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Abstract

We develop an Isabelle/HOL library of order-theoretic concepts,
such as various completeness conditions and fixed-point theorems. We
keep our formalization as general as possible: we reprove several well-
known results about complete orders, often with only antisymmetry
or attractivity, a mild condition implied by either antisymmetry or
transitivity. In particular, we generalize various theorems ensuring the
existence of a quasi-fixed point of monotone maps over complete rela-
tions, and show that the set of (quasi-)fixed points is itself complete.
This result generalizes and strengthens theorems of Knaster–Tarski,
Bourbaki–Witt, Kleene, Markowsky, Pataraia, Mashburn, Bhatta–George,
and Stouti–Maaden.
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1 Introduction
The main driving force towards mechanizing mathematics using proof assis-
tants has been the reliability they offer, exemplified prominently by [10], [12], [15],
etc. In this work, we utilize another aspect of proof assistants: they are also
engineering tools for developing mathematical theories.

Fixed-point theorems are important in computer science, such as in de-
notational semantics [20] and in abstract interpretation [7], as they allow
the definition of semantics of loops and recursive functions. The Knaster–
Tarski theorem [23] shows that any monotone map f : A→ A over complete
lattice (A,v) has a fixed point, and the set of fixed points forms also a com-
plete lattice. The result was generalized in various ways: Markowsky [16]
showed a corresponding result for chain-complete posets. The proof uses
the Bourbaki–Witt theorem [6], stating that any inflationary map over a
chain-complete poset has a fixed point. The original proof of the latter
is non-elementary in the sense that it relies on ordinals and Hartogs’ the-
orem. Pataraia [18] gave an elementary proof that monotone maps over
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pointed directed-complete poset has a fixed point. Fixed points are stud-
ied also for pseudo-orders [21], relaxing transitivity. Stouti and Maaden [22]
showed that every monotone map over a complete pseudo-order has a (least)
fixed point. Markowsky’s result was also generalized to weak chain-complete
pseudo-orders by Bhatta and George [4, 5].

Another line of order-theoretic fixed points is the iterative approach.
Kantorovitch showed that for ω-continuous map f over a complete lattice,1
the iteration ⊥, f ⊥, f2 ⊥, . . . converges to a fixed point [14, Theorem I].
Tarski [23] also claimed a similar result for a countably distributive map over
a countably complete Boolean algebra. Kleene’s fixed-point theorem states
that, for Scott-continuous maps over pointed directed-complete posets, the
iteration converges to the least fixed point. Finally, Mashburn [17] proved
a version for ω-continuous maps over ω-complete posets, which covers Kan-
torovitch’s, Tarski’s and Kleene’s claims.

In particular, we provide the following:

• Several locales that help organizing the different order-theoretic con-
ditions, such as reflexivity, transitivity, antisymmetry, and their com-
bination, as well as concepts such as connex and well-related sets,
analogues of chains and well-ordered sets in a non-ordered context.

• Existence of fixed points: We provide two proof schemes to prove that
monotone or inflationary mapping f : A→ A over a complete related
set 〈A,v〉 has a quasi-fixed point f x ∼ x, meaning x v f x ∧ f x v x,
for various notions of completeness. The first one, similar to the orig-
inal proof by Tarski [23], does not require any ordering assumptions,
but relies on completeness with respect to all subsets. The second one,
inspired by a constructive approach by Grall [11], is a proof scheme
based on the notion of derivations. Here we demand antisymmetry (to
avoid the necessity of the axiom of choice), but can be instantiated to
well-complete sets, a generalization of weak chain-completeness. This
also allows us to generalize Bourbaki–Witt theorem [6] to pseudo-
orders.

• Completeness of the set of fixed points: if (A,v) satisfies a mild
condition, which we call attractivity and which is implied by either
transitivity or antisymmetry, then the set of quasi-fixed points inher-
its the completeness class from (A,v), if it is at least well-complete.
The result instantiates to the full completeness (generalizing Knaster–
Tarski and [22]), directed-completeness [18], chain-completeness [16],
and weak chain-completeness [5].

1More precisely, he assumes a conditionally complete lattice defined over vectors and
that ⊥ v f ⊥ and f v′ v v′. Hence f , which is monotone, is a map over the complete
lattice {v | ⊥ v v v v′}.
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• Iterative construction: For an ω-continuous map over an ω-complete
related set, we show that suprema of {fn ⊥ | n ∈ N} are quasi-fixed
points. Under attractivity, the quasi-fixed points obtained from this
scheme are precisely the least quasi-fixed points of f . This generalizes
Mashburn’s result, and thus ones by Kantorovitch, Tarski and Kleene.

We remark that all these results would have required much more effort
than we spent (if possible at all), if we were not with the aforementioned
smart assistance by Isabelle. Our workflow was often the following: first we
formalize existing proofs, try relaxing assumptions, see where proof breaks,
and at some point ask for a counterexample.

Concerning Isabelle formalization, one can easily find several formaliza-
tions of complete partial orders or lattices in Isabelle?s standard library.
They are, however, defined on partial orders, either in form of classes or
locales, and thus not directly reusable for non-orders. Nevertheless we tried
to make our formalization compatible with the existing ones, and various
correspondences are ensured.

This archive is the third version of this work. The first version has
been published in the conference paper [24]. The second version has been
published in the journal paper [8]. The third version is a restructuration of
the second version for future formalizations, including [25].

2 Binary Relations
We start with basic properties of binary relations.
theory Binary-Relations

imports

Main
begin

unbundle lattice-syntax

lemma conj-iff-conj-iff-imp-iff : Trueprop (x ∧ y ←→ x ∧ z) ≡ (x =⇒ (y ←→ z))
by (auto intro!: equal-intr-rule)

lemma conj-imp-eq-imp-imp: (P ∧ Q =⇒ PROP R) ≡ (P =⇒ Q =⇒ PROP R)
by standard simp-all

lemma tranclp-trancl: r++ = (λx y. (x,y) ∈ {(a,b). r a b}+)
by (auto simp: tranclp-trancl-eq[symmetric])

lemma tranclp-id[simp]: transp r =⇒ tranclp r = r
using trancl-id[of {(x,y). r x y}, folded transp-trans] by (auto simp:tranclp-trancl)

lemma transp-tranclp[simp]: transp (tranclp r) by (auto simp: tranclp-trancl transp-trans)
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lemma funpow-dom: f ‘ A ⊆ A =⇒ (f^^n) ‘ A ⊆ A by (induct n, auto)

lemma image-subsetD: f ‘ A ⊆ B =⇒ a ∈ A =⇒ f a ∈ B by auto

Below we introduce an Isabelle-notation for {. . . x . . . | x ∈ X}.
syntax

-range :: ′a ⇒ idts ⇒ ′a set (‹(1{- /|./ -})›)
-image :: ′a ⇒ pttrn ⇒ ′a set ⇒ ′a set (‹(1{- /|./ (-/ ∈ -)})›)

syntax-consts
-range 
 range and
-image 
 image

translations
{e |. p} 
 CONST range (λp. e)
{e |. p ∈ A} 
 CONST image (λp. e) A

lemma image-constant:
assumes

∧
i. i ∈ I =⇒ f i = y

shows f ‘ I = (if I = {} then {} else {y})
using assms by auto

2.1 Various Definitions
Here we introduce various definitions for binary relations. The first one is
our abbreviation for the dual of a relation.
abbreviation(input) dual (‹(-−)› [1000 ] 1000 ) where r− x y ≡ r y x

lemma conversep-is-dual[simp]: conversep = dual by auto

lemma dual-inf : (r u s)− = r− u s− by (auto intro!: ext)

Monotonicity is already defined in the library, but we want one restricted
to a domain.
lemmas monotone-onE = monotone-on-def [unfolded atomize-eq, THEN iffD1 ,
elim-format, rule-format]

lemma monotone-on-dual: monotone-on X r s f =⇒ monotone-on X r− s− f
by (auto simp: monotone-on-def )

lemma monotone-on-id: monotone-on X r r id
by (auto simp: monotone-on-def )

lemma monotone-on-cmono: A ⊆ B =⇒ monotone-on B ≤ monotone-on A
by (intro le-funI , auto simp: monotone-on-def )

Here we define the following notions in a standard manner

The symmetric part of a relation:
definition sympartp where sympartp r x y ≡ r x y ∧ r y x
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lemma sympartpI [intro]:
fixes r (infix ‹v› 50 )
assumes x v y and y v x shows sympartp (v) x y
using assms by (auto simp: sympartp-def )

lemma sympartpE [elim]:
fixes r (infix ‹v› 50 )
assumes sympartp (v) x y and x v y =⇒ y v x =⇒ thesis shows thesis
using assms by (auto simp: sympartp-def )

lemma sympartp-dual: sympartp r− = sympartp r
by (auto intro!:ext simp: sympartp-def )

lemma sympartp-eq[simp]: sympartp (=) = (=) by auto

lemma sympartp-sympartp[simp]: sympartp (sympartp r) = sympartp r by (auto
intro!:ext)

lemma reflclp-sympartp[simp]: (sympartp r)== = sympartp r== by auto

definition equivpartp r x y ≡ x = y ∨ r x y ∧ r y x

lemma sympartp-reflclp-equivp[simp]: sympartp r== = equivpartp r by (auto in-
tro!:ext simp: equivpartp-def )

lemma equivpartI [simp]: equivpartp r x x
and sympartp-equivpartpI : sympartp r x y =⇒ equivpartp r x y
and equivpartpCI [intro]: (x 6= y =⇒ sympartp r x y) =⇒ equivpartp r x y
by (auto simp:equivpartp-def )

lemma equivpartpE [elim]:
assumes equivpartp r x y

and x = y =⇒ thesis
and r x y =⇒ r y x =⇒ thesis

shows thesis
using assms by (auto simp: equivpartp-def )

lemma equivpartp-eq[simp]: equivpartp (=) = (=) by auto

lemma sympartp-equivpartp[simp]: sympartp (equivpartp r) = (equivpartp r)
and equivpartp-equivpartp[simp]: equivpartp (equivpartp r) = (equivpartp r)
and equivpartp-sympartp[simp]: equivpartp (sympartp r) = (equivpartp r)
by (auto 0 5 intro!:ext)

lemma equivpartp-dual: equivpartp r− = equivpartp r
by (auto intro!:ext simp: equivpartp-def )

The asymmetric part:
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definition asympartp r x y ≡ r x y ∧ ¬ r y x

lemma asympartpE [elim]:
fixes r (infix ‹v› 50 )
shows asympartp (v) x y =⇒ (x v y =⇒ ¬y v x =⇒ thesis) =⇒ thesis
by (auto simp: asympartp-def )

lemmas asympartpI [intro] = asympartp-def [unfolded atomize-eq, THEN iffD2 , un-
folded conj-imp-eq-imp-imp, rule-format]

lemma asympartp-eq[simp]: asympartp (=) = bot by auto

lemma asympartp-sympartp [simp]: asympartp (sympartp r) = bot
and sympartp-asympartp [simp]: sympartp (asympartp r) = bot
by (auto intro!: ext)

lemma asympartp-dual: asympartp r− = (asympartp r)− by auto

Restriction to a set:
definition Restrp (infixl ‹�› 60 ) where (r � A) a b ≡ a ∈ A ∧ b ∈ A ∧ r a b

lemmas RestrpI [intro!] = Restrp-def [unfolded atomize-eq, THEN iffD2 , unfolded
conj-imp-eq-imp-imp]
lemmas RestrpE [elim!] = Restrp-def [unfolded atomize-eq, THEN iffD1 , elim-format,
unfolded conj-imp-eq-imp-imp]

lemma Restrp-simp[simp]: a ∈ A =⇒ b ∈ A =⇒ (r � A) a b ←→ r a b by auto

lemma Restrp-UNIV [simp]: r � UNIV ≡ r by (auto simp: atomize-eq)

lemma Restrp-Restrp[simp]: r � A � B ≡ r � A ∩ B by (auto simp: atomize-eq
Restrp-def )

lemma sympartp-Restrp[simp]: sympartp (r � A) ≡ sympartp r � A
by (auto simp: atomize-eq)

Relational images:
definition Imagep (infixr ‹‘‘‘› 59 ) where r ‘‘‘ A ≡ {b. ∃ a ∈ A. r a b}

lemma Imagep-Image: r ‘‘‘ A = {(a,b). r a b} ‘‘ A
by (auto simp: Imagep-def )

lemma in-Imagep: b ∈ r ‘‘‘ A ←→ (∃ a ∈ A. r a b) by (auto simp: Imagep-def )

lemma ImagepI : a ∈ A =⇒ r a b =⇒ b ∈ r ‘‘‘ A by (auto simp: in-Imagep)

lemma subset-Imagep: B ⊆ r ‘‘‘ A ←→ (∀ b∈B. ∃ a∈A. r a b)
by (auto simp: Imagep-def )

Bounds of a set:
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definition bound X (v) b ≡ ∀ x ∈ X . x v b for r (infix ‹v› 50 )

lemma
fixes r (infix ‹v› 50 )
shows boundI [intro!]: (

∧
x. x ∈ X =⇒ x v b) =⇒ bound X (v) b

and boundE [elim]: bound X (v) b =⇒ ((
∧

x. x ∈ X =⇒ x v b) =⇒ thesis) =⇒
thesis

and boundD: bound X (v) b =⇒ a ∈ X =⇒ a v b
by (auto simp: bound-def )

lemma bound-empty: bound {} = (λr x. True) by auto

lemma bound-cmono: assumes X ⊆ Y shows bound Y ≤ bound X
using assms by auto

lemmas bound-subset = bound-cmono[THEN le-funD, THEN le-funD, THEN le-boolD,
folded atomize-imp]

lemma bound-un: bound (A ∪ B) = bound A u bound B
by auto

lemma bound-insert[simp]:
fixes r (infix ‹v› 50 )
shows bound (insert x X) (v) b ←→ x v b ∧ bound X (v) b by auto

lemma bound-cong:
assumes A = A ′

and b = b ′

and
∧

a. a ∈ A ′ =⇒ le a b ′ = le ′ a b ′

shows bound A le b = bound A ′ le ′ b ′

by (auto simp: assms)

lemma bound-subsel: le ≤ le ′ =⇒ bound A le ≤ bound A le ′

by (auto simp add: bound-def )

Extreme (greatest) elements in a set:
definition extreme X (v) e ≡ e ∈ X ∧ (∀ x ∈ X . x v e) for r (infix ‹v› 50 )

lemma
fixes r (infix ‹v› 50 )
shows extremeI [intro]: e ∈ X =⇒ (

∧
x. x ∈ X =⇒ x v e) =⇒ extreme X (v) e

and extremeD: extreme X (v) e =⇒ e ∈ X extreme X (v) e =⇒ (
∧

x. x ∈ X
=⇒ x v e)

and extremeE [elim]: extreme X (v) e =⇒ (e ∈ X =⇒ (
∧

x. x ∈ X =⇒ x v e)
=⇒ thesis) =⇒ thesis

by (auto simp: extreme-def )

lemma
fixes r (infix ‹v› 50 )
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shows extreme-UNIV [simp]: extreme UNIV (v) t ←→ (∀ x. x v t) by auto

lemma extreme-iff-bound: extreme X r e ←→ bound X r e ∧ e ∈ X by auto

lemma extreme-imp-bound: extreme X r x =⇒ bound X r x by auto

lemma extreme-inf : extreme X (r u s) x ←→ extreme X r x ∧ extreme X s x by
auto

lemma extremes-equiv: extreme X r b =⇒ extreme X r c =⇒ sympartp r b c by
blast

lemma extreme-cong:
assumes A = A ′

and b = b ′

and
∧

a. a ∈ A ′ =⇒ b ′ ∈ A ′ =⇒ le a b ′ = le ′ a b ′

shows extreme A le b = extreme A ′ le ′ b ′

by (auto simp: assms extreme-def )

lemma extreme-subset: X ⊆ Y =⇒ extreme X r x =⇒ extreme Y r y =⇒ r x y
by blast

lemma extreme-subrel:
le ≤ le ′ =⇒ extreme A le ≤ extreme A le ′ by (auto simp: extreme-def )

