
Compressed Random Oracles

Dominique Unruh∗

January 16, 2026

Abstract

We formalize the compressed quantum random oracle methodology by Zhandry (Crypto
2019). This is a formalism for modeling quantum random oracles to make quantum cryp-
tographic proofs feasible. Our definition of the compressed oracles is loosely based on the
presentation from Unruh (arXiv 2021), but with a considerable amount of new definitions
and results. In particular, we make extensive use of the quantum references formalism (Un-
ruh, arXiv 2024, AFP 2021) to enable reasoning about queries on arbitrary subsystems,
something which is left very informal in pen-and-paper formalizations of the compressed
oracles.

We use the developed formalism to prove that finding x with H(x) = 0, and finding
collisions in H, is hard for quantum adversaries with oracle access to a random function H.

Contents
1 Misc-Compressed-Oracle – Miscellaneous required theorems 2

1.1 Misc . 2
1.2 Controlled operations . 6
1.3 Superpositions . 8
1.4 Lifting ell2 to option type . 8

2 Function-At – Function values as individual registers 9
2.1 apply-every . 11

3 Invariant-Preservation Preservation of invariants under queries 12
3.1 Invariants . 12
3.2 Distance from invariants . 21
3.3 Preservation of invariants . 24

4 CO-Operations Definition of the compressed oracle and related unitaries 25
4.1 function-oracle - Querying a fixed function . 25
4.2 Setup for compressed oracles . 25
4.3 switch0 - Operator exchanging ket (Some 0) and ket None 26
4.4 compress1 - Operator to compress a single RO-output 26
4.5 compress - Operator for compressing the RO . 27
4.6 standard-query1 - Operator for uncompressed query of a single RO-output 27
4.7 standard-query - Operator for uncompressed query of the RO 28

∗Supported by the ERC consolidator grant CerQuS (819317), the PRG team grant Secure Quantum Technol-
ogy (PRG946) from the Estonian Research Council, and the Estonian Cluster of Excellence “Foundations of the
Universe” (TK202).

1

4.8 query1 - Query the compressed oracle at a single output 29
4.9 query - Query the compressed oracle . 31

5 CO-Invariants Preservation of invariants under compressed oracle queries 32

6 Compressed-Oracle-Is-RO – Equivalence of compressed oracle and regular ran-
dom oracle 36

7 Oracle-Programs – Oracle programs and their execution 37
7.1 Oracle programs . 37
7.2 Lifting . 38
7.3 Final measurement . 39
7.4 Preservation . 40
7.5 Misc . 40
7.6 Random Oracles . 40

8 Find-Zero Invariant preservation for zero-finding 42
8.1 Zero-finding is hard for q-query adversaries . 43

9 Aux-Sturm-Calculation – Auxiliary theory for technical reasons. 43

10 Collision Invariant preservation for collision resistance 44
10.1 Collision-finding is hard for q-query adversaries 44

1 Misc-Compressed-Oracle – Miscellaneous required theorems
theory Misc-Compressed-Oracle

imports Registers.Quantum-Extra2
begin

declare [[simproc del: Laws-Quantum.compatibility-warn]]

unbundle cblinfun-syntax
unbundle register-syntax

1.1 Misc
lemma assoc-ell2 ′-ket[simp]: ‹assoc-ell2∗ ∗V ket (x,y,z) = ket ((x,y),z)›

lemma assoc-ell2-ket[simp]: ‹assoc-ell2 ∗V ket ((x,y),z) = ket (x,y,z)›

lemma sandwich-tensor :
fixes a :: ‹ ′a::finite ell2 ⇒CL

′c::finite ell2 › and b :: ‹ ′b::finite ell2 ⇒CL
′d::finite ell2 ›

assumes ‹unitary a› ‹unitary b›
shows cblinfun-apply (sandwich (a ⊗o b)) = cblinfun-apply (sandwich a) ⊗r cblinfun-apply (sandwich

b)

lemma sandwich-grow-left:
fixes a :: ‹ ′a::finite ell2 ⇒CL

′b::finite ell2 ›
assumes unitary a
shows sandwich a ⊗r id = sandwich (a ⊗o (id-cblinfun :: (-::finite ell2 ⇒CL -)))

2

lemma Snd-apply-tensor-ell2 [simp]: ‹Snd a ∗V (ψ ⊗s ϕ) = ψ ⊗s (a ∗V ϕ)›

〈ML〉

syntax -register-n-of-m :: ‹ ′a ⇒ ′a ⇒ ′b› ([--])
〈ML〉

lemma sum-if : ‹(
∑

x∈X . P (if Q x then a x else b x)) = (
∑

x∈X . if Q x then P (a x) else P (b x))›

lemma sum-if ′: ‹(
∑

x∈X . P (if Q x then a x else b x) x) = (
∑

x∈X . if Q x then P (a x) x else P (b
x) x)›

lemma bij-plus: ‹bij ((+) y)› for y :: ‹-::group-add›

lemma tensor-ell2-diff2 : ‹tensor-ell2 a (b − c) = tensor-ell2 a b − tensor-ell2 a c›
lemma tensor-ell2-diff1 : ‹tensor-ell2 (a − b) c = tensor-ell2 a c − tensor-ell2 b c›

lemma aminus-bminusc: ‹a − (b − c) = a − b + c› for a b c :: ‹- :: ab-group-add›

lemma sum-case ′:
fixes a :: ‹- ⇒ - ⇒ -::ab-group-add›
assumes ‹finite X›
shows ‹(

∑
x∈X . P (case Q x of Some z ⇒ a z x | None ⇒ b x))

= (
∑

x∈X ∩ {x. Q x 6= None}. P (a (the (Q x)) x)) + (
∑

x∈X ∩ {x. Q x = None}. P (b x))›
(is ?lhs=?rhs)

lemma register-isometry:
assumes register F
assumes isometry a
shows isometry (F a)

lemma register-coisometry:
assumes register F
assumes isometry (a∗)
shows isometry (F a∗)

lemma card-complement:
fixes M :: ‹ ′a::finite set›
shows ‹card (−M) = CARD(′a) − card M ›

lemma register-minus: ‹register F =⇒ F (a − b) = F a − F b›

lemma vimage-singleton-inj: ‹inj f =⇒ f −‘ {f x} = {x}›

lemma has-ell2-norm-0 [iff]: ‹has-ell2-norm (λx. 0)›

lemma ell2-norm-0I [simp]: ‹ell2-norm (λx. 0) = 0 ›

lemma ran-smaller-dom: ‹finite (dom m) =⇒ card (ran m) ≤ card (dom m)›

3

lemma option-sum-split: ‹(
∑

x∈X . f x) = (
∑

x∈Some −‘ X . f (Some x)) + (if None ∈ X then f None
else 0)› if ‹finite X› for f X

lemma sum-sum-if-eq: ‹(
∑

x∈X .
∑

y∈Y x. if x=a then f x y else 0) = (if a∈X then (
∑

y∈Y a. f a y)
else 0)› if ‹finite X› for X Y f

lemma sum-if-eq-else: ‹(
∑

x∈X . if x=a then 0 else f x) = (
∑

x∈X−{a}. f x)› for X f

lemma fun-upd-comp-left:
assumes ‹inj g›
shows ‹(f ◦ g)(x := y) = f (g x := y) o g›

definition reg-1-3 :: ‹- ⇒ (′a::finite × ′b::finite × ′c::finite) ell2 ⇒CL (′a × ′b × ′c) ell2 › where
‹reg-1-3 = Fst›
lemma register-1-3 [simp]: ‹register reg-1-3 ›

lemma comp-reg-1-3 [simp]: ‹(F ;G) o reg-1-3 = F› if [register]: ‹compatible F G›

definition reg-2-3 :: ‹- ⇒ (′a::finite × ′b::finite × ′c::finite) ell2 ⇒CL (′a × ′b × ′c) ell2 › where
‹reg-2-3 = Snd o Fst›
lemma register-2-3 [simp]: ‹register reg-2-3 ›
lemma comp-reg-2-3 [simp]: ‹(F ;(G;H)) o reg-2-3 = G› if [register]: ‹compatible F G› ‹compatible F
H › ‹compatible G H ›

definition reg-3-3 :: ‹- ⇒ (′a::finite × ′b::finite × ′c::finite) ell2 ⇒CL (′a × ′b × ′c) ell2 › where
‹reg-3-3 = Snd o Snd›
lemma register-3-3 [simp]: ‹register reg-3-3 ›
lemma comp-reg-3-3 [simp]: ‹(F ;(G;H)) o reg-3-3 = H › if [register]: ‹compatible F G› ‹compatible F
H › ‹compatible G H ›

lemma [simp]: ‹mutually compatible (reg-1-3 , reg-2-3 , reg-3-3)›

lemma pair-o-tensor-right:
assumes [simp]: ‹compatible F G› ‹register H ›
shows ‹(F ; G o H) = (F ; G) o (id ⊗r H)›

lemma register-tensor-distrib-right:
assumes [simp]: ‹register F› ‹register H › ‹register L›
shows ‹F ⊗r (H o L) = (F ⊗r H) o (id ⊗r L)›

lemma sandwich-apply ′:
‹sandwich U A ∗V ψ = U ∗V A ∗V U∗ ∗V ψ›

lemma csubspace-set-sum:
assumes ‹

∧
x. x ∈ X =⇒ csubspace (A x)›

shows ‹csubspace (
∑

x∈X . A x)›

lemma Rep-ell2-vector-to-cblinfun-ket: ‹Rep-ell2 ψ x = bra x ∗V ψ›

lemma trunc-ell2-insert: ‹trunc-ell2 (insert x M) ψ = Rep-ell2 ψ x ∗C ket x + trunc-ell2 M ψ› if ‹x
/∈ M ›

4

lemma trunc-ell2-in-cspan:
assumes ‹finite S›
shows ‹trunc-ell2 S ψ ∈ cspan (ket ‘ S)›

lemma space-ccspan-ket: ‹space-as-set (ccspan (ket ‘ M)) = {ψ. ∀ x ∈ −M . Rep-ell2 ψ x = 0}›

lemma space-as-set-ccspan-memberI : ‹ψ ∈ space-as-set (ccspan X)› if ‹ψ ∈ X›

lemma closure-subset-remove-closure: ‹X ⊆ closure Y =⇒ closure X ⊆ closure Y ›

lemma closure-cspan-closure: ‹closure (cspan (closure X)) = closure (cspan X)›
for X :: ‹ ′a::complex-normed-vector set›

lemma closure-Sup-closure: ‹closure (Sup (closure ‘ X)) = closure (Sup X)›

lemma cspan-closure-cspan: ‹cspan (closure (cspan X)) = closure (cspan X)›
for X :: ‹ ′a::complex-normed-vector set›

lemma cblinfun-image-SUP: ‹A ∗S (SUP x∈X . I x) = (SUP x∈X . A ∗S I x)›

lemma cspan-Sup-cspan: ‹cspan (Sup (cspan ‘ X)) = cspan (Sup X)›

lemma ccspan-Sup: ‹ccspan (
⋃

X) = Sup (ccspan ‘ X)›

lemma ccspan-space-as-set[simp]: ‹ccspan (space-as-set S) = S›

lemma cblinfun-image-Sup: ‹A ∗S Sup II = (SUP I∈II . A ∗S I)›

lemma space-as-set-mono: ‹I ≤ J =⇒ space-as-set I ≤ space-as-set J ›

lemma square-into-sum:
fixes X Y and f :: ‹- ⇒ real›
assumes ‹

∧
x. f x ≥ 0 ›

shows ‹(
∑

x∈X . f x)2 ≤ card X ∗ (
∑

x∈X . (f x)2)›

lemma bound-coeff-sum2 :
fixes X Y and f :: ‹ ′a ⇒ complex›
assumes [simp]: ‹finite Y ›
assumes XY : ‹X ⊆ Y ›
assumes sum1 : ‹(

∑
x∈Y . (cmod (f x))2) ≤ 1 ›

assumes k: ‹
∧

x. x ∈ X =⇒ card {y. g x = g y ∧ y ∈ X} ≤ k›
shows ‹norm (

∑
x∈X . f x ∗C ket (g x)) ≤ sqrt k›

lemma norm-ortho-sum-bound:
fixes X
assumes bound: ‹

∧
x. x∈X =⇒ norm (ψ x) ≤ b ′›

assumes b ′geq0 : ‹b ′ ≥ 0 ›
assumes ortho: ‹

∧
x y. x∈X =⇒ y∈X =⇒ x 6=y =⇒ is-orthogonal (ψ x) (ψ y)›

assumes b ′b: ‹sqrt (card X) ∗ b ′ ≤ b›
shows ‹norm (

∑
x∈X . ψ x) ≤ b›

lemma compatible-project1 : ‹compatible F G›
if ‹compatible F (G;H)› and [register]: ‹compatible G H › for F G H

5

lemma compatible-project2 : ‹compatible F H ›
if ‹compatible F (G;H)› and [register]: ‹compatible G H › for F G H

lemma proj-ket-x-y: ‹proj (ket x) ∗V (ket y) = 0 › if ‹x 6= y›

lemma proj-ket-x-y-ofbool: ‹proj (ket x) ∗V (ket y) = of-bool (x=y) ∗C ket y›

lemma proj-x-x[simp]: ‹proj x ∗V x = x›

lemma in-ortho-ccspan: ‹y ∈ space-as-set (− ccspan X)› if ‹∀ x∈X . is-orthogonal y x›

lemma swap-sandwich-swap-ell2 : swap = sandwich swap-ell2

lemma is-Proj-sandwich: ‹is-Proj (sandwich U P)› if ‹isometry U › and ‹is-Proj P›
for P :: ‹ ′a::chilbert-space ⇒CL

′a› and U :: ‹ ′a ⇒CL
′b::chilbert-space›

lemma is-Proj-swap[simp]: ‹is-Proj (swap P)› if ‹is-Proj P›

lemma iso-register-complement-pair : ‹iso-register (complement X ; X)› if ‹register X›

lemma swap-Snd: ‹swap (Snd x) = Fst x›

lemma sandwich-butterfly: ‹sandwich a (butterfly g h) = butterfly (a g) (a h)›

lemma register0 :
assumes ‹register Q›
shows ‹Q a = 0 ←→ a = 0 ›

lemma le-back-subst:
assumes ‹a ≤ c›
assumes ‹a = b›
shows ‹b ≤ c›

lemma le-back-subst-le:
fixes a b c :: ‹- :: order›
assumes ‹a ≤ c›
assumes ‹b ≤ a›
shows ‹b ≤ c›

lemma arg-cong4 : ‹f a b c d = f a ′ b ′ c ′ d ′› if ‹a = a ′› and ‹b = b ′› and ‹c = c ′› and ‹d = d ′›

1.2 Controlled operations
definition controlled-op :: ‹(′a ⇒ (′b ell2 ⇒CL

′c ell2)) ⇒ ((′a× ′b) ell2 ⇒CL (′a× ′c) ell2)› where
‹controlled-op A = infsum-in cstrong-operator-topology (λx. selfbutter (ket x) ⊗o A x) UNIV ›

