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Abstract

We formalize the compressed quantum random oracle methodology by Zhandry (Crypto

2019). This is a formalism for modeling quantum random oracles to make quantum cryp-
tographic proofs feasible. Our definition of the compressed oracles is loosely based on the
presentation from Unruh (arXiv 2021), but with a considerable amount of new definitions
and results. In particular, we make extensive use of the quantum references formalism (Un-
ruh, arXiv 2024, AFP 2021) to enable reasoning about queries on arbitrary subsystems,
something which is left very informal in pen-and-paper formalizations of the compressed
oracles.

We use the developed formalism to prove that finding = with H(xz) = 0, and finding
collisions in H, is hard for quantum adversaries with oracle access to a random function H.
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1 Misc-Compressed-Oracle — Miscellaneous required theorems

theory Misc-Compressed-Oracle
imports Registers. Quantum-FExtra2
begin

declare [[simproc del: Laws-Quantum.compatibility-warn]]

unbundle cblinfun-syntazx
unbundle register-syntaz

1.1 Misc

lemma assoc-ell2’-ket[simp]: <assoc-ell2x xy ket (x,y,2) = ket ((z,y),2)>
by (metis assoc-ell2’-tensor tensor-ell2-ket)

lemma assoc-ell2-ket[simp]: <assoc-ell2 =y ket ((z,y),2) = ket (z,y,2)
by (metis assoc-ell2-tensor tensor-ell2-ket)

lemma sandwich-tensor:
fixes a :: (‘a::finite ell2 = ¢ 'c:finite ell2y and b :: <'b::finite ell2 = ¢ 'd::finite ell2»
assumes <unitary ay <unitary b
shows cblinfun-apply (sandwich (a ®, b)) = cblinfun-apply (sandwich a) ®, cblinfun-apply (sandwich

b)

apply (rule tensor-extensionality)
by (auto simp: unitary-sandwich-register assms sandwich-apply register-tensor-is-register comp-tensor-op
tensor-op-adjoint unitary-tensor-op)



lemma sandwich-grow-left:
fixes a :: (‘a::finite ell2 =cp 'b:finite ell2»
assumes unitary a
shows sandwich a ®, id = sandwich (a ®, (id-cblinfun :: (-:finite ell2 =cr -)))
by (simp add: unitary-sandwich-register assms sandwich-tensor id-def)

lemma Snd-apply-tensor-ell2[simp]: <Snd a *y (Y ®s ) =V Q5 (a *xy )
by (simp add: Snd-def tensor-op-ell2)

ML «

fun register-n-of-m n m = let
val - = n > 0 orelse error register-n-of-m: n<=0
val - = m >= n orelse error register-n-of-m: n>m

val id-op = Const(const-name <id-cblinfuny,dummyT)

val tensor-op = Const(const-name <tensor-op),dummyT)

fun add-ids 0t =t

| add-ids i t = tensor-op $ id-op $ add-ids (i—1) t
val body = if n=m then add-ids (n—1) (Bound 0)
else add-ids (n—1) (tensor-op $ Bound 0 $ add-ids (m—n—1) id-op)

m

Abs(a, dummyT, body)
end
register-n-of-m 5 5 |> Syntaz.string-of-term context |> writeln
)

ML ¢
fun dest-numeral-syntax (Const(const-syntax «Num.num.One>, -)) =
| dest-numeral-syntaz (Const(const-syntax < Num.num.Bit0>, -) $ bs 2 x dest-numeral-syntaz bs
| dest-numeral-syntaz (Const (const-syntax «Num.num.Bitly, -) $ bs) = 2 x dest-numeral-syntaz bs
+ 1
| dest-numeral-syntaz (Const (-constrain, -) $ t $ -) = dest-numeral-syntaz t
| dest-numeral-syntaz t = raise TERM (dest-numeral-syntaz, [t]);

1

fun dest-number-syntax (Const (const-syntar < Groups.zero-class.zeroy, -)) = 0
| dest-number-syntaz (Const (const-syntax « Groups.one-class.oney, -)) = 1
| dest-number-syntaz (Const (const-syntax < Num.numeral-class.numeraly, -) $ t) =
dest-numeral-syntax t
| dest-number-syntaz (Const (const-syntax « Groups.uminus-class.uminusy, -) $ t) =
~ (dest-number-syntax t)
| dest-number-syntaz (Const (-constrain, -) $ t $ -) = dest-number-syntax ¢
| dest-number-syntaz t = raise TERM (dest-number-syntaz, [t])
)

syntax -register-n-of-m :: <'a = 'a = b ([-])

parse-translation ([(syntaz-const ¢-register-n-of-m>, fn ctat => fn [nt,mt] => let
val n = dest-number-syntazx nt
val m = dest-number-syntax mt
in register-n-of-m n m end

W

ML «

Syntax.read-term context [89] |> Thm.cterm-of context

)



lemma sum-if: <(>_xz€X. P (if Q z then a z else b x)) = (> z€X. if Q x then P (a x) else P (b x))»
by (smt (verit) Finite-Cartesian-Product.sum-cong-aur)

lemma sum-if": «(> xz€X. P (if Q z then a z else b x) x) = (Y. z€X. if Q x then P (a z) = else P (b
x) )
by (smt (verit) Finite-Cartesian-Product.sum-cong-auz)

lemma bij-plus: <bij ((+) y)» for y :: <-:group-add>
by simp

lemma tensor-ell2-diff2: <tensor-ell2 a (b — ¢) = tensor-ell2 a b — tensor-ell2 a ¢
by (metis add-diff-cancel-right’ diff-add-cancel tensor-ell2-add2)

lemma tensor-ell2-diff1: <tensor-ell2 (a — b) ¢ = tensor-ell2 a ¢ — tensor-ell2 b ¢
by (metis add-right-cancel diff-add-cancel tensor-ell2-add1)

lemma aminus-bminusc: <a — (b — ¢) = a — b+ ¢ for a b ¢ :: <- 2 ab-group-add>
by simp

lemma sum-case’:
fixes a :: <- = - = -i:ab-group-add>
assumes (finite X»
shows ¢(>_z€X. P (case Q x of Some z = a z z | None = b x))
= (> zeX N {z. Qz # None}. P (a (the (Q x)) z)) + O_zeX N {z. Q x = None}. P (b z))»
(is ?lhs="?rhs)
proof —
have «?lhs = (D zeX N (Q — Some ¢ UNIV). P (case Q z of Some z = a z z | None = b z)) +
- zeX N (Q — {None}). P (case Q z of Some z = a zx | None = b z))»
apply (subst sum.union-disjoint[symmetric))
using assms apply auto
by (metis Int-UNIV-right Int-Un-distrib UNIV-option-conv insert-union vimage-UNIV vimage-Un)
also have «... = ?rhs
apply (rule arg-cong2|where f=plus|)
apply (rule sum.cong)
apply auto[2]
apply (rule sum.cong)
by auto
finally show ?thesis
by —
qed

lemma register-isometry:
assumes register F
assumes isometry a
shows isometry (F a)
using assms by (smt (verit, best) register-def isometry-def)

lemma register-coisometry:
assumes register F
assumes isometry (ax)
shows isometry (F ax)
using assms by (smt (verit, best) register-def isometry-def)



lemma card-complement:
fixes M :: (‘a::finite set)
shows <card (—M) = CARD('a) — card M>»
by (simp add: Compl-eq-Diff-UNIV card-Diff-subset)

lemma register-minus: <register F = F (a — b) = Fa — F b
using clinear-register complex-vector.linear-diff by blast

lemma vimage-singleton-inj: <inj f = f —‘{f z} = {z}
using inj-vimage-singleton subset-singletonD by fastforce

lemma has-ell2-norm-0[iff]: <has-ell2-norm (Az. 0)»
by (metis eq-onp-same-args zero-ell2.rsp)

lemma ell2-norm-0I[simp): <ell2-norm (Az. 0) = 0»
using ell2-norm-0 by blast

lemma ran-smaller-dom: <finite (dom m) = card (ran m) < card (dom m))
apply (rule surj-card-lelwhere f=<the o m»], simp)
unfolding dom-def ran-def by force

lemma option-sum-split: <> z€X. fz) = (O x€Some —* X. f (Some z)) + (if None € X then f None
else 0)» if «finite X» for f X

apply (subst asm-rijof <X = (Some ¢ Some —* X) U ({None} N X)3])

apply auto[1]

apply (subst sum.union-disjoint)

apply (auto simp: that)[3]
apply (subst sum.reindex)
by auto

lemma sum-sum-if-eq: <> z€X. > yeY z. if x=a then fz y else 0) = (if a€X then (> yeY a. fa y)
else 0)y if «finite X»> for X Y f
by (subst sum-singlelwhere i=a], auto simp: that)

lemma sum-if-eq-else: «(>_ x€X. if z=a then 0 else fz) = (> zeX—{a}. fz) for X f
apply (cases «finite X»)
apply (rule sum.mono-neutral-cong-right)
by auto

lemma fun-upd-comp-left:
assumes <inj ¢
shows «(f 0 g)(z = y) = f(g 7 == y) 0 9
by (auto simp: fun-upd-def assms inj-eq)

definition reg-1-3 :: «<- = (‘a::finite x 'b::finite x 'c::finite) ell2 =cr ('a x 'b x 'c) ell2) where
<reg-1-3 = Fst»
lemma register-1-3[simp|: <register reg-1-3»

by (simp add: reg-1-3-def)

lemma comp-reg-1-8[simp|: «(F;G) o reg-1-8 = F» if [register|: «compatible F G»
by (simp add: reg-1-3-def register-pair-Fst)



definition reg-2-3 :: «<- = (‘a::finite x 'b::finite x 'ci:finite) ell2 =cp (‘a x 'b x 'c) ell2) where
<reg-2-3 = Snd o Fst»
lemma register-2-3[simp|: <register reg-2-3»

by (simp add: reg-2-3-def)
lemma comp-reg-2-3[simp|: «(F;(G;H)) o reg-2-3 = G» if [register]: <compatible F G» <compatible F
H» <compatible G H»

by (simp add: reg-2-3-def register-pair-Fst register-pair-Snd flip: comp-assoc)

definition reg-3-3 :: «<- = (‘a::finite x 'b::finite x ’c::finite) ell2 =cr ('a x 'b x 'c) ell2) where
<reg-3-3 = Snd o Snd)
lemma register-3-3[simp|: <register reg-3-3»

by (simp add: reg-3-3-def)
lemma comp-reg-3-3[simpl: «(F;(G;H)) o reg-3-8 = H» if [register]: <compatible F G» <compatible F
H) <compatible G H»

by (simp add: reg-3-3-def register-pair-Snd flip: comp-assoc)

lemma [simp]: «<mutually compatible (reg-1-3, reg-2-3, reg-3-3)»
by (auto simp add: reg-1-3-def reg-2-3-def reg-3-3-def)

lemma pair-o-tensor-right:
assumes [simp|: <compatible F G» (register H»
shows ((F; G o H) = (F; G) o (id ®, H)»
by (auto simp: pair-o-tensor)

lemma register-tensor-distrib-right:
assumes [simp|: <register F» <register H» <register L»
shows <F ®, (Ho L) = (F ®, H) o (id ®, L)
apply (subst register-tensor-distrib)
by auto

lemma sandwich-apply”:
<sandwich U A sy ¢ = U xy A xy Ux xy
unfolding sandwich-apply by simp

lemma csubspace-set-sum:
assumes (\z. z € X = csubspace (4 z)»
shows <csubspace (> z€X. A z))
using assms
apply (induction X rule:infinite-finite-induct)
by (auto simp: csubspace-set-plus)

lemma Rep-ell2-vector-to-cblinfun-ket: «Rep-ell2 ¢ x = bra x *y ¢»
by (simp add: cinner-ket-left)

lemma trunc-ell2-insert: <trunc-ell2 (insert x M) v = Rep-ell2 ¢ = x¢ ket x + trunc-ell2 M iy if <z
¢ M

using trunc-ell2-union-disjoint[where M=«{z}» and N=M and ¢=v]| that

by (auto simp: trunc-ell2-singleton)

lemma trunc-ell2-in-cspan:
assumes <finite S»
shows <trunc-ell2 S ¢ € cspan (ket < S)»
using assms



proof induction
case empty
show ?Zcase
by simp
next
case (insert z F)
then have <Rep-ell2 1 © *¢ ket © + trunc-ell2 F ¢ € cspan (insert (ket z) (ket  F))»
by (metis add-diff-cancel-left’ complez-vector.span-breakdown-eq)
with insert show ?case
by (auto simp: trunc-ell2-insert)
qed

lemma space-ccspan-ket: <space-as-set (ccspan (ket * M)) = {p. Vo € —M. Rep-ell2 ¢ z = 0}
proof (intro Set.set-eql iffI; rename-tac )
fix
assume -in-cespan: Y € space-as-set (cespan (ket < M))»
have <Rep-ell2 ¢ x = 0» if <z € — M) for z
proof —
have (Rep-ell2 1) x = vector-to-cblinfun (ket x)* xy 1)
by (simp add: Rep-ell2-vector-to-cblinfun-ket)
also have (... € vector-to-cblinfun (ket x)x  space-as-set (ccspan (ket < M))»
using -in-ccspan by blast
also have «... C space-as-set (vector-to-cblinfun (ket z)x xg ccspan (ket < M))»
by (simp add: cblinfun-image.rep-eq closure-subset)

also have (... = space-as-set (ccspan (vector-to-cblinfun (ket z)x “ ket < M))»
by (simp add: cblinfun-image-ccspan)
also have «... = space-as-set (ccspan (if M={} then {} else {0}))»

apply (rule arg-cong[where f=«\z. space-as-set (ccspan x))])
using <z € —M)» apply auto
by (metis imagel orthogonal-ket)
also have «... = O»
by simp
finally show «Rep-ell2 ¢ x = 0>
by auto
ged
then show <« € {¢. Vae— M. Rep-ell2 yp x = 0}
by simp
next
fix ¥
assume <) € {¢p. Vae— M. Rep-ell2 ¢p x = 0}
then have (¢ = trunc-ell2 M »
by (auto intro!: Rep-eli2-inject| THEN iffD1] ext simp: trunc-ell2.rep-eq)
then have lim: «((A\S. trunc-ell2 S ¢) —— ) (finite-subsets-at-top M)»
using trunc-ell2-lim[of ¥ M]
by auto
have (trunc-ell2 S ¢ € cspan (ket < S)» if <finite S» for S
by (simp add: that trunc-ell2-in-cspan)
also have «... S C space-as-set (cespan (ket < M))» if <finite S» and «S C M) for S
by (metis ccspan.rep-eq closure-subset complex-vector.span-mono dual-order.trans image-mono that(2))
finally show <) € space-as-set (ccspan (ket < M))»
apply (rule-tac Lim-in-closed-set|OF - - - lim])
by (auto intro!: eventually-finite-subsets-at-top-weakI)
qed

lemma space-as-set-ccspan-memberl: < € space-as-set (cespan X)» if « € X»



using that apply transfer
by (meson closure-subset complez-vector.span-superset subset-iff)

lemma closure-subset-remove-closure: <X C closure Y = closure X C closure Y
using closure-minimal by blast

lemma closure-cspan-closure: <closure (cspan (closure X)) = closure (cspan X))
for X :: <'a:complex-normed-vector set)
apply (rule antisym)
apply (meson closure-subset-remove-closure closure-is-csubspace closure-mono complez-vector.span-minimal

complez-vector.span-superset complez-vector.subspace-span)
by (simp add: closure-mono closure-subset complez-vector.span-mono)

lemma closure-Sup-closure: <closure (Sup (closure * X)) = closure (Sup X)»
by (auto simp: hull-def closure-hull)

lemma cspan-closure-cspan: <cspan (closure (cspan X)) = closure (espan X)»

for X :: <'a::complex-normed-vector set»

by (metis (full-types) closure-cspan-closure closure-subset complez-vector.span-span complex-vector.span-superset
subset-antisym)

lemma cblinfun-image-SUP: <A g (SUP z€X. I z) = (SUP z€X. A x5 I z)»
proof (rule antisym)
show <A xg (SUP z€X. I z) < (SUP z€X. A xs I x)»
proof (transfer, rule closure-subset-remove-closure)
fix A:<'b= "o and I :: </c = b setr and X
assume [simp]: <bounded-clinear A»
assume <(pred-fun top closed-csubspace I»
then have [simp]: «closed-csubspace (I x)» for z
by simp
have <A ‘ closure (espan (Jz€X. I z)) C closure (A ‘ cspan (|JzeX. I x))»
apply (rule closure-bounded-linear-image-subset)
by (simp add: bounded-clinear.bounded-linear)

also have «... = closure (cspan (A ‘ (UzeX. I z)))
by (simp add: bounded-clinear.clinear complex-vector.linear-span-image)
also have (... = closure (cspan ((JzeX. A ‘I z))
by (metis image-UN)
also have «... = closure (cspan (closure (Jz€X. A ‘T x)))
using closure-cspan-closure by blast
also have (... = closure (cspan (closure (|Jz€X. closure (A ‘I x))))

apply (subst closure-Sup-closure[symmetric))
by (simp add: image-image)
also have «... = closure (cspan (Jz€X. closure (A ‘1x)))
using closure-cspan-closure by blast
finally show <A ¢ closure (cspan (U (I © X))) C closure (cspan (|JzeX. closure (A ‘I x)))
by —
qed

show «((SUP z€X. A xg I ) < A xg (SUP z€X. I x)»
by (simp add: SUP-least SUP-upper cblinfun-image-mono)
qed

lemma cspan-Sup-cspan: <cspan (Sup (cspan ¢ X)) = cspan (Sup X)»
by (auto simp: hull-def complez-vector.span-def)



lemma ccspan-Sup: <cespan (| X) = Sup (cespan © X)»
proof (transfer fizing: X)
have <closure (cspan (U X)) = closure (cspan (| (cspan © X))
by (simp add: cspan-Sup-cspan)

also have «... = closure (cspan (closure (|J (cspan ¢ X))))»
using closure-cspan-closure by blast

also have «... = closure (cspan (closure (|J (closure ‘ cspan © X))))»
by (metis closure-Sup-closure)

also have «... = closure (cspan (| (closure ¢ cspan “ X)))»
by (meson closure-cspan-closure)

also have «... = closure (cspan (|J GeX. closure (cspan G)))»

by (metis image-image)
finally show <closure (cspan (|J X)) = closure (espan (|J GEX. closure (cspan G)))»
by —
qed

lemma ccspan-space-as-set][simp|: <ccspan (space-as-set S) = S»
apply transfer
by (metis closed-csubspace-def closure-closed complex-vector.span-eq-iff)

lemma cblinfun-image-Sup: <A xg Sup II = (SUP I€ll. A xg I))
using cblinfun-image-SUP[where X=II and [=id and A=A
by simp

lemma space-as-set-mono: I < J = space-as-set I < space-as-set J»
by (simp add: less-eg-ccsubspace.rep-eq)

lemma square-into-sum:
fixes X Y and f :: <- = real>
assumes (\z. fz > 0»
shows (> zeX. fz)? < card X x (3 z€X. (fz)?)
proof —
have (> zeX. fz)? = (Y zeX. fz x 1)
by simp
also have «... < (Y zeX. (fz)?) * (O zeX. 1?)
by (rule Cauchy-Schwarz-ineg-sum)
also have «... = (3 zeX. (f2)?) * (card X)»
by simp
also have (... = card X * (>, 2€X. (f2)*)»
by auto
finally show ?thesis
by —
qed

lemma bound-coeff-sum2:
fixes X Y and f :: </a = complex)
assumes [simp]: (finite Y
assumes XY: <X C Y
assumes suml: (Y. z€Y. (emod (fz))?) < 1>
assumes k: A\z. 2 € X = card {y. gz =gy ANy X} <k
shows <norm (3. z€X. fz *c ket (g x)) < sqrt k»
proof —
define eq where <eq = {(z,y). gz =gy Nz e X ANye X}p
have [simp]: <equiv X eq



by (auto simp: eq-def equiv-def refl-on-def sym-def trans-def)
have [simp]: «finite X»
using <finite Y» XY infinite-super by blast
then have [simp]: <finite (X // eq)
by (simp add: equiv-type finite-quotient)
have [simp]: <z € X // eq = finite x> for z
by (meson <equiv X eq> <finite X» equiv-def finite-equiv-class refl-on-def)
have card-c: «¢c € X//eq = card ¢ < k» for ¢
using k
by (auto simp: Image-def quotient-def eq-def)

define ¢’ where «¢g' ¢ = g (SOME z. z€¢)» for ¢ :: (‘a set
have g-g «c € X//eg = x € c= gz =g’ o> for z ¢
apply (simp add: g'-def quotient-def eq-def)
by (metis (mono-tags, lifting) mem-Collect-eq verit-sko-ezx)
have g’-inj: «c € X//eq = d € X//eq = ¢g' ¢ = ¢’ d = ¢ = d» (is <PROP %goal)) for ¢ d
proof —
have auz!: <Az za zb.
g (SOMExz. gab=ga ANz € X) =g (SOMEz. gza=gz ANz € X) =
za € X = 12be X = guza=gazh
by (metis (mono-tags, lifting) verit-sko-ex)
have auz2: <Az za zb.
g (SOME za. gz =gaa ANxa € X) =g (SOMEz. gasb=gz Nz € X) =
zreX =sbe X = gz =gab
by (metis (mono-tags, lifting) somel2)
show <PROP ?goal»
by (auto intro: aurl auz2 simp add: g'-def quotient-def eq-def image-iff)
qed

have SIGMA: «(SIGMA ©:X |/ eq. z) = (\z. (eq*{z},x)) * X>»
by (auto simp: quotient-def eq-def)

have «(norm (3. z€X. fx *c ket (g 2)))? = (norm (3. c€X//eq. S a€c. fx xc ket (g x)))>
apply (subst sum.Sigma)
apply auto[2]
apply (subst SIGMA)
apply (subst sum.reindex)
using inj-on-def by auto
also have (... = (norm (3. ceX//eq. Y. z€c. fz *c ket (g’ ¢)))*
by (simp add: g-g")
also have (... = (norm (3. ceX//eq. (3. x€c. fx) *xc ket (g’ ¢)))*
by (simp add: scaleC-sum-left)
also have «... = (3. ceX//eq. (norm (3 z€c. fz) *c ket (g’ ¢)))?)
apply (rule pythagorean-theorem-sum,)
by (auto dest: g'-inj)
also have «... = (3. ceX//eq. (cmod (> z€c. f1))?)
by force
also have «... < (3. ceX//eq. (3. z€c. emod (f x))?)>
by (simp add: power-mono sum-mono sum-norm-le)
also have «... < (3> ceX//eq. card ¢ * (3 z€c. (cmod (f x))?))>
apply (rule sum-mono)
apply (rule square-into-sum)
by simp
also have «... < (3. ceX//eq. k x (3 z€c. (emod (f z))?))
apply (rule sum-mono)
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apply (rule mult-right-mono)
by (simp-all add: card-c¢ sum-nonneg)
also have (... = k* (3. ceX//eq. (3. x€c. (cmod (f 1))?))>
by (rule sum-distrib-left[symmetric])
also have ... < k x (3. zeX. (emod (f ))?)>
apply (subst sum.Sigma)
apply auto[2]
apply (subst SIGMA)
apply (subst sum.reindex)
using inj-on-def by auto
also have (... < k* (3. z€Y. (cmod (f 2))?)
apply (rule mult-left-mono)
apply (rule sum-mono?2)
using XY by auto
also have (... < k»
using sumi
by (metis mult.right-neutral mult-left-mono of-nat-0-le-iff)
finally show ?thesis
using real-le-rsqrt by blast
qed

lemma norm-ortho-sum-bound:
fixes X
assumes bound: <\z. z€X = norm (¢ z) < b’
assumes b'geq0: <b’ > 0»
assumes ortho: <A\z y. 1€ X = yeX —> z#y = is-orthogonal (¥ z) (¢ y)»
assumes b'b: <sqrt (card X) = b’ < b
shows (norm (3 zeX. ¢ z) < b
proof (cases «finite X»)
case True
have <b > 0>
by (metis b'b b'geq0 mult-nonneg-nonneg of-nat-0-le-iff order-trans real-sqrt-ge-0-iff)
have ((norm (3. zeX. ¢ ))? = (3" a€X. (norm (¢ a))?)
apply (subst pythagorean-theorem-sum)
using assms True by auto
also have «... < (3" aeX. b?)
by (meson bound norm-ge-zero power-mono sum-mono)
also have (... < (sqrt (card X) x b")%
by (simp add: power-mult-distrib)
also have «... < b%
by (meson b'b b’geq0 mult-nonneg-nonneg of-nat-0-le-iff power-mono real-sqrt-ge-0-iff)
finally show ?thesis
apply (rule-tac power2-le-imp-le)
apply force
using <0 < by by force
next
case Fulse
then show ?thesis
using assms by auto
qed

lemma compatible-projectl: <compatible F G»

if <compatible F' (G;H)» and [register]: <compatible G H) for F G H
proof (rule compatiblel)
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show <register F»
using compatible-register! that(1) by blast

show «(register G»
using compatible-register! that(2) by blast

fix a b

from <compatible F (G;H)»

have <F a ocy, (G;H) (b ®, id-cblinfun) = (G;H) (b ®, id-cblinfun) ocy, F a
using swap-registers by blast

then show «(F a oc;, Gb= Gbocr F a
by (simp add: register-pair-apply)

qed

lemma compatible-project2: <compatible F' H»
if <compatible F (G;H)» and [register|: <compatible G H> for F G H
proof (rule compatiblel)
show <register F»
using compatible-register! that(1) by blast
show «<register H»
using compatible-register2 that(2) by blast
fix a b
from <compatible F (G;H)»
have «F a ocr (G;H) (id-cblinfun ®, b) = (G;H) (id-cblinfun ®, b) ocr F a»
using swap-registers by blast
then show «F a ocrp, Hb= Hbocp F a»
by (simp add: register-pair-apply)
qed

lemma proj-ket-z-y: <proj (ket x) v (ket y) = 0> if <z #
by (metis kernel-Proj kernel-memberD mem-ortho-ccspanl orthogonal-ket singletonD that)

lemma proj-ket-a-y-ofbool: <proj (ket z) v (ket y) = of-bool (x=y) xc ket v
by (simp add: Proj-fizes-image ccspan-superset’ proj-ket-z-y)

lemma proj-z-z[simp|: <proj x *y = x>
by (meson Proj-fizes-image ccspan-superset insert-subset)

lemma in-ortho-ccspan: <y € space-as-set (— ccspan X)» if «VzeX. is-orthogonal y x>
using that apply transfer
by (metis orthogonal-complementl orthogonal-complement-of-closure orthogonal-complement-of-cspan)

lemma swap-sandwich-swap-ell2: swap = sandwich swap-ell2
apply (rule tensor-extensionality)
apply (auto simp: sandwich-apply unitary-sandwich-register)[2]
apply (rule tensor-ell2-extensionality)
by simp

lemma is-Proj-sandwich: <is-Proj (sandwich U P)» if <isometry U» and <is-Proj P»
for P :: <'a::chilbert-space =cr 'a» and U :: <'a =¢ 'b::chilbert-spaces
using that
by (simp add: is-Proj-algebraic sandwich-apply
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lift-cblinfun-comp| OF isometryD] lift-cblinfun-comp|OF is-Proj-idempotent)
flip: cblinfun-compose-assoc)

lemma is-Proj-swap[simp]: <is-Proj (swap P)> if <is-Proj P»
using that
by (simp add: swap-sandwich-swap-ell2 is-Proj-sandwich)

lemma iso-register-complement-pair: <iso-register (complement X; X)» if <register X»
using complement-is-complement complements-def complements-sym that by blast

lemma swap-Snd: <swap (Snd z) = Fst x»
by (simp add: Fst-def Snd-def)

lemma sandwich-butterfly: <sandwich a (butterfly g h) = butterfly (a g) (a h)»
by (simp add: butterfly-comp-cblinfun cblinfun-comp-butterfly sandwich-apply)

lemma register0:
assumes <register @
shows «Qa=0 «— a= 0
by (metis assms norm-eq-zero register-norm)

lemma le-back-subst:
assumes <a < ¢
assumes <a = b
shows b < ¢
using assms by simp

lemma le-back-subst-le:
fixes a b ¢ :: - :: ordery
assumes <a < ¢
assumes b < a»
shows b < ¢
using assms by order

lemma arg-cong4: <fabcd=fa'" b ¢’ d" if <a =a’ and <b = by and «¢c = ¢’ and «d = d"

using that by simp

1.2 Controlled operations

definition controlled-op :: «('a = ('b ell2 =c 'c ell2)) = (('ax'd) ell2 =c1 ('ax’c) ell2)) where
<controlled-op A = infsum-in cstrong-operator-topology (Az. selfbutter (ket r) ®, A x) UNIV)

lemma trunc-ell2-prod-tensor: <trunc-ell2 (AxB) (g ®s h) = trunc-ell2 A g Q4 trunc-ell2 B h»

apply transfer’
by auto

lemma trunc-ell2-ket: <trunc-ell2 S (ket z) = of-bool (z€S) x¢ ket )
apply transfer’
by auto
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lemma summable-on-in-0[iff]: <summable-on-in T (Az. 0) As if <0 € topspace T»
using has-sum-in-0[of T A <A-. 03] summable-on-in-def that by blast

lemma sum-of-bool-scaleC: «(>_ z€S. of-bool (z=a) *¢ fx) = (if a€S A finite S then f a else 0)»
for f :: <- = -::complex-vector)
apply (cases «finite S»)
apply (subst sum-single[where i=al)
by auto

lemma
fixes A :: 'z = (‘a ell2 =c 'b eli2)

assumes (A\z. norm (A z) < B>
shows controlled-op-has-sum-auz: <has-sum-in cstrong-operator-topology (Az. selfbutter (ket ) ®, A
z) UNIV (controlled-op A)»
and controlled-op-norm-leq: <norm (controlled-op A) < B»
proof —
have [iff]: <B > 0»
using assms|of undefined] norm-ge-zero[of <A undefined>]
by argo

define A’ where <A’ z = selfbutter (ket z) ®, A x» for z
have A’summ: «(Az. A’ & xy h) summable-on UNIV» for h
proof —
wlog [iff]: «<B # 0»
using negation assms by (simp add: A’-def)
have <3 P. eventually P (finite-subsets-at-top UNIV) N (VF G. PF NP G — dist () z€F. A’z
xy h) O zeG. Az xy h) < e)y if <e > 0» for e
proof —
have (((AS. trunc-ell2 S h) —— h) (finite-subsets-at-top UNIV)»
by (rule trunc-ell2-lim-at-UNIV')
from tendsto-iff[THEN iffD1, OF this, rule-format, of <e/B)]
have Vg S in finite-subsets-at-top UNIV. dist (trunc-ell2 S h) h < e/B>
using <B # 0» <B > 0> that by force
then obtain S where [iff]: «finite S» and S-prop: <norm (trunc-ell2 S h — h) < e/B> for G
apply atomize-elim
by (force simp add: eventually-finite-subsets-at-top dist-norm)
define P :: ¢z set = bool) where <P F «—— finite F A F D fst *S) for F
have evP: <eventually P (finite-subsets-at-top UNIV)»
by (auto introl: exI[of - <fst‘S»] «finite S» simp add: eventually-finite-subsets-at-top P-def|abs-def])
have «dist (> z€F. A"z xy h) O 2z€G. A"z xy h) < e if <P F» and <P G) for F G
proof —
have [iff]: «finite F» «finite G»
using that by (simp-all add: P-def)
define FG where <FG = sym-diff F G»
then have [iff]: «finite FG»
by simp
define h’' where <h' z = (tensor-eli2-left (ket x)x) hy for z
have A'h: <A’ z xy h = ket z ®5 (A z %y h' z)) for x
unfolding h’-def
apply (rule fun-conglof - - h])
apply (rule bounded-clinear-equal-ket)
apply (auto introl: bounded-linear-intros)[2]
by (auto simp add: A’-def tensor-op-ket tensor-op-ell2 cinner-ket simp flip: tensor-ell2-ket)
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have ((dist (>, z€F. A"z %y h) (O 2€G. A’ v %y h))? = (norm (O x€F. A’z v h) — (3 2€G.
A’z xy h)))%
by (simp add: dist-norm)
also have «... = (norm ((}_ z€FG. (if z€F then 1 else —1) xc (A’ z xy h))))»
apply (rule arg-conglwhere f=\z. (norm z)?))
apply (rewrite at F at <) z€X. - to «(F—G)U(FNG)» DEADID.rel-mono-strong, blast)
apply (rewrite at G at <) z€X. - to «(G—F)U(FNG)» DEADID.rel-mono-strong, blast)
apply (rewrite at FG at <> z€X. -» FG-def)
apply (subst sum-Un, simp, simp
apply (subst sum-Un, simp, simp
apply (subst sum-Un, simp, simp
apply (rewrite at <«(>_zeF — G.
A"z xy h)» sum.cong, simp, simp)
apply (rewrite at «(>_x€G — F. (if x € F then 1 else — 1) x¢ (A’ z xy h))» to <> z€eG—F.
— (A" z xy h))» sum.cong, simp, simp)
apply (rewrite at <«(F — G) N (G — F)» to «{}» DEADID.rel-mono-strong, blast)
apply (rewrite at «(F — G) N (F N G)» to «{}» DEADID.rel-mono-strong, blast)
apply (rewrite at <«(G — F) N (F N G)» to «{}» DEADID.rel-mono-strong, blast)
by (simp add: sum-negf)
also have «... = (3 z€FG. (norm ((if x € F then 1 else — 1) xc (A’ z xv h)))?)
apply (rule pythagorean-theorem-sum,)
apply (simp add: A’-def butterfly-adjoint tensor-op-adjoint comp-tensor-op cinner-ket
flip: cinner-adj-right cblinfun-apply-cblinfun-compose)
by (simp add: FG-def)
also have (... = (3. z€FG. (norm (A’ z xv h))?)
apply (rule sum.cong, simp)
by (simp add: norm-scaleC)
also have «... = (3 z€FG. (norm (A z xy h' 2))?)
by (simp add: A’h norm-tensor-ell2)
also have (... < (3. z€FG. (B * norm (h' z))?)
using assms
by (auto intro!: sum-mono power-mono norm-cblinfun| THEN order-trans| mult-right-mono)
also have (... = B? x (3, 2€FG. (norm (h' z))?)
by (simp add: sum-distrib-left power-mult-distrib)
also have (... = B? x (Y, 2€FG. (norm (ket z @, h' 1))?)»
by (simp add: norm-tensor-ell2 norm-ket)
also have (... = B2 x (norm (3 2€FG. ket z ®, h' ))*
apply (subst pythagorean-theorem-sum)
by (simp-all add: FG-def)
also have (... = B? x (norm (trunc-ell2 (FGx UNIV) h))?
apply (rule arg-congl[where f=\z. - * (norm z)?)])
apply (rule cinner-ket-eql)
apply (rename-tac ab)
proof —
fix ab :: <z X ‘o
obtain a b where ab: <ab = (a,b)
by (auto simp: prod-eq-iff)
have ket ab -c (O 2€FG. ket x ®5 h' ) = (D z€FG. ket ab -¢ (ket x ®5 h' x))»
using cinner-sum-right by blast
also have ¢... = of-bool (a€FG) * (ket b -¢ h' a)»
apply (subst sum-single[where i=a))
by (auto simp add: ab simp flip: tensor-ell2-ket)

—~— —

if x € Fthen 1 else — 1) x¢ (A" z %y h))» to «(>_zeF—G.

also have «... = of-bool (a€FG) % Rep-ell2 h (a, b)»
by (simp add: h'-def cinner-adj-right tensor-ell2-ket cinner-ket-left)
also have «... = ket ab -¢ trunc-ell2 (FG x UNIV) h»
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by (simp add: ab cinner-ket-left trunc-ell2.rep-eq)
finally show <ket ab -¢ (D x€FG. ket x @5 h' ) = ket ab -¢ trunc-ell2 (FG x UNIV) h»
by —
qged
also have «... < B2 x (norm (trunc-ell2 (—S) h))?
apply (rule mult-left-mono[rotated], simp)
apply (rule power-mono[rotated], simp)
apply (rule trunc-ell2-norm-mono)
using <P F <P G» by (force simp: P-def FG-def)

also have (... = B2 x (norm (trunc-ell2 S h — h))%
by (smt (verit, best) norm-id-minus-trunc-ell2 norm-minus-commute trunc-ell2-uminus)
also have (... < B% x (¢/B)%

apply (rule mult-strict-left-mono[rotated), simp)
apply (rule power-strict-mono[rotated], simp, simp)
by (rule S-prop)
also have (... = €%
by (simp add: power-divide)
finally show ?thesis
by (smt (verit, del-insts) <0 < e» power-mono)
qed
with evP show ?Zthesis
by blast
qed
then show ?thesis
unfolding summable-on-def has-sum-def filterlim-def
apply (rule-tac convergent-filter-iff[ THEN iffD1])
apply (subst convergent-filter-iff-cauchy)
by (rule cauchy-filter-metric-filtermapl)
qed
define C where <C h = (Y x. A"z xy h)» for h
then have C-hassum: «(Az. A" © xy h) has-sum (C h)) UNIV> for h
using A’summ by auto

have norm-C: <norm (C ¢g) < B x norm ¢ for g
proof —
define ¢’ where (g’ © = (tensor-ell2-left (ket x)*) ¢» for x
have A'g: (A" z xy g = ket z ®5 (A z xy ¢’ z)) for z
unfolding g’-def
apply (rule fun-cong|of - - g])
apply (rule bounded-clinear-equal-ket)
apply (simp add: cblinfun.bounded-clinear-right)
apply (metis bounded-clinear-compose bounded-clinear-tensor-ell21 cblinfun.bounded-clinear-right)

by (auto simp add: A’-def tensor-op-ket tensor-op-ell2 cinner-ket simp flip: tensor-ell2-ket)
have norm-trunc: <norm (trunc-ell2 F (C g)) < B * norm ¢ if «finite F» for F
proof —
define S where S = fst ‘ F)
then have [iff]: «finite S»
using that by blast
have <(norm (trunc-ell2 F (C g)))? < (norm (trunc-ell2 (S x UNIV) (C g)))*
apply (rule power-mono[rotated], simp)
apply (rule trunc-ell2-norm-mono)
by (force simp: S-def)
also have (... = (norm (3. z€S. ket z @5 (A z xy g’ 2)))%
proof (rule arg-conglwhere f=\z. (norm z)?))
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have <trunc-ell2 (SxUNIV) (C g) = (3 wo. trunc-ell2 (SXUNIV) (A" z vy g))»
apply (simp add: C-def)
apply (rule infsum-bounded-linear[symmetric])
apply (intro bounded-clinear.bounded-linear bounded-clinear-trunc-ell2)
using A’summ by —
also have «... = (D] cz€S. ket 2 @, (A z xy ¢’ )
apply (rule infsum-cong-neutral)
by (auto simp add: A’g trunc-ell2-prod-tensor trunc-ell2-ket)
also have «... = (D z€S. ket x @5 (A z *xy g’ z))»
by (auto intro!: infsum-finite simp: that)
finally show «trunc-ell2 (S x UNIV) (Cg) = (O z€S. ket x ®s A x xy g’ z)»

by —
qed
also have (... = (3. z€S. (norm (ket x @5 A z xy g’ ))*)
apply (subst pythagorean-theorem-sum)
by auto
also have «... = (3 z€S. (norm (A z *y g’ z))*)

by (simp add: norm-tensor-ell2)
also have «... < (3 z€S. (B % norm (g9’ z))*)»
using assms
by (auto intro!: sum-mono power-mono norm-cblinfun| THEN order-trans] mult-right-mono)
also have «... = (3. z€S. (norm (g’ z))?) x B%
by (simp add: power-mult-distrib mult.commute sum-distrib-left)
also have «... = (3. z€S. (norm (ket x ®5 g’ 7))?) * B
by (simp add: norm-tensor-ell2)
also have (... = (norm (3. z€S. ket z @4 g’ 7))* * B
apply (subst pythagorean-theorem-sum|[symmetric|)
by (auto simp add: g'-def)
also have «... < (norm g)? * B%
proof —
have (D" z€S. ket x ®s g’ ) = trunc-ell2 (SxUNIV) g»
unfolding ¢'-def
apply (rule fun-conglwhere z=g|)
apply (rule bounded-clinear-equal-ket)
apply (auto introl: bounded-linear-intros)[2]
by (auto introl: simp: cinner-ket trunc-ell2-prod-tensor trunc-ell2-ket
tensor-ell2-scaleC2 sum-of-bool-scaleC
simp flip: tensor-ell2-ket
split!: if-split-asm)
then show ?thesis
by (auto intro!: trunc-ell2-reduces-norm mult-right-mono power-mono sum-nonneg norm-ge-zero
zero-le-power?2)
qed
also have (... < (norm g x B)%
by (simp add: power-mult-distrib)
finally show ?thesis
by (metis Extra-Ordered-Fields.sign-simps(5) <0 < B> norm-ge-zero power2-le-imp-le zero-compare-simps(4))
qed
have «((AF. trunc-eli2 F' (C g)) —— C g) (finite-subsets-at-top UNIV)»
by (rule trunc-ell2-lim-at-UNIV)
then have <((AF. norm (trunc-ell2 F (C g))) —— norm (C' g)) (finite-subsets-at-top UNIV)»
by (rule tendsto-norm)
then show <norm (C g) < B % norm g»
apply (rule tendsto-upperbound)
using norm-trunc by (auto introl: eventually-finite-subsets-at-top-weakl simp: )
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qed

have <bounded-clinear C»
proof (intro bounded-clinearl alll)
fix g b <("z x 'a) eli2y and c :: complex
from C-hassum[of g] C-hassum|[of h]
have «((Az. A’z *y g + A’ = xy h) has-sum C g + C h) UNIV)»
by (simp add: has-sum-add)
with C-hassum[of <g + h]
show «C (¢9+ h)=Cg+ Ch
by (metis (no-types, lifting) cblinfun.add-right has-sum-cong infsuml)
from C-hassum[of g]
have «(Az. ¢ x¢ (A’ z xy g)) has-sum ¢ x¢ C g) UNIV
by (metis cblinfun-scaleC-right.rep-eq has-sum-cblinfun-apply)
with C-hassum[of <c x¢ g¢]
show «C (¢ #¢ g) = ¢ x¢ C ¢
by (metis (no-types, lifting) cblinfun.scaleC-right has-sum-cong infsuml)
from norm-C show <norm (C g) < norm g *x B)
by (simp add: sign-simps(5))
ged
define D where <D = CBlinfun C»
with <bounded-clinear C» have DC: <D xy f = C f» for f
by (simp add: bounded-clinear-CBlinfun-apply)
have D-hassum: (has-sum-in cstrong-operator-topology A’ UNIV D5
using C-hassum by (simp add: has-sum-in-cstrong-operator-topology DC')
then show <has-sum-in cstrong-operator-topology A’ UNIV (controlled-op A)»
using controlled-op-def A'-def
by (metis (no-types, lifting) has-sum-in-infsum-in hausdorff-sot infsum-in-cong summable-on-in-def)
with D-hassum have DA: <D = controlled-op A»
apply (rule-tac has-sum-in-unique)
by auto
show «norm (controlled-op A) < B»
apply (rule norm-cblinfun-bound, simp)
using norm-C by (simp add: DC flip: DA)
qed

lemma controlled-op-has-sum:
fixes A :: 'z = (‘a ell2 =cp 'b eli2)
assumes <bdd-above (range (Az. norm (A z)))
shows <has-sum-in cstrong-operator-topology (Az. selfbutter (ket ©) ®, A x) UNIV (controlled-op A)»
proof —
from assms obtain B where (norm (A z) < B for x
by (auto introl: simp: bdd-above-def)
then show ?thesis
by (rule controlled-op-has-sum-auzx)
qed

hide-fact controlled-op-has-sum-auz

lemma controlled-op-summable:
fixes A :: <z = (‘a ell2 =¢c1 b ell2)
assumes <bdd-above (range (Az. norm (A )))
shows (summable-on-in cstrong-operator-topology (\z. selfputter (ket x) ®, A x) UNIV)»
using controlled-op-has-sum|[OF assms] summable-on-in-def by blast
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lemma infsum-sot-cblinfun-apply:
assumes (summable-on-in cstrong-operator-topology f UNIV»
shows <infsum-in cstrong-operator-topology f UNIV sy ¢ = (3. sox. fo *y )
by (metis assms has-sum-in-cstrong-operator-topology has-sum-in-infsum-in hausdor(f-sot infsuml)

lemma controlled-op-ket[simp):
assumes <bdd-above (range (Az. norm (A )))
shows <controlled-op A xy (ket x Q4 ) = ket  ®s (A z xy Y)»
proof —
have (controlled-op A xy (ket © @5 V) = (O woy. (selfbutter (ket y) ®, A y) *v (ket z ®; )
by (simp add: controlled-op-def assms infsum-sot-cblinfun-apply controlled-op-summable)
also have «... = ket z ®; (A = *y V)
apply (subst infsum-single[where i=x])
by (simp-all add: tensor-op-ell2 cinner-ket)
finally show ?thesis
by —
qed

lemma controlled-op-ket'[simp]:
assumes <bdd-above (range (Az. norm (A z)))
shows <controlled-op A xy (ket (z, y)) = ket z ®4 (A x *y ket y)»
by (metis assms controlled-op-ket tensor-ell2-ket)

lemma controlled-op-compose|simp]:
assumes [simp]: (bdd-above (range (Axz. norm (A xz)))»
assumes [simp]: <bdd-above (range (Az. norm (B x)))
shows <controlled-op A ocy, controlled-op B = controlled-op (Ax. A x ocr, B z)»
proof —
from assms(1) obtain a where <norm (A z) < a» for x
by (auto simp: bdd-above-def)
moreover from assms(2) obtain b where <norm (B z) < b for z
by (auto simp: bdd-above-def)
ultimately have [simp]: <bdd-above (range (Az. norm (A x ooy B x)))
apply (rule-tac bdd-abovel|of - <axbs])
by (smt (verit, ccfo-SIG) Multiseries- Expansion-Bounds.mult-monos(1) imageE norm-cblinfun-compose
noTrm-ge-zero)
show ?thesis
apply (rule equal-ket)
apply (case-tac )
by simp
qed

lemma controlled-op-adj[simp):
assumes [simp|: <bdd-above (range (Az. norm (A z)))»
shows <(controlled-op A)x = controlled-op (Az. (A z)*))
apply (rule cinner-ket-adjointlI[symmetric])
by (auto introl: simp: controlled-op-ket cinner-adj-left
simp flip: tensor-ell2-ket)

lemma controlled-op-id[simp]: <controlled-op (\-. id-cblinfun) = id-cblinfun)
apply (rule equal-ket)
apply (case-tac z)
by (simp add: tensor-ell2-ket)
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lemma controlled-op-unitary[simp): <unitary (controlled-op U)» if [simp]: < A\z. unitary (U x)»
proof —
have [iff]: <bdd-above (range (Az. norm (U x)))»
by (simp add: norm-isometry)
show ?thesis
unfolding unitary-def by auto
qed

lemma controlled-op-is-Proj[simp|: <is-Proj (controlled-op P)) if [simp]: <\z. is-Proj (P z)»
proof —
have [iff]: <bdd-above (range (Az. norm (P z)))»
using norm-is-Proj| OF that]
by (auto intro!: bdd-abovel simp: )
show ?thesis
using that unfolding is-Proj-algebraic by auto
qed

lemma controlled-op-comp-butter:
assumes <bdd-above (range (Az. norm (A )))
shows <controlled-op A ocy, Fst (selfbutter (ket z)) = Snd (A z) ooy Fst (selfbutter (ket z))»
using assms by (auto introl: equal-ket simp: Fst-def tensor-op-ket cinner-ket)

lemma norm-ell2-finite: <norm 1 = sqrt (3. i€ UNIV. (cmod (Rep-ell2 v i))?)» for ¢ :: <-::finite ell2>
apply transfer
by (simp add: ell2-norm-finite)

lemma controlled-op-ket-swap[simp):
assumes <bdd-above (range (Az. norm (U x)))»
shows <swap (controlled-op U) xy (A ®g ket ) = (U z *y A) ®; ket
by (simp add: assms swap-sandwich-swap-ell2 sandwich-apply)

lemma controlled-op-const: <controlled-op (A-. P) = Snd P>
by (auto intro!: equal-ket simp: Snd-def tensor-op-ell2 simp flip: tensor-ell2-ket)

1.3 Superpositions

lift-definition uniform-superpos :: 'a set = ‘a ell2y is <A\A x. complez-of-real (of-bool (x € A) / sqrt
(of-nat (card A)))»
proof (rename-tac A)
fix A :: (‘a sety
show <has-ell2-norm (Az. complex-of-real (of-bool (x € A) / sqrt (real (card A))))»
proof (cases <finite A»)
case True
show ?thesis
unfolding has-ell2-norm-def
apply (rule finite-nonzero-values-imp-summable-on)
using True by auto
next
case Fulse
then show ?thesis
by simp
qed
qed
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lemma norm-uniform-superpos: <norm (uniform-superpos A) = 1» if (finite A> and <A # {}
proof (transfer’ fizing: A)
have (eli2-norm (Az. complex-of-real (of-bool (z € A) / sqrt (real (card A))))
= sqrt (3 w0 (cmod (complez-of-real (of-bool (z € A) / sqrt (real (card A)))))?)»
by (simp add: ell2-norm-def)
also have «... = sqrt (3 oo2€A. (cmod (complez-of-real (1 / sqrt (real (card A)))))?)
apply (rule arg-cong[where f=sqrt])
apply (rule infsum-cong-neutral)

by auto
also have (... = sqrt (3. z€A. (cmod (complex-of-real (1 / sqrt (real (card A)))))?)»
by simp
also have «... = sqrt (real (card A) * (ecmod (1 | complex-of-real (sqrt (real (card A)))))?)
by (simp add: that)
also have (... = sqrt (real (card A) * ((1 / sqrt (real (card A)))?))»
by (simp add: cmod-def)
also have «... = 1>

using that
by (simp add: power-one-over)
finally show <eli2-norm (Az. complez-of-real (of-bool (z € A) / sqrt (real (card A)))) = 1>
by —
qed

lemma uniform-superpos-infinite: <uniform-superpos A = 0» if <infinite A»
apply (transfer’ fizing: A)
using that
by simp

lemma uniform-superpos-empty: <uniform-superpos A = 0» if <A = {}
apply (transfer’ fizing: A)
using that
by simp

Alternative definition.

lemma uniform-superpos-def2: <uniform-superpos A = (3. f€A. ket f /o csqrt (card A))»
proof —
wlog [simp]: <finite Ay <A # {}
using negation uniform-superpos-empty uniform-superpos-infinite by force
show ?thesis
proof (rule cinner-ket-eql)
fix f
show <ket f -¢ (uniform-superpos A) = ket f -c (3 f€A. ket f /¢ csqrt (card A))»
proof (cases <f € A»)
case True
then have <ket f - (uniform-superpos A) = 1 / csqrt (card A)»
apply (subst cinner-ket-left)
apply (transfer fizing: f)
by auto
moreover have <ket f -c (D f€A. ket f /o csqrt (card A)) = 1 / csqrt (card A)»
apply (subst cinner-sum-right)
apply (subst sum-single[where i=f])
using True by (auto simp: inverse-eq-divide)
finally show ?thesis
by simp
next
case Fulse

21



then have <ket f - (uniform-superpos A) = 0»
apply (subst cinner-ket-left)
apply (transfer fiving: f)
by auto

moreover have <ket f -« (3 f€A. ket f /o csqrt (card A)) = 0>
apply (subst cinner-sum-right)
apply (rule sum.neutral)
using Fulse by auto

finally show ?thesis
by simp

qed
qed
qed

1.4 Lifting ell2 to option type

lift-definition lift-ell2’ :: <'a ell2 = 'a option ell2> is <\p z. case x of Some &' = ¢ z' | None = 0»
proof —
fix ¢ :: <'a = complex>
assume <has-ell2-norm >
then have «(\z. norm ((¢ 1)?)) summable-on UNIV»
by (simp add: has-ell2-norm-def)
then have «(\z. case = of Some z' = norm ((¢» 2")2) | None = 0) o Some summable-on UNIV >
by (metis comp-eq-dest-lhs option.simps(5) summable-on-cong)
then have «(\z. case z of Some ' = norm ((¢» z")?) | None = 0) summable-on Some * UNIV
by (meson inj-Some summable-on-reindex)
then have «(\z. case z of Some z’ = norm ((v» z')?) | None = 0) summable-on UNIV
apply (rule summable-on-cong-neutral[ THEN iffD1, rotated —1])
by (auto simp add: notin-range-Some)
then show <has-ell2-norm (case-option 0 )
apply (simp add: has-ell2-norm-def)
by (metis (mono-tags, lifting) norm-zero option.case-eq-if summable-on-cong zero-power2)
qed

lemma clinear-lift-ell2’: <clinear lift-ell2’s
apply (rule clinearl; transfer)
by (auto intro!: ext simp add: option.case-eq-if)

lemma lift-ell2’-norm[simp]: <norm (lift-ell2’ ) = norm >
proof transfer
fix ¢ :: <'a = complex
have «(ell2-norm )? = infsum (Az. (norm (v x))?) UNIV)
apply (simp add: ell2-norm-def)
by (meson infsum-nonneg zero-le-power2)

also have «... = infsum ((Az. case z of Some z' = (norm (¢ z))? | None = 0) o Some) UNIV>
apply (rule infsum-cong) by auto

also have «... = infsum (\z. case z of Some z’ = (norm (¥ z'))? | None = 0) (Some ¢ UNIV))
by (simp add: infsum-reindex)

also have «... = infsum (\z. case z of Some z’ = (norm (¢ z'))?> | None = 0) UNIV)»

apply (rule infsum-cong-neutral)
by (auto simp add: notin-range-Some)
also have «... = (ell2-norm (case-option 0 1))%
apply (simp add: ell2-norm-def)
by (smt (verit, ccfv-SIG) infsum-nonneg infsum-cong norm-zero option.case-eq-if real-sqrt-pow2-iff
zero-le-power2 zero-power?2)
finally show <elli2-norm (case-option 0 1) = ell2-norm
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by (simp add: ell2-norm-geq0)
qed

lemma bounded-clinear-lift-ell2'[bounded-clinear, simp]: <bounded-clinear lift-ell2"s
by (metis bounded-clinear.intro bounded-clinear-azioms.intro clinear-lift-ell2’ lift-ell2'-norm mult. commute
mult-1 order.refl)

lift-definition lift-ell2 :: <'a ell2 =c1 'a option ell2) is lift-ell2’
by simp

definition lift-op :: <('a ell2 =cp 'b ell2) = (‘a option ell2 =¢1 'b option ell2)y where
dift-op A = (lift-ell2 oo, A ocy lift-eli2x) + butterfly (ket None) (ket None))

lemma lift-ell2-ket[simp]: <lift-ell2 =y ket x = ket (Some x)»
unfolding lift-ell2.rep-eq apply transfer
by (auto introl: ext simp: of-bool-def split!: option.split if-split-asm)

lemma isometry-lift-ell2[simp]: <isometry lift-ell2>
apply (rule norm-preserving-isometry)
by (simp add: lift-ell2.rep-eq)

lemma lift-op-adj: «(lift-op A)x = lift-op (Ax)»
unfolding lift-op-def
apply (simp add: adj-plus)
by (simp add: cblinfun-assoc-left(1))

lemma bra-None-lift-ell2: <bra None ocr, lift-ell2 = 0>
apply (rule cblinfun-eql)
apply (simp add: lift-ell2.rep-eq)
apply transfer
by (simp add: infsum-0)

lemma lift-op-mult: <lift-op A ocy, lift-op B = lift-op (A ocr, B)»
proof —
have «<lift-op A ocy, lift-op B =
(lift-ell2 oo, A ocr (lift-ell2x ocyp lift-ell2) ocr B ocr lift-ell2x)
+ (lift-ell2 ocr, A ocr (bra None ocy, lift-ell2)x ocr bra None)
+ (vector-to-cblinfun (ket None) ocy (bra None ocy lift-eli2) ocr B ocr lift-ell2x)
+ butterfly (ket None) (ket None)»
unfolding lift-op-def
apply (simp add: adj-plus cblinfun-compose-add-right cblinfun-compose-add-left del: isometryD)
apply (simp add: butterfly-def cblinfun-compose-assoc del: isometryD)
by (metis butterfly-def cblinfun-comp-butterfly)

also have «... = (lift-ell2 ocr (A ocr B) ocyr lift-ell2x) + butterfly (ket None) (ket None)»
by (simp add: bra-None-lift-ell2 cblinfun-compose-assoc)
also have «... = lift-op (A ocr B)»

by (simp add: lift-op-def)
finally show ?thesis
by —
qed

lemma lift-ell2-adj-None[simp]: <lift-ell2x *y ket None = 0»
by (simp add: cinner-adj-right cinner-ket-eql lift-ell2-ket)

lemma lift-ell2-adj-Some[simp)|: «lift-ell2* =y ket (Some x) = ket x>
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by (simp add: cinner-adj-right cinner-ket cinner-ket-eql lift-ell2-ket)

lemma lift-op-id[simp): <lift-op id-cblinfun = id-cblinfun>
apply (rule equal-ket, case-tac x)
by (auto simp: lift-op-def cblinfun.add-left cblinfun-compose-add-right lift-ell2-adj-None lift-ell2-ket)

lemma isometry-lift-op[simpl: <isometry (lift-op A)» if <isometry A»
by (simp add: isometry-def lift-op-mult lift-op-adj isometryD][OF that))

lemma unitary-lift-op[simp]: <unitary (lift-op A)s if <unitary A>
by (metis isometry-lift-op lift-op-adj that unitary-twosided-isometry)

lemma lift-op-None[simp]: <lift-op A *y ket None = ket None»
unfolding lift-op-def by (auto simp: cblinfun.add-left)

lemma lift-op-Some[simp]: <lift-op A xy ket (Some x) = lift-ell2 xy A *y ket x>
unfolding lift-op-def by (auto simp: cblinfun.add-left)

declare register-tensor-is-register(simp)

lemma sum-sqrt: <> i<n. sqrt i) < 2/3 % (sqrt n) 3> for n :: nat
proof (induction n)
case (
show Zcase
by simp
next
case (Suc n)
have «(>_i<Suc n. sqrt i) < 2/3 * sqrt (real n) ~ 8 + sqrt m»
using Suc
by simp
also have «... < 2/3 % sqrt (Suc n) ~ 3»
proof —
define z :: real where <z = n»
define f where «f z = 2/3 x (sqrt z) 73> for z
have [’ «(f has-real-derivative sqrt z) (at z)» if <z > 0» for z
apply (rule ssubstof <sqrt z», rotated))
unfolding f-def
apply (rule that DERIV-real-sqrt derivative-eg-intros refl)+
using that
apply simp
by (smt (verit, del-insts) Extra-Ordered-Fields.sign-simps(5) nonzero-eq-divide-eq sqri-divide-self-eq)
have cont: <continuous-on {z..z+1} f»
unfolding f-def
by (intro continuous-intros)
have «z > 0>
using z-def by auto
obtain [ z where <z < 2> <z < z + 1» and f'l: «(f has-real-derivative l) (at z)» and fdelta: <f (z +
H—fz=(x+1—-2)xDb
apply atomize-elim
apply (subst ex-comm)
apply (rule MVT)
apply simp
apply (rule cont)
using f’
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by (smt (verit, best) <0 < x> real-differentiable-def)
then have <z > 0»
using <0 < x» by linarith
from f[OF this] f'l have [simp]: <] = sqrt 2>
using DERIV-unique by blast
from fdelta
have «f (z + 1) — fz > sqrt »
using (z < 2> by auto
then show ?thesis
unfolding z-def f-def
by (smt (verit, best) Num.of-nat-simps(3))
qed
finally show ?case
by —
qed

lemma register-inj”:
assumes (register Q»
shows «(Qa=Qb+«— a=10
using register-inj[OF assms] by blast

lemma norm-cblinfun-apply-leq11:
assumes norm U < 1)
assumes norm Y < 1)
shows <norm (U xy ¢) < I»
by (smt (verit, best) assms(1,2) mult-left-le-one-le norm-cblinfun norm-ge-zero)

lemma times-sqrin-div-n[simp]:
assumes n > 0
shows <a x sqgrt n / n = a / sqrt n»
by (metis assms divide-divide-eq-right real-div-sqrt)

lemma Proj-tensor-Proj: <Proj I ®, Proj J = Proj (I ®g J)»
by (simp add: Proj-on-own-range is-Proj-tensor-op
tensor-ccsubspace-via-Proj)

lemma extend-mult-rule: <a x b = ¢ = a x (bx d) = ¢ * d for a b ¢ d :: <-::semigroup-mult)

by (metis Groups.mult-ac(1))

end

2  Function-At — Function values as individual registers

theory Function-At
imports Registers. Quantum-Fxtra Misc-Compressed-Oracle
begin

unbundle no m-inv-syntaz
typedef (‘a,’b) punctured-function = <extensional (—{undefined}) :: (‘"a="b) set»
by auto

setup-lifting type-definition-punctured-function
instance punctured-function :: (finite, finite) finite
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apply standard apply (rule finite-imageD|where f=Rep-punctured-function))
by (auto simp add: Rep-punctured-function-inject inj-on-def)

lift-definition fiz-punctured-function :: <'a = ('b x ('a,’d) punctured-function) = (‘a="b) is
Az (y, f). (Fun.swap x undefined f) (z := y)».

