsc P2
and grd P1 = grd P2
and grd P1 (lower-tick P1 sqp2 ) = sqp2
and 0 < sqp2
and 0 < y
and y ≤ quote-gross P (grd-max P)
and P = pool-comb P1 P2 sqp2
and sqp ′ = quote-reach P y
and sqp ′ ≤ sqp2
and nz-support (lq P) 6= {}

shows base-net P sqp ′ = base-net P1 sqp ′ + base-net (slice-pool P2 sqp2 ) sqp ′

proof −
define P ′′ where P ′′ = slice-pool P2 sqp2
have clmm-dsc P using pool-comb-clmm-dsc assms by simp
interpret finite-liq-pool

by (simp add: ‹clmm-dsc P› clmm-dsc-liq(1 ) finite-liq-pool.intro)
have y = quote-gross P sqp ′

using clmm-quote-gross-reach-eq assms ‹clmm-dsc P› by auto
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show base-net P sqp ′ = base-net P1 sqp ′ + base-net P ′′ sqp ′

proof (rule joint-base-net-decomp ′)
show joint: joint-pools P P1 P ′′

using assms pool-comb-joint-refined unfolding P ′′-def by simp
show clmm-dsc P1 using assms by simp
show clmm-dsc P ′′

using refine-clmm slice-pool-clmm-dsc assms
unfolding P ′′-def by auto

show nz-support (lq P) 6= {} using assms by simp
show 0 ≤ quote-gross P sqp ′

using clmm-quote-gross-pos ‹clmm-dsc P› by simp
show sqp ′ = quote-reach P (quote-gross P sqp ′)

using assms ‹y = quote-gross P sqp ′› by presburger
show quote-gross P sqp ′ ≤ quote-gross P (grd-max P)

using assms ‹y = quote-gross P sqp ′› by linarith
qed simp+

qed

lemma combo-quote-init1 :
assumes clmm-dsc P1
and clmm-dsc P2
and grd P1 = grd P2
and grd P1 (lower-tick P1 sqp2 ) = sqp2
and 0 < sqp2
and P = pool-comb P1 P2 sqp2
and 0 < y
and nz-support (lq P1 ) 6= {}
and nz-support (lq P2 ) 6= {}
and y + quote-gross P sqp1 ≤ quote-gross P (grd-max P)
and sqp ′ = quote-reach P (y + quote-gross P sqp1 )
and sqp2 < grd-max P2
and sqp1 ≤ sqp2

shows quote-gross P sqp1 = quote-gross P1 sqp1
proof (rule pool-comb-quote-le-slice)

have clmm-dsc P using pool-comb-clmm-dsc assms by simp
show nz-support (lq P) 6= {} using pool-comb-refined-joint-nz-liq assms by simp
hence qa: quote-gross P sqp ′ = y + quote-gross P sqp1

using assms clmm-quote-gross-reach-eq ‹clmm-dsc P› clmm-quote-gross-pos
by auto

show clmm-dsc P1 using assms by simp
show clmm-dsc P2 using assms by simp
show grd P1 = grd P2 using assms by simp
show grd P1 (lower-tick P1 sqp2 ) = sqp2 using assms by simp
show P = pool-comb P1 P2 sqp2 using assms by simp
show 0 < sqp2 using assms assms by simp
show sqp1 ≤ sqp2 using assms by simp
have sqp2 < grd-max P using pool-comb-grd-max-slice assms by simp
thus sqp2 ≤ grd-max P by simp

qed
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lemma combo-remain-quote-eq:
assumes clmm-dsc P1
and clmm-dsc P2
and grd P1 = grd P2
and grd P1 (lower-tick P1 sqp2 ) = sqp2
and 0 < sqp2
and P = pool-comb P1 P2 sqp2
and nz-support (lq P) 6= {}
and nz-support (lq P2 ) 6= {}
and 0 < y
and 0< sqp1
and y + quote-gross P sqp1 ≤ quote-gross P (grd-max P)
and sqp ′ = quote-reach P (y + quote-gross P sqp1 )
and y1 = quote-gross P1 sqp ′ − quote-gross P1 sqp1
and sqp2 ≤ sqp ′

and sqp1 ≤ sqp2
and rs1 ′ = quote-reach P2 (y − y1 + quote-gross P2 sqp2 )

shows quote-gross P2 sqp ′ = quote-gross P2 rs1 ′

proof −
have clmm-dsc P using pool-comb-clmm-dsc assms by simp
define P ′′ where P ′′ = slice-pool P2 sqp2
define i where i = lower-tick P2 sqp2
hence grd P2 i = sqp2

using assms lower-tick-eq by metis
hence quote-gross P2 sqp ′ = quote-gross P ′′ sqp ′ + quote-gross P2 sqp2

using slice-pool-quote-gross P ′′-def assms i-def
by simp

also have ... = quote-gross P sqp ′ − quote-gross P1 sqp ′ + quote-gross P2 sqp2
proof −

have quote-gross P sqp ′ = quote-gross P ′′ sqp ′+ quote-gross P1 sqp ′

using pool-comb-quote-decomp P ′′-def assms pool-comb-joint-refined
quote-gross-join slice-pool-clmm-dsc

by (metis add.commute)
thus ?thesis by simp

qed
also have ... = y − y1 + quote-gross P2 sqp2
proof −

have quote-gross P sqp ′ = y + quote-gross P sqp1
using assms clmm-quote-gross-reach-eq ‹clmm-dsc P› clmm-quote-gross-pos
by auto

moreover have quote-gross P1 sqp ′ = y1 + quote-gross P1 sqp1
using assms by simp

moreover have quote-gross P sqp1 = quote-gross P1 sqp1
proof (rule pool-comb-quote-le-slice)

show clmm-dsc P1 using assms by simp
show clmm-dsc P2 using assms by simp
show grd P1 = grd P2 using assms by simp
show grd P1 (lower-tick P1 sqp2 ) = sqp2 using assms by simp
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show nz-support (lq P) 6= {} using assms by simp
show P = pool-comb P1 P2 sqp2 using assms by simp
show 0 < sqp2 using assms assms by simp
show sqp1 ≤ sqp2 using assms by simp
show sqp2 ≤ grd-max P

by (metis ‹clmm-dsc P› assms(11 ) assms(12 ) assms(14 ) assms(7 )
calculation(1 ) quote-gross-imp-sqp-lt quote-gross-grd-max-ge
grd-max-quote-reach linorder-not-less order-le-imp-less-or-eq)

qed
ultimately show ?thesis by simp

qed
also have ... = quote-gross P2 (quote-reach P2 (y − y1 + quote-gross P2 sqp2 ))
proof (rule clmm-quote-gross-reach-eq[symmetric])

show clmm-dsc P2 using assms by simp
show nz-support (lq P2 ) 6= {} using assms by simp
show 0 ≤ y − y1 + quote-gross P2 sqp2

by (metis assms(2 ) calculation clmm-quote-gross-pos)
show y − y1 + quote-gross P2 sqp2 ≤ quote-gross P2 (grd-max P2 )

by (metis assms(2 ) assms(8 ) calculation quote-gross-grd-max-max)
qed
finally show ?thesis using assms by simp

qed

lemma comb-quote-gross-le:
assumes clmm-dsc P1
and clmm-dsc P2
and grd P1 = grd P2
and 0 < sqp
and sqp < grd-max P
and 0 < y
and y ≤ quote-gross P sqp
and y ≤ quote-gross P (grd-max P)
and P = pool-comb P1 P2 sqp
and sqp ′ = quote-reach P y
and nz-support (lq P) 6= {}

shows quote-gross P1 sqp ′ = y
proof −

define P ′ where P ′ = refine P1 sqp
define P ′′ where P ′′ = slice-pool P2 sqp
hence quote-gross P ′′ sqp = 0 using slice-pool-quote-gross-leq

by (metis assms(2 ) assms(4 ) dual-order .refl)
have clmm-dsc P using pool-comb-clmm-dsc assms by simp
interpret finite-liq-pool

by (simp add: ‹clmm-dsc P› clmm-dsc-liq(1 ) finite-liq-pool.intro)
have y = quote-gross P sqp ′

using clmm-quote-gross-reach-eq assms ‹clmm-dsc P› by auto
hence sqp ′ ≤ sqp

using ‹clmm-dsc P› quote-reach-le-gross assms order-less-imp-le
by blast
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hence quote-gross P ′′ sqp ′ = 0 using slice-pool-quote-gross-leq
by (metis P ′′-def assms(2 ,4 ))

have quote-gross P sqp ′ = quote-gross P ′ sqp ′ + quote-gross P ′′ sqp
proof (rule joint-quote-gross-decomp ′)

show joint: joint-pools P P ′ P ′′

using assms pool-comb-joint unfolding P ′-def P ′′-def by simp
show clmm-dsc P ′

using refine-clmm assms unfolding P ′-def by simp
show clmm-dsc P ′′

using refine-clmm slice-pool-clmm-dsc assms
unfolding P ′′-def by auto

show nz-support (lq P) 6= {} using assms by simp
show 0 ≤ quote-gross P sqp ′

using clmm-quote-gross-pos ‹clmm-dsc P› by simp
show sqp ′ = quote-reach P (quote-gross P sqp ′)

using assms ‹y = quote-gross P sqp ′› by presburger
show quote-gross P sqp ′ ≤ quote-gross P (grd-max P)

using assms ‹y = quote-gross P sqp ′› by linarith
show quote-gross P ′′ sqp = quote-gross P ′′ sqp ′

by (simp add: ‹quote-gross P ′′ sqp = 0 › ‹quote-gross P ′′ sqp ′ = 0 ›)
qed simp
also have ... = quote-gross P ′ sqp ′ using ‹quote-gross P ′′ sqp = 0 › by simp
also have ... = quote-gross P1 sqp ′

using refine-quote-gross assms P ′-def by simp
finally show ?thesis using ‹y = quote-gross P sqp ′› by simp

qed

locale combined-pools =
fixes P1 P2 P sqp2
assumes cmb-P1 : clmm-dsc P1
and cmb-P2 : clmm-dsc P2
and cmb-grd-eq: grd P1 = grd P2
and cmb-on-grid: grd P1 (lower-tick P1 sqp2 ) = sqp2
and cmb-nz1 : nz-support (lq P1 ) 6= {}
and cmb-nz2 : nz-support (lq P2 ) 6= {}
and cmb-comb: P = pool-comb P1 P2 sqp2
and cmb-pos: 0 < sqp2
and cmb-max: sqp2 < grd-max P2

begin

lemma combined-P-prop:
shows clmm-dsc P nz-support (lq P) 6= {}

proof −
show clmm-dsc P

using cmb-P1 cmb-P2 cmb-comb pool-comb-clmm-dsc cmb-grd-eq cmb-pos by
blast

show nz-support (lq P) 6= {}
using pool-comb-refined-joint-nz-liq cmb-P1 cmb-P2 cmb-comb cmb-grd-eq
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cmb-nz1 cmb-on-grid
by blast

qed

lemmas cmb-props = cmb-P1 cmb-P2 cmb-grd-eq cmb-on-grid cmb-nz1 cmb-nz2
cmb-comb cmb-pos cmb-max combined-P-prop

