
Completeness of Decreasing Diagrams for the Least
Uncountable Cardinality

Ievgen Ivanov

Taras Shevchenko National University of Kyiv

Abstract
In [8] it was formally proved that the decreasing diagrams method

[7] is sound for proving confluence: if a binary relation r has LD prop-
erty defined in [8], then it has CR property defined in [6].

In this formal theory it is proved that if the cardinality of r does
not exceed the first uncountable cardinal, then r has CR property
if and only if r has LD property. As a consequence, the decreasing
diagrams method is complete for proving confluence of relations of the
least uncountable cardinality.

A paper that describes details of this proof has been submitted to
the FSCD 2025 conference. This formalization extends formalizations
[1, 5, 4, 2] and the paper [3].

Contents
1 Preliminaries 2

1.1 Formal definition of finite levels of the DCR hierarchy 2
1.1.1 Auxiliary definitions 2
1.1.2 Result . 4

1.2 Completeness of the DCR3 method for proving confluence of
relations of the least uncountable cardinality 4
1.2.1 Auxiliary definitions 4
1.2.2 Auxiliary lemmas . 9
1.2.3 Result . 266

1.3 Optimality of the DCR3 method for proving confluence of
relations of the least uncountable cardinality 267
1.3.1 Auxiliary definitions 267
1.3.2 Auxiliary lemmas . 268
1.3.3 Result . 301

1.4 DCR implies LD Property . 303
1.4.1 Auxiliary definitions 303
1.4.2 Auxiliary lemmas . 303
1.4.3 Result . 308

1

2 Main theorem 317

1 Preliminaries
1.1 Formal definition of finite levels of the DCR hierarchy
theory Finite-DCR-Hierarchy

imports Main
begin

1.1.1 Auxiliary definitions
definition confl-rel

where confl-rel r ≡ (∀ a b c. (a,b) ∈ r^∗ ∧ (a,c) ∈ r^∗ −→ (∃ d. (b,d) ∈ r^∗ ∧
(c,d) ∈ r^∗))

definition jn00 :: ′a rel ⇒ ′a ⇒ ′a ⇒ bool
where

jn00 r0 b c ≡ (∃ d. (b,d) ∈ r0^= ∧ (c,d) ∈ r0^=)

definition jn01 :: ′a rel ⇒ ′a rel ⇒ ′a ⇒ ′a ⇒ bool
where

jn01 r0 r1 b c ≡ (∃ b ′ d. (b,b ′) ∈ r1^= ∧ (b ′,d) ∈ r0^∗ ∧ (c,d) ∈ r0^∗)

definition jn10 :: ′a rel ⇒ ′a rel ⇒ ′a ⇒ ′a ⇒ bool
where

jn10 r0 r1 b c ≡ (∃ c ′ d. (b,d) ∈ r0^∗ ∧ (c,c ′) ∈ r1^= ∧ (c ′,d) ∈ r0^∗)

definition jn11 :: ′a rel ⇒ ′a rel ⇒ ′a ⇒ ′a ⇒ bool
where

jn11 r0 r1 b c ≡ (∃ b ′ b ′′ c ′ c ′′ d. (b,b ′) ∈ r0^∗ ∧ (b ′,b ′′) ∈ r1^= ∧ (b ′′,d) ∈
r0^∗

∧ (c,c ′) ∈ r0^∗ ∧ (c ′,c ′′) ∈ r1^= ∧ (c ′′,d) ∈ r0^∗)

definition jn02 :: ′a rel ⇒ ′a rel ⇒ ′a rel ⇒ ′a ⇒ ′a ⇒ bool
where

jn02 r0 r1 r2 b c ≡ (∃ b ′ d. (b,b ′) ∈ r2^= ∧ (b ′,d) ∈ (r0 ∪ r1)^∗ ∧ (c,d) ∈ (r0
∪ r1)^∗)

definition jn12 :: ′a rel ⇒ ′a rel ⇒ ′a rel ⇒ ′a ⇒ ′a ⇒ bool
where

jn12 r0 r1 r2 b c ≡ (∃ b ′ b ′′ d. (b,b ′) ∈ (r0)^∗ ∧ (b ′,b ′′) ∈ r2^= ∧ (b ′′,d) ∈ (r0
∪ r1)^∗

∧ (c,d) ∈ (r0 ∪ r1)^∗)

definition jn22 :: ′a rel ⇒ ′a rel ⇒ ′a rel ⇒ ′a ⇒ ′a ⇒ bool
where

jn22 r0 r1 r2 b c ≡ (∃ b ′ b ′′ c ′ c ′′ d. (b,b ′) ∈ (r0 ∪ r1)^∗ ∧ (b ′,b ′′) ∈ r2^= ∧
(b ′′,d) ∈ (r0 ∪ r1)^∗

2

∧ (c,c ′) ∈ (r0 ∪ r1)^∗ ∧ (c ′,c ′′) ∈ r2^= ∧ (c ′′,d)
∈ (r0 ∪ r1)^∗)

definition LD2 :: ′a rel ⇒ ′a rel ⇒ ′a rel ⇒ bool
where

LD2 r r0 r1 ≡ (r = r0 ∪ r1
∧ (∀ a b c. (a,b) ∈ r0 ∧ (a,c) ∈ r0 −→ jn00 r0 b c)
∧ (∀ a b c. (a,b) ∈ r0 ∧ (a,c) ∈ r1 −→ jn01 r0 r1 b c)
∧ (∀ a b c. (a,b) ∈ r1 ∧ (a,c) ∈ r1 −→ jn11 r0 r1 b c))

definition LD3 :: ′a rel ⇒ ′a rel ⇒ ′a rel ⇒ ′a rel ⇒ bool
where

LD3 r r0 r1 r2 ≡ (r = r0 ∪ r1 ∪ r2
∧ (∀ a b c. (a,b) ∈ r0 ∧ (a,c) ∈ r0 −→ jn00 r0 b c)
∧ (∀ a b c. (a,b) ∈ r0 ∧ (a,c) ∈ r1 −→ jn01 r0 r1 b c)
∧ (∀ a b c. (a,b) ∈ r1 ∧ (a,c) ∈ r1 −→ jn11 r0 r1 b c)
∧ (∀ a b c. (a,b) ∈ r0 ∧ (a,c) ∈ r2 −→ jn02 r0 r1 r2 b c)
∧ (∀ a b c. (a,b) ∈ r1 ∧ (a,c) ∈ r2 −→ jn12 r0 r1 r2 b c)
∧ (∀ a b c. (a,b) ∈ r2 ∧ (a,c) ∈ r2 −→ jn22 r0 r1 r2 b c))

definition DCR2 :: ′a rel ⇒ bool
where

DCR2 r ≡ (∃ r0 r1 . LD2 r r0 r1)

definition DCR3 :: ′a rel ⇒ bool
where

DCR3 r ≡ (∃ r0 r1 r2 . LD3 r r0 r1 r2)

definition L1 :: (nat ⇒ ′U rel) ⇒ nat ⇒ ′U rel
where
L1 g α ≡

⋃
{A. ∃ α ′. (α ′ < α) ∧ A = g α ′}

definition Lv :: (nat ⇒ ′U rel) ⇒ nat ⇒ nat ⇒ ′U rel
where
Lv g α β ≡

⋃
{A. ∃ α ′. (α ′ < α ∨ α ′ < β) ∧ A = g α ′}

definition D :: (nat ⇒ ′U rel) ⇒ nat ⇒ nat ⇒ (′U × ′U × ′U × ′U) set
where
D g α β = {(b,b ′,b ′′,d). (b,b ′) ∈ (L1 g α)^∗ ∧ (b ′,b ′′) ∈ (g β)^= ∧ (b ′′,d) ∈ (Lv

g α β)^∗}

definition DCR-generating :: (nat ⇒ ′U rel) ⇒ bool
where

DCR-generating g ≡ (∀ α β a b c. (a,b) ∈ (g α) ∧ (a,c) ∈ (g β)
−→ (∃ b ′ b ′′ c ′ c ′′ d. (b,b ′,b ′′,d) ∈ (D g α β) ∧ (c,c ′,c ′′,d) ∈ (D g β

α)))

3

1.1.2 Result

The next definition formalizes the condition “an ARS with a reduction re-
lation r belongs to the class DCRn”, where n is a natural number.
definition DCR :: nat ⇒ ′U rel ⇒ bool
where

DCR n r ≡ (∃ g::(nat ⇒ ′U rel). DCR-generating g ∧ r =
⋃
{ r ′. ∃ α ′. α ′ <

n ∧ r ′ = g α ′ })

end

1.2 Completeness of the DCR3 method for proving conflu-
ence of relations of the least uncountable cardinality

theory DCR3-Method
imports

HOL−Cardinals.Cardinals
Abstract−Rewriting.Abstract-Rewriting
Finite-DCR-Hierarchy

begin

1.2.1 Auxiliary definitions
abbreviation ω-ord where ω-ord ≡ natLeq

definition sc-ord:: ′U rel ⇒ ′U rel ⇒ bool
where sc-ord α α ′ ≡ (α <o α ′ ∧ (∀ β:: ′U rel. α <o β −→ α ′ ≤o β))

definition lm-ord:: ′U rel ⇒ bool
where lm-ord α ≡ Well-order α ∧ ¬ (α = {} ∨ isSuccOrd α)

definition nord :: ′U rel ⇒ ′U rel where nord α = (SOME α ′:: ′U rel. α ′ =o α)

definition O:: ′U rel set where O ≡ nord ‘ {α. Well-order α}

definition oord:: ′U rel rel where oord ≡ (Restr ordLeq O)

definition CCR :: ′U rel ⇒ bool
where

CCR r = (∀ a ∈ Field r . ∀ b ∈ Field r . ∃ c ∈ Field r . (a,c) ∈ r^∗ ∧ (b,c) ∈ r^∗)

definition Conelike :: ′U rel ⇒ bool
where

Conelike r = (r = {} ∨ (∃ m ∈ Field r . ∀ a ∈ Field r . (a,m) ∈ r^∗))

definition dncl :: ′U rel ⇒ ′U set ⇒ ′U set
where

dncl r A = ((r^∗)^−1)‘‘A

4

definition Inv :: ′U rel ⇒ ′U set set
where

Inv r = { A :: ′U set . r ‘‘ A ⊆ A }

definition SF :: ′U rel ⇒ ′U set set
where

SF r = { A :: ′U set. Field (Restr r A) = A }

definition SCF :: ′U rel ⇒ (′U set) set where
SCF r ≡ { B::(′U set) . B ⊆ Field r ∧ (∀ a ∈ Field r . ∃ b ∈ B. (a,b) ∈ r^∗) }

definition cfseq :: ′U rel ⇒ (nat ⇒ ′U) ⇒ bool
where

cfseq r xi ≡ ((∀ a ∈ Field r . ∃ i. (a, xi i) ∈ r^∗) ∧ (∀ i. (xi i, xi (Suc i)) ∈ r))

definition rpth :: ′U rel ⇒ ′U ⇒ ′U ⇒ nat ⇒ (nat ⇒ ′U) set
where

rpth r a b n ≡ { f ::(nat ⇒ ′U). f 0 = a ∧ f n = b ∧ (∀ i<n. (f i, f (Suc i)) ∈ r)
}

definition F :: ′U rel ⇒ ′U ⇒ ′U ⇒ ′U set set
where
F r a b ≡ { F :: ′U set. ∃ n::nat. ∃ f ∈ rpth r a b n. F = f‘{i. i≤n} }

definition f :: ′U rel ⇒ ′U ⇒ ′U ⇒ ′U set
where
f r a b ≡ (if (F r a b 6= {}) then (SOME F . F ∈ F r a b) else {})

definition dnEsc :: ′U rel ⇒ ′U set ⇒ ′U ⇒ ′U set set
where

dnEsc r A a ≡ { F . ∃ b. ((b /∈ dncl r A) ∧ (F ∈ F r a b) ∧ (F ∩ A = {})) }

definition dnesc :: ′U rel ⇒ ′U set ⇒ ′U ⇒ ′U set
where

dnesc r A a = (if (dnEsc r A a 6= {}) then (SOME F . F ∈ dnEsc r A a) else {
a })

definition escl :: ′U rel ⇒ ′U set ⇒ ′U set ⇒ ′U set
where

escl r A B =
⋃

((dnesc r A) ‘ B)

definition clterm where clterm s ′ r ≡ (Conelike s ′ −→ Conelike r)

definition spthlen:: ′U rel ⇒ ′U ⇒ ′U ⇒ nat
where

spthlen r a b ≡ (LEAST n::nat. (a,b) ∈ r^^n)

definition spth :: ′U rel ⇒ ′U ⇒ ′U ⇒ (nat ⇒ ′U) set
where

5

spth r a b = rpth r a b (spthlen r a b)

definition U:: ′U rel ⇒ (′U rel) set where
U r ≡ { s::(′U rel) . CCR s ∧ s ⊆ r ∧ (∀ a ∈ Field r . ∃ b ∈ Field s. (a,b) ∈

r^∗) }

definition RCC-rel :: ′U rel ⇒ ′U rel ⇒ bool where
RCC-rel r α ≡ (U r = {} ∧ α = {}) ∨ (∃ s ∈ U r . |s| =o α ∧ (∀ s ′ ∈ U r . |s|
≤o |s ′|))

definition RCC :: ′U rel ⇒ ′U rel (‖-‖)
where ‖r‖ ≡ (SOME α. RCC-rel r α)

definition Den:: ′U rel ⇒ (′U set) set where
Den r ≡ { B::(′U set) . B ⊆ Field r ∧ (∀ a ∈ Field r . ∃ b ∈ B. (a,b) ∈ r^=) }

definition Span:: ′U rel ⇒ (′U rel) set where
Span r ≡ { s. s ⊆ r ∧ Field s = Field r }

definition scf-rel :: ′U rel ⇒ ′U rel ⇒ bool where
scf-rel r α ≡ (∃ B ∈ SCF r . |B| =o α ∧ (∀ B ′ ∈ SCF r . |B| ≤o |B ′|))

definition scf :: ′U rel ⇒ ′U rel
where scf r ≡ (SOME α. scf-rel r α)

definition w-dncl :: ′U rel ⇒ ′U set ⇒ ′U set
where

w-dncl r A = { a ∈ dncl r A. ∀ b. ∀ F ∈ F r a b. (b /∈ dncl r A −→ F ∩ A 6=
{}) }

definition L :: (′U rel ⇒ ′U set) ⇒ ′U rel ⇒ ′U set
where
L f α ≡

⋃
{A. ∃ α ′. α ′ <o α ∧ A = f α ′}

definition Dbk :: (′U rel ⇒ ′U set) ⇒ ′U rel ⇒ ′U set (∇ - -)
where
∇ f α ≡ f α − (L f α)

definition Q :: ′U rel ⇒ (′U rel ⇒ ′U set) ⇒ ′U rel ⇒ ′U set
where
Q r f α ≡ (f α − (dncl r (L f α)))

definition W :: ′U rel ⇒ (′U rel ⇒ ′U set) ⇒ ′U rel ⇒ ′U set
where
W r f α ≡ (f α − (w-dncl r (L f α)))

definition N1 :: ′U rel ⇒ ′U rel ⇒ (′U rel ⇒ ′U set) set
where
N1 r α0 ≡ { f . ∀α α ′. (α ≤o α0 ∧ α ′ ≤o α) −→ (f α ′) ⊆ (f α) }

6

definition N2 :: ′U rel ⇒ ′U rel ⇒ (′U rel ⇒ ′U set) set
where
N2 r α0 ≡ { f . ∀α. (α ≤o α0 ∧ ¬ (α = {} ∨ isSuccOrd α)) −→ (∇ f α) =
{} }

definition N3 :: ′U rel ⇒ ′U rel ⇒ (′U rel ⇒ ′U set) set
where
N3 r α0 ≡ { f . ∀α. (α ≤o α0 ∧ (α = {} ∨ isSuccOrd α)) −→

(ω-ord ≤o |L f α| −→ ((escl r (L f α) (f α) ⊆ (f α)) ∧ (clterm (Restr r (f
α)) r))) }

definition N4 :: ′U rel ⇒ ′U rel ⇒ (′U rel ⇒ ′U set) set
where
N4 r α0 ≡ { f . ∀α. (α ≤o α0 ∧ (α = {} ∨ isSuccOrd α)) −→

(∀ a ∈ (L f α). (r‘‘{a} ⊆ w-dncl r (L f α)) ∨ (r‘‘{a} ∩ (W r f α)6={})
) }

definition N5 :: ′U rel ⇒ ′U rel ⇒ (′U rel ⇒ ′U set) set
where
N5 r α0 ≡ { f . ∀α. α ≤o α0 −→ (f α) ∈ SF r }

definition N6 :: ′U rel ⇒ ′U rel ⇒ (′U rel ⇒ ′U set) set
where
N6 r α0 ≡ { f . ∀α. α ≤o α0 −→ CCR (Restr r (f α)) }

definition N7 :: ′U rel ⇒ ′U rel ⇒ (′U rel ⇒ ′U set) set
where
N7 r α0 ≡ { f . ∀α. α ≤o α0 −→ (α <o ω-ord −→ |f α| <o ω-ord) ∧ (ω-ord
≤o α −→ |f α| ≤o α) }

definition N8 :: ′U rel ⇒ ′U set set ⇒ ′U rel ⇒ (′U rel ⇒ ′U set) set
where
N8 r Ps α0 ≡ { f . ∀α. α ≤o α0 ∧ (α = {} ∨ isSuccOrd α) ∧ ((∃ P. Ps =
{P}) ∨ (¬ finite Ps ∧ |Ps| ≤o |f α|)) −→

(∀ P ∈ Ps. ((f α) ∩ P) ∈ SCF (Restr r (f α))) }

definition N9 :: ′U rel ⇒ ′U rel ⇒ (′U rel ⇒ ′U set) set
where
N9 r α0 ≡ { f . ω-ord ≤o α0 −→ Field r ⊆ (f α0) }

definition N10 :: ′U rel ⇒ ′U rel ⇒ (′U rel ⇒ ′U set) set
where
N10 r α0 ≡ { f . ∀α. α ≤o α0 −→ ((∃ y:: ′U . Q r f α = {y}) −→ (Field r ⊆

dncl r (f α))) }

definition N11 :: ′U rel ⇒ ′U rel ⇒ (′U rel ⇒ ′U set) set
where
N11 r α0 ≡ { f . ∀α. (α ≤o α0 ∧ isSuccOrd α) −→ Q r f α = {} −→ (Field

7

r ⊆ dncl r (f α)) }

definition N12 :: ′U rel ⇒ ′U rel ⇒ (′U rel ⇒ ′U set) set
where
N12 r α0 ≡ { f . ∀α. α ≤o α0 −→ ω-ord ≤o α −→ ω-ord ≤o |L f α| }

definition N :: ′U rel ⇒ ′U set set ⇒ (′U rel ⇒ ′U set) set
where
N r Ps ≡ { f ∈ (N1 r |Field r |) ∩ (N2 r |Field r |) ∩ (N3 r |Field r |) ∩ (N4

r |Field r |)
∩ (N5 r |Field r |) ∩ (N6 r |Field r |) ∩ (N7 r |Field r |) ∩ (N8 r Ps

|Field r |)
∩ (N9 r |Field r | ∩ N10 r |Field r | ∩ N11 r |Field r | ∩ N12 r |Field r |).
(∀ α β. α =o β −→ f α = f β) }

definition T :: (′U rel ⇒ ′U set ⇒ ′U set) ⇒ (′U rel ⇒ ′U set) set
where
T F ≡ { f :: ′U rel ⇒ ′U set .

f {} = {}
∧ (∀ α0 α:: ′U rel. (sc-ord α0 α −→ f α = F α0 (f α0)))
∧ (∀ α. (lm-ord α −→ f α =

⋃
{ D. ∃ β. β <o α ∧ D = f β }))

∧ (∀α β. α =o β −→ f α = f β) }

definition Ep where Ep r Ps A A ′ ≡
(((∃ P. Ps = {P}) ∨ ((¬ finite Ps) ∧ |Ps| ≤o |A|))

−→ (∀ P ∈ Ps. (A ′ ∩ P) ∈ SCF (Restr r A ′)))

definition E :: ′U rel ⇒ ′U ⇒ ′U set ⇒ ′U set set ⇒ ′U set set
where
E r a A Ps ≡ { A ′.

(a ∈ Field r −→ a ∈ A ′) ∧ A ⊆ A ′

∧ (|A| <o ω-ord −→ |A ′| <o ω-ord) ∧ (ω-ord ≤o |A| −→ |A ′| ≤o |A|)
∧ (A ∈ SF r −→ (

A ′ ∈ SF r
∧ CCR (Restr r A ′)
∧ (∀ a∈A. (r‘‘{a} ⊆ w-dncl r A) ∨ (r‘‘{a} ∩ (A ′−w-dncl r A) 6= {})

)
∧ ((∃ y. A ′ − dncl r A ⊆ {y}) −→ (Field r ⊆ (dncl r A ′)))
∧ Ep r Ps A A ′

∧ (ω-ord ≤o |A| −→ escl r A A ′ ⊆ A ′ ∧ clterm (Restr r A ′) r))) }

definition wbase:: ′U rel ⇒ ′U set ⇒ (′U set) set where
wbase r A ≡ { B:: ′U set. A ⊆ w-dncl r B }

definition wrank-rel :: ′U rel ⇒ ′U set ⇒ ′U rel ⇒ bool where
wrank-rel r A α ≡ (∃ B ∈ wbase r A. |B| =o α ∧ (∀ B ′ ∈ wbase r A. |B| ≤o
|B ′|))

definition wrank :: ′U rel ⇒ ′U set ⇒ ′U rel

8

where wrank r A ≡ (SOME α. wrank-rel r A α)

definition Mwn :: ′U rel ⇒ ′U rel ⇒ ′U set
where

Mwn r α = { a ∈ Field r . α <o wrank r (r ‘‘{a}) }

definition Mwnm :: ′U rel ⇒ ′U set
where

Mwnm r = { a ∈ Field r . ‖r‖ ≤o wrank r (r ‘‘{a}) }

definition wesc-rel :: ′U rel ⇒ (′U rel ⇒ ′U set) ⇒ ′U rel ⇒ ′U ⇒ ′U ⇒ bool
where

wesc-rel r f α a b ≡ (b ∈ W r f α ∧ (a,b) ∈ (Restr r (W r f α))^∗
∧ (∀β. α <o β ∧ β <o |Field r | ∧ (β = {} ∨ isSuccOrd β) −→ (r‘‘{b} ∩ (W

r f β) 6= {})))

definition wesc :: ′U rel ⇒ (′U rel ⇒ ′U set) ⇒ ′U rel ⇒ ′U ⇒ ′U
where

wesc r f α a ≡ (SOME b. wesc-rel r f α a b)

definition cardLeN1 :: ′a set ⇒ bool
where

cardLeN1 A ≡ (∀ B ⊆ A.
(∀ C ⊆ B . ((∃ D f . D ⊂ C ∧ C ⊆ f‘D) −→ (∃ f . B ⊆ f‘C)))
∨ (∃ g . A ⊆ g‘B))

1.2.2 Auxiliary lemmas
lemma lem-Ldo-ldogen-ord:
assumes ∀α β a b c. α ≤ β −→ (a, b) ∈ g α ∧ (a, c) ∈ g β −→

(∃ b ′ b ′′ c ′ c ′′ d. (b, b ′, b ′′, d) ∈ D g α β ∧ (c, c ′, c ′′, d) ∈ D g β α)
shows DCR-generating g

using assms unfolding DCR-generating-def by (meson linear)

lemma lem-rtr-field: (x,y) ∈ r^∗ =⇒ (x = y) ∨ (x ∈ Field r ∧ y ∈ Field r)
by (metis Field-def Not-Domain-rtrancl Range.RangeI UnCI rtranclE)

lemma lem-fin-fl-rel: finite (Field r) = finite r
using finite-Field finite-subset trancl-subset-Field2 by fastforce

lemma lem-Relprop-fld-sat:
fixes r s:: ′U rel
assumes a1 : s ⊆ r and a2 : s ′ = Restr r (Field s)
shows s ⊆ s ′ ∧ Field s ′ = Field s
proof −

have s ⊆ (Field s) × (Field s) unfolding Field-def by force
then have s ⊆ s ′ using a1 a2 by blast
moreover then have Field s ⊆ Field s ′ unfolding Field-def by blast
moreover have Field s ′ ⊆ Field s using a2 unfolding Field-def by blast

9

ultimately show ?thesis by blast
qed

lemma lem-Relprop-sat-un:
fixes r :: ′U rel and S :: ′U set set and A ′:: ′U set
assumes a1 : ∀A∈S . Field (Restr r A) = A and a2 : A ′ =

⋃
S

shows Field (Restr r A ′) = A ′

proof
show Field (Restr r A ′) ⊆ A ′ unfolding Field-def by blast

next
show A ′ ⊆ Field (Restr r A ′)
proof

fix x
assume x ∈ A ′

then obtain A where A ∈ S ∧ x ∈ A using a2 by blast
then have x ∈ Field (Restr r A) ∧ A ⊆ A ′ using a1 a2 by blast

moreover then have Field (Restr r A) ⊆ Field (Restr r A ′) unfolding
Field-def by blast

ultimately show x ∈ Field (Restr r A ′) by blast
qed

qed

lemma lem-nord-r : Well-order α =⇒ nord α =o α unfolding nord-def by (meson
ordIso-reflexive someI-ex)

lemma lem-nord-l: Well-order α =⇒ α =o nord α unfolding nord-def by (meson
ordIso-reflexive ordIso-symmetric someI-ex)

lemma lem-nord-eq: α =o β =⇒ nord α = nord β unfolding nord-def using
ordIso-symmetric ordIso-transitive by metis

lemma lem-nord-req: Well-order α =⇒ Well-order β =⇒ nord α = nord β =⇒ α
=o β

using lem-nord-l lem-nord-r ordIso-transitive by metis

lemma lem-Onord: α ∈ O =⇒ α = nord α unfolding O-def using lem-nord-r
lem-nord-eq by blast

lemma lem-Oeq: α ∈ O =⇒ β ∈ O =⇒ α =o β =⇒ α = β using lem-Onord
lem-nord-eq by metis

lemma lem-Owo: α ∈ O =⇒ Well-order α unfolding O-def using lem-nord-r
ordIso-Well-order-simp by blast

lemma lem-fld-oord: Field oord = O using lem-Owo ordLeq-reflexive unfolding
oord-def Field-def by blast

lemma lem-nord-less: α <o β =⇒ nord β 6= nord α ∧ (nord α, nord β) ∈ oord
proof −

10

assume b1 : α <o β
then have nord α ∈ O ∧ nord β ∈ O ∧ nord α =o α ∧ nord β =o β

using lem-nord-r ordLess-Well-order-simp unfolding O-def by blast
moreover have ∀ r A a b. (a,b) ∈ Restr r A = (a ∈ A ∧ b ∈ A ∧ (a,b) ∈ r)

unfolding Field-def by force
ultimately show nord β 6= nord α ∧(nord α, nord β) ∈ oord using b1 unfold-

ing oord-def
by (metis not-ordLess-ordIso ordIso-iff-ordLeq ordLeq-iff-ordLess-or-ordIso or-

dLeq-transitive)
qed

lemma lem-nord-ls: α <o β =⇒ nord α <o nord β
proof −

assume a1 : α <o β
then have Well-order α ∧ Well-order β unfolding ordLess-def by blast
then have nord α =o α and nord β =o β using lem-nord-r by blast+
then show nord α <o nord β using a1

using ordIso-iff-ordLeq ordIso-ordLess-trans ordLess-ordLeq-trans by blast
qed

lemma lem-nord-le: α ≤o β =⇒ nord α ≤o nord β
proof −

assume a1 : α ≤o β
then have Well-order α ∧ Well-order β unfolding ordLeq-def by blast
then have nord α =o α and nord β =o β using lem-nord-r by blast+
then show nord α ≤o nord β using a1 by (meson ordIso-iff-ordLeq ordLeq-transitive)

qed

lemma lem-nordO-ls-l: α <o β =⇒ nord α ∈ O using O-def ordLess-Well-order-simp
by blast

lemma lem-nordO-ls-r : α <o β =⇒ nord β ∈ O using O-def ordLess-Well-order-simp
by blast

lemma lem-nordO-le-l: α ≤o β =⇒ nord α ∈ O using O-def ordLeq-Well-order-simp
by blast

lemma lem-nordO-le-r : α ≤o β =⇒ nord β ∈ O using O-def ordLeq-Well-order-simp
by blast

lemma lem-nord-ls-r : α <o β =⇒ α <o nord β
using lem-nord-ls[of α β] lem-nord-r [of β] lem-nord-l by (metis ordLess-ordIso-trans

ordLess-Well-order-simp)

lemma lem-nord-ls-l: α <o β =⇒ nord α <o β
using lem-nord-ls[of α β] lem-nord-r [of β] by (metis ordLess-ordIso-trans ord-

Less-Well-order-simp)

lemma lem-nord-le-r : α ≤o β =⇒ α ≤o nord β

11

using lem-nord-le[of α β] lem-nord-r [of β] lem-nord-l by (metis ordLeq-ordIso-trans
ordLeq-Well-order-simp)

lemma lem-nord-le-l: α ≤o β =⇒ nord α ≤o β
using lem-nord-le[of α β] lem-nord-r [of β] by (metis ordLeq-ordIso-trans or-

dLeq-Well-order-simp)

lemma lem-oord-wo: Well-order oord
proof −

let ?oleqO = Restr ordLeq O
have Well-order ?oleqO
proof −

have c1 : Field ordLeq = {α:: ′U rel. Well-order α}
using ordLeq-Well-order-simp ordLeq-reflexive unfolding Field-def by blast

then have Refl ordLeq using ordLeq-refl-on by metis
then have Preorder ordLeq using ordLeq-trans unfolding preorder-on-def by

blast
then have Preorder ?oleqO using Preorder-Restr by blast
moreover have ∀α β:: ′U rel. (α, β) ∈ ?oleqO −→ (β, α) ∈ ?oleqO −→ α = β
proof (intro allI impI)

fix α β:: ′U rel
assume d1 : (α, β) ∈ ?oleqO and d2 : (β, α) ∈ ?oleqO
then have α ≤o β ∧ β ≤o α by blast
then have α =o β using ordIso-iff-ordLeq by blast
moreover have α ∈ O ∧ β ∈ O using d1 by blast
ultimately show α = β using lem-Oeq by blast

qed
moreover have ∀ α ∈ Field (?oleqO:: ′U rel rel). ∀ β ∈ Field ?oleqO. α 6= β

−→
(α, β) ∈ ?oleqO ∨ (β, α) ∈ ?oleqO

proof (intro ballI impI)
fix α β:: ′U rel
assume d1 : α ∈ Field ?oleqO and d2 : β ∈ Field ?oleqO and α 6= β
then have Well-order α ∧ Well-order β using c1 unfolding Field-def

by (metis (no-types, lifting) Field-Un Field-def Un-def mem-Collect-eq
sup-inf-absorb)

then have α ≤o β ∨ β ≤o α using ordLess-imp-ordLeq ordLess-or-ordLeq
by blast

moreover have α ∈ O ∧ β ∈ O using d1 d2 unfolding Field-def by blast
ultimately show (α, β) ∈ ?oleqO ∨ (β, α) ∈ ?oleqO by blast

qed
ultimately have Linear-order ?oleqO unfolding linear-order-on-def

partial-order-on-def total-on-def antisym-def preorder-on-def by blast
moreover have wf ((?oleqO:: ′U rel rel) − Id)
proof −

have Restr (ordLess:: ′U rel rel) O ⊆ ?oleqO − Id
using not-ordLeq-ordLess ordLeq-iff-ordLess-or-ordIso by blast

moreover have (?oleqO:: ′U rel rel) − Id ⊆ Restr ordLess O
using lem-Oeq ordLeq-iff-ordLess-or-ordIso by blast

12

ultimately have (?oleqO:: ′U rel rel) − Id = Restr ordLess O by blast
moreover have wf (Restr ordLess O)
using wf-ordLess Restr-subset wf-subset[of ordLess Restr ordLess O] by blast

ultimately show ?thesis by simp
qed
ultimately show ?thesis unfolding well-order-on-def by blast

qed
moreover have Well-order |(UNIV − O):: ′U rel set| using card-of-Well-order

by blast
moreover have Field (Restr ordLeq O) ∩ Field (|(UNIV − O):: ′U rel set|) =
{}

proof −
have Field (Restr ordLeq O) ⊆ O unfolding Field-def by blast
moreover have Field (|(UNIV − O):: ′U rel set|) ⊆ UNIV − O by simp
ultimately show ?thesis by blast

qed
ultimately show ?thesis unfolding oord-def using Osum-Well-order by blast

qed

lemma lem-lmord-inf :
fixes α:: ′U rel
assumes lm-ord α
shows ¬ finite (Field α)
proof −

have finite (Field α) −→ False
proof

assume c1 : finite (Field α)
have c2 : Well-order α using assms unfolding lm-ord-def by blast
have α 6= {} using assms lm-ord-def by blast
then have Field α 6= {} unfolding Field-def by force
then have wo-rel.isMaxim α (Field α) (wo-rel.maxim α (Field α))

using c1 c2 wo-rel.maxim-isMaxim[of α Field α] unfolding wo-rel-def by
blast

then have ∃ j∈Field α. ∀ i∈Field α. (i, j) ∈ α
using c2 wo-rel.isMaxim-def [of α Field α] unfolding wo-rel-def by blast

then have isSuccOrd α using c2 wo-rel.isSuccOrd-def unfolding wo-rel-def
by blast

then show False using assms unfolding lm-ord-def by blast
qed
then show ?thesis by blast

qed

lemma lem-sucord-ex:
fixes α β:: ′U rel
assumes α <o β
shows ∃ α ′:: ′U rel. sc-ord α α ′

proof −
obtain S :: ′U rel set where b1 : S = { γ:: ′U rel. α <o γ } by blast
then have S 6= {} ∧ (∀ α ∈ S . Well-order α) using assms ordLess-Well-order-simp

13

by blast
then obtain α ′ where α ′ ∈ S ∧ (∀α ∈ S . α ′ ≤o α)

using BNF-Wellorder-Constructions.exists-minim-Well-order [of S] by blast
then show ?thesis unfolding b1 sc-ord-def by blast

qed

lemma lem-osucc-eq: isSuccOrd α =⇒ α =o β =⇒ isSuccOrd β
proof −

assume a1 : isSuccOrd α and a2 : α =o β
moreover then have a3 : wo-rel α and a4 : wo-rel β unfolding ordIso-def

wo-rel-def by blast+
obtain j where a5 : j ∈ Field α and a6 : ∀ i∈Field α. (i, j) ∈ α using a1 a3

wo-rel.isSuccOrd-def by blast
obtain f where a7 : iso α β f using a2 unfolding ordIso-def by blast
have (f j) ∈ Field β using a5 a7 unfolding iso-def bij-betw-def by blast
moreover have ∀ i ′ ∈ Field β. (i ′, f j) ∈ β
proof

fix i ′
assume b1 : i ′ ∈ Field β
then obtain i where b2 : i ∈ Field α ∧ i ′ = f i using a7 unfolding iso-def

bij-betw-def by blast
then have (i, j) ∈ α using a6 by blast

then have (f i, f j) ∈ β using a2 a7 by (meson iso-oproj oproj-in or-
dIso-Well-order-simp)

then show (i ′, f j) ∈ β using b2 by blast
qed
ultimately have ∃ j∈Field β. ∀ i∈Field β. (i, j) ∈ β by blast
then show isSuccOrd β using a4 wo-rel.isSuccOrd-def by blast

qed

lemma lem-ord-subemp: (α:: ′a rel) ≤o ({}:: ′b rel) =⇒ α = {}
proof −

assume α ≤o ({}:: ′b rel)
then obtain f where embed α ({}:: ′b rel) f unfolding ordLeq-def by blast
then show α = {} unfolding embed-def bij-betw-def Field-def under-def by

force
qed

lemma lem-ordint-sucord:
fixes α0 :: ′a rel and α:: ′b rel
assumes α0 <o α ∧ (∀ γ:: ′b rel. α0 <o γ −→ α ≤o γ)
shows isSuccOrd α
proof −

have c1 : Well-order α using assms unfolding ordLess-def by blast
obtain f where e3 : Well-order α0 ∧ Well-order α ∧ embedS α0 α f using

assms unfolding ordLess-def by blast
moreover have e4 : f ‘ Field α0 ⊆ Field α using e3 embed-in-Field[of α0 α f]

unfolding embedS-def by blast
have f ‘ Field α0 6= Field α using e3 embed-inj-on unfolding bij-betw-def

14

embedS-def by blast
then obtain j0 where e5 : j0 ∈ Field α ∧ j0 /∈ f ‘ Field α0 using e4 by blast
moreover have ∀ i ∈ Field α. (i, j0) ∈ α
proof

fix i
assume i ∈ Field α
moreover then have (i, i) ∈ α using e3 unfolding well-order-on-def

linear-order-on-def partial-order-on-def preorder-on-def refl-on-def by blast
moreover have (j0 , i) ∈ α −→ (i, j0) ∈ α
proof

assume g1 : (j0 , i) ∈ α
obtain γ where g2 : γ = Restr α (under α j0) by blast
then have g3 : Well-order γ using e3 Well-order-Restr by blast
have α0 <o γ
proof −

have h1 : ∀ a ∈ Field α0 . f a ∈ under α j0
proof

fix a
assume i1 : a ∈ Field α0

then have i2 : bij-betw f (under α0 a) (under α (f a)) using e3 unfolding
embedS-def embed-def by blast

have (j0 , f a) ∈ α −→ False
proof

assume (j0 , f a) ∈ α
then obtain b where j0 = f b ∧ b ∈ under α0 a using i2 unfolding

under-def bij-betw-def by (simp, blast)
moreover then have b ∈ Field α0 unfolding under-def Field-def by

blast
ultimately show False using e5 by blast

qed
moreover have i3 : j0 ∈ Field α using g1 unfolding Field-def by blast

moreover have f a ∈ Field α using i1 e3 embed-Field unfolding
embedS-def by blast

ultimately have i4 : (f a, j0) ∈ α
using e3 unfolding well-order-on-def linear-order-on-def total-on-def

partial-order-on-def preorder-on-def refl-on-def by metis
then show f a ∈ under α j0 unfolding under-def by blast

qed
then have compat α0 γ f
using e3 g2 embed-compat unfolding Field-def embedS-def compat-def by

blast
moreover have ofilter γ (f ‘ Field α0)
proof −
have ofilter α (under α j0) using e3 wo-rel.under-ofilter [of α] unfolding

wo-rel-def by blast
moreover have ofilter α (f ‘ Field α0)
using e3 embed-iff-compat-inj-on-ofilter [of α0 α f] unfolding embedS-def

by blast
moreover have f ‘ Field α0 ⊆ under α j0 using h1 by blast

15

ultimately show ofilter γ (f ‘ Field α0)
using g2 e3 ofilter-Restr-subset[of α f ‘ Field α0 under α j0] by blast

qed
moreover have inj-on f (Field α0)
using e3 embed-iff-compat-inj-on-ofilter [of α0 α f] unfolding embedS-def

by blast
ultimately have embed α0 γ f using g3 e3 embed-iff-compat-inj-on-ofilter [of

α0 γ f] by blast
moreover have bij-betw f (Field α0) (Field γ) −→ False
proof

assume i1 : bij-betw f (Field α0) (Field γ)
have (j0 , j0) ∈ α using e3 e5 unfolding well-order-on-def

linear-order-on-def partial-order-on-def preorder-on-def refl-on-def by
blast

then have j0 ∈ Field γ using g2 unfolding under-def Field-def by blast
then show False using i1 e5 unfolding bij-betw-def by blast

qed
ultimately have embedS α0 γ f unfolding embedS-def by blast
then show ?thesis using g3 e3 unfolding ordLess-def by blast

qed
then have α =o γ using assms g2 e3 under-Restr-ordLeq[of α j0] or-

dIso-iff-ordLeq by blast
then obtain f1 where iso α γ f1 unfolding ordIso-def by blast
then have g4 : embed α γ f1 ∧ bij-betw f1 (Field α) (Field γ) unfolding

iso-def by blast
then have f1 ‘ under α i = under γ (f1 i) using g1 unfolding bij-betw-def

embed-def Field-def by blast
then have (f1 i, j0) ∈ α using g1 unfolding g2 under-def by blast
moreover have f1 i = i
proof −

have Restr α (Field α) = α unfolding Field-def by force
moreover have ofilter α (under α j0) using e3 wo-rel.under-ofilter [of α]

unfolding wo-rel-def by blast
moreover have ofilter α (Field α) unfolding ofilter-def under-def Field-def

by blast
moreover have under α j0 ⊆ Field α unfolding under-def Field-def by

blast
ultimately have embed γ α id using g2 e3 ofilter-subset-embed by metis
then have embed α α (id ◦ f1) using g4 e3 comp-embed by blast
then have embed α α f1 by simp

moreover have embed α α id unfolding embed-def id-def bij-betw-def
inj-on-def by blast

ultimately have ∀ k ∈ Field α. f1 k = k using e3 embed-unique[of α α
f1 id] unfolding id-def by blast

moreover have i ∈ Field α using g1 unfolding Field-def by blast
ultimately show ?thesis by blast

qed
ultimately show (i, j0) ∈ α by metis

qed

16

ultimately show (i, j0) ∈ α
using e3 e5 unfolding well-order-on-def linear-order-on-def total-on-def by

metis
qed
ultimately show isSuccOrd α using c1 wo-rel.isSuccOrd-def [of α] unfolding

wo-rel-def by blast
qed

lemma lem-sucord-ordint:
fixes α:: ′U rel
assumes Well-order α ∧ isSuccOrd α
shows ∃ α0 :: ′U rel. α0 <o α ∧ (∀ γ:: ′U rel. α0 <o γ −→ α ≤o γ)
proof −

obtain j where b1 : j ∈ Field α ∧ (∀ i ∈ Field α. (i, j) ∈ α)
using assms wo-rel.isSuccOrd-def unfolding wo-rel-def by blast

moreover obtain α0 where b2 : α0 = Restr α (UNIV − {j}) by blast
moreover have ∀ i. (j, i) ∈ α −→ i = j using assms b1 unfolding Field-def

well-order-on-def
linear-order-on-def partial-order-on-def antisym-def by blast

ultimately have b3 : embedS α0 α id
unfolding Field-def embedS-def embed-def id-def bij-betw-def under-def inj-on-def

apply simp
by blast

moreover have b4 : Well-order α0 using assms b2 Well-order-Restr by blast
ultimately have α0 <o α using assms unfolding ordLess-def by blast
moreover have ∀ γ:: ′U rel. α0 <o γ −→ α ≤o γ
proof (intro allI impI)

fix γ:: ′U rel
assume c1 : α0 <o γ
then have c2 : Well-order γ unfolding ordLess-def by blast
obtain f where embedS α0 γ f using c1 unfolding ordLess-def by blast
then have c3 : embed α0 γ f ∧ ¬ bij-betw f (Field α0) (Field γ) unfolding

embedS-def by blast
have γ <o α −→ False
proof

assume d1 : γ <o α
obtain g where embedS γ α g using d1 unfolding ordLess-def by blast
then have d3 : embed γ α g ∧ ¬ bij-betw g (Field γ) (Field α) unfolding

embedS-def by blast
have d4 : j ∈ g ‘ Field γ −→ False
proof

assume j ∈ g ‘ Field γ
then obtain a where a ∈ Field γ ∧ g a = j by blast

then have bij-betw g (under γ a) (under α j) using d3 unfolding embed-def
by blast

moreover have under α j = Field α using b1 unfolding under-def
Field-def by blast

ultimately have bij-betw g (under γ a) (Field α) by simp

17

then have g ‘ Field γ 6= Field α ∧ g ‘ Field γ ⊆ Field α ∧ g ‘ under γ a
= Field α

using c2 d3 embed-inj-on[of γ α g] embed-Field[of γ α g] unfolding
bij-betw-def by blast

moreover have under γ a ⊆ Field γ unfolding under-def Field-def by
blast

ultimately show False by blast
qed
have Field γ ⊆ f ‘ Field α0
proof

fix a
assume e1 : a ∈ Field γ
then have bij-betw g (under γ a) (under α (g a)) using d3 unfolding

embed-def by blast
have g a ∈ Field α − {j} using e1 c2 d3 d4 embed-Field by blast

moreover then have (g a, g a) ∈ α using assms unfolding Field-def
well-order-on-def

linear-order-on-def partial-order-on-def preorder-on-def refl-on-def by blast
ultimately have e2 : g a ∈ Field α0 using b2 unfolding Field-def by

blast
have embed α0 α (g ◦ f) using b4 c3 d3 comp-embed[of α0 γ f α g] by

blast
then have ∀ x ∈ Field α0 . g (f x) = x using assms b3 b4 embed-unique[of

α0 α g ◦ f id]
unfolding embedS-def comp-def id-def by blast

then have g (f (g a)) = g a using e2 by blast
moreover have inj-on g (Field γ) using c2 d3 embed-inj-on[of γ α g] by

blast
moreover have f (g a) ∈ Field γ using e2 b4 c3 embed-Field[of α0 γ f]

by blast
ultimately have f (g a) = a using e1 unfolding inj-on-def by blast
then show a ∈ f ‘ Field α0 using e2 by force

qed
then have bij-betw f (Field α0) (Field γ)

using b4 c3 embed-inj-on[of α0 γ f] embed-Field[of α0 γ f] unfolding
bij-betw-def by blast

then show False using c3 by blast
qed
then show α ≤o γ using assms c2 by simp

qed
ultimately show ?thesis by blast

qed

lemma lem-sclm-ordind:
fixes P:: ′U rel ⇒ bool
assumes a1 : P {}

and a2 : ∀ α0 α:: ′U rel. (sc-ord α0 α ∧ P α0 −→ P α)
and a3 : ∀ α. ((lm-ord α ∧ (∀ β. β <o α −→ P β)) −→ P α)

shows ∀ α. Well-order α −→ P α

18

proof −
obtain Q where b1 : Q = (λ α. Well-order α −→ P α) by blast
have ∀ α. (∀ β. β <o α −→ Q β) −→ Q α
proof (intro allI impI)

fix α:: ′U rel
assume c1 : ∀ β. β <o α −→ Q β
then have c2 : ∀ β. β <o α −→ P β unfolding b1 ordLess-def by blast
show Q α
proof (cases ∃ α0 . sc-ord α0 α)

assume ∃ α0 . sc-ord α0 α
then obtain α0 where sc-ord α0 α by blast
then show Q α using c2 b1 a2 unfolding sc-ord-def by blast

next
assume ¬ (∃ α0 . sc-ord α0 α)
then have (¬ Well-order α) ∨ α = {} ∨ lm-ord α

using lem-sucord-ordint unfolding sc-ord-def lm-ord-def by blast
moreover have lm-ord α −→ P α using c2 a3 by blast
ultimately show Q α using a1 b1 by blast

qed
qed
then show ?thesis using b1 wf-induct[of ordLess Q] wf-ordLess by blast

qed

lemma lem-ordseq-rec-sets:
fixes E :: ′U set and F :: ′U rel ⇒ ′U set ⇒ ′U set
assumes ∀ α β. α =o β −→ F α = F β
shows ∃ f ::(′U rel ⇒ ′U set).

f {} = E
∧ (∀ α0 α:: ′U rel. (sc-ord α0 α −→ f α = F α0 (f α0)))
∧ (∀ α. lm-ord α −→ f α =

⋃
{ D. ∃ β. β <o α ∧ D = f β })

∧ (∀ α β. α =o β −→ f α = f β)
proof −

obtain cmp:: ′U rel rel where b1 : cmp = oord by blast
then interpret cmp: wo-rel cmp unfolding wo-rel-def using lem-oord-wo by

blast
obtain L where b2 : L = (λ g:: ′U rel ⇒ ′U set. λ α:: ′U rel.

⋃
(g ‘ (underS cmp

α))) by blast
then have b3 : adm-woL cmp L unfolding cmp.adm-woL-def by blast
obtain fo where b4 : fo = (worecZSL cmp E F L) by blast
obtain f where b5 : f = (λ α:: ′U rel. fo (nord α)) by blast
have b6 : fo (zero cmp) = E using b3 b4 cmp.worecZSL-zero by simp
have b7 : ∀ α. aboveS cmp α 6= {} −→ fo (succ cmp α) = F α (fo α)

using b3 b4 cmp.worecZSL-succ by metis
have b8 : ∀ α. isLim cmp α ∧ α 6= zero cmp −→ fo α =

⋃
(fo ‘ (underS cmp

α))
using b2 b3 b4 cmp.worecZSL-isLim by metis

have b9 : zero cmp = {} ∧ nord ({}:: ′U rel) = {}
proof −

obtain isz where c1 : isz = (λ α. α ∈ Field cmp ∧ (∀β∈Field cmp. (α, β) ∈

19

cmp)) by blast
have c2 : {} ∈ (O:: ′U rel set)
proof −

have Well-order ({}:: ′U rel) by simp
moreover then have nord ({}:: ′U rel) = {} using lem-nord-r lem-ord-subemp

ordIso-iff-ordLeq by blast
ultimately show ?thesis unfolding O-def by blast

qed
moreover have ∀ β ∈ O::(′U rel set). ({}, β) ∈ oord
proof

fix β:: ′U rel
assume d1 : β ∈ O
then have Well-order β using lem-Owo by blast
then have {} ≤o β using ozero-ordLeq unfolding ozero-def by blast
then show ({}, β) ∈ oord using d1 c2 unfolding oord-def by blast

qed
ultimately have isz {} using c1 b1 lem-fld-oord by blast
moreover have ∀ α. isz α −→ α = {}
proof (intro allI impI)

fix α
assume d1 : isz α
then have d2 : α ∈ O ∧ (∀ β ∈ O. (α, β) ∈ oord) using c1 b1 lem-fld-oord

by blast
have Well-order ({}:: ′U rel) by simp
then have α ≤o nord ({}:: ′U rel) ∧ nord ({}:: ′U rel) =o ({}:: ′U rel)

using d2 lem-nord-r unfolding oord-def O-def by blast
then have α ≤o ({}:: ′U rel) using ordLeq-ordIso-trans by blast
then show α = {} using lem-ord-subemp by blast

qed
ultimately have (THE α. isz α) = {} by (simp only: the-equality)

then have zero cmp = {} unfolding c1 cmp.zero-def cmp.minim-def cmp.isMinim-def
by blast

moreover have nord ({}:: ′U rel) = {} using c2 lem-Onord by blast
ultimately show ?thesis by blast

qed
have b10 : ∀ α α ′:: ′U rel. aboveS cmp α 6= {} ∧ α ′ = succ cmp α −→ (α ∈ O ∧

α ′ ∈ O ∧ α <o α ′ ∧ (∀ β:: ′U rel. α <o β −→ α ′ ≤o β))
proof (intro allI impI)

fix α α ′

assume aboveS cmp α 6= {} ∧ α ′ = succ cmp α
moreover then have AboveS cmp {α} ⊆ Field cmp ∧ AboveS cmp {α} 6= {}

unfolding AboveS-def aboveS-def Field-def by blast
ultimately have c4 : isMinim cmp (AboveS cmp {α}) α ′

using cmp.minim-isMinim unfolding cmp.succ-def cmp.suc-def by blast
have c5 : (α, α ′) ∈ cmp ∧ α 6= α ′ using c4 lem-fld-oord unfolding cmp.isMinim-def

AboveS-def by blast
then have α ≤o α ′ ∧ ¬ (α =o α ′) using b1 lem-Oeq unfolding oord-def by

blast
then have α <o α ′ using ordLeq-iff-ordLess-or-ordIso by blast

20

moreover have ∀ β:: ′U rel. α <o β −→ α ′ ≤o β
proof (intro allI impI)

fix β:: ′U rel
assume d1 : α <o β
have nord β 6= nord α ∧ (nord α, nord β) ∈ cmp using d1 b1 lem-nord-less

by blast
moreover then have nord β ∈ Field cmp unfolding Field-def by blast
ultimately have nord β ∈ AboveS cmp {nord α} unfolding AboveS-def by

blast
moreover have α = nord α using c5 b1 lem-Onord unfolding oord-def by

blast
ultimately have (α ′, nord β) ∈ cmp using c4 unfolding cmp.isMinim-def

by metis
then have α ′ ≤o nord β unfolding b1 oord-def by blast
moreover have nord β =o β using d1 lem-nord-r ordLess-Well-order-simp

by blast
ultimately show α ′ ≤o β using ordLeq-ordIso-trans by blast

qed
moreover have α ∈ O ∧ α ′ ∈ O using c5 b1 unfolding oord-def by blast
ultimately show α ∈ O ∧ α ′ ∈ O ∧ α <o α ′ ∧ (∀ β:: ′U rel. α <o β −→ α ′

≤o β) by blast
qed
then have b11 : ∀ α:: ′U rel. Well-order α ∧ ¬ (α = {} ∨ isSuccOrd α) −→

isLim cmp α
using lem-ordint-sucord unfolding cmp.isLim-def cmp.isSucc-def by metis

have f {} = E using b5 b6 b9 by simp
moreover have (∀ α α ′:: ′U rel. (α <o α ′ ∧ (∀ β:: ′U rel. α <o β −→ α ′ ≤o β)
−→ f α ′ = F α (f α)))

proof (intro allI impI)
fix α α ′:: ′U rel
assume c1 : α <o α ′ ∧ (∀ β:: ′U rel. α <o β −→ α ′ ≤o β)
then have c2 : (aboveS cmp (nord α)) 6= {} using lem-nord-less unfolding b1

aboveS-def by fast
obtain γ where c3 : γ = succ cmp (nord α) by blast
have c4 : γ ∈ O ∧ (nord α) <o γ ∧ (∀β:: ′U rel. (nord α) <o β −→ γ ≤o β)

using c2 c3 b10 by blast
moreover have nord α =o α using c1 lem-nord-r ordLess-Well-order-simp by

blast
ultimately have α <o γ ∧ (∀β:: ′U rel. α <o β −→ γ ≤o β) using or-

dIso-iff-ordLeq ordLeq-ordLess-trans by blast
then have α ′ =o γ using c1 ordIso-iff-ordLeq by blast
then have f α ′ = f γ using b5 lem-nord-eq by metis
moreover have γ = nord γ using c4 lem-Onord by blast
moreover have fo γ = F (nord α) (f α) using c2 c3 b5 b7 by blast
moreover have F (nord α) (f α) = F α (f α) using assms c1 lem-nord-r

ordLess-Well-order-simp by metis
ultimately show f α ′ = F α (f α) using b5 by metis

qed
moreover have ∀ α. (Well-order α ∧ ¬ (α = {} ∨ isSuccOrd α)) −→ f α =

21

⋃
{ D. ∃ β. β <o α ∧ D = f β }

proof (intro allI impI)
fix α:: ′U rel
assume c1 : Well-order α ∧ ¬ (α = {} ∨ isSuccOrd α)
then have Well-order (nord α) using lem-nord-l unfolding ordIso-def by

blast
moreover have nord α 6= {} ∧ ¬ isSuccOrd (nord α)
using c1 lem-ord-subemp ordIso-iff-ordLeq lem-osucc-eq[of nord α α] lem-nord-r [of

α] by metis
ultimately have c2 : fo (nord α) =

⋃
(fo ‘ (underS cmp (nord α))) using b8

b9 b11 by metis
obtain A where c3 : A =

⋃
{ D. ∃ β:: ′U rel. β <o α ∧ D = f β } by blast

have ∀ γ ∈ underS cmp (nord α). ∃ β:: ′U rel. β <o α ∧ fo γ = f β
proof

fix γ:: ′U rel
assume γ ∈ underS cmp (nord α)
then have γ 6= nord α ∧ (γ, nord α) ∈ oord unfolding b1 underS-def by

blast
then have γ ≤o nord α ∧ γ ∈ O ∧ ¬ (γ =o nord α) using lem-Oeq unfolding

oord-def by blast
then have γ <o nord α ∧ γ = nord γ using lem-Onord ordLeq-iff-ordLess-or-ordIso

by blast
moreover have nord α =o α using c1 lem-nord-r by blast

ultimately have γ <o α ∧ fo γ = f γ unfolding b5 using ordIso-imp-ordLeq
ordLess-ordLeq-trans by metis

then show ∃ β:: ′U rel. β <o α ∧ fo γ = f β by blast
qed
then have c4 : f α ⊆ A unfolding c2 c3 b5 by blast
have ∀ β:: ′U rel. β <o α −→ (∃ γ ∈ underS cmp (nord α). f β = fo γ)
proof (intro allI impI)

fix β:: ′U rel
assume β <o α

then have (nord β, nord α) ∈ cmp ∧ nord β 6= nord α using b1 lem-nord-less
by blast

then have nord β ∈ underS cmp (nord α) unfolding underS-def by blast
then show ∃ γ ∈ underS cmp (nord α). f β = fo γ unfolding b5 by blast

qed
then have A ⊆ f α unfolding c2 c3 b5 by force
then show f α =

⋃
{ D. ∃ β:: ′U rel. β <o α ∧ D = f β } using c3 c4 by

blast
qed
moreover have ∀ α β. α =o β −→ f α = f β using b5 lem-nord-eq by metis
ultimately show ?thesis unfolding sc-ord-def lm-ord-def by blast

qed

lemma lem-lmord-prec:
fixes α:: ′a rel and α ′:: ′b rel
assumes a1 : α ′ <o α and a2 : isLimOrd α
shows ∃ β::(′a rel). α ′ <o β ∧ β <o α

22

proof −
have ¬ isSuccOrd α using a1 a2 wo-rel.isLimOrd-def unfolding ordLess-def

wo-rel-def by blast
then obtain β:: ′a rel where α ′<o β ∧ ¬ (α ≤o β) using a1 lem-ordint-sucord[of

α ′ α] by blast
then have α ′<o β ∧ β <o α using a1 ordIso-imp-ordLeq ordLess-Well-order-simp

ordLess-imp-ordLeq ordLess-or-ordIso by metis
then show ?thesis by blast

qed

lemma lem-inford-ge-w:
fixes α:: ′U rel
assumes Well-order α and ¬ finite (Field α)
shows ω-ord ≤o α

using assms card-of-least infinite-iff-natLeq-ordLeq ordLeq-transitive by blast

lemma lem-ge-w-inford:
fixes α:: ′U rel
assumes ω-ord ≤o α
shows ¬ finite (Field α)

using assms cinfinite-def cinfinite-mono natLeq-cinfinite by blast

lemma lem-fin-card: finite |A| = finite A
proof

assume finite |A|
then show finite A using finite-Field by fastforce

next
assume finite A
then show finite |A| using lem-fin-fl-rel by fastforce

qed

lemma lem-cardord-emp: Card-order ({}:: ′U rel)
by (metis Well-order-empty card-order-on-def ozero-def ozero-ordLeq well-order-on-Well-order)

lemma lem-card-emprel: |{}:: ′U rel| =o ({}:: ′U rel)
proof −
have ({}:: ′U rel) =o |{}:: ′U set| using lem-cardord-emp BNF-Cardinal-Order-Relation.card-of-unique

by simp
then show ?thesis using card-of-empty-ordIso ordIso-symmetric ordIso-transitive

by blast
qed

lemma lem-cord-lin: Card-order α =⇒ Card-order β =⇒ (α ≤o β) = (¬ (β <o
α)) by simp

lemma lem-co-one-ne-min:
fixes α:: ′U rel and a:: ′a
assumes Well-order α and α 6= {}

23

shows |{a}| ≤o α
proof −

have Field α 6= {} using assms unfolding Field-def by force
then have |{a}| ≤o |Field α| using assms by simp
moreover have |Field α| ≤o α using assms card-of-least by blast
ultimately show ?thesis using ordLeq-transitive by blast

qed

lemma lem-rel-inf-fld-card:
fixes r :: ′U rel
assumes ¬ finite r
shows |Field r | =o |r |
proof −

obtain f1 :: ′U × ′U ⇒ ′U where b1 : f1 = (λ (x,y). x) by blast
obtain f2 :: ′U × ′U ⇒ ′U where b2 : f2 = (λ (x,y). y) by blast
then have f1 ‘ r = Domain r ∧ f2 ‘ r = Range r using b1 b2 by force
then have b3 : |Domain r | ≤o |r | ∧ |Range r | ≤o |r |

using card-of-image[of f1 r] card-of-image[of f2 r] by simp
have |Domain r | ≤o |Range r | ∨ |Range r | ≤o |Domain r | by (simp add: or-

dLeq-total)
moreover have |Domain r | ≤o |Range r | −→ |Field r | ≤o |r |
proof

assume c1 : |Domain r | ≤o |Range r |
moreover have finite (Domain r) ∧ finite (Range r) −→ finite (Field r)

unfolding Field-def by blast
ultimately have ¬ finite (Range r)

using assms lem-fin-fl-rel card-of-ordLeq-finite by blast
then have |Field r | =o |Range r | using c1 card-of-Un-infinite unfolding

Field-def by blast
then show |Field r | ≤o |r | using b3 ordIso-ordLeq-trans by blast

qed
moreover have |Range r | ≤o |Domain r | −→ |Field r | ≤o |r |
proof

assume c1 : |Range r | ≤o |Domain r |
moreover have finite (Domain r) ∧ finite (Range r) −→ finite (Field r)

unfolding Field-def by blast
ultimately have ¬ finite (Domain r)

using assms lem-fin-fl-rel card-of-ordLeq-finite by blast
then have |Field r | =o |Domain r | using c1 card-of-Un-infinite unfolding

Field-def by blast
then show |Field r | ≤o |r | using b3 ordIso-ordLeq-trans by blast

qed
ultimately have |Field r | ≤o |r | by blast
moreover have |r | ≤o |Field r |
proof −

have r ⊆ (Field r) × (Field r) unfolding Field-def by force
then have c1 : |r | ≤o |Field r × Field r | by simp
have ¬ finite (Field r) using assms lem-fin-fl-rel by blast
then have c2 : |Field r × Field r | =o |Field r | by simp

24

show ?thesis using c1 c2 using ordLeq-ordIso-trans by blast
qed
ultimately show ?thesis using ordIso-iff-ordLeq by blast

qed

lemma lem-cardreleq-cardfldeq-inf :
fixes r1 r2 :: ′U rel
assumes a1 : |r1 | =o |r2 | and a2 : ¬ finite r1 ∨ ¬ finite r2
shows |Field r1 | =o |Field r2 |
proof −

have ¬ finite r1 ∧ ¬ finite r2 using a1 a2 by simp
then have |Field r1 | =o |r1 | ∧ |Field r2 | =o |r2 | using lem-rel-inf-fld-card by

blast
then show |Field r1 | =o |Field r2 | using a1 by (meson ordIso-symmetric

ordIso-transitive)
qed

lemma lem-card-un-bnd:
fixes S :: ′a set set and α:: ′U rel
assumes a3 : ∀A∈S . |A| ≤o α and a4 : |S | ≤o α and a5 : ω-ord ≤o α
shows |

⋃
S | ≤o α

proof −
obtain α ′ where b0 : α ′ = |Field α| by blast
have a3 ′: ∀A∈S . |A| ≤o α ′

proof
fix A
assume A ∈ S
then have |A| ≤o α using a3 by blast
moreover have Card-order |A| by simp

ultimately show |A| ≤o α ′ using b0 card-of-unique card-of-mono2 ordIso-ordLeq-trans
by blast

qed
have Card-order |S | by simp
then have a4 ′: |S | ≤o α ′ using b0 a4 card-of-unique card-of-mono2 ordIso-ordLeq-trans

by blast
have a5 ′: ¬ finite (Field α ′)
proof −

have Card-order α ′ using b0 by simp
then have |Field α| =o |Field α ′| using b0 card-of-unique by blast
moreover have ¬ finite (Field α) using a5 lem-ge-w-inford by blast
ultimately show ¬ finite (Field α ′) by simp

qed
have a0 ′: α ′ ≤o α using b0 a4 by simp
obtain r where b1 : r =

⋃
S by blast

have ∀ A ∈ S . |A| ≤o α ′ using a3 ′ ordIso-ordLeq-trans by blast
moreover have r = (

⋃
A∈S . A) using b1 by blast

moreover have Card-order α ′ using b0 by simp
ultimately have |r | ≤o α ′ using a4 ′ a5 ′ card-of-UNION-ordLeq-infinite-Field[of

α ′ S λ x. x] by blast

25

then have |
⋃

S | ≤o α ′ unfolding b1 using ordLeq-transitive by blast
then show |

⋃
S | ≤o α using a0 ′ ordLeq-transitive by blast

qed

lemma lem-ord-suc-ge-w:
fixes α0 α:: ′U rel
assumes a1 : ω-ord ≤o α and a2 : sc-ord α0 α
shows ω-ord ≤o α0
proof −

obtain N :: ′U set where b1 : |N | =o ω-ord using a1
by (metis card-of-nat Field-natLeq card-of-mono2 internalize-card-of-ordLeq

ordIso-symmetric ordIso-transitive)
have α0 <o |N | −→ False
proof

assume c1 : α0 <o |N |
have Well-order ω-ord ∧ isLimOrd ω-ord
by (metis natLeq-Well-order Field-natLeq card-of-nat card-order-infinite-isLimOrd

infinite-iff-natLeq-ordLeq natLeq-Card-order ordIso-iff-ordLeq)
then have ¬ isSuccOrd ω-ord using wo-rel.isLimOrd-def unfolding wo-rel-def

by blast
then have ¬ isSuccOrd |N | using b1 lem-osucc-eq by blast
then have ¬ (∀ γ:: ′U rel. α0 <o γ −→ |N | ≤o γ)

using c1 unfolding sc-ord-def using lem-ordint-sucord[of α0 |N |] by blast
then obtain β:: ′U rel where α0 <o β ∧ β <o |N |

using card-of-Well-order not-ordLeq-iff-ordLess ordLess-Well-order-simp by
blast

moreover then have α ≤o β using a2 unfolding sc-ord-def by blast
ultimately have α <o |N | using ordLeq-ordLess-trans by blast
then show False using a1 b1 using not-ordLess-ordLeq ordIso-iff-ordLeq or-

dLeq-transitive by blast
qed
moreover have Well-order α0 using a2 unfolding sc-ord-def ordLess-def by

blast
moreover have Well-order |N | by simp
ultimately show ?thesis using b1 not-ordLess-iff-ordLeq ordIso-iff-ordLeq or-

dLeq-transitive by blast
qed

lemma lem-restr-ordbnd:
fixes r :: ′U rel and A:: ′U set and α:: ′U rel
assumes a1 : ω-ord ≤o α and a2 : |A| ≤o α
shows |Restr r A| ≤o α
proof (cases finite A)

assume finite A
then have finite (Restr r A) by blast
then have |Restr r A| <o ω-ord using finite-iff-ordLess-natLeq by blast
then show |Restr r A| ≤o α using a1 ordLeq-transitive ordLess-imp-ordLeq by

blast
next

26

assume ¬ finite A
then have |A × A| =o |A| by simp
moreover have |Restr r A| ≤o |A × A| by simp
ultimately show |Restr r A| ≤o α using a2 ordLeq-ordIso-trans ordLeq-transitive

by blast
qed

lemma lem-card-inf-lim:
fixes r :: ′U rel
assumes a1 : Card-order α and a2 : ω-ord ≤o α
shows ¬(α = {} ∨ isSuccOrd α)
proof −

obtain s where s = Field α by blast
then have |s| =o α using a1 card-of-Field-ordIso by blast
moreover then have ¬ (|s| <o |UNIV :: nat set|) using a2
by (metis card-of-nat ordLess-ordIso-trans not-ordLess-ordIso ordLeq-iff-ordLess-or-ordIso

ordLeq-ordLess-trans)
ultimately have ¬ finite (Field α) using lem-fin-card lem-fin-fl-rel by (metis

finite-iff-cardOf-nat ordIso-finite-Field)
moreover then have α 6= {} by force
moreover have wo-rel α using a1 unfolding wo-rel-def card-order-on-def by

blast
ultimately show ?thesis using a1 card-order-infinite-isLimOrd wo-rel.isLimOrd-def

by blast
qed

lemma lem-card-nreg-inf-osetlm:
fixes α:: ′U rel
assumes a1 : Card-order α and a2 : ¬ regularCard α and a3 : ¬ finite (Field α)
shows ∃ S :: ′U rel set. |S | <o α ∧ (∀ α ′∈S . α ′ <o α) ∧ (∀ α ′:: ′U rel. α ′ <o α
−→ (∃ β ∈ S . α ′ ≤o β))
proof −

obtain K :: ′U set where b1 : K ⊆ Field α ∧ cofinal K α and b2 : ¬ |K | =o α
using a2 unfolding regularCard-def by blast

have b3 : |K | <o α
proof −

have |K | ≤o |Field α| using b1 by simp
moreover have |Field α| =o α using a1 card-of-Field-ordIso by blast
ultimately show |K | <o α using a1 b2
by (metis card-of-Well-order card-order-on-def not-ordLeq-ordLess ordIso-or-ordLess

ordIso-ordLess-trans)
qed
have b4 : isLimOrd α using a1 a3 card-order-infinite-isLimOrd by blast
obtain f :: ′U ⇒ ′U rel where b5 : f = (λ a. Restr α (under α a)) by blast
obtain S :: ′U rel set where b6 : S = f ‘ K by blast
then have |S | <o α using b3 card-of-image ordLeq-ordLess-trans by blast
moreover have ∀ α ′∈S . α ′ <o α
proof

fix α ′:: ′U rel

27

assume c1 : α ′ ∈ S
then obtain a where c2 : a ∈ K ∧ α ′ = Restr α (under α a) using b5 b6 by

blast
then have c3 : Well-order α ′ ∧ Well-order α using a1 Well-order-Restr un-

folding card-order-on-def by blast
moreover have embed α ′ α id
proof −

have ofilter α (under α a) using c3 wo-rel.under-ofilter [of α] unfolding
wo-rel-def by blast

moreover then have under α a ⊆ Field α unfolding ofilter-def by blast
ultimately show ?thesis using c2 c3 ofilter-embed[of α under α a] by blast

qed
moreover have bij-betw id (Field α ′) (Field α) −→ False
proof

assume bij-betw id (Field α ′) (Field α)
then have d1 : Field α ′ = Field α unfolding bij-betw-def by simp
have a ∈ Field α using c2 b1 by blast
then obtain b where d2 : b ∈ aboveS α a

using b4 c3 wo-rel.isLimOrd-aboveS [of α a] unfolding wo-rel-def by blast
then have b ∈ Field α ′ using d1 unfolding aboveS-def Field-def by blast
then have b ∈ under α a using c2 unfolding Field-def by blast
then show False using a1 d2 unfolding under-def aboveS-def

card-order-on-def well-order-on-def linear-order-on-def partial-order-on-def
antisym-def by blast

qed
ultimately show α ′ <o α using embedS-def unfolding ordLess-def by blast

qed
moreover have ∀ α ′:: ′U rel. α ′ <o α −→ (∃ β ∈ S . α ′ ≤o β)
proof (intro allI impI)

fix α ′:: ′U rel
assume c1 : α ′ <o α
then obtain g where c2 : embed α ′ α g ∧ ¬ bij-betw g (Field α ′) (Field α)

using embedS-def unfolding ordLess-def by blast
then have g ‘ Field α ′ 6= Field α

using c1 embed-inj-on unfolding ordLess-def bij-betw-def by blast
moreover have g ‘ Field α ′ ⊆ Field α

using c1 c2 embed-in-Field[of α ′ α g] unfolding ordLess-def by fast
ultimately obtain a where c3 : a ∈ Field α − (g ‘ Field α ′) by blast
then obtain b β where c4 : b ∈ K ∧ (a, b) ∈ α ∧ β = f b using b1 unfolding

cofinal-def by blast
then have β ∈ S using b6 by blast
moreover have α ′ ≤o β
proof −
have d1 : Well-order β using c4 b5 a1 Well-order-Restr unfolding card-order-on-def

by blast
moreover have embed α ′ β g
proof −

have e1 : ∀ x y. (x, y) ∈ α ′ −→ (g x, g y) ∈ β
proof (intro allI impI)

28

fix x y
assume f1 : (x, y) ∈ α ′

then have f2 : (g x, g y) ∈ α using c2 embed-compat unfolding compat-def
by blast

moreover have g y ∈ under α b
proof −

have (b, g y) ∈ α −→ False
proof

assume (b, g y) ∈ α
moreover have (a, b) ∈ α using c4 by blast

ultimately have (a, g y) ∈ α using a1 unfolding under-def
card-order-on-def

well-order-on-def linear-order-on-def partial-order-on-def preorder-on-def
trans-def by blast

then have a ∈ under α (g y) unfolding under-def by blast
moreover have bij-betw g (under α ′ y) (under α (g y))

using f1 c2 unfolding embed-def Field-def by blast
ultimately obtain y ′ where y ′ ∈ under α ′ y ∧ a = g y ′ unfolding

bij-betw-def by blast
moreover then have y ′ ∈ Field α ′ unfolding under-def Field-def by

blast
ultimately have a ∈ g ‘ Field α ′ by blast
then show False using c3 by blast

qed
moreover have g y ∈ Field α ∧ b ∈ Field α using f2 c4 unfolding

Field-def by blast
ultimately have (g y, b) ∈ α using a1 unfolding card-order-on-def

well-order-on-def
linear-order-on-def partial-order-on-def preorder-on-def refl-on-def

total-on-def by metis
then show ?thesis unfolding under-def by blast

qed
moreover then have g x ∈ under α b using a1 f2 unfolding under-def

card-order-on-def
well-order-on-def linear-order-on-def partial-order-on-def preorder-on-def

trans-def by blast
ultimately have (g x, g y) ∈ Restr α (under α b) by blast
then show (g x, g y) ∈ β using c4 b5 by blast

qed
have e2 : ∀ x ∈ g ‘ Field α ′. under β x ⊆ g ‘ Field α ′

proof
fix x
assume x ∈ g ‘ Field α ′

then obtain c where f1 : c ∈ Field α ′ ∧ x = g c by blast
have ∀ x ′. (x ′, x) ∈ β −→ x ′ ∈ g ‘ Field α ′

proof (intro allI impI)
fix x ′

assume (x ′, x) ∈ β
then have (x ′, g c) ∈ Restr α (under α b) using b5 f1 c4 by blast

29

then have x ′ ∈ under α (g c) unfolding under-def by blast
moreover have bij-betw g (under α ′ c) (under α (g c)) using f1 c2

unfolding embed-def by blast
ultimately obtain c ′ where x ′ = g c ′ ∧ c ′ ∈ under α ′ c unfolding

bij-betw-def by blast
moreover then have c ′ ∈ Field α ′ unfolding under-def Field-def by

blast
ultimately show x ′ ∈ g ‘ Field α ′ by blast

qed
then show under β x ⊆ g ‘ Field α ′ unfolding under-def by blast

qed
have compat α ′ β g using e1 unfolding compat-def by blast

moreover then have ofilter β (g ‘ Field α ′) using e2 unfolding ofilter-def
compat-def Field-def by blast

moreover have inj-on g (Field α ′) using c1 c2 embed-inj-on unfolding
ordLess-def by blast

ultimately show ?thesis using d1 c1 embed-iff-compat-inj-on-ofilter [of α ′

β g]
unfolding ordLess-def by blast

qed
ultimately show ?thesis using c1 unfolding ordLess-def ordLeq-def by

blast
qed
ultimately show ∃ β ∈ S . α ′ ≤o β by blast

qed
ultimately show ?thesis by blast

qed

lemma lem-card-un-bnd-stab:
fixes S :: ′a set set and α:: ′U rel
assumes stable α and ∀A∈S . |A| <o α and |S | <o α
shows |

⋃
S | <o α

using assms stable-UNION [of α S λ x. x] by simp

lemma lem-finwo-cardord: finite α =⇒ Well-order α =⇒ Card-order α
proof −

assume a1 : finite α and a2 : Well-order α
have ∀ r . well-order-on (Field α) r −→ α ≤o r
proof (intro allI impI)

fix r
assume well-order-on (Field α) r
moreover have well-order-on (Field α) α using a2 by blast
moreover have finite (Field α) using a1 finite-Field by fastforce
ultimately have α =o r using finite-well-order-on-ordIso by blast
then show α ≤o r using ordIso-iff-ordLeq by blast

qed
then show ?thesis using a2 unfolding card-order-on-def by blast

qed

30

lemma lem-finwo-le-w: finite α =⇒ Well-order α =⇒ α <o natLeq
proof −

assume a1 : finite α and a2 : Well-order α
then have |Field α| =o α using lem-finwo-cardord by (metis card-of-Field-ordIso)
moreover have finite (Field α) using a1 finite-Field by fastforce
moreover then have |Field α| <o natLeq using finite-iff-ordLess-natLeq by

blast
ultimately show α <o natLeq using ordIso-iff-ordLeq ordLeq-ordLess-trans by

blast
qed

lemma lem-wolew-fin: α <o natLeq =⇒ finite α
proof −

assume a1 : α <o natLeq
then have Well-order α using a1 unfolding ordLess-def by blast
then have |Field α| ≤o α using card-of-least[of Field α α] by blast
then have ¬ (natLeq ≤o |Field α|) using a1 by (metis BNF-Cardinal-Order-Relation.ordLess-Field

not-ordLeq-ordLess)
then have finite (Field α) using infinite-iff-natLeq-ordLeq by blast
then show finite α using finite-subset trancl-subset-Field2 by fastforce

qed

lemma lem-wolew-nat:
assumes a1 : α <o natLeq and a2 : n = card (Field α)
shows α =o (natLeq-on n)
proof −

have b1 : Well-order α using a1 unfolding ordLess-def by blast
have b2 : finite α using a1 lem-wolew-fin by blast
then have finite (Field α) using a1 finite-Field by fastforce
then have |Field α| =o natLeq-on n using a2 finite-imp-card-of-natLeq-on[of

Field α] by blast
moreover have |Field α| =o α using b1 b2 lem-finwo-cardord by (metis card-of-Field-ordIso)
ultimately show ?thesis using ordIso-symmetric ordIso-transitive by blast

qed

lemma lem-cntset-enum: |A| =o natLeq =⇒ (∃ f . A = f ‘ (UNIV ::nat set))
proof −

assume |A| =o natLeq
moreover have |UNIV ::nat set| =o natLeq using card-of-nat by blast
ultimately have |UNIV ::nat set| =o |A| by (meson ordIso-iff-ordLeq ordIso-ordLeq-trans)
then obtain f where bij-betw f (UNIV ::nat set) A using card-of-ordIso by

blast
then have A = f ‘ (UNIV ::nat set) unfolding bij-betw-def by blast
then show ?thesis by blast

qed

lemma lem-oord-int-card-le-inf :
fixes α:: ′U rel
assumes ω-ord ≤o α

31

shows |{ γ ∈ O:: ′U rel set. γ <o α }| ≤o α
proof −

obtain f :: ′U ⇒ ′U rel where b1 : f = (λ a. nord (Restr α (underS α a))) by
blast

have ∀ γ ∈ O:: ′U rel set. γ <o α −→ γ ∈ f ‘ (Field α)
proof (intro ballI impI)

fix γ:: ′U rel
assume c1 : γ ∈ O and c2 : γ <o α
have ∃ a ∈ Field α. γ =o Restr α (underS α a)

using c2 ordLess-iff-ordIso-Restr [of α γ] unfolding ordLess-def by blast
then obtain a where a ∈ Field α ∧ γ =o Restr α (underS α a) by blast
moreover then have γ = f a using c1 b1 lem-nord-eq lem-Onord by blast
ultimately show γ ∈ f ‘ (Field α) by blast

qed
then have { γ ∈ O:: ′U rel set. γ<o α } ⊆ f ‘ (Field α) by blast
then have |{ γ ∈ O:: ′U rel set. γ <o α }| ≤o |f ‘ (Field α)| by simp
moreover have |f ‘ (Field α)| ≤o |Field α| by simp
ultimately have |{ γ ∈ O:: ′U rel set. γ <o α }| ≤o |Field α| using or-

dLeq-transitive by blast
moreover have |Field α| ≤o α using assms by simp
ultimately show ?thesis using ordLeq-transitive by blast

qed

lemma lem-oord-card-le-int-inf :
fixes α:: ′U rel
assumes a1 : Card-order α and a2 : ω-ord ≤o α
shows α ≤o |{ γ ∈ O:: ′U rel set. γ <o α }|
proof −

obtain α ′ where b0 : α ′ = |Field α| by blast
then have b0 ′: Card-order α ′ ∧ α =o α ′ using a1 card-of-unique by simp
then have b0 ′′: ω-ord ≤o α ′ using a2 ordLeq-ordIso-trans by blast
obtain f :: ′U ⇒ ′U rel where b1 : f = (λ a. Restr α ′ (under α ′ a)) by blast
have b2 : Well-order α ′ using b0 by simp
have b3 : ∀ a ∈ Field α ′. ∀ b ∈ Field α ′. f a =o f b −→ a = b
proof (intro ballI impI)

fix a b
assume d1 : a ∈ Field α ′ and d2 : b ∈ Field α ′ and f a =o f b
then have d3 : f a ≤o f b ∧ f b ≤o f a using ordIso-iff-ordLeq by blast
obtain A B where d4 : A = under α ′ a ∧ B = under α ′ b by blast
have d5 : Well-order α ′ using b0 by simp
moreover then have wo-rel.ofilter α ′ A ∧ wo-rel.ofilter α ′ B

using d4 wo-rel-def wo-rel.under-ofilter [of α ′] by blast
moreover have Restr α ′ A ≤o Restr α ′ B and Restr α ′ B ≤o Restr α ′ A

using d3 d4 b1 by blast+
ultimately have A = B using ofilter-subset-ordLeq[of α ′] by blast
then have under α ′ a = under α ′ b using d4 by blast
moreover have (a,a) ∈ α ′ ∧ (b,b) ∈ α ′ using d1 d2 d5

by (metis preorder-on-def partial-order-on-def linear-order-on-def
well-order-on-def refl-on-def)

32

ultimately have (a,b) ∈ α ′ ∧ (b,a) ∈ α ′ unfolding under-def by blast
then show a = b using d5

by (metis partial-order-on-def linear-order-on-def well-order-on-def anti-
sym-def)

qed
have b4 : ∀ a ∈ Field α ′. f a <o α ′

proof
fix a
assume c1 : a ∈ Field α ′

have under α ′ a ⊂ Field α ′

proof −
have ¬ finite α ′ using b0 ′′ Field-natLeq finite-Field infinite-UNIV-nat or-

dLeq-finite-Field by metis
then have ¬ finite (Field α ′) using lem-fin-fl-rel by blast
then obtain a ′ where a ′ ∈ Field α ′ ∧ a 6= a ′ ∧ (a, a ′) ∈ α ′

using c1 b0 ′ infinite-Card-order-limit[of α ′ a] by blast
moreover then have (a ′, a) /∈ α ′ using b2 unfolding well-order-on-def

linear-order-on-def partial-order-on-def antisym-def by blast
ultimately show ?thesis unfolding under-def Field-def by blast

qed
moreover have ofilter α ′ (under α ′ a)

using b2 wo-rel.under-ofilter [of α ′] unfolding wo-rel-def by blast
ultimately show f a <o α ′ unfolding b1 using b2 ofilter-ordLess by blast

qed
obtain g where b5 : g = nord ◦ f by blast
have ∀ x∈Field α ′. ∀ y∈Field α ′. g x = g y −→ x = y
proof (intro ballI impI)

fix x y
assume c1 : x ∈ Field α ′ and c2 : y ∈ Field α ′ and g x = g y
then have Well-order (f x) ∧ Well-order (f y) ∧ nord (f x) = nord (f y)

using b4 b5 unfolding ordLess-def by simp
then have f x =o f y using lem-nord-req by blast
then show x = y using c1 c2 b3 by blast

qed
then have inj-on g (Field α ′) unfolding inj-on-def by blast
moreover have ∀ a ∈ Field α ′. g a ∈ O ∧ g a <o α ′

proof
fix a
assume a ∈ Field α ′

then have f a <o α ′ using b4 by blast
then have nord (f a) <o α ′ ∧ nord (f a) ∈ O using lem-nord-ls-l lem-nordO-ls-l

by blast
then show g a ∈ O ∧ g a <o α ′ using b5 by simp

qed
ultimately have |Field α ′| ≤o |{γ ∈ O:: ′U rel set. γ <o α ′}|

using card-of-ordLeq[of Field α ′ {γ ∈ O:: ′U rel set. γ <o α ′}] by blast
moreover have α =o |Field α ′| using b0 a1 by simp
moreover have {γ ∈ O:: ′U rel set. γ <o α ′} = {γ ∈ O:: ′U rel set. γ <o α}

using b0 ′ using ordIso-iff-ordLeq ordLess-ordLeq-trans by blast

33

ultimately show ?thesis using ordIso-ordLeq-trans by simp
qed

lemma lem-ord-int-card-le-inf :
fixes α:: ′U rel and f :: ′U rel ⇒ ′a
assumes ∀ α β. α =o β −→ f α = f β and ω-ord ≤o α
shows |f ‘ { γ:: ′U rel. γ <o α }| ≤o α
proof −

obtain I where b1 : I = { γ ∈ O:: ′U rel set. γ <o α } by blast
have f‘{ γ:: ′U rel. γ <o α } ⊆ f‘I
proof

fix a
assume a ∈ f‘{ γ:: ′U rel. γ <o α }
then obtain γ where a = f γ ∧ γ <o α by blast
moreover then have nord γ =o γ ∧ nord γ ∈ I

using b1 lem-nord-r lem-nord-ls-l lem-nordO-ls-l ordLess-def by blast
ultimately have a = f (nord γ) ∧ nord γ ∈ I using assms by metis
then show a ∈ f‘I by blast

qed
then have |f‘{ γ:: ′U rel. γ <o α }| ≤o |f‘I | by simp
moreover have |f‘I | ≤o |I | by simp
moreover have |I | ≤o α using b1 assms lem-oord-int-card-le-inf by blast
ultimately show ?thesis using ordLeq-transitive by metis

qed

lemma lem-card-setcv-inf-stab:
fixes α:: ′U rel and A:: ′U set
assumes a1 : Card-order α and a2 : ω-ord ≤o α and a3 : |A| ≤o α
shows ∃ f ::(′U rel ⇒ ′U). A ⊆ f ‘{ γ:: ′U rel. γ <o α } ∧ (∀ γ1 γ2 . γ1 =o γ2
−→ f γ1 = f γ2)
proof −

obtain B where b1 : B = { γ ∈ O:: ′U rel set. γ <o α } by blast
then have |A| ≤o |B|

using a1 a2 a3 lem-oord-card-le-int-inf [of α] ordLeq-transitive by blast
then obtain g where b2 : A ⊆ g ‘B by (metis card-of-ordLeq2 empty-subsetI

order-refl)
obtain f where b3 : f = g ◦ nord by blast
have A ⊆ f ‘{ γ:: ′U rel. γ <o α }
proof

fix a
assume a ∈ A
then obtain γ:: ′U rel where γ ∈ O ∧ γ <o α ∧ a = g γ using b1 b2 by blast
moreover then have f γ = g γ using b3 lem-Onord by force
ultimately show a ∈ f ‘{ γ:: ′U rel. γ <o α } by force

qed
moreover have ∀ γ1 γ2 . γ1 =o γ2 −→ f γ1 = f γ2 using b3 lem-nord-eq by

force
ultimately show ?thesis by blast

qed

34

lemma lem-jnfix-gen:
fixes I :: ′i set and leI :: ′i rel and L:: ′l set

and t:: ′i× ′l ⇒ ′i ⇒ ′n and jnN :: ′n ⇒ ′n ⇒ ′n
assumes a1 :¬ finite L

and a2 : |L| <o |I |
and a3 : ∀α∈I . (α,α) ∈ leI
and a4 : ∀α∈I . ∀β∈I . ∀ γ∈I . (α,β)∈leI ∧ (β,γ)∈leI −→ (α,γ)∈leI
and a5 : ∀α∈I . ∀β∈I . (α,β) ∈ leI ∨ (β,α) ∈ leI
and a6 : ∀β∈I . |{α∈I . (α,β) ∈ leI}| ≤o |L|
and a7 : ∀α∈I . ∃α ′∈I . (α,α ′) ∈ leI ∧ (α ′,α) /∈ leI

shows ∃ h. ∀α∈I . ∀β∈I . ∀ i∈L. ∀ j∈L. ∃ γ∈I . (α,γ)∈leI ∧ (β,γ)∈leI ∧ (γ,α)/∈leI
∧ (γ,β)/∈leI

∧ h γ = jnN (t (α,i) γ) (t (β,j) γ)
proof −

obtain inc where p1 : inc = (λ α. SOME α ′. α ′ ∈ I ∧ (α,α ′) ∈ leI ∧ (α ′,α) /∈
leI) by blast

have p2 :
∧

α. α ∈ I =⇒ (inc α) ∈ I ∧ (α, inc α) ∈ leI ∧ (inc α, α) /∈ leI
proof −

fix α
assume α ∈ I
moreover obtain P where c1 : P = (λ α ′. α ′ ∈ I ∧ (α,α ′) ∈ leI ∧ (α ′,α) /∈

leI) by blast
ultimately have ∃ α ′. P α ′ using a7 by blast
then have P (SOME x. P x) using someI-ex by metis
moreover have inc α = (SOME x. P x) using c1 p1 by blast
ultimately show (inc α) ∈ I ∧ (α,inc α) ∈ leI ∧ (inc α, α) /∈ leI using c1

by simp
qed
obtain mxI where m0 : mxI = (λ α β. (if ((α,β) ∈ leI) then β else α)) by blast
then have m1 : ∀α∈I . ∀β∈I . mxI α β ∈ I by simp
obtain maxI where b0 : maxI = (λ α β. inc (mxI α β)) by blast
have q1 : ∀α∈I . ∀β∈I . maxI α β ∈ I using p2 b0 m0 by simp
have q2 : ∀α∈I . ∀β∈I . (α, maxI α β) ∈ leI ∧ (β, maxI α β) ∈ leI
proof (intro ballI)

fix α β
assume c1 : α ∈ I and c2 : β ∈ I
moreover then have c3 : (α, mxI α β) ∈ leI ∧ (β, mxI α β) ∈ leI ∧ mxI α

β ∈ I
using m0 m1 a5 by force+

ultimately have (mxI α β, maxI α β) ∈ leI ∧ maxI α β ∈ I using b0 p2 by
blast

then show (α, maxI α β) ∈ leI ∧ (β, maxI α β) ∈ leI using c1 c2 c3 a4 by
blast

qed
have q3 : ∀ α∈I . ∀β∈I . ∀ γ∈I . (maxI α β, γ) ∈ leI −→ (α,γ)∈leI ∧ (β,γ)∈leI
∧ (γ,α)/∈leI ∧ (γ,β)/∈leI

proof (intro ballI impI)
fix α β γ

35

assume c1 : α∈I and c2 : β∈I and c3 : γ∈I and c4 : (maxI α β, γ) ∈ leI
moreover then have c5 : (mxI α β, maxI α β) ∈ leI ∧ maxI α β ∈ I

∧ (maxI α β, mxI α β) /∈ leI ∧ mxI α β ∈ I using b0 p2 m1 by blast
ultimately have c6 : (mxI α β, γ) ∈ leI using a4 by blast
have (α,γ)∈leI ∧ (β,γ)∈leI
proof (cases (α,β) ∈ leI)

assume (α,β) ∈ leI
moreover then have (β,γ) ∈ leI using m0 c6 by simp
ultimately show (α,γ)∈leI ∧ (β,γ)∈leI using c1 c2 c3 a4 by blast

next
assume (α,β) /∈ leI
then have (β,α) ∈ leI ∧ (α,γ) ∈ leI using m0 c1 c2 c6 a5 by force
then show (α,γ)∈leI ∧ (β,γ)∈leI using c1 c2 c3 a4 by blast

qed
moreover have (γ,α) ∈ leI −→ False
proof

assume (γ,α) ∈ leI
moreover have (α, mxI α β) ∈ leI ∧ mxI α β ∈ I using c1 c2 m0 a5 by

force
ultimately have (γ, mxI α β) ∈ leI using c1 c3 a4 by blast
then show False using c3 c4 c5 a4 by blast

qed
moreover have (γ,β) ∈ leI −→ False
proof

assume (γ,β) ∈ leI
moreover have (β, mxI α β) ∈ leI ∧ mxI α β ∈ I using c1 c2 m0 a5 by

force
ultimately have (γ, mxI α β) ∈ leI using c2 c3 a4 by blast
then show False using c3 c4 c5 a4 by blast

qed
ultimately show (α,γ)∈leI ∧ (β,γ)∈leI ∧ (γ,α)/∈leI ∧ (γ,β)/∈leI by blast

qed
have ∃ d. d‘I = I×L×I
proof −
have c1 : ¬ finite I using a1 a2 by (metis card-of-ordLeq-infinite ordLess-imp-ordLeq)
then have I 6= {} ∧ L 6= {} using a1 by blast
moreover then have |I | ≤o |L×I | ∧ |L×I | =o |I | ∧ L 6= {}

using c1 a1 a2 by (metis card-of-Times-infinite[of I L] ordLess-imp-ordLeq
ordIso-iff-ordLeq)

moreover then have ¬ finite (L×I) using c1 a1 by (metis finite-cartesian-productD2)
ultimately have |I×(L×I)| ≤o |I |

by (metis card-of-Times-infinite[of L×I I] ordIso-transitive ordIso-iff-ordLeq)
moreover have I×L×I 6= {} using c1 a1 by force
ultimately show ?thesis using card-of-ordLeq2 [of I×(L×I) I] by blast

qed
then obtain d where b1 : d‘I = I×(L×I) by blast
obtain µ where b2 : µ = (λ γ. SOME m. m‘L = ({α∈I . (α,γ)∈leI}×L)×({α∈I .

(α,γ)∈leI}×L)) by blast
have b3 :

∧
γ. γ ∈ I =⇒ (µ γ)‘L = ({α∈I . (α,γ)∈leI}×L)×({α∈I . (α,γ)∈leI}×L)

36

proof −
fix γ
assume c1 : γ ∈ I
obtain A where c2 : A = {α∈I . (α,γ)∈leI} by blast
have c3 : A 6= {} using c1 c2 a3 unfolding refl-on-def by blast
moreover have L 6= {} using a1 by blast
ultimately have (A×L)×(A×L) 6= {} using a1 by simp
moreover have |(A×L)×(A×L)| ≤o |L|
proof −

have |A| ≤o |L| using c1 c2 a6 by blast
then have |A×L| ≤o |L| using c3 a1 by (metis card-of-Times-infinite[of L

A] ordIso-iff-ordLeq)
moreover have ¬ finite (A×L) using c3 a1 by (metis finite-cartesian-productD2)

ultimately show ?thesis
by (metis card-of-Times-same-infinite[of A×L] ordIso-iff-ordLeq ordLeq-transitive)

qed
ultimately have ∃m. m‘L = ({α∈I . (α,γ)∈leI}×L)×({α∈I . (α,γ)∈leI}×L)

using c2 card-of-ordLeq2 [of (A×L)×(A×L) L] by blast
then show (µ γ)‘L = ({α∈I . (α,γ)∈leI}×L)×({α∈I . (α,γ)∈leI}×L)
using b2 someI-ex[of λ m. m‘L = ({α∈I . (α,γ)∈leI}×L)×({α∈I . (α,γ)∈leI}×L)

] by blast
qed
obtain ϕ where b4 : ϕ = (λ x. µ (fst (d x)) (fst (snd (d x)))) by blast
obtain h where b5 : h = (λ x. jnN (t (fst (ϕ x)) x) (t (snd (ϕ x)) x)) by blast
have ∀α∈I . ∀β∈I . ∀ i∈L. ∀ j∈L. ∃ γ∈I .

(maxI α β, γ) ∈ leI ∧ h γ = jnN (t (α,i) γ) (t (β,j) γ)
proof (intro ballI)

fix α β i j
assume c1 : α ∈ I and c2 : β ∈ I and c3 : i ∈ L and c4 : j ∈ L
obtain D where c5 : D = ({α ′ ∈ I . (α ′, maxI α β) ∈ leI} × L) × {α ′ ∈ I .

(α ′, maxI α β) ∈ leI} × L by blast
have c6 : maxI α β ∈ I using c1 c2 q1 by blast
have α ∈ {α ′ ∈ I . (α ′, maxI α β) ∈ leI} using c1 c2 q2 by blast
moreover have β ∈ {α ′ ∈ I . (α ′, maxI α β) ∈ leI} using c1 c2 q2 by blast
ultimately have ((α,i),(β,j)) ∈ D using c3 c4 c5 by blast
moreover have µ (maxI α β) ‘ L = D using c5 c6 b3 [of maxI α β] by blast
ultimately obtain v where c7 : v ∈ L ∧ (µ (maxI α β)) v = ((α,i),(β,j)) by

force
obtain A where c8 : A = {maxI α β} × ({v} × I) by blast
then have A ⊆ I × L × I using c6 c7 by blast
then have ∀ a∈A. ∃ x∈I . d x = a using b1 by (metis imageE set-rev-mp)
moreover obtain X where c9 : X = { x∈I . d x ∈ A } by blast
ultimately have A = d ‘ X by force
then have |A| ≤o |X | by simp
moreover have |I | =o |A|
proof −

obtain f where f = (λ x:: ′i. (maxI α β, v, x)) by blast
then have bij-betw f I A using c8 unfolding bij-betw-def inj-on-def by force
then show |I | =o |A| using card-of-ordIsoI [of f I A] by blast

37

qed
ultimately have c10 : |L| <o |X | using a2 by (metis ordLess-ordIso-trans

ordLess-ordLeq-trans)
have ∀ y∈I . X ⊆ {x∈I . (x,y) ∈ leI} −→ False
proof (intro ballI impI)

fix y
assume y ∈ I and X ⊆ {x∈I . (x,y) ∈ leI}
then have y ∈ I ∧ X ⊆ {x∈I . (x,y) ∈ leI} by blast
moreover then have |{x∈I . (x,y) ∈ leI}| ≤o |L| using a6 by blast
ultimately have |X | ≤o |L| using card-of-mono1 ordLeq-transitive by blast
then show False using c10 by (metis not-ordLeq-ordLess)

qed
then obtain γ where c11 : γ ∈ X ∧ (γ, maxI α β) /∈ leI using c6 c9 by blast
then obtain w where c12 : γ ∈ I ∧ d γ = (maxI α β, v, w) using c8 c9 by

blast
moreover have (maxI α β, γ) ∈ leI using c11 c12 c6 a5 by blast
moreover have h γ = jnN (t (α,i) γ) (t (β,j) γ)
proof −

have ϕ γ = µ (fst (d γ)) (fst (snd (d γ))) using b4 by blast
then have ϕ γ = µ (maxI α β) v using c12 by simp
then have ϕ γ = ((α,i),(β,j)) using c7 by simp
moreover have h γ = jnN (t (fst (ϕ γ)) γ) (t (snd (ϕ γ)) γ) using b5 by

blast
ultimately show h γ = jnN (t (α,i) γ) (t (β,j) γ) by simp

qed
ultimately show ∃ γ∈I . (maxI α β, γ) ∈ leI ∧ h γ = jnN (t (α,i) γ) (t (β,j)

γ) by blast
qed
then show ?thesis using q3 by blast

qed

lemma lem-jnfix-card:
fixes κ:: ′U rel and L:: ′l set and t::(′U rel)× ′l ⇒ ′U rel ⇒ ′n and jnN :: ′n ⇒ ′n
⇒ ′n

and S :: ′U rel set
assumes a1 : Card-order κ and a2 : ¬ finite L and a3 : |L| <o κ

and a4 : ∀ α ∈ S . |Field α| ≤o |L|
and a5 : S ⊆ O and a6 : |{α ∈ O:: ′U rel set. α <o κ}| ≤o |S |
and a7 : ∀ α ∈ S . ∃ β ∈ S . α <o β

shows ∃ h. ∀ α ∈ S . ∀ β ∈ S . ∀ i∈L. ∀ j∈L.
(∃ γ ∈ S . α <o γ ∧ β <o γ ∧ h γ = jnN (t (α,i) γ) (t (β,j) γ))

proof −
obtain I ::(′U rel) set where c1 : I = S by blast
obtain leI :: ′U rel rel where c2 : leI = oord by blast
have ¬ finite L using a2 by blast
moreover have |L| <o |I |
proof −

have ω-ord ≤o |L| using a2 by (metis infinite-iff-natLeq-ordLeq)
then have ω-ord ≤o κ using a3 by (metis ordLeq-ordLess-trans ordLess-imp-ordLeq)

38

then obtain f :: ′U rel ⇒ ′U where
d1 : Field κ ⊆ f ‘ {γ. γ <o κ} and d2 : ∀ γ1 γ2 . γ1 =o γ2 −→ f γ1 = f γ2
using a1 lem-card-setcv-inf-stab[of κ Field κ] by (metis card-of-Field-ordIso

ordIso-imp-ordLeq)
then have |Field κ| ≤o |f ‘ {γ. γ <o κ}| by simp
then have κ ≤o |f ‘ {γ. γ <o κ}| using a1
by (metis card-of-Field-ordIso ordIso-imp-ordLeq ordLeq-transitive ordIso-symmetric)
moreover have |f ‘ {γ. γ <o κ}| ≤o |{α ∈ O:: ′U rel set. α <o κ}|
proof −

have κ 6= {} using a2 a3
using lem-cardord-emp by (metis Field-empty card-of-Field-ordIso card-of-empty

not-ordLess-ordIso ordLeq-ordLess-trans)
then have ({}:: ′U rel) <o κ using a1
by (metis ozero-def iso-ozero-empty card-order-on-well-order-on ordIso-symmetric

ordLeq-iff-ordLess-or-ordIso ozero-ordLeq)
then have e1 : f ‘ {γ. γ <o κ} 6= {} by blast
moreover have f ‘ {γ. γ <o κ} ⊆ f ‘ {α ∈ O. α <o κ}
proof

fix y
assume y ∈ f ‘ {γ. γ <o κ}
then obtain γ α where f1 : γ <o κ ∧ y = f γ ∧ α = nord γ by blast
moreover then have f2 : α ∈ O ∧ α =o γ using lem-nord-r unfolding

O-def ordLess-def by blast
ultimately have α <o κ using d2 ordIso-ordLess-trans by blast
moreover have y = f α using d2 f1 f2 by fastforce
ultimately show y ∈ f ‘ {α ∈ O. α <o κ} using f2 by blast

qed
ultimately have f ‘ {α ∈ O. α <o κ} = f ‘ {γ. γ <o κ} by blast
then show ?thesis using e1 card-of-ordLeq2 [of f ‘ {γ. γ <o κ} {α ∈ O:: ′U

rel set. α <o κ}] by blast
qed
ultimately have κ ≤o |{α ∈ O:: ′U rel set. α <o κ}| using ordLeq-transitive

by blast
moreover have I = S using c1 by blast
moreover then have |{α ∈ O:: ′U rel set. α <o κ}| ≤o |I | using a6 by blast
ultimately have κ ≤o |I | using c1 using ordLeq-transitive by blast
then show ?thesis using a3 by (metis ordLess-ordLeq-trans)

qed
moreover have ∀α∈I . (α,α) ∈ leI

using c1 c2 a5 lem-fld-oord lem-oord-wo unfolding well-order-on-def lin-
ear-order-on-def

partial-order-on-def preorder-on-def refl-on-def by blast
moreover have ∀α∈I . ∀β∈I . ∀ γ∈I . (α,β)∈leI ∧ (β,γ)∈leI −→ (α,γ)∈leI

using c2 lem-oord-wo unfolding well-order-on-def linear-order-on-def
partial-order-on-def preorder-on-def trans-def by blast

moreover have ∀α∈O. ∀β∈O. (α,β) ∈ leI ∨ (β,α) ∈ leI
using c1 c2 lem-fld-oord lem-oord-wo unfolding well-order-on-def linear-order-on-def

total-on-def
partial-order-on-def preorder-on-def refl-on-def by metis

39

moreover then have ∀α∈I . ∀β∈I . (α,β) ∈ leI ∨ (β,α) ∈ leI using c1 a5 by
blast

moreover have ∀β∈I . |{α∈I . (α,β) ∈ leI}| ≤o |L|
proof

fix β
assume d1 : β ∈ I
show |{α∈I . (α,β) ∈ leI}| ≤o |L|
proof (cases ω-ord ≤o β)

assume e1 : ω-ord ≤o β
obtain C where e2 : C = nord ‘ {α:: ′U rel. α <o β} by blast
have {α∈I . (α,β) ∈ leI} ⊆ C ∪ {β}
proof

fix γ
assume γ ∈ {α∈I . (α,β) ∈ leI}
then have γ ∈ O ∧ (γ <o β ∨ γ = β)

using c2 lem-Oeq unfolding oord-def using ordLeq-iff-ordLess-or-ordIso
by blast

moreover then have γ = nord γ using lem-Onord by blast
ultimately show γ ∈ C ∪ {β} using e2 by blast

qed
moreover have |C ∪ {β}| ≤o β
proof (cases finite C)

assume finite C
then have finite (C ∪ {β}) by blast
then have |C ∪ {β}| <o ω-ord using finite-iff-ordLess-natLeq by blast
then show ?thesis using e1 ordLess-ordLeq-trans ordLess-imp-ordLeq by

blast
next

assume ¬ finite C
then have |C ∪ {β}| =o |C | by (metis card-of-singl-ordLeq finite.simps

card-of-Un-infinite)
then show ?thesis using e1 e2 lem-nord-eq lem-ord-int-card-le-inf [of nord

β] ordIso-ordLeq-trans by blast
qed

ultimately have |{α∈I . (α,β) ∈ leI}| ≤o β by (meson card-of-mono1
ordLeq-transitive)

moreover have
∧

A:: ′U rel set. |A| ≤o β =⇒ |A| ≤o |Field β|
by (metis Field-card-of card-of-mono1 internalize-card-of-ordLeq)

ultimately have |{α∈I . (α,β) ∈ leI}| ≤o |Field β| by blast
moreover have |Field β| ≤o |L| using d1 c1 a4 by blast
ultimately show |{α∈I . (α,β) ∈ leI}| ≤o |L| using ordLeq-transitive by

blast
next

assume ¬ ω-ord ≤o β
then have e1 : β <o ω-ord using d1 c1 a5 using lem-Owo Field-natLeq

natLeq-well-order-on by force
then have e2 : β =o natLeq-on (card (Field β)) using lem-wolew-nat by blast
obtain A where e3 : A = { n. n ≤ card (Field β) } by blast
obtain f where e4 : f = (λn::nat. SOME α. α ∈ I ∧ α <o ω-ord ∧ card

40

(Field α) = n) by blast
have {α∈I . (α,β) ∈ leI} ⊆ f ‘ A
proof

fix γ
assume f1 : γ ∈ {α∈I . (α,β) ∈ leI}
then have f2 : γ ≤o β using c2 oord-def by blast
then have f3 : γ <o ω-ord using e1 ordLeq-ordLess-trans by blast
then have f4 : γ =o natLeq-on (card (Field γ)) using lem-wolew-nat by

blast
then have natLeq-on (card (Field γ)) ≤o natLeq-on (card (Field β))

using f2 e2 by (meson ordIso-iff-ordLeq ordLeq-transitive)
then have f5 : γ ∈ I ∧ card (Field γ) ∈ A using f1 e3 natLeq-on-ordLeq-less-eq

by blast
moreover obtain γ ′ where f6 : γ ′ = f (card (Field γ)) by blast
ultimately have γ ′ ∈ I ∧ γ ′ <o ω-ord ∧ card (Field γ ′) = card (Field γ)
using f3 e4 someI-ex[of λ α. α ∈ I ∧ α <o ω-ord ∧ card (Field α) = card

(Field γ)] by blast
moreover then have γ ′ =o natLeq-on (card (Field γ)) using lem-wolew-nat

by force
ultimately have γ ∈ O ∧ γ ′ ∈ O ∧ γ ′ =o γ using f1 f4 c1 a5 or-

dIso-symmetric ordIso-transitive by blast
then have γ ′ = γ using lem-Oeq by blast
moreover have γ ′ ∈ f ‘ A using f5 f6 by blast
ultimately show γ ∈ f ‘ A by blast

qed
then have finite {α∈I . (α,β) ∈ leI} using e3 finite-subset by blast

then show |{α∈I . (α,β) ∈ leI}| ≤o |L| using a2 ordLess-imp-ordLeq by force
qed

qed
moreover have ∀α∈I . ∃α ′∈I . (α,α ′) ∈ leI ∧ (α ′,α) /∈ leI
proof

fix α
assume α ∈ I
then obtain α ′ where d1 : α ∈ S ∧ α ′ ∈ S ∧ α <o α ′ using c1 a7 by blast
then have d2 : α ≤o α ′ ∧ α ∈ O ∧ α ′ ∈ O using a5 ordLess-imp-ordLeq by

blast
then have α ′ ∈ I ∧ (α,α ′) ∈ leI using d1 c1 c2 unfolding oord-def by blast
moreover have (α ′,α) ∈ leI −→ False
proof

assume e1 : (α ′,α) ∈ leI
then have α ′ ≤o α using c2 unfolding oord-def by blast
then have α ′ = α using d2 lem-Oeq ordIso-iff-ordLeq by blast
then show False using d1 ordLess-irreflexive by blast

qed
ultimately show ∃α ′∈I . (α,α ′) ∈ leI ∧ (α ′,α) /∈ leI by blast

qed
ultimately obtain h where

c3 : ∀α∈I . ∀β∈I . ∀ i∈L. ∀ j∈L. ∃ γ∈I .
(α,γ)∈leI ∧ (β,γ) ∈ leI ∧ (γ,α)/∈leI ∧ (γ,β)/∈leI ∧ h γ = jnN (t (α,i) γ)

41

(t (β,j) γ)
using lem-jnfix-gen[of L I leI jnN t] by blast

have ∀ α ∈ S . ∀ β ∈ S . ∀ i∈L. ∀ j∈L.
(∃ γ ∈ S . α <o γ ∧ β <o γ ∧ h γ = jnN (t (α,i) γ) (t (β,j) γ))

proof (intro allI ballI impI)
fix α:: ′U rel and i:: ′l and β:: ′U rel and j:: ′l
assume d2 : i ∈ L and d3 : j ∈ L and α ∈ S and β ∈ S
then have d4 : α ∈ I ∧ β ∈ I using c1 a5 by blast
then obtain γ where γ ∈ I and (α,γ) ∈ leI ∧ (β,γ) ∈ leI and (γ,α)/∈leI ∧

(γ,β)/∈leI
and d6 : h γ = jnN (t (α,i) γ) (t (β,j) γ) using d2 d3 c3 by blast

then have γ ∈ O ∩ S ∧ α <o γ ∧ β <o γ
using d4 c1 c2 a5 lem-Oeq unfolding oord-def

by (smt ordLeq-iff-ordLess-or-ordIso subsetCE Int-iff)
moreover have h γ = jnN (t (α,i) γ) (t (β,j) γ) using d2 d3 d6 by blast
ultimately show ∃ γ ∈ S . α <o γ ∧ β <o γ ∧ h γ = jnN (t (α,i) γ) (t (β,j)

γ) by blast
qed
then show ?thesis by blast

qed

lemma lem-cardsuc-ls-fldcard:
fixes κ:: ′a rel and α:: ′b rel
assumes a1 : Card-order κ and a2 : α <o cardSuc κ
shows |Field α| ≤o κ
proof −

have κ <o |Field α| −→ False
proof

assume κ <o |Field α|
moreover have Card-order |Field α| by simp
ultimately have cardSuc κ ≤o |Field α| using a1 cardSuc-least by blast
moreover have |Field α| ≤o α using a2 by simp
ultimately have cardSuc κ ≤o α using ordLeq-transitive by blast
then show False using a2 not-ordLeq-ordLess by blast

qed
then show |Field α| ≤o κ using a1 by simp

qed

lemma lem-jnfix-cardsuc:
fixes L:: ′l set and κ:: ′U rel and t::(′U rel)× ′l ⇒ ′U rel ⇒ ′n and jnN :: ′n ⇒ ′n
⇒ ′n

and S :: ′U rel set
assumes a1 : ¬ finite L and a2 : κ =o cardSuc |L|

and a3 : S ⊆ {α ∈ O:: ′U rel set. α <o κ} and a4 : |{α ∈ O:: ′U rel set. α <o
κ}| ≤o |S |

and a5 : ∀ α ∈ S . ∃ β ∈ S . α <o β
shows ∃ h. ∀ α ∈ S . ∀ β ∈ S . ∀ i∈L. ∀ j∈L.

