
Compressed Random Oracles

Dominique Unruh∗

January 16, 2026

Abstract

We formalize the compressed quantum random oracle methodology by Zhandry (Crypto
2019). This is a formalism for modeling quantum random oracles to make quantum cryp-
tographic proofs feasible. Our definition of the compressed oracles is loosely based on the
presentation from Unruh (arXiv 2021), but with a considerable amount of new definitions
and results. In particular, we make extensive use of the quantum references formalism (Un-
ruh, arXiv 2024, AFP 2021) to enable reasoning about queries on arbitrary subsystems,
something which is left very informal in pen-and-paper formalizations of the compressed
oracles.

We use the developed formalism to prove that finding x with H(x) = 0, and finding
collisions in H, is hard for quantum adversaries with oracle access to a random function H.

Contents
1 Misc-Compressed-Oracle – Miscellaneous required theorems 2

1.1 Misc . 2
1.2 Controlled operations . 13
1.3 Superpositions . 20
1.4 Lifting ell2 to option type . 22

2 Function-At – Function values as individual registers 25
2.1 apply-every . 30

3 Invariant-Preservation Preservation of invariants under queries 33
3.1 Invariants . 33
3.2 Distance from invariants . 64
3.3 Preservation of invariants . 71

4 CO-Operations Definition of the compressed oracle and related unitaries 73
4.1 function-oracle - Querying a fixed function . 74
4.2 Setup for compressed oracles . 75
4.3 switch0 - Operator exchanging ket (Some 0) and ket None 78
4.4 compress1 - Operator to compress a single RO-output 78
4.5 compress - Operator for compressing the RO . 80
4.6 standard-query1 - Operator for uncompressed query of a single RO-output 82
4.7 standard-query - Operator for uncompressed query of the RO 83

∗Supported by the ERC consolidator grant CerQuS (819317), the PRG team grant Secure Quantum Technol-
ogy (PRG946) from the Estonian Research Council, and the Estonian Cluster of Excellence “Foundations of the
Universe” (TK202).

1

4.8 query1 - Query the compressed oracle at a single output 86
4.9 query - Query the compressed oracle . 91

5 CO-Invariants Preservation of invariants under compressed oracle queries 95

6 Compressed-Oracle-Is-RO – Equivalence of compressed oracle and regular ran-
dom oracle 134

7 Oracle-Programs – Oracle programs and their execution 135
7.1 Oracle programs . 135
7.2 Lifting . 138
7.3 Final measurement . 140
7.4 Preservation . 142
7.5 Misc . 144
7.6 Random Oracles . 145

8 Find-Zero Invariant preservation for zero-finding 152
8.1 Zero-finding is hard for q-query adversaries . 156

9 Aux-Sturm-Calculation – Auxiliary theory for technical reasons. 162

10 Collision Invariant preservation for collision resistance 162
10.1 Collision-finding is hard for q-query adversaries 166

1 Misc-Compressed-Oracle – Miscellaneous required theorems
theory Misc-Compressed-Oracle

imports Registers.Quantum-Extra2
begin

declare [[simproc del: Laws-Quantum.compatibility-warn]]

unbundle cblinfun-syntax
unbundle register-syntax

1.1 Misc
lemma assoc-ell2 ′-ket[simp]: ‹assoc-ell2∗ ∗V ket (x,y,z) = ket ((x,y),z)›

by (metis assoc-ell2 ′-tensor tensor-ell2-ket)

lemma assoc-ell2-ket[simp]: ‹assoc-ell2 ∗V ket ((x,y),z) = ket (x,y,z)›
by (metis assoc-ell2-tensor tensor-ell2-ket)

lemma sandwich-tensor :
fixes a :: ‹ ′a::finite ell2 ⇒CL

′c::finite ell2 › and b :: ‹ ′b::finite ell2 ⇒CL
′d::finite ell2 ›

assumes ‹unitary a› ‹unitary b›
shows cblinfun-apply (sandwich (a ⊗o b)) = cblinfun-apply (sandwich a) ⊗r cblinfun-apply (sandwich

b)
apply (rule tensor-extensionality)
by (auto simp: unitary-sandwich-register assms sandwich-apply register-tensor-is-register comp-tensor-op

tensor-op-adjoint unitary-tensor-op)

2

lemma sandwich-grow-left:
fixes a :: ‹ ′a::finite ell2 ⇒CL

′b::finite ell2 ›
assumes unitary a
shows sandwich a ⊗r id = sandwich (a ⊗o (id-cblinfun :: (-::finite ell2 ⇒CL -)))
by (simp add: unitary-sandwich-register assms sandwich-tensor id-def)

lemma Snd-apply-tensor-ell2 [simp]: ‹Snd a ∗V (ψ ⊗s ϕ) = ψ ⊗s (a ∗V ϕ)›
by (simp add: Snd-def tensor-op-ell2)

ML ‹
fun register-n-of-m n m = let

val - = n > 0 orelse error register-n-of-m: n<=0
val - = m >= n orelse error register-n-of-m: n>m
val id-op = Const(const-name ‹id-cblinfun›,dummyT)
val tensor-op = Const(const-name ‹tensor-op›,dummyT)
fun add-ids 0 t = t
| add-ids i t = tensor-op $ id-op $ add-ids (i−1) t

val body = if n=m then add-ids (n−1) (Bound 0)
else add-ids (n−1) (tensor-op $ Bound 0 $ add-ids (m−n−1) id-op)

in
Abs(a, dummyT , body)

end
;;
register-n-of-m 5 5 |> Syntax.string-of-term context |> writeln
›

ML ‹
fun dest-numeral-syntax (Const(const-syntax ‹Num.num.One›, -)) = 1
| dest-numeral-syntax (Const(const-syntax ‹Num.num.Bit0 ›, -) $ bs) = 2 ∗ dest-numeral-syntax bs
| dest-numeral-syntax (Const (const-syntax ‹Num.num.Bit1 ›, -) $ bs) = 2 ∗ dest-numeral-syntax bs

+ 1
| dest-numeral-syntax (Const (-constrain, -) $ t $ -) = dest-numeral-syntax t
| dest-numeral-syntax t = raise TERM (dest-numeral-syntax, [t]);

fun dest-number-syntax (Const (const-syntax ‹Groups.zero-class.zero›, -)) = 0
| dest-number-syntax (Const (const-syntax ‹Groups.one-class.one›, -)) = 1
| dest-number-syntax (Const (const-syntax ‹Num.numeral-class.numeral›, -) $ t) =

dest-numeral-syntax t
| dest-number-syntax (Const (const-syntax ‹Groups.uminus-class.uminus›, -) $ t) =

∼ (dest-number-syntax t)
| dest-number-syntax (Const (-constrain, -) $ t $ -) = dest-number-syntax t
| dest-number-syntax t = raise TERM (dest-number-syntax, [t])

›

syntax -register-n-of-m :: ‹ ′a ⇒ ′a ⇒ ′b› ([--])
parse-translation ‹[(syntax-const ‹-register-n-of-m›, fn ctxt => fn [nt,mt] => let

val n = dest-number-syntax nt
val m = dest-number-syntax mt
in register-n-of-m n m end

)]›
ML ‹
Syntax.read-term context [8 9] |> Thm.cterm-of context
›

3

lemma sum-if : ‹(
∑

x∈X . P (if Q x then a x else b x)) = (
∑

x∈X . if Q x then P (a x) else P (b x))›
by (smt (verit) Finite-Cartesian-Product.sum-cong-aux)

lemma sum-if ′: ‹(
∑

x∈X . P (if Q x then a x else b x) x) = (
∑

x∈X . if Q x then P (a x) x else P (b
x) x)›

by (smt (verit) Finite-Cartesian-Product.sum-cong-aux)

lemma bij-plus: ‹bij ((+) y)› for y :: ‹-::group-add›
by simp

lemma tensor-ell2-diff2 : ‹tensor-ell2 a (b − c) = tensor-ell2 a b − tensor-ell2 a c›
by (metis add-diff-cancel-right ′ diff-add-cancel tensor-ell2-add2)

lemma tensor-ell2-diff1 : ‹tensor-ell2 (a − b) c = tensor-ell2 a c − tensor-ell2 b c›
by (metis add-right-cancel diff-add-cancel tensor-ell2-add1)

lemma aminus-bminusc: ‹a − (b − c) = a − b + c› for a b c :: ‹- :: ab-group-add›
by simp

lemma sum-case ′:
fixes a :: ‹- ⇒ - ⇒ -::ab-group-add›
assumes ‹finite X›
shows ‹(

∑
x∈X . P (case Q x of Some z ⇒ a z x | None ⇒ b x))

= (
∑

x∈X ∩ {x. Q x 6= None}. P (a (the (Q x)) x)) + (
∑

x∈X ∩ {x. Q x = None}. P (b x))›
(is ?lhs=?rhs)

proof −
have ‹?lhs = (

∑
x∈X ∩ (Q −‘ Some ‘ UNIV). P (case Q x of Some z ⇒ a z x | None ⇒ b x)) +

(
∑

x∈X ∩ (Q −‘ {None}). P (case Q x of Some z ⇒ a z x | None ⇒ b x))›
apply (subst sum.union-disjoint[symmetric])
using assms apply auto
by (metis Int-UNIV-right Int-Un-distrib UNIV-option-conv insert-union vimage-UNIV vimage-Un)

also have ‹. . . = ?rhs›
apply (rule arg-cong2 [where f =plus])
apply (rule sum.cong)
apply auto[2]

apply (rule sum.cong)
by auto

finally show ?thesis
by −

qed

lemma register-isometry:
assumes register F
assumes isometry a
shows isometry (F a)
using assms by (smt (verit, best) register-def isometry-def)

lemma register-coisometry:
assumes register F
assumes isometry (a∗)
shows isometry (F a∗)
using assms by (smt (verit, best) register-def isometry-def)

4

lemma card-complement:
fixes M :: ‹ ′a::finite set›
shows ‹card (−M) = CARD(′a) − card M ›
by (simp add: Compl-eq-Diff-UNIV card-Diff-subset)

lemma register-minus: ‹register F =⇒ F (a − b) = F a − F b›
using clinear-register complex-vector .linear-diff by blast

lemma vimage-singleton-inj: ‹inj f =⇒ f −‘ {f x} = {x}›
using inj-vimage-singleton subset-singletonD by fastforce

lemma has-ell2-norm-0 [iff]: ‹has-ell2-norm (λx. 0)›
by (metis eq-onp-same-args zero-ell2 .rsp)

lemma ell2-norm-0I [simp]: ‹ell2-norm (λx. 0) = 0 ›
using ell2-norm-0 by blast

lemma ran-smaller-dom: ‹finite (dom m) =⇒ card (ran m) ≤ card (dom m)›
apply (rule surj-card-le[where f =‹the o m›], simp)
unfolding dom-def ran-def by force

lemma option-sum-split: ‹(
∑

x∈X . f x) = (
∑

x∈Some −‘ X . f (Some x)) + (if None ∈ X then f None
else 0)› if ‹finite X› for f X

apply (subst asm-rl[of ‹X = (Some ‘ Some −‘ X) ∪ ({None} ∩ X)›])
apply auto[1]

apply (subst sum.union-disjoint)
apply (auto simp: that)[3]

apply (subst sum.reindex)
by auto

lemma sum-sum-if-eq: ‹(
∑

x∈X .
∑

y∈Y x. if x=a then f x y else 0) = (if a∈X then (
∑

y∈Y a. f a y)
else 0)› if ‹finite X› for X Y f

by (subst sum-single[where i=a], auto simp: that)

lemma sum-if-eq-else: ‹(
∑

x∈X . if x=a then 0 else f x) = (
∑

x∈X−{a}. f x)› for X f
apply (cases ‹finite X›)
apply (rule sum.mono-neutral-cong-right)

by auto

lemma fun-upd-comp-left:
assumes ‹inj g›
shows ‹(f ◦ g)(x := y) = f (g x := y) o g›
by (auto simp: fun-upd-def assms inj-eq)

definition reg-1-3 :: ‹- ⇒ (′a::finite × ′b::finite × ′c::finite) ell2 ⇒CL (′a × ′b × ′c) ell2 › where
‹reg-1-3 = Fst›
lemma register-1-3 [simp]: ‹register reg-1-3 ›

by (simp add: reg-1-3-def)

lemma comp-reg-1-3 [simp]: ‹(F ;G) o reg-1-3 = F› if [register]: ‹compatible F G›
by (simp add: reg-1-3-def register-pair-Fst)

5

definition reg-2-3 :: ‹- ⇒ (′a::finite × ′b::finite × ′c::finite) ell2 ⇒CL (′a × ′b × ′c) ell2 › where
‹reg-2-3 = Snd o Fst›
lemma register-2-3 [simp]: ‹register reg-2-3 ›

by (simp add: reg-2-3-def)
lemma comp-reg-2-3 [simp]: ‹(F ;(G;H)) o reg-2-3 = G› if [register]: ‹compatible F G› ‹compatible F
H › ‹compatible G H ›

by (simp add: reg-2-3-def register-pair-Fst register-pair-Snd flip: comp-assoc)

definition reg-3-3 :: ‹- ⇒ (′a::finite × ′b::finite × ′c::finite) ell2 ⇒CL (′a × ′b × ′c) ell2 › where
‹reg-3-3 = Snd o Snd›
lemma register-3-3 [simp]: ‹register reg-3-3 ›

by (simp add: reg-3-3-def)
lemma comp-reg-3-3 [simp]: ‹(F ;(G;H)) o reg-3-3 = H › if [register]: ‹compatible F G› ‹compatible F
H › ‹compatible G H ›

by (simp add: reg-3-3-def register-pair-Snd flip: comp-assoc)

lemma [simp]: ‹mutually compatible (reg-1-3 , reg-2-3 , reg-3-3)›
by (auto simp add: reg-1-3-def reg-2-3-def reg-3-3-def)

lemma pair-o-tensor-right:
assumes [simp]: ‹compatible F G› ‹register H ›
shows ‹(F ; G o H) = (F ; G) o (id ⊗r H)›
by (auto simp: pair-o-tensor)

lemma register-tensor-distrib-right:
assumes [simp]: ‹register F› ‹register H › ‹register L›
shows ‹F ⊗r (H o L) = (F ⊗r H) o (id ⊗r L)›
apply (subst register-tensor-distrib)
by auto

lemma sandwich-apply ′:
‹sandwich U A ∗V ψ = U ∗V A ∗V U∗ ∗V ψ›
unfolding sandwich-apply by simp

lemma csubspace-set-sum:
assumes ‹

∧
x. x ∈ X =⇒ csubspace (A x)›

shows ‹csubspace (
∑

x∈X . A x)›
using assms
apply (induction X rule:infinite-finite-induct)
by (auto simp: csubspace-set-plus)

lemma Rep-ell2-vector-to-cblinfun-ket: ‹Rep-ell2 ψ x = bra x ∗V ψ›
by (simp add: cinner-ket-left)

lemma trunc-ell2-insert: ‹trunc-ell2 (insert x M) ψ = Rep-ell2 ψ x ∗C ket x + trunc-ell2 M ψ› if ‹x
/∈ M ›

using trunc-ell2-union-disjoint[where M=‹{x}› and N=M and ψ=ψ] that
by (auto simp: trunc-ell2-singleton)

lemma trunc-ell2-in-cspan:
assumes ‹finite S›
shows ‹trunc-ell2 S ψ ∈ cspan (ket ‘ S)›
using assms

6

proof induction
case empty
show ?case

by simp
next

case (insert x F)
then have ‹Rep-ell2 ψ x ∗C ket x + trunc-ell2 F ψ ∈ cspan (insert (ket x) (ket ‘ F))›

by (metis add-diff-cancel-left ′ complex-vector .span-breakdown-eq)
with insert show ?case

by (auto simp: trunc-ell2-insert)
qed

lemma space-ccspan-ket: ‹space-as-set (ccspan (ket ‘ M)) = {ψ. ∀ x ∈ −M . Rep-ell2 ψ x = 0}›
proof (intro Set.set-eqI iffI ; rename-tac ψ)

fix ψ
assume ψ-in-ccspan: ‹ψ ∈ space-as-set (ccspan (ket ‘ M))›
have ‹Rep-ell2 ψ x = 0 › if ‹x ∈ −M › for x
proof −

have ‹Rep-ell2 ψ x = vector-to-cblinfun (ket x)∗ ∗V ψ›
by (simp add: Rep-ell2-vector-to-cblinfun-ket)

also have ‹. . . ∈ vector-to-cblinfun (ket x)∗ ‘ space-as-set (ccspan (ket ‘ M))›
using ψ-in-ccspan by blast

also have ‹. . . ⊆ space-as-set (vector-to-cblinfun (ket x)∗ ∗S ccspan (ket ‘ M))›
by (simp add: cblinfun-image.rep-eq closure-subset)

also have ‹. . . = space-as-set (ccspan (vector-to-cblinfun (ket x)∗ ‘ ket ‘ M))›
by (simp add: cblinfun-image-ccspan)

also have ‹. . . = space-as-set (ccspan (if M={} then {} else {0}))›
apply (rule arg-cong[where f =‹λx. space-as-set (ccspan x)›])
using ‹x ∈ −M › apply auto
by (metis imageI orthogonal-ket)

also have ‹. . . = 0 ›
by simp

finally show ‹Rep-ell2 ψ x = 0 ›
by auto

qed
then show ‹ψ ∈ {ψ. ∀ x∈− M . Rep-ell2 ψ x = 0}›

by simp
next

fix ψ
assume ‹ψ ∈ {ψ. ∀ x∈− M . Rep-ell2 ψ x = 0}›
then have ‹ψ = trunc-ell2 M ψ›

by (auto intro!: Rep-ell2-inject[THEN iffD1] ext simp: trunc-ell2 .rep-eq)
then have lim: ‹((λS . trunc-ell2 S ψ) −−−→ ψ) (finite-subsets-at-top M)›

using trunc-ell2-lim[of ψ M]
by auto

have ‹trunc-ell2 S ψ ∈ cspan (ket ‘ S)› if ‹finite S› for S
by (simp add: that trunc-ell2-in-cspan)

also have ‹. . .S ⊆ space-as-set (ccspan (ket ‘ M))› if ‹finite S› and ‹S ⊆ M › for S
by (metis ccspan.rep-eq closure-subset complex-vector .span-mono dual-order .trans image-mono that(2))

finally show ‹ψ ∈ space-as-set (ccspan (ket ‘ M))›
apply (rule-tac Lim-in-closed-set[OF - - - lim])
by (auto intro!: eventually-finite-subsets-at-top-weakI)

qed

lemma space-as-set-ccspan-memberI : ‹ψ ∈ space-as-set (ccspan X)› if ‹ψ ∈ X›

7

using that apply transfer
by (meson closure-subset complex-vector .span-superset subset-iff)

lemma closure-subset-remove-closure: ‹X ⊆ closure Y =⇒ closure X ⊆ closure Y ›
using closure-minimal by blast

lemma closure-cspan-closure: ‹closure (cspan (closure X)) = closure (cspan X)›
for X :: ‹ ′a::complex-normed-vector set›
apply (rule antisym)
apply (meson closure-subset-remove-closure closure-is-csubspace closure-mono complex-vector .span-minimal

complex-vector .span-superset complex-vector .subspace-span)
by (simp add: closure-mono closure-subset complex-vector .span-mono)

lemma closure-Sup-closure: ‹closure (Sup (closure ‘ X)) = closure (Sup X)›
by (auto simp: hull-def closure-hull)

lemma cspan-closure-cspan: ‹cspan (closure (cspan X)) = closure (cspan X)›
for X :: ‹ ′a::complex-normed-vector set›
by (metis (full-types) closure-cspan-closure closure-subset complex-vector .span-span complex-vector .span-superset

subset-antisym)

lemma cblinfun-image-SUP: ‹A ∗S (SUP x∈X . I x) = (SUP x∈X . A ∗S I x)›
proof (rule antisym)

show ‹A ∗S (SUP x∈X . I x) ≤ (SUP x∈X . A ∗S I x)›
proof (transfer , rule closure-subset-remove-closure)

fix A :: ‹ ′b ⇒ ′a› and I :: ‹ ′c ⇒ ′b set› and X
assume [simp]: ‹bounded-clinear A›
assume ‹pred-fun top closed-csubspace I ›
then have [simp]: ‹closed-csubspace (I x)› for x

by simp
have ‹A ‘ closure (cspan (

⋃
x∈X . I x)) ⊆ closure (A ‘ cspan (

⋃
x∈X . I x))›

apply (rule closure-bounded-linear-image-subset)
by (simp add: bounded-clinear .bounded-linear)

also have ‹. . . = closure (cspan (A ‘ (
⋃

x∈X . I x)))›
by (simp add: bounded-clinear .clinear complex-vector .linear-span-image)

also have ‹. . . = closure (cspan (
⋃

x∈X . A ‘ I x))›
by (metis image-UN)

also have ‹. . . = closure (cspan (closure (
⋃

x∈X . A ‘ I x)))›
using closure-cspan-closure by blast

also have ‹. . . = closure (cspan (closure (
⋃

x∈X . closure (A ‘ I x))))›
apply (subst closure-Sup-closure[symmetric])
by (simp add: image-image)

also have ‹. . . = closure (cspan (
⋃

x∈X . closure (A ‘ I x)))›
using closure-cspan-closure by blast

finally show ‹A ‘ closure (cspan (
⋃

(I ‘ X))) ⊆ closure (cspan (
⋃

x∈X . closure (A ‘ I x)))›
by −

qed

show ‹(SUP x∈X . A ∗S I x) ≤ A ∗S (SUP x∈X . I x)›
by (simp add: SUP-least SUP-upper cblinfun-image-mono)

qed

lemma cspan-Sup-cspan: ‹cspan (Sup (cspan ‘ X)) = cspan (Sup X)›
by (auto simp: hull-def complex-vector .span-def)

8

lemma ccspan-Sup: ‹ccspan (
⋃

X) = Sup (ccspan ‘ X)›
proof (transfer fixing: X)

have ‹closure (cspan (
⋃

X)) = closure (cspan (
⋃

(cspan ‘ X)))›
by (simp add: cspan-Sup-cspan)

also have ‹. . . = closure (cspan (closure (
⋃

(cspan ‘ X))))›
using closure-cspan-closure by blast

also have ‹. . . = closure (cspan (closure (
⋃

(closure ‘ cspan ‘ X))))›
by (metis closure-Sup-closure)

also have ‹. . . = closure (cspan (
⋃

(closure ‘ cspan ‘ X)))›
by (meson closure-cspan-closure)

also have ‹. . . = closure (cspan (
⋃

G∈X . closure (cspan G)))›
by (metis image-image)

finally show ‹closure (cspan (
⋃

X)) = closure (cspan (
⋃

G∈X . closure (cspan G)))›
by −

qed

lemma ccspan-space-as-set[simp]: ‹ccspan (space-as-set S) = S›
apply transfer
by (metis closed-csubspace-def closure-closed complex-vector .span-eq-iff)

lemma cblinfun-image-Sup: ‹A ∗S Sup II = (SUP I∈II . A ∗S I)›
using cblinfun-image-SUP[where X=II and I=id and A=A]
by simp

lemma space-as-set-mono: ‹I ≤ J =⇒ space-as-set I ≤ space-as-set J ›
by (simp add: less-eq-ccsubspace.rep-eq)

lemma square-into-sum:
fixes X Y and f :: ‹- ⇒ real›
assumes ‹

∧
x. f x ≥ 0 ›

shows ‹(
∑

x∈X . f x)2 ≤ card X ∗ (
∑

x∈X . (f x)2)›
proof −

have ‹(
∑

x∈X . f x)2 = (
∑

x∈X . f x ∗ 1)2›
by simp

also have ‹. . . ≤ (
∑

x∈X . (f x)2) ∗ (
∑

x∈X . 1 2)›
by (rule Cauchy-Schwarz-ineq-sum)

also have ‹. . . = (
∑

x∈X . (f x)2) ∗ (card X)›
by simp

also have ‹. . . = card X ∗ (
∑

x∈X . (f x)2)›
by auto

finally show ?thesis
by −

qed

lemma bound-coeff-sum2 :
fixes X Y and f :: ‹ ′a ⇒ complex›
assumes [simp]: ‹finite Y ›
assumes XY : ‹X ⊆ Y ›
assumes sum1 : ‹(

∑
x∈Y . (cmod (f x))2) ≤ 1 ›

assumes k: ‹
∧

x. x ∈ X =⇒ card {y. g x = g y ∧ y ∈ X} ≤ k›
shows ‹norm (

∑
x∈X . f x ∗C ket (g x)) ≤ sqrt k›

proof −
define eq where ‹eq = {(x,y). g x = g y ∧ x ∈ X ∧ y ∈ X}›
have [simp]: ‹equiv X eq›

9

by (auto simp: eq-def equiv-def refl-on-def sym-def trans-def)
have [simp]: ‹finite X›

using ‹finite Y › XY infinite-super by blast
then have [simp]: ‹finite (X // eq)›

by (simp add: equiv-type finite-quotient)
have [simp]: ‹x ∈ X // eq =⇒ finite x› for x

by (meson ‹equiv X eq› ‹finite X› equiv-def finite-equiv-class refl-on-def)
have card-c: ‹c ∈ X//eq =⇒ card c ≤ k› for c

using k
by (auto simp: Image-def quotient-def eq-def)

define g ′ where ‹g ′ c = g (SOME x. x∈c)› for c :: ‹ ′a set›
have g-g ′: ‹c ∈ X//eq =⇒ x ∈ c =⇒ g x = g ′ c› for x c

apply (simp add: g ′-def quotient-def eq-def)
by (metis (mono-tags, lifting) mem-Collect-eq verit-sko-ex)

have g ′-inj: ‹c ∈ X//eq =⇒ d ∈ X//eq =⇒ g ′ c = g ′ d =⇒ c = d› (is ‹PROP ?goal›) for c d
proof −

have aux1 : ‹
∧

x xa xb.
g (SOME x. g xb = g x ∧ x ∈ X) = g (SOME x. g xa = g x ∧ x ∈ X) =⇒
xa ∈ X =⇒ xb ∈ X =⇒ g xa = g xb›

by (metis (mono-tags, lifting) verit-sko-ex)
have aux2 : ‹

∧
x xa xb.

g (SOME xa. g x = g xa ∧ xa ∈ X) = g (SOME x. g xb = g x ∧ x ∈ X) =⇒
x ∈ X =⇒ xb ∈ X =⇒ g x = g xb›

by (metis (mono-tags, lifting) someI2)
show ‹PROP ?goal›

by (auto intro: aux1 aux2 simp add: g ′-def quotient-def eq-def image-iff)
qed

have SIGMA: ‹(SIGMA x:X // eq. x) = (λx. (eq‘‘{x},x)) ‘ X›
by (auto simp: quotient-def eq-def)

have ‹(norm (
∑

x∈X . f x ∗C ket (g x)))2 = (norm (
∑

c∈X//eq.
∑

x∈c. f x ∗C ket (g x)))2›
apply (subst sum.Sigma)

apply auto[2]
apply (subst SIGMA)
apply (subst sum.reindex)
using inj-on-def by auto

also have ‹. . . = (norm (
∑

c∈X//eq.
∑

x∈c. f x ∗C ket (g ′ c)))2›
by (simp add: g-g ′)

also have ‹. . . = (norm (
∑

c∈X//eq. (
∑

x∈c. f x) ∗C ket (g ′ c)))2›
by (simp add: scaleC-sum-left)

also have ‹. . . = (
∑

c∈X//eq. (norm ((
∑

x∈c. f x) ∗C ket (g ′ c)))2)›
apply (rule pythagorean-theorem-sum)
by (auto dest: g ′-inj)

also have ‹. . . = (
∑

c∈X//eq. (cmod (
∑

x∈c. f x))2)›
by force

also have ‹. . . ≤ (
∑

c∈X//eq. (
∑

x∈c. cmod (f x))2)›
by (simp add: power-mono sum-mono sum-norm-le)

also have ‹. . . ≤ (
∑

c∈X//eq. card c ∗ (
∑

x∈c. (cmod (f x))2))›
apply (rule sum-mono)
apply (rule square-into-sum)
by simp

also have ‹. . . ≤ (
∑

c∈X//eq. k ∗ (
∑

x∈c. (cmod (f x))2))›
apply (rule sum-mono)

10

apply (rule mult-right-mono)
by (simp-all add: card-c sum-nonneg)

also have ‹. . . = k ∗ (
∑

c∈X//eq. (
∑

x∈c. (cmod (f x))2))›
by (rule sum-distrib-left[symmetric])

also have ‹. . . ≤ k ∗ (
∑

x∈X . (cmod (f x))2)›
apply (subst sum.Sigma)

apply auto[2]
apply (subst SIGMA)
apply (subst sum.reindex)
using inj-on-def by auto

also have ‹. . . ≤ k ∗ (
∑

x∈Y . (cmod (f x))2)›
apply (rule mult-left-mono)
apply (rule sum-mono2)

using XY by auto
also have ‹. . . ≤ k›

using sum1
by (metis mult.right-neutral mult-left-mono of-nat-0-le-iff)

finally show ?thesis
using real-le-rsqrt by blast

qed

lemma norm-ortho-sum-bound:
fixes X
assumes bound: ‹

∧
x. x∈X =⇒ norm (ψ x) ≤ b ′›

assumes b ′geq0 : ‹b ′ ≥ 0 ›
assumes ortho: ‹

∧
x y. x∈X =⇒ y∈X =⇒ x 6=y =⇒ is-orthogonal (ψ x) (ψ y)›

assumes b ′b: ‹sqrt (card X) ∗ b ′ ≤ b›
shows ‹norm (

∑
x∈X . ψ x) ≤ b›

proof (cases ‹finite X›)
case True
have ‹b ≥ 0 ›

by (metis b ′b b ′geq0 mult-nonneg-nonneg of-nat-0-le-iff order-trans real-sqrt-ge-0-iff)
have ‹(norm (

∑
x∈X . ψ x))2 = (

∑
a∈X . (norm (ψ a))2)›

apply (subst pythagorean-theorem-sum)
using assms True by auto

also have ‹. . . ≤ (
∑

a∈X . b ′2)›
by (meson bound norm-ge-zero power-mono sum-mono)

also have ‹. . . ≤ (sqrt (card X) ∗ b ′)2›
by (simp add: power-mult-distrib)

also have ‹. . . ≤ b2›
by (meson b ′b b ′geq0 mult-nonneg-nonneg of-nat-0-le-iff power-mono real-sqrt-ge-0-iff)

finally show ?thesis
apply (rule-tac power2-le-imp-le)
apply force
using ‹0 ≤ b› by force

next
case False
then show ?thesis

using assms by auto
qed

lemma compatible-project1 : ‹compatible F G›
if ‹compatible F (G;H)› and [register]: ‹compatible G H › for F G H

proof (rule compatibleI)

11

show ‹register F›
using compatible-register1 that(1) by blast

show ‹register G›
using compatible-register1 that(2) by blast

fix a b
from ‹compatible F (G;H)›
have ‹F a oCL (G;H) (b ⊗o id-cblinfun) = (G;H) (b ⊗o id-cblinfun) oCL F a›

using swap-registers by blast
then show ‹F a oCL G b = G b oCL F a›

by (simp add: register-pair-apply)
qed

lemma compatible-project2 : ‹compatible F H ›
if ‹compatible F (G;H)› and [register]: ‹compatible G H › for F G H

proof (rule compatibleI)
show ‹register F›

using compatible-register1 that(1) by blast
show ‹register H ›

using compatible-register2 that(2) by blast
fix a b
from ‹compatible F (G;H)›
have ‹F a oCL (G;H) (id-cblinfun ⊗o b) = (G;H) (id-cblinfun ⊗o b) oCL F a›

using swap-registers by blast
then show ‹F a oCL H b = H b oCL F a›

by (simp add: register-pair-apply)
qed

lemma proj-ket-x-y: ‹proj (ket x) ∗V (ket y) = 0 › if ‹x 6= y›
by (metis kernel-Proj kernel-memberD mem-ortho-ccspanI orthogonal-ket singletonD that)

lemma proj-ket-x-y-ofbool: ‹proj (ket x) ∗V (ket y) = of-bool (x=y) ∗C ket y›
by (simp add: Proj-fixes-image ccspan-superset ′ proj-ket-x-y)

lemma proj-x-x[simp]: ‹proj x ∗V x = x›
by (meson Proj-fixes-image ccspan-superset insert-subset)

lemma in-ortho-ccspan: ‹y ∈ space-as-set (− ccspan X)› if ‹∀ x∈X . is-orthogonal y x›
using that apply transfer
by (metis orthogonal-complementI orthogonal-complement-of-closure orthogonal-complement-of-cspan)

lemma swap-sandwich-swap-ell2 : swap = sandwich swap-ell2
apply (rule tensor-extensionality)

apply (auto simp: sandwich-apply unitary-sandwich-register)[2]
apply (rule tensor-ell2-extensionality)
by simp

lemma is-Proj-sandwich: ‹is-Proj (sandwich U P)› if ‹isometry U › and ‹is-Proj P›
for P :: ‹ ′a::chilbert-space ⇒CL

′a› and U :: ‹ ′a ⇒CL
′b::chilbert-space›

using that
by (simp add: is-Proj-algebraic sandwich-apply

12

lift-cblinfun-comp[OF isometryD] lift-cblinfun-comp[OF is-Proj-idempotent]
flip: cblinfun-compose-assoc)

lemma is-Proj-swap[simp]: ‹is-Proj (swap P)› if ‹is-Proj P›
using that
by (simp add: swap-sandwich-swap-ell2 is-Proj-sandwich)

lemma iso-register-complement-pair : ‹iso-register (complement X ; X)› if ‹register X›
using complement-is-complement complements-def complements-sym that by blast

lemma swap-Snd: ‹swap (Snd x) = Fst x›
by (simp add: Fst-def Snd-def)

lemma sandwich-butterfly: ‹sandwich a (butterfly g h) = butterfly (a g) (a h)›
by (simp add: butterfly-comp-cblinfun cblinfun-comp-butterfly sandwich-apply)

lemma register0 :
assumes ‹register Q›
shows ‹Q a = 0 ←→ a = 0 ›
by (metis assms norm-eq-zero register-norm)

lemma le-back-subst:
assumes ‹a ≤ c›
assumes ‹a = b›
shows ‹b ≤ c›
using assms by simp

lemma le-back-subst-le:
fixes a b c :: ‹- :: order›
assumes ‹a ≤ c›
assumes ‹b ≤ a›
shows ‹b ≤ c›
using assms by order

lemma arg-cong4 : ‹f a b c d = f a ′ b ′ c ′ d ′› if ‹a = a ′› and ‹b = b ′› and ‹c = c ′› and ‹d = d ′›
using that by simp

1.2 Controlled operations
definition controlled-op :: ‹(′a ⇒ (′b ell2 ⇒CL

′c ell2)) ⇒ ((′a× ′b) ell2 ⇒CL (′a× ′c) ell2)› where
‹controlled-op A = infsum-in cstrong-operator-topology (λx. selfbutter (ket x) ⊗o A x) UNIV ›

lemma trunc-ell2-prod-tensor : ‹trunc-ell2 (A×B) (g ⊗s h) = trunc-ell2 A g ⊗s trunc-ell2 B h›
apply transfer ′
by auto

lemma trunc-ell2-ket: ‹trunc-ell2 S (ket x) = of-bool (x∈S) ∗C ket x›
apply transfer ′
by auto

13

lemma summable-on-in-0 [iff]: ‹summable-on-in T (λx. 0) A› if ‹0 ∈ topspace T ›
using has-sum-in-0 [of T A ‹λ-. 0 ›] summable-on-in-def that by blast

lemma sum-of-bool-scaleC : ‹(
∑

x∈S . of-bool (x=a) ∗C f x) = (if a∈S ∧ finite S then f a else 0)›
for f :: ‹- ⇒ -::complex-vector›
apply (cases ‹finite S›)
apply (subst sum-single[where i=a])

by auto

lemma
fixes A :: ‹ ′x ⇒ (′a ell2 ⇒CL

′b ell2)›

assumes ‹
∧

x. norm (A x) ≤ B›
shows controlled-op-has-sum-aux: ‹has-sum-in cstrong-operator-topology (λx. selfbutter (ket x) ⊗o A

x) UNIV (controlled-op A)›
and controlled-op-norm-leq: ‹norm (controlled-op A) ≤ B›

proof −
have [iff]: ‹B ≥ 0 ›

using assms[of undefined] norm-ge-zero[of ‹A undefined›]
by argo

define A ′ where ‹A ′ x = selfbutter (ket x) ⊗o A x› for x
have A ′summ: ‹(λx. A ′ x ∗V h) summable-on UNIV › for h
proof −

wlog [iff]: ‹B 6= 0 ›
using negation assms by (simp add: A ′-def)

have ‹∃P. eventually P (finite-subsets-at-top UNIV) ∧ (∀F G. P F ∧ P G −→ dist (
∑

x∈F . A ′ x
∗V h) (

∑
x∈G. A ′ x ∗V h) < e)› if ‹e > 0 › for e

proof −
have ‹((λS . trunc-ell2 S h) −−−→ h) (finite-subsets-at-top UNIV)›

by (rule trunc-ell2-lim-at-UNIV)
from tendsto-iff [THEN iffD1 , OF this, rule-format, of ‹e/B›]
have ‹∀ F S in finite-subsets-at-top UNIV . dist (trunc-ell2 S h) h < e/B›

using ‹B 6= 0 › ‹B ≥ 0 › that by force
then obtain S where [iff]: ‹finite S› and S-prop: ‹norm (trunc-ell2 S h − h) < e/B› for G

apply atomize-elim
by (force simp add: eventually-finite-subsets-at-top dist-norm)

define P :: ‹ ′x set ⇒ bool› where ‹P F ←→ finite F ∧ F ⊇ fst ‘ S› for F
have evP: ‹eventually P (finite-subsets-at-top UNIV)›
by (auto intro!: exI [of - ‹fst‘S›] ‹finite S› simp add: eventually-finite-subsets-at-top P-def [abs-def])
have ‹dist (

∑
x∈F . A ′ x ∗V h) (

∑
x∈G. A ′ x ∗V h) < e› if ‹P F› and ‹P G› for F G

proof −
have [iff]: ‹finite F› ‹finite G›

using that by (simp-all add: P-def)
define FG where ‹FG = sym-diff F G›
then have [iff]: ‹finite FG›

by simp
define h ′ where ‹h ′ x = (tensor-ell2-left (ket x)∗) h› for x
have A ′h: ‹A ′ x ∗V h = ket x ⊗s (A x ∗V h ′ x)› for x

unfolding h ′-def
apply (rule fun-cong[of - - h])
apply (rule bounded-clinear-equal-ket)

apply (auto intro!: bounded-linear-intros)[2]
by (auto simp add: A ′-def tensor-op-ket tensor-op-ell2 cinner-ket simp flip: tensor-ell2-ket)

14

have ‹(dist (
∑

x∈F . A ′ x ∗V h) (
∑

x∈G. A ′ x ∗V h))2 = (norm ((
∑

x∈F . A ′ x ∗V h) − (
∑

x∈G.
A ′ x ∗V h)))2›

by (simp add: dist-norm)
also have ‹. . . = (norm ((

∑
x∈FG. (if x∈F then 1 else −1) ∗C (A ′ x ∗V h))))2›

apply (rule arg-cong[where f =‹λx. (norm x)2›])
apply (rewrite at F at ‹

∑
x∈◊. -› to ‹(F−G)∪(F∩G)› DEADID.rel-mono-strong, blast)

apply (rewrite at G at ‹
∑

x∈◊. -› to ‹(G−F)∪(F∩G)› DEADID.rel-mono-strong, blast)
apply (rewrite at FG at ‹

∑
x∈◊. -› FG-def)

apply (subst sum-Un, simp, simp)
apply (subst sum-Un, simp, simp)
apply (subst sum-Un, simp, simp)
apply (rewrite at ‹(

∑
x∈F − G. (if x ∈ F then 1 else − 1) ∗C (A ′ x ∗V h))› to ‹(

∑
x∈F−G.

A ′ x ∗V h)› sum.cong, simp, simp)
apply (rewrite at ‹(

∑
x∈G − F . (if x ∈ F then 1 else − 1) ∗C (A ′ x ∗V h))› to ‹(

∑
x∈G−F .

− (A ′ x ∗V h))› sum.cong, simp, simp)
apply (rewrite at ‹(F − G) ∩ (G − F)› to ‹{}› DEADID.rel-mono-strong, blast)
apply (rewrite at ‹(F − G) ∩ (F ∩ G)› to ‹{}› DEADID.rel-mono-strong, blast)
apply (rewrite at ‹(G − F) ∩ (F ∩ G)› to ‹{}› DEADID.rel-mono-strong, blast)
by (simp add: sum-negf)

also have ‹. . . = (
∑

x∈FG. (norm ((if x ∈ F then 1 else − 1) ∗C (A ′ x ∗V h)))2)›
apply (rule pythagorean-theorem-sum)
apply (simp add: A ′-def butterfly-adjoint tensor-op-adjoint comp-tensor-op cinner-ket

flip: cinner-adj-right cblinfun-apply-cblinfun-compose)
by (simp add: FG-def)

also have ‹. . . = (
∑

x∈FG. (norm (A ′ x ∗V h))2)›
apply (rule sum.cong, simp)
by (simp add: norm-scaleC)

also have ‹. . . = (
∑

x∈FG. (norm (A x ∗V h ′ x))2)›
by (simp add: A ′h norm-tensor-ell2)

also have ‹. . . ≤ (
∑

x∈FG. (B ∗ norm (h ′ x))2)›
using assms
by (auto intro!: sum-mono power-mono norm-cblinfun[THEN order-trans] mult-right-mono)

also have ‹. . . = B2 ∗ (
∑

x∈FG. (norm (h ′ x))2)›
by (simp add: sum-distrib-left power-mult-distrib)

also have ‹. . . = B2 ∗ (
∑

x∈FG. (norm (ket x ⊗s h ′ x))2)›
by (simp add: norm-tensor-ell2 norm-ket)

also have ‹. . . = B2 ∗ (norm (
∑

x∈FG. ket x ⊗s h ′ x))2›
apply (subst pythagorean-theorem-sum)
by (simp-all add: FG-def)

also have ‹. . . = B2 ∗ (norm (trunc-ell2 (FG×UNIV) h))2›
apply (rule arg-cong[where f =‹λx. - ∗ (norm x)2›])
apply (rule cinner-ket-eqI)
apply (rename-tac ab)

proof −
fix ab :: ‹ ′x × ′a›
obtain a b where ab: ‹ab = (a,b)›

by (auto simp: prod-eq-iff)
have ‹ket ab ·C (

∑
x∈FG. ket x ⊗s h ′ x) = (

∑
x∈FG. ket ab ·C (ket x ⊗s h ′ x))›

using cinner-sum-right by blast
also have ‹. . . = of-bool (a∈FG) ∗ (ket b ·C h ′ a)›

apply (subst sum-single[where i=a])
by (auto simp add: ab simp flip: tensor-ell2-ket)

also have ‹. . . = of-bool (a∈FG) ∗ Rep-ell2 h (a, b)›
by (simp add: h ′-def cinner-adj-right tensor-ell2-ket cinner-ket-left)

also have ‹. . . = ket ab ·C trunc-ell2 (FG × UNIV) h›

15

by (simp add: ab cinner-ket-left trunc-ell2 .rep-eq)
finally show ‹ket ab ·C (

∑
x∈FG. ket x ⊗s h ′ x) = ket ab ·C trunc-ell2 (FG × UNIV) h›

by −
qed
also have ‹. . . ≤ B2 ∗ (norm (trunc-ell2 (−S) h))2›

apply (rule mult-left-mono[rotated], simp)
apply (rule power-mono[rotated], simp)
apply (rule trunc-ell2-norm-mono)
using ‹P F› ‹P G› by (force simp: P-def FG-def)

also have ‹. . . = B2 ∗ (norm (trunc-ell2 S h − h))2›
by (smt (verit, best) norm-id-minus-trunc-ell2 norm-minus-commute trunc-ell2-uminus)

also have ‹. . . < B2 ∗ (e/B)2›
apply (rule mult-strict-left-mono[rotated], simp)
apply (rule power-strict-mono[rotated], simp, simp)
by (rule S-prop)

also have ‹. . . = e2›
by (simp add: power-divide)

finally show ?thesis
by (smt (verit, del-insts) ‹0 < e› power-mono)

qed
with evP show ?thesis

by blast
qed
then show ?thesis

unfolding summable-on-def has-sum-def filterlim-def
apply (rule-tac convergent-filter-iff [THEN iffD1])
apply (subst convergent-filter-iff-cauchy)
by (rule cauchy-filter-metric-filtermapI)

qed
define C where ‹C h = (

∑
∞x. A ′ x ∗V h)› for h

then have C-hassum: ‹((λx. A ′ x ∗V h) has-sum (C h)) UNIV › for h
using A ′summ by auto

have norm-C : ‹norm (C g) ≤ B ∗ norm g› for g
proof −

define g ′ where ‹g ′ x = (tensor-ell2-left (ket x)∗) g› for x
have A ′g: ‹A ′ x ∗V g = ket x ⊗s (A x ∗V g ′ x)› for x

unfolding g ′-def
apply (rule fun-cong[of - - g])
apply (rule bounded-clinear-equal-ket)

apply (simp add: cblinfun.bounded-clinear-right)
apply (metis bounded-clinear-compose bounded-clinear-tensor-ell21 cblinfun.bounded-clinear-right)

by (auto simp add: A ′-def tensor-op-ket tensor-op-ell2 cinner-ket simp flip: tensor-ell2-ket)
have norm-trunc: ‹norm (trunc-ell2 F (C g)) ≤ B ∗ norm g› if ‹finite F› for F
proof −

define S where ‹S = fst ‘ F›
then have [iff]: ‹finite S›

using that by blast
have ‹(norm (trunc-ell2 F (C g)))2 ≤ (norm (trunc-ell2 (S × UNIV) (C g)))2›

apply (rule power-mono[rotated], simp)
apply (rule trunc-ell2-norm-mono)
by (force simp: S-def)

also have ‹. . . = (norm (
∑

x∈S . ket x ⊗s (A x ∗V g ′ x)))2›
proof (rule arg-cong[where f =‹λx. (norm x)2›])

16

have ‹trunc-ell2 (S×UNIV) (C g) = (
∑

∞x. trunc-ell2 (S×UNIV) (A ′ x ∗V g))›
apply (simp add: C-def)
apply (rule infsum-bounded-linear [symmetric])
apply (intro bounded-clinear .bounded-linear bounded-clinear-trunc-ell2)

using A ′summ by −
also have ‹. . . = (

∑
∞x∈S . ket x ⊗s (A x ∗V g ′ x))›

apply (rule infsum-cong-neutral)
by (auto simp add: A ′g trunc-ell2-prod-tensor trunc-ell2-ket)

also have ‹. . . = (
∑

x∈S . ket x ⊗s (A x ∗V g ′ x))›
by (auto intro!: infsum-finite simp: that)

finally show ‹trunc-ell2 (S × UNIV) (C g) = (
∑

x∈S . ket x ⊗s A x ∗V g ′ x)›
by −

qed
also have ‹. . . = (

∑
x∈S . (norm (ket x ⊗s A x ∗V g ′ x))2)›

apply (subst pythagorean-theorem-sum)
by auto

also have ‹. . . = (
∑

x∈S . (norm (A x ∗V g ′ x))2)›
by (simp add: norm-tensor-ell2)

also have ‹. . . ≤ (
∑

x∈S . (B ∗ norm (g ′ x))2)›
using assms
by (auto intro!: sum-mono power-mono norm-cblinfun[THEN order-trans] mult-right-mono)

also have ‹. . . = (
∑

x∈S . (norm (g ′ x))2) ∗ B2›
by (simp add: power-mult-distrib mult.commute sum-distrib-left)

also have ‹. . . = (
∑

x∈S . (norm (ket x ⊗s g ′ x))2) ∗ B2›
by (simp add: norm-tensor-ell2)

also have ‹. . . = (norm (
∑

x∈S . ket x ⊗s g ′ x))2 ∗ B2›
apply (subst pythagorean-theorem-sum[symmetric])
by (auto simp add: g ′-def)

also have ‹. . . ≤ (norm g)2 ∗ B2›
proof −

have ‹(
∑

x∈S . ket x ⊗s g ′ x) = trunc-ell2 (S×UNIV) g›
unfolding g ′-def
apply (rule fun-cong[where x=g])
apply (rule bounded-clinear-equal-ket)

apply (auto intro!: bounded-linear-intros)[2]
by (auto intro!: simp: cinner-ket trunc-ell2-prod-tensor trunc-ell2-ket

tensor-ell2-scaleC2 sum-of-bool-scaleC
simp flip: tensor-ell2-ket
split!: if-split-asm)

then show ?thesis
by (auto intro!: trunc-ell2-reduces-norm mult-right-mono power-mono sum-nonneg norm-ge-zero

zero-le-power2)
qed
also have ‹. . . ≤ (norm g ∗ B)2›

by (simp add: power-mult-distrib)
finally show ?thesis
by (metis Extra-Ordered-Fields.sign-simps(5) ‹0 ≤ B› norm-ge-zero power2-le-imp-le zero-compare-simps(4))

qed
have ‹((λF . trunc-ell2 F (C g)) −−−→ C g) (finite-subsets-at-top UNIV)›

by (rule trunc-ell2-lim-at-UNIV)
then have ‹((λF . norm (trunc-ell2 F (C g))) −−−→ norm (C g)) (finite-subsets-at-top UNIV)›

by (rule tendsto-norm)
then show ‹norm (C g) ≤ B ∗ norm g›

apply (rule tendsto-upperbound)
using norm-trunc by (auto intro!: eventually-finite-subsets-at-top-weakI simp:)

17

qed

have ‹bounded-clinear C ›
proof (intro bounded-clinearI allI)

fix g h :: ‹(′x × ′a) ell2 › and c :: complex
from C-hassum[of g] C-hassum[of h]
have ‹((λx. A ′ x ∗V g + A ′ x ∗V h) has-sum C g + C h) UNIV ›

by (simp add: has-sum-add)
with C-hassum[of ‹g + h›]
show ‹C (g + h) = C g + C h›

by (metis (no-types, lifting) cblinfun.add-right has-sum-cong infsumI)
from C-hassum[of g]
have ‹((λx. c ∗C (A ′ x ∗V g)) has-sum c ∗C C g) UNIV ›

by (metis cblinfun-scaleC-right.rep-eq has-sum-cblinfun-apply)
with C-hassum[of ‹c ∗C g›]
show ‹C (c ∗C g) = c ∗C C g›

by (metis (no-types, lifting) cblinfun.scaleC-right has-sum-cong infsumI)
from norm-C show ‹norm (C g) ≤ norm g ∗ B›

by (simp add: sign-simps(5))
qed
define D where ‹D = CBlinfun C ›
with ‹bounded-clinear C › have DC : ‹D ∗V f = C f › for f

by (simp add: bounded-clinear-CBlinfun-apply)
have D-hassum: ‹has-sum-in cstrong-operator-topology A ′ UNIV D›

using C-hassum by (simp add: has-sum-in-cstrong-operator-topology DC)
then show ‹has-sum-in cstrong-operator-topology A ′ UNIV (controlled-op A)›

using controlled-op-def A ′-def
by (metis (no-types, lifting) has-sum-in-infsum-in hausdorff-sot infsum-in-cong summable-on-in-def)

with D-hassum have DA: ‹D = controlled-op A›
apply (rule-tac has-sum-in-unique)
by auto

show ‹norm (controlled-op A) ≤ B›
apply (rule norm-cblinfun-bound, simp)
using norm-C by (simp add: DC flip: DA)

qed

lemma controlled-op-has-sum:
fixes A :: ‹ ′x ⇒ (′a ell2 ⇒CL

′b ell2)›
assumes ‹bdd-above (range (λx. norm (A x)))›
shows ‹has-sum-in cstrong-operator-topology (λx. selfbutter (ket x) ⊗o A x) UNIV (controlled-op A)›

proof −
from assms obtain B where ‹norm (A x) ≤ B› for x

by (auto intro!: simp: bdd-above-def)
then show ?thesis

by (rule controlled-op-has-sum-aux)
qed

hide-fact controlled-op-has-sum-aux

lemma controlled-op-summable:
fixes A :: ‹ ′x ⇒ (′a ell2 ⇒CL

′b ell2)›
assumes ‹bdd-above (range (λx. norm (A x)))›
shows ‹summable-on-in cstrong-operator-topology (λx. selfbutter (ket x) ⊗o A x) UNIV ›
using controlled-op-has-sum[OF assms] summable-on-in-def by blast

18

lemma infsum-sot-cblinfun-apply:
assumes ‹summable-on-in cstrong-operator-topology f UNIV ›
shows ‹infsum-in cstrong-operator-topology f UNIV ∗V ψ = (

∑
∞x. f x ∗V ψ)›

by (metis assms has-sum-in-cstrong-operator-topology has-sum-in-infsum-in hausdorff-sot infsumI)

lemma controlled-op-ket[simp]:
assumes ‹bdd-above (range (λx. norm (A x)))›
shows ‹controlled-op A ∗V (ket x ⊗s ψ) = ket x ⊗s (A x ∗V ψ)›

proof −
have ‹controlled-op A ∗V (ket x ⊗s ψ) = (

∑
∞y. (selfbutter (ket y) ⊗o A y) ∗V (ket x ⊗s ψ))›

by (simp add: controlled-op-def assms infsum-sot-cblinfun-apply controlled-op-summable)
also have ‹. . . = ket x ⊗s (A x ∗V ψ)›

apply (subst infsum-single[where i=x])
by (simp-all add: tensor-op-ell2 cinner-ket)

finally show ?thesis
by −

qed

lemma controlled-op-ket ′[simp]:
assumes ‹bdd-above (range (λx. norm (A x)))›
shows ‹controlled-op A ∗V (ket (x, y)) = ket x ⊗s (A x ∗V ket y)›
by (metis assms controlled-op-ket tensor-ell2-ket)

lemma controlled-op-compose[simp]:
assumes [simp]: ‹bdd-above (range (λx. norm (A x)))›
assumes [simp]: ‹bdd-above (range (λx. norm (B x)))›
shows ‹controlled-op A oCL controlled-op B = controlled-op (λx. A x oCL B x)›

proof −
from assms(1) obtain a where ‹norm (A x) ≤ a› for x

by (auto simp: bdd-above-def)
moreover from assms(2) obtain b where ‹norm (B x) ≤ b› for x

by (auto simp: bdd-above-def)
ultimately have [simp]: ‹bdd-above (range (λx. norm (A x oCL B x)))›

apply (rule-tac bdd-aboveI [of - ‹a∗b›])
by (smt (verit, ccfv-SIG) Multiseries-Expansion-Bounds.mult-monos(1) imageE norm-cblinfun-compose

norm-ge-zero)
show ?thesis

apply (rule equal-ket)
apply (case-tac x)
by simp

qed

lemma controlled-op-adj[simp]:
assumes [simp]: ‹bdd-above (range (λx. norm (A x)))›
shows ‹(controlled-op A)∗ = controlled-op (λx. (A x)∗)›
apply (rule cinner-ket-adjointI [symmetric])
by (auto intro!: simp: controlled-op-ket cinner-adj-left

simp flip: tensor-ell2-ket)

lemma controlled-op-id[simp]: ‹controlled-op (λ-. id-cblinfun) = id-cblinfun›
apply (rule equal-ket)
apply (case-tac x)
by (simp add: tensor-ell2-ket)

19

lemma controlled-op-unitary[simp]: ‹unitary (controlled-op U)› if [simp]: ‹
∧

x. unitary (U x)›
proof −

have [iff]: ‹bdd-above (range (λx. norm (U x)))›
by (simp add: norm-isometry)

show ?thesis
unfolding unitary-def by auto

qed

lemma controlled-op-is-Proj[simp]: ‹is-Proj (controlled-op P)› if [simp]: ‹
∧

x. is-Proj (P x)›
proof −

have [iff]: ‹bdd-above (range (λx. norm (P x)))›
using norm-is-Proj[OF that]
by (auto intro!: bdd-aboveI simp:)

show ?thesis
using that unfolding is-Proj-algebraic by auto

qed

lemma controlled-op-comp-butter :
assumes ‹bdd-above (range (λx. norm (A x)))›
shows ‹controlled-op A oCL Fst (selfbutter (ket x)) = Snd (A x) oCL Fst (selfbutter (ket x))›
using assms by (auto intro!: equal-ket simp: Fst-def tensor-op-ket cinner-ket)

lemma norm-ell2-finite: ‹norm ψ = sqrt (
∑

i∈UNIV . (cmod (Rep-ell2 ψ i))2)› for ψ :: ‹-::finite ell2 ›
apply transfer
by (simp add: ell2-norm-finite)

lemma controlled-op-ket-swap[simp]:
assumes ‹bdd-above (range (λx. norm (U x)))›
shows ‹swap (controlled-op U) ∗V (A ⊗s ket x) = (U x ∗V A) ⊗s ket x›
by (simp add: assms swap-sandwich-swap-ell2 sandwich-apply)

lemma controlled-op-const: ‹controlled-op (λ-. P) = Snd P›
by (auto intro!: equal-ket simp: Snd-def tensor-op-ell2 simp flip: tensor-ell2-ket)

1.3 Superpositions
lift-definition uniform-superpos :: ‹ ′a set ⇒ ′a ell2 › is ‹λA x. complex-of-real (of-bool (x ∈ A) / sqrt
(of-nat (card A)))›
proof (rename-tac A)

fix A :: ‹ ′a set›
show ‹has-ell2-norm (λx. complex-of-real (of-bool (x ∈ A) / sqrt (real (card A))))›
proof (cases ‹finite A›)

case True
show ?thesis

unfolding has-ell2-norm-def
apply (rule finite-nonzero-values-imp-summable-on)
using True by auto

next
case False
then show ?thesis

by simp
qed

qed

20

lemma norm-uniform-superpos: ‹norm (uniform-superpos A) = 1 › if ‹finite A› and ‹A 6= {}›
proof (transfer ′ fixing: A)

have ‹ell2-norm (λx. complex-of-real (of-bool (x ∈ A) / sqrt (real (card A))))
= sqrt (

∑
∞x. (cmod (complex-of-real (of-bool (x ∈ A) / sqrt (real (card A)))))2)›

by (simp add: ell2-norm-def)
also have ‹. . . = sqrt (

∑
∞x∈A. (cmod (complex-of-real (1 / sqrt (real (card A)))))2)›

apply (rule arg-cong[where f =sqrt])
apply (rule infsum-cong-neutral)
by auto

also have ‹. . . = sqrt (
∑

x∈A. (cmod (complex-of-real (1 / sqrt (real (card A)))))2)›
by simp

also have ‹. . . = sqrt (real (card A) ∗ (cmod (1 / complex-of-real (sqrt (real (card A)))))2)›
by (simp add: that)

also have ‹. . . = sqrt (real (card A) ∗ ((1 / sqrt (real (card A)))2))›
by (simp add: cmod-def)

also have ‹. . . = 1 ›
using that
by (simp add: power-one-over)

finally show ‹ell2-norm (λx. complex-of-real (of-bool (x ∈ A) / sqrt (real (card A)))) = 1 ›
by −

qed

lemma uniform-superpos-infinite: ‹uniform-superpos A = 0 › if ‹infinite A›
apply (transfer ′ fixing: A)
using that
by simp

lemma uniform-superpos-empty: ‹uniform-superpos A = 0 › if ‹A = {}›
apply (transfer ′ fixing: A)
using that
by simp

Alternative definition.
lemma uniform-superpos-def2 : ‹uniform-superpos A = (

∑
f∈A. ket f /C csqrt (card A))›

proof −
wlog [simp]: ‹finite A› ‹A 6= {}›

using negation uniform-superpos-empty uniform-superpos-infinite by force
show ?thesis
proof (rule cinner-ket-eqI)

fix f
show ‹ket f ·C (uniform-superpos A) = ket f ·C (

∑
f∈A. ket f /C csqrt (card A))›

proof (cases ‹f ∈ A›)
case True
then have ‹ket f ·C (uniform-superpos A) = 1 / csqrt (card A)›

apply (subst cinner-ket-left)
apply (transfer fixing: f)
by auto

moreover have ‹ket f ·C (
∑

f∈A. ket f /C csqrt (card A)) = 1 / csqrt (card A)›
apply (subst cinner-sum-right)
apply (subst sum-single[where i=f])
using True by (auto simp: inverse-eq-divide)

finally show ?thesis
by simp

next
case False

21

then have ‹ket f ·C (uniform-superpos A) = 0 ›
apply (subst cinner-ket-left)
apply (transfer fixing: f)
by auto

moreover have ‹ket f ·C (
∑

f∈A. ket f /C csqrt (card A)) = 0 ›
apply (subst cinner-sum-right)
apply (rule sum.neutral)
using False by auto

finally show ?thesis
by simp

qed
qed

qed

1.4 Lifting ell2 to option type
lift-definition lift-ell2 ′ :: ‹ ′a ell2 ⇒ ′a option ell2 › is ‹λψ x. case x of Some x ′⇒ ψ x ′ | None ⇒ 0 ›
proof −

fix ψ :: ‹ ′a ⇒ complex›
assume ‹has-ell2-norm ψ›
then have ‹(λx. norm ((ψ x)2)) summable-on UNIV ›

by (simp add: has-ell2-norm-def)
then have ‹(λx. case x of Some x ′⇒ norm ((ψ x ′)2) | None ⇒ 0) o Some summable-on UNIV ›

by (metis comp-eq-dest-lhs option.simps(5) summable-on-cong)
then have ‹(λx. case x of Some x ′⇒ norm ((ψ x ′)2) | None ⇒ 0) summable-on Some ‘ UNIV ›

by (meson inj-Some summable-on-reindex)
then have ‹(λx. case x of Some x ′⇒ norm ((ψ x ′)2) | None ⇒ 0) summable-on UNIV ›

apply (rule summable-on-cong-neutral[THEN iffD1 , rotated −1])
by (auto simp add: notin-range-Some)

then show ‹has-ell2-norm (case-option 0 ψ)›
apply (simp add: has-ell2-norm-def)
by (metis (mono-tags, lifting) norm-zero option.case-eq-if summable-on-cong zero-power2)

qed

lemma clinear-lift-ell2 ′: ‹clinear lift-ell2 ′›
apply (rule clinearI ; transfer)
by (auto intro!: ext simp add: option.case-eq-if)

lemma lift-ell2 ′-norm[simp]: ‹norm (lift-ell2 ′ ψ) = norm ψ›
proof transfer

fix ψ :: ‹ ′a ⇒ complex›
have ‹(ell2-norm ψ)2 = infsum (λx. (norm (ψ x))2) UNIV ›

apply (simp add: ell2-norm-def)
by (meson infsum-nonneg zero-le-power2)

also have ‹. . . = infsum ((λx. case x of Some x ′⇒ (norm (ψ x ′))2 | None ⇒ 0) o Some) UNIV ›
apply (rule infsum-cong) by auto

also have ‹. . . = infsum (λx. case x of Some x ′⇒ (norm (ψ x ′))2 | None ⇒ 0) (Some ‘ UNIV)›
by (simp add: infsum-reindex)

also have ‹. . . = infsum (λx. case x of Some x ′⇒ (norm (ψ x ′))2 | None ⇒ 0) UNIV ›
apply (rule infsum-cong-neutral)
by (auto simp add: notin-range-Some)

also have ‹. . . = (ell2-norm (case-option 0 ψ))2›
apply (simp add: ell2-norm-def)
by (smt (verit, ccfv-SIG) infsum-nonneg infsum-cong norm-zero option.case-eq-if real-sqrt-pow2-iff

zero-le-power2 zero-power2)
finally show ‹ell2-norm (case-option 0 ψ) = ell2-norm ψ›

22

by (simp add: ell2-norm-geq0)
qed

lemma bounded-clinear-lift-ell2 ′[bounded-clinear , simp]: ‹bounded-clinear lift-ell2 ′›
by (metis bounded-clinear .intro bounded-clinear-axioms.intro clinear-lift-ell2 ′ lift-ell2 ′-norm mult.commute

mult-1 order .refl)

lift-definition lift-ell2 :: ‹ ′a ell2 ⇒CL
′a option ell2 › is lift-ell2 ′

by simp

definition lift-op :: ‹(′a ell2 ⇒CL
′b ell2) ⇒ (′a option ell2 ⇒CL

′b option ell2)› where
‹lift-op A = (lift-ell2 oCL A oCL lift-ell2∗) + butterfly (ket None) (ket None)›

lemma lift-ell2-ket[simp]: ‹lift-ell2 ∗V ket x = ket (Some x)›
unfolding lift-ell2 .rep-eq apply transfer
by (auto intro!: ext simp: of-bool-def split!: option.split if-split-asm)

lemma isometry-lift-ell2 [simp]: ‹isometry lift-ell2 ›
apply (rule norm-preserving-isometry)
by (simp add: lift-ell2 .rep-eq)

lemma lift-op-adj: ‹(lift-op A)∗ = lift-op (A∗)›
unfolding lift-op-def
apply (simp add: adj-plus)
by (simp add: cblinfun-assoc-left(1))

lemma bra-None-lift-ell2 : ‹bra None oCL lift-ell2 = 0 ›
apply (rule cblinfun-eqI)
apply (simp add: lift-ell2 .rep-eq)
apply transfer
by (simp add: infsum-0)

lemma lift-op-mult: ‹lift-op A oCL lift-op B = lift-op (A oCL B)›
proof −

have ‹lift-op A oCL lift-op B =
(lift-ell2 oCL A oCL (lift-ell2∗ oCL lift-ell2) oCL B oCL lift-ell2∗)

+ (lift-ell2 oCL A oCL (bra None oCL lift-ell2)∗ oCL bra None)
+ (vector-to-cblinfun (ket None) oCL (bra None oCL lift-ell2) oCL B oCL lift-ell2∗)
+ butterfly (ket None) (ket None)›

unfolding lift-op-def
apply (simp add: adj-plus cblinfun-compose-add-right cblinfun-compose-add-left del: isometryD)
apply (simp add: butterfly-def cblinfun-compose-assoc del: isometryD)
by (metis butterfly-def cblinfun-comp-butterfly)

also have ‹. . . = (lift-ell2 oCL (A oCL B) oCL lift-ell2∗) + butterfly (ket None) (ket None)›
by (simp add: bra-None-lift-ell2 cblinfun-compose-assoc)

also have ‹. . . = lift-op (A oCL B)›
by (simp add: lift-op-def)

finally show ?thesis
by −

qed

lemma lift-ell2-adj-None[simp]: ‹lift-ell2∗ ∗V ket None = 0 ›
by (simp add: cinner-adj-right cinner-ket-eqI lift-ell2-ket)

lemma lift-ell2-adj-Some[simp]: ‹lift-ell2∗ ∗V ket (Some x) = ket x›

23

by (simp add: cinner-adj-right cinner-ket cinner-ket-eqI lift-ell2-ket)

lemma lift-op-id[simp]: ‹lift-op id-cblinfun = id-cblinfun›
apply (rule equal-ket, case-tac x)
by (auto simp: lift-op-def cblinfun.add-left cblinfun-compose-add-right lift-ell2-adj-None lift-ell2-ket)

lemma isometry-lift-op[simp]: ‹isometry (lift-op A)› if ‹isometry A›
by (simp add: isometry-def lift-op-mult lift-op-adj isometryD[OF that])

lemma unitary-lift-op[simp]: ‹unitary (lift-op A)› if ‹unitary A›
by (metis isometry-lift-op lift-op-adj that unitary-twosided-isometry)

lemma lift-op-None[simp]: ‹lift-op A ∗V ket None = ket None›
unfolding lift-op-def by (auto simp: cblinfun.add-left)

lemma lift-op-Some[simp]: ‹lift-op A ∗V ket (Some x) = lift-ell2 ∗V A ∗V ket x›
unfolding lift-op-def by (auto simp: cblinfun.add-left)

declare register-tensor-is-register [simp]

lemma sum-sqrt: ‹(
∑

i<n. sqrt i) ≤ 2/3 ∗ (sqrt n)^3 › for n :: nat
proof (induction n)

case 0
show ?case

by simp
next

case (Suc n)
have ‹(

∑
i<Suc n. sqrt i) ≤ 2/3 ∗ sqrt (real n) ^ 3 + sqrt n›

using Suc
by simp

also have ‹. . . ≤ 2/3 ∗ sqrt (Suc n) ^ 3 ›
proof −

define x :: real where ‹x = n›
define f where ‹f z = 2/3 ∗ (sqrt z)^3 › for z
have f ′: ‹(f has-real-derivative sqrt z) (at z)› if ‹z > 0 › for z

apply (rule ssubst[of ‹sqrt z›, rotated])
unfolding f-def
apply (rule that DERIV-real-sqrt derivative-eq-intros refl)+

using that
apply simp

by (smt (verit, del-insts) Extra-Ordered-Fields.sign-simps(5) nonzero-eq-divide-eq sqrt-divide-self-eq)
have cont: ‹continuous-on {x..x+1} f ›

unfolding f-def
by (intro continuous-intros)

have ‹x ≥ 0 ›
using x-def by auto

obtain l z where ‹x < z› ‹z < x + 1 › and f ′l: ‹(f has-real-derivative l) (at z)› and fdelta: ‹f (x +
1) − f x = (x + 1 − x) ∗ l›

apply atomize-elim
apply (subst ex-comm)
apply (rule MVT)

apply simp
apply (rule cont)

using f ′

24

by (smt (verit, best) ‹0 ≤ x› real-differentiable-def)
then have ‹z > 0 ›

using ‹0 ≤ x› by linarith
from f ′[OF this] f ′l have [simp]: ‹l = sqrt z›

using DERIV-unique by blast
from fdelta
have ‹f (x + 1) − f x ≥ sqrt x›

using ‹x < z› by auto
then show ?thesis

unfolding x-def f-def
by (smt (verit, best) Num.of-nat-simps(3))

qed
finally show ?case

by −
qed

lemma register-inj ′:
assumes ‹register Q›
shows ‹Q a = Q b ←→ a = b›
using register-inj[OF assms] by blast

lemma norm-cblinfun-apply-leq1I :
assumes ‹norm U ≤ 1 ›
assumes ‹norm ψ ≤ 1 ›
shows ‹norm (U ∗V ψ) ≤ 1 ›
by (smt (verit, best) assms(1 ,2) mult-left-le-one-le norm-cblinfun norm-ge-zero)

lemma times-sqrtn-div-n[simp]:
assumes ‹n ≥ 0 ›
shows ‹a ∗ sqrt n / n = a / sqrt n›
by (metis assms divide-divide-eq-right real-div-sqrt)

lemma Proj-tensor-Proj: ‹Proj I ⊗o Proj J = Proj (I ⊗S J)›
by (simp add: Proj-on-own-range is-Proj-tensor-op

tensor-ccsubspace-via-Proj)

lemma extend-mult-rule: ‹a ∗ b = c =⇒ a ∗ (b ∗ d) = c ∗ d› for a b c d :: ‹-::semigroup-mult›
by (metis Groups.mult-ac(1))

end

2 Function-At – Function values as individual registers
theory Function-At
imports Registers.Quantum-Extra Misc-Compressed-Oracle
begin

unbundle no m-inv-syntax

typedef (′a, ′b) punctured-function = ‹extensional (−{undefined}) :: (′a⇒ ′b) set›
by auto

setup-lifting type-definition-punctured-function
instance punctured-function :: (finite, finite) finite