lift-definition puncture-function :: <'a = (‘a='b) = 'b x ('a,’b) punctured-function) is
Az f. (f z, (Fun.swap x undefined f) (undefined := undefined))»
by (simp add: Compl-eq-Diff-UNIV)

lemma puncture-function-recombine:
«(y, snd (puncture-function x f)) = puncture-function z (f(z:=y))»
apply transfer
by (auto intro!: ext simp: Transposition.transpose-def)

lemma snd-puncture-function-upd: <snd (puncture-function z (f(z:=y))) = snd (puncture-function x f)»
apply transfer
by (auto intro!: ext simp: Transposition.transpose-def)

lemma puncture-function-split: <puncture-function x f = (f x, snd (puncture-function z f))»
using puncture-function-recombine[where z=z and f=f and y=«f 2]
by simp

lemma puncture-function-inverse[simp|: <fix-punctured-function x (puncture-function z f) = f»
apply transfer by (auto intro: ext simp: Transposition.transpose-def)

lemma fiz-punctured-function-inverse[simpl: <puncture-function x (fiz-punctured-function = yf) = yf>
apply transfer
by (auto introl: ext simp: Transposition.transpose-def extensional-def)

lemma bij-fiz-punctured-function|[simp]: <bij (fiz-punctured-function )
by (metis bijl’ fiz-punctured-function-inverse puncture-function-inverse)

lemma inj-fiz-punctured-function|[simpl: <inj (fiz-punctured-function x)»
by (simp add: bij-is-inj)

lemma surj-fiz-punctured-function[simpl: <surj (fix-punctured-function x)»
by (simp add: bij-is-surj)

The following function-at-U z provides an unitary isomorphism between (‘a = 'b) ell2 (su-
perposition of functions) and (‘b x (‘a, 'b) punctured-function) ell2 (superposition of pairs of
the value of the function at z and the rest of the function). This allows to then apply a some
operation to the first part of that pair and thus lifting it to an application to the whole function.
(The "rest of the function" part is to be considered opaque.)

definition function-at-U :: <'a = (b x ('a, 'b) punctured-function) ell2 =cr (‘a = 'b) ell2) where
(function-at-U x = classical-operator (Some o fiz-punctured-function x)»

lemma unitary-function-at-U[simp|: <unitary (function-at-U x)»
by (auto simp: function-at-U-def intro!: unitary-classical-operator)

lemma function-at-U-ket[simp]: <function-at-U z vy ket y = ket (fiz-punctured-function z y)»
by (simp add: function-at-U-def classical-operator-ket classical-operator-exists-inj)

lemma function-at-U-adj-ket[simp]: <(function-at-U z)* xy ket y = ket (puncture-function x y)»
apply (simp add: function-at-U-def inv-map-total classical-operator-ket classical-operator-exists-inj)
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by (metis (no-types, lifting) bij-betw-inv-into bij-def bij-fix-punctured-function classical-operator-exists-inj
classical-operator-ket inj-map-total inv-f-f o-def option.case(2) puncture-function-inverse)

The reference function-at z lifts an operation U on a ell2 to an operation on (‘a = 'b) ell2
(superposition of functions). The resulting operation applies U only to the z-output of the
function.

definition function-at :: <'a = ('b update = ('a='b) update)> where
(function-at © = sandwich (function-at-U ) o Fst

lemma Rep-ell2-function-at-ket:

<Rep-ell2 (function-at x U *y ket f) g =

of-bool (snd (puncture-function x f) = snd (puncture-function = g)) * Rep-ell2 (U v ket (f z)) (g

z)»
proof —

have (Rep-ell2 (function-at x U *y ket f) g = Rep-ell2 (function-at-U z xy (U ®, id-cblinfun) *y
ket (puncture-function z f)) g

by (simp add: function-at-def Fst-def sandwich-apply)

also have «... = (function-at-U zx *y ket g) - (U ®, id-cblinfun) =y ket (puncture-function z f))»
by (metis cinner-adj-left cinner-ket-left)
also have «... = (ket (puncture-function z g)) ¢ (U ®, id-cblinfun) v ket (puncture-function
Hy
by (simp add: function-at-def)
also have «... = (ket (g z, snd (puncture-function z g))) ‘¢ (U ®, id-cblinfun) v ket (f z, snd

(puncture-function z f)))»
by (simp flip: puncture-function-split)
also have «... = of-bool (snd (puncture-function © f) = snd (puncture-function = g)) * (ket (g z) -¢
(U =y ket (fz)))
by (simp add: tensor-op-ell2 cinner-ket flip: tensor-ell2-ket)
also have «... = of-bool (snd (puncture-function x f) = snd (puncture-function x g)) * Rep-ell2 (U
ey ket (f2)) (g o)
by (simp add: cinner-ket-left)
finally show ?thesis
by —
qed

lemma function-at-ket:
shows <function-at © U xy ket f = (3. oy€UNIV. Rep-ell2 (U xy ket (fz)) y x¢ ket (f (z:=y)))
proof —
have <function-at x U *y ket f = function-at-U z xy (U ®, id-cblinfun) vy ket (puncture-function x
)
by (simp add: function-at-def Fst-def sandwich-apply)
also have «... = function-at-U z xy (U ®, id-cblinfun) xyv ket (f z, snd (puncture-function x f))»
by (metis puncture-function-split)
also have «... = function-at-U x xy (U *v ket (f x)) ®s ket (snd (puncture-function z f)))
by (simp add: tensor-op-ket)
also have «... = function-at-U = *y (D] ccy€UNIV. Rep-ell2 (U =y ket (f z)) y *c ket y) @ ket
(snd (puncture-function x f)))»
by (simp flip: ell2-decompose-infsum,)
also have «... = (3 «oy€UNIV. Rep-ell2 (U vy ket (f x)) y *¢ (function-at-U x v (ket y ®; ket
(snd (puncture-function x f)))))
by (simp del: function-at-U-ket
add: tensor-ell2-scale C1 invertible-cblinfun-isometry infsum-cblinfun-apply-invertible infsum-tensor-ell2-left
flip: cblinfun.scaleC-right)
also have «... = (3 ooy€UNIV. Rep-ell2 (U v ket (fx)) y *c ket (f (z:= y)))
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by (simp add: puncture-function-recombine tensor-ell2-ket)
finally show ?thesis

by —
qed

lemma register-function-at|simp, register|: <register (function-at x :: 'b update = ('a='b) update)) for
=g

by (auto simp add: function-at-def unitary-sandwich-register)

lemma function-at-comm:

fixes UV :: <bell2 =cp bell2yand zy :: 'a

assumes <z # y»

shows <function-at U oo function-at y V = function-at y V oo function-at x U>

proof —

define reorder where <reorder = classical-operator (Some o (A(f :: 'a = 'b, a, b). (f(z:=a, y:=b), f

z, fy))

have selfinv: <«(A(f, a, b). (f(z :==a, y :=b), fz, fy)) o (\f, a, b). (f(z:=a,y:=0), fa, fy)) =id
using assms by (auto intro!: ext)

have bij: <bij (A(f, a, b). (f(z:=a,y:=D), fz, fy))
using o-bij selfinv by blast

have inv: inv (\(f, o, b). (/(z = a, y = B), [ 2, 1) = A, 0, b). (@ = a, y = B), [, f )

using inv-unique-comp selfinv by blast

have inj-map: <inj-map (Some o (A(f, a, b). (f(z := a, y :=b), fa, fy)))
by (simp add: inj-map-total bij-is-inj|OF bij))

have inv: <nv-map (Some o (A(f, a, b). (f(z :=a, y =), fz, fy))) = (Some o (A(f, a, b). (f(z :=
by (simp add: inv-map-total bij-is-surj bij inv)

have reorder-exists: «classical-operator-exists (Some o (A\(f, a, b). (f(z := a, y :=b), fz, fy))
using inj-map by (rule classical-operator-exists-inj)

have [simp]: <reorderx = reorder»
by (simp add: reorder-def classical-operator-adjoint| OF inj-map] inv)
have [simp]: <reorder (ket f ®; ket a ® ket b) = ket (f(z:=a, y:=b), fx, fy) for fa b
by (simp add: reorder-def tensor-ell2-ket classical-operator-ket[OF reorder-exists))
have [simp]: <isometry reorder)
using inj-map-total isometry-classical-operator inj-map reorder-def by blast

have sandwichU: <sandwich reorder (function-at x U @, id-cblinfun) = id-cblinfun ®, (U ®, id-cblinfun))
proof (rule equal-ket, rule cinner-ket-eql, rename-tac fab ged)
fix fab ged 2 <('fa = 'b) x 'b x 'b
obtain f a b where [simp]: <fab = (f,a,b))
by (auto simp: prod-eq-iff)
obtain g ¢ d where [simp]: «ged = (g,¢,d)>
by (auto simp: prod-eq-iff)
have fg-rewrite: <f = g AN b=d «—
snd (puncture-function x (f(z := a, y := b))) = snd (puncture-function z (g(x := ¢, y := d))) A
fr=gxNfy=gwp
using assms
by (smt (verit, del-insts) array-rules(3) fun-upd-idem fun-upd-twist puncture-function-inverse
puncture-function-recombine snd-puncture-function-upd)
have <ket gcd - ((sandwich reorder vy function-at © U ®, id-cblinfun) v ket fab)
= ket (g(z:=c, y:=d), g z, g y) ¢ ((function-at x U ®, id-cblinfun) xy ket (f(x:=a, y:=0b), fz, f
y))

by (simp add: sandwich-apply flip: cinner-adj-left tensor-ell2-ket)
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also have «... = (ket (g(z:=c, y:=d)) ¢ (function-at x U vy ket (f(z:=a, y:=b))))

x of-bool (fx =gz Nfy=guy)p
by (auto simp add: tensor-op-ell2 simp flip: tensor-ell2-ket)

also have «... = Rep-ell2 (U *y ket a) ¢ * of-bool (f = g AN b= d)»
using assms by (auto simp add: cinner-ket-left Rep-ell2-function-at-ket fg-rewrite)
also have «... = ket ged ¢ ((id-cblinfun ®, U ®, id-cblinfun) *y ket fab)

by (auto simp add: tensor-op-ell2 cinner-ket-left[of c| simp flip: tensor-ell2-ket)
finally show «<ket ged -¢ ((sandwich reorder v function-at x U ®, id-cblinfun) v ket fab) =
ket ged -¢ ((id-cblinfun ®, U ®, id-cblinfun) =y ket fab)»
by —
qed

have sandwichV: <sandwich reorder (function-at y V ®, id-cblinfun) = id-cblinfun ®, (id-cblinfun
®o V)
proof (rule equal-ket, rule cinner-ket-eql, rename-tac fab ged)
fix fab ged 2 <("a = b)) x b x b
obtain f a b where [simp]: <fab = (f,a,b)
by (auto simp: prod-eq-iff)
obtain g ¢ d where [simp]: <ged = (g,¢,d)>
by (auto simp: prod-eq-iff)
have fg-rewrite: <f = g AN a = ¢ «—
snd (puncture-function y (f(x := a, y := b)) = snd (puncture-function y (g(z := ¢, y := d))) A
fer=g9gzANfy=gy
using assms
by (metis array-rules(3) fun-upd-idem fun-upd-twist puncture-function-inverse puncture-function-recombine
snd-puncture-function-upd)
have <ket gcd -¢ ((sandwich reorder xy function-at y V ®, id-cblinfun) xy ket fab)
= ket (g(z:=c, y:=d), gz, g y) ¢ ((function-at y V ®, id-cblinfun) xy ket (f(z:=a, y:=b), fz, f
)
by (simp add: sandwich-apply flip: cinner-adj-left tensor-ell2-ket)
also have «... = (ket (g(z:=c, y:=d)) ¢ (function-at y V vy ket (f(z:=a, y:=Db))))
x of-bool (fx=gx ANfy=guy)
by (auto simp add: tensor-op-ell2 simp flip: tensor-ell2-ket)

also have ¢... = Rep-ell2 (V xy ket b) d * of-bool (f = g A a = ¢)»
using assms by (auto simp add: cinner-ket-left Rep-ell2-function-at-ket fg-rewrite)
also have «... = ket gcd -¢ ((id-cblinfun ®, id-cblinfun ®, V) *v ket fab)»

by (auto simp add: tensor-op-ell2 cinner-ket-left[of d| simp flip: tensor-ell2-ket)
finally show <ket gcd -¢ ((sandwich reorder xy function-at y V ®, id-cblinfun) xv ket fab) =
ket ged - ((id-cblinfun ®, id-cblinfun ®, V) *v ket fab)»
by —
ged

have <sandwich reorder ((function-at © U ®, id-cblinfun) ocr (function-at y V ®, id-cblinfun))
= sandwich reorder ((function-at y V ®, id-cblinfun) ocr (function-at x U @, id-cblinfun))»
apply (simp add: sandwichU sandwichV flip: sandwich-arg-compose)
by (simp add: comp-tensor-op)
then have «(function-at x U ®, (id-cblinfun :: ('b x 'b) ell2 =cp ('b x 'b) ell2)) ocr (function-at
y V ®, id-cblinfun) = (function-at y V ®, id-cblinfun) ocr, (function-at z U ®, id-cblinfun)
by (smt (verit, best) <isometry reordery cblinfun-compose-id-left cblinfun-compose-id-right compati-
ble-ac-rules(2) isometryD sandwich-apply)
then have «(function-at x U ocy, function-at y V) ®, (id-cblinfun :: ('b x 'b) ell2 =cr (b x 'b)
ell2) = (function-at y V ocyp, function-at x U) ®, id-cblinfun»
by (simp add: comp-tensor-op)
then show «function-at © U ocp function-at y V = function-at y V ocr function-at x U>
apply (rule injD|OF inj-tensor-left, rotated))
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by simp
qed

lemma compatible-function-at|simp]:
assumes (r # y»
shows <compatible (function-at x) (function-at y)»
proof (rule compatiblel)
show «(register (function-at x)»
by simp
show «(register (function-at y)»
by simp
fix a b :: /b update
show <function-at © a ocy, function-at y b = function-at y b ocr function-at z a>
using assms by (rule function-at-comm,)
qed

lemma inv-fix-punctured-function[simp]: <inv (fiz-punctured-function z) = puncture-function x»
by (simp add: inv-equality)

lemma bij-puncture-function[simpl: <bij (puncture-function x)»
by (metis bij-betw-inv-into bij-fix-punctured-function inv-fiz-punctured-function)

lemma fst-puncture-function[simp]: <fst (puncture-function x H) = H x>
apply transfer by simp

2.1  apply-every

Analogue to classical AM u fz. if x € M then u x (f z) else f x.

Note that the definition only makes sense when M is finite. In fact, a definition that works for
infinite M is impossible as the following example shows: Let H denote the Hadamard matrix.
Let M = UNIV. Then, by symmetry, a meaningful definition of apply-every would have that
apply-every M H (ket (A-. 0)) would be a vector in (nat = bit) ell2 with all coefficients equal.
But the only such vector is 0. But a meaningful definition should not map ket (A-. 0) to 0.

definition apply-every where <apply-every M U = (if finite M then Finite-Set.fold (Ax a. function-at
z (U ) ocr a) id-cblinfun M else 0)»

lemma apply-every-empty[simp): <apply-every {} U = id-cblinfun)
by (simp add: apply-every-def)

interpretation apply-every-aux: comp-fun-commute «(Az. (ocr) (function-at x (U z)))»
apply standard
apply (rule ext)
apply (case-tac <x=y>)
by (auto simp flip: cblinfun-compose-assoc swap-registers-left)

lemma apply-every-unitary: <unitary (apply-every M U)» if <finite M» and [simp]: «\z. ze M —>
unitary (U z)»
proof —
show ?thesis
using that
proof induction
case empty
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then show ?case
by simp
next
case (insert z F')
then have x: (apply-every (insert x F) U = function-at x (U z) ocy, apply-every F U»
by (simp add: apply-every-def)
show ?case
by (simp add: * register-unitary insert)
qged
qed

lemma apply-every-comm: <apply-every M U ocr, V = V ocr apply-every M U»
if <finite M» and «A\z. ze M = function-at x (U z) ocr, V = V oo, function-at z (U z)»
unfolding apply-every-def using that

proof induction
case empty
show ?Zcase

by simp

next
case (insert z F)
then show ?case

apply (simp add: insert cblinfun-compose-assoc)
by (simp flip: cblinfun-compose-assoc insert.prems)
qed

lemma apply-every-infinite: <apply-every M U = 0» if <infinite M>
using that by (simp add: apply-every-def)

lemma apply-every-split: <apply-every M U ocr, apply-every N U = apply-every (M U N) U if <M N
N={hfor MNU
proof —
wlog finiteM: «finite M>
using negation
by (simp add: apply-every-infinite)
wlog finiteN: «finite N» keeping finite M
using negation
by (simp add: apply-every-infinite)
define f :: </a = ('a = 'b) update = ('a = 'b) updater where f x = (ocr) (function-at z (U z))»
for z
define fM fN where «fM = Finite-Set.fold f id-cblinfun M»> and <fN = Finite-Set.fold f id-cblinfun
N>
have <apply-every (M U N) U = apply-every (N U M) U»
by (simp add: Un-commute)
also have «... = Finite-Set.fold f (Finite-Set.fold f id-cblinfun N) M>
unfolding apply-every-def
apply (subst apply-every-auz.fold-set-union-disj)
using finiteM finiteN that by (auto simp add: f-def|abs-def])
also have «... = fM ocy, fN»
unfolding fM-def fN-def[symmetric]
using finiteM
apply (induction M)
by (auto simp add: f-def[abs-def] cblinfun-compose-assoc)
also have «... = apply-every M U ocy apply-every N U>»
by (simp add: apply-every-def fN-def fM-def f-def[abs-def] finiteN finiteM)
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finally show ?thesis
by simp
qed

lemma apply-every-single[simp]: <apply-every {z} U = function-at (U x)»
by (simp add: apply-every-def)

lemma apply-every-insert: <apply-every (insert © M) U = function-at (U z) ocr apply-every M U»
if <x ¢ M> and «finite M>
using that by (simp add: apply-every-def)

lemma apply-every-mult: <apply-every M U ocy, apply-every M 'V = apply-every M (Az. Uz ooy, V x)»
proof (induction rule:infinite-finite-induct)
case (infinite M)
then show ?case
by (simp add: apply-every-infinite)
next
case empty
show ?case
by simp
next
case (insert z F)
have (apply-every (insert x F) U ocr apply-every (insert © F) V
= function-at x (U x) ocr (apply-every F U oo function-at x (V z)) ocr apply-every F V>
using insert by (simp add: apply-every-insert cblinfun-compose-assoc)
also have «... = (function-at x (U x) ocr, function-at x (V z)) ocr (apply-every F U ocr, apply-every
FV)y
apply (subst apply-every-comm)
apply (fact insert)
using insert apply (metis (no-types, lifting) compatible-function-at swap-registers)
by (simp add: cblinfun-compose-assoc)

also have «... = (function-at ¢ (U z ocr, V z)) ocr (apply-every F U ocy, apply-every F V)
by (simp add: register-mult)

also have «... = (function-at x (U z ocp V z)) ocr (apply-every F (Ax. Uz ocr, V )
using insert.IH by presburger

also have «... = (apply-every (insert z F) (Ax. Uz ocr V x))

using insert.hyps by (simp add: apply-every-insert)
finally show ?case
by —
qed

lemma apply-every-id[simp|: <apply-every M (A-. id-cblinfun) = id-cblinfun if «finite M)
using that apply induction
by (auto simp: apply-every-insert)

lemma apply-every-function-at-comm:
assumes (x ¢ M)
shows (function-at x U ocp apply-every M f = apply-every M f ocy, function-at x U»
using assms apply (induction rule: infinite-finite-induct)
apply (simp add: apply-every-infinite)
apply simp
apply (simp add: apply-every-insert function-at-comm|where r=z]
flip: cblinfun-compose-assoc)
by (simp add: cblinfun-compose-assoc)
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lemma apply-every-adj: «(apply-every M f)x = apply-every M (Ai. (f ©)*)»
apply (induction rule: infinite-finite-induct)
apply (simp add: apply-every-infinite)
apply simp
by (simp add: apply-every-insert apply-every-function-at-comm register-adjoint)

end

3 Invariant-Preservation Preservation of invariants under queries

theory Invariant-Preservation
imports Function-At Misc-Compressed-Oracle
begin

hide-const (open) Order.top
no-notation Order.bottom (L1)
unbundle no m-inv-syntaz
unbundle lattice-syntax

3.1 Invariants

definition (preserves UI J € «—— & > 0 N (Vy€space-as-set I. norm (U vy & — Proj J xy U xy )
< e * norm )
for U :: ('a:chilbert-space =cp 'b::chilbert-space

lemma preserves-def-closure:
assumes (space-as-set I = closure I
shows <preserves Ul J € «—— ¢ > 0 AN (VYETI’. norm (U xy b — Proj J xy U *y ¢) < & * norm
¥
proof (rule iffI; (elim conjE)?)
show «(preserves UI J e = 0 <& A (VYeI’ norm (U *xy ¢ — Proj J =y U xy ) < & % norm ¢)»
by (metis assms closure-subset in-mono preserves-def)
show <preserves U I J e
if <0 < e and bound: «(VYeI'. norm (U xy ¢ — Proj J xy U xy ¥) < & * norm ¥)»
proof (unfold preserves-def, intro conjl balll)
from that show <« > 0) by simp
fix ¢ assume < € space-as-set I»
with assms have ) € closure I
by simp
then obtain ¢ where <¢ —— » and «p n € I’y for n
using closure-sequential by blast
define f where «f £ = ¢ x norm & — norm (U =y & — Proj J =y U xy &)» for &
with «p - € Iy bound have bound”: «f (¢ n) > 0 for n
by simp
have <continuous-on UNIV f»
unfolding f-def
by (intro continuous-intros)
then have <(An. f (¢ n)) —— f
using «p —— » apply (rule continuous-on-tendsto-compose[where s=UNIV and f=f])
by auto
with bound’ have <f ¢ > 0>
by (simp add: Lim-bounded?2)
then show <norm (U xy ¢ — Proj J xy U xy ¢) < & % norm
by (simp add: f-def)
qed
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qed

lemma preservesl-closure:
assumes < > (»
assumes closure: (space-as-set I C closure 1"
assumes (csubspace I
assumes bound: <\. ¥ € I' = norm » = 1 = norm (U *v ¢ — Proj J xy U *y ¢) < &
shows <preserves U I J &)
proof —
have *: (space-as-set (ccspan I') = closure Iy
by (metis assms(3) ccspan.rep-eq complezx-vector.span-eg-iff)
have <preserves U (cespan 1) J €)
proof (unfold preserves-def-closure[OF x|, intro congl balll)
from assms show <« > 0) by simp

fix ¢ assume I: «p € I
show «norm (U xy ¢ — Proj J xy U xy ¥) < & * norm ¢»
proof (cases < = 0»)
case True
then show ?thesis by auto
next
case Fulse
then have <norm ¥ > 0»
by simp
define ¢ where (¢ = ¢ /¢ norm ¥»
from I have «p € I
by (simp add: p-def <csubspace I’y complez-vector.subspace-scale)
moreover from Fualse have <norm ¢ = 1»
by (simp add: p-def norm-inverse)
ultimately have <norm (U xy ¢ — Proj J =y U *xy ) < &
by (rule bound)
then have <norm (U *xy 1 — Proj J xy U %y ) / norm i < &
unfolding ¢-def
by (auto simp flip: scaleC-diff-right
simp add: norm-inverse divide-inverse-commute cblinfun.scaleC-right)
with <norm ¢ > 0> show ?thesis
by (simp add: divide-le-eq)
qed
qed
then show «preserves U I J &)
by (smt (verit) * closure in-mono preserves-def)
qed

lemma preservesl:
assumes < > (»
assumes (\¢. ¢ € space-as-set [ => norm ¢ = 1 = norm (U xy ¢ — Proj J =y U *xy ¢) < &
shows (preserves U I J &>
apply (rule preservesl-closure[where I'=<space-as-set I)])
using assms by auto

lemma preservesl”:
assumes < > (»
assumes (\©. ¥ € space-as-set | = norm ¥ = 1 = norm (Proj (=J) xy U xy ) < &
shows (preserves U I J &>
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using «¢>0» apply (rule preservesI)
apply (frule assms(2))
by (simp-all add: Proj-ortho-compl cblinfun.diff-left)

lemma preserves-onorm: <preserves U I J € «—— norm ((id-cblinfun — Proj J) ocr U ocy Proj I) <
&)
proof (rule iffI)
assume pres: <preserves U I J &)
show «norm ((id-cblinfun — Proj J) ocr, U ocr ProjI) < e
proof (rule norm-cblinfun-bound)
from pres show <« > 0>
by (simp add: preserves-def)
fix ¢
define ¢ where <@ = Proj I xy ¢»
have normyp: <norm ¢ < norm
unfolding ¢-def apply (rule is-Proj-reduces-norm) by simp

have «norm (((¢d-cblinfun — Proj J) ocr, U ocy Proj I) xy ¥) = norm (U xy ¢ — Proj J xy U
ky ©)
unfolding ¢-def by (simp add: cblinfun.diff-left)
also from pres have ... < e x norm >
by (metis Proj-range p-def cblinfun-apply-in-image preserves-def)
also have «... < e x norm ¥»
by (simp add: <0 < & mult-left-mono normeyp)
finally show <norm (((id-cblinfun — Proj J) ocr U ocr Proj I) sy ¢) < & x norm i»
by —
qed
next
assume norm: <norm ((id-cblinfun — Proj J) ocr U ocr Proj I) < &)
show <preserves U I J e
proof (rule preservesI)
show <« > 0»
using norm norm-ge-zero order-trans by blast
fix ¢ assume [simp]: <) € space-as-set Iy and [simp]: <norm ¢ = 1»
have «norm (U sy ¢ — Proj J xy U xy ¢) = norm ((id-cblinfun — Proj J) xy U xy )
by (simp add: cblinfun.diff-left)

also have «... = norm ((id-cblinfun — Proj J) xy U =y Proj I vy ¢)
by (simp add: Proj-fizes-image)

also have «... = norm (((id-cblinfun — Proj J) ocy, U ocr, Proj I) sy ¢¥)»
by simp

also have «... < norm ((id-cblinfun — Proj J) ocr U ocr Proj I) *x norm ¢»
using norm-cblinfun by blast

also have ¢... < &
by (simp add: norm)

finally show <norm (U xy ¢ — Proj J xy U xy ¥) < &
by —

qged
qed

lemma preserves-cong:
assumes (\¢. ¢ € space-as-set [ = U =y ¢ = U’ sy
shows «preserves U I J &€ «—— preserves U' I J &>

by (simp add: assms preserves-def)

lemma preserves-mono:
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assumes <preserves U I J &)
assumes [ > [’
assumes J < J)
assumes (€ < ¢/
shows «preserves U I' J' &’
proof (rule preservesI)
show «’ > 0»
by (smt (verit) assms(1) assms(4) preserves-def)
fix ¢ assume () € space-as-set 1"
then have () € space-as-set I»
using <[ > I’y less-eq-ccsubspace.rep-eq by blast
assume [simp|: <norm ¢ = 1»

have «norm (U *v ¢ — Proj J' «y U %y 9) = norm ((id-cblinfun — Proj J') xv U xy )
by (simp add: cblinfun.diff-left)
also have «... < norm ((id-cblinfun — Proj J) sy U xy )
proof —
from «J < J’
have <id-cblinfun — Proj J > id-cblinfun — Proj J'
by (simp add: Proj-mono)
then show ?thesis
by (metis (no-types, lifting) Proj-fizes-image Proj-ortho-compl Proj-range adj-Proj cblinfun-apply-in-image
cdot-square-norm cinner-adj-right cnorm-ge-square less-eq-cblinfun-def)
qed
also have «... = norm (U xy b — Proj J xy U xy ¥)»
by (simp add: cblinfun.diff-left)
also from < € space-as-set I <preserves U I J &)
have <... <&
by (auto simp: preserves-def)
also have ... < ¢’
using « < &’
by (simp add: mult-right-mono)
finally show <norm (U *y ¥ — Proj J' xy U xy @) < &’
by simp
qed

The next lemma. allows us to decompose the preservation of an invariant into the preservation
of simpler invariants. The main requirement is that the simpler invariants are all orthogonal.

This is in particular useful when one wants to show the preservation of an invariant that refers
to the oracle input register and other unrelated registers. One can then decompose the invariant
into many invariants that fix the input and unrelated registers to specific computational basis
states. (I.e., wlog the input register is in a state of the form ket z.

Unfortunately, we have a proof only in the case of finitely many simpler invariants. This
excludes, e.g., infinite oracle input registers etc. (e.g., quantum ints, quantum lists).

lemma invariant-splitting:
fixes X :: i set»
fixes I S :: <"i = ’a::chilbert-space ccsubspace)
fixes J :: (/i = ’'b::chilbert-space ccsubspace’
assumes ortho-S: <\z y. 1€ X = yeX = z # y = orthogonal-spaces (S x) (S y)»
assumes ortho-S": <Az y. 1€ X = yeX = z # y = orthogonal-spaces (S’ x) (S’ y)»
assumes [S: (A\z. z€eX = Iz < Sm
assumes JS: (A\z. zeX = Jz < S’ m»
assumes USS": «A\z. z€X = U xg Sax < S'»
assumes [1: <11 < (3 zeX. I z)»
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assumes JJ: «JJ > (3 zeX. Jz)
assumes £0: <¢ > 0»
assumes [iff]: <finite X»
assumes pres: <\z. x€X = preserves U (I z) (J z) &
shows «preserves U IT JJ &>
proof —
have <preserves U (> zeX. I'z) (3 zeX. Jz) &
proof (rule preservesl-closurelwhere I'=<(>  z€X. space-as-set (I z)))])
from £0 show < > 0» by —

show <csubspace (> xz€X. space-as-set (I x))»
by (simp add: csubspace-set-sum)
show «space-as-set (sum I X) C closure (> z€X. space-as-set (I z))»
apply (rule eg-refl)
apply (use <finite X» in induction)
by (auto simp: sup-ccsubspace.rep-eq simp flip: closed-sum-def)

fix ¢ assume ¢ € (3 z€X. space-as-set (I z))»
then obtain ¢’ where ¢'I: <)’ z € space-as-set (I )y and ¥’'sum: «p = (> z€X. ¢ z)) for
proof (atomize-elim, use <finite X» in <induction arbitrary: 1»)
case empty
then show ?case
by (auto intro!: exI[where z=«\-. 0])
next
case (insert z X)
have auz: <) € space-as-set (I z) + (> z€X. space-as-set (I z)) =
Y0 1.9 =90 + 1 N0 € (O] xeX. space-as-set (I z)) N 1 € space-as-set (I z)»
by (metis add.commute set-plus-elim)
from insert.prems
obtain 0 ¢ 1 where -decomp: <) = 0 + Y1y and Y0: )0 € (> z€X. space-as-set (I z))»
and 1: @1 € space-as-set (I x)»
apply atomize-elim by (auto introl: auz simp: insert.hyps)
from insert. IH[OF 0]
obtain 0’ where ¢ 0'I: <0’ x© € space-as-set (I z)» and ¥ 0'sum: <0 = sum Y0’ X» for x
by auto
define ¢’ where <)’ = 0'(x := 1)
have )’ z € space-as-set (I z)) for x
by (simp add: ¥'-def v0'I Y1)
moreover have ) = sum ¢’ (insert z X)»
by (metis ¥'-def ¥ 0'sum -decomp add.commute fun-upd-apply insert.hyps(1) insert.hyps(2)
sum.cong sum.insert)
ultimately show ?Zcase
by auto
qed

assume [simpl: <norm ¢ = 1»

define 1’ n where (' © = U xy (¢’ ) — Proj (Jz) »y U %y (' z)» and < = > zeX. n’ z)»
for z
with pres have n’bound: <norm (n' z) < e x norm (¢’ z)» if «zeX» for z
using that by (simp add: 'l preserves-def)
define US where «(USx = U %5 S 2> for z

have )’ © € space-as-set (S z)» if «<z€X» for z
using that ¥'I IS less-eq-cesubspace.rep-eq by blast
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then have Uy’S": «<U xy o' z € space-as-set (S’ z)» if <z€X) for z
using USS'[OF that] that
by (metis cblinfun-image.rep-eq closure-subset imagel in-mono less-eq-ccsubspace.rep-eq)
have 7'S"
proof —
have (Proj (J z) vy U xv (¢’ z) € space-as-set (J z)»
by (metis Proj-range cblinfun-apply-in-image)
also have «... C space-as-set (S’ )
unfolding US-def less-eq-ccsubspace.rep-eq[symmetric] using JS' that by auto
finally have x: <Proj (J z) v U xv (¢’ z) € space-as-set (S’ z)»
by —
with Uvy’'S’[OF that]
show ' z € space-as-set (S’ z)»
unfolding 7n’-def
by (metis Proj-fizes-image Proj-range cblinfun.diff-right cblinfun-apply-in-image)
qed
from ortho-S’ USS’
have ortho-US: <orthogonal-spaces (US z) (US y)» if <z # y» and <z€X> and «yeX) for z y
by (metis US-def in-mono less-eq-ccsubspace.rep-eq orthogonal-spaces-def
that(1,2,3))
have ortho-I: <orthogonal-spaces (I x) (I y)» if «x # y» and «z€X» and «yeX) for z y
by (meson IS less-eq-ccsubspace.rep-eq ortho-S orthogonal-spaces-def subsetD that)
have ortho-J: <orthogonal-spaces (J x) (J y)» if <z # y» and z€X) and «yeX> for z y
using JS' ortho-S’ that
by (meson less-eq-ccsubspace.rep-eq orthogonal-spaces-def subsetD)

' x € space-as-set (S’ x)» if «zeX) for z

from ortho-S’' n’S’

have n’ortho: <is-orthogonal (n' z) (n’ y)» if <z # y» and x€X» and (yeX) for z y
by (meson orthogonal-spaces-def that)

have v’ortho: <is-orthogonal (¥’ z) (¢' y)» if <z # 1y and (z€X> and yeX) for z y
using ¢'I ortho-I orthogonal-spaces-def that by blast

have n'2: ' v = U sy ' — Proj (O zeX. (Jz)) xy U xy ¢ o if <z € X for ¢
proof —
have <Proj (Jy) vy U xy ¥' z = 0 if <x # y» and <y € X for y
proof —
have <U *y 9’ z € space-as-set (S’ z)»
using «z € X» by (rule U'S’)
moreover have <orthogonal-spaces (S’ x) (J y)»
using JS'[OF «yeX>s] ortho-S'[OF z€X» yeX» x#y]
by (meson less-eq-ccsubspace.rep-eq orthogonal-spaces-def subset-eq)
ultimately show ?thesis
by (metis (no-types, opaque-lifting) Proj-fizes-image Proj-ortho-compl Proj-range Set.basic-monos(7)
cancel-comm-monoid-add-class. diff-cancel cblinfun.diff-left cblinfun.diff-right cblinfun-apply-in-image id-cblinfun.rep-eq
less-eq-cesubspace.rep-eq orthogonal-spaces-leg-compl)
qed
then have (' z = U xy ¢’ — Proj (Jz) xy U xy 'z — O yeX—{z}. Proj (Jy) xv U *xy
P’ x)
unfolding n'-def
by (metis (no-types, lifting) DiffE Diff-insert-absorb diff-0-right mk-disjoint-insert sum.not-neutral-contains-not-neu;
also have «... = U sy ¢'z — (D yeX. Proj (Jy) xy U *xy ¢ )
apply (subst (2) asm-rl[of «X = {z} U (X—{z})])
apply (simp add: insert-absorb «x € X))
apply (subst sum.union-disjoint)
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by auto

also have «... = U sy ¢’z — (3 yeX. Proj (Jy)) xv U *xy '
by (simp add: cblinfun.sum-left)
also have «... = U sy ¢'x — Proj (D> yeX. Jy) xy U xy ¢’ ©

apply (subst Proj-sum-spaces)
using ortho-J by auto
finally show ?thesis
by —
qed

have norm (U xy ¥ — Proj (sum J X) xy U xy ) = norm (>_z€X. U xy ' — Proj (sum J
X) xy U xy ¢ z)»
by (simp add: ¥’'sum sum-subtractf cblinfun.sum-right)

also from 7’2 have (... = norm (>_zeX. n' z)
by simp
also have «... = norm

using n-def by blast
also have «(norm n)? = (3" z€X. (norm (n’ z))*)
unfolding 7-def
apply (rule pythagorean-theorem-sum,)
using n’ortho by auto
also have (... < (3> z€X. (¢ * norm (¥’ z))?)»
apply (rule sum-mono)
by (simp add: n'bound power-mono)
also have «... < &% x (3 zeX. (norm (¢’ 2))?)
by (simp add: sum-distrib-left power-mult-distrib)
also have (... = €% % (norm ¥)%
proof —
have auz: <a € X = o' € X = a # o' = ¢ = sum ' X = is-orthogonal (¢’ a) (¥' a’)
for a a’
by (meson 'l IS less-eq-ccsubspace.rep-eq ortho-S orthogonal-spaces-def subset-iff)
show ?thesis
apply (subst pythagorean-theorem-sum[symmetric])
using 1'sum aux by auto
ged
finally show <norm (U *y ¢ — Proj (sum J X) xy U *y ¢) < &
using «>0» <norm ¥ = 1» by (auto simp flip: power-mult-distrib)
qed
then show ?thesis
apply (rule preserves-mono)
using assms by auto
qed

An invariant that is consists of all states that are the superposition of computational basis
states.

Useful for representing a classically formulated condition (e.g., z # 0) as an invariant (ket-invariant
{z. z # 0}).

definition <ket-invariant M = ccspan (ket * M)»

lemma ket-invariant-UNIV [simp]: <ket-invariant UNIV = T)
unfolding ket-invariant-def by simp

lemma ket-invariant-empty[simp]: <ket-invariant {} = L»
unfolding ket-invariant-def by simp
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lemma ket-invariant-Rep-ell2: < € space-as-set (ket-invariant I) «—— (Vi€—1. Rep-ell2 ¢ i = 0)»
by (simp add: ket-invariant-def space-ccspan-ket)

lemma ket-invariant-compl: <ket-invariant (—M) = — ket-invariant M»
proof —
have (ket-invariant (—M) < — ket-invariant M»> for M :: <'a set)
unfolding ket-invariant-def
apply (rule ccspan-leg-ortho-ccspan)

by auto
moreover have «— ket-invariant M < ket-invariant (—M)»
proof (rule ccsubspace-lel-unit)

fix ¢

assume <) € space-as-set (— ket-invariant M)»
then have <is-orthogonal 1 > if <p € space-as-set (ket-invariant M) for ¢
using that
by (auto simp: uminus-ccsubspace.rep-eq orthogonal-complement-def)
then have <is-orthogonal (ket m) ¢» if «<m € M» for m
by (simp add: ccspan-superset’ is-orthogonal-sym ket-invariant-def that)
then have (Rep-ell2 ¢ m = 0> if «<m € M) for m
by (simp add: cinner-ket-left that)
then show <) € space-as-set (ket-invariant (— M))»
unfolding ket-invariant-Rep-ell2
by simp
qed
ultimately show ?thesis
by (rule order.antisym)
qed

lemma ket-invariant-tensor: <ket-invariant I ®g ket-invariant J = ket-invariant (I x J))
proof —
have <ket-invariant I ®g ket-invariant J = ccspan {z @5 y |z y. x € ket ‘I Ny € ket * T}
by (simp add: tensor-ccsubspace-ccspan ket-invariant-def)

also have «... = ccspan {ket (z, y)|zy. 2 € I Ny Jp

by (auto intro!: arg-conglwhere f=ccspan| simp flip: tensor-ell2-ket)
also have «... = cespan (ket * (I x J))»

by (auto intro!: arg-cong[where f=ccspan])
also have «... = ket-invariant (I x J)»

by (simp add: ket-invariant-def)
finally show ?thesis
by —
qed

abbreviation <preserves-ket U I J ¢ = preserves U (ket-invariant I) (ket-invariant J) e

lemma orthogonal-spaces-ket[simp]: <orthogonal-spaces (ket-invariant M) (ket-invariant N) «—— M N
N={}p for M N

apply rule

apply (simp add: ket-invariant-def orthogonal-spaces-def)

apply (metis Int-emptyl ccspan-superset imagel inf-commute ket-invariant-def orthogonal-ket sub-
set-iff)

apply (simp add: orthogonal-spaces-leq-compl ket-invariant-def)

by (smt (verit, best) ccspan-leg-ortho-ccspan disjoint-iff-not-equal imageE orthogonal-ket)

lemma ket-invariant-le[simpl: <ket-invariant M < ket-invariant N «—— M C N» for M N
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proof —
have (z € N»
if <z € M»> and x: <A\p. Vy. y ¢ M — Rep-ell2 p y = 0) — (Vy. y ¢ N — Rep-ell2 ¢ y =
0)» for z
using *[of <ket )]
using <z € M » by (auto simp: ket.rep-eq)
then show ?thesis
by (auto simp add: less-eq-ccsubspace.rep-eq subset-eq Ball-def ket-invariant-Rep-ell2)
qed

lemma ket-invariant-mono:
assumes <[ C J»
shows <ket-invariant I < ket-invariant J»
using [[simp-trace]]
by (simp add: assms)

lemma ket-invariant-Inf: <ket-invariant (Inf M) = Inf (ket-invariant ¢ M)»
proof (rule order.antisym)
show <ket-invariant (| M) < Inf (ket-invariant < M)»
by (simp add: Inf-lower le-Inf-iff)
show «Inf (ket-invariant * M) < ket-invariant ((| M)»
proof (rule ccsubspace-lel-unit)
fix ¢
assume <) € space-as-set (Inf (ket-invariant < M))»
then have <) € space-as-set (ket-invariant N)» if <N € M» for N
by (metis Inf-lower imagel in-mono less-eq-ccsubspace.rep-eq that)
then have <Rep-ell2 v n = 0> if <n ¢ N) and <N € M) for n N
using that by (auto simp: kel-invariant-Rep-ell2)
then have <Rep-ell2 ¢ n = 0y if <n ¢ Inf M>» for n
using that by blast
then show <) € space-as-set (ket-invariant ((\ M))»
by (meson ComplD ket-invariant-Rep-ell2)
qged
qed

lemma ket-invariant-INF: <ket-invariant (INF z€M. fx) = (INF zeM. ket-invariant (f z))»
by (simp add: image-image ket-invariant-Inf)

lemma ket-invariant-Sup: <ket-invariant (Sup M) = Sup (ket-invariant < M)»
proof —
have (ket-invariant (Sup M) = ket-invariant (— (Inf (uminus ‘ M)))»
by (subst uminus-Inf, simp)

also have «... = — ket-invariant (Inf (uminus * M))»
using ket-invariant-compl by blast
also have «... = — Inf (ket-invariant ‘ uminus ‘ M)»
using ket-invariant-Inf by auto
also have «... = — Inf (uminus ‘ ket-invariant * M)»
by (metis (no-types, lifting) INF-cong image-image ket-invariant-compl)
also have «... = Sup (ket-invariant * M)»

apply (subst uminus-Inf)

by (metis (no-types, lifting) SUP-cong image-comp image-image o-apply ortho-involution)
finally show ?thesis

by —
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qed

lemma ket-invariant-SUP: <ket-invariant (SUP zeM. fx) = (SUP zeM. ket-invariant (f z))»
by (simp add: image-image ket-invariant-Sup)

lemma ket-invariant-inter: <ket-invariant M N ket-invariant N = ket-invariant (M N N)» for M N
using ket-invariant-INF[where M=UNIV and f=«\z. if z then M else N>»|
by (smt (verit) INF-UNIV-bool-expand)

lemma ket-invariant-union: <ket-invariant M U ket-invariant N = ket-invariant (M U N)) for M N
using ket-invariant-SUP|where M=UNIV and f=<\z. if z then M else N»]
by (smt (verit) SUP-UNIV-bool-expand)

lemma sum-ket-invariant[simp:
assumes <finite X
shows (> zeX. ket-invariant (M z)) = ket-invariant (|Jz€X. M x)»
using assms apply induction
apply auto using ket-invariant-union by blast

lemma ket-invariant-ing[simp:
<ket-invariant M = ket-invariant N «—— M = N) for M N
by (metis dual-order.eq-iff ket-invariant-le)

Given an invariant on the content of a register, this gives the corresponding invariant on the
whole state. Useful for plugging together several invariants on different subsystems.

definition <lift-invariant F I = F (Proj I) xg T»

lemma [lift-invariant-comp:
assumes [simp|: <(register G»
shows <lift-invariant (F o G) = lift-invariant F o lift-invariant G»
by (auto introl: ext simp: lift-invariant-def Proj-on-own-range register-projector)

lemma lift-invariant-top[simp): <register F = lift-invariant F T = T)
by (metis Proj-on-own-range’ cblinfun-compose-id-right id-cblinfun-adjoint lift-invariant-def register-unitary
unitary-id unitary-range)

lemma Proj-lift-invariant: <register F = Proj (lift-invariant F I) = F (Proj I)»
using [[simproc del: Laws-Quantum.compatibility-warn]|
unfolding lift-invariant-def
by (simp add: Proj-on-own-range register-projector)

lemma ket-invariant-image-assoc:
<ket-invariant ((M((a, b), ¢). (a, b, ¢)) * X) = lift-invariant assoc (ket-invariant X)»
proof —
have <ket-invariant (A((a, b), ¢). (a, b, ¢)) * X) = assoc-ell2 xg ket-invariant X>
by (auto introl: arg-cong|where f=ccspan] image-eql simp add: ket-invariant-def image-image cblin-
fun-image-ccspan)
also have «... = lift-invariant assoc (ket-invariant X)»
by (simp add: lift-invariant-def assoc-ell2-sandwich Proj-sandwich)
finally show ?thesis
by —
qed

lemma lift-invariant-inj[simp]: <lift-invariant F I = lift-invariant F' J «—— I = J» if [register]: <register
E
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proof (rule iffI[rotated], simp)
assume asm: <lift-invariant F I = lift-invariant F J»
then have <F (Proj I) xg T = F (Proj J) xg T»
by (simp add: lift-invariant-def)
then have <F (Proj I) = F (Proj J)»
by (metis Proj-lift-invariant asm that)
then have <Proj I = Proj J»
by (simp add: register-inj’)
then show I = J»
using Proj-inj by blast
qed

lemma [lift-invariant-decomp:
fixes U :: <- =¢ -:chilbert-space)
assumes (\Y. F 9 = sandwich U *y (¥ ®, id-cblinfun)
assumes <unitary U>»
shows «lift-invariant F' I = U xg (I ®s T)»
by (simp add: lift-invariant-def assms Proj-tensor-Proj Proj-sandwich flip: Proj-top)

Invariants are compatible if their projectors commute, i.e., if you can simultaneously measure
them. This can happen if they refer to different parts of the system. (E.g., one talks about
register X, the other about register Y.) But also for example for any ket-invariants.

See lemma preserves-intersect below for a useful consequence.

definition <compatible-invariants A B «—— Proj A ocy Proj B = Proj B oc, Proj A»

lemma compatible-invariants-inter: «Proj A ocp Proj B = Proj (A M B)» if <compatible-invariants A
B>
proof —
have <is-Proj (Proj A ocy, Proj B)»
apply (rule is-Proj-I)
apply (metis Proj-idempotent cblinfun-assoc-left(1) compatible-invariants-def that)
by (metis adj-Proj adj-cblinfun-compose compatible-invariants-def that)

have «(Proj A ocr, Proj B) s T < A»

by (simp add: Proj-image-leq cblinfun-compose-image)
moreover have «(Proj A ocp Proj B) xs T < B»

using that by (simp add: Proj-image-leq cblinfun-compose-image compatible-invariants-def)
ultimately have leql: «(Proj A ocr, Proj B) xs T < AN B)

by auto

have leg2: <A N B < (Proj A ocr Proj B) xs T»
proof (rule ccsubspace-lel, rule subsetl)
fix ¢ assume ) € space-as-set (A M B)»
then have <Proj A v ¢ = ¢ <Proj B xy ¢ = »
by (simp-all add: Proj-fizes-image)
then have <) = (Proj A ocr Proj B) xy i»
by simp
also have «(Proj A ocy, Proj B) %y ¢ € space-as-set ((Proj A ocr Proj B) xg T)»
using cblinfun-apply-in-image by blast
finally show < € space-as-set ((Proj A ocy, Proj B) xg T)»
by —
ged

from leq! leg2 have «(Proj A ocr, Proj B) x¢ T = AN B
using order-class.order-eq-iff by blast
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with <is-Proj (Proj A ocy, Proj B)) show <Proj A ocp, Proj B = Proj (A 1 B)»
using Proj-on-own-range by force
qed

lemma compatible-invariants-ket[iff]: <compatible-invariants (ket-invariant I) (ket-invariant J)»
proof —
have I: <Proj (ket-invariant I) = Proj (ket-invariant (I—J)) + Proj (ket-invariant (INJ))»
apply (subst Proj-sup[symmetric])
by (auto simp add: Un-Diff-Int ket-invariant-union)
have J: «Proj (ket-invariant J) = Proj (ket-invariant (J—I)) + Proj (ket-invariant (INJ))»
apply (subst Proj-sup[symmetric])
by (auto intro!: arg-cong|where f=Proj| simp add: Un-Diff-Int ket-invariant-union)
have (Proj (ket-invariant I) oo, Proj (ket-invariant J) = Proj (ket-invariant J) oo, Proj (ket-invariant
1)
apply (simp add: 1 J)
by (smt (verit) Diff-disjoint I Int-Diff-disjoint Proj-bot adj-Proj adj-cblinfun-compose cblinfun-compose-add-left
cblinfun-compose-add-right orthogonal-projectors-orthogonal-spaces orthogonal-spaces-ket)
then show ?thesis
by (simp add: compatible-invariants-def)
qed

lemma preserves-intersect:
assumes <compatible-invariants J1 J2)»
assumes presi: <preserves U I JI 1)
assumes pres?2: <preserves U I J2 €2
shows (preserves U I (J1 M J2) (1 + €2)»

proof (rule preservesl)
show 0 < el + €2
by (meson add-nonneg-nonneg presl pres2 preserves-def)

fix ¢ assume ) € space-as-set I» and <norm ¢ = 1»
define ¢ J where <¢ = U *xy ¢» and «J = JI 1 J2»

note norm-diff-triangle-le[trans]

from presi
have «norm (¢ — Proj J1 xy ¢) < el
by (metis i) € space-as-set Iy <norm ¢ = 1y @-def mult-cancel-left]1 preserves-def)
also
have <norm (p — Proj J2 =y @) < e2»
using <Y € space-as-set I» <norm ¢ = 1) @-def pres2 preserves-def by force
then have <norm (Proj J1 v (¢ — Proj J2 xy ¢)) < €2
using Proj-is-Proj is- Proj-reduces-norm order-trans by blast
then have <norm (Proj JI xy ¢ — Proj J1 xy Proj J2 xy ¢) < &2
by (simp add: cblinfun.diff-right)
also have «Proj J1 xy Proj J2 xyv @ = Proj J %y @»
by (metis J-def assms(1) cblinfun-apply-cblinfun-compose compatible-invariants-inter)
finally show <norm (¢ — Proj J sy ¢) < el + 2>
by —
qed

lemma preserves-intersect-ket:
assumes <preserves-ket U I J1 1>
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assumes <(preserves-ket U I J2 €2

shows <preserves-ket U I (J1 M J2) (1 + £2)»
apply (simp flip: ket-invariant-inter)

using - assms apply (rule preserves-intersect)
by (rule compatible-invariants-ket)

An invariant is compatible with a register intuitively if the invariant only talks about parts of
the quantum state outside the register.

definition <compatible-register-invariant F I «—— (N A. Proj [ ocr, F A = F A ocyp Proj I)»
for F :: <a update = 'b update;

lemma compatible-register-invariant-top|simpl:
<compatible-register-invariant F T)
by (simp add: compatible-register-invariant-def)

lemma compatible-register-invariant-bot[simp):
<compatible-register-invariant F 1)
by (simp add: compatible-register-invariant-def)

lemma compatible-register-invariant-id:
assumes \y. I = UNIV v [ ={}
shows <compatible-register-invariant id (ket-invariant I)»
using assms
by (metis compatible-register-invariant-bot compatible-register-invariant-top ket-invariant-UNIV ket-invariant-empty)

lemma compatible-register-invariant-compatible-register:
assumes <compatible F' G»
shows <compatible-register-invariant F (lift-invariant G I))
unfolding compatible-register-invariant-def lift-invariant-def
by (metis Proj-is-Proj Proj-on-own-range assms compatible-def register-projector)

lemma compatible-register-invariant-chain[simp):

<compatible-register-invariant (F o G) (lift-invariant F I) «— compatible-register-invariant G I if
[simp]: <register F»

by (simp add: compatible-register-invariant-def Proj-lift-invariant register-mult register-inj| THEN inj-eq])

Allows to decompose the preservation of an invariant into a part that is preserved inside a
register, and a part outside of it.

lemma preserves-register:
fixes F :: </a update = 'b updates
assumes pres: <preserves U' I’ J' &>
assumes reg[register|: <register F
assumes compat: <compatible-register-invariant F K
assumes FU": «Viespace-as-set [. F U’ xy p = U xy ¢
assumes FI'-I: (lift-invariant F I' > I»
assumes KI: <K > I»
assumes FJ'K-I: lift-invariant F J' 11 K < J»
shows (preserves U I J &>
proof —
define PI’' PJ’ where «PI' = Proj Iy and <PJ' = Proj J"
have 1: ¢preserves (F U’) (lift-invariant F I') (lift-invariant F J') e
proof (unfold preserves-onorm)
have «norm ((id-cblinfun — Proj (lift-invariant F' J')) ocr F U’ ocr Proj (lift-invariant F I'))
= norm ((id-cblinfun — PJ') ocr, U’ ocr PI')y (is «?lhs = =)
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by (smt (verit, best) PI’-def PJ'-def Proj-lift-invariant reg register-minus register-mult register-norm
register-of-id)
also from pres have ... < &)
by (simp add: preserves-onorm PJ'-def PI'-def)
finally show < ?lhs < &)
by —
qed

from compat
have 2: ¢preserves (F U’) K K 0»
by (simp add: preserves-onorm cblinfun-compose-assoc cblinfun-compose-minus-left compatible-register-invariant-def)

with 1 compat
have «preserves (F U’) (lift-invariant F I' N K) (lift-invariant F J' N K) &
apply (subst asm-rl[of ¢ =& + 0»], simp)
apply (rule preserves-intersect)
by (auto simp add: compatible-invariants-def compatible-register-invariant-def preserves-mono Proj-lift-invariant)

then have «preserves (F U’) I J &
apply (rule preserves-mono)
using FI’-1 FJ'K-I KI by auto
then show ?thesis
apply (rule preserves-cong| THEN iffD1, rotated))
using FU’ by auto
qed

lemma preserves-top[simp|: <€ > 0 = preserves UI T &>
unfolding preserves-onorm by simp

lemma preserves-bot[simp|: <¢ > 0 = preserves U L J &)
unfolding preserves-onorm by simp

lemma preserves-0[simp|: <€ > 0 = preserves 0 I J &
unfolding preserves-onorm by simp

Tensor product of two invariants: The invariant that requires the first part of the system to
satisfy invariant I and the second to satisfy J.