6

lemma trunc-ell2-prod-tensor : ‹trunc-ell2 (A×B) (g ⊗s h) = trunc-ell2 A g ⊗s trunc-ell2 B h›

lemma trunc-ell2-ket: ‹trunc-ell2 S (ket x) = of-bool (x∈S) ∗C ket x›

lemma summable-on-in-0 [iff]: ‹summable-on-in T (λx. 0) A› if ‹0 ∈ topspace T ›

lemma sum-of-bool-scaleC : ‹(
∑

x∈S . of-bool (x=a) ∗C f x) = (if a∈S ∧ finite S then f a else 0)›
for f :: ‹- ⇒ -::complex-vector›

lemma
fixes A :: ‹ ′x ⇒ (′a ell2 ⇒CL

′b ell2)›

assumes ‹
∧

x. norm (A x) ≤ B›
shows controlled-op-has-sum-aux: ‹has-sum-in cstrong-operator-topology (λx. selfbutter (ket x) ⊗o A

x) UNIV (controlled-op A)›
and controlled-op-norm-leq: ‹norm (controlled-op A) ≤ B›

lemma controlled-op-has-sum:
fixes A :: ‹ ′x ⇒ (′a ell2 ⇒CL

′b ell2)›
assumes ‹bdd-above (range (λx. norm (A x)))›
shows ‹has-sum-in cstrong-operator-topology (λx. selfbutter (ket x) ⊗o A x) UNIV (controlled-op A)›

hide-fact controlled-op-has-sum-aux

lemma controlled-op-summable:
fixes A :: ‹ ′x ⇒ (′a ell2 ⇒CL

′b ell2)›
assumes ‹bdd-above (range (λx. norm (A x)))›
shows ‹summable-on-in cstrong-operator-topology (λx. selfbutter (ket x) ⊗o A x) UNIV ›

lemma infsum-sot-cblinfun-apply:
assumes ‹summable-on-in cstrong-operator-topology f UNIV ›
shows ‹infsum-in cstrong-operator-topology f UNIV ∗V ψ = (

∑
∞x. f x ∗V ψ)›

lemma controlled-op-ket[simp]:
assumes ‹bdd-above (range (λx. norm (A x)))›
shows ‹controlled-op A ∗V (ket x ⊗s ψ) = ket x ⊗s (A x ∗V ψ)›

lemma controlled-op-ket ′[simp]:
assumes ‹bdd-above (range (λx. norm (A x)))›
shows ‹controlled-op A ∗V (ket (x, y)) = ket x ⊗s (A x ∗V ket y)›

lemma controlled-op-compose[simp]:
assumes [simp]: ‹bdd-above (range (λx. norm (A x)))›
assumes [simp]: ‹bdd-above (range (λx. norm (B x)))›
shows ‹controlled-op A oCL controlled-op B = controlled-op (λx. A x oCL B x)›

lemma controlled-op-adj[simp]:
assumes [simp]: ‹bdd-above (range (λx. norm (A x)))›
shows ‹(controlled-op A)∗ = controlled-op (λx. (A x)∗)›

7

lemma controlled-op-id[simp]: ‹controlled-op (λ-. id-cblinfun) = id-cblinfun›

lemma controlled-op-unitary[simp]: ‹unitary (controlled-op U)› if [simp]: ‹
∧

x. unitary (U x)›

lemma controlled-op-is-Proj[simp]: ‹is-Proj (controlled-op P)› if [simp]: ‹
∧

x. is-Proj (P x)›

lemma controlled-op-comp-butter :
assumes ‹bdd-above (range (λx. norm (A x)))›
shows ‹controlled-op A oCL Fst (selfbutter (ket x)) = Snd (A x) oCL Fst (selfbutter (ket x))›

lemma norm-ell2-finite: ‹norm ψ = sqrt (
∑

i∈UNIV . (cmod (Rep-ell2 ψ i))2)› for ψ :: ‹-::finite ell2 ›

lemma controlled-op-ket-swap[simp]:
assumes ‹bdd-above (range (λx. norm (U x)))›
shows ‹swap (controlled-op U) ∗V (A ⊗s ket x) = (U x ∗V A) ⊗s ket x›

lemma controlled-op-const: ‹controlled-op (λ-. P) = Snd P›

1.3 Superpositions
lift-definition uniform-superpos :: ‹ ′a set ⇒ ′a ell2 › is ‹λA x. complex-of-real (of-bool (x ∈ A) / sqrt
(of-nat (card A)))›

lemma norm-uniform-superpos: ‹norm (uniform-superpos A) = 1 › if ‹finite A› and ‹A 6= {}›

lemma uniform-superpos-infinite: ‹uniform-superpos A = 0 › if ‹infinite A›

lemma uniform-superpos-empty: ‹uniform-superpos A = 0 › if ‹A = {}›

Alternative definition.
lemma uniform-superpos-def2 : ‹uniform-superpos A = (

∑
f∈A. ket f /C csqrt (card A))›

1.4 Lifting ell2 to option type
lift-definition lift-ell2 ′ :: ‹ ′a ell2 ⇒ ′a option ell2 › is ‹λψ x. case x of Some x ′⇒ ψ x ′ | None ⇒ 0 ›

lemma clinear-lift-ell2 ′: ‹clinear lift-ell2 ′›

lemma lift-ell2 ′-norm[simp]: ‹norm (lift-ell2 ′ ψ) = norm ψ›

lemma bounded-clinear-lift-ell2 ′[bounded-clinear , simp]: ‹bounded-clinear lift-ell2 ′›

lift-definition lift-ell2 :: ‹ ′a ell2 ⇒CL
′a option ell2 › is lift-ell2 ′

definition lift-op :: ‹(′a ell2 ⇒CL
′b ell2) ⇒ (′a option ell2 ⇒CL

′b option ell2)› where
‹lift-op A = (lift-ell2 oCL A oCL lift-ell2∗) + butterfly (ket None) (ket None)›

lemma lift-ell2-ket[simp]: ‹lift-ell2 ∗V ket x = ket (Some x)›

lemma isometry-lift-ell2 [simp]: ‹isometry lift-ell2 ›

8

lemma lift-op-adj: ‹(lift-op A)∗ = lift-op (A∗)›

lemma bra-None-lift-ell2 : ‹bra None oCL lift-ell2 = 0 ›

lemma lift-op-mult: ‹lift-op A oCL lift-op B = lift-op (A oCL B)›

lemma lift-ell2-adj-None[simp]: ‹lift-ell2∗ ∗V ket None = 0 ›

lemma lift-ell2-adj-Some[simp]: ‹lift-ell2∗ ∗V ket (Some x) = ket x›

lemma lift-op-id[simp]: ‹lift-op id-cblinfun = id-cblinfun›

lemma isometry-lift-op[simp]: ‹isometry (lift-op A)› if ‹isometry A›

lemma unitary-lift-op[simp]: ‹unitary (lift-op A)› if ‹unitary A›

lemma lift-op-None[simp]: ‹lift-op A ∗V ket None = ket None›

lemma lift-op-Some[simp]: ‹lift-op A ∗V ket (Some x) = lift-ell2 ∗V A ∗V ket x›

declare register-tensor-is-register [simp]

lemma sum-sqrt: ‹(
∑

i<n. sqrt i) ≤ 2/3 ∗ (sqrt n)^3 › for n :: nat

lemma register-inj ′:
assumes ‹register Q›
shows ‹Q a = Q b ←→ a = b›

lemma norm-cblinfun-apply-leq1I :
assumes ‹norm U ≤ 1 ›
assumes ‹norm ψ ≤ 1 ›
shows ‹norm (U ∗V ψ) ≤ 1 ›

lemma times-sqrtn-div-n[simp]:
assumes ‹n ≥ 0 ›
shows ‹a ∗ sqrt n / n = a / sqrt n›

lemma Proj-tensor-Proj: ‹Proj I ⊗o Proj J = Proj (I ⊗S J)›

lemma extend-mult-rule: ‹a ∗ b = c =⇒ a ∗ (b ∗ d) = c ∗ d› for a b c d :: ‹-::semigroup-mult›

end

2 Function-At – Function values as individual registers
theory Function-At
imports Registers.Quantum-Extra Misc-Compressed-Oracle
begin

unbundle no m-inv-syntax

typedef (′a, ′b) punctured-function = ‹extensional (−{undefined}) :: (′a⇒ ′b) set›

9

setup-lifting type-definition-punctured-function
instance punctured-function :: (finite, finite) finite

lift-definition fix-punctured-function :: ‹ ′a ⇒ (′b × (′a, ′b) punctured-function) ⇒ (′a⇒ ′b)› is
‹λx (y, f). (Fun.swap x undefined f) (x := y)›

lift-definition puncture-function :: ‹ ′a ⇒ (′a⇒ ′b) ⇒ ′b × (′a, ′b) punctured-function› is
‹λx f . (f x, (Fun.swap x undefined f) (undefined := undefined))›

lemma puncture-function-recombine:
‹(y, snd (puncture-function x f)) = puncture-function x (f (x:=y))›

lemma snd-puncture-function-upd: ‹snd (puncture-function x (f (x:=y))) = snd (puncture-function x f)›

lemma puncture-function-split: ‹puncture-function x f = (f x, snd (puncture-function x f))›

lemma puncture-function-inverse[simp]: ‹fix-punctured-function x (puncture-function x f) = f ›

lemma fix-punctured-function-inverse[simp]: ‹puncture-function x (fix-punctured-function x yf) = yf ›

lemma bij-fix-punctured-function[simp]: ‹bij (fix-punctured-function x)›

lemma inj-fix-punctured-function[simp]: ‹inj (fix-punctured-function x)›

lemma surj-fix-punctured-function[simp]: ‹surj (fix-punctured-function x)›

The following function-at-U x provides an unitary isomorphism between (′a ⇒ ′b) ell2 (su-
perposition of functions) and (′b × (′a, ′b) punctured-function) ell2 (superposition of pairs of
the value of the function at x and the rest of the function). This allows to then apply a some
operation to the first part of that pair and thus lifting it to an application to the whole function.
(The "rest of the function" part is to be considered opaque.)
definition function-at-U :: ‹ ′a ⇒ (′b × (′a, ′b) punctured-function) ell2 ⇒CL (′a ⇒ ′b) ell2 › where
‹function-at-U x = classical-operator (Some o fix-punctured-function x)›

lemma unitary-function-at-U [simp]: ‹unitary (function-at-U x)›

lemma function-at-U-ket[simp]: ‹function-at-U x ∗V ket y = ket (fix-punctured-function x y)›

lemma function-at-U-adj-ket[simp]: ‹(function-at-U x)∗ ∗V ket y = ket (puncture-function x y)›

The reference function-at x lifts an operation U on ′a ell2 to an operation on (′a ⇒ ′b) ell2
(superposition of functions). The resulting operation applies U only to the x-output of the
function.
definition function-at :: ‹ ′a ⇒ (′b update ⇒ (′a⇒ ′b) update)› where
‹function-at x = sandwich (function-at-U x) o Fst›

lemma Rep-ell2-function-at-ket:
‹Rep-ell2 (function-at x U ∗V ket f) g =

of-bool (snd (puncture-function x f) = snd (puncture-function x g)) ∗ Rep-ell2 (U ∗V ket (f x)) (g
x)›

lemma function-at-ket:

10

shows ‹function-at x U ∗V ket f = (
∑

∞y∈UNIV . Rep-ell2 (U ∗V ket (f x)) y ∗C ket (f (x := y)))›

lemma register-function-at[simp, register]: ‹register (function-at x :: ′b update ⇒ (′a⇒ ′b) update)› for
x :: ′a

lemma function-at-comm:
fixes U V :: ‹ ′b ell2 ⇒CL

′b ell2 › and x y :: ′a
assumes ‹x 6= y›
shows ‹function-at x U oCL function-at y V = function-at y V oCL function-at x U ›

lemma compatible-function-at[simp]:
assumes ‹x 6= y›
shows ‹compatible (function-at x) (function-at y)›

lemma inv-fix-punctured-function[simp]: ‹inv (fix-punctured-function x) = puncture-function x›

lemma bij-puncture-function[simp]: ‹bij (puncture-function x)›

lemma fst-puncture-function[simp]: ‹fst (puncture-function x H) = H x›

2.1 apply-every

Analogue to classical λM u f x. if x ∈ M then u x (f x) else f x.
Note that the definition only makes sense when M is finite. In fact, a definition that works for
infinite M is impossible as the following example shows: Let H denote the Hadamard matrix.
Let M = UNIV. Then, by symmetry, a meaningful definition of apply-every would have that
apply-every M H (ket (λ-. 0)) would be a vector in (nat ⇒ bit) ell2 with all coefficients equal.
But the only such vector is 0. But a meaningful definition should not map ket (λ-. 0) to 0.
definition apply-every where ‹apply-every M U = (if finite M then Finite-Set.fold (λx a. function-at
x (U x) oCL a) id-cblinfun M else 0)›

lemma apply-every-empty[simp]: ‹apply-every {} U = id-cblinfun›

interpretation apply-every-aux: comp-fun-commute ‹(λx. (oCL) (function-at x (U x)))›

lemma apply-every-unitary: ‹unitary (apply-every M U)› if ‹finite M › and [simp]: ‹
∧

x. x∈M =⇒
unitary (U x)›

lemma apply-every-comm: ‹apply-every M U oCL V = V oCL apply-every M U ›
if ‹finite M › and ‹

∧
x. x∈M =⇒ function-at x (U x) oCL V = V oCL function-at x (U x)›

lemma apply-every-infinite: ‹apply-every M U = 0 › if ‹infinite M ›

lemma apply-every-split: ‹apply-every M U oCL apply-every N U = apply-every (M ∪ N) U › if ‹M ∩
N = {}› for M N U

lemma apply-every-single[simp]: ‹apply-every {x} U = function-at x (U x)›

lemma apply-every-insert: ‹apply-every (insert x M) U = function-at x (U x) oCL apply-every M U ›
if ‹x /∈ M › and ‹finite M ›

11

lemma apply-every-mult: ‹apply-every M U oCL apply-every M V = apply-every M (λx. U x oCL V x)›

lemma apply-every-id[simp]: ‹apply-every M (λ-. id-cblinfun) = id-cblinfun› if ‹finite M ›

lemma apply-every-function-at-comm:
assumes ‹x /∈ M ›
shows ‹function-at x U oCL apply-every M f = apply-every M f oCL function-at x U ›

lemma apply-every-adj: ‹(apply-every M f)∗ = apply-every M (λi. (f i)∗)›

end

3 Invariant-Preservation Preservation of invariants under queries
theory Invariant-Preservation

imports Function-At Misc-Compressed-Oracle
begin

hide-const (open) Order .top
no-notation Order .bottom (⊥ı)
unbundle no m-inv-syntax
unbundle lattice-syntax

3.1 Invariants
definition ‹preserves U I J ε ←→ ε ≥ 0 ∧ (∀ψ∈space-as-set I . norm (U ∗V ψ − Proj J ∗V U ∗V ψ)
≤ ε ∗ norm ψ)›

for U :: ‹ ′a::chilbert-space ⇒CL
′b::chilbert-space›

lemma preserves-def-closure:
assumes ‹space-as-set I = closure I ′›
shows ‹preserves U I J ε ←→ ε ≥ 0 ∧ (∀ψ∈I ′. norm (U ∗V ψ − Proj J ∗V U ∗V ψ) ≤ ε ∗ norm

ψ)›

lemma preservesI-closure:
assumes ‹ε ≥ 0 ›
assumes closure: ‹space-as-set I ⊆ closure I ′›
assumes ‹csubspace I ′›
assumes bound: ‹