25

apply standard apply (rule finite-imageD[where f =Rep-punctured-function])
by (auto simp add: Rep-punctured-function-inject inj-on-def)

lift-definition fix-punctured-function :: ‹ ′a ⇒ (′b × (′a, ′b) punctured-function) ⇒ (′a⇒ ′b)› is
‹λx (y, f). (Fun.swap x undefined f) (x := y)›.

lift-definition puncture-function :: ‹ ′a ⇒ (′a⇒ ′b) ⇒ ′b × (′a, ′b) punctured-function› is
‹λx f . (f x, (Fun.swap x undefined f) (undefined := undefined))›
by (simp add: Compl-eq-Diff-UNIV)

lemma puncture-function-recombine:
‹(y, snd (puncture-function x f)) = puncture-function x (f (x:=y))›
apply transfer
by (auto intro!: ext simp: Transposition.transpose-def)

lemma snd-puncture-function-upd: ‹snd (puncture-function x (f (x:=y))) = snd (puncture-function x f)›
apply transfer
by (auto intro!: ext simp: Transposition.transpose-def)

lemma puncture-function-split: ‹puncture-function x f = (f x, snd (puncture-function x f))›
using puncture-function-recombine[where x=x and f =f and y=‹f x›]
by simp

lemma puncture-function-inverse[simp]: ‹fix-punctured-function x (puncture-function x f) = f ›
apply transfer by (auto intro!: ext simp: Transposition.transpose-def)

lemma fix-punctured-function-inverse[simp]: ‹puncture-function x (fix-punctured-function x yf) = yf ›
apply transfer
by (auto intro!: ext simp: Transposition.transpose-def extensional-def)

lemma bij-fix-punctured-function[simp]: ‹bij (fix-punctured-function x)›
by (metis bijI ′ fix-punctured-function-inverse puncture-function-inverse)

lemma inj-fix-punctured-function[simp]: ‹inj (fix-punctured-function x)›
by (simp add: bij-is-inj)

lemma surj-fix-punctured-function[simp]: ‹surj (fix-punctured-function x)›
by (simp add: bij-is-surj)

The following function-at-U x provides an unitary isomorphism between (′a ⇒ ′b) ell2 (su-
perposition of functions) and (′b × (′a, ′b) punctured-function) ell2 (superposition of pairs of
the value of the function at x and the rest of the function). This allows to then apply a some
operation to the first part of that pair and thus lifting it to an application to the whole function.
(The "rest of the function" part is to be considered opaque.)
definition function-at-U :: ‹ ′a ⇒ (′b × (′a, ′b) punctured-function) ell2 ⇒CL (′a ⇒ ′b) ell2 › where
‹function-at-U x = classical-operator (Some o fix-punctured-function x)›

lemma unitary-function-at-U [simp]: ‹unitary (function-at-U x)›
by (auto simp: function-at-U-def intro!: unitary-classical-operator)

lemma function-at-U-ket[simp]: ‹function-at-U x ∗V ket y = ket (fix-punctured-function x y)›
by (simp add: function-at-U-def classical-operator-ket classical-operator-exists-inj)

lemma function-at-U-adj-ket[simp]: ‹(function-at-U x)∗ ∗V ket y = ket (puncture-function x y)›
apply (simp add: function-at-U-def inv-map-total classical-operator-ket classical-operator-exists-inj)

26

by (metis (no-types, lifting) bij-betw-inv-into bij-def bij-fix-punctured-function classical-operator-exists-inj
classical-operator-ket inj-map-total inv-f-f o-def option.case(2) puncture-function-inverse)

The reference function-at x lifts an operation U on ′a ell2 to an operation on (′a ⇒ ′b) ell2
(superposition of functions). The resulting operation applies U only to the x-output of the
function.
definition function-at :: ‹ ′a ⇒ (′b update ⇒ (′a⇒ ′b) update)› where
‹function-at x = sandwich (function-at-U x) o Fst›

lemma Rep-ell2-function-at-ket:
‹Rep-ell2 (function-at x U ∗V ket f) g =

of-bool (snd (puncture-function x f) = snd (puncture-function x g)) ∗ Rep-ell2 (U ∗V ket (f x)) (g
x)›
proof −

have ‹Rep-ell2 (function-at x U ∗V ket f) g = Rep-ell2 (function-at-U x ∗V (U ⊗o id-cblinfun) ∗V
ket (puncture-function x f)) g›

by (simp add: function-at-def Fst-def sandwich-apply)
also have ‹. . . = (function-at-U x∗ ∗V ket g) ·C ((U ⊗o id-cblinfun) ∗V ket (puncture-function x f))›

by (metis cinner-adj-left cinner-ket-left)
also have ‹. . . = (ket (puncture-function x g)) ·C ((U ⊗o id-cblinfun) ∗V ket (puncture-function x

f))›
by (simp add: function-at-def)

also have ‹. . . = (ket (g x, snd (puncture-function x g))) ·C ((U ⊗o id-cblinfun) ∗V ket (f x, snd
(puncture-function x f)))›

by (simp flip: puncture-function-split)
also have ‹. . . = of-bool (snd (puncture-function x f) = snd (puncture-function x g)) ∗ (ket (g x) ·C

(U ∗V ket (f x)))›
by (simp add: tensor-op-ell2 cinner-ket flip: tensor-ell2-ket)

also have ‹. . . = of-bool (snd (puncture-function x f) = snd (puncture-function x g)) ∗ Rep-ell2 (U
∗V ket (f x)) (g x)›

by (simp add: cinner-ket-left)
finally show ?thesis

by −
qed

lemma function-at-ket:
shows ‹function-at x U ∗V ket f = (

∑
∞y∈UNIV . Rep-ell2 (U ∗V ket (f x)) y ∗C ket (f (x := y)))›

proof −
have ‹function-at x U ∗V ket f = function-at-U x ∗V (U ⊗o id-cblinfun) ∗V ket (puncture-function x

f)›
by (simp add: function-at-def Fst-def sandwich-apply)

also have ‹. . . = function-at-U x ∗V (U ⊗o id-cblinfun) ∗V ket (f x, snd (puncture-function x f))›
by (metis puncture-function-split)

also have ‹. . . = function-at-U x ∗V ((U ∗V ket (f x)) ⊗s ket (snd (puncture-function x f)))›
by (simp add: tensor-op-ket)

also have ‹. . . = function-at-U x ∗V ((
∑

∞y∈UNIV . Rep-ell2 (U ∗V ket (f x)) y ∗C ket y) ⊗s ket
(snd (puncture-function x f)))›

by (simp flip: ell2-decompose-infsum)
also have ‹. . . = (

∑
∞y∈UNIV . Rep-ell2 (U ∗V ket (f x)) y ∗C (function-at-U x ∗V (ket y ⊗s ket

(snd (puncture-function x f)))))›
by (simp del: function-at-U-ket

add: tensor-ell2-scaleC1 invertible-cblinfun-isometry infsum-cblinfun-apply-invertible infsum-tensor-ell2-left
flip: cblinfun.scaleC-right)

also have ‹. . . = (
∑

∞y∈UNIV . Rep-ell2 (U ∗V ket (f x)) y ∗C ket (f (x := y)))›

27

by (simp add: puncture-function-recombine tensor-ell2-ket)
finally show ?thesis

by −
qed

lemma register-function-at[simp, register]: ‹register (function-at x :: ′b update ⇒ (′a⇒ ′b) update)› for
x :: ′a

by (auto simp add: function-at-def unitary-sandwich-register)

lemma function-at-comm:
fixes U V :: ‹ ′b ell2 ⇒CL

′b ell2 › and x y :: ′a
assumes ‹x 6= y›
shows ‹function-at x U oCL function-at y V = function-at y V oCL function-at x U ›

proof −
define reorder where ‹reorder = classical-operator (Some o (λ(f :: ′a ⇒ ′b, a, b). (f (x:=a, y:=b), f

x, f y)))›

have selfinv: ‹(λ(f , a, b). (f (x := a, y := b), f x, f y)) o (λ(f , a, b). (f (x := a, y := b), f x, f y)) = id›
using assms by (auto intro!: ext)

have bij: ‹bij (λ(f , a, b). (f (x := a, y := b), f x, f y))›
using o-bij selfinv by blast

have inv: ‹inv (λ(f , a, b). (f (x := a, y := b), f x, f y)) = (λ(f , a, b). (f (x := a, y := b), f x, f y))›
using inv-unique-comp selfinv by blast
have inj-map: ‹inj-map (Some o (λ(f , a, b). (f (x := a, y := b), f x, f y)))›

by (simp add: inj-map-total bij-is-inj[OF bij])
have inv: ‹inv-map (Some o (λ(f , a, b). (f (x := a, y := b), f x, f y))) = (Some o (λ(f , a, b). (f (x :=

a, y := b), f x, f y)))›
by (simp add: inv-map-total bij-is-surj bij inv)

have reorder-exists: ‹classical-operator-exists (Some o (λ(f , a, b). (f (x := a, y := b), f x, f y)))›
using inj-map by (rule classical-operator-exists-inj)

have [simp]: ‹reorder∗ = reorder›
by (simp add: reorder-def classical-operator-adjoint[OF inj-map] inv)

have [simp]: ‹reorder (ket f ⊗s ket a ⊗s ket b) = ket (f (x:=a, y:=b), f x, f y)› for f a b
by (simp add: reorder-def tensor-ell2-ket classical-operator-ket[OF reorder-exists])

have [simp]: ‹isometry reorder›
using inj-map-total isometry-classical-operator inj-map reorder-def by blast

have sandwichU : ‹sandwich reorder (function-at x U ⊗o id-cblinfun) = id-cblinfun ⊗o (U ⊗o id-cblinfun)›
proof (rule equal-ket, rule cinner-ket-eqI , rename-tac fab gcd)

fix fab gcd :: ‹(′a ⇒ ′b) × ′b × ′b›
obtain f a b where [simp]: ‹fab = (f ,a,b)›

by (auto simp: prod-eq-iff)
obtain g c d where [simp]: ‹gcd = (g,c,d)›

by (auto simp: prod-eq-iff)
have fg-rewrite: ‹f = g ∧ b = d ←→

snd (puncture-function x (f (x := a, y := b))) = snd (puncture-function x (g(x := c, y := d))) ∧
f x = g x ∧ f y = g y›

using assms
by (smt (verit, del-insts) array-rules(3) fun-upd-idem fun-upd-twist puncture-function-inverse

puncture-function-recombine snd-puncture-function-upd)
have ‹ket gcd ·C ((sandwich reorder ∗V function-at x U ⊗o id-cblinfun) ∗V ket fab)

= ket (g(x:=c, y:=d), g x, g y) ·C ((function-at x U ⊗o id-cblinfun) ∗V ket (f (x:=a, y:=b), f x, f
y))›

by (simp add: sandwich-apply flip: cinner-adj-left tensor-ell2-ket)

28

also have ‹. . . = (ket (g(x:=c, y:=d)) ·C (function-at x U ∗V ket (f (x:=a, y:=b))))
∗ of-bool (f x = g x ∧ f y = g y)›

by (auto simp add: tensor-op-ell2 simp flip: tensor-ell2-ket)
also have ‹. . . = Rep-ell2 (U ∗V ket a) c ∗ of-bool (f = g ∧ b = d)›

using assms by (auto simp add: cinner-ket-left Rep-ell2-function-at-ket fg-rewrite)
also have ‹. . . = ket gcd ·C ((id-cblinfun ⊗o U ⊗o id-cblinfun) ∗V ket fab)›

by (auto simp add: tensor-op-ell2 cinner-ket-left[of c] simp flip: tensor-ell2-ket)
finally show ‹ket gcd ·C ((sandwich reorder ∗V function-at x U ⊗o id-cblinfun) ∗V ket fab) =

ket gcd ·C ((id-cblinfun ⊗o U ⊗o id-cblinfun) ∗V ket fab)›
by −

qed

have sandwichV : ‹sandwich reorder (function-at y V ⊗o id-cblinfun) = id-cblinfun ⊗o (id-cblinfun
⊗o V)›

proof (rule equal-ket, rule cinner-ket-eqI , rename-tac fab gcd)
fix fab gcd :: ‹(′a ⇒ ′b) × ′b × ′b›
obtain f a b where [simp]: ‹fab = (f ,a,b)›

by (auto simp: prod-eq-iff)
obtain g c d where [simp]: ‹gcd = (g,c,d)›

by (auto simp: prod-eq-iff)
have fg-rewrite: ‹f = g ∧ a = c ←→

snd (puncture-function y (f (x := a, y := b))) = snd (puncture-function y (g(x := c, y := d))) ∧
f x = g x ∧ f y = g y›

using assms
by (metis array-rules(3) fun-upd-idem fun-upd-twist puncture-function-inverse puncture-function-recombine

snd-puncture-function-upd)
have ‹ket gcd ·C ((sandwich reorder ∗V function-at y V ⊗o id-cblinfun) ∗V ket fab)

= ket (g(x:=c, y:=d), g x , g y) ·C ((function-at y V ⊗o id-cblinfun) ∗V ket (f (x:=a, y:=b), f x, f
y))›

by (simp add: sandwich-apply flip: cinner-adj-left tensor-ell2-ket)
also have ‹. . . = (ket (g(x:=c, y:=d)) ·C (function-at y V ∗V ket (f (x:=a, y:=b))))

∗ of-bool (f x = g x ∧ f y = g y)›
by (auto simp add: tensor-op-ell2 simp flip: tensor-ell2-ket)

also have ‹. . . = Rep-ell2 (V ∗V ket b) d ∗ of-bool (f = g ∧ a = c)›
using assms by (auto simp add: cinner-ket-left Rep-ell2-function-at-ket fg-rewrite)

also have ‹. . . = ket gcd ·C ((id-cblinfun ⊗o id-cblinfun ⊗o V) ∗V ket fab)›
by (auto simp add: tensor-op-ell2 cinner-ket-left[of d] simp flip: tensor-ell2-ket)

finally show ‹ket gcd ·C ((sandwich reorder ∗V function-at y V ⊗o id-cblinfun) ∗V ket fab) =
ket gcd ·C ((id-cblinfun ⊗o id-cblinfun ⊗o V) ∗V ket fab)›

by −
qed

have ‹sandwich reorder ((function-at x U ⊗o id-cblinfun) oCL (function-at y V ⊗o id-cblinfun))
= sandwich reorder ((function-at y V ⊗o id-cblinfun) oCL (function-at x U ⊗o id-cblinfun))›

apply (simp add: sandwichU sandwichV flip: sandwich-arg-compose)
by (simp add: comp-tensor-op)

then have ‹(function-at x U ⊗o (id-cblinfun :: (′b × ′b) ell2 ⇒CL (′b × ′b) ell2)) oCL (function-at
y V ⊗o id-cblinfun) = (function-at y V ⊗o id-cblinfun) oCL (function-at x U ⊗o id-cblinfun)›

by (smt (verit, best) ‹isometry reorder› cblinfun-compose-id-left cblinfun-compose-id-right compati-
ble-ac-rules(2) isometryD sandwich-apply)

then have ‹(function-at x U oCL function-at y V) ⊗o (id-cblinfun :: (′b × ′b) ell2 ⇒CL (′b × ′b)
ell2) = (function-at y V oCL function-at x U) ⊗o id-cblinfun›

by (simp add: comp-tensor-op)
then show ‹function-at x U oCL function-at y V = function-at y V oCL function-at x U ›

apply (rule injD[OF inj-tensor-left, rotated])

29

by simp
qed

lemma compatible-function-at[simp]:
assumes ‹x 6= y›
shows ‹compatible (function-at x) (function-at y)›

proof (rule compatibleI)
show ‹register (function-at x)›

by simp
show ‹register (function-at y)›

by simp
fix a b :: ‹ ′b update›
show ‹function-at x a oCL function-at y b = function-at y b oCL function-at x a›

using assms by (rule function-at-comm)
qed

lemma inv-fix-punctured-function[simp]: ‹inv (fix-punctured-function x) = puncture-function x›
by (simp add: inv-equality)

lemma bij-puncture-function[simp]: ‹bij (puncture-function x)›
by (metis bij-betw-inv-into bij-fix-punctured-function inv-fix-punctured-function)

lemma fst-puncture-function[simp]: ‹fst (puncture-function x H) = H x›
apply transfer by simp

2.1 apply-every

Analogue to classical λM u f x. if x ∈ M then u x (f x) else f x.
Note that the definition only makes sense when M is finite. In fact, a definition that works for
infinite M is impossible as the following example shows: Let H denote the Hadamard matrix.
Let M = UNIV. Then, by symmetry, a meaningful definition of apply-every would have that
apply-every M H (ket (λ-. 0)) would be a vector in (nat ⇒ bit) ell2 with all coefficients equal.
But the only such vector is 0. But a meaningful definition should not map ket (λ-. 0) to 0.
definition apply-every where ‹apply-every M U = (if finite M then Finite-Set.fold (λx a. function-at
x (U x) oCL a) id-cblinfun M else 0)›

lemma apply-every-empty[simp]: ‹apply-every {} U = id-cblinfun›
by (simp add: apply-every-def)

interpretation apply-every-aux: comp-fun-commute ‹(λx. (oCL) (function-at x (U x)))›
apply standard
apply (rule ext)
apply (case-tac ‹x=y›)
by (auto simp flip: cblinfun-compose-assoc swap-registers-left)

lemma apply-every-unitary: ‹unitary (apply-every M U)› if ‹finite M › and [simp]: ‹
∧

x. x∈M =⇒
unitary (U x)›
proof −

show ?thesis
using that

proof induction
case empty

30

then show ?case
by simp

next
case (insert x F)
then have ∗: ‹apply-every (insert x F) U = function-at x (U x) oCL apply-every F U ›

by (simp add: apply-every-def)
show ?case

by (simp add: ∗ register-unitary insert)
qed

qed

lemma apply-every-comm: ‹apply-every M U oCL V = V oCL apply-every M U ›
if ‹finite M › and ‹

∧
x. x∈M =⇒ function-at x (U x) oCL V = V oCL function-at x (U x)›

unfolding apply-every-def using that
proof induction

case empty
show ?case

by simp
next

case (insert x F)
then show ?case

apply (simp add: insert cblinfun-compose-assoc)
by (simp flip: cblinfun-compose-assoc insert.prems)

qed

lemma apply-every-infinite: ‹apply-every M U = 0 › if ‹infinite M ›
using that by (simp add: apply-every-def)

lemma apply-every-split: ‹apply-every M U oCL apply-every N U = apply-every (M ∪ N) U › if ‹M ∩
N = {}› for M N U
proof −

wlog finiteM : ‹finite M ›
using negation
by (simp add: apply-every-infinite)

wlog finiteN : ‹finite N › keeping finiteM
using negation
by (simp add: apply-every-infinite)

define f :: ‹ ′a ⇒ (′a ⇒ ′b) update ⇒ (′a ⇒ ′b) update› where ‹f x = (oCL) (function-at x (U x))›
for x

define fM fN where ‹fM = Finite-Set.fold f id-cblinfun M › and ‹fN = Finite-Set.fold f id-cblinfun
N ›

have ‹apply-every (M ∪ N) U = apply-every (N ∪ M) U ›
by (simp add: Un-commute)

also have ‹. . . = Finite-Set.fold f (Finite-Set.fold f id-cblinfun N) M ›
unfolding apply-every-def
apply (subst apply-every-aux.fold-set-union-disj)
using finiteM finiteN that by (auto simp add: f-def [abs-def])

also have ‹. . . = fM oCL fN ›
unfolding fM-def fN-def [symmetric]
using finiteM
apply (induction M)
by (auto simp add: f-def [abs-def] cblinfun-compose-assoc)

also have ‹. . . = apply-every M U oCL apply-every N U ›
by (simp add: apply-every-def fN-def fM-def f-def [abs-def] finiteN finiteM)

31

finally show ?thesis
by simp

qed

lemma apply-every-single[simp]: ‹apply-every {x} U = function-at x (U x)›
by (simp add: apply-every-def)

lemma apply-every-insert: ‹apply-every (insert x M) U = function-at x (U x) oCL apply-every M U ›
if ‹x /∈ M › and ‹finite M ›

using that by (simp add: apply-every-def)

lemma apply-every-mult: ‹apply-every M U oCL apply-every M V = apply-every M (λx. U x oCL V x)›
proof (induction rule:infinite-finite-induct)

case (infinite M)
then show ?case

by (simp add: apply-every-infinite)
next

case empty
show ?case

by simp
next

case (insert x F)
have ‹apply-every (insert x F) U oCL apply-every (insert x F) V

= function-at x (U x) oCL (apply-every F U oCL function-at x (V x)) oCL apply-every F V ›
using insert by (simp add: apply-every-insert cblinfun-compose-assoc)

also have ‹. . . = (function-at x (U x) oCL function-at x (V x)) oCL (apply-every F U oCL apply-every
F V)›

apply (subst apply-every-comm)
apply (fact insert)

using insert apply (metis (no-types, lifting) compatible-function-at swap-registers)
by (simp add: cblinfun-compose-assoc)

also have ‹. . . = (function-at x (U x oCL V x)) oCL (apply-every F U oCL apply-every F V)›
by (simp add: register-mult)

also have ‹. . . = (function-at x (U x oCL V x)) oCL (apply-every F (λx. U x oCL V x))›
using insert.IH by presburger

also have ‹. . . = (apply-every (insert x F) (λx. U x oCL V x))›
using insert.hyps by (simp add: apply-every-insert)

finally show ?case
by −

qed

lemma apply-every-id[simp]: ‹apply-every M (λ-. id-cblinfun) = id-cblinfun› if ‹finite M ›
using that apply induction
by (auto simp: apply-every-insert)

lemma apply-every-function-at-comm:
assumes ‹x /∈ M ›
shows ‹function-at x U oCL apply-every M f = apply-every M f oCL function-at x U ›
using assms apply (induction rule: infinite-finite-induct)

apply (simp add: apply-every-infinite)
apply simp

apply (simp add: apply-every-insert function-at-comm[where x=x]
flip: cblinfun-compose-assoc)

by (simp add: cblinfun-compose-assoc)

32

lemma apply-every-adj: ‹(apply-every M f)∗ = apply-every M (λi. (f i)∗)›
apply (induction rule: infinite-finite-induct)

apply (simp add: apply-every-infinite)
apply simp

by (simp add: apply-every-insert apply-every-function-at-comm register-adjoint)

end

3 Invariant-Preservation Preservation of invariants under queries
theory Invariant-Preservation

imports Function-At Misc-Compressed-Oracle
begin

hide-const (open) Order .top
no-notation Order .bottom (⊥ı)
unbundle no m-inv-syntax
unbundle lattice-syntax

3.1 Invariants
definition ‹preserves U I J ε ←→ ε ≥ 0 ∧ (∀ψ∈space-as-set I . norm (U ∗V ψ − Proj J ∗V U ∗V ψ)
≤ ε ∗ norm ψ)›

for U :: ‹ ′a::chilbert-space ⇒CL
′b::chilbert-space›

lemma preserves-def-closure:
assumes ‹space-as-set I = closure I ′›
shows ‹preserves U I J ε ←→ ε ≥ 0 ∧ (∀ψ∈I ′. norm (U ∗V ψ − Proj J ∗V U ∗V ψ) ≤ ε ∗ norm

ψ)›
proof (rule iffI ; (elim conjE)?)

show ‹preserves U I J ε =⇒ 0 ≤ ε ∧ (∀ψ∈I ′. norm (U ∗V ψ − Proj J ∗V U ∗V ψ) ≤ ε ∗ norm ψ)›
by (metis assms closure-subset in-mono preserves-def)

show ‹preserves U I J ε›
if ‹0 ≤ ε› and bound: ‹(∀ψ∈I ′. norm (U ∗V ψ − Proj J ∗V U ∗V ψ) ≤ ε ∗ norm ψ)›

proof (unfold preserves-def , intro conjI ballI)
from that show ‹ε ≥ 0 › by simp
fix ψ assume ‹ψ ∈ space-as-set I ›
with assms have ‹ψ ∈ closure I ′›

by simp
then obtain ϕ where ‹ϕ −−−−→ ψ› and ‹ϕ n ∈ I ′› for n

using closure-sequential by blast
define f where ‹f ξ = ε ∗ norm ξ − norm (U ∗V ξ − Proj J ∗V U ∗V ξ)› for ξ
with ‹ϕ - ∈ I ′› bound have bound ′: ‹f (ϕ n) ≥ 0 › for n

by simp
have ‹continuous-on UNIV f ›

unfolding f-def
by (intro continuous-intros)

then have ‹(λn. f (ϕ n)) −−−−→ f ψ›
using ‹ϕ −−−−→ ψ› apply (rule continuous-on-tendsto-compose[where s=UNIV and f =f])
by auto

with bound ′ have ‹f ψ ≥ 0 ›
by (simp add: Lim-bounded2)

then show ‹norm (U ∗V ψ − Proj J ∗V U ∗V ψ) ≤ ε ∗ norm ψ›
by (simp add: f-def)

qed

33

qed

lemma preservesI-closure:
assumes ‹ε ≥ 0 ›
assumes closure: ‹space-as-set I ⊆ closure I ′›
assumes ‹csubspace I ′›
assumes bound: ‹

∧
ψ. ψ ∈ I ′ =⇒ norm ψ = 1 =⇒ norm (U ∗V ψ − Proj J ∗V U ∗V ψ) ≤ ε›

shows ‹preserves U I J ε›
proof −

have ∗: ‹space-as-set (ccspan I ′) = closure I ′›
by (metis assms(3) ccspan.rep-eq complex-vector .span-eq-iff)

have ‹preserves U (ccspan I ′) J ε›
proof (unfold preserves-def-closure[OF ∗], intro conjI ballI)

from assms show ‹ε ≥ 0 › by simp

fix ψ assume ψI : ‹ψ ∈ I ′›
show ‹norm (U ∗V ψ − Proj J ∗V U ∗V ψ) ≤ ε ∗ norm ψ›
proof (cases ‹ψ = 0 ›)

case True
then show ?thesis by auto

next
case False
then have ‹norm ψ > 0 ›

by simp
define ϕ where ‹ϕ = ψ /C norm ψ›
from ψI have ‹ϕ ∈ I ′›

by (simp add: ϕ-def ‹csubspace I ′› complex-vector .subspace-scale)
moreover from False have ‹norm ϕ = 1 ›

by (simp add: ϕ-def norm-inverse)
ultimately have ‹norm (U ∗V ϕ − Proj J ∗V U ∗V ϕ) ≤ ε›

by (rule bound)
then have ‹norm (U ∗V ψ − Proj J ∗V U ∗V ψ) / norm ψ ≤ ε›

unfolding ϕ-def
by (auto simp flip: scaleC-diff-right

simp add: norm-inverse divide-inverse-commute cblinfun.scaleC-right)
with ‹norm ψ > 0 › show ?thesis

by (simp add: divide-le-eq)
qed

qed
then show ‹preserves U I J ε›

by (smt (verit) ∗ closure in-mono preserves-def)
qed

lemma preservesI :
assumes ‹ε ≥ 0 ›
assumes ‹

∧
ψ. ψ ∈ space-as-set I =⇒ norm ψ = 1 =⇒ norm (U ∗V ψ − Proj J ∗V U ∗V ψ) ≤ ε›

shows ‹preserves U I J ε›
apply (rule preservesI-closure[where I ′=‹space-as-set I ›])
using assms by auto

lemma preservesI ′:
assumes ‹ε ≥ 0 ›
assumes ‹

∧
ψ. ψ ∈ space-as-set I =⇒ norm ψ = 1 =⇒ norm (Proj (−J) ∗V U ∗V ψ) ≤ ε›

shows ‹preserves U I J ε›

34

using ‹ε≥0 › apply (rule preservesI)
apply (frule assms(2))
by (simp-all add: Proj-ortho-compl cblinfun.diff-left)

lemma preserves-onorm: ‹preserves U I J ε ←→ norm ((id-cblinfun − Proj J) oCL U oCL Proj I) ≤
ε›
proof (rule iffI)

assume pres: ‹preserves U I J ε›
show ‹norm ((id-cblinfun − Proj J) oCL U oCL Proj I) ≤ ε›
proof (rule norm-cblinfun-bound)

from pres show ‹ε ≥ 0 ›
by (simp add: preserves-def)

fix ψ
define ϕ where ‹ϕ = Proj I ∗V ψ›
have normϕ: ‹norm ϕ ≤ norm ψ›

unfolding ϕ-def apply (rule is-Proj-reduces-norm) by simp

have ‹norm (((id-cblinfun − Proj J) oCL U oCL Proj I) ∗V ψ) = norm (U ∗V ϕ − Proj J ∗V U
∗V ϕ)›

unfolding ϕ-def by (simp add: cblinfun.diff-left)
also from pres have ‹. . . ≤ ε ∗ norm ϕ›

by (metis Proj-range ϕ-def cblinfun-apply-in-image preserves-def)
also have ‹. . . ≤ ε ∗ norm ψ›

by (simp add: ‹0 ≤ ε› mult-left-mono normϕ)
finally show ‹norm (((id-cblinfun − Proj J) oCL U oCL Proj I) ∗V ψ) ≤ ε ∗ norm ψ›

by −
qed

next
assume norm: ‹norm ((id-cblinfun − Proj J) oCL U oCL Proj I) ≤ ε›
show ‹preserves U I J ε›
proof (rule preservesI)

show ‹ε ≥ 0 ›
using norm norm-ge-zero order-trans by blast

fix ψ assume [simp]: ‹ψ ∈ space-as-set I › and [simp]: ‹norm ψ = 1 ›
have ‹norm (U ∗V ψ − Proj J ∗V U ∗V ψ) = norm ((id-cblinfun − Proj J) ∗V U ∗V ψ)›

by (simp add: cblinfun.diff-left)
also have ‹. . . = norm ((id-cblinfun − Proj J) ∗V U ∗V Proj I ∗V ψ)›

by (simp add: Proj-fixes-image)
also have ‹. . . = norm (((id-cblinfun − Proj J) oCL U oCL Proj I) ∗V ψ)›

by simp
also have ‹. . . ≤ norm ((id-cblinfun − Proj J) oCL U oCL Proj I) ∗ norm ψ›

using norm-cblinfun by blast
also have ‹. . . ≤ ε›

by (simp add: norm)
finally show ‹norm (U ∗V ψ − Proj J ∗V U ∗V ψ) ≤ ε›

by −
qed

qed

lemma preserves-cong:
assumes ‹

∧
ψ. ψ ∈ space-as-set I =⇒ U ∗V ψ = U ′ ∗V ψ›

shows ‹preserves U I J ε ←→ preserves U ′ I J ε›
by (simp add: assms preserves-def)

lemma preserves-mono:

35

assumes ‹preserves U I J ε›
assumes ‹I ≥ I ′›
assumes ‹J ≤ J ′›
assumes ‹ε ≤ ε ′›
shows ‹preserves U I ′ J ′ ε ′›

proof (rule preservesI)
show ‹ε ′ ≥ 0 ›

by (smt (verit) assms(1) assms(4) preserves-def)
fix ψ assume ‹ψ ∈ space-as-set I ′›
then have ‹ψ ∈ space-as-set I ›

using ‹I ≥ I ′› less-eq-ccsubspace.rep-eq by blast
assume [simp]: ‹norm ψ = 1 ›

have ‹norm (U ∗V ψ − Proj J ′ ∗V U ∗V ψ) = norm ((id-cblinfun − Proj J ′) ∗V U ∗V ψ)›
by (simp add: cblinfun.diff-left)

also have ‹. . . ≤ norm ((id-cblinfun − Proj J) ∗V U ∗V ψ)›
proof −

from ‹J ≤ J ′›
have ‹id-cblinfun − Proj J ≥ id-cblinfun − Proj J ′›

by (simp add: Proj-mono)
then show ?thesis
by (metis (no-types, lifting) Proj-fixes-image Proj-ortho-compl Proj-range adj-Proj cblinfun-apply-in-image

cdot-square-norm cinner-adj-right cnorm-ge-square less-eq-cblinfun-def)
qed
also have ‹. . . = norm (U ∗V ψ − Proj J ∗V U ∗V ψ)›

by (simp add: cblinfun.diff-left)
also from ‹ψ ∈ space-as-set I › ‹preserves U I J ε›
have ‹. . . ≤ ε›

by (auto simp: preserves-def)
also have ‹. . . ≤ ε ′›

using ‹ε ≤ ε ′›
by (simp add: mult-right-mono)

finally show ‹norm (U ∗V ψ − Proj J ′ ∗V U ∗V ψ) ≤ ε ′›
by simp

qed

The next lemma allows us to decompose the preservation of an invariant into the preservation
of simpler invariants. The main requirement is that the simpler invariants are all orthogonal.
This is in particular useful when one wants to show the preservation of an invariant that refers
to the oracle input register and other unrelated registers. One can then decompose the invariant
into many invariants that fix the input and unrelated registers to specific computational basis
states. (I.e., wlog the input register is in a state of the form ket x.
Unfortunately, we have a proof only in the case of finitely many simpler invariants. This
excludes, e.g., infinite oracle input registers etc. (e.g., quantum ints, quantum lists).
lemma invariant-splitting:

fixes X :: ‹ ′i set›
fixes I S :: ‹ ′i ⇒ ′a::chilbert-space ccsubspace›
fixes J :: ‹ ′i ⇒ ′b::chilbert-space ccsubspace›
assumes ortho-S : ‹

∧
x y. x∈X =⇒ y∈X =⇒ x 6= y =⇒ orthogonal-spaces (S x) (S y)›

assumes ortho-S ′: ‹
∧

x y. x∈X =⇒ y∈X =⇒ x 6= y =⇒ orthogonal-spaces (S ′ x) (S ′ y)›
assumes IS : ‹

∧
x. x∈X =⇒ I x ≤ S x›

assumes JS ′: ‹
∧

x. x∈X =⇒ J x ≤ S ′ x›
assumes USS ′: ‹

∧
x. x∈X =⇒ U ∗S S x ≤ S ′ x›

assumes II : ‹II ≤ (
∑

x∈X . I x)›

36

assumes JJ : ‹JJ ≥ (
∑

x∈X . J x)›
assumes ε0 : ‹ε ≥ 0 ›
assumes [iff]: ‹finite X›
assumes pres: ‹

∧
x. x∈X =⇒ preserves U (I x) (J x) ε›

shows ‹preserves U II JJ ε›
proof −

have ‹preserves U (
∑

x∈X . I x) (
∑

x∈X . J x) ε›
proof (rule preservesI-closure[where I ′=‹(

∑
x∈X . space-as-set (I x))›])

from ε0 show ‹ε ≥ 0 › by −

show ‹csubspace (
∑

x∈X . space-as-set (I x))›
by (simp add: csubspace-set-sum)

show ‹space-as-set (sum I X) ⊆ closure (
∑

x∈X . space-as-set (I x))›
apply (rule eq-refl)
apply (use ‹finite X› in induction)
by (auto simp: sup-ccsubspace.rep-eq simp flip: closed-sum-def)

fix ψ assume ‹ψ ∈ (
∑

x∈X . space-as-set (I x))›
then obtain ψ ′ where ψ ′I : ‹ψ ′ x ∈ space-as-set (I x)› and ψ ′sum: ‹ψ = (

∑
x∈X . ψ ′ x)› for x

proof (atomize-elim, use ‹finite X› in ‹induction arbitrary: ψ›)
case empty
then show ?case

by (auto intro!: exI [where x=‹λ-. 0 ›])
next

case (insert x X)
have aux: ‹ψ ∈ space-as-set (I x) + (

∑
x∈X . space-as-set (I x)) =⇒

∃ψ0 ψ1 . ψ = ψ0 + ψ1 ∧ ψ0 ∈ (
∑

x∈X . space-as-set (I x)) ∧ ψ1 ∈ space-as-set (I x)›
by (metis add.commute set-plus-elim)

from insert.prems
obtain ψ0 ψ1 where ψ-decomp: ‹ψ = ψ0 + ψ1 › and ψ0 : ‹ψ0 ∈ (

∑
x∈X . space-as-set (I x))›

and ψ1 : ‹ψ1 ∈ space-as-set (I x)›
apply atomize-elim by (auto intro!: aux simp: insert.hyps)

from insert.IH [OF ψ0]
obtain ψ0 ′ where ψ0 ′I : ‹ψ0 ′ x ∈ space-as-set (I x)› and ψ0 ′sum: ‹ψ0 = sum ψ0 ′ X› for x

by auto
define ψ ′ where ‹ψ ′ = ψ0 ′(x := ψ1)›
have ‹ψ ′ x ∈ space-as-set (I x)› for x

by (simp add: ψ ′-def ψ0 ′I ψ1)
moreover have ‹ψ = sum ψ ′ (insert x X)›

by (metis ψ ′-def ψ0 ′sum ψ-decomp add.commute fun-upd-apply insert.hyps(1) insert.hyps(2)
sum.cong sum.insert)

ultimately show ?case
by auto

qed

assume [simp]: ‹norm ψ = 1 ›

define η ′ η where ‹η ′ x = U ∗V (ψ ′ x) − Proj (J x) ∗V U ∗V (ψ ′ x)› and ‹η = (
∑

x∈X . η ′ x)›
for x

with pres have η ′bound: ‹norm (η ′ x) ≤ ε ∗ norm (ψ ′ x)› if ‹x∈X› for x
using that by (simp add: ψ ′I preserves-def)

define US where ‹US x = U ∗S S x› for x

have ‹ψ ′ x ∈ space-as-set (S x)› if ‹x∈X› for x
using that ψ ′I IS less-eq-ccsubspace.rep-eq by blast

37

then have Uψ ′S ′: ‹U ∗V ψ ′ x ∈ space-as-set (S ′ x)› if ‹x∈X› for x
using USS ′[OF that] that
by (metis cblinfun-image.rep-eq closure-subset imageI in-mono less-eq-ccsubspace.rep-eq)

have η ′S ′: ‹η ′ x ∈ space-as-set (S ′ x)› if ‹x∈X› for x
proof −

have ‹Proj (J x) ∗V U ∗V (ψ ′ x) ∈ space-as-set (J x)›
by (metis Proj-range cblinfun-apply-in-image)

also have ‹. . . ⊆ space-as-set (S ′ x)›
unfolding US-def less-eq-ccsubspace.rep-eq[symmetric] using JS ′ that by auto

finally have ∗: ‹Proj (J x) ∗V U ∗V (ψ ′ x) ∈ space-as-set (S ′ x)›
by −

with Uψ ′S ′[OF that]
show ‹η ′ x ∈ space-as-set (S ′ x)›

unfolding η ′-def
by (metis Proj-fixes-image Proj-range cblinfun.diff-right cblinfun-apply-in-image)

qed
from ortho-S ′ USS ′

have ortho-US : ‹orthogonal-spaces (US x) (US y)› if ‹x 6= y› and ‹x∈X› and ‹y∈X› for x y
by (metis US-def in-mono less-eq-ccsubspace.rep-eq orthogonal-spaces-def

that(1 ,2 ,3))
have ortho-I : ‹orthogonal-spaces (I x) (I y)› if ‹x 6= y› and ‹x∈X› and ‹y∈X› for x y

by (meson IS less-eq-ccsubspace.rep-eq ortho-S orthogonal-spaces-def subsetD that)
have ortho-J : ‹orthogonal-spaces (J x) (J y)› if ‹x 6= y› and ‹x∈X› and ‹y∈X› for x y

using JS ′ ortho-S ′ that
by (meson less-eq-ccsubspace.rep-eq orthogonal-spaces-def subsetD)

from ortho-S ′ η ′S ′

have η ′ortho: ‹is-orthogonal (η ′ x) (η ′ y)› if ‹x 6= y› and ‹x∈X› and ‹y∈X› for x y
by (meson orthogonal-spaces-def that)

have ψ ′ortho: ‹is-orthogonal (ψ ′ x) (ψ ′ y)› if ‹x 6= y› and ‹x∈X› and ‹y∈X› for x y
using ψ ′I ortho-I orthogonal-spaces-def that by blast

have η ′2 : ‹η ′ x = U ∗V ψ ′ x − Proj (
∑

x∈X . (J x)) ∗V U ∗V ψ ′ x› if ‹x ∈ X› for x
proof −

have ‹Proj (J y) ∗V U ∗V ψ ′ x = 0 › if ‹x 6= y› and ‹y ∈ X› for y
proof −

have ‹U ∗V ψ ′ x ∈ space-as-set (S ′ x)›
using ‹x ∈ X› by (rule Uψ ′S ′)

moreover have ‹orthogonal-spaces (S ′ x) (J y)›
using JS ′[OF ‹y∈X›] ortho-S ′[OF ‹x∈X› ‹y∈X› ‹x 6=y›]
by (meson less-eq-ccsubspace.rep-eq orthogonal-spaces-def subset-eq)

ultimately show ?thesis
by (metis (no-types, opaque-lifting) Proj-fixes-image Proj-ortho-compl Proj-range Set.basic-monos(7)

cancel-comm-monoid-add-class.diff-cancel cblinfun.diff-left cblinfun.diff-right cblinfun-apply-in-image id-cblinfun.rep-eq
less-eq-ccsubspace.rep-eq orthogonal-spaces-leq-compl)

qed
then have ‹η ′ x = U ∗V ψ ′ x − Proj (J x) ∗V U ∗V ψ ′ x − (

∑
y∈X−{x}. Proj (J y) ∗V U ∗V

ψ ′ x)›
unfolding η ′-def

by (metis (no-types, lifting) DiffE Diff-insert-absorb diff-0-right mk-disjoint-insert sum.not-neutral-contains-not-neutral)
also have ‹. . . = U ∗V ψ ′ x − (

∑
y∈X . Proj (J y) ∗V U ∗V ψ ′ x)›

apply (subst (2) asm-rl[of ‹X = {x} ∪ (X−{x})›])
apply (simp add: insert-absorb ‹x ∈ X›)

apply (subst sum.union-disjoint)

38

by auto
also have ‹. . . = U ∗V ψ ′ x − (

∑
y∈X . Proj (J y)) ∗V U ∗V ψ ′ x›

by (simp add: cblinfun.sum-left)
also have ‹. . . = U ∗V ψ ′ x − Proj (

∑
y∈X . J y) ∗V U ∗V ψ ′ x›

apply (subst Proj-sum-spaces)
using ortho-J by auto

finally show ?thesis
by −

qed

have ‹norm (U ∗V ψ − Proj (sum J X) ∗V U ∗V ψ) = norm (
∑

x∈X . U ∗V ψ ′ x − Proj (sum J
X) ∗V U ∗V ψ ′ x)›

by (simp add: ψ ′sum sum-subtractf cblinfun.sum-right)
also from η ′2 have ‹. . . = norm (

∑
x∈X . η ′ x)›

by simp
also have ‹. . . = norm η›

using η-def by blast
also have ‹(norm η)2 = (

∑
x∈X . (norm (η ′ x))2)›

unfolding η-def
apply (rule pythagorean-theorem-sum)
using η ′ortho by auto

also have ‹. . . ≤ (
∑

x∈X . (ε ∗ norm (ψ ′ x))2)›
apply (rule sum-mono)
by (simp add: η ′bound power-mono)

also have ‹. . . ≤ ε2 ∗ (
∑

x∈X . (norm (ψ ′ x))2)›
by (simp add: sum-distrib-left power-mult-distrib)

also have ‹. . . = ε2 ∗ (norm ψ)2›
proof −

have aux: ‹a ∈ X =⇒ a ′ ∈ X =⇒ a 6= a ′ =⇒ ψ = sum ψ ′ X =⇒ is-orthogonal (ψ ′ a) (ψ ′ a ′)›
for a a ′

by (meson ψ ′I IS less-eq-ccsubspace.rep-eq ortho-S orthogonal-spaces-def subset-iff)
show ?thesis
apply (subst pythagorean-theorem-sum[symmetric])

using ψ ′sum aux by auto
qed
finally show ‹norm (U ∗V ψ − Proj (sum J X) ∗V U ∗V ψ) ≤ ε›

using ‹ε≥0 › ‹norm ψ = 1 › by (auto simp flip: power-mult-distrib)
qed
then show ?thesis

apply (rule preserves-mono)
using assms by auto

qed

An invariant that is consists of all states that are the superposition of computational basis
states.
Useful for representing a classically formulated condition (e.g., x 6= 0) as an invariant (ket-invariant
{x. x 6= 0}).
definition ‹ket-invariant M = ccspan (ket ‘ M)›

lemma ket-invariant-UNIV [simp]: ‹ket-invariant UNIV = >›
unfolding ket-invariant-def by simp

lemma ket-invariant-empty[simp]: ‹ket-invariant {} = ⊥›
unfolding ket-invariant-def by simp

39

lemma ket-invariant-Rep-ell2 : ‹ψ ∈ space-as-set (ket-invariant I) ←→ (∀ i∈−I . Rep-ell2 ψ i = 0)›
by (simp add: ket-invariant-def space-ccspan-ket)

lemma ket-invariant-compl: ‹ket-invariant (−M) = − ket-invariant M ›
proof −

have ‹ket-invariant (−M) ≤ − ket-invariant M › for M :: ‹ ′a set›
unfolding ket-invariant-def
apply (rule ccspan-leq-ortho-ccspan)
by auto

moreover have ‹− ket-invariant M ≤ ket-invariant (−M)›
proof (rule ccsubspace-leI-unit)

fix ψ
assume ‹ψ ∈ space-as-set (− ket-invariant M)›
then have ‹is-orthogonal ψ ϕ› if ‹ϕ ∈ space-as-set (ket-invariant M)› for ϕ

using that
by (auto simp: uminus-ccsubspace.rep-eq orthogonal-complement-def)

then have ‹is-orthogonal (ket m) ψ› if ‹m ∈ M › for m
by (simp add: ccspan-superset ′ is-orthogonal-sym ket-invariant-def that)

then have ‹Rep-ell2 ψ m = 0 › if ‹m ∈ M › for m
by (simp add: cinner-ket-left that)

then show ‹ψ ∈ space-as-set (ket-invariant (− M))›
unfolding ket-invariant-Rep-ell2
by simp

qed
ultimately show ?thesis

by (rule order .antisym)
qed

lemma ket-invariant-tensor : ‹ket-invariant I ⊗S ket-invariant J = ket-invariant (I × J)›
proof −

have ‹ket-invariant I ⊗S ket-invariant J = ccspan {x ⊗s y |x y. x ∈ ket ‘ I ∧ y ∈ ket ‘ J}›
by (simp add: tensor-ccsubspace-ccspan ket-invariant-def)

also have ‹. . . = ccspan {ket (x, y)| x y. x ∈ I ∧ y ∈ J}›
by (auto intro!: arg-cong[where f =ccspan] simp flip: tensor-ell2-ket)

also have ‹. . . = ccspan (ket ‘ (I × J))›
by (auto intro!: arg-cong[where f =ccspan])

also have ‹. . . = ket-invariant (I × J)›
by (simp add: ket-invariant-def)

finally show ?thesis
by −

qed

abbreviation ‹preserves-ket U I J ε ≡ preserves U (ket-invariant I) (ket-invariant J) ε›

lemma orthogonal-spaces-ket[simp]: ‹orthogonal-spaces (ket-invariant M) (ket-invariant N) ←→ M ∩
N = {}› for M N

apply rule
apply (simp add: ket-invariant-def orthogonal-spaces-def)
apply (metis Int-emptyI ccspan-superset imageI inf-commute ket-invariant-def orthogonal-ket sub-

set-iff)
apply (simp add: orthogonal-spaces-leq-compl ket-invariant-def)
by (smt (verit, best) ccspan-leq-ortho-ccspan disjoint-iff-not-equal imageE orthogonal-ket)

lemma ket-invariant-le[simp]: ‹ket-invariant M ≤ ket-invariant N ←→ M ⊆ N › for M N

40

proof −
have ‹x ∈ N ›

if ‹x ∈ M › and ∗: ‹
∧
ψ. (∀ y. y /∈ M −→ Rep-ell2 ψ y = 0) −→ (∀ y. y /∈ N −→ Rep-ell2 ψ y =

0)› for x
using ∗[of ‹ket x›]
using ‹x ∈ M › by (auto simp: ket.rep-eq)

then show ?thesis
by (auto simp add: less-eq-ccsubspace.rep-eq subset-eq Ball-def ket-invariant-Rep-ell2)

qed

lemma ket-invariant-mono:
assumes ‹I ⊆ J ›
shows ‹ket-invariant I ≤ ket-invariant J ›
using [[simp-trace]]
by (simp add: assms)

lemma ket-invariant-Inf : ‹ket-invariant (Inf M) = Inf (ket-invariant ‘ M)›
proof (rule order .antisym)

show ‹ket-invariant (
⋂

M) ≤ Inf (ket-invariant ‘ M)›
by (simp add: Inf-lower le-Inf-iff)

show ‹Inf (ket-invariant ‘ M) ≤ ket-invariant (
⋂

M)›
proof (rule ccsubspace-leI-unit)

fix ψ
assume ‹ψ ∈ space-as-set (Inf (ket-invariant ‘ M))›
then have ‹ψ ∈ space-as-set (ket-invariant N)› if ‹N ∈ M › for N

by (metis Inf-lower imageI in-mono less-eq-ccsubspace.rep-eq that)
then have ‹Rep-ell2 ψ n = 0 › if ‹n /∈ N › and ‹N ∈ M › for n N

using that by (auto simp: ket-invariant-Rep-ell2)
then have ‹Rep-ell2 ψ n = 0 › if ‹n /∈ Inf M › for n

using that by blast
then show ‹ψ ∈ space-as-set (ket-invariant (

⋂
M))›

by (meson ComplD ket-invariant-Rep-ell2)
qed

qed

lemma ket-invariant-INF : ‹ket-invariant (INF x∈M . f x) = (INF x∈M . ket-invariant (f x))›
by (simp add: image-image ket-invariant-Inf)

lemma ket-invariant-Sup: ‹ket-invariant (Sup M) = Sup (ket-invariant ‘ M)›
proof −

have ‹ket-invariant (Sup M) = ket-invariant (− (Inf (uminus ‘ M)))›
by (subst uminus-Inf , simp)

also have ‹. . . = − ket-invariant (Inf (uminus ‘ M))›
using ket-invariant-compl by blast

also have ‹. . . = − Inf (ket-invariant ‘ uminus ‘ M)›
using ket-invariant-Inf by auto

also have ‹. . . = − Inf (uminus ‘ ket-invariant ‘ M)›
by (metis (no-types, lifting) INF-cong image-image ket-invariant-compl)

also have ‹. . . = Sup (ket-invariant ‘ M)›
apply (subst uminus-Inf)
by (metis (no-types, lifting) SUP-cong image-comp image-image o-apply ortho-involution)

finally show ?thesis
by −

41

qed

lemma ket-invariant-SUP: ‹ket-invariant (SUP x∈M . f x) = (SUP x∈M . ket-invariant (f x))›
by (simp add: image-image ket-invariant-Sup)

lemma ket-invariant-inter : ‹ket-invariant M u ket-invariant N = ket-invariant (M ∩ N)› for M N
using ket-invariant-INF [where M=UNIV and f =‹λx. if x then M else N ›]
by (smt (verit) INF-UNIV-bool-expand)

lemma ket-invariant-union: ‹ket-invariant M t ket-invariant N = ket-invariant (M ∪ N)› for M N
using ket-invariant-SUP[where M=UNIV and f =‹λx. if x then M else N ›]
by (smt (verit) SUP-UNIV-bool-expand)

lemma sum-ket-invariant[simp]:
assumes ‹finite X›
shows ‹(

∑
x∈X . ket-invariant (M x)) = ket-invariant (

⋃
x∈X . M x)›

using assms apply induction
apply auto using ket-invariant-union by blast

lemma ket-invariant-inj[simp]:
‹ket-invariant M = ket-invariant N ←→ M = N › for M N
by (metis dual-order .eq-iff ket-invariant-le)

Given an invariant on the content of a register, this gives the corresponding invariant on the
whole state. Useful for plugging together several invariants on different subsystems.
definition ‹lift-invariant F I = F (Proj I) ∗S >›

lemma lift-invariant-comp:
assumes [simp]: ‹register G›
shows ‹lift-invariant (F o G) = lift-invariant F o lift-invariant G›
by (auto intro!: ext simp: lift-invariant-def Proj-on-own-range register-projector)

lemma lift-invariant-top[simp]: ‹register F =⇒ lift-invariant F > = >›
by (metis Proj-on-own-range ′ cblinfun-compose-id-right id-cblinfun-adjoint lift-invariant-def register-unitary

unitary-id unitary-range)

lemma Proj-lift-invariant: ‹register F =⇒ Proj (lift-invariant F I) = F (Proj I)›
using [[simproc del: Laws-Quantum.compatibility-warn]]
unfolding lift-invariant-def
by (simp add: Proj-on-own-range register-projector)

lemma ket-invariant-image-assoc:
‹ket-invariant ((λ((a, b), c). (a, b, c)) ‘ X) = lift-invariant assoc (ket-invariant X)›

proof −
have ‹ket-invariant ((λ((a, b), c). (a, b, c)) ‘ X) = assoc-ell2 ∗S ket-invariant X›

by (auto intro!: arg-cong[where f =ccspan] image-eqI simp add: ket-invariant-def image-image cblin-
fun-image-ccspan)

also have ‹. . . = lift-invariant assoc (ket-invariant X)›
by (simp add: lift-invariant-def assoc-ell2-sandwich Proj-sandwich)

finally show ?thesis
by −

qed

lemma lift-invariant-inj[simp]: ‹lift-invariant F I = lift-invariant F J ←→ I = J › if [register]: ‹register
F›

42

proof (rule iffI [rotated], simp)
assume asm: ‹lift-invariant F I = lift-invariant F J ›
then have ‹F (Proj I) ∗S > = F (Proj J) ∗S >›

by (simp add: lift-invariant-def)
then have ‹F (Proj I) = F (Proj J)›

by (metis Proj-lift-invariant asm that)
then have ‹Proj I = Proj J ›

by (simp add: register-inj ′)
then show ‹I = J ›

using Proj-inj by blast
qed

lemma lift-invariant-decomp:
fixes U :: ‹- ⇒CL -::chilbert-space›
assumes ‹

∧
ϑ. F ϑ = sandwich U ∗V (ϑ ⊗o id-cblinfun)›

assumes ‹unitary U ›
shows ‹lift-invariant F I = U ∗S (I ⊗S >)›
by (simp add: lift-invariant-def assms Proj-tensor-Proj Proj-sandwich flip: Proj-top)

Invariants are compatible if their projectors commute, i.e., if you can simultaneously measure
them. This can happen if they refer to different parts of the system. (E.g., one talks about
register X, the other about register Y.) But also for example for any ket-invariants.
See lemma preserves-intersect below for a useful consequence.
definition ‹compatible-invariants A B ←→ Proj A oCL Proj B = Proj B oCL Proj A›

lemma compatible-invariants-inter : ‹Proj A oCL Proj B = Proj (A u B)› if ‹compatible-invariants A
B›
proof −

have ‹is-Proj (Proj A oCL Proj B)›
apply (rule is-Proj-I)
apply (metis Proj-idempotent cblinfun-assoc-left(1) compatible-invariants-def that)
by (metis adj-Proj adj-cblinfun-compose compatible-invariants-def that)

have ‹(Proj A oCL Proj B) ∗S > ≤ A›
by (simp add: Proj-image-leq cblinfun-compose-image)

moreover have ‹(Proj A oCL Proj B) ∗S > ≤ B›
using that by (simp add: Proj-image-leq cblinfun-compose-image compatible-invariants-def)

ultimately have leq1 : ‹(Proj A oCL Proj B) ∗S > ≤ A u B›
by auto

have leq2 : ‹A u B ≤ (Proj A oCL Proj B) ∗S >›
proof (rule ccsubspace-leI , rule subsetI)

fix ψ assume ‹ψ ∈ space-as-set (A u B)›
then have ‹Proj A ∗V ψ = ψ› ‹Proj B ∗V ψ = ψ›

by (simp-all add: Proj-fixes-image)
then have ‹ψ = (Proj A oCL Proj B) ∗V ψ›

by simp
also have ‹(Proj A oCL Proj B) ∗V ψ ∈ space-as-set ((Proj A oCL Proj B) ∗S >)›

using cblinfun-apply-in-image by blast
finally show ‹ψ ∈ space-as-set ((Proj A oCL Proj B) ∗S >)›

by −
qed

from leq1 leq2 have ‹(Proj A oCL Proj B) ∗S > = A u B›
using order-class.order-eq-iff by blast

43

with ‹is-Proj (Proj A oCL Proj B)› show ‹Proj A oCL Proj B = Proj (A u B)›
using Proj-on-own-range by force

qed

lemma compatible-invariants-ket[iff]: ‹compatible-invariants (ket-invariant I) (ket-invariant J)›
proof −

have I : ‹Proj (ket-invariant I) = Proj (ket-invariant (I−J)) + Proj (ket-invariant (I∩J))›
apply (subst Proj-sup[symmetric])
by (auto simp add: Un-Diff-Int ket-invariant-union)

have J : ‹Proj (ket-invariant J) = Proj (ket-invariant (J−I)) + Proj (ket-invariant (I∩J))›
apply (subst Proj-sup[symmetric])
by (auto intro!: arg-cong[where f =Proj] simp add: Un-Diff-Int ket-invariant-union)

have ‹Proj (ket-invariant I) oCL Proj (ket-invariant J) = Proj (ket-invariant J) oCL Proj (ket-invariant
I)›

apply (simp add: I J)
by (smt (verit) Diff-disjoint I Int-Diff-disjoint Proj-bot adj-Proj adj-cblinfun-compose cblinfun-compose-add-left

cblinfun-compose-add-right orthogonal-projectors-orthogonal-spaces orthogonal-spaces-ket)
then show ?thesis

by (simp add: compatible-invariants-def)
qed

lemma preserves-intersect:
assumes ‹compatible-invariants J1 J2 ›
assumes pres1 : ‹preserves U I J1 ε1 ›
assumes pres2 : ‹preserves U I J2 ε2 ›
shows ‹preserves U I (J1 u J2) (ε1 + ε2)›

proof (rule preservesI)
show ‹0 ≤ ε1 + ε2 ›

by (meson add-nonneg-nonneg pres1 pres2 preserves-def)

fix ψ assume ‹ψ ∈ space-as-set I › and ‹norm ψ = 1 ›
define ϕ J where ‹ϕ = U ∗V ψ› and ‹J = J1 u J2 ›

note norm-diff-triangle-le[trans]

from pres1
have ‹norm (ϕ − Proj J1 ∗V ϕ) ≤ ε1 ›

by (metis ‹ψ ∈ space-as-set I › ‹norm ψ = 1 › ϕ-def mult-cancel-left1 preserves-def)
also
have ‹norm (ϕ − Proj J2 ∗V ϕ) ≤ ε2 ›

using ‹ψ ∈ space-as-set I › ‹norm ψ = 1 › ϕ-def pres2 preserves-def by force
then have ‹norm (Proj J1 ∗V (ϕ − Proj J2 ∗V ϕ)) ≤ ε2 ›

using Proj-is-Proj is-Proj-reduces-norm order-trans by blast
then have ‹norm (Proj J1 ∗V ϕ − Proj J1 ∗V Proj J2 ∗V ϕ) ≤ ε2 ›

by (simp add: cblinfun.diff-right)
also have ‹Proj J1 ∗V Proj J2 ∗V ϕ = Proj J ∗V ϕ›

by (metis J-def assms(1) cblinfun-apply-cblinfun-compose compatible-invariants-inter)
finally show ‹norm (ϕ − Proj J ∗V ϕ) ≤ ε1 + ε2 ›

by −
qed

lemma preserves-intersect-ket:
assumes ‹preserves-ket U I J1 ε1 ›

44

assumes ‹preserves-ket U I J2 ε2 ›
shows ‹preserves-ket U I (J1 u J2) (ε1 + ε2)›
apply (simp flip: ket-invariant-inter)
using - assms apply (rule preserves-intersect)
by (rule compatible-invariants-ket)

An invariant is compatible with a register intuitively if the invariant only talks about parts of
the quantum state outside the register.
definition ‹compatible-register-invariant F I ←→ (∀A. Proj I oCL F A = F A oCL Proj I)›

for F :: ‹ ′a update ⇒ ′b update›

lemma compatible-register-invariant-top[simp]:
‹compatible-register-invariant F >›
by (simp add: compatible-register-invariant-def)

lemma compatible-register-invariant-bot[simp]:
‹compatible-register-invariant F ⊥›
by (simp add: compatible-register-invariant-def)

lemma compatible-register-invariant-id:
assumes ‹

∧
y. I = UNIV ∨ I = {}›

shows ‹compatible-register-invariant id (ket-invariant I)›
using assms
by (metis compatible-register-invariant-bot compatible-register-invariant-top ket-invariant-UNIV ket-invariant-empty)

lemma compatible-register-invariant-compatible-register :
assumes ‹compatible F G›
shows ‹compatible-register-invariant F (lift-invariant G I)›
unfolding compatible-register-invariant-def lift-invariant-def
by (metis Proj-is-Proj Proj-on-own-range assms compatible-def register-projector)

lemma compatible-register-invariant-chain[simp]:
‹compatible-register-invariant (F o G) (lift-invariant F I) ←→ compatible-register-invariant G I › if

[simp]: ‹register F›
by (simp add: compatible-register-invariant-def Proj-lift-invariant register-mult register-inj[THEN inj-eq])

Allows to decompose the preservation of an invariant into a part that is preserved inside a
register, and a part outside of it.
lemma preserves-register :

fixes F :: ‹ ′a update ⇒ ′b update›
assumes pres: ‹preserves U ′ I ′ J ′ ε›
assumes reg[register]: ‹register F›
assumes compat: ‹compatible-register-invariant F K ›
assumes FU ′: ‹∀ψ∈space-as-set I . F U ′ ∗V ψ = U ∗V ψ›
assumes FI ′-I : ‹lift-invariant F I ′ ≥ I ›
assumes KI : ‹K ≥ I ›
assumes FJ ′K-I : ‹lift-invariant F J ′ u K ≤ J ›
shows ‹preserves U I J ε›

proof −
define PI ′ PJ ′ where ‹PI ′ = Proj I ′› and ‹PJ ′ = Proj J ′›
have 1 : ‹preserves (F U ′) (lift-invariant F I ′) (lift-invariant F J ′) ε›
proof (unfold preserves-onorm)

have ‹norm ((id-cblinfun − Proj (lift-invariant F J ′)) oCL F U ′ oCL Proj (lift-invariant F I ′))
= norm ((id-cblinfun − PJ ′) oCL U ′ oCL PI ′)› (is ‹?lhs = -›)

45

by (smt (verit, best) PI ′-def PJ ′-def Proj-lift-invariant reg register-minus register-mult register-norm
register-of-id)

also from pres have ‹. . . ≤ ε›
by (simp add: preserves-onorm PJ ′-def PI ′-def)

finally show ‹?lhs ≤ ε›
by −

qed

from compat
have 2 : ‹preserves (F U ′) K K 0 ›
by (simp add: preserves-onorm cblinfun-compose-assoc cblinfun-compose-minus-left compatible-register-invariant-def)

with 1 compat
have ‹preserves (F U ′) (lift-invariant F I ′ u K) (lift-invariant F J ′ u K) ε›

apply (subst asm-rl[of ‹ε = ε + 0 ›], simp)
apply (rule preserves-intersect)

by (auto simp add: compatible-invariants-def compatible-register-invariant-def preserves-mono Proj-lift-invariant)

then have ‹preserves (F U ′) I J ε›
apply (rule preserves-mono)
using FI ′-I FJ ′K-I KI by auto

then show ?thesis
apply (rule preserves-cong[THEN iffD1 , rotated])
using FU ′ by auto

qed

lemma preserves-top[simp]: ‹ε ≥ 0 =⇒ preserves U I > ε›
unfolding preserves-onorm by simp

lemma preserves-bot[simp]: ‹ε ≥ 0 =⇒ preserves U ⊥ J ε›
unfolding preserves-onorm by simp

lemma preserves-0 [simp]: ‹ε ≥ 0 =⇒ preserves 0 I J ε›
unfolding preserves-onorm by simp

Tensor product of two invariants: The invariant that requires the first part of the system to
satisfy invariant I and the second to satisfy J.
definition ‹tensor-invariant I J = ccspan {x ⊗s y | x y. x ∈ space-as-set I ∧ y ∈ space-as-set J}›

lemma tensor-invariant-via-Proj: ‹tensor-invariant I J = (Proj I ⊗o Proj J) ∗S >›
proof (rule Proj-inj, rule tensor-ell2-extensionality, rename-tac ψ ϕ)

fix ψ ϕ
define ψ1 ψ2 where ‹ψ1 = Proj I ψ› and ‹ψ2 = Proj (−I) ψ›
have ‹ψ = ψ1 + ψ2 ›

by (simp add: ψ1-def ψ2-def Proj-ortho-compl minus-cblinfun.rep-eq)
have ψ1I : ‹ψ1 ∈ space-as-set I ›

by (metis Proj-idempotent ψ1-def cblinfun-apply-cblinfun-compose norm-Proj-apply)

define ϕ1 ϕ2 where ‹ϕ1 = Proj J ϕ› and ‹ϕ2 = Proj (−J) ϕ›
have ‹ϕ = ϕ1 + ϕ2 ›

by (simp add: ϕ1-def ϕ2-def Proj-ortho-compl minus-cblinfun.rep-eq)
have ϕ1J : ‹ϕ1 ∈ space-as-set J ›

by (metis Proj-idempotent ϕ1-def cblinfun-apply-cblinfun-compose norm-Proj-apply)

have aux: ‹xa ∈ space-as-set I =⇒ y ∈ space-as-set J =⇒ ϕ ·C y 6= 0 =⇒ is-orthogonal ψ2 xa› for

46

xa y
by (metis Proj-fixes-image ‹ψ = ψ1 + ψ2 › ψ1I ψ1-def add-left-imp-eq cblinfun.real.add-right ker-

nel-Proj kernel-memberI orthogonal-complement-orthoI pth-d uminus-ccsubspace.rep-eq)
have ‹ψ2 ⊗s ϕ ∈ space-as-set (− tensor-invariant I J)›
by (auto intro!: aux orthogonal-complementI simp add: uminus-ccsubspace.rep-eq tensor-invariant-def

ccspan.rep-eq
simp flip: orthogonal-complement-of-closure orthogonal-complement-of-cspan)

then have ψ2ϕ: ‹Proj (tensor-invariant I J) ∗V (ψ2 ⊗s ϕ) = 0 ›
by (simp add: kernel-memberD)

have aux: ‹xa ∈ space-as-set I =⇒ y ∈ space-as-set J =⇒ ϕ2 ·C y 6= 0 =⇒ is-orthogonal ψ1 xa› for
xa y

by (metis Proj-fixes-image ‹ϕ = ϕ1 + ϕ2 › ϕ1J ϕ1-def add-left-imp-eq cblinfun.real.add-right ker-
nel-Proj kernel-memberI orthogonal-complement-orthoI pth-d uminus-ccsubspace.rep-eq)

have ‹ψ1 ⊗s ϕ2 ∈ space-as-set (− tensor-invariant I J)›
by (auto intro!: aux orthogonal-complementI simp add: uminus-ccsubspace.rep-eq tensor-invariant-def

ccspan.rep-eq
simp flip: orthogonal-complement-of-closure orthogonal-complement-of-cspan)

then have ψ1ϕ2 : ‹Proj (tensor-invariant I J) ∗V (ψ1 ⊗s ϕ2) = 0 ›
by (simp add: kernel-memberD)

have ψ1ϕ1 : ‹Proj (tensor-invariant I J) ∗V (ψ1 ⊗s ϕ1) = ψ1 ⊗s ϕ1 ›
by (auto intro!: Proj-fixes-image space-as-set-ccspan-memberI exI [of - ψ1] exI [of - ϕ1]

simp: tensor-invariant-def ψ1I ϕ1J)

have ProjProj: ‹Proj ((Proj I ⊗o Proj J) ∗S >) = Proj I ⊗o Proj J ›
by (simp add: Proj-on-own-range ′ adj-Proj comp-tensor-op tensor-op-adjoint)

show ‹Proj (tensor-invariant I J) ∗V (ψ ⊗s ϕ) = Proj ((Proj I ⊗o Proj J) ∗S >) ∗V (ψ ⊗s ϕ)›
apply (simp add: ProjProj tensor-op-ell2 flip: ψ1-def ϕ1-def)
apply (simp add: ‹ψ = ψ1 + ψ2 › tensor-ell2-add1 cblinfun.add-right ψ2ϕ)
by (simp add: ψ1ϕ1 ψ1ϕ2 ‹ϕ = ϕ1 + ϕ2 › tensor-ell2-add2 cblinfun.add-right)

qed

lemma tensor-invariant-mono-left: ‹I ≤ I ′ =⇒ tensor-invariant I J ≤ tensor-invariant I ′ J ›
by (auto intro!: space-as-set-mono ccspan-mono simp add: tensor-invariant-def less-eq-ccsubspace.rep-eq)

lemma swap-tensor-invariant[simp]: ‹swap-ell2 ∗S tensor-invariant I J = tensor-invariant J I ›
by (force intro!: arg-cong[where f =ccspan] simp: cblinfun-image-ccspan tensor-invariant-def)

lemma tensor-invariant-SUP-left: ‹tensor-invariant (SUP x∈X . I x) J = (SUP x∈X . tensor-invariant
(I x) J)›
proof (rule order .antisym)

show ‹(SUP x∈X . tensor-invariant (I x) J) ≤ tensor-invariant (SUP x∈X . I x) J ›
by (auto intro!: SUP-least tensor-invariant-mono-left SUP-upper)

have tensor-left-apply: ‹CBlinfun (λx. x ⊗s y) ∗V x = x ⊗s y› for x :: ‹ ′a ell2 › and y :: ‹ ′b ell2 ›
by (simp add: bounded-clinear-tensor-ell22 bounded-clinear-CBlinfun-apply clinear-tensor-ell22)

show ‹tensor-invariant (SUP x∈X . I x) J ≤ (SUP x∈X . tensor-invariant (I x) J)›
proof −

have ‹tensor-invariant (SUP x∈X . I x) J = ccspan {x ⊗s y |x y. x ∈ space-as-set (SUP x∈X . I x)
∧ y ∈ space-as-set J}›

by (auto simp: tensor-invariant-def)
also have ‹. . . = ccspan (

⊔
y∈space-as-set J . {x ⊗s y |x. x ∈ space-as-set (SUP x∈X . I x)})›

47

by (auto intro!: arg-cong[where f =ccspan])
also have ‹. . . = (

⊔
y∈space-as-set J . ccspan {x ⊗s y |x. x ∈ space-as-set (SUP x∈X . I x)})›

by (smt (verit) Sup.SUP-cong ccspan-Sup image-image)
also have ‹. . . = (

⊔
y∈space-as-set J . ccspan (cblinfun-apply (CBlinfun (λx. x ⊗s y)) ‘ {x. x ∈

space-as-set (SUP x∈X . I x)}))›
apply (rule SUP-cong, simp)
apply (rule arg-cong[where f =ccspan])
by (auto simp add: image-def tensor-left-apply)

also have ‹. . . = (
⊔

y∈space-as-set J . CBlinfun (λx. x ⊗s y) ∗S (SUP x∈X . I x))›
apply (subst cblinfun-image-ccspan[symmetric])
by auto

also have ‹. . . = (
⊔

y∈space-as-set J . (SUP x∈X . CBlinfun (λx. x ⊗s y) ∗S I x))›
apply (subst cblinfun-image-SUP)
by simp

also have ‹. . . ≤ (
⊔

x∈X . tensor-invariant (I x) J)›
proof (rule SUP-least)

fix y
assume ‹y ∈ space-as-set J ›
have ‹(CBlinfun (λx. x ⊗s y) ∗S I x) ≤ (tensor-invariant (I x) J)› for x

apply (rule ccsubspace-leI)
apply (simp add: tensor-invariant-def cblinfun-image.rep-eq ccspan.rep-eq image-def

tensor-left-apply)
apply (rule closure-mono)
by (auto intro!: complex-vector .span-base ‹y ∈ space-as-set J ›)

then show ‹(SUP x∈X . CBlinfun (λx. x ⊗s y) ∗S I x) ≤ (SUP x∈X . tensor-invariant (I x) J)›
by (auto intro!: SUP-mono)

qed
finally show ‹tensor-invariant (

⊔
(I ‘ X)) J ≤ (

⊔
x∈X . tensor-invariant (I x) J)›

by −
qed

qed

lemma tensor-invariant-SUP-right: ‹tensor-invariant I (SUP x∈X . J x) = (SUP x∈X . tensor-invariant
I (J x))›
proof −

have ‹tensor-invariant I (SUP x∈X . J x) = swap-ell2 ∗S tensor-invariant (SUP x∈X . J x) I ›
by simp

also have ‹. . . = swap-ell2 ∗S (SUP x∈X . tensor-invariant (J x) I)›
by (simp add: tensor-invariant-SUP-left)

also have ‹. . . = (SUP x∈X . swap-ell2 ∗S tensor-invariant (J x) I)›
using cblinfun-image-SUP by blast

also have ‹. . . = (SUP x∈X . tensor-invariant I (J x))›
by simp

finally show ?thesis
by −

qed

lemma tensor-invariant-bot-left[simp]: ‹tensor-invariant ⊥ J = ⊥›
using tensor-invariant-SUP-left[where I=id and X=‹{}› and J=J]
by simp

lemma tensor-invariant-bot-right[simp]: ‹tensor-invariant I ⊥ = ⊥›
using tensor-invariant-SUP-right[where J=id and X=‹{}› and I=I]
by simp