Now suprema and infima are given uniformly as follows. The definition
is restricted to a given set.
definition

extreme-bound A (v) X ≡ extreme {b ∈ A. bound X (v) b} (v)− for r (infix
‹v› 50 )

lemmas extreme-boundI-extreme = extreme-bound-def [unfolded atomize-eq, THEN
fun-cong, THEN iffD2 ]

lemmas extreme-boundD-extreme = extreme-bound-def [unfolded atomize-eq, THEN
fun-cong, THEN iffD1 ]

context
fixes A :: ′a set and less-eq :: ′a ⇒ ′a ⇒ bool (infix ‹v› 50 )

begin

lemma extreme-boundI [intro]:
assumes

∧
b. bound X (v) b =⇒ b ∈ A =⇒ s v b and

∧
x. x ∈ X =⇒ x v s

and s ∈ A
shows extreme-bound A (v) X s
using assms by (auto simp: extreme-bound-def )

lemma extreme-boundD:
assumes extreme-bound A (v) X s
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shows x ∈ X =⇒ x v s
and bound X (v) b =⇒ b ∈ A =⇒ s v b
and extreme-bound-in: s ∈ A

using assms by (auto simp: extreme-bound-def )

lemma extreme-boundE [elim]:
assumes extreme-bound A (v) X s

and s ∈ A =⇒ bound X (v) s =⇒ (
∧

b. bound X (v) b =⇒ b ∈ A =⇒ s v b)
=⇒ thesis

shows thesis
using assms by (auto simp: extreme-bound-def )

lemma extreme-bound-imp-bound: extreme-bound A (v) X s =⇒ bound X (v) s
by auto

lemma extreme-imp-extreme-bound:
assumes Xs: extreme X (v) s and XA: X ⊆ A shows extreme-bound A (v) X

s
using assms by force

lemma extreme-bound-subset-bound:
assumes XY : X ⊆ Y

and sX : extreme-bound A (v) X s
and b: bound Y (v) b and bA: b ∈ A

shows s v b
using bound-subset[OF XY b] sX bA by auto

lemma extreme-bound-subset:
assumes XY : X ⊆ Y

and sX : extreme-bound A (v) X sX
and sY : extreme-bound A (v) Y sY

shows sX v sY
using extreme-bound-subset-bound[OF XY sX ] sY by auto

lemma extreme-bound-iff :
extreme-bound A (v) X s ←→ s ∈ A ∧ (∀ c ∈ A. (∀ x ∈ X . x v c) −→ s v c) ∧

(∀ x ∈ X . x v s)
by (auto simp: extreme-bound-def extreme-def )

lemma extreme-bound-empty: extreme-bound A (v) {} x ←→ extreme A (v)− x
by auto

lemma extreme-bound-singleton-refl[simp]:
extreme-bound A (v) {x} x ←→ x ∈ A ∧ x v x by auto

lemma extreme-bound-image-const:
x v x =⇒ I 6= {} =⇒ (

∧
i. i ∈ I =⇒ f i = x) =⇒ x ∈ A =⇒ extreme-bound A

(v) (f ‘ I ) x
by (auto simp: image-constant)
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lemma extreme-bound-UN-const:
x v x =⇒ I 6= {} =⇒ (

∧
i y. i ∈ I =⇒ P i y ←→ x = y) =⇒ x ∈ A =⇒

extreme-bound A (v) (
⋃

i∈I . {y. P i y}) x
by auto

lemma extreme-bounds-equiv:
assumes s: extreme-bound A (v) X s and s ′: extreme-bound A (v) X s ′

shows sympartp (v) s s ′

using s s ′

apply (unfold extreme-bound-def )
apply (subst sympartp-dual)
by (rule extremes-equiv)

lemma extreme-bound-sqweeze:
assumes XY : X ⊆ Y and YZ : Y ⊆ Z

and Xs: extreme-bound A (v) X s and Zs: extreme-bound A (v) Z s
shows extreme-bound A (v) Y s

proof
from Xs show s ∈ A by auto
fix b assume Yb: bound Y (v) b and bA: b ∈ A
from bound-subset[OF XY Yb] have bound X (v) b.
with Xs bA
show s v b by auto

next
fix y assume yY : y ∈ Y
with YZ have y ∈ Z by auto
with Zs show y v s by auto

qed

lemma bound-closed-imp-extreme-bound-eq-extreme:
assumes closed: ∀ b ∈ A. bound X (v) b −→ b ∈ X and XA: X ⊆ A
shows extreme-bound A (v) X = extreme X (v)

proof (intro ext iffI extreme-boundI extremeI )
fix e
assume extreme-bound A (v) X e
then have Xe: bound X (v) e and e ∈ A by auto
with closed show e ∈ X by auto
fix x assume x ∈ X
with Xe show x v e by auto

next
fix e
assume Xe: extreme X (v) e
then have eX : e ∈ X by auto
with XA show e ∈ A by auto
{ fix b assume Xb: bound X (v) b and b ∈ A

from eX Xb show e v b by auto
}
fix x assume xX : x ∈ X with Xe show x v e by auto
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qed

end

lemma extreme-bound-cong:
assumes A = A ′

and X = X ′

and
∧

a b. a ∈ A ′ =⇒ b ∈ A ′ =⇒ le a b ←→ le ′ a b
and

∧
a b. a ∈ X ′ =⇒ b ∈ A ′ =⇒ le a b ←→ le ′ a b

shows extreme-bound A le X s = extreme-bound A le ′ X s
apply (unfold extreme-bound-def )
apply (rule extreme-cong)
by (auto simp: assms)

Maximal or Minimal
definition extremal X (v) x ≡ x ∈ X ∧ (∀ y ∈ X . x v y −→ y v x) for r (infix
‹v› 50 )

context
fixes r :: ′a ⇒ ′a ⇒ bool (infix ‹v› 50 )

begin

lemma extremalI :
assumes x ∈ X

∧
y. y ∈ X =⇒ x v y =⇒ y v x

shows extremal X (v) x
using assms by (auto simp: extremal-def )

lemma extremalE :
assumes extremal X (v) x

and x ∈ X =⇒ (
∧

y. y ∈ X =⇒ x v y =⇒ y v x) =⇒ thesis
shows thesis
using assms by (auto simp: extremal-def )

lemma extremalD:
assumes extremal X (v) x shows x ∈ X y ∈ X =⇒ x v y =⇒ y v x
using assms by (auto elim!: extremalE)

end

context
fixes ir (infix ‹�› 50 ) and r (infix ‹v› 50 ) and I f
assumes mono: monotone-on I (�) (v) f

begin

lemma monotone-image-bound:
assumes X ⊆ I and b ∈ I and bound X (�) b
shows bound (f ‘ X) (v) (f b)
using assms monotone-onD[OF mono]
by (auto simp: bound-def )
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lemma monotone-image-extreme:
assumes e: extreme I (�) e
shows extreme (f ‘ I ) (v) (f e)
using e[unfolded extreme-iff-bound] monotone-image-bound[of I e] by auto

end

context
fixes ir :: ′i ⇒ ′i ⇒ bool (infix ‹�› 50 )

and r :: ′a ⇒ ′a ⇒ bool (infix ‹v› 50 )
and f and A and e and I

assumes fIA: f ‘ I ⊆ A
and mono: monotone-on I (�) (v) f
and e: extreme I (�) e

begin

lemma monotone-extreme-imp-extreme-bound:
extreme-bound A (v) (f ‘ I ) (f e)
using monotone-onD[OF mono] e fIA
by (intro extreme-boundI , auto simp: image-def elim!: extremeE)

lemma monotone-extreme-extreme-boundI :
x = f e =⇒ extreme-bound A (v) (f ‘ I ) x
using monotone-extreme-imp-extreme-bound by auto

end

2.2 Locales for Binary Relations
We now define basic properties of binary relations, in form of locales [13, 2].

2.2.1 Syntactic Locales

The following locales do not assume anything, but provide infix notations
for relations.
locale less-eq-syntax =

fixes less-eq :: ′a ⇒ ′a ⇒ bool (infix ‹v› 50 )

locale less-syntax =
fixes less :: ′a ⇒ ′a ⇒ bool (infix ‹@› 50 )

locale equivalence-syntax =
fixes equiv :: ′a ⇒ ′a ⇒ bool (infix ‹∼› 50 )

begin

abbreviation equiv-class (‹[-]∼›) where [x]∼ ≡ { y. x ∼ y }
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end

Next ones introduce abbreviations for dual etc. To avoid needless con-
stants, one should be careful when declaring them as sublocales.
locale less-eq-dualize = less-eq-syntax
begin

abbreviation (input) greater-eq (infix ‹w› 50 ) where x w y ≡ y v x

end

locale less-eq-symmetrize = less-eq-dualize
begin

abbreviation sym (infix ‹∼› 50 ) where (∼) ≡ sympartp (v)
abbreviation equiv (infix ‹(')› 50 ) where (') ≡ equivpartp (v)

end

locale less-eq-asymmetrize = less-eq-symmetrize
begin

abbreviation less (infix ‹@› 50 ) where (@) ≡ asympartp (v)
abbreviation greater (infix ‹A› 50 ) where (A) ≡ (@)−

lemma asym-cases[consumes 1 , case-names asym sym]:
assumes x v y and x @ y =⇒ thesis and x ∼ y =⇒ thesis
shows thesis
using assms by auto

end

locale less-dualize = less-syntax
begin

abbreviation (input) greater (infix ‹A› 50 ) where x A y ≡ y @ x

end

locale related-set =
fixes A :: ′a set and less-eq :: ′a ⇒ ′a ⇒ bool (infix ‹v› 50 )

2.2.2 Basic Properties of Relations

In the following we define basic properties in form of locales.

Reflexivity restricted on a set:
locale reflexive = related-set +

assumes refl[intro]: x ∈ A =⇒ x v x

14



begin

lemma eq-implies: x = y =⇒ x ∈ A =⇒ x v y by auto

lemma reflexive-subset: B ⊆ A =⇒ reflexive B (v) apply unfold-locales by auto

lemma extreme-singleton[simp]: x ∈ A =⇒ extreme {x} (v) y ←→ x = y by auto

lemma extreme-bound-singleton: x ∈ A =⇒ extreme-bound A (v) {x} x by auto

lemma extreme-bound-cone: x ∈ A =⇒ extreme-bound A (v) {a ∈ A. a v x} x
by auto

end

lemmas reflexiveI [intro!] = reflexive.intro

lemma reflexiveE [elim]:
assumes reflexive A r and (

∧
x. x ∈ A =⇒ r x x) =⇒ thesis shows thesis

using assms by (auto simp: reflexive.refl)

lemma reflexive-cong:
(
∧

a b. a ∈ A =⇒ b ∈ A =⇒ r a b ←→ r ′ a b) =⇒ reflexive A r ←→ reflexive
A r ′

by (simp add: reflexive-def )

locale irreflexive = related-set A (@) for A and less (infix ‹@› 50 ) +
assumes irrefl: x ∈ A =⇒ ¬ x @ x

begin

lemma irreflD[simp]: x @ x =⇒ ¬x ∈ A by (auto simp: irrefl)

lemma implies-not-eq: x @ y =⇒ x ∈ A =⇒ x 6= y by auto

lemma Restrp-irreflexive: irreflexive UNIV ((@)�A)
apply unfold-locales by auto

lemma irreflexive-subset: B ⊆ A =⇒ irreflexive B (@) apply unfold-locales by
auto

end

lemmas irreflexiveI [intro!] = irreflexive.intro

lemma irreflexive-cong:
(
∧

a b. a ∈ A =⇒ b ∈ A =⇒ r a b ←→ r ′ a b) =⇒ irreflexive A r ←→ irreflexive
A r ′

by (simp add: irreflexive-def )
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context reflexive begin

interpretation less-eq-asymmetrize.

lemma asympartp-irreflexive: irreflexive A (@) by auto

end

locale transitive = related-set +
assumes trans[trans]: x v y =⇒ y v z =⇒ x ∈ A =⇒ y ∈ A =⇒ z ∈ A =⇒ x
v z
begin

lemma Restrp-transitive: transitive UNIV ((v)�A)
apply unfold-locales
by (auto intro: trans)

lemma bound-trans[trans]: bound X (v) b =⇒ b v c =⇒ X ⊆ A =⇒ b ∈ A =⇒
c ∈ A =⇒ bound X (v) c

by (auto 0 4 dest: trans)

lemma extreme-bound-mono:
assumes XY : ∀ x∈X . ∃ y∈Y . x v y and XA: X ⊆ A and YA: Y ⊆ A

and sX : extreme-bound A (v) X sX
and sY : extreme-bound A (v) Y sY

shows sX v sY
proof (intro extreme-boundD(2 )[OF sX ] CollectI conjI boundI )

from sY show sYA: sY ∈ A by auto
from sY have bound Y (v) sY by auto
fix x assume xX : x ∈ X with XY obtain y where yY : y ∈ Y and xy: x v y

by auto
from yY sY have y v sY by auto
from trans[OF xy this] xX XA yY YA sYA show x v sY by auto

qed

lemma transitive-subset:
assumes BA: B ⊆ A shows transitive B (v)
apply unfold-locales
using trans BA by blast

lemma asympartp-transitive: transitive A (asympartp (v))
apply unfold-locales by (auto dest:trans)

lemma reflclp-transitive: transitive A (v)==

apply unfold-locales by (auto dest: trans)

The symmetric part is also transitive, but this is done in the later semi-
attractive locale
end
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lemmas transitiveI = transitive.intro

lemma transitive-ball[code]:
transitive A (v) ←→ (∀ x ∈ A. ∀ y ∈ A. ∀ z ∈ A. x v y −→ y v z −→ x v z)
for less-eq (infix ‹v› 50 )
by (auto simp: transitive-def )

lemma transitive-cong:
assumes r :

∧
a b. a ∈ A =⇒ b ∈ A =⇒ r a b ←→ r ′ a b shows transitive A r

←→ transitive A r ′

proof (intro iffI )
show transitive A r =⇒ transitive A r ′

apply (intro transitive.intro)
apply (unfold r [symmetric])
using transitive.trans.

show transitive A r ′ =⇒ transitive A r
apply (intro transitive.intro)
apply (unfold r)
using transitive.trans.

qed

lemma transitive-empty[intro!]: transitive {} r by (auto intro!: transitive.intro)

lemma tranclp-transitive: transitive A (tranclp r)
using tranclp-trans by unfold-locales

locale symmetric = related-set A (∼) for A and equiv (infix ‹∼› 50 ) +
assumes sym[sym]: x ∼ y =⇒ x ∈ A =⇒ y ∈ A =⇒ y ∼ x

begin

lemma sym-iff : x ∈ A =⇒ y ∈ A =⇒ x ∼ y ←→ y ∼ x
by (auto dest: sym)

lemma Restrp-symmetric: symmetric UNIV ((∼)�A)
apply unfold-locales by (auto simp: sym-iff )

lemma symmetric-subset: B ⊆ A =⇒ symmetric B (∼)
apply unfold-locales by (auto dest: sym)

end

lemmas symmetricI [intro] = symmetric.intro

lemma symmetric-cong:
(
∧

a b. a ∈ A =⇒ b ∈ A =⇒ r a b ←→ r ′ a b) =⇒ symmetric A r ←→ symmetric
A r ′

by (auto simp: symmetric-def )
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lemma symmetric-empty[intro!]: symmetric {} r by auto

global-interpretation sympartp: symmetric UNIV sympartp r
rewrites

∧
r . r � UNIV ≡ r

and
∧

x. x ∈ UNIV ≡ True
and

∧
P1 . (True =⇒ P1 ) ≡ Trueprop P1

and
∧

P1 P2 . (True =⇒ PROP P1 =⇒ PROP P2 ) ≡ (PROP P1 =⇒ PROP
P2 )

by auto

lemma sympartp-symmetric: symmetric A (sympartp r) by auto

locale antisymmetric = related-set +
assumes antisym: x v y =⇒ y v x =⇒ x ∈ A =⇒ y ∈ A =⇒ x = y

begin

interpretation less-eq-symmetrize.