lemma combo-joint-quote-gross-decomp:
assumes 0 < y
and 0 < sqp1
and y + quote-gross P sqp1 ≤ quote-gross P (grd-max P)
and sqp ′ = quote-reach P (y + quote-gross P sqp1 )
and y1 = quote-gross P1 sqp ′ − quote-gross P1 sqp1
and P ′′ = slice-pool P2 sqp2
and y2 ′ = quote-gross P ′′ sqp ′ − quote-gross P ′′ sqp1

shows y = y1 + y2 ′ y1 ≤ y 0 ≤ y1
y1 + quote-gross P1 sqp1 ≤ quote-gross P1 (grd-max P1 )
y2 ′ ≤ quote-gross P ′′ (grd-max P2 )

proof −
have clmm-dsc P using combined-P-prop by simp
have nz-support (lq P) 6= {} using combined-P-prop by simp
have quote-gross P sqp1 < quote-gross P (grd-max P) using assms by simp
hence sqp1 < grd-max P

using ‹clmm-dsc P› quote-gross-imp-sqp-lt by blast
define sqp1 ′ where sqp1 ′ = quote-reach P1 (quote-gross P1 sqp ′)
have quote-gross P sqp1 < quote-gross P sqp ′

using quote-reach-add-gt assms ‹clmm-dsc P›
‹nz-support (lq P) 6= {}›

by simp
hence sqp1 < sqp ′

using ‹clmm-dsc P› quote-gross-imp-sqp-lt[of P] by simp
hence 0 < sqp ′

using assms liq-grd-min combined-pools-axioms
unfolding combined-pools-def by fastforce

have quote-gross P1 sqp ′ ≤ quote-gross P1 (grd-max P1 )
by (simp add: cmb-P1 cmb-nz1 quote-gross-grd-max-max)

thus y1 + quote-gross P1 sqp1 ≤ quote-gross P1 (grd-max P1 )
by (simp add: assms(5 ))

have clmm-dsc P ′′ using assms slice-pool-clmm-dsc cmb-P2 cmb-pos by simp
have grd-max P2 = grd-max P ′′ using slice-pool-grd-max ′

by (simp add: assms cmb-P2 cmb-max cmb-nz2 cmb-pos)
have nz-support (lq P ′′) 6= {} using slice-pool-nz-liq ′

by (simp add: assms cmb-P2 cmb-max cmb-nz2 cmb-pos)
define sqp2 ′ where sqp2 ′ = quote-reach P ′′ (quote-gross P ′′ sqp ′)
have quote-gross P sqp1 < quote-gross P sqp ′

using quote-reach-add-gt assms ‹clmm-dsc P›
‹nz-support (lq P) 6= {}›

by simp
hence sqp1 < sqp ′
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using ‹clmm-dsc P› quote-gross-imp-sqp-lt[of P] by simp
have 0 ≤ y2 ′

by (metis ‹clmm-dsc P ′′› ‹sqp1 < sqp ′› quote-gross-imp-sqp-lt
diff-ge-0-iff-ge eucl-less-le-not-le linorder-less-linear
verit-comp-simplify1 (2 ) assms(7 ))

show y = y1 + y2 ′

proof −
have quote-gross P sqp ′ = y + quote-gross P sqp1

using assms clmm-quote-gross-reach-eq ‹clmm-dsc P› clmm-quote-gross-pos
‹nz-support (lq P) 6= {}›

by auto
hence y = quote-gross P sqp ′ − quote-gross P sqp1 by simp
also have ... = quote-gross P1 sqp ′ − quote-gross P1 sqp1 +

quote-gross (slice-pool P2 sqp2 ) sqp ′ −
quote-gross (slice-pool P2 sqp2 ) sqp1

proof (rule pool-comb-quote-diff-decomp[OF cmb-P1 cmb-P2 cmb-grd-eq cmb-on-grid])
show nz-support (lq P) 6= {} P = pool-comb P1 P2 sqp2

sqp1 ≤ grd-max P
using ‹nz-support (lq P) 6= {}› ‹sqp1 < grd-max P› cmb-comb by auto

show 0 < sqp1 using assms liq-grd-min cmb-P1 cmb-nz1 by fastforce
have 0 < grd-min P

using ‹nz-support (lq P) 6= {}› ‹clmm-dsc P› liq-grd-min by simp
thus 0 < sqp ′

using assms clmm-quote-reach-ge ‹nz-support (lq P) 6= {}›
by (metis ‹clmm-dsc P› ‹quote-gross P sqp ′ = y + quote-gross P sqp1 ›

add-less-le-mono clmm-quote-gross-pos less-add-same-cancel1 )
show sqp ′ ≤ grd-max P

using quote-reach-leq-grd-max assms ‹nz-support (lq P) 6= {}›
by (simp add: ‹clmm-dsc P› clmm-quote-gross-pos)

show 0 < sqp2 using cmb-pos by simp
qed
also have ... = y1 + y2 ′ using assms by simp
finally show ?thesis .

qed
show y1 ≤ y using ‹0 ≤ y2 ′› ‹y = y1 + y2 ′› by simp
show y2 ′ ≤ quote-gross P ′′ (grd-max P2 )

by (metis ‹clmm-dsc P ′′› ‹nz-support (lq P ′′) 6= {}›
‹grd-max P2 = grd-max P ′′› add.commute add-diff-cancel assms(7 )
clmm-quote-gross-pos quote-gross-grd-max-max diff-add-cancel
diff-ge-0-iff-ge dual-order .trans)

show 0 ≤ y1
by (metis ‹sqp1 < sqp ′› assms(5 ) quote-gross-imp-sqp-lt

cmb-P1 eq-diff-eq ′ le-add-same-cancel2 less-eq-real-def
linorder-neqE-linordered-idom order .asym)

qed

lemma combo-joint-quote-gross-leq-max:
assumes 0 < y
and 0 < sqp1
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and y + quote-gross P sqp1 ≤ quote-gross P (grd-max P)
and sqp ′ = quote-reach P (y + quote-gross P sqp1 )
and y1 = quote-gross P1 sqp ′ − quote-gross P1 sqp1

shows y− y1 + quote-gross P2 sqp2 ≤ quote-gross P2 (grd-max P2 )
proof −

define P ′′ where P ′′ = slice-pool P2 sqp2
define y2 ′ where y2 ′ = quote-gross P ′′ sqp ′ − quote-gross P ′′ sqp1
have y − y1 = y2 ′ using y2 ′-def P ′′-def assms combo-joint-quote-gross-decomp

by (metis add-diff-cancel-left ′)
also have ... ≤ quote-gross P ′′ (grd-max P2 )

using assms combo-joint-quote-gross-decomp
unfolding y2 ′-def P ′′-def
by metis

also have ... = quote-gross P2 (grd-max P2 ) − quote-gross P2 sqp2
unfolding P ′′-def
using cmb-P2 cmb-grd-eq cmb-max cmb-on-grid cmb-pos lower-tick-eq

slice-pool-quote-gross
by auto

finally have y − y1 ≤ quote-gross P2 (grd-max P2 ) − quote-gross P2 sqp2 .
thus ?thesis by simp

qed

lemma combo-joint-quote-gross-price-le:
assumes 0 < y
and grd-min P1 ≤ sqp1
and sqp1 ≤ sqp2
and y + quote-gross P sqp1 ≤ quote-gross P (grd-max P)
and sqp ′ = quote-reach P (y + quote-gross P sqp1 )
and y1 = quote-gross P1 sqp ′ − quote-gross P1 sqp1
and rs1 = quote-reach P1 (y1 + quote-gross P1 sqp1 )

shows rs1 ≤ sqp ′

proof (cases y1 + quote-gross P1 sqp1 = 0 )
case True
hence rs1 = grd-min P1 using assms

by (simp add: clmm-quote-reach-zero cmb-P1 cmb-nz1 )
also have ... = grd-min P using assms pool-comb-le-grd-min
by (simp add: cmb-P1 cmb-P2 cmb-comb cmb-grd-eq cmb-max cmb-nz1 cmb-nz2

cmb-pos)
also have ... < sqp ′

proof −
have 0 < y + quote-gross P sqp1

by (simp add: add-pos-nonneg assms clmm-quote-gross-pos combined-P-prop)
thus ?thesis using assms

by (simp add: combined-P-prop quote-reach-gt-grd-min)
qed
finally show ?thesis by simp

next
case False
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hence 0 < y1 + quote-gross P1 sqp1
by (metis assms(6 ) clmm-quote-gross-pos cmb-P1 diff-add-cancel

less-eq-real-def )
show ?thesis

by (smt (z3 ) ‹0 < y1 + quote-gross P1 sqp1 › assms clmm-quote-gross-pos
quote-reach-le-gross quote-gross-grd-max-max clmm-quote-reach-ge
quote-reach-leq-grd-max liq-grd-min cmb-P1 cmb-nz1 combined-P-prop)

qed

lemma combo-joint-quote-gross-decomp-leq:
assumes 0 < y
and 0 < sqp1
and y + quote-gross P sqp1 ≤ quote-gross P (grd-max P)
and sqp ′ = quote-reach P (y + quote-gross P sqp1 )
and y1 = quote-gross P1 sqp ′ − quote-gross P1 sqp1
and P ′′ = slice-pool P2 sqp2
and sqp1 ≤ sqp2
and y2 ′ = quote-gross P ′′ sqp ′

shows y = y1 + y2 ′ y1 ≤ y 0 ≤ y1
y1 + quote-gross P1 sqp1 ≤ quote-gross P1 (grd-max P1 )
y2 ′ ≤ quote-gross P ′′ (grd-max P2 )

proof −
have quote-gross P ′′ sqp1 = 0

by (smt (verit) assms(2 ) assms(6 ) assms(7 ) sqp-lt-grd-max-imp-idx
clmm-quote-gross-grd-min-le cmb-P2 cmb-grd-eq cmb-max cmb-nz2
cmb-on-grid grd-lower-tick-cong slice-pool-clmm-dsc slice-pool-grd-min)

hence eq: y2 ′ = quote-gross P ′′ sqp ′ − quote-gross P ′′ sqp1 using assms by
simp

thus y = y1 + y2 ′ using assms combo-joint-quote-gross-decomp by blast
show y1 ≤ y using assms combo-joint-quote-gross-decomp(2 ) by blast
show y1 + quote-gross P1 sqp1 ≤ quote-gross P1 (grd-max P1 )

using assms combo-joint-quote-gross-decomp(4 ) by blast
show y2 ′ ≤ quote-gross P ′′ (grd-max P2 )

using eq assms combo-joint-quote-gross-decomp(5 ) by blast
show 0 ≤ y1

using eq assms combo-joint-quote-gross-decomp(3 ) by blast
qed

lemma combo-quote-swap-slice-eq:
assumes 0 < sqp1
and 0 < y
and y + quote-gross P sqp1 ≤ quote-gross P (grd-max P)
and sqp ′ = quote-reach P (y + quote-gross P sqp1 )
and y1 = quote-gross P1 sqp ′ − quote-gross P1 sqp1

shows quote-swap P sqp1 y = quote-swap P1 sqp1 y1 +
quote-swap (slice-pool P2 sqp2 ) sqp1 (y − y1 )

proof −
have clmm-dsc P using combined-P-prop by simp
have nz-support (lq P) 6= {} using combined-P-prop by simp