48

lemma tensor-invariant-Sup-left: ‹tensor-invariant (Sup II) J = (SUP I∈II . tensor-invariant I J)›
using tensor-invariant-SUP-left[where X=II and I=id and J=J]
by simp

lemma tensor-invariant-Sup-right: ‹tensor-invariant I (Sup JJ) = (SUP J∈JJ . tensor-invariant I J)›
using tensor-invariant-SUP-right[where X=JJ and I=I and J=id]
by simp

lemma tensor-invariant-sup-left: ‹tensor-invariant (I1 t I2) J = tensor-invariant I1 J t tensor-invariant
I2 J ›

using tensor-invariant-Sup-left[where II=‹{I1 ,I2}›]
by auto

lemma tensor-invariant-sup-right: ‹tensor-invariant I (J1 t J2) = tensor-invariant I J1 t tensor-invariant
I J2 ›

using tensor-invariant-Sup-right[where JJ=‹{J1 ,J2}›]
by auto

lemma compatible-register-invariant-compl: ‹compatible-register-invariant F I =⇒ compatible-register-invariant
F (−I)›

by (simp add: compatible-register-invariant-def Proj-ortho-compl cblinfun-compose-minus-left cblin-
fun-compose-minus-right)

lemma compatible-register-invariant-SUP:
assumes [simp]: ‹register F›
assumes compat: ‹

∧
x. x ∈ X =⇒ compatible-register-invariant F (I x)›

shows ‹compatible-register-invariant F (SUP x∈X . I x)›
proof −

from register-decomposition[OF ‹register F›]
have ‹let ′d::type = register-decomposition-basis F in ?thesis›
proof with-type-mp

case with-type-mp
then obtain U :: ‹(′a × ′d) ell2 ⇒CL

′b ell2 ›
where [iff]: ‹unitary U › and FU : ‹F ϑ = sandwich U ∗V (ϑ ⊗o id-cblinfun)› for ϑ
by auto

have ∗: ‹Proj (I x) oCL U oCL (A ⊗o id-cblinfun) oCL U∗ = U oCL (A ⊗o id-cblinfun) oCL U∗
oCL Proj (I x)› if ‹x ∈ X› for x A

using compat[OF that]
by (simp add: compatible-register-invariant-def FU sandwich-apply cblinfun-compose-assoc)

have ‹(U∗ oCL Proj (I x) oCL U) oCL (A ⊗o id-cblinfun) = (A ⊗o id-cblinfun) oCL (U∗ oCL Proj
(I x) oCL U)› if ‹x ∈ X› for x A

using ∗[where A=A, OF that, THEN arg-cong, where f =‹λx. U∗ oCL x›, THEN arg-cong,
where f =‹λx. x oCL U ›]

apply (simp add: cblinfun-compose-assoc)
by (simp flip: cblinfun-compose-assoc)

then have ‹Proj (U∗ ∗S I x) oCL (A ⊗o id-cblinfun) = (A ⊗o id-cblinfun) oCL Proj (U∗ ∗S I x)›
if ‹x ∈ X› for x A

using that
by (simp flip: Proj-sandwich add: sandwich-apply)

then have ‹Proj (U∗ ∗S I x) ∈ commutant (range (λA. A ⊗o id-cblinfun))› if ‹x ∈ X› for x
unfolding commutant-def using that by auto

then have ‹Proj (U∗ ∗S I x) ∈ range (λB. id-cblinfun ⊗o B)› if ‹x ∈ X› for x
by (simp add: commutant-tensor1 that)

then obtain π where ∗: ‹Proj (U∗ ∗S I x) = id-cblinfun ⊗o π x› if ‹x ∈ X› for x
apply atomize-elim

49

apply (rule choice)
by (simp add: image-iff)

have π-proj: ‹is-Proj (π x)› if ‹x ∈ X› for x
proof −

have ‹Proj (U∗ ∗S I x)∗ = Proj (U∗ ∗S I x)›
by (simp add: adj-Proj)

then have ‹(id-cblinfun :: ′a ell2 ⇒CL -) ⊗o π x = id-cblinfun ⊗o π x∗›
by (simp add: ∗[OF that] tensor-op-adjoint)

then have 1 : ‹π x = π x∗›
using inj-tensor-right[OF id-cblinfun-not-0] injD by fastforce

have ‹Proj (U∗ ∗S I x) oCL Proj (U∗ ∗S I x) = Proj (U∗ ∗S I x)›
by simp

then have ‹(id-cblinfun :: ′a ell2 ⇒CL -) ⊗o (π x oCL π x) = id-cblinfun ⊗o π x›
by (simp add: ∗[OF that] comp-tensor-op)

then have 2 : ‹π x oCL π x = π x›
using inj-tensor-right[OF id-cblinfun-not-0] injD by fastforce

from 1 2 show ‹is-Proj (π x)›
by (simp add: is-Proj-I)

qed
define σ where ‹σ x = π x ∗S >› for x
have ∗∗: ‹U∗ ∗S I x = tensor-invariant > (σ x)› if ‹x ∈ X› for x

using ∗[OF that, THEN arg-cong, where f =‹λt. t ∗S >›]
by (simp add: tensor-invariant-via-Proj σ-def Proj-on-own-range π-proj that)

have ‹sandwich (U∗) (Proj (SUP x∈X . I x)) = Proj (U∗ ∗S (SUP x∈X . I x))›
by (smt (verit) sandwich-apply Proj-lift-invariant Proj-range ‹unitary U › cblinfun-compose-image

unitary-adj unitary-range unitary-sandwich-register)
also have ‹. . . = Proj (SUP x∈X . U∗ ∗S I x)›

by (simp add: cblinfun-image-SUP)
also have ‹. . . = Proj (SUP x∈X . tensor-invariant > (σ x))›

using ∗∗ by auto
also have ‹. . . = Proj (tensor-invariant > (SUP x∈X . σ x))›

by (simp add: tensor-invariant-SUP-right)
also have ‹. . . = id-cblinfun ⊗o Proj (SUP x∈X . σ x)›
by (simp add: Proj-on-own-range ′ adj-Proj comp-tensor-op tensor-invariant-via-Proj tensor-op-adjoint)
also have ‹. . . ∈ commutant (range (λA. A ⊗o id-cblinfun))›

by (simp add: commutant-tensor1)
finally have ‹(U∗ oCL Proj (SUP x∈X . I x) oCL U) oCL (A ⊗o id-cblinfun) = (A ⊗o id-cblinfun)

oCL (U∗ oCL Proj (SUP x∈X . I x) oCL U)› for A
by (simp add: sandwich-apply commutant-def)

from this[THEN arg-cong, where f =‹λx. U oCL x›, THEN arg-cong, where f =‹λx. x oCL U∗›]
have ‹Proj (SUP x∈X . I x) oCL U oCL (A ⊗o id-cblinfun) oCL U∗ = U oCL (A ⊗o id-cblinfun)

oCL U∗ oCL Proj (SUP x∈X . I x)› for A
apply (simp add: cblinfun-compose-assoc)
by (simp flip: cblinfun-compose-assoc)

then have ‹Proj (SUP x∈X . I x) oCL F A = F A oCL Proj (SUP x∈X . I x)› for A
by (simp add: FU sandwich-apply cblinfun-compose-assoc)

then show ‹compatible-register-invariant F (SUP x∈X . I x)›
by (simp add: compatible-register-invariant-def)

qed
from this[cancel-with-type]
show ?thesis

by −
qed

lemma compatible-register-invariant-INF :

50

assumes [simp]: ‹register F›
assumes compat: ‹

∧
x. x ∈ X =⇒ compatible-register-invariant F (I x)›

shows ‹compatible-register-invariant F (INF x∈X . I x)›
proof −

from compat have ‹compatible-register-invariant F (− I x)› if ‹x ∈ X› for x
by (simp add: compatible-register-invariant-compl that)

then have ‹compatible-register-invariant F (SUP x∈X . − I x)›
by (simp add: compatible-register-invariant-SUP)

then have ‹compatible-register-invariant F (− (SUP x∈X . − I x))›
by (simp add: compatible-register-invariant-compl)

then show ‹compatible-register-invariant F (INF x∈X . I x)›
by (metis Extra-General.uminus-INF ortho-involution)

qed

lemma compatible-register-invariant-Sup:
assumes ‹register F›
assumes ‹

∧
I . I∈II =⇒ compatible-register-invariant F I ›

shows ‹compatible-register-invariant F (Sup II)›
using compatible-register-invariant-SUP[where X=II and I=id and F=F] assms by simp

lemma compatible-register-invariant-Inf :
assumes ‹register F›
assumes ‹

∧
I . I∈II =⇒ compatible-register-invariant F I ›

shows ‹compatible-register-invariant F (Inf II)›
using compatible-register-invariant-INF [where X=II and I=id and F=F] assms by simp

lemma compatible-register-invariant-inter :
assumes ‹register F›
assumes ‹compatible-register-invariant F I ›
assumes ‹compatible-register-invariant F J ›
shows ‹compatible-register-invariant F (I u J)›
using compatible-register-invariant-Inf [where II=‹{I ,J}›]
using assms by auto

lemma compatible-register-invariant-pair :
assumes ‹compatible-register-invariant F I ›
assumes ‹compatible-register-invariant G I ›
shows ‹compatible-register-invariant (F ;G) I ›

proof (cases ‹compatible F G›)
case True
note this[simp]

have ∗: ‹Proj I oCL (F ;G) (a ⊗o b) = (F ;G) (a ⊗o b) oCL Proj I › for a b
using assms
apply (simp add: register-pair-apply compatible-register-invariant-def)
by (metis cblinfun-compose-assoc)

have ‹Proj I oCL (F ;G) A = (F ;G) A oCL Proj I › for A
apply (rule tensor-extensionality[THEN fun-cong[where x=A]])
by (auto intro!: comp-preregister [unfolded comp-def , OF - preregister-mult-left]

comp-preregister [unfolded comp-def , OF - preregister-mult-right] ∗)
then show ?thesis

using assms by (auto simp: compatible-register-invariant-def)
next

case False
then show ?thesis

51

using [[simproc del: Laws-Quantum.compatibility-warn]]
by (auto simp: compatible-register-invariant-def register-pair-def compatible-def)

qed

lemma compatible-register-invariant-tensor :
assumes [register]: ‹register F› ‹register G›
assumes ‹compatible-register-invariant F I ›
assumes ‹compatible-register-invariant G J ›
shows ‹compatible-register-invariant (F ⊗r G) (I ⊗S J)›

proof −
have [iff]: ‹preregister (λab. Proj (I ⊗S J) oCL (F ⊗r G) ab)›

by (auto intro!: comp-preregister [unfolded comp-def , OF - preregister-mult-left])
have [iff]: ‹preregister (λab. (F ⊗r G) ab oCL Proj (I ⊗S J))›

by (auto intro!: comp-preregister [unfolded comp-def , OF - preregister-mult-right])
have IF : ‹Proj I oCL F a = F a oCL Proj I › for a

using assms(3) compatible-register-invariant-def by blast
have JG: ‹Proj J oCL G b = G b oCL Proj J › for b

using assms(4) compatible-register-invariant-def by blast
have ‹Proj (I ⊗S J) oCL (F ⊗r G) (a ⊗o b) = (F ⊗r G) (a ⊗o b) oCL Proj (I ⊗S J)› for a b

by (simp add: tensor-ccsubspace-via-Proj Proj-on-own-range is-Proj-tensor-op comp-tensor-op IF
JG)

then have ‹(λab. Proj (I ⊗S J) oCL (F ⊗r G) ab) = (λab. (F ⊗r G) ab oCL Proj (I ⊗S J))›
apply (rule-tac tensor-extensionality)
by auto

then show ?thesis
unfolding compatible-register-invariant-def
by meson

qed

lemma compatible-register-invariant-image-shrinks:
assumes ‹compatible-register-invariant F I ›
shows ‹F U ∗S I ≤ I ›

proof −
have ‹F U ∗S I = (F U oCL Proj I) ∗S >›

by (simp add: cblinfun-compose-image)
also have ‹. . . = (Proj I oCL F U) ∗S >›

by (metis assms compatible-register-invariant-def)
also have ‹. . . ≤ Proj I ∗S >›

by (simp add: Proj-image-leq cblinfun-compose-image)
also have ‹. . . = I ›

by simp
finally show ?thesis

by −
qed

lemma sum-eq-SUP-ccsubspace:
fixes I :: ‹ ′a ⇒ ′b::complex-normed-vector ccsubspace›
assumes ‹finite X›
shows ‹(

∑
x∈X . I x) = (SUP x∈X . I x)›

using assms apply induction
by simp-all

Variant of invariant-splitting (see there) that allows the operation that is applied to depend on
the state of some other register.

52

lemma inv-split-reg:
fixes X :: ‹ ′x update ⇒ ′m update› — register containing the index for the unitary

and Y :: ‹ ′z ⇒ ′y update ⇒ ′m update› — register on which the unitary operates
and K :: ‹ ′z ⇒ ′m ell2 ccsubspace› — additional invariants
and M :: ‹ ′z set›

assumes U1-U : ‹
∧

z ψ. z∈M =⇒ ψ ∈ space-as-set (K z) =⇒ (Y z (U1 z)) ∗V ψ = U ∗V ψ›
assumes pres-I1 : ‹

∧
z. z∈M =⇒ preserves (U1 z) (I1 z) (J1 z) ε›

assumes I-leq: ‹I ≤ (SUP z∈M . K z u lift-invariant (Y z) (I1 z))›
assumes J-geq: ‹

∧
z. z∈M =⇒ J ≥ K z u lift-invariant (Y z) (J1 z)›

assumes YK : ‹
∧

z. z∈M =⇒ compatible-register-invariant (Y z) (K z)›
assumes regY : ‹

∧
z. z∈M =⇒ register (Y z)›

assumes orthoK : ‹
∧

z z ′. z∈M =⇒ z ′∈M =⇒ z 6= z ′ =⇒ orthogonal-spaces (K z) (K z ′)›
assumes ‹ε ≥ 0 ›
assumes [iff]: ‹finite M ›
shows ‹preserves U I J ε›

proof −
show ?thesis
proof (rule invariant-splitting[where S=‹K › and S ′=‹K › and I=‹λz. K z u lift-invariant (Y z) (I1

z)›
and J=‹λz. K z u lift-invariant (Y z) (J1 z)› and X=M])

from orthoK
show ‹orthogonal-spaces (K z) (K z ′)› if ‹z∈M › ‹z ′∈M › ‹z 6= z ′› for z z ′

using that by simp
then show ‹orthogonal-spaces (K z) (K z ′)› if ‹z∈M › ‹z ′∈M › ‹z 6= z ′› for z z ′

using that by −
show ‹K z u lift-invariant (Y z) (I1 z) ≤ K z› for z

by auto
show ‹K z u lift-invariant (Y z) (J1 z) ≤ K z› for z

by auto
show ‹U ∗S K z ≤ K z› if ‹z∈M › for z
proof −

from U1-U [OF that]
have ‹U ∗S K z = (Y z) (U1 z) ∗S K z›

apply (rule-tac space-as-set-inject[THEN iffD1])
by (simp add: cblinfun-image.rep-eq)

also from YK [OF that] have ‹. . . ≤ K z›
by (simp add: compatible-register-invariant-image-shrinks)

finally show ?thesis
by −

qed
from I-leq
show ‹I ≤ (

∑
z∈M . K z u lift-invariant (Y z) (I1 z))›

apply (subst sum-eq-SUP-ccsubspace)
by auto

from J-geq
show ‹(

∑
z∈M . K z u lift-invariant (Y z) (J1 z)) ≤ J ›

apply (subst sum-eq-SUP-ccsubspace)
by (auto simp: SUP-le-iff)

from assms show ‹0 ≤ ε›
by −

show ‹preserves U (K z u lift-invariant (Y z) (I1 z))
(K z u lift-invariant (Y z) (J1 z)) ε› if ‹z∈M › for z

proof −
show ?thesis

53

proof (rule preserves-register [where U ′=‹U1 z› and I ′=‹I1 z› and J ′=‹J1 z› and F=‹Y z› and
K=‹K z›])

show ‹preserves (U1 z) (I1 z) (J1 z) ε›
by (simp add: pres-I1 [OF that])

show ‹register (Y z)›
using regY [OF that] by −

from YK [OF that] show ‹compatible-register-invariant (Y z) (K z)›
by −

from U1-U [OF that]
show ‹∀ψ∈space-as-set (K z u lift-invariant (Y z) (I1 z)). (Y z) (U1 z) ∗V ψ = U ∗V ψ›

by auto
show ‹K z u lift-invariant (Y z) (I1 z) ≤ lift-invariant (Y z) (I1 z)›

by auto
show ‹K z u lift-invariant (Y z) (I1 z) ≤ K z›

by simp
show ‹lift-invariant (Y z) (J1 z) u K z ≤ K z u lift-invariant (Y z) (J1 z)›

using [[simp-trace]]
by simp

qed
qed
show ‹finite M ›

by simp
qed

qed

lemma Proj-ket-invariant-ket: ‹Proj (ket-invariant X) ∗V ket i = (if i∈X then ket i else 0)›
proof (cases ‹i∈X›)

case True
then have ‹ket i ∈ space-as-set (ket-invariant X)›

by (simp add: ccspan-superset ′ ket-invariant-def)
then have ‹Proj (ket-invariant X) ∗V ket i = ket i›

by (rule Proj-fixes-image)
also have ‹ket i = (if i∈X then ket i else 0)›

using True by simp
finally show ?thesis

by −
next

case False
then have ∗: ‹ket i ∈ space-as-set (ket-invariant (−X))›

by (simp add: ccspan-superset ′ ket-invariant-def)
have ‹Proj (ket-invariant X) ∗V ket i = (id-cblinfun − Proj (ket-invariant (−X))) ∗V ket i›

by (simp add: Proj-ortho-compl ket-invariant-compl)
also have ‹. . . = ket i − Proj (ket-invariant (−X)) ∗V ket i›

by (simp add: minus-cblinfun.rep-eq)
also from ∗ have ‹. . . = ket i − ket i›

by (simp add: Proj-fixes-image)
also have ‹. . . = (if i∈X then ket i else 0)›

using False by simp
finally show ?thesis

by −
qed

lemma lift-invariant-function-at-ket-inv: ‹lift-invariant (function-at x) (ket-invariant I) = ket-invariant
{f . f x ∈ I}›

54

proof −
have ‹Proj (lift-invariant (function-at x) (ket-invariant I)) = Proj (ket-invariant {f . f x ∈ I})›
proof (rule equal-ket)

fix f :: ‹ ′a ⇒ ′b›
have ‹Proj (lift-invariant (function-at x) (ket-invariant I)) (ket f) = function-at x (Proj (ket-invariant

I)) (ket f)›
by (simp add: Proj-on-own-range lift-invariant-def register-projector)

also have ‹. . . = function-at-U x ∗V Fst (Proj (ket-invariant I)) ∗V (function-at-U x)∗ ∗V ket f ›
by (simp add: function-at-def sandwich-apply comp-def)

also have ‹. . . = function-at-U x ∗V Fst (Proj (ket-invariant I)) ∗V ket (f x, snd (puncture-function
x f))›

by (simp flip: puncture-function-split)
also have ‹. . . = (if f x ∈ I then function-at-U x ∗V (ket (f x) ⊗s ket (snd (puncture-function x f)))

else 0)›
by (auto simp: Fst-def tensor-op-ell2 Proj-ket-invariant-ket simp flip: tensor-ell2-ket)

also have ‹. . . = (if f x ∈ I then ket (fix-punctured-function x (f x, snd (puncture-function x f)))
else 0)›

by (simp add: tensor-ell2-ket)
also have ‹. . . = (if f x ∈ I then ket f else 0)›

by (simp flip: puncture-function-split)
also have ‹. . . = Proj (ket-invariant {f . f x ∈ I}) ∗V ket f ›

by (simp add: Proj-ket-invariant-ket)
finally show ‹Proj (lift-invariant (function-at x) (ket-invariant I)) ∗V ket f = Proj (ket-invariant

{f . f x ∈ I}) ∗V ket f ›
by −

qed
then show ?thesis

by (rule Proj-inj)
qed

lemma ket-invariant-prod: ‹Proj (ket-invariant (A × B)) = Proj (ket-invariant A) ⊗o Proj (ket-invariant
B)›

apply (rule equal-ket)
by (auto simp: Proj-ket-invariant-ket tensor-op-ell2 simp flip: tensor-ell2-ket

split: if-split-asm)

lemma lift-Fst-inv: ‹lift-invariant Fst I = I ⊗S >›
apply (rule Proj-inj)
by (simp add: lift-invariant-def Proj-on-own-range register-projector Fst-def tensor-ccsubspace-via-Proj)

lemma lift-Snd-inv: ‹lift-invariant Snd I = > ⊗S I ›
apply (rule Proj-inj)
by (simp add: lift-invariant-def Proj-on-own-range register-projector Snd-def tensor-ccsubspace-via-Proj)

lemma lift-Snd-ket-inv: ‹lift-invariant Snd (ket-invariant I) = ket-invariant (UNIV × I)›
apply (rule Proj-inj)
apply (simp add: lift-invariant-def Proj-on-own-range register-projector ket-invariant-prod)
by (simp add: Snd-def)

lemma lift-Fst-ket-inv: ‹lift-invariant Fst (ket-invariant I) = ket-invariant (I × UNIV)›
apply (rule Proj-inj)
apply (simp add: lift-invariant-def Proj-on-own-range register-projector ket-invariant-prod)
by (simp add: Fst-def)

lemma lift-inv-prod:
assumes [simp]: ‹compatible F G›
shows ‹lift-invariant (F ;G) (ket-invariant (I × J)) =

55

lift-invariant F (ket-invariant I) u lift-invariant G (ket-invariant J)›
by (simp add: compatible-proj-intersect lift-invariant-def register-pair-apply ket-invariant-prod)

lemma lift-inv-tensor :
assumes [register]: ‹register F› ‹register G›
shows ‹lift-invariant (F ⊗r G) (ket-invariant (I × J)) =

lift-invariant F (ket-invariant I) ⊗S lift-invariant G (ket-invariant J)›
by (simp add: lift-invariant-def ket-invariant-prod tensor-ccsubspace-image)

lemma lift-invariant-sup:
fixes F :: ‹(′a ell2 ⇒CL

′a ell2) ⇒ (′b ell2 ⇒CL
′b ell2)›

assumes [simp]: ‹register F›
shows ‹lift-invariant F (I t J) = lift-invariant F I t lift-invariant F J ›

proof −
from register-decomposition[OF ‹register F›]
have ‹let ′c::type = register-decomposition-basis F in ?thesis›
proof with-type-mp

case with-type-mp
then obtain U :: ‹(′a × ′c) ell2 ⇒CL

′b ell2 ›
where ‹unitary U › and FU : ‹F ϑ = sandwich U ∗V (ϑ ⊗o id-cblinfun)› for ϑ

by auto
have lift-F : ‹lift-invariant F K = U ∗S (Proj (tensor-invariant K >)) ∗S >› for K

using ‹unitary U ›
by (simp add: lift-invariant-def FU sandwich-apply cblinfun-compose-image tensor-invariant-via-Proj)
show ‹lift-invariant F (I t J) = lift-invariant F I t lift-invariant F J ›

by (auto simp: lift-F tensor-invariant-sup-left)
qed
from this[cancel-with-type]
show ?thesis

by −
qed

lemma lift-invariant-SUP:
fixes F :: ‹(′a ell2 ⇒CL

′a ell2) ⇒ (′b ell2 ⇒CL
′b ell2)›

assumes ‹register F›
shows ‹lift-invariant F (SUP x∈X . I x) = (SUP x∈X . lift-invariant F (I x))›

proof −
from register-decomposition[OF ‹register F›]
have ‹let ′d::type = register-decomposition-basis F in ?thesis›
proof with-type-mp

case with-type-mp
then obtain U :: ‹(′a × ′d) ell2 ⇒CL

′b ell2 ›
where ‹unitary U › and FU : ‹F ϑ = sandwich U ∗V (ϑ ⊗o id-cblinfun)› for ϑ
by auto

have lift-F : ‹lift-invariant F K = U ∗S (Proj (tensor-invariant K >)) ∗S >› for K
using ‹unitary U ›

by (simp add: lift-invariant-def FU sandwich-apply cblinfun-compose-image tensor-invariant-via-Proj)
show ‹lift-invariant F (SUP x∈X . I x) = (SUP x∈X . lift-invariant F (I x))›

by (auto simp: lift-F tensor-invariant-SUP-left cblinfun-image-SUP)
qed
from this[cancel-with-type]
show ?thesis

by −
qed

56

lemma lift-invariant-compl: ‹lift-invariant R (− U) = − lift-invariant R U › if ‹register R›
apply (simp add: lift-invariant-def Proj-ortho-compl)
by (metis (no-types, lifting) Proj-is-Proj Proj-on-own-range Proj-ortho-compl Proj-range register-minus

register-of-id
register-projector that)

lemma lift-invariant-INF :
assumes ‹register F›
shows ‹lift-invariant F (

d
x∈A. I x) = (

d
x∈A. lift-invariant F (I x))›

using lift-invariant-SUP[OF assms, where I=‹λx. − I x› and X=A]
by (simp add: lift-invariant-compl assms flip: uminus-INF)

lemma lift-invariant-inf :
assumes ‹register F›
shows ‹lift-invariant F (I u J) = lift-invariant F I u lift-invariant F J ›
using lift-invariant-INF [where A=‹{False,True}› and I=‹λb. if b then J else I ›] assms
by simp

lemma lift-invariant-mono:
assumes ‹register F›
assumes ‹I ≤ J ›
shows ‹lift-invariant F I ≤ lift-invariant F J ›
by (metis assms(1 ,2) inf .absorb-iff2 lift-invariant-inf)

lemma lift-inv-prod ′:
fixes F :: ‹(′a ell2 ⇒CL

′a ell2) ⇒ (′c ell2 ⇒CL
′c ell2)›

fixes G :: ‹(′b ell2 ⇒CL
′b ell2) ⇒ (′c ell2 ⇒CL

′c ell2)›
assumes [simp]: ‹compatible F G›
shows ‹lift-invariant (F ;G) (ket-invariant I) =

(SUP (x,y)∈I . lift-invariant F (ket-invariant {x}) u lift-invariant G (ket-invariant {y}))›
by (simp flip: lift-inv-prod lift-invariant-SUP ket-invariant-SUP)

lemma lift-inv-tensor ′:
assumes [register]: ‹register F› ‹register G›
shows ‹lift-invariant (F ⊗r G) (ket-invariant I) =

(SUP (x,y)∈I . lift-invariant F (ket-invariant {x}) ⊗S lift-invariant G (ket-invariant {y}))›
by (simp add: register-tensor-is-register flip: lift-inv-tensor lift-invariant-SUP ket-invariant-SUP)

lemma classical-operator-ket-invariant:
assumes ‹inj-map f ›
shows ‹classical-operator f ∗S ket-invariant I = ket-invariant (Some −‘ f ‘ I)›

proof −
have ‹ccspan ((λx. case f x of None ⇒ 0 | Some x ⇒ ket x) ‘ I) = (

⊔
x∈I . ccspan ((λx. case f x of

None ⇒ 0 | Some x ⇒ ket x) ‘ {x}))›
by (auto intro: arg-cong[where f =ccspan] simp add: SUP-ccspan)

also have ‹. . . = (
⊔

x∈I . ccspan (ket ‘ Some −‘ f ‘ {x}))›
proof (rule SUP-cong[OF refl])

fix x
have [simp]: ‹Some −‘ {None} = {}›

by fastforce

57

have [simp]: ‹Some −‘ {Some a} = {a}› for a
by fastforce

show ‹ccspan ((λx. case f x of None ⇒ 0 | Some x ⇒ ket x) ‘ {x}) = ccspan (ket ‘ Some −‘ f ‘
{x})›

apply (cases ‹f x›)
by auto

qed
also have ‹. . . = ccspan (ket ‘ Some −‘ f ‘ I)›

by (auto intro: arg-cong[where f =ccspan] simp add: SUP-ccspan)
finally show ?thesis

by (simp add: ket-invariant-def cblinfun-image-ccspan image-image classical-operator-ket assms
classical-operator-exists-inj)

qed

lemma Proj-ket-invariant-singleton: ‹Proj (ket-invariant {x}) = selfbutter (ket x)›
by (simp add: ket-invariant-def butterfly-eq-proj)

lemma lift-inv-classical:
fixes F :: ‹ ′a ell2 ⇒CL

′a ell2 ⇒ ′b ell2 ⇒CL
′b ell2 › and f :: ‹ ′a × ′c ⇒ ′b›

assumes [register]: ‹register F›
assumes ‹inj f ›
assumes ‹

∧
x:: ′a. x ∈ I =⇒ F (selfbutter (ket x)) = sandwich (classical-operator (Some o f)) (selfbutter

(ket x) ⊗o id-cblinfun)›
shows ‹lift-invariant F (ket-invariant I) = ket-invariant (f ‘ (I × UNIV))›

proof −
have [iff]: ‹isometry (classical-operator (Some ◦ f))›

by (auto intro!: isometry-classical-operator assms)
have ‹lift-invariant F (ket-invariant I) = (SUP x∈I . lift-invariant F (ket-invariant {x}))›

by (simp add: flip: lift-invariant-SUP ket-invariant-SUP)
also have ‹. . . = (SUP x∈I . F (selfbutter (ket x)) ∗S >)›

by (simp add: lift-invariant-def Proj-ket-invariant-singleton)
also have ‹. . . = (SUP x∈I . sandwich (classical-operator (Some o f)) (selfbutter (ket x) ⊗o id-cblinfun)
∗S >)›

using assms by force
also have ‹. . . = (SUP x∈I . sandwich (classical-operator (Some o f)) (Proj (ket-invariant ({x} ×

UNIV))) ∗S >)›
apply (simp add: flip: ket-invariant-tensor)

by (metis (no-types, lifting) Proj-ket-invariant-singleton Proj-top ket-invariant-UNIV ket-invariant-prod
ket-invariant-tensor)

also have ‹. . . = (SUP x∈I . Proj (classical-operator (Some o f) ∗S ket-invariant ({x} × UNIV)) ∗S
>)›

using Proj-sandwich by fastforce
also have ‹. . . = (SUP x∈I . classical-operator (Some o f) ∗S ket-invariant ({x} × UNIV))›

by auto
also have ‹. . . = (SUP x∈I . ket-invariant (f ‘ ({x} × UNIV)))›

apply (subst classical-operator-ket-invariant)
apply (simp add: assms(2))

by (simp add: inj-vimage-image-eq flip: image-image)
also have ‹. . . = ket-invariant (

⋃
x∈I . f ‘ ({x} × UNIV))›

by (simp add: ket-invariant-SUP)
also have ‹. . . = ket-invariant (f ‘ (I × UNIV))›

by auto
finally show ?thesis

58

by −
qed

lemma register-image-lift-invariant:
assumes ‹register F›
assumes ‹isometry U ›
shows ‹F U ∗S lift-invariant F I = lift-invariant F (U ∗S I)›

proof −
have ‹F U ∗S lift-invariant F I = F U ∗S F (Proj I) ∗S >›

by (simp add: lift-invariant-def)
also have ‹. . . = F U ∗S F (Proj I) ∗S (F U)∗ ∗S >›

by (simp add: assms(1 ,2) range-adjoint-isometry register-isometry)
also have ‹. . . = F (sandwich U (Proj I)) ∗S >›

by (smt (verit, best) Proj-lift-invariant Proj-range Proj-sandwich assms(1 ,2) range-adjoint-isometry
register-isometry register-sandwich)

also have ‹. . . = F (Proj (U ∗S I)) ∗S >›
by (simp add: Proj-sandwich assms(2))

also have ‹. . . = lift-invariant F (U ∗S I)›
by (simp add: lift-invariant-def)

finally show ?thesis
by −

qed

lemma ell2-sum-ket-ket-invariant:
fixes ψ :: ‹ ′a ell2 ›
assumes ‹ψ ∈ space-as-set (ket-invariant X)›
shows ‹ψ = (

∑
∞i∈X . Rep-ell2 ψ i ∗C ket i)›

proof −
from assms have ‹ψ = Proj (ket-invariant X) ∗V ψ›

by (simp add: Proj-fixes-image)
also have ‹. . . = Proj (ket-invariant X) ∗V (

∑
∞i. Rep-ell2 ψ i ∗C ket i)›

by (simp flip: ell2-decompose-infsum)
also have ‹. . . = (

∑
∞i. Rep-ell2 ψ i ∗C Proj (ket-invariant X) ∗V ket i)›

by (simp flip: infsum-cblinfun-apply add: ell2-decompose-summable cblinfun.scaleC-right)
also have ‹. . . = (

∑
∞i. Rep-ell2 ψ i ∗C (if i∈X then ket i else 0))›

by (simp add: Proj-ket-invariant-ket)
also have ‹. . . = (

∑
∞i∈X . Rep-ell2 ψ i ∗C ket i)›

apply (rule infsum-cong-neutral)
by auto

finally show ?thesis
by simp

qed

lemma compatible-register-invariant-Fst-comp:
fixes I :: ‹(′a × ′b) set›
assumes [simp]: ‹register F›
assumes ‹

∧
y. compatible-register-invariant F (ket-invariant ((λx. (x,y)) −‘ I))›

shows ‹compatible-register-invariant (Fst o F) (ket-invariant I)›
apply (subst asm-rl[of ‹I = (

⋃
y. ((λx. (x,y)) −‘ I) × {y})›])

apply fastforce
apply (simp add: ket-invariant-SUP)
apply (rule compatible-register-invariant-SUP, simp)
apply (simp add: compatible-register-invariant-def ket-invariant-prod Fst-def comp-tensor-op)

59

by (metis assms compatible-register-invariant-def)

lemma compatible-register-invariant-Fst:
assumes ‹

∧
y. ((λx. (x,y)) −‘ I) = UNIV ∨ ((λx. (x,y)) −‘ I) = {}›

shows ‹compatible-register-invariant Fst (ket-invariant I)›
apply (subst asm-rl[of ‹Fst = Fst o id›], simp)
apply (rule compatible-register-invariant-Fst-comp, simp)
using assms by (rule compatible-register-invariant-id)

lemma compatible-register-invariant-Snd-comp:
fixes I :: ‹(′a × ′b) set›
assumes [simp]: ‹register F›
assumes ‹

∧
x. compatible-register-invariant F (ket-invariant ((λy. (x,y)) −‘ I))›

shows ‹compatible-register-invariant (Snd o F) (ket-invariant I)›
apply (subst asm-rl[of ‹I = (

⋃
x. {x} × ((λy. (x,y)) −‘ I))›])

apply fastforce
apply (simp add: ket-invariant-SUP)
apply (rule compatible-register-invariant-SUP, simp)
apply (simp add: compatible-register-invariant-def ket-invariant-prod Snd-def comp-tensor-op)
by (metis assms compatible-register-invariant-def)

lemma compatible-register-invariant-Snd:
assumes ‹

∧
x. ((λy. (x,y)) −‘ I) = UNIV ∨ ((λy. (x,y)) −‘ I) = {}›

shows ‹compatible-register-invariant Snd (ket-invariant I)›
apply (subst asm-rl[of ‹Snd = Snd o id›], simp)
apply (rule compatible-register-invariant-Snd-comp, simp)
using assms by (rule compatible-register-invariant-id)

lemma compatible-register-invariant-Fst-tensor [simp]:
shows ‹compatible-register-invariant Fst (> ⊗S I)›
by (simp add: compatible-register-invariant-def Fst-def Proj-on-own-range comp-tensor-op is-Proj-tensor-op

tensor-ccsubspace-via-Proj)

lemma compatible-register-invariant-Snd-tensor [simp]:
shows ‹compatible-register-invariant Snd (I ⊗S >)›
by (simp add: compatible-register-invariant-def Snd-def Proj-on-own-range comp-tensor-op is-Proj-tensor-op

tensor-ccsubspace-via-Proj)

lemma compatible-register-invariant-sandwich-comp:
fixes U :: ‹ ′a ell2 ⇒CL

′b ell2 ›
assumes [simp]: ‹unitary U ›
assumes ‹compatible-register-invariant F (U∗ ∗S I)›
shows ‹compatible-register-invariant (sandwich U o F) I ›
apply (subst asm-rl[of ‹I = U ∗S U∗ ∗S I ›])
apply (simp add: cblinfun-assoc-left(2))

using assms
by (simp add: compatible-register-invariant-def unitary-sandwich-register register-mult

flip: Proj-sandwich[of U])

lemma compatible-register-invariant-function-at-comp:
assumes [simp]: ‹register F›
assumes ‹

∧
z. compatible-register-invariant F (ket-invariant {f x |f . f ∈ I ∧ z(x := undefined) = f (x

:= undefined)})›
shows ‹compatible-register-invariant (function-at x o F) (ket-invariant I)›

proof −

60

have ‹(λa. (a, snd (puncture-function x z))) −‘ Some −‘ inv-map (Some ◦ fix-punctured-function x)
‘ I

= (λa. (a, snd (puncture-function x z))) −‘ puncture-function x ‘ I › (is ‹?lhs = -›) for z
by (simp add: inv-map-total bij-fix-punctured-function bij-is-surj inj-vimage-image-eq

flip: image-image)
also have ‹. . . z = {f x | f . f∈I ∧ snd (puncture-function x z) = snd (puncture-function x f)}› for z

apply (transfer fixing: I x)
by auto

also have ‹. . . z = {f x | f . f∈I ∧ z(x:=undefined) = f (x:=undefined)}› for z
proof −

have aux: ‹f ∈ I =⇒
z(x := undefined) ◦ Transposition.transpose x undefined =
f (x := undefined) ◦ Transposition.transpose x undefined =⇒
∃ fa. f x = fa x ∧ fa ∈ I ∧ z(x := undefined) = fa(x := undefined)› for f

by (metis swap-nilpotent)
show ?thesis

apply (transfer fixing: z x I)
using aux by (auto simp: fun-upd-comp-left)

qed
finally have ‹compatible-register-invariant F (ket-invariant ((λa. (a, snd (puncture-function x z))) −‘

Some −‘ inv-map (Some ◦ fix-punctured-function x) ‘ I))› for z
by (simp add: assms)

then have ∗: ‹compatible-register-invariant F (ket-invariant ((λa. (a, y)) −‘ Some −‘ inv-map (Some
◦ fix-punctured-function x) ‘ I))› for y

by (metis fix-punctured-function-inverse snd-conv)
show ?thesis

unfolding function-at-def function-at-U-def Let-def comp-assoc
apply (rule compatible-register-invariant-sandwich-comp)
apply (simp add: bij-fix-punctured-function)

apply (subst classical-operator-adjoint)
apply (simp add: bij-fix-punctured-function bij-is-inj)

apply (subst classical-operator-ket-invariant)
apply (simp add: bij-fix-punctured-function bij-is-inj)

apply (rule compatible-register-invariant-Fst-comp, simp)
using ∗ by simp

qed

lemma compatible-register-invariant-function-at:
assumes ‹

∧
f y. f∈I =⇒ f (x:=y) ∈ I ›

shows ‹compatible-register-invariant (function-at x) (ket-invariant I)›
apply (subst asm-rl[of ‹function-at x = function-at x o id›], simp)
apply (rule compatible-register-invariant-function-at-comp, simp)
apply (rule compatible-register-invariant-id)
using assms fun-upd-idem-iff by fastforce

The following lemma allows show that an invariant is preserved across several consecutive
operations. Usually, norm V and norm U ≤ 1, so the lemma essentially says that the errors
are additive.
lemma preserves-trans[trans]:

assumes presU : ‹preserves U I J ε›
assumes presV : ‹preserves V J K δ›
shows ‹preserves (V oCL U) I K (norm V ∗ ε + norm U ∗ δ)›

proof −
have ‹norm ((id-cblinfun − Proj K) oCL (V oCL U) oCL Proj I)
= norm ((id-cblinfun − Proj K) oCL V oCL (Proj J + (id-cblinfun − Proj J)) oCL U oCL Proj I)›

61

by (auto simp add: cblinfun-assoc-left(1))
also have ‹. . . ≤ norm ((id-cblinfun − Proj K) oCL V oCL Proj J oCL U oCL Proj I)

+ norm ((id-cblinfun − Proj K) oCL V oCL (id-cblinfun − Proj J) oCL U oCL Proj I)›
by (smt (verit) cblinfun-compose-add-left cblinfun-compose-add-right norm-triangle-ineq)

also have ‹. . . ≤ norm ((id-cblinfun − Proj K) oCL V oCL Proj J oCL U oCL Proj I) + norm V ∗
ε›

proof −
have ‹norm ((id-cblinfun − Proj K) oCL V oCL (id-cblinfun − Proj J) oCL U oCL Proj I)
≤ norm (id-cblinfun − Proj K) ∗ norm (V oCL (id-cblinfun − Proj J) oCL U oCL Proj I)›

by (metis cblinfun-assoc-left(1) norm-cblinfun-compose)
also have ‹. . . ≤ norm (V oCL (id-cblinfun − Proj J) oCL U oCL Proj I)›

by (metis Groups.mult-ac(2) Proj-ortho-compl mult.right-neutral mult-left-mono norm-Proj-leq1
norm-ge-zero)

also have ‹. . . ≤ norm V ∗ norm ((id-cblinfun − Proj J) oCL U oCL Proj I)›
by (metis cblinfun-assoc-left(1) norm-cblinfun-compose)

also have ‹. . . ≤ norm V ∗ ε›
by (meson norm-ge-zero ordered-comm-semiring-class.comm-mult-left-mono presU preserves-onorm)
finally show ?thesis

by (rule add-left-mono)
qed
also have ‹. . . ≤ norm ((id-cblinfun − Proj K) oCL V oCL Proj J oCL U) ∗ norm (Proj I) + norm

V ∗ ε›
by (simp add: norm-cblinfun-compose)

also have ‹. . . ≤ norm ((id-cblinfun − Proj K) oCL V oCL Proj J oCL U) + norm V ∗ ε›
by (simp add: norm-is-Proj mult.commute mult-left-le-one-le)

also have ‹. . . ≤ norm ((id-cblinfun − Proj K) oCL V oCL Proj J) ∗ norm U + norm V ∗ ε›
by (simp add: norm-cblinfun-compose)

also have ‹. . . ≤ norm U ∗ δ + norm V ∗ ε›
by (metis add.commute add-le-cancel-left mult.commute mult-left-mono norm-ge-zero presV pre-

serves-onorm)
finally show ?thesis

by (simp add: preserves-onorm)
qed

An operation that operates on a register that is outside the invariant preserves the invariant
perfectly.
lemma preserves-compatible:

assumes compat: ‹compatible-register-invariant F I ›
assumes ‹ε ≥ 0 ›
shows ‹preserves (F U) I I ε›

proof (rule preservesI ′)
from assms show ‹ε ≥ 0 › by −
fix ψ assume ‹ψ ∈ space-as-set I ›
then have ψI : ‹ψ = Proj I ∗V ψ›

using Proj-fixes-image by force
from compat have FI : ‹F U ∗V Proj I ∗V ψ = Proj I ∗V F U ∗V ψ›

by (metis cblinfun-apply-cblinfun-compose compatible-register-invariant-def)
have ‹Proj (− I) ∗V F U ∗V ψ = 0 ›

apply (subst ψI) apply (subst FI)
by (metis FI Proj-ortho-compl ψI cancel-comm-monoid-add-class.diff-cancel cblinfun.diff-left id-cblinfun-apply)

with ‹ε ≥ 0 › show ‹norm (Proj (− I) ∗V F U ∗V ψ) ≤ ε›
by simp

qed

lemma Proj-ket-invariant-butterfly: ‹Proj (ket-invariant {x}) = selfbutter (ket x)›

62

by (simp add: butterfly-eq-proj ket-invariant-def)

lemma ket-in-ket-invariantI : ‹ket x ∈ space-as-set (ket-invariant I)› if ‹x ∈ I ›
by (metis Proj-ket-invariant-ket Proj-range cblinfun-apply-in-image that)

lemma cblinfun-image-ket-invariant-leqI :
assumes ‹

∧
x. x ∈ I =⇒ U ∗V ket x ∈ space-as-set J ›

shows ‹U ∗S ket-invariant I ≤ J ›
by (simp add: assms cblinfun-image-ccspan ccspan-leqI image-subset-iff ket-invariant-def)

lemma preserves0I : ‹preserves U I J 0 ←→ U ∗S I ≤ J ›
proof

have ‹(id-cblinfun − Proj J) oCL U oCL Proj I = 0 =⇒ U ∗S I ≤ J ›
by (metis (no-types, lifting) Proj-range add-diff-cancel-left ′ cblinfun-assoc-left(2) cblinfun-compose-minus-left

cblinfun-compose-id-left cblinfun-image-mono diff-add-cancel diff-zero top-greatest)
then show ‹preserves U I J 0 =⇒ U ∗S I ≤ J ›

by (auto simp: preserves-onorm)
next

assume leq: ‹U ∗S I ≤ J ›
show ‹preserves U I J 0 ›
proof (rule preservesI)

show ‹0 ≤ (0 ::real)› by simp
fix ψ
assume ‹ψ ∈ space-as-set I ›
with leq have ‹U ∗V ψ ∈ space-as-set J ›

by (metis (no-types, lifting) Proj-fixes-image Proj-range cblinfun-apply-cblinfun-compose cblin-
fun-apply-in-image cblinfun-compose-image less-eq-ccsubspace.rep-eq subset-iff)

then have ‹Proj J ∗V U ∗V ψ = U ∗V ψ›
by (simp add: Proj-fixes-image)

then show ‹norm (U ∗V ψ − Proj J ∗V U ∗V ψ) ≤ 0 ›
by simp

qed
qed

lemma lift-invariant-id[simp]: ‹lift-invariant id I = I ›
by (simp add: lift-invariant-def)

lemma lift-invariant-pair-tensor :
assumes ‹compatible X Y ›
shows ‹lift-invariant (X ;Y) (I ⊗S J) = lift-invariant X I u lift-invariant Y J ›

proof −
have ‹lift-invariant (X ;Y) (I ⊗S J) = (X ;Y) (Proj (I ⊗S J)) ∗S >›

by (simp add: lift-invariant-def)
also have ‹. . . = (X ;Y) (Proj I ⊗o Proj J) ∗S >›

by (simp add: Proj-on-own-range is-Proj-tensor-op tensor-ccsubspace-via-Proj)
also have ‹. . . = (X (Proj I) oCL Y (Proj J)) ∗S >›

by (simp add: Laws-Quantum.register-pair-apply assms)
also have ‹. . . = lift-invariant X I u lift-invariant Y J ›

by (simp add: assms compatible-proj-intersect lift-invariant-def)
finally show ?thesis

by −
qed

lemma lift-invariant-tensor-tensor :
assumes [register]: ‹register X› ‹register Y ›

63

shows ‹lift-invariant (X ⊗r Y) (I ⊗S J) = lift-invariant X I ⊗S lift-invariant Y J ›
proof −

have ‹lift-invariant (X ⊗r Y) (I ⊗S J) = (X ⊗r Y) (Proj (I ⊗S J)) ∗S >›
by (simp add: lift-invariant-def)

also have ‹. . . = (X ⊗r Y) (Proj I ⊗o Proj J) ∗S >›
by (simp add: Proj-on-own-range is-Proj-tensor-op tensor-ccsubspace-via-Proj)

also have ‹. . . = (X (Proj I) ⊗o Y (Proj J)) ∗S >›
by (simp add: Laws-Quantum.register-pair-apply assms register-tensor-apply)

also have ‹. . . = lift-invariant X I ⊗S lift-invariant Y J ›
by (simp add: lift-invariant-def tensor-ccsubspace-image)

finally show ?thesis
by −

qed

lemma orthogonal-spaces-lift-invariant[simp]:
assumes ‹register Q›
shows ‹orthogonal-spaces (lift-invariant Q S) (lift-invariant Q T) ←→ orthogonal-spaces S T ›

proof −
have ‹orthogonal-spaces (lift-invariant Q S) (lift-invariant Q T) ←→ Q (Proj S) oCL Q (Proj T) =

0 ›
by (simp add: orthogonal-projectors-orthogonal-spaces lift-invariant-def Proj-on-own-range assms

register-projector)
also have ‹. . . ←→ Proj S oCL Proj T = 0 ›

by (metis (no-types, lifting) assms norm-eq-zero register-mult register-norm)
also have ‹. . . ←→ orthogonal-spaces S T ›

by (simp add: orthogonal-projectors-orthogonal-spaces)
finally show ?thesis

by −
qed

3.2 Distance from invariants
definition dist-inv where ‹dist-inv R I ψ = norm (R (Proj (−I)) ∗V ψ)›

for R :: ‹(′a ell2 ⇒CL
′a ell2) ⇒ (′b ell2 ⇒CL

′b ell2)›
definition dist-inv-avg where ‹dist-inv-avg R I ψ = sqrt ((

∑
x∈UNIV . (dist-inv R (I x) (ψ x))2) /

CARD(′x))› for ψ :: ‹ ′x::finite ⇒ -›

lemma dist-inv-pos[iff]: ‹dist-inv R I ψ ≥ 0 ›
by (simp add: dist-inv-def)

lemma dist-inv-avg-pos[iff]: ‹dist-inv-avg R I ψ ≥ 0 ›
by (simp add: dist-inv-avg-def sum-nonneg)

lemma dist-inv-0-iff :
assumes ‹register R›
shows ‹dist-inv R I ψ = 0 ←→ ψ ∈ space-as-set (lift-invariant R I)›

proof −
have ‹dist-inv R I ψ = 0 ←→ R (Proj (− I)) ∗V ψ = 0 ›

by (simp add: dist-inv-def)
also have ‹. . . ←→ Proj (R (Proj (− I)) ∗S >) ψ = 0 ›
by (simp add: Proj-on-own-range assms register-projector)
also have ‹. . . ←→ ψ ∈ space-as-set (− (R (Proj (− I)) ∗S >))›

using Proj-0-compl kernel-memberI by fastforce
also have ‹. . . ←→ ψ ∈ space-as-set (− lift-invariant R (−I))›
by (simp add: lift-invariant-def)
also have ‹. . . ←→ ψ ∈ space-as-set (lift-invariant R I)›

by (metis (no-types, lifting) Proj-lift-invariant Proj-ortho-compl Proj-range assms

64

ortho-involution register-minus register-of-id)
finally show ?thesis

by −
qed

lemma dist-inv-avg-0-iff :
assumes ‹register R›
shows ‹dist-inv-avg R I ψ = 0 ←→ (∀ h. ψ h ∈ space-as-set (lift-invariant R (I h)))›

proof −
have ‹dist-inv-avg R I ψ = 0 ←→ (∀ h. (dist-inv R (I h) (ψ h))2 = 0)›

by (simp add: dist-inv-avg-def sum-nonneg-eq-0-iff)
also have ‹. . . ←→ (∀ h. ψ h ∈ space-as-set (lift-invariant R (I h)))›

by (simp add: assms dist-inv-0-iff)
finally show ?thesis

by −
qed

lemma dist-inv-mono:
assumes ‹I ≤ J ›
assumes [register]: ‹register Q›
shows ‹dist-inv Q J ψ ≤ dist-inv Q I ψ›

proof −
from assms
have ProjJI : ‹Proj (−J) = Proj (−J) oCL Proj (−I)›

by (simp add: Proj-o-Proj-subspace-left)
have ‹norm (Q (Proj (− J) oCL Proj (− I)) ∗V ψ) ≤ norm (Q (Proj (− I)) ∗V ψ)›
by (metis Proj-is-Proj assms(2) is-Proj-reduces-norm register-mult ′

register-projector)
then show ?thesis

by (simp add: dist-inv-def flip: ProjJI)
qed

lemma dist-inv-avg-mono:
assumes ‹

∧
h. I h ≤ J h›

assumes [register]: ‹register Q›
shows ‹dist-inv-avg Q J ψ ≤ dist-inv-avg Q I ψ›
by (auto intro!: sum-mono divide-right-mono dist-inv-mono assms

simp: dist-inv-avg-def)

lemma dist-inv-Fst-tensor :
assumes ‹norm ϕ = 1 ›
shows ‹dist-inv (Fst o R) I (ψ ⊗s ϕ) = dist-inv R I ψ›

proof −
have ‹(norm (Fst (R (Proj (− I))) ∗V ψ ⊗s ϕ))2 = (norm (R (Proj (− I)) ∗V ψ))2›

by (simp add: Fst-def tensor-op-ell2 norm-tensor-ell2 assms)
then show ?thesis

by (simp add: dist-inv-def)
qed

lemma dist-inv-avg-Fst-tensor :
assumes ‹

∧
h. norm (ϕ h) = 1 ›

shows ‹dist-inv-avg (Fst o R) I (λh. ψ h ⊗s ϕ h) = dist-inv-avg R I ψ›
by (simp add: assms dist-inv-avg-def dist-inv-Fst-tensor)

65

lemma dist-inv-register-rewrite:
assumes ‹register Q› and ‹register R›
assumes ‹lift-invariant Q I = lift-invariant R J ›
shows ‹dist-inv Q I ψ = dist-inv R J ψ›

proof −
from assms
have ‹lift-invariant Q (−I) = lift-invariant R (−J)›

by (simp add: lift-invariant-compl)
then have ‹Proj (Q (Proj (−I)) ∗S >) = Proj (R (Proj (−J)) ∗S >)›

by (simp add: lift-invariant-def)
then have ‹R (Proj (− J)) = Q (Proj (− I))›

by (metis Proj-lift-invariant assms lift-invariant-def)
with assms
show ?thesis

by (simp add: dist-inv-def)
qed

lemma dist-inv-avg-register-rewrite:
assumes ‹register Q› and ‹register R›
assumes ‹

∧
h. lift-invariant Q (I h) = lift-invariant R (J h)›

shows ‹dist-inv-avg Q I ψ = dist-inv-avg R J ψ›
using assms by (auto intro!: dist-inv-register-rewrite sum.cong simp add: dist-inv-avg-def)

lemma distance-from-inv-avg0I :
‹dist-inv-avg Q I ψ = 0 ←→ (∀ h. dist-inv Q (I h) (ψ h) = 0)› for h :: ‹ ′h::finite› and ψ :: ‹ ′h ⇒ -›
by (simp add: dist-inv-avg-def sum-nonneg-eq-0-iff)

lemma dist-inv-apply:
assumes [register]: ‹register Q› ‹register S›
assumes [iff]: ‹unitary U ›
assumes QSR: ‹Q o S = R›
shows ‹dist-inv Q I (R U ∗V ψ) = dist-inv Q (S U∗ ∗S I) ψ›

proof −
have ‹norm (Q (Proj (− I)) ∗V R U ∗V ψ) = norm (Q (Proj (− (S U∗ ∗S I))) ∗V ψ)›
proof −

have ‹norm (Q (Proj (− I)) ∗V R U ∗V ψ) = norm (Q (S U)∗ ∗V Q (Proj (− I)) ∗V Q (S U) ∗V
ψ)›

by (metis assms(1 ,2 ,3 ,4) isometry-preserves-norm o-def register-unitary unitary-twosided-isometry)
also have ‹. . . = norm (sandwich (Q (S U)∗) (Q (Proj (−I))) ∗V ψ)›

by (simp add: sandwich-apply)
also have ‹. . . = norm (Q (sandwich (S U∗) ∗V Proj (− I)) ∗V ψ)›

by (simp add: flip: register-sandwich register-adj)
also have ‹. . . = norm (Q (Proj (S U∗ ∗S − I)) ∗V ψ)›

by (simp add: Proj-sandwich register-coisometry)
also have ‹. . . = norm (Q (Proj (− (S U∗ ∗S I))) ∗V ψ)›

by (simp add: unitary-image-ortho-compl register-unitary)
finally show ?thesis

by −
qed
then show ?thesis

by (simp add: dist-inv-def)
qed

66

lemma dist-inv-apply-iff :
assumes [register]: ‹register Q›
assumes [iff]: ‹unitary U ›
shows ‹dist-inv Q I (Q U ∗V ψ) = dist-inv Q (U∗ ∗S I) ψ›
apply (subst dist-inv-apply[where S=id])
by auto

lemma dist-inv-avg-apply:
assumes [register]: ‹register Q› ‹register S›
assumes [iff]: ‹

∧
h. unitary (U h)›

assumes ‹Q o S = R›
shows ‹dist-inv-avg Q I (λh. R (U h) ∗V ψ h) = dist-inv-avg Q (λh. S (U h)∗ ∗S I h) ψ›
using assms by (auto intro!: sum.cong simp: dist-inv-avg-def dist-inv-apply[where S=S])

lemma dist-inv-avg-apply-iff :
assumes [register]: ‹register Q›
assumes [iff]: ‹

∧
h. unitary (U h)›

shows ‹dist-inv-avg Q I (λh. Q (U h) ∗V ψ h) = dist-inv-avg Q (λh. U h∗ ∗S I h) ψ›
by (auto intro!: sum.cong dist-inv-apply-iff simp: dist-inv-avg-def)

lemma dist-inv-intersect-onesided:
assumes ‹compatible-invariants I J ›
assumes ‹register Q›
assumes ‹dist-inv Q I ψ = 0 ›
shows ‹dist-inv Q (J u I) ψ = dist-inv Q J ψ›

proof −
have inside: ‹ψ ∈ space-as-set (lift-invariant Q I)›

using assms(2 ,3) dist-inv-0-iff by blast
have ‹norm (Q (Proj (− (J u I))) ∗V ψ) = norm (ψ − Q (Proj (J u I)) ∗V ψ)›

by (metis (no-types, lifting) Proj-ortho-compl assms(2) cblinfun.diff-left id-cblinfun.rep-eq regis-
ter-minus

register-of-id)
also have ‹. . . = norm (ψ − Q (Proj (J) oCL Proj (I)) ∗V ψ)›

by (metis assms compatible-invariants-def compatible-invariants-inter)
also have ‹. . . = norm (ψ − Q (Proj (J)) ∗V Q (Proj (I)) ∗V ψ)›

by (simp add: assms register-mult ′)
also have ‹. . . = norm (ψ − Q (Proj (J)) ∗V ψ)›

by (metis Proj-fixes-image Proj-lift-invariant assms inside)
also have ‹. . . = norm (Q (Proj (− J)) ∗V ψ)›

by (simp add: Proj-ortho-compl assms cblinfun.diff-left register-minus)
finally have ‹norm (Q (Proj (− (J u I))) ∗V ψ) = norm (Q (Proj (− J)) ∗V ψ)›

by −
then show ?thesis

by (simp add: dist-inv-def)
qed

lemma dist-inv-avg-intersect:

67

assumes ‹
∧

h. compatible-invariants (I h) (J h)›
assumes ‹register Q›
assumes ‹dist-inv-avg Q I ψ = 0 ›
shows ‹dist-inv-avg Q (λh. J h u I h) ψ = dist-inv-avg Q J ψ›

proof −
have ‹dist-inv Q (I h) (ψ h) = 0 › for h

using assms(3) distance-from-inv-avg0I by blast
then show ?thesis

by (auto intro!: sum.cong dist-inv-intersect-onesided assms simp: dist-inv-avg-def)
qed

lemma dist-inv-avg-const: ‹dist-inv-avg Q (λ-. I) (λ-. ψ) = dist-inv Q I ψ›
by (simp add: dist-inv-avg-def dist-inv-def)

lemma register-plus:
assumes ‹register Q›
shows ‹Q (a + b) = Q a + Q b›
by (simp add: assms clinear-register complex-vector .linear-add)

lemma compatible-invariants-uminus-left[simp]: ‹compatible-invariants (−I) J ←→ compatible-invariants
I J ›

by (simp add: Proj-ortho-compl cblinfun-compose-minus-left cblinfun-compose-minus-right compati-
ble-invariants-def)

lemma compatible-invariants-uminus-right[simp]: ‹compatible-invariants I (−J)←→ compatible-invariants
I J ›

by (simp add: Proj-ortho-compl cblinfun-compose-minus-left cblinfun-compose-minus-right compati-
ble-invariants-def)

lemma compatible-invariants-sup: ‹Proj (A t B) = Proj A + Proj B − Proj A oCL Proj B› if ‹com-
patible-invariants A B›

apply (rewrite at ‹A t B› to ‹− (−A u −B)› DEADID.rel-mono-strong)
apply simp

apply (subst Proj-ortho-compl)
by (simp add: that Proj-ortho-compl cblinfun-compose-minus-left cblinfun-compose-minus-right flip:

compatible-invariants-inter)

lemma compatible-invariants-sym: ‹compatible-invariants S T ←→ compatible-invariants T S›
by (metis compatible-invariants-def)

lemma compatible-invariants-refl[iff]: ‹compatible-invariants S S›
by (metis compatible-invariants-def)

lemma compatible-invariants-infI :
assumes [iff]: ‹compatible-invariants S U ›
assumes [iff]: ‹compatible-invariants S T ›
assumes [iff]: ‹compatible-invariants T U ›
shows ‹compatible-invariants S (T u U)›
by (smt (verit, del-insts) assms(1 ,2 ,3) cblinfun-compose-assoc compatible-invariants-def compati-

ble-invariants-inter)

68

lemma compatible-invariants-supI :
assumes [iff]: ‹compatible-invariants S U ›
assumes [iff]: ‹compatible-invariants S T ›
assumes [iff]: ‹compatible-invariants T U ›
shows ‹compatible-invariants S (T t U)›
apply (rewrite at ‹T t U › to ‹− (−T u −U)› DEADID.rel-mono-strong)
apply simp

by (auto intro!: compatible-invariants-infI simp del: compl-inf)

lemma compatible-invariants-inf-sup-distrib1 :
fixes S T U :: ‹ ′a::chilbert-space ccsubspace›
assumes ‹compatible-invariants S U ›
assumes ‹compatible-invariants S T ›
assumes ‹compatible-invariants T U ›
shows ‹S u (T t U) = (S u T) t (S u U)›

proof −
have [iff]: ‹compatible-invariants (S u T) (S u U)›

using assms by (auto intro!: compatible-invariants-infI simp: compatible-invariants-sym)
have ‹Proj (S u (T t U)) = Proj ((S u T) t (S u U))›
apply (simp add: assms compatible-invariants-sup compatible-invariants-supI flip: compatible-invariants-inter)
by (metis (no-types, lifting) Proj-idempotent assms(2) cblinfun-compose-add-right cblinfun-compose-assoc

cblinfun-compose-minus-right
compatible-invariants-def)

then show ?thesis
using Proj-inj by blast

qed

lemma compatible-invariants-inf-sup-distrib2 :
fixes S T U :: ‹ ′a::chilbert-space ccsubspace›
assumes [iff]: ‹compatible-invariants S U ›
assumes [iff]: ‹compatible-invariants S T ›
assumes [iff]: ‹compatible-invariants T U ›
shows ‹(T t U) u S = (T u S) t (U u S)›
by (simp add: compatible-invariants-inf-sup-distrib1 inf-commute)

lemma compatible-invariants-sup-inf-distrib1 :
fixes S T U :: ‹ ′a::chilbert-space ccsubspace›
assumes ‹compatible-invariants S U ›
assumes ‹compatible-invariants S T ›
assumes ‹compatible-invariants T U ›
shows ‹S t (T u U) = (S t T) u (S t U)›
by (smt (verit, ccfv-SIG) Groups.add-ac(1) assms(1 ,2 ,3) compatible-invariants-def compatible-invariants-inf-sup-distrib1

compatible-invariants-supI inf-commute inf-sup-absorb plus-ccsubspace-def)

lemma compatible-invariants-sup-inf-distrib2 :
fixes S T U :: ‹ ′a::chilbert-space ccsubspace›
assumes ‹compatible-invariants S U ›
assumes ‹compatible-invariants S T ›
assumes ‹compatible-invariants T U ›
shows ‹(T u U) t S = (T t S) u (U t S)›
by (metis Groups.add-ac(2) assms(1 ,2 ,3) compatible-invariants-sup-inf-distrib1 plus-ccsubspace-def)

lemma is-orthogonal-Proj-orthogonal-spaces:
assumes ‹orthogonal-spaces S T ›

69

shows ‹is-orthogonal (Proj S ∗V ψ) (Proj T ∗V ψ)›
by (metis Proj-range assms cblinfun-apply-in-image orthogonal-spaces-def)

lemma dist-inv-intersect:
assumes [register]: ‹register Q›
assumes [iff]: ‹compatible-invariants I J ›
shows ‹dist-inv Q (I u J) ψ ≤ sqrt ((dist-inv Q I ψ)2 + (dist-inv Q J ψ)2)›

proof −
define PInJ PJnI PnInJ PnI PnJ PnIJ where ‹PInJ = Q (Proj (I u − J))›

and ‹PJnI = Q (Proj (−I u J))› and ‹PnInJ = Q (Proj (−I u −J))›
and ‹PnI = Q (Proj (−I))› and ‹PnJ = Q (Proj (−J))›
and ‹PnIJ = Q (Proj (− (I u J)))›

have compat1 : ‹compatible-invariants (I u − J) J ›
by (metis Proj-o-Proj-subspace-left Proj-o-Proj-subspace-right compatible-invariants-def compati-

ble-invariants-uminus-right inf-le2)
have compat2 : ‹compatible-invariants (I u − J) I ›

by (simp add: Proj-o-Proj-subspace-left Proj-o-Proj-subspace-right compatible-invariants-def)

have ortho1 : ‹orthogonal-spaces (I u − J) (− I u J)›
by (simp add: le-infI2 orthogonal-spaces-leq-compl)

have ortho2 : ‹orthogonal-spaces (I u − J t − I u J) (− I u − J)›
by (metis inf-le1 inf-le2 ortho-involution orthocomplemented-lattice-class.compl-sup orthogonal-spaces-leq-compl

sup.mono)
have ortho3 : ‹orthogonal-spaces (− I u J) (− I u − J)›

by (simp add: le-infI2 orthogonal-spaces-leq-compl)
have ortho4 : ‹orthogonal-spaces (I u − J) (− I u − J)›

by (metis inf-sup-absorb le-infI2 ortho2 orthogonal-spaces-leq-compl)
have ortho5 : ‹is-orthogonal (PInJ ψ) (PnInJ ψ)›

using ortho4 by (auto intro!: is-orthogonal-Proj-orthogonal-spaces simp: PInJ-def PnInJ-def simp
flip: Proj-lift-invariant)

have ortho6 : ‹is-orthogonal (PJnI ψ) (PnInJ ψ)›
using ortho3 by (auto intro!: is-orthogonal-Proj-orthogonal-spaces simp: PJnI-def PnInJ-def simp

flip: Proj-lift-invariant)
have ortho7 : ‹is-orthogonal (PInJ ψ) (PJnI ψ)›
using ortho1 by (auto intro!: is-orthogonal-Proj-orthogonal-spaces simp: PJnI-def PInJ-def simp flip:

Proj-lift-invariant)

have nI : ‹−I u J t −I u −J = −I ›
by (simp flip: compatible-invariants-inf-sup-distrib1)

then have PnI-decomp: ‹PnI = PJnI + PnInJ ›
by (simp add: PnI-def PJnI-def PnInJ-def register-inj ′ ortho3

flip: register-plus Proj-sup)

have nJ : ‹I u −J t −I u −J = −J ›
by (metis (no-types, lifting) assms(2) compatible-invariants-inf-sup-distrib1 compatible-invariants-refl

compatible-invariants-sym
compatible-invariants-uminus-left complemented-lattice-class.sup-compl-top inf-aci(1) inf-top.comm-neutral)

then have PnJ-decomp: ‹PnJ = PInJ + PnInJ ›
by (simp add: PnJ-def PInJ-def PnInJ-def register-inj ′ ortho4

flip: register-plus Proj-sup)

have ‹I u − J t − I u J t − I u − J = − I t − J ›
by (metis (no-types, lifting) Groups.add-ac(1) boolean-algebra-cancel.sup2 nI nJ plus-ccsubspace-def

sup-inf-absorb)