lemma sym-iff-eq-refl: x ∈ A =⇒ y ∈ A =⇒ x ∼ y ←→ x = y ∧ y v y by (auto
dest: antisym)

lemma equiv-iff-eq[simp]: x ∈ A =⇒ y ∈ A =⇒ x ' y ←→ x = y by (auto dest:
antisym elim: equivpartpE)

lemma extreme-unique: X ⊆ A =⇒ extreme X (v) x =⇒ extreme X (v) y ←→
x = y

by (elim extremeE , auto dest!: antisym[OF - - subsetD])

lemma ex-extreme-iff-ex1 :
X ⊆ A =⇒ Ex (extreme X (v)) ←→ Ex1 (extreme X (v)) by (auto simp:

extreme-unique)

lemma ex-extreme-iff-the:
X ⊆ A =⇒ Ex (extreme X (v)) ←→ extreme X (v) (The (extreme X (v)))

apply (rule iffI )
apply (rule theI ′)
using extreme-unique by auto

lemma eq-The-extreme: X ⊆ A =⇒ extreme X (v) x =⇒ x = The (extreme X
(v))

by (rule the1-equality[symmetric], auto simp: ex-extreme-iff-ex1 [symmetric])

lemma Restrp-antisymmetric: antisymmetric UNIV ((v)�A)
apply unfold-locales

by (auto dest: antisym)

lemma antisymmetric-subset: B ⊆ A =⇒ antisymmetric B (v)
apply unfold-locales using antisym by auto
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end

lemmas antisymmetricI [intro] = antisymmetric.intro

lemma antisymmetric-cong:
(
∧

a b. a ∈ A =⇒ b ∈ A =⇒ r a b ←→ r ′ a b) =⇒ antisymmetric A r ←→
antisymmetric A r ′

by (auto simp: antisymmetric-def )

lemma antisymmetric-empty[intro!]: antisymmetric {} r by auto

lemma antisymmetric-union:
fixes less-eq (infix ‹v› 50 )
assumes A: antisymmetric A (v) and B: antisymmetric B (v)

and AB: ∀ a ∈ A. ∀ b ∈ B. a v b −→ b v a −→ a = b
shows antisymmetric (A ∪ B) (v)

proof−
interpret A: antisymmetric A (v) using A.
interpret B: antisymmetric B (v) using B.
show ?thesis by (auto dest: AB[rule-format] A.antisym B.antisym)

qed

The following notion is new, generalizing antisymmetry and transitivity.
locale semiattractive = related-set +

assumes attract: x v y =⇒ y v x =⇒ y v z =⇒ x ∈ A =⇒ y ∈ A =⇒ z ∈ A
=⇒ x v z
begin

interpretation less-eq-symmetrize.

lemma equiv-order-trans[trans]:
assumes xy: x ' y and yz: y v z and x: x ∈ A and y: y ∈ A and z: z ∈ A
shows x v z
using attract[OF - - - x y z] xy yz by (auto elim: equivpartpE)

lemma equiv-transitive: transitive A (')
proof unfold-locales

fix x y z
assume x: x ∈ A and y: y ∈ A and z: z ∈ A and xy: x ' y and yz: y ' z
show x ' z

using equiv-order-trans[OF xy - x y z] attract[OF - - - z y x] xy yz by (auto
simp:equivpartp-def )
qed

lemma sym-order-trans[trans]:
assumes xy: x ∼ y and yz: y v z and x: x ∈ A and y: y ∈ A and z: z ∈ A
shows x v z
using attract[OF - - - x y z] xy yz by auto
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interpretation sym: transitive A (∼)
proof unfold-locales

fix x y z
assume x: x ∈ A and y: y ∈ A and z: z ∈ A and xy: x ∼ y and yz: y ∼ z
show x ∼ z

using sym-order-trans[OF xy - x y z ] attract[OF - - - z y x] xy yz by auto
qed

lemmas sym-transitive = sym.transitive-axioms

lemma extreme-bound-quasi-const:
assumes C : C ⊆ A and x: x ∈ A and C0 : C 6= {} and const: ∀ y ∈ C . y ∼ x
shows extreme-bound A (v) C x

proof (intro extreme-boundI x)
from C0 obtain c where cC : c ∈ C by auto
with C have c: c ∈ A by auto
from cC const have cx: c ∼ x by auto
fix b assume b: b ∈ A and bound C (v) b
with cC have cb: c v b by auto
from attract[OF - - cb x c b] cx show x v b by auto

next
fix c assume c ∈ C
with const show c v x by auto

qed

lemma extreme-bound-quasi-const-iff :
assumes C : C ⊆ A and x: x ∈ A and y: y ∈ A and C0 : C 6= {} and const:
∀ z ∈ C . z ∼ x

shows extreme-bound A (v) C y ←→ x ∼ y
proof (intro iffI )

assume y: extreme-bound A (v) C y
note x = extreme-bound-quasi-const[OF C x C0 const]
from extreme-bounds-equiv[OF y x]
show x ∼ y by auto

next
assume xy: x ∼ y
with const C sym.trans[OF - xy - x y] have Cy: ∀ z ∈ C . z ∼ y by auto
show extreme-bound A (v) C y

using extreme-bound-quasi-const[OF C y C0 Cy].
qed

lemma Restrp-semiattractive: semiattractive UNIV ((v)�A)
apply unfold-locales
by (auto dest: attract)

lemma semiattractive-subset: B ⊆ A =⇒ semiattractive B (v)
apply unfold-locales using attract by blast

end
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lemmas semiattractiveI = semiattractive.intro

lemma semiattractive-cong:
assumes r :

∧
a b. a ∈ A =⇒ b ∈ A =⇒ r a b ←→ r ′ a b

shows semiattractive A r ←→ semiattractive A r ′ (is ?l ←→ ?r)
proof

show ?l =⇒ ?r
apply (intro semiattractive.intro)
apply (unfold r [symmetric])
using semiattractive.attract.

show ?r =⇒ ?l
apply (intro semiattractive.intro)
apply (unfold r)
using semiattractive.attract.

qed

lemma semiattractive-empty[intro!]: semiattractive {} r
by (auto intro!: semiattractiveI )

locale attractive = semiattractive +
assumes semiattractive A (v)−

begin

interpretation less-eq-symmetrize.

sublocale dual: semiattractive A (v)−
rewrites

∧
r . sympartp (r � A) ≡ sympartp r � A

and
∧

r . sympartp (sympartp r) ≡ sympartp r
and sympartp ((v) � A)− ≡ (∼) � A
and sympartp (v)− ≡ (∼)
and equivpartp (v)− ≡ (')

using attractive-axioms[unfolded attractive-def ]
by (auto intro!: ext simp: attractive-axioms-def atomize-eq equivpartp-def )

lemma order-equiv-trans[trans]:
assumes xy: x v y and yz: y ' z and x: x ∈ A and y: y ∈ A and z: z ∈ A
shows x v z
using dual.attract[OF - - - z y x] xy yz by auto

lemma order-sym-trans[trans]:
assumes xy: x v y and yz: y ∼ z and x: x ∈ A and y: y ∈ A and z: z ∈ A
shows x v z
using dual.attract[OF - - - z y x] xy yz by auto

lemma extreme-bound-sym-trans:
assumes XA: X ⊆ A and Xx: extreme-bound A (v) X x

and xy: x ∼ y and yA: y ∈ A
shows extreme-bound A (v) X y
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proof (intro extreme-boundI yA)
from Xx have xA: x ∈ A by auto
{

fix b assume Xb: bound X (v) b and bA: b ∈ A
with Xx have xb: x v b by auto
from sym-order-trans[OF - xb yA xA bA] xy show y v b by auto

}
fix a assume aX : a ∈ X
with Xx have ax: a v x by auto
from aX XA have aA: a ∈ A by auto
from order-sym-trans[OF ax xy aA xA yA] show a v y by auto

qed

interpretation Restrp: semiattractive UNIV (v)�A using Restrp-semiattractive.
interpretation dual.Restrp: semiattractive UNIV (v)−�A using dual.Restrp-semiattractive.

lemma Restrp-attractive: attractive UNIV ((v)�A)
apply unfold-locales
using dual.Restrp.attract by auto

lemma attractive-subset: B ⊆ A =⇒ attractive B (v)
apply (intro attractive.intro attractive-axioms.intro)
using semiattractive-subset dual.semiattractive-subset by auto

end

lemmas attractiveI = attractive.intro[OF - attractive-axioms.intro]

lemma attractive-cong:
assumes r :

∧
a b. a ∈ A =⇒ b ∈ A =⇒ r a b ←→ r ′ a b

shows attractive A r ←→ attractive A r ′

by (simp add: attractive-def attractive-axioms-def r cong: semiattractive-cong)

lemma attractive-empty[intro!]: attractive {} r
by (auto intro!: attractiveI )

context antisymmetric begin

sublocale attractive
apply unfold-locales by (auto dest: antisym)

end

context transitive begin

sublocale attractive
rewrites

∧
r . sympartp (r � A) ≡ sympartp r � A

and
∧

r . sympartp (sympartp r) ≡ sympartp r
and sympartp (v)− ≡ sympartp (v)
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and (sympartp (v))− ≡ sympartp (v)
and (sympartp (v) � A)− ≡ sympartp (v) � A
and asympartp (asympartp (v)) = asympartp (v)
and asympartp (sympartp (v)) = bot
and asympartp (v) � A = asympartp ((v) � A)

apply unfold-locales
by (auto intro!:ext dest: trans simp: atomize-eq)

end

2.3 Combined Properties
Some combinations of the above basic properties are given names.
locale asymmetric = related-set A (@) for A and less (infix ‹@› 50 ) +

assumes asym: x @ y =⇒ y @ x =⇒ x ∈ A =⇒ y ∈ A =⇒ False
begin

sublocale irreflexive
apply unfold-locales by (auto dest: asym)

lemma antisymmetric-axioms: antisymmetric A (@)
apply unfold-locales by (auto dest: asym)

lemma Restrp-asymmetric: asymmetric UNIV ((@)�A)
apply unfold-locales
by (auto dest:asym)

lemma asymmetric-subset: B ⊆ A =⇒ asymmetric B (@)
apply unfold-locales using asym by auto

end

lemmas asymmetricI = asymmetric.intro

lemma asymmetric-iff-irreflexive-antisymmetric:
fixes less (infix ‹@› 50 )
shows asymmetric A (@) ←→ irreflexive A (@) ∧ antisymmetric A (@) (is ?l
←→ ?r)
proof

assume ?l
then interpret asymmetric.
show ?r by (auto dest: asym)

next
assume ?r
then interpret irreflexive + antisymmetric A (@) by auto
show ?l by (auto intro!:asymmetricI dest: antisym irrefl)

qed

lemma asymmetric-cong:
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assumes r :
∧

a b. a ∈ A =⇒ b ∈ A =⇒ r a b ←→ r ′ a b
shows asymmetric A r ←→ asymmetric A r ′

by (simp add: asymmetric-iff-irreflexive-antisymmetric r cong: irreflexive-cong
antisymmetric-cong)

lemma asymmetric-empty: asymmetric {} r
by (auto simp: asymmetric-iff-irreflexive-antisymmetric)

locale quasi-ordered-set = reflexive + transitive
begin

lemma quasi-ordered-subset: B ⊆ A =⇒ quasi-ordered-set B (v)
apply intro-locales
using reflexive-subset transitive-subset by auto

end

lemmas quasi-ordered-setI = quasi-ordered-set.intro

lemma quasi-ordered-set-cong:
assumes r :

∧
a b. a ∈ A =⇒ b ∈ A =⇒ r a b ←→ r ′ a b

shows quasi-ordered-set A r ←→ quasi-ordered-set A r ′

by (simp add: quasi-ordered-set-def r cong: reflexive-cong transitive-cong)

lemma quasi-ordered-set-empty[intro!]: quasi-ordered-set {} r
by (auto intro!: quasi-ordered-set.intro)

lemma rtranclp-quasi-ordered: quasi-ordered-set A (rtranclp r)
by (unfold-locales, auto)

locale near-ordered-set = antisymmetric + transitive
begin

interpretation Restrp: antisymmetric UNIV (v)�A using Restrp-antisymmetric.
interpretation Restrp: transitive UNIV (v)�A using Restrp-transitive.

lemma Restrp-near-order : near-ordered-set UNIV ((v)�A)..

lemma near-ordered-subset: B ⊆ A =⇒ near-ordered-set B (v)
apply intro-locales
using antisymmetric-subset transitive-subset by auto

end

lemmas near-ordered-setI = near-ordered-set.intro

lemma near-ordered-set-cong:
assumes r :

∧
a b. a ∈ A =⇒ b ∈ A =⇒ r a b ←→ r ′ a b

shows near-ordered-set A r ←→ near-ordered-set A r ′

24



by (simp add: near-ordered-set-def r cong: antisymmetric-cong transitive-cong)

lemma near-ordered-set-empty[intro!]: near-ordered-set {} r
by (auto intro!: near-ordered-set.intro)

locale pseudo-ordered-set = reflexive + antisymmetric
begin

interpretation less-eq-symmetrize.

lemma sym-eq[simp]: x ∈ A =⇒ y ∈ A =⇒ x ∼ y ←→ x = y
by (auto simp: refl dest: antisym)

lemma extreme-bound-singleton-eq[simp]: x ∈ A =⇒ extreme-bound A (v) {x} y
←→ x = y

by (auto intro!: antisym)

lemma eq-iff : x ∈ A =⇒ y ∈ A =⇒ x = y ←→ x v y ∧ y v x by (auto dest:
antisym simp:refl)

lemma extreme-order-iff-eq: e ∈ A =⇒ extreme {x ∈ A. x v e} (v) s ←→ e = s
by (auto intro!: antisym)

lemma pseudo-ordered-subset: B ⊆ A =⇒ pseudo-ordered-set B (v)
apply intro-locales
using reflexive-subset antisymmetric-subset by auto

end

lemmas pseudo-ordered-setI = pseudo-ordered-set.intro

lemma pseudo-ordered-set-cong:
assumes r :

∧
a b. a ∈ A =⇒ b ∈ A =⇒ r a b ←→ r ′ a b

shows pseudo-ordered-set A r ←→ pseudo-ordered-set A r ′

by (simp add: pseudo-ordered-set-def r cong: reflexive-cong antisymmetric-cong)

lemma pseudo-ordered-set-empty[intro!]: pseudo-ordered-set {} r
by (auto intro!: pseudo-ordered-setI )

locale partially-ordered-set = reflexive + antisymmetric + transitive
begin

sublocale pseudo-ordered-set + quasi-ordered-set + near-ordered-set ..

lemma partially-ordered-subset: B ⊆ A =⇒ partially-ordered-set B (v)
apply intro-locales
using reflexive-subset transitive-subset antisymmetric-subset by auto

end
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lemmas partially-ordered-setI = partially-ordered-set.intro

lemma partially-ordered-set-cong:
assumes r :

