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Abstract

Automated Market Makers (AMMSs) are one of the cornerstones of
decentralized finance. They enable users to exchange tokens without
the need for order books as would be the case in traditional finance.
They involve liquidity providers, whose tokens, usually called the quote
and base tokens, can be used in the swap process in exchange for a fee,
and liquidity takers who swap their tokens. The rules specifying the
quantities of tokens that can swapped and those that act as fees are
predefined and lead to several categories of AMMs.

Uniswap v3 introduced a new market-making design that improves
capital efficiency by allowing liquidity providers to allocate their as-
sets within selected price intervals. By concentrating liquidity over
narrower ranges, providers may earn higher fee income than in ear-
lier AMMSs, where liquidity is generally distributed uniformly across
all prices. Owing to its success, this design was adopted by several
decentralized exchanges on various blockchains, including Trader Joe,
PancakeSwap v3, Sunswap v3, and Sushiswap v3. These protocols
are collectively referred to as Concentrated Liquidity Market Makers
(CLMMs). Despite differences in implementation details, such as fee
structures, tick spacing, or incentive mechanisms, they all rely on the
same underlying principles.

In practice, liquidity takers can thus interact with multiple CLMM
pools involving the same pair of tokens but different liquidity profiles
or fee structures. A crucial task for them is to understand how these
pools can be combined, both conceptually and computationally.

Based on the work in [1], we formalize several notions related to
CLMMs, and introduce several operations on such pools that permit to
derive an optimality result: if two pools admit the same fees, then the
defined transformations permit to determine the optimal quantities of
quote tokens to trade in each pool in order to recover as many base
tokens as possible.
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theory CLMM-Misc imports HOL— Analysis. Analysis

begin

1 Preliminary definitions and results

1.1 Misc

lemma diff-min-le:
assumes (a::real) < b

and z < y

shows minz b — minxa < minyb — minya
using assms by linarith

lemma sum-ez-strict-pos:
fixes f g :: i = 'a::ordered-cancel-comm-monoid-add
assumes finite A
and VzeA. 0 < fzx
and JacA. 0 < fa
shows 0 < sum f A
proof —
obtain ¢ where 0 < fa and a€ A using assms by auto note aprop = this
define B where B = A — {a}
hence A = insert a B using aprop by auto
have 0 < f a using aprop by simp
also have ... < fa + sum f B
proof —
have 0 < sum f B
proof (rule sum-nonneg)
fix z
assume z€ B
thus 0 < fz using B-def assms by simp

qed

thus ?thesis by (simp add: add-increasing2)
qed
also have ... = sum f (insert a B)

proof (rule sum.insert[symmetric|)
show finite B using assms B-def by simp



show a¢ B using B-def by simp

qed
also have ... = sum f A using (A = insert a B> by simp
finally show ?thesis .

qed

lemma diff-inv-maz-le:
assumes 0 < a
and (a:real) < b
and z < y
shows inverse (maz y a) — inverse (mazx y b) <
inverse (maz x a) — inverse (mazx x b)
proof (cases b < y)
case True
thus “thesis using assms by auto
next
case Fulse
hence maz y b = b by simp
have max x b = b using Fulse assms by auto
show ?thesis using <max y b = b> assms by fastforce
qed

lemma int-interval-insert:
fixes a::int
assumes a < b
shows {a..< (b+1)} = insert b {a..< b}
proof
show {a..<b + 1} C insert b {a..<b}
proof
fix z
assume z € {a..<b + 1}
show z € insert b {a..<b}
proof (cases x = b)
case True
then show ?thesis by simp
next
case Fulse
hence z < b using <z € {a..<b + 1}) by simp
then show %thesis using «z € {a..<b + 1}» by simp
qed
qed
next
show insert b {a..<b} C {a..<b + 1} by (simp add: assms)
qed

lemma int-telescoping-sum:
fixes f::int = ’a::ab-group-add
assumes a < b
shows (3" ¢ €{a..<b}. (fi — f (i+1))) = fa — (fb) using <a < b



proof (induct rule: int-ge-induct )
case base
then show ?case by simp
next
case (step i)
have {a..<i + 1} = insert i {a..<i}
using int-interval-insert <a < i by simp
hence (}ie {a.<i+ 1}. fi—f(i+ 1)) =
(- i € (insert i {a..<i}). fi — f (i + 1)) by simp
also have ... = fi — f (i+1)+ O i=a.<i. fi—f (i + 1))
by (rule sum.insert, auto)
also have ... = fi — f (i+1) + fa — fi using step by simp
also have ... = fa — f (i+1) by simp
finally show ?Zcase .
qed

lemma int-telescoping-sum’:
fixes f::int = 'a::ab-group-add
assumes a < b
shows (3" i €{a..<b}. (f (i+1) — fi) =fb— (fa)
proof —
define g where g = (\z. — f 1)
have (3> i €{a..<b}. (f (i+1) — 1)) = O €{a..<b}. (97 — g (i+1)))
by (rule sum.cong, auto simp add: g-def)

also have ... = g a — g b using assms int-telescoping-sum|of a b] by simp
also have ... = f b — f a using g-def by simp
finally show ?thesis .

qed

lemma int-telescoping-sum-le’:

fixes f::int = ’a::ab-group-add

assumes a < b

shows (3¢ €{a..b}. (f (i+1) — fi)) =f (b+1) — (fa)
proof —

have {a..b} = {a..< b+1} by auto

thus ?thesis using assms int-telescoping-sum’[of a b+1] by simp
qed

lemma diff-sum-dcomp:

fixes f::'a = real

assumes finite A

and A=BUC

and BN C = {}
shows z + sum fA — (y + sum fB) =z + sum f C — y
proof —

have sum f A = sum f (B U C) using assms by simp

also have ... = sum f B + sum f C

proof (rule sum.union-inter-neutral)

show finite B using assms by simp



show finite C' using assms by simp
show VzeB N C. fx = 0 using assms by simp
qed
finally have sum f A = sum f B + sum f C .
thus ?thesis by simp
qed

lemma sum-remove-el:
assumes finite A
and z€ A
and B =4 — {z}
shows sum fA = fx + sum f B
proof —
have A = insert x B using assms by auto
hence sum f A = sum f (insert x B) by simp
also have ... = fz + sum f B
proof (rule sum.insert)
show finite B using assms by simp
show z¢ B using assms by simp
qed
finally show ?thesis .
qed

lemma int-set-bdd-above:
fixes X::int set
assumes X # {}
and bdd-above X
shows Sup X € X Ve e X. 2 < Sup X
proof —
from assms obtain z y where z € X and X C {..y}
by (auto simp: bdd-above-def)
hence *: finite (X N {z..y}) X N{z..y} #{}and z < y
by (auto simp: subset-eq)
have FlzeX. (VyeX. y < z)
proof
{ fix z assume z € X
have z < Maz (X N {z..y})
proof cases
assume z < z with «z € X» <X C {..yp *(1) show ?thesis
by (auto introl: Maz-ge)
next
assume — ¢ < 2z
then have z < z by simp
also have z < Maz (X N {z..y})
using <z € X» #(1) <z < y by (intro Maz-ge) auto
finally show ?thesis by simp
qed }
note le = this
with Maxz-in[OF %] show



ex: Max (X N{z..y}) € X AN (VzeX. z < Maz (X N {z..y}))
by auto
fix z assume *: z € X A (VyeX. y < z2)
with le have z < Max (X N {z..y})
by auto
moreover have Maz (X N {z..y}) < z
using * ex by auto
ultimately show z = Maz (X N {z..y})
by auto
qed
hence Sup X € X A (VyeX. y < Sup X)
unfolding Sup-int-def by (rule thel’)
thus Sup X € X Vz € X. z < Sup X by auto
qed

definition wedge where
wedge f (i:int) sqp = (An. if n < i then fn else f (n—1))(i+1:=sqp)

lemma wedge-arg-lt[simp]:
assumes n < ¢
shows wedge f i sqp n = f n using assms unfolding wedge-def by simp

lemma wedge-arg-gt|[simp]:
assumes i+1 < n
shows wedge f i sqp n = f (n—1) using assms unfolding wedge-def by simp

lemma wedge-arg-eq[simp]:
shows wedge f i sqp (i+1) = sqp unfolding wedge-def by simp

lemma wedge-strict-mono:
assumes strict-mono f
and fi < sqp
and sgp < f (i+1)
and g = wedge f i sqp
shows strict-mono g unfolding strict-mono-def
proof (intro alll impI)
fix zy
assume (z:int) < y
show gz < gy
proof (cases y < i+1)
case True
then show ?thesis
using x < y» assms strict-mono-less by fastforce
next
case Fulse
show ?thesis
proof (cases y = i+1)
case True
hence wedge f i sqp y = sqp by simp



have z < i using True <x < y» by simp
hence wedge f i sqp v = f x by simp
then show ?thesis using <wedge f i sqp y = sqp> assms
by (metis <z < i» monoE order-le-less-trans strict-mono-mono)
next
case Fulse
hence i+1 < y using (= y < i+1> by simp
hence wedge fisqpy=f (y — 1) by simp
show ?thesis
proof (cases © = i+1)
case True
then show ?thesis
by (metis (mono-tags, lifting) <wedge fi sqpy = f (y — 1)»
x < y» assms(1) assms(3) assms(4) monoD order-less-le-subst1
strict-mono-on-imp-mono-on wedge-arg-eq zle-diff1-eq)
next
case Fulse
then show ?thesis
by (metis <i + 1 < y» <z < > assms(1) assms(4) diff-strict-right-mono
linorder-le-less-linear order-le-imp-less-or-eq strict-monoD
wedge-arg-gt wedge-arg-lt zle-diff1-eq zless-imp-add1-zle)
qed
qed
qed
qed

lemma wedge-gt:
assumes Vi. z < fi
and z < sqp
shows Vi. z < wedge fj sqp i
by (smt (verit) assms wedge-arg-eq wedge-arg-gt wedge-arg-It)

lemma wedge-ge:
assumes Vi. z < fi
and z < sqp
shows Vi. z < wedge fj sqp i
by (smt (verit) assms wedge-arg-eq wedge-arg-gt wedge-arg-It)

lemma wedge-lt:
assumes Vi. fi < z
and sqp < z
shows Vi. wedge fj sqp i < z
by (smt (verit) assms wedge-arg-eq wedge-arg-gt wedge-arg-lt)

lemma wedge-le:
assumes Vi. fi < z
and sqp < zx
shows Vi. wedge fjsqpi < z
by (smt (verit) assms wedge-arg-eq wedge-arg-gt wedge-arg-lt)



lemma wedge-images:
shows Vj. k. fj = wedge f i sqp k
proof
fix j
show 3 k. fj = wedge fisqp k
proof (cases j < i)
case True
hence wedge fi sqp j = fj by simp
then show “thesis by metis
next
case Fulse
hence i+1 < j by simp
hence wedge f i sqp (j+1) = fj by simp
then show “thesis by metis
qged
qed

lemma wedge-images':
assumes A = {j. j < i}
and B = {j. i+1 < j}
shows wedge fi sqp k € f*AU (f((\i. i—1)‘B)) U {sqp}
proof (cases k < i)
case True
hence wedge fi sqp k = f k by simp
hence wedge fi sqp k € f‘A using assms True by simp
then show ?thesis by simp
next
case Fulse
show ?thesis
proof (cases k = i+1)
case True
then show ?thesis by simp
next
case Fulse
hence i+1 < k using <— k < 7 by simp
then show ?thesis by (simp add: <i + 1 < k> assms(2))
qed
qed

lemma wedge-as-ubound:
assumes V (ri:real). 3 (izint). v < fi
shows Vr. 3k. r < wedge f i sqp k using assms
by (metis wedge-images)

lemma wedge-as-lbound:
assumes V (rireal) > 0. 3 (izint). fi < r
shows Vr > 0. 3 k. wedge f i sqp k < r using assms
by (metis wedge-images)



lemma wedge-arg-prop:
shows {j. P (wedge fisqp j)} C{j.j <iAP(fj)}U
[ i+1 < j AP (f G-1)} U {i+1}
proof
fix j
assume j€ {j. P (wedge f i sqp j)}
hence pr: P (wedge f i sqp j) by auto
show j € {j.j < i AP (f))} U{j. i+l <jAP(f(G-1)} U {i+1}
proof (cases j < 1)
case True
hence wedge fi sqp j = fj by simp
then show ?thesis using pr True by simp
next
case False
show ?thesis
proof (cases j = i+1)
case True
then show ?thesis using pr by simp
next
case Fulse
hence i+1 < j using <— j < > by simp
hence wedge fi sqp j = f (j—1) by simp
then show ?thesis using pr <i+1 < j» by simp
qed
qged
qed

definition one-cpl where
one-cpl phi = (A(i::int). (1::real) — (phi 7))

definition gross-fct where
gross-fet f phi = (Mi. fi / (one-cpl phi )

lemma gross-fct-sgn:
assumes phi i < (1::real)
shows ((0::real) < f i) «— (0 < gross-fet f phi i) unfolding gross-fct-def
by (metis assms diff-ge-0-iff-ge eucl-less-le-not-le le-iff-diff-le-0
one-cpl-def zero-le-divide-iff)

lemma gross-fct-nz-eq:
assumes phi { # (1:real)
shows fi = 0 <— gross-fct f phi i = 0 using assms unfolding gross-fct-def
by (simp add: one-cpl-def)

lemma gross-fct-cong:
assumes fa = f'b
and phi a = phi’ b
shows gross-fct f phi a = gross-fct f' phi’ b using assms
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unfolding gross-fct-def by (simp add: one-cpl-def)

lemma gross-fct-zero-if:
assumes fa = 0
shows gross-fct f phi a = 0 using assms unfolding gross-fct-def by simp

definition fee-union where
fee-union (11::real) 12 f1 f2 = (I xf1x(1—f2) + 12xf2x(1—f1))/
(11%(1—12) + 12%(1—f1))

lemma fee-union-pos:
assumes (0 < [1
and 0 < I2
and 0 < f1
and 0 < f2
and fI < 1
and f2 < 1
shows 0 < fee-union I1 12 f1 f2 using assms unfolding fee-union-def by simp

lemma fee-union-lt-1:
assumes (0 < [1
and 0 < [2
and 0 < f1
and 0 < f2
and fI < 1
and f2 < 1
shows fee-union 1112 f1 f2 < 1
proof (cases 11 = 0)
case True
thus ?thesis unfolding fee-union-def by (simp add: assms(6))
next
case Fulse
show ?thesis
proof (cases 12 = 0)
case True
then show ?thesis unfolding fee-union-def by (simp add: assms(5))
next
case Fulse
hence 0 < l1%(1—f2) + 12x(1—f1) using assms = 11 = 0»
by (simp add: less-eq-real-def pos-add-strict)
moreover have [1xf1x(1—f2) + [2xf2x(1—f1) < l1x(1—f2) + 12x(1—f1)
using assms Fualse <= 11 = 0>
by (smt (verit, best) mult-less-cancel-left2 mult-less-cancel-right)
ultimately show ¢thesis unfolding fee-union-def by simp
qed
qed

lemma diff-inv-le:
assumes 0 < (z:real)

11



and z < y
and y < 2
shows (y — z)/(z*xz) < inverse x — inverse y
proof —
have 0 < y using assms by simp
hence 0 < z using assms by simp
have (y — z)/(2x2) < (y — z) / (z * y) using assms
by (simp add: frac-le mult-mono)
also have ... = inverse x — inverse y
using 0 < o 0 <
by (simp add: divide-real-def division-ring-inverse-diff)
finally show ?thesis .
qed

lemma diff-inv-le”:
assumes 0 < (z::real)
and z < y
and y < z
and 0 < a
shows a x (y — 2)/(2%2) < a *x (inverse x — inverse y)
proof —
have 0 < y using assms by simp
hence 0 < z using assms by simp
have (y — z)/(2%2) < (y — z) / (z * y) using assms
by (simp add: frac-le mult-mono)
also have ... = inverse r — inverse y
using <0 < o 0 <
by (simp add: divide-real-def division-ring-inverse-diff)
finally show ?thesis
by (metis assms(4) mult-left-mono times-divide-eg-right)
qed

lemma diff-inv-sum-le”:
assumes Vi € I. (0::real) < fi
andViel fi<f(i+1)
and Vie I. f (i+1) < z
andViel. 0<g1
shows sum (Ai. g i x (f (i+1) — fi)) I/ (z % 2) <
sum (Ai. g i x (inverse (f i) — inverse (f (i+1)))) I
proof —
have sum (Xi. gi* (f (i+1) — fi)) I /(2% 2) =
sum (M. gix (f (i+1) — fi)/ (2% 2)) I
by (rule sum-divide-distrib)
also have ... < sum (\i. g © * (inverse (f i) — inverse (f (i+1)))) I
proof (rule sum-mono)
fix ¢
assume 7 € [
show gix (f(i+1)—fi)/ (zx2) <
g i * (inverse (f i) — inverse (f (i + 1)))

12



by (rule diff-inv-le’, (auto simp add: assms «i € 1))
qed
finally show ?thesis .
qed

lemma diff-inv-ge:
assumes 0 < (z:real)
and z < y
and y < 2
shows inverse y — inverse z < (z — y)/(z*x)
proof —
have 0 < y using assms by simp
hence 0 < z using assms by simp
hence inverse y — inverse z = (z — y) / (y * 2)
using <0 < y» by (simp add: divide-real-def division-ring-inverse-diff)
also have ... < (z — y)/(z*z) using assms
by (simp add: frac-le mult-mono)
finally show ?thesis .
qed

lemma diff-inv-ge’:
assumes 0 < (z::real)
and z < y
and y < 2
and 0 < a
shows a * (inverse y — inverse z) < a * (z — y)/(zxx)
proof —
have 0 < y using assms by simp
hence 0 < z using assms by simp
hence inverse y — inverse z = (z — y) / (y * 2)
using <0 < y» by (simp add: divide-real-def division-ring-inverse-diff)
also have ... < (z — y)/(z*z) using assms
by (simp add: frac-le mult-mono)
finally show ?thesis
by (metis assms(4) mult-left-mono times-divide-eg-right)
qed

A IN

lemma diff-inv-sum-ge':
assumes (0::real) < z
andVie I fi<f(it+1)
and Vie [. 2 < fi
andViel. 0<g1
shows sum (Ai. g i * (inverse (f i) — inverse (f (i+1)))) I <
sum (M. gix (f (i+1) — fi) I/ (z % 2)
proof —
have sum (Ai. g ¢ x (inverse (f i) — inverse (f (i+1)))) I <
sum (M. gix (f (i+1) — fi)) (2% 2)) ]
proof (rule sum-mono)
fix i

13



assume i € [
show ¢ i x (inverse (f i) — inverse (f (i + 1))) <
gis(f(i+1)—fi)/ (2% 2)
by (rule diff-inv-ge’, (auto simp add: assms «i € I)))
qed
also have ... = sum (A\i. g i x (f (i+1) — f4) I / (2 % 2)
by (rule sum-divide-distrib[symmetric])
finally show ?thesis .
qed

1.2 Support of a discrete function

definition nz-support where
nz-support f = {i. fi # 0}

lemma nz-supportD:
assumes (€ nz-support f
shows f i # 0 using assms unfolding nz-support-def by simp

lemma wedge-finite-nz-support:
assumes finite (nz-support f)
shows finite (nz-support (wedge f i sqp))
proof —
define A where A = {j. j < i A fj# 0}
define B where B = {j. i+1 <jAf (j—1) # 0}
have inc: nz-support (wedge fi sqp) C AU B U {i+1}
using wedge-arg-prop|of A\z. x # 0]
unfolding nz-support-def A-def B-def by auto
have finite A using assms unfolding nz-support-def A-def by auto
have BC (\j. j+1)4j. fj # 0}
proof
fix j
assume j€ B
hence i+1 < jand f (j—1) # 0 unfolding B-def by auto note asm = this
define k where k = j—1
hence f k # 0 using asm by simp
hence k € {j. fj# 0} by simp
thus j € (Aj. j+1)9j. fj # 0} using <k = j—1) by force
qed
hence finite B using assms finite-surj unfolding nz-support-def by auto
thus ?thesis using assms <finite A inc
by (meson finite.simps finite-Unl finite-subset)
qed

lemma gross-nz-support-eq:
assumes Vi € nz-support f. phi i # 1
shows nz-support f = nz-support (gross-fct f phi)
using assms gross-fct-nz-eq gross-fct-zero-if unfolding nz-support-def
by blast

14



definition idx-min where
idz-min f = Inf (nz-support f)

definition idz-mazr where
ide-mazx [ = Sup (nz-support f)

lemma idx-mazx-bdd-above-ge:
fixes f::’a::conditionally-complete-linorder = 'b::zero
assumes f1i # 0
and bdd-above (nz-support f)
shows i < idz-maz f
proof —
have i € nz-support f unfolding nz-support-def using assms by simp
thus ?thesis unfolding idz-maz-def
by (simp add: assms cSup-upper)
qed

lemma idz-min-bdd-below-le:
fixes f::’a::conditionally-complete-linorder = 'b::zero
assumes f1i # 0
and bdd-below (nz-support f)
shows idz-min f < i
proof —
have i € nz-support f unfolding nz-support-def using assms by simp
thus ?thesis unfolding idz-min-def
by (simp add: assms cInf-lower)
qed

lemma idz-maz-finite-ge:
fixes f::’a::conditionally-complete-linorder = 'b::zero
assumes f i #£ 0
and finite (nz-support f)
shows ¢ < idz-maz f using assms
by (simp add: idz-maz-bdd-above-ge)

lemma idz-min-finite-le:
fixes f::'a::conditionally-complete-linorder = 'b::zero
assumes fi # 0
and finite (nz-support f)
shows idz-min f < i using assms
by (simp add: idz-min-bdd-below-le)

lemma idx-maz-finite:
fixes f::'a::conditionally-complete-linorder = 'b::zero
assumes nz-support f # {}
and finite (nz-support f)
shows idz-mazx f = Maz (nz-support f) using assms unfolding idz-maz-def
by (simp add: cSup-eq-Maz)
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lemma idz-min-finite:
fixes f::'a::conditionally-complete-linorder = 'b::zero
assumes nz-support f # {}
and finite (nz-support f)
shows idz-min f = Min (nz-support f) using assms unfolding idx-min-def
by (simp add: cInf-eq-Min)

lemma idz-maz-finite-in:
fixes f::’a::conditionally-complete-linorder = 'b::zero
assumes nz-support [ # {}
and finite (nz-support f)

shows [ (idz-mazx f) # 0 using assms idz-maz-finite
by (metis Maz-in nz-supportD)

lemma idz-min-finite-in:
fixes f::’a::conditionally-complete-linorder = 'b::zero
assumes nz-support [ # {}
and finite (nz-support f)

shows f (idx-min f) # 0 using assms idx-min-finite
by (metis Min-in nz-supportD)

lemma idx-max-finite-gt:
fixes f::'a::conditionally-complete-linorder = 'b::zero
assumes finite (nz-support f)
and idz-max f < @
shows fi =0
proof —
have i ¢ nz-support [ using assms idz-max-finite
by (metis Maz-ge emptyE linorder-not-less)
thus ?thesis by (simp add: nz-support-def)
qed

lemma idz-min-finite-It:
fixes f::'a::conditionally-complete-linorder = 'b::zero
assumes finite (nz-support f)
and ¢ < idz-min f
shows fi =0
proof —
have { ¢ nz-support f using assms idx-min-finite
by (metis Min-le emptyE linorder-not-less)
thus ?thesis by (simp add: nz-support-def)
qed

lemma idz-min-finite-max:

fixes f::'a::conditionally-complete-linorder = 'b::zero
assumes nz-support f # {}

and finite (nz-support f)

and \j.j<i= fj=10
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shows ¢ < idz-min f
proof (rule ccontr)
assume — i < idz-min f
hence idz-min f < i by simp
hence f (idz-min f) = 0 using assms by simp
thus Fulse using idz-min-finite-in assms by metis
qed

lemma idz-min-maz-finite:
fixes f::’a::conditionally-complete-linorder = 'b::zero
assumes nz-support [ # {}
and finite (nz-support f)
shows idz-min f< idz-maz f
proof —
have idz-maz f € nz-support f
using idz-maz-finite-in assms unfolding nz-support-def by simp
thus idz-min f < idz-max f
using idz-min-finite-le assms unfolding nz-support-def by simp
qed

lemma idz-min-finitel:
fixes f::'a::conditionally-complete-linorder = 'b::zero
assumes finite (nz-support f)
and fi # 0
and \j. j<i= fji=10
shows i = idz-min f
proof —
have nz-support f # {} using assms unfolding nz-support-def by auto
thus ?thesis
using assms idz-min-finite-le nless-le by (metis idz-min-finite-in)
qed

lemma idz-min-finite-ge:
fixes f::'a::conditionally-complete-linorder = 'b::zero
assumes finite (nz-support f)
and nz-support f # {}
and \j. j < i=> fj=0
shows i < idz-min f
by (meson assms idz-min-finite-in nle-le)

lemma idz-maz-finitel:
fixes f::'a::conditionally-complete-linorder = 'b::zero
assumes finite (nz-support f)
and fi # 0
and \j.j>i=fj=10
shows i = idz-maz f
proof —
have nz-support f # {} using assms unfolding nz-support-def by auto
thus ?thesis using assms
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by (meson idx-maz-finite-gt idz-maz-finite-in linorder-less-linear)
qed

lemma idz-maz-finite-le:
fixes f::'a::conditionally-complete-linorder = 'b::zero
assumes finite (nz-support f)
and nz-support f # {}
and \j. i<j=fj=10
shows idz-maz f < i
using assms idx-maz-finite-in linorder-linear by auto

definition idxz-min-img where
idz-min-img g f = g (idz-min f)

lemma idx-min-img-eq:

assumes Vz. fx =0+ flz=10

shows idz-min-img g f = idz-min-img g f’ unfolding idz-min-img-def using
assms

by (simp add: idz-min-def nz-support-def)

definition idz-maz-img where
ide-maz-img g f = g (idz-maz f + 1)

lemma idx-mazx-img-eq:

assumes Vz. fz =0 <+— f'z =10

shows idz-maz-img g f = idz-maz-img g f' unfolding idz-maz-img-def using
assms

by (simp add: idz-maz-def nz-support-def)

lemma non-zero-lig-interv:
fixes i::’a::conditionally-complete-linorder
assumes finite (nz-support L)
and L i # 0
shows i € {idz-min L .. idz-maz L}
using assms idx-maz-finite-ge idz-min-finite-le by auto

end
theory Grid-Information imports CLMM-Misc

begin
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2 Grid information

2.1 Definitions

A grid information consists of three functions defining the way a grid is
associated to (square root) prices, the liquidity on each price range and the
fees on each price range.

type-synonym grid-info = (int= real) x (int= real) x (int=real)

definition grd::grid-info = (int= real) where
grd P = fst P

definition lq::grid-info = (int= real) where
lg P = fst (snd P)

definition fee::grid-info = (int= real) where
fee P = snd (snd P)

Although several results are formalized in a generalized setting, the pools of
interest are those admitting a finite range with nonzero liquidity.

definition finite-lig where
finite-lig P <— finite (nz-support (lg P))

lemma finite-ligI [intro]:
assumes finite {i. lg Pi # 0}
shows finite-lig P using assms unfolding finite-lig-def nz-support-def
by simp

lemma finite-ligD:
assumes finite-lig P
shows finite {i. lg P i # 0} using assms
unfolding finite-lig-def nz-support-def
by simp

definition grd-min where
grd-min P = idz-min-img (grd P) (lg P)

definition grd-maz where
grd-max P = idz-max-img (grd P) (lg P)

lemma grd-min-pos:
assumes nz-support (lg P) # {}
and A¢. 0 < grd P i
shows 0 < grd-min P
by (simp add: assms(2) idz-min-img-def grd-min-def)

lemma g¢grd-maz-gt:

assumes nz-support (lg P) # {}
and Ai. 0 < grd P i
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shows 0 < grd-max P
by (simp add: assms(2) idz-maz-img-def grd-maz-def)

locale finite-nz-support =
fixes L::int = real
assumes fin-nz-sup: finite (nz-support L)

locale finite-lig-pool =
fixes P
assumes fin-liq: finite-liq P

sublocale finite-lig-pool C finite-nz-support lqg P
using fin-liq finite-lig-def finite-nz-support.intro by auto

context finite-lig-pool
begin

lemma idz-max-mem:

assumes nz-support (lg P) # {}
shows idx-maz (lg P) € nz-support (lg P)
proof —

have finite (nz-support (lqg P))

by (simp add: fin-liq finite-ligD nz-support-def)

thus ?thesis using assms unfolding idz-maz-def by (metis Maz-in cSup-eq-Maz)

qed

lemma idz-min-mem:
assumes nz-support (lg P) # {}
shows idz-min (lg P) € nz-support (lg P)
proof —
have finite (nz-support (lg P))
by (simp add: fin-liq finite-ligD nz-support-def)
thus ?thesis using assms unfolding idz-min-def
by (metis finite-less-Inf-iff nless-le not-le-imp-less)
qed

lemma grd-min-mazx:
assumes nz-support (lg P) # {}
and mono (grd P)
shows grd-min P < grd-max P
unfolding grd-min-def grd-maz-def idz-min-img-def idz-maz-img-def
idz-max-def
by (metis add.commute add-increasing assms fin-nz-sup idz-min-def
idz-min-mem le-cSup-finite zero-less-one-class.zero-le-one
monoD)

lemma finite-lig-gross-fct:

shows finite {i. gross-fct (lg P) (fee P) i # 0}
using finite-ligD fin-nz-sup unfolding gross-fct-def nz-support-def by auto
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end

2.2 Gross and net token quantities

2.2.1 General definitions

We define generic functions that are afterwards instantiated to represent the
gross (resp. net) quantities of base (resp. quote) tokens in a pool.

definition rng-token where
rng-token = (Adff L (pi::real) i. ((L i)::real) = (dff pi (i::int)))

lemma rng-token-pos:
assumes 0 < L 1
and 0 < dffz i
shows 0 < rng-token dff L = i unfolding rng-token-def
using zero-le-mult-iff assms by auto

lemma rng-token-continuous-on:
assumes continuous-on A (Api. dff pi i)
shows continuous-on A (Api. rng-token dff L pi i) unfolding rng-token-def
by (rule continuous-on-mult-left, simp add: assms)

(Anti)-monotonicity is preserved by the generic function rng-token.

lemma rng-token-mono:
assumes (0 < L i
and mono (Api. dff pi 7)
shows mono (Api. rng-token dff L pi i)
proof
fix z y::real
assume z < y
show rng-token dff L x i < rng-token dff L y ¢
unfolding rng-token-def
proof (rule ordered-comm-semiring-class.comm-mult-left-mono)
show 0 < L 7 using assms by simp
show dff x ¢ < dff y i using assms monoD «x < y» by auto
qed
qed

lemma rng-token-strict-mono:
assumes (0::real) < L i
and strict-mono (Api. dff pi i)
shows strict-mono (Api. rng-token dff L pi ©)
proof
fix z y:real
assume r < y
hence dff x i < dff y i using assms strict-monoD by auto
thus rng-token dff L © i < rng-token dff L y i
using assms unfolding rng-token-def by simp
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qed

lemma rng-token-antimono:
assumes (0 < L i
and antimono (Api. dff pi i)
shows antimono (Api. rng-token dff L pi 1)
proof
fix x y::real
assume z < y
show rng-token dff L y i < rng-token dff L x 1
unfolding rng-token-def
proof (rule ordered-comm-semiring-class.comm-mult-left-mono)
show 0 < L i using assms by simp
show dff y i < dff z i using assms antimonoD <z < y» by auto
qed
qed

lemma rng-token-add:
assumes Vi. L¢=L1i+ L21¢
shows rng-token dff L x i = rng-token dff L1 z i +
rng-token dff L2 x i
using assms unfolding rng-token-def
by (simp add: ring-class.ring-distribs(2))

The generic function for the gross or net token quantities on the entire pool
is obtained by summation of rng-token on all ranges.

definition gen-token where
gen-token = (Adff L pi. (infsum (rng-token dff L pi) UNIV))

lemma gen-token-pos:

assumes Vi. 0 < L i

and Vi. 0 < dffzi
shows 0 < gen-token dff L x unfolding gen-token-def
proof (rule infsum-nonneg)

show Ay. y € UNIV = 0 < rng-token dff L z y

using assms unfolding rng-token-def by simp

qed

lemma gen-token-mono:
assumes Vi. 0 < L i
and VY z. rng-token dff L © summable-on UNIV
and Vi. mono (Api. dff pi i)
shows mono (Api. gen-token dff L pi)
proof
fix x y::real
assume z < y
show gen-token dff L © < gen-token dff L y unfolding gen-token-def
proof (rule infsum-mono)
show rng-token dff L x summable-on UNIV using assms by simp
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show rng-token dff L y summable-on UNIV using assms by simp
show Ai. i € UNIV = rng-token dff L x i < rng-token dff L y i
using rng-token-mono assms
by (meson <z < y» monotoneD)
qed
qed

lemma gen-token-antimono:
assumes Vi. 0 < L ¢
and V z. rng-token dff L x summable-on UNIV
and VY i. antimono (Api. dff pi i)
shows antimono (Api. gen-token dff L pi)
proof
fix z y::real
assume z < y
show gen-token dff L y < gen-token dff L x unfolding gen-token-def
proof (rule infsum-mono)
show rng-token dff L x summable-on UNIV using assms by simp
show rng-token dff L y summable-on UNIV using assms by simp
show Ai. i € UNIV = rng-token dff L y i < rng-token dff L = i
proof —
fix i::int
assume i€ UNIV
have antimono (Api. rng-token dff L pi 1)
using rng-token-antimono assms by simp
thus rng-token dff L y i < rng-token dff L = i
using «x < y» antimono-def by metis
qed
qed
qed

2.2.2 Finite support restriction

context finite-nz-support
begin

lemma finite-nonzero-summable:
shows rng-token dff L x summable-on UNIV
proof (rule finite-nonzero-values-imp-summable-on)
define rg where rg = rng-token dff L z
define Lnz where Lnz = {i. L i # 0}
have finite Lnz using fin-nz-sup unfolding Lnz-def
by (simp add: nz-support-def)
define Lz where Lz = UNIV — Lnz
have Vi€ Lz. L ¢ = 0 using Lnz-def Lz-def by simp
hence Vi€ Lz. rg i = 0 unfolding rg-def rng-token-def by simp
hence Vi. rg { # 0 — i€ Lnz using Lz-def Lnz-def by blast
show finite {x € UNIV. rg z # 0}
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using Vi. rg i # 0 — i€ Lnz» <finite Lnz
by (metis (mono-tags, lifting) mem-Collect-eq rev-finite-subset subsetl)
qed

lemma gen-token-antimono-finite:
assumes Vi. 0 < L {
and VY i. antimono (Api. dff pi i)
shows antimono (Api. gen-token dff L pi)
proof (rule gen-token-antimono)
show V z. rng-token dff L x summable-on UNIV
using finite-nonzero-summable assms by simp
qed (simp add: assms)+

lemma gen-token-sum:
shows gen-token dff L © =
sum (rng-token dff L x) {i. L i # 0}
proof —
define rg where rg = rng-token dff L x
define Lnz where Lnz = {i. L i # 0}
have finite Lnz using fin-nz-sup
unfolding Lnz-def nz-support-def by simp
define Lz where Lz = UNIV — Lnz
have Vie Lz. L ¢ = 0 using Lnz-def Lz-def by simp
hence Vie Lz. rg i = 0 unfolding rg-def rng-token-def by simp
have infsum rg UNIV = infsum rg (Lnz U Lz) unfolding Lz-def Lnz-def
by simp
also have ... = infsum rg Lnz + infsum rg Lz
proof (rule infsum-Un-disjoint)
show rg summable-on Lz
using Vi€ Lz. rg i = 0> summable-on-0[of Lz rg] by simp
show rg summable-on Lnz using <finite Lnz> by simp
show Lnz N Lz = {} unfolding Lz-def by simp

qed

also have ... = infsum rg Lnz using infsum-0 «~NVi€ Lz. rg i = 0>
by fastforce

also have ... = sum rg Lnz using <(finite Lnz> by simp

finally show ?thesis using rg-def Lnz-def unfolding gen-token-def by simp
qed

lemma gen-token-continuous:
assumes Y i. continuous-on A (Api. dff pi i)
shows continuous-on A (gen-token dff L)
proof —
have gen-token dff L =
(Api. sum (rng-token dff L pi) {i. L i # 0})
using gen-token-sum assms by auto
moreover have continuous-on A
(Api. sum (rng-token dff L pi) {i. L i # 0})

proof (rule continuous-on-sum)
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fix 7::int
assume ¢ € {i. L i # 0}
show continuous-on A (Az. rng-token dff L x ©)
by (rule rng-token-continuous-on, simp add: assms)
qed
ultimately show ?thesis by simp
qed

lemma gen-token-strict-mono:
assumes Vi. 0 < L i
and nz-support L # {}
and YV i. strict-mono (Api. dff pi i)
shows strict-mono (Api. gen-token dff L pi)
proof
fix z y:real
assume r < y
define M where M = {i. L i # 0}
have gen-token dff L x = sum (rng-token dff L ) M
using gen-token-sum unfolding M-def by simp
also have ... < sum (rng-token dff L y) M
proof (rule sum-strict-mono)
show finite M
unfolding M-def by (metis fin-nz-sup nz-support-def)
show M # {} using assms unfolding nz-support-def M-def by simp
fix j
assume j € M
hence 0 < L j using assms less-eq-real-def unfolding M-def by auto
hence strict-mono (Api. rng-token dff L pi j)
using assms rng-token-strict-mono by simp
thus rng-token dff L x j < rng-token dff L y j
using <z < y» strict-monoD by auto
qed
also have ... = gen-token dff L y
using gen-token-sum unfolding M-def by simp
finally show gen-token dff L x < gen-token dff L y .
qed

lemma gen-token-add:
assumes Vi. L¢=L1i+ L2
and Vi. 0 < L1
and Vi. 0 < L213
shows gen-token dff L © = gen-token dff L1 x + gen-token dff L2 x
proof —
have subl: {i. L1 i # 0} C {i. Li# 0}
by (simp add: Collect-mono add-nonneg-eq-0-iff assms)
have sub2: {i. L2 i # 0} C {i. Li# 0}
by (simp add: Collect-mono add-nonneg-eq-0-iff assms)
have gen-token dff L x = sum (rng-token dff L x) {i. L i # 0}
using gen-token-sum by simp
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also have ... = sum (\i. rng-token dff L1 x i + rng-token dff L2 x 1)
{i. Li# 0}
by (rule sum.cong, (simp add: assms rng-token-add)+)
also have ... = sum (rng-token dff L1 z) {i. L i # 0} +
sum (rng-token dff L2 x) {i. L i # 0}
by (rule sum.distrib)
also have ... = gen-token dff L1 x + gen-token dff L2 x
proof —
have gen-token dff L1 x = sum (rng-token dff L1 x) {i. L1 i # 0}
proof (rule finite-nz-support.gen-token-sum)
show finite-nz-support L1 using subl fin-nz-sup
by (metis finite-nz-support.intro nz-support-def rev-finite-subset)
qed
also have ... =
sum (rng-token dff L1 z) {i. L i # 0}
proof (rule sum.mono-neutral-left)
show finite {i. L i # 0}
using fin-nz-sup unfolding nz-support-def by simp
show {i. L1 i # 0} C {i. L i # 0} using subl by simp
show Vie{i. L i # 0} — {i. L1 i # 0}. rng-token dff L1 i = 0
unfolding rng-token-def by simp
qed
finally have 1: gen-token dff L1 x =
sum (rng-token dff L1 z) {i. L i # 0} .
have gen-token dff L2 x = sum (rng-token dff L2 x) {i. L2 i # 0}
proof (rule finite-nz-support.gen-token-sum)
show finite-nz-support L2 using sub2 fin-nz-sup
by (metis finite-nz-support.intro nz-support-def rev-finite-subset)
qed
also have ... = sum (rng-token dff L2 z) {i. L i # 0}
proof (rule sum.mono-neutral-left)
show finite {i. L i # 0}
using fin-nz-sup unfolding nz-support-def by simp
show {i. L2 # 0} C {i. L i # 0} using sub2 by simp
show Vie{i. Li# 0} — {i. L2i # 0}. rng-token dff L2 z i = 0
unfolding rng-token-def by simp
qged
finally have gen-token dff L2 © =
sum (rng-token dff L2 z) {i. L i # 0} .
thus ?thesis using 1 by simp
qed
finally show ?thesis .
qed

end
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2.3 Gross and net quantities of quote tokens

2.3.1 Generic functions for quote tokens

definition gamma-min-diff where
gamma-min-diff gamma =
(AM(pizreal) i. (min pi (gamma (i+(1::4nt)))) — (min pi (gamma 7)))

lemma gamma-min-diff-pos:
assumes gamma i < gamma (i+1)
shows 0 < gamma-min-diff gamma x {
proof —
show ?thesis
proof (cases © < gamma 1)
case True
hence min z (gamma i) = z by simp
have = < gamma (i + 1) using True assms by simp
hence min z (gamma (i + 1)) = z by simp
then show ?thesis using <min z (gamma i) = x>
unfolding gamma-min-diff-def by simp
next
case Fulse
hence min © (gamma i) = gamma i by simp
show ?thesis
proof (cases © < gamma (i + 1))
case True
hence min = (gamma (i + 1)) = x by simp
then show %thesis using «min & (gamma i) = gamma i> False
unfolding gamma-min-diff-def by simp
next
case Fulse
hence min z (gamma (i + 1)) = gamma (i+1) by simp
then show ?thesis using assms unfolding gamma-min-diff-def by simp
qed
qged
qed

lemma gamma-min-diff-continuous:
shows continuous-on A (A(pi::real). gamma-min-diff gamma pi ©)
unfolding gamma-min-diff-def
proof (rule continuous-on-diff)
show continuous-on A (Azx. min © (gamma (i + 1))) using continuous-on-min
continuous-on-const continuous-on-id by blast
show continuous-on A (Az. min & (gamma 7)) using continuous-on-min
continuous-on-const continuous-on-id by blast
qed

lemma gamma-min-diff-mono:

fixes gamma::int = real
assumes gamma i < gamma (i+1)
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shows mono (Api. gamma-min-diff gamma pi 7)
unfolding gamma-min-diff-def
proof
fix z y:real
assume asm: ¢ < y
show min z (gamma (i + 1)) — min x (gamma i) <
min y (gamma (i + 1)) — min y (gamma 7)
proof (rule diff-min-le)
show z < y using asm .
show gamma i < gamma (i + 1) using assms by simp
qed
qed

definition rng-gen-quote where
rng-gen-quote gamma = (AL pi i. rng-token (gamma-min-diff gamma) L pi 1)

lemma rng-gen-quote-pos:
assumes (0 < L i
and gamma ¢ < gamma (i+1)
shows 0 < rng-gen-quote gamma L z i unfolding rng-gen-quote-def
by (rule rng-token-pos, auto simp add: assms gamma-min-diff-pos)

lemma rng-gen-quote-continuous-on:
shows continuous-on A (Api. rng-gen-quote gamma L pi 7)
unfolding rng-gen-quote-def
by (rule rng-token-continuous-on, rule gamma-min-diff-continuous)

lemma rng-gen-quote-mono:
assumes 0 < L 1
and gamma ¢ < gamma (i+1)
shows mono (Api. rng-gen-quote gamma L pi 1)
proof
fix = y::real
assume asm: z < gy
show rng-gen-quote gamma L x i < rng-gen-quote gamma L y i
unfolding rng-gen-quote-def rng-token-def
proof (rule ordered-comm-semiring-class.comm-mult-left-mono)
show 0 < L i using assms by simp
show gamma-min-diff gamma x i < gamma-min-diff gamma y @
using gamma-min-diff-mono asm monoD assms by blast
qed
qged

definition gen-quote where
gen-quote = (X gamma L pi. gen-token (gamma-min-diff gamma) L pi)

lemma gen-quote-zero:

assumes mono gamma
and Ai. gamma i < sqp = L i =0
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shows gen-quote gamma L sqp = 0 unfolding gen-quote-def gen-token-def
proof (rule infsum-0)
fix ¢
show rng-token (gamma-min-diff gamma) L sqp i = 0
proof (cases sqp < gamma i)
case True
hence sgp < gamma (i+1) using assms monoD
by (metis dual-order.trans zle-add1-eg-le zless-addl-eq)
hence gamma-min-diff gamma sqp ¢ = 0
using True unfolding gamma-min-diff-def by simp
then show ?thesis unfolding rng-token-def by simp
next
case Fulse
hence L ¢ = 0 using assms by simp
then show ?thesis unfolding rng-token-def by simp
qged
qed

lemma gen-quote-pos:
assumes Vi. 0 < L i
and Vi. gamma i < gamma (i+1)
shows 0 < gen-quote gamma L x unfolding gen-quote-def
using gen-token-pos gamma-min-diff-pos assms by simp

lemma gen-quote-mono:
assumes Vi. 0 < L i
and VY z. rng-token (gamma-min-diff gamma) L x summable-on UNIV
and Vi. gamma i < gamma (i+1)
shows mono (gen-quote gamma L) unfolding gen-quote-def
proof (rule gen-token-mono)
show Vi. mono (Api. gamma-min-diff gamma pi )
using gamma-min-diff-mono assms by simp
qed (simp add: assms)+

2.3.2 Finite support restriction

context finite-nz-support
begin

lemma gen-quote-mono-finite:
assumes Vi. 0 < L 1
and Vi. gamma i < gamma (i+1)
shows mono (gen-quote gamma L)
proof (rule gen-quote-mono)
show Vz. rng-token (gamma-min-diff gamma) L x summable-on UNIV
using finite-nonzero-summable assms by simp
qged (simp add: assms)+

lemma gen-quote-continuous:
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shows continuous-on A (gen-quote gamma L) unfolding gen-quote-def
proof (rule gen-token-continuous)
show Vi. continuous-on A (Api. gamma-min-diff gamma pi ¢) using
gamma-min-diff-continuous by simp
qed

lemma gen-quote-IVT:
assumes (idz-min-img gamma L) < (idz-maz-img gamma L)
and gen-quote gamma L (idz-min-img gamma L) < y
and y < gen-quote gamma L (idz-maz-img gamma L)
shows dpi > (idz-min-img gamma L). pi < idz-maz-img gamma L A
gen-quote gamma L pi = y
proof (rule IVT)
show V pi. ide-min-img gamma L < pi A pi < idx-max-img gamma L —
isCont (gen-quote gamma L) pi
proof (intro alll impl)
fix pi
assume (idz-min-img gamma L) < pi A pi < (idz-maz-img gamma L)
show isCont (gen-quote gamma L) pi using gen-quote-continuous
by (simp add: continuous-on-eq-continuous-within assms)
qged
qed (simp add: assms)+

lemma gen-quote-ne:
assumes (idz-min-img gamma L) < (idz-maz-img gamma L)
and gen-quote gamma L (idz-min-img gamma L) < y
and y < gen-quote gamma L (idz-maz-img gamma L)
shows (gen-quote gamma L)—* {y} # {} using gen-quote-IVT assms by blast

lemma finite-support-sum:
assumes \i. Li=0= fLi=20
shows infsum (rng-token dff (f L) z) UNIV =
sum (rng-token dff (f L) z) {i. L i # 0}
proof —
define rg where rg = rng-token dff (f L) z
define Lnz where Lnz = {i. L i # 0}
have finite Lnz using assms fin-nz-sup unfolding Lnz-def
by (simp add: nz-support-def)
define Lz where Lz = UNIV — Lnz
have Vi€ Lz. (f L) i = 0 using assms Lnz-def Lz-def by simp
hence Vice Lz. rg i = 0 unfolding rg-def rng-token-def by simp
have infsum rg UNIV = infsum rg (Lnz U Lz) unfolding Lz-def Lnz-def
by simp
also have ... = infsum rg Lnz + infsum rg Lz
proof (rule infsum-Un-disjoint)
show rg summable-on Lz
using Vi€ Lz. rg i = 0> summable-on-0[of Lz rg] by simp
show rg summable-on Lnz using <finite Lnz)> by simp
show Lnz N Lz = {} unfolding Lz-def by simp
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qed

also have ... = infsum rg Lnz using infsum-0 Vi€ Lz. rg i = 0>
by fastforce
also have ... = sum rg Lnz using <finite Lnz> by simp
finally show ?thesis using rg-def Lnz-def by simp
qed

lemma gen-quote-plus:
assumes Vi. L¢=L1i+ L2¢
and Vi. 0 < L1
and Vi. 0 < L2
shows gen-quote gam L © = gen-quote gam L1 x + gen-quote gam L2 x
using assms gen-token-add unfolding gen-quote-def by simp

end

2.4 Gross quote token quantity into a pool

2.4.1 Function specialization

When the quote tokens are added to a pool, fees are to be taken into account:
if a user adds a quantity ¢ of tokens into a pool, the computation of the
amount of base tokens received is based in g - (1 — ).

definition rng-quote-gross where
rng-quote-gross P = rng-gen-quote (grd P) (gross-fet (lg P) (fee P))

lemma rng-quote-gross-pos:
assumes 0 < gross-fct (lg P) (fee P) i
and grd Pi < grd P (i+1)
shows 0 < rng-quote-gross P pi i unfolding rng-quote-gross-def
using rng-gen-quote-pos assms by simp

lemma rng-quote-gross-continuous-on:
shows continuous-on A (Api. rng-quote-gross P pi 1)
unfolding rng-quote-gross-def using rng-gen-quote-continuous-on by simp

lemma rng-quote-gross-mono:
assumes 0 < gross-fct (lqg P) (fee P) i
and grd P i < grd P (i+1)
shows mono (Api. rng-quote-gross P pi i) unfolding rng-quote-gross-def
using rng-gen-quote-mono assms by simp

definition quote-gross where
quote-gross P = gen-quote (grd P) (gross-fct (lg P) (fee P))

lemma quote-gross-pos:
assumes Vi. 0 < gross-fct (lg P) (fee P) i
and Vi. grd P i < grd P (i+1)
shows 0 < quote-gross P x unfolding quote-gross-def
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using gen-quote-pos assms by simp

lemma quote-gross-mono:
assumes Vi. 0 < (lg P) ¢
and Vi. (fee P) i < 1
and Vi. (grd P) i < (grd P) (i+1)
and Vz. rng-token (gamma-min-diff (grd P)) (gross-fct (lqg P) (fee P)) =
summable-on UNIV
shows mono (quote-gross P) unfolding quote-gross-def
proof (rule gen-quote-mono)
show Vi. 0 < gross-fct (lg P) (fee P) i using gross-fct-sgn assms by blast
qed (simp add: assms)+

lemma gen-quote-grd-min:
assumes mono (grd P)
and finite (nz-support L)
and nz-support L # {}
and nz-support L = nz-support (lg P)
shows gen-quote (grd P) L (grd-min P) = 0
proof (rule gen-quote-zero)
fix ¢
assume grd P i < grd-min P
hence i < idz-min (lg P) unfolding grd-min-def idz-min-img-def
using assms(1) mono-strict-invE by blast
hence lq P i = 0 using assms idz-min-finite-lt by auto
hence i ¢ nz-support (lg P) unfolding nz-support-def by auto
thus L i = 0 using assms nz-support-def by fastforce
qed (simp add: assms)

Definition of the grid point that is reached in a pool for a given gross quantity
of quote tokens.

definition quote-reach where
quote-reach = (AP y.

if y = 0 then (grd-min P)

else Inf ((quote-gross P)—*‘{y}))

2.4.2 Restriction to pools with a finite liquidity

context finite-lig-pool
begin

lemma quote-gross-mono-finite:
assumes Vi. 0 < (lg P) ¢
and Vi. (fee P) i < 1
and Vi. (grd P) i < (grd P) (i+1)
shows mono (quote-gross P)
proof (rule quote-gross-mono)
show V z. rng-token (gamma-min-diff (grd P)) (gross-fct (lg P) (fee P)) x
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summable-on UNIV
proof
fix z
show rng-token (gamma-min-diff (grd P)) (gross-fct (Ig P) (fee P)) x
summable-on UNIV
proof (rule finite-nz-support.finite-nonzero-summable)
show finite-nz-support (gross-fct (lg P) (fee P))
using assms finite-lig-gross-fct
by (simp add: finite-nz-support.intro nz-support-def)
qed
qed
qed (simp add: assms)+

lemma quote-gross-mono-finite”:
assumes Vi. 0 < (lg P) ¢
and Vi. (fee P) i < 1
and mono (grd P)
shows mono (quote-gross P)
proof (rule quote-gross-mono-finite)
show Vi. grd P i < grd P (i+1) using assms monoD by fastforce
qed (simp add: assms)+

lemma quote-gross-continuous:
shows continuous-on A (quote-gross P) unfolding quote-gross-def
using gen-quote-continuous finite-liq-gross-fct fin-liq finite-liqD
by (simp add: finite-nz-support.gen-quote-continuous finite-nz-support.intro
nz-support-def)

lemma quote-gross-IVT:
assumes Vi. fee P i # 1
and grd-min P < grd-max P
and quote-gross P (grd-min P) <y
and y < quote-gross P (grd-mazx P)
shows 3 pi > (grd-min P). pi < (grd-maz P) A
quote-gross P pi = y
proof —
have grd-min P = idx-min-img (grd P) (gross-fet (lg P) (fee P))
by (simp add: assms gross-fct-nz-eq idz-min-img-eq grd-min-def)
moreover have grd-maz P = idx-max-img (grd P) (gross-fct (lg P) (fee P))
by (simp add: assms gross-fct-nz-eq idz-maz-img-eq grd-maz-def)
ultimately show ?thesis
using gen-quote-IVT finite-lig-gross-fct assms unfolding quote-gross-def
by (metis finite-nz-support.gen-quote-IVT finite-nz-support.intro
nz-support-def)
qed

lemma quote-gross-ne:

assumes Vi. fee P i # 1
and grd-min P < grd-max P
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and quote-gross P (grd-min P) <y
and y < quote-gross P (grd-maz P)
shows quote-gross P—* {y} # {} using quote-gross-IVT assms by blast

lemma quote-gross-grd-min:
assumes mono (grd P)
shows quote-gross P (grd-min P) = 0
using gen-quote-grd-min unfolding quote-gross-def
by (smt (verit) assms(1) fin-nz-sup gen-quote-zero gross-fct-zero-if
idz-min-finite-le idz-min-img-def monoD grd-min-def)

lemma quote-reach-mem:
assumes Vi. 0 < lq P i
and Vi. fee Pi < 1
and mono (grd P)
and 0 <y
and y < quote-gross P (grd-mazx P)
shows quote-reach P y € quote-gross P—* {y}
proof (cases y = 0)
case True
then show ?thesis
using quote-gross-grd-min assms unfolding quote-reach-def by simp
next
case Fulse
hence quote-reach P y = Inf ((quote-gross P)—*{y})
unfolding quote-reach-def by simp
also have ... € (quote-gross P)—*{y}
proof (rule closed-contains-Inf)
define X where X = (quote-gross P)—‘{y}
show X # {}
using quote-gross-grd-min quote-gross-ne assms unfolding X-def
by (smt (verit) False mono-invE quote-gross-mono-finite’)
show closed ((quote-gross P) —*{y})
proof (rule continuous-closed-vimage)
show closed {y} by simp
show Az. isCont (quote-gross P) x using quote-gross-continuous assms
by (simp add: continuous-on-eq-continuous-within)
qed
show bdd-below ((quote-gross P) —‘ {y})
proof
fix x
assume z € (quote-gross P) —‘{y}
hence quote-gross P x = y by simp
hence quote-gross P (grd-min P) < quote-gross P x
using quote-gross-grd-min assms False by simp
moreover have mono (quote-gross P)
proof (rule quote-gross-mono-finite)
show Vi. grd P i < grd P (i + 1) using assms(3) monoD by fastforce
qed (simp add: assms)+
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ultimately show (grd-min P) < z using mono-invE assms by auto
qed
qed
finally show ?thesis .
qed

lemma quote-gross-inv-strict-mono:
assumes mono (quote-gross P)
and quote-gross P sqp’ < y
and sqp € quote-gross P —* {y}

shows sqp’ < sqp

proof (rule ccontr)
assume asm: — sqp’ < sqp
have quote-gross P sqp’ < y using assms by simp
also have ... = quote-gross P sqp using assms by simp
also have ... < quote-gross P sqp’ using asm assms mono-strict-invE by auto
finally show Fulse using assms by simp

qed

lemma quote-gross-inv-bounded:
assumes mono (quote-gross P)
and quote-gross P (grd-min P) <y
and y < quote-gross P (grd-mazx P)
shows V sqp’ € quote-gross P —* {y}.
dist (grd-min P) sqp’ < grd-max P — grd-min P
proof
fix sqp’
assume sqp’ € quote-gross P —* {y}
hence grd-min P < sqp’ using quote-gross-inv-strict-mono assms by fastforce
have sqp’ < grd-maz P
using quote-gross-inv-strict-mono assms <sqp’ € quote-gross P —* {y}
by fastforce
have dist (grd-min P) sqp’ = sqp’ — (grd-min P) using <grd-min P < sqp”
by (simp add: dist-real-def)
thus dist (grd-min P) sqp’ < grd-max P — grd-min P
by (simp add: <sqp’ < grd-mazx P»)
qed

lemma quote-gross-bdd-below:
assumes mono (quote-gross P)
and quote-gross P (grd-min P) <y
shows bdd-below (quote-gross P —{y}) using assms
by (metis bdd-below.I mono-strict-invE order-less-imp-le vimage-singleton-eq)

lemma quote-reach-le:
assumes Vi. 0 < lq P 1
and Vi. fee P i < 1
and mono (grd P)
and 0 < y
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and sqp € quote-gross P —{y}
shows quote-reach Py < sqp
proof —
define sqp’ where sqp’ = quote-reach Py
define X where X = quote-gross P —* {y}
hence sqp’ = Inf X
using assms unfolding sqp’-def quote-reach-def by simp
have Vze X. Inf X < z
proof
fix z
assume z€ X
show Inf X <z
proof (rule clInf-lower)
show z€ X using <«ze X .
show bdd-below X using assms quote-gross-bdd-below quote-gross-grd-min
X-def
by (simp add: quote-gross-mono-finite’)
qed
qed
thus ?thesis using assms X-def <sqp’ = Inf X» sqp’-def by auto
qed

lemma quote-reach-gross-le:

assumes Vi. 0 < lq P 1

and Vi. fee Pi < 1

and mono (grd P)

and grd-min P < sqp
shows quote-reach P (quote-gross P sqp) < sqp
proof (cases quote-gross P sqp = 0)

case True

then show ?thesis using assms(4) quote-reach-def by presburger
next

case Fulse

then show ?thesis using quote-reach-le assms

by (metis mono-invE nle-le order-le-imp-less-or-eq quote-gross-grd-min
quote-gross-mono-finite’ vimage-singleton-eq)

qed

lemma quote-gross-reach-eq:

assumes Vi. 0 < lq P 1

and Vi. fee P i < 1

and mono (grd P)

and 0 < y

and y < quote-gross P (grd-maz P)
shows quote-gross P (quote-reach P y) =y

using assms quote-reach-mem by simp

lemma quote-reach-ge:
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assumes Vi. 0 < lg P i
and Vi. fee Pi < 1
and mono (grd P)
and grd-min P < grd-max P
and 0 < y
and y < quote-gross P (grd-mazx P)
shows grd-min P < quote-reach P y
proof (rule ccontr)
assume — grd-min P < quote-reach Py
hence quote-gross P (quote-reach P y) < quote-gross P (grd-min P)
by (smt (verit) assms quote-gross-inv-strict-mono quote-gross-mono-finite’
quote-gross-grd-min quote-reach-mem)
hence y < quote-gross P (grd-min P) using assms quote-gross-reach-eq by simp
thus Fulse using assms
by (simp add: quote-gross-grd-min)
qed

end

2.5 Net quote token quantity in a pool

2.5.1 Function specialization

There are no fees to take into account when tokens are withdrawn from a
pool.

definition rng-quote-net where
rng-quote-net P = rng-gen-quote (grd P) (lg P)

lemma rng-quote-net-pos:
assumes 0 < (lg P) i
and grd P i < grd P (i+1)
shows 0 < rng-quote-net P x i unfolding rng-quote-net-def
using rng-gen-quote-pos assms by simp

lemma rng-quote-net-continuous-on:
shows continuous-on A (Api. rng-quote-net P pi 7)
unfolding rng-quote-net-def using rng-gen-quote-continuous-on by simp

lemma rng-quote-net-mono:
assumes 0 < (lg P) i
and grd P i < grd P (i+1)
shows mono (Api. rng-quote-net P pi i) unfolding rng-quote-net-def
using rng-gen-quote-mono assms by simp

definition quote-net where
quote-net P = gen-quote (grd P) (lg P)

lemma quote-net-pos:
assumes Vi. 0 < (lg P) i
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and Vi. grd P i < grd P (i+1)
shows 0 < quote-net P x unfolding quote-net-def
using gen-quote-pos assms by simp

lemma quote-net-mono:
assumes Vi. 0 < (lg P) ¢
and Vi. (fee P) i < 1
and Vi. (grd P) i < (grd P) (i+1)
and Vz. rng-token (gamma-min-diff (grd P)) (lg P) x summable-on UNIV
shows mono (quote-net P) unfolding quote-net-def
using gen-quote-mono assms by simp

2.5.2 Restriction to pools with a finite liquidity

context finite-lig-pool
begin

lemma quote-net-continuous:
shows continuous-on A (quote-net P) unfolding quote-net-def
using gen-quote-continuous finite-ligD by simp

lemma quote-net-IVT:
assumes Vi. fee P i # 1
and grd-min P < grd-max P
and quote-net P (grd-min P) <y
and y < quote-net P (grd-mazx P)
shows Jpi > (grd-min P). pi < (grd-maz P) A
quote-net P pi = y
using gen-quote-IVT assms finite-ligD
unfolding quote-net-def grd-min-def grd-maz-def by simp

lemma quote-net-ne:
assumes Vi. fee P i # 1
and grd-min P < grd-max P
and quote-net P (grd-min P) < y
and y < quote-net P (grd-max P)
shows quote-net P—* {y} # {} using quote-net-IVT assms by blast

lemma quote-net-mono-finite-liq:
assumes Vi. 0 < (lg P) @
and Vi. (fee P) i < 1
and Vi. (grd P) i < (grd P) (i+1)
shows mono (quote-net P) unfolding quote-net-def
using gen-quote-mono-finite finite-ligD assms by simp

end
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2.6 Gross and net quantities of base tokens

2.6.1 Generic functions for base tokens

definition inv-gamma-max-diff where
inv-gamma-maz-diff = (Agamma (piz:real) i. inverse (maz pi (gamma ©)) —
inverse (maz pi (gamma (i+(1::4nt)))))

lemma inv-maz-pos:
assumes (0 < a
and (a:real) < b
shows 0 < inverse (max © a) — inverse (maz = b)
proof (cases b < x)
case True
thus ?thesis using assms by auto
next
case Fulse
hence mazr z b = b by simp
show ?thesis
proof (cases a < 1)
case True
hence maz r a = x by simp
then show %thesis using <maz © b = b> Fualse using assms by fastforce
next
case Fulse
hence maz z a = a by simp
then show ?thesis
by (simp add: <maz x b = by assms le-imp-inverse-le)
qed
qed

IN

lemma inv-gamma-mazx-diff-pos:
assumes gamma @ < gamma (i +(1::int))
and 0 < gamma
shows 0 < inv-gamma-maz-diff gamma z i unfolding inv-gamma-maz-diff-def
by (rule inv-maz-pos, (simp add: assms)+)

lemma inv-gamma-maz-diff-continuous:
assumes gamma ¢ < gamma (i +(1::int))
and 0 < gamma i
shows continuous-on A (Api. inv-gamma-maz-diff gamma pi ©)
unfolding inv-gamma-maz-diff-def
proof (rule continuous-on-diff)
show continuous-on A (Az. inverse (maz x (gamma 7)))
proof (rule continuous-on-inverse)
show continuous-on A (Az. max z (gamma 7)) using continuous-on-max
continuous-on-const continuous-on-id by blast
show Vzc€A. maz z (gamma ©) # 0 using assms
by (metis leD maz.cobounded?)
qed
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show continuous-on A (Az. inverse (mazx z (gamma (i+1))))
proof (rule continuous-on-inverse)
show continuous-on A (Az. maz z (gamma (i+1))) using continuous-on-maz
continuous-on-const continuous-on-id by blast
show Vz€A. maz z (gamma (i+1)) # 0 using assms by force
qed
qed

lemma inv-gamma-maz-diff-antimono:
assumes gamma ¢ < gamma (i +(1::int))
and 0 < gamma i
shows antimono (Api. inv-gamma-maz-diff gamma pi 7)
unfolding inv-gamma-maz-diff-def
proof
fix z y:real
assume asm: ¢ < y
show inverse (maz y (gamma 7)) — inverse (maz y (gamma (i + 1))
inverse (maz x (gamma 1)) — inverse (max x (gamma (i + 1))
proof (rule diff-inv-maz-le)
show z < y using asm .
show gamma i < gamma (i + 1) using assms by simp
show 0 < gamma i using assms by simp
qed
qed