definition <tensor-invariant I J = ccspan {x Qs y | T y. x € space-as-set I N\ y € space-as-set J}»

lemma tensor-invariant-via-Proj: <tensor-invariant I J = (Proj I ®, Proj J) %s T)
proof (rule Proj-inj, rule tensor-ell2-extensionality, rename-tac 1 ¢)
fix ¢ ¢
define 1 2 where <1 = Proj I v and 2 = Proj (—1I) ¢»
have «) = Y1 + ¥2»
by (simp add: ¥ 1-def 1 2-def Proj-ortho-compl minus-cblinfun.rep-eq)
have ¢ 1I: <1 € space-as-set I»
by (metis Proj-idempotent 1 1-def cblinfun-apply-cblinfun-compose norm-Proj-apply)

define 1 ¢2 where «p1 = Proj J ¢ and <2 = Proj (—=J) ¢
have (p = ¢1 + p2»
by (simp add: p1-def p2-def Proj-ortho-compl minus-cblinfun.rep-eq)
have ¢1J: «p1 € space-as-set J»
by (metis Proj-idempotent @1-def cblinfun-apply-cblinfun-compose norm-Proj-apply)

have auz: <za € space-as-set | = y € space-as-set J = ¢ ¢ y # 0 = is-orthogonal 2 xza> for
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za y
by (metis Proj-fizes-image <) = 1 + 2> 11 Y 1-def add-left-imp-eq cblinfun.real.add-right ker-
nel-Proj kernel-memberl orthogonal-complement-orthol pth-d uminus-ccsubspace.rep-eq)
have (2 ®; ¢ € space-as-set (— tensor-invariant I J)»
by (auto intro!: auz orthogonal-complementl simp add: uminus-ccsubspace.rep-eq tensor-invariant-def
cespan.rep-eq
stmp flip: orthogonal-complement-of-closure orthogonal-complement-of-cspan)
then have ¢ 2¢: <Proj (tensor-invariant I J) xy (2 ®s ¢) = 0>
by (simp add: kernel-memberD)

have auz: (xa € space-as-set I = y € space-as-set J = p2 ¢ y # 0 = is-orthogonal 11 za) for
za y
by (metis Proj-fizes-image <p = @1 + 92> p1J pl-def add-left-imp-eq cblinfun.real.add-right ker-
nel-Proj kernel-memberl orthogonal-complement-orthol pth-d uminus-ccsubspace.rep-eq)
have )1 ®5 ¢2 € space-as-set (— tensor-invariant I J)»
by (auto intro!: auz orthogonal-complementl simp add: uminus-ccsubspace.rep-eq tensor-invariant-def
cespan.rep-eq
simp flip: orthogonal-complement-of-closure orthogonal-complement-of-cspan)
then have ¢ 1¢2: «Proj (tensor-invariant I J) xy (Y1 @5 ¢2) = 0>
by (simp add: kernel-memberD)

have ¢ 1¢1: <Proj (tensor-invariant I J) xy (Y1 @5 1) = Y1 @5 @1»
by (auto intro!: Proj-fizes-image space-as-set-ccspan-memberl exl[of - 1] exl[of - ¢1]
simp: tensor-invariant-def W11 p1J)

have ProjProj: «Proj ((Proj I ®, Proj J) xs T) = Proj I ®, Proj J»
by (simp add: Proj-on-own-range’ adj-Proj comp-tensor-op tensor-op-adjoint)

show «Proj (tensor-invariant I J) xy (¢ ®s @) = Proj ((Proj I ®, Proj J) xg T) v (¢¥ ®s @)
apply (simp add: ProjProj tensor-op-ell2 flip: ¥ 1-def @1-def)
apply (simp add: < = 1 + ¥2» tensor-ell2-addl cblinfun.add-right ¢ 2¢)
by (simp add: V1ol V192 «p = 1 + p2> tensor-ell2-add2 cblinfun.add-right)
qed

lemma tensor-invariant-mono-left: <I < I’ = tensor-invariant I J < tensor-invariant I' J>
by (auto intro!: space-as-set-mono ccspan-mono simp add: tensor-invariant-def less-eq-ccsubspace.rep-eq)

lemma swap-tensor-invariant[simp|: <swap-ell2 xg tensor-invariant I J = tensor-invariant J I»
by (force intro!: arg-conglwhere f=ccspan] simp: cblinfun-image-ccspan tensor-invariant-def)

lemma tensor-invariant-SUP-left: <tensor-invariant (SUP z€X. I z) J = (SUP z€X. tensor-invariant
(Iz)Jy
proof (rule order.antisym)
show «(SUP z€X. tensor-invariant (I z) J) < tensor-invariant (SUP z€X. I z) J»
by (auto intro!: SUP-least tensor-invariant-mono-left SUP-upper)

have tensor-left-apply: <CBlinfun (Az. z ®; y) *y © = 2 Q, y» for z :: (‘a ell2> and y :: b ell2»
by (simp add: bounded-clinear-tensor-ell22 bounded-clinear-CBlinfun-apply clinear-tensor-ell22)

show <tensor-invariant (SUP z€X. I z) J < (SUP ze€X. tensor-invariant (I z) J)»
proof —
have «tensor-invariant (SUP z€X. I z) J = ccspan {z ®; y |t y. © € space-as-set (SUP z€X. I x)
Ay € space-as-set J})
by (auto simp: tensor-invariant-def)
also have «... = cespan (| | yespace-as-set J. {z @5 y |z. © € space-as-set (SUP z€X. I z)}))
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by (auto intro!: arg-cong[where f=ccspan))

also have «... = (| | yEspace-as-set J. ccspan {z ®; y |x. x € space-as-set (SUP z€X. I z)}))
by (smt (verit) Sup.SUP-cong ccspan-Sup image-image)
also have «... = (| |y€space-as-set J. ccspan (cblinfun-apply (CBlinfun (Az. z ®, y)) ‘{z. z €

space-as-set (SUP zeX. I x)}))
apply (rule SUP-cong, simp)
apply (rule arg-cong[where f=ccspan))
by (auto simp add: image-def tensor-left-apply)

also have «... = (| |y€space-as-set J. CBlinfun (A\z. x ®; y) *s (SUP z€X. I z))»
apply (subst cblinfun-image-ccspan[symmetric])
by auto

also have «... = (|| y€space-as-set J. (SUP z€X. CBlinfun (Az. z Qs y) *s I x))
apply (subst cblinfun-image-SUP)
by simp

also have «... < (| |z€X. tensor-invariant (I ) J)»
proof (rule SUP-least)
fix y
assume <y € space-as-set J»
have «(CBlinfun (Az. © ®; y) *s I z) < (tensor-invariant (I z) J)» for z
apply (rule ccsubspace-lel)
apply (simp add: tensor-invariant-def cblinfun-image.rep-eq ccspan.rep-eq image-def
tensor-left-apply)
apply (rule closure-mono)
by (auto intro!: complez-vector.span-base <y € space-as-set J»)
then show «(SUP z€X. CBlinfun (Az. x ®s y) xs I z) < (SUP z€X. tensor-invariant (I z) J)»
by (auto intro!: SUP-mono)
qed
finally show «<tensor-invariant (|| (I ‘X)) J < (| Jz€X. tensor-invariant (I z) J)»
by —
qged
qed

lemma tensor-invariant-SUP-right: <tensor-invariant I (SUP z€X. Jz) = (SUP z€X. tensor-invariant
I(Jx))
proof —
have <tensor-invariant I (SUP z€X. J x) = swap-ell2 xg tensor-invariant (SUP z€X. J x) I»
by simp

also have «... = swap-ell2 xg (SUP z€X. tensor-invariant (J z) I)»
by (simp add: tensor-invariant-SUP-left)

also have «... = (SUP z€X. swap-ell2 xg tensor-invariant (J x) I)»
using cblinfun-image-SUP by blast

also have «... = (SUP z€X. tensor-invariant I (J x))»
by simp

finally show ?thesis
by —

qed

lemma tensor-invariant-bot-left[simp]: <tensor-invariant L J = L)
using tensor-invariant-SUP-leftwhere I=id and X=«{}» and J=/J|
by simp

lemma tensor-invariant-bot-right[simp): <tensor-invariant I L = 1)

using tensor-invariant-SUP-rightjwhere J=id and X=«{}» and I=I]
by simp
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lemma tensor-invariant-Sup-left: <tensor-invariant (Sup II) J = (SUP I€ll. tensor-invariant I J)»
using tensor-invariant-SUP-leftlwhere X=II and I=id and J=J]
by simp

lemma tensor-invariant-Sup-right: <tensor-invariant I (Sup JJ) = (SUP JeJJ. tensor-invariant I J)»
using tensor-invariant-SUP-rightjwhere X=JJ and I=I and J=id]
by simp

lemma tensor-invariant-sup-left: <tensor-invariant (I1 L 12) J = tensor-invariant I1 J U tensor-invariant
12 J»

using tensor-invariant-Sup-left[where I[I=«{11,12})]

by auto

lemma tensor-invariant-sup-right: <tensor-invariant I (J1 U J2) = tensor-invariant I J1 U tensor-invariant
1J2)

using tensor-invariant-Sup-right[where JJ=<«{J1,J2})]

by auto

lemma compatible-register-invariant-compl: < compatible-register-invariant F I => compatible-register-invariant
F (-I)

by (simp add: compatible-register-invariant-def Proj-ortho-compl cblinfun-compose-minus-left cblin-
Jun-compose-minus-right)

lemma compatible-register-invariant-SUP:
assumes [simp]: <register I
assumes compat: <\z. x € X = compatible-register-invariant F (I z)»
shows <compatible-register-invariant F (SUP z€X. I x)»
proof —
from register-decomposition| OF <register F)
have «let 'd::type = register-decomposition-basis F in ?thesis»
proof with-type-mp
case with-type-mp
then obtain U :: «((Ya x 'd) ell2 =c 'b ell2»
where [iff]: «unitary U> and FU: <F 9 = sandwich U xy (¥ ®, id-cblinfun)) for ¢
by auto
have x: «Proj (I z) ocr, U ocr (A ®, id-cblinfun) ocr, Ux = U ocr (A ®, id-cblinfun) ocp Usx
ocr Proj (Iz)if <x € X> for z A
using compat|OF that]
by (simp add: compatible-register-invariant-def FU sandwich-apply cblinfun-compose-assoc)
have «(Ux ocr Proj (Iz) ocr U) ocr (A ®, id-cblinfun) = (A ®, id-cblinfun) ocy, (Ux ooy, Proj
(Iz) ocr, U) if <z € X for z A
using x[where A=A, OF that, THEN arg-cong, where f=\z. Ux ocr >, THEN arg-cong,
where f=\z. z ocr U]
apply (simp add: cblinfun-compose-assoc)
by (simp flip: cblinfun-compose-assoc)
then have «Proj (Ux xs I z) ocr (A ®, id-cblinfun) = (A ®, id-cblinfun) ocr Proj (Ux xg I x)
if <ve X>forz A
using that
by (simp flip: Proj-sandwich add: sandwich-apply)
then have «Proj (Ux g I x) € commutant (range (AA. A ®, id-cblinfun)) if <z € X» for z
unfolding commutant-def using that by auto
then have <Proj (Ux xg I z) € range (AB. id-cblinfun ®, B)> if <z € X for x
by (simp add: commutant-tensorl that)
then obtain m where *: <Proj (Ux g I z) = id-cblinfun ®, = x> if <z € X for z
apply atomize-elim
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apply (rule choice)
by (simp add: image-iff)
have m-proj: <is-Proj (w z)» if <z € X» for z
proof —
have <Proj (Ux xg I x)x = Proj (Ux xg I x)»
by (simp add: adj-Proj)
then have «<(id-cblinfun :: 'a ell2 =cp -) ®, ™ & = id-cblinfun ®, ™ T+
by (simp add: x[OF that] tensor-op-adjoint)
then have 1: «m z = 7 z%
using inj-tensor-right| OF id-cblinfun-not-0] injD by fastforce
have «(Proj (Ux xg I x) ocr Proj (Ux xg I x) = Proj (Ux g I x)»
by simp
then have «(id-cblinfun :: 'a ell2 =¢p, -) ®, (7 z ocp ™ x) = id-cblinfun ®, © >
by (simp add: x[OF that] comp-tensor-op)
then have 2: «<«m x ocp, Tz =7 o
using inj-tensor-right| OF id-cblinfun-not-0] injD by fastforce
from 1 2 show <is-Proj (7 z)»
by (simp add: is-Proj-I)
qged
define o where (0 © = 7z *xg T for z
have xx: «Ux xg I x = tensor-invariant T (o z)» if <z € X for z
using *|[OF that, THEN arg-cong, where f=<\t. t xg T}]
by (simp add: tensor-invariant-via-Proj o-def Proj-on-own-range w-proj that)
have «sandwich (Ux) (Proj (SUP z€X. I x)) = Proj (Ux xg (SUP z€X. I z))»
by (smt (verit) sandwich-apply Proj-lift-invariant Proj-range <unitary U> cblinfun-compose-image
unitary-adj unitary-range unitary-sandwich-register)

also have ... = Proj (SUP z€X. Ux xg I z)
by (simp add: cblinfun-image-SUP)

also have «... = Proj (SUP z€X. tensor-invariant T (o z))»
using *xx by auto

also have (... = Proj (tensor-invariant T (SUP z€X. o z))»
by (simp add: tensor-invariant-SUP-right)

also have «... = id-cblinfun ®, Proj (SUP z€X. o z)»

by (simp add: Proj-on-own-range’ adj-Proj comp-tensor-op tensor-invariant-via- Proj tensor-op-adjoint)
also have «... € commutant (range (AA. A ®, id-cblinfun))>
by (simp add: commutant-tensorl)
finally have «(Ux ocr Proj (SUP z€X. I1xz) ocr U) ocr (A ®, id-cblinfun) = (A ®, id-cblinfun)
ocr (Ux ocr Proj (SUP z€X. Ix) ocp U)» for A
by (simp add: sandwich-apply commutant-def)
from this[ THEN arg-cong, where f=«\z. U ocp x>, THEN arg-cong, where f=\z. z oo U]
have <Proj (SUP z€X. I x) ocr, U ocr (A ®, id-cblinfun) ooy, Ux = U ocr (A ®, id-cblinfun)
ocr, Ux ocr Proj (SUP zeX. I x)» for A
apply (simp add: cblinfun-compose-assoc)
by (simp flip: cblinfun-compose-assoc)
then have «Proj (SUP z€X. I z) oc, F A= F A ocy, Proj (SUP z€X. Iz)s for A
by (simp add: FU sandwich-apply cblinfun-compose-assoc)
then show <compatible-register-invariant F (SUP z€X. I x)»
by (simp add: compatible-register-invariant-def)
qed
from this[cancel-with-type]
show ?thesis
by —
qed

lemma compatible-register-invariant-INF":
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assumes [simp]: <register F
assumes compat: <\z. x € X = compatible-register-invariant F (I z)»
shows <compatible-register-invariant F (INF z€X. I x))
proof —
from compat have <compatible-register-invariant F (— I z)y if <z € X» for x
by (simp add: compatible-register-invariant-compl that)
then have <compatible-register-invariant F (SUP z€X. — I x)»
by (simp add: compatible-register-invariant-SUP)
then have <compatible-register-invariant F (— (SUP z€X. — I x))
by (simp add: compatible-register-invariant-compl)
then show <compatible-register-invariant F (INF z€X. I z)»
by (metis Extra-General.uminus-INF' ortho-involution)
qed

lemma compatible-register-invariant-Sup:
assumes <register F'
assumes (\I. [€l] = compatible-register-invariant F I
shows <compatible-register-invariant F (Sup IT)»
using compatible-register-invariant-SUP[where X=II and I=id and F=F] assms by simp

lemma compatible-register-invariant-Inf:
assumes <(register F»
assumes (\I. I€I] = compatible-register-invariant F I»
shows <compatible-register-invariant F (Inf II)»
using compatible-register-invariant-INF|where X=II and I=id and F=F] assms by simp

lemma compatible-register-invariant-inter:
assumes <(register F»
assumes <compatible-register-invariant F' Iy
assumes <compatible-register-invariant F J»
shows <compatible-register-invariant F (I 1 J)»
using compatible-register-invariant-Inf[where II=«{I,J})]
using assms by auto

lemma compatible-register-invariant-pair:
assumes <compatible-register-invariant F I»
assumes <compatible-register-invariant G I»
shows <compatible-register-invariant (F;G) I»
proof (cases <compatible F G»)
case True
note this[simp)

have x: <Proj I ocr, (F;G) (a ®, b) = (F;G) (a ®, b) ocr Proj I> for a b
using assms
apply (simp add: register-pair-apply compatible-register-invariant-def)
by (metis cblinfun-compose-assoc)
have «Proj I ocr, (F;G) A = (F;G) A ocr Proj Iy for A
apply (rule tensor-extensionality| THEN fun-cong[where z=A]])
by (auto introl: comp-preregister|unfolded comp-def, OF - preregister-mult-left]
comp-preregister|[unfolded comp-def, OF - preregister-mult-right] * )
then show ?thesis
using assms by (auto simp: compatible-register-invariant-def)
next
case Fulse
then show ?thesis
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using [[simproc del: Laws-Quantum.compatibility-warn]]
by (auto simp: compatible-register-invariant-def register-pair-def compatible-def)
qed

lemma compatible-register-invariant-tensor:
assumes [register]: <register 'y <register G»
assumes <compatible-register-invariant F' Iy
assumes <compatible-register-invariant G J»
shows <compatible-register-invariant (F ®, G) (I ®g J)
proof —
have [iff]: «preregister (Aab. Proj (I ®s J) ocr (F ®, G) ab)
by (auto intro!: comp-preregister|unfolded comp-def, OF - preregister-mult-left])
have [iff]: «preregister (Aab. (F &, G) ab ocy, Proj (I ®g J))»
by (auto introl: comp-preregister|unfolded comp-def, OF - preregister-mult-right])
have IF: <Proj I oc, F a = F a ocp Proj Iy for a
using assms(3) compatible-register-invariant-def by blast
have JG: <Proj J oc, G b= G b ocy Proj J) for b
using assms(4) compatible-register-invariant-def by blast
have (Proj (I ®s J) ocr (F ®, G) (a ®, b) = (F @, G) (a ®, b) ocr. Proj (I ®s J)» for a b
by (simp add: tensor-ccsubspace-via-Proj Proj-on-own-range is-Proj-tensor-op comp-tensor-op IF
JG)
then have «(Aab. Proj (I ®s J) ocr (F @, G) ab) = (Aab. (F @, G) ab ocr Proj (I @g J))
apply (rule-tac tensor-extensionality)
by auto
then show ?thesis
unfolding compatible-register-invariant-def
by meson
qed

lemma compatible-register-invariant-image-shrinks:
assumes <compatible-register-invariant F I»
shows <F U xg I < I»
proof —
have «F U xs I = (F U ocr Proj I) xg T»
by (simp add: cblinfun-compose-image)
also have «... = (Proj I oo, F U) xg T»
by (metis assms compatible-register-invariant-def)
also have ... < Proj I xg T»
by (simp add: Proj-image-leq cblinfun-compose-image)

also have «... = )
by simp
finally show ?thesis
by —
qed

lemma sum-eq-SUP-ccsubspace:
fixes I :: <’a = 'b::complex-normed-vector ccsubspaces
assumes (finite X»
shows (> zeX. Iz) = (SUP zeX. I z)»
using assms apply induction
by simp-all

Variant of invariant-splitting (see there) that allows the operation that is applied to depend on
the state of some other register.
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lemma inv-split-reg:
fixes X :: 'z update = 'm updater — register containing the index for the unitary
and Y :: <’z = 'y update = 'm updater — register on which the unitary operates
and K :: <z = 'm ell2 ccsubspacer — additional invariants
and M :: 'z set»

assumes UI-U: <\z ¢. ze M = o € space-as-set (K z) = (Y z (Ul 2)) vy ¢ = U *y ¢»
assumes pres-11: <\z. ze M = preserves (Ul z) (I1 z) (J1 z) &
assumes [-leq: <I < (SUP zeM. K z N lift-invariant (Y z) (I1 z))»
assumes J-geq: <N\z. ze M = J > K z N lift-invariant (Y z) (J1 z)»
assumes YK: «A\z. ze M = compatible-register-invariant (Y z) (K z)»
assumes regY: <\z. ze M = register (Y z)»
assumes orthoK: «N\z z'. ze M = 2’e M = z # 2’ = orthogonal-spaces (K z) (K z')»
assumes < > (»
assumes [iff]: «finite M>
shows (preserves U I J &>
proof —
show ?thesis
proof (rule invariant-splitting[where S=«K»> and S'=«K» and I=<\z. K z 11 lift-invariant (Y z) (11
z)»
and J=\z. K z N lift-invariant (Y z) (J1 z)» and X=M])
from orthoK
show <orthogonal-spaces (K z) (K 2')y if «zeM)» «z'eM> <z # 2z’ for z 2’
using that by simp
then show <orthogonal-spaces (K z) (K z')y if <zeM)» <z'eM)» <z # 2" for z 2’
using that by —
show (K z M lift-invariant (Y 2) (I1 z) < K 2 for z
by auto
show <K z M lift-invariant (Y z) (J1 z) < K 2 for z
by auto
show U xg K z < K 2 if <ze M for z
proof —
from UI1-U[OF that]
have (U s K z = (Y 2) (Ul z) x5 K 2
apply (rule-tac space-as-set-inject| THEN iffD1])
by (simp add: cblinfun-image.rep-eq)
also from YK[OF that] have ... < K 2
by (simp add: compatible-register-invariant-image-shrinks)
finally show ?thesis
by —
qed
from I-leq
show I < (> zeM. K z 1 lift-invariant (Y z) (I1 2))»
apply (subst sum-eq-SUP-ccsubspace)
by auto
from J-geq
show «(>" zeM. K z N lift-invariant (Y z) (J1 z)) < J»
apply (subst sum-eq-SUP-ccsubspace)
by (auto simp: SUP-le-iff)
from assms show 0 < &
by —
show «(preserves U (K z M lift-invariant (Y z) (11 2))
(K z N lift-invariant (Y z) (J1 z)) e if «zeM> for z
proof —
show ?thesis
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proof (rule preserves-register[where U'=<Ul z> and I'=<I1 2> and J'=«JI 2> and F=<«Y 2> and
K=K ))
show «preserves (Ul z) (I1 z) (J1 z) &
by (simp add: pres-11[OF that])
show «(register (Y z)»
using regY[OF that] by —
from YK|[OF that] show <compatible-register-invariant (Y z) (K z)»
by —
from U1-U[OF that]
show (Vi €espace-as-set (K z M lift-invariant (Y z) (I1 2)). (Y 2) (Ul 2) xy ¥ = U xy ¢
by auto
show (K z M lift-invariant (Y z) (I1 z) < lift-invariant (Y z) (I1 z)»
by auto
show <K z M lift-invariant (Y z) (I1 2) < K 2
by simp
show «lift-invariant (Y z) (J1 z) N K z < K z N lift-invariant (Y z) (J1 z)»
using [[simp-trace])
by simp
qed
qed
show «finite M»
by simp
qed
qed

lemma Proj-ket-invariant-ket: < Proj (ket-invariant X) v ket i = (if i€ X then ket i else 0)»
proof (cases i€ X»)
case True
then have <ket i € space-as-set (ket-invariant X)»
by (simp add: ccspan-superset’ ket-invariant-def)
then have <Proj (ket-invariant X) sy ket i = ket i
by (rule Proj-fizes-image)
also have <ket i = (if i€ X then ket i else 0)»
using True by simp
finally show ?thesis
by —
next
case Fulse
then have x: <ket { € space-as-set (ket-invariant (—X))»
by (simp add: ccspan-superset’ ket-invariant-def)
have (Proj (ket-invariant X) =y ket i = (id-cblinfun — Proj (ket-invariant (—X))) vy ket ©
by (simp add: Proj-ortho-compl ket-invariant-compl)
also have «... = ket i — Proj (ket-invariant (—X)) xy ket O
by (simp add: minus-cblinfun.rep-eq)
also from x have «... = ket i — ket ©»
by (simp add: Proj-fizes-image)
also have «... = (if i€ X then ket i else 0)»
using Fualse by simp
finally show ?thesis
by —
qed

lemma lift-invariant-function-at-ket-inv: <lift-invariant (function-at x) (ket-invariant I) = ket-invariant

{f fzelp
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proof —
have «Proj (lift-invariant (function-at x) (ket-invariant I)) = Proj (ket-invariant {f. fz € I})»
proof (rule equal-ket)
fix f: da= b
have ¢ Proj (lift-invariant (function-at x) (ket-invariant I)) (ket f) = function-at x (Proj (ket-invariant

1)) (ket f)»

by (simp add: Proj-on-own-range lift-invariant-def register-projector)

also have «... = function-at-U x xy Fst (Proj (ket-invariant I)) =y (function-at-U z)x *y ket f>
by (simp add: function-at-def sandwich-apply comp-def)
also have «... = function-at-U x *y Fst (Proj (ket-invariant I)) =y ket (f z, snd (puncture-function
)
by (simp flip: puncture-function-split)
also have «... = (if fx € I then function-at-U z v (ket (f x) ®; ket (snd (puncture-function z f)))
else 0)»
by (auto simp: Fst-def tensor-op-ell2 Proj-ket-invariant-ket simp flip: tensor-ell2-ket)
also have «... = (if fz € I then ket (fiz-punctured-function z (f z, snd (puncture-function x f)))
else 0)»
by (simp add: tensor-ell2-ket)
also have «... = (if fz € I then ket f else 0)»
by (simp flip: puncture-function-split)
also have (... = Proj (ket-invariant {f. fx € I}) xy ket >

by (simp add: Proj-ket-invariant-ket)
finally show <Proj (lift-invariant (function-at z) (ket-invariant I)) =y ket f = Proj (ket-invariant
{f. fz € I})xy ket >
by —
qed
then show ?thesis
by (rule Proj-inj)
qed

lemma ket-invariant-prod: < Proj (ket-invariant (A x B)) = Proj (ket-invariant A) ®, Proj (ket-invariant
B)»
apply (rule equal-ket)
by (auto simp: Proj-ket-invariant-ket tensor-op-ell2 simp flip: tensor-ell2-ket
split: if-split-asm)

lemma lift-Fst-inv: <lift-invariant Fst I = I Qg T»

apply (rule Proj-inj)

by (simp add: lift-invariant-def Proj-on-own-range register-projector Fst-def tensor-ccsubspace-via-Proj)
lemma [lift-Snd-inv: <lift-invariant Snd I = T ®g I»

apply (rule Proj-inj)

by (simp add: lift-invariant-def Proj-on-own-range register-projector Snd-def tensor-ccsubspace-via- Proj)

lemma lift-Snd-ket-inv: <lift-invariant Snd (ket-invariant I) = ket-invariant (UNIV x I)»
apply (rule Proj-inj)
apply (simp add: lift-invariant-def Proj-on-own-range register-projector ket-invariant-prod)
by (simp add: Snd-def)

lemma lift-Fst-ket-inv: <lift-invariant Fst (ket-invariant I) = ket-invariant (I x UNIV))
apply (rule Proj-inj)
apply (simp add: lift-invariant-def Proj-on-own-range register-projector ket-invariant-prod)
by (simp add: Fst-def)

lemma [lift-inv-prod:

assumes [simpl: <compatible F' G»
shows (lift-invariant (F;G) (ket-invariant (I x J)) =
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lift-invariant F (ket-invariant I) N lift-invariant G (ket-invariant J)»
by (simp add: compatible-proj-intersect lift-invariant-def register-pair-apply ket-invariant-prod)

lemma lift-inv-tensor:
assumes [register]: <register Fy <register G»
shows «lift-invariant (F ®, G) (ket-invariant (I x J)) =
lift-invariant F (ket-invariant I) ®g lift-invariant G (ket-invariant J)»
by (simp add: lift-invariant-def ket-invariant-prod tensor-ccsubspace-image)

lemma lift-invariant-sup:
fixes F' :: (("a ell2 =c 'aell2) = (b ell2 =cp 'b ell2)
assumes [simp]: <register F»
shows <lift-invariant F (I U J) = lift-invariant F I U lift-invariant F J»
proof —
from register-decomposition|OF <register F)
have «let 'c::type = register-decomposition-basis F in ?thesis
proof with-type-mp
case with-type-mp
then obtain U :: «(Ya x ‘c) ell2 =c1 b ell2)
where <unitary Uy and FU: «F 9 = sandwich U xy (9 ®, id-cblinfun)> for 9
by auto
have lift-F: lift-invariant F K = U *g (Proj (tensor-invariant K T)) *g T» for K
using <unitary U»
by (simp add: lift-invariant-def FU sandwich-apply cblinfun-compose-image tensor-invariant-via-Proj)
show <(lift-invariant F (I U J) = lift-invariant F I U lift-invariant F J»
by (auto simp: lift-F tensor-invariant-sup-left)
qed
from this[cancel-with-type]
show ?thesis
by —
qed

lemma [lift-invariant-SUP:
fixes F :: ((Ya ell2 =¢p 'a ell2) = ('b ell2 =cp 'b ell2)
assumes <(register F'»
shows «(lift-invariant F (SUP z€X. I x) = (SUP ze€X. lift-invariant F' (I z))»
proof —
from register-decomposition| OF <register F)
have «let 'd::type = register-decomposition-basis F in ?thesis»
proof with-type-mp
case with-type-mp
then obtain U :: «(Ya x 'd) ell2 =c 'b ell2»
where <unitary Uy and FU: <F ¥ = sandwich U xy (9 ®, id-cblinfun) for 9
by auto
have lift-F: lift-invariant F K = U *g (Proj (tensor-invariant K T)) xg T» for K
using <unitary U»
by (simp add: lift-invariant-def FU sandwich-apply cblinfun-compose-image tensor-invariant-via-Proj)
show lift-invariant F (SUP z€X. I z) = (SUP zeX. lift-invariant F (I z))»
by (auto simp: lift-F tensor-invariant-SUP-left cblinfun-image-SUP)
qged
from this[cancel-with-type]
show ?thesis
by —
qed
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lemma lift-invariant-compl: <lift-invariant R (— U) = — lift-invariant R U» if <register R»
apply (simp add: lift-invariant-def Proj-ortho-compl)
by (metis (no-types, lifting) Proj-is-Proj Proj-on-own-range Proj-ortho-compl Proj-range register-minus
register-of-id
register-projector that)

lemma lift-invariant-INF':
assumes <(register F»
shows «(lift-invariant F ([ |z€A. I z) = ([|z€A. lift-invariant F (I z))»
using lift-invariant-SUP[OF assms, where I=«\z. — I ) and X=A]
by (simp add: lift-invariant-compl assms flip: uminus-INF')

lemma lift-invariant-inf:
assumes <register F'
shows «lift-invariant F (I M J) = lift-invariant F I N lift-invariant F J»
using lift-invariant-INF[where A=«{False, True}» and I=<\b. if b then J else I)] assms
by simp

lemma [lift-invariant-mono:
assumes <register F'»
assumes <[ < J»
shows «(lift-invariant F' I < lift-invariant F J»
by (metis assms(1,2) inf.absorb-iff2 lift-invariant-inf)

lemma lift-inv-prod”:
fixes F :: (('a ell2 =y 'a ell2) = (‘c ell2 =cp 'c ell2)
fixes G :: (b ell2 =¢cr b ell2) = (c ell2 =¢yp 'c ell2)
assumes [simp|: <compatible F G»
shows <lift-invariant (F;G) (ket-invariant T) =
(SUP (z,y)€l. lift-invariant F (ket-invariant {x}) N lift-invariant G (ket-invariant {y}))»
by (simp flip: lift-inv-prod lift-invariant-SUP ket-invariant-SUP)

lemma lift-inv-tensor”:
assumes [register|: <register F» <register G)
shows <lift-invariant (F ®, G) (ket-invariant I) =
(SUP (z,y)€l. lift-invariant F (ket-invariant {z}) ®g lift-invariant G (ket-invariant {y}))»
by (simp add: register-tensor-is-register flip: lift-inv-tensor lift-invariant-SUP ket-invariant-SUP)

lemma classical-operator-ket-invariant:
assumes <inj-map f>
shows <classical-operator f xg ket-invariant I = ket-invariant (Some —*f ‘1)
proof —
have <ccspan ((Az. case f x of None = 0 | Some ¢ = ket z) ‘I) = (| |z€l. cespan ((Az. case fz of
None = 0 | Some ¥ = ket z) ‘ {z}))
by (auto intro: arg-cong[where f=ccspan| simp add: SUP-ccspan)

also have «... = (| |z€l. ccspan (ket < Some —* f “ {z}))
proof (rule SUP-cong|OF refl])
fix z

have [simp]: <Some — {None} = {}
by fastforce
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have [simp]: <Some —* {Some a} = {a}» for a
by fastforce
show <ccspan ((Az. case f x of None = 0 | Some © = ket z) ‘ {x}) = cespan (ket * Some —* f ¢
{a})
apply (cases <f x»)
by auto
qed
also have «... = ccspan (ket * Some —“f “I)»
by (auto intro: arg-cong[where f=ccspan| simp add: SUP-ccspan)
finally show ?thesis
by (simp add: ket-invariant-def cblinfun-image-ccspan image-image classical-operator-ket assms
classical-operator-ezists-ing)
qed

lemma Proj-ket-invariant-singleton: <Proj (ket-invariant {z}) = selfbutter (ket z)»
by (simp add: ket-invariant-def butterfly-eq-proj)

lemma [lift-inv-classical:
fixes F :: </a ell2 =¢cyr, 'a ell2 = 'bell2 =cr 'bell2y and f :: ¢a X 'c = 'b
assumes [register]: <register F'
assumes <inj f»
assumes (\z::'a. x € I = F (selfbutter (ket x)) = sandwich (classical-operator (Some o f)) (selfbutter
(ket ) ®, id-cblinfun)s
shows «lift-invariant F (ket-invariant I) = ket-invariant (f ‘(I x UNIV))
proof —
have [iff]: <isometry (classical-operator (Some o f))»
by (auto introl: isometry-classical-operator assms)
have (lift-invariant F (ket-invariant I) = (SUP x€l. lift-invariant F (ket-invariant {z}))
by (simp add: flip: lift-invariant-SUP ket-invariant-SUP)

also have «... = (SUP z€l. F (selfbutter (ket x)) *g T)»
by (simp add: lift-invariant-def Proj-ket-invariant-singleton)
also have (... = (SUP z€l. sandwich (classical-operator (Some o f)) (selfbutter (ket ) ®, id-cblinfun)
*g T))
using assms by force
also have (... = (SUP z€l. sandwich (classical-operator (Some o f)) (Proj (ket-invariant ({z} x

UNIV))) x5 T)»
apply (simp add: flip: ket-invariant-tensor)
by (metis (no-types, lifting) Proj-ket-invariant-singleton Proj-top ket-invariant-UNIV ket-invariant-prod
ket-invariant-tensor)

also have «... = (SUP z€l. Proj (classical-operator (Some o f) *g ket-invariant ({x} x UNIV)) g
Ty
using Proj-sandwich by fastforce
also have «... = (SUP z€l. classical-operator (Some o f) xg ket-invariant ({x} x UNIV))»
by auto
also have «... = (SUP z€l. ket-invariant (f * ({z} x UNIV)))»

apply (subst classical-operator-ket-invariant)
apply (simp add: assms(2))
by (simp add: inj-vimage-image-eq flip: image-image)

also have «... = ket-invariant ({|Jz€l. f * ({z} x UNIV))
by (simp add: ket-invariant-SUP)

also have «... = ket-invariant (f < (I x UNIV))»
by auto

finally show ?thesis
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by —
qed

lemma register-image-lift-invariant:
assumes <register F'
assumes <isometry U»
shows «F U xg lift-invariant F I = lift-invariant F (U *g I)»
proof —
have <F U g lift-invariant F I = F U xg F (Proj I) xg T»
by (simp add: lift-invariant-def)

also have «... = F U g F (Proj I) xg (F U)x *g T)
by (simp add: assms(1,2) range-adjoint-isometry register-isometry)
also have «... = F (sandwich U (Proj I)) g T»

by (smt (verit, best) Proj-lift-invariant Proj-range Proj-sandwich assms(1,2) range-adjoint-isometry
register-isometry register-sandwich)

also have «... = F (Proj (U xg I)) xg T»
by (simp add: Proj-sandwich assms(2))
also have «... = lift-invariant F (U *g I)»

by (simp add: lift-invariant-def)
finally show ?thesis
by —
qed

lemma ell2-sum-ket-ket-invariant:
fixes ¢ :: </a ell2»
assumes (Y € space-as-set (ket-invariant X))
shows ) = (3 i€X. Rep-ell2 1) i ¢ ket i)
proof —
from assms have <) = Proj (ket-invariant X) *y >
by (simp add: Proj-fizes-image)

also have «... = Proj (ket-invariant X) =y (3 ooi. Rep-ell2 1 i x¢ ket i)
by (simp flip: ell2-decompose-infsum,)

also have «... = (3 oi. Rep-ell2 ¢ i x¢ Proj (ket-invariant X) =y ket i)
by (simp flip: infsum-cblinfun-apply add: ell2-decompose-summable cblinfun.scale C-right)

also have «... = (3" oot. Rep-ell2 v i x¢ (if i€ X then ket i else 0))»
by (simp add: Proj-ket-invariant-ket)

also have «... = (3] i€X. Rep-ell2 ¢ i ¢ ket i)
apply (rule infsum-cong-neutral)
by auto

finally show ?thesis
by simp

qed

lemma compatible-register-invariant-Fst-comp:
fixes I :: <(‘a x 'b) set»
assumes [simpl: <(register F
assumes (/\y. compatible-register-invariant F (ket-invariant ((Az. (z,y)) —‘ 1))
shows <compatible-register-invariant (Fst o F) (ket-invariant I)»
apply (subst asm-rijof <I = (Jy. ((Az. (z,y)) = 1) x {y})])
apply fastforce
apply (simp add: ket-invariant-SUP)
apply (rule compatible-register-invariant-SUP, simp)
apply (simp add: compatible-register-invariant-def ket-invariant-prod Fst-def comp-tensor-op)
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by (metis assms compatible-register-invariant-def)

lemma compatible-register-invariant-Fst:
assumes A\y. ((A\z. (z,y)) —“I) = UNIV V (A\z. (z,y)) —“1) = {}
shows <compatible-register-invariant Fst (ket-invariant I)»
apply (subst asm-rl[of <Fst = Fst o id»], simp)
apply (rule compatible-register-invariant-Fst-comp, simp)
using assms by (rule compatible-register-invariant-id)

lemma compatible-register-invariant-Snd-comp:
fixes I :: <(a x 'b) set
assumes [simp]: <register F
assumes (A\z. compatible-register-invariant F (ket-invariant ((Ay. (z,y)) —< 1))
shows <compatible-register-invariant (Snd o F) (ket-invariant I)»
apply (subst asm-ri[of I = (Uz. {z} x ((A\y. (z,y)) = D))])
apply fastforce
apply (simp add: ket-invariant-SUP)
apply (rule compatible-register-invariant-SUP, simp)
apply (simp add: compatible-register-invariant-def ket-invariant-prod Snd-def comp-tensor-op)
by (metis assms compatible-register-invariant-def)

lemma compatible-register-invariant-Snd:
assumes (Az. ((Ay. (z,y)) —“I) = UNIV vV ((Ay. (z,y)) —°1) = {h
shows <compatible-register-invariant Snd (ket-invariant I)»
apply (subst asm-rijof <Snd = Snd o id>], simp)
apply (rule compatible-register-invariant-Snd-comp, simp)
using assms by (rule compatible-register-invariant-id)

lemma compatible-register-invariant-Fst-tensor[simp):

shows <compatible-register-invariant Fst (T ®g 1)

by (simp add: compatible-register-invariant-def Fst-def Proj-on-own-range comp-tensor-op is-Proj-tensor-op
tensor-ccsubspace-via-Proj)

lemma compatible-register-invariant-Snd-tensor|[simp:

shows <compatible-register-invariant Snd (I ®g T)»

by (simp add: compatible-register-invariant-def Snd-def Proj-on-own-range comp-tensor-op is-Proj-tensor-op
tensor-ccsubspace-via-Proj)

lemma compatible-register-invariant-sandwich-comp:

fixes U :: ('a ell2 =c1 'b ell2»

assumes [simp|: <unitary U>

assumes <compatible-register-invariant F (Ux xg I)»

shows <compatible-register-invariant (sandwich U o F) I»

apply (subst asm-rljof <I = U xg Ux xg I}])

apply (simp add: cblinfun-assoc-left(2))

using assms

by (simp add: compatible-register-invariant-def unitary-sandwich-register register-mult
flip: Proj-sandwich[of U])

lemma compatible-register-invariant-function-at-comp:

assumes [simp]: <register F»

assumes <\ z. compatible-register-invariant F (ket-invariant {f z |f. f € I A z(z := undefined) = f(z
:= undefined)})»

shows <compatible-register-invariant (function-at z o F') (ket-invariant I)»
proof —
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have «(Aa. (a, snd (puncture-function x z))) —* Some — ¢ inv-map (Some o fix-punctured-function x)
‘1
= (Xa. (a, snd (puncture-function x z))) —* puncture-function x ‘ I> (is «?lhs = -») for z
by (simp add: inv-map-total bij-fiz-punctured-function bij-is-surj inj-vimage-image-eq
flip: image-image)
also have «... z = {fz | f. feI A snd (puncture-function x z) = snd (puncture-function z f)}» for z
apply (transfer fizing: I x)
by auto
also have «... z = {fz | f. fel N z(z:=undefined) = f(z:=undefined)}» for z
proof —
have aux: <f € | =
z(z := undefined) o Transposition.transpose x undefined =
f(z := undefined) o Transposition.transpose z undefined —
dfa. fz=fax A fa el z(z:= undefined) = fa(z := undefined)) for f
by (metis swap-nilpotent)
show ?thesis
apply (transfer fizing: z z I)
using aux by (auto simp: fun-upd-comp-left)

qged
finally have <compatible-register-invariant F (ket-invariant ((Aa. (a, snd (puncture-function z z))) —°
Some — ¢ inv-map (Some o fix-punctured-function z) ‘I))» for z

by (simp add: assms)
then have x: <compatible-register-invariant F (ket-invariant ((Aa. (a, y)) — Some —* inv-map (Some
o fix-punctured-function x) ‘ I)) for y
by (metis fix-punctured-function-inverse snd-conv)
show ?thesis
unfolding function-at-def function-at-U-def Let-def comp-assoc
apply (rule compatible-register-invariant-sandwich-comp)
apply (simp add: bij-fiz-punctured-function)
apply (subst classical-operator-adjoint)
apply (simp add: bij-fiz-punctured-function bij-is-inj)
apply (subst classical-operator-ket-invariant)
apply (simp add: bij-fiz-punctured-function bij-is-inj)
apply (rule compatible-register-invariant-Fst-comp, simp)
using * by simp
qed

lemma compatible-register-invariant-function-at:
assumes (\fy. fel = f(x:=y) € Iy
shows <compatible-register-invariant (function-at ) (ket-invariant I)
apply (subst asm-rlof <function-at x = function-at x o id>], simp)
apply (rule compatible-register-invariant-function-at-comp, simp)
apply (rule compatible-register-invariant-id)
using assms fun-upd-idem-iff by fastforce

The following lemma allows show that an invariant is preserved across several consecutive
operations. Usually, norm V and norm U < 1, so the lemma essentially says that the errors
are additive.

lemma preserves-trans[trans|:
assumes presU: <preserves U I J &)
assumes presV: <preserves V. J K &
shows (preserves (V ocr U) I K (norm V *x & 4+ norm U * 0))
proof —
have «norm ((id-cblinfun — Proj K) ocr (V ocr, U) ocr ProjI)
= norm ((id-cblinfun — Proj K) ocr V ocr (Proj J + (id-cblinfun — Proj J)) ocr U ocyr Proj I)»
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by (auto simp add: cblinfun-assoc-left(1))
also have «... < norm ((id-cblinfun — Proj K) ocr V ocr, Proj J ocr, U ocr ProjI)
+ norm ((id-cblinfun — Proj K) ocr V ocy (id-cblinfun — Proj J) ocr U ocr, Proj I)»
by (smt (verit) cblinfun-compose-add-left cblinfun-compose-add-right norm-triangle-ineq)
also have «... < norm ((id-cblinfun — Proj K) ocr, V ocr, Proj J ocr, U ocyr, ProjI) + norm V x
&)
proof —
have «norm ((id-cblinfun — Proj K) ocp V ocr (id-cblinfun — Proj J) ocr U ocrp ProjI)
< norm (id-cblinfun — Proj K) x norm (V ocp (id-cblinfun — Proj J) ocr, U ocr Proj I)»
by (metis cblinfun-assoc-left(1) norm-cblinfun-compose)
also have «... < norm (V ocp (id-cblinfun — Proj J) ocr U ocr Proj I)
by (metis Groups.mult-ac(2) Proj-ortho-compl mult.right-neutral mult-left-mono norm-Proj-leq!
norm-ge-zero)
also have (... < norm V % norm ((id-cblinfun — Proj J) ocr, U ocr Proj I)»
by (metis cblinfun-assoc-left(1) norm-cblinfun-compose)
also have ... < norm V * ¢
by (meson norm-ge-zero ordered-comm-semiring-class.comm-mult-left-mono presU preserves-onorm)
finally show ?thesis
by (rule add-left-mono)
ged
also have «... < norm ((id-cblinfun — Proj K) ocr V ocr Proj J ocr, U) % norm (Proj I) + norm
Vxe
by (simp add: norm-cblinfun-compose)
also have «... < norm ((id-cblinfun — Proj K) ocr V ocr, Proj J ocr, U) + norm V x &
by (simp add: norm-is-Proj mult.commute mult-left-le-one-le)

also have «... < norm ((id-cblinfun — Proj K) ocr V ocr Proj J) x norm U + norm V x &
by (simp add: norm-cblinfun-compose)
also have «... < norm U * 6 + norm V x &)

by (metis add.commute add-le-cancel-left mult.commute mult-left-mono norm-ge-zero presV pre-
serves-onorm)
finally show ?thesis
by (simp add: preserves-onorm)
qed

An operation that operates on a register that is outside the invariant preserves the invariant
perfectly.

lemma preserves-compatible:
assumes compat: <compatible-register-invariant F I»
assumes (€ > 0
shows «preserves (F U) 11 &)
proof (rule preservesI’)
from assms show <« > 0> by —
fix ¢ assume <) € space-as-set I»
then have ¢ I: <) = Proj I =y {»
using Proj-fizes-image by force
from compat have FI: <F U %y Proj I xy ¢ = Proj I xy F U %y
by (metis cblinfun-apply-cblinfun-compose compatible-register-invariant-def)
have «Proj (— I) xy F U xy ¥ = 0»
apply (subst ¥I) apply (subst FI)
by (metis FI Proj-ortho-compl 11 cancel-comm-monoid-add-class.diff-cancel cblinfun.diff-left id-cblinfun-apply)
with <¢ > 0> show <norm (Proj (— I) xy F U xy ¢) < &
by simp
qed

lemma Proj-ket-invariant-butterfly: <Proj (ket-invariant {z}) = selfbutter (ket z)»
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by (simp add: butterfly-eq-proj ket-invariant-def)

lemma ket-in-ket-invariantl: <ket x € space-as-set (ket-invariant I)s if «x € I»
by (metis Proj-ket-invariant-ket Proj-range cblinfun-apply-in-image that)

lemma cblinfun-image-ket-invariant-leql:
assumes (A\z. z € [ = U =y ket © € space-as-set J»
shows «U xg ket-invariant I < J»
by (simp add: assms cblinfun-image-ccspan ccspan-leql image-subset-iff ket-invariant-def)

lemma preservesOI: <preserves UI J 0 «—— U xg I < J»
proof
have «(id-cblinfun — Proj J) ocr, Uocp ProjI =0 = U xg I < .J»
by (metis (no-types, lifting) Proj-range add-diff-cancel-left’ cblinfun-assoc-left(2) cblinfun-compose-minus-left
cblinfun-compose-id-left cblinfun-image-mono diff-add-cancel diff-zero top-greatest)
then show <preserves UI J 0 = U xg I < J»
by (auto simp: preserves-onorm,)
next
assume leq: <U xg I < J»
show «(preserves U T J 0>
proof (rule preservesI)
show <0 < (0::real)) by simp
fix ¢
assume < € space-as-set I»
with leq have <U *y ¢ € space-as-set J»
by (metis (no-types, lifting) Proj-fizes-image Proj-range cblinfun-apply-cblinfun-compose cblin-
fun-apply-in-image cblinfun-compose-image less-eq-ccsubspace.rep-eq subset-iff)
then have «Proj J xy U xy ¢ = U *xy
by (simp add: Proj-fizes-image)
then show <norm (U xy ¥ — Proj J xy U xy ¥) < 0
by simp
qed
qed

lemma lift-invariant-id[simp]: <lift-invariant id I = I»
by (simp add: lift-invariant-def)

lemma [lift-invariant-pair-tensor:
assumes <compatible X Y»
shows (ift-invariant (X;Y) (I ®g J) = lift-invariant X I N lift-invariant Y J»
proof —
have «lift-invariant (X;Y) (I ®s J) = (X;Y) (Proj (I ®s J)) *s T
by (simp add: lift-invariant-def)
also have «... = (X;Y) (Proj I ®, Proj J) %s T)
by (simp add: Proj-on-own-range is-Proj-tensor-op tensor-ccsubspace-via-Proj)
also have «... = (X (Proj I) ocr Y (Proj J)) *s T
by (simp add: Laws-Quantum.register-pair-apply assms)
also have «... = lift-invariant X I N lift-invariant Y J»
by (simp add: assms compatible-proj-intersect lift-invariant-def)
finally show ?thesis
by —
qed

lemma lift-invariant-tensor-tensor:
assumes [register|: <register X» <register Y
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shows «(lift-invariant (X ®, Y) (I ®s J) = lift-invariant X I @g lift-invariant Y J»
proof —
have «lift-invariant (X ®, Y) (I ®s J) = (X &, Y) (Proj (I ®g J)) *s T»
by (simp add: lift-invariant-def)
also have «... = (X ®, Y) (Proj I ®, Proj J) xs T
by (simp add: Proj-on-own-range is-Proj-tensor-op tensor-ccsubspace-via-Proy)
also have «... = (X (ProjI) ®, Y (Proj J)) xs T»
by (simp add: Laws-Quantum.register-pair-apply assms register-tensor-apply)
also have «... = lift-invariant X I ®g lift-invariant Y J»
by (simp add: lift-invariant-def tensor-ccsubspace-image)
finally show ?thesis
by —
qed

lemma orthogonal-spaces-lift-invariant|simpl:
assumes <register (>
shows <orthogonal-spaces (lift-invariant @ S) (lift-invariant @ T) «— orthogonal-spaces S T
proof —
have <orthogonal-spaces (lift-invariant Q S) (lift-invariant @ T) «—— Q (Proj S) ocr Q (Proj T) =
0>
by (simp add: orthogonal-projectors-orthogonal-spaces lift-invariant-def Proj-on-own-range assms
register-projector)
also have «... «—— Proj S ocr Proj T = 0»
by (metis (no-types, lifting) assms norm-eq-zero register-mult register-norm)
also have «... «—— orthogonal-spaces S T»
by (simp add: orthogonal-projectors-orthogonal-spaces)
finally show ?thesis
by —
qed

3.2 Distance from invariants

definition dist-inv where <dist-inv R I ¢ = norm (R (Proj (=1I)) xv ¥)»

for R :: «("a ell2 =¢cyp 'a ell2) = ('b ell2 =cp b ell2)
definition dist-inv-avg where <dist-inv-avg R I 1 = sqrt (3. z€ UNIV. (dist-inv R (I z) (¢ 2))?) /
CARD('z))» for 1 :: (z::finite = -

lemma dist-inv-pos[iff]: «dist-inv R I ¢ > 0
by (simp add: dist-inv-def)

lemma dist-inv-avg-posliff]: <dist-inv-avg R I b > 0»
by (simp add: dist-inv-avg-def sum-nonneg)

lemma dist-inv-0-iff:
assumes <(register R»
shows «dist-inv R I ¢ = 0 «—— 1 € space-as-set (lift-invariant R I)»
proof —
have «dist-inv R I ¢ = 0 «— R (Proj (— I)) vy ¢ = O»
by (simp add: dist-inv-def)
also have «... «— Proj (R (Proj (— I)) *xs T) ¥ = 0>
by (simp add: Proj-on-own-range assms register-projector)
also have «... «— ¢ € space-as-set (— (R (Proj (— I)) xs T))»
using Proj-0-compl kernel-memberl by fastforce
also have (... «—— ¥ € space-as-set (— lift-invariant R (—1))»
by (simp add: lift-invariant-def)
also have (... «—— ¢ € space-as-set (lift-invariant R I)»
by (metis (no-types, lifting) Proj-lift--invariant Proj-ortho-compl Proj-range assms

64



ortho-involution register-minus register-of-id)
finally show ?thesis
by —
qed

lemma dist-inv-avg-0-iff:
assumes (register R»
shows <dist-inv-avg R I ¥ = 0 «—— (VY h. ¢p h € space-as-set (lift-invariant R (I h)))»
proof —
have «dist-inv-avg R I 1 = 0 «— (Y h. (dist-inv R (I h) (¢ h))?> = 0)
by (simp add: dist-inv-avg-def sum-nonneg-eq-0-iff)
also have «... «— (Vh. ¢ h € space-as-set (lift-invariant R (I h)))»
by (simp add: assms dist-inv-0-iff)
finally show ?thesis
by —
qed

lemma dist-inv-mono:
assumes <[ < J»
assumes [register|: <register Q>
shows «dist-inv Q J ¥ < dist-inv Q I y»
proof —
from assms
have ProjJI: <Proj (—J) = Proj (—J) ocr Proj (—=I)»
by (simp add: Proj-o-Proj-subspace-left)
have <norm (Q (Proj (— J) ocr, Proj (— I)) v ¥) < norm (Q (Proj (— I)) *y ¥)
by (metis Proj-is-Proj assms(2) is-Proj-reduces-norm register-mult’
register-projector)
then show ?thesis
by (simp add: dist-inv-def flip: ProjJI)
qed

lemma dist-inv-avg-mono:
assumes (A\h. T h < J h
assumes [register|: <register Q>
shows (dist-inv-avg Q J ¢ < dist-inv-avg Q I >
by (auto introl: sum-mono divide-right-mono dist-inv-mono assms
stmp: dist-inv-avg-def)

lemma dist-inv-Fst-tensor:
assumes norm ¢ = 1»
shows (dist-inv (Fst o R) I (Y ®; ¢) = dist-inv R I >
proof —
have «(norm (Fst (R (Proj (— I))) xv ¥ ®s ))? = (norm (R (Proj (— I)) *v ¥))%
by (simp add: Fst-def tensor-op-ell2 norm-tensor-ell2 assms)
then show ?thesis
by (simp add: dist-inv-def)
qed

lemma dist-inv-avg-Fst-tensor:
assumes (\h. norm (¢ h) = I»
shows «(dist-inv-avg (Fst o R) I (Ah. ¢ h ®; ¢ h) = dist-inv-avg R I >
by (simp add: assms dist-inv-avg-def dist-inv-Fst-tensor)
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lemma dist-inv-register-rewrite:
assumes <(register Q> and (register R»
assumes <lift-invariant Q I = lift-invariant R J»
shows «dist-inv Q I ¥ = dist-inv R J ¥»
proof —
from assms
have «lift-invariant Q (—1I) = lift-invariant R (—J)»
by (simp add: lift-invariant-compl)
then have «Proj (Q (Proj (—=1I)) *s T) = Proj (R (Proj (=J)) *s T)»
by (simp add: lift-invariant-def)
then have <R (Proj (— J)) = Q (Proj (— I))»
by (metis Proj-lift-invariant assms lift-invariant-def)
with assms
show ?%thesis
by (simp add: dist-inv-def)
qed

lemma dist-inv-avg-register-rewrite:
assumes <(register )y and <(register R»
assumes (\h. lift-invariant @ (I h) = lift-invariant R (J h)»
shows «(dist-inv-avg Q I ¢ = dist-inv-avg R J >
using assms by (auto intro!: dist-inv-register-rewrite sum.cong simp add: dist-inv-avg-def)

lemma distance-from-inv-avg0I:
<dist-inv-avg Q I ¥ = 0 «— (Y h. dist-inv Q (I h) (¢ h) = 0)» for h :: 'h:finite> and ¢ :: <'h = -
by (simp add: dist-inv-avg-def sum-nonneg-eq-0-iff)

lemma dist-inv-apply:
assumes [register]: <register Q> (register S»
assumes [iff]: «unitary U»
assumes QSR: <Q o S =R
shows <dist-inv Q I (R U xy ¢) = dist-inv Q (S Ux xg I) 1
proof —
have «norm (Q (Proj (— I)) *y R U xy ¥) = norm (Q (Proj (— (S Ux x5 I))) *y ¥)
proof —
have <norm (Q (Proj (— I)) *y R U xy ) = norm (Q (S U)x xy Q (Proj (— I)) xy Q (S U) %y
o)
by (metis assms(1,2,3,4) isometry-preserves-norm o-def register-unitary unitary-twosided-isometry)
also have (... = norm (sandwich (Q (S U)x) (Q (Proj (—1I))) v ¥)»
by (simp add: sandwich-apply)
also have «... = norm (Q (sandwich (S Ux) xy Proj (— I)) v )
by (simp add: flip: register-sandwich register-ady)
also have «... = norm (Q (Proj (S Ux xg — I)) xy )
by (simp add: Proj-sandwich register-coisometry)
also have «... = norm (Q (Proj (— (S Ux xg I))) *y )
by (simp add: unitary-image-ortho-compl register-unitary)
finally show ?thesis
by —
qged
then show ?thesis
by (simp add: dist-inv-def)
qed
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lemma dist-inv-apply-iff:
assumes [register]: <register Q>
assumes [iff]: unitary U»
shows <(dist-inv Q I (Q U xy ) = dist-inv Q (Ux xg I) ¢»
apply (subst dist-inv-apply[where S=id))
by auto

lemma dist-inv-avg-apply:
assumes [register|: <register Q> <register S»
assumes [iff]: <A\h. unitary (U h)>
assumes (Q 0 S = R»
shows «(dist-inv-avg Q I (Ah. R (U h) xy @ h) = dist-inv-avg Q@ (Ah. S (U h)x xg I h) ¢»
using assms by (auto intro!: sum.cong simp: dist-inv-avg-def dist-inv-apply[where S=5])

lemma dist-inv-avg-apply-iff:
assumes [register]: <register Q>
assumes [iff]: <A\h. unitary (U h)»
shows «dist-inv-avg Q I (Ah. Q (U h) v ¥ h) = dist-inv-avg Q (Ah. U hx xg I h) 1)
by (auto intro!: sum.cong dist-inv-apply-iff simp: dist-inv-avg-def)

lemma dist-inv-intersect-onesided:

assumes <compatible-invariants I J»

assumes (register

assumes <dist-inv Q I ¢ = 0»

shows <dist-inv Q (J M I) ¢ = dist-inv Q J ¢»
proof —

have inside: <1p € space-as-set (lift-invariant Q I)»

using assms(2,8) dist-inv-0-iff by blast
have <norm (Q (Proj (— (J N 1))) xy ¥) = norm (¢ — Q (Proj (J M I)) xy ¥)»
by (metis (no-types, lifting) Proj-ortho-compl assms(2) cblinfun.diff-left id-cblinfun.rep-eq regis-
ter-minus
register-of-id)

also have «... = norm (¢ — Q (Proj (J) ocr Proj (I)) xv ¢)
by (metis assms compatible-invariants-def compatible-invariants-inter)
also have «... = norm (¢ — Q (Proj (J)) =y Q (Proj (I)) *v ¥)»
by (simp add: assms register-mult’)
also have «... = norm (¢ — Q (Proj (J)) *v ¢)»
by (metis Proj-fizes-image Proj-lift-invariant assms inside)
also have «... = norm (Q (Proj (— J)) *y ¥)»

by (simp add: Proj-ortho-compl assms cblinfun.diff-left register-minus)
finally have norm (Q (Proj (— (J M 1))) xy ) = norm (Q (Proj (— J)) =y ¥)
by —
then show ?thesis
by (simp add: dist-inv-def)
qed

lemma dist-inv-avg-intersect:
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assumes </\h. compatible-invariants (I h) (J h)>
assumes <(register ()
assumes <(dist-inv-avg Q I ¥ = 0>
shows <dist-inv-avg Q@ (Ah. J h T h) ¢ = dist-inv-avg Q J 1>
proof —
have «dist-inv Q (I h) (¢p h) = 0 » for h
using assms(3) distance-from-inv-avg0l by blast
then show ?thesis
by (auto introl: sum.cong dist-inv-intersect-onesided assms simp: dist-inv-avg-def)
qed

lemma dist-inv-avg-const: <dist-inv-avg Q (A-. I) (A-. ) = dist-inv Q I
by (simp add: dist-inv-avg-def dist-inv-def)

lemma register-plus:
assumes <register @)
shows <Q (a+b)=Qa+ Qb
by (simp add: assms clinear-register complez-vector.linear-add)

lemma compatible-invariants-uminus-left[simp|: <compatible-invariants (—I) J «—— compatible-invariants
IJ

by (simp add: Proj-ortho-compl cblinfun-compose-minus-left cblinfun-compose-minus-right compati-
ble-invariants-def)

lemma compatible-invariants-uminus-right[simp): «compatible-invariants I (—J) «— compatible-invariants
IJ

by (simp add: Proj-ortho-compl cblinfun-compose-minus-left cblinfun-compose-minus-right compati-
ble-invariants-def)

lemma compatible-invariants-sup: «Proj (A U B) = Proj A + Proj B — Proj A ocy, Proj By if <com-
patible-invariants A B)

apply (rewrite at <A U B> to <~— (—A M —B)» DEADID.rel-mono-strong)

apply simp

apply (subst Proj-ortho-compl)

by (simp add: that Proj-ortho-compl cblinfun-compose-minus-left cblinfun-compose-minus-right flip:
compatible-invariants-inter )

lemma compatible-invariants-sym: <compatible-invariants S T «—— compatible-invariants T S»
by (metis compatible-invariants-def)

lemma compatible-invariants-refl[iff]: «compatible-invariants S S»
by (metis compatible-invariants-def)

lemma compatible-invariants-infl:

assumes [iff]: <compatible-invariants S U»

assumes [iff]: <compatible-invariants S T

assumes [iff]: <compatible-invariants T U)

shows <compatible-invariants S (T 1 U)»

by (smt (verit, del-insts) assms(1,2,3) cblinfun-compose-assoc compatible-invariants-def compati-
ble-invariants-inter)
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lemma compatible-invariants-supl:
assumes [iff]: <compatible-invariants S U»
assumes [iff]: <compatible-invariants S T
assumes [iff]: <compatible-invariants T U»
shows <compatible-invariants S (T U U)»
apply (rewrite at <T U U» to «— (=T M —U)» DEADID.rel-mono-strong)
apply simp
by (auto intro!: compatible-invariants-infl simp del: compl-inf)

lemma compatible-invariants-inf-sup-distrib1
fixes S T U :: 'a::chilbert-space ccsubspace)
assumes <compatible-invariants S U>»
assumes <compatible-invariants S T
assumes <compatible-invariants T U»
shows «SM(TUTU)=(SNT)U (SN U
proof —
have [iff]: <compatible-invariants (ST T) (S 1 U)
using assms by (auto introl: compatible-invariants-infl simp: compatible-invariants-sym)
have «(Proj (SN (T U U)) = Proj (ST T) U (ST U))»
apply (simp add: assms compatible-invariants-sup compatible-invariants-supl flip: compatible-invariants-inter)
by (metis (no-types, lifting) Proj-idempotent assms(2) cblinfun-compose-add-right cblinfun-compose-assoc
cblinfun-compose-minus-right
compatible-invariants-def)
then show ?thesis
using Proj-inj by blast
qed

lemma compatible-invariants-inf-sup-distrib2:
fixes S T U :: <'a::chilbert-space ccsubspace)
assumes [iff]: <compatible-invariants S U»
assumes [iff]: <compatible-invariants S T
assumes [iff]: <compatible-invariants T U
shows «(T L U)NS=(TNnS)u(UNSH
by (simp add: compatible-invariants-inf-sup-distribl inf-commute)

lemma compatible-invariants-sup-inf-distrib1

fixes S T U :: <'a::chilbert-space ccsubspaces

assumes <compatible-invariants S U>»

assumes (compatible-invariants S T

assumes <compatible-invariants T U»

shows «SU(TNU)=(SuT)nSu Uy

by (smt (verit, ccfo-SIG) Groups.add-ac(1) assms(1,2,3) compatible-invariants-def compatible-invariants-inf-sup-distril

compatible-invariants-supl inf-commute inf-sup-absorb plus-ccsubspace-def)

lemma compatible-invariants-sup-inf-distrib2:
fixes S T U :: 'a:chilbert-space ccsubspaces
assumes <compatible-invariants S U
assumes <compatible-invariants S T
assumes <compatible-invariants T U»
shows (TN U)US=(TUS)N(UUS)
by (metis Groups.add-ac(2) assms(1,2,3) compatible-invariants-sup-inf-distribl plus-ccsubspace-def)

lemma is-orthogonal- Proj-orthogonal-spaces:
assumes <orthogonal-spaces S T
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shows <is-orthogonal (Proj S xy 1) (Proj T =y ¥)»
by (metis Proj-range assms cblinfun-apply-in-image orthogonal-spaces-def)

lemma dist-inv-intersect:
assumes [register]: <register Q>
assumes [iff]: «compatible-invariants I J»
shows «dist-inv Q (I M J) ¢ < sqrt ((dist-inv Q I ¥)? + (dist-inv Q J ¥)?)»
proof —
define PInJ PJnl PnInJ Pnl PnJ PnlJ where <PInJ = Q (Proj (I M — J))
and «PJnl = Q (Proj (—I M J))» and <PnInJ = Q (Proj (—I 11 —J))
and <Pnl = @ (Proj (—I))» and <PnJ = @ (Proj (—=J))
and <PnlJ = Q (Proj (— (I N J)))»

have compat!: (compatible-invariants (I M — J) J»
by (metis Proj-o-Proj-subspace-left Proj-o-Proj-subspace-right compatible-invariants-def compati-
ble-invariants-uminus-right inf-le2)
have compat2: <compatible-invariants (I M — J) Iy
by (simp add: Proj-o-Proj-subspace-left Proj-o-Proj-subspace-right compatible-invariants-def)

have orthol: <orthogonal-spaces (I T — J) (— I 11 J)»
by (simp add: le-infI2 orthogonal-spaces-leq-compl)
have ortho2: <orthogonal-spaces (I T — JU —INJ) (=10 —J)p
by (metis inf-lel inf-le2 ortho-involution orthocomplemented-lattice-class.compl-sup orthogonal-spaces-leg-compl
SUP.Mono)
have ortho3: <orthogonal-spaces (— I 11 J) (— I 11— J)
by (simp add: le-infI2 orthogonal-spaces-leq-compl)
have ortho4: <orthogonal-spaces (I T — J) (— I 11— J)
by (metis inf-sup-absorb le-infI2 ortho2 orthogonal-spaces-leg-compl)
have ortho5: <is-orthogonal (PInJ 1) (PninJ 1)
using ortho/ by (auto intro!: is-orthogonal-Proj-orthogonal-spaces simp: PInJ-def PnInJ-def simp
flip: Proj-lift-invariant)
have ortho6: <is-orthogonal (PJnl ) (PnInJ ¢)»
using ortho8 by (auto intro!: is-orthogonal-Proj-orthogonal-spaces simp: PJnl-def PnInJ-def simp
flip: Proj-lift-invariant)
have ortho7: <is-orthogonal (PInJ 1) (PJnl )
using orthol by (auto introl: is-orthogonal-Proj-orthogonal-spaces simp: PJnl-def PInJ-def simp flip:
Proj-lift-invariant)

have nl: «~—IMJu—-IN-J=-DL
by (simp flip: compatible-invariants-inf-sup-distrib1)
then have Pnl-decomp: «<Pnl = PJnl 4+ PnlinJ)»
by (simp add: Pnl-def PJnl-def PnInJ-def register-inj’ ortho3
flip: register-plus Proj-sup)

have nJ: <IN —JuU —-IT1—-J=—-J»
by (metis (no-types, lifting) assms(2) compatible-invariants-inf-sup-distribl compatible-invariants-refl
compatible-invariants-sym
compatible-invariants-uminus-left complemented-lattice-class.sup-compl-top inf-aci(1) inf-top.comm-neutral)
then have PnJ-decomp: <PnJ = PInJ + PnInJ)
by (simp add: PnJ-def PInJ-def PninJ-def register-inj’ ortho/
flip: register-plus Proj-sup)

haved N—-Ju-INnJu-In-J=-1IU-.0»

by (metis (no-types, lifting) Groups.add-ac(1) boolean-algebra-cancel.sup2 nl nJ plus-ccsubspace-def
sup-inf-absorb)
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then have PnlJ-decomp: <PnlJ = PInJ + PJnl + PnliInJ»
by (simp add: PnlJ-def PInJ-def PJnl-def PninJ-def register-inj’ orthol ortho2
flip: register-plus Proj-sup)

have «(dist-inv Q (I 11 J) )% = (norm (PnlJ 1))*
by (simp add: PnlJ-def dist-inv-def)

also have ... = (norm (PInJ v 1)) + (norm (PJnl xy 9))? + (norm (PnlnJ *yv 1))%
by (simp add: PnlJ-decomp cblinfun.add-left pythagorean-theorem cinner-add-left ortho5 ortho6 or-
tho7)

also have «... < ((norm (PJnl v 1))? + (norm (PninJ v ))?) + ((norm (PInJ *v v))? + (norm
(Pnind =y 9))?)
by simp
also have (... = (norm (Pnl ¥))? + (norm (PnJ 1))%
by (simp add: orthod ortho6 Pnl-decomp PnJ-decomp cblinfun.add-left pythagorean-theorem,)
also have «... < (dist-inv Q I ¥)? + (dist-inv Q J )%
apply (rule add-mono)
using assms
by (simp-all add: Pnl-def PnJ-def dist-inv-def)

finally show ?thesis
using real-le-rsqrt by presburger
qed

3.3 Preservation of invariants

lemma preserves-lift-invariant:
assumes [register|: <register Q>
shows <preserves (Q U) (lift-invariant @ I) (lift-invariant Q J) € «— preserves U I J &)
using register-minus[OF assms, of id-cblinfun, symmetric]
by (simp add: preserves-onorm Proj-lift-invariant register-mult register-norm)

lemma dist-inv-leq-if-preserves:
assumes pres: <preserves U (lift-invariant S J) (lift-invariant R I) >
assumes [register]: <register S» <register R)
shows «dist-inv R I (U *xy ¢) < norm U * dist-inv S J ¢ + v % norm ¢»
proof —
note [[simproc del: Laws-Quantum.compatibility-warn))
define ¥ good bad where «pgood = S (Proj J) =y ¢ and «pbad = S (Proj (— J)) *y ¥»
define 1’ ¢'good 1 'bad where ' = U 1 good> and «p’'good = R (Proj I) ¥y and «¢'bad = R (Proj
(=1)) v
from pres have <y > 0»
using preserves-def by blast
have ¥-decomp: <) = Ygood + Ybad>
by (simp add: ¥good-def bad-def Proj-ortho-compl register-minus flip: cblinfun.add-left)
have v'-decomp: <)’ = 1’qgood + 1’'bad>
by (simp add: ¥’good-def 1 'bad-def Proj-ortho-compl register-minus flip: cblinfun.add-left)
define § where 0 = dist-inv S J
then have v bad-bound: <norm vYbad < §»
unfolding dist-inv-def bad-def by blast
have «pgood € space-as-set (lift-invariant S J)»
by (simp add: ¥ good-def lift-invariant-def)
with pres have <norm (v’ — Proj (lift-invariant R I) xy ¥") < v x norm good>
by (simp add: preserves-def ¢'-def)
then have <norm ¥ ’bad < v x norm good>
by (simp add: v 'bad-def Proj-ortho-compl register-minus cblinfun.diff-left Proj-lift-invariant)
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also have <y x norm Y good < v x norm »
by (auto introl: mult-left-mono is-Proj-reduces-norm <y > 0 intro: register-projector
simp add: ¥ good-def)
finally have 1 'bad-bound: <norm v’'bad < v * norm »
by meson
have Utp-decomp: <U b = 1’good + ¢'bad + U 1bad>
by (simp add: p-decomp p’-decomp cblinfun.add-right flip: ¢’-def)
have ml'good0: <R (Proj (— I)) ¢'good = 0>
by (metis Proj-fizes-image Proj-lift-invariant v'-decomp '-def 1) 'bad-def add-diff-cancel-right’ assms
cancel-comm-monoid-add-class. diff-cancel cblinfun.diff-right cblinfun-apply-in-image lift-invariant-def)
have mIvy'bad: <norm (R (Proj (— I)) ¥'bad) < v % norm ¢
by (metis ¢’'bad-bound 1'-decomp 'bad-def add-diff-cancel-left’ cblinfun.diff-right diff-zero
mlIy’good0)
from v bad-bound
have <norm (U vbad) < norm U x &
apply (rule-tac order-trans|OF norm-cblinfun[of U bad]])
by (simp add: mult-left-mono)
then have <norm (R (Proj (— I)) xy U tbad) < norm U x &
apply (rule-tac order-trans|OF norm-cblinfun))
apply (subgoal-tac <norm (R (Proj (— I))) < 1))
apply (smt (verit, best) mult-left-le-one-le norm-ge-zero)
by (simp add: norm-Proj-leql register-norm)
with mly 'bad have <dist-inv R I (U *y ¥) < norm U * § + v x norm >
apply (simp add: dist-inv-def Up-decomp cblinfun.add-right mIvyp’good0)
by (smt (verit, del-insts) norm-triangle-ineq)
then show ?thesis
by (simp add: d-def)
qed

lemma dist-inv-preservesl:
assumes <dist-inv S J P < &)
assumes pres: (preserves U (lift-invariant S J) (lift-invariant R I) >
assumes <norm U < 1)
assumes norm P < 1)
assumes <y + ¢ < &
assumes [register|: <register S» <register R)
shows «(dist-inv R I (U *y ¢) < &
proof —
have <y > 0»
using pres preserves-def by blast
with assms have (norm U x dist-inv S J ¢ + v * norm ¢ < &
by (smt (verit, ccfo-SIG) dist-inv-def mult-left-le mult-left-le-one-le norm-ge-zero)
then show ?thesis
apply (rule order-trans[rotated])
by (rule dist-inv-leg-if-preserves| OF pres <register S» <register R»])
qed

lemma dist-inv-apply-compatible:
assumes (compatible Q) R»
shows <dist-inv Q I (R U *xy ¢) < norm U * dist-inv Q I ¢»
proof —
have [register]: <register @)
using assms compatible-register! by blast
have [register]: <register R»
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using assms compatible-register2 by blast
have (preserves (R U) (lift-invariant Q I) (lift-invariant Q I) 0>
apply (rule preserves-compatible[of R))
by (simp-all add: assms compatible-register-invariant-compatible-register compatible-sym)
then have «dist-inv Q I (R U xy ¥) < norm (R U) * dist-inv Q I ¥ + 0 * norm
apply (rule dist-inv-leg-if-preserves)
by simp-all
also have «... < norm U x dist-inv Q I
by (simp add: register-norm)
finally show ?thesis
by —
qed

lemma dist-inv-avg-apply-compatible:
assumes </\h. compatible Q (R h)»
shows <dist-inv-avg Q@ I (Ah. R h (U h) xy ¢ h) < (MAX h. norm (U h)) % dist-inv-avg Q I 1>
proof —
have [iff]: «(MAX he UNIV. norm (U h)) > 0»
by (simp add: Maz-ge-iff)
have (dist-inv-avg Q I (Ah. R h (U h) *v 9 h)
= sqrt (3 he UNIV. (dist-inv Q (I h) (R h (U h) *v ¢ h))?) / real CARD('a))»
by (simp add: dist-inv-avg-def)
also have (... < sgrt (3, he UNIV. (norm (U h) * dist-inv Q (I h) (¢ h))?) / real CARD('a))»
by (auto intro!: divide-right-mono sum-mono dist-inv-apply-compatible assms)

also have «... < sqrt (3, he UNIV. ((MAX h. norm (U h)) * dist-inv Q (I h) (¢ h))?) / real