∧
a b. a ∈ A =⇒ b ∈ A =⇒ r a b ←→ r ′ a b

shows partially-ordered-set A r ←→ partially-ordered-set A r ′

by (simp add: partially-ordered-set-def r cong: reflexive-cong antisymmetric-cong
transitive-cong)

lemma partially-ordered-set-empty[intro!]: partially-ordered-set {} r
by (auto intro!: partially-ordered-setI )

locale strict-ordered-set = irreflexive + transitive A (@)
begin

sublocale asymmetric
proof

fix x y
assume x: x ∈ A and y: y ∈ A
assume xy: x @ y
also assume yx: y @ x
finally have x @ x using x y by auto
with x show False by auto

qed

lemma near-ordered-set-axioms: near-ordered-set A (@)
using antisymmetric-axioms by intro-locales

interpretation Restrp: asymmetric UNIV (@)�A using Restrp-asymmetric.
interpretation Restrp: transitive UNIV (@)�A using Restrp-transitive.

lemma Restrp-strict-order : strict-ordered-set UNIV ((@)�A)..

lemma strict-ordered-subset: B ⊆ A =⇒ strict-ordered-set B (@)
apply intro-locales
using irreflexive-subset transitive-subset by auto

end

lemmas strict-ordered-setI = strict-ordered-set.intro

lemma strict-ordered-set-cong:
assumes r :

∧
a b. a ∈ A =⇒ b ∈ A =⇒ r a b ←→ r ′ a b

shows strict-ordered-set A r ←→ strict-ordered-set A r ′

by (simp add: strict-ordered-set-def r cong: irreflexive-cong transitive-cong)

lemma strict-ordered-set-empty[intro!]: strict-ordered-set {} r
by (auto intro!: strict-ordered-set.intro)
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locale tolerance = symmetric + reflexive A (∼)
begin

lemma tolerance-subset: B ⊆ A =⇒ tolerance B (∼)
apply intro-locales
using symmetric-subset reflexive-subset by auto

end

lemmas toleranceI = tolerance.intro

lemma tolerance-cong:
assumes r :

∧
a b. a ∈ A =⇒ b ∈ A =⇒ r a b ←→ r ′ a b

shows tolerance A r ←→ tolerance A r ′

by (simp add: tolerance-def r cong: reflexive-cong symmetric-cong)

lemma tolerance-empty[intro!]: tolerance {} r by (auto intro!: toleranceI )

global-interpretation equiv: tolerance UNIV equivpartp r
rewrites

∧
r . r � UNIV ≡ r

and
∧

x. x ∈ UNIV ≡ True
and

∧
P1 . (True =⇒ P1 ) ≡ Trueprop P1

and
∧

P1 P2 . (True =⇒ PROP P1 =⇒ PROP P2 ) ≡ (PROP P1 =⇒ PROP
P2 )

by unfold-locales (auto simp:equivpartp-def )

locale partial-equivalence = symmetric +
assumes transitive A (∼)

begin

sublocale transitive A (∼)
rewrites sympartp (∼)�A ≡ (∼)�A

and sympartp ((∼)�A) ≡ (∼)�A
using partial-equivalence-axioms
unfolding partial-equivalence-axioms-def partial-equivalence-def
by (auto simp: atomize-eq sym intro!:ext)

lemma partial-equivalence-subset: B ⊆ A =⇒ partial-equivalence B (∼)
apply (intro partial-equivalence.intro partial-equivalence-axioms.intro)
using symmetric-subset transitive-subset by auto

end

lemmas partial-equivalenceI = partial-equivalence.intro[OF - partial-equivalence-axioms.intro]

lemma partial-equivalence-cong:
assumes r :

∧
a b. a ∈ A =⇒ b ∈ A =⇒ r a b ←→ r ′ a b

shows partial-equivalence A r ←→ partial-equivalence A r ′

by (simp add: partial-equivalence-def partial-equivalence-axioms-def r
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cong: transitive-cong symmetric-cong)

lemma partial-equivalence-empty[intro!]: partial-equivalence {} r
by (auto intro!: partial-equivalenceI )

locale equivalence = symmetric + reflexive A (∼) + transitive A (∼)
begin

sublocale tolerance + partial-equivalence + quasi-ordered-set A (∼)..

lemma equivalence-subset: B ⊆ A =⇒ equivalence B (∼)
apply (intro equivalence.intro)
using symmetric-subset transitive-subset by auto

end

lemmas equivalenceI = equivalence.intro

lemma equivalence-cong:
assumes r :

∧
a b. a ∈ A =⇒ b ∈ A =⇒ r a b ←→ r ′ a b

shows equivalence A r ←→ equivalence A r ′

by (simp add: equivalence-def r cong: reflexive-cong transitive-cong symmet-
ric-cong)

Some combinations lead to uninteresting relations.
context

fixes r :: ′a ⇒ ′a ⇒ bool (infix ‹./› 50 )
begin

proposition reflexive-irreflexive-is-empty:
assumes r : reflexive A (./) and ir : irreflexive A (./)
shows A = {}

proof (rule ccontr)
interpret irreflexive A (./) using ir.
interpret reflexive A (./) using r.
assume A 6= {}
then obtain a where a: a ∈ A by auto
from a refl have a ./ a by auto
with irrefl a show False by auto

qed

proposition symmetric-antisymmetric-imp-eq:
assumes s: symmetric A (./) and as: antisymmetric A (./)
shows (./)�A ≤ (=)

proof−
interpret symmetric A (./) + antisymmetric A (./) using assms by auto
show ?thesis using antisym by (auto dest: sym)

qed
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proposition nontolerance:
shows irreflexive A (./) ∧ symmetric A (./) ←→ tolerance A (λx y. ¬ x ./ y)

proof (intro iffI conjI , elim conjE)
assume irreflexive A (./) and symmetric A (./)
then interpret irreflexive A (./) + symmetric A (./).
show tolerance A (λx y. ¬ x ./ y) by (unfold-locales, auto dest: sym irrefl)

next
assume tolerance A (λx y. ¬ x ./ y)
then interpret tolerance A λx y. ¬ x ./ y.
show irreflexive A (./) by (auto simp: eq-implies)
show symmetric A (./) using sym by auto

qed

proposition irreflexive-transitive-symmetric-is-empty:
assumes irr : irreflexive A (./) and tr : transitive A (./) and sym: symmetric A

(./)
shows (./)�A = bot

proof (intro ext, unfold bot-fun-def bot-bool-def eq-False, rule notI , erule RestrpE)
interpret strict-ordered-set A (./) using assms by (unfold strict-ordered-set-def ,

auto)
interpret symmetric A (./) using assms by auto
fix x y assume x: x ∈ A and y: y ∈ A
assume xy: x ./ y
also note sym[OF xy x y]
finally have x ./ x using x y by auto
with x show False by auto

qed

end

2.4 Totality
locale semiconnex = related-set - (@) + less-syntax +

assumes semiconnex: x ∈ A =⇒ y ∈ A =⇒ x @ y ∨ x = y ∨ y @ x
begin

lemma cases[consumes 2 , case-names less eq greater ]:
assumes x ∈ A and y ∈ A and x @ y =⇒ P and x = y =⇒ P and y @ x =⇒

P
shows P using semiconnex assms by auto

lemma neqE :
assumes x ∈ A and y ∈ A
shows x 6= y =⇒ (x @ y =⇒ P) =⇒ (y @ x =⇒ P) =⇒ P
by (cases rule: cases[OF assms], auto)

lemma semiconnex-subset: B ⊆ A =⇒ semiconnex B (@)
apply (intro semiconnex.intro)
using semiconnex by auto
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end

lemmas semiconnexI [intro] = semiconnex.intro

Totality is negated antisymmetry [19, Proposition 2.2.4].
proposition semiconnex-iff-neg-antisymmetric:

fixes less (infix ‹@› 50 )
shows semiconnex A (@) ←→ antisymmetric A (λx y. ¬ x @ y) (is ?l ←→ ?r)

proof (intro iffI semiconnexI antisymmetricI )
assume ?l
then interpret semiconnex.
fix x y
assume x ∈ A y ∈ A ¬ x @ y and ¬ y @ x
then show x = y by (cases rule: cases, auto)

next
assume ?r
then interpret neg: antisymmetric A (λx y. ¬ x @ y).
fix x y
show x ∈ A =⇒ y ∈ A =⇒ x @ y ∨ x = y ∨ y @ x using neg.antisym by auto

qed

lemma semiconnex-cong:
assumes r :

∧
a b. a ∈ A =⇒ b ∈ A =⇒ r a b ←→ r ′ a b

shows semiconnex A r ←→ semiconnex A r ′

by (simp add: semiconnex-iff-neg-antisymmetric r cong: antisymmetric-cong)

locale semiconnex-irreflexive = semiconnex + irreflexive
begin

lemma neq-iff : x ∈ A =⇒ y ∈ A =⇒ x 6= y ←→ x @ y ∨ y @ x by (auto elim:neqE
dest: irrefl)

lemma semiconnex-irreflexive-subset: B ⊆ A =⇒ semiconnex-irreflexive B (@)
apply (intro semiconnex-irreflexive.intro)
using semiconnex-subset irreflexive-subset by auto

end

lemmas semiconnex-irreflexiveI = semiconnex-irreflexive.intro

lemma semiconnex-irreflexive-cong:
assumes r :

∧
a b. a ∈ A =⇒ b ∈ A =⇒ r a b ←→ r ′ a b

shows semiconnex-irreflexive A r ←→ semiconnex-irreflexive A r ′

by (simp add: semiconnex-irreflexive-def r cong: semiconnex-cong irreflexive-cong)

locale connex = related-set +
assumes comparable: x ∈ A =⇒ y ∈ A =⇒ x v y ∨ y v x

begin
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interpretation less-eq-asymmetrize.

sublocale reflexive apply unfold-locales using comparable by auto

lemma comparable-cases[consumes 2 , case-names le ge]:
assumes x ∈ A and y ∈ A and x v y =⇒ P and y v x =⇒ P shows P
using assms comparable by auto

lemma comparable-three-cases[consumes 2 , case-names less eq greater ]:
assumes x ∈ A and y ∈ A and x @ y =⇒ P and x ∼ y =⇒ P and y @ x =⇒

P shows P
using assms comparable by auto

lemma
assumes x: x ∈ A and y: y ∈ A
shows not-iff-asym: ¬x v y ←→ y @ x

and not-asym-iff : ¬x @ y ←→ y v x
using comparable[OF x y] by auto

lemma connex-subset: B ⊆ A =⇒ connex B (v)
by (intro connex.intro comparable, auto)

interpretation less-eq-asymmetrize.

end

lemmas connexI [intro] = connex.intro

lemmas connexE = connex.comparable-cases

lemma connex-empty: connex {} A by auto

context
fixes less-eq :: ′a ⇒ ′a ⇒ bool (infix ‹v› 50 )

begin

lemma connex-iff-semiconnex-reflexive: connex A (v) ←→ semiconnex A (v) ∧
reflexive A (v)
(is ?c ←→ ?t ∧ ?r)

proof (intro iffI conjI ; (elim conjE)?)
assume ?c then interpret connex.
show ?t apply unfold-locales using comparable by auto
show ?r by unfold-locales

next
assume ?t then interpret semiconnex A (v).
assume ?r then interpret reflexive.
from semiconnex show ?c by auto

qed
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lemma chain-connect: Complete-Partial-Order .chain r A ≡ connex A r
by (auto intro!: ext simp: atomize-eq connex-def Complete-Partial-Order .chain-def )

lemma connex-union:
assumes connex X (v) and connex Y (v) and ∀ x ∈ X . ∀ y ∈ Y . x v y ∨ y v

x
shows connex (X∪Y ) (v)
using assms by (auto simp: connex-def )

end

lemma connex-cong:
assumes r :

∧
a b. a ∈ A =⇒ b ∈ A =⇒ r a b ←→ r ′ a b

shows connex A r ←→ connex A r ′

by (simp add: connex-iff-semiconnex-reflexive r cong: semiconnex-cong reflex-
ive-cong)

locale total-pseudo-ordered-set = connex + antisymmetric
begin

sublocale pseudo-ordered-set ..

lemma not-weak-iff :
assumes x: x ∈ A and y: y ∈ A shows ¬ y v x ←→ x v y ∧ x 6= y

using x y by (cases rule: comparable-cases, auto intro:antisym)

lemma total-pseudo-ordered-subset: B ⊆ A =⇒ total-pseudo-ordered-set B (v)
apply (intro-locales)
using antisymmetric-subset connex-subset by auto

interpretation less-eq-asymmetrize.

interpretation asympartp: semiconnex-irreflexive A (@)
proof (intro semiconnex-irreflexive.intro asympartp-irreflexive semiconnexI )

fix x y assume xA: x ∈ A and yA: y ∈ A
with comparable antisym
show x @ y ∨ x = y ∨ y @ x by (auto simp: asympartp-def )

qed

lemmas asympartp-semiconnex = asympartp.semiconnex-axioms
lemmas asympartp-semiconnex-irreflexive = asympartp.semiconnex-irreflexive-axioms

end

lemmas total-pseudo-ordered-setI = total-pseudo-ordered-set.intro

lemma total-pseudo-ordered-set-cong:
assumes r :

∧
a b. a ∈ A =⇒ b ∈ A =⇒ r a b ←→ r ′ a b
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shows total-pseudo-ordered-set A r ←→ total-pseudo-ordered-set A r ′

by (simp add: total-pseudo-ordered-set-def r cong: connex-cong antisymmetric-cong)

locale total-quasi-ordered-set = connex + transitive
begin

sublocale quasi-ordered-set ..

lemma total-quasi-ordered-subset: B ⊆ A =⇒ total-quasi-ordered-set B (v)
using transitive-subset connex-subset by intro-locales

end

lemmas total-quasi-ordered-setI = total-quasi-ordered-set.intro

lemma total-quasi-ordered-set-cong:
assumes r :

∧
a b. a ∈ A =⇒ b ∈ A =⇒ r a b ←→ r ′ a b

shows total-quasi-ordered-set A r ←→ total-quasi-ordered-set A r ′

by (simp add: total-quasi-ordered-set-def r cong: connex-cong transitive-cong)

locale total-ordered-set = total-quasi-ordered-set + antisymmetric
begin

sublocale partially-ordered-set + total-pseudo-ordered-set ..

lemma total-ordered-subset: B ⊆ A =⇒ total-ordered-set B (v)
using total-quasi-ordered-subset antisymmetric-subset by (intro total-ordered-set.intro)

lemma weak-semiconnex: semiconnex A (v)
using connex-axioms by (simp add: connex-iff-semiconnex-reflexive)

interpretation less-eq-asymmetrize.

end

lemmas total-ordered-setI = total-ordered-set.intro[OF total-quasi-ordered-setI ]

lemma total-ordered-set-cong:
assumes r :

∧
a b. a ∈ A =⇒ b ∈ A =⇒ r a b ←→ r ′ a b

shows total-ordered-set A r ←→ total-ordered-set A r ′

by (simp add: total-ordered-set-def r cong: total-quasi-ordered-set-cong antisym-
metric-cong)

lemma monotone-connex-image:
fixes ir (infix ‹�› 50 ) and r (infix ‹v› 50 )
assumes mono: monotone-on I (�) (v) f and connex: connex I (�)
shows connex (f ‘ I ) (v)

proof (rule connexI )
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fix x y
assume x ∈ f ‘ I and y ∈ f ‘ I
then obtain i j where ij: i ∈ I j ∈ I and [simp]: x = f i y = f j by auto
from connex ij have i � j ∨ j � i by (auto elim: connexE)
with ij mono show x v y ∨ y v x by (elim disjE , auto dest: monotone-onD)

qed

2.5 Order Pairs
We pair a relation (weak part) with a well-behaving “strict” part. Here no
assumption is put on the “weak” part.
locale compatible-ordering =

related-set + irreflexive +
assumes strict-implies-weak: x @ y =⇒ x ∈ A =⇒ y ∈ A =⇒ x v y
assumes weak-strict-trans[trans]: x v y =⇒ y @ z =⇒ x ∈ A =⇒ y ∈ A =⇒ z
∈ A =⇒ x @ z

assumes strict-weak-trans[trans]: x @ y =⇒ y v z =⇒ x ∈ A =⇒ y ∈ A =⇒ z
∈ A =⇒ x @ z
begin

The following sequence of declarations are in order to obtain fact names
in a manner similar to the Isabelle/HOL facts of orders.