236



have quote-gross P sqp1 < quote-gross P (grd-max P) using assms by simp
hence sqp1 < grd-max P

using ‹clmm-dsc P› quote-gross-imp-sqp-lt by blast
define sqp1 ′ where sqp1 ′ = quote-reach P1 (quote-gross P1 sqp ′)
have quote-gross P sqp1 < quote-gross P sqp ′

using quote-reach-add-gt assms ‹clmm-dsc P›
‹nz-support (lq P) 6= {}›

by simp
hence sqp1 < sqp ′

using ‹clmm-dsc P› quote-gross-imp-sqp-lt[of P] by simp
hence 0 < sqp ′

using assms liq-grd-min combined-pools-axioms
unfolding combined-pools-def by fastforce

define P ′′ where P ′′ = slice-pool P2 sqp2
have clmm-dsc P ′′

using P ′′-def assms slice-pool-clmm-dsc cmb-pos by (simp add: cmb-P2 )
have grd-max P2 = grd-max P ′′ using slice-pool-grd-max ′

by (simp add: P ′′-def cmb-P2 cmb-max cmb-nz2 cmb-pos)
have nz-support (lq P ′′) 6= {} using slice-pool-nz-liq ′

by (simp add: P ′′-def cmb-P2 cmb-max cmb-nz2 cmb-pos)
define y2 ′ where y2 ′ = quote-gross P ′′ sqp ′ − quote-gross P ′′ sqp1
define sqp2 ′ where sqp2 ′ = quote-reach P ′′ (quote-gross P ′′ sqp ′)
have quote-gross P sqp1 < quote-gross P sqp ′

using quote-reach-add-gt assms ‹clmm-dsc P›
‹nz-support (lq P) 6= {}›

by simp
hence sqp1 < sqp ′

using ‹clmm-dsc P› quote-gross-imp-sqp-lt[of P] by simp
have 0 ≤ y2 ′

by (metis ‹clmm-dsc P ′′› ‹sqp1 < sqp ′› quote-gross-imp-sqp-lt
diff-ge-0-iff-ge eucl-less-le-not-le linorder-less-linear
verit-comp-simplify1 (2 ) y2 ′-def )

have y = y1 + y2 ′ using assms combo-joint-quote-gross-decomp y2 ′-def P ′′-def

by blast
have quote-swap P sqp1 y = base-net P sqp1 − base-net P sqp ′

using assms unfolding quote-swap-def by simp
also have ... = base-net P1 sqp1 + base-net P ′′ sqp1 −

(base-net P1 sqp ′ + base-net P ′′ sqp ′)
using assms pool-comb-base-net-plus combined-pools-axioms
unfolding combined-pools-def
by (metis P ′′-def ‹clmm-dsc P ′′› base-net-join pool-comb-joint-refined)

also have ... = base-net P1 sqp1 − base-net P1 sqp ′ +
base-net P ′′ sqp1 − base-net P ′′ sqp ′

by linarith
also have ... = quote-swap P1 sqp1 y1 + quote-swap P ′′ sqp1 y2 ′

proof −
have base-net P1 sqp1 ′ = base-net P1 sqp ′

using quote-reach-base-net
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by (simp add: ‹0 < sqp ′› cmb-P1 cmb-nz1 sqp1 ′-def )
moreover have base-net P ′′ sqp2 ′ = base-net P ′′ sqp ′

using quote-reach-base-net
by (simp add: ‹0 < sqp ′› ‹clmm-dsc P ′′› ‹nz-support (lq P ′′) 6= {}› sqp2 ′-def )

ultimately show ?thesis
unfolding quote-swap-def
by (simp add: assms sqp1 ′-def sqp2 ′-def y2 ′-def )

qed
finally show ?thesis

using ‹y = y1 + y2 ′› P ′′-def by simp
qed

lemma combo-quote-swap-eq:
assumes 0 < sqp1
and 0 < y
and y + quote-gross P sqp1 ≤ quote-gross P (grd-max P)
and sqp ′ = quote-reach P (y + quote-gross P sqp1 )
and y1 = quote-gross P1 sqp ′ − quote-gross P1 sqp1
and sqp1 ≤ sqp2

shows quote-swap P sqp1 y = quote-swap P1 sqp1 y1 +
quote-swap P2 sqp2 (y − y1 )

proof −
define P ′′ where P ′′ = slice-pool P2 sqp2
define y2 ′ where y2 ′ = quote-gross P ′′ sqp ′ − quote-gross P ′′ sqp1
have y = y1 + y2 ′ using assms combo-joint-quote-gross-decomp y2 ′-def P ′′-def

by blast
hence y2 ′ = y − y1 by simp
have y1 ≤ y using assms combo-joint-quote-gross-decomp(2 ) by simp
hence 0 ≤ y2 ′ using ‹y2 ′ = y − y1 › y2 ′-def by simp
have quote-swap P sqp1 y = quote-swap P1 sqp1 y1 +

quote-swap P ′′ sqp1 y2 ′

using assms combo-quote-swap-slice-eq P ′′-def ‹y2 ′ = y − y1 ›
by blast

also have ... = quote-swap P1 sqp1 y1 +
quote-swap P2 sqp2 y2 ′

proof −
have quote-swap P ′′ sqp1 y2 ′ = quote-swap P2 sqp2 y2 ′

proof (rule slice-pool-quote-swap)
show clmm-dsc P2 using cmb-P2 by simp
show nz-support (lq P2 ) 6= {} using cmb-nz2 by simp
show grd P2 (lower-tick P2 sqp2 ) = sqp2

using cmb-P2 cmb-grd-eq cmb-on-grid lower-tick-eq by auto
show P ′′ = slice-pool P2 sqp2 using P ′′-def by simp
show sqp1 ≤ sqp2 using assms by simp
show sqp2 < grd-max P2 using cmb-max by simp
show 0 < sqp1 using assms liq-grd-min cmb-P1 cmb-nz1 by fastforce
show 0 ≤ y2 ′ using ‹0 ≤ y2 ′› .
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have y2 ′ ≤ quote-gross P ′′ (grd-max P2 )
using combo-joint-quote-gross-decomp(5 )
by (simp add: P ′′-def assms(1−4 ) y2 ′-def )

also have ... = quote-gross P2 (grd-max P2 ) − quote-gross P2 sqp2
using P ′′-def ‹grd P2 (lower-tick P2 sqp2 ) = sqp2 › cmb-P2 assms(1−2 )

slice-pool-quote-gross cmb-max cmb-pos
by auto

finally show y2 ′ + quote-gross P2 sqp2 ≤ quote-gross P2 (grd-max P2 )
by simp

qed
thus ?thesis by simp

qed
finally show ?thesis using ‹y = y1 + y2 ′› P ′′-def by simp

qed

lemma comb-add-above-gt:
assumes 0 < y
and 0< sqp1
and y + quote-gross P sqp1 ≤ quote-gross P (grd-max P)
and sqp ′ = quote-reach P (y + quote-gross P sqp1 )
and y1 = quote-gross P1 sqp ′ − quote-gross P1 sqp1
and y1 < y
and sqp1 ≤ sqp2

shows sqp2 < sqp ′

proof −
define P ′′ where P ′′ = slice-pool P2 sqp2
have y + quote-gross P1 sqp1 = y + quote-gross P sqp1
proof −

have quote-gross P sqp1 = quote-gross P1 sqp1
proof (rule pool-comb-quote-le-slice)

show grd P1 (lower-tick P1 sqp2 ) = sqp2
using cmb-grd-eq cmb-on-grid by auto

show sqp2 ≤ grd-max P
using cmb-max pool-comb-grd-max

by (simp add: cmb-P1 cmb-P2 cmb-comb cmb-grd-eq cmb-nz1 cmb-nz2
cmb-pos)

show nz-support (lq P) 6= {}
using cmb-comb combined-P-prop(2 ) by auto

qed (auto simp add: cmb-props assms)
thus ?thesis by simp

qed
also have ... = quote-gross P sqp ′

using clmm-quote-gross-reach-eq assms clmm-quote-gross-pos
combined-P-prop

by auto
also have ... = quote-gross P1 sqp ′ + quote-gross P ′′ sqp ′

using pool-comb-quote-decomp P ′′-def cmb-P1 cmb-P2 cmb-comb cmb-grd-eq
cmb-pos

cmb-on-grid pool-comb-joint-refined quote-gross-join slice-pool-clmm-dsc
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by simp
also have ... = y1 + quote-gross P1 sqp1 + quote-gross P ′′ sqp ′

proof −
have quote-gross P1 sqp ′ = y1 + quote-gross P1 sqp1

using clmm-quote-gross-reach-eq assms by simp
thus ?thesis by simp

qed
finally have y + quote-gross P1 sqp1 = y1 + quote-gross P1 sqp1 +

quote-gross P ′′ sqp ′ .
hence quote-gross P ′′ sqp ′ = y − y1 by simp
hence 0 < quote-gross P ′′ sqp ′ using assms by simp
hence grd-min P ′′ < sqp ′

by (metis P ′′-def cmb-P2 cmb-max cmb-nz2 cmb-pos quote-gross-pos-gt-grd-min

slice-pool-clmm-dsc slice-pool-nz-liq ′)
moreover have sqp2 ≤ grd-min P ′′

unfolding P ′′-def using slice-pool-grd-min
by (metis cmb-P2 cmb-max cmb-nz2 cmb-pos)

ultimately show ?thesis by simp
qed

lemma comb-add-above-add-eq:
assumes y1 = quote-gross P1 sqp ′ − quote-gross P1 sqp1
and rs1 = quote-reach P1 (y1 + quote-gross P1 sqp1 )

shows quote-gross P1 sqp ′ = quote-gross P1 rs1
by (simp add: assms clmm-quote-gross-pos quote-gross-grd-max-max

clmm-quote-gross-reach-eq cmb-P1 cmb-nz1 )

lemma comb-add-above-add-eq2 :
assumes 0 < y
and grd-min P1 ≤ sqp1
and y + quote-gross P sqp1 ≤ quote-gross P (grd-max P)
and sqp ′ = quote-reach P (y + quote-gross P sqp1 )
and y1 = quote-gross P1 sqp ′ − quote-gross P1 sqp1
and sqp1 ≤ sqp2
and y1 < y
and rs1 ′ = quote-reach P2 (y − y1 + quote-gross P2 sqp2 )

shows quote-gross P2 sqp ′ = quote-gross P2 rs1 ′

using combo-remain-quote-eq comb-add-above-gt liq-grd-min combined-P-prop
liq-grd-min cmb-props combined-P-prop

by (smt (verit) assms(3−8 ) clmm-quote-gross-pos
quote-gross-grd-max-max clmm-quote-gross-reach-eq
joint-quote-gross-decomp ′ lower-tick-eq pool-comb-grd-max-slice
pool-comb-joint-refined pool-comb-quote-le-slice slice-pool-clmm-dsc
slice-pool-quote-gross)

lemma combo-joint-rest-qty-slice:
assumes 0 < y
and 0 < sqp1

240



and sqp1 ≤ sqp2
and y + quote-gross P sqp1 < quote-gross P (grd-max P)
and sqp ′ = quote-reach P (y + quote-gross P sqp1 )
and y1 = quote-gross P1 sqp ′ − quote-gross P1 sqp1
and P ′′ = slice-pool P2 sqp2

shows y − y1 = quote-gross P ′′ sqp ′

by (smt (verit, ccfv-SIG) assms combo-joint-quote-gross-decomp-leq(1 )
combined-pools-axioms)

lemma combo-joint-rest-qty:
assumes 0 < y
and 0 < sqp1
and sqp1 ≤ sqp2
and y + quote-gross P sqp1 < quote-gross P (grd-max P)
and sqp ′ = quote-reach P (y + quote-gross P sqp1 )
and y1 = quote-gross P1 sqp ′ − quote-gross P1 sqp1
and sqp2 ≤ sqp ′

shows y − y1 = quote-gross P2 sqp ′ − quote-gross P2 sqp2
proof −

define P ′′ where P ′′ = slice-pool P2 sqp2
have y − y1 = quote-gross P ′′ sqp ′

using assms P ′′-def combo-joint-rest-qty-slice by simp
also have ... = quote-gross P2 sqp ′ − quote-gross P2 sqp2

using P ′′-def slice-pool-quote-gross assms(7 ) cmb-P2 cmb-grd-eq cmb-on-grid
cmb-pos lower-tick-eq

by auto
finally show ?thesis .