CARD('a))»

by (auto intro!: divide-right-mono power-mono sum-mono mult-right-mono)

also have «... = (MAX h. norm (U h)) x sqrt (3. h€ UNIV. (dist-inv Q (I h) (¢ h))?) / real
CARD('a))»

by (simp add: power-mult-distrib real-sqri-mult real-sqrt-abs abs-of-nonneg flip: sum-distrib-left
times-divide-eq-right)
also have «... = (MAX h. norm (U h)) * dist-inv-avg Q I >
by (simp add: dist-inv-avg-def)
finally show ?thesis
by —
qed

end

4  CO-Operations Definition of the compressed oracle and related
unitaries

theory CO-Operations imports
Complex-Bounded-Operators. Complex-L2
HOL.Map
Registers. Quantum-Extra2

Misc-Compressed-Oracle

Function-At
begin
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unbundle cblinfun-syntazx

4.1  function-oracle - Querying a fixed function

definition function-oracle :: <('x = 'y:ab-group-add) = (('z x 'y) ell2 =¢c ('z x 'y) ell2)> where
(function-oracle h = classical-operator (A(z,y). Some (z, y + h x))»

lemma function-oracle-apply: <function-oracle h (ket (z, y)) = ket (z, y + h z)»
unfolding function-oracle-def
apply (subst classical-operator-ket)
by (auto intro!: classical-operator-exists-inj injl simp: inj-map-total|unfolded o-def] case-prod-unfold)

lemma function-oracle-adj-apply: <function-oracle hx xy ket (z, y) = ket (z, y — h z)»
proof —
define f where «f = (A\(z,y). (z, y + h z))
define g where <g = (A(z,y). (z, y — h z))»
have ¢gf: <g o f = id> and fg: <f o g = id>
by (auto simp: f-def g-def)
have [iff]: <inj f>
by (metis fg gf injl isomorphism-expand)
have <inv f = ¢
using fg gf inv-unique-comp by blast
have inv-map-f: <inv-map (Some o f) = (Some o g)»
by (metis <inj f> <inv f = ¢ fg fun.set-map inj-imp-surj-inv inv-map-total surj-id)
have <function-oracle hx = classical-operator (Some o f)»
by (simp add: function-oracle-def f-def case-prod-unfold o-def)
also have «... = classical-operator (Some o g)»
using inv-map-f by (simp add: classical-operator-adjoint function-oracle-def)
also have «... xy ket (z,y) = ket (z, y — h z)»
apply (subst classical-operator-ket)
apply (metis classical-operator-exists-inj inj-map-inv-map inv-map-f)
by (simp add: g-def)
finally show ?thesis
by —
qed

lemma unitary-function-oracle[iff]: <unitary (function-oracle h)»
proof —
have <bij (Az. (fst z, snd z + h (fst z)))»
apply (rule o-bijwhere g=«(Az. (fst z, snd z — h (fst z)))])
by auto
then show ?thesis
by (auto introl: unitary-classical-operator|[unfolded o-def]
stmp add: function-oracle-def case-prod-unfold )
qed

lemma norm-function-oracle[simpl: <norm (function-oracle h) = 1)
by (intro norm-isometry unitary-isometry unitary-function-oracle)

lemma function-oracle-adj[simp]: <function-oracle hx = function-oracle (Ax. — h z)» for h :: <z =
"y::ab-group-add>

apply (rule equal-ket)

by (auto simp: function-oracle-apply function-oracle-adj-apply)
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4.2 Setup for compressed oracles

consts trafo :: <'a ell2 =¢ 'a::{zero,finite} ell2»
specification (t¢rafo)

unitary-trafo[simp|: <unitary trafo

trafo-0[simp|: <trafo xy ket 0 = uniform-superpos UNIV»

proof —
wlog «CARD('a) > 2»
proof —
have «CARD('a) # 0»
by simp

with negation have <CARD('a) = 1>
by presburger
then have [simp]: <UNIV = {0:'a}»
by (metis UNIV-I card-1-singletonE singletonD)
have <uniform-superpos UNIV = ket (0::'a)»
by (simp add: uniform-superpos-def2)
then show ?thesis
by (auto intro!: exl[where r=id-cblinfun))
qged

let ?uniform = <uniform-superpos (UNIV :: 'a set)»
define o where <a = complez-of-real (1 / sqrt (of-nat CARD('a)))»
define p p2 p4 a ¢ where «p = cinner Zuniform (ket (0::'a))y and <p2 =1 — p x p»
and «p4 = p2 * p2» and <a = (1+p) / p2> and <c = (—1—p) / p2>
define T :: (‘a updatey where
«T = a *¢ butterfly (ket 0) 2uniform + a *x¢ butterfly ?uniform (ket 0)
+ ¢ x¢ selfbutter (ket 0) + ¢ x¢ selfbutter Zuniform + id-cblinfun)
have pa: <p =
apply (simp add: p-def cinner-ket-right a-def)
apply transfer
by simp
have p20: «p2 # 0»
unfolding a-def p2-def pa using «CARD('a) > 2) apply auto
by (smt (verit) complez-of-real-leg-1-iff numeral-nat-le-iff of-real-1 of-real-power power2-eq-square
real-sqrt-pow2
rel-simps(26) semiring-norm(69))
have hl:<axp+c+ 1 =0
using p20 apply (simp add: a-def c-def)
by (metis add.assoc add-divide-distrib add-neg-numeral-special(8) diff-add-cancel divide-eq-minus-1-iff
minus-diff-eq mult.commute mult-1 p2-def ring-class.ring-distribs(2) uminus-add-conv-diff)
have h2: <a + cxp= 1>
using p20 apply (simp add: c-def)
by (metis a-def ab-group-add-class. ab-diff-conv-add-uminus add.commute add.inverse-inverse add-neg-numeral-special(
add-right-cancel c-def divide-minus-left h1 minus-add-distrib mult-minus-left times-divide-eq-left)

have [simp]: < Zuniform ¢ Puniform = 1»

by (simp add: cdot-square-norm norm-uniform-superpos)
have [simp]: <ket (0::'a) -¢ Puniform = cnj p

by (simp add: p-def)

have <T xy ket 0 = (a x p+ ¢+ 1) *¢ ket 0 + (a + ¢ * p) *¢ Zuniform)
unfolding T-def
by (auto simp: cblinfun.add-left scaleC-add-left simp flip: p-def)

also have «... = 2uniform»
by (simp add: h1 h2)
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finally have 1: T =y ket 0 = ?uniform)
by —
have scaleC-add-left”: «v + scaleC z w + scaleC y w = v + scaleC (z+y) w» for z y and v w :: (a
updatey
by (simp add: scaleC-add-left)
have sort:
w + x x¢ butterfly ?uniform (ket 0) + y x¢ selfbutter (ket 0) = v + y x¢ selfbutter (ket 0) + x
xc butterfly ?uniform (ket 0)»
w4 x x¢ selfbutter Zuniform + y xc butterfly (ket 0) Puniform = v + y x¢ butterfly (ket 0)
uniform + x x¢ selfbutter ?uniform)
v+ z *¢ selfbutter Puniform + y x¢ butterfly Zuniform (ket 0) = v + y x¢ butterfly 2uniform (ket
0) + z *¢ selfbutter ?uniform)
w + x x¢ selfputter 2uniform + y xc selfbutter (ket 0) = v + y *¢ selfbutter (ket 0) + x *¢
selfbutter Zuniform
w + x x¢ butterfly (ket 0) Zuniform + y o selfbutter (ket 0) = v + y *¢ selfbutter (ket 0) + z
xc butterfly (ket 0) Puniform)
w4 x *¢ butterfly (ket 0) ?uniform + y x¢ butterfly ?uniform (ket 0) = v + y x¢ butterfly Zuniform
(ket 0) + z x¢ butterfly (ket 0) Puniform)
for v :: 'a update> and z y
by auto

have auz: <x = 0 «—— z * pj = 0> for z
by (simp add: p20 p4-def)

have [simp]: <cnj p = p
by (simp add: a-def pa)
have [simp]: <cnj ¢ = o
by (simp add: c-def p2-def)
have [simp]: <cnj a = a»
by (simp add: a-def p2-def)
have [simp]: <p4 # 0>
by (simp add: p20 p4-def)
have [simpl: <z * p/ | p2 = z x p2) for z
by (simp add: p4-def)

have h3: (2 x c+ (2 * (ax (cxp)) + (axa+ cxc)) =0
apply (subst auz)
apply (simp add: a-def c-def distrib-right distrib-left p20 add-divide-distrib
right-diff-distrib left-diff-distrib diff-divide-distrib
flip: p4-def add.assoc
del: mult-eq-0-iff vector-space-over-itself . scale-eq-0-iff)
by (simp add: p4-def p2-def right-diff-distrib left-diff-distrib flip: add.assoc)
have hj: (2 xa+ (2« (axc)+ (axaxp+ cxcx*xp)) =0
apply (subst auzx)
apply (simp add: a-def c-def distrib-right distrib-left p20 add-divide-distrib
right-diff-distrib left-diff-distrib diff-divide-distrib
flip: p4-def add.assoc
del: mult-eq-0-iff vector-space-over-itself.scale-eq-0-iff)
by (simp add: p4-def p2-def right-diff-distrib left-diff-distrib flip: add.assoc)

have 2: <T ocp Tx = id-cblinfun)
unfolding T-def
apply (simp add: cblinfun-compose-add-left cblinfun-compose-add-right adj-plus
scaleC-add-right flip: p-def add.assoc mult.assoc)
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apply (simp add: sort scaleC-add-left’ flip: scaleC-add-left)
by (simp add: h3 h{)

have 3: «Tx = T
unfolding T-def
by (auto simp: adj-plus)

from 2 3 have 4: <unitary T»
by (simp add: unitary-def)

from 1 / show ?thesis
by auto
qed

Set of total functions

definition <total-functions = {f::’z—"y. None ¢ range f}

lemma total-functions-def2: <total-functions = (comp Some) ¢ UNIV»
proof —
have («z € range ((o) Some)» if «None ¢ range x> for z :: <’z = 'y option>
by (metis function-factors-right option.collapse range-eql that)
then show ?thesis
unfolding total-functions-def by auto
qed

lemma total-functions-def3: <total-functions = {f. dom f = UNIV}»
by (force simp add: total-functions-def)

lemma card-total-functions: <card (total-functions :: ("z = "y option) set) = CARD(’y) ~ CARD('z::finite)>
proof —
have (card (total-functions :: ('z = 'y option) set) = CARD ('z = 'y)»
unfolding total-functions-def2
by (simp add: card-image fun.inj-map)
also have «... = CARD('y) = CARD('z)»
by (simp add: card-fun)
finally show ?thesis
by —
qed

abbreviation superpos-total :: <('z::finite = 'y::finite option) ell2) where (superpos-total = uniform-superpos
total-functions»

Sets up the locale for defining the compressed oracle. We use a locale because the compressed
oracle can depend on some arbitrary unitary trafo. The choice of trafo usually doesn’t matter;
in this case the default transformation trafo above can be used.

locale compressed-oracle =
fixes dummy-constant :: <('z::finite x 'y::{finite,ab-group-add}) itself>
fixes trafo :: y::{finite,ab-group-add} ell2 =cp 'y ell2»
assumes unitary-trafo[simp): <unitary trafo
assumes trafo-0: <trafo xy ket 0 = uniform-superpos UNIV»
assumes y-cancel[simp]: «(y::'y) + y = O

begin

definition dummy2 :: 'y update = ('y set = nat) = ('y set = nat)»
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where (dummy2 zy =
definition N-def0: «N = dummy2 trafo card UNIV)

N is the cardinality of the oracle outputs. (Intuitively, N = 2™ for an n-bit output.

lemma N-def: <N = CARD('y)»
by (simp add: dummy2-def N-def0)

lemma NnegO[iff]: <N # 0»
by (simp add: N-def)

definition «« = complex-of-real (1 / sqrt (of-nat N))»
— We use this term very often, so this abbreviation comes in handy.

lemma (in compressed-oracle) uminus-y[simpl: <— y = y for y = 'y
by (metis add.right-inverse group-cancel.add1 group-cancel.rule0 y-cancel)

4.3 switch0 - Operator exchanging ket (Some 0) and ket None

switch0 maps ket None to ket (Some 0) and vice versa. It leaves all other ket (Some y)
unchanged.

definition switch0 :: <"y option updater where
<switch0 = classical-operator (Some o Fun.swap (Some 0) None id)>

lemma switch0-None[simp]: <switch0 xy ket None = ket (Some 0)»
unfolding switch0-def classical-operator-ket-finite
by auto

lemma switch0-0[simp]: «switch0 *xy ket (Some 0) = ket None»
unfolding switch0-def classical-operator-ket-finite
by auto

lemma switch0-other: <switch0 xy ket (Some x) = ket (Some z)» if «x # 0>
unfolding switch0-def classical-operator-ket-finite
using that by auto

lemma unitary-switch0[simp): <unitary switch0>
unfolding switch0-def
apply (rule unitary-classical-operator)
by auto

lemma switch0-adj[simp]: <switchOx = switch0»
unfolding switch0-def
apply (subst classical-operator-adjoint)

apply simp
by (simp add: inv-map-total)

4.4 compressl - Operator to compress a single RO-output

This unitary maps ket None onto the uniform superposition of all ket (Some y) and vice versa,
and leaves everything orthogonal to these unchanged.

This is the operation that deals with compressing a single oracle output.

definition compress1 :: <'y option ell2 =c1 'y option ell2) where
ccompressl = lift-op trafo ooy switchO ooy (lift-op trafo)x»
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lemma uniform-superpos-y-sum: <uniform-superpos UNIV = (> deUNIV. « x¢ ket (d::'y))»
apply (subst ell2-sum-ket)
by (simp add: uniform-superpos.rep-eq a-def N-def)

lemma compress1-None[simp]: <compress] xy ket None = (> de UNIV. a x¢ ket (Some d))»
by (auto simp: cblinfun.sum-right compressi-def lift-op-adj trafo-0 uniform-superpos-y-sum cblin-
fun.scaleC-right)

lemma compressi-Some[simp]: <compressl =y ket (Some d) =
ket (Some d) — (3. d€UNIV. o? *¢ ket (Some d)) + a xc ket None»
proof —
define ¢ where «c e = cinner (ket e) (trafox v ket d)» for e
have c0: <c 0 =
apply (simp add: c-def cinner-adj-right trafo-0)
by (simp add: a-def N-def cinner-ket-right uniform-superpos.rep-eq)

have (compressl xy ket (Some d) = lift-op trafo xy switch0 =y lift-ell2 *y trafox xy ket d»
by (auto simp: compressi-def lift-op-ady)

also have «... = lift-op trafo xy switch0 *y lift-ell2 =y (> e€UNIV. ¢ e x¢ ket e))
by (simp add: c-def cinner-ket-left flip: ell2-sum-ket)
also have «... = lift-op trafo xy switch0 v (> ecUNIV. c e x¢ ket (Some €))»
by (auto simp: cblinfun.sum-right cblinfun.scaleC-right)
also have «... = lift-op trafo xy switch0 =y (> ee—{0}. ¢ e x¢ ket (Some e)) + ¢ 0 *¢ ket (Some

0))»
apply (subst asm-ri[of <UNIV = insert 0 (—{0})»])
by (auto simp add: add.commute)
also have «... = lift-op trafo xy (3 ee—{0}. ¢ e x¢ (switch0 *y ket (Some €))) + ¢ 0 x¢ switch0
xy ket (Some 0)))
by (simp add: cblinfun.add-right cblinfun.scaleC-right cblinfun.sum-right)

also have «... = lift-op trafo xy (O ee—{0}. ¢ e x¢ ket (Some €)) + ¢ 0 x¢ ket None)»
by (simp add: switch0-other)
also have «... = lift-op trafo =y (>, e€UNIV. c e xc ket (Some ¢€)) — ¢ 0 *¢ ket (Some 0) + ¢ 0

xc ket None)»
by (simp add: Compl-eq-Diff-UNIV sum-diff)
also have (... = (D] eeUNIV. ¢ e x¢ lift-ell2 xy trafo xy ket €) — ¢ 0 x¢ lift-ell2 *y trafo =y ket
0 + ¢ 0 *¢ ket None»
by (simp add: cblinfun.add-right cblinfun.diff-right cblinfun.scaleC-right cblinfun.sum-right)
also have «... = lift-ell2 xy trafo xy (3. e€UNIV. c e x¢ ket €) — ¢ 0 ¢ lift-ell2 xy uniform-superpos
UNIV + ¢ 0 *¢ ket None»
by (simp add: trafo-0 cblinfun.scaleC-right cblinfun.sum-right)
also have «... = lift-ell2 xy trafo xy trafox xy ket d — ¢ 0 x¢ lift-ell2 xy uniform-superpos UNIV
+ ¢ 0 *¢ ket None»
by (simp add: c-def cinner-ket-left flip: ell2-sum-ket)
also have «... = lift-ell2 xy (trafo ocr, trafox) xy ket d — ¢ 0 ¢ lift-ell2 xy uniform-superpos UNIV
+ ¢ 0 x¢ ket None»
by (metis cblinfun-apply-cblinfun-compose)

also have «... = lift-ell2 xy ket d — ¢ 0 *x¢ lift-ell2 xy uniform-superpos UNIV + ¢ 0 ¢ ket None)
by auto
also have «... = ket (Some d) — ¢ 0 *¢ (>, deUNIV. a x¢ ket (Some d)) + ¢ 0 *¢ ket None)

by (auto simp: uniform-superpos-y-sum mult.commute scaleC-sum-right cblinfun.scaleC-right cblin-
fun.sum-right)
also have (... = ket (Some d) — (3. deUNIV. a? ¢ ket (Some d)) + « *¢ ket None
by (simp add: c0 power2-eq-square scaleC-sum-right)
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finally show ?thesis
by —
qed

lemma unitary-compressl[simp|: <unitary compressl»
by (simp add: compress1-def)

lemma compressi-adj[simp]: <compressl* = compressl)
by (simp add: compress1-def cblinfun-compose-assoc)

lemma compressi-square: <compressl ocy compressl = id-cblinfun»
by (metis compress1-adj unitary-compressl unitary-def)

4.5 compress - Operator for compressing the RO

This is the unitary that maps between the compressed representation of the random oracle (in
which the initial state is ket (A-. None)) and the uncompressed one (in which the initial state
is the uniform superposition of all total functions).

It works by simply applying compress! to each output separately.

definition compress :: «('z — 'y) update>
where <compress = apply-every UNIV (\-. compressl))

lemma unitary-compress[simp|: <unitary compress
by (simp add: compress-def apply-every-unitary)

lemma compress-selfinverse: <compress ooy compress = id-cblinfun)
by (simp add: compress-def apply-every-mult compress1-square)

lemma compress-adj: <compressx = compress)
by (simp add: compress-def apply-every-ady)

lemma compress-empty: <compress xy ket Map.empty = superpos-total
proof —
have *: <apply-every M (\-. compressl) xy ket Map.empty =
O fldom f = M. ket f /g sqrt (CARD('y) ~ card M))» for M :: 'z set
proof (use finite[of M] in induction)
case empty
then show ?case
by simp
next
case (insert z F')
have <apply-every (insert x F') (A-. compressl) sy ket Map.empty
= function-at © compressl *xy apply-every F' (A-. compressl) xy ket Map.empty>
using insert.hyps by (simp add: apply-every-insert)

also have «... = function-at x compressl xy (>_f | dom f = F. ket f /g sqrt (real (CARD('y) ~
card F)))»
by (simp add: insert.1H)
also have «... = (3 f | dom f = F. (function-at x compressl vy ket f) /r sqrt (real (CARD('y) ~
card F)))
by (simp add: cblinfun.real.scaleR-right cblinfun.sum-right)
also have <... = (3 f | dom f = F. (3. yec UNIV. Rep-ell2 (compress] vy ket (f x)) y *c ket (f(z

:=19))) /r sqrt (real (CARD('y) ~ card F)))»
by (simp add: function-at-ket)
also have «... = (3. f | dom f = F. (5. ye UNIV. Rep-ell2 (compressl xy ket None) y ¢ ket (f(z
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:=19))) /r sqrt (real (CARD('y) ~ card F)))»
by (smt (verit) Finite-Cartesian-Product.sum-cong-auz domlff local.insert(2) mem-Collect-eq)

also have «... = (> f | dom f = F. (3_ yeUNIV. Rep-ell2 (3. de UNIV. « *¢ ket (Some d)) y *¢
ket (f(z :=v))) /r sqrt (real (CARD('y) ~ card F)))»
by simp
also have ... = (O f | dom f = F. (D_yeUNIV. (>, deUNIV. a xc Rep-ell2 (ket (Some d)) y)

xc ket (f(z :=y))) /r sqrt (real (CARD('y) ~ card F)))»
apply (subst complez-vector.linear-sum|[where f=<«\z. Rep-ell2 x -])
apply (simp add: clinearl plus-ell2.rep-eq scaleC-ell2.rep-eq)
apply (subst clinear.scaleC|where f=<\z. Rep-ell2 x -])
by (simp-all add: clinearl plus-ell2.rep-eq scaleC-ell2.rep-eq)
also have «... = (O f | dom f = F. (3, ye UNIV. (if y = None then 0 else o) x¢ ket (f(z := y)))
/r sqrt (real (CARD('y) ~ card F)))»
apply (rule sum.cong, simp)
subgoal for f
apply (rule arg-cong[where f=«\z. z /r -])
apply (rule sum.cong, simp)
subgoal for y
apply (subst sum-single[where i=<the y])
by (auto simp: ket.rep-eq)
by —
by —
also have <... = (3_f | dom f = F. (3 yerange Some. a x¢ ket (f(z := y))) /r sqrt (real
(CARD('y) ~ card F)))»
apply (rule sum.cong, simp)
apply (subst sum.mono-neutral-cong-right[where S=<range Some> and h=<\y. a *¢ ket (-(z :=
o))
by auto
alsohave «... = (3. f | dom f = F. Y yerange Some. a x¢ ket (f(z :=y)) /r sqrt (real (CARD('y)
“card F)))»
by (simp add: scaleR-right.sum)
also have «... = > (f, y)e{f. dom f = F} x range Some.
a x¢ ket (f(z :=y)) /r sqrt (real (CARD('y) ~ card F)))
by (simp add: sum.cartesian-product)
also have «... = > (f, y)e(\f. (f(z:=None), fz)) ‘{f. dom f = insert x F}.
a x¢ ket (f(z :=19))) /r sqrt (real (CARD('y) ~ card F))»
proof —
have 1: «{f. dom f = F} x range Some = (\f. (f(z := None), fz)) ‘{f. dom f = insert x F}»
proof (rule Set.set-eql, rule iffI)
fix z :: <("z = 'a option) x 'a option)
assume asm: <z € {f. dom f = F} x range Some»
define f where <f = (fst 2)(z := snd 2)»
have «f € {f. dom f = insert x F}>»
using asm by (auto simp: f-def)
moreover have «((Af. (f(z := None), fz)) f = =
using asm insert.hyps by (auto simp add: f-def)
ultimately show <z € (Af. (f(z := None), fz)) ‘{f. dom f = insert z F'}>
by auto
next
fix z :: «("z = 'a option) x 'a option>
assume <z € (Af. (f(z := None), fz)) ‘{f. dom f = insert x F}»
then obtain f where <dom f = insert x F> and <z = (\f. (f(z := None), fz)) [
by auto
then show <z € {f. dom f = F} x range Some»
using insert.hyps by auto
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qed

show ?thesis
apply (subst scaleR-right.sum)
apply (rule sum.cong)
using 1 by auto

qed

also have <... = (3 f| dom f = insert x F. a x¢ ket f) /g sqrt (real (CARD('y) ~ card F))»
apply (subst sum.reindez)
apply auto
by (smt (verit) fun-upd-idem-iff fun-upd-upd inj-on-def prod.simps(1))

also have «... = (3 f| dom f = insert ¢ F. ket f /g sqrt (real (CARD('y) ~ card (insert z F))))

by (simp add: card-insert-disjoint insert.hyps real-sqrt-mult a-def N-def scaleR-scaleC
divide-inverse-commute flip: scaleC-sum-right)
finally show ?Zcase
by —
qed

have «(>_ fldom f = UNIV. ket f /r sqrt (CARD('y) =~ CARD('z))) = (superpos-total :: ('z = 'y
option) ell2)
unfolding uniform-superpos-def2
apply (rule sum.cong)
apply (simp add: total-functions-def3)
by (simp add: card-total-functions scaleR-scaleC')

with «[of UNIV]
show ?thesis
by (simp flip: compress-def)
qed

4.6 standard-queryl - Operator for uncompressed query of a single RO-output

We define the operation standard-queryl of querying the oracle, but first in the special case of
an oracle that has no input register. That is, the oracle state consists of just one output value
(or None) and this value is simply added to the query output register.

Roughly speaking, it thus is the unitary |y, h) — |y @ h, h). In comparison, a “normal” oracle
query would be defined by |x,y, h) — |z,y ® h(zx), h).

That is: If one starts with a three-partite state ¥ ®s ket 0 ®5 superpos-total and keeps perform-
ing operations U; on the parts 1, 2 of the state, interleaved with standard-queryl invocations
on parts 2, 3, this is a simulation of starting with state ¢ ®¢ 0 and performing U; interleaved
with invocations of the unitary |y) — |y @ h) on part 2 where h is chosen uniformly at random
in the beginning.
When h = None, there are various natural choices how to define the behavior of standard-query1.
This is because intuitively, this should not happen, because this operation intended to be ap-
plied to uncompressed oracles which are superpositions of total functions. Yet, due to errors
introduced by projecting onto invariants, one can get situations where this is not perfectly the
case, so the behavior on None matters. Here, we choose to let standard-queryl be the identity
in that case.
definition standard-queryl :: «('y x 'y option) updates where

<standard-queryl = classical-operator (Some o (A(y,2). case z of None = (y,None) | Some 2’ = (y +

2 )

The operation standard-queryl’is defined like standard-queryl (and the motivation and proper-
ties mentioned there also hold here), except that in the case h = None (see discussion for stan-
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dard-queryl), instead of being the identify, standard-queryl’ returns the O-vector (not ket 0!).
In particular, this operation is not a unitary which can make some things more awkward. But
on the plus side, we can achieve better bounds in some situations when using standard-queryl’.

definition standard-queryl’ :: «('y x 'y option) updater where
<standard-queryl’ = classical-operator (A(y,z). case z of None = None | Some 2z’ = Some (y + 2/,

2))»

lemma standard-queryl-Some[simp]: <standard-queryl v ket (y, Some z) = ket (y + z, Some z)»
by (simp add: standard-queryl-def classical-operator-ket-finite)

lemma standard-queryl-None[simp]: <standard-queryl =y ket (y, None) = ket (y, None))
by (simp add: standard-queryl-def classical-operator-ket-finite)

lemma standard-queryl-Some[simp]: <standard-queryl’ xy ket (y, Some z) = ket (y + z, Some z)»
by (simp add: standard-queryl’-def classical-operator-ket-finite)

lemma standard-queryl’-None[simp|: <standard-queryl’ xy ket (y, None) = 0»
by (simp add: standard-queryl’-def classical-operator-ket-finite)

lemma unitary-standard-queryl [simp): <unitary standard-queryl»
unfolding standard-query1-def
apply (rule unitary-classical-operator)
apply (rule o-bij[where g=\(y,z). case z of None = (y,None) | Some 2z’ = (y — 2/, z)»])
by (auto introl: ext simp: case-prod-beta cong del: option.case-cong split!: option.split option.split-asm)

lemma norm-standard-queryl '[simp]: <norm standard-queryl’ = 15
proof (rule order.antisym)
show <norm standard-queryl’ < 1)
unfolding standard-queryl’-def
apply (rule classical-operator-norm-inj)
by (auto simp: inj-map-def split!: option.split-asm)
show (norm standard-queryl’ > 1>
apply (rule cblinfun-norm-geql[where xz=<ket (undefined, Some undefined))])
by simp
qed

lemma standard-queryl-selfinverse[simp|: <standard-queryl ocy, standard-queryl = id-cblinfun>
proof —
have *: <(Some o (A(y::'y, 2). case z of None = (y, None) | Some 2z’ = (y + 2/, 2)) o,
(Some o (A(y, z). case z of None = (y, None) | Some z' = (y + 27, 2)))) = Some>
by (auto introl: ext, rename-tac a b, case-tac b, auto)
show ?thesis
by (auto simp: standard-queryl-def classical-operator-mult x)
qed

4.7  standard-query - Operator for uncompressed query of the RO

We can now define the operation of querying the (non-compressed) oracle, i.e., the opera-
tion |x,y,h) — |,y @ h(z),h). Most of the work has already been done when defining stan-
dard-queryl. We just need to apply standard-queryl onto the Y-register and the z-output of
the H-register, where z is the content of the X-register (in the computational basis).

The various lemmas below (e.g., standard-query-ket) show that this definition actually achieves
this.
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That is: If one starts with a four-partite state ¥ ®; ket 0 ®; ket 0 ®; superpos-total and
keeps performing operations U; on the parts 1-3 of the state, interleaved with standard-query
invocations on parts 2—4, this is a simulation of starting with state ¥ ®; 0 and performing U;
interleaved with invocations of the unitary |z,y) — |z,y @ h(z)) on parts 2, 3 where h is a
function chosen uniformly at random in the beginning.

definition standard-query :: «('z x 'y x ('z = 'y)) ell2 =cp ('z x 'y x ('z = 'y)) ell2> where
<standard-query = controlled-op (Az. (Fst; Snd o function-at x) standard-queryl )

Analogous to standard-query but using the variant standard-queryl’.

definition standard-query’ :: «('z x 'y x ('z = 'y)) ell2 =cr ('z x 'y x ('z = 'y)) eli2) where
«standard-query’ = controlled-op (Az. (Fst; Snd o function-at x) standard-queryl’)

lemma standard-query-ket: <standard-query vy (ket © ®s ) = ket x ®¢ ((Fst; Snd o function-at x)
standard-queryl sy )
by (auto simp: standard-query-def)

lemma standard-query-ket-full-Some:
assumes (H z = Some 2>
shows <standard-query *v (ket (z,y,H)) = ket (z, y + 2z, H))
proof —
obtain H' where pf-zH: <puncture-function x H = (H z, H')>
by (metis fst-puncture-function prod.collapse)
have «standard-query =y (ket (z,y,H)) = ket  ®; sandwich (id-cblinfun &, function-at-U z) ((id @,
Fst) standard-queryl) =y ket y Q4 ket H»
by (simp add: standard-query-ket function-at-def pair-o-tensor-right pair-Fst-Snd
pair-o-tensor-right unitary-sandwich-register pair-o-tensor-right
register-tensor-distrib-right id-tensor-sandwich
flip: tensor-ell2-ket)

also have (... = ket z ®; (id-cblinfun ®, function-at-U x) xy (id ®, Fst) standard-queryl v (ket
Y Qs ket (H z) Q4 ket H')
(is - = - ®5 - *v 7R standard-queryl xy -»)
by (simp add: sandwich-apply’ tensor-op-adjoint tensor-op-ell2 pf-zH assms flip: tensor-ell2-ket)
also have «... = ket z ®; (id-cblinfun ®, function-at-U x) xy (ket (y + 2) ®s ket (H x) ®4 ket H')»

apply (subst asm-rijof «(id ®, Fst) = assoc o Fst])
subgoal by (auto intro!: tensor-extensionality simp add: register-tensor-is-register Fst-def)
apply (simp add: Fst-def assoc-ell2-sandwich sandwich-apply’ assoc-ell2'-tensor tensor-op-ell2 assms)
apply (simp add: tensor-ell2-ket del: function-at-U-ket)
by (simp add: assoc-ell2-tensor tensor-op-ell2 flip: tensor-ell2-ket)
also have ... = ket z ®; ket (y + z) ®; ket H»
apply (simp add: tensor-op-ell2 flip: tensor-ell2-ket)
by (simp flip: pf-zH add: tensor-ell2-ket)
finally show ?thesis
by (simp add: tensor-ell2-ket)
qed

lemma standard-query-ket-full-None:
assumes (H z = None»
shows «standard-query xv (ket (z,y,H)) = ket (z, y, H)»
proof —
obtain H' where pf-zH: <puncture-function ¢ H = (H z, H')>
by (metis fst-puncture-function prod.collapse)
have <standard-query =y (ket (z,y,H)) = ket x ® sandwich (id-cblinfun ®, function-at-U z) ((id &,
Fst) standard-queryl) =y ket y &4 ket H»
by (simp add: standard-query-ket function-at-def pair-o-tensor-right pair-Fst-Snd
pair-o-tensor-right unitary-sandwich-register pair-o-tensor-right
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register-tensor-distrib-right id-tensor-sandwich
flip: tensor-ell2-ket)
also have «... = ket © ®, (id-cblinfun ®, function-at-U z) *y (id ®, Fst) standard-queryl *y ket y
®s ket (H x) @4 ket H"
by (simp add: sandwich-apply’ tensor-op-adjoint tensor-op-ell2 pf-xtH assms flip: tensor-ell2-ket)
also have ... = ket z ®; (id-cblinfun ®, function-at-U z) xy ket y Qs ket (H z) Q4 ket H"
apply (subst asm-rl[of «(id ®, Fst) = assoc o Fst])
subgoal by (auto intro!: tensor-extensionality simp add: register-tensor-is-register Fst-def)
apply (simp add: Fst-def assoc-ell2-sandwich sandwich-apply’ assoc-ell2’'-tensor tensor-op-ell2 assms)
apply (simp add: tensor-ell2-ket del: function-at-U-ket)
by (simp add: assoc-ell2-tensor tensor-op-ell2 flip: tensor-ell2-ket)
also have «... = ket x ®; ket y Qs ket H»
apply (simp add: tensor-op-ell2 flip: tensor-ell2-ket)
by (simp flip: pf-zH add: tensor-ell2-ket)
finally show ?thesis
by (simp add: tensor-ell2-ket)
qed

lemma standard-query’-ket: <standard-query’ sy (ket x @5 ) = ket x ®, ((Fst; Snd o function-at )
standard-queryl’ sy )
by (auto simp: standard-query’-def)

lemma standard-query’-ket-full-Some:
assumes (H z = Some 2>
shows <standard-query’ =y (ket (z,y,H)) = ket (z, y + 2z, H)»
proof —
obtain H' where pf-zH: <puncture-function x H = (H z, H')
by (metis fst-puncture-function prod.collapse)
have «standard-query’ v (ket (z,y,H)) = ket © ®, sandwich (id-cblinfun ®, function-at-U z) ((id @,
Fst) standard-queryl’) xy ket y ®; ket H»
by (simp add: standard-query’-ket function-at-def pair-o-tensor-right pair-Fst-Snd
pair-o-tensor-right unitary-sandwich-register pair-o-tensor-right
register-tensor-distrib-right id-tensor-sandwich
flip: tensor-ell2-ket)

also have «... = ket ¢ ®; (id-cblinfun ®, function-at-U x) xy (id ®, Fst) standard-queryl’ v (ket
y Qs ket (H z) Q¢ ket H')»
(is - = - ® - *v ?R standard-queryl’ xy -))
by (simp add: sandwich-apply’ tensor-op-adjoint tensor-op-ell2 pf-zH assms flip: tensor-ell2-ket)
also have «... = ket z ®; (id-cblinfun ®, function-at-U x) *v (ket (y + 2) Qs ket (H z) @ ket H')»

apply (subst asm-ri[of «(id ®, Fst) = assoc o Fst])
subgoal by (auto intro!: tensor-extensionality simp add: register-tensor-is-register Fst-def)
apply (simp add: Fst-def assoc-ell2-sandwich sandwich-apply’ assoc-ell2’-tensor tensor-op-ell2 assms)
apply (simp add: tensor-ell2-ket del: function-at-U-ket)
by (simp add: assoc-ell2-tensor tensor-op-ell2 flip: tensor-ell2-ket)
also have ... = ket z ®; ket (y + z) ®; ket H»
apply (simp add: tensor-op-ell2 flip: tensor-ell2-ket)
by (simp flip: pf-zH add: tensor-ell2-ket)
finally show ?thesis
by (simp add: tensor-ell2-ket)
qed

lemma standard-query’-ket-full-None:

assumes <H z = None»

shows <standard-query’ xy (ket (z,y,H)) = 0>
proof —
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obtain H' where pf-zH: <puncture-function x H = (H z, H')>
by (metis fst-puncture-function prod.collapse)
have <standard-query’ v (ket (z,y,H)) = ket © ®; sandwich (id-cblinfun ®, function-at-U x) ((id @,
Fst) standard-queryl’) =y ket y ®¢ ket H»
by (simp add: standard-query’-ket function-at-def pair-o-tensor-right pair-Fst-Snd
pair-o-tensor-right unitary-sandwich-register pair-o-tensor-right
register-tensor-distrib-right id-tensor-sandwich
flip: tensor-ell2-ket)
also have «... = ket x ®, (id-cblinfun ®, function-at-U ) xy (id ®, Fst) standard-queryl’ v ket
y Qs ket (H z) ®g ket H
by (simp add: sandwich-apply’ tensor-op-adjoint tensor-op-ell2 pf-zH assms flip: tensor-ell2-ket)
also have «... = 0»
apply (subst asm-ri[of «(id ®, Fst) = assoc o Fst])
subgoal by (auto intro!: tensor-extensionality simp add: register-tensor-is-register Fst-def)
apply (simp add: Fst-def assoc-ell2-sandwich sandwich-apply’ assoc-ell2'-tensor tensor-op-ell2 assms)
by (simp add: tensor-ell2-ket del: function-at-U-ket)
finally show ?thesis
by —
qed

lemma standard-query-selfinverse[simp]|: <standard-query ocy, standard-query = id-cblinfun)
by (simp add: standard-query-def controlled-op-compose register-mult)

lemma unitary-standard-query[simpl: <unitary standard-query>
by (auto simp: standard-query-def introl: controlled-op-unitary register-unitarylof «(-;-)])

lemma contracting-standard’-query[simpl: <norm standard-query’ = 1»
proof (rule antisym)
show <norm standard-query’ < 1»
unfolding standard-query’-def
apply (rule controlled-op-norm-leq)
by (smt (verit) norm-standard-queryl ' norm-zero register-norm register-pair-def register-pair-is-register)
show <norm standard-query’ > 1)
apply (rule cblinfun-norm-geql [where z=<ket (undefined, undefined, A-. Some undefined)))
apply (subst standard-query’-ket-full-Some)
by auto
qed

4.8 queryl - Query the compressed oracle at a single output

Before we formulate the compressed oracle itself, we define a scaled down version where the func-
tion in the oracle has only a single output (and there’s no input register). Cf. standard-queryl.
This is done by decompressing the oracle register, applying standard-queryl, and then recom-
pressing the oracle register.

That is: If one starts with a three-partite state ¥ ®s ket 0 ®5 ket None and keeps performing
operations U; on the parts 1, 2 of the state, interleaved with query! invocations on parts 2, 3,
this is a simulation of starting with state 1 ®5 0 and performing U; interleaved with invocations
of the unitary |y) — |y @ h) on part 2 where h is chosen uniformly at random in the beginning.

definition query! where <queryl = Snd compressl ocy standard-queryl ocr Snd compressl»

The operation queryl’ is defined like query! (and the motivation and properties mentioned
there also hold here), except that it is based on standard-queryl’ instead of standard-queryl.
See the comment at standard-queryl’ for a discussion of the difference.
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definition query!l’ where <queryl’ = Snd compressl ocp standard-queryl’ ocr Snd compressls

lemma unitary-queryl [simpl: <unitary queryl»
by (auto simp: queryl-def register-unitary intro!: unitary-cblinfun-compose)

lemma norm-queryl [simp]: <norm queryl’ = 1)
unfolding queryl’-def
apply (subst norm-isometry-compose’)
apply (simp add: Snd-def comp-tensor-op compress1-square isometry-def tensor-op-adjoint)
apply (subst norm-isometry-compose)
apply (simp add: Snd-def comp-tensor-op compressi-square isometry-def tensor-op-adjoint)
by simp

The following lemmas give explicit formulas for the result of applying queryl and queryl’ to
computational basis states (ket trafo). While the definitions of query! and queryl’ are useful
for showing structural properties of these operations (e.g., the fact that they actually simulate a
random oracle), for doing computations in concrete cases (e.g., the preservation of an invariant),
the explicit formulas can be more useful.

lemma queryl-None: <queryl *y ket (y,None) =
a x¢ (>, deUNIV. ket (y + d, Some d))
— a8 x¢ (O y'€eUNIV. S deUNIV. ket (y', Some d))
+ a? ¢ (3. deUNIV. ket (d, None))) (is <- = ?rhs»)
proof —
have [simp]: «a * a = o) «a x o = o~
by (simp-all add: power2-eq-square numeral-2-eq-2 numeral-3-eq-3)
have quz: <a = a' = b=V = c=¢ = a—-b+c=a" —b +chforabca b ¢ :
'z::group-add»
by simp

have «Snd compressl *y ket (y, None) = (> deUNIV. a ¢ ket (y, Some d))»
by (simp add: queryl-def tensor-ell2-scaleC2 tensor-ell2-sum-right flip: tensor-ell2-ket)
also have «(standard-queryl =y ... = (3, deUNIV. a x¢ ket (y + d, Some d))»
by (simp add: cblinfun.scaleC-right cblinfun.sum-right)
also have «Snd compress1 *y ... =
a xg (D, deUNIV. (ket (y + d) ®s ket (Some d)))
—a”8 x¢ (D 2€UNIV. > deUNIV. (ket (y + 2) ®s ket (Some d)))
+ a2 xc (D 2€UNIV. (ket (y + 2z) ®s ket None))»
by (simp add: tensor-ell2-diff2 tensor-ell2-add2 scaleC-add-right sum.distrib tensor-ell2-sum-right
tensor-ell2-scaleC2 sum-subtractf scaleC-diff-right scaleC-sum-right cblinfun.scaleC-right
cblinfun.sum-right
flip: tensor-ell2-ket)
also have «... = ?rhs
apply (rule aux)
subgoal
by (simp add: tensor-ell2-ket)
subgoal
apply (subst sum.reindez-bij-betw[where h=«\d. y + d> and T=UNIV])
by (simp-all add: tensor-ell2-ket)
subgoal
apply simp
apply (subst sum.reindex-bij-betw|where h=«\d. y + d> and T=UNIV])
by (simp-all add: tensor-ell2-ket)
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by —
finally show ?thesis
unfolding queryl-def by simp
qed

lemma queryl-Some: <queryl xy ket (y, Some d) =
ket (y + d, Some d)
+ «a *x¢ ket (y + d, None)
—a”8 x¢ (O, y'€UNIV. ket (y', None))
—a? ¢ (Y. d'€UNIV. ket (y + d’, Some d’))
— a? x¢ (3° d’€eUNIV. ket (y + d, Some d))
+ a? x¢ (3. d'€UNIV. ket (y, Some d’))
+ a4 x¢ (O, y'€UNIV. > d'€UNIV. ket (y', Some d’))»
(is «<- = ?rhsy)
proof —
have [simp]: <@ x @ = a® «@* x a = a
by (simp-all add: power2-eq-square numeral-2-eq-2 numeral-3-eq-3)

2 2

have auz: <a=a' = b=b' = c=c' = d=d' = e=¢' = f=f' = g=¢’
= a' —-e+b+9g —-d—-c+f=a+b—c—d—-—e+[f+ ¢
forabcdefga' b ¢’ d e f' g :: z:ab-group-add>
by simp

have «Snd compressl *y ket (y, Some d) =
ket (y, Some d) — o? x¢ (3. d’€ UNIV. ket (y, Some d')) + « *¢ ket (y, None)
by (simp add: queryl-def tensor-ell2-scaleC2 tensor-ell2-diff2 tensor-ell2-add2 tensor-ell2-sum-right
flip: tensor-ell2-ket scaleC-sum-right)
also have <standard-queryl *y ... = ket (y + d, Some d) — a? ¢ (Y. d’€ UNIV. ket (y + d’, Some
d") + a x¢ ket (y, None)»
by (simp add: cblinfun.add-right cblinfun.diff-right cblinfun.scaleC-right cblinfun.sum-right)
also have «Snd compress1 *y ... =
ket (y + d, Some d)
— a? x¢ (32 d'€UNIV. ket (y + d, Some d'))
+ a x¢ ket (y + d, None)
+ a4 x¢ (D, 2z€UNIV. > d'€e UNIV. ket (y + z, Some d"))
—a? x¢ (3, d'€UNIV. ket (y + d’, Some d"))
— a8 x¢ (O 2€UNIV. ket (y + z, None))
+ a? x¢ (3° d'€UNIV. ket (y, Some d’))
by (simp add: tensor-ell2-diff2 tensor-ell2-add2 scaleC-add-right sum.distrib
tensor-ell2-scaleC2 sum-subtractf scale C-diff-right scaleC-sum-right tensor-ell2-sum-right
cblinfun.add-right cblinfun.diff-right diff-diff-eq2 cblinfun.scaleC-right cblinfun.sum-right
flip: tensor-ell2-ket diff-diff-eq scaleC-sum-right)
also have «... = ?rhs
apply (rule auzx)
subgoal by rule
subgoal by rule
subgoal
apply (subst sum.reindex-bij-betw|where h=«\d. y + d> and T=UNIV])
by simp-all
subgoal by rule
subgoal by rule
subgoal by rule
subgoal
apply (subst sum.reindex-bij-betw|where h=«\d. y + d> and T=UNIV])
by simp-all
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by —
finally show ?thesis
unfolding queryl-def by simp
qed

lemma queryl:
shows <queryl *y (ket yd) = (case yd of
(y, None) =
a xc (3. deUNIV. ket (y + d, Some d))
— a8 x¢ (O_y'€eUNIV. > deUNIV. ket (y’, Some d))
+ a? x¢ (3. deUNIV. ket (d, None))
| (y, Some d) =

ket (y + d, Some d)
+ «a *x¢ ket (y + d, None)
— a8 x¢ (O_y'€UNIV. ket (y’, None))
— a? % (32 d'€UNIV. ket (y + d’, Some d’))
— a? x¢ (32 d'€UNIV. ket (y + d, Some d'))
+ a2 x¢ (3. d'€UNIV. ket (y, Some d'))
+ a4 x¢ (O y'€UNIV. > d'€eUNIV. ket (y’, Some d’)))»

apply (cases yd, rename-tac y d) apply (case-tac d)

apply (simp-all add: )

apply (subst queryl-None)

apply simp

apply (subst queryl-Some)

by simp

lemma queryl’-None: <queryl’ xy ket (y,None) =
a xc (3. deUNIV. ket (y + d, Some d))
—a”8 x¢ Oy’ €UNIV. > deUNIV. ket (y', Some d))
+ a? x¢ (3. deUNIV. ket (d, None))) (is - = ?rhs»)
proof —
have [simp]: «a x a = o «a * o> = a”" D
by (simp-all add: power2-eq-square numeral-2-eq-2 numeral-3-eq-3)

have quz: <«a = a' = b=b =—=c=c' = a—-b+c=a" —b +chforabca b c :
z::group-add>
by simp

have «Snd compress1 *y ket (y, None) = (> de UNIV. a *¢ ket (y, Some d))»
by (simp add: queryl-def tensor-ell2-scaleC2 tensor-ell2-sum-right flip: tensor-ell2-ket)
also have (standard-queryl’ xy ... = (>, deUNIV. a x¢ ket (y + d, Some d))»
by (simp add: cblinfun.scaleC-right cblinfun.sum-right)
also have «Snd compressl *y ... =
a ¢ (> deUNIV. (ket (y + d) ®s ket (Some d)))
—a”8 x¢ (O 2€UNIV. > deUNIV. (ket (y + z) ®; ket (Some d)))
+ a? xc (D 2€UNIV. (ket (y + 2) ®s ket None))»
by (simp add: tensor-ell2-diff2 tensor-ell2-add2 scaleC-add-right sum.distrib tensor-ell2-sum-right
tensor-ell2-scaleC2 sum-subtractf scaleC-diff-right scaleC-sum-right cblinfun.scaleC-right
cblinfun.sum-right
flip: tensor-ell2-ket)
also have «... = ?rhs
apply (rule auz)
subgoal
by (simp add: tensor-ell2-ket)
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subgoal
apply (subst sum.reindez-bij-betw[where h=«\d. y + d> and T=UNIV])
by (simp-all add: tensor-ell2-ket)

subgoal
apply simp
apply (subst sum.reindex-bij-betw|where h=«\d. y + d> and T=UNIV])
by (simp-all add: tensor-ell2-ket)

by —

finally show ?thesis
unfolding query!’-def by simp
qed

lemma queryl -Some: (queryl’ sy ket (y, Some d) =
ket (y + d, Some d)
+ a *¢ ket (y + d, None)
—a 8 x¢ (O, y'€UNIV. ket (y', None))
— a? x¢ (32 d'€UNIV. ket (y + d’, Some d’))
— a? x¢ (3. d'€UNIV. ket (y + d, Some d’))
+ a4 %¢ (O, y'€UNIV. > d'€UNIV. ket (y', Some d’))»
(is ¢<- = ?rhs))
proof —
have [simp]: <@ x « = a® «@* x a = a
by (simp-all add: power2-eq-square numeral-2-eq-2 numeral-3-eq-3)

2 2

have auz: <a=a' = b=b' = c=c' = d=d' = e=e¢' = g=g’
= a' —e+b+g —-d—-c'=a+b—c—d-—e+ ¢
forabcdefga' b c' d e f' g :: z:ab-group-add>
by simp

have «Snd compress1 *y ket (y, Some d) =
ket (y, Some d) — o2 ¢ (3. d'€UNIV. ket (y, Some d')) + « *¢ ket (y, None),
by (simp add: queryl-def tensor-ell2-scaleC2 tensor-ell2-diff2 tensor-ell2-add2 tensor-ell2-sum-right
flip: tensor-ell2-ket scaleC-sum-right)
also have «standard-queryl’ xy ... = ket (y + d, Some d) — o xc (>, d’€UNIV. ket (y + d’, Some
ahy
by (simp add: cblinfun.add-right cblinfun.diff-right cblinfun.scaleC-right cblinfun.sum-right)
also have «Snd compress1 *y ... =
ket (y + d, Some d)
— a? x¢ (3. d’€UNIV. ket (y + d, Some d))
+ a *¢ ket (y + d, None)
+ a4 x¢ (3, 2z€UNIV. > d'€e UNIV. ket (y + z, Some d"))
—a? x¢ (Y. d'€UNIV. ket (y + d’, Some d’))
— a8 x¢c (O 2€UNIV. ket (y + z, None))»
by (simp add: tensor-ell2-diff2 tensor-ell2-add2 scaleC-add-right sum.distrib tensor-ell2-sum-right
tensor-ell2-scaleC2 sum-subtractf scale C-diff-right scaleC-sum-right cblinfun.sum-right
cblinfun.add-right cblinfun.diff-right diff-diff-eq2 cblinfun.scale C-right
flip: tensor-ell2-ket diff-diff-eq scaleC-sum-right)
also have «... = ?rhs
apply (rule aux)
subgoal by rule
subgoal by rule
subgoal
apply (subst sum.reindex-bij-betw|where h=«\d. y + d> and T=UNIV])
by simp-all
subgoal by rule
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subgoal by rule

subgoal
apply (subst sum.reindez-bij-betw[where h=«\d. y + d> and T=UNIV])
by simp-all

by —

finally show ?thesis
unfolding queryl’-def by simp
qed

lemma queryl":
shows <queryl’ xy (ket yd) = (case yd of
(y, None) =
a x¢ (Y, deUNIV. ket (y + d, Some d))
—a”8 x¢ (O_y'€UNIV. > deUNIV. ket (y’, Some d))
+ a? x¢ (3. deUNIV. ket (d, None))
| (y, Some d) =
ket (y + d, Some d)
+ a ¢ ket (y + d, None)
—a”8 x¢ (D_y'€UNIV. ket (y', None))
—a? x¢ (3, d'€UNIV. ket (y + d’, Some d"))
—a? ¢ (3. d'€eUNIV. ket (y + d, Some d’))
+ a4 x¢ Oy’ €UNIV. >  d'€eUNIV. ket (y', Some d')))
apply (cases yd, rename-tac y d) apply (case-tac d)
apply (simp-all add: )
apply (subst queryl’-None)
apply simp
apply (subst queryl’-Some)
by simp

4.9 query - Query the compressed oracle

We define the compressed oracle itself.

Analogous to the definition of queryl above (decompress, standard-queryl, recompress), the
compressed oracle is defined by decompressing the oracle register (now a superposition of func-
tions), applying standard-query, and recompressing.

That is: If one starts with a four-partite state ¢ ® ket 0 ® ket 0 ®s ket None and keeps
performing operations U; on the parts 1-3 of the state, interleaved with query invocations on
parts 24, this is a simulation of starting with state ¥ ®s 0 and performing U; interleaved with
invocations of the unitary |z,y) — |z,y @ h(x)) on parts 2, 3 where h is a function chosen
uniformly at random in the beginning.