<

— —

definition rng-gen-base where
rng-gen-base =
(Agamma L pi i. rng-token (inv-gamma-max-diff gamma) L pi ©)

lemma rng-gen-base-pos:
assumes gamma @ < gamma (i +(1::int))
and 0 < gamma i
and 0 < L1
shows 0 < rng-gen-base gamma L x i unfolding rng-gen-base-def
by (rule rng-token-pos, auto simp add: assms inv-gamma-maz-diff-pos)

lemma rng-gen-base-continuous-on:
assumes gamma @ < gamma (7 +(1::int))
and 0 < gamma i
shows continuous-on A (Api. rng-gen-base gamma L pi i) unfolding rng-gen-base-def
by (rule rng-token-continuous-on,
simp add: inv-gamma-maz-diff-continuous assms)

lemma rng-gen-base-antimono:

assumes gamma @ < gamma (i +(1::int))

and 0 < gamma @

and 0 < L1

shows antimono (Api. rng-gen-base gamma L pi ©)
proof
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fix = y::real
assume asm: z < gy
show rng-gen-base gamma L y i < rng-gen-base gamma L x i
unfolding rng-gen-base-def rng-token-def
proof (rule ordered-comm-semiring-class.comm-mult-left-mono)
show 0 < L i using assms by simp
show inv-gamma-maz-diff gamma y i < inv-gamma-mazx-diff gamma x i
using inv-gamma-maz-diff-antimono|of gammal asm antimonoD assms by auto

qged
qged

definition gen-base where
gen-base = (Agamma L pi. gen-token (inv-gamma-maz-diff gamma) L pi)

lemma gen-base-pos:
assumes Vi. gamma i < gamma (i +(1::int))
and Vi. 0 < gamma i
and Vi. 0 < L i
shows 0 < gen-base gamma L r unfolding gen-base-def
using gen-token-pos inv-gamma-maz-diff-pos assms by simp

lemma gen-base-antimono:
assumes Y z. rng-token (inv-gamma-maz-diff gamma) L x summable-on UNIV
and Vi. gamma i < gamma (i +(1::int))
and Vi. 0 < gamma 1©
and Vi. 0 < L3
shows antimono (gen-base gamma L) using gen-token-antimono assms
nv-gamma-max-diff-antimono
by (simp add: gen-base-def)

lemma gen-base-zero:
assumes mono gamma
and Ai. sgp < gamma (i+1) = Li= 0
shows gen-base gamma L sqp = 0 unfolding gen-base-def gen-token-def
proof (rule infsum-0)
fix ¢
show rng-token (inv-gamma-max-diff gamma) L sqp i = 0
proof (cases gamma (i+1) < sqp)
case True
hence gamma i < sqp by (smt (verit) assms(1) mono-invE)
hence inv-gamma-maz-diff gamma sqp 1 = 0
using True unfolding inv-gamma-max-diff-def by simp
then show ?thesis unfolding rng-token-def by simp
next
case Fulse
hence L ¢ = 0 using assms by simp
then show ?thesis unfolding rng-token-def by simp
qed
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qed

lemma gen-base-grd-mazx:
assumes mono (grd P)
and finite (nz-support L)
and nz-support L # {}
and nz-support L = nz-support (lg P)
shows gen-base (grd P) L (grd-maz P) = 0
proof (rule gen-base-zero)
fix ¢
assume grd-max P < grd P (i + 1)
hence idz-maz (lg P) < i unfolding grd-maz-def idz-maz-img-def
using assms(1)mono-strict-invE by fastforce
hence lq P i = 0 using assms idz-max-finite-gt by auto
hence i ¢ nz-support (lg P) unfolding nz-support-def by auto
thus L i = 0 using assms nz-support-def by fastforce
qed (simp add: assms)

2.6.2 Finite support restriction

context finite-nz-support
begin

lemma gen-base-continuous:
assumes Vi. gamma i < gamma (i +(1::int))
and Vi. 0 < gamma 1©
shows continuous-on A (gen-base gamma L) unfolding gen-base-def
using gen-token-continuous inv-gamma-maz-diff-continuous assms by simp

lemma gen-base-1VT:
assumes Vi. gamma i < gamma (i +(1::int))
and Vi. 0 < gamma 1
and (idz-min-img gamma L) < (idx-maz-img gamma L)
and gen-base gamma L (idz-maz-img gamma L) < y
and y < gen-base gamma L (idz-min-img gamma L)
shows 3 pi > (idz-min-img gamma L). pi < (idz-maz-img gamma L) A
gen-base gamma L pi = y
proof (rule IVT2)
show V pi. idz-min-img gamma L < pi A pi < idz-max-img gamma L —
isCont (gen-base gamma L) pi
proof (intro alll impI)
fix pi
assume (idz-min-img gamma L) < pi A pi < (idz-maz-img gamma L)
show isCont (gen-base gamma L) pi using gen-base-continuous assms
by (simp add: continuous-on-eg-continuous-within)
qed
qged (simp add: assms)+

lemma gen-base-ne:
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assumes Vi. gamma i < gamma (i +(1::int))
and Vi. 0 < gamma 1
and (idz-min-img gamma L) < (idz-maz-img gamma L)
and gen-base gamma L (idz-maz-img gamma L) < y
and y < gen-base gamma L (idz-min-img gamma L)
shows (gen-base gamma L)—*{y} # {} using gen-base-IVT assms by blast

lemma gen-base-antimono-finite:
assumes Vi. gamma i < gamma (i +(1::int))
and Vi. 0 < gamma 1
and Vi. 0 < L3
shows antimono (gen-base gamma L)
proof (rule gen-base-antimono)
show V z. rng-token (inv-gamma-max-diff gamma) L x summable-on UNIV
using finite-nonzero-summable assms by simp
qed (simp add: assms)+

lemma gen-base-gross:
assumes Vi. L¢=L1i+ L21¢
and Vi. 0 < L173
and Vi. 0 < L2
shows gen-base gam L © = gen-base gam L1 x + gen-base gam L2 x
using assms gen-token-add unfolding gen-base-def by simp

end

2.7 Gross base token quantity in a pool

2.7.1 Function specialization

definition rng-base-gross where
rng-base-gross P = rng-gen-base (grd P) (gross-fet (lg P) (fee P))

lemma rng-base-gross-pos:
assumes 0 < gross-fct (lqg P) (fee P) i
and grd Pi < grd P (i+1)
and 0 < grd P i
shows 0 < rng-base-gross P z i unfolding rng-base-gross-def
using rng-gen-base-pos assms by simp

lemma rng-base-gross-continuous-on:
assumes grd P i < grd P (i+1)
and 0 < grd P i
shows continuous-on A (Api. rng-base-gross P pi i)
unfolding rng-base-gross-def
using rng-gen-base-continuous-on assms by simp

lemma rng-base-gross-mono:

assumes 0 < gross-fct (lg P) (fee P) i
and grd P i < grd P (i+1)
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and 0 < grd P ¢
shows antimono (Api. rng-base-gross P pi i) unfolding rng-base-gross-def
using rng-gen-base-antimono assms by simp

definition base-gross where
base-gross P = gen-base (grd P) (gross-fct (lg P) (fee P))

lemma base-gross-pos:
assumes Vi. 0 < gross-fct (lg P) (fee P) i
and Vi. grd Pi < grd P (i+1)
and Vi. 0 < grd P i
shows 0 < base-gross P x unfolding base-gross-def
using gen-base-pos assms by simp

lemma base-gross-antimono:
assumes Vi. 0 < (lg P) i
and Vi. (fee P) i < 1
and Vi. (grd P) i < (grd P) (i+1)
and Vi. 0 < grd P i
and Vz. rng-token (inv-gamma-maz-diff (grd P)) (gross-fet (lg P) (fee P)) x
summable-on UNIV
shows antimono (base-gross P) unfolding base-gross-def
proof (rule gen-base-antimono)
show Vi. 0 < gross-fct (lg P) (fee P) i using gross-fct-sgn assms by blast
qed (simp add: assms)+

lemma base-gross-grd-mazx:
assumes mono (grd P)
and finite (nz-support (lg P))
shows base-gross P (grd-mazx P) = 0
using gen-base-grd-mazx assms gen-base-zero gross-fct-zero-if
idz-maz-finite-ge idr-maz-img-def monoD grd-max-def
unfolding quote-gross-def
by (smt (23) base-gross-def)

definition base-reach where
base-reach = (AP y.

ify=20

then (grd-maz P)

else Sup ((base-gross P)—*{y}))

2.7.2 Restriction to pools with a finite liquidity
context finite-lig-pool

begin

lemma base-gross-continuous:
assumes Vi. grd P i < grd P (i+1)
and Vi. 0 < grd P i
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shows continuous-on A (base-gross P) unfolding base-gross-def
proof (rule finite-nz-support.gen-base-continuous)
show finite-nz-support (gross-fct (lqg P) (fee P))
using finite-lig-gross-fct
by (simp add: finite-nz-support.intro nz-support-def)
qed (simp add: assms)+

lemma base-gross-I1VT:
assumes Vi. grd P i < grd P (i+1)
and Vi. 0 < grd P i
and Vi. fee P i # 1
and grd-min P < grd-max P
and base-gross P (grd-maz P) < y
and y < base-gross P (grd-min P)
shows 3 pi > (grd-min P). pi < (grd-maz P) A
base-gross P pi = y
proof —
define L’ where L’ = gross-fct (lg P) (fee P)
have 1: grd-min P = idz-min-img (grd P) L’
by (simp add: assms gross-fct-nz-eq idz-min-img-eq grd-min-def L'-def)
have 2: grd-maz P = idz-maz-img (grd P) L’
by (simp add: assms gross-fct-nz-eq idz-maz-img-eq grd-maz-def L'-def)
have 3 pi>idz-min-img (grd P) L'
pi < idz-maz-img (grd P) L' A gen-base (grd P) L' pi = y
proof (rule finite-nz-support.gen-base-I1VT)
show idz-min-img (grd P) L' < idz-max-img (grd P) L' using 1 2 assms by
stmp
show gen-base (grd P) L’ (idz-maz-img (grd P) L’) < y using 2 assms
by (simp add: L'-def base-gross-def)
show y < gen-base (grd P) L’ (idz-min-img (grd P) L') using I assms
by (simp add: L’-def base-gross-def)
show finite-nz-support L' using L’-def finite-liqg-gross-fct
by (simp add: finite-nz-support.intro nz-support-def)
qed (simp add: assms)+
thus ?thesis by (simp add: 1 2 L'-def base-gross-def)
qed

lemma base-gross-ne:
assumes Vi. grd P i < grd P (i+1)
and Vi. 0 < grd P i
and Vi. fee P i # 1
and grd-min P < grd-maxz P
and base-gross P (grd-max P) < y
and y < base-gross P (grd-min P)
shows base-gross P—* {y} # {} using base-gross-IVT assms by blast

lemma base-gross-antimono-finite:

assumes Vi. 0 < (lg P) i
and Vi. grd P i < grd P (i+1)
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and Vi. 0 < grd P i
and Vi. (fee P) i < 1
shows antimono (base-gross P) unfolding base-gross-def
proof (rule finite-nz-support.gen-base-antimono-finite)
show Vi. 0 < gross-fet (lg P) (fee P) i
using gross-fct-sgn assms by blast
show finite-nz-support (gross-fct (lg P) (fee P))
by (simp add: finite-lig-gross-fct finite-nz-support-def nz-support-def)
qed (simp add: assms)+

lemma base-reach-mem:
assumes Vi. grd P i < grd P (i+1)
and Vi. 0 < grd P i
and Vi. fee Pi < 1
and Vi. 0 <lIlgPi
and mono (grd P)
and grd-min P < grd-max P
and 0 < y
and y < base-gross P (grd-min P)
shows base-reach P y € base-gross P—* {y}
proof (cases y = 0)
case True
then show ?thesis unfolding base-reach-def
by (simp add: assms(5) base-gross-grd-mazx fin-nz-sup)
next
case Fulse
hence base-reach P y = Sup ((base-gross P)—‘ {y})
unfolding base-reach-def by simp
also have ... € (base-gross P)—*{y}
proof (rule closed-contains-Sup)
have antimono (base-gross P) using base-gross-antimono-finite assms by simp
define X where X = (base-gross P)—* {y}
show X # {} using base-gross-ne assms unfolding X-def
by (metis add-cancel-left-right add-less-same-cancell base-gross-grd-mazx
fin-nz-sup less-int-code(1) mono-strict-invE)
show closed ((base-gross P) —*{y})
proof (rule continuous-closed-vimage)
show closed {y} by simp
show Az. isCont (base-gross P) x using base-gross-continuous
by (simp add: continuous-on-eq-continuous-within assms)
qed
show bdd-above ((base-gross P) —‘ {y})
proof
fix z
assume z € (base-gross P) —*{y}
hence base-gross P x = y by simp
hence base-gross P (grd-maz P) < base-gross P x
using assms False
by (simp add: base-gross-grd-maz fin-nz-sup)
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thus z < (grd-maz P) using <antimono (base-gross P)»
by (metis antimonoD incseq-const less-eq-real-def less-irrefl-nat
mono-strict-invE nle-le)
qed
qed
finally show ?thesis .
qed

lemma base-gross-dun:
assumes Vi. grd P i < grd P (i+1)
and Vi. 0 < grd P i
and Vi. fee Pi < 1
and Vi. 0 <lgPi
and mono (grd P)
and grd-min P < grd-max P
and 0 <y
and y < base-gross P (grd-min P)
shows base-gross P (base-reach P y) =y
using assms base-reach-mem by simp

end

2.8 Net base token quantity in a pool
2.8.1 Function specialization

definition rng-base-net where
rng-base-net P = rng-gen-base (grd P) (lqg P)

lemma rng-base-net-pos:
assumes grd P i < grd P (i +(1::int))
and 0 < grd P i
and 0 < lq P i
shows 0 < rng-base-net P z i unfolding rng-base-net-def
using rng-gen-base-pos assms by simp

lemma rng-base-net-continuous-on:
assumes grd P i < grd P (i +(1::int))
and 0 < grd P i
shows continuous-on A (Api. rng-base-net P pi i)
unfolding rng-base-net-def using rng-gen-base-continuous-on assms by simp

lemma rng-base-net-mono:
assumes grd P i < grd P (i +(1::int))
and 0 < grd P ¢
and 0 <lqgPi
shows antimono (Api. rng-base-net P pi i) unfolding rng-base-net-def
using rng-gen-base-antimono assms by simp

definition base-net where

47



base-net P = gen-base (grd P) (lq P)

lemma base-net-pos:
assumes Vi. grd P i < grd P (i +(1::int))
and Vi. 0 < grd P i
and Vi. 0 <lg P i
shows 0 < base-net P x unfolding base-net-def
using gen-base-pos assms by simp

2.8.2 Restriction to pools with a finite liquidity

context finite-lig-pool
begin

lemma base-net-continuous:
assumes Vi. grd P i < grd P (i +(1::int))
and Vi. 0 < grd P i
shows continuous-on A (base-net P) unfolding base-net-def
using gen-base-continuous assms finite-ligD by simp

lemma base-net-1VT:
assumes Vi. grd P i < grd P (i +(1::int))
and Vi. 0 < grd P i
and grd-min P < grd-max P
and base-net P (grd-max P) < y
and y < base-net P (grd-min P)
shows Jpi > (grd-min P). pi < (grd-maz P) A
base-net P pi = y
using gen-base-IVT assms finite-ligD
unfolding base-net-def grd-min-def grd-maz-def by simp

lemma base-net-ne:
assumes Vi. grd P i < grd P (i +(1::int))
and Vi. 0 < grd P i
and grd-min P < grd-max P
and base-net P (grd-max P) < y
and y < base-net P (grd-min P)
shows base-net P—*{y} # {} using base-net-IVT assms by blast

lemma base-net-antimono-finite:
assumes Vi. grd P i < grd P (i +(1::int))
and Vi. 0 < grd P i
and Vi. 0 <lg P i
shows antimono (base-net P) unfolding base-net-def
using gen-base-antimono-finite finite-ligD assms by simp

end
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2.9 Swapping tokens, market depth and slippage

Given a grid point 7 and a quantity y of quote tokens to add to the pool,
this function computes the amount of base tokens that are retrieved from
the pool.

definition quote-swap where
quote-swap P = (Api y.
base-net P pi — base-net P (quote-reach P (y + quote-gross P pi)))

Given a grid point 7 and a quantity x of base tokens to add to the pool,
this function computes the amount of quote tokens that are retrieved from
the pool.

definition base-swap where
base-swap P = (Api .
quote-net P pi — quote-net P (base-reach P (x + base-gross P pi)))

The market depth in a pool takes as arguments two grid points 7 and 7/,
and returns the amounts of base or quote tokens that have to be added to
the pool for its state to get from 7 to 7’.

definition mki-depth where
mkt-depth P = (X pi pi’. if pi < pi’ then (base-net P pi — base-net P pi’)
else (quote-net P pi — quote-net P pi’))

Base and quote slippages relate the amount of tokens withdrawn from the
pool from those given by an infinitesimally small amount of tokens and that
can be deduced from the grid point.

definition quote-slippage where

quote-slippage P = (Api y. y/(quote-swap P piy * pi * pi) — 1)

definition base-slippage where
base-slippage P = (Api x. base-swap P pi x/(x * pi * pi) — 1)

2.10 Identical profiles

definition id-grid-on where
id-grid-on P P' I «— (Vi€ I. grd P i = grd P’ i)

lemma id-grid-onl[intro]:

assumes Ai. i€ ] = grd Pi = grd P' i

shows id-grid-on P P' I using assms unfolding id-grid-on-def by simp
lemma id-grid-onD][dest]:

assumes id-grid-on P P’ I

and i€ [
shows grd P i = grd P’ i using assms unfolding id-grid-on-def by simp

lemma id-grid-on-comm:
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assumes id-grid-on P P’ I
shows id-grid-on P’ P I
using assms unfolding id-grid-on-def by simp

lemma id-grid-on-mono:
assumes id-grid-on P P’ I
and I’ C |
shows id-grid-on P P’ I’ using assms unfolding id-grid-on-def by auto

definition same-nz-lig-on where
same-nz-lig-on P P’ I <— id-grid-on P P' I A
(Viel (lgPi=0)<«— (lgP'i=0))

lemma same-nz-lig-onl[intro):
assumes id-grid-on P P’ I
and A\i.i€e I = ((lgPi=0)<«— (lgP'i=0))
shows same-nz-lig-on P P’ I using assms unfolding same-nz-lig-on-def by simp

lemma same-nz-lig-onD[dest):
assumes same-nz-lig-on P P’ I
and i€ [

shows grd Pi = grd P'i (lg Pi=0) «— (lg P i = 0)
using assms unfolding same-nz-lig-on-def by auto

lemma same-nz-lig-on-comm:
assumes same-nz-lig-on P P' I
shows same-nz-lig-on P’ P I
using assms id-grid-on-comm unfolding same-nz-lig-on-def by simp

lemma same-nz-lig-on-mono:
assumes same-nz-lig-on P P' I
and I'C |
shows same-nz-lig-on P P’ I’
using assms id-grid-on-mono unfolding same-nz-lig-on-def
by (meson id-grid-on-comm in-mono)

definition fee-diff-on where
fee-diff-on P P' I +— id-grid-on P P' I AN (Vi € 1. lqg Pi=lg P'1)

lemma fee-diff-onl[intro]:
assumes id-grid-on P P’ I
and A\i.ie I = lgPi=1I¢P'i
shows fee-diff-on P P' I
using assms unfolding fee-diff-on-def by simp

lemma fee-diff-onD|dest]:

assumes fee-diff-on P P’ I

shows id-grid-on P P'INie 1. lgPi=1IlqP'i
proof—
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show id-grid-on P P’ I
using assms unfolding fee-diff-on-def by simp
show Viel. lg Pi=Ilq P’
using assms unfolding fee-diff-on-def by simp
qed

lemma fee-diff-on-nz-lig:

assumes fee-diff-on P P’ I

shows same-nz-lig-on P P’ I unfolding same-nz-lig-on-def
proof

show id-grid-on P P’ I using assms fee-diff-onD(1) by simp

show Viel. (lg Pi= 0) = (lg P'i= 0) using assms fee-diff-onD(2) by simp
qed

lemma fee-diff-on-comm:
assumes fee-diff-on P P’ I
shows fee-diff-on P’ P I
using assms fee-diff-on-def id-grid-on-comm by simp

lemma fee-diff-on-mono:
assumes fee-diff-on P P’ I
and I'C |
shows fee-diff-on P P’ I’
using assms id-grid-on-mono unfolding fee-diff-on-def by blast

3 Grid refinement

We define the notion of pool refinement, that characterizes when a pool
admits a finer price grid than another one but exhibits the same behavior.

3.1 Encompassement properties

definition encomp-at where
encomp-at gammal gamma2 i k = gammaZ2 k < gammal i A
gammal (i+1) < gamma2 (k+1)

lemma encomp-atD1:
assumes encomp-at gammal gammaZ2 i k
shows gamma?2 k < gammal ¢
using assms unfolding encomp-at-def by simp

lemma encomp-atD2:
assumes encomp-at gammal gamma?2 i k
shows gammal (i+1) < gamma2 (k+1)
using assms unfolding encomp-at-def by simp

lemma encomp-atl[intro]:
assumes gamma2 k < gammal i

o1



and gammal (i+1) < gamma2 (k+1)
shows encomp-at gammal gamma2 i k using assms unfolding encomp-at-def by
stmp

definition encompassed where
encompassed gammal gamma2 k = {i::int. encomp-at gammal gamma?2 i k}

lemma encompassed-convez:
assumes (i:int) € encompassed gammal gamma2 k
and j € encompassed gammal gamma?2 k
and 7 < |
and [ < j
and mono gammal
shows | € encompassed gammal gamma2 k unfolding encompassed-def encomp-at-def
proof
have gamma?2 k < gammal i using assms encompassed-def encomp-at-def by
blast
hence gamma2 k < gammal | using assms
by (meson dual-order.trans monotoneD)
have gammal (j+1) < gamma2 (k+1)
using assms encompassed-def encomp-at-def by blast
hence gammal (I4+1) < gamma?2 (k+1)
using assms dual-order.trans monoD by fastforce
thus gamma2 k < gammal I A gammal (I + 1) < gamma2 (k + 1)
using <gamma?2 k < gammal > by simp
qged

lemma encompassed-interval:
assumes mono gammal
and finite (encompassed gammal gamma?2 k)
and encompassed gammal gamma2 k # {}
shows encompassed gammal gamma2 k =
{Min (encompassed gammal gamma2 k).. Max (encompassed gammal gamma?2
)
proof
define £ where E = (encompassed gammal gamma2 k)
define m where m = Min E
define M where M = Maz E
have me FE using m-def E-def assms by simp
have M € FE using M-def E-def assms by simp
show {m..M} C F
proof
fix z
assume z€ {m..M}
hence m < z A z < M by simp
show z€ E using assms encompassed-convex
E-def <M € Ey <m € E> <m <z Az < M> by blast
qged
show E C {m..M} using m-def M-def assms
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by (simp add: E-def subset-eq)
qed

lemma encomp-at-idz-leq:
fixes gammal::int = real and gamma2::int = real
assumes strict-mono (gammal::int = real)
and mono (gamma2::int = real)
and encomp-at gammal gamma?2 i k
and gamma2 k' < gammal i
shows k/ < k
proof (rule ccontr)
assume - k' < k
hence k < k' by simp
hence k+1 < k' by simp
hence gamma2 (k+1) < gamma?2 k' using assms
by (simp add: monotoneD)
hence gammal (i+1) < gamma2 k' using assms encomp-atD2 by fastforce
hence gammal (i+1) < gammal i using assms by simp
thus Fualse using assms(1) by (simp add: strict-mono-less-eq)
qed

lemma encomp-at-unique:
assumes strict-mono (gammal::int = real)
and mono (gamma2::int = real)
and encomp-at gammal gamma?2 i k
and encomp-at gammal gamma2 i k'
shows k = k'
proof —
have k < k' using assms encomp-at-idz-leq
by (simp add: encomp-atD1)
moreover have k' < k using assms encomp-at-idz-leq
by (simp add: encomp-atD1)
ultimately show ?thesis by simp
qed

lemma encomp-at-unique”:
assumes strict-mono (gammal::int = real)
and mono (gamma2::int = real)
and encomp-at gammal gamma?2 i k
and gamma2 k' < gammal i
and gammal i < gamma2 (k'+1)
shows k = k'
proof (rule ccontr)
assume k# k'
have k'’ < k using assms encomp-at-idz-leq by simp
hence k' < k using <k# k’> by simp
hence k'+1 < k by simp
hence gamma2 (k'+1) < gamma2 k using assms monoE by blast
moreover have gamma2 k < gamma?2 (k'+1)
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using assms encomp-atD1 by fastforce
ultimately show Fulse by simp
qed

lemma encomp-at-refi:

fixes gamma::'a::{one, plus}= real

shows encomp-at gamma gamma i i
proof

show gamma i < gamma ¢ by simp

show gamma (i+1) < gamma (i+1) by simp
qged

3.2 Finer price grids

definition finer-range:: (int = real) = (int = real) = bool where
finer-range gammal gamma?2 = (Vi. 3k. encomp-at gammal gamma?2 i k)

definition finer-grid where
finer-grid P1 P2 = finer-range (grd P1) (grd P2)

lemma finer-grid-range[simpl:
assumes finer-grid P1 P2
shows finer-range (grd P1) (grd P2)
using assms unfolding finer-grid-def by simp

definition coarse-idz where
coarse-idr gammal gammaZ2 ¢ =
(THE k. encomp-at gammal gamma2 i k)

definition finer-idz-bound where
finer-idz-bound gammal gamma2 i =
(THE k. gammal k = gamma?2 (coarse-idz gammal gamma?2 7))

lemma finer-range-refi:
shows finer-range gamma gamma using encomp-at-refl
unfolding finer-range-def by auto

locale finer-ranges =
fixes gammal::int = real and gamma2::int = real
assumes stm: strict-mono gammal
and mon: mono gamma2
and fin: finer-range gammal gamma2

begin
lemma encomp-idz-unique:
shows 3!k. encomp-at gammal gamma2 i k

proof —
have ex: 3k. encomp-at gammal gamma?2 i k
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using stm mon fin unfolding finer-range-def by simp
{
fix k k'
assume encomp-at gammal gamma2 i k’
and encomp-at gammal gamma2 i k
hence k = k' using encomp-at-unique stm mon fin by auto
}
thus ?thesis using ex by auto
qed

lemma coarse-idz-bounds:
shows encomp-at gammal gamma?2 i (coarse-ide gammal gamma2 i)
proof —
define P where P = (\k. encomp-at gammal gamma?2 i k)
have P (coarse-idz gammal gamma?2 ©) unfolding P-def coarse-idz-def
by (metis (no-types, lifting) encomp-idz-unique the-equality)
thus ?thesis using P-def by simp
qed

lemma encompassed-bounds:
shows i € encompassed gammal gammaZ2 (coarse-ide gammal gammaZ2 i)
using fin coarse-idz-bounds unfolding encompassed-def by auto

lemma encompassed-unique:
assumes i € encompassed gammal gamma?2 k
shows k = coarse-idz gammal gamma2 i
using assms coarse-idz-bounds encompassed-def encomp-idz-unique by blast

lemma encompassed-ing:

assumes k# k'

shows encompassed gammal gamma2 k N encompassed gammal gamma2 k' =
{}
proof (rule ccontr)

assume encompassed gammal gamma2 k N encompassed gammal gamma2 k' #

{

hence Ji. i € encompassed gammal gamma2 k N encompassed gammal gamma?2
k/
by auto
from this obtain 7 where i € encompassed gammal gamma2 k and
i € encompassed gammal gammaZ2 k' by auto
hence k = k' using encompassed-unique by auto
thus Fulse using assms by simp
qed

lemma coarse-idz-eq:

assumes gamma2 k' < gammal i

and gammal i < gamma2 (k'+1)
shows k' = coarse-idz gammal gamma?2 i
proof (rule ccontr)
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assume k' # coarse-idz gammal gamma?2 i
define k£ where k = coarse-ide gammal gamma?2 @
have gam: encomp-at gammal gamma2 i k
using k-def assms by (simp add: coarse-idz-bounds)
hence k' < k
using stm mon fin assms encomp-at-idz-leq encomp-idz-unique by blast
hence k' < k using <k'# coarse-idz gammal gammaZ2 ©> k-def by simp
hence k'+1 < k by simp
hence gamma2 (k'+1) < gamma2 k using assms stm mon monoE by blast
moreover have gamma2 k < gamma?2 (k'+1)
using assms gam <k’ # coarse-idx gammal gammaZ2 ©> encomp-idz-unique
k-def encomp-atD1 by fastforce
ultimately show Fulse by simp
qed

lemma coarse-idz-reached:
assumes gammal m < gammaZ2 k
and gamma?2 k < gammal M
and k = coarse-idr gammal gamma?2 i
shows 3j. gammal j = gamma?2 k
proof (rule ccontr)
assume —(3j. gammal j = gamma2 k)
hence Vj. gammal j # gamma2 k by simp
have gamma2 k < gammal i using coarse-idx-bounds assms
by (simp add: encomp-atD1)
define X where X = gammal{j. m < j A gammal j < gamma2 k}
have gammal me X using assms X-def by simp
hence X # {} by auto
have X C gammal{m..M}
proof
fix z
assume z€ X
hence 31. le {j. m < j A gammal j < gamma2 k} A z = gammal |
unfolding X-def by auto
from this obtain [ where m < [ and gammal | < gamma2 k
and z = gammal [ by auto
hence | < M using assms stm
by (meson linorder-not-less nle-le order-trans strict-mono-less-eq)
hence [ € {m..M} using «<m < I» by simp
thus z € gammal ‘ {m..M} using «z = gammal > by simp
qed
hence finite X using finite-surj by blast
hence Sup X € X
by (metis <X # {} infinite-growing le-cSup-finite less-cSupD nless-le)
hence 31. le {j. m < j A gammal j < gamma2 k} N Sup X = gammal l
unfolding X-def by auto
from this obtain | where m < [ and gammal | < gamma2 k
and Sup X = gammal | by auto
hence gammal | < gamma?2 k using <V j. gammal j # gamma2 k»
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by (simp add: less-eq-real-def)
have bdd-above X unfolding X-def using assms by auto
have gammal | < gammal (I+1) using assms stm by (simp add: monotoneD)
hence gammal (I+1) ¢ X using «Sup X = gammal v cSup-upper <bdd-above
X»
by fastforce
hence gamma2 k < gammal (I+1) using <m< [» unfolding X-def
by fastforce
show Fulse
proof (cases gamma2 (k—1) < gammal I)
case True
hence k—1 = coarse-ide gammal gamma2 1
using <gammal | < gamma2 k> coarse-idz-eq assms encomp-atl by simp
hence gammal (I+1) < gamma?2 k using coarse-idz-bounds assms
by (metis (mono-tags, opaque-lifting) add-diff-cancel diff-add-eq
encomp-atD2)
then show %thesis using (gamma2 k < gammal (I4+1)> by simp
next
case Fulse
hence gammal | < gamma2 (k—1) by simp
define k' where k' = coarse-idz gammal gamma?2 |
have gam2: gamma2 k' < gammal | A gammal (I1+1) < gamma2 (k'+1)
using assms k’-def encomp-atD1 encomp-atD2 coarse-idx-bounds
by metis
hence gamma2 k' < gamma?2 (k—1) using <gammal | < gamma2 (k—1)) by
stmp
hence k£’ < k—1 using assms stm mon mono-strict-invE by blast
have gamma2 k < gamma?2 (k'+1)
using gam?2 <gamma2 k < gammal (I+1)» by simp
hence k < k’+1 using assms stm mon mono-strict-invE by blast
then show ?thesis using <k’ < k—1) by simp
qed
qed

lemma coarse-idz-reached-unique:
assumes gammal m < gamma2 k
and gamma2 k < gammal M
and k = coarse-idr gammal gamma?2 i
shows 3!j. gammal j = gamma?2 k
proof —
have 3j. gammal j = gamma?2 k using assms coarse-idz-reached by simp
from this obtain j where gammal j = gamma2 k by auto

{
fix ¢
assume gammal i = gamma?2 k
hence gammal i = gammal j using <gammal j = gamma2 k> by simp

hence i = j using assms stm by (simp add: strict-mono-eq)

thus %thesis using «gammal j = gamma?2 k> by blast
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qed

lemma encomp-idz-mono:

assumes i < j

and encomp-at gammal gamma?2 i k

and encomp-at gammal gamma?2 j

and k# |

shows k < [

proof (rule ccontr)

assume - k < [

hence | < k by simp

hence | < k using assms by simp

hence [+1 < k by simp

hence gamma2 (I+1) < gamma2 k using mon
by (meson leD linorder-le-less-linear mono-strict-invE)

also have ... < gammal i using encomp-atD1[of gammal gamma2] assms
by simp

also have ... < gammal (i+1) using stm
by (simp add: strict-mono-less)

also have ... < gammal j using assms stm strict-mono-less-eq

zless-imp-add1-zle by blast

also have ... < gammal (j+1) using stm
by (simp add: strict-mono-less)

also have ... < gamma?2 (I+1) using assms encomp-atD2[of gammal gamma2]

by simp
finally show Fulse by simp
qed

lemma encomp-idz-mono’:
assumes i < j
and encomp-at gammal gamma2 i k
and encomp-at gammal gamma?2 j
shows k£ < [
proof (cases i = j)
case True
then show ?thesis
using assms encomp-idz-unique by auto
next
case Fulse
hence i < j using assms by simp
show ?thesis
proof (cases k = 1)
case True
then show ?thesis by simp
next
case Fulse
then show ?thesis using <i < 7> assms encomp-idz-monolof i j k I
by simp
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qed
qed

lemma encomp-idx-mono-conv:
assumes k < [
and encomp-at gammal gamma?2 i k
and encomp-at gammal gamma?2 j
shows i < j
proof (rule ccontr)
assume - ¢ < j
hence j < i using assms <= i < j» encomp-at-unique
linorder-less-linear mon stm by blast
hence | < k using encomp-idz-mono assms by simp
thus Fulse using assms by simp
qed

lemma finer-idz-bound-eq:
assumes gammal m < gamma?2 (coarse-ide gammal gamma2 i)
and gamma2 (coarse-ide gammal gamma2 i) < gammal M
shows gammal (finer-idz-bound gammal gamma2 i) =
gamma2 (coarse-ide gammal gammaZ2 i)
proof —
define P where P = (\i. gammal (finer-idz-bound gammal gamma2 i) =
gamma2 (coarse-idx gammal gamma?2 7))
have P i unfolding P-def finer-idz-bound-def
proof (rule thel’, rule coarse-idz-reached-unique)
show gammal m < gammaZ2 (coarse-ide gammal gamma2 i) using assms by
stmp
show gamma2 (coarse-ide gammal gamma?2 i) < gammal M using assms by
stmp
qged (simp add: assms)
thus ?thesis using assms P-def by simp
qed

lemma finer-idz-bound-exists-eq:
assumes Im. gammal m < gamma2 (coarse-idz gammal gamma?2 7)
and I M. gamma2 (coarse-idz gammal gamma?2 i) < gammal M
shows gammal (finer-idz-bound gammal gamma?2 i) =
gamma?2 (coarse-ide gammal gamma2 i) using assms finer-idz-bound-eq by auto

lemma finer-idz-bound-eq':
assumes i € encompassed gammal gamma2 k
and gammal m < gamma2 k
and gamma2 k < gammal M
shows gammal (finer-idz-bound gammal gamma?2 i) = gamma2 k
proof —
have k = coarse-ide gammal gamma2 ¢ using encompassed-unique assms by
stmp
thus ?thesis using finer-idz-bound-eq assms by simp
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qed

lemma finer-idz-bound-exists-eq”:
assumes i € encompassed gammal gamma?2 k
and Im. gammal m < gamma2 k
and 3 M. gamma?2 k < gammal M
shows gammal (finer-idz-bound gammal gamma?2 i) = gamma2 k
using assms finer-idz-bound-eq’ by auto

lemma finer-idz-bound-mem:
assumes gammal m < gammaZ2 (coarse-idx gammal gamma2 i)
and gamma2 (coarse-ide gammal gamma2 i + 1) < gammal M
and gamma?2 (coarse-ide gammal gammaZ2 i) #
gamma?2 (coarse-ide gammal gamma2 i + 1)
shows finer-idz-bound gammal gamma2 i €
encompassed gammal gamma2 (coarse-idx gammal gamma2 i)
proof —
define k£ where k = coarse-ide gammal gamma?2 @
have gamma2 k < gamma2 (k+1) using mon assms
by (metis k-def less-eq-real-def monotoneD zle-add1-eq-le zless-add1-eq)
hence gamma2 k < gammal M using assms k-def by simp
define idx where idx = finer-idz-bound gammal gamma2 i
have gammal ide = gamma2 k
using assms finer-idz-bound-eq idz-def k-def <gamma2 k < gammal M>
by simp
hence gammal (ide + 1) < gamma2 (k+1)
by (metis <gamma2 k < gamma2 (k + 1) coarse-idz-bounds coarse-idz-eq
encomp-at-def less-eq-real-def)
thus ?thesis
using <gammal ide = gamma2 ky coarse-idz-eq encompassed-bounds
idz-def k-def
by (metis <gamma2 k < gamma2 (k + 1)> order-refl)
qed

lemma finer-idz-bound-reached:
assumes gammal m < gamma?2 (coarse-idz gammal gamma2 7)
and gamma2 (coarse-idx gammal gamma?2 i) < gammal M
and gammal i = gamma2 (coarse-idx gammal gamma?2 7)
shows i = finer-idz-bound gammal gamma?2 i
using assms coarse-idz-reached-unique finer-idz-bound-eq by blast

lemma finer-idz-bound-leq:
assumes gammal m < gamma2 (coarse-idz gammal gamma2 i)
and gamma2 (coarse-ide gammal gamma2 i) < gammal M
shows finer-idz-bound gammal gamma2 i < i
proof—
have gammal (finer-idz-bound gammal gamma2 i) =
gamma?2 (coarse-idr gammal gammaZ2 7)
using assms finer-idz-bound-eq by simp
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also have ... < gammal i using assms coarse-idz-bounds
by (simp add: encomp-atD1)
finally have gammal (finer-idz-bound gammal gamma2 i) < gammal i .
thus ?thesis using assms stm by (simp add: strict-mono-less-eq)
qed

lemma finer-idz-bound-proj:
assumes i € encompassed gammal gamma2 k
and j € encompassed gammal gamma?2 k
and gammal m < gamma2 k
and gamma2 k < gammal M
shows finer-idz-bound gammal gamma?2 i = finer-idz-bound gammal gamma?2 j
proof (rule ccontr)
define fi where fi = finer-idz-bound gammal gamma?2 i
define fj where fj = finer-idz-bound gammal gamma?2 j
assume fi # fj
have gammal fi = gamma?2 k using finer-idz-bound-eq’ assms fi-def by simp
moreover have gammal fj = gamma?2 k
using finer-idz-bound-eq’ assms fj-def by simp
ultimately show Fualse using stm by (metis <fi # fi> strict-mono-eq)
qed

lemma finer-idz-bound-min:
assumes i € encompassed gammal gamma2 k
and j € encompassed gammal gamma?2 k
and gammal m < gamma2 k
and gamma2 k < gammal M

shows finer-idz-bound gammal gamma2 i < j
using assms finer-idz-bound-proj finer-idz-bound-leq
by (metis encompassed-unique)

lemma coarse-idz-finer-bound:
assumes gammal m < gammaZ2 (coarse-ide gammal gamma2 i)
and gamma2 (coarse-ide gammal gamma2 i) < gammal M
shows coarse-idz gammal gamma?2 (finer-idz-bound gammal gamma?2 i) =
coarse-idx gammal gamma2 i
proof —
define j where j = finer-idz-bound gammal gammaZ2 i
define k£ where k = coarse-ide gammal gamma2 @
have j < i
using j-def assms finer-ranges.finer-idz-bound-leq finer-ranges-axioms
by blast
hence gammal (j+1) < gammal (i+1) using stm
by (simp add: strict-mono-less-eq)
hence gammal (j+1) < gamma2 (k+1)
using k-def encomp-atD2 coarse-idx-bounds order.trans by metis
moreover have gamma2 k < gammal j using assms k-def j-def
by (simp add: finer-idz-bound-eq)
ultimately show %thesis using k-def j-def encomp-at-unique
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using assms stm mon coarse-idz-bounds encomp-atl by blast
qed

lemma finer-idz-bound-invol:
assumes gammal m < gammaZ2 (coarse-idz gammal gamma2 i)
and gamma2 (coarse-ide gammal gamma2 i) < gammal M

shows finer-idz-bound gammal gamma2 (finer-idz-bound gammal gamma2 i) =
finer-idz-bound gammal gammaZ2 i
using assms coarse-idz-finer-bound finer-idx-bound-eq finer-idz-bound-reached
by auto

lemma reached-imp-coarse:
assumes gammal i = gamma?2 k
and gamma2 k # gamma2 (k+1)
shows gammal (i+1) < gamma2 (k+1)
proof (rule ccontr)
assume - gammal (i + 1) < gamma2 (k + 1)
hence asm: gamma?2 (k+1) < gammal (i+1) by simp
have gamma2 k < gamma2 (k+1) using assms mon
by (metis linorder-neqE-linordered-idom mono-strict-invE
order.asym zless-add1-eq)
have 3j. encomp-at gammal gamma2 i j
using fin finer-range-def by simp
hence 3j. gamma2 j < gammal ¢ A gammal (i+1) < gamma2 (j+1)
using encomp-atD1 encomp-atD2 by blast
from this obtain j where gamma2 j < gammal i
and gammal (i+1) < gamma2 (j+1)
by auto note jpr = this
have gamma?2 j < gamma?2 k using jpr assms by simp
moreover have gamma?2 (k+1) < gamma2 (j+1) using jpr asm by simp
ultimately show Fulse using mon
by (metis assms(2) dual-order.trans mono-strict-invE monotoneD
order-antisym-conv zle-add1-eg-le zless-addl-eq)
qed

lemma less-imp-coarse:
assumes gammal m < gamma2 k
and gamma?2 k < gammal M
and gamma2 k # gamma2 (k+1)
shows 3. encomp-at gammal gamma2 i k
proof (rule ccontr)
assume —(34. encomp-at gammal gamma?2 i k)
hence asm: Vi. gammal i < gamma2 k V gamma2 (k+1) < gammal (i+1)
using not-le-imp-less unfolding encomp-at-def by auto
define B where B = {i. m < i A gammal i < gamma?2 k}
define 4 where A = {i. gamma?2 (k+1) < gammal (i+1)}
have m € B using assms B-def by simp
define jI where ji = Sup B + 1
have Vje B. m< j using B-def stm by simp
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moreover have Vje B. j < M
using assms stm B-def linorder-not-less strict-monoD by fastforce
ultimately have BC {m..M} by auto
hence finite B using finite-subset by auto
hence Sup B € B
by (metis <m € By dual-order.strict-iff-order finite-imp-Sup-less
le-cSup-finite)
hence j1 ¢ B
using <finite By j1-def le-cSup-finite zle-add1-eq-le by blast
hence ji € A using asm A-def B-def «Sup B € B) jl-def by force
hence gamma2 (k+1) < gammal (j1 + 1) using A-def by simp
have 31. gamma?2 | < gammal j1 A gammal (j1+1) < gamma2 (I+1)
using fin finer-range-def encomp-atD1 encomp-atD2 by metis
from this obtain [/ where gamma2 1 < gammal j1
and gammal (j1 + 1) < gamma2 (11+1)
by auto note lppr = this
show Fulse
proof (cases gamma2 (k+1) < gammal j1)
case True
define j where j = Sup B
have j1I = j+1 using j-def ji-def by simp
have 31. gamma2 1l < gammal j A gammal (j+1) < gamma2 (I4+1)
using fin finer-range-def encomp-atD1 encomp-atD2 by metis
from this obtain | where gamma2 | < gammal j
and gammal (j + 1) < gamma2 (14+1)
by auto note Ipr = this
have gamma2 | < gamma2 k using «Sup B € B> j-def lpr
by (simp add: B-def)
hence | < k using mon mono-strict-invE by blast
hence [+1 < k by simp
hence gamma2 (I+1) < gamma?2 k using mon
by (meson lel less-le-not-le mono-strict-invE)
moreover have gamma2 (k+1) < gamma2 (14+1)
using Ipr True <j1 = j + 1) dual-order.trans by blast
ultimately have gamma?2 (k+1) < gamma2 k by simp
hence gamma2 (k+1) = gamma?2 k
using mon
by (meson assms(8) dual-order.order-iff-strict mono-strict-invE
order-less-imp-not-less zless-add1-eq)
thus ?thesis using assms by simp
next
case Fulse
hence gammal j1 < gamma2 (k+1) by simp
have gamma2 (k+1) < gamma?2 (11 + 1) using lppr ji1€ A> A-def by auto
hence k£ +1 < l1+ 1 using mon mono-strict-invE by blast
hence k+1 < 1 by simp
hence gamma?2 (k+1) < gamma2 11 using mon by (simp add: monotoneD)
hence gammal j1 < gamma2 l1 using <gammal j1 < gamma2 (k+1) by
simp
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thus ?thesis using lppr by simp
qed
qed

lemma ex-coarse-rep:
assumes gammal m < gamma2 k
and gamma?2 k < gammal M
and gamma?2 k # gamma2 (k+1)
shows 31i. encomp-at gammal gammaZ2 i k
proof (cases gammal m = gamma2 k)
case True
then show ?thesis using assms reached-imp-coarse
by (metis encomp-at-def)
next
case Fulse
hence gammal m < gamma?2 k using assms by simp
then show ?thesis using less-imp-coarse assms by simp
qed

lemma encompassed-ne:
assumes gammal m < gamma2 k
and gamma?2 k < gammal M
and gamma2 k # gamma2 (k+1)
shows encompassed gammal gamma2 k # {}
using assms ex-coarse-rep unfolding encompassed-def by simp

lemma encompassed-ne':
assumes Im. gammal m < gamma2 k
and I M. gamma2 k < gammal M
and gamma2 k # gamma2 (k+1)

shows encompassed gammal gamma2 k # {}
using assms encompassed-ne by auto

lemma encompassed-finite:
assumes gammal m < gamma?2 k
and gamma?2 (k+1) < gammal M
and gamma2 k # gamma2 (k+1)
shows finite (encompassed gammal gamma?2 k)
proof —
have gamma2 k < gamma2 (k+1) using mon assms
by (metis linorder-neqE-linordered-idom mono-strict-invE
order.asym zless-add1-eq)
hence It: gamma2 k < gammal M using assms by simp
have encompassed gammal gamma2 k # {} using assms encompassed-ne lt
by (meson nless-le)
hence 3i. i € encompassed gammal gamma?2 k by auto
from this obtain i where ¢ € encompassed gammal gamma2 k by auto
hence k = coarse-ide gammal gamma?2 i using encompassed-unique by simp
define j where j = finer-idz-bound gammal gammaZ2 i
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hence gammal j = gamma?2 k
using finer-idz-bound-eq assms <k = coarse-idz gammal gamma2 1> It
by simp
have Ve encompassed gammal gamma2 k. j < I
using finer-idz-bound-min j-def assms <i € encompassed gammal gammaZ2 k> [t
by auto
moreover have VIe encompassed gammal gamma2 k. | < M
proof
fix [
assume € encompassed gammal gammaZ2 k
hence gammal (I4+1) < gammal M using encomp-at-def assms
by (metis (mono-tags, opaque-lifting) coarse-idz-bounds
dual-order.strict-trans2 encompassed-unique linorder-not-le)
thus [ < M using stm
by (simp add: strict-mono-less-eq)
qged
ultimately have encompassed gammal gamma2 k C {j..< M} by auto
thus ?thesis by (simp add: finite-subset)
qed

lemma encompassed-finite':
assumes Im. gammal m < gamma2 k
and 3 M. gamma?2 (k+1) < gammal M
and gamma?2 k # gamma2 (k+1)
shows finite (encompassed gammal gamma2 k) using assms encompassed-finite
by auto

lemma encompassed-Min-in:

assumes gammal m < gamma?2 k

and gamma2 (k+1) < gammal M

and gamma2 k # gamma2 (k+1)
shows Min (encompassed gammal gamma2 k) € encompassed gammal gamma2 k
proof —

define j where j = Min (encompassed gammal gamma?2 k)

have gamma2 k < gamma2 (k+1) using mon by (simp add: monoD)

hence gamma?2 k < gammal M using assms by simp

hence encompassed gammal gamma2 k # {} using assms encompassed-ne by
stmp

thus je encompassed gammal gammaZ2 k

using encompassed-finite encompassed-ne j-def assms by simp

qed

lemma encompassed-Mazx-in:

assumes gammal m < gammal2 k

and gamma?2 (k+1) < gammal M

and gamma2 k # gamma2 (k+1)
shows Maz (encompassed gammal gamma2 k) € encompassed gammal gamma2 k
proof —

define j where j = Max (encompassed gammal gamma2 k)
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have gamma2 k < gamma?2 (k+1) using mon by (simp add: monoD)
hence gamma2 k < gammal M using assms by simp
hence encompassed gammal gamma2 k # {} using assms encompassed-ne by
stmp
thus je encompassed gammal gamma2 k
using encompassed-finite encompassed-ne j-def assms by simp
qed

lemma encompassed-min-gamma-eq:
assumes gammal m < gamma2 k
and gamma2 (k+1) < gammal M
and gamma2 k # gamma2 (k+1)
shows gammal (Min (encompassed gammal gamma2 k)) = gamma2 k
proof —
have gamma2 k < gamma?2 (k+1) using mon assms
by (metis less-eg-real-def monotoneD zle-add1-eq-le zless-add1-eq)
hence gamma2 k < gammal M using assms by simp
define me where me = Min (encompassed gammal gamma2 k)
define fb where fb = finer-idz-bound gammal gamma2 me
have fb € encompassed gammal gamma2 k using fb-def finer-idz-bound-mem
by (metis assms(1) assms(2) assms(8) encompassed-Min-in encompassed-unique

me-def)
hence me < fb using me-def
using assms finer-ranges.encompassed-finite finer-ranges-axioms by auto
have me € encompassed gammal gamma2 k
using encompassed-Min-in[of m k M] assms me-def by simp
hence fb < me using finer-idz-bound-min assms <gamma2 k < gammal M)
Jo-def
by blast
hence fb = me using <me < fb» by simp
thus ?thesis using assms fb-def <gamma2 k < gammal M>
«fb € encompassed gammal gamma2 k> me-def finer-idz-bound-eq’[of fb]
by simp
qed

lemma encompassed-min-gamma-eq’:
assumes Im. gammal m < gamma2 k
and 3 M. gamma?2 (k+1) < gammal M
and gamma?2 k # gamma2 (k+1)
shows gammal (Min (encompassed gammal gamma?2 k)) = gamma2 k
using assms encompassed-min-gamma-eq by auto

lemma coarse-idz-upper:
assumes gamma2 k < gammal j
and j¢ encompassed gammal gamma2 k
shows k < coarse-idz gammal gamma?2 j
proof (rule ccontr)
define k' where k' = coarse-idz gammal gamma2 j
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assume — k < coarse-idx gammal gammaZ2 j
hence k'’ < k using k’-def by simp
have je encompassed gammal gamma2 k'
by (simp add: encompassed-bounds k'-def)
hence k'# k using assms by auto
hence k' < k using k' < k) by simp
hence k'+1 < k+1 by simp
have — encomp-at gammal gamma?2 j k using assms encompassed-def by auto
hence — gamma2 k < gammal j V = gammal (j + 1) < gamma2 (k + 1)
using encomp-atl by auto
hence - gammal (j + 1) < gamma2 (k + 1) using assms by simp
hence gamma2 (k+1) < gammal (j+1) by simp
moreover have gammal (j+1) < gamma2 (k' + 1)
using «j€ encompassed gammal gamma2 k’> coarse-idz-bounds
encomp-at-def k'-def
by blast
ultimately have gamma2 (k+1) < gamma?2 (k'+1) by simp
thus False using <k'+1 < k-+1> mon mono-strict-invE by fastforce
qed

lemma encompassed-maz-Suc-eq:
assumes gammal m < gamma2 k
and gamma?2 (k+1) < gammal M
and gamma?2 k # gamma2 (k+1)
and gamma2 (k+1) # gamma?2 (k+2)
shows Mazx (encompassed gammal gamma2 k) + 1 €
encompassed gammal gamma2 (k+1)
proof —
define j where j = Max (encompassed gammal gamma?2 k)
have je encompassed gammal gamma?2 k
using encompassed-Max-in j-def assms by simp
hence gammal (j+1) < gamma2 (k+1) using encompassed-def encomp-at-def
by blast
have gammal j < gammal (j+1) using stm
by (simp add: strict-mono-less)
hence gamma2 k < gammal (j+1)
using <j€ encompassed gammal gamma2 k> encomp-at-def
by (metis coarse-idz-bounds dual-order.trans encompassed-unique
less-eg-real-def nle-le)
have gamma?2 (k+1) < gamma?2 (k+2) using mon
by (simp add: monotoneD)
hence gamma2 (k+1) < gamma?2 (k+2) using assms by simp
define k' where k' = coarse-idz gammal gamma2 (j+1)
have gamma2 k' < gammal (j+1) using k’-def
by (simp add: coarse-idz-bounds encomp-atD1)
hence gamma2 k' < gamma2 (k+1) using <gammal (j+1) < gamma2 (k+1)»
by simp
have j+1 ¢ encompassed gammal gamma2 k using j-def
by (meson Max-ge assms encompassed-finite linorder-not-less zless-add1-eq)
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hence k < k' using coarse-idz-upper k'-def <gamma2 k < gammal (j+1)> by
stmp

hence k+1 < k'’ by simp

hence gamma2 (k+1) < gamma?2 k' using mon by (simp add: monoD)

hence gamma2 k' = gamma2 (k+1) using <gamma2 k' < gamma2 (k+1)> by
stmp

hence gamma2 k' < gamma2 (k+2) using (gamma2 (k+1) < gamma?2 (k+2)»
by simp

hence k'’ < k+1 using mon mono-strict-invE by fastforce

hence k' = k+1 using <k+1 < k' by simp

thus ?thesis using j-def encompassed-bounds k'-def by fastforce
qed

lemma encompassed-max-Suc-gamma-eq:
assumes gammal m < gamma2 k
and gamma2 (k+2) < gammal M
and gamma2 k # gamma2 (k+1)
and gamma2 (k+1) # gamma?2 (k+2)
shows gammal (Maz (encompassed gammal gamma2 k) + 1) = gamma?2 (k+1)
proof —
have gamma?2 (k+1) < gamma2 (k+2) using assms mon
by (simp add: monotoneD)
hence gamma2 (k+1) < gammal M using assms by simp
have gamma2 k < gamma2 (k+1) using assms mon
by (simp add: monotoneD)
hence gammal m < gamma?2 (k+1) using assms by simp
have mazin: Maz (encompassed gammal gamma2 k) €
encompassed gammal gamma2 k
using encompassed-Maz-in assms <gamma2 (k+1) < gammal M> by simp
define sm where sm = Maz (encompassed gammal gamma2 k)+1
have sm € encompassed gammal gamma2 (k+1)
using encompassed-maz-Suc-eq sm-def assms <gamma2 (k+1) < gammal M>
by simp
have sm = Min (encompassed gammal gamma2 (k+1))
proof (rule Min-eql [symmetric])
show finite (encompassed gammal gamma2 (k + 1))
proof (rule encompassed-finite)
show gammal m < gamma2 (k+1) using <gammal m < gamma2 (k+1) .
show gamma?2 (k + 1) # gamma2 (k + 1 + 1) using assms
by (simp add: add.assoc)
show gamma2 (k+ 1 + 1) < gammal M using <gamma?2 (k+2) < gammal
M
by (simp add: add.assoc)
qed
show sm € encompassed gammal gamma2 (k + 1)
using <sm € encompassed gammal gamma2 (k + 1) .
fix j
assume j€ encompassed gammal gamma2 (k+1)
hence coarse-idz gammal gamma2 j = k+1
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using encompassed-unique by auto
show sm < j
proof (rule ccontr)
assume — sm < j
hence j < sm by simp
hence j < Max (encompassed gammal gamma2 k) using sm-def by simp
hence k+1 < k
proof (rule encomp-idz-mono’)
show encomp-at gammal gamma2 j (k + 1)
using <j€ encompassed gammal gamma2 (k+1)> unfolding encom-
passed-def
by auto
show encomp-at gammal gamma2 (Maz (encompassed gammal gamma?2
using mazxin unfolding encompassed-def by auto
qed
thus Fulse by simp
qed
qed
thus ?thesis using sm-def
by (metis <sm € encompassed gammal gamma2 (k + 1)» coarse-idz-bounds
dual-order.order-iff-strict encomp-atD1 encomp-atD2 encompassed-unique
less-le-not-le maxin)
qed

lemma encompassed-maz-Suc-gamma-eq’:
assumes Im. gammal m < gamma2 k
and I M. gamma?2 (k+2) < gammal M
and gamma?2 k # gamma2 (k+1)
and gamma?2 (k+1) # gamma?2 (k+2)
shows gammal (Maz (encompassed gammal gamma2 k) + 1) = gamma2 (k+1)
using assms encompassed-mazx-Suc-gamma-eq by auto

end

lemma coarse-idz-refi:
fixes gamma::int = real
assumes strict-mono gamma
shows i = coarse-idx gamma gamma i
proof (rule finer-ranges.coarse-idz-eq)
show finer-ranges gamma gamma unfolding finer-ranges-def
proof (intro conjl)
show strict-mono gamma using assms by simp
thus mono gamma by (simp add: strict-mono-mono)
show finer-range gamma gamma using finer-range-refl by simp
qed
show gamma i < gamma ¢ by simp
show gamma i < gamma (i+1) using assms unfolding strict-mono-def by
stmp
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qed

3.3 Pools with finer grids and coinciding profiles

definition pool-coarse-idz where
pool-coarse-ide = (AP1 P2 i. coarse-idx (grd P1) (grd P2) 1)

lemma pool-coarse-idzD:
assumes k = pool-coarse-ide P1 P2 i
shows k = coarse-idx (grd P1) (grd P2) i
using assms unfolding pool-coarse-idz-def by simp

definition pool-finer-idz-bound where
pool-finer-idz-bound = (AP1 P2 i. finer-idz-bound (grd P1) (grd P2) i)

lemma pool-finer-idz-boundD:
assumes | = pool-finer-idz-bound P1 P2 i
shows [ = finer-idz-bound (grd P1) (grd P2) i
using assms unfolding pool-finer-idz-bound-def by simp

definition finer-pool where

finer-pool P1 P2 = finer-grid P1 P2 A
(Vi. lg P1 i = lqg P2 (pool-coarse-idz P1 P2 i)) A
(Vi. fee P17 = fee P2 (pool-coarse-idz P1 P2 i))

lemma finer-pooll[intro):

assumes finer-range (grd P1) (grd P2)

and (Vi. lg P1 i = lg P2 (pool-coarse-ide P1 P2 1))

and (Vi. fee P1 i = fee P2 (pool-coarse-ide P1 P2 7))
shows finer-pool P1 P2

using assms unfolding finer-pool-def finer-grid-def by simp

lemma finer-poolD:
assumes finer-pool P1 P2 shows
finer-range (grd P1) (grd P2)
Vi. lg P1 i = lqg P2 (pool-coarse-idz P1 P2 1)
Vi. fee P1i = fee P2 (pool-coarse-idx P1 P2 i)
using assms unfolding finer-pool-def by auto

lemma finer-pool-refl:
assumes strict-mono (grd P)
shows finer-pool P P
proof
show finer-range (grd P) (grd P) using finer-range-refl by simp
have i: Vi. pool-coarse-ide P P i = 1
using coarse-idz-refl assms unfolding pool-coarse-idz-def by simp
thus Vi. lg P i = lg P (pool-coarse-idz P P i) by simp
show Vi. fee P i = fee P (pool-coarse-idz P P i) using i by simp
qed
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locale finer-pools =
fixes P1 P2
assumes fin-pool: finer-pool P1 P2

begin

lemma finer-pool-grid:
shows finer-range (grd P1) (grd P2) using fin-pool unfolding finer-pool-def
by simp

lemma finer-pool-liq:
shows Vi. lg P1 i = lqg P2 (pool-coarse-idz P1 P2 i)
using fin-pool unfolding finer-pool-def
by simp

lemma finer-pool-fee:
shows Vi. fee P1 i = fee P2 (pool-coarse-idx P1 P2 i)
using fin-pool unfolding finer-pool-def
by simp

lemma encompassed-lig-eq:
assumes strict-mono (grd P1)
and mono (grd P2)
and i € encompassed (grd P1) (grd P2) k
shows lqg P1 ¢ = lqg P2 k
proof —
have k = coarse-idz (grd P1) (grd P2) i
using assms finer-ranges.encompassed-unique finer-pool-grid
by (simp add: finer-ranges.intro)
thus ?thesis using finer-pool-liq assms pool-coarse-idz-def by metis
qed

lemma encompassed-fee-eq:
assumes strict-mono (grd P1)
and mono (grd P2)
and i € encompassed (grd P1) (grd P2) k
shows fee P1 i = fee P2 k
proof —
have k = coarse-idz (grd P1) (grd P2) i
using assms finer-ranges.encompassed-unique finer-pool-grid
by (simp add: finer-ranges.intro)
thus ?thesis using finer-pool-fee assms pool-coarse-idx-def by metis
qed

lemma sum-rng-token:
assumes strict-mono (grd P1)
and mono (grd P2)
and grd P1 m1 < grd P2 k
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and grd P2 (k+1) < grd P1 M1
and grd P2k # grd P2 (k + 1)
and A a b. a € encompassed (grd P1) (grd P2) b =
g(lgP1)a=g (lgP2)Db
and Vi € encompassed (grd P1) (grd P2) k. dff x i = f (i+1) — f4
shows sum (rng-token dff (g (lg P1)) z)
(encompassed (grd P1) (grd P2) k) =
(g’ (lg P2)) k = (f (Maz (encompassed (grd P1) (grd P2) k) + 1) —
f (Min (encompassed (grd P1) (grd P2) k)))
proof —
interpret finer-ranges grd P1 grd P2
using assms finer-pool-grid by (simp add: finer-ranges-def)
define Ek where Ek = encompassed (grd P1) (grd P2) k
define m where m = Min Ek
define M where M = Maz Ek
have m < M using m-def M-def encompassed-Min-in encompassed-Max-in assms
by (metis Ek-def Min.coboundedl encompassed-finite)
have Ek = {m..M} unfolding Ek-def m-def M-def
proof (rule encompassed-interval)
show mono (grd P1)
by (simp add: assms strict-mono-on-imp-mono-on)
show finite (encompassed (grd P1) (grd P2) k)
using encompassed-finite assms by blast
show encompassed (grd P1) (grd P2) k # {}
using encompassed-ne assms encompassed-Maz-in by fastforce
qged
have (> i€Fk. (g (Ig P1)) i x dff v i) = (>_i€Fk. (¢’ (lg P2)) k = dff = i)
proof (rule sum.cong)
fix i
assume i € Ek
hence g (lqg P1) i = g’ (lg P2) k using assms Ek-def by simp
thus (¢ (Ig P1)) i = dff x i = (g’ (lg P2)) k = dff = i by simp
qed simp
also have ... = (¢’ (lg P2)) k x (> i€Ek. dff = i)
by (simp add: sum-distrib-left)

also have ... = (¢’ (lg P2)) k « (>_ie{m..M}. dff = i) using <Ek = {m..M}>»
by simp

also have ... = (¢’ (lg P2)) k = (f (M+1) — fm)

proof —

have (Y ie{m.M}. dff x i) = O ie{m..M}. (f (i+1) — 1))
proof (rule sum.cong)

fix y

assume ye {m..M}

thus dff z y = f (y+1) — [y using assms <Ek = {m..M}» Ek-def by simp
qed simp

also have ... = f (M+1) — f m using int-telescoping-sum-le’ <m < M>
by auto
finally show ?thesis by simp
qed
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finally have (> i€Ek. (g (Ilg P1)) i *x dff i) =
(¢/ (Ig P2)) b+ (f (M+1) — fm).
thus ?thesis unfolding Fk-def M-def m-def rng-token-def by simp
qed

lemma sum-rng-gen-quote:
assumes strict-mono (grd P1)
and mono (grd P2)
and grd P1 m1 < grd P2 k
and grd P2 (k+2) < grd P1 M1
and grd P2 k # grd P2 (k + 1)
and grd P2 (k+1) # grd P2 (k + 2)
and A a b. a € encompassed (grd P1) (grd P2) b =
fUgPl)ya=f" (lgP2)b
shows sum (rng-gen-quote (grd P1) (f (lg P1)) z)
(encompassed (grd P1) (grd P2) k) =
rng-gen-quote (grd P2) (f' (lg P2)) z k
proof —
interpret finer-ranges grd P1 grd P2
using assms finer-pool-grid by (simp add: finer-ranges-def)
have grd P2 (k+1) < grd P2 (k+2) using mon
by (simp add: monotoneD)
hence grd P2 (k + 1) < grd P1 M1 using assms by simp
have sum (rng-gen-quote (grd P1) (f (lg P1)) x)
(encompassed (grd P1) (grd P2) k) =
(/' (ig P2)) k *
(min z ((grd P1) (Max (encompassed (grd P1) (grd P2) k) + 1)) —
min z ((grd P1) (Min (encompassed (grd P1) (grd P2) k))))
unfolding rng-gen-quote-def
proof (rule sum-rng-token)
show grd P1 m1 < grd P2 k using assms by simp
show grd P2 (k + 1) < grd P1 M1 using «grd P2 (k + 1) < grd P1 M1>» .
show grd P2 k # grd P2 (k + 1) using assms by simp
show V i€encompassed (grd P1) (grd P2) k.
gamma-min-diff (grd P1) i = min z (grd P1 (i + 1))— min z (grd P1 1)
unfolding gamma-min-diff-def by simp
show A a b. a € encompassed (grd P1) (grd P2) b =
f (lg P1) a = f'(lg P2) b using assms

by simp
qed (simp add: assms)+
also have ... = (f' (lg P2)) k = (min z (grd P2 (k+1)) — min z (grd P2 k))
proof —

have (grd P1) (Min (encompassed (grd P1) (grd P2) k)) = grd P2 k
by (meson assms encompassed-min-gamma-eq <grd P2 (k + 1) < grd P1 M1»)
moreover have (grd P1) (Maz (encompassed (grd P1) (grd P2) k) + 1) =
grd P2 (k+1)
using assms encompassed-maz-Suc-gamma-eq by auto
ultimately show ?thesis by simp
qed
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finally show ?thesis
unfolding rng-token-def gamma-min-diff-def rng-gen-quote-def .
qed

lemma sum-rng-gen-base:
assumes strict-mono (grd P1)
and mono (grd P2)
and grd P1 m1 < grd P2 k
and grd P2 (k+2) < grd P1 M1
and grd P2k # grd P2 (k + 1)
and grd P2 (k+1) # grd P2 (k + 2)
and A a b. a € encompassed (grd P1) (grd P2) b =
f(gP1)a=f"(lgP2)b
shows sum (rng-gen-base (grd P1) (f (lg P1)) z)
(encompassed (grd P1) (grd P2) k) =
rng-gen-base (grd P2) (f' (l¢ P2)) z k
proof —
interpret finer-ranges grd P1 grd P2
using assms finer-pool-grid by (simp add: finer-ranges-def)
have grd P2 (k+1) < grd P2 (k+2) using mon
by (simp add: monotoneD)
hence grd P2 (k + 1) < grd P1 M1 using assms by simp
have sum (rng-gen-base (grd P1) (f (lg P1)) x)
(encompassed (grd P1) (grd P2) k) =
(f" (lg P2)) k =
(—inverse (max x ((grd P1) (Maz (encompassed (grd P1) (grd P2) k) + 1)))