qed

lemma combo-joint-rest-qty-le:
assumes 0 < y
and 0 < sqp1
and sqp1 ≤ sqp2
and y + quote-gross P sqp1 < quote-gross P (grd-max P)
and sqp ′ = quote-reach P (y + quote-gross P sqp1 )
and y1 = quote-gross P1 sqp ′ − quote-gross P1 sqp1

shows y − y1 + quote-gross P2 sqp2 ≤ quote-gross P2 (grd-max P2 )
proof −

define P ′′ where P ′′ = slice-pool P2 sqp2
have y − y1 ≤ quote-gross P ′′ (grd-max P2 )
proof (rule combo-joint-quote-gross-decomp-leq(5 ))

show 0 < y using assms by simp
show 0 < sqp1 using assms grd-min-pos cmb-P1 cmb-nz1 by fastforce
show y − y1 = quote-gross P ′′ sqp ′

using combo-joint-rest-qty-slice assms P ′′-def by simp
show y + quote-gross P sqp1 ≤ quote-gross P (grd-max P) using assms by

simp
show sqp ′ = quote-reach P (y + quote-gross P sqp1 ) using assms by simp
show sqp1 ≤ sqp2 using assms by simp
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show y1 = quote-gross P1 sqp ′ − quote-gross P1 sqp1 using assms by simp
show P ′′ = slice-pool P2 sqp2 using P ′′-def by simp

qed
also have ... = quote-gross P2 (grd-max P2 ) − quote-gross P2 sqp2

using P ′′-def cmb-P2 cmb-grd-eq cmb-max cmb-on-grid cmb-pos lower-tick-eq
slice-pool-quote-gross by simp

finally have y − y1 ≤ quote-gross P2 (grd-max P2 ) − quote-gross P2 sqp2 .
thus ?thesis by simp

qed

lemma combo-joint-rest-price-pos:
assumes 0 < y
and grd-min P1 ≤ sqp1
and y + quote-gross P sqp1 ≤ quote-gross P (grd-max P)
and sqp ′ = quote-reach P (y + quote-gross P sqp1 )
and y1 = quote-gross P1 sqp ′ − quote-gross P1 sqp1
and rs1 ′ = quote-reach P2 (y − y1 + quote-gross P2 sqp2 )
and y1 < y

shows 0 < rs1 ′

using clmm-quote-reach-pos
by (metis (no-types, opaque-lifting) add-strict-increasing assms

clmm-quote-gross-pos liq-grd-min cmb-P1 cmb-P2 cmb-nz1 cmb-nz2
combo-joint-quote-gross-leq-max diff-gt-0-iff-gt less-add-same-cancel1
less-eq-real-def )

lemma combo-joint-quote-gross-price-le ′:
assumes 0 < y
and grd-min P1 ≤ sqp1
and sqp1 ≤ sqp2
and y + quote-gross P sqp1 ≤ quote-gross P (grd-max P)
and sqp ′ = quote-reach P (y + quote-gross P sqp1 )
and y1 = quote-gross P1 sqp ′ − quote-gross P1 sqp1
and y1 < y
and rs1 ′ = quote-reach P2 (y − y1 + quote-gross P2 sqp2 )

shows rs1 ′ ≤ sqp ′

proof (rule clmm-quote-reach-le)
show clmm-dsc P2 using cmb-P2 .
show nz-support (lq P2 ) 6= {} using cmb-nz2 .
show 0 < y − y1 + quote-gross P2 sqp2

by (simp add: add-pos-nonneg assms(7 ) clmm-quote-gross-pos cmb-P2 )
show rs1 ′ = quote-reach P2 (y − y1 + quote-gross P2 sqp2 )

using assms by simp
have primeq: quote-gross P2 sqp ′ = quote-gross P2 rs1 ′

using assms comb-add-above-add-eq2 by simp
have q1 ′: quote-gross P2 rs1 ′ = y − y1 + quote-gross P2 sqp2

using clmm-quote-gross-reach-eq assms
clmm-quote-gross-pos cmb-P2 cmb-nz2

by (smt (verit, best) liq-grd-min cmb-P1 cmb-nz1
combo-joint-quote-gross-leq-max combined-pools-axioms)
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show sqp ′ ∈ quote-gross P2 −‘ {y − y1 + quote-gross P2 sqp2}
using primeq q1 ′ by simp

qed

lemma comb-add-above-price1-leq:
assumes 0 < y
and grd-min P1 ≤ sqp1
and y + quote-gross P sqp1 ≤ quote-gross P (grd-max P)
and sqp ′ = quote-reach P (y + quote-gross P sqp1 )
and y1 = quote-gross P1 sqp ′ − quote-gross P1 sqp1
and sqp1 ≤ sqp2
and 0 ≤ y2
and y − y2 + quote-gross P2 sqp2 ≤ quote-gross P2 (grd-max P2 )
and y2 < y1
and y1 < y
and rs1 = quote-reach P1 (y1 + quote-gross P1 sqp1 )
and rs2 = quote-reach P1 (y2 + quote-gross P1 sqp1 )

shows rs2 ≤ rs1
proof (rule quote-reach-mono)

have q1 : quote-gross P1 rs1 = y1 + quote-gross P1 sqp1
using clmm-quote-gross-reach-eq
by (simp add: assms clmm-quote-gross-pos quote-gross-grd-max-max

cmb-P1 cmb-nz1 )
show clmm-dsc P1 using cmb-P1 by simp
show nz-support (lq P1 ) 6= {} using cmb-nz1 by simp
show y2 + quote-gross P1 sqp1 ≤ y1 + quote-gross P1 sqp1 using assms by

simp
show y1 + quote-gross P1 sqp1 ≤ quote-gross P1 (grd-max P1 )

by (metis quote-gross-grd-max-max cmb-P1 cmb-nz1 q1 )
show 0 ≤ y2 + quote-gross P1 sqp1 using assms

by (simp add: clmm-quote-gross-pos cmb-P1 )
qed (simp add: assms)+

lemma comb-add-above-price2-geq:
assumes 0 < y
and grd-min P1 ≤ sqp1
and y + quote-gross P sqp1 ≤ quote-gross P (grd-max P)
and sqp ′ = quote-reach P (y + quote-gross P sqp1 )
and y1 = quote-gross P1 sqp ′ − quote-gross P1 sqp1
and sqp1 ≤ sqp2
and 0 ≤ y2
and y − y2 + quote-gross P2 sqp2 ≤ quote-gross P2 (grd-max P2 )
and y2 < y1
and y1 < y
and rs1 ′ = quote-reach P2 (y − y1 + quote-gross P2 sqp2 )
and rs2 ′ = quote-reach P2 (y − y2 + quote-gross P2 sqp2 )

shows rs1 ′ ≤ rs2 ′

proof (rule quote-reach-mono)
show clmm-dsc P2 using cmb-P2 by simp
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show nz-support (lq P2 ) 6= {} using cmb-nz2 by simp
have 0 ≤ y − y1 using assms by simp
thus 0 ≤ y − y1 + quote-gross P2 sqp2

by (simp add: clmm-quote-gross-pos cmb-P2 )
show y − y1 + quote-gross P2 sqp2 ≤ y − y2 + quote-gross P2 sqp2

using assms by simp
show y − y2 + quote-gross P2 sqp2 ≤ quote-gross P2 (grd-max P2 )

using assms by simp
qed (simp add: assms)+

lemma comb-add-above-price2-geq ′:
assumes 0 < y
and grd-min P1 ≤ sqp1
and y + quote-gross P sqp1 ≤ quote-gross P (grd-max P)
and sqp ′ = quote-reach P (y + quote-gross P sqp1 )
and y1 = quote-gross P1 sqp ′ − quote-gross P1 sqp1
and sqp1 ≤ sqp2
and 0 ≤ y2
and y − y1 + quote-gross P2 sqp2 ≤ quote-gross P2 (grd-max P2 )
and y1 < y2
and y2 ≤ y
and rs1 ′ = quote-reach P2 (y − y1 + quote-gross P2 sqp2 )
and rs2 ′ = quote-reach P2 (y − y2 + quote-gross P2 sqp2 )

shows rs2 ′ ≤ rs1 ′

proof (rule quote-reach-mono)
show clmm-dsc P2 using cmb-P2 by simp
show nz-support (lq P2 ) 6= {} using cmb-nz2 by simp
have 0 ≤ y − y2 using assms by simp
thus 0 ≤ y − y2 + quote-gross P2 sqp2

by (simp add: clmm-quote-gross-pos cmb-P2 )
show y − y2 + quote-gross P2 sqp2 ≤ y − y1 + quote-gross P2 sqp2

using assms by simp
show y − y1 + quote-gross P2 sqp2 ≤ quote-gross P2 (grd-max P2 )

using assms by simp
qed (simp add: assms)+

lemma comb-add-above-price2-lt:
assumes 0 < y
and grd-min P1 ≤ sqp1
and y + quote-gross P sqp1 ≤ quote-gross P (grd-max P)
and sqp ′ = quote-reach P (y + quote-gross P sqp1 )
and y1 = quote-gross P1 sqp ′ − quote-gross P1 sqp1
and sqp1 ≤ sqp2
and 0 ≤ y2
and y − y2 + quote-gross P2 sqp2 ≤ quote-gross P2 (grd-max P2 )
and y2 < y1
and y1 < y
and rs2 ′ = quote-reach P2 (y − y2 + quote-gross P2 sqp2 )

shows sqp ′ < rs2 ′
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proof (rule lt-quote-gross-imp-up-price)
define rs1 ′ where rs1 ′ = quote-reach P2 (y − y1 + quote-gross P2 sqp2 )
have primeq: quote-gross P2 sqp ′ = quote-gross P2 rs1 ′

using assms comb-add-above-add-eq2 rs1 ′-def by simp
have q1 ′: quote-gross P2 rs1 ′ = y − y1 + quote-gross P2 sqp2

unfolding rs1 ′-def
using clmm-quote-gross-reach-eq assms(8−10 )

clmm-quote-gross-pos cmb-P2 cmb-nz2 by auto
show clmm-dsc P2 using cmb-P2 .
show nz-support (lq P2 ) 6= {} using cmb-nz2 .
show 0 < y − y2 + quote-gross P2 sqp2

by (metis add.commute add-strict-increasing2 assms(10 ) assms(9 )
clmm-quote-gross-pos cmb-P2 diff-add-cancel less-add-same-cancel1
pos-add-strict)

show y − y2 + quote-gross P2 sqp2 ≤ quote-gross P2 (grd-max P2 )
using assms by simp