Note that there is an alternative way of defining the compressed oracle, namely by decompressing
not the whole oracle register, but only the specific oracle output that we are querying. This is
closer to an efficient implementation of the compressed oracle. We show that this definition is
equivalent below (lemma query-local).

definition query where <(query = reg-3-3 compress ocy, standard-query ocy Teg-3-8 compress)

query’is defined like query, except that it’s based on standard-queryl’instead of standard-queryl.
See the discussion of standard-queryl’ for the difference.

definition query’ where <query’ = reg-3-3 compress ocy, standard-query’ ocy reg-3-3 compress»

lemma unitary-query[simp|: <unitary query»
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by (auto simp: query-def register-unitary intro!: unitary-cblinfun-compose)

lemma norm-query[simpl: <norm query = 1)
using norm-isometry unitary-isometry unitary-query by blast

lemma norm-query’[simp: <norm query’ = 15
unfolding query’-def
apply (subst norm-isometry-compose’)
apply (subst register-adjoint[OF register-3-3, symmetric))
apply (rule register-isometry| OF register-3-3])
apply simp
apply (subst norm-isometry-compose)
apply (rule register-isometry|OF register-3-3])
apply simp
by simp

lemma query-local-generic:
— A generalization of lemmas query-local and query’-local below. We prove this first because it avoids
a duplication of the proof because query-local and query’-local have very similar proofs.
fixes query :: «('z x 'y x ('z = 'y)) update> and queryl
and standard-query and standard-queryl
assumes query-def: <query = reg-3-3 compress oo standard-query ocp reg-3-3 compresss
assumes queryl-def: <queryl = Snd compressl ocy standard-queryl ocy Snd compressl»
assumes standard-query-ket: <\z . standard-query v (ket x @4 ) = ket © ®;5 ((Fst; Snd o func-
tion-at x) standard-queryl *y 1)
shows <query = controlled-op (Az. (Fst; Snd o function-at x) queryl)»
proof —
have (query xy ket © ® ¥ = controlled-op (Az. (Fst;Snd o function-at ) queryl) *y ket © ®; 1
for z v
proof —
have auz: «(Snd ((Fst;Snd o function-at z) Q) ocy reg-3-3 (apply-every M R) :: ("zx'yx('z—"y))
update)
= reg-3-3 (apply-every M R) ocy Snd ((Fst;Snd o function-at ) Q)
if <x¢M> for M and Q :: «('y X 'y option) update> and R
using finite[of M| that
proof induction
case empty
show ?case
by simp
next
case (insert y F)
have «(Snd ((Fst;Snd o function-at ) Q) ocr reg-3-3 (apply-every (insert y F) R) :: ("zx'yx('z—"y))
update) =
((Snd o (Fst;Snd o function-at x)) Q ocr (reg-3-3 o function-at y) (R y)) ocr reg-3-3
(apply-every F R)»
by (simp add: apply-every-insert insert register-mult[of reg-3-3, symmetric] cblinfun-compose-assoc)
also have (... = (reg-3-3 o function-at y) (R y) ocr ((Snd ((Fst;Snd o function-at x) Q)) ocr
reg-3-3 (apply-every F R))»
apply (subst swap-registers[of <Snd o -» <reg-8-3 0 -)])
using insert apply (simp add: reg-3-3-def add: comp-assoc)
by (simp add: cblinfun-compose-assoc)
also have «... = ((reg-3-3 o function-at y) (R y) ocr, reg-3-3 (apply-every F R)) ocr Snd ((Fst;Snd
o function-at ) Q)
apply (subst insert.IH)
using insert by (auto simp: cblinfun-compose-assoc)
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also have «... = (reg-3-3 (apply-every (insert y F') R)) ocr Snd ((Fst;Snd o function-at z) Q)
by (simp add: apply-every-insert insert register-mult[of reg-3-8, symmetric] cblinfun-compose-assoc)

finally show ?case

by —
qed
have <(query v (ket © ® ¥) = reg-3-3 compress xy standard-query xy reg-3-3 compress xy (ket x
®s V)
by (simp add: query-def)
also have «... = reg-3-3 compress *y

standard-query xy (ket © ®¢ Snd compress xy 1)
apply (rule arg-cong[where f=\z. - xy - xy 1])
by (auto simp: reg-3-3-def)
also have «... = reg-3-3 compress *y
(ket z ®5 (((Fst; Snd o function-at z) standard-queryl *y Snd compress xy 1))

by (simp add: standard-query-ket)

also have «... = reg-3-3 compress %y
(Snd ((Fst; Snd o function-at ) standard-queryl)) =y (ket © ®5 Snd compress xy 1))
by auto
also have «... = reg-3-3 compress *y

(Snd ((Fst; Snd o function-at x) standard-queryl)) =y reg-3-3 compress xy (ket © @4 1)
apply (rule arg-cong[where f=«\zx. - xy - xy 23])
by (auto simp: reg-3-3-def)

also have (... = (reg-3-3 compress ocr (Snd ((Fst; Snd o function-at z) standard-queryl)) ocr,
reg-3-3 compress) xy (ket x @4 )
by auto
also have «... = (reg-3-8 (function-at © compressl) ocr (Snd ((Fst; Snd o function-at ) stan-
dard-queryl)) ocr reg-3-3 (function-at x compressl)) xy (ket © @5 )
(is <?lhs *y - = 2rhs xy -)
proof —
have [simp]: <insert x (— {z}) = UNIV» for z :: 'z
by auto

have (?lhs = reg-3-3 (apply-every ({z} U —{z}) (A-. compress1))
ocr, Snd ((Fst;Snd o function-at x) standard-queryl)
ocr, reg-3-3 (apply-every (—{z} U {z}) (A-. compress1))»
by (simp add: compress-def)
also have «... = reg-3-3 (function-at © compressl) ocy, reg-3-3 (apply-every (— {z}) (A-. com-
pressl))
ocr ( Snd ((Fst;Snd o function-at z) standard-queryl) ocyr reg-3-3 (apply-every (— {z}) (A-.
compressl)) )
ocr reg-3-3 (function-at x compressl)
apply (subst apply-every-split[symmetric], simp)
apply (subst apply-every-split[symmetric], simp)
by (simp add: register-mult cblinfun-compose-assoc)
also have «... = reg-3-3 (function-at x compress1)
ocr ( reg-3-3 (apply-every (— {z}) (A-. compressl)) ocyr reg-3-3 (apply-every (— {z}) (A-.
compressl)) )
ocr Snd ((Fst;Snd o function-at x) standard-queryl)
ocr reg-3-3 (function-at x compressl)»
apply (subst auz)
by (auto simp add: cblinfun-compose-assoc)
also have «... = reg-3-3 (function-at x compressl)
ocr (reg-3-3 (apply-every (— {z}) (A-. compressl ocr compressl)))
ocr Snd ((Fst;Snd o function-at x) standard-queryl)
ocr Teg-3-3 (function-at x compressl)»
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by (simp add: register-mult[of reg-3-3] apply-every-mult)
also have «... = reg-3-3 (function-at x compress1)
ocr Snd ((Fst;Snd o function-at x) standard-queryl)
ocr reg-3-3 (function-at x compressl)»
by (simp add: compress1-square)
finally show ?thesis
by auto
qed
also have «... = ket z ®, ((Snd (function-at x compressl) ocr ((Fst; Snd o function-at x) stan-
dard-queryl) ocr Snd (function-at © compressl)) *y )
by (simp add: reg-3-3-def)
also have «... = controlled-op (Az. Snd (function-at x compressl) ocr ((Fst; Snd o function-at x)
standard-queryl) ocr Snd (function-at x compressl)) *y
(ket © @5 )
by simp
also have «... = controlled-op (Az. (Fst; Snd o function-at z) queryl) (ket z @5 )
by (auto simp: queryl-def register-mult[symmetric] register-pair-Snd[unfolded o-def, THEN fun-cong])
finally show ?thesis
by —
ged

from this[of - (ket -]
show ?thesis
by (auto intro!: equal-ket simp: tensor-ell2-ket)
qed

We give an alternate (equivalent) definition of the compressed oracle query. Instead of de-
compressing the whole oracle, we decompress only the output we need. Specifically, this is
implemented by — if the query register contains ket z — performing query! on the output reg-
ister and on the register H, which is the part of the oracle register which corresponds to the
output for input z.

And analogously for queryl’.

lemma query-local: <query = controlled-op (Az. (Fst; Snd o function-at x) queryl)»
using query-def queryl-def standard-query-ket by (rule query-local-generic)

lemma query’-local: «query’ = controlled-op (Az. (Fst; Snd o function-at x) queryl’)»
using query’-def queryl’-def standard-query’-ket by (rule query-local-generic)

lemma (in compressed-oracle) standard-query-compress: <standard-query oc 1, reg-3-3 compress = reg-3-3
compress 0¢ L, query>

by (simp add: query-def register-mult compress-selfinverse flip: cblinfun-compose-assoc)
lemma (in compressed-oracle) standard-query’-compress: <standard-query’ oo, reg-3-3 compress = reg-3-3

compress ocy, query”
by (simp add: query’-def register-mult compress-selfinverse flip: cblinfun-compose-assoc)

end

end
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5 (CO-Invariants Preservation of invariants under compressed
oracle queries

theory CO-Invariants imports
Invariant- Preservation
CO-Operations

begin

lemma function-oracle-ket-invariant: <function-oracle h xg ket-invariant I = ket-invariant ((A\(x,y).
(z,y + hx) “I)p

by (auto intro!: arg-conglwhere f=<«A\z. ccspan (z “ I)»] simp add: ket-invariant-def cblinfun-image-ccspan
image-image function-oracle-apply)

lemma function-oracle-Snd-ket-invariant: <Snd (function-oracle h) =g ket-invariant I = ket-invariant
(Mw,2,9). (w,a,y+h ) “ I)>
by (auto intro!: ext arg-cong[where f=«\z. ccspan (x ‘ I))]
simp add: Snd-def ket-invariant-def cblinfun-image-ccspan image-image function-oracle-apply ten-
sor-op-ket tensor-ell2-ket)

context compressed-oracle begin

This lemma allows to simplify the preservation of invariants under invocations of the compressed
oracle.

Given an invariant I, it can be split into many invariants /1 z for which preservation is shown
then with respect to a fixed oracle input x z, using the simpler oracle query! instead.

This allows to reduce complex cases to more elementary ones that talk about a single output
of the oracle.

Lemmas inv-split-reg-query and inv-split-reg-query’ are the specific instantiations of this for the
two compressed oracle variants query and query’.

lemma inv-split-reg-query-generic:

fixes query queryl
assumes query-local: <query = controlled-op (Ax. (Fst; Snd o function-at z) queryl)»
fixes X :: 'z update = 'm update>

and Y :: 'y update = 'm updates

and H :: «('z—'y) update = 'm update)

and K :: <z = 'm ell2 ccsubspace

and z :: (z = '»

and M :: 'z set
assumes XK: «A\z. ze M = K z < lift-invariant X (ket-invariant {z z})»
assumes pres-11: <\z. ze M = preserves queryl (I1 z) (J1 z) &
assumes [-leq: <I < (SUP zeM. K z N lift-invariant (Y;H o function-at (z z)) (I1 z))»
assumes J-geq: <N\z. zée M = J > K z N lift-invariant (Y;H o function-at (z 2)) (J1 z)»
assumes YK: <\z. zé M = compatible-register-invariant Y (K z)»
assumes HK: «\z. ze M = compatible-register-invariant (H o function-at (z 2)) (K z)»
assumes [simp]: (compatible X Y <compatible X H> <compatible Y H>
assumes U: «U = ((X;(Y;H)) query)
assumes orthoK: «N\z z'. ze M = z2’e M = z # 2z’ = orthogonal-spaces (K z) (K z')»
assumes < > (»
assumes <finite M>
shows (preserves U I J &)

proof (rule inv-split-reg[where ?U1.0=<\-. queryl> and ?I11.0=I1 and 2J1.0=J1
and Y=«Az. (Y;H o function-at (z z))» and K=K])

show «(Y;H o function-at (z 2)) queryl xv ¢ = U *xy ¢

if <zeM» and <) € space-as-set (K z) for ¢ z

95



proof —
from that(2) XK[OF «zeM)>] have «p € space-as-set (lift-invariant X (ket-invariant {z z}))
using less-eq-ccsubspace.rep-eq by blast
then have yz: «p = X (Proj (ket-invariant {z z})) *y ¢
by (metis Proj-lift-invariant Proj-fixes-image <compatible X Y compatible-registerl)
have U *y ¢ = (X;(Y;H)) query xy )
by (simp add: U)

also have ... = (X;(Y;H)) (controlled-op (Az. (Fst;Snd o function-at z) queryl)) sy
by (simp add: query-local)
also have «... = (X;(Y;H)) (controlled-op (Az. (Fst;Snd o function-at x) queryl) ocyr Fst (selfbutter

(ket (z 2)))) *v
by (simp add: register-pair-apply Fst-def flip: register-mult Proj-ket-invariant-butterfly 1 x)
also have «... = (X;(Y;H)) (Snd ((Fst;Snd o function-at (z 2)) queryl) ocr Fst (selfbutter (ket
(z 2)))) *v ¥
by (simp add: controlled-op-comp-butter)

also have «... = (X;(Y;H)) (Snd ((Fst;Snd o function-at (z z)) queryl)) sy i

by (simp add: register-pair-apply Fst-def flip: register-mult Proj-ket-invariant-butterfly 1 x)
also have «... = (((X;(Y;H)) o Snd o (Fst;Snd o function-at (z 2))) queryl) sy ¢

by auto
also have (... = (Y;H o function-at (z z)) queryl *y

by (simp add: register-pair-Snd register-pair-Fst flip: register-comp-pair comp-assoc)
finally show ?thesis
by simp
qed
from pres-11 show (preserves queryl (11 z) (J1 z) e if «zeM)» for 2
using that by —
from [-leq
show «I < (SUP zeM. K z N lift-invariant (Y;H o function-at (z z)) (I1 z))»
by —
from J-geq
show «J > K z N lift-invariant (Y;H o function-at (z 2)) (J1 z)» if <ze M) for 2
using that by —
show <compatible-register-invariant (Y;H o function-at (z z)) (K z)» if <ze M) for z
using YK|[OF that] HK[OF that] by (rule compatible-register-invariant-pair)
from orthoK
show <orthogonal-spaces (K z) (K z')y if <zeM)» <z'eM)> <z # 2" for z 2’
using that by —
show «(register (Y;H o function-at (z 2))> for z
by simp
from assms show <« > 0»
by —
from assms show «finite M»
by metis
qed

lemmas inv-split-reg-query = inv-split-reg-query-generic| OF query-local]
lemmas inv-split-reg-query’ = inv-split-reg-query-generic|OF query’-local]

definition (num-queries ¢ = {(z::'z, y::'y, D::'z—"y). card (dom D) < g}
definition (num-queries’ ¢ = {D::"z—"y. card (dom D) < ¢}

lemma num-queries-num-queries” <num-queries ¢ = UNIV x UNIV X (num-queries’ q)»
by (auto introl: simp: num-queries-def num-queries’-def)

lemma ket-invariant-num-queries-num-queries”: <ket-invariant (num-queries ¢) = T @s T ®g ket-invariant
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(num-queries’ q)»
by (auto simp: ket-invariant-tensor num-queries-num-queries’ simp flip: ket-invariant-UNIV')

This lemma shows that the number of recorded queries (defined outputs in the oracle register)
increases at most by 1 upon each query of the compressed oracle.

The two instantiations for the two compressed oracle variants are given afterwards.

lemma preserves-num-generic:
fixes query queryl
assumes query-local: (query = controlled-op (\z. (Fst; Snd o function-at x) queryl)»
shows «preserves-ket query (num-queries q) (num-queries (g+1)) 0»
proof —
define K where <K z = ket-invariant {(z::'z,y::"y,D::'z—"y) | y D. card (dom D — {z}) < ¢}» for z
define Kd where «Kd x D0 = ket-invariant {(z::'z,y::"y,D::'a—"y) | y D. (Va'#z. D ¢’ = D0 z')}»
for x DO
have K: <K x = (SUP D0€{D0. DO = None A card (dom DO — {z}) < ¢q}. Kd x D0)» for x
proof —
have auz!: <card (dom D — {z}) < ¢ =
D' D'z = None A card (dom D' — {z}) < g A (Vz'. 2’ # 2 — Dz’ = D' z’)» for D
apply (rule exI[of - <D(z:=None))))
by auto
have auz2: <D’ x = None =
card (dom D' — {z}) < ¢g = Va' 2’/ # 2 — Dz’ = D'z’ = card (dom D — {z}) < ¢ for
D' D
by (smt (verit) DiffE Diff-empty card-mono domIff dom-minus dual-order.trans finite-class.finite-code
singleton-iff subsetl)
show ?thesis
by (auto intro: auzl aux2 simp add: K-def Kd-def simp flip: ket-invariant-SUP)
qged
define Kdx where «Kdz © D0 z' = ket-invariant {(z::'z,y::"y,D::'x—"y) | y D. D 2’ = D0 z'}» for D0
z'z
have Kd: «<Kd © D0 = (INF z'e—{z}. Kdx x D0 z')) for = D0
unfolding Kd-def Kdz-def
apply (subst ket-invariant-INF[symmetric])
apply (rule arg-cong[where f=ket-invariant))
by auto
have Kdz: <Kdx x D0 z' = lift-invariant reg-1-3 (ket-invariant {z}) N lift-invariant (reg-3-3 o func-
tion-at x') (ket-invariant {D0 z'})> for DO z'
unfolding Kdz-def reg-3-3-def reg-1-3-def
apply (simp add: lift-invariant-comp)
apply (subst lift-invariant-function-at-ket-inv)
apply (subst lift-Snd-ket-inv)
apply (subst lift-Snd-ket-inv)
apply (subst lift-Fst-ket-inv)
apply (subst ket-invariant-inter)
apply (rule arg-cong|[where f=ket-invariant))
by auto

Py

show ?thesis
proof (rule inv-split-reg-query-genericlwhere X=«<reg-1-3> and Y=c<reg-2-3» and H=<reg-3-3» and
K=K
and z=\z. > and ?I1.0=¢\-. T» and 2J1.0=«\-. T», OF query-local])
show (query = (reg-1-3;(reg-2-3;reg-3-3)) query»
by (auto simp add: pair-Fst-Snd reg-1-3-def reg-2-3-def reg-3-3-def)
show <compatible reg-1-3 reg-2-3» <compatible reg-1-3 reg-3-3» <compatible reg-2-3 reg-3-3>»
by simp-all
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show <compatible-register-invariant reg-2-3 (K z)» for z
unfolding K Kd Kdzx
apply (rule compatible-register-invariant-SUP, simp)
apply (rule compatible-register-invariant-INF, simp)
apply (rule compatible-register-invariant-inter, simp)
apply (rule compatible-register-invariant-compatible-register)
apply simp
apply (rule compatible-register-invariant-compatible-register)
by simp
show <compatible-register-invariant (reg-3-8 o function-at z) (K z) for
unfolding K Kd Kdx
apply (rule compatible-register-invariant-SUP, simp)
apply (rule compatible-register-invariant-INF, simp)
apply (rule compatible-register-invariant-inter, simp)
apply (rule compatible-register-invariant-compatible-register)
apply simp
apply (rule compatible-register-invariant-compatible-register)
by simp
show <ket-invariant (num-queries q)
< (SUP z. K z N lift-invariant (reg-2-3;reg-3-8 o function-at x) T)»
by (auto intro!: card-Diff1-lef THEN order-trans)
simp: K-def lift-Fst-ket-inv reg-1-3-def ket-invariant-inter ket-invariant-SUP[symmetric]
num-queries-def)
have #: <card (dom D) < card (dom D — {z}) + 1» for D z
by (metis One-nat-def card.empty card.insert diff-card-le-card-Diff empty-not-insert finite.intros(1)
finite-insert insert-absorb le-diff-conv)
show (<K z M lift-invariant (reg-2-3;reg-3-8 o function-at x) T
< ket-invariant (num-queries (¢ + 1)) for z
by (auto intro!: x| THEN order-trans|
stmp add: num-queries-def K-def lift- Fst-ket-inv reg-1-3-def ket-invariant-inter ket-invariant-SUP[symmetric])
show «(preserves queryl T T 0»
by simp
show <orthogonal-spaces (K z) (K z')» if <z # z/) for = z’
unfolding K-def orthogonal-spaces-ket using that by auto
show «K z < lift-invariant reg-1-3 (ket-invariant {z})» for x
by (auto simp add: K Kd-def reg-1-3-def lift-inv-prod’ lift-Fst-ket-inv
simyp flip: ket-invariant-SUP)
show <0 < (0::real)»
by auto
show «finite (UNIV::'z set)»
by simp
qed

qed

lemmas preserves-num = preserves-num-generic|OF query-local)
lemmas preserves-num’ = preserves-num-generic[OF query’-local]

We now present various lemmas that give concrete bounds for the preservation of invariants
under various conditions, for query! (and queryl’).

The invariants are formulated specifically for an application of queryl to a two-partite system
with query output register and oracle register only.

These can be applied to derive invariant preservation for full compressed oracle queries on
arbitrary systems by first splitting the invariant using inv-split-reg-query.

The first bound is applicable for ket-invariants that do not put any conditions on the output
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register and that not not require that the output register is defined (not None) after the query.

Lemmas preserve-queryl-bound and preserve-queryl -bound; with slightly simplified bounds in
preserve-queryl-simplified, preserve-queryl'-simplified.

definition <preserve-queryl-bound Nonel b; bjo = 4 * sqrt bjo * sqrt by / N + 2 % of-bool Nonel x
sqrt bjo / sqrt N»
lemma preserve-queryl:
assumes 1J: <[ C J»
assumes [simp]: <None € J»
assumes b;: <card (Some —‘ 1) < by
assumes bjo: <card (— Some —°J) < bjo>
assumes ¢: € > preserve-queryl-bound (None€l) b; bjo>
shows (preserves-ket queryl (UNIV x I) (UNIV x J) e
proof (rule preservesI’)
show <« > 0»
using - ¢ apply (rule order.trans)
by (simp add: preserve-queryl-bound-def)
fix ¢ 2 <("y x 'y option) ell2)
assume ;<) € space-as-set (ket-invariant (UNIV x I))»
assume <norm ¢ = 1)

define I’ J’ where (I’ = Some —‘ I» and «J' = Some —* J»

from ¢’ have : «¢p € space-as-set (ket-invariant (UNIV x ((Some ‘I’ U {None}))))
using [’-def less-eq-ccsubspace.rep-eq by fastforce

have [simp]: <I' C J"
using [’-def J'-def IJ by blast

define 8 where <3 = Rep-ell2
then have (: «¢p = (3 yde UNIV x(Some ‘ I' U {None}). B yd *¢ ket yd)»
using ell2-sum-ket-ket-invariant| OF 1] by auto
have Bbound: «(>_ yde UNIV x(Some “ I' U {None}). (cmod (3 yd))?) < 1» (is «?lhs < 1))
apply (subgoal-tac «(norm )% = ?lhs»)
apply (simp add: <norm ¢ = 1»)
by (simp add: 8 pythagorean-theorem-sum)
have GNone0: 3 (y,None) = 0» if «<None ¢ I» for y
using @’ that by (simp add: -def ket-invariant-Rep-ell2)

have [simp]: «Some — ¢ insert None X = Some —* X for X :: 'z option set
by auto
have [simp]: «<Some —* Some ‘X = X for X :: <'z set
by auto
have [simp]: <Some © € J «— z € J» for z
by (simp add: J'-def)
have [simp|: «<x € I' = z € J' for x
using <[’ C J' by blast
have [simp]: «(> z€X. if ¢ ¢ Y then fz else 0) = (D zeX-Y. fz) if finite X»> for f :: <y =
'z::ab-group-addy and X Y
apply (rule sum.mono-neutral-cong-right)
using that by auto
have [simp]: «>_zeX. Y yeY.ifx ¢ X' then fryelse 0) = (> zeX—-X" > yeY. fxy) if «finite
X
for f :: 'z = 'y = 'zi:ab-group-add) and X X'V
apply (rule sum.mono-neutral-cong-right)
using that by auto
have [simp]: <8 yd *c a ¢ b = a *¢ 8 yd *¢ b for yd a and b :: 'z::complez-vector)
by auto
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have [simp]: <cmod o = inverse (sqrt N)» <ecmod (a?) = inverse N» <cmod (a”3) = inverse (N * sqrt
N)» <ecmod (a™}) = inverse (N?)
by (auto simp: powerj-eq-rxzr power2-eq-square norm-mult numeral-3-eq-3 «a-def inverse-eq-divide
norm-divide norm-power power-one-over)
have [simp]: <card (Some ‘1') < by
by (metis I’-def b; card-image inj-Some)
have bound-J'[simp]: <card (Some ‘ (— J')) < bjo>
using b, unfolding J'-def by (simp add: card-image)

define ¢ and PJ :: «('y x 'y option) update> where
«p = queryl xy Yy and <PJ = Proj (ket-invariant (UNIV x —J))»
have [simp]: <PJ *y ket (z,y) = (if ye—J then ket (z,y) else 0)» for z y
by (simp add: Proj-ket-invariant-ket PJ-def)
have P0Oy: <PJ xy ¢ =
a4 xc O yeUNIV. > del’. > y'eUNIV. > d'e— J'. 8 (y, Some d) ¢ ket (y', Some d’)) —
a? ¢ (SSyeUNIV. S  del’. S d'e— J'. B (y, Some d) *¢ ket (y + d, Some d’)) —
a? xc (S yeUNIV. S del’. S" d'e— J'. B (y, Some d) xc ket (y + d’, Some d')) +
a? xc Y yeUNIV. Y  del’. Y d'e— J'. B (y, Some d) *c ket (y, Some d’)) +
a x¢ (Y yeUNIV. > d'e— J'. B (y, None) x¢ ket (y + d’, Some d’)) —
a”8 x¢ (D yeUNIV. Y y'€e UNIV. > d'e— J'. B (y, None) ¢ ket (y', Some d’))»
(is - = 2t1 — 212 — 213 + 2t + U5 — 216))
by (simp add: p-def B queryl option-sum-split vimage-Compl
cblinfun.add-right cblinfun.diff-right if-distrib Compl-eq-Diff-UNIV
vimage-singleton-inj sum-sum-if-eq sum.distrib scaleC-diff-right scaleC-sum-right
sum-subtractf case-prod-beta sum.cartesian-product’ scaleC-add-right add-diff-eq
cblinfun.scaleC-right cblinfun.sum-right
flip: sum.Sigma add.assoc scaleC-scaleC
cong del: option.case-cong if-cong)

have norm-t1: <norm ?t1 < sqrt bjo * sqrt b; / N»
proof —
have x: <norm (3. yde UNIV x Some ‘I'. 8 yd xc ket y'd’) < sqrt (N x b;)» for y'd’ :: 'y x 'y
option)
using - - Bbound apply (rule bound-coeff-sum2)
by (auto simp: N-def)

have <norm ?t1 = inverse (N?) x norm (3. y'd’ € (UNIV::'y set) x Some ‘ (—J'). 3 yde UNIV x
Some ‘I'. 8 yd xc ket y'd")
apply (simp add: sum.cartesian-product’ sum.reindex N-def)
apply (subst (2) sum.swap) apply (subst (3) sum.swap)
apply (subst sum.swap) apply (subst (2) sum.swap)
by (rule refl)
also have «... < inverse (N?) x (N * sqrt (card (Some * (— J'))) * sqrt b;)»
apply (rule mult-left-mono)
using * apply (rule norm-ortho-sum-bound)
by (auto simp add: cinner-sum-right cinner-sum-left N-def real-sqrt-mult algebra-simps real-sqrt-mult
algebra-simps
sqrt-sqrt[ THEN extend-mult-rule])
also have (... < inverse (N?) x (N * sqrt bjo * sqrt b;)»
by (metis bound-J' linordered-field-class.inverse-nonnegative-iff-nonnegative mult. commute mult-right-mono
of-nat-0-le-iff of-nat-mono real-sqrt-ge-zero real-sqri-le-iff)
also have «... < sqrt bjo * sqrt b; / N»
by (smt (verit) ab-semigroup-mult-class.mult-ac(1) divide-inverse-commute of-nat-power power2-eq-square
real-divide-square-eq)
finally show «norm ?t1 < sqrt bjo * sqrt b; /| N»
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by —
qed

have norm-t2: <norm ?t2 < sqrt bjo * sqrt b; /| N»
proof —
have *: <card {y. 6 = fst y + the (snd y) A y € UNIV x Some ‘I'} < card I for &
apply (rule card-inj-on-le[where f=<\y. the (snd y))))
by (auto intro!: inj-onI)
have x: (norm (}_ yd€e UNIV x Some ‘ I'. 8 yd xc ket (fst yd + the (snd yd), d’)) < sqrt b;» for
d’ 2 <’y options
using - - Bbound apply (rule bound-coeff-sum2)
using * [’-def b; order.trans by auto

have «norm ?t2 = inverse (real N) * norm (> d" € Some ‘ (=J"). > yde UNIV x Some ‘I'. 8 yd
xc ket (fst yd + the (snd yd), d'))»
apply (simp add: sum.cartesian-product’ sum.reindex N-def)
apply (subst sum.swap) apply (subst (2) sum.swap) apply (subst (3) sum.swap)
apply (subst sum.swap)
by (rule refl)
also have «... < inverse (real N) x (sqrt (card (Some ‘(= J'))) * sqrt b;)»
apply (rule mult-left-mono)
using * apply (rule norm-ortho-sum-bound)
by (auto simp add: cinner-sum-right cinner-sum-left)
also have «... < inverse N x (sqrt bjo * sqrt b;)»
by (simp add: mult-right-mono N-def)
also have «... < sqrt bjo * sqgrt b; / N»
by (simp add: divide-inverse-commute)
finally show «norm 2t2 < sqrt bjo * sqrt b; /| N»
by —
qged

have norm-t3: <norm ?t3 < sqrt bjo * sqrt b; /| N»
proof —
have «: <card {y. a = fst y A y € UNIV x (I N range Some)} < card Iy for a :: 'y
apply (rule card-inj-on-le[where f=<\y. the (snd y)»])
by (auto introl: inj-onl simp: I'-def)
have x: <norm (3. yde UNIV x Some ‘I'. 8 yd x¢ ket (fst yd + the d’, d')) < sqrt b;» for d’ :: 'y
option)
using - - Bbound apply (rule bound-coeff-sum2)
using * I’-def b; order.trans by auto

have «norm %8 = inverse (real N) * norm (3. d’' € Some ‘ (=J'). > yde UNIV x Some ‘I'.
B yd xc ket (fst yd + the d’, d'))»
apply (simp add: sum.cartesian-product’ sum.reindex N-def)
apply (subst sum.swap) apply (subst (2) sum.swap) apply (subst (3) sum.swap)
apply (subst sum.swap)
by (rule refl)
also have «... < inverse (real N) x (sqrt (card (Some ‘(= J'))) * sqrt b;)»
apply (rule mult-left-mono)
using * apply (rule norm-ortho-sum-bound)
by (auto simp add: cinner-sum-right cinner-sum-left)
also have «... < inverse N « (sqrt bjo * sqrt b;)»
by (simp add: mult-right-mono N-def)
also have «... < sqrt bjo * sqrt b; /| N»
by (simp add: divide-inverse-commute)
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finally show «norm 2t3 < sqrt bjo * sqrt b; /| N»
by —
qged

have norm-t4: <norm 2t} < sqrt bjo * sqrt b; /| N»
proof —
have «: <card {y. a = fst y A y € UNIV x (I N range Some)} < card Iy for a :: 'y
apply (rule card-inj-on-le[where f=<\y. the (snd y)»))
by (auto introl: inj-onl simp: I'-def)
have *: <norm (> yde UNIV x Some ‘I'. 3 yd *¢c ket (fst yd, d)) < sqrt b;» for d’ :: 'y option
using - - Bbound apply (rule bound-coeff-sum2)
using * [’-def b; order.trans by auto

have «norm %t/ = inverse (real N) x norm (3. d’' € Some ‘ (=J'). > yde UNIV x Some ‘I'.
B yd x¢ ket (fst yd, d"))»
apply (simp add: sum.cartesian-product’ sum.reindex N-def)
apply (subst sum.swap) apply (subst (2) sum.swap) apply (subst (3) sum.swap)
apply (subst sum.swap)
by (rule refl)
also have «... < inverse (real N) x (sqrt (card (Some ‘(= J'))) * sqrt b;)»
apply (rule mult-left-mono)
using * apply (rule norm-ortho-sum-bound)
by (auto simp add: cinner-sum-right cinner-sum-left)
also have «... < inverse N x (sqrt bjo * sqrt b;)»
by (simp add: mult-right-mono N-def)
also have «... < sqrt bjo * sqgrt b; / N»
by (simp add: divide-inverse-commute)
finally show «norm 2t < sqrt bjo * sqrt b; /| N»
by —
qged

have norm-t5: <norm ?t5 < of-bool (None€l) % sqrt bjo / sqrt N»
proof (cases «<None€l)
case True
have «: <card {y. a = fst y A y € UNIV x {None :: 'y option}} < card {()}> for a :: 'y
apply (rule card-inj-on-le[where f=<\-. undefined>])
by (auto introl: inj-onl)
have *: (norm (> yde UNIV x {None}. 8 yd *¢ ket (fst yd + the d’, d')) < sqrt (1::nat)) for d
i 'y option»
using - - Bbound apply (rule bound-coeff-sum2)
using * by auto

have <norm ?t5 = inverse (sqrt N) x norm (3. d’ € Some ‘ (—J'). > yde UNIV x {None}.
B yd xc ket (fst yd + the d’, d"))»
apply (simp add: sum.cartesian-product’ sum.reindex N-def)
apply (subst sum.swap)
by (rule refl)
also have «... < inverse (sqrt N) * (sqrt (card (Some ‘(= J'))))
apply (rule mult-left-mono)
using * apply (rule norm-ortho-sum-bound)
by (auto simp add: cinner-sum-right cinner-sum-left)
also have «... < inverse (sqrt N) % sqrt bjo»
by (simp add: mult-right-mono N-def)
also have «... < of-bool (None€l) * sqrt bjo / sqrt N»
by (simp add: True divide-inverse-commute)
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finally show ?thesis
by —
next
case Fulse
then show ?thesis
using GNonel0 by auto
qed

have norm-t6: <norm ?t6 < of-bool (None€lI) % sqrt bjo / sqrt N»
proof (cases «<None€l)
case True
have *: <norm (Y. yde UNIV x {None}. § yd x¢ ket y'd’) < sqrt N> for y'd’ :: <'y x 'y option>
using - - Bbound apply (rule bound-coeff-sum2)
by (auto simp: N-def)

have <norm ?t6 = inverse (N x sqrt N) x norm (>, y'd’ € (UNIV:'y set) x Some ¢ (—J').
ST yde UNIV x {None}. 8 yd *x¢ ket y'd’)>
apply (simp add: sum.cartesian-product’ sum.reindex N-def)
apply (subst (2) sum.swap) apply (subst sum.swap)
by (rule refl)
also have «... < inverse (N * sqrt N) = (N x sqrt (card (Some ‘ (— J'))))»
apply (rule mult-left-mono)
using * apply (rule norm-ortho-sum-bound)
by (auto simp add: cinner-sum-right cinner-sum-left N-def mult.commute real-sqri-mult vec-
tor-space-over-itself .scale-scale)
also have «... < inverse (N « sqrt N) % (N x sqrt bjo)>
by (simp add: N-def)
also have «... < of-bool (None€l) * sqrt bjo / sqrt N»
using True by (simp add: divide-inverse-commute less-eq-real-def N-def)
finally show ?thesis
by —
next
case Fulse
then show ?thesis
using GNonel by auto

qged
have (norm (PJ vy @) < sqrt bjo * sqrt b; /| N+ sqrt bjo = sqrt b; /| N +  sqrt bjo *
sqrt b; /| N

+ sqrt bjo * sqrt b; /| N+ of-bool (None€l) * sqrt bjo / sqrt N + of-bool (None€l)
% sqrt bjo / sqrt N»
unfolding POy
apply (rule norm-triangle-le-diff norm-triangle-le, rule add-mono)+
apply (rule norm-t1)
apply (rule norm-t2)
apply (rule norm-t3)
apply (rule norm-t4)
apply (rule norm-t5)
by (rule norm-t6)

also have «... < 4 « sqrt bjo * sqrt b; / N + 2 % of-bool (None€I) * sqrt bjo / sqrt N»
by (simp add: mult.commute vector-space-over-itself . scale-left-commute)

also have (... < &
using ¢ by (auto intro!: simp add: preserve-queryl-bound-def)

finally show <norm (Proj (— ket-invariant (UNIV x J)) xy ¢) < &
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unfolding PJ-def
apply (subst ket-invariant-compl[symmetric])
by simp

qed

definition (preserve-queryl’-bound Nonel b; bjo = 3 * sqrt bjo * sqrt by / N + 2 % of-bool Nonel x
sqrt bjo / sqrt N»
lemma preserve-queryl "
assumes 1J: <[ C J»
assumes [simp]: «None € J»
assumes b;: <card (Some —‘1I) < by
assumes bjo: <card (— Some —‘J) < bjp>
assumes ¢: € > preserve-queryl -bound (None€l) b; bjo>
shows <preserves-ket queryl’ (UNIV x I) (UNIV x J) &)
proof (rule preservesI’)
show <« > 0»
using - ¢ apply (rule order.trans)
by (simp add: preserve-queryl’-bound-def)
fix ¢ 2 <("y x 'y option) ell2)
assume " <) € space-as-set (ket-invariant (UNIV x I))»
assume norm 1 = 1>

define I’ J’ where I’ = Some —‘ Iy and «J' = Some —* J»

from ¢’ have : «p € space-as-set (ket-invariant (UNIV x ((Some ‘I’ U {None}))))
using [’-def less-eq-ccsubspace.rep-eq by fastforce

have [simp]: <I" C J"
using [’-def J'-def IJ by blast

define § where <3 = Rep-ell2 )
then have (: «p = (3 yde UNIV x(Some ‘ I' U {None}). B yd *¢c ket yd)»
using ell2-sum-ket-ket-invariant|OF | by auto
have Bbound: «(Y_ yd€ UNIV x(Some ‘ I' U {None}). (cmod (B yd))?) < 1» (is «?lhs < 1))
apply (subgoal-tac <(norm )% = ?Ihs»)
apply (simp add: <norm 1 = 1»)
by (simp add: 8 pythagorean-theorem-sum)
have GNone0: 5 (y,None) = 0» if «<None ¢ I» for y
using ' that by (simp add: -def ket-invariant-Rep-ell2)

have [simp]: «Some —* insert None X = Some —‘ X for X :: 'z option set»
by auto
have [simp]: «Some —* Some ‘ X = X for X :: 'z set
by auto
have [simp]: <Some z € J «— z € J» for z
by (simp add: J'-def)
have [simp]: <z € ' = z € J" for z
using <[’ C J' by blast
have [simp]: <> zeX. if x ¢ Y then fx else 0) = (3 zeX-Y. fx) if <finite X» for f :: <y =
"z::ab-group-add> and X Y
apply (rule sum.mono-neutral-cong-right)
using that by auto
have [simp]: «O_x€X. Y yeY. ifx ¢ X' then fryelse 0) = (> zeX—-X" > yeY. fzy) if finite
X
for [ :: <z = 'y = 'z::ab-group-add> and X X' Y
apply (rule sum.mono-neutral-cong-right)
using that by auto
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have [simp]: <8 yd *c a ¢ b = a ¢ 8 yd *¢ b for yd a and b :: 'z::complez-vector)
by auto
have [simp]: <cmod o = inverse (sqrt N)» <cmod (a?) = inverse N» <cmod (a”3) = inverse (N * sqrt
N)» <cmod (a™}) = inverse (N?)»
by (auto simp: norm-mult numeral-3-eq-3 a-def inverse-eq-divide norm-divide norm-power power-one-over
POWeT4-eq-TTTL power2-eq-square)
have [simp]: <card (Some ‘I') < b
by (metis I’-def b; card-image inj-Some)
have bound-J'[simp]: <card (Some ‘ (— J')) < bjo>
using b;o unfolding J'-def by (simp add: card-image)

define ¢ and PJ :: «('y * 'y option) updater where
«p = queryl’ =y 1y and <PJ = Proj (ket-invariant (UNIV x —J))»
have [simp]: <PJ xy ket (z,y) = (if y€—J then ket (z,y) else 0)» for z y
by (simp add: Proj-ket-invariant-ket PJ-def)
have P0y: <PJ xy ¢ =
a4 x¢ (O yeUNIV. > del’. Y y'eUNIV. > d'e— J'. 3 (y, Some d) ¢ ket (y’, Some d’)) —
a? xc (SSyeUNIV. S del’. S d'e— J'. B (y, Some d) *c ket (y + d, Some d’)) —
a? x¢c (Y yeUNIV. Y del’. Y d'e— J'. B (y, Some d) ¢ ket (y + d’, Some d’)) +
a ¢ (D yeUNIV. > d'e— J'. B (y, None) x¢ ket (y + d’, Some d’)) —
a”8 x¢ (O, yeUNIV. Y y'€eUNIV. > d'e— J'. B (y, None) ¢ ket (y', Some d’))»
(is <- = 2t1 — 712 — 213 + 2t5 — %t6))
by (simp add: p-def B queryl’ option-sum-split vimage-Compl cblinfun.scaleC-right
cblinfun.add-right cblinfun.diff-right if-distrib Compl-eq-Diff-UNIV
vimage-singleton-inj sum-sum-if-eq sum.distrib scaleC-diff-right scaleC-sum-right
sum-subtractf case-prod-beta sum.cartesian-product’ scaleC-add-right add-diff-eq
cblinfun.sum-right
flip: sum.Sigma add.assoc scaleC-scaleC
cong del: option.case-cong if-cong)

have norm-t1: <norm ?t1 < sqrt bjo * sqrt b; /| N»
proof —
have *: (norm (>, yde UNIV x Some ‘I'. B yd x¢ ket y'd’) < sqrt (N x b;)» for y'd’ :: <'y x 'y
option)
using - - Sbound apply (rule bound-coeff-sum2)
by (auto simp: N-def)

have (norm ?t1 = inverse (N?) x norm (3. y'd’ € (UNIV::'y set) x Some ‘ (—=J'). 3" yde UNIV x
Some ‘I'. B yd xc ket y'd")»
apply (simp add: sum.cartesian-product’ sum.reindex N-def)
apply (subst (2) sum.swap) apply (subst (3) sum.swap)
apply (subst sum.swap) apply (subst (2) sum.swap)
by (rule refl)
also have «... < inverse (N?) x (N * sqrt (card (Some * (— J'))) x sqrt b;)»
apply (rule mult-left-mono)
using * apply (rule norm-ortho-sum-bound)
by (auto simp add: cinner-sum-right cinner-sum-left N-def real-sqrt-mult algebra-simps
sqrt-sqrt[ THEN extend-mult-rule])
also have (... < inverse (N?) x (N * sqrt bjo * sqrt b;)»
by (metis bound-J' linordered-field-class.inverse-nonnegative-iff-nonnegative mult. commute mult-right-mono
of-nat-0-le-iff of-nat-mono real-sqrt-ge-zero real-sqri-le-iff)
also have «... < sqrt bjo * sqrt b; / N»
by (smt (verit) ab-semigroup-mult-class.mult-ac(1) divide-inverse-commute of-nat-power power2-eq-square
real-divide-square-eq)
finally show «norm ?t1 < sqrt bjo * sqrt b; /| N»
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by —
qed

have norm-t2: <norm ?t2 < sqrt bjo * sqrt b; /| N»
proof —
have *: <card {y. 6 = fst y + the (snd y) A y € UNIV x Some ‘I'} < card I for &
apply (rule card-inj-on-le[where f=<\y. the (snd y))))
by (auto intro!: inj-onI)
have x: (norm (}_ yd€e UNIV x Some ‘ I'. 8 yd xc ket (fst yd + the (snd yd), d’)) < sqrt b;» for
d’ 2 <’y options
using - - Bbound apply (rule bound-coeff-sum2)
using * [’-def b; order.trans by auto

have «norm ?t2 = inverse (real N) * norm (> d" € Some ‘ (=J"). > yde UNIV x Some ‘I'. 8 yd
xc ket (fst yd + the (snd yd), d'))»
apply (simp add: sum.cartesian-product’ sum.reindex N-def)
apply (subst sum.swap) apply (subst (2) sum.swap) apply (subst (3) sum.swap)
apply (subst sum.swap)
by (rule refl)
also have «... < inverse (real N) x (sqrt (card (Some ‘(= J'))) * sqrt b;)»
apply (rule mult-left-mono)
using * apply (rule norm-ortho-sum-bound)
by (auto simp add: cinner-sum-right cinner-sum-left)
also have «... < inverse N x (sqrt bjo * sqrt b;)»
by (simp add: mult-right-mono N-def)
also have «... < sqrt bjo * sqgrt b; / N»
by (simp add: divide-inverse-commute)
finally show «norm 2t2 < sqrt bjo * sqrt b; /| N»
by —
qged

have norm-t3: <norm ?t3 < sqrt bjo * sqrt b; /| N»
proof —
have «: <card {y. a = fst y A y € UNIV x (I N range Some)} < card Iy for a :: 'y
apply (rule card-inj-on-le[where f=<\y. the (snd y)»])
by (auto introl: inj-onl simp: I'-def)
have x: <norm (3. yde UNIV x Some ‘I'. 8 yd x¢ ket (fst yd + the d’, d')) < sqrt b;» for d’ :: 'y
option)
using - - Bbound apply (rule bound-coeff-sum2)
using * I’-def b; order.trans by auto

have «norm %8 = inverse (real N) * norm (3. d’' € Some ‘ (=J'). > yde UNIV x Some ‘I'.
B yd xc ket (fst yd + the d’, d'))»
apply (simp add: sum.cartesian-product’ sum.reindex N-def)
apply (subst sum.swap) apply (subst (2) sum.swap) apply (subst (3) sum.swap)
apply (subst sum.swap)
by (rule refl)
also have «... < inverse (real N) x (sqrt (card (Some ‘(= J'))) * sqrt b;)»
apply (rule mult-left-mono)
using * apply (rule norm-ortho-sum-bound)
by (auto simp add: cinner-sum-right cinner-sum-left)
also have «... < inverse N « (sqrt bjo * sqrt b;)»
by (simp add: mult-right-mono N-def)
also have «... < sqrt bjo * sqrt b; /| N»
by (simp add: divide-inverse-commute)
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finally show «norm 2t3 < sqrt bjo * sqrt b; /| N»
by —
qged

have norm-t5: <norm ?t5 < of-bool (None€l) % sqrt bjo / sqrt N»
proof (cases «<None€l)
case True
have «: <card {y. a = fst y A y € UNIV x {None :: 'y option}} < card {()}> for a :: 'y
apply (rule card-inj-on-le[where f=<\-. undefined>])
by (auto introl: inj-onl)
have *: <norm (3. yde UNIV x {None}. B yd *¢c ket (fst yd + the d’, d)) < sqrt (1::nat)> for d’
i 'y option»
using - - Bbound apply (rule bound-coeff-sum2)
using * by auto

have «norm ?t5 = inverse (sqrt N) * norm (>, d’ € Some ‘ (=J’). > yde UNIV x {None}.
B yd xc ket (fst yd + the d’, d'))»

apply (simp add: sum.cartesian-product’ sum.reindex N-def)
apply (subst sum.swap)
by (rule refl)

also have «... < inverse (sqrt N) * (sqrt (card (Some ‘(= J'))))»
apply (rule mult-left-mono)
using * apply (rule norm-ortho-sum-bound)
by (auto simp add: cinner-sum-right cinner-sum-left)

also have «... < inverse (sqrt N) % sqrt bjo»
by (simp add: mult-right-mono N-def)

also have «... < of-bool (None€l) % sqrt bjo / sqrt N»
using True by (simp add: divide-inverse-commute)

finally show ?thesis
by —

next

case Fulse

then show ?thesis
using BNonel by auto

ged

have norm-t6: <norm ?t6 < of-bool (None€l) % sqrt bjo / sqrt N»
proof (cases «<None€l)
case True
have *: <norm (> yde UNIV x {None}. § yd xc ket y'd’) < sqrt N> for y’d’ :: <'y x 'y option>
using - - Bbound apply (rule bound-coeff-sum2)
by (auto simp: N-def)

have <norm ?t6 = inverse (N * sqrt N) * norm (>, y’d’ € (UNIV:'y set) x Some ‘ (=J').
> yde UNIV x {None}. 8 yd *¢ ket y'd’)
apply (simp add: sum.cartesian-product’ sum.reindex N-def)
apply (subst (2) sum.swap) apply (subst sum.swap)
by (rule refl)
also have ¢... < inverse (N * sqrt N) x (N * sqrt (card (Some ‘ (— J")))»
apply (rule mult-left-mono)
using * apply (rule norm-ortho-sum-bound)
by (auto simp add: cinner-sum-right cinner-sum-left N-def real-sqrt-mult algebra-simps
sqrt-sqrt[ THEN extend-mult-rule])
also have «... < inverse (N x sqrt N) « (N * sqrt bjo)>
by (simp add: N-def)
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also have «... < of-bool (None€l) * sqrt bjo / sqrt N»
using True by (simp add: divide-inverse-commute less-eq-real-def N-def)
finally show ?thesis
by —
next
case Fulse
then show ?thesis
using GNonel by auto

qged
have <norm (PJ *v ¢) < sqrt bjo * sqrt b; /| N+ sqrt bjo * sqrt b; /| N +  sqrt bjo *
sqrt b; /| N

+ of-bool (None€l) x sqrt bjo / sqrt N + of-bool (None€l)
sqrt bjo / sqrt N»
unfolding POy
apply (rule norm-triangle-le-diff norm-triangle-le, rule add-mono)+
apply (rule norm-t1)
apply (rule norm-t2)
apply (rule norm-t3)
apply (rule norm-t5)
by (rule norm-t6)
also have «... < 8 x sqrt bjo * sqrt b; / N + 2 x of-bool (None€l) x sqrt bjo / sqrt N»
by (simp add: mult.commute vector-space-over-itself .scale-left-commute)
also have «... < &)
using ¢ by (auto intro!: simp add: preserve-queryl’-bound-def)
finally show <norm (Proj (— ket-invariant (UNIV x J)) xy ¢) < &)
unfolding PJ-def
apply (subst ket-invariant-compl[symmetric])
by simp
qed

lemma preserve-queryl-simplified:
assumes <[ C J»
assumes (None € J»
assumes bjg: <card (— Some —‘J) < bjo>
shows «preserves-ket queryl (UNIV x I) (UNIV x J) (6 = sqrt bjo / sqrt N)»
apply (rule preserve-queryl [where bjo=b;o and b;=N])
using assms by (auto introl: divide-right-mono simp: preserve-queryl-bound-def card-mono N-def)

lemma preserve-queryl '-simplified:
assumes <[ C J»
assumes (None € J»
assumes bjo: <card (— Some —°J) < bjp>
shows (preserves-ket queryl’ (UNIV x I) (UNIV x J) (5 = sqrt bjo / sqrt N)»
apply (rule preserve-queryl 'lwhere b;jo=0b;0 and b;=N])
using assms by (auto intro!: divide-right-mono simp: preserve-queryl’-bound-def card-mono N-def)

The next bound is applicable for ket-invariants assume the output register to have a specific
value ket yo (typically ket 0) before the query and do not put any conditions on the output
register after the query.

Lemmas preserve-queryl-firY and preserve-queryl’-fixY.

definition (preserve-queryl-firY-bound Nonel NoneJ b; bjo = sqrt bjo * sqrt b; / (N * sqrt N)
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+ 8 * sqrt bjo * sqrt by /| N + of-bool Nonel * sqrt bjo / sqrt N + of-bool Nonel * sqrt bjo / N
+ of-bool NoneJ | sqrt N + of-bool NonedJ * sqrt b; / N + of-bool (Nonel N NonelJ) / sqrt N»
lemma preserve-queryl-fizY:
assumes [1J: <[ C J»
assumes b;: <card (Some —‘1I) < by
assumes bjo: <card (— Some —‘J) < bjp>
assumes ¢: € > preserve-queryl-firY-bound (NonecI) (None¢J) b; bjo>
shows ¢preserves-ket queryl ({yo} x I) (UNIV x J) &
proof (rule preservesI’)
show <« > 0»
using - ¢ apply (rule order.trans)
by (simp add: preserve-queryl-fizY-bound-def)
fix ¢ 2 <("y x 'y option) ell2)
assume : ) € space-as-set (ket-invariant ({yo} x I))»
assume <norm ¢ = 1)

define I’ J’ where (I’ = Some —‘ I» and «J' = Some —* J»
then have «{yo} x I C {yo} x (Some ‘I’ U {None})
apply (rule-tac Sigma-mono)
by auto
with ¢ have " <) € space-as-set (ket-invariant ({yo} x ((Some ‘ I' U {None}))))
using less-eq-ccsubspace.rep-eq ket-invariant-le by fastforce
have [simp]: <" C J"
using [’-def J'-def IJ by blast

define 8 where (8 d = Rep-ell2 ¢ (yo,d)> for d
then have 3: «¢ = (3 d€Some ‘I’ U {None}. 8 d x¢ ket (yo,d))
using eli2-sum-ket-ket-invariant| OF 1]
by (auto simp: sum.cartesian-product’)
have Bbound: «(>. de(Some ‘ I' U {None}). (cmod (3 d))?) < 1> (is «?lhs < 1))
apply (subgoal-tac «(norm )% = ?Ihs»)
apply (simp add: <norm ¢ = 15)
by (simp add: B pythagorean-theorem-sum del: sum.insert)
have BNone: <cmod (8 None) < 1)
proof —
have <(cmod (8 None))? = (3 de{None}. (cmod (8 d))?)>
by simp
also have (... < (3. de(Some ‘ I' U {None}). (cmod (8 d))?)
apply (rule sum-mono2) by auto
also have «... < I
by (rule Bbound)
finally show ?%thesis
by (simp add: power-le-one-iff)
qed
have 3None0: <3 None = 0> if <None ¢ I
using v that by (simp add: 3-def ket-invariant-Rep-ell2)

have [simp]: <Some —* insert None X = Some —‘ X» for X :: <'z option set
by auto
have [simp]: <Some —* Some ‘ X = X for X :: <'z set»
by auto
have [simp]: <Some z € J «— z € J' for z
by (simp add: J'-def)
have [simp|: «<x € I' = z € J' for x
using <’ C J’ by blast
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have [simp]: <> z€X. if ¢ ¢ Y then fz else 0) = (D z€X-Y. fz) if «finite X»> for f == 'y =
'z::ab-group-add) and X Y
apply (rule sum.mono-neutral-cong-right)
using that by auto
have [simp]: <3 yd *c a *c b = a *¢c 3 yd x¢ b for yd a and b :: 'z::complex-vectory
by auto
have [simp]: <cmod o = inverse (sqrt N)» <cmod (a?) = inverse N» <cmod (a™3) = inverse (N * sqrt
N)» <ecmod (a™}) = inverse (N?)
by (auto simp: norm-mult numeral-3-eq-3 a-def inverse-eq-divide norm-divide norm-power power-one-over
POWET4-€eq-TTTL power2-eq-square)
have [simp]: <card (Some ‘I') < by
by (metis I’-def b; card-image inj-Some)
have bound-J'[simp]: <card (Some ‘ (— J')) < bjo>
using b;o unfolding J'-def by (simp add: card-image)

define ¢ and PJ :: «('y * 'y option) updater where
«p = queryl sy Yy and <PJ = Proj (ket-invariant (UNIV x —J))»
have [simp]: <PJ *y ket (z,y) = (if ye—J then ket (z,y) else 0)» for z y
by (simp add: Proj-ket-invariant-ket PJ-def)
have P0y: <PJ xy ¢ =
a4 k¢ (Do del’. Y y'eUNIV. > d'e— J'. B (Some d) ¢ ket (y’, Some d’))
—a?xc (3o del’. Y d'e— J'. B (Some d) *c ket (yo + d, Some d))
—a?xc (3o del’. Y d'e— J'. B (Some d) *c ket (yo + d’, Some d’))
+a? xc (Do del’. Y d'e— J'. B (Some d) x¢ ket (yo, Some d'))
+ ax¢ (Y d'e— J. B (None) xc ket (yo + d’, Some d'))
—a 3 x¢c (O y'€eUNIV. Y d'e— J' B (None) xc ket (y’, Some d’))
+ (of-bool (None ¢ J) x a) x¢ (> del’. 8 (Some d) x¢ ket (yo + d, None))
— (of-bool (None ¢ J) x a”8) x¢ (D del’. Y y'€eUNIV. 3 (Some d) ¢ ket (y’, None))
+ (of-bool (None ¢ J) x o?) x¢ (3 y'€UNIV. 3 None x¢c ket (y', None))
)
(is - = 2t1 — 262 — 213 + 2t + 2t5 — 916 + 247 — 28 + 9t9»)
by (simp add: p-def B queryl option-sum-split vimage-Compl
cblinfun.add-right cblinfun.diff-right if-distrib Compl-eq-Diff-UNIV
vimage-singleton-inj sum-sum-if-eq sum.distrib scaleC-diff-right scaleC-sum-right
sum-subtractf case-prod-beta sum.cartesian-product’ scaleC-add-right add-diff-eq
cblinfun.scale C-right cblinfun.sum-right
flip: sum.Sigma add.assoc scaleC-scaleC
cong del: option.case-cong if-cong)

have norm-t1: <norm ?t1 < sqrt bjo * sqrt b; / (N * sqrt N)»
proof —
have x: <norm (>_ deSome ‘I'. B8 d x¢ ket y'd’) < sqrt by for y'd’ :: 'y x 'y option»
using - - Sbound apply (rule bound-coeff-sum2)
by auto

have «norm ?t1 = inverse (N?) x norm (3. y’d’ € (UNIV::'y set) x Some ‘ (=J'). 3. deSome “ I".
B d xc ket y'd’)
apply (simp add: sum.cartesian-product’ sum.reindex N-def)
apply (subst (2) sum.swap) apply (subst (3) sum.swap)
by (rule refl)
also have «... < inverse (N?)  (sqrt N * sqrt (card (Some ‘ (— J'))) * sqrt b;)»
apply (rule mult-left-mono)
using * apply (rule norm-ortho-sum-bound)
by (auto simp add: cinner-sum-right cinner-sum-left N-def real-sqrt-mult)
also have (... < inverse (N?) x (sqrt N * sqrt bjo * sqrt b;)»
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by (metis bound-J' linordered-field-class.inverse-nonnegative-iff-nonnegative mult. commute mult-right-mono
of-nat-0-le-iff of-nat-mono real-sqrt-ge-zero real-sqrt-le-iff)

also have «... < sqrt bjo * sqrt b; / (N = sqrt N)»

by (smt (verit, del-insts) divide-divide-eq-left divide-inverse mult.commute of-nat-0-le-iff of-nat-power
power2-eq-square real-divide-square-eq real-sqri-pow?2 times-divide-eg-left)

finally show «norm ?t1 < sqrt bjo * sqrt b; / (N * sqrt N)»

by —
qed

have norm-t2: <norm ?t2 < sqrt bjo * sqrt b; /| N»
proof —
have x: <card {d. 6 = the d A d € Some ‘I'} < card Iy for &
apply (rule card-inj-on-le[where f=the])
by (auto intro!: inj-onI)
have x: <norm (>_ deSome ‘I'. B d x¢ ket (yo + the d, d’)) < sqrt by for d’ :: 'y option)
using - - Sbound apply (rule bound-coeff-sum2)
using * [’-def b; order.trans by auto

have <norm ?t2 = inverse (real N) * norm (3. d’ € Some ‘ (=J'). > deSome ‘I'. § d ¢ ket (yo
+ the d, d"))»

apply (simp add: sum.cartesian-product’ sum.reindex N-def)
apply (subst sum.swap) apply (subst (2) sum.swap) apply (subst sum.swap)
by (rule refl)

also have «... < inverse (real N) * (sqrt (card (Some ‘(= J'))) * sqrt b;)»
apply (rule mult-left-mono)
using * apply (rule norm-ortho-sum-bound)
by (auto simp add: cinner-sum-right cinner-sum-left)

also have «... < inverse N x (sqrt bjo * sqrt b;)»
by (simp add: mult-right-mono N-def)

also have «... < sqrt bjo * sqrt b; /| N»
by (simp add: divide-inverse-commute)

finally show «norm 2t2 < sqrt bjo * sqrt b; /| N»
by —

qed

have norm-t3: <norm ?t3 < sqrt bjo * sqrt b; /| N»
proof —
have auz: <I' = Some —* I = card (Some —“I) < b; = Some x € I = card {y € I. y € range
Some} < b;» for z
by (smt (verit, ccfo-SIG) Collect-cong Int-iff card-image image-vimage-eq inf-set-def inj-Some
mem-Collect-eq)
have x: <norm (3_ deSome ‘I'. 8 d x¢ ket (yo + the d’, d')) < sqrt b;» for d’ :: <’y option
using - - Sbound apply (rule bound-coeff-sum2)
using [’-def b; auz by auto
have «norm ?t8 = inverse (real N) x norm (3. d’' € Some ‘ (=J'). >_ deSome ‘ I".
B d *¢ ket (yo + the d’, d))»
apply (simp add: sum.reindex N-def)
apply (subst sum.swap) apply (subst (2) sum.swap) apply (subst sum.swap)
by (rule refl)
also have ¢... < inverse (real N) * (sqrt (card (Some ‘ (— J'))) * sqrt b;)»
apply (rule mult-left-mono)
using * apply (rule norm-ortho-sum-bound)
by (auto simp add: cinner-sum-right cinner-sum-left)
also have «... < inverse N * (sqrt bjo * sqrt b;)»
by (simp add: mult-right-mono N-def)
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also have «... < sqrt bjo * sqrt b; /| N»
by (simp add: divide-inverse-commute)
finally show <norm ?t3 < sqrt bjo * sqrt b; / N»
by —
qed

have norm-t4: <norm 2t < sqrt bjo * sqrt b; /| N»
proof —
have auz: <I' = Some —‘ [ =
card (Some —‘1I) < b; = Some © € I = card {y € I. y € range Some} < b;» for z
by (smt (verit) Collect-cong Int-iff card-image image-vimage-eq inf-set-def inj-Some mem-Collect-eq)
have *: <norm (3 deSome ‘I'. B d *¢ ket (yo, d)) < sqrt b;» for d’ :: 'y option»
using - - Bbound apply (rule bound-coeff-sum2)
using I’-def b; auz by auto

have (norm %t} = inverse (real N) * norm (>_d’ € Some ‘ (=J’). > deSome ‘I’
8 d %o ket (3o, d))>

apply (simp add: sum.cartesian-product’ sum.reindex N-def)
apply (subst sum.swap) apply (subst (2) sum.swap) apply (subst sum.swap)
by (rule refl)

also have «... < inverse (real N) % (sqrt (card (Some ‘(= J'))) * sqrt b;)»
apply (rule mult-left-mono)
using * apply (rule norm-ortho-sum-bound)
by (auto simp add: cinner-sum-right cinner-sum-left)

also have «... < inverse N x (sqrt bjo * sqrt b;)»
by (simp add: mult-right-mono N-def)

also have «... < sgrt bjo * sqrt b; /| N»
by (simp add: divide-inverse-commute)

finally show «norm 2t < sqrt bjo * sqrt b; /| N»
by —

qged

have norm-t5: <norm ?t5 < of-bool (None€l) * sqrt bjo / sqrt N»
proof (cases «None€l)
case True
have *: <norm (8 None x¢ ket (yo + the d’, d')) < sqrt (1::nat)) for d’ :: 'y option)
using G None by simp

have «norm ?t5 = inverse (sqrt N) x norm (>_d’ € Some * (=J’).
B None ¢ ket (yo + the d’, d'))
by (simp add: sum.cartesian-product’ sum.reindex)
also have «... < inverse (sqrt N) * (sqrt (card (Some ‘(= J)))
apply (rule mult-left-mono)
using * apply (rule norm-ortho-sum-bound)
by (auto simp add: cinner-sum-right cinner-sum-left)
also have «... < inverse (sqrt N) % sqrt bjo»
by (simp add: mult-right-mono N-def)
also have (... < of-bool (None€lI) * sqrt bjo / sqrt N»
by (simp add: divide-inverse-commute True)
finally show «(norm ?t5 < of-bool (None€l) * sqrt bjo / sqrt N»
by —
next
case Fulse
then show ?%thesis by (simp add: SNone0)
qed
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have norm-t6: <norm ?t6 < of-bool (None€l) % sqrt bjo / N»
proof (cases «None€l)
case True
have *: <norm (8 None x¢ ket y'd") < 1) for y'd’ :: <'y x 'y option»
using GNone by simp

have <norm ?t6 = inverse (N * sqrt N) * norm (>_y'd’ € (UNIV::'y set) x Some ¢ (—=J’). B None
xc ket y'd’)»
by (simp add: sum.cartesian-product’ sum.reindex)
also have «... < inverse (N * sqrt N) = (sqrt N * sqrt (card (Some ‘ (— J"))))»
apply (rule mult-left-mono)
using * apply (rule norm-ortho-sum-bound)
by (auto simp add: cinner-sum-right cinner-sum-left N-def real-sqrt-mult)
also have «... < inverse (N * sqrt N) * (sqrt N % sqrt bjo)»
by (simp add: N-def)
also have «... < of-bool (None€l) * sqrt bjo / N>
by (simp add: divide-inverse-commute less-eq-real-def True N-def)
finally show <norm ?t6 < of-bool (None€l) x sqrt bjo / N>
by —
next
case Fulse
then show ?%thesis by (simp add: SNone0)
qed

have norm-t7: <norm 2t7 < of-bool (Noneg¢J) | sqrt N»
proof (cases (None€J»)
assume <None ¢ J»

have <norm 2t7 = inverse (sqrt N) « norm (>_ del’. 8 (Some d) ¢ ket (yo + d, None :: 'y option))»
using «None ¢ J» by simp

also have «... = inverse (sqrt N) * norm (>_ deSome ‘ I'. 3 d *¢ ket (yo + the d, None :: 'y
option))»
apply (subst sum.reindezr)
by auto
also have «... < inverse (sqrt N) * (sqrt (real 1))»
proof —

have auz: <z € I’ = card {y. © = the y A y € Some * I'} < Suc 0» for x
by (smt (verit, del-insts) card-eq-Suc-0-ex1 dual-order.refl imageE imagel mem-Collect-eq op-
tion.sel)
show ?thesis
apply (rule mult-left-mono)
using - - Sbound apply (rule bound-coeff-sum2)
using aux by auto
qed
also have (... = of-bool (None¢J) / sqrt N»
using «None ¢ J» inverse-eq-divide by auto
finally show ?thesis
by —
qed simp

have norm-t8: <norm 2t8 < of-bool (None¢J)  sqrt b; /| N»
proof (cases (None€J»)

assume <None ¢ J»

have aquz: <I' = Some —° ] =
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card (Some —“ 1) < b; = Some xz € I = card {y € I. y € range Some} < b;» for z
by (smt (verit, ccfo-SIG) Collect-cong Int-iff card-image image-vimage-eq inf-set-def inj-Some
mem-Collect-eq)
have *: <norm (3 deSome ‘I'. 8 d x¢ ket (y', None :: 'y option)) < sqrt (real b;)> for y’ :: 'y
using - - Bbound apply (rule bound-coeff-sum2)
using [’-def b; auz by auto

have «norm ?t8 = inverse (N * sqrt N) x norm (> y":'y€UNIV. > deSome ‘ I'. B d x¢ ket (y’,
None :: 'y option))»

apply (simp add: sum.reindex <None ¢ J) N-def)
apply (subst sum.swap) apply (subst (2) sum.swap) apply (subst sum.swap)
by (rule refl)

also have «... < inverse (N * sqrt N) x (sqrt N * sqrt (real b;))»
apply (rule mult-left-mono)
using * apply (rule norm-ortho-sum-bound)
by (auto simp add: cinner-sum-right cinner-sum-left N-def)

also have «... = of-bool (None¢J) * sqrt b; /| N»
using «None ¢ J» inverse-eq-divide
by (simp add: divide-inverse-commute N-def)

finally show ?thesis
by —

qged simp

have norm-t9: <norm ?t9 < of-bool (None€I N None¢lJ) / sqrt N»
proof (cases «<NonecI A None¢J)
case True

have «norm ?t9 = inverse N x norm (Y. y":'y€¢ UNIV. 3 None *¢c ket (y’, None :: 'y option))»
by (simp add: sum.reindex True)
also have «... < inverse N * (sqrt N x sqrt 1)
apply (rule mult-left-mono)
apply (rule norm-ortho-sum-bound|where b'=1])
using SNone by (auto simp: N-def)
also have «... = of-bool (None€I A None¢lJ) / sqrt N»
using True apply simp
by (metis divide-inverse-commute inverse-eq-divide of-nat-0-le-iff sqrt-divide-self-eq)
finally show ?thesis
by —
next
case Fualse with SNone0
show ?thesis by auto

qed
have <norm (PJ xy ¢) < sqrt bjo * sqrt b; / (N * sqrt N) + sqrt bjo * sqrt b; /| N +
sqrt bjo * sqrt b; / N
+ sqrt bjo * sqrt b; /| N + of-bool (None€lI) % sqrt bjo / sqrt N + of-bool
(None€l) * sqrt bjo / N
+ of-bool (Noneg¢J) / sqrt N + of-bool (None¢J) = sqrt b; /| N + of-bool