70

then have PnIJ-decomp: ‹PnIJ = PInJ + PJnI + PnInJ ›
by (simp add: PnIJ-def PInJ-def PJnI-def PnInJ-def register-inj ′ ortho1 ortho2

flip: register-plus Proj-sup)

have ‹(dist-inv Q (I u J) ψ)2 = (norm (PnIJ ψ))2›
by (simp add: PnIJ-def dist-inv-def)

also have ‹. . . = (norm (PInJ ∗V ψ))2 + (norm (PJnI ∗V ψ))2 + (norm (PnInJ ∗V ψ))2›
by (simp add: PnIJ-decomp cblinfun.add-left pythagorean-theorem cinner-add-left ortho5 ortho6 or-

tho7)
also have ‹. . . ≤ ((norm (PJnI ∗V ψ))2 + (norm (PnInJ ∗V ψ))2) + ((norm (PInJ ∗V ψ))2 + (norm

(PnInJ ∗V ψ))2)›
by simp

also have ‹. . . = (norm (PnI ψ))2 + (norm (PnJ ψ))2›
by (simp add: ortho5 ortho6 PnI-decomp PnJ-decomp cblinfun.add-left pythagorean-theorem)

also have ‹. . . ≤ (dist-inv Q I ψ)2 + (dist-inv Q J ψ)2›
apply (rule add-mono)
using assms
by (simp-all add: PnI-def PnJ-def dist-inv-def)

finally show ?thesis
using real-le-rsqrt by presburger

qed

3.3 Preservation of invariants
lemma preserves-lift-invariant:

assumes [register]: ‹register Q›
shows ‹preserves (Q U) (lift-invariant Q I) (lift-invariant Q J) ε ←→ preserves U I J ε›
using register-minus[OF assms, of id-cblinfun, symmetric]
by (simp add: preserves-onorm Proj-lift-invariant register-mult register-norm)

lemma dist-inv-leq-if-preserves:
assumes pres: ‹preserves U (lift-invariant S J) (lift-invariant R I) γ›
assumes [register]: ‹register S› ‹register R›
shows ‹dist-inv R I (U ∗V ψ) ≤ norm U ∗ dist-inv S J ψ + γ ∗ norm ψ›

proof −
note [[simproc del: Laws-Quantum.compatibility-warn]]
define ψgood ψbad where ‹ψgood = S (Proj J) ∗V ψ› and ‹ψbad = S (Proj (− J)) ∗V ψ›
define ψ ′ ψ ′good ψ ′bad where ‹ψ ′ = U ψgood› and ‹ψ ′good = R (Proj I) ψ ′› and ‹ψ ′bad = R (Proj

(−I)) ψ ′›
from pres have ‹γ ≥ 0 ›

using preserves-def by blast
have ψ-decomp: ‹ψ = ψgood + ψbad›

by (simp add: ψgood-def ψbad-def Proj-ortho-compl register-minus flip: cblinfun.add-left)
have ψ ′-decomp: ‹ψ ′ = ψ ′good + ψ ′bad›

by (simp add: ψ ′good-def ψ ′bad-def Proj-ortho-compl register-minus flip: cblinfun.add-left)
define δ where ‹δ = dist-inv S J ψ›
then have ψbad-bound: ‹norm ψbad ≤ δ›

unfolding dist-inv-def ψbad-def by blast
have ‹ψgood ∈ space-as-set (lift-invariant S J)›

by (simp add: ψgood-def lift-invariant-def)
with pres have ‹norm (ψ ′ − Proj (lift-invariant R I) ∗V ψ ′) ≤ γ ∗ norm ψgood›

by (simp add: preserves-def ψ ′-def)
then have ‹norm ψ ′bad ≤ γ ∗ norm ψgood›

by (simp add: ψ ′bad-def Proj-ortho-compl register-minus cblinfun.diff-left Proj-lift-invariant)

71

also have ‹γ ∗ norm ψgood ≤ γ ∗ norm ψ›
by (auto intro!: mult-left-mono is-Proj-reduces-norm ‹γ ≥ 0 › intro: register-projector

simp add: ψgood-def)
finally have ψ ′bad-bound: ‹norm ψ ′bad ≤ γ ∗ norm ψ›

by meson
have Uψ-decomp: ‹U ψ = ψ ′good + ψ ′bad + U ψbad›

by (simp add: ψ-decomp ψ ′-decomp cblinfun.add-right flip: ψ ′-def)
have mIψ ′good0 : ‹R (Proj (− I)) ψ ′good = 0 ›
by (metis Proj-fixes-image Proj-lift-invariant ψ ′-decomp ψ ′-def ψ ′bad-def add-diff-cancel-right ′ assms

cancel-comm-monoid-add-class.diff-cancel cblinfun.diff-right cblinfun-apply-in-image lift-invariant-def)
have mIψ ′bad: ‹norm (R (Proj (− I)) ψ ′bad) ≤ γ ∗ norm ψ›

by (metis ψ ′bad-bound ψ ′-decomp ψ ′bad-def add-diff-cancel-left ′ cblinfun.diff-right diff-zero
mIψ ′good0)

from ψbad-bound
have ‹norm (U ψbad) ≤ norm U ∗ δ›

apply (rule-tac order-trans[OF norm-cblinfun[of U ψbad]])
by (simp add: mult-left-mono)

then have ‹norm (R (Proj (− I)) ∗V U ψbad) ≤ norm U ∗ δ›
apply (rule-tac order-trans[OF norm-cblinfun])
apply (subgoal-tac ‹norm (R (Proj (− I))) ≤ 1 ›)
apply (smt (verit, best) mult-left-le-one-le norm-ge-zero)

by (simp add: norm-Proj-leq1 register-norm)
with mIψ ′bad have ‹dist-inv R I (U ∗V ψ) ≤ norm U ∗ δ + γ ∗ norm ψ›

apply (simp add: dist-inv-def Uψ-decomp cblinfun.add-right mIψ ′good0)
by (smt (verit, del-insts) norm-triangle-ineq)

then show ?thesis
by (simp add: δ-def)

qed

lemma dist-inv-preservesI :
assumes ‹dist-inv S J ψ ≤ ε›
assumes pres: ‹preserves U (lift-invariant S J) (lift-invariant R I) γ›
assumes ‹norm U ≤ 1 ›
assumes ‹norm ψ ≤ 1 ›
assumes ‹γ + ε ≤ δ›
assumes [register]: ‹register S› ‹register R›
shows ‹dist-inv R I (U ∗V ψ) ≤ δ›

proof −
have ‹γ ≥ 0 ›

using pres preserves-def by blast
with assms have ‹norm U ∗ dist-inv S J ψ + γ ∗ norm ψ ≤ δ›

by (smt (verit, ccfv-SIG) dist-inv-def mult-left-le mult-left-le-one-le norm-ge-zero)
then show ?thesis

apply (rule order-trans[rotated])
by (rule dist-inv-leq-if-preserves[OF pres ‹register S› ‹register R›])

qed

lemma dist-inv-apply-compatible:
assumes ‹compatible Q R›
shows ‹dist-inv Q I (R U ∗V ψ) ≤ norm U ∗ dist-inv Q I ψ›

proof −
have [register]: ‹register Q›

using assms compatible-register1 by blast
have [register]: ‹register R›

72

using assms compatible-register2 by blast
have ‹preserves (R U) (lift-invariant Q I) (lift-invariant Q I) 0 ›

apply (rule preserves-compatible[of R])
by (simp-all add: assms compatible-register-invariant-compatible-register compatible-sym)

then have ‹dist-inv Q I (R U ∗V ψ) ≤ norm (R U) ∗ dist-inv Q I ψ + 0 ∗ norm ψ›
apply (rule dist-inv-leq-if-preserves)
by simp-all

also have ‹. . . ≤ norm U ∗ dist-inv Q I ψ›
by (simp add: register-norm)

finally show ?thesis
by −

qed

lemma dist-inv-avg-apply-compatible:
assumes ‹

∧
h. compatible Q (R h)›

shows ‹dist-inv-avg Q I (λh. R h (U h) ∗V ψ h) ≤ (MAX h. norm (U h)) ∗ dist-inv-avg Q I ψ›
proof −

have [iff]: ‹(MAX h∈UNIV . norm (U h)) ≥ 0 ›
by (simp add: Max-ge-iff)

have ‹dist-inv-avg Q I (λh. R h (U h) ∗V ψ h)
= sqrt ((

∑
h∈UNIV . (dist-inv Q (I h) (R h (U h) ∗V ψ h))2) / real CARD(′a))›

by (simp add: dist-inv-avg-def)
also have ‹. . . ≤ sqrt ((

∑
h∈UNIV . (norm (U h) ∗ dist-inv Q (I h) (ψ h))2) / real CARD(′a))›

by (auto intro!: divide-right-mono sum-mono dist-inv-apply-compatible assms)
also have ‹. . . ≤ sqrt ((

∑
h∈UNIV . ((MAX h. norm (U h)) ∗ dist-inv Q (I h) (ψ h))2) / real

CARD(′a))›
by (auto intro!: divide-right-mono power-mono sum-mono mult-right-mono)

also have ‹. . . = (MAX h. norm (U h)) ∗ sqrt ((
∑

h∈UNIV . (dist-inv Q (I h) (ψ h))2) / real
CARD(′a))›

by (simp add: power-mult-distrib real-sqrt-mult real-sqrt-abs abs-of-nonneg flip: sum-distrib-left
times-divide-eq-right)

also have ‹. . . = (MAX h. norm (U h)) ∗ dist-inv-avg Q I ψ›
by (simp add: dist-inv-avg-def)

finally show ?thesis
by −

qed

end

4 CO-Operations Definition of the compressed oracle and related
unitaries

theory CO-Operations imports
Complex-Bounded-Operators.Complex-L2
HOL.Map
Registers.Quantum-Extra2

Misc-Compressed-Oracle
Function-At

begin

73

unbundle cblinfun-syntax

4.1 function-oracle - Querying a fixed function
definition function-oracle :: ‹(′x ⇒ ′y::ab-group-add) ⇒ ((′x × ′y) ell2 ⇒CL (′x × ′y) ell2)› where

‹function-oracle h = classical-operator (λ(x,y). Some (x, y + h x))›

lemma function-oracle-apply: ‹function-oracle h (ket (x, y)) = ket (x, y + h x)›
unfolding function-oracle-def
apply (subst classical-operator-ket)
by (auto intro!: classical-operator-exists-inj injI simp: inj-map-total[unfolded o-def] case-prod-unfold)

lemma function-oracle-adj-apply: ‹function-oracle h∗ ∗V ket (x, y) = ket (x, y − h x)›
proof −

define f where ‹f = (λ(x,y). (x, y + h x))›
define g where ‹g = (λ(x,y). (x, y − h x))›
have gf : ‹g ◦ f = id› and fg: ‹f ◦ g = id›

by (auto simp: f-def g-def)
have [iff]: ‹inj f ›

by (metis fg gf injI isomorphism-expand)
have ‹inv f = g›

using fg gf inv-unique-comp by blast
have inv-map-f : ‹inv-map (Some o f) = (Some o g)›

by (metis ‹inj f › ‹inv f = g› fg fun.set-map inj-imp-surj-inv inv-map-total surj-id)
have ‹function-oracle h∗ = classical-operator (Some o f)∗›

by (simp add: function-oracle-def f-def case-prod-unfold o-def)
also have ‹. . . = classical-operator (Some o g)›

using inv-map-f by (simp add: classical-operator-adjoint function-oracle-def)
also have ‹. . . ∗V ket (x,y) = ket (x, y − h x)›

apply (subst classical-operator-ket)
apply (metis classical-operator-exists-inj inj-map-inv-map inv-map-f)

by (simp add: g-def)
finally show ?thesis

by −
qed

lemma unitary-function-oracle[iff]: ‹unitary (function-oracle h)›
proof −

have ‹bij (λx. (fst x, snd x + h (fst x)))›
apply (rule o-bij[where g=‹(λx. (fst x, snd x − h (fst x)))›])
by auto

then show ?thesis
by (auto intro!: unitary-classical-operator [unfolded o-def]

simp add: function-oracle-def case-prod-unfold)
qed

lemma norm-function-oracle[simp]: ‹norm (function-oracle h) = 1 ›
by (intro norm-isometry unitary-isometry unitary-function-oracle)

lemma function-oracle-adj[simp]: ‹function-oracle h∗ = function-oracle (λx. − h x)› for h :: ‹ ′x ⇒
′y::ab-group-add›

apply (rule equal-ket)
by (auto simp: function-oracle-apply function-oracle-adj-apply)

74

4.2 Setup for compressed oracles
consts trafo :: ‹ ′a ell2 ⇒CL

′a::{zero,finite} ell2 ›
specification (trafo)

unitary-trafo[simp]: ‹unitary trafo›
trafo-0 [simp]: ‹trafo ∗V ket 0 = uniform-superpos UNIV ›

proof −
wlog ‹CARD(′a) ≥ 2 ›
proof −

have ‹CARD(′a) 6= 0 ›
by simp

with negation have ‹CARD(′a) = 1 ›
by presburger

then have [simp]: ‹UNIV = {0 :: ′a}›
by (metis UNIV-I card-1-singletonE singletonD)

have ‹uniform-superpos UNIV = ket (0 :: ′a)›
by (simp add: uniform-superpos-def2)

then show ?thesis
by (auto intro!: exI [where x=id-cblinfun])

qed

let ?uniform = ‹uniform-superpos (UNIV :: ′a set)›
define α where ‹α = complex-of-real (1 / sqrt (of-nat CARD(′a)))›
define p p2 p4 a c where ‹p = cinner ?uniform (ket (0 :: ′a))› and ‹p2 = 1 − p ∗ p›

and ‹p4 = p2 ∗ p2 › and ‹a = (1+p) / p2 › and ‹c = (−1−p) / p2 ›
define T :: ‹ ′a update› where

‹T = a ∗C butterfly (ket 0) ?uniform + a ∗C butterfly ?uniform (ket 0)
+ c ∗C selfbutter (ket 0) + c ∗C selfbutter ?uniform + id-cblinfun›

have pα: ‹p = α›
apply (simp add: p-def cinner-ket-right α-def)
apply transfer
by simp

have p20 : ‹p2 6= 0 ›
unfolding α-def p2-def pα using ‹CARD(′a) ≥ 2 › apply auto
by (smt (verit) complex-of-real-leq-1-iff numeral-nat-le-iff of-real-1 of-real-power power2-eq-square

real-sqrt-pow2
rel-simps(26) semiring-norm(69))

have h1 : ‹a ∗ p + c + 1 = 0 ›
using p20 apply (simp add: a-def c-def)

by (metis add.assoc add-divide-distrib add-neg-numeral-special(8) diff-add-cancel divide-eq-minus-1-iff
minus-diff-eq mult.commute mult-1 p2-def ring-class.ring-distribs(2) uminus-add-conv-diff)

have h2 : ‹a + c ∗ p = 1 ›
using p20 apply (simp add: c-def)

by (metis a-def ab-group-add-class.ab-diff-conv-add-uminus add.commute add.inverse-inverse add-neg-numeral-special(8)
add-right-cancel c-def divide-minus-left h1 minus-add-distrib mult-minus-left times-divide-eq-left)

have [simp]: ‹?uniform ·C ?uniform = 1 ›
by (simp add: cdot-square-norm norm-uniform-superpos)

have [simp]: ‹ket (0 :: ′a) ·C ?uniform = cnj p›
by (simp add: p-def)

have ‹T ∗V ket 0 = (a ∗ p + c + 1) ∗C ket 0 + (a + c ∗ p) ∗C ?uniform›
unfolding T-def
by (auto simp: cblinfun.add-left scaleC-add-left simp flip: p-def)

also have ‹. . . = ?uniform›
by (simp add: h1 h2)

75

finally have 1 : ‹T ∗V ket 0 = ?uniform›
by −

have scaleC-add-left ′: ‹v + scaleC x w + scaleC y w = v + scaleC (x+y) w› for x y and v w :: ‹ ′a
update›

by (simp add: scaleC-add-left)
have sort:

‹v + x ∗C butterfly ?uniform (ket 0) + y ∗C selfbutter (ket 0) = v + y ∗C selfbutter (ket 0) + x
∗C butterfly ?uniform (ket 0)›

‹v + x ∗C selfbutter ?uniform + y ∗C butterfly (ket 0) ?uniform = v + y ∗C butterfly (ket 0)
?uniform + x ∗C selfbutter ?uniform›

‹v + x ∗C selfbutter ?uniform + y ∗C butterfly ?uniform (ket 0) = v + y ∗C butterfly ?uniform (ket
0) + x ∗C selfbutter ?uniform›

‹v + x ∗C selfbutter ?uniform + y ∗C selfbutter (ket 0) = v + y ∗C selfbutter (ket 0) + x ∗C
selfbutter ?uniform›

‹v + x ∗C butterfly (ket 0) ?uniform + y ∗C selfbutter (ket 0) = v + y ∗C selfbutter (ket 0) + x
∗C butterfly (ket 0) ?uniform›

‹v + x ∗C butterfly (ket 0) ?uniform + y ∗C butterfly ?uniform (ket 0) = v + y ∗C butterfly ?uniform
(ket 0) + x ∗C butterfly (ket 0) ?uniform›

for v :: ‹ ′a update› and x y
by auto

have aux: ‹x = 0 ←→ x ∗ p4 = 0 › for x
by (simp add: p20 p4-def)

have [simp]: ‹cnj p = p›
by (simp add: α-def pα)

have [simp]: ‹cnj c = c›
by (simp add: c-def p2-def)

have [simp]: ‹cnj a = a›
by (simp add: a-def p2-def)

have [simp]: ‹p4 6= 0 ›
by (simp add: p20 p4-def)

have [simp]: ‹x ∗ p4 / p2 = x ∗ p2 › for x
by (simp add: p4-def)

have h3 : ‹2 ∗ c + (2 ∗ (a ∗ (c ∗ p)) + (a ∗ a + c ∗ c)) = 0 ›
apply (subst aux)
apply (simp add: a-def c-def distrib-right distrib-left p20 add-divide-distrib

right-diff-distrib left-diff-distrib diff-divide-distrib
flip: p4-def add.assoc
del: mult-eq-0-iff vector-space-over-itself .scale-eq-0-iff)

by (simp add: p4-def p2-def right-diff-distrib left-diff-distrib flip: add.assoc)
have h4 : ‹2 ∗ a + (2 ∗ (a ∗ c) + (a ∗ a ∗ p + c ∗ c ∗ p)) = 0 ›

apply (subst aux)
apply (simp add: a-def c-def distrib-right distrib-left p20 add-divide-distrib

right-diff-distrib left-diff-distrib diff-divide-distrib
flip: p4-def add.assoc
del: mult-eq-0-iff vector-space-over-itself .scale-eq-0-iff)

by (simp add: p4-def p2-def right-diff-distrib left-diff-distrib flip: add.assoc)

have 2 : ‹T oCL T∗ = id-cblinfun›
unfolding T-def
apply (simp add: cblinfun-compose-add-left cblinfun-compose-add-right adj-plus

scaleC-add-right flip: p-def add.assoc mult.assoc)

76

apply (simp add: sort scaleC-add-left ′ flip: scaleC-add-left)
by (simp add: h3 h4)

have 3 : ‹T∗ = T ›
unfolding T-def
by (auto simp: adj-plus)

from 2 3 have 4 : ‹unitary T ›
by (simp add: unitary-def)

from 1 4 show ?thesis
by auto

qed

Set of total functions
definition ‹total-functions = {f :: ′x⇀ ′y. None /∈ range f }›

lemma total-functions-def2 : ‹total-functions = (comp Some) ‘ UNIV ›
proof −

have ‹x ∈ range ((◦) Some)› if ‹None /∈ range x› for x :: ‹ ′x ⇒ ′y option›
by (metis function-factors-right option.collapse range-eqI that)

then show ?thesis
unfolding total-functions-def by auto

qed

lemma total-functions-def3 : ‹total-functions = {f . dom f = UNIV }›
by (force simp add: total-functions-def)

lemma card-total-functions: ‹card (total-functions :: (′x ⇒ ′y option) set) = CARD(′y) ^ CARD(′x::finite)›
proof −

have ‹card (total-functions :: (′x ⇒ ′y option) set) = CARD (′x ⇒ ′y)›
unfolding total-functions-def2
by (simp add: card-image fun.inj-map)

also have ‹. . . = CARD(′y) ^ CARD(′x)›
by (simp add: card-fun)

finally show ?thesis
by −

qed

abbreviation superpos-total :: ‹(′x::finite⇒ ′y::finite option) ell2 › where ‹superpos-total ≡ uniform-superpos
total-functions›

Sets up the locale for defining the compressed oracle. We use a locale because the compressed
oracle can depend on some arbitrary unitary trafo. The choice of trafo usually doesn’t matter;
in this case the default transformation trafo above can be used.
locale compressed-oracle =

fixes dummy-constant :: ‹(′x::finite × ′y::{finite,ab-group-add}) itself ›
fixes trafo :: ‹ ′y::{finite,ab-group-add} ell2 ⇒CL

′y ell2 ›
assumes unitary-trafo[simp]: ‹unitary trafo›
assumes trafo-0 : ‹trafo ∗V ket 0 = uniform-superpos UNIV ›
assumes y-cancel[simp]: ‹(y:: ′y) + y = 0 ›

begin

definition dummy2 :: ‹ ′y update ⇒ (′y set ⇒ nat) ⇒ (′y set ⇒ nat)›

77

where ‹dummy2 x y = y›
definition N-def0 : ‹N = dummy2 trafo card UNIV ›

N is the cardinality of the oracle outputs. (Intuitively, N = 2 n for an n-bit output.
lemma N-def : ‹N = CARD(′y)›

by (simp add: dummy2-def N-def0)

lemma Nneq0 [iff]: ‹N 6= 0 ›
by (simp add: N-def)

definition ‹α = complex-of-real (1 / sqrt (of-nat N))›
— We use this term very often, so this abbreviation comes in handy.

lemma (in compressed-oracle) uminus-y[simp]: ‹− y = y› for y :: ′y
by (metis add.right-inverse group-cancel.add1 group-cancel.rule0 y-cancel)

4.3 switch0 - Operator exchanging ket (Some 0) and ket None

switch0 maps ket None to ket (Some 0) and vice versa. It leaves all other ket (Some y)
unchanged.
definition switch0 :: ‹ ′y option update› where

‹switch0 = classical-operator (Some o Fun.swap (Some 0) None id)›

lemma switch0-None[simp]: ‹switch0 ∗V ket None = ket (Some 0)›
unfolding switch0-def classical-operator-ket-finite
by auto

lemma switch0-0 [simp]: ‹switch0 ∗V ket (Some 0) = ket None›
unfolding switch0-def classical-operator-ket-finite
by auto

lemma switch0-other : ‹switch0 ∗V ket (Some x) = ket (Some x)› if ‹x 6= 0 ›
unfolding switch0-def classical-operator-ket-finite
using that by auto

lemma unitary-switch0 [simp]: ‹unitary switch0 ›
unfolding switch0-def
apply (rule unitary-classical-operator)
by auto

lemma switch0-adj[simp]: ‹switch0∗ = switch0 ›
unfolding switch0-def
apply (subst classical-operator-adjoint)
apply simp

by (simp add: inv-map-total)

4.4 compress1 - Operator to compress a single RO-output

This unitary maps ket None onto the uniform superposition of all ket (Some y) and vice versa,
and leaves everything orthogonal to these unchanged.
This is the operation that deals with compressing a single oracle output.
definition compress1 :: ‹ ′y option ell2 ⇒CL

′y option ell2 › where
‹compress1 = lift-op trafo oCL switch0 oCL (lift-op trafo)∗›

78

lemma uniform-superpos-y-sum: ‹uniform-superpos UNIV = (
∑

d∈UNIV . α ∗C ket (d:: ′y))›
apply (subst ell2-sum-ket)
by (simp add: uniform-superpos.rep-eq α-def N-def)

lemma compress1-None[simp]: ‹compress1 ∗V ket None = (
∑

d∈UNIV . α ∗C ket (Some d))›
by (auto simp: cblinfun.sum-right compress1-def lift-op-adj trafo-0 uniform-superpos-y-sum cblin-

fun.scaleC-right)

lemma compress1-Some[simp]: ‹compress1 ∗V ket (Some d) =
ket (Some d) − (

∑
d∈UNIV . α2 ∗C ket (Some d)) + α ∗C ket None›

proof −
define c where ‹c e = cinner (ket e) (trafo∗ ∗V ket d)› for e
have c0 : ‹c 0 = α›

apply (simp add: c-def cinner-adj-right trafo-0)
by (simp add: α-def N-def cinner-ket-right uniform-superpos.rep-eq)

have ‹compress1 ∗V ket (Some d) = lift-op trafo ∗V switch0 ∗V lift-ell2 ∗V trafo∗ ∗V ket d›
by (auto simp: compress1-def lift-op-adj)

also have ‹. . . = lift-op trafo ∗V switch0 ∗V lift-ell2 ∗V (
∑

e∈UNIV . c e ∗C ket e)›
by (simp add: c-def cinner-ket-left flip: ell2-sum-ket)

also have ‹. . . = lift-op trafo ∗V switch0 ∗V (
∑

e∈UNIV . c e ∗C ket (Some e))›
by (auto simp: cblinfun.sum-right cblinfun.scaleC-right)

also have ‹. . . = lift-op trafo ∗V switch0 ∗V ((
∑

e∈−{0}. c e ∗C ket (Some e)) + c 0 ∗C ket (Some
0))›

apply (subst asm-rl[of ‹UNIV = insert 0 (−{0})›])
by (auto simp add: add.commute)

also have ‹. . . = lift-op trafo ∗V ((
∑

e∈−{0}. c e ∗C (switch0 ∗V ket (Some e))) + c 0 ∗C switch0
∗V ket (Some 0))›

by (simp add: cblinfun.add-right cblinfun.scaleC-right cblinfun.sum-right)
also have ‹. . . = lift-op trafo ∗V ((

∑
e∈−{0}. c e ∗C ket (Some e)) + c 0 ∗C ket None)›

by (simp add: switch0-other)
also have ‹. . . = lift-op trafo ∗V ((

∑
e∈UNIV . c e ∗C ket (Some e)) − c 0 ∗C ket (Some 0) + c 0

∗C ket None)›
by (simp add: Compl-eq-Diff-UNIV sum-diff)

also have ‹. . . = (
∑

e∈UNIV . c e ∗C lift-ell2 ∗V trafo ∗V ket e) − c 0 ∗C lift-ell2 ∗V trafo ∗V ket
0 + c 0 ∗C ket None›

by (simp add: cblinfun.add-right cblinfun.diff-right cblinfun.scaleC-right cblinfun.sum-right)
also have ‹. . . = lift-ell2 ∗V trafo ∗V (

∑
e∈UNIV . c e ∗C ket e) − c 0 ∗C lift-ell2 ∗V uniform-superpos

UNIV + c 0 ∗C ket None›
by (simp add: trafo-0 cblinfun.scaleC-right cblinfun.sum-right)

also have ‹. . . = lift-ell2 ∗V trafo ∗V trafo∗ ∗V ket d − c 0 ∗C lift-ell2 ∗V uniform-superpos UNIV
+ c 0 ∗C ket None›

by (simp add: c-def cinner-ket-left flip: ell2-sum-ket)
also have ‹. . . = lift-ell2 ∗V (trafo oCL trafo∗) ∗V ket d − c 0 ∗C lift-ell2 ∗V uniform-superpos UNIV

+ c 0 ∗C ket None›
by (metis cblinfun-apply-cblinfun-compose)

also have ‹. . . = lift-ell2 ∗V ket d − c 0 ∗C lift-ell2 ∗V uniform-superpos UNIV + c 0 ∗C ket None›
by auto

also have ‹. . . = ket (Some d) − c 0 ∗C (
∑

d∈UNIV . α ∗C ket (Some d)) + c 0 ∗C ket None›
by (auto simp: uniform-superpos-y-sum mult.commute scaleC-sum-right cblinfun.scaleC-right cblin-

fun.sum-right)
also have ‹. . . = ket (Some d) − (

∑
d∈UNIV . α2 ∗C ket (Some d)) + α ∗C ket None›

by (simp add: c0 power2-eq-square scaleC-sum-right)

79

finally show ?thesis
by −

qed

lemma unitary-compress1 [simp]: ‹unitary compress1 ›
by (simp add: compress1-def)

lemma compress1-adj[simp]: ‹compress1∗ = compress1 ›
by (simp add: compress1-def cblinfun-compose-assoc)

lemma compress1-square: ‹compress1 oCL compress1 = id-cblinfun›
by (metis compress1-adj unitary-compress1 unitary-def)

4.5 compress - Operator for compressing the RO

This is the unitary that maps between the compressed representation of the random oracle (in
which the initial state is ket (λ-. None)) and the uncompressed one (in which the initial state
is the uniform superposition of all total functions).
It works by simply applying compress1 to each output separately.
definition compress :: ‹(′x ⇀ ′y) update›

where ‹compress = apply-every UNIV (λ-. compress1)›

lemma unitary-compress[simp]: ‹unitary compress›
by (simp add: compress-def apply-every-unitary)

lemma compress-selfinverse: ‹compress oCL compress = id-cblinfun›
by (simp add: compress-def apply-every-mult compress1-square)

lemma compress-adj: ‹compress∗ = compress›
by (simp add: compress-def apply-every-adj)

lemma compress-empty: ‹compress ∗V ket Map.empty = superpos-total›
proof −

have ∗: ‹apply-every M (λ-. compress1) ∗V ket Map.empty =
(
∑

f |dom f = M . ket f /R sqrt (CARD(′y) ^ card M))› for M :: ‹ ′x set›
proof (use finite[of M] in induction)

case empty
then show ?case

by simp
next

case (insert x F)
have ‹apply-every (insert x F) (λ-. compress1) ∗V ket Map.empty

= function-at x compress1 ∗V apply-every F (λ-. compress1) ∗V ket Map.empty›
using insert.hyps by (simp add: apply-every-insert)

also have ‹. . . = function-at x compress1 ∗V (
∑

f | dom f = F . ket f /R sqrt (real (CARD(′y) ^
card F)))›

by (simp add: insert.IH)
also have ‹. . . = (

∑
f | dom f = F . (function-at x compress1 ∗V ket f) /R sqrt (real (CARD(′y) ^

card F)))›
by (simp add: cblinfun.real.scaleR-right cblinfun.sum-right)

also have ‹. . . = (
∑

f | dom f = F . (
∑

y∈UNIV . Rep-ell2 (compress1 ∗V ket (f x)) y ∗C ket (f (x
:= y))) /R sqrt (real (CARD(′y) ^ card F)))›

by (simp add: function-at-ket)
also have ‹. . . = (

∑
f | dom f = F . (

∑
y∈UNIV . Rep-ell2 (compress1 ∗V ket None) y ∗C ket (f (x

80

:= y))) /R sqrt (real (CARD(′y) ^ card F)))›
by (smt (verit) Finite-Cartesian-Product.sum-cong-aux domIff local.insert(2) mem-Collect-eq)

also have ‹. . . = (
∑

f | dom f = F . (
∑

y∈UNIV . Rep-ell2 (
∑

d∈UNIV . α ∗C ket (Some d)) y ∗C
ket (f (x := y))) /R sqrt (real (CARD(′y) ^ card F)))›

by simp
also have ‹. . . = (

∑
f | dom f = F . (

∑
y∈UNIV . (

∑
d∈UNIV . α ∗C Rep-ell2 (ket (Some d)) y)

∗C ket (f (x := y))) /R sqrt (real (CARD(′y) ^ card F)))›
apply (subst complex-vector .linear-sum[where f =‹λx. Rep-ell2 x -›])
apply (simp add: clinearI plus-ell2 .rep-eq scaleC-ell2 .rep-eq)

apply (subst clinear .scaleC [where f =‹λx. Rep-ell2 x -›])
by (simp-all add: clinearI plus-ell2 .rep-eq scaleC-ell2 .rep-eq)

also have ‹. . . = (
∑

f | dom f = F . (
∑

y∈UNIV . (if y = None then 0 else α) ∗C ket (f (x := y)))
/R sqrt (real (CARD(′y) ^ card F)))›

apply (rule sum.cong, simp)
subgoal for f

apply (rule arg-cong[where f =‹λx. x /R -›])
apply (rule sum.cong, simp)
subgoal for y

apply (subst sum-single[where i=‹the y›])
by (auto simp: ket.rep-eq)

by −
by −
also have ‹. . . = (

∑
f | dom f = F . (

∑
y∈range Some. α ∗C ket (f (x := y))) /R sqrt (real

(CARD(′y) ^ card F)))›
apply (rule sum.cong, simp)
apply (subst sum.mono-neutral-cong-right[where S=‹range Some› and h=‹λy. α ∗C ket (-(x :=

y))›])
by auto

also have ‹. . . = (
∑

f | dom f = F .
∑

y∈range Some. α ∗C ket (f (x := y)) /R sqrt (real (CARD(′y)
^ card F)))›

by (simp add: scaleR-right.sum)
also have ‹. . . = (

∑
(f , y)∈{f . dom f = F} × range Some.

α ∗C ket (f (x := y)) /R sqrt (real (CARD(′y) ^ card F)))›
by (simp add: sum.cartesian-product)

also have ‹. . . = (
∑

(f , y)∈(λf . (f (x:=None), f x)) ‘ {f . dom f = insert x F}.
α ∗C ket (f (x := y))) /R sqrt (real (CARD(′y) ^ card F))›

proof −
have 1 : ‹{f . dom f = F} × range Some = (λf . (f (x := None), f x)) ‘ {f . dom f = insert x F}›
proof (rule Set.set-eqI , rule iffI)

fix z :: ‹(′x ⇒ ′a option) × ′a option›
assume asm: ‹z ∈ {f . dom f = F} × range Some›
define f where ‹f = (fst z)(x := snd z)›
have ‹f ∈ {f . dom f = insert x F}›

using asm by (auto simp: f-def)
moreover have ‹(λf . (f (x := None), f x)) f = z›

using asm insert.hyps by (auto simp add: f-def)
ultimately show ‹z ∈ (λf . (f (x := None), f x)) ‘ {f . dom f = insert x F}›

by auto
next

fix z :: ‹(′x ⇒ ′a option) × ′a option›
assume ‹z ∈ (λf . (f (x := None), f x)) ‘ {f . dom f = insert x F}›
then obtain f where ‹dom f = insert x F› and ‹z = (λf . (f (x := None), f x)) f ›

by auto
then show ‹z ∈ {f . dom f = F} × range Some›

using insert.hyps by auto

81

qed
show ?thesis

apply (subst scaleR-right.sum)
apply (rule sum.cong)
using 1 by auto

qed
also have ‹. . . = (

∑
f | dom f = insert x F . α ∗C ket f) /R sqrt (real (CARD(′y) ^ card F))›

apply (subst sum.reindex)
apply auto

by (smt (verit) fun-upd-idem-iff fun-upd-upd inj-on-def prod.simps(1))
also have ‹. . . = (

∑
f | dom f = insert x F . ket f /R sqrt (real (CARD(′y) ^ card (insert x F))))›

by (simp add: card-insert-disjoint insert.hyps real-sqrt-mult α-def N-def scaleR-scaleC
divide-inverse-commute flip: scaleC-sum-right)

finally show ?case
by −

qed

have ‹(
∑

f |dom f = UNIV . ket f /R sqrt (CARD(′y) ^ CARD(′x))) = (superpos-total :: (′x ⇒ ′y
option) ell2)›

unfolding uniform-superpos-def2
apply (rule sum.cong)
apply (simp add: total-functions-def3)

by (simp add: card-total-functions scaleR-scaleC)

with ∗[of UNIV]
show ?thesis

by (simp flip: compress-def)
qed

4.6 standard-query1 - Operator for uncompressed query of a single RO-output

We define the operation standard-query1 of querying the oracle, but first in the special case of
an oracle that has no input register. That is, the oracle state consists of just one output value
(or None) and this value is simply added to the query output register.
Roughly speaking, it thus is the unitary |y, h〉 7→ |y ⊕ h, h〉. In comparison, a “normal” oracle
query would be defined by |x, y, h〉 7→ |x, y ⊕ h(x), h〉.
That is: If one starts with a three-partite state ψ ⊗s ket 0 ⊗s superpos-total and keeps perform-
ing operations Ui on the parts 1, 2 of the state, interleaved with standard-query1 invocations
on parts 2, 3, this is a simulation of starting with state ψ ⊗s 0 and performing Ui interleaved
with invocations of the unitary |y〉 7→ |y ⊕ h〉 on part 2 where h is chosen uniformly at random
in the beginning.
When h = None, there are various natural choices how to define the behavior of standard-query1.
This is because intuitively, this should not happen, because this operation intended to be ap-
plied to uncompressed oracles which are superpositions of total functions. Yet, due to errors
introduced by projecting onto invariants, one can get situations where this is not perfectly the
case, so the behavior on None matters. Here, we choose to let standard-query1 be the identity
in that case.
definition standard-query1 :: ‹(′y × ′y option) update› where

‹standard-query1 = classical-operator (Some o (λ(y,z). case z of None ⇒ (y,None) | Some z ′⇒ (y +
z ′, z)))›

The operation standard-query1 ′ is defined like standard-query1 (and the motivation and proper-
ties mentioned there also hold here), except that in the case h = None (see discussion for stan-

82

dard-query1), instead of being the identify, standard-query1 ′ returns the 0-vector (not ket 0 !).
In particular, this operation is not a unitary which can make some things more awkward. But
on the plus side, we can achieve better bounds in some situations when using standard-query1 ′.
definition standard-query1 ′ :: ‹(′y × ′y option) update› where

‹standard-query1 ′ = classical-operator (λ(y,z). case z of None ⇒ None | Some z ′ ⇒ Some (y + z ′,
z))›

lemma standard-query1-Some[simp]: ‹standard-query1 ∗V ket (y, Some z) = ket (y + z, Some z)›
by (simp add: standard-query1-def classical-operator-ket-finite)

lemma standard-query1-None[simp]: ‹standard-query1 ∗V ket (y, None) = ket (y, None)›
by (simp add: standard-query1-def classical-operator-ket-finite)

lemma standard-query1 ′-Some[simp]: ‹standard-query1 ′ ∗V ket (y, Some z) = ket (y + z, Some z)›
by (simp add: standard-query1 ′-def classical-operator-ket-finite)

lemma standard-query1 ′-None[simp]: ‹standard-query1 ′ ∗V ket (y, None) = 0 ›
by (simp add: standard-query1 ′-def classical-operator-ket-finite)

lemma unitary-standard-query1 [simp]: ‹unitary standard-query1 ›
unfolding standard-query1-def
apply (rule unitary-classical-operator)
apply (rule o-bij[where g=‹λ(y,z). case z of None ⇒ (y,None) | Some z ′⇒ (y − z ′, z)›])
by (auto intro!: ext simp: case-prod-beta cong del: option.case-cong split!: option.split option.split-asm)

lemma norm-standard-query1 ′[simp]: ‹norm standard-query1 ′ = 1 ›
proof (rule order .antisym)

show ‹norm standard-query1 ′ ≤ 1 ›
unfolding standard-query1 ′-def
apply (rule classical-operator-norm-inj)
by (auto simp: inj-map-def split!: option.split-asm)

show ‹norm standard-query1 ′ ≥ 1 ›
apply (rule cblinfun-norm-geqI [where x=‹ket (undefined, Some undefined)›])
by simp

qed

lemma standard-query1-selfinverse[simp]: ‹standard-query1 oCL standard-query1 = id-cblinfun›
proof −

have ∗: ‹(Some ◦ (λ(y:: ′y, z). case z of None ⇒ (y, None) | Some z ′⇒ (y + z ′, z)) ◦m
(Some ◦ (λ(y, z). case z of None ⇒ (y, None) | Some z ′⇒ (y + z ′, z)))) = Some›

by (auto intro!: ext, rename-tac a b, case-tac b, auto)
show ?thesis

by (auto simp: standard-query1-def classical-operator-mult ∗)
qed

4.7 standard-query - Operator for uncompressed query of the RO

We can now define the operation of querying the (non-compressed) oracle, i.e., the opera-
tion |x, y, h〉 7→ |x, y ⊕ h(x), h〉. Most of the work has already been done when defining stan-
dard-query1. We just need to apply standard-query1 onto the Y -register and the x-output of
the H -register, where x is the content of the X -register (in the computational basis).
The various lemmas below (e.g., standard-query-ket) show that this definition actually achieves
this.

83

That is: If one starts with a four-partite state ψ ⊗s ket 0 ⊗s ket 0 ⊗s superpos-total and
keeps performing operations Ui on the parts 1–3 of the state, interleaved with standard-query
invocations on parts 2–4, this is a simulation of starting with state ψ ⊗s 0 and performing Ui

interleaved with invocations of the unitary |x, y〉 7→ |x, y ⊕ h(x)〉 on parts 2, 3 where h is a
function chosen uniformly at random in the beginning.
definition standard-query :: ‹(′x × ′y × (′x ⇀ ′y)) ell2 ⇒CL (′x × ′y × (′x ⇀ ′y)) ell2 › where

‹standard-query = controlled-op (λx. (Fst; Snd o function-at x) standard-query1)›

Analogous to standard-query but using the variant standard-query1 ′.
definition standard-query ′ :: ‹(′x × ′y × (′x ⇀ ′y)) ell2 ⇒CL (′x × ′y × (′x ⇀ ′y)) ell2 › where

‹standard-query ′ = controlled-op (λx. (Fst; Snd o function-at x) standard-query1 ′)›

lemma standard-query-ket: ‹standard-query ∗V (ket x ⊗s ψ) = ket x ⊗s ((Fst; Snd o function-at x)
standard-query1 ∗V ψ)›

by (auto simp: standard-query-def)

lemma standard-query-ket-full-Some:
assumes ‹H x = Some z›
shows ‹standard-query ∗V (ket (x,y,H)) = ket (x, y + z, H)›

proof −
obtain H ′ where pf-xH : ‹puncture-function x H = (H x , H ′)›

by (metis fst-puncture-function prod.collapse)
have ‹standard-query ∗V (ket (x,y,H)) = ket x ⊗s sandwich (id-cblinfun ⊗o function-at-U x) ((id ⊗r

Fst) standard-query1) ∗V ket y ⊗s ket H ›
by (simp add: standard-query-ket function-at-def pair-o-tensor-right pair-Fst-Snd

pair-o-tensor-right unitary-sandwich-register pair-o-tensor-right
register-tensor-distrib-right id-tensor-sandwich
flip: tensor-ell2-ket)

also have ‹. . . = ket x ⊗s (id-cblinfun ⊗o function-at-U x) ∗V (id ⊗r Fst) standard-query1 ∗V (ket
y ⊗s ket (H x) ⊗s ket H ′)›

(is ‹- = - ⊗s - ∗V ?R standard-query1 ∗V -›)
by (simp add: sandwich-apply ′ tensor-op-adjoint tensor-op-ell2 pf-xH assms flip: tensor-ell2-ket)

also have ‹. . . = ket x ⊗s (id-cblinfun ⊗o function-at-U x) ∗V (ket (y + z) ⊗s ket (H x) ⊗s ket H ′)›
apply (subst asm-rl[of ‹(id ⊗r Fst) = assoc o Fst›])
subgoal by (auto intro!: tensor-extensionality simp add: register-tensor-is-register Fst-def)

apply (simp add: Fst-def assoc-ell2-sandwich sandwich-apply ′ assoc-ell2 ′-tensor tensor-op-ell2 assms)
apply (simp add: tensor-ell2-ket del: function-at-U-ket)
by (simp add: assoc-ell2-tensor tensor-op-ell2 flip: tensor-ell2-ket)

also have ‹. . . = ket x ⊗s ket (y + z) ⊗s ket H ›
apply (simp add: tensor-op-ell2 flip: tensor-ell2-ket)
by (simp flip: pf-xH add: tensor-ell2-ket)

finally show ?thesis
by (simp add: tensor-ell2-ket)

qed

lemma standard-query-ket-full-None:
assumes ‹H x = None›
shows ‹standard-query ∗V (ket (x,y,H)) = ket (x, y, H)›

proof −
obtain H ′ where pf-xH : ‹puncture-function x H = (H x , H ′)›

by (metis fst-puncture-function prod.collapse)
have ‹standard-query ∗V (ket (x,y,H)) = ket x ⊗s sandwich (id-cblinfun ⊗o function-at-U x) ((id ⊗r

Fst) standard-query1) ∗V ket y ⊗s ket H ›
by (simp add: standard-query-ket function-at-def pair-o-tensor-right pair-Fst-Snd

pair-o-tensor-right unitary-sandwich-register pair-o-tensor-right

84

register-tensor-distrib-right id-tensor-sandwich
flip: tensor-ell2-ket)

also have ‹. . . = ket x ⊗s (id-cblinfun ⊗o function-at-U x) ∗V (id ⊗r Fst) standard-query1 ∗V ket y
⊗s ket (H x) ⊗s ket H ′›

by (simp add: sandwich-apply ′ tensor-op-adjoint tensor-op-ell2 pf-xH assms flip: tensor-ell2-ket)
also have ‹. . . = ket x ⊗s (id-cblinfun ⊗o function-at-U x) ∗V ket y ⊗s ket (H x) ⊗s ket H ′›

apply (subst asm-rl[of ‹(id ⊗r Fst) = assoc o Fst›])
subgoal by (auto intro!: tensor-extensionality simp add: register-tensor-is-register Fst-def)

apply (simp add: Fst-def assoc-ell2-sandwich sandwich-apply ′ assoc-ell2 ′-tensor tensor-op-ell2 assms)
apply (simp add: tensor-ell2-ket del: function-at-U-ket)
by (simp add: assoc-ell2-tensor tensor-op-ell2 flip: tensor-ell2-ket)

also have ‹. . . = ket x ⊗s ket y ⊗s ket H ›
apply (simp add: tensor-op-ell2 flip: tensor-ell2-ket)
by (simp flip: pf-xH add: tensor-ell2-ket)

finally show ?thesis
by (simp add: tensor-ell2-ket)

qed

lemma standard-query ′-ket: ‹standard-query ′ ∗V (ket x ⊗s ψ) = ket x ⊗s ((Fst; Snd o function-at x)
standard-query1 ′ ∗V ψ)›

by (auto simp: standard-query ′-def)

lemma standard-query ′-ket-full-Some:
assumes ‹H x = Some z›
shows ‹standard-query ′ ∗V (ket (x,y,H)) = ket (x, y + z, H)›

proof −
obtain H ′ where pf-xH : ‹puncture-function x H = (H x , H ′)›

by (metis fst-puncture-function prod.collapse)
have ‹standard-query ′ ∗V (ket (x,y,H)) = ket x ⊗s sandwich (id-cblinfun ⊗o function-at-U x) ((id ⊗r

Fst) standard-query1 ′) ∗V ket y ⊗s ket H ›
by (simp add: standard-query ′-ket function-at-def pair-o-tensor-right pair-Fst-Snd

pair-o-tensor-right unitary-sandwich-register pair-o-tensor-right
register-tensor-distrib-right id-tensor-sandwich
flip: tensor-ell2-ket)

also have ‹. . . = ket x ⊗s (id-cblinfun ⊗o function-at-U x) ∗V (id ⊗r Fst) standard-query1 ′ ∗V (ket
y ⊗s ket (H x) ⊗s ket H ′)›

(is ‹- = - ⊗s - ∗V ?R standard-query1 ′ ∗V -›)
by (simp add: sandwich-apply ′ tensor-op-adjoint tensor-op-ell2 pf-xH assms flip: tensor-ell2-ket)

also have ‹. . . = ket x ⊗s (id-cblinfun ⊗o function-at-U x) ∗V (ket (y + z) ⊗s ket (H x) ⊗s ket H ′)›
apply (subst asm-rl[of ‹(id ⊗r Fst) = assoc o Fst›])
subgoal by (auto intro!: tensor-extensionality simp add: register-tensor-is-register Fst-def)

apply (simp add: Fst-def assoc-ell2-sandwich sandwich-apply ′ assoc-ell2 ′-tensor tensor-op-ell2 assms)
apply (simp add: tensor-ell2-ket del: function-at-U-ket)
by (simp add: assoc-ell2-tensor tensor-op-ell2 flip: tensor-ell2-ket)

also have ‹. . . = ket x ⊗s ket (y + z) ⊗s ket H ›
apply (simp add: tensor-op-ell2 flip: tensor-ell2-ket)
by (simp flip: pf-xH add: tensor-ell2-ket)

finally show ?thesis
by (simp add: tensor-ell2-ket)

qed

lemma standard-query ′-ket-full-None:
assumes ‹H x = None›
shows ‹standard-query ′ ∗V (ket (x,y,H)) = 0 ›

proof −

85

obtain H ′ where pf-xH : ‹puncture-function x H = (H x , H ′)›
by (metis fst-puncture-function prod.collapse)

have ‹standard-query ′ ∗V (ket (x,y,H)) = ket x ⊗s sandwich (id-cblinfun ⊗o function-at-U x) ((id ⊗r

Fst) standard-query1 ′) ∗V ket y ⊗s ket H ›
by (simp add: standard-query ′-ket function-at-def pair-o-tensor-right pair-Fst-Snd

pair-o-tensor-right unitary-sandwich-register pair-o-tensor-right
register-tensor-distrib-right id-tensor-sandwich
flip: tensor-ell2-ket)

also have ‹. . . = ket x ⊗s (id-cblinfun ⊗o function-at-U x) ∗V (id ⊗r Fst) standard-query1 ′ ∗V ket
y ⊗s ket (H x) ⊗s ket H ′›

by (simp add: sandwich-apply ′ tensor-op-adjoint tensor-op-ell2 pf-xH assms flip: tensor-ell2-ket)
also have ‹. . . = 0 ›

apply (subst asm-rl[of ‹(id ⊗r Fst) = assoc o Fst›])
subgoal by (auto intro!: tensor-extensionality simp add: register-tensor-is-register Fst-def)

apply (simp add: Fst-def assoc-ell2-sandwich sandwich-apply ′ assoc-ell2 ′-tensor tensor-op-ell2 assms)
by (simp add: tensor-ell2-ket del: function-at-U-ket)

finally show ?thesis
by −

qed

lemma standard-query-selfinverse[simp]: ‹standard-query oCL standard-query = id-cblinfun›
by (simp add: standard-query-def controlled-op-compose register-mult)

lemma unitary-standard-query[simp]: ‹unitary standard-query›
by (auto simp: standard-query-def intro!: controlled-op-unitary register-unitary[of ‹(-;-)›])

lemma contracting-standard ′-query[simp]: ‹norm standard-query ′ = 1 ›
proof (rule antisym)

show ‹norm standard-query ′ ≤ 1 ›
unfolding standard-query ′-def
apply (rule controlled-op-norm-leq)

by (smt (verit) norm-standard-query1 ′ norm-zero register-norm register-pair-def register-pair-is-register)
show ‹norm standard-query ′ ≥ 1 ›

apply (rule cblinfun-norm-geqI [where x=‹ket (undefined, undefined, λ-. Some undefined)›])
apply (subst standard-query ′-ket-full-Some)
by auto

qed

4.8 query1 - Query the compressed oracle at a single output

Before we formulate the compressed oracle itself, we define a scaled down version where the func-
tion in the oracle has only a single output (and there’s no input register). Cf. standard-query1.
This is done by decompressing the oracle register, applying standard-query1, and then recom-
pressing the oracle register.
That is: If one starts with a three-partite state ψ ⊗s ket 0 ⊗s ket None and keeps performing
operations Ui on the parts 1, 2 of the state, interleaved with query1 invocations on parts 2, 3,
this is a simulation of starting with state ψ ⊗s 0 and performing Ui interleaved with invocations
of the unitary |y〉 7→ |y⊕ h〉 on part 2 where h is chosen uniformly at random in the beginning.
definition query1 where ‹query1 = Snd compress1 oCL standard-query1 oCL Snd compress1 ›

The operation query1 ′ is defined like query1 (and the motivation and properties mentioned
there also hold here), except that it is based on standard-query1 ′ instead of standard-query1.
See the comment at standard-query1 ′ for a discussion of the difference.

86

definition query1 ′ where ‹query1 ′ = Snd compress1 oCL standard-query1 ′ oCL Snd compress1 ›

lemma unitary-query1 [simp]: ‹unitary query1 ›
by (auto simp: query1-def register-unitary intro!: unitary-cblinfun-compose)

lemma norm-query1 ′[simp]: ‹norm query1 ′ = 1 ›
unfolding query1 ′-def
apply (subst norm-isometry-compose ′)
apply (simp add: Snd-def comp-tensor-op compress1-square isometry-def tensor-op-adjoint)

apply (subst norm-isometry-compose)
apply (simp add: Snd-def comp-tensor-op compress1-square isometry-def tensor-op-adjoint)

by simp

The following lemmas give explicit formulas for the result of applying query1 and query1 ′ to
computational basis states (ket trafo). While the definitions of query1 and query1 ′ are useful
for showing structural properties of these operations (e.g., the fact that they actually simulate a
random oracle), for doing computations in concrete cases (e.g., the preservation of an invariant),
the explicit formulas can be more useful.
lemma query1-None: ‹query1 ∗V ket (y,None) =

α ∗C (
∑

d∈UNIV . ket (y + d, Some d))
− α^3 ∗C (

∑
y ′∈UNIV .

∑
d∈UNIV . ket (y ′, Some d))

+ α2 ∗C (
∑

d∈UNIV . ket (d, None))› (is ‹- = ?rhs›)
proof −

have [simp]: ‹α ∗ α = α2› ‹α ∗ α2 = α^3 ›
by (simp-all add: power2-eq-square numeral-2-eq-2 numeral-3-eq-3)

have aux: ‹a = a ′ =⇒ b = b ′ =⇒ c = c ′ =⇒ a − b + c = a ′ − b ′ + c ′› for a b c a ′ b ′ c ′ ::
‹ ′z::group-add›

by simp

have ‹Snd compress1 ∗V ket (y, None) = (
∑

d∈UNIV . α ∗C ket (y, Some d))›
by (simp add: query1-def tensor-ell2-scaleC2 tensor-ell2-sum-right flip: tensor-ell2-ket)

also have ‹standard-query1 ∗V . . . = (
∑

d∈UNIV . α ∗C ket (y + d, Some d))›
by (simp add: cblinfun.scaleC-right cblinfun.sum-right)

also have ‹Snd compress1 ∗V . . . =
α ∗C (

∑
d∈UNIV . (ket (y + d) ⊗s ket (Some d)))

− α^3 ∗C (
∑

z∈UNIV .
∑

d∈UNIV . (ket (y + z) ⊗s ket (Some d)))
+ α2 ∗C (

∑
z∈UNIV . (ket (y + z) ⊗s ket None))›

by (simp add: tensor-ell2-diff2 tensor-ell2-add2 scaleC-add-right sum.distrib tensor-ell2-sum-right
tensor-ell2-scaleC2 sum-subtractf scaleC-diff-right scaleC-sum-right cblinfun.scaleC-right
cblinfun.sum-right
flip: tensor-ell2-ket)

also have ‹. . . = ?rhs›
apply (rule aux)
subgoal

by (simp add: tensor-ell2-ket)
subgoal

apply (subst sum.reindex-bij-betw[where h=‹λd. y + d› and T=UNIV])
by (simp-all add: tensor-ell2-ket)

subgoal
apply simp
apply (subst sum.reindex-bij-betw[where h=‹λd. y + d› and T=UNIV])
by (simp-all add: tensor-ell2-ket)

87

by −
finally show ?thesis

unfolding query1-def by simp
qed

lemma query1-Some: ‹query1 ∗V ket (y, Some d) =
ket (y + d, Some d)
+ α ∗C ket (y + d, None)
− α^3 ∗C (

∑
y ′∈UNIV . ket (y ′, None))

− α2 ∗C (
∑

d ′∈UNIV . ket (y + d ′, Some d ′))
− α2 ∗C (

∑
d ′∈UNIV . ket (y + d, Some d ′))

+ α2 ∗C (
∑

d ′∈UNIV . ket (y, Some d ′))
+ α^4 ∗C (

∑
y ′∈UNIV .

∑
d ′∈UNIV . ket (y ′, Some d ′))›

(is ‹- = ?rhs›)
proof −

have [simp]: ‹α ∗ α = α2› ‹α2 ∗ α = α^3 ›
by (simp-all add: power2-eq-square numeral-2-eq-2 numeral-3-eq-3)

have aux: ‹a=a ′ =⇒ b=b ′ =⇒ c=c ′ =⇒ d=d ′ =⇒ e=e ′ =⇒ f =f ′ =⇒ g=g ′
=⇒ a ′ − e ′ + b ′ + g ′ − d ′ − c ′ + f ′ = a + b − c − d − e + f + g›

for a b c d e f g a ′ b ′ c ′ d ′ e ′ f ′ g ′ :: ‹ ′z::ab-group-add›
by simp

have ‹Snd compress1 ∗V ket (y, Some d) =
ket (y, Some d) − α2 ∗C (

∑
d ′∈UNIV . ket (y, Some d ′)) + α ∗C ket (y, None)›

by (simp add: query1-def tensor-ell2-scaleC2 tensor-ell2-diff2 tensor-ell2-add2 tensor-ell2-sum-right
flip: tensor-ell2-ket scaleC-sum-right)

also have ‹standard-query1 ∗V . . . = ket (y + d, Some d) − α2 ∗C (
∑

d ′∈UNIV . ket (y + d ′, Some
d ′)) + α ∗C ket (y, None)›

by (simp add: cblinfun.add-right cblinfun.diff-right cblinfun.scaleC-right cblinfun.sum-right)
also have ‹Snd compress1 ∗V . . . =

ket (y + d, Some d)
− α2 ∗C (

∑
d ′∈UNIV . ket (y + d, Some d ′))

+ α ∗C ket (y + d, None)
+ α^4 ∗C (

∑
z∈UNIV .

∑
d ′∈UNIV . ket (y + z, Some d ′))

− α2 ∗C (
∑

d ′∈UNIV . ket (y + d ′, Some d ′))
− α^3 ∗C (

∑
z∈UNIV . ket (y + z, None))

+ α2 ∗C (
∑

d ′∈UNIV . ket (y, Some d ′))›
by (simp add: tensor-ell2-diff2 tensor-ell2-add2 scaleC-add-right sum.distrib

tensor-ell2-scaleC2 sum-subtractf scaleC-diff-right scaleC-sum-right tensor-ell2-sum-right
cblinfun.add-right cblinfun.diff-right diff-diff-eq2 cblinfun.scaleC-right cblinfun.sum-right
flip: tensor-ell2-ket diff-diff-eq scaleC-sum-right)

also have ‹. . . = ?rhs›
apply (rule aux)
subgoal by rule
subgoal by rule
subgoal

apply (subst sum.reindex-bij-betw[where h=‹λd. y + d› and T=UNIV])
by simp-all

subgoal by rule
subgoal by rule
subgoal by rule
subgoal

apply (subst sum.reindex-bij-betw[where h=‹λd. y + d› and T=UNIV])
by simp-all

88

by −
finally show ?thesis

unfolding query1-def by simp
qed

lemma query1 :
shows ‹query1 ∗V (ket yd) = (case yd of

(y, None) ⇒
α ∗C (

∑
d∈UNIV . ket (y + d, Some d))

− α^3 ∗C (
∑

y ′∈UNIV .
∑

d∈UNIV . ket (y ′, Some d))
+ α2 ∗C (

∑
d∈UNIV . ket (d, None))

| (y, Some d) ⇒
ket (y + d, Some d)
+ α ∗C ket (y + d, None)
− α^3 ∗C (

∑
y ′∈UNIV . ket (y ′, None))

− α2 ∗C (
∑

d ′∈UNIV . ket (y + d ′, Some d ′))
− α2 ∗C (

∑
d ′∈UNIV . ket (y + d, Some d ′))

+ α2 ∗C (
∑

d ′∈UNIV . ket (y, Some d ′))
+ α^4 ∗C (

∑
y ′∈UNIV .

∑
d ′∈UNIV . ket (y ′, Some d ′)))›

apply (cases yd, rename-tac y d) apply (case-tac d)
apply (simp-all add:)
apply (subst query1-None)
apply simp

apply (subst query1-Some)
by simp

lemma query1 ′-None: ‹query1 ′ ∗V ket (y,None) =
α ∗C (

∑
d∈UNIV . ket (y + d, Some d))

− α^3 ∗C (
∑

y ′∈UNIV .
∑

d∈UNIV . ket (y ′, Some d))
+ α2 ∗C (

∑
d∈UNIV . ket (d, None))› (is ‹- = ?rhs›)

proof −
have [simp]: ‹α ∗ α = α2› ‹α ∗ α2 = α^3 ›

by (simp-all add: power2-eq-square numeral-2-eq-2 numeral-3-eq-3)

have aux: ‹a = a ′ =⇒ b = b ′ =⇒ c = c ′ =⇒ a − b + c = a ′ − b ′ + c ′› for a b c a ′ b ′ c ′ ::
‹ ′z::group-add›

by simp

have ‹Snd compress1 ∗V ket (y, None) = (
∑

d∈UNIV . α ∗C ket (y, Some d))›
by (simp add: query1-def tensor-ell2-scaleC2 tensor-ell2-sum-right flip: tensor-ell2-ket)

also have ‹standard-query1 ′ ∗V . . . = (
∑

d∈UNIV . α ∗C ket (y + d, Some d))›
by (simp add: cblinfun.scaleC-right cblinfun.sum-right)

also have ‹Snd compress1 ∗V . . . =
α ∗C (

∑
d∈UNIV . (ket (y + d) ⊗s ket (Some d)))

− α^3 ∗C (
∑

z∈UNIV .
∑

d∈UNIV . (ket (y + z) ⊗s ket (Some d)))
+ α2 ∗C (

∑
z∈UNIV . (ket (y + z) ⊗s ket None))›

by (simp add: tensor-ell2-diff2 tensor-ell2-add2 scaleC-add-right sum.distrib tensor-ell2-sum-right
tensor-ell2-scaleC2 sum-subtractf scaleC-diff-right scaleC-sum-right cblinfun.scaleC-right
cblinfun.sum-right
flip: tensor-ell2-ket)

also have ‹. . . = ?rhs›
apply (rule aux)
subgoal

by (simp add: tensor-ell2-ket)

89

subgoal
apply (subst sum.reindex-bij-betw[where h=‹λd. y + d› and T=UNIV])
by (simp-all add: tensor-ell2-ket)

subgoal
apply simp
apply (subst sum.reindex-bij-betw[where h=‹λd. y + d› and T=UNIV])
by (simp-all add: tensor-ell2-ket)

by −
finally show ?thesis

unfolding query1 ′-def by simp
qed

lemma query1 ′-Some: ‹query1 ′ ∗V ket (y, Some d) =
ket (y + d, Some d)
+ α ∗C ket (y + d, None)
− α^3 ∗C (

∑
y ′∈UNIV . ket (y ′, None))

− α2 ∗C (
∑

d ′∈UNIV . ket (y + d ′, Some d ′))
− α2 ∗C (

∑
d ′∈UNIV . ket (y + d, Some d ′))

+ α^4 ∗C (
∑

y ′∈UNIV .
∑

d ′∈UNIV . ket (y ′, Some d ′))›
(is ‹- = ?rhs›)

proof −
have [simp]: ‹α ∗ α = α2› ‹α2 ∗ α = α^3 ›

by (simp-all add: power2-eq-square numeral-2-eq-2 numeral-3-eq-3)

have aux: ‹a=a ′ =⇒ b=b ′ =⇒ c=c ′ =⇒ d=d ′ =⇒ e=e ′ =⇒ g=g ′
=⇒ a ′ − e ′ + b ′ + g ′ − d ′ − c ′ = a + b − c − d − e + g›

for a b c d e f g a ′ b ′ c ′ d ′ e ′ f ′ g ′ :: ‹ ′z::ab-group-add›
by simp

have ‹Snd compress1 ∗V ket (y, Some d) =
ket (y, Some d) − α2 ∗C (

∑
d ′∈UNIV . ket (y, Some d ′)) + α ∗C ket (y, None)›

by (simp add: query1-def tensor-ell2-scaleC2 tensor-ell2-diff2 tensor-ell2-add2 tensor-ell2-sum-right
flip: tensor-ell2-ket scaleC-sum-right)

also have ‹standard-query1 ′ ∗V . . . = ket (y + d, Some d) − α2 ∗C (
∑

d ′∈UNIV . ket (y + d ′, Some
d ′))›

by (simp add: cblinfun.add-right cblinfun.diff-right cblinfun.scaleC-right cblinfun.sum-right)
also have ‹Snd compress1 ∗V . . . =

ket (y + d, Some d)
− α2 ∗C (

∑
d ′∈UNIV . ket (y + d, Some d ′))

+ α ∗C ket (y + d, None)
+ α^4 ∗C (

∑
z∈UNIV .