(∃ γ ∈ S . α <o γ ∧ β <o γ ∧ h γ = jnN (t (α,i) γ) (t (β,j) γ))
proof −

42

have Card-order κ using a2 by (metis Card-order-ordIso cardSuc-Card-order
card-of-Card-order)

moreover have |L| <o κ using a2 cardSuc-greater [of |L|]
by (metis Field-card-of card-of-card-order-on ordIso-iff-ordLeq ordLess-ordLeq-trans)

moreover have ∀α:: ′U rel. α <o κ −→ |Field α| ≤o |L|
using a2 using lem-cardsuc-ls-fldcard ordLess-ordIso-trans by force

ultimately show ?thesis using a1 a3 a4 a5 lem-jnfix-card[of κ L S jnN t] by
blast
qed

lemma lem-Relprop-cl-ccr :
fixes r :: ′U rel
shows Conelike r =⇒ CCR r

unfolding CCR-def Conelike-def by fastforce

lemma lem-Relprop-ccr-confl:
fixes r :: ′U rel
shows CCR r =⇒ confl-rel r

using lem-rtr-field[of - - r] unfolding CCR-def confl-rel-def by blast

lemma lem-Relprop-fin-ccr :
fixes r :: ′U rel
shows finite r =⇒ CCR r = Conelike r
proof −

assume a1 : finite r
have r 6= {} ∧ CCR r −→ Conelike r
proof

assume b1 : r 6= {} ∧ CCR r
have b2 : finite (Field r) using a1 finite-Field by fastforce
have ∃ xm ∈ Field r . ∀ x ∈ Field r . (x, xm) ∈ r^∗
proof −

have {} ⊆ Field r −→ (∃ xm ∈ Field r . ∀ x ∈ {}. (x, xm) ∈ r^∗) using b1
Field-def by fastforce

moreover have
∧

x F . finite F =⇒ x /∈ F =⇒
F ⊆ Field r −→ (∃ xm ∈ Field r . ∀ x ∈ F . (x, xm) ∈ r^∗) =⇒
insert x F ⊆ Field r −→ (∃ xm ∈ Field r . ∀ x ∈ insert x F . (x, xm) ∈ r^∗)

proof
fix x F
assume c1 : finite F and c2 : x /∈ F and c3 : F ⊆ Field r −→ (∃ xm∈Field

r . ∀ x∈F . (x, xm) ∈ r^∗)
and c4 : insert x F ⊆ Field r

then obtain xm where c5 : xm ∈ Field r ∧ (∀ y∈F . (y, xm) ∈ r^∗) by
blast

then obtain xm ′ where xm ′ ∈ Field r ∧ (x, xm ′) ∈ r^∗ ∧ (xm, xm ′) ∈
r^∗

using b1 c4 unfolding CCR-def by blast
moreover then have ∀ y∈insert x F . (y, xm ′) ∈ r^∗ using c5 by force
ultimately show ∃ xm∈Field r . ∀ x∈insert x F . (x, xm) ∈ r^∗ by blast

qed

43

ultimately have (∃ xm ∈ Field r . ∀ x ∈ Field r . (x, xm) ∈ r^∗)
using b2 finite-induct[of Field r λ A ′. A ′ ⊆ Field r −→ (∃ xm ∈ Field r .

∀ x ∈ A ′. (x, xm) ∈ r^∗)] by simp
then show ∃ xm ∈ Field r . ∀ x ∈ Field r . (x, xm) ∈ r^∗ by blast

qed
then show Conelike r using a1 b1 unfolding Conelike-def by blast

qed
then show CCR r = Conelike r using lem-Relprop-cl-ccr unfolding Cone-

like-def by blast
qed

lemma lem-Relprop-ccr-ch-un:
fixes S :: ′U rel set
assumes a1 : ∀ s∈S . CCR s and a2 : ∀ s1∈S . ∀ s2∈S . s1 ⊆ s2 ∨ s2 ⊆ s1
shows CCR (

⋃
S)

proof −
have ∀ a∈Field (

⋃
S). ∀ b∈Field (

⋃
S). ∃ c∈Field (

⋃
S). (a, c) ∈ (

⋃
S)^∗ ∧ (b,

c) ∈ (
⋃

S)^∗
proof (intro ballI)

fix a b
assume c1 : a ∈ Field (

⋃
S) and c2 : b ∈ Field (

⋃
S)

then obtain s1 s2 where c3 : s1 ∈ S ∧ a ∈ Field s1 and c4 : s2 ∈ S ∧ b ∈
Field s2

unfolding Field-def by blast
show ∃ c∈Field (

⋃
S). (a,c) ∈ (

⋃
S)^∗ ∧ (b,c) ∈ (

⋃
S)^∗

proof (cases s1 ⊆ s2)
assume s1 ⊆ s2
then have a ∈ Field s2 using c3 unfolding Field-def by blast
then obtain c where c ∈ Field s2 ∧ (a,c) ∈ s2^∗ ∧ (b,c) ∈ s2^∗

using a1 c4 unfolding CCR-def by force
moreover then have c ∈ Field (

⋃
S) using c4 unfolding Field-def by

blast
moreover have s2^∗ ⊆ (

⋃
S)^∗ using c4 Transitive-Closure.rtrancl-mono[of

s2
⋃

S] by blast
ultimately show ∃ c∈Field (

⋃
S). (a,c) ∈ (

⋃
S)^∗ ∧ (b,c) ∈ (

⋃
S)^∗ by

blast
next

assume ¬ s1 ⊆ s2
then have s2 ⊆ s1 using a2 c3 c4 by blast
then have b ∈ Field s1 using c4 unfolding Field-def by blast
then obtain c where c ∈ Field s1 ∧ (a,c) ∈ s1^∗ ∧ (b,c) ∈ s1^∗

using a1 c3 unfolding CCR-def by force
moreover then have c ∈ Field (

⋃
S) using c3 unfolding Field-def by

blast
moreover have s1^∗ ⊆ (

⋃
S)^∗ using c3 Transitive-Closure.rtrancl-mono[of

s1
⋃

S] by blast
ultimately show ∃ c∈Field (

⋃
S). (a,c) ∈ (

⋃
S)^∗ ∧ (b,c) ∈ (

⋃
S)^∗ by

blast
qed

44

qed
then show ?thesis unfolding CCR-def by blast

qed

lemma lem-Relprop-restr-ch-un:
fixes C :: ′U set set and r :: ′U rel
assumes ∀A1∈C . ∀A2∈C . A1 ⊆ A2 ∨ A2 ⊆ A1
shows Restr r (

⋃
C) =

⋃
{ s. ∃ A ∈ C . s = Restr r A }

proof
show Restr r (

⋃
C) ⊆

⋃
{ s. ∃ A ∈ C . s = Restr r A }

proof
fix p
assume p ∈ Restr r (

⋃
C)

then obtain a b A1 A2 where p = (a,b) ∧ a ∈ A1 ∧ b ∈ A2 ∧ p ∈ r ∧ A1
∈ C ∧ A2 ∈ C by blast

moreover then have A1 ⊆ A2 ∨ A2 ⊆ A1 using assms by blast
ultimately show p ∈

⋃
{ s. ∃ A ∈ C . s = Restr r A } by blast

qed
next

show
⋃
{ s. ∃ A ∈ C . s = Restr r A } ⊆ Restr r (

⋃
C) by blast

qed

lemma lem-Inv-restr-rtr :
fixes r :: ′U rel and A:: ′U set
assumes A ∈ Inv r
shows r^∗ ∩ (A×(UNIV :: ′U set)) ⊆ (Restr r A)^∗
proof −

have ∀ n. ∀ a b. (a,b) ∈ r^^n ∧ a ∈ A −→ (a,b) ∈ (Restr r A)^∗
proof

fix n
show ∀ a b. (a,b) ∈ r^^n ∧ a ∈ A −→ (a,b) ∈ (Restr r A)^∗
proof (induct n)

show ∀ a b. (a,b) ∈ r ^^ 0 ∧ a ∈ A −→ (a,b) ∈ (Restr r A)^∗ by simp
next

fix n
assume d1 : ∀ a b. (a,b) ∈ r ^^ n ∧ a ∈ A −→ (a,b) ∈ (Restr r A)^∗
show ∀ a b. (a,b) ∈ r ^^ (Suc n) ∧ a ∈ A −→ (a,b) ∈ (Restr r A)^∗
proof (intro allI impI)

fix a b
assume e1 : (a,b) ∈ r ^^ (Suc n) ∧ a ∈ A
moreover then obtain c where e2 : (a,c) ∈ r^^n ∧ (c,b) ∈ r by force
ultimately have e3 : (a,c) ∈ (Restr r A)^∗ using d1 by blast
moreover then have c ∈ A using e1 using rtranclE by force
then have (c,b) ∈ Restr r A using assms e2 unfolding Inv-def by blast

then show (a,b) ∈ (Restr r A)^∗ using e3 by (meson rtrancl.rtrancl-into-rtrancl)
qed

qed
qed
then show ?thesis using rtrancl-power by blast

45

qed

lemma lem-Inv-restr-rtr2 :
fixes r :: ′U rel and A:: ′U set
assumes A ∈ Inv r
shows r^∗ ∩ (A×(UNIV :: ′U set)) ⊆ (Restr r A)^∗ ∩ ((UNIV :: ′U set)×A)
proof −

have ∀ n. ∀ a b. (a,b) ∈ r^^n ∧ a ∈ A −→ (a,b) ∈ (Restr r A)^∗ ∩ ((UNIV :: ′U
set)×A)

proof
fix n
show ∀ a b. (a,b) ∈ r^^n ∧ a ∈ A −→ (a,b) ∈ (Restr r A)^∗ ∩ ((UNIV :: ′U

set)×A)
proof (induct n)

show ∀ a b. (a,b) ∈ r ^^ 0 ∧ a ∈ A −→ (a,b) ∈ (Restr r A)^∗ ∩ ((UNIV :: ′U
set)×A) by simp

next
fix n
assume d1 : ∀ a b. (a,b) ∈ r ^^ n ∧ a ∈ A −→ (a,b) ∈ (Restr r A)^∗ ∩

((UNIV :: ′U set)×A)
show ∀ a b. (a,b) ∈ r ^^ (Suc n) ∧ a ∈ A −→ (a,b) ∈ (Restr r A)^∗ ∩

((UNIV :: ′U set)×A)
proof (intro allI impI)

fix a b
assume e1 : (a,b) ∈ r ^^ (Suc n) ∧ a ∈ A
moreover then obtain c where e2 : (a,c) ∈ r^^n ∧ (c,b) ∈ r by force
ultimately have e3 : (a,c) ∈ (Restr r A)^∗ using d1 by blast
moreover then have c ∈ A using e1 using rtranclE by force
then have e4 : (c,b) ∈ Restr r A using assms e2 unfolding Inv-def by

blast
ultimately have (a,b) ∈ (Restr r A)^∗ using e3 by (meson rtrancl.rtrancl-into-rtrancl)

then show (a,b) ∈ (Restr r A)^∗ ∩ ((UNIV :: ′U set)×A) using e4 by blast
qed

qed
qed
then show ?thesis using rtrancl-power by blast

qed

lemma lem-inv-rtr-mem:
fixes r :: ′U rel and A:: ′U set and a b:: ′U
assumes A ∈ Inv r and a ∈ A and (a,b) ∈ r^∗
shows b ∈ A

using assms lem-Inv-restr-rtr [of A r] rtranclE [of a b] by blast

lemma lem-Inv-ccr-restr :
fixes r :: ′U rel and A:: ′U set
assumes CCR r and A ∈ Inv r
shows CCR (Restr r A)
proof −

46

have ∀ a ∈ Field (Restr r A). ∀ b ∈ Field (Restr r A). ∃ c ∈ Field (Restr r A).
(a,c) ∈ (Restr r A)^∗ ∧ (b,c) ∈ (Restr r A)^∗

proof (intro ballI)
fix a b
assume c1 : a ∈ Field (Restr r A) and c2 : b ∈ Field (Restr r A)
moreover then obtain c where c ∈ Field r and (a,c) ∈ r^∗ ∧ (b,c) ∈ r^∗

using assms unfolding CCR-def Field-def by blast
ultimately have (a,c) ∈ r^∗ ∩ (A×(UNIV :: ′U set)) ∧ (b,c) ∈ r^∗ ∩ (A×(UNIV :: ′U

set)) unfolding Field-def by blast
then have (a,c) ∈ (Restr r A)^∗ ∧ (b,c) ∈ (Restr r A)^∗ using assms

lem-Inv-restr-rtr by blast
moreover then have c ∈ Field (Restr r A) using c1 lem-rtr-field[of a c] by

blast
ultimately show ∃ c ∈ Field (Restr r A). (a,c) ∈ (Restr r A)^∗ ∧ (b,c) ∈

(Restr r A)^∗ by blast
qed
then show ?thesis unfolding CCR-def by blast

qed

lemma lem-Inv-cl-restr :
fixes r :: ′U rel and A:: ′U set
assumes Conelike r and A ∈ Inv r
shows Conelike (Restr r A)
proof(cases r = {})

assume r = {}
then show ?thesis unfolding Conelike-def by blast

next
assume r 6= {}
then obtain m where b1 : ∀ a ∈ Field r . (a,m) ∈ r^∗ using assms unfolding

Conelike-def by blast
show Conelike (Restr r A)
proof (cases m ∈ Field (Restr r A))

assume m ∈ Field (Restr r A)
moreover have ∀ a ∈ Field (Restr r A). (a,m) ∈ (Restr r A)^∗

using assms lem-Inv-restr-rtr b1 unfolding Field-def by blast
ultimately show Conelike (Restr r A) unfolding Conelike-def by blast

next
assume c1 : m /∈ Field (Restr r A)
have (Field r) ∩ A ⊆ {m}
proof

fix a0
assume a0 ∈ (Field r) ∩ A
then have (a0 ,m) ∈ r^∗ ∩ (A×(UNIV :: ′U set)) using b1 by blast
then have (a0 ,m) ∈ (Restr r A)^∗ using assms lem-Inv-restr-rtr by blast

then show a0 ∈ {m} using c1 lem-rtr-field by (metis (full-types) mem-Collect-eq
singleton-conv)

qed
then show Conelike (Restr r A) unfolding Conelike-def Field-def by blast

qed

47

qed

lemma lem-Inv-ccr-restr-invdiff :
fixes r :: ′U rel and A B:: ′U set
assumes a1 : CCR (Restr r A) and a2 : B ∈ Inv (r^−1)
shows CCR (Restr r (A − B))
proof −

have (Restr r A) ‘‘ (A−B) ⊆ (A−B)
proof

fix b
assume b ∈ (Restr r A) ‘‘ (A−B)
then obtain a where c2 : a ∈ A−B ∧ (a,b) ∈ (Restr r A) by blast
moreover then have b /∈ B using a2 unfolding Inv-def by blast
ultimately show b ∈ A − B by blast

qed
then have (A−B) ∈ Inv(Restr r A) unfolding Inv-def by blast
then have CCR (Restr (Restr r A) (A − B)) using a1 lem-Inv-ccr-restr by

blast
moreover have Restr (Restr r A) (A − B) = Restr r (A−B) by blast
ultimately show ?thesis by metis

qed

lemma lem-Inv-dncl-invbk: dncl r A ∈ Inv (r^−1)
unfolding dncl-def Inv-def apply clarify
using converse-rtrancl-into-rtrancl by (metis ImageI rtrancl-converse rtrancl-converseI)

lemma lem-inv-sf-ext:
fixes r :: ′U rel and A:: ′U set
assumes A ⊆ Field r
shows ∃ A ′ ∈ SF r . A ⊆ A ′ ∧ (finite A −→ finite A ′) ∧ ((¬ finite A) −→ |A ′| =o
|A|)
proof −

obtain rs where b4 : rs = r ∪ (r^−1) by blast
obtain S where b1 : S = (λ a. rs‘‘{a}) by blast
obtain S ′ where b2 : S ′ = (λ a. if (S a) 6= {} then (S a) else {a}) by blast
obtain f where f = (λ a. SOME b. b ∈ S ′ a) by blast
moreover have ∀ a. ∃ b. b ∈ (S ′ a) unfolding b2 by force
ultimately have ∀ a. (f a) ∈ (S ′ a) by (metis someI-ex)
then have b3 : ∀ a. (S a 6= {} −→ f a ∈ S a) ∧ (S a = {} −→ f a = a)

unfolding b2 by (clarsimp, metis singletonD)
obtain A ′ where b5 : A ′ = A ∪ (f ‘ A) by blast
have A ∪ (f ‘ A) ⊆ Field (Restr r A ′)
proof

fix x
assume x ∈ A ∪ (f ‘ A)
then obtain a b where c1 : a ∈ A ∧ b = f a ∧ x ∈ {a,b} by blast
moreover then have rs ‘‘ {a} 6= {} −→ (a, b) ∈ rs using assms b1 b3 by

blast
moreover have rs ‘‘ {a} = {} −→ False using assms c1 b4 unfolding

48

Field-def by blast
moreover have (a,b) ∈ rs −→ {a,b} ⊆ Field (Restr r A ′) using c1 b4 b5

unfolding Field-def by blast
ultimately show x ∈ Field (Restr r A ′) by blast

qed
then have (A ⊆ A ′) ∧ (A ′ ∈ SF r) using b5 unfolding SF-def Field-def by

blast
moreover have finite A −→ finite A ′ using b5 by blast
moreover have (¬ finite A) −→ |A ′| =o |A| using b5 by simp
ultimately show ?thesis by blast

qed

lemma lem-inv-sf-un:
assumes S ⊆ SF r
shows (

⋃
S) ∈ SF r

using assms unfolding SF-def Field-def by blast

lemma lem-Inv-ccr-sf-inv-diff :
fixes r :: ′U rel and A B:: ′U set
assumes a1 : A ∈ SF r and a2 : CCR (Restr r A) and a3 : B ∈ Inv (r^−1)
shows (A−B) ∈ SF r ∨ (∃ y:: ′U . (A−B) = {y})
proof −

have ∀ a ∈ A − B. a /∈ Field (Restr r (A−B)) −→ A − B = {a}
proof (intro ballI impI)

fix a
assume b1 : a ∈ A − B and b2 : a /∈ Field (Restr r (A−B))
then have ¬ (∃ b ∈ A−B. (a,b) ∈ r ∨ (b,a) ∈ r) unfolding Field-def by blast
then have b3 : ∀ b ∈ A. (a,b) /∈ r using a3 b1 unfolding Inv-def by blast
have b4 : ∀ x ∈ Field(Restr r A). (x,a) ∈ (Restr r A)^∗
proof

fix x
assume x ∈ Field(Restr r A)
moreover then have a ∈ Field (Restr r A) using b1 a1 unfolding SF-def

by blast
ultimately obtain y where c1 : (a,y) ∈ (Restr r A)^∗ ∧ (x,y) ∈ (Restr r

A)^∗
using a2 unfolding CCR-def by blast

moreover have (a,y) ∈ (Restr r A)^+ −→ False using b3 tranclD by force
ultimately have a = y using rtrancl-eq-or-trancl by metis
then show (x,a) ∈ (Restr r A)^∗ using c1 by blast

qed
have ∀ b ∈ (A−B) − {a}. False
proof

fix b
assume c1 : b ∈ (A−B) − {a}
then have b ∈ Field (Restr r A) using a1 unfolding SF-def by blast
then have (b,a) ∈ (Restr r A)^∗ using b4 by blast
moreover have (b,a) ∈ (Restr r A)^+ −→ False
proof

49

assume (b,a) ∈ (Restr r A)^+
then obtain b ′ where d1 : (b,b ′) ∈ (Restr r A)^∗ ∧ (b ′,a) ∈ Restr r A

using tranclD2 by metis
have d2 : ∀ r ′ a b. (a,b) ∈ Restr r ′ B = (a ∈ B ∧ b ∈ B ∧ (a,b) ∈ r ′)

unfolding Field-def by force
have (b,b ′) ∈ r^∗ using d1 rtrancl-mono[of Restr r A] by blast
then have (b ′,b) ∈ (r^−1)^∗ using rtrancl-converse by blast

then have b ′ ∈ B −→ (b ′,b) ∈ (Restr (r^−1) B)^∗ using a3 lem-Inv-restr-rtr
by blast

then have b ′ ∈ B −→ b ∈ B using d2 by (metis rtrancl-eq-or-trancl
tranclD2)

then have b ′ ∈ A − B using d1 c1 by blast
then have (b ′,a) ∈ Restr r (A−B) using b1 d1 by blast
then have a ∈ Field (Restr r (A−B)) unfolding Field-def by blast
then show False using b2 by blast

qed
ultimately have b = a using rtrancl-eq-or-trancl[of b a] by blast
then show False using c1 by blast

qed
then show A − B = {a} using b1 by blast

qed
then show ?thesis unfolding SF-def Field-def by blast

qed

lemma lem-Inv-ccr-sf-dn-diff :
fixes r :: ′U rel and A D A ′:: ′U set
assumes a1 : A ∈ SF r and a2 : CCR (Restr r A) and a3 : A ′ = (A − (dncl r D))
shows ((A ′ ∈ SF r) ∧ CCR (Restr r A ′)) ∨ (∃ y:: ′U . A ′ = {y})

using assms lem-Inv-ccr-restr-invdiff lem-Inv-ccr-sf-inv-diff lem-Inv-dncl-invbk
by blast

lemma lem-rseq-tr :
fixes r :: ′U rel and xi::nat ⇒ ′U
assumes ∀ i. (xi i, xi (Suc i)) ∈ r
shows ∀ i j. i < j −→ (xi i ∈ Field r ∧ (xi i, xi j) ∈ r^+)
proof −

have
∧

j. ∀ i < j. xi i ∈ Field r ∧ (xi i, xi j) ∈ r^+
proof −

fix j0
show ∀ i < j0 . xi i ∈ Field r ∧ (xi i, xi j0) ∈ r^+
proof (induct j0)

show ∀ i<0 . xi i ∈ Field r ∧ (xi i, xi 0) ∈ r^+ by blast
next

fix j
assume d1 : ∀ i<j. xi i ∈ Field r ∧ (xi i, xi j) ∈ r^+
show ∀ i<Suc j. xi i ∈ Field r ∧ (xi i, xi (Suc j)) ∈ r^+
proof (intro allI impI)

fix i
assume e1 : i < Suc j

50

have e2 : (xi j, xi (Suc j)) ∈ r using assms by simp
show xi i ∈ Field r ∧ (xi i, xi (Suc j)) ∈ r^+
proof (cases i < j)

assume i < j
then have xi i ∈ Field r ∧ (xi i, xi j) ∈ r^+ using d1 by blast
then show ?thesis using e2 by force

next
assume ¬ i < j
then have i = j using e1 by simp
then show ?thesis using e2 unfolding Field-def by blast

qed
qed

qed
qed
then show ?thesis by blast

qed

lemma lem-rseq-rtr :
fixes r :: ′U rel and xi::nat ⇒ ′U
assumes ∀ i. (xi i, xi (Suc i)) ∈ r
shows ∀ i j. i ≤ j −→ (xi i ∈ Field r ∧ (xi i, xi j) ∈ r^∗)
proof (intro allI impI)

fix i::nat and j::nat
assume b1 : i ≤ j
then have xi i ∈ Field r using assms unfolding Field-def by blast
moreover have (xi i, xi j) ∈ r^∗
proof (cases i = j)

assume i = j
then show ?thesis by blast

next
assume i 6= j
then have i < j using b1 by simp
moreover have r^+ ⊆ r^∗ by force
ultimately show ?thesis using assms lem-rseq-tr [of xi r] by blast

qed
ultimately show xi i ∈ Field r ∧ (xi i, xi j) ∈ r^∗ by blast

qed

lemma lem-rseq-svacyc-inv-tr :
fixes r :: ′U rel and xi::nat ⇒ ′U and a:: ′U
assumes a1 : single-valued r and a2 : ∀ i. (xi i, xi (Suc i)) ∈ r
shows

∧
i. (xi i, a) ∈ r^+ =⇒ (∃ j. i<j ∧ a = xi j)

proof −
fix i
assume (xi i, a) ∈ r^+
moreover have

∧
n. ∀ i a. (xi i, a) ∈ r^^(Suc n) −→ (∃ j. i<j ∧ a = xi j)

proof −
fix n
show ∀ i a. (xi i, a) ∈ r^^(Suc n) −→ (∃ j. i<j ∧ a = xi j)

51

proof (induct n)
show ∀ i a. (xi i, a) ∈ r^^(Suc 0) −→ (∃ j>i. a = xi j)
proof (intro allI impI)

fix i a
assume (xi i, a) ∈ r^^(Suc 0)
then have (xi i, a) ∈ r ∧ (xi i, xi (Suc i)) ∈ r using a2 by simp
then have a = xi (Suc i) using a1 unfolding single-valued-def by blast
then show ∃ j>i. a = xi j by force

qed
next

fix n
assume d1 : ∀ i a. (xi i, a) ∈ r^^(Suc n) −→ (∃ j>i. a = xi j)
show ∀ i a. (xi i, a) ∈ r ^^ Suc (Suc n) −→ (∃ j>i. a = xi j)
proof (intro allI impI)

fix i a
assume (xi i, a) ∈ r^^(Suc (Suc n))
then obtain b where (xi i, b) ∈ r^^(Suc n) ∧ (b, a) ∈ r by force
moreover then obtain j where e1 : j > i ∧ b = xi j using d1 by blast
ultimately have (xi j, a) ∈ r ∧ (xi j, xi (Suc j)) ∈ r using a2 by blast
then have a = xi (Suc j) using a1 unfolding single-valued-def by blast
moreover have Suc j > i using e1 by force
ultimately show ∃ j>i. a = xi j by blast

qed
qed

qed
ultimately show ∃ j. i<j ∧ a = xi j using trancl-power [of - r] by (metis

Suc-pred ′)
qed

lemma lem-rseq-svacyc-inv-rtr :
fixes r :: ′U rel and xi::nat ⇒ ′U and a:: ′U
assumes a1 : single-valued r and a2 : ∀ i. (xi i, xi (Suc i)) ∈ r
shows

∧
i. (xi i, a) ∈ r^∗ =⇒ (∃ j. i≤j ∧ a = xi j)

proof −
fix i
assume b1 : (xi i, a) ∈ r^∗
show ∃ j. i≤j ∧ a = xi j
proof (cases xi i = a)

assume xi i = a
then show ?thesis by force

next
assume xi i 6= a
then have (xi i, a) ∈ r^+ using b1 by (meson rtranclD)
then obtain j where i<j ∧ a = xi j using assms lem-rseq-svacyc-inv-tr [of r

xi i a] by blast
then have i ≤ j ∧ a = xi j by force
then show ?thesis by blast

qed
qed

52

lemma lem-ccrsv-cfseq:
fixes r :: ′U rel
assumes a1 : r 6= {} and a2 : CCR r and a3 : single-valued r and a4 : ∀ x∈Field
r . r‘‘{x} 6= {}
shows ∃ xi. cfseq r xi
proof −

have b1 : Field r 6= {} ∧ (∀ x ∈ Field r . ∃ y. (x,y) ∈ r)
using a1 a4 unfolding Field-def by force

moreover obtain f where f = (λ x. SOME y. (x,y) ∈ r) by blast
ultimately have b2 : ∀ x ∈ Field r . (x, f x) ∈ r by (metis someI-ex)
obtain x0 where b3 : x0 ∈ Field r using b1 unfolding Field-def by blast
obtain xi::nat ⇒ ′U where b4 : xi = (λ n::nat. (f^^n) x0) by blast
obtain A where b5 : A = xi ‘ UNIV by blast
have r ‘‘ A ⊆ A
proof

fix a
assume a ∈ r‘‘A
then obtain i where (xi i, a) ∈ r using b5 by blast
moreover then have (xi i, f (xi i)) ∈ r using b2 unfolding Field-def by

blast
moreover have f (xi i) = xi (Suc i) using b4 by simp
ultimately have a = xi (Suc i) using a3 unfolding single-valued-def by

blast
then show a ∈ A using b5 by blast

qed
then have b6 : A ∈ Inv r unfolding Inv-def by blast
have ∀ a ∈ Field r . ∃ i. (a, xi i) ∈ r^∗
proof

fix a
assume a ∈ Field r
then obtain b where (a,b) ∈ r^∗ ∧ (x0 ,b) ∈ r^∗ using b3 a2 unfolding

CCR-def by blast
moreover have x0 = xi 0 using b4 by simp
ultimately have (a,b) ∈ r^∗ ∧ b ∈ A using b5 b6 lem-inv-rtr-mem[of A r x0

b] by blast
then show ∃ i. (a, xi i) ∈ r^∗ using b5 by blast

qed
moreover have

∧
i. (xi i, xi (Suc i)) ∈ r

proof −
fix i0
show (xi i0 , xi (Suc i0)) ∈ r
proof (induct i0)

show (xi 0 , xi (Suc 0)) ∈ r using b2 b3 b4 by simp
next

fix i
assume (xi i, xi (Suc i)) ∈ r
then have xi (Suc i) ∈ Field r unfolding Field-def by blast
then show (xi (Suc i), xi (Suc (Suc i))) ∈ r using b2 b3 b4 by simp

53

qed
qed
ultimately show ?thesis unfolding cfseq-def by blast

qed

lemma lem-cfseq-fld: cfseq r xi =⇒ xi ‘ UNIV ⊆ Field r
using lem-rseq-rtr [of xi r] unfolding cfseq-def by blast

lemma lem-cfseq-inv: cfseq r xi =⇒ single-valued r =⇒ xi ‘ UNIV ∈ Inv r
unfolding cfseq-def single-valued-def Inv-def by blast

lemma lem-scfinv-scf-int: A ∈ SCF r ∩ Inv r =⇒ B ∈ SCF r =⇒ (A ∩ B) ∈
SCF r
proof −

assume a1 : A ∈ SCF r ∩ Inv r and a2 : B ∈ SCF r
moreover have ∀ a ∈ Field r . ∃ b∈A ∩ B. (a, b) ∈ r^∗
proof

fix a
assume a ∈ Field r
then obtain a ′ where b1 : a ′ ∈ A ∧ a ′ ∈ Field r ∧ (a,a ′) ∈ r^∗ using a1

unfolding SCF-def by blast
moreover then obtain b where b2 : b ∈ B ∧ (a ′,b) ∈ r^∗ using a2 unfolding

SCF-def by blast
ultimately have (a, b) ∈ r^∗ by force
moreover have b ∈ A ∩ B using b1 b2 a1 lem-inv-rtr-mem[of A r a ′ b] by

blast
ultimately show ∃ b ∈ A ∩ B. (a, b) ∈ r^∗ by blast

qed
ultimately show (A ∩ B) ∈ SCF r unfolding SCF-def Inv-def by blast

qed

lemma lem-scf-minr : a ∈ Field r =⇒ B ∈ SCF r =⇒ ∃ b ∈ B. (a,b) ∈ (r ∩
((UNIV−B) × UNIV))^∗
proof −

assume a1 : a ∈ Field r and a2 : B ∈ SCF r
then obtain b ′ where b1 : b ′ ∈ B ∧ (a,b ′) ∈ r^∗ unfolding SCF-def by blast
then obtain n where (a,b ′) ∈ r^^n using rtrancl-power by blast
then obtain f where b2 : f (0 ::nat) = a ∧ f n = b ′ and b3 : ∀ i<n. (f i, f (Suc

i)) ∈ r
using relpow-fun-conv[of a b ′] by blast

obtain N where b4 : N = { i. f i ∈ B } by blast
obtain s where b5 : s = r ∩ ((UNIV−B) × UNIV) by blast
obtain m where m = (LEAST i. i ∈ N) by blast
moreover have n ∈ N using b1 b2 b4 by blast
ultimately have m ∈ N ∧ m ≤ n ∧ (∀ i ∈ N . m ≤ i) by (metis LeastI Least-le)
then have m ≤ n ∧ f m ∈ B ∧ (∀ i < m. f i /∈ B) using b4 by force
then have f 0 = a ∧ f m ∈ B ∧ (∀ i<m. (f i, f (Suc i)) ∈ s) using b2 b3 b5

by force
then have f m ∈ B ∧ (a, f m) ∈ s^∗

54

using relpow-fun-conv[of a f m] rtrancl-power [of - s] by metis
then show ∃ b ∈ B. (a,b) ∈ (r ∩ ((UNIV−B) × UNIV))^∗ using b5 by blast

qed

lemma lem-cfseq-ncl:
fixes r :: ′U rel and xi::nat ⇒ ′U
assumes a1 : cfseq r xi and a2 : ¬ Conelike r
shows ∀ n. ∃ k. n ≤ k ∧ (xi (Suc k), xi k) /∈ r^∗
proof

fix n
have (∀ k. n ≤ k −→ (xi (Suc k), xi k) ∈ r^∗) −→ False
proof

assume c1 : ∀ k. n ≤ k −→ (xi (Suc k), xi k) ∈ r^∗
have

∧
k. n ≤ k −→ (xi k, xi n) ∈ r^∗

proof −
fix k
show n ≤ k −→ (xi k, xi n) ∈ r^∗
proof (induct k)

show n ≤ 0 −→ (xi 0 , xi n) ∈ r^∗ by blast
next

fix k
assume e1 : n ≤ k −→ (xi k, xi n) ∈ r^∗
show n ≤ Suc k −→ (xi (Suc k), xi n) ∈ r^∗
proof

assume f1 : n ≤ Suc k
show (xi (Suc k), xi n) ∈ r^∗
proof (cases n = Suc k)

assume n = Suc k
then show ?thesis using c1 by blast

next
assume n 6= Suc k
then have (xi k, xi n) ∈ r^∗ ∧ (xi (Suc k), xi k) ∈ r^∗ using f1 e1 c1

by simp
then show ?thesis by force

qed
qed

qed
qed
moreover have ∀ k ≤ n. (xi k, xi n) ∈ r^∗ using a1 lem-rseq-rtr unfolding

cfseq-def by blast
moreover have ∀ k::nat. k ≤ n ∨ n ≤ k by force
ultimately have b1 : ∀ k. (xi k, xi n) ∈ r^∗ by blast
have xi n ∈ Field r using a1 unfolding cfseq-def Field-def by blast
moreover have b2 : ∀ a ∈ Field r . (a, xi n) ∈ r^∗
proof

fix a
assume a ∈ Field r
then obtain i where (a, xi i) ∈ r^∗ using a1 unfolding cfseq-def by blast
moreover have (xi i, xi n) ∈ r^∗ using b1 by blast

55

ultimately show (a, xi n) ∈ r^∗ by force
qed
ultimately have Conelike r unfolding Conelike-def by blast
then show False using a2 by blast

qed
then show ∃ k. n ≤ k ∧ (xi (Suc k), xi k) /∈ r^∗ by blast

qed

lemma lem-cfseq-inj:
fixes r :: ′U rel and xi::nat ⇒ ′U
assumes a1 : cfseq r xi and a2 : acyclic r
shows inj xi
proof −

have ∀ i j. xi i = xi j −→ i = j
proof (intro allI impI)

fix i j
assume c1 : xi i = xi j
have i < j −→ False
proof

assume i < j
then have (xi i, xi j) ∈ r^+ using a1 lem-rseq-tr unfolding cfseq-def by

blast
then show False using c1 a2 unfolding acyclic-def by force

qed
moreover have j < i −→ False
proof

assume j < i
then have (xi j, xi i) ∈ r^+ using a1 lem-rseq-tr unfolding cfseq-def by

blast
then show False using c1 a2 unfolding acyclic-def by force

qed
ultimately show i = j by simp

qed
then show ?thesis unfolding inj-on-def by blast

qed

lemma lem-cfseq-rmon:
fixes r :: ′U rel and xi::nat ⇒ ′U
assumes a1 : cfseq r xi and a2 : single-valued r and a3 : acyclic r
shows ∀ i j. (xi i, xi j) ∈ r^+ −→ i < j
proof (intro allI impI)

fix i j
assume c1 : (xi i, xi j) ∈ r^+
then obtain j ′ where c2 : i < j ′ ∧ xi j ′ = xi j

using a1 a2 lem-rseq-svacyc-inv-tr [of r xi i] unfolding cfseq-def by metis
have j ≤ i −→ False
proof

assume d1 : j ≤ i
then have (xi j, xi i) ∈ r^∗ using c2 a1 lem-rseq-rtr unfolding cfseq-def by

56

blast
then have (xi i, xi i) ∈ r^+ using c1 by force
then show False using a3 unfolding acyclic-def by blast

qed
then show i < j by simp

qed

lemma lem-rseq-hd:
assumes ∀ i<n. (f i, f (Suc i)) ∈ r
shows ∀ i≤n. (f 0 , f i) ∈ r^∗
proof (intro allI impI)

fix i
assume i ≤ n
then have ∀ j<i. (f j, f (Suc j)) ∈ r using assms by force
then have (f 0 , f i) ∈ r^^i using relpow-fun-conv by metis
then show (f 0 , f i) ∈ r^∗ using relpow-imp-rtrancl by blast

qed

lemma lem-rseq-tl:
assumes ∀ i<n. (f i, f (Suc i)) ∈ r
shows ∀ i≤n. (f i, f n) ∈ r^∗
proof (intro allI impI)

fix i
assume b1 : i ≤ n
obtain g where b2 : g = (λ j. f (i + j)) by blast
then have ∀ j<n−i. (g j, g (Suc j)) ∈ r using assms by force
moreover have g 0 = f i ∧ g (n−i) = f n using b1 b2 by simp
ultimately have (f i, f n) ∈ r^^(n−i) using relpow-fun-conv by metis
then show (f i, f n) ∈ r^∗ using relpow-imp-rtrancl by blast

qed

lemma lem-ccext-ntr-rpth: (a,b) ∈ r^^n = (rpth r a b n 6= {})
proof

assume rpth r a b n 6= {}
then obtain f where f ∈ rpth r a b n by blast
then show (a,b) ∈ r^^n unfolding rpth-def using relpow-fun-conv[of a b] by

blast
next

assume (a,b) ∈ r^^n
then obtain f where f ∈ rpth r a b n unfolding rpth-def using relpow-fun-conv[of

a b] by blast
then show rpth r a b n 6= {} by blast

qed

lemma lem-ccext-rtr-rpth: (a,b) ∈ r^∗ =⇒ ∃ n. rpth r a b n 6= {}
using rtrancl-power lem-ccext-ntr-rpth by metis

lemma lem-ccext-rpth-rtr : rpth r a b n 6= {} =⇒ (a,b) ∈ r^∗
using rtrancl-power lem-ccext-ntr-rpth by metis

57

lemma lem-ccext-rtr-Fne:
fixes r :: ′U rel and a b:: ′U
shows (a,b) ∈ r^∗ = (F r a b 6= {})
proof

assume (a,b) ∈ r^∗
then obtain n f where f ∈ rpth r a b n using lem-ccext-rtr-rpth[of a b r] by

blast
then have f‘{i. i≤n} ∈ F r a b unfolding F-def by blast
then show F r a b 6= {} by blast

next
assume F r a b 6= {}
then obtain F where F ∈ F r a b by blast
then obtain n::nat and f ::nat ⇒ ′U where F = f‘{i. i≤n} ∧ f ∈ rpth r a b n

unfolding F-def by blast
then show (a,b) ∈ r^∗ using lem-ccext-rpth-rtr [of r] by blast

qed

lemma lem-ccext-fprop: F r a b 6= {} =⇒ f r a b ∈ F r a b unfolding f-def using
some-in-eq by metis

lemma lem-ccext-ffin: finite (f r a b)
proof (cases F r a b = {})

assume F r a b = {}
then show finite (f r a b) unfolding f-def by simp

next
assume F r a b 6= {}
then have f r a b ∈ F r a b using lem-ccext-fprop[of r] by blast
then show finite (f r a b) unfolding F-def by force

qed

lemma lem-ccr-fin-subr-ext:
fixes r s:: ′U rel
assumes a1 : CCR r and a2 : s ⊆ r and a3 : finite s
shows ∃ s ′::(′U rel). finite s ′ ∧ CCR s ′ ∧ s ⊆ s ′ ∧ s ′ ⊆ r
proof −

have CCR {} unfolding CCR-def Field-def by blast
then have {} ⊆ r −→ (∃ r ′′. CCR r ′′ ∧ {} ⊆ r ′′ ∧ r ′′ ⊆ r ∧ finite r ′′) by blast
moreover have

∧
p R. finite R =⇒ p /∈ R =⇒

R ⊆ r −→ (∃ r ′′. CCR r ′′ ∧ R ⊆ r ′′ ∧ r ′′ ⊆ r ∧ finite r ′′) =⇒
insert p R ⊆ r −→ (∃ r ′′. CCR r ′′ ∧ insert p R ⊆ r ′′ ∧ r ′′ ⊆ r ∧ finite r ′′)

proof
fix p R
assume c1 : finite R and c2 : p /∈ R

and c3 : R ⊆ r −→ (∃ r ′′. CCR r ′′ ∧ R ⊆ r ′′ ∧ r ′′ ⊆ r ∧ finite r ′′) and c4 :
insert p R ⊆ r

then obtain r ′′ where c5 : CCR r ′′ ∧ R ⊆ r ′′ ∧ r ′′ ⊆ r ∧ finite r ′′ by blast
show ∃ r ′′′. CCR r ′′′ ∧ insert p R ⊆ r ′′′ ∧ r ′′′ ⊆ r ∧ finite r ′′′

proof (cases r ′′ = {})

58

assume r ′′ = {}
then have insert p R ⊆ {p} using c5 by blast
moreover have CCR {p} unfolding CCR-def Field-def by fastforce
ultimately show ∃ r ′′′. CCR r ′′′ ∧ insert p R ⊆ r ′′′ ∧ r ′′′ ⊆ r ∧ finite r ′′′

using c4 by blast
next

assume d1 : r ′′ 6= {}
then obtain xm where d2 : xm ∈ Field r ′′ ∧ (∀ x ∈ Field r ′′. (x, xm) ∈

r ′′̂ ∗)
using c5 lem-Relprop-fin-ccr [of r ′′] unfolding Conelike-def by blast

then have d3 : xm ∈ Field r using c5 unfolding Field-def by blast
obtain xp yp where d4 : p = (xp, yp) by force
then have d5 : yp ∈ Field r using c4 unfolding Field-def by blast
then obtain t where d6 : t ∈ Field r ∧ (xm, t) ∈ r^∗ ∧ (yp, t) ∈ r^∗ using

a1 d3 unfolding CCR-def by blast
then obtain n m where d7 : (xm, t) ∈ r^^n ∧ (yp, t) ∈ r^^m using

rtrancl-power by blast
obtain fn where d8 : fn (0 ::nat) = xm ∧ fn n = t ∧ (∀ i<n. (fn i, fn(Suc

i)) ∈ r) using d7 relpow-fun-conv[of xm t] by blast
obtain fm where d9 : fm (0 ::nat) = yp ∧ fm m = t ∧ (∀ i<m. (fm i, fm(Suc

i)) ∈ r) using d7 relpow-fun-conv[of yp t] by blast
obtain A where d10 : A = Field r ′′ ∪ { xp } ∪ { x. ∃ i≤n. x = fn i } ∪ {

x. ∃ i≤m. x = fm i } by blast
obtain r ′′′ where d11 : r ′′′ = r ∩ (A × A) by blast
have d12 : r ′′ ⊆ r ′′′ using d10 d11 c5 unfolding Field-def by fastforce
then have d13 : Field r ′′ ⊆ Field r ′′′ unfolding Field-def by blast
have d14 : r ′′̂ ∗ ⊆ r ′′′̂ ∗ using d12 rtrancl-mono by blast
have d15 : ∀ i. i<n −→ (fn i, fn(Suc i)) ∈ r ′′′

proof
fix i
show i<n −→ (fn i, fn(Suc i)) ∈ r ′′′

proof (induct i)
show 0 < n −→ (fn 0 , fn (Suc 0)) ∈ r ′′′

proof
assume 0 < n
moreover then have (Suc 0) ≤ n by force
ultimately have fn 0 ∈ A ∧ fn(Suc 0) ∈ A ∧ (fn 0 , fn(Suc 0)) ∈ r

using d8 d10 by fastforce
then show (fn 0 , fn (Suc 0)) ∈ r ′′′ using d11 by blast

qed
next

fix i
assume g1 : i < n −→ (fn i, fn (Suc i)) ∈ r ′′′

show Suc i < n −→ (fn (Suc i), fn (Suc (Suc i))) ∈ r ′′′

proof
assume Suc i < n
moreover then have Suc (Suc i) ≤ n by simp
moreover then have (fn i, fn (Suc i)) ∈ r ′′′ using g1 by simp
ultimately show (fn (Suc i), fn (Suc (Suc i))) ∈ r ′′′ using d8 d10 d11

59

by blast
qed

qed
qed
have d16 : ∀ i. i<m −→ (fm i, fm(Suc i)) ∈ r ′′′

proof
fix i
show i<m −→ (fm i, fm(Suc i)) ∈ r ′′′

proof (induct i)
show 0 < m −→ (fm 0 , fm (Suc 0)) ∈ r ′′′

proof
assume 0 < m
moreover then have (Suc 0) ≤ m by force
ultimately have fm 0 ∈ A ∧ fm(Suc 0) ∈ A ∧ (fm 0 , fm(Suc 0)) ∈ r

using d9 d10 by fastforce
then show (fm 0 , fm (Suc 0)) ∈ r ′′′ using d11 by blast

qed
next

fix i
assume g1 : i < m −→ (fm i, fm (Suc i)) ∈ r ′′′

show Suc i < m −→ (fm (Suc i), fm (Suc (Suc i))) ∈ r ′′′

proof
assume Suc i < m
moreover then have Suc (Suc i) ≤ m by simp
moreover then have (fm i, fm (Suc i)) ∈ r ′′′ using g1 by simp
ultimately show (fm (Suc i), fm (Suc (Suc i))) ∈ r ′′′ using d9 d10

d11 by blast
qed

qed
qed

have d17 : (xm, t) ∈ r ′′′̂ ∗ using d8 d15 relpow-fun-conv[of xm t n r ′′′]
rtrancl-power by blast

then have d18 : t ∈ Field r ′′′ using d2 d13 by (metis FieldI2 rtrancl.cases
subsetCE)

have d19 : (yp, t) ∈ r ′′′̂ ∗ using d9 d16 relpow-fun-conv[of yp t m r ′′′]
rtrancl-power by blast

have d20 : ∀ j≤n. (fn j, t) ∈ r ′′′̂ ∗
proof (intro allI impI)

fix j
assume j ≤ n
moreover obtain f ′ where f ′ = (λk. fn (j + k)) by blast
ultimately have f ′ 0 = fn j ∧ f ′ (n − j) = t ∧ (∀ i < n − j. (f ′ i, f ′ (Suc

i)) ∈ r ′′′)
using d8 d15 by simp

then show (fn j, t) ∈ r ′′′̂ ∗
using relpow-fun-conv[of fn j t n − j r ′′′] rtrancl-power by blast

qed
have d21 : ∀ j≤m. (fm j, t) ∈ r ′′′̂ ∗
proof (intro allI impI)

60

fix j
assume j ≤ m
moreover obtain f ′ where f ′ = (λk. fm (j + k)) by blast
ultimately have f ′ 0 = fm j ∧ f ′ (m − j) = t ∧ (∀ i < m − j. (f ′ i, f ′

(Suc i)) ∈ r ′′′)
using d9 d16 by simp

then show (fm j, t) ∈ r ′′′̂ ∗
using relpow-fun-conv[of fm j t m − j r ′′′] rtrancl-power by blast

qed
have r ′′′ ⊆ r using d11 by blast
moreover have d22 : insert p R ⊆ r ′′′

proof −
have p ∈ r ′′′ using c4 d4 d9 d10 d11 by blast
moreover have R ⊆ r ′′′

proof
fix p ′

assume p ′ ∈ R
moreover then have p ′ ∈ Field R × Field R using Restr-Field by blast

moreover have Field R ⊆ Field r ′′ using c5 unfolding Field-def by
blast

ultimately show p ′ ∈ r ′′′ using c4 d10 d11 by blast
qed
ultimately show ?thesis by blast

qed
moreover have finite r ′′′ using c5 d10 d11 finite-Field by fastforce
moreover have CCR r ′′′

proof −
let ?jn = λ a b. ∃ c ∈ Field r ′′′. (a,c) ∈ r ′′′̂ ∗ ∧ (b,c) ∈ r ′′′̂ ∗
have ∀ a ∈ Field r ′′′. ∀ b ∈ Field r ′′′. ?jn a b
proof (intro ballI)

fix a b
assume f1 : a ∈ Field r ′′′ and f2 : b ∈ Field r ′′′

then have f3 : a ∈ A ∧ b ∈ A using d11 unfolding Field-def by blast
have f4 : (xp, t) ∈ r ′′′̂ ∗ using d4 d19 d22 by force
have a ∈ Field r ′′ −→ ?jn a b
proof

assume g1 : a ∈ Field r ′′

then have g2 : (a, t) ∈ r ′′′̂ ∗ using d2 d14 d17 by fastforce
have b ∈ Field r ′′ −→ ?jn a b using c5 d13 d14 g1 unfolding CCR-def

by blast
moreover have ?jn a xp using d4 d18 d19 d22 g2 by force
moreover have ∀ j≤n. ?jn a (fn j) using d18 d20 g2 by blast
moreover have ∀ j≤m. ?jn a (fm j) using d18 d21 g2 by blast
ultimately show ?jn a b using d10 f3 by blast

qed
moreover have ?jn xp b
proof −

have b ∈ Field r ′′ −→ ?jn xp b
proof

61

assume b ∈ Field r ′′

then have (b, xm) ∈ r ′′′̂ ∗ using d14 d2 by blast
then show ?jn xp b using d17 d18 f4 by force

qed
moreover have ?jn xp xp using d4 d22 unfolding Field-def by blast
moreover have ∀ j≤n. ?jn xp (fn j) using d18 d20 f4 by blast
moreover have ∀ j≤m. ?jn xp (fm j) using d18 d21 f4 by blast
ultimately show ?jn xp b using d10 f3 by blast

qed
moreover have ∀ i≤n. ?jn (fn i) b
proof (intro allI impI)

fix i
assume g1 : i ≤ n
have b ∈ Field r ′′ −→ ?jn (fn i) b
proof

assume b ∈ Field r ′′

then have (b, t) ∈ r ′′′̂ ∗ using d2 d14 d17 by fastforce
then show ?jn (fn i) b using d18 d20 g1 by blast

qed
moreover have ?jn (fn i) xp using d18 d20 f4 g1 by blast
moreover have ∀ j≤n. ?jn (fn i) (fn j) using d18 d20 g1 by blast

moreover have ∀ j≤m. ?jn (fn i) (fm j) using d18 d20 d21 g1 by blast
ultimately show ?jn (fn i) b using d10 f3 by blast

qed
moreover have ∀ i≤m. ?jn (fm i) b
proof (intro allI impI)

fix i
assume g1 : i ≤ m
have b ∈ Field r ′′ −→ ?jn (fm i) b
proof

assume b ∈ Field r ′′

then have (b, t) ∈ r ′′′̂ ∗ using d2 d14 d17 by fastforce
then show ?jn (fm i) b using d18 d21 g1 by blast

qed
moreover have ?jn (fm i) xp using d18 d21 f4 g1 by blast
moreover have ∀ j≤n. ?jn (fm i) (fn j) using d18 d20 d21 g1 by blast
moreover have ∀ j≤m. ?jn (fm i) (fm j) using d18 d21 g1 by blast
ultimately show ?jn (fm i) b using d10 f3 by blast

qed
ultimately show ?jn a b using d10 f3 by blast

qed
then show ?thesis unfolding CCR-def by blast

qed
ultimately show ∃ r ′′′. CCR r ′′′ ∧ insert p R ⊆ r ′′′ ∧ r ′′′ ⊆ r ∧ finite r ′′′

by blast
qed

qed
ultimately have ∃ r ′′. CCR r ′′ ∧ s ⊆ r ′′ ∧ r ′′ ⊆ r ∧ finite r ′′

using a2 a3 finite-induct[of s λ h. h ⊆ r −→ (∃ r ′′. CCR r ′′ ∧ h ⊆ r ′′ ∧ r ′′

62

⊆ r ∧ finite r ′′)] by simp
then show ?thesis by blast

qed

lemma lem-Ccext-fint:
fixes r s:: ′U rel and a b:: ′U
assumes a1 : Restr r (f r a b) ⊆ s and a2 : (a,b) ∈ r^∗
shows {a, b} ⊆ f r a b ∧ (∀ c ∈ f r a b. (a,c) ∈ s^∗ ∧ (c,b) ∈ s^∗)
proof −

obtain A where b1 : A = f r a b by blast
then have A ∈ F r a b using a2 lem-ccext-rtr-Fne[of a b r] lem-ccext-fprop[of

r] by blast
then obtain n f where b2 : A = f ‘ {i. i ≤ n} and b3 : f ∈ rpth r a b n

unfolding F-def by blast
then have ∀ i<n. (f i, f (Suc i)) ∈ Restr r A unfolding rpth-def by simp
then have b4 : ∀ i<n. (f i, f (Suc i)) ∈ s using a1 b1 by blast
have {a, b} ⊆ f r a b using b1 b2 b3 unfolding rpth-def by blast
moreover have ∀ c ∈ f r a b. (a,c) ∈ s^∗ ∧ (c,b) ∈ s^∗
proof

fix c
assume c ∈ f r a b
then obtain k where c1 : k ≤ n ∧ c = f k using b1 b2 by blast
have f ∈ rpth s a c k using c1 b3 b4 unfolding rpth-def by simp
moreover have (λ i. f (i + k)) ∈ rpth s c b (n − k) using c1 b3 b4 unfolding

rpth-def by simp
ultimately show (a,c) ∈ s^∗ ∧ (c,b) ∈ s^∗ using lem-ccext-rpth-rtr [of s] by

blast
qed
ultimately show ?thesis by blast

qed

lemma lem-Ccext-subccr-eqfld:
fixes r r ′:: ′U rel
assumes CCR r and r ⊆ r ′ and Field r ′ = Field r
shows CCR r ′

proof −
have ∀ a∈Field r ′. ∀ b∈Field r ′. ∃ c∈Field r ′. (a, c) ∈ r ′̂ ∗ ∧ (b, c) ∈ r ′̂ ∗
proof (intro ballI)

fix a b
assume a∈Field r ′ and b∈Field r ′

then have a ∈ Field r ∧ b ∈ Field r using assms by blast
then obtain c where c ∈ Field r ∧ (a, c) ∈ r^∗ ∧ (b, c) ∈ r^∗ using assms

unfolding CCR-def by blast
then have c ∈ Field r ′ ∧ (a, c) ∈ r ′̂ ∗ ∧ (b, c) ∈ r ′̂ ∗ using assms rtrancl-mono

by blast
then show ∃ c∈Field r ′. (a, c) ∈ r ′̂ ∗ ∧ (b, c) ∈ r ′̂ ∗ by blast

qed
then show CCR r ′ unfolding CCR-def by blast

qed

63

lemma lem-Ccext-finsubccr-pext:
fixes r s:: ′U rel and x:: ′U
assumes a1 : CCR r and a2 : s ⊆ r and a3 : finite s and a5 : x ∈ Field r
shows ∃ s ′::(′U rel). finite s ′ ∧ CCR s ′ ∧ s ⊆ s ′ ∧ s ′ ⊆ r ∧ x ∈ Field s ′

proof −
obtain y where b1 : (x,y) ∈ r ∨ (y,x) ∈ r using a5 unfolding Field-def by

blast
then obtain x ′ y ′ where b2 : {x ′,y ′} = {x,y} ∧ (x ′,y ′) ∈ r by blast
obtain s1 where b3 : s1 = s ∪ {(x ′,y ′)} by blast
then have finite s1 using a3 by blast
moreover have s1 ⊆ r using b2 b3 a2 by blast
ultimately obtain s ′ where b4 : finite s ′ ∧ CCR s ′ ∧ s1 ⊆ s ′ ∧ s ′ ⊆ r using

a1 lem-ccr-fin-subr-ext[of r s1] by blast
moreover have x ∈ Field s1 using b2 b3 unfolding Field-def by blast
ultimately have x ∈ Field s ′ unfolding Field-def by blast
then show ?thesis using b3 b4 by blast

qed

lemma lem-Ccext-finsubccr-dext:
fixes r :: ′U rel and A:: ′U set
assumes a1 : CCR r and a2 : A ⊆ Field r and a3 : finite A
shows ∃ s::(′U rel). finite s ∧ CCR s ∧ s ⊆ r ∧ A ⊆ Field s
proof −

have finite {} ∧ {} ⊆ Field r −→ (∃ s. finite s ∧ CCR s ∧ s ⊆ r ∧ {} ⊆ Field
s) unfolding CCR-def Field-def by blast

moreover have ∀ x F . finite F −→ x /∈ F −→
finite F ∧ F ⊆ Field r −→ (∃ s. finite s ∧ CCR s ∧ s ⊆ r ∧ F ⊆ Field s) −→
finite (insert x F) ∧ insert x F ⊆ Field r −→

(∃ s. finite s ∧ CCR s ∧ s ⊆ r ∧ insert x F ⊆ Field s)
proof(intro allI impI)

fix x F
assume c1 : finite F and c2 : x /∈ F and c3 : finite F ∧ F ⊆ Field r

and c4 : ∃ s. finite s ∧ CCR s ∧ s ⊆ r ∧ F ⊆ Field s
and c5 : finite (insert x F) ∧ insert x F ⊆ Field r

then obtain s where c6 : finite s ∧ CCR s ∧ s ⊆ r ∧ F ⊆ Field s by blast
moreover have x ∈ Field r using c5 by blast
ultimately obtain s ′ where finite s ′ ∧ CCR s ′ ∧ s ⊆ s ′ ∧ s ′ ⊆ r ∧ x ∈ Field

s ′

using a1 lem-Ccext-finsubccr-pext[of r s x] by blast
moreover then have insert x F ⊆ Field s ′ using c6 unfolding Field-def by

blast
ultimately show ∃ s ′. finite s ′ ∧ CCR s ′ ∧ s ′ ⊆ r ∧ insert x F ⊆ Field s ′ by

blast
qed
ultimately have finite A ∧ A ⊆ Field r −→ (∃ s. finite s ∧ CCR s ∧ s ⊆ r ∧

A ⊆ Field s)
using finite-induct[of A λ A. finite A ∧ A ⊆ Field r −→ (∃ s. finite s ∧ CCR

s ∧ s ⊆ r ∧ A ⊆ Field s)]

64

by simp
then show ?thesis using a2 a3 by blast

qed

lemma lem-Ccext-infsubccr-pext:
fixes r s:: ′U rel and x:: ′U
assumes a1 : CCR r and a2 : s ⊆ r and a3 : ¬ finite s and a5 : x ∈ Field r
shows ∃ s ′::(′U rel). CCR s ′ ∧ s ⊆ s ′ ∧ s ′ ⊆ r ∧ |s ′| =o |s| ∧ x ∈ Field s ′

proof −
obtain G:: ′U set ⇒ ′U rel set where b1 : G = (λ A. {t:: ′U rel. finite t ∧ CCR

t ∧ t ⊆ r ∧ A ⊆ Field t}) by blast
obtain g:: ′U set ⇒ ′U rel where b2 : g = (λ A. if A ⊆ Field r ∧ finite A then

(SOME t. t ∈ G A) else {}) by blast
have b3 : ∀ A. A ⊆ Field r ∧ finite A −→ finite (g A) ∧ CCR (g A) ∧ (g A) ⊆

r ∧ A ⊆ Field (g A)
proof (intro allI impI)

fix A
assume c1 : A ⊆ Field r ∧ finite A
then have g A = (SOME t. t ∈ G A) using b2 by simp
moreover have G A 6= {} using b1 a1 c1 lem-Ccext-finsubccr-dext[of r A] by

blast
ultimately have g A ∈ G A using some-in-eq by metis
then show finite (g A) ∧ CCR (g A) ∧ (g A) ⊆ r ∧ A ⊆ Field (g A) using

b1 by blast
qed
have b4 : ∀ A. ¬ (A ⊆ Field r ∧ finite A) −→ g A = {} using b2 by simp
obtain H :: ′U set ⇒ ′U set

where b5 : H = (λ X . X ∪
⋃
{S . ∃ a∈X . ∃ b∈X . S = Field (g {a,b})}) by

blast
obtain ax bx where b6 : (ax, bx) ∈ r ∧ x ∈ {ax, bx} using a5 unfolding

Field-def by blast
obtain D0 :: ′U set where b7 : D0 = Field s ∪ {ax, bx} by blast
obtain Di::nat ⇒ ′U set where b8 : Di = (λ n. (H^^n) D0) by blast
obtain D:: ′U set where b9 : D =

⋃
{X . ∃ n. X = Di n} by blast

obtain s ′ where b10 : s ′ = Restr r D by blast
have b11 : ∀ n. (¬ finite (Di n)) ∧ |Di n| ≤o |s|
proof

fix n0
show (¬ finite (Di n0)) ∧ |Di n0 | ≤o |s|
proof (induct n0)

have finite {ax, bx} by blast
moreover have ¬ finite (Field s) using a3 lem-fin-fl-rel by blast
ultimately have ¬ finite (Field s) ∧ |{ax, bx}| ≤o |Field s|

using card-of-Well-order card-of-ordLeq-infinite ordLeq-total by metis
then have |D0 | =o |Field s| using b7 card-of-Un-infinite by blast
moreover have |Field s| =o |s| using a3 lem-rel-inf-fld-card by blast
ultimately have |D0 | ≤o |s| using ordIso-imp-ordLeq ordIso-transitive by

blast
moreover have ¬ finite D0 using a3 b7 lem-fin-fl-rel by blast

65

ultimately show ¬ finite (Di 0) ∧ |Di 0 | ≤o |s| using b8 by simp
next

fix n
assume d1 : (¬ finite (Di n)) ∧ |Di n| ≤o |s|
moreover then have |(Di n) × (Di n)| =o |Di n| by simp

ultimately have d2 : |(Di n) × (Di n)| ≤o |s| using ordIso-imp-ordLeq
ordLeq-transitive by blast

have d3 : ∀ a ∈ (Di n). ∀ b ∈ (Di n). |Field (g {a, b})| ≤o |s|
proof (intro ballI)

fix a b
assume a ∈ (Di n) and b ∈ (Di n)
have finite (g {a, b}) using b3 b4 by (metis finite.emptyI)
then have finite (Field (g {a, b})) using lem-fin-fl-rel by blast
then have |Field (g {a, b})| <o |s| using a3 finite-ordLess-infinite2 by

blast
then show |Field (g {a, b})| ≤o |s| using ordLess-imp-ordLeq by blast

qed
have d4 : Di (Suc n) = H (Di n) using b8 by simp
then have Di n ⊆ Di (Suc n) using b5 by blast
then have ¬ finite (Di (Suc n)) using d1 finite-subset by blast
moreover have |Di (Suc n)| ≤o |s|
proof −

obtain I where e1 : I = (Di n) × (Di n) by blast
obtain f where e2 : f = (λ (a,b). Field (g {a,b})) by blast
have |I | ≤o |s| using e1 d2 by blast
moreover have ∀ i∈I . |f i| ≤o |s| using e1 e2 d3 by simp

ultimately have |
⋃

i∈I . f i| ≤o |s| using a3 card-of-UNION-ordLeq-infinite[of
s I f] by blast

moreover have Di (Suc n) = (Di n) ∪ (
⋃

i∈I . f i) using e1 e2 d4 b5 by
blast

ultimately show ?thesis using d1 a3 by simp
qed
ultimately show (¬ finite (Di (Suc n))) ∧ |Di (Suc n)| ≤o |s| by blast

qed
qed
have b12 : ∀ m. ∀ n. n ≤ m −→ Di n ≤ Di m
proof

fix m0
show ∀ n. n ≤ m0 −→ Di n ≤ Di m0
proof (induct m0)

show ∀n≤0 . Di n ⊆ Di 0 by blast
next

fix m
assume d1 : ∀n≤m. Di n ⊆ Di m
show ∀n≤Suc m. Di n ⊆ Di (Suc m)
proof (intro allI impI)

fix n
assume e1 : n ≤ Suc m
have Di (Suc m) = H (Di m) using b8 by simp

66

moreover have Di m ⊆ H (Di m) using b5 by blast
ultimately have n ≤ m −→ Di n ⊆ Di (Suc m) using d1 by blast
moreover have n = (Suc m) ∨ n ≤ m using e1 by force
ultimately show Di n ⊆ Di (Suc m) by blast

qed
qed

qed
have Di 0 ⊆ D using b9 by blast
then have b13 : Field s ⊆ D using b7 b8 by simp
then have b14 : s ⊆ s ′ ∧ s ′ ⊆ r using a2 b10 unfolding Field-def by force
moreover have b15 : |D| ≤o |s|
proof −

have |UNIV ::nat set| ≤o |s| using a3 infinite-iff-card-of-nat by blast
then have |

⋃
n. Di n| ≤o |s| using b11 a3 card-of-UNION-ordLeq-infinite[of

s UNIV Di] by blast
moreover have D = (

⋃
n. Di n) using b9 by force

ultimately show ?thesis by blast
qed
moreover have |s ′| =o |s|
proof −

have ¬ finite (Field s) using a3 lem-fin-fl-rel by blast
then have ¬ finite D using b13 finite-subset by blast
then have |D × D| =o |D| by simp
moreover have s ′ ⊆ D × D using b10 by blast
ultimately have |s ′| ≤o |s| using b15 card-of-mono1 ordLeq-ordIso-trans or-

dLeq-transitive by metis
moreover have |s| ≤o |s ′| using b14 by simp
ultimately show ?thesis using ordIso-iff-ordLeq by blast

qed
moreover have x ∈ Field s ′

proof −
have Di 0 ⊆ D using b9 by blast
then have {ax, bx} ⊆ D using b7 b8 by simp
then have (ax, bx) ∈ s ′ using b6 b10 by blast
then show ?thesis using b6 unfolding Field-def by blast

qed
moreover have CCR s ′

proof −
have ∀ a ∈ Field s ′. ∀ b ∈ Field s ′. ∃ c ∈ Field s ′. (a,c) ∈ (s ′)^∗ ∧ (b,c) ∈

(s ′)^∗
proof (intro ballI)

fix a b
assume d1 : a ∈ Field s ′ and d2 : b ∈ Field s ′

then have d3 : a ∈ D ∧ b ∈ D using b10 unfolding Field-def by blast
then obtain ia ib where d4 : a ∈ Di ia ∧ b ∈ Di ib using b9 by blast
obtain k where d5 : k = (max ia ib) by blast
then have ia ≤ k ∧ ib ≤ k by simp
then have d6 : a ∈ Di k ∧ b ∈ Di k using d4 b12 by blast
obtain p where d7 : p = g {a,b} by blast

67

have Field p ⊆ H (Di k) using b5 d6 d7 by blast
moreover have H (Di k) = Di (Suc k) using b8 by simp
moreover have Di (Suc k) ⊆ D using b9 by blast
ultimately have d8 : Field p ⊆ D by blast
have {a, b} ⊆ Field r using d1 d2 b10 unfolding Field-def by blast
moreover have finite {a, b} by simp
ultimately have d9 : CCR p ∧ p ⊆ r ∧ {a,b} ⊆ Field p using d7 b3 by blast
then obtain c where d10 : c ∈ Field p ∧ (a,c) ∈ p^∗ ∧ (b,c) ∈ p^∗ unfolding

CCR-def by blast
have (p ‘‘ D) ⊆ D using d8 unfolding Field-def by blast
then have D ∈ Inv p unfolding Inv-def by blast

then have p^∗ ∩ (D×(UNIV :: ′U set)) ⊆ (Restr p D)^∗ using lem-Inv-restr-rtr [of
D p] by blast

moreover have Restr p D ⊆ s ′ using d9 b10 by blast
moreover have (a,c) ∈ p^∗ ∩ (D×(UNIV :: ′U set)) ∧ (b,c) ∈ p^∗ ∩

(D×(UNIV :: ′U set)) using d10 d3 by blast
ultimately have (a,c) ∈ (s ′)^∗ ∧ (b,c) ∈ (s ′)^∗ using rtrancl-mono by blast
moreover then have c ∈ Field s ′ using d1 lem-rtr-field by metis
ultimately show ∃ c ∈ Field s ′. (a,c) ∈ (s ′)^∗ ∧ (b,c) ∈ (s ′)^∗ by blast

qed
then show ?thesis unfolding CCR-def by blast

qed
ultimately show ?thesis by blast

qed

lemma lem-Ccext-finsubccr-set-ext:
fixes r s:: ′U rel and A:: ′U set
assumes a1 : CCR r and a2 : s ⊆ r and a3 : finite s and a4 : A ⊆ Field r and
a5 : finite A
shows ∃ s ′::(′U rel). CCR s ′ ∧ s ⊆ s ′ ∧ s ′ ⊆ r ∧ finite s ′ ∧ A ⊆ Field s ′

proof −
obtain Pt:: ′U ⇒ ′U rel where p1 : Pt = (λ x. {p ∈ r . x = fst p ∨ x = snd p})

by blast
obtain pt:: ′U ⇒ ′U× ′U where p2 : pt = (λ x. (SOME p. p ∈ Pt x)) by blast
have ∀ x∈A. Pt x 6= {} using a4 unfolding p1 Field-def by force
then have p3 : ∀ x∈A. pt x ∈ Pt x unfolding p2 by (metis (full-types) Col-

lect-empty-eq Collect-mem-eq someI-ex)
have b2 : pt‘A ⊆ r using p1 p3 by blast
obtain s1 where b3 : s1 = s ∪ (pt‘A) by blast
then have finite s1 using a3 a5 by blast
moreover have s1 ⊆ r using b2 b3 a2 by blast
ultimately obtain s ′ where b4 : finite s ′ ∧ CCR s ′ ∧ s1 ⊆ s ′ ∧ s ′ ⊆ r using

a1 lem-ccr-fin-subr-ext[of r s1] by blast
moreover have A ⊆ Field s1
proof

fix x
assume c1 : x ∈ A
then have pt x ∈ s1 using b3 by blast
moreover obtain ax bx where c2 : pt x = (ax,bx) by force

68

ultimately have ax ∈ Field s1 ∧ bx ∈ Field s1 unfolding Field-def by force
then show x ∈ Field s1 using c1 c2 p1 p3 by force

qed
ultimately have A ⊆ Field s ′ unfolding Field-def by blast
then show ?thesis using b3 b4 by blast

qed

lemma lem-Ccext-infsubccr-set-ext:
fixes r s:: ′U rel and A:: ′U set
assumes a1 : CCR r and a2 : s ⊆ r and a3 : ¬ finite s and a4 : A ⊆ Field r and
a5 : |A| ≤o |Field s|
shows ∃ s ′::(′U rel). CCR s ′ ∧ s ⊆ s ′ ∧ s ′ ⊆ r ∧ |s ′| =o |s| ∧ A ⊆ Field s ′

proof −
obtain G:: ′U set ⇒ ′U rel set where b1 : G = (λ A. {t:: ′U rel. finite t ∧ CCR

t ∧ t ⊆ r ∧ A ⊆ Field t}) by blast
obtain g:: ′U set ⇒ ′U rel where b2 : g = (λ A. if A ⊆ Field r ∧ finite A then

(SOME t. t ∈ G A) else {}) by blast
have b3 : ∀ A. A ⊆ Field r ∧ finite A −→ finite (g A) ∧ CCR (g A) ∧ (g A) ⊆

r ∧ A ⊆ Field (g A)
proof (intro allI impI)

fix A
assume c1 : A ⊆ Field r ∧ finite A
then have g A = (SOME t. t ∈ G A) using b2 by simp
moreover have G A 6= {} using b1 a1 c1 lem-Ccext-finsubccr-dext[of r A] by

blast
ultimately have g A ∈ G A using some-in-eq by metis
then show finite (g A) ∧ CCR (g A) ∧ (g A) ⊆ r ∧ A ⊆ Field (g A) using

b1 by blast
qed
have b4 : ∀ A. ¬ (A ⊆ Field r ∧ finite A) −→ g A = {} using b2 by simp
obtain H :: ′U set ⇒ ′U set

where b5 : H = (λ X . X ∪
⋃
{S . ∃ a∈X . ∃ b∈X . S = Field (g {a,b})}) by

blast
obtain Pt:: ′U ⇒ ′U rel where p1 : Pt = (λ x. {p ∈ r . x = fst p ∨ x = snd p})

by blast
obtain pt:: ′U ⇒ ′U× ′U where p2 : pt = (λ x. (SOME p. p ∈ Pt x)) by blast
have ∀ x∈A. Pt x 6= {} using a4 unfolding p1 Field-def by force
then have p3 : ∀ x∈A. pt x ∈ Pt x unfolding p2 by (metis (full-types) Col-

lect-empty-eq Collect-mem-eq someI-ex)
obtain D0 where b7 : D0 = Field s ∪ fst‘(pt‘A) ∪ snd‘(pt‘A) by blast
obtain Di::nat ⇒ ′U set where b8 : Di = (λ n. (H^^n) D0) by blast
obtain D:: ′U set where b9 : D =

⋃
{X . ∃ n. X = Di n} by blast

obtain s ′ where b10 : s ′ = Restr r D by blast
have b11 : ∀ n. (¬ finite (Di n)) ∧ |Di n| ≤o |s|
proof

fix n0
show (¬ finite (Di n0)) ∧ |Di n0 | ≤o |s|
proof (induct n0)

have |D0 | =o |Field s|

69

proof −
have |fst‘(pt‘A)| ≤o |(pt‘A)| ∧ |(pt‘A)| ≤o |A| by simp
then have c1 : |fst‘(pt‘A)| ≤o |A| using ordLeq-transitive by blast
have |snd‘(pt‘A)| ≤o |(pt‘A)| ∧ |(pt‘A)| ≤o |A| by simp
then have c2 : |snd‘(pt‘A)| ≤o |A| using ordLeq-transitive by blast
have |fst‘(pt‘A)| ≤o |Field s| ∧ |snd‘(pt‘A)| ≤o |Field s|

using c1 c2 a5 ordLeq-transitive by blast
moreover have ¬ finite (Field s) using a3 lem-fin-fl-rel by blast
ultimately have c3 : |D0 | ≤o |Field s| unfolding b7 by simp
have Field s ⊆ D0 unfolding b7 by blast
then have |Field s| ≤o |D0 | by simp
then show ?thesis using c3 ordIso-iff-ordLeq by blast

qed
moreover have |Field s| =o |s| using a3 lem-rel-inf-fld-card by blast
ultimately have |D0 | ≤o |s| using ordIso-imp-ordLeq ordIso-transitive by

blast
moreover have ¬ finite D0 using a3 b7 lem-fin-fl-rel by blast
ultimately show ¬ finite (Di 0) ∧ |Di 0 | ≤o |s| using b8 by simp

next
fix n
assume d1 : (¬ finite (Di n)) ∧ |Di n| ≤o |s|
moreover then have |(Di n) × (Di n)| =o |Di n| by simp

ultimately have d2 : |(Di n) × (Di n)| ≤o |s| using ordIso-imp-ordLeq
ordLeq-transitive by blast

have d3 : ∀ a ∈ (Di n). ∀ b ∈ (Di n). |Field (g {a, b})| ≤o |s|
proof (intro ballI)

fix a b
assume a ∈ (Di n) and b ∈ (Di n)
have finite (g {a, b}) using b3 b4 by (metis finite.emptyI)
then have finite (Field (g {a, b})) using lem-fin-fl-rel by blast
then have |Field (g {a, b})| <o |s| using a3 finite-ordLess-infinite2 by

blast
then show |Field (g {a, b})| ≤o |s| using ordLess-imp-ordLeq by blast

qed
have d4 : Di (Suc n) = H (Di n) using b8 by simp
then have Di n ⊆ Di (Suc n) using b5 by blast
then have ¬ finite (Di (Suc n)) using d1 finite-subset by blast
moreover have |Di (Suc n)| ≤o |s|
proof −

obtain I where e1 : I = (Di n) × (Di n) by blast
obtain f where e2 : f = (λ (a,b). Field (g {a,b})) by blast
have |I | ≤o |s| using e1 d2 by blast
moreover have ∀ i∈I . |f i| ≤o |s| using e1 e2 d3 by simp

ultimately have |
⋃

i∈I . f i| ≤o |s| using a3 card-of-UNION-ordLeq-infinite[of
s I f] by blast

moreover have Di (Suc n) = (Di n) ∪ (
⋃

i∈I . f i) using e1 e2 d4 b5 by
blast

ultimately show ?thesis using d1 a3 by simp
qed

70

ultimately show (¬ finite (Di (Suc n))) ∧ |Di (Suc n)| ≤o |s| by blast
qed

qed
have b12 : ∀ m. ∀ n. n ≤ m −→ Di n ≤ Di m
proof

fix m0
show ∀ n. n ≤ m0 −→ Di n ≤ Di m0
proof (induct m0)

show ∀n≤0 . Di n ⊆ Di 0 by blast
next

fix m
assume d1 : ∀n≤m. Di n ⊆ Di m
show ∀n≤Suc m. Di n ⊆ Di (Suc m)
proof (intro allI impI)

fix n
assume e1 : n ≤ Suc m
have Di (Suc m) = H (Di m) using b8 by simp
moreover have Di m ⊆ H (Di m) using b5 by blast
ultimately have n ≤ m −→ Di n ⊆ Di (Suc m) using d1 by blast
moreover have n = (Suc m) ∨ n ≤ m using e1 by force
ultimately show Di n ⊆ Di (Suc m) by blast

qed
qed

qed
have Di 0 ⊆ D using b9 by blast
then have b13 : Field s ⊆ D using b7 b8 by simp
then have b14 : s ⊆ s ′ ∧ s ′ ⊆ r using a2 b10 unfolding Field-def by force
moreover have b15 : |D| ≤o |s|
proof −

have |UNIV ::nat set| ≤o |s| using a3 infinite-iff-card-of-nat by blast
then have |

⋃
n. Di n| ≤o |s| using b11 a3 card-of-UNION-ordLeq-infinite[of

s UNIV Di] by blast
moreover have D = (

⋃
n. Di n) using b9 by force

ultimately show ?thesis by blast
qed
moreover have |s ′| =o |s|
proof −

have ¬ finite (Field s) using a3 lem-fin-fl-rel by blast
then have ¬ finite D using b13 finite-subset by blast
then have |D × D| =o |D| by simp
moreover have s ′ ⊆ D × D using b10 by blast
ultimately have |s ′| ≤o |s| using b15 card-of-mono1 ordLeq-ordIso-trans or-

dLeq-transitive by metis
moreover have |s| ≤o |s ′| using b14 by simp
ultimately show ?thesis using ordIso-iff-ordLeq by blast

qed
moreover have A ⊆ Field s ′

proof
fix x

71

assume c1 : x ∈ A
obtain ax bx where c2 : ax = fst (pt x) ∧ bx = snd (pt x) by blast
have pt x ∈ Pt x using c1 p3 by blast
then have c3 : (ax, bx) ∈ r ∧ x ∈ {ax,bx} using c2 p1 by simp
have {ax, bx} ⊆ D0 using b7 c1 c2 by blast
moreover have Di 0 ⊆ D using b9 by blast
moreover have Di 0 = D0 using b8 by simp
ultimately have {ax, bx} ⊆ D by blast
then have (ax, bx) ∈ s ′ using c3 b10 by blast
then show x ∈ Field s ′ using c3 unfolding Field-def by blast

qed
moreover have CCR s ′

proof −
have ∀ a ∈ Field s ′. ∀ b ∈ Field s ′. ∃ c ∈ Field s ′. (a,c) ∈ (s ′)^∗ ∧ (b,c) ∈

(s ′)^∗
proof (intro ballI)

fix a b
assume d1 : a ∈ Field s ′ and d2 : b ∈ Field s ′

then have d3 : a ∈ D ∧ b ∈ D using b10 unfolding Field-def by blast
then obtain ia ib where d4 : a ∈ Di ia ∧ b ∈ Di ib using b9 by blast
obtain k where d5 : k = (max ia ib) by blast
then have ia ≤ k ∧ ib ≤ k by simp
then have d6 : a ∈ Di k ∧ b ∈ Di k using d4 b12 by blast
obtain p where d7 : p = g {a,b} by blast
have Field p ⊆ H (Di k) using b5 d6 d7 by blast
moreover have H (Di k) = Di (Suc k) using b8 by simp
moreover have Di (Suc k) ⊆ D using b9 by blast
ultimately have d8 : Field p ⊆ D by blast
have {a, b} ⊆ Field r using d1 d2 b10 unfolding Field-def by blast
moreover have finite {a, b} by simp
ultimately have d9 : CCR p ∧ p ⊆ r ∧ {a,b} ⊆ Field p using d7 b3 by blast
then obtain c where d10 : c ∈ Field p ∧ (a,c) ∈ p^∗ ∧ (b,c) ∈ p^∗ unfolding

CCR-def by blast
have (p ‘‘ D) ⊆ D using d8 unfolding Field-def by blast
then have D ∈ Inv p unfolding Inv-def by blast

then have p^∗ ∩ (D×(UNIV :: ′U set)) ⊆ (Restr p D)^∗ using lem-Inv-restr-rtr [of
D p] by blast

moreover have Restr p D ⊆ s ′ using d9 b10 by blast
moreover have (a,c) ∈ p^∗ ∩ (D×(UNIV :: ′U set)) ∧ (b,c) ∈ p^∗ ∩

(D×(UNIV :: ′U set)) using d10 d3 by blast
ultimately have (a,c) ∈ (s ′)^∗ ∧ (b,c) ∈ (s ′)^∗ using rtrancl-mono by blast
moreover then have c ∈ Field s ′ using d1 lem-rtr-field by metis
ultimately show ∃ c ∈ Field s ′. (a,c) ∈ (s ′)^∗ ∧ (b,c) ∈ (s ′)^∗ by blast

qed
then show ?thesis unfolding CCR-def by blast

qed
ultimately show ?thesis by blast

qed

72

lemma lem-Ccext-finsubccr-pext5 :
fixes r :: ′U rel and A B:: ′U set and x:: ′U
assumes a1 : CCR r and a2 : finite A and a3 : A ∈ SF r
shows ∃ A ′::(′U set). (x ∈ Field r −→ x ∈ A ′) ∧ A ⊆ A ′ ∧ CCR (Restr r A ′) ∧
finite A ′

∧ (∀ a∈A. r‘‘{a}⊆B ∨ r‘‘{a}∩(A ′−B) 6= {}) ∧ A ′ ∈ SF r
∧ ((∃ y:: ′U . A ′−B = {y}) −→ Field r ⊆ (A ′∪B))

proof −
have q1 : Field (Restr r A) = A using a3 unfolding SF-def by blast
obtain s where s = (Restr r A) by blast
then have q2 : s ⊆ r and q3 : finite s and q4 : A = Field s

using a2 q1 lem-fin-fl-rel by (blast, metis, blast)
obtain S where b1 : S = (λ a. r‘‘{a} − B) by blast
obtain S ′ where b2 : S ′ = (λ a. if (S a) 6= {} then (S a) else {a}) by blast
obtain f where f = (λ a. SOME b. b ∈ S ′ a) by blast
moreover have ∀ a. ∃ b. b ∈ (S ′ a) unfolding b2 by force
ultimately have ∀ a. f a ∈ S ′ a by (metis someI-ex)
then have b3 : ∀ a. (S a 6= {} −→ f a ∈ S a) ∧ (S a = {} −→ f a = a)

unfolding b2 by (clarsimp, metis singletonD)
obtain y1 y2 :: ′U where n1 : Field r 6= {} −→ {y1 , y2} ⊆ Field r

and n2 : (¬ (∃ y:: ′U . Field r − B ⊆ {y})) −→ y1 /∈ B ∧ y2 /∈ B
∧ y1 6= y2 by blast

obtain A1 where b4 : A1 = ({x,y1 ,y2} ∩ Field r) ∪ A ∪ (f ‘ A) by blast
have A1 ⊆ Field r
proof −

have c1 : A ⊆ Field r using q4 q2 unfolding Field-def by blast
moreover have f ‘ A ⊆ Field r
proof

fix x
assume x ∈ f ‘ A
then obtain a where d2 : a ∈ A ∧ x = f a by blast
show x ∈ Field r
proof (cases S a = {})

assume S a = {}
then have x = a using c1 d2 b3 by blast
then show x ∈ Field r using d2 c1 by blast

next
assume S a 6= {}
then have x ∈ S a using d2 b3 by blast
then show x ∈ Field r using b1 unfolding Field-def by blast

qed
qed
ultimately show A1 ⊆ Field r using b4 by blast

qed
moreover have s0 : finite A1 using b4 q3 q4 lem-fin-fl-rel by blast
ultimately obtain s ′ where s1 : CCR s ′ ∧ s ⊆ s ′ ∧ s ′ ⊆ r ∧ finite s ′ ∧ A1 ⊆

Field s ′

using a1 q2 q3 lem-Ccext-finsubccr-set-ext[of r s A1] by blast
obtain A ′ where s2 : A ′ = Field s ′ by blast

73

obtain s ′′ where s3 : s ′′ = Restr r A ′ by blast
then have s4 : s ′ ⊆ s ′′ ∧ Field s ′′ = A ′ using s1 s2 lem-Relprop-fld-sat[of s ′ r

s ′′] by blast
have s5 : finite (Field s ′) using s1 lem-fin-fl-rel by blast
have A1 ∪ ({x} ∩ Field r) ⊆ A ′ using b4 s1 s2 by blast
moreover have CCR (Restr r A ′)
proof −

have CCR s ′′ using s1 s2 s4 lem-Ccext-subccr-eqfld[of s ′ s ′′] by blast
then show ?thesis using s3 by blast

qed
ultimately have b6 : A1 ∪ ({x} ∩ Field r) ⊆ A ′ ∧ CCR (Restr r A ′) by blast
moreover then have A ∪ ({x} ∩ Field r) ⊆ A ′ using b4 by blast
moreover have finite A ′ using s2 s5 by blast
moreover have ∀ a∈A. r‘‘{a} ⊆ B ∨ r‘‘{a} ∩ (A ′−B) 6= {}
proof

fix a
assume c1 : a ∈ A
have ¬ (r‘‘{a} ⊆ B) −→ r‘‘{a} ∩ (A ′−B) 6= {}
proof

assume ¬ (r‘‘{a} ⊆ B)
then have S a 6= {} unfolding b1 by blast
then have f a ∈ r‘‘{a} − B using b1 b3 by blast
moreover have f a ∈ A ′ using c1 b4 b6 by blast
ultimately show r‘‘{a} ∩ (A ′−B) 6= {} by blast

qed
then show r‘‘{a} ⊆ B ∨ r‘‘{a} ∩ (A ′−B) 6= {} by blast

qed
moreover have A ′ ∈ SF r using s3 s4 unfolding SF-def by blast
moreover have (∃ y:: ′U . A ′ − B = {y}) −→ Field r ⊆ (A ′ ∪ B)
proof

assume c1 : ∃ y:: ′U . A ′ − B = {y}
moreover have c2 : A ′ ⊆ Field r using s1 s2 unfolding Field-def by blast
ultimately have Field r 6= {} by blast
then have {y1 , y2} ⊆ Field r using n1 by blast
then have {y1 , y2} ⊆ A ′ using b4 s1 s2 by fast
then have ¬ (∃ y. Field r − B ⊆ {y}) −→ {y1 , y2} ⊆ A ′ − B ∧ y1 6= y2

using n2 by blast
moreover have ¬ ({y1 , y2} ⊆ A ′ − B ∧ y1 6= y2) using c1 by force
ultimately have ∃ y:: ′U . Field r − B ⊆ {y} by blast
then show Field r ⊆ A ′ ∪ B using c1 c2 by blast

qed
ultimately show ?thesis by blast

qed

lemma lem-Ccext-infsubccr-pext5 :
fixes r :: ′U rel and A B:: ′U set and x:: ′U
assumes a1 : CCR r and a2 : ¬ finite A and a3 : A ∈ SF r
shows ∃ A ′::(′U set). (x ∈ Field r −→ x ∈ A ′) ∧ A ⊆ A ′ ∧ CCR (Restr r A ′) ∧
|A ′| =o |A|

74

∧ (∀ a∈A. r‘‘{a}⊆B ∨ r‘‘{a}∩(A ′−B) 6= {}) ∧ A ′ ∈ SF r
∧ ((∃ y:: ′U . A ′−B = {y}) −→ Field r ⊆ (A ′∪B))

proof −
have q1 : Field (Restr r A) = A using a3 unfolding SF-def by blast
obtain s where s = (Restr r A) by blast
then have q2 : s ⊆ r and q3 : ¬ finite s and q4 : A = Field s

using a2 q1 lem-fin-fl-rel by (blast, metis, blast)
obtain S where b1 : S = (λ a. r‘‘{a} − B) by blast
obtain S ′ where b2 : S ′ = (λ a. if (S a) 6= {} then (S a) else {a}) by blast
obtain f where f = (λ a. SOME b. b ∈ S ′ a) by blast
moreover have ∀ a. ∃ b. b ∈ (S ′ a) unfolding b2 by force
ultimately have ∀ a. f a ∈ S ′ a by (metis someI-ex)
then have b3 : ∀ a. (S a 6= {} −→ f a ∈ S a) ∧ (S a = {} −→ f a = a)

unfolding b2 by (clarsimp, metis singletonD)
obtain y1 y2 :: ′U where n1 : Field r 6= {} −→ {y1 , y2} ⊆ Field r

and n2 : (¬ (∃ y:: ′U . Field r − B ⊆ {y})) −→ y1 /∈ B ∧ y2 /∈ B
∧ y1 6= y2 by blast

obtain A1 where b4 : A1 = ({x, y1 , y2} ∩ Field r) ∪ A ∪ (f ‘ A) by blast
have A1 ⊆ Field r
proof −

have c1 : A ⊆ Field r using q4 q2 unfolding Field-def by blast
moreover have f ‘ A ⊆ Field r
proof

fix x
assume x ∈ f ‘ A
then obtain a where d2 : a ∈ A ∧ x = f a by blast
show x ∈ Field r
proof (cases S a = {})

assume S a = {}
then have x = a using c1 d2 b3 by blast
then show x ∈ Field r using d2 c1 by blast

next
assume S a 6= {}
then have x ∈ S a using d2 b3 by blast
then show x ∈ Field r using b1 unfolding Field-def by blast

qed
qed
ultimately show A1 ⊆ Field r using b4 by blast

qed
moreover have s0 : |A1 | ≤o |Field s|
proof −

obtain C1 where c1 : C1 = {x,y1 ,y2} ∩ Field r by blast
obtain C2 where c2 : C2 = A ∪ f ‘ A by blast
have ¬ finite A using q4 q3 lem-fin-fl-rel by blast
then have |C2 | =o |A| using c2 b4 q3 by simp
then have |C2 | ≤o |Field s| unfolding q4 using ordIso-iff-ordLeq by blast
moreover have c3 : ¬ finite (Field s) using q3 lem-fin-fl-rel by blast
moreover have |C1 | ≤o |Field s|
proof −

75

have |{x,y1 ,y2}| ≤o |Field s| using c3
by (meson card-of-Well-order card-of-ordLeq-finite finite.emptyI finite.insertI

ordLeq-total)
moreover have |C1 | ≤o |{x,y1 ,y2}| unfolding c1 by simp
ultimately show ?thesis using ordLeq-transitive by blast

qed
ultimately have |C1 ∪ C2 | ≤o |Field s| unfolding b4 using card-of-Un-ordLeq-infinite

by blast
moreover have A1 = C1 ∪ C2 using c1 c2 b4 by blast
ultimately show ?thesis by blast

qed
ultimately obtain s ′ where s1 : CCR s ′ ∧ s ⊆ s ′ ∧ s ′ ⊆ r ∧ |s ′| =o |s| ∧ A1
⊆ Field s ′

using a1 q2 q3 lem-Ccext-infsubccr-set-ext[of r s A1] by blast
obtain A ′ where s2 : A ′ = Field s ′ by blast
obtain s ′′ where s3 : s ′′ = Restr r A ′ by blast
then have s4 : s ′ ⊆ s ′′ ∧ Field s ′′ = A ′ using s1 s2 lem-Relprop-fld-sat[of s ′ r

s ′′] by blast
have s5 : |Field s ′| =o |Field s| using s1 q3 lem-cardreleq-cardfldeq-inf [of s ′ s]

by blast
have A1 ∪ ({x} ∩ Field r) ⊆ A ′ using b4 s1 s2 by blast
moreover have CCR (Restr r A ′)
proof −

have CCR s ′′ using s1 s2 s4 lem-Ccext-subccr-eqfld[of s ′ s ′′] by blast
then show ?thesis using s3 by blast

qed
moreover have |A ′| =o |A1 |
proof −

have Field s ⊆ A1 using q4 b4 by blast
then have |Field s| ≤o |A1 | by simp
then have |A ′| ≤o |A1 | using s2 s5 ordIso-ordLeq-trans by blast
moreover have |A1 | ≤o |A ′| using s1 s2 by simp
ultimately show ?thesis using ordIso-iff-ordLeq by blast

qed
ultimately have b6 : A1 ∪ ({x} ∩ Field r) ⊆ A ′ ∧ CCR (Restr r A ′) ∧ |A ′| =o
|A1 | by blast

moreover then have A ∪ ({x} ∩ Field r) ⊆ A ′ using b4 by blast
moreover have |A ′| =o |A| using s5 s2 q4 by blast
moreover have ∀ a∈A. r‘‘{a} ⊆ B ∨ r‘‘{a} ∩ (A ′−B) 6= {}
proof

fix a
assume c1 : a ∈ A
have ¬ (r‘‘{a} ⊆ B) −→ r‘‘{a} ∩ (A ′−B) 6= {}
proof

assume ¬ (r‘‘{a} ⊆ B)
then have S a 6= {} unfolding b1 by blast
then have f a ∈ r‘‘{a} − B using b1 b3 by blast
moreover have f a ∈ A ′ using c1 b4 b6 by blast
ultimately show r‘‘{a} ∩ (A ′−B) 6= {} by blast

76

qed
then show r‘‘{a} ⊆ B ∨ r‘‘{a} ∩ (A ′−B) 6= {} by blast

qed
moreover have A ′ ∈ SF r using s3 s4 unfolding SF-def by blast
moreover have (∃ y:: ′U . A ′ − B = {y}) −→ Field r ⊆ (A ′ ∪ B)
proof

assume c1 : ∃ y:: ′U . A ′ − B = {y}
moreover have c2 : A ′ ⊆ Field r using s1 s2 unfolding Field-def by blast
ultimately have Field r 6= {} by blast
then have {y1 , y2} ⊆ Field r using n1 by blast
then have {y1 , y2} ⊆ A ′ using b4 s1 s2 by fast
then have ¬ (∃ y. Field r − B ⊆ {y}) −→ {y1 , y2} ⊆ A ′ − B ∧ y1 6= y2

using n2 by blast
moreover have ¬ ({y1 , y2} ⊆ A ′ − B ∧ y1 6= y2) using c1 by force
ultimately have ∃ y:: ′U . Field r − B ⊆ {y} by blast
then show Field r ⊆ A ′ ∪ B using c1 c2 by blast

qed
ultimately show ?thesis by blast

qed

lemma lem-Ccext-subccr-pext5 :
fixes r :: ′U rel and A B:: ′U set and x:: ′U
assumes CCR r and A ∈ SF r
shows ∃ A ′::(′U set). (x ∈ Field r −→ x ∈ A ′)

∧ A ⊆ A ′

∧ A ′ ∈ SF r
∧ (∀ a∈A. ((r‘‘{a}⊆B) ∨ (r‘‘{a}∩(A ′−B) 6= {})))
∧ ((∃ y:: ′U . A ′−B = {y}) −→ Field r ⊆ (A ′∪B))
∧ CCR (Restr r A ′)
∧ ((finite A −→ finite A ′) ∧ ((¬ finite A) −→ |A ′| =o |A|))

proof (cases finite A)
assume finite A
then show ?thesis using assms lem-Ccext-finsubccr-pext5 [of r A x B] by blast

next
assume ¬ finite A
then show ?thesis using assms lem-Ccext-infsubccr-pext5 [of r A x B] by blast

qed

lemma lem-Ccext-finsubccr-set-ext-scf :
fixes r s:: ′U rel and A P:: ′U set
assumes a1 : CCR r and a2 : s ⊆ r and a3 : finite s and a4 : A ⊆ Field r and
a5 : finite A

and a6 : P ∈ SCF r
shows ∃ s ′::(′U rel). CCR s ′ ∧ s ⊆ s ′ ∧ s ′ ⊆ r ∧ finite s ′ ∧ A ⊆ Field s ′

∧ ((Field s ′ ∩ P) ∈ SCF s ′)
proof (cases s = {} ∧ A = {})

assume s = {} ∧ A = {}
moreover obtain s ′:: ′U rel where s ′ = {} by blast
ultimately have CCR s ′ ∧ s ⊆ s ′ ∧ s ′ ⊆ r ∧ finite s ′ ∧ A ⊆ Field s ′

77

∧ ((Field s ′ ∩ P) ∈ SCF s ′) unfolding CCR-def SCF-def Field-def
by blast

then show ?thesis by blast
next

assume b1 : ¬ (s = {} ∧ A = {})
obtain Pt:: ′U ⇒ ′U rel where p1 : Pt = (λ x. {p ∈ r . x = fst p ∨ x = snd p})

by blast
obtain pt:: ′U ⇒ ′U× ′U where p2 : pt = (λ x. (SOME p. p ∈ Pt x)) by blast
have ∀ x∈A. Pt x 6= {} using a4 unfolding p1 Field-def by force
then have p3 : ∀ x∈A. pt x ∈ Pt x unfolding p2 by (metis (full-types) Col-

lect-empty-eq Collect-mem-eq someI-ex)
have b2 : pt‘A ⊆ r using p1 p3 by blast
obtain s1 where b3 : s1 = s ∪ (pt‘A) by blast
then have finite s1 using a3 a5 by blast
moreover have s1 ⊆ r using b2 b3 a2 by blast
ultimately obtain s2 where b4 : finite s2 ∧ CCR s2 ∧ s1 ⊆ s2 ∧ s2 ⊆ r using

a1 lem-ccr-fin-subr-ext[of r s1] by blast
moreover have A ⊆ Field s1
proof

fix x
assume c1 : x ∈ A
then have pt x ∈ s1 using b3 by blast
moreover obtain ax bx where c2 : pt x = (ax,bx) by force
ultimately have ax ∈ Field s1 ∧ bx ∈ Field s1 unfolding Field-def by force
then show x ∈ Field s1 using c1 c2 p1 p3 by force

qed
ultimately have b5 : A ⊆ Field s2 unfolding Field-def by blast
have Conelike s2 using b4 lem-Relprop-fin-ccr by blast
moreover have s2 6= {} using b1 b3 b4 unfolding Field-def by blast
ultimately obtain m where b6 : m ∈ Field s2 ∧ (∀ a∈Field s2 . (a,m) ∈ s2^∗)

unfolding Conelike-def by blast
then have m ∈ Field r using b4 unfolding Field-def by blast
then obtain m ′ where b7 : m ′ ∈ P ∧ (m,m ′) ∈ r^∗ using a6 unfolding SCF-def

by blast
obtain D where b8 : D = Field s2 ∪ (f r m m ′) by blast
obtain s ′ where b9 : s ′ = Restr r D by blast
have b10 : s2 ⊆ s ′ using b4 b8 b9 unfolding Field-def by force
have b11 : ∀ a ∈ Field s ′. (a,m ′) ∈ s ′̂ ∗
proof

fix a
assume c1 : a ∈ Field s ′

have c2 : Restr r (f r m m ′) ⊆ s ′ using b8 b9 by blast
then have c3 : (m,m ′) ∈ s ′̂ ∗ using b7 lem-Ccext-fint[of r m m ′ s ′] by blast
show (a,m ′) ∈ s ′̂ ∗
proof (cases a ∈ Field s2)

assume a ∈ Field s2
then have (a,m) ∈ s2^∗ using b6 by blast
then have (a,m) ∈ s ′̂ ∗ using b10 rtrancl-mono by blast
then show (a,m ′) ∈ s ′̂ ∗ using c3 by simp

78

next
assume a /∈ Field s2
then have a ∈ (f r m m ′) using c1 b8 b9 unfolding Field-def by blast
then show (a,m ′) ∈ s ′̂ ∗ using c2 b7 lem-Ccext-fint[of r m m ′ s ′] by blast

qed
qed
have b12 : m ′ ∈ Field s ′

proof −
have m ∈ Field s ′ using b6 b10 unfolding Field-def by blast
then have m ∈ Field s ′ ∧ (m,m ′) ∈ s ′̂ ∗ using b11 by blast
then show m ′ ∈ Field s ′ using lem-rtr-field by force

qed
have Field s ⊆ D using b3 b4 b8 unfolding Field-def by blast
then have s ⊆ s ′ using a2 b9 unfolding Field-def by force
moreover have s ′ ⊆ r using b9 by blast
moreover have finite s ′

proof −
have finite (Field s2) using b4 lem-fin-fl-rel by blast
then have finite D using b8 lem-ccext-ffin by simp
then show ?thesis using b9 by blast

qed
moreover have A ⊆ Field s ′ using b5 b10 unfolding Field-def by blast
moreover have CCR s ′

proof −
have Conelike s ′ using b11 b12 unfolding Conelike-def by blast
then show ?thesis using lem-Relprop-cl-ccr by blast

qed
moreover have (Field s ′ ∩ P) ∈ SCF s ′ using b7 b11 b12 unfolding SCF-def

by blast
ultimately show ?thesis by blast

qed

lemma lem-ccext-scf-sat:
assumes s ⊆ r and Field s = Field r
shows SCF s ⊆ SCF r

using assms rtrancl-mono unfolding SCF-def by blast

lemma lem-Ccext-infsubccr-set-ext-scf2 :
fixes r s:: ′U rel and A:: ′U set and Ps:: ′U set set
assumes a1 : CCR r and a2 : s ⊆ r and a3 : ¬ finite s and a4 : A ⊆ Field r

and a5 : |A| ≤o |Field s| and a6 : Ps ⊆ SCF r ∧ |Ps| ≤o |Field s|
shows ∃ s ′::(′U rel). CCR s ′ ∧ s ⊆ s ′ ∧ s ′ ⊆ r ∧ |s ′| =o |s| ∧ A ⊆ Field s ′

∧ (∀ P∈Ps. (Field s ′ ∩ P) ∈ SCF s ′)
proof −

obtain q where q0 : q = (λ P a. SOME p. p ∈ P ∧ (a, p) ∈ r^∗) by blast
have q1 : ∀ P∈Ps. ∀ a∈Field r . (q P a) ∈ Field r ∧ (q P a) ∈ P ∧ (a, q P a)
∈ r^∗

proof (intro ballI)
fix P a

79

assume P ∈ Ps and a ∈ Field r
then show (q P a) ∈ Field r ∧ (q P a) ∈ P ∧ (a, q P a) ∈ r^∗

using q0 a6 someI-ex[of λ p. p ∈ P ∧ (a,p) ∈ r^∗] unfolding SCF-def by
blast

qed
obtain G:: ′U set ⇒ ′U rel set where b1 : G = (λ A. {t:: ′U rel. finite t ∧ CCR

t ∧ t ⊆ r ∧ A ⊆ Field t}) by blast
obtain g:: ′U set ⇒ ′U rel where b2 : g = (λ A. if A ⊆ Field r ∧ finite A then

(SOME t. t ∈ G A) else {}) by blast
have b3 : ∀ A. A ⊆ Field r ∧ finite A −→ finite (g A) ∧ CCR (g A) ∧ (g A) ⊆

r ∧ A ⊆ Field (g A)
proof (intro allI impI)

fix A
assume c1 : A ⊆ Field r ∧ finite A
then have g A = (SOME t. t ∈ G A) using b2 by simp
moreover have G A 6= {} using b1 a1 c1 lem-Ccext-finsubccr-dext[of r A] by

blast
ultimately have g A ∈ G A using some-in-eq by metis
then show finite (g A) ∧ CCR (g A) ∧ (g A) ⊆ r ∧ A ⊆ Field (g A) using

b1 by blast
qed
have b4 : ∀ A. ¬ (A ⊆ Field r ∧ finite A) −→ g A = {} using b2 by simp
obtain H :: ′U set ⇒ ′U set

where b5 : H = (λ X . X ∪
⋃
{S . ∃ a∈X . ∃ b∈X . S = Field (g {a,b})} ∪

⋃
{S . ∃ P∈Ps. ∃ a∈X . S = f r a (q P a) }) by blast

obtain Pt:: ′U ⇒ ′U rel where p1 : Pt = (λ x. {p ∈ r . x = fst p ∨ x = snd p})
by blast

obtain pt:: ′U ⇒ ′U× ′U where p2 : pt = (λ x. (SOME p. p ∈ Pt x)) by blast
have ∀ x∈A. Pt x 6= {} using a4 unfolding p1 Field-def by force
then have p3 : ∀ x∈A. pt x ∈ Pt x unfolding p2 by (metis (full-types) Col-

lect-empty-eq Collect-mem-eq someI-ex)
obtain D0 where b7 : D0 = Field s ∪ fst‘(pt‘A) ∪ snd‘(pt‘A) by blast
obtain Di::nat ⇒ ′U set where b8 : Di = (λ n. (H^^n) D0) by blast
obtain D:: ′U set where b9 : D =

⋃
{X . ∃ n. X = Di n} by blast

obtain s ′ where b10 : s ′ = Restr r D by blast
have b11 : ∀ n. (¬ finite (Di n)) ∧ |Di n| ≤o |s|
proof

fix n0
show (¬ finite (Di n0)) ∧ |Di n0 | ≤o |s|
proof (induct n0)

have |D0 | =o |Field s|
proof −

have |fst‘(pt‘A)| ≤o |(pt‘A)| ∧ |(pt‘A)| ≤o |A| by simp
then have c1 : |fst‘(pt‘A)| ≤o |A| using ordLeq-transitive by blast
have |snd‘(pt‘A)| ≤o |(pt‘A)| ∧ |(pt‘A)| ≤o |A| by simp
then have c2 : |snd‘(pt‘A)| ≤o |A| using ordLeq-transitive by blast
have |fst‘(pt‘A)| ≤o |Field s| ∧ |snd‘(pt‘A)| ≤o |Field s|

using c1 c2 a5 ordLeq-transitive by blast
moreover have ¬ finite (Field s) using a3 lem-fin-fl-rel by blast

80

ultimately have c3 : |D0 | ≤o |Field s| unfolding b7 by simp
have Field s ⊆ D0 unfolding b7 by blast
then have |Field s| ≤o |D0 | by simp
then show ?thesis using c3 ordIso-iff-ordLeq by blast

qed
moreover have |Field s| =o |s| using a3 lem-rel-inf-fld-card by blast
ultimately have |D0 | ≤o |s| using ordIso-imp-ordLeq ordIso-transitive by

blast
moreover have ¬ finite D0 using a3 b7 lem-fin-fl-rel by blast
ultimately show ¬ finite (Di 0) ∧ |Di 0 | ≤o |s| using b8 by simp

next
fix n
assume d1 : (¬ finite (Di n)) ∧ |Di n| ≤o |s|
moreover then have |(Di n) × (Di n)| =o |Di n| by simp

ultimately have d2 : |(Di n) × (Di n)| ≤o |s| using ordIso-imp-ordLeq
ordLeq-transitive by blast

have d3 : ∀ a ∈ (Di n). ∀ b ∈ (Di n). |Field (g {a, b})| ≤o |s|
proof (intro ballI)

fix a b
assume a ∈ (Di n) and b ∈ (Di n)
have finite (g {a, b}) using b3 b4 by (metis finite.emptyI)
then have finite (Field (g {a, b})) using lem-fin-fl-rel by blast
then have |Field (g {a, b})| <o |s| using a3 finite-ordLess-infinite2 by

blast
then show |Field (g {a, b})| ≤o |s| using ordLess-imp-ordLeq by blast

qed
have d4 : Di (Suc n) = H (Di n) using b8 by simp
then have Di n ⊆ Di (Suc n) using b5 by blast
then have ¬ finite (Di (Suc n)) using d1 finite-subset by blast
moreover have |Di (Suc n)| ≤o |s|
proof −

obtain I where e1 : I = (Di n) × (Di n) by blast
obtain f where e2 : f = (λ (a,b). Field (g {a,b})) by blast
have |I | ≤o |s| using e1 d2 by blast
moreover have ∀ i∈I . |f i| ≤o |s| using e1 e2 d3 by simp

ultimately have |
⋃

i∈I . f i| ≤o |s| using a3 card-of-UNION-ordLeq-infinite[of
s I f] by blast

moreover have Di (Suc n) = (Di n) ∪ (
⋃

i∈I . f i) ∪ (
⋃

P∈Ps. (
⋃

a∈(Di
n). f r a (q P a)))

using e1 e2 d4 b5 by blast
moreover have |

⋃
P∈Ps. (

⋃
a∈(Di n). f r a (q P a))| ≤o |s|

proof −
have

∧
P. P ∈ Ps =⇒ ∀ a∈(Di n). |f r a (q P a)| ≤o |s|

using a3 lem-ccext-ffin by (metis card-of-Well-order card-of-ordLeq-infinite
ordLeq-total)

then have
∧

P. P ∈ Ps =⇒ |
⋃

a∈(Di n). f r a (q P a)| ≤o |s|
using d1 a3 card-of-UNION-ordLeq-infinite[of s Di n λ a. f r a (q - a)]

by blast
moreover have |Ps| ≤o |s| using a3 a6 lem-rel-inf-fld-card[of s]

81

lem-fin-fl-rel[of s]
by (metis ordIso-iff-ordLeq ordLeq-transitive)

ultimately show ?thesis
using a3 card-of-UNION-ordLeq-infinite[of s Ps λ P.