(NonecI A Noneg¢lJ) | sqrt N»
unfolding POy
apply (rule norm-triangle-le-diff norm-triangle-le, rule add-mono)+
apply (rule norm-t1)
apply (rule norm-t2)
apply (rule norm-t8)
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apply (rule norm-t4)
apply (rule norm-t5)
apply (rule norm-t6)
apply (rule norm-t7)
apply (rule norm-t8)
apply (rule norm-t9)
by —
also have «... < preserve-queryl-firY-bound (NonecI) (None¢J) b; bjo
by (auto simp: preserve-queryl-firY-bound-def mult.commute mult.left-commute)
also have (... < &
by (simp add: €)
finally show <norm (Proj (— ket-invariant (UNIV x J)) xy ¢) < &
unfolding PJ-def
apply (subst ket-invariant-compl[symmetric])
by simp
qed

definition (preserve-queryl '-firY-bound Nonel NoneJ b; bjo = sqrt bjo * sqrt b; / (N * sqrt N)

+ 2 % sqrt bjo * sqrt b; /| N + of-bool Nonel * sqrt bjo / sqrt N + of-bool Nonel * sqrt bjo / N

+ of-bool NoneJ | sqrt N + of-bool NoneJ * sqrt b; / N + of-bool (Nonel N Nonel) / sqrt N»
lemma preserve-queryl'-fizY:

assumes IJ: <I C J»

assumes b;: <card (Some —‘1T) < b;»

assumes bjo: <card (— Some —°J) < bjp>

assumes ¢: € > preserve-queryl -firY-bound (NoneclI) (None¢J) b; bjo>

shows (preserves-ket queryl’ ({yo} x I) (UNIV x J) &
proof (rule preservesl’)
show < > 0»
using - ¢ apply (rule order.trans)
by (simp add: preserve-queryl’-fixY-bound-def)
fix ¢ :: <("y x 'y option) ell2)
assume : ) € space-as-set (ket-invariant ({yo} x I))»
assume norm ¥ = 1»

define I’ J’ where (I’ = Some —‘ Iy and «J' = Some —* J»
then have ({yo} x I C {yo} x (Some ‘I’ U {None})
apply (rule-tac Sigma-mono)
by auto
with ¢ have ¢ ¢ € space-as-set (ket-invariant ({yo} x ((Some ‘ I' U {None}))))»
using less-eq-ccsubspace.rep-eq ket-invariant-le by fastforce
have [simp]: <" C J"
using [I’-def J'-def IJ by blast

define 8 where (8 d = Rep-¢ell2 ¢ (yo,d)> for d
then have (: «p = (3 deSome ‘ I' U {None}. 5 d xc ket (yo,d))
using ell2-sum-ket-ket-invariant| OF 1]
by (auto simp: sum.cartesian-product’)
have Sbound: «(Y de(Some  I' U {None}). (cmod (3 d))?) < 1> (is «?lhs < 1))
apply (subgoal-tac <(norm )% = ?lhs»)
apply (simp add: <norm ¢ = 15)
by (simp add: B pythagorean-theorem-sum del: sum.insert)
have SNone: <cmod (8 None) < 1»
proof —
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have «(cmod (3 None))? = (3. de{None}. (cmod (B d))?)
by simp
also have «... < (3. de(Some ‘ I' U {None}). (cmod (3 d))?)»
apply (rule sum-mono2) by auto
also have <... < I»
by (rule Bbound)
finally show ?thesis
by (simp add: power-le-one-iff)
qged
have SNone0: <3 None = 0> if <None ¢ I»
using 1 that by (simp add: B-def ket-invariant-Rep-ell2)

have [simp]: «Some —* insert None X = Some —‘ X for X :: 'z option set»
by auto
have [simp]: <Some —* Some ‘ X = X for X :: 'z seb
by auto
have [simp]: «<Some z € J «—— z € J' for x
by (simp add: J'-def)
have [simp]: <z € I' = z € J" for z
using I’ C J’ by blast
have [simp]: <> zeX. if x ¢ Y then fx else 0) = (3 zeX-Y. fx) if <finite X» for f :: 'y =
'z::ab-group-add) and X Y
apply (rule sum.mono-neutral-cong-right)
using that by auto
have [simp]: <0 yd *c a xc b= a ¢ B yd x¢ b for yd a and b :: 'z::complez-vector»
by auto
have [simp]: <cmod o = inverse (sqrt N)» <cmod (a?) = inverse N» <cmod (a”3) = inverse (N x sqrt
N)» <ecmod (a™4) = inverse (N?)
by (auto simp: norm-mult numeral-3-eq-3 a-def inverse-eq-divide norm-divide norm-power power-one-over
power2-eq-square Power)-eq-TIrr)
have [simp]: <card (Some ‘1') < b
by (metis I'-def b; card-image inj-Some)
have bound-J'[simp]: <card (Some ‘ (— J')) < bjp>
using b;o unfolding J'-def by (simp add: card-image)

define ¢ and PJ :: «(('y x 'y option) update) where
«p = queryl’ =y ¢y and <PJ = Proj (ket-invariant (UNIV x —J))»
have [simp]: <PJ sy ket (z,y) = (if ye—J then ket (z,y) else 0)» for z y
by (simp add: Proj-ket-invariant-ket PJ-def)
have POy: (PJ xy ¢ =
a4 k¢ (Do del’. Y y'eUNIV. > d'e— J'. B (Some d) ¢ ket (y’, Some d’))
—a?xc (Yo del’. Y d'e— J'. B (Some d) *c ket (yo + d, Some d’))
—a?xc (3o del’. Y d'e— J'. B (Some d) *c ket (yo + d’, Some d’))
+ axc (Y. d'e— J'. B (None) xc ket (yo + d’, Some d’))
—a"3 x¢c (O_y'€eUNIV. Y d'e— J' B (None) xc ket (y’, Some d’))
+ (of-bool (None ¢ J) x a) x¢ (>, del’. B (Some d) xc ket (yo + d, None))
— (of-bool (None ¢ J) x a”3) ¢ (>_del’. Y y'€ UNIV. 3 (Some d) *¢ ket (y’, None))
+ (of-bool (None ¢ J) x a?) xc (3. y'€UNIV. B None ¢ ket (y', None))
)
(is <- = 2t1 — 7t2 — 213 + 25 — 2t6 + 717 — 28 + ?t9»)
by (simp add: p-def B queryl’ option-sum-split vimage-Compl
cblinfun.add-right cblinfun.diff-right if-distrib Compl-eq-Diff-UNIV
vimage-singleton-inj sum-sum-if-eq sum.distrib scale C-diff-right scaleC-sum-right
sum-subtractf case-prod-beta sum.cartesian-product’ scale C-add-right add-diff-eq
cblinfun.scaleC-right cblinfun.sum-right
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flip: sum.Sigma add.assoc scaleC-scaleC
cong del: option.case-cong if-cong)

have norm-t1: <norm ?t1 < sqrt bjo * sqrt b; / (N * sqrt N)»
proof —
have *: <norm (3. deSome ‘I'. B d *¢ ket y'd’) < sqrt by for y'd’ :: 'y x 'y option
using - - Bbound apply (rule bound-coeff-sum2)
by auto

have «norm ?t1 = inverse (N?) x norm (3. y'd’ € (UNIV::'y set) x Some ‘ (—J'). 3. deSome “ I'.
B d *¢ ket y'd’)
apply (simp add: sum.cartesian-product’ sum.reindex N-def)
apply (subst (2) sum.swap) apply (subst (3) sum.swap)
by (rule refl)
also have (... < inverse (N?) * (sqrt N * sqrt (card (Some ‘ (— J'))) * sqrt b;)»
apply (rule mult-left-mono)
using * apply (rule norm-ortho-sum-bound)
by (auto simp add: cinner-sum-right cinner-sum-left N-def real-sqrt-mult)
also have «... < inverse (N?) x (sqrt N * sqrt bjo * sqrt b;)»
by (metis bound-J' linordered-field-class.inverse-nonnegative-iff-nonnegative mult.commute mult-right-mono
of-nat-0-le-iff of-nat-mono real-sqrt-ge-zero real-sqrt-le-iff)
also have «... < sqrt bjo * sqrt b; / (N * sqrt N)»
by (smt (verit, del-insts) divide-divide-eg-left divide-inverse mult.commute of-nat-0-le-iff of-nat-power
power2-eq-square real-divide-square-eq real-sqrt-pow2 times-divide-eq-left)
finally show «norm ?t1 < sqrt bjo * sqrt b; / (N * sqrt N)»
by —
qed

have norm-t2: <norm ?t2 < sqrt bjo * sqrt b; /| N»
proof —
have *: <card {d. 6 = the d A d € Some ‘I'} < card I’y for §
apply (rule card-inj-on-lejwhere f=the])
by (auto introl: inj-onl)
have *: <norm (3 deSome ‘I'. B d x¢ ket (yo + the d, d')) < sqrt by for d’ :: 'y option>
using - - Sbound apply (rule bound-coeff-sum2)
using * I’-def b; order.trans by auto

have (norm ?t2 = inverse (real N) * norm (>_d’ € Some “ (=J'). Y. deSome ‘ I'. B d *¢ ket (yo
+ the d, d"))»

apply (simp add: sum.cartesian-product’ sum.reindex N-def)
apply (subst sum.swap) apply (subst (2) sum.swap) apply (subst sum.swap)
by (rule refl)

also have ¢... < inverse (real N) * (sqrt (card (Some ‘ (— J'))) * sqrt b;)»
apply (rule mult-left-mono)
using * apply (rule norm-ortho-sum-bound)
by (auto simp add: cinner-sum-right cinner-sum-left)

also have «... < inverse N « (sqrt bjo * sqrt b;)»
by (simp add: mult-right-mono N-def)

also have «... < sqrt bjo * sqrt b; /| N»
by (simp add: divide-inverse-commute)

finally show (norm 2t2 < sqrt bjo * sqrt b; / N»
by —

qed

have norm-t3: <norm ?t3 < sqrt bjo * sqrt b; /| N»
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proof —
have auz: <I' = Some —*I = card (Some —‘1I) < b; = card {y € I. y € range Some} < b;»
by (smt (verit, ccfo-SIG) Collect-cong Int-iff card-image image-vimage-eq inf-set-def inj-Some
mem-Collect-eq)
have *: <norm (>_deSome ‘I'. B d *¢ ket (yo + the d’, d')) < sqrt b;» for d’ :: 'y option
using - - fbound apply (rule bound-coeff-sum2)
using I’-def b; auz by auto

have «norm %t8 = inverse (real N) x norm (3. d’' € Some ‘ (=J'). >  deSome ‘I
B d xc ket (yo + the d’, d'))»

apply (simp add: sum.reindex N-def)
apply (subst sum.swap) apply (subst (2) sum.swap) apply (subst sum.swap)
by (rule refl)

also have «... < inverse (real N) * (sqrt (card (Some ‘ (— J'))) * sqrt b;)»
apply (rule mult-left-mono)
using * apply (rule norm-ortho-sum-bound)
by (auto simp add: cinner-sum-right cinner-sum-left)

also have «... < inverse N x (sqrt bjo * sqrt b;)»
by (simp add: mult-right-mono N-def)

also have «... < sqrt bjo * sqrt b; / N»
by (simp add: divide-inverse-commute)

finally show «norm 2t3 < sqrt bjo * sqrt b; /| N»
by —

qed

have norm-t5: <norm ?t5 < of-bool (None€lI) % sqrt bjo / sqrt N»
proof (cases «<None€l)
case True
have *: <norm (8 None xc ket (yo + the d’, d’)) < sqrt (1:nat)y for d’ :: 'y option)
using GNone by simp

have (norm ?t5 = inverse (sqrt N) * norm (>_ d’ € Some ‘ (=J’).
B None ¢ ket (yo + the d’, d'))
by (simp add: sum.cartesian-product’ sum.reindex)
also have «... < inverse (sqrt N) * (sqrt (card (Some * (— J")))
apply (rule mult-left-mono)
using * apply (rule norm-ortho-sum-bound)
by (auto simp add: cinner-sum-right cinner-sum-left)
also have «... < inverse (sqrt N) * sqrt bjo>
by (simp add: mult-right-mono N-def)
also have (... < of-bool (None€lI) * sqrt bjo / sqrt N»
by (simp add: divide-inverse-commute True)
finally show «norm ?t5 < of-bool (None€l) * sqrt bjo / sqrt N»
by —
next
case Fulse
then show %thesis by (simp add: SNone0)
qed

have norm-t6: <norm ?t6 < of-bool (None€l) * sqrt bjo / N»
proof (cases «None€l)
case True
have *: <norm (8 None x¢ ket y'd") < 1) for y'd’ :: <'y x 'y option»
using FNone by simp
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have (norm ?t6 = inverse (N x sqrt N) * norm (> y’d’ € (UNIV::'y set) x Some ‘ (—J’). 3 None
xc ket y'd")
by (simp add: sum.cartesian-product’ sum.reindex)
also have «... < inverse (N * sqrt N) * (sqrt N * sqrt (card (Some ‘ (— J")))»
apply (rule mult-left-mono)
using * apply (rule norm-ortho-sum-bound)
by (auto simp add: cinner-sum-right cinner-sum-left real-sqrt-mult N-def)
also have «... < inverse (N * sqrt N) x (sqrt N * sqrt bjo)>
by (simp add: N-def)
also have (... < of-bool (None€lI) * sqrt bjo / N>
by (simp add: divide-inverse-commute less-eq-real-def True N-def)
finally show «(norm ?t6 < of-bool (None€l) % sqrt bjo / N>
by —
next
case Fulse
then show ?%thesis by (simp add: S None0)
qed

have norm-t7: <norm 2t7 < of-bool (Noneg¢J) | sqrt N»
proof (cases «(None€J»)
assume <None ¢ J»

have (norm 2¢7 = inverse (sqrt N) = norm (>_ del’. B (Some d) x¢ ket (yo + d, None :: 'y option))»
using «None ¢ J» by simp

also have «... = inverse (sqrt N) * norm (>_ d€Some ‘ I'. 3 d *¢ ket (yo + the d, None :: 'y
option))»
apply (subst sum.reinder)
by auto
also have «... < inverse (sqrt N) = (sqrt (real 1))
proof —

have auz: <z € I' = card {y. © = the y A y € Some ‘ I'} < Suc 0> for z
by (smt (verit, del-insts) card-eq-Suc-0-exl dual-order.refl imageE imagel mem-Collect-eq op-
tion.sel)
show ?thesis
apply (rule mult-left-mono)
using - - Bbound apply (rule bound-coeff-sum2)
using auz by auto
qed
also have «... = of-bool (None¢J) / sqrt N»
using «None ¢ J» inverse-eq-divide by auto
finally show ?thesis
by —
qed simp

have norm-t8: <norm 2t8 < of-bool (Noneg¢J)  sqrt b; /| N»
proof (cases «None€.J»)
assume <None ¢ J»

have quz: <card (Some —‘I) < b; = card {y € I. y € range Some} < b;»
by (smt (verit, ccfo-SIG) Collect-cong Int-iff card-image image-vimage-eq inf-set-def inj-Some
mem-Collect-eq)
have *: <norm (3 deSome ‘I'. 8 d x¢ ket (y', None :: 'y option)) < sqrt (real b;)> for y’ :: 'y
using - - Bbound apply (rule bound-coeff-sum2)
using [’-def b; auz by auto
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have «norm ?t8 = inverse (N * sqrt N) x norm (> y":'ye UNIV. > deSome ‘I'. B d x¢ ket (y’,
None :: 'y option))»

apply (simp add: sum.reindex «None ¢ J» N-def)
apply (subst sum.swap) apply (subst (2) sum.swap) apply (subst sum.swap)
by (rule refl)

also have «... < inverse (N * sqrt N) = (sqrt N x sqrt (real b;))»
apply (rule mult-left-mono)
using * apply (rule norm-ortho-sum-bound)
by (auto simp add: cinner-sum-right cinner-sum-left N-def)

also have «... = of-bool (None¢J)  sqrt b; /| N>
using «None ¢ J» inverse-eq-divide
by (simp add: divide-inverse-commute N-def)

finally show ?thesis
by —

qed simp

have norm-t9: <norm ?t9 < of-bool (NonecI N None¢J) / sqrt N»
proof (cases <NonecI N Noneg¢J»)
case True

have (norm ?t9 = inverse N x norm (D>_ y":'ye¢ UNIV. 8 None *¢ ket (y’', None :: 'y option)))
by (simp add: sum.reindex True)
also have «... < inverse N x (sqrt N * sqrt 1))
apply (rule mult-left-mono)
apply (rule norm-ortho-sum-bound|where b'=1])
using SNone by (auto simp: N-def)
also have «... = of-bool (NonecI N None¢J) /| sqrt N»
using True apply simp
by (metis divide-inverse-commute inverse-eq-divide of-nat-0-le-iff sqrt-divide-self-eq)
finally show ?thesis
by —
next
case Fulse with BNonel0
show ?thesis by auto
ged

have «norm (PJ sy @) < sqrt bjo * sqrt b; / (N % sqrt N) + sqrt bjo * sqrt by / N +
sqrt bjo * sqrt b; /| N
+ of-bool (None€l) x sqrt bjo / sqrt N + of-bool (None€l)
% sqrt bjo / N
+ of-bool (None¢J) | sqrt N + of-bool (None¢J) = sqrt b; /| N + of-bool
(Noneel A None¢lJ) | sqrt N»
unfolding POy
apply (rule norm-triangle-le-diff norm-triangle-le, rule add-mono)+
apply (rule norm-t1)
apply (rule norm-t2)
apply (rule norm-t8)
apply (rule norm-t5)
apply (rule norm-t6)
apply (rule norm-t7)
apply (rule norm-t8)
apply (rule norm-t9)
by —
also have «... < preserve-queryl’-firY-bound (NonecI) (None¢J) b; bjo»
by (auto simp: preserve-queryl’-firY-bound-def mult.commute mult.left-commute)

120



also have ... < &»
by (simp add: €)
finally show <norm (Proj (— ket-invariant (UNIV x J)) xy ¢) < &)
unfolding PJ-def
apply (subst ket-invariant-compl[symmetric])
by simp
qed

The next bound is applicable for ket-invariants assume the output register to have a specific
value ket yo (typically ket 0) before the query and require that after the query, the oracle register
is not None and the output register has the correct value given that oracle register content.

Notice that this invariant is only available for query!’, not for queryl!

definition <preserve-queryl ’-fiz Y-bound-output b; = 4 / sqrt N + 2 x sqrt b; /| N»
lemma preserve-queryl '-fixY-output:
assumes b;: <card (Some —‘ 1) < by
assumes ¢: <€ > preserve-queryl -fixY-bound-output b;»
shows <preserves-ket queryl’ ({yo} x I) {(yo+d, Some d)| d. True} e
proof (rule preservesl’)
show <« > 0»
using - € apply (rule order.trans)
by (simp add: preserve-queryl’-fixY-bound-output-def)
fix ¢ <('y x 'y option) ell2>
assume ): <) € space-as-set (ket-invariant ({yo} x I))»
assume norm Y = 1

define I’ where (I’ = Some —‘ I

then have ({yo} x I C {yo} x (Some ‘I’ U {None})
apply (rule-tac Sigma-mono)
by auto

with ¢ have ¢ ) € space-as-set (ket-invariant ({yo} x ((Some ‘ I' U {None}))))
using less-eq-ccsubspace.rep-eq ket-invariant-le by fastforce

define g where (8 d = Rep-ell2 ¢ (yo,d)> for d
then have (3: <« = (3 deSome ‘ I' U {None}. 8 d *¢ ket (yo,d))
using ell2-sum-ket-ket-invariant| OF 1]
by (auto simp: sum.cartesian-product’)
have Bbound: «(> de(Some ‘I’ U {None}). (cmod (3 d))?) < 1> (is «?lhs < 1))
apply (subgoal-tac «(norm )% = ?Ihs»)
apply (simp add: <norm ¢ = 1»)
by (simp add: B pythagorean-theorem-sum del: sum.insert)
have Bbound1[simp]: <cmod (8 z) < 1) for x
using norm-point-bound-ell2[of ] <norm 1 = 1> unfolding 3-def by auto

have [simp]: «<Some — ¢ insert None X = Some —* X> for X :: 'z option set»
by auto
have [simp]: <Some —* Some ‘X = X for X :: <'z set
by auto
have [simp]: <8 yd *¢c a x¢ b = a x¢ 08 yd x¢ b for yd a and b :: 'z::complez-vector)
by auto
have [simp]: <cmod o = inverse (sqrt N)» <ecmod (a?) = inverse N» <cmod (a™3) = inverse (N * sqrt
N)» <ecmod (a™4) = inverse (N?)
by (auto simp: norm-mult numeral-3-eq-3 a-def inverse-eq-divide norm-divide norm-power power-one-over
POWET4-€eq-TTTL power2-eq-square)
have [simp]: <card (Some ‘1') < b
by (metis I’-def b; card-image inj-Some)
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define ¢ and PJ :: «('y * 'y option) updater where
«p = queryl’ xy ¢ and «PJ = Proj (ket-invariant (— {(yo+d, Some d)| d. True}))»
have auz: Vd. y # yo + d = d # Some (yo + y)» for d y
by (metis add.right-neutral y-cancel ordered-field-class.sign-simps(1))
then have [simp]: <(PJ *y ket (y,d) = (if Some (yo + y) = d then 0 else ket (y,d))> for y d
by (auto simp add: Proj-ket-invariant-ket PJ-def)
have POy: (PJ xy ¢ =
axc (Do del’. B (Some d) x¢ ket (yo + d, None))
—a 8 xc (D del’. > yeUNIV. B (Some d) x¢ ket (y, None))
— a? xc (32 del’. S, d'’eUNIV. if d=d’ then 0 else 3 (Some d) *c ket (yo + d, Some d))
+ a4 x¢ O_del’. > yeUNIV. > d'e UNIV. if yo+y=d’ then 0 else § (Some d) *¢ ket (y, Some
@)
—a"8 x¢ O yeUNIV. > d'eUNIV. if yo+y=d’ then 0 else 3 None x¢ ket (y, Some d'))
+ a? x¢ (3 yeUNIV. 3 None ¢ ket (y, None))»
(is - = 211 — 212 — 213 + 2t — 25 + 26))

by (simp add: p-def B queryl’ option-sum-split vimage-Compl of-bool-def cblinfun.sum-right
cblinfun.add-right cblinfun.diff-right if-distrib Compl-eq-Diff-UNIV cblinfun.scaleC-right
vimage-singleton-inj sum-sum-if-eq sum.distrib scaleC-diff-right scaleC-sum-right
sum-subtractf case-prod-beta sum.cartesian-product’ scale C-add-right add-diff-eq
flip: sum.Sigma add.assoc scaleC-scaleC
cong del: option.case-cong if-cong)

have norm-t1: <norm 2t1 < 1 / sqrt N»
proof —
have (norm 2t1 = inverse (sqrt N) * norm (3 d€Some “I'. 8 d *¢ ket (yo + the d, None :: 'y
option))»
by (simp add: sum.reindex)
also have «... < inverse (sqrt N) * sqrt (1:nat))
proof —
have auz: <z € I' = card {y. © = the y A y € Some ‘ I'} < Suc 0» for z
by (smt (verit, del-insts) card-eq-Suc-0-exl imageE imagel le-refl mem-Collect-eq option.sel)
show ?thesis
apply (rule mult-left-mono)
using - - Bbound apply (rule bound-coeff-sum2)
using auz by auto
qed
also have «... =1 / sqrt N»
apply simp
using inverse-eq-divide by blast
finally show <norm ?¢t1 < 1 / sqrt N»
by —
qed

have norm-t2: <norm 2t2 < sqrt b; /| N»
proof —
have *: <norm (3. deSome ‘I'. B8 d *¢ ket (y, None :: 'y option)) < sqrt by for y 2 'y
using - - Sbound apply (rule bound-coeff-sum2)
by auto

have «norm %t2 = inverse (N * sqrt N) x norm (> yeUNIV. > deSome ‘I'. 5 d x¢ ket (y == 'y,
None :: 'y option))»
apply (simp add: sum.cartesian-product’ sum.reindex N-def)
apply (subst sum.swap)
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by (rule refl)

also have «... < ifnverse (N x sqrt N) x (sqrt (real N) x sqrt (real b;))»
apply (rule mult-left-mono)
using * apply (rule norm-ortho-sum-bound)
by (auto simp add: cinner-sum-right cinner-sum-left N-def)

also have «... = sqrt b; / N»
by (simp add: divide-inverse-commute N-def)

finally show ?thesis
by auto

qed

have norm-t3: <norm 2t3 < 1 / sqrt N»
proof —
have auz: <card {y. © = the y A y € Some ‘ (I' — {d'})} < Suc 0> for = d’
by (smt (verit, best) Collect-empty-eq bot-nat-0.not-eg-extremum card.empty card-eq-Suc-0-exl
imageE le-simps(3) mem-Collect-eq nat-le-linear option.sel)
have x: <norm (>_ deSome ‘ (I' — {d'}). B d *¢ ket (yo + the d, Some d’)) < sqrt (1::nat)» for d’
using - - Sbound apply (rule bound-coeff-sum2)
using auzx|of - d'] by auto

have <norm ?t3 = inverse N x norm (>_ d'€ UNIV. Y deSome ‘ (I'-{d'}). B d x¢ ket (yo + the
d, Some d"))»
apply (simp add: sum.cartesian-product’ sum.reindex)
apply (subst sum.swap)
apply (simp add: sum-if-eg-else)
by —
also have «... < inverse N x sqrt N»
apply (rule mult-left-mono)
using * apply (rule norm-ortho-sum-bound)
by (auto simp add: cinner-sum-right cinner-sum-left N-def)
also have «... = 1 / sqrt N»
by (simp add: inverse-eq-divide sqrt-divide-self-eq)
finally show ?thesis
by —
ged

have norm-t/: <norm 2t4 < sqrt (real b;) / N>
proof —
have x: <norm (>_ deSome ‘ I'. if yo + fst yd' = snd yd’ then 0 else 8 d x¢ ket (fst yd’, Some (snd
yd")) < sqrt b;» for yd’

apply (cases <yg + fst yd' = snd yd")
apply simp
apply simp
using - - Bbound apply (rule bound-coeff-sum2)
by auto

note if-cong[cong del]

have (norm 7t} = inverse (N?) * norm (3. yd'€ UNIV. Y. deSome ‘ I'. if yo + fst yd' = snd yd’
then 0 else B d x¢ ket (fst yd’, Some (snd yd")))»
apply (simp add: sum.cartesian-product’ sum.reindex N-def flip: UNIV-Times-UNIV)
apply (subst (2) sum.swap) apply (subst sum.swap)
by (rule refl)
also have «... < inverse (N?)  (real N  sqrt (real b;))>
apply (rule mult-left-mono)
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using * apply (rule norm-ortho-sum-bound)
by (auto simp add: cinner-sum-right cinner-sum-left cinner-ket N-def
if-distriblwhere f=<\z. cinner - ©] if-distribjwhere f=«\z. cinner x -])

also have «... < sqrt (real b;) / N»

by (metis divide-inverse-commute dual-order.refl of-nat-mult power2-eq-square real-divide-square-eq)
finally show ?thesis

by —

qed

have norm-t5: <norm 2t5 < 1 / sqrt N»
proof —
have «norm ?t5 = inverse (N x sqrt N) x norm (>, yde UNIV. if yo + fst yd = snd yd then 0 else
B None *x¢ ket (fst yd, Some (snd yd)))»
by (simp add: sum.cartesian-product’ sum.reindex flip: UNIV-Times-UNIV cong del: if-cong)
also have «... < inverse (N * sqrt N) % N»
apply (rule mult-left-mono)
apply (rule norm-ortho-sum-bound|where b'=1])
by (auto simp: N-def)
also have ¢... = 1 / sqrt N»
by (simp add: divide-inverse-commute N-def)
finally show ?thesis
by —
qed

have norm-t6: <norm 2t6 < 1 / sqrt N»
proof —
have «norm ?t6 = inverse N x norm (Y. ye UNIV. 3 None x¢ ket (y :: 'y, None :: 'y option))»
by simp
also have «... < inverse N x sqrt N>
apply (rule mult-left-mono)
apply (rule norm-ortho-sum-bound|where b'=1])
by (auto simp: N-def)
also have «... = 1 / sqrt N»
by (simp add: inverse-eq-divide sqrt-divide-self-eq)
finally show ?thesis
by —
qed

have <norm (PJ *y ) < 1 / sqrt N + sqrtb; /N + 1/ sqtN
+ sqrt (real b)) / N + 1 /sqrt N + 1/ sqrt N»
unfolding POy
apply (rule norm-triangle-le-diff norm-triangle-le, rule add-mono)+
apply (rule norm-t1)
apply (rule norm-t2)
apply (rule norm-t3)
apply (rule norm-t4)
apply (rule norm-t5)
apply (rule norm-t6)
by —
also have (... < preserve-queryl'-fixY-bound-output b;»
by (auto simp: preserve-queryl’-firY-bound-output-def mult.commute mult.left-commute)
also have (... < &
by (simp add: €)
finally show <norm (Proj (— ket-invariant {(yo + d, Some d) |d. True}) xy ) < &
unfolding PJ-def
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apply (subst ket-invariant-compl[symmetric])
by simp
qed

A simpler to understand (and sometimes simpler to use) special case of preserve-queryl '-fiz Y-output
in terms of query’ and ket-invariants.

lemma (in compressed-oracle) preserves-ket-query’-output-simple:

<preserves-ket query’ {(z, y, D). y = 0} {(z, y, D). D x = Some y} (6 / sqrt N)»
proof —

define K :: <z = ('z x 'y x ('z = 'y option)) ell2 ccsubspace> where <K x = lift-invariant reg-1-8
(ket-invariant {z})» for z

show ?thesis
proof (rule inv-split-reg-query’|where X=«reg-1-3) and Y=«reg-2-3> and H=<reg-3-3» and K=K
and 2I1.0=<\-. ket-invariant ({0} x UNIV)» and ?2J1.0=<\-. ket-invariant {(0+d, Some d)|
d. True}r))
show «query’ = (reg-1-3;(reg-2-3;reg-3-3)) query’s
by (auto simp add: pair-Fst-Snd reg-1-3-def reg-2-3-def reg-3-3-def)
show <compatible reg-1-3 reg-2-3» <compatible reg-1-3 reg-3-3» <compatible reg-2-3 reg-3-3»
by simp-all
show <compatible-register-invariant reg-2-3 (K z)» for
by (auto introl: compatible-register-invariant-compatible-register simp add: K-def)
show <compatible-register-invariant (reg-3-3 o function-at z) (K z)» for
by (auto intro!: compatible-register-invariant-compatible-register simp add: K-def)
show <ket-invariant {(z, y, D). y = 0}
< (SUP z. K z N lift-invariant (reg-2-3;reg-3-3 o function-at x) (ket-invariant ({0} x UNIV)))»
apply (simp add: K-def lift-Fst-ket-inv reg-1-3-def reg-2-3-def ket-invariant-inter ket-invariant-SUP[symmetric]
lift-inv-prod’ lift-invariant-comp lift-invariant-function-at-ket-inv reg-3-3-def lift-Snd-ket-inv
case-prod-unfold)
by force
show <K z M lift-invariant (reg-2-3;reg-3-3 o function-at x) (ket-invariant {(0+d, Some d)| d. True})
< ket-invariant {(z, y, D). D © = Some y}» for
apply (simp add: K-def lift-Fst-ket-inv reg-1-3-def reg-2-3-def ket-invariant-inter ket-invariant-SUP[symmetric]
lift-inv-prod’ lift-invariant-comp lift-invariant-function-at-ket-inv reg-3-3-def lift-Snd-ket-inv
case-prod-unfold)
by fastforce
show <orthogonal-spaces (K z) (K z')y if «x # z’» for = z’
using that by (auto simp add: K-def orthogonal-spaces-lift-invariant)
show <preserves-ket queryl’ ({0} x UNIV) {(0+d, Some d)| d. True} (6 / sqrt N)»
apply (rule preserve-queryl’-fixY-output[where b;=N])
by (auto intro!: simp: preserve-queryl’-fixY-bound-output-def simp flip: N-def)
show «K z < lift-invariant reg-1-3 (ket-invariant {z})> for x
by (simp add: K-def)
show <6 / sqgrt N > 0»
by simp
qed simp
qed

A strengthened form of preserves-ket-query’-output-simple that additionally maintains a prop-
erty P on the already existing oracle register (that can depend also on some auxiliary register
and on the query input register).

This comes with the condition on P that when P accepts some oracle function that is undefined
at the query input z, then it needs to accept the updated oracle function with any output at
z. And if P doesn’t accept the oracle function to be undefined at z, then it must accept either
only a small amount of outputs or all but a small amount of outputs for z.
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lemma (in compressed-oracle) preserves-ket-query’-output:
fixes F :: (("zx'yx('z—"y)) update = 'mem update
and P :: <w:finite = 'z = ('z—"y) = bools
and b :: nat
assumes [register|: <register G»
assumes (F' = G o Snd»
assumes PNone: <Aw z D. P w z (D(z:=None)) = P wz D)
assumes PSome: <Awz D. D x = None = = Pwx D = let ¢ = card {y. P w z (D(x:=Some y))}
in cx(N—c) < b
shows <preserves (F query”) (lift-invariant G (ket-invariant {(w, z, y, D). y = 0 A P w x D}))
(lift-invariant G (ket-invariant {(w, z, y, D). D x = Some y A P w x D}))
(9 /) sqgrt N + 2 % sqrt b / N)»
proof —
define K :: (wx’zx('z—"y) = 'mem ell2 ccsubspacer where
«K = (Mw,z,D). lift-invariant G (ket-invariant {(w, z, y, D') | y D'. D'(z:=None) = D}))»
define M :: «('wx'zx('z—"y)) set> where
«M = {(w,z,D). D x = None}»
define I1 :: (wx'zx('z—"y) = ('y x 'y option) ell2 ccsubspace> where
1 = (Mw,z,D). ket-invariant {(0, y) | y. P wx (D(z:=y))})»
define JI :: (wx’zx('z—"y) = ('y x 'y option) ell2 ccsubspacer where
«J1 = (Mw,z,D). ket-invariant {(y, Some y) | y. P w z (D(z:=Some y))})»

show ?thesis
proof (rule inv-split-reg-query’[where X=«G o Snd o reg-1-3» and Y=¢G o Snd o reg-2-8> and
H=«G o0 Snd o reg-3-3»
and K=K and ?I1.0=I1 and ?J1.0=J1 and M=M])
show «F query’ = (G o Snd o reg-1-3;(G o Snd o reg-2-3;G o Snd o reg-3-3)) query’
unfolding reg-1-3-def reg-2-3-def reg-3-3-def assms
by (simp flip: comp-assoc)
show <compatible (G o Snd o reg-1-8) (G o Snd o reg-2-3)> <compatible (G o Snd o reg-1-8) (G o
Snd o reg-3-3)» <compatible (G o Snd o reg-2-3) (G o Snd o reg-3-3)»
by simp-all
show <compatible-register-invariant (G o Snd o reg-2-3) (K waD)» if «wzD € M) for wzD
by (auto intro!: compatible-register-invariant-Snd-comp compatible-register-invariant-Fst
simp add: K-def assms compatible-register-invariant-chain reg-2-3-def
comp-assoc M-def split!: prod.split)
show <compatible-register-invariant ((G o Snd o reg-3-8) o function-at (let (w,z,D) = wzD in x))
(K waD)» if <wzD € M for wxD
by (auto introl: compatible-register-invariant-Snd-comp compatible-register-invariant-function-at
simp add: K-def compatible-register-invariant-chain comp-assoc reg-3-3-def
split!: prod.split)
show «lift-invariant G (ket-invariant {(w, z, y, D). y = 0 A P w z D})
< (| JwzDeM. K wzD 1 lift-invariant (G o Snd o reg-2-3;G o Snd o reg-3-3 o function-at (let
(w, z, D) = wzD in z)) (11 wzD))»
by (auto intro!: lift-invariant-mono
simp add: K-def M-def lift-Fst-ket-inv reg-1-3-def reg-2-3-def ket-invariant-inter ket-invariant-SUP[symmetric]
register-comp-pasir
comp-assoc I1-def
lift-inv-prod’ lift-invariant-comp lift-invariant-function-at-ket-inv reg-3-3-def lift-Snd-ket-inv
case-prod-unfold
simp flip: lift-invariant-inf lift-invariant-SUP
split!: prod.split)
have auz: <D'(fst (snd wzD) := None) = snd (snd wzD) =
D’ (fst (snd wzD)) = Some ya —>
P (fst waD) (fst (snd wzD)) ((snd (snd wzD))(fst (snd wxD) — ya)) =

126



P (fst waD) (fst (snd wzD)) D’ for wzD D’ ya
by (metis fun-upd-triv fun-upd-upd)
show «K wzD M lift-invariant (G o Snd o reg-2-3;G o Snd o reg-3-3 o function-at (let (w, z, D) =
wzD in x)) (JI wzD)
< lift-invariant G (ket-invariant {(w, z, y, D). D x = Some y A P w z D})» if «wzD € M) for
wxD
using that
by (auto intro!: auz lift-invariant-mono
simp add: K-def J1-def lift-Fst-ket-inv reg-1-3-def reg-2-3-def ket-invariant-inter ket-invariant-SUP[symmetric]
lift-inv-prod’ Times-Int-Times lift-invariant-function-at-ket-inv reg-3-3-def lift-Snd-ket-inv
lift-invariant-comp register-comp-pair lift-Snd-inv
comp-assoc case-prod-unfold ket-invariant-tensor
simp flip: lift-invariant-inf ket-invariant-SUP ket-invariant-UNIV
split!: prod.split)
show <orthogonal-spaces (K wzD) (K wzD')y if <wzD € M» and <wzD’ € M» and <wzD # wzD"
for wzD wzD’
using that
by (auto simp add: K-def orthogonal-spaces-lift-invariant M-def split!: prod.split)
show «(preserves queryl’ (I1 wzD) (J1 wzD) (9 / sqrt N + 2 % sqrt b / N)» if «waD € M» for wzD
proof —
obtain w z D where wzD|[simp|: <wzD = (w,z,D)»
by (simp add: prod-eq-iff)
from that
have Dz: <D z = None)
by (simp add: M-def)
have I1: <I1 (w,z,D) = ket-invariant ({0} x {y. Pwz (D(z := y))})»
by (auto simp add: I1-def)
have presY: <preserves queryl’ (11 wzD) (ket-invariant {(0+d, Some d)| d. True}) (6 / sqrt (real

apply (simp only: wzD I1)

apply (rule preserve-queryl’-fixY-output[where b;=N])

apply (simp add: N-def card-mono)

using sqrt-divide-self-eq

by (simp add: preserve-queryl’-fixY-bound-output-def divide-inverse flip: N-def)

have presP1: ¢preserves queryl’ (I1 wzD) (ket-invariant (UNIV x {y. P wz (D(z := y))})) (3 /

sqrt N + 2 x sqrt b / N)»

if <= Pwzxz Dy

proof —
from that Dz PNone have Nonel: «(None € {y. P wz (D(z := y))}) = Fulse
by auto
from that Dx PNone have NoneJ: «(None ¢ {y. P w x (D(z := y))}) = True
by auto

define b; where <b; = card (Some —‘{y. P wz (D(z := y))} »
define bjo where <bjo = card (— Some —‘{y. P wz (D(z := y))})»
have «sqrt bjo * sqrt b; / (N * sqrt N) + 2 * sqrt bjo * sqrt by / N + 1 [ sqrt N + sqrt b; /| N
<8 /sqrt N+ 2 xsqrt b /| N>
proof —
have <bj0 =N — bﬁ
by (simp add: N-def b;-def bjo-def card-complement)
then have <b; * bjo < b
using PSome[of D z w| that
by (auto introl: simp: b;-def Let-def Dzx)
have b; < N»
apply (simp add: b;-def)
by (metis N-def card-complement diff-le-self double-complement)
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have bbN: <sqrt bjo * sqrt by < N»
using <b; < N» <bjo = N — by

by (smt (verit, best) Extra-Ordered-Fields.sign-simps(5) of-nat-0-le-iff of-nat-diff

ordered-comm-semiring-class. comm-mult-left-mono real-sqri-ge-0-iff sqrt-sqrt)
have bbb: <sqrt bjo * sqrt b; < sqrt b

using (<b; * bjo < b

by (smt (verit) Num.of-nat-simps(5) cross3-simps(11) of-nat-mono real-sqrt-le-iff real-sqrt-mult)
have sqrtNN: «<sqrt N / N = 1 / sqrt N»

by (metis div-by-1 inverse-divide of-nat-0-le-iff real-div-sqrt)

have «<sqrt bjo * sqrt b; /| (N * sqrt N) 4+ 2 % sqrt bjo = sqrt b; / N + 1 / sqrt N + sqrt b; / N
<N /(NxsqgtN)+ 2x«xsqrtb/ N+ 1/ sqrt N+ sqrt N/ N>
apply (intro add-mono divide-right-mono)

by (auto intro!: <b; < N> bbN bbb)
also have «... = 8 / sqrt N + 2 x sqrt b /| N>

by (simp add: nonzero-divide-mult-cancel-left sqrtNN)
finally show ?thesis

by —
qed
then show ?thesis
apply (simp only: wxD I1)
apply (rule preserve-queryl’-firY [where b,=b; and b;o=b;))
unfolding Nonel

by (simp-all add: b;-def bjo-def preserve-queryl'-fixY-bound-def)
qed

have presP2: spreserves queryl’ (I1 wzD) (ket-invariant (UNIV x {y. P w x (D(z :
sqrt N + 2 x sqrt b / N)»

y)h) (8 /
if «<P wx D»

apply (rewrite at «{y. P w z (D(z := y))}» to UNIV DEADID.rel-mono-strong)

using that PNone Dz apply (metis UNIV-eq-I array-rules(5) fun-upd-triv mem-Collect-eq)
by auto

from presP1 presP2

have presP: <preserves queryl’ (I1 wazD) (ket-invariant (UNIV x {y. P w z (D(z
sqgrt N + 2 % sqrt b / N)»

by auto

from preserves-intersect|OF - presY presP]

ylh) (3 /

have <preserves queryl’ (I1 wzD) (ket-invariant {(0 + d, Some d) |d. True} M ket-invariant (UNIV
% {y. Pwz (D(x = y)})
((6 / sqrt N) + (3 / sqrt N + 2 = sqrt b / N))»
by auto
then show ?thesis

apply (rule arg-congj[where f=preserves, THEN iffD1, rotated —1])

by (auto intro!: simp: ket-invariant-inter J1-def)
qed

show <K wzD < lift-invariant (G o Snd o reg-1-3) (ket-invariant {let (w, z, D) = wzD in z})> for
wzD
by (auto intro!: lift-invariant-mono
simp add: K-def lift-invariant-comp reg-1-3-def lift-Fst-ket-inv lift-Snd-ket-inv
split!: prod.split)
show <9 / sqrt N + 2 x sqrt b / N > O»
by simp
show «finite M>»
by simp
qed
qed

This is an example of how preserves-ket-query’-output is used to deal with more complex query
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sequences. It is also useful in its own right (we use it in Collision.thy).

It shows that if we make two queries, then the oracle function contains the outputs of both
queries. (In contrast, preserves-ket-query’-output-simple shows this only for a single query.)

lemma dist-inv-double-query”:
fixes X1 X2 Y1 Y2 H and statel :: <'mem ell2)
defines «(state2 = (X1;(Y1;H)) query’ =y statel»
defines «<stated = (X2;(Y2;H)) query’ =y state2»
assumes [register]: <mutually compatible (X1,X2,Y1,Y2 . H)»
assumes [iff]: <norm statel < 15
assumes distl: «dist-inv ((X1;X2);((Y1;Y2);H)) (ket-invariant {((z1,22),(y1,y2),D). yI = 0 A y2
= 0}) statel < &
shows «dist-inv ((X1;X2);((Y1;Y2);H)) (ket-invariant {((x1,22),(y1,y2),D). D 1 = Some y1 A D
z2 = Some y2}) state3 < e+ 20 / sqrt N»
proof —
have [iff]: <norm state2 < 1»
by (auto introl: norm-cblinfun-apply-leq1l simp add: state2-def register-norm)
have bound: <let ¢ = card {y2. (z' =22 — y2 =y ) ANa' =22} inc*x (N — ¢) < N» for z’ 22 y'
by (cases <z’ = x2», auto)
from dist! have «dist-inv ((X2; Y2); (X1;(Y1;H)))
(ket-invariant {(x2y2,(z1,y1,D)). y1 = 0 A snd 22y2 = 0}) statel < &
apply (rule le-back-subst)
apply (rule dist-inv-register-rewrite, simp, simp)
apply (rewrite at <«((X2;Y2);(X1;(Y1;H))) to «((X1;X2);((Y1;Y2);H)) o ((reg-1-3 o Snd; reg-2-8
o Snd); (reg-1-8 o Fst; (reg-2-8 o Fst; reg-3-8)))» DEADID.rel-mono-strong)
apply (simp add: register-pair-Snd register-pair-Fst flip: register-comp-pair comp-assoc)
apply (subst lift-invariant-comp, simp)
apply simp
by (auto intro!: simp: lift-inv-prod’ reg-1-3-def reg-3-3-def reg-2-3-def lift-invariant-comp lift-Snd-ket-inv
lift- Fst-ket-inv
ket-invariant-inter case-prod-unfold
sitmp flip: ket-invariant-SUP)
then have «dist-inv ((X2; Y2); (X1;(Y1;H)))
(ket-invariant {(x2y2,(z1,y1,D)). D 1 = Some yl A snd 22y2 = 0}) state2 < e+ 9 /
sqrt (real N)»
unfolding state2-def
apply (rule dist-inv-preservesl)
apply (rule preserves-ket-query’-output|where b=0])
by (auto introl: simp: register-pair-Snd register-norm simp del: o-apply)
then have «dist-inv ((X1; Y1); (X2;(Y2;H)))
(ket-invariant {(z1yl1,(z2,y2,D)). y2 = 0 N D (fst z1yl) = Some (snd z1yl)}) state2
<e+ 9/ sqrt (real N)»
apply (rule le-back-subst)
apply (rule dist-inv-register-rewrite, simp, simp)
apply (rewrite at «((X1; Y1); (X2;(Y2;H)))» to «((X2; Y2); (X1;(Y1;H))) o ((Snd o reg-1-3; Snd
o reg-2-3); (Fst o Fst; (Fst o Snd; Snd o reg-3-3)))» DEADID.rel-mono-strong)
apply (simp add: register-pair-Snd register-pair-Fst flip: register-comp-pair comp-assoc)
apply (subst lift-invariant-comp, simp)
apply simp
by (auto intro!: simp: lift-inv-prod’ reg-1-3-def reg-3-3-def reg-2-3-def lift-invariant-comp lift-Snd-ket-inv
lift- Fst-ket-inv
ket-invariant-inter case-prod-unfold
sitmp flip: ket-invariant-SUP)
then have «dist-inv ((X1; Y1); (X2;(Y2;H)))
(ket-invariant {(z1y!,(z2,y2,D)). D 22 = Some y2 N\ D (fst z1yl) = Some (snd z1yl)})
stated < e+ 20 / sqrt N»
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unfolding state3-def
apply (rule dist-inv-preservesl)
apply (rule preserves-ket-query’-output[where b=N])
by (auto intro!: bound simp: register-pair-Snd register-norm simp del: o-apply split!: if-split-asm)
then show (dist-inv ((X1;X2);((Y1;Y2);H)) (ket-invariant {((z1,22),(y1,y2),D). D x1 = Some yl1
A D z2 = Some y2}) state3 < e + 20 / sqrt N»
apply (rule le-back-subst)
apply (rule dist-inv-register-rewrite, simp, simp)
apply (rewrite at <«((X1; Y1); (X2;(Y2;H)))» to «(X1;X2);((Y1;Y2);H)) o ((reg-1-3 o Fst; reg-2-3
o Fst); (reg-1-3 o Snd; (reg-2-3 o Snd; reg-3-3)))» DEADID.rel-mono-strong)
apply (simp add: register-pair-Snd register-pair-Fst flip: register-comp-pair comp-assoc)
apply (subst lift-invariant-comp, simp)
apply simp
by (auto intro!: simp: lift-inv-prod’ reg-1-3-def reg-3-3-def reg-2-3-def lift-invariant-comp lift-Snd-ket-inv
lift- Fst-ket-inv
ket-invariant-inter case-prod-unfold
stmp flip: ket-invariant-SUP)
qed

The next bound is applicable for ket-invariants assume the output register to have a value ket
d that matches what is in the output register before the query and require that after the query,
the oracle register is not None and the output register has the correct value given that oracle
register content. (I.e., before an uncomputation step.)