∑
d ′∈UNIV . ket (y + z, Some d ′))

− α2 ∗C (
∑

d ′∈UNIV . ket (y + d ′, Some d ′))
− α^3 ∗C (

∑
z∈UNIV . ket (y + z, None))›

by (simp add: tensor-ell2-diff2 tensor-ell2-add2 scaleC-add-right sum.distrib tensor-ell2-sum-right
tensor-ell2-scaleC2 sum-subtractf scaleC-diff-right scaleC-sum-right cblinfun.sum-right
cblinfun.add-right cblinfun.diff-right diff-diff-eq2 cblinfun.scaleC-right
flip: tensor-ell2-ket diff-diff-eq scaleC-sum-right)

also have ‹. . . = ?rhs›
apply (rule aux)
subgoal by rule
subgoal by rule
subgoal

apply (subst sum.reindex-bij-betw[where h=‹λd. y + d› and T=UNIV])
by simp-all

subgoal by rule

90

subgoal by rule
subgoal

apply (subst sum.reindex-bij-betw[where h=‹λd. y + d› and T=UNIV])
by simp-all

by −
finally show ?thesis

unfolding query1 ′-def by simp
qed

lemma query1 ′:
shows ‹query1 ′ ∗V (ket yd) = (case yd of

(y, None) ⇒
α ∗C (

∑
d∈UNIV . ket (y + d, Some d))

− α^3 ∗C (
∑

y ′∈UNIV .
∑

d∈UNIV . ket (y ′, Some d))
+ α2 ∗C (

∑
d∈UNIV . ket (d, None))

| (y, Some d) ⇒
ket (y + d, Some d)
+ α ∗C ket (y + d, None)
− α^3 ∗C (

∑
y ′∈UNIV . ket (y ′, None))

− α2 ∗C (
∑

d ′∈UNIV . ket (y + d ′, Some d ′))
− α2 ∗C (

∑
d ′∈UNIV . ket (y + d, Some d ′))

+ α^4 ∗C (
∑

y ′∈UNIV .
∑

d ′∈UNIV . ket (y ′, Some d ′)))›
apply (cases yd, rename-tac y d) apply (case-tac d)
apply (simp-all add:)
apply (subst query1 ′-None)
apply simp

apply (subst query1 ′-Some)
by simp

4.9 query - Query the compressed oracle

We define the compressed oracle itself.
Analogous to the definition of query1 above (decompress, standard-query1, recompress), the
compressed oracle is defined by decompressing the oracle register (now a superposition of func-
tions), applying standard-query, and recompressing.
That is: If one starts with a four-partite state ψ ⊗s ket 0 ⊗s ket 0 ⊗s ket None and keeps
performing operations Ui on the parts 1–3 of the state, interleaved with query invocations on
parts 2–4, this is a simulation of starting with state ψ ⊗s 0 and performing Ui interleaved with
invocations of the unitary |x, y〉 7→ |x, y ⊕ h(x)〉 on parts 2, 3 where h is a function chosen
uniformly at random in the beginning.
Note that there is an alternative way of defining the compressed oracle, namely by decompressing
not the whole oracle register, but only the specific oracle output that we are querying. This is
closer to an efficient implementation of the compressed oracle. We show that this definition is
equivalent below (lemma query-local).
definition query where ‹query = reg-3-3 compress oCL standard-query oCL reg-3-3 compress›

query ′ is defined like query, except that it’s based on standard-query1 ′ instead of standard-query1.
See the discussion of standard-query1 ′ for the difference.
definition query ′ where ‹query ′ = reg-3-3 compress oCL standard-query ′ oCL reg-3-3 compress›

lemma unitary-query[simp]: ‹unitary query›

91

by (auto simp: query-def register-unitary intro!: unitary-cblinfun-compose)

lemma norm-query[simp]: ‹norm query = 1 ›
using norm-isometry unitary-isometry unitary-query by blast

lemma norm-query ′[simp]: ‹norm query ′ = 1 ›
unfolding query ′-def
apply (subst norm-isometry-compose ′)
apply (subst register-adjoint[OF register-3-3 , symmetric])
apply (rule register-isometry[OF register-3-3])
apply simp

apply (subst norm-isometry-compose)
apply (rule register-isometry[OF register-3-3])
apply simp

by simp

lemma query-local-generic:
— A generalization of lemmas query-local and query ′-local below. We prove this first because it avoids

a duplication of the proof because query-local and query ′-local have very similar proofs.
fixes query :: ‹(′x × ′y × (′x ⇀ ′y)) update› and query1

and standard-query and standard-query1
assumes query-def : ‹query = reg-3-3 compress oCL standard-query oCL reg-3-3 compress›
assumes query1-def : ‹query1 = Snd compress1 oCL standard-query1 oCL Snd compress1 ›
assumes standard-query-ket: ‹

∧
x ψ. standard-query ∗V (ket x ⊗s ψ) = ket x ⊗s ((Fst; Snd o func-

tion-at x) standard-query1 ∗V ψ)›
shows ‹query = controlled-op (λx. (Fst; Snd o function-at x) query1)›

proof −
have ‹query ∗V ket x ⊗s ψ = controlled-op (λx. (Fst;Snd ◦ function-at x) query1) ∗V ket x ⊗s ψ›

for x ψ
proof −

have aux: ‹(Snd ((Fst;Snd ◦ function-at x) Q) oCL reg-3-3 (apply-every M R) :: (′x× ′y×(′x⇀ ′y))
update)

= reg-3-3 (apply-every M R) oCL Snd ((Fst;Snd ◦ function-at x) Q)›
if ‹x /∈M › for M and Q :: ‹(′y × ′y option) update› and R
using finite[of M] that

proof induction
case empty
show ?case

by simp
next

case (insert y F)
have ‹(Snd ((Fst;Snd ◦ function-at x) Q) oCL reg-3-3 (apply-every (insert y F) R) :: (′x× ′y×(′x⇀ ′y))

update) =
((Snd o (Fst;Snd ◦ function-at x)) Q oCL (reg-3-3 o function-at y) (R y)) oCL reg-3-3

(apply-every F R)›
by (simp add: apply-every-insert insert register-mult[of reg-3-3 , symmetric] cblinfun-compose-assoc)
also have ‹. . . = (reg-3-3 ◦ function-at y) (R y) oCL ((Snd ((Fst;Snd ◦ function-at x) Q)) oCL

reg-3-3 (apply-every F R))›
apply (subst swap-registers[of ‹Snd o -› ‹reg-3-3 o -›])
using insert apply (simp add: reg-3-3-def add: comp-assoc)
by (simp add: cblinfun-compose-assoc)

also have ‹. . . = ((reg-3-3 ◦ function-at y) (R y) oCL reg-3-3 (apply-every F R)) oCL Snd ((Fst;Snd
◦ function-at x) Q)›

apply (subst insert.IH)
using insert by (auto simp: cblinfun-compose-assoc)

92

also have ‹. . . = (reg-3-3 (apply-every (insert y F) R)) oCL Snd ((Fst;Snd ◦ function-at x) Q)›
by (simp add: apply-every-insert insert register-mult[of reg-3-3 , symmetric] cblinfun-compose-assoc)
finally show ?case

by −
qed

have ‹query ∗V (ket x ⊗s ψ) = reg-3-3 compress ∗V standard-query ∗V reg-3-3 compress ∗V (ket x
⊗s ψ)›

by (simp add: query-def)
also have ‹. . . = reg-3-3 compress ∗V

standard-query ∗V (ket x ⊗s Snd compress ∗V ψ)›
apply (rule arg-cong[where f =‹λx. - ∗V - ∗V x›])
by (auto simp: reg-3-3-def)

also have ‹. . . = reg-3-3 compress ∗V
(ket x ⊗s (((Fst; Snd o function-at x) standard-query1 ∗V Snd compress ∗V ψ)))›

by (simp add: standard-query-ket)
also have ‹. . . = reg-3-3 compress ∗V

(Snd ((Fst; Snd o function-at x) standard-query1)) ∗V (ket x ⊗s Snd compress ∗V ψ)›
by auto

also have ‹. . . = reg-3-3 compress ∗V
(Snd ((Fst; Snd o function-at x) standard-query1)) ∗V reg-3-3 compress ∗V (ket x ⊗s ψ)›

apply (rule arg-cong[where f =‹λx. - ∗V - ∗V x›])
by (auto simp: reg-3-3-def)

also have ‹. . . = (reg-3-3 compress oCL (Snd ((Fst; Snd o function-at x) standard-query1)) oCL

reg-3-3 compress) ∗V (ket x ⊗s ψ)›
by auto

also have ‹. . . = (reg-3-3 (function-at x compress1) oCL (Snd ((Fst; Snd o function-at x) stan-
dard-query1)) oCL reg-3-3 (function-at x compress1)) ∗V (ket x ⊗s ψ)›

(is ‹?lhs ∗V - = ?rhs ∗V -›)
proof −

have [simp]: ‹insert x (− {x}) = UNIV › for x :: ′x
by auto

have ‹?lhs = reg-3-3 (apply-every ({x} ∪ −{x}) (λ-. compress1))
oCL Snd ((Fst;Snd ◦ function-at x) standard-query1)
oCL reg-3-3 (apply-every (−{x} ∪ {x}) (λ-. compress1))›

by (simp add: compress-def)
also have ‹. . . = reg-3-3 (function-at x compress1) oCL reg-3-3 (apply-every (− {x}) (λ-. com-

press1))
oCL (Snd ((Fst;Snd ◦ function-at x) standard-query1) oCL reg-3-3 (apply-every (− {x}) (λ-.

compress1)))
oCL reg-3-3 (function-at x compress1)›

apply (subst apply-every-split[symmetric], simp)
apply (subst apply-every-split[symmetric], simp)
by (simp add: register-mult cblinfun-compose-assoc)

also have ‹. . . = reg-3-3 (function-at x compress1)
oCL (reg-3-3 (apply-every (− {x}) (λ-. compress1)) oCL reg-3-3 (apply-every (− {x}) (λ-.

compress1)))
oCL Snd ((Fst;Snd ◦ function-at x) standard-query1)
oCL reg-3-3 (function-at x compress1)›

apply (subst aux)
by (auto simp add: cblinfun-compose-assoc)

also have ‹. . . = reg-3-3 (function-at x compress1)
oCL (reg-3-3 (apply-every (− {x}) (λ-. compress1 oCL compress1)))
oCL Snd ((Fst;Snd ◦ function-at x) standard-query1)
oCL reg-3-3 (function-at x compress1)›

93

by (simp add: register-mult[of reg-3-3] apply-every-mult)
also have ‹. . . = reg-3-3 (function-at x compress1)

oCL Snd ((Fst;Snd ◦ function-at x) standard-query1)
oCL reg-3-3 (function-at x compress1)›

by (simp add: compress1-square)
finally show ?thesis

by auto
qed
also have ‹. . . = ket x ⊗s ((Snd (function-at x compress1) oCL ((Fst; Snd o function-at x) stan-

dard-query1) oCL Snd (function-at x compress1)) ∗V ψ)›
by (simp add: reg-3-3-def)

also have ‹. . . = controlled-op (λx. Snd (function-at x compress1) oCL ((Fst; Snd o function-at x)
standard-query1) oCL Snd (function-at x compress1)) ∗V

(ket x ⊗s ψ)›
by simp

also have ‹. . . = controlled-op (λx. (Fst; Snd o function-at x) query1) (ket x ⊗s ψ)›
by (auto simp: query1-def register-mult[symmetric] register-pair-Snd[unfolded o-def , THEN fun-cong])
finally show ?thesis

by −
qed

from this[of - ‹ket -›]
show ?thesis

by (auto intro!: equal-ket simp: tensor-ell2-ket)
qed

We give an alternate (equivalent) definition of the compressed oracle query. Instead of de-
compressing the whole oracle, we decompress only the output we need. Specifically, this is
implemented by – if the query register contains ket x – performing query1 on the output reg-
ister and on the register Hx which is the part of the oracle register which corresponds to the
output for input x.
And analogously for query1 ′.
lemma query-local: ‹query = controlled-op (λx. (Fst; Snd o function-at x) query1)›

using query-def query1-def standard-query-ket by (rule query-local-generic)

lemma query ′-local: ‹query ′ = controlled-op (λx. (Fst; Snd o function-at x) query1 ′)›
using query ′-def query1 ′-def standard-query ′-ket by (rule query-local-generic)

lemma (in compressed-oracle) standard-query-compress: ‹standard-query oCL reg-3-3 compress = reg-3-3
compress oCL query›

by (simp add: query-def register-mult compress-selfinverse flip: cblinfun-compose-assoc)

lemma (in compressed-oracle) standard-query ′-compress: ‹standard-query ′ oCL reg-3-3 compress = reg-3-3
compress oCL query ′›

by (simp add: query ′-def register-mult compress-selfinverse flip: cblinfun-compose-assoc)

end

end

94

5 CO-Invariants Preservation of invariants under compressed
oracle queries

theory CO-Invariants imports
Invariant-Preservation
CO-Operations

begin

lemma function-oracle-ket-invariant: ‹function-oracle h ∗S ket-invariant I = ket-invariant ((λ(x,y).
(x,y + h x)) ‘ I)›
by (auto intro!: arg-cong[where f =‹λx. ccspan (x ‘ I)›] simp add: ket-invariant-def cblinfun-image-ccspan

image-image function-oracle-apply)

lemma function-oracle-Snd-ket-invariant: ‹Snd (function-oracle h) ∗S ket-invariant I = ket-invariant
((λ(w,x,y). (w,x,y+h x)) ‘ I)›

by (auto intro!: ext arg-cong[where f =‹λx. ccspan (x ‘ I)›]
simp add: Snd-def ket-invariant-def cblinfun-image-ccspan image-image function-oracle-apply ten-

sor-op-ket tensor-ell2-ket)

context compressed-oracle begin

This lemma allows to simplify the preservation of invariants under invocations of the compressed
oracle.
Given an invariant I, it can be split into many invariants I1 z for which preservation is shown
then with respect to a fixed oracle input x z, using the simpler oracle query1 instead.
This allows to reduce complex cases to more elementary ones that talk about a single output
of the oracle.
Lemmas inv-split-reg-query and inv-split-reg-query ′ are the specific instantiations of this for the
two compressed oracle variants query and query ′.
lemma inv-split-reg-query-generic:

fixes query query1
assumes query-local: ‹query = controlled-op (λx. (Fst; Snd o function-at x) query1)›
fixes X :: ‹ ′x update ⇒ ′m update›

and Y :: ‹ ′y update ⇒ ′m update›
and H :: ‹(′x⇀ ′y) update ⇒ ′m update›
and K :: ‹ ′z ⇒ ′m ell2 ccsubspace›
and x :: ‹ ′z ⇒ ′x›
and M :: ‹ ′z set›

assumes XK : ‹
∧

z. z∈M =⇒ K z ≤ lift-invariant X (ket-invariant {x z})›
assumes pres-I1 : ‹

∧
z. z∈M =⇒ preserves query1 (I1 z) (J1 z) ε›

assumes I-leq: ‹I ≤ (SUP z∈M . K z u lift-invariant (Y ;H o function-at (x z)) (I1 z))›
assumes J-geq: ‹

∧
z. z∈M =⇒ J ≥ K z u lift-invariant (Y ;H o function-at (x z)) (J1 z)›

assumes YK : ‹
∧

z. z∈M =⇒ compatible-register-invariant Y (K z)›
assumes HK : ‹

∧
z. z∈M =⇒ compatible-register-invariant (H o function-at (x z)) (K z)›

assumes [simp]: ‹compatible X Y › ‹compatible X H › ‹compatible Y H ›
assumes U : ‹U = ((X ;(Y ;H)) query)›
assumes orthoK : ‹

∧
z z ′. z∈M =⇒ z ′∈M =⇒ z 6= z ′ =⇒ orthogonal-spaces (K z) (K z ′)›

assumes ‹ε ≥ 0 ›
assumes ‹finite M ›
shows ‹preserves U I J ε›

proof (rule inv-split-reg[where ?U1 .0=‹λ-. query1 › and ?I1 .0=I1 and ?J1 .0=J1
and Y =‹λz. (Y ;H o function-at (x z))› and K=K])

show ‹(Y ;H ◦ function-at (x z)) query1 ∗V ψ = U ∗V ψ›
if ‹z∈M › and ‹ψ ∈ space-as-set (K z)› for ψ z

95

proof −
from that(2) XK [OF ‹z∈M ›] have ‹ψ ∈ space-as-set (lift-invariant X (ket-invariant {x z}))›

using less-eq-ccsubspace.rep-eq by blast
then have ψx: ‹ψ = X (Proj (ket-invariant {x z})) ∗V ψ›

by (metis Proj-lift-invariant Proj-fixes-image ‹compatible X Y › compatible-register1)
have ‹U ∗V ψ = (X ;(Y ;H)) query ∗V ψ›

by (simp add: U)
also have ‹. . . = (X ;(Y ;H)) (controlled-op (λx. (Fst;Snd ◦ function-at x) query1)) ∗V ψ›

by (simp add: query-local)
also have ‹. . . = (X ;(Y ;H)) (controlled-op (λx. (Fst;Snd ◦ function-at x) query1) oCL Fst (selfbutter

(ket (x z)))) ∗V ψ›
by (simp add: register-pair-apply Fst-def flip: register-mult Proj-ket-invariant-butterfly ψx)

also have ‹. . . = (X ;(Y ;H)) (Snd ((Fst;Snd ◦ function-at (x z)) query1) oCL Fst (selfbutter (ket
(x z)))) ∗V ψ›

by (simp add: controlled-op-comp-butter)
also have ‹. . . = (X ;(Y ;H)) (Snd ((Fst;Snd ◦ function-at (x z)) query1)) ∗V ψ›

by (simp add: register-pair-apply Fst-def flip: register-mult Proj-ket-invariant-butterfly ψx)
also have ‹. . . = (((X ;(Y ;H)) o Snd o (Fst;Snd ◦ function-at (x z))) query1) ∗V ψ›

by auto
also have ‹. . . = (Y ;H ◦ function-at (x z)) query1 ∗V ψ›

by (simp add: register-pair-Snd register-pair-Fst flip: register-comp-pair comp-assoc)
finally show ?thesis

by simp
qed
from pres-I1 show ‹preserves query1 (I1 z) (J1 z) ε› if ‹z∈M › for z

using that by −
from I-leq
show ‹I ≤ (SUP z∈M . K z u lift-invariant (Y ;H o function-at (x z)) (I1 z))›

by −
from J-geq
show ‹J ≥ K z u lift-invariant (Y ;H o function-at (x z)) (J1 z)› if ‹z∈M › for z

using that by −
show ‹compatible-register-invariant (Y ;H ◦ function-at (x z)) (K z)› if ‹z∈M › for z

using YK [OF that] HK [OF that] by (rule compatible-register-invariant-pair)
from orthoK
show ‹orthogonal-spaces (K z) (K z ′)› if ‹z∈M › ‹z ′∈M › ‹z 6= z ′› for z z ′

using that by −
show ‹register (Y ;H ◦ function-at (x z))› for z

by simp
from assms show ‹ε ≥ 0 ›

by −
from assms show ‹finite M ›

by metis
qed

lemmas inv-split-reg-query = inv-split-reg-query-generic[OF query-local]
lemmas inv-split-reg-query ′ = inv-split-reg-query-generic[OF query ′-local]

definition ‹num-queries q = {(x:: ′x, y:: ′y, D:: ′x⇀ ′y). card (dom D) ≤ q}›
definition ‹num-queries ′ q = {D:: ′x⇀ ′y. card (dom D) ≤ q}›

lemma num-queries-num-queries ′: ‹num-queries q = UNIV × UNIV × (num-queries ′ q)›
by (auto intro!: simp: num-queries-def num-queries ′-def)

lemma ket-invariant-num-queries-num-queries ′: ‹ket-invariant (num-queries q) = > ⊗S > ⊗S ket-invariant

96

(num-queries ′ q)›
by (auto simp: ket-invariant-tensor num-queries-num-queries ′ simp flip: ket-invariant-UNIV)

This lemma shows that the number of recorded queries (defined outputs in the oracle register)
increases at most by 1 upon each query of the compressed oracle.
The two instantiations for the two compressed oracle variants are given afterwards.
lemma preserves-num-generic:

fixes query query1
assumes query-local: ‹query = controlled-op (λx. (Fst; Snd o function-at x) query1)›
shows ‹preserves-ket query (num-queries q) (num-queries (q+1)) 0 ›

proof −
define K where ‹K x = ket-invariant {(x:: ′x,y:: ′y,D:: ′x⇀ ′y) | y D. card (dom D − {x}) ≤ q}› for x
define Kd where ‹Kd x D0 = ket-invariant {(x:: ′x,y:: ′y,D:: ′x⇀ ′y) | y D. (∀ x ′6=x. D x ′ = D0 x ′)}›

for x D0
have K : ‹K x = (SUP D0∈{D0 . D0 x = None ∧ card (dom D0 − {x}) ≤ q}. Kd x D0)› for x
proof −

have aux1 : ‹card (dom D − {x}) ≤ q =⇒
∃D ′. D ′ x = None ∧ card (dom D ′ − {x}) ≤ q ∧ (∀ x ′. x ′ 6= x −→ D x ′ = D ′ x ′)› for D

apply (rule exI [of - ‹D(x:=None)›])
by auto

have aux2 : ‹D ′ x = None =⇒
card (dom D ′ − {x}) ≤ q =⇒ ∀ x ′. x ′ 6= x −→ D x ′ = D ′ x ′ =⇒ card (dom D − {x}) ≤ q› for

D ′ D
by (smt (verit) DiffE Diff-empty card-mono domIff dom-minus dual-order .trans finite-class.finite-code

singleton-iff subsetI)
show ?thesis

by (auto intro!: aux1 aux2 simp add: K-def Kd-def simp flip: ket-invariant-SUP)
qed
define Kdx where ‹Kdx x D0 x ′ = ket-invariant {(x:: ′x,y:: ′y,D:: ′x⇀ ′y) | y D. D x ′ = D0 x ′}› for D0

x ′ x
have Kd: ‹Kd x D0 = (INF x ′∈−{x}. Kdx x D0 x ′)› for x D0

unfolding Kd-def Kdx-def
apply (subst ket-invariant-INF [symmetric])
apply (rule arg-cong[where f =ket-invariant])
by auto

have Kdx: ‹Kdx x D0 x ′ = lift-invariant reg-1-3 (ket-invariant {x}) u lift-invariant (reg-3-3 o func-
tion-at x ′) (ket-invariant {D0 x ′})› for D0 x ′ x

unfolding Kdx-def reg-3-3-def reg-1-3-def
apply (simp add: lift-invariant-comp)
apply (subst lift-invariant-function-at-ket-inv)
apply (subst lift-Snd-ket-inv)
apply (subst lift-Snd-ket-inv)
apply (subst lift-Fst-ket-inv)
apply (subst ket-invariant-inter)
apply (rule arg-cong[where f =ket-invariant])
by auto

show ?thesis
proof (rule inv-split-reg-query-generic[where X=‹reg-1-3 › and Y =‹reg-2-3 › and H=‹reg-3-3 › and

K=K
and x=‹λx. x› and ?I1 .0=‹λ-. >› and ?J1 .0=‹λ-. >›, OF query-local])

show ‹query = (reg-1-3 ;(reg-2-3 ;reg-3-3)) query›
by (auto simp add: pair-Fst-Snd reg-1-3-def reg-2-3-def reg-3-3-def)

show ‹compatible reg-1-3 reg-2-3 › ‹compatible reg-1-3 reg-3-3 › ‹compatible reg-2-3 reg-3-3 ›
by simp-all

97

show ‹compatible-register-invariant reg-2-3 (K x)› for x
unfolding K Kd Kdx
apply (rule compatible-register-invariant-SUP, simp)
apply (rule compatible-register-invariant-INF , simp)
apply (rule compatible-register-invariant-inter , simp)
apply (rule compatible-register-invariant-compatible-register)
apply simp

apply (rule compatible-register-invariant-compatible-register)
by simp

show ‹compatible-register-invariant (reg-3-3 o function-at x) (K x)› for x
unfolding K Kd Kdx
apply (rule compatible-register-invariant-SUP, simp)
apply (rule compatible-register-invariant-INF , simp)
apply (rule compatible-register-invariant-inter , simp)
apply (rule compatible-register-invariant-compatible-register)
apply simp

apply (rule compatible-register-invariant-compatible-register)
by simp

show ‹ket-invariant (num-queries q)
≤ (SUP x . K x u lift-invariant (reg-2-3 ;reg-3-3 ◦ function-at x) >)›
by (auto intro!: card-Diff1-le[THEN order-trans]

simp: K-def lift-Fst-ket-inv reg-1-3-def ket-invariant-inter ket-invariant-SUP[symmetric]
num-queries-def)

have ∗: ‹card (dom D) ≤ card (dom D − {x}) + 1 › for D x
by (metis One-nat-def card.empty card.insert diff-card-le-card-Diff empty-not-insert finite.intros(1)

finite-insert insert-absorb le-diff-conv)
show ‹K x u lift-invariant (reg-2-3 ;reg-3-3 ◦ function-at x) >
≤ ket-invariant (num-queries (q + 1))› for x
by (auto intro!: ∗[THEN order-trans]
simp add: num-queries-def K-def lift-Fst-ket-inv reg-1-3-def ket-invariant-inter ket-invariant-SUP[symmetric])

show ‹preserves query1 > > 0 ›
by simp

show ‹orthogonal-spaces (K x) (K x ′)› if ‹x 6= x ′› for x x ′
unfolding K-def orthogonal-spaces-ket using that by auto

show ‹K x ≤ lift-invariant reg-1-3 (ket-invariant {x})› for x
by (auto simp add: K Kd-def reg-1-3-def lift-inv-prod ′ lift-Fst-ket-inv

simp flip: ket-invariant-SUP)
show ‹0 ≤ (0 ::real)›

by auto
show ‹finite (UNIV :: ′x set)›

by simp
qed

qed

lemmas preserves-num = preserves-num-generic[OF query-local]
lemmas preserves-num ′ = preserves-num-generic[OF query ′-local]

We now present various lemmas that give concrete bounds for the preservation of invariants
under various conditions, for query1 (and query1 ′).
The invariants are formulated specifically for an application of query1 to a two-partite system
with query output register and oracle register only.
These can be applied to derive invariant preservation for full compressed oracle queries on
arbitrary systems by first splitting the invariant using inv-split-reg-query.

The first bound is applicable for ket-invariants that do not put any conditions on the output

98

register and that not not require that the output register is defined (not None) after the query.
Lemmas preserve-query1-bound and preserve-query1 ′-bound; with slightly simplified bounds in
preserve-query1-simplified, preserve-query1 ′-simplified.
definition ‹preserve-query1-bound NoneI bi bj0 = 4 ∗ sqrt bj0 ∗ sqrt bi / N + 2 ∗ of-bool NoneI ∗
sqrt bj0 / sqrt N ›
lemma preserve-query1 :

assumes IJ : ‹I ⊆ J ›
assumes [simp]: ‹None ∈ J ›
assumes bi: ‹card (Some −‘ I) ≤ bi›
assumes bj0: ‹card (− Some −‘ J) ≤ bj0›
assumes ε: ‹ε ≥ preserve-query1-bound (None∈I) bi bj0›
shows ‹preserves-ket query1 (UNIV × I) (UNIV × J) ε›

proof (rule preservesI ′)
show ‹ε ≥ 0 ›

using - ε apply (rule order .trans)
by (simp add: preserve-query1-bound-def)

fix ψ :: ‹(′y × ′y option) ell2 ›
assume ψ ′: ‹ψ ∈ space-as-set (ket-invariant (UNIV × I))›
assume ‹norm ψ = 1 ›

define I ′ J ′ where ‹I ′ = Some −‘ I › and ‹J ′ = Some −‘ J ›
from ψ ′ have ψ: ‹ψ ∈ space-as-set (ket-invariant (UNIV × ((Some ‘ I ′ ∪ {None}))))›

using I ′-def less-eq-ccsubspace.rep-eq by fastforce
have [simp]: ‹I ′ ⊆ J ′›

using I ′-def J ′-def IJ by blast

define β where ‹β = Rep-ell2 ψ›
then have β: ‹ψ = (

∑
yd∈UNIV×(Some ‘ I ′ ∪ {None}). β yd ∗C ket yd)›

using ell2-sum-ket-ket-invariant[OF ψ] by auto
have βbound: ‹(

∑
yd∈UNIV×(Some ‘ I ′ ∪ {None}). (cmod (β yd))2) ≤ 1 › (is ‹?lhs ≤ 1 ›)

apply (subgoal-tac ‹(norm ψ)2 = ?lhs›)
apply (simp add: ‹norm ψ = 1 ›)

by (simp add: β pythagorean-theorem-sum)
have βNone0 : ‹β (y,None) = 0 › if ‹None /∈ I › for y

using ψ ′ that by (simp add: β-def ket-invariant-Rep-ell2)

have [simp]: ‹Some −‘ insert None X = Some −‘ X› for X :: ‹ ′z option set›
by auto

have [simp]: ‹Some −‘ Some ‘ X = X› for X :: ‹ ′z set›
by auto

have [simp]: ‹Some x ∈ J ←→ x ∈ J ′› for x
by (simp add: J ′-def)

have [simp]: ‹x ∈ I ′ =⇒ x ∈ J ′› for x
using ‹I ′ ⊆ J ′› by blast

have [simp]: ‹(
∑

x∈X . if x /∈ Y then f x else 0) = (
∑

x∈X−Y . f x)› if ‹finite X› for f :: ‹ ′y ⇒
′z::ab-group-add› and X Y

apply (rule sum.mono-neutral-cong-right)
using that by auto

have [simp]: ‹(
∑

x∈X .
∑

y∈Y . if x /∈ X ′ then f x y else 0) = (
∑

x∈X−X ′.
∑

y∈Y . f x y)› if ‹finite
X›

for f :: ‹ ′x ⇒ ′y ⇒ ′z::ab-group-add› and X X ′ Y
apply (rule sum.mono-neutral-cong-right)
using that by auto

have [simp]: ‹β yd ∗C a ∗C b = a ∗C β yd ∗C b› for yd a and b :: ‹ ′z::complex-vector›
by auto

99

have [simp]: ‹cmod α = inverse (sqrt N)› ‹cmod (α2) = inverse N › ‹cmod (α^3) = inverse (N ∗ sqrt
N)› ‹cmod (α^4) = inverse (N 2)›

by (auto simp: power4-eq-xxxx power2-eq-square norm-mult numeral-3-eq-3 α-def inverse-eq-divide
norm-divide norm-power power-one-over)

have [simp]: ‹card (Some ‘ I ′) ≤ bi›
by (metis I ′-def bi card-image inj-Some)

have bound-J ′[simp]: ‹card (Some ‘ (− J ′)) ≤ bj0›
using bj0 unfolding J ′-def by (simp add: card-image)

define ϕ and PJ :: ‹(′y × ′y option) update› where
‹ϕ = query1 ∗V ψ› and ‹PJ = Proj (ket-invariant (UNIV × −J))›

have [simp]: ‹PJ ∗V ket (x,y) = (if y∈−J then ket (x,y) else 0)› for x y
by (simp add: Proj-ket-invariant-ket PJ-def)

have P0ϕ: ‹PJ ∗V ϕ =
α^4 ∗C (

∑
y∈UNIV .

∑
d∈I ′.

∑
y ′∈UNIV .

∑
d ′∈− J ′. β (y, Some d) ∗C ket (y ′, Some d ′)) −

α2 ∗C (
∑

y∈UNIV .
∑

d∈I ′.
∑

d ′∈− J ′. β (y, Some d) ∗C ket (y + d, Some d ′)) −
α2 ∗C (

∑
y∈UNIV .

∑
d∈I ′.

∑
d ′∈− J ′. β (y, Some d) ∗C ket (y + d ′, Some d ′)) +

α2 ∗C (
∑

y∈UNIV .
∑

d∈I ′.
∑

d ′∈− J ′. β (y, Some d) ∗C ket (y, Some d ′)) +
α ∗C (

∑
y∈UNIV .

∑
d ′∈− J ′. β (y, None) ∗C ket (y + d ′, Some d ′)) −

α^3 ∗C (
∑

y∈UNIV .
∑

y ′∈UNIV .
∑

d ′∈− J ′. β (y, None) ∗C ket (y ′, Some d ′))›
(is ‹- = ?t1 − ?t2 − ?t3 + ?t4 + ?t5 − ?t6 ›)
by (simp add: ϕ-def β query1 option-sum-split vimage-Compl

cblinfun.add-right cblinfun.diff-right if-distrib Compl-eq-Diff-UNIV
vimage-singleton-inj sum-sum-if-eq sum.distrib scaleC-diff-right scaleC-sum-right
sum-subtractf case-prod-beta sum.cartesian-product ′ scaleC-add-right add-diff-eq
cblinfun.scaleC-right cblinfun.sum-right
flip: sum.Sigma add.assoc scaleC-scaleC
cong del: option.case-cong if-cong)

have norm-t1 : ‹norm ?t1 ≤ sqrt bj0 ∗ sqrt bi / N ›
proof −

have ∗: ‹norm (
∑

yd∈UNIV × Some ‘ I ′. β yd ∗C ket y ′d ′) ≤ sqrt (N ∗ bi)› for y ′d ′ :: ‹ ′y × ′y
option›

using - - βbound apply (rule bound-coeff-sum2)
by (auto simp: N-def)

have ‹norm ?t1 = inverse (N 2) ∗ norm (
∑

y ′d ′ ∈ (UNIV :: ′y set) × Some ‘ (−J ′).
∑

yd∈UNIV ×
Some ‘ I ′. β yd ∗C ket y ′d ′)›

apply (simp add: sum.cartesian-product ′ sum.reindex N-def)
apply (subst (2) sum.swap) apply (subst (3) sum.swap)
apply (subst sum.swap) apply (subst (2) sum.swap)
by (rule refl)

also have ‹. . . ≤ inverse (N 2) ∗ (N ∗ sqrt (card (Some ‘ (− J ′))) ∗ sqrt bi)›
apply (rule mult-left-mono)
using ∗ apply (rule norm-ortho-sum-bound)

by (auto simp add: cinner-sum-right cinner-sum-left N-def real-sqrt-mult algebra-simps real-sqrt-mult
algebra-simps

sqrt-sqrt[THEN extend-mult-rule])
also have ‹. . . ≤ inverse (N 2) ∗ (N ∗ sqrt bj0 ∗ sqrt bi)›
by (metis bound-J ′ linordered-field-class.inverse-nonnegative-iff-nonnegative mult.commute mult-right-mono

of-nat-0-le-iff of-nat-mono real-sqrt-ge-zero real-sqrt-le-iff)
also have ‹. . . ≤ sqrt bj0 ∗ sqrt bi / N ›
by (smt (verit) ab-semigroup-mult-class.mult-ac(1) divide-inverse-commute of-nat-power power2-eq-square

real-divide-square-eq)
finally show ‹norm ?t1 ≤ sqrt bj0 ∗ sqrt bi / N ›

100

by −
qed

have norm-t2 : ‹norm ?t2 ≤ sqrt bj0 ∗ sqrt bi / N ›
proof −

have ∗: ‹card {y. δ = fst y + the (snd y) ∧ y ∈ UNIV × Some ‘ I ′} ≤ card I ′› for δ
apply (rule card-inj-on-le[where f =‹λy. the (snd y)›])
by (auto intro!: inj-onI)

have ∗: ‹norm (
∑

yd∈UNIV × Some ‘ I ′. β yd ∗C ket (fst yd + the (snd yd), d ′)) ≤ sqrt bi› for
d ′ :: ‹ ′y option›

using - - βbound apply (rule bound-coeff-sum2)
using ∗ I ′-def bi order .trans by auto

have ‹norm ?t2 = inverse (real N) ∗ norm (
∑

d ′ ∈ Some ‘ (−J ′).
∑

yd∈UNIV × Some ‘ I ′. β yd
∗C ket (fst yd + the (snd yd), d ′))›

apply (simp add: sum.cartesian-product ′ sum.reindex N-def)
apply (subst sum.swap) apply (subst (2) sum.swap) apply (subst (3) sum.swap)
apply (subst sum.swap)
by (rule refl)

also have ‹. . . ≤ inverse (real N) ∗ (sqrt (card (Some ‘ (− J ′))) ∗ sqrt bi)›
apply (rule mult-left-mono)
using ∗ apply (rule norm-ortho-sum-bound)
by (auto simp add: cinner-sum-right cinner-sum-left)

also have ‹. . . ≤ inverse N ∗ (sqrt bj0 ∗ sqrt bi)›
by (simp add: mult-right-mono N-def)

also have ‹. . . ≤ sqrt bj0 ∗ sqrt bi / N ›
by (simp add: divide-inverse-commute)

finally show ‹norm ?t2 ≤ sqrt bj0 ∗ sqrt bi / N ›
by −

qed

have norm-t3 : ‹norm ?t3 ≤ sqrt bj0 ∗ sqrt bi / N ›
proof −

have ∗: ‹card {y. a = fst y ∧ y ∈ UNIV × (I ∩ range Some)} ≤ card I ′› for a :: ′y
apply (rule card-inj-on-le[where f =‹λy. the (snd y)›])
by (auto intro!: inj-onI simp: I ′-def)

have ∗: ‹norm (
∑

yd∈UNIV × Some ‘ I ′. β yd ∗C ket (fst yd + the d ′, d ′)) ≤ sqrt bi› for d ′ :: ‹ ′y
option›

using - - βbound apply (rule bound-coeff-sum2)
using ∗ I ′-def bi order .trans by auto

have ‹norm ?t3 = inverse (real N) ∗ norm (
∑

d ′ ∈ Some ‘ (−J ′).
∑

yd∈UNIV × Some ‘ I ′.
β yd ∗C ket (fst yd + the d ′, d ′))›

apply (simp add: sum.cartesian-product ′ sum.reindex N-def)
apply (subst sum.swap) apply (subst (2) sum.swap) apply (subst (3) sum.swap)
apply (subst sum.swap)
by (rule refl)

also have ‹. . . ≤ inverse (real N) ∗ (sqrt (card (Some ‘ (− J ′))) ∗ sqrt bi)›
apply (rule mult-left-mono)
using ∗ apply (rule norm-ortho-sum-bound)
by (auto simp add: cinner-sum-right cinner-sum-left)

also have ‹. . . ≤ inverse N ∗ (sqrt bj0 ∗ sqrt bi)›
by (simp add: mult-right-mono N-def)

also have ‹. . . ≤ sqrt bj0 ∗ sqrt bi / N ›
by (simp add: divide-inverse-commute)

101

finally show ‹norm ?t3 ≤ sqrt bj0 ∗ sqrt bi / N ›
by −

qed

have norm-t4 : ‹norm ?t4 ≤ sqrt bj0 ∗ sqrt bi / N ›
proof −

have ∗: ‹card {y. a = fst y ∧ y ∈ UNIV × (I ∩ range Some)} ≤ card I ′› for a :: ′y
apply (rule card-inj-on-le[where f =‹λy. the (snd y)›])
by (auto intro!: inj-onI simp: I ′-def)

have ∗: ‹norm (
∑

yd∈UNIV × Some ‘ I ′. β yd ∗C ket (fst yd, d ′)) ≤ sqrt bi› for d ′ :: ‹ ′y option›
using - - βbound apply (rule bound-coeff-sum2)
using ∗ I ′-def bi order .trans by auto

have ‹norm ?t4 = inverse (real N) ∗ norm (
∑

d ′ ∈ Some ‘ (−J ′).
∑

yd∈UNIV × Some ‘ I ′.
β yd ∗C ket (fst yd, d ′))›

apply (simp add: sum.cartesian-product ′ sum.reindex N-def)
apply (subst sum.swap) apply (subst (2) sum.swap) apply (subst (3) sum.swap)
apply (subst sum.swap)
by (rule refl)

also have ‹. . . ≤ inverse (real N) ∗ (sqrt (card (Some ‘ (− J ′))) ∗ sqrt bi)›
apply (rule mult-left-mono)
using ∗ apply (rule norm-ortho-sum-bound)
by (auto simp add: cinner-sum-right cinner-sum-left)

also have ‹. . . ≤ inverse N ∗ (sqrt bj0 ∗ sqrt bi)›
by (simp add: mult-right-mono N-def)

also have ‹. . . ≤ sqrt bj0 ∗ sqrt bi / N ›
by (simp add: divide-inverse-commute)

finally show ‹norm ?t4 ≤ sqrt bj0 ∗ sqrt bi / N ›
by −

qed

have norm-t5 : ‹norm ?t5 ≤ of-bool (None∈I) ∗ sqrt bj0 / sqrt N ›
proof (cases ‹None∈I ›)

case True
have ∗: ‹card {y. a = fst y ∧ y ∈ UNIV × {None :: ′y option}} ≤ card {()}› for a :: ′y

apply (rule card-inj-on-le[where f =‹λ-. undefined›])
by (auto intro!: inj-onI)

have ∗: ‹norm (
∑

yd∈UNIV × {None}. β yd ∗C ket (fst yd + the d ′, d ′)) ≤ sqrt (1 ::nat)› for d ′
:: ‹ ′y option›

using - - βbound apply (rule bound-coeff-sum2)
using ∗ by auto

have ‹norm ?t5 = inverse (sqrt N) ∗ norm (
∑

d ′ ∈ Some ‘ (−J ′).
∑

yd∈UNIV × {None}.
β yd ∗C ket (fst yd + the d ′, d ′))›

apply (simp add: sum.cartesian-product ′ sum.reindex N-def)
apply (subst sum.swap)
by (rule refl)

also have ‹. . . ≤ inverse (sqrt N) ∗ (sqrt (card (Some ‘ (− J ′))))›
apply (rule mult-left-mono)
using ∗ apply (rule norm-ortho-sum-bound)
by (auto simp add: cinner-sum-right cinner-sum-left)

also have ‹. . . ≤ inverse (sqrt N) ∗ sqrt bj0›
by (simp add: mult-right-mono N-def)

also have ‹. . . ≤ of-bool (None∈I) ∗ sqrt bj0 / sqrt N ›
by (simp add: True divide-inverse-commute)

102

finally show ?thesis
by −

next
case False
then show ?thesis

using βNone0 by auto
qed

have norm-t6 : ‹norm ?t6 ≤ of-bool (None∈I) ∗ sqrt bj0 / sqrt N ›
proof (cases ‹None∈I ›)

case True
have ∗: ‹norm (

∑
yd∈UNIV × {None}. β yd ∗C ket y ′d ′) ≤ sqrt N › for y ′d ′ :: ‹ ′y × ′y option›

using - - βbound apply (rule bound-coeff-sum2)
by (auto simp: N-def)

have ‹norm ?t6 = inverse (N ∗ sqrt N) ∗ norm (
∑

y ′d ′ ∈ (UNIV :: ′y set) × Some ‘ (−J ′).∑
yd∈UNIV × {None}. β yd ∗C ket y ′d ′)›

apply (simp add: sum.cartesian-product ′ sum.reindex N-def)
apply (subst (2) sum.swap) apply (subst sum.swap)
by (rule refl)

also have ‹. . . ≤ inverse (N ∗ sqrt N) ∗ (N ∗ sqrt (card (Some ‘ (− J ′))))›
apply (rule mult-left-mono)
using ∗ apply (rule norm-ortho-sum-bound)

by (auto simp add: cinner-sum-right cinner-sum-left N-def mult.commute real-sqrt-mult vec-
tor-space-over-itself .scale-scale)

also have ‹. . . ≤ inverse (N ∗ sqrt N) ∗ (N ∗ sqrt bj0)›
by (simp add: N-def)

also have ‹. . . ≤ of-bool (None∈I) ∗ sqrt bj0 / sqrt N ›
using True by (simp add: divide-inverse-commute less-eq-real-def N-def)

finally show ?thesis
by −

next
case False
then show ?thesis

using βNone0 by auto
qed

have ‹norm (PJ ∗V ϕ) ≤ sqrt bj0 ∗ sqrt bi / N + sqrt bj0 ∗ sqrt bi / N + sqrt bj0 ∗
sqrt bi / N

+ sqrt bj0 ∗ sqrt bi / N + of-bool (None∈I) ∗ sqrt bj0 / sqrt N + of-bool (None∈I)
∗ sqrt bj0 / sqrt N ›

unfolding P0ϕ
apply (rule norm-triangle-le-diff norm-triangle-le, rule add-mono)+

apply (rule norm-t1)
apply (rule norm-t2)

apply (rule norm-t3)
apply (rule norm-t4)

apply (rule norm-t5)
by (rule norm-t6)

also have ‹. . . ≤ 4 ∗ sqrt bj0 ∗ sqrt bi / N + 2 ∗ of-bool (None∈I) ∗ sqrt bj0 / sqrt N ›
by (simp add: mult.commute vector-space-over-itself .scale-left-commute)

also have ‹. . . ≤ ε›
using ε by (auto intro!: simp add: preserve-query1-bound-def)

finally show ‹norm (Proj (− ket-invariant (UNIV × J)) ∗V ϕ) ≤ ε›

103

unfolding PJ-def
apply (subst ket-invariant-compl[symmetric])
by simp

qed

definition ‹preserve-query1 ′-bound NoneI bi bj0 = 3 ∗ sqrt bj0 ∗ sqrt bi / N + 2 ∗ of-bool NoneI ∗
sqrt bj0 / sqrt N ›
lemma preserve-query1 ′:

assumes IJ : ‹I ⊆ J ›
assumes [simp]: ‹None ∈ J ›
assumes bi: ‹card (Some −‘ I) ≤ bi›
assumes bj0: ‹card (− Some −‘ J) ≤ bj0›
assumes ε: ‹ε ≥ preserve-query1 ′-bound (None∈I) bi bj0›
shows ‹preserves-ket query1 ′ (UNIV × I) (UNIV × J) ε›

proof (rule preservesI ′)
show ‹ε ≥ 0 ›

using - ε apply (rule order .trans)
by (simp add: preserve-query1 ′-bound-def)

fix ψ :: ‹(′y × ′y option) ell2 ›
assume ψ ′: ‹ψ ∈ space-as-set (ket-invariant (UNIV × I))›
assume ‹norm ψ = 1 ›

define I ′ J ′ where ‹I ′ = Some −‘ I › and ‹J ′ = Some −‘ J ›
from ψ ′ have ψ: ‹ψ ∈ space-as-set (ket-invariant (UNIV × ((Some ‘ I ′ ∪ {None}))))›

using I ′-def less-eq-ccsubspace.rep-eq by fastforce
have [simp]: ‹I ′ ⊆ J ′›

using I ′-def J ′-def IJ by blast

define β where ‹β = Rep-ell2 ψ›
then have β: ‹ψ = (

∑
yd∈UNIV×(Some ‘ I ′ ∪ {None}). β yd ∗C ket yd)›

using ell2-sum-ket-ket-invariant[OF ψ] by auto
have βbound: ‹(

∑
yd∈UNIV×(Some ‘ I ′ ∪ {None}). (cmod (β yd))2) ≤ 1 › (is ‹?lhs ≤ 1 ›)

apply (subgoal-tac ‹(norm ψ)2 = ?lhs›)
apply (simp add: ‹norm ψ = 1 ›)

by (simp add: β pythagorean-theorem-sum)
have βNone0 : ‹β (y,None) = 0 › if ‹None /∈ I › for y

using ψ ′ that by (simp add: β-def ket-invariant-Rep-ell2)

have [simp]: ‹Some −‘ insert None X = Some −‘ X› for X :: ‹ ′z option set›
by auto

have [simp]: ‹Some −‘ Some ‘ X = X› for X :: ‹ ′z set›
by auto

have [simp]: ‹Some x ∈ J ←→ x ∈ J ′› for x
by (simp add: J ′-def)

have [simp]: ‹x ∈ I ′ =⇒ x ∈ J ′› for x
using ‹I ′ ⊆ J ′› by blast

have [simp]: ‹(
∑

x∈X . if x /∈ Y then f x else 0) = (
∑

x∈X−Y . f x)› if ‹finite X› for f :: ‹ ′y ⇒
′z::ab-group-add› and X Y

apply (rule sum.mono-neutral-cong-right)
using that by auto

have [simp]: ‹(
∑

x∈X .
∑

y∈Y . if x /∈ X ′ then f x y else 0) = (
∑

x∈X−X ′.
∑

y∈Y . f x y)› if ‹finite
X›

for f :: ‹ ′x ⇒ ′y ⇒ ′z::ab-group-add› and X X ′ Y
apply (rule sum.mono-neutral-cong-right)
using that by auto

104

have [simp]: ‹β yd ∗C a ∗C b = a ∗C β yd ∗C b› for yd a and b :: ‹ ′z::complex-vector›
by auto

have [simp]: ‹cmod α = inverse (sqrt N)› ‹cmod (α2) = inverse N › ‹cmod (α^3) = inverse (N ∗ sqrt
N)› ‹cmod (α^4) = inverse (N 2)›

by (auto simp: norm-mult numeral-3-eq-3 α-def inverse-eq-divide norm-divide norm-power power-one-over
power4-eq-xxxx power2-eq-square)

have [simp]: ‹card (Some ‘ I ′) ≤ bi›
by (metis I ′-def bi card-image inj-Some)

have bound-J ′[simp]: ‹card (Some ‘ (− J ′)) ≤ bj0›
using bj0 unfolding J ′-def by (simp add: card-image)

define ϕ and PJ :: ‹(′y ∗ ′y option) update› where
‹ϕ = query1 ′ ∗V ψ› and ‹PJ = Proj (ket-invariant (UNIV × −J))›

have [simp]: ‹PJ ∗V ket (x,y) = (if y∈−J then ket (x,y) else 0)› for x y
by (simp add: Proj-ket-invariant-ket PJ-def)

have P0ϕ: ‹PJ ∗V ϕ =
α^4 ∗C (

∑
y∈UNIV .

∑
d∈I ′.

∑
y ′∈UNIV .

∑
d ′∈− J ′. β (y, Some d) ∗C ket (y ′, Some d ′)) −

α2 ∗C (
∑

y∈UNIV .
∑

d∈I ′.
∑

d ′∈− J ′. β (y, Some d) ∗C ket (y + d, Some d ′)) −
α2 ∗C (

∑
y∈UNIV .

∑
d∈I ′.

∑
d ′∈− J ′. β (y, Some d) ∗C ket (y + d ′, Some d ′)) +

α ∗C (
∑

y∈UNIV .
∑

d ′∈− J ′. β (y, None) ∗C ket (y + d ′, Some d ′)) −
α^3 ∗C (

∑
y∈UNIV .

∑
y ′∈UNIV .

∑
d ′∈− J ′. β (y, None) ∗C ket (y ′, Some d ′))›

(is ‹- = ?t1 − ?t2 − ?t3 + ?t5 − ?t6 ›)
by (simp add: ϕ-def β query1 ′ option-sum-split vimage-Compl cblinfun.scaleC-right

cblinfun.add-right cblinfun.diff-right if-distrib Compl-eq-Diff-UNIV
vimage-singleton-inj sum-sum-if-eq sum.distrib scaleC-diff-right scaleC-sum-right
sum-subtractf case-prod-beta sum.cartesian-product ′ scaleC-add-right add-diff-eq
cblinfun.sum-right
flip: sum.Sigma add.assoc scaleC-scaleC
cong del: option.case-cong if-cong)

have norm-t1 : ‹norm ?t1 ≤ sqrt bj0 ∗ sqrt bi / N ›
proof −

have ∗: ‹norm (
∑

yd∈UNIV × Some ‘ I ′. β yd ∗C ket y ′d ′) ≤ sqrt (N ∗ bi)› for y ′d ′ :: ‹ ′y × ′y
option›

using - - βbound apply (rule bound-coeff-sum2)
by (auto simp: N-def)

have ‹norm ?t1 = inverse (N 2) ∗ norm (
∑

y ′d ′ ∈ (UNIV :: ′y set) × Some ‘ (−J ′).
∑

yd∈UNIV ×
Some ‘ I ′. β yd ∗C ket y ′d ′)›

apply (simp add: sum.cartesian-product ′ sum.reindex N-def)
apply (subst (2) sum.swap) apply (subst (3) sum.swap)
apply (subst sum.swap) apply (subst (2) sum.swap)
by (rule refl)

also have ‹. . . ≤ inverse (N 2) ∗ (N ∗ sqrt (card (Some ‘ (− J ′))) ∗ sqrt bi)›
apply (rule mult-left-mono)
using ∗ apply (rule norm-ortho-sum-bound)
by (auto simp add: cinner-sum-right cinner-sum-left N-def real-sqrt-mult algebra-simps

sqrt-sqrt[THEN extend-mult-rule])
also have ‹. . . ≤ inverse (N 2) ∗ (N ∗ sqrt bj0 ∗ sqrt bi)›
by (metis bound-J ′ linordered-field-class.inverse-nonnegative-iff-nonnegative mult.commute mult-right-mono

of-nat-0-le-iff of-nat-mono real-sqrt-ge-zero real-sqrt-le-iff)
also have ‹. . . ≤ sqrt bj0 ∗ sqrt bi / N ›
by (smt (verit) ab-semigroup-mult-class.mult-ac(1) divide-inverse-commute of-nat-power power2-eq-square

real-divide-square-eq)
finally show ‹norm ?t1 ≤ sqrt bj0 ∗ sqrt bi / N ›

105

by −
qed

have norm-t2 : ‹norm ?t2 ≤ sqrt bj0 ∗ sqrt bi / N ›
proof −

have ∗: ‹card {y. δ = fst y + the (snd y) ∧ y ∈ UNIV × Some ‘ I ′} ≤ card I ′› for δ
apply (rule card-inj-on-le[where f =‹λy. the (snd y)›])
by (auto intro!: inj-onI)

have ∗: ‹norm (
∑

yd∈UNIV × Some ‘ I ′. β yd ∗C ket (fst yd + the (snd yd), d ′)) ≤ sqrt bi› for
d ′ :: ‹ ′y option›

using - - βbound apply (rule bound-coeff-sum2)
using ∗ I ′-def bi order .trans by auto

have ‹norm ?t2 = inverse (real N) ∗ norm (
∑

d ′ ∈ Some ‘ (−J ′).
∑

yd∈UNIV × Some ‘ I ′. β yd
∗C ket (fst yd + the (snd yd), d ′))›

apply (simp add: sum.cartesian-product ′ sum.reindex N-def)
apply (subst sum.swap) apply (subst (2) sum.swap) apply (subst (3) sum.swap)
apply (subst sum.swap)
by (rule refl)

also have ‹. . . ≤ inverse (real N) ∗ (sqrt (card (Some ‘ (− J ′))) ∗ sqrt bi)›
apply (rule mult-left-mono)
using ∗ apply (rule norm-ortho-sum-bound)
by (auto simp add: cinner-sum-right cinner-sum-left)

also have ‹. . . ≤ inverse N ∗ (sqrt bj0 ∗ sqrt bi)›
by (simp add: mult-right-mono N-def)

also have ‹. . . ≤ sqrt bj0 ∗ sqrt bi / N ›
by (simp add: divide-inverse-commute)

finally show ‹norm ?t2 ≤ sqrt bj0 ∗ sqrt bi / N ›
by −

qed

have norm-t3 : ‹norm ?t3 ≤ sqrt bj0 ∗ sqrt bi / N ›
proof −

have ∗: ‹card {y. a = fst y ∧ y ∈ UNIV × (I ∩ range Some)} ≤ card I ′› for a :: ′y
apply (rule card-inj-on-le[where f =‹λy. the (snd y)›])
by (auto intro!: inj-onI simp: I ′-def)

have ∗: ‹norm (
∑

yd∈UNIV × Some ‘ I ′. β yd ∗C ket (fst yd + the d ′, d ′)) ≤ sqrt bi› for d ′ :: ‹ ′y
option›

using - - βbound apply (rule bound-coeff-sum2)
using ∗ I ′-def bi order .trans by auto

have ‹norm ?t3 = inverse (real N) ∗ norm (
∑

d ′ ∈ Some ‘ (−J ′).
∑

yd∈UNIV × Some ‘ I ′.
β yd ∗C ket (fst yd + the d ′, d ′))›

apply (simp add: sum.cartesian-product ′ sum.reindex N-def)
apply (subst sum.swap) apply (subst (2) sum.swap) apply (subst (3) sum.swap)
apply (subst sum.swap)
by (rule refl)

also have ‹. . . ≤ inverse (real N) ∗ (sqrt (card (Some ‘ (− J ′))) ∗ sqrt bi)›
apply (rule mult-left-mono)
using ∗ apply (rule norm-ortho-sum-bound)
by (auto simp add: cinner-sum-right cinner-sum-left)

also have ‹. . . ≤ inverse N ∗ (sqrt bj0 ∗ sqrt bi)›
by (simp add: mult-right-mono N-def)

also have ‹. . . ≤ sqrt bj0 ∗ sqrt bi / N ›
by (simp add: divide-inverse-commute)

106

finally show ‹norm ?t3 ≤ sqrt bj0 ∗ sqrt bi / N ›
by −

qed

have norm-t5 : ‹norm ?t5 ≤ of-bool (None∈I) ∗ sqrt bj0 / sqrt N ›
proof (cases ‹None∈I ›)

case True
have ∗: ‹card {y. a = fst y ∧ y ∈ UNIV × {None :: ′y option}} ≤ card {()}› for a :: ′y

apply (rule card-inj-on-le[where f =‹λ-. undefined›])
by (auto intro!: inj-onI)

have ∗: ‹norm (
∑

yd∈UNIV × {None}. β yd ∗C ket (fst yd + the d ′, d ′)) ≤ sqrt (1 ::nat)› for d ′
:: ‹ ′y option›

using - - βbound apply (rule bound-coeff-sum2)
using ∗ by auto

have ‹norm ?t5 = inverse (sqrt N) ∗ norm (
∑

d ′ ∈ Some ‘ (−J ′).
∑

yd∈UNIV × {None}.
β yd ∗C ket (fst yd + the d ′, d ′))›

apply (simp add: sum.cartesian-product ′ sum.reindex N-def)
apply (subst sum.swap)
by (rule refl)

also have ‹. . . ≤ inverse (sqrt N) ∗ (sqrt (card (Some ‘ (− J ′))))›
apply (rule mult-left-mono)
using ∗ apply (rule norm-ortho-sum-bound)
by (auto simp add: cinner-sum-right cinner-sum-left)

also have ‹. . . ≤ inverse (sqrt N) ∗ sqrt bj0›
by (simp add: mult-right-mono N-def)

also have ‹. . . ≤ of-bool (None∈I) ∗ sqrt bj0 / sqrt N ›
using True by (simp add: divide-inverse-commute)

finally show ?thesis
by −

next
case False
then show ?thesis

using βNone0 by auto
qed

have norm-t6 : ‹norm ?t6 ≤ of-bool (None∈I) ∗ sqrt bj0 / sqrt N ›
proof (cases ‹None∈I ›)

case True
have ∗: ‹norm (

∑
yd∈UNIV × {None}. β yd ∗C ket y ′d ′) ≤ sqrt N › for y ′d ′ :: ‹ ′y × ′y option›

using - - βbound apply (rule bound-coeff-sum2)
by (auto simp: N-def)

have ‹norm ?t6 = inverse (N ∗ sqrt N) ∗ norm (
∑

y ′d ′ ∈ (UNIV :: ′y set) × Some ‘ (−J ′).∑
yd∈UNIV × {None}. β yd ∗C ket y ′d ′)›

apply (simp add: sum.cartesian-product ′ sum.reindex N-def)
apply (subst (2) sum.swap) apply (subst sum.swap)
by (rule refl)

also have ‹. . . ≤ inverse (N ∗ sqrt N) ∗ (N ∗ sqrt (card (Some ‘ (− J ′))))›
apply (rule mult-left-mono)
using ∗ apply (rule norm-ortho-sum-bound)
by (auto simp add: cinner-sum-right cinner-sum-left N-def real-sqrt-mult algebra-simps

sqrt-sqrt[THEN extend-mult-rule])
also have ‹. . . ≤ inverse (N ∗ sqrt N) ∗ (N ∗ sqrt bj0)›

by (simp add: N-def)

107

also have ‹. . . ≤ of-bool (None∈I) ∗ sqrt bj0 / sqrt N ›
using True by (simp add: divide-inverse-commute less-eq-real-def N-def)

finally show ?thesis
by −

next
case False
then show ?thesis

using βNone0 by auto
qed

have ‹norm (PJ ∗V ϕ) ≤ sqrt bj0 ∗ sqrt bi / N + sqrt bj0 ∗ sqrt bi / N + sqrt bj0 ∗
sqrt bi / N

+ of-bool (None∈I) ∗ sqrt bj0 / sqrt N + of-bool (None∈I) ∗
sqrt bj0 / sqrt N ›

unfolding P0ϕ
apply (rule norm-triangle-le-diff norm-triangle-le, rule add-mono)+

apply (rule norm-t1)
apply (rule norm-t2)

apply (rule norm-t3)
apply (rule norm-t5)

by (rule norm-t6)
also have ‹. . . ≤ 3 ∗ sqrt bj0 ∗ sqrt bi / N + 2 ∗ of-bool (None∈I) ∗ sqrt bj0 / sqrt N ›

by (simp add: mult.commute vector-space-over-itself .scale-left-commute)
also have ‹. . . ≤ ε›

using ε by (auto intro!: simp add: preserve-query1 ′-bound-def)
finally show ‹norm (Proj (− ket-invariant (UNIV × J)) ∗V ϕ) ≤ ε›

unfolding PJ-def
apply (subst ket-invariant-compl[symmetric])
by simp

qed

lemma preserve-query1-simplified:
assumes ‹I ⊆ J ›
assumes ‹None ∈ J ›
assumes bj0: ‹card (− Some −‘ J) ≤ bj0›
shows ‹preserves-ket query1 (UNIV × I) (UNIV × J) (6 ∗ sqrt bj0 / sqrt N)›
apply (rule preserve-query1 [where bj0=bj0 and bi=N])
using assms by (auto intro!: divide-right-mono simp: preserve-query1-bound-def card-mono N-def)

lemma preserve-query1 ′-simplified:
assumes ‹I ⊆ J ›
assumes ‹None ∈ J ›
assumes bj0: ‹card (− Some −‘ J) ≤ bj0›
shows ‹preserves-ket query1 ′ (UNIV × I) (UNIV × J) (5 ∗ sqrt bj0 / sqrt N)›
apply (rule preserve-query1 ′[where bj0=bj0 and bi=N])
using assms by (auto intro!: divide-right-mono simp: preserve-query1 ′-bound-def card-mono N-def)

The next bound is applicable for ket-invariants assume the output register to have a specific
value ket y0 (typically ket 0) before the query and do not put any conditions on the output
register after the query.
Lemmas preserve-query1-fixY and preserve-query1 ′-fixY.
definition ‹preserve-query1-fixY-bound NoneI NoneJ bi bj0 = sqrt bj0 ∗ sqrt bi / (N ∗ sqrt N)

108

+ 3 ∗ sqrt bj0 ∗ sqrt bi / N + of-bool NoneI ∗ sqrt bj0 / sqrt N + of-bool NoneI ∗ sqrt bj0 / N
+ of-bool NoneJ / sqrt N + of-bool NoneJ ∗ sqrt bi / N + of-bool (NoneI ∧ NoneJ) / sqrt N ›

lemma preserve-query1-fixY :
assumes IJ : ‹I ⊆ J ›
assumes bi: ‹card (Some −‘ I) ≤ bi›
assumes bj0: ‹card (− Some −‘ J) ≤ bj0›
assumes ε: ‹ε ≥ preserve-query1-fixY-bound (None∈I) (None/∈J) bi bj0›
shows ‹preserves-ket query1 ({y0} × I) (UNIV × J) ε›

proof (rule preservesI ′)
show ‹ε ≥ 0 ›

using - ε apply (rule order .trans)
by (simp add: preserve-query1-fixY-bound-def)

fix ψ :: ‹(′y × ′y option) ell2 ›
assume ψ: ‹ψ ∈ space-as-set (ket-invariant ({y0} × I))›
assume ‹norm ψ = 1 ›

define I ′ J ′ where ‹I ′ = Some −‘ I › and ‹J ′ = Some −‘ J ›
then have ‹{y0} × I ⊆ {y0} × (Some ‘ I ′ ∪ {None})›

apply (rule-tac Sigma-mono)
by auto

with ψ have ψ ′: ‹ψ ∈ space-as-set (ket-invariant ({y0} × ((Some ‘ I ′ ∪ {None}))))›
using less-eq-ccsubspace.rep-eq ket-invariant-le by fastforce

have [simp]: ‹I ′ ⊆ J ′›
using I ′-def J ′-def IJ by blast

define β where ‹β d = Rep-ell2 ψ (y0,d)› for d
then have β: ‹ψ = (

∑
d∈Some ‘ I ′ ∪ {None}. β d ∗C ket (y0,d))›

using ell2-sum-ket-ket-invariant[OF ψ ′]
by (auto simp: sum.cartesian-product ′)

have βbound: ‹(
∑

d∈(Some ‘ I ′ ∪ {None}). (cmod (β d))2) ≤ 1 › (is ‹?lhs ≤ 1 ›)
apply (subgoal-tac ‹(norm ψ)2 = ?lhs›)
apply (simp add: ‹norm ψ = 1 ›)

by (simp add: β pythagorean-theorem-sum del: sum.insert)
have βNone: ‹cmod (β None) ≤ 1 ›
proof −

have ‹(cmod (β None))2 = (
∑

d∈{None}. (cmod (β d))2)›
by simp

also have ‹. . . ≤ (
∑

d∈(Some ‘ I ′ ∪ {None}). (cmod (β d))2)›
apply (rule sum-mono2) by auto

also have ‹. . . ≤ 1 ›
by (rule βbound)

finally show ?thesis
by (simp add: power-le-one-iff)

qed
have βNone0 : ‹β None = 0 › if ‹None /∈ I ›

using ψ that by (simp add: β-def ket-invariant-Rep-ell2)

have [simp]: ‹Some −‘ insert None X = Some −‘ X› for X :: ‹ ′z option set›
by auto

have [simp]: ‹Some −‘ Some ‘ X = X› for X :: ‹ ′z set›
by auto

have [simp]: ‹Some x ∈ J ←→ x ∈ J ′› for x
by (simp add: J ′-def)

have [simp]: ‹x ∈ I ′ =⇒ x ∈ J ′› for x
using ‹I ′ ⊆ J ′› by blast

109

have [simp]: ‹(
∑

x∈X . if x /∈ Y then f x else 0) = (
∑

x∈X−Y . f x)› if ‹finite X› for f :: ‹ ′y ⇒
′z::ab-group-add› and X Y

apply (rule sum.mono-neutral-cong-right)
using that by auto

have [simp]: ‹β yd ∗C a ∗C b = a ∗C β yd ∗C b› for yd a and b :: ‹ ′z::complex-vector›
by auto

have [simp]: ‹cmod α = inverse (sqrt N)› ‹cmod (α2) = inverse N › ‹cmod (α^3) = inverse (N ∗ sqrt
N)› ‹cmod (α^4) = inverse (N 2)›

by (auto simp: norm-mult numeral-3-eq-3 α-def inverse-eq-divide norm-divide norm-power power-one-over
power4-eq-xxxx power2-eq-square)

have [simp]: ‹card (Some ‘ I ′) ≤ bi›
by (metis I ′-def bi card-image inj-Some)

have bound-J ′[simp]: ‹card (Some ‘ (− J ′)) ≤ bj0›
using bj0 unfolding J ′-def by (simp add: card-image)

define ϕ and PJ :: ‹(′y ∗ ′y option) update› where
‹ϕ = query1 ∗V ψ› and ‹PJ = Proj (ket-invariant (UNIV × −J))›

have [simp]: ‹PJ ∗V ket (x,y) = (if y∈−J then ket (x,y) else 0)› for x y
by (simp add: Proj-ket-invariant-ket PJ-def)

have P0ϕ: ‹PJ ∗V ϕ =
α^4 ∗C (

∑
d∈I ′.

∑
y ′∈UNIV .

∑
d ′∈− J ′. β (Some d) ∗C ket (y ′, Some d ′))

− α2 ∗C (
∑

d∈I ′.
∑

d ′∈− J ′. β (Some d) ∗C ket (y0 + d, Some d ′))
− α2 ∗C (

∑
d∈I ′.