show quote-gross P2 sqp ′ < y − y2 + quote-gross P2 sqp2
by (simp add: assms(9 ) primeq q1 ′)

show rs2 ′ = quote-reach P2 (y − y2 + quote-gross P2 sqp2 )
using assms by simp

qed

lemma combo-joint-reached-price-pos:
assumes 0 < y
and y + quote-gross P sqp1 ≤ quote-gross P (grd-max P)
and sqp ′ = quote-reach P (y + quote-gross P sqp1 )

shows 0 < sqp ′ using clmm-quote-reach-pos
using assms clmm-quote-gross-pos combined-P-prop by auto

lemma combo-joint-base-reached-eq:
assumes 0 < y
and grd-min P1 ≤ sqp1
and y + quote-gross P sqp1 ≤ quote-gross P (grd-max P)
and sqp ′ = quote-reach P (y + quote-gross P sqp1 )
and y1 = quote-gross P1 sqp ′ − quote-gross P1 sqp1
and sqp1 ≤ sqp2
and rs1 = quote-reach P1 (y1 + quote-gross P1 sqp1 )

shows base-net P1 sqp ′ = base-net P1 rs1
proof (rule quote-gross-equiv-base-net[symmetric])

show quote-gross P1 rs1 = quote-gross P1 sqp ′

using assms comb-add-above-add-eq by metis
show clmm-dsc P1 using cmb-P1 .
show 0 < rs1 using clmm-quote-reach-pos

by (simp add: assms(5 ) assms(7 ) clmm-quote-gross-pos
quote-gross-grd-max-max cmb-P1 cmb-nz1 )

show rs1 ≤ sqp ′

using assms combo-joint-quote-gross-price-le by blast
qed
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lemma combo-joint-base-reached-eq2 :
assumes 0 < y
and grd-min P1 ≤ sqp1
and y + quote-gross P sqp1 ≤ quote-gross P (grd-max P)
and sqp ′ = quote-reach P (y + quote-gross P sqp1 )
and y1 = quote-gross P1 sqp ′ − quote-gross P1 sqp1
and sqp1 ≤ sqp2
and y1 < y
and rs1 ′ = quote-reach P2 (y − y1 + quote-gross P2 sqp2 )

shows base-net P2 sqp ′ = base-net P2 rs1 ′

proof −
have quoteq: quote-gross P2 sqp ′ = quote-gross P2 rs1 ′

using assms comb-add-above-add-eq2 by simp
show ?thesis
proof (cases rs1 ′ ≤ sqp ′)

case True
show ?thesis
proof (rule quote-gross-equiv-base-net[symmetric])

show clmm-dsc P2 using cmb-P2 .
show rs1 ′ ≤ sqp ′ using True .
show quote-gross P2 rs1 ′ = quote-gross P2 sqp ′ using quoteq by simp
show 0 < rs1 ′ using combo-joint-rest-price-pos assms by simp

qed
next

case False
show ?thesis
proof (rule quote-gross-equiv-base-net)

show clmm-dsc P2 using cmb-P2 .
show sqp ′ ≤ rs1 ′ using False by simp
show quote-gross P2 sqp ′ = quote-gross P2 rs1 ′ using quoteq by simp
show 0 < sqp ′ using combo-joint-reached-price-pos assms by simp

qed
qed

qed

lemma quote-gross-price-eq1 :
assumes y1 = quote-gross P1 sqp ′ − quote-gross P1 sqp1
and rs1 = quote-reach P1 (y1 + quote-gross P1 sqp1 )

shows quote-gross P1 rs1 = y1 + quote-gross P1 sqp1
using clmm-quote-gross-reach-eq
by (simp add: assms clmm-quote-gross-pos quote-gross-grd-max-max

cmb-P1 cmb-nz1 )

lemma quote-gross-price-eq2 :
assumes 0 ≤ y2
and y2 + quote-gross P1 sqp1 ≤ quote-gross P1 (grd-max P1 )
and rs2 = quote-reach P1 (y2 + quote-gross P1 sqp1 )

shows quote-gross P1 rs2 = y2 + quote-gross P1 sqp1
using clmm-quote-gross-reach-eq
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by (simp add: assms clmm-quote-gross-pos cmb-P1 cmb-nz1 )

end

6.5 Optimality result on quote tokens

When the fees in two pools are constant and equal, swapping a given amount
of quote tokens in their combination permits to determine the optimal quan-
tities of quote tokens to swap in each individual pool.
locale combined-pools-cst-fee = combined-pools +

fixes phi
assumes fee1 : ∀ i. fee P1 i = phi
and fee2 : ∀ i. fee P2 i = phi

begin

lemma fee-props:
shows 0 ≤ phi phi < 1 using cmb-P1 clmm-dsc-fees[of P1 ] fee1 by auto

lemma quote-swap-opt-above:
assumes 0 < y
and grd-min P1 ≤ sqp1
and y + quote-gross P sqp1 ≤ quote-gross P (grd-max P)
and sqp ′ = quote-reach P (y + quote-gross P sqp1 )
and y1 = quote-gross P1 sqp ′ − quote-gross P1 sqp1
and sqp1 ≤ sqp2
and 0 ≤ y2
and y − y2 + quote-gross P2 sqp2 ≤ quote-gross P2 (grd-max P2 )
and y2 < y1
and y1 < y

shows quote-swap P1 sqp1 y2 + quote-swap P2 sqp2 (y − y2 ) ≤ quote-swap P
sqp1 y
proof −

define rs1 where rs1 = quote-reach P1 (y1 + quote-gross P1 sqp1 )
define rs2 where rs2 = quote-reach P1 (y2 + quote-gross P1 sqp1 )
define rs1 ′ where rs1 ′ = quote-reach P2 (y − y1 + quote-gross P2 sqp2 )
define rs2 ′ where rs2 ′ = quote-reach P2 (y − y2 + quote-gross P2 sqp2 )
have q1 : quote-gross P1 rs1 = y1 + quote-gross P1 sqp1

unfolding rs1-def using quote-gross-price-eq1 assms by simp
have q2 : quote-gross P1 rs2 = y2 + quote-gross P1 sqp1

unfolding rs2-def using quote-gross-price-eq2
by (smt (verit) assms(7 ) assms(9 ) clmm-quote-gross-pos

quote-gross-grd-max-max cmb-P1 cmb-nz1 q1 )
have q2 ′: quote-gross P2 rs2 ′ = y − y2 + quote-gross P2 sqp2

unfolding rs2 ′-def
using clmm-quote-gross-reach-eq assms(8−10 )

clmm-quote-gross-pos cmb-P2 cmb-nz2 by auto
have q1 ′: quote-gross P2 rs1 ′ = y − y1 + quote-gross P2 sqp2

unfolding rs1 ′-def
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using clmm-quote-gross-reach-eq assms(8−10 )
clmm-quote-gross-pos cmb-P2 cmb-nz2 by auto

have primeq: quote-gross P2 sqp ′ = quote-gross P2 rs1 ′

using assms comb-add-above-add-eq2 rs1 ′-def by simp
have rs1 ≤ sqp ′

using assms rs1-def combo-joint-quote-gross-price-le by simp
have 0 < sqp ′ using combo-joint-reached-price-pos assms by simp
have 0 < grd-min P1

using assms grd-min-pos liq-grd-min cmb-P1 cmb-nz1 by blast
have sqp1 ≤ rs1 using quote-reach-strict-mono

by (metis assms(7 ) assms(9 ) quote-gross-imp-sqp-lt cmb-P1
less-add-same-cancel2 linorder-not-less nle-le order .strict-trans q1 )

hence 0 < rs1 using ‹0 < grd-min P1 › assms by simp
hence 1/sqp ′ ≤ 1/rs1 using ‹rs1 ≤ sqp ′› ‹0 < sqp ′› by (simp add: frac-le)
have rs2 ≤ rs1 using assms rs2-def rs1-def comb-add-above-price1-leq by simp
have rs1 ′ ≤ rs2 ′

using assms rs1 ′-def rs2 ′-def comb-add-above-price2-geq by simp
have sqp ′ < rs2 ′ using assms rs2 ′-def comb-add-above-price2-lt by simp
have (1 −phi) ∗ (quote-gross P1 rs1 − quote-gross P1 rs2 )/(rs1 ∗ rs1 ) −

(1 − phi) ∗ (quote-gross P2 rs2 ′ − quote-gross P2 sqp ′)/(sqp ′ ∗ sqp ′) =
(1 − phi) ∗ (y1 − y2 )/(rs1 ∗ rs1 ) −
(1 − phi) ∗ (quote-gross P2 rs2 ′ − quote-gross P2 sqp ′)/(sqp ′ ∗ sqp ′)

using q1 q2 by simp
also have ... =

(1 − phi) ∗ (y1 + quote-gross P1 sqp1 − (y2 + quote-gross P1 sqp1 ))/(rs1
∗ rs1 ) −

(1 − phi) ∗ (quote-gross P2 rs2 ′ − quote-gross P2 sqp ′)/(sqp ′ ∗ sqp ′)
by simp

also have ... =
(1 − phi) ∗ (y1 − y2 )/(rs1 ∗ rs1 ) −
(1 − phi) ∗ (quote-gross P2 rs2 ′ − quote-gross P2 rs1 ′)/(sqp ′ ∗ sqp ′)

using primeq by simp
also have ... = (1 − phi) ∗ (y1 − y2 )/(rs1 ∗ rs1 ) −

(1 − phi) ∗ (y1 − y2 )/(sqp ′ ∗ sqp ′)
using q1 ′ q2 ′ by simp

also have ... = (1 − phi) ∗ (y1 − y2 ) ∗ (1/(rs1 ∗ rs1 ) − 1/(sqp ′ ∗ sqp ′))
by (simp add: vector-space-over-itself .scale-right-diff-distrib)

finally have (1 −phi) ∗ (quote-gross P1 rs1 − quote-gross P1 rs2 )/(rs1 ∗ rs1 )
−

(1 − phi) ∗ (quote-gross P2 rs2 ′ − quote-gross P2 sqp ′)/(sqp ′ ∗ sqp ′) =
(1 − phi) ∗ (y1 − y2 ) ∗ (1/(rs1 ∗ rs1 ) − 1/(sqp ′ ∗ sqp ′)) .

moreover have 0 ≤ (1 − phi) ∗ (y1 − y2 ) ∗ (1/(rs1 ∗ rs1 ) − 1/(sqp ′ ∗ sqp ′))

proof −
have rs1 ∗ rs1 ≤ sqp ′ ∗ sqp ′

using ‹0 < rs1 › ‹rs1 ≤ sqp ′› by (simp add: mult-mono ′)
hence 0 ≤ 1/(rs1 ∗ rs1 ) − 1/(sqp ′ ∗ sqp ′)

by (simp add: ‹0 < rs1 › frac-le)
thus ?thesis
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using assms(9 ) fee-props(2 ) by fastforce
qed
ultimately have 0 ≤ (1 −phi) ∗