Notice that this invariant is only available for query!’, not for queryl!

definition (preserve-queryl -uncompute-bound NoneJ b; bjo =
of-bool NoneJ = sqrt b; / sqrt N+  of-bool NoneJ * sqrt b; | N
+ sqrt bjo / N + sqrt b; = sqrt bjo /| N 4+ sqrt b; * sqrt bjo / (N * sqrt N)»
lemma preserve-queryl "-uncompute:
assumes 1J: <[ C J»
assumes b;: <card (Some —‘ 1) < by
assumes bjo: <card (— Some —°J) < bjo>
assumes ¢: € > preserve-queryl ~uncompute-bound (None¢J) b; bjo>
shows <preserves-ket queryl’ ((UNIV x I) N {(d, Some d)| d. True}) (UNIV x J) &
proof (rule preservesI’)
show <« > 0»
using - € apply (rule order.trans)
by (simp add: preserve-queryl’-uncompute-bound-def)
fix ¢ 2 <("y x 'y option) ell2)
assume : <) € space-as-set (ket-invariant (UNIV x I) N {(d, Some d)| d. True}))»
assume <norm ¢ = 1)

define I’ J’ where I’ = Some —‘I) and «J' = Some —* J»
then have «((UNIV x I) N {(d, Some d)| d. True}) = (Ad. (d, Some d)) ‘I"
by auto
with ¢ have 1" <) € space-as-set (ket-invariant (Ad. (d, Some d)) ‘I'))
by fastforce
have [simp]: <I' C J"
using [I'-def J'-def IJ by blast
have card-minus-J': <card (— J') < bjo>
using J'-def bjo by force

define g where (8 d = Rep-ell2 ¢ (d, Some d) for d
have 3: «p = (Y- del’. 8 d x¢ ket (d, Some d))»
using ell2-sum-ket-ket-invariant| OF 1]
apply (subst (asm) infsum-reindex)
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apply (simp add: inj-on-convol-ident)
by (auto simp: (-def)
have Sbound: (Y del’. (emod (B d))?) < 1) (is <?lhs < 1))
apply (subgoal-tac «(norm )% = ?Ihs»)
apply (simp add: <norm ¢ = 15)
by (simp add: B pythagorean-theorem-sum del: sum.insert)

have [simp]: «<Some z € J «— z € J' for x
by (simp add: J'-def)
have [simp]: <z € I' = z € J" for z
using <[’ C J’ by blast
have [simp]: <> zeX. if x ¢ Y then fx else 0) = (3 zeX-Y. fx) if (finite X» for f :: <'y =
'z::ab-group-add) and X Y
apply (rule sum.mono-neutral-cong-right)
using that by auto
have [simp]: <3 yd *c a *c b = a ¢ 3 yd x¢ b for yd a and b :: 'z::complex-vectory
by auto
have [simp]: <cmod o = inverse (sqrt N)» <cmod (a?) = inverse N» <cmod (a”3) = inverse (N * sqrt
N)» <ecmod (o) = inverse (N?)
by (auto simp: norm-mult numeral-3-eq-3 a-def inverse-eq-divide norm-divide norm-power power-one-over
power2-eq-square power)-eq-Trar)
have [simp]: <card T' < by
by (metis I’-def b;)

define ¢ and PJ :: «(('y x 'y option) update) where
«p = queryl’ =y ¢y and <PJ = Proj (ket-invariant (UNIV x —J))»
have [simp]: <PJ xy ket (z,y) = (if ye—J then ket (z,y) else 0)» for z y
by (simp add: Proj-ket-invariant-ket PJ-def)
have POy: (PJ *y ¢ =
(of-bool (None¢J) x a) x¢ (d_del’. B d x¢ ket (0, None))
— (of-bool (Noneg¢J) x a”3) xc (>_del’. > yeUNIV. B d *¢c ket (y, None))
—a?xc (Do del’. Y d'e—J'". B d xc ket (d + d’, Some d’))
—a?xc (3o del’. Y d'e—J". B d xc ket (0, Some d'))
+a ™ x¢c (O del’. Y yeUNIV. Y d"e—J". 3 d *¢ ket (y, Some d"))
)
(is - = 2t1 — 262 — 218 — 2t + 2th»)
by (simp add: p-def B queryl’ option-sum-split vimage-Compl
cblinfun.add-right cblinfun.diff-right if-distrib Compl-eq-Diff-UNIV
vimage-singleton-inj sum-sum-if-eq sum.distrib scale C-diff-right scaleC-sum-right
sum-subtractf case-prod-beta sum.cartesian-product’ scaleC-add-right add-diff-eq
chblinfun.scale C-right cblinfun.sum-right
flip: sum.Sigma add.assoc scaleC-scaleC
cong del: option.case-cong if-cong)

have norm-t1: <norm ?t1 < of-bool (Noneg¢J) * sqrt b; | sqrt N»
proof (cases <None € J»)
case True
then show ?thesis
by simp
next
case False
then have <norm ?t1 = inverse (sqrt N) x norm (> del’. B d ¢ ket (0 :: 'y, None :: 'y option))»
by simp
also have «... < inverse (sqrt N) * sqrt b;»
apply (rule mult-left-mono)

131



using - - Bbound apply (rule bound-coeff-sum2)
by auto
also have «... = of-bool (Noneg¢J) * sqrt b; | sqrt N>
using False by (simp add: divide-inverse-commute)
finally show ?thesis
by —
qed

have norm-t2: <norm 2t2 < of-bool (Noneg¢J) * sqrt b; /| N»
proof (cases (None € J»)
case True
then show ?thesis
by simp
next
case Fulse
have x: <norm (> del’. B d ¢ ket (y, None :: 'y option)) < sqrt by for y :: 'y
using - - Bbound apply (rule bound-coeff-sum2)
by auto

have «norm ?t2 = inverse (N x sqrt N) * norm (> yeUNIV. > del’. B d x¢ ket (y

"y option)))
apply (subst sum.swap) by (simp add: False)
also have «... < inverse (N * sqrt N) x (sqrt (real N) x sqrt (real b;))>
apply (rule mult-left-mono)
using * apply (rule norm-ortho-sum-bound)
by (auto simp add: cinner-sum-right cinner-sum-left N-def)
also have «... = of-bool (None¢J) * sqrt b; /| N»
using False by (simp add: divide-inverse-commute N-def)
finally show ?thesis
by —
qged

have norm-t3: (norm 2t3 < sqrt bjo / N»
proof —
have x: <norm (3. del’. B d x¢ ket (d + d', Some d')) < sqrt (1::nat)) for d':: 'y
using - - Bbound apply (rule bound-coeff-sum2)
by (auto simp add: card-le-Suc0-iff-eq)

'y, None ::

have <norm ?t3 = inverse N * norm (>_d'e— J'. Y del’. B d ¢ ket (d + d’, Some d’))

apply (subst sum.swap) by simp
also have (... < inverse N * sqrt b;o>
apply (rule mult-left-mono)
using * apply (rule norm-ortho-sum-bound)
using card-minus-J’ by (auto simp add: cinner-sum-right cinner-sum-left)
also have «... = sqrt bjo / N>
by (simp add: divide-inverse-commute)
finally show ?thesis
by —
qed

have norm-t4: <norm ?tf < sqrt b; * sqrt bjo / N>
proof —
have *: <norm (> del’. 8 d x¢ ket (0, Some d')) < sqrt b;» for d’ :: 'y
using - - fbound apply (rule bound-coeff-sum2)
by auto
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have <norm ?t4 = inverse N x norm (Y. d'e— J'. > . del’. B d x¢ ket (0 :: 'y, Some d’ :: 'y option))»
apply (subst sum.swap) by simp
also have (... < inverse N « (sqrt bjo * sqrt b;)»
apply (rule mult-left-mono)
using * apply (rule norm-ortho-sum-bound)
by (auto intro!: card-minus-J’ mult-right-mono simp add: cinner-sum-right cinner-sum-left)
also have «... = sqrt b; * sqrt bjo / N>
by (simp add: divide-inverse-commute)
finally show ?thesis
by —
qed

have norm-t5: <norm ?t5 < sqrt b; * sqrt bjo / (N * sqrt N)»
proof —
have x: <norm (>_del’. B d x¢ ket (fst yd'', Some (snd yd"))) < sqrt by for yd'' :: 'y x "y
using - - Bbound apply (rule bound-coeff-sum2)
by auto

have «norm ?t5 = inverse (N?) x norm (3. yd"€ UNIVx—J'. Y- del’. B d ¢ ket (fst yd" :: 'y,
Some (snd yd'’)))
apply (simp add: sum.cartesian-product’ sum.reindex N-def)
apply (subst (2) sum.swap) apply (subst sum.swap)
by (rule refl)
also have (... < inverse (N?) x (sqrt N * sqrt bjo * sqrt b;)»
apply (rule mult-left-mono)
using * apply (rule norm-ortho-sum-bound)
using card-minus-J’ by (auto introl: mult-right-mono simp add: cinner-sum-right cinner-sum-left
cinner-ket real-sqrt-mult N-def)
also have «... = sqrt b; * sqrt bjo / (N * sqrt N)»
by (smt (verit, ccfo-threshold) field-class.field-divide-inverse mult.commute of-nat-0-le-iff of-nat-power
power2-eq-square real-divide-square-eq real-sqrt-mult-self times-divide-times-eq)
finally show ?thesis
by —
ged

have <norm (PJ *y @) < of-bool (Noneg¢J) * sqrt b; /| sqrt N + of-bool (None¢J)  sqrt b; /| N
+ sqrtbjo / N + sqrt by = sqrt bjo / N+ sqrt by * sqrt bjo / (N * sqrt N)»
unfolding P0¢y
apply (rule norm-triangle-le-diff norm-triangle-le, rule add-mono)+
apply (rule norm-t1)
apply (rule norm-t2)
apply (rule norm-t3)
apply (rule norm-t4)
by (rule norm-t5)
also have «... = preserve-queryl "-uncompute-bound (None¢J) b; b;o»
by (auto simp: preserve-queryl "-uncompute-bound-def mult.commute mult.left-commute)
also have (... < &
by (simp add: €)
finally show <norm (Proj (— ket-invariant (UNIV x J)) xy ¢) < &)
unfolding PJ-def
apply (subst ket-invariant-compl[symmetric])
by simp
qed
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end

end

6 Compressed-Oracle-Is-RO — Equivalence of compressed oracle
and regular random oracle

theory Compressed-Oracle-I1s-RO imports
Registers. Pure-States
CO-Operations

begin

lemma swap-function-oracle-measure-generic:
fixes standard-query
fixes X :: 'z update = 'mem update> and Y :: ('y::ab-group-add update = 'mem updates
assumes std-query-Some: <\NH z y z. Hx = Some z = standard-query vy (ket (z,y,H)) = ket (z, y
+ 2z, H)
assumes [register|: <compatible X Y
shows «(Fst o X; (Fst o Y; Snd)) standard-query ocr, Snd (proj (ket (Some o h)))
= Fst (X;Y) (function-oracle h)) ocr Snd (proj (ket (Some o h)))»
proof —
note [[simproc del: Laws-Quantum.compatibility-warn))
let ?goal = ?thesis
have [register]: <register (Fst o X; (Fst o Y; Snd :: - = (‘mem x (‘z — 'y)) update))>
by simp
from register-decomposition|[OF this)
have <let 'd::type = register-decomposition-basis (Fst o X; (Fst o Y; Snd :: - = (‘mem x ('z — 'y))
update)) in ?thesis
proof with-type-mp
case with-type-mp
then obtain U :: «(('z x 'y x ("z = 'y option)) x 'd) ell2 =c (‘'mem x ('z = 'y option)) ell2>
where «unitary U» and unwrap: <(Fst o X;(Fst o Y;Snd)) ¥ = sandwich U xy (¥ ®, id-cblinfun)»
for ¢
by blast
have unwrap-Snd: «Snd a = sandwich U *y ((id-cblinfun ®, (id-cblinfun ®, a)) ®, id-cblinfun)
for a
apply (rewrite at Snd to «(Fst o X;(Fst o Y;Snd)) o Snd o Snd> DEADID.rel-mono-strong)
apply (simp add: register-pair-Snd)
by (simp add: unwrap Snd-def)
have unwrap-Fst-XY: «(Fst o (X;Y)) a = sandwich U *y assoc (a ®, id-cblinfun) ®, id-cblinfuns
for a
apply (rewrite at <Fst o (X;Y)» to «(Fst o X;(Fst o Y;Snd)) o assoc o Fsty DEADID.rel-mono-strong)
apply (simp add: register-pair-Fst register-comp-pair)
by (simp add: only: o-apply unwrap Fst-def)

have «<standard-query ®, id-cblinfun ocr,
(id-cblinfun ®, id-cblinfun ®, proj (ket (Some o h))) ®, id-cblinfun =
assoc (function-oracle h ®, id-cblinfun) ®, id-cblinfun ocp,
(id-cblinfun ®, id-cblinfun ®, proj (ket (Some o h))) ®, id-cblinfun>
by (auto intro!: equal-ket
simp: tensor-op-ket tensor-ell2-ket proj-ket-z-y-ofbool std-query-Some assoc-ell2-sandwich
sandwich-apply function-oracle-apply)
then show ?goal
by (auto intro!: arg-cong[where f=<sandwich U]
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simp add: unwrap unwrap-Snd unwrap-Fst-XY [unfolded o-def] sandwich-arg-compose <unitary
U»)
qged
from this[cancel-with-type]
show ?goal
by —
qed

lemma standard-query-for-fized-func-generic:
fixes standard-query
fixes X :: (/z update = 'mem update> and Y :: ('y::ab-group-add update = 'mem update>
assumes A\H z y z. H x = Some z = standard-query *v (ket (z,y,H)) = ket (z, y + z, H)>
assumes <compatible X Y»
shows «(Fst o X; (Fst o Y; Snd)) standard-query =y (¢ ®s ket (Some o h))
= Fst ((X;Y) (function-oracle b)) =y (¢ ®s ket (Some o h))»
proof —
have «(Fst o X; (Fst o Y; Snd)) standard-query v (¥ @, ket (Some o h))
= (Fst o X; (Fst o Y; Snd)) standard-query =y Snd (proj (ket (Some o h))) v (¢ ®s ket (Some

o h))»
by (simp add: proj-ket-z-y-ofbool)
also have «... = Fst ((X;Y) (function-oracle h)) =y Snd (proj (ket (Some o h))) *v (¢ ®s ket (Some
o b))

apply (subst cblinfun-apply-cblinfun-compose[symmetric))+
by (simp-all add: assms swap-function-oracle-measure-generic)
also have «... = Fst (X;Y) (function-oracle h)) *y (¥ ®; ket (Some o h))»
by (simp add: Proj-fizes-image ccspan.rep-eq complex-vector.span-base flip: cblinfun-apply-cblinfun-compose)
finally show ?thesis
by —
qed

end

7  Oracle-Programs — Oracle programs and their execution

theory Oracle-Programs imports
CO-Operations
Invariant-Preservation
Compressed-Oracle-1s-RO

begin

7.1 Oracle programs

datatype (‘mem, 'z, 'y) program-step = ProgramStep <'mem updater | QueryStep 'z update = 'mem
updatey 'y update = 'mem update>
type-synonym (‘mem, 'z, 'y) program = <(‘mem, 'z, 'y) program-step list)

inductive is-QueryStep :: <(‘mem,’z,"y::ab-group-add) program-step = booly where is-QueryStep- QueryStep|iff):
is-QueryStep (QueryStep X Y)»
inductive is-ProgramStep :: «('mem,’z,"y::ab-group-add) program-step = booly where is- ProgramStep-ProgramStep|[iff]:
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<is-ProgramStep (ProgramStep U)»

lemma is-QueryStep- ProgramStepliff]: «— is-QueryStep (ProgramStep U)»
using is-QueryStep.cases by blast

lemma is-ProgramStep-QueryStepliff]: - is-ProgramStep (QueryStep X Y)»
by (simp add: is-ProgramStep.simps)

fun valid-program-step where <wvalid-program-step (QueryStep X Y') = compatible X Y | «valid-program-step
(ProgramStep U) = isometry U»
definition valid-program where <valid-program prog = list-all valid-program-step prog»

lemma valid-program-cons[simpl: <valid-program (p # ps) «—— wvalid-program-step p A wvalid-program
s
by (simp add: valid-program-def)

lemma valid-program-append: <valid-program (p @ q) «— wvalid-program p A valid-program ¢
by (simp add: valid-program-def)

lemma valid-program-emptyliff]: <valid-program [)»
by (simp add: valid-program-def)

fun ezec-program-step :: «('z = 'y) = ('mem,’z,y::ab-group-add) program-step = 'mem ell2 = 'mem
ell2> where

cexec-program-step h (ProgramStep U)
| <exec-program-step h (QueryStep X Y)

:U*Vw>

(4
¥ = (X;Y) (function-oracle h) *y >

fun ezec-program-step-with :: <('x x 'y x ‘o) update = (‘mem,’z,’y) program-step = (‘mem x ’o) ell2
= (‘mem x o) ell2) where

cexec-program-step-with Q (ProgramStep U) ¢ = Fst U *y ¢
| <exec-program-step-with @ (QueryStep X Y) ¢» = (Fst o X; (Fst o Y; Snd)) Q v»

definition ezec-program :: «('z = 'y::ab-group-add) = ('mem,’z,'y) program = 'mem ell2 = 'mem
ell2) where

cexec-program h program v = fold (exec-program-step h) program
definition erec-program-with :: <('x X 'y x o) update = ('mem,’z,’y) program = (‘memx’'o) ell2 =
('memx'0) ell2) where

cexec-program-with @ program ¢ = fold (exec-program-step-with Q) program )

lemma bounded-clinear-exec-program-step-with|bounded-clinear]: <bounded-clinear (exec-program-step-with
Q step)»

apply (cases step)
by (auto intro!: cblinfun.bounded-clinear-right simp add: exec-program-step-with.simps[abs-def])

lemma exec-program-empty|simp|: <exec-program h [| b = »
by (simp add: exec-program-def)
lemma exec-program-with-empty[simp|: <exec-program-with Q [] ¥ = ¢»
by (simp add: exec-program-with-def)
lemma exec-program-append: <exec-program h (p @ q) ¥ = exec-program h q (exec-program h p )
by (simp add: exec-program-def)
lemma exec-program-with-append: <exec-program-with Q (p @ q) ¢ = exec-program-with Q q (exec-program-with
Qpy)
by (simp add: exec-program-with-def)
lemma exec-program-cons|[simp|: <exec-program h (step#prog) ¥ = exec-program h prog (exec-program-step
h step ¥)»
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by (simp add: exec-program-def)
lemma ezxec-program-with-cons|simp|: <exec-program-with Q (step#prog) 1 = exec-program-with @ prog
(exec-program-step-with @ step 1)

by (simp add: exec-program-with-def)

lemma norm-exec-program-step-with: <norm (exec-program-step-with oracle program-step 1) < norm 1)»
if <walid-program-step program-stepy> and <norm oracle < 1)
proof (cases program-step)
case (ProgramStep U)
with that have <isometry U
by simp
then have <norm (Fst U) = 1»
by (simp add: register-norm norm-isometry)
then show ?thesis
apply (simp add: ProgramStep)
by (smt (verit, del-insts) <norm (Fst U) = 1> mult-cancel-right1 norm-cblinfun)
next
case (QueryStep X Y)
with that
have [register]: <compatible X Y
using valid-program-step.simps by blast
have [register|: <register (Fst o X;(Fst o Y;Snd))»
by simp
have <norm ((Fst o X;(Fst o Y;Snd)) oracle xy ) < norm ((Fst o X;(Fst o Y;Snd)) oracle) * norm
>
using norm-cblinfun by blast
also have «... = norm oracle x norm ¥»
by (simp add: register-norm)
also have «... < norm ¥»
by (simp add: mult-left-le-one-le that(2))
finally show ?thesis
by (simp add: QueryStep)
qed

lemma norm-ezxec-program-with:
<norm (exec-program-with oracle program ) < norm s if <norm oracle < 1) and <walid-program
program) for program
proof (insert that(2), induction program rule: rev-induct)
case Nil
then show ?case
by simp
next
case (snoc program-step program)
then have <walid-program-step program-step> and <walid-program program»
by (auto simp: valid-program-append)
have (norm (exec-program-step-with oracle program-step (exec-program-with oracle program 1)) <
norm (exec-program-with oracle program )»
by (smt (verit, del-insts) <valid-program-step program-stepy mult-left-le-one-le norm-exec-program-step-with
norm-ge-zero that(1))
also have «... < norm ¥»
using <wvalid-program program» snoc.IH by force
finally show ?case
by (simp add: exec-program-with-append)
qed
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lemma norm-exec-program-step-with-isometry:
assumes (valid-program-step program-step)
assumes <isometry queryr
shows <norm (exec-program-step-with query program-step ) = norm ¥»
proof (cases program-step)
case (ProgramStep U)
with assms have <isometry U»
by simp
with ProgramStep show ?thesis
by (simp add: isometry-preserves-norm register-isometry)
next
case (QueryStep X Y)
with assms have [register]: <compatible X Y
by simp
have <register (Fst o X;(Fst o Y;Snd))»
by simp
with assms have <isometry ((Fst o X;(Fst o Y;Snd)) query)»
using register-isometry by blast
then show ?thesis
by (simp add: QueryStep isometry-preserves-norm)
qed

7.2 Lifting

fun lift-program-step :: <('a update = 'mem update) = ('a,’z,’y::ab-group-add) program-step = (‘'mem,’z,"y)
program-step) where

<lift-program-step @ (ProgramStep U) = ProgramStep (Q U)»
| <lift-program-step Q (QueryStep X Y) = QueryStep (Q o X) (Q o Y)»

definition lift-program :: <('a update = 'mem update) = ('a,’z,’y::ab-group-add) program-step list =
(‘'mem,’x,"y) program» where
lift-program @ p = map (lift-program-step Q) p»

lemma valid-program-step-lift:
assumes <(register Q> and <valid-program-step p»
shows <walid-program-step (lift-program-step Q p)»
proof (cases p)
case (ProgramStep U)
then have <isometry (Q U)»
using assms register-isometry valid-program-step.simps(2) by blast
then show ?thesis
using ProgramStep by auto
next
case (QueryStep X Y)
with assms show ?thesis
by simp
qed

lemma valid-program-lift:

assumes <(register (> and <wvalid-program p»

shows <wvalid-program (lift-program Q p)»

using assms(2)

by (auto simp add: valid-program-def lift-program-def list. pred-map list-all-length valid-program-step-lift
assms(1))
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lemma lift-program-empty|[simp): <lift-program Q [| = [
by (simp add: lift-program-def)

lemma lift-program-cons: <lift-program @Q (program-step # program) = lift-program-step Q program-step

# lift-program @ program)
by (simp add: lift-program-def)

lemma lift-program-append: <lift-program @ (programl @ program2) = lift-program @ programl Q
lift-program @ program2»
by (simp add: lift-program-def)

lemma is-QueryStep-lift-program-step|simpl: <is-QueryStep (lift-program-step Q program-step) «—— is-QueryStep
program-step»

apply (cases program-step)

by simp-all

lemma filter-is-QueryStep-lift-program: <filter is-QueryStep (lift-program @Q program) = lift-program Q
(filter is-QueryStep program))

apply (induction program)

by (auto simp: lift-program-def)

lemma length-lift-program|[simp]: <length (lift-program @ program) = length program)
apply (induction program)
by (auto simp: lift-program-def)

definition <query-count program = length (filter is-QueryStep program))

lemma query-count-append[simp): <query-count (p Q q) = query-count p + query-count ¢
by (simp add: query-count-def)

lemma query-count-nil[simp]: <query-count [| = 0>
by (simp add: query-count-def)

lemma query-count-cons-QueryStep[simpl: «query-count (QueryStep X Y # p) = query-count p + 1»
by (simp add: query-count-def)

lemma query-count-cons-ProgramStep|simp]: <query-count (ProgramStep U # p) = query-count p)
by (simp add: query-count-def)

lemma query-count-lift-program[simp|: <query-count (lift-program @ p) = query-count p
by (simp add: query-count-def filter-is-QueryStep-lift-program)

lemma exec-lift-program-step-Fst:
assumes <(valid-program-step program-steps
shows <exec-program-step h (lift-program-step Fst program-step) (¢ ®s @) = exec-program-step h
program-step ¥ Qg >
proof (cases program-step)
case (ProgramStep U)
then show ?thesis
by (simp add: Fst-def tensor-op-ell2)
next
case (QueryStep X Y)
with assms have [register]: <compatible X Y
using valid-program-step.simps(1) by blast
have ((Fst o (X;Y)) (function-oracle h) vy ¢ @5 ¢ = (X;Y) (function-oracle h) xy ) @5 ¢
by (simp add: Fst-def tensor-op-ell2)
then show ?thesis
by (simp add: QueryStep register-comp-pair)
qed
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lemma exec-lift-program-F'st:
assumes <valid-program program.
shows <exec-program h (lift-program Fst program) (¢ ®s @) = exec-program h program ) ®; @>
apply (insert assms, induction program rule:rev-induct)
by (simp-all add: lift-program-append exec-program-append lift-program-cons valid-program-append
exec-lift-program-step-F'st)

7.3 Final measurement

definition measurement-probability :: «('a update = 'mem update) = 'mem ell2 = 'a = real> where
«measurement-probability Q 1 z = (norm (Q (proj (ket x)) 1))

lemma measurement-probability-nonneg: <measurement-probability Q ¥ x > 0>
by (simp add: measurement-probability-def)

lemma norm-register- Proj-ket-invariant-union:
— Helper lemma
assumes <(register (> and <A N B ={}
shows «(norm (Q (Proj (ket-invariant (A U B))) ¥))? = (norm (Q (Proj (ket-invariant A)) 1))? +
(norm (Q (Proj (ket-invariant B)) 1))%
proof —
have orthol: <orthogonal-spaces (ket-invariant A) (ket-invariant B)»
using assms(2) by force
have ortho2: <is-orthogonal (Q (Proj (ket-invariant A)) xv ¥) (Q (Proj (ket-invariant B)) sy ¥)»
proof —
from orthol have <orthogonal-spaces (lift-invariant Q (ket-invariant A)) (lift-invariant Q (ket-invariant
B))»
by (simp add: orthogonal-spaces-lift-invariant assms)
then have <(is-orthogonal (Proj (lift-invariant @ (ket-invariant A)) ) (Proj (lift-invariant Q
(ket-invariant B)) ¢)»
by (metis Proj-lift-invariant assms(1) cblinfun-apply-in-image lift-invariant-def orthogonal-spaces-def)
moreover have «Proj (lift-invariant Q (ket-invariant A)) = Q (Proj (ket-invariant A))»
by (simp add: Proj-ket-invariant-butterfly Proj-lift-invariant assms(1) butterfly-eq-proj)
moreover have ¢Proj (lift-invariant @ (ket-invariant B)) = Q (Proj (ket-invariant B))»
by (simp add: Proj-lift-invariant assms(1) ket-invariant-def)
ultimately show #thesis

by simp
qged
have <(norm (Q (Proj (ket-invariant (A U B))) 4))? = (norm (Q (Proj (ket-invariant A U ket-invariant
B) ¥)

by (simp add: ket-invariant-union)
also have (... = (norm (Q (Proj (ket-invariant A) + (Proj (ket-invariant B))) 1))%

by (metis Proj-sup orthol)
also have (... = (norm (Q (Proj (ket-invariant A)) 1 + Q (Proj (ket-invariant B)) 1))

by (simp add: complez-vector.linear-add clinear-register <register @ cblinfun.add-left)
also have «... = (norm (Q (Proj (ket-invariant A)) ))? + (norm (Q (Proj (ket-invariant B)) 1))%

by (simp add: pythagorean-theorem ortho2)
finally show ?thesis
by —
qed

lemma measurement-probability-sum:
assumes <(register > and <finite F»

140



shows (> z€F. measurement-probability Q 1 x) = (norm (Q (Proj (ket-invariant F)) 1))
proof (use <finite F» in induction)
case empty
show ?case
apply simp
by (metis (no-types, lifting) assms(1) cancel-comm-monoid-add-class.diff-cancel cblinfun.zero-left
register-minus)
next
case (insert z F)
have («(norm (Q (Proj (ket-invariant (insert x F))) *y %))? = (norm (Q (Proj (ket-invariant F)) xy
¥))? + (norm (Q (Proj (ket-invariant {z})) *v ))?
apply (rewrite at <insert x F» to <F U {z}> DEADID.rel-mono-strong)
apply simp
apply (subst norm-register-Proj-ket-invariant-union)
by (simp-all add: assms insert.hyps)

also have (... = (norm (Q (proj (ket z)) ©))? + (norm (Q (Proj (ccspan (ket * F))) 1))?
by (simp add: ket-invariant-def)

also have (... = (norm (Q (proj (ket z)) 1)) + sum (measurement-probability Q ) F»
by (simp add: insert.IH ket-invariant-def)

also have «... = sum (measurement-probability @ 1) (insert  F)»

by (simp add: insert.hyps measurement-probability-def)
finally show ?case
by simp
qed

lemma
assumes <(register ()
shows measurement-probability-summable: <measurement-probability Q) ¢ summable-on A»
and measurement-probability-infsum-leq: (> ccx€A. measurement-probability Q ¢ z) < (norm (Q
(Proj (ket-invariant A)) ¥))%
proof —
define m s where «m z = measurement-probability ) ¢ x> and <s A = (norm (Q (Proj (ket-invariant
A)) ))? for A x
have sum-m-fin: <sum m F = s F» if «finite F» for F
by (simp add: measurement-probability-sum m-def s-def that assms)
have s-mono: <s A < s By if <A C By for A B
proof —
have [simp]: <A U B =B
using that by blast
have <s A < s A+ s (B—A)
by (simp add: s-def)
also have <... = s B)
apply (simp add: s-def)
apply (subst norm-register-Proj-ket-invariant-union|symmetric))
using that
by (auto simp: assms)
finally show ?thesis
by —
qed
have m-pos: <m z > 0> for z
by (simp add: m-def measurement-probability-nonneg)
show summable: <m summable-on Ay for A
apply (rule nonneg-bounded-partial-sums-imp-summable-on[where C=«s UNIV)])
using s-mono[of - UNIV| sum-m-fin
by (auto introl: eventually-finite-subsets-at-top-weakl simp: m-pos)
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then show <infsum m A < s A»
apply (rule infsum-le-finite-sums)
using s-monolof - A] sum-m-fin
by auto

qed

lemma dist-inv-measurement-probability:
fixes I :: ¢'i::finite set»
assumes [register|: <register Q>
shows (>~ z€l. measurement-probability Q ¢ x) = (dist-inv Q (ket-invariant (—1I)) ¥)?
proof —
have ((>_ z€l. measurement-probability Q 1 z) = (norm (Q (Proj (ket-invariant I)) =y 1))%
by (simp add: measurement-probability-sum)
then show ?thesis
by (simp add: dist-inv-def ket-invariant-compl)
qed

lemma dist-inv-avg-measurement-probability:
fixes I :: <'h::finite = 'i::finite set»
assumes [register|: <register Q>
shows (> he UNIV. > zel h. measurement-probability @ (¢ h) x) / CARD('h)
= (dist-inv-avg Q (Ah. ket-invariant (— I h)) )
by (simp add: dist-inv-avg-def real-sqrt-pow2 divide-nonneg-pos
sum-nonneg dist-inv-measurement-probability)

7.4 Preservation

lemma dist-inv-avg-ezec-compatible:
fixes prog
assumes <valid-program prog»
assumes [register|: <compatible Q R»
shows «dist-inv-avg Q I (Ah::'x::finite="y::{ finite,ab-group-add}. exec-program h (lift-program R prog)
(¥ h))
< dist-inv-avg Q I »
proof (insert <valid-program prog», induction prog rule:rev-induct)
case Nil
with assms show ?case
by simp
next
case (snoc program-step prog)
show ?Zcase
proof (cases program-step)
case (ProgramStep U)
have «dist-inv-avg Q I (Ah. exec-program h (lift-program R (prog Q [program-step])) (¢ h))
< (MAX h:'z="y. norm U) x dist-inv-avg Q I (Ah. exec-program h (lift-program R prog) (¢ h))»
apply (simp add: lift-program-append lift-program-cons exec-program-append ProgramStep del:
range-constant Maz-const)
apply (rule dist-inv-avg-apply-compatible[where R=«\-. R»])
by simp
also have «... < dist-inv-avg Q I
using snoc
by (simp-all add: ProgramStep norm-isometry valid-program-append)
finally show ?thesis
by —
next
case (QueryStep X Y)
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with snoc have [register]: <compatible X Y> by (simp add: valid-program-append)
have «dist-inv-avg Q I (Ah. exec-program h (lift-program R (prog Q [program-step|)) (¥ h))
< (MAX h::'z="y. norm (function-oracle h)) x dist-inv-avg Q I (Ah. exec-program h (lift-program
R prog) (¢ h))
apply (simp add: lift-program-append lift-program-cons exec-program-append QueryStep
del: range-constant Maz-const norm-function-oracle)
apply (rule dist-inv-avg-apply-compatiblelwhere R=«\-. (R o X;R o Y))])
by simp
also have «... < dist-inv-avg Q I {»
using snoc
by (simp-all add: QueryStep valid-program-append)
finally show ?thesis
by —
ged
qed

lemma dist-inv-exec’-compatible:
fixes prog
assumes <valid-program prog»
assumes normU: <norm U < 1)
assumes [register|: <register R»
assumes compat@Q1[register|: <compatible @ (Fst o R)»
assumes compatQ2|register]: <compatible Q Snd>
shows «dist-inv Q I (exec-program-with U (lift-program R prog) ¢) < dist-inv Q I 1>
proof (insert <valid-program prog», induction prog rule:rev-induct)
case Nil
with assms show ?case
by simp
next
case (snoc program-step prog)
show ?Zcase
proof (cases program-step)
case (ProgramStep V')
have «dist-inv Q I (exec-program-with U (lift--program R (prog @ [program-step])) 1)
< norm V x dist-inv Q I (exec-program-with U (lift-program R prog) 1)
apply (simp add: lift-program-append exec-program-with-append lift-program-cons ProgramStep)
using dist-inv-apply-compatible[ OF compat@Q1)
by simp
also have «... < dist-inv Q I ¥»
using ProgramStep norm-isometry snoc(1) snoc.prems valid-program-append exec-program-with-append
by fastforce
finally show ?%thesis
by —
next
case (QueryStep X Y)
with snoc have [register]: <compatible X Y by (simp add: valid-program-append)
then have compat|register]: <compatible Q (Fst o (R o X);(Fst o (R o Y);Snd))
by (auto introl: compatible3’ compatible-comp-inner simp flip: comp-assoc)
have «dist-inv Q I (exec-program-with U (lift-program R (prog @ [program-step])) )
< norm U * dist-inv Q I (exec-program-with U (lift-program R prog) 1)»
apply (simp add: lift-program-append lift-program-cons QueryStep exec-program-with-append)
by (rule dist-inv-apply-compatible]OF compat])
also have ¢... < dist-inv Q I »
by (smt (verit, ccfv-SIG) assms(2) dist-inv-pos mult-cancel-rightl
mult-left-le-one-le snoc(1) snoc.prems valid-program-append zero-le-mult-iff)
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finally show ?thesis
by —
qged
qed

7.5 Misc

lemma dist-inv-induct:
fixes oracle :: <('x x 'y::ab-group-add x ('z = 'y option)) update
assumes <compatible R Fst)
assumes () i<query-count program. g i) < &
assumes init: <0 € space-as-set (lift-invariant R (J 0))»
assumes <J (query-count program) < I
assumes <valid-program program)
assumes (AX Y i. compatible X Y = preserves ((Fst o X;(Fst o Y;Snd)) oracle :: (‘'m x -) update)
(lift-invariant R (J ©))
(lift-invariant R (J (Suc ©))) (g i)
assumes <norm oracle < 1
assumes <norm Y0 < 1)
shows <dist-inv R I (exec-program-with oracle program ¢ 0) < €
proof —
note [[simproc del: Laws-Quantum.compatibility-warn))
define f where «(fn = (3} i<n. g i)» for n
from <compatible R Fst» have [register]: <register R»
using compatible-register1 by blast
have «(dist-inv R (J (query-count program)) (exec-program-with oracle program ¥0) < f (query-count
program)>
proof (insert <valid-program programy, induction program rule:rev-induct)
case Nil
from init
have «dist-inv R (J 0) ¥0 = 0»
by (simp add: dist-inv-0-iff)
then show ?Zcase
by (simp add: assms(2) query-count-def f-def)
next
case (snoc program-step program)
from snoc.prems have <valid-program program»
using wvalid-program-append by blast
from snoc.prems have (valid-program-step program-step»
by (simp add: valid-program-append)
define i where <i = query-count program)
show ?case
proof (cases program-step)
case (ProgramStep U)
with <walid-program-step program-step»
have [iff]: <isometry U>
by simp
have (preserves (Fst U) (lift-invariant R (J 7)) (lift-invariant R (J ©)) 0>
apply (rule-tac preserves-compatiblelwhere F=Fst])
using <compatible R Fst> compatible-register-invariant-compatible-register compatible-sym apply
blast
by simp
then have <dist-inv R (J i) (Fst U %y exec-program-with oracle program ¥ 0) < f i
apply (rule dist-inv-leg-if-preserves| THEN order-trans])
using snoc.IH[OF valid-program programs)
by (simp-all add: norm-isometry register-isometry query-count-def i-def)
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then show ?thesis
by (simp add: ProgramStep exec-program-with-append i-def query-count-def)
next
case (QueryStep X Y)
with <wvalid-program-step program-step>
have [register]: <compatible X Y
by simp
with assms have pres: <preserves ((Fst o X;(Fst o Y;5nd)) oracle) (lift-invariant R (J 7))
(lift-invariant R (J (Suc 7)) (g i)
by fast
have fg”: «<norm ((Fst o X;(Fst o Y;Snd)) oracle) * fi + g i * norm (exec-program-with oracle
program ¥0) < f (Suc i)
proof —
have (norm ((Fst o X;(Fst o Y;5nd)) oracle) < 1»
apply (subst register-norm[where a=oracle])
by (simp-all add: assms)
moreover have <norm (ezec-program-with oracle program ¥ 0) < 1)
apply (rule norm-exec-program-with| THEN order-trans])
using <wvalid-program program» assms by simp-all
moreover have <fi + g i < f (Suc i)
by (simp add: f-def)
moreover have gpos: <g i > 0) for
using <compatible X Y assms(6) preserves-def by blast
moreover have «fi > 0»
by (auto intro!: sum-nonneg gpos simp: f-def)
ultimately
show ?thesis
by (smt (verit) mult-left-le mult-left-le-one-le norm-ge-zero)
qed
show ?thesis
apply (simp add: QueryStep exec-program-with-append flip: i-def)
using pres apply (rule dist-inv-leg-if-preserves[ THEN order-trans])
apply (simp, simp)
using snoc.IH[OF valid-program programy, folded i-def)
by (smt (verit, ccfv-SIG) fg' mult-left-mono norm-ge-zero)
qed
qed
with assms show ?thesis
using «<register R»
by (smt (verit, best) dist-inv-mono f-def)
qed

7.6 Random Oracles

lemma standard-query-for-fived-function-generic:

fixes standard-query

assumes <A\H z y z. H x = Some z = standard-query vy (ket (z,y,H)) = ket (z, y + z, H)

assumes <valid-program program)

shows <exec-program h program initial-state ® ket (Some o h)

= exec-program-with standard-query program (initial-state Q4 ket (Some o h))»

proof (insert <valid-program program», induction program rule: rev-induct)

case Nil

then show ?case

by simp

next

case (snoc program-step prog)
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then have [simp]: <valid-program prog

using list-all-append valid-program-def by blast
show ?case
proof (cases program-step)

case (ProgramStep U)

have <exec-program h (prog Q [program-step)) initial-state ®5 ket (Some o h) = (U *y exec-program

h prog initial-state) ®¢ ket (Some o h))
by (simp add: ProgramStep exec-program-append)

also have «... = Fst U xy exec-program h prog initial-state @, ket (Some o h)»
by (simp add: Fst-def tensor-op-ell2)

also have «... = Fst U xy exec-program-with standard-query prog (initial-state ®4 ket (Some o h))»
by (subst snoc.IH, simp-all)

also have «... = exec-program-with standard-query (prog @Q [program-step)) (initial-state ®g ket

(Some o h))»
by (simp add: ProgramStep exec-program-with-append)
finally show ?thesis
by —
next
case (QueryStep X Y)
then have [register]: <compatible X Y
using snoc.prems valid-program-def by force
have <ezec-program h (prog @Q [program-step]) initial-state @5 ket (Some o h) = ((X;Y) (function-oracle
h) sy exec-program h prog initial-state) ®s ket (Some o h)»
by (simp add: QueryStep exec-program-append)

also have (... = Fst ((X;Y) (function-oracle h)) v (exec-program h prog initial-state Qg ket (Some
o h))»
by (simp add: Fst-def tensor-op-ell2)
also have «... = (Fst o X; (Fst o Y; Snd)) standard-query =y (exec-program h prog initial-state ®

ket (Some o h))»
by (simp add: standard-query-for-fized-func-generic assms)
also have (... = (Fst o X; (Fst o Y; Snd)) standard-query =y exec-program-with standard-query
prog (initial-state @, ket (Some o h))»
by (subst snoc.IH, simp-all)
also have «(... = exec-program-with standard-query (prog @ [program-step)) (initial-state ®g ket
(Some o h))»
by (simp add: QueryStep exec-program-with-append)
finally show ?thesis
by —
qed
qed

lemma standard-query-for-fived-function-dist-inv-generic:

assumes <A\H z y z. Hx = Some z = standard-query vy (ket (z,y,H)) = ket (z, y + z, H)

assumes <valid-program program)

assumes compat: <compatible-invariants (T ®g ccspan {ket (Some o h)}) J»

assumes 1J: <J M (T ®g cespan{ket (Some o h)}) = I ®g ccspan{ket (Some o h)}>

assumes [register|: <register Q>

shows <dist-inv Q I (exec-program h program initial-state) =

dist-inv (Fst o Q; Snd) J (exec-program-with standard-query program (initial-state ®g ket (Some o

)
proof —

define el e2 where <el = exec-program h program initial-stater and <e2 = exec-program-with stan-
dard-query program (initial-state @, ket (Some o h))»

define keth where <keth = ket (Some o h)»

have e2¢l: e2 = el ®, keth)
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unfolding el-def e2-def keth-def
using standard-query-for-fized-function-generic assms
by fastforce
have «dist-inv Q I el = norm ((id-cblinfun — Q (Proj I)) v el)»
by (simp add: dist-inv-def Proj-ortho-compl register-minus)
also have «... = norm (el ®; keth — (Q (Proj I) xy el) ®; keth))
by (simp add: norm-tensor-ell2 keth-def cblinfun.diff-left flip: tensor-ell2-diff1)
also have «... = norm ((id-cblinfun — Fst (Q (Proj I)) ocr Snd (proj keth)) xv el ®; keth)
by (simp add: Fst-def Snd-def comp-tensor-op tensor-op-ell2 cblinfun.diff-left)
also have «... = dist-inv (Fst o @Q; Snd) (I ®g ccspan{keth}) (el ®s keth)»
by (simp add: dist-inv-def Proj-ortho-compl register-minus tensor-ccsubspace-via-Proj
Proj-on-own-range is-Proj-tensor-op register-pair-apply)
also have «... = dist-inv (Fst o Q; Snd) (J M (T ®g ccspan{ket (Some o h)})) (el ®; keth)
by (simp add: 1J keth-def)
also have «... = dist-inv (Fst o Q; Snd) J (el ®; keth)
using compat apply (rule dist-inv-intersect-onesided)
apply simp
by (simp add: dist-inv-def Proj-ortho-compl register-minus tensor-ccsubspace-via-Proj
Proj-on-own-range is-Proj-tensor-op register-pair-apply cblinfun.diff-left keth-def)

also have «... = dist-inv (Fst o Q; Snd) J 2>
by (simp add: e2el)
finally show «dist-inv Q I el = ...»
by —
qed

lemma standard-query-is-ro-generic:

fixes standard-query

assumes A\H z y z. Hxz = Some z = standard-query =y (ket (z,y,H)) = ket (z, y + 2z, H)»

assumes (valid-program program

shows <(ezec-program-with standard-query program (initial-state ®; (superpos-total :: ('z:finite =
"y::{ finite,ab-group-add} option) ell2))

= (3 he UNIV. (exec-program h program initial-state ®, ket (Some o h)) /r sqrt CARD('zx =

y))

proof (insert assms(2), induction program rule: rev-induct)
case Nil
have <sum ket (total-functions :: ('z = 'y option) set) = (3 he UNIV. ket (Aa. Some (h a)))»
apply (simp add: total-functions-def2 sum.reindex fun.inj-map)
by (simp add: o-def)
then show ?case
by (simp add: uniform-superpos-def2 scaleR-scaleC card-fun card-total-functions tensor-ell2-scaleC2
flip: scaleC-sum-right tensor-ell2-sum-right)
next
case (snoc step prog)
then have <valid-program-step step» and [iff]: <valid-program prog»
by (simp-all add: valid-program-append)
have <ezec-program-step-with standard-query step (V¥ ®g ket (Some o h)) =
exec-program-step h step 1 &4 ket (Some o h)» for h ¢
proof (cases step)
case (ProgramStep U)
then show ?thesis
by (simp add: Fst-def tensor-op-ell2)
next
case (QueryStep X Y)
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with «valid-program-step stepy have [register|: <compatible X Y
by simp
have <ezec-program-step-with standard-query step (¢ ®s ket (Some o h))
= (Fst o X;(Fst o Y;8nd)) standard-query =y (¢ @, ket (Some o h))»
by (simp add: QueryStep)

also have (... = ((Fst o X;(Fst o Y;8nd)) standard-query ocr Snd (selfbutter (ket (Some o h))))
xv (V¥ ®; ket (Some o h))»
by simp
also have ¢... = (Fst o X;(Fst o Y;5nd)) (standard-query ocr, (Snd o Snd) (selfbutter (ket (Some

o h)))) *v (¥ ®s ket (Some o h))»
by (simp add: register-mult[symmetric, where F=«(-;-))| register-pair-Snd[unfolded o-def, THEN
fun-cong|)
also have «... = (Fst o X;(Fst o Y;Snd)) ((Fst; Snd o Fst) (function-oracle h) ocr, (Snd o Snd)
(selfbutter (ket (Some o h)))) v (¢ R4 ket (Some o h))»
apply (rewrite at <(Fst;Snd o Fst) (function-oracle h)y to <assoc (function-oracle h ®, id-cblinfun)
DFEADID.rel-mono-strong)
apply (simp add: assoc-def register-pair-Fst|unfolded o-def, THEN fun-cong| flip: Fst-def)
apply (rule arg-cong[where f=\z. (--) z xy -])
by (auto intro!: equal-ket simp: Snd-def tensor-op-ket cinner-ket tensor-ell2-ket assms
assoc-ell2-sandwich sandwich-apply function-oracle-apply)
also have ... = ((Fst o X;(Fst o Y;Snd)) ((Fst; Snd o Fst) (function-oracle b)) ocr Snd (selfbutter
(ket (Some o h)))) *v (¥ ®s ket (Some o h))»
by (simp add: register-mult[symmetric, where F=<(-;-))] register-pair-Snd[unfolded o-def, THEN
fun-cong))

also have «... = (Fst o X;(Fst o Y;Snd)) ((Fst; Snd o Fst) (function-oracle h)) xy (¥ ®s ket
(Some o h))»
by simp
also have «... = Fst ((X;Y) (function-oracle h)) xy (¢ ®; ket (Some o h))>

apply (rewrite at <(Fst o X;(Fst o Y;Snd)) ((Fst;Snd o Fst) -)» to «((Fst o X;(Fst o Y;Snd)) o
(Fst;Snd o Fst)) -» DEADID.rel-mono-strong)
apply simp
apply (subst register-comp-pair|symmetric])
apply (simp, simp)
by (simp add: register-pair-Snd register-pair-Fst register-comp-pair flip: comp-assoc)

also have «... = ((X;Y) (function-oracle h) *v ) Q4 ket (Some o h)»
by (simp add: Fst-def tensor-op-ell2)
also have (... = exec-program-step h step ¥ ®; ket (Some o h)»

by (simp add: QueryStep)
finally show ?thesis
by —
ged
then show ?case
by (simp add: exec-program-with-append exec-program-append snoc.IH o-def
complex-vector.linear-sum[where f=<exec-program-step-with standard-query step]
bounded-clinear. clinear bounded-clinear-exec-program-step-with scaleR-scaleC
clinear.scaleC)
qed

lemma standard-query-is-ro-dist-inv-generic:
fixes standard-query :: <«('z::finite x "y::{finite,ab-group-add} x (‘v — 'y)) ell2 =¢cp -
assumes (A\H z y z. Hx = Some z = standard-query vy (ket (z,y,H)) = ket (z, y + z, H)
assumes <valid-program program)
assumes [register|: <register Q>

148



shows <dist-inv-avg Q (A-. I) (Ah. exec-program h program initial-state) =
dist-inv (Fst o Q) I (exec-program-with standard-query program (initial-state ®4 superpos-total))» (is
«?lhs = ?rhs»)
proof —
have «?rhs®> = (dist-inv (Fst o Q) I (3 he UNIV. (exec-program h program initial-state @ ket (Some
o h)) /r sqrt (real CARD('z = 'y))))*
apply (subst standard-query-is-ro-generic)
using assms by simp-all
also have «... = (norm (> i€ UNIV. ((Q (Proj (— I)) xy exec-program i program initial-state) ®s
ket (Some o 7)) /r sqrt (real CARD('z = 'y))))?
by (simp add: dist-inv-def cblinfun.sum-right Fst-def tensor-op-ell2 cblinfun.scaleR-right)
also have ... = (> a€UNIV. (norm (((Q (Proj (— I)) =y exec-program a program initial-state) ®s
ket (Some o a)) /r sqrt (real CARD('x = 'y))))?)>
apply (subst pythagorean-theorem-sum)
apply (simp, metis fun.inj-map-strong option.inject)
apply simp
by simp
also have «... = (> acUNIV. (dist-inv (Fst o Q) I (exec-program a program initial-state @, ket
(Some o a)))? /r real CARD('z = 'y))»
by (auto introl: sum.cong simp: dist-inv-def Fst-def tensor-op-ell2 power-mult-distrib real-inv-sqrt-pow2)
also have «... = (3. x€ UNIV. (dist-inv Q I (exec-program x program initial-state))?) /r real CARD('z
= "y)
by (metis (no-types, lifting) dist-inv-Fst-tensor norm-ket scaleR-right.sum sum.cong)
also have «... = ?lhs?®
by (simp add: dist-inv-avg-def real-sqri-pow2 sum-nonneg divide-inverse flip: sum-distrib-left)
finally show ?thesis
by simp
qed

lemma (in compressed-oracle) standard-query-is-ro-dist-inv:
assumes (valid-program program
assumes [register]: <register Q>
shows <dist-inv-avg @ (A-. I) (Ah. exec-program h program initial-state) =
dist-inv (Fst o Q) I (exec-program-with standard-query program (initial-state ®4 superpos-total))» (is
«?lhs = ?rhs»)
using standard-query-ket-full-Some assms by (rule standard-query-is-ro-dist-inv-generic)

lemma (in compressed-oracle) standard-query’-is-ro-dist-inv:
assumes <valid-program program)
assumes [register|: <register Q>
shows <dist-inv-avg Q (A-. I) (Ah. exec-program h program initial-state) =
dist-inv (Fst o Q) I (exec-program-with standard-query’ program (initial-state ®s superpos-total))»
(is «?lhs = %rhs))
using standard-query’-ket-full-Some assms by (rule standard-query-is-ro-dist-inv-generic)

lemma (in compressed-oracle) compress-query-is-standard-query-generic:

fixes query standard-query

assumes <valid-program program)

assumes <(standard-query ocy, Teg-3-8 compress = reg-3-8 compress ooy query>

shows <exec-program-with standard-query program (initial-state ® superpos-total)

= Snd compress xy exec-program-with query program (initial-state Q4 ket (Az. None))

proof (insert <valid-program program», induction program rule: rev-induct)

case Nil
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then show ?case
by (simp add: compress-empty)
next
case (snoc program-step prog)
then have [simp]: <valid-program prog»
by (simp add: valid-program-def)
show ?Zcase
proof (cases program-step)
case (ProgramStep U)
have <exec-program-with standard-query (prog @ [program-step]) (initial-state @, superpos-total)
= Fst U =y Snd compress xy exec-program-with query prog (initial-state ®, ket Map.empty)»
by (simp add: ProgramStep snoc.IH exec-program-with-append)

also have «... = Snd compress xy Fst U %y exec-program-with query prog (initial-state ®g ket
Map.empty)>
by (simp flip: cblinfun-apply-cblinfun-compose swap-registers)
also have «... = Snd compress xy exec-program-with query (prog @ [program-step|) (initial-state @

ket Map.empty))
by (simp add: ProgramStep exec-program-with-append)
finally show ?thesis
by —
next
case (QueryStep X Y)
with snoc.prems have [register|: <compatible X Y
by (simp add: valid-program-def)
have auz: <(Fst o X;(Fst o Y;5nd)) (reg-3-3 compress) = Snd compress»
by (simp add: reg-3-3-def register-pair-Snd[unfolded o-def, THEN fun-cong])
have <exec-program-with standard-query (prog @ [program-step|) (initial-state ®, superpos-total)
= (Fst o X;(Fst o Y;5nd)) standard-query =y Snd compress xy exec-program-with query prog
(initial-state ®; ket Map.empty)>
by (simp add: QueryStep snoc.IH exec-program-with-append)
also have ... = (Fst o X;(Fst o Y;Snd)) (standard-query oo, reg-3-8 compress) vy exec-program-with
query prog (initial-state @, ket Map.empty)»
by (simp-all add: auz flip: register-mult)
also have (... = (Fst o X;(Fst o Y;5nd)) (reg-3-3 compress ocr, query) =y exec-program-with query
prog (initial-state ®@; ket Map.empty)»
by (simp add: assms)
also have ... = Snd compress *y (Fst o X;(Fst o Y;S5nd)) query *y (exec-program-with query)
prog (initial-state @, ket Map.empty)»
by (simp-all add: auz flip: register-mult)
also have «... = Snd compress *v (exec-program-with query) (prog @ [program-step|) (initial-state
®s ket (Az. None))»
by (simp add: QueryStep Cons exec-program-with-append)
finally show ?thesis
by —
qed
qed

lemma (in compressed-oracle) query-is-standard-query-generic:
fixes query standard-query
assumes <valid-program program.
assumes <standard-query ocy Teg-3-3 compress = reg-3-3 compress ocr query>
shows <dist-inv Fst I (exec-program-with standard-query program (initial-state ®; superpos-total))
= dist-inv Fst I (exec-program-with query program (initial-state ®4 ket (Az. None)))»
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proof —
have «dist-inv Fst I (exec-program-with standard-query program (initial-state ®; superpos-total))
= norm (Fst (Proj (— I)) xy Snd compress *y exec-program-with query program (initial-state &
ket (Az. None)))»
by (simp add: compress-query-is-standard-query-generic assms dist-inv-def Proj-on-own-range regis-
ter-projector)
also have (... = norm (Snd compress *y Fst (Proj (— I)) *y exec-program-with query program
(initial-state ®s ket (Axz. None)))»
by (simp flip: cblinfun-apply-cblinfun-compose swap-registers)
also have «... = norm (Fst (Proj (— I)) v exec-program-with query program (initial-state ®; ket
(Az. None)))»
by (simp add: isometry-preserves-norm register-isometry[where F=5nd))
also have «... = dist-inv Fst I (exec-program-with query program (initial-state ®; ket (Az. None)))»
by (simp add: dist-inv-def Proj-on-own-range register-projector)
finally show ?thesis
by —
qed

lemma (in compressed-oracle) query-is-standard-query:
assumes <valid-program program)
shows
<dist-inv Fst I (exec-program-with standard-query program (initial-state ®s superpos-total)) =
dist-inv Fst I (exec-program-with query program (initial-state Q4 ket (Axz. None)))»
using query-is-standard-query-generic standard-query-compress assms by blast

lemma (in compressed-oracle) query’-is-standard-query:
assumes <valid-program program)
shows
«dist-inv Fst I (exec-program-with standard-query’ program (initial-state ®g superpos-total)) =
dist-inv Fst I (exec-program-with query’ program (initial-state ®; ket (Ax. None)))»
using query-is-standard-query-generic standard-query’-compress assms by blast

lemma (in compressed-oracle) query-is-random-oracle:
assumes <wvalid-program program,
shows <dist-inv-avg id (A-. I) (Ah. exec-program h program initial-state) =
dist-inv Fst I (exec-program-with query program (initial-state ®¢ ket (A-. None)))»
by (simp add: standard-query-is-ro-dist-inv assms query-is-standard-query)

lemma (in compressed-oracle) query’-is-random-oracle:
assumes <valid-program program)
shows «dist-inv-avg id (A-. I) (Ah. ezec-program h program initial-state) =
dist-inv Fst I (exec-program-with query’ program (initial-state ®s ket (A-. None)))»
by (simp add: standard-query’-is-ro-dist-inv assms query’-is-standard-query)

lemma (in compressed-oracle) dist-inv-exec-query-ezec-fized:
fixes program :: «('mem, 'x::finite, 'y::{finite,ab-group-add}) program-step list)
fixes Q :: ('a ell2 =c1, 'a ell2 = 'mem ell2 =c1, 'mem ell2»
assumes <valid-program program.
assumes [register]: <register Q>
shows «dist-inv (Fst o Q) I (exec-program-with query program (¥ ®g ket (A-. None)))
= dist-inv-avg Q (A-. I) (Ah. exec-program h program 1))
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proof —
have (dist-inv (Fst o Q) I (exec-program-with query program (¢ ®s ket (A-. None)))
= dist-inv Fst (lift-invariant Q I) (exec-program-with query program (¢ ®g ket (A-. None)))»
by (metis (no-types, lifting) Proj-lift--invariant assms(2) dist-inv-def lift-invariant-compl o-apply)

also have «... = dist-inv-avg id (Ah. lift-invariant Q I) (Ah. exec-program h program )»
by (simp add: query-is-random-oracle assms)
also have «... = dist-inv-avg Q (A-. I) (Ah. exzec-program h program 1)

by (simp add: dist-inv-avg-register-rewrite)
finally show ?thesis
by —
qed

lemma (in compressed-oracle) dist-inv-exec-query’-exec-fized:
fixes program :: «('mem, 'x::finite, 'y::{finite,ab-group-add}) program-step list)
fixes Q :: ('a ell2 =cp 'a ell2 = 'mem ell2 =c1, 'mem ell2»
assumes <valid-program program)
assumes [register|: <register Q>
shows <dist-inv (Fst o Q) I (exec-program-with query’ program (¢ ®s ket (A-. None)))
= dist-inv-avg Q (A-. I) (Ah. exec-program h program 1))
proof —
have <dist-inv (Fst o Q) I (exec-program-with query’ program (¥ ®s ket (A-. None)))
= dist-inv Fst (lift-invariant Q I) (exec-program-with query’ program (¢ ®s ket (A-. None)))
by (metis (no-types, lifting) Proj-lift-invariant assms(2) dist-inv-def lift-invariant-compl o-apply)

also have «... = dist-inv-avg id (Ah. lift-invariant Q I) (Ah. exec-program h program )
by (simp add: query’-is-random-oracle assms)
also have «... = dist-inv-avg Q (A-. I) (Ah. exec-program h program 1)

by (simp add: dist-inv-avg-register-rewrite)
finally show ?thesis
by —
qed

end

8 Find-Zero Invariant preservation for zero-finding

theory Find-Zero
imports CO-Invariants Oracle-Programs
begin

context compressed-oracle begin

definition (no-zero = {(z::'z,y::"y,D::"z—"y). 0 ¢ ran D}
definition (no-zero’ = {D::'z—"y. 0 ¢ ran D}

lemma no-zero-no-zero”: <no-zero = UNIV x UNIV x no-zero’s
by (auto intro!: simp: no-zero-def no-zero'-def)

lemma ket-invariant-no-zero-no-zero': <ket-invariant no-zero = T Qg T ®g ket-invariant no-zero’s
by (auto simp: ket-invariant-tensor no-zero-no-zero’ simp flip: ket-invariant-UNIV')

We show the preservation of the no-zero invariant. We show it first with respect to the oracle
query.

lemma preserves-no-zero: <preserves-ket query no-zero no-zero (6 / sqrt N)»
proof —
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define K where (K z = ket-invariant {(z,y::'y,D::'z—"y) | y D. Some 0 ¢ D * (—{z})}> for z
define Kd where <Kd x D0 = ket-invariant {(z,y::'y,D::'z—"y) | y D. Va'#£x. D 2’ = D0 z)}> for
z DO
have auz: «Some 0 ¢ D ‘ (— {z}) =
Jza. za = None A Some 0 ¢ range za AN (Vz'. 2’ # © — Dz’ = za z')> for D::<'z—"y» and
T
apply (rule exI[of - «D(x:=None))])
by force
have K: <K x = (SUP D0€{D0. DO x = None A Some 0 ¢ range D0}. Kd x D0)> for z
using auzx|of - z] by (auto intro!: simp: K-def Kd-def simp flip: ket-invariant-SUP)
define Kdz where <Kdz © D0 ¢’ = ket-invariant {(z::'z,y::"y,D::'z—"y) | y D. D 2’ = D0 z'}» for z
DOz’
have Kd: «<Kd x D0 = (INF z’e—{z}. Kdz x DO z')» for z D0
unfolding Kd-def Kdz-def
apply (subst ket-invariant-INF[symmetric])
apply (rule arg-conglwhere f=ket-invariant])
by auto
have Kdz: <Kdz x DO z’ = lift-invariant reg-1-3 (ket-invariant {x}) N lift-invariant (reg-3-3 o func-
tion-at x') (ket-invariant {D0 z'})> for = DO «’
unfolding Kdz-def reg-3-3-def reg-1-3-def
apply (simp add: lift-invariant-comp)
apply (subst lift-invariant-function-at-ket-inv)
apply (subst lift-Snd-ket-inv)
apply (subst lift-Snd-ket-inv)
apply (subst lift-Fst-ket-inv)
apply (subst ket-invariant-inter)
apply (rule arg-conglwhere f=ket-invariant])
by auto

show ?thesis
proof (rule inv-split-reg-query|where X=«(reg-1-8» and Y=<reg-2-3» and H=«(reg-3-8» and K=K
and ?I1.0=<\-. ket-invariant (UNIV x —{Some 0})> and ?J1.0=<\-. ket-invariant (UNIV x
—{Some 0}))])

show «query = (reg-1-3;(reg-2-3;reg-3-8)) query)
by (simp add: pair-Fst-Snd reg-1-3-def reg-2-3-def reg-3-3-def)

show <compatible reg-1-3 reg-2-3» <compatible reg-1-8 reg-3-3» <compatible reg-2-3 reg-3-3>»
by simp-all

show <compatible-register-invariant reg-2-3 (K z)» for z
unfolding K Kd Kdzx
apply (rule compatible-register-invariant-SUP, simp)
apply (rule compatible-register-invariant-INF, simp)
apply (rule compatible-register-invariant-inter, simp)
apply (rule compatible-register-invariant-compatible-register)
apply simp
apply (rule compatible-register-invariant-compatible-register)
by simp

show <compatible-register-invariant (reg-3-8 o function-at z) (K z)) for z
unfolding K Kd Kdx
apply (rule compatible-register-invariant-SUP, simp)
apply (rule compatible-register-invariant-INF, simp)
apply (rule compatible-register-invariant-inter, simp)
apply (rule compatible-register-invariant-compatible-register)
apply simp
apply (rule compatible-register-invariant-compatible-register)
by simp
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show (ket-invariant no-zero
< (SUPz. Kz
lift-invariant (reg-2-3;reg-3-8 o function-at x) (ket-invariant (UNIV x — {Some 0})))
apply (simp add: K-def lift- Fst-ket-inv reg-1-3-def reg-2-3-def ket-invariant-inter ket-invariant-SUP[symmetric]
lift-inv-prod lift-invariant-comp lift-invariant-function-at-ket-inv reg-3-3-def lift-Snd-ket-inv)
unfolding no-zero-def
by (auto simp add: ranl)
have auz: «\D::'z—"y. Some 0 ¢ D ‘(— {z}) = D x # Some 0 = 0 € ran D = Fulse) for z
by (smt (verit, del-insts) Compll image-iff mem-Collect-eq ran-def singletonD)
show (K z M lift-invariant (reg-2-3;reg-3-3 o function-at x) (ket-invariant (UNIV x — {Some 0}))
< ket-invariant no-zero) for x
by (auto intro: aux simp add: K-def lift-Fst-ket-inv reg-1-3-def reg-2-3-def ket-invariant-inter
ket-invariant-SUP[symmetric]
lift-inv-prod lift-invariant-comp lift-invariant-function-at-ket-inv reg-3-3-def lift-Snd-ket-inv
no-zero-def)
show <orthogonal-spaces (K z) (K z')y if «x # z’» for = z’
using that by (auto simp add: K-def)
show «preserves-ket queryl (UNIV x — {Some 0}) (UNIV x — {Some 0}) (6 / sqrt N)»
apply (subst asm-rljof <6 | sqrt N = 6 * sqrt (1:nat) / sqrt N>], simp)
apply (rule preserve-queryl-simplified)
by (auto simp add: card-le-Suc0-iff-eq)

show <K z < lift-invariant reg-1-8 (ket-invariant {z})> for z
by (auto simp add: K-def reg-1-3-def lift-Fst-ket-inv)
show <6 / sqrt N > 0»
by simp
qed simp
qed

Like preserves-no-zero but with respect to the oracle query.

lemma preserves-no-zero’: <preserves-ket query’ no-zero no-zero (5 / sqrt N)»
proof —
define K where (K z = ket-invariant {(z,y::'y,D::'z—"y) | y D. Some 0 ¢ D ‘ (—{z})}> for z
define Kd where <Kd x D0 = ket-invariant {(z,y::"y,D::"z—"y) | y D. Va'#£x. D 2’ = D0 z')}> for
x DO
have auz: «Some 0 ¢ D * (— {z}) =
Jza. za © = None A Some 0 ¢ range za AN (Vz'. 2’ # x — D x’ = za 2')) for D:</z—"y» and
x
apply (rule exI|of - <D(z:=None)s])
by force
have K: <K x = (SUP DO0e{D0. D0 zz = None A Some 0 ¢ range D0}. Kd = D0)» for x
using auz[of - z] by (auto intro!: simp: K-def Kd-def simp flip: ket-invariant-SUP)
define Kdz where «Kdx x D0 ' = ket-invariant {(z::'z,y::"y,D::'z—"y) | y D. D 2’ = D0 z'}» for z
Doz’
have Kd: <Kd x D0 = (INF z'e—{z}. Kdz x DO z')» for = D0
unfolding Kd-def Kdx-def
apply (subst ket-invariant-INF [symmetric])
apply (rule arg-cong[where f=Fket-invariant])
by auto
have Kdz: <Kdx x DO z’ = lift-invariant reg-1-3 (ket-invariant {z}) M lift-invariant (reg-3-3 o func-
tion-at z') (ket-invariant {D0 z'})) for z DO z’
unfolding Kdz-def reg-3-3-def reg-1-3-def
apply (simp add: lift-invariant-comp)
apply (subst lift-invariant-function-at-ket-inv)
apply (subst lift-Snd-ket-inv)
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apply (subst lift-Snd-ket-inv)

apply (subst lift-Fst-ket-inv)

apply (subst ket-invariant-inter)

apply (rule arg-cong[where f=ket-invariant])
by auto

show ?thesis
proof (rule inv-split-reg-query’|where X=«reg-1-3) and Y=«reg-2-3> and H=<reg-3-3» and K=K
and ?11.0=«\-. ket-invariant (UNIV x —{Some 0})» and ?J1.0=<\-. ket-invariant (UNIV x
—{Some 0}))])
show «query’ = (reg-1-3;(reg-2-3;reg-3-3)) query’s
by (simp add: pair-Fst-Snd reg-1-3-def reg-2-3-def reg-3-3-def)
show <compatible reg-1-3 reg-2-3» <compatible reg-1-3 reg-3-3» <compatible reg-2-3 reg-3-3»
by simp-all
show <compatible-register-invariant reg-2-3 (K z)» for
unfolding K Kd Kdx
apply (rule compatible-register-invariant-SUP, simp)
apply (rule compatible-register-invariant-INF, simp)
apply (rule compatible-register-invariant-inter, simp)
apply (rule compatible-register-invariant-compatible-register)
apply simp
apply (rule compatible-register-invariant-compatible-register)
by simp
show <compatible-register-invariant (reg-3-8 o function-at z) (K z) for
unfolding K Kd Kdz
apply (rule compatible-register-invariant-SUP, simp)
apply (rule compatible-register-invariant-INF, simp)
apply (rule compatible-register-invariant-inter, simp)
apply (rule compatible-register-invariant-compatible-register)
apply simp
apply (rule compatible-register-invariant-compatible-register)
by simp
show (ket-invariant no-zero
< (SUPz. Kzn
lift-invariant (reg-2-3;reg-3-8 o function-at x) (ket-invariant (UNIV x — {Some 0})))
apply (simp add: K-def lift- Fst-ket-inv reg-1-3-def reg-2-3-def ket-invariant-inter ket-invariant-SUP[symmetric]
lift-inv-prod lift-invariant-comp lift-invariant-function-at-ket-inv reg-3-3-def lift-Snd-ket-inv)
unfolding no-zero-def
by (auto simp add: ranl)
have auz: <Some 0 ¢ D ‘(- {z}) = D x # Some 0 = 0 ¢ ran D) for D x
by (smt (verit, del-insts) Compll image-iff mem-Collect-eq ran-def singletonD)
show (K z M lift-invariant (reg-2-3;reg-3-3 o function-at x) (ket-invariant (UNIV x — {Some 0}))
< ket-invariant no-zero) for x
using auz[of - 7]
by (auto simp add: K-def lift- Fst-ket-inv reg-1-3-def reg-2-3-def ket-invariant-inter ket-invariant-SUP[symmetric]
lift-inv-prod lift-invariant-comp lift-invariant-function-at-ket-inv reg-3-3-def lift-Snd-ket-inv
no-zero-def)
show <orthogonal-spaces (K z) (K z')y if «x # z» for = 2’
using that by (auto simp add: K-def)
show «preserves-ket queryl’ (UNIV x — {Some 0}) (UNIV x — {Some 0}) (5 / sqrt N)»
apply (subst asm-rljof <5 | sqrt N = & % sqrt (1:nat) / sqrt N>], simp)
apply (rule preserve-queryl’-simplified)
by (auto simp add: card-le-Suc0-iff-eq)
show «K z < lift-invariant reg-1-3 (ket-invariant {z})> for
by (auto simp add: K-def reg-1-3-def lift-Fst-ket-inv)
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show <5 / sqgrt N > 0»
by simp
qged simp
qed

lemma preserves-no-zero-num: <preserves-ket query (no-zero N num-queries q) (no-zero N num-queries
(¢+1)) (6 / sqrt N)»

apply (subst add-0-right[of <6/sqrt N>, symmetric])

apply (rule preserves-intersect-ket)

apply (simp add: preserves-mono[OF preserves-no-zero)

apply (rule preserves-mono[OF preserves-num)])

by auto

lemma preserves-no-zero-num': (preserves-ket query’ (no-zero N num-queries q) (no-zero N num-queries
(¢+1)) (5 / sqrt N)»

apply (subst add-0-right[of <5/sqrt N, symmetric])

apply (rule preserves-intersect-ket)

apply (simp add: preserves-mono|OF preserves-no-zero'])

apply (rule preserves-mono[OF preserves-num/])

by auto

8.1 Zero-finding is hard for gq-query adversaries

lemma zero-finding-is-hard:
fixes program :: <(‘mem, 'z, 'y) program»
and adv-output :: 'z update = 'mem update>
and initial-state
assumes [iff]: «wvalid-program program)
assumes <(norm initial-state = 1»
assumes [register|: <register adv-output)
shows «(>_heUNIV. > z|h x = 0. measurement-probability adv-output (exec-program h program
initial-state) x) /| CARD('x = 'y)
< (5 * real (query-count program) + 11)? / N»
proof —
note [[simproc del: Laws-Quantum.compatibility-warn))

In this game based proof, we consider three different quantum memory models:

o The one from the statement of the lemma, where the overall quantum state lives in ‘'mem,
and the adversary output register is described by adv-output, and the initial state in
initial-state. The program program assumes this memory model.

o The "extra output" (short XO) memory model, where there is an extra auxiliary register
auzx of type 'y. The type of the memory is then ‘'mem x ’y. (Le., the extra register is in
addition to the content of ‘mem.)

o The "compressed oracle" (short CO) memory model, where additionally to XO, we have
an oracle register that can holds the content of the compressed oracle (or the standard
oracle).