(—inverse (maz x ((grd P1) (Min (encompassed (grd P1) (grd P2) k))))))
unfolding rng-gen-base-def
proof (rule sum-rng-token)
show grd P1 m1 < grd P2 k using assms by simp
show grd P2 (k + 1) < grd P1 M1 using «grd P2 (k + 1) < grd P1 M1>» .
show grd P2 k # grd P2 (k + 1) using assms by simp
show V i€encompassed (grd P1) (grd P2) k.
inv-gamma-maz-diff (grd P1) z i =
— inverse (maz z (grd P1 (i + 1))) — — inverse (mazx x (grd P1 7))
unfolding inv-gamma-maz-diff-def by simp
show A a b. a € encompassed (grd P1) (grd P2) b =
f (lg P1) a = f'(lg P2) b using assms by simp
qed (simp add: assms)+
also have ... = (f' (lg P2)) k
(inverse (max « ((grd P1) (Min (encompassed (grd P1) (grd P2) k)))) —
inverse (maz x ((grd P1) (Maz (encompassed (grd P1) (grd P2) k) + 1))))
by simp
also have ... = (f' (lg P2)) k =
(inverse (max x (grd P2 k)) — inverse (max © (grd P2 (k+1))))
proof —
have (grd P1) (Min (encompassed (grd P1) (grd P2) k)) = grd P2 k
by (meson assms encompassed-min-gamma-eq <grd P2 (k + 1) < grd P1 M1»)
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moreover have (grd P1) (Maz (encompassed (grd P1) (grd P2) k) + 1) =
grd P2 (k+1)
using assms encompassed-maz-Suc-gamma-eq by auto
ultimately show ?thesis by simp
qed
finally show ?thesis
unfolding rng-token-def inv-gamma-max-diff-def rng-gen-base-def .
qed

lemma finer-imp-finite-liq:
assumes strict-mono (grd P1)
and mono (grd P2)
and finite-liq P2
and Ak. lg P2 k # 0 = finite (encompassed (grd P1) (grd P2) k)
shows finite-liq P1
proof —
interpret finer-ranges grd P1 grd P2
using assms finer-pool-grid by (simp add: finer-ranges-def)
have {i. lg P17 # 0} C
(U (encompassed (grd P1) (grd P2) ‘{k. lg P2 k # 0}))
proof
fix ¢
assume i€ {i. lg P1 { # 0}
hence lq P1 i # 0 by simp
define k where k = coarse-idz (grd P1) (grd P2) i
have i € encompassed (grd P1) (grd P2) k using k-def encompassed-bounds
by simp
moreover have lqg P2 k # 0 using <lqg P1 i # 0» k-def finer-pool-liq
by (metis pool-coarse-idx-def)
ultimately show i € (U (encompassed (grd P1) (grd P2)‘{k. lg P2 k # 0}))
by auto
qed
thus ?thesis
by (metis (mono-tags, lifting) assms(3) assms(4) finite-UN-I
finite-ligD finite-ligl finite-subset mem-Collect-eq)
qed

lemma finer-imp-finite-liq":
assumes finer-pool P1 P2
and strict-mono (grd P1)
and mono (grd P2)
and finite-lig P1
and finite {k. encompassed (grd P1) (grd P2) k = {}}
shows finite-liq P2
proof —
interpret finer-ranges grd P1 grd P2
using assms finer-pool-grid by (simp add: finer-ranges-def)
have {k. lg P2k # 0} C
{k. encompassed (grd P1) (grd P2) k = {}} U
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coarse-idz (grd P1) (grd P2) {i. lg P1 i # 0}
proof
fix k
assume k€ {i. lqg P21 # 0}
hence lq P2 k # 0 by simp
show k € {k. encompassed (grd P1) (grd P2) k = {}} U
coarse-idz (grd P1) (grd P2) {i. lg P1 i # 0}
proof
assume asm: k ¢ coarse-ide (grd P1) (grd P2) ‘{i. lg P1 i # 0}
show k € {k. encompassed (grd P1) (grd P2) k = {}}
proof (rule ccontr)
assume k ¢ {k. encompassed (grd P1) (grd P2) k = {}}
hence encompassed (grd P1) (grd P2) k # {} by simp
hence 3i. i € encompassed (grd P1) (grd P2) k by auto
from this obtain i where i € encompassed (grd P1) (grd P2) k by auto
hence k = coarse-idx (grd P1) (grd P2) i
by (simp add: encompassed-unique)
hence lg P1i # 0
using assms <lqg P2 k # 0) finer-pool-liq pool-coarse-idz-def
by presburger
hence k € coarse-idx (grd P1) (grd P2) ‘{i. lg P1 i # 0}
using <k = coarse-idx (grd P1) (grd P2) i) by blast
thus Fualse using asm by simp
qed
qed
qged
moreover have finite (coarse-ide (grd P1) (grd P2) {i. lg P1 i # 0})
using assms finite-ligD by auto
ultimately show ¢thesis using assms
by (metis finite-Unl finite-ligl rev-finite-subset)
qed

end

3.4 Spanning grids

definition span-grid where
span-grid P <— strict-mono (grd P) A (Vi. 0 < grd P i) A
(Vr>0.3i.grd Pi<r)yANN r.3i.r<grdPi)

lemma span-gridD:
assumes span-grid P
shows strict-mono (grd P) Vi. 0 < grd P i
Vr>0.3i. grd Pi<rV r.3i.r<grd Pi
using assms unfolding span-grid-def by simp+

lemma span-gridl [introl:

assumes strict-mono (grd P)
and Vi. 0 < grd P i
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and Vr>0.3i. grd Pi < r
andV r.3i.r < grd Pt
shows span-grid P using assms unfolding span-grid-def by simp

lemma span-grid-eq:
assumes span-grid P
and grd P = grd P’
shows span-grid P’ using assms unfolding span-grid-def by simp

locale finer-spanning-pool = finer-pools +
assumes span: span-grid P1

begin

lemma finer-spanning-gt:
shows Ji. r < grd P24
proof —
have 3i. r < grd P1 ¢ using span span-gridD by simp
from this obtain ¢ where r < grd P1 i by auto
hence r < grd P1 (i+1) using span
by (metis dual-order.strict-trans less-add-one monotoneD
span-gridD(1))
have 3k. encomp-at (grd P1) (grd P2) i k using span finer-range-def
finer-pool-grid by simp
from this obtain k where encomp-at (grd P1) (grd P2) i k by auto
hence grd P1 (i+1) < grd P2 (k+1) using encomp-atD2[of grd P1 - i k]
by simp
hence r < grd P2 (k+1) using «r < grd P1 (i + 1)) by auto
thus ?thesis by auto
qed

lemma finer-spanning-lt:
assumes (0 < r
shows 3i. grd P2i < r
proof —
have 3. grd P1 i < r using assms finer-pool-grid span-gridD
by (simp add: span)
from this obtain i where grd P1 i < r by auto
have 3k. encomp-at (grd P1) (grd P2) i k using assms finer-pool-grid span
by (simp add: finer-range-def)
from this obtain k where encomp-at (grd P1) (grd P2) i k by auto
hence grd P2 k < grd P1 i using encomp-atD1[of grd P1 - i k]
by simp
hence grd P2 k < r using <«grd P1 i < ry by auto
thus ?thesis by auto
qed

lemma finer-span-grid:
assumes Vi. 0 < grd P21
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and strict-mono (grd P2)
shows span-grid P2
proof
show strict-mono (grd P2) using assms by simp
show Vi. 0 < grd P2 i using assms by simp
show Vr. 3i. r < grd P2 i using finer-spanning-gt assms by simp
show Vr>0. 34. grd P2 i < r using finer-spanning-lt assms by simp
qed

end

locale finer-two-spanning-pools = finer-spanning-pool +
assumes span2: span-grid P2

sublocale finer-two-spanning-pools C finer-ranges grd P1 grd P2
proof (rule finer-ranges.intro)
show strict-mono (grd P1) using span span-gridD by simp
show mono (grd P2) using span span2
by (simp add: span-gridD(1) strict-mono-on-imp-mono-on)
show finer-range (grd P1) (grd P2) using finer-pool-grid by simp
qed

context finer-two-spanning-pools
begin

lemma spanning-sum-rng-gen-quote:
assumes A a b. a € encompassed (grd P1) (grd P2) b =
fgPl)ya=f"(lgP2)Db
shows sum (rng-gen-quote (grd P1) (f (lg P1)) z)
(encompassed (grd P1) (grd P2) k) =
rng-gen-quote (grd P2) (f' (lg P2)) z k
proof —
have b: strict-mono (grd P1) using assms span-gridD span by simp
have ¢: mono (grd P2) using span2 span-gridD
by (simp add: strict-mono-mono)
have d: grd P2 k # grd P2 (k + 1) using span2 span-gridD
by (simp add: strict-mono-eq)
have e: grd P2 (k + 1) # grd P2 (k + 2) using span2 span-gridD
by (simp add: strict-mono-eq)
have 3m. grd P1 m < grd P2 k using span2 span-gridD span
by (meson order-less-imp-le)
moreover have 3 M. grd P2 k < grd P1 M using assms span-gridD span
by (meson order-less-imp-le)
ultimately show ?thesis using sum-rng-gen-quote[OF b ¢ - - d €]
by (meson assms less-eg-real-def span span-gridD(4))
qed

lemma spanning-sum-rng-gen-base:
assumes A a b. a € encompassed (grd P1) (grd P2) b =
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fgPl)ya=f"(lgP2)b
shows sum (rng-gen-base (grd P1) (f (lg P1)) z)
(encompassed (grd P1) (grd P2) k) =
rng-gen-base (grd P2) (f' (lg P2)) x k
proof —
have b: strict-mono (grd P1) using assms span span-gridD by simp
have ¢: mono (grd P2) using span2 span-gridD
by (simp add: strict-mono-mono)
have d: grd P2 k # grd P2 (k + 1) using span2 span-gridD
by (simp add: strict-mono-eq)
have e: grd P2 (k + 1) # grd P2 (k + 2) using span2 span-gridD
by (simp add: strict-mono-eq)
have 3m. grd P1 m < grd P2 k using span2 span span-gridD
by (meson order-less-imp-le)
moreover have 3 M. grd P2 k < grd P1 M using assms span span-gridD
by (meson order-less-imp-le)
ultimately show ?thesis using sum-rng-gen-base[OF b c - - d €]
by (meson assms span less-eq-real-def span-grid-def)
qed

lemma span-grid-encompassed:
shows finite (encompassed (grd P1) (grd P2) k)
proof (rule finer-ranges.encompassed-finite’)
show Im. grd P1 m < grd P2 k using span?2 span span-gridD
by (meson order-less-imp-le)
show I M. grd P2 (k+1) < grd P1 M using span2 span span-gridD
by (meson order-less-imp-le)
show grd P2 k # grd P2 (k + 1) using span2 span-gridD(1)
by (simp add: strict-mono-eq)
show finer-ranges (grd P1) (grd P2) unfolding finer-ranges-def
by (simp add: finer-pool-grid span span2 span-gridD(1)
strict-mono-mono)
qed

lemma span-grids-finite-liq:
assumes finite-lig P2
shows finite-liq P1
proof (rule finer-imp-finite-liq)
show strict-mono (grd P1) using assms span span-gridD by simp
show finite-lig P2 using assms by simp
show mono (grd P2) using assms span2 span-gridD
by (simp add: strict-mono-on-imp-mono-on)
show Ak. lg P2k # 0 = finite (encompassed (grd P1) (grd P2) k)
using assms span-grid-encompassed finer-pool-grid by simp
qed

lemma span-grids-ex-le:

shows I3m. grd PI m < grd P2 k
by (meson span span2 linorder-le-less-linear order.asym
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span-gridD(2) span-gridD(3))

lemma span-grids-ex-ge:
shows 3 M. grd P2 k < grd P1 M
by (meson span nless-le span-gridD(4))

lemma span-grids-encompassed-ne:

shows encompassed (grd P1) (grd P2) k # {}

proof (rule encompassed-ne’)
show Im. grd P1 m < grd P2 k using span-grids-ez-le span by simp
show I M. grd P2 k < grd P1 M using span-grids-ex-ge span by simp
show grd P2 k # grd P2 (k + 1) using span2 span-gridD

by (simp add: strict-mono-eq)
qed

end

3.5 Spanning grids and finite liquidity

locale finer-two-span-finite-liq = finer-two-spanning-pools +
assumes fin-liq: finite-liq P1

sublocale finer-two-span-finite-liq C finite-lig-pool P1
by (unfold-locales, (simp add: fin-lig))

lemma (in finer-two-span-finite-liq) span-grids-finite-liq”:
shows finite-lig P2
proof (rule finer-imp-finite-liq’)
show finer-pool P1 P2 using fin-pool fin-pool by simp
show strict-mono (grd P1) using span span-gridD by simp
show finite-lig P1 using fin-liq by simp
show mono (grd P2) using span2 span-gridD
by (simp add: strict-mono-on-imp-mono-on)
have V k. encompassed (grd P1) (grd P2) k # {}
using span-grids-encompassed-ne
by (simp add: finer-pool-grid)
thus finite {k. encompassed (grd P1) (grd P2) k = {}} by simp
qed

sublocale finer-two-span-finite-liq C finite-lig-pool P2
by (unfold-locales, (simp add: span-grids-finite-liq’))

context finer-two-span-finite-lig
begin

lemma finer-pool-encompassed-Union:
shows (|J (encompassed (grd P1) (grd P2) {i. lg P2i # 0})) =

{i.lg P1i{+# 0}
proof
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show |J (encompassed (grd P1) (grd P2) {i. lg P2 i # 0}) C {i. lg P1 i # 0}
proof
fix j
assume j € |J (encompassed (grd P1) (grd P2) ‘{i. lg P2i # 0})
hence 3k. lg P2k # 0 N j € encompassed (grd P1) (grd P2) k by auto
from this obtain k where lqg P2 k # 0 and
j € encompassed (grd P1) (grd P2) k by auto
hence k£ = pool-coarse-ide P1 P2 j
using pool-coarse-idz-def encompassed-unique by metis
hence lq P1 j = lqg P2 k using span-grids-finite-liq’ finer-pool-liq
by simp
hence lq P1 j # 0 using <«lq P2 k # 0»> by simp
thus je {i. lg P1 i # 0} by simp
qed
show {i. lg P17 # 0} C U (encompassed (grd P1) (grd P2)‘{i. lg P2 i # 0})
proof
fix j
assume je {i. lg P1 i# 0}
hence lq P1 j # 0 by simp
hence lg P2 (pool-coarse-ide P1 P2 j) # 0
using pool-coarse-idz-def finer-pool-liq by simp
hence pool-coarse-ide P1 P2 j € {i. lg P2 i # 0} by simp
moreover have j € encompassed (grd P1) (grd P2) (pool-coarse-idz P1 P2 j)
using encompassed-bounds unfolding pool-coarse-idz-def by auto
ultimately show j € |J (encompassed (grd P1) (grd P2)‘{i. lg P2i # 0})
by auto
qed
qed

lemma spanning-finer-gen-quote-eq:
assumes A a b. a € encompassed (grd P1) (grd P2) b =
fgPl)ya=f"(lgP2)b
and Ai. lg P2i=0 = f'(lg P2) i
and Ai. lg P1i=0 = f (lgP1) i
shows gen-quote (grd P1) (f (lg P1)) z
proof —
define g2 where rg2 = rng-token (gamma-min-diff (grd P2)) (f’ (lg P2)) z
define Lnz2 where Lnz2 = {i. lg P2 i # 0}
define Lnz! where Lnzl = {i. lg P1 i # 0}
have finite-lig P1 using fin-lig by simp
have sm: A\ z k. sum (rng-gen-quote (grd P1) (f (lg P1)) z)
(encompassed (grd P1) (grd P2) k) =
rng-gen-quote (grd P2) (f' (lg P2)) z k
using spanning-sum-rng-gen-quote assms by simp
have gen-quote (grd P2) (f' (lg P2)) = = sum 192 Lnz2
unfolding gen-quote-def gen-token-def rg2-def Lnz2-def
by (rule finite-support-sum, (simp add: assms)+)
also have ... = sum (Ak. sum (rng-gen-quote (grd P1) (f (lg P1)) z)
(encompassed (grd P1) (grd P2) k)) Lnz2

=0
—0
= gen-quote (grd P2) (f' (lg P2)) =
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proof (rule sum.cong)
show Aza. za € Lnz2 = 192 za = sum (rng-gen-quote (grd P1) (f (lg P1))

)
(encompassed (grd P1) (grd P2) za)
proof —
fix k
assume k€ Lnz2
show g2 k = sum (rng-gen-quote (grd P1) (f (lg P1)) z)
(encompassed (grd P1) (grd P2) k)
using sm unfolding rg2-def rng-gen-quote-def by simp
qed
qed simp
also have ... = sum (rng-gen-quote (grd P1) (f (lg P1)) z)

(U (encompassed (grd P1) (grd P2) ¢ Lnz2))
proof (rule sum.UNION-disjoint[symmetric))
show finite Lnz2 using Lnz2-def span-grids-finite-liq’ finite-ligD
by simp
show VicLnz2. finite (encompassed (grd P1) (grd P2) 1)
using assms span-grid-encompassed
by (simp add: finer-pool-grid)
show Vielnz2. Vjelnz2. i # j —
encompassed (grd P1) (grd P2) i N encompassed (grd P1) (grd P2) j = {}
using encompassed-inj by simp
qed
also have ... = sum (rng-gen-quote (grd P1) (f (lg P1)) z) Lnzl
proof —
have (|J (encompassed (grd P1) (grd P2) ‘ Lnz2)) = Lnzl
using finer-pool-encompassed-Union Lnzl-def Lnz2-def assms by simp
thus ?thesis by simp
qed
also have ... = infsum (rng-gen-quote (grd P1) (f (lg P1)) «) UNIV
unfolding Lnzi-def rng-gen-quote-def
proof (rule finite-nz-support.finite-support-sum|symmetricl)
show finite-nz-support (lg P1)
using fin-liq finite-lig-def finite-nz-support.intro by auto
qged (simp add: assms)
finally show ?thesis unfolding gen-quote-def gen-token-def rng-gen-quote-def
by simp

qed

lemma spanning-finer-gen-base-eq:

assumes A a b. a € encompassed (grd P1) (grd P2) b =
fgPl)ya=f"(lgP2)b

and A\i. lgP2i=0 = f'(lgP2)i=20

and A\i. lgP1i=0= f(lgP1)i=10

shows gen-base (grd P1) (f (lg P1)) z = gen-base (grd P2) (f' (lg P2)) =

proof —

T

define 192 where rg2 =rng-token (inv-gamma-maz-diff (grd P2)) (f' (Ig P2))
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define Lnz2 where Lnz2 = {i. lg P2i # 0}
define Lnz! where Lnzl = {i. lg P1 i # 0}
have finite-lig P1 using fin-lig by simp
have sm: A\ z k. sum (rng-gen-base (grd P1) (f (lg P1)) z)
(encompassed (grd P1) (grd P2) k) =
rng-gen-base (grd P2) (f' (l¢ P2)) z k
using spanning-sum-rng-gen-base assms by simp
have gen-base (grd P2) (f' (lg P2)) z = sum rg2 Lnz2
unfolding gen-base-def gen-token-def rg2-def Lnz2-def
by (rule finite-support-sum, (simp add: assms)+)
also have ... = sum (A\k. sum (rng-gen-base (grd P1) (f (lg P1)) x)
(encompassed (grd P1) (grd P2) k)) Lnz2
proof (rule sum.cong)
show Aza. za € Lnz2 = 192 za = sum (rng-gen-base (grd P1) (f (l¢ P1)) x)

(encompassed (grd P1) (grd P2) za)
proof —
fix k
assume k€ Lnz2
show rg2 k = sum (rng-gen-base (grd P1) (f (lg P1)) z)
(encompassed (grd P1) (grd P2) k)
using sm unfolding rg2-def rng-gen-base-def by simp
qed
qed simp
also have ... = sum (rng-gen-base (grd P1) (f (lg P1)) z)
(U (encompassed (grd P1) (grd P2) ¢ Lnz2))
proof (rule sum.UNION-disjoint[symmetric))
show finite Lnz2 using Lnz2-def assms finite-ligD
span-grids-finite-liq’ by auto
show Vi€Lnz2. finite (encompassed (grd P1) (grd P2) )
using assms span-grid-encompassed
by (simp add: finer-pool-grid)
show Viclnz2. Vjelnz2. i # j —
encompassed (grd P1) (grd P2) i N encompassed (grd P1) (grd P2) j = {}
using encompassed-inj by simp
qed
also have ... = sum (rng-gen-base (grd P1) (f (lg P1)) z) Lnz1
proof —
have (|J (encompassed (grd P1) (grd P2) ‘ Lnz2)) = Lnzl
using finer-pool-encompassed-Union Lnzl-def Lnz2-def assms by simp
thus ?thesis by simp
qed
also have ... = infsum (rng-gen-base (grd P1) (f (lg P1)) z) UNIV
unfolding Lnzi-def rng-gen-base-def
proof (rule finite-nz-support.finite-support-sum|symmetric|)
show finite-nz-support (lqg P1)
using fin-liqg finite-lig-def finite-nz-support.intro by auto
qed (simp add: assms)
finally show ?thesis unfolding gen-base-def gen-token-def rng-gen-base-def
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by simp
qed

end

end
theory CLMM-Description imports Grid-Information

begin

4 CLMM description

Definition of CLMMs (Concentrated Liquidity Market Makers)

4.1 Preliminary results

definition clmm-dsc where
clmm-dsc P «— (span-grid P) A (finite-lig P) A (Vi. 0 < lg P i) A
(Vi. 0 < fee Pi) N (Vi. fee Pi < 1)

lemma clmm-dscl[intro]:
assumes span-grid P
and finite-liq P
andVi. 0 <lgPi
and Vi. 0 < fee P i
and Vi. fee P i < 1
shows clmm-dsc P using assms unfolding clmm-dsc-def by simp

lemma clmm-dsc-span-grid:
assumes clmm-dsc P
shows span-grid P using assms unfolding clmm-dsc-def by simp

lemma clmm-dsc-grid|simp]:
assumes clmm-dsc P
shows strict-mono (grd P) (Vi. 0 < grd P 1)
(Vr>0.3i.grd Pi<r) (Vr.3i. r < grd P i)
using assms unfolding clmm-dsc-def span-grid-def by simp-+
lemma clmm-dsc-grd-Suc:
assumes clmm-dsc P
shows grd P i < grd P (i+1) using assms clmm-dsc-grid(1) strict-mono-def

by (simp add: strict-mono-less)

lemma clmm-dsc-grd-smono:
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assumes clmm-dsc P

and i < j

shows grd P i < grd P j using assms clmm-dsc-grid(1)
by (simp add: strict-monoD)

lemma clmm-dsc-grd-mono:
assumes clmm-dsc P
and i < j
shows grd P i < grd P j using assms clmm-dsc-grd-smono
by (metis linorder-not-less nle-le)

lemma clmm-dsc-lig:
assumes clmm-dsc P
shows finite-lig P 0 < lqg P i using assms unfolding clmm-dsc-def by simp+

lemma clmm-dsc-fees:
assumes clmm-dsc P
shows (Vi. 0 < fee P i) A (Vi. fee P i < 1) using assms
unfolding clmm-dsc-def by simp

lemma clmm-dsc-fees-neg-1:
assumes clmm-dsc P
shows Vi. fee P i # 1
by (metis assms clmm-dsc-def less-numeral-extra(4))

lemma clmm-dsc-gross-lig:
assumes clmm-dsc P
shows nz-support (gross-fet (lg P) (fee P)) = nz-support (lqg P)
using gross-nz-support-eq clmm-dsc-fees assms
by (metis less-numeral-extra(4))

lemma clmm-dsc-gross-lig-zero-iff:
assumes clmm-dsc P
shows (lg P i = 0) <— (gross-fct (lg P) (fee P) i = 0)
by (simp add: assms clmm-dsc-fees-neg-1 gross-fct-nz-eq)

lemma gross-lig-gt:
assumes clmm-dsc P
and lg Pi # 0
and L = gross-fet (lg P) (fee P)
shows 0 < L i using assms
by (metis clmm-dsc-fees clmm-dsc-liq(2) dual-order.irrefl
gross-fct-nz-eq gross-fct-sgn order.order-iff-strict)

lemma gross-lig-ge:
assumes clmm-dsc P
and L = gross-fct (lg P) (fee P)
shows 0 < L 7 using assms
by (meson clmm-dsc-fees clmm-dsc-liq(2) gross-fct-sgn)
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lemma rng-quote-net-ge:
assumes clmm-dsc P
shows 0 < lg P i« (grd P (i+1) — grd P 1)
by (simp add: assms clmm-dsc-grd-mono clmm-dsc-lig(2))

lemma rng-quote-gross-ge:
assumes clmm-dsc P
and L = gross-fct (lg P) (fee P)
shows 0 < L i« (grd P (i+1) — grd P i)
using assms clmm-dsc-grd-mono gross-lig-ge by auto

lemma clmm-quote-gross-pos:
assumes clmm-dsc P
shows 0 < quote-gross P sqp using quote-gross-pos assms
by (meson clmm-dsc-fees clmm-dsc-grd-mono clmm-dsc-lig(2) gross-fct-sgn
zle-add1-eq-le zless-add1-eq)

lemma clmm-quote-gross-mono:
assumes clmm-dsc P
shows mono (quote-gross P)
proof —
interpret finite-lig-pool P
by (simp add: assms clmm-dsc-liq(1) finite-lig-pool-def)
show ?thesis
proof (rule quote-gross-mono-finite)
show Vi. 0 < lg P i using assms clmm-dsc-liq by simp
show Vi. fee P ¢ < 1 using assms clmm-dsc-fees by simp
show Vi. grd P i < grd P (i + 1) using assms clmm-dsc-grid span-gridD
by (simp add: strict-mono-leD)
qed
qed

lemma quote-gross-imp-sqp-lt:
assumes clmm-dsc P
and quote-gross P sqp < quote-gross P sqp’
shows sqp < sqp’
using assms clmm-quote-gross-mono mono-strict-invE by blast

lemma clmm-quote-net-mono:
assumes clmm-dsc P
shows mono (quote-net P)
proof —
interpret finite-lig-pool P
by (simp add: assms clmm-dsc-liq(1) finite-lig-pool-def)
show ?thesis
proof (rule quote-net-mono-finite-liq)
show Vi. 0 < lg P i using assms clmm-dsc-liq by simp
show Vi. fee P ¢ < 1 using assms clmm-dsc-fees by simp
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show Vi. grd P i < grd P (i + 1) using assms clmm-dsc-grid span-gridD
by (simp add: strict-mono-leD)
qed
qed

lemma clmm-base-gross-antimono:
assumes clmm-dsc P
shows antimono (base-gross P)
proof —
interpret finite-lig-pool P
by (simp add: assms clmm-dsc-liq(1) finite-lig-pool-def)
show ?thesis
proof (rule base-gross-antimono-finite)
show Vi. 0 < lg P i using assms clmm-dsc-liq by simp
show Vi. fee P ¢ < 1 using assms clmm-dsc-fees by simp
show Vi. grd P i < grd P (i + 1) using assms clmm-dsc-grid span-gridD
by (simp add: strict-mono-leD)
show Vi. 0 < grd P i using assms clmm-dsc-grid span-gridD by simp
qed
qed

lemma clmm-base-net-antimono:
assumes clmm-dsc P
shows antimono (base-net P)
proof —
interpret finite-lig-pool P
by (simp add: assms clmm-dsc-liq(1) finite-lig-pool-def)
show ?thesis
proof (rule base-net-antimono-finite)
show Vi. 0 < lg P i using assms clmm-dsc-liq by simp
show Vi. grd P i < grd P (i + 1) using assms clmm-dsc-grid span-gridD
by (simp add: strict-mono-leD)
show Vi. 0 < grd P i using assms clmm-dsc-grid span-gridD by simp
qed
qed

lemma lig-grd-min:
assumes clmm-dsc P
and nz-support (lg P) # {}
shows 0 < grd-min P using grd-min-pos assms by simp

lemma lig-grd-min-max:
assumes clmm-dsc P
and nz-support (lg P) # {}
shows grd-min P < grd-maz P
proof —
have finite-lig-pool P
by (simp add: assms(1) clmm-dsc-lig(1) finite-lig-pool.intro)
hence idz-min (lg P) < idz-maz (lqg P)
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using idz-min-mazx-finite assms clmm-dsc-def finite-lig-def by auto
thus ?thesis using assms
unfolding grd-min-def grd-max-def idz-min-img-def idz-maz-img-def
by (simp add: clmm-dsc-grd-smono)
qed

definition rng-blw where
rng-blw P prc = {i. grd P i < prc}

lemma rng-blw-mem|[simpl:
assumes i € rng-blw P prc
shows grd P i < prc using assms unfolding rng-blw-def by simp

lemma rng-blw-bdd-above:
assumes clmm-dsc P
shows bdd-above (rng-blw P prc) unfolding rng-blw-def
proof —
have span-grid P using assms clmm-dsc-def by simp
thus bdd-above {i. grd P i < prc} unfolding bdd-above-def span-grid-def
by (metis dual-order.trans less-eq-real-def mem-Collect-eq
strict-mono-less-eq)
qed

lemma rng-blw-ne:
assumes clmm-dsc P
and 0 < prc
shows rng-blw P prc # {}
proof —
have 3i. grd P i < prc using assms clmm-dsc-grid span-grid-def by simp
thus ?thesis unfolding rng-blw-def using less-eq-real-def by auto
qed

definition lower-tick where
lower-tick P prc = Sup (rng-blw P prc)

lemma grd-lower-tick-cong:
assumes grd P1 = grd P2
shows lower-tick P1 sqp = lower-tick P2 sqp
using assms unfolding lower-tick-def rng-blw-def by simp

lemma lower-tick-mem:

assumes clmm-dsc P

and 0 < prc

shows lower-tick P prc € rng-blw P prc unfolding lower-tick-def
proof (rule int-set-bdd-above)

show rng-blw P prc # {} using rng-blw-ne assms by simp

show bdd-above (rng-blw P prc) using rng-blw-bdd-above assms by simp
qed
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lemma lower-tick-geq:
assumes clmm-dsc P
and 0 < prc
shows grd P (lower-tick P prc) < pre
using assms lower-tick-mem unfolding rng-blw-def by simp

lemma lower-tick-geq’:
assumes clmm-dsc P
and i € rng-blw P prc
shows i < lower-tick P prc unfolding lower-tick-def
proof (rule cSup-upper)
show i € rng-blw P prc using assms by simp
show bdd-above (rng-blw P prc) using assms rng-blw-bdd-above by simp
qed

lemma lower-tick-ubound:
assumes clmm-dsc P
and i = lower-tick P prc
shows prc < grd P (i+1)
proof (rule ccontr)
assume - pre < grd P (i + 1)
hence grd P (i + 1) < prc by simp
hence i+1 € (rng-blw P prc) unfolding rng-blw-def by auto
hence i+1 < i using assms lower-tick-geq’ by blast
thus Fulse by simp
qed

lemma lower-tick-lbound:
assumes clmm-dsc P
and 0 < prc
and ¢ = lower-tick P prc
shows grd P i < prc unfolding lower-tick-def
proof —
have lower-tick P prc € rng-blw P prc unfolding lower-tick-def
proof (rule int-set-bdd-above(1))
show bdd-above (rng-blw P prc) using assms rng-blw-bdd-above by simp
show rng-blw P prc # {} using assms rng-blw-ne by simp
qed
thus grd P i < prc using assms by simp
qed

lemma lower-tick-lt:
assumes clmm-dsc P
and 0 < sqp’
and i = lower-tick P sqp
and j = lower-tick P sqp

/

and i < j
shows sqp < sqp’
proof —
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have i+1 < j using assms by simp
have sqp < grd P (i+1) using assms lower-tick-ubound by simp
also have ... < grd P j using assms clmm-dsc-grid span-gridD(1)
by (simp add: strict-mono-less-eq)
also have ... < sqp’ using assms lower-tick-lbound by simp
finally show ?thesis .
qed

lemma lower-tick-It":
assumes clmm-dsc P
and 0 < sqp’
and ¢ = lower-tick P sqp
and j = lower-tick P sqp’
and sqp’ < sqp
and grd P i = sqp
shows j < ¢
proof —
have j < i using assms lower-tick-It by fastforce
moreover have j# ¢
proof (rule ccontr)
assume - j # ¢
hence sqp < sqp’ using assms lower-tick-lbound by blast
thus False using assms by simp
qed
ultimately show ?thesis by simp
qed

lemma lower-tick-mono:
assumes clmm-dsc P
and 0 < sqp
and ¢ = lower-tick P sqp
and j = lower-tick P sqp’
and sqp < sqp’
shows 7 < j
using assms lower-tick-It by fastforce

lemma lower-tick-eq:
assumes clmm-dsc P
and grd P i = sqp
shows lower-tick P sqp = 1
proof —
define j where j = lower-tick P sqp
have i € rng-blw P sqp using assms unfolding rng-blw-def by auto
hence i < j using assms lower-tick-geq’ unfolding j-def by simp
moreover have j < i
proof (rule ccontr)
assume — j<
hence i+1 < j by simp
have sqp = grd P i using assms by simp
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also have ... < grd P (i+1) using assms clmm-dsc-grd-Suc by blast
also have ... < grd P j
using <i+1 < j» by (simp add: assms(1) clmm-dsc-grd-mono)
also have ... < sqp
using assms clmm-dsc-grid(2) j-def lower-tick-lbound by blast
finally have sqp < sqp .
thus False by simp
qed
ultimately show j = ¢ by simp
qed

lemma lower-tick-charact:
assumes clmm-dsc P
and grd P i < sqp
and sqp < grd P (i+1)
shows lower-tick P sqp = i
proof (rule ccontr)
assume lower-tick P sqp # i
hence i < lower-tick P sqp
by (metis assms(1,2) clmm-dsc-grid(2) lower-tick-eq lower-tick-mono
order-le-imp-less-or-eq)
hence i+1 < lower-tick P sqp by simp
hence grd P (i+1) < grd P (lower-tick P sqp)
by (simp add: assms(1) clmm-dsc-grd-mono)
also have ... < sqp
by (meson assms(1,2) clmm-dsc-grid(2) lower-tick-lbound order-less-le-trans)
finally have grd P (i+1) < sqp .
thus Fulse using assms by simp
qed

lemma lower-tick-grd-min:
assumes strict-mono (grd P)
shows idz-min (lg P) = lower-tick P (grd-min P)
proof —
define A where A = {i. grd P i < grd P (idz-min (lg P))}
have idz-min (lg P) € A using A-def by simp
moreover have V i€ A. { < idz-min (lg P) unfolding A-def using assms
by (simp add: strict-mono-less-eq)
ultimately show ?thesis
unfolding A-def lower-tick-def rng-blw-def grd-min-def idx-min-img-def
by (metis cSup-eqg-mazimum)
qed

lemma lower-tick-grd-maz:
assumes strict-mono (grd P)
shows idz-maz (lg P) + 1 = lower-tick P (grd-max P)
proof —
define A where A = {i. grd P i < grd P (ide-maz (lg P) + 1)}
have idz-max (lg P) + 1 € A using A-def by simp
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moreover have V i€ A. i < idz-mazx (lg P) + 1 unfolding A-def using assms
by (simp add: strict-mono-less-eq)
ultimately show ?thesis
unfolding A-def lower-tick-def rng-blw-def grd-mazx-def idz-maz-img-def
by (metis cSup-eq-maximum)
qed

lemma grd-max-gt-if:
assumes clmm-dsc P
and ¢ = lower-tick P sqp
and lg Pi # 0
shows sgp < grd-maz P
proof —
have fin: finite (nz-support (lg P))
by (meson assms(1) clmm-dsc-lig(1) finite-lig-def)
have sqp < grd P (i+1) using assms lower-tick-ubound by auto
also have ... < grd-mazx P
proof —
have ¢ < idz-maz (lg P) using assms
by (simp add: fin idz-max-finite-ge)
thus ?thesis unfolding grd-max-def idz-maz-img-def
by (simp add: assms(1) clmm-dsc-grd-mono)
qed
finally show ?thesis .
qed

4.2 Quote token addition and withdrawal in a CLMM

lemma (in finite-nz-support) clmm-gen-quote-sum:
assumes clmm-dsc P
and 0 < sqp
and j = lower-tick P sqp
shows gen-quote (grd P) L sqp =
Ljx (sqp — grd Pj) +
sum (Ni. Lix (grd P (i+1) — grd P %)) {i. Li # 0 N i < j}
proof —
define df where df = gamma-min-diff (grd P)
define A where A = {i. Li# 0 N i < j}
define B where B={i. Li# 0 ANj< i}
define C where C = {i. Li# 0 AN i < j}
have un: {i. L i # 0} = A U B unfolding A-def B-def by auto
have inter: A N B = {} unfolding A-def B-def by auto
have fin: finite {i. L i # 0} by (metis fin-nz-sup nz-support-def)
have gen-quote (grd P) L sqp =
sum (rng-token df L sqp) {i. L i # 0}
unfolding gen-quote-def df-def using gen-token-sum by simp

also have ... = sum (rng-token df L sqp) A + sum (rng-token df L sqp) B
by (metis empty-iff fin finite-Un inter sum.union-inter-neutral un)
also have ... = sum (rng-token df L sqp) A
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proof —
have V i€ B. rng-token df L sqp i = 0
proof
fix ¢
assume i € B
have grd P i < grd P (i+1) using assms clmm-dsc-grid span-gridD
by (simp add: strict-mono-less)
have j + I < ¢ using i € B> assms unfolding B-def by simp
hence grd P (j +1) < grd P i
using assms clmm-dsc-grid span-gridD
by (simp add: strict-mono-leD)
hence sqp < grd P i using lower-tick-ubound[of P] assms
by (metis dual-order.strict-trans nless-le)
hence sqp < grd P (i+1) using «grd P i < grd P (i+1)> by simp
hence df sqgp i = 0
using <sqp < grd P 7> unfolding df-def gamma-min-diff-def by simp
thus rng-token df L sqp i = 0 unfolding rng-token-def by simp
qed
thus ?thesis by simp

qed
also have ... = rng-token df L sqp j + sum (rng-token df L sqp) C
proof (cases j € A)

case True

hence A = {j} U C unfolding A-def C-def by auto
hence sum (rng-token df L sqp) A = sum (rng-token df L sqp) ({j} U C)
by simp
also have ... = sum (rng-token df L sqp) {j} + sum (rng-token df L sqp) C
proof (rule sum.union-inter-neutral)
show finite {j} by simp
show finite C using fin C-def by simp
show Vze{j} N C. rng-token df L sqp x = 0 using C-def by simp
qed

also have ... = rng-token df L sqp j + sum (rng-token df L sqp) C by simp
finally show ?thesis .

next
case False

hence A = C unfolding A-def C-def using Collect-cong by fastforce
have L j = 0 using Fulse A-def by auto
hence rng-token df L sqp j = 0 unfolding rng-token-def by simp
then show #?thesis using <A = C» by simp
qed
also have ... = L j % (sqp — grd P j) + sum (rng-token df L sqp) C
proof —
have min sqp (grd P (j + 1)) = sqp using assms lower-tick-ubound by simp
moreover have min sqp (grd P j) = grd P j
using assms lower-tick-lbound by simp
ultimately have rng-token df L sqp j = L j * (sqp — grd P j)
unfolding rng-token-def df-def gamma-min-diff-def by simp
thus ?thesis by simp
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qed
also have ... = L j x (sqp — grd P j) + sum (AN i. L i x (grd P (i+1) — grd P
7)) C
proof —
have Vi € C. rng-token df L sqp i = L i % (grd P (i+1) — grd P i)
proof
fix ¢
assume i € C
hence i+1 < j unfolding C-def by auto
hence grd P (i+1) < grd P j using assms clmm-dsc-grid(1) strict-monoD
by (metis linorder-le-less-linear nless-le)
hence grd P (i+1) < sqp using lower-tick-lbound assms by fastforce
have grd P i < grd P (i+1) using assms clmm-dsc-grd-Suc by simp
hence grd P i < sqp using «grd P (i+1) < sqp» by simp
thus rng-token df L sqp i = L i * (grd P (i+1) — grd P i)
unfolding df-def rng-token-def gamma-min-diff-def
using «grd P (i+1) < sqp> by simp
qed
hence sum (rng-token df L sqp) C =
sum (A i. L ix (grd P (i+1) — grd P )) C' by simp
thus ?thesis unfolding df-def gamma-min-diff-def rng-token-def by simp
qed
finally show gen-quote (grd P) L sqp =
Ljx(sqp— grd Pj)+ sum (Ni. Lix* (grd P (i+1) — grd P 1)) C .
qed

lemma clmm-gen-quote-grd-min:
assumes clmm-dsc P
and nz-support L # {}
and finite (nz-support L)
and nz-support L = nz-support (lqg P)
shows gen-quote (grd P) L (grd-min P) = 0 using gen-quote-grd-min
by (meson assms clmm-dsc-grd-mono mono-onl)

lemma (in finite-nz-support) clmm-gen-quote-grd-min-le:
assumes clmm-dsc P
and nz-support L = nz-support (lg P)
and sqp < grd-min P
and 0 < sqp
shows gen-quote (grd P) L sqp = 0
proof —
define j where j = lower-tick P sqp
hence j < idz-min (lg P) using lower-tick-grd-min[of P] assms
by (simp add: lower-tick-mono)
have gen-quote (grd P) L sqp =
Ljx (sqp— grd P j) +
(X i|Li2O0ANi<j Lix(grdP (i+ 1) — grd Pi))
by (rule clmm-gen-quote-sum, (auto simp add: assms j-def))
also have ... = L j x (sqp — grd P j)
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proof —

have {i. Li# 0 Ni < j}={}

proof —
have Vi < j. L i = 0 using <j <= idx-min (lg P)» idz-min-def

by (metis (mono-tags, opaque-lifting) assms(2)
dual-order.strict-trans fin-nz-sup idx-min-finite-le nless-le)

thus ?thesis by auto

qed

hence ()i |Li# O0ANi<j. Lix(grdP (i+1)— grdPi) =20
by (metis sum-clauses(1))

thus ?thesis by simp

qed

also have ... = 0

proof (cases sqp = grd-min P)
case True

hence grd P j = grd-min P
using «j < idz-min (lg P)> assms unfolding grd-min-def idz-min-img-def
by (simp add: j-def lower-tick-eq)
thus ?thesis using True by simp
next
case Fulse
hence j < idz-min (lg P) using lower-tick-lt’
by (metis <j < idz-min (lg P)> assms(1) assms(4) assms(3)
idz-min-img-def j-def lel lower-tick-lbound grd-min-def
verit-la-disequality)
hence L j = 0 unfolding idz-min-def nz-support-def
by (metis <j < idz-min (lg P)> assms(2) fin-nz-sup idz-min-def
idz-min-finite-le leD)
then show ?thesis by simp
qed
finally show ?thesis .
qed

lemma clmm-quote-gross-sum:
assumes clmm-dsc P
and 0 < sqp
and L = gross-fct (lqg P) (fee P)
and j = lower-tick P sqp
shows quote-gross P sqp =
Ljx(sqp — grd P j) +
sum (AN i. Lix (grd P (i+1) — grd P i) {i. Li# 0 AN i <j}
proof —
interpret finite-nz-support L
using finite-lig-pool.finite-lig-gross-fct assms
by (metis clmm-dsc-lig(1) finite-lig-pool.intro finite-nz-support-def
nz-support-def)
show ?thesis unfolding quote-gross-def using clmm-gen-quote-sum assms by
stmp
qed
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lemma clmm-quote-gross-grd-min:
assumes clmm-dsc P
and nz-support (lg P) # {}
shows quote-gross P (grd-min P) = 0 unfolding quote-gross-def
proof (rule clmm-gen-quote-grd-min)
show finite (nz-support (gross-fct (lg P) (fee P)))
using finite-lig-pool.finite-lig-gross-fct assms
by (metis clmm-dsc-lig(1) finite-lig-pool.intro nz-support-def)
show clmm-dsc P using assms by simp
show nz-support (gross-fct (lg P) (fee P)) = nz-support (lg P)
using clmm-dsc-gross-liq assms by simp
thus nz-support (gross-fct (lg P) (fee P)) # {} using assms by simp
qed

lemma clmm-quote-gross-grd-min-le:
assumes clmm-dsc P
and sqp < grd-min P
and 0 < sqp
shows quote-gross P sqp = 0 unfolding quote-gross-def
proof (rule finite-nz-support.clmm-gen-quote-grd-min-le)
show finite-nz-support (gross-fct (lqg P) (fee P))
using finite-lig-pool.finite-lig-gross-fct assms
by (metis clmm-dsc-lig(1) finite-lig-pool.intro finite-nz-support-def
nz-support-def)
show clmm-dsc P using assms by simp
show nz-support (gross-fct (lg P) (fee P)) = nz-support (lg P)
using clmm-dsc-gross-liq assms by simp
qed (simp add: assms)+

lemma clmm-quote-reach-zero:
assumes clmm-dsc P
and nz-support (lg P) # {}
shows quote-reach P 0 = grd-min P
using assms clmm-quote-gross-grd-min unfolding quote-reach-def by simp

lemma clmm-quote-reach-ge:
assumes clmm-dsc P
and nz-support (lg P) # {}
and 0 <y
and y < quote-gross P (grd-maz P)
shows grd-min P < (quote-reach P y)
proof —
interpret finite-lig-pool
by (simp add: assms(1) clmm-dsc-lig(1) finite-lig-pool.intro)
show ?thesis
proof (cases y = 0)
case True
then show ?thesis using assms clmm-quote-reach-zero by simp
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next
case Fulse
hence 0 < y using assms by simp
then show %thesis using assms quote-reach-ge
by (simp add: clmm-dsc-fees clmm-dsc-lig(2) grd-min-maz strict-mono-mono)
qed
qed

lemma clmm-quote-reach-pos:
assumes clmm-dsc P
and nz-support (lg P) # {}
and 0 < y
and y < quote-gross P (grd-maz P)
and sqp = quote-reach Py
shows 0 < sqp
proof —
have 0 < grd-min P by (simp add: assms lig-grd-min)
thus 0 < sgp using assms clmm-quote-reach-ge by fastforce
qed

lemma clmm-quote-reach-mem:
assumes clmm-dsc P
and 0 < y
and y < quote-gross P (grd-mazx P)
and nz-support (lg P) # {}
shows quote-reach P y € quote-gross P—* {y}
proof —
interpret finite-lig-pool
by (simp add: assms(1) clmm-dsc-lig(1) finite-lig-pool.intro)
show ?thesis
proof (rule quote-reach-mem)
show Vi. 0 < lg P i using assms(1) clmm-dsc-def by simp
show Vi. fee P ¢ < 1 using clmm-dsc-fees assms by simp
show mono (grd P)
by (simp add: assms(1) clmm-dsc-grd-mono monol)
show 0 < y using assms by simp
show y < quote-gross P (grd-max P) using assms by simp
qed
qed

lemma clmm-quote-reach-le:
assumes clmm-dsc P
and nz-support (lg P) # {}
and 0 < y
and sqp € quote-gross P —{y}
and sqp’ = quote-reach Py
shows sqp’ < sqp
proof —
interpret finite-lig-pool
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by (simp add: assms(1) clmm-dsc-lig(1) finite-lig-pool.intro)
have ¢s: quote-gross P (grd-min P) = 0
using assms clmm-quote-gross-grd-min by simp
define sqp’ where sqp’ = quote-reach Py
define X where X = quote-gross P —* {y}
hence sqp’ = Inf X
using assms ¢s unfolding sqp’-def quote-reach-def by simp
have Vze X. Inf X < z
proof
fix z
assume z € X
show Inf X <z
proof (rule clInf-lower)
show z€ X using <«ze X .
show bdd-below X
using assms quote-gross-bdd-below X-def clmm-quote-gross-mono gqs by simp
qed
qed
thus ?thesis using assms X-def <sqp’ = Inf X sqp’-def by auto
qed

lemma clmm-quote-net-sum:
assumes clmm-dsc P
and 0 < sqp
and L = lqg P
and j = lower-tick P sqp
shows quote-net P sqp =
Ljx(sqp — grd P j) +
sum (AN i. L i (grd P (i+1) — grd P i) {i. L i # 0 N i < j}
proof —
interpret finite-nz-support L
using finite-lig-pool.finite-lig-gross-fct assms clmm-dsc-def
finite-lig-def finite-nz-support-def
by blast
show ?thesis unfolding quote-net-def using clmm-gen-quote-sum assms by simp
qed

lemma clmm-quote-net-grd-min:
assumes clmm-dsc P
and nz-support (lg P) # {}
shows quote-net P (grd-min P) = 0 unfolding quote-net-def
proof (rule clmm-gen-quote-grd-min)
show finite (nz-support (lqg P))
using clmm-dsc-liq finite-ligD assms
unfolding finite-nz-support-def nz-support-def by simp
qed (auto simp add: assms)

lemma clmm-quote-gross-reach-eq:
assumes clmm-dsc P
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and nz-support (lg P) # {}
and 0 < y
and y < quote-gross P (grd-mazx P)
shows quote-gross P (quote-reach P y) = y
proof —
interpret finite-lig-pool
by (simp add: assms(1) clmm-dsc-lig(1) finite-lig-pool.intro)
show ?thesis
proof (rule quote-gross-reach-eq)
show Vi. 0 < lqg P i by (simp add: assms(1) clmm-dsc-lig(2))
show Vi. fee P i < 1 by (simp add: assms(1) clmm-dsc-fees)
show mono (grd P)
by (simp add: assms(1) clmm-dsc-grd-mono monol)
show 0 < y using assms by simp
show y < quote-gross P (grd-max P) using assms by simp
qged
qed

definition gen-quote-diff where
gen-quote-diff P L sqp sqp’ = gen-quote (grd P) L sqp’ — gen-quote (grd P) L sqp

lemma (in finite-nz-support) clmm-gen-quote-diff-eq:
assumes clmm-dsc P
and j = lower-tick P sqp
and k = lower-tick P sqp’
and 0 < sqp
and sqp < sqp’
and j < k
shows gen-quote-diff P L sqp sqp’ = L k * (sqp’ — grd P k) +
sum (N i. Lix (grd P (i+1) —grd Pi)) {i. Li# 0 Nj<iNi<Ek}+
Ljx* (grd P (j+1) — sqp)
proof —
have 0 < sgp using assms by simp
hence sqgp < sqp’ using lower-tick-It assms by simp
hence 0 < sgp’ using <0 < sgp> by simp
define A where A ={i. Li# 0 Ni<k}
define B where B = {i. L i # 0 A i < j}
define C where C = {i. Li# 0 Nj<iANi<k}
define Cj where Cj = {i. Li# 0 Nj<iNi<k}
define df where df = (A i. L i * (grd P (i+1) — grd P 7))
have finite A
unfolding A-def by (metis fin-nz-sup finite-Collect-conjl nz-support-def)
have A = B U C using assms unfolding A-def B-def C-def by auto
have Cj = C — {j} unfolding C-def Cj-def by auto
have gen-quote-diff P L sqp sqp’ = L k * (sqp’ — grd P k) +
sum df A — (L j * (sqp — grd P j) + sum df B)
using assms <0 < sqp> clmm-gen-quote-sum <0 < sqp’s
unfolding gen-quote-diff-def df-def A-def B-def by simp
also have ... = L k * (sqp’ — grd P k) + sum df C — L j * (sqp — grd P j)
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proof (rule diff-sum-dcomp)
show finite A using «(finite A» .
show A = BU C using <A =BUC».
show B N C = {} unfolding B-def C-def by auto
qed
also have ... = Lk« (sqp’ — grd P k) + sum df Cj +
df j — L j * (sqp — grd P j)
proof (cases j € C)
case True
have sum df C = df j + sum df Cj
proof (rule sum-remove-el)
show finite C using <A = B U C» (finite A> by simp
show j € C using True .
show Cj = C — {j} using <Cj = C — {j}> .
qed
then show ?thesis by simp
next
case Fulse
hence L j = 0 using assms unfolding C-def by auto
hence df j = 0 unfolding df-def by simp
moreover have Cj = C using Fulse <Cj = C' — {j}» by auto
ultimately show ?thesis by simp

qed

also have ... = L k x (sqp’ — grd P k) + sum df Cj +
Ljx(grd P (j+1) — sqp)

proof —

have df j — Lj* (sqp — grd Pj) = L j % (grd P (j+1) — sqp)
unfolding df-def by (simp add: right-diff-distrib)
thus ?thesis by simp
qed
finally show gen-quote-diff P L sqp sqp’ = L k % (sqp’ — grd P k) + sum df Cj
_|_
Ljx*(grd P (j+1) — sqp) .
qed

lemma (in finite-nz-support) clmm-gen-quote-diff-eq”:
assumes clmm-dsc P
and j = lower-tick P sqp
and j = lower-tick P sqp’
and 0 < sqp
and sqp < sqp’
and L'j=1Lj
shows gen-quote-diff P L sqp sqp’ = L’ j * (sqp’ — sqp)
proof —
have 0 < sgp using assms lig-grd-min|of P] by simp
hence 0 < sgp’ using assms by simp
define A where A = {i. Li # 0 N i < j}
define df where df = (A i. L i * (grd P (i+1) — grd P 7))
have finite A
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unfolding A-def by (metis fin-nz-sup finite-Collect-conjl nz-support-def)

have gen-quote-diff P L sqp sqp’ = L j * (sqp’ — grd P j) +
sum df A — (L j * (sqp — grd P j) + sum df A)

using assms <0 < sqp> clmm-gen-quote-sum <0 < sqp’s

unfolding gen-quote-diff-def df-def A-def by simp
also have ... = L j x (sqp’ — grd P j) — L j * (sqp — grd P j) by simp
also have ... = L j x (sqp’ — sqp)

by (simp add: right-diff-distrib)
finally show gen-quote-diff P L sqp sqp’ = L’ j = (sqp’ — sqp)

using assms by simp

qged

lemma clmm-quote-gross-diff-eq:
assumes clmm-dsc P
and L = gross-fct (lg P) (fee P)
and j = lower-tick P sqp
and k = lower-tick P sqp’
and 0 < sqp
and sqp < sqp’
and j < k
shows quote-gross P sqp’ — quote-gross P sqp = L k = (sqp’ — grd P k) +
sum (ANi. Lix (grd P (i+1) —grd P0)) {i. Li# 0 Nj<i Ni<k}+
Ljx*(grd P (j+1) — sqp)
proof —
interpret finite-nz-support L
using finite-lig-pool.finite-lig-gross-fct assms
by (metis clmm-dsc-lig(1) finite-lig-pool.intro finite-nz-support-def
nz-support-def)
show ?thesis
using clmm-gen-quote-diff-eq assms
unfolding quote-gross-def gen-quote-diff-def by simp
qed

lemma clmm-rng-quote-strict-pos:
assumes clmm-dsc P
and L = gross-fct (lg P) (fee P)
and L7 # 0
shows 0 < L i * (grd P (i+1) — grd P i) using assms
by (metis add-0 clmm-dsc-grd-smono gross-lig-ge less-add-one less-diff-eq
less-eq-real-def zero-less-mult-iff)

lemma clmm-sum-rng-quote-pos:
assumes clmm-dsc P
and L = gross-fet (lg P) (fee P)
shows 0 < sum (A 4. Li* (grd P (i+1) — grd Pi)) M
using sum-nonneg rng-quote-gross-ge assms
by (metis (mono-tags, lifting))

lemma clmm-sum-rng-quote-strict-pos:
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assumes clmm-dsc P
and L = gross-fet (lg P) (fee P)
and L i # 0
and i€ M
and finite M
shows 0 < sum (A i. Lix (grd P (i+1) — grd P i)) M
proof (rule sum-pos2)
show finite M using assms by simp
show i€ M using assms by simp
show 0 < Li* (grd P (i + 1) — grd P %)
using assms clmm-rng-quote-strict-pos by simp
show \i. ie M = 0 < Lix (grd P (i + 1) — grd P i)
using assms rng-quote-gross-ge by simp
qed

lemma clmm-quote-gross-eq-sum-only-if:
assumes clmm-dsc P
and L = gross-fet (lg P) (fee P)
and j = lower-tick P sqp
and k = lower-tick P sqp’

and 0 < sqp
and sqp < sqp’
and j < k
and quote-gross P sqp’ = quote-gross P sqp
and j < ¢
and i < k
shows L ¢ =0

proof (rule ccontr)
assume L i # 0
define S where S = L k x (sqp’ — grd P k) +
sum (AN i. Li* (grd P (i+1) — grd Pi)) {i. Li# 0 Aj<i A i <k} +
Ljx (grd P (j+1) — sqp)
have S = quote-gross P sqp’ — quote-gross P sqp
unfolding S-def using clmm-quote-gross-diff-eq OF assms(1—7)] by simp
also have ... = 0 using assms by simp
finally have S = 0 .
have grd P k < sqp’
using assms lower-tick-mem by auto
have sgp < grd P (j+1)
by (metis assms(1) assms(3) lower-tick-ubound)
have a: 0 < Lk x (sqp’ — grd P k)
using «grd P k < sqp”sy clmm-dsc-lig(2) assms
by (simp add: gross-lig-ge)
have b: 0 < L j* (grd P (j+1) — sqp)
using «sgp < grd P (j+1)»
by (metis assms(1) assms(2) diff-ge-0-iff-ge gross-lig-ge less-eq-real-def
split-mult-pos-le)
have ¢: 0 < sum (A i. L i % (grd P (i+1) — grd P 1))
{i. Li£0Nj<iNi<Ek}
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using assms clmm-sum-rng-quote-pos by simp
hence sum (A i. L i * (grd P (i+1) — grd P 1))
(i.Li#£0Nj<iNi<k}=0
using a b ¢ «§ = 0> S-def by simp
moreover have 0 < sum (A i. Li* (grd P (i+1) — grd P 7))
{i. Li#0Nj<iNi<FEk}
proof (rule clmm-sum-rng-quote-strict-pos)
show clmm-dsc P using assms by simp
show L = gross-fct (lg P) (fee P) using assms by simp
show L ¢ # 0 using <L i # 0> .
thus i€ {i. Li# 0 Aj<iA i<k} using assms by simp
show finite {i. L i # 0 Nj < i A i<k} by simp
qed
ultimately show Fulse by simp
qed

lemma clmm-quote-gross-eq-sum-emp:
assumes clmm-dsc P
and L = gross-fet (lg P) (fee P)
and j = lower-tick P sqp
and k = lower-tick P sqp’
and 0 < sqp
and sqp < sqp’
and j < k
and quote-gross P sqp’ = quote-gross P sqp
shows {i. Li# 0ANj<iNi<k}={}
proof (rule ccontr)
assume {i. Li# 0 Nj<i Ni<k}#{}
hence 3i. Li# 0 N j < i A i <k by auto
from this obtain ¢ where L i # 0 and j < i and 7 < k by auto
hence L i = 0 using assms clmm-quote-gross-eq-sum-only-if by simp
thus False using <L ¢ # 0) by simp
qed

lemma clmm-quote-gross-eq-lower-only-if:
assumes clmm-dsc P
and L = gross-fct (lqg P) (fee P)
and j = lower-tick P sqp
and %k = lower-tick P sqp’
and 0 < sqp
and sqp < sqp’
and j < k
and quote-gross P sqp’ = quote-gross P sqp
shows L j =0
proof (rule ccontr)
assume L j # 0
define S where S = L k x (sqp’ — grd P k) +
sum (A i. Lix (grd P (i+1) —grd P9)) {i. Li# 0 Nj<i Ni<k}+
Ljx (grd P (j+1) — sqp)
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have S = quote-gross P sqp’ — quote-gross P sqp
unfolding S-def using clmm-quote-gross-diff-eq OF assms(1—7)] by simp
also have ... = 0 using assms by simp
finally have S = 0 .
have grd P k < sqp’
using assms lower-tick-mem by auto
have sgp < grd P (j+1)
by (metis assms(1) assms(3) lower-tick-ubound)
have a: 0 < Lk x (sqp’ — grd P k)
using «grd P k < sqp”s clmm-dsc-lig(2) assms
by (simp add: gross-lig-ge)
have b: 0 < L j* (grd P (j+1) — sqp)
using «sgp < grd P (j+1)»
by (metis assms(1) assms(2) diff-ge-0-iff-ge gross-lig-ge less-eq-real-def
split-mult-pos-le)
have ¢: 0 < sum (A i. Li* (grd P (i+1) — grd P 7))
{i. Li#£0Nj<iNi<Ek}
using assms clmm-sum-rng-quote-pos by simp
hence L j * (grd P (j+1) — sqp) = 0
using a b ¢ «S = 0> S-def by linarith
moreover have 0 < L j x (grd P (j+1) — sqp)
using <L j # 0> <sqp < grd P (j+1)» calculation by auto
ultimately show Fulse by linarith
qed

lemma clmm-quote-gross-eq-upper-only-if:
assumes clmm-dsc P
and L = gross-fet (lg P) (fee P)
and j = lower-tick P sqp
and k = lower-tick P sqp’
and 0 < sqp
and sgp < sqp’
and j < k
and quote-gross P sqp’ = quote-gross P sqp
shows Lk =0V grd Pk = sqp’
proof (rule ccontr)
assume asm: - (L k= 0V grd Pk = sqp’)
hence L k # 0 by simp
have grd P k # sqp using asm
using assms lower-tick-eq by fastforce
define S where S = L k x (sqp’ — grd P k) +
sum (A i. Lix (grd P (i+1) — grd P9)) {i. Li# 0 Nj<i Ni<k}+
Ljx (grd P (j+1) — sqp)
have S = quote-gross P sqp’ — quote-gross P sqp
unfolding S-def using clmm-quote-gross-diff-eq| OF assms(1—7)] by simp
also have ... = 0 using assms by simp
finally have S = 0 .
have grd P k < sqp’
using assms lower-tick-mem <grd P k # sqp»
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by (metis asm linorder-not-less nle-le order.trans rng-blw-mem)
have sgp < grd P (j+1)
by (metis assms(1) assms(3) lower-tick-ubound)
have a: 0 < L k * (sqp’ — grd P k)
using «grd P k < sqp”» clmm-dsc-lig(2) assms
by (simp add: gross-lig-ge)
have b: 0 < L j* (grd P (j+1) — sqp)
using «sgp < grd P (j+1)»
by (metis assms(1) assms(2) diff-ge-0-iff-ge gross-lig-ge less-eq-real-def
split-mult-pos-le)
have ¢: 0 < sum (A i. Li* (grd P (i+1) — grd P 7))
(i.Li#0Nj<iNi<k}
using assms clmm-sum-rng-quote-pos by simp
hence L k * (sqp’ — grd P k) = 0
using a b ¢ «S = 0> S-def by linarith
moreover have 0 < L k * (sqp’ — grd P k)
using <L k # 0> <sqp < grd P (j+1)» calculation asm by force
ultimately show Fulse by linarith
qed

lemma clmm-quote-gross-diff-eq’:
assumes clmm-dsc P
and L = gross-fet (lg P) (fee P)
and j = lower-tick P sqp
and j = lower-tick P sqp’
and 0 < sqp
and sqp < sqp’
shows quote-gross P sqp’ — quote-gross P sqp = L j * (sqp’ — sqp)
proof —
interpret finite-nz-support L
using finite-lig-pool.finite-lig-gross-fct assms
by (metis clmm-dsc-lig(1) finite-lig-pool.intro finite-nz-support-def
nz-support-def)
show ?thesis using clmm-gen-quote-diff-eq’ assms
unfolding quote-gross-def gen-quote-diff-def by simp
qed

lemma clmm-quote-gross-eq-lower-only-if
assumes clmm-dsc P
and L = gross-fet (lg P) (fee P)
and j = lower-tick P sqp
and j = lower-tick P sqp’
and 0 < sqp
and sqp < sqp’
and quote-gross P sqp’ = quote-gross P sqp
shows L j =0
proof —
have L j * (sqp’ — sqp) = quote-gross P sqp’ — quote-gross P sqp
using assms clmm-quote-gross-diff-eq'|OF assms(1—4)] by simp
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also have ... = 0 using assms by simp
finally have L j * (sqp’ — sqp) = 0 .
thus ?thesis using assms by simp

qed

lemma clmm-quote-reach-grd-liq:
assumes clmm-dsc P
and nz-support (lg P) # {}
and 0 < y
and y < quote-gross P (grd-mazx P)
and j = lower-tick P sqp
and grd P j = sqp
and sqp = quote-reach P y
shows lgP (j—1)# 0
proof (rule ccontr)
assume - lg P (j — 1) # 0
define L where L = gross-fct (lg P) (fee P)
have quote-gross P sqp = y using assms clmm-quote-gross-reach-eq by simp
have quote-gross P sqp — quote-gross P (grd P (j—1)) =
Ljx* (sqgp — grd P j) +
(i |Li#AOANj—1<iAi<ijLix(grdP (i+1)— grd Pi))+
L(—1)%(gdP(G—1+1)—gdP (1)
proof (rule clmm-quote-gross-diff-eq)
show clmm-dsc P using assms(1) by simp
show L = gross-fct (lg P) (fee P) using L-def by simp
show j — 1 = lower-tick P (grd P (j — 1))
using assms lower-tick-eq by presburger
show j = lower-tick P sqp using assms by simp
show 0 < grd P (j — 1) using assms by simp
show j — 1 < j by simp
show grd P (j — 1) < sqp
using «j — 1 < j» assms(1) assms(6) clmm-dsc-grd-mono order-less-imp-le
by blast
qed
also have ... = 0
proof —
have L j * (sqp — grd P j) = 0 using assms by simp
moreover have L (j — 1)« (grd P (j — 1 + 1) —grd P (j — 1)) = 0
using <= lg P (j — 1) # 0» by (simp add: L-def gross-fct-zero-if)
moreover have (3 i | Li# O0Nj— 1 <iANi<j.
Lix(grdP (i+1)—grdPi) =20
proof —
have {i. Li# 0 Nj— 1 <iANi<j}={} by auto
thus ?thesis by (metis sum-clauses(1))
qed
ultimately show ?thesis by (simp add: assms(6))
qed
finally have quote-gross P sqp — quote-gross P (grd P (j—1)) = 0 .
hence grd P (j—1) € quote-gross P —{y}
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by (simp add: <quote-gross P sqp = y»)
hence sqp < grd P (j—1)
using assms clmm-quote-reach-le by simp
moreover have grd P (j—1) < sgp using assms
by (metis clmm-dsc-grd-smono order-refl zle-diff1-eq)
ultimately show Fulse by simp
qed

lemma quote-gross-gt-grd-min:
assumes clmm-dsc P
and nz-support (lg P) # {}
and grd-min P < sqp
shows 0 < quote-gross P sqp
proof —
define L where L = gross-fet (lg P) (fee P)
define sqgpm where sqpm = grd-min P
define j where j = lower-tick P (grd-min P)
define k£ where k = lower-tick P sqp
have j = idz-min (lg P) using lower-tick-grd-min
by (simp add: assms(1) j-def)
have lq P (idz-min (lg P)) # 0
proof (rule idz-min-finite-in)
show finite (nz-support (lg P))
using assms clmm-dsc-liq(1) finite-lig-def by auto
qged (simp add: assms)
hence lg P j # 0 using <j = idz-min (lg P)» by simp
hence 0 < L j using gross-lig-gt L-def assms by simp
show ?thesis
proof (cases k = j)

case True
have 0 < L j * (sqp — sqpm) using <0 < L j» assms sqpm-def by simp
also have ... = quote-gross P sqp — quote-gross P sqpm

proof (rule clmm-quote-gross-diff-eq'[symmetric])
show L = gross-fct (lg P) (fee P) using L-def by simp
show j = lower-tick P sqpm using j-def sqpm-def by simp
show j = lower-tick P sqp using True k-def by simp
show 0 < sgpm using assms unfolding sqgpm-def
by (simp add: lig-grd-min)
show sqgpm < sqp using assms unfolding sqgpm-def by simp
qed (simp add: assms)
also have ... = quote-gross P sqp
proof —
have quote-gross P sqpm = 0 unfolding sqgpm-def
by (simp add: assms clmm-quote-gross-grd-min)
thus ?thesis by simp
qed
finally show 0 < quote-gross P sqp .
next
case Fulse
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hence j < k unfolding j-def k-def
by (metis assms(1) assms(3) clmm-dsc-grid(2) idz-min-img-def
lower-tick-mono nless-le grd-min-def)
have 0 < L j * (grd P (j+1) — sqpm)
using <0 < L j» assms(1) j-def lower-tick-ubound sqpm-def by auto
also have ... < Lk x (sqp — grd P k) +
sum (N i. Lix (grd P (i+1) — grd Pi)){i. Li# 0 ANj<i Ni <k} +
Ljx (grd P (j+1) — sqgpm)
proof —
have 0 < L k x (sqp — grd P k) using gross-lig-ge k-def
by (metis L-def assms(1) assms(2) assms(3) lig-grd-min
diff-ge-0-iff-ge k-def lower-tick-lbound order-less-trans
zero-le-mult-iff)
moreover have 0 < sum (A i. L ix (grd P (i+1) — grd P 7))
{i. Li#0Nj<iNi<Ek}
proof (rule sum-nonneqg)
fix n
assume n € {i. Li# 0 Nj<iANi<k}
thus 0 < Lnx(grd P(n+ 1) — grd Pn)
by (simp add: L-def assms(1) rng-quote-gross-ge)

qed
ultimately show ?thesis by simp
qed
also have ... = quote-gross P sqp — quote-gross P sqpm

proof (rule clmm-quote-gross-diff-eq[symmetric])
show clmm-dsc P using assms by simp
show L = gross-fct (lg P) (fee P) using L-def by simp
show j < k using j < k» .
show 0 < sgpm using assms sqgpm-def by (simp add: lig-grd-min)
show sgpm < sqp using sqgpm-def assms by simp

qged (simp add: j-def k-def sqpm-def)+

also have ... = quote-gross P sqp

proof —
have quote-gross P sgpm = 0 unfolding sqgpm-def

by (simp add: assms clmm-quote-gross-grd-min)

thus ?thesis by simp

qged

finally show 0 < quote-gross P sqp .