∧
ψ. ψ ∈ I ′ =⇒ norm ψ = 1 =⇒ norm (U ∗V ψ − Proj J ∗V U ∗V ψ) ≤ ε›

shows ‹preserves U I J ε›

lemma preservesI :
assumes ‹ε ≥ 0 ›
assumes ‹

∧
ψ. ψ ∈ space-as-set I =⇒ norm ψ = 1 =⇒ norm (U ∗V ψ − Proj J ∗V U ∗V ψ) ≤ ε›

shows ‹preserves U I J ε›

lemma preservesI ′:
assumes ‹ε ≥ 0 ›
assumes ‹

∧
ψ. ψ ∈ space-as-set I =⇒ norm ψ = 1 =⇒ norm (Proj (−J) ∗V U ∗V ψ) ≤ ε›

shows ‹preserves U I J ε›

lemma preserves-onorm: ‹preserves U I J ε ←→ norm ((id-cblinfun − Proj J) oCL U oCL Proj I) ≤
ε›

12

lemma preserves-cong:
assumes ‹

∧
ψ. ψ ∈ space-as-set I =⇒ U ∗V ψ = U ′ ∗V ψ›

shows ‹preserves U I J ε ←→ preserves U ′ I J ε›

lemma preserves-mono:
assumes ‹preserves U I J ε›
assumes ‹I ≥ I ′›
assumes ‹J ≤ J ′›
assumes ‹ε ≤ ε ′›
shows ‹preserves U I ′ J ′ ε ′›

The next lemma allows us to decompose the preservation of an invariant into the preservation
of simpler invariants. The main requirement is that the simpler invariants are all orthogonal.
This is in particular useful when one wants to show the preservation of an invariant that refers
to the oracle input register and other unrelated registers. One can then decompose the invariant
into many invariants that fix the input and unrelated registers to specific computational basis
states. (I.e., wlog the input register is in a state of the form ket x.
Unfortunately, we have a proof only in the case of finitely many simpler invariants. This
excludes, e.g., infinite oracle input registers etc. (e.g., quantum ints, quantum lists).
lemma invariant-splitting:

fixes X :: ‹ ′i set›
fixes I S :: ‹ ′i ⇒ ′a::chilbert-space ccsubspace›
fixes J :: ‹ ′i ⇒ ′b::chilbert-space ccsubspace›
assumes ortho-S : ‹

∧
x y. x∈X =⇒ y∈X =⇒ x 6= y =⇒ orthogonal-spaces (S x) (S y)›

assumes ortho-S ′: ‹
∧

x y. x∈X =⇒ y∈X =⇒ x 6= y =⇒ orthogonal-spaces (S ′ x) (S ′ y)›
assumes IS : ‹

∧
x. x∈X =⇒ I x ≤ S x›

assumes JS ′: ‹
∧

x. x∈X =⇒ J x ≤ S ′ x›
assumes USS ′: ‹

∧
x. x∈X =⇒ U ∗S S x ≤ S ′ x›

assumes II : ‹II ≤ (
∑

x∈X . I x)›
assumes JJ : ‹JJ ≥ (

∑
x∈X . J x)›

assumes ε0 : ‹ε ≥ 0 ›
assumes [iff]: ‹finite X›
assumes pres: ‹

∧
x. x∈X =⇒ preserves U (I x) (J x) ε›

shows ‹preserves U II JJ ε›

An invariant that is consists of all states that are the superposition of computational basis
states.
Useful for representing a classically formulated condition (e.g., x 6= 0) as an invariant (ket-invariant
{x. x 6= 0}).
definition ‹ket-invariant M = ccspan (ket ‘ M)›

lemma ket-invariant-UNIV [simp]: ‹ket-invariant UNIV = >›

lemma ket-invariant-empty[simp]: ‹ket-invariant {} = ⊥›

lemma ket-invariant-Rep-ell2 : ‹ψ ∈ space-as-set (ket-invariant I) ←→ (∀ i∈−I . Rep-ell2 ψ i = 0)›

lemma ket-invariant-compl: ‹ket-invariant (−M) = − ket-invariant M ›

lemma ket-invariant-tensor : ‹ket-invariant I ⊗S ket-invariant J = ket-invariant (I × J)›

13

abbreviation ‹preserves-ket U I J ε ≡ preserves U (ket-invariant I) (ket-invariant J) ε›

lemma orthogonal-spaces-ket[simp]: ‹orthogonal-spaces (ket-invariant M) (ket-invariant N) ←→ M ∩
N = {}› for M N

lemma ket-invariant-le[simp]: ‹ket-invariant M ≤ ket-invariant N ←→ M ⊆ N › for M N

lemma ket-invariant-mono:
assumes ‹I ⊆ J ›
shows ‹ket-invariant I ≤ ket-invariant J ›

lemma ket-invariant-Inf : ‹ket-invariant (Inf M) = Inf (ket-invariant ‘ M)›

lemma ket-invariant-INF : ‹ket-invariant (INF x∈M . f x) = (INF x∈M . ket-invariant (f x))›

lemma ket-invariant-Sup: ‹ket-invariant (Sup M) = Sup (ket-invariant ‘ M)›

lemma ket-invariant-SUP: ‹ket-invariant (SUP x∈M . f x) = (SUP x∈M . ket-invariant (f x))›

lemma ket-invariant-inter : ‹ket-invariant M u ket-invariant N = ket-invariant (M ∩ N)› for M N

lemma ket-invariant-union: ‹ket-invariant M t ket-invariant N = ket-invariant (M ∪ N)› for M N

lemma sum-ket-invariant[simp]:
assumes ‹finite X›
shows ‹(

∑
x∈X . ket-invariant (M x)) = ket-invariant (

⋃
x∈X . M x)›

lemma ket-invariant-inj[simp]:
‹ket-invariant M = ket-invariant N ←→ M = N › for M N

Given an invariant on the content of a register, this gives the corresponding invariant on the
whole state. Useful for plugging together several invariants on different subsystems.
definition ‹lift-invariant F I = F (Proj I) ∗S >›

lemma lift-invariant-comp:
assumes [simp]: ‹register G›
shows ‹lift-invariant (F o G) = lift-invariant F o lift-invariant G›

lemma lift-invariant-top[simp]: ‹register F =⇒ lift-invariant F > = >›

lemma Proj-lift-invariant: ‹register F =⇒ Proj (lift-invariant F I) = F (Proj I)›

lemma ket-invariant-image-assoc:
‹ket-invariant ((λ((a, b), c). (a, b, c)) ‘ X) = lift-invariant assoc (ket-invariant X)›

lemma lift-invariant-inj[simp]: ‹lift-invariant F I = lift-invariant F J ←→ I = J › if [register]: ‹register
F›

lemma lift-invariant-decomp:
fixes U :: ‹- ⇒CL -::chilbert-space›

14

assumes ‹
∧
ϑ. F ϑ = sandwich U ∗V (ϑ ⊗o id-cblinfun)›

assumes ‹unitary U ›
shows ‹lift-invariant F I = U ∗S (I ⊗S >)›

Invariants are compatible if their projectors commute, i.e., if you can simultaneously measure
them. This can happen if they refer to different parts of the system. (E.g., one talks about
register X, the other about register Y.) But also for example for any ket-invariants.
See lemma preserves-intersect below for a useful consequence.
definition ‹compatible-invariants A B ←→ Proj A oCL Proj B = Proj B oCL Proj A›

lemma compatible-invariants-inter : ‹Proj A oCL Proj B = Proj (A u B)› if ‹compatible-invariants A
B›

lemma compatible-invariants-ket[iff]: ‹compatible-invariants (ket-invariant I) (ket-invariant J)›

lemma preserves-intersect:
assumes ‹compatible-invariants J1 J2 ›
assumes pres1 : ‹preserves U I J1 ε1 ›
assumes pres2 : ‹preserves U I J2 ε2 ›
shows ‹preserves U I (J1 u J2) (ε1 + ε2)›

lemma preserves-intersect-ket:
assumes ‹preserves-ket U I J1 ε1 ›
assumes ‹preserves-ket U I J2 ε2 ›
shows ‹preserves-ket U I (J1 u J2) (ε1 + ε2)›

An invariant is compatible with a register intuitively if the invariant only talks about parts of
the quantum state outside the register.
definition ‹compatible-register-invariant F I ←→ (∀A. Proj I oCL F A = F A oCL Proj I)›

for F :: ‹ ′a update ⇒ ′b update›

lemma compatible-register-invariant-top[simp]:
‹compatible-register-invariant F >›

lemma compatible-register-invariant-bot[simp]:
‹compatible-register-invariant F ⊥›

lemma compatible-register-invariant-id:
assumes ‹

∧
y. I = UNIV ∨ I = {}›

shows ‹compatible-register-invariant id (ket-invariant I)›

lemma compatible-register-invariant-compatible-register :
assumes ‹compatible F G›
shows ‹compatible-register-invariant F (lift-invariant G I)›

lemma compatible-register-invariant-chain[simp]:
‹compatible-register-invariant (F o G) (lift-invariant F I) ←→ compatible-register-invariant G I › if

[simp]: ‹register F›

Allows to decompose the preservation of an invariant into a part that is preserved inside a
register, and a part outside of it.

15

lemma preserves-register :
fixes F :: ‹ ′a update ⇒ ′b update›
assumes pres: ‹preserves U ′ I ′ J ′ ε›
assumes reg[register]: ‹register F›
assumes compat: ‹compatible-register-invariant F K ›
assumes FU ′: ‹∀ψ∈space-as-set I . F U ′ ∗V ψ = U ∗V ψ›
assumes FI ′-I : ‹lift-invariant F I ′ ≥ I ›
assumes KI : ‹K ≥ I ›
assumes FJ ′K-I : ‹lift-invariant F J ′ u K ≤ J ›
shows ‹preserves U I J ε›

lemma preserves-top[simp]: ‹ε ≥ 0 =⇒ preserves U I > ε›

lemma preserves-bot[simp]: ‹ε ≥ 0 =⇒ preserves U ⊥ J ε›

lemma preserves-0 [simp]: ‹ε ≥ 0 =⇒ preserves 0 I J ε›

Tensor product of two invariants: The invariant that requires the first part of the system to
satisfy invariant I and the second to satisfy J.
definition ‹tensor-invariant I J = ccspan {x ⊗s y | x y. x ∈ space-as-set I ∧ y ∈ space-as-set J}›

lemma tensor-invariant-via-Proj: ‹tensor-invariant I J = (Proj I ⊗o Proj J) ∗S >›

lemma tensor-invariant-mono-left: ‹I ≤ I ′ =⇒ tensor-invariant I J ≤ tensor-invariant I ′ J ›

lemma swap-tensor-invariant[simp]: ‹swap-ell2 ∗S tensor-invariant I J = tensor-invariant J I ›

lemma tensor-invariant-SUP-left: ‹tensor-invariant (SUP x∈X . I x) J = (SUP x∈X . tensor-invariant
(I x) J)›

lemma tensor-invariant-SUP-right: ‹tensor-invariant I (SUP x∈X . J x) = (SUP x∈X . tensor-invariant
I (J x))›

lemma tensor-invariant-bot-left[simp]: ‹tensor-invariant ⊥ J = ⊥›

lemma tensor-invariant-bot-right[simp]: ‹tensor-invariant I ⊥ = ⊥›

lemma tensor-invariant-Sup-left: ‹tensor-invariant (Sup II) J = (SUP I∈II . tensor-invariant I J)›

lemma tensor-invariant-Sup-right: ‹tensor-invariant I (Sup JJ) = (SUP J∈JJ . tensor-invariant I J)›

lemma tensor-invariant-sup-left: ‹tensor-invariant (I1 t I2) J = tensor-invariant I1 J t tensor-invariant
I2 J ›

lemma tensor-invariant-sup-right: ‹tensor-invariant I (J1 t J2) = tensor-invariant I J1 t tensor-invariant
I J2 ›

lemma compatible-register-invariant-compl: ‹compatible-register-invariant F I =⇒ compatible-register-invariant
F (−I)›

lemma compatible-register-invariant-SUP:
assumes [simp]: ‹register F›
assumes compat: ‹

∧
x. x ∈ X =⇒ compatible-register-invariant F (I x)›

shows ‹compatible-register-invariant F (SUP x∈X . I x)›

16

lemma compatible-register-invariant-INF :
assumes [simp]: ‹register F›
assumes compat: ‹

∧
x. x ∈ X =⇒ compatible-register-invariant F (I x)›

shows ‹compatible-register-invariant F (INF x∈X . I x)›

lemma compatible-register-invariant-Sup:
assumes ‹register F›
assumes ‹

∧
I . I∈II =⇒ compatible-register-invariant F I ›

shows ‹compatible-register-invariant F (Sup II)›

lemma compatible-register-invariant-Inf :
assumes ‹register F›
assumes ‹

∧
I . I∈II =⇒ compatible-register-invariant F I ›

shows ‹compatible-register-invariant F (Inf II)›

lemma compatible-register-invariant-inter :
assumes ‹register F›
assumes ‹compatible-register-invariant F I ›
assumes ‹compatible-register-invariant F J ›
shows ‹compatible-register-invariant F (I u J)›

lemma compatible-register-invariant-pair :
assumes ‹compatible-register-invariant F I ›
assumes ‹compatible-register-invariant G I ›
shows ‹compatible-register-invariant (F ;G) I ›

lemma compatible-register-invariant-tensor :
assumes [register]: ‹register F› ‹register G›
assumes ‹compatible-register-invariant F I ›
assumes ‹compatible-register-invariant G J ›
shows ‹compatible-register-invariant (F ⊗r G) (I ⊗S J)›

lemma compatible-register-invariant-image-shrinks:
assumes ‹compatible-register-invariant F I ›
shows ‹F U ∗S I ≤ I ›

lemma sum-eq-SUP-ccsubspace:
fixes I :: ‹ ′a ⇒ ′b::complex-normed-vector ccsubspace›
assumes ‹finite X›
shows ‹(

∑
x∈X . I x) = (SUP x∈X . I x)›

Variant of invariant-splitting (see there) that allows the operation that is applied to depend on
the state of some other register.
lemma inv-split-reg:

fixes X :: ‹ ′x update ⇒ ′m update› — register containing the index for the unitary
and Y :: ‹ ′z ⇒ ′y update ⇒ ′m update› — register on which the unitary operates
and K :: ‹ ′z ⇒ ′m ell2 ccsubspace› — additional invariants
and M :: ‹ ′z set›

assumes U1-U : ‹
∧

z ψ. z∈M =⇒ ψ ∈ space-as-set (K z) =⇒ (Y z (U1 z)) ∗V ψ = U ∗V ψ›
assumes pres-I1 : ‹