⋃
a∈(Di n). f r a

(q P a)] by blast
qed
ultimately show ?thesis using d1 a3 by simp

qed
ultimately show (¬ finite (Di (Suc n))) ∧ |Di (Suc n)| ≤o |s| by blast

qed
qed
have b12 : ∀ m. ∀ n. n ≤ m −→ Di n ≤ Di m
proof

fix m0
show ∀ n. n ≤ m0 −→ Di n ≤ Di m0
proof (induct m0)

show ∀n≤0 . Di n ⊆ Di 0 by blast
next

fix m
assume d1 : ∀n≤m. Di n ⊆ Di m
show ∀n≤Suc m. Di n ⊆ Di (Suc m)
proof (intro allI impI)

fix n
assume e1 : n ≤ Suc m
have Di (Suc m) = H (Di m) using b8 by simp
moreover have Di m ⊆ H (Di m) using b5 by blast
ultimately have n ≤ m −→ Di n ⊆ Di (Suc m) using d1 by blast
moreover have n = (Suc m) ∨ n ≤ m using e1 by force
ultimately show Di n ⊆ Di (Suc m) by blast

qed
qed

qed
have Di 0 ⊆ D using b9 by blast
then have b13 : Field s ⊆ D using b7 b8 by simp
then have b14 : s ⊆ s ′ ∧ s ′ ⊆ r using a2 b10 unfolding Field-def by force
moreover have b15 : |D| ≤o |s|
proof −

have |UNIV ::nat set| ≤o |s| using a3 infinite-iff-card-of-nat by blast
then have |

⋃
n. Di n| ≤o |s| using b11 a3 card-of-UNION-ordLeq-infinite[of

s UNIV Di] by blast
moreover have D = (

⋃
n. Di n) using b9 by force

ultimately show ?thesis by blast
qed
moreover have |s ′| =o |s|
proof −

have ¬ finite (Field s) using a3 lem-fin-fl-rel by blast
then have ¬ finite D using b13 finite-subset by blast
then have |D × D| =o |D| by simp
moreover have s ′ ⊆ D × D using b10 by blast

82

ultimately have |s ′| ≤o |s| using b15 card-of-mono1 ordLeq-ordIso-trans or-
dLeq-transitive by metis

moreover have |s| ≤o |s ′| using b14 by simp
ultimately show ?thesis using ordIso-iff-ordLeq by blast

qed
moreover have A ⊆ Field s ′

proof
fix x
assume c1 : x ∈ A
obtain ax bx where c2 : ax = fst (pt x) ∧ bx = snd (pt x) by blast
have pt x ∈ Pt x using c1 p3 by blast
then have c3 : (ax, bx) ∈ r ∧ x ∈ {ax,bx} using c2 p1 by simp
have {ax, bx} ⊆ D0 using b7 c1 c2 by blast
moreover have Di 0 ⊆ D using b9 by blast
moreover have Di 0 = D0 using b8 by simp
ultimately have {ax, bx} ⊆ D by blast
then have (ax, bx) ∈ s ′ using c3 b10 by blast
then show x ∈ Field s ′ using c3 unfolding Field-def by blast

qed
moreover have CCR s ′

proof −
have ∀ a ∈ Field s ′. ∀ b ∈ Field s ′. ∃ c ∈ Field s ′. (a,c) ∈ (s ′)^∗ ∧ (b,c) ∈

(s ′)^∗
proof (intro ballI)

fix a b
assume d1 : a ∈ Field s ′ and d2 : b ∈ Field s ′

then have d3 : a ∈ D ∧ b ∈ D using b10 unfolding Field-def by blast
then obtain ia ib where d4 : a ∈ Di ia ∧ b ∈ Di ib using b9 by blast
obtain k where d5 : k = (max ia ib) by blast
then have ia ≤ k ∧ ib ≤ k by simp
then have d6 : a ∈ Di k ∧ b ∈ Di k using d4 b12 by blast
obtain p where d7 : p = g {a,b} by blast
have Field p ⊆ H (Di k) using b5 d6 d7 by blast
moreover have H (Di k) = Di (Suc k) using b8 by simp
moreover have Di (Suc k) ⊆ D using b9 by blast
ultimately have d8 : Field p ⊆ D by blast
have {a, b} ⊆ Field r using d1 d2 b10 unfolding Field-def by blast
moreover have finite {a, b} by simp
ultimately have d9 : CCR p ∧ p ⊆ r ∧ {a,b} ⊆ Field p using d7 b3 by blast
then obtain c where d10 : c ∈ Field p ∧ (a,c) ∈ p^∗ ∧ (b,c) ∈ p^∗ unfolding

CCR-def by blast
have (p ‘‘ D) ⊆ D using d8 unfolding Field-def by blast
then have D ∈ Inv p unfolding Inv-def by blast

then have p^∗ ∩ (D×(UNIV :: ′U set)) ⊆ (Restr p D)^∗ using lem-Inv-restr-rtr [of
D p] by blast

moreover have Restr p D ⊆ s ′ using d9 b10 by blast
moreover have (a,c) ∈ p^∗ ∩ (D×(UNIV :: ′U set)) ∧ (b,c) ∈ p^∗ ∩

(D×(UNIV :: ′U set)) using d10 d3 by blast
ultimately have (a,c) ∈ (s ′)^∗ ∧ (b,c) ∈ (s ′)^∗ using rtrancl-mono by blast

83

moreover then have c ∈ Field s ′ using d1 lem-rtr-field by metis
ultimately show ∃ c ∈ Field s ′. (a,c) ∈ (s ′)^∗ ∧ (b,c) ∈ (s ′)^∗ by blast

qed
then show ?thesis unfolding CCR-def by blast

qed
moreover have ∀ P∈Ps. (Field s ′ ∩ P) ∈ SCF s ′

proof −
have ∀ P ∈ Ps. ∀ a∈Field s ′. ∃ b∈(Field s ′ ∩ P). (a, b) ∈ s ′̂ ∗
proof (intro ballI)

fix P a
assume d0 : P ∈ Ps and d1 : a ∈ Field s ′

then have a ∈ D using b10 unfolding Field-def by blast
then obtain n where a ∈ Di n using b9 by blast
then have f r a (q P a) ⊆ H (Di n) using d0 b5 by blast
moreover have H (Di n) = Di (Suc n) using b8 by simp
ultimately have d2 : f r a (q P a) ⊆ D using b9 by blast
have a ∈ Field r using d1 b10 unfolding Field-def by blast
then have q P a ∈ P ∧ (a, q P a) ∈ r^∗ using d0 q1 by blast
moreover have Restr r (f r a (q P a)) ⊆ s ′ using d0 d2 b10 by blast
ultimately have q P a ∈ P ∧ (a, q P a) ∈ s ′̂ ∗ using lem-Ccext-fint[of r a

q P a s ′] by blast
moreover then have q P a ∈ Field s ′ using d1 lem-rtr-field by metis
ultimately show ∃ b∈(Field s ′ ∩ P). (a, b) ∈ s ′̂ ∗ by blast

qed
then show ?thesis unfolding SCF-def by blast

qed
ultimately show ?thesis by blast

qed

lemma lem-Ccext-finsubccr-pext5-scf2 :
fixes r :: ′U rel and A B B ′:: ′U set and x:: ′U and Ps:: ′U set set
assumes a1 : CCR r and a2 : finite A and a3 : A ∈ SF r and a4 : Ps ⊆ SCF r
shows ∃ A ′::(′U set). (x ∈ Field r −→ x ∈ A ′) ∧ A ⊆ A ′ ∧ CCR (Restr r A ′) ∧
finite A ′

∧ (∀ a∈A. r‘‘{a}⊆B ∨ r‘‘{a}∩(A ′−B) 6= {}) ∧ A ′ ∈ SF r
∧ ((∃ y:: ′U . A ′−B ′ = {y}) −→ Field r ⊆ (A ′∪B ′))
∧ ((∃ P. Ps = {P}) −→ (∀ P ∈ Ps. (A ′ ∩ P) ∈ SCF (Restr r

A ′)))
proof −

obtain P where p0 : P = (if (Ps 6= {}) then (SOME P. P ∈ Ps) else Field r)
by blast

moreover have Field r ∈ SCF r unfolding SCF-def by blast
ultimately have p1 : P ∈ SCF r using a4 by (metis contra-subsetD some-in-eq)
have p2 : (∃ P. Ps = {P}) −→ Ps = {P} using p0 by fastforce
have q1 : Field (Restr r A) = A using a3 unfolding SF-def by blast
obtain s where s = (Restr r A) by blast
then have q2 : s ⊆ r and q3 : finite s and q4 : A = Field s

using a2 q1 lem-fin-fl-rel by (blast, metis, blast)
obtain S where b1 : S = (λ a. r‘‘{a} − B) by blast

84

obtain S ′ where b2 : S ′ = (λ a. if (S a) 6= {} then (S a) else {a}) by blast
obtain f where f = (λ a. SOME b. b ∈ S ′ a) by blast
moreover have ∀ a. ∃ b. b ∈ (S ′ a) unfolding b2 by force
ultimately have ∀ a. f a ∈ S ′ a by (metis someI-ex)
then have b3 : ∀ a. (S a 6= {} −→ f a ∈ S a) ∧ (S a = {} −→ f a = a)

unfolding b2 by (clarsimp, metis singletonD)
obtain y1 y2 :: ′U where n1 : Field r 6= {} −→ {y1 , y2} ⊆ Field r

and n2 : (¬ (∃ y:: ′U . Field r − B ′ ⊆ {y})) −→ y1 /∈ B ′ ∧ y2 /∈
B ′ ∧ y1 6= y2 by blast

obtain A1 where b4 : A1 = ({x,y1 ,y2} ∩ Field r) ∪ A ∪ (f ‘ A) by blast
have A1 ⊆ Field r
proof −

have c1 : A ⊆ Field r using q4 q2 unfolding Field-def by blast
moreover have f ‘ A ⊆ Field r
proof

fix x
assume x ∈ f ‘ A
then obtain a where d2 : a ∈ A ∧ x = f a by blast
show x ∈ Field r
proof (cases S a = {})

assume S a = {}
then have x = a using c1 d2 b3 by blast
then show x ∈ Field r using d2 c1 by blast

next
assume S a 6= {}
then have x ∈ S a using d2 b3 by blast
then show x ∈ Field r using b1 unfolding Field-def by blast

qed
qed
ultimately show A1 ⊆ Field r using b4 by blast

qed
moreover have s0 : finite A1 using b4 q3 q4 lem-fin-fl-rel by blast
ultimately obtain s ′ where s1 : CCR s ′ ∧ s ⊆ s ′ ∧ s ′ ⊆ r ∧ finite s ′ ∧ A1 ⊆

Field s ′

and s1 ′: (∃ P. Ps = {P}) −→ (Field s ′ ∩ P) ∈ SCF s ′

using p1 a1 a4 q2 q3 lem-Ccext-finsubccr-set-ext-scf [of r s A1 P] by metis
obtain A ′ where s2 : A ′ = Field s ′ by blast
obtain s ′′ where s3 : s ′′ = Restr r A ′ by blast
then have s4 : s ′ ⊆ s ′′ ∧ Field s ′′ = A ′ using s1 s2 lem-Relprop-fld-sat[of s ′ r

s ′′] by blast
have s5 : finite (Field s ′) using s1 lem-fin-fl-rel by blast
have A1 ∪ ({x} ∩ Field r) ⊆ A ′ using b4 s1 s2 by blast
moreover have CCR (Restr r A ′)
proof −

have CCR s ′′ using s1 s2 s4 lem-Ccext-subccr-eqfld[of s ′ s ′′] by blast
then show ?thesis using s3 by blast

qed
ultimately have b6 : A1 ∪ ({x} ∩ Field r) ⊆ A ′ ∧ CCR (Restr r A ′) by blast
moreover then have A ∪ ({x} ∩ Field r) ⊆ A ′ using b4 by blast

85

ultimately have (x ∈ Field r −→ x ∈ A ′) ∧ A ⊆ A ′ ∧ CCR (Restr r A ′) by
blast

moreover have finite A ′ using s2 s5 by blast
moreover have ∀ a∈A. r‘‘{a} ⊆ B ∨ r‘‘{a} ∩ (A ′−B) 6= {}
proof

fix a
assume c1 : a ∈ A
have ¬ (r‘‘{a} ⊆ B) −→ r‘‘{a} ∩ (A ′−B) 6= {}
proof

assume ¬ (r‘‘{a} ⊆ B)
then have S a 6= {} unfolding b1 by blast
then have f a ∈ r‘‘{a} − B using b1 b3 by blast
moreover have f a ∈ A ′ using c1 b4 b6 by blast
ultimately show r‘‘{a} ∩ (A ′−B) 6= {} by blast

qed
then show r‘‘{a} ⊆ B ∨ r‘‘{a} ∩ (A ′−B) 6= {} by blast

qed
moreover have A ′ ∈ SF r using s3 s4 unfolding SF-def by blast
moreover have (∃ y:: ′U . A ′ − B ′ = {y}) −→ Field r ⊆ (A ′ ∪ B ′)
proof

assume c1 : ∃ y:: ′U . A ′ − B ′ = {y}
moreover have c2 : A ′ ⊆ Field r using s1 s2 unfolding Field-def by blast
ultimately have Field r 6= {} by blast
then have {y1 , y2} ⊆ Field r using n1 by blast
then have {y1 , y2} ⊆ A ′ using b4 s1 s2 by fast
then have ¬ (∃ y. Field r − B ′ ⊆ {y}) −→ {y1 , y2} ⊆ A ′ − B ′ ∧ y1 6= y2

using n2 by blast
moreover have ¬ ({y1 , y2} ⊆ A ′ − B ′ ∧ y1 6= y2) using c1 by force
ultimately have ∃ y:: ′U . Field r − B ′ ⊆ {y} by blast
then show Field r ⊆ A ′ ∪ B ′ using c1 c2 by blast

qed
moreover have (∃ P. Ps = {P}) −→ (∀ P ∈ Ps. (A ′ ∩ P) ∈ SCF (Restr r

A ′))
proof −

have c1 : s ′ ⊆ r using s3 s4 by blast
then have Field s ′ = Field (Restr r (Field s ′)) using lem-Relprop-fld-sat by

blast
moreover have s ′ ⊆ Restr r (Field s ′) using c1 unfolding Field-def by force
ultimately have SCF s ′ ⊆ SCF (Restr r (Field s ′)) using lem-ccext-scf-sat[of

s ′ Restr r (Field s ′)] by blast
then show ?thesis using p2 s1 ′ s2 by blast

qed
ultimately show ?thesis by blast

qed

lemma lem-Ccext-infsubccr-pext5-scf2 :
fixes r :: ′U rel and A B B ′:: ′U set and x:: ′U and Ps:: ′U set set
assumes a1 : CCR r and a2 : ¬ finite A and a3 : A ∈ SF r and a4 : Ps ⊆ SCF r
shows ∃ A ′::(′U set). (x ∈ Field r −→ x ∈ A ′) ∧ A ⊆ A ′ ∧ CCR (Restr r A ′) ∧

86

|A ′| =o |A|
∧ (∀ a∈A. r‘‘{a}⊆B ∨ r‘‘{a}∩(A ′−B) 6= {}) ∧ A ′ ∈ SF r
∧ ((∃ y:: ′U . A ′−B ′ = {y}) −→ Field r ⊆ (A ′∪B ′))
∧ (|Ps| ≤o |A| −→ (∀ P ∈ Ps. (A ′ ∩ P) ∈ SCF (Restr r A ′)))

proof −
obtain Ps ′ where p0 : Ps ′ = (if (|Ps| ≤o |A|) then Ps else {}) by blast
then have p1 : Ps ′ ⊆ SCF r ∧ |Ps ′| ≤o |A| using a4 by simp
have q1 : Field (Restr r A) = A using a3 unfolding SF-def by blast
obtain s where s = (Restr r A) by blast
then have q2 : s ⊆ r and q3 : ¬ finite s and q4 : A = Field s

using a2 q1 lem-fin-fl-rel by (blast, metis, blast)
obtain S where b1 : S = (λ a. r‘‘{a} − B) by blast
obtain S ′ where b2 : S ′ = (λ a. if (S a) 6= {} then (S a) else {a}) by blast
obtain f where f = (λ a. SOME b. b ∈ S ′ a) by blast
moreover have ∀ a. ∃ b. b ∈ (S ′ a) unfolding b2 by force
ultimately have ∀ a. f a ∈ S ′ a by (metis someI-ex)
then have b3 : ∀ a. (S a 6= {} −→ f a ∈ S a) ∧ (S a = {} −→ f a = a)

unfolding b2 by (clarsimp, metis singletonD)
obtain y1 y2 :: ′U where n1 : Field r 6= {} −→ {y1 , y2} ⊆ Field r

and n2 : (¬ (∃ y:: ′U . Field r − B ′ ⊆ {y})) −→ y1 /∈ B ′ ∧ y2 /∈
B ′ ∧ y1 6= y2 by blast

obtain A1 where b4 : A1 = ({x, y1 , y2} ∩ Field r) ∪ A ∪ (f ‘ A) by blast
have A1 ⊆ Field r
proof −

have c1 : A ⊆ Field r using q4 q2 unfolding Field-def by blast
moreover have f ‘ A ⊆ Field r
proof

fix x
assume x ∈ f ‘ A
then obtain a where d2 : a ∈ A ∧ x = f a by blast
show x ∈ Field r
proof (cases S a = {})

assume S a = {}
then have x = a using c1 d2 b3 by blast
then show x ∈ Field r using d2 c1 by blast

next
assume S a 6= {}
then have x ∈ S a using d2 b3 by blast
then show x ∈ Field r using b1 unfolding Field-def by blast

qed
qed
ultimately show A1 ⊆ Field r using b4 by blast

qed
moreover have s0 : |A1 | ≤o |Field s|
proof −

obtain C1 where c1 : C1 = {x,y1 ,y2} ∩ Field r by blast
obtain C2 where c2 : C2 = A ∪ f ‘ A by blast
have ¬ finite A using q4 q3 lem-fin-fl-rel by blast
then have |C2 | =o |A| using c2 b4 q3 by simp

87

then have |C2 | ≤o |Field s| unfolding q4 using ordIso-iff-ordLeq by blast
moreover have c3 : ¬ finite (Field s) using q3 lem-fin-fl-rel by blast
moreover have |C1 | ≤o |Field s|
proof −

have |{x,y1 ,y2}| ≤o |Field s| using c3
by (meson card-of-Well-order card-of-ordLeq-finite finite.emptyI finite.insertI

ordLeq-total)
moreover have |C1 | ≤o |{x,y1 ,y2}| unfolding c1 by simp
ultimately show ?thesis using ordLeq-transitive by blast

qed
ultimately have |C1 ∪ C2 | ≤o |Field s| unfolding b4 using card-of-Un-ordLeq-infinite

by blast
moreover have A1 = C1 ∪ C2 using c1 c2 b4 by blast
ultimately show ?thesis by blast

qed
ultimately obtain s ′ where s1 : CCR s ′ ∧ s ⊆ s ′ ∧ s ′ ⊆ r ∧ |s ′| =o |s| ∧ A1
⊆ Field s ′

and s1 ′: (∀ P ∈ Ps ′. (Field s ′ ∩ P) ∈ SCF s ′)
using p1 a1 q2 q3 q4 lem-Ccext-infsubccr-set-ext-scf2 [of r s A1 Ps ′] by blast

obtain A ′ where s2 : A ′ = Field s ′ by blast
obtain s ′′ where s3 : s ′′ = Restr r A ′ by blast
then have s4 : s ′ ⊆ s ′′ ∧ Field s ′′ = A ′ using s1 s2 lem-Relprop-fld-sat[of s ′ r

s ′′] by blast
have s5 : |Field s ′| =o |Field s| using s1 q3 lem-cardreleq-cardfldeq-inf [of s ′ s]

by blast
have A1 ∪ ({x} ∩ Field r) ⊆ A ′ using b4 s1 s2 by blast
moreover have CCR (Restr r A ′)
proof −

have CCR s ′′ using s1 s2 s4 lem-Ccext-subccr-eqfld[of s ′ s ′′] by blast
then show ?thesis using s3 by blast

qed
moreover have |A ′| =o |A1 |
proof −

have Field s ⊆ A1 using q4 b4 by blast
then have |Field s| ≤o |A1 | by simp
then have |A ′| ≤o |A1 | using s2 s5 ordIso-ordLeq-trans by blast
moreover have |A1 | ≤o |A ′| using s1 s2 by simp
ultimately show ?thesis using ordIso-iff-ordLeq by blast

qed
ultimately have b6 : A1 ∪ ({x} ∩ Field r) ⊆ A ′ ∧ CCR (Restr r A ′) ∧ |A ′| =o
|A1 | by blast

moreover then have A ∪ ({x} ∩ Field r) ⊆ A ′ using b4 by blast
moreover have |A ′| =o |A| using s5 s2 q4 by blast
moreover have ∀ a∈A. r‘‘{a} ⊆ B ∨ r‘‘{a} ∩ (A ′−B) 6= {}
proof

fix a
assume c1 : a ∈ A
have ¬ (r‘‘{a} ⊆ B) −→ r‘‘{a} ∩ (A ′−B) 6= {}
proof

88

assume ¬ (r‘‘{a} ⊆ B)
then have S a 6= {} unfolding b1 by blast
then have f a ∈ r‘‘{a} − B using b1 b3 by blast
moreover have f a ∈ A ′ using c1 b4 b6 by blast
ultimately show r‘‘{a} ∩ (A ′−B) 6= {} by blast

qed
then show r‘‘{a} ⊆ B ∨ r‘‘{a} ∩ (A ′−B) 6= {} by blast

qed
moreover have A ′ ∈ SF r using s3 s4 unfolding SF-def by blast
moreover have (∃ y:: ′U . A ′ − B ′ = {y}) −→ Field r ⊆ (A ′ ∪ B ′)
proof

assume c1 : ∃ y:: ′U . A ′ − B ′ = {y}
moreover have c2 : A ′ ⊆ Field r using s1 s2 unfolding Field-def by blast
ultimately have Field r 6= {} by blast
then have {y1 , y2} ⊆ Field r using n1 by blast
then have {y1 , y2} ⊆ A ′ using b4 s1 s2 by fast
then have ¬ (∃ y. Field r − B ′ ⊆ {y}) −→ {y1 , y2} ⊆ A ′ − B ′ ∧ y1 6= y2

using n2 by blast
moreover have ¬ ({y1 , y2} ⊆ A ′ − B ′ ∧ y1 6= y2) using c1 by force
ultimately have ∃ y:: ′U . Field r − B ′ ⊆ {y} by blast
then show Field r ⊆ A ′ ∪ B ′ using c1 c2 by blast

qed
moreover have (|Ps| ≤o |A| −→ (∀ P ∈ Ps. (A ′ ∩ P) ∈ SCF (Restr r A ′)))
proof −

have c1 : s ′ ⊆ r using s3 s4 by blast
then have Field s ′ = Field (Restr r (Field s ′)) using lem-Relprop-fld-sat by

blast
moreover have s ′ ⊆ Restr r (Field s ′) using c1 unfolding Field-def by force
ultimately have SCF s ′ ⊆ SCF (Restr r (Field s ′)) using lem-ccext-scf-sat[of

s ′ Restr r (Field s ′)] by blast
moreover have |Ps| ≤o |A| −→ Ps ′ = Ps using p0 by simp
ultimately show ?thesis using s1 ′ s2 by blast

qed
ultimately show ?thesis by blast

qed

lemma lem-Ccext-subccr-pext5-scf2 :
fixes r :: ′U rel and A B B ′:: ′U set and x:: ′U and Ps:: ′U set set
assumes CCR r and A ∈ SF r and Ps ⊆ SCF r
shows ∃ A ′::(′U set). (x ∈ Field r −→ x ∈ A ′)

∧ A ⊆ A ′

∧ A ′ ∈ SF r
∧ (∀ a∈A. ((r‘‘{a}⊆B) ∨ (r‘‘{a}∩(A ′−B) 6= {})))
∧ ((∃ y:: ′U . A ′−B ′ = {y}) −→ Field r ⊆ (A ′∪B ′))
∧ CCR (Restr r A ′)
∧ ((finite A −→ finite A ′) ∧ ((¬ finite A) −→ |A ′| =o |A|))
∧ (((∃ P. Ps = {P}) ∨ ((¬ finite Ps) ∧ |Ps| ≤o |A|)) −→

(∀ P ∈ Ps. (A ′ ∩ P) ∈ SCF (Restr r A ′)))
proof (cases finite A)

89

assume b1 : finite A
then obtain A ′:: ′U set where b2 : (x ∈ Field r −→ x ∈ A ′) ∧ A ⊆ A ′ ∧ CCR

(Restr r A ′)
∧ (∀ a∈A. r‘‘{a}⊆B ∨ r‘‘{a}∩(A ′−B) 6= {}) ∧ A ′ ∈ SF r
∧ ((∃ y:: ′U . A ′−B ′ = {y}) −→ Field r ⊆ (A ′∪B ′))
and b3 : finite A ′ ∧ ((∃ P. Ps = {P}) −→ (∀ P ∈ Ps. (A ′ ∩ P)

∈ SCF (Restr r A ′)))
using assms lem-Ccext-finsubccr-pext5-scf2 [of r A Ps x B B ′] by

metis
have b4 : ((finite A −→ finite A ′) ∧ ((¬ finite A) −→ |A ′| =o |A|))
and b5 : (((∃ P. Ps = {P}) ∨ ((¬ finite Ps) ∧ |Ps| ≤o |A|)) −→ (∀ P ∈ Ps.

(A ′ ∩ P) ∈ SCF (Restr r A ′)))
using b1 b3 card-of-ordLeq-finite by blast+

show ?thesis
apply (rule exI)
using b2 b4 b5 by force

next
assume b1 : ¬ finite A
then obtain A ′ where b2 : (x ∈ Field r −→ x ∈ A ′) ∧ A ⊆ A ′ ∧ CCR (Restr

r A ′)
∧ (∀ a∈A. r‘‘{a}⊆B ∨ r‘‘{a}∩(A ′−B) 6= {}) ∧ A ′ ∈ SF r
∧ ((∃ y:: ′U . A ′−B ′ = {y}) −→ Field r ⊆ (A ′∪B ′))

and b3 : |A ′| =o |A| ∧ (|Ps| ≤o |A| −→ (∀ P ∈ Ps. (A ′ ∩ P) ∈ SCF
(Restr r A ′)))

using assms lem-Ccext-infsubccr-pext5-scf2 [of r A Ps x B B ′] by metis
have b4 : ((finite A −→ finite A ′) ∧ ((¬ finite A) −→ |A ′| =o |A|))

using b1 b3 by metis
have b5 : (((∃ P. Ps = {P}) ∨ ((¬ finite Ps) ∧ |Ps| ≤o |A|)) −→ (∀ P ∈ Ps.

(A ′ ∩ P) ∈ SCF (Restr r A ′)))
using b1 b3 by (metis card-of-singl-ordLeq finite.simps)

show ?thesis
apply (rule exI)
using b2 b4 b5 by force

qed

lemma lem-dnEsc-el: F ∈ dnEsc r A a =⇒ a ∈ F ∧ finite F unfolding dnEsc-def
F-def rpth-def by blast

lemma lem-dnEsc-emp: dnEsc r A a = {} =⇒ dnesc r A a = { a } unfolding
dnesc-def by simp

lemma lem-dnEsc-ne: dnEsc r A a 6= {} =⇒ dnesc r A a ∈ dnEsc r A a
unfolding dnesc-def using someI-ex[of λ F . F ∈ dnEsc r A a] by force

lemma lem-dnesc-in: a ∈ dnesc r A a ∧ finite (dnesc r A a)
using lem-dnEsc-emp[of r A a] lem-dnEsc-el[of - r A a] lem-dnEsc-ne[of r A a]

by force

lemma lem-escl-incr : B ⊆ escl r A B using lem-dnesc-in[of - r A] unfolding

90

escl-def by blast

lemma lem-escl-card: (finite B −→ finite (escl r A B)) ∧ (¬ finite B −→ |escl r
A B| ≤o |B|)
proof (intro conjI impI)

assume finite B
then show finite (escl r A B) using lem-dnesc-in[of - r A] unfolding escl-def

by blast
next

assume b1 : ¬ finite B
moreover have escl r A B = (

⋃
x∈B. ((dnesc r A) x)) unfolding escl-def by

blast
moreover have ∀ x. |(dnesc r A) x| ≤o |B|
proof

fix x
have finite (dnesc r A x) using lem-dnesc-in[of - r A] by blast
then show |dnesc r A x| ≤o |B| using b1 by (meson card-of-Well-order

card-of-ordLeq-infinite ordLeq-total)
qed
ultimately show |escl r A B| ≤o |B| by (simp add: card-of-UNION-ordLeq-infinite)

qed

lemma lem-Ccext-infsubccr-set-ext-scf3 :
fixes r s:: ′U rel and A A0 :: ′U set and Ps:: ′U set set
assumes a1 : CCR r and a2 : s ⊆ r and a3 : ¬ finite s and a4 : A ⊆ Field r

and a5 : |A| ≤o |Field s| and a6 : Ps ⊆ SCF r ∧ |Ps| ≤o |Field s|
shows ∃ s ′::(′U rel). CCR s ′ ∧ s ⊆ s ′ ∧ s ′ ⊆ r ∧ |s ′| =o |s| ∧ A ⊆ Field s ′

∧ (∀ P∈Ps. (Field s ′ ∩ P) ∈ SCF s ′) ∧ (escl r A0 (Field s ′) ⊆ Field s ′)
∧ (∃ D. s ′ = Restr r D) ∧ (Conelike s ′ −→ Conelike r)

proof −
obtain w where w0 : w = (λ x. SOME y. y ∈ Field r − dncl r {x}) by blast
have w1 :

∧
x. Field r − dncl r {x} 6= {} =⇒ w x ∈ Field r − dncl r {x}

proof −
fix x
assume Field r − dncl r {x} 6= {}
then show w x ∈ Field r − dncl r {x}

using w0 someI-ex [of λ y. y ∈ Field r − dncl r {x}] by force
qed
obtain q where q0 : q = (λ P a. SOME p. p ∈ P ∧ (a, p) ∈ r^∗) by blast
have q1 : ∀ P∈Ps. ∀ a∈Field r . (q P a) ∈ Field r ∧ (q P a) ∈ P ∧ (a, q P a)
∈ r^∗

proof (intro ballI)
fix P a
assume P ∈ Ps and a ∈ Field r
then show (q P a) ∈ Field r ∧ (q P a) ∈ P ∧ (a, q P a) ∈ r^∗

using q0 a6 someI-ex[of λ p. p ∈ P ∧ (a,p) ∈ r^∗] unfolding SCF-def by
blast

qed
obtain G:: ′U set ⇒ ′U rel set where b1 : G = (λ A. {t:: ′U rel. finite t ∧ CCR

91

t ∧ t ⊆ r ∧ A ⊆ Field t}) by blast
obtain g:: ′U set ⇒ ′U rel where b2 : g = (λ A. if A ⊆ Field r ∧ finite A then

(SOME t. t ∈ G A) else {}) by blast
have b3 : ∀ A. A ⊆ Field r ∧ finite A −→ finite (g A) ∧ CCR (g A) ∧ (g A) ⊆

r ∧ A ⊆ Field (g A)
proof (intro allI impI)

fix A
assume c1 : A ⊆ Field r ∧ finite A
then have g A = (SOME t. t ∈ G A) using b2 by simp
moreover have G A 6= {} using b1 a1 c1 lem-Ccext-finsubccr-dext[of r A] by

blast
ultimately have g A ∈ G A using some-in-eq by metis
then show finite (g A) ∧ CCR (g A) ∧ (g A) ⊆ r ∧ A ⊆ Field (g A) using

b1 by blast
qed
have b4 : ∀ A. ¬ (A ⊆ Field r ∧ finite A) −→ g A = {} using b2 by simp
obtain H :: ′U set ⇒ ′U set

where b5 : H = (λ X . X ∪
⋃
{S . ∃ a∈X . ∃ b∈X . S = Field (g {a,b})}

∪
⋃
{S . ∃ P∈Ps. ∃ a∈X . S = f r a (q P a) }

∪ escl r A0 X ∪ (w‘X)) by blast

obtain Pt:: ′U ⇒ ′U rel where p1 : Pt = (λ x. {p ∈ r . x = fst p ∨ x = snd p})
by blast

obtain pt:: ′U ⇒ ′U× ′U where p2 : pt = (λ x. (SOME p. p ∈ Pt x)) by blast
have ∀ x∈A. Pt x 6= {} using a4 unfolding p1 Field-def by force
then have p3 : ∀ x∈A. pt x ∈ Pt x unfolding p2 by (metis (full-types) Col-

lect-empty-eq Collect-mem-eq someI-ex)
obtain D0 where b7 : D0 = Field s ∪ fst‘(pt‘A) ∪ snd‘(pt‘A) by blast
obtain Di::nat ⇒ ′U set where b8 : Di = (λ n. (H^^n) D0) by blast
obtain D:: ′U set where b9 : D =

⋃
{X . ∃ n. X = Di n} by blast

obtain s ′ where b10 : s ′ = Restr r D by blast
have b11 : ∀ n. (¬ finite (Di n)) ∧ |Di n| ≤o |s|
proof

fix n0
show (¬ finite (Di n0)) ∧ |Di n0 | ≤o |s|
proof (induct n0)

have |D0 | =o |Field s|
proof −

have |fst‘(pt‘A)| ≤o |(pt‘A)| ∧ |(pt‘A)| ≤o |A| by simp
then have c1 : |fst‘(pt‘A)| ≤o |A| using ordLeq-transitive by blast
have |snd‘(pt‘A)| ≤o |(pt‘A)| ∧ |(pt‘A)| ≤o |A| by simp
then have c2 : |snd‘(pt‘A)| ≤o |A| using ordLeq-transitive by blast
have |fst‘(pt‘A)| ≤o |Field s| ∧ |snd‘(pt‘A)| ≤o |Field s|

using c1 c2 a5 ordLeq-transitive by blast
moreover have ¬ finite (Field s) using a3 lem-fin-fl-rel by blast
ultimately have c3 : |D0 | ≤o |Field s| unfolding b7 by simp
have Field s ⊆ D0 unfolding b7 by blast
then have |Field s| ≤o |D0 | by simp
then show ?thesis using c3 ordIso-iff-ordLeq by blast

92

qed
moreover have |Field s| =o |s| using a3 lem-rel-inf-fld-card by blast
ultimately have |D0 | ≤o |s| using ordIso-imp-ordLeq ordIso-transitive by

blast
moreover have ¬ finite D0 using a3 b7 lem-fin-fl-rel by blast
ultimately show ¬ finite (Di 0) ∧ |Di 0 | ≤o |s| using b8 by simp

next
fix n
assume d1 : (¬ finite (Di n)) ∧ |Di n| ≤o |s|
moreover then have |(Di n) × (Di n)| =o |Di n| by simp

ultimately have d2 : |(Di n) × (Di n)| ≤o |s| using ordIso-imp-ordLeq
ordLeq-transitive by blast

have d3 : ∀ a ∈ (Di n). ∀ b ∈ (Di n). |Field (g {a, b})| ≤o |s|
proof (intro ballI)

fix a b
assume a ∈ (Di n) and b ∈ (Di n)
have finite (g {a, b}) using b3 b4 by (metis finite.emptyI)
then have finite (Field (g {a, b})) using lem-fin-fl-rel by blast
then have |Field (g {a, b})| <o |s| using a3 finite-ordLess-infinite2 by

blast
then show |Field (g {a, b})| ≤o |s| using ordLess-imp-ordLeq by blast

qed
have d4 : Di (Suc n) = H (Di n) using b8 by simp
then have Di n ⊆ Di (Suc n) using b5 by blast
then have ¬ finite (Di (Suc n)) using d1 finite-subset by blast
moreover have |Di (Suc n)| ≤o |s|
proof −

obtain I where e1 : I = (Di n) × (Di n) by blast
obtain f where e2 : f = (λ (a,b). Field (g {a,b})) by blast
have |I | ≤o |s| using e1 d2 by blast
moreover have ∀ i∈I . |f i| ≤o |s| using e1 e2 d3 by simp

ultimately have |
⋃

i∈I . f i| ≤o |s| using a3 card-of-UNION-ordLeq-infinite[of
s I f] by blast

moreover have Di (Suc n) = (Di n) ∪ (
⋃

i∈I . f i)
∪ (

⋃
P∈Ps. (

⋃
a∈(Di n). f r a (q P a))) ∪ escl r A0 (Di n) ∪ (w‘(Di

n))
using e1 e2 d4 b5 by blast

moreover have |
⋃

P∈Ps. (
⋃

a∈(Di n). f r a (q P a))| ≤o |s|
proof −

have
∧

P. P ∈ Ps =⇒ ∀ a∈(Di n). |f r a (q P a)| ≤o |s|
using a3 lem-ccext-ffin by (metis card-of-Well-order card-of-ordLeq-infinite

ordLeq-total)
then have

∧
P. P ∈ Ps =⇒ |

⋃
a∈(Di n). f r a (q P a)| ≤o |s|

using d1 a3 card-of-UNION-ordLeq-infinite[of s Di n λ a. f r a (q - a)]
by blast

moreover have |Ps| ≤o |s| using a3 a6 lem-rel-inf-fld-card[of s]
lem-fin-fl-rel[of s]

by (metis ordIso-iff-ordLeq ordLeq-transitive)
ultimately show ?thesis

93

using a3 card-of-UNION-ordLeq-infinite[of s Ps λ P.
⋃

a∈(Di n). f r a
(q P a)] by blast

qed
moreover have |escl r A0 (Di n)| ≤o |s|

using d1 lem-escl-card[of Di n r A0] by (metis ordLeq-transitive)
moreover have |w‘(Di n)| ≤o |s| using d1 using card-of-image or-

dLeq-transitive by blast
ultimately show ?thesis using d1 a3 by simp

qed
ultimately show (¬ finite (Di (Suc n))) ∧ |Di (Suc n)| ≤o |s| by blast

qed
qed
have b12 : ∀ m. ∀ n. n ≤ m −→ Di n ≤ Di m
proof

fix m0
show ∀ n. n ≤ m0 −→ Di n ≤ Di m0
proof (induct m0)

show ∀n≤0 . Di n ⊆ Di 0 by blast
next

fix m
assume d1 : ∀n≤m. Di n ⊆ Di m
show ∀n≤Suc m. Di n ⊆ Di (Suc m)
proof (intro allI impI)

fix n
assume e1 : n ≤ Suc m
have Di (Suc m) = H (Di m) using b8 by simp
moreover have Di m ⊆ H (Di m) using b5 by blast
ultimately have n ≤ m −→ Di n ⊆ Di (Suc m) using d1 by blast
moreover have n = (Suc m) ∨ n ≤ m using e1 by force
ultimately show Di n ⊆ Di (Suc m) by blast

qed
qed

qed
have Di 0 ⊆ D using b9 by blast
then have b13 : Field s ⊆ D using b7 b8 by simp
then have b14 : s ⊆ s ′ ∧ s ′ ⊆ r using a2 b10 unfolding Field-def by force
moreover have b15 : |D| ≤o |s|
proof −

have |UNIV ::nat set| ≤o |s| using a3 infinite-iff-card-of-nat by blast
then have |

⋃
n. Di n| ≤o |s| using b11 a3 card-of-UNION-ordLeq-infinite[of

s UNIV Di] by blast
moreover have D = (

⋃
n. Di n) using b9 by force

ultimately show ?thesis by blast
qed
moreover have |s ′| =o |s|
proof −

have ¬ finite (Field s) using a3 lem-fin-fl-rel by blast
then have ¬ finite D using b13 finite-subset by blast
then have |D × D| =o |D| by simp

94

moreover have s ′ ⊆ D × D using b10 by blast
ultimately have |s ′| ≤o |s| using b15 card-of-mono1 ordLeq-ordIso-trans or-

dLeq-transitive by metis
moreover have |s| ≤o |s ′| using b14 by simp
ultimately show ?thesis using ordIso-iff-ordLeq by blast

qed
moreover have A ⊆ Field s ′

proof
fix x
assume c1 : x ∈ A
obtain ax bx where c2 : ax = fst (pt x) ∧ bx = snd (pt x) by blast
have pt x ∈ Pt x using c1 p3 by blast
then have c3 : (ax, bx) ∈ r ∧ x ∈ {ax,bx} using c2 p1 by simp
have {ax, bx} ⊆ D0 using b7 c1 c2 by blast
moreover have Di 0 ⊆ D using b9 by blast
moreover have Di 0 = D0 using b8 by simp
ultimately have {ax, bx} ⊆ D by blast
then have (ax, bx) ∈ s ′ using c3 b10 by blast
then show x ∈ Field s ′ using c3 unfolding Field-def by blast

qed
moreover have CCR s ′

proof −
have ∀ a ∈ Field s ′. ∀ b ∈ Field s ′. ∃ c ∈ Field s ′. (a,c) ∈ (s ′)^∗ ∧ (b,c) ∈

(s ′)^∗
proof (intro ballI)

fix a b
assume d1 : a ∈ Field s ′ and d2 : b ∈ Field s ′

then have d3 : a ∈ D ∧ b ∈ D using b10 unfolding Field-def by blast
then obtain ia ib where d4 : a ∈ Di ia ∧ b ∈ Di ib using b9 by blast
obtain k where d5 : k = (max ia ib) by blast
then have ia ≤ k ∧ ib ≤ k by simp
then have d6 : a ∈ Di k ∧ b ∈ Di k using d4 b12 by blast
obtain p where d7 : p = g {a,b} by blast
have Field p ⊆ H (Di k) using b5 d6 d7 by blast
moreover have H (Di k) = Di (Suc k) using b8 by simp
moreover have Di (Suc k) ⊆ D using b9 by blast
ultimately have d8 : Field p ⊆ D by blast
have {a, b} ⊆ Field r using d1 d2 b10 unfolding Field-def by blast
moreover have finite {a, b} by simp
ultimately have d9 : CCR p ∧ p ⊆ r ∧ {a,b} ⊆ Field p using d7 b3 by blast
then obtain c where d10 : c ∈ Field p ∧ (a,c) ∈ p^∗ ∧ (b,c) ∈ p^∗ unfolding

CCR-def by blast
have (p ‘‘ D) ⊆ D using d8 unfolding Field-def by blast
then have D ∈ Inv p unfolding Inv-def by blast

then have p^∗ ∩ (D×(UNIV :: ′U set)) ⊆ (Restr p D)^∗ using lem-Inv-restr-rtr [of
D p] by blast

moreover have Restr p D ⊆ s ′ using d9 b10 by blast
moreover have (a,c) ∈ p^∗ ∩ (D×(UNIV :: ′U set)) ∧ (b,c) ∈ p^∗ ∩

(D×(UNIV :: ′U set)) using d10 d3 by blast

95

ultimately have (a,c) ∈ (s ′)^∗ ∧ (b,c) ∈ (s ′)^∗ using rtrancl-mono by blast
moreover then have c ∈ Field s ′ using d1 lem-rtr-field by metis
ultimately show ∃ c ∈ Field s ′. (a,c) ∈ (s ′)^∗ ∧ (b,c) ∈ (s ′)^∗ by blast

qed
then show ?thesis unfolding CCR-def by blast

qed
moreover have ∀ P∈Ps. (Field s ′ ∩ P) ∈ SCF s ′

proof −
have ∀ P ∈ Ps. ∀ a∈Field s ′. ∃ b∈(Field s ′ ∩ P). (a, b) ∈ s ′̂ ∗
proof (intro ballI)

fix P a
assume d0 : P ∈ Ps and d1 : a ∈ Field s ′

then have a ∈ D using b10 unfolding Field-def by blast
then obtain n where a ∈ Di n using b9 by blast
then have f r a (q P a) ⊆ H (Di n) using d0 b5 by blast
moreover have H (Di n) = Di (Suc n) using b8 by simp
ultimately have d2 : f r a (q P a) ⊆ D using b9 by blast
have a ∈ Field r using d1 b10 unfolding Field-def by blast
then have q P a ∈ P ∧ (a, q P a) ∈ r^∗ using d0 q1 by blast
moreover have Restr r (f r a (q P a)) ⊆ s ′ using d0 d2 b10 by blast
ultimately have q P a ∈ P ∧ (a, q P a) ∈ s ′̂ ∗ using lem-Ccext-fint[of r a

q P a s ′] by blast
moreover then have q P a ∈ Field s ′ using d1 lem-rtr-field by metis
ultimately show ∃ b∈(Field s ′ ∩ P). (a, b) ∈ s ′̂ ∗ by blast

qed
then show ?thesis unfolding SCF-def by blast

qed
moreover have escl r A0 (Field s ′) ⊆ Field s ′

proof
fix x
assume c1 : x ∈ escl r A0 (Field s ′)
then obtain F a where c2 : x ∈ F ∧ F = dnesc r A0 a ∧ a ∈ Field s ′

unfolding escl-def by blast
obtain n where a ∈ Di n using c2 b9 b10 unfolding Field-def by blast
then have F ⊆ H (Di n) using c2 b5 unfolding escl-def by blast
moreover have H (Di n) = Di (Suc n) using b8 b9 by simp
ultimately have c3 : F ⊆ D using b9 by blast
show x ∈ Field s ′

proof (cases dnEsc r A0 a = {})
assume dnEsc r A0 a = {}
then have x = a using c2 lem-dnEsc-emp[of r A0] by blast
then show ?thesis using c2 by blast

next
assume dnEsc r A0 a 6= {}
then have F ∈ dnEsc r A0 a using c2 lem-dnEsc-ne[of r A0 a] by blast
then obtain b where F ∈ F r a b unfolding dnEsc-def by blast
then obtain f k where f ∈ rpth r a b k ∧ F = f‘{i. i≤k} unfolding F-def

by blast
moreover then obtain j where j≤k ∧ x = f j using c2 by blast

96

ultimately have f ∈ rpth (Restr r D) a x j using c3 unfolding rpth-def
by force

then have a ∈ Field s ′ ∧ (a,x) ∈ s ′̂ ∗ using c2 b10 lem-ccext-rpth-rtr [of - a
x] by blast

then show ?thesis using lem-rtr-field by metis
qed

qed
moreover have ∃ D. s ′ = Restr r D using b10 by blast
moreover have ¬ Conelike r −→ ¬ Conelike s ′

proof
assume ¬ Conelike r

then have c1 : ∀ a ∈ Field r . Field r − dncl r {a} 6= {} unfolding Conelike-def
dncl-def by blast

have ∀ a ∈ Field s ′. ∃ a ′ ∈ Field s ′. (a ′, a) /∈ s ′̂ ∗
proof

fix a
assume d1 : a ∈ Field s ′

then have d2 : a ∈ Field r using b10 unfolding Field-def by blast
then have d3 : w a ∈ Field r − dncl r {a} using c1 w1 by blast
then have (w a, a) /∈ s ′̂ ∗ unfolding dncl-def using b10 rtrancl-mono[of s ′

r] by blast
moreover have w a ∈ Field s ′

proof −
obtain n where a ∈ Di n using d1 b9 b10 unfolding Field-def by blast
then have a ∈ Di (Suc n) ∧ w a ∈ Di (Suc n) using b5 b8 by simp
then have e1 : Field (g {a, w a}) ⊆ H (Di (Suc n)) using b5 b8 by blast
have e2 : {a, w a} ⊆ Field r ∧ finite {a, w a} using d2 d3 by blast
have H (Di (Suc n)) = Di (Suc (Suc n)) using b8 by simp
moreover have Di (Suc (Suc n)) ⊆ D using b9 by blast
ultimately have Field (g {a,w a}) ⊆ D using e1 by blast
moreover have Restr (g {a,w a}) D ⊆ s ′ using e2 b3 b10 by blast
ultimately have g {a,w a} ⊆ s ′ unfolding Field-def by fastforce
moreover have w a ∈ Field (g {a, w a}) using e2 b3 by blast
ultimately show w a ∈ Field s ′ unfolding Field-def by blast

qed
ultimately show ∃ a ′ ∈ Field s ′. (a ′, a) /∈ s ′̂ ∗ by blast

qed
moreover have s ′ 6= {} using b14 a3 by force
ultimately show ¬ Conelike s ′ unfolding Conelike-def by blast

qed
ultimately show ?thesis by blast

qed

lemma lem-Ccext-infsubccr-pext5-scf3 :
fixes r :: ′U rel and A B B ′:: ′U set and x:: ′U and Ps:: ′U set set
assumes a1 : CCR r and a2 : ¬ finite A and a3 : A ∈ SF r and a4 : Ps ⊆ SCF r
shows ∃ A ′::(′U set). (x ∈ Field r −→ x ∈ A ′) ∧ A ⊆ A ′ ∧ CCR (Restr r A ′) ∧
|A ′| =o |A|

∧ (∀ a∈A. r‘‘{a}⊆B ∨ r‘‘{a}∩(A ′−B) 6= {}) ∧ A ′ ∈ SF r

97

∧ ((∃ y:: ′U . A ′−B ′ ⊆ {y}) −→ Field r ⊆ (A ′∪B ′))
∧ (|Ps| ≤o |A| −→ (∀ P ∈ Ps. (A ′ ∩ P) ∈ SCF (Restr r A ′)))
∧ (escl r A A ′ ⊆ A ′) ∧ clterm (Restr r A ′) r

proof −
obtain Ps ′ where p0 : Ps ′ = (if (|Ps| ≤o |A|) then Ps else {}) by blast
then have p1 : Ps ′ ⊆ SCF r ∧ |Ps ′| ≤o |A| using a4 by simp
have q1 : Field (Restr r A) = A using a3 unfolding SF-def by blast
obtain s where s = (Restr r A) by blast
then have q2 : s ⊆ r and q3 : ¬ finite s and q4 : A = Field s

using a2 q1 lem-fin-fl-rel by (blast, metis, blast)
obtain S where b1 : S = (λ a. r‘‘{a} − B) by blast
obtain S ′ where b2 : S ′ = (λ a. if (S a) 6= {} then (S a) else {a}) by blast
obtain f where f = (λ a. SOME b. b ∈ S ′ a) by blast
moreover have ∀ a. ∃ b. b ∈ (S ′ a) unfolding b2 by force
ultimately have ∀ a. f a ∈ S ′ a by (metis someI-ex)
then have b3 : ∀ a. (S a 6= {} −→ f a ∈ S a) ∧ (S a = {} −→ f a = a)

unfolding b2 by (clarsimp, metis singletonD)
obtain y1 y2 :: ′U where n1 : Field r 6= {} −→ {y1 , y2} ⊆ Field r

and n2 : (¬ (∃ y:: ′U . Field r − B ′ ⊆ {y})) −→ y1 /∈ B ′ ∧ y2 /∈
B ′ ∧ y1 6= y2 by blast

obtain y3 where n3 : (¬ (Field r − B ′ ⊆ {})) −→ y3 ∈ Field r − B ′ by blast
obtain A1 where b4 : A1 = ({x, y1 , y2 , y3} ∩ Field r) ∪ A ∪ (f ‘ A) by blast
have A1 ⊆ Field r
proof −

have c1 : A ⊆ Field r using q4 q2 unfolding Field-def by blast
moreover have f ‘ A ⊆ Field r
proof

fix x
assume x ∈ f ‘ A
then obtain a where d2 : a ∈ A ∧ x = f a by blast
show x ∈ Field r
proof (cases S a = {})

assume S a = {}
then have x = a using c1 d2 b3 by blast
then show x ∈ Field r using d2 c1 by blast

next
assume S a 6= {}
then have x ∈ S a using d2 b3 by blast
then show x ∈ Field r using b1 unfolding Field-def by blast

qed
qed
ultimately show A1 ⊆ Field r using b4 by blast

qed
moreover have s0 : |A1 | ≤o |Field s|
proof −

obtain C1 where c1 : C1 = {x,y1 ,y2 ,y3} ∩ Field r by blast
obtain C2 where c2 : C2 = A ∪ f ‘ A by blast
have ¬ finite A using q4 q3 lem-fin-fl-rel by blast
then have |C2 | =o |A| using c2 b4 q3 by simp

98

then have |C2 | ≤o |Field s| unfolding q4 using ordIso-iff-ordLeq by blast
moreover have c3 : ¬ finite (Field s) using q3 lem-fin-fl-rel by blast
moreover have |C1 | ≤o |Field s|
proof −

have |{x,y1 ,y2 ,y3}| ≤o |Field s| using c3
by (meson card-of-Well-order card-of-ordLeq-finite finite.emptyI finite.insertI

ordLeq-total)
moreover have |C1 | ≤o |{x,y1 ,y2 ,y3}| unfolding c1 by simp
ultimately show ?thesis using ordLeq-transitive by blast

qed
ultimately have |C1 ∪ C2 | ≤o |Field s| unfolding b4 using card-of-Un-ordLeq-infinite

by blast
moreover have A1 = C1 ∪ C2 using c1 c2 b4 by blast
ultimately show ?thesis by blast

qed
ultimately obtain s ′ where s1 : CCR s ′ ∧ s ⊆ s ′ ∧ s ′ ⊆ r ∧ |s ′| =o |s| ∧ A1
⊆ Field s ′

and s1 ′: (∀ P ∈ Ps ′. (Field s ′ ∩ P) ∈ SCF s ′)
and s1 ′′: escl r A (Field s ′) ⊆ Field s ′

and s1 ′′′: (∃ D. s ′ = Restr r D) ∧ (Conelike s ′ −→ Conelike r)
using p1 a1 q2 q3 q4 lem-Ccext-infsubccr-set-ext-scf3 [of r s A1 Ps ′ A] by blast

obtain A ′ where s2 : A ′ = Field s ′ by blast
obtain s ′′ where s3 : s ′′ = Restr r A ′ by blast
then have s4 : s ′ ⊆ s ′′ ∧ Field s ′′ = A ′ using s1 s2 lem-Relprop-fld-sat[of s ′ r

s ′′] by blast
have s5 : |Field s ′| =o |Field s| using s1 q3 lem-cardreleq-cardfldeq-inf [of s ′ s]

by blast
have A1 ∪ ({x} ∩ Field r) ⊆ A ′ using b4 s1 s2 by blast
moreover have CCR (Restr r A ′)
proof −

have CCR s ′′ using s1 s2 s4 lem-Ccext-subccr-eqfld[of s ′ s ′′] by blast
then show ?thesis using s3 by blast

qed
moreover have |A ′| =o |A1 |
proof −

have Field s ⊆ A1 using q4 b4 by blast
then have |Field s| ≤o |A1 | by simp
then have |A ′| ≤o |A1 | using s2 s5 ordIso-ordLeq-trans by blast
moreover have |A1 | ≤o |A ′| using s1 s2 by simp
ultimately show ?thesis using ordIso-iff-ordLeq by blast

qed
ultimately have b6 : A1 ∪ ({x} ∩ Field r) ⊆ A ′ ∧ CCR (Restr r A ′) ∧ |A ′| =o
|A1 | by blast

moreover then have A ∪ ({x} ∩ Field r) ⊆ A ′ using b4 by blast
moreover have |A ′| =o |A| using s5 s2 q4 by blast
moreover have ∀ a∈A. r‘‘{a} ⊆ B ∨ r‘‘{a} ∩ (A ′−B) 6= {}
proof

fix a
assume c1 : a ∈ A

99

have ¬ (r‘‘{a} ⊆ B) −→ r‘‘{a} ∩ (A ′−B) 6= {}
proof

assume ¬ (r‘‘{a} ⊆ B)
then have S a 6= {} unfolding b1 by blast
then have f a ∈ r‘‘{a} − B using b1 b3 by blast
moreover have f a ∈ A ′ using c1 b4 b6 by blast
ultimately show r‘‘{a} ∩ (A ′−B) 6= {} by blast

qed
then show r‘‘{a} ⊆ B ∨ r‘‘{a} ∩ (A ′−B) 6= {} by blast

qed
moreover have A ′ ∈ SF r using s3 s4 unfolding SF-def by blast
moreover have (∃ y:: ′U . A ′ − B ′ ⊆ {y}) −→ Field r ⊆ (A ′ ∪ B ′)
proof

assume c0 : ∃ y:: ′U . A ′ − B ′ ⊆ {y}
show Field r ⊆ (A ′ ∪ B ′)
proof (cases ∃ y:: ′U . A ′ − B ′ = {y})

assume c1 : ∃ y:: ′U . A ′ − B ′ = {y}
moreover have c2 : A ′ ⊆ Field r using s1 s2 unfolding Field-def by blast
ultimately have Field r 6= {} by blast
then have {y1 , y2} ⊆ Field r using n1 by blast
then have {y1 , y2} ⊆ A ′ using b4 s1 s2 by fast
then have ¬ (∃ y. Field r − B ′ ⊆ {y}) −→ {y1 , y2} ⊆ A ′ − B ′ ∧ y1 6= y2

using n2 by blast
moreover have ¬ ({y1 , y2} ⊆ A ′ − B ′ ∧ y1 6= y2) using c1 by force
ultimately have ∃ y:: ′U . Field r − B ′ ⊆ {y} by blast
then show Field r ⊆ A ′ ∪ B ′ using c1 c2 by blast

next
assume ¬ (∃ y:: ′U . A ′ − B ′ = {y})
then have c1 : A ′ − B ′ = {} using c0 by blast
show Field r ⊆ (A ′ ∪ B ′)
proof (cases Field r = {})

assume Field r = {}
then show Field r ⊆ (A ′ ∪ B ′) by blast

next
assume Field r 6= {}

moreover have c2 : A ′ ⊆ Field r using s1 s2 unfolding Field-def by blast
ultimately have Field r 6= {} by blast
then have ¬ (Field r − B ′ ⊆ {}) −→ {y3} ⊆ Field r using n3 by blast
then have ¬ (Field r − B ′ ⊆ {}) −→ {y3} ⊆ A ′ using b4 s1 s2 by fast
then have ¬ (Field r − B ′ ⊆ {}) −→ {y3} ⊆ A ′ − B ′ using n3 by blast
moreover have ¬ ({y3} ⊆ A ′ − B ′) using c1 by force
ultimately have Field r − B ′ ⊆ {} by blast
then show Field r ⊆ A ′ ∪ B ′ using c1 c2 by blast

qed
qed

qed
moreover have (|Ps| ≤o |A| −→ (∀ P ∈ Ps. (A ′ ∩ P) ∈ SCF (Restr r A ′)))
proof −

have c1 : s ′ ⊆ r using s3 s4 by blast

100

then have Field s ′ = Field (Restr r (Field s ′)) using lem-Relprop-fld-sat by
blast

moreover have s ′ ⊆ Restr r (Field s ′) using c1 unfolding Field-def by force
ultimately have SCF s ′ ⊆ SCF (Restr r (Field s ′)) using lem-ccext-scf-sat[of

s ′ Restr r (Field s ′)] by blast
moreover have |Ps| ≤o |A| −→ Ps ′ = Ps using p0 by simp
ultimately show ?thesis using s1 ′ s2 by blast

qed
moreover have escl r A A ′ ⊆ A ′ using s1 ′′ s2 by blast
moreover have Conelike (Restr r A ′) −→ Conelike r
proof

assume c1 : Conelike (Restr r A ′)
obtain D where s ′ = Restr r D using s1 ′′′ by blast
then have s ′ = Restr r (Field s ′) unfolding Field-def by force
then have Conelike s ′ using c1 s2 by simp
then show Conelike r using s1 ′′′ by blast

qed
ultimately show ?thesis unfolding clterm-def by blast

qed

lemma lem-Ccext-finsubccr-pext5-scf3 :
fixes r :: ′U rel and A B B ′:: ′U set and x:: ′U and Ps:: ′U set set
assumes a1 : CCR r and a2 : finite A and a3 : A ∈ SF r and a4 : Ps ⊆ SCF r
shows ∃ A ′::(′U set). (x ∈ Field r −→ x ∈ A ′) ∧ A ⊆ A ′ ∧ CCR (Restr r A ′) ∧
finite A ′

∧ (∀ a∈A. r‘‘{a}⊆B ∨ r‘‘{a}∩(A ′−B) 6= {}) ∧ A ′ ∈ SF r
∧ ((∃ y:: ′U . A ′−B ′ ⊆ {y}) −→ Field r ⊆ (A ′∪B ′))
∧ ((∃ P. Ps = {P}) −→ (∀ P ∈ Ps. (A ′ ∩ P) ∈ SCF (Restr r

A ′)))
proof −

obtain P where p0 : P = (if (Ps 6= {}) then (SOME P. P ∈ Ps) else Field r)
by blast

moreover have Field r ∈ SCF r unfolding SCF-def by blast
ultimately have p1 : P ∈ SCF r using a4 by (metis contra-subsetD some-in-eq)
have p2 : (∃ P. Ps = {P}) −→ Ps = {P} using p0 by fastforce
have q1 : Field (Restr r A) = A using a3 unfolding SF-def by blast
obtain s where s = (Restr r A) by blast
then have q2 : s ⊆ r and q3 : finite s and q4 : A = Field s

using a2 q1 lem-fin-fl-rel by (blast, metis, blast)
obtain S where b1 : S = (λ a. r‘‘{a} − B) by blast
obtain S ′ where b2 : S ′ = (λ a. if (S a) 6= {} then (S a) else {a}) by blast
obtain f where f = (λ a. SOME b. b ∈ S ′ a) by blast
moreover have ∀ a. ∃ b. b ∈ (S ′ a) unfolding b2 by force
ultimately have ∀ a. f a ∈ S ′ a by (metis someI-ex)
then have b3 : ∀ a. (S a 6= {} −→ f a ∈ S a) ∧ (S a = {} −→ f a = a)

unfolding b2 by (clarsimp, metis singletonD)
obtain y1 y2 :: ′U where n1 : Field r 6= {} −→ {y1 , y2} ⊆ Field r

and n2 : (¬ (∃ y:: ′U . Field r − B ′ ⊆ {y})) −→ y1 /∈ B ′ ∧ y2 /∈
B ′ ∧ y1 6= y2 by blast

101

obtain y3 where n3 : (¬ (Field r − B ′ ⊆ {})) −→ y3 ∈ Field r − B ′ by blast
obtain A1 where b4 : A1 = ({x,y1 ,y2 ,y3} ∩ Field r) ∪ A ∪ (f ‘ A) by blast
have A1 ⊆ Field r
proof −

have c1 : A ⊆ Field r using q4 q2 unfolding Field-def by blast
moreover have f ‘ A ⊆ Field r
proof

fix x
assume x ∈ f ‘ A
then obtain a where d2 : a ∈ A ∧ x = f a by blast
show x ∈ Field r
proof (cases S a = {})

assume S a = {}
then have x = a using c1 d2 b3 by blast
then show x ∈ Field r using d2 c1 by blast

next
assume S a 6= {}
then have x ∈ S a using d2 b3 by blast
then show x ∈ Field r using b1 unfolding Field-def by blast

qed
qed
ultimately show A1 ⊆ Field r using b4 by blast

qed
moreover have s0 : finite A1 using b4 q3 q4 lem-fin-fl-rel by blast
ultimately obtain s ′ where s1 : CCR s ′ ∧ s ⊆ s ′ ∧ s ′ ⊆ r ∧ finite s ′ ∧ A1 ⊆

Field s ′

and s1 ′: (∃ P. Ps = {P}) −→ (Field s ′ ∩ P) ∈ SCF s ′

using p1 a1 a4 q2 q3 lem-Ccext-finsubccr-set-ext-scf [of r s A1 P] by metis
obtain A ′ where s2 : A ′ = Field s ′ by blast
obtain s ′′ where s3 : s ′′ = Restr r A ′ by blast
then have s4 : s ′ ⊆ s ′′ ∧ Field s ′′ = A ′ using s1 s2 lem-Relprop-fld-sat[of s ′ r

s ′′] by blast
have s5 : finite (Field s ′) using s1 lem-fin-fl-rel by blast
have A1 ∪ ({x} ∩ Field r) ⊆ A ′ using b4 s1 s2 by blast
moreover have CCR (Restr r A ′)
proof −

have CCR s ′′ using s1 s2 s4 lem-Ccext-subccr-eqfld[of s ′ s ′′] by blast
then show ?thesis using s3 by blast

qed
ultimately have b6 : A1 ∪ ({x} ∩ Field r) ⊆ A ′ ∧ CCR (Restr r A ′) by blast
moreover then have A ∪ ({x} ∩ Field r) ⊆ A ′ using b4 by blast
ultimately have (x ∈ Field r −→ x ∈ A ′) ∧ A ⊆ A ′ ∧ CCR (Restr r A ′) by

blast
moreover have finite A ′ using s2 s5 by blast
moreover have ∀ a∈A. r‘‘{a} ⊆ B ∨ r‘‘{a} ∩ (A ′−B) 6= {}
proof

fix a
assume c1 : a ∈ A
have ¬ (r‘‘{a} ⊆ B) −→ r‘‘{a} ∩ (A ′−B) 6= {}

102

proof
assume ¬ (r‘‘{a} ⊆ B)
then have S a 6= {} unfolding b1 by blast
then have f a ∈ r‘‘{a} − B using b1 b3 by blast
moreover have f a ∈ A ′ using c1 b4 b6 by blast
ultimately show r‘‘{a} ∩ (A ′−B) 6= {} by blast

qed
then show r‘‘{a} ⊆ B ∨ r‘‘{a} ∩ (A ′−B) 6= {} by blast

qed
moreover have A ′ ∈ SF r using s3 s4 unfolding SF-def by blast
moreover have (∃ y:: ′U . A ′ − B ′ ⊆ {y}) −→ Field r ⊆ (A ′ ∪ B ′)
proof

assume c0 : ∃ y:: ′U . A ′ − B ′ ⊆ {y}
show Field r ⊆ (A ′ ∪ B ′)
proof (cases ∃ y:: ′U . A ′ − B ′ = {y})

assume c1 : ∃ y:: ′U . A ′ − B ′ = {y}
moreover have c2 : A ′ ⊆ Field r using s1 s2 unfolding Field-def by blast
ultimately have Field r 6= {} by blast
then have {y1 , y2} ⊆ Field r using n1 by blast
then have {y1 , y2} ⊆ A ′ using b4 s1 s2 by fast
then have ¬ (∃ y. Field r − B ′ ⊆ {y}) −→ {y1 , y2} ⊆ A ′ − B ′ ∧ y1 6= y2

using n2 by blast
moreover have ¬ ({y1 , y2} ⊆ A ′ − B ′ ∧ y1 6= y2) using c1 by force
ultimately have ∃ y:: ′U . Field r − B ′ ⊆ {y} by blast
then show Field r ⊆ A ′ ∪ B ′ using c1 c2 by blast

next
assume ¬ (∃ y:: ′U . A ′ − B ′ = {y})
then have c1 : A ′ − B ′ = {} using c0 by blast
show Field r ⊆ (A ′ ∪ B ′)
proof (cases Field r = {})

assume Field r = {}
then show Field r ⊆ (A ′ ∪ B ′) by blast

next
assume Field r 6= {}

moreover have c2 : A ′ ⊆ Field r using s1 s2 unfolding Field-def by blast
ultimately have Field r 6= {} by blast
then have ¬ (Field r − B ′ ⊆ {}) −→ {y3} ⊆ Field r using n3 by blast
then have ¬ (Field r − B ′ ⊆ {}) −→ {y3} ⊆ A ′ using b4 s1 s2 by fast
then have ¬ (Field r − B ′ ⊆ {}) −→ {y3} ⊆ A ′ − B ′ using n3 by blast
moreover have ¬ ({y3} ⊆ A ′ − B ′) using c1 by force
ultimately have Field r − B ′ ⊆ {} by blast
then show Field r ⊆ A ′ ∪ B ′ using c1 c2 by blast

qed
qed

qed
moreover have (∃ P. Ps = {P}) −→ (∀ P ∈ Ps. (A ′ ∩ P) ∈ SCF (Restr r

A ′))
proof −

have c1 : s ′ ⊆ r using s3 s4 by blast

103

then have Field s ′ = Field (Restr r (Field s ′)) using lem-Relprop-fld-sat by
blast

moreover have s ′ ⊆ Restr r (Field s ′) using c1 unfolding Field-def by force
ultimately have SCF s ′ ⊆ SCF (Restr r (Field s ′)) using lem-ccext-scf-sat[of

s ′ Restr r (Field s ′)] by blast
then show ?thesis using p2 s1 ′ s2 by blast

qed
ultimately show ?thesis by blast

qed

lemma lem-Ccext-subccr-pext5-scf3 :
fixes r :: ′U rel and A B B ′:: ′U set and x:: ′U and Ps:: ′U set set and C :: ′U set ⇒
bool
assumes a1 : CCR r and a2 : A ∈ SF r and a3 : Ps ⊆ SCF r

and a4 : C = (λ A ′:: ′U set. (x ∈ Field r −→ x ∈ A ′)
∧ A ⊆ A ′

∧ A ′ ∈ SF r
∧ (∀ a∈A. ((r‘‘{a}⊆B) ∨ (r‘‘{a}∩(A ′−B) 6= {})))
∧ ((∃ y:: ′U . A ′−B ′ ⊆ {y}) −→ Field r ⊆ (A ′∪B ′))
∧ CCR (Restr r A ′)
∧ ((finite A −→ finite A ′) ∧ ((¬ finite A) −→ |A ′| =o |A|))
∧ (((∃ P. Ps = {P}) ∨ ((¬ finite Ps) ∧ |Ps| ≤o |A|)) −→

(∀ P ∈ Ps. (A ′ ∩ P) ∈ SCF (Restr r A ′)))
∧ ((¬ finite A) −→ ((escl r A A ′ ⊆ A ′) ∧ (clterm (Restr r A ′)

r))))
shows ∃ A ′::(′U set). C A ′

proof (cases finite A)
assume b1 : finite A
then obtain A ′:: ′U set where b2 : (x ∈ Field r −→ x ∈ A ′) ∧ A ⊆ A ′ ∧ CCR

(Restr r A ′)
∧ (∀ a∈A. r‘‘{a}⊆B ∨ r‘‘{a}∩(A ′−B) 6= {}) ∧ A ′ ∈ SF r
∧ ((∃ y:: ′U . A ′−B ′ ⊆ {y}) −→ Field r ⊆ (A ′∪B ′))
and b3 : finite A ′ ∧ ((∃ P. Ps = {P}) −→ (∀ P ∈ Ps. (A ′ ∩ P)

∈ SCF (Restr r A ′)))
using a1 a2 a3 lem-Ccext-finsubccr-pext5-scf3 [of r A Ps x B B ′]

by metis
have b4 : ((finite A −→ finite A ′) ∧ ((¬ finite A) −→ |A ′| =o |A|))
and b5 : (((∃ P. Ps = {P}) ∨ ((¬ finite Ps) ∧ |Ps| ≤o |A|)) −→ (∀ P ∈ Ps.

(A ′ ∩ P) ∈ SCF (Restr r A ′)))
using b1 b3 card-of-ordLeq-finite by blast+

show ?thesis
apply (rule exI)
unfolding a4 using b1 b2 b4 b5 by force

next
assume b1 : ¬ finite A
then obtain A ′ where b2 : (x ∈ Field r −→ x ∈ A ′) ∧ A ⊆ A ′ ∧ CCR (Restr

r A ′)
∧ (∀ a∈A. r‘‘{a}⊆B ∨ r‘‘{a}∩(A ′−B) 6= {}) ∧ A ′ ∈ SF r
∧ ((∃ y:: ′U . A ′−B ′ ⊆ {y}) −→ Field r ⊆ (A ′∪B ′))

104

and b3 : |A ′| =o |A| ∧ (|Ps| ≤o |A| −→ (∀ P ∈ Ps. (A ′ ∩ P) ∈ SCF
(Restr r A ′)))

and b3 ′: (escl r A A ′ ⊆ A ′) ∧ clterm (Restr r A ′) r
using a1 a2 a3 lem-Ccext-infsubccr-pext5-scf3 [of r A Ps x B B ′] by metis

have b4 : ((finite A −→ finite A ′) ∧ ((¬ finite A) −→ |A ′| =o |A|))
using b1 b3 by metis

have b5 : (((∃ P. Ps = {P}) ∨ ((¬ finite Ps) ∧ |Ps| ≤o |A|)) −→ (∀ P ∈ Ps.
(A ′ ∩ P) ∈ SCF (Restr r A ′)))

using b1 b3 by (metis card-of-singl-ordLeq finite.simps)
have b6 : ((¬ finite A) −→ ((escl r A A ′ ⊆ A ′) ∧ clterm (Restr r A ′) r)) using

b3 ′ by blast
have C A ′ unfolding a4 using b2 b4 b5 b6 by simp
then show ?thesis by blast

qed

lemma lem-acyc-un-emprd:
fixes r s:: ′U rel
assumes a1 : acyclic r ∧ acyclic s and a2 : (Range r) ∩ (Domain s) = {}
shows acyclic (r ∪ s)
proof −

have
∧

n. (r ∪ s)^^n ⊆ s^∗ O r^∗
proof −

fix n
show (r ∪ s)^^n ⊆ s^∗ O r^∗
proof (induct n)

show (r ∪ s)^^0 ⊆ s^∗ O r^∗ by force
next

fix n
assume (r ∪ s)^^n ⊆ s^∗ O r^∗
moreover then have (r ∪ s)^^n O r ⊆ s^∗ O r^∗ by force
moreover have (s^∗ O r^∗) O s ⊆ s^∗ O r^∗
proof −

have r^+ O s = r^∗ O (r O s) by (simp add: O-assoc trancl-unfold-right)
moreover have r O s = {} using a2 by force
ultimately have s^∗ O (r^+ O s) = {} by force
moreover have s^∗ O s ⊆ s^∗ by force

moreover have r^∗ = Id ∪ r^+ by (metis rtrancl-unfold trancl-unfold-right)
moreover then have (s^∗ O r^∗) O s = (s^∗ O s) ∪ (s^∗ O (r^+ O s))

by fastforce
ultimately show ?thesis by fastforce

qed
moreover have (r ∪ s)^^(Suc n) = ((((r ∪ s)^^n) O r) ∪ (((r ∪ s)^^n) O

s)) by simp
ultimately show (r ∪ s) ^^ (Suc n) ⊆ s^∗ O r^∗ by force

qed
qed
then have b1 : (r ∪ s)^∗ ⊆ s^∗ O r^∗ using rtrancl-power [of - r ∪ s] by blast
have ∀ x. (x,x) ∈ (r ∪ s)^+ −→ False
proof (intro allI impI)

105

fix x
assume (x,x) ∈ (r ∪ s)^+
then have (x,x) ∈ (r ∪ s)^∗ O (r ∪ s) using trancl-unfold-right by blast
then have (x,x) ∈ ((s^∗ O r^∗) O r) ∪ ((s^∗ O r^∗) O s) using b1 by force
moreover have (x,x) ∈ ((s^∗ O r^∗) O r) −→ False
proof

assume (x,x) ∈ ((s^∗ O r^∗) O r)
then obtain u v where d1 : (x,u) ∈ s^∗ ∧ (u,v) ∈ r^∗ ∧ (v,x) ∈ r by blast
moreover then have x /∈ Domain s using a2 by blast
ultimately have x = u by (meson Not-Domain-rtrancl)
then have (x,x) ∈ r^+ using d1 by force
then show False using a1 unfolding acyclic-def by blast

qed
moreover have (x,x) ∈ ((s^∗ O r^∗) O s) −→ False
proof

assume (x,x) ∈ ((s^∗ O r^∗) O s)
then obtain u v where d1 : (x,u) ∈ s^∗ ∧ (u,v) ∈ r^∗ ∧ (v,x) ∈ s by blast
have u = v −→ False
proof

assume u = v
then have (x,x) ∈ s^+ using d1 by force
then show False using a1 unfolding acyclic-def by blast

qed
then have (u,v) ∈ r^+ using d1 by (meson rtranclD)
then have v ∈ Range r using trancl-unfold-right[of r] by force
moreover have v ∈ Domain s using d1 by blast
ultimately show False using a2 by blast

qed
ultimately show False by blast

qed
then show ?thesis using a1 unfolding acyclic-def by blast

qed

lemma lem-spthlen-rtr : (a,b) ∈ r^∗ =⇒ (a,b) ∈ r^^(spthlen r a b)
using rtrancl-power unfolding spthlen-def by (metis LeastI-ex)

lemma lem-spthlen-tr : (a,b) ∈ r^∗ ∧ a 6= b =⇒ (a,b) ∈ r^^(spthlen r a b) ∧ spthlen
r a b > 0
proof −

assume (a,b) ∈ r^∗ ∧ a 6= b
moreover then have b1 : (a,b) ∈ r^^(spthlen r a b) using lem-spthlen-rtr [of a

b] by force
ultimately have spthlen r a b = 0 −→ False by force
then show ?thesis using b1 by blast

qed

lemma lem-spthlen-min: (a,b) ∈ r^^n =⇒ spthlen r a b ≤ n
unfolding spthlen-def by (metis Least-le)

106

lemma lem-spth-inj:
fixes r :: ′U rel and a b:: ′U and f ::nat ⇒ ′U and n::nat
assumes a1 : f ∈ spth r a b and a2 : n = spthlen r a b
shows inj-on f {i. i≤n}
proof −

have b1 : f ∈ rpth r a b n using a1 a2 unfolding spth-def by blast
have ∀ i j. i ≤ n ∧ j ≤ n ∧ i < j −→ f i = f j −→ False
proof (intro allI impI)

fix i j
assume c1 : i ≤ n ∧ j ≤ n ∧ i < j and c2 : f i = f j
obtain l where c3 : l = j − i by blast
then have c4 : l 6= 0 using c1 by simp
obtain g where c5 : g = (λ k. if (k≤i) then (f k) else (f (k + l))) by blast
then have g 0 = a using b1 unfolding rpth-def by fastforce
moreover have g (n − l) = b
proof (cases j < n)

assume j < n
then show ?thesis using c5 c3 b1 unfolding rpth-def by simp

next
assume ¬ j < n
then have j = n using c1 by simp
then show ?thesis using c5 c2 c3 c4 b1 unfolding rpth-def by simp

qed
moreover have ∀ k < n − l. (g k, g (Suc k)) ∈ r
proof (intro allI impI)

fix k
assume d1 : k < n − l
have k 6= i −→ (g k, g (Suc k)) ∈ r using c5 d1 b1 unfolding rpth-def by

fastforce
moreover have k = i −→ (g k, g (Suc k)) ∈ r
proof

assume e1 : k = i
then have (g k, g (Suc k)) = (f i, f ((Suc i) + l)) using c5 by simp
moreover have f i = f (i + l) using c1 c2 c3 by simp
moreover have i + l < n using d1 e1 by force
ultimately show (g k, g (Suc k)) ∈ r using b1 unfolding rpth-def by

simp
qed
ultimately show (g k, g (Suc k)) ∈ r by force

qed
ultimately have g ∈ rpth r a b (n − l) unfolding rpth-def by blast
then have spthlen r a b ≤ n − l

using lem-spthlen-min[of a b] lem-ccext-ntr-rpth[of a b] by blast
then show False using a2 c1 c3 by force

qed
moreover then have ∀ i j. i ≤ n ∧ j ≤ n ∧ j < i −→ f i = f j −→ False by

metis
ultimately show ?thesis unfolding inj-on-def by (metis linorder-neqE-nat

107

mem-Collect-eq)
qed

lemma lem-rtn-rpth-inj: (a,b) ∈ r^^n =⇒ n = spthlen r a b =⇒ ∃ f . f ∈ rpth r
a b n ∧ inj-on f {i. i ≤ n}
proof −

assume a1 : (a,b) ∈ r^^n and a2 : n = spthlen r a b
then have (a,b) ∈ r^^n using lem-spthlen-rtr [of a b] rtrancl-power by blast
then obtain f where b2 : f ∈ rpth r a b n using lem-ccext-ntr-rpth[of a b] by

blast
then have f ∈ spth r a b using a2 unfolding spth-def by blast
then have inj-on f {i. i ≤ n} using a2 lem-spth-inj[of f] by blast
then show ?thesis using b2 by blast

qed

lemma lem-rtr-rpth-inj: (a,b) ∈ r^∗ =⇒ ∃ f n . f ∈ rpth r a b n ∧ inj-on f {i. i
≤ n}

using lem-spthlen-rtr [of a b r] lem-rtn-rpth-inj[of a b - r] by blast

lemma lem-sum-ind-ex:
assumes a1 : g = (λn::nat.

∑
i<n. f i)

and a2 :∀ i::nat. f i > 0
shows ∃ n k. (m::nat) = g n + k ∧ k < f n
proof(induct m)

have 0 = g 0 + 0 ∧ 0 < f 0 using a1 a2 by simp
then show ∃n k. (0 ::nat) = g n + k ∧ k < f n by blast

next
fix m
assume ∃n k. m = g n + k ∧ k < f n
then obtain n k where b1 : m = g n + k ∧ k < f n by blast
show ∃n ′ k ′. Suc m = g n ′ + k ′ ∧ k ′ < f n ′

proof(cases Suc k < f n)
assume Suc k < f n
then have Suc m = g n + (Suc k) ∧ (Suc k) < f n using b1 by simp
then show ∃n ′ k ′. Suc m = g n ′ + k ′ ∧ k ′ < f n ′ by blast

next
assume ¬ Suc k < f n
then have Suc m = g (Suc n) + 0 ∧ 0 < f (Suc n) using a1 a2 b1 by simp
then show ∃n ′ k ′. Suc m = g n ′ + k ′ ∧ k ′ < f n ′ by blast

qed
qed

lemma lem-sum-ind-un:
assumes a1 : g = (λn::nat.

∑
i<n. f i)

and a2 : ∀ i::nat. f i > 0
and a3 : (m::nat) = g n + k ∧ k < f n
and a4 : m = g n ′ + k ′ ∧ k ′ < f n ′

shows n = n ′ ∧ k = k ′

proof −

108

have b1 : ∀ n1 n2 . n1 ≤ n2 −→ g n1 ≤ g n2
proof(intro allI impI)

fix n1 ::nat and n2 ::nat
assume n1 ≤ n2
moreover obtain t where t = n2 − n1 by blast
moreover have g n1 ≤ g (n1 + t) unfolding a1 by (induct t, simp+)
ultimately show g n1 ≤ g n2 by simp

qed
have n < n ′ −→ False
proof

assume n < n ′

then have g (Suc n) ≤ g n ′ using b1 by simp
then have g n + f n ≤ g n ′ using a1 b1 by simp
moreover have g n ′ < g n + f n using a3 a4 by simp
ultimately show False by simp

qed
moreover have n ′ < n −→ False
proof

assume n ′ < n
then have g (Suc n ′) ≤ g n using b1 by simp
then have g n ′ + f n ′ ≤ g n using a1 b1 by simp
moreover have g n < g n ′ + f n ′ using a3 a4 by simp
ultimately show False by simp

qed
ultimately show n = n ′ ∧ k = k ′ using a3 a4 by simp

qed

lemma lem-flatseq:
fixes r :: ′U rel and xi::nat ⇒ ′U
assumes ∀n. (xi n, xi (Suc n)) ∈ r^∗ ∧ (xi n 6= xi (Suc n))
shows ∃ g yi. (∀n. (yi n, yi (Suc n)) ∈ r)

∧ (∀ i::nat. ∀ j::nat. i < j ←→ g i < g j)
∧ (∀ i::nat. yi (g i) = xi i)
∧ (∀ i::nat. inj-on yi { k. g i ≤ k ∧ k ≤ g (Suc i) })
∧ (∀ k::nat. ∃ i::nat. g i ≤ k ∧ Suc k ≤ g (Suc i))
∧ (∀ k i i ′. g i ≤ k ∧ Suc k ≤ g (Suc i) ∧ g i ′ ≤ k ∧ Suc k ≤ g (Suc

i ′) −→ i = i ′)
proof −

obtain P where b0 : P = (λ n m. m > 0 ∧ (xi n, xi (Suc n)) ∈ r^^m ∧ m =
spthlen r (xi n) (xi (Suc n))) by blast

then have ∀n. ∃m. P n m using assms lem-spthlen-tr [of - - r] by blast
then obtain f where ∀n. P n (f n) by metis
then have b1 : ∀ n. (f n) > 0 ∧ (xi n, xi (Suc n)) ∈ r^^(f n)

and b1 ′: ∀ n. (f n) = spthlen r (xi n) (xi (Suc n)) using b0 by blast+
have ∀ n. ∃ yi. inj-on yi {i. i ≤ f n} ∧ (yi 0) = (xi n) ∧

(∀ k<(f n). (yi k, yi (Suc k)) ∈ r) ∧ (yi (f n)) = (xi (Suc n))
proof

fix n
have (xi n, xi (Suc n)) ∈ r^^(f n) and (f n) = spthlen r (xi n) (xi (Suc n))

109

using b1 b1 ′ by blast+
then obtain yi where yi ∈ rpth r (xi n) (xi (Suc n)) (f n) ∧ inj-on yi {i. i

≤ f n}
using lem-rtn-rpth-inj[of xi n xi (Suc n) f n r] by blast

then show ∃ yi. inj-on yi {i. i ≤ f n} ∧ (yi 0) = (xi n) ∧ (∀ k<(f n). (yi k, yi
(Suc k)) ∈ r)

∧ (yi (f n)) = (xi (Suc n)) unfolding rpth-def by blast
qed
then obtain yin where b2 : ∀ n. inj-on (yin n) {i. i ≤ f n} ∧ ((yin n) 0) = (xi

n) ∧
(∀ k < (f n). ((yin n) k, (yin n) (Suc k)) ∈ r) ∧ ((yin n) (f n)) = (xi (Suc

n)) by metis
obtain g where b3 : g = (λn.

∑
i<n. f i) by blast

obtain yi where b4 : yi = (λm. let p =
(SOME p. m = (g (fst p)) + (snd p) ∧ (snd p) < (f (fst p)))
in (yin (fst p)) (snd p)) by blast

have b5 :
∧

m n k. m = (g n) + k ∧ k < f n =⇒ yi m = yin n k
proof −

fix m n k
assume c0 : m = (g n) + k ∧ k < f n
have ∃ p . (m = (g (fst p)) + (snd p)) ∧ ((snd p) < (f (fst p)))

using b1 b3 lem-sum-ind-ex by force
then obtain n ′ k ′ where m = (g n ′) + k ′ ∧ k ′ < (f n ′) ∧ yi m = (yin n ′) k ′

using b4 by (smt someI-ex)
moreover then have n ′ = n ∧ k ′ = k using c0 b1 b3 lem-sum-ind-un[of g f

m n ′ k ′ n k] by blast
ultimately show yi m = yin n k by blast

qed
have ∀m. (yi m, yi (Suc m)) ∈ r
proof

fix m
have ∃ p . (m = (g (fst p)) + (snd p)) ∧ ((snd p) < (f (fst p)))

using b1 b3 lem-sum-ind-ex by force
then obtain n k where c1 : m = (g n) + k ∧ k < (f n) ∧ yi m = (yin n) k

using b4 by (smt someI-ex)
have ∃ p . ((Suc m) = (g (fst p)) + (snd p)) ∧ ((snd p) < (f (fst p)))

using b1 b3 lem-sum-ind-ex by force
then obtain n ′ k ′ where c2 : (Suc m) = (g n ′) + k ′ ∧ k ′ < (f n ′) ∧ yi (Suc

m) = (yin n ′) k ′

using b4 by (smt someI-ex)
show (yi m, yi (Suc m)) ∈ r
proof(cases Suc k < f n)

assume Suc k < f n
then have Suc m = g n + (Suc k) ∧ (Suc k) < f n using c1 by simp
then have n ′ = n ∧ k ′ = Suc k using b1 b3 c2 lem-sum-ind-un[of g] by blast
then show (yi m, yi (Suc m)) ∈ r using b2 c1 c2 by force

next
assume d1 : ¬ Suc k < f n
then have Suc m = g (Suc n) + 0 ∧ 0 < f (Suc n) using b1 b3 c1 by simp

110

then have n ′ = Suc n ∧ k ′ = 0 using b1 b3 c2 lem-sum-ind-un[of g] by blast
then show (yi m, yi (Suc m)) ∈ r

using b2 c1 c2 d1 by (metis Suc-le-eq dual-order .antisym not-less)
qed

qed
moreover have b6 : ∀ j::nat. ∀ i::nat. i < j −→ g i < g j
proof

fix j0 ::nat
show ∀ i::nat. i < j0 −→ g i < g j0
proof (induct j0)

show ∀ i<0 . g i < g 0 by blast
next

fix j::nat
assume d1 : ∀ i<j. g i < g j
show ∀ i<Suc j. g i < g (Suc j)
proof (intro allI impI)

fix i::nat
assume i < Suc j
then have i ≤ j by force
moreover have g j < g (Suc j) using b1 b3 by simp
moreover then have i < j −→ g i < g (Suc j) using d1 by force
ultimately show g i < g (Suc j) by force

qed
qed

qed
moreover have b7 : ∀ j::nat. ∀ i::nat. j ≤ i −→ g j ≤ g i
proof (intro allI impI)

fix j::nat and i::nat
assume j ≤ i
moreover have j < i −→ g j ≤ g i using b6 by force
moreover have j = i −→ g j ≤ g i by blast
ultimately show g j ≤ g i by force

qed
moreover have b8 : ∀ j::nat. ∀ i::nat. g i < g j −→ i < j
proof (intro allI impI)

fix j::nat and i::nat
assume g i < g j
moreover have j ≤ i −→ g j ≤ g i using b7 by blast
ultimately show i < j by simp

qed
moreover have b9 : ∀ i::nat. yi (g i) = xi i
proof

fix i::nat
obtain p where p = (i, 0 ::nat) by blast
then have ((g i) = (g (fst p)) + (snd p)) ∧ ((snd p) < (f (fst p))) using b1

by force
then obtain n k where c1 : (g i) = (g n) + k ∧ k < (f n) ∧ yi (g i) = (yin

n) k
using b4 by (smt someI-ex)

111

then have g n ≤ g i by simp
moreover have g n < g i −→ False
proof

assume g n < g i
then have n < i using b8 by blast
then have g (Suc n) ≤ g i using b7 by simp
then show False using c1 b3 b6 by force

qed
ultimately have g i = g n by force
then have ¬ i < n ∧ ¬ n < i using b6 by force
then have i = n ∧ k = 0 using c1 by force
then have yi (g i) = (yin i) 0 using c1 by blast
moreover have (yin i) 0 = xi i using b2 by blast
ultimately show yi (g i) = xi i by simp

qed
moreover have ∀ i::nat. inj-on yi { k. g i ≤ k ∧ k ≤ g (Suc i) }
proof

fix i
have c1 : inj-on (yin i) {k. k ≤ f i} using b2 by blast
have ∀ k1 k2 . g i ≤ k1 ∧ k1 ≤ g (Suc i) −→ g i ≤ k2 ∧ k2 ≤ g (Suc i) −→

yi k1 = yi k2 −→ k1 = k2
proof (intro allI impI)

fix k1 k2
assume d1 : g i ≤ k1 ∧ k1 ≤ g (Suc i)

and d2 : g i ≤ k2 ∧ k2 ≤ g (Suc i) and d3 : yi k1 = yi k2
have g i ≤ k1 ∧ k1 ≤ g i + f i using d1 b3 by simp
then have ∃ t. k1 = g i + t ∧ t ≤ f i by presburger
then obtain t1 where d4 : k1 = g i + t1 ∧ t1 ≤ f i by blast
have g i ≤ k2 ∧ k2 ≤ g i + f i using d2 b3 by simp
then have ∃ t. k2 = g i + t ∧ t ≤ f i by presburger
then obtain t2 where d5 : k2 = g i + t2 ∧ t2 ≤ f i by blast
have t1 < f i ∧ t2 < f i −→ k1 = k2
proof

assume t1 < f i ∧ t2 < f i
then have yi k1 = yin i t1 ∧ yi k2 = yin i t2 using d4 d5 b5 by blast
then have yin i t1 = yin i t2 using d3 by metis
then show k1 = k2 using c1 d4 d5 unfolding inj-on-def by blast

qed
moreover have t1 = f i ∧ t2 < f i −→ False
proof

assume e1 : t1 = f i ∧ t2 < f i
then have e2 : yi k2 = yin i t2 using d4 d5 b5 by blast
have e3 : k1 = g (Suc i) using e1 d4 b3 by simp
then have yi k1 = yin (Suc i) 0 using b1 b5 [of k1 Suc i 0] by simp
moreover have yi k1 = yin i (f i) using e3 b9 b2 by simp
ultimately have yin i t2 = yin i (f i) using e2 d3 by metis
then have t2 = f i using c1 d5 unfolding inj-on-def by blast
then show False using e1 by force

qed

112

moreover have t1 < f i ∧ t2 = f i −→ False
proof

assume e1 : t1 < f i ∧ t2 = f i
then have e2 : yi k1 = yin i t1 using d4 d5 b5 by blast
have e3 : k2 = g (Suc i) using e1 d5 b3 by simp
then have yi k2 = yin (Suc i) 0 using b1 b5 [of k2 Suc i 0] by simp
moreover have yi k2 = yin i (f i) using e3 b9 b2 by simp
ultimately have yin i t1 = yin i (f i) using e2 d3 by metis
then have t1 = f i using c1 d4 unfolding inj-on-def by blast
then show False using e1 by force

qed
ultimately show k1 = k2 using d4 d5 by force

qed
then show inj-on yi { k. g i ≤ k ∧ k ≤ g (Suc i) } unfolding inj-on-def by

blast
qed
moreover have ∀ m. ∃ n. g n ≤ m ∧ Suc m ≤ g (Suc n)
proof

fix m
obtain n k where m = g n + k ∧ k < f n using b1 b3 lem-sum-ind-ex[of g f

m] by blast
then have g n ≤ m ∧ Suc m ≤ g (Suc n) using b3 by simp
then show ∃ n. g n ≤ m ∧ Suc m ≤ g (Suc n) by blast

qed
moreover have ∀ k i i ′. g i ≤ k ∧ Suc k ≤ g (Suc i) ∧ g i ′ ≤ k ∧ Suc k ≤ g

(Suc i ′) −→ i = i ′
proof (intro allI impI)

fix k i i ′
assume g i ≤ k ∧ Suc k ≤ g (Suc i) ∧ g i ′ ≤ k ∧ Suc k ≤ g (Suc i ′)
moreover then have k < g i + f i ∧ k < g i ′ + f i ′ using b3 by simp
ultimately have ∃ l1 . k = g i + l1 ∧ l1 < f i and ∃ l2 . k = g i ′ + l2 ∧ l2

< f i ′ by presburger+
then obtain l1 l2 where k = g i + l1 ∧ l1 < f i and k = g i ′ + l2 ∧ l2 < f

i ′ by blast
then show i = i ′ using b1 b3 lem-sum-ind-un[of g f k i l1 i ′ l2] by blast

qed
ultimately show ?thesis by blast

qed

lemma lem-sv-un3 :
fixes r1 r2 r3 :: ′U rel
assumes single-valued (r1 ∪ r3) and single-valued (r2 ∪ r3) and Field r1 ∩
Field r2 = {}
shows single-valued (r1 ∪ r2 ∪ r3)

using assms unfolding single-valued-def Field-def by blast

lemma lem-cfcomp-d2uset:
fixes κ:: ′U rel and r :: ′U rel and W :: ′U rel ⇒ ′U set and R:: ′U rel ⇒ ′U rel

and S :: ′U rel set

113

assumes a1 : κ =o cardSuc |UNIV ::nat set|
and a3 : T = { t:: ′U rel. t 6= {} ∧ CCR t ∧ single-valued t ∧ acyclic t ∧

(∀ x∈Field t. t‘‘{x} 6= {}) }
and a4 : Refl r

and a5 : S ⊆ {α ∈ O:: ′U rel set. α <o κ}
and a6 : |{α ∈ O:: ′U rel set. α <o κ}| ≤o |S |
and a7 : ∀ α ∈ S . ∃ β ∈ S . α <o β

and a8 : Field r = (
⋃
α∈S . W α) and a9 : ∀α∈S . ∀ β∈S . α 6= β −→ W α ∩

W β = {}
and a10 :

∧
α. α ∈ S =⇒ R α ∈ T ∧ R α ⊆ r ∧ |W α| ≤o |UNIV ::nat set|

∧ Field (R α) = W α ∧ ¬ Conelike (Restr r (W α))
and a11 :

∧
α x. α ∈ S =⇒ x ∈ W α =⇒ ∃ a.

((x,a) ∈ (Restr r (W α))^∗ ∧ (∀ β ∈ S . α <o β −→ (r‘‘{a} ∩ W β)
6= {}))
shows ∃ r ′. CCR r ′ ∧ DCR 2 r ′ ∧ r ′ ⊆ r ∧ (∀ a ∈ Field r . ∃ b ∈ Field r ′. (a,b)
∈ r^∗)
proof −

obtain l :: ′U ⇒ ′U rel where q1 : l = (λ a. SOME α. α ∈ S ∧ a ∈ W α) by
blast

have q2 :
∧

a. a ∈ Field r =⇒ l a ∈ S ∧ a ∈ W (l a)
proof −

fix a
assume a ∈ Field r
then obtain α where α ∈ S ∧ a ∈ W α using q1 a8 by blast
then show l a ∈ S ∧ a ∈ W (l a) using q1 someI-ex[of λ α. α ∈ S ∧ a ∈ W

α] by metis
qed
have q3 :

∧
α a. α ∈ S =⇒ a ∈ W α =⇒ l a = α

proof −
fix α a
assume α ∈ S and a ∈ W α
moreover then have a ∈ W (l a) ∧ α ∈ S ∧ l a ∈ S using q2 a8 a10 by fast
ultimately show l a = α using a9 by blast

qed
have b1 :

∧
α. α ∈ S =⇒ (R α) ∈ T using a3 a10 by blast

have b4 :
∧

α. α ∈ S =⇒ (R α) ⊆ r using a10 by blast
have b7 : ∀ α ∈ S . ∀ β ∈ S . ∃ γ∈S . (α <o γ ∨ α = γ) ∧ (β <o γ ∨ β = γ)
proof (intro ballI)

fix α β
assume α ∈ S and β ∈ S
then have Well-order α ∧ Well-order β and α ∈ S ∧ β ∈ S

using a5 unfolding ordLess-def by blast+
moreover then have α <o β ∨ β <o α ∨ α =o β

using ordLeq-iff-ordLess-or-ordIso ordLess-or-ordLeq by blast
ultimately show ∃ γ ∈ S . (α <o γ ∨ α = γ) ∧ (β <o γ ∨ β = γ)

using a3 a5 lem-Oeq[of α β] by blast
qed

114

obtain s :: ′U rel ⇒ nat ⇒ ′U where b8 : s = (λ α. SOME xi. cfseq (R α) xi)
by blast

moreover have ∀ α ∈ S . ∃ xi. cfseq (R α) xi using b1 a3 lem-ccrsv-cfseq by
blast

ultimately have b9 :
∧

α. α ∈ S =⇒ cfseq (R α) (s α) by (metis someI-ex)
obtain en where b-en: en = (λ α. SOME g :: nat ⇒ ′U . W α ⊆ g‘UNIV) by

blast
obtain ta :: ′U ⇒ ′U rel ⇒ ′U

where b10 : ta = (λ u α ′. SOME u ′. (u,u ′) ∈ r ∧ u ′ ∈ W α ′) by blast
obtain t :: (′U rel) × ′U ⇒ ′U rel ⇒ ′U

where b11 : t = (λ (α,a) α ′. ta a α ′) by blast
obtain tm :: (′U rel) × nat ⇒ ′U rel ⇒ ′U

where b12 : tm = (λ (α,k) α ′. t (α,(en α k)) α ′) by blast
obtain jnN :: ′U ⇒ ′U ⇒ ′U

where b13 : jnN = (λ u u ′. SOME v. (u,v) ∈ (R (l u))^∗ ∧ (u ′,v) ∈ (R (l
u))^∗) by blast

obtain h where b20 :
∧

α k1 β k2 . α ∈ S ∧ β ∈ S =⇒
(∃ γ ∈ S . α <o γ ∧ β <o γ ∧ h γ = jnN (tm (α,k1) γ) (tm (β,k2) γ))

using a1 a5 a6 a7 lem-jnfix-cardsuc[of UNIV ::nat set κ S jnN tm] by blast
define EP where EP = (λ α. { a ∈ W α. ∀ β ∈ S . α <o β −→ (r‘‘{a} ∩ W

β) 6= {} })
have b24 :

∧
α k b. α ∈ S =⇒ (s α k, b) ∈ (R α)^∗ =⇒ (∃ k ′≥k. b = s α k ′)

proof −
fix α k b
assume c1 : α ∈ S and c2 : (s α k, b) ∈ (R α)^∗
moreover then have single-valued (R α) using b1 a3 by blast

moreover have ∀ i. (s α i, s α (Suc i)) ∈ R α using c1 b9 unfolding cfseq-def
by blast

ultimately show ∃ k ′≥k. b = s α k ′

using lem-rseq-svacyc-inv-rtr [of R α s α k b] by blast
qed
have b25 :

∧
α k b. α ∈ S =⇒ (s α k, b) ∈ (R α)^+ =⇒ (∃ k ′>k. b = s α k ′)

proof −
fix α k b
assume c1 : α ∈ S and c2 : (s α k, b) ∈ (R α)^+
moreover then have single-valued (R α) using b1 a3 by blast

moreover have ∀ i. (s α i, s α (Suc i)) ∈ R α using c1 b9 unfolding cfseq-def
by blast

ultimately show ∃ k ′>k. b = s α k ′ using lem-rseq-svacyc-inv-tr [of R α s α
k b] by blast

qed
have b26 :

∧
α a b c. α ∈ S =⇒ a ∈ W α =⇒ b ∈ W α =⇒

c = jnN a b =⇒ c ∈ W α ∧ (a, c) ∈ (R α)^∗ ∧ (b, c) ∈ (R α)^∗
proof −

fix α a b c
assume c1 : α ∈ S and c2 : a ∈ W α and c3 : b ∈ W α and c4 : c = jnN a b
then have CCR (R α) ∧ a ∈ Field (R α) ∧ b ∈ Field (R α) using c1 b1 a3

a10 by blast
then have ∃ c ′. (a, c ′) ∈ (R α)^∗ ∧ (b, c ′) ∈ (R α)^∗ unfolding CCR-def

115

by blast
moreover have l a = α using c1 c2 q3 by blast
moreover then have c = (SOME c ′. (a, c ′) ∈ (R α)^∗ ∧ (b, c ′) ∈ (R α)^∗)

using c4 b13 by simp
ultimately have c5 : (a, c) ∈ (R α)^∗ ∧ (b, c) ∈ (R α)^∗

using someI-ex[of λ c ′. (a, c ′) ∈ (R α)^∗ ∧ (b, c ′) ∈ (R α)^∗] by force
moreover have W α ∈ Inv (R α) using c1 a10 [of α] unfolding Field-def

Inv-def by blast
moreover then have c ∈ W α using c2 c5 lem-Inv-restr-rtr2 [of W α R α]

by blast
ultimately show c ∈ W α ∧ (a, c) ∈ (R α)^∗ ∧ (b, c) ∈ (R α)^∗ by blast

qed
have b-enr :

∧
α. α ∈ S =⇒ W α ⊆ (en α)‘(UNIV ::nat set)

proof −
fix α
assume α ∈ S
then have |W α| ≤o |UNIV ::nat set| using a10 by blast
then obtain g::nat ⇒ ′U where W α ⊆ g‘UNIV

by (metis card-of-ordLeq2 empty-subsetI order-refl)
then show W α ⊆ (en α)‘UNIV unfolding b-en using someI-ex by metis

qed
have b-h:

∧
α a β b. α ∈ S ∧ β ∈ S =⇒ a ∈ EP α ∧ b ∈ EP β =⇒

(∃ γ ∈ S . ∃ a ′ ∈ W γ. ∃ b ′ ∈ W γ. α <o γ ∧ β <o γ
∧ (a,a ′) ∈ r ∧ (a ′, h γ) ∈ (R γ)^∗ ∧ (b,b ′) ∈ r ∧ (b ′, h γ) ∈ (R γ)^∗)

proof −
fix α a β b
assume c1 : α ∈ S ∧ β ∈ S and c2 : a ∈ EP α ∧ b ∈ EP β
then have a ∈ W α ∧ b ∈ W β unfolding EP-def by blast
moreover then obtain k1 k2 where c3 : a = en α k1 ∧ b = en β k2 using

c1 b-enr by blast
ultimately obtain γ where c4 : γ ∈ S ∧ α <o γ ∧ β <o γ

and c5 : h γ = jnN (tm (α,k1) γ) (tm (β,k2) γ) using c1
b20 by blast

have ta a γ = (SOME a ′. (a, a ′) ∈ r ∧ a ′ ∈ W γ) using b10 by simp
moreover have ∃ x. (a, x) ∈ r ∧ x ∈ W γ using c2 c4 unfolding EP-def

by blast
ultimately have c6 : (a, ta a γ) ∈ r ∧ ta a γ ∈ W γ

using someI-ex[of λ a ′. (a, a ′) ∈ r ∧ a ′ ∈ W γ] by metis
have ta b γ = (SOME a ′. (b, a ′) ∈ r ∧ a ′ ∈ W γ) using b10 by simp
moreover have ∃ x. (b, x) ∈ r ∧ x ∈ W γ using c2 c4 unfolding EP-def

by blast
ultimately have c7 : (b, ta b γ) ∈ r ∧ ta b γ ∈ W γ

using someI-ex[of λ a ′. (b, a ′) ∈ r ∧ a ′ ∈ W γ] by metis
have h γ = jnN (ta a γ) (ta b γ) using c3 c5 b11 b12 by simp
moreover have ta a γ ∈ W γ ∧ ta b γ ∈ W γ using c6 c7 by blast
ultimately have h γ ∈ W γ ∧ (ta a γ, h γ) ∈ (R γ)^∗ ∧ (ta b γ, h γ) ∈ (R

γ)^∗
using c4 b26 [of γ ta a γ ta b γ h γ] by blast

then show ∃ γ ∈ S . ∃ a ′ ∈ W γ. ∃ b ′ ∈ W γ. α <o γ ∧ β <o γ

116

∧ (a,a ′) ∈ r ∧ (a ′, h γ) ∈ (R γ)^∗ ∧ (b,b ′) ∈ r ∧ (b ′, h γ) ∈ (R γ)^∗
using c4 c6 c7 by blast

qed
have p1 :

∧
α. α ∈ S =⇒ R α ⊆ Restr r (W α) using a10 unfolding Field-def

by fastforce
have p2 :

∧
α. α ∈ S =⇒ Field (Restr r (W α)) = W α

proof −
fix α
assume α ∈ S
then have W α ⊆ Field r using a10 unfolding Field-def by blast

moreover have SF r = {A. A ⊆ Field r} using a4 unfolding SF-def
refl-on-def Field-def by fast

ultimately have W α ∈ SF r by blast
then show Field (Restr r (W α)) = W α unfolding SF-def by blast

qed
have p3 :

∧
α. α ∈ S =⇒ ∀n. ∃ k≥n. (s α (Suc k), s α k) /∈ (Restr r (W α))^∗

proof −
fix α
assume c1 : α ∈ S
have ∀ a∈Field (Restr r (W α)). ∃ i. (a, s α i) ∈ (Restr r (W α))^∗
proof

fix a
assume a ∈ Field (Restr r (W α))
then have a ∈ Field (R α) using c1 a10 [of α] unfolding Field-def by blast
then obtain i where (a, s α i) ∈ (R α)^∗ using c1 b9 [of α] unfolding

cfseq-def by blast
moreover have R α ⊆ Restr r (W α) using c1 p1 by blast
ultimately show ∃ i. (a, s α i) ∈ (Restr r (W α))^∗ using rtrancl-mono by

blast
qed
moreover have ∀ i. (s α i, s α (Suc i)) ∈ Restr r (W α)

using c1 p1 b9 [of α] unfolding cfseq-def using rtrancl-mono by blast
ultimately have cfseq (Restr r (W α)) (s α) unfolding cfseq-def by blast
then show ∀n. ∃ k≥n. (s α (Suc k), s α k) /∈ (Restr r (W α))^∗

using c1 a10 [of α] lem-cfseq-ncl[of Restr r (W α) s α] by blast
qed
obtain E where b27 : E = (λ α. { k. (s α (Suc k), s α k) /∈ (Restr r (W α))^∗
}) by blast

obtain P where b28 : P = (λ α. (s α)‘(E α)) by blast
obtain K where b29 : K = (λ α. { a ∈ W α. (h α ∈ W α −→ (h α, a) ∈ (R

α)^∗)
∧ (a, h α) /∈ (R α)^∗ }) by blast

let ?F = λ α. P α ∩ K α
have b31 :

∧
α. α ∈ S =⇒ P α ∈ SCF (R α)

proof −
fix α
assume c1 : α ∈ S
then have P α ⊆ Field (R α) using b9 b28 lem-cfseq-fld by blast
moreover have ∀ a ∈ Field (R α). ∃ b ∈ P α. (a, b) ∈ (R α)^∗

117

proof
fix a
assume a ∈ Field (R α)
then obtain i where d1 : (a, s α i) ∈ (R α)^∗ using c1 b9 [of α] unfolding

cfseq-def by blast
then obtain k where i≤k ∧ (s α (Suc k), s α k) /∈ (Restr r (W α))^∗ using

c1 p3 [of α] by blast
moreover then have d2 : (s α i, s α k) ∈ (R α)^∗

using c1 b9 [of α] lem-rseq-rtr unfolding cfseq-def by blast
ultimately have s α k ∈ P α using b27 b28 by blast
moreover have (a, s α k) ∈ (R α)^∗ using d1 d2 by simp
ultimately show ∃ b ∈ P α. (a, b) ∈ (R α)^∗ by blast

qed
ultimately show P α ∈ SCF (R α) unfolding SCF-def by blast

qed
have b32 :

∧
α. α ∈ S =⇒ K α ∈ SCF (R α) ∩ Inv (R α)

proof
fix α
assume c1 : α ∈ S
have ∀ a∈Field (R α). ∃ b∈K α. (a, b) ∈ (R α)^∗
proof

fix a
assume d1 : a ∈ Field (R α)
show ∃ b∈K α. (a, b) ∈ (R α)^∗
proof (cases h α ∈ Field (R α))

assume h α ∈ Field (R α)
moreover have CCR (R α) using c1 b1 a3 by blast
ultimately obtain a ′ where a ′ ∈ Field (R α)

and e1 : (a,a ′) ∈ (R α)^∗ ∧ (h α, a ′) ∈ (R α)^∗
using d1 unfolding CCR-def by blast

then obtain b where e2 : (a ′, b) ∈ (R α) using c1 b1 a3 by blast
then have b ∈ Field (R α) unfolding Field-def by blast
moreover have (h α, b) ∈ (R α)^∗ using e1 e2 by force
moreover have (b, h α) ∈ (R α)^∗ −→ False
proof

assume (b, h α) ∈ (R α)^∗
then have (b, b) ∈ (R α)^+ using e1 e2 by fastforce
then show False using c1 b1 a3 unfolding acyclic-def by blast

qed
moreover have (a, b) ∈ (R α)^∗ using e1 e2 by force
ultimately show ?thesis using b29 c1 a10 by blast

next
assume h α /∈ Field (R α)

then have (a, h α) /∈ (R α)^∗ ∧ h α /∈ W α using d1 c1 a10 lem-rtr-field[of
a] by blast

then have a ∈ K α using d1 b29 c1 a10 by blast
then show ?thesis by blast

qed
qed

118

then show K α ∈ SCF (R α) using b29 c1 a10 unfolding SCF-def by blast
next

fix α
assume c1 : α ∈ S
have ∀ a b. a ∈ K α ∧ (a,b) ∈ (R α) −→ b ∈ K α
proof (intro allI impI)

fix a b
assume d1 : a ∈ K α ∧ (a,b) ∈ (R α)
then have d3 : a ∈ Field (R α) and d4 : (a, h α) /∈ (R α)∗ using b29 c1 a10

by blast+
have b ∈ Field (R α) using d1 unfolding Field-def by blast
moreover have h α ∈ W α −→ (h α, b) ∈ (R α)^∗ using d1 b29 by force
moreover have (b, h α) ∈ (R α)^∗ −→ False
proof

assume (b, h α) ∈ (R α)^∗
then have (a, h α) ∈ (R α)^∗ using d1 by force
then show False using d4 by blast

qed
ultimately show b ∈ K α using b29 c1 a10 by blast

qed
then show K α ∈ Inv (R α) using b29 unfolding Inv-def by blast

qed
have b33 :

∧
α. α ∈ S =⇒ ?F α ∈ SCF (R α)

proof −
fix α
assume c1 : α ∈ S
have K α ∈ SCF (R α) ∩ Inv (R α) using c1 b31 b32 unfolding Inv-def by

blast+
moreover have P α ∈ SCF (R α) using c1 b31 b32 lem-scfinv-scf-int by blast
ultimately have K α ∩ P α ∈ SCF (R α) using lem-scfinv-scf-int by blast
moreover have ?F α = K α ∩ P α by blast
ultimately show ?F α ∈ SCF (R α) by metis

qed
define rei where rei = (λ α. SOME k. k ∈ E α ∧ (s α k) ∈ ?F α)
define re0 where re0 = (λ α. s α (rei α))
define re1 where re1 = (λ α. s α (Suc (rei α)))
define ep where ep = (λ α. SOME b. (re1 α, b) ∈ (Restr r (W α))^∗ ∧ b ∈

EP α)
define spl where spl = (λ α. spthlen (Restr r (W α)) (re1 α) (ep α))
define sp where sp = (λ α. SOME f . f ∈ spth (Restr r (W α)) (re1 α) (ep α))
define R0 where R0 = (λ α. { (a,b) ∈ R α. (b, re0 α) ∈ (R α)^∗ })
define R2 where R2 = (λ α. { (a,b). ∃ k < (spl α). a = sp α k ∧ b = sp α

(Suc k) })
define R ′ where R ′ = (λ α. R0 α ∪ R2 α ∪ { (re0 α, re1 α) })
define re ′ where re ′ = ({ (a,b) ∈ r . ∃ α ∈ S . ∃ β ∈ S . α <o β ∧ a = ep α ∧

b ∈ W β ∧ (b, h β) ∈ (R β)^∗ })
define r ′ where r ′ = (re ′ ∪ (

⋃
α∈S . R ′ α))

have b-Fne:
∧

α. α ∈ S =⇒ ?F α 6= {}

119

proof −
fix α
assume α ∈ S
then have ?F α ∈ SCF (R α) ∧ R α 6= {} using b33 a3 a10 by blast
then show ?F α 6= {} unfolding SCF-def Field-def by force

qed
have b-re0 :

∧
α. α ∈ S =⇒ re0 α ∈ ?F α ∧ rei α ∈ E α

proof −
fix α
assume α ∈ S
then obtain k where k ∈ E α ∧ (s α k) ∈ ?F α using b-Fne b28 by force
then have (s α (rei α)) ∈ ?F α and rei α ∈ E α

using someI-ex[of λ k. k ∈ E α ∧ s α k ∈ P α ∩ K α] unfolding rei-def
by metis+

then show re0 α ∈ ?F α ∧ rei α ∈ E α unfolding re0-def by blast
qed
have b-rs:

∧
α. α ∈ S =⇒ s α ‘ UNIV ⊆ W α

proof −
fix α
assume α ∈ S
then have cfseq (R α) (s α) ∧ Field (R α) = W α using b9 a3 a10 by blast
then show s α ‘ UNIV ⊆ W α using lem-rseq-rtr unfolding cfseq-def by

blast
qed
have b-injs:

∧
α k1 k2 . α ∈ S =⇒ s α k1 = s α k2 =⇒ k1 = k2

proof −
fix α k1 k2
assume α ∈ S and s α k1 = s α k2
moreover then have cfseq (R α) (s α) ∧ acyclic (R α) using b9 a3 a10 by

blast
moreover then have inj (s α) using lem-cfseq-inj by blast
ultimately show k1 = k2 unfolding inj-on-def by blast

qed
have b-re1 :

∧
α. α ∈ S =⇒ re1 α = s α (Suc (rei α))

proof −
fix α
assume c1 : α ∈ S
then have re0 α ∈ ?F α using b-re0 [of α] by blast
then obtain k where c2 : re0 α = s α k ∧ k ∈ E α unfolding b28 by blast
then have (s α (Suc k), s α k) /∈ (Restr r (W α))^∗ unfolding b27 by blast
have rei α = k using c1 c2 b-injs unfolding re0-def by blast
moreover have re1 α = s α (Suc (rei α)) unfolding re1-def by blast
ultimately show re1 α = s α (Suc (rei α)) by blast

qed
have b-re12 :

∧
α. α ∈ S =⇒ (re0 α, re1 α) ∈ R α ∧ (re1 α, re0 α) /∈ (Restr r

(W α))^∗
proof −

fix α
assume c1 : α ∈ S

120

then have re0 α = s α (rei α) and re1 α = s α (Suc (rei α))
and cfseq (R α) (s α) using b9 b-re1 re0-def by blast+

then have (re0 α, re1 α) ∈ R α unfolding cfseq-def by simp
moreover have (re1 α, re0 α) ∈ (Restr r (W α))^∗ −→ False
proof

assume (re1 α, re0 α) ∈ (Restr r (W α))^∗
then have (s α (Suc (rei α)), s α (rei α)) ∈ (Restr r (W α))^∗

using c1 b-re1 [of α] unfolding re0-def by metis
moreover have (s α (Suc (rei α)), s α (rei α)) /∈ (Restr r (W α))^∗

using c1 b-re0 [of α] b27 by blast
ultimately show False by blast

qed
ultimately show (re0 α, re1 α) ∈ R α ∧ (re1 α, re0 α) /∈ (Restr r (W α))^∗

by blast
qed
have b-rw:

∧
α a b. α ∈ S =⇒ a ∈ W α =⇒ (a,b) ∈ (Restr r (W α))^∗ =⇒ b

∈ W α
proof −

fix α a b
assume α ∈ S and a ∈ W α and (a,b) ∈ (Restr r (W α))^∗
then show b ∈ W α using lem-Inv-restr-rtr2 [of - Restr r (W α)] unfolding

Inv-def by blast
qed
have b-r0w:

∧
α a b. α ∈ S =⇒ a ∈ W α =⇒ (a,b) ∈ (R α)^∗ =⇒ b ∈ W α

using p1 b-rw rtrancl-mono by blast
have b-ep:

∧
α. α ∈ S =⇒ (re1 α, ep α) ∈ (Restr r (W α))^∗ ∧ ep α ∈ EP α

proof −
fix α
assume c1 : α ∈ S
moreover then have c2 : re1 α ∈ W α using b-rs[of α] b-re1 [of α] by blast
ultimately obtain b

where c3 : (re1 α, b) ∈ (Restr r (W α))^∗ ∧ (∀β∈S . α <o β −→ r‘‘{b} ∩
W β 6= {})

using a11 [of α re1 α] by blast
then have b ∈ W α using c1 c2 b-rw[of α] by blast
moreover obtain L where c4 : L = (λ b. (re1 α, b) ∈ (Restr r (W α))^∗ ∧

b ∈ EP α) by blast
ultimately have L b and ep α = (SOME b. L b) using c3 unfolding EP-def

ep-def by blast+
then have L (ep α) using someI-ex by metis
then show (re1 α, ep α) ∈ (Restr r (W α))^∗ ∧ ep α ∈ EP α using c4 by

blast
qed
have b-sp:

∧
α. α ∈ S =⇒ sp α ∈ spth (Restr r (W α)) (re1 α) (ep α)

proof −
fix α
assume α ∈ S
then have (re1 α, ep α) ∈ (Restr r (W α))^∗ using b-ep by blast
then obtain f where f ∈ spth (Restr r (W α)) (re1 α) (ep α)

121

using lem-spthlen-rtr lem-rtn-rpth-inj unfolding spth-def by metis
then show sp α ∈ spth (Restr r (W α)) (re1 α) (ep α)

unfolding sp-def using someI-ex by metis
qed
have b-R0 :

∧
α a. α ∈ S =⇒ (a,re0 α) ∈ (R α)^∗ =⇒ (a,re0 α) ∈ (R0 α)^∗

proof −
fix α a
assume α ∈ S and (a,re0 α) ∈ (R α)^∗
then obtain g n where g ∈ rpth (R α) a (re0 α) n using lem-ccext-rtr-rpth[of

a re0 α] by blast
then have c1 : g 0 = a ∧ g n = re0 α and c2 : ∀ i<n. (g i, g (Suc i)) ∈ R α

unfolding rpth-def by blast+
then have ∀ i≤n. (g i, re0 α) ∈ (R α)^∗ using lem-rseq-tl by metis
then have ∀ i<n. (g i, g (Suc i)) ∈ R0 α using c2 unfolding R0-def by

simp
then show (a, re0 α) ∈ (R0 α)^∗

using c1 lem-ccext-rpth-rtr [of R0 α a re0 α n] unfolding rpth-def by blast
qed
have b-hr0 :

∧
α. α ∈ S =⇒ h α ∈ W α =⇒ (h α, re0 α) ∈ (R0 α)^∗

using b-re0 b-R0 b29 by blast
have b-hf :

∧
α. α ∈ S =⇒ h α ∈ W α =⇒ h α ∈ Field r ′

proof −
fix α
assume c1 : α ∈ S and h α ∈ W α
then have (h α, re0 α) ∈ (R0 α)^∗ using c1 b-hr0 by blast
moreover have R0 α ⊆ R ′ α using c1 unfolding R ′-def by blast
ultimately have (h α, re0 α) ∈ (R ′ α)^∗ using rtrancl-mono by blast
moreover have re0 α ∈ Field (R ′ α) unfolding R ′-def Field-def by blast
ultimately have h α ∈ Field (R ′ α) using lem-rtr-field[of h α re0 α] by force
moreover have R ′ α ⊆ r ′ using c1 unfolding r ′-def by blast
ultimately show h α ∈ Field r ′ unfolding Field-def by blast

qed
have b-fR ′:

∧
α. α ∈ S =⇒ Field (R ′ α) ⊆ W α

proof −
fix α
assume c1 : α ∈ S
then have Field (R0 α) ⊆ W α using a10 unfolding R0-def Field-def by

blast
moreover have Field (R2 α) ⊆ W α
proof

fix a
assume a ∈ Field (R2 α)
then obtain x y where d1 : (x,y) ∈ R2 α ∧ (a = x ∨ a = y) unfolding

Field-def by blast
then obtain k where k < spl α ∧ (x,y) = (sp α k, sp α (Suc k)) unfolding

R2-def by blast
then show a ∈ W α using d1 c1 b-sp[of α] unfolding spth-def rpth-def

spl-def by blast
qed

122

moreover have re0 α ∈ W α using c1 b-re0 [of α] b29 by blast
moreover have re1 α ∈ W α using c1 b-re12 [of α] a10 [of α] unfolding

Field-def by blast
ultimately show Field (R ′ α) ⊆ W α unfolding R ′-def Field-def by fast

qed
have b-fR2 :

∧
α a. α ∈ S =⇒ a ∈ Field (R2 α) =⇒ ∃ k. k ≤ spl α ∧ a = sp

α k
proof −

fix α a
assume α ∈ S and a ∈ Field (R2 α)
then obtain x y where (x,y) ∈ R2 α ∧ (a = x ∨ a = y) unfolding Field-def

by blast
moreover then obtain k ′ where k ′ < spl α ∧ x = sp α k ′ ∧ y = sp α (Suc

k ′)
unfolding R2-def by blast

ultimately show ∃ k. k ≤ spl α ∧ a = sp α k by (metis Suc-leI less-or-eq-imp-le)
qed
have b-bhf :

∧
α a. α ∈ S =⇒ a ∈ W α =⇒ (a, h α) ∈ (R α)^∗ =⇒ a ∈ Field

(R ′ α)
proof −

fix α a
assume c1 : α ∈ S and c2 : a ∈ W α and c3 : (a, h α) ∈ (R α)^∗
then have (h α, re0 α) ∈ (R0 α)^∗ using b-hr0 [of α] b-r0w[of α] by blast
moreover have R0 α ⊆ R α unfolding R0-def by blast
ultimately have (h α, re0 α) ∈ (R α)^∗ using c3 rtrancl-mono by blast
then have (a, re0 α) ∈ (R α)^∗ using c3 by force
then have (a, re0 α) ∈ (R0 α)^∗ using c1 c3 b-R0 [of α] by blast
moreover have R0 α ⊆ R ′ α unfolding R ′-def by blast
ultimately have (a, re0 α) ∈ (R ′ α)^∗ using rtrancl-mono by blast
moreover have re0 α ∈ Field (R ′ α) unfolding R ′-def Field-def by blast
ultimately show a ∈ Field (R ′ α) using lem-rtr-field[of a re0 α] by blast

qed
have b-clR ′:

∧
α a. α ∈ S =⇒ a ∈ Field (R ′ α) =⇒ (a, ep α) ∈ (R ′ α)^∗

proof −
fix α a
assume c1 : α ∈ S and c2 : a ∈ Field (R ′ α)

have c3 : sp α 0 = re1 α using c1 b-sp[of α] unfolding spth-def spl-def rpth-def
by blast

then have a ∈ Field (R2 α) ∨ a = re1 α −→ (∃ k. k ≤ spl α ∧ a = sp α k)
using c1 b-fR2 by force

moreover have a ∈ Field (R0 α) ∨ a = re0 α −→ (a, re0 α) ∈ (R α)^∗
unfolding R0-def Field-def by fastforce

moreover have a ∈ Field (R0 α) ∨ a ∈ Field (R2 α) ∨ a = re0 α ∨ a = re1
α

using c1 c2 unfolding R ′-def Field-def by blast
moreover have c4 : ∀ k. (k ≤ spl α −→ (sp α k, ep α) ∈ (R ′ α)^∗)
proof (intro allI impI)

fix k
assume k ≤ spl α

123

moreover have sp α (spl α) = ep α
using c1 b-sp[of α] unfolding spth-def spl-def rpth-def by blast

moreover have ∀ i < spl α. (sp α i, sp α (Suc i)) ∈ R ′ α
unfolding R ′-def R2-def by blast

ultimately show (sp α k, ep α) ∈ (R ′ α)^∗ using lem-rseq-tl by metis
qed
moreover have (a, re0 α) ∈ (R α)^∗ −→ (a, ep α) ∈ (R ′ α)^∗
proof

assume (a, re0 α) ∈ (R α)^∗
then have (a, re0 α) ∈ (R0 α)^∗ using c1 b-R0 by blast
moreover have R0 α ⊆ R ′ α using c1 unfolding R ′-def by blast
ultimately have (a, re0 α) ∈ (R ′ α)^∗ using rtrancl-mono by blast

moreover have (re0 α, re1 α) ∈ (R ′ α) using c1 unfolding R ′-def by blast
moreover have (re1 α, ep α) ∈ (R ′ α)^∗ using c3 c4 by force
ultimately show (a, ep α) ∈ (R ′ α)^∗ by simp

qed
ultimately show (a, ep α) ∈ (R ′ α)^∗ by blast

qed
have b-epr ′:

∧
a. a ∈ Field r ′ =⇒ ∃ α ∈ S . (a, ep α) ∈ (R ′ α)^∗

proof −
fix a
assume a ∈ Field r ′

then have a ∈ Field re ′ ∨ (∃ α∈S . a ∈ Field (R ′ α)) unfolding r ′-def Field-def
by blast

moreover have a ∈ Field re ′ −→ (∃ α ∈ S . (a, ep α) ∈ (R ′ α)^∗)
proof

assume a ∈ Field re ′

then obtain x y α β where d1 : a = x ∨ a = y and d2 : α ∈ S ∧ β ∈ S ∧
α <o β

and d3 : x = ep α ∧ y ∈ W β ∧ (y, h β) ∈ (R β)^∗
unfolding re ′-def Field-def by blast

have (x, ep α) ∈ (R ′ α)^∗ using d3 by blast
moreover have (y, ep β) ∈ (R ′ β)^∗ using d2 d3 b-bhf [of β y] b-clR ′[of β]

by blast
ultimately show ∃ α ∈ S . (a, ep α) ∈ (R ′ α)^∗ using d1 d2 by blast

qed
ultimately show ∃ α ∈ S . (a, ep α) ∈ (R ′ α)^∗ using b-clR ′ by blast

qed
have b-svR ′:

∧
α. α ∈ S =⇒ single-valued (R ′ α)

proof −
fix α
assume c1 : α ∈ S
have c2 : re0 α ∈ Domain (R0 α) −→ False
proof

assume re0 α ∈ Domain (R0 α)
then obtain b where (re0 α, b) ∈ R0 α by blast
then have (re0 α, b) ∈ R α ∧ (b, re0 α) ∈ (R α)^∗ unfolding R0-def by

blast
then have (re0 α, re0 α) ∈ (R α)^+ by force

124

moreover have acyclic (R α) using c1 a10 a3 by blast
ultimately show False unfolding acyclic-def by blast

qed
have c3 : re0 α ∈ Domain (R2 α) −→ False
proof

assume re0 α ∈ Domain (R2 α)
then obtain b where (re0 α, b) ∈ R2 α by blast
then obtain k where d1 : k ≤ spl α ∧ re0 α = sp α k ∧ b = sp α (Suc k)

unfolding R2-def by force
have sp α ∈ spth (Restr r (W α)) (re1 α) (ep α) using c1 b-sp by blast
then have sp α 0 = re1 α and ∀ i<spl α. (sp α i, sp α (Suc i)) ∈ Restr r

(W α)
unfolding spth-def spl-def rpth-def by blast+

then have (re1 α, re0 α) ∈ (Restr r (W α))^∗ using d1 lem-rseq-hd by
metis

then show False using c1 b-re12 [of α] by blast
qed
have c4 : ∀ a ∈ Field (R0 α) ∩ Field (R2 α). False
proof

fix a
assume d1 : a ∈ Field (R0 α) ∩ Field (R2 α)
obtain k where d2 : k ≤ spl α ∧ a = sp α k using d1 c1 b-fR2 [of α a] by

blast
have sp α ∈ spth (Restr r (W α)) (re1 α) (ep α) using c1 b-sp by blast
then have sp α 0 = re1 α and ∀ i<spl α. (sp α i, sp α (Suc i)) ∈ Restr r

(W α)
unfolding spth-def spl-def rpth-def by blast+

then have d3 : (re1 α, a) ∈ (Restr r (W α))^∗
using d2 lem-rseq-hd unfolding spth-def rpth-def by metis

have (a, re0 α) ∈ (R α)^∗ using d1 unfolding R0-def Field-def by force
moreover have R α ⊆ Restr r (W α) using c1 a10 unfolding Field-def

by fastforce
ultimately have (a, re0 α) ∈ (Restr r (W α))^∗ using rtrancl-mono by

blast
then have (re1 α, re0 α) ∈ (Restr r (W α))^∗ using d3 by force
then show False using c1 b-re12 [of α] by blast

qed
have R0 α ⊆ R α unfolding R0-def by blast
then have c5 : single-valued (R0 α) using c1 a3 a10 [of α] unfolding sin-

gle-valued-def by blast
have c6 : ∀ a b c. (a,b) ∈ R2 α ∧ (a,c) ∈ R2 α −→ b = c
proof (intro allI impI)

fix a b c
assume (a,b) ∈ R2 α ∧ (a,c) ∈ R2 α
then obtain k1 k2 where d1 : k1 < spl α ∧ a = sp α k1 ∧ b = sp α (Suc

k1)
and d2 : k2 < spl α ∧ a = sp α k2 ∧ c = sp α (Suc k2)

unfolding R2-def by blast
then have sp α k1 = sp α k2 ∧ k1 ≤ spl α ∧ k2 ≤ spl α by force

125

moreover have inj-on (sp α) {i. i≤spl α}
using c1 b-sp[of α] lem-spth-inj[of sp α] unfolding spl-def by blast

ultimately have k1 = k2 unfolding inj-on-def by blast
then show b = c using d1 d2 by blast

qed
have single-valued (R0 α ∪ {(re0 α, re1 α)})

using c2 c5 unfolding single-valued-def by blast
moreover have single-valued (R2 α ∪ {(re0 α, re1 α)})

using c3 c6 unfolding single-valued-def by blast
ultimately show single-valued (R ′ α) using c4 lem-sv-un3 unfolding R ′-def

by blast
qed
have b-acR ′:

∧
α. α ∈ S =⇒ acyclic (R ′ α)

proof −
fix α
assume c1 : α ∈ S
obtain s where c2 : s = R0 α ∪ {(re0 α, re1 α)} by blast
then have s ⊆ R α using c1 b-re12 [of α] unfolding R0-def by blast
moreover have acyclic (R α) using c1 a3 a10 by blast
ultimately have acyclic s using acyclic-subset by blast
moreover have acyclic (R2 α)
proof −

have ∀ a. (a,a) ∈ (R2 α)^+ −→ False
proof (intro allI impI)

fix a
assume (a,a) ∈ (R2 α)^+
then obtain n where e1 : n > 0 ∧ (a,a) ∈ (R2 α)^^n using trancl-power

by blast
then obtain g where e2 : g 0 = a ∧ g n = a and e3 : ∀ i<n. (g i, g (Suc

i)) ∈ R2 α
using relpow-fun-conv[of a a n R2 α] by blast

then have (g 0 , g (Suc 0)) ∈ R2 α using e1 by force
then obtain k0 where e4 : k0 < spl α ∧ g 0 = sp α k0 unfolding R2-def

by blast
have e5 : inj-on (sp α) {i. i≤spl α}

using c1 b-sp[of α] lem-spth-inj[of sp α] unfolding spl-def by blast
have ∀ i≤n. k0 + i ≤ spl α ∧ g i = sp α (k0 + i)
proof

fix i
show i ≤ n −→ k0 + i ≤ spl α ∧ g i = sp α (k0 + i)
proof (induct i)

show 0 ≤ n −→ k0 + 0 ≤ spl α ∧ g 0 = sp α (k0 + 0) using e4 by
simp

next
fix i
assume g1 : i ≤ n −→ k0 + i ≤ spl α ∧ g i = sp α (k0 + i)
show Suc i ≤ n −→ k0 + Suc i ≤ spl α ∧ g (Suc i) = sp α (k0 + Suc

i)
proof

126

assume h1 : Suc i ≤ n
then have h2 : k0 + i ≤ spl α ∧ g i = sp α (k0 + i) using g1 by

simp
moreover have (g i, g (Suc i)) ∈ R2 α using h1 e3 by simp
ultimately obtain k where

h3 : k < spl α ∧ sp α (k0 + i) = sp α k ∧ g (Suc i) = sp α (Suc k)
unfolding R2-def by fastforce

then have h4 : k0 + i = k using h2 h3 e5 unfolding inj-on-def by
simp

then have k0 + Suc i ≤ spl α using h3 by simp
moreover have g (Suc i) = sp α (k0 + Suc i) using h3 h4 by simp
ultimately show k0 + Suc i ≤ spl α ∧ g (Suc i) = sp α (k0 + Suc

i) by blast
qed

qed
qed
then have k0 + n ≤ spl α ∧ a = sp α (k0 + n) using e2 by simp
moreover have k0 ≤ spl α ∧ a = sp α k0 using e2 e4 by simp
ultimately have k0 + n = k0 using e5 unfolding inj-on-def by blast
then show False using e1 by simp

qed
then show ?thesis unfolding acyclic-def by blast

qed
moreover have ∀ a ∈ (Range (R2 α)) ∩ (Domain s). False
proof

fix a
assume e1 : a ∈ (Range (R2 α)) ∩ (Domain s)
then have e2 : a ∈ Field (R0 α) ∨ a = re0 α using c2 unfolding Field-def

by blast
obtain k where e3 : k ≤ spl α ∧ a = sp α k using e1 c1 b-fR2 [of α a]

unfolding Field-def by blast
have sp α ∈ spth (Restr r (W α)) (re1 α) (ep α) using c1 b-sp by blast
then have sp α 0 = re1 α and ∀ i<spl α. (sp α i, sp α (Suc i)) ∈ Restr r

(W α)
unfolding spth-def spl-def rpth-def by blast+

then have e4 : (re1 α, a) ∈ (Restr r (W α))^∗
using e3 lem-rseq-hd unfolding spth-def rpth-def by metis

have (a, re0 α) ∈ (R α)^∗ using e2 unfolding R0-def Field-def by force
moreover have R α ⊆ Restr r (W α) using c1 a10 unfolding Field-def

by fastforce
ultimately have (a, re0 α) ∈ (Restr r (W α))^∗ using rtrancl-mono by

blast
then have (re1 α, re0 α) ∈ (Restr r (W α))^∗ using e4 by force
then show False using c1 b-re12 [of α] by blast

qed
moreover have R ′ α = R2 α ∪ s using c2 unfolding R ′-def by blast
ultimately show acyclic (R ′ α) using lem-acyc-un-emprd[of R2 α s] by force

qed
have b-dr ′:

∧
α. α ∈ S =⇒ Domain (R ′ α) ∩ Domain re ′ = {}

127

proof −
fix α
assume c1 : α ∈ S
have ∀ a b c. (a,b) ∈ (R ′ α) ∧ (a,c) ∈ re ′ −→ False
proof (intro allI impI)

fix a b c
assume d1 : (a,b) ∈ (R ′ α) ∧ (a,c) ∈ re ′

then obtain α ′ where d2 : α ′ ∈ S ∧ a = ep α ′ unfolding re ′-def by blast
then have a ∈ W α ′ using b-ep[of α ′] unfolding EP-def by blast
moreover have a ∈ W α using d1 c1 b-fR ′[of α] unfolding Field-def by

blast
ultimately have α ′ = α using d2 c1 a9 by blast
then have a = ep α using d2 by blast
moreover have (b, ep α) ∈ (R ′ α)^∗ using d1 c1 b-clR ′ unfolding Field-def

by blast
ultimately have (a, a) ∈ (R ′ α)^+ using d1 by force
then show False using c1 b-acR ′ unfolding acyclic-def by blast

qed
then show Domain (R ′ α) ∩ Domain re ′ = {} by blast

qed
have b-pkr ′:

∧
a b1 b2 . (a,b1) ∈ r ′ ∧ (a,b2) ∈ r ′ ∧ b1 6= b2 =⇒ ∀ b. (a,b) ∈

r ′ −→ (a,b) ∈ re ′

proof −
fix a b1 b2
assume c1 : (a,b1) ∈ r ′ ∧ (a,b2) ∈ r ′ ∧ b1 6= b2
moreover have ∀α∈S . ∀β∈S . (a,b1) ∈ R ′ α ∧ (a,b2) ∈ R ′ β −→ False
proof (intro ballI impI)

fix α β
assume α ∈ S and β ∈ S and (a,b1) ∈ R ′ α ∧ (a,b2) ∈ R ′ β
moreover then have α = β using b-fR ′[of α] b-fR ′[of β] a9 unfolding

Field-def by blast
ultimately show False using c1 b-svR ′[of α] unfolding single-valued-def

by blast
qed
ultimately have (a,b1) ∈ re ′ ∨ (a,b2) ∈ re ′ unfolding r ′-def by blast
then have ∀ α∈S . a /∈ Domain (R ′ α) using b-dr ′ by blast
then show ∀ b. (a,b) ∈ r ′ −→ (a,b) ∈ re ′ using c1 unfolding r ′-def by blast

qed
have r ′ ⊆ r
proof

fix p
assume p ∈ r ′

moreover have ∀ α ∈ S . p ∈ R ′ α −→ p ∈ r
proof (intro ballI impI)

fix α
assume d1 : α ∈ S and p ∈ R ′ α
moreover have p ∈ R0 α −→ p ∈ r unfolding R0-def using d1 a10 by

blast
moreover have p ∈ R2 α −→ p ∈ r

128

proof
assume p ∈ R2 α
then obtain k where k<spl α ∧ p = (sp α k, sp α (Suc k)) unfolding

R2-def by blast
then have p ∈ Restr r (W α) using d1 b-sp[of α] unfolding spth-def

rpth-def spl-def by blast
then show p ∈ r by blast

qed
moreover have (re0 α, re1 α) ∈ r using d1 b-re12 a10 by blast
ultimately show p ∈ r unfolding R ′-def by blast

qed
ultimately show p ∈ r unfolding r ′-def re ′-def by blast

qed
moreover have ∀ a∈Field r . ∃ b∈Field r ′. (a, b) ∈ r^∗
proof

fix a
assume a ∈ Field r
then obtain α where c1 : α ∈ S ∧ a ∈ W α using a8 by blast
then obtain a ′ where c2 : (a, a ′) ∈ (Restr r (W α))^∗

and c3 : ∀β∈S . α <o β −→ r‘‘{a ′} ∩ W β 6= {} using a11 [of α
a] by blast

have a ′ ∈ W α using c1 c2 lem-rtr-field[of a a ′] unfolding Field-def by blast
then have a ′ ∈ EP α using c3 unfolding EP-def by blast
then obtain γ a ′′ where c4 : γ ∈ S and c5 : a ′′ ∈ W γ ∧ (a ′, a ′′) ∈ r ∧ (a ′′,

h γ) ∈ (R γ)^∗
using c1 b-h[of α α a ′ a ′] by blast

moreover then have (a ′′, h γ) ∈ r^∗ using p1 rtrancl-mono[of R γ r] by
blast

moreover have (a, a ′) ∈ r^∗ using c2 rtrancl-mono[of Restr r (W α) r] by
blast

ultimately have (a, h γ) ∈ r^∗ by force
moreover have h γ ∈ W γ using c4 c5 b-r0w by blast
moreover then have h γ ∈ Field r ′ using c4 b-hf by blast
ultimately show ∃ b∈Field r ′. (a, b) ∈ r^∗ by blast

qed
moreover have DCR 2 r ′ ∧ CCR r ′

proof −
obtain g0 where c1 : g0 = { (u,v) ∈ r ′. r ′‘‘{u} = {v} } by blast
obtain g1 where c2 : g1 = r ′ − g0 by blast
obtain g where c3 : g = (λn::nat. (if (n=0) then g0 else (if (n=1) then g1

else {}))) by blast
have c4 : ∀ β ∈ S . R ′ β ⊆ g0
proof

fix β
assume d1 : β ∈ S
then have R ′ β ⊆ r ′ unfolding r ′-def by blast
moreover have ∀ a b c. (a,b) ∈ R ′ β ∧ (a,c) ∈ r ′ −→ b = c
proof (intro allI impI)

fix a b c

129

assume e1 : (a, b) ∈ R ′ β ∧ (a, c) ∈ r ′

moreover then have (a,b) ∈ r ′ using d1 unfolding r ′-def by blast
ultimately have b = c ∨ (a, b) ∈ re ′ using b-pkr ′[of a b c] by blast
moreover have (a,b) ∈ re ′ −→ False using e1 d1 b-dr ′[of β] by blast
ultimately show b = c by blast

qed
ultimately show R ′ β ⊆ g0 using c1 by blast

qed
have c5 : re ′ ⊆ g1
proof −

have re ′ ⊆ r ′ unfolding r ′-def by blast
moreover have ∀ a b. (a,b) ∈ re ′ ∧ (a,b) ∈ g0 −→ False
proof (intro allI impI)

fix a b
assume e1 : (a,b) ∈ re ′ ∧ (a,b) ∈ g0
then obtain α where e2 : α ∈ S ∧ a = ep α unfolding re ′-def by blast
then have e3 : a ∈ EP α using b-ep by blast
obtain γ1 a1 where e4 : γ1 ∈ S ∧ α <o γ1 ∧ a1 ∈ W γ1 ∧ (a,a1) ∈ re ′

using e2 e3 b-h[of α α a a] b-bhf re ′-def by blast
then have γ1 ∈ S ∧ ep γ1 ∈ EP γ1 using b-ep by blast

then obtain γ2 a2 where e5 : γ2 ∈ S ∧ γ1 <o γ2 ∧ a2 ∈ W γ2 ∧ (a,a2)
∈ re ′

using e2 e3 b-h[of α γ1 a ep γ1] re ′-def by blast
then have γ1 6= γ2 using ordLess-irrefl unfolding irrefl-def by blast
then have a1 6= a2 using e4 e5 a9 by blast
moreover have a1 ∈ r ′‘‘{a} ∧ a2 ∈ r ′‘‘{a} using e4 e5 unfolding r ′-def

by blast
moreover have r ′‘‘{a} = {b} using e1 c1 by blast
ultimately have a1 ∈ {b} ∧ a2 ∈ {b} ∧ a1 6= a2 by blast
then show False by blast

qed
ultimately show ?thesis using c2 by force

qed
have r ′ =

⋃
{r ′. ∃α ′<2 . r ′ = g α ′}

proof
have r ′ ⊆ g0 ∪ g1 using c1 c2 by blast
moreover have g0 = g 0 ∧ g1 = g 1 ∧ (0 ::nat) < 2 ∧ (1 ::nat) < 2 using

c3 by simp
ultimately show r ′ ⊆

⋃
{r ′. ∃α ′<2 . r ′ = g α ′} by blast

next
have

∧
α. g α ⊆ g0 ∪ g1 unfolding c3 by simp

then show
⋃
{r ′. ∃α ′<2 . r ′ = g α ′} ⊆ r ′ using c1 c2 by blast

qed
moreover have ∀ l1 l2 u v w. l1 ≤ l2 −→ (u, v) ∈ g l1 ∧ (u, w) ∈ g l2 −→

(∃ v ′ v ′′ w ′ w ′′ d. (v, v ′, v ′′, d) ∈ D g l1 l2 ∧ (w, w ′, w ′′, d) ∈ D g l2 l1)
proof (intro allI impI)

fix l1 l2 u v w
assume d1 : l1 ≤ l2 and d2 : (u, v) ∈ g l1 ∧ (u, w) ∈ g l2
have d3 : g0 = g 0 ∧ g1 = g 1

130

and d4 : ∀ α. g α 6= {} −→ α = 0 ∨ α = 1 unfolding c3 by simp+
have d5 : L1 g 1 = g0 and d6 : Lv g 1 1 = g0
and d7 : Lv g 1 0 = g0 and d8 : Lv g 0 1 = g0 using d3 unfolding L1-def

Lv-def by blast+
show ∃ v ′ v ′′ w ′ w ′′ d. (v, v ′, v ′′, d) ∈ D g l1 l2 ∧ (w, w ′, w ′′, d) ∈ D g l2 l1
proof −

have l1 = 0 ∧ l2 = 0 =⇒ ?thesis
proof −

assume l1 = 0 ∧ l2 = 0
then have r ′‘‘{u} = {v} ∧ r ′‘‘{u} = {w} using c1 d2 d3 by blast
then have v = w by blast
then show ?thesis unfolding D-def by fastforce

qed
moreover have l1 = 0 ∧ l2 = 1 =⇒ False
proof −

assume l1 = 0 ∧ l2 = 1
then have (u, v) ∈ r ′ ∧ (u, w) ∈ r ′

and r ′‘‘{u} = {v} ∧ r ′‘‘{u} 6= {w} using c1 c2 d2 d3 by blast+
then show False by force

qed
moreover have l1 = 1 ∧ l2 = 1 =⇒ ?thesis
proof −

assume f1 : l1 = 1 ∧ l2 = 1
then have (u,v) ∈ g1 ∧ (u,w) ∈ g1 using d2 d3 by blast
then have (u,v) ∈ re ′ ∧ (u,w) ∈ re ′ using c1 c2 b-pkr ′ by blast
then obtain β1 β2 where f2 : β1 ∈ S ∧ β2 ∈ S

and v ∈ W β1 ∧ (v, h β1) ∈ (R β1)^∗
and w ∈ W β2 ∧ (w, h β2) ∈ (R β2)^∗ unfolding re ′-def by blast

then have v ∈ Field (R ′ β1) ∧ w ∈ Field (R ′ β2) using b-bhf by blast
then have f3 : (v, ep β1) ∈ (R ′ β1)^∗ ∧ (w, ep β2) ∈ (R ′ β2)^∗ using

f2 b-clR ′ by blast
then have ep β1 ∈ EP β1 ∧ ep β2 ∈ EP β2 using f2 b-ep by blast
then obtain γ v ′′ w ′′ where f4 : γ ∈ S ∧ β1 <o γ ∧ β2 <o γ

and v ′′ ∈ W γ ∧ (ep β1 , v ′′) ∈ r ∧ (v ′′, h γ) ∈ (R γ)^∗
and w ′′ ∈ W γ ∧ (ep β2 , w ′′) ∈ r ∧ (w ′′, h γ) ∈ (R

γ)^∗
using f2 b-h[of β1 β2 ep β1 ep β2] by blast

then have (ep β1 , v ′′) ∈ re ′ ∧ (ep β2 , w ′′) ∈ re ′

and (v ′′, ep γ) ∈ (R ′ γ)^∗ ∧ (w ′′, ep γ) ∈ (R ′ γ)^∗
using f2 b-bhf b-clR ′ unfolding re ′-def by blast+

moreover obtain v ′ w ′ d where v ′ = ep β1 ∧ w ′ = ep β2 ∧ d = ep γ
by blast

ultimately have f5 : (v, v ′) ∈ (R ′ β1)^∗ ∧ (v ′, v ′′) ∈ re ′ ∧ (v ′′, d) ∈ (R ′

γ)^∗
and f6 : (w, w ′) ∈ (R ′ β2)^∗ ∧ (w ′, w ′′) ∈ re ′ ∧ (w ′′, d) ∈ (R ′

γ)^∗
using f3 by blast+

have (R ′ β1)^∗ ⊆ (L1 g l1)^∗ using f1 f2 d5 c4 rtrancl-mono by blast
moreover have re ′ ⊆ g l2 using f1 d3 c5 by blast

131

moreover have (R ′ γ)^∗ ⊆ (Lv g l1 l2)^∗ using f1 f4 d6 c4 rtrancl-mono
by blast

moreover have (R ′ β2)^∗ ⊆ (L1 g l2)^∗ using f1 f2 d5 c4 rtrancl-mono
by blast

moreover have re ′ ⊆ g l1 using f1 d3 c5 by blast
moreover have (R ′ γ)^∗ ⊆ (Lv g l2 l1)^∗ using f1 f4 d6 c4 rtrancl-mono

by blast
ultimately have (v, v ′, v ′′, d) ∈ D g l1 l2 ∧ (w, w ′, w ′′, d) ∈ D g l2 l1

using f5 f6 unfolding D-def by blast
then show ?thesis by blast

qed
moreover have (l1 = 0 ∨ l1 = 1) ∧ (l2 = 0 ∨ l2 = 1) using d2 d4 by

blast
ultimately show ?thesis using d1 by fastforce

qed
qed
ultimately have c9 : DCR 2 r ′ using lem-Ldo-ldogen-ord unfolding DCR-def

by blast
have ∀ a∈Field r ′. ∀ b∈Field r ′. ∃ c ∈ Field r ′. (a,c) ∈ r ′̂ ∗ ∧ (b,c) ∈ r ′̂ ∗
proof (intro ballI impI)

fix a b
assume d1 : a ∈ Field r ′ and d2 : b ∈ Field r ′

obtain α β where d3 : α ∈ S ∧ β ∈ S
and d4 : (a, ep α) ∈ (R ′ α)^∗ ∧ (b, ep β) ∈ (R ′ β)^∗ using d1 d2 b-epr ′

by blast
then have ep α ∈ EP α ∧ ep β ∈ EP β using b-ep by blast
then obtain γ a ′ b ′ where d5 : γ ∈ S ∧ α <o γ ∧ β <o γ

and d6 : a ′ ∈ W γ ∧ (ep α, a ′) ∈ r ∧ (a ′, h γ) ∈ (R γ)^∗
and d7 : b ′ ∈ W γ ∧ (ep β, b ′) ∈ r ∧ (b ′, h γ) ∈ (R γ)^∗

using d3 b-h[of α β ep α ep β] by blast
then have (a ′, ep γ) ∈ (R ′ γ)^∗ ∧ (b ′, ep γ) ∈ (R ′ γ)^∗ using b-bhf b-clR ′

by blast
moreover have R ′ α ⊆ r ′ ∧ R ′ β ⊆ r ′ ∧ R ′ γ ⊆ r ′ using d3 d5 unfolding

r ′-def by blast
ultimately have (a, ep α) ∈ r ′̂ ∗ ∧ (b, ep β) ∈ r ′̂ ∗

and (a ′, ep γ) ∈ r ′̂ ∗ ∧ (b ′, ep γ) ∈ r ′̂ ∗ using d4 rtrancl-mono
by blast+

moreover have (ep α, a ′) ∈ r ′ using d3 d5 d6 unfolding r ′-def re ′-def by
blast

moreover have (ep β, b ′) ∈ r ′ using d3 d5 d7 unfolding r ′-def re ′-def by
blast

ultimately have (a, ep γ) ∈ r ′̂ ∗ ∧ (b, ep γ) ∈ r ′̂ ∗ by force
moreover then have ep γ ∈ Field r ′ using d1 lem-rtr-field by metis
ultimately show ∃ c ∈ Field r ′. (a,c) ∈ r ′̂ ∗ ∧ (b,c) ∈ r ′̂ ∗ by blast

qed
then have CCR r ′ unfolding CCR-def by blast
then show ?thesis using c9 by blast

qed
ultimately show ?thesis by blast

132

qed

lemma lem-uset-cl-ext:
fixes r :: ′U rel and s:: ′U rel
assumes s ∈ U r and Conelike s
shows Conelike r
proof (cases s = {})

assume s = {}
then have r = {} using assms unfolding U-def Field-def by fast
then show Conelike r unfolding Conelike-def by blast

next
assume s 6= {}
then obtain m where m ∈ Field s ∧ (∀ a ∈ Field s. (a,m) ∈ s^∗) using assms

unfolding Conelike-def by blast
moreover have s ⊆ r ∧ (∀ a ∈ Field r . ∃ b ∈ Field s. (a,b) ∈ r^∗) using assms

unfolding U-def by blast
moreover then have Field s ⊆ Field r ∧ s^∗ ⊆ r^∗ unfolding Field-def using

rtrancl-mono by blast
ultimately have (m ∈ Field r) ∧ (∀ a ∈ Field r . (a,m) ∈ r^∗) by (meson

rtrancl-trans subsetCE)
then show Conelike r unfolding Conelike-def by blast

qed

lemma lem-uset-cl-singleton:
fixes r :: ′U rel
assumes Conelike r and r 6= {}
shows ∃ m:: ′U . ∃ m ′:: ′U . {(m ′,m)} ∈ U r
proof −

obtain m where b1 : m ∈ Field r ∧ (∀ a ∈ Field r . (a,m) ∈ r^∗) using assms
unfolding Conelike-def by blast

then obtain x where b2 : (m,x) ∈ r ∨ (x,m) ∈ r unfolding Field-def by blast
then have (x,m) ∈ r^∗ using b1 unfolding Field-def by blast
then obtain m ′ where b3 : (m ′,m) ∈ r using b2 by (metis rtranclE)
have CCR {(m ′,m)} unfolding CCR-def Field-def by force
moreover have ∀ a∈Field r . ∃ b∈Field {(m ′,m)}. (a, b) ∈ r^∗ using b1 un-

folding Field-def by blast
ultimately show ?thesis using b3 unfolding U-def by blast

qed

lemma lem-rcc-emp: ‖{}‖ = {}
unfolding RCC-def RCC-rel-def U-def apply simp
unfolding CCR-def apply simp
using lem-card-emprel by (smt iso-ozero-empty ordIso-symmetric ozero-def someI-ex)

lemma lem-rcc-rccrel:
fixes r :: ′U rel
shows RCC-rel r ‖r‖
proof −

have ∃ α. RCC-rel r α

133

proof (cases U r = {})
assume U r = {}
then show ∃ α. RCC-rel r α unfolding RCC-rel-def by blast

next
assume b1 : U r 6= {}
obtain Q where b2 : Q = { α:: ′U rel. ∃ s ∈ U r . α =o |s| } by blast
have b3 : ∀ s ∈ U r . ∃ α ∈ Q. α ≤o |s|
proof

fix s
assume c1 : s ∈ U r
then have c2 : s ⊆ (UNIV :: ′U set) × (UNIV :: ′U set) unfolding U-def by

simp
then have c3 : |s| ≤o |(UNIV :: ′U set) × (UNIV :: ′U set)| by simp
show ∃ α ∈ Q. α ≤o |s|
proof (cases finite (UNIV :: ′U set))

assume finite (UNIV :: ′U set)
then have finite s using c2 finite-subset by blast
moreover have CCR s using c1 unfolding U-def by blast
ultimately have Conelike s using lem-Relprop-fin-ccr by blast
then have d1 : Conelike r using c1 lem-uset-cl-ext by blast
show ∃ α ∈ Q. α ≤o |s|
proof (cases r = {})

assume e1 : r = {}
obtain α where e2 : α = ({}:: ′U rel) by blast

then have α ∈ U r using e1 unfolding U-def CCR-def Field-def by blast
moreover have e3 : α =o |({}:: ′U rel)| using e2 lem-card-emprel or-

dIso-symmetric by blast
ultimately have α ∈ Q using b2 e2 by blast
moreover have α ≤o |s| using e3 card-of-empty ordIso-ordLeq-trans by

blast
ultimately show ∃ α ∈ Q. α ≤o |s| by blast

next
assume e1 : r 6= {}

then obtain m m ′ where e2 : {(m ′,m)} ∈ U r using d1 lem-uset-cl-singleton
by blast

obtain α where e3 : α = |{m}| by blast
then have α =o |{(m ′,m)}| by (simp add: ordIso-iff-ordLeq)
then have α ∈ Q using b2 e2 by blast
moreover have s 6= {} using c1 e1 unfolding U-def Field-def by force
moreover then have α ≤o |s| using e3 by simp
ultimately show ∃ α ∈ Q. α ≤o |s| by blast

qed
next

assume ¬ finite (UNIV :: ′U set)
then have |(UNIV :: ′U set) × (UNIV :: ′U set)| =o |UNIV :: ′U set| using

card-of-Times-same-infinite by blast
then have |s| ≤o |UNIV :: ′U set| using c3 using ordLeq-ordIso-trans by

blast
then obtain A:: ′U set where |s| =o |A| using internalize-card-of-ordLeq2

134

by fast
moreover then obtain α:: ′U rel where α = |A| by blast
ultimately have α ∈ Q ∧ α =o |s| using b2 c1 ordIso-symmetric by blast
then show ∃ α ∈ Q. α ≤o |s| using ordIso-iff-ordLeq by blast

qed
qed
then have Q 6= {} using b1 by blast

then obtain α where b4 : α ∈ Q ∧ (∀α ′. α ′<o α −→ α ′ /∈ Q) using wf-ordLess
wf-eq-minimal[of ordLess] by blast

moreover have ∀ α ′∈ Q. Card-order α ′ using b2 using ordIso-card-of-imp-Card-order
by blast

ultimately have ∀ α ′ ∈ Q. ¬ (α ′ <o α) −→ α ≤o α ′ by simp
then have b5 : α ∈ Q ∧ (∀ α ′ ∈ Q. α ≤o α ′) using b4 by blast
then obtain s where b6 : s ∈ U r ∧ |s| =o α using b2 ordIso-symmetric by

blast
moreover have ∀ s ′∈U r . |s| ≤o |s ′|
proof

fix s ′

assume s ′ ∈ U r
then obtain α ′ where α ′ ∈ Q ∧ α ′ ≤o |s ′| using b3 by blast
moreover then have |s| =o α ∧ α ≤o α ′ using b5 b6 by blast
ultimately show |s| ≤o |s ′| using ordIso-ordLeq-trans ordLeq-transitive by

blast
qed
ultimately have RCC-rel r α unfolding RCC-rel-def by blast
then show ∃ α. RCC-rel r α by blast

qed
then show ?thesis unfolding RCC-def by (metis someI2)

qed

lemma lem-rcc-uset-ne:
assumes U r 6= {}
shows ∃ s ∈ U r . |s| =o ‖r‖ ∧ (∀ s ′ ∈ U r . |s| ≤o |s ′|)

using assms lem-rcc-rccrel unfolding RCC-rel-def by blast

lemma lem-rcc-uset-emp:
assumes U r = {}
shows ‖r‖ = {}

using assms lem-rcc-rccrel unfolding RCC-rel-def by blast

lemma lem-rcc-uset-mem-bnd:
assumes s ∈ U r
shows ‖r‖ ≤o |s|
proof −

obtain s0 where s0 ∈ U r ∧ |s0 | =o ‖r‖ ∧ (∀ s ′ ∈ U r . |s0 | ≤o |s ′|) using
assms lem-rcc-uset-ne by blast

moreover then have |s0 | ≤o |s| using assms by blast
ultimately show ‖r‖ ≤o |s| by (metis ordIso-iff-ordLeq ordLeq-transitive)

qed

135

lemma lem-rcc-cardord: Card-order ‖r‖
proof (cases U r = {})

assume U r = {}
then have ‖r‖ = {} using lem-rcc-uset-emp by blast
then show Card-order ‖r‖ using lem-cardord-emp by simp

next
assume U r 6= {}
then obtain s where s ∈ U r ∧ |s| =o ‖r‖ using lem-rcc-uset-ne by blast
then show Card-order ‖r‖ using Card-order-ordIso2 card-of-Card-order by blast

qed

lemma lem-uset-ne-rcc-inf :
fixes r :: ′U rel
assumes ¬ (‖r‖ <o ω-ord)
shows U r 6= {}
proof −

have ‖r‖ = {} −→ ‖r‖ <o |UNIV :: nat set|
by (metis card-of-Well-order finite.emptyI infinite-iff-card-of-nat ordIso-ordLeq-trans

ordIso-symmetric ordLeq-iff-ordLess-or-ordIso ozero-def ozero-ordLeq)
then have ‖r‖ = {} −→ ‖r‖ <o ω-ord using card-of-nat ordLess-ordIso-trans

by blast
then show U r 6= {} using assms lem-rcc-uset-emp by blast

qed

lemma lem-rcc-inf : (ω-ord ≤o ‖r‖) = (¬ (‖r‖ <o ω-ord))
using lem-rcc-cardord lem-cord-lin by (metis Field-natLeq natLeq-card-order)

lemma lem-Rcc-eq1-12 :
fixes r :: ′U rel
shows CCR r =⇒ r ∈ U r

unfolding U-def CCR-def by blast

lemma lem-Rcc-eq1-23 :
fixes r :: ′U rel
assumes r ∈ U r
shows (r = ({}:: ′U rel)) ∨ (({}:: ′U rel) <o ‖r‖)
proof −

obtain s0 where a2 : s0 ∈ U r and a3 : |s0 | =o ‖r‖ using assms lem-rcc-uset-ne
by blast

have s0 = {} −→ r = {} using a2 unfolding U-def Field-def by force
moreover have s0 6= {} −→ ({}:: ′U rel) <o ‖r‖

using a3 lem-rcc-cardord lem-cardord-emp
by (metis (no-types, lifting) Card-order-iff-ordIso-card-of Field-empty

card-of-empty3 card-order-on-well-order-on not-ordLeq-iff-ordLess
ordLeq-iff-ordLess-or-ordIso ordLeq-ordIso-trans ozero-def ozero-ordLeq)

ultimately show ?thesis by blast
qed

136

lemma lem-Rcc-eq1-31 :
fixes r :: ′U rel
assumes (r = ({}:: ′U rel)) ∨ (({}:: ′U rel) <o ‖r‖)
shows CCR r
proof (cases r = {})

assume r = {}
then show CCR r unfolding CCR-def Field-def by blast

next
assume b1 : r 6= {}
then have b2 : ({}:: ′U rel) <o ‖r‖ using assms by blast
then have ‖r‖ 6= ({}:: ′U rel) using ordLess-irreflexive by fastforce
then have U r 6= {} using lem-rcc-uset-emp by blast
then obtain s where b3 : s ∈ U r and b4 : |s| =o ‖r‖ and

b5 : ∀ s ′ ∈ U r . |s| ≤o |s ′| using lem-rcc-uset-ne by blast
have s 6= {} using assms b1 b4 lem-card-emprel not-ordLess-ordIso ordIso-ordLess-trans

by blast
have s ⊆ r using b3 unfolding U-def by blast
then have Field s ⊆ Field r ∧ s^∗ ⊆ r^∗ unfolding Field-def using rtrancl-mono

by blast
have ∀ a∈Field r . ∀ b∈Field r . ∃ c∈Field r . (a, c) ∈ r^∗ ∧ (b, c) ∈ r^∗
proof (intro ballI)

fix a b
assume c1 : a ∈ Field r and c2 : b ∈ Field r
then obtain a ′ b ′ where c3 : a ′ ∈ Field s ∧ b ′ ∈ Field s ∧ (a,a ′) ∈ r^∗ ∧ (b,b ′)

∈ r^∗
using b3 unfolding U-def by blast

then obtain c where c4 : c ∈ Field s ∧ (a ′,c) ∈ s^∗ ∧ (b ′,c) ∈ s^∗ using b3
unfolding U-def CCR-def by blast

have a ′ ∈ Field r ∧ b ′ ∈ Field r ∧ c ∈ Field r using b3 c3 c4 unfolding U-def
Field-def by blast

moreover have (a ′,c) ∈ r^∗ ∧ (b ′,c) ∈ r^∗ using b3 c4 unfolding U-def
using rtrancl-mono by blast

ultimately have c ∈ Field r ∧ (a, c) ∈ r^∗ ∧ (b, c) ∈ r^∗ using c3 by force
then show ∃ c∈Field r . (a, c) ∈ r^∗ ∧ (b, c) ∈ r^∗ by blast

qed
then show CCR r unfolding CCR-def by blast

qed

lemma lem-Rcc-eq2-12 :
fixes r :: ′U rel and a:: ′a
assumes Conelike r
shows ‖r‖ ≤o |{a}|
proof (cases r = {})

assume r = {}
then have ‖r‖ = {} using lem-rcc-emp by blast
then show ‖r‖ ≤o |{a}| by (metis card-of-Well-order ozero-def ozero-ordLeq)

next
assume r 6= {}
then obtain m where b1 : m ∈ Field r ∧ (∀ a ∈ Field r . (a,m) ∈ r^∗) using

137

assms unfolding Conelike-def by blast
then obtain m ′ where b2 : (m,m ′) ∈ r ∨ (m ′,m) ∈ r unfolding Field-def by

blast
then have (m ′,m) ∈ r^∗ using b1 by (meson FieldI2 r-into-rtrancl)
then obtain x where (x,m) ∈ r using b2 by (metis rtranclE)
moreover have CCR {(x,m)} unfolding CCR-def Field-def by blast
ultimately have {(x,m)} ∈ U r using b1 unfolding U-def by simp
then have ‖r‖ ≤o |{(x,m)}| using lem-rcc-uset-mem-bnd by blast
moreover have |{(x,m)}| ≤o |{a}| by simp
ultimately show ‖r‖ ≤o |{a}| using ordLeq-transitive by blast

qed

lemma lem-Rcc-eq2-23 :
fixes r :: ′U rel and a:: ′a
assumes ‖r‖ ≤o |{a}|
shows ‖r‖ <o ω-ord
proof −

have |{a}| <o |UNIV :: nat set| using finite-iff-cardOf-nat by blast
then show ‖r‖ <o ω-ord using assms ordLeq-ordLess-trans card-of-nat ord-

Less-ordIso-trans by blast
qed

lemma lem-Rcc-eq2-31 :
fixes r :: ′U rel
assumes CCR r and ‖r‖ <o ω-ord
shows Conelike r
proof −

have r ∈ U r using assms lem-Rcc-eq1-12 by blast
then obtain s where b1 : s ∈ U r and b2 : |s| =o ‖r‖ using lem-rcc-uset-ne by

blast
have |s| <o ω-ord using assms b2 using ordIso-imp-ordLeq ordLeq-ordLess-trans

by blast
then have finite s using finite-iff-ordLess-natLeq by blast
moreover have CCR s using b1 unfolding U-def by blast
ultimately have Conelike s using lem-Relprop-fin-ccr by blast
then show Conelike r using b1 lem-uset-cl-ext by blast

qed

lemma lem-Rcc-range:
fixes r :: ′U rel
shows ‖r‖ ≤o |UNIV ::(′U set)|

by (simp add: lem-rcc-cardord)

lemma lem-rcc-nccr :
fixes r :: ′U rel
assumes ¬ (CCR r)
shows ‖r‖ = {}
proof −

have ¬ (({}:: ′U rel) <o ‖r‖) using assms lem-Rcc-eq1-31 [of r] by blast

138

moreover have Well-order ({}:: ′U rel) using Well-order-empty by blast
moreover have Well-order ‖r‖ using lem-rcc-cardord unfolding card-order-on-def

by blast
ultimately have ‖r‖ ≤o ({}:: ′U rel) by simp
then show ‖r‖ = {} using lem-ord-subemp by blast

qed

lemma lem-Rcc-relcard-bnd:
fixes r :: ′U rel
shows ‖r‖ ≤o |r |
proof(cases CCR r)

assume CCR r
then show ‖r‖ ≤o |r | using lem-Rcc-eq1-12 lem-rcc-uset-mem-bnd by blast

next
assume ¬ CCR r
then have ‖r‖ = {} using lem-rcc-nccr by blast
then have ‖r‖ ≤o ({}:: ′U rel) by (metis card-of-empty ordLeq-Well-order-simp

ozero-def ozero-ordLeq)
moreover have ({}:: ′U rel) ≤o |r | by (metis card-of-Well-order ozero-def ozero-ordLeq)
ultimately show ‖r‖ ≤o |r | using ordLeq-transitive by blast

qed

lemma lem-Rcc-inf-lim:
fixes r :: ′U rel
assumes ω-ord ≤o ‖r‖
shows ¬(‖r‖ = {} ∨ isSuccOrd ‖r‖)

using assms lem-card-inf-lim lem-rcc-cardord by blast

lemma lem-rcc-uset-ne-ccr :
fixes r :: ′U rel
assumes U r 6= {}
shows CCR r
proof −

obtain s where b1 : s ∈ U r using assms by blast
have ∀ a∈Field r . ∀ b∈Field r . ∃ c∈Field r . (a, c) ∈ r^∗ ∧ (b, c) ∈ r^∗
proof (intro ballI impI)

fix a b
assume a∈Field r and b∈Field r
then obtain a ′ b ′ where c1 : a ′ ∈ Field s ∧ b ′ ∈ Field s ∧ (a,a ′) ∈ r^∗ ∧ (b,b ′)

∈ r^∗
using b1 unfolding U-def by blast

then obtain c where c ∈ Field s ∧ (a ′,c) ∈ s^∗ ∧ (b ′,c) ∈ s^∗ using b1
unfolding U-def CCR-def by blast

moreover have s ⊆ r using b1 unfolding U-def by blast
ultimately have c ∈ Field r ∧ (a ′,c) ∈ r^∗ ∧ (b ′,c) ∈ r^∗ using rtrancl-mono

unfolding Field-def by blast
moreover then have (a,c) ∈ r^∗ ∧ (b,c) ∈ r^∗ using c1 by force
ultimately show ∃ c∈Field r . (a, c) ∈ r^∗ ∧ (b, c) ∈ r^∗ by blast

qed

139

then show ?thesis unfolding CCR-def by blast
qed

lemma lem-rcc-uset-tr :
fixes r s t:: ′U rel
assumes a1 : s ∈ U r and a2 : t ∈ U s
shows t ∈ U r
proof −

have ∀ a∈Field r . ∃ b∈Field t. (a, b) ∈ r^∗
proof

fix a
assume a ∈ Field r
then obtain b ′ where b ′ ∈ Field s ∧ (a,b ′) ∈ r^∗ using a1 unfolding U-def

by blast
moreover then obtain b where b ∈ Field t ∧ (b ′,b) ∈ s^∗ using a2 unfolding

U-def by blast
moreover have s ⊆ r using a1 unfolding U-def by blast
ultimately have b ∈ Field t ∧ (a,b ′) ∈ r^∗ ∧ (b ′,b) ∈ r^∗ using rtrancl-mono

by blast
then have b ∈ Field t ∧ (a,b) ∈ r^∗ by force
then show ∃ b∈Field t. (a, b) ∈ r^∗ by blast

qed
then show ?thesis using a1 a2 unfolding U-def by blast

qed

lemma lem-scf-emp: scf {} = {}
unfolding scf-def scf-rel-def SCF-def apply simp
using lem-card-emprel by (smt card-of-empty-ordIso iso-ozero-empty ordIso-symmetric

ozero-def someI-ex)

lemma lem-scf-scfrel:
fixes r :: ′U rel
shows scf-rel r (scf r)
proof −

have b1 : SCF r 6= {} unfolding SCF-def by blast
obtain Q where b2 : Q = { α:: ′U rel. ∃ A ∈ SCF r . α =o |A| } by blast
have b3 : ∀ A ∈ SCF r . ∃ α ∈ Q. α ≤o |A|
proof

fix A
assume A ∈ SCF r
then have |A| ∈ Q ∧ |A| =o |A| using b2 ordIso-symmetric by force
then show ∃ α ∈ Q. α ≤o |A| using ordIso-iff-ordLeq by blast

qed
then have Q 6= {} using b1 by blast
then obtain α where b4 : α ∈ Q ∧ (∀α ′. α ′ <o α −→ α ′ /∈ Q) using wf-ordLess

wf-eq-minimal[of ordLess] by blast
moreover have ∀ α ′∈ Q. Card-order α ′ using b2 using ordIso-card-of-imp-Card-order

by blast
ultimately have ∀ α ′ ∈ Q. ¬ (α ′ <o α) −→ α ≤o α ′ by simp

140

then have b5 : α ∈ Q ∧ (∀ α ′ ∈ Q. α ≤o α ′) using b4 by blast
then obtain A where b6 : A ∈ SCF r ∧ |A| =o α using b2 ordIso-symmetric

by blast
moreover have ∀ B∈SCF r . |A| ≤o |B|
proof

fix B
assume B ∈ SCF r
then obtain α ′ where α ′ ∈ Q ∧ α ′ ≤o |B| using b3 by blast
moreover then have |A| =o α ∧ α ≤o α ′ using b5 b6 by blast
ultimately show |A| ≤o |B| using ordIso-ordLeq-trans ordLeq-transitive by

blast
qed
ultimately have scf-rel r α unfolding scf-rel-def by blast
then show ?thesis unfolding scf-def by (metis someI2)

qed

lemma lem-scf-uset:
shows ∃ A ∈ SCF r . |A| =o scf r ∧ (∀ B ∈ SCF r . |A| ≤o |B|)

using lem-scf-scfrel unfolding scf-rel-def by blast

lemma lem-scf-uset-mem-bnd:
assumes B ∈ SCF r
shows scf r ≤o |B|
proof −

obtain A where A ∈ SCF r ∧ |A| =o scf r ∧ (∀ A ′ ∈ SCF r . |A| ≤o |A ′|)
using assms lem-scf-uset by blast

moreover then have |A| ≤o |B| using assms by blast
ultimately show ?thesis by (metis ordIso-iff-ordLeq ordLeq-transitive)

qed

lemma lem-scf-cardord: Card-order (scf r)
proof −

obtain A where A ∈ SCF r ∧ |A| =o scf r using lem-scf-uset by blast
then show Card-order (scf r) using Card-order-ordIso2 card-of-Card-order by

blast
qed

lemma lem-scf-inf : (ω-ord ≤o (scf r)) = (¬ ((scf r) <o ω-ord))
using lem-scf-cardord lem-cord-lin by (metis Field-natLeq natLeq-card-order)

lemma lem-scf-eq1-12 :
fixes r :: ′U rel
shows Field r ∈ SCF r

unfolding SCF-def by blast

lemma lem-scf-range:
fixes r :: ′U rel
shows (scf r) ≤o |UNIV ::(′U set)|

by (simp add: lem-scf-cardord)

141

lemma lem-scf-relfldcard-bnd:
fixes r :: ′U rel
shows (scf r) ≤o |Field r |

using lem-scf-eq1-12 lem-scf-uset-mem-bnd by blast

lemma lem-scf-ccr-scf-rcc-eq:
fixes r :: ′U rel
assumes CCR r
shows ‖r‖ =o (scf r)
proof −

obtain B where b1 : B ∈ SCF r ∧ |B| =o scf r using lem-scf-scfrel[of r]
unfolding scf-rel-def by blast

have B ⊆ Field r using b1 unfolding SCF-def by blast
then obtain A where b2 : B ⊆ A ∧ A ∈ SF r

and b3 : (finite B −→ finite A) ∧ ((¬ finite B) −→ |A| =o |B|)
using lem-inv-sf-ext[of B r] by blast

then obtain A ′ where b4 : A ⊆ A ′ ∧ A ′ ∈ SF r ∧ CCR (Restr r A ′)
and b5 : (finite A −→ finite A ′) ∧ ((¬ finite A) −→ |A ′| =o |A|)

using assms lem-Ccext-subccr-pext5 [of r A - {}] by metis
have Restr r A ′ ∈ U r
proof −

have ∀ a∈Field r . ∃ b∈Field (Restr r A ′). (a, b) ∈ r^∗
proof

fix a
assume a ∈ Field r
then obtain b where b ∈ B ∧ (a,b) ∈ r^∗ using b1 unfolding SCF-def by

blast
moreover then have b ∈ Field (Restr r A ′) using b2 b4 unfolding SF-def

by blast
ultimately show ∃ b∈Field (Restr r A ′). (a, b) ∈ r^∗ by blast

qed
then show Restr r A ′ ∈ U r unfolding U-def using b4 by blast

qed
then have b6 : ‖r‖ ≤o |Restr r A ′| using lem-rcc-uset-mem-bnd by blast
obtain x0 :: ′U where True by blast
have b7 : ‖r‖ ≤o (scf r)
proof (cases finite B)

assume finite B
then have finite (Restr r A ′) using b3 b5 by blast
then have Conelike r

using assms b6 lem-Rcc-eq2-31 [of r] finite-iff-ordLess-natLeq[of Restr r A ′]
ordLeq-ordLess-trans by blast

then have c1 : ‖r‖ ≤o |{x0}| using lem-Rcc-eq2-12 [of r x0] by blast
show ?thesis
proof (cases r = {})

assume r = {}
then have scf r = {} ∧ ‖r‖ = {} using lem-scf-emp lem-rcc-emp by blast
then show ‖r‖ ≤o (scf r) using b1 lem-ord-subemp ordIso-iff-ordLeq by

142

metis
next

assume r 6= {}
then have B 6= {} using b1 unfolding SCF-def Field-def by force
then have |{x0}| ≤o |B| using card-of-singl-ordLeq by metis
then show ?thesis using c1 b1 ordLeq-transitive ordIso-imp-ordLeq by metis

qed
next

assume c1 : ¬ finite B
then have |A| =o |B| ∧ |A ′| =o |A| using b3 b5 finite-subset by simp
then have |A ′| =o scf r using b1 using ordIso-transitive by blast

moreover have ω-ord ≤o scf r using c1 b1 infinite-iff-natLeq-ordLeq or-
dLeq-ordIso-trans by blast

ultimately have |Restr r A ′| ≤o scf r using lem-restr-ordbnd[of scf r A ′ r]
ordIso-imp-ordLeq by blast

then show ‖r‖ ≤o (scf r) using b6 ordLeq-transitive by blast
qed
moreover have (scf r) ≤o ‖r‖
proof −

obtain s where b1 : s ∈ U r ∧ |s| =o ‖r‖ ∧ (∀ s ′∈U r . |s| ≤o |s ′|)
using assms lem-Rcc-eq1-12 [of r] lem-rcc-uset-ne[of r] by blast

then have Field s ⊆ Field r ∧ (∀ a∈Field r . ∃ b∈Field s. (a, b) ∈ r^∗)
unfolding U-def Field-def by blast

then have Field s ∈ SCF r unfolding SCF-def by blast
then have b2 : scf r ≤o |Field s| using lem-scf-uset-mem-bnd by blast
show ?thesis
proof (cases finite s)

assume finite s
then have ‖r‖ <o ω-ord

using b1 finite-iff-ordLess-natLeq not-ordLeq-ordLess ordIso-iff-ordLeq or-
dIso-transitive ordLeq-iff-ordLess-or-ordIso ordLeq-transitive by metis

then have c1 : Conelike r using assms lem-Rcc-eq2-31 by blast
show ?thesis
proof (cases r = {})

assume r = {}
then have scf r = {} ∧ ‖r‖ = {} using lem-scf-emp lem-rcc-emp by blast
then show ?thesis using b7 by simp

next
assume d1 : r 6= {}
then obtain m where m ∈ Field r ∧ (∀ a ∈ Field r . (a,m) ∈ r^∗) using

c1 unfolding Conelike-def by blast
then have {m} ∈ SCF r unfolding SCF-def by blast
then have d2 : scf r ≤o |{m}| using lem-scf-uset-mem-bnd by blast
have ({}:: ′U rel) <o ‖r‖ using d1 assms lem-Rcc-eq1-23 lem-Rcc-eq1-12

by blast
then have |{m}| ≤o ‖r‖ using lem-co-one-ne-min by (metis card-of-empty3

card-of-empty4 insert-not-empty ordLess-Well-order-simp)
then show ?thesis using d2 ordLeq-transitive by blast

qed

143

next
assume ¬ finite s
then have |Field s| =o |s| using lem-rel-inf-fld-card by blast
then show ?thesis using b1 b2 ordIso-iff-ordLeq ordLeq-transitive by metis

qed
qed
ultimately show ?thesis using not-ordLeq-ordLess ordLeq-iff-ordLess-or-ordIso

by blast
qed

lemma lem-scf-ccr-scf-uset:
fixes r :: ′U rel
assumes CCR r and ¬ Conelike r
shows ∃ s ∈ U r . (¬ finite s) ∧ |Field s| =o (scf r)
proof −

have ‖r‖ =o (scf r) using assms lem-scf-ccr-scf-rcc-eq by blast
moreover then obtain s where b1 : s ∈ U r ∧ |s| =o ‖r‖ using assms

lem-Rcc-eq1-12 lem-rcc-uset-ne[of r] by blast
moreover have (¬ finite s) −→ |Field s| =o |s| using lem-rel-inf-fld-card by

blast
moreover have finite s −→ False
proof

assume finite s
then have |s| <o ω-ord using finite-iff-ordLess-natLeq by blast
then have ‖r‖ <o ω-ord using b1
by (meson not-ordLess-ordIso ordIso-iff-ordLeq ordIso-transitive ordLeq-iff-ordLess-or-ordIso

ordLeq-transitive)
then show False using assms lem-Rcc-eq2-31 by blast

qed
ultimately show ?thesis using ordIso-transitive by metis

qed

lemma lem-Scf-scfprops:
fixes r :: ′U rel
shows ((scf r) ≤o |UNIV ::(′U set)|) ∧ ((scf r) ≤o |Field r |)

using lem-scf-range lem-scf-relfldcard-bnd by blast

lemma lem-scf-ccr-finscf-cl:
assumes CCR r
shows finite (Field (scf r)) = Conelike r
proof

assume finite (Field (scf r))
then have finite ‖r‖ using assms lem-scf-ccr-scf-rcc-eq lem-fin-fl-rel ordIso-finite-Field

by blast
then have ‖r‖ <o ω-ord using lem-rcc-cardord lem-fin-fl-rel

by (metis card-of-Field-ordIso finite-iff-ordLess-natLeq ordIso-iff-ordLeq or-
dLeq-ordLess-trans)

then show Conelike r using assms lem-Rcc-eq2-31 by blast
next

144

assume Conelike r
then have finite (Field ‖r‖) using lem-Rcc-eq2-12 [of r] by (metis Field-card-of

finite.emptyI finite-insert ordLeq-finite-Field)
then show finite (Field (scf r)) using assms lem-scf-ccr-scf-rcc-eq ordIso-finite-Field

by blast
qed

lemma lem-sv-uset-sv-span:
fixes r s:: ′U rel
assumes a1 : s ∈ U r and a2 : single-valued s
shows ∃ r1 . r1 ∈ Span r ∧ CCR r1 ∧ single-valued r1 ∧ s ⊆ r1 ∧ (acyclic s −→
acyclic r1)
proof −

have b0 : s ⊆ r using a1 unfolding U-def by blast
obtain isd where b3 : isd = (λ a i. ∃ b ∈ Field s. (a, b) ∈ r^^i ∧ (∀ i ′. (∃ b
∈ Field s. (a, b) ∈ r^^(i ′)) −→ i ≤ i ′)) by blast

obtain d where b4 : d = (λ a. SOME i. isd a i) by blast
obtain B where b5 : B = (λ a. { a ′. (a, a ′) ∈ r }) by blast
obtain H where b6 : H = (λ a. { a ′ ∈ B a. ∀ a ′′ ∈ B a. (d a ′) ≤ (d a ′′) }) by

blast
obtain D where b7 : D = { a ∈ Field r − Field s. H a 6= {}} by blast
obtain h where h = (λ a. SOME a ′. a ′ ∈ H a) by blast
then have b8 : ∀ a ∈ D. h a ∈ H a using b7 someI-ex[of λ a ′. a ′ ∈ H -] by

force
have q1 :

∧
a. a ∈ Field r =⇒ isd a (d a)

proof −
fix a
assume c1 : a ∈ Field r
then obtain b where c2 : b ∈ Field s ∧ (a,b) ∈ r^∗ using a1 unfolding U-def

by blast
moreover obtain N where c3 : N = {i. ∃ b ∈ Field s. (a, b) ∈ r^^i} by blast
ultimately have N 6= {} using rtrancl-imp-relpow by blast
then obtain m where m ∈ N ∧ (∀ i ∈ N . m ≤ i)

using LeastI [of λ x. x ∈ N] Least-le[of λ x. x ∈ N] by blast
then have isd a m using c2 c3 unfolding b3 by blast
then show isd a (d a) using b4 someI-ex by metis

qed
have q2 :

∧
a. B a 6= {} =⇒ H a 6= {}

proof −
fix a
assume B a 6= {}
moreover obtain N where c1 : N = d ‘ (B a) by blast
ultimately have N 6= {} by blast
then obtain m where c2 : m ∈ N ∧ (∀ i ∈ N . m ≤ i)

using LeastI [of λ x. x ∈ N] Least-le[of λ x. x ∈ N] by blast
then obtain a ′ where c3 : m = d a ′ ∧ a ′ ∈ B a using c1 by blast
moreover then have ∀ a ′′ ∈ B a. d a ′ ≤ d a ′′ using c1 c2 by force
ultimately have a ′ ∈ H a unfolding b6 by blast
then show H a 6= {} by blast

145

qed
have q3 : ∀ a ∈ Field r − Field s. d a = 1 ∨ d a > 1
proof

fix a
assume c1 : a ∈ Field r − Field s
then have isd a (d a) using q1 by blast
then obtain b where b ∈ Field s ∧ (a, b) ∈ r^^(d a) using b3 by blast
then have d a = 0 −→ False using c1 by force
then show d a = 1 ∨ d a > 1 by force

qed
have Field r − Field s ⊆ D
proof

fix a
assume c1 : a ∈ Field r − Field s
moreover have H a = {} −→ False
proof

assume H a = {}
then have B a = {} using q2 by blast

moreover obtain b where b ∈ Field s ∧ (a, b) ∈ r^∗ using a1 c1 unfolding
U-def by blast

ultimately have a ∈ Field s unfolding b5 by (metis Collect-empty-eq
converse-rtranclE)

then show False using c1 by blast
qed
ultimately show a ∈ D using b7 by blast

qed
then have q4 : D = Field r − Field s using b5 b6 b7 by blast
have q5 : ∀ a ∈ D. d a > 1 −→ d a = Suc (d (h a)) ∧ (d (h a) > 1 −→ h a ∈

D)
proof (intro ballI impI)

fix a
assume c1 : a ∈ D and c2 : d a > 1
then obtain b where c3 : b ∈ Field s and c4 : (a, b) ∈ r^^(d a)

and c5 : ∀ i ′. (∃ b ∈ Field s. (a, b) ∈ r^^(i ′)) −→ (d a) ≤ i ′
using b3 b7 q1 by blast

have c6 : d a ≥ 1 using c1 c4 b7 q3 by force
then have d a = Suc ((d a) − 1) by simp
then obtain a ′ where c7 : (a,a ′) ∈ r ∧ (a ′,b) ∈ r^^((d a) − 1)

using c4 relpow-Suc-D2 [of a b d a − 1 r] by metis
moreover then have a ′ /∈ Field s using c2 c5 by (metis less-Suc-eq-le

not-less-eq relpow-1)
ultimately have (a,a ′) ∈ r ∧ a ′ ∈ Field r − Field s unfolding Field-def by

blast
then have a ′ ∈ B a unfolding b5 by blast
moreover have h a ∈ H a using c1 b8 by blast
ultimately have d (h a) ≤ d a ′ unfolding b6 by blast
moreover have Suc (d a ′) ≤ d a
proof −

have d a ′ ≤ d a − 1 using q1 b3 c7 c3 unfolding Field-def by blast

146

then show ?thesis using c6 by force
qed
moreover have d a ≤ (Suc (d (h a)))
proof −

have d1 : (a, h a) ∈ r using c1 b5 b6 b8 by blast
then have h a ∈ Field r unfolding Field-def by blast
then obtain b ′ where b ′ ∈ Field s ∧ ((h a), b ′) ∈ r^^(d (h a)) using b3 q1

by blast
moreover then have (a,b ′) ∈ r^^(Suc (d (h a))) using d1 c7 by (meson

relpow-Suc-I2)
ultimately show d a ≤ (Suc (d (h a))) using c5 by blast

qed
ultimately have d a = Suc (d (h a)) by force
moreover have d (h a) > 1 −→ h a ∈ D
proof

assume d1 : d (h a) > 1
then have d2 : (a, h a) ∈ r using c1 b5 b6 b8 by simp
then have isd (h a) (d (h a)) using d1 q1 unfolding Field-def by force
then have (h a) /∈ Field s using d1 b3 by force
then show h a ∈ D using d2 q4 unfolding Field-def by blast

qed
ultimately show d a = Suc (d (h a)) ∧ (d (h a) > 1 −→ h a ∈ D) by blast

qed
obtain g1 where b9 : g1 = { (a, b). a ∈ D ∧ b = h a } by blast
have q6 : ∀ a ∈ D. ∃ a ′ ∈ D. d a ′ = 1 ∧ (a,a ′) ∈ g1^∗
proof −

have ∀ n. ∀ a ∈ D. d a = Suc n −→ ((h^^n) a) ∈ D ∧ d ((h^^n) a) = 1
proof

fix n0
show ∀ a ∈ D. d a = Suc n0 −→ ((h^^n0) a) ∈ D ∧ d ((h^^n0) a) = 1
proof (induct n0)

show ∀ a∈D. d a = Suc 0 −→ ((h^^0) a) ∈ D ∧ d ((h ^^ 0) a) = 1
using q4 by force

next
fix n
assume d1 : ∀ a∈D. d a = Suc n −→ ((h^^n) a) ∈ D ∧ d ((h ^^ n) a) = 1
show ∀ a∈D. d a = Suc (Suc n) −→ ((h^^(Suc n)) a) ∈ D ∧ d ((h ^^ Suc

n) a) = 1
proof (intro ballI impI)

fix a
assume e1 : a ∈ D and e2 : d a = Suc (Suc n)
then have d a = Suc (d (h a)) ∧ (d (h a) > 1 −→ h a ∈ D) using q5

by simp
moreover then have e3 : d (h a) = Suc n using e2 by simp
ultimately have d (h a) > 1 −→ ((h^^n) (h a)) ∈ D ∧ d ((h^^n) (h a))

= 1 using d1 by blast
moreover have (h^^n) (h a) = (h^^(Suc n)) a by (metis comp-apply

funpow-Suc-right)
moreover have e4 : d (h a) = 1 −→ d ((h^^(Suc n)) a) = 1 using e3

147

by simp
moreover have d (h a) = 1 −→ ((h^^(Suc n)) a) ∈ D
proof

assume f1 : d (h a) = 1
then have f2 : n = 0 ∧ (a, h a) ∈ r using e1 e3 b5 b6 b8 by simp
then have isd (h a) 1 using f1 q1 unfolding Field-def by force
then have (h a) /∈ Field s using b3 by force
then have (h a) ∈ D using q4 f2 unfolding Field-def by blast
then show ((h^^(Suc n)) a) ∈ D using f2 by simp

qed
moreover have d (h a) = 1 ∨ d (h a) > 1 using e3 by force
ultimately show ((h^^(Suc n)) a) ∈ D ∧ d ((h ^^ (Suc n)) a) = 1 by

force
qed

qed
qed
moreover have ∀ i. ∀ a ∈ D. d a > i −→ (a, (h^^i) a) ∈ g1^∗
proof

fix i0
show ∀ a ∈ D. d a > i0 −→ (a, (h^^i0) a) ∈ g1^∗
proof (induct i0)

show ∀ a∈D. d a > 0 −→ (a, (h^^0) a) ∈ g1^∗ by force
next

fix i
assume d1 : ∀ a∈D. d a > i −→ (a, (h^^i) a) ∈ g1^∗
show ∀ a∈D. d a > (Suc i) −→ (a, (h^^(Suc i)) a) ∈ g1^∗
proof (intro ballI impI)

fix a
assume e1 : a ∈ D and e2 : d a > (Suc i)
then have e3 : d a = Suc (d (h a)) ∧ (d (h a) > 1 −→ h a ∈ D) using

q5 by simp
moreover then have e4 : d (h a) > i using e2 by simp
ultimately have d (h a) > 1 −→ (h a, (h^^i) (h a)) ∈ g1^∗ using d1

by simp
moreover have (h^^i) (h a) = (h^^(Suc i)) a by (metis comp-apply

funpow-Suc-right)
moreover have d (h a) = 1 −→ (h^^(Suc i)) a = (h a) using e4 by

force
moreover have d (h a) = 1 ∨ d (h a) > 1 using e4 by force
moreover then have (a, h a) ∈ g1 using e1 e3 unfolding b9 by simp
ultimately show (a, (h^^(Suc i)) a) ∈ g1^∗

by (metis converse-rtrancl-into-rtrancl r-into-rtrancl)
qed

qed
qed
ultimately have ∀n. ∀ a∈D. d a = Suc n −→ (h^^n) a ∈ D ∧ d ((h^^n) a)

= 1 ∧ (a, (h ^^ n) a) ∈ g1^∗
by simp

then have ∀n. ∀ a∈D. d a = Suc n −→ (∃ a ′ ∈ D. d a ′ = 1 ∧ (a,a ′) ∈ g1^∗)

148

by blast
moreover have ∀ a ∈ D. ∃ n. d a = Suc n using q3 q4 q5 by force
ultimately show ?thesis by blast

qed
obtain r1 where b19 : r1 = s ∪ g1 by blast
have t1 : g1 ⊆ r1 using b19 by blast
have b20 : s ⊆ r1 using b19 by blast
have b21 : r1 ⊆ r
proof −

have ∀ a ∈ D. (a, h a) ∈ r using b5 b6 b8 by blast
then have g1 ⊆ r using b9 by blast
then show ?thesis using b0 b19 by blast

qed
have b22 : ∀ a ∈ Field r1 − Field s. ∃ b ∈ Field s. (a, b) ∈ r1^∗
proof

fix a
assume d1 : a ∈ Field r1 − Field s
then have a ∈ D using q4 b21 unfolding Field-def by blast
then obtain a ′ where d2 : a ′ ∈ D ∧ d a ′ = 1 ∧ (a, a ′) ∈ g1^∗ using q6 by

blast
then have d3 : (a ′, h a ′) ∈ r1 ∧ h a ′ ∈ H a ′ using b8 b9 t1 by blast
obtain b where b ∈ Field s ∧ (a ′,b) ∈ r using d2 q1 q4 b3 by force
moreover then have isd b (d b) using q1 unfolding Field-def by blast
ultimately have b ∈ B a ′ ∧ d b = 0 using b3 b5 by force
then have d (h a ′) = 0 using d3 b6 by force
then have isd (h a ′) 0 using q1 d3 b21 unfolding Field-def by force
then have h a ′ ∈ Field s using b3 by force
moreover have (a, a ′) ∈ r1^∗ using d2 t1 rtrancl-mono[of g1 r1] by blast
ultimately have (h a ′) ∈ Field s ∧ (a, h a ′) ∈ r1^∗ using d3 by force
then show ∃ b ∈ Field s. (a, b) ∈ r1^∗ by blast

qed
have b23 : Field r ⊆ Field r1
proof −

have (Field r − Field s) ⊆ Field r1 using q4 b9 t1 unfolding Field-def by
blast

moreover have Field s ⊆ Field r1 using b20 unfolding Field-def by blast
ultimately show Field r ⊆ Field r1 by blast

qed
have Field r1 ⊆ Field r using b21 unfolding Field-def by blast
then have r1 ∈ Span r using b21 b23 unfolding Span-def by blast
moreover have CCR r1
proof −

have s ∈ U r1 using b20 b22 a1 unfolding U-def by blast
then show CCR r1 using lem-rcc-uset-ne-ccr by blast

qed
moreover have single-valued r1
proof −

have ∀ a b c. (a,b) ∈ r1 ∧ (a,c) ∈ r1 −→ b = c
proof (intro allI impI)

149

fix a b c
assume (a,b) ∈ r1 ∧ (a,c) ∈ r1

moreover have (a,b) ∈ s ∧ (a,c) ∈ s −→ b = c using a2 unfolding
single-valued-def by blast

moreover have (a,b) ∈ s ∧ (a,c) ∈ g1 −→ False using b9 b7 unfolding
Field-def by blast

moreover have (a,b) ∈ g1 ∧ (a,c) ∈ s −→ b = c using b9 b7 unfolding
Field-def by blast

moreover have (a,b) ∈ g1 ∧ (a,c) ∈ g1 −→ b = c using b9 by blast
ultimately show b = c using b19 by blast

qed
then show ?thesis unfolding single-valued-def by blast

qed
moreover have acyclic s −→ acyclic r1
proof

assume c1 : acyclic s
have c2 : ∀ a ′ ∈ D. d a ′ = 1 −→ d (h a ′) = 0
proof (intro ballI impI)

fix a ′

assume d1 : a ′ ∈ D and d2 : d a ′ = 1
then have d3 : (a ′, h a ′) ∈ r1 ∧ h a ′ ∈ H a ′ using b8 b9 t1 by blast
obtain b where b ∈ Field s ∧ (a ′,b) ∈ r using d1 d2 q1 q4 b3 by force
moreover then have isd b (d b) using q1 unfolding Field-def by blast
ultimately have b ∈ B a ′ ∧ d b = 0 using b3 b5 by force
then show d (h a ′) = 0 using d3 b6 by force

qed
have c3 : ∀ a b. (a,b) ∈ g1 −→ d b < d a
proof (intro allI impI)

fix a b
assume (a,b) ∈ g1
then have d1 : a ∈ D ∧ b = h a using b9 by blast
then have d a > 1 ∨ d a = 1 and d a > 1 −→ d b < d a using q3 q4 q5

by force+
moreover have d a = 1 −→ d b < d a using d1 c2 by force
ultimately show d b < d a by blast

qed
have c4 : ∀ n. ∀ a b. (a,b) ∈ g1^^(Suc n) −→ d b < d a
proof

fix n
show ∀ a b. (a,b) ∈ g1^^(Suc n) −→ d b < d a
proof (induct n)

show ∀ a b. (a, b) ∈ g1 ^^ (Suc 0) −→ d b < d a using c3 by force
next

fix n
assume e1 : ∀ a b. (a, b) ∈ g1 ^^ (Suc n) −→ d b < d a
show ∀ a b. (a, b) ∈ g1 ^^ (Suc (Suc n)) −→ d b < d a
proof (intro allI impI)

fix a b
assume (a, b) ∈ g1 ^^ (Suc (Suc n))

150

then obtain c where (a,c) ∈ g1^^(Suc n) ∧ (c,b) ∈ g1 by force
then have d c < d a ∧ d b < d c using e1 c3 by blast
then show d b < d a by simp

qed
qed

qed
have ∀ x. (x,x) ∈ g1^+ −→ False
proof (intro allI impI)

fix x
assume (x,x) ∈ g1^+
then obtain m::nat where m > 0 ∧ (x,x) ∈ g1^^m using trancl-power by

blast
moreover then obtain n where m = Suc n using less-imp-Suc-add by

blast
ultimately have d x < d x using c4 by blast
then show False by blast

qed
then have acyclic g1 unfolding acyclic-def by blast

moreover have ∀ a b c. (a,b) ∈ s ∧ (b,c) ∈ g1 −→ False using b9 b7
unfolding Field-def by blast

moreover have r1 = s ∪ g1 using b19 by blast
ultimately show acyclic r1 using c1 lem-acyc-un-emprd by blast

qed
ultimately show ?thesis using b20 by blast

qed

lemma lem-incrfun-nat: ∀ i::nat. f i < f (Suc i) =⇒ ∀ i j. i ≤ j −→ f i + (j−i)
≤ f j
proof −

assume a1 : ∀ i::nat. f i < f (Suc i)
have ∀ j. ∀ i. i≤j −→ f i + (j−i) ≤ f j
proof

fix j0
show ∀ i. i≤j0 −→ f i + (j0−i) ≤ f j0
proof (induct j0)

show ∀ i≤0 . f i + (0 − i) ≤ f 0 by simp
next

fix j
assume c1 : ∀ i≤j. f i + (j − i) ≤ f j
show ∀ i≤Suc j. f i + (Suc j − i) ≤ f (Suc j)
proof (intro allI impI)

fix i
assume d1 : i ≤ Suc j
show f i + (Suc j − i) ≤ f (Suc j)
proof (cases i ≤ j)

assume i ≤ j
moreover then have f i + (j − i) ≤ f j using c1 by blast
ultimately show ?thesis using a1

by (metis Suc-diff-le Suc-le-eq add-Suc-right not-le order-trans)

151

next
assume ¬ i ≤ j
then have i = Suc j using d1 by simp
then show ?thesis by simp

qed
qed

qed
qed
then show ∀ i j. i ≤ j −→ f i + (j−i) ≤ f j by blast

qed

lemma lem-sv-uset-rcceqw:
fixes r :: ′U rel
assumes a1 : ‖r‖ =o ω-ord
shows ∃ r1 ∈ U r . single-valued r1 ∧ acyclic r1 ∧ (∀ x ∈ Field r1 . r1‘‘{x} 6= {})
proof −

have ¬ (‖r‖ <o ω-ord) using a1 by (metis not-ordLess-ordIso)
then obtain s where b1 : s ∈ U r ∧ |s| =o ‖r‖ using lem-rcc-uset-ne lem-uset-ne-rcc-inf

by blast
then have |Field s| =o ω-ord
using a1 lem-rel-inf-fld-card[of s] by (metis ordIso-natLeq-infinite1 ordIso-transitive)

then obtain ai where b2 : Field s = ai ‘ (UNIV ::nat set) using lem-cntset-enum
by blast

obtain f where b3 : f = (λ x. SOME y. (x,y) ∈ r^∗ ∧ y ∈ Field s) by blast
obtain g where b4 : g = (λ A. SOME y. y ∈ Field r ∧ A ⊆ dncl r {y}) by blast
obtain h where b5 : h = (λ A. SOME y. y ∈ Field r − dncl r A) by blast
have b6 :

∧
x. x ∈ Field r =⇒ (x, f x) ∈ r^∗ ∧ f x ∈ Field s

proof −
fix x
assume x ∈ Field r
then have ∃ y. (x,y) ∈ r^∗ ∧ y ∈ Field s using b1 unfolding U-def by blast
then show (x,f x) ∈ r^∗ ∧ f x ∈ Field s

using b3 someI-ex[of λ y. (x,y) ∈ r^∗ ∧ y ∈ Field s] by blast
qed
have b7 :

∧
A. finite A ∧ A ⊆ Field r =⇒ g A ∈ Field r ∧ A ⊆ dncl r {g A}

proof −
fix A:: ′U set
assume c1 : finite A ∧ A ⊆ Field r
moreover have CCR r using b1 lem-rcc-uset-ne-ccr by blast
ultimately obtain s where c2 : finite s ∧ CCR s ∧ s ⊆ r ∧ A ⊆ Field s

using lem-Ccext-finsubccr-dext[of r A] by blast
then have c3 : Conelike s using lem-Relprop-fin-ccr by blast
have ∃ y. y ∈ Field r ∧ A ⊆ dncl r {y}
proof (cases A = {})

assume A = {}
moreover have r 6= {} using a1 lem-rcc-emp lem-Rcc-inf-lim by (metis

ordIso-iff-ordLeq)
moreover then have Field r 6= {} unfolding Field-def by force
ultimately show ?thesis unfolding dncl-def by blast

152

next
assume d1 : A 6= {}
then have s 6= {} using c2 unfolding Field-def by blast

then obtain y where ∀ x∈A. (x, y) ∈ s^∗ using c2 c3 unfolding Conelike-def
by blast

then have d2 : ∀ x ∈ A. (x,y) ∈ r^∗ using c2 rtrancl-mono by blast
obtain x0 where x0 ∈ A ∩ Field r using d1 c1 c2 by blast
moreover then have (x0 , y) ∈ r^∗ using d2 by blast
ultimately have y ∈ Field r using lem-rtr-field[of x0 y r] by blast
then show ?thesis using d2 unfolding dncl-def by blast

qed
then show g A ∈ Field r ∧ A ⊆ dncl r {g A}

using b4 someI-ex[of λ y. y ∈ Field r ∧ A ⊆ dncl r {y}] by blast
qed
have b8 :

∧
A:: ′U set. finite A =⇒ (h A) ∈ Field r − dncl r A

proof −
fix A:: ′U set
assume c1 : finite A
have Field r − dncl r A = {} −→ False
proof

assume Field r − dncl r A = {}
then have ∀ x ∈ Field r . ∃ y ∈ A ∩ Field r . (x,y) ∈ r^∗

using lem-rtr-field[of - - r] unfolding dncl-def by blast
then have A ∩ Field r ∈ SCF r unfolding SCF-def by blast
then have scf r ≤o |A ∩ Field r | using lem-scf-uset-mem-bnd by blast
moreover have |A ∩ Field r | <o ω-ord using c1 finite-iff-ordLess-natLeq by

blast
ultimately have scf r <o ω-ord by (metis ordLeq-ordLess-trans)

moreover have ‖r‖ =o scf r using b1 lem-scf-ccr-scf-rcc-eq[of r] lem-rcc-uset-ne-ccr [of
r] by blast

ultimately show False using a1
by (meson not-ordLeq-ordLess ordIso-iff-ordLeq ordLess-ordLeq-trans)

qed
then show (h A) ∈ Field r − dncl r A

using b5 someI-ex[of λ y. y ∈ Field r − dncl r A] by blast
qed
obtain Ci where b9 : Ci = rec-nat { ai 0 } (λ n B. B ∪ {f (g({(h B)} ∪ B ∪

ai‘{k. k≤n}))}) by blast
then have b10 : Ci 0 = {ai 0}

and b11 :
∧

n. Ci (Suc n) = Ci n ∪ {f (g({(h (Ci n))} ∪ Ci n ∪ ai‘{k.
k≤n}))} by simp+

have b12 : Field s ⊆ Field r using b1 unfolding U-def Field-def by blast
have b13 :

∧
n. Ci n ⊆ Field s ∧ finite (Ci n)

proof −
fix n
show Ci n ⊆ Field s ∧ finite (Ci n)
proof (induct n)

show Ci 0 ⊆ Field s ∧ finite (Ci 0) using b2 b10 by simp
next

153

fix n
assume Ci n ⊆ Field s ∧ finite (Ci n)
moreover then have {h (Ci n)} ∪ Ci n ∪ ai ‘ {k. k ≤ n} ⊆ Field r using

b2 b8 b12 by blast
ultimately show Ci (Suc n) ⊆ Field s ∧ finite (Ci (Suc n)) using b6 b7 b11

by simp
qed

qed
have b14 :

∧
n. ∃ m∈(Ci n). Ci n ∪ ai‘{k. k≤n−1} ⊆ dncl r {m}

proof −
fix n
show ∃ m∈(Ci n). Ci n ∪ ai‘{k. k≤n−1} ⊆ dncl r {m}
proof (induct n)

show ∃m∈Ci 0 . Ci 0 ∪ ai‘{k. k≤0−1} ⊆ dncl r {m} using b10 unfolding
dncl-def by simp

next
fix n
assume ∃m∈Ci n. Ci n ∪ ai‘{k. k≤n−1} ⊆ dncl r {m}
obtain A where d1 : A = {(h (Ci n))} ∪ Ci n ∪ ai‘{k. k≤n} by blast
obtain m where d2 : m = f (g(A)) by blast
have finite A ∧ A ⊆ Field r using d1 b2 b8 b12 b13 by force
then have d3 : g A ∈ Field r ∧ A ⊆ dncl r {g A} using b7 by blast
then have d4 : (g A, m) ∈ r^∗ ∧ m ∈ Field s using d2 b6 by blast
have m ∈ Ci (Suc n) using d1 d2 b11 by blast

moreover have ai‘{k. k≤n} ⊆ dncl r {m} using d1 d3 d4 unfolding dncl-def
by force

moreover have Ci n ⊆ dncl r {m} using d1 d3 d4 unfolding dncl-def by
force

moreover then have Ci (Suc n) ⊆ dncl r {m} using d1 d2 b11 unfolding
dncl-def by blast

ultimately show ∃m∈Ci (Suc n). Ci (Suc n) ∪ ai‘{k. k≤(Suc n)−1} ⊆
dncl r {m} by force

qed
qed
obtain ci where b15 : ci = (λ n. SOME m. m ∈ Ci n ∧ Ci n ⊆ dncl r {m})

by blast
have b16 :

∧
n. (ci n) ∈ Ci n ∧ Ci n ⊆ dncl r {ci n}

proof −
fix n
have ∃ m∈(Ci n). Ci n ⊆ dncl r {m} using b14 by blast
then show (ci n) ∈ Ci n ∧ Ci n ⊆ dncl r {ci n}

using b15 someI-ex[of λ m. m ∈ Ci n ∧ Ci n ⊆ dncl r {m}] by blast
qed
have b17 :

∧
n. ci (Suc n) /∈ dncl r (Ci n)

proof −
fix n
obtain A where c1 : A = {(h (Ci n))} ∪ Ci n ∪ ai‘{k. k≤n} by blast
then have c2 : finite A ∧ A ⊆ Field r using b2 b8 [of Ci n] b13 [of n] b12 by

blast

154

then have c3 : g A ∈ Field r ∧ A ⊆ dncl r {g A} using b7 by simp
then have (h (Ci n), g A) ∈ r^∗ using c1 unfolding dncl-def by blast
moreover have (g A, f (g A)) ∈ r^∗ using c3 b6 [of g A] by blast
moreover have (f (g A), ci (Suc n)) ∈ r^∗ using c1 b11 b16 unfolding

dncl-def by blast
ultimately have (h (Ci n), ci (Suc n)) ∈ r^∗ by force
moreover have h (Ci n) /∈ dncl r (Ci n) using b8 [of Ci n] b13 [of n] by blast
ultimately show ci (Suc n) /∈ dncl r (Ci n) unfolding dncl-def

by (meson Image-iff converse-iff rtrancl-trans)
qed
have ∀ n. (ci n, ci (Suc n)) ∈ r^∗ ∧ ci n 6= ci (Suc n)
proof

fix n
have (ci n, ci (Suc n)) ∈ r^∗ using b11 b16 unfolding dncl-def by blast

moreover have ci n 6= ci (Suc n) using b16 [of n] b17 [of n] unfolding dncl-def
by fastforce

ultimately show (ci n, ci (Suc n)) ∈ r^∗ ∧ ci n 6= ci (Suc n) by blast
qed
then obtain l yi where

b18 : ∀n. (yi n, yi (Suc n)) ∈ r
and b19 : ∀ i j. (i < j) = (l i < l j)
and b20 : ∀ i. yi (l i) = ci i
and b21 : ∀ i. inj-on yi {k. l i ≤ k ∧ k ≤ l (Suc i)}
and b22 : ∀ k. ∃ i. l i ≤ k ∧ Suc k ≤ l (Suc i)

using lem-flatseq[of ci r] by blast
obtain r ′ where b23 : r ′ = { (x,y). ∃ i. x = yi i ∧ y = yi (Suc i) } by blast
have b24 : ∀ j. ∀ i. i ≤ j −→ (yi i, yi j) ∈ r ′̂ ∗
proof

fix j
show ∀ i. i ≤ j −→ (yi i, yi j) ∈ r ′̂ ∗
proof (induct j)

show ∀ i ≤ 0 . (yi i, yi 0) ∈ r ′̂ ∗ by blast
next

fix j
assume d1 : ∀ i ≤ j. (yi i, yi j) ∈ r ′̂ ∗
show ∀ i ≤ Suc j. (yi i, yi (Suc j)) ∈ r ′̂ ∗
proof (intro allI impI)

fix i
assume e1 : i ≤ Suc j
show (yi i, yi (Suc j)) ∈ r ′̂ ∗
proof (cases i ≤ j)

assume i ≤ j
then have (yi i, yi j) ∈ r ′̂ ∗ using d1 by blast
moreover have (yi j, yi (Suc j)) ∈ r ′ using b23 by blast
ultimately show ?thesis by simp

next
assume ¬ i ≤ j
then have i = Suc j using e1 by simp
then show ?thesis using e1 by blast

155

qed
qed

qed
qed
have b25 : ∀ j. (∀ i. i ≤ j −→ Ci i ⊆ Ci j)
proof

fix j
show ∀ i. i ≤ j −→ Ci i ⊆ Ci j
proof (induct j)

show ∀ i≤0 . Ci i ⊆ Ci 0 by force
next

fix j
assume ∀ i≤j. Ci i ⊆ Ci j
moreover have Ci j ⊆ Ci (Suc j) using b11 by blast
ultimately show ∀ i≤Suc j. Ci i ⊆ Ci (Suc j) using le-Suc-eq by fastforce

qed
qed
have b26 : ∀ k1 k2 . k1 < k2 −→ yi k1 = yi k2 −→ (∃ i. l i ≤ k1 ∧ k2 ≤ l

(i+2))
proof (intro allI impI)

fix k1 ::nat and k2 ::nat
assume d1 : k1 < k2 and d2 : yi k1 = yi k2
obtain i1 i2 where d3 : l i1 ≤ k1 ∧ Suc k1 ≤ l (Suc i1)

and d4 : l i2 ≤ k2 ∧ Suc k2 ≤ l (Suc i2) using b22 by blast
have i1 = i2 −→ False
proof

assume i1 = i2
then have l i1 ≤ k2 ∧ k2 ≤ l (Suc i1) using d4 by simp
moreover have l i1 ≤ k1 ∧ k1 ≤ l (Suc i1) using d3 by simp
ultimately show False using d1 d2 b21 unfolding inj-on-def by blast

qed
moreover have i2 < i1 −→ False
proof

assume i2 < i1
then have Suc i2 = i1 ∨ Suc i2 < i1 by fastforce
then have l (Suc i2) = l i1 ∨ l (Suc i2) < l i1 using b19 by blast
then have l (Suc i2) ≤ l i1 by fastforce
moreover have l i1 < l (Suc i2) using d1 d3 d4 by simp
ultimately show False by simp

qed
moreover have Suc i1 < i2 −→ False
proof

assume e1 : Suc i1 < i2
have k1 ≤ l (Suc i1) ∧ l i2 ≤ k2 using d3 d4 by force
then have (yi k1 , yi (l (Suc i1))) ∈ r^∗ and (yi (l i2), yi k2) ∈ r^∗

using b18 b23 b24 rtrancl-mono[of r ′ r] by blast+
then have e2 : (yi k1 , ci (Suc i1)) ∈ r^∗ and e3 : (ci i2 , yi k1) ∈ r^∗ using

d2 b20 by force+
have Suc i1 ≤ i2−1 ∧ i2−1 ≤ i2 and Suc (i2−1) = i2 using e1 by simp+

156

then have e4 : ci i2 /∈ dncl r (Ci (i2 − 1)) and e5 : ci (Suc i1) ∈ Ci (i2−1)

using b16 [of Suc i1] b17 [of i2 − 1] b25 by fastforce+
have yi k1 /∈ dncl r (Ci (i2−1)) using e3 e4 unfolding dncl-def

by (meson Image-iff converse-iff rtrancl-trans)
moreover have yi k1 ∈ dncl r (Ci (i2−1)) using e2 e5 unfolding dncl-def

by blast
ultimately show False by blast

qed
ultimately have Suc i1 = i2 by simp
moreover then have l (Suc i1) = l i2 using b19 by blast
ultimately have l i1 ≤ k1 ∧ k2 ≤ l (i1 + 2) using d3 d4 by simp
then show ∃ i. l i ≤ k1 ∧ k2 ≤ l (i+2) by blast

qed
obtain w where b27 : w = (λ k. k + l ((GREATEST j. l j ≤ k) + 2)) by blast
have b28 :

∧
k. ∀ k ′. yi k = yi k ′ −→ k ′ < Suc (w k)

proof −
fix k
show ∀ k ′. yi k = yi k ′ −→ k ′ < Suc (w k)
proof (cases ∃ k ′ > k. yi k ′ = yi k)

assume d1 : ∃ k ′ > k. yi k ′ = yi k
have d2 : ∀ k ′. k < k ′ −→ yi k = yi k ′ −→ (∃ i. l i ≤ k ∧ k ′ ≤ l (i+2))

using b26 by blast
have d3 : ∀ i. i ≤ l i
proof

fix i
show i ≤ l i
proof (induct i)

show 0 ≤ l 0 by blast
next

fix i
assume i ≤ l i
moreover have l i < l (Suc i) using b19 by blast
ultimately show Suc i ≤ l (Suc i) by simp

qed
qed
obtain i0 where d4 : i0 = (GREATEST j. l j ≤ k) by blast
obtain t where d5 : t = k + l (i0+2) by blast
then have t ≥ k by force
moreover have ∀ k ′. yi k ′ = yi k −→ k ′ ≤ t
proof (intro allI impI)

fix k ′

assume e1 : yi k ′ = yi k
have k < k ′ −→ k ′ ≤ t
proof

assume k < k ′

then obtain i where f1 : l i ≤ k ∧ k ′ ≤ l (i+2) using e1 d2 by metis
moreover have ∀ y. l y ≤ k −→ y < Suc k using d3 less-Suc-eq-le

order-trans by blast

157

ultimately have i ≤ i0 using d4 Greatest-le-nat[of λ j. l j ≤ k i Suc k]
by force

then have l (i+2) ≤ l(i0+2) using b19 by (metis Suc-less-eq add-2-eq-Suc ′

not-le)
then show k ′ ≤ t using f1 d5 by fastforce

qed
then show k ′ ≤ t using d5 by fastforce

qed
ultimately show ?thesis using d4 d5 b27 by fastforce

next
assume ¬ (∃ k ′ > k. yi k ′ = yi k)
then have ∀ k ′. yi k ′ = yi k −→ k ′ ≤ k using leI by blast
then show ?thesis using b27 by fastforce

qed
qed
obtain q where b29 : q = (λ k. GREATEST k ′. yi k = yi k ′) by blast
have b30 :

∧
k. yi k = yi (q k)

proof −
fix k
show yi k = yi (q k) using b28 [of k] b29 GreatestI-nat[of λ k ′. yi k = yi k ′ k

Suc (w k)] by force
qed
have b31 :

∧
k k ′. yi k ′ = yi (q k) −→ k ′ ≤ q k

proof
fix k k ′

assume yi k ′ = yi (q k)
then show k ′ ≤ q k using b28 [of k] b29 b30 Greatest-le-nat[of λ k ′. yi k = yi

k ′ k ′ Suc (w k)] by force
qed
obtain p where b32 : p = rec-nat (q 0) (λ n y. q (Suc y)) by blast
obtain r1 where b33 : r1 = { (x,y). ∃ i. x = yi (p i) ∧ y = yi (Suc (p i)) }

by blast
have b34 :

∧
i. p i = q (p i)

proof −
fix i
show p i = q (p i)
proof (induct i)

show p 0 = q (p 0) using b29 b30 b32 by simp
next

fix i
assume p i = q (p i)
then show p (Suc i) = q (p (Suc i)) using b29 b30 b32 by simp

qed
qed
have b35 :

∧
i j. i≤j −→ p i + (j−i) ≤ p j

proof −
fix i j
have

∧
k. q k = k −→ q k < q (Suc k) using b30 b31 by (metis less-eq-Suc-le)

then have ∀ i. p i < p (Suc i) using b32 b34 by simp

158

then show i≤j −→ p i + (j−i) ≤ p j using lem-incrfun-nat[of p] by blast
qed
have b36 : ∀ i j. p i = p j −→ i = j
proof (intro allI impI)

fix i j
assume p i = p j
then have i≤j −→ i = j and j≤i −→ j = i using b35 by fastforce+
then show i = j by fastforce

qed
have b37 : ∀ i j. yi (p i) = yi (p j) −→ i = j using b29 b34 b36 by metis
have b38 : ∀ x ∈ Field r1 . ∃ i. x = yi (p i)
proof

fix x
assume x ∈ Field r1
moreover have ∀ i. yi (Suc (p i)) = yi (p (Suc i)) using b30 b32 by simp
ultimately show ∃ i. x = yi (p i) using b33 unfolding Field-def by force

qed
have b39 :

∧
i. (yi (p i), yi (p (Suc i))) ∈ r1 using b30 b32 b33 by fastforce

have b40 : ∀ j. ∀ i. i ≤ j −→ (yi (p i), yi (p j)) ∈ r1^∗
proof

fix j0
show ∀ i. i ≤ j0 −→ (yi (p i), yi (p j0)) ∈ r1^∗
proof (induct j0)

show ∀ i≤0 . (yi (p i), yi (p 0)) ∈ r1^∗ by blast
next

fix j
assume d1 : ∀ i≤j. (yi (p i), yi (p j)) ∈ r1^∗
show ∀ i≤Suc j. (yi (p i), yi (p (Suc j))) ∈ r1^∗
proof (intro allI impI)

fix i
assume e1 : i≤Suc j
show (yi (p i), yi (p (Suc j))) ∈ r1^∗
proof (cases i = Suc j)

assume i = Suc j
then show ?thesis by force

next
assume i 6= Suc j
then have (yi (p i), yi (p j)) ∈ r1^∗ using e1 d1 by simp
then show ?thesis using e1 d1 b39 [of j] by simp

qed
qed

qed
qed
have r1 ⊆ r ′ using b23 b33 by blast
moreover have ∀ a ∈ Field r ′. ∃ b ∈ Field r1 . (a, b) ∈ r ′̂ ∗
proof

fix a
assume a ∈ Field r ′

then obtain k where a = yi k using b23 unfolding Field-def by blast

159

moreover have k ≤ p k using b35 [of 0 k] by fastforce
ultimately have (a, yi (p k)) ∈ r ′̂ ∗ using b24 by blast
moreover have yi (p k) ∈ Field r1 using b33 unfolding Field-def by blast
ultimately show ∃ b ∈ Field r1 . (a, b) ∈ r ′̂ ∗ by blast

qed
moreover have CCR r1
proof −

have ∀ a∈Field r1 . ∀ b∈Field r1 . ∃ c∈Field r1 . (a, c) ∈ r1^∗ ∧ (b, c) ∈ r1^∗
proof (intro ballI)

fix a b
assume d1 : a ∈ Field r1 and d2 : b ∈ Field r1
then obtain i j where a = yi (p i) ∧ b = yi (p j) using b38 by blast
then have i ≤ j −→ (a,b) ∈ r1^∗ and j ≤ i −→ (b,a) ∈ r1^∗ using b40 by

blast+
then show ∃ c∈Field r1 . (a, c) ∈ r1^∗ ∧ (b, c) ∈ r1^∗ using d1 d2 by

fastforce
qed
then show CCR r1 unfolding CCR-def by blast

qed
ultimately have b41 : r1 ∈ U r ′ unfolding U-def by blast
then have CCR r ′ using lem-rcc-uset-ne-ccr by blast
moreover have r ′ ⊆ r using b18 b23 by blast
moreover have ∀ x ∈ Field r . ∃ y ∈ Field r ′. (x, y) ∈ r^∗
proof

fix x
assume c1 : x ∈ Field r
then obtain y where c2 : y ∈ Field s ∧ (x,y) ∈ r^∗ using b1 unfolding U-def

by blast
then obtain n where y = ai n using b2 by blast
then obtain m where y ∈ dncl r {m} ∧ m ∈ Ci (Suc n) using b14 [of Suc

n] by force
then have (y, m) ∈ r^∗ ∧ (m, ci (Suc n)) ∈ r^∗ using b16 unfolding dncl-def

by blast
then have (x, ci (Suc n)) ∈ r^∗ using c2 by force
moreover obtain y ′ where c2 : y ′ = yi (l (Suc n)) by blast
ultimately have c3 : (x,y ′) ∈ r^∗ using b20 by metis
have (y ′, yi (Suc (l (Suc n)))) ∈ r ′ using c2 b23 by blast
then have y ′ ∈ Field r ′ unfolding Field-def by blast
then show ∃ y ∈ Field r ′. (x, y) ∈ r^∗ using c3 by blast

qed
ultimately have r ′ ∈ U r unfolding U-def by blast
then have r1 ∈ U r using b41 lem-rcc-uset-tr by blast
moreover have single-valued r1 using b33 b37 unfolding single-valued-def by

blast
moreover have acyclic r1
proof −

have c1 : ∀ n. ∀ i j. (yi (p i), yi (p j)) ∈ r1^^(Suc n) −→ i < j
proof

fix n0

160

show ∀ i j. (yi (p i), yi (p j)) ∈ r1^^(Suc n0) −→ i < j
proof (induct n0)

show ∀ i j. (yi (p i), yi (p j)) ∈ r1 ^^ (Suc 0) −→ i < j
proof (intro allI impI)

fix i j
assume (yi (p i), yi (p j)) ∈ r1^^(Suc 0)
then obtain i ′ j ′::nat where yi (p i) = yi (p i ′) ∧ yi (p j) = yi (Suc (p

i ′)) using b33 by force
then have i = i ′ ∧ j = Suc i ′ using b30 b32 b37 by simp
then show i < j by blast

qed
next

fix n
assume d1 : ∀ i j. (yi (p i), yi (p j)) ∈ r1 ^^ (Suc n) −→ i < j
show ∀ i j. (yi (p i), yi (p j)) ∈ r1 ^^ Suc (Suc n) −→ i < j
proof (intro allI impI)

fix i j
assume (yi (p i), yi (p j)) ∈ r1 ^^ Suc (Suc n)
then obtain x where (yi (p i), x) ∈ r1 ^^ (Suc n) ∧ (x, yi (p j)) ∈ r1

by force
moreover then obtain k where x = yi (p k) using b38 unfolding

Field-def by blast
ultimately have e1 : i < k ∧ (yi (p k), yi (p j)) ∈ r1 using d1 by blast
then obtain i ′ j ′::nat where yi (p k) = yi (p i ′) ∧ yi (p j) = yi (Suc (p

i ′)) using b33 by force
then have k = i ′ ∧ j = Suc i ′ using b30 b32 b37 by simp
then have k < j by blast
then show i < j using e1 by simp

qed
qed

qed
have ∀ x. (x,x) ∈ r1^+ −→ False
proof (intro allI impI)

fix x
assume d1 : (x,x) ∈ r1^+

then have x ∈ Field r1 by (metis FieldI2 Field-def trancl-domain trancl-range)
then obtain i where x = yi (p i) using b38 by blast

moreover obtain m::nat where m > 0 ∧ (x,x) ∈ r1^^m using d1 trancl-power
by blast

moreover then obtain n where m = Suc n using less-imp-Suc-add by
blast

ultimately have n < n using c1 by blast
then show False by blast

qed
then show ?thesis unfolding acyclic-def by blast

qed
moreover have ∀ x ∈ Field r1 . r1‘‘{x} 6= {}
proof

fix x

161

assume x ∈ Field r1
then obtain i where x = yi (p i) using b38 by blast
moreover then obtain y where y = yi (Suc (p i)) by blast
ultimately have (x,y) ∈ r1 using b33 by blast
then show r1‘‘{x} 6= {} by blast

qed
ultimately show ?thesis by blast

qed

lemma lem-sv-span-scflew:
fixes r :: ′U rel
assumes CCR r and scf r ≤o ω-ord
shows ∃ r1 . r1 ∈ Span r ∧ CCR r1 ∧ single-valued r1
proof (cases ‖r‖ =o ω-ord)

assume ‖r‖ =o ω-ord
then obtain s where s ∈ U r ∧ single-valued s using lem-sv-uset-rcceqw by

blast
then show ?thesis using lem-sv-uset-sv-span by blast

next
assume ¬ (‖r‖ =o ω-ord)
then have ‖r‖ <o ω-ord using assms lem-scf-ccr-scf-rcc-eq[of r]

by (metis ordIso-ordLess-trans ordIso-transitive ordLeq-iff-ordLess-or-ordIso)
then have b1 : Conelike r using assms lem-Rcc-eq2-31 by blast
have ∃ s. s ∈ U r ∧ single-valued s
proof (cases r = {})

assume r = {}
then have {} ∈ U r unfolding U-def CCR-def Field-def by blast
moreover have single-valued {} unfolding single-valued-def by blast
ultimately show ?thesis by blast

next
assume r 6= {}
then obtain m where c1 : m ∈ Field r ∧ (∀ a ∈ Field r . (a, m) ∈ r^∗) using

b1 unfolding Conelike-def by blast
then obtain u v where c2 : (u, v) ∈ r ∧ (u = m ∨ v = m) unfolding Field-def

by blast
obtain s where c3 : s = {(u,v)} by blast
have s ⊆ r using c2 c3 by blast
moreover have CCR s using c3 unfolding CCR-def by fastforce
moreover have ∀ a∈Field r . ∃ b∈Field s. (a, b) ∈ r^∗
proof

fix a
assume a ∈ Field r
moreover have m ∈ Field s using c2 c3 unfolding Field-def by fastforce
ultimately show ∃ b∈Field s. (a, b) ∈ r^∗ using c1 by blast

qed
ultimately have s ∈ U r unfolding U-def by blast
moreover have single-valued s using c3 unfolding single-valued-def by blast
ultimately show ?thesis by blast

qed

162

then show ?thesis using lem-sv-uset-sv-span by blast
qed

lemma lem-sv-span-scfeqw:
fixes r :: ′U rel
assumes CCR r and scf r =o ω-ord
shows ∃ r1 . r1 ∈ Span r ∧ r1 6= {} ∧ CCR r1 ∧ single-valued r1 ∧ acyclic r1 ∧
(∀ x∈Field r1 . r1‘‘{x} 6= {})
proof −

have b1 : ‖r‖ =o ω-ord using assms lem-scf-ccr-scf-rcc-eq[of r] by (metis or-
dIso-transitive)

then obtain s where s ∈ U r ∧ single-valued s ∧ acyclic s ∧ (∀ x∈Field s. s‘‘{x}
6= {})

using lem-sv-uset-rcceqw by blast
then obtain r1 where b2 : r1 ∈ Span r ∧ CCR r1 ∧ single-valued r1 ∧ s ⊆ r1
∧ acyclic r1

using lem-sv-uset-sv-span[of s r] by blast
moreover have r1 = {} −→ False
proof

assume r1 = {}
then have r = {} using b2 unfolding Span-def Field-def by force
then show False using b1 lem-Rcc-inf-lim lem-rcc-emp lem-rcc-inf by (metis

not-ordLess-ordIso)
qed
moreover have ∀ x∈Field r1 . r1‘‘{x} = {} −→ False
proof (intro ballI impI)

fix x
assume c1 : x ∈ Field r1 and c2 : r1‘‘{x} = {}
have ∀ a∈Field r1 . (a, x) ∈ r1^∗
proof

fix a
assume a ∈ Field r1
then obtain t where (x,t) ∈ r1^∗ ∧ (a,t) ∈ r1^∗ using c1 b2 unfolding

CCR-def by blast
moreover then have x = t using c2 by (metis Image-singleton-iff con-

verse-rtranclE empty-iff)
ultimately show (a,x) ∈ r1^∗ by blast

qed
then have Conelike r1 using c1 unfolding Conelike-def by blast
moreover have r1 ∈ U r using b2 unfolding U-def Span-def by blast
ultimately have Conelike r using lem-uset-cl-ext[of r1 r] by blast
then show False using b1 lem-Rcc-eq2-12 [of r] lem-Rcc-eq2-23 [of r] by (metis

not-ordLess-ordIso)
qed
ultimately show ?thesis by blast

qed

lemma lem-Ldo-den-ccr-uset:
fixes r s:: ′U rel

163

assumes CCR s and s ⊆ r ∧ Field s ∈ Den r
shows s ∈ U r

using assms unfolding Den-def U-def by blast

lemma lem-Ldo-ds-reduc:
fixes r s:: ′U rel and n0 ::nat
assumes a1 : CCR s ∧ DCR n0 s and a2 : s ⊆ r and a3 : Field s ∈ Den r and
a4 : Field s ∈ Inv (r − s)
shows CCR r ∧ DCR (Suc n0) r
proof −

obtain g0 where b1 : DCR-generating g0
and b2 : s =

⋃
{r ′. ∃α ′. α ′ < n0 ∧ r ′ = g0 α ′}

using a1 unfolding DCR-def by blast
obtain g :: nat ⇒ ′U rel

where b8 : g = (λ α. if (α < n0) then (g0 α) else (r− s)) by blast
obtain n :: nat where b9 : n = (Suc n0) by blast
have b11 :

∧
α. α < n0 =⇒ g α = (g0 α) using b8 by simp

have b12 :
∧

α. ¬ (α < n0) =⇒ g α = (r− s) using b8 by force
have ∀α β a b c.