Since the register adv-output is defined w.r.t. a specific memory, we define convenience defini-
tions for the same register as it would be accessed in the other memories:
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define adv-output-in-zo :: <’z update = ('memx'y) updates where <adv-output-in-ro = Fst o adv-output)
define adv-output-in-co :: 'z update = ((‘'memx'y) x (‘z—'y)) updater where <adv-output-in-co =
Fst o adv-output-in-zo»

Analogously, we defined the auz-register and the oracle register in the applicable memories:

define auz-in-zo :: 'y update = ('memx'y) update) where <auz-in-ro = Snd)
define auz-in-co :: <'y update = ((‘'memx'y) x (‘z—'y)) updater where <auz-in-co = Fst o auz-in-zo>
define oracle-in-co :: «('z—"y) update = (('memx'y) x ('z—'y)) update> where <oracle-in-co = Snd»
define aao-in-co where (aao-in-co = (adv-output-in-co; (auz-in-co; oracle-in-co))»

— Abbreviation since we use this combination often.

have [register]: (compatible aux-in-co oracle-in-co»
by (simp add: adv-output-in-co-def aux-in-co-def oracle-in-co-def adv-output-in-ro-def auz-in-zo-def)
have [register|: <compatible adv-output-in-ro auz-in-zo)
by (simp add: adv-output-in-zo-def auz-in-zo-def)
have [register]: <compatible adv-output-in-co auz-in-co
by (simp add: adv-output-in-co-def auz-in-co-def)
have [register]: «compatible adv-output-in-co oracle-in-co»
by (simp add: adv-output-in-co-def oracle-in-co-def)
have [register|: <compatible auz-in-zo Fst»
by (simp add: auz-in-zo-def)
have [register]: <compatible auz-in-co (Fst o Fst)»
by (simp add: auz-in-co-def)
have [register]: <compatible auz-in-co Snd>
by (simp add: auz-in-co-def)
have [register]: <register aao-in-co)
by (simp add: aao-in-co-def)

The initial states in XO/CO are like the original initial state, but with ket 0 in auz and ket
(Az. None) (the fully undefined function) in the oracle register.

define initial-state-in-ro where <initial-state-in-ro = initial-state @, ket (0 = 'y)»

define initial-state-in-co :: <«(('memx'y) x (‘z—"y)) ell2» where <initial-state-in-co = initial-state-in-zo
®s ket Map.empty>

We define an extended program ext-program that executes program, followed by one additional
query to the oracle. Input register is the adversary output register. Output register is the
additional register aux. Hence ext-program is only meaningful in the models XO and CO. (Our
definition is for XO.)

define ext-program where <ext-program = lift-program Fst program Q [QueryStep adv-output-in-zo
auz-in-o)>
have [iff]: <valid-program ext-program)
by (auto intro!: valid-program-lift simp add: valid-program-append adv-output-in-zo-def auz-in-zo-def
ext-program-def’)

We define the final states of the programs program and ext-program, in the original model, and
in XO, and CO.

define final :: <«("z = 'y) = 'mem ell2> where (final h = exec-program h program initial-states for h

define zo-ext-final :: <('z = 'y) = (‘memx"y) ell2> where (xo-ext-final h = exec-program h ext-program
initial-state-in-xo> for h

define zo-final :: <('z = 'y) = (‘'memx'y) ell2> where <zo-final h = exec-program h (lift-program F'st
program) initial-state-in-zo» for h

define co-ext-final :: <(('memx'y) x (‘z—'y)) ell2y where <co-ext-final = exec-program-with query’
ext-program initial-state-in-co»
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define co-final :: «(('memx'y) x ('z—"y)) ell2> where «co-final = exec-program-with query’ (lift-program
Fst program) initial-state-in-co»

have [simp]: <norm initial-state-in-zo = 1)
by (simp add: initial-state-in-zo-def norm-tensor-ell2 assms)
have norm-initial-state-in-co[simp|: <norm initial-state-in-co = 15
by (simp add: initial-state-in-co-def norm-tensor-ell2)

have norm-co-final[simp]: <norm co-final < 1>
unfolding co-final-def
using norm-exec-program-with valid-program-lift <valid-program program>
norm-query’ register-Fst norm-initial-state-in-co
by smt

We derive the relationships between the various final states:

have co-ext-final-prefinal: <co-ext-final = aao-in-co query’ xy co-final
by (simp add: co-ext-final-def ext-program-def exec-program-with-append aao-in-co-def
flip: initial-state-in-co-def co-final-def adv-output-in-co-def aux-in-co-def oracle-in-co-def)

have zo-final-final: <xo-final h = final h ®, ket 0> for h
by (simp add: zo-final-def final-def initial-state-in-zo-def exec-lift-program-Fst)

have zo-ext-final-zo-final: <zo-ext-final h = (adv-output-in-zo;aux-in-zo) (function-oracle h) xy zo-final
hy for h
by (simp add: zo-ext-final-def ro-final-def ext-program-def exec-program-def)

After executing program (in XO), the auz-register is in state ket 0:

have zo-final-has-y0: <dist-inv-avg (adv-output-in-zo;aux-in-zo) (A-. ket-invariant {(z,y). y = 0})
zo-final = 0>
proof —
have «dist-inv-avg auz-in-zo (A-::"z="y. ket-invariant {0}) zo-final
< dist-inv-avg auz-in-zo (A-:'z="y. ket-invariant {0}) (Ah. initial-state-in-zo)»
unfolding zo-final-def
apply (subst dist-inv-avg-exec-compatible)
using dist-inv-avg-exec-compatible
by auto
also have «... = 0»
by (auto introl: tensor-ell2-in-tensor-ccsubspace ket-in-ket-invariant]
simp add: initial-state-in-zo-def dist-inv-0-iff distance-from-inv-avg0l auz-in-zo-def lift-Snd-inv)
finally have <dist-inv-avg auz-in-zo (\-. ket-invariant {0}) zo-final = 0>
by (smt (verit, ccfv-SIG) dist-inv-avg-pos)
then show ?thesis
apply (rewrite at <{(z, y). y = 0}» to <UNIV x {0}» DEADID.rel-mono-strong, blast)
apply (subst dist-inv-avg-register-rewrite)
by (simp-all add: lift-inv-prod)
qged

Same as zo-final-has-y0, but in CO:

have co-final-has-y0: <dist-inv aao-in-co (ket-invariant {(x,y,D). y = 0}) co-final = 0>
proof —
have «dist-inv auz-in-co (ket-invariant {0}) co-final
< dist-inv auz-in-co (ket-invariant {0}) initial-state-in-co
unfolding co-final-def
apply (rule dist-inv-exec’-compatible)
by simp-all
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also have «... = 0»
by (auto intro!: tensor-ell2-in-tensor-ccsubspace ket-in-ket-invariantl
simp add: initial-state-in-co-def initial-state-in-zo-def dist-inv-0-iff
aux-in-co-def aux-in-zo-def lift-Fst-inv lift-Snd-inv lift-invariant-comp)
finally have «dist-inv auz-in-co (ket-invariant {0}) co-final = 0»
by (smt (verit, best) dist-inv-pos)
then show ?thesis
apply (rewrite at «{(z, y, D). y = 0}> to <UNIV x {0} x UNIV» DEADID.rel-mono-strong,
blast)
apply (subst dist-inv-register-rewrite)
by (simp-all add: lift-inv-prod aao-in-co-def)
qed

define ¢ where <q = query-count program>

The following term occurs a lot (it’s how much the no-zero invariant is preserved after running
ext-program). So we abbreviate it as d.

define d :: real where «d = (5 % ¢ + 11) / sqrt N»

have [iff]: «d > 0»
by (simp add: d-def)

have <dist-inv oracle-in-co (ket-invariant no-zero') co-ext-final < 5 * (q+1) / sqrt N»
— In CO-execution, before the adversary’s final query, the oracle register has no 0 in its range
proof (unfold co-ext-final-def, rule dist-inv-induct[where g=«A-. 5 / sqrt N> and J=<\-. ket-invariant
no-zero”’|)
show <compatible oracle-in-co Fst»
using oracle-in-co-def by simp
show <initial-state-in-co € space-as-set (lift-invariant oracle-in-co (ket-invariant no-zero’))
by (auto intro!: tensor-ell2-in-tensor-ccsubspace
simp add: initial-state-in-co-def oracle-in-co-def lift-Snd-ket-inv
initial-state-in-ro-def tensor-ell2-ket ket-in-ket-invariantl no-zero'-def
simp flip: ket-invariant-tensor)
show <ket-invariant no-zero' < ket-invariant no-zero’s
by simp
show <wvalid-program ext-program)
by (simp add: valid-program-lift)
show <preserves ((Fst o X-in-zo;(Fst o Y-in-z0;5nd)) query’) (lift-invariant oracle-in-co (ket-invariant
no-zero’))
(lift-invariant oracle-in-co (ket-invariant no-zero')) (5 / sqrt N)» if [register|: <compatible X-in-zo
Y-in-zo» for X-in-zo Y-in-zo
proof —
from preserves-no-zero’
have <preserves ((Fst o X-in-zo;(Fst o Y-in-zo;Snd)) query’)
(lift-invariant (Fst o X-in-zo;(Fst o Y-in-zo;Snd)) (ket-invariant no-zero))
(lift-invariant (Fst o X-in-zo;(Fst o Y-in-zo;Snd)) (ket-invariant no-zero))
(&5 / sqrt (real N))»
unfolding N-def
apply (rule preserves-lift-invariant] THEN fD2, rotated))
by simp
moreover have (lift-invariant (Fst o X-in-zo;(Fst o Y-in-zo;Snd)) (ket-invariant no-zero)
= lift-invariant oracle-in-co (ket-invariant no-zero')
by (simp add: oracle-in-co-def no-zero-no-zero’ lift-inv-prod)
finally show ?thesis
by —
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qed

show <norm query’ < 15
by simp

show <norm initial-state-in-co < 1»
by simp

show «(>_ i<query-count ext-program. 5 | sqrt N) < real (5 * (q+1)) / sqrt N»
apply (simp add: query-count-lift-program ext-program-def flip: g-def)
by argo

qged

then have dist-zero: <dist-inv aao-in-co (ket-invariant no-zero) co-ext-final < 5 x (g+1) / sqrt N»
— Same thing, but expressed w.r.t. different register
apply (rule le-back-subst)
apply (rule dist-inv-register-rewrite)
by (auto introl: simp: aao-in-co-def no-zero-no-zero' lift-inv-prod)

have dist-Dzy: «dist-inv aao-in-co (ket-invariant {(z,y,D). D & = Some y}) co-ext-final < 6 / sqrt N»
(is «Zlhs < =)
unfolding co-ext-final-prefinal
apply (rule dist-inv-leg-if-preserves| THEN order-trans])
apply (subst preserves-lift-invariant)
apply (auto introl: preserves-ket-query’-output-simple simp: register-norm)[4]
using norm-co-final
by (simp add: N-def co-final-has-y0 field-class.field-divide-inverse)

have «dist-inv aao-in-co
(ket-invariant {(z, y, D'z — 'y). 0 ¢ ran D A D x = Some y}) co-ext-final < d» (is <?lhs <
dy)
— In CO-execution, after the adversary’s final query, the oracle register has no 0 in its range, and
the aux register contains the output of the oracle function evaluated on the adversary output register.
proof —
have «?lhs = dist-inv aao-in-co (ket-invariant no-zero M ket-invariant {(z, y, D). D x = Some y})
co-ext-final)
apply (rule arg-cong3[where f=dist-inv])
by (auto intro!: simp: no-zero-def ket-invariant-inter)
also have (... < sqrt ((dist-inv aao-in-co (ket-invariant no-zero) co-ext-final)?
+ (dist-inv aao-in-co (ket-invariant {(x, y, D). D x = Some y}) co-ext-final)?)
apply (rule dist-inv-intersect)
by auto
also have (... < sqrt (5 x (¢g+1) / sqrt N)2 + (6 / sqrt N)?)»
apply (rule real-sqrt-le-mono)
apply (rule add-mono)
using dist-zero dist-Dzxy
by auto
also have «... < (5 % ¢+ 11) / sqrt N»
apply (rule sqrt-sum-squares-le-sum[THEN order-trans])
by (auto, argo)
finally show ?thesis
by (simp add: d-def)
qed
then have <dist-inv aao-in-co (ket-invariant {(z, y, D::'z — 'y). y # 0}) co-ext-final < d»
— In CO-execution, after the adversary’s final query, the adversary output register is not 0.
apply (rule le-back-subst-le)
apply (rule dist-inv-mono)
by (auto introl: ranl)
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then have «dist-inv (adv-output-in-co; auz-in-co) (ket-invariant {(z, y). y # 0}) co-ext-final < d»
— As before, but with respect to a different register (without the oracle register that doesn’t exist in
XO0).
apply (rule le-back-subst)
apply (rule dist-inv-register-rewrite)
apply (simp, simp)
apply (rewrite at <{(x, y, D). y # 0}
to <«(M(a,b),c). (a,b,c)) “({(z, y) | zy. y # 0} x UNIV)y DEADID.rel-mono-strong)
apply force
by (simp add: ket-invariant-image-assoc pair-o-assoc pair-o-assoc[unfolded o-def] lift-inv-prod aao-in-co-def
flip: lift-invariant-complunfolded o-def, THEN fun-cong])
then have (dist-inv-avg (adv-output-in-zo; auz-in-zo) (Ah. ket-invariant {(z, y). y # 0}) zo-ext-final
< d
— In XO-execution, after the adversary’s final query, the auxiliary register is not 0.
apply (rule le-back-subst)
unfolding co-ext-final-def ro-ext-final-def
apply (rewrite at <(adv-output-in-co;auz-in-co)r to «F'st o (adv-output-in-zo;auz-in-zo)> DEADID.rel-mono-strong)
apply (simp add: adv-output-in-co-def auz-in-co-def register-comp-pair)
by (simp add: initial-state-in-co-def dist-inv-exec-query’-exec-fixed)
then have <dist-inv-avg (adv-output-in-ro; aux-in-zo)
(Ah. ket-invariant {(z, y). hx # 0 V y # 0}) zo-final < d»
— In XO-execution, before the adversary’s final query, h z # 0 or y # 0.
apply (rule le-back-subst-le)
unfolding zo-ext-final-zo-final[abs-def]
apply (subst dist-inv-avg-apply-iff)
by (auto introl: ext dist-inv-avg-mono simp: function-oracle-ket-invariant)
then have *: (dist-inv-avg (adv-output-in-zo; auz-in-zo)
(Ah. ket-invariant {(z, y). h  # 0}) zo-final < d»
— In XO-execution, before the adversary’s final query, h = # 0.
apply (rule le-back-subst-le)
apply (rule ord-le-eq-trans)
apply (rule dist-inv-avg-mono[where I=<\h. ket-invariant {(z, y). hz # 0 V y # 0} N ket-invariant
{(2.9). y=0D))
apply (auto simp: ket-invariant-inter)[2]
apply (rule dist-inv-avg-intersect)
apply simp-all[2]
by (fact zo-final-has-y0)
then have «dist-inv-avg adv-output-in-xo
(Ah. ket-invariant {z. h x # 0}) zo-final < d»
apply (subst dist-inv-avg-register-rewritelwhere R=«(adv-output-in-zo; auz-in-zo)» and J=<\h.
ket-invariant {(z, y). h ¢ # 0}])
apply (simp, simp)
apply (rewrite at <{(z, y). hx # 0}» in for (h) to {z. hx # 0} x UNIVy DEADID.rel-mono-strong)
apply fastforce
by (simp add: lift-inv-prod)
then have <dist-inv-avg adv-output (Ah. ket-invariant {z. h & # 0}) final < d»
by (simp add: zo-final-final[abs-def] adv-output-in-ro-def dist-inv-avg-Fst-tensor)
then have (> he UNIV. > z|h © = 0. measurement-probability adv-output (final h) z) /| CARD('z
= y) < db
apply (subst dist-inv-avg-measurement-probability)
apply simp
apply (rewrite at <— {z. h x = 0}> in <\h. X0 to {x. h © # 0}» DEADID.rel-mono-strong)
apply blast
by auto

also have «d*> = (5 x ¢ + 11)? /| N»
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by (simp add: d-def power2-eq-square)
finally show ?thesis
by (simp add: final-def g-def)
qed

end

end

9  Auz-Sturm-Calculation — Auxiliary theory for technical reasons.

theory Aux-Sturm-Calculation imports
Sturm-Sequences. Sturm
begin

We prove this fact in a separate theory because in Collision.thy, the sturm method fails with
an internal error.

lemma sturm-calculation: <12 * (r?+154)73 — (10/3 * (r+2)73 + 20)? # 0> if «r > 0> for r :: real
by sturm

end

10 Collision Invariant preservation for collision resistance

theory Collision imports
CO-Invariants
Oracle-Programs
Auzx-Sturm-Calculation
begin

context compressed-oracle begin

definition (no-collision = {(x,y,D::'z—"y). inj-map D}
definition (no-collision’ = {D::'z—"y. inj-map D}»

lemma no-collision-no-collision’”: <no-collision = UNIV x UNIV x mno-collision’s
by (auto intro!: simp: no-collision-def no-collision’-def)

lemma ket-invariant-no-collision-no-collision”: (ket-invariant no-collision = T ®g T ®g ket-invariant
no-collision’s
by (auto simp: ket-invariant-tensor no-collision-no-collision’ simp flip: ket-invariant-UNIV)

We show the preservation of the no-collision invariant. We show it with respect to the oracle
query first.

lemma preserves-no-collision: <preserves-ket query (no-collision N num-queries q) no-collision (6 * sqrt
q / sqrt N)»
proof —
define K where (K = (A(z::'z,D0::'z—"y). ket-invariant {(z, y, DO(z:=d)) | (y::"y) d.
D0 z = None A card (dom D0) < q A inj-map DO})»

define I1 J1 = <('z—"y) = ('y x 'y option) set>

where <I1 D0 = UNIV x (if card (dom D0) < q then — Some ‘ ran DO else {})
and <J1 DO = (UNIV x — Some ‘ ran DO)»
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for DO :: 'z — i

show ?thesis
proof (rule inv-split-reg-query[where X=«reg-1-3> and Y=«reg-2-3» and H=<reg-3-3> and K=K
and ?11.0=«\(z,D0). ket-invariant (11 D0)> and ?J1.0=<\(z,D0). ket-invariant (J1 D0))])
show (query = (reg-1-3;(reg-2-3;reg-3-3)) query»
by (auto simp: reg-1-3-def reg-2-3-def reg-3-3-def pair-Fst-Snd)
show <compatible reg-1-3 reg-2-3» <compatible reg-1-3 reg-3-3» <compatible reg-2-3 reg-3-3»
by simp-all
show <compatible-register-invariant reg-2-3 (K xD0)> for D0
apply (cases D0)
by (auto simp add: K-def reg-2-3-def
introl: compatible-register-invariant-Snd-comp compatible-register-invariant-Fst)
show <compatible-register-invariant (reg-3-3 o function-at (fst xD0)) (K xD0)> for D0
apply (cases xD0)
by (auto simp add: K-def reg-3-3-def comp-assoc
introl: compatible-register-invariant-Snd-comp compatible-register-invariant-Fst
compatible-register-invariant-function-at)

have aux: <inj-map b =
card (dom b) < ¢ =
Jba. (card (dom ba) < g —>
(3d. b= ba(a := d)) A ba a = None A inj-map ba A b a ¢ Some  ran ba) A
card (dom ba) < ¢» for b a
apply (intro exI[of - <b(a:=None)] exI[of - <b a>] impl conjl)
apply fastforce
apply force
apply (smt (verit, ccfv-SIG) array-rules(2) inj-map-def)
apply (auto simp: ran-def inj-map-def)[1]
by (simp add: dom-fun-upd card-Diff1-lef THEN order-trans))
show <(ket-invariant (no-collision N num-queries q)
< (SUP zDO€UNIV. K xD0 1 lift-invariant (reg-2-3;reg-3-3 o function-at (fst D0)) (case DO
of (z, DO) = ket-invariant (11 D0)))»
by (auto intro!: aux simp add: K-def lift-Fst-ket-inv reg-1-3-def reg-2-3-def ket-invariant-inter
ket-invariant-SUP|[symmetric] I11-def
lift-inv-prod lift-invariant-comp lift-invariant-function-at-ket-inv reg-3-3-def lift-Snd-ket-inv
case-prod-beta
no-collision-def num-queries-def)
have auz: <d ¢ Some ‘ ran (snd tD0) = inj-map (snd zD0) = inj-map ((snd zD0O)(fst D0 :=
d))» for d D0
by (smt (verit, del-insts) fun-upd-other fun-upd-same image-iff inj-map-def not-Some-eq ranl)
show «K zD0 M lift-invariant (reg-2-3;reg-3-3 o function-at (fst £D0)) (case zD0 of (x, D0O) =
ket-invariant (J1 DO))
< ket-itnvariant no-collisions for xD0
apply (simp add: K-def lift-F'st-ket-inv reg-1-3-def reg-2-3-def ket-invariant-inter
ket-invariant-SUP|[symmetric] J1-def lift-inv-prod lift-invariant-comp
lift-invariant-function-at-ket-inv reg-3-3-def lift-Snd-ket-inv case-prod-beta)
unfolding no-collision-def
using auz|of - zD0] by auto
have aux: <b aa = None —=
ba aa = None =
b # ba —
card (dom b) < ¢ =
inj-map b = card (dom ba) < ¢ = inj-map ba = b(aa := d) # ba(aa = da)»
for aa b ba d da
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by (metis fun-upd-triv fun-upd-upd)
have auz: <\b aa ba d da.
b(aa := d) = ba(aa := da) =
b aa = None =
ba aa = None —
b # ba =
card (dom b) < ¢ =
inj-map b = card (dom ba) < ¢ = inj-map ba = False)
by (metis fun-upd-triv fun-upd-upd)
show <orthogonal-spaces (K xD0) (K xD0') if <xD0 # xzD0"» for D0 xD0’
apply (cases xD0; cases xD0’)
unfolding K-def using that by (auto elim!: aux)
have «preserves-ket queryl (I1 DO) (J1 D0) (6 * sqrt q / sqrt N)» for DO :: <z—"y»
proof (cases <card (dom D0O) < ¢)
case True
have [simp]: <card (ran DO) < ¢
using True ran-smaller-dom[of D0] by simp
show ?thesis
apply (simp add: I1-def J1-def True)
apply (rule preserve-queryl-simplified)
by (auto simp add: inj-vimage-image-eq vimage-Compl)
next
case Fulse
then show ?thesis
unfolding /1-def by simp
qed
then show «<preserves queryl (case zD0 of (x, DO) = ket-invariant (I1 D0)) (case D0 of (x::'r,
D0) = ket-invariant (J1 D0)) (6 * sqrt q¢ / sqrt N)» for D0
apply (cases D0) by auto
show <6  sqrt q / sqrt N > 0»
by auto
show «K zD0 < lift-invariant reg-1-8 (ket-invariant {fst D0})> for D0
apply (cases D0)
by (auto simp add: K-def reg-1-3-def lift-Fst-ket-inv)
qed simp
qed

Like preserves-no-collision but with respect to the oracle query.

lemma preserves-no-collision”: <preserves-ket query’ (no-collision N num-queries q) no-collision (5 *
sqrt q / sqrt N)»
proof —
define K where (K = (A(z:'z,D0::'z—"y). ket-invariant {(z, y, DO(z:=d)) | (y::"y) d.
D0 x = None A card (dom D0) < q A inj-map D0O})»

define 1 JI :: «("z—"y) = ('y x "y option) set
where <I1 D0 = UNIV x (if card (dom D0) < q then — Some ‘ ran D0 else {})
and «JI DO = (UNIV x — Some ‘ ran D0))
for DO :: 'z — i

show ?thesis
proof (rule inv-split-reg-query’[where X=«(reg-1-3) and Y=«(reg-2-3) and H=<reg-3-3> and K=K
and ?11.0=«\(z,D0). ket-invariant (I1 D0)> and ?2J1.0=<\(x,D0). ket-invariant (J1 D0))])
show «query’ = (reg-1-3;(reg-2-3;reg-5-3)) query’s
by (simp add: reg-1-3-def reg-2-3-def reg-3-3-def pair-Fst-Snd)
show <compatible reg-1-3 reg-2-3» <compatible reg-1-3 reg-3-3» <compatible reg-2-3 reg-3-3»
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by simp-all
show <compatible-register-invariant reg-2-3 (K xD0)> for D0
apply (cases zD0)
by (auto simp add: K-def reg-2-3-def
intro!: compatible-register-invariant-Snd-comp compatible-register-invariant-Fst)
show <compatible-register-invariant (reg-3-3 o function-at (fst xDO0)) (K xD0)> for D0
apply (cases D0)
by (auto simp add: K-def reg-3-3-def comp-assoc
intro!: compatible-register-invariant-Snd-comp compatible-register-invariant-Fst
compatible-register-invariant-function-at)
have aux: <inj-map b =
card (dom b) < ¢ =
dba. (card (dom ba) < ¢ —
(3d. b = ba(a := d)) A ba a = None A inj-map ba A b a ¢ Some ‘ ran ba) A
card (dom ba) < ¢ for a b
apply (intro exl[of - <b(a:=None)] exI|of - <b a>] impl conjl)
apply fastforce
apply force
apply (smt (verit, ccfo-SIG) array-rules(2) inj-map-def)
apply (auto simp: ran-def inj-map-def)[1]
by (simp add: dom-fun-upd card-Diff1-lel THEN order-trans])
show <ket-invariant (no-collision N num-queries q)
< (SUP zD0€ UNIV. K zD0 N lift-invariant (reg-2-8;reg-3-8 o function-at (fst D0)) (case DO
of (z, DO) = ket-invariant (11 D0)))»
by (auto intro!: aux simp add: K-def lift-Fst-ket-inv reg-1-3-def reg-2-3-def ket-invariant-inter
ket-invariant-SUP|[symmetric] 11-def
lift-inv-prod lift-invariant-comp lift-invariant-function-at-ket-inv reg-3-3-def lift-Snd-ket-inv
case-prod-beta
no-collision-def num-queries-def)
show «K xD0 M lift-invariant (reg-2-3;reg-3-3 o function-at (fst £D0)) (case zD0 of (x, DO) =
ket-invariant (J1 D0))
< ket-invariant no-collision) for xD0
proof —
have auz: «d ¢ Some ‘ ran (snd 2D0) =
snd xD0 (fst xD0) = None —>
card (dom (snd zD0)) < q = inj-map (snd xD0) = inj-map ((snd xD0O)(fst xD0 := d))» for

by (smt (verit, del-insts) fun-upd-other fun-upd-same image-iff inj-map-def not-Some-eq ranl)
show ?thesis
apply (simp add: K-def lift-Fst-ket-inv reg-1-3-def reg-2-3-def ket-invariant-inter
ket-invariant-SUP[symmetric] J1-def lift-inv-prod lift-invariant-comp
lift-invariant-function-at-ket-inv reg-3-3-def lift-Snd-ket-inv case-prod-beta no-collision-def)
using auzx by auto
qed
have auz: <b aa = None = ba aa = None => b # ba = b(aa := d) = ba(aa := da) = Fulse
for aa b ba d da
by (metis fun-upd-triv fun-upd-upd)
show <orthogonal-spaces (K xD0) (K zD0') if <xD0 # xzD0"» for D0 zD0’
apply (cases zD0; cases D0’)
unfolding K-def using that auz by auto
have «preserves-ket queryl’ (I1 D0) (J1 D0) (5 % sqrt q / sqrt N)» for DO :: (z—"y
proof (cases (card (dom D0) < ¢»)
case True
have [simp]: <card (ran D0O) < ¢
using True ran-smaller-dom[of D0] by simp
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show ?thesis
apply (simp add: I1-def J1-def True)
apply (rule preserve-queryl '-simplified)
by (auto simp add: inj-vimage-image-eq vimage-Compl)
next
case Fulse
then show ?thesis
unfolding [1-def by simp
qed
then show (preserves queryl’ (case D0 of (x, DO) = ket-invariant (I1 DO0)) (case D0 of (x::'z,
D0) = ket-invariant (J1 D0)) (5 * sqrt ¢ / sqrt N)» for D0
apply (cases zD0) by auto
show <5 x sqrt q / sqrt N > 0»
by auto
show (K zD0 < lift-invariant reg-1-3 (ket-invariant {fst xD0})> for zD0
apply (cases xD0)
by (auto simp add: K-def reg-1-3-def lift-Fst-ket-inv)
qed simp
qed

lemma preserves-no-collision-num: <preserves-ket query (no-collision N num-queries q) (no-collision N
num-queries (q+1)) (6 % sqrt q / sqrt N)»

apply (subst add-0-right[of <6 * sqrt q | sqrt N>, symmetric])

apply (rule preserves-intersect-ket)

apply (rule preserves-no-collision)

apply (rule preserves-mono[OF preserves-num))

by auto

lemma preserves-no-collision’-num: <preserves-ket query’ (no-collision N num-queries q) (no-collision
N num-queries (q¢+1)) (5 * sqrt q / sqrt N)»

apply (subst add-0-right[of <& * sqrt q | sqrt N>, symmetric])

apply (rule preserves-intersect-ket)

apply (rule preserves-no-collision’)

apply (rule preserves-mono[OF preserves-num’])

by auto

10.1 Collision-finding is hard for g-query adversaries

lemma collision-finding-is-hard:
fixes program :: «('mem, 'z, 'y) program)
and adv-output :: «('z x 'z) update = 'mem update
and initial-state
assumes [iff]: «wvalid-program program)
assumes <norm initial-state = 1>
assumes [register|: <register adv-output)
shows (Y he UNIV. " (x1,22)|z1 # 22 A hzl = h 22. measurement-probability adv-output (exec-program
h program initial-state) (x1,22)) /| CARD('x = 'y)
< 12 x (query-count program + 154)78 | N»
proof —
note [[simproc del: Laws-Quantum.compatibility-warn))

In this game based proof, we consider three different quantum memory models:

o The one from the statement of the lemma, where the overall quantum state lives in ‘mem,
and the adversary output register is described by adv-output, and the initial state in
initial-state. The program program assumes this memory model.
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o The "extra output" (short XO) memory model, where there is an extra auxiliary register
aux of type 'y x 'y. The type of the memory is then ‘mem x 'y x ’y. (Le., the extra
register is in addition to the content of 'mem.)

o The "compressed oracle" (short CO) memory model, where additionally to XO, we have
an oracle register that can holds the content of the compressed oracle (or the standard
oracle).

Since the register adv-output is defined w.r.t. a specific memory, we define convenience defini-
tions for the same register as it would be accessed in the other memories:

define adv-output-in-zo :: <('zx'z) update = ('memx’yx'y) update> where <adv-output-in-ro = Fst
o adv-outputs

define adv-output-in-co :: «('zx'z) update = (('memx'yx'y) x ('z—'y)) updater where <adv-output-in-co
= Fst o adv-output-in-ro»

Analogously, we defined the auz-register and the oracle register in the applicable memories:

define auz-in-zo :: <('yx'y) update = (‘'memx’'yx'y) updates where <auz-in-ro = Snd>
define auz-in-co :: «('yx'y) update = ((‘'memx'yx'y) x (‘z—'y)) update> where <auz-in-co = Fst o
aUT-1N-T0)
define oracle-in-co :: «('z—'y) update = ((‘'memx’'yx’y) x ('z—'y)) update; where <oracle-in-co =
Snd»
define aao-in-co where (aao-in-co = (adv-output-in-co; (auz-in-co; oracle-in-co))»
— Abbreviation since we use this combination often.

have [register]: <compatible auz-in-co oracle-in-co
by (simp add: adv-output-in-co-def auz-in-co-def oracle-in-co-def adv-output-in-ro-def auz-in-zo-def)
have [register]: «compatible adv-output-in-zo auz-in-zo>
by (simp add: adv-output-in-zo-def aux-in-zo-def)
have [register|: <compatible adv-output-in-co auz-in-co
by (simp add: adv-output-in-co-def auz-in-co-def)
have [register]: <compatible adv-output-in-co oracle-in-co»
by (simp add: adv-output-in-co-def oracle-in-co-def)
have [register]: «compatible auz-in-xo Fst
by (simp add: aux-in-zo-def)
have [register]: <compatible auz-in-co (Fst o Fst)»
by (simp add: auz-in-co-def)
have [register]: <compatible auz-in-co Snd>
by (simp add: auz-in-co-def)
have [register|: <register aao-in-co)
by (simp add: aao-in-co-def)

The initial states in XO/CO are like the original initial state, but with ket (0, 0) in auz and
ket (Axz. None) (the fully undefined function) in the oracle register.

define initial-state-in-to where <initial-state-in-zo = initial-state @, ket ((0,0) = 'yx'y)
define initial-state-in-co :: <((‘memx'yx'y) x ('z—"y)) ell2> where <initial-state-in-co = initial-state-in-zo
®s ket Map.empty»

We define an extended program ext-program that executes program, followed by two additional
queries to the oracle. Input register is the adversary output register. Output register is the
additional register aux. Hence ext-program is only meaningful in the models XO and CO. (Our
definition is for XO.)

define ext-program where <ext-program = lift-program Fst program
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Q [QueryStep (adv-output-in-xo o Fst) (auz-in-zo o Fst), QueryStep (adv-output-in-ro o Snd)
(auz-in-zo o Snd)]
have [iff]: <valid-program ext-program
by (auto intro!: valid-program-lift simp add: valid-program-append adv-output-in-zo-def auz-in-zo-def
ext-program-def’)

We define the final states of the programs program and ext-program, in the original model, and
in XO, and CO.

define final :: «('z = 'y) = 'mem ell2) where <final h = exec-program h program initial-states for h

define zo-ext-final :: ('t = 'y) = (‘'memx'yx'y) ell2) where <xo-ext-final h = exec-program h
ext-program initial-state-in-zo> for h

define zo-final :: <('z = 'y) = ('memx'yx"’y) ell2y where <zxo-final h = exec-program h (lift-program
Fst program) initial-state-in-zo> for h

define co-ext-final :: <«(('memx'yx"y) x ('z—"y)) ell2> where (co-ext-final = exec-program-with query’
ext-program initial-state-in-co»

define co-final :: «(('memx’yx’y) x (‘z—"y)) eli2> where <co-final = exec-program-with query’
(lift-program Fst program) initial-state-in-co»

have [simp]: <norm initial-state-in-zo = 1»
by (simp add: initial-state-in-zo-def norm-tensor-ell2 assms)
have norm-initial-state-in-co[simp|: <norm initial-state-in-co = 1>
by (simp add: initial-state-in-co-def norm-tensor-ell2)

have norm-co-final[simpl: <norm co-final < 1)
unfolding co-final-def
using norm-ezxec-program-with valid-program-lift <valid-program program)
norm-query’ register-Fst norm-initial-state-in-co
by smt

We derive the relationships between the various final states:

have co-ext-final-prefinal:
<co-ext-final = (adv-output-in-co o Snd; (aux-in-co o Snd; oracle-in-co)) query’ xy
(adv-output-in-co o Fst; (auz-in-co o Fst; oracle-in-co)) query’ xy co-finals
by (simp add: co-ext-final-def ext-program-def exec-program-with-append adv-output-in-co-def auz-in-co-def
oracle-in-co-def comp-assoc
flip: initial-state-in-co-def co-final-def)

have zo-final-final: <xo-final h = final h ®¢ ket (0,0) for h
by (simp add: zo-final-def final-def initial-state-in-zo-def exec-lift-program-Fst)

have zo-ext-final-zo-final: «xo-ext-final h = (adv-output-in-zo o Snd; auz-in-zo o Snd) (function-oracle
h) Xy
(adv-output-in-zo o Fst; auz-in-zo o Fst) (function-oracle h) xy zo-final hy for h
by (simp add: zo-ext-final-def zo-final-def ext-program-def exec-program-def)

After executing program (in XO), the auz-register is in state ket (0, 0):

have zo-final-has-y0: <dist-inv-avg (adv-output-in-zo;auz-in-zo) (A-. ket-invariant {(zz,yy). yy =
(0,0)}) zo-final = 0»
proof —
have «dist-inv-avg auz-in-ro (A-::"z="y. ket-invariant {(0,0)
< dist-inv-avg auz-in-zo (A-::"z="y. ket-invariant {(0,0)}
unfolding zo-final-def
apply (subst dist-inv-avg-exec-compatible)
using dist-inv-avg-exec-compatible
by auto

}) @o-final
)

(Ah. initial-state-in-zo0)>
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also have «... = 0»
by (auto intro!: tensor-ell2-in-tensor-ccsubspace ket-in-ket-invariantl
simp add: initial-state-in-zo-def dist-inv-0-iff distance-from-inv-avg0I auz-in-xo-def lift-Snd-inv)
finally have «dist-inv-avg auz-in-zo (A-. ket-invariant {(0,0)}) zo-final = 0>
by (smt (verit, ccfuo-SIG) dist-inv-avg-pos)
then show ?thesis
apply (rewrite at {(zz, yy). yy = (0,0)}> to <UNIV x {(0,0)}» DEADID.rel-mono-strong, blast)
apply (subst dist-inv-avg-register-rewrite)
by (simp-all add: lift-inv-prod)
qed

Same as zo-final-has-y0, but in CO:

have co-final-has-y0: <dist-inv aao-in-co (ket-invariant {(z,y,D). y = (0,0)}) co-final = 0>
proof —
have «dist-inv auz-in-co (ket-invariant {(0,0)}) co-final
< dist-inv aux-in-co (ket-invariant {(0,0)}) initial-state-in-co)
unfolding co-final-def
apply (rule dist-inv-exec’-compatible)
by simp-all
also have ... = 0
by (auto introl: tensor-ell2-in-tensor-ccsubspace ket-in-ket-invariantl
simp add: initial-state-in-co-def initial-state-in-zo-def dist-inv-0-iff
aux-in-co-def aux-in-zo-def lift-Fst-inv lift-Snd-inv lift-invariant-comp)
finally have «dist-inv auz-in-co (ket-invariant {(0,0)}) co-final = 0»
by (smt (verit, best) dist-inv-pos)
then show ?thesis
apply (rewrite at <{(zz, yy, D). yy = (0,0)p> to <UNIV x {(0,0)} x UNIVy DEADID.rel-mono-strong,
blast)
apply (subst dist-inv-register-rewrite)
by (simp-all add: lift-inv-prod aao-in-co-def)
qed

define ¢ where <q = query-count program>

The following term occurs a lot (it’s how much the no-collision invariant is preserved after
running ext-program). So we abbreviate it as d.

define d :: real where «d = (10/8 * sqrt (¢+2)73 + 20) / sqrt N»

have [iff]: «d > 0»
by (simp add: d-def)

have «dist-inv oracle-in-co (ket-invariant (no-collision’ N num-queries’ (¢+2))) co-ext-final < 10/3 *
sqrt (¢+2)73 / sqrt N»
— In CO-execution, before the adversary’s final query, the oracle register has no collision in its
range (and we also track the number of queries to make the induction go through)
unfolding co-ext-final-def
proof (rule dist-inv-induct[where g=«\i::nat. 5 x sqrt i / sqrt N»
and J=«\i. ket-invariant (no-collision’ N num-queries’ i)»])
show <compatible oracle-in-co Fst»
using oracle-in-co-def by simp
show <initial-state-in-co € space-as-set (lift-invariant oracle-in-co (ket-invariant (no-collision’ N
num-queries’ 0)))
by (auto intro!: tensor-ell2-in-tensor-ccsubspace ket-in-ket-invariantl
simp add: initial-state-in-co-def oracle-in-co-def lift-Snd-ket-inv inj-map-def num-queries’-def
initial-state-in-ro-def tensor-ell2-ket ket-in-ket-invariantl no-collision’-def
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simp flip: ket-invariant-tensor)
show <ket-invariant (no-collision’ N num-queries’ (query-count ext-program)) < ket-invariant (no-collision’
N num-queries’ (¢+2))
by (simp add: q-def ext-program-def)
show <walid-program ext-program»
by simp
show «preserves ((Fst o X-in-xo;(Fst o Y-in-z0;Snd)) query’) (lift-invariant oracle-in-co (ket-invariant
(no-collision’ N num-queries’ )))
(lift-invariant oracle-in-co (ket-invariant (no-collision’ N num-queries’ (Suc ©)))) (5 * sqrt ¢ /
sqrt N)»
if [register]: «compatible X-in-zo Y-in-zo> for X-in-zo Y-in-zo i
proof —
from preserves-no-collision’-num
have (preserves ((Fst o X-in-xo;(Fst o Y-in-z0;Snd)) query’)
(lift-invariant (Fst o X-in-zo;(Fst o Y-in-zo;Snd)) (ket-invariant (no-collision N num-queries

0))

(i+1))))
(5 * sqrt (real ©) / sqrt N)»
apply (rule preserves-lift-invariant| THEN iffD2, rotated))
by simp
moreover have dift-invariant (Fst o X-in-zo;(Fst o Y-in-z0;Snd)) (ket-invariant (no-collision N
num-queries 1))
= lift-invariant oracle-in-co (ket-invariant (no-collision’ N num-queries’ i))» for @
by (simp add: oracle-in-co-def no-collision-no-collision’ num-queries-num-queries’ lift-inv-prod
Times-Int-Times)
ultimately show ?thesis
by simp
qed
show <norm query’ < 15
by simp
show <norm initial-state-in-co < 1»
by simp
show «(>_ i<query-count ext-program. 5 * sqrt i | sqrt N) < 10/3 * sqrt (¢+2)73 / sqrt N»
proof —
have «(>_i<q+2. sqrt i) < 2/3 % sqrt (¢+2) ~ 3
by (rule sum-sqrt)
then have (D> i<q+2. 5 x sqrt i [/ sqrt N) < 5 % (2/8 = sqrt (¢+2) ~ 3) / sqrt N>
by (auto intro!: divide-right-mono real-sqrt-ge-zero simp only: simp flip: sum-distrib-left sum-divide-distrib)
also have «... = 10/3 * sqrt (¢+2)73 / sqrt N»
by simp
finally
show «(>_ i<query-count ext-program. 5 * sqrt i | sqrt N) < 10/3 * sqrt (¢+2)73 / sqrt N»
by (simp add: g-def ext-program-def)
qed
qged

(lift-invariant (Fst o X-in-zo;(Fst o Y-in-zo;Snd)) (ket-invariant (no-collision N num-queries

then have <dist-inv oracle-in-co (ket-invariant no-collision’) co-ext-final < 10/3 * sqrt (¢+2)73 /
sqrt N»
— Like the previous but without the number of queries)
apply (rule le-back-subst-le)
apply (rule dist-inv-mono)
by auto

then have dist-collision: <dist-inv aao-in-co (ket-invariant no-collision) co-ext-final < 10/3 * sqrt
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(¢+2)73 / sqrt N»
— Same thing, but expressed w.r.t. different register
apply (rule le-back-subst)
apply (rule dist-inv-register-rewrite)
by (auto intro!: simp: aao-in-co-def no-collision-no-collision’ lift-inv-prod)

have dist-Dxy: «dist-inv aao-in-co (ket-invariant {((z1,22),(y1,y2),D). D 1 = Some yl N D z2 =
Some y2}) co-ext-final < 20 | sqrt N»
proof —
have aao-in-co-decomp: (aao-in-co = ((adv-output-in-co o Fst; adv-output-in-co o Snd); ((auz-in-co
o Fst; auz-in-co o Snd); oracle-in-co))»
by (simp add: register-pair-Snd register-pair-Fst aao-in-co-def flip: register-comp-pair comp-assoc)
have «dist-inv ((adv-output-in-co o Fst;adv-output-in-co o Snd);((auz-in-co o Fst;auz-in-co o Snd);oracle-in-co))
(ket-invariant {((x1, z2), (y1, y2), D). yI = 0 A y2 = 0}) co-final = 0>
using co-final-has-y0
by (simp add: aao-in-co-decomp case-prod-unfold prod-eq-iff)
then show ?thesis

apply (rewrite at <20 / sqrt N» to <0 + 20 / sqrt Ny DEADID.rel-mono-strong, simp)
unfolding co-ext-final-prefinal aao-in-co-decomp
apply (rule dist-inv-double-query’)
by (simp-all add: aao-in-co-decomp)
qged

have <dist-inv aao-in-co

(ket-invariant {((z1,22),(y1,y2),D). inj-map D A D x1 = Some yl A D z2 = Some y2})
co-ext-final < d» (is <?lhs < d)
— In CO-execution, after the adversary’s final query, the oracle register has no collision, and the aux
register contains the outputs of the oracle function evaluated on the adversary output registers.
proof —
have «?lhs = dist-inv aao-in-co (ket-invariant no-collision M ket-invariant {((z1,22),(y1,y2),D). D
xl = Some ylI AN D z2 = Some y2}) co-ext-finals
apply (rule arg-cong3[where f=dist-inv))
by (auto introl: simp: no-collision-def ket-invariant-inter)
also have «... < sqrt ((dist-inv aao-in-co (ket-invariant no-collision) co-ext-final)?
+ (dist-inv aao-in-co (ket-invariant {((z1,22),(y1,y2),D). D 1 = Some y1 AN D z2
= Some y2}) co-ext-final)?)
apply (rule dist-inv-intersect)
by auto
also have ... < sqrt ((10/3 * sqrt (¢+2)73 / sqrt N)? + (20 / sqrt N)?)»
apply (rule real-sqrt-le-mono)
apply (rule add-mono)
using dist-collision dist-Dzy
by auto
also have ... < (10/3 * sqrt (¢+2)73 + 20) / sqrt N»
apply (rule sqrt-sum-squares-le-sum[THEN order-trans])
by (auto, argo)
finally show ?thesis
by (simp add: d-def)
qed

then have (dist-inv aao-in-co (ket-invariant {((x1,22),(y1,y2),D). x1 # 22 — yl # y2}) co-ext-final
< d

— In CO-execution, after the adversary’s final query, the auxiliary registers are non-equal (if the
adversary registers are).

apply (rule le-back-subst-le)

apply (rule dist-inv-mono)
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by (auto simp: inj-map-def)
then have (dist-inv (adv-output-in-co; auz-in-co) (ket-invariant {((z1,22), (y1,y2)). 1 # 22 — yl
# y2}) co-ext-final < d»
— As before, but with respect to a different register (without the oracle register that doesn’t exist in
XO0).
apply (rule le-back-subst)
apply (rule dist-inv-register-rewrite)
apply (simp, simp)
apply (rewrite at <(adv-output-in-co;auz-in-co)r to <aao-in-co o (reg-1-3; reg-2-3)y DEADID.rel-mono-strong)
apply (simp add: aao-in-co-def flip: register-comp-pair)
apply (subst lift-invariant-comp, simp)
by (auto intro!: simp: lift-inv-prod’ reg-1-3-def reg-3-3-def reg-2-3-def lift-invariant-comp lift-Snd-ket-inv
lift- Fst-ket-inv
ket-invariant-inter case-prod-unfold
simp flip: ket-invariant-SUP)
then have x: (dist-inv-avg (adv-output-in-zo; aux-in-zo) (Ah. ket-invariant {((z1,22), (y1,y2)). ©1 #
x2 — yl # y2}) xo-ext-final < d»
— In XO-execution, after the adversary’s final query, the adversary output register is not 0.
apply (rule le-back-subst)
unfolding co-ext-final-def ro-ext-final-def
apply (rewrite at <(adv-output-in-co;auz-in-co)r to «F'st o (adv-output-in-zo;auz-in-ro)> DEADID.rel-mono-strong)
apply (simp add: adv-output-in-co-def auz-in-co-def register-comp-pair)
by (simp add: initial-state-in-co-def dist-inv-exec-query’-exec-fized)
have «dist-inv-avg (adv-output-in-zo; auz-in-xo)
(Ah. ket-invariant {((z1,22), yy). (21 # 22 — hxl # hz2) V yy # (0,0)}) zo-final < &>
— In XO-execution, before the adversary’s final query, x1,x2 are a collision, or the aux register is
nonzero.
proof —
define state2 where (state2 h = (adv-output-in-zo o Fst; auz-in-ro o Fst) (function-oracle h) *y
zo-final hy for h
have zo-ext-final-state2: <xo-ext-final h = (adv-output-in-zo o Snd;auz-in-zo o Snd) (function-oracle
h) %y state2 h) for h
using state2-def xo-ext-final-xo-final by presburger
have fo-apply2: «(Snd ®, Snd) (function-oracle h)x xg ket-invariant {((z1, 2), y1, y2). xl # 2
— yl # y2}
< ket-invariant {((z1,22), (y1,y2)). (z1 # 22 — yl # hx2) V y2 # 0} for h :: <z = 'y
proof —
have ((Snd ®, Snd) (function-oracle h)x xg ket-invariant {((z1, z2), y1, y2). z1 # 22 — yl #

y2}

y2h

= (Snd ®, Snd) (function-oracle h) *xg ket-invariant {((x1, z2), y1, y2). x1 # 22 — yl #

by (simp add: uminus-y flip: register-ady)
also have «... = lift-invariant (Fst @, Fst;Snd @, Snd) (Snd (function-oracle h) xg ket-invariant
{((21, y1), 22, y2). a1 # 22 — y1 # y2})
apply (rewrite at «(Snd ®, Snd)» to «(Fst ®, Fst; Snd ®, Snd) o Snd> DEADID.rel-mono-strong)
apply (simp add: register-pair-Snd compatible-register-tensor)
apply (rewrite at <ket-invariant {((x1, z2), y1, y2). v1 # 22 — yl # y2}h
to ift-invariant (Fst ®, Fst; Snd ®, Snd) (ket-invariant {((z1, y1), 2, y2). x1 # 22 —
yl # y2})» DEADID.rel-mono-strong)
apply (auto intro: simp: lift-inv-prod’ compatible-register-tensor lift-inv-tensor’ lift- Fst-ket-inv
lift-Snd-ket-inv
ket-invariant-tensor case-prod-unfold ket-invariant-inter
simp flip: ket-invariant-SUP)[1]
by (simp add: o-apply register-image-lift-invariant compatible-register-tensor register-isometry)
also have «... = lift-invariant (Fst ®, Fst; Snd ®, Snd) (ket-invariant {((z1, y1), (22, y2 + h
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z2)) | xl yl 22 y2. 1 # 22 — yl # y2})»
apply (simp add: function-oracle-Snd-ket-invariant)
apply (rule arg-cong[where f=«\z. lift-invariant - (ket-invariant x))])
by (auto simp add: image-iff)
also have «... < lift-invariant (Fst @, Fst; Snd ®, Snd) (ket-invariant {((z1, y1), (22, y2)).
(x1 £ 22 — yl # ha2)V y2 # 0}
proof —
have aux: <xl # 22 = h 22 # y2 = y2 + h 22 # 0» for z1 z2 y2
by (metis add-right-cancel y-cancel)
show ?thesis
apply (rule lift-invariant-mono, simp add: compatible-register-tensor)
apply (rule ket-invariant-mono)
using aux by auto
qed
also have «... = ket-invariant {((z1, z2), (y1, y2)). (x1 # 22 — yl # hx2) V y2 # 0}
by (auto introl: simp: lift-inv-prod’ compatible-register-tensor lift-inv-tensor’ lift-Fst-ket-inv
lift-Snd-ket-inv
ket-invariant-tensor case-prod-unfold ket-invariant-inter
simp flip: ket-invariant-SUP)[1]
finally show ?thesis
by —
qed
have fo-applyl: «(Fst ®, Fst) (function-oracle h)x xg ket-invariant {((z1, 22), (y1, y2)). z1 # z2
— yl = ha2 — y2 # 0}
< ket-invariant {((z1,22), yy). (1 # 22 — hxl # hxz2) V yy # (0,0)p for h = 'z = "y
proof —
have «(Fst ®, Fst) (function-oracle h)x xg ket-invariant {((z1, 22), (y1, y2)). 1 # 22 — yl =
hx2 — y2 # 0}
= (Fst ®, Fst) (function-oracle h) xg ket-invariant {((z1, 22), (y1, y2)). ©1 # 22 — yl = h
2 — y2 #0p
by (simp add: uminus-y flip: register-ady)
also have «... = lift-invariant (Snd ®, Snd;Fst ®, Fst) (Snd (function-oracle h) xg ket-invariant
{((z2, y2), (x1, y1)). 21 # 22 — yl = ha2 — y2 # 0})
apply (rewrite at «(Fst ®, Fst)) to «(Snd ®, Snd; Fst ®, Fst) o Snd> DEADID.rel-mono-strong)
apply (simp add: register-pair-Snd compatible-register-tensor)
apply (rewrite at <ket-invariant {((z1, 22), (y1, y2)). 21 # 22 — yl = h 22 — y2 # 0}
to <lift-invariant (Snd ®, Snd; Fst @, Fst) (ket-invariant {((z2, y2), (z1, y1)). x1 # 22 —
yl = h 22 — y2 # 0})» DEADID.rel-mono-strong)
apply (auto introl: simp: lift-inv-prod’ compatible-register-tensor lift-inv-tensor’ lift-Snd-ket-inv
lift- Fst-ket-inv
ket-invariant-tensor case-prod-unfold ket-invariant-inter
simp flip: ket-invariant-SUP)[1]
by (simp-all add: o-apply register-image-lift-invariant compatible-register-tensor register-isometry)
also have «... = lift-invariant (Snd ®, Snd; Fst ®, Fst) (ket-invariant {((z2, y2), (¢, yI + h
x1)) | o1 yl 22 y2. 21 # 22 — yl = h 22 — y2 # 0})
apply (simp add: function-oracle-Snd-ket-invariant)
apply (rule arg-cong[where f=«\z. lift-invariant - (ket-invariant z)»])
by (auto simp add: image-iff)
also have «... < lift-invariant (Snd ®, Snd; Fst ®, Fst) (ket-invariant {((z2, y2), (1, y1)).
(21 # 22 — hal # hz2)V (yl,y2) # (0,0)})
proof —
have aqux: <yl + hz2 = 0 = x1 # 22 = hxl = h 12 — yl = h z2) for y1 22 x1
by (metis add-right-cancel y-cancel)
show ?thesis
apply (rule lift-invariant-mono, simp add: compatible-register-tensor)
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apply (rule ket-invariant-mono)
using aux by auto
qed
also have «... = ket-invariant {((z1,22), yy). (21 # 22 — hxl # hz2) V yy # (0,0)p
by (auto intro!: simp: lift-inv-prod’ compatible-register-tensor lift-inv-tensor’ lift-Snd-ket-inv
lift- Fst-ket-inv
ket-invariant-tensor case-prod-unfold ket-invariant-inter
simp flip: ket-invariant-SUP)[1]
finally show ?thesis
by —
qed
from * have (dist-inv-avg (adv-output-in-zo; auz-in-zo)
(Ah. ket-invariant {((z1,22), (y1,y2)). (z1 # 22 — yl # h 22) V y2 # 0}) state2 < d»
apply (rule le-back-subst-le)
unfolding zo-ext-final-state2]abs-def]
apply (subst dist-inv-avg-apply[where U=<\h. function-oracle hy and S=«Snd ®, Snds])
using fo-apply2 by (auto introl: dist-inv-avg-mono simp: function-oracle-ket-invariant pair-o-tensor
sitmp del: o-apply)
then show ?thesis
apply (rule le-back-subst-le)
unfolding state2-def[abs-def|
apply (subst dist-inv-avg-apply[where U=<\h. function-oracle hy and S=<¢Fst ®, Fst])
using fo-applyl by (auto introl: dist-inv-avg-mono simp: function-oracle-ket-invariant pair-o-tensor
simp del: o-apply)
qged
then have *: (dist-inv-avg (adv-output-in-zo; auz-in-zo)
(Ah. ket-invariant {((z1,22), yy). 1 # 22 — h xl # h 22}) zo-final < d»
— In XO-execution, before the adversary’s final query, x1,x2 are a collision.
apply (rule le-back-subst-le)
apply (rule ord-le-eq-trans)
apply (rule dist-inv-avg-mono[where I=<\h. ket-invariant {((z1,z2), yy). (21 # 22 — hzl # h
xz2) V yy # (0,0)} N ket-invariant {(zz,yy). yy=(0,0)}])
apply (auto simp: ket-invariant-inter)[2]
apply (rule dist-inv-avg-intersect)
apply simp-all[2]
by (fact zo-final-has-y0)
then have (dist-inv-avg adv-output-in-zo
(Ah. ket-invariant {(z1,22). 1 # 22 — h xl # h 22}) zo-final < d»
— As before, but with respect to only the adversary output register.
apply (subst dist-inv-avg-register-rewritelwhere R=«(adv-output-in-zo; auz-in-zo)» and J=<\h.
ket-invariant {((z1,22),yy). 1 # 22 — h zl # h 22}])
apply (simp, simp)
apply (rewrite at <{((z1,22),yy). 1 # 22 — hzl # h 22} in for (h) to {(z1,22). x1 # 22 —
h z1 # h 22} x UNIVy DEADID.rel-mono-strong)
apply fastforce
by (simp add: lift-inv-prod)
then have <dist-inv-avg adv-output (Ah. ket-invariant {(z1,x2). 1 # 22 — h z1 # h 22}) final <
d>
— As before, but in the original execution.
by (simp add: zo-final-final[abs-def] adv-output-in-ro-def dist-inv-avg-Fst-tensor)
then have (> heUNIV. > (x1,22)|zl # 22 A h 21 = h z2. measurement-probability adv-output
(final h) (z1,22)) /| CARD('x = 'y) < d*
unfolding case-prod-unfold prod.collapse
apply (subst dist-inv-avg-measurement-probability)

apply simp
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apply (rewrite at «<— {p. fst p # snd p A h (fst p) = h (snd p)}> in <Ah. X to <{p. fst p # snd p
— h (fst p) # h (snd p)}» DEADID.rel-mono-strong)
apply blast
by auto
also have «d? < 12 * (¢+154)78 | N»
proof —
define r where «r = sqrt ¢
have [iff]: «r > 0>
using r-def by force
have 1: «sqrt (r* + 2) <r + 2»
apply (rule real-le-lsqrt)
by (simp-all add: power2-sum)
have <N * d? = (10/3 * sqrt (r*+2)73 + 20)*
apply (simp add: d-def power-divide of-nat-add r-def) by argo
also have «... < (10/3 * (r+2)73 + 20)%
using I by (auto intro!: power-mono add-right-mono mult-left-mono)
also have (... < 12 * (r’+154)"%
proof —
define f where <fr = 12 * (r?+154)78 — (10/3 x (r+2)73 + 20) for r :: real
have fr: <fr # 0> if <r > 0» for r :: real
unfolding f-def using that by (rule sturm-calculation)
have f0: <f0 > 0»
by (simp add: f-def power2-eq-square)
have <isCont f r» for r
unfolding f-def
by (intro continuous-intros)
have <fr > 0y if <r > 0) for r :: real
proof (rule ccontr)
assume (- 0 < fr
then have Jz>0. z < r A fz =0
apply (rule-tac IVT2[where f=f and a=0 and b=r and y=0])
by (auto introl: <isCont f -» simp: f0 that)
then show Fulse
using fr by blast
qed
then show ?thesis
by (simp add: f-def)
qed
finally show ?thesis
apply (rule-tac mult-left-le-imp-le[where c=<real N>])
using Nneq0 r-def by force+
qed
finally show ?thesis
by (simp add: final-def g-def)
qed

end

end
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