∧
z. z∈M =⇒ preserves (U1 z) (I1 z) (J1 z) ε›

assumes I-leq: ‹I ≤ (SUP z∈M . K z u lift-invariant (Y z) (I1 z))›

17

assumes J-geq: ‹
∧

z. z∈M =⇒ J ≥ K z u lift-invariant (Y z) (J1 z)›
assumes YK : ‹

∧
z. z∈M =⇒ compatible-register-invariant (Y z) (K z)›

assumes regY : ‹
∧

z. z∈M =⇒ register (Y z)›
assumes orthoK : ‹

∧
z z ′. z∈M =⇒ z ′∈M =⇒ z 6= z ′ =⇒ orthogonal-spaces (K z) (K z ′)›

assumes ‹ε ≥ 0 ›
assumes [iff]: ‹finite M ›
shows ‹preserves U I J ε›

lemma Proj-ket-invariant-ket: ‹Proj (ket-invariant X) ∗V ket i = (if i∈X then ket i else 0)›

lemma lift-invariant-function-at-ket-inv: ‹lift-invariant (function-at x) (ket-invariant I) = ket-invariant
{f . f x ∈ I}›

lemma ket-invariant-prod: ‹Proj (ket-invariant (A × B)) = Proj (ket-invariant A) ⊗o Proj (ket-invariant
B)›

lemma lift-Fst-inv: ‹lift-invariant Fst I = I ⊗S >›
lemma lift-Snd-inv: ‹lift-invariant Snd I = > ⊗S I ›

lemma lift-Snd-ket-inv: ‹lift-invariant Snd (ket-invariant I) = ket-invariant (UNIV × I)›
lemma lift-Fst-ket-inv: ‹lift-invariant Fst (ket-invariant I) = ket-invariant (I × UNIV)›

lemma lift-inv-prod:
assumes [simp]: ‹compatible F G›
shows ‹lift-invariant (F ;G) (ket-invariant (I × J)) =

lift-invariant F (ket-invariant I) u lift-invariant G (ket-invariant J)›

lemma lift-inv-tensor :
assumes [register]: ‹register F› ‹register G›
shows ‹lift-invariant (F ⊗r G) (ket-invariant (I × J)) =

lift-invariant F (ket-invariant I) ⊗S lift-invariant G (ket-invariant J)›

lemma lift-invariant-sup:
fixes F :: ‹(′a ell2 ⇒CL

′a ell2) ⇒ (′b ell2 ⇒CL
′b ell2)›

assumes [simp]: ‹register F›
shows ‹lift-invariant F (I t J) = lift-invariant F I t lift-invariant F J ›

lemma lift-invariant-SUP:
fixes F :: ‹(′a ell2 ⇒CL

′a ell2) ⇒ (′b ell2 ⇒CL
′b ell2)›

assumes ‹register F›
shows ‹lift-invariant F (SUP x∈X . I x) = (SUP x∈X . lift-invariant F (I x))›

lemma lift-invariant-compl: ‹lift-invariant R (− U) = − lift-invariant R U › if ‹register R›

lemma lift-invariant-INF :
assumes ‹register F›
shows ‹lift-invariant F (

d
x∈A. I x) = (

d
x∈A. lift-invariant F (I x))›

lemma lift-invariant-inf :
assumes ‹register F›
shows ‹lift-invariant F (I u J) = lift-invariant F I u lift-invariant F J ›

18

lemma lift-invariant-mono:
assumes ‹register F›
assumes ‹I ≤ J ›
shows ‹lift-invariant F I ≤ lift-invariant F J ›

lemma lift-inv-prod ′:
fixes F :: ‹(′a ell2 ⇒CL

′a ell2) ⇒ (′c ell2 ⇒CL
′c ell2)›

fixes G :: ‹(′b ell2 ⇒CL
′b ell2) ⇒ (′c ell2 ⇒CL

′c ell2)›
assumes [simp]: ‹compatible F G›
shows ‹lift-invariant (F ;G) (ket-invariant I) =

(SUP (x,y)∈I . lift-invariant F (ket-invariant {x}) u lift-invariant G (ket-invariant {y}))›

lemma lift-inv-tensor ′:
assumes [register]: ‹register F› ‹register G›
shows ‹lift-invariant (F ⊗r G) (ket-invariant I) =

(SUP (x,y)∈I . lift-invariant F (ket-invariant {x}) ⊗S lift-invariant G (ket-invariant {y}))›

lemma classical-operator-ket-invariant:
assumes ‹inj-map f ›
shows ‹classical-operator f ∗S ket-invariant I = ket-invariant (Some −‘ f ‘ I)›

lemma Proj-ket-invariant-singleton: ‹Proj (ket-invariant {x}) = selfbutter (ket x)›

lemma lift-inv-classical:
fixes F :: ‹ ′a ell2 ⇒CL

′a ell2 ⇒ ′b ell2 ⇒CL
′b ell2 › and f :: ‹ ′a × ′c ⇒ ′b›

assumes [register]: ‹register F›
assumes ‹inj f ›
assumes ‹

∧
x:: ′a. x ∈ I =⇒ F (selfbutter (ket x)) = sandwich (classical-operator (Some o f)) (selfbutter

(ket x) ⊗o id-cblinfun)›
shows ‹lift-invariant F (ket-invariant I) = ket-invariant (f ‘ (I × UNIV))›

lemma register-image-lift-invariant:
assumes ‹register F›
assumes ‹isometry U ›
shows ‹F U ∗S lift-invariant F I = lift-invariant F (U ∗S I)›

lemma ell2-sum-ket-ket-invariant:
fixes ψ :: ‹ ′a ell2 ›
assumes ‹ψ ∈ space-as-set (ket-invariant X)›
shows ‹ψ = (

∑
∞i∈X . Rep-ell2 ψ i ∗C ket i)›

lemma compatible-register-invariant-Fst-comp:
fixes I :: ‹(′a × ′b) set›
assumes [simp]: ‹register F›
assumes ‹

∧
y. compatible-register-invariant F (ket-invariant ((λx. (x,y)) −‘ I))›

shows ‹compatible-register-invariant (Fst o F) (ket-invariant I)›

lemma compatible-register-invariant-Fst:

19

assumes ‹
∧

y. ((λx. (x,y)) −‘ I) = UNIV ∨ ((λx. (x,y)) −‘ I) = {}›
shows ‹compatible-register-invariant Fst (ket-invariant I)›

lemma compatible-register-invariant-Snd-comp:
fixes I :: ‹(′a × ′b) set›
assumes [simp]: ‹register F›
assumes ‹

∧
x. compatible-register-invariant F (ket-invariant ((λy. (x,y)) −‘ I))›

shows ‹compatible-register-invariant (Snd o F) (ket-invariant I)›

lemma compatible-register-invariant-Snd:
assumes ‹

∧
x. ((λy. (x,y)) −‘ I) = UNIV ∨ ((λy. (x,y)) −‘ I) = {}›

shows ‹compatible-register-invariant Snd (ket-invariant I)›

lemma compatible-register-invariant-Fst-tensor [simp]:
shows ‹compatible-register-invariant Fst (> ⊗S I)›

lemma compatible-register-invariant-Snd-tensor [simp]:
shows ‹compatible-register-invariant Snd (I ⊗S >)›

lemma compatible-register-invariant-sandwich-comp:
fixes U :: ‹ ′a ell2 ⇒CL

′b ell2 ›
assumes [simp]: ‹unitary U ›
assumes ‹compatible-register-invariant F (U∗ ∗S I)›
shows ‹compatible-register-invariant (sandwich U o F) I ›

lemma compatible-register-invariant-function-at-comp:
assumes [simp]: ‹register F›
assumes ‹

∧
z. compatible-register-invariant F (ket-invariant {f x |f . f ∈ I ∧ z(x := undefined) = f (x

:= undefined)})›
shows ‹compatible-register-invariant (function-at x o F) (ket-invariant I)›

lemma compatible-register-invariant-function-at:
assumes ‹

∧
f y. f∈I =⇒ f (x:=y) ∈ I ›

shows ‹compatible-register-invariant (function-at x) (ket-invariant I)›

The following lemma allows show that an invariant is preserved across several consecutive
operations. Usually, norm V and norm U ≤ 1, so the lemma essentially says that the errors
are additive.
lemma preserves-trans[trans]:

assumes presU : ‹preserves U I J ε›
assumes presV : ‹preserves V J K δ›
shows ‹preserves (V oCL U) I K (norm V ∗ ε + norm U ∗ δ)›

An operation that operates on a register that is outside the invariant preserves the invariant
perfectly.
lemma preserves-compatible:

assumes compat: ‹compatible-register-invariant F I ›
assumes ‹ε ≥ 0 ›
shows ‹preserves (F U) I I ε›

lemma Proj-ket-invariant-butterfly: ‹Proj (ket-invariant {x}) = selfbutter (ket x)›

lemma ket-in-ket-invariantI : ‹ket x ∈ space-as-set (ket-invariant I)› if ‹x ∈ I ›

20

lemma cblinfun-image-ket-invariant-leqI :
assumes ‹

∧
x. x ∈ I =⇒ U ∗V ket x ∈ space-as-set J ›

shows ‹U ∗S ket-invariant I ≤ J ›

lemma preserves0I : ‹preserves U I J 0 ←→ U ∗S I ≤ J ›

lemma lift-invariant-id[simp]: ‹lift-invariant id I = I ›

lemma lift-invariant-pair-tensor :
assumes ‹compatible X Y ›
shows ‹lift-invariant (X ;Y) (I ⊗S J) = lift-invariant X I u lift-invariant Y J ›

lemma lift-invariant-tensor-tensor :
assumes [register]: ‹register X› ‹register Y ›
shows ‹lift-invariant (X ⊗r Y) (I ⊗S J) = lift-invariant X I ⊗S lift-invariant Y J ›

lemma orthogonal-spaces-lift-invariant[simp]:
assumes ‹register Q›
shows ‹orthogonal-spaces (lift-invariant Q S) (lift-invariant Q T) ←→ orthogonal-spaces S T ›

3.2 Distance from invariants
definition dist-inv where ‹dist-inv R I ψ = norm (R (Proj (−I)) ∗V ψ)›

for R :: ‹(′a ell2 ⇒CL
′a ell2) ⇒ (′b ell2 ⇒CL

′b ell2)›
definition dist-inv-avg where ‹dist-inv-avg R I ψ = sqrt ((

∑
x∈UNIV . (dist-inv R (I x) (ψ x))2) /

CARD(′x))› for ψ :: ‹ ′x::finite ⇒ -›

lemma dist-inv-pos[iff]: ‹dist-inv R I ψ ≥ 0 ›
lemma dist-inv-avg-pos[iff]: ‹dist-inv-avg R I ψ ≥ 0 ›

lemma dist-inv-0-iff :
assumes ‹register R›
shows ‹dist-inv R I ψ = 0 ←→ ψ ∈ space-as-set (lift-invariant R I)›

lemma dist-inv-avg-0-iff :
assumes ‹register R›
shows ‹dist-inv-avg R I ψ = 0 ←→ (∀ h. ψ h ∈ space-as-set (lift-invariant R (I h)))›

lemma dist-inv-mono:
assumes ‹I ≤ J ›
assumes [register]: ‹register Q›
shows ‹dist-inv Q J ψ ≤ dist-inv Q I ψ›

lemma dist-inv-avg-mono:
assumes ‹

∧
h. I h ≤ J h›

assumes [register]: ‹register Q›
shows ‹dist-inv-avg Q J ψ ≤ dist-inv-avg Q I ψ›

lemma dist-inv-Fst-tensor :
assumes ‹norm ϕ = 1 ›
shows ‹dist-inv (Fst o R) I (ψ ⊗s ϕ) = dist-inv R I ψ›

lemma dist-inv-avg-Fst-tensor :

21

assumes ‹
∧

h. norm (ϕ h) = 1 ›
shows ‹dist-inv-avg (Fst o R) I (λh. ψ h ⊗s ϕ h) = dist-inv-avg R I ψ›

lemma dist-inv-register-rewrite:
assumes ‹register Q› and ‹register R›
assumes ‹lift-invariant Q I = lift-invariant R J ›
shows ‹dist-inv Q I ψ = dist-inv R J ψ›

lemma dist-inv-avg-register-rewrite:
assumes ‹register Q› and ‹register R›
assumes ‹

∧
h. lift-invariant Q (I h) = lift-invariant R (J h)›

shows ‹dist-inv-avg Q I ψ = dist-inv-avg R J ψ›

lemma distance-from-inv-avg0I :
‹dist-inv-avg Q I ψ = 0 ←→ (∀ h. dist-inv Q (I h) (ψ h) = 0)› for h :: ‹ ′h::finite› and ψ :: ‹ ′h ⇒ -›

lemma dist-inv-apply:
assumes [register]: ‹register Q› ‹register S›
assumes [iff]: ‹unitary U ›
assumes QSR: ‹Q o S = R›
shows ‹dist-inv Q I (R U ∗V ψ) = dist-inv Q (S U∗ ∗S I) ψ›

lemma dist-inv-apply-iff :
assumes [register]: ‹register Q›
assumes [iff]: ‹unitary U ›
shows ‹dist-inv Q I (Q U ∗V ψ) = dist-inv Q (U∗ ∗S I) ψ›

lemma dist-inv-avg-apply:
assumes [register]: ‹register Q› ‹register S›
assumes [iff]: ‹

∧
h. unitary (U h)›

assumes ‹Q o S = R›
shows ‹dist-inv-avg Q I (λh. R (U h) ∗V ψ h) = dist-inv-avg Q (λh. S (U h)∗ ∗S I h) ψ›

lemma dist-inv-avg-apply-iff :
assumes [register]: ‹register Q›
assumes [iff]: ‹

∧
h. unitary (U h)›

shows ‹dist-inv-avg Q I (λh. Q (U h) ∗V ψ h) = dist-inv-avg Q (λh. U h∗ ∗S I h) ψ›

lemma dist-inv-intersect-onesided:
assumes ‹compatible-invariants I J ›
assumes ‹register Q›
assumes ‹dist-inv Q I ψ = 0 ›
shows ‹dist-inv Q (J u I) ψ = dist-inv Q J ψ›

lemma dist-inv-avg-intersect:

22

assumes ‹
∧

h. compatible-invariants (I h) (J h)›
assumes ‹register Q›
assumes ‹dist-inv-avg Q I ψ = 0 ›
shows ‹dist-inv-avg Q (λh. J h u I h) ψ = dist-inv-avg Q J ψ›

lemma dist-inv-avg-const: ‹dist-inv-avg Q (λ-. I) (λ-. ψ) = dist-inv Q I ψ›

lemma register-plus:
assumes ‹register Q›
shows ‹Q (a + b) = Q a + Q b›

lemma compatible-invariants-uminus-left[simp]: ‹compatible-invariants (−I) J ←→ compatible-invariants
I J ›

lemma compatible-invariants-uminus-right[simp]: ‹compatible-invariants I (−J)←→ compatible-invariants
I J ›

lemma compatible-invariants-sup: ‹Proj (A t B) = Proj A + Proj B − Proj A oCL Proj B› if ‹com-
patible-invariants A B›

lemma compatible-invariants-sym: ‹compatible-invariants S T ←→ compatible-invariants T S›

lemma compatible-invariants-refl[iff]: ‹compatible-invariants S S›

lemma compatible-invariants-infI :
assumes [iff]: ‹compatible-invariants S U ›
assumes [iff]: ‹compatible-invariants S T ›
assumes [iff]: ‹compatible-invariants T U ›
shows ‹compatible-invariants S (T u U)›

lemma compatible-invariants-supI :
assumes [iff]: ‹compatible-invariants S U ›
assumes [iff]: ‹compatible-invariants S T ›
assumes [iff]: ‹compatible-invariants T U ›
shows ‹compatible-invariants S (T t U)›

lemma compatible-invariants-inf-sup-distrib1 :
fixes S T U :: ‹ ′a::chilbert-space ccsubspace›
assumes ‹compatible-invariants S U ›
assumes ‹compatible-invariants S T ›
assumes ‹compatible-invariants T U ›
shows ‹S u (T t U) = (S u T) t (S u U)›

lemma compatible-invariants-inf-sup-distrib2 :
fixes S T U :: ‹ ′a::chilbert-space ccsubspace›
assumes [iff]: ‹compatible-invariants S U ›
assumes [iff]: ‹compatible-invariants S T ›
assumes [iff]: ‹compatible-invariants T U ›
shows ‹(T t U) u S = (T u S) t (U u S)›

lemma compatible-invariants-sup-inf-distrib1 :