qed
qed

lemma quote-gross-pos-gt-grd-min:
assumes clmm-dsc P
and nz-support (lg P) # {}
and 0 < quote-gross P sqp
shows grd-min P < sqp
proof (rule ccontr)
assume - grd-min P < sqp
hence quote-gross P sqp = 0 using assms
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by (metis quote-gross-imp-sqp-lt clmm-quote-gross-grd-main)
thus Fulse using assms by simp
qed

lemma quote-gross-disj-gt:
assumes clmm-dsc P
and ¢ = lower-tick P sqp
and j = lower-tick P sqp’
and 7 < k
and k£ < j
and lg Pk # 0
and 0 < sqp
and 0 < sqp’
shows quote-gross P sqp < quote-gross P sqp’
proof —
define L where L = gross-fct (lqg P) (fee P)
hence L k # 0 using assms gross-lig-gt by fastforce
have grd P j < sqp’ using assms by (simp add: lower-tick-lbound)
have sgp < grd P (i+1) using assms lower-tick-ubound by simp
have sqp < sqp’ using lower-tick-It assms by simp
hence eq: quote-gross P sqp’ — quote-gross P sqp = L j * (sqp’ — grd P j) +
On|Ln#0ANi<nAn<jLnx(gdP(n+1)— grd Pn)) +
Lix(grdP (i+ 1) — sqp)
using clmm-quote-gross-diff-eq assms L-def by simp
show ?thesis
proof (cases k = i)
case True
hence 0 < Li* (grd P (i + 1) — sqp)
using L-def assms gross-lig-gt lower-tick-ubound by auto
also have ... < L j * (sqp’ — grd P j) +
On|Ln#E0ANi<nAn<jLnx(grdP (n+1)— grd Pn))+
Lix(grd P (i+ 1)— sqp)
proof —
have 0 < L j x (sqp’ — grd P j)
using assms L-def gross-lig-ge lower-tick-lbound by auto
moreover have 0 <
Oon|Ln#0ANi<nAn<jLnx(gdP (n+1)— grd Pn))
proof (rule sum-nonneg)
fix n
assumen € {n. Ln# 0 ANi<nAn<j}
show 0 < Lnx*(grd P (n+ 1) — grd P n)
by (simp add: L-def assms(1) rng-quote-gross-ge)

qed
ultimately show ¢thesis by simp
qed
also have ... = quote-gross P sqp’ — quote-gross P sqp using eq by simp

finally have 0 < quote-gross P sqp’ — quote-gross P sqp .
then show ?thesis by simp
next
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case Fulse

have 0 < O n|Ln#0ANi<nAn<j Lnx(grdP (n+1)— grd Pn))

proof (rule sum-ez-strict-pos)
define M where M = {n. Ln# 0 ANi<nAn<j}
show finite M using M-def by simp
have k€ M using assms False M-def <L k # 0> by simp
moreover have 0 < Lk * (grd P (k+1) — grd P k)
using L-def assms clmm-dsc-grd-Suc gross-lig-gt by auto
ultimately show JaeM. 0 < L a * (grd P (a + 1) — grd P a) by auto
show VzeM. 0 < Lx x (grd P (x + 1) — grd P x)
by (simp add: L-def assms(1) rng-quote-gross-ge)
qed
also have ... < L j * (sqp’ — grd P j) +
Sn|Ln#0ANi<nAn<jLnx(grdP (n+1)— grd Pn))+
Lix(grdP (i+ 1) — sqp)
proof —
have 0 < L j * (sqp’ — grd P j)
using <grd P j < sqp’s L-def assms(1) gross-lig-ge by auto
moreover have 0 < Lix (grd P (i + 1) — sqp)
using <sqp < grd P (i+1)> L-def assms(1) gross-lig-ge by auto
ultimately show ?thesis by simp
qed
also have ... = quote-gross P sqp’ — quote-gross P sqp using eq by simp
finally have 0 < quote-gross P sqp’ — quote-gross P sqp .
thus ?thesis by simp
qged
qged

lemma quote-gross-disj-gt':
assumes clmm-dsc P
and ¢ = lower-tick P sqp
and j = lower-tick P sqp’
and i < j
and lq Pj # 0
and grd P j < sqp’
and 0 < sqp
and 0 < sqp’
shows quote-gross P sqp < quote-gross P sqp’
proof —
define L where L = gross-fct (lg P) (fee P)
hence 0 < L j using assms gross-lig-gt by fastforce
have sqp < grd P (i+1) using assms lower-tick-ubound by simp
have sqp < sqp’ using lower-tick-It assms by simp
have 0 < L j x (sqp’ — grd P j) using assms <0 < L j» by simp
also have ... < L j * (sqp’ — grd P j) +
Oon|Ln£0ANi<nAn<jLnx(grdP (n+1)— grd Pn))+
Lix(grd P (i+ 1) — sqp)
proof —
have 0 < L i« (grd P (i + 1) — sqp)
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using «sqp < grd P (i+1)> L-def assms(1) gross-lig-ge by auto
moreover have (0 <
Oon|Ln#0Ni<nAn<j Lnx*(gdP (n+ 1)— grd Pn))
proof (rule sum-nonneg)
fix n
assumen € {n. Ln# 0ANi<nAn<j}
show 0 < Lnx*(grd P (n+ 1) — grd P n)
by (simp add: L-def assms(1) rng-quote-gross-ge)

qed
ultimately show ?thesis by simp
qed
also have ... = quote-gross P sqp’ — quote-gross P sqp

using clmm-quote-gross-diff-eq <sqp < sqp’> assms L-def by simp
finally have 0 < quote-gross P sqp’ — quote-gross P sqp .
thus %thesis by simp
qed

lemma quote-gross-lower-eq-gt:
assumes clmm-dsc P
and j = lower-tick P sqp
and j = lower-tick P sqp’
and lg Pj # 0
and 0 < sqp
and sqp < sqp’

shows quote-gross P sqp < quote-gross P sqp’

proof —
define L where L = gross-fct (lg P) (fee P)
hence 0 < L j using assms gross-lig-gt by fastforce
have sqp < sqp’ using lower-tick-It assms by simp
hence 0 < L j * (sqp’ — sqp) using assms <0 < L j»> by simp
also have ... = quote-gross P sqp’ — quote-gross P sqp

using clmm-quote-gross-diff-eq’ assms L-def by simp

finally have 0 < quote-gross P sqp’ — quote-gross P sqp .
thus ?thesis by simp

qed

lemma quote-reach-gt-grd-min:
assumes clmm-dsc P
and nz-support (lg P) # {}
and 0 < y
and y < quote-gross P (grd-maz P)
and sqp = quote-reach P y
shows grd-min P < sqp
proof (rule ccontr)
assume - grd-min P < sqp
hence quote-gross P sqp < quote-gross P (grd-min P)
using assms clmm-quote-gross-grd-min clmm-quote-gross-grd-min-le
clmm-quote-reach-pos
by auto
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hence y < 0
by (metis assms(1) assms(2) assms(4) assms(5) clmm-quote-gross-grd-min
clmm-quote-gross-reach-eq linorder-le-cases)
thus Fualse using assms by simp
qed

lemma sqp-lt-grd-maz-imp-idz:
assumes clmm-dsc P
and nz-support (lg P) # {}
and 0 < sqp
and sqp < grd-max P
and ¢ = lower-tick P sqp
shows ¢ < idz-maz (lg P)
proof —
have lid: lower-tick P (grd-max P) = idz-max (lg P) + 1
by (simp add: assms(1) idx-maz-img-def lower-tick-eq grd-maz-def)
have i < lower-tick P (grd-mazx P)
proof (rule lower-tick-It’)
show clmm-dsc P using assms by simp
show 0 < sqp using assms by simp
show sqp < grd-max P using assms by simp
show grd P (lower-tick P (grd-max P)) = grd-max P
using lid by (simp add: idx-max-img-def grd-maz-def )
show ¢ = lower-tick P sqp using assms by simp

qed simp
also have ... = idz-maz (lg P) + 1 using lid by simp
finally show ?thesis by simp

qed

lemma quote-gross-lt-grd-max:
assumes clmm-dsc P
and nz-support (lg P) # {}
and 0 < sqp
and sqp < grd-max P
shows quote-gross P sqp < quote-gross P (grd-mazx P)
proof (rule quote-gross-disj-gt)
define 7 where ¢ = lower-tick P sqp
thus i = lower-tick P sqp .
define j where j = lower-tick P (grd-maz P)
thus j = lower-tick P (grd-mazx P) .
define k£ where k = j — 1
show clmm-dsc P using assms by simp
show 0 < sqp using assms by simp
show 0 < grd-max P using assms by simp
show k < j unfolding k-def by simp
have j = idz-max (lg P) +1 using lower-tick-grd-maz
by (simp add: assms(1) j-def)
have lq P (idz-maz (lg P)) # 0
proof (rule idz-maz-finite-in)
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show finite (nz-support (lg P))
using assms clmm-dsc-liq(1) finite-lig-def by auto
qed (simp add: assms)
hence lq P k # 0 using <j = idz-maz (lg P) + 1) k-def by simp
thus lg P (lower-tick P (grd-max P) — 1) # 0
by (simp add: j-def k-def)
have i < j
proof (rule lower-tick-lt'[of P sqp])
show j = lower-tick P (grd P j) using j-def
by (simp add: assms(1) lower-tick-eq)
have grd-maz P = grd P j
using «j = idz-mazx (lg P) +1> grd-maz-def idz-max-img-def by metis
thus sgp < grd P j using assms by simp
show i = lower-tick P sqp using i-def by simp
qed (simp add: assms k-def)+
thus lower-tick P sqp < lower-tick P (grd-max P) — 1
using i-def j-def by simp
qed

lemma idx-max-gt-liq:
assumes clmm-dsc P
and j = idz-mazx (lg P)
shows Vi > j. lg Pk =10
proof (intro alll impl)
fix k
assume j < k
show lg Pk =10
proof (rule idz-maz-finite-gt[of lq P])
show finite (nz-support (lg P))
using assms clmm-dsc-liq(1) finite-lig-def by simp
show idz-maz (lg P) < k using assms <j < k» by simp
qed
qed

lemma idx-min-lt-lig:
assumes clmm-dsc P
and j = idz-min (lq P)
shows Vk < j. lgPk=10
proof (intro alll impl)
fix k
assume k£ < j
show lg Pk =0
proof (rule idz-min-finite-lt[of lqg P])
show finite (nz-support (lg P))
using assms clmm-dsc-liq(1) finite-lig-def by simp
show k< idx-min (lg P) using assms <k < j» by simp
qed
qed

113



lemma quote-reach-le”:
assumes clmm-dsc P
and grd-min P < sqp
and ¢ = lower-tick P sqp
and lg Pi # 0
and y = quote-gross P sqp
shows quote-reach P y < sqp
proof —
interpret finite-lig-pool P
by (simp add: assms clmm-dsc-lig(1) finite-lig-pool-def)
show ?thesis
proof (rule quote-reach-le)
show Vi. 0 < lg P i
by (simp add: assms(1) clmm-dsc-lig(2))
show sqp € quote-gross P —‘ {y} using assms by simp
have 0 < quote-gross P sqp
proof (rule quote-gross-gt-grd-min)
show grd-min P < sqp using assms by simp
show nz-support (lg P) # {}
using assms unfolding nz-support-def by auto
ged (simp add: assms)
then show 0 < y using assms by simp
have quote-gross P sqp < quote-gross P (grd-maz P)
proof (rule quote-gross-lt-grd-mazx)
have nz-support (lg P) # {}
using assms unfolding nz-support-def by auto
hence 0 < grd-min P using assms
by (simp add: lig-grd-min)
thus 0 < sgp using assms by simp
show sqp < grd-max P using assms grd-maxz-gt-if by simp
show nz-support (lg P) # {}
using assms unfolding nz-support-def by auto
qed (simp add: assms)+
show V4. fee P i < 1 by (simp add: assms(1) clmm-dsc-fees)
show mono (grd P) by (simp add: assms(1) strict-mono-mono)
qed
qed

lemma quote-reach-gross-le:
assumes clmm-dsc P
and grd-min P < sqp

shows quote-reach P (quote-gross P sqp) < sqp

proof (rule finite-lig-pool.quote-reach-gross-le)
show finite-lig-pool P

by (simp add: assms(1) clmm-dsc-lig(1) finite-lig-pool.intro)

show Vi. 0 < lg P i by (simp add: assms(1) clmm-dsc-lig(2))
show Vi. fee P i < 1 by (simp add: assms(1) clmm-dsc-fees)
show mono (grd P) by (simp add: assms(1) clmm-dsc-grd-mono monol)
show grd-min P < sqp using assms by simp
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qed

lemma quote-reach-strict-mono:
assumes clmm-dsc P
and nz-support (lg P) # {}
and 0 < yi
and y1 < y2
and y2 < quote-gross P (grd-maz P)
and sqp = quote-reach P yl
and sqp’ = quote-reach P y2
shows sqp < sqp’
proof (rule ccontr)
assume — sqp < sqp’
hence quote-gross P sqp’ < quote-gross P sqp
using assms clmm-quote-gross-monolof P] by (simp add: monoD)
hence y2 < yf1
using assms clmm-quote-gross-reach-eq by auto
thus Fulse using assms by simp
qed

lemma quote-reach-mono:
assumes clmm-dsc P
and nz-support (lg P) # {}
and 0 < yl
and yI < y2
and y2 < quote-gross P (grd-max P)
and sqp = quote-reach P yl
and sqp’ = quote-reach P y2
shows sqp < sqp’
proof (cases yl = y2)
case True
then show ?thesis using assms by simp
next
case Fulse
hence y! < y2 using assms by simp
then show “thesis using assms quote-reach-strict-mono by fastforce
qed

lemma grd-maz-quote-reach:
assumes clmm-dsc P
and nz-support (lg P) # {}
shows quote-reach P (quote-gross P (grd-max P)) = grd-maz P
proof (rule ccontr)
define sgp where sqp = quote-reach P (quote-gross P (grd-maz P))
hence eq: quote-gross P sqp = quote-gross P (grd-max P)
by (meson assms(1) assms(2) clmm-quote-gross-reach-eq lig-grd-min-maz
dual-order.strict-trans linorder-le-less-linear order-less-irrefl
quote-gross-gt-grd-main)
define i where ¢ = lower-tick P sqp
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assume sqp # grd-max P
hence sgp < grd-max P
using clmm-quote-reach-le
by (metis assms lig-grd-min-maz order-le-imp-less-or-eq
quote-gross-gt-grd-min sqp-def vimage-singleton-eq)
have quote-gross P sqp < quote-gross P (grd-maz P)
proof (rule quote-gross-lt-grd-mazx)
show 0 < sqp using clmm-quote-reach-pos|OF assms(1—2)]
by (metis assms lig-grd-min-maz linorder-le-less-linear order.asym
quote-gross-gt-grd-min sqp-def)
show sqp < grd-max P using <sqp < grd-max P) .
qed (simp add: assms)+
thus Fulse using eq by simp
qed

lemma quote-reach-gt:
assumes clmm-dsc P
and nz-support (lg P) # {}
and 0 < y
and y + quote-gross P sqp < quote-gross P (grd-mazx P)
and sqp’ = quote-reach P (y + quote-gross P sqp)
shows sqp < sqp’
proof (rule ccontr)
assume — sqp < sqp’
have y + quote-gross P sqp = quote-gross P sqp’
using assms clmm-quote-gross-reach-eq
by (simp add: clmm-quote-gross-pos)
also have ... < quote-gross P sqp
using assms <= sqp < sqp’s quote-gross-imp-sqp-lt by fastforce
finally show Fulse using assms by simp
qed

lemma lt-quote-gross-imp-up-price:
assumes clmm-dsc P
and nz-support (lg P) # {}
and 0 < y
and y < quote-gross P (grd-mazx P)
and quote-gross P sqp < y
and sqp’ = quote-reach P y
shows sqp < sqp’
proof (rule ccontr)
assume — sqp < sqp’
have y = quote-gross P sqp’
using assms clmm-quote-gross-reach-eq
by (simp add: clmm-quote-gross-pos)
also have ... < quote-gross P sqp
using assms <— sqp < sqp”» quote-gross-imp-sqp-it by fastforce
finally show Fulse using assms by simp
qed
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lemma quote-reach-add-gt:
assumes clmm-dsc P
and nz-support (lg P) # {}
and 0 < y
and y + quote-gross P sqp < quote-gross P (grd-maz P)
and sqp’ = quote-reach P (y + quote-gross P sqp)
shows quote-gross P sqp < quote-gross P sqp’
proof —
have 0 < y + quote-gross P sqp
using assms clmm-quote-gross-pos by simp
hence quote-gross P sqp’ = y + quote-gross P sqp
using assms clmm-quote-gross-reach-eq by simp
thus ?thesis using assms by simp
qed

lemma quote-reach-leq-grd-max:
assumes clmm-dsc P
and nz-support (lg P) # {}
and 0 <y
and y < quote-gross P (grd-mazx P)
and sqp = quote-reach Py
shows sqp < grd-mazx P
using assms
by (metis quote-reach-mono grd-maz-quote-reach
order-refl)

lemma quote-gross-grd-mazx-ge:
assumes clmm-dsc P
and nz-support (lg P) # {}
and grd-max P < sqp
shows quote-gross P sqp = quote-gross P (grd-mazx P)
proof —
define k£ where k = lower-tick P sqp
define j where j = idz-maz (lg P) + 1
define L where L = gross-fct (lg P) (fee P)
have zer: Vk > j. lg P k = 0 using assms idz-max-gt-liq j-def by simp
hence eq: VE > j. Lk =10
by (simp add: L-def gross-fct-zero-if)
have lower-tick P (grd-maz P) = j
by (simp add: assms(1) lower-tick-grd-maz j-def)
hence j < k using assms
by (metis clmm-dsc-grid(2) k-def lower-tick-mono order-less-imp-le
grd-maz-gt)
show ?thesis
proof (cases k = j)
case True
have quote-gross P sqp — quote-gross P (grd-max P) = L k % (sqp — grd-maz
P)
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proof (rule clmm-quote-gross-diff-eq”)
show k = lower-tick P (grd-maz P)
using <lower-tick P (grd-maz P) = j
by (simp add: assms(1) lower-tick-eq True)
show L = gross-fct (Ig P) (fee P) using L-def by simp
show clmm-dsc P using assms by simp
show grd-max P < sqp using assms by simp
show k = lower-tick P sqp using assms k-def by simp
show 0 < grd-mazx P using assms grd-maz-gt by simp
qed
also have ... = 0
using zer L-def True by (simp add: gross-fct-zero-if)
finally have quote-gross P sqp — quote-gross P (grd-maz P) = 0 .
then show %thesis using assms by simp
next
case Fulse
hence j < k using <j < k> by simp
have quote-gross P sqp — quote-gross P (grd-max P) = L k * (sqp — grd P k)
+
SCi|LiAO0ONj<iNi<k Lix(gdP (i+1)— grdPi))+
Ljx(grd P (j+ 1)— grd-maz P)
proof (rule clmm-quote-gross-diff-eq)
show j = lower-tick P (grd-maz P)
using <lower-tick P (grd-max P) = j» by simp
show L = gross-fct (Ig P) (fee P) using L-def by simp
show clmm-dsc P using assms by simp
show grd-maz P < sqp using assms by simp
show k = lower-tick P sqp using assms k-def by simp
show 0 < grd-max P using assms grd-maz-gt by simp
show j < k using j < k> .
qed
also have ... = 0
proof —
have {i. Li# 0 ANj< i Ai<k}=/{} using eq by auto
hence (3 Ji|Li#O0Nj<iNi<k Lix(grdP(i+1)—grdPi)=20
by (metis (full-types) sum.empty)
moreover have L k = 0 using eq <j < k> by simp
moreover have L j x (grd P (j + 1) — grd-max P) = 0 using eq by simp
ultimately show ?thesis by simp
qed
finally show ?thesis by simp
qed
qed

lemma quote-gross-grd-max-mazx:

assumes clmm-dsc P

and nz-support (lg P) # {}
shows quote-gross P sqp < quote-gross P (grd-max P)
proof (cases sqp < grd-maz P)
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case True
then show ?thesis
using assms(1) quote-gross-imp-sqp-lt verit-comp-simplify1(3) by blast
next
case Fulse
then show ?thesis using assms quote-gross-grd-max-ge by simp
qed

lemma gross-grd-maz-maz’:
assumes clmm-dsc P
and nz-support (lg P) # {}
and sqp < grd-max P
shows quote-gross P sqp < quote-gross P (grd-mazx P)
using assms quote-gross-grd-maz-ge
by (metis antisym-conv3 lig-grd-min lig-grd-min-max order.strict-trans
quote-gross-gt-grd-min quote-gross-lt-grd-mazx quote-gross-pos-gt-grd-min)

lemma quote-reach-le-gross:
assumes clmm-dsc P
and 0 < y
and 0 < sqp
and y < quote-gross P sqp
and sqp < grd-mazx P
and sqp’ = quote-reach Py
and nz-support (lg P) # {}
shows sqp’ < sqp
proof —
interpret finite-lig-pool P
by (simp add: assms clmm-dsc-liq(1) finite-lig-pool-def)
have lt: quote-gross P sqp < quote-gross P (grd-maz P)
by (simp add: assms(1) assms(7) quote-gross-grd-maz-mazx)
show ?thesis
proof (cases y = quote-gross P sqp)
case True
then show ?thesis using clmm-quote-reach-le It assms by simp
next
case Fulse
hence y < quote-gross P sqp using assms by simp
hence quote-gross P sqp’ < quote-gross P sqp
using assms clmm-quote-gross-reach-eq It by auto
then show ?thesis
using assms(1) clmm-quote-gross-mono mono-invE by blast
qed
qed

lemma quote-net-diff-eq:
assumes clmm-dsc P
and L=1Iq P
and j = lower-tick P sqp
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and k = lower-tick P sqp’
and 0 < sqp
and sqp < sqp’
and j < k
shows quote-net P sqp’ — quote-net P sqp = L k * (sqp’ — grd P k) +
sum (Ni. Lix (grd P (i+1) —grd P0)) {i. Li# 0 ANj<iNi<k}+
Ljx*(grd P (j+1) — sqp)
proof —
interpret finite-nz-support L
using finite-lig-pool.finite-lig-gross-fct assms clmm-dsc-def
finite-lig-def finite-nz-support-def
by blast
show ?thesis
using clmm-gen-quote-diff-eq assms
unfolding quote-net-def gen-quote-diff-def by simp
qed

lemma quote-net-diff-eq”:
assumes clmm-dsc P
and L=1Ig P
and j = lower-tick P sqp
and j = lower-tick P sqp’
and 0 < sqp
and sqp < sqp’
shows quote-net P sqp’ — quote-net P sqp = L j * (sqgp’ — sqp)
proof —
interpret finite-nz-support L
using finite-lig-pool.finite-lig-gross-fct assms clmm-dsc-def
finite-lig-def finite-nz-support-def
by blast
show ?thesis using clmm-gen-quote-diff-eq’ assms
unfolding quote-net-def gen-quote-diff-def by simp
qed

4.3 Base token addition and withdrawal in a CLMM

lemma (in finite-nz-support) gen-base-sums:
assumes clmm-dsc P
and 0 < sqp
and j = lower-tick P sqp
shows gen-base (grd P) L sqp =
L j * (inverse sqp — inverse (grd P (j+1))) +
sum (Ai. L © % (inverse (grd P i) — inverse (grd P (i+1))))
{i.Li#0Aj<i}
proof —
define df where df = inv-gamma-max-diff (grd P)
define A where A ={i. Li# 0 Nj<i}
define B where B={i. Li# 0 Nj> i}
define C' where C = {i. Li# 0 Nj < i}
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have un: {i. L i # 0} = A U B unfolding A-def B-def by auto
have inter: A N B = {} unfolding A-def B-def by auto
have fin: finite {i. L i # 0} by (metis fin-nz-sup nz-support-def)
have gen-base (grd P) L sqp =
sum (rng-token df L sqp) {i. L i # 0}
unfolding gen-base-def df-def using gen-token-sum by simp

also have ... = sum (rng-token df L sqp) A + sum (rng-token df L sqp) B
by (metis empty-iff fin finite-Un inter sum.union-inter-neutral un)
also have ... = sum (rng-token df L sqp) A
proof —
have V i€ B. rng-token df L sqp i = 0
proof
fix ¢

assume i € B
have grd P i < grd P (i+1) using assms clmm-dsc-grid span-gridD
by (simp add: strict-mono-less)
have i + 1 < j using i € B> assms unfolding B-def by simp
hence grd P (i +1) < grd P j
using assms clmm-dsc-grid span-gridD by (simp add: strict-mono-leD)
hence grd P (i+1) < sgp using assms
by (meson dual-order.trans lower-tick-lbound)
hence grd P i < sqp using <grd P ¢ < grd P (i+1)» by simp
hence df sqp i = 0
using «grd P (i+1) < sqp> unfolding df-def inv-gamma-maz-diff-def by
stmp
thus rng-token df L sqp i = 0 unfolding rng-token-def by simp
qed
thus ?thesis by simp

qed
also have ... = rng-token df L sqp j + sum (rng-token df L sqp) C
proof (casesj € A)

case True

hence A = {j} U C unfolding A-def C-def by auto
hence sum (rng-token df L sqp) A = sum (rng-token df L sqp) ({j} U C)
by simp
also have ... = sum (rng-token df L sqp) {j} + sum (rng-token df L sqp) C
proof (rule sum.union-inter-neutral)
show finite {j} by simp
show finite C' using fin C-def by simp
show Vze{j} N C. rng-token df L sqp * = 0 using C-def by simp
qed

also have ... = rng-token df L sqp j + sum (rng-token df L sqp) C by simp
finally show ?%thesis .

next
case Fulse

hence A = C unfolding A-def C-def using Collect-cong by fastforce
have L j = 0 using Fulse A-def by auto

hence rng-token df L sqp j = 0 unfolding rng-token-def by simp
then show ?thesis using <A = C) by simp
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qed

also have ... = L j x (inverse sqp — inverse (grd P (j+1))) +
sum (rng-token df L sqp) C
proof —

have maz sqp (grd P (j + 1)) = grd P (j+1)
using assms lower-tick-ubound by simp
moreover have maz sqp (grd P j) = sqp
using assms lower-tick-lbound by simp
ultimately have rng-token df L sqp j =
L j x (inverse sqp — inverse (grd P (j+1)))
unfolding rng-token-def df-def inv-gamma-maz-diff-def by simp
thus ?thesis by simp
qed
also have ... = L j x (inverse sqp — inverse (grd P (j+1))) +
sum (Ni. L i * (inverse (grd P i) — inverse (grd P (i+1)))) C
proof —
have Vie C. rng-token df L sqp i =
L i * (inverse (grd P i) — inverse (grd P (i+1)))
proof
fix ¢
assume i€ C
hence j+1 < i using C-def by auto
hence grd P (j+1) < grd P i using assms clmm-dsc-grid(1) strict-monoD
by (metis linorder-le-less-linear nless-le)
hence sqp < grd P i using lower-tick-ubound assms by fastforce
hence sqp < grd P (i+1)
using clmm-dsc-grd-Suc assms dual-order.strict-trans2 order-less-imp-le
by blast
thus rng-token df L sqp i =
L i * (inverse (grd P i) — inverse (grd P (i+1)))
unfolding rng-token-def df-def inv-gamma-max-diff-def
using ¢«sqp < grd P ©»
by simp
qed
hence sum (rng-token df L sqp) C =
sum (M. L i * (inverse (grd P i) — inverse (grd P (i+1)))) C
by simp
thus ?thesis by simp
qed
finally show gen-base (grd P) L sqp =
L j = (inverse sqgp — inverse (grd P (j+1))) +
sum (Ai. L i * (inverse (grd P i) — inverse (grd P (i+1)))) C .
qed

lemma (in finite-nz-support) gen-base-grd-maz:
assumes clmm-dsc P
and nz-support L # {}
and nz-support L = nz-support (lg P)

shows gen-base (grd P) L (grd-mazx P) = 0
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proof —
define j where j = lower-tick P (grd-maz P)
hence j = idz-maz (lg P) + 1 using lower-tick-grd-maz[of P] assms by simp
have gen-base (grd P) L (grd-max P) =
L j = (inverse (grd-maxz P) — inverse (grd P (j + 1))) +
Qi Li#A0Nj<i.
L i * (inverse (grd P i) — inverse (grd P (i + 1))))
proof (rule gen-base-sum)
show 0 < grd-mazxz P
proof (rule grd-maz-gt)
show nz-support (lg P) # {} using assms by simp
show Ai. 0 < grd P i using assms by simp

qed

qed (simp add: assms j-def)+

also have ... =0

proof —
have emp: {i. Li# 0 Nj<i} ={}
proof —

have Vi > j Li= 0
proof (intro alll impl)
fix ¢
assume j < ¢
hence idz-maz (lg P) < i using <j = idz-mazx (lg P) + 1> by simp
hence lg Pi =0
using idz-maz-finite-ge[of lg P i] fin-nz-sup assms(3) by auto
thus L i = 0 using assms unfolding nz-support-def by auto

qed
thus ?thesis by auto
qed
hence a: L j x (inverse (grd-max P) — inverse (grd P (j + 1))) = 0 by auto
have {i. Li # 0 N j < i} = {} using emp by auto
hence 3 i | Li# 0 ANj<i.
L i % (inverse (grd P i) — inverse (grd P (i + 1)))) = 0
by (metis (full-types) sum-clauses(1))
thus ?thesis using a by simp
qged
finally show ?thesis .
qed

lemma base-gross-sum:
assumes clmm-dsc P
and 0 < sqp
and L = gross-fet (lg P) (fee P)
and j = lower-tick P sqp
shows base-gross P sqp =
L j = (inverse sqp — inverse (grd P (j+1))) +
sum (Mi. L i (inverse (grd P i) — inverse (grd P (i+1))))
{i.Li#0Nj<i)

123



proof —
interpret finite-nz-support L
using finite-lig-pool.finite-lig-gross-fct assms
by (metis clmm-dsc-lig(1) finite-lig-pool.intro finite-nz-support-def
nz-support-def)
show ?thesis unfolding base-gross-def using gen-base-sum assms by simp
qed

lemma clmm-base-gross-grd-max:
assumes clmm-dsc P
and nz-support (lg P) # {}
shows base-gross P (grd-max P) = 0 unfolding base-gross-def
proof (rule finite-nz-support.gen-base-grd-maz)
show finite-nz-support (gross-fct (lqg P) (fee P))
using finite-lig-pool.finite-lig-gross-fct assms
by (metis clmm-dsc-lig(1) finite-lig-pool.intro finite-nz-support-def
nz-support-def)
show clmm-dsc P using assms by simp
show nz-support (gross-fct (lg P) (fee P)) = nz-support (lg P)
using clmm-dsc-gross-liq assms by simp
thus nz-support (gross-fet (lg P) (fee P)) # {} using assms by simp
qged

lemma lig-base-reach-mazx:
assumes clmm-dsc P
and nz-support (lg P) # {}
shows base-reach P 0 = grd-max P
using assms clmm-base-gross-grd-max unfolding base-reach-def by simp

lemma base-net-sum:
assumes clmm-dsc P
and 0 < sqp
and L = lg P
and j = lower-tick P sqp
shows base-net P sqp =
L j = (inverse sqp — inverse (grd P (j+1))) +
sum (Ai. L i * (inverse (grd P i) — inverse (grd P (i+1))))
{i. Li# 0 Nj<i}
proof —
interpret finite-nz-support L
using finite-lig-pool.finite-lig-gross-fct assms clmm-dsc-def finite-lig-def
finite-nz-support-def
by blast
show ?thesis unfolding base-net-def using gen-base-sum assms by simp
qed

definition gen-base-diff where
gen-base-diff P L sqp sqp’ = gen-base (grd P) L sqp — gen-base (grd P) L sqp’
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lemma (in finite-nz-support) gen-base-diff-eq:
assumes clmm-dsc P
and j = lower-tick P sqp
and k = lower-tick P sqp’
and 0 < sqp
and sgp < sqp’
and j < k
shows gen-base-diff P L sqp sqp’ =
L j = (inverse sqp — inverse (grd P (j+1))) +
sum (X i. L i % (inverse (grd P i) — inverse (grd P (i+1))))
{i.Li#0Nj<iNi<Ek}+
L k x (inverse (grd P k) — inverse sqp’)
proof —
have 0 < sgp using assms by simp
hence sqgp < sqp’ using lower-tick-It assms by simp
hence 0 < sqp’ using <0 < sqp> by simp
define A where A = {i. Li # 0 N j < i}
define B where B = {i. Li# 0 A k < i}
define C' where C = {i. Li# 0 ANj<iNi <k}
define Ck where Ck = {i. Li# 0 Nj <i ANi <k}
define df where df = (X i. L i * (inverse (grd P i) — inverse (grd P (i+1))))
have finite A
unfolding A-def by (metis fin-nz-sup finite-Collect-conjl nz-support-def)
have A = B U C using assms unfolding A-def B-def C-def by auto
have Ck = C — {k} unfolding C-def Ck-def by auto
have gen-base-diff P L sqp sqp’ =
L j x (inverse sqp — inverse (grd P (j+1))) +
sum df A — (L k = (inverse sqp’ — inverse (grd P (k+1))) + sum df B)
using assms <0 < sqp> gen-base-sum <0 < sqp’s
unfolding gen-base-diff-def df-def A-def B-def by simp
also have ... = L j * (inverse sqp — inverse (grd P (j+1))) +
sum df C — L k * (inverse sqp’ — inverse (grd P (k+1)))
proof (rule diff-sum-dcomp)
show finite A using «(finite A» .
show A = BU C using <A =BUC».
show B N C = {} unfolding B-def C-def by auto
qged
also have ... = L j x (inverse sqp — inverse (grd P (j+1))) +
df k + sum df Ck — L k x (inverse sqp’ — inverse (grd P (k+1)))
proof (cases k € C)
case True
have sum df C = df k + sum df Ck
proof (rule sum-remove-el)
show finite C using <A = B U C» (finite A> by simp
show k € C using True .
show Ck = C — {k} using «Ck = C — {k}> .
qed
then show ?thesis by simp
next
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case Fulse

hence L k = 0 using assms unfolding C-def by auto

hence df k = 0 unfolding df-def by simp

moreover have Ck = C using False «Ck = C — {k}» by auto
ultimately show ?thesis by simp

qed

also have ... = L j x (inverse sqp — inverse (grd P (j+1))) + sum df Ck +
L k * (inverse (grd P k) — inverse sqp’)

proof —

have df k — L k = (inverse sqp’ — inverse (grd P (k+1))) =
L k x (inverse (grd P k) — inverse sqp’)
unfolding df-def by (simp add: right-diff-distrib)
thus ?thesis by simp
qed
finally show gen-base-diff P L sqp sqp’ =
L j x (inverse sqp — inverse (grd P (j+1))) + sum df Ck +
L k x (inverse (grd P k) — inverse sqp’) .
qed

lemma (in finite-nz-support) gen-base-diff-eq":
assumes clmm-dsc P
and j = lower-tick P sqp
and j = lower-tick P sqp’
and 0 < sqp
and sqp < sqp’
shows gen-base-diff P L sqp sqp’ = L j * (inverse sqp — inverse sqp’)
proof —
have 0 < sgp using assms by simp
hence 0 < sgp’ using assms by simp
define A where A = {i. Li# 0 Nj < i}
define df where
df = (N i. L i x (inverse (grd P i) — inverse (grd P (i+1))))
have finite A
unfolding A-def by (metis fin-nz-sup finite-Collect-conjl nz-support-def)
have gen-base-diff P L sqp sqp’ =
L j = (inverse sqgp — inverse (grd P (j+1))) + sum df A —
(L j * (inverse sqp’ — inverse (grd P (j+1))) + sum df A)
using assms <0 < sqp> gen-base-sum <0 < sqp”
unfolding gen-base-diff-def df-def A-def by simp

also have ... = L j x (inverse sqp — inverse (grd P (j+1))) —
L j = (inverse sqgp’ — inverse (grd P (j+1)))
by simp
also have ... = L j x (inverse sqp — inverse sqp’)

by (simp add: right-diff-distrib)
finally show gen-base-diff P L sqp sqp’ =
L j = (inverse sqp — inverse sqp’) .
qed

lemma lower-tick-lt-grd-min:
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assumes clmm-dsc P
and sqp < grd-min P
and 0 < sqp
and j = lower-tick P sqp
shows j < idz-min (lqg P)
proof (rule ccontr)
have j < idz-min (lg P) using lower-tick-grd-min[of P] assms
by (simp add: lower-tick-mono)
assume — j < idz-min (lg P)
hence j = idz-min (lg P) using assms <j < idz-min (lg P)»> by simp
hence grd-min P = grd P j unfolding grd-min-def idz-min-img-def by simp
also have ... < sqp using «j = lower-tick P sqp>
by (simp add: assms lower-tick-mem)
finally show Fulse using assms by simp
qed

lemma (in finite-nz-support) gen-base-grd-min-le:
assumes clmm-dsc P
and nz-support L = nz-support (lg P)
and sqp < grd-min P
and 0 < sqp
shows gen-base (grd P) L sqp = gen-base (grd P) L (grd-min P)
proof —
define k£ where k& = idz-min (lg P)
hence k = lower-tick P (grd-min P)
by (simp add: assms(1) idz-min-img-def lower-tick-eq grd-min-def)
have grd-min P = grd P k
using k-def grd-min-def idz-min-img-def by simp
define j where j = lower-tick P sqp
hence j < k using lower-tick-lt-grd-min[of P] assms k-def
by simp
have eq: Vi< k. Li= 10
using assms unfolding k-def idz-min-def
by (metis fin-nz-sup idz-min-def idz-min-finite-le leD)
have gen-base-diff P L sqp (grd-min P) =
L j = (inverse sqgp — inverse (grd P (j+1))) +
sum (X i. L i x (inverse (grd P i) — inverse (grd P (i+1))))
{i. Li£0Nj<iNi<k}+
L k x (inverse (grd P k) — inverse (grd-min P))
proof (rule gen-base-diff-eq)
show j = lower-tick P sqp using j-def by simp
show k = lower-tick P (grd-min P) using <k = lower-tick P (grd-min P)» .
show sgp < grd-min P using assms by simp
qed (simp add: assms j < ky)+
also have ... = 0
proof —
have {i. Li# 0 N j <i A i<k} = {} using eq by auto
hence sum (A i. L i x (inverse (grd P i) — inverse (grd P (i+1))))
{i. Li£AO0Nj<iNi<k}=0
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by (metis (full-types) sum.empty)
moreover have L j x (inverse sqp — inverse (grd P (j+1))) = 0
using <j < k> eq by simp
moreover have L k x (inverse (grd P k) — inverse (grd-min P)) = 0
using <grd-min P = grd P k> by simp
ultimately show #%thesis by linarith
qed
finally show ?thesis unfolding gen-base-diff-def by simp
qed

lemma base-net-grd-min-lt:
assumes clmm-dsc P
and sqp < grd-min P
and 0 < sqp
shows base-net P sqp = base-net P (grd-min P)
proof —
interpret finite-nz-support lq P
using assms(1) clmm-dsc-lig(1) finite-lig-def finite-nz-support.intro
by simp
show ?thesis
using assms gen-base-grd-min-le unfolding base-net-def by simp
qed

lemma base-net-grd-min-le:
assumes clmm-dsc P
and sqp < grd-min P
and 0 < sqp
shows base-net P sqp = base-net P (grd-min P)
proof —
interpret finite-nz-support lq P
using assms(1) clmm-dsc-lig(1) finite-lig-def finite-nz-support.intro
by simp
show ?thesis
proof (cases sqp = grd-min P)
case True
then show ?thesis by simp
next
case Fulse
then show ?thesis
using assms gen-base-grd-min-le unfolding base-net-def by simp
qed
qed

lemma base-gross-diff-eq:
assumes clmm-dsc P
and L = gross-fet (lg P) (fee P)
and j = lower-tick P sqp
and %k = lower-tick P sqp’
and 0 < sqp
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and sqp < sqp’
and j < k
shows base-gross P sqp — base-gross P sqp’ =
L j = (inverse sqp — inverse (grd P (j+1))) +
sum (X i. L i % (inverse (grd P i) — inverse (grd P (i+1))))
{i. Li£A0Nj<iNi<k}+
L k x (inverse (grd P k) — inverse sqp’)
proof —
interpret finite-nz-support L
using finite-lig-pool.finite-lig-gross-fct assms
by (metis clmm-dsc-lig(1) finite-lig-pool.intro finite-nz-support-def
nz-support-def)
show ?thesis
using gen-base-diff-eq assms
unfolding base-gross-def gen-base-diff-def by simp
qed

lemma base-gross-diff-eq’:
assumes clmm-dsc P
and L = gross-fct (lg P) (fee P)
and j = lower-tick P sqp
and j = lower-tick P sqp’
and 0 < sqp
and sqp < sqp’
shows base-gross P sqp — base-gross P sqp’ = L j * (inverse sqp — inverse sqp’)
proof —
interpret finite-nz-support L
using finite-lig-pool.finite-lig-gross-fct assms
by (metis clmm-dsc-lig(1) finite-lig-pool.intro finite-nz-support-def
nz-support-def)
show ?thesis using gen-base-diff-eq’ assms
unfolding base-gross-def gen-base-diff-def by simp
qed

lemma base-net-diff-eq:
assumes clmm-dsc P
and L=1Iq P
and j = lower-tick P sqp
and %k = lower-tick P sqp’
and 0 < sqp
and sqp < sqp’
and j < k
shows base-net P sqp — base-net P sqp’ =
L j * (inverse sqp — inverse (grd P (j+1))) +
sum (X i. L i % (inverse (grd P i) — inverse (grd P (i+1))))
(i.Li#0Nj<iAi<Kk}+
L k * (inverse (grd P k) — inverse sqp”’)
proof —
interpret finite-nz-support L
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using finite-lig-pool.finite-lig-gross-fct assms clmm-dsc-def
finite-lig-def finite-nz-support-def
by blast
show ?thesis
using gen-base-diff-eq assms
unfolding base-net-def gen-base-diff-def by simp
qed

lemma base-net-diff-eq’:
assumes clmm-dsc P
and L=1Iq P
and j = lower-tick P sqp
and j = lower-tick P sqp’
and 0 < sqp
and sqp < sqp’
shows base-net P sqp — base-net P sqp’ = L j * (inverse sqp — inverse sqp’)
proof —
interpret finite-nz-support L
using finite-lig-pool.finite-lig-gross-fct assms clmm-dsc-def
finite-lig-def finite-nz-support-def
by blast
show ?thesis using gen-base-diff-eq’ assms
unfolding base-net-def gen-base-diff-def by simp
qed

lemma cst-fee-base-gross-net-tick-eq:
assumes clmm-dsc P
and Ai. fee P i = phi
and j = lower-tick P sqp
and j = lower-tick P sqp’
and 0 < sqp
and sgp < sqp’
shows base-net P sqp — base-net P sqp’ =
(1 — phi) * (base-gross P sqp — base-gross P sqp’)
proof —
define L where L = gross-fct (lg P) (fee P)
have phi # 1 using assms clmm-dsc-fees by fastforce
have Ai. Li=Ilq P i/ (1 — phi) using L-def
by (simp add: assms(2) gross-fct-def one-cpl-def)
hence leq: \i. lg P i = (1 — phi) = L i using assms <phi # 1) by simp
have base-net P sqp — base-net P sqp’ =
lqg P j x (inverse sqp — inverse sqp’)
using assms base-net-diff-eq’ by simp

also have ... = (1 — phi) = L j * (inverse sqp — inverse sqp’)

using leq by simp
also have ... = (I — phi) x (L j * (inverse sqp — inverse sqp’)) by simp
also have ... = (I — phi) * (base-gross P sqp — base-gross P sqp’)

using L-def assms base-gross-diff-eq’ by auto
finally show ?thesis .
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qed

lemma cst-fee-base-gross-net-tick-It:
assumes clmm-dsc P
and Ai. fee P i = phi
and j = lower-tick P sqp
and k = lower-tick P sqp’
and 0 < sqp
and sqp < sqp’
and j < k
shows base-net P sqp — base-net P sqp’ =
(1 — phi) * (base-gross P sqp — base gross P sqp’)
proof —
have phi # 1 using assms clmm-dsc-fees by fastforce
define L where L = gross-fet (lg P) (fee P)
have Ai. Li=Ilq P i/ (1 — phi) using L-def
by (simp add: assms(2) gross-fct-def one-cpl-def)
hence leq: \i. lg P i = (1 — phi) = L i using assms <phi # 1) by simp
have base-net P sqp — base-net P sqp’ =
(lg P) j * (inverse sqp — inverse (grd P (j+1))) +
sum (A i. (Ig P) @ * (inverse (grd P i) — inverse (grd P (i+1))))
{i. (lgP)i#£0Nj<iNi<k}+
(lg P) k * (inverse (grd P k) — inverse sqp’)
using assms base-net-diff-eq by simp
also have ... =
(1 — phi) * L j = (inverse sqp — inverse (grd P (j+1))) +
sum (X 4. (1 — phi) = L i * (inverse (grd P i) — inverse (grd P (i+1))))
{i. (lgP)i#0Nj<iNi<Ek}+
(1 — phi) % L k * (inverse (grd P k) — inverse sqp’)
using leq by simp
also have ... =
(1 — phi) = L j * (inverse sqp — inverse (grd P (j+1))) +
(1 — phi) * sum (A i. L i * (inverse (grd P i) — inverse (grd P (i+1))))
{i.(IgP)i#AO0Nj<iNi<Ek}+
(1 — phi) % L k * (inverse (grd P k) — inverse sqp’)
proof —
have sum (X 4. (1 — phi) x L i * (inverse (grd P i) — inverse (grd P (i+1))))
{t. gP)i#0Nj<iNi<k}=
sum (X i. (I — phi) x( L i * (inverse (grd P i) — inverse (grd P (i+1)))))
{i.(lgP)i#0Nj<iNi<Ek}
by (meson ab-semigroup-mult-class.mult-ac(1))
also have ... =
(1 — phi) * sum (X i. L i * (inverse (grd P i) — inverse (grd P (i+1))))
{i. (g P)i#0Nj<iNi<Ek}
by (simp add: sum-distrib-left)
finally have sum (A i. (I — phi) * L i * (inverse (grd P i) — inverse (grd P
(i+1))))
{i. (lgP)i#0Nj<iNi<Ek}=
(1 — phi) * sum (X i. L i * (inverse (grd P i) — inverse (grd P (i+1))))
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{i. (lgP)i#0Nj<iNi<Ek}.
thus ?thesis by simp
qed
also have ... =
(1 — phi) * (L j % (inverse sqp — inverse (grd P (j+1)))) +
(I — phi) * sum (X i. L i = (inverse (grd P i) — inverse (grd P (i+1))))
{i.(IgP)i#AO0Nj<iNi<Ek}+
(1 — phi) x (L k * (inverse (grd P k) — inverse sqp’))
by simp
also have ... = (I — phi) =
(L j * (inverse sqp — inverse (grd P (j+1))) +
sum (X i. L i * (inverse (grd P i) — inverse (grd P (i+1))))
{i.(IgP)i#AO0Nj<iNi<EKk}+
L k * (inverse (grd P k) — inverse sqp’))
by (simp add: ring-class.ring-distribs(1))
also have ... = (1 — phi) x (base-gross P sqp — base-gross P sqp’)
proof —
have L j * (inverse sqp — inverse (grd P (j+1))) +
sum (X i. L i % (inverse (grd P i) — inverse (grd P (i+1))))
{i.(lgP)i#0Nj<iNi<Ek}+
L k * (inverse (grd P k) — inverse sqp’) =
L j * (inverse sqp — inverse (grd P (j+1))) +
sum (X i. L i x (inverse (grd P i) — inverse (grd P (i+1))))
{i. Li£0Nj<iNi<Ek}+
L k * (inverse (grd P k) — inverse sqp”’)
proof —
have {i. (lgP)i# ONj<iNi<k}={i.Li#0NjF<iNi<FEk}
using L-def assms(1) clmm-dsc-gross-lig-zero-iff by presburger
thus ?thesis by simp
qed
also have ... = base-gross P sqp — base-gross P sqp’
using assms base-gross-diff-eq L-def by simp
finally have L j * (inverse sqp — inverse (grd P (j+1))) +
sum (X i. L i x (inverse (grd P i) — inverse (grd P (i+1))))
{i.(lgP)i#0Nj<iNi<Ek}+
L k x (inverse (grd P k) — inverse sqp’) =
base-gross P sqp — base-gross P sqp’ .
thus ?thesis by simp
qed
finally show ?thesis .
qed

lemma cst-fee-base-gross-net:
assumes clmm-dsc P
and Ai. fee P i = phi
and 0 < sqp
and sgp < sqp’
shows base-net P sqp — base-net P sqp’ =
(1 — phi) x (base-gross P sqp — base-gross P sqp’)
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proof (cases lower-tick P sqp = lower-tick P sqp’)

case True

then show ?thesis using assms cst-fee-base-gross-net-tick-eq by simp
next

case Fulse

hence lower-tick P sqp < lower-tick P sqp’

using assms lower-tick-mono by fastforce

then show ?thesis using assms cst-fee-base-gross-net-tick-it by simp

qed

lemma base-net-eq-only-if:
assumes clmm-dsc P
and j = lower-tick P sqp
and k = lower-tick P sqp’
and 0 < sqp
and sgp < sqp’
and j < k
and quote-gross P sqp’ = quote-gross P sqp
shows base-net P sqp’ = base-net P sqp
proof —
define L where L = lq P
define L' where L' = gross-fct (lg P) (fee P)
have base-net P sqp — base-net P sqp’ =
L j * (inverse sqp — inverse (grd P (j+1))) +
sum (X i. L i x (inverse (grd P i) — inverse (grd P (i+1))))
{i. Li#£ 0Nj<iNi<k}+
L k x (inverse (grd P k) — inverse sqp’)
using assms base-net-diff-eq L-def by simp

also have ... = L j x (inverse sqp — inverse (grd P (j+1))) +
L k * (inverse (grd P k) — inverse sqp’)
proof —

have {i. Li# 0 ANj<iANi<k}={}
using clmm-quote-gross-eq-sum-emp assms L-def clmm-dsc-gross-lig-zero-iff
by presburger
hence sum (A i. L ¢ x (inverse (grd P i) — inverse (grd P (i+1))))
{i. Li#0Nj<iNi<k}=0
by (metis (full-types) sum-clauses(1))
thus ?thesis by simp

qed

also have ... = L k * (inverse (grd P k) — inverse sqp’)

proof —
have L' j = 0 using assms L’-def clmm-quote-gross-eq-lower-only-if by simp
hence L j =0

using L-def L'-def clmm-dsc-gross-lig-zero-iff assms by simp
thus ?thesis by simp
qed
also have ... = 0
proof —
have L k x (inverse (grd P k) — inverse sqp’) = 0
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using clmm-quote-gross-eq-upper-only-if assms L-def
clmme-dsc-gross-lig-zero-iff
by auto
thus ?thesis by simp
qed
finally show ?thesis by simp
qed

lemma base-net-eq-only-if

assumes clmm-dsc P

and L=1Iq P

and j = lower-tick P sqp

and j = lower-tick P sqp’

and 0 < sqp

and sqp < sqp’

and quote-gross P sqp = quote-gross P sqp’
shows base-net P sqp = base-net P sqp’
proof —

have base-net P sqp — base-net P sqp’ = L j * (inverse sqp — inverse sqp’)

using base-net-diff-eq’ assms by simp

also have ... = 0
proof (cases sqp = sqp’)
case True
then show ?thesis by simp
next
case Fulse

hence gross-fet (lg P) (fee P) j = 0
using assms clmm-quote-gross-eg-lower-only-if ' by simp
hence L j = 0 using assms
by (simp add: clmm-dsc-gross-lig-zero-iff)
then show ?thesis by simp
qed
finally show ?thesis by simp
qed

lemma quote-gross-equiv-base-net:
assumes clmm-dsc P
and 0 < sqp
and sqp < sqp’
and quote-gross P sqp = quote-gross P sqp’
shows base-net P sqp = base-net P sqp’
proof (cases lower-tick P sqp = lower-tick P sqp’)
case True
then show ?thesis
using assms base-net-eq-only-if [of P lg P - sqp sqp’] by simp
next
case Fulse
hence lower-tick P sqp < lower-tick P sqp’
by (meson antisym-conv3 assms(1—3) leD lower-tick-It)
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then show ?thesis using assms base-net-eq-only-if by simp
qed

lemma quote-gross-equiv-base-net':

assumes clmm-dsc P

and 0 < sqp

and 0 < sqp’

and quote-gross P sqp = quote-gross P sqp
shows base-net P sqp = base-net P sqp’
proof (cases sqgp < sqp’)

case True

thus ?thesis using quote-gross-equiv-base-net assms by simp
next

case Fulse

then show ?thesis using quote-gross-equiv-base-net assms

by (metis linorder-le-cases)

qed

!