(quote-gross P1 rs1 − quote-gross P1 rs2 )/(rs1 ∗ rs1 ) −
(1 − phi) ∗ (quote-gross P2 rs2 ′ − quote-gross P2 sqp ′)/(sqp ′ ∗ sqp ′)

by simp
also have ... ≤ base-net P1 rs2 − base-net P1 rs1 −

(1 − phi) ∗ (quote-gross P2 rs2 ′ − quote-gross P2 sqp ′)/(sqp ′ ∗ sqp ′)
proof −

have (1 −phi) ∗ (quote-gross P1 rs1 − quote-gross P1 rs2 )/(rs1 ∗ rs1 ) ≤
base-net P1 rs2 − base-net P1 rs1

proof (rule base-net-quote-lbound)
show clmm-dsc P1 using cmb-P1 .
show

∧
i. fee P1 i = phi by (simp add: fee1 )

show 0 < rs2 using clmm-quote-reach-pos
by (metis clmm-quote-gross-pos quote-gross-grd-max-max cmb-P1

cmb-nz1 q2 rs2-def )
show rs2 ≤ rs1 using ‹rs2 ≤ rs1 › .

qed
thus ?thesis by simp

qed
also have ... ≤ base-net P1 rs2 − base-net P1 rs1 −

(base-net P2 sqp ′ − base-net P2 rs2 ′)
proof −

have base-net P2 sqp ′ − base-net P2 rs2 ′ ≤
(1 − phi) ∗ (quote-gross P2 rs2 ′ − quote-gross P2 sqp ′)/(sqp ′ ∗ sqp ′)

proof (rule base-net-quote-ubound)
show clmm-dsc P2 using cmb-P2 .
show phi < 1 using fee-props(2 ) .
show sqp ′ ≤ rs2 ′ using ‹sqp ′ < rs2 ′› by simp
show

∧
i. fee P2 i = phi by (simp add: fee2 )

show 0 < sqp ′ using ‹0 < sqp ′› .
qed
thus ?thesis by (simp add: diff-left-mono)

qed
also have ... = base-net P1 rs2 − base-net P1 rs1 −

(base-net P2 rs1 ′ − base-net P2 rs2 ′)
proof −

have base-net P2 sqp ′ = base-net P2 rs1 ′

using assms combo-joint-base-reached-eq2 order-less-imp-le rs1 ′-def by blast
thus ?thesis by simp

qed
also have ... = quote-swap P1 sqp1 y1 − quote-swap P1 sqp1 y2−

(quote-swap P2 sqp2 (y − y2 ) − quote-swap P2 sqp2 (y − y1 ))
unfolding quote-swap-def rs1-def rs2-def rs1 ′-def rs2 ′-def by simp

also have ... = quote-swap P sqp1 y −
(quote-swap P1 sqp1 y2 + quote-swap P2 sqp2 (y − y2 ))

using assms combo-quote-swap-eq ‹0 < grd-min P1 › by simp
finally have 0 ≤ quote-swap P sqp1 y −
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(quote-swap P1 sqp1 y2 + quote-swap P2 sqp2 (y − y2 )) .
thus ?thesis by simp

qed

lemma quote-swap-opt-above ′:
assumes 0 < y
and grd-min P1 ≤ sqp1
and y + quote-gross P sqp1 ≤ quote-gross P (grd-max P)
and sqp ′ = quote-reach P (y + quote-gross P sqp1 )
and y1 = quote-gross P1 sqp ′ − quote-gross P1 sqp1
and sqp1 ≤ sqp2
and y2 + quote-gross P1 sqp1 ≤ quote-gross P1 (grd-max P1 )
and 0 ≤ y − y2
and y1 < y2
and y2 ≤ y

shows quote-swap P1 sqp1 y2 + quote-swap P2 sqp2 (y − y2 ) ≤ quote-swap P
sqp1 y
proof −

define lp1 where lp1 = quote-reach P1 (quote-gross P1 sqp1 )
have qlp: quote-gross P1 lp1 = quote-gross P1 sqp1

by (simp add: clmm-quote-gross-pos quote-gross-grd-max-max
clmm-quote-gross-reach-eq cmb-P1 cmb-nz1 lp1-def )

have lpgeq: grd-min P1 ≤ lp1
by (simp add: clmm-quote-gross-pos quote-gross-grd-max-max

clmm-quote-reach-ge cmb-P1 cmb-nz1 lp1-def )
define rs1 where rs1 = quote-reach P1 (y1 + quote-gross P1 lp1 )
define rs2 where rs2 = quote-reach P1 (y2 + quote-gross P1 lp1 )
define rs1 ′ where rs1 ′ = quote-reach P2 (y − y1 + quote-gross P2 sqp2 )
define rs2 ′ where rs2 ′ = quote-reach P2 (y − y2 + quote-gross P2 sqp2 )
have 0 < grd-min P1

using assms grd-min-pos liq-grd-min cmb-P1 cmb-nz1 by blast
have q ′: quote-gross P1 sqp ′ = y1 + quote-gross P1 sqp1 using assms by simp
have q1 : quote-gross P1 rs1 = y1 + quote-gross P1 sqp1

unfolding rs1-def using quote-gross-price-eq1 assms qlp by simp
have q2 : quote-gross P1 rs2 = y2 + quote-gross P1 sqp1

unfolding rs2-def using quote-gross-price-eq2 qlp
by (metis ‹0 < grd-min P1 › assms(1−5 ) assms(7 ) assms(9 )

combo-joint-quote-gross-decomp(3 ) leD nless-le order .trans)
have quote-gross P1 sqp ′ < quote-gross P1 rs2 using q ′ q2 assms by simp
have y − y1 + quote-gross P2 sqp2 ≤ quote-gross P2 (grd-max P2 )
using ‹0 < grd-min P1 › assms(1−5 ) combined-pools.combo-joint-quote-gross-leq-max

combined-pools-axioms
by auto

hence q2 ′: quote-gross P2 rs2 ′ = y − y2 + quote-gross P2 sqp2
unfolding rs2 ′-def
using clmm-quote-gross-reach-eq assms(8−10 )

clmm-quote-gross-pos cmb-P2 cmb-nz2 by auto
have q1 ′: quote-gross P2 rs1 ′ = y − y1 + quote-gross P2 sqp2
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unfolding rs1 ′-def
using clmm-quote-gross-reach-eq assms(8−10 )

clmm-quote-gross-pos cmb-P2 cmb-nz2
by (simp add: ‹y − y1 + quote-gross P2 sqp2 ≤ quote-gross P2 (grd-max P2 )›)

have quoteq: quote-gross P2 sqp ′ = quote-gross P2 rs1 ′

using assms comb-add-above-add-eq2 rs1 ′-def by simp
have rs1 ≤ sqp ′

using assms rs1-def combo-joint-quote-gross-price-le qlp by force
have rs1 ′ ≤ sqp ′ using combo-joint-quote-gross-price-le ′ assms rs1 ′-def by simp
have 0 < sqp ′ using combo-joint-reached-price-pos assms by simp
have 0 < rs1 ′ using assms rs1 ′-def

by (metis quote-gross-imp-sqp-lt cmb-P2 cmb-pos diff-gt-0-iff-gt
dual-order .strict-trans less-add-same-cancel2 order-less-le-trans q1 ′)

have baseq2 : base-net P2 sqp ′ = base-net P2 rs1 ′

using assms combo-joint-base-reached-eq2 rs1 ′-def by simp
have baseq: base-net P1 sqp ′ = base-net P1 rs1

using assms combo-joint-base-reached-eq rs1-def qlp by simp
have 0 < sqp ′ using clmm-quote-reach-pos

by (metis assms(1 ) assms(3 ) assms(4 ) clmm-quote-gross-pos combined-P-prop

dual-order .trans le-add-same-cancel1 less-eq-real-def )
have lp1 ≤ rs1
proof (rule quote-reach-mono)

show lp1 = quote-reach P1 (quote-gross P1 sqp1 ) using lp1-def by simp
show clmm-dsc P1 using cmb-P1 .
show nz-support (lq P1 ) 6= {} using cmb-nz1 .
show 0 ≤ quote-gross P1 sqp1 using clmm-quote-gross-pos cmb-P1 by simp
show rs1 = quote-reach P1 (y1 + quote-gross P1 lp1 ) using rs1-def by simp
show quote-gross P1 sqp1 ≤ y1 + quote-gross P1 lp1

using qlp ‹0 < grd-min P1 › assms combo-joint-quote-gross-decomp(3 )
by auto

show y1 + quote-gross P1 lp1 ≤ quote-gross P1 (grd-max P1 )
using qlp assms by simp

qed
hence 0 < rs1 using ‹0 < grd-min P1 › assms lpgeq by simp
hence 1/sqp ′ ≤ 1/rs1 using ‹rs1 ≤ sqp ′› ‹0 < sqp ′› by (simp add: frac-le)
have rs1 ≤ rs2 using assms rs2-def rs1-def

by (metis add-le-cancel-right quote-gross-imp-sqp-lt cmb-P1
linorder-not-less order .asym q1 q2 )

have rs2 ′ ≤ rs1 ′

proof (rule comb-add-above-price2-geq ′[of y sqp1 sqp ′ y1 y2 ])
have 0 ≤ y1

using combo-joint-quote-gross-decomp-leq(3 ) assms
by (meson ‹0 < grd-min P1 › order-less-imp-le order-less-le-trans)

thus 0 ≤ y2 using assms by simp
show y − y1 + quote-gross P2 sqp2 ≤ quote-gross P2 (grd-max P2 )

using ‹y − y1 + quote-gross P2 sqp2 ≤ quote-gross P2 (grd-max P2 )› .
show y1 < y2 using assms by simp
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show y2 ≤ y using assms by simp
show rs1 ′ = quote-reach P2 (y − y1 + quote-gross P2 sqp2 )

using rs1 ′-def by simp
show rs2 ′ = quote-reach P2 (y − y2 + quote-gross P2 sqp2 )

using rs2 ′-def by simp
qed (simp add: assms)+
have 0 = (1 − phi) ∗ (y2−y1 )/(sqp ′ ∗ sqp ′) − (1 − phi) ∗

(quote-gross P1 rs2 − quote-gross P1 sqp ′) / (sqp ′ ∗ sqp ′)
using assms q2 by simp

also have ... = (1 − phi) ∗ (quote-gross P2 sqp ′ − quote-gross P2 rs2 ′) /
(sqp ′ ∗ sqp ′) − (1 − phi) ∗ (quote-gross P1 rs2 − quote-gross P1 sqp ′) /
(sqp ′ ∗ sqp ′)

by (simp add: quoteq q1 ′ q2 ′)
also have ... ≤ (base-net P2 rs2 ′ − base-net P2 sqp ′) − (1 − phi) ∗

(quote-gross P1 rs2 − quote-gross P1 sqp ′) / (sqp ′ ∗ sqp ′)
proof −

have (1 − phi) ∗ (quote-gross P2 sqp ′ − quote-gross P2 rs2 ′) /
(sqp ′ ∗ sqp ′) ≤ base-net P2 rs2 ′ − base-net P2 sqp ′

proof (rule base-net-quote-lbound[of P2 phi rs2 ′ sqp ′])
show clmm-dsc P2 using cmb-P2 .
show