23

fixes S T U :: ‹ ′a::chilbert-space ccsubspace›
assumes ‹compatible-invariants S U ›
assumes ‹compatible-invariants S T ›
assumes ‹compatible-invariants T U ›
shows ‹S t (T u U) = (S t T) u (S t U)›

lemma compatible-invariants-sup-inf-distrib2 :
fixes S T U :: ‹ ′a::chilbert-space ccsubspace›
assumes ‹compatible-invariants S U ›
assumes ‹compatible-invariants S T ›
assumes ‹compatible-invariants T U ›
shows ‹(T u U) t S = (T t S) u (U t S)›

lemma is-orthogonal-Proj-orthogonal-spaces:
assumes ‹orthogonal-spaces S T ›
shows ‹is-orthogonal (Proj S ∗V ψ) (Proj T ∗V ψ)›

lemma dist-inv-intersect:
assumes [register]: ‹register Q›
assumes [iff]: ‹compatible-invariants I J ›
shows ‹dist-inv Q (I u J) ψ ≤ sqrt ((dist-inv Q I ψ)2 + (dist-inv Q J ψ)2)›

3.3 Preservation of invariants
lemma preserves-lift-invariant:

assumes [register]: ‹register Q›
shows ‹preserves (Q U) (lift-invariant Q I) (lift-invariant Q J) ε ←→ preserves U I J ε›

lemma dist-inv-leq-if-preserves:
assumes pres: ‹preserves U (lift-invariant S J) (lift-invariant R I) γ›
assumes [register]: ‹register S› ‹register R›
shows ‹dist-inv R I (U ∗V ψ) ≤ norm U ∗ dist-inv S J ψ + γ ∗ norm ψ›

lemma dist-inv-preservesI :
assumes ‹dist-inv S J ψ ≤ ε›
assumes pres: ‹preserves U (lift-invariant S J) (lift-invariant R I) γ›
assumes ‹norm U ≤ 1 ›
assumes ‹norm ψ ≤ 1 ›
assumes ‹γ + ε ≤ δ›
assumes [register]: ‹register S› ‹register R›
shows ‹dist-inv R I (U ∗V ψ) ≤ δ›

lemma dist-inv-apply-compatible:
assumes ‹compatible Q R›
shows ‹dist-inv Q I (R U ∗V ψ) ≤ norm U ∗ dist-inv Q I ψ›

lemma dist-inv-avg-apply-compatible:
assumes ‹

∧
h. compatible Q (R h)›

shows ‹dist-inv-avg Q I (λh. R h (U h) ∗V ψ h) ≤ (MAX h. norm (U h)) ∗ dist-inv-avg Q I ψ›

24

end

4 CO-Operations Definition of the compressed oracle and related
unitaries

theory CO-Operations imports
Complex-Bounded-Operators.Complex-L2
HOL.Map
Registers.Quantum-Extra2

Misc-Compressed-Oracle
Function-At

begin

unbundle cblinfun-syntax

4.1 function-oracle - Querying a fixed function
definition function-oracle :: ‹(′x ⇒ ′y::ab-group-add) ⇒ ((′x × ′y) ell2 ⇒CL (′x × ′y) ell2)› where

‹function-oracle h = classical-operator (λ(x,y). Some (x, y + h x))›

lemma function-oracle-apply: ‹function-oracle h (ket (x, y)) = ket (x, y + h x)›

lemma function-oracle-adj-apply: ‹function-oracle h∗ ∗V ket (x, y) = ket (x, y − h x)›

lemma unitary-function-oracle[iff]: ‹unitary (function-oracle h)›

lemma norm-function-oracle[simp]: ‹norm (function-oracle h) = 1 ›

lemma function-oracle-adj[simp]: ‹function-oracle h∗ = function-oracle (λx. − h x)› for h :: ‹ ′x ⇒
′y::ab-group-add›

4.2 Setup for compressed oracles
consts trafo :: ‹ ′a ell2 ⇒CL

′a::{zero,finite} ell2 ›
specification (trafo)

unitary-trafo[simp]: ‹unitary trafo›
trafo-0 [simp]: ‹trafo ∗V ket 0 = uniform-superpos UNIV ›

Set of total functions
definition ‹total-functions = {f :: ′x⇀ ′y. None /∈ range f }›

lemma total-functions-def2 : ‹total-functions = (comp Some) ‘ UNIV ›

lemma total-functions-def3 : ‹total-functions = {f . dom f = UNIV }›

lemma card-total-functions: ‹card (total-functions :: (′x ⇒ ′y option) set) = CARD(′y) ^ CARD(′x::finite)›

abbreviation superpos-total :: ‹(′x::finite⇒ ′y::finite option) ell2 › where ‹superpos-total ≡ uniform-superpos
total-functions›

25

Sets up the locale for defining the compressed oracle. We use a locale because the compressed
oracle can depend on some arbitrary unitary trafo. The choice of trafo usually doesn’t matter;
in this case the default transformation trafo above can be used.
locale compressed-oracle =

fixes dummy-constant :: ‹(′x::finite × ′y::{finite,ab-group-add}) itself ›
fixes trafo :: ‹ ′y::{finite,ab-group-add} ell2 ⇒CL

′y ell2 ›
assumes unitary-trafo[simp]: ‹unitary trafo›
assumes trafo-0 : ‹trafo ∗V ket 0 = uniform-superpos UNIV ›
assumes y-cancel[simp]: ‹(y:: ′y) + y = 0 ›

begin

definition dummy2 :: ‹ ′y update ⇒ (′y set ⇒ nat) ⇒ (′y set ⇒ nat)›
where ‹dummy2 x y = y›

definition N-def0 : ‹N = dummy2 trafo card UNIV ›

N is the cardinality of the oracle outputs. (Intuitively, N = 2 n for an n-bit output.
lemma N-def : ‹N = CARD(′y)›

lemma Nneq0 [iff]: ‹N 6= 0 ›

definition ‹α = complex-of-real (1 / sqrt (of-nat N))›
— We use this term very often, so this abbreviation comes in handy.

lemma (in compressed-oracle) uminus-y[simp]: ‹− y = y› for y :: ′y

4.3 switch0 - Operator exchanging ket (Some 0) and ket None

switch0 maps ket None to ket (Some 0) and vice versa. It leaves all other ket (Some y)
unchanged.
definition switch0 :: ‹ ′y option update› where

‹switch0 = classical-operator (Some o Fun.swap (Some 0) None id)›

lemma switch0-None[simp]: ‹switch0 ∗V ket None = ket (Some 0)›

lemma switch0-0 [simp]: ‹switch0 ∗V ket (Some 0) = ket None›

lemma switch0-other : ‹switch0 ∗V ket (Some x) = ket (Some x)› if ‹x 6= 0 ›

lemma unitary-switch0 [simp]: ‹unitary switch0 ›

lemma switch0-adj[simp]: ‹switch0∗ = switch0 ›

4.4 compress1 - Operator to compress a single RO-output

This unitary maps ket None onto the uniform superposition of all ket (Some y) and vice versa,
and leaves everything orthogonal to these unchanged.
This is the operation that deals with compressing a single oracle output.
definition compress1 :: ‹ ′y option ell2 ⇒CL

′y option ell2 › where
‹compress1 = lift-op trafo oCL switch0 oCL (lift-op trafo)∗›

26

lemma uniform-superpos-y-sum: ‹uniform-superpos UNIV = (
∑

d∈UNIV . α ∗C ket (d:: ′y))›

lemma compress1-None[simp]: ‹compress1 ∗V ket None = (
∑

d∈UNIV . α ∗C ket (Some d))›

lemma compress1-Some[simp]: ‹compress1 ∗V ket (Some d) =
ket (Some d) − (

∑
d∈UNIV . α2 ∗C ket (Some d)) + α ∗C ket None›

lemma unitary-compress1 [simp]: ‹unitary compress1 ›

lemma compress1-adj[simp]: ‹compress1∗ = compress1 ›

lemma compress1-square: ‹compress1 oCL compress1 = id-cblinfun›

4.5 compress - Operator for compressing the RO

This is the unitary that maps between the compressed representation of the random oracle (in
which the initial state is ket (λ-. None)) and the uncompressed one (in which the initial state
is the uniform superposition of all total functions).
It works by simply applying compress1 to each output separately.
definition compress :: ‹(′x ⇀ ′y) update›

where ‹compress = apply-every UNIV (λ-. compress1)›

lemma unitary-compress[simp]: ‹unitary compress›

lemma compress-selfinverse: ‹compress oCL compress = id-cblinfun›

lemma compress-adj: ‹compress∗ = compress›

lemma compress-empty: ‹compress ∗V ket Map.empty = superpos-total›

4.6 standard-query1 - Operator for uncompressed query of a single RO-output

We define the operation standard-query1 of querying the oracle, but first in the special case of
an oracle that has no input register. That is, the oracle state consists of just one output value
(or None) and this value is simply added to the query output register.
Roughly speaking, it thus is the unitary |y, h〉 7→ |y ⊕ h, h〉. In comparison, a “normal” oracle
query would be defined by |x, y, h〉 7→ |x, y ⊕ h(x), h〉.
That is: If one starts with a three-partite state ψ ⊗s ket 0 ⊗s superpos-total and keeps perform-
ing operations Ui on the parts 1, 2 of the state, interleaved with standard-query1 invocations
on parts 2, 3, this is a simulation of starting with state ψ ⊗s 0 and performing Ui interleaved
with invocations of the unitary |y〉 7→ |y ⊕ h〉 on part 2 where h is chosen uniformly at random
in the beginning.
When h = None, there are various natural choices how to define the behavior of standard-query1.
This is because intuitively, this should not happen, because this operation intended to be ap-
plied to uncompressed oracles which are superpositions of total functions. Yet, due to errors
introduced by projecting onto invariants, one can get situations where this is not perfectly the
case, so the behavior on None matters. Here, we choose to let standard-query1 be the identity
in that case.
definition standard-query1 :: ‹(′y × ′y option) update› where

27

‹standard-query1 = classical-operator (Some o (λ(y,z). case z of None ⇒ (y,None) | Some z ′⇒ (y +
z ′, z)))›

The operation standard-query1 ′ is defined like standard-query1 (and the motivation and proper-
ties mentioned there also hold here), except that in the case h = None (see discussion for stan-
dard-query1), instead of being the identify, standard-query1 ′ returns the 0-vector (not ket 0 !).
In particular, this operation is not a unitary which can make some things more awkward. But
on the plus side, we can achieve better bounds in some situations when using standard-query1 ′.
definition standard-query1 ′ :: ‹(′y × ′y option) update› where

‹standard-query1 ′ = classical-operator (λ(y,z). case z of None ⇒ None | Some z ′ ⇒ Some (y + z ′,
z))›

lemma standard-query1-Some[simp]: ‹standard-query1 ∗V ket (y, Some z) = ket (y + z, Some z)›

lemma standard-query1-None[simp]: ‹standard-query1 ∗V ket (y, None) = ket (y, None)›

lemma standard-query1 ′-Some[simp]: ‹standard-query1 ′ ∗V ket (y, Some z) = ket (y + z, Some z)›

lemma standard-query1 ′-None[simp]: ‹standard-query1 ′ ∗V ket (y, None) = 0 ›

lemma unitary-standard-query1 [simp]: ‹unitary standard-query1 ›

lemma norm-standard-query1 ′[simp]: ‹norm standard-query1 ′ = 1 ›

lemma standard-query1-selfinverse[simp]: ‹standard-query1 oCL standard-query1 = id-cblinfun›

4.7 standard-query - Operator for uncompressed query of the RO

We can now define the operation of querying the (non-compressed) oracle, i.e., the opera-
tion |x, y, h〉 7→ |x, y ⊕ h(x), h〉. Most of the work has already been done when defining stan-
dard-query1. We just need to apply standard-query1 onto the Y -register and the x-output of
the H -register, where x is the content of the X -register (in the computational basis).
The various lemmas below (e.g., standard-query-ket) show that this definition actually achieves
this.
That is: If one starts with a four-partite state ψ ⊗s ket 0 ⊗s ket 0 ⊗s superpos-total and
keeps performing operations Ui on the parts 1–3 of the state, interleaved with standard-query
invocations on parts 2–4, this is a simulation of starting with state ψ ⊗s 0 and performing Ui

interleaved with invocations of the unitary |x, y〉 7→ |x, y ⊕ h(x)〉 on parts 2, 3 where h is a
function chosen uniformly at random in the beginning.
definition standard-query :: ‹(′x × ′y × (′x ⇀ ′y)) ell2 ⇒CL (′x × ′y × (′x ⇀ ′y)) ell2 › where

‹standard-query = controlled-op (λx. (Fst; Snd o function-at x) standard-query1)›

Analogous to standard-query but using the variant standard-query1 ′.
definition standard-query ′ :: ‹(′x × ′y × (′x ⇀ ′y)) ell2 ⇒CL (′x × ′y × (′x ⇀ ′y)) ell2 › where

‹standard-query ′ = controlled-op (λx. (Fst; Snd o function-at x) standard-query1 ′)›

lemma standard-query-ket: ‹standard-query ∗V (ket x ⊗s ψ) = ket x ⊗s ((Fst; Snd o function-at x)
standard-query1 ∗V ψ)›

lemma standard-query-ket-full-Some:

28

assumes ‹H x = Some z›
shows ‹standard-query ∗V (ket (x,y,H)) = ket (x, y + z, H)›

lemma standard-query-ket-full-None:
assumes ‹H x = None›
shows ‹standard-query ∗V (ket (x,y,H)) = ket (x, y, H)›

lemma standard-query ′-ket: ‹standard-query ′ ∗V (ket x ⊗s ψ) = ket x ⊗s ((Fst; Snd o function-at x)
standard-query1 ′ ∗V ψ)›

lemma standard-query ′-ket-full-Some:
assumes ‹H x = Some z›
shows ‹standard-query ′ ∗V (ket (x,y,H)) = ket (x, y + z, H)›

lemma standard-query ′-ket-full-None:
assumes ‹H x = None›
shows ‹standard-query ′ ∗V (ket (x,y,H)) = 0 ›

lemma standard-query-selfinverse[simp]: ‹standard-query oCL standard-query = id-cblinfun›

lemma unitary-standard-query[simp]: ‹unitary standard-query›

lemma contracting-standard ′-query[simp]: ‹norm standard-query ′ = 1 ›

4.8 query1 - Query the compressed oracle at a single output

Before we formulate the compressed oracle itself, we define a scaled down version where the func-
tion in the oracle has only a single output (and there’s no input register). Cf. standard-query1.
This is done by decompressing the oracle register, applying standard-query1, and then recom-
pressing the oracle register.
That is: If one starts with a three-partite state ψ ⊗s ket 0 ⊗s ket None and keeps performing
operations Ui on the parts 1, 2 of the state, interleaved with query1 invocations on parts 2, 3,
this is a simulation of starting with state ψ ⊗s 0 and performing Ui interleaved with invocations
of the unitary |y〉 7→ |y⊕ h〉 on part 2 where h is chosen uniformly at random in the beginning.
definition query1 where ‹query1 = Snd compress1 oCL standard-query1 oCL Snd compress1 ›

The operation query1 ′ is defined like query1 (and the motivation and properties mentioned
there also hold here), except that it is based on standard-query1 ′ instead of standard-query1.
See the comment at standard-query1 ′ for a discussion of the difference.
definition query1 ′ where ‹query1 ′ = Snd compress1 oCL standard-query1 ′ oCL Snd compress1 ›

lemma unitary-query1 [simp]: ‹unitary query1 ›

lemma norm-query1 ′[simp]: ‹norm query1 ′ = 1 ›

The following lemmas give explicit formulas for the result of applying query1 and query1 ′ to
computational basis states (ket trafo). While the definitions of query1 and query1 ′ are useful
for showing structural properties of these operations (e.g., the fact that they actually simulate a

29

random oracle), for doing computations in concrete cases (e.g., the preservation of an invariant),
the explicit formulas can be more useful.
lemma query1-None: ‹query1 ∗V ket (y,None) =

α ∗C (
∑

d∈UNIV . ket (y + d, Some d))
− α^3 ∗C (

∑
y ′∈UNIV .