∑
d ′∈− J ′. β (Some d) ∗C ket (y0 + d ′, Some d ′))

+ α2 ∗C (
∑

d∈I ′.
∑

d ′∈− J ′. β (Some d) ∗C ket (y0, Some d ′))
+ α ∗C (

∑
d ′∈− J ′. β (None) ∗C ket (y0 + d ′, Some d ′))

− α^3 ∗C (
∑

y ′∈UNIV .
∑

d ′∈− J ′. β (None) ∗C ket (y ′, Some d ′))
+ (of-bool (None /∈ J) ∗ α) ∗C (

∑
d∈I ′. β (Some d) ∗C ket (y0 + d, None))

− (of-bool (None /∈ J) ∗ α^3) ∗C (
∑

d∈I ′.
∑

y ′∈UNIV . β (Some d) ∗C ket (y ′, None))
+ (of-bool (None /∈ J) ∗ α2) ∗C (

∑
y ′∈UNIV . β None ∗C ket (y ′, None))

›
(is ‹- = ?t1 − ?t2 − ?t3 + ?t4 + ?t5 − ?t6 + ?t7 − ?t8 + ?t9 ›)
by (simp add: ϕ-def β query1 option-sum-split vimage-Compl

cblinfun.add-right cblinfun.diff-right if-distrib Compl-eq-Diff-UNIV
vimage-singleton-inj sum-sum-if-eq sum.distrib scaleC-diff-right scaleC-sum-right
sum-subtractf case-prod-beta sum.cartesian-product ′ scaleC-add-right add-diff-eq
cblinfun.scaleC-right cblinfun.sum-right
flip: sum.Sigma add.assoc scaleC-scaleC
cong del: option.case-cong if-cong)

have norm-t1 : ‹norm ?t1 ≤ sqrt bj0 ∗ sqrt bi / (N ∗ sqrt N)›
proof −

have ∗: ‹norm (
∑

d∈Some ‘ I ′. β d ∗C ket y ′d ′) ≤ sqrt bi› for y ′d ′ :: ‹ ′y × ′y option›
using - - βbound apply (rule bound-coeff-sum2)
by auto

have ‹norm ?t1 = inverse (N 2) ∗ norm (
∑

y ′d ′ ∈ (UNIV :: ′y set) × Some ‘ (−J ′).
∑

d∈Some ‘ I ′.
β d ∗C ket y ′d ′)›

apply (simp add: sum.cartesian-product ′ sum.reindex N-def)
apply (subst (2) sum.swap) apply (subst (3) sum.swap)
by (rule refl)

also have ‹. . . ≤ inverse (N 2) ∗ (sqrt N ∗ sqrt (card (Some ‘ (− J ′))) ∗ sqrt bi)›
apply (rule mult-left-mono)
using ∗ apply (rule norm-ortho-sum-bound)
by (auto simp add: cinner-sum-right cinner-sum-left N-def real-sqrt-mult)

also have ‹. . . ≤ inverse (N 2) ∗ (sqrt N ∗ sqrt bj0 ∗ sqrt bi)›

110

by (metis bound-J ′ linordered-field-class.inverse-nonnegative-iff-nonnegative mult.commute mult-right-mono
of-nat-0-le-iff of-nat-mono real-sqrt-ge-zero real-sqrt-le-iff)

also have ‹. . . ≤ sqrt bj0 ∗ sqrt bi / (N ∗ sqrt N)›
by (smt (verit, del-insts) divide-divide-eq-left divide-inverse mult.commute of-nat-0-le-iff of-nat-power

power2-eq-square real-divide-square-eq real-sqrt-pow2 times-divide-eq-left)
finally show ‹norm ?t1 ≤ sqrt bj0 ∗ sqrt bi / (N ∗ sqrt N)›

by −
qed

have norm-t2 : ‹norm ?t2 ≤ sqrt bj0 ∗ sqrt bi / N ›
proof −

have ∗: ‹card {d. δ = the d ∧ d ∈ Some ‘ I ′} ≤ card I ′› for δ
apply (rule card-inj-on-le[where f =the])
by (auto intro!: inj-onI)

have ∗: ‹norm (
∑

d∈Some ‘ I ′. β d ∗C ket (y0 + the d, d ′)) ≤ sqrt bi› for d ′ :: ‹ ′y option›
using - - βbound apply (rule bound-coeff-sum2)
using ∗ I ′-def bi order .trans by auto

have ‹norm ?t2 = inverse (real N) ∗ norm (
∑

d ′ ∈ Some ‘ (−J ′).
∑

d∈Some ‘ I ′. β d ∗C ket (y0

+ the d, d ′))›
apply (simp add: sum.cartesian-product ′ sum.reindex N-def)
apply (subst sum.swap) apply (subst (2) sum.swap) apply (subst sum.swap)
by (rule refl)

also have ‹. . . ≤ inverse (real N) ∗ (sqrt (card (Some ‘ (− J ′))) ∗ sqrt bi)›
apply (rule mult-left-mono)
using ∗ apply (rule norm-ortho-sum-bound)
by (auto simp add: cinner-sum-right cinner-sum-left)

also have ‹. . . ≤ inverse N ∗ (sqrt bj0 ∗ sqrt bi)›
by (simp add: mult-right-mono N-def)

also have ‹. . . ≤ sqrt bj0 ∗ sqrt bi / N ›
by (simp add: divide-inverse-commute)

finally show ‹norm ?t2 ≤ sqrt bj0 ∗ sqrt bi / N ›
by −

qed

have norm-t3 : ‹norm ?t3 ≤ sqrt bj0 ∗ sqrt bi / N ›
proof −

have aux: ‹I ′ = Some −‘ I =⇒ card (Some −‘ I) ≤ bi =⇒ Some x ∈ I =⇒ card {y ∈ I . y ∈ range
Some} ≤ bi› for x

by (smt (verit, ccfv-SIG) Collect-cong Int-iff card-image image-vimage-eq inf-set-def inj-Some
mem-Collect-eq)

have ∗: ‹norm (
∑

d∈Some ‘ I ′. β d ∗C ket (y0 + the d ′, d ′)) ≤ sqrt bi› for d ′ :: ‹ ′y option›
using - - βbound apply (rule bound-coeff-sum2)
using I ′-def bi aux by auto

have ‹norm ?t3 = inverse (real N) ∗ norm (
∑

d ′ ∈ Some ‘ (−J ′).
∑

d∈Some ‘ I ′.
β d ∗C ket (y0 + the d ′, d ′))›

apply (simp add: sum.reindex N-def)
apply (subst sum.swap) apply (subst (2) sum.swap) apply (subst sum.swap)
by (rule refl)

also have ‹. . . ≤ inverse (real N) ∗ (sqrt (card (Some ‘ (− J ′))) ∗ sqrt bi)›
apply (rule mult-left-mono)
using ∗ apply (rule norm-ortho-sum-bound)
by (auto simp add: cinner-sum-right cinner-sum-left)

also have ‹. . . ≤ inverse N ∗ (sqrt bj0 ∗ sqrt bi)›
by (simp add: mult-right-mono N-def)

111

also have ‹. . . ≤ sqrt bj0 ∗ sqrt bi / N ›
by (simp add: divide-inverse-commute)

finally show ‹norm ?t3 ≤ sqrt bj0 ∗ sqrt bi / N ›
by −

qed

have norm-t4 : ‹norm ?t4 ≤ sqrt bj0 ∗ sqrt bi / N ›
proof −

have aux: ‹I ′ = Some −‘ I =⇒
card (Some −‘ I) ≤ bi =⇒ Some x ∈ I =⇒ card {y ∈ I . y ∈ range Some} ≤ bi› for x

by (smt (verit) Collect-cong Int-iff card-image image-vimage-eq inf-set-def inj-Some mem-Collect-eq)
have ∗: ‹norm (

∑
d∈Some ‘ I ′. β d ∗C ket (y0, d ′)) ≤ sqrt bi› for d ′ :: ‹ ′y option›

using - - βbound apply (rule bound-coeff-sum2)
using I ′-def bi aux by auto

have ‹norm ?t4 = inverse (real N) ∗ norm (
∑

d ′ ∈ Some ‘ (−J ′).
∑

d∈Some ‘ I ′.
β d ∗C ket (y0, d ′))›

apply (simp add: sum.cartesian-product ′ sum.reindex N-def)
apply (subst sum.swap) apply (subst (2) sum.swap) apply (subst sum.swap)
by (rule refl)

also have ‹. . . ≤ inverse (real N) ∗ (sqrt (card (Some ‘ (− J ′))) ∗ sqrt bi)›
apply (rule mult-left-mono)
using ∗ apply (rule norm-ortho-sum-bound)
by (auto simp add: cinner-sum-right cinner-sum-left)

also have ‹. . . ≤ inverse N ∗ (sqrt bj0 ∗ sqrt bi)›
by (simp add: mult-right-mono N-def)

also have ‹. . . ≤ sqrt bj0 ∗ sqrt bi / N ›
by (simp add: divide-inverse-commute)

finally show ‹norm ?t4 ≤ sqrt bj0 ∗ sqrt bi / N ›
by −

qed

have norm-t5 : ‹norm ?t5 ≤ of-bool (None∈I) ∗ sqrt bj0 / sqrt N ›
proof (cases ‹None∈I ›)

case True
have ∗: ‹norm (β None ∗C ket (y0 + the d ′, d ′)) ≤ sqrt (1 ::nat)› for d ′ :: ‹ ′y option›

using βNone by simp

have ‹norm ?t5 = inverse (sqrt N) ∗ norm (
∑

d ′ ∈ Some ‘ (−J ′).
β None ∗C ket (y0 + the d ′, d ′))›

by (simp add: sum.cartesian-product ′ sum.reindex)
also have ‹. . . ≤ inverse (sqrt N) ∗ (sqrt (card (Some ‘ (− J ′))))›

apply (rule mult-left-mono)
using ∗ apply (rule norm-ortho-sum-bound)
by (auto simp add: cinner-sum-right cinner-sum-left)

also have ‹. . . ≤ inverse (sqrt N) ∗ sqrt bj0›
by (simp add: mult-right-mono N-def)

also have ‹. . . ≤ of-bool (None∈I) ∗ sqrt bj0 / sqrt N ›
by (simp add: divide-inverse-commute True)

finally show ‹norm ?t5 ≤ of-bool (None∈I) ∗ sqrt bj0 / sqrt N ›
by −

next
case False
then show ?thesis by (simp add: βNone0)

qed

112

have norm-t6 : ‹norm ?t6 ≤ of-bool (None∈I) ∗ sqrt bj0 / N ›
proof (cases ‹None∈I ›)

case True
have ∗: ‹norm (β None ∗C ket y ′d ′) ≤ 1 › for y ′d ′ :: ‹ ′y × ′y option›

using βNone by simp

have ‹norm ?t6 = inverse (N ∗ sqrt N) ∗ norm (
∑

y ′d ′ ∈ (UNIV :: ′y set) × Some ‘ (−J ′). β None
∗C ket y ′d ′)›

by (simp add: sum.cartesian-product ′ sum.reindex)
also have ‹. . . ≤ inverse (N ∗ sqrt N) ∗ (sqrt N ∗ sqrt (card (Some ‘ (− J ′))))›

apply (rule mult-left-mono)
using ∗ apply (rule norm-ortho-sum-bound)
by (auto simp add: cinner-sum-right cinner-sum-left N-def real-sqrt-mult)

also have ‹. . . ≤ inverse (N ∗ sqrt N) ∗ (sqrt N ∗ sqrt bj0)›
by (simp add: N-def)

also have ‹. . . ≤ of-bool (None∈I) ∗ sqrt bj0 / N ›
by (simp add: divide-inverse-commute less-eq-real-def True N-def)

finally show ‹norm ?t6 ≤ of-bool (None∈I) ∗ sqrt bj0 / N ›
by −

next
case False
then show ?thesis by (simp add: βNone0)

qed

have norm-t7 : ‹norm ?t7 ≤ of-bool (None/∈J) / sqrt N ›
proof (cases ‹None∈J ›)

assume ‹None /∈ J ›

have ‹norm ?t7 = inverse (sqrt N) ∗ norm (
∑

d∈I ′. β (Some d) ∗C ket (y0 + d, None :: ′y option))›
using ‹None /∈ J › by simp

also have ‹. . . = inverse (sqrt N) ∗ norm (
∑

d∈Some ‘ I ′. β d ∗C ket (y0 + the d, None :: ′y
option))›

apply (subst sum.reindex)
by auto

also have ‹. . . ≤ inverse (sqrt N) ∗ (sqrt (real 1))›
proof −

have aux: ‹x ∈ I ′ =⇒ card {y. x = the y ∧ y ∈ Some ‘ I ′} ≤ Suc 0 › for x
by (smt (verit, del-insts) card-eq-Suc-0-ex1 dual-order .refl imageE imageI mem-Collect-eq op-

tion.sel)
show ?thesis

apply (rule mult-left-mono)
using - - βbound apply (rule bound-coeff-sum2)
using aux by auto

qed
also have ‹. . . = of-bool (None/∈J) / sqrt N ›

using ‹None /∈ J › inverse-eq-divide by auto
finally show ?thesis

by −
qed simp

have norm-t8 : ‹norm ?t8 ≤ of-bool (None/∈J) ∗ sqrt bi / N ›
proof (cases ‹None∈J ›)

assume ‹None /∈ J ›
have aux: ‹I ′ = Some −‘ I =⇒

113

card (Some −‘ I) ≤ bi =⇒ Some x ∈ I =⇒ card {y ∈ I . y ∈ range Some} ≤ bi› for x
by (smt (verit, ccfv-SIG) Collect-cong Int-iff card-image image-vimage-eq inf-set-def inj-Some

mem-Collect-eq)
have ∗: ‹norm (

∑
d∈Some ‘ I ′. β d ∗C ket (y ′, None :: ′y option)) ≤ sqrt (real bi)› for y ′ :: ′y

using - - βbound apply (rule bound-coeff-sum2)
using I ′-def bi aux by auto

have ‹norm ?t8 = inverse (N ∗ sqrt N) ∗ norm (
∑

y ′:: ′y∈UNIV .
∑

d∈Some ‘ I ′. β d ∗C ket (y ′,
None :: ′y option))›

apply (simp add: sum.reindex ‹None /∈ J › N-def)
apply (subst sum.swap) apply (subst (2) sum.swap) apply (subst sum.swap)
by (rule refl)

also have ‹. . . ≤ inverse (N ∗ sqrt N) ∗ (sqrt N ∗ sqrt (real bi))›
apply (rule mult-left-mono)
using ∗ apply (rule norm-ortho-sum-bound)
by (auto simp add: cinner-sum-right cinner-sum-left N-def)

also have ‹. . . = of-bool (None/∈J) ∗ sqrt bi / N ›
using ‹None /∈ J › inverse-eq-divide
by (simp add: divide-inverse-commute N-def)

finally show ?thesis
by −

qed simp

have norm-t9 : ‹norm ?t9 ≤ of-bool (None∈I ∧ None/∈J) / sqrt N ›
proof (cases ‹None∈I ∧ None/∈J ›)

case True

have ‹norm ?t9 = inverse N ∗ norm (
∑

y ′:: ′y∈UNIV . β None ∗C ket (y ′, None :: ′y option))›
by (simp add: sum.reindex True)

also have ‹. . . ≤ inverse N ∗ (sqrt N ∗ sqrt 1)›
apply (rule mult-left-mono)
apply (rule norm-ortho-sum-bound[where b ′=1])

using βNone by (auto simp: N-def)
also have ‹. . . = of-bool (None∈I ∧ None/∈J) / sqrt N ›

using True apply simp
by (metis divide-inverse-commute inverse-eq-divide of-nat-0-le-iff sqrt-divide-self-eq)

finally show ?thesis
by −

next
case False with βNone0
show ?thesis by auto

qed

have ‹norm (PJ ∗V ϕ) ≤ sqrt bj0 ∗ sqrt bi / (N ∗ sqrt N) + sqrt bj0 ∗ sqrt bi / N +
sqrt bj0 ∗ sqrt bi / N

+ sqrt bj0 ∗ sqrt bi / N + of-bool (None∈I) ∗ sqrt bj0 / sqrt N + of-bool
(None∈I) ∗ sqrt bj0 / N

+ of-bool (None/∈J) / sqrt N + of-bool (None/∈J) ∗ sqrt bi / N + of-bool
(None∈I ∧ None/∈J) / sqrt N ›

unfolding P0ϕ
apply (rule norm-triangle-le-diff norm-triangle-le, rule add-mono)+

apply (rule norm-t1)
apply (rule norm-t2)

apply (rule norm-t3)

114

apply (rule norm-t4)
apply (rule norm-t5)

apply (rule norm-t6)
apply (rule norm-t7)

apply (rule norm-t8)
apply (rule norm-t9)
by −

also have ‹. . . ≤ preserve-query1-fixY-bound (None∈I) (None/∈J) bi bj0›
by (auto simp: preserve-query1-fixY-bound-def mult.commute mult.left-commute)

also have ‹. . . ≤ ε›
by (simp add: ε)

finally show ‹norm (Proj (− ket-invariant (UNIV × J)) ∗V ϕ) ≤ ε›
unfolding PJ-def
apply (subst ket-invariant-compl[symmetric])
by simp

qed

definition ‹preserve-query1 ′-fixY-bound NoneI NoneJ bi bj0 = sqrt bj0 ∗ sqrt bi / (N ∗ sqrt N)
+ 2 ∗ sqrt bj0 ∗ sqrt bi / N + of-bool NoneI ∗ sqrt bj0 / sqrt N + of-bool NoneI ∗ sqrt bj0 / N
+ of-bool NoneJ / sqrt N + of-bool NoneJ ∗ sqrt bi / N + of-bool (NoneI ∧ NoneJ) / sqrt N ›

lemma preserve-query1 ′-fixY :
assumes IJ : ‹I ⊆ J ›
assumes bi: ‹card (Some −‘ I) ≤ bi›
assumes bj0: ‹card (− Some −‘ J) ≤ bj0›
assumes ε: ‹ε ≥ preserve-query1 ′-fixY-bound (None∈I) (None/∈J) bi bj0›

shows ‹preserves-ket query1 ′ ({y0} × I) (UNIV × J) ε›
proof (rule preservesI ′)

show ‹ε ≥ 0 ›
using - ε apply (rule order .trans)
by (simp add: preserve-query1 ′-fixY-bound-def)

fix ψ :: ‹(′y × ′y option) ell2 ›
assume ψ: ‹ψ ∈ space-as-set (ket-invariant ({y0} × I))›
assume ‹norm ψ = 1 ›

define I ′ J ′ where ‹I ′ = Some −‘ I › and ‹J ′ = Some −‘ J ›
then have ‹{y0} × I ⊆ {y0} × (Some ‘ I ′ ∪ {None})›

apply (rule-tac Sigma-mono)
by auto

with ψ have ψ ′: ‹ψ ∈ space-as-set (ket-invariant ({y0} × ((Some ‘ I ′ ∪ {None}))))›
using less-eq-ccsubspace.rep-eq ket-invariant-le by fastforce

have [simp]: ‹I ′ ⊆ J ′›
using I ′-def J ′-def IJ by blast

define β where ‹β d = Rep-ell2 ψ (y0,d)› for d
then have β: ‹ψ = (

∑
d∈Some ‘ I ′ ∪ {None}. β d ∗C ket (y0,d))›

using ell2-sum-ket-ket-invariant[OF ψ ′]
by (auto simp: sum.cartesian-product ′)

have βbound: ‹(
∑

d∈(Some ‘ I ′ ∪ {None}). (cmod (β d))2) ≤ 1 › (is ‹?lhs ≤ 1 ›)
apply (subgoal-tac ‹(norm ψ)2 = ?lhs›)
apply (simp add: ‹norm ψ = 1 ›)

by (simp add: β pythagorean-theorem-sum del: sum.insert)
have βNone: ‹cmod (β None) ≤ 1 ›
proof −

115

have ‹(cmod (β None))2 = (
∑

d∈{None}. (cmod (β d))2)›
by simp

also have ‹. . . ≤ (
∑

d∈(Some ‘ I ′ ∪ {None}). (cmod (β d))2)›
apply (rule sum-mono2) by auto

also have ‹. . . ≤ 1 ›
by (rule βbound)

finally show ?thesis
by (simp add: power-le-one-iff)

qed
have βNone0 : ‹β None = 0 › if ‹None /∈ I ›

using ψ that by (simp add: β-def ket-invariant-Rep-ell2)

have [simp]: ‹Some −‘ insert None X = Some −‘ X› for X :: ‹ ′z option set›
by auto

have [simp]: ‹Some −‘ Some ‘ X = X› for X :: ‹ ′z set›
by auto

have [simp]: ‹Some x ∈ J ←→ x ∈ J ′› for x
by (simp add: J ′-def)

have [simp]: ‹x ∈ I ′ =⇒ x ∈ J ′› for x
using ‹I ′ ⊆ J ′› by blast

have [simp]: ‹(
∑

x∈X . if x /∈ Y then f x else 0) = (
∑

x∈X−Y . f x)› if ‹finite X› for f :: ‹ ′y ⇒
′z::ab-group-add› and X Y

apply (rule sum.mono-neutral-cong-right)
using that by auto

have [simp]: ‹β yd ∗C a ∗C b = a ∗C β yd ∗C b› for yd a and b :: ‹ ′z::complex-vector›
by auto

have [simp]: ‹cmod α = inverse (sqrt N)› ‹cmod (α2) = inverse N › ‹cmod (α^3) = inverse (N ∗ sqrt
N)› ‹cmod (α^4) = inverse (N 2)›

by (auto simp: norm-mult numeral-3-eq-3 α-def inverse-eq-divide norm-divide norm-power power-one-over
power2-eq-square power4-eq-xxxx)

have [simp]: ‹card (Some ‘ I ′) ≤ bi›
by (metis I ′-def bi card-image inj-Some)

have bound-J ′[simp]: ‹card (Some ‘ (− J ′)) ≤ bj0›
using bj0 unfolding J ′-def by (simp add: card-image)

define ϕ and PJ :: ‹(′y ∗ ′y option) update› where
‹ϕ = query1 ′ ∗V ψ› and ‹PJ = Proj (ket-invariant (UNIV × −J))›

have [simp]: ‹PJ ∗V ket (x,y) = (if y∈−J then ket (x,y) else 0)› for x y
by (simp add: Proj-ket-invariant-ket PJ-def)

have P0ϕ: ‹PJ ∗V ϕ =
α^4 ∗C (

∑
d∈I ′.

∑
y ′∈UNIV .

∑
d ′∈− J ′. β (Some d) ∗C ket (y ′, Some d ′))

− α2 ∗C (
∑

d∈I ′.
∑

d ′∈− J ′. β (Some d) ∗C ket (y0 + d, Some d ′))
− α2 ∗C (

∑
d∈I ′.

∑
d ′∈− J ′. β (Some d) ∗C ket (y0 + d ′, Some d ′))

+ α ∗C (
∑

d ′∈− J ′. β (None) ∗C ket (y0 + d ′, Some d ′))
− α^3 ∗C (

∑
y ′∈UNIV .

∑
d ′∈− J ′. β (None) ∗C ket (y ′, Some d ′))

+ (of-bool (None /∈ J) ∗ α) ∗C (
∑

d∈I ′. β (Some d) ∗C ket (y0 + d, None))
− (of-bool (None /∈ J) ∗ α^3) ∗C (

∑
d∈I ′.

∑
y ′∈UNIV . β (Some d) ∗C ket (y ′, None))

+ (of-bool (None /∈ J) ∗ α2) ∗C (
∑

y ′∈UNIV . β None ∗C ket (y ′, None))
›

(is ‹- = ?t1 − ?t2 − ?t3 + ?t5 − ?t6 + ?t7 − ?t8 + ?t9 ›)
by (simp add: ϕ-def β query1 ′ option-sum-split vimage-Compl

cblinfun.add-right cblinfun.diff-right if-distrib Compl-eq-Diff-UNIV
vimage-singleton-inj sum-sum-if-eq sum.distrib scaleC-diff-right scaleC-sum-right
sum-subtractf case-prod-beta sum.cartesian-product ′ scaleC-add-right add-diff-eq
cblinfun.scaleC-right cblinfun.sum-right

116

flip: sum.Sigma add.assoc scaleC-scaleC
cong del: option.case-cong if-cong)

have norm-t1 : ‹norm ?t1 ≤ sqrt bj0 ∗ sqrt bi / (N ∗ sqrt N)›
proof −

have ∗: ‹norm (
∑

d∈Some ‘ I ′. β d ∗C ket y ′d ′) ≤ sqrt bi› for y ′d ′ :: ‹ ′y × ′y option›
using - - βbound apply (rule bound-coeff-sum2)
by auto

have ‹norm ?t1 = inverse (N 2) ∗ norm (
∑

y ′d ′ ∈ (UNIV :: ′y set) × Some ‘ (−J ′).
∑

d∈Some ‘ I ′.
β d ∗C ket y ′d ′)›

apply (simp add: sum.cartesian-product ′ sum.reindex N-def)
apply (subst (2) sum.swap) apply (subst (3) sum.swap)
by (rule refl)

also have ‹. . . ≤ inverse (N 2) ∗ (sqrt N ∗ sqrt (card (Some ‘ (− J ′))) ∗ sqrt bi)›
apply (rule mult-left-mono)
using ∗ apply (rule norm-ortho-sum-bound)
by (auto simp add: cinner-sum-right cinner-sum-left N-def real-sqrt-mult)

also have ‹. . . ≤ inverse (N 2) ∗ (sqrt N ∗ sqrt bj0 ∗ sqrt bi)›
by (metis bound-J ′ linordered-field-class.inverse-nonnegative-iff-nonnegative mult.commute mult-right-mono

of-nat-0-le-iff of-nat-mono real-sqrt-ge-zero real-sqrt-le-iff)
also have ‹. . . ≤ sqrt bj0 ∗ sqrt bi / (N ∗ sqrt N)›
by (smt (verit, del-insts) divide-divide-eq-left divide-inverse mult.commute of-nat-0-le-iff of-nat-power

power2-eq-square real-divide-square-eq real-sqrt-pow2 times-divide-eq-left)
finally show ‹norm ?t1 ≤ sqrt bj0 ∗ sqrt bi / (N ∗ sqrt N)›

by −
qed

have norm-t2 : ‹norm ?t2 ≤ sqrt bj0 ∗ sqrt bi / N ›
proof −

have ∗: ‹card {d. δ = the d ∧ d ∈ Some ‘ I ′} ≤ card I ′› for δ
apply (rule card-inj-on-le[where f =the])
by (auto intro!: inj-onI)

have ∗: ‹norm (
∑

d∈Some ‘ I ′. β d ∗C ket (y0 + the d, d ′)) ≤ sqrt bi› for d ′ :: ‹ ′y option›
using - - βbound apply (rule bound-coeff-sum2)
using ∗ I ′-def bi order .trans by auto

have ‹norm ?t2 = inverse (real N) ∗ norm (
∑

d ′ ∈ Some ‘ (−J ′).
∑

d∈Some ‘ I ′. β d ∗C ket (y0

+ the d, d ′))›
apply (simp add: sum.cartesian-product ′ sum.reindex N-def)
apply (subst sum.swap) apply (subst (2) sum.swap) apply (subst sum.swap)
by (rule refl)

also have ‹. . . ≤ inverse (real N) ∗ (sqrt (card (Some ‘ (− J ′))) ∗ sqrt bi)›
apply (rule mult-left-mono)
using ∗ apply (rule norm-ortho-sum-bound)
by (auto simp add: cinner-sum-right cinner-sum-left)

also have ‹. . . ≤ inverse N ∗ (sqrt bj0 ∗ sqrt bi)›
by (simp add: mult-right-mono N-def)

also have ‹. . . ≤ sqrt bj0 ∗ sqrt bi / N ›
by (simp add: divide-inverse-commute)

finally show ‹norm ?t2 ≤ sqrt bj0 ∗ sqrt bi / N ›
by −

qed

have norm-t3 : ‹norm ?t3 ≤ sqrt bj0 ∗ sqrt bi / N ›

117

proof −
have aux: ‹I ′ = Some −‘ I =⇒ card (Some −‘ I) ≤ bi =⇒ card {y ∈ I . y ∈ range Some} ≤ bi›

by (smt (verit, ccfv-SIG) Collect-cong Int-iff card-image image-vimage-eq inf-set-def inj-Some
mem-Collect-eq)

have ∗: ‹norm (
∑

d∈Some ‘ I ′. β d ∗C ket (y0 + the d ′, d ′)) ≤ sqrt bi› for d ′ :: ‹ ′y option›
using - - βbound apply (rule bound-coeff-sum2)
using I ′-def bi aux by auto

have ‹norm ?t3 = inverse (real N) ∗ norm (
∑

d ′ ∈ Some ‘ (−J ′).
∑

d∈Some ‘ I ′.
β d ∗C ket (y0 + the d ′, d ′))›

apply (simp add: sum.reindex N-def)
apply (subst sum.swap) apply (subst (2) sum.swap) apply (subst sum.swap)
by (rule refl)

also have ‹. . . ≤ inverse (real N) ∗ (sqrt (card (Some ‘ (− J ′))) ∗ sqrt bi)›
apply (rule mult-left-mono)
using ∗ apply (rule norm-ortho-sum-bound)
by (auto simp add: cinner-sum-right cinner-sum-left)

also have ‹. . . ≤ inverse N ∗ (sqrt bj0 ∗ sqrt bi)›
by (simp add: mult-right-mono N-def)

also have ‹. . . ≤ sqrt bj0 ∗ sqrt bi / N ›
by (simp add: divide-inverse-commute)

finally show ‹norm ?t3 ≤ sqrt bj0 ∗ sqrt bi / N ›
by −

qed

have norm-t5 : ‹norm ?t5 ≤ of-bool (None∈I) ∗ sqrt bj0 / sqrt N ›
proof (cases ‹None∈I ›)

case True
have ∗: ‹norm (β None ∗C ket (y0 + the d ′, d ′)) ≤ sqrt (1 ::nat)› for d ′ :: ‹ ′y option›

using βNone by simp

have ‹norm ?t5 = inverse (sqrt N) ∗ norm (
∑

d ′ ∈ Some ‘ (−J ′).
β None ∗C ket (y0 + the d ′, d ′))›

by (simp add: sum.cartesian-product ′ sum.reindex)
also have ‹. . . ≤ inverse (sqrt N) ∗ (sqrt (card (Some ‘ (− J ′))))›

apply (rule mult-left-mono)
using ∗ apply (rule norm-ortho-sum-bound)
by (auto simp add: cinner-sum-right cinner-sum-left)

also have ‹. . . ≤ inverse (sqrt N) ∗ sqrt bj0›
by (simp add: mult-right-mono N-def)

also have ‹. . . ≤ of-bool (None∈I) ∗ sqrt bj0 / sqrt N ›
by (simp add: divide-inverse-commute True)

finally show ‹norm ?t5 ≤ of-bool (None∈I) ∗ sqrt bj0 / sqrt N ›
by −

next
case False
then show ?thesis by (simp add: βNone0)

qed

have norm-t6 : ‹norm ?t6 ≤ of-bool (None∈I) ∗ sqrt bj0 / N ›
proof (cases ‹None∈I ›)

case True
have ∗: ‹norm (β None ∗C ket y ′d ′) ≤ 1 › for y ′d ′ :: ‹ ′y × ′y option›

using βNone by simp

118

have ‹norm ?t6 = inverse (N ∗ sqrt N) ∗ norm (
∑

y ′d ′ ∈ (UNIV :: ′y set) × Some ‘ (−J ′). β None
∗C ket y ′d ′)›

by (simp add: sum.cartesian-product ′ sum.reindex)
also have ‹. . . ≤ inverse (N ∗ sqrt N) ∗ (sqrt N ∗ sqrt (card (Some ‘ (− J ′))))›

apply (rule mult-left-mono)
using ∗ apply (rule norm-ortho-sum-bound)
by (auto simp add: cinner-sum-right cinner-sum-left real-sqrt-mult N-def)

also have ‹. . . ≤ inverse (N ∗ sqrt N) ∗ (sqrt N ∗ sqrt bj0)›
by (simp add: N-def)

also have ‹. . . ≤ of-bool (None∈I) ∗ sqrt bj0 / N ›
by (simp add: divide-inverse-commute less-eq-real-def True N-def)

finally show ‹norm ?t6 ≤ of-bool (None∈I) ∗ sqrt bj0 / N ›
by −

next
case False
then show ?thesis by (simp add: βNone0)

qed

have norm-t7 : ‹norm ?t7 ≤ of-bool (None/∈J) / sqrt N ›
proof (cases ‹None∈J ›)

assume ‹None /∈ J ›

have ‹norm ?t7 = inverse (sqrt N) ∗ norm (
∑

d∈I ′. β (Some d) ∗C ket (y0 + d, None :: ′y option))›
using ‹None /∈ J › by simp

also have ‹. . . = inverse (sqrt N) ∗ norm (
∑

d∈Some ‘ I ′. β d ∗C ket (y0 + the d, None :: ′y
option))›

apply (subst sum.reindex)
by auto

also have ‹. . . ≤ inverse (sqrt N) ∗ (sqrt (real 1))›
proof −

have aux: ‹x ∈ I ′ =⇒ card {y. x = the y ∧ y ∈ Some ‘ I ′} ≤ Suc 0 › for x
by (smt (verit, del-insts) card-eq-Suc-0-ex1 dual-order .refl imageE imageI mem-Collect-eq op-

tion.sel)
show ?thesis

apply (rule mult-left-mono)
using - - βbound apply (rule bound-coeff-sum2)
using aux by auto

qed
also have ‹. . . = of-bool (None/∈J) / sqrt N ›

using ‹None /∈ J › inverse-eq-divide by auto
finally show ?thesis

by −
qed simp

have norm-t8 : ‹norm ?t8 ≤ of-bool (None/∈J) ∗ sqrt bi / N ›
proof (cases ‹None∈J ›)

assume ‹None /∈ J ›

have aux: ‹card (Some −‘ I) ≤ bi =⇒ card {y ∈ I . y ∈ range Some} ≤ bi›
by (smt (verit, ccfv-SIG) Collect-cong Int-iff card-image image-vimage-eq inf-set-def inj-Some

mem-Collect-eq)
have ∗: ‹norm (

∑
d∈Some ‘ I ′. β d ∗C ket (y ′, None :: ′y option)) ≤ sqrt (real bi)› for y ′ :: ′y

using - - βbound apply (rule bound-coeff-sum2)
using I ′-def bi aux by auto

119

have ‹norm ?t8 = inverse (N ∗ sqrt N) ∗ norm (
∑

y ′:: ′y∈UNIV .
∑

d∈Some ‘ I ′. β d ∗C ket (y ′,
None :: ′y option))›

apply (simp add: sum.reindex ‹None /∈ J › N-def)
apply (subst sum.swap) apply (subst (2) sum.swap) apply (subst sum.swap)
by (rule refl)

also have ‹. . . ≤ inverse (N ∗ sqrt N) ∗ (sqrt N ∗ sqrt (real bi))›
apply (rule mult-left-mono)
using ∗ apply (rule norm-ortho-sum-bound)
by (auto simp add: cinner-sum-right cinner-sum-left N-def)

also have ‹. . . = of-bool (None/∈J) ∗ sqrt bi / N ›
using ‹None /∈ J › inverse-eq-divide
by (simp add: divide-inverse-commute N-def)

finally show ?thesis
by −

qed simp

have norm-t9 : ‹norm ?t9 ≤ of-bool (None∈I ∧ None/∈J) / sqrt N ›
proof (cases ‹None∈I ∧ None/∈J ›)

case True

have ‹norm ?t9 = inverse N ∗ norm (
∑

y ′:: ′y∈UNIV . β None ∗C ket (y ′, None :: ′y option))›
by (simp add: sum.reindex True)

also have ‹. . . ≤ inverse N ∗ (sqrt N ∗ sqrt 1)›
apply (rule mult-left-mono)
apply (rule norm-ortho-sum-bound[where b ′=1])

using βNone by (auto simp: N-def)
also have ‹. . . = of-bool (None∈I ∧ None/∈J) / sqrt N ›

using True apply simp
by (metis divide-inverse-commute inverse-eq-divide of-nat-0-le-iff sqrt-divide-self-eq)

finally show ?thesis
by −

next
case False with βNone0
show ?thesis by auto

qed

have ‹norm (PJ ∗V ϕ) ≤ sqrt bj0 ∗ sqrt bi / (N ∗ sqrt N) + sqrt bj0 ∗ sqrt bi / N +
sqrt bj0 ∗ sqrt bi / N

+ of-bool (None∈I) ∗ sqrt bj0 / sqrt N + of-bool (None∈I)
∗ sqrt bj0 / N

+ of-bool (None/∈J) / sqrt N + of-bool (None/∈J) ∗ sqrt bi / N + of-bool
(None∈I ∧ None/∈J) / sqrt N ›

unfolding P0ϕ
apply (rule norm-triangle-le-diff norm-triangle-le, rule add-mono)+

apply (rule norm-t1)
apply (rule norm-t2)

apply (rule norm-t3)
apply (rule norm-t5)

apply (rule norm-t6)
apply (rule norm-t7)

apply (rule norm-t8)
apply (rule norm-t9)
by −

also have ‹. . . ≤ preserve-query1 ′-fixY-bound (None∈I) (None/∈J) bi bj0›
by (auto simp: preserve-query1 ′-fixY-bound-def mult.commute mult.left-commute)

120

also have ‹. . . ≤ ε›
by (simp add: ε)

finally show ‹norm (Proj (− ket-invariant (UNIV × J)) ∗V ϕ) ≤ ε›
unfolding PJ-def
apply (subst ket-invariant-compl[symmetric])
by simp

qed

The next bound is applicable for ket-invariants assume the output register to have a specific
value ket y0 (typically ket 0) before the query and require that after the query, the oracle register
is not None and the output register has the correct value given that oracle register content.
Notice that this invariant is only available for query1 ′, not for query1 !
definition ‹preserve-query1 ′-fixY-bound-output bi = 4 / sqrt N + 2 ∗ sqrt bi / N ›
lemma preserve-query1 ′-fixY-output:

assumes bi: ‹card (Some −‘ I) ≤ bi›
assumes ε: ‹ε ≥ preserve-query1 ′-fixY-bound-output bi›
shows ‹preserves-ket query1 ′ ({y0} × I) {(y0+d, Some d)| d. True} ε›

proof (rule preservesI ′)
show ‹ε ≥ 0 ›

using - ε apply (rule order .trans)
by (simp add: preserve-query1 ′-fixY-bound-output-def)

fix ψ :: ‹(′y × ′y option) ell2 ›
assume ψ: ‹ψ ∈ space-as-set (ket-invariant ({y0} × I))›
assume ‹norm ψ = 1 ›

define I ′ where ‹I ′ = Some −‘ I ›
then have ‹{y0} × I ⊆ {y0} × (Some ‘ I ′ ∪ {None})›

apply (rule-tac Sigma-mono)
by auto

with ψ have ψ ′: ‹ψ ∈ space-as-set (ket-invariant ({y0} × ((Some ‘ I ′ ∪ {None}))))›
using less-eq-ccsubspace.rep-eq ket-invariant-le by fastforce

define β where ‹β d = Rep-ell2 ψ (y0,d)› for d
then have β: ‹ψ = (

∑
d∈Some ‘ I ′ ∪ {None}. β d ∗C ket (y0,d))›

using ell2-sum-ket-ket-invariant[OF ψ ′]
by (auto simp: sum.cartesian-product ′)

have βbound: ‹(
∑

d∈(Some ‘ I ′ ∪ {None}). (cmod (β d))2) ≤ 1 › (is ‹?lhs ≤ 1 ›)
apply (subgoal-tac ‹(norm ψ)2 = ?lhs›)
apply (simp add: ‹norm ψ = 1 ›)

by (simp add: β pythagorean-theorem-sum del: sum.insert)
have βbound1 [simp]: ‹cmod (β x) ≤ 1 › for x

using norm-point-bound-ell2 [of ψ] ‹norm ψ = 1 › unfolding β-def by auto

have [simp]: ‹Some −‘ insert None X = Some −‘ X› for X :: ‹ ′z option set›
by auto

have [simp]: ‹Some −‘ Some ‘ X = X› for X :: ‹ ′z set›
by auto

have [simp]: ‹β yd ∗C a ∗C b = a ∗C β yd ∗C b› for yd a and b :: ‹ ′z::complex-vector›
by auto

have [simp]: ‹cmod α = inverse (sqrt N)› ‹cmod (α2) = inverse N › ‹cmod (α^3) = inverse (N ∗ sqrt
N)› ‹cmod (α^4) = inverse (N 2)›

by (auto simp: norm-mult numeral-3-eq-3 α-def inverse-eq-divide norm-divide norm-power power-one-over
power4-eq-xxxx power2-eq-square)

have [simp]: ‹card (Some ‘ I ′) ≤ bi›
by (metis I ′-def bi card-image inj-Some)

121

define ϕ and PJ :: ‹(′y ∗ ′y option) update› where
‹ϕ = query1 ′ ∗V ψ› and ‹PJ = Proj (ket-invariant (− {(y0+d, Some d)| d. True}))›

have aux: ‹∀ d. y 6= y0 + d =⇒ d 6= Some (y0 + y)› for d y
by (metis add.right-neutral y-cancel ordered-field-class.sign-simps(1))

then have [simp]: ‹PJ ∗V ket (y,d) = (if Some (y0 + y) = d then 0 else ket (y,d))› for y d
by (auto simp add: Proj-ket-invariant-ket PJ-def)

have P0ϕ: ‹PJ ∗V ϕ =
α ∗C (

∑
d∈I ′. β (Some d) ∗C ket (y0 + d, None))

− α^3 ∗C (
∑

d∈I ′.
∑

y∈UNIV . β (Some d) ∗C ket (y, None))
− α2 ∗C (

∑
d∈I ′.

∑
d ′∈UNIV . if d=d ′ then 0 else β (Some d) ∗C ket (y0 + d, Some d ′))

+ α^4 ∗C (
∑

d∈I ′.
∑

y∈UNIV .
∑

d ′∈UNIV . if y0+y=d ′ then 0 else β (Some d) ∗C ket (y, Some
d ′))
− α^3 ∗C (

∑
y∈UNIV .

∑
d ′∈UNIV . if y0+y=d ′ then 0 else β None ∗C ket (y, Some d ′))

+ α2 ∗C (
∑

y∈UNIV . β None ∗C ket (y, None))›
(is ‹- = ?t1 − ?t2 − ?t3 + ?t4 − ?t5 + ?t6 ›)

by (simp add: ϕ-def β query1 ′ option-sum-split vimage-Compl of-bool-def cblinfun.sum-right
cblinfun.add-right cblinfun.diff-right if-distrib Compl-eq-Diff-UNIV cblinfun.scaleC-right
vimage-singleton-inj sum-sum-if-eq sum.distrib scaleC-diff-right scaleC-sum-right
sum-subtractf case-prod-beta sum.cartesian-product ′ scaleC-add-right add-diff-eq
flip: sum.Sigma add.assoc scaleC-scaleC
cong del: option.case-cong if-cong)

have norm-t1 : ‹norm ?t1 ≤ 1 / sqrt N ›
proof −

have ‹norm ?t1 = inverse (sqrt N) ∗ norm (
∑

d∈Some ‘ I ′. β d ∗C ket (y0 + the d, None :: ′y
option))›

by (simp add: sum.reindex)
also have ‹. . . ≤ inverse (sqrt N) ∗ sqrt (1 ::nat)›
proof −

have aux: ‹x ∈ I ′ =⇒ card {y. x = the y ∧ y ∈ Some ‘ I ′} ≤ Suc 0 › for x
by (smt (verit, del-insts) card-eq-Suc-0-ex1 imageE imageI le-refl mem-Collect-eq option.sel)

show ?thesis
apply (rule mult-left-mono)
using - - βbound apply (rule bound-coeff-sum2)
using aux by auto

qed
also have ‹. . . = 1 / sqrt N ›

apply simp
using inverse-eq-divide by blast

finally show ‹norm ?t1 ≤ 1 / sqrt N ›
by −

qed

have norm-t2 : ‹norm ?t2 ≤ sqrt bi / N ›
proof −

have ∗: ‹norm (
∑

d∈Some ‘ I ′. β d ∗C ket (y, None :: ′y option)) ≤ sqrt bi› for y :: ′y
using - - βbound apply (rule bound-coeff-sum2)
by auto

have ‹norm ?t2 = inverse (N ∗ sqrt N) ∗ norm (
∑

y∈UNIV .
∑

d∈Some ‘ I ′. β d ∗C ket (y :: ′y,
None :: ′y option))›

apply (simp add: sum.cartesian-product ′ sum.reindex N-def)
apply (subst sum.swap)

122

by (rule refl)
also have ‹. . . ≤ inverse (N ∗ sqrt N) ∗ (sqrt (real N) ∗ sqrt (real bi))›

apply (rule mult-left-mono)
using ∗ apply (rule norm-ortho-sum-bound)
by (auto simp add: cinner-sum-right cinner-sum-left N-def)

also have ‹. . . = sqrt bi / N ›
by (simp add: divide-inverse-commute N-def)

finally show ?thesis
by auto

qed

have norm-t3 : ‹norm ?t3 ≤ 1 / sqrt N ›
proof −

have aux: ‹card {y. x = the y ∧ y ∈ Some ‘ (I ′ − {d ′})} ≤ Suc 0 › for x d ′
by (smt (verit, best) Collect-empty-eq bot-nat-0 .not-eq-extremum card.empty card-eq-Suc-0-ex1

imageE le-simps(3) mem-Collect-eq nat-le-linear option.sel)
have ∗: ‹norm (

∑
d∈Some ‘ (I ′ − {d ′}). β d ∗C ket (y0 + the d, Some d ′)) ≤ sqrt (1 ::nat)› for d ′

using - - βbound apply (rule bound-coeff-sum2)
using aux[of - d ′] by auto

have ‹norm ?t3 = inverse N ∗ norm (
∑

d ′∈UNIV .
∑

d∈Some ‘ (I ′−{d ′}). β d ∗C ket (y0 + the
d, Some d ′))›

apply (simp add: sum.cartesian-product ′ sum.reindex)
apply (subst sum.swap)
apply (simp add: sum-if-eq-else)
by −

also have ‹. . . ≤ inverse N ∗ sqrt N ›
apply (rule mult-left-mono)
using ∗ apply (rule norm-ortho-sum-bound)
by (auto simp add: cinner-sum-right cinner-sum-left N-def)

also have ‹. . . = 1 / sqrt N ›
by (simp add: inverse-eq-divide sqrt-divide-self-eq)

finally show ?thesis
by −

qed

have norm-t4 : ‹norm ?t4 ≤ sqrt (real bi) / N ›
proof −

have ∗: ‹norm (
∑

d∈Some ‘ I ′. if y0 + fst yd ′ = snd yd ′ then 0 else β d ∗C ket (fst yd ′, Some (snd
yd ′))) ≤ sqrt bi› for yd ′

apply (cases ‹y0 + fst yd ′ = snd yd ′›)
apply simp

apply simp
using - - βbound apply (rule bound-coeff-sum2)
by auto

note if-cong[cong del]

have ‹norm ?t4 = inverse (N 2) ∗ norm (
∑

yd ′∈UNIV .
∑

d∈Some ‘ I ′. if y0 + fst yd ′ = snd yd ′
then 0 else β d ∗C ket (fst yd ′, Some (snd yd ′)))›

apply (simp add: sum.cartesian-product ′ sum.reindex N-def flip: UNIV-Times-UNIV)
apply (subst (2) sum.swap) apply (subst sum.swap)
by (rule refl)

also have ‹. . . ≤ inverse (N 2) ∗ (real N ∗ sqrt (real bi))›
apply (rule mult-left-mono)

123

using ∗ apply (rule norm-ortho-sum-bound)
by (auto simp add: cinner-sum-right cinner-sum-left cinner-ket N-def

if-distrib[where f =‹λx. cinner - x›] if-distrib[where f =‹λx. cinner x -›])
also have ‹. . . ≤ sqrt (real bi) / N ›
by (metis divide-inverse-commute dual-order .refl of-nat-mult power2-eq-square real-divide-square-eq)
finally show ?thesis

by −
qed

have norm-t5 : ‹norm ?t5 ≤ 1 / sqrt N ›
proof −

have ‹norm ?t5 = inverse (N ∗ sqrt N) ∗ norm (
∑

yd∈UNIV . if y0 + fst yd = snd yd then 0 else
β None ∗C ket (fst yd, Some (snd yd)))›

by (simp add: sum.cartesian-product ′ sum.reindex flip: UNIV-Times-UNIV cong del: if-cong)
also have ‹. . . ≤ inverse (N ∗ sqrt N) ∗ N ›

apply (rule mult-left-mono)
apply (rule norm-ortho-sum-bound[where b ′=1])

by (auto simp: N-def)
also have ‹. . . = 1 / sqrt N ›

by (simp add: divide-inverse-commute N-def)
finally show ?thesis

by −
qed

have norm-t6 : ‹norm ?t6 ≤ 1 / sqrt N ›
proof −

have ‹norm ?t6 = inverse N ∗ norm (
∑

y∈UNIV . β None ∗C ket (y :: ′y, None :: ′y option))›
by simp

also have ‹. . . ≤ inverse N ∗ sqrt N ›
apply (rule mult-left-mono)
apply (rule norm-ortho-sum-bound[where b ′=1])

by (auto simp: N-def)
also have ‹. . . = 1 / sqrt N ›

by (simp add: inverse-eq-divide sqrt-divide-self-eq)
finally show ?thesis

by −
qed

have ‹norm (PJ ∗V ϕ) ≤ 1 / sqrt N + sqrt bi / N + 1 / sqrt N
+ sqrt (real bi) / N + 1 / sqrt N + 1 / sqrt N ›

unfolding P0ϕ
apply (rule norm-triangle-le-diff norm-triangle-le, rule add-mono)+

apply (rule norm-t1)
apply (rule norm-t2)

apply (rule norm-t3)
apply (rule norm-t4)

apply (rule norm-t5)
apply (rule norm-t6)
by −

also have ‹. . . ≤ preserve-query1 ′-fixY-bound-output bi›
by (auto simp: preserve-query1 ′-fixY-bound-output-def mult.commute mult.left-commute)

also have ‹. . . ≤ ε›
by (simp add: ε)

finally show ‹norm (Proj (− ket-invariant {(y0 + d, Some d) |d. True}) ∗V ϕ) ≤ ε›
unfolding PJ-def

124

apply (subst ket-invariant-compl[symmetric])
by simp

qed

A simpler to understand (and sometimes simpler to use) special case of preserve-query1 ′-fixY-output
in terms of query ′ and ket-invariants.
lemma (in compressed-oracle) preserves-ket-query ′-output-simple:

‹preserves-ket query ′ {(x, y, D). y = 0} {(x, y, D). D x = Some y} (6 / sqrt N)›
proof −

define K :: ‹ ′x ⇒ (′x × ′y × (′x ⇒ ′y option)) ell2 ccsubspace› where ‹K x = lift-invariant reg-1-3
(ket-invariant {x})› for x

show ?thesis
proof (rule inv-split-reg-query ′[where X=‹reg-1-3 › and Y =‹reg-2-3 › and H=‹reg-3-3 › and K=K

and ?I1 .0=‹λ-. ket-invariant ({0} × UNIV)› and ?J1 .0=‹λ-. ket-invariant {(0+d, Some d)|
d. True}›])

show ‹query ′ = (reg-1-3 ;(reg-2-3 ;reg-3-3)) query ′›
by (auto simp add: pair-Fst-Snd reg-1-3-def reg-2-3-def reg-3-3-def)

show ‹compatible reg-1-3 reg-2-3 › ‹compatible reg-1-3 reg-3-3 › ‹compatible reg-2-3 reg-3-3 ›
by simp-all

show ‹compatible-register-invariant reg-2-3 (K x)› for x
by (auto intro!: compatible-register-invariant-compatible-register simp add: K-def)

show ‹compatible-register-invariant (reg-3-3 o function-at x) (K x)› for x
by (auto intro!: compatible-register-invariant-compatible-register simp add: K-def)

show ‹ket-invariant {(x, y, D). y = 0}
≤ (SUP x. K x u lift-invariant (reg-2-3 ;reg-3-3 ◦ function-at x) (ket-invariant ({0} × UNIV)))›

apply (simp add: K-def lift-Fst-ket-inv reg-1-3-def reg-2-3-def ket-invariant-inter ket-invariant-SUP[symmetric]
lift-inv-prod ′ lift-invariant-comp lift-invariant-function-at-ket-inv reg-3-3-def lift-Snd-ket-inv

case-prod-unfold)
by force

show ‹K x u lift-invariant (reg-2-3 ;reg-3-3 ◦ function-at x) (ket-invariant {(0+d, Some d)| d. True})
≤ ket-invariant {(x, y, D). D x = Some y}› for x

apply (simp add: K-def lift-Fst-ket-inv reg-1-3-def reg-2-3-def ket-invariant-inter ket-invariant-SUP[symmetric]
lift-inv-prod ′ lift-invariant-comp lift-invariant-function-at-ket-inv reg-3-3-def lift-Snd-ket-inv
case-prod-unfold)

by fastforce
show ‹orthogonal-spaces (K x) (K x ′)› if ‹x 6= x ′› for x x ′

using that by (auto simp add: K-def orthogonal-spaces-lift-invariant)
show ‹preserves-ket query1 ′ ({0} × UNIV) {(0+d, Some d)| d. True} (6 / sqrt N)›

apply (rule preserve-query1 ′-fixY-output[where bi=N])
by (auto intro!: simp: preserve-query1 ′-fixY-bound-output-def simp flip: N-def)

show ‹K x ≤ lift-invariant reg-1-3 (ket-invariant {x})› for x
by (simp add: K-def)

show ‹6 / sqrt N ≥ 0 ›
by simp

qed simp
qed

A strengthened form of preserves-ket-query ′-output-simple that additionally maintains a prop-
erty P on the already existing oracle register (that can depend also on some auxiliary register
and on the query input register).
This comes with the condition on P that when P accepts some oracle function that is undefined
at the query input x, then it needs to accept the updated oracle function with any output at
x. And if P doesn’t accept the oracle function to be undefined at x, then it must accept either
only a small amount of outputs or all but a small amount of outputs for x.

125

lemma (in compressed-oracle) preserves-ket-query ′-output:
fixes F :: ‹(′x× ′y×(′x⇀ ′y)) update ⇒ ′mem update›

and P :: ‹ ′w::finite ⇒ ′x ⇒ (′x⇀ ′y) ⇒ bool›
and b :: nat

assumes [register]: ‹register G›
assumes ‹F = G o Snd›
assumes PNone: ‹

∧
w x D. P w x (D(x:=None)) =⇒ P w x D›

assumes PSome: ‹
∧

w x D. D x = None =⇒ ¬ P w x D =⇒ let c = card {y. P w x (D(x:=Some y))}
in c∗(N−c) ≤ b›

shows ‹preserves (F query ′) (lift-invariant G (ket-invariant {(w, x, y, D). y = 0 ∧ P w x D}))
(lift-invariant G (ket-invariant {(w, x, y, D). D x = Some y ∧ P w x D}))
(9 / sqrt N + 2 ∗ sqrt b / N)›

proof −
define K :: ‹ ′w× ′x×(′x⇀ ′y) ⇒ ′mem ell2 ccsubspace› where

‹K = (λ(w,x,D). lift-invariant G (ket-invariant {(w, x, y, D ′) | y D ′. D ′(x:=None) = D}))›
define M :: ‹(′w× ′x×(′x⇀ ′y)) set› where

‹M = {(w,x,D). D x = None}›
define I1 :: ‹ ′w× ′x×(′x⇀ ′y) ⇒ (′y × ′y option) ell2 ccsubspace› where

‹I1 = (λ(w,x,D). ket-invariant {(0 , y) | y. P w x (D(x:=y))})›
define J1 :: ‹ ′w× ′x×(′x⇀ ′y) ⇒ (′y × ′y option) ell2 ccsubspace› where

‹J1 = (λ(w,x,D). ket-invariant {(y, Some y) | y. P w x (D(x:=Some y))})›

show ?thesis
proof (rule inv-split-reg-query ′[where X=‹G o Snd o reg-1-3 › and Y =‹G o Snd o reg-2-3 › and

H=‹G o Snd o reg-3-3 ›
and K=K and ?I1 .0=I1 and ?J1 .0=J1 and M=M])

show ‹F query ′ = (G ◦ Snd ◦ reg-1-3 ;(G ◦ Snd ◦ reg-2-3 ;G ◦ Snd ◦ reg-3-3)) query ′›
unfolding reg-1-3-def reg-2-3-def reg-3-3-def assms
by (simp flip: comp-assoc)

show ‹compatible (G ◦ Snd ◦ reg-1-3) (G ◦ Snd ◦ reg-2-3)› ‹compatible (G ◦ Snd ◦ reg-1-3) (G ◦
Snd ◦ reg-3-3)› ‹compatible (G ◦ Snd ◦ reg-2-3) (G ◦ Snd ◦ reg-3-3)›

by simp-all
show ‹compatible-register-invariant (G ◦ Snd ◦ reg-2-3) (K wxD)› if ‹wxD ∈ M › for wxD

by (auto intro!: compatible-register-invariant-Snd-comp compatible-register-invariant-Fst
simp add: K-def assms compatible-register-invariant-chain reg-2-3-def

comp-assoc M-def split!: prod.split)
show ‹compatible-register-invariant ((G ◦ Snd o reg-3-3) o function-at (let (w,x,D) = wxD in x))

(K wxD)› if ‹wxD ∈ M › for wxD
by (auto intro!: compatible-register-invariant-Snd-comp compatible-register-invariant-function-at

simp add: K-def compatible-register-invariant-chain comp-assoc reg-3-3-def
split!: prod.split)

show ‹lift-invariant G (ket-invariant {(w, x, y, D). y = 0 ∧ P w x D})
≤ (

⊔
wxD∈M . K wxD u lift-invariant (G ◦ Snd ◦ reg-2-3 ;G ◦ Snd ◦ reg-3-3 ◦ function-at (let

(w, x, D) = wxD in x)) (I1 wxD))›
by (auto intro!: lift-invariant-mono
simp add: K-def M-def lift-Fst-ket-inv reg-1-3-def reg-2-3-def ket-invariant-inter ket-invariant-SUP[symmetric]

register-comp-pair
comp-assoc I1-def

lift-inv-prod ′ lift-invariant-comp lift-invariant-function-at-ket-inv reg-3-3-def lift-Snd-ket-inv
case-prod-unfold

simp flip: lift-invariant-inf lift-invariant-SUP
split!: prod.split)

have aux: ‹D ′(fst (snd wxD) := None) = snd (snd wxD) =⇒
D ′ (fst (snd wxD)) = Some ya =⇒
P (fst wxD) (fst (snd wxD)) ((snd (snd wxD))(fst (snd wxD) 7→ ya)) =⇒

126

P (fst wxD) (fst (snd wxD)) D ′› for wxD D ′ ya
by (metis fun-upd-triv fun-upd-upd)

show ‹K wxD u lift-invariant (G ◦ Snd ◦ reg-2-3 ;G ◦ Snd ◦ reg-3-3 ◦ function-at (let (w, x, D) =
wxD in x)) (J1 wxD)

≤ lift-invariant G (ket-invariant {(w, x, y, D). D x = Some y ∧ P w x D})› if ‹wxD ∈ M › for
wxD

using that
by (auto intro!: aux lift-invariant-mono
simp add: K-def J1-def lift-Fst-ket-inv reg-1-3-def reg-2-3-def ket-invariant-inter ket-invariant-SUP[symmetric]

lift-inv-prod ′ Times-Int-Times lift-invariant-function-at-ket-inv reg-3-3-def lift-Snd-ket-inv
lift-invariant-comp register-comp-pair lift-Snd-inv
comp-assoc case-prod-unfold ket-invariant-tensor
simp flip: lift-invariant-inf ket-invariant-SUP ket-invariant-UNIV
split!: prod.split)

show ‹orthogonal-spaces (K wxD) (K wxD ′)› if ‹wxD ∈ M › and ‹wxD ′ ∈ M › and ‹wxD 6= wxD ′›
for wxD wxD ′

using that
by (auto simp add: K-def orthogonal-spaces-lift-invariant M-def split!: prod.split)

show ‹preserves query1 ′ (I1 wxD) (J1 wxD) (9 / sqrt N + 2 ∗ sqrt b / N)› if ‹wxD ∈ M › for wxD
proof −

obtain w x D where wxD[simp]: ‹wxD = (w,x,D)›
by (simp add: prod-eq-iff)

from that
have Dx: ‹D x = None›

by (simp add: M-def)
have I1 : ‹I1 (w,x,D) = ket-invariant ({0} × {y. P w x (D(x := y))})›

by (auto simp add: I1-def)
have presY : ‹preserves query1 ′ (I1 wxD) (ket-invariant {(0+d, Some d)| d. True}) (6 / sqrt (real

N))›
apply (simp only: wxD I1)
apply (rule preserve-query1 ′-fixY-output[where bi=N])
apply (simp add: N-def card-mono)

using sqrt-divide-self-eq
by (simp add: preserve-query1 ′-fixY-bound-output-def divide-inverse flip: N-def)

have presP1 : ‹preserves query1 ′ (I1 wxD) (ket-invariant (UNIV × {y. P w x (D(x := y))})) (3 /
sqrt N + 2 ∗ sqrt b / N)›

if ‹¬ P w x D›
proof −

from that Dx PNone have NoneI : ‹(None ∈ {y. P w x (D(x := y))}) = False›
by auto

from that Dx PNone have NoneJ : ‹(None /∈ {y. P w x (D(x := y))}) = True›
by auto

define bi where ‹bi = card (Some −‘ {y. P w x (D(x := y))})›
define bj0 where ‹bj0 = card (− Some −‘ {y. P w x (D(x := y))})›
have ‹sqrt bj0 ∗ sqrt bi / (N ∗ sqrt N) + 2 ∗ sqrt bj0 ∗ sqrt bi / N + 1 / sqrt N + sqrt bi / N

≤ 3 / sqrt N + 2 ∗ sqrt b / N ›
proof −

have ‹bj0 = N − bi›
by (simp add: N-def bi-def bj0-def card-complement)

then have ‹bi ∗ bj0 ≤ b›
using PSome[of D x w] that
by (auto intro!: simp: bi-def Let-def Dx)

have ‹bi ≤ N ›
apply (simp add: bi-def)
by (metis N-def card-complement diff-le-self double-complement)

127

have bbN : ‹sqrt bj0 ∗ sqrt bi ≤ N ›
using ‹bi ≤ N › ‹bj0 = N − bi›
by (smt (verit, best) Extra-Ordered-Fields.sign-simps(5) of-nat-0-le-iff of-nat-diff

ordered-comm-semiring-class.comm-mult-left-mono real-sqrt-ge-0-iff sqrt-sqrt)
have bbb: ‹sqrt bj0 ∗ sqrt bi ≤ sqrt b›

using ‹bi ∗ bj0 ≤ b›
by (smt (verit) Num.of-nat-simps(5) cross3-simps(11) of-nat-mono real-sqrt-le-iff real-sqrt-mult)
have sqrtNN : ‹sqrt N / N = 1 / sqrt N ›

by (metis div-by-1 inverse-divide of-nat-0-le-iff real-div-sqrt)
have ‹sqrt bj0 ∗ sqrt bi / (N ∗ sqrt N) + 2 ∗ sqrt bj0 ∗ sqrt bi / N + 1 / sqrt N + sqrt bi / N
≤ N / (N ∗ sqrt N) + 2 ∗ sqrt b / N + 1 / sqrt N + sqrt N / N ›

apply (intro add-mono divide-right-mono)
by (auto intro!: ‹bi ≤ N › bbN bbb)

also have ‹. . . = 3 / sqrt N + 2 ∗ sqrt b / N ›
by (simp add: nonzero-divide-mult-cancel-left sqrtNN)

finally show ?thesis
by −

qed
then show ?thesis

apply (simp only: wxD I1)
apply (rule preserve-query1 ′-fixY [where bi=bi and bj0=bj0])
unfolding NoneI
by (simp-all add: bi-def bj0-def preserve-query1 ′-fixY-bound-def)

qed
have presP2 : ‹preserves query1 ′ (I1 wxD) (ket-invariant (UNIV × {y. P w x (D(x := y))})) (3 /

sqrt N + 2 ∗ sqrt b / N)›
if ‹P w x D›
apply (rewrite at ‹{y. P w x (D(x := y))}› to UNIV DEADID.rel-mono-strong)
using that PNone Dx apply (metis UNIV-eq-I array-rules(5) fun-upd-triv mem-Collect-eq)
by auto

from presP1 presP2
have presP: ‹preserves query1 ′ (I1 wxD) (ket-invariant (UNIV × {y. P w x (D(x := y))})) (3 /

sqrt N + 2 ∗ sqrt b / N)›
by auto

from preserves-intersect[OF - presY presP]
have ‹preserves query1 ′ (I1 wxD) (ket-invariant {(0 + d, Some d) |d. True} u ket-invariant (UNIV

× {y. P w x (D(x := y))}))
((6 / sqrt N) + (3 / sqrt N + 2 ∗ sqrt b / N))›

by auto
then show ?thesis

apply (rule arg-cong4 [where f =preserves, THEN iffD1 , rotated −1])
by (auto intro!: simp: ket-invariant-inter J1-def)

qed
show ‹K wxD ≤ lift-invariant (G ◦ Snd ◦ reg-1-3) (ket-invariant {let (w, x, D) = wxD in x})› for

wxD
by (auto intro!: lift-invariant-mono

simp add: K-def lift-invariant-comp reg-1-3-def lift-Fst-ket-inv lift-Snd-ket-inv
split!: prod.split)

show ‹9 / sqrt N + 2 ∗ sqrt b / N ≥ 0 ›
by simp

show ‹finite M ›
by simp

qed
qed

This is an example of how preserves-ket-query ′-output is used to deal with more complex query

128

sequences. It is also useful in its own right (we use it in Collision.thy).
It shows that if we make two queries, then the oracle function contains the outputs of both
queries. (In contrast, preserves-ket-query ′-output-simple shows this only for a single query.)
lemma dist-inv-double-query ′:

fixes X1 X2 Y1 Y2 H and state1 :: ‹ ′mem ell2 ›
defines ‹state2 ≡ (X1 ;(Y1 ;H)) query ′ ∗V state1 ›
defines ‹state3 ≡ (X2 ;(Y2 ;H)) query ′ ∗V state2 ›
assumes [register]: ‹mutually compatible (X1 ,X2 ,Y1 ,Y2 ,H)›
assumes [iff]: ‹norm state1 ≤ 1 ›
assumes dist1 : ‹dist-inv ((X1 ;X2);((Y1 ;Y2);H)) (ket-invariant {((x1 ,x2),(y1 ,y2),D). y1 = 0 ∧ y2

= 0}) state1 ≤ ε›
shows ‹dist-inv ((X1 ;X2);((Y1 ;Y2);H)) (ket-invariant {((x1 ,x2),(y1 ,y2),D). D x1 = Some y1 ∧ D

x2 = Some y2}) state3 ≤ ε + 20 / sqrt N ›
proof −

have [iff]: ‹norm state2 ≤ 1 ›
by (auto intro!: norm-cblinfun-apply-leq1I simp add: state2-def register-norm)

have bound: ‹let c = card {y2 . (x ′ = x2 −→ y2 = y ′) ∧ x ′ = x2} in c ∗ (N − c) ≤ N › for x ′ x2 y ′
by (cases ‹x ′ = x2 ›, auto)

from dist1 have ‹dist-inv ((X2 ; Y2); (X1 ;(Y1 ;H)))
(ket-invariant {(x2y2 ,(x1 ,y1 ,D)). y1 = 0 ∧ snd x2y2 = 0}) state1 ≤ ε›

apply (rule le-back-subst)
apply (rule dist-inv-register-rewrite, simp, simp)
apply (rewrite at ‹((X2 ;Y2);(X1 ;(Y1 ;H)))› to ‹((X1 ;X2);((Y1 ;Y2);H)) o ((reg-1-3 o Snd; reg-2-3

o Snd); (reg-1-3 o Fst; (reg-2-3 o Fst; reg-3-3)))› DEADID.rel-mono-strong)
apply (simp add: register-pair-Snd register-pair-Fst flip: register-comp-pair comp-assoc)

apply (subst lift-invariant-comp, simp)
apply simp

by (auto intro!: simp: lift-inv-prod ′ reg-1-3-def reg-3-3-def reg-2-3-def lift-invariant-comp lift-Snd-ket-inv
lift-Fst-ket-inv

ket-invariant-inter case-prod-unfold
simp flip: ket-invariant-SUP)

then have ‹dist-inv ((X2 ; Y2); (X1 ;(Y1 ;H)))
(ket-invariant {(x2y2 ,(x1 ,y1 ,D)). D x1 = Some y1 ∧ snd x2y2 = 0}) state2 ≤ ε + 9 /

sqrt (real N)›
unfolding state2-def
apply (rule dist-inv-preservesI)

apply (rule preserves-ket-query ′-output[where b=0])
by (auto intro!: simp: register-pair-Snd register-norm simp del: o-apply)

then have ‹dist-inv ((X1 ; Y1); (X2 ;(Y2 ;H)))
(ket-invariant {(x1y1 ,(x2 ,y2 ,D)). y2 = 0 ∧ D (fst x1y1) = Some (snd x1y1)}) state2

≤ ε + 9 / sqrt (real N)›
apply (rule le-back-subst)
apply (rule dist-inv-register-rewrite, simp, simp)
apply (rewrite at ‹((X1 ; Y1); (X2 ;(Y2 ;H)))› to ‹((X2 ; Y2); (X1 ;(Y1 ;H))) o ((Snd o reg-1-3 ; Snd

o reg-2-3); (Fst o Fst; (Fst o Snd; Snd o reg-3-3)))› DEADID.rel-mono-strong)
apply (simp add: register-pair-Snd register-pair-Fst flip: register-comp-pair comp-assoc)

apply (subst lift-invariant-comp, simp)
apply simp

by (auto intro!: simp: lift-inv-prod ′ reg-1-3-def reg-3-3-def reg-2-3-def lift-invariant-comp lift-Snd-ket-inv
lift-Fst-ket-inv

ket-invariant-inter case-prod-unfold
simp flip: ket-invariant-SUP)

then have ‹dist-inv ((X1 ; Y1); (X2 ;(Y2 ;H)))
(ket-invariant {(x1y1 ,(x2 ,y2 ,D)). D x2 = Some y2 ∧ D (fst x1y1) = Some (snd x1y1)})

state3 ≤ ε + 20 / sqrt N ›

129

unfolding state3-def
apply (rule dist-inv-preservesI)

apply (rule preserves-ket-query ′-output[where b=N])
by (auto intro!: bound simp: register-pair-Snd register-norm simp del: o-apply split!: if-split-asm)

then show ‹dist-inv ((X1 ;X2);((Y1 ;Y2);H)) (ket-invariant {((x1 ,x2),(y1 ,y2),D). D x1 = Some y1
∧ D x2 = Some y2}) state3 ≤ ε + 20 / sqrt N ›

apply (rule le-back-subst)
apply (rule dist-inv-register-rewrite, simp, simp)
apply (rewrite at ‹((X1 ; Y1); (X2 ;(Y2 ;H)))› to ‹((X1 ;X2);((Y1 ;Y2);H)) o ((reg-1-3 o Fst; reg-2-3

o Fst); (reg-1-3 o Snd; (reg-2-3 o Snd; reg-3-3)))› DEADID.rel-mono-strong)
apply (simp add: register-pair-Snd register-pair-Fst flip: register-comp-pair comp-assoc)

apply (subst lift-invariant-comp, simp)
apply simp

by (auto intro!: simp: lift-inv-prod ′ reg-1-3-def reg-3-3-def reg-2-3-def lift-invariant-comp lift-Snd-ket-inv
lift-Fst-ket-inv

ket-invariant-inter case-prod-unfold
simp flip: ket-invariant-SUP)

qed

The next bound is applicable for ket-invariants assume the output register to have a value ket
d that matches what is in the output register before the query and require that after the query,
the oracle register is not None and the output register has the correct value given that oracle
register content. (I.e., before an uncomputation step.)
Notice that this invariant is only available for query1 ′, not for query1 !
definition ‹preserve-query1 ′-uncompute-bound NoneJ bi bj0 =

of-bool NoneJ ∗ sqrt bi / sqrt N + of-bool NoneJ ∗ sqrt bi / N
+ sqrt bj0 / N + sqrt bi ∗ sqrt bj0 / N + sqrt bi ∗ sqrt bj0 / (N ∗ sqrt N)›

lemma preserve-query1 ′-uncompute:
assumes IJ : ‹I ⊆ J ›
assumes bi: ‹card (Some −‘ I) ≤ bi›
assumes bj0: ‹card (− Some −‘ J) ≤ bj0›
assumes ε: ‹ε ≥ preserve-query1 ′-uncompute-bound (None/∈J) bi bj0›
shows ‹preserves-ket query1 ′ ((UNIV × I) ∩ {(d, Some d)| d. True}) (UNIV × J) ε›

proof (rule preservesI ′)
show ‹ε ≥ 0 ›

using - ε apply (rule order .trans)
by (simp add: preserve-query1 ′-uncompute-bound-def)

fix ψ :: ‹(′y × ′y option) ell2 ›
assume ψ: ‹ψ ∈ space-as-set (ket-invariant ((UNIV × I) ∩ {(d, Some d)| d. True}))›
assume ‹norm ψ = 1 ›

define I ′ J ′ where ‹I ′ = Some −‘ I › and ‹J ′ = Some −‘ J ›
then have ‹((UNIV × I) ∩ {(d, Some d)| d. True}) = (λd. (d, Some d)) ‘ I ′›

by auto
with ψ have ψ ′: ‹ψ ∈ space-as-set (ket-invariant ((λd. (d, Some d)) ‘ I ′))›

by fastforce
have [simp]: ‹I ′ ⊆ J ′›

using I ′-def J ′-def IJ by blast
have card-minus-J ′: ‹card (− J ′) ≤ bj0›

using J ′-def bj0 by force

define β where ‹β d = Rep-ell2 ψ (d, Some d)› for d
have β: ‹ψ = (

∑
d∈I ′. β d ∗C ket (d, Some d))›

using ell2-sum-ket-ket-invariant[OF ψ ′]
apply (subst (asm) infsum-reindex)

130

apply (simp add: inj-on-convol-ident)
by (auto simp: β-def)

have βbound: ‹(
∑

d∈I ′. (cmod (β d))2) ≤ 1 › (is ‹?lhs ≤ 1 ›)
apply (subgoal-tac ‹(norm ψ)2 = ?lhs›)
apply (simp add: ‹norm ψ = 1 ›)

by (simp add: β pythagorean-theorem-sum del: sum.insert)

have [simp]: ‹Some x ∈ J ←→ x ∈ J ′› for x
by (simp add: J ′-def)

have [simp]: ‹x ∈ I ′ =⇒ x ∈ J ′› for x
using ‹I ′ ⊆ J ′› by blast

have [simp]: ‹(
∑

x∈X . if x /∈ Y then f x else 0) = (
∑

x∈X−Y . f x)› if ‹finite X› for f :: ‹ ′y ⇒
′z::ab-group-add› and X Y

apply (rule sum.mono-neutral-cong-right)
using that by auto

have [simp]: ‹β yd ∗C a ∗C b = a ∗C β yd ∗C b› for yd a and b :: ‹ ′z::complex-vector›
by auto

have [simp]: ‹cmod α = inverse (sqrt N)› ‹cmod (α2) = inverse N › ‹cmod (α^3) = inverse (N ∗ sqrt
N)› ‹cmod (α^4) = inverse (N 2)›

by (auto simp: norm-mult numeral-3-eq-3 α-def inverse-eq-divide norm-divide norm-power power-one-over
power2-eq-square power4-eq-xxxx)

have [simp]: ‹card I ′ ≤ bi›
by (metis I ′-def bi)

define ϕ and PJ :: ‹(′y ∗ ′y option) update› where
‹ϕ = query1 ′ ∗V ψ› and ‹PJ = Proj (ket-invariant (UNIV × −J))›

have [simp]: ‹PJ ∗V ket (x,y) = (if y∈−J then ket (x,y) else 0)› for x y
by (simp add: Proj-ket-invariant-ket PJ-def)

have P0ϕ: ‹PJ ∗V ϕ =
(of-bool (None/∈J) ∗ α) ∗C (

∑
d∈I ′. β d ∗C ket (0 , None))

− (of-bool (None/∈J) ∗ α^3) ∗C (
∑

d∈I ′.
∑

y∈UNIV . β d ∗C ket (y, None))
− α2 ∗C (

∑
d∈I ′.

∑
d ′∈−J ′. β d ∗C ket (d + d ′, Some d ′))

− α2 ∗C (
∑

d∈I ′.
∑

d ′∈−J ′. β d ∗C ket (0 , Some d ′))
+ α^4 ∗C (

∑
d∈I ′.

∑
y∈UNIV .