lemma (in finite-nz-support) gen-quote-le-badd:
assumes clmm-dsc P
and A\i. 0 < L i
and 0 < sqp
and sqp < sqp’
shows gen-quote-diff P L sqp sqp’/(sqp’ * sqp’) < gen-base-diff P L sqp sqp’
proof —
have 0 < sqp’ using assms by simp
define j where j = lower-tick P sqp
define k& where k = lower-tick P sqp’
show ?thesis
proof (cases j = k)
case True
hence gen-quote-diff P L sqp sqp’ | (sqp’ x sqp’) =
Lj* (sqp" — sqp)/ (sqp’ * sqp’)
using assms j-def k-def clmm-gen-quote-diff-eq’ by simp
also have ... < L j * (inverse sqp — inverse sqp’)
by (rule diff-inv-le’, (auto simp add: assms))
also have ... = gen-base-diff P L sqp sqp’
using assms j-def k-def gen-base-diff-eq’ True by simp
finally show ?thesis .
next
case Fulse
hence j < k using j-def k-def lower-tick-mono assms by fastforce
hence gen-quote-diff P L sqp sqp’ | (sqp’ x sqp’) =
(Lkx*(sqp/ — grd P k) +
OCi|LitONj<iNi<k Lix(grdP (i+ 1)— grd Pi))+
Ljx(grd P (j+ 1) — sqp))/ (sqp’ * sqp’)
using assms j-def k-def clmm-gen-quote-diff-eq by simp
also have ... = L k  (sqp’ — grd P k) / (sqp’ * sqp’) +
SCi|LiFO0ONj<iNi<eEk
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Lix(grdP (i4+ 1) — grd P1i)) / (sqp’ * sqp’) +
Ljx(grd P (j+ 1) — sqp) / (sqp x sqp)
by (simp add: add-divide-distrib)
also have ... < L k * (inverse (grd P k) — inverse sqp’) +
(Ci|LiA0ONj<ini<k
L i  (inverse (grd P i) — inverse (grd P (i + 1)))) +
L j * (inverse sqp — inverse (grd P (j + 1)))
proof —
have (3 i | Li#O0Nj<iANi<Ek.
Lix(grdP (i+ 1)— grd Pi)) / (sqp’* sqp’) <
(Ci|LiAONj<ihi<k
L i * (inverse (grd P i) — inverse (grd P (i + 1))))
proof (rule diff-inv-sum-le’)
show Vie{i. Li# 0 Nj<iAi<k} 0< grdPiusing assms by simp
show Vie{i. Li# 0 ANj<iANi<k} 0<Liusing assms by simp
showVie{i. LiZ0Nj<iNi<k}. gdPi<grdP (i+1)
using assms clmm-dsc-grd-Suc|of P] less-eq-real-def by blast
{
fix 7
assume i€{i. Li £ 0Nj<iANi<eEk}
hence i+1 < k by simp
hence grd P (i+1) < grd P k
using assms clmm-dsc-grid(1) strict-mono-leD by blast
hence grd P (i + 1) < sqp’
using k-def lower-tick-lbound assms <0 < sqp’» by fastforce

thusVie{i. Li £ 0ANj<iNi<k}. grd P (i+ 1)< sqp’ by simp
qed
moreover have L k * (sqp’ — grd P k) / (sqp’ * sqp’) <
L k * (inverse (grd P k) — inverse sqp’)
proof (rule diff-inv-le’)
show grd P k < sqp’ using k-def lower-tick-lbound assms by simp
qged (simp add: assms)+
moreover have L j « (grd P (j + 1) — sqp) / (sqp’ * sqp’) <
L j * (inverse sqp — inverse (grd P (j + 1)))
proof (rule diff-inv-le’)
show sqgp < grd P (j + 1)
using j-def lower-tick-ubound assms by fastforce
have j+1 < k using ¢j < k> by simp
hence grd P (j+1) < grd P k using assms
by (simp add: strict-mono-leD)
thus grd P (j + 1) < sqp’
using «j < k» k-def lower-tick-lbound assms <0 < sqp’» by fastforce
qged (simp add: assms)+
ultimately show ?thesis by simp
qed
also have ... = L j = (inverse sqp — inverse (grd P (j + 1))) +
(Ci|LiA0ONj<ihi<k
L i % (inverse (grd P i) — inverse (grd P (i + 1)))) +
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L k x (inverse (grd P k) — inverse sqp’)
by simp
also have ... = gen-base-diff P L sqp sqp’
using assms «j < k> j-def k-def gen-base-diff-eq by simp
finally show ?thesis .
qed
qed

lemma (in finite-nz-support) gen-base-le-qadd:
assumes clmm-dsc P
and Ai. 0 < Li
and 0 < sqp
and sqp < sqp’
shows gen-base-diff P L sqp sqp’ < gen-quote-diff P L sqp sqp’/(sqp * sqp)
proof —
define j where j = lower-tick P sqp
define k& where k = lower-tick P sqp’
show ?thesis
proof (cases j = k)
case True
hence gen-base-diff P L sqp sqp’ = L j * (inverse sqp — inverse sqp’)
using assms j-def k-def gen-base-diff-eq’ True by simp
also have ... < L j x (sqp’ — sqp)/ (sqp * sqp)
by (rule diff-inv-ge’, (auto simp add: assms))
also have ... = gen-quote-diff P L sqp sqp’ | (sqp * sqp)
using assms j-def k-def clmm-gen-quote-diff-eq’ True by simp
finally show ?%thesis .
next
case Fulse
hence j < k using j-def k-def lower-tick-mono assms by fastforce
hence gen-base-diff P L sqp sqp’ =
L j x (inverse sqp — inverse (grd P (j + 1))) +
SCi|LiFONj<iNi<E
L i * (inverse (grd P i) — inverse (grd P (i + 1)))) +
L k * (inverse (grd P k) — inverse sqp”’)
using assms j-def k-def gen-base-diff-eq by simp
also have ... = L k * (inverse (grd P k) — inverse sqp’) +
i|LitO0Nj<iNi<kE
L i * (inverse (grd P i) — inverse (grd P (i + 1)))) +
L j x (inverse sqp — inverse (grd P (j + 1)))
by simp
also have ... < L k x (sqp’ — grd P k) / (sqp = sqp) +
Ci|LitO0ONj<iNi<kE
Lix(grdP (i+1)— grd P1i))/ (sqp * sqp) +
Ljx(grd P (j+1)— sqp) / (sqp * sqp)
proof —
have (D) i | Li£0Nj<iNni<Ek.
L i * (inverse (grd P i) — inverse (grd P (i + 1)))) <
OCi|Li£O0ONj<iNi<eE.
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Lix(grdP (i4+ 1) — grd P1)) / (sqp * sqp)
proof (rule diff-inv-sum-ge’)
show 0 < sqp using assms by simp
show Vie{i. Li# 0 Nj<iNi<k} 0<Liusing assms by simp
showVie{i. LiZ0Nj<iNi<k}. gdPi<grdP (i+1)
using assms clmm-dsc-grd-Suc|of P] less-eq-real-def by blast
{
fix ¢
assume i€{i. Li# 0 Nj<iAi<k}
hence j + 1 < i by simp
hence grd P (j+1) < grd P i using assms clmm-dsc-grid(1)
by (simp add: strict-mono-leD)
hence sqp < grd P i
using assms j-def lower-tick-ubound by fastforce

thus Vie{i. Li# 0 Nj<iNi<k} sqp<grdPiDby simp
qed
moreover have L k x (inverse (grd P k) — inverse sqp’) <
Lk x (sqp’ — grd P k) / (sqp * sqp)
proof (rule diff-inv-ge’)
show grd P k < sqp’ using k-def lower-tick-lbound assms by simp
have j+1 < k using «j < k> by simp
hence grd P (j+1) < grd P k using clmm-dsc-grd-mono assms by simp
thus sqp < grd P k using j-def lower-tick-ubound assms by fastforce
qged (simp add: assms)+
moreover have L j % (inverse sqp — inverse (grd P (j + 1))) <
Ljx(grd P (j+ 1)~ sqp)/ (sqp * sqp)
proof (rule diff-inv-ge’)
show sgp < grd P (j + 1)
using j-def lower-tick-ubound assms by fastforce
qged (simp add: assms)+
ultimately show %thesis by simp
qed
also have ... = (L k * (sqp’ — grd P k) +
SCi|LiAO0ONj<iNi<k Lix(gdP (i+1)— grdPi))+
Ljx(grd P (j+ 1) — sqp))/ (sqp * sqp)
by (simp add: add-divide-distrib)
also have ... = gen-quote-diff P L sqp sqp’ / (sqp * sqp)
using assms j-def k-def clmm-gen-quote-diff-eq <j < k> by simp
finally show ?thesis .
qed
qged

lemma quote-swap-grd-min-zero:
assumes clmm-dsc P
and nz-support (lg P) # {}
and grd-min P < sqp
and sqp < grd-max P
shows quote-swap P sqp 0 = 0
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proof —
define sqp’ where sqp’ = quote-reach P (0 + quote-gross P sqp)
have base-net P sqp = base-net P sqp’
proof (rule quote-gross-equiv-base-net[symmetric|)
show clmm-dsc P using assms by simp
show 0 < sqp’
proof (rule clmm-quote-reach-pos)
show clmm-dsc P using assms by simp
show nz-support (lg P) # {} using assms by simp
show 0 < 0 + quote-gross P sqp
by (simp add: assms(1) clmm-quote-gross-pos)
show sqp’ = quote-reach P (0 + quote-gross P sqp)
using sqp’-def by simp
show 0 + quote-gross P sqp < quote-gross P (grd-mazx P)
by (metis add-0 assms(1) assms(4) quote-gross-imp-sqp-lt
less-eq-real-def nle-le)
qed
show sqp’ < sqp using sqp’-def clmm-quote-reach-le assms
by (metis add-0 clmm-quote-gross-pos clmm-quote-reach-zero
order-le-imp-less-or-eq vimage-singleton-eq)
show quote-gross P sqp’ = quote-gross P sqp
by (simp add: assms(1) assms(2) clmm-quote-gross-pos
quote-gross-grd-maz-maz clmm-quote-gross-reach-eq sqp’-def)
qed
thus ?thesis unfolding quote-swap-def sqp’-def by simp
qged

lemma quote-swap-zero:
assumes clmm-dsc P
and nz-support (lg P) # {}
and 0< sqp
and sqp < grd-max P
shows quote-swap P sqp 0 = 0
proof (cases sqp < grd-min P)
case True
hence a: base-net P sqp = base-net P (grd-min P)
by (simp add: assms(1) assms(3) base-net-grd-min-lt)
have quote-gross P sqp = 0 using True
by (simp add: assms(1) assms(83) clmm-quote-gross-grd-min-le)
hence quote-reach P (0 + quote-gross P sqp) = grd-min P
using clmm-quote-reach-zero assms by simp
then show ?thesis using a unfolding quote-swap-def by simp
next
case Fulse
then show ?thesis using assms quote-swap-grd-min-zero by simp
qed

lemma quote-swap-grd-min-zero’:
assumes clmm-dsc P
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and nz-support (lg P) # {}
and grd-min P < sqp
and quote-gross P sqp < quote-gross P (grd-maz P)
shows quote-swap P sqp 0 = 0
proof —
define sqp’ where sqp’ = quote-reach P (0 + quote-gross P sqp)
have base-net P sqp = base-net P sqp’
proof (rule quote-gross-equiv-base-net[symmetric|)
show clmm-dsc P using assms by simp
show 0 < sqp’
proof (rule clmm-quote-reach-pos)
show clmm-dsc P using assms by simp
show nz-support (lg P) # {} using assms by simp
show 0 < 0 + quote-gross P sqp
by (simp add: assms(1) clmm-quote-gross-pos)
show sqp’ = quote-reach P (0 + quote-gross P sqp)
using sqp’-def by simp
show 0 + quote-gross P sqp < quote-gross P (grd-maz P)
using assms by simp
qed
show sqp’ < sqp using sqp’-def clmm-quote-reach-le assms
by (metis add-0 clmm-quote-gross-pos clmm-quote-reach-zero
order-le-imp-less-or-eq vimage-singleton-eq)
show quote-gross P sqp’ = quote-gross P sqp
by (simp add: assms(1) assms(2) clmm-quote-gross-pos
quote-gross-grd-max-maz clmm-quote-gross-reach-eq sqp’-def)
qed
thus ?thesis unfolding quote-swap-def sqp’-def by simp
qed

lemma quote-swap-zero:
assumes clmm-dsc P
and nz-support (lg P) # {}
and 0< sqp
and quote-gross P sqp < quote-gross P (grd-mazx P)
shows quote-swap P sqp 0 = 0
proof (cases sqp < grd-min P)
case True
hence a: base-net P sqp = base-net P (grd-min P)
by (simp add: assms(1) assms(3) base-net-grd-min-lt)
have quote-gross P sqp = 0 using True
by (simp add: assms(1) assms(8) clmm-quote-gross-grd-min-le)
hence quote-reach P (0 + quote-gross P sqp) = grd-min P
using clmm-quote-reach-zero assms by simp
then show ?thesis using o unfolding quote-swap-def by simp
next
case Fulse
then show ?thesis using assms quote-swap-grd-min-zero’ by simp
qed
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lemma quote-swap-grd-min:
assumes clmm-dsc P
and nz-support (lg P) # {}
and sqp < grd-min P
and 0 < sqp
shows quote-swap P sqp y = quote-swap P (grd-min P) y
proof —
have quote-gross P sqp = quote-gross P (grd-min P) using assms
by (simp add: clmm-quote-gross-grd-min-le)
moreover have base-net P sqp = base-net P (grd-min P)
using base-net-grd-min-It assms by simp
ultimately show ?thesis unfolding quote-swap-def by simp
qed

lemma quote-reach-gross-base-net:
assumes clmm-dsc P
and nz-support (lg P) # {}
and 0 < quote-gross P sqp
and sqp’ = quote-reach P (quote-gross P sqp)
shows base-net P sqp’ = base-net P sqp
proof (rule quote-gross-equiv-base-net)
have quote-gross P sqp < quote-gross P (grd-maz P)
using quote-gross-grd-mazx-max assms by simp
thus quote-gross P sqp’ = quote-gross P sqp
using clmm-quote-gross-reach-eq assms by simp
show clmm-dsc P using assms by simp
show 0 < sqp’
proof (rule clmm-quote-reach-pos)
show clmm-dsc P using assms by simp
show nz-support (lg P) # {} using assms by simp
show sqp’ = quote-reach P (quote-gross P sqp)
using assms by simp
show 0 < quote-gross P sqp
by (simp add: assms(1) clmm-quote-gross-pos)
show quote-gross P sqp < quote-gross P (grd-maz P)
using assms quote-gross-grd-maz-maz by simp
qed
show sqp’ < sqp using assms clmm-quote-reach-le by simp
qed

lemma quote-reach-base-net:

assumes clmm-dsc P

and nz-support (lg P) # {}

and 0 < sqp

and sqp’ = quote-reach P (quote-gross P sqp)
shows base-net P sqp’ = base-net P sqp
proof (cases quote-gross P sqp = 0)

case True
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hence sqp’ = grd-min P
by (simp add: assms clmm-quote-reach-zero)
have base-net P sqp = base-net P sqp’
proof (rule quote-gross-equiv-base-net)
show sqp < sqp’ using (sqp’ = grd-min P> True
by (metis assms(1) assms(2) linorder-not-less quote-gross-gt-grd-min
verit-comp-simplify1 (1))
show clmm-dsc P using assms by simp
show 0 < sqp using assms by simp
show quote-gross P sqp = quote-gross P sqp’ using True
by (simp add: <sqp’ = grd-min P> assms(1) assms(2) clmm-quote-gross-grd-min)
qed
thus ?thesis by simp
next
case Fulse
hence 0 < quote-gross P sqp
by (meson assms(1) clmm-quote-gross-pos lel order-antisym-conv)
then show ?thesis using assms quote-reach-gross-base-net by simp
qed

lemma base-le-quote-gross:
assumes clmm-dsc P’
and 0 < sqp
and sqp < sqp’
shows base-gross P’ sqp — base-gross P’ sqp’ <
(quote-gross P’ sqp’ — quote-gross P’ sqp)/(sqp * sqp)
proof —
define L where L = gross-fct (lqg P') (fee P’)
have base-gross P’ sqp — base-gross P’ sqp’ = gen-base-diff P’ L sqp sqp’
using gen-base-diff-def base-gross-def L-def by simp
also have ... < gen-quote-diff P' L sqp sqp’ | (sqp * sqp)
proof (rule finite-nz-support.gen-base-le-qadd)
show finite-nz-support L
using L-def assms(1) clmm-dsc-gross-liqg clmm-dsc-lig(1) finite-lig-def
finite-nz-support.intro
by auto
show Ai. 0 < L i using L-def assms(1) gross-lig-ge by simp
qed (simp add: assms)+
also have ... = (quote-gross P’ sqp’ — quote-gross P’ sqp)/(sqp * sqp)
using gen-quote-diff-def quote-gross-def L-def by simp
finally show ?thesis .
qged

lemma quote-le-base-gross:
assumes clmm-dsc P’
and 0 < sqp
and sgp < sqp’
shows (quote-gross P’ sqp’ — quote-gross P’ sqp)/(sqp’ * sqp’) <
base-gross P’ sqp — base-gross P’ sqp’
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proof —
define L where L = gross-fct (lqg P’) (fee P’)
have (quote-gross P’ sqp’ — quote-gross P’ sqp)/(sqp’ * sqp’) =
gen-quote-diff P' L sqp sqp’ | (sqp’ * sqp’)
using gen-quote-diff-def quote-gross-def L-def by simp
also have ... < gen-base-diff P’ L sqp sqp’
proof (rule finite-nz-support.gen-quote-le-badd)
show finite-nz-support L
using L-def assms(1) clmm-dsc-gross-liq clmm-dsc-lig(1) finite-lig-def
finite-nz-support.intro
by auto
show Ai. 0 < L i using L-def assms(1) gross-lig-ge by simp
qed (simp add: assms)+
also have ... = base-gross P’ sqp — base-gross P’ sqp’
using gen-base-diff-def base-gross-def L-def by simp
finally show ?thesis .
qed

lemma base-net-quote-ubound:
assumes clmm-dsc P’
and Ai. fee P’ i = phi
and phi < 1
and 0 < sqp
and sqp < sqp’
shows base-net P’ sqp — base-net P’ sqp’ <
(1 — phi) * (quote-gross P’ sqp’ — quote-gross P’ sqp)/(sqp * sqp)
proof —
have base-net P’ sqp — base-net P’ sqp’ =
(1 — phi) * (base-gross P’ sqp — base-gross P’ sqp’)
by (rule cst-fee-base-gross-net, (auto simp add: assms))
also have ... < (1 — phi) * (quote-gross P’ sqp’ — quote-gross P’ sqp)/(sqp *
5qp)
using base-le-quote-gross assms
by (metis ge-iff-diff-ge-0 less-eg-real-def mult-left-mono
times-divide-eq-right)
finally show ?thesis .
qed

lemma base-net-quote-lbound:
assumes clmm-dsc P’
and Ai. fee P’ i = phi
and 0 < sqp
and sqp < sqp’
shows (1 — phi) * (quote-gross P’ sqp’ — quote-gross P’ sqp)/(sqp’ * sqp’) <
base-net P’ sqp — base-net P’ sqp’
proof —
have phi < 1 using assms by (metis clmm-dsc-fees)
hence (1 — phi) * (quote-gross P’ sqp’ — quote-gross P’ sqp)/(sqp’ * sqp’) <
(1 — phi) x (base-gross P’ sqp — base-gross P’ sqp’)
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using quote-le-base-gross assms
by (metis diff-gt-0-iff-gt mult-le-cancel-left-pos times-divide-eq-right)
also have ... = base-net P’ sqp — base-net P’ sqp’
by (rule cst-fee-base-gross-net[symmetric], (auto simp add: assms))
finally show ?thesis .
qed

4.4 Market depth and slippage for finer CLMMs
4.4.1 Finer pools

locale finer-clmm =
fixes P1 P2
assumes absl: clmm-dsc P1 and abs2: clmm-dsc P2
and finer: finer-pool P1 P2

sublocale finer-clmm C finer-two-span-finite-liq
by (meson absl abs2 clmm-dsc-def finer finer-pools.intro
finer-spanning-pool.intro finer-spanning-pool-axioms.intro
finer-two-span-finite-lig.intro finer-two-span-finite-lig-axioms.intro
finer-two-spanning-pools.intro finer-two-spanning-pools-axioms.intro)

context finer-clmm
begin

lemma finer-base-net-eq:
shows base-net P1 = base-net P2
proof —
have Aa b. a € encompassed (grd P1) (grd P2) b = lg P1 a = lg P2}
using encompassed-lig-eq
by (simp add: mon stm)
thus “thesis unfolding base-net-def
using spanning-finer-gen-base-eq[of Ax. T Az. z]
clmm-dsc-grid clmm-dsc-liq by blast
qged

lemma finer-quote-net-eq:
shows quote-net P1 = quote-net P2
proof —
have Aa b. a € encompassed (grd P1) (grd P2) b = lg P1 a = lg P2 )
using encompassed-lig-eq
by (simp add: mon stm)
thus “thesis unfolding quote-net-def
using spanning-finer-gen-quote-eq(of Ax. T Az. z]
clmm-dsc-grid clmm-dsc-liq by blast
qed

lemma finer-base-gross-eq:

shows base-gross P1 = base-gross P2
proof —
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have base-gross P1 = gen-base (grd P2) ((Az. gross-fct x (fee P2)) (lg P2))
unfolding base-gross-def
proof
fix z
show gen-base (grd P1) ((Az. gross-fct x (fee P1)) (lg P1)) z =
gen-base (grd P2) ((Az. gross-fct © (fee P2)) (lg P2)) =
proof (rule spanning-finer-gen-base-eq)
show Ai. lg P2 i = 0 = gross-fct (lg P2) (fee P2) i = 0
using gross-fct-zero-if by simp
show Ai. lg P1 i = 0 = gross-fet (lg P1) (fee P1) i = 0
using gross-fct-zero-if by simp

show Aa b. a € encompassed (grd P1) (grd P2) b =
gross-fct (lg P1) (fee P1) a = gross-fct (lg P2) (fee P2) b
proof —
fixabd

assume asm: a € encompassed (grd P1) (grd P2) b
hence lg P1 a = lqg P2 )
by (simp add: span span2 encompassed-lig-eq
span-gridD(1) strict-mono-mono)
moreover have fee Pl a = fee P2 b
by (simp add: asm span span2 encompassed-fee-eq span-gridD(1)
strict-mono-mono)
ultimately show gross-fct (lg P1) (fee P1) a =
gross-fet (lg P2) (fee P2) b
using gross-fct-cong by metis

qed
qed
qed
also have ... = base-gross P2 unfolding base-gross-def by simp
finally show ?thesis .

qed

lemma finer-quote-gross-eq:
shows quote-gross P1 = quote-gross P2
proof —
have quote-gross P1 = gen-quote (grd P2) ((Ax. gross-fct « (fee P2)) (lg P2))
unfolding quote-gross-def
proof
fix z
show gen-quote (grd P1) ((Az. gross-fct « (fee P1)) (lg P1)) =z =
gen-quote (grd P2) ((Az. gross-fct z (fee P2)) (lg P2)) z
proof (rule spanning-finer-gen-quote-eq)
show Ai. lg P2 i = 0 = gross-fct (lg P2) (fee P2) i =0
using gross-fct-zero-if by simp
show Ai. lg P1 i = 0 = gross-fct (lg P1) (fee P1) i
using gross-fct-zero-if by simp
show Aa b. a € encompassed (grd P1) (grd P2) b =
gross-fct (lg P1) (fee P1) a = gross-fet (lg P2) (fee P2) b
proof —

Il
S
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fix a b
assume asm: a € encompassed (grd P1) (grd P2) b
hence lg P1 a = 1lg P2 b
by (simp add: span span2 encompassed-lig-eq span-gridD(1)
strict-mono-mono)
moreover have fee P1 a = fee P2 b
by (simp add: asm span span?2 encompassed-fee-eq span-gridD(1)
strict-mono-mono)
ultimately show gross-fct (lg P1) (fee P1) a =
gross-fct (lg P2) (fee P2) b
using gross-fct-cong by metis

qed
qed
qed
also have ... = quote-gross P2 unfolding quote-gross-def by simp
finally show ?thesis .
qed

lemma finer-mkt-depth:
shows mkt-depth P1 = mkt-depth P2

using finer-base-net-eq finer-quote-net-eq unfolding mkt-depth-def by pres-
burger

end

4.4.2 Finer CLMMs with nonzero liquidity

locale finer-clmm-ne = finer-clmm +
assumes nonempty-lig: nz-support (lg P1) # {}

context finer-clmm-ne
begin

lemma id-max-Maz-eq:
assumes ! = idz-maz (lg P1)
and k2 = pool-coarse-ide P1 P2 il
shows il = Mazx (encompassed (grd P1) (grd P2) k2)
proof (rule ccontr)
assume asm: il # Max (encompassed (grd P1) (grd P2) k2)
interpret finer-ranges grd P1 grd P2
proof (rule finer-ranges.intro)
show strict-mono (grd P1) using span span-gridD by simp
show mono (grd P2) using span?2
by (simp add: span-gridD strict-mono-on-imp-mono-on)
show finer-range (grd P1) (grd P2) using assms
by (simp add: finer-pool-grid)
qged
have lq P1 (i1 + 1) = 0 using idz-maz-finite-gt assms clmm-dsc-liq
finite-ligD nz-support-def nonempty-liq
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by (metis less-add-one fin-liq)
have i1 € encompassed (grd P1) (grd P2) k2
using encompassed-bounds assms pool-coarse-idzD by auto
hence il < Maxz (encompassed (grd P1) (grd P2) k2) using asm
by (meson Max.coboundedlI fin linorder-less-linear linorder-not-less
span-grid-encompassed)
hence i1 + 1 < Maz (encompassed (grd P1) (grd P2) k2) by simp
have Max (encompassed (grd P1) (grd P2) k2) €
encompassed (grd P1) (grd P2) k2
by (metis Maz-in <il € encompassed (grd P1) (grd P2) k2»
emptyE span-grid-encompassed)
hence i1 + 1 € encompassed (grd P1) (grd P2) k2
using il € encompassed (grd P1) (grd P2) k2> encompassed-convex
«il + 1 < Maz (encompassed (grd P1) (grd P2) k2)» stm strict-mono-mono
by fastforce
hence lq P1 (il + 1) = lq P2 k2
by (simp add: assms(2) encompassed-lig-eq mon stm)
also have ... = lq P1 il
using il € encompassed (grd P1) (grd P2) k2> assms finer-pool-liq
by auto
also have ... # 0 using span assms nonempty-liq fin-liq finite-lig-def
idz-maz-finite-in by blast
finally show Fualse using <lq P1 (il + 1) = 0> by simp
qed

lemma id-min-Min-eq:
assumes il = idz-min (lg P1)
and k2 = pool-coarse-idx P1 P2 il
shows i1 = Min (encompassed (grd P1) (grd P2) k2)
proof (rule ccontr)
assume asm: il # Min (encompassed (grd P1) (grd P2) k2)
have lq P1 (i1 — 1) = 0 using idz-min-finite-lt assms clmm-dsc-liq
finite-ligD nz-support-def nonempty-liq
by (metis order-refl fin-liq zle-diff1-eq)
have il € encompassed (grd P1) (grd P2) k2
using encompassed-bounds assms pool-coarse-ideD by auto
hence Min (encompassed (grd P1) (grd P2) k2) < il using asm
by (meson Min.coboundedl fin linorder-less-linear linorder-not-less
span-grid-encompassed)
hence Min (encompassed (grd P1) (grd P2) k2) < i1—1 by simp
have Min (encompassed (grd P1) (grd P2) k2) €
encompassed (grd P1) (grd P2) k2
by (metis Min-in il € encompassed (grd P1) (grd P2) k2> emptyE
span-grid-encompassed)
hence i1 — 1 € encompassed (grd P1) (grd P2) k2
using il € encompassed (grd P1) (grd P2) k2> encompassed-convex
«Min (encompassed (grd P1) (grd P2) k2) < il — 1) stm strict-mono-mono
by fastforce
hence lq P1 (il — 1) = lq P2 k2
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by (simp add: assms(2) encompassed-lig-eq mon stm)

also have ... = lq P1 il
using il € encompassed (grd P1) (grd P2) k2> assms finer-pool-liq
by auto

also have ... # 0 using assms fin-liqg finite-lig-def idz-min-finite-in

nonempty-liqg by blast
finally show Fulse using <lq P1 (i1 — 1) = 0> by simp
qed

lemma idz-max-Suc-grd-eq:
assumes il = idx-maz (lqg P1)
and k2 = pool-coarse-idx P1 P2 il
shows grd P1 (il + 1) = grd P2 (k2 + 1)
proof —
have i/ = Maz (encompassed (grd P1) (grd P2) k2)
using id-maz-Mazx-eq assms clmm-dsc-grid by simp
hence grd P1 (il + 1) = grd P1 (Maz (encompassed (grd P1) (grd P2) k2) +

1)
by simp
also have ... = grd P2 (k2+1)
proof (rule encompassed-max-Suc-gamma-eq’)
show Im. grd P1 m < grd P2 k2
by (simp add: span-grids-ex-le)
show I M. grd P2 (k2 + 2) < grd P1 M
by (simp add: span-grids-ex-ge)
show grd P2 k2 # grd P2 (k2 + 1) using span2 span-gridD
by (simp add: strict-mono-eq)
show grd P2 (k2 + 1) # grd P2 (k2 + 2) using span2 span-gridD
by (simp add: strict-mono-eq)
qed
finally show ?thesis .
qed

lemma idx-min-grd-eq:
assumes il = idz-min (lg P1)
and k2 = pool-coarse-idz P1 P2 il
shows grd P1 i1 = grd P2 k2
unfolding grd-mazx-def idz-maz-img-def
proof —
have i1 = Min (encompassed (grd P1) (grd P2) k2)
using id-min-Min-eq assms clmm-dsc-grid by simp
hence grd P1 il = grd P1 (Min (encompassed (grd P1) (grd P2) k2))
by simp
also have ... = grd P2 k2
proof (rule encompassed-min-gamma-eq’)
show Im. grd P1 m < grd P2 k2 by (simp add: span-grids-ez-le)
show 3 M. grd P2 (k2 + 1) < grd P1 M by (simp add: span-grids-ez-ge)
show grd P2 k2 # grd P2 (k2 + 1) using span2 span-gridD
by (simp add: strict-mono-eq)
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qed
finally show ?thesis .
qed

lemma abs-finer-idz-maz-coarse:
assumes clmm-dsc P1
and clmm-dsc P2
and finer-pool P1 P2
and nz-support (lg P1) # {}
and i = idz-mazx (lg P1)
and k2 = pool-coarse-ide P1 P2 il
shows k2 = idz-mazx (lg P2)
proof —
define m2 where m2 = idz-mazx (lg P2)
have lg P1i1 # 0
using assms(5) fin-liq finite-lig-def idz-max-finite-in nonempty-liq by blast
hence nz-support (lg P1) # {} unfolding nz-support-def by auto
have i1 € encompassed (grd P1) (grd P2) k2
using encompassed-bounds assms pool-coarse-idzD by auto
hence lq P1 i1 = lq P2 k2
by (simp add: assms finer-pool-liq)
hence lq P2 k2 # 0 using <lq P1 i1 # 0> by simp
hence nz-support (lg P2) # {} unfolding nz-support-def by auto
have finite-lig P1 using assms clmm-dsc-liq by simp
have finite-lig P2 using assms clmm-dsc-liq by simp
hence k2 < m2 unfolding m2-def
using <lg P2 k2 # 0 idz-maz-finite-ge finite-lig-def
by metis
have lqg P2 m2 # 0 using idx-max-finite-in m2-def
by (simp add: <finite-lig P2> <nz-support (lg P2) # {}> ide-maz-mem
nz-supportD)
show k2 = m2
proof (rule ccontr)
assume k2 # m2
hence k2 < m2 using k2 <m2» by auto
have 3j1. encomp-at (grd P1) (grd P2) j1 m2 using ex-coarse-rep
by (metis Maz-in encompassed-unique finer-ranges.coarse-idz-bounds
finer-ranges-axioms span-grid-encompassed
span-grids-encompassed-ne)
from this obtain j1 where encomp-at (grd P1) (grd P2) j1 m2 by auto
hence lq P1 j1 = lqg P2 m2
by (metis coarse-idz-bounds encomp-idz-unique finer-pool-liq
pool-coarse-idzD)
hence lq P1 j1 # 0 using <lg P2 m2 # 0» by simp
hence j1 € nz-support (lg P1) unfolding nz-support-def by simp
hence ji < il using assms «q P1 j1 # 0» idx-max-finite-ge finite-lig-def
by (metis <finite-lig P1»)
moreover have il < jI
using encomp-idz-mono-conv <encomp-at (grd P1) (grd P2) j1 m2»
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k2 < m2> assms(6) coarse-idz-bounds pool-coarse-ideD by presburger
ultimately show Fulse by simp
qed
qed

lemma abs-finer-idz-min-coarse:
assumes il = idz-min (lg P1)
and k2 = pool-coarse-ide P1 P2 il
shows k2 = idz-min (lg P2)
proof —
define m2 where m2 = idx-min (lg P2)
have lq P1 i1 # 0
using assms(1) fin-liq finite-lig-def idx-min-finite-in nonempty-liq by blast
hence nz-support (lg P1) # {} unfolding nz-support-def by auto
have i1 € encompassed (grd P1) (grd P2) k2
using encompassed-bounds assms pool-coarse-ideD by auto
hence lq P1 i1 = lq P2 k2
by (simp add: assms finer-pool-liq)
hence lq P2 k2 # 0 using <lq P1 i1 # 0> by simp
hence nz-support (lg P2) # {} unfolding nz-support-def by auto
have finite-lig P1 using fin-lig by simp
have finite-lig P2 using fin-lig by (simp add: span-grids-finite-lig")
hence m2 < k2 unfolding m2-def
using «lq P2 k2 # 0» idz-min-finite-le finite-lig-def
by metis
have lg P2 m2 # 0 using idz-maz-finite-in m2-def
by (simp add: <finite-liq P2> <nz-support (lg P2) # {}» idz-min-mem
nz-supportD)
show k2 = m2
proof (rule ccontr)
assume k2 # m2
hence m2 < k2 using «<m2 <k2) by auto
have 3j1. encomp-at (grd P1) (grd P2) j1 m2 using ex-coarse-rep
by (metis Maz-in encompassed-unique finer-ranges.coarse-idz-bounds
finer-ranges-axioms span-grid-encompassed
span-grids-encompassed-ne)
from this obtain jI where encomp-at (grd P1) (grd P2) j1 m2 by auto
hence lq P1 jI = lqg P2 m2
using coarse-idz-bounds encomp-idz-unique finer-pool-liq pool-coarse-idzD
by auto
hence lq P1 j1 # 0 using «lqg P2 m2 # 0> by simp
hence jI € nz-support (lg P1) unfolding nz-support-def by simp
hence i1 < jI using assms <lq P1j1 # 0 idz-min-finite-le finite-lig-def
by (metis <finite-liqg P1»)
moreover have ji < ¢l
using encomp-idz-mono-conv <encomp-at (grd P1) (grd P2) j1 m2»
«m2 < k2> assms coarse-idx-bounds pool-coarse-idxD by presburger
ultimately show Fulse by simp
qed
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qed

lemma abs-finer-idz-maz-img-eq:
shows grd-max P1 = grd-max P2
proof —
define i/ where il = idz-mazx (lg P1)
define k2 where k2 = pool-coarse-idz P1 P2 il
have k2 = idz-mazx (lg P2)
by (simp add: absl abs2 abs-finer-idz-maz-coarse finer i1-def k2-def
nonempty-liq)
have grd-maz P1 = grd P2 (k2 + 1)
unfolding grd-mazx-def idx-max-img-def
using idz-maz-Suc-grd-eq il-def k2-def span by simp
also have ... = grd-maxz P2 using (k2 = idz-maz (lg P2))
unfolding grd-maz-def idz-maz-img-def by simp
finally show ?thesis .
qed

lemma abs-finer-idz-min-img-eq:
shows grd-min P1 = grd-min P2
proof —
define i where i1 = idz-min (lg P1)
define k2 where k2 = pool-coarse-ide P1 P2 il
have k2 = idz-min (lg P2)
by (simp add: abs-finer-idz-min-coarse i1-def k2-def)
have grd-min P1 = grd P2 k2
unfolding grd-min-def idz-min-img-def
using idz-min-grd-eq i1-def k2-def by simp
also have ... = grd-min P2 using k2 = idz-min (lg P2))
unfolding grd-min-def idz-min-img-def by simp
finally show ?thesis .
qed

lemma finer-base-reach-eq:
shows base-reach P1 = base-reach P2 unfolding base-reach-def
using clmm-dsc-grid finer-base-gross-eq abs-finer-idz-max-img-eq by presburger

lemma finer-quote-reach-eq:
shows quote-reach P1 = quote-reach P2 unfolding quote-reach-def
using clmm-dsc-grid finer-quote-gross-eq abs-finer-idz-min-img-eq by presburger

lemma finer-base-slippage:

shows base-slippage P1 = base-slippage P2
unfolding base-slippage-def base-swap-def
using finer-quote-net-eq finer-base-reach-eq finer-base-gross-eq
by simp

lemma finer-quote-slippage:
shows quote-slippage P1 = quote-slippage P2
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unfolding quote-slippage-def quote-swap-def
using finer-base-net-eq finer-quote-reach-eq finer-quote-gross-eq
by simp

end

5 Inequalities related to fees

context finite-lig-pool
begin

lemma gross-fct-le:
assumes 0 < f1
and phi ¢ < phi’ i
and phi’ i < 1
shows gross-fct f phi i < gross-fct f phi’ i
unfolding gross-fct-def one-cpl-def
by (metis assms diff-gt-0-iff-gt diff-left-mono frac-le linorder-not-less
order.asym)

lemma gross-fct-lt:
assumes 0 < f1i
and phi i < phi’ i
and phi’ i < 1
shows gross-fct f phi i < gross-fct f phi’ i
unfolding gross-fct-def one-cpl-def by (simp add: assms frac-less2)

lemma fee-diff-same-base-net:
assumes clmm-dsc P
and clmm-dsc P’
and I ={k. Lk#0Nj<k}
and fee-diff-on P P' I
and same-nz-lig-on P P’ {k. j < k}

and 0 < sqp
and j = lower-tick P sqp
and L =g P

and lower-tick P sqp = lower-tick P’ sqp
shows base-net P sqp = base-net P’ sqp
proof —
define L’ where L' = lqg P’
have eq: Vie I. L i = L' i using assms L'-def by auto
have base-net P sqp = L j * (inverse sqp — inverse (grd P (j + 1))) +
OCi|Li#0Nj<i. Lix (inverse (grd P %) — inverse (grd P (i + 1))))
using assms base-net-sum by simp
also have ... = L’ j * (inverse sqp — inverse (grd P (j + 1))) +
OCi| Li#0Nj<i. Lix (inverse (grd P i) — inverse (grd P (i + 1))))
proof (cases je I)
case True
then show ?thesis using eq by simp
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next
case Fulse
hence L j = 0 using assms by simp
then show ?thesis using L’-def assms(5,8) by auto
qed
also have ... = L' j x (inverse sqp — inverse (grd P (j + 1))) +
Ooi | L'i# 0 Nj<i. L'ix (inverse (grd P i) — inverse (grd P (i + 1))))
proof —
have (3 i | Li# 0 A j< i.
L i % (inverse (grd P i) — inverse (grd P (i + 1)))) =
SCi| i 0NG<i.
L' i x (inverse (grd P i) — inverse (grd P (i + 1))))
proof (rule sum.cong)
fix k
assume k € {i. L' i # 0 N j < i}
hence ke I using assms L’-def same-nz-lig-on-def by auto
thus L k x (inverse (grd P k) — inverse (grd P (k + 1))) =
L' k x (inverse (grd P k) — inverse (grd P (k + 1)))
using eq by simp
next
show {i. Li# 0ANj<i}={i L'i#0Nj<i}
proof
show {i. Li#O0Nj<i}C{i.Li#0ANj<i}
using assms(3) eq by auto
next
show {i. L'i £ 0ANj<i} C{i. Li# 0Aj<i}
proof
fix k
assume k € {i. L' i # 0 N j < i}
hence ke I using assms L'-def same-nz-lig-on-def by auto
thus k€ {i. Li# 0 N j< i}
using <k € {i. L' i # 0 N j < i}» eq by auto

qed
qed
qed
thus ?thesis by simp
qged
also have ... = L’ j * (inverse sqp — inverse (grd P' (j + 1))) +

il L i 0N <.
L' i x (inverse (grd P’ i) — inverse (grd P’ (i + 1))))
proof —
have (3 i | L' i# 0 ANj<i.
L' i x (inverse (grd P i) — inverse (grd P (i + 1)))) =
SCi|Li£0NG<i.
L’ i % (inverse (grd P’ i) — inverse (grd P’ (i + 1))))
proof (rule sum.cong)
fix z
assume z € {i. L' i # 0 N j < i}
hence z € {k. j < k} by auto
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hence grd P © = grd P’ z using assms by (simp add: same-nz-lig-onD(1))
have z+1 € {k. j < k} using <z € {i. L' i # 0 A j < i}> by auto
hence grd P (z + 1) = grd P' (x + 1)
using assms by (simp add: same-nz-lig-onD(1))
thus L' x x (inverse (grd P z) — inverse (grd P (z + 1))) =
L’ z x (inverse (grd P’ z) — inverse (grd P’ (z + 1)))
using «grd P x = grd P’ x> by simp
qed simp
moreover have grd P (j+ 1) = grd P’ (j + 1)
using same-nz-lig-onD(1) assms(5) by auto
ultimately show ?thesis by simp
qed
also have ... = base-net P’ sqp
by (rule base-net-sum[symmetric], (auto simp add: assms L’-def))
finally show ?thesis .
qed

lemma fee-diff-le-imp-quote-gross:
assumes clmm-dsc P
and clmm-dsc P’
and {k. Lk 0ANE<j}CI
and fee-diff-on P P' I
and same-nz-lig-on P P’ {k. k < j}
and 0 < sqp
and j = lower-tick P sqp
and L = gross-fct (lqg P) (fee P)
and A\i. i € I = fee Pi < fee P’ i
and lower-tick P sqp = lower-tick P’ sqp
shows quote-gross P sqp < quote-gross P’ sqp
proof —
define L’ where L’ = gross-fct (lg P') (fee P’
have pos: Vie I. 0 < L i using assms gross-liqg-ge by simp
have le:Vie I. Li < L'i
proof
fix ¢
assume 7 € |
hence lg P i = lq P’ i using assms fee-diff-onD(2) by simp
hence L i = gross-fct (lg P’) (fee P) i
using assms(8) gross-fct-cong by blast
also have ... < L’ i unfolding L’-def
proof (rule gross-fct-le)
show 0 < lg P’ i by (simp add: assms(2) clmm-dsc-lig(2))
show fee P i < fee P' i using ¢i € I assms by simp
show fee P’ i < 1 by (simp add: assms(2) clmm-dsc-fees)
qed
finally show L i < L’i.
qed
have quote-gross P sqp = L j x (sqp — grd P j) +
SCi|Li#O0Ni<j. Lix(grdP (i+1)— grdPi))
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using assms clmm-quote-gross-sum by simp
also have ... < L' j * (sgp — grd P j) +
OCi|LiAO0Ni<j Lix(grdP (i+ 1)— grd Pi))
proof (cases je I)
case True
then show ?thesis using lower-tick-lbound le pos
by (simp add: assms(1) assms(6) assms(7) mult-right-mono)
next
case Fulse
hence L j = 0 using assms by auto
then show ?thesis
using L’-def lower-tick-geq gross-lig-ge
by (simp add: assms(1,2,6,7))
qed
also have ... < L' j * (sqgp — grd P j) +
(Ci|Li#AO0Ni<jL'ix(grdP (i+ 1) — grd P 1))
proof —
have (3i | Li# O0Ni<j Lix(grdP (i+ 1) — grd Pi)) <
OCi|LiAO0Ni<j. L'ix(grdP (i+ 1)— grd P1))
proof (rule sum-mono)
fix k
assume k € {i. Li# 0 A i < j}
hence ke I using assms by auto
thus Lk« (god P (k+ 1) —grd Pk) < L'k« (grd P (k+ 1) — grd P k)
using le
by (simp add: assms(1) clmm-dsc-grd-mono mult-right-mono)
qed
thus ?thesis by simp
qed
also have ... = L' j * (sqp — grd P’ j) +
(i |L'i£O0Ni<j L'ix(grdP (i + 1) — grd P 4))
proof —
have ziff: V i€ I. (L i = 0 <— L’ i = 0) using assms le pos
by (metis L’-def clmm-dsc-gross-lig-zero-iff fee-diff-onD(2))
have {i. Li#O0ANi<jt={i.L'i#0Ai<j}
proof
show {i. Li# 0ANi<jyC{i. L'i#0Ai<j}
using ziff assms(3) by auto
show {i. L'i #0Ni<j} C{i.Li#0Ni<j}
proof
fix ¢
assume i € {i. L' i # 0 N i < j}
hence L' i # 0 and i < j by auto
hence L i # 0
using L'-def same-nz-lig-onD(2) assms clmm-dsc-gross-lig-zero-iff
by (smt (verit, ccfv-threshold) mem-Collect-eq)
thus i € {i. Li# 0 AN i < j} using < < j» by auto
qed
qed
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moreover have grd P j = grd P’ j using assms by auto
ultimately show ¢thesis by simp
qed
also have ... = L' j * (sqp — grd P'j) +
(Xi|L'i#O0Ni<ij L'i* (grd P' (i + 1) — grd P’ %))
proof —
have (D i | L' i £ 0Ni<j L'ix(grdP (i+ 1)— grd P1)) =
SCi|Li£AO0Ni<j. L'ix(grd P'(i+ 1) — grd P'1))
proof (rule sum.cong)
fix z
assume z € {i. L' i # 0 N i < j}
hence z € {k. k < j} by auto
hence grd P x = grd P’ x using assms by force
have 2+1 € {k. k < j} using <z € {i. L' i # 0 N i < j}» by auto
hence grd P (z + 1) = grd P’ (x + 1) using assms by force
thus L'z * (grd P (x + 1) — grd Px) = L'z % (grd P' (x + 1) — grd P’ )
using «grd P z = grd P’ x> by simp

qed simp
thus ?thesis by simp
qed
also have ... = quote-gross P’ sqp

by (rule clmm-quote-gross-sum|[symmetric], (auto simp add: assms L'-def))
finally show ?thesis .
qed

lemma fee-diff-le-imp-quote-gross-mono:
assumes clmm-dsc P
and clmm-dsc P’
and{k. Lk#A0ANk<j}CI
and fee-diff-on P P’ I
and same-nz-lig-on P P’ {k. k < j}
and 0 < sqp
and j = lower-tick P sqp
and L = gross-fet (lg P) (fee P)
and A\i. i € I = fee Pi < fee P’ i
and lower-tick P sqp = lower-tick P’ sqp
and sgp < sqp’
shows quote-gross P sqp < quote-gross P’ sqp’
proof —
have quote-gross P sqp < quote-gross P’ sqp
using assms fee-diff-le-imp-quote-gross by simp
also have ... < quote-gross P’ sqp’
using clmm-quote-gross-monolof P’| monoD assms(2,11) by simp
finally show ?thesis .
qed

lemma fee-diff-quote-diff-expand:

assumes clmm-dsc P
and clmm-dsc P’
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and L = gross-fet (lg P) (fee P)
and j = lower-tick P sqp
and k = lower-tick P sqp’
and 0 < sqp
and sgp < sqp’
and j < k
and{m. Lm#0ANj<mAm<Ek}CI
and fee-diff-on P P’ I
and same-nz-ligzon P P' {m.j < m A m < k+1}
and A\i. i € I = fee Pi < fee P’ i
and lower-tick P sqp = lower-tick P’ sqp
and lower-tick P sqp’ = lower-tick P’ sqp’
shows quote-gross P sqp’ — quote-gross P sqp < quote-gross P’ sqp’ — quote-gross
P’ sqp
proof —
define L' where L' = gross-fct (lg P’) (fee P’)
have pos: Vie I. 0 < L i using assms gross-lig-ge by simp
have le: Vie I. Li < L'i
proof
fix ¢
assume 7 € |
hence lq P i = lg P’ i using assms fee-diff-onD(2) by simp
hence L i = gross-fct (lg P’) (fee P) i
using assms gross-fct-cong by blast
also have ... < L’ { unfolding L’-def
proof (rule gross-fct-le)
show 0 < lqg P’ i by (simp add: assms(2) clmm-dsc-liq(2))
show fee P i < fee P’ i using i € I» assms by simp
show fee P' i < 1 by (simp add: assms(2) clmm-dsc-fees)
qed
finally show L i < L’ .
qed
have quote-gross P sqp’ — quote-gross P sqp = L k * (sqp’ — grd P k) +
sum (A i. Lix (grd P (i+1) —grd P9)) {i. Li# 0 Nj<i Ni<k}+
Ljx* (grd P (j+1) — sqp)
using assms clmm-quote-gross-diff-eq by simp
also have ... < L'k  (sqp’ — grd P k) +
sum (Ni. Lix (grd P (i+1) —grd Pi)) {i. Li# 0 ANj<i Ni<k}+
Ljx*(grd P (j+1) — sqp)
proof (cases ke I)
case True
then show %thesis using lower-tick-lbound le pos
by (smt (verit, best) assms(1) assms(5) assms(6) assms(7) mult-right-mono)
next
case Fulse
hence L k = 0 using assms by auto
then show ?thesis
using L'-def lower-tick-geq gross-lig-ge assms(1,2,5—7) by auto
qed
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also have ... < L' k * (sqp’ — grd P k) +
sum (A i. Lix (grd P (i+1) — grd P9)) {¢. Li# 0 Nj<i Ni <k} +
L"j* (grd P (j+1) — sqp)
proof (cases je I)
case True
then show ?thesis using lower-tick-lbound le pos
by (simp add: assms(1) assms(4) lower-tick-ubound)
next
case Fulse
hence L j = 0 using assms by auto
then show ?thesis
using L’-def lower-tick-geq gross-lig-ge
by (smt (verit, ccfo-SIG) assms(1,2,4) lower-tick-ubound mult-right-mono)
qed
also have ... < L'k  (sqp’ — grd P k) +
sum (N i. L' i % (grd P (i+1) — grd Pi)) {i. Li# 0 Nj<i Ni<Kk}+
L'j* (grd P (j+1) — sqp)
proof —
have sum (A i. Li* (grd P (i+1) — grd Pi)) {i. Li# O Nj<i Ni <k} <
sum (A i. L' i % (grd P (i+1) — grd P0)) {i. Li £ 0 Aj <i Ai <k}
proof (rule sum-mono)
fix ¢
assume ¢ € {i. Li# 0 Nj<iANi<k}
hence i€ I using assms by auto
thus Lix(grd P (i + 1) — grd Pi) < L' i (grd P (i + 1) — grd P )
using le
by (simp add: assms(1) clmm-dsc-grd-mono mult-right-mono)
qed
thus ?thesis by simp
qed
also have ... = L' k x (sqp’ — grd P' k) +
sum (AN i. L' i+ (grd P (i+1) — grd Pi)) {i. L' i £ 0 Nj <i A i < k} +
L'j* (grd P’ (j+1) — sqp)
proof —
have ziff: V i€ I. (L i = 0 «+— L’ i = 0) using assms le pos
by (metis L’-def clmm-dsc-gross-lig-zero-iff fee-diff-onD(2))
have {i. Li#£ 0ANj<iANi<k}={i.L'i#0Nj<iAi<k}
proof
show {i. Li#O0Nj<iNi<k}C{i. L i#0Nj<iNi<Ek}
using ziff assms(9) by auto
show {i. L'i £ 0 Aj<iANi<k}C{i.Li#0ANj<iNi<k}
proof
fix ¢
assume i € {i. L' i £ 0 Nj<i Ni<k}
hence L' i # 0 and i < k and j < i by auto
hence L i # 0
using L'-def same-nz-lig-onD(2) assms clmm-dsc-gross-lig-zero-iff
by (smt (verit, ccfv-threshold) mem-Collect-eq)
thus i € {i. Li#£ 0 Nj<iNi<Ek}

158



using i < k> «j < © by simp
qed
qed
moreover have grd P k = grd P’ k
using assms(11) assms(8) same-nz-lig-onD(1) by auto
moreover have grd P (j+1) = grd P’ (j+1)
using addl-zle-eq assms(11) assms(8) same-nz-lig-onD(1) by auto
ultimately show ¢thesis by simp
qed
also have ... = L' k x (sqp’ — grd P' k) +
sum (N i. L' i x (grd P' (i+1) — grd P"9)) {i. L' i # 0 N j <i N i < k} +
L"jx (grd P’ (j+1) — sqp)
proof —
have sum (A i. L' i % (grd P (i+1) — grd P %)) {i. L' i # O Nj <i N i < k}

sum (A i. L' i % (grd P! (i+1) — grd P’ 0)) {i. L' i £ 0 N j<i N i < k}
proof (rule sum.cong)
fix z
assume z € {i. L'i £ 0 Nj<iNi<Ek}
hence z € {i. j < i A i < k} by auto
hence grd P x = grd P’ x using assms by force
have 2+1 € {i. j < i Ni <k}
using <z € {i. L'i # 0 AN j < i A i<k} by auto
hence grd P (z + 1) = grd P’ (x + 1) using assms by force
thus L'z« (grd P (x + 1) —grd Px) = L'z % (grd P' (x + 1) — grd P’ 1)
using «grd P x = grd P’ x) by simp

qed simp
thus ?thesis by simp
qed
also have ... = quote-gross P’ sqp’ — quote-gross P’ sqp

proof (rule clmm-quote-gross-diff-eq[symmetric])
show j < k using assms by simp
qed (simp add: assms L'-def )+
finally show ?thesis .
qed

lemma fee-diff-quote-diff-expand’:
assumes clmm-dsc P
and clmm-dsc P’
and L = gross-fet (lg P) (fee P)
and j = lower-tick P sqp
and j = lower-tick P sqp’
and 0 < sqp
and sqp < sqp’
and Lj# 0 — je I
and fee-diff-on P P’ I
and A\i. i € I = fee Pi < fee P’ i
and lower-tick P sqp = lower-tick P’ sqp
and lower-tick P sqp’ = lower-tick P’ sqp’
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shows quote-gross P sqp’ — quote-gross P sqp < quote-gross P’ sqp’ — quote-gross
P’ sqp
proof —
define L’ where L’ = gross-fct (lg P') (fee P’
have le: Viec I. Li < L'i
proof
fix ¢
assume i € |
hence lg P i = lq P’ i using assms fee-diff-onD(2) by simp
hence L i = gross-fct (Ig P’) (fee P) @
using assms gross-fct-cong by blast
also have ... < L’ i unfolding L’-def
proof (rule gross-fct-le)
show 0 < lg P’ i by (simp add: assms(2) clmm-dsc-lig(2))
show fee P i < fee P’ i using i € I» assms by simp
show fee P’ i < 1 by (simp add: assms(2) clmm-dsc-fees)
qed
finally show L i < L' 7.
qed
have quote-gross P sqp’ — quote-gross P sqp = L j * (sqp’ — sqp)
using assms clmm-quote-gross-diff-eq’ by simp
also have ... < L' j x (sqp’ — sqp) using lower-tick-lbound le
by (metis L'-def assms(2,7,8) diff-ge-0-iff-ge gross-lig-ge
mult.commute ordered-comm-semiring-class.comm-mult-left-mono)
also have ... = quote-gross P’ sqp’ — quote-gross P’ sqp
proof (rule clmm-quote-gross-diff-eq’[symmetric])
show clmm-dsc P’ using assms by simp
show L’ = gross-fct (lg P') (fee P’) using L’-def by simp
show j = lower-tick P’ sqp using assms by simp
show j = lower-tick P’ sqp’ using assms by simp
show 0 < sqp using assms by simp
show sqp < sqp’ using assms by simp
qed
finally show ?thesis .
qed

lemma fee-diff-quote-diff-le:
assumes clmm-dsc P
and clmm-dsc P’
and L = gross-fet (lg P) (fee P)
and j = lower-tick P sqp
and k = lower-tick P sqp’
and 0 < sqp
and sqp < sqp’
and{m. Lm#0ANj<mAm<Ek}CI
and fee-diff-on P P’ I
and same-nz-ligzon P P' {m.j < m A m < k+1}
and A\i. i € I = fee Pi < fee P’ i
and lower-tick P sqp = lower-tick P’ sqp
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and lower-tick P sqp’ = lower-tick P’ sqp’
shows quote-gross P sqp’ — quote-gross P sqp < quote-gross P’ sqp’ — quote-gross
P’ sqp
proof (cases j = k)

case True

have L j# 0 — je I using True assms(8) by blast

then show ?thesis using assms True fee-diff-quote-diff-expand’ by simp
next

case Fulse

hence j < k using lower-tick-mono assms(1,4—"7) by fastforce

then show ?thesis using fee-diff-quote-diff-expand assms by simp
qed

lemma same-nz-lig-on-nz-support:
assumes i € |
and lg Pi # 0
and same-nz-lig-on P P’ I
shows nz-support (lg P") # {}
proof —
have lq P’ i# 0 using assms by blast
thus ?thesis unfolding nz-support-def by auto
qged

lemma same-nz-lig-on-idx-max:
assumes finite-liqg P’
and nz-support (lg P) # {}
and I = {idz-min (lg P) .. ide-maz (lg P) + 1}
and same-nz-lig-on P P’ I
shows idz-maz (lg P) < idz-maz (lg P’
proof —
define ¢ where ¢ = idz-maz (lg P)
have i€ I using i-def assms
by (simp add: fin-nz-sup idz-min-maz-finite)
have lq P { # 0 using i-def by (simp add: assms(2) idz-maz-mem nz-supportD)
hence lg P’ i # 0 using same-nz-lig-onD(2) i€ I) assms by simp
thus i < idz-maz (lg P’)
using idz-maz-finite-ge assms(1) finite-lig-def by simp
qged

lemma same-nz-lig-on-grd-mazx:
assumes finite-liqg P’
and mono (grd P
and nz-support (lg P) # {}
and I = {idz-min (lg P) .. ide-mazx (lg P) + 1}
and same-nz-lig-on P P' I
shows grd-maz P < grd-maz P’
proof —
have grd-max P = grd P (idz-mazx (lg P) + 1)
using grd-max-def idz-maz-img-def by simp
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also have ... = grd P’ (idz-max (lg P) + 1)
proof —
have idz-maz (lg P) + 1 € I
by (simp add: add.commute add-increasing assms(3,4) fin-nz-sup
idz-min-maz-finite)
thus %thesis using same-nz-lig-onD(1) assms by auto
qed
also have ... < grd P’ (idz-maz (lg P') + 1)
proof —
have idz-maz (lg P) < idz-maz (lg P’)
using assms same-nz-lig-on-idz-maz by simp
thus ?thesis by (simp add: assms(2) monoD)
qed
finally show ?thesis unfolding grd-maz-def idz-maz-img-def by simp
qed

lemma same-nz-lig-on-lower-tick:
assumes clmm-dsc P
and clmm-dsc P’
and same-nz-lig-on P P’ {i. i < j+1}
and 0 < sqp
and lower-tick P sqp < j
shows lower-tick P’ sqp = lower-tick P sqp
proof (rule lower-tick-charact)
define 7 where ¢ = lower-tick P sqp
show clmm-dsc P’ using assms by simp
have grd P' i = grd P i
using assms i-def by (simp add: same-nz-lig-onD(1))
also have ... < sqp
by (simp add: assms(1,4) lower-tick-mem i-def)
finally show grd P’ i < sqp .
have sqp < grd P (i+1)
by (simp add: assms(1) i-def lower-tick-ubound)
also have ... = grd P’ (i+1)
using assms i-def by (simp add: same-nz-lig-onD(1))
finally show sqp < grd P’ (i+1) .
qed

lemma same-nz-lig-on-lower-tick’:
assumes clmm-dsc P’
and same-nz-lig-on P P’ {i. i < j}
and grd P j = sqp
shows lower-tick P’ sqp = j
using assms lower-tick-eq same-nz-lig-onD(1) by auto

lemma fee-diff-le-grd-maz:
assumes clmm-dsc P
and clmm-dsc P’
and nz-support (lg P) # {}
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and {idz-min (lg P) .. ide-max (lg P) + 1} C I
and fee-diff-on P P’ I
and same-nz-lig-on P P’ {k. k < idz-maz (lg P) + 1}
and A\i. i € I = fee Pi < fee P’ i
shows quote-gross P (grd-maz P) < quote-gross P’ (grd-maz P)
proof —
define j where j = lower-tick P (grd-maz P)
have j = idz-maz (lg P) +1
by (simp add: assms(1) j-def lower-tick-grd-max)
hence grd P j = grd-max P unfolding grd-maz-def idz-max-img-def by simp
define L where L = gross-fct (lg P) (fee P)
show quote-gross P (grd-maz P) < quote-gross P' (grd-max P)
proof (rule fee-diff-le-imp-quote-gross)
show j = lower-tick P (grd-mazx P) using j-def by simp
show L = gross-fct (lg P) (fee P) using L-def by simp
show 0 < grd-maz P by (simp add: assms(1) assms(83) grd-max-gt)
have {k. Lk # 0 N k < j} C {idz-min (lg P) .. idz-max (lg P)+1}
proof
fix k
assume k€ {k. Lk # 0 Nk < j}
hence L k # 0 and k < j by auto
hence ke {idz-min (lqg P) .. idz-max (lg P)}
using non-zero-lig-interv L-def assms(1) clmm-dsc-gross-lig-zero-iff fin-nz-sup

by blast

thus ke {idz-min (g P) .. idz-max (lg P)+1} by auto
qed
thus {k. Lk # 0 N k < j} C I using assms by simp
show fee-diff-on P P’ I using assms by simp
show same-nz-lig-on P P’ {k. k < j}

using assms «j = idz-mazx (lg P) +1> by simp
show Ai. i € I = fee P i < fee P’ i using assms by simp
show lower-tick P (grd-maz P) = lower-tick P’ (grd-max P)

using «grd P j = grd-maz P> <same-nz-lig-on P P' {k. k < j}> assms(2) j-def

same-nz-lig-on-lower-tick’
by auto
qed (simp add: assms)+
qed

lemma fee-diff-le-grd-maz’:
assumes clmm-dsc P
and clmm-dsc P’
and nz-support (lg P) # {}
and {idz-min (lg P) .. ide-max (lg P) + 1} C I
and fee-diff-on P P’ I
and same-nz-lig-on P P’ {k. k < idz-maz (lg P) + 1}
and A\i. i € I = fee Pi < fee P’ i
shows quote-gross P (grd-maz P) < quote-gross P’ (grd-maz P’)
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proof —

have quote-gross P (grd-max P) < quote-gross P’ (grd-max P)
using assms fee-diff-le-grd-mazx by simp

also have ... < quote-gross P’ (grd-maz P’)

proof (rule clmm-quote-gross-mono| THEN monoD])
show clmm-dsc P’ using assms by simp
show grd-maz P < grd-max P’ using same-nz-lig-on-grd-max
by (meson assms(2—5) clmm-dsc-grd-mono clmm-dsc-liq(1) fee-diff-on-mono

fee-diff-on-nz-lig mono-onl)
qed
finally show ?thesis .
qed

lemma fee-diff-le-imp-quote-reach:
assumes clmm-dsc P
and clmm-dsc P’
and nz-support (lg P) # {}
and {idx-min (lg P) .. ide-maz (lg P) + 1} C T
and fee-diff-on P P’ I
and same-nz-lig-on P P’ {i. i < idz-maz (lg P) + 1}
and A\i. i € [ = fee Pi < fee P’ i
and 0 < y
and y < quote-gross P (grd-mazx P)
shows quote-reach P’y < quote-reach Py
proof —
define sqp’ where sqp’ = quote-reach P’ y
define sqp where sqp = quote-reach P y
define L where L = gross-fct (lg P) (fee P)
have nz-support (lg P’) # {}
proof (rule same-nz-lig-on-nz-support)
have idz-min (lg P) € {idz-min (lg P) .. idz-mazx (l¢ P) + 1}
using assms(3) fin-nz-sup idz-min-maz-finite by fastforce
thus idz-min (lg P) € I using assms by auto
show lg P (idz-min (lg P)) # 0
by (simp add: assms(3) idz-min-mem nz-supportD)
show same-nz-lig-on P P’ I using assms fee-diff-on-nz-liqg by simp
qed
have grd-maz P < grd-max P’
by (meson assms(2—5) clmm-dsc-grid(1) clmm-dsc-lig(1) fee-diff-on-mono
fee-diff-on-nz-liqg same-nz-lig-on-grd-mazx strict-mono-mono)
have 0 < grd-max P
by (meson assms(1) assms(3) lig-grd-min lig-grd-min-maz
dual-order.strict-trans)
have quote-gross P’ sqp’ = y unfolding sqp’-def
proof (rule clmm-quote-gross-reach-eq)
show clmm-dsc P’ using assms by simp
show 0 < y using assms by simp
show nz-support (lg P') # {} using <nz-support (lg P’) # {}> .
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have y < quote-gross P (grd-max P) using assms by simp
also have ... < quote-gross P’ (grd-mazx P’)
proof (rule fee-diff-le-imp-quote-gross-mono[OF assms(1—2)])
define j where j = lower-tick P (grd-maz P)
hence j = idz-maz (lg P) + 1
by (simp add: assms(1) idx-max-img-def lower-tick-eq grd-maz-def)
show same-nz-lig-on P P' {k. k < j}
using assms <j = idz-maz (lg P) + 1) by simp
show {k. Lk£0ANkE<j}C1I
proof
fix z
assume z € {k. Lk # 0 Nk < j}
hence L z # 0 and z < j by auto
hence idz-min (lg P) < z
by (metis L-def assms(1) clmm-dsc-gross-lig-zero-iff
idx-min-lt-liq lel)
moreover have z < idz-maz (lqg P)
using L-def <L x # 0> fin-nz-sup gross-fct-zero-if idz-maz-finite-ge
by blast
ultimately have z € {idz-min (lg P) .. ide-maz (lg P) + 1} by auto
thus z€ I using assms by auto
qed
show fee-diff-on P P’ I using assms by simp
show 0 < grd-maz P using <0 < grd-maz P> .
show grd-maz P < grd-maz P’ using <grd-max P < grd-max P's .
show j = lower-tick P’ (grd-maz P) unfolding j-def
proof (rule same-nz-lig-on-lower-tick’[symmetric))
show grd P (lower-tick P (grd-max P)) = grd-maz P
using <j = idz-max (lg P) + 1> unfolding j-def grd-maz-def idz-maz-img-def

by simp
show same-nz-lig-on P P’ {i. i <lower-tick P (grd-maz P)}
using <same-nz-lig-on P P' {k. k < j}> j-def by auto
qged (simp add: assms)
show L = gross-fct (lg P) (fee P) unfolding L-def by simp
show Ai. i € I = fee P i < fee P’ i using assms by simp
qed simp
finally show y < quote-gross P’ (grd-max P’) .
qed
also have ... = quote-gross P sqp
using assms clmm-quote-gross-reach-eq sqp-def by simp
also have ... < quote-gross P’ sqp
proof (rule fee-diff-le-imp-quote-gross)
define k£ where k = lower-tick P sqp
thus k£ = lower-tick P sqp by simp
show 0 < sqp using clmm-quote-reach-pos assms sqp-def by simp
show fee-diff-on P P’ I using assms by simp
show L = gross-fct (lg P) (fee P) using L-def by simp
show Ai. i € I = fee P i < fee P' i using assms by simp
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show {I. LI#A0ANI<Ek}CI
proof
fix z
assume z€ {I. L1 # 0 ANl < k}
hence L z # 0 and z < k by auto
hence idz-min (lg P) < z
by (metis L-def assms(1) clmm-dsc-gross-lig-zero-iff idx-min-lt-liq
lel)
moreover have z < idz-maz (lg P) using <L z # 0»
by (metis L-def assms(1) idx-maz-gt-liq gross-fet-zero-if lel)
ultimately have z € {idz-min (lg P) .. idz-maz (Ig P) + 1} by auto
thus z€ I using assms by auto
qed
have sqp < grd-max P
by (metis <y = quote-gross P sqp> assms(1,3) quote-gross-grd-maz-ge
grd-mazx-quote-reach order-less-irrefl sqp-def
verit-comp-simplify1 (3))
moreover have lower-tick P (grd-maz P) = idz-maz (lg P) + 1
by (simp add: assms(1) lower-tick-grd-max)
ultimately have k < idz-maz (lg P) +1 using k-def
by (metis <0 < sqp> assms(1) lower-tick-mono)
show same-nz-lig-on P P' {l. | < k}
proof (rule same-nz-lig-on-mono)
show same-nz-lig-on P P’ {i. i < idz-maz (lg P) + 1}
using assms by simp
show {I. Il <k} C {i. ¢ < ide-maz (lg P) + 1}
using <k < idz-maz (lg P) +1> by auto
qed
show k = lower-tick P’ sqp
proof (cases sqp = grd-maz P)
case True
hence k = idz-maz (lg P) + 1 using k-def
by (simp add: <lower-tick P (grd-max P) = idz-maz (lg P) + 1)
show ?thesis
proof (rule same-nz-lig-on-lower-tick’[symmetric))
show clmm-dsc P’ using assms by simp
show same-nz-lig-on P P’ {i. i < k}
using assms <k = idz-max (lg P) + 1> by simp
show grd P k = sqp
using k-def True <k = idz-max (lg P) + 1>
unfolding grd-mazx-def idz-maz-img-def by simp
qed
next
case Fulse
hence sqgp < grd-max P using <sqp < grd-maxz P> by simp
hence k < lower-tick P (grd-max P)
using <0 < sqp> <lower-tick P (grd-max P) = idz-max (lg P) + 1>
assms(1,3) sqp-lt-grd-maz-imp-idz k-def
by auto
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hence k < idz-maz (lg P)
by (simp add: <lower-tick P (grd-max P) = idz-maz (lg P) + 1)
show ?thesis unfolding k-def
proof (rule same-nz-lig-on-lower-tick[symmetric])
show lower-tick P sqp < idz-mazx (lqg P)
using <k < idz-maz (lg P)) k-def by simp
show 0 < sgp using <0 < sqp> .
show same-nz-lig-on P P’ {i. i < idz-max (lg P) + 1} using assms by
stmp
qged (simp add: assms)+
qed
qed (simp add: assms)+
finally have quote-gross P’ sqp’ < quote-gross P' sqp .
define sqgp2 where sqp2 = quote-reach P’ (quote-gross P’ sqp)
have sqp’ < sqp2
proof (rule quote-reach-mono)
show clmm-dsc P’ using assms by simp
show nz-support (lg P') # {} using <nz-support (lg P’) # {}> .
show 0 < y using assms by simp
show y < quote-gross P’ sqp
using <y = quote-gross P sqp> <quote-gross P sqp < quote-gross P’ sqp)> by
stmp
show sqp’ = quote-reach P’ y using sqp’-def by simp
show sqp2 = quote-reach P’ (quote-gross P’ sqp) using sqp2-def by simp
show quote-gross P’ sqp < quote-gross P’ (grd-max P’)
proof —
have sqp < grd-mazxz P
using sqp-def quote-reach-leg-grd-max
by (simp add: <0 < y> assms(1,3,9))
also have ... < grd-mazx P’ using «grd-maz P < grd-mazx P’y .
finally have sqp < grd-mazx P'.
thus ?thesis
by (simp add: <nz-support (lg P") # {}> assms(2)
quote-gross-grd-maz-maz)
qed
qed
also have ... < sqp using clmm-quote-reach-le sqp2-def
using «nz-support (lg P') # {}» <quote-gross P’ sqp’ = o>
<quote-gross P’ sqp’ < quote-gross P’ sqpy assms(2,8)
by auto
finally show ?thesis unfolding sqp’-def sqp-def .
qged

lemma same-nz-lig-on-if-simil:
assumes grd P = grd P’
and nz-support (lg P) = nz-support (lg P’)
shows same-nz-lig-on P P’ I
proof
show id-grid-on P P’ I using id-grid-onl assms by simp
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show N\i. i€ I = (lgPi=0)= (lg P'i=0)

proof —
fix ¢
assume i € [
have (i€ nz-support (lg P)) «— (i € nz-support (lg P')) using assms by simp
thus (lg Pi = 0) = (Ilg P’ i = 0) using nz-support-def by fastforce

qed

qed

lemma fee-diff-simil-base-net:
assumes clmm-dsc P
and clmm-dsc P’
and nz-support (lg P) # {}
and {idx-min (lg P) .. ide-maz (lg P) + 1} C T
and fee-diff-on P P’ I
and nz-support (lg P) = nz-support (lg P’
and grd P = grd P’
and grd-min P < sqp
and sqp < grd-max P
shows base-net P sqp = base-net P’ sqp
proof (rule fee-diff-same-base-net)
define j where j = lower-tick P sqp
define L where L = lq P
show j = lower-tick P sqp using j-def by simp
show 0 < sqp using grd-min-pos
using assms(1) assms(8) assms(8) lig-grd-min order-less-le-trans by blast
show L = lq P using L-def by simp
show same-nz-lig-on P P’ {k. lower-tick P sqp < k}
using assms same-nz-lig-on-if-simil by simp
show fee-diff-on P P’ {k. lg P k # 0 A lower-tick P sqp < k}
proof (rule fee-diff-on-mono)
show fee-diff-on P P’ I using assms by simp
show {k. lg P k # 0 A lower-tick P sqp < k} C I
proof
fix k
assume k € {k. lg P k # 0 A lower-tick P sqp < k}
hence L k # 0 and lower-tick P sqp < k using L-def by auto
hence idz-min L < k using L-def
by (metis assms(1) idz-min-lt-liq linorder-le-cases
order-le-imp-less-or-eq)
moreover have k < idx-mazx L
using L-def <L k # 0y fin-nz-sup idz-maz-finite-ge by auto
ultimately have k € {idz-min (lg P) .. idz-maz (lg P) + 1}
using L-def by auto
thus ke I using assms by auto
qed
qed
show lower-tick P sqp = lower-tick P’ sqp
using assms(7) grd-lower-tick-cong by blast
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qed (simp add: assms)+

lemma fee-diff-le-price-cmp:
assumes clmm-dsc P
and clmm-dsc P’
and nz-support (lg P) # {}
and {idz-min (lg P) .. ide-max (lg P) + 1} C I
and fee-diff-on P P’ I
and nz-support (lg P) = nz-support (lg P’)
and grd P = grd P’
and A\i. i € I = fee Pi < fee P’ i
and 0 < y
and y + quote-gross P sqp < quote-gross P (grd-maz P)
and grd-min P < sqp
and sqpl = quote-reach P (y + quote-gross P sqp)
and sqp2 = quote-reach P’ (y + quote-gross P’ sqp)
shows sqp2 < sqpi
proof (rule quote-reach-le-gross)
define L where L = gross-fct (lg P) (fee P)
define j where j = lower-tick P sqp
define k£ where k = lower-tick P sqp1
have sqp < sqp1
using quote-reach-gt
by (simp add: assms(1) assms(10) assms(12) assms(3) assms(9))
have 0 < sqp
using assms
by (metis lig-grd-min less-add-same-cancell less-eq-real-def
pos-add-strict)
show sqp2 = quote-reach P’ (y + quote-gross P’ sqp) using assms by simp
have y + quote-gross P sqp = quote-gross P sqp1
using assms(1,3,9,10,12) clmm-quote-gross-pos clmm-quote-gross-reach-eq
by auto
hence y = quote-gross P sqpl — quote-gross P sqp by simp
also have ... < quote-gross P’ sqpl — quote-gross P’ sqp
proof (rule fee-diff-quote-diff-le)
show clmm-dsc P using assms by simp
show clmm-dsc P’ using assms by simp
show L = gross-fct (lg P) (fee P) using L-def by simp
show j = lower-tick P sqp using j-def by simp
show k = lower-tick P sqpl using k-def by simp
show fee-diff-on P P’ I using assms by simp
show same-nz-lig-on P P’ {m.j < m Am<k+ 1}
by (simp add: assms(6) assms(7) same-nz-lig-on-if-simil)
show lower-tick P sqp = lower-tick P’ sqp
by (meson assms(7) grd-lower-tick-cong)
show lower-tick P sqpl = lower-tick P’ sqpl
by (meson assms(7) grd-lower-tick-cong)
show Ai. i € I = fee P i < fee P’ i using assms by simp
show 0 < sgp using <0 < sqp» .
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show {m. Lm#O0ANj<mAm<k}CI
proof
fix m
assume m € {m. Lm # 0 Aj<mAm<k}
hence L m # 0 using L-def by auto
hence idz-min (lg P) < m using L-def
by (meson assms(1) clmm-dsc-gross-lig-zero-iff
idz-min-lt-liq lel)
moreover have m < idz-maz (lg P)
using L-def <L m # 0» fin-nz-sup idz-max-finite-ge assms(1)
clmm-dsc-gross-lig-zero-iff
by blast
ultimately have m € {idz-min (lg P) .. idz-maz (l¢ P) + 1}
using L-def by auto
thus me [ using assms by auto
qed
show sgp < sqp! using <sqp < sqpl> by simp
qed
finally have y < quote-gross P’ sqpl — quote-gross P’ sqp .
thus y + quote-gross P’ sqp < quote-gross P’ sqpl by simp
show 0 < sqp! using <0 < sqp> <sqp < sqpl> by simp
show nz-support (lg P’) # {} using assms by simp
show 0 < y + quote-gross P’ sqp
by (simp add: add-strict-increasing assms(2) assms(9)
clmm-quote-gross-pos)
show clmm-dsc P’ using assms by simp
have sqp! < grd-maxz P
using quote-reach-leg-grd-max assms(1,3,9,10,12)
clmm-quote-gross-pos
by auto
also have ... < grd-mazx P’ using same-nz-lig-on-grd-maz
by (meson assms(2) assms(3) assms(6) assms(7) clmm-dsc-grd-mono
clmm-dsc-lig(1) mono-onl same-nz-lig-on-if-simil)
finally show sqp1 < grd-maz P’ .
qed

lemma fee-diff-le-imp-quote-swap:
assumes clmm-dsc P
and clmm-dsc P’
and nz-support (lg P) # {}
and {idx-min (lg P) .. ide-maz (lg P) + 1} C T
and fee-diff-on P P’ I
and nz-support (lg P) = nz-support (lg P’
and grd P = grd P’
and A\i. i € | = fee Pi < fee P’ i
and 0 < y
and y + quote-gross P sqp < quote-gross P (grd-maz P)
and grd-min P < sqp
shows quote-swap P’ sqp y < quote-swap P sqp y
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proof —
have leq: quote-reach P’ (y + quote-gross P sqp) <
quote-reach P (y + quote-gross P sqp)
proof (rule fee-diff-le-imp-quote-reach|OF assms(1—¥5)])
show 0 < y + quote-gross P sqp
by (simp add: add-pos-nonneg assms(1) assms(9) clmm-quote-gross-pos)
show y + quote-gross P sqp < quote-gross P (grd-mazx P) using assms by simp
show Ai. i € [ = fee P i < fee P’ i using assms by simp
show same-nz-lig-on P P’ {i. i < idx-maz (lg P) + 1}
using assms same-nz-lig-on-if-simil assms by simp
qed
have leq”: quote-reach P’ (y 4+ quote-gross P’ sqp) <
quote-reach P (y + quote-gross P sqp)
proof (rule fee-diff-le-price-cmp|OF assms(1—5)])
show 0 < y using assms(9) .
show Ai. i € I = fee P i < fee P’ i using assms by simp
show nz-support (lg P) = nz-support (lg P') using assms by simp
show grd P = grd P’ using assms by simp
show grd-min P < sqp using assms by simp
show y + quote-gross P sqp < quote-gross P (grd-maxz P) using assms(10) .
qed simp+
have base-net P’ (quote-reach P (y + quote-gross P sqp)) <
base-net P' (quote-reach P’ (y + quote-gross P’ sqp))
by (rule clmm-base-net-antimono[ THEN antimonoD), (simp add: assms leq”)+)
hence quote-swap P’ sqp y < base-net P’ sqp —
base-net P’ (quote-reach P (y + quote-gross P sqp))
unfolding quote-swap-def by simp
also have ... = quote-swap P sqp y
using fee-diff-simil-base-net assms unfolding quote-swap-def
by (smt (verit, ccfo-SIG) clmm-quote-gross-pos quote-reach-gt
quote-reach-leq-grd-mazx)
finally show quote-swap P’ sqp y < quote-swap P sqp y .
qed

lemma fee-ge-quote-swap-Ile:

assumes clmm-dsc P

and clmm-dsc P’

and nz-support (lg P) # {}

and grd P = grd P’

and lg P = lq P’

and Ai. fee P i < fee P’ i

and 0 < y

and 0 < sqp

and y + quote-gross P sqp < quote-gross P (grd-maz P)
shows quote-swap P’ sqp y < quote-swap P sqp y
proof (cases y = 0)

case True

then show ?thesis using quote-swap-zero’

using assms(1—3,5,8) quote-gross-grd-maz-maz by auto

171



next
case Fulse
show ?thesis
proof (cases grd-min P < sqp)
case True
show ?thesis
proof (rule fee-diff-le-imp-quote-swap)
show fee-diff-on P P’ {idz-min (lg P)..idz-maz (lg P’) + 1}
by (simp add: assms(5) assms(4) fee-diff-onI id-grid-onI)
show nz-support (lg P) # {} using assms by simp
show grd-min P < sqp using True .
show 0 < y using assms <— y = 0> by simp
qged (simp add: assms)+
next
case False
hence sqp < grd-min P’
using assms unfolding grd-min-def idz-min-img-def idz-min-def by simp
have grd-min P = grd-min P’
using assms unfolding grd-min-def idz-min-img-def idz-min-def by simp
have quote-swap P’ sqp y = quote-swap P’ (grd-min P') y
using <sqp < grd-min P’ assms(2,3,5,8) quote-swap-grd-min by auto
also have ... < quote-swap P (grd-min P’) y
proof (rule fee-diff-le-imp-quote-swap)
show nz-support (lg P) # {} using assms(3,5) by simp
show fee-diff-on P P’ {idz-min (lg P')..idz-maz (lg P’) + 1}
by (simp add: assms(5) assms(4) fee-diff-onI id-grid-onI)
show y + quote-gross P (grd-min P') < quote-gross P (grd-maz P)
using False assms(1,5,4,9,8) clmm-quote-gross-grd-min-le grd-min-def
by auto
show grd-min P < grd-min P’ using (grd-min P = grd-min P’y by simp
show 0 < y using assms <— y = 0» by simp
qed (simp add: assms)+
also have ... = quote-swap P sqp y
using quote-swap-grd-min
by (simp add: <grd-min P = grd-min P's <sqp < grd-min P’y assms(1,3,8))
finally show ?thesis .
qged
qged

end

end
theory CLMM-Transformation imports CLMM-Description

begin
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6 CLMM transformations
6.1 CLMM pool refinement