∧
i. fee P2 i = phi using fee2 by simp

show rs2 ′ ≤ sqp ′ using ‹rs1 ′ ≤ sqp ′› ‹rs2 ′ ≤ rs1 ′› by simp
show 0 < rs2 ′ using clmm-quote-reach-pos

by (metis clmm-quote-gross-pos quote-gross-grd-max-max cmb-P2
cmb-nz2 q2 ′ rs2 ′-def )

qed
thus ?thesis by simp

qed
also have ... ≤ (base-net P2 rs2 ′ − base-net P2 sqp ′) −

(base-net P1 sqp ′ − base-net P1 rs2 )
proof −

have base-net P1 sqp ′ − base-net P1 rs2 ≤ (1 − phi) ∗
(quote-gross P1 rs2 − quote-gross P1 sqp ′) / (sqp ′ ∗ sqp ′)

proof (rule base-net-quote-ubound)
show clmm-dsc P1 using cmb-P1 .
show

∧
i. fee P1 i = phi using fee1 by simp

show phi < 1 using fee-props by simp
show 0 < sqp ′ using ‹0 < sqp ′› .
show sqp ′ ≤ rs2

using ‹quote-gross P1 sqp ′ < quote-gross P1 rs2 ›
quote-gross-imp-sqp-lt cmb-P1

by fastforce
qed
thus ?thesis by simp

qed
also have ... = (base-net P2 rs2 ′ − base-net P2 rs1 ′) −

(base-net P1 rs1 − base-net P1 rs2 )
using baseq2 baseq by simp

also have ... = base-net P1 rs2 − base-net P1 rs1 −
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(base-net P2 rs1 ′ − base-net P2 rs2 ′)
by simp

also have ... = quote-swap P1 sqp1 y1 − quote-swap P1 sqp1 y2−
(quote-swap P2 sqp2 (y − y2 ) − quote-swap P2 sqp2 (y − y1 ))

unfolding quote-swap-def rs1-def rs2-def rs1 ′-def rs2 ′-def using qlp by simp
also have ... = quote-swap P sqp1 y −

(quote-swap P1 sqp1 y2 + quote-swap P2 sqp2 (y − y2 ))
using assms combo-quote-swap-eq ‹0 < grd-min P1 › by simp

finally have 0 ≤ quote-swap P sqp1 y −
(quote-swap P1 sqp1 y2 + quote-swap P2 sqp2 (y − y2 )) .

thus ?thesis by simp
qed

lemma combo-slice-no-addition2 :
assumes 0 < y
and y + quote-gross P sqp1 ≤ quote-gross P (grd-max P)
and sqp ′ = quote-reach P (y + quote-gross P sqp1 )
and y1 = quote-gross P1 sqp ′ − quote-gross P1 sqp1
and sqp1 ≤ sqp2
and y1 = y
and 0 ≤ y2
and y2 ≤ y
and y − y2 + quote-gross P2 sqp2 ≤ quote-gross P2 (grd-max P2 )
and y1 6= y2
and P ′′ = slice-pool P2 sqp2

shows quote-gross P ′′ sqp ′ = 0
proof −

have y1 + quote-gross P1 sqp1 = y + quote-gross P sqp1
proof −

have quote-gross P sqp1 = quote-gross P1 sqp1
proof (rule combo-quote-init1 )

show clmm-dsc P1 using cmb-P1 .
show clmm-dsc P2 using cmb-P2 .
show grd P1 = grd P2 by (simp add: cmb-grd-eq)
show 0 < sqp2 by (simp add: cmb-pos)
show grd P1 (lower-tick P1 sqp2 ) = sqp2 by (simp add: cmb-on-grid)
show P = pool-comb P1 P2 sqp2 by (simp add: cmb-comb)
show 0 < y using assms by simp
show y + quote-gross P sqp1 ≤ quote-gross P (grd-max P) using assms by

simp
show nz-support (lq P1 ) 6= {} using cmb-nz1 .
show nz-support (lq P2 ) 6= {} using cmb-nz2 .
show sqp ′ = quote-reach P (y + quote-gross P sqp1 ) using assms by simp
show sqp1 ≤ sqp2 using assms by simp
show sqp2 < grd-max P2 by (simp add: cmb-max)

qed
thus ?thesis using assms by simp

qed
also have ... = quote-gross P sqp ′
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using clmm-quote-gross-reach-eq assms clmm-quote-gross-pos combined-P-prop
by auto

also have ... = quote-gross P1 sqp ′ + quote-gross P ′′ sqp ′

using pool-comb-quote-decomp cmb-P1 cmb-P2 cmb-comb cmb-grd-eq assms
cmb-pos

cmb-on-grid pool-comb-joint-refined quote-gross-join slice-pool-clmm-dsc
by presburger

also have ... = y1 + quote-gross P1 sqp1 + quote-gross P ′′ sqp ′

using assms by simp
finally have y1 + quote-gross P1 sqp1 =

y1 + quote-gross P1 sqp1 + quote-gross P ′′ sqp ′ .
thus quote-gross P ′′ sqp ′ = 0 by simp

qed

lemma quote-swap-opt-below:
assumes 0 < y
and grd-min P1 ≤ sqp1
and y + quote-gross P sqp1 ≤ quote-gross P (grd-max P)
and sqp ′ = quote-reach P (y + quote-gross P sqp1 )
and y1 = quote-gross P1 sqp ′ − quote-gross P1 sqp1
and sqp1 ≤ sqp2
and y1 = y
and 0 ≤ y2
and y2 ≤ y
and y − y2 + quote-gross P2 sqp2 ≤ quote-gross P2 (grd-max P2 )
and y1 6= y2

shows quote-swap P1 sqp1 y2 + quote-swap P2 sqp2 (y − y2 ) ≤ quote-swap P
sqp1 y
proof −

define P ′′ where P ′′ = slice-pool P2 sqp2
have y2 < y1 using assms by simp
define lp1 where lp1 = quote-reach P1 (quote-gross P1 sqp1 )
have qlp: quote-gross P1 lp1 = quote-gross P1 sqp1

by (simp add: clmm-quote-gross-pos quote-gross-grd-max-max
clmm-quote-gross-reach-eq cmb-P1 cmb-nz1 lp1-def )

have lpgeq: grd-min P1 ≤ lp1
by (simp add: clmm-quote-gross-pos quote-gross-grd-max-max

clmm-quote-reach-ge cmb-P1 cmb-nz1 lp1-def )
define rs1 where rs1 = quote-reach P1 (y1 + quote-gross P1 lp1 )
define rs2 where rs2 = quote-reach P1 (y2 + quote-gross P1 lp1 )
define rs1 ′ where rs1 ′ = quote-reach P2 (y − y1 + quote-gross P2 sqp2 )
define rs2 ′ where rs2 ′ = quote-reach P2 (y − y2 + quote-gross P2 sqp2 )
define rs3 ′ where rs3 ′ = quote-reach P ′′ (y − y2 )
have 0 < grd-min P1

using assms grd-min-pos liq-grd-min cmb-P1 cmb-nz1 by blast
have q ′: quote-gross P1 sqp ′ = y1 + quote-gross P1 sqp1 using assms by simp
have q1 : quote-gross P1 rs1 = y1 + quote-gross P1 sqp1

unfolding rs1-def using quote-gross-price-eq1 assms qlp by metis
have q2 : quote-gross P1 rs2 = y2 + quote-gross P1 lp1
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unfolding rs2-def using clmm-quote-gross-reach-eq
by (smt (z3 ) assms(7−9 ) clmm-quote-gross-pos quote-gross-grd-max-max

cmb-P1 cmb-nz1 q1 qlp)
have q2 ′: quote-gross P2 rs2 ′ = y − y2 + quote-gross P2 sqp2

unfolding rs2 ′-def
using clmm-quote-gross-reach-eq assms(8−10 )

clmm-quote-gross-pos cmb-P2 cmb-nz2 by auto
have q1 ′: quote-gross P2 rs1 ′ = y − y1 + quote-gross P2 sqp2

unfolding rs1 ′-def
using clmm-quote-gross-reach-eq assms(7−10 )

clmm-quote-gross-pos cmb-P2 cmb-nz2 by auto
have rs1 ≤ sqp ′

using assms rs1-def combo-joint-quote-gross-price-le eq-diff-eq ′ qlp by simp
have 0 < sqp ′ using combo-joint-reached-price-pos assms by simp
have 0 < grd-min P1

using assms grd-min-pos liq-grd-min cmb-P1 cmb-nz1 by blast
have sqp1 < rs1 using quote-reach-strict-mono

by (metis assms(1 ) assms(5 ) assms(7 ) quote-gross-imp-sqp-lt cmb-P1
diff-gt-0-iff-gt q ′ q1 )

hence 0 < rs1 using ‹0 < grd-min P1 › assms by simp
hence 1/sqp ′ ≤ 1/rs1 using ‹rs1 ≤ sqp ′› ‹0 < sqp ′› by (simp add: frac-le)
have rs2 ≤ rs1 using assms rs2-def rs1-def ‹y2 < y1 ›

by (smt (verit) quote-gross-imp-sqp-lt cmb-P1 q1 q2 qlp)
have quote-gross P2 sqp2 < quote-gross P2 rs2 ′

using q2 ′ ‹y2 < y1 › assms(7 ) by simp
hence sqp2 < rs2 ′ using quote-gross-imp-sqp-lt cmb-P2 by blast
have quote-gross P ′′ sqp ′ = 0

using assms P ′′-def combined-pools-cst-fee.combo-slice-no-addition2
combined-pools-cst-fee-axioms

by simp
have quote-gross P ′′ sqp2 = 0 using P ′′-def slice-pool-quote-gross

by (simp add: cmb-P2 cmb-pos)
have q3 ′: quote-gross P ′′ rs3 ′ = y − y2 unfolding rs3 ′-def
proof (rule clmm-quote-gross-reach-eq)

show clmm-dsc P ′′ using P ′′-def cmb-P2 slice-pool-clmm-dsc cmb-pos by simp
show nz-support (lq P ′′) 6= {}

using P ′′-def cmb-P2 cmb-max cmb-nz2 cmb-pos slice-pool-nz-liq ′ by auto
have quote-gross P ′′ (grd-max P ′′) =

quote-gross P2 (grd-max P2 ) − quote-gross P2 sqp2
using slice-pool-quote-gross-max-eq
by (metis P ′′-def cmb-P2 cmb-grd-eq cmb-max cmb-nz2 cmb-on-grid cmb-pos

lower-tick-eq)
thus y − y2 ≤ quote-gross P ′′ (grd-max P ′′) using assms by simp
show 0 ≤ y − y2 using assms by simp

qed
hence quote-gross P ′′ sqp ′ < quote-gross P ′′ rs3 ′

using ‹quote-gross P ′′ sqp ′ = 0 › assms by simp
hence sqp ′ < rs3 ′

using P ′′-def quote-gross-imp-sqp-lt cmb-P2 slice-pool-clmm-dsc cmb-pos
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by blast
have rs1 ≤ sqp ′ using ‹rs1 ≤ sqp ′› by simp
hence 0 ≤ (1 − phi) ∗ (y1−y2 ) ∗ (1/(rs1 ∗ rs1 ) − 1/(sqp ′ ∗ sqp ′))
proof −

have f1 : 0 ≤ 1 − phi
using fee-props(2 ) by force

have f2 : 0 ≤ rs1
using ‹0 < rs1 › by linarith

have 0 ≤ sqp ′

using ‹0 < sqp ′› by linarith
then have 0 ≤ 1 / (rs1 ∗ rs1 ) − 1 / (sqp ′ ∗ sqp ′)

using f2 by (simp add: ‹0 < rs1 › ‹rs1 ≤ sqp ′› frac-le mult-mono)
then show ?thesis

using f1 ‹y2 < y1 › by force
qed
also have ... = (1 − phi) ∗ (y1−y2 )/(rs1 ∗ rs1 ) − (1 − phi) ∗