∑
d ′′∈−J ′. β d ∗C ket (y, Some d ′′))

›
(is ‹- = ?t1 − ?t2 − ?t3 − ?t4 + ?t5 ›)
by (simp add: ϕ-def β query1 ′ option-sum-split vimage-Compl

cblinfun.add-right cblinfun.diff-right if-distrib Compl-eq-Diff-UNIV
vimage-singleton-inj sum-sum-if-eq sum.distrib scaleC-diff-right scaleC-sum-right
sum-subtractf case-prod-beta sum.cartesian-product ′ scaleC-add-right add-diff-eq
cblinfun.scaleC-right cblinfun.sum-right
flip: sum.Sigma add.assoc scaleC-scaleC
cong del: option.case-cong if-cong)

have norm-t1 : ‹norm ?t1 ≤ of-bool (None/∈J) ∗ sqrt bi / sqrt N ›
proof (cases ‹None ∈ J ›)

case True
then show ?thesis

by simp
next

case False
then have ‹norm ?t1 = inverse (sqrt N) ∗ norm (

∑
d∈I ′. β d ∗C ket (0 :: ′y, None :: ′y option))›

by simp
also have ‹. . . ≤ inverse (sqrt N) ∗ sqrt bi›

apply (rule mult-left-mono)

131

using - - βbound apply (rule bound-coeff-sum2)
by auto

also have ‹. . . = of-bool (None/∈J) ∗ sqrt bi / sqrt N ›
using False by (simp add: divide-inverse-commute)

finally show ?thesis
by −

qed

have norm-t2 : ‹norm ?t2 ≤ of-bool (None/∈J) ∗ sqrt bi / N ›
proof (cases ‹None ∈ J ›)

case True
then show ?thesis

by simp
next

case False
have ∗: ‹norm (

∑
d∈I ′. β d ∗C ket (y, None :: ′y option)) ≤ sqrt bi› for y :: ′y

using - - βbound apply (rule bound-coeff-sum2)
by auto

have ‹norm ?t2 = inverse (N ∗ sqrt N) ∗ norm (
∑

y∈UNIV .
∑

d∈I ′. β d ∗C ket (y :: ′y, None ::
′y option))›

apply (subst sum.swap) by (simp add: False)
also have ‹. . . ≤ inverse (N ∗ sqrt N) ∗ (sqrt (real N) ∗ sqrt (real bi))›

apply (rule mult-left-mono)
using ∗ apply (rule norm-ortho-sum-bound)
by (auto simp add: cinner-sum-right cinner-sum-left N-def)

also have ‹. . . = of-bool (None/∈J) ∗ sqrt bi / N ›
using False by (simp add: divide-inverse-commute N-def)

finally show ?thesis
by −

qed

have norm-t3 : ‹norm ?t3 ≤ sqrt bj0 / N ›
proof −

have ∗: ‹norm (
∑

d∈I ′. β d ∗C ket (d + d ′, Some d ′)) ≤ sqrt (1 ::nat)› for d ′ :: ′y
using - - βbound apply (rule bound-coeff-sum2)
by (auto simp add: card-le-Suc0-iff-eq)

have ‹norm ?t3 = inverse N ∗ norm (
∑

d ′∈− J ′.
∑

d∈I ′. β d ∗C ket (d + d ′, Some d ′))›
apply (subst sum.swap) by simp

also have ‹. . . ≤ inverse N ∗ sqrt bj0›
apply (rule mult-left-mono)
using ∗ apply (rule norm-ortho-sum-bound)
using card-minus-J ′ by (auto simp add: cinner-sum-right cinner-sum-left)

also have ‹. . . = sqrt bj0 / N ›
by (simp add: divide-inverse-commute)

finally show ?thesis
by −

qed

have norm-t4 : ‹norm ?t4 ≤ sqrt bi ∗ sqrt bj0 / N ›
proof −

have ∗: ‹norm (
∑

d∈I ′. β d ∗C ket (0 , Some d ′)) ≤ sqrt bi› for d ′ :: ′y
using - - βbound apply (rule bound-coeff-sum2)
by auto

132

have ‹norm ?t4 = inverse N ∗ norm (
∑

d ′∈− J ′.
∑

d∈I ′. β d ∗C ket (0 :: ′y, Some d ′ :: ′y option))›
apply (subst sum.swap) by simp

also have ‹. . . ≤ inverse N ∗ (sqrt bj0 ∗ sqrt bi)›
apply (rule mult-left-mono)
using ∗ apply (rule norm-ortho-sum-bound)
by (auto intro!: card-minus-J ′ mult-right-mono simp add: cinner-sum-right cinner-sum-left)

also have ‹. . . = sqrt bi ∗ sqrt bj0 / N ›
by (simp add: divide-inverse-commute)

finally show ?thesis
by −

qed

have norm-t5 : ‹norm ?t5 ≤ sqrt bi ∗ sqrt bj0 / (N ∗ sqrt N)›
proof −

have ∗: ‹norm (
∑

d∈I ′. β d ∗C ket (fst yd ′′, Some (snd yd ′′))) ≤ sqrt bi› for yd ′′ :: ‹ ′y × ′y›
using - - βbound apply (rule bound-coeff-sum2)
by auto

have ‹norm ?t5 = inverse (N 2) ∗ norm (
∑

yd ′′∈UNIV×−J ′.
∑

d∈I ′. β d ∗C ket (fst yd ′′ :: ′y,
Some (snd yd ′′)))›

apply (simp add: sum.cartesian-product ′ sum.reindex N-def)
apply (subst (2) sum.swap) apply (subst sum.swap)
by (rule refl)

also have ‹. . . ≤ inverse (N 2) ∗ (sqrt N ∗ sqrt bj0 ∗ sqrt bi)›
apply (rule mult-left-mono)
using ∗ apply (rule norm-ortho-sum-bound)
using card-minus-J ′ by (auto intro!: mult-right-mono simp add: cinner-sum-right cinner-sum-left

cinner-ket real-sqrt-mult N-def)
also have ‹. . . = sqrt bi ∗ sqrt bj0 / (N ∗ sqrt N)›
by (smt (verit, ccfv-threshold) field-class.field-divide-inverse mult.commute of-nat-0-le-iff of-nat-power

power2-eq-square real-divide-square-eq real-sqrt-mult-self times-divide-times-eq)
finally show ?thesis

by −
qed

have ‹norm (PJ ∗V ϕ) ≤ of-bool (None/∈J) ∗ sqrt bi / sqrt N + of-bool (None/∈J) ∗ sqrt bi / N
+ sqrt bj0 / N + sqrt bi ∗ sqrt bj0 / N + sqrt bi ∗ sqrt bj0 / (N ∗ sqrt N)›

unfolding P0ϕ
apply (rule norm-triangle-le-diff norm-triangle-le, rule add-mono)+

apply (rule norm-t1)
apply (rule norm-t2)

apply (rule norm-t3)
apply (rule norm-t4)

by (rule norm-t5)
also have ‹. . . = preserve-query1 ′-uncompute-bound (None/∈J) bi bj0›

by (auto simp: preserve-query1 ′-uncompute-bound-def mult.commute mult.left-commute)
also have ‹. . . ≤ ε›

by (simp add: ε)
finally show ‹norm (Proj (− ket-invariant (UNIV × J)) ∗V ϕ) ≤ ε›

unfolding PJ-def
apply (subst ket-invariant-compl[symmetric])
by simp

qed

133

end

end

6 Compressed-Oracle-Is-RO – Equivalence of compressed oracle
and regular random oracle

theory Compressed-Oracle-Is-RO imports
Registers.Pure-States
CO-Operations

begin

lemma swap-function-oracle-measure-generic:
fixes standard-query
fixes X :: ‹ ′x update ⇒ ′mem update› and Y :: ‹ ′y::ab-group-add update ⇒ ′mem update›
assumes std-query-Some: ‹

∧
H x y z . H x = Some z =⇒ standard-query ∗V (ket (x,y,H)) = ket (x, y

+ z, H)›
assumes [register]: ‹compatible X Y ›
shows ‹(Fst o X ; (Fst o Y ; Snd)) standard-query oCL Snd (proj (ket (Some o h)))

= Fst ((X ;Y) (function-oracle h)) oCL Snd (proj (ket (Some o h)))›
proof −

note [[simproc del: Laws-Quantum.compatibility-warn]]
let ?goal = ?thesis
have [register]: ‹register (Fst o X ; (Fst o Y ; Snd :: - ⇒ (′mem × (′x ⇀ ′y)) update))›

by simp
from register-decomposition[OF this]
have ‹let ′d::type = register-decomposition-basis (Fst o X ; (Fst o Y ; Snd :: - ⇒ (′mem × (′x ⇀ ′y))

update)) in ?thesis›
proof with-type-mp

case with-type-mp
then obtain U :: ‹((′x × ′y × (′x ⇒ ′y option)) × ′d) ell2 ⇒CL (′mem × (′x ⇒ ′y option)) ell2 ›
where ‹unitary U › and unwrap: ‹(Fst ◦ X ;(Fst ◦ Y ;Snd)) ϑ = sandwich U ∗V (ϑ ⊗o id-cblinfun)›

for ϑ
by blast

have unwrap-Snd: ‹Snd a = sandwich U ∗V ((id-cblinfun ⊗o (id-cblinfun ⊗o a)) ⊗o id-cblinfun)›
for a

apply (rewrite at Snd to ‹(Fst ◦ X ;(Fst ◦ Y ;Snd)) o Snd o Snd› DEADID.rel-mono-strong)
apply (simp add: register-pair-Snd)

by (simp add: unwrap Snd-def)
have unwrap-Fst-XY : ‹(Fst o (X ;Y)) a = sandwich U ∗V assoc (a ⊗o id-cblinfun) ⊗o id-cblinfun›

for a
apply (rewrite at ‹Fst o (X ;Y)› to ‹(Fst ◦ X ;(Fst ◦ Y ;Snd)) o assoc o Fst› DEADID.rel-mono-strong)

apply (simp add: register-pair-Fst register-comp-pair)
by (simp add: only: o-apply unwrap Fst-def)

have ‹standard-query ⊗o id-cblinfun oCL

(id-cblinfun ⊗o id-cblinfun ⊗o proj (ket (Some ◦ h))) ⊗o id-cblinfun =
assoc (function-oracle h ⊗o id-cblinfun) ⊗o id-cblinfun oCL

(id-cblinfun ⊗o id-cblinfun ⊗o proj (ket (Some ◦ h))) ⊗o id-cblinfun›
by (auto intro!: equal-ket

simp: tensor-op-ket tensor-ell2-ket proj-ket-x-y-ofbool std-query-Some assoc-ell2-sandwich
sandwich-apply function-oracle-apply)

then show ?goal
by (auto intro!: arg-cong[where f =‹sandwich U ›]

134

simp add: unwrap unwrap-Snd unwrap-Fst-XY [unfolded o-def] sandwich-arg-compose ‹unitary
U ›)

qed
from this[cancel-with-type]
show ?goal

by −
qed

lemma standard-query-for-fixed-func-generic:
fixes standard-query
fixes X :: ‹ ′x update ⇒ ′mem update› and Y :: ‹ ′y::ab-group-add update ⇒ ′mem update›
assumes ‹

∧
H x y z. H x = Some z =⇒ standard-query ∗V (ket (x,y,H)) = ket (x, y + z, H)›

assumes ‹compatible X Y ›
shows ‹(Fst o X ; (Fst o Y ; Snd)) standard-query ∗V (ψ ⊗s ket (Some ◦ h))

= Fst ((X ;Y) (function-oracle h)) ∗V (ψ ⊗s ket (Some ◦ h))›
proof −

have ‹(Fst o X ; (Fst o Y ; Snd)) standard-query ∗V (ψ ⊗s ket (Some ◦ h))
= (Fst o X ; (Fst o Y ; Snd)) standard-query ∗V Snd (proj (ket (Some o h))) ∗V (ψ ⊗s ket (Some

◦ h))›
by (simp add: proj-ket-x-y-ofbool)

also have ‹. . . = Fst ((X ;Y) (function-oracle h)) ∗V Snd (proj (ket (Some o h))) ∗V (ψ ⊗s ket (Some
◦ h))›

apply (subst cblinfun-apply-cblinfun-compose[symmetric])+
by (simp-all add: assms swap-function-oracle-measure-generic)

also have ‹. . . = Fst ((X ;Y) (function-oracle h)) ∗V (ψ ⊗s ket (Some ◦ h))›
by (simp add: Proj-fixes-image ccspan.rep-eq complex-vector .span-base flip: cblinfun-apply-cblinfun-compose)

finally show ?thesis
by −

qed

end

7 Oracle-Programs – Oracle programs and their execution
theory Oracle-Programs imports

CO-Operations
Invariant-Preservation
Compressed-Oracle-Is-RO

begin

7.1 Oracle programs
datatype (′mem, ′x, ′y) program-step = ProgramStep ‹ ′mem update› | QueryStep ‹ ′x update ⇒ ′mem
update› ‹ ′y update ⇒ ′mem update›
type-synonym (′mem, ′x, ′y) program = ‹(′mem, ′x, ′y) program-step list›

inductive is-QueryStep :: ‹(′mem, ′x, ′y::ab-group-add) program-step⇒ bool› where is-QueryStep-QueryStep[iff]:
‹is-QueryStep (QueryStep X Y)›
inductive is-ProgramStep :: ‹(′mem, ′x, ′y::ab-group-add) program-step⇒ bool› where is-ProgramStep-ProgramStep[iff]:

135

‹is-ProgramStep (ProgramStep U)›

lemma is-QueryStep-ProgramStep[iff]: ‹¬ is-QueryStep (ProgramStep U)›
using is-QueryStep.cases by blast

lemma is-ProgramStep-QueryStep[iff]: ‹¬ is-ProgramStep (QueryStep X Y)›
by (simp add: is-ProgramStep.simps)

fun valid-program-step where ‹valid-program-step (QueryStep X Y) = compatible X Y › | ‹valid-program-step
(ProgramStep U) = isometry U ›
definition valid-program where ‹valid-program prog = list-all valid-program-step prog›

lemma valid-program-cons[simp]: ‹valid-program (p # ps) ←→ valid-program-step p ∧ valid-program
ps›

by (simp add: valid-program-def)

lemma valid-program-append: ‹valid-program (p @ q) ←→ valid-program p ∧ valid-program q›
by (simp add: valid-program-def)

lemma valid-program-empty[iff]: ‹valid-program []›
by (simp add: valid-program-def)

fun exec-program-step :: ‹(′x ⇒ ′y) ⇒ (′mem, ′x, ′y::ab-group-add) program-step ⇒ ′mem ell2 ⇒ ′mem
ell2 › where

‹exec-program-step h (ProgramStep U) ψ = U ∗V ψ›
| ‹exec-program-step h (QueryStep X Y) ψ = (X ;Y) (function-oracle h) ∗V ψ›

fun exec-program-step-with :: ‹(′x × ′y × ′o) update ⇒ (′mem, ′x, ′y) program-step ⇒ (′mem × ′o) ell2
⇒ (′mem × ′o) ell2 › where

‹exec-program-step-with Q (ProgramStep U) ψ = Fst U ∗V ψ›
| ‹exec-program-step-with Q (QueryStep X Y) ψ = (Fst o X ; (Fst o Y ; Snd)) Q ψ›

definition exec-program :: ‹(′x ⇒ ′y::ab-group-add) ⇒ (′mem, ′x, ′y) program ⇒ ′mem ell2 ⇒ ′mem
ell2 › where

‹exec-program h program ψ = fold (exec-program-step h) program ψ›
definition exec-program-with :: ‹(′x × ′y × ′o) update ⇒ (′mem, ′x, ′y) program ⇒ (′mem× ′o) ell2 ⇒
(′mem× ′o) ell2 › where

‹exec-program-with Q program ψ = fold (exec-program-step-with Q) program ψ›

lemma bounded-clinear-exec-program-step-with[bounded-clinear]: ‹bounded-clinear (exec-program-step-with
Q step)›

apply (cases step)
by (auto intro!: cblinfun.bounded-clinear-right simp add: exec-program-step-with.simps[abs-def])

lemma exec-program-empty[simp]: ‹exec-program h [] ψ = ψ›
by (simp add: exec-program-def)

lemma exec-program-with-empty[simp]: ‹exec-program-with Q [] ψ = ψ›
by (simp add: exec-program-with-def)

lemma exec-program-append: ‹exec-program h (p @ q) ψ = exec-program h q (exec-program h p ψ)›
by (simp add: exec-program-def)

lemma exec-program-with-append: ‹exec-program-with Q (p @ q) ψ = exec-program-with Q q (exec-program-with
Q p ψ)›

by (simp add: exec-program-with-def)
lemma exec-program-cons[simp]: ‹exec-program h (step#prog) ψ = exec-program h prog (exec-program-step
h step ψ)›

136

by (simp add: exec-program-def)
lemma exec-program-with-cons[simp]: ‹exec-program-with Q (step#prog) ψ = exec-program-with Q prog
(exec-program-step-with Q step ψ)›

by (simp add: exec-program-with-def)

lemma norm-exec-program-step-with: ‹norm (exec-program-step-with oracle program-step ψ) ≤ norm ψ›
if ‹valid-program-step program-step› and ‹norm oracle ≤ 1 ›
proof (cases program-step)

case (ProgramStep U)
with that have ‹isometry U ›

by simp
then have ‹norm (Fst U) = 1 ›

by (simp add: register-norm norm-isometry)
then show ?thesis

apply (simp add: ProgramStep)
by (smt (verit, del-insts) ‹norm (Fst U) = 1 › mult-cancel-right1 norm-cblinfun)

next
case (QueryStep X Y)
with that
have [register]: ‹compatible X Y ›

using valid-program-step.simps by blast
have [register]: ‹register (Fst ◦ X ;(Fst ◦ Y ;Snd))›

by simp
have ‹norm ((Fst ◦ X ;(Fst ◦ Y ;Snd)) oracle ∗V ψ) ≤ norm ((Fst ◦ X ;(Fst ◦ Y ;Snd)) oracle) ∗ norm
ψ›

using norm-cblinfun by blast
also have ‹. . . = norm oracle ∗ norm ψ›

by (simp add: register-norm)
also have ‹. . . ≤ norm ψ›
by (simp add: mult-left-le-one-le that(2))
finally show ?thesis

by (simp add: QueryStep)
qed

lemma norm-exec-program-with:
‹norm (exec-program-with oracle program ψ) ≤ norm ψ› if ‹norm oracle ≤ 1 › and ‹valid-program

program› for program
proof (insert that(2), induction program rule: rev-induct)

case Nil
then show ?case

by simp
next

case (snoc program-step program)
then have ‹valid-program-step program-step› and ‹valid-program program›

by (auto simp: valid-program-append)
have ‹norm (exec-program-step-with oracle program-step (exec-program-with oracle program ψ)) ≤

norm (exec-program-with oracle program ψ)›
by (smt (verit, del-insts) ‹valid-program-step program-step› mult-left-le-one-le norm-exec-program-step-with

norm-ge-zero that(1))
also have ‹. . . ≤ norm ψ›

using ‹valid-program program› snoc.IH by force
finally show ?case

by (simp add: exec-program-with-append)
qed

137

lemma norm-exec-program-step-with-isometry:
assumes ‹valid-program-step program-step›
assumes ‹isometry query›
shows ‹norm (exec-program-step-with query program-step ψ) = norm ψ›

proof (cases program-step)
case (ProgramStep U)
with assms have ‹isometry U ›

by simp
with ProgramStep show ?thesis

by (simp add: isometry-preserves-norm register-isometry)
next

case (QueryStep X Y)
with assms have [register]: ‹compatible X Y ›

by simp
have ‹register (Fst ◦ X ;(Fst ◦ Y ;Snd))›

by simp
with assms have ‹isometry ((Fst ◦ X ;(Fst ◦ Y ;Snd)) query)›

using register-isometry by blast
then show ?thesis

by (simp add: QueryStep isometry-preserves-norm)
qed

7.2 Lifting
fun lift-program-step :: ‹(′a update⇒ ′mem update)⇒ (′a, ′x, ′y::ab-group-add) program-step⇒ (′mem, ′x, ′y)
program-step› where

‹lift-program-step Q (ProgramStep U) = ProgramStep (Q U)›
| ‹lift-program-step Q (QueryStep X Y) = QueryStep (Q o X) (Q o Y)›

definition lift-program :: ‹(′a update ⇒ ′mem update) ⇒ (′a, ′x, ′y::ab-group-add) program-step list ⇒
(′mem, ′x, ′y) program› where

‹lift-program Q p = map (lift-program-step Q) p›

lemma valid-program-step-lift:
assumes ‹register Q› and ‹valid-program-step p›
shows ‹valid-program-step (lift-program-step Q p)›

proof (cases p)
case (ProgramStep U)
then have ‹isometry (Q U)›

using assms register-isometry valid-program-step.simps(2) by blast
then show ?thesis

using ProgramStep by auto
next

case (QueryStep X Y)
with assms show ?thesis

by simp
qed

lemma valid-program-lift:
assumes ‹register Q› and ‹valid-program p›
shows ‹valid-program (lift-program Q p)›
using assms(2)
by (auto simp add: valid-program-def lift-program-def list.pred-map list-all-length valid-program-step-lift

assms(1))

138

lemma lift-program-empty[simp]: ‹lift-program Q [] = []›
by (simp add: lift-program-def)

lemma lift-program-cons: ‹lift-program Q (program-step # program) = lift-program-step Q program-step
lift-program Q program›

by (simp add: lift-program-def)

lemma lift-program-append: ‹lift-program Q (program1 @ program2) = lift-program Q program1 @
lift-program Q program2 ›

by (simp add: lift-program-def)

lemma is-QueryStep-lift-program-step[simp]: ‹is-QueryStep (lift-program-step Q program-step)←→ is-QueryStep
program-step›

apply (cases program-step)
by simp-all

lemma filter-is-QueryStep-lift-program: ‹filter is-QueryStep (lift-program Q program) = lift-program Q
(filter is-QueryStep program)›

apply (induction program)
by (auto simp: lift-program-def)

lemma length-lift-program[simp]: ‹length (lift-program Q program) = length program›
apply (induction program)
by (auto simp: lift-program-def)

definition ‹query-count program = length (filter is-QueryStep program)›

lemma query-count-append[simp]: ‹query-count (p @ q) = query-count p + query-count q›
by (simp add: query-count-def)

lemma query-count-nil[simp]: ‹query-count [] = 0 ›
by (simp add: query-count-def)

lemma query-count-cons-QueryStep[simp]: ‹query-count (QueryStep X Y # p) = query-count p + 1 ›
by (simp add: query-count-def)

lemma query-count-cons-ProgramStep[simp]: ‹query-count (ProgramStep U # p) = query-count p›
by (simp add: query-count-def)

lemma query-count-lift-program[simp]: ‹query-count (lift-program Q p) = query-count p›
by (simp add: query-count-def filter-is-QueryStep-lift-program)

lemma exec-lift-program-step-Fst:
assumes ‹valid-program-step program-step›
shows ‹exec-program-step h (lift-program-step Fst program-step) (ψ ⊗s ϕ) = exec-program-step h

program-step ψ ⊗s ϕ›
proof (cases program-step)

case (ProgramStep U)
then show ?thesis

by (simp add: Fst-def tensor-op-ell2)
next

case (QueryStep X Y)
with assms have [register]: ‹compatible X Y ›

using valid-program-step.simps(1) by blast
have ‹(Fst ◦ (X ;Y)) (function-oracle h) ∗V ψ ⊗s ϕ = ((X ;Y) (function-oracle h) ∗V ψ) ⊗s ϕ›

by (simp add: Fst-def tensor-op-ell2)
then show ?thesis

by (simp add: QueryStep register-comp-pair)
qed

139

lemma exec-lift-program-Fst:
assumes ‹valid-program program›
shows ‹exec-program h (lift-program Fst program) (ψ ⊗s ϕ) = exec-program h program ψ ⊗s ϕ›
apply (insert assms, induction program rule:rev-induct)
by (simp-all add: lift-program-append exec-program-append lift-program-cons valid-program-append

exec-lift-program-step-Fst)

7.3 Final measurement
definition measurement-probability :: ‹(′a update ⇒ ′mem update) ⇒ ′mem ell2 ⇒ ′a ⇒ real› where

‹measurement-probability Q ψ x = (norm (Q (proj (ket x)) ψ))2›

lemma measurement-probability-nonneg: ‹measurement-probability Q ψ x ≥ 0 ›
by (simp add: measurement-probability-def)

lemma norm-register-Proj-ket-invariant-union:
— Helper lemma
assumes ‹register Q› and ‹A ∩ B = {}›
shows ‹(norm (Q (Proj (ket-invariant (A ∪ B))) ψ))2 = (norm (Q (Proj (ket-invariant A)) ψ))2 +

(norm (Q (Proj (ket-invariant B)) ψ))2›
proof −

have ortho1 : ‹orthogonal-spaces (ket-invariant A) (ket-invariant B)›
using assms(2) by force

have ortho2 : ‹is-orthogonal (Q (Proj (ket-invariant A)) ∗V ψ) (Q (Proj (ket-invariant B)) ∗V ψ)›
proof −
from ortho1 have ‹orthogonal-spaces (lift-invariant Q (ket-invariant A)) (lift-invariant Q (ket-invariant

B))›
by (simp add: orthogonal-spaces-lift-invariant assms)
then have ‹is-orthogonal (Proj (lift-invariant Q (ket-invariant A)) ψ) (Proj (lift-invariant Q

(ket-invariant B)) ψ)›
by (metis Proj-lift-invariant assms(1) cblinfun-apply-in-image lift-invariant-def orthogonal-spaces-def)
moreover have ‹Proj (lift-invariant Q (ket-invariant A)) = Q (Proj (ket-invariant A))›

by (simp add: Proj-ket-invariant-butterfly Proj-lift-invariant assms(1) butterfly-eq-proj)
moreover have ‹Proj (lift-invariant Q (ket-invariant B)) = Q (Proj (ket-invariant B))›

by (simp add: Proj-lift-invariant assms(1) ket-invariant-def)
ultimately show ?thesis

by simp
qed
have ‹(norm (Q (Proj (ket-invariant (A ∪ B))) ψ))2 = (norm (Q (Proj (ket-invariant A t ket-invariant

B)) ψ))2›
by (simp add: ket-invariant-union)

also have ‹. . . = (norm (Q (Proj (ket-invariant A) + (Proj (ket-invariant B))) ψ))2›
by (metis Proj-sup ortho1)

also have ‹. . . = (norm (Q (Proj (ket-invariant A)) ψ + Q (Proj (ket-invariant B)) ψ))2›
by (simp add: complex-vector .linear-add clinear-register ‹register Q› cblinfun.add-left)

also have ‹. . . = (norm (Q (Proj (ket-invariant A)) ψ))2 + (norm (Q (Proj (ket-invariant B)) ψ))2›
by (simp add: pythagorean-theorem ortho2)

finally show ?thesis
by −

qed

lemma measurement-probability-sum:
assumes ‹register Q› and ‹finite F›

140

shows ‹(
∑

x∈F . measurement-probability Q ψ x) = (norm (Q (Proj (ket-invariant F)) ψ))2›
proof (use ‹finite F› in induction)

case empty
show ?case

apply simp
by (metis (no-types, lifting) assms(1) cancel-comm-monoid-add-class.diff-cancel cblinfun.zero-left

register-minus)
next

case (insert x F)
have ‹(norm (Q (Proj (ket-invariant (insert x F))) ∗V ψ))2 = (norm (Q (Proj (ket-invariant F)) ∗V

ψ))2 + (norm (Q (Proj (ket-invariant {x})) ∗V ψ))2›
apply (rewrite at ‹insert x F› to ‹F ∪ {x}› DEADID.rel-mono-strong)
apply simp

apply (subst norm-register-Proj-ket-invariant-union)
by (simp-all add: assms insert.hyps)

also have ‹. . . = (norm (Q (proj (ket x)) ψ))2 + (norm (Q (Proj (ccspan (ket ‘ F))) ψ))2›
by (simp add: ket-invariant-def)

also have ‹. . . = (norm (Q (proj (ket x)) ψ))2 + sum (measurement-probability Q ψ) F›
by (simp add: insert.IH ket-invariant-def)

also have ‹. . . = sum (measurement-probability Q ψ) (insert x F)›
by (simp add: insert.hyps measurement-probability-def)

finally show ?case
by simp

qed

lemma
assumes ‹register Q›
shows measurement-probability-summable: ‹measurement-probability Q ψ summable-on A›

and measurement-probability-infsum-leq: ‹(
∑

∞x∈A. measurement-probability Q ψ x) ≤ (norm (Q
(Proj (ket-invariant A)) ψ))2›
proof −

define m s where ‹m x = measurement-probability Q ψ x› and ‹s A = (norm (Q (Proj (ket-invariant
A)) ψ))2› for A x

have sum-m-fin: ‹sum m F = s F› if ‹finite F› for F
by (simp add: measurement-probability-sum m-def s-def that assms)

have s-mono: ‹s A ≤ s B› if ‹A ⊆ B› for A B
proof −

have [simp]: ‹A ∪ B = B›
using that by blast

have ‹s A ≤ s A + s (B−A)›
by (simp add: s-def)

also have ‹. . . = s B›
apply (simp add: s-def)
apply (subst norm-register-Proj-ket-invariant-union[symmetric])
using that
by (auto simp: assms)

finally show ?thesis
by −

qed
have m-pos: ‹m x ≥ 0 › for x

by (simp add: m-def measurement-probability-nonneg)
show summable: ‹m summable-on A› for A

apply (rule nonneg-bounded-partial-sums-imp-summable-on[where C=‹s UNIV ›])
using s-mono[of - UNIV] sum-m-fin
by (auto intro!: eventually-finite-subsets-at-top-weakI simp: m-pos)

141

then show ‹infsum m A ≤ s A›
apply (rule infsum-le-finite-sums)
using s-mono[of - A] sum-m-fin
by auto

qed

lemma dist-inv-measurement-probability:
fixes I :: ‹ ′i::finite set›
assumes [register]: ‹register Q›
shows ‹(

∑
x∈I . measurement-probability Q ψ x) = (dist-inv Q (ket-invariant (−I)) ψ)2›

proof −
have ‹(

∑
x∈I . measurement-probability Q ψ x) = (norm (Q (Proj (ket-invariant I)) ∗V ψ))2›

by (simp add: measurement-probability-sum)
then show ?thesis

by (simp add: dist-inv-def ket-invariant-compl)
qed

lemma dist-inv-avg-measurement-probability:
fixes I :: ‹ ′h::finite ⇒ ′i::finite set›
assumes [register]: ‹register Q›
shows ‹(

∑
h∈UNIV .

∑
x∈I h. measurement-probability Q (ψ h) x) / CARD(′h)

= (dist-inv-avg Q (λh. ket-invariant (− I h)) ψ)2›
by (simp add: dist-inv-avg-def real-sqrt-pow2 divide-nonneg-pos

sum-nonneg dist-inv-measurement-probability)

7.4 Preservation
lemma dist-inv-avg-exec-compatible:

fixes prog
assumes ‹valid-program prog›
assumes [register]: ‹compatible Q R›
shows ‹dist-inv-avg Q I (λh:: ′x::finite⇒ ′y::{finite,ab-group-add}. exec-program h (lift-program R prog)

(ψ h))
≤ dist-inv-avg Q I ψ›

proof (insert ‹valid-program prog›, induction prog rule:rev-induct)
case Nil
with assms show ?case

by simp
next

case (snoc program-step prog)
show ?case
proof (cases program-step)

case (ProgramStep U)
have ‹dist-inv-avg Q I (λh. exec-program h (lift-program R (prog @ [program-step])) (ψ h))
≤ (MAX h:: ′x⇒ ′y. norm U) ∗ dist-inv-avg Q I (λh. exec-program h (lift-program R prog) (ψ h))›
apply (simp add: lift-program-append lift-program-cons exec-program-append ProgramStep del:

range-constant Max-const)
apply (rule dist-inv-avg-apply-compatible[where R=‹λ-. R›])
by simp

also have ‹. . . ≤ dist-inv-avg Q I ψ›
using snoc
by (simp-all add: ProgramStep norm-isometry valid-program-append)

finally show ?thesis
by −

next
case (QueryStep X Y)

142

with snoc have [register]: ‹compatible X Y › by (simp add: valid-program-append)
have ‹dist-inv-avg Q I (λh. exec-program h (lift-program R (prog @ [program-step])) (ψ h))
≤ (MAX h:: ′x⇒ ′y. norm (function-oracle h)) ∗ dist-inv-avg Q I (λh. exec-program h (lift-program

R prog) (ψ h))›
apply (simp add: lift-program-append lift-program-cons exec-program-append QueryStep

del: range-constant Max-const norm-function-oracle)
apply (rule dist-inv-avg-apply-compatible[where R=‹λ-. (R ◦ X ;R ◦ Y)›])

by simp
also have ‹. . . ≤ dist-inv-avg Q I ψ›

using snoc
by (simp-all add: QueryStep valid-program-append)

finally show ?thesis
by −

qed
qed

lemma dist-inv-exec ′-compatible:
fixes prog
assumes ‹valid-program prog›
assumes normU : ‹norm U ≤ 1 ›
assumes [register]: ‹register R›
assumes compatQ1 [register]: ‹compatible Q (Fst o R)›
assumes compatQ2 [register]: ‹compatible Q Snd›
shows ‹dist-inv Q I (exec-program-with U (lift-program R prog) ψ) ≤ dist-inv Q I ψ›

proof (insert ‹valid-program prog›, induction prog rule:rev-induct)
case Nil
with assms show ?case

by simp
next

case (snoc program-step prog)
show ?case
proof (cases program-step)

case (ProgramStep V)
have ‹dist-inv Q I (exec-program-with U (lift-program R (prog @ [program-step])) ψ)
≤ norm V ∗ dist-inv Q I (exec-program-with U (lift-program R prog) ψ)›
apply (simp add: lift-program-append exec-program-with-append lift-program-cons ProgramStep)
using dist-inv-apply-compatible[OF compatQ1]
by simp

also have ‹. . . ≤ dist-inv Q I ψ›
using ProgramStep norm-isometry snoc(1) snoc.prems valid-program-append exec-program-with-append

by fastforce
finally show ?thesis

by −
next

case (QueryStep X Y)
with snoc have [register]: ‹compatible X Y › by (simp add: valid-program-append)
then have compat[register]: ‹compatible Q (Fst ◦ (R ◦ X);(Fst ◦ (R ◦ Y);Snd))›

by (auto intro!: compatible3 ′ compatible-comp-inner simp flip: comp-assoc)
have ‹dist-inv Q I (exec-program-with U (lift-program R (prog @ [program-step])) ψ)
≤ norm U ∗ dist-inv Q I (exec-program-with U (lift-program R prog) ψ)›
apply (simp add: lift-program-append lift-program-cons QueryStep exec-program-with-append)
by (rule dist-inv-apply-compatible[OF compat])

also have ‹. . . ≤ dist-inv Q I ψ›
by (smt (verit, ccfv-SIG) assms(2) dist-inv-pos mult-cancel-right1

mult-left-le-one-le snoc(1) snoc.prems valid-program-append zero-le-mult-iff)

143

finally show ?thesis
by −

qed
qed

7.5 Misc
lemma dist-inv-induct:

fixes oracle :: ‹(′x × ′y::ab-group-add × (′x ⇒ ′y option)) update›
assumes ‹compatible R Fst›
assumes ‹(

∑
i<query-count program. g i) ≤ ε›

assumes init: ‹ψ0 ∈ space-as-set (lift-invariant R (J 0))›
assumes ‹J (query-count program) ≤ I ›
assumes ‹valid-program program›
assumes ‹

∧
X Y i. compatible X Y =⇒ preserves ((Fst ◦ X ;(Fst ◦ Y ;Snd)) oracle :: (′m × -) update)

(lift-invariant R (J i))
(lift-invariant R (J (Suc i))) (g i)›

assumes ‹norm oracle ≤ 1 ›
assumes ‹norm ψ0 ≤ 1 ›
shows ‹dist-inv R I (exec-program-with oracle program ψ0) ≤ ε›

proof −
note [[simproc del: Laws-Quantum.compatibility-warn]]
define f where ‹f n = (

∑
i<n. g i)› for n

from ‹compatible R Fst› have [register]: ‹register R›
using compatible-register1 by blast

have ‹dist-inv R (J (query-count program)) (exec-program-with oracle program ψ0) ≤ f (query-count
program)›

proof (insert ‹valid-program program›, induction program rule:rev-induct)
case Nil
from init
have ‹dist-inv R (J 0) ψ0 = 0 ›

by (simp add: dist-inv-0-iff)
then show ?case

by (simp add: assms(2) query-count-def f-def)
next

case (snoc program-step program)
from snoc.prems have ‹valid-program program›

using valid-program-append by blast
from snoc.prems have ‹valid-program-step program-step›

by (simp add: valid-program-append)
define i where ‹i = query-count program›
show ?case
proof (cases program-step)

case (ProgramStep U)
with ‹valid-program-step program-step›
have [iff]: ‹isometry U ›

by simp
have ‹preserves (Fst U) (lift-invariant R (J i)) (lift-invariant R (J i)) 0 ›

apply (rule-tac preserves-compatible[where F=Fst])
using ‹compatible R Fst› compatible-register-invariant-compatible-register compatible-sym apply

blast
by simp

then have ‹dist-inv R (J i) (Fst U ∗V exec-program-with oracle program ψ0) ≤ f i›
apply (rule dist-inv-leq-if-preserves[THEN order-trans])
using snoc.IH [OF ‹valid-program program›]
by (simp-all add: norm-isometry register-isometry query-count-def i-def)

144

then show ?thesis
by (simp add: ProgramStep exec-program-with-append i-def query-count-def)

next
case (QueryStep X Y)
with ‹valid-program-step program-step›
have [register]: ‹compatible X Y ›

by simp
with assms have pres: ‹preserves ((Fst ◦ X ;(Fst ◦ Y ;Snd)) oracle) (lift-invariant R (J i))

(lift-invariant R (J (Suc i))) (g i)›
by fast

have fg ′: ‹norm ((Fst ◦ X ;(Fst ◦ Y ;Snd)) oracle) ∗ f i + g i ∗ norm (exec-program-with oracle
program ψ0) ≤ f (Suc i)›

proof −
have ‹norm ((Fst ◦ X ;(Fst ◦ Y ;Snd)) oracle) ≤ 1 ›

apply (subst register-norm[where a=oracle])
by (simp-all add: assms)

moreover have ‹norm (exec-program-with oracle program ψ0) ≤ 1 ›
apply (rule norm-exec-program-with[THEN order-trans])
using ‹valid-program program› assms by simp-all

moreover have ‹f i + g i ≤ f (Suc i)›
by (simp add: f-def)

moreover have gpos: ‹g i ≥ 0 › for i
using ‹compatible X Y › assms(6) preserves-def by blast

moreover have ‹f i ≥ 0 ›
by (auto intro!: sum-nonneg gpos simp: f-def)

ultimately
show ?thesis

by (smt (verit) mult-left-le mult-left-le-one-le norm-ge-zero)
qed
show ?thesis

apply (simp add: QueryStep exec-program-with-append flip: i-def)
using pres apply (rule dist-inv-leq-if-preserves[THEN order-trans])

apply (simp, simp)
using snoc.IH [OF ‹valid-program program›, folded i-def]
by (smt (verit, ccfv-SIG) fg ′ mult-left-mono norm-ge-zero)

qed
qed
with assms show ?thesis

using ‹register R›
by (smt (verit, best) dist-inv-mono f-def)

qed

7.6 Random Oracles
lemma standard-query-for-fixed-function-generic:

fixes standard-query
assumes ‹

∧
H x y z. H x = Some z =⇒ standard-query ∗V (ket (x,y,H)) = ket (x, y + z, H)›

assumes ‹valid-program program›
shows ‹exec-program h program initial-state ⊗s ket (Some o h)

= exec-program-with standard-query program (initial-state ⊗s ket (Some ◦ h))›
proof (insert ‹valid-program program›, induction program rule: rev-induct)

case Nil
then show ?case

by simp
next

case (snoc program-step prog)

145

then have [simp]: ‹valid-program prog›
using list-all-append valid-program-def by blast

show ?case
proof (cases program-step)

case (ProgramStep U)
have ‹exec-program h (prog @ [program-step]) initial-state ⊗s ket (Some ◦ h) = (U ∗V exec-program

h prog initial-state) ⊗s ket (Some ◦ h)›
by (simp add: ProgramStep exec-program-append)

also have ‹. . . = Fst U ∗V exec-program h prog initial-state ⊗s ket (Some ◦ h)›
by (simp add: Fst-def tensor-op-ell2)

also have ‹. . . = Fst U ∗V exec-program-with standard-query prog (initial-state ⊗s ket (Some ◦ h))›
by (subst snoc.IH , simp-all)

also have ‹. . . = exec-program-with standard-query (prog @ [program-step]) (initial-state ⊗s ket
(Some ◦ h))›

by (simp add: ProgramStep exec-program-with-append)
finally show ?thesis

by −
next

case (QueryStep X Y)
then have [register]: ‹compatible X Y ›

using snoc.prems valid-program-def by force
have ‹exec-program h (prog @ [program-step]) initial-state ⊗s ket (Some ◦ h) = ((X ;Y) (function-oracle

h) ∗V exec-program h prog initial-state) ⊗s ket (Some ◦ h)›
by (simp add: QueryStep exec-program-append)

also have ‹. . . = Fst ((X ;Y) (function-oracle h)) ∗V (exec-program h prog initial-state ⊗s ket (Some
◦ h))›

by (simp add: Fst-def tensor-op-ell2)
also have ‹. . . = (Fst o X ; (Fst o Y ; Snd)) standard-query ∗V (exec-program h prog initial-state ⊗s

ket (Some ◦ h))›
by (simp add: standard-query-for-fixed-func-generic assms)

also have ‹. . . = (Fst o X ; (Fst o Y ; Snd)) standard-query ∗V exec-program-with standard-query
prog (initial-state ⊗s ket (Some ◦ h))›

by (subst snoc.IH , simp-all)
also have ‹. . . = exec-program-with standard-query (prog @ [program-step]) (initial-state ⊗s ket

(Some ◦ h))›
by (simp add: QueryStep exec-program-with-append)

finally show ?thesis
by −

qed
qed

lemma standard-query-for-fixed-function-dist-inv-generic:
assumes ‹

∧
H x y z. H x = Some z =⇒ standard-query ∗V (ket (x,y,H)) = ket (x, y + z, H)›

assumes ‹valid-program program›
assumes compat: ‹compatible-invariants (> ⊗S ccspan {ket (Some ◦ h)}) J ›
assumes IJ : ‹J u (> ⊗S ccspan{ket (Some o h)}) = I ⊗S ccspan{ket (Some o h)}›
assumes [register]: ‹register Q›
shows ‹dist-inv Q I (exec-program h program initial-state) =

dist-inv (Fst o Q; Snd) J (exec-program-with standard-query program (initial-state ⊗s ket (Some ◦
h)))›
proof −

define e1 e2 where ‹e1 = exec-program h program initial-state› and ‹e2 = exec-program-with stan-
dard-query program (initial-state ⊗s ket (Some ◦ h))›

define keth where ‹keth = ket (Some o h)›
have e2e1 : ‹e2 = e1 ⊗s keth›

146

unfolding e1-def e2-def keth-def
using standard-query-for-fixed-function-generic assms
by fastforce

have ‹dist-inv Q I e1 = norm ((id-cblinfun − Q (Proj I)) ∗V e1)›
by (simp add: dist-inv-def Proj-ortho-compl register-minus)

also have ‹. . . = norm (e1 ⊗s keth − (Q (Proj I) ∗V e1) ⊗s keth)›
by (simp add: norm-tensor-ell2 keth-def cblinfun.diff-left flip: tensor-ell2-diff1)

also have ‹. . . = norm ((id-cblinfun − Fst (Q (Proj I)) oCL Snd (proj keth)) ∗V e1 ⊗s keth)›
by (simp add: Fst-def Snd-def comp-tensor-op tensor-op-ell2 cblinfun.diff-left)

also have ‹. . . = dist-inv (Fst o Q; Snd) (I ⊗S ccspan{keth}) (e1 ⊗s keth)›
by (simp add: dist-inv-def Proj-ortho-compl register-minus tensor-ccsubspace-via-Proj

Proj-on-own-range is-Proj-tensor-op register-pair-apply)
also have ‹. . . = dist-inv (Fst o Q; Snd) (J u (> ⊗S ccspan{ket (Some o h)})) (e1 ⊗s keth)›

by (simp add: IJ keth-def)
also have ‹. . . = dist-inv (Fst o Q; Snd) J (e1 ⊗s keth)›

using compat apply (rule dist-inv-intersect-onesided)
apply simp

by (simp add: dist-inv-def Proj-ortho-compl register-minus tensor-ccsubspace-via-Proj
Proj-on-own-range is-Proj-tensor-op register-pair-apply cblinfun.diff-left keth-def)

also have ‹. . . = dist-inv (Fst o Q; Snd) J e2 ›
by (simp add: e2e1)

finally show ‹dist-inv Q I e1 = . . . ›
by −

qed

lemma standard-query-is-ro-generic:
fixes standard-query
assumes ‹

∧
H x y z. H x = Some z =⇒ standard-query ∗V (ket (x,y,H)) = ket (x, y + z, H)›

assumes ‹valid-program program›
shows ‹exec-program-with standard-query program (initial-state ⊗s (superpos-total :: (′x::finite ⇒

′y::{finite,ab-group-add} option) ell2))
= (

∑
h∈UNIV . (exec-program h program initial-state ⊗s ket (Some o h)) /R sqrt CARD(′x ⇒

′y))›
proof (insert assms(2), induction program rule: rev-induct)

case Nil
have ‹sum ket (total-functions :: (′x ⇒ ′y option) set) = (

∑
h∈UNIV . ket (λa. Some (h a)))›

apply (simp add: total-functions-def2 sum.reindex fun.inj-map)
by (simp add: o-def)

then show ?case
by (simp add: uniform-superpos-def2 scaleR-scaleC card-fun card-total-functions tensor-ell2-scaleC2

flip: scaleC-sum-right tensor-ell2-sum-right)
next

case (snoc step prog)
then have ‹valid-program-step step› and [iff]: ‹valid-program prog›

by (simp-all add: valid-program-append)
have ‹exec-program-step-with standard-query step (ψ ⊗s ket (Some o h)) =

exec-program-step h step ψ ⊗s ket (Some o h)› for h ψ
proof (cases step)

case (ProgramStep U)
then show ?thesis

by (simp add: Fst-def tensor-op-ell2)
next

case (QueryStep X Y)

147

with ‹valid-program-step step› have [register]: ‹compatible X Y ›
by simp

have ‹exec-program-step-with standard-query step (ψ ⊗s ket (Some ◦ h))
= (Fst ◦ X ;(Fst ◦ Y ;Snd)) standard-query ∗V (ψ ⊗s ket (Some ◦ h))›

by (simp add: QueryStep)
also have ‹. . . = ((Fst ◦ X ;(Fst ◦ Y ;Snd)) standard-query oCL Snd (selfbutter (ket (Some o h))))

∗V (ψ ⊗s ket (Some ◦ h))›
by simp

also have ‹. . . = (Fst ◦ X ;(Fst ◦ Y ;Snd)) (standard-query oCL (Snd o Snd) (selfbutter (ket (Some
o h)))) ∗V (ψ ⊗s ket (Some ◦ h))›

by (simp add: register-mult[symmetric, where F=‹(-;-)›] register-pair-Snd[unfolded o-def , THEN
fun-cong])

also have ‹. . . = (Fst ◦ X ;(Fst ◦ Y ;Snd)) ((Fst; Snd o Fst) (function-oracle h) oCL (Snd o Snd)
(selfbutter (ket (Some o h)))) ∗V (ψ ⊗s ket (Some ◦ h))›

apply (rewrite at ‹(Fst;Snd ◦ Fst) (function-oracle h)› to ‹assoc (function-oracle h ⊗o id-cblinfun)›
DEADID.rel-mono-strong)

apply (simp add: assoc-def register-pair-Fst[unfolded o-def , THEN fun-cong] flip: Fst-def)
apply (rule arg-cong[where f =‹λx. (-;-) x ∗V -›])
by (auto intro!: equal-ket simp: Snd-def tensor-op-ket cinner-ket tensor-ell2-ket assms

assoc-ell2-sandwich sandwich-apply function-oracle-apply)
also have ‹. . . = ((Fst ◦ X ;(Fst ◦ Y ;Snd)) ((Fst; Snd o Fst) (function-oracle h)) oCL Snd (selfbutter

(ket (Some o h)))) ∗V (ψ ⊗s ket (Some ◦ h))›
by (simp add: register-mult[symmetric, where F=‹(-;-)›] register-pair-Snd[unfolded o-def , THEN

fun-cong])
also have ‹. . . = (Fst ◦ X ;(Fst ◦ Y ;Snd)) ((Fst; Snd o Fst) (function-oracle h)) ∗V (ψ ⊗s ket

(Some ◦ h))›
by simp

also have ‹. . . = Fst ((X ;Y) (function-oracle h)) ∗V (ψ ⊗s ket (Some ◦ h))›
apply (rewrite at ‹(Fst ◦ X ;(Fst ◦ Y ;Snd)) ((Fst;Snd ◦ Fst) -)› to ‹((Fst ◦ X ;(Fst ◦ Y ;Snd)) o

(Fst;Snd ◦ Fst)) -› DEADID.rel-mono-strong)
apply simp

apply (subst register-comp-pair [symmetric])
apply (simp, simp)

by (simp add: register-pair-Snd register-pair-Fst register-comp-pair flip: comp-assoc)
also have ‹. . . = ((X ;Y) (function-oracle h) ∗V ψ) ⊗s ket (Some ◦ h)›

by (simp add: Fst-def tensor-op-ell2)
also have ‹. . . = exec-program-step h step ψ ⊗s ket (Some ◦ h)›

by (simp add: QueryStep)
finally show ?thesis

by −
qed
then show ?case

by (simp add: exec-program-with-append exec-program-append snoc.IH o-def
complex-vector .linear-sum[where f =‹exec-program-step-with standard-query step›]
bounded-clinear .clinear bounded-clinear-exec-program-step-with scaleR-scaleC
clinear .scaleC)

qed

lemma standard-query-is-ro-dist-inv-generic:
fixes standard-query :: ‹(′x::finite × ′y::{finite,ab-group-add} × (′x ⇀ ′y)) ell2 ⇒CL -›
assumes ‹

∧
H x y z. H x = Some z =⇒ standard-query ∗V (ket (x,y,H)) = ket (x, y + z, H)›

assumes ‹valid-program program›
assumes [register]: ‹register Q›

148

shows ‹dist-inv-avg Q (λ-. I) (λh. exec-program h program initial-state) =
dist-inv (Fst o Q) I (exec-program-with standard-query program (initial-state ⊗s superpos-total))› (is

‹?lhs = ?rhs›)
proof −

have ‹?rhs2 = (dist-inv (Fst ◦ Q) I (
∑

h∈UNIV . (exec-program h program initial-state ⊗s ket (Some
◦ h)) /R sqrt (real CARD(′x ⇒ ′y))))2›

apply (subst standard-query-is-ro-generic)
using assms by simp-all

also have ‹. . . = (norm (
∑

i∈UNIV . ((Q (Proj (− I)) ∗V exec-program i program initial-state) ⊗s

ket (Some ◦ i)) /R sqrt (real CARD(′x ⇒ ′y))))2›
by (simp add: dist-inv-def cblinfun.sum-right Fst-def tensor-op-ell2 cblinfun.scaleR-right)

also have ‹. . . = (
∑

a∈UNIV . (norm (((Q (Proj (− I)) ∗V exec-program a program initial-state) ⊗s

ket (Some ◦ a)) /R sqrt (real CARD(′x ⇒ ′y))))2)›
apply (subst pythagorean-theorem-sum)

apply (simp, metis fun.inj-map-strong option.inject)
apply simp

by simp
also have ‹. . . = (

∑
a∈UNIV . (dist-inv (Fst o Q) I (exec-program a program initial-state ⊗s ket

(Some ◦ a)))2 /R real CARD(′x ⇒ ′y))›
by (auto intro!: sum.cong simp: dist-inv-def Fst-def tensor-op-ell2 power-mult-distrib real-inv-sqrt-pow2)

also have ‹. . . = (
∑

x∈UNIV . (dist-inv Q I (exec-program x program initial-state))2) /R real CARD(′x
⇒ ′y)›

by (metis (no-types, lifting) dist-inv-Fst-tensor norm-ket scaleR-right.sum sum.cong)
also have ‹. . . = ?lhs2›

by (simp add: dist-inv-avg-def real-sqrt-pow2 sum-nonneg divide-inverse flip: sum-distrib-left)
finally show ?thesis

by simp
qed

lemma (in compressed-oracle) standard-query-is-ro-dist-inv:
assumes ‹valid-program program›
assumes [register]: ‹register Q›
shows ‹dist-inv-avg Q (λ-. I) (λh. exec-program h program initial-state) =
dist-inv (Fst o Q) I (exec-program-with standard-query program (initial-state ⊗s superpos-total))› (is

‹?lhs = ?rhs›)
using standard-query-ket-full-Some assms by (rule standard-query-is-ro-dist-inv-generic)

lemma (in compressed-oracle) standard-query ′-is-ro-dist-inv:
assumes ‹valid-program program›
assumes [register]: ‹register Q›
shows ‹dist-inv-avg Q (λ-. I) (λh. exec-program h program initial-state) =

dist-inv (Fst o Q) I (exec-program-with standard-query ′ program (initial-state ⊗s superpos-total))›
(is ‹?lhs = ?rhs›)

using standard-query ′-ket-full-Some assms by (rule standard-query-is-ro-dist-inv-generic)

lemma (in compressed-oracle) compress-query-is-standard-query-generic:
fixes query standard-query
assumes ‹valid-program program›
assumes ‹standard-query oCL reg-3-3 compress = reg-3-3 compress oCL query›
shows ‹exec-program-with standard-query program (initial-state ⊗s superpos-total)

= Snd compress ∗V exec-program-with query program (initial-state ⊗s ket (λx. None))›
proof (insert ‹valid-program program›, induction program rule: rev-induct)

case Nil

149

then show ?case
by (simp add: compress-empty)

next
case (snoc program-step prog)
then have [simp]: ‹valid-program prog›

by (simp add: valid-program-def)
show ?case
proof (cases program-step)

case (ProgramStep U)
have ‹exec-program-with standard-query (prog @ [program-step]) (initial-state ⊗s superpos-total)

= Fst U ∗V Snd compress ∗V exec-program-with query prog (initial-state ⊗s ket Map.empty)›
by (simp add: ProgramStep snoc.IH exec-program-with-append)

also have ‹. . . = Snd compress ∗V Fst U ∗V exec-program-with query prog (initial-state ⊗s ket
Map.empty)›

by (simp flip: cblinfun-apply-cblinfun-compose swap-registers)
also have ‹. . . = Snd compress ∗V exec-program-with query (prog @ [program-step]) (initial-state ⊗s

ket Map.empty)›
by (simp add: ProgramStep exec-program-with-append)

finally show ?thesis
by −

next
case (QueryStep X Y)
with snoc.prems have [register]: ‹compatible X Y ›

by (simp add: valid-program-def)
have aux: ‹(Fst ◦ X ;(Fst ◦ Y ;Snd)) (reg-3-3 compress) = Snd compress›

by (simp add: reg-3-3-def register-pair-Snd[unfolded o-def , THEN fun-cong])
have ‹exec-program-with standard-query (prog @ [program-step]) (initial-state ⊗s superpos-total)

= (Fst ◦ X ;(Fst ◦ Y ;Snd)) standard-query ∗V Snd compress ∗V exec-program-with query prog
(initial-state ⊗s ket Map.empty)›

by (simp add: QueryStep snoc.IH exec-program-with-append)
also have ‹. . . = (Fst ◦ X ;(Fst ◦ Y ;Snd)) (standard-query oCL reg-3-3 compress) ∗V exec-program-with

query prog (initial-state ⊗s ket Map.empty)›
by (simp-all add: aux flip: register-mult)

also have ‹. . . = (Fst ◦ X ;(Fst ◦ Y ;Snd)) (reg-3-3 compress oCL query) ∗V exec-program-with query
prog (initial-state ⊗s ket Map.empty)›

by (simp add: assms)
also have ‹. . . = Snd compress ∗V (Fst ◦ X ;(Fst ◦ Y ;Snd)) query ∗V (exec-program-with query)

prog (initial-state ⊗s ket Map.empty)›
by (simp-all add: aux flip: register-mult)

also have ‹. . . = Snd compress ∗V (exec-program-with query) (prog @ [program-step]) (initial-state
⊗s ket (λx. None))›

by (simp add: QueryStep Cons exec-program-with-append)
finally show ?thesis

by −
qed

qed

lemma (in compressed-oracle) query-is-standard-query-generic:
fixes query standard-query
assumes ‹valid-program program›
assumes ‹standard-query oCL reg-3-3 compress = reg-3-3 compress oCL query›
shows ‹dist-inv Fst I (exec-program-with standard-query program (initial-state ⊗s superpos-total))

= dist-inv Fst I (exec-program-with query program (initial-state ⊗s ket (λx. None)))›

150

proof −
have ‹dist-inv Fst I (exec-program-with standard-query program (initial-state ⊗s superpos-total))

= norm (Fst (Proj (− I)) ∗V Snd compress ∗V exec-program-with query program (initial-state ⊗s

ket (λx. None)))›
by (simp add: compress-query-is-standard-query-generic assms dist-inv-def Proj-on-own-range regis-

ter-projector)
also have ‹. . . = norm (Snd compress ∗V Fst (Proj (− I)) ∗V exec-program-with query program

(initial-state ⊗s ket (λx. None)))›
by (simp flip: cblinfun-apply-cblinfun-compose swap-registers)

also have ‹. . . = norm (Fst (Proj (− I)) ∗V exec-program-with query program (initial-state ⊗s ket
(λx. None)))›

by (simp add: isometry-preserves-norm register-isometry[where F=Snd])
also have ‹. . . = dist-inv Fst I (exec-program-with query program (initial-state ⊗s ket (λx. None)))›

by (simp add: dist-inv-def Proj-on-own-range register-projector)
finally show ?thesis

by −
qed

lemma (in compressed-oracle) query-is-standard-query:
assumes ‹valid-program program›
shows
‹dist-inv Fst I (exec-program-with standard-query program (initial-state ⊗s superpos-total)) =
dist-inv Fst I (exec-program-with query program (initial-state ⊗s ket (λx. None)))›

using query-is-standard-query-generic standard-query-compress assms by blast

lemma (in compressed-oracle) query ′-is-standard-query:
assumes ‹valid-program program›
shows
‹dist-inv Fst I (exec-program-with standard-query ′ program (initial-state ⊗s superpos-total)) =
dist-inv Fst I (exec-program-with query ′ program (initial-state ⊗s ket (λx. None)))›

using query-is-standard-query-generic standard-query ′-compress assms by blast

lemma (in compressed-oracle) query-is-random-oracle:
assumes ‹valid-program program›
shows ‹dist-inv-avg id (λ-. I) (λh. exec-program h program initial-state) =

dist-inv Fst I (exec-program-with query program (initial-state ⊗s ket (λ-. None)))›
by (simp add: standard-query-is-ro-dist-inv assms query-is-standard-query)

lemma (in compressed-oracle) query ′-is-random-oracle:
assumes ‹valid-program program›
shows ‹dist-inv-avg id (λ-. I) (λh. exec-program h program initial-state) =

dist-inv Fst I (exec-program-with query ′ program (initial-state ⊗s ket (λ-. None)))›
by (simp add: standard-query ′-is-ro-dist-inv assms query ′-is-standard-query)

lemma (in compressed-oracle) dist-inv-exec-query-exec-fixed:
fixes program :: ‹(′mem, ′x::finite, ′y::{finite,ab-group-add}) program-step list›
fixes Q :: ‹ ′a ell2 ⇒CL

′a ell2 ⇒ ′mem ell2 ⇒CL
′mem ell2 ›

assumes ‹valid-program program›
assumes [register]: ‹register Q›
shows ‹dist-inv (Fst ◦ Q) I (exec-program-with query program (ψ ⊗s ket (λ-. None)))

= dist-inv-avg Q (λ-. I) (λh. exec-program h program ψ)›

151

proof −
have ‹dist-inv (Fst ◦ Q) I (exec-program-with query program (ψ ⊗s ket (λ-. None)))

= dist-inv Fst (lift-invariant Q I) (exec-program-with query program (ψ ⊗s ket (λ-. None)))›
by (metis (no-types, lifting) Proj-lift-invariant assms(2) dist-inv-def lift-invariant-compl o-apply)

also have ‹. . . = dist-inv-avg id (λh. lift-invariant Q I) (λh. exec-program h program ψ)›
by (simp add: query-is-random-oracle assms)

also have ‹. . . = dist-inv-avg Q (λ-. I) (λh. exec-program h program ψ)›
by (simp add: dist-inv-avg-register-rewrite)

finally show ?thesis
by −

qed

lemma (in compressed-oracle) dist-inv-exec-query ′-exec-fixed:
fixes program :: ‹(′mem, ′x::finite, ′y::{finite,ab-group-add}) program-step list›
fixes Q :: ‹ ′a ell2 ⇒CL

′a ell2 ⇒ ′mem ell2 ⇒CL
′mem ell2 ›

assumes ‹valid-program program›
assumes [register]: ‹register Q›
shows ‹dist-inv (Fst ◦ Q) I (exec-program-with query ′ program (ψ ⊗s ket (λ-. None)))

= dist-inv-avg Q (λ-. I) (λh. exec-program h program ψ)›
proof −

have ‹dist-inv (Fst ◦ Q) I (exec-program-with query ′ program (ψ ⊗s ket (λ-. None)))
= dist-inv Fst (lift-invariant Q I) (exec-program-with query ′ program (ψ ⊗s ket (λ-. None)))›

by (metis (no-types, lifting) Proj-lift-invariant assms(2) dist-inv-def lift-invariant-compl o-apply)
also have ‹. . . = dist-inv-avg id (λh. lift-invariant Q I) (λh. exec-program h program ψ)›

by (simp add: query ′-is-random-oracle assms)
also have ‹. . . = dist-inv-avg Q (λ-. I) (λh. exec-program h program ψ)›

by (simp add: dist-inv-avg-register-rewrite)
finally show ?thesis

by −
qed

end

8 Find-Zero Invariant preservation for zero-finding
theory Find-Zero

imports CO-Invariants Oracle-Programs
begin

context compressed-oracle begin

definition ‹no-zero = {(x:: ′x,y:: ′y,D:: ′x⇀ ′y). 0 /∈ ran D}›
definition ‹no-zero ′ = {D:: ′x⇀ ′y. 0 /∈ ran D}›

lemma no-zero-no-zero ′: ‹no-zero = UNIV × UNIV × no-zero ′›
by (auto intro!: simp: no-zero-def no-zero ′-def)

lemma ket-invariant-no-zero-no-zero ′: ‹ket-invariant no-zero = > ⊗S > ⊗S ket-invariant no-zero ′›
by (auto simp: ket-invariant-tensor no-zero-no-zero ′ simp flip: ket-invariant-UNIV)

We show the preservation of the no-zero invariant. We show it first with respect to the oracle
query.
lemma preserves-no-zero: ‹preserves-ket query no-zero no-zero (6 / sqrt N)›
proof −

152

define K where ‹K x = ket-invariant {(x,y:: ′y,D:: ′x⇀ ′y) | y D. Some 0 /∈ D ‘ (−{x})}› for x
define Kd where ‹Kd x D0 = ket-invariant {(x,y:: ′y,D:: ′x⇀ ′y) | y D. (∀ x ′6=x. D x ′ = D0 x ′)}› for

x D0
have aux: ‹Some 0 /∈ D ‘ (− {x}) =⇒

∃ xa. xa x = None ∧ Some 0 /∈ range xa ∧ (∀ x ′. x ′ 6= x −→ D x ′ = xa x ′)› for D::‹ ′x⇀ ′y› and
x

apply (rule exI [of - ‹D(x:=None)›])
by force

have K : ‹K x = (SUP D0∈{D0 . D0 x = None ∧ Some 0 /∈ range D0}. Kd x D0)› for x
using aux[of - x] by (auto intro!: simp: K-def Kd-def simp flip: ket-invariant-SUP)

define Kdx where ‹Kdx x D0 x ′ = ket-invariant {(x:: ′x,y:: ′y,D:: ′x⇀ ′y) | y D. D x ′ = D0 x ′}› for x
D0 x ′

have Kd: ‹Kd x D0 = (INF x ′∈−{x}. Kdx x D0 x ′)› for x D0
unfolding Kd-def Kdx-def
apply (subst ket-invariant-INF [symmetric])
apply (rule arg-cong[where f =ket-invariant])
by auto

have Kdx: ‹Kdx x D0 x ′ = lift-invariant reg-1-3 (ket-invariant {x}) u lift-invariant (reg-3-3 o func-
tion-at x ′) (ket-invariant {D0 x ′})› for x D0 x ′

unfolding Kdx-def reg-3-3-def reg-1-3-def
apply (simp add: lift-invariant-comp)
apply (subst lift-invariant-function-at-ket-inv)
apply (subst lift-Snd-ket-inv)
apply (subst lift-Snd-ket-inv)
apply (subst lift-Fst-ket-inv)
apply (subst ket-invariant-inter)
apply (rule arg-cong[where f =ket-invariant])
by auto

show ?thesis
proof (rule inv-split-reg-query[where X=‹reg-1-3 › and Y =‹reg-2-3 › and H=‹reg-3-3 › and K=K

and ?I1 .0=‹λ-. ket-invariant (UNIV × −{Some 0})› and ?J1 .0=‹λ-. ket-invariant (UNIV ×
−{Some 0})›])

show ‹query = (reg-1-3 ;(reg-2-3 ;reg-3-3)) query›
by (simp add: pair-Fst-Snd reg-1-3-def reg-2-3-def reg-3-3-def)

show ‹compatible reg-1-3 reg-2-3 › ‹compatible reg-1-3 reg-3-3 › ‹compatible reg-2-3 reg-3-3 ›
by simp-all

show ‹compatible-register-invariant reg-2-3 (K x)› for x
unfolding K Kd Kdx
apply (rule compatible-register-invariant-SUP, simp)
apply (rule compatible-register-invariant-INF , simp)
apply (rule compatible-register-invariant-inter , simp)
apply (rule compatible-register-invariant-compatible-register)
apply simp

apply (rule compatible-register-invariant-compatible-register)
by simp

show ‹compatible-register-invariant (reg-3-3 o function-at x) (K x)› for x
unfolding K Kd Kdx
apply (rule compatible-register-invariant-SUP, simp)
apply (rule compatible-register-invariant-INF , simp)
apply (rule compatible-register-invariant-inter , simp)
apply (rule compatible-register-invariant-compatible-register)
apply simp

apply (rule compatible-register-invariant-compatible-register)
by simp

153

show ‹ket-invariant no-zero
≤ (SUP x. K x u

lift-invariant (reg-2-3 ;reg-3-3 ◦ function-at x) (ket-invariant (UNIV × − {Some 0})))›
apply (simp add: K-def lift-Fst-ket-inv reg-1-3-def reg-2-3-def ket-invariant-inter ket-invariant-SUP[symmetric]

lift-inv-prod lift-invariant-comp lift-invariant-function-at-ket-inv reg-3-3-def lift-Snd-ket-inv)
unfolding no-zero-def
by (auto simp add: ranI)

have aux: ‹
∧

D:: ′x⇀ ′y. Some 0 /∈ D ‘ (− {x}) =⇒ D x 6= Some 0 =⇒ 0 ∈ ran D =⇒ False› for x
by (smt (verit, del-insts) ComplI image-iff mem-Collect-eq ran-def singletonD)

show ‹K x u lift-invariant (reg-2-3 ;reg-3-3 ◦ function-at x) (ket-invariant (UNIV × − {Some 0}))
≤ ket-invariant no-zero› for x

by (auto intro: aux simp add: K-def lift-Fst-ket-inv reg-1-3-def reg-2-3-def ket-invariant-inter
ket-invariant-SUP[symmetric]

lift-inv-prod lift-invariant-comp lift-invariant-function-at-ket-inv reg-3-3-def lift-Snd-ket-inv
no-zero-def)

show ‹orthogonal-spaces (K x) (K x ′)› if ‹x 6= x ′› for x x ′
using that by (auto simp add: K-def)

show ‹preserves-ket query1 (UNIV × − {Some 0}) (UNIV × − {Some 0}) (6 / sqrt N)›
apply (subst asm-rl[of ‹6 / sqrt N = 6 ∗ sqrt (1 ::nat) / sqrt N ›], simp)
apply (rule preserve-query1-simplified)
by (auto simp add: card-le-Suc0-iff-eq)

show ‹K x ≤ lift-invariant reg-1-3 (ket-invariant {x})› for x
by (auto simp add: K-def reg-1-3-def lift-Fst-ket-inv)

show ‹6 / sqrt N ≥ 0 ›
by simp

qed simp
qed

Like preserves-no-zero but with respect to the oracle query.
lemma preserves-no-zero ′: ‹preserves-ket query ′ no-zero no-zero (5 / sqrt N)›
proof −

define K where ‹K x = ket-invariant {(x,y:: ′y,D:: ′x⇀ ′y) | y D. Some 0 /∈ D ‘ (−{x})}› for x
define Kd where ‹Kd x D0 = ket-invariant {(x,y:: ′y,D:: ′x⇀ ′y) | y D. (∀ x ′6=x. D x ′ = D0 x ′)}› for

x D0
have aux: ‹Some 0 /∈ D ‘ (− {x}) =⇒

∃ xa. xa x = None ∧ Some 0 /∈ range xa ∧ (∀ x ′. x ′ 6= x −→ D x ′ = xa x ′)› for D::‹ ′x⇀ ′y› and
x

apply (rule exI [of - ‹D(x:=None)›])
by force

have K : ‹K x = (SUP D0∈{D0 . D0 x = None ∧ Some 0 /∈ range D0}. Kd x D0)› for x
using aux[of - x] by (auto intro!: simp: K-def Kd-def simp flip: ket-invariant-SUP)

define Kdx where ‹Kdx x D0 x ′ = ket-invariant {(x:: ′x,y:: ′y,D:: ′x⇀ ′y) | y D. D x ′ = D0 x ′}› for x
D0 x ′

have Kd: ‹Kd x D0 = (INF x ′∈−{x}. Kdx x D0 x ′)› for x D0
unfolding Kd-def Kdx-def
apply (subst ket-invariant-INF [symmetric])
apply (rule arg-cong[where f =ket-invariant])
by auto

have Kdx: ‹Kdx x D0 x ′ = lift-invariant reg-1-3 (ket-invariant {x}) u lift-invariant (reg-3-3 o func-
tion-at x ′) (ket-invariant {D0 x ′})› for x D0 x ′

unfolding Kdx-def reg-3-3-def reg-1-3-def
apply (simp add: lift-invariant-comp)
apply (subst lift-invariant-function-at-ket-inv)
apply (subst lift-Snd-ket-inv)

154

apply (subst lift-Snd-ket-inv)
apply (subst lift-Fst-ket-inv)
apply (subst ket-invariant-inter)
apply (rule arg-cong[where f =ket-invariant])
by auto

show ?thesis
proof (rule inv-split-reg-query ′[where X=‹reg-1-3 › and Y =‹reg-2-3 › and H=‹reg-3-3 › and K=K

and ?I1 .0=‹λ-. ket-invariant (UNIV × −{Some 0})› and ?J1 .0=‹λ-. ket-invariant (UNIV ×
−{Some 0})›])

show ‹query ′ = (reg-1-3 ;(reg-2-3 ;reg-3-3)) query ′›
by (simp add: pair-Fst-Snd reg-1-3-def reg-2-3-def reg-3-3-def)

show ‹compatible reg-1-3 reg-2-3 › ‹compatible reg-1-3 reg-3-3 › ‹compatible reg-2-3 reg-3-3 ›
by simp-all

show ‹compatible-register-invariant reg-2-3 (K x)› for x
unfolding K Kd Kdx
apply (rule compatible-register-invariant-SUP, simp)
apply (rule compatible-register-invariant-INF , simp)
apply (rule compatible-register-invariant-inter , simp)
apply (rule compatible-register-invariant-compatible-register)
apply simp

apply (rule compatible-register-invariant-compatible-register)
by simp

show ‹compatible-register-invariant (reg-3-3 o function-at x) (K x)› for x
unfolding K Kd Kdx
apply (rule compatible-register-invariant-SUP, simp)
apply (rule compatible-register-invariant-INF , simp)
apply (rule compatible-register-invariant-inter , simp)
apply (rule compatible-register-invariant-compatible-register)
apply simp

apply (rule compatible-register-invariant-compatible-register)
by simp

show ‹ket-invariant no-zero
≤ (SUP x. K x u

lift-invariant (reg-2-3 ;reg-3-3 ◦ function-at x) (ket-invariant (UNIV × − {Some 0})))›
apply (simp add: K-def lift-Fst-ket-inv reg-1-3-def reg-2-3-def ket-invariant-inter ket-invariant-SUP[symmetric]

lift-inv-prod lift-invariant-comp lift-invariant-function-at-ket-inv reg-3-3-def lift-Snd-ket-inv)
unfolding no-zero-def
by (auto simp add: ranI)

have aux: ‹Some 0 /∈ D ‘ (− {x}) =⇒ D x 6= Some 0 =⇒ 0 /∈ ran D› for D x
by (smt (verit, del-insts) ComplI image-iff mem-Collect-eq ran-def singletonD)

show ‹K x u lift-invariant (reg-2-3 ;reg-3-3 ◦ function-at x) (ket-invariant (UNIV × − {Some 0}))
≤ ket-invariant no-zero› for x

using aux[of - x]
by (auto simp add: K-def lift-Fst-ket-inv reg-1-3-def reg-2-3-def ket-invariant-inter ket-invariant-SUP[symmetric]

lift-inv-prod lift-invariant-comp lift-invariant-function-at-ket-inv reg-3-3-def lift-Snd-ket-inv
no-zero-def)

show ‹orthogonal-spaces (K x) (K x ′)› if ‹x 6= x ′› for x x ′
using that by (auto simp add: K-def)

show ‹preserves-ket query1 ′ (UNIV × − {Some 0}) (UNIV × − {Some 0}) (5 / sqrt N)›
apply (subst asm-rl[of ‹5 / sqrt N = 5 ∗ sqrt (1 ::nat) / sqrt N ›], simp)
apply (rule preserve-query1 ′-simplified)
by (auto simp add: card-le-Suc0-iff-eq)

show ‹K x ≤ lift-invariant reg-1-3 (ket-invariant {x})› for x
by (auto simp add: K-def reg-1-3-def lift-Fst-ket-inv)

155

show ‹5 / sqrt N ≥ 0 ›
by simp

qed simp
qed

lemma preserves-no-zero-num: ‹preserves-ket query (no-zero ∩ num-queries q) (no-zero ∩ num-queries
(q+1)) (6 / sqrt N)›

apply (subst add-0-right[of ‹6/sqrt N ›, symmetric])
apply (rule preserves-intersect-ket)
apply (simp add: preserves-mono[OF preserves-no-zero])

apply (rule preserves-mono[OF preserves-num])
by auto

lemma preserves-no-zero-num ′: ‹preserves-ket query ′ (no-zero ∩ num-queries q) (no-zero ∩ num-queries
(q+1)) (5 / sqrt N)›

apply (subst add-0-right[of ‹5/sqrt N ›, symmetric])
apply (rule preserves-intersect-ket)
apply (simp add: preserves-mono[OF preserves-no-zero ′])

apply (rule preserves-mono[OF preserves-num ′])
by auto

8.1 Zero-finding is hard for q-query adversaries
lemma zero-finding-is-hard:

fixes program :: ‹(′mem, ′x, ′y) program›
and adv-output :: ‹ ′x update ⇒ ′mem update›
and initial-state

assumes [iff]: ‹valid-program program›
assumes ‹norm initial-state = 1 ›
assumes [register]: ‹register adv-output›
shows ‹(

∑
h∈UNIV .