Given a pool P and a (square root) price 7, the refinement operation consists
in defining a new grid (if necessary) in such a way that 7 is one of the bounds
on the grid.

definition refine where
refine P sqp = (let i = lower-tick P sqp in
(if (grd P i = sqp) then P else
(wedge (grd P) i sqp, wedge (lg P) i (lqg P i), wedge (fee P) i (fee P i))))

lemma refine-eq:
assumes i = lower-tick P sqp
and grd P i = sqp
shows refine P sqp = P using assms unfolding refine-def Let-def by simp

lemma refine-lg:
assumes i = lower-tick P sqp
and grd P i # sqp
and P’ = refine P sqp
shows lq P’ = wedge (lqg P) i (lqg P %)
using assms unfolding Let-def refine-def lg-def by simp

lemma refine-fee:
assumes i = lower-tick P sqp
and grd P i # sqp
and P’ = refine P sqp
shows fee P’ = wedge (fee P) i (fee P 1)
using assms unfolding Let-def refine-def fee-def by simp

lemma refine-grd:
assumes i = lower-tick P sqp
and P’ = refine P sqp
and grd P i # sqp
shows grd P’ = wedge (grd P) i sqp
using assms unfolding refine-def grd-def Let-def by simp

lemma refine-grd-cong:
assumes PI1 = refine P sqp
and P2 = refine P’ sqp
and grd P = grd P’
shows grd P1 = grd P2
proof (cases grd P (lower-tick P sqp) = sqp)
case True
hence grd P’ (lower-tick P’ sqp) = sqp
using assms unfolding lower-tick-def rng-blw-def by simp
then show ?thesis using assms True unfolding refine-def Let-def by simp
next
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case Fulse
define i where i = lower-tick P sqp
hence i = lower-tick P’ sqp
using assms unfolding lower-tick-def rng-blw-def by simp
have grd P1 = wedge (grd P) i sqp
using False assms unfolding refine-def grd-def i-def Let-def by simp
also have ... = wedge (grd P') i sqp using assms by simp
also have ... = grd P2
using False assms <i = lower-tick P’ sqp»
unfolding refine-def grd-def i-def Let-def by simp
finally show ?thesis .
qed

lemma refine-grd-arg-le:
assumes i = lower-tick P sqp
and P’ = refine P sqp
and j <1
shows grd P’ j = grd P j
proof (cases grd P (lower-tick P sqp) = sqp)
case True
hence P’ = P using assms refine-eq by simp
then show ?thesis by simp
next
case Fulse
hence grd P’ = wedge (grd P) i sqp using assms refine-grd by simp
then show ?thesis using assms by simp
qed

lemma refine-grd-arg-gt:
assumes i = lower-tick P sqp
and P’ = refine P sqp
and grd P (lower-tick P sqp) # sqp

and i < j
shows grd P’ (j+1) = grd P j
proof —

have grd P’ = wedge (grd P) i sqp using assms refine-grd by simp
then show ?thesis using assms by simp
qed

lemma refine-grd-arg-Suc:
assumes i = lower-tick P sqp
and P’ = refine P sqp
and grd P (lower-tick P sqp) # sqp
shows grd P’ (i+1) = sqp
proof —
have grd P’ = wedge (grd P) i sqp using assms refine-grd by simp
then show ?thesis using assms by simp
qed
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lemma refine-fee-arg-le:
assumes i = lower-tick P sqp
and P’ = refine P sqp
and j < ¢
shows fee P’ j = fee P j
proof (cases grd P (lower-tick P sqp) = sqp)
case True
hence P’ = P using assms refine-eq by simp
then show ?thesis by simp
next
case Fulse
hence fee P’ = wedge (fee P) i (fee P i) using assms refine-fee by simp
then show ?thesis using assms by simp
qed

lemma refine-fee-arg-gt:
assumes i = lower-tick P sqp
and P’ = refine P sqp
and grd P (lower-tick P sqp) # sqp

and i < j
shows fee P’ (j+1) = fee P j
proof —

have fee P’ = wedge (fee P) i (fee P i) using assms refine-fee by simp
then show ?thesis using assms by simp
qed

lemma refine-fee-arg-Suc:
assumes i = lower-tick P sqp
and P’ = refine P sqp
and grd P (lower-tick P sqp) # sqp
shows fee P’ (i+1) = fee P i
proof —
have fee P’ = wedge (fee P) i (fee P i) using assms refine-fee by simp
then show ?thesis using assms by simp
qed

lemma refine-lg-arg-le:
assumes i = lower-tick P sqp
and P’ = refine P sqp
and grd P i # sqp
and j < ¢
shows lg P'j=1IlqPj
proof —
have lg P’ = wedge (lg P) i (g P 1)
using refine-lg assms by simp
thus ?thesis using assms by simp
qed

lemma refine-lg-arg-gt:

175



assumes i = lower-tick P sqp
and P’ = refine P sqp
and grd P i # sqp

and i < j
shows lg P/ (j+1) =1lg P j
proof —

have lg P’ = wedge (lg P) i (lqg P 1)
using refine-lg assms by simp
thus ?thesis using assms by simp

qed

lemma refine-lg-arg-Suc:
assumes i = lower-tick P sqp
and P’ = refine P sqp
and grd P i # sqp
shows lq P/ (i+1) =1lg P i
proof —
have lg P’ = wedge (lg P) i (lg P 1)
using refine-lg assms by simp
thus ?thesis using assms by simp
qed

lemma refine-on-grd:
assumes clmm-dsc P
and grd P i = sqp
shows refine P sqp = P
proof —
have i = lower-tick P sqp using assms lower-tick-eq by simp
thus ?thesis using assms unfolding refine-def Let-def by simp
qed

lemma refine-encomp-at-grd:
assumes clmm-dsc P
and P’ = refine P sqp
and grd P (lower-tick P sqp) = sqp
shows encomp-at (grd P') (grd P) j j
proof —
have P’ = P using refine-on-grd assms by simp
have encomp-at (grd P’) (grd P) j j
proof
show grd P j < grd P’ j using <P’ = P» by simp
show grd P/ (j+ 1) < grd P (j + 1) using <P’ = P> by simp
qed
thus ?thesis by auto
qed

lemma refine-encomp-at-arg-le:

assumes clmm-dsc P
and P’ = refine P sqp
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and ¢ = lower-tick P sqp
and grd P i # sqp
and j < ¢
shows encomp-at (grd P') (grd P) j j
proof —
have grd: grd P’ = wedge (grd P) i sqp
using assms unfolding Let-def refine-def grd-def by simp
hence grd P’ j = grd P j using «j < i» by (simp add: grd)
moreover have grd P’ (j+1) < grd P (j+1)
proof (cases j = 1)
case True
hence grd P’ (j+1) = sqp using grd by simp
also have ... < grd P (j+1) using <j = > assms
by (meson lower-tick-ubound)
finally show grd P’ (j+1) < grd P (j+1) by simp
next
case Fulse
hence grd P’ (j+1) < grd P (j+1) using <j < © grd by auto
then show ?thesis by simp
qed
ultimately show ?thesis using encomp-atl[of grd P j grd P’ j] by simp
qed

lemma refine-encomp-at-arg-ge-Suc:
assumes clmm-dsc P
and P’ = refine P sqp
and ¢ = lower-tick P sqp
and grd P i # sqp
and i+1 <j
and 0 < sqp
shows encomp-at (grd P’) (grd P) j (j—1)
proof —
have grd: grd P’ = wedge (grd P) i sqp
using assms unfolding Let-def refine-def grd-def by simp
show ?thesis
proof (cases i+1 = j)
case True
hence grd P i < grd P’ j
using lower-tick-lbound assms grd
by (metis wedge-arg-eq)
moreover have grd P’ (j+1) < grd P (i+1)
using True wedge-arg-gt[of i j+1 grd P sqp] grd
by (simp add: add.commute)
ultimately show ¢thesis using encomp-atl True by auto
next
case Fulse
hence grd P (j — 1) < grd P’ j using assms grd by fastforce
moreover have grd P’ (j+1) < grd P j using grd False assms by simp
ultimately show ?thesis using encomp-atl[of grd P j—1] by simp
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qed
qed

lemma refine-finer-range:
assumes clmm-dsc P
and 0 < sqp
and P’ = refine P sqp
shows finer-range (grd P') (grd P)
proof —
define 7 where ¢ = lower-tick P sqp
show ?thesis
proof (cases grd P i = sqp)
case True
then show ?thesis
using assms refine-encomp-at-grd i-def unfolding finer-range-def by metis
next
case Fulse
show ?thesis unfolding finer-range-def
proof
fix j
show k. encomp-at (grd P') (grd P) j k
proof (cases j < i)
case True
then show ?thesis
using refine-encomp-at-arg-le[of P P’| assms i-def False by auto
next
case Fulse
show ?thesis
proof (cases j = i+1)
case True
then show “thesis
using refine-encomp-at-arg-ge-Suc assms i-def
by (meson dual-order.refl refine-encomp-at-grd)
next
case Fulse
hence i+1 < j using - j < 0> by simp
then show “thesis
using refine-encomp-at-arg-ge-Suc False assms i-def
by (meson refine-encomp-at-grd zle-addl-eg-le zless-add1-eq)
qed
qed
qed
qed
qed

lemma refine-finite-liq:
assumes finite-liq P
and P’ = refine P sqp

shows finite-lig P’
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proof (cases grd P (lower-tick P sqp) = sqp)
case True
then show ?thesis
using assms clmm-dsc-lig unfolding refine-def Let-def by simp
next
case Fulse
define j where j = lower-tick P sqp
have grd: grd P' = wedge (grd P) j sqp using j-def assms False
unfolding refine-def Let-def grd-def by simp
have lg: l¢g P’ = wedge (lg P) j (lg P j) using j-def assms False
unfolding refine-def Let-def lg-def by simp
show ?thesis
using grd wedge-finite-nz-support assms clmm-dsc-lig(1)
unfolding finite-lig-def by (metis lq)
qed

lemma refine-clmm:
assumes clmm-dsc P
and 0 < sqp
and P’ = refine P sqp
shows clmm-dsc P’
proof (cases grd P (lower-tick P sqp) = sqp)
case True
then show ?thesis using assms unfolding refine-def Let-def by simp
next
case Fulse
define j where j = lower-tick P sqp
hence grd P j < sqp
by (simp add: assms lower-tick-lbound)
hence grd P j < sqp using Fulse j-def by simp
have sqp < grd P (j+1) using j-def assms lower-tick-ubound by simp
have grd: grd P’ = wedge (grd P) j sqp using j-def assms False
unfolding refine-def Let-def grd-def by simp
have lq: lg P! = wedge (lg P) j (lg P j) using j-def assms False
unfolding refine-def Let-def lg-def by simp
have fee: fee P’ = wedge (fee P) j (fee P j) using j-def assms False
unfolding refine-def Let-def fee-def by simp
show ?thesis
proof
show span-grid P’
proof
show strict-mono (grd P’)
proof (rule wedge-strict-mono)
show grd P’ = wedge (grd P) j sqp using grd .
show ¢grd P j < sqp using <grd P j < sqp> .
show sqp < grd P (j+1) using <sqp < grd P (j+1)» .
show strict-mono (grd P) using assms by simp
qed
show Vi. 0 < grd P’ i
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using grd assms wedge-gt by (metis clmm-dsc-grid(2))
show Vr>0.3i. grd P' i < r
using grd wedge-as-lbound by (simp add: assms(1))
show Vr. 3i. r < grd P' i
using grd wedge-as-ubound by (simp add: assms(1))
qed
show Vi. 0 < fee P’ i using wedge-ge fee assms
by (metis clmm-dsc-fees)
show Vi. fee P’ i < 1 using wedge-lt fee assms
by (metis clmm-dsc-fees)
show Vi. 0 < lq P’ i using wedge-ge lq assms
by (metis clmm-dsc-lig(2))
show finite-lig P’
using refine-finite-liqg assms clmm-dsc-lig by simp
qed
qed

lemma refine-lower-tick-idz:
assumes clmm-dsc P
and 0 < sqp
and ¢ = lower-tick P sqp
and P’ = refine P sqp
and grd P (lower-tick P sqp) # sqp
shows lower-tick P’ sqp = i+1
proof —
have clmm-dsc P’ using refine-clmm assms by simp
moreover have grd P’ (i+1) = sqp
using refine-grd-arg-Suc assms by simp
ultimately show ?thesis using «clmm-dsc P"» lower-tick-eq by simp
qed

lemma refine-ge-lower-tick-eq:
assumes clmm-dsc P
and 0 < sqp
and i = lower-tick P sqp’
and P’ = refine P sqp
and grd P (lower-tick P sqp) # sqp
and sqp < sqp’
and lower-tick P sqp = lower-tick P sqp’
shows lower-tick P’ sqp’ = i+1
proof (rule lower-tick-charact)
show clmm-dsc P’ using assms refine-clmm by simp
show grd P’ (i + 1) < sqp’ by (metis assms(3—7) refine-grd-arg-Suc)
have sqp’ < grd P (i+1)
by (simp add: assms(1) assms(8) lower-tick-ubound)
also have ... = grd P’ (i + 1 + 1)
by (metis assms(8—5,7)less-add-one refine-grd-arg-gt)
finally show sqp’ < grd P’ (i + 1 + 1) .
qed
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lemma refine-ge-lower-tick-gt:
assumes clmm-dsc P
and 0 < sqp
and sgp < sqp’
and ¢ = lower-tick P sqp’
and P’ = refine P sqp
and grd P (lower-tick P sqp) # sqp
and lower-tick P sqp < lower-tick P sqp’
shows lower-tick P’ sqp’ = i+1
proof (rule lower-tick-charact)
show clmm-dsc P’ using assms refine-clmm by simp
define j where j = lower-tick P sqp
have sqp < sqp’ using assms lower-tick-lt by simp
have grd P’ = wedge (grd P) j sqp using assms j-def refine-grd by simp
hence grd P’ (i+1) = grd P i using assms(4,7) j-def by force
also have ... < sqp’ using assms lower-tick-geq by simp
finally show grd P’ (i+1) < sqp’.
have sqp’ < grd P (i+1)
by (simp add: assms(1) assms(4) lower-tick-ubound)
also have ... = grd P’ (i+1 + 1)
by (metis assms(4—"7) dual-order.strict-trans less-add-one refine-grd-arg-gt)
finally show sgp’ < grd P’ (i + 1 + 1) .
qed

lemma refine-ge-lower-tick:
assumes clmm-dsc P
and 0 < sqp
and sqp < sqp’
and i = lower-tick P sqp’
and P’ = refine P sqp
and grd P (lower-tick P sqp) # sqp
shows lower-tick P’ sqp’ = i+1
proof (cases lower-tick P sqp = lower-tick P sqp’)
case True
then show ?thesis using assms refine-ge-lower-tick-eq by simp
next
case Fulse
then show ?thesis using assms refine-ge-lower-tick-gt
by (smt (verit) lower-tick-mono)
qed

lemma refine-lower-tick:
assumes clmm-dsc P
and P’ = refine P sqp
and 0 < sqp
shows grd P’ (lower-tick P’ sqp) = sqp
proof (cases grd P (lower-tick P sqp) = sqp)
case True
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then show ?thesis using refine-eq assms by simp
next
case Fulse
define i where ¢ = lower-tick P sqp
have grd P’ = wedge (grd P) i sqp
using assms Fualse refine-grd i-def by simp
hence grd P’ (i+1) = sqp using wedge-arg-eq assms by simp
moreover have clmm-dsc P’ using assms refine-clmm by simp
ultimately show ?thesis by (simp add: lower-tick-eq)
qed

lemma refine-finer-ranges:
assumes clmm-dsc P
and 0 < sqp
and P’ = refine P sqp
shows finer-ranges (grd P’) (grd P)
proof (rule finer-ranges.intro)
show strict-mono (grd P’)
using refine-clmm clmm-dsc-grid assms by metis
show mono (grd P) using assms clmm-dsc-grid
by (simp add: strict-mono-mono)
show finer-range (grd P') (grd P) using assms refine-finer-range
by (metis)
qed

lemma refine-coarse-idz-grd:
assumes clmm-dsc P
and P’ = refine P sqp
and grd P (lower-tick P sqp) = sqp
shows coarse-idx (grd P’) (grd P) j = j
proof —
interpret finer-ranges grd P’ grd P
using refine-finer-ranges[of P sqp P'] assms
by (metis clmm-dsc-grid(2))
show ?thesis using coarse-idx-eq refine-encomp-at-grd assms
by (metis clmm-dsc-grd-Suc inf.coboundedl inf.strict-order-iff
refine-on-grd)
qged

lemma refine-coarse-idz-arg-le:
assumes clmm-dsc P
and P’ = refine P sqp
and ¢ = lower-tick P sqp
and grd P i # sqp
and j < ¢
and 0 < sqp
shows coarse-idx (grd P’) (grd P) j = j
proof —
interpret finer-ranges grd P’ grd P
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using refine-finer-ranges[of P sqp P’] assms by metis
show ?thesis using coarse-idx-eq refine-encomp-at-arg-le assms
by (metis coarse-idz-bounds encomp-idz-unique)
qed

lemma refine-coarse-idz-arg-gt:
assumes clmm-dsc P
and 0 < sqp
and P’ = refine P sqp
and ¢ = lower-tick P sqp
and grd P i # sqp
and i+1 <j
shows coarse-idz (grd P’) (grd P) j = j—1
proof —
interpret finer-ranges grd P’ grd P
using refine-finer-ranges|of P sqp P’] assms by metis
show ?thesis
using coarse-idz-eq coarse-idx-bounds refine-encomp-at-arg-ge-Suc
by (metis assms encomp-idz-unique)
qed

lemma refine-lg-idz-neq:
assumes clmm-dsc P
and 0 < sqp
and P’ = refine P sqp
and grd P (lower-tick P sqp) # sqp
shows lqg P’ j = lq P (pool-coarse-idz P’ P j)
proof —
define ¢ where ¢ = lower-tick P sqp
fix j
{
assume j < ¢
hence pool-coarse-idz P' P j = j
using refine-coarse-idz-arg-le assms i-def
unfolding pool-coarse-idz-def by simp
moreover have lg P’ j = lg P j
using <j < > refine-lqg assms i-def by simp
ultimately have pool-coarse-ide P' Pj = jlqgP'j=1qPj
by auto
} note a = this
{
assume i+1 < j
hence pool-coarse-ide P' P j = j—1
using refine-coarse-idz-arg-gt assms i-def
unfolding pool-coarse-idz-def by simp
moreover have lg P’ j = lq P (j—1)
proof (cases i+1 = j)
case True
then show ?thesis using refine-lg assms wedge-arg-eq unfolding i-def
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by auto
next
case Fulse
hence i+1 < j using «i+1 < j by simp
then show ?thesis using refine-lqg assms wedge-arg-gt unfolding i-def
by simp
qed
ultimately have pool-coarse-ide P' Pj = j—11qg P'j=1qg P (j—1)
by auto
} note b = this
show lq P’ j = lg P (pool-coarse-idx P' P j) using a b by fastforce
qed

lemma refine-fee-idz-neq:
assumes clmm-dsc P
and 0 < sqp
and P’ = refine P sqp
and grd P (lower-tick P sqp) # sqp
shows fee P’ j = fee P (pool-coarse-idz P’ P j)
proof —
define i where ¢ = lower-tick P sqp
fix j
{
assume j < ¢
hence pool-coarse-ide P' P j = j
using refine-coarse-idz-arg-le assms i-def
unfolding pool-coarse-idz-def by simp
moreover have fee P’ j = fee P j
using <j < i refine-fee assms i-def by simp
ultimately have pool-coarse-idet P’ P j = j fee P’ j = fee P j by auto
} note a = this
{
assume i+1 < j
hence pool-coarse-ide P' P j = j—1
using refine-coarse-idz-arg-gt assms i-def
unfolding pool-coarse-idz-def by simp
moreover have fee P’ j = fee P (j—1)
proof (cases i+1 = j)
case True
then show ?thesis using refine-fee assms wedge-arg-eq unfolding i-def
by auto
next
case Fulse
hence i+1 < j using <i+1 < j) by simp
then show ?thesis using refine-fee assms wedge-arg-gt unfolding i-def
by simp
qed
ultimately have pool-coarse-ide P’ P j = j—1 fee P’ j = fee P (j—1)
by auto
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} note b = this
show fee P’ j = fee P (pool-coarse-idz P' P j) using a b by fastforce
qed

lemma refine-cst-fees:
assumes Ai. fee P i = phi
and P’ = refine P sqp
shows Ai. fee P’ i = phi
by (smt (verit, ccfv-SIG) assms refine-eq refine-fee refine-fee-arg-Suc
wedge-arg-gt wedge-arg-lt)

lemma refine-finer-neq:
assumes clmm-dsc P
and 0 < sqp
and P’ = refine P sqp
and grd P (lower-tick P sqp) # sqp
shows finer-pool P’ P
proof (intro finer-pooll conjI alll)
define ¢ where ¢ = lower-tick P sqp
show finer-range (grd P’) (grd P) using refine-finer-range assms by simp
show Aj. lg P'j = lg P (pool-coarse-ide P' P j)
using refine-lg-idz-neq assms by simp
show Aj. fee P’ j = fee P (pool-coarse-ide P’ P j)
using refine-fee-idz-neq assms by simp
qed

lemma refine-finer:
assumes clmm-dsc P
and 0 < sqp
and P’ = refine P sqp
shows finer-pool P’ P
proof (cases grd P (lower-tick P sqp) = sqp)
case True
hence P’ = P using assms refine-on-grd by simp
then show “thesis using finer-pool-refl assms by simp
next
case Fulse
then show ?thesis using assms refine-finer-neq by simp
qed

lemma refine-nz-lq-sub:
assumes clmm-dsc P
and 0 < sqp
and P’ = refine P sqp
shows (\j. pool-coarse-idz P' P j) ‘ nz-support (lg P") C
nz-support (lg P)
proof (cases grd P (lower-tick P sqp) = sqp)
case True
then show ?thesis using refine-eq assms coarse-idx-refl
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by (simp add: pool-coarse-idx-def)
next
case Fulse
show ?thesis
proof
fix [
assume [€ (\j. pool-coarse-ide P’ P j) ¢ nz-support (lg P’)
hence 3k € nz-support (lg P’). | = pool-coarse-idz P' P k by auto
from this obtain k where k € nz-support (lg P’)
and | = pool-coarse-idz P’ P k by auto
hence lq P’ k# 0 unfolding nz-support-def by simp
hence lg Pl # 0
using assms <l = pool-coarse-idz P' P k> refine-lg-idz-neq False by simp
thus [ € nz-support (lg P) unfolding nz-support-def by simp
qed
qed

lemma refine-nz-lg-ne:
assumes clmm-dsc P
and P’ = refine P sqp
and nz-support (lg P) # {}
shows nz-support (lg P") # {}
proof (cases grd P (lower-tick P sqp) = sqp)
case True
then show “thesis using refine-eq assms by simp
next
case Fulse
have 3j. j€ (nz-support (lg P)) using assms by auto
from this obtain j where j € nz-support (lg P) by auto
hence lq P j# 0 unfolding nz-support-def by simp
hence je nz-support (lg P') V j+1 € nz-support (lg P’)
unfolding nz-support-def
by (smt (verit) False assms(2) mem-Collect-eq refine-lq refine-lg-arg-gt
wedge-arg-t)
thus nz-support (lg P') # {} by auto
qed

lemma refine-nz-lg-emp:
assumes clmm-dsc P
and P’ = refine P sqp
and nz-support (lg P) = {}
shows nz-support (lg P") = {}
proof (cases grd P (lower-tick P sqp) = sqp)
case True
then show ?thesis using refine-eq assms by simp
next
case Fulse

{

fix j
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have lgPj=01lqP (j—1) =0
using assms unfolding nz-support-def by simp+
hence lq P’ j = 0 using assms refine-lg-arg-le refine-lg-arg-gt
by (smt (verit, del-insts) False refine-lg wedge-arg-eq wedge-arg-gt)

thus ?thesis unfolding nz-support-def by simp
qed

lemma refine-idz-min-eq:
assumes clmm-dsc P
and P’ = refine P sqp
and idz-min (lg P) < lower-tick P sqp
shows idz-min (lg P") = idz-min (lqg P)
proof —
interpret finite-lig-pool
by (simp add: assms(1) clmm-dsc-lig(1) finite-lig-pool.intro)
show ?thesis
proof (cases nz-support (lg P) = {})
case True
hence nz-support (lg P") = {} using assms refine-nz-lg-emp by simp
then show ?thesis by (simp add: True idz-min-def)
next
case Fulse
show ?thesis
proof (rule idz-min-finitel [symmetric])
define ¢ where i = idz-min (lg P)
hence lq P i # 0 using Fulse by (simp add: idz-min-mem nz-supportD)
thus lqg P’ i # 0 using refine-lg-arg-le assms
by (metis i-def refine-eq)
show finite (nz-support (lg P'))
using assms refine-finite-liq clmm-dsc-lig unfolding finite-lig-def
by simp
fix j
assume j < ¢
hence lq P j = 0 using i-def
by (simp add: False fin-nz-sup idz-min-finite-It)
thus lg P’ j = 0 using refine-lg-arg-le assms
by (metis <j < © dual-order.strict-trans! i-def leD nle-le refine-on-grd)
qed
qed
qed

lemma refine-idz-min-Suc-eq:

assumes clmm-dsc P

and P’ = refine P sqp

and nz-support (lg P) # {}

and grd P (lower-tick P sqp) # sqp

and lower-tick P sqp < idz-min (lg P)
shows idz-min (lg P') = idz-min (lg P) + 1
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proof —
interpret finite-lig-pool
by (simp add: assms(1) clmm-dsc-lig(1) finite-lig-pool.intro)
show ?thesis
proof (rule idz-min-finitel [symmetric])
show finite (nz-support (lg P'))
using assms refine-finite-liq clmm-dsc-lig unfolding finite-lig-def
by simp
define ¢ where ¢ = idz-min (lg P)
hence lg P i # 0 using assms by (simp add: idz-min-mem nz-supportD)
thus lg P’ (i+1) # 0 using refine-lg-arg-gt assms i-def by simp
fix j
assume j < i + I
hence lg P (j—1) = 0 using i-def
by (simp add: assms fin-nz-sup idx-min-finite-It)
show lg P'j =0
proof (cases j < lower-tick P sqp)
case True
hence lg P j = 0 using assms
by (simp add: fin-nz-sup idz-min-finite-lt)
thus lg P’ j = 0 using refine-lg-arg-le assms i-def True by simp
next
case Fulse
show ?thesis
proof (cases j = lower-tick P sqp + 1)
case True
then show ?thesis
using refine-lg-arg-Suc assms i-def <lg P (j — 1) = 0> by simp
next
case Fulse
hence lower-tick P sqp < j — 1 using - j < lower-tick P sqp» by simp
thus ?thesis
using «lg P (j—1) = 0> refine-lg-arg-gt assms i-def by fastforce
qed
qed
qed
qed

lemma refine-grd-min:
assumes clmm-dsc P
and P’ = refine P sqp
and nz-support (lg P) # {}
shows grd-min P = grd-min P’
proof (cases grd P (lower-tick P sqp) = sqp)
case True
hence P = P’ using assms refine-eq by simp
then show ?thesis by simp
next
case Fulse
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define i where i = idx-min (lqg P)
define k£ where k = lower-tick P sqp
show ?thesis
proof (cases i < k)
case True
hence idz-min (lg P') = i
using i-def refine-idz-min-eq k-def assms by simp
moreover have grd P’ i = grd P i
using refine-grd-arg-le assms k-def True by simp
ultimately show ?thesis unfolding grd-min-def idz-min-img-def i-def by simp
next
case Fulse
hence idz-min (lg P') = i+1
using assms «grd P (lower-tick P sqp) # sqp> refine-idz-min-Suc-eq
k-def i-def
by simp
moreover have grd P’ (i+1) = grd P i
using refine-grd-arg-gt[of lower-tick P sqp P sqp P’ i] <= i < k»
assms calculation i-def k-def refine-eq
by fastforce
ultimately show ?thesis unfolding grd-min-def idx-min-img-def i-def by simp
qed
qed

lemma refine-idz-maz-eq:
assumes clmm-dsc P
and P’ = refine P sqp
and idz-maz (lg P) < lower-tick P sqp
shows idz-maz (lg P') = idz-maz (lg P)
proof —
interpret finite-lig-pool
by (simp add: assms(1) clmm-dsc-lig(1) finite-lig-pool.intro)
show ?thesis
proof (cases grd P (lower-tick P sqp) = sqp)
case True
hence P’ = P using refine-eq assms by simp
then show “thesis by simp
next
case Fulse
show ?thesis
proof (cases nz-support (lg P) = {})
case True
hence nz-support (lg P") = {} using assms refine-nz-lg-emp by simp
then show %thesis by (simp add: True idz-maz-def)
next
case Fulse
show ?thesis
proof (rule idz-maz-finitel [symmetric])
define i where i = idx-maz (lg P)
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hence lqg P i # 0 using Fulse by (simp add: idz-maz-mem nz-supportD)
thus lg P’ i # 0 using refine-lg-arg-le assms
by (metis i-def refine-on-grd zle-add1-eg-le zless-add1-eq)
show finite (nz-support (lg P’))
using assms refine-finite-liq clmm-dsc-lig unfolding finite-lig-def
by simp
fix j
assume 7 < j
hence lg P j = 0 using i-def Fualse fin-nz-sup idz-max-finite-gt by auto
show lg P'j =0
proof (cases j < lower-tick P sqp)
case True
then show ?thesis
by (metis <lg P j = 0> assms(2) refine-eq refine-lg-arg-le)
next
case Fulse
show ?thesis
proof (cases j = lower-tick P sqp + 1)
case True
hence lg P’ j = lg P (lower-tick P sqp)
using assms refine-lg-arg-Suc
by (metis <lg P j = 0> fin-nz-sup idz-maz-finite-gt refine-eq)
also have ... = 0
using assms idz-max-finite-gt by (metis fin-nz-sup)
finally show #%thesis .
next
case Fulse
hence i < j—1 using i-def assms - j < lower-tick P sqp> by simp
have lg P'j=1lq P (j—1)
using refine-lg-arg-gt[of - P sqp P’ j—1] False
<= j < lower-tick P sqpy <grd P (lower-tick P sqp) # sqp> assms
by simp
also have ... = 0
using i < j—1» i-def Fualse fin-nz-sup idz-max-finite-gt by metis
finally show #?thesis .
qed
qged
qed
qed
qed
qed

lemma refine-idz-maz-Suc-eq:

assumes clmm-dsc P

and P’ = refine P sqp

and nz-support (lg P) # {}

and grd P (lower-tick P sqp) # sqp

and lower-tick P sqp < idx-maz (lq P)
shows idz-maz (lg P’) = idz-maz (lg P) + 1
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proof —
interpret finite-lig-pool
by (simp add: assms(1) clmm-dsc-lig(1) finite-lig-pool.intro)
show ?thesis
proof (rule idz-maz-finitel [symmetric))
show finite (nz-support (lg P'))
using assms refine-finite-liq clmm-dsc-lig unfolding finite-lig-def
by simp
define ¢ where i = idz-maz (lg P)
hence lg P i # 0 using assms by (simp add: idz-max-mem nz-supportD)
show lq P’ (i+1) # 0
proof (cases i = lower-tick P sqp)
case True
then show ?thesis
using refine-lg-arg-Suc assms <lg P i # 0> unfolding i-def by simp
next
case Fulse
then show ?thesis using refine-lg-arg-gt assms <lq P i # 0> i-def by simp
qed
fix j
assume ¢ + 1 < j
hence lg P'j=1g P (j—1)
using refine-lg-arg-gtlof - P - P' j—1] assms i-def i + 1 < j»
fin-nz-sup i-def
by force
also have ... = 0 using i-def <i + 1 <
by (simp add: assms fin-nz-sup idz-max-finite-gt)
finally show lg P’ j = 0 .
qed
qed

lemma refine-lower-tick-idz-mazx:
assumes clmm-dsc P
and 0 < sqp
and P’ = refine P sqp
and nz-support (lg P) # {}
and lower-tick P sqp < idx-maz (lq P)
shows lower-tick P’ sqp < idz-max (lg P’)
proof (cases grd P (lower-tick P sqp) = sqp)
case True
then show “thesis using assms refine-eq by simp
next
case Fulse
hence idz-maz (lg P’) = idz-mazx (lg P) + 1
using assms refine-idz-maz-Suc-eq by simp
moreover have lower-tick P’ sqp = lower-tick P sqp + 1
using False refine-lower-tick-idx
by (simp add: assms(1—3))
ultimately show ?thesis using assms by simp

191



qed

lemma refine-grd-max:
assumes clmm-dsc P
and P’ = refine P sqp
and nz-support (lg P) # {}
shows grd-maz P = grd-maz P’
proof (cases grd P (lower-tick P sqp) = sqp)
case True
hence P = P’ using assms refine-eq by simp
then show ?thesis by simp
next
case Fulse
define i where ¢ = idz-maz (lg P)
define k£ where k = lower-tick P sqp
show ?thesis
proof (cases i < k)
case True
hence idx-maz (lg P') = i
using i-def refine-idz-maz-eq k-def assms by simp
moreover have grd P’ (i+1) = grd P (i+1)
using refine-grd-arg-le assms k-def True by simp
ultimately show #thesis
unfolding grd-maz-def idz-maz-img-def i-def by simp
next
case Fulse
hence idz-maz (lg P’) = i+1
using assms <grd P (lower-tick P sqp) # sqp> refine-idz-maz-Suc-eq
k-def i-def
by simp
moreover have grd P’ (i+2) = grd P (i+1)
using refine-grd-arg-gt[of lower-tick P sqp P sqp P’ i+1] <= i < k»
assms calculation i-def k-def refine-eq
by (metis is-num-normalize(1) one-add-one verit-comp-simplify1 (3)
zle-add1-eq-le)
ultimately show ?thesis unfolding grd-max-def idz-mazx-img-def i-def
by (simp add: add.commute)
qed
qed

lemma refine-quote-gross:

assumes clmm-dsc P

and P’ = refine P sqp

and 0 < sqp
shows quote-gross P' = quote-gross P
proof (rule finer-clmm.finer-quote-gross-eq)

show finer-clmm P’ P

proof

show clmm-dsc P using assms by simp
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show clmm-dsc P’ using assms refine-clmm by simp
show finer-pool P’ P using assms refine-finer by simp
qed
qed

lemma refine-nonzero-lig:
assumes clmm-dsc P
and lower-tick P sqp < i
and grd P (lower-tick P sqp) # sqp
and P’ = refine P sqp
and L=1Iq P
and L' = lq P’
shows {I. L'l £ 0Ni+1 <l}=Ni.i+ 1) ‘{k. LE#0Ni<Ek}
proof
show {l. L'l A0 Ni+1 <1} C(Ni.i+ 1) ‘{k.Lk#0Ni<Ek}
proof
fix x
assume ¢ € {I. L'l # 0 AN i+1 < [}
hence L' z # 0 and i+1 < z by simp+
hence L' z = L (x—1) using assms(2—06) refine-lg by auto
moreover have | < z—1 using «<i+1 < x> by simp
ultimately have z—1 € {k. Lk # 0 N i < k} using <L’ = # 0> by auto
thusz € (\i. i + 1) “{k. Lk# 0 ANi<k}
by (simp add: rev-image-eql)
qed
next
show (Mi. i+ 1) ‘{k.LE#O0Ni<k}C{l.LI#£0Ni+1<]I}
proof
fix z
assume r € (M. i+ 1) ‘{k. Lk# 0 Ni<k}
hence 3y. y € {k. Lk # 0 N i < k} Az = y+1 by auto
from this obtain y where y € {k. Lk # 0 N i < k} and z = y+1 by auto
hence L y # 0 and i < y by simp+
hence L'z # 0 using «x = y + 1) assms(2—6) refine-lg-arg-gt by auto
moreover have i+1 < z using ¢ = y+1» <i < y» by simp
ultimately show z€ {l. L'l # 0 AN i + 1 < I} by auto
qged
qed

lemma refine-pool-base-net-grd-eq:
assumes clmm-dsc P
and nz-support (lg P) # {}
and P’ = refine P sqp
and 0 < sqp
and sqp < grd-max P
and grd P (lower-tick P sqp) # sqp
and sgp < sqp’
shows base-net P’ sqp’ = base-net P sqp’
proof —
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have clmm-dsc P’ using assms refine-clmm by simp
define L where L = lq P
define L’ where L' = lqg P’
define j where j = lower-tick P’ sqp’
define ¢ where i = lower-tick P sqp’
have lower-tick P sqp < i using assms(1,4,7) i-def lower-tick-mono by auto
have j = i + 1 using refine-ge-lower-tick assms j-def i-def by simp
have base-net P’ sqp’ = L' j * (inverse sqp’ — inverse (grd P' (j + 1))) +
(UL L#0NG<L
L' 1 * (inverse (grd P'1) — inverse (grd P' (I + 1))))
using base-net-sum j-def L'-def assms <clmm-dsc P’y by auto
also have ... = L i x (inverse sqp’ — inverse (grd P (i + 1))) +
Sl Ll£A0nj<
L' 1 % (inverse (grd P'1) — inverse (grd P' (I + 1))))
proof —
have grd P’ (j+1) = grd P (i+1)
using refine-grd-arg-gt <j = i + 1> assms(1,3,4,6,7) i-def lower-tick-mono
zle-add1-eq-le
by presburger
moreover have L i = L’ j using refine-lg-arg-Suc <j = ¢ + 1>
by (metis L'-def L-def assms(1,3,4,6,7) i-def lower-tick-mono refine-lg-arg-gt

zle-add1-eq-le zless-add1-eq)
ultimately show ¢thesis by simp
qed
also have ... = L i * (inverse sqp’ — inverse (grd P (i + 1))) +
OCk|LE#0Ni<E.
L k x (inverse (grd P k) — inverse (grd P (k + 1))))
proof —
have 3 I | L' I#0Nj<lL
L’ 1 x (inverse (grd P' 1) — inverse (grd P’ (I + 1)))) =
OCk|LEk#0Ni<Ek.
L k x (inverse (grd P k) — inverse (grd P (k + 1))))
proof (rule sum.reindex-cong)
define sc where sc = (A(i::int). i + 1)
show inj-on sc {k. L k # 0 A i < k} using sc-def by simp
have {I. L'l £ O0ANi+1 <} =i.i+ 1) ‘{k.LEk#0Ni<Ek}
proof (rule refine-nonzero-liq)
show lower-tick P sqp < i
using i-def assms(1,4,7) lower-tick-mono by auto
qged (simp add: assms L-def L'-def)+
thus {i. L' i £ 0 Aj<i}=(Ni.i+ 1) {k.Lk#0Ni<k}
using j = i+1» by simp
fix z
assume asz: ¢ € {k. Lk # 0 N i<k}
hence L' (x + 1) = L z using <lower-tick P sqp < O
by (simp add: L'-def L-def assms(3) assms(6) refine-lg-arg-gt)
moreover have grd P’ (z + 1) = grd Pz
using <lower-tick P sqp < i) asz assms(3,6) refine-grd-arg-gt by auto
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moreover have grd P/ (x + 1 + 1) = grd P (z + 1)
proof —
have ¢ < z + 1 using asz by simp
thus ?thesis using <lower-tick P sqp < 0>
by (metis assms(8) assms(6) order.strict-trans refine-grd-arg-gt
zle-add1-eq-le zless-add1-eq)
qed
ultimately show L’ (z + 1) *
(inverse (grd P' (z + 1)) — inverse (grd P’ (x + 1 + 1))) =
L z x (inverse (grd P x) — inverse (grd P (x + 1)))

by simp
qed
thus ?thesis by simp
qed
also have ... = base-net P sqp’

using base-net-sum i-def L-def assms <clmm-dsc P’y by auto
finally show ?thesis .
qed

lemma refine-base-net-eq:

assumes clmm-dsc P

and nz-support (lg P) # {}

and P’ = refine P sqp

and 0 < sqp

and sqp < grd-mazx P

and sgp < sqp’
shows base-net P’ sqp’ = base-net P sqp’
proof (cases grd P (lower-tick P sqp) = sqp)

case True

then show %thesis by (simp add: assms(3) refine-eq)
next

case Fulse

then show ?thesis using assms refine-pool-base-net-grd-eq by simp
qed

6.2 CLMM pool restriction and slice

The restriction operation intuitively consists in deleting all the liquidity
potentially available below the index provided as an argument.

definition restrict-pool where
restrict-pool i P =
(grd P,
(M. if j < i then 0 else lg P j),
(. fee P )

lemma restrict-pool-grd|simp]:

shows grd (restrict-pool i P) = grd P
unfolding restrict-pool-def grd-def by simp
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lemma restrict-pool-lower-tick:
assumes P’ = restrict-pool i P
shows lower-tick P sqp = lower-tick P’ sqp
using assms unfolding lower-tick-def rng-blw-def by simp

lemma restrict-pool-lt:
assumes j < ¢
shows lq (restrict-pool i P) j = 0 fee (restrict-pool i P) j = fee P j
using assms unfolding restrict-pool-def lg-def fee-def by auto

lemma restrict-pool-ge:
assumes ¢ < j
shows lq (restrict-pool i P) j =1q P j
fee (restrict-pool ¢ P) j = fee P j
using assms unfolding restrict-pool-def lg-def fee-def by auto

lemma restrict-pool-lg-sub:
assumes P’ = restrict-pool i P
shows nz-support (lg P') C nz-support (lqg P)
proof
fix j
assume j € nz-support (lg P’)
hence i < j
using restrict-pool-lt assms linorder-le-less-linear
unfolding nz-support-def by blast
hence lq P j # 0
by (metis <j € nz-support (lg P’)y assms nz-supportD restrict-pool-ge(1))
thus j € nz-support (lg P) unfolding nz-support-def by auto
qed

lemma restrict-pool-finite-lig:
assumes finite-lig P
and P’ = restrict-pool i P

shows finite-lig¢ P’ using restrict-pool-lg-sub assms unfolding finite-liq-def
by (metis rev-finite-subset)

lemma restrict-pool-nz-liq:

assumes finite-lig P

and P’ = restrict-pool i P

and ¢ < idz-maz (lg P)

and nz-support (lg P) # {}
shows nz-support (lg P") # {}
proof —

have lg P’ (idz-maz (lg P)) # 0

by (simp add: assms finite-lig-pool.idz-maz-mem finite-lig-pool-def
nz-supportD restrict-pool-ge(1))

thus ?thesis unfolding nz-support-def by auto

qed
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lemma restrict-pool-idz-mazx:
assumes finite-liq P
and P’ = restrict-pool i P
and i < idz-maz (lg P)
and nz-support (lg P) # {}
shows idz-mazx (lg P) = idx-maz (lg P’)
proof (rule idz-maz-finitel)
show finite (nz-support (lg P’))
using assms finite-lig-def restrict-pool-finite-lig by simp
show lg P’ (idz-max (lg P)) # 0
by (simp add: assms finite-lig-pool.idz-maz-mem finite-lig-pool-def
nz-supportD restrict-pool-ge(1))
fix j
assume idz-maz (lg P) < j
hence lg Pj =0
using assms(1) assms(4) finite-lig-def idz-maz-finite-gt by blast
thus lg P'j =0
using <idz-maz (lg P) < j» assms(2) assms(3) restrict-pool-ge(1) by auto
qed

lemma restrict-pool-clmm:
assumes clmm-dsc P
and P’ = restrict-pool i P
shows clmm-dsc P’
proof
show span-grid P’ using assms restrict-pool-grd span-grid-eq by auto
show finite-liqg P’
using assms restrict-pool-finite-liq clmm-dsc-liqg by simp
show Vi. 0 < lq P’ i
by (metis assms clmm-dsc-liq(2) not-le-imp-less order-refl
restrict-pool-ge(1) restrict-pool-lt(1))
show Vi. 0 < fee P’ i
by (metis assms clmm-dsc-def lel restrict-pool-ge(2)
restrict-pool-1t(2))
show Vi. fee P'i < 1
by (metis assms clmm-dsc-fees lel restrict-pool-ge(2) restrict-pool-lt(2))
qed

lemma restrict-pool-quote-gross-leq:
assumes mono (grd P)
and sqp < grd P i
and P’ = restrict-pool i P
shows quote-gross P’ sqp = 0 unfolding quote-gross-def
proof (rule gen-quote-zero)
show mono (grd P’) using assms restrict-pool-grd by simp
fix j
assume grd P’ j < sqp
hence grd P j < sqp using restrict-pool-grd assms by simp
hence grd P j < grd P i using assms by simp
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hence j < i using assms mono-strict-invE by auto

hence lq P’ j = 0 by (simp add: assms restrict-pool-lt)

thus gross-fct (lg P’) (fee P’) j = 0 unfolding gross-fct-def by simp
qed

lemma restrict-pool-quote-gross:
assumes clmm-dsc P
and P’ = restrict-pool j P
and 0 < sqp
and j < lower-tick P sqp
shows quote-gross P sqp — quote-gross P (grd P j) = quote-gross P’ sqp
proof —
define L where L = gross-fct (lg P) (fee P)
define L’ where L' = gross-fct (lg P') (fee P’
define k£ where k = lower-tick P sqp
have clmm-dsc P’ using restrict-pool-clmm assms by simp
have eq: Vk > j. L' k=1L k
using restrict-pool-ge gross-fct-cong L'-def L-def assms(2) by blast
have grd P k < sqp using lower-tick-geq assms unfolding k-def by simp
have j = lower-tick P (grd P j)
by (simp add: assms(1) lower-tick-eq)
hence j = lower-tick P’ (grd P j)
using restrict-pool-lower-tick[of P’] assms by simp
have k = lower-tick P’ sqp
using k-def assms restrict-pool-lower-tick by blast
show ?thesis
proof (cases j = k)
case True
have quote-gross P sqp — quote-gross P (grd P j) = L j * (sqp — grd P j)
using clmm-quote-gross-diff-eq’[of P L j
by (metis L-def True <grd P k < sqp> assms(1) clmm-dsc-grid(2) k-def
lower-tick-eq)
also have ... = L' j * (sqp — grd P j) using eq by simp
also have ... = quote-gross P’ sqp — quote-gross P’ (grd P j)
proof (rule clmm-quote-gross-diff-eq’[symmetric])
show clmm-dsc P’ using (clmm-dsc P’y .
show L’ = gross-fct (lqg P’) (fee P’) using L'-def by simp
show j = lower-tick P’ sqp
using True restrict-pool-lower-tick[of P'] assms k-def by simp
show j = lower-tick P’ (grd P j) using <j = lower-tick P’ (grd P j)» .
show 0 < grd P j using assms by simp
show grd P j < sqp using True <grd P k < sqp> k-def by auto
qed
also have ... = quote-gross P’ sqp
using assms restrict-pool-quote-gross-leq
by (simp add: strict-mono-mono)
finally show ?thesis .
next
case Fulse
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define M where M = {I. LI # 0 Nj<INI<Ek}
define M’ where M' = {I. L'l A0 Nj<IANIl<Ek}
have M = M’ using eq unfolding M-def M’-def by auto
have quote-gross P sqp — quote-gross P (grd P j) = L k % (sqp — grd P k) +
sum (A1 Ll x (grd P (I4+1) — grd P 1)) M +
Ljx*(grd P (j+1) — grd P j) unfolding M-def
proof (rule clmm-quote-gross-diff-eq)
show j < k using assms k-def False by simp
show L = gross-fct (Ig P) (fee P) using L-def by simp
show j = lower-tick P (grd P j) using assms lower-tick-eq by simp
show clmm-dsc P using assms by simp
show k = lower-tick P sqp using k-def by simp
show 0 < grd P j using assms by simp
show grd P j < sqp
using <grd P k < sqp> <j < k» assms(1) clmm-dsc-grd-smono by fastforce
qed
also have ... = L' k x (sqp — grd P' k) +
OoleM. L'l % (grd P’ (1 4+ 1) — grd P' 1)) +
L'jx (grd P'(j+ 1) — grd P’ j)
proof —
have L' k = L k using eq assms k-def by simp
moreover have L j = L' j using eq by simp
moreover have (> keM. L'k * (g9rd P’ (k + 1) — grd P' k)) =
> keM.Lkx(grdP (k+1)— grd Pk))
using eq sum.cong M-def assms by simp
ultimately show ?thesis using assms <M = M’ by simp
qed
also have ... = quote-gross P’ sqp — quote-gross P’ (grd P’ j)
unfolding M'-def
proof (rule clmm-quote-gross-diff-eq[symmetric])
show clmm-dsc P’ using «clmm-dsc P’y .
show L’ = gross-fct (lg P’) (fee P’) using L’-def by simp
show j = lower-tick P’ (grd P’ j)
using «j = lower-tick P (grd P j)»
by (simp add: <clmm-dsc P’y lower-tick-eq)
show k = lower-tick P’ sqp using <k = lower-tick P’ sqp> .
show 0 < grd P’ j by (simp add: <clmm-dsc P")
show grd P’ j < sqp
using «j = lower-tick P (grd P j)» assms lower-tick-It’ by fastforce
show j < k using assms Fualse k-def by simp
qed
also have ... = quote-gross P’ sqp
proof —
have quote-gross P' (grd P’ j) = 0
using assms restrict-pool-quote-gross-leq
by (simp add: strict-mono-mono)
thus “thesis by simp
qed
finally show ?%thesis .
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qed
qed

lemma restrict-pool-base-net-eq:
assumes clmm-dsc P
and nz-support (lg P) # {}
and P’ = restrict-pool i P
and ¢ < idz-maz (lg P)
and grd P i < sqp’
shows base-net P’ sqp’ = base-net P sqp’
proof —
have clmm-dsc P’ using assms restrict-pool-clmm by simp
have 0 < grd P ¢ using assms by simp
hence 0 < sqp’ using assms by linarith
define L where L = lq P
define L' where L' = lqg P’
define j where j = lower-tick P’ sqp’
have base-net P’ sqp’ = L' j * (inverse sqp’ — inverse (grd P' (j + 1))) +
(i | L' i#0Nj<i
L' i x (inverse (grd P’ i) — inverse (grd P’ (i + 1))))
using base-net-sum j-def L'-def assms «clmm-dsc Py <0 < sqp’> by auto
also have ... = L j % (inverse sqp’ — inverse (grd P (j + 1))) +
SCi|LiAO0NG<i.
L i * (inverse (grd P i) — inverse (grd P (i + 1))))
proof —
have grd: \k. i < k = grd P k = grd P’ k using assms by simp
have lg: Nk. j < k= Lk=1L"k
by (metis L'-def L-def «clmm-dsc Py assms(3) assms(5) clmm-dsc-grid(2)
J-def lower-tick-eq lower-tick-lt order.trans restrict-pool-ge(1)
restrict-pool-grd verit-comp-simplify1(3))
hence L’ j x (inverse sqp’ — inverse (grd P’ (j + 1))) =
L j x (inverse sqp’ — inverse (grd P (j + 1)))
using grd assms(8) by simp
moreover have (> ¢ | L' i # 0 N j < i.
L' i % (inverse (grd P’ i) — inverse (grd P' (i + 1)))) =
(Si|Li#0Aj<i
L i % (inverse (grd P i) — inverse (grd P (i + 1))))
proof (rule sum.cong)
show {i. L'i A 0Nj<i}={i.Li#0Nj<i}
using lq by auto
fix k
assume k € {i. Li# 0 N j < i}
thus L' k x (inverse (grd P' k) — inverse (grd P’ (k + 1))) =
L k x (inverse (grd P k) — inverse (grd P (k + 1)))
using lg grd assms(3) by simp

qed

ultimately show ¢thesis by simp
qged
also have ... = base-net P sqp’
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using base-net-sum L-def assms j-def <0 < sqp”s restrict-pool-lower-tick
by presburger
finally show ?thesis .
qed

lemma restrict-pool-grd-min-le:
assumes clmm-dsc P
and nz-support (lg P) # {}
and P’ = restrict-pool i P
and i < idz-maz (lg P)
shows ¢ < idz-min (lg P’
by (metis assms clmm-dsc-def finite-lig-def finite-subset idz-min-finite-in
lel restrict-pool-lg-sub restrict-pool-lt(1) restrict-pool-nz-liq)

definition slice-pool where
slice-pool P sqp = (let P’ = refine P sqp in restrict-pool (lower-tick P’ sqp) P’)

lemma slice-poolD:
assumes P’/ = refine P sqp

shows slice-pool P sqp = restrict-pool (lower-tick P sqp) P"
using assms unfolding slice-pool-def Let-def by simp

lemma slice-pool-clmm-dsc:

assumes clmm-dsc P

and 0 < sqp

and P’ = slice-pool P sqp
shows clmm-dsc P’
proof —

have clmm-dsc (restrict-pool (lower-tick (refine P sqp) sqp) (refine P sqp))

proof (rule restrict-pool-clmm,)

show clmm-dsc (refine P sqp)
by (rule refine-clmm, (auto simp add: assms)+)

qed simp

thus ?thesis using assms unfolding slice-pool-def Let-def by simp
qed

lemma slice-pool-nz-liq:
assumes clmm-dsc P
and 0 < sqp
and P’ = slice-pool P sqp
and lower-tick P sqp < idx-maz (lqg P)
and nz-support (lg P) # {}

shows nz-support (lg P") # {}

proof (rule restrict-pool-nz-liq)
define Pr where Pr = refine P sqp
define i where | = lower-tick Pr sqp
show P’ = restrict-pool i Pr

using slice-poolD assms Pr-def i-def by simp

show finite-liq Pr using Pr-def

201



by (meson assms(1) clmm-dsc-def refine-finite-lig)
show nz-support (lg (refine P sqp)) # {}
using restrict-pool-nz-liq
by (meson assms(1) assms(5) refine-nz-lg-ne)
show i < idz-mazx (lg Pr) using i-def Pr-def refine-lower-tick-idz-mazx
by (simp add: assms(1,2,4,5))
qed

lemma slice-pool-tick-idx-max:
assumes clmm-dsc P
and 0 < sqp
and P’ = slice-pool P sqp
and lower-tick P sqp < idz-maz (lg P)
and nz-support (lg P) # {}
shows lower-tick P’ sqp < idz-mazx (lg P’)
proof —
define Pr where Pr = refine P sqp
define i where ¢ = lower-tick Pr sqp
have lower-tick P’ sqp = i
using assms restrict-pool-lower-tick Pr-def i-def
unfolding slice-pool-def Let-def
by presburger
also have ... < idz-mazx (lg Pr) using i-def Pr-def refine-lower-tick-idz-maz
by (simp add: assms(1,2,4,5))
also have ... = idz-maz (lg P’)
using Pr-def assms(1—5) clmm-dsc-lig(1) refine-clmm refine-lower-tick-ide-maz

refine-nz-lg-ne restrict-pool-idz-max slice-poolD
by presburger
finally show ?thesis .
qed

lemma slice-pool-nz-lig”:
assumes clmm-dsc P
and P’ = slice-pool P sqp
and nz-support (lg P) # {}
and 0 < sqp
and sqp < grd-mazx P
shows nz-support (lg P') # {}
proof —
have lower-tick P sqp < idz-maz (lg P) + 1
proof (rule lower-tick-lt’)
show clmm-dsc P using assms by simp
show 0 < sqp using assms by simp
show idx-maz (lg P) + 1 = lower-tick P (grd-maz P)
by (simp add: assms(1) idz-maz-img-def lower-tick-eq grd-maz-def)
show sqp < grd-maz P using assms by simp
show grd P (idz-mazx (lg P) + 1) = grd-maxz P
unfolding grd-max-def idz-maz-img-def by simp
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qed simp
thus ?thesis using slice-pool-nz-lig by (simp add: assms)
qed

lemma slice-pool-idxz-min:
assumes clmm-dsc P
and 0 < sqp
and nz-support (lg P) # {}
and P’ = slice-pool P sqp
and ¢ = lower-tick P sqp
and i < idz-mazx (lg P)
shows ¢ < idz-min (lg P’
proof (rule idz-min-finite-maz)
show nz-support (lg P') # {} using assms slice-pool-nz-lig by simp
show finite (nz-support (lg P’))
using assms clmm-dsc-liq(1) finite-lig-def slice-pool-clmm-dsc by simp
fix j
assume j < ¢
thus lg P'j =0
by (metis assms(1,2,4,5) lower-tick-eq not-le-imp-less order.strict-trans2
order-less-imp-not-less refine-grd-arg-le refine-lower-tick
restrict-pool-lt(1) slice-poolD)
qed

lemma slice-pool-grd-min:
assumes clmm-dsc P
and 0 < sqp
and nz-support (lg P) # {}
and P’ = slice-pool P sqp
and sqp < grd-mazx P
shows sqp < grd-min P’
proof —
define Pr where Pr = refine P sqp
define ¢ where ¢ = lower-tick Pr sqp
have P’ = restrict-pool i Pr using i-def Pr-def
by (simp add: assms(4) slice-poolD)
hence i < idz-min (lg P’)
using restrict-pool-grd-min-le Pr-def assms(1—3,5) i-def refine-clmm
refine-lower-tick-idz-max refine-nz-lg-ne sqp-lt-grd-max-imp-idx
by presburger
moreover have grd P' i = sqp
using Pr-def <P’ = restrict-pool i Pry assms(1,2) i-def refine-lower-tick
by auto
ultimately show %thesis using grd-min-def idz-min-img-def
by (metis Pr-def <P’ = restrict-pool i Pry assms(1,2) clmm-dsc-grd-mono
refine-clmm restrict-pool-clmm,)
qed

lemma slice-pool-grd-max:
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assumes clmm-dsc P
and 0 < sqp
and nz-support (lg P) # {}
and P’ = slice-pool P sqp
and lower-tick P sqp < idx-maz (lq P)
shows grd-maxz P = grd-maz P’ using assms slice-pool-tick-idz-maz
proof —
define Pr where Pr = refine P sqp
have grd-max P = grd-max Pr using assms refine-grd-max Pr-def by simp
also have ... = grd-maz P’
using restrict-pool-idz-maz Pr-def assms(1—25) clmm-dsc-lig(1)
refine-finite-liq refine-lower-tick-idz-maz refine-nz-lg-ne
slice-poolD
unfolding grd-maz-def idz-maz-img-def
by auto
finally show ?thesis .
qed