The strict part is necessarily transitive.
sublocale strict: transitive A (@)

using weak-strict-trans[OF strict-implies-weak] by unfold-locales

sublocale strict-ordered-set A (@) ..

thm strict.trans asym irrefl

lemma Restrp-compatible-ordering: compatible-ordering UNIV ((v)�A) ((@)�A)
apply (unfold-locales)
by (auto dest: weak-strict-trans strict-weak-trans strict-implies-weak)

lemma strict-implies-not-weak: x @ y =⇒ x ∈ A =⇒ y ∈ A =⇒ ¬ y v x
using irrefl weak-strict-trans by blast

lemma weak-implies-not-strict:
assumes xy: x v y and [simp]: x ∈ A y ∈ A
shows ¬y @ x

proof
assume y @ x
also note xy
finally show False using irrefl by auto

qed

lemma compatible-ordering-subset: assumes X ⊆ A shows compatible-ordering
X (v) (@)
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apply unfold-locales
using assms strict-implies-weak by (auto intro: strict-weak-trans weak-strict-trans)

end

context transitive begin

interpretation less-eq-asymmetrize.

lemma asym-trans[trans]:
shows x @ y =⇒ y v z =⇒ x ∈ A =⇒ y ∈ A =⇒ z ∈ A =⇒ x @ z

and x v y =⇒ y @ z =⇒ x ∈ A =⇒ y ∈ A =⇒ z ∈ A =⇒ x @ z
by (auto 0 3 dest: trans)

lemma asympartp-compatible-ordering: compatible-ordering A (v) (@)
apply unfold-locales
by (auto dest: asym-trans)

end

locale reflexive-ordering = reflexive + compatible-ordering

locale reflexive-attractive-ordering = reflexive-ordering + attractive

locale pseudo-ordering = pseudo-ordered-set + compatible-ordering
begin

sublocale reflexive-attractive-ordering..

end

locale quasi-ordering = quasi-ordered-set + compatible-ordering
begin

sublocale reflexive-attractive-ordering..

lemma quasi-ordering-subset: assumes X ⊆ A shows quasi-ordering X (v) (@)
by (intro quasi-ordering.intro quasi-ordered-subset compatible-ordering-subset assms)

end

context quasi-ordered-set begin

interpretation less-eq-asymmetrize.

lemma asympartp-quasi-ordering: quasi-ordering A (v) (@)
by (intro quasi-ordering.intro quasi-ordered-set-axioms asympartp-compatible-ordering)

end
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locale partial-ordering = partially-ordered-set + compatible-ordering
begin

sublocale quasi-ordering + pseudo-ordering..

lemma partial-ordering-subset: assumes X ⊆ A shows partial-ordering X (v)
(@)
by (intro partial-ordering.intro partially-ordered-subset compatible-ordering-subset

assms)

end

context partially-ordered-set begin

interpretation less-eq-asymmetrize.

lemma asympartp-partial-ordering: partial-ordering A (v) (@)
by (intro partial-ordering.intro partially-ordered-set-axioms asympartp-compatible-ordering)

end

locale total-quasi-ordering = total-quasi-ordered-set + compatible-ordering
begin

sublocale quasi-ordering..

lemma total-quasi-ordering-subset: assumes X ⊆ A shows total-quasi-ordering
X (v) (@)
by (intro total-quasi-ordering.intro total-quasi-ordered-subset compatible-ordering-subset

assms)

end

context total-quasi-ordered-set begin

interpretation less-eq-asymmetrize.

lemma asympartp-total-quasi-ordering: total-quasi-ordering A (v) (@)
by (intro total-quasi-ordering.intro total-quasi-ordered-set-axioms asympartp-compatible-ordering)

end

Fixing the definition of the strict part is very common, though it looks
restrictive to the author.
locale strict-quasi-ordering = quasi-ordered-set + less-syntax +

assumes strict-iff : x ∈ A =⇒ y ∈ A =⇒ x @ y ←→ x v y ∧ ¬y v x
begin
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sublocale compatible-ordering
proof unfold-locales

fix x y z
show x ∈ A =⇒ ¬ x @ x by (auto simp: strict-iff )
{ assume xy: x v y and yz: y @ z and x: x ∈ A and y: y ∈ A and z: z ∈ A

from yz y z have ywz: y v z and zy: ¬z v y by (auto simp: strict-iff )
from trans[OF xy ywz]x y z have xz: x v z by auto
from trans[OF - xy] x y z zy have zx: ¬z v x by auto
from xz zx x z show x @ z by (auto simp: strict-iff )

}
{ assume xy: x @ y and yz: y v z and x: x ∈ A and y: y ∈ A and z: z ∈ A

from xy x y have xwy: x v y and yx: ¬y v x by (auto simp: strict-iff )
from trans[OF xwy yz]x y z have xz: x v z by auto
from trans[OF yz] x y z yx have zx: ¬z v x by auto
from xz zx x z show x @ z by (auto simp: strict-iff )

}
{ show x @ y =⇒ x ∈ A =⇒ y ∈ A =⇒ x v y by (auto simp: strict-iff ) }

qed

end

locale strict-partial-ordering = strict-quasi-ordering + antisymmetric
begin

sublocale partial-ordering..

lemma strict-iff-neq: x ∈ A =⇒ y ∈ A =⇒ x @ y ←→ x v y ∧ x 6= y
by (auto simp: strict-iff antisym)

end

locale total-ordering = reflexive + compatible-ordering + semiconnex A (@)
begin

sublocale semiconnex-irreflexive ..

sublocale connex
proof

fix x y assume x: x ∈ A and y: y ∈ A
then show x v y ∨ y v x

by (cases rule: cases, auto dest: strict-implies-weak)
qed

lemma not-weak:
assumes x ∈ A and y ∈ A shows ¬ x v y ←→ y @ x
using assms by (cases rule:cases, auto simp: strict-implies-not-weak dest: strict-implies-weak)

lemma not-strict: x ∈ A =⇒ y ∈ A =⇒ ¬ x @ y ←→ y v x
using not-weak by blast
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sublocale strict-partial-ordering
proof

fix a b
assume a: a ∈ A and b: b ∈ A
then show a @ b ←→ a v b ∧ ¬ b v a by (auto simp: not-strict[symmetric]

dest: asym)
next

fix x y z assume xy: x v y and yz: y v z and xA: x ∈ A and yA: y ∈ A and
zA: z ∈ A

with weak-strict-trans[OF yz] show x v z by (auto simp: not-strict[symmetric])
next

fix x y assume xy: x v y and yx: y v x and xA: x ∈ A and yA: y ∈ A
with semiconnex show x = y by (auto dest: weak-implies-not-strict)

qed

sublocale total-ordered-set..

context
fixes s
assumes s: ∀ x ∈ A. x @ s −→ (∃ z ∈ A. x @ z ∧ z @ s) and sA: s ∈ A

begin

lemma dense-weakI :
assumes bound:

∧
x. x @ s =⇒ x ∈ A =⇒ x v y and yA: y ∈ A

shows s v y
proof (rule ccontr)

assume ¬ ?thesis
with yA sA have y @ s by (simp add: not-weak)
from s[rule-format, OF yA this]
obtain x where xA: x ∈ A and xs: x @ s and yx: y @ x by safe
have xy: x v y using bound[OF xs xA] .
from yx xy xA yA
show False by (simp add: weak-implies-not-strict)

qed

lemma dense-bound-iff :
assumes bA: b ∈ A shows bound {x∈A. x @ s} (v) b ←→ s v b
using assms sA
by (auto simp: bound-def intro: strict-implies-weak strict-weak-trans dense-weakI )

lemma dense-extreme-bound:
extreme-bound A (v) {x ∈ A. x @ s} s
by (auto intro!: extreme-boundI intro: strict-implies-weak simp: dense-bound-iff

sA)

end

lemma ordinal-cases[consumes 1 , case-names suc lim]:
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assumes aA: a ∈ A
and suc:

∧
p. extreme {x ∈ A. x @ a} (v) p =⇒ thesis

and lim: extreme-bound A (v) {x ∈ A. x @ a} a =⇒ thesis
shows thesis

proof (cases ∃ p. extreme {x ∈ A. x @ a} (v) p)
case True
with suc show ?thesis by auto

next
case False
show ?thesis
proof (rule lim, rule dense-extreme-bound, safe intro!: aA)

fix x assume xA: x ∈ A and xa: x @ a
show ∃ z∈A. x @ z ∧ z @ a
proof (rule ccontr)

assume ¬?thesis
with xA xa have extreme {x ∈ A. x @ a} (v) x by (auto simp: not-strict)
with False show False by auto

qed
qed

qed

end

context total-ordered-set begin

interpretation less-eq-asymmetrize.

lemma asympartp-total-ordering: total-ordering A (v) (@)
by (intro total-ordering.intro reflexive-axioms asympartp-compatible-ordering asym-

partp-semiconnex)

end

2.6 Functions
definition pointwise I r f g ≡ ∀ i ∈ I . r (f i) (g i)

lemmas pointwiseI = pointwise-def [unfolded atomize-eq, THEN iffD2 , rule-format]

lemmas pointwiseD[simp] = pointwise-def [unfolded atomize-eq, THEN iffD1 , rule-format]

lemma pointwise-cong:
assumes r = r ′ ∧i. i ∈ I =⇒ f i = f ′ i

∧
i. i ∈ I =⇒ g i = g ′ i

shows pointwise I r f g = pointwise I r ′ f ′ g ′

using assms by (auto simp: pointwise-def )

lemma pointwise-empty[simp]: pointwise {} = > by (auto intro!: ext pointwiseI )

lemma dual-pointwise[simp]: (pointwise I r)− = pointwise I r−
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by (auto intro!: ext pointwiseI dest: pointwiseD)

lemma pointwise-dual: pointwise I r− f g =⇒ pointwise I r g f by (auto simp:
pointwise-def )

lemma pointwise-un: pointwise (I∪J ) r = pointwise I r u pointwise J r
by (auto intro!: ext pointwiseI )

lemma pointwise-unI [intro!]: pointwise I r f g =⇒ pointwise J r f g =⇒ pointwise
(I ∪ J ) r f g

by (auto simp: pointwise-un)

lemma pointwise-bound: bound F (pointwise I r) f ←→ (∀ i ∈ I . bound {f i |. f ∈
F} r (f i))

by (auto intro!:pointwiseI elim!: boundE)

lemma pointwise-extreme:
shows extreme F (pointwise X r) e ←→ e ∈ F ∧ (∀ x ∈ X . extreme {f x |. f ∈

F} r (e x))
by (auto intro!: pointwiseI extremeI elim!: extremeE)

lemma pointwise-extreme-bound:
fixes r (infix ‹v› 50 )
assumes F : F ⊆ {f . f ‘ X ⊆ A}
shows extreme-bound {f . f ‘ X ⊆ A} (pointwise X (v)) F s ←→
(∀ x ∈ X . extreme-bound A (v) {f x |. f ∈ F} (s x)) (is ?p ←→ ?a)

proof (safe intro!: extreme-boundI pointwiseI )
fix x
assume s: ?p and xX : x ∈ X
{ fix b

assume b: bound {f x |. f ∈ F} (v) b and bA: b ∈ A
have pointwise X (v) s (s(x:=b))
proof (rule extreme-boundD(2 )[OF s], safe intro!: pointwiseI )

fix f y
assume fF : f ∈ F and yX : y ∈ X
show f y v (s(x:=b)) y
proof (cases x = y)

case True
with b fF show ?thesis by auto

next
case False

with s[THEN extreme-bound-imp-bound] fF yX show ?thesis by (auto dest:
boundD)

qed
next

fix y assume y ∈ X with bA s show (s(x := b)) y ∈ A by auto
qed
with xX show s x v b by (auto dest: pointwiseD)

next
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fix f assume f ∈ F
from extreme-boundD(1 )[OF s this] F xX
show f x v s x by auto

next
show s x ∈ A using s xX by auto

}
next

fix x
assume s: ?a and xX : x ∈ X
{ from s xX show s x ∈ A by auto
next

fix b assume b: bound F (pointwise X (v)) b and bA: b ‘ X ⊆ A
with xX have bound {f x |. f ∈ F} (v) (b x) by (auto simp: pointwise-bound)
with s[rule-format, OF xX ] bA xX show s x v b x by auto

next
fix f assume f ∈ F
with s[rule-format, OF xX ] show f x v s x by auto

}
qed

lemma dual-pointwise-extreme-bound:
extreme-bound FA (pointwise X r)− F = extreme-bound FA (pointwise X r−) F
by (simp)

lemma pointwise-monotone-on:
fixes less-eq (infix ‹v› 50 ) and prec-eq (infix ‹�› 50 )
shows monotone-on I (�) (pointwise A (v)) f ←→
(∀ a ∈ A. monotone-on I (�) (v) (λi. f i a)) (is ?l ←→ ?r)

proof (safe intro!: monotone-onI pointwiseI )
fix a i j assume aA: a ∈ A and ∗: ?l i � j i ∈ I j ∈ I
then
show f i a v f j a by (auto dest: monotone-onD)

next
fix a i j assume ?r and a ∈ A and ij: i � j i ∈ I j ∈ I
then have monotone-on I (�) (v) (λi. f i a) by auto
from monotone-onD[OF this]ij
show f i a v f j a by auto

qed

lemmas pointwise-monotone = pointwise-monotone-on[of UNIV ]

lemma (in reflexive) pointwise-reflexive: reflexive {f . f ‘ I ⊆ A} (pointwise I (v))
apply unfold-locales by (auto intro!: pointwiseI simp: subsetD[OF - imageI ])

lemma (in irreflexive) pointwise-irreflexive:
assumes I0 : I 6= {} shows irreflexive {f . f ‘ I ⊆ A} (pointwise I (@))

proof (safe intro!: irreflexive.intro)
fix f
assume f : f ‘ I ⊆ A and ff : pointwise I (@) f f

41



from I0 obtain i where i: i ∈ I by auto
with ff have f i @ f i by auto
with f i show False by auto

qed

lemma (in semiattractive) pointwise-semiattractive: semiattractive {f . f ‘ I ⊆ A}
(pointwise I (v))
proof (unfold-locales, safe intro!: pointwiseI )

fix f g h i
assume fg: pointwise I (v) f g and gf : pointwise I (v) g f and gh: pointwise I

(v) g h
and [simp]: i ∈ I and f : f ‘ I ⊆ A and g: g ‘ I ⊆ A and h: h ‘ I ⊆ A

show f i v h i
proof (rule attract)

from fg show f i v g i by auto
from gf show g i v f i by auto
from gh show g i v h i by auto

qed (insert f g h, auto simp: subsetD[OF - imageI ])
qed

lemma (in attractive) pointwise-attractive: attractive {f . f ‘ I ⊆ A} (pointwise I
(v))

apply (intro attractive.intro attractive-axioms.intro)
using pointwise-semiattractive dual.pointwise-semiattractive by auto