α ≤ β −→ (a, b) ∈ g α ∧ (a, c) ∈ g β −→
(∃ b ′ b ′′ c ′ c ′′ d. (b, b ′, b ′′, d) ∈ D g α β ∧ (c, c ′, c ′′, d) ∈ D g β α)

proof (intro allI impI)
fix α β a b c
assume c0 : α ≤ β and c1 : (a, b) ∈ g α ∧ (a, c) ∈ g β
have α < n0 ∧ β < n0
−→ (∃ b ′ b ′′ c ′ c ′′ d. (b, b ′, b ′′, d) ∈ D g α β ∧ (c, c ′, c ′′, d) ∈ D g β α)

proof
assume d1 : α < n0 ∧ β < n0
moreover then have (a, b) ∈ g0 α ∧ (a, c) ∈ g0 β using c1 b11 by blast
then obtain b ′ b ′′ c ′ c ′′ d where d2 : (b, b ′, b ′′, d) ∈ D g0 α β ∧ (c, c ′, c ′′,

d) ∈ D g0 β α
using b1 unfolding DCR-generating-def by blast

have (b, b ′, b ′′, d) ∈ D g α β
proof −

have (b, b ′) ∈ (L1 g α)^∗
proof −

have ∀ α ′. α ′ < α −→ g α ′ = g0 α ′ using d1 b11 by force
then have L1 g α = L1 g0 α unfolding L1-def by blast

moreover have (b,b ′) ∈ (L1 g0 α)^∗ using d2 unfolding D-def by blast
ultimately show ?thesis by metis

qed
moreover have (b ′, b ′′) ∈ (g β)^=
proof −

have g β = g0 β using d1 b11 by blast
moreover have (b ′,b ′′) ∈ (g0 β)^= using d2 unfolding D-def by blast
ultimately show ?thesis by metis

qed
moreover have (b ′′, d) ∈ (Lv g α β)^∗
proof −

164

have ∀ α ′. α ′ < α ∨ α ′ < β −→ g α ′ = g0 α ′ using d1 b11 by force
then have Lv g α β = Lv g0 α β unfolding Lv-def by blast
moreover have (b ′′,d) ∈ (Lv g0 α β)^∗ using d2 unfolding D-def by

blast
ultimately show ?thesis by metis

qed
ultimately show ?thesis unfolding D-def by blast

qed
moreover have (c, c ′, c ′′, d) ∈ D g β α
proof −

have (c, c ′) ∈ (L1 g β)^∗
proof −

have ∀ α ′. α ′ < β −→ g α ′ = g0 α ′ using d1 b11 by force
then have L1 g β = L1 g0 β unfolding L1-def by blast

moreover have (c,c ′) ∈ (L1 g0 β)^∗ using d2 unfolding D-def by blast
ultimately show ?thesis by metis

qed
moreover have (c ′, c ′′) ∈ (g α)^=
proof −

have g α = g0 α using d1 b11 by blast
moreover have (c ′,c ′′) ∈ (g0 α)^= using d2 unfolding D-def by blast
ultimately show ?thesis by metis

qed
moreover have (c ′′, d) ∈ (Lv g β α)^∗
proof −

have ∀ α ′. α ′ < α ∨ α ′ < β −→ g α ′ = g0 α ′ using d1 b11 by force
then have Lv g β α = Lv g0 β α unfolding Lv-def by blast
moreover have (c ′′,d) ∈ (Lv g0 β α)^∗ using d2 unfolding D-def by

blast
ultimately show ?thesis by metis

qed
ultimately show ?thesis unfolding D-def by blast

qed
ultimately show ∃ b ′ b ′′ c ′ c ′′ d. (b, b ′, b ′′, d) ∈ D g α β ∧ (c, c ′, c ′′, d) ∈

D g β α by blast
qed
moreover have α < n0 ∧ ¬ (β < n0)
−→ (∃ b ′ b ′′ c ′ c ′′ d. (b, b ′, b ′′, d) ∈ D g α β ∧ (c, c ′, c ′′, d) ∈ D g β α)

proof
assume d1 : α < n0 ∧ ¬ (β < n0)
then have d2 : (a, b) ∈ g0 α ∧ (g β) = (r − s) using c1 b11 b12 by blast
have d3 : (a,b) ∈ s ∧ (a,c) ∈ r − s using d1 d2 c1 b2 unfolding Field-def

by blast
then have b ∈ Field s ∧ c ∈ Field s using a4 unfolding Field-def Inv-def

by blast
then obtain d where d6 : d ∈ Field s ∧ (b,d) ∈ s^∗ ∧ (c,d) ∈ s^∗

using a1 unfolding CCR-def by blast
have ∀ α ′. α ′ < n0 −→ α ′ < β using d1 by force
then have s ⊆ Lv g α β ∧ s ⊆ Lv g β α using b2 b11 unfolding Lv-def

165

by blast
then have (b,d) ∈ (Lv g α β)^∗ ∧ (c,d) ∈ (Lv g β α)^∗ using d6 rtrancl-mono

by blast
then show ∃ b ′ b ′′ c ′ c ′′ d. (b, b ′, b ′′, d) ∈ D g α β ∧ (c, c ′, c ′′, d) ∈ D g β

α
unfolding D-def by blast

qed
moreover have ¬ (α < n0) ∧ (β < n0) −→ False using c0 by force
moreover have ¬ (α < n0) ∧ ¬ (β < n0)
−→ (∃ b ′ b ′′ c ′ c ′′ d. (b, b ′, b ′′, d) ∈ D g α β ∧ (c, c ′, c ′′, d) ∈ D g β α)

proof
assume d1 : ¬ (α < n0) ∧ ¬ (β < n0)
then have d2 : (g α) = (r − s) ∧ (g β) = (r − s) using b12 by blast
then have d3 : b ∈ Field r ∧ c ∈ Field r using c1 unfolding Field-def by

blast
obtain b ′′ where d4 : b ′′ ∈ Field s ∧ (b,b ′′) ∈ r^= ∧ ((b,b ′′) ∈ s −→ b = b ′′)

using a3 d3 unfolding Den-def
by (cases ∃ b ′′. (b,b ′′) ∈ s, metis Domain.DomainI Field-def UnCI pair-in-Id-conv,

blast)
obtain c ′′ where d5 : c ′′ ∈ Field s ∧ (c,c ′′) ∈ r^= ∧ ((c,c ′′) ∈ s −→ c = c ′′)

using a3 d3 unfolding Den-def
by (cases ∃ c ′′. (c,c ′′) ∈ s, metis Domain.DomainI Field-def UnCI

pair-in-Id-conv, blast)
obtain d where d6 : d ∈ Field s ∧ (b ′′,d) ∈ s^∗ ∧ (c ′′,d) ∈ s^∗

using d4 d5 a1 unfolding CCR-def by blast
have ∀ α ′. α ′ < n0 −→ α ′ < α using d1 by force
then have s ⊆ Lv g α β ∧ s ⊆ Lv g β α using b2 b11 unfolding Lv-def

by blast
then have (b ′′,d) ∈ (Lv g α β)^∗ ∧ (c ′′,d) ∈ (Lv g β α)^∗ using d6

rtrancl-mono by blast
moreover have (b,b ′′) ∈ (g β)^= using d2 d4 by blast
moreover have (c,c ′′) ∈ (g α)^= using d2 d5 by blast
ultimately show ∃ b ′ b ′′ c ′ c ′′ d. (b, b ′, b ′′, d) ∈ D g α β ∧ (c, c ′, c ′′, d) ∈

D g β α
unfolding D-def by blast

qed
ultimately show ∃ b ′ b ′′ c ′ c ′′ d. (b, b ′, b ′′, d) ∈ D g α β ∧ (c, c ′, c ′′, d) ∈

D g β α by blast
qed
then have DCR-generating g using lem-Ldo-ldogen-ord by blast
moreover have r =

⋃
{r ′. ∃α ′. α ′ < n ∧ r ′ = g α ′}

proof −
have r ⊆

⋃
{r ′. ∃α ′. α ′ < n ∧ r ′ = g α ′}

proof
fix p
assume c1 : p ∈ r
have ∃ α ′. α ′ < n ∧ p ∈ g α ′

proof (cases p ∈ s)
assume p ∈ s

166

then obtain α ′ where α ′ < n0 ∧ p ∈ g α ′ using b2 b11 by blast
moreover then have α ′ < n using b9 by force
ultimately show ∃ α ′. α ′ < n ∧ p ∈ g α ′ by blast

next
assume p /∈ s
moreover have ¬ (n < n0) using b9 by simp
ultimately have p ∈ g n0 using c1 b12 by blast
then show ∃ α ′. α ′ < n ∧ p ∈ g α ′ using b9 by blast

qed
then show p ∈

⋃
{r ′. ∃α ′. α ′ < n ∧ r ′ = g α ′} by blast

qed
moreover have ∀ α ′. g α ′ ⊆ r
proof

fix α ′

have α ′ < n0 −→ g0 α ′ ⊆ r using a2 b2 by blast
then show g α ′ ⊆ r using b8 by (cases α ′ < n0 , force+)

qed
ultimately show ?thesis by force

qed
moreover have CCR r using a1 a2 a3 lem-Ldo-den-ccr-uset lem-rcc-uset-ne-ccr

by blast
ultimately show ?thesis unfolding b9 DCR-def by blast

qed

lemma lem-Ldo-sat-reduc:
fixes r s:: ′U rel and n::nat
assumes a1 : s ∈ Span r and a2 : CCR s ∧ DCR n s
shows CCR r ∧ DCR (Suc n) r
proof −

have Field s ∈ Inv (r − s) using a1 unfolding Span-def Inv-def Field-def by
blast

moreover have s ⊆ r and Field s ∈ Den r using a1 unfolding Span-def
Den-def by blast+

ultimately show ?thesis using a2 lem-Ldo-ds-reduc by blast
qed

lemma lem-Ldo-uset-reduc:
fixes r s:: ′U rel and n0 ::nat
assumes a1 : s ∈ U r and a2 : DCR n0 s and a3 : n0 6= 0
shows DCR (Suc n0) r
proof −

have b0 : s ⊆ r using a1 unfolding U-def by blast
obtain g0 where b1 : DCR-generating g0

and b2 : s =
⋃
{r ′. ∃α ′. α ′ < n0 ∧ r ′ = g0 α ′}

using a2 unfolding DCR-def by blast
obtain isd where b3 : isd = (λ a i. ∃ b ∈ Field s. (a, b) ∈ r^^i ∧ (∀ i ′. (∃ b
∈ Field s. (a, b) ∈ r^^(i ′)) −→ i ≤ i ′)) by blast

obtain d where b4 : d = (λ a. SOME i. isd a i) by blast
obtain B where b5 : B = (λ a. { a ′. (a, a ′) ∈ r }) by blast

167

obtain H where b6 : H = (λ a. { a ′ ∈ B a. ∀ a ′′ ∈ B a. (d a ′) ≤ (d a ′′) }) by
blast

obtain D where b7 : D = { a ∈ Field r − Field s. H a 6= {}} by blast
obtain h where h = (λ a. SOME a ′. a ′ ∈ H a) by blast
then have b8 : ∀ a ∈ D. h a ∈ H a using b7 someI-ex[of λ a ′. a ′ ∈ H -] by

force
have q1 :

∧
a. a ∈ Field r =⇒ isd a (d a)

proof −
fix a
assume c1 : a ∈ Field r
then obtain b where c2 : b ∈ Field s ∧ (a,b) ∈ r^∗ using a1 unfolding U-def

by blast
moreover obtain N where c3 : N = {i. ∃ b ∈ Field s. (a, b) ∈ r^^i} by blast
ultimately have N 6= {} using rtrancl-imp-relpow by blast
then obtain m where m ∈ N ∧ (∀ i ∈ N . m ≤ i)

using LeastI [of λ x. x ∈ N] Least-le[of λ x. x ∈ N] by blast
then have isd a m using c2 c3 unfolding b3 by blast
then show isd a (d a) using b4 someI-ex by metis

qed
have q2 :

∧
a. B a 6= {} =⇒ H a 6= {}

proof −
fix a
assume B a 6= {}
moreover obtain N where c1 : N = d ‘ (B a) by blast
ultimately have N 6= {} by blast
then obtain m where c2 : m ∈ N ∧ (∀ i ∈ N . m ≤ i)

using LeastI [of λ x. x ∈ N] Least-le[of λ x. x ∈ N] by blast
then obtain a ′ where c3 : m = d a ′ ∧ a ′ ∈ B a using c1 by blast
moreover then have ∀ a ′′ ∈ B a. d a ′ ≤ d a ′′ using c1 c2 by force
ultimately have a ′ ∈ H a unfolding b6 by blast
then show H a 6= {} by blast

qed
have q3 : ∀ a ∈ Field r − Field s. d a = 1 ∨ d a > 1
proof

fix a
assume c1 : a ∈ Field r − Field s
then have isd a (d a) using q1 by blast
then obtain b where b ∈ Field s ∧ (a, b) ∈ r^^(d a) using b3 by blast
then have d a = 0 −→ False using c1 by force
then show d a = 1 ∨ d a > 1 by force

qed
have Field r − Field s ⊆ D
proof

fix a
assume c1 : a ∈ Field r − Field s
moreover have H a = {} −→ False
proof

assume H a = {}
then have B a = {} using q2 by blast

168

moreover obtain b where b ∈ Field s ∧ (a, b) ∈ r^∗ using a1 c1 unfolding
U-def by blast

ultimately have a ∈ Field s unfolding b5 by (metis Collect-empty-eq
converse-rtranclE)

then show False using c1 by blast
qed
ultimately show a ∈ D using b7 by blast

qed
then have q4 : D = Field r − Field s using b5 b6 b7 by blast
have q5 : ∀ a ∈ D. d a > 1 −→ d a = Suc (d (h a)) ∧ (d (h a) > 1 −→ h a ∈

D)
proof (intro ballI impI)

fix a
assume c1 : a ∈ D and c2 : d a > 1
then obtain b where c3 : b ∈ Field s and c4 : (a, b) ∈ r^^(d a)

and c5 : ∀ i ′. (∃ b ∈ Field s. (a, b) ∈ r^^(i ′)) −→ (d a) ≤ i ′
using b3 b7 q1 by blast

have c6 : d a ≥ 1 using c1 c4 b7 q3 by force
then have d a = Suc ((d a) − 1) by simp
then obtain a ′ where c7 : (a,a ′) ∈ r ∧ (a ′,b) ∈ r^^((d a) − 1)

using c4 relpow-Suc-D2 [of a b d a − 1 r] by metis
moreover then have a ′ /∈ Field s using c2 c5 by (metis less-Suc-eq-le

not-less-eq relpow-1)
ultimately have (a,a ′) ∈ r ∧ a ′ ∈ Field r − Field s unfolding Field-def by

blast
then have a ′ ∈ B a unfolding b5 by blast
moreover have h a ∈ H a using c1 b8 by blast
ultimately have d (h a) ≤ d a ′ unfolding b6 by blast
moreover have Suc (d a ′) ≤ d a
proof −

have d a ′ ≤ d a − 1 using q1 b3 c7 c3 unfolding Field-def by blast
then show ?thesis using c6 by force

qed
moreover have d a ≤ (Suc (d (h a)))
proof −

have d1 : (a, h a) ∈ r using c1 b5 b6 b8 by blast
then have h a ∈ Field r unfolding Field-def by blast
then obtain b ′ where b ′ ∈ Field s ∧ ((h a), b ′) ∈ r^^(d (h a)) using b3 q1

by blast
moreover then have (a,b ′) ∈ r^^(Suc (d (h a))) using d1 c7 by (meson

relpow-Suc-I2)
ultimately show d a ≤ (Suc (d (h a))) using c5 by blast

qed
ultimately have d a = Suc (d (h a)) by force
moreover have d (h a) > 1 −→ h a ∈ D
proof

assume d1 : d (h a) > 1
then have d2 : (a, h a) ∈ r using c1 b5 b6 b8 by simp
then have isd (h a) (d (h a)) using d1 q1 unfolding Field-def by force

169

then have (h a) /∈ Field s using d1 b3 by force
then show h a ∈ D using d2 q4 unfolding Field-def by blast

qed
ultimately show d a = Suc (d (h a)) ∧ (d (h a) > 1 −→ h a ∈ D) by blast

qed
obtain g1 where b9 : g1 = { (a, b). a ∈ D ∧ b = h a } by blast
have q6 : ∀ a ∈ D. ∃ a ′ ∈ D. d a ′ = 1 ∧ (a,a ′) ∈ g1^∗
proof −

have ∀ n. ∀ a ∈ D. d a = Suc n −→ ((h^^n) a) ∈ D ∧ d ((h^^n) a) = 1
proof

fix n0
show ∀ a ∈ D. d a = Suc n0 −→ ((h^^n0) a) ∈ D ∧ d ((h^^n0) a) = 1
proof (induct n0)

show ∀ a∈D. d a = Suc 0 −→ ((h^^0) a) ∈ D ∧ d ((h ^^ 0) a) = 1
using q4 by force

next
fix n
assume d1 : ∀ a∈D. d a = Suc n −→ ((h^^n) a) ∈ D ∧ d ((h ^^ n) a) = 1
show ∀ a∈D. d a = Suc (Suc n) −→ ((h^^(Suc n)) a) ∈ D ∧ d ((h ^^ Suc

n) a) = 1
proof (intro ballI impI)

fix a
assume e1 : a ∈ D and e2 : d a = Suc (Suc n)
then have d a = Suc (d (h a)) ∧ (d (h a) > 1 −→ h a ∈ D) using q5

by simp
moreover then have e3 : d (h a) = Suc n using e2 by simp
ultimately have d (h a) > 1 −→ ((h^^n) (h a)) ∈ D ∧ d ((h^^n) (h a))

= 1 using d1 by blast
moreover have (h^^n) (h a) = (h^^(Suc n)) a by (metis comp-apply

funpow-Suc-right)
moreover have e4 : d (h a) = 1 −→ d ((h^^(Suc n)) a) = 1 using e3

by simp
moreover have d (h a) = 1 −→ ((h^^(Suc n)) a) ∈ D
proof

assume f1 : d (h a) = 1
then have f2 : n = 0 ∧ (a, h a) ∈ r using e1 e3 b5 b6 b8 by simp
then have isd (h a) 1 using f1 q1 unfolding Field-def by force
then have (h a) /∈ Field s using b3 by force
then have (h a) ∈ D using q4 f2 unfolding Field-def by blast
then show ((h^^(Suc n)) a) ∈ D using f2 by simp

qed
moreover have d (h a) = 1 ∨ d (h a) > 1 using e3 by force
ultimately show ((h^^(Suc n)) a) ∈ D ∧ d ((h ^^ (Suc n)) a) = 1 by

force
qed

qed
qed
moreover have ∀ i. ∀ a ∈ D. d a > i −→ (a, (h^^i) a) ∈ g1^∗
proof

170

fix i0
show ∀ a ∈ D. d a > i0 −→ (a, (h^^i0) a) ∈ g1^∗
proof (induct i0)

show ∀ a∈D. d a > 0 −→ (a, (h^^0) a) ∈ g1^∗ by force
next

fix i
assume d1 : ∀ a∈D. d a > i −→ (a, (h^^i) a) ∈ g1^∗
show ∀ a∈D. d a > (Suc i) −→ (a, (h^^(Suc i)) a) ∈ g1^∗
proof (intro ballI impI)

fix a
assume e1 : a ∈ D and e2 : d a > (Suc i)
then have e3 : d a = Suc (d (h a)) ∧ (d (h a) > 1 −→ h a ∈ D) using

q5 by simp
moreover then have e4 : d (h a) > i using e2 by simp
ultimately have d (h a) > 1 −→ (h a, (h^^i) (h a)) ∈ g1^∗ using d1

by simp
moreover have (h^^i) (h a) = (h^^(Suc i)) a by (metis comp-apply

funpow-Suc-right)
moreover have d (h a) = 1 −→ (h^^(Suc i)) a = (h a) using e4 by

force
moreover have d (h a) = 1 ∨ d (h a) > 1 using e4 by force
moreover then have (a, h a) ∈ g1 using e1 e3 unfolding b9 by simp
ultimately show (a, (h^^(Suc i)) a) ∈ g1^∗

by (metis converse-rtrancl-into-rtrancl r-into-rtrancl)
qed

qed
qed
ultimately have ∀n. ∀ a∈D. d a = Suc n −→ (h^^n) a ∈ D ∧ d ((h^^n) a)

= 1 ∧ (a, (h ^^ n) a) ∈ g1^∗
by simp

then have ∀n. ∀ a∈D. d a = Suc n −→ (∃ a ′ ∈ D. d a ′ = 1 ∧ (a,a ′) ∈ g1^∗)
by blast

moreover have ∀ a ∈ D. ∃ n. d a = Suc n using q3 q4 q5 by force
ultimately show ?thesis by blast

qed
let ?cond1 = λ α. α = 0
let ?cond3 = λ α. (1 ≤ α ∧ α < n0)
obtain g :: nat ⇒ ′U rel

where b12 : g = (λ α. if (?cond1 α) then (g0 α) ∪ g1
else (if (?cond3 α) then (g0 α)
else {})) by blast

obtain n :: nat where b13 : n = n0 by blast
then have b14 :

∧
α. α < n =⇒ (?cond1 α ∨ ?cond3 α) by force

have b15 :
∧

α. ?cond1 α =⇒ g α = (g0 α) ∪ g1 using b12 by simp
have b17 :

∧
α. ?cond3 α =⇒ g α = (g0 α) using b12 by force

obtain r1 where b19 : r1 =
⋃
{r ′. ∃α ′. α ′ < n ∧ r ′ = g α ′} by blast

have t1 : g1 ⊆ r1 using b15 b19 b13 a3 by blast
have b20 : s ⊆ r1
proof

171

fix p
assume p ∈ s
then obtain α ′ where c1 : α ′ < n0 ∧ p ∈ g0 α ′ using b2 by blast
then have c2 : α ′ < n unfolding b13 by fastforce
then have ?cond1 α ′ ∨ ?cond3 α ′ using b14 by blast
then have g0 α ′ ⊆ g α ′ using b12 by fastforce
then show p ∈ r1 using c1 c2 b19 by blast

qed
have b21 : r1 ⊆ r
proof −

have ∀ r ′ α ′. α ′ < n −→ g α ′ ⊆ r
proof (intro allI impI)

fix r ′ α ′

assume d1 : α ′ < n
have ∀ a ∈ D. (a, h a) ∈ r using b5 b6 b8 by blast
then have d2 : g1 ⊆ r using b9 by blast
have (α ′ = 0) −→ g α ′ ⊆ r using d2 b0 b2 b15 [of α ′] a3 by blast
moreover have 1 ≤ α ′ −→ g α ′ ⊆ r using b17 b0 b2 b13 d1 by blast
ultimately show g α ′ ⊆ r using d1 b14 by blast

qed
then show r1 ⊆ r unfolding b19 by fast

qed
have b22 : ∀ a ∈ Field r1 − Field s. ∃ b ∈ Field s. (a, b) ∈ r1^∗
proof

fix a
assume d1 : a ∈ Field r1 − Field s
then have a ∈ D using q4 b21 unfolding Field-def by blast
then obtain a ′ where d2 : a ′ ∈ D ∧ d a ′ = 1 ∧ (a, a ′) ∈ g1^∗ using q6 by

blast
then have d3 : (a ′, h a ′) ∈ r1 ∧ h a ′ ∈ H a ′ using q4 b8 b9 t1 a3 by blast
obtain b where b ∈ Field s ∧ (a ′,b) ∈ r using d2 q1 q4 b3 by force
moreover then have isd b (d b) using q1 unfolding Field-def by blast
ultimately have b ∈ B a ′ ∧ d b = 0 using b3 b5 by force
then have d (h a ′) = 0 using d3 b6 by force
then have isd (h a ′) 0 using q1 d3 b21 a3 unfolding Field-def by force
then have h a ′ ∈ Field s using b3 by force
moreover have (a, a ′) ∈ r1^∗ using d2 t1 rtrancl-mono[of g1 r1] a3 by blast
ultimately have (h a ′) ∈ Field s ∧ (a, h a ′) ∈ r1^∗ using d3 by force
then show ∃ b ∈ Field s. (a, b) ∈ r1^∗ by blast

qed
have b23 : Field r ⊆ Field r1
proof −

have (Field r − Field s) ⊆ Field r1 using q4 b9 t1 unfolding Field-def by
blast

moreover have Field s ⊆ Field r1 using b20 unfolding Field-def by blast
ultimately show Field r ⊆ Field r1 by blast

qed
have ∀α β a b c. α ≤ β −→ (a,b) ∈ g α ∧ (a,c) ∈ g β −→

(∃ b ′ b ′′ c ′ c ′′ d. (b,b ′,b ′′,d) ∈ D g α β ∧ (c,c ′,c ′′,d) ∈ D g β α)

172

proof (intro allI impI)
fix α β a b c
assume c1 : α ≤ β and c2 : (a,b) ∈ g α ∧ (a,c) ∈ g β
obtain c123 where c0 : c123 = (λ α::nat. ?cond1 α ∨ ?cond3 α) by blast
have c3 :

∧
α ′. c123 α ′ =⇒ g0 α ′ ⊆ s

proof −
fix α ′

assume c123 α ′

moreover have ?cond1 α ′ −→ g0 α ′ ⊆ s using a3 unfolding b2 by force
moreover have ?cond3 α ′ −→ g0 α ′ ⊆ s using b2 by force
ultimately show g0 α ′ ⊆ s using c0 by blast

qed
have c4 :

∧
α ′.

∧
p. p ∈ g α ′ −→ (?cond1 α ′ ∧ p ∈ (g0 α ′ ∪ g1)) ∨ (?cond3

α ′ ∧ p ∈ (g0 α ′))
proof (intro impI)

fix α ′ p
assume p ∈ g α ′

then show (?cond1 α ′ ∧ p ∈ (g0 α ′ ∪ g1)) ∨ (?cond3 α ′ ∧ p ∈ (g0 α ′))
using b12 by (cases ?cond1 α ′, simp, cases ?cond3 α ′, force+)

qed
have c5 :

∧
α ′ β ′. α ′ ≤ β ′ =⇒ c123 β ′ =⇒ c123 α ′ unfolding c0 using b14

by force
have c6 : (a,b) ∈ g0 α ∧ (a,c) /∈ g0 β −→ ¬ c123 β
proof

assume d1 : (a,b) ∈ g0 α ∧ (a,c) /∈ g0 β
then have (a,c) ∈ g1 using c2 c4 by blast
then have a ∈ Field r − Field s using b7 b9 by blast
then have ¬ c123 α using d1 c3 unfolding Field-def by blast
then show ¬ c123 β using c1 c5 by blast

qed
have c7 : (a,b) /∈ g0 α ∧ (a,c) ∈ g0 β −→ ¬ c123 β
proof

assume d1 : (a,b) /∈ g0 α ∧ (a,c) ∈ g0 β
then have (a,b) ∈ g1 using c2 c4 by blast
then have a ∈ Field r − Field s using b7 b9 by blast
then show ¬ c123 β using d1 c3 unfolding Field-def by blast

qed
have c8 :

∧
α ′. c123 α ′ =⇒ g0 α ′ ⊆ g α ′

proof −
fix α ′

assume c123 α ′

then show g0 α ′ ⊆ g α ′ unfolding c0 using b15 [of α ′] b17 [of α ′] by blast
qed
then have c9 :

∧
α ′ α ′′. c123 α ′ =⇒ α ′′ < α ′ =⇒ g0 α ′′ ⊆ g α ′′

using c5 less-or-eq-imp-le by blast
have c10 :

∧
α ′ β ′. c123 α ′ =⇒ c123 β ′ =⇒ D g0 α ′ β ′ ⊆ D g α ′ β ′

proof −
fix α ′ β ′

assume d1 : c123 α ′ and d2 : c123 β ′

173

have L1 g0 α ′ ⊆ L1 g α ′ using d1 c9 unfolding L1-def by blast
moreover have Lv g0 α ′ β ′ ⊆ Lv g α ′ β ′ using d1 d2 c9 unfolding Lv-def

by blast
ultimately have (L1 g0 α ′)^∗ ⊆ (L1 g α ′)^∗ ∧ (Lv g0 α ′ β ′)^∗ ⊆ (Lv g α ′

β ′)^∗
using rtrancl-mono by blast

moreover have g0 β ′ ⊆ g β ′ using d2 c8 by blast
ultimately show D g0 α ′ β ′ ⊆ D g α ′ β ′ unfolding D-def by blast

qed
show ∃ b ′ b ′′ c ′ c ′′ d ′. (b,b ′,b ′′,d ′) ∈ D g α β ∧ (c,c ′,c ′′,d ′) ∈ D g β α
proof (cases c123 β)

assume d1 : c123 β
show ?thesis
proof (cases (a,b) ∈ g0 α ∧ (a,c) ∈ g0 β)

assume e1 : (a,b) ∈ g0 α ∧ (a,c) ∈ g0 β
then obtain b ′ b ′′ c ′ c ′′ d ′ where (b, b ′, b ′′, d ′) ∈ D g0 α β ∧ (c, c ′, c ′′,

d ′) ∈ D g0 β α
using b1 unfolding DCR-generating-def by blast

moreover have c123 α using d1 c1 c5 by blast
ultimately have (b, b ′, b ′′, d ′) ∈ D g α β ∧ (c, c ′, c ′′, d ′) ∈ D g β α using

d1 c10 by blast
then show ?thesis by blast

next
assume ¬ ((a,b) ∈ g0 α ∧ (a,c) ∈ g0 β)
then have (a,b) /∈ g0 α ∧ (a,c) /∈ g0 β using d1 c6 c7 by blast
moreover have c123 α using d1 c1 c5 by blast
ultimately have (a,b) ∈ g1 ∧ (a,c) ∈ g1 using d1 c0 c2 c4 by blast
then have b = c using b9 by blast
then show ?thesis unfolding D-def by blast

qed
next

assume d1 : ¬ c123 β
then have d2 : False using c2 c4 unfolding c0 by blast
then show ?thesis by blast

qed
qed
then have b24 : DCR-generating g using a3 lem-Ldo-ldogen-ord by blast
moreover then have Field r1 ⊆ Field r using b21 unfolding Field-def by

blast
ultimately have r1 ∈ Span r using b21 b23 unfolding Span-def by blast
moreover have DCR n r1 using b19 b24 unfolding DCR-def by blast
moreover have CCR r1
proof −

have s ∈ U r1 using b20 b22 a1 unfolding U-def by blast
then show CCR r1 using lem-rcc-uset-ne-ccr by blast

qed
ultimately show DCR (Suc n0) r using b13 a3 lem-Ldo-sat-reduc by blast

qed

174

lemma lem-Ldo-addid:
fixes r :: ′U rel and r ′:: ′U rel and n0 ::nat and A:: ′U set
assumes a1 : DCR n0 r and a2 : r ′ = r ∪ {(a,b). a = b ∧ a ∈ A} and a3 : n0 6=
0
shows DCR n0 r ′

proof −
obtain g0 where b1 : DCR-generating g0 and b2 : r =

⋃
{r ′. ∃α ′<n0 . r ′ = g0

α ′} using a1 unfolding DCR-def by blast
obtain g :: nat ⇒ ′U rel where b3 : g = (λ α. (g0 α) ∪ {(a,b). a = b ∧ a ∈ A})

by blast
have ∀α β a b c. α ≤ β −→ (a,b) ∈ g α ∧ (a,c) ∈ g β −→

(∃ b ′ b ′′ c ′ c ′′ d. (b,b ′,b ′′,d) ∈ D g α β ∧ (c,c ′,c ′′,d) ∈ D g β α)
proof (intro allI impI)

fix α β a b c
assume c1 : α ≤ β and c2 : (a,b) ∈ g α ∧ (a,c) ∈ g β
have c3 :

∧
α ′ β ′. D g0 α ′ β ′ ⊆ D g α ′ β ′

proof −
fix α ′ β ′

have L1 g0 α ′ ⊆ (L1 g α ′)^= unfolding L1-def b3 by (clarsimp, auto)
moreover have Lv g0 α ′ β ′ ⊆ (Lv g α ′ β ′)^= unfolding Lv-def b3 by

(clarsimp, auto)
ultimately have (L1 g0 α ′)^∗ ⊆ (L1 g α ′)^∗ ∧ (Lv g0 α ′ β ′)^∗ ⊆ (Lv g α ′

β ′)^∗ using rtrancl-reflcl rtrancl-mono by blast
moreover have (g0 β ′)^= ⊆ (g β ′)^= unfolding b3 by force
ultimately show D g0 α ′ β ′ ⊆ D g α ′ β ′ unfolding D-def by blast

qed
have c4 : ((a,b) ∈ g0 α ∨ a = b) ∧ ((a,c) ∈ g0 β ∨ a = c) using c1 c2 b3 by

blast
moreover then have a = b ∨ a = c −→ (∃ b ′ b ′′ c ′ c ′′ d. (b,b ′,b ′′,d) ∈ D g

α β ∧ (c,c ′,c ′′,d) ∈ D g β α)
using b3 unfolding D-def by blast

moreover have (a,b) ∈ g0 α ∧ (a,c) ∈ g0 β −→ (∃ b ′ b ′′ c ′ c ′′ d. (b,b ′,b ′′,d)
∈ D g α β ∧ (c,c ′,c ′′,d) ∈ D g β α)

proof
assume (a,b) ∈ g0 α ∧ (a,c) ∈ g0 β
then obtain b ′ b ′′ c ′ c ′′ d ′ where (b, b ′, b ′′, d ′) ∈ D g0 α β ∧ (c, c ′, c ′′,

d ′) ∈ D g0 β α
using b1 unfolding DCR-generating-def by blast

then have (b, b ′, b ′′, d ′) ∈ D g α β ∧ (c, c ′, c ′′, d ′) ∈ D g β α using c3 by
blast

then show ∃ b ′ b ′′ c ′ c ′′ d ′. (b,b ′,b ′′,d ′) ∈ D g α β ∧ (c,c ′,c ′′,d ′) ∈ D g β α
by blast

qed
ultimately show ∃ b ′ b ′′ c ′ c ′′ d. (b,b ′,b ′′,d) ∈ D g α β ∧ (c,c ′,c ′′,d) ∈ D g β

α by blast
qed
then have DCR-generating g using lem-Ldo-ldogen-ord by blast
moreover have r ′ =

⋃
{s. ∃α ′<n0 . s = g α ′} unfolding b2 b3 a2 using a3

by blast

175

ultimately show DCR n0 r ′ unfolding DCR-def by blast
qed

lemma lem-Ldo-removeid:
fixes r :: ′U rel and r ′:: ′U rel and n0 ::nat
assumes a1 : DCR n0 r and a2 : r ′ = r − {(a,b). a = b}
shows DCR n0 r ′

proof −
obtain g0 where b1 : DCR-generating g0 and b2 : r =

⋃
{r ′. ∃α ′<n0 . r ′ = g0

α ′} using a1 unfolding DCR-def by blast
obtain g :: nat ⇒ ′U rel where b3 : g = (λ α. (g0 α) − {(a,b). a = b }) by

blast
have ∀α β a b c. α ≤ β −→ (a,b) ∈ g α ∧ (a,c) ∈ g β −→

(∃ b ′ b ′′ c ′ c ′′ d. (b,b ′,b ′′,d) ∈ D g α β ∧ (c,c ′,c ′′,d) ∈ D g β α)
proof (intro allI impI)

fix α β a b c
assume c1 : α ≤ β and c2 : (a,b) ∈ g α ∧ (a,c) ∈ g β
have c3 :

∧
α ′ β ′. D g0 α ′ β ′ ⊆ D g α ′ β ′

proof −
fix α ′ β ′

have L1 g0 α ′ ⊆ (L1 g α ′)^= unfolding L1-def b3 by (clarsimp, auto)
moreover have Lv g0 α ′ β ′ ⊆ (Lv g α ′ β ′)^= unfolding Lv-def b3 by

(clarsimp, auto)
ultimately have (L1 g0 α ′)^∗ ⊆ (L1 g α ′)^∗ ∧ (Lv g0 α ′ β ′)^∗ ⊆ (Lv g α ′

β ′)^∗ using rtrancl-reflcl rtrancl-mono by blast
moreover have (g0 β ′)^= ⊆ (g β ′)^= unfolding b3 by force
ultimately show D g0 α ′ β ′ ⊆ D g α ′ β ′ unfolding D-def by blast

qed
have (a,b) ∈ g0 α ∧ (a,c) ∈ g0 β using c1 c2 b3 by blast
then obtain b ′ b ′′ c ′ c ′′ d ′ where (b, b ′, b ′′, d ′) ∈ D g0 α β ∧ (c, c ′, c ′′, d ′)

∈ D g0 β α
using b1 unfolding DCR-generating-def by blast

then have (b, b ′, b ′′, d ′) ∈ D g α β ∧ (c, c ′, c ′′, d ′) ∈ D g β α using c3 by
blast

then show ∃ b ′ b ′′ c ′ c ′′ d ′. (b,b ′,b ′′,d ′) ∈ D g α β ∧ (c,c ′,c ′′,d ′) ∈ D g β α
by blast

qed
then have DCR-generating g using lem-Ldo-ldogen-ord by blast
moreover have r ′ =

⋃
{s. ∃α ′<n0 . s = g α ′} unfolding b2 b3 a2 by blast

ultimately show DCR n0 r ′ unfolding DCR-def by blast
qed

lemma lem-Ldo-eqid:
fixes r :: ′U rel and r ′:: ′U rel and n::nat
assumes a1 : DCR n r and a2 : r ′ − {(a,b). a = b} = r − {(a,b). a = b} and
a3 : n 6= 0
shows DCR n r ′

proof −
obtain r ′′ where b1 : r ′′ = r ′ − {(a,b). a = b} by blast

176

then have DCR n r ′′ using a1 a2 lem-Ldo-removeid by blast
moreover have r ′ = r ′′ ∪ {(a,b). a = b ∧ (a,a) ∈ r ′} using b1 by blast
ultimately show DCR n r ′ using lem-Ldo-addid[of n r ′′ r ′ {a . (a,a) ∈ r ′}] a3

by blast
qed

lemma lem-wdn-range-lb: A ⊆ w-dncl r A
unfolding w-dncl-def dncl-def F-def rpth-def by fastforce

lemma lem-wdn-range-ub: w-dncl r A ⊆ dncl r A unfolding w-dncl-def by blast

lemma lem-wdn-mon: A ⊆ A ′ =⇒ w-dncl r A ⊆ w-dncl r A ′ unfolding w-dncl-def
dncl-def by blast

lemma lem-wdn-compl:
fixes r :: ′U rel and A:: ′U set
shows UNIV − w-dncl r A = {a. ∃ b. b /∈ dncl r A ∧ (a,b) ∈ (Restr r (UNIV−A))^∗}
proof
show UNIV − w-dncl r A ⊆ {a. ∃ b. b /∈ dncl r A ∧ (a,b) ∈ (Restr r (UNIV−A))^∗}
proof

fix x
assume c1 : x ∈ UNIV − w-dncl r A
show x ∈ {a. ∃ b. b /∈ dncl r A ∧ (a,b) ∈ (Restr r (UNIV−A))^∗}
proof (cases x ∈ dncl r A)

assume x ∈ dncl r A
then obtain b F where d1 : F ∈ F r x b ∧ b /∈ dncl r A ∧ F ∩ A = {}

using c1 unfolding w-dncl-def by blast
then obtain f n where f ∈ rpth r x b n ∧ F = f ‘ {i. i≤n} unfolding F-def

by blast
moreover then have ∀ i≤n. f i /∈ A using d1 unfolding rpth-def by blast
ultimately have f ∈ rpth (Restr r (UNIV−A)) x b n unfolding rpth-def

by force
then have (x,b) ∈ (Restr r (UNIV−A))^∗ using lem-ccext-rpth-rtr [of Restr

r (UNIV−A)] by blast
then show ?thesis using d1 by blast

next
assume x /∈ dncl r A
then show ?thesis unfolding w-dncl-def by blast

qed
qed

next
show {a. ∃ b. b /∈ dncl r A ∧ (a,b) ∈ (Restr r (UNIV−A))^∗} ⊆ UNIV −

w-dncl r A
proof

fix x
assume x ∈ {a. ∃ b. b /∈ dncl r A ∧ (a,b) ∈ (Restr r (UNIV−A))^∗}
then obtain y where c1 : y /∈ dncl r A ∧ (x,y) ∈ (Restr r (UNIV−A))^∗ by

blast
obtain f n where c2 : f ∈ rpth (Restr r (UNIV−A)) x y n using c1 lem-ccext-rtr-rpth[of

177

x y] by blast
then have c3 : f ∈ rpth r x y n unfolding rpth-def by blast
obtain F where c4 : F = f‘{i. i≤n} by blast
have n = 0 −→ f 0 /∈ A using c1 c3 unfolding rpth-def dncl-def by blast
moreover have ∀ i<n. f i /∈ A ∧ f (Suc i) /∈ A using c2 unfolding rpth-def

by blast
moreover have ∀ i≤n. (n = 0 ∨ (∃ j<n. (j=i ∨ i=Suc j)))

by (metis le-eq-less-or-eq lessI less-Suc-eq-0-disj)
ultimately have ∀ i≤n. f i /∈ A by blast
then have F ∩ A = {} using c4 by blast
moreover have F ∈ F r x y using c3 c4 unfolding F-def by blast
ultimately show x ∈ UNIV − w-dncl r A using c1 unfolding w-dncl-def by

blast
qed

qed

lemma lem-cowdn-uset:
fixes r :: ′U rel and A A ′ W :: ′U set
assumes a1 : CCR (Restr r A ′) and a2 : escl r A A ′ ⊆ A ′

and a3 : Q = A ′ − dncl r A and a4 : W = A ′ − w-dncl r A and a5 : Q ∈ SF r
shows Restr r Q ∈ U (Restr r W)
proof −

have CCR (Restr r Q) using a1 a3 lem-Inv-ccr-restr-invdiff lem-Inv-dncl-invbk
by blast

moreover have Restr r Q ⊆ Restr r W using a3 a4 lem-wdn-range-ub[of r] by
blast

moreover have ∀ a∈Field (Restr r W). ∃ b∈Field (Restr r Q). (a, b) ∈ (Restr
r W)^∗

proof
fix a
assume a ∈ Field (Restr r W)
then have c1 : a ∈ W unfolding Field-def by blast
show ∃ b∈Field (Restr r Q). (a, b) ∈ (Restr r W)^∗
proof (cases a ∈ Q)

assume a ∈ Q
then show ?thesis using a5 unfolding SF-def by blast

next
assume a /∈ Q
then obtain b F where d1 : a ∈ A ′ ∧ F ∈ F r a b ∧ b /∈ dncl r A ∧ F ∩ A

= {}
using c1 a3 a4 unfolding w-dncl-def by blast

then have d2 : dnesc r A a ⊆ escl r A A ′ unfolding escl-def by blast
obtain E where d3 : E = dnesc r A a by blast
have dnEsc r A a 6= {} using d1 unfolding dnEsc-def by blast
then have E ∈ dnEsc r A a using d3 lem-dnEsc-ne[of r A] by blast
then obtain b ′ where d4 : b ′ /∈ dncl r A ∧ E ∈ F r a b ′ ∧ E ∩ A = {}

unfolding dnEsc-def by blast
have d5 : E ⊆ A ′ using d2 d3 a2 by blast
have b ′ ∈ E using d4 unfolding F-def rpth-def by blast

178

then have b ′ ∈ Field (Restr r Q) using d4 d5 a3 a5 unfolding SF-def by
blast

moreover have (a, b ′) ∈ (Restr r W)^∗
proof −

obtain f n where e1 : f ∈ rpth r a b ′ n and e2 : E = f ‘ {i. i ≤ n}
using d4 unfolding F-def by blast

have e3 : ∀ i≤n. f i ∈ W
proof (intro allI impI)

fix i
assume f1 : i ≤ n
obtain g where f2 : g = (λ k. f (k + i)) by blast
have g 0 = f i using f2 by simp
moreover have g (n − i) = b ′ using f1 f2 e1 unfolding rpth-def by

simp
moreover have ∀ k<n−i. (g k, g (Suc k)) ∈ Restr r (UNIV − A)
proof (intro allI impI)

fix k
assume k < n−i
then have (g k, g (Suc k)) ∈ (Restr r E) using f2 e1 e2 unfolding

rpth-def by simp
then show (g k, g (Suc k)) ∈ Restr r (UNIV − A) using d4 by blast

qed
ultimately have g ∈ rpth (Restr r (UNIV−A)) (f i) b ′ (n−i) unfolding

rpth-def by blast
then have (f i, b ′) ∈ (Restr r (UNIV−A))^∗ using lem-ccext-rpth-rtr [of

- f i b ′] by blast
then have f i /∈ w-dncl r A using d4 lem-wdn-compl[of r A] by blast
then show f i ∈ W using f1 e2 d5 a4 by blast

qed
have ∀ i<n. (f i, f (Suc i)) ∈ Restr r W
proof (intro allI impI)

fix i
assume i < n
moreover then have f i ∈ W ∧ f (Suc i) ∈ W using e2 e3 by force

ultimately show (f i, f (Suc i)) ∈ Restr r W using e1 unfolding rpth-def
by blast

qed
then have E ∈ F (Restr r W) a b ′ using e1 e2 unfolding rpth-def F-def

by blast
then show ?thesis using lem-ccext-rtr-Fne[of a b ′] by blast

qed
ultimately show ?thesis by blast

qed
qed
ultimately show ?thesis unfolding U-def by blast

qed

lemma lem-shrel-L-eq:
fixes f :: ′U rel ⇒ ′U set and α:: ′U rel and β:: ′U rel

179

assumes α =o β
shows L f α = L f β
proof

show L f α ⊆ L f β using assms ordLess-ordIso-trans unfolding L-def by
fastforce
next

have β =o α using assms ordIso-symmetric by blast
then show L f β ⊆ L f α using ordLess-ordIso-trans unfolding L-def by

fastforce
qed

lemma lem-shrel-dbk-eq:
fixes f :: ′U rel ⇒ ′U set and Ps:: ′U set set and α:: ′U rel and β:: ′U rel
assumes f ∈ N r Ps and α =o β and α ≤o |Field r | and β ≤o |Field r |
shows (∇ f α) = (∇ f β)
proof −

have α ≤o β ∧ β ≤o α using assms ordIso-iff-ordLeq by blast
then have f α = f β using assms unfolding N -def N1-def by blast
moreover have L f α = L f β using assms lem-shrel-L-eq by blast
ultimately show ?thesis unfolding Dbk-def by blast

qed

lemma lem-L-emp: α =o ({}:: ′U rel) =⇒ L f α = {}
proof −

assume α =o ({}:: ′U rel)
then have ∀ α ′. α ′ <o α −→ False using lem-ord-subemp

by (metis iso-ozero-empty not-ordLess-ordIso ordLess-imp-ordLeq ozero-def)
then show L f α = {} unfolding L-def by blast

qed

lemma lem-der-qinv1 :
fixes r :: ′U rel and α:: ′U rel and x y:: ′U
assumes a1 : x ∈ Q r f α and a2 : (x,y) ∈ r^∗ and a3 : y ∈ (f α)
shows y ∈ Q r f α
proof −

obtain A where b1 : A = (L f α) by blast
have ∀ x y. y ∈ dncl r A −→ (x,y) ∈ r −→ x ∈ dncl r A
proof (intro allI impI)

fix x y
assume y ∈ dncl r A and (x,y) ∈ r
moreover then obtain a where a ∈ A ∧ (y,a) ∈ r^∗ unfolding dncl-def by

blast
ultimately have a ∈ A ∧ (x,a) ∈ r^∗ by force
then show x ∈ dncl r A unfolding dncl-def by blast

qed
then have (UNIV − dncl r A) ∈ Inv r unfolding Inv-def by blast
moreover have x ∈ UNIV − (dncl r A) using b1 a1 unfolding Q-def by blast
ultimately have y ∈ UNIV − (dncl r A) using a2 lem-Inv-restr-rtr2 [of UNIV
− dncl r A r] by blast

180

then show ?thesis using b1 a3 unfolding Q-def by blast
qed

lemma lem-der-qinv2 :
fixes r :: ′U rel and α:: ′U rel and x y:: ′U
assumes a1 : x ∈ Q r f α and a2 : (x,y) ∈ (Restr r (f α))^∗ and a3 : y ∈ (f α)
shows (x,y) ∈ (Restr r (Q r f α))^∗
proof −

obtain Q where b1 : Q = Q r f α by blast
have ∀ a b. a ∈ Q −→ (a,b) ∈ Restr r (f α) −→ b ∈ Q

using lem-der-qinv1 [of - r f α -] unfolding b1 by blast
then have Q ∈ Inv (Restr r (f α)) unfolding Inv-def by blast
moreover have x ∈ Q using b1 a1 by blast
ultimately have (x,y) ∈ (Restr (Restr r (f α)) Q)^∗

using a2 lem-Inv-restr-rtr [of Q Restr r (f α)] by blast
moreover have Restr (Restr r (f α)) Q ⊆ Restr r (Q r f α) using b1 by blast
ultimately show ?thesis using rtrancl-mono by blast

qed

lemma lem-der-qinv3 :
fixes r :: ′U rel and α:: ′U rel
assumes a1 : A ⊆ (f α) and a2 : ∀ x ∈ (f α). ∃ y ∈ A. (x,y) ∈ (Restr r (f α))^∗
shows ∀ x ∈ (Q r f α). ∃ y ∈ (A ∩ (Q r f α)). (x,y) ∈ (Restr r (Q r f α))^∗
proof

fix x
assume b1 : x ∈ (Q r f α)
then have b2 : x ∈ (f α) unfolding Q-def by blast
then obtain y where b3 : y ∈ A ∧ (x,y) ∈ (Restr r (f α))^∗ using a2 by blast
then have (x, y) ∈ (Restr r (Q r f α))^∗ using a1 b1 lem-der-qinv2 [of x r f α

y] by blast
moreover then have y ∈ (Q r f α) using b1 IntE mem-Sigma-iff rtranclE [of

x y] by metis
ultimately show ∃ y ∈ (A ∩ (Q r f α)). (x,y) ∈ (Restr r (Q r f α))^∗ using

b3 by blast
qed

lemma lem-der-inf-qrestr-ccr1 :
fixes r :: ′U rel and Ps:: ′U set set and α:: ′U rel
assumes f ∈ N r Ps and α ≤o |Field r |
shows CCR (Restr r (Q r f α))
proof −

have CCR (Restr r (f α)) using assms unfolding N -def N6-def by blast
moreover have dncl r (L f α) ∈ Inv (r^−1) using lem-Inv-dncl-invbk by blast
ultimately show ?thesis unfolding Q-def using lem-Inv-ccr-restr-invdiff by

blast
qed

lemma lem-Nfdn-aemp:
fixes r :: ′U rel and Ps:: ′U set set and f :: ′U rel ⇒ ′U set and α:: ′U rel

181

assumes a1 : CCR r and a2 : f ∈ N r Ps and a3 : α <o scf r and a4 : Field r ⊆
dncl r (f α)
shows α = {}
proof (cases finite r)

assume finite r
then have scf r <o ω-ord using lem-scf-relfldcard-bnd lem-fin-fl-rel

by (metis finite-iff-ordLess-natLeq ordLeq-ordLess-trans)
then have finite (Field (scf r)) using finite-iff-ordLess-natLeq by force
then have Conelike r using a1 lem-scf-ccr-finscf-cl by blast
moreover obtain a:: ′U where True by blast
ultimately have α <o |{a}| using a1 a3 lem-Rcc-eq2-12 lem-scf-ccr-scf-rcc-eq

by (metis ordIso-iff-ordLeq ordLess-ordLeq-trans)
then have b1 : α =o |{}:: ′U set| using lem-co-one-ne-min

by (metis card-of-card-order-on card-of-empty3 card-of-unique insert-not-empty
not-ordLeq-ordLess ordIso-Well-order-simp ordLess-Well-order-simp)

then have α ≤o |Field r | using card-of-empty ordIso-ordLeq-trans by blast
then have b2 : f α ∈ SF r using a2 unfolding N -def N5-def by blast
have ¬ (∃ α ′:: ′U rel. α ′ <o α) using b1
by (metis BNF-Cardinal-Order-Relation.ordLess-Field card-of-empty5 ordLess-ordIso-trans)

then show α = {} using a3 b1 using lem-co-one-ne-min
by (metis card-of-empty card-of-empty3 insert-not-empty

ordIso-ordLeq-trans ordLeq-transitive ordLess-Well-order-simp)
next

assume q0 : ¬ finite r
have b0 : α <o ‖r‖ using a1 a3 lem-scf-ccr-scf-rcc-eq by (metis ordIso-iff-ordLeq

ordLess-ordLeq-trans)
obtain A ′ where b1 : A ′ = Q r f α by blast
have ‖r‖ ≤o |r | using lem-Rcc-relcard-bnd by blast
moreover have |Field r | =o |r | using q0 lem-rel-inf-fld-card by blast
ultimately have ‖r‖ ≤o |Field r | using ordIso-symmetric ordLeq-ordIso-trans

by blast
then have b2 : α ≤o |Field r | using b0 ordLeq-transitive ordLess-imp-ordLeq by

blast
then have b3 : f α ∈ SF r ∧ CCR (Restr r (f α))

using b1 a2 unfolding N -def N5-def N10-def N6-def by blast+
have b5 : (A ′ ∈ SF r) ∨ (∃ y:: ′U . A ′ = {y})

using b1 b3 unfolding Q-def using lem-Inv-ccr-sf-dn-diff [of f α r A ′ L f α]
by blast

have ∀ a∈Field r . ∃ b∈Field (Restr r (f α)). (a, b) ∈ r^∗
proof

fix a
assume a ∈ Field r
then have a ∈ dncl r (f α) using a4 by blast
then obtain b:: ′U where (a, b) ∈ r^∗ ∧ b ∈ f α unfolding dncl-def by blast
moreover have (f α) ∈ SF r using b3 by blast
ultimately have b ∈ Field (Restr r (f α)) ∧ (a, b) ∈ r^∗ unfolding SF-def

by blast
then show ∃ b∈Field (Restr r (f α)). (a, b) ∈ r^∗ by blast

qed

182

moreover have CCR (Restr r (f α)) using b3 by blast
ultimately have Restr r (f α) ∈ U r unfolding U-def by blast
then have d3 : ‖r‖ ≤o |Restr r (f α)| using lem-rcc-uset-mem-bnd by blast
obtain x:: ′U where d4 : True by blast
have ω-ord ≤o α −→ False
proof

assume e1 : ω-ord ≤o α
then have |f α| ≤o α using b2 a2 unfolding N -def N7-def by blast
moreover then have |Restr r (f α)| ≤o α using e1 lem-restr-ordbnd by blast
ultimately have ‖r‖ ≤o α using d3 ordLeq-transitive by blast
then show False using b0 not-ordLess-iff-ordLeq ordLess-Well-order-simp by

blast
qed
then have α <o ω-ord using b0 natLeq-Well-order not-ordLess-iff-ordLeq ord-

Less-Well-order-simp by blast
then have |f α| <o ω-ord using b2 a2 unfolding N -def N7-def by blast
then have finite (f α) using finite-iff-ordLess-natLeq by blast
then have finite (Restr r (f α)) by blast
then have |Restr r (f α)| <o ω-ord using finite-iff-ordLess-natLeq by blast
then have d5 : ‖r‖ <o ω-ord using d3 ordLeq-ordLess-trans by blast
have ‖r‖ ≤o |{x}|
proof (cases CCR r)

assume CCR r
then show ‖r‖ ≤o |{x}| using d5 lem-Rcc-eq2-31 [of r] lem-Rcc-eq2-12 [of r x]

by blast
next

assume ¬ CCR r
moreover then have ‖r‖ = {} using lem-rcc-nccr by blast

moreover have {} ≤o |{x}| by (metis card-of-Well-order ozero-def ozero-ordLeq)
ultimately show ‖r‖ ≤o |{x}| by metis

qed
then have α <o |{x}| using b0 ordLess-ordLeq-trans by blast
then show α = {} by (meson lem-co-one-ne-min not-ordLeq-ordLess ordLess-Well-order-simp)

qed

lemma lem-der-qccr-lscf-sf :
fixes r :: ′U rel and Ps:: ′U set set and f :: ′U rel ⇒ ′U set and α:: ′U rel
assumes a1 : CCR r and a2 : f ∈ N r Ps and a3 : α <o scf r
shows (Q r f α) ∈ SF r
proof (cases finite r)

assume finite r
then have scf r <o ω-ord using lem-scf-relfldcard-bnd lem-fin-fl-rel

by (metis finite-iff-ordLess-natLeq ordLeq-ordLess-trans)
then have finite (Field (scf r)) using finite-iff-ordLess-natLeq by force
then have Conelike r using a1 lem-scf-ccr-finscf-cl by blast
moreover obtain a:: ′U where True by blast
ultimately have α <o |{a}| using a1 a3 lem-Rcc-eq2-12 lem-scf-ccr-scf-rcc-eq

by (metis ordIso-iff-ordLeq ordLess-ordLeq-trans)
then have b1 : α =o |{}:: ′U set| using lem-co-one-ne-min

183

by (metis card-of-card-order-on card-of-empty3 card-of-unique insert-not-empty
not-ordLeq-ordLess ordIso-Well-order-simp ordLess-Well-order-simp)

then have α ≤o |Field r | using card-of-empty ordIso-ordLeq-trans by blast
then have b2 : f α ∈ SF r using a2 unfolding N -def N5-def by blast
have ¬ (∃ α ′:: ′U rel. α ′ <o α) using b1
by (metis BNF-Cardinal-Order-Relation.ordLess-Field card-of-empty5 ordLess-ordIso-trans)

then have L f α = {} unfolding L-def by blast
then have Q r f α = f α unfolding Q-def dncl-def by blast
then show ?thesis using b2 by metis

next
assume q0 : ¬ finite r
have b0 : α <o ‖r‖ using a1 a3 lem-scf-ccr-scf-rcc-eq by (metis ordIso-iff-ordLeq

ordLess-ordLeq-trans)
obtain A ′ where b1 : A ′ = Q r f α by blast
have ‖r‖ ≤o |r | using lem-Rcc-relcard-bnd by blast
moreover have |Field r | =o |r | using q0 lem-rel-inf-fld-card by blast
ultimately have ‖r‖ ≤o |Field r | using ordIso-symmetric ordLeq-ordIso-trans

by blast
then have b2 : α ≤o |Field r | using b0 ordLeq-transitive ordLess-imp-ordLeq by

blast
then have b3 : f α ∈ SF r ∧ CCR (Restr r (f α))

and b4 : (∃ y:: ′U . A ′ = {y}) −→ Field r ⊆ dncl r (f α)
using b1 a2 unfolding N -def N5-def N10-def N6-def by blast+

have b5 : (A ′ ∈ SF r) ∨ (∃ y:: ′U . A ′ = {y})
using b1 b3 unfolding Q-def using lem-Inv-ccr-sf-dn-diff [of f α r A ′ L f α]

by blast
show (Q r f α) ∈ SF r
proof (cases Field r ⊆ dncl r (f α))

assume c1 : Field r ⊆ dncl r (f α)
have ∀ a∈Field r . ∃ b∈Field (Restr r (f α)). (a, b) ∈ r^∗
proof

fix a
assume a ∈ Field r
then have a ∈ dncl r (f α) using c1 by blast
then obtain b:: ′U where (a, b) ∈ r^∗ ∧ b ∈ f α unfolding dncl-def by

blast
moreover have (f α) ∈ SF r using b3 by blast
ultimately have b ∈ Field (Restr r (f α)) ∧ (a, b) ∈ r^∗ unfolding SF-def

by blast
then show ∃ b∈Field (Restr r (f α)). (a, b) ∈ r^∗ by blast

qed
moreover have CCR (Restr r (f α)) using b3 by blast
ultimately have Restr r (f α) ∈ U r unfolding U-def by blast
then have d3 : ‖r‖ ≤o |Restr r (f α)| using lem-rcc-uset-mem-bnd by blast
obtain x:: ′U where d4 : True by blast
have ω-ord ≤o α −→ False
proof

assume e1 : ω-ord ≤o α
then have |f α| ≤o α using b2 a2 unfolding N -def N7-def by blast

184

moreover then have |Restr r (f α)| ≤o α using e1 lem-restr-ordbnd by
blast

ultimately have ‖r‖ ≤o α using d3 ordLeq-transitive by blast
then show False using b0 not-ordLess-iff-ordLeq ordLess-Well-order-simp by

blast
qed
then have α <o ω-ord using b0 natLeq-Well-order not-ordLess-iff-ordLeq ord-

Less-Well-order-simp by blast
then have |f α| <o ω-ord using b2 a2 unfolding N -def N7-def by blast
then have finite (f α) using finite-iff-ordLess-natLeq by blast
then have finite (Restr r (f α)) by blast
then have |Restr r (f α)| <o ω-ord using finite-iff-ordLess-natLeq by blast
then have d5 : ‖r‖ <o ω-ord using d3 ordLeq-ordLess-trans by blast
have ‖r‖ ≤o |{x}|
proof (cases CCR r)

assume CCR r
then show ‖r‖ ≤o |{x}| using d5 lem-Rcc-eq2-31 [of r] lem-Rcc-eq2-12 [of r

x] by blast
next

assume ¬ CCR r
moreover then have ‖r‖ = {} using lem-rcc-nccr by blast

moreover have {} ≤o |{x}| by (metis card-of-Well-order ozero-def ozero-ordLeq)
ultimately show ‖r‖ ≤o |{x}| by metis

qed
then have α <o |{x}| using b0 ordLess-ordLeq-trans by blast

then have α = {} by (meson lem-co-one-ne-min not-ordLeq-ordLess ord-
Less-Well-order-simp)

then have ∀ α ′. α ′<o α −→ False using lem-ord-subemp by (metis iso-ozero-empty
not-ordLess-ordIso ordLess-imp-ordLeq ozero-def)

then have dncl r (L f α) = {} unfolding dncl-def L-def by blast
then have Q r f α = f α unfolding Q-def by blast
then show (Q r f α) ∈ SF r using b3 by metis

next
assume ¬ (Field r ⊆ dncl r (f α))
then have A ′ ∈ SF r using b4 b5 by blast
then show (Q r f α) ∈ SF r using b1 by blast

qed
qed

lemma lem-der-q-uset:
fixes r :: ′U rel and Ps:: ′U set set and α:: ′U rel
assumes a1 : CCR r and a2 : f ∈ N r Ps and a3 : α <o scf r and a4 : isSuccOrd
α
shows Restr r (Q r f α) ∈ U (Restr r (f α))
proof −

have b1 : α ≤o |Field r | using a3 lem-scf-relfldcard-bnd
by (metis ordLess-ordLeq-trans ordLess-imp-ordLeq)

have a4 : Q r f α = {} −→ False
proof

185

assume Q r f α = {}
then have Field r ⊆ dncl r (f α) using b1 a2 a4 unfolding N -def N11-def

by blast
then have α = {} using a1 a2 a3 lem-Nfdn-aemp by blast
then show False using a4 using wo-rel-def wo-rel.isSuccOrd-def unfolding

Field-def by force
qed
have (Q r f α) ∈ SF r using a1 a2 a3 lem-der-qccr-lscf-sf by blast
then have b2 : Field (Restr r (Q r f α)) 6= {} using a4 unfolding SF-def by

blast
have Restr r (Q r f α) ⊆ Restr r (f α) unfolding Q-def by blast
moreover have CCR (Restr r (Q r f α)) using b1 a2 lem-der-inf-qrestr-ccr1

by blast
moreover have ∀ a∈Field (Restr r (f α)). ∃ b∈Field (Restr r (Q r f α)). (a,b)
∈ (Restr r (f α))^∗

proof
fix a
assume c1 : a ∈ Field (Restr r (f α))
obtain b where c2 : b ∈ Field (Restr r (Q r f α)) using b2 by blast
then have c3 : b ∈ f α ∧ b ∈ Q r f α unfolding Q-def Field-def by blast
have f α ∈ SF r using b1 a2 unfolding N -def N5-def by blast
then have b ∈ Field (Restr r (f α)) using c3 unfolding SF-def by blast
moreover have CCR (Restr r (f α)) using b1 a2 unfolding N -def N6-def

by blast
ultimately obtain c where c ∈ Field (Restr r (f α))

and c4 : (a,c) ∈ (Restr r (f α))^∗ ∧ (b,c) ∈ (Restr r (f α))^∗
using c1 unfolding CCR-def by blast

moreover then have c ∈ f α unfolding Field-def by blast
ultimately have (b, c) ∈ (Restr r (Q r f α))^∗ using c3 lem-der-qinv2 [of b

r f α c] by blast
moreover have Field (Restr r (Q r f α)) ∈ Inv (Restr r (Q r f α))

unfolding Inv-def Field-def by blast
ultimately have c ∈ Field (Restr r (Q r f α))

using c2 lem-Inv-restr-rtr2 [of Field (Restr r (Q r f α))] by blast
then show ∃ b∈Field (Restr r (Q r f α)). (a, b) ∈ (Restr r (f α))^∗ using c4

by blast
qed
ultimately show Restr r (Q r f α) ∈ U (Restr r (f α)) unfolding U-def by

blast
qed

lemma lem-qw-range: f ∈ N r Ps =⇒ α ≤o |Field r | =⇒ W r f α ⊆ Field r
unfolding N -def N5-def SF-def Field-def W-def by blast

lemma lem-der-qw-eq:
fixes r :: ′U rel and Ps:: ′U set set and α β:: ′U rel
assumes f ∈ N r Ps and α =o β
shows W r f α = W r f β
proof −

186

have f α = f β using assms unfolding N -def by blast
moreover have L f α = L f β using assms lem-shrel-L-eq by blast
ultimately show ?thesis unfolding W-def by simp

qed

lemma lem-Der-inf-qw-disj:
fixes r :: ′U rel and α β:: ′U rel
assumes Well-order α and Well-order β
shows (¬ (α =o β)) −→ (W r f α) ∩ (W r f β) = {}
proof

assume b1 : ¬ (α =o β)
obtain W where b2 : W = (λ α. W r f α) by blast
have α <o β ∨ β <o α using b1 assms by (meson not-ordLeq-iff-ordLess or-

dLeq-iff-ordLess-or-ordIso)
moreover have ∀ α ′ β ′. α ′ <o β ′ −→ (W α ′ ∩ W β ′ 6= {}) −→ False
proof (intro allI impI)

fix α ′ β ′:: ′U rel
assume d1 : α ′ <o β ′ and W α ′ ∩ W β ′ 6= {}
then obtain a where d2 : a ∈ W α ′ ∩ W β ′ by blast
then have a ∈ f α ′ using b2 unfolding W-def by blast
then have a ∈ L f β ′ using d1 unfolding L-def by blast
then have a /∈ W β ′ using b2 lem-wdn-range-lb[of - r] unfolding W-def by

blast
then show False using d2 by blast

qed
ultimately show (W r f α) ∩ (W r f β) = {} unfolding b2 by blast

qed

lemma lem-der-inf-qw-restr-card:
fixes r :: ′U rel and Ps:: ′U set set and α:: ′U rel
assumes a1 : ¬ finite r and a2 : f ∈ N r Ps and a3 : α <o |Field r |
shows |Restr r (W r f α)| <o |Field r |
proof −

have b0 : |Field r | =o |r | using a1 lem-rel-inf-fld-card by blast
obtain W where b2 : W = (λ α. W r f α) by blast
have α ≤o |Field r | using a3 b0 ordLess-imp-ordLeq ordIso-iff-ordLeq ordLeq-transitive

by blast
then have (α <o ω-ord −→ |f α| <o ω-ord) ∧ (ω-ord ≤o α −→ |f α| ≤o α)

using a2 unfolding N -def N7-def by blast
moreover have c2 : α <o ω-ord ∨ ω-ord ≤o α using a3 Field-natLeq natLeq-well-order-on

by force
moreover have c3 : |f α| <o ω-ord −→ |Restr r (W α)| <o |Field r |
proof

assume |f α| <o ω-ord
then have finite (f α) using finite-iff-ordLess-natLeq by blast
then have finite (Restr r (W α)) unfolding b2 W-def by blast
then have |Restr r (W α)| <o ω-ord using finite-iff-ordLess-natLeq by blast
moreover have ω-ord ≤o |r | using a1 infinite-iff-natLeq-ordLeq by blast
moreover then have ω-ord ≤o |Field r | using lem-rel-inf-fld-card

187

by (metis card-of-ordIso-finite infinite-iff-natLeq-ordLeq)
ultimately show |Restr r (W α)| <o |Field r | using ordLess-ordLeq-trans by

blast
qed
moreover have ω-ord ≤o α ∧ |f α| ≤o α −→ |Restr r (W α)| <o |Field r |
proof

assume d1 : ω-ord ≤o α ∧ |f α| ≤o α
moreover have |W α| ≤o |f α| unfolding b2 W-def by simp
ultimately have |W α| ≤o α using ordLeq-transitive by blast
then have |Restr r (W α)| ≤o α using d1 lem-restr-ordbnd[of α W α r] by

blast
then show |Restr r (W α)| <o |Field r | using a3 ordLeq-ordLess-trans by

blast
qed
ultimately show ?thesis using b2 by blast

qed

lemma lem-QS-subs-WS : Q r f α ⊆ W r f α
unfolding Q-def W-def using lem-wdn-range-ub by force

lemma lem-WS-limord:
fixes r :: ′U rel and Ps:: ′U set set and f :: ′U rel ⇒ ′U set and α:: ′U rel
assumes a1 : ¬ finite r and a2 : f ∈ N r Ps and a3 : α <o |Field r |

and a4 : ¬ (α = {} ∨ isSuccOrd α)
shows W r f α = {}
proof −

have α ≤o |Field r | using a3 ordLess-imp-ordLeq by blast
then have f α ⊆ L f α using a2 a4 unfolding N -def N2-def Dbk-def by blast
then have w-dncl r (f α) ⊆ w-dncl r (L f α) using lem-wdn-mon by blast
moreover have f α ⊆ w-dncl r (f α) using lem-wdn-range-lb[of f α r] by metis
ultimately have f α ⊆ w-dncl r (L f α) by blast
then show ?thesis unfolding W-def by blast

qed

lemma lem-der-inf-qw-restr-uset:
fixes r :: ′U rel and Ps:: ′U set set and f :: ′U rel ⇒ ′U set and α:: ′U rel
assumes a1 : Refl r ∧ ¬ finite r and a2 : f ∈ N r Ps

and a3 : α <o |Field r | and a4 : ω-ord ≤o |L f α|
shows Restr r (Q r f α) ∈ U (Restr r (W r f α))
proof (cases α = {} ∨ isSuccOrd α)

assume α = {} ∨ isSuccOrd α
moreover have |Field r | =o |r | using a1 lem-rel-inf-fld-card by blast
then have b1 : α ≤o |Field r | using a3 ordLess-imp-ordLeq ordIso-iff-ordLeq

ordLeq-transitive by blast
ultimately have b2 : escl r (L f α) (f α) ⊆ f α using a2 a4 unfolding N -def
N3-def by blast

moreover have b3 : CCR (Restr r (f α)) using b1 a2 unfolding N -def N6-def
by blast

moreover have SF r = {A. A ⊆ Field r} using a1 unfolding SF-def refl-on-def

188

Field-def by fast
moreover then have W r f α ∈ SF r and Q r f α ∈ SF r
using a2 a3 lem-qw-range[of f r Ps α] lem-QS-subs-WS [of r f α] ordLess-imp-ordLeq

by fast+
ultimately show ?thesis

using a1 lem-cowdn-uset[of r f α L f α] Q-def [of r f α] W-def [of r f α] by
blast
next

assume ¬ (α = {} ∨ isSuccOrd α)
then have W r f α = {} ∧ Q r f α = {}

using assms lem-WS-limord lem-QS-subs-WS [of r f α] by blast
then show ?thesis unfolding U-def CCR-def Field-def by blast

qed

lemma lem-der-inf-qw-restr-ccr :
fixes r :: ′U rel and Ps:: ′U set set and f :: ′U rel ⇒ ′U set and α:: ′U rel
assumes a1 : Refl r ∧ ¬ finite r and a2 : f ∈ N r Ps

and a3 : α <o |Field r | and a4 : ω-ord ≤o |L f α|
shows CCR (Restr r (W r f α))

using assms lem-der-inf-qw-restr-uset lem-rcc-uset-ne-ccr by blast

lemma lem-der-qw-uset:
fixes r :: ′U rel and Ps:: ′U set set and f :: ′U rel ⇒ ′U set and α:: ′U rel
assumes a1 : CCR r ∧ Refl r ∧ ¬ finite r and a2 : f ∈ N r Ps

and a3 : α <o scf r and a4 : ω-ord ≤o |L f α| and a5 : isSuccOrd α
shows Restr r (W r f α) ∈ U (Restr r (f α))
proof −
have b1 : α <o |Field r | using a3 lem-scf-relfldcard-bnd by (metis ordLess-ordLeq-trans)
have Q r f α ⊆ W r f α using lem-QS-subs-WS [of r f α] by blast
then have Field (Restr r (Q r f α)) ⊆ Field (Restr r (W r f α)) unfolding

Field-def by blast
moreover have Restr r (Q r f α) ∈ U (Restr r (f α))

using a1 a2 a3 a5 lem-der-q-uset ordLess-imp-ordLeq by blast
ultimately have ∀ a∈Field (Restr r (f α)). ∃ b∈Field (Restr r (W r f α)).
(a,b) ∈ (Restr r (f α))^∗ unfolding U-def by blast

moreover have Restr r (W r f α) ⊆ Restr r (f α) unfolding W-def by blast
moreover have CCR (Restr r (W r f α)) using assms b1 lem-der-inf-qw-restr-ccr

by blast
ultimately show ?thesis unfolding U-def by blast

qed

lemma lem-Shinf-N1 :
fixes r :: ′U rel and F :: ′U rel ⇒ ′U set ⇒ ′U set and f :: ′U rel ⇒ ′U set
assumes a0 : f ∈ T F

and a1 : ∀ α A. Well-order α −→ A ⊆ F α A
shows ∀α. Well-order α −→ f ∈ N1 r α
proof −

have b2 : f {} = {}
and b3 : ∀ α0 α:: ′U rel. (sc-ord α0 α −→ f α = F α0 (f α0))

189

and b4 : ∀ α. (lm-ord α −→ f α =
⋃
{ D. ∃ β. β <o α ∧ D = f β })

and b5 : ∀α β. α =o β −→ f α = f β using a0 unfolding T -def by blast+
have f ∈ N1 r {} using b2 unfolding N1-def by (clarsimp, metis lem-ord-subemp)
moreover have ∀α0 α. sc-ord α0 α ∧ f ∈ N1 r α0 −→ f ∈ N1 r α
proof (intro allI impI)

fix α0 α:: ′U rel
assume c1 : sc-ord α0 α ∧ f ∈ N1 r α0
then have c2 : f α = F α0 (f α0) using b3 by blast
have ∀α ′ α ′′. α ′ ≤o α ∧ α ′′ ≤o α ′ −→ f α ′′ ⊆ f α ′

proof (intro allI impI)
fix α ′ α ′′:: ′U rel
assume d1 : α ′ ≤o α ∧ α ′′ ≤o α ′

moreover then have α ′′ ≤o α using ordLeq-transitive by blast
ultimately have (α ′′ ≤o α0 ∨ α ′′ =o α) ∧ (α ′ ≤o α0 ∨ α ′ =o α) using c1

unfolding sc-ord-def
by (meson not-ordLess-iff-ordLeq ordLeq-iff-ordLess-or-ordIso ordLess-Well-order-simp)
moreover have α ′ ≤o α0 −→ f α ′′ ⊆ f α ′ using d1 c1 unfolding N1-def

by blast
moreover have α ′ =o α ∧ α ′′ =o α −→ f α ′′ ⊆ f α ′ using b5 by blast
moreover have α ′ =o α ∧ α ′′ ≤o α0 −→ f α ′′ ⊆ f α ′

proof
assume e1 : α ′ =o α ∧ α ′′ ≤o α0

moreover then have α0 ≤o α0 using ordLeq-Well-order-simp or-
dLeq-reflexive by blast

ultimately have f α ′′ ⊆ f α0 using c1 unfolding N1-def by blast
moreover have f α0 ⊆ f α using a1 c2 e1 ordLeq-Well-order-simp by

blast
ultimately show f α ′′ ⊆ f α ′ using b5 e1 by blast

qed
ultimately show f α ′′ ⊆ f α ′ by blast

qed
then show f ∈ N1 r α unfolding N1-def by blast

qed
moreover have ∀α. lm-ord α ∧ (∀β. β <o α −→ f ∈ N1 r β) −→ f ∈ N1 r

α
proof (intro allI impI)

fix α:: ′U rel
assume c1 : lm-ord α ∧ (∀β. β <o α −→ f ∈ N1 r β)
then have c2 : f α =

⋃
{ D. ∃ β. β <o α ∧ D = f β } using b4 by blast

have ∀α ′ α ′′. α ′ ≤o α ∧ α ′′ ≤o α ′ −→ f α ′′ ⊆ f α ′

proof (intro allI impI)
fix α ′ α ′′:: ′U rel
assume d1 : α ′ ≤o α ∧ α ′′ ≤o α ′

then have (α ′ <o α ∨ α ′ =o α) ∧ (α ′′ <o α ′ ∨ α ′′ =o α ′) using or-
dLeq-iff-ordLess-or-ordIso by blast

moreover have α ′ <o α −→ f α ′′ ⊆ f α ′

using d1 c1 ordLeq-Well-order-simp ordLeq-reflexive unfolding N1-def by
blast

moreover have α ′ =o α ∧ α ′′ <o α ′ −→ f α ′′ ⊆ f α ′

190

using c2 b5 ordLess-ordIso-trans by blast
moreover have α ′ =o α ∧ α ′′ =o α ′ −→ f α ′′ ⊆ f α ′ using b5 by blast
ultimately show f α ′′ ⊆ f α ′ by blast

qed
then show f ∈ N1 r α unfolding N1-def by blast

qed
ultimately show ?thesis using lem-sclm-ordind[of λ α. f ∈ N1 r α] by blast

qed

lemma lem-Shinf-N2 :
fixes r :: ′U rel and F :: ′U rel ⇒ ′U set ⇒ ′U set and f :: ′U rel ⇒ ′U set
assumes a0 : f ∈ T F
shows ∀α. Well-order α −→ f ∈ N2 r α
proof −

have b4 : ∀ α. (lm-ord α −→ f α =
⋃
{ D. ∃ β. β <o α ∧ D = f β })

and b5 : ∀α β. α =o β −→ f α = f β using a0 unfolding T -def by blast+
have f ∈ N2 r {} using lem-ord-subemp unfolding N2-def by blast
moreover have ∀α0 α. sc-ord α0 α ∧ f ∈ N2 r α0 −→ f ∈ N2 r α
proof (intro allI impI)

fix α0 α:: ′U rel
assume c1 : sc-ord α0 α ∧ f ∈ N2 r α0
have ∀α ′:: ′U rel. α ′ ≤o α ∧ ¬ (α ′ = {} ∨ isSuccOrd α ′) −→ (∇ f α ′) = {}
proof (intro allI impI)

fix α ′:: ′U rel
assume d1 : α ′ ≤o α ∧ ¬ (α ′ = {} ∨ isSuccOrd α ′)
then have α0 <o α ′ ∨ α ′ ≤o α0 using c1 unfolding sc-ord-def
using not-ordLeq-iff-ordLess ordLeq-Well-order-simp ordLess-Well-order-simp

by blast
moreover have α ′ ≤o α0 −→ (∇ f α ′) = {} using d1 c1 unfolding N2-def

by blast
moreover have α0 <o α ′ −→ α =o α ′ using d1 c1 unfolding sc-ord-def

using ordIso-iff-ordLeq by blast
moreover have α =o α ′ −→ False
proof

assume α =o α ′

moreover have isSuccOrd α using c1 lem-ordint-sucord[of α0 α] unfolding
sc-ord-def by blast

ultimately have isSuccOrd α ′ using lem-osucc-eq by blast
then show False using d1 by blast

qed
ultimately show (∇ f α ′) = {} by blast

qed
then show f ∈ N2 r α unfolding N2-def by blast

qed
moreover have ∀α. lm-ord α ∧ (∀β. β <o α −→ f ∈ N2 r β) −→ f ∈ N2 r

α
proof (intro allI impI)

fix α:: ′U rel
assume c1 : lm-ord α ∧ (∀β. β <o α −→ f ∈ N2 r β)

191

then have c2 : f α =
⋃
{ D. ∃ β. β <o α ∧ D = f β } using b4 by blast

have ∀α ′:: ′U rel. α ′ ≤o α ∧ ¬ (α ′ = {} ∨ isSuccOrd α ′) −→ (∇ f α ′) = {}
proof (intro allI impI)

fix α ′:: ′U rel
assume d1 : α ′ ≤o α ∧ ¬ (α ′ = {} ∨ isSuccOrd α ′)
then have α ′ <o α ∨ α ′ =o α using ordLeq-iff-ordLess-or-ordIso by blast
moreover have α ′ <o α −→ (∇ f α ′) = {}
proof

assume α ′ <o α
moreover then have α ′≤o α ′ using ordLess-Well-order-simp ordLeq-reflexive

by blast
ultimately show (∇ f α ′) = {} using c1 d1 unfolding N2-def by blast

qed
moreover have α ′ =o α −→ (∇ f α ′) = {}
proof

assume α ′ =o α
moreover have (∇ f α) = {} using c2 unfolding Dbk-def L-def by blast
ultimately show (∇ f α ′) = {} using b5 lem-shrel-L-eq unfolding Dbk-def

by blast
qed
ultimately show (∇ f α ′) = {} by blast

qed
then show f ∈ N2 r α unfolding N2-def by blast

qed
ultimately show ?thesis using lem-sclm-ordind[of λ α. f ∈ N2 r α] by blast

qed

lemma lem-Shinf-N3 :
fixes r :: ′U rel and F :: ′U rel ⇒ ′U set ⇒ ′U set and f :: ′U rel ⇒ ′U set
assumes a0 : f ∈ T F

and a1 : ∀ α A. Well-order α −→ A ⊆ F α A
and a5 : ∀α. Well-order α −→ f ∈ N5 r α
and a3 : ∀ α A. Well-order α −→ A ∈ SF r −→

(ω-ord ≤o |A| −→ escl r A (F α A) ⊆ (F α A) ∧ clterm (Restr r (F
α A)) r)
shows ∀α. Well-order α −→ f ∈ N3 r α
proof −

have b2 : f {} = {}
and b3 : ∀ α0 α:: ′U rel. (sc-ord α0 α −→ f α = F α0 (f α0))
and b4 : ∀ α. (lm-ord α −→ f α =

⋃
{ D. ∃ β. β <o α ∧ D = f β })

and b5 : ∀α β. α =o β −→ f α = f β using a0 unfolding T -def by blast+
have L f {} = {} unfolding L-def using b2 lem-ord-subemp ordLess-imp-ordLeq

by blast
then have ¬ ω-ord ≤o |L f {}| using ctwo-ordLess-natLeq finite-iff-ordLess-natLeq

ordLeq-transitive by auto
then have f ∈ N3 r {} using b2 lem-ord-subemp unfolding N3-def Field-def

by blast
moreover have ∀α0 α. sc-ord α0 α ∧ f ∈ N3 r α0 −→ f ∈ N3 r α
proof (intro allI impI)

192

fix α0 α:: ′U rel
assume c1 : sc-ord α0 α ∧ f ∈ N3 r α0
have ∀α ′:: ′U rel. α ′ ≤o α ∧ (α ′ = {} ∨ isSuccOrd α ′) −→ (ω-ord ≤o |L f α ′|

−→
escl r (L f α ′) (f α ′) ⊆ f α ′ ∧ clterm (Restr r (f α ′)) r)

proof (intro allI impI)
fix α ′:: ′U rel
assume d1 : α ′ ≤o α ∧ (α ′ = {} ∨ isSuccOrd α ′) and d2 : ω-ord ≤o |L f α ′|
then have α0 <o α ′ ∨ α ′ ≤o α0 using c1 unfolding sc-ord-def
using not-ordLeq-iff-ordLess ordLeq-Well-order-simp ordLess-Well-order-simp

by blast
moreover have α ′ ≤o α0 −→ (ω-ord ≤o |L f α ′| −→

escl r (L f α ′) (f α ′) ⊆ f α ′ ∧ clterm (Restr r (f α ′)) r)
using d1 c1 unfolding N3-def by blast

moreover have α0 <o α ′ −→ α =o α ′ using d1 c1 unfolding sc-ord-def
using ordIso-iff-ordLeq by blast

moreover have α =o α ′ −→ (ω-ord ≤o |L f α ′| −→
escl r (L f α ′) (f α ′) ⊆ f α ′ ∧ clterm (Restr r (f α ′)) r)

proof (intro impI)
assume e1 : α =o α ′ and e2 : ω-ord ≤o |L f α ′|
have L f α ⊆ f α0
proof

fix p
assume p ∈ L f α

then obtain β:: ′U rel where β <o α ∧ p ∈ f β unfolding L-def by blast
moreover then have β ≤o α0 ∧ α0 ≤o α0 using c1 unfolding sc-ord-def

using not-ordLess-iff-ordLeq ordLess-Well-order-simp by blast
moreover then have f ∈ N1 r α0 using a0 a1 lem-Shinf-N1 [of f F]

ordLeq-Well-order-simp by metis
ultimately show p ∈ f α0 unfolding N1-def by blast

qed
moreover have f α0 ⊆ L f α using c1 unfolding sc-ord-def L-def by

blast
ultimately have e3 : L f α = f α0 by blast
then have ω-ord ≤o |f α0 | using e1 e2 lem-shrel-L-eq by metis
moreover have Well-order α0 using c1 unfolding sc-ord-def ordLess-def

by blast
moreover then have (f α0) ∈ SF r

using a5 unfolding N5-def using ordLeq-reflexive by blast
moreover have f α = F α0 (f α0) using c1 b3 by blast
ultimately have e4 : escl r (f α0) (f α) ⊆ f α ∧ clterm (Restr r (f α)) r

using a3 by metis
then have escl r (L f α) (f α) ⊆ f α using e3 by simp

then have escl r (L f α ′) (f α ′) ⊆ f α ′ using e1 b5 lem-shrel-L-eq by metis
moreover have clterm (Restr r (f α ′)) r using e1 e4 b5 by metis
ultimately show escl r (L f α ′) (f α ′) ⊆ f α ′ ∧ clterm (Restr r (f α ′)) r

by blast
qed
ultimately show escl r (L f α ′) (f α ′) ⊆ f α ′ ∧ clterm (Restr r (f α ′)) r

193

using d2 by blast
qed
then show f ∈ N3 r α unfolding N3-def by blast

qed
moreover have ∀α. lm-ord α ∧ (∀β. β <o α −→ f ∈ N3 r β) −→ f ∈ N3 r α
proof (intro allI impI)

fix α:: ′U rel
assume c1 : lm-ord α ∧ (∀β. β <o α −→ f ∈ N3 r β)
then have c2 : f α =

⋃
{ D. ∃ β. β <o α ∧ D = f β } using b4 by blast

have ∀α ′:: ′U rel. α ′ ≤o α ∧ (α ′ = {} ∨ isSuccOrd α ′) −→ (ω-ord ≤o |L f α ′|
−→

escl r (L f α ′) (f α ′) ⊆ f α ′ ∧ clterm (Restr r (f α ′)) r)
proof (intro allI impI)

fix α ′:: ′U rel
assume d1 : α ′ ≤o α ∧ (α ′ = {} ∨ isSuccOrd α ′) and d2 : ω-ord ≤o |L f α ′|
then have α ′ <o α ∨ α ′ =o α using ordLeq-iff-ordLess-or-ordIso by blast
moreover have α ′ <o α −→ (ω-ord ≤o |L f α ′| −→

escl r (L f α ′) (f α ′) ⊆ f α ′ ∧ clterm (Restr r (f α ′)) r)
proof

assume α ′ <o α
moreover then have α ′≤o α ′ using ordLess-Well-order-simp ordLeq-reflexive

by blast
ultimately show (ω-ord ≤o |L f α ′| −→ escl r (L f α ′) (f α ′) ⊆ f α ′ ∧

clterm (Restr r (f α ′)) r)
using c1 d1 unfolding N3-def by blast

qed
moreover have α ′ =o α −→ False
proof

assume α ′ =o α
moreover then have α ′ = {} ∨ isSuccOrd α using d1 lem-osucc-eq by

blast
moreover have ¬ (α = {} ∨ isSuccOrd α) using c1 unfolding lm-ord-def

by blast
ultimately have α ′ =o α ∧ α ′ = {} ∧ α 6= {} by blast
then show False by (metis iso-ozero-empty ordIso-symmetric ozero-def)

qed
ultimately show escl r (L f α ′) (f α ′) ⊆ f α ′ ∧ clterm (Restr r (f α ′)) r

using d2 by blast
qed
then show f ∈ N3 r α unfolding N3-def by blast

qed
ultimately show ?thesis using lem-sclm-ordind[of λ α. f ∈ N3 r α] by blast

qed

lemma lem-Shinf-N4 :
fixes r :: ′U rel and F :: ′U rel ⇒ ′U set ⇒ ′U set and f :: ′U rel ⇒ ′U set
assumes a0 : f ∈ T F

and a1 : ∀ α A. Well-order α −→ A ⊆ F α A
and a5 : ∀α. Well-order α −→ f ∈ N5 r α

194

and a4 : ∀ α A. Well-order α −→ A ∈ SF r −→ (∀ a∈A. r‘‘{a} ⊆ w-dncl r A
∨ r‘‘{a} ∩ (F α A − w-dncl r A) 6= {})
shows ∀α. Well-order α −→ f ∈ N4 r α
proof −

have b2 : f {} = {}
and b3 : ∀ α0 α:: ′U rel. (sc-ord α0 α −→ f α = F α0 (f α0))
and b4 : ∀ α. (lm-ord α −→ f α =

⋃
{ D. ∃ β. β <o α ∧ D = f β })

and b5 : ∀α β. α =o β −→ f α = f β using a0 unfolding T -def by blast+
have L f {} = {} unfolding L-def using lem-ord-subemp ordLeq-iff-ordLess-or-ordIso

ordLess-irreflexive by blast
then have f ∈ N4 r {} using lem-ord-subemp unfolding N4-def by blast
moreover have ∀α0 α. sc-ord α0 α ∧ f ∈ N4 r α0 −→ f ∈ N4 r α
proof (intro allI impI)

fix α0 α:: ′U rel
assume c1 : sc-ord α0 α ∧ f ∈ N4 r α0
have ∀α ′:: ′U rel. α ′ ≤o α ∧ (α ′ = {} ∨ isSuccOrd α ′) −→

(∀ a ∈ (L f α ′). r‘‘{a} ⊆ w-dncl r (L f α ′) ∨ r‘‘{a}∩(f α ′ − w-dncl r (L f
α ′)) 6={})

proof (intro allI impI)
fix α ′:: ′U rel
assume d1 : α ′ ≤o α ∧ (α ′ = {} ∨ isSuccOrd α ′)
then have α0 <o α ′ ∨ α ′ ≤o α0 using c1 unfolding sc-ord-def
using not-ordLeq-iff-ordLess ordLeq-Well-order-simp ordLess-Well-order-simp

by blast
moreover have α ′ ≤o α0 −→ (∀ a ∈ (L f α ′). r‘‘{a} ⊆ w-dncl r (L f α ′)

∨ r‘‘{a}∩(f α ′ − w-dncl r (L f α ′)) 6={})
using d1 c1 unfolding N4-def Dbk-def W-def by blast

moreover have α0 <o α ′ −→ α =o α ′ using d1 c1 unfolding sc-ord-def
using ordIso-iff-ordLeq by blast

moreover have α =o α ′ −→ (∀ a ∈ (L f α ′). r‘‘{a} ⊆ w-dncl r (L f α ′) ∨
r‘‘{a}∩(f α ′ − w-dncl r (L f α ′)) 6={})

proof
assume e1 : α =o α ′

have Well-order α0 using c1 unfolding sc-ord-def ordLess-def by blast
moreover then have (f α0) ∈ SF r

using a5 unfolding N5-def using ordLeq-reflexive by blast
moreover have f α = F α0 (f α0) using c1 b3 by blast
ultimately have e2 : ∀ a ∈ (f α0). r‘‘{a} ⊆ w-dncl r (f α0) ∨ r‘‘{a}∩(f α

− w-dncl r (f α0))6={}
using a4 by metis

have L f α ⊆ f α0
proof

fix p
assume p ∈ L f α

then obtain β:: ′U rel where β <o α ∧ p ∈ f β unfolding L-def by blast
moreover then have β ≤o α0 ∧ α0 ≤o α0 using c1 unfolding sc-ord-def

using not-ordLess-iff-ordLeq ordLess-Well-order-simp by blast
moreover then have f ∈ N1 r α0 using a0 a1 lem-Shinf-N1 [of f F]

ordLeq-Well-order-simp by metis

195

ultimately show p ∈ f α0 unfolding N1-def by blast
qed
moreover have f α0 ⊆ L f α using c1 unfolding sc-ord-def L-def by

blast
ultimately have L f α = f α0 by blast
then have L f α ′ = f α0 using e1 lem-shrel-L-eq by blast
then show ∀ a ∈ (L f α ′). r‘‘{a} ⊆ w-dncl r (L f α ′) ∨ r‘‘{a}∩(f α ′ −

w-dncl r (L f α ′)) 6={}
using e2 e1 b5 by metis

qed
ultimately show ∀ a ∈ (L f α ′). r‘‘{a} ⊆ w-dncl r (L f α ′) ∨ r‘‘{a}∩(f α ′

− w-dncl r (L f α ′)) 6={} by blast
qed
then show f ∈ N4 r α unfolding N4-def Dbk-def W-def by blast

qed
moreover have ∀α. lm-ord α ∧ (∀β. β <o α −→ f ∈ N4 r β) −→ f ∈ N4 r

α
proof (intro allI impI)

fix α:: ′U rel
assume c1 : lm-ord α ∧ (∀β. β <o α −→ f ∈ N4 r β)
then have c2 : f α =

⋃
{ D. ∃ β. β <o α ∧ D = f β } using b4 by blast

have ∀α ′:: ′U rel. α ′ ≤o α ∧ (α ′ = {} ∨ isSuccOrd α ′) −→
(∀ a ∈ (L f α ′). r‘‘{a} ⊆ w-dncl r (L f α ′) ∨ r‘‘{a}∩(f α ′ − w-dncl r (L f

α ′)) 6={})
proof (intro allI impI)

fix α ′:: ′U rel
assume d1 : α ′ ≤o α ∧ (α ′ = {} ∨ isSuccOrd α ′)
then have α ′ <o α ∨ α ′ =o α using ordLeq-iff-ordLess-or-ordIso by blast
moreover have α ′ <o α −→ (∀ a ∈ (L f α ′). r‘‘{a} ⊆ w-dncl r (L f α ′) ∨

r‘‘{a}∩(f α ′ − w-dncl r (L f α ′)) 6={})
proof

assume α ′ <o α
moreover then have α ′≤o α ′ using ordLess-Well-order-simp ordLeq-reflexive

by blast
ultimately show (∀ a ∈ (L f α ′). r‘‘{a} ⊆ w-dncl r (L f α ′) ∨ r‘‘{a}∩(f

α ′ − w-dncl r (L f α ′))6={})
using c1 d1 unfolding N4-def Dbk-def W-def by blast

qed
moreover have α ′ =o α −→ False
proof

assume α ′ =o α
moreover then have α ′ = {} ∨ isSuccOrd α using d1 lem-osucc-eq by

blast
moreover have ¬ (α = {} ∨ isSuccOrd α) using c1 unfolding lm-ord-def

by blast
ultimately have α ′ =o α ∧ α ′ = {} ∧ α 6= {} by blast
then show False by (metis iso-ozero-empty ordIso-symmetric ozero-def)

qed
ultimately show ∀ a ∈ (L f α ′). r‘‘{a} ⊆ w-dncl r (L f α ′) ∨ r‘‘{a}∩(f α ′

196

− w-dncl r (L f α ′)) 6={} by blast
qed
then show f ∈ N4 r α unfolding N4-def Dbk-def W-def by blast

qed
ultimately show ?thesis using lem-sclm-ordind[of λ α. f ∈ N4 r α] by blast

qed

lemma lem-Shinf-N5 :
fixes r :: ′U rel and F :: ′U rel ⇒ ′U set ⇒ ′U set and f :: ′U rel ⇒ ′U set
assumes a0 : f ∈ T F
assumes a5 : ∀ α A. (Well-order α ∧ A ∈ SF r) −→ (F α A) ∈ SF r
shows ∀α. Well-order α −→ f ∈ N5 r α
proof −

have b2 : f {} = {}
and b3 : ∀ α0 α:: ′U rel. (sc-ord α0 α −→ f α = F α0 (f α0))
and b4 : ∀ α. (lm-ord α −→ f α =

⋃
{ D. ∃ β. β <o α ∧ D = f β })

and b5 : ∀α β. α =o β −→ f α = f β using a0 unfolding T -def by blast+
have f ∈ N5 r {} using b2 lem-ord-subemp unfolding N5-def SF-def Field-def

by blast
moreover have ∀α0 α. sc-ord α0 α ∧ f ∈ N5 r α0 −→ f ∈ N5 r α
proof (intro allI impI)

fix α0 α:: ′U rel
assume c1 : sc-ord α0 α ∧ f ∈ N5 r α0
have ∀α ′:: ′U rel. α ′ ≤o α −→ (f α ′) ∈ SF r
proof (intro allI impI)

fix α ′:: ′U rel
assume d1 : α ′ ≤o α
then have α0 <o α ′ ∨ α ′ ≤o α0 using c1 unfolding sc-ord-def
using not-ordLeq-iff-ordLess ordLeq-Well-order-simp ordLess-Well-order-simp

by blast
moreover have α ′ ≤o α0 −→ Field (Restr r (f α ′)) = (f α ′) using c1

unfolding N5-def SF-def by blast
moreover have α0 <o α ′ −→ α =o α ′ using d1 c1 unfolding sc-ord-def

using ordIso-iff-ordLeq by blast
moreover have α =o α ′ −→ (f α ′) ∈ SF r
proof

assume α =o α ′

moreover have (f α) ∈ SF r
proof −

have α0 ≤o α0 using c1 unfolding sc-ord-def
using ordLess-Well-order-simp ordLeq-reflexive by blast

then have (f α0) ∈ SF r using c1 unfolding N5-def by blast
moreover have Well-order α0 using c1 unfolding sc-ord-def using

ordLess-Well-order-simp by blast
moreover have f α = F α0 (f α0) using c1 b3 by blast
ultimately show (f α) ∈ SF r using a5 by metis

qed
ultimately show (f α ′) ∈ SF r using b5 by metis

qed

197

ultimately show (f α ′) ∈ SF r unfolding SF-def by blast
qed
then show f ∈ N5 r α unfolding N5-def by blast

qed
moreover have ∀α. lm-ord α ∧ (∀β. β <o α −→ f ∈ N5 r β) −→ f ∈ N5 r

α
proof (intro allI impI)

fix α:: ′U rel
assume c1 : lm-ord α ∧ (∀β. β <o α −→ f ∈ N5 r β)
then have c2 : f α =

⋃
{ D. ∃ β. β <o α ∧ D = f β } using b4 by blast

have ∀α ′:: ′U rel. α ′ ≤o α −→ (f α ′) ∈ SF r
proof (intro allI impI)

fix α ′:: ′U rel
assume d1 : α ′ ≤o α
then have α ′ <o α ∨ α ′ =o α using ordLeq-iff-ordLess-or-ordIso by blast
moreover have α ′ <o α −→ Field (Restr r (f α ′)) = (f α ′)
proof

assume α ′ <o α
moreover then have α ′≤o α ′ using ordLess-Well-order-simp ordLeq-reflexive

by blast
ultimately show Field (Restr r (f α ′)) = (f α ′) using c1 d1 unfolding

N5-def SF-def by blast
qed
moreover have α ′ =o α −→ (f α ′) ∈ SF r
proof

assume α ′ =o α
moreover have (f α) ∈ SF r
proof −

have ∀ β. β <o α −→ (f β) ∈ SF r using c1 unfolding N5-def
using ordLess-Well-order-simp ordLeq-reflexive by blast

then show ?thesis using c2 lem-Relprop-sat-un[of {D. ∃β. β <o α ∧ D
= f β} r f α] unfolding SF-def by blast

qed
ultimately show (f α ′) ∈ SF r using b5 by metis

qed
ultimately show (f α ′) ∈ SF r unfolding SF-def by blast

qed
then show f ∈ N5 r α unfolding N5-def by blast

qed
ultimately show ?thesis using lem-sclm-ordind[of λ α. f ∈ N5 r α] by blast

qed

lemma lem-Shinf-N6 :
fixes r :: ′U rel and F :: ′U rel ⇒ ′U set ⇒ ′U set and f :: ′U rel ⇒ ′U set
assumes a0 : f ∈ T F

and a1 : ∀ α A. Well-order α −→ A ⊆ F α A
and a5 : ∀α. Well-order α −→ f ∈ N5 r α
and a6 : ∀ α A. Well-order α −→ A ∈ SF r −→ CCR (Restr r (F α A))

shows ∀α. Well-order α −→ f ∈ N6 r α

198

proof −
have b2 : f {} = {}
and b3 : ∀ α0 α:: ′U rel. (sc-ord α0 α −→ f α = F α0 (f α0))
and b4 : ∀ α. (lm-ord α −→ f α =

⋃
{ D. ∃ β. β <o α ∧ D = f β })

and b5 : ∀α β. α =o β −→ f α = f β using a0 unfolding T -def by blast+
have f ∈ N6 r {} using b2 lem-ord-subemp unfolding N6-def CCR-def Field-def

by blast
moreover have ∀α0 α. sc-ord α0 α ∧ f ∈ N6 r α0 −→ f ∈ N6 r α
proof (intro allI impI)

fix α0 α:: ′U rel
assume c1 : sc-ord α0 α ∧ f ∈ N6 r α0
then have c2 : f α = F α0 (f α0) using b3 by blast
have ∀α ′. α ′ ≤o α −→ CCR (Restr r (f α ′))
proof (intro allI impI)

fix α ′:: ′U rel
assume α ′ ≤o α
then have α ′ ≤o α0 ∨ α ′ =o α using c1 unfolding sc-ord-def
by (meson ordIso-iff-ordLeq ordLeq-Well-order-simp ordLess-Well-order-simp

ordLess-or-ordLeq)
moreover have α ′ ≤o α0 −→ CCR (Restr r (f α ′)) using c1 unfolding

N6-def by blast
moreover have α ′ =o α −→ CCR (Restr r (f α ′))
proof

assume α ′ =o α
moreover have CCR (Restr r (f α))
proof −

have Well-order α0
using c1 ordLess-Well-order-simp unfolding sc-ord-def by blast

moreover then have (f α0) ∈ SF r
using a5 unfolding N5-def using ordLeq-reflexive by blast

ultimately show CCR (Restr r (f α)) unfolding c2 using a6 by blast
qed
ultimately show CCR (Restr r (f α ′)) using b5 by metis

qed
ultimately show CCR (Restr r (f α ′)) by blast

qed
then show f ∈ N6 r α unfolding N6-def by blast

qed
moreover have ∀α. lm-ord α ∧ (∀β. β <o α −→ f ∈ N6 r β) −→ f ∈ N6 r α
proof (intro allI impI)

fix α:: ′U rel
assume c1 : lm-ord α ∧ (∀β. β <o α −→ f ∈ N6 r β)
then have c2 : f α =

⋃
{ D. ∃ β. β <o α ∧ D = f β } using b4 by blast

have c3 : ∀α ′. α ′ ≤o α −→ CCR (Restr r (f α ′))
proof (intro allI impI)

fix α ′:: ′U rel
assume α ′ ≤o α

then have α ′ <o α ∨ α ′ =o α using ordIso-iff-ordLeq ordLeq-Well-order-simp
ordLess-or-ordLeq by blast

199

moreover have α ′ <o α −→ CCR (Restr r (f α ′)) using c1 unfolding
N6-def

using ordLess-Well-order-simp ordLeq-reflexive by blast
moreover have α ′ =o α −→ CCR (Restr r (f α ′))
proof

assume α ′ =o α
moreover have CCR (Restr r (f α))
proof −
obtain C where f1 : C = { A. ∃ β:: ′U rel. β <o α ∧ A = f β } by blast
obtain S where f2 : S = { s. ∃ A ∈ C . s = Restr r A } by blast
have f3 : ∀A1 ∈ C . ∀A2 ∈ C . A1 ⊆ A2 ∨ A2 ⊆ A1
proof (intro ballI)

fix A1 A2
assume A1 ∈ C and A2 ∈ C
then obtain β1 β2 :: ′U rel where A1 = f β1 ∧ A2 = f β2 ∧ β1 <o

α ∧ β2 <o α using f1 by blast
moreover then have (β1 ≤o β2 ∨ β2 ≤o β1) ∧ β1 ≤o α ∧ β2 ≤o α
using ordLeq-total ordLess-Well-order-simp ordLess-imp-ordLeq by blast

moreover have f ∈ N1 r α using a0 a1 c1 lem-Shinf-N1 [of f F r]
unfolding lm-ord-def by blast

ultimately show A1 ⊆ A2 ∨ A2 ⊆ A1 unfolding N1-def by blast
qed
have ∀ s ∈ S . CCR s using f1 f2 c1 unfolding N6-def

using ordLess-Well-order-simp ordLeq-reflexive by blast
moreover have ∀ s1∈S . ∀ s2∈S . s1 ⊆ s2 ∨ s2 ⊆ s1 using f2 f3 by blast
ultimately have CCR (

⋃
S) using lem-Relprop-ccr-ch-un[of S] by blast

moreover have Restr r (
⋃
{D. ∃β. β <o α ∧ D = f β}) =

⋃
S

using f1 f2 f3 lem-Relprop-restr-ch-un[of C r] by blast
ultimately show ?thesis unfolding c2 by simp

qed
ultimately show CCR (Restr r (f α ′)) using b5 by metis

qed
ultimately show CCR (Restr r (f α ′)) by blast

qed
then show f ∈ N6 r α unfolding N6-def by blast

qed
ultimately show ?thesis using lem-sclm-ordind[of λ α. f ∈ N6 r α] by blast

qed

lemma lem-Shinf-N7 :
fixes r :: ′U rel and F :: ′U rel ⇒ ′U set ⇒ ′U set and f :: ′U rel ⇒ ′U set
assumes a0 : f ∈ T F

and a1 : ∀ α A. Well-order α −→ A ⊆ F α A
and a7 : ∀ α A. (|A| <o ω-ord −→ |F α A| <o ω-ord)

∧ (ω-ord ≤o |A| −→ |F α A| ≤o |A|)
shows ∀α. Well-order α −→ f ∈ N7 r α
proof −

have b2 : f {} = {}
and b3 : ∀ α0 α:: ′U rel. (sc-ord α0 α −→ f α = F α0 (f α0))

200

and b4 : ∀ α. (lm-ord α −→ f α =
⋃
{ D. ∃ β. β <o α ∧ D = f β })

and b5 : ∀α β. α =o β −→ f α = f β using a0 unfolding T -def by blast+
have ∀α:: ′U rel. α ≤o {} −→ |f α| ≤o α ∧ |f α| <o ω-ord
proof (intro allI impI)

fix α:: ′U rel
assume α ≤o {}
moreover then have (f α) = {} using b2 lem-ord-subemp by blast
ultimately show |f α| ≤o α ∧ |f α| <o ω-ord using lem-ord-subemp
by (metis Field-natLeq card-of-empty1 card-of-empty5 ctwo-def ctwo-ordLess-natLeq

natLeq-well-order-on not-ordLeq-iff-ordLess ordLeq-Well-order-simp)
qed
then have f ∈ N7 r {} unfolding N7-def by blast
moreover have ∀α0 α. sc-ord α0 α ∧ f ∈ N7 r α0 −→ f ∈ N7 r α
proof (intro allI impI)

fix α0 α:: ′U rel
assume c1 : sc-ord α0 α ∧ f ∈ N7 r α0
then have c2 : f α = F α0 (f α0) using b3 by blast
have ∀α ′. α ′ ≤o α ∧ ω-ord ≤o α ′ −→ |f α ′| ≤o α ′

proof (intro allI impI)
fix α ′:: ′U rel
assume d1 : α ′ ≤o α ∧ ω-ord ≤o α ′

then have α ′ ≤o α0 ∨ α ′ =o α using c1 unfolding sc-ord-def
by (meson ordIso-iff-ordLeq ordLeq-Well-order-simp ordLess-Well-order-simp

ordLess-or-ordLeq)
moreover have α ′ ≤o α0 −→ |f α ′| ≤o α ′ using c1 d1 unfolding N7-def

by blast
moreover have α ′ =o α −→ |f α ′| ≤o α ′

proof
assume e1 : α ′ =o α
then have e2 : ω-ord ≤o α using d1 b5 ordLeq-transitive by blast
then have e3 : ω-ord ≤o α0 using c1 lem-ord-suc-ge-w by blast
then have Well-order α0 ∧ |f α0 | ≤o α0

using c1 unfolding sc-ord-def N7-def using ordLess-Well-order-simp
ordLeq-reflexive by blast

moreover then have |f α| ≤o |f α0 | ∨ |f α| <o ω-ord unfolding c2
using a7

using finite-iff-ordLess-natLeq infinite-iff-natLeq-ordLeq by blast
moreover have α0 ≤o α using c1 unfolding sc-ord-def using ord-

Less-imp-ordLeq by blast
ultimately have |f α| ≤o α using e3 ordLeq-transitive ordLess-imp-ordLeq

by metis
then show |f α ′| ≤o α ′ using b5 e1 ordIso-iff-ordLeq ordLeq-transitive by

metis
qed
ultimately show |f α ′| ≤o α ′ by blast

qed
moreover have ∀α ′. α ′ ≤o α ∧ α ′ <o ω-ord −→ |f α ′| <o ω-ord
proof (intro allI impI)

fix α ′:: ′U rel

201

assume d1 : α ′ ≤o α ∧ α ′ <o ω-ord
then have α ′ ≤o α0 ∨ α ′ =o α using c1 unfolding sc-ord-def
by (meson ordIso-iff-ordLeq ordLeq-Well-order-simp ordLess-Well-order-simp

ordLess-or-ordLeq)
moreover have α ′ ≤o α0 −→ |f α ′| <o ω-ord using c1 d1 unfolding

N7-def by blast
moreover have α ′ =o α −→ |f α ′| <o ω-ord
proof

assume e1 : α ′ =o α
then have e2 : α <o ω-ord using d1 ordIso-iff-ordLeq ordIso-ordLess-trans

by blast
then have e3 : α0 <o ω-ord using c1 unfolding sc-ord-def using or-

dLeq-ordLess-trans ordLess-imp-ordLeq by blast
then have Well-order α0 ∧ |f α0 | <o ω-ord

using c1 unfolding sc-ord-def N7-def using ordLess-Well-order-simp
ordLeq-reflexive by blast

then have |f α| <o ω-ord unfolding c2 using a7 by blast
then show |f α ′| <o ω-ord using b5 e1 by metis

qed
ultimately show |f α ′| <o ω-ord by blast

qed
ultimately show f ∈ N7 r α unfolding N7-def by blast

qed
moreover have ∀α. lm-ord α ∧ (∀β. β <o α −→ f ∈ N7 r β) −→ f ∈ N7 r α
proof (intro allI impI)

fix α:: ′U rel
assume c1 : lm-ord α ∧ (∀β. β <o α −→ f ∈ N7 r β)
then have c2 : f α =

⋃
{ D. ∃ β. β <o α ∧ D = f β } using b4 by blast

have ∀α ′. α ′ ≤o α ∧ ω-ord ≤o α ′ −→ |f α ′| ≤o α ′

proof (intro allI impI)
fix α ′:: ′U rel
assume e1 : α ′ ≤o α ∧ ω-ord ≤o α ′

then have α ′ <o α ∨ α ′ =o α using ordIso-iff-ordLeq ordLeq-Well-order-simp
ordLess-or-ordLeq by blast

moreover have α ′ <o α −→ |f α ′| ≤o α ′ using c1 e1 unfolding N7-def
using ordLess-Well-order-simp ordLeq-reflexive by blast

moreover have α ′ =o α −→ |f α ′| ≤o α ′

proof
assume α ′ =o α
moreover have |f α| ≤o α
proof −

obtain S where f1 : S = { A. ∃ β:: ′U rel. β <o α ∧ A = f β } by blast
have f2 : ω-ord ≤o α using c1 lem-lmord-inf lem-inford-ge-w unfolding

lm-ord-def by blast
have f3 : ∀ s ∈ S . |s| ≤o α
proof

fix s
assume s ∈ S
then obtain β where β <o α ∧ s = f β using f1 by blast

202

then show |s| ≤o α
using c1 f2 unfolding N7-def apply clarsimp

by (metis card-of-Well-order natLeq-Well-order not-ordLess-ordLeq
ordLeq-reflexive ordLess-Well-order-simp ordLess-or-ordLeq ordLess-transitive)

qed
moreover have |S | ≤o α
proof −

have f ‘ {γ. γ <o α} = S using f1 by force
then show ?thesis using f1 f2 b5 lem-ord-int-card-le-inf [of f α] by blast
qed
ultimately have |