∑
d∈UNIV . ket (y ′, Some d))

+ α2 ∗C (
∑

d∈UNIV . ket (d, None))› (is ‹- = ?rhs›)

lemma query1-Some: ‹query1 ∗V ket (y, Some d) =
ket (y + d, Some d)
+ α ∗C ket (y + d, None)
− α^3 ∗C (

∑
y ′∈UNIV . ket (y ′, None))

− α2 ∗C (
∑

d ′∈UNIV . ket (y + d ′, Some d ′))
− α2 ∗C (

∑
d ′∈UNIV . ket (y + d, Some d ′))

+ α2 ∗C (
∑

d ′∈UNIV . ket (y, Some d ′))
+ α^4 ∗C (

∑
y ′∈UNIV .

∑
d ′∈UNIV . ket (y ′, Some d ′))›

(is ‹- = ?rhs›)

lemma query1 :
shows ‹query1 ∗V (ket yd) = (case yd of

(y, None) ⇒
α ∗C (

∑
d∈UNIV . ket (y + d, Some d))

− α^3 ∗C (
∑

y ′∈UNIV .
∑

d∈UNIV . ket (y ′, Some d))
+ α2 ∗C (

∑
d∈UNIV . ket (d, None))

| (y, Some d) ⇒
ket (y + d, Some d)
+ α ∗C ket (y + d, None)
− α^3 ∗C (

∑
y ′∈UNIV . ket (y ′, None))

− α2 ∗C (
∑

d ′∈UNIV . ket (y + d ′, Some d ′))
− α2 ∗C (

∑
d ′∈UNIV . ket (y + d, Some d ′))

+ α2 ∗C (
∑

d ′∈UNIV . ket (y, Some d ′))
+ α^4 ∗C (

∑
y ′∈UNIV .

∑
d ′∈UNIV . ket (y ′, Some d ′)))›

lemma query1 ′-None: ‹query1 ′ ∗V ket (y,None) =
α ∗C (

∑
d∈UNIV . ket (y + d, Some d))

− α^3 ∗C (
∑

y ′∈UNIV .
∑

d∈UNIV . ket (y ′, Some d))
+ α2 ∗C (

∑
d∈UNIV . ket (d, None))› (is ‹- = ?rhs›)

lemma query1 ′-Some: ‹query1 ′ ∗V ket (y, Some d) =
ket (y + d, Some d)
+ α ∗C ket (y + d, None)
− α^3 ∗C (

∑
y ′∈UNIV . ket (y ′, None))

− α2 ∗C (
∑

d ′∈UNIV . ket (y + d ′, Some d ′))
− α2 ∗C (

∑
d ′∈UNIV . ket (y + d, Some d ′))

+ α^4 ∗C (
∑

y ′∈UNIV .
∑

d ′∈UNIV . ket (y ′, Some d ′))›
(is ‹- = ?rhs›)

lemma query1 ′:
shows ‹query1 ′ ∗V (ket yd) = (case yd of

(y, None) ⇒
α ∗C (

∑
d∈UNIV . ket (y + d, Some d))

− α^3 ∗C (
∑

y ′∈UNIV .
∑

d∈UNIV . ket (y ′, Some d))
+ α2 ∗C (

∑
d∈UNIV . ket (d, None))

| (y, Some d) ⇒
ket (y + d, Some d)

30

+ α ∗C ket (y + d, None)
− α^3 ∗C (

∑
y ′∈UNIV . ket (y ′, None))

− α2 ∗C (
∑

d ′∈UNIV . ket (y + d ′, Some d ′))
− α2 ∗C (

∑
d ′∈UNIV . ket (y + d, Some d ′))

+ α^4 ∗C (
∑

y ′∈UNIV .
∑

d ′∈UNIV . ket (y ′, Some d ′)))›

4.9 query - Query the compressed oracle

We define the compressed oracle itself.
Analogous to the definition of query1 above (decompress, standard-query1, recompress), the
compressed oracle is defined by decompressing the oracle register (now a superposition of func-
tions), applying standard-query, and recompressing.
That is: If one starts with a four-partite state ψ ⊗s ket 0 ⊗s ket 0 ⊗s ket None and keeps
performing operations Ui on the parts 1–3 of the state, interleaved with query invocations on
parts 2–4, this is a simulation of starting with state ψ ⊗s 0 and performing Ui interleaved with
invocations of the unitary |x, y〉 7→ |x, y ⊕ h(x)〉 on parts 2, 3 where h is a function chosen
uniformly at random in the beginning.
Note that there is an alternative way of defining the compressed oracle, namely by decompressing
not the whole oracle register, but only the specific oracle output that we are querying. This is
closer to an efficient implementation of the compressed oracle. We show that this definition is
equivalent below (lemma query-local).
definition query where ‹query = reg-3-3 compress oCL standard-query oCL reg-3-3 compress›

query ′ is defined like query, except that it’s based on standard-query1 ′ instead of standard-query1.
See the discussion of standard-query1 ′ for the difference.
definition query ′ where ‹query ′ = reg-3-3 compress oCL standard-query ′ oCL reg-3-3 compress›

lemma unitary-query[simp]: ‹unitary query›

lemma norm-query[simp]: ‹norm query = 1 ›

lemma norm-query ′[simp]: ‹norm query ′ = 1 ›

lemma query-local-generic:
— A generalization of lemmas query-local and query ′-local below. We prove this first because it avoids

a duplication of the proof because query-local and query ′-local have very similar proofs.
fixes query :: ‹(′x × ′y × (′x ⇀ ′y)) update› and query1

and standard-query and standard-query1
assumes query-def : ‹query = reg-3-3 compress oCL standard-query oCL reg-3-3 compress›
assumes query1-def : ‹query1 = Snd compress1 oCL standard-query1 oCL Snd compress1 ›
assumes standard-query-ket: ‹

∧
x ψ. standard-query ∗V (ket x ⊗s ψ) = ket x ⊗s ((Fst; Snd o func-

tion-at x) standard-query1 ∗V ψ)›
shows ‹query = controlled-op (λx. (Fst; Snd o function-at x) query1)›

We give an alternate (equivalent) definition of the compressed oracle query. Instead of de-
compressing the whole oracle, we decompress only the output we need. Specifically, this is
implemented by – if the query register contains ket x – performing query1 on the output reg-
ister and on the register Hx which is the part of the oracle register which corresponds to the
output for input x.

31

And analogously for query1 ′.
lemma query-local: ‹query = controlled-op (λx. (Fst; Snd o function-at x) query1)›

lemma query ′-local: ‹query ′ = controlled-op (λx. (Fst; Snd o function-at x) query1 ′)›

lemma (in compressed-oracle) standard-query-compress: ‹standard-query oCL reg-3-3 compress = reg-3-3
compress oCL query›

lemma (in compressed-oracle) standard-query ′-compress: ‹standard-query ′ oCL reg-3-3 compress = reg-3-3
compress oCL query ′›

end

end

5 CO-Invariants Preservation of invariants under compressed
oracle queries

theory CO-Invariants imports
Invariant-Preservation
CO-Operations

begin

lemma function-oracle-ket-invariant: ‹function-oracle h ∗S ket-invariant I = ket-invariant ((λ(x,y).
(x,y + h x)) ‘ I)›

lemma function-oracle-Snd-ket-invariant: ‹Snd (function-oracle h) ∗S ket-invariant I = ket-invariant
((λ(w,x,y). (w,x,y+h x)) ‘ I)›

context compressed-oracle begin

This lemma allows to simplify the preservation of invariants under invocations of the compressed
oracle.
Given an invariant I, it can be split into many invariants I1 z for which preservation is shown
then with respect to a fixed oracle input x z, using the simpler oracle query1 instead.
This allows to reduce complex cases to more elementary ones that talk about a single output
of the oracle.
Lemmas inv-split-reg-query and inv-split-reg-query ′ are the specific instantiations of this for the
two compressed oracle variants query and query ′.
lemma inv-split-reg-query-generic:

fixes query query1
assumes query-local: ‹query = controlled-op (λx. (Fst; Snd o function-at x) query1)›
fixes X :: ‹ ′x update ⇒ ′m update›

and Y :: ‹ ′y update ⇒ ′m update›
and H :: ‹(′x⇀ ′y) update ⇒ ′m update›
and K :: ‹ ′z ⇒ ′m ell2 ccsubspace›
and x :: ‹ ′z ⇒ ′x›
and M :: ‹ ′z set›

assumes XK : ‹
∧

z. z∈M =⇒ K z ≤ lift-invariant X (ket-invariant {x z})›
assumes pres-I1 : ‹

∧
z. z∈M =⇒ preserves query1 (I1 z) (J1 z) ε›

32

assumes I-leq: ‹I ≤ (SUP z∈M . K z u lift-invariant (Y ;H o function-at (x z)) (I1 z))›
assumes J-geq: ‹

∧
z. z∈M =⇒ J ≥ K z u lift-invariant (Y ;H o function-at (x z)) (J1 z)›

assumes YK : ‹
∧

z. z∈M =⇒ compatible-register-invariant Y (K z)›
assumes HK : ‹

∧
z. z∈M =⇒ compatible-register-invariant (H o function-at (x z)) (K z)›

assumes [simp]: ‹compatible X Y › ‹compatible X H › ‹compatible Y H ›
assumes U : ‹U = ((X ;(Y ;H)) query)›
assumes orthoK : ‹

∧
z z ′. z∈M =⇒ z ′∈M =⇒ z 6= z ′ =⇒ orthogonal-spaces (K z) (K z ′)›

assumes ‹ε ≥ 0 ›
assumes ‹finite M ›
shows ‹preserves U I J ε›

lemmas inv-split-reg-query = inv-split-reg-query-generic[OF query-local]
lemmas inv-split-reg-query ′ = inv-split-reg-query-generic[OF query ′-local]

definition ‹num-queries q = {(x:: ′x, y:: ′y, D:: ′x⇀ ′y). card (dom D) ≤ q}›
definition ‹num-queries ′ q = {D:: ′x⇀ ′y. card (dom D) ≤ q}›

lemma num-queries-num-queries ′: ‹num-queries q = UNIV × UNIV × (num-queries ′ q)›

lemma ket-invariant-num-queries-num-queries ′: ‹ket-invariant (num-queries q) = > ⊗S > ⊗S ket-invariant
(num-queries ′ q)›

This lemma shows that the number of recorded queries (defined outputs in the oracle register)
increases at most by 1 upon each query of the compressed oracle.
The two instantiations for the two compressed oracle variants are given afterwards.
lemma preserves-num-generic:

fixes query query1
assumes query-local: ‹query = controlled-op (λx. (Fst; Snd o function-at x) query1)›
shows ‹preserves-ket query (num-queries q) (num-queries (q+1)) 0 ›

lemmas preserves-num = preserves-num-generic[OF query-local]
lemmas preserves-num ′ = preserves-num-generic[OF query ′-local]

We now present various lemmas that give concrete bounds for the preservation of invariants
under various conditions, for query1 (and query1 ′).
The invariants are formulated specifically for an application of query1 to a two-partite system
with query output register and oracle register only.
These can be applied to derive invariant preservation for full compressed oracle queries on
arbitrary systems by first splitting the invariant using inv-split-reg-query.

The first bound is applicable for ket-invariants that do not put any conditions on the output
register and that not not require that the output register is defined (not None) after the query.
Lemmas preserve-query1-bound and preserve-query1 ′-bound; with slightly simplified bounds in
preserve-query1-simplified, preserve-query1 ′-simplified.
definition ‹preserve-query1-bound NoneI bi bj0 = 4 ∗ sqrt bj0 ∗ sqrt bi / N + 2 ∗ of-bool NoneI ∗
sqrt bj0 / sqrt N ›
lemma preserve-query1 :

assumes IJ : ‹I ⊆ J ›
assumes [simp]: ‹None ∈ J ›
assumes bi: ‹card (Some −‘ I) ≤ bi›
assumes bj0: ‹card (− Some −‘ J) ≤ bj0›
assumes ε: ‹ε ≥ preserve-query1-bound (None∈I) bi bj0›

33

shows ‹preserves-ket query1 (UNIV × I) (UNIV × J) ε›

definition ‹preserve-query1 ′-bound NoneI bi bj0 = 3 ∗ sqrt bj0 ∗ sqrt bi / N + 2 ∗ of-bool NoneI ∗
sqrt bj0 / sqrt N ›
lemma preserve-query1 ′:

assumes IJ : ‹I ⊆ J ›
assumes [simp]: ‹None ∈ J ›
assumes bi: ‹card (Some −‘ I) ≤ bi›
assumes bj0: ‹card (− Some −‘ J) ≤ bj0›
assumes ε: ‹ε ≥ preserve-query1 ′-bound (None∈I) bi bj0›
shows ‹preserves-ket query1 ′ (UNIV × I) (UNIV × J) ε›

lemma preserve-query1-simplified:
assumes ‹I ⊆ J ›
assumes ‹None ∈ J ›
assumes bj0: ‹card (− Some −‘ J) ≤ bj0›
shows ‹preserves-ket query1 (UNIV × I) (UNIV × J) (6 ∗ sqrt bj0 / sqrt N)›

lemma preserve-query1 ′-simplified:
assumes ‹I ⊆ J ›
assumes ‹None ∈ J ›
assumes bj0: ‹card (− Some −‘ J) ≤ bj0›
shows ‹preserves-ket query1 ′ (UNIV × I) (UNIV × J) (5 ∗ sqrt bj0 / sqrt N)›

The next bound is applicable for ket-invariants assume the output register to have a specific
value ket y0 (typically ket 0) before the query and do not put any conditions on the output
register after the query.
Lemmas preserve-query1-fixY and preserve-query1 ′-fixY.
definition ‹preserve-query1-fixY-bound NoneI NoneJ bi bj0 = sqrt bj0 ∗ sqrt bi / (N ∗ sqrt N)

+ 3 ∗ sqrt bj0 ∗ sqrt bi / N + of-bool NoneI ∗ sqrt bj0 / sqrt N + of-bool NoneI ∗ sqrt bj0 / N
+ of-bool NoneJ / sqrt N + of-bool NoneJ ∗ sqrt bi / N + of-bool (NoneI ∧ NoneJ) / sqrt N ›

lemma preserve-query1-fixY :
assumes IJ : ‹I ⊆ J ›
assumes bi: ‹card (Some −‘ I) ≤ bi›
assumes bj0: ‹card (− Some −‘ J) ≤ bj0›
assumes ε: ‹ε ≥ preserve-query1-fixY-bound (None∈I) (None/∈J) bi bj0›
shows ‹preserves-ket query1 ({y0} × I) (UNIV × J) ε›

definition ‹preserve-query1 ′-fixY-bound NoneI NoneJ bi bj0 = sqrt bj0 ∗ sqrt bi / (N ∗ sqrt N)
+ 2 ∗ sqrt bj0 ∗ sqrt bi / N + of-bool NoneI ∗ sqrt bj0 / sqrt N + of-bool NoneI ∗ sqrt bj0 / N
+ of-bool NoneJ / sqrt N + of-bool NoneJ ∗ sqrt bi / N + of-bool (NoneI ∧ NoneJ) / sqrt N ›

lemma preserve-query1 ′-fixY :
assumes IJ : ‹I ⊆ J ›
assumes bi: ‹card (Some −‘ I) ≤ bi›
assumes bj0: ‹card (− Some −‘ J) ≤ bj0›
assumes ε: ‹ε ≥ preserve-query1 ′-fixY-bound (None∈I) (None/∈J) bi bj0›

shows ‹preserves-ket query1 ′ ({y0} × I) (UNIV × J) ε›

34

The next bound is applicable for ket-invariants assume the output register to have a specific
value ket y0 (typically ket 0) before the query and require that after the query, the oracle register
is not None and the output register has the correct value given that oracle register content.
Notice that this invariant is only available for query1 ′, not for query1 !
definition ‹preserve-query1 ′-fixY-bound-output bi = 4 / sqrt N + 2 ∗ sqrt bi / N ›
lemma preserve-query1 ′-fixY-output:

assumes bi: ‹card (Some −‘ I) ≤ bi›
assumes ε: ‹ε ≥ preserve-query1 ′-fixY-bound-output bi›
shows ‹preserves-ket query1 ′ ({y0} × I) {(y0+d, Some d)| d. True} ε›