Antisymmetry will not be preserved by pointwise extension over re-
stricted domain.
lemma (in antisymmetric) pointwise-antisymmetric:

antisymmetric {f . f ‘ I ⊆ A} (pointwise I (v))
oops

lemma (in transitive) pointwise-transitive: transitive {f . f ‘ I ⊆ A} (pointwise I
(v))
proof (unfold-locales, safe intro!: pointwiseI )

fix f g h i
assume fg: pointwise I (v) f g and gh: pointwise I (v) g h

and [simp]: i ∈ I and f : f ‘ I ⊆ A and g: g ‘ I ⊆ A and h: h ‘ I ⊆ A
from fg have f i v g i by auto
also from gh have g i v h i by auto
finally show f i v h i using f g h by (auto simp: subsetD[OF - imageI ])

qed

lemma (in quasi-ordered-set) pointwise-quasi-order :
quasi-ordered-set {f . f ‘ I ⊆ A} (pointwise I (v))
by (intro quasi-ordered-setI pointwise-transitive pointwise-reflexive)

lemma (in compatible-ordering) pointwise-compatible-ordering:
assumes I0 : I 6= {}
shows compatible-ordering {f . f ‘ I ⊆ A} (pointwise I (v)) (pointwise I (@))

42



proof (intro compatible-ordering.intro compatible-ordering-axioms.intro pointwise-irreflexive[OF
I0 ], safe intro!: pointwiseI )

fix f g h i
assume fg: pointwise I (v) f g and gh: pointwise I (@) g h

and [simp]: i ∈ I and f : f ‘ I ⊆ A and g: g ‘ I ⊆ A and h: h ‘ I ⊆ A
from fg have f i v g i by auto
also from gh have g i @ h i by auto
finally show f i @ h i using f g h by (auto simp: subsetD[OF - imageI ])

next
fix f g h i
assume fg: pointwise I (@) f g and gh: pointwise I (v) g h

and [simp]: i ∈ I and f : f ‘ I ⊆ A and g: g ‘ I ⊆ A and h: h ‘ I ⊆ A
from fg have f i @ g i by auto
also from gh have g i v h i by auto
finally show f i @ h i using f g h by (auto simp: subsetD[OF - imageI ])

next
fix f g i
assume fg: pointwise I (@) f g

and [simp]: i ∈ I
and f : f ‘ I ⊆ A and g: g ‘ I ⊆ A

from fg have f i @ g i by auto
with f g show f i v g i by (auto simp: subsetD[OF - imageI ] strict-implies-weak)

qed

2.7 Relating to Classes
In Isabelle 2020, we should declare sublocales in class before declaring dual
sublocales, since otherwise facts would be prefixed by “dual.dual.”
context ord begin

abbreviation least where least X ≡ extreme X (λx y. y ≤ x)

abbreviation greatest where greatest X ≡ extreme X (≤)

abbreviation supremum where supremum X ≡ least (Collect (bound X (≤)))

abbreviation infimum where infimum X ≡ greatest (Collect (bound X (λx y. y
≤ x)))

lemma supremumI : bound X (≤) s =⇒ (
∧

b. bound X (≤) b =⇒ s ≤ b) =⇒
supremum X s

and infimumI : bound X (≥) i =⇒ (
∧

b. bound X (≥) b =⇒ b ≤ i) =⇒ infimum
X i

by (auto intro!: extremeI )

lemma supremumE : supremum X s =⇒
(bound X (≤) s =⇒ (

∧
b. bound X (≤) b =⇒ s ≤ b) =⇒ thesis) =⇒ thesis

and infimumE : infimum X i =⇒
(bound X (≥) i =⇒ (

∧
b. bound X (≥) b =⇒ b ≤ i) =⇒ thesis) =⇒ thesis
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by (auto)

lemma extreme-bound-supremum[simp]: extreme-bound UNIV (≤) = supremum
by (auto intro!: ext)
lemma extreme-bound-infimum[simp]: extreme-bound UNIV (≥) = infimum by
(auto intro!: ext)

lemma Least-eq-The-least: Least P = The (least {x. P x})
by (auto simp: Least-def extreme-def [unfolded atomize-eq, THEN ext])

lemma The-least-eq-Least: The (least X) = Least (λx. x ∈ X)
by (simp add: Least-eq-The-least)

lemma least-imp-infimum: assumes least X x shows infimum X x
using extreme-imp-extreme-bound[OF assms, of UNIV ] by simp

lemma least-LeastI-ex1 :
assumes ex1 : ∃ !x. least {x. P x} x
shows least {x. P x} (LEAST x . P x)
using theI ′[OF ex1 ] by (simp add: Least-eq-The-least)

end
context order begin

lemma Greatest-eq-The-greatest: Greatest P = The (greatest {x. P x})
by (auto simp: Greatest-def extreme-def [unfolded atomize-eq, THEN ext])

lemma The-greatest-eq-Greatest: The (greatest X) = Greatest (λx. x ∈ X)
by (simp add: Greatest-eq-The-greatest)

lemma greatest-imp-supremum: assumes greatest X x shows supremum X x
using extreme-imp-extreme-bound[OF assms, of UNIV ] by simp

lemma greatest-GreatestI-ex1 :
assumes ex1 : ∃ !x. greatest {x. P x} x
shows greatest {x. P x} (GREATEST x. P x)
using theI ′[OF ex1 ] by (simp add: Greatest-eq-The-greatest)

end

lemma Ball-UNIV [simp]: Ball UNIV = All by auto
lemma Bex-UNIV [simp]: Bex UNIV = Ex by auto

lemma pointwise-UNIV-le[simp]: pointwise UNIV (≤) = (≤) by (intro ext, simp
add: pointwise-def le-fun-def )
lemma pointwise-UNIV-ge[simp]: pointwise UNIV (≥) = (≥) by (intro ext, simp
add: pointwise-def le-fun-def )

lemma fun-supremum-iff : supremum F e ←→ (∀ x. supremum {f x |. f ∈ F} (e
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x))
using pointwise-extreme-bound[of F UNIV UNIV (≤)] by simp

lemma fun-infimum-iff : infimum F e ←→ (∀ x. infimum {f x |. f ∈ F} (e x))
using pointwise-extreme-bound[of F UNIV UNIV (≥)] by simp

class reflorder = ord + assumes reflexive-ordering UNIV (≤) (<)
begin

sublocale order : reflexive-ordering UNIV
rewrites

∧
x. x ∈ UNIV ≡ True

and
∧

X . X ⊆ UNIV ≡ True
and

∧
r . r � UNIV ≡ r

and
∧

P. True ∧ P ≡ P
and Ball UNIV ≡ All
and Bex UNIV ≡ Ex
and sympartp (≤)− ≡ sympartp (≤)
and

∧
P1 . (True =⇒ PROP P1 ) ≡ PROP P1

and
∧

P1 . (True =⇒ P1 ) ≡ Trueprop P1
and

∧
P1 P2 . (True =⇒ PROP P1 =⇒ PROP P2 ) ≡ (PROP P1 =⇒ PROP

P2 )
using reflorder-axioms unfolding class.reflorder-def by (auto 0 4 simp:atomize-eq)

end

We should have imported locale-based facts in classes, e.g.:
thm order .trans order .strict.trans order .refl order .irrefl order .asym order .extreme-bound-singleton

class attrorder = ord +
assumes reflexive-attractive-ordering UNIV (≤) (<)

begin

We need to declare subclasses before sublocales in order to preserve facts
for superclasses.
subclass reflorder
proof−

interpret reflexive-attractive-ordering UNIV
using attrorder-axioms unfolding class.attrorder-def by auto

show class.reflorder (≤) (<)..
qed

sublocale order : reflexive-attractive-ordering UNIV
rewrites

∧
x. x ∈ UNIV ≡ True

and
∧

X . X ⊆ UNIV ≡ True
and

∧
r . r � UNIV ≡ r

and
∧

P. True ∧ P ≡ P
and Ball UNIV ≡ All
and Bex UNIV ≡ Ex
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and sympartp (≤)− ≡ sympartp (≤)
and

∧
P1 . (True =⇒ PROP P1 ) ≡ PROP P1

and
∧

P1 . (True =⇒ P1 ) ≡ Trueprop P1
and

∧
P1 P2 . (True =⇒ PROP P1 =⇒ PROP P2 ) ≡ (PROP P1 =⇒ PROP

P2 )
using attrorder-axioms unfolding class.attrorder-def
by (auto simp:atomize-eq)

end

thm order .extreme-bound-quasi-const

class psorder = ord + assumes pseudo-ordering UNIV (≤) (<)
begin

subclass attrorder
proof−

interpret pseudo-ordering UNIV
using psorder-axioms unfolding class.psorder-def by auto

show class.attrorder (≤) (<)..
qed

sublocale order : pseudo-ordering UNIV
rewrites

∧
x. x ∈ UNIV ≡ True

and
∧

X . X ⊆ UNIV ≡ True
and

∧
r . r � UNIV ≡ r

and
∧

P. True ∧ P ≡ P
and Ball UNIV ≡ All
and Bex UNIV ≡ Ex
and sympartp (≤)− ≡ sympartp (≤)
and

∧
P1 . (True =⇒ PROP P1 ) ≡ PROP P1

and
∧

P1 . (True =⇒ P1 ) ≡ Trueprop P1
and

∧
P1 P2 . (True =⇒ PROP P1 =⇒ PROP P2 ) ≡ (PROP P1 =⇒ PROP

P2 )
using psorder-axioms unfolding class.psorder-def by (auto simp:atomize-eq)

end

class qorder = ord + assumes quasi-ordering UNIV (≤) (<)
begin

subclass attrorder
proof−

interpret quasi-ordering UNIV
using qorder-axioms unfolding class.qorder-def by auto

show class.attrorder (≤) (<)..
qed

sublocale order : quasi-ordering UNIV
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rewrites
∧

x. x ∈ UNIV ≡ True
and

∧
X . X ⊆ UNIV ≡ True

and
∧

r . r � UNIV ≡ r
and

∧
P. True ∧ P ≡ P

and Ball UNIV ≡ All
and Bex UNIV ≡ Ex
and sympartp (≤)− ≡ sympartp (≤)
and

∧
P1 . (True =⇒ PROP P1 ) ≡ PROP P1

and
∧

P1 . (True =⇒ P1 ) ≡ Trueprop P1
and

∧
P1 P2 . (True =⇒ PROP P1 =⇒ PROP P2 ) ≡ (PROP P1 =⇒ PROP

P2 )
using qorder-axioms unfolding class.qorder-def by (auto simp:atomize-eq)

lemmas [intro!] = order .quasi-ordered-subset

end

class porder = ord + assumes partial-ordering UNIV (≤) (<)
begin

interpretation partial-ordering UNIV
using porder-axioms unfolding class.porder-def by auto

subclass psorder..

subclass qorder..

sublocale order : partial-ordering UNIV
rewrites

∧
x. x ∈ UNIV ≡ True

and
∧

X . X ⊆ UNIV ≡ True
and

∧
r . r � UNIV ≡ r

and
∧

P. True ∧ P ≡ P
and Ball UNIV ≡ All
and Bex UNIV ≡ Ex
and sympartp (≤)− ≡ sympartp (≤)
and

∧
P1 . (True =⇒ PROP P1 ) ≡ PROP P1

and
∧

P1 . (True =⇒ P1 ) ≡ Trueprop P1
and

∧
P1 P2 . (True =⇒ PROP P1 =⇒ PROP P2 ) ≡ (PROP P1 =⇒ PROP

P2 )
apply unfold-locales by (auto simp:atomize-eq)

end

class linqorder = ord + assumes total-quasi-ordering UNIV (≤) (<)
begin

interpretation total-quasi-ordering UNIV
using linqorder-axioms unfolding class.linqorder-def by auto
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subclass qorder..

sublocale order : total-quasi-ordering UNIV
rewrites

∧
x. x ∈ UNIV ≡ True

and
∧

X . X ⊆ UNIV ≡ True
and

∧
r . r � UNIV ≡ r

and
∧

P. True ∧ P ≡ P
and Ball UNIV ≡ All
and Bex UNIV ≡ Ex
and sympartp (≤)− ≡ sympartp (≤)
and

∧
P1 . (True =⇒ PROP P1 ) ≡ PROP P1

and
∧

P1 . (True =⇒ P1 ) ≡ Trueprop P1
and

∧
P1 P2 . (True =⇒ PROP P1 =⇒ PROP P2 ) ≡ (PROP P1 =⇒ PROP

P2 )
using linqorder-axioms unfolding class.linqorder-def
by (auto simp:atomize-eq)

lemmas asympartp-le = order .not-iff-asym[symmetric, abs-def ]

end

Isabelle/HOL’s preorder belongs to qorder, but not vice versa.
context preorder begin

The relation (<) is defined as the antisymmetric part of (≤).
lemma [simp]:

shows asympartp-le: asympartp (≤) = (<)
and asympartp-ge: asympartp (≥) = (>)

by (intro ext, auto simp: asympartp-def less-le-not-le)

interpretation strict-quasi-ordering UNIV (≤) (<)
apply unfold-locales
using order-refl apply assumption
using order-trans apply assumption
using less-le-not-le apply assumption
done

subclass qorder..

sublocale order : strict-quasi-ordering UNIV
rewrites

∧
x. x ∈ UNIV ≡ True

and
∧

X . X ⊆ UNIV ≡ True
and

∧
r . r � UNIV ≡ r

and
∧

P. True ∧ P ≡ P
and Ball UNIV ≡ All
and Bex UNIV ≡ Ex
and sympartp (≤)− ≡ sympartp (≤)
and

∧
P1 . (True =⇒ PROP P1 ) ≡ PROP P1

and
∧

P1 . (True =⇒ P1 ) ≡ Trueprop P1
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and
∧

P1 P2 . (True =⇒ PROP P1 =⇒ PROP P2 ) ≡ (PROP P1 =⇒ PROP
P2 )

apply unfold-locales
by (auto simp:atomize-eq)

end

context order begin

interpretation strict-partial-ordering UNIV (≤) (<)
apply unfold-locales
using order-antisym by assumption

subclass porder..

sublocale order : strict-partial-ordering UNIV
rewrites

∧
x. x ∈ UNIV ≡ True

and
∧

X . X ⊆ UNIV ≡ True
and

∧
r . r � UNIV ≡ r

and
∧

P. True ∧ P ≡ P
and Ball UNIV ≡ All
and Bex UNIV ≡ Ex
and sympartp (≤)− ≡ sympartp (≤)
and

∧
P1 . (True =⇒ PROP P1 ) ≡ PROP P1

and
∧

P1 . (True =⇒ P1 ) ≡ Trueprop P1
and

∧
P1 P2 . (True =⇒ PROP P1 =⇒ PROP P2 ) ≡ (PROP P1 =⇒ PROP

P2 )
apply unfold-locales

by (auto simp:atomize-eq)

end

context order begin

lemma ex-greatest-iff-Greatest:
Ex (greatest X) ←→ greatest X (Greatest (λx. x ∈ X))
using order .ex-extreme-iff-the[of X ]
by (simp add: The-greatest-eq-Greatest)

lemma greatest-imp-supremum-Greatest:
greatest X x =⇒ supremum X (Greatest (λx. x ∈ X))
using ex-greatest-iff-Greatest[THEN iffD1 , THEN greatest-imp-supremum]
by auto

end

Isabelle/HOL’s linorder is equivalent to our locale total-ordering.
context linorder begin
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subclass linqorder apply unfold-locales by auto

sublocale order : total-ordering UNIV
rewrites

∧
x. x ∈ UNIV ≡ True

and
∧

X . X ⊆ UNIV ≡ True
and

∧
r . r � UNIV ≡ r

and
∧

P. True ∧ P ≡ P
and Ball UNIV ≡ All
and Bex UNIV ≡ Ex
and sympartp (≤)− ≡ sympartp (≤)
and

∧
P1 . (True =⇒ PROP P1 ) ≡ PROP P1

and
∧

P1 . (True =⇒ P1 ) ≡ Trueprop P1
and

∧
P1 P2 . (True =⇒ PROP P1 =⇒ PROP P2 ) ≡ (PROP P1 =⇒ PROP

P2 )
apply unfold-locales by (auto simp:atomize-eq)

end

Tests: facts should be available in the most general classes.
thm order .strict.trans[where ′a= ′a::reflorder ]
thm order .extreme-bound-quasi-const[where ′a= ′a::attrorder ]
thm order .extreme-bound-singleton-eq[where ′a= ′a::psorder ]
thm order .trans[where ′a= ′a::qorder ]
thm order .comparable-cases[where ′a= ′a::linqorder ]
thm order .cases[where ′a= ′a::linorder ]