lemma slice-pool-grd-maz’:
assumes clmm-dsc P
and nz-support (lg P) # {}
and P’ = slice-pool P sqp
and 0 < sqp
and sqp < grd-max P
shows grd-maz P = grd-maz P’
proof —
define Pr where Pr = refine P sqp
have grd-max P = grd-mazx Pr using assms refine-grd-mazx Pr-def by simp
also have ... = grd-maz P’
using restrict-pool-idz-max Pr-def assms(1—5)
clmm-dsc-lig(1) refine-finite-liq refine-lower-tick-idz-max refine-nz-lg-ne
slice-poolD restrict-pool-grd sqp-lt-grd-maz-imp-idz
unfolding grd-mazx-def idz-maz-img-def by auto
finally show ?thesis .
qed

lemma slice-pool-cst-fees:
assumes clmm-dsc P
and P’ = slice-pool P sqp
and Ai. fee P i = phi
shows Ai. fee P’ i = phi
by (metis assms(2,3) refine-cst-fees restrict-pool-ge(2) restrict-pool-lt(2)
slice-poolD verit-comp-simplify1(3))

lemma slice-pool-quote-gross-leq:
assumes clmm-dsc P
and 0 < sqp
and sqp’ < sqp
and P’ = slice-pool P sqp
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shows quote-gross P’ sqp’ = 0
proof (rule restrict-pool-quote-gross-leq)
define Pr where Pr = refine P sqp
define 7 where | = lower-tick Pr sqp
show P’ = restrict-pool i Pr using i-def Pr-def
by (simp add: assms(4) slice-poolD)
show mono (grd Pr) using Pr-def assms refine-clmm
by (simp add: clmm-dsc-grd-mono monol)
show sqp’ < grd Pr i
using Pr-def assms(1—3) i-def refine-lower-tick by auto
qged

lemma slice-pool-quote-gross:
assumes clmm-dsc P
and 0 < sqp
and sqp < sqp’
and P’ = slice-pool P sqp
shows quote-gross P’ sqp’ = quote-gross P sqp’ — quote-gross P sqp
proof —
define Pr where Pr = refine P sqp
define 7 where ¢ = lower-tick Pr sqp
have P’ = restrict-pool i Pr using i-def Pr-def
by (simp add: assms(4) slice-poolD)
have quote-gross P’ sqp’ = quote-gross Pr sqp’ — quote-gross Pr (grd Pr i)
proof (rule restrict-pool-quote-gross[symmetric))
show clmm-dsc Pr using Pr-def assms(1,2) refine-clmm by auto
show P’ = restrict-pool i Pr using (P’ = restrict-pool i Pr» .
show 0 < sqp’ using assms by simp
show i < lower-tick Pr sqp’
using i-def <clmm-dsc Pry assms(2,3) lower-tick-mono by auto
qed
also have ... = quote-gross Pr sqp’ — quote-gross Pr sqp
proof —
have quote-gross Pr (grd Pr i) = quote-gross Pr sqp
using Pr-def assms(1,2) i-def refine-lower-tick by auto
thus ?thesis by simp
qged
also have ... = quote-gross P sqp’ — quote-gross P sqp
using Pr-def assms(1,2) refine-quote-gross by auto
finally show ?thesis .
qed

lemma slice-pool-quote-gross-maz-eq:
assumes clmm-dsc P
and P’ = slice-pool P sqp
and nz-support (lg P) # {}
and 0 < sqp
and sqp < grd-max P
and i = lower-tick P sqp
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and grd P i = sqp
shows quote-gross P’ (grd-maz P') = quote-gross P (grd-maz P) — quote-gross P
sqp
proof —
have grd-max P = grd-maz P’
by (simp add: assms slice-pool-grd-maz’)
define sqp’ where sqp’ = grd-maz P
have quote-gross P’ sqp’ = quote-gross P sqp’ — quote-gross P sqp
using slice-pool-quote-gross assms sqp’-def by simp
thus ?thesis using (grd-mazx P = grd-mazx P’ sqp’-def by simp
qged

lemma slice-pool-quote-gross-inv:
assumes clmm-dsc P
and 0 < sqp
and nz-support (lg P) # {}
and sqp < grd-maz P
and 0 < y
and P’ = slice-pool P sqp
shows quote-gross P —{y} = quote-gross P —{y + quote-gross P sqp}
proof
have clmm-dsc P’ using assms slice-pool-clmm-dsc by simp
have nz-support (lg P’) # {} using assms slice-pool-nz-liq’ by simp
show quote-gross P’ —* {y} C quote-gross P —* {y + quote-gross P sqp}
proof
fix sqp’
assume asm: sqp’ € quote-gross P' —* {y}
hence y = quote-gross P’ sqp’ by simp
also have ... = quote-gross P sqp’ — quote-gross P sqp
by (metis assms(1,2,5,6) calculation dual-order.irrefl nle-le
slice-pool-quote-gross slice-pool-quote-gross-leq)
finally have y = quote-gross P sqp’ — quote-gross P sqp .
hence quote-gross P sqp’ = y + quote-gross P sqp by simp
thus sqp’ € quote-gross P —‘{y + quote-gross P sqp} by simp
qed
show quote-gross P —* {y + quote-gross P sqp} C quote-gross P’ —* {y}
proof
fix sqp’
assume asm: sqp’ € quote-gross P —‘ {y + quote-gross P sqp}
hence eq: quote-gross P sqp’ = y + quote-gross P sqp by simp
hence sqp < sqp’
by (metis assms(1) assms(5) less-add-same-cancel? order-less-imp-le
quote-gross-imp-sqp-It)
have y = quote-gross P sqp’ — quote-gross P sqp using eq assms by simp
also have ... = quote-gross P’ sqp’
proof (rule slice-pool-quote-gross[symmetric, of P], auto simp add: assms)
show sqp < sqp’ using <sqp < sqp’s .
qed
finally have y = quote-gross P’ sqp’ .
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thus sqp’ € quote-gross P’ —*{y} by simp
qed
qed

lemma slice-pool-quote-reach:
assumes clmm-dsc P
and nz-support (lg P) # {}
and 0 < sqp
and sqp < grd-mazx P
and 0 < y
and P’ = slice-pool P sqp
shows quote-reach P’y = quote-reach P (y + quote-gross P sqp)
proof —
have quote-reach P’ y = Inf (quote-gross P’ —*{y})
using assms clmm-quote-gross-grd-min slice-pool-clmm-dsc slice-pool-nz-liq’
unfolding quote-reach-def by auto

also have ... = Inf (quote-gross P —*{y + quote-gross P sqp})
using assms slice-pool-quote-gross-inv by simp
also have ... = quote-reach P (y + quote-gross P sqp)

using assms unfolding quote-reach-def
by (metis add-pos-nonneg clmm-quote-gross-pos order-less-irrefl)
finally show ?thesis .
qed

lemma slice-pool-base-net-eq:
assumes clmm-dsc P
and nz-support (lg P) # {}
and P’ = slice-pool P sqp
and 0 < sqp
and sqp < grd-mazx P
and sgp < sqp’
shows base-net P’ sqp’ = base-net P sqp’
proof —
define Pr where Pr = refine P sqp
define ¢ where ¢ = lower-tick Pr sqp
hence i < idz-maz (lg Pr)
using Pr-def assms(1,2,4,5) refine-lower-tick-idz-maz sqp-lt-grd-maz-imp-idz
by presburger
have P’ = restrict-pool i Pr using i-def Pr-def
by (simp add: assms(3) slice-poolD)
hence base-net P’ sqp’ = base-net Pr sqp’
using restrict-pool-base-net-eq assms Pr-def «i < idz-max (lg Pr)»
by (metis i-def refine-clmm refine-lower-tick refine-nz-lg-ne)

also have ... = base-net P sqp’ using Pr-def assms refine-base-net-eq
by simp
finally show ?thesis .
qed
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lemma slice-pool-base-net-slice:
assumes clmm-dsc P
and nz-support (lg P) # {}
and ¢ = lower-tick P sqp
and P’ = slice-pool P sqp
and sqp < grd-max P
and grd P i = sqp
and sqp’ < sqp
and 0 < sqp’
shows base-net P’ sqp’ = base-net P’ sqp
proof —
have clmm-dsc P’ using assms slice-pool-clmm-dsc by simp
have lower-tick P sqp < idz-maz (lg P)
by (metis assms(1) assms(2) assms(5) assms(6) clmm-dsc-grid(2)
sqp-lt-grd-maz-imp-idz)
hence sqp < grd-min P’ using assms slice-pool-grd-min by simp
hence sqp’ < grd-min P’ using assms by simp
have base-net P’ sqp’ = base-net P’ (grd-min P’)
using base-net-grd-min-le <sqp’ < grd-min P'y assms <clmm-dsc P’
by blast
also have ... = base-net P’ sqp
using base-net-grd-min-le <sqp < grd-min P’y assms <clmm-dsc P’
by (metis clmm-dsc-grid(2))
finally show ?thesis .
qed

lemma slice-pool-quote-swap-gt-zero:
assumes clmm-dsc P
and nz-support (lg P) # {}
and grd P (lower-tick P sqp2) = sqp2
and P’ = slice-pool P sqp2
and sqp! < sqp2
and 0 < y
and 0 <sqpl
and y + quote-gross P sqp2 < quote-gross P (grd-mazx P)
shows quote-swap P’ sqpl y = quote-swap P sqp2 y
proof —
have clmm-dsc P’ using slice-pool-clmm-dsc assms by simp
have sqp2 < grd-max P using assms quote-gross-imp-sqp-lt by simp
hence quote-gross P’ sqpl = 0
using assms slice-pool-quote-gross-leq by (simp add: strict-mono-mono)
hence qgeq: quote-reach P’ (y + quote-gross P’ sqpl) =
quote-reach P (y + quote-gross P sqp2)
using assms <sqp2 < grd-mazx P> slice-pool-quote-reach by simp
have sqp2 < quote-reach P (y + quote-gross P sqp2)
using quote-reach-gt[of P y sqp2] assms by simp
hence a: base-net P’ (quote-reach P’ (y 4+ quote-gross P’ sqpl)) =
base-net P (quote-reach P (y + quote-gross P sqp2))
using geq <sqp2 < grd-max P) assms slice-pool-base-net-eq by auto
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have base-net P’ sqpl = base-net P’ sqp2 using slice-pool-base-net-slice
by (simp add: <sqp2 < grd-maz P) assms)

also have ... = base-net P sqp2
using slice-pool-base-net-eq <sqp2 < grd-max P> assms
by auto

finally have base-net P’ sqpl = base-net P sqp2 .
thus ?thesis using a unfolding quote-swap-def by simp
qed

lemma slice-pool-quote-swap:
assumes clmm-dsc P
and nz-support (lg P) # {}
and grd P (lower-tick P sqp2) = sqp2
and P’ = slice-pool P sqp2
and sqpl < sqp2
and sqp2 < grd-max P
and 0 <y
and 0 < sqpl
and y + quote-gross P sqp2 < quote-gross P (grd-mazx P)
shows quote-swap P’ sqpl y = quote-swap P sqp2 y
proof (cases y = 0)
case True
have quote-swap P’ sqpl 0 = 0
proof (rule quote-swap-zero)
show clmm-dsc P’ using assms slice-pool-clmm-dsc by simp
show nz-support (lg P’) # {}
by (metis assms(1—4) assms(6) clmm-dsc-grid(2)
slice-pool-nz-liq")
show 0 < sqgpl using assms by simp
show sqpl < grd-maz P’ using assms slice-pool-grd-maz’ by simp
qed
also have ... = quote-swap P sqp2 0
using quote-swap-zero assms by simp
finally show ?thesis using True by simp
next
case Fulse
then show ?thesis
using assms slice-pool-quote-swap-gt-zero by simp
qed

6.3 CLMM pool join

The join operation is meant to define a pool P on which swap operations
can be viewed as a combination of swap operations on its two arguments.
We use the convention that the pool fee is 0 on ranges where there is no
liquidity.

definition pool-fee-join where

pool-fee-join P1 P2 i = fee-union (lg P1 i) (lg P2 i) (fee P14) (fee P2 1)
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lemma pool-fee-join-com:
shows pool-fee-join P1 P2 i = pool-fee-join P2 P1 i
unfolding pool-fee-join-def fee-union-def
by (simp add: add.commute)

definition joint-pools where

joint-pools P P1 P2 <— (grd P) = (grd P1) A (grd P) = (grd P2) A
(Vi lgPi=1qgP1li+1lgP2i) AN
(Vi. fee P i = pool-fee-join P1 P2 i)

definition pool-join where
pool-join P1 P2 =
(grd P1, (Ni. lg P1 i+ lqg P2 1), (Ai. pool-fee-join P1 P2 7))

lemma joint-poolsl[intro):
assumes grd P = grd P1
and grd P = grd P2
and \i. lg Pi=1lgP1i+IlgP2i
and Ai. fee P i = pool-fee-join P1 P2 i
shows joint-pools P P1 P2 using assms unfolding joint-pools-def by simp

lemma pool-join-joint:
assumes grd P1 = grd P2
and P = pool-join P1 P2
shows joint-pools P P1 P2 using assms unfolding pool-join-def
by (simp add: fee-def grd-def joint-pools-def lg-def)

lemma joint-pools-grids:
assumes joint-pools P P1 P2
shows (grd P) = (grd P1) (grd P) = (grd P2)
using assms unfolding joint-pools-def by simp-+

lemma joint-pools-lgq:
assumes joint-pools P P1 P2
shows lqg P i =1lq P1 i+ lqg P2+
using assms unfolding joint-pools-def by simp

lemma joint-pools-fee:
assumes joint-pools P P1 P2
shows fee P i = pool-fee-join P1 P2 i
using assms unfolding joint-pools-def by simp

lemma joint-pools-com:
assumes joint-pools P P1 P2
shows joint-pools P P2 P1
proof
show grd P = grd P2 using assms joint-pools-grids by simp
show grd P = grd P1 using assms joint-pools-grids by simp
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fix 7
show lqg P i = lqg P2 i + lq P1 i using assms joint-pools-lq by simp
show fee P i = pool-fee-join P2 P1 i
using pool-fee-join-com joint-pools-fee assms by simp
qed

lemma joint-pools-nz-lig-sub:
assumes joint-pools P P1 P2
shows nz-support (lg P) C nz-support (lg P1) U (nz-support (lg P2))
unfolding nz-support-def
proof —
define F'1 where F'1 = {i. lg P1i # 0}
define F'2 where F2 = {i. lg P21 # 0}
define F where F = {i. l¢g P i # 0}
show FF C F1 U F2
proof
fix i
assume i€ F
hence lq P1 i + lqg P2 ¢ # 0 using F-def assms joint-pools-lqg by auto
hence lq P17 # 0 V lg P2 i # 0 by simp
thus ¢ € F1 U F2 using Fi-def F2-def by auto
qed
qed

lemma joint-pools-nz-lig-sup:
assumes joint-pools P P1 P2
and Ai. 0 < lqg P1i
and Ai. 0 < lq P2
shows nz-support (lg P1) U (nz-support (lg P2)) C nz-support (lg P)
unfolding nz-support-def
proof —
define F1 where F1 = {i. l¢g P17 # 0}
define F'2 where F2 = {i. lg P21i # 0}
define F' where F = {i. l¢g P i # 0}
show FI1 U F2 C F
proof
fix j
assume je F1U F2
hence lqg P1j # 0 V lq P2 j # 0 unfolding F1i-def F2-def by auto
hence lq P1 j + lqg P2 j # 0 using joint-pools-lq
by (simp add: add-nonneg-eq-0-iff assms)
thus j € F using F-def joint-pools-lq assms by auto
qed
qed

lemma joint-pools-nz-liq:
assumes joint-pools P P1 P2
and Ai. 0 < lq P1i
and Ai. 0 < lqg P21
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shows nz-support (lg P1) U (nz-support (lg P2)) = nz-support (lg P)
using assms joint-pools-nz-lig-sup joint-pools-nz-lig-sub by blast

lemma clmm-joint-pools-nz-liq:
assumes clmm-dsc P1
and clmm-dsc P2
and joint-pools P P1 P2
shows nz-support (lg P1) U (nz-support (lg P2)) = nz-support (lg P)
using assms joint-pools-nz-lig by (simp add: clmm-dsc-lig(2))

lemma joint-pools-finite-liq:
assumes finite-liq P1
and finite-liq P2
and joint-pools P P1 P2
shows finite-liq P using assms joint-pools-nz-lig-sub
by (meson finite-Unl finite-lig-def rev-finite-subset)

lemma joint-pools-idz-min-min:
assumes clmm-dsc P1
and clmm-dsc P2
and joint-pools P P1 P2
and nz-support (lg P1) # {}
and idx-min (lg P1) < idz-min (lg P2)
shows idz-min (lg P) = idz-min (lg P1)
proof (rule idz-min-finitel [symmetric))
define ¢ where ¢ = idz-min (lg P1)
show finite (nz-support (lqg P))
using assms joint-pools-finite-lig by (meson clmm-dsc-def finite-lig-def)
have lq P1 i # 0 using i-def idz-min-finite-in
by (metis (full-types) «finite (nz-support (lg P))» assms(1—4)
clmme-joint-pools-nz-liq finite-Un)
thus lg Pi # 0
by (smt (verit) assms(1—38) clmm-dsc-lig(2) joint-pools-lq)
fix j
assume j < i
hence j < idz-min (lg P2) using assms i-def by simp
have lg P2j =0
using assms idz-min-finite-lt[of lg P2 j| clmm-dsc-liq finite-lig-def
by (simp add: <j < idz-min (lg P2)»)
moreover have lq P1 j =0
using <j < @ i-def idz-maa-finite-gt[of lg P2 j]
by (simp add: assms idx-min-lt-liq)
ultimately show lg P j = 0
using assms(3) joint-pools-lg by auto
qed

lemma joint-pools-idz-min:

assumes clmm-dsc P1
and clmm-dsc P2
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and joint-pools P P1 P2
and nz-support (lg P1) # {}
and nz-support (lg P2) # {}
shows idz-min (lg P) = min (idz-min (lg P1)) (ide-min (lg P2))
using joint-pools-idz-min-min
by (smt (23) assms maz-def nle-le joint-pools-com)

lemma joint-pools-idz-maz-max:
assumes clmm-dsc P1
and clmm-dsc P2
and joint-pools P P1 P2
and nz-support (lg P2) # {}
and idz-maz (lqg P1) < idz-maz (lg P2)
shows idz-maz (lg P) = idz-maz (lg P2)
proof (rule idz-maz-finitel [symmetric])
define i where i = idx-maz (lg P2)
show finite (nz-support (lqg P))
using assms joint-pools-finite-lig by (meson clmm-dsc-def finite-lig-def)
have lq P2 i # 0 using i-def idz-max-finite-in
by (metis (full-types) <finite (nz-support (lqg P))» assms(1—4)
clmme-joint-pools-nz-liq finite-Un)
thus lg Pi # 0
by (smt (verit) assms(1—38) clmm-dsc-liq(2) joint-pools-lq)
fix j
assume i < j
hence idz-maz (lg P1) < j using assms i-def by simp
have lq P1j =0
using assms idz-maz-finite-gt[of lg P1 j] clmm-dsc-liq finite-lig-def
by (simp add: <idz-maz (lg P1) < j»)
moreover have lg P2j = 0
using «i < j» i-def idz-max-finite-gt[of lg P2 j]
by (simp add: assms(2) idz-max-gt-liq)
ultimately show lg P j = 0
using assms(3) joint-pools-lg by auto
qed

lemma joint-pools-idz-maz:
assumes clmm-dsc P1
and clmm-dsc P2
and joint-pools P P1 P2
and nz-support (lg P1) # {}
and nz-support (lg P2) # {}
shows idz-maz (lg P) = max (idz-maz (lqg P1)) (idz-maz (lg P2))
using joint-pools-idx-max-maz
by (smt (23) assms maz-def nle-le joint-pools-com)

lemma joint-pools-clmm-dsc:

assumes clmm-dsc P1
and clmm-dsc P2
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and joint-pools P P1 P2
shows clmm-dsc P
proof
show span-grid P using assms clmm-dsc-grid|of P1] joint-pools-grids(1)
by (simp add: span-grid-def)
show finite-lig P using assms joint-pools-finite-liq clmm-dsc-lig by meson
show Vi. 0 < lg P i using assms joint-pools-lqg clmm-dsc-lig(2) by simp
show Vi. 0 < fee P i using assms joint-pools-fee fee-union-pos
by (simp add: clmm-dsc-def pool-fee-join-def)
show Vi. fee P ¢ < 1 using assms joint-pools-fee fee-union-lt-1
by (simp add: clmm-dsc-def pool-fee-join-def)
qed

lemma join-gross-fct:
assumes clmm-dsc P1
and clmm-dsc P2
and joint-pools P P1 P2
shows gross-fct (lg P) (fee P) i = gross-fct (lg P1) (fee P1) i +
gross-fct (lg P2) (fee P2) i
proof (cases lg P i = 0)
case True
hence lg P1 i+ lgP2i=0
using assms(3) joint-pools-lg by auto
hence lg P1i=01lgP2i=20
by (simp add: clmm-dsc-liq(2) add-nonneg-eq-0-iff assms(1) assms(2))+
then show ?thesis using True gross-fct-zero-if by auto
next
case Fulse
define L where L = lq P
define F where F = fee P
define /1 where I1 = lq P11
define fI where f1 = fee P11
define [2 where [2 = lq P2 i
define f2 where f2 = fee P2 i
define df where df = l1x(1—f2) + [2x(1—f1)
have 0 < [1 using assms l1-def cimm-dsc-lig by simp
have 0 < I — f2 using assms f2-def clmm-dsc-fees by simp
have 0 < I — f1 using assms f1-def clmm-dsc-fees by simp
have 0 < (2 using assms [2-def clmm-dsc-liqg by simp
have 0 < lg P ¢
using False <0 < 11> <0 < 12y assms(3) l1-def 12-def joint-pools-lg by auto
hence 0 < I1 V 0 < 12 using assms joint-pools-lq 11-def 12-def by auto
hence 0 < df using df-def l1-def f2-def [2-def f1-def
by (smt (verit, best) <0 < 1 — fI» <0 < 1 — f2) <0 <11y <0 < 12
mult-nonneg-nonneg mult-pos-pos)
have gross-fct (lg P) (fee P) i =
(11 + 12)/(one-cpl (pool-fee-join P1 P2) 1)
using assms joint-pools-lq joint-pools-fee
unfolding gross-fct-def l1-def 12-def
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by (simp add: one-cpl-def)
also have ... = (i1 + 12)/(1 — ((I1*f1x(1—f2) + 12%f2x(1—f1))/
)
using one-cpl-def pool-fee-join-def fee-union-def l1-def 12-def f1-def f2-def df-def
by simp
also have ... = (I + 12)/((df — (I xfI1%(1—f2) + 12xf2x(1—f1))) / df)
proof —
have 1 — ((I1xf1x(1—f2) + 12xf2x(1—f1)))/ df =
dfjdf — ((11xf1x(1—f2) + 12«f2x(1—f1)))/ df
using «0 < df> by simp
also have ... = (df — (II*xf1x(1—f2) + 12xf2x(1—f1))) / df
by (rule diff-divide-distrib[symmetric])
finally have 1 — ((I1xf1x(1—f2) + 12+f2x(1—f1)))/ df =
(df — (L1xf1x(1—f2) + 12%f2%(1—f1))) / df .
thus ?thesis by simp
qged
also have ... = ((I1 + 12) = df)/ (df — (L1xf1x(1—f2) + 12xf2%(1—f1)))
by (rule divide-divide-eq-right)
also have ... = ((I1 +12) = df)/ (11 +12) = ((1 — f1) x (1 — f2)))
proof —
have df — (I1xf1x(1—f2) + 12xf2x(1—f1)) =
I(1—f2) 4+ 12%(1—f1) — U xfI1*(1—f2) — [2xf2x(1—f1)
unfolding df-def by simp

also have ... = [1*(1—f2) — IIxf1x(1—f2) + (I2x(1—f1) — 12xf2x(1—f1))
by simp
also have ... = (I1 — 1 = f1) = (I — f2) + (I2x(1—f1) — 12xf2x(1—f1))

by (simp add: left-diff-distrib’
also have ... = (11 — 11 * f1) = (1 — f2) + (12 — 12 = f2) = (1 — f1))
by (simp add: left-diff-distrib’)
also have ... =11 « ((1 — f1) * (1 — f2)) + (12 — 12 % 2) = (1 — fI))
by (simp add: vector-space-over-itself.scale-right-diff-distrib)
also have ... = 11 x (1 — f1) * (1 — f2)) + (12 * ((1 — f2) = (1 — f1)))
by (simp add: vector-space-over-itself .scale-right-diff-distrib)
also have ... =11 (1 — f1)« (1 — f2)) + (12 (1 — f1) = (1 — f2)))
by simp
also have ... = (I1 +12) = ((1 — f1) = (1 — f2))
by (simp add: distrib-right)
finally have df — (I1xfI1*(1—f2) + 12xf2x(1—f1)) =
(I1 +12) = ((1 — f1) = (1 — f2)) .
thus ?thesis by simp
qed
also have ... = df / (1 — f1) = (1 — f2))
using <0 < I V 0 < 12> <0 < 11y <0 < 12> by fastforce
also have ... = l1x(1—f2)/((1 — f1) = (1 — f2)) +
21— 1)/ (1 — f1) * (1 — 2))
using df-def by (simp add: add-divide-distrib)
also have ... = l1/(1—f1) + 12+%(1—f1)/ ((1 — f1) = (1 — f2))
using <0 < I — f2» by auto
also have ... = [1/(1—f1) + 12/(1—f2)
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using <0 < I — f1» by auto
also have ... = gross-fct (lg P1) (fee P1) i +
gross-fct (lg P2) (fee P2) i
by (simp add: f1-def f2-def gross-fet-def 11-def 12-def one-cpl-def)
finally show ?thesis .
qed

lemma quote-gross-join:
assumes clmm-dsc P1
and clmm-dsc P2
and joint-pools P P1 P2
shows quote-gross P x = quote-gross P1 x + quote-gross P2 x
proof —
have quote-gross P x =
gen-quote (grd P) (gross-fet (lg P1) (fee P1)) x +
gen-quote (grd P) (gross-fet (lg P2) (fee P2)) x
unfolding quote-gross-def
proof (rule finite-nz-support.gen-quote-plus)
show finite-nz-support (gross-fct (lg P) (fee P))
using finite-lig-pool.finite-lig-gross-fct joint-pools-finite-liq assms
by (metis clmm-dsc-lig(1) finite-lig-pool.intro finite-nz-support-def
nz-support-def)
show Vi. 0 < gross-fet (lg P1) (fee P1) i
using clmm-dsc-fees clmm-dsc-lig(2) assms(1) gross-fct-sgn by blast
show Vi. 0 < gross-fet (lg P2) (fee P2) i
using clmm-dsc-fees clmm-dsc-lig(2) assms(2) gross-fct-sgn by blast
show Vi. gross-fct (lg P) (fee P) i = gross-fct (lg P1) (fee P1) i +
gross-fet (lg P2) (fee P2) i
using join-gross-fct assms by auto
qed
also have ... = quote-gross P1 x + quote-gross P2 x
using assms joint-pools-grids unfolding quote-gross-def by simp
finally show ?thesis .
qed

lemma quote-net-join:
assumes clmm-dsc P1
and clmm-dsc P2
and joint-pools P P1 P2
shows quote-net P © = quote-net P1 © + quote-net P2 x
proof —
have quote-net P x = gen-quote (grd P) (lg P1) = +
gen-quote (grd P) (lq P2) z
unfolding quote-net-def
proof (rule finite-nz-support.gen-quote-plus)
show finite-nz-support (lg P)
by (meson clmm-dsc-def assms finite-lig-def finite-nz-support-def
joint-pools-finite-liq)
show Vi. 0 < lqg P1 i using clmm-dsc-lig(2) assms(1) by auto

216



show Vi. 0 < lg P2 i by (simp add: clmm-dsc-lig(2) assms(2))
show Vi. lg Pi = 1lq P1 i+ lg P2 i by (simp add: assms(3) joint-pools-lq)
qed
also have ... = quote-net P1 x + quote-net P2 x
using assms joint-pools-grids unfolding quote-net-def by simp
finally show ?thesis .
qed

lemma base-gross-join:
assumes clmm-dsc P1
and clmm-dsc P2
and joint-pools P P1 P2
shows base-gross P © = base-gross P1 x + base-gross P2 z
proof —
have base-gross P r =
gen-base (grd P) (gross-fct (lg P1) (fee P1)) x +
gen-base (grd P) (gross-fct (lg P2) (fee P2)) x
unfolding base-gross-def
proof (rule finite-nz-support.gen-base-gross)
show finite-nz-support (gross-fet (lg P) (fee P))
using finite-lig-pool.finite-lig-gross-fct joint-pools-finite-liqg assms
by (metis clmm-dsc-lig(1) finite-lig-pool.intro finite-nz-support-def
nz-support-def)
show Vi. 0 < gross-fet (lg P1) (fee P1) i
using clmm-dsc-fees clmm-dsc-lig(2) assms(1) gross-fct-sgn by blast
show Vi. 0 < gross-fet (lg P2) (fee P2) i
using clmm-dsc-fees clmm-dsc-lig(2) assms(2) gross-fct-sgn by blast
show Vi. gross-fct (lg P) (fee P) i = gross-fct (lg P1) (fee P1) i +
gross-fet (lg P2) (fee P2) i
using join-gross-fct assms by auto
qed
also have ... = base-gross P1 © + base-gross P2 x
using assms joint-pools-grids unfolding base-gross-def by simp
finally show ?thesis .
qed

lemma base-net-join:
assumes clmm-dsc P1
and clmm-dsc P2
and joint-pools P P1 P2
shows base-net P x = base-net P1 ¢ + base-net P2 z
proof —
have base-net P z = gen-base (grd P) (lg P1) = +
gen-base (grd P) (lg P2) x
unfolding base-net-def
proof (rule finite-nz-support.gen-base-gross)
show finite-nz-support (lg P)
by (meson clmm-dsc-def assms finite-lig-def finite-nz-support-def
joint-pools-finite-liq)
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show Vi. 0 < lq P1 i using clmm-dsc-lig(2) assms(1) by auto
show Vi. 0 < lg P2 i by (simp add: clmm-dsc-lig(2) assms(2))
show Vi. lg Pi = 1lg P1i+ lg P2 by (simp add: assms(3) joint-pools-lq)
qed
also have ... = base-net P1 x + base-net P2 x
using assms joint-pools-grids unfolding base-net-def by simp
finally show ?thesis .
qed

lemma mkt-depth-join:
assumes clmm-dsc P1
and clmm-dsc P2
and joint-pools P P1 P2
shows mkt-depth P x x' = mkt-depth P1 z x' + mkt-depth P2 z z’
using assms unfolding mkt-depth-def
by (simp add: quote-net-join base-net-join)

lemma joint-quote-gross-decomp:
assumes clmm-dsc P1
and clmm-dsc P2
and joint-pools P P1 P2
and nz-support (lg P) # {}
and grd-min P < x
and 0 <y
and y + quote-gross P z < quote-gross P (grd-maz P)
and z’ = quote-reach P (y + quote-gross P x)
and y! = quote-gross P1 ' — quote-gross P1 z
and y2 = quote-gross P2 x’' — quote-gross P2 x
shows y = yI + y2
proof —
interpret finite-lig-pool P
using assms joint-pools-finite-liq clmm-dsc-liq finite-lig-pool.intro
by blast
have clmm-dsc P using assms joint-pools-clmm-dsc|of P1] by simp
have y!I + y2 = quote-gross P1 z' + quote-gross P2 z' —
(quote-gross P1 © + quote-gross P2 x)
using assms by simp

also have ... = quote-gross P z' — quote-gross P x
using quote-gross-join assms by auto

also have ... = y

proof —

have quote-gross P (quote-reach P (y + quote-gross P x)) =
Yy + quote-gross P x
proof (rule quote-gross-reach-eq)
show Vi. fee P i < 1 using <clmm-dsc P»
by (simp add: clmm-dsc-fees)
show mono (grd P)
by (simp add: <clmm-dsc P> clmm-dsc-grd-mono monol)
show 0 < y + quote-gross P x
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by (simp add: <clmm-dsc Py assms(6) clmm-quote-gross-pos)
show y + quote-gross P x < quote-gross P (grd-maz P)
using assms by simp
show Vi. 0 < lg P i
by (simp add: <clmm-dsc Py clmm-dsc-liq(2))
qed
thus ?thesis using assms by simp
qed
finally show ?thesis by simp
qed

lemma joint-quote-gross-decomp’:
assumes clmm-dsc P1
and clmm-dsc P2
and joint-pools P P1 P2
and nz-support (lg P) # {}
and 0 <y
and y < quote-gross P (grd-maz P)
and z’ = quote-reach Py
and y! = quote-gross P1 z’
and y2 = quote-gross P2 z’
shows y = yI + y2
proof —
interpret finite-lig-pool P
using assms joint-pools-finite-lig clmm-dsc-liq finite-lig-pool.intro
by blast
have clmm-dsc P using assms joint-pools-clmm-dsc[of P1] by simp
have y1 + y2 = quote-gross P1 &' + quote-gross P2 z'
using assms by simp

also have ... = quote-gross P z'
using quote-gross-join assms by auto

also have ... = y

proof —

have quote-gross P (quote-reach P y) = y
proof (rule quote-gross-reach-eq)
show Vi. fee P i < 1 using <clmm-dsc P>
by (simp add: clmm-dsc-fees)
show mono (grd P)
by (simp add: <clmm-dsc Py clmm-dsc-grd-mono monol)
show 0 < y using assms by simp
show y < quote-gross P (grd-max P) using assms by simp
show Vi. 0 < lg P i by (simp add: «clmm-dsc P> clmm-dsc-lig(2))
qed
thus ?thesis using assms by simp
qed
finally show ?thesis by simp
qed

lemma joint-base-net-decomp’:
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assumes clmm-dsc P1
and clmm-dsc P2
and joint-pools P P1 P2
and nz-support (lg P) # {}
and 0 < y
and y < quote-gross P (grd-mazx P)
and z’ = quote-reach Py
and y! = base-net P1 z'
and y2 = base-net P2 z'
shows base-net Pz’ = yl + y2
proof —
interpret finite-lig-pool P
using assms joint-pools-finite-lig clmm-dsc-liq finite-lig-pool.intro
by blast
have clmm-dsc P using assms joint-pools-clmm-dsc[of P1] by simp
have y1 + y2 = base-net P1 x’ + base-net P2 z’
using assms by simp
also have ... = base-net P z’
using base-net-join assms by auto
finally show ?thesis by simp
qed

lemma joint-base-gross-decomp:
assumes clmm-dsc P1
and clmm-dsc P2
and joint-pools P P1 P2
and nz-support (lg P) # {}
and z < grd-max P
and 0 <y
and y + base-gross P x < base-gross P (grd-min P)
and 2’ = base-reach P (y + base-gross P x)
and y! = base-gross P1 x' — base-gross P1 z
and y2 = base-gross P2 x' — base-gross P2 x
shows y = yI + y2
proof —
interpret finite-lig-pool P
using assms joint-pools-finite-lig clmm-dsc-liq finite-lig-pool.intro
by blast
have clmm-dsc P using assms joint-pools-clmm-dsc|of P1] by simp
have y! + y2 = base-gross P1 z’ + base-gross P2 x’ —
(base-gross P1 z + base-gross P2 z)
using assms by simp

also have ... = base-gross Pz’ — base-gross P x
using base-gross-join assms by auto

also have ... = y

proof —

have base-gross P (base-reach P (y + base-gross P x)) =
y + base-gross P x
proof (rule base-gross-dwn)
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show Vi. fee P i < 1 using <clmm-dsc Py by (simp add: clmm-dsc-fees)
show mono (grd P) by (simp add: <clmm-dsc P> clmm-dsc-grd-mono monol)

show grd-min P < grd-mazx P
proof (rule grd-min-maz)

show nz-support (lg P) # {} using assms by simp

show mono (grd P) using <clmm-dsc P> span-gridD clmm-dsc-grid

by (simp add: strict-mono-on-imp-mono-on)

qed
have base-gross P (grd-mazx P) < base-gross P x

using assms clmm-base-gross-antimono <clmm-dsc P> antimonoD by blast
show 0 < y + base-gross P x

using <base-gross P (grd-maz P) < base-gross P x> <mono (grd P)s assms(0)

base-gross-grd-mazx fin-nz-sup
by simp
show y + base-gross P x < base-gross P (grd-min P)
using assms by simp
show Vi. grd Pi < grd P (i + 1)
using <clmm-dsc P> span-gridD clmm-dsc-grid
by (simp add: strict-mono-leD)
show Vi. 0 < grd P i
using <clmm-dsc P> span-gridD clmm-dsc-grid by presburger
show Vi. 0 < lg P i
by (simp add: <clmm-dsc Py clmm-dsc-liq(2))
qged
thus ?thesis using assms by simp
qed
finally show ?thesis by simp
qed

definition join-pools where
join-pools P1 P2 =
(grd P1,
(Mi. lg P11+ lg P21),
(Ai. pool-fee-join P1 P2 1))

lemma join-pools-grd[simp]:
assumes P = join-pools P1 P2
shows grd P = grd P1 using assms unfolding grd-def join-pools-def by simp

lemma join-pools-lg[simp]:
assumes P = join-pools P1 P2
shows lg Pi= IlqgPl1i+ lgP2i
using assms unfolding lg-def join-pools-def by simp

lemma join-pools-fee[simpl:

assumes P = join-pools P1 P2
shows fee P i = pool-fee-join P1 P2 i
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using assms unfolding fee-def join-pools-def by simp

lemma join-joint-pools:
assumes grd P1 = grd P2
shows joint-pools (join-pools P1 P2) P1 P2
proof
show grd (join-pools P1 P2) = grd P1 by simp
show grd (join-pools P1 P2) = grd P2 using assms by simp
fix ¢
show lq (join-pools P1 P2) i = lg P1 i + lg P2 i by simp
show fee (join-pools P1 P2) i = pool-fee-join P1 P2 i by simp
qed

6.4 CLMM pool combination

definition pool-comb where
pool-comb P1 P2 sqp = (let P’ = refine P1 sqp in
pool-join P’ (slice-pool P2 sqp))

lemma pool-comb-joint:
assumes grd P1 = grd P2
shows joint-pools (pool-comb P1 P2 sqp) (refine P1 sqp)
(slice-pool P2 sqp) unfolding pool-comb-def Let-def
proof (rule pool-join-joint)
show grd (refine P1 sqp) = grd (slice-pool P2 sqp)
using refine-grd-cong|of refine P1 sqp| assms
by (simp add: slice-poolD)
qed simp+

lemma pool-comb-refined-joint-nz-lig:
assumes grd P1 = grd P2
and clmm-dsc P1
and clmm-dsc P2
and P = pool-comb P1 P2 sqp
and grd P1 (lower-tick P1 sqp) = sqp
shows nz-support (lg P) = nz-support (lg P1) U
(nz-support (lq (slice-pool P2 sqp)))
by (metis assms(1—5) clmm-dsc-grid(2) clmm-joint-pools-nz-liqg pool-comb-joint

refine-eq slice-pool-clmm-dsc)

lemma pool-comb-joint-refined:
assumes grd P1 = grd P2
and grd P1 (lower-tick P1 sqp) = sqp
shows joint-pools (pool-comb P1 P2 sqp) P1
(slice-pool P2 sqp)
proof —
have eq: grd P2 (lower-tick P2 sqp) = sqp
by (metis assms(1) assms(2) grd-lower-tick-cong)
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have refine P1 sqp = P1 using assms refine-eq by simp
moreover have refine P2 sqp = P2 using assms eq refine-eq by simp
ultimately show ?thesis
using pool-join-joint assms unfolding pool-comb-def Let-def
by (metis pool-comb-def pool-comb-joint)
qed

lemma pool-comb-clmm-dsc:
assumes clmm-dsc P1
and clmm-dsc P2
and grd P1 = grd P2
and 0 < sqp
and P3 = pool-comb P1 P2 sqp
shows cimm-dsc P3 unfolding pool-comb-def Let-def
proof (rule joint-pools-clmm-dsc)
define P where P = refine P1 sqp
define P’ where P’ = slice-pool (refine P2 sqp) sqp
show clmm-dsc P using refine-clmm assms unfolding P-def by simp
show clmm-dsc P’
proof (rule slice-pool-clmm-dsc)
show clmm-dsc (refine P2 sqp) using refine-clmm assms by simp
show 0 < sqp using assms by simp
qed (simp add: P’-def)
show joint-pools P3 P P’
using pool-join-joint assms P'-def P-def pool-comb-joint
by (metis refine-eq refine-lower-tick slice-poolD)
qged

lemma pool-comb-grd-min:

assumes clmm-dsc P1

and clmm-dsc P2

and grd P1 = grd P2

and nz-support (lg P1) # {}

and nz-support (lg P2) # {}

and 0 < sqp

and sqp < grd-maz P2

and P = pool-comb P1 P2 sqp
shows grd-min P = min (grd-min P1) (grd-min (slice-pool P2 sqp))
proof —

define i where ¢ = idx-min (lqg P)

define i/ where (I = idz-min (lg (refine P1 sqp))

define 2 where i2 = idz-min (lg (slice-pool P2 sqp))

have clmm-dsc P using assms pool-comb-clmm-dsc[of P1] by simp

have i = min i1 i2 unfolding i-def i1-def i2-def

proof (rule joint-pools-idz-min)

show clmm-dsc (refine P1 sqp)
by (meson assms(1) assms(6) refine-clmm)
show clmm-dsc (slice-pool P2 sqp)
by (meson assms(2) assms(6) refine-clmm slice-pool-clmm-dsc)
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show nz-support (lg (refine P1 sqp)) # {}
using assms(1) assms(4) refine-nz-lg-ne by auto
show nz-support (lq (slice-pool P2 sqp)) # {}
using assms slice-pool-nz-liq" clmm-dsc-lig(1) finite-lig-pool.intro
refine-grd-mazx refine-clmm refine-nz-lg-ne
by presburger
show joint-pools P (refine P1 sqp) (slice-pool P2 sqp)
by (metis assms(3,8) pool-comb-joint)
qed
have grd-min P = grd P i
using grd-min-def idz-min-img-def i-def by simp
also have ... = min (grd P il) (grd P i2)
using <i = min il i2)
by (metis <clmm-dsc Py clmm-dsc-grd-smono linorder-not-less min.absorb/
min.order-iff min.strict-order-iff)

also have ... = min (grd (refine P1 sqp) il)
(grd (slice-pool P2 sqp) i2)
proof —

have grd (refine P1 sqp) = grd P using assms
by (metis pool-comb-joint joint-pools-grids(1))
moreover have grd (slice-pool P2 sqp) = grd P
by (metis assms(3) assms(8) pool-comb-joint joint-pools-def)
ultimately show ¢thesis by simp
qed
also have ... = min (grd-min (refine P1 sqp))
(grd-min (slice-pool P2 sqp))
using i1-def i2-def unfolding grd-min-def idx-min-img-def by simp
also have ... = min (grd-min P1) (grd-min ( slice-pool P2 sqp))
using refine-grd-min assms by simp
finally show ?thesis .
qed

lemma pool-comb-le-grd-min:
assumes clmm-dsc P1
and clmm-dsc P2
and grd P1 = grd P2
and nz-support (lg P1) # {}
and nz-support (lg P2) # {}
and 0 < sqp
and sqp < grd-maz P2
and grd-min P1 < sqp
and P = pool-comb P1 P2 sqp
shows grd-min P = grd-min P1
proof —
have sqp < grd-min (slice-pool P2 sqp)
by (rule slice-pool-grd-min, auto simp add: assms)
thus “thesis using assms pool-comb-grd-min by simp
qed
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lemma pool-comb-grd-maz:
assumes clmm-dsc P1
and clmm-dsc P2
and grd P1 = grd P2
and nz-support (lg P1) # {}
and nz-support (lg P2) # {}
and 0 < sqp
and sqp < grd-maz P2
and P = pool-comb P1 P2 sqp
shows grd-max P = maz (grd-maxz P1) (grd-maz P2)
proof —
define i where ¢ = idz-maz (lg P)
define i! where i1 = idz-maz (lq (refine P1 sqp))
define 2 where i2 = idz-maz (lq (slice-pool P2 sqp))
have clmm-dsc P using assms pool-comb-clmm-dsc[of P1] by simp
have | = maz il i2 unfolding i-def i1-def i2-def
proof (rule joint-pools-idz-maz)
show clmm-dsc (refine P1 sqp)
by (meson assms(1) assms(6) refine-clmm)
show clmm-dsc (slice-pool P2 sqp)
by (meson assms(2) assms(6) refine-clmm slice-pool-clmm-dsc)
show nz-support (lg (refine P1 sqp)) # {}
using assms(1) assms(4) refine-nz-lg-ne by auto
show nz-support (lg (slice-pool P2 sqp)) # {}
using assms slice-pool-nz-liq" clmm-dsc-lig(1) finite-lig-pool.intro
refine-grd-mazx refine-clmm refine-nz-lg-ne
by presburger
show joint-pools P (refine P1 sqp) (slice-pool P2 sqp)
by (simp add: assms(3) assms(8) pool-comb-joint)
qed
hence i+1 = max (i1+1) (i2+1) by simp
have grd-maz P = grd P (i+1)
using grd-maz-def idz-maz-img-def i-def by simp
also have ... = max (grd P (i1+1)) (grd P (i2+1))
using <i+1 = maz (i1+1) (i24+1)
by (metis <clmm-dsc P»> clmm-dsc-grd-mono maz.orderE maz-absorb2 nle-le)

also have ... = max (grd (refine P1 sqp) (il+1))
(grd (slice-pool P2 sqp) (i2+1))
proof —

have grd (refine P1 sqp) = grd P using assms
by (metis pool-comb-joint joint-pools-grids(1))
moreover have grd (slice-pool P2 sqp) = grd P
by (metis assms(3) assms(8) pool-comb-joint joint-pools-def)
ultimately show ¢thesis by simp
qed
also have ... = maz (grd-maz (refine P1 sqp))
(grd-maz ( slice-pool P2 sqp))
using i1-def i2-def unfolding grd-max-def idz-mazx-img-def by simp
also have ... = maz (grd-maz P1) (grd-max P2)
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using refine-grd-maz slice-pool-grd-maz’ assms(1) assms(2) assms(4—"7)
refine-clmm refine-nz-lg-ne
by presburger
finally show ?thesis .
qed

lemma pool-comb-grd-maz-slice:
assumes clmm-dsc P1
and clmm-dsc P2
and grd P1 = grd P2
and nz-support (lg P1) # {}
and nz-support (lg P2) # {}
and 0 < sqp
and sqp < grd-maz P2
and P = pool-comb P1 P2 sqp
shows sqp < grd-mazx P
proof (cases grd-max P1 < grd-max P2)
case True
hence grd-max P = grd-max P2 using assms pool-comb-grd-maz
by (metis maz.absorbl max.commute)
then show ?thesis using assms by simp
next
case Fulse
hence grd-max P = grd-max P1 using assms pool-comb-grd-mazx
by (metis linorder-not-less maz.absorb3)
then show ?thesis using assms Fualse by simp
qged

lemma pool-comb-quote-decomp:
assumes clmm-dsc P1
and clmm-dsc P2
and grd P1 = grd P2
and grd P1 (lower-tick P1 sqp) = sqp
and 0 < sqp
and sqp’ < grd-maz P
and P = pool-comb P1 P2 sqp
and nz-support (lg P) # {}
shows quote-gross P sqp’ = quote-gross P1 sqp’ + quote-gross (slice-pool P2 sqp)
sqp’
proof —
define P where P’ = slice-pool P2 sqp
have clmm-dsc P using pool-comb-clmm-dsc assms by simp
interpret finite-lig-pool
by (simp add: <clmm-dsc Py clmm-dsc-liq(1) finite-lig-pool.intro)
define sqp’’ where sqp’’ = quote-reach P (quote-gross P sqp’)
have quote-gross P sqp’ = quote-gross P sqp’’ unfolding sqp’’-def
proof (rule clmm-quote-gross-reach-eq[symmetric|)
show clmm-dsc P using <clmm-dsc P» .
show nz-support (lg P) # {} using assms by simp
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show 0 < quote-gross P sqp’
using clmm-quote-gross-pos <clmm-dsc P> by simp
show quote-gross P sqp’ < quote-gross P (grd-maz P)
using <clmm-dsc Py clmm-quote-gross-mono assms by (metis monoD)
qed
also have ... = quote-gross P1 sqp’’ + quote-gross P"" sqp”’
proof (rule joint-quote-gross-decomp”)
show joint: joint-pools P P1 P"
using assms pool-comb-joint-refined unfolding P’’-def by simp
show clmm-dsc P1 using assms by simp
show clmm-dsc P"
using refine-clmm slice-pool-clmm-dsc assms
unfolding P'’-def by auto
show nz-support (lg P) # {} using assms by simp
show 0 < quote-gross P sqp'’
using clmm-quote-gross-pos <clmm-dsc P> by simp
show sqp’’ = quote-reach P (quote-gross P sqp'’)
using assms sqp’’-def calculation by presburger
show quote-gross P sqp’’ < quote-gross P (grd-max P)
using assms clmm-quote-gross-mono <clmm-dsc P> monoD calculation
by metis
qed simp+
also have ... = quote-gross P1 sqp’ + quote-gross P' sqp’
by (metis P"-def assms(1—5,7) calculation pool-comb-joint-refined
quote-gross-join slice-pool-clmm-dsc)
finally show quote-gross P sqp’ = quote-gross P1 sqp’ + quote-gross P'' sqp’ .
qged

lemma pool-comb-quote-le-slice:
assumes clmm-dsc P1
and clmm-dsc P2
and grd P1 = grd P2
and grd P1 (lower-tick P1 sqp) = sqp
and 0 < sqp
and sqp’ < sqp
and sqp < grd-max P
and P = pool-comb P1 P2 sqp
and nz-support (lg P) # {}
shows quote-gross P sqp’ = quote-gross P1 sqp’
proof —
have quote-gross P sqp’ = quote-gross P1 sqp’ +
quote-gross (slice-pool P2 sqp) sqp’
using assms pool-comb-quote-decomp by simp
moreover have quote-gross (slice-pool P2 sqp) sqp’ = 0
by (metis add-0 assms(2,5,6) clmm-quote-gross-pos quote-gross-imp-sqp-lt
eq-diff-eq’ less-eq-real-def order-antisym-conv slice-pool-clmm-dsc
slice-pool-quote-gross)
ultimately show %thesis by simp
qed
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lemma pool-comb-quote-diff-decomp:
assumes clmm-dsc P1
and clmm-dsc P2
and grd P1 = grd P2
and grd P1 (lower-tick P1 sqp) = sqp
and 0 < sqp
and 0 < sqp’
and 0 < sqpl
and sqp’ < grd-maz P
and sqp! < grd-max P
and P = pool-comb P1 P2 sqp
and nz-support (lg P) # {}
shows quote-gross P sqp’ — quote-gross P sqpl =
quote-gross P1 sqp’— quote-gross P1 sqpl +
quote-gross (slice-pool P2 sqp) sqp’ — quote-gross (slice-pool P2 sqp) sqpl
proof —
define P’ where P’ = slice-pool P2 sqp
have clmm-dsc P using pool-comb-clmm-dsc assms by simp
interpret finite-lig-pool
by (simp add: <clmm-dsc Py clmm-dsc-liq(1) finite-lig-pool.intro)
have quote-gross P sqp’ = quote-gross P1 sqp’ + quote-gross P'" sqp’
using assms P’'-def pool-comb-quote-decomp by simp
moreover have quote-gross P sqpl = quote-gross P1 sqpl + quote-gross P
sqpl
using assms P''-def pool-comb-quote-decomp by simp
ultimately show ?thesis unfolding P’’-def by linarith
qed

lemma pool-comb-base-net-plus:

assumes clmm-dsc P1

and clmm-dsc P2

and grd P1 = grd P2

and grd P1 (lower-tick P1 sqp2) = sqp2

and 0 < sqp2

and 0 < y

and y < quote-gross P (grd-mazx P)

and P = pool-comb P1 P2 sqp2

and sqp’ = quote-reach P y

and sqp’ < sqp2

and nz-support (lg P) # {}
shows base-net P sqp’ = base-net P1 sqp’ + base-net (slice-pool P2 sqp2) sqp’
proof —

define P’ where P’ = slice-pool P2 sqp2

have clmm-dsc P using pool-comb-clmm-dsc assms by simp

interpret finite-lig-pool

by (simp add: <clmm-dsc Py clmm-dsc-liq(1) finite-lig-pool.intro)
have y = quote-gross P sqp’
using clmm-quote-gross-reach-eq assms <clmm-dsc P> by auto
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show base-net P sqp’ = base-net P1 sqp’ + base-net P’ sqp
proof (rule joint-base-net-decomp’)
show joint: joint-pools P P1 P"
using assms pool-comb-joint-refined unfolding P’’-def by simp
show clmm-dsc P1 using assms by simp
show clmm-dsc P"
using refine-clmm slice-pool-clmm-dsc assms
unfolding P'-def by auto
show nz-support (lg P) # {} using assms by simp
show 0 < quote-gross P sqp’
using clmm-quote-gross-pos <clmm-dsc P> by simp
show sqp’ = quote-reach P (quote-gross P sqp’)
using assms <y = quote-gross P sqp”» by presburger
show quote-gross P sqp’ < quote-gross P (grd-maz P)
using assms <y = quote-gross P sqp’y by linarith
qed simp+
qed

lemma combo-quote-init1:
assumes clmm-dsc P1
and clmm-dsc P2
and grd P1 = grd P2
and grd P1 (lower-tick P1 sqp2) = sqp2
and 0 < sqp2
and P = pool-comb P1 P2 sqp2
and 0 < y
and nz-support (lg P1) # {}
and nz-support (lg P2) # {}
and y + quote-gross P sqpl < quote-gross P (grd-maz P)
and sqp’ = quote-reach P (y + quote-gross P sqpl)
and sqp2 < grd-max P2
and sqp! < sqp2
shows quote-gross P sqpl = quote-gross P1 sqpl
proof (rule pool-comb-quote-le-slice)
have clmm-dsc P using pool-comb-clmm-dsc assms by simp
show nz-support (lg P) # {} using pool-comb-refined-joint-nz-liq assms by simp
hence qa: quote-gross P sqp’ = y + quote-gross P sqpl
using assms clmm-quote-gross-reach-eq <clmm-dsc Py clmm-quote-gross-pos
by auto
show clmm-dsc P1 using assms by simp
show clmm-dsc P2 using assms by simp
show grd P1 = grd P2 using assms by simp
show grd P1 (lower-tick P1 sqp2) = sqp2 using assms by simp
show P = pool-comb P1 P2 sqp2 using assms by simp
show 0 < sqp2 using assms assms by simp
show sqp! < sqp2 using assms by simp
have sqp2 < grd-max P using pool-comb-grd-max-slice assms by simp
thus sqp2 < grd-maz P by simp
qed

229



lemma combo-remain-quote-eq:
assumes clmm-dsc P1
and clmm-dsc P2
and grd P1 = grd P2
and grd P1 (lower-tick P1 sqp2) = sqp2
and 0 < sqp2
and P = pool-comb P1 P2 sqp2
and nz-support (lg P) # {}
and nz-support (lg P2) # {}
and 0 < y
and 0< sqpl
and y + quote-gross P sqpl < quote-gross P (grd-mazx P)
and sqp’ = quote-reach P (y + quote-gross P sqpl)
and y! = quote-gross P1 sqp’ — quote-gross P1 sqpl
and sqp2 < sqp’
and sgp! < sqp2
and rs!’ = quote-reach P2 (y — yl + quote-gross P2 sqp2)
shows quote-gross P2 sqp’ = quote-gross P2 rs1’
proof —
have clmm-dsc P using pool-comb-clmm-dsc assms by simp
define P’ where P'' = slice-pool P2 sqp2
define ¢ where i = lower-tick P2 sqp2
hence grd P2 i = sqp?2
using assms lower-tick-eq by metis
hence quote-gross P2 sqp’ = quote-gross P sqp’ + quote-gross P2 sqp2
using slice-pool-quote-gross P''-def assms i-def
by simp
also have ... = quote-gross P sqp’ — quote-gross P1 sqp’ + quote-gross P2 sqp2
proof —
have quote-gross P sqp’ = quote-gross P"' sqp'+ quote-gross P1 sqp’
using pool-comb-quote-decomp P’'-def assms pool-comb-joint-refined
quote-gross-join slice-pool-clmm-dsc
by (metis add.commute)
thus ?thesis by simp
qed
also have ... = y — yI + quote-gross P2 sqp2
proof —
have quote-gross P sqp’ = y + quote-gross P sqpl
using assms clmm-quote-gross-reach-eq <clmm-dsc Py clmm-quote-gross-pos
by auto
moreover have quote-gross P1 sqp’ = yl + quote-gross P1 sqpl
using assms by simp
moreover have quote-gross P sqpl = quote-gross P1 sqp1
proof (rule pool-comb-quote-le-slice)
show clmm-dsc P1 using assms by simp
show clmm-dsc P2 using assms by simp
show grd P1 = grd P2 using assms by simp
show grd P1 (lower-tick P1 sqp2) = sqp2 using assms by simp
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show nz-support (lg P) # {} using assms by simp
show P = pool-comb P1 P2 sqp2 using assms by simp
show 0 < sgp2 using assms assms by simp
show sqpl < sqp2 using assms by simp
show sqp2 < grd-mazx P
by (metis <clmm-dsc Py assms(11) assms(12) assms(14) assms(7)
calculation(1) quote-gross-imp-sqp-lt quote-gross-grd-maz-ge
grd-maz-quote-reach linorder-not-less order-le-imp-less-or-eq)
qed
ultimately show ?thesis by simp
qed
also have ... = quote-gross P2 (quote-reach P2 (y — yl + quote-gross P2 sqp2))
proof (rule clmm-quote-gross-reach-eq[symmetric])
show clmm-dsc P2 using assms by simp
show nz-support (lg P2) # {} using assms by simp
show 0 < y — y1 + quote-gross P2 sqp2
by (metis assms(2) calculation clmm-quote-gross-pos)
show y — yI + quote-gross P2 sqp2 < quote-gross P2 (grd-mazx P2)
by (metis assms(2) assms(8) calculation quote-gross-grd-maz-mazx)
qed
finally show ?thesis using assms by simp
qged

lemma comb-quote-gross-le:
assumes clmm-dsc P1
and clmm-dsc P2
and grd P1 = grd P2
and 0 < sqp
and sqp < grd-max P
and 0 < y
and y < quote-gross P sqp
and y < quote-gross P (grd-mazx P)
and P = pool-comb P1 P2 sqp
and sqp’ = quote-reach Py
and nz-support (lg P) # {}
shows quote-gross P1 sqp’ = y
proof —
define P’ where P’ = refine P1 sqp
define P’ where P’ = slice-pool P2 sqp
hence quote-gross P'' sqp = 0 using slice-pool-quote-gross-leq
by (metis assms(2) assms(4) dual-order.refl)
have clmm-dsc P using pool-comb-clmm-dsc assms by simp
interpret finite-lig-pool
by (simp add: <clmm-dsc Py clmm-dsc-liq(1) finite-lig-pool.intro)
have y = quote-gross P sqp’
using clmm-quote-gross-reach-eq assms <clmm-dsc P> by auto
hence sgp’ < sqp
using <clmm-dsc P> quote-reach-le-gross assms order-less-imp-le
by blast
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hence quote-gross P sqp’ = 0 using slice-pool-quote-gross-leq
by (metis P"-def assms(2,4))
have quote-gross P sqp’ = quote-gross P’ sqp’ + quote-gross P’ sqp
proof (rule joint-quote-gross-decomp’)
show joint: joint-pools P P’ P"
using assms pool-comb-joint unfolding P’-def P''-def by simp
show clmm-dsc P’
using refine-clmm assms unfolding P’-def by simp
show clmm-dsc P"
using refine-clmm slice-pool-clmm-dsc assms
unfolding P’’-def by auto
show nz-support (lg P) # {} using assms by simp
show 0 < quote-gross P sqp’
using clmm-quote-gross-pos <clmm-dsc P> by simp
show sqp’ = quote-reach P (quote-gross P sqp’)
using assms <y = quote-gross P sqp’s by presburger
show quote-gross P sqp’ < quote-gross P (grd-mazx P)
using assms <y = quote-gross P sqp’s by linarith
show quote-gross P'' sqp = quote-gross P'"' sqp’
by (simp add: <quote-gross P sqp = 0 <quote-gross P sqp’ = 0»)
qged simp
also have ... = quote-gross P’ sqp’ using <quote-gross P"' sqp = 0> by simp
also have ... = quote-gross P1 sqp’
using refine-quote-gross assms P’-def by simp
finally show ?thesis using (y = quote-gross P sqp’y by simp
qged

locale combined-pools =
fixes P1 P2 P sqp2
assumes cmb-P1: clmm-dsc P1
and cmb-P2: clmm-dsc P2
and cmb-grd-eq: grd P1 = grd P2
and cmb-on-grid: grd P1 (lower-tick P1 sqp2) = sqp2
and c¢mb-nzl: nz-support (lg P1) # {}
and cmb-nz2: nz-support (lg P2) # {}
and cmb-comb: P = pool-comb P1 P2 sqp2
and cmb-pos: 0 < sqp2
and cmb-maz: sqp2 < grd-max P2

begin

lemma combined-P-prop:
shows clmm-dsc P nz-support (lg P) # {}
proof —
show clmm-dsc P
using c¢mb-P1 cmb-P2 cmb-comb pool-comb-clmm-dsc cmb-grd-eq cmb-pos by
blast
show nz-support (lg P) # {}
using pool-comb-refined-joint-nz-lig cmb-P1 cmb-P2 cmb-comb cmb-grd-eq
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cmb-nzl cmb-on-grid
by blast
qed

lemmas cmb-props = c¢cmb-P1 cmb-P2 cmb-grd-eq cmb-on-grid cmb-nzl cmb-nz2
cmb-comb cmb-pos cmb-mazx combined-P-prop

lemma combo-joint-quote-gross-decomp:
assumes 0 < y
and 0 < sqpl
and y + quote-gross P sqpl < quote-gross P (grd-mazx P)
and sqp’ = quote-reach P (y + quote-gross P sqpl)
and y! = quote-gross P1 sqp’ — quote-gross P1 sqpl
and P’ = slice-pool P2 sqp2
and y2’ = quote-gross P sqp’ — quote-gross P’ sqpl
shows y =yl + y2' yl <y 0 < yl
yl + quote-gross P1 sqpl < quote-gross P1 (grd-maz P1)
y2' < quote-gross P"' (grd-maz P2)
proof —
have clmm-dsc P using combined-P-prop by simp
have nz-support (lg P) # {} using combined-P-prop by simp
have quote-gross P sqpl < quote-gross P (grd-maz P) using assms by simp
hence sqp! < grd-max P
using <clmm-dsc P> quote-gross-imp-sqp-lt by blast
define sqp!’ where sqpl’ = quote-reach P1 (quote-gross P1 sqp’)
have quote-gross P sqpl < quote-gross P sqp’
using quote-reach-add-gt assms <clmm-dsc P>
<nz-support (lg P) # {}
by simp
hence sqp1 < sqp’
using <clmm-dsc Py quote-gross-imp-sqp-lt[of P] by simp
hence 0 < sqp’
using assms lig-grd-min combined-pools-azxioms
unfolding combined-pools-def by fastforce
have quote-gross P1 sqp’ < quote-gross P1 (grd-maz P1)
by (simp add: cmb-P1 emb-nzl quote-gross-grd-max-maz)
thus y!I + quote-gross P1 sqpl < quote-gross P1 (grd-maz P1)
by (simp add: assms(5))
have clmm-dsc P" using assms slice-pool-clmm-dsc cmb-P2 cmb-pos by simp
have grd-max P2 = grd-maz P" using slice-pool-grd-maz’
by (simp add: assms cmb-P2 cmb-maz cmb-nz2 cmb-pos)
have nz-support (lg P"') # {} using slice-pool-nz-liq’
by (simp add: assms cmb-P2 cmb-mazx cmb-nz2 ecmb-pos)
define sqp2’ where sqp2’ = quote-reach P'"' (quote-gross P sqp’)
have quote-gross P sqpl < quote-gross P sqp’
using quote-reach-add-gt assms <clmm-dsc P>
<nz-support (lg P) # {}
by simp
hence sqgp1 < sqp’
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using <clmm-dsc Py quote-gross-imp-sqp-lt[of P] by simp
have 0 < y2’
by (metis <clmm-dsc P""y <sqpl < sqp’» quote-gross-imp-sqp-It
diff-ge-0-iff-ge eucl-less-le-not-le linorder-less-linear
verit-comp-simplify1 (2) assms(7))
show y = y1 + y2'
proof —
have quote-gross P sqp’ = y + quote-gross P sqpl
using assms clmm-quote-gross-reach-eq <clmm-dsc Py clmm-quote-gross-pos

<nz-support (lg P) # {}

by auto
hence y = quote-gross P sqp’ — quote-gross P sqpl by simp
also have ... = quote-gross P1 sqp’ — quote-gross P1 sqpl +

quote-gross (slice-pool P2 sqp2) sqp’ —
quote-gross (slice-pool P2 sqp2) sqpl
proof (rule pool-comb-quote-diff-decomp|OF ¢cmb-P1 ¢cmb-P2 cmb-grd-eq cmb-on-grid))
show nz-support (lg P) # {} P = pool-comb P1 P2 sqp2
sqpl < grd-max P

using <nz-support (lg P) # {} «sqpl < grd-maz P> c¢mb-comb by auto
show 0 < sqpl using assms lig-grd-min ¢cmb-P1 cmb-nzl by fastforce
have 0 < grd-min P

using «nz-support (lg P) # {}» «clmm-dsc P) lig-grd-min by simp
thus 0 < sqp’

using assms clmm-quote-reach-ge <nz-support (lg P) # {}»

by (metis <clmm-dsc P> <quote-gross P sqp’ = y + quote-gross P sqpl)»

add-less-le-mono clmm-quote-gross-pos less-add-same-cancell )

show sqp’ < grd-max P

using quote-reach-leg-grd-mazx assms <nz-support (lg P) # {}

by (simp add: <clmm-dsc Py clmm-quote-gross-pos)
show 0 < sgp2 using cmb-pos by simp

qed
also have ... = yI + y2' using assms by simp
finally show ?thesis .