A simpler to understand (and sometimes simpler to use) special case of preserve-query1 ′-fixY-output
in terms of query ′ and ket-invariants.
lemma (in compressed-oracle) preserves-ket-query ′-output-simple:

‹preserves-ket query ′ {(x, y, D). y = 0} {(x, y, D). D x = Some y} (6 / sqrt N)›

A strengthened form of preserves-ket-query ′-output-simple that additionally maintains a prop-
erty P on the already existing oracle register (that can depend also on some auxiliary register
and on the query input register).
This comes with the condition on P that when P accepts some oracle function that is undefined
at the query input x, then it needs to accept the updated oracle function with any output at
x. And if P doesn’t accept the oracle function to be undefined at x, then it must accept either
only a small amount of outputs or all but a small amount of outputs for x.
lemma (in compressed-oracle) preserves-ket-query ′-output:

fixes F :: ‹(′x× ′y×(′x⇀ ′y)) update ⇒ ′mem update›
and P :: ‹ ′w::finite ⇒ ′x ⇒ (′x⇀ ′y) ⇒ bool›
and b :: nat

assumes [register]: ‹register G›
assumes ‹F = G o Snd›
assumes PNone: ‹

∧
w x D. P w x (D(x:=None)) =⇒ P w x D›

assumes PSome: ‹
∧

w x D. D x = None =⇒ ¬ P w x D =⇒ let c = card {y. P w x (D(x:=Some y))}
in c∗(N−c) ≤ b›

shows ‹preserves (F query ′) (lift-invariant G (ket-invariant {(w, x, y, D). y = 0 ∧ P w x D}))
(lift-invariant G (ket-invariant {(w, x, y, D). D x = Some y ∧ P w x D}))
(9 / sqrt N + 2 ∗ sqrt b / N)›

This is an example of how preserves-ket-query ′-output is used to deal with more complex query
sequences. It is also useful in its own right (we use it in Collision.thy).
It shows that if we make two queries, then the oracle function contains the outputs of both
queries. (In contrast, preserves-ket-query ′-output-simple shows this only for a single query.)
lemma dist-inv-double-query ′:

fixes X1 X2 Y1 Y2 H and state1 :: ‹ ′mem ell2 ›
defines ‹state2 ≡ (X1 ;(Y1 ;H)) query ′ ∗V state1 ›
defines ‹state3 ≡ (X2 ;(Y2 ;H)) query ′ ∗V state2 ›
assumes [register]: ‹mutually compatible (X1 ,X2 ,Y1 ,Y2 ,H)›
assumes [iff]: ‹norm state1 ≤ 1 ›
assumes dist1 : ‹dist-inv ((X1 ;X2);((Y1 ;Y2);H)) (ket-invariant {((x1 ,x2),(y1 ,y2),D). y1 = 0 ∧ y2

= 0}) state1 ≤ ε›
shows ‹dist-inv ((X1 ;X2);((Y1 ;Y2);H)) (ket-invariant {((x1 ,x2),(y1 ,y2),D). D x1 = Some y1 ∧ D

x2 = Some y2}) state3 ≤ ε + 20 / sqrt N ›

35

The next bound is applicable for ket-invariants assume the output register to have a value ket
d that matches what is in the output register before the query and require that after the query,
the oracle register is not None and the output register has the correct value given that oracle
register content. (I.e., before an uncomputation step.)
Notice that this invariant is only available for query1 ′, not for query1 !
definition ‹preserve-query1 ′-uncompute-bound NoneJ bi bj0 =

of-bool NoneJ ∗ sqrt bi / sqrt N + of-bool NoneJ ∗ sqrt bi / N
+ sqrt bj0 / N + sqrt bi ∗ sqrt bj0 / N + sqrt bi ∗ sqrt bj0 / (N ∗ sqrt N)›

lemma preserve-query1 ′-uncompute:
assumes IJ : ‹I ⊆ J ›
assumes bi: ‹card (Some −‘ I) ≤ bi›
assumes bj0: ‹card (− Some −‘ J) ≤ bj0›
assumes ε: ‹ε ≥ preserve-query1 ′-uncompute-bound (None/∈J) bi bj0›
shows ‹preserves-ket query1 ′ ((UNIV × I) ∩ {(d, Some d)| d. True}) (UNIV × J) ε›

end

end

6 Compressed-Oracle-Is-RO – Equivalence of compressed oracle
and regular random oracle

theory Compressed-Oracle-Is-RO imports
Registers.Pure-States
CO-Operations

begin

lemma swap-function-oracle-measure-generic:
fixes standard-query
fixes X :: ‹ ′x update ⇒ ′mem update› and Y :: ‹ ′y::ab-group-add update ⇒ ′mem update›
assumes std-query-Some: ‹

∧
H x y z . H x = Some z =⇒ standard-query ∗V (ket (x,y,H)) = ket (x, y

+ z, H)›
assumes [register]: ‹compatible X Y ›
shows ‹(Fst o X ; (Fst o Y ; Snd)) standard-query oCL Snd (proj (ket (Some o h)))

= Fst ((X ;Y) (function-oracle h)) oCL Snd (proj (ket (Some o h)))›

lemma standard-query-for-fixed-func-generic:
fixes standard-query
fixes X :: ‹ ′x update ⇒ ′mem update› and Y :: ‹ ′y::ab-group-add update ⇒ ′mem update›
assumes ‹

∧
H x y z. H x = Some z =⇒ standard-query ∗V (ket (x,y,H)) = ket (x, y + z, H)›

assumes ‹compatible X Y ›
shows ‹(Fst o X ; (Fst o Y ; Snd)) standard-query ∗V (ψ ⊗s ket (Some ◦ h))

= Fst ((X ;Y) (function-oracle h)) ∗V (ψ ⊗s ket (Some ◦ h))›

end

36

7 Oracle-Programs – Oracle programs and their execution
theory Oracle-Programs imports

CO-Operations
Invariant-Preservation
Compressed-Oracle-Is-RO

begin

7.1 Oracle programs
datatype (′mem, ′x, ′y) program-step = ProgramStep ‹ ′mem update› | QueryStep ‹ ′x update ⇒ ′mem
update› ‹ ′y update ⇒ ′mem update›
type-synonym (′mem, ′x, ′y) program = ‹(′mem, ′x, ′y) program-step list›

inductive is-QueryStep :: ‹(′mem, ′x, ′y::ab-group-add) program-step⇒ bool› where is-QueryStep-QueryStep[iff]:
‹is-QueryStep (QueryStep X Y)›
inductive is-ProgramStep :: ‹(′mem, ′x, ′y::ab-group-add) program-step⇒ bool› where is-ProgramStep-ProgramStep[iff]:
‹is-ProgramStep (ProgramStep U)›

lemma is-QueryStep-ProgramStep[iff]: ‹¬ is-QueryStep (ProgramStep U)›

lemma is-ProgramStep-QueryStep[iff]: ‹¬ is-ProgramStep (QueryStep X Y)›

fun valid-program-step where ‹valid-program-step (QueryStep X Y) = compatible X Y › | ‹valid-program-step
(ProgramStep U) = isometry U ›
definition valid-program where ‹valid-program prog = list-all valid-program-step prog›

lemma valid-program-cons[simp]: ‹valid-program (p # ps) ←→ valid-program-step p ∧ valid-program
ps›

lemma valid-program-append: ‹valid-program (p @ q) ←→ valid-program p ∧ valid-program q›

lemma valid-program-empty[iff]: ‹valid-program []›

fun exec-program-step :: ‹(′x ⇒ ′y) ⇒ (′mem, ′x, ′y::ab-group-add) program-step ⇒ ′mem ell2 ⇒ ′mem
ell2 › where

‹exec-program-step h (ProgramStep U) ψ = U ∗V ψ›
| ‹exec-program-step h (QueryStep X Y) ψ = (X ;Y) (function-oracle h) ∗V ψ›

fun exec-program-step-with :: ‹(′x × ′y × ′o) update ⇒ (′mem, ′x, ′y) program-step ⇒ (′mem × ′o) ell2
⇒ (′mem × ′o) ell2 › where

‹exec-program-step-with Q (ProgramStep U) ψ = Fst U ∗V ψ›
| ‹exec-program-step-with Q (QueryStep X Y) ψ = (Fst o X ; (Fst o Y ; Snd)) Q ψ›

definition exec-program :: ‹(′x ⇒ ′y::ab-group-add) ⇒ (′mem, ′x, ′y) program ⇒ ′mem ell2 ⇒ ′mem
ell2 › where

‹exec-program h program ψ = fold (exec-program-step h) program ψ›
definition exec-program-with :: ‹(′x × ′y × ′o) update ⇒ (′mem, ′x, ′y) program ⇒ (′mem× ′o) ell2 ⇒
(′mem× ′o) ell2 › where

‹exec-program-with Q program ψ = fold (exec-program-step-with Q) program ψ›

lemma bounded-clinear-exec-program-step-with[bounded-clinear]: ‹bounded-clinear (exec-program-step-with
Q step)›

lemma exec-program-empty[simp]: ‹exec-program h [] ψ = ψ›

37

lemma exec-program-with-empty[simp]: ‹exec-program-with Q [] ψ = ψ›
lemma exec-program-append: ‹exec-program h (p @ q) ψ = exec-program h q (exec-program h p ψ)›
lemma exec-program-with-append: ‹exec-program-with Q (p @ q) ψ = exec-program-with Q q (exec-program-with
Q p ψ)›
lemma exec-program-cons[simp]: ‹exec-program h (step#prog) ψ = exec-program h prog (exec-program-step
h step ψ)›
lemma exec-program-with-cons[simp]: ‹exec-program-with Q (step#prog) ψ = exec-program-with Q prog
(exec-program-step-with Q step ψ)›

lemma norm-exec-program-step-with: ‹norm (exec-program-step-with oracle program-step ψ) ≤ norm ψ›
if ‹valid-program-step program-step› and ‹norm oracle ≤ 1 ›

lemma norm-exec-program-with:
‹norm (exec-program-with oracle program ψ) ≤ norm ψ› if ‹norm oracle ≤ 1 › and ‹valid-program

program› for program

lemma norm-exec-program-step-with-isometry:
assumes ‹valid-program-step program-step›
assumes ‹isometry query›
shows ‹norm (exec-program-step-with query program-step ψ) = norm ψ›

7.2 Lifting
fun lift-program-step :: ‹(′a update⇒ ′mem update)⇒ (′a, ′x, ′y::ab-group-add) program-step⇒ (′mem, ′x, ′y)
program-step› where

‹lift-program-step Q (ProgramStep U) = ProgramStep (Q U)›
| ‹lift-program-step Q (QueryStep X Y) = QueryStep (Q o X) (Q o Y)›

definition lift-program :: ‹(′a update ⇒ ′mem update) ⇒ (′a, ′x, ′y::ab-group-add) program-step list ⇒
(′mem, ′x, ′y) program› where

‹lift-program Q p = map (lift-program-step Q) p›

lemma valid-program-step-lift:
assumes ‹register Q› and ‹valid-program-step p›
shows ‹valid-program-step (lift-program-step Q p)›

lemma valid-program-lift:
assumes ‹register Q› and ‹valid-program p›
shows ‹valid-program (lift-program Q p)›

lemma lift-program-empty[simp]: ‹lift-program Q [] = []›

lemma lift-program-cons: ‹lift-program Q (program-step # program) = lift-program-step Q program-step
lift-program Q program›

lemma lift-program-append: ‹lift-program Q (program1 @ program2) = lift-program Q program1 @
lift-program Q program2 ›

lemma is-QueryStep-lift-program-step[simp]: ‹is-QueryStep (lift-program-step Q program-step)←→ is-QueryStep
program-step›

lemma filter-is-QueryStep-lift-program: ‹filter is-QueryStep (lift-program Q program) = lift-program Q
(filter is-QueryStep program)›

38

lemma length-lift-program[simp]: ‹length (lift-program Q program) = length program›

definition ‹query-count program = length (filter is-QueryStep program)›

lemma query-count-append[simp]: ‹query-count (p @ q) = query-count p + query-count q›
lemma query-count-nil[simp]: ‹query-count [] = 0 ›
lemma query-count-cons-QueryStep[simp]: ‹query-count (QueryStep X Y # p) = query-count p + 1 ›
lemma query-count-cons-ProgramStep[simp]: ‹query-count (ProgramStep U # p) = query-count p›
lemma query-count-lift-program[simp]: ‹query-count (lift-program Q p) = query-count p›

lemma exec-lift-program-step-Fst:
assumes ‹valid-program-step program-step›
shows ‹exec-program-step h (lift-program-step Fst program-step) (ψ ⊗s ϕ) = exec-program-step h

program-step ψ ⊗s ϕ›

lemma exec-lift-program-Fst:
assumes ‹valid-program program›
shows ‹exec-program h (lift-program Fst program) (ψ ⊗s ϕ) = exec-program h program ψ ⊗s ϕ›

7.3 Final measurement
definition measurement-probability :: ‹(′a update ⇒ ′mem update) ⇒ ′mem ell2 ⇒ ′a ⇒ real› where

‹measurement-probability Q ψ x = (norm (Q (proj (ket x)) ψ))2›

lemma measurement-probability-nonneg: ‹measurement-probability Q ψ x ≥ 0 ›

lemma norm-register-Proj-ket-invariant-union:
— Helper lemma
assumes ‹register Q› and ‹A ∩ B = {}›
shows ‹(norm (Q (Proj (ket-invariant (A ∪ B))) ψ))2 = (norm (Q (Proj (ket-invariant A)) ψ))2 +

(norm (Q (Proj (ket-invariant B)) ψ))2›

lemma measurement-probability-sum:
assumes ‹register Q› and ‹finite F›
shows ‹(

∑
x∈F . measurement-probability Q ψ x) = (norm (Q (Proj (ket-invariant F)) ψ))2›

lemma
assumes ‹register Q›
shows measurement-probability-summable: ‹measurement-probability Q ψ summable-on A›

and measurement-probability-infsum-leq: ‹(
∑

∞x∈A. measurement-probability Q ψ x) ≤ (norm (Q
(Proj (ket-invariant A)) ψ))2›

lemma dist-inv-measurement-probability:
fixes I :: ‹ ′i::finite set›
assumes [register]: ‹register Q›
shows ‹(

∑
x∈I . measurement-probability Q ψ x) = (dist-inv Q (ket-invariant (−I)) ψ)2›

lemma dist-inv-avg-measurement-probability:
fixes I :: ‹ ′h::finite ⇒ ′i::finite set›
assumes [register]: ‹register Q›
shows ‹(

∑
h∈UNIV .