⋃
S | ≤o α using f2 lem-card-un-bnd[of S α] by blast

then show ?thesis unfolding f1 c2 by blast
qed
ultimately show |f α ′| ≤o α ′ using b5 ordIso-iff-ordLeq ordLeq-transitive

by metis
qed
ultimately show |f α ′| ≤o α ′ by blast

qed
moreover have ∀α ′. α ′ ≤o α ∧ α ′ <o ω-ord −→ |f α ′| <o ω-ord
proof (intro allI impI)

fix α ′:: ′U rel
assume e1 : α ′ ≤o α ∧ α ′ <o ω-ord

then have α ′ <o α ∨ α ′ =o α using ordIso-iff-ordLeq ordLeq-Well-order-simp
ordLess-or-ordLeq by blast

moreover have α ′ <o α −→ |f α ′| <o ω-ord using c1 e1 unfolding N7-def
using ordLess-Well-order-simp ordLeq-reflexive by blast

moreover have α ′ =o α −→ |f α ′| <o ω-ord
proof

assume α ′ =o α
moreover have |f α| ≤o α
proof −

obtain S where f1 : S = { A. ∃ β:: ′U rel. β <o α ∧ A = f β } by blast
have f2 : ω-ord ≤o α using c1 lem-lmord-inf lem-inford-ge-w unfolding

lm-ord-def by blast
have f3 : ∀ s ∈ S . |s| ≤o α
proof

fix s
assume s ∈ S
then obtain β where β <o α ∧ s = f β using f1 by blast
then show |s| ≤o α

using c1 f2 unfolding N7-def apply clarsimp
by (metis card-of-Well-order natLeq-Well-order not-ordLess-ordLeq

ordLeq-reflexive ordLess-Well-order-simp ordLess-or-ordLeq ordLess-transitive)
qed
moreover have |S | ≤o α
proof −

have f ‘ {γ. γ <o α} = S using f1 by force
then show ?thesis using f1 f2 b5 lem-ord-int-card-le-inf [of f α] by blast
qed

203

ultimately have |
⋃

S | ≤o α using f2 lem-card-un-bnd[of S α] by blast
then show ?thesis unfolding f1 c2 by blast

qed
ultimately show |f α ′| <o ω-ord using e1 b5 ordIso-iff-ordLeq or-

dLeq-transitive
by (metis card-of-Well-order natLeq-Well-order not-ordLess-ordLeq ord-

Less-or-ordLeq)
qed
ultimately show |f α ′| <o ω-ord by blast

qed
ultimately show f ∈ N7 r α unfolding N7-def by blast

qed
ultimately show ?thesis using lem-sclm-ordind[of λ α. f ∈ N7 r α] by blast

qed

lemma lem-Shinf-N8 :
fixes r :: ′U rel and F :: ′U rel ⇒ ′U set ⇒ ′U set and f :: ′U rel ⇒ ′U set and Ps:: ′U
set set
assumes a0 : f ∈ T F

and a1 : ∀ α A. Well-order α −→ A ⊆ F α A
and a5 : ∀α. Well-order α −→ f ∈ N5 r α
and a7 : ∀ α A. (|A| <o ω-ord −→ |F α A| <o ω-ord)

∧ (ω-ord ≤o |A| −→ |F α A| ≤o |A|)
and a8 : ∀α A. A ∈ SF r −→ Ep r Ps A (F α A)

shows ∀α. Well-order α −→ f ∈ N8 r Ps α
proof −

have b2 : f {} = {}
and b3 : ∀ α0 α:: ′U rel. (sc-ord α0 α −→ f α = F α0 (f α0))
and b4 : ∀ α. (lm-ord α −→ f α =

⋃
{ D. ∃ β. β <o α ∧ D = f β })

and b5 : ∀α β. α =o β −→ f α = f β using a0 unfolding T -def by blast+
have f ∈ N8 r Ps {} using b2 lem-ord-subemp unfolding N8-def SCF-def

Field-def by blast
moreover have ∀α0 α. sc-ord α0 α ∧ f ∈ N8 r Ps α0 −→ f ∈ N8 r Ps α
proof (intro allI impI)

fix α0 α:: ′U rel
assume c1 : sc-ord α0 α ∧ f ∈ N8 r Ps α0
have ∀α ′:: ′U rel. α ′ ≤o α ∧ (α ′ = {} ∨ isSuccOrd α ′) −→

((∃P. Ps = {P}) ∨ (¬ finite Ps ∧ |Ps| ≤o |f α ′|)) −→ (∀P∈Ps. f α ′ ∩ P
∈ SCF (Restr r (f α ′)))

proof (intro allI , rule impI)
fix α ′:: ′U rel
assume d1 : α ′ ≤o α ∧ (α ′ = {} ∨ isSuccOrd α ′)
then have α0 <o α ′ ∨ α ′ ≤o α0 using c1 unfolding sc-ord-def
using not-ordLeq-iff-ordLess ordLeq-Well-order-simp ordLess-Well-order-simp

by blast
moreover have α ′ ≤o α0 −→ ((∃P. Ps = {P}) ∨ (¬ finite Ps ∧ |Ps| ≤o |f

α ′|)) −→
(∀P∈Ps. f α ′ ∩ P ∈ SCF (Restr r (f α ′)))

using d1 c1 unfolding N8-def by blast

204

moreover have α0 <o α ′ −→ α =o α ′ using d1 c1 unfolding sc-ord-def
using ordIso-iff-ordLeq by blast

moreover have α =o α ′ −→ ((∃P. Ps = {P}) ∨ (¬ finite Ps ∧ |Ps| ≤o |f
α ′|)) −→

(∀P∈Ps. f α ′ ∩ P ∈ SCF (Restr r (f α ′)))
proof (intro ballI impI)

fix P
assume e1 : α =o α ′ and e2 : (∃P ′. Ps = {P ′}) ∨ (¬ finite Ps ∧ |Ps| ≤o |f

α ′|) and e3 : P ∈ Ps
have e4 : f α ′ = f α using b5 e1 by blast
have Well-order α0 using c1 unfolding sc-ord-def ordLess-def by blast

then have (f α0) ∈ SF r using a5 unfolding N5-def using ordLeq-reflexive
by blast

moreover have e5 : f α = F α0 (f α0) using c1 b3 by blast
moreover have ¬ (∃P ′. Ps = {P ′}) −→ (¬ finite Ps ∧ |Ps| ≤o |f α0 |)
proof

assume f1 : ¬ (∃P ′. Ps = {P ′})
then have f2 : ω-ord ≤o |Ps| ∧ |Ps| ≤o |f α| using e2 e4 infi-

nite-iff-natLeq-ordLeq by metis
then have ¬ |F α0 (f α0)| <o ω-ord using e5

by (metis finite-ordLess-infinite2 infinite-iff-natLeq-ordLeq not-ordLess-ordLeq)
then have ¬ |f α0 | <o ω-ord using a7 by blast

then have ω-ord ≤o |f α0 | by (metis finite-iff-ordLess-natLeq infi-
nite-iff-natLeq-ordLeq)

then have |F α0 (f α0)| ≤o |f α0 | using a7 by blast
then have |Ps| ≤o |f α0 | using f2 e5 ordLeq-transitive by metis
then show ¬ finite Ps ∧ |Ps| ≤o |f α0 | using f1 e2 by blast

qed
ultimately show f α ′ ∩ P ∈ SCF (Restr r (f α ′)) using e3 e4 a8 unfolding

Ep-def by metis
qed
ultimately show ((∃P. Ps = {P}) ∨ (¬ finite Ps ∧ |Ps| ≤o |f α ′|)) −→

(∀P∈Ps. f α ′ ∩ P ∈ SCF (Restr r (f α ′))) by blast
qed
then show f ∈ N8 r Ps α unfolding N8-def by blast

qed
moreover have ∀α. lm-ord α ∧ (∀β. β <o α −→ f ∈ N8 r Ps β) −→ f ∈ N8

r Ps α
proof (intro allI impI)

fix α:: ′U rel
assume c1 : lm-ord α ∧ (∀β. β <o α −→ f ∈ N8 r Ps β)
then have c2 : f α =

⋃
{ D. ∃ β. β <o α ∧ D = f β } using b4 by blast

have ∀α ′:: ′U rel. α ′ ≤o α ∧ (α ′ = {} ∨ isSuccOrd α ′) −→
((∃P. Ps = {P}) ∨ (¬ finite Ps ∧ |Ps| ≤o |f α ′|)) −→ (∀P∈Ps. f α ′ ∩ P ∈

SCF (Restr r (f α ′)))
proof (intro allI , rule impI)

fix α ′:: ′U rel
assume d1 : α ′ ≤o α ∧ (α ′ = {} ∨ isSuccOrd α ′)
then have α ′ <o α ∨ α ′ =o α using ordLeq-iff-ordLess-or-ordIso by blast

205

moreover have α ′ <o α −→ ((∃P. Ps = {P}) ∨ (¬ finite Ps ∧ |Ps| ≤o |f
α ′|)) −→

(∀P∈Ps. f α ′ ∩ P ∈ SCF (Restr r (f α ′)))
proof

assume α ′ <o α
moreover then have α ′≤o α ′ using ordLess-Well-order-simp ordLeq-reflexive

by blast
ultimately show ((∃P. Ps = {P}) ∨ (¬ finite Ps ∧ |Ps| ≤o |f α ′|)) −→

(∀P∈Ps. f α ′ ∩ P ∈ SCF (Restr r (f α ′)))
using c1 d1 unfolding N8-def by blast

qed
moreover have α ′ =o α −→ False
proof

assume α ′ =o α
moreover then have α ′ = {} ∨ isSuccOrd α using d1 lem-osucc-eq by

blast
moreover have ¬ (α = {} ∨ isSuccOrd α) using c1 unfolding lm-ord-def

by blast
ultimately have α ′ =o α ∧ α ′ = {} ∧ α 6= {} by blast
then show False by (metis iso-ozero-empty ordIso-symmetric ozero-def)

qed
ultimately show ((∃P. Ps = {P}) ∨ (¬ finite Ps ∧ |Ps| ≤o |f α ′|)) −→

(∀P∈Ps. f α ′ ∩ P ∈ SCF (Restr r (f α ′))) by blast
qed
then show f ∈ N8 r Ps α unfolding N8-def by blast

qed
ultimately show ?thesis using lem-sclm-ordind[of λ α. f ∈ N8 r Ps α] by

blast
qed

lemma lem-Shinf-N9 :
fixes r :: ′U rel and g:: ′U rel ⇒ ′U

and F :: ′U rel ⇒ ′U set ⇒ ′U set and f :: ′U rel ⇒ ′U set
assumes a0 : f ∈ T F

and a1 : ∀ α A. Well-order α −→ A ⊆ F α A
and a2 : ∀ α A. Well-order α −→ g α ∈ Field r −→ g α ∈ F α A
and a11 : ω-ord ≤o |Field r | −→ Field r ⊆ g ‘ { γ:: ′U rel. γ <o |Field r | }

shows f ∈ N9 r |Field r |
proof −

have b3 : ∀ α0 α:: ′U rel. (sc-ord α0 α −→ f α = F α0 (f α0)) using a0
unfolding T -def by blast+

have ∀ a ∈ Field r . ω-ord ≤o |Field r | −→ a ∈ f |Field r |
proof (intro ballI impI)

fix a
assume c1 : a ∈ Field r and c2 : ω-ord ≤o |Field r |
then obtain α0 :: ′U rel where c4 : α0 <o |Field r | ∧ g α0 = a using a11 by

blast
moreover then obtain α where c5 : sc-ord α0 α using lem-sucord-ex[of α0

|Field r |] by blast

206

ultimately have c6 : α ≤o |Field r | unfolding sc-ord-def by blast
have Well-order |Field r | by simp

then have f ∈ N1 r |Field r | using a0 a1 lem-Shinf-N1 unfolding card-order-on-def
by metis

moreover have c7 : |Field r | ≤o |Field r | by simp
moreover have f α = F α0 (f α0) using c5 b3 by blast
moreover have a ∈ F α0 (f α0) using a2 c4 c1 ordLess-Well-order-simp by

blast
ultimately show a ∈ f |Field r | using c6 unfolding N1-def by blast

qed
then show ?thesis unfolding N9-def by blast

qed

lemma lem-Shinf-N10 :
fixes r :: ′U rel and F :: ′U rel ⇒ ′U set ⇒ ′U set and f :: ′U rel ⇒ ′U set
assumes a0 : f ∈ T F

and a1 : ∀ α A. Well-order α −→ A ⊆ F α A
and a5 : ∀α. Well-order α −→ f ∈ N5 r α
and a10 : ∀ α A. Well-order α −→ A ∈ SF r −→

((∃ y. (F α A) − dncl r A ⊆ {y}) −→ (Field r ⊆ dncl r (F α A)))
shows ∀α. Well-order α −→ f ∈ N10 r α
proof −

have b2 : f {} = {}
and b3 : ∀ α0 α:: ′U rel. (sc-ord α0 α −→ f α = F α0 (f α0))
and b4 : ∀ α. (lm-ord α −→ f α =

⋃
{ D. ∃ β. β <o α ∧ D = f β })

and b5 : ∀α β. α =o β −→ f α = f β using a0 unfolding T -def by blast+
have f ∈ N10 r {} using b2 lem-ord-subemp unfolding N10-def Q-def by

blast
moreover have ∀α0 α. sc-ord α0 α ∧ f ∈ N10 r α0 −→ f ∈ N10 r α
proof (intro allI impI)

fix α0 α:: ′U rel
assume c1 : sc-ord α0 α ∧ f ∈ N10 r α0
have ∀α ′:: ′U rel. α ′ ≤o α −→

((∃ y. (f α ′) − dncl r (L f α ′) = {y}) −→ (Field r ⊆ dncl r (f α ′)))
proof (intro allI impI)

fix α ′:: ′U rel
assume d1 : α ′ ≤o α and d2 : ∃ y. (f α ′) − dncl r (L f α ′) = {y}
then have α0 <o α ′ ∨ α ′ ≤o α0 using c1 unfolding sc-ord-def
using not-ordLeq-iff-ordLess ordLeq-Well-order-simp ordLess-Well-order-simp

by blast
moreover have α ′ ≤o α0 −→ ((∃ y. (f α ′) − dncl r (L f α ′) = {y}) −→

(Field r ⊆ dncl r (f α ′)))
using d1 c1 unfolding N10-def Q-def by blast

moreover have α0 <o α ′ −→ α =o α ′ using d1 c1 unfolding sc-ord-def
using ordIso-iff-ordLeq by blast

moreover have α =o α ′ −→ (Field r ⊆ dncl r (f α ′))
proof

assume e1 : α =o α ′

have Well-order α0 using c1 unfolding sc-ord-def ordLess-def by blast

207

moreover then have (f α0) ∈ SF r
using a5 unfolding N5-def using ordLeq-reflexive by blast

moreover have f α = F α0 (f α0) using c1 b3 by blast
ultimately have e2 : ((∃ y. (f α) − dncl r (f α0) ⊆ {y}) −→ (Field r ⊆

dncl r (f α)))
using a10 by metis

have L f α ⊆ f α0
proof

fix p
assume p ∈ L f α

then obtain β:: ′U rel where β <o α ∧ p ∈ f β unfolding L-def by blast
moreover then have β ≤o α0 ∧ α0 ≤o α0 using c1 unfolding sc-ord-def

using not-ordLess-iff-ordLeq ordLess-Well-order-simp by blast
moreover then have f ∈ N1 r α0 using a0 a1 lem-Shinf-N1 [of f F]

ordLeq-Well-order-simp by metis
ultimately show p ∈ f α0 unfolding N1-def by blast

qed
moreover have f α0 ⊆ L f α using c1 unfolding sc-ord-def L-def by

blast
ultimately have L f α = f α0 by blast
then have L f α ′ = f α0 using e1 lem-shrel-L-eq by blast
then show Field r ⊆ dncl r (f α ′) using d2 e2 e1 b5 by force

qed
ultimately show Field r ⊆ dncl r (f α ′) using d2 by blast

qed
then show f ∈ N10 r α unfolding N10-def Q-def by blast

qed
moreover have ∀α. lm-ord α ∧ (∀β. β <o α −→ f ∈ N10 r β) −→ f ∈ N10

r α
proof (intro allI impI)

fix α:: ′U rel
assume c1 : lm-ord α ∧ (∀β. β <o α −→ f ∈ N10 r β)
then have c2 : f α =

⋃
{ D. ∃ β. β <o α ∧ D = f β } using b4 by blast

have ∀α ′:: ′U rel. α ′ ≤o α −→
((∃ y. (f α ′) − dncl r (L f α ′) = {y}) −→ (Field r ⊆ dncl r (f α ′)))

proof (intro allI impI)
fix α ′:: ′U rel
assume d1 : α ′ ≤o α and d2 : ∃ y. (f α ′) − dncl r (L f α ′) = {y}
then have α ′ <o α ∨ α ′ =o α using ordLeq-iff-ordLess-or-ordIso by blast
moreover have α ′ <o α −→ (Field r ⊆ dncl r (f α ′))
proof

assume α ′ <o α
moreover then have α ′≤o α ′ using ordLess-Well-order-simp ordLeq-reflexive

by blast
ultimately show Field r ⊆ dncl r (f α ′) using c1 d1 d2 unfolding N10-def

Q-def by blast
qed
moreover have α ′ =o α −→ False
proof

208

assume e1 : α ′ =o α
moreover then have e2 : L f α ′ = L f α using lem-shrel-L-eq by blast
ultimately have ∃ y. (f α) − dncl r (L f α) = {y} using d2 b5 by metis
moreover have f α ⊆ L f α using c2 unfolding L-def by blast
ultimately show False unfolding dncl-def by blast

qed
ultimately show Field r ⊆ dncl r (f α ′) using d2 by blast

qed
then show f ∈ N10 r α unfolding N10-def Q-def by blast

qed
ultimately show ?thesis using lem-sclm-ordind[of λ α. f ∈ N10 r α] by blast

qed

lemma lem-Shinf-N11 :
fixes r :: ′U rel and F :: ′U rel ⇒ ′U set ⇒ ′U set and f :: ′U rel ⇒ ′U set
assumes a0 : f ∈ T F

and a1 : ∀ α A. Well-order α −→ A ⊆ F α A
and a5 : ∀α. Well-order α −→ f ∈ N5 r α
and a10 : ∀ α A. Well-order α −→ A ∈ SF r −→

((∃ y. (F α A) − dncl r A ⊆ {y}) −→ (Field r ⊆ dncl r (F α A)))
shows ∀α. Well-order α −→ f ∈ N11 r α
proof −

have b2 : f {} = {}
and b3 : ∀ α0 α:: ′U rel. (sc-ord α0 α −→ f α = F α0 (f α0))
and b4 : ∀ α. (lm-ord α −→ f α =

⋃
{ D. ∃ β. β <o α ∧ D = f β })

and b5 : ∀α β. α =o β −→ f α = f β using a0 unfolding T -def by blast+
have ¬ isSuccOrd ({}:: ′U rel)

using wo-rel-def wo-rel.isSuccOrd-def unfolding Field-def by force
then have f ∈ N11 r {} using lem-ord-subemp unfolding N11-def by blast
moreover have ∀α0 α. sc-ord α0 α ∧ f ∈ N11 r α0 −→ f ∈ N11 r α
proof (intro allI impI)

fix α0 α:: ′U rel
assume c1 : sc-ord α0 α ∧ f ∈ N11 r α0
have ∀α ′:: ′U rel. α ′ ≤o α ∧ (isSuccOrd α ′) −→

(((f α ′) − dncl r (L f α ′) = {}) −→ (Field r ⊆ dncl r (f α ′)))
proof (intro allI impI)

fix α ′:: ′U rel
assume d1 : α ′ ≤o α ∧ (isSuccOrd α ′)

and d2 : (f α ′) − dncl r (L f α ′) = {}
then have α0 <o α ′ ∨ α ′ ≤o α0 using c1 unfolding sc-ord-def
using not-ordLeq-iff-ordLess ordLeq-Well-order-simp ordLess-Well-order-simp

by blast
moreover have α ′ ≤o α0 −→ (((f α ′) − dncl r (L f α ′) = {}) −→ (Field r

⊆ dncl r (f α ′)))
using d1 c1 unfolding N11-def Q-def by blast

moreover have α0 <o α ′ −→ α =o α ′ using d1 c1 unfolding sc-ord-def
using ordIso-iff-ordLeq by blast

moreover have α =o α ′ −→ (Field r ⊆ dncl r (f α ′))
proof

209

assume e1 : α =o α ′

have Well-order α0 using c1 unfolding sc-ord-def ordLess-def by blast
moreover then have (f α0) ∈ SF r

using a5 unfolding N5-def using ordLeq-reflexive by blast
moreover have f α = F α0 (f α0) using c1 b3 by blast
ultimately have e2 : (((f α) − dncl r (f α0) = {}) −→ (Field r ⊆ dncl r

(f α)))
using a10 by fastforce

have L f α ⊆ f α0
proof

fix p
assume p ∈ L f α

then obtain β:: ′U rel where β <o α ∧ p ∈ f β unfolding L-def by blast
moreover then have β ≤o α0 ∧ α0 ≤o α0 using c1 unfolding sc-ord-def

using not-ordLess-iff-ordLeq ordLess-Well-order-simp by blast
moreover then have f ∈ N1 r α0 using a0 a1 lem-Shinf-N1 [of f F]

ordLeq-Well-order-simp by metis
ultimately show p ∈ f α0 unfolding N1-def by blast

qed
moreover have f α0 ⊆ L f α using c1 unfolding sc-ord-def L-def by

blast
ultimately have L f α = f α0 by blast
then have L f α ′ = f α0 using e1 lem-shrel-L-eq by blast
then show Field r ⊆ dncl r (f α ′) using d2 e2 e1 b5 by force

qed
ultimately show Field r ⊆ dncl r (f α ′) using d2 by blast

qed
then show f ∈ N11 r α unfolding N11-def Q-def by blast

qed
moreover have ∀α. lm-ord α ∧ (∀β. β <o α −→ f ∈ N11 r β) −→ f ∈ N11

r α
proof (intro allI impI)

fix α:: ′U rel
assume c1 : lm-ord α ∧ (∀β. β <o α −→ f ∈ N11 r β)
then have c2 : f α =

⋃
{ D. ∃ β. β <o α ∧ D = f β } using b4 by blast

have ∀α ′:: ′U rel. α ′ ≤o α ∧ (isSuccOrd α ′) −→
(((f α ′) − dncl r (L f α ′) = {}) −→ (Field r ⊆ dncl r (f α ′)))

proof (intro allI impI)
fix α ′:: ′U rel
assume d1 : α ′ ≤o α ∧ (isSuccOrd α ′)

and d2 : (f α ′) − dncl r (L f α ′) = {}
then have α ′ <o α ∨ α ′ =o α using ordLeq-iff-ordLess-or-ordIso by blast
moreover have α ′ <o α −→ (Field r ⊆ dncl r (f α ′))
proof

assume α ′ <o α
moreover then have α ′≤o α ′ using ordLess-Well-order-simp ordLeq-reflexive

by blast
ultimately show Field r ⊆ dncl r (f α ′) using c1 d1 d2 unfolding N11-def

Q-def by blast qed

210

moreover have α ′ =o α −→ False
proof

assume α ′ =o α
moreover then have α ′ = {} ∨ isSuccOrd α using d1 lem-osucc-eq by

blast
moreover have ¬ (α = {} ∨ isSuccOrd α) using c1 unfolding lm-ord-def

by blast
ultimately have α ′ =o α ∧ α ′ = {} ∧ α 6= {} by blast
then show False by (metis iso-ozero-empty ordIso-symmetric ozero-def)

qed
ultimately show Field r ⊆ dncl r (f α ′) using d2 by blast

qed
then show f ∈ N11 r α unfolding N11-def Q-def by blast

qed
ultimately show ?thesis using lem-sclm-ordind[of λ α. f ∈ N11 r α] by blast

qed

lemma lem-Shinf-N12 :
fixes r :: ′U rel and g:: ′U rel ⇒ ′U

and F :: ′U rel ⇒ ′U set ⇒ ′U set and f :: ′U rel ⇒ ′U set
assumes a0 : f ∈ T F

and a1 : ∀α. Well-order α −→ f ∈ N1 r α
and a2 : ∀ α A. Well-order α −→ g α ∈ Field r −→ g α ∈ F α A
and a11 : ω-ord ≤o |Field r | −→ Field r = g ‘ { γ:: ′U rel. γ <o |Field r | }
and a2 ′: ∀α:: ′U rel. ω-ord ≤o α ∧ α ≤o |Field r | −→ ω-ord ≤o |g ‘ {γ. γ <o

α}|
shows f ∈ N12 r |Field r |
proof −

have b1 : ∀α. ω-ord =o α ∧ α ≤o |Field r | −→ ω-ord ≤o |L f α|
proof (intro allI impI)

fix α:: ′U rel
assume c1 : ω-ord =o α ∧ α ≤o |Field r |
then have c2 : ω-ord ≤o |g‘{γ. γ <o α}| using a2 ′ ordIso-imp-ordLeq by blast
have g‘{γ. γ <o α} ⊆ g‘{γ. γ <o |Field r |} using c1 ordLess-ordLeq-trans by

force
then have g‘{γ. γ <o α} ⊆ Field r

using c1 a11 ordLeq-transitive ordIso-imp-ordLeq[of ω-ord] by metis
have g‘{γ. γ <o α} ⊆ L f α
proof

fix a
assume a ∈ g‘{γ. γ <o α}
then obtain γ where d1 : a = g γ ∧ γ <o α by blast
obtain γ ′ where d2 : sc-ord γ γ ′ using d1 lem-sucord-ex by blast
then have f γ ′ = F γ (f γ) using a0 unfolding T -def by blast
moreover have Well-order γ using d2 unfolding sc-ord-def using ord-

Less-def by blast
moreover have g γ ∈ Field r using d1 c1 a11 ordIso-ordLeq-trans ord-

Less-ordLeq-trans by blast
ultimately have a ∈ f γ ′ using d1 a2 by blast

211

moreover have γ ′ <o α
proof −
have isLimOrd ω-ord by (simp add: Field-natLeq card-order-infinite-isLimOrd

natLeq-card-order)
then have ¬ isSuccOrd α

using c1 lem-osucc-eq ordIso-symmetric
using natLeq-Well-order wo-rel.isLimOrd-def wo-rel-def by blast

then obtain β:: ′U rel where γ <o β ∧ ¬ (α ≤o β) using d1 lem-ordint-sucord
by blast

then have γ <o β ∧ β <o α using d1
by (metis ordIso-imp-ordLeq ordLess-Well-order-simp ordLess-imp-ordLeq

ordLess-or-ordIso)
then show γ ′<o α using d2 unfolding sc-ord-def using ordLeq-ordLess-trans

by blast
qed
ultimately show a ∈ L f α unfolding L-def by blast

qed
then have |g‘{γ. γ <o α}| ≤o |L f α| by simp
then show ω-ord ≤o |L f α| using c2 ordLeq-transitive by blast

qed
have ∀α. ω-ord ≤o α ∧ α ≤o |Field r | −→ ω-ord ≤o |L f α|
proof (intro allI impI)

fix α:: ′U rel
assume ω-ord ≤o α ∧ α ≤o |Field r |
moreover then obtain α0 :: ′U rel where d1 : ω-ord =o α0 ∧ α0 ≤o α

using internalize-ordLeq[of ω-ord α] by blast
ultimately have ω-ord =o α0 ∧ α0 ≤o |Field r | using ordLeq-transitive by

blast
then have ω-ord ≤o |L f α0 | using b1 by blast
moreover have L f α0 ⊆ L f α using d1 unfolding L-def using ord-

Less-ordLeq-trans by blast
moreover then have |L f α0 | ≤o |L f α| by simp
ultimately show ω-ord ≤o |L f α| using ordLeq-transitive by blast

qed
then show ?thesis unfolding N12-def by blast

qed

lemma lem-Shinf-E-ne:
fixes r :: ′U rel and a0 :: ′U and A:: ′U set and Ps:: ′U set set
assumes a2 : CCR r and a3 : Ps ⊆ SCF r
shows E r a0 A Ps 6= {}
proof (cases A ∈ SF r)

assume b0 : A ∈ SF r
show E r a0 A Ps 6= {}
proof (cases finite A)

assume b1 : finite A
then obtain A ′ where (a0 ∈ Field r −→ a0 ∈ A ′) and b2 : A ⊆ A ′ and b3 :

CCR (Restr r A ′) ∧ finite A ′

and (∀ a∈A. r‘‘{a}⊆w-dncl r A ∨ r‘‘{a}∩(A ′−w-dncl r A) 6= {})

212

and A ′ ∈ SF r and b4 : (∃ y. A ′ − dncl r A ⊆ {y}) −→ Field r ⊆
A ′ ∪ dncl r A

and b5 : (∃ P. Ps = {P}) −→ (∀ P ∈ Ps. (A ′ ∩ P ∈ SCF (Restr
r A ′)))

using b0 a2 a3
lem-Ccext-finsubccr-pext5-scf3 [of r A Ps a0 w-dncl r A dncl r A]
by metis

moreover have |A ′| <o ω-ord using b3 finite-iff-ordLess-natLeq by blast
moreover have ¬ (ω-ord ≤o |A|) using b1 infinite-iff-natLeq-ordLeq by blast
moreover have (∃ y. A ′ − dncl r A ⊆ {y}) −→ Field r ⊆ dncl r A ′ using b2

b4 unfolding dncl-def by blast
moreover have (∃ P. Ps = {P}) ∨ ((¬ finite Ps) ∧ |Ps| ≤o |A|) −→ (∃ P.

Ps = {P})
using b1 card-of-ordLeq-finite by blast

ultimately have A ′ ∈ E r a0 A Ps unfolding E-def Ep-def by fast
then show ?thesis by blast

next
assume b1 : ¬ finite A
then obtain A ′ where b2 : (a0 ∈ Field r −→ a0 ∈ A ′) and b3 : A ⊆ A ′ and

b4 : CCR (Restr r A ′)
and b5 : |A ′| =o |A| and b6 : (∀ a∈A. r‘‘{a}⊆w-dncl r A ∨

r‘‘{a}∩(A ′−w-dncl r A) 6= {})
and b7 : A ′ ∈ SF r and b8 : (∃ y. A ′ − dncl r A ⊆ {y}) −→ Field

r ⊆ A ′ ∪ dncl r A
and b9 : (|Ps| ≤o |A| −→ (∀ P ∈ Ps. (A ′ ∩ P) ∈ SCF (Restr r

A ′)))
and b10 : escl r A A ′ ⊆ A ′ and b11 : clterm (Restr r A ′) r

using b0 a2 a3
lem-Ccext-infsubccr-pext5-scf3 [of r A Ps a0 w-dncl r A dncl r A] by metis

then have (ω-ord ≤o |A| −→ |A ′| ≤o |A|) using ordIso-iff-ordLeq by blast
moreover have (|A| <o ω-ord −→ |A ′| <o ω-ord) using b1 finite-iff-ordLess-natLeq

by blast
moreover have (∃ y. A ′ − dncl r A ⊆ {y}) −→ (Field r ⊆ dncl r A ′) using

b3 b8 unfolding dncl-def by blast
moreover have (∃ P. Ps = {P}) ∨ ((¬ finite Ps) ∧ |Ps| ≤o |A|) −→ |Ps|

≤o |A|
using b1 by (metis card-of-singl-ordLeq finite.simps)

ultimately have A ′ ∈ E r a0 A Ps unfolding E-def Ep-def
using b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 by fast

then show ?thesis by blast
qed

next
assume A /∈ SF r
moreover obtain A ′ where b1 : A ′ = A ∪ {a0} by blast
moreover then have |A| <o ω-ord −→ |A ′| <o ω-ord using finite-iff-ordLess-natLeq

by blast
moreover have ω-ord ≤o |A| −→ |A ′| ≤o |A|
proof

assume ω-ord ≤o |A|

213

then have ¬ finite A using finite-iff-ordLess-natLeq not-ordLeq-ordLess by
blast

then have |A ′| =o |A| unfolding b1 using infinite-card-of-insert by simp
then show |A ′| ≤o |A| using ordIso-imp-ordLeq by blast

qed
ultimately have A ′ ∈ E r a0 A Ps unfolding E-def by blast
then show E r a0 A Ps 6= {} by blast

qed

lemma lem-oseq-fin-inj:
fixes g:: ′U rel ⇒ ′a and I :: ′U rel ⇒ ′U rel set and A:: ′a set
assumes a1 : I = (λ α ′. { α:: ′U rel. α <o α ′ })

and a2 : ω-ord ≤o |A|
and a3 : ∀ α β. α =o β −→ g α = g β

shows ∃ h. (∀ α ′. g‘(I α ′) ⊆ h‘(I α ′) ∧ h‘(I α ′) ⊆ g‘(I α ′) ∪ A)
∧ (∀ α ′. ω-ord ≤o α ′ −→ ω-ord ≤o |h‘(I α ′)|)
∧ (∀ α β. α =o β −→ h α = h β)

proof(cases ∃ α:: ′U rel. ω-ord ≤o α)
assume ∃ α:: ′U rel. ω-ord ≤o α
then obtain αm:: ′U rel where b1 : ω-ord =o αm by (metis internalize-ordLeq)
obtain f ::nat ⇒ ′U rel where b2 : f = (λ n. SOME α. α =o (natLeq-on n)) by

blast
have |UNIV ::nat set| ≤o |A| using a2 using card-of-nat ordIso-imp-ordLeq

ordLeq-transitive by blast
then obtain xi::nat ⇒ ′a where b3 : inj xi ∧ xi ‘ UNIV ⊆ A by (meson

card-of-ordLeq)
obtain yi where b4 : yi = (λ n. if (∃ i<n. g (f n) = g (f i)) then (xi n) else (g

(f n))) by blast
obtain h where b5 : h = (λ α. if (∃ n. α =o f n) then (yi (SOME n. (α =o f

n))) else (g α)) by blast
have b6 :

∧
n::nat. f n =o (natLeq-on n)

proof −
fix n

have natLeq-on n <o αm using b1 natLeq-on-ordLess-natLeq ordLess-ordIso-trans
by blast

then obtain α:: ′U rel where α =o (natLeq-on n)
using internalize-ordLess ordIso-symmetric by fastforce
then show f n =o natLeq-on n using b2 someI-ex [of λα:: ′U rel. α =o

(natLeq-on n)] by blast
qed
then have b7 :

∧
n m. n ≤ m =⇒ f n ≤o f m

by (metis (no-types, lifting) natLeq-on-ordLeq-less-eq ordIso-imp-ordLeq or-
dIso-symmetric ordLeq-transitive)

have b8 :
∧

n m. f n =o f m =⇒ n = m
proof −

fix n m
assume f n =o f m

moreover then have natLeq-on n =o f m using b6 ordIso-transitive or-
dIso-symmetric by blast

214

ultimately have natLeq-on n =o natLeq-on m using b6 ordIso-transitive by
blast

then show n = m using natLeq-on-injective-ordIso by blast
qed
have b9 :

∧
α n. α =o f n =⇒ h α = yi n

proof −
fix α:: ′U rel and n::nat
assume α =o f n
moreover obtain m where m = (SOME n. (α =o f n)) by blast
ultimately have h α = yi m ∧ α =o f m ∧ α =o f n using b5 someI-ex [of λ

n. α =o f n] by fastforce
moreover then have m = n using b8 ordIso-transitive ordIso-symmetric by

blast
ultimately show h α = yi n by blast

qed
have b10 :

∧
n. yi‘{k. k ≤ n} ⊆ g‘(f‘({k. k ≤ n})) ∪ A

proof −
fix n0
show yi‘{k. k ≤ n0} ⊆ g‘(f‘({k. k ≤ n0})) ∪ A
proof (induct n0)

show yi‘{k. k ≤ 0} ⊆ g‘(f‘{k. k ≤ 0}) ∪ A using b4 by simp
next

fix n
assume d1 : yi‘{k. k ≤ n} ⊆ g‘(f‘({k. k ≤ n})) ∪ A
show yi‘{k. k ≤ Suc n} ⊆ g‘(f‘({k. k ≤ (Suc n)})) ∪ A
proof (cases ∃ i<Suc n. g (f (Suc n)) = g (f i))

assume ∃ i<Suc n. g (f (Suc n)) = g (f i)
then obtain i where i<Suc n ∧ g (f (Suc n)) = g (f i) by blast
then have i ≤ n ∧ yi (Suc n) = xi (Suc n) using b4 by force
then have yi (Suc n) ∈ g‘(f‘({k. k ≤ Suc n})) ∪ A using b3 by blast
moreover have yi‘{k. k ≤ n} ⊆ g‘(f‘({k. k ≤ Suc n})) ∪ A using d1 by

fastforce
moreover have

∧
k. k ≤ Suc n ←→ (k ≤n ∨ k = Suc n) by linarith

moreover then have yi‘{k. k ≤ Suc n} = yi‘{k. k ≤ n} ∪ {yi (Suc n)}
by fastforce

ultimately show ?thesis by blast
next

assume ¬ (∃ i<Suc n. g (f (Suc n)) = g (f i))
then have yi (Suc n) = g (f (Suc n)) using b4 by force
then have yi (Suc n) ∈ g‘(f‘({k. k ≤ Suc n})) ∪ A by blast
moreover have yi‘{k. k ≤ n} ⊆ g‘(f‘({k. k ≤ Suc n})) ∪ A using d1 by

fastforce
moreover have

∧
k. k ≤ Suc n ←→ (k ≤n ∨ k = Suc n) by linarith

moreover then have yi‘{k. k ≤ Suc n} = yi‘{k. k ≤ n} ∪ {yi (Suc n)}
by fastforce

ultimately show ?thesis by blast
qed

qed
qed

215

have ∀ α ′. g‘(I α ′) ⊆ h‘(I α ′) ∧ h‘(I α ′) ⊆ g‘(I α ′) ∪ A
proof

fix α ′:: ′U rel
have g‘(I α ′) ⊆ h‘(I α ′)
proof

fix a
assume a ∈ g‘(I α ′)
then obtain β where d1 : β <o α ′ ∧ a = g β using a1 by blast
show a ∈ h‘(I α ′)
proof (cases ∃ n. β =o f n)

assume ∃ n. β =o f n
then obtain n where e1 : β =o f n by blast
then have e2 : a = g (f n) ∧ h β = yi n using d1 b9 a3 by blast
obtain P where e3 : P = (λ i. i≤n ∧ g (f n) = g (f i)) by blast
obtain k where k = (LEAST i. P i) by blast
moreover have P n using e3 by blast

ultimately have P k ∧ (∀ i. P i −→ k ≤ i) using LeastI Least-le by metis
then have k ≤ n ∧ g (f n) = g (f k) ∧ ¬ (∃ i<k. g (f k) = g (f i))

using e3 by (metis leD less-le-trans less-or-eq-imp-le)
then have a = yi k ∧ f k ≤o f n using e2 b4 b7 by fastforce
moreover then have f k <o α ′

using e1 d1 by (metis ordIso-symmetric ordLeq-ordIso-trans ordLeq-ordLess-trans)
ultimately have f k ∈ I α ′ ∧ h (f k) = a using a1 b7 b9 ordIso-iff-ordLeq

by blast
then show ?thesis by blast

next
assume ¬ (∃ n. β =o f n)
then have h β = g β using b5 by simp
then show ?thesis using d1 a1 by force

qed
qed
moreover have h‘(I α ′) ⊆ g‘(I α ′) ∪ A
proof

fix a
assume a ∈ h‘(I α ′)
then obtain β where d1 : β <o α ′ ∧ a = h β using a1 by blast
show a ∈ g‘(I α ′) ∪ A
proof (cases ∃ n. β =o f n)

assume ∃ n. β =o f n
then obtain n where e1 : β =o f n by blast
then have a = yi n using d1 b9 by blast
then have a ∈ g‘(f‘({k. k ≤ n})) ∪ A using b10 by blast
moreover have ∀ k. k ≤ n −→ f k ∈ I α ′

proof (intro allI impI)
fix k
assume k ≤ n
then have f k ≤o f n using b7 by blast
then show f k ∈ I α ′ using e1 a1 d1

using ordIso-symmetric ordLeq-ordIso-trans ordLeq-ordLess-trans by

216

fastforce
qed
ultimately show ?thesis by blast

next
assume ¬ (∃ n. β =o f n)
then show ?thesis using d1 a1 b5 by force

qed
qed
ultimately show g‘(I α ′) ⊆ h‘(I α ′) ∧ h‘(I α ′) ⊆ g‘(I α ′) ∪ A by blast

qed
moreover have ∀ α ′. ω-ord ≤o α ′ −→ ω-ord ≤o |h‘(I α ′)|
proof (intro allI impI)

fix α ′:: ′U rel
assume ω-ord ≤o α ′

then have I αm ⊆ I α ′

using a1 b1 by (smt mem-Collect-eq not-ordLess-ordIso ordIso-symmetric
ordLeq-iff-ordLess-or-ordIso ordLeq-ordLess-trans ordLeq-transitive subsetI)

moreover have f‘UNIV ⊆ I αm using b1 a1
using b6 natLeq-on-ordLess-natLeq ordIso-ordLess-trans ordLess-ordIso-trans

by fastforce
ultimately have h‘(f‘UNIV) ⊆ h‘(I α ′) by blast
then have |h‘(f‘UNIV)| ≤o |h‘(I α ′)| by simp
moreover have ω-ord ≤o |h‘(f‘UNIV)|
proof −

have ∀ n. h (f n) = yi n using b7 b9 ordIso-iff-ordLeq by blast
then have yi‘UNIV ⊆ h‘(f‘UNIV) by (smt imageE image-eqI subset-eq)
then have |yi‘UNIV | ≤o |h‘(f‘UNIV)| by simp
moreover have ω-ord ≤o |yi‘UNIV |
proof (cases finite (g‘(f‘UNIV)))

assume e1 : finite(g‘(f‘UNIV))
obtain J where e3 : J = {n. ∃ i<n. g (f n) = g (f i)} by blast
have (∀ m. ∃ n>m. n /∈ J) −→ False
proof

assume f1 : ∀ m. ∃ n>m. n /∈ J
obtain w where f2 : w = (λ m. SOME n. n>m ∧ n /∈ J) by blast
have f3 : ∀ m. w m > m ∧ w m /∈ J
proof

fix m
show w m > m ∧ w m /∈ J using f1 f2 someI-ex[of λ n. n>m ∧ n /∈

J] by metis
qed
obtain p where f4 : p = (λ k::nat. (w^^k) 0) by blast
have f5 : ∀ k. k 6= 0 −→ p k /∈ J
proof

fix k
show k 6= 0 −→ p k /∈ J
proof (induct k)

show 0 6= 0 −→ p 0 /∈ J by blast
next

217

fix k
assume k 6= 0 −→ p k /∈ J
show Suc k 6= 0 −→ p (Suc k) /∈ J using f3 f4 by simp

qed
qed
have ∀ j. ∀ i<j. p i < p j
proof

fix j
show ∀ i<j. p i < p j
proof (induct j)

show ∀ i<0 . p i < p 0 by blast
next

fix j
assume ∀ i<j. p i < p j
moreover have p j < p (Suc j) using f3 f4 by force
ultimately show ∀ i<Suc j. p i < p (Suc j) by (metis less-antisym

less-trans)
qed

qed
then have inj p unfolding inj-on-def by (metis nat-neq-iff)
then have ¬ finite (p‘UNIV) using finite-imageD by blast
moreover obtain P where f6 : P = p‘{k. k 6= 0} by blast
moreover have UNIV = {0} ∪ {k::nat. k 6= 0} by blast
moreover then have p‘UNIV = p‘{0} ∪ P ∧ finite (p‘{0}) using f6 by

fastforce
ultimately have f7 : ¬ finite P using finite-UnI by metis
have ∀ n ∈ P. ∀ m ∈ P. g (f n) = g (f m) −→ n = m
proof (intro ballI impI)

fix n m
assume g1 : n ∈ P and g2 : m ∈ P and g3 : g (f n) = g (f m)
have n < m −→ False
proof

assume n < m
moreover then have m /∈ J using g2 f5 f6 by blast
ultimately show False using g3 e3 by force

qed
moreover have m < n −→ False
proof

assume m < n
moreover then have n /∈ J using g1 f5 f6 by blast
ultimately show False using g3 e3 by force

qed
ultimately show n = m by force

qed
then have inj-on (g ◦ f) P unfolding inj-on-def by simp
then have ¬ finite ((g ◦ f)‘UNIV) using f7

by (metis finite-imageD infinite-iff-countable-subset subset-UNIV sub-
set-image-iff)

moreover have (g ◦ f)‘UNIV = g‘(f‘UNIV) by force

218

ultimately show False using e1 by simp
qed
then obtain m where ∀ n>m. n ∈ J by blast
then have ∀ n>m. yi n = xi n using e3 b4 by force
then have e4 : xi‘{n. n>m} ⊆ yi‘UNIV by (metis image-Collect-subsetI

rangeI)
have e5 : |xi‘{n. n>m}| =o |{n. n>m}| using b3 by (metis card-of-image

image-inv-f-f ordIso-iff-ordLeq)
have finite {n. n≤m} ∧ (¬ finite (UNIV ::nat set)) ∧ {n. n≤m} ∪ {n.

n>m} = UNIV by force
then have ¬ finite {n. n>m} using finite-UnI by metis

then have |xi‘{n. n>m}| =o ω-ord using e5 by (meson card-of-UNIV
card-of-nat

finite-iff-cardOf-nat ordIso-transitive ordLeq-iff-ordLess-or-ordIso)
then show ?thesis using e4

by (metis finite-subset infinite-iff-natLeq-ordLeq ordIso-natLeq-infinite1)
next

assume ¬ finite (g‘(f‘UNIV))
moreover have g‘(f‘UNIV) ⊆ yi‘UNIV
proof

fix a
assume a ∈ g‘(f‘UNIV)
then obtain n where e1 : a = g (f n) by blast
obtain P where e3 : P = (λ i. i≤n ∧ g (f n) = g (f i)) by blast
obtain k where k = (LEAST i. P i) by blast
moreover have P n using e3 by blast
ultimately have P k ∧ (∀ i. P i −→ k ≤ i) using LeastI Least-le by

metis
then have g (f n) = g (f k) ∧ ¬ (∃ i<k. g (f k) = g (f i))

using e3 by (metis leD less-le-trans less-or-eq-imp-le)
then have yi k = a using e1 b4 b7 by fastforce
then show a ∈ yi‘UNIV by blast

qed
ultimately have ¬ finite (yi‘UNIV) using finite-subset by metis
then show ?thesis using infinite-iff-natLeq-ordLeq by blast

qed
ultimately show ?thesis using ordLeq-transitive by blast

qed
ultimately show ω-ord ≤o |h‘(I α ′)| using ordLeq-transitive by blast

qed
moreover have ∀ α β. α =o β −→ h α = h β
proof (intro allI impI)

fix α:: ′U rel and β:: ′U rel
assume c1 : α =o β
show h α = h β
proof (cases ∃ n. α =o f n)

assume ∃ n. α =o f n
moreover then have ∃ n. β =o f n using c1 ordIso-transitive ordIso-symmetric

by metis

219

moreover have ∀ n. (α =o f n) = (β =o f n) using c1 ordIso-transitive
ordIso-symmetric by metis

ultimately show h α = h β using b5 by simp
next

assume ¬ (∃ n. α =o f n)
moreover then have ¬ (∃ n. β =o f n) using c1 ordIso-transitive by metis
ultimately show h α = h β using b5 c1 a3 by simp

qed
qed
ultimately show ?thesis by blast

next
assume ¬ (∃ α:: ′U rel. ω-ord ≤o α)
then show ?thesis using a3 by blast

qed

lemma lem-Shinf-N-ne:
fixes r :: ′U rel and Ps:: ′U set set
assumes CCR r and Ps ⊆ SCF r
shows N r Ps 6= {}
proof −

obtain E :: ′U ⇒ ′U set ⇒ ′U set where E = (λ a A. SOME A ′. A ′ ∈ E r a A
Ps) by blast

moreover have ∀ a A. ∃ A ′. A ′ ∈ E r a A Ps using assms lem-Shinf-E-ne[of
r Ps] by blast

ultimately have b1 : ∀ a A. E a A ∈ E r a A Ps by (meson someI-ex)
have ∃ g:: ′U rel ⇒ ′U . (ω-ord ≤o |Field r | −→ Field r = g ‘ {γ. γ <o |Field

r |}) ∧
(∀α ′:: ′U rel. ω-ord ≤o α ′ ∧ α ′ ≤o |Field r | −→ ω-ord ≤o |g ‘ {γ. γ <o α ′}|

) ∧
(∀α β. α =o β −→ g α = g β)

proof(cases ω-ord ≤o |Field r |)
assume c1 : ω-ord ≤o |Field r |
moreover have Card-order |Field r | ∧ |Field r | ≤o |Field r | by simp
ultimately obtain g0 :: ′U rel ⇒ ′U where

c2 : Field r ⊆ g0 ‘ {γ. γ <o |Field r | }
and c3 : ∀ α β. α =o β −→ g0 α = g0 β
using c1 lem-card-setcv-inf-stab[of |Field r | Field r] by blast

have Field r 6= {} using c1 by (metis finite.emptyI infinite-iff-natLeq-ordLeq)
then obtain a0 where a0 ∈ Field r by blast
moreover obtain t where t = (λ a. if (a ∈ Field r) then a else a0) by blast
moreover obtain g1 where g1 = (λ α. t (g0 α)) by blast
ultimately have c4 : Field r ⊆ g1‘{γ . γ <o |Field r | }

and c5 : ∀ α β. α =o β −→ g1 α = g1 β and c6 : g1‘UNIV ⊆ Field
r using c2 c3 by force+

obtain I where c7 : I = (λα ′:: ′U rel. {α:: ′U rel. α <o α ′}) by blast
then obtain g where c8 : (∀ α ′. g1‘(I α ′) ⊆ g‘(I α ′) ∧ g‘(I α ′) ⊆ g1‘(I α ′) ∪

(Field r))
and c9 : ∀ α ′. ω-ord ≤o α ′ −→ ω-ord ≤o |g‘(I α ′)|
and c10 : (∀ α β. α =o β −→ g α = g β) using c1 c5 lem-oseq-fin-inj[of

220

I Field r g1] by blast
have g1‘(I |Field r |) ⊆ Field r using c6 by blast
then have g ‘ { γ. γ <o |Field r | } ⊆ Field r using c7 c8 by blast
moreover have Field r ⊆ g‘{ γ. γ <o |Field r | } using c4 c7 c8 by force
ultimately have ω-ord ≤o |Field r | −→ Field r = g‘{ γ. γ <o |Field r | } by

blast
then show ?thesis using c7 c9 c10 by blast

next
assume ¬ ω-ord ≤o |Field r |
moreover then have ∀α ′:: ′U rel. ¬ (ω-ord ≤o α ′ ∧ α ′ ≤o |Field r |) using

ordLeq-transitive by blast
moreover have ∃ g:: ′U rel ⇒ ′U . (∀ α β. α =o β −→ g α = g β) by force
ultimately show ?thesis by blast

qed
then obtain g:: ′U rel ⇒ ′U where

b4 : ω-ord ≤o |Field r | −→ Field r = g ‘ { γ:: ′U rel. γ <o |Field r | }
and b4 ′: ∀α ′:: ′U rel. ω-ord ≤o α ′ ∧ α ′ ≤o |Field r | −→ ω-ord ≤o |g ‘ {γ. γ

<o α ′}|
and b5 : ∀ α β. α =o β −→ g α = g β by blast

obtain F :: ′U rel ⇒ ′U set ⇒ ′U set where b6 : F = (λ α A. E (g α) A) by
blast

then have ∀ α β. α =o β −→ F α = F β using b5 by fastforce
then obtain f :: ′U rel ⇒ ′U set where b7 : f ∈ T F

unfolding T -def using lem-ordseq-rec-sets[of F {}] by clarsimp
have b8 : Well-order |Field r | by simp
have N r Ps 6= {}
proof −

have c0 : ∀ α A. A ∈ SF r −→ F α A ∈ SF r using b6 b1 unfolding E-def
by simp

have c1 : ∀ α A. A ⊆ F α A using b6 b1 unfolding E-def by simp
have c2 : ∀ α A. (g α ∈ Field r −→ g α ∈ F α A) using b6 b1 unfolding

E-def by blast
have c3 : ∀ α A. A ∈ SF r −→ ω-ord ≤o |A| −→ escl r A (F α A) ⊆ (F α A)

∧ clterm (Restr r (F α A)) r
using b6 b1 unfolding E-def by blast

have c4 : ∀ α A. A ∈ SF r −→
(∀ a∈A. r ‘‘ {a} ⊆ w-dncl r A ∨ r ‘‘ {a} ∩ (F α A − w-dncl r A) 6=

{})
using b6 b1 unfolding E-def by blast

have c6 : ∀ α A. A ∈ SF r −→ CCR (Restr r (F α A))
using b6 b1 unfolding E-def by blast

have c7 : ∀ α A. (|A| <o ω-ord −→ |F α A| <o ω-ord) ∧ (ω-ord ≤o |A| −→
|F α A| ≤o |A|)

using b6 b1 unfolding E-def by blast
have c8 : ∀ α A. A ∈ SF r −→ Ep r Ps A (F α A) using b6 b1 unfolding

E-def Ep-def by blast
have c10 : ∀ α A. A ∈ SF r −→ ((∃ y. (F α A) − dncl r A ⊆ {y}) −→ (Field

r ⊆ dncl r (F α A)))
using b6 b1 unfolding E-def by blast

221

have c1 ′: ∀α. Well-order α −→ f ∈ N1 r α using b7 b8 c1 lem-Shinf-N1 [of f
F r] by blast

have c5 ′: ∀α. Well-order α −→ f ∈ N5 r α using b7 b8 c0 lem-Shinf-N5 [of f
F r] by blast

have f ∈ N1 r |Field r | using b7 b8 c1 lem-Shinf-N1 [of f F r] by blast
moreover have f ∈ N2 r |Field r | using b7 b8 lem-Shinf-N2 [of f F r] by blast
moreover have f ∈ N3 r |Field r | using b7 b8 c1 c3 c5 ′ lem-Shinf-N3 [of f F

r] by blast
moreover have f ∈ N4 r |Field r | using b7 b8 c1 c4 c5 ′ lem-Shinf-N4 [of f F

r] by blast
moreover have f ∈ N5 r |Field r | using b7 b8 c0 lem-Shinf-N5 [of f F r] by

blast
moreover have f ∈ N6 r |Field r | using b7 b8 c1 c6 c5 ′ lem-Shinf-N6 [of f F

r] by blast
moreover have f ∈ N7 r |Field r | using b7 b8 c1 c7 lem-Shinf-N7 [of f F r]

by blast
moreover have f ∈ N8 r Ps |Field r | using b7 b8 c1 c7 c8 c5 ′ lem-Shinf-N8 [of

f F r Ps] by blast
moreover have f ∈ N9 r |Field r | using b7 b4 c1 c2 lem-Shinf-N9 [of f F g

r] by blast
moreover have f ∈ N10 r |Field r | using b7 b8 c1 c10 c5 ′ lem-Shinf-N10 [of

f F r] by metis
moreover have f ∈ N11 r |Field r | using b7 b8 c1 c10 c5 ′ lem-Shinf-N11 [of

f F r] by metis
moreover have f ∈ N12 r |Field r | using b7 c1 ′ c2 b4 b4 ′ lem-Shinf-N12 [of

f F r g] by blast
moreover have ∀ α β. α =o β −→ f α = f β using b7 unfolding T -def by

blast
ultimately show ?thesis unfolding N -def by blast

qed
then show ?thesis by blast

qed

lemma lem-wrankrel-eq: wrank-rel r A0 α =⇒ α =o β =⇒ wrank-rel r A0 β
proof −

assume a1 : wrank-rel r A0 α and a2 : α =o β
then obtain B where B ∈ wbase r A0 ∧ |B| =o α ∧ (∀ B ′ ∈ wbase r A0 . |B|
≤o |B ′|) unfolding wrank-rel-def by blast

moreover then have |B| =o β using a2 by (metis ordIso-transitive)
ultimately show wrank-rel r A0 β unfolding wrank-rel-def by blast

qed

lemma lem-wrank-wrankrel:
fixes r :: ′U rel and A0 :: ′U set
shows wrank-rel r A0 (wrank r A0)
proof −

have b1 : wbase r A0 6= {} using lem-wdn-range-lb[of A0 r] unfolding wbase-def
by blast

obtain Q where b2 : Q = { α:: ′U rel. ∃ A ∈ wbase r A0 . α =o |A| } by blast

222

have b3 : ∀ A ∈ wbase r A0 . ∃ α ∈ Q. α ≤o |A|
proof

fix A
assume A ∈ wbase r A0
then have |A| ∈ Q ∧ |A| =o |A| using b2 ordIso-symmetric by force
then show ∃ α ∈ Q. α ≤o |A| using ordIso-iff-ordLeq by blast

qed
then have Q 6= {} using b1 by blast
then obtain α where b4 : α ∈ Q ∧ (∀α ′. α ′ <o α −→ α ′ /∈ Q) using wf-ordLess

wf-eq-minimal[of ordLess] by blast
moreover have ∀ α ′∈ Q. Card-order α ′ using b2 using ordIso-card-of-imp-Card-order

by blast
ultimately have ∀ α ′ ∈ Q. ¬ (α ′ <o α) −→ α ≤o α ′ by simp
then have b5 : α ∈ Q ∧ (∀ α ′ ∈ Q. α ≤o α ′) using b4 by blast
then obtain A where b6 : A ∈ wbase r A0 ∧ |A| =o α using b2 ordIso-symmetric

by blast
moreover have ∀ B∈wbase r A0 . |A| ≤o |B|
proof

fix B
assume B ∈ wbase r A0
then obtain α ′ where α ′ ∈ Q ∧ α ′ ≤o |B| using b3 by blast
moreover then have |A| =o α ∧ α ≤o α ′ using b5 b6 by blast
ultimately show |A| ≤o |B| using ordIso-ordLeq-trans ordLeq-transitive by

blast
qed
ultimately have wrank-rel r A0 α unfolding wrank-rel-def by blast
then show ?thesis unfolding wrank-def by (metis someI2)

qed

lemma lem-wrank-uset:
fixes r :: ′U rel and A0 :: ′U set
shows ∃ A ∈ wbase r A0 . |A| =o wrank r A0 ∧ (∀ B ∈ wbase r A0 . |A| ≤o |B|
)

using lem-wrank-wrankrel unfolding wrank-rel-def by blast

lemma lem-wrank-uset-mem-bnd:
fixes r :: ′U rel and A0 B:: ′U set
assumes B ∈ wbase r A0
shows wrank r A0 ≤o |B|
proof −

obtain A where A ∈ wbase r A0 ∧ |A| =o wrank r A0 ∧ (∀ A ′ ∈ wbase r A0 .
|A| ≤o |A ′|) using assms lem-wrank-uset by blast

moreover then have |A| ≤o |B| using assms by blast
ultimately show ?thesis by (metis ordIso-iff-ordLeq ordLeq-transitive)

qed

lemma lem-wrank-cardord: Card-order (wrank r A0)
proof −

obtain A where A ∈ wbase r A0 ∧ |A| =o wrank r A0 using lem-wrank-uset

223

by blast
then show Card-order (wrank r A0) using Card-order-ordIso2 card-of-Card-order

by blast
qed

lemma lem-wrank-ub: wrank r A0 ≤o |A0 |
using lem-wdn-range-lb[of A0 r] lem-wrank-uset-mem-bnd unfolding wbase-def

by blast

lemma lem-card-un2-bnd: ω-ord ≤o α =⇒ |A| ≤o α =⇒ |B| ≤o α =⇒ |A ∪ B|
≤o α
proof −

assume ω-ord ≤o α and |A| ≤o α and |B| ≤o α
moreover have |{A, B}| ≤o ω-ord using finite-iff-ordLess-natLeq ordLess-imp-ordLeq

by blast
ultimately have |

⋃
{A, B}| ≤o α using lem-card-un-bnd[of {A,B}] ordLeq-transitive

by blast
then show |A ∪ B| ≤o α by simp

qed

lemma lem-card-un2-lsbnd: ω-ord ≤o α =⇒ |A| <o α =⇒ |B| <o α =⇒ |A ∪ B|
<o α
proof −

assume b1 : ω-ord ≤o α and b2 : |A| <o α and b3 : |B| <o α
have ¬ finite A −→ |A ∪ B| <o α
proof

assume c1 : ¬ finite A
show |A ∪ B| <o α
proof (cases |A| ≤o |B|)

assume |A| ≤o |B|
then have |A ∪ B| =o |B| using c1 by (metis card-of-Un-infinite card-of-ordLeq-finite)

then show ?thesis using b3 by (metis ordIso-ordLess-trans)
next

assume ¬ |A| ≤o |B|
then have |B| ≤o |A| by (metis card-of-Well-order ordLeq-total)
then have |A ∪ B| =o |A| using c1 by (metis card-of-Un-infinite)
then show ?thesis using b2 by (metis ordIso-ordLess-trans)

qed
qed
moreover have ¬ finite B −→ |A ∪ B| <o α
proof

assume c1 : ¬ finite B
show |A ∪ B| <o α
proof (cases |A| ≤o |B|)

assume |A| ≤o |B|
then have |A ∪ B| =o |B| using c1 by (metis card-of-Un-infinite)
then show ?thesis using b3 by (metis ordIso-ordLess-trans)

next
assume ¬ |A| ≤o |B|

224

then have |B| ≤o |A| by (metis card-of-Well-order ordLeq-total)
then have |A ∪ B| =o |A| using c1 by (metis card-of-Un-infinite card-of-ordLeq-finite)

then show ?thesis using b2 by (metis ordIso-ordLess-trans)
qed

qed
moreover have finite A ∧ finite B −→ |A ∪ B| <o α
proof

assume finite A ∧ finite B
then have finite (A ∪ B) by blast
then show |A ∪ B| <o α using b1
by (meson card-of-nat finite-iff-cardOf-nat ordIso-imp-ordLeq ordLess-ordLeq-trans)

qed
ultimately show ?thesis by blast

qed

lemma lem-wrank-un-bnd:
fixes r :: ′U rel and S :: ′U set set and α:: ′U rel
assumes a1 : ∀ A∈S . wrank r A ≤o α and a2 : |S | ≤o α and a3 : ω-ord ≤o α
shows wrank r (

⋃
S) ≤o α

proof −
obtain h where b1 : h = (λ A B. B ∈ wbase r A ∧ |B| =o wrank r A) by blast
obtain Bi where b2 : Bi = (λ A. SOME B. h A B) by blast
have ∀A∈S . ∃ B. h A B using b1 lem-wrank-uset[of r] by blast
then have ∀A∈S . h A (Bi A) using b2 by (metis someI-ex)
then have b3 : ∀A∈S . (Bi A) ∈ wbase r A ∧ |Bi A| =o wrank r A using b1 by

blast
then have b4 : ∀ A ∈ S . |Bi A| ≤o α using assms ordIso-ordLeq-trans by blast
obtain S ′ where b5 : S ′ = Bi ‘ S by blast
then have |S ′| ≤o |S | ∧ (∀ X ∈ S ′. |X | ≤o α) using b4 by simp
moreover then have |S ′| ≤o α using a2 by (metis ordLeq-transitive)
ultimately have |

⋃
S ′| ≤o α using a3 lem-card-un-bnd[of S ′ α] by blast

moreover obtain B where b6 : B = (
⋃

A∈S . Bi A) by blast
ultimately have b7 : |B| ≤o α using b5 by simp
have ∀A∈S . A ⊆ w-dncl r (Bi A) using b3 unfolding wbase-def by blast
then have

⋃
S ⊆ w-dncl r B using b6 lem-wdn-mon[of - B r] by blast

then have B ∈ wbase r (
⋃

S) unfolding wbase-def by blast
then have wrank r (

⋃
S) ≤o |B| using lem-wrank-uset-mem-bnd by blast

then show ?thesis using b7 by (metis ordLeq-transitive)
qed

lemma lem-wrank-un-bnd-stab:
fixes r :: ′U rel and S :: ′U set set and α:: ′U rel
assumes a1 : ∀ A∈S . wrank r A <o α and a2 : |S | <o α and a3 : stable α
shows wrank r (

⋃
S) <o α

proof −
obtain h where b1 : h = (λ A B. B ∈ wbase r A ∧ |B| =o wrank r A) by blast
obtain Bi where b2 : Bi = (λ A. SOME B. h A B) by blast
have ∀A∈S . ∃ B. h A B using b1 lem-wrank-uset[of r] by blast

225

then have ∀A∈S . h A (Bi A) using b2 by (metis someI-ex)
then have b3 : ∀A∈S . (Bi A) ∈ wbase r A ∧ |Bi A| =o wrank r A using b1 by

blast
then have b4 : ∀ A ∈ S . |Bi A| <o α using assms ordIso-ordLess-trans by blast
obtain S ′ where b5 : S ′ = Bi ‘ S by blast
then have |S ′| ≤o |S | ∧ (∀ X ∈ S ′. |X | <o α) using b4 by simp
moreover then have |S ′| <o α using a2 by (metis ordLeq-ordLess-trans)
ultimately have |

⋃
S ′| <o α using a3 lem-card-un-bnd-stab[of α S ′] by blast

moreover obtain B where b6 : B = (
⋃

A∈S . Bi A) by blast
ultimately have b7 : |B| <o α using b5 by simp
have ∀A∈S . A ⊆ w-dncl r (Bi A) using b3 unfolding wbase-def by blast
then have

⋃
S ⊆ w-dncl r B using b6 lem-wdn-mon[of - B r] by blast

then have B ∈ wbase r (
⋃

S) unfolding wbase-def by blast
then have wrank r (

⋃
S) ≤o |B| using lem-wrank-uset-mem-bnd by blast

then show ?thesis using b7 by (metis ordLeq-ordLess-trans)
qed

lemma lem-wrank-fw:
fixes r :: ′U rel and K :: ′U set and α:: ′U rel
assumes a1 : ω-ord ≤o α and a2 : wrank r K ≤o α and a3 : ∀ b∈K . wrank r
(r‘‘{b}) ≤o α
shows wrank r (

⋃
b∈K . (r‘‘{b})) ≤o α

proof −
obtain h where b1 : h = (λ A B. B ∈ wbase r A ∧ |B| =o wrank r A) by blast
obtain Bi where b2 : Bi = (λ b. SOME B. h (r‘‘{b}) B) by blast
have ∀ b∈K . ∃ B. h (r‘‘{b}) B using b1 lem-wrank-uset[of r] by blast
then have ∀ b∈K . h (r‘‘{b}) (Bi b) using b2 by (metis someI-ex)
then have b3 : ∀ b∈K . (Bi b) ∈ wbase r (r‘‘{b}) ∧ |Bi b| =o wrank r (r‘‘{b})

using b1 by blast
obtain BK where b4 : BK ∈ wbase r K ∧ |BK | =o wrank r K using lem-wrank-uset[of

r K] by blast
obtain BU where b5 : BU = BK ∪ (

⋃
b∈(K∩BK). Bi b) by blast

obtain S where b6 : S = (
⋃

b∈K . (r‘‘{b})) by blast
have b7 : ∀ b ∈ K∩BK . (r‘‘{b}) ⊆ w-dncl r BU
proof

fix b
assume b ∈ K ∩ BK
then have Bi b ⊆ BU ∧ (Bi b) ∈ wbase r (r‘‘{b}) using b3 b5 by blast
then show r‘‘{b} ⊆ w-dncl r BU using lem-wdn-mon unfolding wbase-def

by blast
qed
have BU ∈ wbase r S
proof −

have ∀ b ∈ K . r‘‘{b} ⊆ dncl r BU
proof

fix b
assume d1 : b ∈ K
show r‘‘{b} ⊆ dncl r BU
proof (cases b ∈ BK)

226

assume b ∈ BK
then show ?thesis using d1 b7 unfolding w-dncl-def by blast

next
assume e1 : b /∈ BK
have ∀ t ∈ r‘‘{b}. t /∈ dncl r BU −→ False
proof (intro ballI impI)

fix t
assume f1 : t ∈ r‘‘{b} and f2 : t /∈ dncl r BU
then have f3 : t /∈ dncl r BK using b5 unfolding dncl-def by blast
moreover have b ∈ w-dncl r BK using d1 b4 unfolding wbase-def by

blast
ultimately have f4 : ∀F ∈ F r b t. F ∩ BK 6= {} unfolding w-dncl-def

by blast
obtain f where f5 : f = (λ n::nat. if (n = 0) then b else t) by blast
then have f 0 = b ∧ f 1 = t by simp
moreover then have ∀ i<1 . (f i, f (Suc i)) ∈ r using f1 by simp
ultimately have f ∈ rpth r b t 1 ∧ {b, t} = f ‘ {i. i ≤ 1}

using f5 unfolding rpth-def by force
then have {b, t} ∈ F r b t unfolding F-def by blast
then have {b, t} ∩ BK 6= {} using f4 by blast
then show False using e1 f3 unfolding dncl-def by blast

qed
then show ?thesis by blast

qed
qed
then have c1 : S ⊆ dncl r BU using b6 by blast
moreover have ∀ x ∈ S . ∀ c. ∀F∈F r x c. c /∈ dncl r BU −→ F ∩ BU 6= {}
proof (intro ballI allI impI)

fix x c F
assume d1 : x ∈ S and d2 : F ∈ F r x c and d3 : c /∈ dncl r BU
then obtain b where d4 : b ∈ K ∧ (b,x) ∈ r using b6 by blast
show F ∩ BU 6= {}
proof (cases b ∈ BK)

assume b ∈ BK
then have x ∈ w-dncl r BU using b7 d4 by blast
then show ?thesis using d2 d3 unfolding w-dncl-def by blast

next
assume e1 : b /∈ BK
have e2 : b ∈ w-dncl r BK using d4 b4 unfolding wbase-def by blast
obtain f n where e3 : f ∈ rpth r x c n and e4 : F = f ‘ {i. i≤n}

using d2 unfolding F-def by blast
obtain g where e5 : g = (λ k::nat. if (k=0) then b else (f (k−1))) by blast
then have g ∈ rpth r b c (Suc n)

using e3 d4 unfolding rpth-def
by (simp, metis Suc-le-eq diff-Suc-Suc diff-zero gr0-implies-Suc less-Suc-eq-le)
then have g ‘ {i. i ≤ (Suc n)} ∈ F r b c ∧ c /∈ dncl r BK

using d3 b5 unfolding F-def dncl-def by blast
then have g ‘ {i. i ≤ (Suc n)} ∩ BK 6= {} using e2 unfolding w-dncl-def

by blast

227

moreover have g ‘ {i. i ≤ (Suc n)} ⊆ F ∪ {b}
proof

fix a
assume a ∈ g ‘ {i. i ≤ (Suc n)}
then obtain i where i ≤ (Suc n) ∧ a = g i by blast
then show a ∈ F ∪ {b} using e4 e5 by force

qed
ultimately have (F ∪ {b}) ∩ BK 6= {} by blast
then show ?thesis using e1 b5 by blast

qed
qed
ultimately have S ⊆ w-dncl r BU unfolding w-dncl-def by blast
then show ?thesis unfolding wbase-def by blast

qed
moreover have |BU | ≤o α
proof −

have c1 : |BK | ≤o α using b4 a2 by (metis ordIso-ordLeq-trans)
then have |K ∩ BK | ≤o α by (meson card-of-mono1 inf-le2 ordLeq-transitive)
then have |Bi ‘ (K ∩ BK)| ≤o α by (metis card-of-image ordLeq-transitive)
moreover have ∀ b∈(K∩BK). |Bi b| ≤o α using b3 a3 by (meson Int-iff

ordIso-ordLeq-trans)
ultimately have |

⋃
(Bi ‘ (K ∩ BK))| ≤o α using a1 lem-card-un-bnd[of

Bi‘(K∩BK) α] by blast
then show |BU | ≤o α using c1 b5 a1 lem-card-un2-bnd[of α BK

⋃
(Bi ‘ (K

∩ BK))] by simp
qed
ultimately have wrank r S ≤o α using b6 lem-wrank-uset-mem-bnd ordLeq-transitive

by blast
then show ?thesis using b6 by blast

qed

lemma lem-wrank-fw-stab:
fixes r :: ′U rel and K :: ′U set and α:: ′U rel
assumes a1 : ω-ord ≤o α ∧ stable α and a2 : wrank r K <o α and a3 : ∀ b∈K .
wrank r (r‘‘{b}) <o α
shows wrank r (

⋃
b∈K . (r‘‘{b})) <o α

proof −
obtain h where b1 : h = (λ A B. B ∈ wbase r A ∧ |B| =o wrank r A) by blast
obtain Bi where b2 : Bi = (λ b. SOME B. h (r‘‘{b}) B) by blast
have ∀ b∈K . ∃ B. h (r‘‘{b}) B using b1 lem-wrank-uset[of r] by blast
then have ∀ b∈K . h (r‘‘{b}) (Bi b) using b2 by (metis someI-ex)
then have b3 : ∀ b∈K . (Bi b) ∈ wbase r (r‘‘{b}) ∧ |Bi b| =o wrank r (r‘‘{b})

using b1 by blast
obtain BK where b4 : BK ∈ wbase r K ∧ |BK | =o wrank r K using lem-wrank-uset[of

r K] by blast
obtain BU where b5 : BU = BK ∪ (

⋃
b∈(K∩BK). Bi b) by blast

obtain S where b6 : S = (
⋃

b∈K . (r‘‘{b})) by blast
have b7 : ∀ b ∈ K∩BK . (r‘‘{b}) ⊆ w-dncl r BU
proof

228

fix b
assume b ∈ K ∩ BK
then have Bi b ⊆ BU ∧ (Bi b) ∈ wbase r (r‘‘{b}) using b3 b5 by blast
then show r‘‘{b} ⊆ w-dncl r BU using lem-wdn-mon unfolding wbase-def

by blast
qed
have BU ∈ wbase r S
proof −

have ∀ b ∈ K . r‘‘{b} ⊆ dncl r BU
proof

fix b
assume d1 : b ∈ K
show r‘‘{b} ⊆ dncl r BU
proof (cases b ∈ BK)

assume b ∈ BK
then show ?thesis using d1 b7 unfolding w-dncl-def by blast

next
assume e1 : b /∈ BK
have ∀ t ∈ r‘‘{b}. t /∈ dncl r BU −→ False
proof (intro ballI impI)

fix t
assume f1 : t ∈ r‘‘{b} and f2 : t /∈ dncl r BU
then have f3 : t /∈ dncl r BK using b5 unfolding dncl-def by blast
moreover have b ∈ w-dncl r BK using d1 b4 unfolding wbase-def by

blast
ultimately have f4 : ∀F ∈ F r b t. F ∩ BK 6= {} unfolding w-dncl-def

by blast
obtain f where f5 : f = (λ n::nat. if (n = 0) then b else t) by blast
then have f 0 = b ∧ f 1 = t by simp
moreover then have ∀ i<1 . (f i, f (Suc i)) ∈ r using f1 by simp
ultimately have f ∈ rpth r b t 1 ∧ {b, t} = f ‘ {i. i ≤ 1}

using f5 unfolding rpth-def by force
then have {b, t} ∈ F r b t unfolding F-def by blast
then have {b, t} ∩ BK 6= {} using f4 by blast
then show False using e1 f3 unfolding dncl-def by blast

qed
then show ?thesis by blast

qed
qed
then have c1 : S ⊆ dncl r BU using b6 by blast
moreover have ∀ x ∈ S . ∀ c. ∀F∈F r x c. c /∈ dncl r BU −→ F ∩ BU 6= {}
proof (intro ballI allI impI)

fix x c F
assume d1 : x ∈ S and d2 : F ∈ F r x c and d3 : c /∈ dncl r BU
then obtain b where d4 : b ∈ K ∧ (b,x) ∈ r using b6 by blast
show F ∩ BU 6= {}
proof (cases b ∈ BK)

assume b ∈ BK
then have x ∈ w-dncl r BU using b7 d4 by blast

229

then show ?thesis using d2 d3 unfolding w-dncl-def by blast
next

assume e1 : b /∈ BK
have e2 : b ∈ w-dncl r BK using d4 b4 unfolding wbase-def by blast
obtain f n where e3 : f ∈ rpth r x c n and e4 : F = f ‘ {i. i≤n}

using d2 unfolding F-def by blast
obtain g where e5 : g = (λ k::nat. if (k=0) then b else (f (k−1))) by blast
then have g ∈ rpth r b c (Suc n)

using e3 d4 unfolding rpth-def
by (simp, metis Suc-le-eq diff-Suc-Suc diff-zero gr0-implies-Suc less-Suc-eq-le)
then have g ‘ {i. i ≤ (Suc n)} ∈ F r b c ∧ c /∈ dncl r BK

using d3 b5 unfolding F-def dncl-def by blast
then have g ‘ {i. i ≤ (Suc n)} ∩ BK 6= {} using e2 unfolding w-dncl-def

by blast
moreover have g ‘ {i. i ≤ (Suc n)} ⊆ F ∪ {b}
proof

fix a
assume a ∈ g ‘ {i. i ≤ (Suc n)}
then obtain i where i ≤ (Suc n) ∧ a = g i by blast
then show a ∈ F ∪ {b} using e4 e5 by force

qed
ultimately have (F ∪ {b}) ∩ BK 6= {} by blast
then show ?thesis using e1 b5 by blast

qed
qed
ultimately have S ⊆ w-dncl r BU unfolding w-dncl-def by blast
then show ?thesis unfolding wbase-def by blast

qed
moreover have |BU | <o α
proof −
have c1 : |BK | <o α using b4 a2 by (metis ordIso-imp-ordLeq ordLeq-ordLess-trans)
then have |K ∩ BK | <o α by (meson Int-iff card-of-mono1 ordLeq-ordLess-trans

subsetI)
then have |Bi ‘ (K ∩ BK)| <o α by (metis card-of-image ordLeq-ordLess-trans)

moreover have ∀ b∈(K∩BK). |Bi b| <o α using b3 a3 by (meson Int-iff
ordIso-ordLess-trans)

ultimately have |
⋃
(Bi ‘ (K ∩ BK))| <o α using a1 lem-card-un-bnd-stab[of

α Bi‘(K∩BK)] by blast
then show |BU | <o α using c1 b5 a1 lem-card-un2-lsbnd[of α BK

⋃
(Bi ‘ (K

∩ BK))] by simp
qed
ultimately have wrank r S <o α using b6 lem-wrank-uset-mem-bnd[of BU r S]

by (metis ordLeq-ordLess-trans)
then show ?thesis using b6 by blast

qed

lemma lem-wnb-neib:
fixes r :: ′U rel and α:: ′U rel
assumes a1 : ω-ord ≤o α and a2 : α <o ‖r‖

230

shows ∀ a ∈ Field r . ∃ b ∈ Mwn r α. (a,b) ∈ r^∗
proof

fix a
assume b1 : a ∈ Field r
have ¬ (∃ b ∈ Mwn r α. (a,b) ∈ r^∗) −→ False
proof

assume c1 : ¬ (∃ b ∈ Mwn r α. (a,b) ∈ r^∗)
obtain B where c2 : B = (r^∗)‘‘{a} by blast
obtain S where c3 : S = ((λ n. (r^^n)‘‘{a}) ‘ (UNIV ::nat set)) by blast
have c4 : ∀ b ∈ B. wrank r (r‘‘{b}) ≤o α
proof

fix b
assume d1 : b ∈ B
then obtain k where b ∈ (r^^k)‘‘{a} using c2 rtrancl-power by blast
moreover have ∀ n. (r^^n) ‘‘ {a} ⊆ Field r
proof

fix n
show (r^^n) ‘‘ {a} ⊆ Field r using b1
by (induct n, force, meson FieldI2 Image-singleton-iff relpow-Suc-E subsetI)

qed
ultimately have b ∈ Field r by blast
moreover have b /∈ Mwn r α using d1 c1 c2 by blast
ultimately have b ∈ Field r − Mwn r α by blast
moreover have Well-order α using assms unfolding ordLess-def by blast
moreover have Well-order (wrank r (r‘‘{b})) using lem-wrank-cardord by

(metis card-order-on-well-order-on)
ultimately show wrank r (r‘‘{b}) ≤o α unfolding Mwn-def by simp

qed
have ∀ n. wrank r ((r^^n)‘‘{a}) ≤o α
proof

fix n0
show wrank r ((r^^n0)‘‘{a}) ≤o α
proof (induct n0)

have |{a}| ≤o ω-ord using card-of-Well-order finite.emptyI
infinite-iff-natLeq-ordLeq natLeq-Well-order ordLeq-total by blast

then have |(r^^0)‘‘{a}| ≤o ω-ord by simp
then show wrank r ((r^^0)‘‘{a}) ≤o α

using a1 lem-wrank-ub[of r (r^^0)‘‘{a}] by (metis ordLeq-transitive)
next

fix n
assume e1 : wrank r ((r^^n)‘‘{a}) ≤o α
obtain K where e2 : K = (r^^n)‘‘{a} by blast
obtain S ′ where e3 : S ′ = ((λ b. r‘‘{b}) ‘ K) by blast
have wrank r K ≤o α using e1 e2 by blast
moreover have ∀A∈S ′. wrank r A ≤o α
proof

fix A
assume A ∈ S ′

then obtain b where b ∈ K ∧ A = r‘‘{b} using e3 by blast

231

moreover then have b ∈ B using c2 e2 rtrancl-power by blast
ultimately show wrank r A ≤o α using c4 by blast

qed
ultimately have e4 : wrank r (

⋃
S ′) ≤o α

using a1 e3 lem-wrank-fw[of α r K] by fastforce
have (r^^(Suc n))‘‘{a} = r‘‘K using e2 by force
moreover have r‘‘K =

⋃
S ′ using e3 by blast

ultimately have (r^^(Suc n))‘‘{a} =
⋃

S ′ using e2 by blast
then show wrank r ((r^^(Suc n))‘‘{a}) ≤o α using e4 by simp

qed
qed
then have ∀A∈S . wrank r A ≤o α using c3 by blast
moreover have B =

⋃
S using c2 c3 rtrancl-power

apply (simp)
by blast

moreover have |S | ≤o α
proof −

have |S | ≤o |UNIV ::nat set| using c3 by simp
moreover have |UNIV ::nat set| =o ω-ord using card-of-nat by blast
ultimately show ?thesis using a1 ordLeq-ordIso-trans ordLeq-transitive by

blast
qed
ultimately have wrank r B ≤o α using a1 lem-wrank-un-bnd[of S r α] by

blast
moreover obtain B0 where B0 ∈ wbase r B ∧ |B0 | =o wrank r B using

lem-wrank-uset[of r B] by blast
ultimately have c5 : B ⊆ dncl r B0 ∧ |B0 | ≤o α

unfolding wbase-def w-dncl-def using ordIso-ordLeq-trans by blast
have (({}:: ′U rel) <o ‖r‖) using a2 by (metis ordLeq-ordLess-trans ord-

Less-Well-order-simp ozero-def ozero-ordLeq)
then have c6 : CCR r using lem-Rcc-eq1-31 by blast
obtain B1 where c7 : B1 = B0 ∩ Field r by blast

then have c8 : |B1 | ≤o α using c5 by (meson IntE card-of-mono1 or-
dLeq-transitive subsetI)

have B1 ⊆ Field r using c7 by blast
moreover have ∀ x ∈ Field r . ∃ y ∈ B1 . (x, y) ∈ r^∗
proof

fix x
assume e1 : x ∈ Field r
then obtain y where (x,y) ∈ r^∗ ∧ (a,y) ∈ r^∗ using c6 b1 unfolding

CCR-def by blast
moreover then have y ∈ B unfolding c2 by blast

moreover then obtain y ′ where y ′ ∈ B0 ∧ (y,y ′) ∈ r^∗ using c5 unfolding
dncl-def by blast

ultimately have y ′ ∈ B0 ∧ (x,y ′) ∈ r^∗ by force
moreover then have x = y ′ ∨ y ′ ∈ Field r using lem-rtr-field[of x y ′] by

blast
ultimately have y ′ ∈ B1 ∧ (x,y ′) ∈ r^∗ using e1 c7 by blast
then show ∃ y∈B1 . (x, y) ∈ r^∗ by blast

232

qed
ultimately have B1 ∈ SCF r unfolding SCF-def by blast
then have scf r ≤o |B1 | using lem-scf-uset-mem-bnd by blast
then have scf r ≤o α using c8 by (metis ordLeq-transitive)
moreover have ‖r‖ =o scf r using c6 lem-scf-ccr-scf-rcc-eq[of r] by blast

ultimately show False using a2 by (metis not-ordLeq-ordLess ordIso-ordLeq-trans)
qed
then show ∃ b ∈ Mwn r α. (a,b) ∈ r^∗ by blast

qed

lemma lem-wnb-neib3 :
fixes r :: ′U rel
assumes a1 : ω-ord <o ‖r‖ and a2 : stable ‖r‖
shows ∀ a ∈ Field r . ∃ b ∈ Mwnm r . (a,b) ∈ r^∗
proof

fix a
assume b1 : a ∈ Field r
have ¬ (∃ b ∈ Mwnm r . (a,b) ∈ r^∗) −→ False
proof

assume c1 : ¬ (∃ b ∈ Mwnm r . (a,b) ∈ r^∗)
obtain B where c2 : B = (r^∗)‘‘{a} by blast
obtain S where c3 : S = ((λ n. (r^^n)‘‘{a}) ‘ (UNIV ::nat set)) by blast
have c4 : ∀ b ∈ B. wrank r (r ‘‘{b}) <o ‖r‖
proof

fix b
assume d1 : b ∈ B
then obtain k where b ∈ (r^^k)‘‘{a} using c2 rtrancl-power by blast
moreover have ∀ n. (r^^n) ‘‘ {a} ⊆ Field r
proof

fix n
show (r^^n) ‘‘ {a} ⊆ Field r using b1
by (induct n, force, meson FieldI2 Image-singleton-iff relpow-Suc-E subsetI)

qed
ultimately have b ∈ Field r by blast
moreover have b /∈ Mwnm r using d1 c1 c2 by blast
ultimately have b ∈ Field r − Mwnm r by blast
moreover have Well-order (wrank r (r‘‘{b})) using lem-wrank-cardord by

(metis card-order-on-well-order-on)
moreover have Well-order ‖r‖ using lem-rcc-cardord unfolding card-order-on-def

by blast
ultimately show wrank r (r‘‘{b}) <o ‖r‖ unfolding Mwnm-def by simp

qed
have ∀ n. wrank r ((r^^n)‘‘{a}) <o ‖r‖
proof

fix n0
show wrank r ((r^^n0)‘‘{a}) <o ‖r‖
proof (induct n0)

have |{a}| ≤o ω-ord using card-of-Well-order finite.emptyI
infinite-iff-natLeq-ordLeq natLeq-Well-order ordLeq-total by blast

233

then have |(r^^0)‘‘{a}| ≤o ω-ord by simp
then show wrank r ((r^^0)‘‘{a}) <o ‖r‖

using a1 lem-wrank-ub[of r (r^^0)‘‘{a}] by (metis ordLeq-ordLess-trans)
next

fix n
assume e1 : wrank r ((r^^n)‘‘{a}) <o ‖r‖
obtain K where e2 : K = (r^^n)‘‘{a} by blast
obtain S ′ where e3 : S ′ = ((λ b. r‘‘{b}) ‘ K) by blast
have wrank r K <o ‖r‖ using e1 e2 by blast
moreover have ∀A∈S ′. wrank r A <o ‖r‖
proof

fix A
assume A ∈ S ′

then obtain b where b ∈ K ∧ A = r‘‘{b} using e3 by blast
moreover then have b ∈ B using c2 e2 rtrancl-power by blast
ultimately show wrank r A <o ‖r‖ using c4 by blast

qed
moreover have ω-ord ≤o ‖r‖ using a1 by (metis ordLess-imp-ordLeq)
ultimately have e4 : wrank r (

⋃
S ′) <o ‖r‖

using e3 a2 lem-wrank-fw-stab[of ‖r‖ r K] by fastforce
have (r^^(Suc n))‘‘{a} = r‘‘K using e2 by force
moreover have r‘‘K =

⋃
S ′ using e3 by blast

ultimately have (r^^(Suc n))‘‘{a} =
⋃

S ′ using e2 by blast
then show wrank r ((r^^(Suc n)) ‘‘ {a}) <o ‖r‖ using e4 by simp

qed
qed
then have ∀A∈S . wrank r A <o ‖r‖ using c3 by blast
moreover have B =

⋃
S using c2 c3 rtrancl-power

apply (simp)
by blast

moreover have |S | <o ‖r‖
proof −

have |S | ≤o |UNIV ::nat set| using c3 by simp
moreover have |UNIV ::nat set| =o ω-ord using card-of-nat by blast
ultimately show ?thesis using a1 ordLeq-ordIso-trans ordLeq-ordLess-trans

by blast
qed
ultimately have wrank r B <o ‖r‖ using a2 lem-wrank-un-bnd-stab[of S r

‖r‖] by blast
moreover obtain B0 where B0 ∈ wbase r B ∧ |B0 | =o wrank r B using

lem-wrank-uset[of r B] by blast
ultimately have c5 : B ⊆ dncl r B0 ∧ |B0 | <o ‖r‖

unfolding wbase-def w-dncl-def
by (metis (no-types, lifting) mem-Collect-eq ordIso-ordLess-trans subsetI sub-

set-trans)
have (({}:: ′U rel) <o ‖r‖) using a1 by (metis ordLeq-ordLess-trans ord-

Less-Well-order-simp ozero-def ozero-ordLeq)
then have c6 : CCR r using lem-Rcc-eq1-31 by blast
obtain B1 where c7 : B1 = B0 ∩ Field r by blast

234

then have c8 : |B1 | <o ‖r‖ using c5 by (meson IntE card-of-mono1 or-
dLeq-ordLess-trans subsetI)

have B1 ⊆ Field r using c7 by blast
moreover have ∀ x ∈ Field r . ∃ y ∈ B1 . (x, y) ∈ r^∗
proof

fix x
assume e1 : x ∈ Field r
then obtain y where (x,y) ∈ r^∗ ∧ (a,y) ∈ r^∗ using c6 b1 unfolding

CCR-def by blast
moreover then have y ∈ B unfolding c2 by blast

moreover then obtain y ′ where y ′ ∈ B0 ∧ (y,y ′) ∈ r^∗ using c5 unfolding
dncl-def by blast

ultimately have y ′ ∈ B0 ∧ (x,y ′) ∈ r^∗ by force
moreover then have x = y ′ ∨ y ′ ∈ Field r using lem-rtr-field[of x y ′] by

blast
ultimately have y ′ ∈ B1 ∧ (x,y ′) ∈ r^∗ using e1 c7 by blast
then show ∃ y∈B1 . (x, y) ∈ r^∗ by blast

qed
ultimately have B1 ∈ SCF r unfolding SCF-def by blast
then have scf r ≤o |B1 | using lem-scf-uset-mem-bnd by blast
then have scf r <o ‖r‖ using c8 by (metis ordLeq-ordLess-trans)
moreover have ‖r‖ =o scf r using c6 lem-scf-ccr-scf-rcc-eq[of r] by blast
ultimately show False by (metis not-ordLess-ordIso ordIso-symmetric)

qed
then show ∃ b ∈ Mwnm r . (a,b) ∈ r^∗ by blast

qed

lemma lem-scfgew-ncl: ω-ord ≤o scf r =⇒ ¬ Conelike r
proof (cases CCR r)

assume ω-ord ≤o scf r and CCR r
then have ω-ord ≤o ‖r‖ using lem-scf-ccr-scf-rcc-eq[of r]

by (metis ordIso-iff-ordLeq ordLeq-transitive)
then have ∀ a. ¬ (‖r‖ ≤o |{a}|) using finite-iff-ordLess-natLeq

ordLess-ordLeq-trans[of - ω-ord ‖r‖] not-ordLess-ordLeq[of - ‖r‖] by blast
then show ¬ Conelike r using lem-Rcc-eq2-12 [of r] by metis

next
assume ω-ord ≤o scf r and ¬ CCR r
then show ¬ Conelike r unfolding CCR-def Conelike-def by fastforce

qed

lemma lem-wnb-P-ncl-reg-grw:
fixes r :: ′U rel
assumes a1 : CCR r and a2 : ω-ord <o scf r and a3 : regularCard (scf r)
shows ∃ P ∈ SCF r . (∀ α:: ′U rel. α <o scf r −→ (∀ a ∈ P. α <o wrank r (r‘‘{a})
))
proof −

have ¬ Conelike r using a2 lem-scfgew-ncl ordLess-imp-ordLeq by blast
moreover obtain P where b1 : P = { a ∈ Field r . scf r ≤o wrank r (r ‘‘{a})
} by blast

235

ultimately have stable (scf r)
using a1 a3 lem-scf-ccr-finscf-cl lem-scf-cardord regularCard-stable by blast

then have stable ‖r‖ using a1 lem-scf-ccr-scf-rcc-eq stable-ordIso1 by blast
moreover have ω-ord <o ‖r‖ using a1 a2 lem-scf-ccr-scf-rcc-eq[of r]

by (metis ordIso-iff-ordLeq ordLess-ordLeq-trans)
ultimately have ∀ a∈Field r . ∃ b ∈ Mwnm r . (a, b) ∈ r^∗ using lem-wnb-neib3

by blast
moreover have Mwnm r ⊆ P unfolding b1 Mwnm-def using a1 lem-scf-ccr-scf-rcc-eq[of

r]
by (clarsimp, metis ordIso-ordLeq-trans ordIso-symmetric)

moreover have P ⊆ Field r using b1 by blast
ultimately have P ∈ SCF r unfolding SCF-def by blast
moreover have ∀ α:: ′U rel. α <o scf r −→ (∀ a ∈ P. α <o wrank r (r‘‘{a}))

using b1 ordLess-ordLeq-trans by blast
ultimately show ?thesis by blast

qed

lemma lem-wnb-P-ncl-nreg:
fixes r :: ′U rel
assumes a1 : CCR r and a2 : ω-ord ≤o scf r and a3 : ¬ regularCard (scf r)
shows ∃ Ps:: ′U set set. Ps ⊆ SCF r ∧ |Ps| <o scf r

∧ (∀ α:: ′U rel. α <o scf r −→ (∃ P ∈ Ps. ∀ a ∈ P. α <o wrank
r (r‘‘{a})))
proof −

have ¬ Conelike r using a2 lem-scfgew-ncl by blast
then have b1 : ¬ finite (Field (scf r)) using a1 lem-scf-ccr-finscf-cl by blast
have b2 :

∧
α:: ′U rel. ω-ord ≤o α =⇒ α <o scf r =⇒ { a ∈ Field r . α <o wrank

r (r ‘‘{a}) } ∈ SCF r
proof −

fix α:: ′U rel
assume c1 : ω-ord ≤o α and c2 : α <o scf r

have α <o ‖r‖ using a1 c2 lem-scf-ccr-scf-rcc-eq ordIso-iff-ordLeq ordLess-ordLeq-trans
by blast

then have ∀ a ∈ Field r . ∃ b ∈ Mwn r α. (a,b) ∈ r^∗ using c1 lem-wnb-neib
by blast

then show { a ∈ Field r . α <o wrank r (r ‘‘{a}) } ∈ SCF r unfolding SCF-def
Mwn-def by blast

qed
have b3 : ω-ord <o scf r
proof −

have c1 : ¬ stable (scf r) using b1 a3 lem-scf-cardord stable-regularCard by
blast

have ω-ord ≤o scf r using b1 lem-inford-ge-w lem-scf-cardord unfolding
card-order-on-def by blast

moreover have ω-ord =o scf r −→ False using c1 stable-ordIso stable-natLeq
by blast

ultimately show ?thesis using ordLeq-iff-ordLess-or-ordIso by blast
qed
obtain S :: ′U rel set where b4 : |S | <o scf r and b5 : ∀α∈S . α <o scf r

236

and b6 : ∀α::(′U rel). α <o scf r −→ (∃β∈S . α ≤o β)
using b1 a3 lem-scf-cardord[of r] lem-card-nreg-inf-osetlm[of scf r] by blast

obtain S1 :: ′U rel set where b7 : S1 = { α ∈ S . ω-ord ≤o α } by blast
obtain f :: ′U rel ⇒ ′U set where b8 : f = (λ α. { a ∈ Field r . α <o wrank r (r

‘‘{a}) }) by blast
obtain Ps:: ′U set set where b9 : Ps = f ‘ S1 by blast
have Ps ⊆ SCF r using b2 b5 b7 b8 b9 by blast
moreover have |Ps| <o scf r
proof −

have |Ps| ≤o |S1 | using b9 by simp
moreover have |S1 | ≤o |S | using b7 card-of-mono1 [of S1 S] by blast
ultimately show ?thesis using b4 ordLeq-ordLess-trans ordLeq-transitive by

blast
qed
moreover have ∀ α:: ′U rel. α <o scf r −→ (∃ P ∈ Ps. ∀ a ∈ P. α <o wrank

r (r‘‘{a}))
proof (intro allI impI)

fix α:: ′U rel
assume c1 : α <o scf r
have ∃ αm::(′U rel). ω-ord ≤o αm ∧ α ≤o αm ∧ αm <o scf r
proof (cases ω-ord ≤o α)

assume ω-ord ≤o α
then show ?thesis using c1 ordLeq-reflexive unfolding ordLeq-def by blast

next
assume ¬ (ω-ord ≤o α)

then have d1 : α ≤o ω-ord using c1 natLeq-Well-order ordLess-Well-order-simp

ordLess-imp-ordLeq ordLess-or-ordLeq by blast
have isLimOrd (scf r)
using b1 lem-scf-cardord[of r] card-order-infinite-isLimOrd[of scf r] by blast

then obtain αm:: ′U rel where ω-ord ≤o αm ∧ αm <o scf r
using b3 lem-lmord-prec[of ω-ord scf r] ordLess-imp-ordLeq by blast

then show ?thesis using d1 ordLeq-transitive by blast
qed
then obtain αm:: ′U rel where ω-ord ≤o αm ∧ α ≤o αm ∧ αm <o scf r by

blast
moreover then obtain β:: ′U rel where β ∈ S ∧ αm ≤o β using b6 by blast
ultimately have c2 : α ≤o β and c3 : β ∈ S1 using b7 ordLeq-transitive by

blast+
obtain P where c4 : P = f β by blast
then have P ∈ Ps using c3 b9 by blast

moreover have ∀ a ∈ P. α <o wrank r (r‘‘{a}) using c2 c4 b8 ordLeq-ordLess-trans
by blast

ultimately show ∃ P ∈ Ps. ∀ a ∈ P. α <o wrank r (r‘‘{a}) by blast
qed
ultimately show ?thesis by blast

qed

lemma lem-Wf-ext-arc:

237

fixes r :: ′U rel and Ps:: ′U set set and f :: ′U rel ⇒ ′U set and α:: ′U rel and a:: ′U
assumes a1 : scf r =o |Field r | and a2 : f ∈ N r Ps

and a3 : ∀ γ:: ′U rel. γ <o scf r −→ (∀ a ∈ P. γ <o wrank r (r‘‘{a}))
and a4 : ω-ord ≤o α and a5 : a ∈ f α ∩ P

shows
∧

β. α <o β ∧ β <o |Field r | ∧ (β = {} ∨ isSuccOrd β) =⇒ (r‘‘{a} ∩
(W r f β) 6= {})
proof (elim conjE)

fix β:: ′U rel
assume b1 : α <o β and b2 : β <o |Field r | and b3 : β = {} ∨ isSuccOrd β
have b4 : ω-ord ≤o β using b1 a4 by (metis ordLeq-ordLess-trans ordLess-imp-ordLeq)
have b5 : a ∈ (L f β) ∩ P using b1 a5 unfolding L-def by blast
show r‘‘{a} ∩ (W r f β) 6= {}
proof −

have r‘‘{a} ⊆ w-dncl r (L f β) ∨ (r‘‘{a} ∩ (W r f β)6={})
using b2 b3 b5 a2 unfolding N -def N4-def using ordLess-imp-ordLeq by

blast
moreover have r‘‘{a} ⊆ w-dncl r (L f β) −→ False
proof

assume r‘‘{a} ⊆ w-dncl r (L f β)
then have L f β ∈ wbase r (r‘‘{a}) unfolding wbase-def by blast
then have d1 : wrank r (r‘‘{a}) ≤o |L f β| using lem-wrank-uset-mem-bnd

by blast
have L f β ⊆ f β using b2 a2 unfolding N -def N1-def L-def using

ordLess-imp-ordLeq by blast
then have |L f β| ≤o |f β| by simp
moreover have |f β| ≤o β using a2 b2 b4 unfolding N -def N7-def using

ordLess-imp-ordLeq by blast
ultimately have wrank r (r‘‘{a}) ≤o β using d1 ordLeq-transitive by blast
moreover have β <o wrank r (r ‘‘ {a}) using b2 b5 a1 a3 by (meson IntE

ordIso-symmetric ordLess-ordIso-trans)
ultimately show False by (metis not-ordLeq-ordLess)

qed
ultimately show ?thesis by blast

qed
qed

lemma lem-Wf-esc-pth:
fixes r :: ′U rel and Ps:: ′U set set and f :: ′U rel ⇒ ′U set and α:: ′U rel
assumes a1 : Refl r ∧ ¬ finite r and a2 : f ∈ N r Ps

and a3 : ω-ord ≤o |L f α| and a4 : α <o |Field r |
shows

∧
F . F ∈ SCF (Restr r (f α)) =⇒
∀ a ∈ W r f α. ∃ b ∈ (F ∩ (W r f α)). (a,b) ∈ (Restr r (W r f α))^∗

proof −
fix F
assume a5 : F ∈ SCF (Restr r (f α))
show ∀ a ∈ (W r f α). ∃ b ∈ (F ∩ (W r f α)). (a,b) ∈ (Restr r (W r f α))^∗
proof

fix a
assume b1 : a ∈ W r f α

238

have b2 : SF r = {A. A ⊆ Field r} using a1 unfolding SF-def refl-on-def
Field-def by fast

moreover have f α ⊆ Field r
using a2 a4 unfolding N -def N5-def SF-def Field-def using ordLess-imp-ordLeq

by blast
ultimately have ∀ x ∈ f α. ∃ y ∈ f α ∩ F . (x, y) ∈ (Restr r (f α))^∗

using a5 unfolding SF-def SCF-def by blast
then have b3 : ∀ x ∈ Q r f α. ∃ y ∈ (f α ∩ F ∩ Q r f α). (x, y) ∈ (Restr r (Q

r f α))^∗
using lem-der-qinv3 [of (f α) ∩ F f α r] by blast

have b4 : Restr r (Q r f α) ∈ U (Restr r (W r f α))
using a1 a2 a3 a4 lem-der-inf-qw-restr-uset[of r f Ps α] by blast

moreover have a ∈ Field (Restr r (W r f α))
proof −

have W r f α ⊆ Field r using a2 a4 lem-qw-range ordLess-imp-ordLeq by
blast

then have W r f α ∈ SF r using b2 by blast
then show ?thesis using b1 unfolding SF-def by blast

qed
ultimately obtain a ′ where b5 : a ′ ∈ Q r f α ∧ (a, a ′) ∈ (Restr r (W r f

α))^∗
unfolding U-def Field-def by blast

then obtain b where b6 : b ∈ (f α ∩ F ∩ Q r f α) ∧ (a ′, b) ∈ (Restr r (Q r
f α))^∗ using b3 by blast

then have b ∈ (F ∩ (W r f α)) ∧ (a, b) ∈ (Restr r (W r f α))^∗
using b5 lem-QS-subs-WS [of r f α] rtrancl-mono[of Restr r (Q r f α) Restr

r (W r f α)] by force
then show ∃ b ∈ (F ∩ (W r f α)). (a,b) ∈ (Restr r (W r f α))^∗ by blast

qed
qed

lemma lem-Nf-lewfbnd:
assumes a1 : f ∈ N r Ps and a2 : α ≤o |Field r | and a3 : ω-ord ≤o |L f α|
shows ω-ord ≤o α
proof −

have L f α ⊆ f α using a1 a2 unfolding N -def N1-def L-def using ord-
Less-imp-ordLeq by blast

then have ω-ord ≤o |f α| using a3 by (metis card-of-mono1 ordLeq-transitive)
moreover have α <o ω-ord −→ |f α| <o ω-ord using a1 a2 unfolding N -def
N7-def by blast

ultimately show ?thesis using a2 not-ordLess-ordLeq by force
qed

lemma lem-regcard-iso: κ =o κ ′ =⇒ regularCard κ ′ =⇒ regularCard κ
proof −

assume a1 : κ =o κ ′ and a2 : regularCard κ ′

then obtain f where b1 : iso κ κ ′ f unfolding ordIso-def by blast
have ∀K . K ⊆ Field κ ∧ cofinal K κ −→ |K | =o κ
proof (intro allI impI)

239

fix K
assume c1 : K ⊆ Field κ ∧ cofinal K κ
moreover then obtain K ′ where c2 : K ′ = f ‘ K by blast
ultimately have K ′ ⊆ Field κ ′ using b1 unfolding iso-def bij-betw-def by

blast
moreover have cofinal K ′ κ ′

proof −
have ∀ a ′∈Field κ ′. ∃ b ′∈K ′. a ′ 6= b ′ ∧ (a ′, b ′) ∈ κ ′

proof
fix a ′

assume a ′ ∈ Field κ ′

then obtain a where e1 : a ′ = f a ∧ a ∈ Field κ using b1 unfolding
iso-def bij-betw-def by blast

then obtain b where e2 : b ∈ K ∧ a 6= b ∧ (a, b) ∈ κ using c1 unfolding
cofinal-def by blast

then have f b ∈ K ′ using c2 by blast
moreover have a ′ 6= f b using e1 e2 c1 b1 unfolding iso-def bij-betw-def

inj-on-def by blast
moreover have (a ′, f b) ∈ κ ′

proof −
have (a,b) ∈ κ using e2 by blast
moreover have embed κ κ ′ f using b1 unfolding iso-def by blast
ultimately have (f a, f b) ∈ κ ′ using compat-def embed-compat by metis
then show ?thesis using e1 by blast

qed
ultimately show ∃ b ′∈K ′. a ′ 6= b ′ ∧ (a ′, b ′) ∈ κ ′ by blast

qed
then show ?thesis unfolding cofinal-def by blast

qed
ultimately have c3 : |K ′| =o κ ′ using a2 unfolding regularCard-def by blast
have inj-on f K using c1 b1 unfolding iso-def bij-betw-def inj-on-def by blast
then have bij-betw f K K ′ using c2 unfolding bij-betw-def by blast
then have |K | =o |K ′| using card-of-ordIsoI by blast
then have |K | =o κ ′ using c3 ordIso-transitive by blast
then show |K | =o κ using a1 ordIso-symmetric ordIso-transitive by blast

qed
then show regularCard κ unfolding regularCard-def by blast

qed

lemma lem-cardsuc-inf-gwreg: ¬ finite A =⇒ κ =o cardSuc |A| =⇒ ω-ord <o κ
∧ regularCard κ
proof −

assume a1 : ¬ finite A and a2 : κ =o cardSuc |A|
moreover then have regularCard (cardSuc |A|) using infinite-cardSuc-regularCard

by force
ultimately have a3 : regularCard κ using lem-regcard-iso ordIso-transitive by

blast
have |A| <o cardSuc |A| by simp
then have |A| <o κ using a2 ordIso-symmetric ordLess-ordIso-trans by blast

240

moreover have ω-ord ≤o |A| using a1 infinite-iff-natLeq-ordLeq by blast
ultimately have ω-ord <o κ using ordLeq-ordLess-trans by blast
then show ?thesis using a3 by blast

qed

lemma lem-ccr-rcscf-struct:
fixes r :: ′U rel
assumes a1 : Refl r and a2 : CCR r and a3 : ω-ord <o scf r and a4 : regularCard
(scf r)

and a5 : scf r =o |Field r |
shows ∃ Ps. ∃ f ∈ N r Ps.