qed

show y! < y using «0 < y2" <y = yl + y2" by simp
show y2' < quote-gross P"' (grd-maz P2)
by (metis <clmm-dsc P""y <nz-support (lg P") # {}>
<grd-max P2 = grd-max P’y add.commute add-diff-cancel assms(7)
clmm-quote-gross-pos quote-gross-grd-max-mazx diff-add-cancel
diff-ge-0-iff-ge dual-order.trans)
show 0 < yI
by (metis <sqpl < sqp’s assms(5) quote-gross-imp-sqp-It
cmb-P1 eq-diff-eq’ le-add-same-cancel? less-eq-real-def
linorder-neqE-linordered-idom order.asym)
qed

lemma combo-joint-quote-gross-leg-max:

assumes 0 < y
and 0 < sqpl
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and y + quote-gross P sqpl < quote-gross P (grd-mazx P)
and sqp’ = quote-reach P (y + quote-gross P sqpl)
and y! = quote-gross P1 sqp’ — quote-gross P1 sqpl
shows y— yI + quote-gross P2 sqp2 < quote-gross P2 (grd-max P2)
proof —
define P’ where P'' = slice-pool P2 sqp2
define y2’ where y2’ = quote-gross P sqp’ — quote-gross P' sqp1
have y — yI = y2' using y2'-def P"-def assms combo-joint-quote-gross-decomp
by (metis add-diff-cancel-left’)
also have ... < quote-gross P (grd-max P2)
using assms combo-joint-quote-gross-decomp
unfolding y2'-def P''-def
by metis
also have ... = quote-gross P2 (grd-max P2) — quote-gross P2 sqp2
unfolding P''-def
using c¢cmb-P2 cmb-grd-eq cmb-maz cmb-on-grid cmb-pos lower-tick-eq
slice-pool-quote-gross
by auto
finally have y — y1 < quote-gross P2 (grd-mazx P2) — quote-gross P2 sqp2 .
thus ?thesis by simp
qed

lemma combo-joint-quote-gross-price-le:
assumes (0 < y
and grd-min P1 < sqpl
and sqpl < sqp2
and y + quote-gross P sqpl < quote-gross P (grd-mazx P)
and sqp’ = quote-reach P (y + quote-gross P sqpl)
and yl! = quote-gross P1 sqp’ — quote-gross P1 sqpl
and rs! = quote-reach P1 (yl + quote-gross P1 sqp1)
shows rs1 < sqp’
proof (cases yl + quote-gross P1 sqpl = 0)
case True
hence rs! = grd-min P1 using assms
by (simp add: clmm-quote-reach-zero cmb-P1 cmb-nz1)
also have ... = grd-min P using assms pool-comb-le-grd-min
by (simp add: cmb-P1 ¢cmb-P2 cmb-comb cmb-grd-eq cmb-maz emb-nzl cmb-nz2

cmb-pos)
also have ... < sqp’
proof —
have 0 < y + quote-gross P sqp1
by (simp add: add-pos-nonneg assms clmm-quote-gross-pos combined-P-prop)
thus ?thesis using assms
by (simp add: combined-P-prop quote-reach-gt-grd-min)
qed
finally show ?thesis by simp
next
case Fulse
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hence 0 < y1 + quote-gross P1 sqpl
by (metis assms(6) clmm-quote-gross-pos cmb-P1 diff-add-cancel
less-eq-real-def)
show ?thesis
by (smt (23) <0 < yl + quote-gross P1 sqpl» assms clmm-quote-gross-pos
quote-reach-le-gross quote-gross-grd-maz-max clmm-quote-reach-ge
quote-reach-leq-grd-max lig-grd-min ¢cmb-P1 cmb-nz1 combined-P-prop)
qed

lemma combo-joint-quote-gross-decomp-leq:
assumes 0 < y
and 0 < sqpl
and y + quote-gross P sqpl < quote-gross P (grd-mazx P)
and sqp’ = quote-reach P (y + quote-gross P sqpl)
and y! = quote-gross P1 sqp’ — quote-gross P1 sqpl
and P’ = slice-pool P2 sqp2
and sgp! < sqp2
and y2' = quote-gross P"" sqp’
shows y = yI + y2' yl <y 0 < yl
yl + quote-gross P1 sqpl < quote-gross P1 (grd-maz P1)
y2' < quote-gross P"' (grd-mazx P2)
proof —
have quote-gross P' sqpl = 0
by (smt (verit) assms(2) assms(6) assms(7) sqp-lt-grd-maz-imp-idz
clmm-quote-gross-grd-min-le cmb-P2 cmb-grd-eq cmb-max cmb-nz2
cmb-on-grid grd-lower-tick-cong slice-pool-clmm-dsc slice-pool-grd-min)
hence eq: y2' = quote-gross P" sqp’ — quote-gross P’ sqpl using assms by
stmp
thus y = yI + y2’ using assms combo-joint-quote-gross-decomp by blast
show yI < y using assms combo-joint-quote-gross-decomp(2) by blast
show yI + quote-gross P1 sqpl < quote-gross P1 (grd-max P1)
using assms combo-joint-quote-gross-decomp(4) by blast
show y2’ < quote-gross P"' (grd-maz P2)
using eq assms combo-joint-quote-gross-decomp(5) by blast
show 0 < yI
using eq assms combo-joint-quote-gross-decomp(3) by blast
qed

lemma combo-quote-swap-slice-eq:
assumes 0 < sqpl
and 0 < y
and y + quote-gross P sqpl < quote-gross P (grd-mazx P)
and sqp’ = quote-reach P (y + quote-gross P sqp1)
and y! = quote-gross P1 sqp’ — quote-gross P1 sqpl
shows quote-swap P sqpl y = quote-swap P1 sqpl y1 +
quote-swap (slice-pool P2 sqp2) sqpl (y — yl)
proof —
have clmm-dsc P using combined-P-prop by simp
have nz-support (lg P) # {} using combined-P-prop by simp
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have quote-gross P sqpl < quote-gross P (grd-maz P) using assms by simp
hence sqp! < grd-max P

using <clmm-dsc P> quote-gross-imp-sqp-lt by blast
define sqp!’ where sqpl’ = quote-reach P1 (quote-gross P1 sqp’)
have quote-gross P sqpl < quote-gross P sqp’

using quote-reach-add-gt assms <clmm-dsc P>

<nz-support (lg P) # {}

by simp
hence sqp1 < sqp’

using <clmm-dsc Py quote-gross-imp-sqp-lt[of P] by simp
hence 0 < sqp’

using assms lig-grd-min combined-pools-axioms

unfolding combined-pools-def by fastforce
define P where P’ = slice-pool P2 sqp2
have cImm-dsc P"

using P''-def assms slice-pool-clmm-dsc ecmb-pos by (simp add: cmb-P2)
have grd-mazx P2 = grd-maz P" using slice-pool-grd-max’

by (simp add: P''-def cmb-P2 cmb-maz cmb-nz2 cmb-pos)
have nz-support (lqg P"') # {} using slice-pool-nz-liq’

by (simp add: P'-def cmb-P2 emb-max cmb-nz2 cmb-pos)
define y2’ where y2’ = quote-gross P sqp’ — quote-gross P'' sqp1
define sqp2’ where sqp2’ = quote-reach P'"' (quote-gross P sqp’)
have quote-gross P sqpl < quote-gross P sqp’

using quote-reach-add-gt assms <clmm-dsc P>

<nz-support (lg P) # {}

by simp
hence sqp1 < sqp’

using <clmm-dsc Py quote-gross-imp-sqp-lt[of P] by simp
have 0 < y2’

by (metis <clmm-dsc P"y <sqpl < sqp’» quote-gross-imp-sqp-It

diff-ge-0-iff-ge eucl-less-le-not-le linorder-less-linear
verit-comp-simplifyl (2) y2'-def)

have y = yI + y2' using assms combo-joint-quote-gross-decomp y2’'-def P"'-def

by blast
have quote-swap P sqpl y = base-net P sqpl — base-net P sqp’
using assms unfolding quote-swap-def by simp
also have ... = base-net P1 sqpl + base-net P"' sqpl —
(base-net P1 sqp’ + base-net P"" sqp’)
using assms pool-comb-base-net-plus combined-pools-axioms
unfolding combined-pools-def
by (metis P"-def <clmm-dsc P'y base-net-join pool-comb-joint-refined)
also have ... = base-net P1 sqpl — base-net P1 sqp’ +
base-net P"" sqpl — base-net P"" sqp’
by linarith
also have ... = quote-swap P1 sqpl y1 + quote-swap P’ sqpl y2'
proof —
have base-net P1 sqpl’ = base-net P1 sqp’
using quote-reach-base-net
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by (simp add: <0 < sqp"» ¢cmb-P1 cmb-nzl sqp1’-def)
moreover have base-net P’ sqp2’ = base-net P sqp’
using quote-reach-base-net
by (simp add: <0 < sqp”> <clmm-dsc P'"y <nz-support (lg P") # {}» sqp2’-def)

ultimately show %thesis
unfolding quote-swap-def
by (simp add: assms sqp1’-def sqp2'-def y2'-def)
qed
finally show ?thesis
using <y = yI + y2’» P"-def by simp
qed

lemma combo-quote-swap-eq:
assumes (0 < sqpl
and 0 < y
and y + quote-gross P sqpl < quote-gross P (grd-mazx P)
and sqp’ = quote-reach P (y + quote-gross P sqpl)
and y! = quote-gross P1 sqp’ — quote-gross P1 sqpl
and sqpl < sqp2
shows quote-swap P sqpl y = quote-swap P1 sqpl y1 +
quote-swap P2 sqp2 (y — yl)
proof —
define P’ where P’ = slice-pool P2 sqp2
define y2’ where y2’' = quote-gross P sqp’ — quote-gross P’ sqp1
have y = y! + y2’ using assms combo-joint-quote-gross-decomp y2'-def P''-def

by blast
hence y2' = y — y1 by simp
have y! < y using assms combo-joint-quote-gross-decomp(2) by simp
hence 0 < y2' using (y2' = y — y1» y2’-def by simp
have quote-swap P sqpl y = quote-swap P1 sqpl y1 +
quote-swap P sqpl y2'
using assms combo-quote-swap-slice-eq P"'-def «y2' = y — yl»

by blast
also have ... = quote-swap P1 sqpl y1 +
quote-swap P2 sqp2 y2'
proof —

have quote-swap P"" sqpl y2' = quote-swap P2 sqp2 y2'
proof (rule slice-pool-quote-swap)
show clmm-dsc P2 using cmb-P2 by simp
show nz-support (lg P2) # {} using cmb-nz2 by simp
show grd P2 (lower-tick P2 sqp2) = sqp2
using c¢mb-P2 cmb-grd-eq cmb-on-grid lower-tick-eq by auto
show P’ = slice-pool P2 sqp2 using P’’-def by simp
show sqp! < sqp2 using assms by simp
show sqp2 < grd-max P2 using cmb-mazr by simp
show 0 < sqpl using assms lig-grd-min ¢cmb-P1 cmb-nzl by fastforce
show 0 < y2' using 0 < y2' .
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have y2' < quote-gross P" (grd-mazx P2)
using combo-joint-quote-gross-decomp(5)
by (simp add: P"-def assms(1—4) y2'-def)
also have ... = quote-gross P2 (grd-max P2) — quote-gross P2 sqp2
using P''-def «grd P2 (lower-tick P2 sqp2) = sqp2) cmb-P2 assms(1—2)
slice-pool-quote-gross cmb-max cmb-pos
by auto
finally show y2’ + quote-gross P2 sqp2 < quote-gross P2 (grd-max P2)
by simp
qed
thus ?thesis by simp
qed
finally show ?thesis using <y = y1 + y2'» P"-def by simp
qed

lemma comb-add-above-gt:
assumes 0 < y
and 0< sqpl
and y + quote-gross P sqpl < quote-gross P (grd-mazx P)
and sqp’ = quote-reach P (y + quote-gross P sqpl)
and y! = quote-gross P1 sqp’ — quote-gross P1 sqpl
and yI <y
and sgp! < sqp2
shows sqp2 < sqp’
proof —
define P’ where P'' = slice-pool P2 sqp2
have y + quote-gross P1 sqpl = y + quote-gross P sqpl
proof —
have quote-gross P sqpl = quote-gross P1 sqpl
proof (rule pool-comb-quote-le-slice)
show grd P1 (lower-tick P1 sqp2) = sqp2
using cmb-grd-eq cmb-on-grid by auto
show sqp2 < grd-mazxz P
using cmb-max pool-comb-grd-mazx
by (simp add: c¢cmb-P1 c¢cmb-P2 cmb-comb c¢mb-grd-eq cmb-nzl cmb-nz2
cmb-pos)
show nz-support (lg P) # {}
using cmb-comb combined-P-prop(2) by auto
qed (auto simp add: cmb-props assms)
thus ?thesis by simp
qed
also have ... = quote-gross P sqp’
using clmm-quote-gross-reach-eq assms clmm-quote-gross-pos
combined-P-prop
by auto
also have ... = quote-gross P1 sqp’ + quote-gross P'" sqp’
using pool-comb-quote-decomp P’'-def cmb-P1 cmb-P2 cmb-comb cmb-grd-eq
cmb-pos
cmb-on-grid pool-comb-joint-refined quote-gross-join slice-pool-clmm-dsc
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by simp
also have ... = yI + quote-gross P1 sqpl + quote-gross P'' sqp
proof —
have quote-gross P1 sqp’ = y1 + quote-gross P1 sqpl
using clmm-quote-gross-reach-eq assms by simp
thus ?thesis by simp
qed
finally have y + quote-gross P1 sqpl = yl + quote-gross P1 sqpl +
quote-gross P'' sqp’ .
hence quote-gross P'' sqp’ = y — y1 by simp
hence 0 < quote-gross P'' sqp’ using assms by simp
hence grd-min P" < sqp’
by (metis P'-def cmb-P2 cmb-max cmb-nz2 cmb-pos quote-gross-pos-gt-grd-min

/!

slice-pool-clmm-dsc slice-pool-nz-liq”)
moreover have sqp2 < grd-min P
unfolding P"-def using slice-pool-grd-min
by (metis cmb-P2 cmb-mazx cmb-nz2 cmb-pos)
ultimately show ?thesis by simp
qed

lemma comb-add-above-add-eq:
assumes yl = quote-gross P1 sqp’ — quote-gross P1 sqpl
and rs! = quote-reach P1 (yl + quote-gross P1 sqp1)
shows quote-gross P1 sqp’ = quote-gross P1 rsl
by (simp add: assms clmm-quote-gross-pos quote-gross-grd-maz-max
clmm-quote-gross-reach-eq cmb-P1 cmb-nz1)

lemma comb-add-above-add-eq?2:
assumes (0 < y
and grd-min P1 < sqpl
and y + quote-gross P sqpl < quote-gross P (grd-mazx P)
and sqp’ = quote-reach P (y + quote-gross P sqpl)
and y! = quote-gross P1 sqp’ — quote-gross P1 sqpl
and sqpl < sqp2
and yI <y
and rs!’ = quote-reach P2 (y — yl + quote-gross P2 sqp2)
shows quote-gross P2 sqp’ = quote-gross P2 rs1’
using combo-remain-quote-eq comb-add-above-gt lig-grd-min combined-P-prop
lig-grd-min cmb-props combined-P-prop
by (smt (verit) assms(3—8) clmm-quote-gross-pos
quote-gross-grd-maz-max clmm-quote-gross-reach-eq
joint-quote-gross-decomp’ lower-tick-eq pool-comb-grd-maz-slice
pool-comb-joint-refined pool-comb-quote-le-slice slice-pool-clmm-dsc
slice-pool-quote-gross)

lemma combo-joint-rest-qty-slice:

assumes 0 < y
and 0 < sqpl
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and sqp! < sqp2

and y + quote-gross P sqpl < quote-gross P (grd-mazx P)

and sqp’ = quote-reach P (y + quote-gross P sqpl)

and y! = quote-gross P1 sqp’ — quote-gross P1 sqpl

and P’ = slice-pool P2 sqp2
shows y — yI = quote-gross P"' sqp

by (smt (verit, ccfo-SIG) assms combo-joint-quote-gross-decomp-leq(1)

combined-pools-azioms)

!

lemma combo-joint-rest-qty:
assumes 0 < y
and 0 < sqpl
and sgp! < sqp2
and y + quote-gross P sqpl < quote-gross P (grd-mazx P)
and sqp’ = quote-reach P (y + quote-gross P sqpl)
and y! = quote-gross P1 sqp’ — quote-gross P1 sqpl
and sqp2 < sqp’
shows y — yI = quote-gross P2 sqp’ — quote-gross P2 sqp2
proof —
define P where P’ = slice-pool P2 sqp2
have y — y1 = quote-gross P"' sqp’
using assms P''-def combo-joint-rest-qty-slice by simp
also have ... = quote-gross P2 sqp’ — quote-gross P2 sqp2
using P'-def slice-pool-quote-gross assms(7) ecmb-P2 cmb-grd-eq cmb-on-grid
cmb-pos lower-tick-eq
by auto
finally show ?thesis .
qed

lemma combo-joint-rest-qty-le:
assumes () < y
and 0 < sqpl
and sgp! < sqp2
and y + quote-gross P sqpl < quote-gross P (grd-mazx P)
and sqp’ = quote-reach P (y + quote-gross P sqpl)
and y! = quote-gross P1 sqp’ — quote-gross P1 sqpl
shows y — yI + quote-gross P2 sqp2 < quote-gross P2 (grd-maz P2)
proof —
define P’ where P’ = slice-pool P2 sqp2
have y — y1 < quote-gross P (grd-max P2)
proof (rule combo-joint-quote-gross-decomp-leq(5))
show 0 < y using assms by simp
show 0 < sqp! using assms grd-min-pos cmb-P1 c¢mb-nzl by fastforce
show y — yI = quote-gross P"' sqp’
using combo-joint-rest-qty-slice assms P''-def by simp
show y + quote-gross P sqpl < quote-gross P (grd-maz P) using assms by
simp
show sqp’ = quote-reach P (y + quote-gross P sqp1) using assms by simp
show sgpl < sqp2 using assms by simp
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show y1 = quote-gross P1 sqp’ — quote-gross P1 sqpl using assms by simp
show P’ = slice-pool P2 sqp2 using P’’-def by simp

qed

also have ... = quote-gross P2 (grd-max P2) — quote-gross P2 sqp2
using P'-def cmb-P2 cmb-grd-eq cmb-max cmb-on-grid cmb-pos lower-tick-eq

slice-pool-quote-gross by simp
finally have y — y1 < quote-gross P2 (grd-max P2) — quote-gross P2 sqp2 .
thus ?thesis by simp
qed

lemma combo-joint-rest-price-pos:
assumes (0 < y
and grd-min P1 < sqpl
and y + quote-gross P sqpl < quote-gross P (grd-mazx P)
and sqp’ = quote-reach P (y + quote-gross P sqpl)
and y! = quote-gross P1 sqp’ — quote-gross P1 sqpl
and rs1’ = quote-reach P2 (y — yl + quote-gross P2 sqp2)
and yI <y
shows 0 < rs1’
using clmm-quote-reach-pos
by (metis (no-types, opaque-lifting) add-strict-increasing assms
clmm-quote-gross-pos lig-grd-min cmb-P1 ¢mb-P2 cmb-nzl cmb-nz2
combo-joint-quote-gross-leq-mazx diff-gt-0-iff-gt less-add-same-cancell
less-eg-real-def)

lemma combo-joint-quote-gross-price-le’:
assumes 0 < y
and grd-min P1 < sqpl
and sqp! < sqp2
and y + quote-gross P sqpl < quote-gross P (grd-maz P)
and sqp’ = quote-reach P (y + quote-gross P sqpl)
and y! = quote-gross P1 sqp’ — quote-gross P1 sqpl
and yI <y
and rs!’ = quote-reach P2 (y — yl + quote-gross P2 sqp2)
shows rs1’ < sqp’
proof (rule clmm-quote-reach-le)
show clmm-dsc P2 using cmb-P2 .
show nz-support (lg P2) # {} using cmb-nz2 .
show 0 < y — y1 + quote-gross P2 sqp2
by (simp add: add-pos-nonneg assms(7) clmm-quote-gross-pos cmb-P2)
show rs1’ = quote-reach P2 (y — yl + quote-gross P2 sqp2)
using assms by simp
have primeq: quote-gross P2 sqp’ = quote-gross P2 rs1’
using assms comb-add-above-add-eq2 by simp
have q1": quote-gross P2 rs1’ = y — yl + quote-gross P2 sqp2
using clmm-quote-gross-reach-eq assms
clmm-quote-gross-pos cmb-P2 cmb-nz2
by (smt (verit, best) lig-grd-min cmb-P1 e¢mb-nz1
combo-joint-quote-gross-leg-maz combined-pools-axioms)
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show sqp’ € quote-gross P2 —‘{y — yl + quote-gross P2 sqp2}
using primeq g1’ by simp
qed

lemma comb-add-above-pricel-leq:
assumes 0 < y
and grd-min P1 < sqpl
and y + quote-gross P sqpl < quote-gross P (grd-mazx P)
and sqp’ = quote-reach P (y + quote-gross P sqpl)
and y! = quote-gross P1 sqp’ — quote-gross P1 sqpl
and sgp! < sqp2
and 0 < y2
and y — y2 + quote-gross P2 sqp2 < quote-gross P2 (grd-maz P2)
and y2 < yI
and yI <y
and rs! = quote-reach P1 (yl + quote-gross P1 sqpl)
and rs2 = quote-reach P1 (y2 + quote-gross P1 sqp1)
shows rs2 < rsl
proof (rule quote-reach-mono)
have ¢q1: quote-gross P1 rs1 = y1 + quote-gross P1 sqpl
using clmm-quote-gross-reach-eq
by (simp add: assms clmm-quote-gross-pos quote-gross-grd-max-max
c¢cmb-P1 ¢cmb-nz1)
show clmm-dsc P1 using cmb-P1 by simp
show nz-support (lg P1) # {} using cmb-nzl by simp
show y2 + quote-gross P1 sqpl < yl + quote-gross P1 sqpl using assms by
stmp
show yI + quote-gross P1 sqpl < quote-gross P1 (grd-max P1)
by (metis quote-gross-grd-maz-maz cmb-P1 cmb-nzl q1)
show 0 < y2 + quote-gross P1 sqpl using assms
by (simp add: clmm-quote-gross-pos cmb-P1)
qed (simp add: assms)+

lemma comb-add-above-price2-geq:
assumes 0 < y
and grd-min P1 < sqpl
and y + quote-gross P sqpl < quote-gross P (grd-mazx P)
and sqp’ = quote-reach P (y + quote-gross P sqpl)
and yI = quote-gross P1 sqp’ — quote-gross P1 sqpl
and sqp! < sqp2
and 0 < y2
and y — y2 + quote-gross P2 sqp2 < quote-gross P2 (grd-maxz P2)
and y2 < yl
and yI <y
and rs!’ = quote-reach P2 (y — yl + quote-gross P2 sqp2)
and rs2’ = quote-reach P2 (y — y2 + quote-gross P2 sqp2)
shows rs1’ < rs2’
proof (rule quote-reach-mono)
show clmm-dsc P2 using cmb-P2 by simp
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show nz-support (lg P2) # {} using cmb-nz2 by simp

have 0 < y — y! using assms by simp

thus 0 < y — yI + quote-gross P2 sqp2
by (simp add: clmm-quote-gross-pos cmb-P2)

show y — yI + quote-gross P2 sqp2 < y — y2 + quote-gross P2 sqp2
using assms by simp

show y — y2 + quote-gross P2 sqp2 < quote-gross P2 (grd-maz P2)
using assms by simp

qed (simp add: assms)+

lemma comb-add-above-price2-geq’:
assumes (0 < y
and grd-min P1 < sqpl
and y + quote-gross P sqpl < quote-gross P (grd-mazx P)
and sqp’ = quote-reach P (y + quote-gross P sqpl)
and y! = quote-gross P1 sqp’ — quote-gross P1 sqpl
and sgp! < sqp2
and 0 < y2
and y — yI + quote-gross P2 sqp2 < quote-gross P2 (grd-maz P2)
and yI < y2
and y2 <y
and rs1’ = quote-reach P2 (y — yl + quote-gross P2 sqp2)
and rs2’ = quote-reach P2 (y — y2 + quote-gross P2 sqp2)
shows rs2' < rsi’
proof (rule quote-reach-mono)
show clmm-dsc P2 using cmb-P2 by simp
show nz-support (lg P2) # {} using cmb-nz2 by simp
have 0 < y — y2 using assms by simp
thus 0 < y — y2 + quote-gross P2 sqp2
by (simp add: clmm-quote-gross-pos cmb-P2)
show y — y2 + quote-gross P2 sqp2 < y — yl + quote-gross P2 sqp2
using assms by simp
show y — yI + quote-gross P2 sqp2 < quote-gross P2 (grd-maz P2)
using assms by simp
qed (simp add: assms)+

lemma comb-add-above-price2-lt:

assumes 0 < y

and grd-min P1 < sqpl

and y + quote-gross P sqpl < quote-gross P (grd-mazx P)

and sqp’ = quote-reach P (y + quote-gross P sqpl)

and y! = quote-gross P1 sqp’ — quote-gross P1 sqpl

and sgp! < sqp2

and 0 < y2

and y — y2 + quote-gross P2 sqp2 < quote-gross P2 (grd-maz P2)

and y2 < yI

and yI <y

and rs2’ = quote-reach P2 (y — y2 + quote-gross P2 sqp2)
shows sqp’ < rs2’
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proof (rule lt-quote-gross-imp-up-price)

define rs1’ where rs1’ = quote-reach P2 (y — yl + quote-gross P2 sqp2)

have primeq: quote-gross P2 sqp’ = quote-gross P2 rs1’
using assms comb-add-above-add-eq2 rs1’-def by simp

have q1': quote-gross P2 rs1’' = y — yl + quote-gross P2 sqp2
unfolding rs!’-def
using clmm-quote-gross-reach-eq assms(8—10)

clmm-quote-gross-pos cmb-P2 cmb-nz2 by auto

show clmm-dsc P2 using cmb-P2 .

show nz-support (lg P2) # {} using cmb-nz2 .

show 0 < y — y2 + quote-gross P2 sqp2
by (metis add.commute add-strict-increasing2 assms(10) assms(9)

clmm-quote-gross-pos cmb-P2 diff-add-cancel less-add-same-cancell
pos-add-strict)

show y — y2 + quote-gross P2 sqp2 < quote-gross P2 (grd-max P2)
using assms by simp

show quote-gross P2 sqp’ < y — y2 + quote-gross P2 sqp2
by (simp add: assms(9) primeq q1”)

show 152’ = quote-reach P2 (y — y2 + quote-gross P2 sqp2)
using assms by simp

qed

lemma combo-joint-reached-price-pos:
assumes (0 < y
and y + quote-gross P sqpl < quote-gross P (grd-mazx P)
and sqp’ = quote-reach P (y + quote-gross P sqpl)
shows 0 < sqp’ using clmm-quote-reach-pos
using assms clmm-quote-gross-pos combined-P-prop by auto

lemma combo-joint-base-reached-eq:
assumes () < y
and grd-min P1 < sqpl
and y + quote-gross P sqpl < quote-gross P (grd-mazx P)
and sqp’ = quote-reach P (y + quote-gross P sqpl)
and y! = quote-gross P1 sqp’ — quote-gross P1 sqpl
and sqpl < sqp2
and rs! = quote-reach P1 (yl + quote-gross P1 sqpl)
shows base-net P1 sqp’ = base-net P1 rsl
proof (rule quote-gross-equiv-base-net[symmetric])
show quote-gross P1 rs1 = quote-gross P1 sqp’
using assms comb-add-above-add-eq by metis
show clmm-dsc P1 using cmb-P1 .
show 0 < rs! using clmm-quote-reach-pos
by (simp add: assms(5) assms(7) clmm-quote-gross-pos
quote-gross-grd-maz-mazx cmb-P1 cmb-nzl)
show rs1 < sqp’
using assms combo-joint-quote-gross-price-le by blast
qed
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lemma combo-joint-base-reached-eq2:
assumes 0 < y
and grd-min P1 < sqpl
and y + quote-gross P sqpl < quote-gross P (grd-mazx P)
and sqp’ = quote-reach P (y + quote-gross P sqpl)
and y! = quote-gross P1 sqp’ — quote-gross P1 sqpl
and sqgp! < sqp2
and yI <y
and rs!’ = quote-reach P2 (y — yl + quote-gross P2 sqp2)
shows base-net P2 sqp’ = base-net P2 rs1’
proof —
have quoteq: quote-gross P2 sqp’ = quote-gross P2 rs1’
using assms comb-add-above-add-eq2 by simp
show ?thesis
proof (cases rs1’ < sqp’)
case True
show ?thesis
proof (rule quote-gross-equiv-base-net[symmetric])
show clmm-dsc P2 using cmb-P2 .
show rs1’ < sqp’ using True .
show quote-gross P2 rs1’ = quote-gross P2 sqp’ using quoteq by simp
show 0 < rsl’ using combo-joint-rest-price-pos assms by simp
qed
next
case Fulse
show ?thesis
proof (rule quote-gross-equiv-base-net)
show clmm-dsc P2 using cmb-P2 .
show sgp’ < rsl1’ using Fualse by simp
show quote-gross P2 sqp’ = quote-gross P2 rs1' using quoteq by simp
show 0 < sqp’ using combo-joint-reached-price-pos assms by simp
qed
qed
qed

lemma quote-gross-price-eql:
assumes yl! = quote-gross P1 sqp’ — quote-gross P1 sqpl
and rs! = quote-reach P1 (yl + quote-gross P1 sqpl)
shows quote-gross P1 rs1 = y1 + quote-gross P1 sqpl
using clmm-quote-gross-reach-eq
by (simp add: assms clmm-quote-gross-pos quote-gross-grd-maz-max
cmb-P1 cmb-nzl)

lemma quote-gross-price-eq2:
assumes ( < y2
and y2 + quote-gross P1 sqpl < quote-gross P1 (grd-maz P1)
and rs2 = quote-reach P1 (y2 + quote-gross P1 sqp1)
shows quote-gross P1 rs2 = y2 + quote-gross P1 sqpl
using clmm-quote-gross-reach-eq
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by (simp add: assms clmm-quote-gross-pos cmb-P1 ¢mb-nz1)

end

6.5 Optimality result on quote tokens

When the fees in two pools are constant and equal, swapping a given amount
of quote tokens in their combination permits to determine the optimal quan-
tities of quote tokens to swap in each individual pool.

locale combined-pools-cst-fee = combined-pools +
fixes phi
assumes feel: Vi. fee P1 i = phi
and fee2: Vi. fee P2 i = phi

begin

lemma fee-props:
shows 0 < phi phi < 1 using cmb-P1 clmm-dsc-fees[of P1] feel by auto

lemma quote-swap-opt-above:
assumes 0 < y
and grd-min P1 < sqpl
and y + quote-gross P sqpl < quote-gross P (grd-mazx P)
and sqp’ = quote-reach P (y + quote-gross P sqpl)
and y! = quote-gross P1 sqp’ — quote-gross P1 sqpl
and sgp! < sqp2
and 0 < y2
and y — y2 + quote-gross P2 sqp2 < quote-gross P2 (grd-max P2)
and y2 < yl
and yI <y
shows quote-swap P1 sqpl y2 + quote-swap P2 sqp2 (y — y2) < quote-swap P
sqply
proof —
define rs! where rs! = quote-reach P1 (yl + quote-gross P1 sqpl)
define rs2 where rs2 = quote-reach P1 (y2 + quote-gross P1 sqpl)
define rs1’ where rs1’ = quote-reach P2 (y — yl + quote-gross P2 sqp2)
define rs2’ where rs2’ = quote-reach P2 (y — y2 + quote-gross P2 sqp2)
have q1: quote-gross P1 rs1 = y1 + quote-gross P1 sqpl
unfolding rsi-def using quote-gross-price-eql assms by simp
have ¢2: quote-gross P1 rs2 = y2 + quote-gross P1 sqpl
unfolding rs2-def using quote-gross-price-eq2
by (smt (verit) assms(7) assms(9) clmm-quote-gross-pos
quote-gross-grd-maz-mazx cmb-P1 emb-nzl q1)
have ¢2": quote-gross P2 rs2' = y — y2 + quote-gross P2 sqp2
unfolding rs2’-def
using clmm-quote-gross-reach-eq assms(8—10)
clmm-quote-gross-pos cmb-P2 cmb-nz2 by auto
have q1": quote-gross P2 rs1’ = y — yl + quote-gross P2 sqp2
unfolding rs1’-def
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using clmm-quote-gross-reach-eq assms(8—10)
clmm-quote-gross-pos cmb-P2 cmb-nz2 by auto
have primeq: quote-gross P2 sqp’ = quote-gross P2 rs1’
using assms comb-add-above-add-eq2 rs1’-def by simp
have rs1 < sqp’
using assms rsi-def combo-joint-quote-gross-price-le by simp
have 0 < sqp’ using combo-joint-reached-price-pos assms by simp
have 0 < grd-min P1
using assms grd-min-pos lig-grd-min cmb-P1 cmb-nzl by blast
have sqp! < rsl using quote-reach-strict-mono
by (metis assms(7) assms(9) quote-gross-imp-sqp-lt cmb-P1
less-add-same-cancel2 linorder-not-less nle-le order.strict-trans q1)
hence 0 < rs! using <0 < grd-min P1) assms by simp
hence 1/sqp’ < 1/rs1 using <rsl < sqp’» <0 < sqp’s by (simp add: frac-le)
have rs2 < rsl using assms rs2-def rs1-def comb-add-above-pricel-leq by simp
have rs1’ < rs2’
using assms rs1’-def rs2’'-def comb-add-above-price2-geq by simp
have sqp’ < rs2’ using assms rs2’-def comb-add-above-price2-It by simp
have (1 —phi) * (quote-gross P1 rsl — quote-gross P1 rs2)/(rsl x rsl) —
(1 — phi) * (quote-gross P2 rs2' — quote-gross P2 sqp’)/(sqp’ * sqp’) =
(1 — phi) * (yI — y2)/(rsl = rsl) —
(1 — phi) * (quote-gross P2 rs2' — quote-gross P2 sqp’)/(sqp’ * sqp’)
using ¢ ¢2 by simp
also have ... =
(1 — phi) = (yI + quote-gross P1 sqpl — (y2 + quote-gross P1 sqpl))/(rsl
% rsl) —
(1 — phi) * (quote-gross P2 rs2' — quote-gross P2 sqp’)/(sqp’ * sqp’)
by simp
also have ... =
(1 — phi) * (y1 — y2)/(rsl * rs1) —
(1 — phi) x (quote-gross P2 rs2' — quote-gross P2 rs1’)/(sqp’ * sqp’)
using primeq by simp
also have ... = (1 — phi) x (y1 — y2)/(rsl * rs1) —
(1 — phi) * (y1 — y2)/(sqp’ * sqp)
using ¢’ q2’ by simp
also have ... = (I — phi) * (yI — y2) = (1/(rsl = rs1) — 1/(sqp’ * sqp”))
by (simp add: vector-space-over-itself .scale-right-diff-distrib)
finally have (1 —phi) * (quote-gross P1 rs1 — quote-gross P1 rs2)/(rs1 * rsl)
(1 — phi) * (quote-gross P2 rs2' — quote-gross P2 sqp’)/(sqp’ * sqp’) =
(1 — phi) * (yI — y2) = (1/(rsl * rs1) — 1/(sqp’ * sqp’)) .
moreover have 0 < (1 — phi) x (yl — y2) * (1/(rsl * rs1) — 1/(sqp’ * sqp"))

proof —
have rs1 * rs1 < sqp’ * sqp’
using <0 < rsl» «rsl < sqp’s by (simp add: mult-mono’)
hence 0 < 1/(rsl * rs1) — 1/(sqp’ * sqp”)
by (simp add: <0 < rsl» frac-le)
thus ?thesis
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using assms(9) fee-props(2) by fastforce
qed
ultimately have 0 < (I —phi) *
(quote-gross P1 rs1 — quote-gross P1 rs2)/(rsl * rsl) —
(1 — phi) % (quote-gross P2 rs2’ — quote-gross P2 sqp”)/(sqp’ * sqp’)
by simp
also have ... < base-net P1 rs2 — base-net P1 rs1 —
(1 — phi) * (quote-gross P2 rs2’ — quote-gross P2 sqp”)/(sqp’ * sqp’)
proof —
have (1 —phi) = (quote-gross P1 rs1 — quote-gross P1 rs2)/(rsl % rsl) <
base-net P1 rs2 — base-net P1 rsl
proof (rule base-net-quote-lbound)
show clmm-dsc P1 using cmb-P1I .
show Ai. fee P1 i = phi by (simp add: feel)
show 0 < rs2 using clmm-quote-reach-pos
by (metis clmm-quote-gross-pos quote-gross-grd-maz-maz cmb-P1
emb-nzl g2 rs2-def)
show rs2 < rs1 using (rs2 < rsi» .
qed
thus ?thesis by simp
qged
also have ... < base-net P1 rs2 — base-net P1 rs1 —
(base-net P2 sqp’ — base-net P2 rs2’)
proof —
have base-net P2 sqp’ — base-net P2 rs2’' <
(I — phi) x (quote-gross P2 rs2' — quote-gross P2 sqp’)/(sqp’ * sqp’)
proof (rule base-net-quote-ubound)
show clmm-dsc P2 using cmb-P2 .
show phi < 1 using fee-props(2) .
show sqp’ < rs2’ using <sqp’ < rs2'y by simp
show Ai. fee P2 i = phi by (simp add: fee2)
show 0 < sqp’ using (0 < sqp’ .

qed
thus ?thesis by (simp add: diff-left-mono)
qed
also have ... = base-net P1 rs2 — base-net P1 rsl —
(base-net P2 rs1’ — base-net P2 rs2’)
proof —

have base-net P2 sqp’ = base-net P2 rs1’
using assms combo-joint-base-reached-eq2 order-less-imp-le rs1’-def by blast
thus ?thesis by simp
qed
also have ... = quote-swap P1 sqpl y1 — quote-swap P1 sqpl y2—
(quote-swap P2 sqp2 (y — y2) — quote-swap P2 sqp2 (y — yl))
unfolding quote-swap-def rs1-def rs2-def rs1’-def rs2’-def by simp
also have ... = quote-swap P sqpl y —
(quote-swap P1 sqpl y2 + quote-swap P2 sqp2 (y — y2))
using assms combo-quote-swap-eq <0 < grd-min P1> by simp
finally have 0 < quote-swap P sqpl y —
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(quote-swap P1 sqpl y2 + quote-swap P2 sqp2 (y — y2)) .
thus ?thesis by simp
qed

lemma quote-swap-opt-above’”:
assumes 0 < y
and grd-min P1 < sqpl
and y + quote-gross P sqpl < quote-gross P (grd-mazx P)
and sqp’ = quote-reach P (y + quote-gross P sqpl)
and y! = quote-gross P1 sqp’ — quote-gross P1 sqpl
and sgp! < sqp2
and y2 + quote-gross P1 sqpl < quote-gross P1 (grd-mazx P1)
and 0 <y — y2
and y1 < y2
and y2 <y
shows quote-swap P1 sqpl y2 + quote-swap P2 sqp2 (y — y2) < quote-swap P
sqply
proof —
define Ilp! where lp! = quote-reach P1 (quote-gross P1 sqpl)
have q¢lp: quote-gross P1 lpl = quote-gross P1 sqpl
by (simp add: clmm-quote-gross-pos quote-gross-grd-maz-max
clmm-quote-gross-reach-eq cmb-P1 ¢cmb-nz1 lp1-def)
have Ipgeq: grd-min P1 < Ipl
by (simp add: clmm-quote-gross-pos quote-gross-grd-maz-maz
clmm-quote-reach-ge cmb-P1 cmb-nz1 Ip1-def)
define rs! where rs! = quote-reach P1 (yl1 + quote-gross P1 Ip1)
define rs2 where rs2 = quote-reach P1 (y2 + quote-gross P1 Ip1)
define rs1’ where rs1’ = quote-reach P2 (y — yl + quote-gross P2 sqp2)
define rs2’ where rs2’ = quote-reach P2 (y — y2 + quote-gross P2 sqp2)
have 0 < grd-min P1
using assms grd-min-pos lig-grd-min cmb-P1 cmb-nzl by blast
have q”: quote-gross P1 sqp’ = y1 + quote-gross P1 sqpl using assms by simp
have qI: quote-gross P1 rs1 = yl + quote-gross P1 sqpl
unfolding rsi-def using quote-gross-price-eql assms qlp by simp
have ¢2: quote-gross P1 rs2 = y2 + quote-gross P1 sqpl
unfolding rs2-def using quote-gross-price-eq2 qlp
by (metis <0 < grd-min P1y assms(1—25) assms(7) assms(9)
combo-joint-quote-gross-decomp(8) leD nless-le order.trans)
have quote-gross P1 sqp’ < quote-gross P1 rs2 using q’ q2 assms by simp
have y — yI + quote-gross P2 sqp2 < quote-gross P2 (grd-maz P2)
using <0 < grd-min P1» assms(1—5) combined-pools.combo-joint-quote-gross-leg-mazx

combined-pools-azxioms
by auto
hence ¢2": quote-gross P2 rs2' = y — y2 + quote-gross P2 sqp2
unfolding rs2’-def
using clmm-quote-gross-reach-eq assms(8—10)
clmm-quote-gross-pos cmb-P2 cmb-nz2 by auto
have g1’ quote-gross P2 rs1’' = y — yl + quote-gross P2 sqp2
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unfolding rs!’-def
using clmm-quote-gross-reach-eq assms(8—10)
clmm-quote-gross-pos cmb-P2 cmb-nz2
by (simp add: <y — y1 + quote-gross P2 sqp2 < quote-gross P2 (grd-max P2)>)

have quoteq: quote-gross P2 sqp’ = quote-gross P2 rs1’
using assms comb-add-above-add-eq2 rs1’-def by simp
have rs1 < sqp’
using assms rsi-def combo-joint-quote-gross-price-le qlp by force
have rs1’ < sqp’ using combo-joint-quote-gross-price-le’ assms rs1’-def by simp
have 0 < sqp’ using combo-joint-reached-price-pos assms by simp
have 0 < rs1’ using assms rs1’-def
by (metis quote-gross-imp-sqp-lt cmb-P2 cmb-pos diff-gt-0-iff-gt
dual-order.strict-trans less-add-same-cancel2 order-less-le-trans q1”)
have baseq2: base-net P2 sqp’ = base-net P2 rsl1’
using assms combo-joint-base-reached-eq2 rs1’-def by simp
have baseq: base-net P1 sqp’ = base-net P1 rsl
using assms combo-joint-base-reached-eq rsi-def qlp by simp
have 0 < sgp’ using clmm-quote-reach-pos
by (metis assms(1) assms(3) assms(4) clmm-quote-gross-pos combined-P-prop

dual-order.trans le-add-same-cancell less-eq-real-def)
have Ip! < rsl
proof (rule quote-reach-mono)
show Ilpl = quote-reach P1 (quote-gross P1 sqpl) using lpI-def by simp
show clmm-dsc P1 using c¢cmb-P1 .
show nz-support (lg P1) # {} using cmb-nz1 .
show 0 < quote-gross P1 sqpl using clmm-quote-gross-pos cmb-P1 by simp
show rs! = quote-reach P1 (yl + quote-gross P1 Ip1) using rsi-def by simp
show quote-gross P1 sqpl < yl1 + quote-gross P1 Ip1
using ¢lp <0 < grd-min P1> assms combo-joint-quote-gross-decomp(3)
by auto
show yI + quote-gross P1 Ilp1 < quote-gross P1 (grd-mazx P1)
using qlp assms by simp
qed
hence 0 < rsi using <0 < grd-min P1) assms Ipgeq by simp
hence 1/sqp’ < 1/rs1 using <rsl < sqp’» <0 < sqp’s by (simp add: frac-le)
have rs1 < rs2 using assms rs2-def rsi-def
by (metis add-le-cancel-right quote-gross-imp-sqp-lt cmb-P1
linorder-not-less order.asym q1 ¢2)
have rs2’ < rs1’
proof (rule comb-add-above-price2-geq’[of y sqp1 sqp’ y1 y2])
have 0 < yI
using combo-joint-quote-gross-decomp-leq(3) assms
by (meson <0 < grd-min P1y order-less-imp-le order-less-le-trans)
thus 0 < y2 using assms by simp
show y — yI + quote-gross P2 sqp2 < quote-gross P2 (grd-max P2)
using <y — yI + quote-gross P2 sqp2 < quote-gross P2 (grd-max P2)) .
show y! < y2 using assms by simp
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show y2 < y using assms by simp
show rs1’ = quote-reach P2 (y — yl + quote-gross P2 sqp2)
using rs1’-def by simp
show rs2’ = quote-reach P2 (y — y2 + quote-gross P2 sqp2)
using rs2’-def by simp
qed (simp add: assms)—+
have 0 = (1 — phi) = (y2—yl1)/(sqp’ * sqgp’) — (1 — phi) *
(quote-gross P1 1s2 — quote-gross P1 sqp’) / (sqp’ * sqp’)
using assms ¢2 by simp
also have ... = (I — phi) * (quote-gross P2 sqp’ — quote-gross P2 rs2’) /
(sqp’ = sqp’) — (1 — phi) = (quote-gross P1 rs2 — quote-gross P1 sqp’) /
(sqp” * sqp”)
by (simp add: quoteq q1’ ¢2")
also have ... < (base-net P2 rs2’ — base-net P2 sqp’) — (1 — phi) *
(quote-gross P1 rs2 — quote-gross P1 sqp’) / (sqp’ = sqp’)
proof —
have (1 — phi) * (quote-gross P2 sqp’ — quote-gross P2 rs2’) /
(sqp’ * sqp’) < base-net P2 rs2’ — base-net P2 sqp’
proof (rule base-net-quote-lbound|of P2 phi rs2’ sqp’])
show clmm-dsc P2 using cmb-P2 .
show Ai. fee P2 i = phi using fee2 by simp
show rs2’ < sqp’ using (rs1’ < sqp’s «rs2’ < rs1’y by simp
show 0 < rs2’ using clmm-quote-reach-pos
by (metis clmm-quote-gross-pos quote-gross-grd-maz-maz cmb-P2
emb-nz2 g2’ rs2’-def)
qged
thus ?thesis by simp
qed
also have ... < (base-net P2 rs2’ — base-net P2 sqp’) —
(base-net P1 sqp’ — base-net P1 rs2)
proof —
have base-net P1 sqp’ — base-net P1 rs2 < (1 — phi) *
(quote-gross P1 rs2 — quote-gross P1 sqp’) / (sqp’ * sqp’)
proof (rule base-net-quote-ubound)
show clmm-dsc P1 using cmb-P1I .
show Ai. fee P1 i = phi using feel by simp
show phi < 1 using fee-props by simp
show 0 < sqp’ using <0 < sqp’> .
show sqp’ < rs2
using <quote-gross P1 sqp’ < quote-gross P1 rs2»
quote-gross-imp-sqp-lt cmb-P1
by fastforce

qed
thus ?thesis by simp
qed
also have ... = (base-net P2 rs2’ — base-net P2 rs1’) —

(base-net P1 rs1 — base-net P1 rs2)
using baseq? baseq by simp
also have ... = base-net P1 rs2 — base-net P1 rsl —
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(base-net P2 rs1' — base-net P2 rs2’)
by simp
also have ... = quote-swap P1 sqpl y1 — quote-swap P1 sqpl y2—
(quote-swap P2 sqp2 (y — y2) — quote-swap P2 sqp2 (y — y1))
unfolding quote-swap-def rsi-def rs2-def rs1’-def rs2’-def using qlp by simp
also have ... = quote-swap P sqpl y —
(quote-swap P1 sqpl y2 + quote-swap P2 sqp2 (y — y2))
using assms combo-quote-swap-eq <0 < grd-min P1) by simp
finally have 0 < quote-swap P sqpl y —
(quote-swap P1 sqpl y2 + quote-swap P2 sqp2 (y — y2)) .
thus ?thesis by simp
qed

lemma combo-slice-no-addition2:
assumes (0 < y
and y + quote-gross P sqpl < quote-gross P (grd-mazx P)
and sqp’ = quote-reach P (y + quote-gross P sqpl)
and y! = quote-gross P1 sqp’ — quote-gross P1 sqpl
and sqpl < sqp2
and yI =y
and 0 < y2
and y2 <y
and y — y2 + quote-gross P2 sqp2 < quote-gross P2 (grd-maz P2)
and y1 # y2
and P’ = slice-pool P2 sqp2
shows quote-gross P sqp’ = 0
proof —
have yI + quote-gross P1 sqpl = y + quote-gross P sqp1
proof —
have quote-gross P sqpl = quote-gross P1 sqpl
proof (rule combo-quote-init1)
show clmm-dsc P1 using cmb-P1 .
show clmm-dsc P2 using cmb-P2 .
show grd P1 = grd P2 by (simp add: cmb-grd-eq)
show 0 < sqp2 by (simp add: cmb-pos)
show grd P1 (lower-tick P1 sqp2) = sqp2 by (simp add: cmb-on-grid)
show P = pool-comb P1 P2 sqp2 by (simp add: cmb-comb)
show 0 < y using assms by simp
show y + quote-gross P sqpl < quote-gross P (grd-maz P) using assms by
stmp
show nz-support (lg P1) # {} using cmb-nz1 .
show nz-support (lg P2) # {} using cmb-nz2 .
show sqp’ = quote-reach P (y + quote-gross P sqpl) using assms by simp
show sqpl < sqp2 using assms by simp
show sqp2 < grd-maz P2 by (simp add: cmb-maz)

qed

thus ?thesis using assms by simp
qged
also have ... = quote-gross P sqp’
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using clmm-quote-gross-reach-eq assms clmm-quote-gross-pos combined-P-prop
by auto
also have ... = quote-gross P1 sqp’ + quote-gross P'" sqp’
using pool-comb-quote-decomp cmb-P1 c¢cmb-P2 cmb-comb cmb-grd-eq assms
cmb-pos
cmb-on-grid pool-comb-joint-refined quote-gross-join slice-pool-clmm-dsc
by presburger
also have ... = yI + quote-gross P1 sqpl + quote-gross P"' sqp
using assms by simp
finally have y1 + quote-gross P1 sqpl =
yl + quote-gross P1 sqpl + quote-gross P’ sqp’ .
thus quote-gross P sqp’ = 0 by simp
qed

!

lemma quote-swap-opt-below:
assumes (0 < y
and grd-min P1 < sqpl
and y + quote-gross P sqpl < quote-gross P (grd-mazx P)
and sqp’ = quote-reach P (y + quote-gross P sqpl)
and y! = quote-gross P1 sqp’ — quote-gross P1 sqpl
and sqpl < sqp2

and yI =y
and 0 < y2
and y2 <y

and y — y2 + quote-gross P2 sqp2 < quote-gross P2 (grd-max P2)
and yl # y2
shows quote-swap P1 sqpl y2 + quote-swap P2 sqp2 (y — y2) < quote-swap P
sqply
proof —
define P where P’ = slice-pool P2 sqp2
have y2 < ylI using assms by simp
define Ip! where Ip! = quote-reach P1 (quote-gross P1 sqpl)
have ¢lp: quote-gross P1 lp1 = quote-gross P1 sqp1
by (simp add: clmm-quote-gross-pos quote-gross-grd-maz-maz
clmm-quote-gross-reach-eq cmb-P1 cmb-nz1 Ip1-def)
have Ipgeq: grd-min P1 < Ipl
by (simp add: clmm-quote-gross-pos quote-gross-grd-maz-max
clmm-quote-reach-ge cmb-P1 cmb-nzl lp1-def)
define rs1 where rs! = quote-reach P1 (y1 + quote-gross P1 Ip1)
define rs2 where rs2 = quote-reach P1 (y2 + quote-gross P1 Ip1)
define rs1’ where rs1’ = quote-reach P2 (y — yl + quote-gross P2 sqp2)
define rs2’ where rs2’ = quote-reach P2 (y — y2 + quote-gross P2 sqp2)
define rs3’ where rs8’ = quote-reach P" (y — y2)
have 0 < grd-min P1
using assms grd-min-pos lig-grd-min cmb-P1 cmb-nzl by blast
have " quote-gross P1 sqp’ = y1 + quote-gross P1 sqpl using assms by simp
have ¢q1: quote-gross P1 rs1 = y1 + quote-gross P1 sqpl
unfolding rsi-def using quote-gross-price-eql assms qlp by metis
have ¢2: quote-gross P1 rs2 = y2 + quote-gross P1 Ip1
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unfolding rs2-def using clmm-quote-gross-reach-eq
by (smt (23) assms(7—9) clmm-quote-gross-pos quote-gross-grd-maz-maz
cmb-P1 cmb-nz1 q1 qlp)
have ¢2": quote-gross P2 rs2' = y — y2 + quote-gross P2 sqp2
unfolding rs2’-def
using clmm-quote-gross-reach-eq assms(8—10)
clmm-quote-gross-pos cmb-P2 cmb-nz2 by auto
have q1": quote-gross P2 rs1’ = y — yl + quote-gross P2 sqp2
unfolding rs1’-def
using clmm-quote-gross-reach-eq assms(7—10)
clmm-quote-gross-pos cmb-P2 cmb-nz2 by auto
have rs1 < sqp’
using assms rsl-def combo-joint-quote-gross-price-le eq-diff-eq’ qlp by simp
have 0 < sgp’ using combo-joint-reached-price-pos assms by simp
have 0 < grd-min P1
using assms grd-min-pos lig-grd-min cmb-P1 c¢mb-nzl by blast
have sqpl < rsl using quote-reach-strict-mono
by (metis assms(1) assms(5) assms(7) quote-gross-imp-sqp-lt cmb-P1
diff-gt-0-iff-gt ¢' q1)
hence 0 < rs1 using <0 < grd-min P1) assms by simp
hence 1/sqp’ < 1/rs1 using <rsl < sqp’» <0 < sqp’s by (simp add: frac-le)
have rs2 < rsl using assms rs2-def rsi-def <y2 < yl»
by (smt (verit) quote-gross-imp-sqp-lt cmb-P1 q1 q2 glp)
have quote-gross P2 sqp2 < quote-gross P2 rs2’
using ¢2’ «y2 < y1» assms(7) by simp
hence sqp2 < rs2’ using quote-gross-imp-sqp-lt cmb-P2 by blast
have quote-gross P'' sqp’ = 0
using assms P''-def combined-pools-cst-fee.combo-slice-no-addition2
combined-pools-cst-fee-axioms
by simp
have quote-gross P'' sqp2 = 0 using P'"’-def slice-pool-quote-gross
by (simp add: c¢mb-P2 cmb-pos)
have ¢3": quote-gross P rs3' = y — y2 unfolding rs3’-def
proof (rule clmm-quote-gross-reach-eq)
show clmm-dsc P using P"-def cmb-P2 slice-pool-clmm-dsc cmb-pos by simp
show nz-support (lg P'") # {}
using P''-def cmb-P2 cmb-max cmb-nz2 cmb-pos slice-pool-nz-liq’ by auto
have quote-gross P"' (grd-max P'") =
quote-gross P2 (grd-maz P2) — quote-gross P2 sqp2
using slice-pool-quote-gross-max-eq
by (metis P"'-def cmb-P2 ¢cmb-grd-eq cmb-mazx cmb-nz2 cmb-on-grid emb-pos
lower-tick-eq)
thus y — y2 < quote-gross P"' (grd-maz P"') using assms by simp
show 0 < y — y2 using assms by simp
qed
hence quote-gross P sqp’ < quote-gross P rs3’
using «quote-gross P sqp’ = 0> assms by simp
hence sqp’ < rs3’
using P'’-def quote-gross-imp-sqp-It cmb-P2 slice-pool-clmm-dsc cmb-pos
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by blast
have rsl < sqp’ using <rsl < sqgp”» by simp
hence 0 < (1 — phi) x (y1—y2) = (1/(rsl % rs1) — 1/(sqp’ * sqp’))
proof —
have f1: 0 < 1 — phi
using fee-props(2) by force
have f2: 0 < rst
using <0 < rs1»> by linarith
have 0 < sqp’
using <0 < sqp”» by linarith
then have 0 < 1 / (rsl = rs1) — 1 / (sqp’ * sqp’)
using f2 by (simp add: <0 < rsl» <rsl < sqp’ frac-le mult-mono)
then show ?thesis
using fI «y2 < yl» by force
qed
also have ... = (1 — phi) * (y1—y2)/(rsl x rs1) — (1 — phi) *
(y1—y2) / (sqp’ * sqp”)
by (simp add: right-diff-distrib)
also have ... = (1 — phi) * (quote-gross P1 rs1 — quote-gross P1 rs2) /
(rs1 % rs1) — (1 — phi) * (quote-gross P rs3’' — quote-gross P sqp’) /
(sqp’ * sqp’)
using qI ¢2 qglp q3' assms (quote-gross P sqp’ = 0) by simp
also have ... < (base-net P1 rs2 — base-net P1 rs1) — (1 — phi) *
(quote-gross P'' rs8' — quote-gross P" sqp’) | (sqp’ * sqp’)
proof —
have (1 — phi) x (quote-gross P1 rs1 — quote-gross P1 rs2) /
(rs1 = rs1) < base-net P1 rs2 — base-net P1 rsl
proof (rule base-net-quote-lbound)
show clmm-dsc P1 using cmb-P1 .
show Ai. fee P1 i = phi using feel by simp
show rs2 < rsi using (rs2 < rsi» .
show 0 < rs2 using clmm-quote-reach-pos
by (metis clmm-quote-gross-pos quote-gross-grd-maz-max
cmb-P1 emb-nzl q2 rs2-def)
qed
thus ?thesis by simp
qged
also have ... < (base-net P1 rs2 — base-net P1 rsl) —
(base-net P'" sqp’ — base-net P rs3")
proof —
have base-net P" sqp’ — base-net P" rs3' < (1 — phi) *
(quote-gross P'" rs8' — quote-gross P" sqp”) | (sqp’ % sqp”)
proof (rule base-net-quote-ubound)
show clmm-dsc P'' using cmb-P2 P''-def slice-pool-clmm-dsc cmb-pos by
stmp
show Ai. fee P i = phi
using fee2 slice-pool-cst-fees P''-def cmb-P2 by simp
show phi < 1 using fee-props by simp
show 0 < sqp’ using <0 < sqp’> .
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show sqp’ < rs3’ using <sqp’ < rs3’y by simp

qed
thus ?thesis by simp
qed
also have ... = (base-net P1 rs2 — base-net P1 rsl) —
(base-net P"" sqp2 — base-net P'" rs3’)
proof —

have base-net P’ sqp’ = base-net P"' sqp2
proof (rule quote-gross-equiv-base-net’)
show clmm-dsc P"'
using P''-def cmb-P2 slice-pool-clmm-dsc cmb-pos by simp
show quote-gross P'' sqp’ = quote-gross P'' sqp2
by (simp add: <quote-gross P" sqp’ = 0 <quote-gross P sqp2 = 0»)
show 0 < sqp2 by (simp add: cmb-pos)
show 0 < sqp’ using (0 < sqp’ .

qed
thus ?thesis by simp
qed
also have ... = quote-swap P1 sqpl y1 — quote-swap P1 sqpl y2—

(base-net P'" sqp2 — base-net P rs8’)
unfolding quote-swap-def rsi-def rs2-def using qlp by simp
also have ... = quote-swap P1 sqp1 y1 — quote-swap P1 sqpl y2—
(quote-swap P sqp2 (y — y2) — quote-swap P sqp2 (y — y1))
proof —
have base-net P'' sqp2 = base-net P’
(quote-reach P"" (y — y1 + quote-gross P sqp2))
proof (rule quote-gross-equiv-base-net’)
show clmm-dsc P"'
using P''-def cmb-P2 slice-pool-clmm-dsc cmb-pos by simp
show 0 < sqp2 by (simp add: cmb-pos)
have y — y1 + quote-gross P" sqp2 = 0
by (simp add: <quote-gross P sqp2 = 0> assms(7))
hence quote-reach P" (y — y1 + quote-gross P sqp2) = grd-min P"
using clmm-quote-reach-zero
by (metis P"-def emb-P2 cmb-mazx emb-nz2 emb-pos slice-pool-clmm-dsc
slice-pool-nz-lig")
moreover have 0 < grd-min P'' using grd-min-pos
by (metis P"-def <clmm-dsc P'y lig-grd-min cmb-P2 cmb-max cmb-nz2
cmb-pos slice-pool-nz-liq”)
ultimately show 0 < quote-reach P"' (y — yl + quote-gross P sqp2)
by simp
have quote-gross P"' (quote-reach P"' (y — y1 + quote-gross P sqp2)) = 0
using <quote-reach P (y — y1 + quote-gross P sqp2) = grd-min P’
<0 < quote-reach P"" (y — y1 + quote-gross P"" sqp2)s <clmm-dsc P’
clmm-quote-gross-grd-min-le
by auto
thus quote-gross P sqp2 =
quote-gross P (quote-reach P"" (y — yl + quote-gross P"" sqp2))
using (quote-gross P sqp2 = 0> by simp
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qed
hence base-net P sqp2 — base-net P rs3' =
quote-swap P sqp2 (y — y2) — quote-swap P" sqp2 (y — y1)
unfolding quote-swap-def rs3’-def using «quote-gross P'' sqp2 = 0 by simp
thus ?thesis by simp

qed

also have ... = quote-swap P1 sqpl yl — quote-swap P1 sqpl y2—
(quote-swap P sqp2 (y — y2))

proof —

have quote-swap P sqp2 (y — y1) = 0
using quote-swap-zero assms P''-def cmb-P2 cmb-max cmb-nz2 cmb-pos
slice-pool-clmm-dsc slice-pool-nz-liq’ slice-pool-grd-maz’

by auto
thus ?thesis by simp
qed
also have ... = quote-swap P sqpl y —
(quote-swap P1 sqpl y2 + quote-swap P"" sqp2 (y — y2))
proof —

have quote-swap P sqpl y = quote-swap PI1 sqpl y1 +
quote-swap P sqpl (y — y1)
using assms combo-quote-swap-slice-eq <0 < grd-min P1y P"-def by simp
moreover have quote-swap P'" sqpl (y — y1) = 0
using quote-swap-zero assms P''-def cmb-P2 ecmb-max cmb-nz2 cmb-pos
slice-pool-clmm-dsc slice-pool-nz-liq’ slice-pool-grd-maz’ <0 < grd-min P15
by auto
ultimately show ?thesis by simp
qed
finally have 0 < quote-swap P sqpl y —
(quote-swap P1 sqpl y2 + quote-swap P sqp2 (y — y2)) .
moreover have quote-swap P sqp2 (y — y2) = quote-swap P2 sqp2 (y — y2)
using assms P''-def slice-pool-quote-swap-gt-zero
by (smt (23) ¢mb-P2 ¢cmb-grd-eq cmb-nz2 cmb-on-grid ecmb-pos grd-lower-tick-cong)

ultimately show ?thesis by simp
qed

lemma quote-swap-optimum’:
assumes 0 < y
and grd-min P1 < sqpl
and y + quote-gross P sqpl < quote-gross P (grd-mazx P)
and sqp’ = quote-reach P (y + quote-gross P sqpl)
and y! = quote-gross P1 sqp’ — quote-gross P1 sqpl
and sgp! < sqp2
and 0 < y2
and y2 <y
and y2 + quote-gross P1 sqpl < quote-gross P1 (grd-maz P1)
and y — y2 + quote-gross P2 sqp2 < quote-gross P2 (grd-max P2)
and y1 # y2
shows quote-swap P1 sqpl y2 + quote-swap P2 sqp2 (y — y2) < quote-swap P
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sqply
proof (cases y = y1)
case True
then show ?thesis using quote-swap-opt-below assms by simp
next
case Fulse
have y1 <y
proof (rule combo-joint-quote-gross-decomp-leq(2))
show 0 < sqpl using assms grd-min-pos cmb-P1 cmb-nzl by fastforce
qged (simp add: assms)+
hence y! < y using Fulse by simp
show ?thesis
proof (cases y2 < y1)
case True
show ?thesis
proof (rule quote-swap-opt-above)
show y2 < yI using True .
show y! < y using «yI < y .
ged (auto simp add: assms)
next
case Fulse
hence y! < y2 using assms by simp
show ?thesis
proof (rule quote-swap-opt-above’)
show yI < y2 using (yl < y2» .
qed (auto simp add: assms)
qed
qed

lemma quote-swap-optimum:
assumes () < y
and 0 < sqpl
and y + quote-gross P sqpl < quote-gross P (grd-mazx P)
and sqp’ = quote-reach P (y + quote-gross P sqpl)
and y! = quote-gross P1 sqp’ — quote-gross P1 sqpl
and sqpl < sqp2
and grd-min P1 < sqp2
and 0 < y2
and y2 <y
and y2 + quote-gross P1 sqpl < quote-gross P1 (grd-maz P1)
and y — y2 + quote-gross P2 sqp2 < quote-gross P2 (grd-maz P2)
and yl # y2
shows quote-swap P1 sqpl y2 + quote-swap P2 sqp2 (y — y2) < quote-swap P
sqply
proof (cases grd-min P1 < sqpl)
case True
then show ?thesis using quote-swap-optimum’ assms by simp
next
case Fulse

259



hence q1: quote-gross P1 sqpl = quote-gross P1 (grd-min P1)
using assms(2) clmm-quote-gross-grd-min-le cmb-P1 by auto
have grd-min P = grd-min P1
using pool-comb-le-grd-min by (simp add: assms(7) cmb-props)
hence ¢: quote-gross P sqpl = quote-gross P (grd-min P1)
using False assms(2) clmm-quote-gross-grd-min-le combined-P-prop(1) by auto
have quote-swap P1 sqpl y2 + quote-swap P2 sqp2 (y — y2) =
quote-swap P1 (grd-min P1) y2 + quote-swap P2 sqp2 (y — y2)
using quote-swap-grd-min False assms(2) emb-P1 emb-nzl by simp
also have ... < quote-swap P (grd-min P1) y using quote-swap-optimum’
by (metis q1 q assms(1) assms(7—12) assms(3—35) order-refl)
also have ... = quote-swap P sqpl y
using quote-swap-grd-min <grd-min P = grd-min P1) False assms(2)
combined-P-prop
by simp
finally show ?thesis .
qed

end

end
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