2.8 Declaring Duals
sublocale reflexive ⊆ sym: reflexive A sympartp (v)

rewrites sympartp (v)− ≡ sympartp (v)
and

∧
r . sympartp (sympartp r) ≡ sympartp r

and
∧

r . sympartp r � A ≡ sympartp (r � A)
by (auto 0 4 simp:atomize-eq)

sublocale quasi-ordered-set ⊆ sym: quasi-ordered-set A sympartp (v)
rewrites sympartp (v)− = sympartp (v)

and sympartp (sympartp (v)) = sympartp (v)
apply unfold-locales by (auto 0 4 dest: trans)

At this point, we declare dual as sublocales. In the following, “rewrites”
eventually cleans up redundant facts.
sublocale reflexive ⊆ dual: reflexive A (v)−

rewrites sympartp (v)− ≡ sympartp (v)
and

∧
r . sympartp (r � A) ≡ sympartp r � A

and (v)− � A ≡ ((v) � A)−

by (auto simp: atomize-eq)

context attractive begin
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interpretation less-eq-symmetrize.

sublocale dual: attractive A (w)
rewrites sympartp (w) = (∼)

and equivpartp (w) ≡ (')
and

∧
r . sympartp (r � A) ≡ sympartp r � A

and
∧

r . sympartp (sympartp r) ≡ sympartp r
and (v)− � A ≡ ((v) � A)−

apply unfold-locales by (auto intro!: ext dest: attract dual.attract simp: atom-
ize-eq)

end

context irreflexive begin

sublocale dual: irreflexive A (@)−

rewrites (@)− � A ≡ ((@) � A)−

apply unfold-locales by (auto dest: irrefl simp: atomize-eq)

end

sublocale transitive ⊆ dual: transitive A (v)−
rewrites (v)− � A ≡ ((v) � A)−

and sympartp (v)− = sympartp (v)
and asympartp (v)− = (asympartp (v))−

apply unfold-locales by (auto dest: trans simp: atomize-eq intro!:ext)

sublocale antisymmetric ⊆ dual: antisymmetric A (v)−
rewrites (v)− � A ≡ ((v) � A)−

and sympartp (v)− = sympartp (v)
by (auto dest: antisym simp: atomize-eq)

context antisymmetric begin

lemma extreme-bound-unique:
extreme-bound A (v) X x =⇒ extreme-bound A (v) X y ←→ x = y
apply (unfold extreme-bound-def )
apply (rule dual.extreme-unique) by auto

lemma ex-extreme-bound-iff-ex1 :
Ex (extreme-bound A (v) X) ←→ Ex1 (extreme-bound A (v) X)
apply (unfold extreme-bound-def )
apply (rule dual.ex-extreme-iff-ex1 ) by auto

lemma ex-extreme-bound-iff-the:
Ex (extreme-bound A (v) X) ←→ extreme-bound A (v) X (The (extreme-bound

A (v) X))
apply (rule iffI )
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apply (rule theI ′)
using extreme-bound-unique by auto

end

sublocale semiconnex ⊆ dual: semiconnex A (@)−

rewrites sympartp (@)− = sympartp (@)
using semiconnex by auto

sublocale connex ⊆ dual: connex A (v)−
rewrites sympartp (v)− = sympartp (v)
by (auto intro!: chainI dest:comparable)

sublocale semiconnex-irreflexive ⊆ dual: semiconnex-irreflexive A (@)−

rewrites sympartp (@)− = sympartp (@)
by unfold-locales auto

sublocale pseudo-ordered-set ⊆ dual: pseudo-ordered-set A (v)−
rewrites sympartp (v)− = sympartp (v)
by unfold-locales (auto 0 4 )

sublocale quasi-ordered-set ⊆ dual: quasi-ordered-set A (v)−
rewrites sympartp (v)− = sympartp (v)
by unfold-locales auto

sublocale partially-ordered-set ⊆ dual: partially-ordered-set A (v)−
rewrites sympartp (v)− = sympartp (v)
by unfold-locales (auto 0 4 )

sublocale total-pseudo-ordered-set ⊆ dual: total-pseudo-ordered-set A (v)−
rewrites sympartp (v)− = sympartp (v)
by unfold-locales (auto 0 4 )

sublocale total-quasi-ordered-set ⊆ dual: total-quasi-ordered-set A (v)−
rewrites sympartp (v)− = sympartp (v)
by unfold-locales auto

sublocale compatible-ordering ⊆ dual: compatible-ordering A (v)− (@)−

rewrites sympartp (v)− = sympartp (v)
apply unfold-locales
by (auto dest: strict-implies-weak strict-weak-trans weak-strict-trans)

lemmas(in qorder) [intro!] = order .dual.quasi-ordered-subset

sublocale reflexive-ordering ⊆ dual: reflexive-ordering A (v)− (@)−

rewrites sympartp (v)− = sympartp (v)
by unfold-locales auto

sublocale reflexive-attractive-ordering ⊆ dual: reflexive-attractive-ordering A (v)−
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(@)−

rewrites sympartp (v)− = sympartp (v)
by unfold-locales auto

sublocale pseudo-ordering ⊆ dual: pseudo-ordering A (v)− (@)−

rewrites sympartp (v)− = sympartp (v)
by unfold-locales auto

lemma (in psorder) least-Least:
fixes X :: ′a set
shows Ex (least X) ←→ least X (LEAST x . x ∈ X)
using order .dual.ex-extreme-iff-the[of X , unfolded The-least-eq-Least].

sublocale quasi-ordering ⊆ dual: quasi-ordering A (v)− (@)−

rewrites sympartp (v)− = sympartp (v)
by unfold-locales auto

sublocale partial-ordering ⊆ dual: partial-ordering A (v)− (@)−

rewrites sympartp (v)− = sympartp (v)
by unfold-locales auto

sublocale total-quasi-ordering ⊆ dual: total-quasi-ordering A (v)− (@)−

rewrites sympartp (v)− = sympartp (v)
by unfold-locales auto

sublocale total-ordering ⊆ dual: total-ordering A (v)− (@)−

rewrites sympartp (v)− = sympartp (v)
by unfold-locales auto

sublocale strict-quasi-ordering ⊆ dual: strict-quasi-ordering A (v)− (@)−

rewrites sympartp (v)− = sympartp (v)
by unfold-locales (auto simp: strict-iff )

sublocale strict-partial-ordering ⊆ dual: strict-partial-ordering A (v)− (@)−

rewrites sympartp (v)− = sympartp (v)
by unfold-locales auto

sublocale total-ordering ⊆ dual: total-ordering A (v)− (@)−

rewrites sympartp (v)− = sympartp (v)
by unfold-locales auto

lemma(in antisymmetric) monotone-extreme-imp-extreme-bound-iff :
fixes ir (infix ‹�› 50 )
assumes f ‘ C ⊆ A and monotone-on C (�) (v) f and i: extreme C (�) i
shows extreme-bound A (v) (f ‘ C ) x ←→ f i = x
using dual.extreme-unique monotone-extreme-extreme-boundI [OF assms]
by (auto simp: extreme-bound-def )
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2.9 Instantiations
Finally, we instantiate our classes for sanity check.
instance nat :: linorder ..

Pointwise ordering of functions are compatible only if the weak part is
transitive.
instance fun :: (type,qorder) reflorder
proof (intro-classes, unfold-locales)

note [simp] = le-fun-def less-fun-def
fix f g h :: ′a ⇒ ′b
{ assume fg: f ≤ g and gh: g < h

show f < h
proof (unfold less-fun-def , intro conjI le-funI notI )

from fg have f x ≤ g x for x by auto
also from gh have g x ≤ h x for x by auto
finally (order .trans) show f x ≤ h x for x.
assume hf : h ≤ f
then have h x ≤ f x for x by auto
also from fg have f x ≤ g x for x by auto
finally have h ≤ g by auto
with gh show False by auto

qed
}
{ assume fg: f < g and gh: g ≤ h

show f < h
proof (unfold less-fun-def , intro conjI le-funI notI )

from fg have f x ≤ g x for x by auto
also from gh have g x ≤ h x for x by auto
finally show f x ≤ h x for x.
from gh have g x ≤ h x for x by auto
also assume hf : h ≤ f
then have h x ≤ f x for x by auto
finally have g ≤ f by auto
with fg show False by auto

qed
}
show f < g =⇒ f ≤ g by auto
show ¬f < f by auto
show f ≤ f by auto

qed

instance fun :: (type,qorder) qorder
apply intro-classes
apply unfold-locales
by (auto simp: le-fun-def dest: order .trans)

instance fun :: (type,porder) porder
apply intro-classes
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apply unfold-locales
proof (intro ext)

fix f g :: ′a ⇒ ′b and x :: ′a
assume fg: f ≤ g and gf : g ≤ f
then have f x ≤ g x and g x ≤ f x by (auto elim: le-funE)
from order .antisym[OF this] show f x = g x by auto

qed

end
theory Well-Relations

imports Binary-Relations
begin

3 Well-Relations
A related set 〈A,v〉 is called topped if there is a “top” element > ∈ A, a
greatest element in A. Note that there might be multiple tops if (v) is not
antisymmetric.
definition extremed A r ≡ ∃ e. extreme A r e

lemma extremedI : extreme A r e =⇒ extremed A r
by (auto simp: extremed-def )

lemma extremedE : extremed A r =⇒ (
∧

e. extreme A r e =⇒ thesis) =⇒ thesis
by (auto simp: extremed-def )

lemma extremed-imp-ex-bound: extremed A r =⇒ X ⊆ A =⇒ ∃ b ∈ A. bound X r
b

by (auto simp: extremed-def )

locale well-founded = related-set - (@) + less-syntax +
assumes induct[consumes 1 , case-names less, induct set]:

a ∈ A =⇒ (
∧

x. x ∈ A =⇒ (
∧

y. y ∈ A =⇒ y @ x =⇒ P y) =⇒ P x) =⇒ P a
begin

sublocale asymmetric
proof (intro asymmetric.intro notI )

fix x y
assume xA: x ∈ A
then show y ∈ A =⇒ x @ y =⇒ y @ x =⇒ False

by (induct arbitrary: y rule: induct, auto)
qed

lemma prefixed-Imagep-imp-empty:
assumes a: X ⊆ ((@) ‘‘‘ X) ∩ A shows X = {}

proof −
from a have XA: X ⊆ A by auto
have x ∈ A =⇒ x /∈ X for x
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proof (induct x rule: induct)
case (less x)
with a show ?case by (auto simp: Imagep-def )

qed
with XA show ?thesis by auto

qed

lemma nonempty-imp-ex-extremal:
assumes QA: Q ⊆ A and Q: Q 6= {}
shows ∃ z ∈ Q. ∀ y ∈ Q. ¬ y @ z
using Q prefixed-Imagep-imp-empty[of Q] QA by (auto simp: Imagep-def )

interpretation Restrp: well-founded UNIV (@)�A
rewrites

∧
x. x ∈ UNIV ≡ True

and (@)�A�UNIV = (@)�A
and

∧
P1 . (True =⇒ PROP P1 ) ≡ PROP P1

and
∧

P1 . (True =⇒ P1 ) ≡ Trueprop P1
and

∧
P1 P2 . (True =⇒ PROP P1 =⇒ PROP P2 ) ≡ (PROP P1 =⇒ PROP

P2 )
proof −

have (
∧

x. (
∧

y. ((@) � A) y x =⇒ P y) =⇒ P x) =⇒ P a for a P
using induct[of a P] by (auto simp: Restrp-def )

then show well-founded UNIV ((@)�A) apply unfold-locales by auto
qed auto

lemmas Restrp-well-founded = Restrp.well-founded-axioms
lemmas Restrp-induct[consumes 0 , case-names less] = Restrp.induct

interpretation Restrp.tranclp: well-founded UNIV ((@)�A)++

rewrites
∧

x. x ∈ UNIV ≡ True
and ((@)�A)++ � UNIV = ((@)�A)++

and (((@)�A)++)++ = ((@)�A)++

and
∧

P1 . (True =⇒ PROP P1 ) ≡ PROP P1
and

∧
P1 . (True =⇒ P1 ) ≡ Trueprop P1

and
∧

P1 P2 . (True =⇒ PROP P1 =⇒ PROP P2 ) ≡ (PROP P1 =⇒ PROP
P2 )
proof−

{ fix P x
assume induct-step:

∧
x. (

∧
y. ((@)�A)++ y x =⇒ P y) =⇒ P x

have P x
proof (rule induct-step)

show
∧

y. ((@)�A)++ y x =⇒ P y
proof (induct x rule: Restrp-induct)

case (less x)
from ‹((@)�A)++ y x›
show ?case
proof (cases rule: tranclp.cases)

case r-into-trancl
with induct-step less show ?thesis by auto
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next
case (trancl-into-trancl b)
with less show ?thesis by auto

qed
qed

qed
}
then show well-founded UNIV ((@)�A)++ by unfold-locales auto

qed auto

lemmas Restrp-tranclp-well-founded = Restrp.tranclp.well-founded-axioms
lemmas Restrp-tranclp-induct[consumes 0 , case-names less] = Restrp.tranclp.induct

end

context
fixes A :: ′a set and less :: ′a ⇒ ′a ⇒ bool (infix ‹@› 50 )

begin

lemma well-foundedI-pf :
assumes pre:

∧
X . X ⊆ A =⇒ X ⊆ ((@) ‘‘‘ X) ∩ A =⇒ X = {}

shows well-founded A (@)
proof

fix P a assume aA: a ∈ A and Ind:
∧

x. x ∈ A =⇒ (
∧

y. y ∈ A =⇒ y @ x =⇒
P y) =⇒ P x

from Ind have {a∈A. ¬P a} ⊆ ((@) ‘‘‘ {a∈A. ¬P a}) ∩ A by (auto simp:
Imagep-def )

from pre[OF - this] aA
show P a by auto

qed

lemma well-foundedI-extremal:
assumes a:

∧
X . X ⊆ A =⇒ X 6= {} =⇒ ∃ x ∈ X . ∀ y ∈ X . ¬ y @ x

shows well-founded A (@)
proof (rule well-foundedI-pf )

fix X assume XA: X ⊆ A and pf : X ⊆ ((@) ‘‘‘ X) ∩ A
from a[OF XA] pf show X = {} by (auto simp: Imagep-def )

qed

lemma well-founded-iff-ex-extremal:
well-founded A (@) ←→ (∀X ⊆ A. X 6= {} −→ (∃ x ∈ X . ∀ z ∈ X . ¬ z @ x))
using well-founded.nonempty-imp-ex-extremal well-foundedI-extremal by blast

end

lemma well-founded-cong:
assumes r :

∧
a b. a ∈ A =⇒ b ∈ A =⇒ r a b ←→ r ′ a b

and A:
∧

a b. r ′ a b =⇒ a ∈ A ←→ a ∈ A ′

and B:
∧

a b. r ′ a b =⇒ b ∈ A ←→ b ∈ A ′
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shows well-founded A r ←→ well-founded A ′ r ′

proof (intro iffI )
assume wf : well-founded A r
show well-founded A ′ r ′

proof (intro well-foundedI-extremal)
fix X
assume X : X ⊆ A ′ and X0 : X 6= {}
show ∃ x∈X . ∀ y∈X . ¬ r ′ y x
proof (cases X ∩ A = {})

case True
from X0 obtain x where xX : x ∈ X by auto
with True have x /∈ A by auto
with xX X have ∀ y∈X . ¬ r ′ y x by (auto simp: B)
with xX show ?thesis by auto

next
case False
from well-founded.nonempty-imp-ex-extremal[OF wf - this]
obtain x where x: x ∈ X ∩ A and Ar :