∀α. ω-ord ≤o |L f α| ∧ α <o |Field r | ∧ isSuccOrd α −→
CCR (Restr r (W r f α)) ∧ |Restr r (W r f α)| <o |Field r |
∧ (∀ a ∈ W r f α. wesc-rel r f α a (wesc r f α a))

proof −
obtain P where b1 : P ∈ SCF r

and b2 : ∀α:: ′U rel. α <o scf r −→ (∀ a ∈ P. α <o wrank r (r‘‘{a}))
using a2 a3 a4 lem-wnb-P-ncl-reg-grw[of r] by blast

then obtain f where b3 : f ∈ N r {P} using a1 a2 lem-Shinf-N-ne[of r {P}]
by blast

moreover have ∀α. ω-ord ≤o |L f α| ∧ α <o |Field r | ∧ (α = {} ∨ isSuccOrd
α) −→

CCR (Restr r (W r f α)) ∧ |Restr r (W r f α)| <o |Field r |
∧ (∀ a ∈ W r f α. wesc-rel r f α a (wesc r f α a))

proof (intro allI impI)
fix α
assume c1 : ω-ord ≤o |L f α| ∧ α <o |Field r | ∧ (α = {} ∨ isSuccOrd α)
then have c2 : (f α ∩ P) ∈ SCF (Restr r (f α))

using b3 unfolding N -def N8-def using ordLess-imp-ordLeq by blast
have c3 : ¬ finite r using a2 a3 lem-scfgew-ncl lem-scf-ccr-scf-uset[of r]

unfolding U-def using ordLess-imp-ordLeq finite-subset[of - r] by blast
have CCR (Restr r (W r f α)) using c1 c3 b3 a1 lem-der-inf-qw-restr-ccr [of

r f {P} α] by blast
moreover have |Restr r (W r f α)| <o |Field r | using c1 c3 b3 lem-der-inf-qw-restr-card[of

r f {P} α] by blast
moreover have ∀ a ∈ W r f α. wesc-rel r f α a (wesc r f α a)
proof

fix a
assume a ∈ W r f α
then obtain b where d1 : b ∈ (P ∩ (W r f α)) and d2 : (a,b) ∈ (Restr r (W

r f α))^∗
using c1 c2 c3 b3 a1 lem-Wf-esc-pth[of r f {P} α f α ∩ P] by blast

moreover then have b ∈ (f α) ∩ P unfolding W-def by blast
moreover have ω-ord ≤o α using c1 b3 lem-Nf-lewfbnd[of f r {P} α]

ordLess-imp-ordLeq by blast
ultimately have ∀ β. α <o β ∧ β <o |Field r | ∧ (β = {} ∨ isSuccOrd β)

−→ r ‘‘ {b} ∩ W r f β 6= {}
using b2 b3 a5 lem-Wf-ext-arc[of r f {P} P α b] by blast

then have wesc-rel r f α a b using d1 d2 unfolding wesc-rel-def by blast

241

then have ∃ b. wesc-rel r f α a b by blast
then show wesc-rel r f α a (wesc r f α a)

using someI-ex[of λ b. wesc-rel r f α a b] unfolding wesc-def by blast
qed
ultimately show CCR (Restr r (W r f α))

∧ |Restr r (W r f α)| <o |Field r |
∧ (∀ a ∈ W r f α. wesc-rel r f α a (wesc r f α a)) by blast

qed
ultimately show ?thesis by blast

qed

lemma lem-oint-infcard-sc-cf :
fixes α0 :: ′a rel and κ:: ′U rel and S :: ′U rel set
assumes a1 : Card-order κ and a2 : ω-ord ≤o κ

and a3 : S = {α ∈ O:: ′U rel set. α0 ≤o α ∧ isSuccOrd α ∧ α <o κ}
shows ∀ α ∈ S . ∃ β ∈ S . α <o β
proof

fix α
assume b1 : α ∈ S
then have α <o κ using a3 by blast
then obtain β where b2 : sc-ord α β using lem-sucord-ex by blast
obtain β ′ where b3 : β ′ = nord β by blast
have b4 : isSuccOrd β using b2 unfolding sc-ord-def using lem-ordint-sucord

by blast
moreover have β =o β ′ using b2 b3 lem-nord-l unfolding sc-ord-def ord-

Less-def by blast
ultimately have isSuccOrd β ′ using lem-osucc-eq by blast
moreover have β ′ ∈ O using b2 b3 lem-nordO-ls-r unfolding sc-ord-def by

blast
moreover have α0 ≤o β ′ using b1 b2 b3 a3 unfolding sc-ord-def

using lem-nord-le-r ordLeq-ordLess-trans ordLess-imp-ordLeq by blast
moreover have β ′ <o κ
proof −

have β ≤o κ using b1 b2 a3 unfolding sc-ord-def by blast
moreover have β =o κ −→ False
proof

assume β =o κ
then have isSuccOrd κ using b4 lem-osucc-eq by blast

moreover have isLimOrd κ using a1 a2 lem-ge-w-inford by (metis card-order-infinite-isLimOrd)
moreover have Well-order κ using a1 unfolding card-order-on-def by blast
ultimately show False using wo-rel.isLimOrd-def unfolding wo-rel-def by

blast
qed
ultimately have β <o κ using ordLeq-iff-ordLess-or-ordIso by blast
then show ?thesis using b3 lem-nord-ls-l by blast

qed
moreover have α <o β ′ using b2 b3 lem-nord-ls-r unfolding sc-ord-def by

blast
ultimately have β ′ ∈ S ∧ α <o β ′ using a3 by blast

242

then show ∃ β ∈ S . α <o β by blast
qed

lemma lem-oint-infcard-gew-sc-cfbnd:
fixes α0 :: ′a rel and κ:: ′U rel and S :: ′U rel set
assumes a1 : Card-order κ and a2 : ω-ord ≤o κ and a3 : α0 <o κ and a4 : α0
=o ω-ord

and a5 : S = {α ∈ O:: ′U rel set. α0 ≤o α ∧ isSuccOrd α ∧ α <o κ}
shows |{α ∈ O:: ′U rel set. α <o κ}| ≤o |S |
∧ (∃ f . (∀ α ∈ O:: ′U rel set. α0 ≤o α ∧ α <o κ −→ α ≤o f α ∧ f α ∈ S))

proof −
have |UNIV ::nat set| <o κ using a3 a4 by (meson card-of-nat ordIso-ordLess-trans

ordIso-symmetric)
then obtain N where N ⊆ Field κ ∧ |UNIV ::nat set| =o |N |

using internalize-card-of-ordLess[of UNIV ::nat set κ] by force
moreover obtain α0 ′:: ′U rel where α0 ′ = |N | by blast
ultimately have b0 : α0 ′ =o ω-ord using card-of-nat ordIso-symmetric or-

dIso-transitive by blast
then have b0 ′: α0 ′ <o κ using a3 a4 ordIso-symmetric ordIso-ordLess-trans by

metis
have b0 ′′: α0 =o α0 ′ using b0 a4 ordIso-symmetric ordIso-transitive by blast
obtain S1 where b1 : S1 = {α ∈ O:: ′U rel set. α0 ≤o α ∧ α <o κ} by blast
obtain f where f = (λα:: ′U rel. SOME β. sc-ord α β) by blast
moreover have ∀ α ∈ S1 . ∃ β. sc-ord α β using b1 lem-sucord-ex by blast
ultimately have b2 :

∧
α. α ∈ S1 =⇒ sc-ord α (f α) using someI-ex by metis

have b3 : (nord ◦ f) ‘ S1 ⊆ S
proof

fix α
assume α ∈ (nord ◦ f) ‘ S1
then obtain α ′ where c1 : α ′ ∈ S1 ∧ α = nord (f α ′) by force
then have c2 : sc-ord α ′ (f α ′) using b2 by blast
then have c3 : isSuccOrd (f α ′) unfolding sc-ord-def using lem-ordint-sucord

by blast
moreover have f α ′ =o α using c1 c2 lem-nord-l unfolding sc-ord-def

ordLess-def by blast
ultimately have c4 : isSuccOrd α using lem-osucc-eq by blast
have α0 ≤o α ′ ∧ α ′ <o κ using c1 b1 by blast
then have c5 : α0 ≤o (f α ′) ∧ (f α ′) ≤o κ
using c1 b2 unfolding sc-ord-def using ordLeq-ordLess-trans ordLess-imp-ordLeq

by blast
then have c6 : α0 ≤o α using c1 lem-nord-le-r by blast
have c7 : α ∈ O using c1 c2 lem-nordO-ls-r unfolding sc-ord-def by blast
have (f α ′) =o κ −→ False
proof

assume (f α ′) =o κ
then have isSuccOrd κ using c3 lem-osucc-eq by blast

moreover have isLimOrd κ using a1 a2 lem-ge-w-inford by (metis card-order-infinite-isLimOrd)
moreover have Well-order κ using a1 unfolding card-order-on-def by blast
ultimately show False using wo-rel.isLimOrd-def unfolding wo-rel-def by

243

blast
qed
then have f α ′ <o κ using c5 using ordLeq-iff-ordLess-or-ordIso by blast
then have α <o κ using c1 lem-nord-ls-l by blast
then show α ∈ S using c4 c6 c7 a5 by blast

qed
moreover have inj-on (nord ◦ f) S1
proof −

have ∀α∈S1 . ∀β∈S1 . (nord ◦ f) α = (nord ◦ f) β −→ α = β
proof (intro ballI impI)

fix α β
assume d1 : α ∈ S1 and d2 : β ∈ S1 and (nord ◦ f) α = (nord ◦ f) β
then have nord (f α) = nord (f β) by simp
moreover have Well-order (f α) ∧ Well-order (f β)

using d1 d2 b2 unfolding sc-ord-def ordLess-def by blast
ultimately have d3 : f α =o f β using lem-nord-req by blast
have d4 : sc-ord α (f α) ∧ sc-ord β (f β) using d1 d2 b2 by blast
have Well-order α ∧ Well-order β using d1 d2 b1 unfolding ordLess-def

by blast
moreover have α <o β −→ False
proof

assume α <o β
then have f α ≤o β ∧ β <o f β using d4 unfolding sc-ord-def by blast
then show False using d3 using not-ordLess-ordIso ordLeq-ordLess-trans

by blast
qed
moreover have β <o α −→ False
proof

assume β <o α
then have f β ≤o α ∧ α <o f α using d4 unfolding sc-ord-def by blast
then show False using d3 using not-ordLess-ordIso ordLeq-ordLess-trans

ordIso-symmetric by blast
qed
ultimately have α =o β using ordIso-or-ordLess by blast
then show α = β using d1 d2 b1 lem-Oeq by blast

qed
then show ?thesis unfolding inj-on-def by blast

qed
ultimately have b4 : |S1 | ≤o |S | using card-of-ordLeq by blast
obtain S2 where b5 : S2 = { α ∈ O:: ′U rel set. α <o α0 } by blast
have b6 : |UNIV ::nat set| ≤o |S1 |
proof −

obtain xi where c1 : xi = (λ i::nat. ((nord ◦ f)^^i) (nord α0 ′)) by blast
have c2 : ∀ i. xi i ∈ S1
proof

fix i0
show xi i0 ∈ S1
proof (induct i0)

have α0 ′ ≤o nord α0 ′

244

using b0 ′ lem-nord-l unfolding ordLess-def using ordIso-iff-ordLeq by
blast

then have α0 ≤o nord α0 ′ using b0 ′′ ordIso-ordLeq-trans by blast
moreover then have nord α0 ′ <o κ ∧ nord α0 ′ ∈ O

using b0 ′ lem-nordO-ls-l lem-nord-ls-l ordLeq-ordLess-trans by blast
ultimately show xi 0 ∈ S1 using c1 b1 by simp

next
fix i
assume xi i ∈ S1
then have (nord ◦ f) (xi i) ∈ S using b3 by blast
then show xi (Suc i) ∈ S1 using c1 b1 a5 by simp

qed
qed
have c3 : ∀ j. ∀ i<j. xi i <o xi j
proof

fix j0
show ∀ i<j0 . xi i <o xi j0
proof (induct j0)

show ∀ i<0 . xi i <o xi 0 by blast
next

fix j
assume e1 : ∀ i<j. xi i <o xi j
show ∀ i<Suc j. xi i <o xi (Suc j)
proof(intro allI impI)

fix i
assume f1 : i < Suc j

have xi j <o nord (f (xi j)) using c2 b2 unfolding sc-ord-def using
lem-nord-ls-r by blast

then have xi j <o xi (Suc j) using c1 by simp
moreover then have i < j −→ xi i <o xi (Suc j) and i = j −→ xi i <o

xi (Suc j)
using e1 ordLess-transitive by blast+

moreover have i < j ∨ i = j using f1 by force
ultimately show xi i <o xi (Suc j) by blast

qed
qed

qed
then have ∀ i j. xi i = xi j −→ i = j by (metis linorder-neqE-nat ord-

Less-irreflexive)
then have inj xi unfolding inj-on-def by blast
moreover have xi ‘ UNIV ⊆ S1 using c2 by blast
ultimately show |UNIV ::nat set| ≤o |S1 | using card-of-ordLeq by blast

qed
then have ¬ finite S1 using infinite-iff-card-of-nat by blast
moreover have |S1 | ≤o |S2 | ∨ |S2 | ≤o |S1 |

using card-of-Well-order ordLess-imp-ordLeq ordLess-or-ordLeq by blast
ultimately have |S1 ∪ S2 | ≤o |S1 | ∨ |S1 ∪ S2 | ≤o |S2 |
by (metis card-of-Un1 card-of-Un-ordLeq-infinite card-of-ordLeq-finite sup.idem)

moreover have |S2 | ≤o |S |

245

proof −
have |UNIV ::nat set| ≤o |S | using b4 b6 ordLeq-transitive by blast
moreover have |S2 | ≤o |UNIV ::nat set|
proof −

have ∀ α ∈ S2 . α <o ω-ord ∧ α ∈ O using b5 a4 ordLess-ordIso-trans by
blast

then have d1 : ∀ α ∈ S2 . α =o natLeq-on (card (Field α)) ∧ α ∈ O using
lem-wolew-nat by blast

obtain A where d2 : A = natLeq-on ‘ UNIV by blast
moreover obtain f where d3 : f = (λ α:: ′U rel. natLeq-on (card (Field α)))

by blast
ultimately have f ‘ UNIV ⊆ A by force
moreover have inj-on f S2
proof −

have ∀ α ∈ S2 . ∀ β ∈ S2 . f α = f β −→ α = β
proof (intro ballI impI)

fix α β
assume α ∈ S2 and β ∈ S2 and f α = f β
then have α =o natLeq-on (card (Field α)) and β =o natLeq-on (card

(Field β))
and natLeq-on (card (Field α)) = natLeq-on (card (Field β))
and α ∈ O ∧ β ∈ O using d1 d3 by blast+

moreover then have α =o β
by (metis (no-types, lifting) ordIso-symmetric ordIso-transitive)

ultimately show α = β using lem-Oeq by blast
qed
then show ?thesis unfolding inj-on-def by blast

qed
ultimately have |S2 | ≤o |A| using card-of-ordLeq[of S2 A] by blast
moreover have |A| ≤o |UNIV ::nat set| using d2 by simp
ultimately show ?thesis using ordLeq-transitive by blast

qed
ultimately show ?thesis using ordLeq-transitive by blast

qed
ultimately have b7 : |S1 ∪ S2 | ≤o |S | using b4 ordLeq-transitive by blast
have {α ∈ O:: ′U rel set. α <o κ} ⊆ S1 ∪ S2 using b1 b5 a1 a3 by fastforce
then have |{α ∈ O:: ′U rel set. α <o κ}| ≤o |S1 ∪ S2 | by simp
moreover have ∀ α ∈ O:: ′U rel set. α0 ≤o α ∧ α <o κ −→ α ≤o (nord ◦ f)

α ∧ (nord ◦ f) α ∈ S
proof (intro ballI impI)

fix α:: ′U rel
assume c1 : α ∈ O and c2 : α0 ≤o α ∧ α <o κ
then have c3 : (nord ◦ f) α ∈ S using b1 b3 by blast
moreover have α <o f α using c1 c2 b1 b2 [of α] unfolding sc-ord-def by

blast
then have α ≤o f α using ordLess-imp-ordLeq by blast
then have α ≤o (nord ◦ f) α using lem-nord-le-r by simp
then show α ≤o (nord ◦ f) α ∧ (nord ◦ f) α ∈ S using c3 by blast

qed

246

ultimately show ?thesis using b7 ordLeq-transitive by blast
qed

lemma lem-rcc-uset-rcc-bnd:
assumes s ∈ U r
shows ‖r‖ ≤o ‖s‖
proof −

obtain s0 where b1 : s0 ∈ U r ∧ |s0 | =o ‖r‖ ∧ |s0 | ≤o |s| ∧ (∀ s ′ ∈ U r . |s0 |
≤o |s ′|)

using assms lem-rcc-uset-ne by blast
have CCR s using assms unfolding U-def by blast
then obtain t where b2 : t ∈ U s ∧ |t| =o ‖s‖ ∧ (∀ s ′ ∈ U s. |t| ≤o |s ′|)

using lem-Rcc-eq1-12 lem-rcc-uset-ne by blast
have t ∈ U r using b2 assms lem-rcc-uset-tr by blast
then have ‖r‖ ≤o |t| using lem-rcc-uset-mem-bnd by blast
then show ‖r‖ ≤o ‖s‖ using b2 ordLeq-ordIso-trans by blast

qed

lemma lem-dc2-ccr-scf-lew:
fixes r :: ′U rel
assumes a1 : CCR r and a2 : scf r ≤o ω-ord
shows DCR 2 r
proof −

have ∃ s. s ∈ U r ∧ single-valued s
proof (cases scf r <o ω-ord)

assume scf r <o ω-ord
then have b1 : Conelike r using a1 lem-scf-ccr-finscf-cl lem-fin-fl-rel lem-wolew-fin

by blast
show ?thesis
proof (cases r = {})

assume r = {}
then have r ∈ U r ∧ single-valued r

unfolding U-def CCR-def single-valued-def Field-def by blast
then show ?thesis by blast

next
assume r 6= {}
then obtain m where c2 : m ∈ Field r ∧ (∀ a ∈ Field r . (a,m) ∈ r^∗)

using b1 unfolding Conelike-def by blast
then obtain a b where (a,b) ∈ r ∧ (m = a ∨ m = b) unfolding Field-def

by blast
moreover obtain s where s = {(a,b)} by blast
ultimately have s ∈ U r and single-valued s

using c2 unfolding U-def CCR-def Field-def single-valued-def by blast+
then show ?thesis by blast

qed
next

assume ¬ (scf r <o ω-ord)
then have scf r =o ω-ord using a2 ordLeq-iff-ordLess-or-ordIso by blast
then obtain s where b1 : s ∈ Span r and b2 : CCR s and b3 : single-valued s

247

using a1 lem-sv-span-scfeqw by blast
then have s ∈ U r ∧ single-valued s unfolding Span-def U-def by blast
then show ?thesis by blast

qed
then obtain s where b1 : s ∈ U r ∧ single-valued s by blast
moreover have DCR 1 s
proof −

obtain g where g = (λ α::nat. s) by blast
moreover then have DCR-generating g

using b1 unfolding D-def single-valued-def DCR-generating-def by blast
ultimately show ?thesis unfolding DCR-def by blast

qed
ultimately have DCR (Suc 1) r using lem-Ldo-uset-reduc[of s r 1] by fastforce
moreover have (Suc 1) = (2 ::nat) by simp
ultimately show ?thesis by metis

qed

lemma lem-dc3-ccr-refl-scf-wsuc:
fixes r :: ′U rel
assumes a1 : Refl r and a2 : CCR r

and a3 : |Field r | =o cardSuc |UNIV ::nat set| and a4 : scf r =o |Field r |
shows DCR 3 r
proof −

obtain κ:: ′U rel where b0 : κ = |Field r | by blast
have b1 : ω-ord <o (scf r) ∧ regularCard (scf r)
and b2 : ω-ord <o |Field r |
using a3 a4 lem-cardsuc-inf-gwreg ordIso-transitive by blast+

then obtain Ps f
where b3 : f ∈ N r Ps

and b4 :
∧
α. ω-ord ≤o |L f α| ∧ α <o κ ∧ isSuccOrd α =⇒

CCR (Restr r (W r f α)) ∧ |Restr r (W r f α)| <o κ
∧ (∀ a ∈ W r f α. wesc-rel r f α a (wesc r f α a))

using b0 a1 a2 a4 lem-ccr-rcscf-struct by blast
have q0 :

∧
α. ω-ord ≤o α ∧ α <o κ ∧ isSuccOrd α =⇒ ¬ Conelike (Restr r (f

α))
proof −

fix α:: ′U rel
assume ω-ord ≤o α ∧ α <o κ ∧ isSuccOrd α
then have Conelike (Restr r (f α)) −→ Conelike r

using b3 b0 unfolding N -def N3-def N12-def clterm-def using ord-
Less-imp-ordLeq by blast

moreover have Conelike r −→ False
proof

assume Conelike r
then have finite (Field (scf r)) using a2 lem-scf-ccr-finscf-cl by blast
then show False using b2 a4

by (metis Field-card-of infinite-iff-natLeq-ordLeq ordIso-finite-Field ord-
Less-imp-ordLeq)

qed

248

ultimately show ¬ Conelike (Restr r (f α)) by blast
qed
have q1 :

∧
α. ω-ord ≤o α ∧ α <o κ ∧ isSuccOrd α =⇒
ω-ord ≤o |L f α| ∧ scf (Restr r (f α)) =o ω-ord

proof −
fix α:: ′U rel
assume c1 : ω-ord ≤o α ∧ α <o κ ∧ isSuccOrd α
have Card-order ω-ord ∧ ¬finite (Field ω-ord) ∧ Well-order ω-ord

using natLeq-Card-order Field-natLeq by force
then have ¬ isSuccOrd ω-ord

using card-order-infinite-isLimOrd wo-rel.isLimOrd-def wo-rel-def by blast
then have ω-ord <o α using c1 using lem-osucc-eq ordIso-symmetric or-

dLeq-iff-ordLess-or-ordIso by blast
then obtain α0 :: ′U rel where c2 : ω-ord =o α0 ∧ α0 <o α using internal-

ize-ordLess[of ω-ord α] by blast
then have c3 : f α0 ⊆ L f α unfolding L-def by blast
obtain γ where c4 : γ = scf (Restr r (f α)) by blast
have ¬ Conelike (Restr r (f α)) using c1 q0 by blast
moreover have CCR (Restr r (f α)) using c1 b0 b3 unfolding N -def N6-def

using ordLess-imp-ordLeq by blast
ultimately have Card-order γ ∧ ¬ finite (Field γ) and c5 : ¬ finite (Restr r

(f α))
using c4 lem-scf-ccr-finscf-cl lem-scf-cardord lem-Relprop-fin-ccr by blast+

then have c6 : ω-ord ≤o γ
by (meson card-of-Field-ordIso infinite-iff-natLeq-ordLeq ordIso-iff-ordLeq

ordLeq-transitive)
have ω-ord ≤o |L f α| using c1 b0 b3 unfolding N -def N12-def using

ordLess-imp-ordLeq by blast
moreover have scf (Restr r (f α)) =o ω-ord
proof −

have |f α| ≤o α using c1 b0 b3 unfolding N -def N7-def using ord-
Less-imp-ordLeq by blast

then have |Restr r (f α)| ≤o α using c1 lem-restr-ordbnd by blast
then have γ ≤o α using c4 c5 lem-rel-inf-fld-card[of Restr r (f α)]

lem-scf-relfldcard-bnd ordLeq-ordIso-trans ordLeq-transitive by blast
then have γ <o cardSuc |UNIV ::nat set| using c1 b0 a3

using ordIso-iff-ordLeq ordLeq-ordLess-trans ordLess-ordLeq-trans by blast
moreover have Card-order γ using c4 lem-scf-cardord by blast
ultimately have γ ≤o |UNIV ::nat set| by simp

then show ?thesis using c4 c6 using card-of-nat ordIso-iff-ordLeq or-
dLeq-ordIso-trans by blast

qed
ultimately show ω-ord ≤o |L f α| ∧ scf (Restr r (f α)) =o ω-ord by blast

qed
obtain is-st:: ′U rel ⇒ ′U rel ⇒ bool

where q3 : is-st = (λ s t. t ∈ Span s ∧ t 6= {} ∧ CCR t ∧
single-valued t ∧ acyclic t ∧ (∀ x∈Field t. t‘‘{x} 6= {})) by blast

obtain st where q4 : st = (λ s:: ′U rel. SOME t. is-st s t) by blast

249

have q5 :
∧

s. CCR s ∧ scf s =o ω-ord =⇒ is-st s (st s)
proof −

fix s:: ′U rel
assume CCR s ∧ scf s =o ω-ord
then obtain t where is-st s t using q3 lem-sv-span-scfeqw[of s] by blast
then show is-st s (st s) using q4 someI-ex by metis

qed
obtain κ0 where b5 : κ0 = ω-ord by blast
obtain S where b6 : S = {α ∈ O:: ′U rel set. κ0 ≤o α ∧ isSuccOrd α ∧ α <o

κ} by blast
obtain R where b8 : R = (λ α. st (Restr r (W r f α))) by blast
obtain T :: ′U rel set where b11 : T = { t. t 6= {} ∧ CCR t ∧ single-valued t ∧

acyclic t ∧ (∀ x∈Field t. t‘‘{x} 6= {}) } by blast
obtain W :: ′U rel ⇒ ′U set where b12 : W = (λ α. W r f α) by blast
obtain Wa where b13 : Wa = (

⋃
α∈S . W α) by blast

obtain r1 where b14 : r1 = Restr r Wa by blast
have b15 :

∧
α. α ∈ S =⇒ Restr r (W r f α) = Restr r1 (W α) using b12 b13

b14 by blast
have b16 :

∧
α. α ∈ S =⇒ Restr r (W r f α) ∈ U (Restr r (f α))

proof −
fix α
assume c1 : α ∈ S
have d1 : ¬ finite r using b2 lem-fin-fl-rel by (metis infinite-iff-natLeq-ordLeq

ordLess-imp-ordLeq)
moreover have α <o scf r using c1 b0 b6 a4 using ordIso-symmetric ord-

Less-ordIso-trans by blast
moreover have ω-ord ≤o |L f α| using c1 b5 b6 q1 by blast
moreover have isSuccOrd α using c1 b6 by blast
ultimately show Restr r (W r f α) ∈ U (Restr r (f α))

using b3 a1 a2 lem-der-qw-uset[of r f Ps α] by blast
qed
have κ =o cardSuc |UNIV ::nat set| using b0 a3 by blast
moreover have Refl r1 using a1 b14 unfolding refl-on-def Field-def by blast
moreover have S ⊆ {α ∈ O:: ′U rel set. α <o κ} using b6 by blast
moreover have b17 : |{α ∈ O:: ′U rel set. α <o κ}| ≤o |S |

∧ (∃ h. ∀α∈O:: ′U rel set. κ0 ≤o α ∧ α <o κ −→ α ≤o h α ∧ h α ∈ S)
proof −

have Card-order κ using b0 by simp
moreover have ω-ord ≤o κ using b0 b2 ordLess-imp-ordLeq by blast
moreover have κ0 <o κ using b0 b2 b5 by blast
moreover have κ0 =o ω-ord using b5 ordIso-refl natLeq-Card-order by blast
ultimately show ?thesis using b6 lem-oint-infcard-gew-sc-cfbnd[of κ κ0 S]

by blast
qed
moreover have ∀ α ∈ S . ∃ β ∈ S . α <o β
proof −

have Card-order κ using b0 by simp
moreover have ω-ord ≤o κ using b0 b2 ordLess-imp-ordLeq by blast
ultimately show ?thesis using b6 lem-oint-infcard-sc-cf [of κ S κ0] by blast

250

qed
moreover have b18 : Field r1 = (

⋃
α∈S . W α)

proof −
have SF r = {A. A ⊆ Field r} using a1 unfolding SF-def Field-def refl-on-def

by fast
moreover have Wa ⊆ Field r

using b0 b3 b6 b12 b13 lem-qw-range[of f r Ps -] ordLess-imp-ordLeq[of - κ]
by blast

ultimately have Field r1 = Wa using b14 unfolding SF-def by blast
then show ?thesis using b13 by blast

qed
moreover have ∀α∈S . ∀ β∈S . α 6= β −→ W α ∩ W β = {}
proof (intro ballI impI)

fix α β
assume α ∈ S and β ∈ S and α 6= β
then have Well-order α ∧ Well-order β ∧ ¬ (α =o β) using b6 lem-Owo

lem-Oeq by blast
then show W α ∩ W β = {} using b12 lem-Der-inf-qw-disj by blast

qed
moreover have

∧
α. α ∈ S =⇒ R α ∈ T ∧ R α ⊆ Restr r1 (W α) ∧ |W α|

≤o |UNIV ::nat set|
∧ Field (R α) = W α ∧ ¬ Conelike (Restr r1 (W α))

proof −
fix α
assume c1 : α ∈ S
then have c2 : CCR (Restr r (W r f α)) ∧ scf (Restr r (f α)) =o ω-ord using

b4 q1 b5 b6 by blast
moreover have c3 : scf (Restr r (W r f α)) =o ω-ord ∧ |W r f α| ≤o

|UNIV ::nat set|
proof −
have d1 : ¬ finite r using b2 lem-fin-fl-rel by (metis infinite-iff-natLeq-ordLeq

ordLess-imp-ordLeq)
have Restr r (W r f α) ∈ U (Restr r (f α)) using c1 b16 by blast

then have d2 : ‖Restr r (f α)‖ ≤o ‖Restr r (W r f α)‖ using lem-rcc-uset-rcc-bnd
by blast

have scf (Restr r (f α)) =o ω-ord using c1 b5 b6 q1 by blast
moreover have CCR (Restr r (f α))

using c1 b0 b3 b6 unfolding N -def N6-def using ordLess-imp-ordLeq by
blast

ultimately have ω-ord =o ‖Restr r (f α)‖
using lem-scf-ccr-scf-rcc-eq ordIso-symmetric ordIso-transitive by blast

then have d3 : ω-ord ≤o ‖Restr r (W r f α)‖ using d2 ordIso-ordLeq-trans
by blast

have |Restr r (W r f α)| <o |Field r | using d1 c1 b0 b3 b6 lem-der-inf-qw-restr-card
by blast

then have |Restr r (W r f α)| <o cardSuc |UNIV ::nat set| using a3 ord-
Less-ordIso-trans by blast

then have d4 : |Restr r (W r f α)| ≤o |UNIV ::nat set| by simp
then have ‖Restr r (W r f α)‖ ≤o ω-ord using lem-Rcc-relcard-bnd

251

by (metis ordLeq-transitive card-of-nat ordLeq-ordIso-trans)
then have ‖Restr r (W r f α)‖ =o ω-ord using d3 using ordIso-iff-ordLeq

by blast
moreover have |W r f α| ≤o |UNIV ::nat set|
proof −

have W r f α ⊆ f α unfolding W-def by blast
then have |W r f α| ≤o |f α| by simp
moreover have |f α| <o |Field r | using c1 b3 b5 b6 b0 unfolding N -def

N7-def
using ordLess-imp-ordLeq ordLeq-ordLess-trans by blast

ultimately have |W r f α| <o cardSuc |UNIV ::nat set|
using a3 ordLeq-ordLess-trans ordLess-ordIso-trans by blast

then show ?thesis by simp
qed
ultimately show ?thesis using c2 lem-scf-ccr-scf-rcc-eq[of Restr r (W r f

α)]
by (metis ordIso-symmetric ordIso-transitive)

qed
ultimately have c4 : is-st (Restr r (W r f α)) (R α) using q5 b8 by blast
then have c5 : R α ∈ Span (Restr r (W r f α)) using q3 by blast
then have Field (R α) = Field (Restr r (W r f α)) unfolding Span-def by

blast
moreover have SF r = {A. A ⊆ Field r} using a1 unfolding SF-def

refl-on-def Field-def by fast
moreover have W r f α ⊆ Field r using c1 b0 b3 b6 lem-qw-range ord-

Less-imp-ordLeq by blast
ultimately have Field (R α) = W r f α unfolding SF-def by blast
then have R α ⊆ Restr r1 (W α) ∧ Field (R α) = W α

using c1 c5 b12 b13 b14 unfolding Span-def by blast
moreover have R α ∈ T using c4 q3 b11 by blast
moreover have ¬ Conelike (Restr r1 (W α))
proof −

obtain s1 where d1 : s1 = Restr r (W r f α) by blast
then have scf s1 =o ω-ord ∧ CCR s1 using c2 c3 by blast
moreover then have ¬ finite (Field (scf s1))

by (metis Field-natLeq infinite-UNIV-nat ordIso-finite-Field)
ultimately have ¬ Conelike s1 using lem-scf-ccr-finscf-cl by blast
then show ?thesis using d1 c1 b15 [of α] by metis

qed
ultimately show R α ∈ T ∧ R α ⊆ Restr r1 (W α) ∧ |W α| ≤o |UNIV ::nat

set|
∧ Field (R α) = W α ∧ ¬ Conelike (Restr r1 (W α)) using c3

b12 by blast
qed
moreover have

∧
α x. α ∈ S =⇒ x ∈ W α =⇒

∃ a. ((x,a) ∈ (Restr r1 (W α))^∗ ∧ (∀ β ∈ S . α <o β −→ (r1‘‘{a} ∩
W β) 6= {}))

proof −
fix α x

252

assume c1 : α ∈ S and c2 : x ∈ W α
moreover obtain a where a = wesc r f α x by blast
ultimately have wesc-rel r f α x a using b4 b0 b5 b6 b12 q1 by blast
then have c3 : a ∈ W r f α ∧ (x,a) ∈ (Restr r (W r f α))^∗ and

c4 : ∀β. α <o β ∧ β <o |Field r | ∧ (β = {} ∨ isSuccOrd β) −→ r‘‘{a} ∩ W
r f β 6= {}

unfolding wesc-rel-def by blast+
have (x,a) ∈ (Restr r1 (W α))^∗ using c1 c3 b15 by metis
moreover have ∀ β ∈ S . α <o β −→ (r1‘‘{a} ∩ W β) 6= {}
proof (intro ballI impI)

fix β
assume d1 : β ∈ S and α <o β
then obtain b where (a,b) ∈ r ∧ b ∈ W β using c4 b6 b0 b12 by blast
moreover then have b ∈ Wa using d1 b13 by blast
moreover have a ∈ Wa using c1 c3 b12 b13 by blast
ultimately have (a,b) ∈ r1 ∧ b ∈ W β using b14 by blast
then show (r1‘‘{a} ∩ W β) 6= {} by blast

qed
ultimately show ∃ a. ((x,a) ∈ (Restr r1 (W α))^∗

∧ (∀ β ∈ S . α <o β −→ (r1‘‘{a} ∩ W β) 6= {})) by blast
qed
ultimately obtain r ′ where b19 : CCR r ′ ∧ DCR 2 r ′ ∧ r ′ ⊆ r1

and ∀ a ∈ Field r1 . ∃ b ∈ Field r ′. (a,b) ∈ r1^∗
using b11 lem-cfcomp-d2uset[of κ T r1 S W R] by blast

then have b20 : r ′ ∈ U r1 unfolding U-def Span-def by blast
moreover have r1 ∈ U r
proof −

have ∀ a ∈ Field r . ∃ α ∈ S . a ∈ f α
proof

fix a
assume d1 : a ∈ Field r
obtain A where d2 : A = {α ∈ O:: ′U rel set. κ0 ≤o α ∧ α <o κ} by blast
have d3 : a ∈ f |Field r | ∧ ω-ord ≤o |Field r | using d1 b3 b2

unfolding N -def N9-def using ordLess-imp-ordLeq by blast
moreover have Card-order |Field r | by simp

ultimately have ¬ (|Field r | = {} ∨ isSuccOrd |Field r |) using lem-card-inf-lim
by blast

moreover have |Field r | ≤o |Field r | by simp
ultimately have (∇ f |Field r |) = {} using b3 unfolding N -def N2-def

by blast
then have f |Field r | ⊆ L f |Field r | unfolding Dbk-def by blast
then obtain γ where d4 : γ <o κ ∧ a ∈ f γ using d3 b0 unfolding L-def

by blast
have ∃ α ∈ A. a ∈ f α
proof (cases κ0 ≤o γ)

assume κ0 ≤o γ
then have nord γ ∈ A ∧ nord γ =o γ using d4 d2 lem-nord-le-r lem-nord-ls-l

lem-nord-r lem-nordO-le-r ordLess-Well-order-simp by blast

253

moreover then have f (nord γ) = f γ using b3 unfolding N -def by
blast

ultimately have nord γ ∈ A ∧ a ∈ f (nord γ) using d4 by blast
then show ?thesis by blast

next
assume ¬ κ0 ≤o γ
moreover have Well-order κ0 ∧ Well-order γ

using d4 b5 natLeq-Well-order ordLess-Well-order-simp by blast
ultimately have γ ≤o κ0 using ordLeq-total by blast
moreover have κ0 <o κ using b0 b2 b5 by blast
moreover then obtain α0 :: ′U rel where κ0 =o α0 ∧ α0 <o κ

using internalize-ordLess[of κ0 κ] by blast
ultimately have γ ≤o α0 ∧ κ0 ≤o α0 ∧ α0 <o κ

using ordLeq-ordIso-trans ordIso-iff-ordLeq by blast
then have γ ≤o nord α0 ∧ κ0 ≤o nord α0 ∧ nord α0 <o κ ∧ nord α0 ∈

O
using lem-nord-le-r lem-nord-le-r lem-nord-ls-l lem-nordO-le-r

ordLess-Well-order-simp by blast
moreover then have f γ ⊆ f (nord α0)

using b3 b0 ordLess-imp-ordLeq unfolding N -def N1-def by blast
ultimately have a ∈ f (nord α0) ∧ nord α0 ∈ A using d4 d2 by blast
then show ?thesis by blast

qed
then obtain α α ′ where α ′ ∈ S ∧ α ≤o α ′ ∧ α ∈ A ∧ a ∈ f α using d2

b17 by blast
moreover then have α ′ ≤o |Field r | using b6 b0 using ordLess-imp-ordLeq

by blast
ultimately have α ′ ∈ S ∧ a ∈ f α ′ using b3 b0 b0 unfolding N -def N1-def

by blast
then show ∃ α ∈ S . a ∈ f α by blast

qed
moreover have ∀ α ∈ S . f α ⊆ dncl r (Field r1)
proof

fix α
assume d1 : α ∈ S
show f α ⊆ dncl r (Field r1)
proof

fix a
assume a ∈ f α
moreover have f α ∈ SF r using d1 b0 b3 b6

unfolding N -def N5-def using ordLess-imp-ordLeq by blast
ultimately have a ∈ Field (Restr r (f α)) unfolding SF-def by blast
moreover have Restr r (W r f α) ∈ U (Restr r (f α)) using d1 b16 by

blast
ultimately obtain b where b ∈ Field (Restr r (W r f α)) ∧ (a, b) ∈

(Restr r (f α))^∗
unfolding U-def by blast

then have b ∈ W r f α ∧ (a,b) ∈ r^∗
unfolding Field-def using rtrancl-mono[of Restr r (f α) r] by blast

254

moreover then have b ∈ Field r1 using d1 b12 b18 by blast
ultimately show a ∈ dncl r (Field r1) unfolding dncl-def by blast

qed
qed
ultimately have ∀ a ∈ Field r . ∃ b ∈ Field r1 . (a, b) ∈ r^∗ unfolding

dncl-def by blast
moreover have CCR r1 using b20 lem-rcc-uset-ne-ccr by blast
moreover have r1 ⊆ r using b14 by blast
ultimately show r1 ∈ U r unfolding U-def by blast

qed
ultimately have r ′ ∈ U r using lem-rcc-uset-tr by blast
then show DCR 3 r using b19 lem-Ldo-uset-reduc[of r ′ r 2] by simp

qed

lemma lem-dc3-ccr-scf-lewsuc:
fixes r :: ′U rel
assumes a1 : CCR r and a2 : |Field r | ≤o cardSuc |UNIV ::nat set|
shows DCR 3 r
proof (cases scf r ≤o ω-ord)

assume scf r ≤o ω-ord
then have DCR 2 r using a1 lem-dc2-ccr-scf-lew by blast
moreover have r ∈ U r using a1 unfolding U-def by blast
ultimately show DCR 3 r using lem-Ldo-uset-reduc[of r r 2] by simp

next
assume ¬ (scf r ≤o ω-ord)
then have ω-ord <o |Field r | using lem-scf-relfldcard-bnd lem-scf-inf

by (metis ordIso-iff-ordLeq ordLeq-iff-ordLess-or-ordIso ordLeq-transitive)
then have |UNIV ::nat set| <o |Field r | using card-of-nat ordIso-ordLess-trans

by blast
then have cardSuc |UNIV ::nat set| ≤o |Field r | by (meson cardSuc-ordLess-ordLeq

card-of-Card-order)
then have b0 : |Field r | =o cardSuc |UNIV ::nat set| using a2

using not-ordLeq-ordLess ordLeq-iff-ordLess-or-ordIso by blast
obtain r1 where b1 : r1 = r ∪ {(x,y). x = y ∧ x ∈ Field r} by blast
have b2 : Field r1 = Field r using b1 unfolding Field-def by blast
have r ∈ U r1 using b1 b2 a1 unfolding U-def by blast
then have b3 : CCR r1 using lem-rcc-uset-ne-ccr [of r1] by blast
have (¬ (scf r1 ≤o ω-ord)) −→ scf r1 =o |Field r1 |
proof

assume ¬ (scf r1 ≤o ω-ord)
then have ω-ord <o scf r1

using lem-scf-inf by (metis ordIso-iff-ordLeq ordLeq-iff-ordLess-or-ordIso)
then have |UNIV ::nat set| <o scf r1 ∧ Card-order (scf r1)

using lem-scf-cardord by (metis card-of-nat ordIso-ordLess-trans)
then have cardSuc |UNIV ::nat set| ≤o scf r1 by (meson cardSuc-ordLess-ordLeq

card-of-Card-order)
then have |Field r1 | ≤o scf r1 using b0 b2 by (metis ordIso-ordLeq-trans)
then show scf r1 =o |Field r1 | using lem-scf-relfldcard-bnd[of r1]

by (metis not-ordLeq-ordLess ordLeq-iff-ordLess-or-ordIso)

255

qed
moreover have scf r1 ≤o ω-ord −→ DCR 3 r1
proof

assume scf r1 ≤o ω-ord
then have DCR 2 r1 using b3 lem-dc2-ccr-scf-lew by blast
moreover have r1 ∈ U r1 using b3 unfolding U-def by blast
ultimately show DCR 3 r1 using lem-Ldo-uset-reduc[of r1 r1 2] by simp

qed
moreover have scf r1 =o |Field r1 | −→ DCR 3 r1
proof

assume scf r1 =o |Field r1 |
moreover have Refl r1 using b1 unfolding refl-on-def Field-def by force
ultimately show DCR 3 r1 using b0 b2 b3 lem-dc3-ccr-refl-scf-wsuc[of r1]

by simp
qed
ultimately have DCR 3 r1 by blast
moreover have

∧
n. n 6= 0 =⇒ DCR n r1 =⇒ DCR n r using b1 lem-Ldo-eqid

by blast
ultimately show DCR 3 r by force

qed

lemma lem-Cprf-conf-ccr-decomp:
fixes r :: ′U rel
assumes confl-rel r
shows ∃ S ::(′U rel set). (∀ s∈S . CCR s) ∧ (r =

⋃
S) ∧ (∀ s1∈S . ∀ s2∈S . s1 6=

s2 −→ Field s1 ∩ Field s2 = {})
proof −

obtain D where b1 : D = { D. ∃ x ∈ Field r . D = (r^<−>∗) ‘‘ {x} } by blast
obtain S where b2 : S = { s. ∃ D ∈ D. s = Restr r D } by blast
have r =

⋃
S

proof
show r ⊆

⋃
S

proof
fix a b
assume d1 : (a,b) ∈ r
then have a ∈ Field r unfolding Field-def by blast
moreover obtain D where d2 : D = (r^<−>∗) ‘‘ {a} by blast
ultimately have D ∈ D using b1 by blast
moreover then have (a,b) ∈ Restr r D using d1 d2 by blast
ultimately show (a,b) ∈

⋃
S using b2 by blast

qed
next

show
⋃

S ⊆ r using b2 by blast
qed
moreover have ∀ s1∈S . ∀ s2∈S . Field s1 ∩ Field s2 6= {} −→ s1 = s2
proof (intro ballI impI)

fix s1 s2
assume s1 ∈ S and s2 ∈ S and Field s1 ∩ Field s2 6= {}
moreover then obtain D1 D2 where c1 : D1 ∈ D ∧ D2 ∈ D ∧ s1 = Restr

256

r D1 ∧ s2 = Restr r D2 using b2 by blast
ultimately have c2 : D1 ∩ D2 6= {} unfolding Field-def by blast
obtain a b c where c3 : c ∈ D1 ∩ D2 ∧ D1 = (r^<−>∗) ‘‘ {a} ∧ D2 =

(r^<−>∗) ‘‘ {b} using b1 c1 c2 by blast
then have (a,c) ∈ r^<−>∗ ∧ (b,c) ∈ r^<−>∗ by blast

then have (a,b) ∈ r^<−>∗ by (metis conversion-inv conversion-rtrancl rtrancl.intros(2))
moreover have equiv UNIV (r^<−>∗) unfolding equiv-def by (metis con-

version-def refl-rtrancl conversion-sym trans-rtrancl)
ultimately have D1 = D2 using c3 equiv-class-eq by simp
then show s1 = s2 using c1 by blast

qed
moreover have ∀ s∈S . CCR s
proof

fix s
assume s ∈ S
then obtain D where c1 : D ∈ D ∧ s = Restr r D using b2 by blast
then obtain x where c2 : x ∈ Field r ∧ D = (r^<−>∗) ‘‘ {x} using b1 by

blast
have c3 : r ‘‘ D ⊆ D
proof

fix b
assume b ∈ r ‘‘ D
then obtain a where d1 : a ∈ D ∧ (a,b) ∈ r by blast
then have (x,a) ∈ r^<−>∗ using c2 by blast
then have (x,b) ∈ r^<−>∗ using d1
by (metis conversionI ′ conversion-rtrancl rtrancl.rtrancl-into-rtrancl rtrancl.rtrancl-refl)
then show b ∈ D using c2 by blast

qed
have c4 : r^∗ ∩ (D × (UNIV :: ′U set)) ⊆ s^∗
proof −

have ∀ n. ∀ a b. (a,b) ∈ r^^n ∧ a ∈ D −→ (a,b) ∈ s^∗
proof

fix n0
show ∀ a b. (a,b) ∈ r^^n0 ∧ a ∈ D −→ (a,b) ∈ s^∗
proof (induct n0)

show ∀ a b. (a,b) ∈ r^^0 ∧ a ∈ D −→ (a,b) ∈ s^∗ by simp
next

fix n
assume f1 : ∀ a b. (a,b) ∈ r^^n ∧ a ∈ D −→ (a,b) ∈ s^∗
show ∀ a b. (a,b) ∈ r^^(Suc n) ∧ a ∈ D −→ (a,b) ∈ s^∗
proof (intro allI impI)

fix a b
assume g1 : (a,b) ∈ r^^(Suc n) ∧ a ∈ D
moreover then obtain c where g2 : (a,c) ∈ r^^n ∧ (c,b) ∈ r by force
ultimately have g3 : (a,c) ∈ s^∗ using f1 by blast
have c ∈ D using c2 g1 g2

by (metis Image-singleton-iff conversionI ′ conversion-rtrancl relpow-imp-rtrancl
rtrancl.rtrancl-into-rtrancl)

then have (c,b) ∈ s using c1 c3 g2 by blast

257

then show (a,b) ∈ s^∗ using g3 by (meson rtrancl.rtrancl-into-rtrancl)
qed

qed
qed
then show ?thesis using rtrancl-power by blast

qed
have ∀ a ∈ Field s. ∀ b ∈ Field s. ∃ c ∈ Field s. (a,c) ∈ s^∗ ∧ (b,c) ∈ s^∗
proof (intro ballI)

fix a b
assume d1 : a ∈ Field s and d2 : b ∈ Field s
then have d3 : a ∈ D ∧ b ∈ D using c1 unfolding Field-def by blast
then have (x,a) ∈ r^<−>∗ ∧ (x,b) ∈ r^<−>∗ using c2 by blast

then have (a,b) ∈ r^<−>∗ by (metis conversion-inv conversion-rtrancl
rtrancl.rtrancl-into-rtrancl)

moreover have CR r using assms unfolding confl-rel-def Abstract-Rewriting.CR-on-def
by blast

ultimately obtain c where (a,c) ∈ r^∗ ∧ (b,c) ∈ r^∗
by (metis Abstract-Rewriting.CR-imp-conversionIff-join Abstract-Rewriting.joinD)
then have (a,c) ∈ s^∗ ∧ (b,c) ∈ s^∗ using c4 d3 by blast
moreover then have c ∈ Field s using d1 unfolding Field-def by (metis

Range.intros Un-iff rtrancl.cases)
ultimately show ∃ c ∈ Field s. (a,c) ∈ s^∗ ∧ (b,c) ∈ s^∗ by blast

qed
then show CCR s unfolding CCR-def by blast

qed
ultimately show ?thesis by blast

qed

lemma lem-Cprf-dc-disj-fld-un:
fixes S :: ′U rel set and n::nat
assumes a1 : ∀ s1∈S . ∀ s2∈S . s1 6=s2 −→ Field s1 ∩ Field s2 = {}

and a2 : ∀ s∈S . DCR n s
shows DCR n (

⋃
S)

proof −
obtain gi:: ′U rel ⇒ nat ⇒ ′U rel

where b1 : gi = (λ s. (SOME g. DCR-generating g ∧ s =
⋃
{r ′. ∃α ′<n. r ′ =

g α ′})) by blast
obtain ga where b2 : ga = (λ α. if (α < n) then

⋃
s∈S . gi s α else {}) by blast

have b3 :
∧

s. s ∈ S =⇒ DCR-generating (gi s) ∧ s =
⋃
{r ′. ∃α ′<n. r ′ = gi s

α ′}
proof −

fix s
assume s ∈ S
then obtain g where DCR-generating g ∧ s =

⋃
{r ′. ∃α ′<n. r ′ = g α ′}

using a2 unfolding DCR-def by force
then show DCR-generating (gi s) ∧ s =

⋃
{r ′. ∃α ′<n. r ′ = gi s α ′}

using b1 someI-ex[of λ g. DCR-generating g ∧ s =
⋃
{r ′. ∃α ′<n. r ′ = g α ′}]

by blast
qed

258

have ∀α β a b c. (a, b) ∈ ga α ∧ (a, c) ∈ ga β −→
(∃ b ′ b ′′ c ′ c ′′ d. (b, b ′, b ′′, d) ∈ D ga α β ∧ (c, c ′, c ′′, d) ∈ D ga β α)

proof (intro allI impI)
fix α β a b c
assume c1 : (a, b) ∈ ga α ∧ (a, c) ∈ ga β
moreover have α < n using c1 b2 by (cases α<n, simp+)
moreover have β < n using c1 b2 by (cases β<n, simp+)
ultimately obtain s1 s2 where c2 : α < n ∧ s1 ∈ S ∧ (a,b) ∈ gi s1 α

and c3 : β < n ∧ s2 ∈ S ∧ (a,c) ∈ gi s2 β using c1 b2
by fastforce

then have (a,b) ∈ s1 ∧ (a,c) ∈ s2 using b3 by blast
then have s1 = s2 using c2 c3 a1 unfolding Field-def by blast
then obtain b ′ b ′′ c ′ c ′′ d

where c4 : (b, b ′, b ′′, d) ∈ D (gi s1) α β and c5 : (c, c ′, c ′′, d) ∈ D (gi s1)
β α

using c2 c3 b3 [of s1] unfolding DCR-generating-def by blast
have (b, b ′, b ′′, d) ∈ D ga α β
proof −

have d1 : (b, b ′) ∈ (L1 (gi s1) α)^∗ ∧ (b ′, b ′′) ∈ (gi s1 β)^= ∧ (b ′′, d) ∈ (Lv
(gi s1) α β)^∗

using c4 unfolding D-def by blast
have L1 (gi s1) α ⊆ L1 ga α
proof

fix p
assume p ∈ L1 (gi s1) α
then obtain γ where γ < α ∧ p ∈ gi s1 γ unfolding L1-def by blast
moreover then have p ∈ ga γ using c2 b2 by fastforce
ultimately show p ∈ L1 ga α unfolding L1-def by blast

qed
then have d2 : (b, b ′) ∈ (L1 ga α)^∗ using d1 rtrancl-mono by blast
have gi s1 β ⊆ ga β using c2 c3 b2 by fastforce
then have d3 : (b ′, b ′′) ∈ (ga β)^= using d1 by blast
have Lv (gi s1) α β ⊆ Lv ga α β
proof

fix p
assume p ∈ Lv (gi s1) α β
then obtain γ where (γ < α ∨ γ < β) ∧ p ∈ gi s1 γ unfolding Lv-def

by blast
moreover then have p ∈ ga γ using c2 c3 b2 by fastforce
ultimately show p ∈ Lv ga α β unfolding Lv-def by blast

qed
then have (b ′′, d) ∈ (Lv ga α β)^∗ using d1 rtrancl-mono by blast
then show ?thesis using d2 d3 unfolding D-def by blast

qed
moreover have (c, c ′, c ′′, d) ∈ D ga β α
proof −
have d1 : (c, c ′) ∈ (L1 (gi s1) β)^∗ ∧ (c ′, c ′′) ∈ (gi s1 α)^= ∧ (c ′′, d) ∈ (Lv

(gi s1) β α)^∗
using c5 unfolding D-def by blast

259

have L1 (gi s1) β ⊆ L1 ga β
proof

fix p
assume p ∈ L1 (gi s1) β
then obtain γ where γ < β ∧ p ∈ gi s1 γ unfolding L1-def by blast
moreover then have p ∈ ga γ using c2 c3 b2 by fastforce
ultimately show p ∈ L1 ga β unfolding L1-def by blast

qed
then have d2 : (c, c ′) ∈ (L1 ga β)^∗ using d1 rtrancl-mono by blast
have gi s1 α ⊆ ga α using c2 b2 by fastforce
then have d3 : (c ′, c ′′) ∈ (ga α)^= using d1 by blast
have Lv (gi s1) β α ⊆ Lv ga β α
proof

fix p
assume p ∈ Lv (gi s1) β α
then obtain γ where (γ < β ∨ γ < α) ∧ p ∈ gi s1 γ unfolding Lv-def

by blast
moreover then have p ∈ ga γ using c2 c3 b2 by fastforce
ultimately show p ∈ Lv ga β α unfolding Lv-def by blast

qed
then have (c ′′, d) ∈ (Lv ga β α)^∗ using d1 rtrancl-mono by blast
then show ?thesis using d2 d3 unfolding D-def by blast

qed
ultimately show ∃ b ′ b ′′ c ′ c ′′ d. (b, b ′, b ′′, d) ∈ D ga α β ∧ (c, c ′, c ′′, d) ∈

D ga β α by blast
qed
then have DCR-generating ga unfolding DCR-generating-def by blast
moreover have

⋃
S =

⋃
{r ′. ∃α ′<n. r ′ = ga α ′}

proof
show

⋃
S ⊆

⋃
{r ′. ∃α ′<n. r ′ = ga α ′}

proof
fix p
assume p ∈

⋃
S

then obtain s where s ∈ S ∧ p ∈ s by blast
moreover then obtain α where α<n ∧ p ∈ gi s α using b3 by blast
ultimately have α<n ∧ p ∈ ga α using b2 by force
then show p ∈

⋃
{r ′. ∃α ′<n. r ′ = ga α ′} by blast

qed
next

show
⋃
{r ′. ∃α ′<n. r ′ = ga α ′} ⊆

⋃
S

proof
fix p
assume p ∈

⋃
{r ′. ∃α ′<n. r ′ = ga α ′}

then obtain α where α<n ∧ p ∈ ga α by blast
moreover then obtain s where s ∈ S ∧ p ∈ gi s α using b2 by force
ultimately have s ∈ S ∧ p ∈ s using b3 by blast
then show p ∈

⋃
S by blast

qed
qed

260

ultimately show ?thesis unfolding DCR-def by blast
qed

lemma lem-dc3-to-d3 :
fixes r :: ′U rel
assumes DCR 3 r
shows DCR3 r
proof −

obtain g where b1 : DCR-generating g and b2 : r =
⋃
{r ′. ∃α ′<3 . r ′ = g α ′}

using assms unfolding DCR-def by blast
have ∀ α::nat. α<2 ←→ α = 0 ∨ α = 1 by force
then have b3 : L1 g 0 = {} ∧ L1 g 1 = g 0 ∧ L1 g 2 = g 0 ∪ g 1
∧ Lv g 0 0 = {} ∧ Lv g 1 0 = g 0 ∧ Lv g 0 1 = g 0 ∧ Lv g 1 1 = g 0
∧ Lv g 2 0 = g 0 ∪ g 1 ∧ Lv g 2 1 = g 0 ∪ g 1
∧ Lv g 2 2 = g 0 ∪ g 1 ∧ Lv g 0 2 = g 0 ∪ g 1 ∧ Lv g 1 2 = g 0 ∪ g 1

unfolding L1-def Lv-def by (simp-all, blast+)
have r = (g 0) ∪ (g 1) ∪ (g 2)
proof

show r ⊆ (g 0) ∪ (g 1) ∪ (g 2)
proof

fix p
assume p ∈ r
then obtain α where p ∈ g α ∧ α < 3 using b2 by blast
moreover have ∀ α::nat. α<3 ←→ α = 0 ∨ α = 1 ∨ α = 2 by force
ultimately show p ∈ (g 0) ∪ (g 1) ∪ (g 2) by force

qed
next

have (0 ::nat) < (3 ::nat) ∧ (1 ::nat) < (3 ::nat) ∧ (2 ::nat) < (3 ::nat) by simp
then show (g 0) ∪ (g 1) ∪ (g 2) ⊆ r using b2 by blast

qed
moreover have ∀ a b c. (a,b) ∈ (g 0) ∧ (a,c) ∈ (g 0) −→ jn00 (g 0) b c
proof (intro allI impI)

fix a b c
assume (a,b) ∈ (g 0) ∧ (a,c) ∈ (g 0)
then obtain b ′ b ′′ c ′ c ′′ d where (b, b ′, b ′′, d) ∈ D g 0 0 ∧ (c, c ′, c ′′, d) ∈

D g 0 0
using b1 unfolding DCR-generating-def by blast

then show jn00 (g 0) b c unfolding jn00-def D-def L1-def Lv-def by force
qed
moreover have ∀ a b c. (a,b) ∈ (g 0) ∧ (a,c) ∈ (g 1) −→ jn01 (g 0) (g 1) b c
proof (intro allI impI)

fix a b c
assume (a,b) ∈ (g 0) ∧ (a,c) ∈ (g 1)
then obtain b ′ b ′′ c ′ c ′′ d where
(b, b ′, b ′′, d) ∈ D g 0 1 ∧ (c, c ′, c ′′, d) ∈ D g 1 0

using b1 unfolding DCR-generating-def by blast
then show jn01 (g 0) (g 1) b c unfolding jn01-def D-def L1-def Lv-def by

force
qed

261

moreover have ∀ a b c. (a,b) ∈ (g 1) ∧ (a,c) ∈ (g 1) −→ jn11 (g 0) (g 1) b c
proof (intro allI impI)

fix a b c
assume (a,b) ∈ (g 1) ∧ (a,c) ∈ (g 1)
then obtain b ′ b ′′ c ′ c ′′ d where (b, b ′, b ′′, d) ∈ D g 1 1 ∧ (c, c ′, c ′′, d) ∈

D g 1 1
using b1 unfolding DCR-generating-def by blast

then show jn11 (g 0) (g 1) b c unfolding jn11-def D-def
apply (simp only: b3)
by blast

qed
moreover have ∀ a b c. (a,b) ∈ (g 0) ∧ (a,c) ∈ (g 2) −→ jn02 (g 0) (g 1) (g

2) b c
proof (intro allI impI)

fix a b c
assume (a,b) ∈ (g 0) ∧ (a,c) ∈ (g 2)
then obtain b ′ b ′′ c ′ c ′′ d where c1 : (b, b ′, b ′′, d) ∈ D g 0 2 ∧ (c, c ′, c ′′, d)

∈ D g 2 0
using b1 unfolding DCR-generating-def by blast

then have (c, c ′) ∈ (g 0 ∪ g 1)^∗ ∧ (c ′,c ′′) ∈ (g 0)^= ∧ (c ′′,d) ∈ (g 0 ∪ g
1)^∗

unfolding D-def by (simp add: b3)
moreover then have (c ′,c ′′) ∈ (g 0 ∪ g 1)^∗ by blast
ultimately have (c, d) ∈ (g 0 ∪ g 1)^∗ by force
then show jn02 (g 0) (g 1) (g 2) b c

using c1 unfolding jn02-def D-def
apply (simp add: b3)
by blast

qed
moreover have ∀ a b c. (a,b) ∈ (g 1) ∧ (a,c) ∈ (g 2) −→ jn12 (g 0) (g 1) (g

2) b c
proof (intro allI impI)

fix a b c
assume (a,b) ∈ (g 1) ∧ (a,c) ∈ (g 2)
then obtain b ′ b ′′ c ′ c ′′ d where c1 : (b, b ′, b ′′, d) ∈ D g 1 2 ∧ (c, c ′, c ′′, d)

∈ D g 2 1
using b1 unfolding DCR-generating-def by blast

then have (c, c ′) ∈ (g 0 ∪ g 1)^∗ ∧ (c ′,c ′′) ∈ (g 1)^= ∧ (c ′′,d) ∈ (g 0 ∪ g
1)^∗

unfolding D-def apply (simp only: b3)
by blast

moreover then have (c ′,c ′′) ∈ (g 0 ∪ g 1)^∗ by blast
ultimately have (c, d) ∈ (g 0 ∪ g 1)^∗ by force
then show jn12 (g 0) (g 1) (g 2) b c

using c1 unfolding jn12-def D-def apply (simp only: b3)
by blast

qed
moreover have ∀ a b c. (a,b) ∈ (g 2) ∧ (a,c) ∈ (g 2) −→ jn22 (g 0) (g 1) (g

2) b c

262

proof (intro allI impI)
fix a b c
assume (a,b) ∈ (g 2) ∧ (a,c) ∈ (g 2)
then obtain b ′ b ′′ c ′ c ′′ d where c1 : (b, b ′, b ′′, d) ∈ D g 2 2 ∧ (c, c ′, c ′′, d)

∈ D g 2 2
using b1 unfolding DCR-generating-def by blast

then show jn22 (g 0) (g 1) (g 2) b c
unfolding jn22-def D-def apply (simp only: b3)
by blast

qed
ultimately have LD3 r (g 0) (g 1) (g 2) unfolding LD3-def by blast
then show ?thesis unfolding DCR3-def by blast

qed

lemma lem-dc3-confl-lewsuc:
fixes r :: ′U rel
assumes a1 : confl-rel r and a2 : |Field r | ≤o cardSuc |UNIV ::nat set|
shows DCR 3 r
proof −

obtain S where b1 : r =
⋃

S
and b2 : ∀ s1 ∈ S . ∀ s2 ∈ S . s1 6= s2 −→ Field s1 ∩ Field s2 = {}
and b3 : ∀ s ∈ S . CCR s using a1 lem-Cprf-conf-ccr-decomp[of r] by

blast
have ∀ s∈S . DCR 3 s
proof

fix s
assume s ∈ S
then have CCR s ∧ Field s ⊆ Field r using b1 b3 unfolding Field-def by

blast
moreover then have |Field s| ≤o |Field r | by simp
ultimately have CCR s ∧ |Field s| ≤o cardSuc |UNIV ::nat set| using a2

ordLeq-transitive by blast
then show DCR 3 s using lem-dc3-ccr-scf-lewsuc by blast

qed
then show DCR 3 r using b1 b2 lem-Cprf-dc-disj-fld-un[of S] by blast

qed

lemma lem-cle-eqdef : |A| ≤o |B| = (∃ g . A ⊆ g‘B)
by (metis surj-imp-ordLeq card-of-ordLeq2 empty-subsetI order-refl)

lemma lem-cardLeN1-eqdef :
fixes A:: ′a set
shows cardLeN1 A = (|A| ≤o cardSuc |{n::nat . True}|)
proof

assume b1 : cardLeN1 A
obtain κ where b2 : κ = cardSuc |UNIV ::nat set| by blast
have cardSuc |UNIV ::nat set| <o |A| −→ False
proof

assume cardSuc |UNIV ::nat set| <o |A|

263

then have c1 : κ <o |A| ∧ |Field κ| =o κ using b2 by simp
then have |Field κ| ≤o |A| using ordIso-ordLess-trans ordLess-imp-ordLeq by

blast
then obtain B where c2 : B ⊆ A ∧ |Field κ| =o |B|

using internalize-card-of-ordLeq2 [of Field κ A] by blast
moreover have |UNIV ::nat set| <o κ using b2 by simp
ultimately have c3 : B ⊆ A ∧ |UNIV ::nat set| <o |B|
using c1 by (meson ordIso-imp-ordLeq ordIso-symmetric ordLess-ordLeq-trans)
then obtain C where c4 : C ⊆ B ∧ |UNIV ::nat set| =o |C |
using internalize-card-of-ordLeq2 [of UNIV ::nat set B] ordLess-imp-ordLeq by

blast
obtain c where c ∈ C using c4 using card-of-empty2 by fastforce
moreover obtain D where c5 : D = C − {c} by blast
ultimately have c6 : C = D ∪ {c} by blast
have ¬ finite D using c4 c5 using card-of-ordIso-finite by force

moreover then have |{c}| ≤o |D| by (metis card-of-singl-ordLeq finite.emptyI)
ultimately have |C | ≤o |D| using c6 using card-of-Un-infinite ordIso-imp-ordLeq

by blast
then obtain f where C ⊆ f ‘ D by (metis card-of-ordLeq2 empty-subsetI

order-refl)
moreover have D ⊂ C ∧ C ⊆ B ∧ B ⊆ A using c3 c4 c5 c6 by blast
ultimately have (∃ f . B ⊆ f ‘ C) ∨ (∃ g. A ⊆ g‘B) using b1 unfolding

cardLeN1-def by metis
moreover have (∃ f . B ⊆ f ‘ C) −→ False
proof

assume ∃ f . B ⊆ f ‘ C
then obtain f where B ⊆ f ‘ C by blast
then have |B| ≤o |f‘C | by simp
moreover have |f‘C | ≤o |C | by simp
ultimately have |B| ≤o |C | using ordLeq-transitive by blast
then show False using c3 c4 not-ordLess-ordIso ordLess-ordLeq-trans by

blast
qed
moreover have (∃ g. A ⊆ g‘B) −→ False
proof

assume ∃ g. A ⊆ g‘B
then obtain g where A ⊆ g‘B by blast
then have |A| ≤o |g‘B| by simp
moreover have |g‘B| ≤o |B| by simp
ultimately have |A| ≤o |B| using ordLeq-transitive by blast
then show False using c1 c2

by (metis BNF-Cardinal-Order-Relation.ordLess-Field not-ordLess-ordIso
ordLess-ordLeq-trans)

qed
ultimately show False by blast

qed
then show |A| ≤o cardSuc |{n::nat . True}| by simp

next
assume |A| ≤o cardSuc |{n::nat . True}|

264

then have b1 : |A| ≤o cardSuc |UNIV ::nat set| by simp
have ∀ B ⊆ A. (∀ C ⊆ B . ((∃ D f . D ⊂ C ∧ C ⊆ f‘D) −→ (∃ f . B ⊆ f‘C

)))
∨ (∃ g . A ⊆ g‘B)

proof (intro allI impI)
fix B
assume B ⊆ A
show (∀ C ⊆ B . ((∃ D f . D ⊂ C ∧ C ⊆ f‘D) −→ (∃ f . B ⊆ f‘C))) ∨ (∃

g . A ⊆ g‘B)
proof (cases |B| ≤o |UNIV ::nat set|)

assume d1 : |B| ≤o |UNIV ::nat set|
have ∀ C ⊆ B . ((∃ D f . D ⊂ C ∧ C ⊆ f‘D) −→ (∃ f . B ⊆ f‘C))
proof (intro allI impI)

fix C
assume C ⊆ B and ∃ D f . D ⊂ C ∧ C ⊆ f‘D
then obtain D f where e1 : D ⊂ C ∧ C ⊆ f‘D by blast
have finite C −→ False
proof

assume finite C
moreover then have finite D using e1 finite-subset by blast
ultimately have |D| <o |C |

using e1 by (metis finite-card-of-iff-card3 psubset-card-mono)
moreover have |C | ≤o |D| using e1 using surj-imp-ordLeq by blast
ultimately show False using not-ordLeq-ordLess by blast

qed
then have |B| ≤o |C | using d1 by (metis infinite-iff-card-of-nat or-

dLeq-transitive)
then show ∃ f . B ⊆ f‘C by (metis card-of-ordLeq2 empty-subsetI order-refl)
qed
then show ?thesis by blast

next
assume ¬ |B| ≤o |UNIV ::nat set|
then have |A| ≤o |B| using b1 lem-cord-lin

by (metis cardSuc-ordLeq-ordLess card-of-Card-order ordLess-ordLeq-trans)
then have ∃ g . A ⊆ g‘B by (metis card-of-ordLeq2 empty-subsetI order-refl)
then show ?thesis by blast

qed
qed
then show cardLeN1 A unfolding cardLeN1-def by blast

qed

lemma lem-cleN1-eqdef :
fixes r ::(′U× ′U) set
shows (|r | ≤o cardSuc |{n::nat . True}|)
←→ (∀ s ⊆ r . ((∀ t ⊆ s . ((∃ t ′ f . t ′ ⊂ t ∧ t ⊆ f‘t ′) −→ (∃ f . s ⊆ f‘t)))

∨ (∃ g . r ⊆ g‘s)
))

using lem-cardLeN1-eqdef [of r] cardLeN1-def by blast

265

1.2.3 Result

The next theorem has the following meaning: if the cardinality of a confluent
binary relation r does not exceed the first uncountable cardinal, then con-
fluence of r can be proved with the help of the decreasing diagrams method
using no more than 3 labels (e.g. 0, 1, 2 ordered in the usual way).
theorem thm-main:
fixes r ::(′U× ′U) set
assumes ∀ a b c . (a,b) ∈ r^∗ ∧ (a,c) ∈ r^∗ −→ (∃ d. (b,d) ∈ r^∗ ∧ (c,d) ∈ r^∗)

and |r | ≤o cardSuc |{n::nat . True}|
shows ∃ r0 r1 r2 . (

(r = (r0 ∪ r1 ∪ r2))
∧ (∀ a b c. (a,b) ∈ r0 ∧ (a,c) ∈ r0

−→ (∃ d.
(b,d) ∈ r0^=
∧ (c,d) ∈ r0^=))

∧ (∀ a b c. (a,b) ∈ r0 ∧ (a,c) ∈ r1
−→ (∃ b ′ d.

(b,b ′) ∈ r1^= ∧ (b ′,d) ∈ r0^∗
∧ (c,d) ∈ r0^∗))

∧ (∀ a b c. (a,b) ∈ r1 ∧ (a,c) ∈ r1
−→ (∃ b ′ b ′′ c ′ c ′′ d.

(b,b ′) ∈ r0^∗ ∧ (b ′,b ′′) ∈ r1^= ∧ (b ′′,d) ∈ r0^∗
∧ (c,c ′) ∈ r0^∗ ∧ (c ′,c ′′) ∈ r1^= ∧ (c ′′,d) ∈ r0^∗))

∧ (∀ a b c. (a,b) ∈ r0 ∧ (a,c) ∈ r2
−→ (∃ b ′ d.

(b,b ′) ∈ r2^= ∧ (b ′,d) ∈ (r0 ∪ r1)^∗
∧ (c,d) ∈ (r0 ∪ r1)^∗))

∧ (∀ a b c. (a,b) ∈ r1 ∧ (a,c) ∈ r2
−→ (∃ b ′ b ′′ d.

(b,b ′) ∈ r0^∗ ∧ (b ′,b ′′) ∈ r2^= ∧ (b ′′,d) ∈ (r0 ∪ r1)^∗
∧ (c,d) ∈ (r0 ∪ r1)^∗))

∧ (∀ a b c. (a,b) ∈ r2 ∧ (a,c) ∈ r2
−→ (∃ b ′ b ′′ c ′ c ′′ d.

(b,b ′) ∈ (r0 ∪ r1)^∗ ∧ (b ′,b ′′) ∈ r2^= ∧ (b ′′,d) ∈ (r0 ∪ r1)^∗
∧ (c,c ′) ∈ (r0 ∪ r1)^∗ ∧ (c ′,c ′′) ∈ r2^= ∧ (c ′′,d) ∈ (r0 ∪ r1)^∗

))
)

proof −
have b0 : |r | ≤o cardSuc |UNIV ::nat set| using assms(2) by simp
obtain κ where b1 : κ = cardSuc |UNIV ::nat set| by blast
have |Field r | ≤o κ
proof (cases finite r)

assume finite r
then show ?thesis using b1 lem-fin-fl-rel by (metis Field-card-of Field-natLeq

cardSuc-ordLeq-ordLess
card-of-card-order-on card-of-mono2 finite-iff-ordLess-natLeq ordLess-imp-ordLeq)

next
assume ¬ finite r

266

then show ?thesis using b0 b1 lem-rel-inf-fld-card using ordIso-ordLeq-trans
by blast

qed
moreover have confl-rel r using assms(1) unfolding confl-rel-def by blast
ultimately have DCR3 r using b1 lem-dc3-confl-lewsuc[of r] lem-dc3-to-d3 by

blast
then show ?thesis unfolding DCR3-def LD3-def

jn00-def jn01-def jn02-def jn11-def jn12-def jn22-def by fast
qed

end

1.3 Optimality of the DCR3 method for proving confluence
of relations of the least uncountable cardinality

theory DCR3-Optimality
imports

HOL−Cardinals.Cardinals
Finite-DCR-Hierarchy

begin

1.3.1 Auxiliary definitions
datatype Lev = l0 | l1 | l2 | l3 | l4 | l5 | l6 | l7 | l8

type-synonym ′U rD = Lev × ′U set × ′U set × ′U set

fun rP :: Lev ⇒ ′U set ⇒ ′U set ⇒ ′U set ⇒ Lev ⇒ ′U set ⇒ ′U set ⇒ ′U set
⇒ bool
where

rP l0 A B C n ′ A ′ B ′ C ′ = (A = {} ∧ B = {} ∧ C = {} ∧ n ′ = l1 ∧ finite A ′

∧ B ′ = {} ∧ C ′ = {})
| rP l1 A B C n ′ A ′ B ′ C ′ = (finite A ∧ B = {} ∧ C = {} ∧ n ′ = l2 ∧ A ′ = A
∧ B ′ = {} ∧ C ′ = {})
| rP l2 A B C n ′ A ′ B ′ C ′ = (finite A ∧ B = {} ∧ C = {} ∧ n ′ = l3 ∧ A ′ = A
∧ finite B ′ ∧ C ′ = {})
| rP l3 A B C n ′ A ′ B ′ C ′ = (finite A ∧ finite B ∧ C = {} ∧ n ′ = l4 ∧ A ′ = A
∧ B ′ = B ∧ C ′ = {})
| rP l4 A B C n ′ A ′ B ′ C ′ = (finite A ∧ finite B ∧ C = {} ∧ n ′ = l5 ∧ A ′ = A
∧ B ′ = B ∧ finite C ′)
| rP l5 A B C n ′ A ′ B ′ C ′ = (finite A ∧ finite B ∧ finite C ∧ n ′ = l6 ∧ A ′ = A
∧ B ′ = B ∧ C ′ = C)
| rP l6 A B C n ′ A ′ B ′ C ′ = (finite A ∧ finite B ∧ finite C ∧ n ′ = l7 ∧ A ′ = A
∪ B ∪ C ∧ B ′ = A ′ ∧ C ′ = A ′)
| rP l7 A B C n ′ A ′ B ′ C ′ = (finite A ∧ B = A ∧ C = A ∧ n ′ = l8 ∧ A ′ = A ∧
B ′ = A ′ ∧ C ′ = A ′)
| rP l8 A B C n ′ A ′ B ′ C ′ = (finite A ∧ B = A ∧ C = A ∧ n ′ = l7 ∧ A ⊂ A ′ ∧
finite A ′ ∧ B ′ = A ′ ∧ C ′ = A ′)

definition rC :: ′U set ⇒ ′U set ⇒ ′U set ⇒ ′U set ⇒ bool

267

where
rC S A B C = (A ⊆ S ∧ B ⊆ S ∧ C ⊆ S)

definition rE :: ′U set ⇒ (′U rD) rel
where

rE S = { ((n1 , A1 , B1 , C1), (n2 , A2 , B2 , C2)). rP n1 A1 B1 C1 n2 A2 B2
C2 ∧ rC S A1 B1 C1 ∧ rC S A2 B2 C2 }

fun lev-next :: Lev ⇒ Lev
where

lev-next l0 = l1
| lev-next l1 = l2
| lev-next l2 = l3
| lev-next l3 = l4
| lev-next l4 = l5
| lev-next l5 = l6
| lev-next l6 = l7
| lev-next l7 = l8
| lev-next l8 = l7

fun levrd :: ′U rD ⇒ Lev
where

levrd (n, A, B, C) = n

fun wrd :: ′U rD ⇒ ′U set
where

wrd (n, A, B, C) = A ∪ B ∪ C

definition Wrd :: ′U rD set ⇒ ′U set
where

Wrd S = (
⋃

(wrd ‘ S))

definition bkset :: ′a rel ⇒ ′a set ⇒ ′a set
where

bkset r A = ((r^∗)^−1)‘‘A

1.3.2 Auxiliary lemmas
lemma lem-rtr-field: (x,y) ∈ r^∗ =⇒ (x = y) ∨ (x ∈ Field r ∧ y ∈ Field r)

by (metis Field-def Not-Domain-rtrancl Range.RangeI UnCI rtranclE)

lemma lem-fin-fl-rel: finite (Field r) = finite r
using finite-Field finite-subset trancl-subset-Field2 by fastforce

lemma lem-rel-inf-fld-card:
fixes r :: ′U rel
assumes ¬ finite r
shows |Field r | =o |r |
proof −

268

obtain f1 :: ′U × ′U ⇒ ′U where b1 : f1 = (λ (x,y). x) by blast
obtain f2 :: ′U × ′U ⇒ ′U where b2 : f2 = (λ (x,y). y) by blast
then have f1 ‘ r = Domain r ∧ f2 ‘ r = Range r using b1 b2 by force
then have b3 : |Domain r | ≤o |r | ∧ |Range r | ≤o |r |

using card-of-image[of f1 r] card-of-image[of f2 r] by simp
have |Domain r | ≤o |Range r | ∨ |Range r | ≤o |Domain r | by (simp add: or-

dLeq-total)
moreover have |Domain r | ≤o |Range r | −→ |Field r | ≤o |r |
proof

assume c1 : |Domain r | ≤o |Range r |
moreover have finite (Domain r) ∧ finite (Range r) −→ finite (Field r)

unfolding Field-def by blast
ultimately have ¬ finite (Range r)

using assms lem-fin-fl-rel card-of-ordLeq-finite by blast
then have |Field r | =o |Range r | using c1 card-of-Un-infinite unfolding

Field-def by blast
then show |Field r | ≤o |r | using b3 ordIso-ordLeq-trans by blast

qed
moreover have |Range r | ≤o |Domain r | −→ |Field r | ≤o |r |
proof

assume c1 : |Range r | ≤o |Domain r |
moreover have finite (Domain r) ∧ finite (Range r) −→ finite (Field r)

unfolding Field-def by blast
ultimately have ¬ finite (Domain r)

using assms lem-fin-fl-rel card-of-ordLeq-finite by blast
then have |Field r | =o |Domain r | using c1 card-of-Un-infinite unfolding

Field-def by blast
then show |Field r | ≤o |r | using b3 ordIso-ordLeq-trans by blast

qed
ultimately have |Field r | ≤o |r | by blast
moreover have |r | ≤o |Field r |
proof −

have r ⊆ (Field r) × (Field r) unfolding Field-def by force
then have c1 : |r | ≤o |Field r × Field r | by simp
have ¬ finite (Field r) using assms lem-fin-fl-rel by blast
then have c2 : |Field r × Field r | =o |Field r | by simp
show ?thesis using c1 c2 using ordLeq-ordIso-trans by blast

qed
ultimately show ?thesis using ordIso-iff-ordLeq by blast

qed

lemma lem-confl-field: confl-rel r = (∀ a ∈ Field r . ∀ b ∈ Field r . ∀ c ∈ Field r .
(a,b) ∈ r^∗ ∧ (a,c) ∈ r^∗ −→

(∃ d ∈ Field r . (b,d) ∈ r^∗ ∧ (c,d) ∈ r^∗))
proof

assume b1 : confl-rel r
show ∀ a ∈ Field r . ∀ b ∈ Field r . ∀ c ∈ Field r . (a,b) ∈ r^∗ ∧ (a,c) ∈ r^∗ −→

(∃ d ∈ Field r . (b,d) ∈ r^∗ ∧ (c,d) ∈ r^∗)

269

proof (intro ballI impI)
fix a b c
assume c1 : a ∈ Field r and c2 : b ∈ Field r and c3 : c ∈ Field r and c4 : (a,b)

∈ r^∗ ∧ (a,c) ∈ r^∗
obtain d where (b,d) ∈ r^∗ ∧ (c,d) ∈ r^∗ using b1 c4 unfolding confl-rel-def

by blast
moreover then have d ∈ Field r using c2 using lem-rtr-field by fastforce
ultimately show ∃ d ∈ Field r . (b,d) ∈ r^∗ ∧ (c,d) ∈ r^∗ by blast

qed
next

assume b1 : ∀ a ∈ Field r . ∀ b ∈ Field r . ∀ c ∈ Field r . (a,b) ∈ r^∗ ∧ (a,c) ∈
r^∗ −→

(∃ d ∈ Field r . (b,d) ∈ r^∗ ∧ (c,d) ∈ r^∗)
have ∀ a b c. (a, b) ∈ r^∗ ∧ (a, c) ∈ r^∗ −→ (∃ d. (b, d) ∈ r^∗ ∧ (c, d) ∈ r^∗)
proof (intro allI impI)

fix a b c
assume (a, b) ∈ r^∗ ∧ (a, c) ∈ r^∗
moreover then have a /∈ Field r ∨ b /∈ Field r ∨ c /∈ Field r −→ a = b ∨ a

= c by (meson lem-rtr-field)
ultimately show ∃ d. (b, d) ∈ r^∗ ∧ (c, d) ∈ r^∗ using b1 by blast

qed
then show confl-rel r unfolding confl-rel-def by blast

qed

lemma lem-d2-to-dc2 :
fixes r :: ′U rel
assumes DCR2 r
shows DCR 2 r
proof −

obtain r0 r1 where b1 : r = r0 ∪ r1
and b2 : ∀ a b c. (a,b) ∈ r0 ∧ (a,c) ∈ r0 −→ jn00 r0 b c
and b3 : ∀ a b c. (a,b) ∈ r0 ∧ (a,c) ∈ r1 −→ jn01 r0 r1 b c
and b4 : ∀ a b c. (a,b) ∈ r1 ∧ (a,c) ∈ r1 −→ jn11 r0 r1 b c

using assms unfolding DCR2-def LD2-def by blast
obtain g::nat ⇒ ′U rel

where b5 : g = (λ α::nat. if α = 0 then r0 else (if α = 1 then r1 else {})) by
blast

have b6 : g 0 = r0 ∧ g 1 = r1 using b5 by simp
have b7 : ∀ n. (¬ (n = 0 ∨ n = 1)) −→ g n = {} using b5 by simp
have ∀α β a b c. (a, b) ∈ g α ∧ (a, c) ∈ g β −→

(∃ b ′ b ′′ c ′ c ′′ d. (b, b ′, b ′′, d) ∈ D g α β ∧ (c, c ′, c ′′, d) ∈ D g β α)
proof (intro allI impI)

fix α β a b c
assume c1 : (a, b) ∈ g α ∧ (a, c) ∈ g β
then have c2 : (α = 0 ∨ α = 1) ∧ (β = 0 ∨ β = 1) using b7 by blast
show ∃ b ′ b ′′ c ′ c ′′ d. (b, b ′, b ′′, d) ∈ D g α β ∧ (c, c ′, c ′′, d) ∈ D g β α
proof −

have α = 0 ∧ β = 0 −→ ?thesis
proof

270

assume e1 : α = 0 ∧ β = 0
then have jn00 r0 b c using c1 b2 b6 by blast
then obtain d where (b, d) ∈ r0^= ∧ (c, d) ∈ r0^= unfolding jn00-def

by blast
then have (b, b, d, d) ∈ D g 0 0 ∧ (c, c, d, d) ∈ D g 0 0 using b6

unfolding D-def by blast
then show ∃ b ′ b ′′ c ′ c ′′ d. (b, b ′, b ′′, d) ∈ D g α β ∧ (c, c ′, c ′′, d) ∈ D g

β α using e1 by blast
qed
moreover have α = 0 ∧ β = 1 −→ ?thesis
proof

assume e1 : α = 0 ∧ β = 1
then have jn01 r0 r1 b c using c1 b3 b6 by blast
then obtain b ′′ d where (b,b ′′) ∈ r1^= ∧ (b ′′,d) ∈ r0^∗ ∧ (c,d) ∈ r0^∗

unfolding jn01-def by blast
moreover have Lv g 0 1 = g 0 ∧ Lv g 1 0 = g 0 using b6 b7 unfolding

Lv-def by blast
ultimately have (b, b, b ′′, d) ∈ D g 0 1 ∧ (c, c, c, d) ∈ D g 1 0 using b6

unfolding D-def by simp
then show ∃ b ′ b ′′ c ′ c ′′ d. (b, b ′, b ′′, d) ∈ D g α β ∧ (c, c ′, c ′′, d) ∈ D g

β α using e1 by blast
qed
moreover have α = 1 ∧ β = 0 −→ ?thesis
proof

assume e1 : α = 1 ∧ β = 0
then have jn01 r0 r1 c b using c1 b3 b6 by blast
then obtain c ′′ d where (c,c ′′) ∈ r1^= ∧ (c ′′,d) ∈ r0^∗ ∧ (b,d) ∈ r0^∗

unfolding jn01-def by blast
moreover have Lv g 0 1 = g 0 ∧ Lv g 1 0 = g 0 using b6 b7 unfolding

Lv-def by blast
ultimately have (b, b, b, d) ∈ D g 1 0 ∧ (c, c, c ′′, d) ∈ D g 0 1 using b6

unfolding D-def by simp
then show ∃ b ′ b ′′ c ′ c ′′ d. (b, b ′, b ′′, d) ∈ D g α β ∧ (c, c ′, c ′′, d) ∈ D g

β α using e1 by blast
qed
moreover have α = 1 ∧ β = 1 −→ ?thesis
proof

assume e1 : α = 1 ∧ β = 1
then have jn11 r0 r1 b c using c1 b4 b6 by blast
then obtain b ′ b ′′ c ′ c ′′ d where

e2 : (b,b ′) ∈ r0^∗ ∧ (b ′,b ′′) ∈ r1^= ∧ (b ′′,d) ∈ r0^∗
and e3 : (c,c ′) ∈ r0^∗ ∧ (c ′,c ′′) ∈ r1^= ∧ (c ′′,d) ∈ r0^∗ unfolding jn11-def

by blast
moreover have Lv g 1 1 = g 0 ∧ L1 g 1 = g 0 using b6 b7 unfolding

L1-def Lv-def by blast
ultimately have (b, b ′, b ′′, d) ∈ D g 1 1 ∧ (c, c ′, c ′′, d) ∈ D g 1 1 using

b6 unfolding D-def by simp
then show ∃ b ′ b ′′ c ′ c ′′ d. (b, b ′, b ′′, d) ∈ D g α β ∧ (c, c ′, c ′′, d) ∈ D g

β α using e1 by blast

271

qed
ultimately show ?thesis using c2 by blast

qed
qed
then have DCR-generating g unfolding DCR-generating-def by blast
moreover have r =

⋃
{r ′. ∃α ′<2 . r ′ = g α ′}

proof
show r ⊆

⋃
{r ′. ∃α ′<2 . r ′ = g α ′}

proof
fix p
assume p ∈ r
then have p ∈ r0 ∨ p ∈ r1 using b1 by blast
moreover have (0 ::nat) < (2 ::nat) ∧ (1 ::nat) < (2 ::nat) by simp
ultimately show p ∈

⋃
{r ′. ∃α ′<2 . r ′ = g α ′} using b6 by blast

qed
next

show
⋃
{r ′. ∃α ′<2 . r ′ = g α ′} ⊆ r

proof
fix p
assume p ∈

⋃
{r ′. ∃α ′<2 . r ′ = g α ′}

then obtain α ′ where α ′<2 ∧ p ∈ g α ′ by blast
moreover then have α ′ = 0 ∨ α ′ = 1 by force
ultimately show p ∈ r using b1 b6 by blast

qed
qed
ultimately show ?thesis unfolding DCR-def by blast

qed

lemma lem-dc2-to-d2 :
fixes r :: ′U rel
assumes DCR 2 r
shows DCR2 r
proof −

obtain g where b1 : DCR-generating g and b2 : r =
⋃
{r ′. ∃α ′<2 . r ′ = g α ′}

using assms unfolding DCR-def by blast
have ∀ α::nat. α<2 ←→ α = 0 ∨ α = 1 by force
then have b3 : L1 g 0 = {} ∧ L1 g 1 = g 0 ∧ L1 g 2 = g 0 ∪ g 1
∧ Lv g 0 0 = {} ∧ Lv g 1 0 = g 0 ∧ Lv g 0 1 = g 0 ∧ Lv g 1 1 = g 0

unfolding L1-def Lv-def by (simp-all, blast+)
have r = (g 0) ∪ (g 1)
proof

show r ⊆ (g 0) ∪ (g 1)
proof

fix p
assume p ∈ r
then obtain α where p ∈ g α ∧ α < 2 using b2 by blast
moreover have ∀ α::nat. α<2 ←→ α = 0 ∨ α = 1 by force
ultimately show p ∈ (g 0) ∪ (g 1) by force

qed

272

next
have (0 ::nat) < (2 ::nat) ∧ (1 ::nat) < (2 ::nat) by simp
then show (g 0) ∪ (g 1) ⊆ r using b2 by blast

qed
moreover have ∀ a b c. (a,b) ∈ (g 0) ∧ (a,c) ∈ (g 0) −→ jn00 (g 0) b c
proof (intro allI impI)

fix a b c
assume (a,b) ∈ (g 0) ∧ (a,c) ∈ (g 0)
then obtain b ′ b ′′ c ′ c ′′ d where (b, b ′, b ′′, d) ∈ D g 0 0 ∧ (c, c ′, c ′′, d) ∈

D g 0 0
using b1 unfolding DCR-generating-def by blast

then show jn00 (g 0) b c unfolding jn00-def D-def L1-def Lv-def by force
qed
moreover have ∀ a b c. (a,b) ∈ (g 0) ∧ (a,c) ∈ (g 1) −→ jn01 (g 0) (g 1) b c
proof (intro allI impI)

fix a b c
assume (a,b) ∈ (g 0) ∧ (a,c) ∈ (g 1)
then obtain b ′ b ′′ c ′ c ′′ d where
(b, b ′, b ′′, d) ∈ D g 0 1 ∧ (c, c ′, c ′′, d) ∈ D g 1 0

using b1 unfolding DCR-generating-def by blast
then show jn01 (g 0) (g 1) b c unfolding jn01-def D-def L1-def Lv-def by

force
qed
moreover have ∀ a b c. (a,b) ∈ (g 1) ∧ (a,c) ∈ (g 1) −→ jn11 (g 0) (g 1) b c
proof (intro allI impI)

fix a b c
assume (a,b) ∈ (g 1) ∧ (a,c) ∈ (g 1)
then obtain b ′ b ′′ c ′ c ′′ d where (b, b ′, b ′′, d) ∈ D g 1 1 ∧ (c, c ′, c ′′, d) ∈

D g 1 1
using b1 unfolding DCR-generating-def by blast

then show jn11 (g 0) (g 1) b c
unfolding jn11-def D-def apply (simp only: b3)
by blast

qed
ultimately have LD2 r (g 0) (g 1) unfolding LD2-def by blast
then show ?thesis unfolding DCR2-def by blast

qed

lemma lem-rP-inv: rP n A B C n ′ A ′ B ′ C ′ =⇒ (A ⊆ A ′ ∧ B ⊆ B ′ ∧ C ⊆ C ′

∧ finite A ∧ finite B ∧ finite C ∧ finite A ′ ∧ finite B ′ ∧ finite C ′)
by (cases n, cases n ′, force+)

lemma lem-infset-finext:
fixes S :: ′U set and A:: ′U set
assumes ¬ finite S and finite A and A ⊆ S
shows ∃ B. B ⊆ S ∧ A ⊂ B ∧ finite B
proof −

have b1 : finite A using assms lem-rP-inv by blast
then have A 6= S using assms by blast

273

then obtain A2 x where x ∈ S ∧ A2 = A ∪ {x} ∧ x /∈ A ∧ A2 ⊆ S using
assms by force

moreover then have finite A2 using b1 by blast
ultimately show ?thesis by blast

qed

lemma lem-rE-df :
fixes S :: ′U set
shows (u,v) ∈ rE S =⇒ (u,w) ∈ rE S =⇒ (v,t) ∈ (rE S)^= =⇒ (w,t) ∈ (rE
S)^= =⇒ v = w
proof −

assume (u,v) ∈ rE S and (u,w) ∈ rE S and (v,t) ∈ (rE S)^= and (w,t) ∈ (rE
S)^=

moreover have
∧

u v w t. (u,v) ∈ rE S =⇒ (u, w) ∈ rE S =⇒ (v, t) ∈ rE S
∨ v = t =⇒ (w, t) ∈ rE S =⇒ v = w

proof −
fix u v w t
assume (u,v) ∈ (rE S) and (u, w) ∈ (rE S) and (v, t) ∈ (rE S) ∨ v = t and

(w, t) ∈ (rE S)
moreover obtain n::Lev and a b c where u = (n,a,b,c) using prod-cases4

by blast
moreover obtain n ′::Lev and a ′ b ′ c ′ where v = (n ′,a ′,b ′,c ′) using prod-cases4

by blast
moreover obtain n ′′::Lev and a ′′ b ′′ c ′′ where w = (n ′′,a ′′,b ′′,c ′′) using

prod-cases4 by blast
moreover obtain n ′′′::Lev and a ′′′ b ′′′ c ′′′ where t = (n ′′′,a ′′′,b ′′′,c ′′′) using

prod-cases4 by blast
ultimately show v = w

apply (simp add: rE-def)
apply (cases n)
apply (cases n ′)
apply (cases n ′′)
apply (cases n ′′′)
by simp+

qed
ultimately show ?thesis by blast

qed

lemma lem-rE-succ-lev:
fixes S :: ′U set
assumes (u,v) ∈ rE S
shows levrd v = (lev-next (levrd u))
proof −

obtain n A B C where b1 : u = (n,A,B,C) using prod-cases4 by blast
moreover obtain n ′ A ′ B ′ C ′ where b2 : v = (n ′,A ′,B ′,C ′) using prod-cases4

by blast
ultimately have rP n A B C n ′ A ′ B ′ C ′ using assms unfolding rE-def by

blast
then have n ′ = (lev-next n) by (cases n, auto+)

274

then show ?thesis using b1 b2 by simp
qed

lemma lem-rE-levset-inv:
fixes S :: ′U set and L u v
assumes a1 : (u,v) ∈ (rE S)^∗ and a2 : levrd u ∈ L and a3 : lev-next ‘ L ⊆ L
shows levrd v ∈ L
proof −

have
∧

k. ∀ u v:: ′U rD. (u,v) ∈ (rE S)^^k ∧ levrd u ∈ L −→ levrd v ∈ L
proof −

fix k
show ∀ u v:: ′U rD. (u,v) ∈ (rE S)^^k ∧ levrd u ∈ L −→ levrd v ∈ L
proof (induct k)

show ∀ u v:: ′U rD. (u,v) ∈ (rE S)^^0 ∧ levrd u ∈ L −→ levrd v ∈ L by
simp

next
fix k
assume d1 : ∀ u v:: ′U rD. (u,v) ∈ (rE S)^^k ∧ levrd u ∈ L −→ levrd v ∈ L
show ∀ u v:: ′U rD. (u,v) ∈ (rE S)^^(Suc k) ∧ levrd u ∈ L −→ levrd v ∈ L
proof (intro allI impI)

fix u v:: ′U rD
assume (u,v) ∈ (rE S)^^(Suc k) ∧ levrd u ∈ L
moreover then obtain v ′ where e1 : (u,v ′) ∈ (rE S)^^k ∧ (v ′,v) ∈ (rE

S) by force
ultimately have levrd v ′ ∈ L using d1 by blast
then have levrd v ∈ lev-next ‘ L using e1 lem-rE-succ-lev[of v ′ v] by force
then show levrd v ∈ L using a3 by force

qed
qed

qed
then show ?thesis using a1 a2 rtrancl-imp-relpow by blast

qed

lemma lem-rE-levun:
fixes S :: ′U set
shows u ∈ Domain (rE S) =⇒ levrd u ∈ {l1 , l3 , l5} =⇒ ∃ v. (rE S)‘‘{u} ⊆ {v}
proof −

assume a1 : u ∈ Domain (rE S) and a2 : levrd u ∈ {l1 , l3 , l5}
then obtain v where b1 : (u,v) ∈ (rE S) by blast
obtain n a b c where b2 : u = (n,a,b,c) using prod-cases4 by blast
obtain n ′ a ′ b ′ c ′ where b3 : v = (n ′,a ′,b ′,c ′) using prod-cases4 by blast
have b4 : rP n a b c n ′ a ′ b ′ c ′ using b1 b2 b3 unfolding rE-def by blast
have n = l1 ∨ n = l3 ∨ n = l5 using b2 a2 by simp
moreover have n = l1 −→ (rE S) ‘‘ {u} ⊆ {v} using b2 b3 b4 unfolding

rE-def by force
moreover have n = l3 −→ (rE S) ‘‘ {u} ⊆ {v} using b2 b3 b4 unfolding

rE-def by force
moreover have n = l5 −→ (rE S) ‘‘ {u} ⊆ {v} using b2 b3 b4 unfolding

rE-def by force

275

ultimately show ∃ v. (rE S)‘‘{u} ⊆ {v} by blast
qed

lemma lem-rE-domfield:
fixes S :: ′U set
assumes ¬ finite S
shows Domain (rE S) = Field (rE S)
proof −

have
∧

u2 u1 :: ′U rD. (u2 ,u1) ∈ rE S =⇒ ∃ u3 . (u1 ,u3) ∈ rE S
proof −

fix u2 u1 :: ′U rD
assume c1 : (u2 ,u1) ∈ rE S
obtain n1 A1 B1 C1 where c2 : u1 = (n1 ,A1 ,B1 ,C1) using prod-cases4 by

blast
obtain n2 A2 B2 C2 where c3 : u2 = (n2 ,A2 ,B2 ,C2) using prod-cases4 by

blast
have c4 : rP n2 A2 B2 C2 n1 A1 B1 C1 ∧ rC S A2 B2 C2 ∧ rC S A1 B1 C1

using c1 c2 c3 unfolding rE-def by blast
then have finite (A1 ∪ A2) using lem-rP-inv by blast
moreover have A1 ∪ A2 ⊆ S using c4 unfolding rC-def by blast
ultimately obtain A3 where c5 : A3 ⊆ S ∧ A1 ⊂ A3 ∧ A2 ⊂ A3 ∧ finite

A3
using assms lem-infset-finext[of S A1 ∪ A2] by blast

have ∃ n3 A3 B3 C3 . (rP n1 A1 B1 C1 n3 A3 B3 C3 ∧ rC S A3 B3 C3)
using c4 unfolding rC-def

apply (cases n1)
apply (cases n2 , simp+)
apply (cases n2 , simp+)
apply (cases n2 , simp+)
apply (force, simp+)
apply (cases n2 , simp+)
apply (cases n2 , simp+)
apply (force, simp+)
apply (cases n2 , simp+)
apply (cases n2 , simp+)
apply (cases n2 , simp+)
using c5 apply (cases n2)
apply simp+
apply blast
apply simp
done

then obtain n3 A3 B3 C3 where rP n1 A1 B1 C1 n3 A3 B3 C3 ∧ rC S A3
B3 C3 by blast

moreover obtain u3 where u3 = (n3 , A3 , B3 , C3) by blast
moreover have rC S A1 B1 C1 using c1 c2 unfolding rE-def by blast
ultimately have (u1 ,u3) ∈ rE S using c2 unfolding rE-def by blast
then show ∃ u3 . (u1 ,u3) ∈ rE S by blast

qed
then show ?thesis unfolding Field-def by blast

276

qed

lemma lem-wrd-fin-field-rE :
fixes S :: ′U set
assumes ¬ finite S
shows u ∈ Field (rE S) =⇒ finite (wrd u)
proof −

assume u ∈ Field (rE S)
then have u ∈ Domain (rE S) using assms lem-rE-domfield by blast
then show finite (wrd u) using lem-rP-inv unfolding rE-def by force

qed

lemma lem-rE-rtr-wrd-mon:
fixes S :: ′U set and u v:: ′U rD
shows (u,v) ∈ (rE S)^∗ =⇒ wrd u ⊆ wrd v
proof −

assume a1 : (u,v) ∈ (rE S)^∗
have b1 :

∧
u v:: ′U rD. (u,v) ∈ (rE S) =⇒ wrd u ⊆ wrd v

proof −
fix u v:: ′U rD
assume a1 : (u,v) ∈ (rE S)
obtain n A B C where b1 : u = (n,A,B,C) using prod-cases4 by blast
obtain n ′ A ′ B ′ C ′ where b2 : v = (n ′,A ′,B ′,C ′) using prod-cases4 by blast
have wrd u = A ∪ B ∪ C ∧ wrd v = A ′∪ B ′∪ C ′ using a1 b1 b2 by simp
then show wrd u ⊆ wrd v using a1 b1 b2 lem-rP-inv unfolding rE-def by

fast
qed
have

∧
n. ∀ u v:: ′U rD. (u,v) ∈ (rE S)^^n −→ wrd u ⊆ wrd v

proof −
fix n
show ∀ u v:: ′U rD. (u,v) ∈ (rE S)^^n −→ wrd u ⊆ wrd v
proof (induct n)

show ∀ u v. (u,v) ∈ (rE S)^^0 −→ wrd u ⊆ wrd v by simp
next

fix m
assume d1 : ∀ u v:: ′U rD. (u,v) ∈ (rE S)^^m −→ wrd u ⊆ wrd v
show ∀ u v:: ′U rD. (u,v) ∈ (rE S)^^(Suc m) −→ wrd u ⊆ wrd v
proof (intro allI impI)

fix u v:: ′U rD
assume (u,v) ∈ (rE S)^^(Suc m)
then obtain v ′ where (u,v ′) ∈ (rE S)^^m ∧ (v ′,v) ∈ (rE S) by force
then show wrd u ⊆ wrd v using d1 b1 by blast

qed
qed

qed
then show wrd u ⊆ wrd v using a1 rtrancl-imp-relpow by blast

qed

lemma lem-Wrd-bkset-rE : Wrd (bkset (rE S) U) = Wrd U

277

proof
show Wrd (bkset (rE S) U) ⊆ Wrd U
proof

fix y
assume y ∈ Wrd (bkset (rE S) U)
then obtain u v where u ∈ U ∧ (v,u) ∈ (rE S)^∗ ∧ y ∈ wrd v unfolding

Wrd-def bkset-def by force
moreover then have wrd v ⊆ wrd u using lem-rE-rtr-wrd-mon by blast
ultimately show y ∈ Wrd U unfolding Wrd-def by blast

qed
next

show Wrd U ⊆ Wrd (bkset (rE S) U) unfolding Wrd-def bkset-def by blast
qed

lemma lem-Wrd-rE-field-subs-cnt:
fixes S :: ′U set and U ::(′U rD) set
assumes ¬ finite S
shows U ⊆ Field (rE S) =⇒ |U | ≤o |UNIV ::nat set| =⇒ |Wrd U | ≤o |UNIV ::nat
set|
proof −

assume b1 : U ⊆ Field (rE S) and a2 : |U | ≤o |UNIV ::nat set|
moreover have ∀ u∈U . |wrd u| ≤o |UNIV ::nat set|
proof

fix u:: ′U rD
assume u ∈ U
then have finite (wrd u) using b1 assms lem-wrd-fin-field-rE by blast
then show |wrd u| ≤o |UNIV ::nat set| using ordLess-imp-ordLeq by force

qed
ultimately have |

⋃
u∈U . wrd u| ≤o |UNIV ::nat set|

using card-of-UNION-ordLeq-infinite infinite-UNIV-nat by blast
then show |Wrd U | ≤o |UNIV ::nat set| unfolding Wrd-def by simp

qed

lemma lem-rE-dn-cnt:
fixes S :: ′U set and U ::(′U rD) set
assumes ¬ finite S
shows U ⊆ Field (rE S) =⇒ |U | ≤o |UNIV ::nat set| =⇒ V ⊆ bkset (rE S) U
=⇒ |Wrd V | ≤o |UNIV ::nat set|
proof −

assume a1 : U ⊆ Field (rE S) and a2 : |U | ≤o |UNIV ::nat set| and a3 : V ⊆
bkset (rE S) U

have Wrd V ⊆ Wrd (bkset (rE S) U) using a3 unfolding Wrd-def by blast
then have |Wrd V | ≤o |Wrd (bkset (rE S) U)| by simp
moreover have |Wrd (bkset (rE S) U)| ≤o |UNIV ::nat set|

using a1 a2 assms lem-Wrd-bkset-rE [of S U] lem-Wrd-rE-field-subs-cnt[of S U]
by force

ultimately show |Wrd V | ≤o |UNIV ::nat set| using ordLeq-transitive by blast
qed

278

lemma lem-rE-succ-Wrd-univ: (u,w) ∈ (rE S) =⇒ levrd u ∈ {l0 , l2 , l4} =⇒ S −
wrd w ⊆ Wrd (((rE S)‘‘{u}) − {w})
proof −

assume a1 : (u,w) ∈ (rE S) and a2 : levrd u ∈ {l0 , l2 , l4}
moreover obtain n a b c where b2 : u = (n,a,b,c) using prod-cases4 by blast
moreover obtain n ′ a ′ b ′ c ′ where b3 : w = (n ′,a ′,b ′,c ′) using prod-cases4 by

blast
ultimately have b4 : rP n a b c n ′ a ′ b ′ c ′ ∧ rC S a b c ∧ rC S a ′ b ′ c ′ unfolding

rE-def by blast
have ∀ y ∈ S . y /∈ wrd w −→ (∃ v ∈ (rE S)‘‘{u} − {w}. y ∈ wrd v)
proof (intro ballI impI)

fix y
assume c0 : y ∈ S and c1 : y /∈ wrd w
have n = l0 −→ (∃ v ∈ (rE S)‘‘{u} − {w}. y ∈ wrd v)
proof

assume n = l0
then have (u, (l1 , {y}, {}, {})) ∈ (rE S) using c0 b2 b4 unfolding rE-def

rC-def by force
then show ∃ v ∈ (rE S)‘‘{u} − {w}. y ∈ wrd v using c1 by force

qed
moreover have n = l2 −→ (∃ v ∈ (rE S)‘‘{u} − {w}. y ∈ wrd v)
proof

assume n = l2
then have (u, (l3 , a, {y}, {})) ∈ (rE S) using c0 b2 b4 unfolding rE-def

rC-def by force
then show ∃ v ∈ (rE S)‘‘{u} − {w}. y ∈ wrd v using c1 by force

qed
moreover have n = l4 −→ (∃ v ∈ (rE S)‘‘{u} − {w}. y ∈ wrd v)
proof

assume n = l4
then have (u, (l5 , a, b, {y})) ∈ (rE S) using c0 b2 b4 unfolding rE-def

rC-def by force
then show ∃ v ∈ (rE S)‘‘{u} − {w}. y ∈ wrd v using c1 by force

qed
ultimately show ∃ v ∈ (rE S)‘‘{u} − {w}. y ∈ wrd v using a2 b2 by force

qed
then show S − wrd w ⊆ Wrd (((rE S)‘‘{u}) − {w}) unfolding Wrd-def by

blast
qed

lemma lem-rE-succ-nocntbnd:
fixes S :: ′U set and u0 :: ′U rD and v0 :: ′U rD and U ::(′U rD) set
assumes a0 : ¬ |S | ≤o |UNIV ::nat set| and a1 : (u0 , v0) ∈ (rE S) and a2 : levrd
u0 ∈ {l0 , l2 , l4}

and a3 : U ⊆ Field (rE S) and a4 : ((rE S) ‘‘ {u0}) − {v0} ⊆ bkset (rE S) U
shows ¬ |U | ≤o |UNIV ::nat set|
proof

assume |U | ≤o |UNIV ::nat set|
moreover have c0 : ¬ finite S using a0 by (meson card-of-Well-order infi-

279

nite-iff-card-of-nat ordLeq-total)
ultimately have c1 : |Wrd (((rE S)‘‘{u0}) − {v0})| ≤o |UNIV ::nat set| using

a3 a4 lem-rE-dn-cnt by blast
have v0 ∈ Field (rE S) using a1 unfolding Field-def by blast
then have finite (wrd v0) using c0 a0 lem-wrd-fin-field-rE by blast
then have ¬ |S − wrd v0 | ≤o |UNIV ::nat set| using a0

by (metis card-of-infinite-diff-finite finite-iff-cardOf-nat ordIso-symmetric or-
dLeq-iff-ordLess-or-ordIso ordLeq-transitive)
moreover have S − wrd v0 ⊆Wrd (((rE S)‘‘{u0}) − {v0}) using lem-rE-succ-Wrd-univ

a1 a2 by blast
ultimately have ¬ |Wrd (((rE S)‘‘{u0}) − {v0})| ≤o |UNIV ::nat set| by (metis

card-of-mono1 ordLeq-transitive)
then show False using c1 by blast

qed

lemma lem-rE-succ-nocntbnd2 :
fixes S :: ′U set and u0 :: ′U rD and v0 :: ′U rD
assumes a0 : ¬ |S | ≤o |UNIV ::nat set|

and a1 : (u0 , v0) ∈ (rE S) and a2 : levrd u0 ∈ {l0 , l2 , l4}
and a3 : r ⊆ (rE S) and a4 : ∀ u. |r‘‘{u}| ≤o |UNIV ::nat set|
and a5 : ((rE S) ‘‘ {u0}) − {v0} ⊆ bkset (rE S) ((r^∗)‘‘{u0})

shows False
proof −

have b1 :
∧

n::nat.
∧

u::(′U rD). u ∈ Field (rE S) −→ (r^^n)‘‘{u} ⊆ Field (rE
S) ∧ |(r^^n)‘‘{u}| ≤o |UNIV ::nat set|

proof (intro impI)
fix n::nat and u:: ′U rD
assume c1 : u ∈ Field (rE S)
show (r^^n)‘‘{u} ⊆ Field (rE S) ∧ |(r^^n) ‘‘ {u}| ≤o |UNIV ::nat set|
proof (induct n)

show (r^^0)‘‘{u} ⊆ Field (rE S) ∧ |(r ^^ 0) ‘‘ {u}| ≤o |UNIV ::nat set|
using c1 by simp

next
fix m
assume d1 : (r^^m)‘‘{u} ⊆ Field (rE S) ∧ |(r^^m)‘‘{u}| ≤o |UNIV ::nat set|
moreover have ∀ v ∈ (r^^m)‘‘{u}. |r‘‘{v}| ≤o |UNIV ::nat set| using a4

by blast
moreover have (r ^^ Suc m) ‘‘ {u} = (

⋃
v∈((r^^m)‘‘{u}). r ‘‘{v}) by force

ultimately have |(r ^^ Suc m) ‘‘ {u}| ≤o |UNIV ::nat set|
using card-of-UNION-ordLeq-infinite[of UNIV ::nat set (r^^m)‘‘{u}] infi-

nite-UNIV-nat by simp
moreover have (r ^^ Suc m)‘‘{u} ⊆ Field (rE S) using d1 a3 unfolding

Field-def by fastforce
ultimately show (r ^^ Suc m)‘‘{u} ⊆ Field (rE S) ∧ |(r ^^ Suc m) ‘‘ {u}|

≤o |UNIV ::nat set| by blast
qed

qed
have b2 :

∧
u:: ′U rD. u ∈ Field (rE S) −→ |(r^∗) ‘‘ {u}| ≤o |UNIV ::nat set|

proof (intro impI)

280

fix u:: ′U rD
assume c1 : u ∈ Field (rE S)
have |UNIV ::nat set| ≤ |UNIV ::nat set| by simp
moreover have ∀n. |(r^^n) ‘‘ {u}| ≤o |UNIV ::nat set| using c1 b1 by blast
ultimately have c1 : |

⋃
n. (r^^n) ‘‘ {u}| ≤o |UNIV ::nat set|

using card-of-UNION-ordLeq-infinite[of UNIV ::nat set UNIV ::nat set] infi-
nite-UNIV-nat by simp

have (r^∗) ‘‘ {u} ⊆ (
⋃

n. (r^^n) ‘‘ {u}) by (simp add: rtrancl-is-UN-relpow
subset-eq)

then have |(r^∗) ‘‘ {u}| ≤o |
⋃

n. (r^^n) ‘‘ {u}| by simp
then show |(r^∗) ‘‘ {u}| ≤o |UNIV ::nat set| using c1 ordLeq-transitive by

blast
qed
obtain U where b3 : U = ((r^∗) ‘‘ {u0}) by blast
have U ⊆ (

⋃
n. (r^^n) ‘‘ {u0}) using b3 by (simp add: rtrancl-is-UN-relpow

subset-eq)
moreover have u0 ∈ Field (rE S) using a1 unfolding Field-def by blast
ultimately have U ⊆ Field (rE S) ∧ |U | ≤o |UNIV ::nat set| using b1 b2 b3

by blast
moreover have ((rE S) ‘‘ {u0}) − {v0} ⊆ bkset (rE S) U using b3 a5 by

blast
ultimately show False using a0 a1 a2 lem-rE-succ-nocntbnd[of S u0 v0 U] by

blast
qed

lemma lem-rE-diamsubr-un:
fixes S :: ′U set
assumes a1 : r0 ⊆ (rE S) and a2 : ∀ a b c. (a,b) ∈ r0 ∧ (a,c) ∈ r0 −→ (∃ d.
(b,d) ∈ r0^= ∧ (c,d) ∈ r0^=)
shows ∀ u. ∃ v. r0‘‘{u} ⊆ {v}
proof

fix u
have ∀ v w. (u,v) ∈ r0 ∧ (u,w) ∈ r0 −→ v = w
proof (intro allI impI)

fix v w
assume (u,v) ∈ r0 ∧ (u,w) ∈ r0
moreover then obtain t where (v,t) ∈ r0^= ∧ (w,t) ∈ r0^= using a2 by

blast
ultimately have (u,v) ∈ (rE S) ∧ (u,w) ∈ (rE S) ∧ (v,t) ∈ (rE S)^= ∧ (w,t)

∈ (rE S)^= using a1 by blast
then show v = w using lem-rE-df by blast

qed
then show ∃ v. r0‘‘{u} ⊆ {v} by blast

qed

lemma lem-rE-succ-nocntbnd3 :
fixes S :: ′U set and u0 :: ′U rD and v0 :: ′U rD
assumes a0 : ¬ |S | ≤o |UNIV ::nat set|

and a1 : LD2 (rE S) r0 r1

281

and a2 : (u0 , v0) ∈ (rE S) and a3 : levrd u0 ∈ {l0 , l2 , l4}
and a4 : r = {(u,v) ∈ rE S . u = v0} ∪ r0
and a5 : ((rE S) ‘‘ {u0}) − {v0} ⊆ bkset (rE S) ((r^∗)‘‘{u0})

shows False
proof −

have b1 : r0 ⊆ (rE S) using a1 unfolding LD2-def by blast
then have r ⊆ (rE S) using a4 by blast
moreover have ∀ u. |r‘‘{u}| ≤o |UNIV ::nat set|
proof

fix u
have ∀ a b c. (a,b) ∈ r0 ∧ (a,c) ∈ r0 −→ (∃ d. (b,d) ∈ r0^= ∧ (c,d) ∈ r0^=)

using a1 unfolding LD2-def jn00-def by blast
then obtain v where r0‘‘{u} ⊆ {v} using b1 lem-rE-diamsubr-un[of r0] by

blast
moreover have r‘‘{u} ⊆ r0‘‘{u} ∪ (rE S)‘‘{v0} using a4 by blast
ultimately have r‘‘{u} ⊆ {v} ∪ (rE S)‘‘{v0} by blast
moreover have |{v} ∪ (rE S)‘‘{v0}| ≤o |UNIV ::nat set|
proof −

have levrd v0 ∈ {l1 , l3 , l5} using a2 a3 unfolding rE-def by force
moreover have ¬ finite S using a0 by (meson card-of-Well-order infi-

nite-iff-card-of-nat ordLeq-total)
moreover then have v0 ∈ Domain (rE S) using a2 a0 lem-rE-domfield

unfolding Field-def by blast
ultimately obtain v0 ′ where (rE S)‘‘{v0} ⊆ {v0 ′} using lem-rE-levun by

blast
then have {v} ∪ (rE S)‘‘{v0} ⊆ {v,v0 ′} by blast
then have finite ({v} ∪ (rE S)‘‘{v0}) by (meson finite.emptyI finite.insertI

rev-finite-subset)
then show ?thesis by (simp add: ordLess-imp-ordLeq)

qed
ultimately show |r‘‘{u}| ≤o |UNIV ::nat set| using card-of-mono1 ordLeq-transitive

by blast
qed
ultimately show ?thesis using a0 a2 a3 a5 lem-rE-succ-nocntbnd2 [of S u0 v0

r] by blast
qed

lemma lem-rE-one:
fixes S :: ′U set and u0 :: ′U rD and v0 :: ′U rD
assumes a0 : ¬ |S | ≤o |UNIV ::nat set| and a1 : LD2 (rE S) r0 r1

and a2 : (u0 , v0) ∈ r0 and a3 : levrd u0 ∈ {l0 , l2 , l4}
shows False
proof −

obtain r where b1 : r = {(u,v) ∈ rE S . u = v0} ∪ r0 by blast
moreover have (u0 , v0) ∈ (rE S) using a1 a2 unfolding LD2-def by blast
moreover have ((rE S) ‘‘ {u0}) − {v0} ⊆ bkset (rE S) ((r^∗)‘‘{u0})
proof

fix v
assume c1 : v ∈ ((rE S) ‘‘ {u0}) − {v0}

282

have ∃ v. r0‘‘{u0} ⊆ {v} using a1 lem-rE-diamsubr-un[of r0 S] unfolding
LD2-def jn00-def by blast

then have r0 ‘‘ {u0} ⊆ {v0} using a2 by blast
moreover have c2 : (rE S) = r0 ∪ r1 using a1 unfolding LD2-def by blast
ultimately have (u0 , v) ∈ r1 using c1 by blast
then have jn01 r0 r1 v0 v using a1 a2 unfolding LD2-def by blast
then obtain v0 ′ d where c3 : (v0 , v0 ′) ∈ r1^= ∧ (v0 ′, d) ∈ r0^∗ ∧ (v, d) ∈

r0^∗ unfolding jn01-def by blast
obtain U where c4 : U = (r^∗)‘‘{u0} by blast
have (u0 , d) ∈ r^∗
proof −

have v0 = v0 ′ ∨ (v0 ,v0 ′) ∈ (rE S) using c2 c3 by blast
then have (v0 , v0 ′) ∈ r^= using b1 by blast
moreover have (u0 , v0) ∈ r using b1 a2 by blast
ultimately have (u0 , v0 ′) ∈ r^∗ by force
moreover have (v0 ′,d) ∈ r^∗ using c3 b1 rtrancl-mono[of r0 r] by blast
ultimately show ?thesis by force

qed
then have d ∈ U using c4 by blast
then have c3 : v ∈ bkset r0 U using c3 unfolding bkset-def by blast
have r0 ⊆ (rE S) using a1 unfolding LD2-def by blast
then have bkset r0 U ⊆ bkset (rE S) U unfolding bkset-def by (simp add:

Image-mono rtrancl-mono)
then show v ∈ bkset (rE S) ((r^∗)‘‘{u0}) using c3 c4 by blast

qed
ultimately show False using a0 a1 a3 lem-rE-succ-nocntbnd3 [of S r0 r1 u0 v0

r] by blast
qed

lemma lem-rE-jn0 :
fixes S :: ′U set and u1 :: ′U rD and u2 :: ′U rD and v:: ′U rD
assumes a1 : (u1 ,v) ∈ (rE S) and a2 : (u2 ,v) ∈ (rE S) and a3 : u1 6= u2
shows levrd v ∈ {l7 , l8}
proof −

obtain n1 a1 b1 c1 where b1 : u1 = (n1 ,a1 ,b1 ,c1) using prod-cases4 by blast
obtain n2 a2 b2 c2 where b2 : u2 = (n2 ,a2 ,b2 ,c2) using prod-cases4 by blast
obtain n a b c where b3 : v = (n,a,b,c) using prod-cases4 by blast
have rP n1 a1 b1 c1 n a b c using b1 b3 a1 unfolding rE-def by blast
moreover have rP n2 a2 b2 c2 n a b c using b2 b3 a2 unfolding rE-def by

blast
moreover have (n1 ,a1 ,b1 ,c1) 6= (n2 ,a2 ,b2 ,c2) using a3 b1 b2 by blast
ultimately have n ∈ { l7 , l8}

apply (cases n1 , cases n2)
apply (simp+, cases n2)
apply (simp+, cases n2)
apply (simp+, cases n2)
apply (simp+, cases n2)
apply (simp+, cases n2)
apply simp+

283

done
then show ?thesis using b3 by simp

qed

lemma lem-rE-jn1 :
fixes S :: ′U set and u1 :: ′U rD and u2 :: ′U rD and v:: ′U rD
assumes a1 : (u1 ,v) ∈ (rE S) and a2 : (u2 ,v) ∈ (rE S)^∗ and a3 : (u1 ,u2) /∈ (rE
S) ∧ (u2 ,u1) /∈ (rE S)^∗
shows levrd v ∈ {l7 , l8}
proof −

have
∧

k2 . ∀ u1 u2 v:: ′U rD. ∀ i. i ≤ k2 ∧ (u1 ,u2) /∈ (rE S) ∧ (u2 ,u1) /∈ (rE
S)^∗ −→ (u1 ,v) ∈ (rE S) −→ (u2 ,v) ∈ (rE S)^^i −→ levrd v ∈ {l7 , l8}

proof −
fix k2
show ∀ u1 u2 v:: ′U rD. ∀ i. i ≤ k2 ∧ (u1 ,u2) /∈ (rE S) ∧ (u2 ,u1) /∈ (rE S)^∗

−→ (u1 ,v) ∈ (rE S) −→ (u2 ,v) ∈ (rE S)^^i −→ levrd v ∈ {l7 , l8}
proof (induct k2)
show ∀ u1 u2 v:: ′U rD. ∀ i. i ≤ 0 ∧ (u1 ,u2) /∈ (rE S) ∧ (u2 ,u1) /∈ (rE S)^∗

−→ (u1 , v) ∈ (rE S) −→ (u2 , v) ∈ (rE S)^^i −→ levrd v ∈ {l7 , l8} by force
next

fix k2
assume d1 : ∀ u1 u2 v:: ′U rD. ∀ i. i ≤ k2 ∧ (u1 ,u2) /∈ (rE S) ∧ (u2 , u1) /∈

(rE S)^∗ −→
(u1 , v) ∈ (rE S) −→ (u2 , v) ∈ (rE S)^^i −→ levrd v ∈ {l7 , l8}

show ∀ u1 u2 v:: ′U rD. ∀ i. i ≤ Suc k2 ∧ (u1 ,u2) /∈ (rE S) ∧ (u2 , u1) /∈
(rE S)^∗ −→

(u1 , v) ∈ (rE S) −→ (u2 , v) ∈ (rE S)^^i −→ levrd v ∈ {l7 , l8}
proof (intro allI impI)

fix u1 u2 v:: ′U rD and i
assume e1 : i ≤ Suc k2 ∧ (u1 , u2) /∈ (rE S) ∧ (u2 , u1) /∈ (rE S)^∗

and e2 : (u1 , v) ∈ (rE S) and e3 : (u2 , v) ∈ (rE S)^^i
show levrd v ∈ {l7 , l8}
proof (cases i = Suc k2)

assume f1 : i = Suc k2
then obtain v ′ where f2 : (u2 , v ′) ∈ (rE S) and f3 : (v ′, v) ∈ (rE S)^^k2

using e3 by (meson relpow-Suc-E2)
moreover have k2 ≤ k2 using e1 by force
ultimately have (v ′,u1) /∈ (rE S)^∗ ∧ (u1 ,v ′) /∈ (rE S) −→ levrd v ∈

{l7 , l8} using e2 d1 by blast
moreover have (v ′,u1) ∈ (rE S)^∗ −→ False
proof

assume (v ′,u1) ∈ (rE S)^∗
then have (u2 ,u1) ∈ (rE S)^∗ using f2 by force
then show False using e1 by blast

qed
moreover have (u1 ,v ′) ∈ (rE S) −→ levrd v ∈ {l7 , l8}
proof

assume (u1 ,v ′) ∈ (rE S)
moreover have u1 6= u2 using e1 by force

284

ultimately have levrd v ′ ∈ {l7 , l8} using f2 lem-rE-jn0 [of u1 v ′ S u2]
by blast

moreover have (v ′, v) ∈ (rE S)^∗ using f3 rtrancl-power by blast
moreover have lev-next ‘ {l7 , l8} ⊆ {l7 , l8} by simp
ultimately show levrd v ∈ {l7 , l8} using lem-rE-levset-inv[of v ′ v S

{l7 , l8}] by blast
qed
ultimately show ?thesis by blast

next
assume i 6= Suc k2
then have i ≤ k2 using e1 by force
then show ?thesis using d1 e1 e2 e3 by blast

qed
qed

qed
qed
moreover obtain k2 where (u2 ,v) ∈ (rE S)^^k2 using a2 rtrancl-imp-relpow

by blast
moreover have k2 ≤ k2 by force
ultimately show ?thesis using a1 a3 by blast

qed

lemma lem-rE-jn2 :
fixes S :: ′U set and u1 :: ′U rD and u2 :: ′U rD and v:: ′U rD
assumes a1 : (u1 ,v) ∈ (rE S)^∗ and a2 : (u2 ,v) ∈ (rE S)^∗ and a3 : (u1 ,u2) /∈
(rE S)^∗ ∧ (u2 ,u1) /∈ (rE S)^∗
shows levrd v ∈ {l7 , l8}
proof −

have
∧

k1 . ∀ u1 u2 v:: ′U rD. ∀ i. i ≤ k1 ∧ (u1 ,u2) /∈ (rE S)^∗ ∧ (u2 ,u1) /∈
(rE S)^∗ −→ (u1 ,v) ∈ (rE S)^^i −→ (u2 ,v) ∈ (rE S)^∗ −→ levrd v ∈ {l7 , l8}

proof −
fix k1
show ∀ u1 u2 v:: ′U rD. ∀ i. i ≤ k1 ∧ (u1 ,u2) /∈ (rE S)^∗ ∧ (u2 ,u1) /∈ (rE

S)^∗ −→ (u1 ,v) ∈ (rE S)^^i −→ (u2 ,v) ∈ (rE S)^∗ −→ levrd v ∈ {l7 , l8}
proof (induct k1)

show ∀ u1 u2 v:: ′U rD. ∀ i. i ≤ 0 ∧ (u1 ,u2) /∈ (rE S)^∗ ∧ (u2 ,u1) /∈ (rE
S)^∗ −→ (u1 , v) ∈ (rE S)^^i −→ (u2 , v) ∈ (rE S)^∗ −→ levrd v ∈ {l7 , l8}

proof (intro allI impI)
fix u1 u2 v:: ′U rD and i
assume i ≤ 0 ∧ (u1 ,u2) /∈ (rE S)^∗ ∧ (u2 ,u1) /∈ (rE S)^∗ and (u1 , v) ∈

(rE S)^^i and (u2 , v) ∈ (rE S)^∗
moreover then have (u2 ,u1) ∈ (rE S)^∗ using rtrancl-power by fastforce
ultimately have False by blast
then show levrd v ∈ {l7 , l8} by blast

qed
next

fix k1
assume d1 : ∀ u1 u2 v:: ′U rD. ∀ i. i ≤ k1 ∧ (u1 , u2) /∈ (rE S)^∗ ∧ (u2 ,

u1) /∈ (rE S)^∗ −→

285

(u1 , v) ∈ (rE S) ^^ i −→ (u2 , v) ∈ (rE S)^∗ −→ levrd v ∈ {l7 , l8}
show ∀ u1 u2 v:: ′U rD. ∀ i. i ≤ Suc k1 ∧ (u1 , u2) /∈ (rE S)^∗ ∧ (u2 , u1)

/∈ (rE S)^∗ −→
(u1 , v) ∈ (rE S) ^^ i −→ (u2 , v) ∈ (rE S)^∗ −→ levrd v ∈ {l7 , l8}

proof (intro allI impI)
fix u1 u2 v:: ′U rD and i
assume e1 : i ≤ Suc k1 ∧ (u1 , u2) /∈ (rE S)^∗ ∧ (u2 , u1) /∈ (rE S)^∗

and e2 : (u1 , v) ∈ (rE S)^^i and e3 : (u2 , v) ∈ (rE S)^∗
show levrd v ∈ {l7 , l8}
proof (cases i = Suc k1)

assume f1 : i = Suc k1
then obtain v ′ where f2 : (u1 , v ′) ∈ (rE S) and f3 : (v ′, v) ∈ (rE S)^^k1

using e2 by (meson relpow-Suc-E2)
moreover have k1 ≤ k1 using e1 by force
ultimately have (v ′,u2) /∈ (rE S)^∗ ∧ (u2 ,v ′) /∈ (rE S)^∗ −→ levrd v ∈

{l7 , l8} using e3 d1 by blast
moreover have (v ′,u2) ∈ (rE S)^∗ −→ False
proof

assume (v ′,u2) ∈ (rE S)^∗
then have (u1 ,u2) ∈ (rE S)^∗ using f2 by force
then show False using e1 by blast

qed
moreover have (u2 ,v ′) ∈ (rE S)^∗ −→ levrd v ∈ {l7 , l8}
proof

assume (u2 ,v ′) ∈ (rE S)^∗
then have levrd v ′ ∈ {l7 , l8} using e1 f2 lem-rE-jn1 [of u1 v ′ S u2] by

blast
moreover have (v ′, v) ∈ (rE S)^∗ using f3 rtrancl-power by blast
moreover have lev-next ‘ {l7 , l8} ⊆ {l7 , l8} by simp
ultimately show levrd v ∈ {l7 , l8} using lem-rE-levset-inv[of v ′ v S

{l7 , l8}] by blast
qed
ultimately show ?thesis by blast

next
assume i 6= Suc k1
then have i ≤ k1 using e1 by force
then show ?thesis using d1 e1 e2 e3 by blast

qed
qed

qed
qed
moreover obtain k1 where (u1 ,v) ∈ (rE S)^^k1 using a1 rtrancl-imp-relpow

by blast
moreover have k1 ≤ k1 by force
ultimately show ?thesis using a2 a3 by blast

qed

lemma lem-rel-pow2fw: (u,u1) ∈ r ∧ (u1 ,v) ∈ r−→ (u,v) ∈ r^^2
by (metis Suc-1 relpow-1 relpow-Suc-I)

286

lemma lem-rel-pow3fw: (u,u1) ∈ r ∧ (u1 ,u2) ∈ r ∧ (u2 ,v) ∈ r −→ (u,v) ∈ r^^3
by (metis One-nat-def numeral-3-eq-3 relpow-1 relpow-Suc-I)

lemma lem-rel-pow3 : (u,v) ∈ r^^3 =⇒ ∃ u1 u2 . (u,u1) ∈ r ∧ (u1 ,u2) ∈ r ∧
(u2 ,v) ∈ r

by (metis One-nat-def numeral-3-eq-3 relpow-1 relpow-Suc-E)

lemma lem-rel-pow4 : (u,v) ∈ r^^4 =⇒ ∃ u1 u2 u3 . (u,u1) ∈ r ∧ (u1 ,u2) ∈ r ∧
(u2 ,u3) ∈ r ∧ (u3 ,v) ∈ r
proof −

assume (u,v) ∈ r^^4
then obtain u3 where (u,u3) ∈ r^^3 ∧ (u3 ,v) ∈ r using relpow-E by force
moreover then obtain u1 u2 where (u,u1) ∈ r ∧ (u1 ,u2) ∈ r ∧ (u2 ,u3) ∈ r

by (metis One-nat-def numeral-3-eq-3 relpow-1 relpow-Suc-E)
ultimately show ∃ u1 u2 u3 . (u,u1) ∈ r ∧ (u1 ,u2) ∈ r ∧ (u2 ,u3) ∈ r ∧ (u3 ,v)
∈ r by blast
qed

lemma lem-rel-pow5 : (u,v) ∈ r^^5 =⇒ ∃ u1 u2 u3 u4 . (u,u1) ∈ r ∧ (u1 ,u2) ∈
r ∧ (u2 ,u3) ∈ r ∧ (u3 ,u4) ∈ r ∧ (u4 ,v) ∈ r
proof −

assume (u,v) ∈ r^^5
then obtain u4 where (u,u4) ∈ r^^4 ∧ (u4 ,v) ∈ r using relpow-E by force
moreover then obtain u1 u2 u3 where (u,u1) ∈ r ∧ (u1 ,u2) ∈ r ∧ (u2 ,u3)
∈ r ∧ (u3 , u4) ∈ r

using lem-rel-pow4 [of u u4 r] by blast
ultimately show ∃ u1 u2 u3 u4 . (u,u1) ∈ r ∧ (u1 ,u2) ∈ r ∧ (u2 ,u3) ∈ r ∧

(u3 ,u4) ∈ r ∧ (u4 ,v) ∈ r by blast
qed

lemma lem-rE-l1-l78-dist:
fixes S :: ′U set
assumes a1 : levrd u = l1 and a2 : levrd v ∈ {l7 , l8} and a3 : n ≤ 5
shows (u,v) /∈ (rE S)^^n
proof −

have b0 : (u,v) /∈ (rE S)^^0 using a1 a2 by force
have b1 : (u,v) /∈ (rE S)^^1 using a1 a2 lem-rE-succ-lev[of u v] by force
have

∧
u1 . (u,u1) ∈ (rE S) ∧ (u1 ,v) ∈ (rE S) =⇒ False

using a1 a2 lem-rE-succ-lev
by (metis Lev.distinct(49) Lev.distinct(51) insertE lev-next.simps(2) lev-next.simps(3)

singletonD)
then have b2 : (u,v) /∈ (rE S)^^2 by (metis Suc-1 relpow-1 relpow-Suc-D2)
have

∧
u1 u2 . (u,u1) ∈ (rE S) ∧ (u1 ,u2) ∈ (rE S) ∧ (u2 ,v) ∈ (rE S) =⇒ False

using a1 a2 lem-rE-succ-lev
by (metis Lev.distinct(57) Lev.distinct(59) insertE lev-next.simps(2) lev-next.simps(3)

lev-next.simps(4) singletonD)
then have b3 : (u,v) /∈ (rE S)^^3 using lem-rel-pow3 [of u v rE S] by blast
have

∧
u1 u2 u3 . (u,u1) ∈ (rE S) ∧ (u1 ,u2) ∈ (rE S) ∧ (u2 ,u3) ∈ (rE S) ∧

287

(u3 ,v) ∈ (rE S) =⇒ False
using a1 a2 lem-rE-succ-lev

by (metis Lev.distinct(63) Lev.distinct(65) insertE lev-next.simps(2) lev-next.simps(3)
lev-next.simps(4) lev-next.simps(5) singletonD)

then have b4 : (u,v) /∈ (rE S)^^4 using lem-rel-pow4 [of u v rE S] by blast
have

∧
u1 u2 u3 u4 . (u,u1) ∈ (rE S) ∧ (u1 ,u2) ∈ (rE S) ∧ (u2 ,u3) ∈ (rE S)

∧ (u3 ,u4) ∈ (rE S) ∧ (u4 ,v) ∈ (rE S) =⇒ False
using a1 a2 lem-rE-succ-lev

by (metis Lev.distinct(67) Lev.distinct(69) insertE lev-next.simps(2) lev-next.simps(3)
lev-next.simps(4) lev-next.simps(5) lev-next.simps(6) singletonD)

then have b5 : (u,v) /∈ (rE S)^^5 using lem-rel-pow5 [of u v rE S] by blast
have n = 0 ∨ n = 1 ∨ n = 2 ∨ n = 3 ∨ n = 4 ∨ n = 5 using a3 by force
then show ?thesis using b0 b1 b2 b3 b4 b5 by blast

qed

lemma lem-rE-notLD2 :
fixes S :: ′U set and r0 r1 ::(′U rD) rel
assumes a0 : ¬ |S | ≤o |UNIV ::nat set| and a1 : LD2 (rE S) r0 r1
shows False
proof −

obtain x0 :: ′U where b0 : x0 ∈ S using a0
by (metis all-not-in-conv card-of-mono1 card-of-singl-ordLeq empty-subsetI

finite.emptyI infinite-UNIV-char-0 ordLeq-transitive)
obtain u:: ′U rD where b1 : u = (l0 , {}, {}, {}) by blast
obtain v1 :: ′U rD where b2 : v1 = (l1 , {}, {}, {}) by blast
obtain v2 :: ′U rD where b3 : v2 = (l1 , {x0}, {}, {}) by blast
have levrd u = l0 using b1 by simp
then have (u,v1) /∈ r0 ∧ (u,v2) /∈ r0 using a0 a1 lem-rE-one[of S r0 r1 u] by

blast
moreover have (u,v1) ∈ (rE S) ∧ (u,v2) ∈ (rE S) using b0 b1 b2 b3 unfolding

rE-def rC-def by simp
ultimately have (u,v1) ∈ r1 ∧ (u,v2) ∈ r1 using a1 unfolding LD2-def by

blast
then have jn11 r0 r1 v1 v2 using a1 unfolding LD2-def by blast
then obtain b ′ b ′′ c ′ c ′′ d where

b4 : (v1 , b ′) ∈ r0^∗ ∧ (b ′, b ′′) ∈ r1^= ∧ (b ′′, d) ∈ r0^∗
and b5 : (v2 , c ′) ∈ r0^∗ ∧ (c ′, c ′′) ∈ r1^= ∧ (c ′′, d) ∈ r0^∗ unfolding jn11-def

by blast
have b6 :

∧
v v ′:: ′U rD. levrd v ∈ {l1 , l3} ∧ (v, v ′) ∈ r0^∗ =⇒ (v,v ′) ∈ r0^=

proof −
fix v v ′:: ′U rD
assume c1 : levrd v ∈ {l1 , l3} ∧ (v, v ′) ∈ r0^∗
then obtain k1 where c2 : (v, v ′) ∈ r0^^k1 using rtrancl-imp-relpow by blast
have k1 ≥ 2 −→ False
proof

assume k1 ≥ 2
then obtain k where k1 = 2 + k using le-Suc-ex by blast
then obtain w ′ where (v, w ′) ∈ r0^^2 using c2 relpow-add[of 2 k r0] by

fastforce

288

then obtain w w ′ where (v, w) ∈ r0 ∧ (w, w ′) ∈ r0 by (metis One-nat-def
numeral-2-eq-2 relpow-1 relpow-Suc-E)

moreover then have (v, w) ∈ (rE S) using a1 unfolding LD2-def by blast
moreover then have levrd w ∈ {l2 , l4} using c1 unfolding rE-def by

force
ultimately show False using a0 a1 lem-rE-one by blast

qed
then have k1 = 0 ∨ k1 = 1 by (simp add: less-2-cases)
then show (v, v ′) ∈ r0^= using c2 by force

qed
then have b7 : (v1 , b ′) ∈ r0^= ∧ (v2 , c ′) ∈ r0^= using b2 b3 b4 b5 by simp
have b8 : levrd d ∈ {l7 , l8}
proof −

have r0 ⊆ (rE S) ∧ r1 ⊆ (rE S) using a1 unfolding LD2-def by blast
then have r0^∗ ⊆ (rE S)^∗ ∧ r1^= ⊆ (rE S)^∗ using rtrancl-mono by blast
then have (v1 , b ′) ∈ (rE S)^∗ ∧ (b ′, b ′′) ∈ (rE S)^∗ ∧ (b ′′, d) ∈ (rE S)^∗

and (v2 , c ′) ∈ (rE S)^∗ ∧ (c ′, c ′′) ∈ (rE S)^∗ ∧ (c ′′, d) ∈ (rE S)^∗ using
b4 b5 by blast+

then have e1 : (v1 ,d) ∈ (rE S)^∗ ∧ (v2 ,d) ∈ (rE S)^∗ by force
have

∧
v v ′:: ′U rD. levrd v = l1 −→ (v,v ′) ∈ (rE S)^∗ −→ v 6= v ′ −→ levrd

v ′ 6= l1
proof (intro impI)

fix v v ′:: ′U rD
assume d1 : levrd v = l1 and d2 : (v,v ′) ∈ (rE S)^∗ and d3 : v 6= v ′

moreover then obtain k where (v,v ′) ∈ (rE S)^^k using rtrancl-imp-relpow
by blast

ultimately obtain k ′ where (v,v ′) ∈ (rE S)^^(Suc k ′) by (cases k, force+)
then obtain v ′′ where (v,v ′′) ∈ (rE S) ∧ (v ′′,v ′) ∈ (rE S)^^k ′ by (meson

relpow-Suc-D2)
then have levrd v ′′ = l2 ∧ (v ′′,v ′) ∈ (rE S)^∗ using d1 lem-rE-succ-lev[of v

v ′′] relpow-imp-rtrancl by force
moreover have lev-next ‘ {l2 , l3 , l4 , l5 , l6 , l7 , l8} ⊆ {l2 , l3 , l4 , l5 , l6 , l7 ,

l8} by simp
ultimately have levrd v ′∈ {l2 , l3 , l4 , l5 , l6 , l7 , l8} using lem-rE-levset-inv[of

v ′′ v ′ S {l2 , l3 , l4 , l5 , l6 , l7 , l8}] by simp
then show levrd v ′ 6= l1 by force

qed
then have (v1 ,v2) /∈ (rE S)^∗ and (v2 ,v1) /∈ (rE S)^∗ using b2 b3 by

fastforce+
then show levrd d ∈ {l7 , l8} using e1 lem-rE-jn2 by blast

qed
then have b9 : ∀ n ≤ 5 . (v1 ,d) /∈ (rE S)^^n ∧ (v2 ,d) /∈ (rE S)^^n using b2

b3 lem-rE-l1-l78-dist[of - d] by simp
have b10 : levrd b ′′ = l2
proof −

have c1 : v1 = b ′ ∨ (v1 ,b ′) ∈ (rE S) using b7 a1 unfolding LD2-def by blast
then have levrd b ′ ∈ {l1 , l2} using b2 lem-rE-succ-lev[of v1 b ′] by force

moreover have c2 : b ′ = b ′′ ∨ (b ′,b ′′) ∈ (rE S) using b4 a1 unfolding LD2-def
by blast

289

ultimately have levrd b ′′ ∈ {l1 , l2 , l3} using lem-rE-succ-lev[of b ′ b ′′] by
force

moreover have levrd b ′′ ∈ {l1 , l3} −→ False
proof

assume levrd b ′′ ∈ {l1 , l3}
then have (b ′′,d) ∈ r0^= using b4 b6 by blast
then have d1 : b ′′ = d ∨ (b ′′, d) ∈ (rE S) using a1 unfolding LD2-def by

blast
have (v1 ,d) ∈ (rE S)^^0 ∨ (v1 ,d) ∈ (rE S)^^1 ∨ (v1 ,d) ∈ (rE S)^^2 ∨

(v1 ,d) ∈ (rE S)^^3
using c1 c2 d1 lem-rel-pow2fw[of - - rE S] lem-rel-pow3fw[of - - rE S] by

(metis relpow-0-I relpow-1)
then show False using b9

by (meson le0 numeral-le-iff one-le-numeral semiring-norm(68) semir-
ing-norm(72) semiring-norm(73))

qed
ultimately show levrd b ′′ = l2 by blast

qed
then have b ′′ 6= d using b8 by force
then obtain t where b11 : (b ′′,t) ∈ r0 ∧ (t, d) ∈ r0^∗ using b4 by (meson

converse-rtranclE)
then have b12 : (b ′′,t) ∈ (rE S) using a1 unfolding LD2-def by blast
then have levrd t = l3 using b10 a1 lem-rE-succ-lev[of b ′′ t S] unfolding

LD2-def by simp
then have (t,d) ∈ r0^= using b11 b6 by blast
then have b13 : t = d ∨ (t,d) ∈ (rE S) using a1 unfolding LD2-def by blast
have b14 : v1 = b ′ ∨ (v1 ,b ′) ∈ (rE S) using b7 a1 unfolding LD2-def by blast
moreover have b15 : b ′ = b ′′ ∨ (b ′,b ′′) ∈ (rE S) using b4 a1 unfolding LD2-def

by blast
ultimately have (v1 ,b ′′) ∈ (rE S)^^0 ∨ (v1 ,b ′′) ∈ (rE S)^^1 ∨ (v1 ,b ′′) ∈ (rE

S)^^2
using lem-rel-pow2fw[of - - rE S] by (metis relpow-0-I relpow-1)

then have (v1 ,t) ∈ (rE S)^^1 ∨ (v1 ,t) ∈ (rE S)^^2 ∨ (v1 ,t) ∈ (rE S)^^3
using b12 b14 b15

lem-rel-pow2fw[of - - rE S] lem-rel-pow3fw[of - - rE S] by (metis relpow-1)
moreover have (v1 ,t) ∈ (rE S)^^1 −→ (v1 ,d) ∈ (rE S)^^1 ∨ (v1 ,d) ∈ (rE

S)^^2 using b13 lem-rel-pow2fw by fastforce
moreover have (v1 ,t) ∈ (rE S)^^2 −→ (v1 ,d) ∈ (rE S)^^2 ∨ (v1 ,d) ∈ (rE

S)^^3 using b13 relpow-Suc-I by fastforce
moreover have (v1 ,t) ∈ (rE S)^^3 −→ (v1 ,d) ∈ (rE S)^^3 ∨ (v1 ,d) ∈ (rE

S)^^4 using b13 relpow-Suc-I by fastforce
ultimately have ∃ n ∈ {1 ,2 ,3 ,4}. (v1 ,d) ∈ (rE S)^^n by blast
moreover have ∀ n ∈ {1 ,2 ,3 ,4}::nat set. n ≤ 5 by simp
ultimately show False using b9 by blast

qed

lemma lem-rE-dominv:
fixes S :: ′U set
assumes ¬ finite S

290

shows u ∈ Domain (rE S) =⇒ (u,v) ∈ (rE S)^∗ =⇒ v ∈ Domain (rE S)
using assms lem-rE-domfield unfolding Field-def by (metis Range.RangeI UnCI

rtranclE)

lemma lem-rE-next:
fixes S :: ′U set
assumes ¬ finite S and u ∈ Domain (rE S)
shows ∃ v. (u,v) ∈ (rE S) ∧ v ∈ Domain (rE S) ∧ levrd v = (lev-next (levrd u))
proof −

obtain u ′ where b1 : (u,u ′) ∈ (rE S) using assms by blast
obtain n A B C where b2 : u = (n,A,B,C) using prod-cases4 by blast
obtain n ′ A ′ B ′ C ′ where b3 : u ′ = (n ′,A ′,B ′,C ′) using prod-cases4 by blast
have b4 : rP n A B C n ′ A ′ B ′ C ′ ∧ rC S A B C ∧ rC S A ′ B ′ C ′ using b1 b2

b3 unfolding rE-def by blast
moreover then have A ⊆ S unfolding rC-def by blast
moreover then have b4 ′: ∃A2⊆S . A ⊂ A2 ∧ finite A2

using b4 assms lem-rP-inv lem-infset-finext[of S A] by metis
ultimately have (∃ A1 B1 C1 n2 A2 B2 C2 . rP n A B C (lev-next n) A1 B1

C1 ∧ rC S A1 B1 C1
∧ rP (lev-next n) A1 B1 C1 n2 A2 B2 C2 ∧ rC S A2 B2

C2)
apply (cases n)
unfolding rC-def by auto+

then obtain A1 B1 C1 n2 A2 B2 C2 where
rP n A B C (lev-next n) A1 B1 C1 ∧ rC S A1 B1 C1 ∧ rP (lev-next n) A1

B1 C1 n2 A2 B2 C2 ∧ rC S A2 B2 C2 by blast
moreover obtain v where v = ((lev-next n), A1 , B1 , C1) by blast
ultimately have (u,v) ∈ (rE S) ∧ v ∈ Domain (rE S) ∧ levrd v = (lev-next

(levrd u))
using b2 b4 unfolding rE-def by force

then show ?thesis by blast
qed

lemma lem-rE-reachl8 :
fixes S :: ′U set
assumes ¬ finite S and u ∈ Domain (rE S)
shows ∃ v. (u,v) ∈ (rE S)^∗ ∧ v ∈ Domain (rE S) ∧ levrd v = l8
proof −

have levrd u = l8 −→ ?thesis using assms by blast
moreover have b0 :

∧
u:: ′U rD. u ∈ Domain (rE S) =⇒ levrd u = l7 =⇒ (∃

v. (u,v) ∈ (rE S)^∗ ∧ v ∈ Domain (rE S) ∧ levrd v = l8)
proof −

fix u:: ′U rD
assume u ∈ Domain (rE S) and levrd u = l7
moreover then have (lev-next (levrd u)) = l8 by force
ultimately obtain v where (u,v) ∈ (rE S) ∧ v ∈ Domain (rE S) ∧ levrd v

= l8 using assms lem-rE-next by metis
then show ∃ v. (u,v) ∈ (rE S)^∗ ∧ v ∈ Domain (rE S) ∧ levrd v = l8 by

blast

291

qed
moreover have b1 :

∧
u:: ′U rD. u ∈ Domain (rE S) =⇒ levrd u = l6 =⇒ (∃

v. (u,v) ∈ (rE S)^∗ ∧ v ∈ Domain (rE S) ∧ levrd v = l8)
proof −

fix u:: ′U rD
assume u ∈ Domain (rE S) and levrd u = l6
moreover then have (lev-next (levrd u)) = l7 by force
ultimately obtain v ′ where (u,v ′) ∈ (rE S) ∧ v ′ ∈ Domain (rE S) ∧ levrd

v ′ = l7 using assms lem-rE-next by metis
moreover then obtain v where (v ′,v) ∈ (rE S)^∗ ∧ v ∈ Domain (rE S) ∧

levrd v = l8 using b0 by blast
ultimately have (u,v) ∈ (rE S)^∗ ∧ v ∈ Domain (rE S) ∧ levrd v = l8 by

force
then show ∃ v. (u,v) ∈ (rE S)^∗ ∧ v ∈ Domain (rE S) ∧ levrd v = l8 by

blast
qed
moreover have b2 :

∧
u:: ′U rD. u ∈ Domain (rE S) =⇒ levrd u = l5 =⇒ (∃

v. (u,v) ∈ (rE S)^∗ ∧ v ∈ Domain (rE S) ∧ levrd v = l8)
proof −

fix u:: ′U rD
assume u ∈ Domain (rE S) and levrd u = l5
moreover then have (lev-next (levrd u)) = l6 by simp
ultimately obtain v ′ where (u,v ′) ∈ (rE S) ∧ v ′ ∈ Domain (rE S) ∧ levrd

v ′ = l6 using assms lem-rE-next by metis
moreover then obtain v where (v ′,v) ∈ (rE S)^∗ ∧ v ∈ Domain (rE S) ∧

levrd v = l8 using b1 by blast
ultimately have (u,v) ∈ (rE S)^∗ ∧ v ∈ Domain (rE S) ∧ levrd v = l8 by

force
then show ∃ v. (u,v) ∈ (rE S)^∗ ∧ v ∈ Domain (rE S) ∧ levrd v = l8 by

blast
qed
moreover have b3 :

∧
u:: ′U rD. u ∈ Domain (rE S) =⇒ levrd u = l4 =⇒ (∃

v. (u,v) ∈ (rE S)^∗ ∧ v ∈ Domain (rE S) ∧ levrd v = l8)
proof −

fix u:: ′U rD
assume u ∈ Domain (rE S) and levrd u = l4
moreover then have (lev-next (levrd u)) = l5 by simp
ultimately obtain v ′ where (u,v ′) ∈ (rE S) ∧ v ′ ∈ Domain (rE S) ∧ levrd

v ′ = l5 using assms lem-rE-next by metis
moreover then obtain v where (v ′,v) ∈ (rE S)^∗ ∧ v ∈ Domain (rE S) ∧

levrd v = l8 using b2 by blast
ultimately have (u,v) ∈ (rE S)^∗ ∧ v ∈ Domain (rE S) ∧ levrd v = l8 by

force
then show ∃ v. (u,v) ∈ (rE S)^∗ ∧ v ∈ Domain (rE S) ∧ levrd v = l8 by

blast
qed
moreover have b4 :

∧
u:: ′U rD. u ∈ Domain (rE S) =⇒ levrd u = l3 =⇒ (∃

v. (u,v) ∈ (rE S)^∗ ∧ v ∈ Domain (rE S) ∧ levrd v = l8)
proof −

292

fix u:: ′U rD
assume u ∈ Domain (rE S) and levrd u = l3
moreover then have (lev-next (levrd u)) = l4 by simp
ultimately obtain v ′ where (u,v ′) ∈ (rE S) ∧ v ′ ∈ Domain (rE S) ∧ levrd

v ′ = l4 using assms lem-rE-next by metis
moreover then obtain v where (v ′,v) ∈ (rE S)^∗ ∧ v ∈ Domain (rE S) ∧

levrd v = l8 using b3 by blast
ultimately have (u,v) ∈ (rE S)^∗ ∧ v ∈ Domain (rE S) ∧ levrd v = l8 by

force
then show ∃ v. (u,v) ∈ (rE S)^∗ ∧ v ∈ Domain (rE S) ∧ levrd v = l8 by

blast
qed
moreover have b5 :

∧
u:: ′U rD. u ∈ Domain (rE S) =⇒ levrd u = l2 =⇒ (∃

v. (u,v) ∈ (rE S)^∗ ∧ v ∈ Domain (rE S) ∧ levrd v = l8)
proof −

fix u:: ′U rD
assume u ∈ Domain (rE S) and levrd u = l2
moreover then have (lev-next (levrd u)) = l3 by simp
ultimately obtain v ′ where (u,v ′) ∈ (rE S) ∧ v ′ ∈ Domain (rE S) ∧ levrd

v ′ = l3 using assms lem-rE-next by metis
moreover then obtain v where (v ′,v) ∈ (rE S)^∗ ∧ v ∈ Domain (rE S) ∧

levrd v = l8 using b4 by blast
ultimately have (u,v) ∈ (rE S)^∗ ∧ v ∈ Domain (rE S) ∧ levrd v = l8 by

force
then show ∃ v. (u,v) ∈ (rE S)^∗ ∧ v ∈ Domain (rE S) ∧ levrd v = l8 by

blast
qed
moreover have b6 :

∧
u:: ′U rD. u ∈ Domain (rE S) =⇒ levrd u = l1 =⇒ (∃

v. (u,v) ∈ (rE S)^∗ ∧ v ∈ Domain (rE S) ∧ levrd v = l8)
proof −

fix u:: ′U rD
assume u ∈ Domain (rE S) and levrd u = l1
moreover then have (lev-next (levrd u)) = l2 by simp
ultimately obtain v ′ where (u,v ′) ∈ (rE S) ∧ v ′ ∈ Domain (rE S) ∧ levrd

v ′ = l2 using assms lem-rE-next by metis
moreover then obtain v where (v ′,v) ∈ (rE S)^∗ ∧ v ∈ Domain (rE S) ∧

levrd v = l8 using b5 by blast
ultimately have (u,v) ∈ (rE S)^∗ ∧ v ∈ Domain (rE S) ∧ levrd v = l8 by

force
then show ∃ v. (u,v) ∈ (rE S)^∗ ∧ v ∈ Domain (rE S) ∧ levrd v = l8 by

blast
qed
moreover have b7 :

∧
u:: ′U rD. u ∈ Domain (rE S) =⇒ levrd u = l0 =⇒ (∃

v. (u,v) ∈ (rE S)^∗ ∧ v ∈ Domain (rE S) ∧ levrd v = l8)
proof −

fix u:: ′U rD
assume u ∈ Domain (rE S) and levrd u = l0
moreover then have (lev-next (levrd u)) = l1 by simp
ultimately obtain v ′ where (u,v ′) ∈ (rE S) ∧ v ′ ∈ Domain (rE S) ∧ levrd

293

v ′ = l1 using assms lem-rE-next by metis
moreover then obtain v where (v ′,v) ∈ (rE S)^∗ ∧ v ∈ Domain (rE S) ∧

levrd v = l8 using b6 by blast
ultimately have (u,v) ∈ (rE S)^∗ ∧ v ∈ Domain (rE S) ∧ levrd v = l8 by

force
then show ∃ v. (u,v) ∈ (rE S)^∗ ∧ v ∈ Domain (rE S) ∧ levrd v = l8 by

blast
qed
ultimately show ?thesis using assms by (meson lev-next.cases)

qed

lemma lem-rE-jn:
fixes S :: ′U set
assumes a0 : ¬ finite S and a1 : u1 ∈ Domain (rE S) and a2 : u2 ∈ Domain (rE
S)
shows ∃ t. (u1 ,t) ∈ (rE S)^∗ ∧ (u2 ,t) ∈ (rE S)^∗
proof −

obtain v1 where b1 : (u1 ,v1) ∈ (rE S)^∗ and b2 : v1 ∈ Domain (rE S) ∧ levrd
v1 = l8 using a0 a1 lem-rE-reachl8 by blast

obtain v2 where b3 : (u2 ,v2) ∈ (rE S)^∗ and b4 : v2 ∈ Domain (rE S) ∧ levrd
v2 = l8 using a0 a2 lem-rE-reachl8 by blast

obtain n1 A1 B1 C1 where b5 : v1 = (n1 ,A1 ,B1 ,C1) using prod-cases4 by
blast

obtain n2 A2 B2 C2 where b6 : v2 = (n2 ,A2 ,B2 ,C2) using prod-cases4 by
blast

have b7 : n1 = l8 ∧ A1 = B1 ∧ A1 = C1 ∧ finite A1 ∧ A1 ⊆ S using b5 b2
unfolding rE-def rC-def by force

have b8 : n2 = l8 ∧ A2 = B2 ∧ A2 = C2 ∧ finite A2 ∧ A2 ⊆ S using b6 b4
unfolding rE-def rC-def by force

have finite (A1 ∪ A2) ∧ A1 ∪ A2 ⊆ S using b7 b8 by blast
then obtain A3 where A3 ⊆ S ∧ A1 ∪ A2 ⊂ A3 ∧ finite A3 using a0

lem-infset-finext[of S A1 ∪ A2] by blast
moreover obtain t where t = (l7 , A3 , A3 , A3) by blast
ultimately have (v1 , t) ∈ (rE S) ∧ (v2 , t) ∈ (rE S) using b5 b6 b7 b8 un-

folding rE-def rC-def by force
then have (u1 ,t) ∈ (rE S)^∗ ∧ (u2 ,t) ∈ (rE S)^∗ using b1 b3 by force
then show ?thesis by blast

qed

lemma lem-rE-confl:
fixes S :: ′U set
assumes ¬ finite S
shows confl-rel (rE S)
proof −

have ∀ a b c:: ′U rD. (a,b) ∈ (rE S)^∗ −→ (a,c) ∈ (rE S)^∗ −→ (∃ d. (b,d) ∈
(rE S)^∗ ∧ (c,d) ∈ (rE S)^∗)

proof (intro allI impI)
fix a b c:: ′U rD
assume c1 : (a,b) ∈ (rE S)^∗ and c2 : (a,c) ∈ (rE S)^∗

294

show ∃ d. (b,d) ∈ (rE S)^∗ ∧ (c,d) ∈ (rE S)^∗
proof (cases a ∈ Domain (rE S))

assume a ∈ Domain (rE S)
then have b ∈ Domain (rE S) ∧ c ∈ Domain (rE S) using c1 c2 assms

lem-rE-dominv by blast
then obtain d where (b,d) ∈ (rE S)^∗ ∧ (c,d) ∈ (rE S)^∗ using assms

lem-rE-jn by blast
then show ?thesis by blast

next
assume a /∈ Domain (rE S)
then have a = b ∧ a = c using c1 c2 by (meson Not-Domain-rtrancl)
then show ?thesis by blast

qed
qed
then show ?thesis unfolding confl-rel-def by blast

qed

lemma lem-rE-dc3dc2 :
fixes S :: ′U set
assumes ¬ |S | ≤o |UNIV ::nat set|
shows confl-rel (rE S) ∧ (¬ DCR2 (rE S))
proof (intro conjI)

have ¬ finite S using assms by (meson card-of-Well-order infinite-iff-card-of-nat
ordLeq-total)

then show confl-rel (rE S) using lem-rE-confl by blast
next

show ¬ DCR2 (rE S) using assms lem-rE-notLD2 unfolding DCR2-def by
blast
qed

lemma lem-rE-cardbnd:
fixes S :: ′U set
assumes ¬ finite S
shows |rE S | ≤o |S |
proof −

obtain L where b1 : L = (UNIV ::Lev set) by blast
obtain F where b2 : F = { A. A ⊆ S ∧ finite A } by blast
obtain D where b3 : D = (L × (F × (F × F))) by blast
have ∀ u v. (u,v) ∈ rE S −→ u ∈ D ∧ v ∈ D
proof (intro allI impI)

fix u v
assume (u,v) ∈ rE S
then obtain n A B C n ′ A ′ B ′ C ′

where u = (n,A,B,C) ∧ v = (n ′,A ′,B ′,C ′) ∧ rC S A B C ∧ rC S A ′ B ′ C ′

∧ rP n A B C n ′ A ′ B ′ C ′ unfolding rE-def by blast
moreover then have n ∈ L ∧ A ∈ F ∧ B ∈ F ∧ C ∈ F ∧ n ′ ∈ L ∧ A ′ ∈ F

∧ B ′ ∈ F ∧ C ′ ∈ F
using b1 b2 lem-rP-inv unfolding rC-def by fast

ultimately show u ∈ D ∧ v ∈ D using b3 by blast

295

qed
then have rE S ⊆ D × D by force
then have |rE S | ≤o |D × D| by simp
moreover have |D × D| ≤o |S |
proof −

have F = Fpow S using b2 unfolding Fpow-def by simp
then have c1 : |F | =o |S | using assms by simp
then have |F × F | =o |F | ∧ ¬ finite F using assms by simp
then have |F | ≤o |F | ∧ |F × F | ≤o |F | ∧ ¬ finite F using ordIso-iff-ordLeq

by force
then have c2 : |F × (F × F)| ≤o |S | using c1 card-of-Times-ordLeq-infinite

ordLeq-ordIso-trans by blast
have L ⊆ {l0 ,l1 ,l2 ,l3 ,l4 ,l5 ,l6 ,l7 ,l8}
proof

fix l
assume l ∈ L
show l ∈ {l0 ,l1 ,l2 ,l3 ,l4 ,l5 ,l6 ,l7 ,l8} by (cases l, simp+)

qed
moreover have finite {l0 ,l1 ,l2 ,l3 ,l4 ,l5 ,l6 ,l7 ,l8} by simp
ultimately have finite L using finite-subset by blast
then have |L| ≤o |S | using assms ordLess-imp-ordLeq by force
then have |D| ≤o |S | using b3 c2 assms card-of-Times-ordLeq-infinite by blast
then show ?thesis using assms card-of-Times-ordLeq-infinite by blast

qed
ultimately show |rE S | ≤o |S | using ordLeq-transitive by blast

qed

lemma lem-fmap-rel:
fixes f r s a0 b0
assumes a1 : (a0 , b0) ∈ r^∗ and a2 : ∀ a b. (a,b) ∈ r −→ (f a, f b) ∈ s
shows (f a0 , f b0) ∈ s^∗
proof −

have
∧

n. ∀ a b. (a,b) ∈ r^^n −→ (f a, f b) ∈ s^∗
proof −

fix n0
show ∀ a b. (a,b) ∈ r^^n0 −→ (f a, f b) ∈ s^∗
proof (induct n0)

show ∀ a b. (a,b) ∈ r^^0 −→ (f a, f b) ∈ s^∗ by simp
next

fix n
assume ∀ a b. (a,b) ∈ r^^n −→ (f a, f b) ∈ s^∗
then show ∀ a b. (a,b) ∈ r^^(Suc n) −→ (f a, f b) ∈ s^∗ using a2 by force

qed
qed
then show ?thesis using a1 rtrancl-power by blast

qed

lemma lem-fmap-confl:
fixes r :: ′a rel and f :: ′a ⇒ ′b

296

assumes a1 : inj-on f (Field r) and a2 : confl-rel r
shows confl-rel {(u,v). ∃ a b. u = f a ∧ v = f b ∧ (a,b) ∈ r}
proof −

obtain rA where q1 : rA = {(u,v). ∃ a b. u = f a ∧ v = f b ∧ (a,b) ∈ r} by
blast

then have q2 : ∀ a b. (a, b) ∈ r −→ (f a, f b) ∈ rA by blast
have q3 : Field rA ⊆ f‘(Field r) using q1 unfolding Field-def by blast
obtain g where q4 : g = inv-into (Field r) f by blast
then have q5 : ∀ x ∈ Field r . g (f x) = x using a1 by simp
have q6 : ∀ u v. (u,v) ∈ rA −→ (g u, g v) ∈ r
proof (intro allI impI)

fix u v
assume (u,v) ∈ rA
then obtain a b where u = f a ∧ v = f b ∧ (a,b) ∈ r using q1 by blast
moreover then have a ∈ Field r ∧ b ∈ Field r unfolding Field-def by blast
ultimately show (g u, g v) ∈ r using q5 by force

qed
have ∀ u ∈ Field rA. ∀ v ∈ Field rA. ∀ w ∈ Field rA.
(u,v) ∈ rA^∗ ∧ (u,w) ∈ rA^∗ −→ (∃ t ∈ Field rA. (v,t) ∈ rA^∗ ∧ (w,t) ∈

rA^∗)
proof (intro ballI impI)

fix u v w
assume c1 : u ∈ Field rA and c2 : v ∈ Field rA and c3 : w ∈ Field rA

and c4 : (u,v) ∈ rA^∗ ∧ (u,w) ∈ rA^∗
then have (g u, g v) ∈ r^∗ ∧ (g u, g w) ∈ r^∗ using q6 lem-fmap-rel[of u -

rA g r] by blast
then obtain d where c5 : (g v, d) ∈ r^∗ ∧ (g w, d) ∈ r^∗ using a2 unfolding

confl-rel-def by blast
moreover have c6 : g v ∈ Field r ∧ g w ∈ Field r using c2 c3 q3 q5 by force
ultimately have d ∈ Field r using lem-rtr-field by fastforce
have v = f (g v) ∧ w = f (g w) using c2 c3 q3 q4 a1 by force
moreover have (f (g v), f d) ∈ rA^∗ ∧ (f (g w), f d) ∈ rA^∗

using c5 q2 lem-fmap-rel[of - d r f rA] by blast
ultimately have (v, f d) ∈ rA^∗ ∧ (w, f d) ∈ rA^∗ by simp
moreover then have f d ∈ Field rA using c2 lem-rtr-field by fastforce
ultimately show ∃ t ∈ Field rA. (v,t) ∈ rA^∗ ∧ (w,t) ∈ rA^∗ by blast

qed
then show ?thesis using q1 lem-confl-field by blast

qed

lemma lem-fmap-dcn:
fixes r :: ′a rel and f :: ′a ⇒ ′b
assumes a1 : inj-on f (Field r) and a2 : DCR n r
shows DCR n {(u,v). ∃ a b. u = f a ∧ v = f b ∧ (a,b) ∈ r}
proof −

obtain rA where q1 : rA = {(u,v). ∃ a b. u = f a ∧ v = f b ∧ (a,b) ∈ r} by
blast

have q2 : ∀ a ∈ Field r . ∀ b ∈ Field r . (a,b) ∈ r ←→ (f a, f b) ∈ rA
using a1 q1 unfolding Field-def inj-on-def by blast

297

have q3 : Field rA ⊆ f‘(Field r) using q1 unfolding Field-def by blast
obtain g::nat ⇒ ′a rel where b1 : DCR-generating g

and b2 : r =
⋃
{ r ′. ∃ α ′. α ′ < n ∧ r ′ = g α ′ } using a2 unfolding

DCR-def by blast
obtain gA::nat ⇒ ′b rel

where b3 : gA = (λ α. if α < n then {(x,y). ∃ a b. x = f a ∧ y = f b ∧ (a,b)
∈ g α } else {}) by blast

have ∀α β u v w. (u, v) ∈ gA α ∧ (u, w) ∈ gA β −→
(∃ v ′ v ′′ w ′ w ′′ e. (v, v ′, v ′′, e) ∈ D gA α β ∧ (w, w ′, w ′′, e) ∈ D gA β α)

proof (intro allI impI)
fix α β u v w
assume c1 : (u, v) ∈ gA α ∧ (u, w) ∈ gA β
obtain a b where c2 : α < n ∧ u = f a ∧ v = f b ∧ (a,b) ∈ g α using c1 b3

by (cases α < n, force+)
obtain a ′ c where c3 : β < n ∧ u = f a ′ ∧ w = f c ∧ (a ′,c) ∈ g β using c1

b3 by (cases β < n, force+)
have (a,b) ∈ r ∧ (a ′,c) ∈ r using c2 c3 b2 by blast
then have a ′ = a using c2 c3 a1 unfolding inj-on-def Field-def by blast
then have (a,b) ∈ g α ∧ (a,c) ∈ g β using c2 c3 by blast
then obtain b ′ b ′′ c ′ c ′′ d where c4 : (b, b ′, b ′′, d) ∈ D g α β ∧ (c, c ′, c ′′, d)

∈ D g β α
using b1 unfolding DCR-generating-def by blast

have c5 :
∧

α ′. α ′ < n =⇒ ∀ a0 b0 . (a0 ,b0) ∈ L1 g α ′ −→ (f a0 , f b0) ∈ L1
gA α ′

proof (intro allI impI)
fix α ′ a0 b0
assume d1 : α ′ < n and (a0 ,b0) ∈ L1 g α ′

then obtain α ′′ where (a0 ,b0) ∈ g α ′′ ∧ α ′′ < α ′ unfolding L1-def by
blast

moreover then have (f a0 , f b0) ∈ gA α ′′ using d1 c2 b3 by force
ultimately show (f a0 , f b0) ∈ L1 gA α ′ using c2 b3 unfolding L1-def by

blast
qed
have c6 :

∧
α ′ a0 b0 . α ′ < n =⇒ (a0 ,b0) ∈ (g α ′)^= −→ (f a0 , f b0) ∈ (gA

α ′)^= using b3 by force
have c7 :

∧
α ′ β ′. α ′ < n =⇒ β ′ < n =⇒ ∀ a0 b0 . (a0 ,b0) ∈ Lv g α ′ β ′ −→

(f a0 , f b0) ∈ Lv gA α ′ β ′

proof (intro allI impI)
fix α ′ β ′ a0 b0
assume d1 : α ′ < n and d2 : β ′ < n and (a0 ,b0) ∈ Lv g α ′ β ′

then obtain α ′′ where (a0 ,b0) ∈ g α ′′ ∧ (α ′′ < α ′ ∨ α ′′ < β ′) unfolding
Lv-def by blast

moreover then have (f a0 , f b0) ∈ gA α ′′ using d1 d2 c2 b3 by force
ultimately show (f a0 , f b0) ∈ Lv gA α ′ β ′ using c2 b3 unfolding Lv-def

by blast
qed

have (v, f b ′) ∈ (L1 gA α)^∗ using c2 c4 c5 [of α] lem-fmap-rel[of b b ′]
unfolding D-def by blast

moreover have (f b ′, f b ′′) ∈ (gA β)^= using c3 c4 c6 unfolding D-def by

298

blast
moreover have (f b ′′, f d) ∈ (Lv gA α β)^∗ using c2 c3 c4 c7 [of α β]

lem-fmap-rel[of b ′′ d] unfolding D-def by blast
moreover have (w, f c ′) ∈ (L1 gA β)^∗ using c3 c4 c5 [of β] lem-fmap-rel[of

c c ′] unfolding D-def by blast
moreover have (f c ′, f c ′′) ∈ (gA α)^= using c2 c4 c6 unfolding D-def by

blast
moreover have (f c ′′, f d) ∈ (Lv gA β α)^∗ using c2 c3 c4 c7 [of β α]

lem-fmap-rel[of c ′′ d] unfolding D-def by blast
ultimately show ∃ v ′ v ′′ w ′ w ′′ e. (v, v ′, v ′′, e) ∈ D gA α β ∧ (w, w ′, w ′′, e)

∈ D gA β α
unfolding D-def by blast

qed
then have DCR-generating gA unfolding DCR-generating-def by blast
moreover have rA =

⋃
{ r ′. ∃ α ′. α ′ < n ∧ r ′ = gA α ′}

proof
show rA ⊆

⋃
{ r ′. ∃ α ′. α ′ < n ∧ r ′ = gA α ′}

proof
fix p
assume p ∈ rA
then obtain x y where d1 : p = (x,y) ∧ p ∈ rA by force
moreover then obtain a b where d2 : x = f a ∧ y = f b ∧ a ∈ Field r ∧ b

∈ Field r
using q3 unfolding Field-def by blast

ultimately have (a,b) ∈ r using q2 by blast
then obtain α ′ where α ′ < n ∧ (a,b) ∈ g α ′ using b2 by blast
then have α ′ < n ∧ (x,y) ∈ gA α ′ using d2 b3 by force
then show p ∈

⋃
{r ′. ∃α ′<n. r ′ = gA α ′} using d1 by blast

qed
next

show
⋃
{ r ′. ∃ α ′. α ′ < n ∧ r ′ = gA α ′} ⊆ rA

proof
fix p
assume p ∈

⋃
{ r ′. ∃ α ′. α ′ < n ∧ r ′ = gA α ′}

then obtain α ′ where d1 : α ′ < n ∧ p ∈ gA α ′ by blast
then obtain x y where d2 : p = (x,y) ∧ p ∈ gA α ′ by force
then obtain a b where x = f a ∧ y = f b ∧ (a,b) ∈ g α ′ using d1 b3 by

force
moreover then have (a,b) ∈ r using d1 b2 by blast
ultimately show p ∈ rA using d2 q2 unfolding Field-def by blast

qed
qed
ultimately have DCR n rA unfolding DCR-def by blast
then show ?thesis using q1 by blast

qed

lemma lem-not-dcr2 :
assumes cardSuc |UNIV ::nat set| ≤o |UNIV :: ′U set|
shows ∃ r :: ′U rel. confl-rel r ∧ |r | ≤o cardSuc |UNIV ::nat set| ∧ (¬ DCR2 r)

299

proof −
obtain A where b1 : A = (UNIV :: ′U set) by blast
obtain S where b2 : S ⊆ A ∧ |S | =o cardSuc |UNIV ::nat set|

using b1 assms
by (smt Card-order-ordIso2 Field-card-of cardSuc-Card-order card-of-Field-ordIso

card-of-card-order-on internalize-ordLeq ordIso-symmetric ordIso-transitive)
then have ¬ (|S | ≤o |UNIV ::nat set|) by (simp add: cardSuc-ordLess-ordLeq

ordIso-iff-ordLeq)
moreover then have ¬ finite S by (meson card-of-Well-order infinite-iff-card-of-nat

ordLeq-total)
moreover obtain s where b3 : s = (rE S) by blast
ultimately have b4 : confl-rel s ∧ ¬ DCR2 s ∧ |s| ≤o |S | using lem-rE-dc3dc2

lem-rE-cardbnd by blast
obtain B where b5 : B = Field s by blast
obtain C :: ′U set where b6 : C = UNIV by blast
then have cardSuc |UNIV ::nat set| ≤o |C | using assms by blast
moreover have b6 ′: |s| ≤o cardSuc |UNIV ::nat set| using b2 b4 ordLeq-ordIso-trans

by blast
ultimately have |s| ≤o |C | using ordLeq-transitive by blast
moreover have b6 ′′: ¬ finite (Field s) −→ |Field s| =o |s| using lem-fin-fl-rel

lem-rel-inf-fld-card by blast
ultimately have ¬ finite (Field s) −→ |Field s| ≤o |C | using ordIso-ordLeq-trans

by blast
moreover have ¬ finite C using b6 assms ordLeq-finite-Field by fastforce
moreover then have finite (Field s) −→ |Field s| ≤o |C | using ordLess-imp-ordLeq

by force
ultimately have |B| ≤o |C | using b5 by blast
then obtain f where b7 : f‘B ⊆ C ∧ inj-on f B by (meson card-of-ordLeq)
moreover obtain g where b8 : g = inv-into B f by blast
ultimately have b9 : ∀ x ∈ B. g (f x) = x by simp
obtain r where b10 : r = {(a,b). ∃ x y. a = f x ∧ b = f y ∧ (x,y) ∈ s} by blast
have s ⊆ {(x,y). ∃ a b. x = g a ∧ y = g b ∧ (a,b) ∈ r}
proof

fix p
assume p ∈ s
then obtain x y where p = (x,y) ∧ (x,y) ∈ s by (cases p, blast)
moreover then have (f x, f y) ∈ r ∧ x ∈ B ∧ y ∈ B using b5 b10 unfolding

Field-def by blast
moreover then have x = g (f x) ∧ y = g (f y) using b9 by simp
ultimately show p ∈ {(x,y). ∃ a b. x = g a ∧ y = g b ∧ (a,b) ∈ r} using b9

by blast
qed
moreover have {(x,y). ∃ a b. x = g a ∧ y = g b ∧ (a,b) ∈ r} ⊆ s
proof

fix p
assume p ∈ {(x,y). ∃ a b. x = g a ∧ y = g b ∧ (a,b) ∈ r}
then obtain a b where p = (g a, g b) ∧ (a,b) ∈ r by blast
moreover then obtain x y where a = f x ∧ b = f y ∧ (x,y) ∈ s using b10

300

by blast
moreover then have x ∈ B ∧ y ∈ B using b5 unfolding Field-def by blast
ultimately show p ∈ s using b9 by force

qed
ultimately have b11 : s = {(x,y). ∃ a b. x = g a ∧ y = g b ∧ (a,b) ∈ r} by

blast
have inj-on g (f‘B) using b8 inj-on-inv-into[of f‘B f B] by blast
moreover have b12 : Field r ⊆ f‘B
proof

fix c
assume c ∈ Field r
then obtain a b where (a,b) ∈ r ∧ (c = a ∨ c = b) unfolding Field-def by

blast
moreover then obtain x y where a = f x ∧ b = f y ∧ (x,y) ∈ s using b10

by blast
moreover then have x ∈ B ∧ y ∈ B using b5 unfolding Field-def by blast
ultimately show c ∈ f ‘ B by blast

qed
ultimately have inj-on g (Field r) using Fun.subset-inj-on by blast
moreover have ¬ DCR 2 s using b4 lem-dc2-to-d2 by blast
ultimately have ¬ DCR 2 r using b11 lem-fmap-dcn[of g r 2] by blast
then have ¬ DCR2 r using lem-d2-to-dc2 by blast
moreover have confl-rel r using b4 b5 b7 b10 lem-fmap-confl[of f s] by blast
moreover have |r | ≤o cardSuc |UNIV ::nat set|
proof −

have finite (Field s) −→ |B| ≤o cardSuc |UNIV ::nat set| using b2 b5
by (metis Field-card-of cardSuc-greater card-of-card-order-on finite-ordLess-infinite2

infinite-UNIV-nat ordLeq-transitive ordLess-imp-ordLeq)
moreover have ¬ finite (Field s) −→ |B| ≤o cardSuc |UNIV ::nat set|

using b5 b6 ′ b6 ′′ ordIso-ordLeq-trans by blast
ultimately have |B| ≤o cardSuc |UNIV ::nat set| by blast
moreover have |f‘B| ≤o |B| by simp
moreover have |Field r | ≤o |f‘B| using b12 by simp
ultimately have |Field r | ≤o cardSuc |UNIV ::nat set| using ordLeq-transitive

by metis
then have ¬ finite r −→ |r | ≤o cardSuc |UNIV ::nat set|

using lem-rel-inf-fld-card[of r] ordIso-ordLeq-trans ordIso-symmetric by blast
moreover have finite r −→ |r | ≤o cardSuc |UNIV ::nat set| by (simp add:

ordLess-imp-ordLeq)
ultimately show ?thesis by blast

qed
ultimately show ?thesis by blast

qed

1.3.3 Result

The next theorem has the following meaning: if the set of elements of type
′U is uncountable, then there exists a confluent binary relation r on ′U such

301

that the cardinality of r does not exceed the first uncountable cardinal and
confluence of r cannot be proved using the decreasing diagrams method with
2 labels.
theorem thm-example-not-dcr2 :
assumes cardSuc |{n::nat. True}| ≤o |{x:: ′U . True}|
shows ∃ r :: ′U rel. (

(∀ a b c. (a,b) ∈ r^∗ ∧ (a,c) ∈ r^∗ −→ (∃ d. (b,d) ∈ r^∗ ∧ (c,d) ∈ r^∗)
)

∧ |r | ≤o cardSuc |{n::nat. True}|
∧ (¬ (∃ r0 r1 . (

(r = (r0 ∪ r1))
∧ (∀ a b c. (a,b) ∈ r0 ∧ (a,c) ∈ r0
−→ (∃ d.

(b,d) ∈ r0^=
∧ (c,d) ∈ r0^=))

∧ (∀ a b c. (a,b) ∈ r0 ∧ (a,c) ∈ r1
−→ (∃ b ′ d.

(b,b ′) ∈ r1^= ∧ (b ′,d) ∈ r0^∗
∧ (c,d) ∈ r0^∗))

∧ (∀ a b c. (a,b) ∈ r1 ∧ (a,c) ∈ r1
−→ (∃ b ′ b ′′ c ′ c ′′ d.

(b,b ′) ∈ r0^∗ ∧ (b ′,b ′′) ∈ r1^= ∧ (b ′′,d) ∈ r0^∗
∧ (c,c ′) ∈ r0^∗ ∧ (c ′,c ′′) ∈ r1^= ∧ (c ′′,d) ∈ r0^∗))))

))
proof −

have cardSuc |UNIV ::nat set| ≤o |UNIV :: ′U set| using assms by (simp only:
UNIV-def)

then have ∃ r :: ′U rel. confl-rel r ∧ |r | ≤o cardSuc |UNIV ::nat set| ∧ (¬ DCR2
r)

using assms lem-not-dcr2 by blast
then show ?thesis unfolding confl-rel-def DCR2-def LD2-def jn00-def jn01-def

jn11-def
by (simp only: UNIV-def)

qed

corollary cor-example-not-dcr2 :
shows ∃ r ::(nat set) rel. (

(∀ a b c. (a,b) ∈ r^∗ ∧ (a,c) ∈ r^∗ −→ (∃ d. (b,d) ∈ r^∗ ∧ (c,d) ∈ r^∗)
)

∧ |r | ≤o cardSuc |{n::nat. True}|
∧ (¬ (∃ r0 r1 . (

(r = (r0 ∪ r1))
∧ (∀ a b c. (a,b) ∈ r0 ∧ (a,c) ∈ r0
−→ (∃ d.

(b,d) ∈ r0^=
∧ (c,d) ∈ r0^=))

∧ (∀ a b c. (a,b) ∈ r0 ∧ (a,c) ∈ r1
−→ (∃ b ′ d.

(b,b ′) ∈ r1^= ∧ (b ′,d) ∈ r0^∗

302

∧ (c,d) ∈ r0^∗))
∧ (∀ a b c. (a,b) ∈ r1 ∧ (a,c) ∈ r1
−→ (∃ b ′ b ′′ c ′ c ′′ d.

(b,b ′) ∈ r0^∗ ∧ (b ′,b ′′) ∈ r1^= ∧ (b ′′,d) ∈ r0^∗
∧ (c,c ′) ∈ r0^∗ ∧ (c ′,c ′′) ∈ r1^= ∧ (c ′′,d) ∈ r0^∗))))

))
proof −

have cardSuc |{x::nat. True}| ≤o |{x::nat set. True}| by force
then show ?thesis using thm-example-not-dcr2 by blast

qed

end

1.4 DCR implies LD Property
theory Main-Result-DCR-N1

imports
DCR3-Method
Decreasing−Diagrams.Decreasing-Diagrams

begin

1.4.1 Auxiliary definitions
definition map-seq-labels :: (′b ⇒ ′c) ⇒ (′a, ′b) seq ⇒ (′a, ′c) seq
where

map-seq-labels f σ = (fst σ, map (λ(α,a). (f α, a)) (snd σ))

fun map-diag-labels :: (′b ⇒ ′c) ⇒
(′a, ′b) seq × (′a, ′b) seq × (′a, ′b) seq × (′a, ′b) seq ⇒
(′a, ′c) seq × (′a, ′c) seq × (′a, ′c) seq × (′a, ′c) seq

where
map-diag-labels f (τ ,σ,σ ′,τ ′) = ((map-seq-labels f τ), (map-seq-labels f σ), (map-seq-labels

f σ ′), (map-seq-labels f τ ′))

fun f-to-ls :: (nat ⇒ ′a) ⇒ nat ⇒ ′a list
where

f-to-ls f 0 = []
| f-to-ls f (Suc n) = (f-to-ls f n) @ [(f n)]

1.4.2 Auxiliary lemmas
lemma lem-ftofs-len: length (f-to-ls f n) = n by (induct n, simp+)

lemma lem-irr-inj-im-irr :
fixes r :: ′a rel and r ′:: ′b rel and f :: ′a ⇒ ′b
assumes irrefl r and inj-on f (Field r)

and r ′ = {(a ′,b ′). ∃ a b. a ′ = f a ∧ b ′ = f b ∧ (a,b) ∈ r}
shows irrefl r ′

using assms unfolding inj-on-def Field-def irrefl-def by blast

303

lemma lem-tr-inj-im-tr :
fixes r :: ′a rel and r ′:: ′b rel and f :: ′a ⇒ ′b
assumes trans r and inj-on f (Field r)

and r ′ = {(a ′,b ′). ∃ a b. a ′ = f a ∧ b ′ = f b ∧ (a,b) ∈ r}
shows trans r ′

using assms unfolding inj-on-def Field-def trans-def by blast

lemma lem-lpeak-expr : local-peak lrs (τ , σ) = (∃ a b c α β. (a,α,b) ∈ lrs ∧ (a,β,c)
∈ lrs ∧ τ = (a,[(α,b)]) ∧ σ = (a,[(β,c)]))
proof

assume local-peak lrs (τ , σ)
then show ∃ a b c α β. (a,α,b) ∈ lrs ∧ (a,β,c) ∈ lrs ∧ τ = (a,[(α,b)]) ∧ σ =

(a,[(β,c)])
unfolding Decreasing-Diagrams.local-peak-def Decreasing-Diagrams.peak-def
apply(cases τ , cases σ, simp)
using Decreasing-Diagrams.seq-tail1 (2)
by (metis (no-types, lifting) Suc-length-conv length-0-conv prod.collapse)

next
assume ∃ a b c α β. (a,α,b) ∈ lrs ∧ (a,β,c) ∈ lrs ∧ τ = (a,[(α,b)]) ∧ σ =

(a,[(β,c)])
then obtain a b c α β where (a,α,b) ∈ lrs ∧ (a,β,c) ∈ lrs ∧ τ = (a,[(α,b)]) ∧

σ = (a,[(β,c)]) by blast
then show local-peak lrs (τ , σ)

unfolding Decreasing-Diagrams.local-peak-def Decreasing-Diagrams.peak-def
by (simp add: Decreasing-Diagrams.seq.intros)

qed

lemma lem-map-seq:
fixes lrs::(′a, ′b) lars and f :: ′b ⇒ ′c and lrs ′::(′a, ′c) lars and σ::(′a, ′b) seq
assumes a1 : lrs ′ = {(a,l ′,b). ∃ l. l ′ = f l ∧ (a,l,b) ∈ lrs }

and a2 : σ ∈ Decreasing-Diagrams.seq lrs
shows (map-seq-labels f σ) ∈ Decreasing-Diagrams.seq lrs ′

proof −
have ∀ s a. (a,s) ∈ Decreasing-Diagrams.seq lrs −→ (map-seq-labels f (a,s)) ∈

Decreasing-Diagrams.seq lrs ′

proof
fix s
show ∀ a. (a,s) ∈ Decreasing-Diagrams.seq lrs −→ (map-seq-labels f (a,s)) ∈

Decreasing-Diagrams.seq lrs ′

proof (induct s)
show ∀ a. (a, []) ∈ Decreasing-Diagrams.seq lrs −→ map-seq-labels f (a, []) ∈

Decreasing-Diagrams.seq lrs ′

unfolding map-seq-labels-def by (simp add: seq.intros(1))
next

fix p s1
assume d1 : ∀ b. (b, s1) ∈ Decreasing-Diagrams.seq lrs −→ map-seq-labels f

(b, s1) ∈ Decreasing-Diagrams.seq lrs ′

show ∀ b. (b, p # s1) ∈ Decreasing-Diagrams.seq lrs −→ map-seq-labels f (b,
p # s1) ∈ Decreasing-Diagrams.seq lrs ′

304

proof (intro allI impI)
fix b
assume e1 : (b, p # s1) ∈ Decreasing-Diagrams.seq lrs
moreover obtain l b ′ where e2 : p = (l, b ′) by force
ultimately have e3 : (b,l,b ′) ∈ lrs ∧ (b ′,s1) ∈ Decreasing-Diagrams.seq lrs

by (metis Decreasing-Diagrams.seq-tail1 (1) Decreasing-Diagrams.seq-tail1 (2)
prod.collapse snd-conv)

then have (b,f l,b ′) ∈ lrs ′ using a1 by blast
moreover have map-seq-labels f (b ′, s1) ∈ Decreasing-Diagrams.seq lrs ′

using d1 e3 by blast
ultimately show map-seq-labels f (b, p # s1) ∈ Decreasing-Diagrams.seq

lrs ′

using e2 unfolding map-seq-labels-def by (simp add: seq.intros(2))
qed

qed
qed
moreover obtain a s where σ = (a,s) by force
ultimately show (map-seq-labels f σ) ∈ Decreasing-Diagrams.seq lrs ′ using a2

by blast
qed

lemma lem-map-diag:
fixes lrs::(′a, ′b) lars and f :: ′b ⇒ ′c and lrs ′::(′a, ′c) lars

and d::(′a, ′b) seq × (′a, ′b) seq × (′a, ′b) seq × (′a, ′b) seq
assumes a1 : lrs ′ = {(a,l ′,b). ∃ l. l ′ = f l ∧ (a,l,b) ∈ lrs }

and a2 : diagram lrs d
shows diagram lrs ′ (map-diag-labels f d)
proof −

obtain τ σ σ ′ τ ′ where b1 : d = (τ , σ, σ ′, τ ′) using prod-cases4 by blast
moreover obtain τ1 σ1 σ1 ′ τ1 ′ where b2 : τ1 = (map-seq-labels f τ) ∧ σ1 =

(map-seq-labels f σ)
∧ (σ1 ′ = map-seq-labels f σ ′) ∧ (τ1 ′ = map-seq-labels f τ ′)

by blast
ultimately have b3 : (map-diag-labels f d) = (τ1 , σ1 , σ1 ′, τ1 ′) by simp
have b4 : fst σ = fst τ ∧ lst σ = fst τ ′ ∧ lst τ = fst σ ′ ∧ lst σ ′ = lst τ ′

using b1 a2 unfolding Decreasing-Diagrams.diagram-def by simp
have b5 : σ1 ∈ Decreasing-Diagrams.seq lrs ′ ∧ τ1 ∈ Decreasing-Diagrams.seq lrs ′

∧ σ1 ′ ∈ Decreasing-Diagrams.seq lrs ′ ∧ τ1 ′ ∈ Decreasing-Diagrams.seq lrs ′

using a1 a2 b1 b2 lem-map-seq[of lrs ′ f] by (simp add: Decreasing-Diagrams.diagram-def)
moreover have fst σ1 = fst τ1 using b2 b4 unfolding map-seq-labels-def by

simp
moreover have lst σ1 = fst τ1 ′ ∧ lst τ1 = fst σ1 ′ using b4
by (simp add: b2 map-seq-labels-def lst-def , metis (no-types, lifting) case-prod-beta

last-map snd-conv)
moreover have lst σ1 ′ = lst τ1 ′ using b4
by (simp add: b2 map-seq-labels-def lst-def , metis (no-types, lifting) case-prod-beta

last-map snd-conv)

305

ultimately show diagram lrs ′ (map-diag-labels f d) using b3 b5 unfolding
Decreasing-Diagrams.diagram-def by simp
qed

lemma lem-map-D-loc:
fixes cmp cmp ′ s1 s2 s3 s4 f
assumes a1 : Decreasing-Diagrams.D cmp s1 s2 s3 s4

and a2 : trans cmp and a3 : irrefl cmp and a4 : inj-on f (Field cmp)
and a5 : cmp ′ = {(a ′,b ′). ∃ a b. a ′ = f a ∧ b ′ = f b ∧ (a,b) ∈ cmp}
and a6 : length s1 = 1 and a7 : length s2 = 1

shows Decreasing-Diagrams.D cmp ′ (map f s1) (map f s2) (map f s3) (map f s4)
proof −

obtain α where b1 : s2 = [α] using a7 by (metis One-nat-def Suc-length-conv
length-0-conv)

moreover obtain β where b2 : s1 = [β] using a6 by (metis One-nat-def
Suc-length-conv length-0-conv)

ultimately have b3 : Decreasing-Diagrams.D cmp [β] [α] s3 s4 using a1 by
blast

then obtain σ1 σ2 σ3 τ1 τ2 τ3 where b4 : s3 = σ1@σ2@σ3 and b5 : s4 =
τ1@τ2@τ3 and b6 : LD ′ cmp β α σ1 σ2 σ3 τ1 τ2 τ3

using Decreasing-Diagrams.proposition3-4-inv[of cmp β α s3 s4] a2 a3 by blast
obtain σ1 ′ σ2 ′ σ3 ′ where b7 : σ1 ′ = map f σ1 ∧ σ2 ′ = map f σ2 ∧ σ3 ′ =

map f σ3 by blast
obtain τ1 ′ τ2 ′ τ3 ′ where b8 : τ1 ′ = map f τ1 ∧ τ2 ′ = map f τ2 ∧ τ3 ′ = map

f τ3 by blast
obtain s3 ′ s4 ′ where b9 : s3 ′ = map f s3 and b10 : s4 ′ = map f s4 by blast
have trans cmp ′ using a2 a4 a5 lem-tr-inj-im-tr by blast
moreover have irrefl cmp ′ using a3 a4 a5 lem-irr-inj-im-irr by blast
moreover have s3 ′ = σ1 ′@σ2 ′@σ3 ′ using b4 b7 b9 by simp
moreover have s4 ′ = τ1 ′@τ2 ′@τ3 ′ using b5 b8 b10 by simp
moreover have LD ′ cmp ′ (f β) (f α) σ1 ′ σ2 ′ σ3 ′ τ1 ′ τ2 ′ τ3 ′

proof −
have c1 : LD-1 ′ cmp β α σ1 σ2 σ3 and c2 : LD-1 ′ cmp α β τ1 τ2 τ3
using b6 unfolding Decreasing-Diagrams.LD ′-def by blast+

have LD-1 ′ cmp ′ (f β) (f α) σ1 ′ σ2 ′ σ3 ′

using c1 unfolding Decreasing-Diagrams.LD-1 ′-def Decreasing-Diagrams.ds-def
by (simp add: a5 b7 , blast)

moreover have LD-1 ′ cmp ′ (f α) (f β) τ1 ′ τ2 ′ τ3 ′

using c2 unfolding Decreasing-Diagrams.LD-1 ′-def Decreasing-Diagrams.ds-def
by (simp add: a5 b8 , blast)

ultimately show LD ′ cmp ′ (f β) (f α) σ1 ′ σ2 ′ σ3 ′ τ1 ′ τ2 ′ τ3 ′ unfolding
Decreasing-Diagrams.LD ′-def by blast

qed
ultimately have Decreasing-Diagrams.D cmp ′ [f β] [f α] s3 ′ s4 ′ using Decreas-

ing-Diagrams.proposition3-4 [of cmp ′] by blast
moreover have (map f s1) = [f β] ∧ (map f s2) = [f α] using b1 b2 by simp
ultimately show Decreasing-Diagrams.D cmp ′ (map f s1) (map f s2) (map f

s3) (map f s4) using b9 b10 by simp
qed

306

lemma lem-map-DD-loc:
fixes lrs::(′a, ′b) lars and cmp:: ′b rel and lrs ′::(′a, ′c) lars and cmp ′:: ′c rel and
f :: ′b ⇒ ′c
assumes a1 : trans cmp and a2 : irrefl cmp and a3 : inj-on f (Field cmp)

and a4 : cmp ′ = {(a ′,b ′). ∃ a b. a ′ = f a ∧ b ′ = f b ∧ (a,b) ∈ cmp}
and a5 : lrs ′ = {(a,l ′,b). ∃ l. l ′ = f l ∧ (a,l,b) ∈ lrs }
and a6 : length (snd (fst d)) = 1 and a7 : length (snd (fst (snd d))) = 1
and a8 : DD lrs cmp d

shows DD lrs ′ cmp ′ (map-diag-labels f d)
proof −

have diagram lrs ′ (map-diag-labels f d) using a4 a5 a8 lem-map-diag unfolding
Decreasing-Diagrams.DD-def by blast

moreover have D2 cmp ′ (map-diag-labels f d)
proof −

obtain τ σ σ ′ τ ′ where c1 : d = (τ ,σ,σ ′,τ ′) by (metis prod-cases3)
obtain s1 s2 s3 s4 where c2 : s1 = labels τ ∧ s2 = labels σ ∧ s3 = labels σ ′

∧ s4 = labels τ ′ by blast
have Decreasing-Diagrams.D cmp s1 s2 s3 s4
using a8 c1 c2 unfolding Decreasing-Diagrams.DD-def Decreasing-Diagrams.D2-def

by simp
moreover have length s1 = 1 ∧ length s2 = 1 using a6 a7 c1 c2 unfolding

labels-def by simp
ultimately have Decreasing-Diagrams.D cmp ′ (map f s1) (map f s2) (map f

s3) (map f s4)
using a1 a2 a3 a4 lem-map-D-loc by blast

moreover have labels (map-seq-labels f τ) = (map f s1)
and labels (map-seq-labels f σ) = (map f s2)
and labels (map-seq-labels f σ ′) = (map f s3)
and labels (map-seq-labels f τ ′) = (map f s4)

using c2 unfolding map-seq-labels-def Decreasing-Diagrams.labels-def by
force+

ultimately have D2 cmp ′ ((map-seq-labels f τ), (map-seq-labels f σ), (map-seq-labels
f σ ′), (map-seq-labels f τ ′))

unfolding Decreasing-Diagrams.D2-def by simp
then show D2 cmp ′ (map-diag-labels f d) using c1 unfolding Decreas-

ing-Diagrams.D2-def by simp
qed
ultimately show DD lrs ′ cmp ′ (map-diag-labels f d) unfolding Decreasing-Diagrams.DD-def

by blast
qed

lemma lem-ddseq-mon: lrs1 ⊆ lrs2 =⇒ Decreasing-Diagrams.seq lrs1 ⊆ Decreas-
ing-Diagrams.seq lrs2
proof −

assume a1 : lrs1 ⊆ lrs2
show Decreasing-Diagrams.seq lrs1 ⊆ Decreasing-Diagrams.seq lrs2
proof

fix a s

307

assume b1 : (a,s) ∈ Decreasing-Diagrams.seq lrs1
show (a,s) ∈ Decreasing-Diagrams.seq lrs2

by (rule Decreasing-Diagrams.seq.induct[of - - lrs1],
simp only: b1 , simp only: seq.intros(1), meson a1 contra-subsetD seq.intros(2))

qed
qed

lemma lem-dd-D-mon:
fixes cmp1 cmp2 α β s1 s2
assumes a1 : trans cmp1 ∧ irrefl cmp1 and a2 : trans cmp2 ∧ irrefl cmp2 and
a3 : cmp1 ⊆ cmp2

and a4 : Decreasing-Diagrams.D cmp1 [α] [β] s1 s2
shows Decreasing-Diagrams.D cmp2 [α] [β] s1 s2
proof −

obtain σ1 σ2 σ3 τ1 τ2 τ3
where b1 : s1 = σ1@σ2@σ3 ∧ s2 = τ1@τ2@τ3 and b2 : LD ′ cmp1 α β σ1

σ2 σ3 τ1 τ2 τ3
using a1 a4 Decreasing-Diagrams.proposition3-4-inv[of cmp1 α β s1 s2] by

blast
then have b3 : LD-1 ′ cmp1 α β σ1 σ2 σ3 and b4 : LD-1 ′ cmp1 β α τ1 τ2 τ3

unfolding Decreasing-Diagrams.LD ′-def by blast+
have LD-1 ′ cmp2 α β σ1 σ2 σ3
using a3 b3 unfolding Decreasing-Diagrams.LD-1 ′-def Decreasing-Diagrams.ds-def

by blast
moreover have LD-1 ′ cmp2 β α τ1 τ2 τ3
using a3 b4 unfolding Decreasing-Diagrams.LD-1 ′-def Decreasing-Diagrams.ds-def

by blast
ultimately show Decreasing-Diagrams.D cmp2 [α] [β] s1 s2

using Decreasing-Diagrams.proposition3-4 [of cmp2 α β] by (simp add: a2 b1
LD ′-def)
qed

1.4.3 Result

The next lemma has the following meaning: every ARS in the finite DCR
hierarchy has the LD property.
lemma lem-dcr-to-ld:
fixes n::nat and r :: ′U rel
assumes DCR n r
shows LD (UNIV ::nat set) r
proof −

obtain g::nat ⇒ ′U rel where
b1 : DCR-generating g and b3 : r =

⋃
{ r ′. ∃ α ′. α ′ < n ∧ r ′ = g α ′ }

using assms unfolding DCR-def by blast
obtain lrs::(′U , nat) lars where b4 : lrs = {(a,α ′,b). α ′ < n ∧ (a,b) ∈ g α ′} by

blast
obtain cmp::nat rel where b5 : cmp = {(α, β). α < β } by blast
have r = unlabel lrs using b3 b4 unfolding unlabel-def by blast
moreover have b6 : trans cmp using b5 unfolding trans-def by force

308

moreover have b7 : wf cmp
proof −

have cmp = ({(x::nat, y::nat). x < y})
unfolding b5 lex-prod-def by fastforce

moreover have wf {(x::nat, y::nat). x < y} using wf-less by blast
ultimately show ?thesis using wf-lex-prod by blast

qed
moreover have ∀P. local-peak lrs P −→ (∃ σ ′ τ ′. DD lrs cmp (fst P,snd P,σ ′,τ ′))
proof (intro allI impI)

fix P
assume c1 : local-peak lrs P
moreover obtain τ σ where c2 : P = (τ , σ) using surjective-pairing by blast
ultimately obtain a b c α β

where c3 : (a,α,b) ∈ lrs ∧ (a,β,c) ∈ lrs
and c4 : σ = (a,[(α,b)]) ∧ τ = (a,[(β,c)]) using lem-lpeak-expr [of lrs] by

blast
then have c5 : α < n ∧ β < n and c6 : (a,b) ∈ (g α) ∧ (a,c) ∈ (g β) using

b4 by blast+
obtain b ′ b ′′ c ′ c ′′ d where

c7 : (b,b ′) ∈ (L1 g α)^∗ ∧ (b ′,b ′′) ∈ (g β)^= ∧ (b ′′,d) ∈ (Lv g α β)^∗
and c8 : (c,c ′) ∈ (L1 g β)^∗ ∧ (c ′,c ′′) ∈ (g α)^= ∧ (c ′′,d) ∈ (Lv g β

α)^∗
using b1 c6 unfolding DCR-generating-def D-def by (metis (no-types,

lifting) mem-Collect-eq old.prod.case)
obtain pn1 where (b,b ′) ∈ (L1 g α)^^pn1 using c7 by fastforce
then obtain ph1 where pc9 : ph1 0 = b ∧ ph1 pn1 = b ′ and ∀ i::nat. i <

pn1 −→ (ph1 i, ph1 (Suc i)) ∈ (L1 g α)
using relpow-fun-conv by metis

then have ∀ i::nat. i<pn1 −→ (∃ α ′. α ′ < α ∧ (ph1 i, ph1 (Suc i)) ∈ g α ′)
unfolding L1-def by blast

then obtain pαi1 ::nat ⇒ nat
where pc10 : ∀ i::nat. i<pn1 −→ (pαi1 i) < α ∧ (ph1 i, ph1 (Suc i)) ∈ g

(pαi1 i) by metis
let ?pf1 = λi. (pαi1 i, ph1 (Suc i))
obtain pls1 where pc11 : pls1 = (f-to-ls ?pf1 pn1) by blast
obtain n1 where (b ′′,d) ∈ (Lv g α β)^^n1 using c7 by fastforce
then obtain h1 where c9 : h1 0 = b ′′ ∧ h1 n1 = d and ∀ i::nat. i < n1 −→

(h1 i, h1 (Suc i)) ∈ (Lv g α β)
using relpow-fun-conv by metis

then have ∀ i::nat. i < n1 −→ (∃ α ′. (α ′ < α ∨ α ′ < β) ∧ (h1 i, h1 (Suc i))
∈ g α ′) unfolding Lv-def by blast

then obtain αi1 ::nat ⇒ nat
where c10 : ∀ i::nat. i<n1 −→ ((αi1 i) < α ∨ (αi1 i) < β) ∧ (h1 i, h1 (Suc

i)) ∈ g (αi1 i) by metis
let ?f1 = λi. (αi1 i, h1 (Suc i))
obtain ls1 where c11 : ls1 = (f-to-ls ?f1 n1) by blast
obtain τ ′′ where qc12 : τ ′′ = (if b ′ = b ′′ then (b ′′, ls1) else (b ′, (β, b ′′) #

ls1)) by blast
obtain τ ′ where c12 : τ ′ = (b, pls1 @ (snd τ ′′)) by blast

309

obtain pn2 where (c,c ′) ∈ (L1 g β)^^pn2 using c8 by fastforce
then obtain ph2 where pc13 : ph2 0 = c ∧ ph2 pn2 = c ′ and ∀ i::nat. i <

pn2 −→ (ph2 i, ph2 (Suc i)) ∈ (L1 g β)
using relpow-fun-conv by metis

then have ∀ i::nat. i<pn2 −→ (∃ α ′. α ′ < β ∧ (ph2 i, ph2 (Suc i)) ∈ g α ′)
unfolding L1-def by blast

then obtain pαi2 ::nat ⇒ nat
where pc14 : ∀ i::nat. i<pn2 −→ (pαi2 i) < β ∧ (ph2 i, ph2 (Suc i)) ∈ g

(pαi2 i) by metis
let ?pf2 = λi. (pαi2 i, ph2 (Suc i))
obtain pls2 where pc15 : pls2 = (f-to-ls ?pf2 pn2) by blast
have Lv g β α = Lv g α β unfolding Lv-def by blast
then have (c ′′,d) ∈ (Lv g α β)^∗ using c8 by simp
then obtain n2 where (c ′′,d) ∈ (Lv g α β)^^n2 using c8 by fastforce
then obtain h2 where c13 : h2 0 = c ′′ ∧ h2 n2 = d and ∀ i::nat. i < n2

−→ (h2 i, h2 (Suc i)) ∈ (Lv g α β)
using relpow-fun-conv by metis

then have ∀ i::nat. i<n2 −→ (∃ α ′. (α ′ < α ∨ α ′ < β) ∧ (h2 i, h2 (Suc i))
∈ g α ′) unfolding Lv-def by blast

then obtain αi2 ::nat ⇒ nat
where c14 : ∀ i::nat. i<n2 −→ ((αi2 i) < α ∨ (αi2 i) < β) ∧ (h2 i, h2 (Suc

i)) ∈ g (αi2 i) by metis
let ?f2 = λi. (αi2 i, h2 (Suc i))
obtain ls2 where c15 : ls2 = (f-to-ls ?f2 n2) by blast
obtain σ ′′ where qc16 : σ ′′ = (if c ′ = c ′′ then (c ′′, ls2) else (c ′, (α, c ′′) #

ls2)) by blast
obtain σ ′ where c16 : σ ′ = (c, pls2 @ (snd σ ′′)) by blast
have DD lrs cmp (τ , σ, σ ′, τ ′)
proof −

have d1 ′: ∀ k. k < pn1 −→ (ph1 k, pαi1 k, ph1 (Suc k)) ∈ lrs
proof (intro allI impI)

fix k
assume k < pn1
moreover then have (ph1 k, ph1 (Suc k)) ∈ g (pαi1 k) ∧ (pαi1 k < n)

using c5 pc10 by force
ultimately show (ph1 k, pαi1 k, ph1 (Suc k)) ∈ lrs using b4 by blast

qed
have d1 : ∀ k. k < n1 −→ (h1 k, αi1 k, h1 (Suc k)) ∈ lrs
proof (intro allI impI)

fix k
assume k < n1
moreover then have (h1 k, h1 (Suc k)) ∈ g (αi1 k) ∧ αi1 k < n

using c5 c10 by force
ultimately show (h1 k, αi1 k, h1 (Suc k)) ∈ lrs using b4 by blast

qed
have d2 ′: ∀ k. k < pn2 −→ (ph2 k, pαi2 k, ph2 (Suc k)) ∈ lrs
proof (intro allI impI)

fix k
assume k < pn2

310

moreover then have (ph2 k, ph2 (Suc k)) ∈ g (pαi2 k) ∧ pαi2 k < n
using c5 pc14 by force

ultimately show (ph2 k, pαi2 k, ph2 (Suc k)) ∈ lrs using b4 by blast
qed
have d2 : ∀ k. k < n2 −→ (h2 k, αi2 k, h2 (Suc k)) ∈ lrs
proof (intro allI impI)

fix k
assume k < n2
moreover then have (h2 k, h2 (Suc k)) ∈ g (αi2 k) ∧ αi2 k < n

using c5 c14 by force
ultimately show (h2 k, αi2 k, h2 (Suc k)) ∈ lrs using b4 by blast

qed
have d3 : τ ′′ ∈ Decreasing-Diagrams.seq lrs
proof −

have ∀ k. k ≤ n1 −→ (b ′′, (f-to-ls ?f1 k)) ∈ Decreasing-Diagrams.seq lrs
proof

fix k0
show k0 ≤ n1 −→ (b ′′, (f-to-ls ?f1 k0)) ∈ Decreasing-Diagrams.seq lrs
proof (induct k0)

show 0 ≤ n1 −→ (b ′′, f-to-ls ?f1 0) ∈ Decreasing-Diagrams.seq lrs
using Decreasing-Diagrams.seq.intros(1)[of - lrs] by simp

next
fix k

assume g1 : k ≤ n1 −→ (b ′′, f-to-ls ?f1 k) ∈ Decreasing-Diagrams.seq lrs
show Suc k ≤ n1 −→ (b ′′, f-to-ls ?f1 (Suc k)) ∈ Decreasing-Diagrams.seq

lrs
proof

assume h1 : Suc k ≤ n1
then have h2 : (b ′′, f-to-ls ?f1 k) ∈ Decreasing-Diagrams.seq lrs using

g1 by simp
obtain s where h3 : s = (h1 k, [(αi1 k, h1 (Suc k))]) by blast
then have s ∈ Decreasing-Diagrams.seq lrs

using h1 d1 Decreasing-Diagrams.seq.intros(2)[of h1 k αi1 k]
Decreasing-Diagrams.seq.intros(1)[of - lrs] by simp

moreover have lst (b ′′, f-to-ls ?f1 k) = fst s
using c9 h3 unfolding lst-def by (cases k, simp+)

ultimately show (b ′′, f-to-ls ?f1 (Suc k)) ∈ Decreasing-Diagrams.seq
lrs

using h2 h3 Decreasing-Diagrams.seq-concat-helper [of b ′′ f-to-ls ?f1 k
lrs s] by simp

qed
qed

qed
then have (b ′′, ls1) ∈ Decreasing-Diagrams.seq lrs using c11 by blast

moreover then have b ′ 6= b ′′−→ (b ′, (β, b ′′) # ls1) ∈ Decreasing-Diagrams.seq
lrs

using b4 c5 c7 Decreasing-Diagrams.seq.intros(2)[of b ′ β b ′′] by fastforce
ultimately show τ ′′ ∈ Decreasing-Diagrams.seq lrs using qc12 by simp

qed

311

have d4 : σ ′′ ∈ Decreasing-Diagrams.seq lrs
proof −

have ∀ k. k ≤ n2 −→ (c ′′, (f-to-ls ?f2 k)) ∈ Decreasing-Diagrams.seq lrs
proof

fix k0
show k0 ≤ n2 −→ (c ′′, (f-to-ls ?f2 k0)) ∈ Decreasing-Diagrams.seq lrs
proof (induct k0)

show 0 ≤ n2 −→ (c ′′, f-to-ls ?f2 0) ∈ Decreasing-Diagrams.seq lrs
using Decreasing-Diagrams.seq.intros(1)[of - lrs] by simp

next
fix k

assume g1 : k ≤ n2 −→ (c ′′, f-to-ls ?f2 k) ∈ Decreasing-Diagrams.seq lrs
show Suc k ≤ n2 −→ (c ′′, f-to-ls ?f2 (Suc k)) ∈ Decreasing-Diagrams.seq

lrs
proof

assume h1 : Suc k ≤ n2
then have h2 : (c ′′, f-to-ls ?f2 k) ∈ Decreasing-Diagrams.seq lrs using

g1 by simp
obtain s where h3 : s = (h2 k, [(αi2 k, h2 (Suc k))]) by blast
then have s ∈ Decreasing-Diagrams.seq lrs

using h1 d2 Decreasing-Diagrams.seq.intros(2)[of h2 k αi2 k]
Decreasing-Diagrams.seq.intros(1)[of - lrs] by simp

moreover have lst (c ′′, f-to-ls ?f2 k) = fst s
using c13 h3 unfolding lst-def by (cases k, simp+)

ultimately show (c ′′, f-to-ls ?f2 (Suc k)) ∈ Decreasing-Diagrams.seq
lrs

using h2 h3 Decreasing-Diagrams.seq-concat-helper [of c ′′ f-to-ls ?f2 k
lrs s] by simp

qed
qed

qed
then have (c ′′, ls2) ∈ Decreasing-Diagrams.seq lrs using c15 by blast

moreover then have c ′ 6= c ′′ −→ (c ′, (α, c ′′) # ls2) ∈ Decreas-
ing-Diagrams.seq lrs

using b4 c5 c8 Decreasing-Diagrams.seq.intros(2)[of c ′ α c ′′] by fastforce
ultimately show σ ′′ ∈ Decreasing-Diagrams.seq lrs using qc16 by simp

qed
have σ ∈ Decreasing-Diagrams.seq lrs by (simp add: c3 c4 seq.intros(1)

seq.intros(2))
moreover have τ ∈ Decreasing-Diagrams.seq lrs by (simp add: c3 c4

seq.intros(1) seq.intros(2))
moreover have d5 : σ ′ ∈ Decreasing-Diagrams.seq lrs ∧ lst σ ′ = lst σ ′′

proof −
have (c, pls2) ∈ Decreasing-Diagrams.seq lrs
proof −
have ∀ k. k ≤ pn2 −→ (c, (f-to-ls ?pf2 k)) ∈ Decreasing-Diagrams.seq lrs
proof

fix k0
show k0 ≤ pn2 −→ (c, (f-to-ls ?pf2 k0)) ∈ Decreasing-Diagrams.seq lrs

312

proof (induct k0)
show 0 ≤ pn2 −→ (c, f-to-ls ?pf2 0) ∈ Decreasing-Diagrams.seq lrs

using Decreasing-Diagrams.seq.intros(1)[of - lrs] by simp
next

fix k
assume g1 : k ≤ pn2 −→ (c, f-to-ls ?pf2 k) ∈ Decreasing-Diagrams.seq

lrs
show Suc k ≤ pn2 −→ (c, f-to-ls ?pf2 (Suc k)) ∈ Decreasing-Diagrams.seq

lrs
proof

assume h1 : Suc k ≤ pn2
then have h2 : (c, f-to-ls ?pf2 k) ∈ Decreasing-Diagrams.seq lrs using

g1 by simp
obtain s where h3 : s = (ph2 k, [(pαi2 k, ph2 (Suc k))]) by blast
then have s ∈ Decreasing-Diagrams.seq lrs

using h1 d2 ′ Decreasing-Diagrams.seq.intros(2)[of ph2 k pαi2 k]
Decreasing-Diagrams.seq.intros(1)[of - lrs] by simp

moreover have lst (c, f-to-ls ?pf2 k) = fst s
using pc13 h3 unfolding lst-def by (cases k, simp+)

ultimately show (c, f-to-ls ?pf2 (Suc k)) ∈ Decreasing-Diagrams.seq
lrs

using h2 h3 Decreasing-Diagrams.seq-concat-helper [of c f-to-ls ?pf2
k lrs s] by simp

qed
qed

qed
then show ?thesis using pc15 by blast

qed
moreover have lst (c, pls2) = fst σ ′′

proof −
have lst (c, pls2) = c ′ using pc13 pc15 unfolding lst-def by (cases pn2 ,

simp+)
then show ?thesis unfolding qc16 by simp

qed
ultimately show ?thesis using d4

unfolding c16 using Decreasing-Diagrams.seq-concat-helper [of c pls2 lrs
σ ′′] by blast

qed
moreover have d6 : τ ′ ∈ Decreasing-Diagrams.seq lrs ∧ lst τ ′ = lst τ ′′

proof −
have (b, pls1) ∈ Decreasing-Diagrams.seq lrs
proof −
have ∀ k. k ≤ pn1 −→ (b, (f-to-ls ?pf1 k)) ∈ Decreasing-Diagrams.seq lrs
proof

fix k0
show k0 ≤ pn1 −→ (b, (f-to-ls ?pf1 k0)) ∈ Decreasing-Diagrams.seq lrs
proof (induct k0)

show 0 ≤ pn1 −→ (b, f-to-ls ?pf1 0) ∈ Decreasing-Diagrams.seq lrs
using Decreasing-Diagrams.seq.intros(1)[of - lrs] by simp

313

next
fix k
assume g1 : k ≤ pn1 −→ (b, f-to-ls ?pf1 k) ∈ Decreasing-Diagrams.seq

lrs
show Suc k ≤ pn1 −→ (b, f-to-ls ?pf1 (Suc k)) ∈ Decreasing-Diagrams.seq

lrs
proof

assume h1 : Suc k ≤ pn1
then have h2 : (b, f-to-ls ?pf1 k) ∈ Decreasing-Diagrams.seq lrs using

g1 by simp
obtain s where h3 : s = (ph1 k, [(pαi1 k, ph1 (Suc k))]) by blast
then have s ∈ Decreasing-Diagrams.seq lrs

using h1 d1 ′ Decreasing-Diagrams.seq.intros(2)[of ph1 k pαi1 k]
Decreasing-Diagrams.seq.intros(1)[of - lrs] by simp

moreover have lst (b, f-to-ls ?pf1 k) = fst s
using pc9 h3 unfolding lst-def by (cases k, simp+)

ultimately show (b, f-to-ls ?pf1 (Suc k)) ∈ Decreasing-Diagrams.seq
lrs

using h2 h3 Decreasing-Diagrams.seq-concat-helper [of b f-to-ls ?pf1
k lrs s] by simp

qed
qed

qed
then show ?thesis using pc11 by blast

qed
moreover have lst (b, pls1) = fst τ ′′

proof −
have lst (b, pls1) = b ′ using pc9 pc11 unfolding lst-def by (cases pn1 ,

simp+)
then show ?thesis unfolding qc12 by simp

qed
ultimately show ?thesis using d3

unfolding c12 using Decreasing-Diagrams.seq-concat-helper [of b pls1 lrs
τ ′′] by blast

qed
moreover have fst σ = fst τ using c4 by simp
moreover have lst σ = fst τ ′ using c4 c12 unfolding lst-def by simp
moreover have lst τ = fst σ ′ using c4 c16 unfolding lst-def by simp
moreover have lst σ ′ = lst τ ′

proof −
have lst τ ′′ = d
proof (cases n1 = 0)

assume n1 = 0
then show lst τ ′′ = d using c9 c11 qc12 unfolding lst-def by force

next
assume n1 6= 0
moreover then have last ls1 = (αi1 (n1−1), h1 n1) using c11 by

(cases n1 , simp+)
ultimately show lst τ ′′ = d using c9 c11 qc12 lem-ftofs-len unfolding

314

lst-def
by (smt last-ConsR list.distinct(1) list.size(3) snd-conv)

qed
moreover have lst σ ′′ = d
proof (cases n2 = 0)

assume n2 = 0
then show lst σ ′′ = d using c13 c15 qc16 unfolding lst-def by force

next
assume n2 6= 0
moreover then have last ls2 = (αi2 (n2−1), h2 n2) using c15 by

(cases n2 , simp+)
ultimately show lst σ ′′ = d using c13 c15 qc16 lem-ftofs-len unfolding

lst-def
by (smt last-ConsR list.distinct(1) list.size(3) snd-conv)

qed
moreover have lst τ ′ = lst τ ′′ ∧ lst σ ′ = lst σ ′′ using d5 d6 by blast
ultimately show ?thesis by metis

qed
moreover have Decreasing-Diagrams.D cmp (labels τ) (labels σ) (labels σ ′)

(labels τ ′)
proof −

obtain σ1 where e01 : σ1 = (f-to-ls pαi2 pn2) by blast
obtain σ2 where e1 : σ2 = (if c ′ = c ′′ then [] else [α]) by blast
obtain σ3 where e2 : σ3 = (f-to-ls αi2 n2) by blast
obtain τ1 where e02 : τ1 = (f-to-ls pαi1 pn1) by blast
obtain τ2 where e3 : τ2 = (if b ′ = b ′′ then [] else [β]) by blast
obtain τ3 where e4 : τ3 = (f-to-ls αi1 n1) by blast
have labels τ = [β] ∧ labels σ = [α] using c4 unfolding labels-def by simp
moreover have labels σ ′ = σ1 @ σ2 @ σ3
proof −

have labels σ ′′ = σ2 @ σ3
proof −

have ∀ k. k ≤ n2 −→ map fst (f-to-ls ?f2 k) = f-to-ls αi2 k
proof

fix k
show k ≤ n2 −→ map fst (f-to-ls ?f2 k) = f-to-ls αi2 k by (induct k,

simp+)
qed
then show ?thesis using c15 qc16 e1 e2 unfolding labels-def by simp

qed
moreover have labels σ ′ = σ1 @ labels σ ′′

proof −
have ∀ k. k ≤ pn2 −→ map fst (f-to-ls ?pf2 k) = f-to-ls pαi2 k
proof

fix k
show k ≤ pn2 −→ map fst (f-to-ls ?pf2 k) = f-to-ls pαi2 k by (induct

k, simp+)
qed
then have map fst pls2 = σ1 unfolding pc15 e01 by blast

315

then show ?thesis unfolding c16 labels-def by simp
qed
ultimately show ?thesis by simp

qed
moreover have labels τ ′ = τ1 @ τ2 @ τ3
proof −

have labels τ ′′ = τ2 @ τ3
proof −

have ∀ k. k ≤ n1 −→ map fst (f-to-ls ?f1 k) = f-to-ls αi1 k
proof

fix k
show k ≤ n1 −→ map fst (f-to-ls ?f1 k) = f-to-ls αi1 k by (induct k,

simp+)
qed
then show ?thesis using c11 qc12 e3 e4 unfolding labels-def by simp

qed
moreover have labels τ ′ = τ1 @ labels τ ′′

proof −
have ∀ k. k ≤ pn1 −→ map fst (f-to-ls ?pf1 k) = f-to-ls pαi1 k
proof

fix k
show k ≤ pn1 −→ map fst (f-to-ls ?pf1 k) = f-to-ls pαi1 k by (induct

k, simp+)
qed
then have map fst pls1 = τ1 unfolding pc11 e02 by blast
then show ?thesis unfolding c12 labels-def by simp

qed
ultimately show ?thesis by simp

qed
moreover have LD ′ cmp β α σ1 σ2 σ3 τ1 τ2 τ3
proof −

let ?dn = {α ′ . (α ′,α) ∈ cmp ∨ (α ′,β) ∈ cmp}
have pf1 : set σ1 ⊆ {y. (y, β) ∈ cmp}
proof −

have ∀ k. k ≤ pn2 −→ set (f-to-ls pαi2 k) ⊆ {y. (y, β) ∈ cmp}
proof

fix k
show k ≤ pn2 −→ set (f-to-ls pαi2 k) ⊆ {y. (y, β) ∈ cmp} using b5

pc14 by (induct k, simp+)
qed
then show ?thesis using e01 by blast

qed
have pf2 : set τ1 ⊆ {y. (y, α) ∈ cmp}
proof −

have ∀ k. k ≤ pn1 −→ set (f-to-ls pαi1 k) ⊆ {y. (y, α) ∈ cmp}
proof

fix k
show k ≤ pn1 −→ set (f-to-ls pαi1 k) ⊆ {y. (y, α) ∈ cmp} using b5

pc10 by (induct k, simp+)

316

qed
then show ?thesis using e02 by blast

qed
have f1 : set σ3 ⊆ ?dn
proof −

have ∀ k. k ≤ n2 −→ set (f-to-ls αi2 k) ⊆ ?dn
proof

fix k
show k ≤ n2 −→ set (f-to-ls αi2 k) ⊆ ?dn using b5 c14 by (induct

k, simp+)
qed
then show ?thesis using e2 by blast

qed
have f2 : set τ3 ⊆ ?dn
proof −

have ∀ k. k ≤ n1 −→ set (f-to-ls αi1 k) ⊆ ?dn
proof

fix k
show k ≤ n1 −→ set (f-to-ls αi1 k) ⊆ ?dn using b5 c10 by (induct

k, simp+)
qed
then show ?thesis using e4 by blast

qed
have LD-1 ′ cmp β α σ1 σ2 σ3 using pf1 f1 e1 e2 unfolding LD-1 ′-def

Decreasing-Diagrams.ds-def by simp
moreover have LD-1 ′ cmp α β τ1 τ2 τ3 using pf2 f2 e3 e4 unfolding

LD-1 ′-def Decreasing-Diagrams.ds-def by force
ultimately show ?thesis unfolding LD ′-def by blast

qed
moreover have trans cmp ∧ wf cmp using b6 b7 by blast
moreover then have irrefl cmp using irrefl-def by fastforce
ultimately show ?thesis using proposition3-4 [of cmp β α σ1 σ2 σ3 τ1

τ2 τ3] by simp
qed
ultimately show ?thesis unfolding DD-def diagram-def D2-def by simp

qed
then show ∃ σ ′ τ ′. DD lrs cmp (fst P,snd P,σ ′,τ ′) using c2 by fastforce

qed
ultimately show ?thesis unfolding LD-def by blast

qed

2 Main theorem
The next theorem has the following meaning: if the cardinality of a binary re-
lation r does not exceed the first uncountable cardinal (cardSuc |UNIV ::nat
set|), then the following two conditions are equivalent:

1. r is confluent (Abstract-Rewriting.CR r)

317

2. r can be proven confluent using the decreasing diagrams method with
natural numbers as labels (Decreasing-Diagrams.LD (UNIV ::nat set) r).
theorem N1-completeness:
fixes r :: ′a rel
assumes |r | ≤o cardSuc |UNIV ::nat set|
shows Abstract-Rewriting.CR r = Decreasing-Diagrams.LD (UNIV ::nat set) r
proof

assume b0 : CR r
have b1 : |r | ≤o cardSuc |UNIV ::nat set| using assms by simp
obtain κ where b2 : κ = cardSuc |UNIV ::nat set| by blast
have |Field r | ≤o cardSuc |UNIV ::nat set|
proof (cases finite r)

assume finite r
then show ?thesis using b2 lem-fin-fl-rel by (metis Field-card-of Field-natLeq

cardSuc-ordLeq-ordLess
card-of-card-order-on card-of-mono2 finite-iff-ordLess-natLeq ordLess-imp-ordLeq)

next
assume ¬ finite r
then show ?thesis using b1 b2 lem-rel-inf-fld-card using ordIso-ordLeq-trans

by blast
qed
moreover have confl-rel r using b0 unfolding confl-rel-def Abstract-Rewriting.CR-on-def

by blast
ultimately show LD (UNIV ::nat set) r using lem-dc3-confl-lewsuc[of r] lem-dcr-to-ld

by blast
next

assume LD (UNIV ::nat set) r
then show CR r using Decreasing-Diagrams.sound by blast

qed

end

References
[1] I. Ivanov. Formal proof of completeness of the decreasing diagrams

method for proving confluence of relations of the least uncountable car-
dinality, 2024. https://doi.org/10.5281/zenodo.14254256, Formal proof
development.

[2] I. Ivanov. Formalization of an abstract rewriting system in the class
DCR3\DCR2, 2024. https://doi.org/10.5281/zenodo.11571490, Formal
proof development.

[3] I. Ivanov. On non-triviality of the hierarchy of decreasing Church-Rosser
abstract rewriting systems. In Proceedings of the 13th International
Workshop on Confluence, pages 30–35, 2024.

318

https://doi.org/10.5281/zenodo.14254256
https://doi.org/10.5281/zenodo.11571490

[4] I. Ivanov. Formalization of a confluent abstract rewriting system of the
least uncountable cardinality outside of the class DCR2, 2025. https:
//doi.org/10.5281/zenodo.14740062, Formal proof development.

[5] I. Ivanov. Modified version of a formal proof of completeness of the
decreasing diagrams method for proving confluence of relations of the
least uncountable cardinality, 2025. https://doi.org/10.5281/zenodo.
15190469, Formal proof development.

[6] C. Sternagel and R. Thiemann. Abstract rewriting. Archive of Formal
Proofs, June 2010. https://isa-afp.org/entries/Abstract-Rewriting.html,
Formal proof development.

[7] V. Van Oostrom. Confluence by decreasing diagrams. Theoretical com-
puter science, 126(2):259–280, 1994.

[8] H. Zankl. Decreasing diagrams. Archive of Formal Proofs, Novem-
ber 2013. https://isa-afp.org/entries/Decreasing-Diagrams.html, For-
mal proof development.

319

https://doi.org/10.5281/zenodo.14740062
https://doi.org/10.5281/zenodo.14740062
https://doi.org/10.5281/zenodo.15190469
https://doi.org/10.5281/zenodo.15190469
https://isa-afp.org/entries/Abstract-Rewriting.html
https://isa-afp.org/entries/Decreasing-Diagrams.html

	Preliminaries
	Formal definition of finite levels of the DCR hierarchy
	Auxiliary definitions
	Result

	Completeness of the DCR3 method for proving confluence of relations of the least uncountable cardinality
	Auxiliary definitions
	Auxiliary lemmas
	Result

	Optimality of the DCR3 method for proving confluence of relations of the least uncountable cardinality
	Auxiliary definitions
	Auxiliary lemmas
	Result

	DCR implies LD Property
	Auxiliary definitions
	Auxiliary lemmas
	Result

	Main theorem