∑
x∈I h. measurement-probability Q (ψ h) x) / CARD(′h)

= (dist-inv-avg Q (λh. ket-invariant (− I h)) ψ)2›

39

7.4 Preservation
lemma dist-inv-avg-exec-compatible:

fixes prog
assumes ‹valid-program prog›
assumes [register]: ‹compatible Q R›
shows ‹dist-inv-avg Q I (λh:: ′x::finite⇒ ′y::{finite,ab-group-add}. exec-program h (lift-program R prog)

(ψ h))
≤ dist-inv-avg Q I ψ›

lemma dist-inv-exec ′-compatible:
fixes prog
assumes ‹valid-program prog›
assumes normU : ‹norm U ≤ 1 ›
assumes [register]: ‹register R›
assumes compatQ1 [register]: ‹compatible Q (Fst o R)›
assumes compatQ2 [register]: ‹compatible Q Snd›
shows ‹dist-inv Q I (exec-program-with U (lift-program R prog) ψ) ≤ dist-inv Q I ψ›

7.5 Misc
lemma dist-inv-induct:

fixes oracle :: ‹(′x × ′y::ab-group-add × (′x ⇒ ′y option)) update›
assumes ‹compatible R Fst›
assumes ‹(

∑
i<query-count program. g i) ≤ ε›

assumes init: ‹ψ0 ∈ space-as-set (lift-invariant R (J 0))›
assumes ‹J (query-count program) ≤ I ›
assumes ‹valid-program program›
assumes ‹

∧
X Y i. compatible X Y =⇒ preserves ((Fst ◦ X ;(Fst ◦ Y ;Snd)) oracle :: (′m × -) update)

(lift-invariant R (J i))
(lift-invariant R (J (Suc i))) (g i)›

assumes ‹norm oracle ≤ 1 ›
assumes ‹norm ψ0 ≤ 1 ›
shows ‹dist-inv R I (exec-program-with oracle program ψ0) ≤ ε›

7.6 Random Oracles
lemma standard-query-for-fixed-function-generic:

fixes standard-query
assumes ‹

∧
H x y z. H x = Some z =⇒ standard-query ∗V (ket (x,y,H)) = ket (x, y + z, H)›

assumes ‹valid-program program›
shows ‹exec-program h program initial-state ⊗s ket (Some o h)

= exec-program-with standard-query program (initial-state ⊗s ket (Some ◦ h))›

lemma standard-query-for-fixed-function-dist-inv-generic:
assumes ‹

∧
H x y z. H x = Some z =⇒ standard-query ∗V (ket (x,y,H)) = ket (x, y + z, H)›

assumes ‹valid-program program›
assumes compat: ‹compatible-invariants (> ⊗S ccspan {ket (Some ◦ h)}) J ›
assumes IJ : ‹J u (> ⊗S ccspan{ket (Some o h)}) = I ⊗S ccspan{ket (Some o h)}›
assumes [register]: ‹register Q›
shows ‹dist-inv Q I (exec-program h program initial-state) =

dist-inv (Fst o Q; Snd) J (exec-program-with standard-query program (initial-state ⊗s ket (Some ◦
h)))›

40

lemma standard-query-is-ro-generic:
fixes standard-query
assumes ‹

∧
H x y z. H x = Some z =⇒ standard-query ∗V (ket (x,y,H)) = ket (x, y + z, H)›

assumes ‹valid-program program›
shows ‹exec-program-with standard-query program (initial-state ⊗s (superpos-total :: (′x::finite ⇒

′y::{finite,ab-group-add} option) ell2))
= (

∑
h∈UNIV . (exec-program h program initial-state ⊗s ket (Some o h)) /R sqrt CARD(′x ⇒

′y))›

lemma standard-query-is-ro-dist-inv-generic:
fixes standard-query :: ‹(′x::finite × ′y::{finite,ab-group-add} × (′x ⇀ ′y)) ell2 ⇒CL -›
assumes ‹

∧
H x y z. H x = Some z =⇒ standard-query ∗V (ket (x,y,H)) = ket (x, y + z, H)›

assumes ‹valid-program program›
assumes [register]: ‹register Q›
shows ‹dist-inv-avg Q (λ-. I) (λh. exec-program h program initial-state) =
dist-inv (Fst o Q) I (exec-program-with standard-query program (initial-state ⊗s superpos-total))› (is

‹?lhs = ?rhs›)

lemma (in compressed-oracle) standard-query-is-ro-dist-inv:
assumes ‹valid-program program›
assumes [register]: ‹register Q›
shows ‹dist-inv-avg Q (λ-. I) (λh. exec-program h program initial-state) =
dist-inv (Fst o Q) I (exec-program-with standard-query program (initial-state ⊗s superpos-total))› (is

‹?lhs = ?rhs›)

lemma (in compressed-oracle) standard-query ′-is-ro-dist-inv:
assumes ‹valid-program program›
assumes [register]: ‹register Q›
shows ‹dist-inv-avg Q (λ-. I) (λh. exec-program h program initial-state) =

dist-inv (Fst o Q) I (exec-program-with standard-query ′ program (initial-state ⊗s superpos-total))›
(is ‹?lhs = ?rhs›)

lemma (in compressed-oracle) compress-query-is-standard-query-generic:
fixes query standard-query
assumes ‹valid-program program›
assumes ‹standard-query oCL reg-3-3 compress = reg-3-3 compress oCL query›
shows ‹exec-program-with standard-query program (initial-state ⊗s superpos-total)

= Snd compress ∗V exec-program-with query program (initial-state ⊗s ket (λx. None))›

lemma (in compressed-oracle) query-is-standard-query-generic:
fixes query standard-query
assumes ‹valid-program program›
assumes ‹standard-query oCL reg-3-3 compress = reg-3-3 compress oCL query›
shows ‹dist-inv Fst I (exec-program-with standard-query program (initial-state ⊗s superpos-total))

= dist-inv Fst I (exec-program-with query program (initial-state ⊗s ket (λx. None)))›

41

lemma (in compressed-oracle) query-is-standard-query:
assumes ‹valid-program program›
shows
‹dist-inv Fst I (exec-program-with standard-query program (initial-state ⊗s superpos-total)) =
dist-inv Fst I (exec-program-with query program (initial-state ⊗s ket (λx. None)))›

lemma (in compressed-oracle) query ′-is-standard-query:
assumes ‹valid-program program›
shows
‹dist-inv Fst I (exec-program-with standard-query ′ program (initial-state ⊗s superpos-total)) =
dist-inv Fst I (exec-program-with query ′ program (initial-state ⊗s ket (λx. None)))›

lemma (in compressed-oracle) query-is-random-oracle:
assumes ‹valid-program program›
shows ‹dist-inv-avg id (λ-. I) (λh. exec-program h program initial-state) =

dist-inv Fst I (exec-program-with query program (initial-state ⊗s ket (λ-. None)))›

lemma (in compressed-oracle) query ′-is-random-oracle:
assumes ‹valid-program program›
shows ‹dist-inv-avg id (λ-. I) (λh. exec-program h program initial-state) =

dist-inv Fst I (exec-program-with query ′ program (initial-state ⊗s ket (λ-. None)))›

lemma (in compressed-oracle) dist-inv-exec-query-exec-fixed:
fixes program :: ‹(′mem, ′x::finite, ′y::{finite,ab-group-add}) program-step list›
fixes Q :: ‹ ′a ell2 ⇒CL

′a ell2 ⇒ ′mem ell2 ⇒CL
′mem ell2 ›

assumes ‹valid-program program›
assumes [register]: ‹register Q›
shows ‹dist-inv (Fst ◦ Q) I (exec-program-with query program (ψ ⊗s ket (λ-. None)))

= dist-inv-avg Q (λ-. I) (λh. exec-program h program ψ)›

lemma (in compressed-oracle) dist-inv-exec-query ′-exec-fixed:
fixes program :: ‹(′mem, ′x::finite, ′y::{finite,ab-group-add}) program-step list›
fixes Q :: ‹ ′a ell2 ⇒CL

′a ell2 ⇒ ′mem ell2 ⇒CL
′mem ell2 ›

assumes ‹valid-program program›
assumes [register]: ‹register Q›
shows ‹dist-inv (Fst ◦ Q) I (exec-program-with query ′ program (ψ ⊗s ket (λ-. None)))

= dist-inv-avg Q (λ-. I) (λh. exec-program h program ψ)›

end

8 Find-Zero Invariant preservation for zero-finding
theory Find-Zero

imports CO-Invariants Oracle-Programs
begin

context compressed-oracle begin

definition ‹no-zero = {(x:: ′x,y:: ′y,D:: ′x⇀ ′y). 0 /∈ ran D}›
definition ‹no-zero ′ = {D:: ′x⇀ ′y. 0 /∈ ran D}›

42

lemma no-zero-no-zero ′: ‹no-zero = UNIV × UNIV × no-zero ′›

lemma ket-invariant-no-zero-no-zero ′: ‹ket-invariant no-zero = > ⊗S > ⊗S ket-invariant no-zero ′›

We show the preservation of the no-zero invariant. We show it first with respect to the oracle
query.
lemma preserves-no-zero: ‹preserves-ket query no-zero no-zero (6 / sqrt N)›

Like preserves-no-zero but with respect to the oracle query.
lemma preserves-no-zero ′: ‹preserves-ket query ′ no-zero no-zero (5 / sqrt N)›

lemma preserves-no-zero-num: ‹preserves-ket query (no-zero ∩ num-queries q) (no-zero ∩ num-queries
(q+1)) (6 / sqrt N)›

lemma preserves-no-zero-num ′: ‹preserves-ket query ′ (no-zero ∩ num-queries q) (no-zero ∩ num-queries
(q+1)) (5 / sqrt N)›

8.1 Zero-finding is hard for q-query adversaries
lemma zero-finding-is-hard:

fixes program :: ‹(′mem, ′x, ′y) program›
and adv-output :: ‹ ′x update ⇒ ′mem update›
and initial-state

assumes [iff]: ‹valid-program program›
assumes ‹norm initial-state = 1 ›
assumes [register]: ‹register adv-output›
shows ‹(

∑
h∈UNIV .

∑
x|h x = 0 . measurement-probability adv-output (exec-program h program

initial-state) x) / CARD(′x ⇒ ′y)
≤ (5 ∗ real (query-count program) + 11)2 / N ›

end

end

9 Aux-Sturm-Calculation – Auxiliary theory for technical reasons.
theory Aux-Sturm-Calculation imports

Sturm-Sequences.Sturm
begin

We prove this fact in a separate theory because in Collision.thy, the sturm method fails with
an internal error.
lemma sturm-calculation: ‹12 ∗ (r2+154)^3 − (10/3 ∗ (r+2)^3 + 20)2 6= 0 › if ‹r ≥ 0 › for r :: real

end

43

10 Collision Invariant preservation for collision resistance
theory Collision imports

CO-Invariants
Oracle-Programs
Aux-Sturm-Calculation

begin

context compressed-oracle begin

definition ‹no-collision = {(x,y,D:: ′x⇀ ′y). inj-map D}›
definition ‹no-collision ′ = {D:: ′x⇀ ′y. inj-map D}›

lemma no-collision-no-collision ′: ‹no-collision = UNIV × UNIV × no-collision ′›

lemma ket-invariant-no-collision-no-collision ′: ‹ket-invariant no-collision = > ⊗S > ⊗S ket-invariant
no-collision ′›

We show the preservation of the no-collision invariant. We show it with respect to the oracle
query first.
lemma preserves-no-collision: ‹preserves-ket query (no-collision ∩ num-queries q) no-collision (6 ∗ sqrt
q / sqrt N)›

Like preserves-no-collision but with respect to the oracle query.
lemma preserves-no-collision ′: ‹preserves-ket query ′ (no-collision ∩ num-queries q) no-collision (5 ∗
sqrt q / sqrt N)›

lemma preserves-no-collision-num: ‹preserves-ket query (no-collision ∩ num-queries q) (no-collision ∩
num-queries (q+1)) (6 ∗ sqrt q / sqrt N)›

lemma preserves-no-collision ′-num: ‹preserves-ket query ′ (no-collision ∩ num-queries q) (no-collision
∩ num-queries (q+1)) (5 ∗ sqrt q / sqrt N)›

10.1 Collision-finding is hard for q-query adversaries
lemma collision-finding-is-hard:

fixes program :: ‹(′mem, ′x, ′y) program›
and adv-output :: ‹(′x × ′x) update ⇒ ′mem update›
and initial-state

assumes [iff]: ‹valid-program program›
assumes ‹norm initial-state = 1 ›
assumes [register]: ‹register adv-output›
shows ‹(

∑
h∈UNIV .

∑
(x1 ,x2)|x1 6= x2 ∧ h x1 = h x2 . measurement-probability adv-output (exec-program

h program initial-state) (x1 ,x2)) / CARD(′x ⇒ ′y)
≤ 12 ∗ (query-count program + 154)^3 / N ›

end

end

44

References

[1] Dominique Unruh. Compressed permutation oracles (and the collision-resistance of
sponge/sha3). IACR Cryptology ePrint Archive, 2021/062, 2021.

[2] Dominique Unruh. Quantum and classical registers. Archive for Formal Proofs, https:
//www.isa-afp.org/entries/Registers.html, 2021. Formalization of parts of the present paper.
For historic reasons, “references” are called “registers” and “disjoint” is called “compatible”
in the formalization.

[3] Dominique Unruh. Quantum references. arXiv:2105.10914v3 [cs.LO], 2024.

[4] Mark Zhandry. How to record quantum queries, and applications to quantum indifferentia-
bility. In Crypto 2019, pages 239–268. Springer, 2019. Eprint is IACR ePrint 2018/276.

45

https://eprint.iacr.org/2021/062
https://www.isa-afp.org/entries/Registers.html
https://www.isa-afp.org/entries/Registers.html
https://arxiv.org/abs/2105.10914v3
https://eprint.iacr.org/2018/276.pdf

	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Misc-Compressed-Oracle – Miscellaneous required theorems
	Misc
	Controlled operations
	Superpositions
	Lifting ell2 to option type

	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Function-At – Function values as individual registers
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 apply-every

	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Invariant-Preservation – Preservation of invariants under queries
	Invariants
	Distance from invariants
	Preservation of invariants

	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 CO-Operations – Definition of the compressed oracle and related unitaries
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 function-oracle - Querying a fixed function
	Setup for compressed oracles
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 switch0 - Operator exchanging 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ket (Some 0) and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ket None
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 compress1 - Operator to compress a single RO-output
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 compress - Operator for compressing the RO
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 standard-query1 - Operator for uncompressed query of a single RO-output
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 standard-query - Operator for uncompressed query of the RO
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 query1 - Query the compressed oracle at a single output
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 query - Query the compressed oracle

	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 CO-Invariants – Preservation of invariants under compressed oracle queries
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Compressed-Oracle-Is-RO – Equivalence of compressed oracle and regular random oracle
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Oracle-Programs – Oracle programs and their execution
	Oracle programs
	Lifting
	Final measurement
	Preservation
	Misc
	Random Oracles

	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Find-Zero – Invariant preservation for zero-finding
	Zero-finding is hard for q-query adversaries

	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Aux-Sturm-Calculation – Auxiliary theory for technical reasons.
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Collision – Invariant preservation for collision resistance
	Collision-finding is hard for q-query adversaries