∑
x|h x = 0 . measurement-probability adv-output (exec-program h program

initial-state) x) / CARD(′x ⇒ ′y)
≤ (5 ∗ real (query-count program) + 11)2 / N ›

proof −
note [[simproc del: Laws-Quantum.compatibility-warn]]

In this game based proof, we consider three different quantum memory models:

• The one from the statement of the lemma, where the overall quantum state lives in ′mem,
and the adversary output register is described by adv-output, and the initial state in
initial-state. The program program assumes this memory model.

• The "extra output" (short XO) memory model, where there is an extra auxiliary register
aux of type ′y. The type of the memory is then ′mem × ′y. (I.e., the extra register is in
addition to the content of ′mem.)

• The "compressed oracle" (short CO) memory model, where additionally to XO, we have
an oracle register that can holds the content of the compressed oracle (or the standard
oracle).

Since the register adv-output is defined w.r.t. a specific memory, we define convenience defini-
tions for the same register as it would be accessed in the other memories:

156

define adv-output-in-xo :: ‹ ′x update⇒ (′mem× ′y) update› where ‹adv-output-in-xo = Fst o adv-output›
define adv-output-in-co :: ‹ ′x update ⇒ ((′mem× ′y) × (′x⇀ ′y)) update› where ‹adv-output-in-co =

Fst o adv-output-in-xo›

Analogously, we defined the aux-register and the oracle register in the applicable memories:
define aux-in-xo :: ‹ ′y update ⇒ (′mem× ′y) update› where ‹aux-in-xo = Snd›
define aux-in-co :: ‹ ′y update ⇒ ((′mem× ′y) × (′x⇀ ′y)) update› where ‹aux-in-co = Fst o aux-in-xo›
define oracle-in-co :: ‹(′x⇀ ′y) update ⇒ ((′mem× ′y) × (′x⇀ ′y)) update› where ‹oracle-in-co = Snd›
define aao-in-co where ‹aao-in-co = (adv-output-in-co; (aux-in-co; oracle-in-co))›

— Abbreviation since we use this combination often.

have [register]: ‹compatible aux-in-co oracle-in-co›
by (simp add: adv-output-in-co-def aux-in-co-def oracle-in-co-def adv-output-in-xo-def aux-in-xo-def)

have [register]: ‹compatible adv-output-in-xo aux-in-xo›
by (simp add: adv-output-in-xo-def aux-in-xo-def)

have [register]: ‹compatible adv-output-in-co aux-in-co›
by (simp add: adv-output-in-co-def aux-in-co-def)

have [register]: ‹compatible adv-output-in-co oracle-in-co›
by (simp add: adv-output-in-co-def oracle-in-co-def)

have [register]: ‹compatible aux-in-xo Fst›
by (simp add: aux-in-xo-def)

have [register]: ‹compatible aux-in-co (Fst o Fst)›
by (simp add: aux-in-co-def)

have [register]: ‹compatible aux-in-co Snd›
by (simp add: aux-in-co-def)

have [register]: ‹register aao-in-co›
by (simp add: aao-in-co-def)

The initial states in XO/CO are like the original initial state, but with ket 0 in aux and ket
(λx. None) (the fully undefined function) in the oracle register.

define initial-state-in-xo where ‹initial-state-in-xo = initial-state ⊗s ket (0 :: ′y)›
define initial-state-in-co :: ‹((′mem× ′y) × (′x⇀ ′y)) ell2 › where ‹initial-state-in-co = initial-state-in-xo
⊗s ket Map.empty›

We define an extended program ext-program that executes program, followed by one additional
query to the oracle. Input register is the adversary output register. Output register is the
additional register aux. Hence ext-program is only meaningful in the models XO and CO. (Our
definition is for XO.)

define ext-program where ‹ext-program = lift-program Fst program @ [QueryStep adv-output-in-xo
aux-in-xo]›

have [iff]: ‹valid-program ext-program›
by (auto intro!: valid-program-lift simp add: valid-program-append adv-output-in-xo-def aux-in-xo-def

ext-program-def)

We define the final states of the programs program and ext-program, in the original model, and
in XO, and CO.

define final :: ‹(′x ⇒ ′y) ⇒ ′mem ell2 › where ‹final h = exec-program h program initial-state› for h
define xo-ext-final :: ‹(′x ⇒ ′y)⇒ (′mem× ′y) ell2 › where ‹xo-ext-final h = exec-program h ext-program

initial-state-in-xo› for h
define xo-final :: ‹(′x ⇒ ′y) ⇒ (′mem× ′y) ell2 › where ‹xo-final h = exec-program h (lift-program Fst

program) initial-state-in-xo› for h
define co-ext-final :: ‹((′mem× ′y) × (′x⇀ ′y)) ell2 › where ‹co-ext-final = exec-program-with query ′

ext-program initial-state-in-co›

157

define co-final :: ‹((′mem× ′y) × (′x⇀ ′y)) ell2 › where ‹co-final = exec-program-with query ′ (lift-program
Fst program) initial-state-in-co›

have [simp]: ‹norm initial-state-in-xo = 1 ›
by (simp add: initial-state-in-xo-def norm-tensor-ell2 assms)

have norm-initial-state-in-co[simp]: ‹norm initial-state-in-co = 1 ›
by (simp add: initial-state-in-co-def norm-tensor-ell2)

have norm-co-final[simp]: ‹norm co-final ≤ 1 ›
unfolding co-final-def
using norm-exec-program-with valid-program-lift ‹valid-program program›

norm-query ′ register-Fst norm-initial-state-in-co
by smt

We derive the relationships between the various final states:
have co-ext-final-prefinal: ‹co-ext-final = aao-in-co query ′ ∗V co-final›

by (simp add: co-ext-final-def ext-program-def exec-program-with-append aao-in-co-def
flip: initial-state-in-co-def co-final-def adv-output-in-co-def aux-in-co-def oracle-in-co-def)

have xo-final-final: ‹xo-final h = final h ⊗s ket 0 › for h
by (simp add: xo-final-def final-def initial-state-in-xo-def exec-lift-program-Fst)

have xo-ext-final-xo-final: ‹xo-ext-final h = (adv-output-in-xo;aux-in-xo) (function-oracle h) ∗V xo-final
h› for h

by (simp add: xo-ext-final-def xo-final-def ext-program-def exec-program-def)

After executing program (in XO), the aux-register is in state ket 0 :
have xo-final-has-y0 : ‹dist-inv-avg (adv-output-in-xo;aux-in-xo) (λ-. ket-invariant {(x,y). y = 0})

xo-final = 0 ›
proof −

have ‹dist-inv-avg aux-in-xo (λ-:: ′x⇒ ′y. ket-invariant {0}) xo-final
≤ dist-inv-avg aux-in-xo (λ-:: ′x⇒ ′y. ket-invariant {0}) (λh. initial-state-in-xo)›

unfolding xo-final-def
apply (subst dist-inv-avg-exec-compatible)
using dist-inv-avg-exec-compatible
by auto

also have ‹. . . = 0 ›
by (auto intro!: tensor-ell2-in-tensor-ccsubspace ket-in-ket-invariantI

simp add: initial-state-in-xo-def dist-inv-0-iff distance-from-inv-avg0I aux-in-xo-def lift-Snd-inv)
finally have ‹dist-inv-avg aux-in-xo (λ-. ket-invariant {0}) xo-final = 0 ›

by (smt (verit, ccfv-SIG) dist-inv-avg-pos)
then show ?thesis

apply (rewrite at ‹{(x, y). y = 0}› to ‹UNIV × {0}› DEADID.rel-mono-strong, blast)
apply (subst dist-inv-avg-register-rewrite)
by (simp-all add: lift-inv-prod)

qed

Same as xo-final-has-y0, but in CO:
have co-final-has-y0 : ‹dist-inv aao-in-co (ket-invariant {(x,y,D). y = 0}) co-final = 0 ›
proof −

have ‹dist-inv aux-in-co (ket-invariant {0}) co-final
≤ dist-inv aux-in-co (ket-invariant {0}) initial-state-in-co›

unfolding co-final-def
apply (rule dist-inv-exec ′-compatible)
by simp-all

158

also have ‹. . . = 0 ›
by (auto intro!: tensor-ell2-in-tensor-ccsubspace ket-in-ket-invariantI

simp add: initial-state-in-co-def initial-state-in-xo-def dist-inv-0-iff
aux-in-co-def aux-in-xo-def lift-Fst-inv lift-Snd-inv lift-invariant-comp)

finally have ‹dist-inv aux-in-co (ket-invariant {0}) co-final = 0 ›
by (smt (verit, best) dist-inv-pos)

then show ?thesis
apply (rewrite at ‹{(x, y, D). y = 0}› to ‹UNIV × {0} × UNIV › DEADID.rel-mono-strong,

blast)
apply (subst dist-inv-register-rewrite)
by (simp-all add: lift-inv-prod aao-in-co-def)

qed

define q where ‹q = query-count program›

The following term occurs a lot (it’s how much the no-zero invariant is preserved after running
ext-program). So we abbreviate it as d.

define d :: real where ‹d = (5 ∗ q + 11) / sqrt N ›

have [iff]: ‹d ≥ 0 ›
by (simp add: d-def)

have ‹dist-inv oracle-in-co (ket-invariant no-zero ′) co-ext-final ≤ 5 ∗ (q+1) / sqrt N ›
— In CO-execution, before the adversary’s final query, the oracle register has no 0 in its range

proof (unfold co-ext-final-def , rule dist-inv-induct[where g=‹λ-. 5 / sqrt N › and J=‹λ-. ket-invariant
no-zero ′›])

show ‹compatible oracle-in-co Fst›
using oracle-in-co-def by simp

show ‹initial-state-in-co ∈ space-as-set (lift-invariant oracle-in-co (ket-invariant no-zero ′))›
by (auto intro!: tensor-ell2-in-tensor-ccsubspace

simp add: initial-state-in-co-def oracle-in-co-def lift-Snd-ket-inv
initial-state-in-xo-def tensor-ell2-ket ket-in-ket-invariantI no-zero ′-def

simp flip: ket-invariant-tensor)
show ‹ket-invariant no-zero ′ ≤ ket-invariant no-zero ′›

by simp
show ‹valid-program ext-program›

by (simp add: valid-program-lift)
show ‹preserves ((Fst ◦ X-in-xo;(Fst ◦ Y-in-xo;Snd)) query ′) (lift-invariant oracle-in-co (ket-invariant

no-zero ′))
(lift-invariant oracle-in-co (ket-invariant no-zero ′)) (5 / sqrt N)› if [register]: ‹compatible X-in-xo

Y-in-xo› for X-in-xo Y-in-xo
proof −

from preserves-no-zero ′
have ‹preserves ((Fst ◦ X-in-xo;(Fst ◦ Y-in-xo;Snd)) query ′)

(lift-invariant (Fst ◦ X-in-xo;(Fst ◦ Y-in-xo;Snd)) (ket-invariant no-zero))
(lift-invariant (Fst ◦ X-in-xo;(Fst ◦ Y-in-xo;Snd)) (ket-invariant no-zero))
(5 / sqrt (real N))›

unfolding N-def
apply (rule preserves-lift-invariant[THEN iffD2 , rotated])
by simp

moreover have ‹lift-invariant (Fst ◦ X-in-xo;(Fst ◦ Y-in-xo;Snd)) (ket-invariant no-zero)
= lift-invariant oracle-in-co (ket-invariant no-zero ′)›

by (simp add: oracle-in-co-def no-zero-no-zero ′ lift-inv-prod)
finally show ?thesis

by −

159

qed
show ‹norm query ′ ≤ 1 ›

by simp
show ‹norm initial-state-in-co ≤ 1 ›

by simp
show ‹(

∑
i<query-count ext-program. 5 / sqrt N) ≤ real (5 ∗ (q+1)) / sqrt N ›

apply (simp add: query-count-lift-program ext-program-def flip: q-def)
by argo

qed

then have dist-zero: ‹dist-inv aao-in-co (ket-invariant no-zero) co-ext-final ≤ 5 ∗ (q+1) / sqrt N ›
— Same thing, but expressed w.r.t. different register

apply (rule le-back-subst)
apply (rule dist-inv-register-rewrite)
by (auto intro!: simp: aao-in-co-def no-zero-no-zero ′ lift-inv-prod)

have dist-Dxy: ‹dist-inv aao-in-co (ket-invariant {(x,y,D). D x = Some y}) co-ext-final ≤ 6 / sqrt N ›
(is ‹?lhs ≤ -›)

unfolding co-ext-final-prefinal
apply (rule dist-inv-leq-if-preserves[THEN order-trans])

apply (subst preserves-lift-invariant)
apply (auto intro!: preserves-ket-query ′-output-simple simp: register-norm)[4]

using norm-co-final
by (simp add: N-def co-final-has-y0 field-class.field-divide-inverse)

have ‹dist-inv aao-in-co
(ket-invariant {(x, y, D:: ′x ⇀ ′y). 0 /∈ ran D ∧ D x = Some y}) co-ext-final ≤ d› (is ‹?lhs ≤

d›)
— In CO-execution, after the adversary’s final query, the oracle register has no 0 in its range, and

the aux register contains the output of the oracle function evaluated on the adversary output register.
proof −

have ‹?lhs = dist-inv aao-in-co (ket-invariant no-zero u ket-invariant {(x, y, D). D x = Some y})
co-ext-final›

apply (rule arg-cong3 [where f =dist-inv])
by (auto intro!: simp: no-zero-def ket-invariant-inter)

also have ‹. . . ≤ sqrt ((dist-inv aao-in-co (ket-invariant no-zero) co-ext-final)2
+ (dist-inv aao-in-co (ket-invariant {(x, y, D). D x = Some y}) co-ext-final)2)›

apply (rule dist-inv-intersect)
by auto

also have ‹. . . ≤ sqrt ((5 ∗ (q+1) / sqrt N)2 + (6 / sqrt N)2)›
apply (rule real-sqrt-le-mono)
apply (rule add-mono)
using dist-zero dist-Dxy
by auto

also have ‹. . . ≤ (5 ∗ q + 11) / sqrt N ›
apply (rule sqrt-sum-squares-le-sum[THEN order-trans])
by (auto, argo)

finally show ?thesis
by (simp add: d-def)

qed
then have ‹dist-inv aao-in-co (ket-invariant {(x, y, D:: ′x ⇀ ′y). y 6= 0}) co-ext-final ≤ d›

— In CO-execution, after the adversary’s final query, the adversary output register is not 0.
apply (rule le-back-subst-le)
apply (rule dist-inv-mono)
by (auto intro!: ranI)

160

then have ‹dist-inv (adv-output-in-co; aux-in-co) (ket-invariant {(x, y). y 6= 0}) co-ext-final ≤ d›
— As before, but with respect to a different register (without the oracle register that doesn’t exist in

XO).
apply (rule le-back-subst)
apply (rule dist-inv-register-rewrite)

apply (simp, simp)
apply (rewrite at ‹{(x, y, D). y 6= 0}›

to ‹(λ((a,b),c). (a,b,c)) ‘ ({(x, y) | x y. y 6= 0} × UNIV)› DEADID.rel-mono-strong)
apply force

by (simp add: ket-invariant-image-assoc pair-o-assoc pair-o-assoc[unfolded o-def] lift-inv-prod aao-in-co-def
flip: lift-invariant-comp[unfolded o-def , THEN fun-cong])

then have ‹dist-inv-avg (adv-output-in-xo; aux-in-xo) (λh. ket-invariant {(x, y). y 6= 0}) xo-ext-final
≤ d›

— In XO-execution, after the adversary’s final query, the auxiliary register is not 0.
apply (rule le-back-subst)
unfolding co-ext-final-def xo-ext-final-def

apply (rewrite at ‹(adv-output-in-co;aux-in-co)› to ‹Fst o (adv-output-in-xo;aux-in-xo)› DEADID.rel-mono-strong)
apply (simp add: adv-output-in-co-def aux-in-co-def register-comp-pair)

by (simp add: initial-state-in-co-def dist-inv-exec-query ′-exec-fixed)
then have ‹dist-inv-avg (adv-output-in-xo; aux-in-xo)

(λh. ket-invariant {(x, y). h x 6= 0 ∨ y 6= 0}) xo-final ≤ d›
— In XO-execution, before the adversary’s final query, h x 6= 0 or y 6= 0.
apply (rule le-back-subst-le)
unfolding xo-ext-final-xo-final[abs-def]
apply (subst dist-inv-avg-apply-iff)
by (auto intro!: ext dist-inv-avg-mono simp: function-oracle-ket-invariant)

then have ∗: ‹dist-inv-avg (adv-output-in-xo; aux-in-xo)
(λh. ket-invariant {(x, y). h x 6= 0}) xo-final ≤ d›

— In XO-execution, before the adversary’s final query, h x 6= 0.
apply (rule le-back-subst-le)
apply (rule ord-le-eq-trans)
apply (rule dist-inv-avg-mono[where I=‹λh. ket-invariant {(x, y). h x 6= 0 ∨ y 6= 0} u ket-invariant

{(x,y). y=0}›])
apply (auto simp: ket-invariant-inter)[2]

apply (rule dist-inv-avg-intersect)
apply simp-all[2]

by (fact xo-final-has-y0)
then have ‹dist-inv-avg adv-output-in-xo

(λh. ket-invariant {x. h x 6= 0}) xo-final ≤ d›
apply (subst dist-inv-avg-register-rewrite[where R=‹(adv-output-in-xo; aux-in-xo)› and J=‹λh.

ket-invariant {(x, y). h x 6= 0}›])
apply (simp, simp)

apply (rewrite at ‹{(x, y). h x 6= 0}› in for (h) to ‹{x. h x 6= 0} × UNIV › DEADID.rel-mono-strong)
apply fastforce

by (simp add: lift-inv-prod)
then have ‹dist-inv-avg adv-output (λh. ket-invariant {x. h x 6= 0}) final ≤ d›

by (simp add: xo-final-final[abs-def] adv-output-in-xo-def dist-inv-avg-Fst-tensor)
then have ‹(

∑
h∈UNIV .

∑
x|h x = 0 . measurement-probability adv-output (final h) x) / CARD(′x

⇒ ′y) ≤ d2›
apply (subst dist-inv-avg-measurement-probability)
apply simp

apply (rewrite at ‹− {x. h x = 0}› in ‹λh. ◊› to ‹{x. h x 6= 0}› DEADID.rel-mono-strong)
apply blast

by auto
also have ‹d2 = (5 ∗ q + 11)2 / N ›

161

by (simp add: d-def power2-eq-square)
finally show ?thesis

by (simp add: final-def q-def)
qed

end

end

9 Aux-Sturm-Calculation – Auxiliary theory for technical reasons.
theory Aux-Sturm-Calculation imports

Sturm-Sequences.Sturm
begin

We prove this fact in a separate theory because in Collision.thy, the sturm method fails with
an internal error.
lemma sturm-calculation: ‹12 ∗ (r2+154)^3 − (10/3 ∗ (r+2)^3 + 20)2 6= 0 › if ‹r ≥ 0 › for r :: real

by sturm

end

10 Collision Invariant preservation for collision resistance
theory Collision imports

CO-Invariants
Oracle-Programs
Aux-Sturm-Calculation

begin

context compressed-oracle begin

definition ‹no-collision = {(x,y,D:: ′x⇀ ′y). inj-map D}›
definition ‹no-collision ′ = {D:: ′x⇀ ′y. inj-map D}›

lemma no-collision-no-collision ′: ‹no-collision = UNIV × UNIV × no-collision ′›
by (auto intro!: simp: no-collision-def no-collision ′-def)

lemma ket-invariant-no-collision-no-collision ′: ‹ket-invariant no-collision = > ⊗S > ⊗S ket-invariant
no-collision ′›

by (auto simp: ket-invariant-tensor no-collision-no-collision ′ simp flip: ket-invariant-UNIV)

We show the preservation of the no-collision invariant. We show it with respect to the oracle
query first.
lemma preserves-no-collision: ‹preserves-ket query (no-collision ∩ num-queries q) no-collision (6 ∗ sqrt
q / sqrt N)›
proof −

define K where ‹K = (λ(x:: ′x,D0 :: ′x⇀ ′y). ket-invariant {(x, y, D0 (x:=d)) | (y:: ′y) d.
D0 x = None ∧ card (dom D0) ≤ q ∧ inj-map D0})›

define I1 J1 :: ‹(′x⇀ ′y) ⇒ (′y × ′y option) set›
where ‹I1 D0 = UNIV × (if card (dom D0) ≤ q then − Some ‘ ran D0 else {})›

and ‹J1 D0 = (UNIV × − Some ‘ ran D0)›

162

for D0 :: ‹ ′x ⇀ ′y›

show ?thesis
proof (rule inv-split-reg-query[where X=‹reg-1-3 › and Y =‹reg-2-3 › and H=‹reg-3-3 › and K=K

and ?I1 .0=‹λ(x,D0). ket-invariant (I1 D0)› and ?J1 .0=‹λ(x,D0). ket-invariant (J1 D0)›])
show ‹query = (reg-1-3 ;(reg-2-3 ;reg-3-3)) query›

by (auto simp: reg-1-3-def reg-2-3-def reg-3-3-def pair-Fst-Snd)
show ‹compatible reg-1-3 reg-2-3 › ‹compatible reg-1-3 reg-3-3 › ‹compatible reg-2-3 reg-3-3 ›

by simp-all
show ‹compatible-register-invariant reg-2-3 (K xD0)› for xD0

apply (cases xD0)
by (auto simp add: K-def reg-2-3-def

intro!: compatible-register-invariant-Snd-comp compatible-register-invariant-Fst)
show ‹compatible-register-invariant (reg-3-3 o function-at (fst xD0)) (K xD0)› for xD0

apply (cases xD0)
by (auto simp add: K-def reg-3-3-def comp-assoc

intro!: compatible-register-invariant-Snd-comp compatible-register-invariant-Fst
compatible-register-invariant-function-at)

have aux: ‹inj-map b =⇒
card (dom b) ≤ q =⇒
∃ ba. (card (dom ba) ≤ q −→

(∃ d. b = ba(a := d)) ∧ ba a = None ∧ inj-map ba ∧ b a /∈ Some ‘ ran ba) ∧
card (dom ba) ≤ q› for b a

apply (intro exI [of - ‹b(a:=None)›] exI [of - ‹b a›] impI conjI)
apply fastforce

apply force
apply (smt (verit, ccfv-SIG) array-rules(2) inj-map-def)

apply (auto simp: ran-def inj-map-def)[1]
by (simp add: dom-fun-upd card-Diff1-le[THEN order-trans])

show ‹ket-invariant (no-collision ∩ num-queries q)
≤ (SUP xD0∈UNIV . K xD0 u lift-invariant (reg-2-3 ;reg-3-3 ◦ function-at (fst xD0)) (case xD0

of (x, D0) ⇒ ket-invariant (I1 D0)))›
by (auto intro!: aux simp add: K-def lift-Fst-ket-inv reg-1-3-def reg-2-3-def ket-invariant-inter

ket-invariant-SUP[symmetric] I1-def
lift-inv-prod lift-invariant-comp lift-invariant-function-at-ket-inv reg-3-3-def lift-Snd-ket-inv

case-prod-beta
no-collision-def num-queries-def)

have aux: ‹d /∈ Some ‘ ran (snd xD0) =⇒ inj-map (snd xD0) =⇒ inj-map ((snd xD0)(fst xD0 :=
d))› for d xD0

by (smt (verit, del-insts) fun-upd-other fun-upd-same image-iff inj-map-def not-Some-eq ranI)
show ‹K xD0 u lift-invariant (reg-2-3 ;reg-3-3 ◦ function-at (fst xD0)) (case xD0 of (x, D0) ⇒

ket-invariant (J1 D0))
≤ ket-invariant no-collision› for xD0

apply (simp add: K-def lift-Fst-ket-inv reg-1-3-def reg-2-3-def ket-invariant-inter
ket-invariant-SUP[symmetric] J1-def lift-inv-prod lift-invariant-comp
lift-invariant-function-at-ket-inv reg-3-3-def lift-Snd-ket-inv case-prod-beta)

unfolding no-collision-def
using aux[of - xD0] by auto

have aux: ‹b aa = None =⇒
ba aa = None =⇒
b 6= ba =⇒
card (dom b) ≤ q =⇒
inj-map b =⇒ card (dom ba) ≤ q =⇒ inj-map ba =⇒ b(aa := d) 6= ba(aa := da)›

for aa b ba d da

163

by (metis fun-upd-triv fun-upd-upd)
have aux: ‹

∧
b aa ba d da.

b(aa := d) = ba(aa := da) =⇒
b aa = None =⇒
ba aa = None =⇒
b 6= ba =⇒
card (dom b) ≤ q =⇒
inj-map b =⇒ card (dom ba) ≤ q =⇒ inj-map ba =⇒ False›

by (metis fun-upd-triv fun-upd-upd)
show ‹orthogonal-spaces (K xD0) (K xD0 ′)› if ‹xD0 6= xD0 ′› for xD0 xD0 ′

apply (cases xD0 ; cases xD0 ′)
unfolding K-def using that by (auto elim!: aux)

have ‹preserves-ket query1 (I1 D0) (J1 D0) (6 ∗ sqrt q / sqrt N)› for D0 :: ‹ ′x⇀ ′y›
proof (cases ‹card (dom D0) ≤ q›)

case True
have [simp]: ‹card (ran D0) ≤ q›

using True ran-smaller-dom[of D0] by simp
show ?thesis

apply (simp add: I1-def J1-def True)
apply (rule preserve-query1-simplified)
by (auto simp add: inj-vimage-image-eq vimage-Compl)

next
case False
then show ?thesis

unfolding I1-def by simp
qed
then show ‹preserves query1 (case xD0 of (x, D0) ⇒ ket-invariant (I1 D0)) (case xD0 of (x:: ′x,

D0) ⇒ ket-invariant (J1 D0)) (6 ∗ sqrt q / sqrt N)› for xD0
apply (cases xD0) by auto

show ‹6 ∗ sqrt q / sqrt N ≥ 0 ›
by auto

show ‹K xD0 ≤ lift-invariant reg-1-3 (ket-invariant {fst xD0})› for xD0
apply (cases xD0)
by (auto simp add: K-def reg-1-3-def lift-Fst-ket-inv)

qed simp
qed

Like preserves-no-collision but with respect to the oracle query.
lemma preserves-no-collision ′: ‹preserves-ket query ′ (no-collision ∩ num-queries q) no-collision (5 ∗
sqrt q / sqrt N)›
proof −

define K where ‹K = (λ(x:: ′x,D0 :: ′x⇀ ′y). ket-invariant {(x, y, D0 (x:=d)) | (y:: ′y) d.
D0 x = None ∧ card (dom D0) ≤ q ∧ inj-map D0})›

define I1 J1 :: ‹(′x⇀ ′y) ⇒ (′y × ′y option) set›
where ‹I1 D0 = UNIV × (if card (dom D0) ≤ q then − Some ‘ ran D0 else {})›

and ‹J1 D0 = (UNIV × − Some ‘ ran D0)›
for D0 :: ‹ ′x ⇀ ′y›

show ?thesis
proof (rule inv-split-reg-query ′[where X=‹reg-1-3 › and Y =‹reg-2-3 › and H=‹reg-3-3 › and K=K

and ?I1 .0=‹λ(x,D0). ket-invariant (I1 D0)› and ?J1 .0=‹λ(x,D0). ket-invariant (J1 D0)›])
show ‹query ′ = (reg-1-3 ;(reg-2-3 ;reg-3-3)) query ′›

by (simp add: reg-1-3-def reg-2-3-def reg-3-3-def pair-Fst-Snd)
show ‹compatible reg-1-3 reg-2-3 › ‹compatible reg-1-3 reg-3-3 › ‹compatible reg-2-3 reg-3-3 ›

164

by simp-all
show ‹compatible-register-invariant reg-2-3 (K xD0)› for xD0

apply (cases xD0)
by (auto simp add: K-def reg-2-3-def

intro!: compatible-register-invariant-Snd-comp compatible-register-invariant-Fst)
show ‹compatible-register-invariant (reg-3-3 o function-at (fst xD0)) (K xD0)› for xD0

apply (cases xD0)
by (auto simp add: K-def reg-3-3-def comp-assoc

intro!: compatible-register-invariant-Snd-comp compatible-register-invariant-Fst
compatible-register-invariant-function-at)

have aux: ‹inj-map b =⇒
card (dom b) ≤ q =⇒
∃ ba. (card (dom ba) ≤ q −→

(∃ d. b = ba(a := d)) ∧ ba a = None ∧ inj-map ba ∧ b a /∈ Some ‘ ran ba) ∧
card (dom ba) ≤ q› for a b

apply (intro exI [of - ‹b(a:=None)›] exI [of - ‹b a›] impI conjI)
apply fastforce

apply force
apply (smt (verit, ccfv-SIG) array-rules(2) inj-map-def)

apply (auto simp: ran-def inj-map-def)[1]
by (simp add: dom-fun-upd card-Diff1-le[THEN order-trans])

show ‹ket-invariant (no-collision ∩ num-queries q)
≤ (SUP xD0∈UNIV . K xD0 u lift-invariant (reg-2-3 ;reg-3-3 ◦ function-at (fst xD0)) (case xD0

of (x, D0) ⇒ ket-invariant (I1 D0)))›
by (auto intro!: aux simp add: K-def lift-Fst-ket-inv reg-1-3-def reg-2-3-def ket-invariant-inter

ket-invariant-SUP[symmetric] I1-def
lift-inv-prod lift-invariant-comp lift-invariant-function-at-ket-inv reg-3-3-def lift-Snd-ket-inv

case-prod-beta
no-collision-def num-queries-def)

show ‹K xD0 u lift-invariant (reg-2-3 ;reg-3-3 ◦ function-at (fst xD0)) (case xD0 of (x, D0) ⇒
ket-invariant (J1 D0))

≤ ket-invariant no-collision› for xD0
proof −

have aux: ‹d /∈ Some ‘ ran (snd xD0) =⇒
snd xD0 (fst xD0) = None =⇒
card (dom (snd xD0)) ≤ q =⇒ inj-map (snd xD0) =⇒ inj-map ((snd xD0)(fst xD0 := d))› for

d
by (smt (verit, del-insts) fun-upd-other fun-upd-same image-iff inj-map-def not-Some-eq ranI)

show ?thesis
apply (simp add: K-def lift-Fst-ket-inv reg-1-3-def reg-2-3-def ket-invariant-inter

ket-invariant-SUP[symmetric] J1-def lift-inv-prod lift-invariant-comp
lift-invariant-function-at-ket-inv reg-3-3-def lift-Snd-ket-inv case-prod-beta no-collision-def)

using aux by auto
qed
have aux: ‹b aa = None =⇒ ba aa = None =⇒ b 6= ba =⇒ b(aa := d) = ba(aa := da) =⇒ False›

for aa b ba d da
by (metis fun-upd-triv fun-upd-upd)

show ‹orthogonal-spaces (K xD0) (K xD0 ′)› if ‹xD0 6= xD0 ′› for xD0 xD0 ′
apply (cases xD0 ; cases xD0 ′)
unfolding K-def using that aux by auto

have ‹preserves-ket query1 ′ (I1 D0) (J1 D0) (5 ∗ sqrt q / sqrt N)› for D0 :: ‹ ′x⇀ ′y›
proof (cases ‹card (dom D0) ≤ q›)

case True
have [simp]: ‹card (ran D0) ≤ q›

using True ran-smaller-dom[of D0] by simp

165

show ?thesis
apply (simp add: I1-def J1-def True)
apply (rule preserve-query1 ′-simplified)
by (auto simp add: inj-vimage-image-eq vimage-Compl)

next
case False
then show ?thesis

unfolding I1-def by simp
qed
then show ‹preserves query1 ′ (case xD0 of (x, D0) ⇒ ket-invariant (I1 D0)) (case xD0 of (x:: ′x,

D0) ⇒ ket-invariant (J1 D0)) (5 ∗ sqrt q / sqrt N)› for xD0
apply (cases xD0) by auto

show ‹5 ∗ sqrt q / sqrt N ≥ 0 ›
by auto

show ‹K xD0 ≤ lift-invariant reg-1-3 (ket-invariant {fst xD0})› for xD0
apply (cases xD0)
by (auto simp add: K-def reg-1-3-def lift-Fst-ket-inv)

qed simp
qed

lemma preserves-no-collision-num: ‹preserves-ket query (no-collision ∩ num-queries q) (no-collision ∩
num-queries (q+1)) (6 ∗ sqrt q / sqrt N)›

apply (subst add-0-right[of ‹6 ∗ sqrt q / sqrt N ›, symmetric])
apply (rule preserves-intersect-ket)
apply (rule preserves-no-collision)

apply (rule preserves-mono[OF preserves-num])
by auto

lemma preserves-no-collision ′-num: ‹preserves-ket query ′ (no-collision ∩ num-queries q) (no-collision
∩ num-queries (q+1)) (5 ∗ sqrt q / sqrt N)›

apply (subst add-0-right[of ‹5 ∗ sqrt q / sqrt N ›, symmetric])
apply (rule preserves-intersect-ket)
apply (rule preserves-no-collision ′)

apply (rule preserves-mono[OF preserves-num ′])
by auto

10.1 Collision-finding is hard for q-query adversaries
lemma collision-finding-is-hard:

fixes program :: ‹(′mem, ′x, ′y) program›
and adv-output :: ‹(′x × ′x) update ⇒ ′mem update›
and initial-state

assumes [iff]: ‹valid-program program›
assumes ‹norm initial-state = 1 ›
assumes [register]: ‹register adv-output›
shows ‹(

∑
h∈UNIV .

∑
(x1 ,x2)|x1 6= x2 ∧ h x1 = h x2 . measurement-probability adv-output (exec-program

h program initial-state) (x1 ,x2)) / CARD(′x ⇒ ′y)
≤ 12 ∗ (query-count program + 154)^3 / N ›

proof −
note [[simproc del: Laws-Quantum.compatibility-warn]]

In this game based proof, we consider three different quantum memory models:

• The one from the statement of the lemma, where the overall quantum state lives in ′mem,
and the adversary output register is described by adv-output, and the initial state in
initial-state. The program program assumes this memory model.

166

• The "extra output" (short XO) memory model, where there is an extra auxiliary register
aux of type ′y × ′y. The type of the memory is then ′mem × ′y × ′y. (I.e., the extra
register is in addition to the content of ′mem.)

• The "compressed oracle" (short CO) memory model, where additionally to XO, we have
an oracle register that can holds the content of the compressed oracle (or the standard
oracle).

Since the register adv-output is defined w.r.t. a specific memory, we define convenience defini-
tions for the same register as it would be accessed in the other memories:

define adv-output-in-xo :: ‹(′x× ′x) update ⇒ (′mem× ′y× ′y) update› where ‹adv-output-in-xo = Fst
o adv-output›
define adv-output-in-co :: ‹(′x× ′x) update⇒ ((′mem× ′y× ′y) × (′x⇀ ′y)) update› where ‹adv-output-in-co

= Fst o adv-output-in-xo›

Analogously, we defined the aux-register and the oracle register in the applicable memories:
define aux-in-xo :: ‹(′y× ′y) update ⇒ (′mem× ′y× ′y) update› where ‹aux-in-xo = Snd›
define aux-in-co :: ‹(′y× ′y) update ⇒ ((′mem× ′y× ′y) × (′x⇀ ′y)) update› where ‹aux-in-co = Fst o

aux-in-xo›
define oracle-in-co :: ‹(′x⇀ ′y) update ⇒ ((′mem× ′y× ′y) × (′x⇀ ′y)) update› where ‹oracle-in-co =

Snd›
define aao-in-co where ‹aao-in-co = (adv-output-in-co; (aux-in-co; oracle-in-co))›

— Abbreviation since we use this combination often.

have [register]: ‹compatible aux-in-co oracle-in-co›
by (simp add: adv-output-in-co-def aux-in-co-def oracle-in-co-def adv-output-in-xo-def aux-in-xo-def)

have [register]: ‹compatible adv-output-in-xo aux-in-xo›
by (simp add: adv-output-in-xo-def aux-in-xo-def)

have [register]: ‹compatible adv-output-in-co aux-in-co›
by (simp add: adv-output-in-co-def aux-in-co-def)

have [register]: ‹compatible adv-output-in-co oracle-in-co›
by (simp add: adv-output-in-co-def oracle-in-co-def)

have [register]: ‹compatible aux-in-xo Fst›
by (simp add: aux-in-xo-def)

have [register]: ‹compatible aux-in-co (Fst o Fst)›
by (simp add: aux-in-co-def)

have [register]: ‹compatible aux-in-co Snd›
by (simp add: aux-in-co-def)

have [register]: ‹register aao-in-co›
by (simp add: aao-in-co-def)

The initial states in XO/CO are like the original initial state, but with ket (0 , 0) in aux and
ket (λx. None) (the fully undefined function) in the oracle register.

define initial-state-in-xo where ‹initial-state-in-xo = initial-state ⊗s ket ((0 ,0) :: ′y× ′y)›
define initial-state-in-co :: ‹((′mem× ′y× ′y) × (′x⇀ ′y)) ell2 › where ‹initial-state-in-co = initial-state-in-xo
⊗s ket Map.empty›

We define an extended program ext-program that executes program, followed by two additional
queries to the oracle. Input register is the adversary output register. Output register is the
additional register aux. Hence ext-program is only meaningful in the models XO and CO. (Our
definition is for XO.)

define ext-program where ‹ext-program = lift-program Fst program

167

@ [QueryStep (adv-output-in-xo o Fst) (aux-in-xo o Fst), QueryStep (adv-output-in-xo o Snd)
(aux-in-xo o Snd)]›

have [iff]: ‹valid-program ext-program›
by (auto intro!: valid-program-lift simp add: valid-program-append adv-output-in-xo-def aux-in-xo-def

ext-program-def)

We define the final states of the programs program and ext-program, in the original model, and
in XO, and CO.

define final :: ‹(′x ⇒ ′y) ⇒ ′mem ell2 › where ‹final h = exec-program h program initial-state› for h
define xo-ext-final :: ‹(′x ⇒ ′y) ⇒ (′mem× ′y× ′y) ell2 › where ‹xo-ext-final h = exec-program h

ext-program initial-state-in-xo› for h
define xo-final :: ‹(′x ⇒ ′y) ⇒ (′mem× ′y× ′y) ell2 › where ‹xo-final h = exec-program h (lift-program

Fst program) initial-state-in-xo› for h
define co-ext-final :: ‹((′mem× ′y× ′y) × (′x⇀ ′y)) ell2 › where ‹co-ext-final = exec-program-with query ′

ext-program initial-state-in-co›
define co-final :: ‹((′mem× ′y× ′y) × (′x⇀ ′y)) ell2 › where ‹co-final = exec-program-with query ′

(lift-program Fst program) initial-state-in-co›

have [simp]: ‹norm initial-state-in-xo = 1 ›
by (simp add: initial-state-in-xo-def norm-tensor-ell2 assms)

have norm-initial-state-in-co[simp]: ‹norm initial-state-in-co = 1 ›
by (simp add: initial-state-in-co-def norm-tensor-ell2)

have norm-co-final[simp]: ‹norm co-final ≤ 1 ›
unfolding co-final-def
using norm-exec-program-with valid-program-lift ‹valid-program program›

norm-query ′ register-Fst norm-initial-state-in-co
by smt

We derive the relationships between the various final states:
have co-ext-final-prefinal:

‹co-ext-final = (adv-output-in-co o Snd; (aux-in-co o Snd; oracle-in-co)) query ′ ∗V
(adv-output-in-co o Fst; (aux-in-co o Fst; oracle-in-co)) query ′ ∗V co-final›

by (simp add: co-ext-final-def ext-program-def exec-program-with-append adv-output-in-co-def aux-in-co-def
oracle-in-co-def comp-assoc

flip: initial-state-in-co-def co-final-def)

have xo-final-final: ‹xo-final h = final h ⊗s ket (0 ,0)› for h
by (simp add: xo-final-def final-def initial-state-in-xo-def exec-lift-program-Fst)

have xo-ext-final-xo-final: ‹xo-ext-final h = (adv-output-in-xo o Snd; aux-in-xo o Snd) (function-oracle
h) ∗V

(adv-output-in-xo o Fst; aux-in-xo o Fst) (function-oracle h) ∗V xo-final h› for h
by (simp add: xo-ext-final-def xo-final-def ext-program-def exec-program-def)

After executing program (in XO), the aux-register is in state ket (0 , 0):
have xo-final-has-y0 : ‹dist-inv-avg (adv-output-in-xo;aux-in-xo) (λ-. ket-invariant {(xx,yy). yy =

(0 ,0)}) xo-final = 0 ›
proof −

have ‹dist-inv-avg aux-in-xo (λ-:: ′x⇒ ′y. ket-invariant {(0 ,0)}) xo-final
≤ dist-inv-avg aux-in-xo (λ-:: ′x⇒ ′y. ket-invariant {(0 ,0)}) (λh. initial-state-in-xo)›

unfolding xo-final-def
apply (subst dist-inv-avg-exec-compatible)
using dist-inv-avg-exec-compatible
by auto

168

also have ‹. . . = 0 ›
by (auto intro!: tensor-ell2-in-tensor-ccsubspace ket-in-ket-invariantI

simp add: initial-state-in-xo-def dist-inv-0-iff distance-from-inv-avg0I aux-in-xo-def lift-Snd-inv)
finally have ‹dist-inv-avg aux-in-xo (λ-. ket-invariant {(0 ,0)}) xo-final = 0 ›

by (smt (verit, ccfv-SIG) dist-inv-avg-pos)
then show ?thesis

apply (rewrite at ‹{(xx, yy). yy = (0 ,0)}› to ‹UNIV × {(0 ,0)}› DEADID.rel-mono-strong, blast)
apply (subst dist-inv-avg-register-rewrite)
by (simp-all add: lift-inv-prod)

qed

Same as xo-final-has-y0, but in CO:
have co-final-has-y0 : ‹dist-inv aao-in-co (ket-invariant {(x,y,D). y = (0 ,0)}) co-final = 0 ›
proof −

have ‹dist-inv aux-in-co (ket-invariant {(0 ,0)}) co-final
≤ dist-inv aux-in-co (ket-invariant {(0 ,0)}) initial-state-in-co›

unfolding co-final-def
apply (rule dist-inv-exec ′-compatible)
by simp-all

also have ‹. . . = 0 ›
by (auto intro!: tensor-ell2-in-tensor-ccsubspace ket-in-ket-invariantI

simp add: initial-state-in-co-def initial-state-in-xo-def dist-inv-0-iff
aux-in-co-def aux-in-xo-def lift-Fst-inv lift-Snd-inv lift-invariant-comp)

finally have ‹dist-inv aux-in-co (ket-invariant {(0 ,0)}) co-final = 0 ›
by (smt (verit, best) dist-inv-pos)

then show ?thesis
apply (rewrite at ‹{(xx, yy, D). yy = (0 ,0)}› to ‹UNIV × {(0 ,0)} × UNIV › DEADID.rel-mono-strong,

blast)
apply (subst dist-inv-register-rewrite)
by (simp-all add: lift-inv-prod aao-in-co-def)

qed

define q where ‹q = query-count program›

The following term occurs a lot (it’s how much the no-collision invariant is preserved after
running ext-program). So we abbreviate it as d.

define d :: real where ‹d = (10/3 ∗ sqrt (q+2)^3 + 20) / sqrt N ›

have [iff]: ‹d ≥ 0 ›
by (simp add: d-def)

have ‹dist-inv oracle-in-co (ket-invariant (no-collision ′ ∩ num-queries ′ (q+2))) co-ext-final ≤ 10/3 ∗
sqrt (q+2)^3 / sqrt N ›

— In CO-execution, before the adversary’s final query, the oracle register has no collision in its
range (and we also track the number of queries to make the induction go through)

unfolding co-ext-final-def
proof (rule dist-inv-induct[where g=‹λi::nat. 5 ∗ sqrt i / sqrt N ›

and J=‹λi. ket-invariant (no-collision ′ ∩ num-queries ′ i)›])
show ‹compatible oracle-in-co Fst›

using oracle-in-co-def by simp
show ‹initial-state-in-co ∈ space-as-set (lift-invariant oracle-in-co (ket-invariant (no-collision ′ ∩

num-queries ′ 0)))›
by (auto intro!: tensor-ell2-in-tensor-ccsubspace ket-in-ket-invariantI

simp add: initial-state-in-co-def oracle-in-co-def lift-Snd-ket-inv inj-map-def num-queries ′-def
initial-state-in-xo-def tensor-ell2-ket ket-in-ket-invariantI no-collision ′-def

169

simp flip: ket-invariant-tensor)
show ‹ket-invariant (no-collision ′∩ num-queries ′ (query-count ext-program)) ≤ ket-invariant (no-collision ′

∩ num-queries ′ (q+2))›
by (simp add: q-def ext-program-def)

show ‹valid-program ext-program›
by simp

show ‹preserves ((Fst ◦ X-in-xo;(Fst ◦ Y-in-xo;Snd)) query ′) (lift-invariant oracle-in-co (ket-invariant
(no-collision ′ ∩ num-queries ′ i)))

(lift-invariant oracle-in-co (ket-invariant (no-collision ′ ∩ num-queries ′ (Suc i)))) (5 ∗ sqrt i /
sqrt N)›

if [register]: ‹compatible X-in-xo Y-in-xo› for X-in-xo Y-in-xo i
proof −

from preserves-no-collision ′-num
have ‹preserves ((Fst ◦ X-in-xo;(Fst ◦ Y-in-xo;Snd)) query ′)

(lift-invariant (Fst ◦ X-in-xo;(Fst ◦ Y-in-xo;Snd)) (ket-invariant (no-collision ∩ num-queries
i)))

(lift-invariant (Fst ◦ X-in-xo;(Fst ◦ Y-in-xo;Snd)) (ket-invariant (no-collision ∩ num-queries
(i+1))))

(5 ∗ sqrt (real i) / sqrt N)›
apply (rule preserves-lift-invariant[THEN iffD2 , rotated])
by simp

moreover have ‹lift-invariant (Fst ◦ X-in-xo;(Fst ◦ Y-in-xo;Snd)) (ket-invariant (no-collision ∩
num-queries i))

= lift-invariant oracle-in-co (ket-invariant (no-collision ′ ∩ num-queries ′ i))› for i
by (simp add: oracle-in-co-def no-collision-no-collision ′ num-queries-num-queries ′ lift-inv-prod

Times-Int-Times)
ultimately show ?thesis

by simp
qed
show ‹norm query ′ ≤ 1 ›

by simp
show ‹norm initial-state-in-co ≤ 1 ›

by simp
show ‹(

∑
i<query-count ext-program. 5 ∗ sqrt i / sqrt N) ≤ 10/3 ∗ sqrt (q+2)^3 / sqrt N ›

proof −
have ‹(

∑
i<q+2 . sqrt i) ≤ 2/3 ∗ sqrt (q+2) ^ 3 ›

by (rule sum-sqrt)
then have ‹(

∑
i<q+2 . 5 ∗ sqrt i / sqrt N) ≤ 5 ∗ (2/3 ∗ sqrt (q+2) ^ 3) / sqrt N ›

by (auto intro!: divide-right-mono real-sqrt-ge-zero simp only: simp flip: sum-distrib-left sum-divide-distrib)
also have ‹. . . = 10/3 ∗ sqrt (q+2)^3 / sqrt N ›

by simp
finally
show ‹(

∑
i<query-count ext-program. 5 ∗ sqrt i / sqrt N) ≤ 10/3 ∗ sqrt (q+2)^3 / sqrt N ›

by (simp add: q-def ext-program-def)
qed

qed

then have ‹dist-inv oracle-in-co (ket-invariant no-collision ′) co-ext-final ≤ 10/3 ∗ sqrt (q+2)^3 /
sqrt N ›

— Like the previous but without the number of queries)
apply (rule le-back-subst-le)
apply (rule dist-inv-mono)
by auto

then have dist-collision: ‹dist-inv aao-in-co (ket-invariant no-collision) co-ext-final ≤ 10/3 ∗ sqrt

170

(q+2)^3 / sqrt N ›
— Same thing, but expressed w.r.t. different register

apply (rule le-back-subst)
apply (rule dist-inv-register-rewrite)
by (auto intro!: simp: aao-in-co-def no-collision-no-collision ′ lift-inv-prod)

have dist-Dxy: ‹dist-inv aao-in-co (ket-invariant {((x1 ,x2),(y1 ,y2),D). D x1 = Some y1 ∧ D x2 =
Some y2}) co-ext-final ≤ 20 / sqrt N ›

proof −
have aao-in-co-decomp: ‹aao-in-co = ((adv-output-in-co o Fst; adv-output-in-co o Snd); ((aux-in-co

o Fst; aux-in-co o Snd); oracle-in-co))›
by (simp add: register-pair-Snd register-pair-Fst aao-in-co-def flip: register-comp-pair comp-assoc)

have ‹dist-inv ((adv-output-in-co ◦ Fst;adv-output-in-co ◦ Snd);((aux-in-co ◦ Fst;aux-in-co ◦ Snd);oracle-in-co))
(ket-invariant {((x1 , x2), (y1 , y2), D). y1 = 0 ∧ y2 = 0}) co-final = 0 ›
using co-final-has-y0
by (simp add: aao-in-co-decomp case-prod-unfold prod-eq-iff)

then show ?thesis
apply (rewrite at ‹20 / sqrt N › to ‹0 + 20 / sqrt N › DEADID.rel-mono-strong, simp)
unfolding co-ext-final-prefinal aao-in-co-decomp
apply (rule dist-inv-double-query ′)
by (simp-all add: aao-in-co-decomp)

qed

have ‹dist-inv aao-in-co
(ket-invariant {((x1 ,x2),(y1 ,y2),D). inj-map D ∧ D x1 = Some y1 ∧ D x2 = Some y2})

co-ext-final ≤ d› (is ‹?lhs ≤ d›)
— In CO-execution, after the adversary’s final query, the oracle register has no collision, and the aux

register contains the outputs of the oracle function evaluated on the adversary output registers.
proof −

have ‹?lhs = dist-inv aao-in-co (ket-invariant no-collision u ket-invariant {((x1 ,x2),(y1 ,y2),D). D
x1 = Some y1 ∧ D x2 = Some y2}) co-ext-final›

apply (rule arg-cong3 [where f =dist-inv])
by (auto intro!: simp: no-collision-def ket-invariant-inter)

also have ‹. . . ≤ sqrt ((dist-inv aao-in-co (ket-invariant no-collision) co-ext-final)2
+ (dist-inv aao-in-co (ket-invariant {((x1 ,x2),(y1 ,y2),D). D x1 = Some y1 ∧ D x2

= Some y2}) co-ext-final)2)›
apply (rule dist-inv-intersect)
by auto

also have ‹. . . ≤ sqrt ((10/3 ∗ sqrt (q+2)^3 / sqrt N)2 + (20 / sqrt N)2)›
apply (rule real-sqrt-le-mono)
apply (rule add-mono)
using dist-collision dist-Dxy
by auto

also have ‹. . . ≤ (10/3 ∗ sqrt (q+2)^3 + 20) / sqrt N ›
apply (rule sqrt-sum-squares-le-sum[THEN order-trans])
by (auto, argo)

finally show ?thesis
by (simp add: d-def)

qed
then have ‹dist-inv aao-in-co (ket-invariant {((x1 ,x2),(y1 ,y2),D). x1 6= x2 −→ y1 6= y2}) co-ext-final
≤ d›

— In CO-execution, after the adversary’s final query, the auxiliary registers are non-equal (if the
adversary registers are).

apply (rule le-back-subst-le)
apply (rule dist-inv-mono)

171

by (auto simp: inj-map-def)
then have ‹dist-inv (adv-output-in-co; aux-in-co) (ket-invariant {((x1 ,x2), (y1 ,y2)). x1 6= x2 −→ y1
6= y2}) co-ext-final ≤ d›

— As before, but with respect to a different register (without the oracle register that doesn’t exist in
XO).

apply (rule le-back-subst)
apply (rule dist-inv-register-rewrite)

apply (simp, simp)
apply (rewrite at ‹(adv-output-in-co;aux-in-co)› to ‹aao-in-co o (reg-1-3 ; reg-2-3)› DEADID.rel-mono-strong)

apply (simp add: aao-in-co-def flip: register-comp-pair)
apply (subst lift-invariant-comp, simp)

by (auto intro!: simp: lift-inv-prod ′ reg-1-3-def reg-3-3-def reg-2-3-def lift-invariant-comp lift-Snd-ket-inv
lift-Fst-ket-inv

ket-invariant-inter case-prod-unfold
simp flip: ket-invariant-SUP)

then have ∗: ‹dist-inv-avg (adv-output-in-xo; aux-in-xo) (λh. ket-invariant {((x1 ,x2), (y1 ,y2)). x1 6=
x2 −→ y1 6= y2}) xo-ext-final ≤ d›

— In XO-execution, after the adversary’s final query, the adversary output register is not 0.
apply (rule le-back-subst)
unfolding co-ext-final-def xo-ext-final-def

apply (rewrite at ‹(adv-output-in-co;aux-in-co)› to ‹Fst o (adv-output-in-xo;aux-in-xo)› DEADID.rel-mono-strong)
apply (simp add: adv-output-in-co-def aux-in-co-def register-comp-pair)

by (simp add: initial-state-in-co-def dist-inv-exec-query ′-exec-fixed)
have ‹dist-inv-avg (adv-output-in-xo; aux-in-xo)

(λh. ket-invariant {((x1 ,x2), yy). (x1 6= x2 −→ h x1 6= h x2) ∨ yy 6= (0 ,0)}) xo-final ≤ d›
— In XO-execution, before the adversary’s final query, x1,x2 are a collision, or the aux register is

nonzero.
proof −

define state2 where ‹state2 h = (adv-output-in-xo o Fst; aux-in-xo o Fst) (function-oracle h) ∗V
xo-final h› for h

have xo-ext-final-state2 : ‹xo-ext-final h = (adv-output-in-xo ◦ Snd;aux-in-xo ◦ Snd) (function-oracle
h) ∗V state2 h› for h

using state2-def xo-ext-final-xo-final by presburger
have fo-apply2 : ‹(Snd ⊗r Snd) (function-oracle h)∗ ∗S ket-invariant {((x1 , x2), y1 , y2). x1 6= x2

−→ y1 6= y2}
≤ ket-invariant {((x1 ,x2), (y1 ,y2)). (x1 6= x2 −→ y1 6= h x2) ∨ y2 6= 0}› for h :: ‹ ′x ⇒ ′y›

proof −
have ‹(Snd ⊗r Snd) (function-oracle h)∗ ∗S ket-invariant {((x1 , x2), y1 , y2). x1 6= x2 −→ y1 6=

y2}
= (Snd ⊗r Snd) (function-oracle h) ∗S ket-invariant {((x1 , x2), y1 , y2). x1 6= x2 −→ y1 6=

y2}›
by (simp add: uminus-y flip: register-adj)

also have ‹. . . = lift-invariant (Fst ⊗r Fst;Snd ⊗r Snd) (Snd (function-oracle h) ∗S ket-invariant
{((x1 , y1), x2 , y2). x1 6= x2 −→ y1 6= y2})›

apply (rewrite at ‹(Snd ⊗r Snd)› to ‹(Fst ⊗r Fst; Snd ⊗r Snd) o Snd› DEADID.rel-mono-strong)
apply (simp add: register-pair-Snd compatible-register-tensor)

apply (rewrite at ‹ket-invariant {((x1 , x2), y1 , y2). x1 6= x2 −→ y1 6= y2}›
to ‹lift-invariant (Fst ⊗r Fst; Snd ⊗r Snd) (ket-invariant {((x1 , y1), x2 , y2). x1 6= x2 −→

y1 6= y2})› DEADID.rel-mono-strong)
apply (auto intro!: simp: lift-inv-prod ′ compatible-register-tensor lift-inv-tensor ′ lift-Fst-ket-inv

lift-Snd-ket-inv
ket-invariant-tensor case-prod-unfold ket-invariant-inter
simp flip: ket-invariant-SUP)[1]

by (simp add: o-apply register-image-lift-invariant compatible-register-tensor register-isometry)
also have ‹. . . = lift-invariant (Fst ⊗r Fst; Snd ⊗r Snd) (ket-invariant {((x1 , y1), (x2 , y2 + h

172

x2)) | x1 y1 x2 y2 . x1 6= x2 −→ y1 6= y2})›
apply (simp add: function-oracle-Snd-ket-invariant)
apply (rule arg-cong[where f =‹λx. lift-invariant - (ket-invariant x)›])
by (auto simp add: image-iff)

also have ‹. . . ≤ lift-invariant (Fst ⊗r Fst; Snd ⊗r Snd) (ket-invariant {((x1 , y1), (x2 , y2)).
(x1 6= x2 −→ y1 6= h x2) ∨ y2 6= 0})›

proof −
have aux: ‹x1 6= x2 =⇒ h x2 6= y2 =⇒ y2 + h x2 6= 0 › for x1 x2 y2

by (metis add-right-cancel y-cancel)
show ?thesis

apply (rule lift-invariant-mono, simp add: compatible-register-tensor)
apply (rule ket-invariant-mono)
using aux by auto

qed
also have ‹. . . = ket-invariant {((x1 , x2), (y1 , y2)). (x1 6= x2 −→ y1 6= h x2) ∨ y2 6= 0}›

by (auto intro!: simp: lift-inv-prod ′ compatible-register-tensor lift-inv-tensor ′ lift-Fst-ket-inv
lift-Snd-ket-inv

ket-invariant-tensor case-prod-unfold ket-invariant-inter
simp flip: ket-invariant-SUP)[1]

finally show ?thesis
by −

qed
have fo-apply1 : ‹(Fst ⊗r Fst) (function-oracle h)∗ ∗S ket-invariant {((x1 , x2), (y1 , y2)). x1 6= x2

−→ y1 = h x2 −→ y2 6= 0}
≤ ket-invariant {((x1 ,x2), yy). (x1 6= x2 −→ h x1 6= h x2) ∨ yy 6= (0 ,0)}› for h :: ‹ ′x ⇒ ′y›

proof −
have ‹(Fst ⊗r Fst) (function-oracle h)∗ ∗S ket-invariant {((x1 , x2), (y1 , y2)). x1 6= x2 −→ y1 =

h x2 −→ y2 6= 0}
= (Fst ⊗r Fst) (function-oracle h) ∗S ket-invariant {((x1 , x2), (y1 , y2)). x1 6= x2 −→ y1 = h

x2 −→ y2 6= 0}›
by (simp add: uminus-y flip: register-adj)

also have ‹. . . = lift-invariant (Snd ⊗r Snd;Fst ⊗r Fst) (Snd (function-oracle h) ∗S ket-invariant
{((x2 , y2), (x1 , y1)). x1 6= x2 −→ y1 = h x2 −→ y2 6= 0})›

apply (rewrite at ‹(Fst ⊗r Fst)› to ‹(Snd ⊗r Snd; Fst ⊗r Fst) o Snd› DEADID.rel-mono-strong)
apply (simp add: register-pair-Snd compatible-register-tensor)

apply (rewrite at ‹ket-invariant {((x1 , x2), (y1 , y2)). x1 6= x2 −→ y1 = h x2 −→ y2 6= 0}›
to ‹lift-invariant (Snd ⊗r Snd; Fst ⊗r Fst) (ket-invariant {((x2 , y2), (x1 , y1)). x1 6= x2 −→

y1 = h x2 −→ y2 6= 0})› DEADID.rel-mono-strong)
apply (auto intro!: simp: lift-inv-prod ′ compatible-register-tensor lift-inv-tensor ′ lift-Snd-ket-inv

lift-Fst-ket-inv
ket-invariant-tensor case-prod-unfold ket-invariant-inter
simp flip: ket-invariant-SUP)[1]

by (simp-all add: o-apply register-image-lift-invariant compatible-register-tensor register-isometry)
also have ‹. . . = lift-invariant (Snd ⊗r Snd; Fst ⊗r Fst) (ket-invariant {((x2 , y2), (x1 , y1 + h

x1)) | x1 y1 x2 y2 . x1 6= x2 −→ y1 = h x2 −→ y2 6= 0})›
apply (simp add: function-oracle-Snd-ket-invariant)
apply (rule arg-cong[where f =‹λx. lift-invariant - (ket-invariant x)›])
by (auto simp add: image-iff)

also have ‹. . . ≤ lift-invariant (Snd ⊗r Snd; Fst ⊗r Fst) (ket-invariant {((x2 , y2), (x1 , y1)).
(x1 6= x2 −→ h x1 6= h x2) ∨ (y1 ,y2) 6= (0 ,0)})›

proof −
have aux: ‹y1 + h x2 = 0 =⇒ x1 6= x2 =⇒ h x1 = h x2 =⇒ y1 = h x2 › for y1 x2 x1

by (metis add-right-cancel y-cancel)
show ?thesis
apply (rule lift-invariant-mono, simp add: compatible-register-tensor)

173

apply (rule ket-invariant-mono)
using aux by auto

qed
also have ‹. . . = ket-invariant {((x1 ,x2), yy). (x1 6= x2 −→ h x1 6= h x2) ∨ yy 6= (0 ,0)}›

by (auto intro!: simp: lift-inv-prod ′ compatible-register-tensor lift-inv-tensor ′ lift-Snd-ket-inv
lift-Fst-ket-inv

ket-invariant-tensor case-prod-unfold ket-invariant-inter
simp flip: ket-invariant-SUP)[1]

finally show ?thesis
by −

qed
from ∗ have ‹dist-inv-avg (adv-output-in-xo; aux-in-xo)

(λh. ket-invariant {((x1 ,x2), (y1 ,y2)). (x1 6= x2 −→ y1 6= h x2) ∨ y2 6= 0}) state2 ≤ d›
apply (rule le-back-subst-le)
unfolding xo-ext-final-state2 [abs-def]
apply (subst dist-inv-avg-apply[where U=‹λh. function-oracle h› and S=‹Snd ⊗r Snd›])

using fo-apply2 by (auto intro!: dist-inv-avg-mono simp: function-oracle-ket-invariant pair-o-tensor
simp del: o-apply)

then show ?thesis
apply (rule le-back-subst-le)
unfolding state2-def [abs-def]
apply (subst dist-inv-avg-apply[where U=‹λh. function-oracle h› and S=‹Fst ⊗r Fst›])

using fo-apply1 by (auto intro!: dist-inv-avg-mono simp: function-oracle-ket-invariant pair-o-tensor
simp del: o-apply)

qed
then have ∗: ‹dist-inv-avg (adv-output-in-xo; aux-in-xo)

(λh. ket-invariant {((x1 ,x2), yy). x1 6= x2 −→ h x1 6= h x2}) xo-final ≤ d›
— In XO-execution, before the adversary’s final query, x1,x2 are a collision.
apply (rule le-back-subst-le)
apply (rule ord-le-eq-trans)
apply (rule dist-inv-avg-mono[where I=‹λh. ket-invariant {((x1 ,x2), yy). (x1 6= x2 −→ h x1 6= h

x2) ∨ yy 6= (0 ,0)} u ket-invariant {(xx,yy). yy=(0 ,0)}›])
apply (auto simp: ket-invariant-inter)[2]

apply (rule dist-inv-avg-intersect)
apply simp-all[2]

by (fact xo-final-has-y0)
then have ‹dist-inv-avg adv-output-in-xo

(λh. ket-invariant {(x1 ,x2). x1 6= x2 −→ h x1 6= h x2}) xo-final ≤ d›
— As before, but with respect to only the adversary output register.

apply (subst dist-inv-avg-register-rewrite[where R=‹(adv-output-in-xo; aux-in-xo)› and J=‹λh.
ket-invariant {((x1 ,x2),yy). x1 6= x2 −→ h x1 6= h x2}›])

apply (simp, simp)
apply (rewrite at ‹{((x1 ,x2),yy). x1 6= x2 −→ h x1 6= h x2}› in for (h) to ‹{(x1 ,x2). x1 6= x2 −→

h x1 6= h x2} × UNIV › DEADID.rel-mono-strong)
apply fastforce

by (simp add: lift-inv-prod)
then have ‹dist-inv-avg adv-output (λh. ket-invariant {(x1 ,x2). x1 6= x2 −→ h x1 6= h x2}) final ≤

d›
— As before, but in the original execution.
by (simp add: xo-final-final[abs-def] adv-output-in-xo-def dist-inv-avg-Fst-tensor)

then have ‹(
∑

h∈UNIV .
∑

(x1 ,x2)|x1 6= x2 ∧ h x1 = h x2 . measurement-probability adv-output
(final h) (x1 ,x2)) / CARD(′x ⇒ ′y) ≤ d2›

unfolding case-prod-unfold prod.collapse
apply (subst dist-inv-avg-measurement-probability)
apply simp

174

apply (rewrite at ‹− {p. fst p 6= snd p ∧ h (fst p) = h (snd p)}› in ‹λh. ◊› to ‹{p. fst p 6= snd p
−→ h (fst p) 6= h (snd p)}› DEADID.rel-mono-strong)

apply blast
by auto

also have ‹d2 ≤ 12 ∗ (q+154)^3 / N ›
proof −

define r where ‹r = sqrt q›
have [iff]: ‹r ≥ 0 ›

using r-def by force
have 1 : ‹sqrt (r2 + 2) ≤ r + 2 ›

apply (rule real-le-lsqrt)
by (simp-all add: power2-sum)

have ‹N ∗ d2 = (10/3 ∗ sqrt (r2+2)^3 + 20)2›
apply (simp add: d-def power-divide of-nat-add r-def) by argo

also have ‹. . . ≤ (10/3 ∗ (r+2)^3 + 20)2›
using 1 by (auto intro!: power-mono add-right-mono mult-left-mono)

also have ‹. . . ≤ 12 ∗ (r2+154)^3 ›
proof −

define f where ‹f r = 12 ∗ (r2+154)^3 − (10/3 ∗ (r+2)^3 + 20)2› for r :: real
have fr : ‹f r 6= 0 › if ‹r ≥ 0 › for r :: real

unfolding f-def using that by (rule sturm-calculation)
have f0 : ‹f 0 ≥ 0 ›

by (simp add: f-def power2-eq-square)
have ‹isCont f r› for r

unfolding f-def
by (intro continuous-intros)

have ‹f r ≥ 0 › if ‹r ≥ 0 › for r :: real
proof (rule ccontr)

assume ‹¬ 0 ≤ f r›
then have ‹∃ x≥0 . x ≤ r ∧ f x = 0 ›

apply (rule-tac IVT2 [where f =f and a=0 and b=r and y=0])
by (auto intro!: ‹isCont f -› simp: f0 that)

then show False
using fr by blast

qed
then show ?thesis

by (simp add: f-def)
qed
finally show ?thesis

apply (rule-tac mult-left-le-imp-le[where c=‹real N ›])
using Nneq0 r-def by force+

qed
finally show ?thesis

by (simp add: final-def q-def)
qed

end

end

References

[1] Dominique Unruh. Compressed permutation oracles (and the collision-resistance of
sponge/sha3). IACR Cryptology ePrint Archive, 2021/062, 2021.

175

https://eprint.iacr.org/2021/062

[2] Dominique Unruh. Quantum and classical registers. Archive for Formal Proofs, https:
//www.isa-afp.org/entries/Registers.html, 2021. Formalization of parts of the present paper.
For historic reasons, “references” are called “registers” and “disjoint” is called “compatible”
in the formalization.

[3] Dominique Unruh. Quantum references. arXiv:2105.10914v3 [cs.LO], 2024.

[4] Mark Zhandry. How to record quantum queries, and applications to quantum indifferentia-
bility. In Crypto 2019, pages 239–268. Springer, 2019. Eprint is IACR ePrint 2018/276.

176

https://www.isa-afp.org/entries/Registers.html
https://www.isa-afp.org/entries/Registers.html
https://arxiv.org/abs/2105.10914v3
https://eprint.iacr.org/2018/276.pdf

	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Misc-Compressed-Oracle – Miscellaneous required theorems
	Misc
	Controlled operations
	Superpositions
	Lifting ell2 to option type

	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Function-At – Function values as individual registers
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 apply-every

	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Invariant-Preservation – Preservation of invariants under queries
	Invariants
	Distance from invariants
	Preservation of invariants

	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 CO-Operations – Definition of the compressed oracle and related unitaries
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 function-oracle - Querying a fixed function
	Setup for compressed oracles
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 switch0 - Operator exchanging 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ket (Some 0) and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ket None
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 compress1 - Operator to compress a single RO-output
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 compress - Operator for compressing the RO
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 standard-query1 - Operator for uncompressed query of a single RO-output
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 standard-query - Operator for uncompressed query of the RO
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 query1 - Query the compressed oracle at a single output
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 query - Query the compressed oracle

	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 CO-Invariants – Preservation of invariants under compressed oracle queries
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Compressed-Oracle-Is-RO – Equivalence of compressed oracle and regular random oracle
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Oracle-Programs – Oracle programs and their execution
	Oracle programs
	Lifting
	Final measurement
	Preservation
	Misc
	Random Oracles

	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Find-Zero – Invariant preservation for zero-finding
	Zero-finding is hard for q-query adversaries

	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Aux-Sturm-Calculation – Auxiliary theory for technical reasons.
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Collision – Invariant preservation for collision resistance
	Collision-finding is hard for q-query adversaries