(y1−y2 ) / (sqp ′ ∗ sqp ′)
by (simp add: right-diff-distrib)

also have ... = (1 − phi) ∗ (quote-gross P1 rs1 − quote-gross P1 rs2 ) /
(rs1 ∗ rs1 ) − (1 − phi) ∗ (quote-gross P ′′ rs3 ′ − quote-gross P ′′ sqp ′) /
(sqp ′ ∗ sqp ′)

using q1 q2 qlp q3 ′ assms ‹quote-gross P ′′ sqp ′ = 0 › by simp
also have ... ≤ (base-net P1 rs2 − base-net P1 rs1 ) − (1 − phi) ∗

(quote-gross P ′′ rs3 ′ − quote-gross P ′′ sqp ′) / (sqp ′ ∗ sqp ′)
proof −

have (1 − phi) ∗ (quote-gross P1 rs1 − quote-gross P1 rs2 ) /
(rs1 ∗ rs1 ) ≤ base-net P1 rs2 − base-net P1 rs1

proof (rule base-net-quote-lbound)
show clmm-dsc P1 using cmb-P1 .
show

∧
i. fee P1 i = phi using fee1 by simp

show rs2 ≤ rs1 using ‹rs2 ≤ rs1 › .
show 0 < rs2 using clmm-quote-reach-pos

by (metis clmm-quote-gross-pos quote-gross-grd-max-max
cmb-P1 cmb-nz1 q2 rs2-def )

qed
thus ?thesis by simp

qed
also have ... ≤ (base-net P1 rs2 − base-net P1 rs1 ) −

(base-net P ′′ sqp ′ − base-net P ′′ rs3 ′)
proof −

have base-net P ′′ sqp ′ − base-net P ′′ rs3 ′ ≤ (1 − phi) ∗
(quote-gross P ′′ rs3 ′ − quote-gross P ′′ sqp ′) / (sqp ′ ∗ sqp ′)

proof (rule base-net-quote-ubound)
show clmm-dsc P ′′ using cmb-P2 P ′′-def slice-pool-clmm-dsc cmb-pos by

simp
show

∧
i. fee P ′′ i = phi

using fee2 slice-pool-cst-fees P ′′-def cmb-P2 by simp
show phi < 1 using fee-props by simp
show 0 < sqp ′ using ‹0 < sqp ′› .
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show sqp ′ ≤ rs3 ′ using ‹sqp ′ < rs3 ′› by simp
qed
thus ?thesis by simp

qed
also have ... = (base-net P1 rs2 − base-net P1 rs1 ) −

(base-net P ′′ sqp2 − base-net P ′′ rs3 ′)
proof −

have base-net P ′′ sqp ′ = base-net P ′′ sqp2
proof (rule quote-gross-equiv-base-net ′)

show clmm-dsc P ′′

using P ′′-def cmb-P2 slice-pool-clmm-dsc cmb-pos by simp
show quote-gross P ′′ sqp ′ = quote-gross P ′′ sqp2

by (simp add: ‹quote-gross P ′′ sqp ′ = 0 › ‹quote-gross P ′′ sqp2 = 0 ›)
show 0 < sqp2 by (simp add: cmb-pos)
show 0 < sqp ′ using ‹0 < sqp ′› .

qed
thus ?thesis by simp

qed
also have ... = quote-swap P1 sqp1 y1 − quote-swap P1 sqp1 y2−

(base-net P ′′ sqp2 − base-net P ′′ rs3 ′)
unfolding quote-swap-def rs1-def rs2-def using qlp by simp

also have ... = quote-swap P1 sqp1 y1 − quote-swap P1 sqp1 y2−
(quote-swap P ′′ sqp2 (y − y2 ) − quote-swap P ′′ sqp2 (y − y1 ))

proof −
have base-net P ′′ sqp2 = base-net P ′′

(quote-reach P ′′ (y − y1 + quote-gross P ′′ sqp2 ))
proof (rule quote-gross-equiv-base-net ′)

show clmm-dsc P ′′

using P ′′-def cmb-P2 slice-pool-clmm-dsc cmb-pos by simp
show 0 < sqp2 by (simp add: cmb-pos)
have y − y1 + quote-gross P ′′ sqp2 = 0

by (simp add: ‹quote-gross P ′′ sqp2 = 0 › assms(7 ))
hence quote-reach P ′′ (y − y1 + quote-gross P ′′ sqp2 ) = grd-min P ′′

using clmm-quote-reach-zero
by (metis P ′′-def cmb-P2 cmb-max cmb-nz2 cmb-pos slice-pool-clmm-dsc

slice-pool-nz-liq ′)
moreover have 0 < grd-min P ′′ using grd-min-pos

by (metis P ′′-def ‹clmm-dsc P ′′› liq-grd-min cmb-P2 cmb-max cmb-nz2
cmb-pos slice-pool-nz-liq ′)

ultimately show 0 < quote-reach P ′′ (y − y1 + quote-gross P ′′ sqp2 )
by simp

have quote-gross P ′′ (quote-reach P ′′ (y − y1 + quote-gross P ′′ sqp2 )) = 0
using ‹quote-reach P ′′ (y − y1 + quote-gross P ′′ sqp2 ) = grd-min P ′′›

‹0 < quote-reach P ′′ (y − y1 + quote-gross P ′′ sqp2 )› ‹clmm-dsc P ′′›
clmm-quote-gross-grd-min-le

by auto
thus quote-gross P ′′ sqp2 =

quote-gross P ′′ (quote-reach P ′′ (y − y1 + quote-gross P ′′ sqp2 ))
using ‹quote-gross P ′′ sqp2 = 0 › by simp
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qed
hence base-net P ′′ sqp2 − base-net P ′′ rs3 ′ =

quote-swap P ′′ sqp2 (y − y2 ) − quote-swap P ′′ sqp2 (y − y1 )
unfolding quote-swap-def rs3 ′-def using ‹quote-gross P ′′ sqp2 = 0 › by simp

thus ?thesis by simp
qed
also have ... = quote-swap P1 sqp1 y1 − quote-swap P1 sqp1 y2−

(quote-swap P ′′ sqp2 (y − y2 ))
proof −

have quote-swap P ′′ sqp2 (y − y1 ) = 0
using quote-swap-zero assms P ′′-def cmb-P2 cmb-max cmb-nz2 cmb-pos

slice-pool-clmm-dsc slice-pool-nz-liq ′ slice-pool-grd-max ′

by auto
thus ?thesis by simp

qed
also have ... = quote-swap P sqp1 y −

(quote-swap P1 sqp1 y2 + quote-swap P ′′ sqp2 (y − y2 ))
proof −

have quote-swap P sqp1 y = quote-swap P1 sqp1 y1 +
quote-swap P ′′ sqp1 (y − y1 )

using assms combo-quote-swap-slice-eq ‹0 < grd-min P1 › P ′′-def by simp
moreover have quote-swap P ′′ sqp1 (y − y1 ) = 0

using quote-swap-zero assms P ′′-def cmb-P2 cmb-max cmb-nz2 cmb-pos
slice-pool-clmm-dsc slice-pool-nz-liq ′ slice-pool-grd-max ′ ‹0 < grd-min P1 ›

by auto
ultimately show ?thesis by simp

qed
finally have 0 ≤ quote-swap P sqp1 y −

(quote-swap P1 sqp1 y2 + quote-swap P ′′ sqp2 (y − y2 )) .
moreover have quote-swap P ′′ sqp2 (y − y2 ) = quote-swap P2 sqp2 (y − y2 )

using assms P ′′-def slice-pool-quote-swap-gt-zero
by (smt (z3 ) cmb-P2 cmb-grd-eq cmb-nz2 cmb-on-grid cmb-pos grd-lower-tick-cong)

ultimately show ?thesis by simp
qed

lemma quote-swap-optimum ′:
assumes 0 < y
and grd-min P1 ≤ sqp1
and y + quote-gross P sqp1 ≤ quote-gross P (grd-max P)
and sqp ′ = quote-reach P (y + quote-gross P sqp1 )
and y1 = quote-gross P1 sqp ′ − quote-gross P1 sqp1
and sqp1 ≤ sqp2
and 0 ≤ y2
and y2 ≤ y
and y2 + quote-gross P1 sqp1 ≤ quote-gross P1 (grd-max P1 )
and y − y2 + quote-gross P2 sqp2 ≤ quote-gross P2 (grd-max P2 )
and y1 6= y2

shows quote-swap P1 sqp1 y2 + quote-swap P2 sqp2 (y − y2 ) ≤ quote-swap P
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sqp1 y
proof (cases y = y1 )

case True
then show ?thesis using quote-swap-opt-below assms by simp

next
case False
have y1 ≤ y
proof (rule combo-joint-quote-gross-decomp-leq(2 ))

show 0 < sqp1 using assms grd-min-pos cmb-P1 cmb-nz1 by fastforce
qed (simp add: assms)+
hence y1 < y using False by simp
show ?thesis
proof (cases y2 < y1 )

case True
show ?thesis
proof (rule quote-swap-opt-above)

show y2 < y1 using True .
show y1 < y using ‹y1 < y› .

qed (auto simp add: assms)
next

case False
hence y1 < y2 using assms by simp
show ?thesis
proof (rule quote-swap-opt-above ′)

show y1 < y2 using ‹y1 < y2 › .
qed (auto simp add: assms)

qed
qed

lemma quote-swap-optimum:
assumes 0 < y
and 0 < sqp1
and y + quote-gross P sqp1 ≤ quote-gross P (grd-max P)
and sqp ′ = quote-reach P (y + quote-gross P sqp1 )
and y1 = quote-gross P1 sqp ′ − quote-gross P1 sqp1
and sqp1 ≤ sqp2
and grd-min P1 ≤ sqp2
and 0 ≤ y2
and y2 ≤ y
and y2 + quote-gross P1 sqp1 ≤ quote-gross P1 (grd-max P1 )
and y − y2 + quote-gross P2 sqp2 ≤ quote-gross P2 (grd-max P2 )
and y1 6= y2

shows quote-swap P1 sqp1 y2 + quote-swap P2 sqp2 (y − y2 ) ≤ quote-swap P
sqp1 y
proof (cases grd-min P1 ≤ sqp1 )

case True
then show ?thesis using quote-swap-optimum ′ assms by simp

next
case False
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hence q1 : quote-gross P1 sqp1 = quote-gross P1 (grd-min P1 )
using assms(2 ) clmm-quote-gross-grd-min-le cmb-P1 by auto

have grd-min P = grd-min P1
using pool-comb-le-grd-min by (simp add: assms(7 ) cmb-props)

hence q: quote-gross P sqp1 = quote-gross P (grd-min P1 )
using False assms(2 ) clmm-quote-gross-grd-min-le combined-P-prop(1 ) by auto

have quote-swap P1 sqp1 y2 + quote-swap P2 sqp2 (y − y2 ) =
quote-swap P1 (grd-min P1 ) y2 + quote-swap P2 sqp2 (y − y2 )

using quote-swap-grd-min False assms(2 ) cmb-P1 cmb-nz1 by simp
also have ... ≤ quote-swap P (grd-min P1 ) y using quote-swap-optimum ′

by (metis q1 q assms(1 ) assms(7−12 ) assms(3−5 ) order-refl)
also have ... = quote-swap P sqp1 y

using quote-swap-grd-min ‹grd-min P = grd-min P1 › False assms(2 )
combined-P-prop

by simp
finally show ?thesis .

qed

end

end
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