∧
y. y ∈ X =⇒ y ∈ A =⇒ ¬ r y x

by auto
have ∀ y ∈ X . ¬ r ′ y x
proof (intro ballI notI )

fix y assume yX : y ∈ X and yx: r ′ y x
from yX X have yA ′: y ∈ A ′ by auto
show False
proof (cases y ∈ A)

case True with x Ar [OF yX ] yx r show ?thesis by auto
next

case False with yA ′ x A[OF yx] r X show ?thesis by (auto simp:)
qed

qed
with x show ∃ x ∈ X . ∀ y ∈ X . ¬ r ′ y x by auto

qed
qed

next
assume wf : well-founded A ′ r ′

show well-founded A r
proof (intro well-foundedI-extremal)

fix X
assume X : X ⊆ A and X0 : X 6= {}
show ∃ x∈X . ∀ y∈X . ¬ r y x
proof (cases X ∩ A ′ = {})

case True
from X0 obtain x where xX : x ∈ X by auto
with True have x /∈ A ′ by auto
with xX X B have ∀ y∈X . ¬ r y x by (auto simp: r in-mono)
with xX show ?thesis by auto

next
case False
from well-founded.nonempty-imp-ex-extremal[OF wf - this]
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obtain x where x: x ∈ X ∩ A ′ and Ar :
∧

y. y ∈ X =⇒ y ∈ A ′ =⇒ ¬ r ′ y
x by auto

have ∀ y ∈ X . ¬ r y x
proof (intro ballI notI )

fix y assume yX : y ∈ X and yx: r y x
from yX X have y: y ∈ A by auto
show False
proof (cases y ∈ A ′)

case True with x Ar [OF yX ] yx r X y show ?thesis by auto
next

case False with y x A yx r X show ?thesis by auto
qed

qed
with x show ∃ x ∈ X . ∀ y ∈ X . ¬ r y x by auto

qed
qed

qed

lemma wfP-iff-well-founded-UNIV : wfP r ←→ well-founded UNIV r
by (auto simp: wfp-def wf-def well-founded-def )

lemma well-founded-empty[intro!]: well-founded {} r
by (auto simp: well-founded-iff-ex-extremal)

lemma well-founded-singleton:
assumes ¬r x x shows well-founded {x} r
using assms by (auto simp: well-founded-iff-ex-extremal)

lemma well-founded-Restrp[simp]: well-founded A (r�B) ←→ well-founded (A∩B)
r (is ?l ←→ ?r)
proof (intro iffI well-foundedI-extremal)

assume l: ?l
fix X assume XAB: X ⊆ A ∩ B and X0 : X 6= {}
with l[THEN well-founded.nonempty-imp-ex-extremal]
have ∃ x∈X . ∀ z∈X . ¬ (r � B) z x by auto
with XAB show ∃ x∈X . ∀ y∈X . ¬ r y x by (auto simp: Restrp-def )

next
assume r : ?r
fix X assume XA: X ⊆ A and X0 : X 6= {}
show ∃ x∈X . ∀ y∈X . ¬ (r � B) y x
proof (cases X ⊆ B)

case True
with r [THEN well-founded.nonempty-imp-ex-extremal, of X ] XA X0
have ∃ z∈X . ∀ y∈X . ¬ r y z by auto
then show ?thesis by auto

next
case False
then obtain x where x: x ∈ X − B by auto
then have ∀ y∈X . ¬ (r � B) y x by auto
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with x show ?thesis by auto
qed

qed

lemma Restrp-tranclp-well-founded-iff :
fixes less (infix ‹@› 50 )
shows well-founded UNIV ((@) � A)++ ←→ well-founded A (@) (is ?l ←→ ?r)

proof (rule iffI )
show ?r =⇒ ?l by (fact well-founded.Restrp-tranclp-well-founded)
assume ?l
then interpret well-founded UNIV ((@) � A)++.
show ?r
proof (unfold well-founded-iff-ex-extremal, intro allI impI )

fix X assume XA: X ⊆ A and X0 : X 6= {}
from nonempty-imp-ex-extremal[OF - X0 ]
obtain z where zX : z ∈ X and Xz: ∀ y∈X . ¬ ((@) � A)++ y z by auto
show ∃ z ∈ X . ∀ y ∈ X . ¬ y @ z
proof (intro bexI [OF - zX ] ballI notI )

fix y assume yX : y ∈ X and yz: y @ z
from yX yz zX XA have ((@) � A) y z by auto
with yX Xz show False by auto

qed
qed

qed

lemma (in well-founded) well-founded-subset:
assumes B ⊆ A shows well-founded B (@)
using assms well-founded-axioms by (auto simp: well-founded-iff-ex-extremal)

lemma well-founded-extend:
fixes less (infix ‹@› 50 )
assumes A: well-founded A (@)
assumes B: well-founded B (@)
assumes AB: ∀ a ∈ A. ∀ b ∈ B. ¬b @ a
shows well-founded (A ∪ B) (@)

proof (intro well-foundedI-extremal)
interpret A: well-founded A (@) using A.
interpret B: well-founded B (@) using B.
fix X assume XAB: X ⊆ A ∪ B and X0 : X 6= {}
show ∃ x∈X . ∀ y∈X . ¬ y @ x
proof (cases X ∩ A = {})

case True
with XAB have XB: X ⊆ B by auto
from B.nonempty-imp-ex-extremal[OF XB X0 ] show ?thesis.

next
case False
with A.nonempty-imp-ex-extremal[OF - this]
obtain e where XAe: e ∈ X ∩ A ∀ y∈X ∩ A. ¬ y @ e by auto
then have eX : e ∈ X and eA: e ∈ A by auto
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{ fix x assume xX : x ∈ X
have ¬x @ e
proof (cases x ∈ A)

case True with XAe xX show ?thesis by auto
next

case False
with xX XAB have x ∈ B by auto
with AB eA show ?thesis by auto

qed
}
with eX show ?thesis by auto

qed
qed

lemma closed-UN-well-founded:
fixes r (infix ‹@› 50 )
assumes XX : ∀X∈XX . well-founded X (@) ∧ (∀ x∈X . ∀ y∈

⋃
XX . y @ x −→ y

∈ X)
shows well-founded (

⋃
XX) (@)

proof (intro well-foundedI-extremal)
have ∗: X ∈ XX =⇒ x∈X =⇒ y ∈

⋃
XX =⇒ y @ x =⇒ y ∈ X for X x y using

XX by blast
fix S
assume S : S ⊆

⋃
XX and S0 : S 6= {}

from S0 obtain x where xS : x ∈ S by auto
with S obtain X where X : X ∈ XX and xX : x ∈ X by auto
from xS xX have Sx0 : S ∩ X 6= {} by auto
from X XX interpret well-founded X (@) by auto
from nonempty-imp-ex-extremal[OF - Sx0 ]
obtain z where zS : z ∈ S and zX : z ∈ X and min: ∀ y ∈ S ∩ X . ¬ y @ z by

auto
show ∃ x∈S . ∀ y∈S . ¬ y @ x
proof (intro bexI [OF - zS ] ballI notI )

fix y
assume yS : y ∈ S and yz: y @ z
have yXX : y ∈

⋃
XX using S yS by auto

from ∗[OF X zX yXX yz] yS have y ∈ X ∩ S by auto
with min yz show False by auto

qed
qed

lemma well-founded-cmono:
assumes r ′: r ′ ≤ r and wf : well-founded A r
shows well-founded A r ′

proof (intro well-foundedI-extremal)
fix X assume X ⊆ A and X 6= {}
from well-founded.nonempty-imp-ex-extremal[OF wf this]
show ∃ x∈X . ∀ y∈X . ¬ r ′ y x using r ′ by auto

qed
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locale well-founded-ordered-set = well-founded + transitive - (@)
begin

sublocale strict-ordered-set..

interpretation Restrp: strict-ordered-set UNIV (@)�A + Restrp: well-founded
UNIV (@)�A

using Restrp-strict-order Restrp-well-founded .

lemma Restrp-well-founded-order : well-founded-ordered-set UNIV ((@)�A)..

lemma well-founded-ordered-subset: B ⊆ A =⇒ well-founded-ordered-set B (@)
apply intro-locales
using well-founded-subset transitive-subset by auto

end

lemmas well-founded-ordered-setI = well-founded-ordered-set.intro

lemma well-founded-ordered-set-empty[intro!]: well-founded-ordered-set {} r
by (auto intro!: well-founded-ordered-setI )

locale well-related-set = related-set +
assumes nonempty-imp-ex-extreme: X ⊆ A =⇒ X 6= {} =⇒ ∃ e. extreme X

(v)− e
begin

sublocale connex
proof

fix x y assume x ∈ A and y ∈ A
with nonempty-imp-ex-extreme[of {x,y}] show x v y ∨ y v x by auto

qed

lemmas connex = connex-axioms

interpretation less-eq-asymmetrize.

sublocale asym: well-founded A (@)
proof (unfold well-founded-iff-ex-extremal, intro allI impI )

fix X
assume XA: X ⊆ A and X0 : X 6= {}
from nonempty-imp-ex-extreme[OF XA X0 ] obtain e where extreme X (v)− e

by auto
then show ∃ x∈X . ∀ z∈X . ¬z @ x by (auto intro!: bexI [of - e])

qed

lemma well-related-subset: B ⊆ A =⇒ well-related-set B (v)
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by (auto intro!: well-related-set.intro nonempty-imp-ex-extreme)

lemma monotone-image-well-related:
fixes leB (infix ‹E› 50 )
assumes mono: monotone-on A (v) (E) f shows well-related-set (f ‘ A) (E)

proof (intro well-related-set.intro)
interpret less-eq-dualize.
fix X ′ assume X ′fA: X ′ ⊆ f ‘ A and X ′0 : X ′ 6= {}
then obtain X where XA: X ⊆ A and X ′: X ′ = f ‘ X and X0 : X 6= {}

by (auto elim!: subset-imageE)
from nonempty-imp-ex-extreme[OF XA X0 ]
obtain e where Xe: extreme X (w) e by auto
note monotone-on-subset[OF mono XA]
note monotone-on-dual[OF this]
from monotone-image-extreme[OF this Xe]
show ∃ e ′. extreme X ′ (E)− e ′ by (auto simp: X ′)

qed

end

sublocale well-related-set ⊆ reflexive using local.reflexive-axioms.

lemmas well-related-setI = well-related-set.intro

lemmas well-related-iff-ex-extreme = well-related-set-def

lemma well-related-set-empty[intro!]: well-related-set {} r
by (auto intro!: well-related-setI )

context
fixes less-eq :: ′a ⇒ ′a ⇒ bool (infix ‹v› 50 )

begin

lemma well-related-iff-neg-well-founded:
well-related-set A (v) ←→ well-founded A (λx y. ¬ y v x)
by (simp add: well-related-set-def well-founded-iff-ex-extremal extreme-def Bex-def )

lemma well-related-singleton-refl:
assumes x v x shows well-related-set {x} (v)
by (intro well-related-set.intro exI [of - x], auto simp: subset-singleton-iff assms)

lemma closed-UN-well-related:
assumes XX : ∀X∈XX . well-related-set X (v) ∧ (∀ x∈X . ∀ y∈

⋃
XX . ¬x v y

−→ y ∈ X)
shows well-related-set (

⋃
XX) (v)

using XX
apply (unfold well-related-iff-neg-well-founded)
using closed-UN-well-founded[of - λx y. ¬ y v x].
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end

lemma well-related-extend:
fixes r (infix ‹v› 50 )
assumes well-related-set A (v) and well-related-set B (v) and ∀ a ∈ A. ∀ b ∈

B. a v b
shows well-related-set (A ∪ B) (v)
using well-founded-extend[of - λx y. ¬ y v x, folded well-related-iff-neg-well-founded]
using assms by auto

lemma pair-well-related:
fixes less-eq (infix ‹v› 50 )
assumes i v i and i v j and j v j
shows well-related-set {i, j} (v)

proof (intro well-related-setI )
fix X assume X ⊆ {i,j} and X 6= {}
then have X = {i,j} ∨ X = {i} ∨ X = {j} by auto
with assms show ∃ e. extreme X (v)− e by auto

qed

locale pre-well-ordered-set = semiattractive + well-related-set
begin

interpretation less-eq-asymmetrize.

sublocale transitive
proof

fix x y z assume xy: x v y and yz: y v z and x: x ∈ A and y: y ∈ A and z:
z ∈ A

from x y z have ∃ e. extreme {x,y,z} (w) e (is ∃ e. ?P e) by (auto intro!:
nonempty-imp-ex-extreme)

then have ?P x ∨ ?P y ∨ ?P z by auto
then show x v z
proof (elim disjE)

assume ?P x
then show ?thesis by auto

next
assume ?P y
then have y v x by auto
from attract[OF xy this yz] x y z show ?thesis by auto

next
assume ?P z
then have zx: z v x and zy: z v y by auto
from attract[OF yz zy zx] x y z have yx: y v x by auto
from attract[OF xy yx yz] x y z show ?thesis by auto

qed
qed

sublocale total-quasi-ordered-set..
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end

lemmas pre-well-ordered-iff-semiattractive-well-related =
pre-well-ordered-set-def [unfolded atomize-eq]

lemma pre-well-ordered-set-empty[intro!]: pre-well-ordered-set {} r
by (auto simp: pre-well-ordered-iff-semiattractive-well-related)

lemma pre-well-ordered-iff :
pre-well-ordered-set A r ←→ total-quasi-ordered-set A r ∧ well-founded A (asympartp

r)
(is ?p ←→ ?t ∧ ?w)

proof safe
assume ?p
then interpret pre-well-ordered-set A r .
show ?t ?w by unfold-locales

next
assume ?t
then interpret total-quasi-ordered-set A r.
assume ?w
then have well-founded UNIV (asympartp r � A) by simp
also have asympartp r � A = (λx y. ¬ r y x) � A by (intro ext, auto simp:

not-iff-asym)
finally have well-related-set A r by (simp add: well-related-iff-neg-well-founded)
then show ?p by intro-locales

qed

lemma (in semiattractive) pre-well-ordered-iff-well-related:
assumes XA: X ⊆ A
shows pre-well-ordered-set X (v) ←→ well-related-set X (v) (is ?l ←→ ?r)

proof
interpret X : semiattractive X using semiattractive-subset[OF XA].
{ assume ?l

then interpret X : pre-well-ordered-set X .
show ?r by unfold-locales

}
assume ?r
then interpret X : well-related-set X .
show ?l by unfold-locales

qed

lemma semiattractive-extend:
fixes r (infix ‹v› 50 )
assumes A: semiattractive A (v) and B: semiattractive B (v)

and AB: ∀ a ∈ A. ∀ b ∈ B. a v b ∧ ¬ b v a
shows semiattractive (A ∪ B) (v)

proof−
interpret A: semiattractive A (v) using A.
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interpret B: semiattractive B (v) using B.
{

fix x y z
assume yB: y ∈ B and zA: z ∈ A and yz: y v z
have False using AB[rule-format, OF zA yB] yz by auto

}
note ∗ = this
show ?thesis

by (auto intro!: semiattractive.intro dest:∗ AB[rule-format] A.attract B.attract)
qed

lemma pre-well-order-extend:
fixes r (infix ‹v› 50 )
assumes A: pre-well-ordered-set A (v) and B: pre-well-ordered-set B (v)

and AB: ∀ a ∈ A. ∀ b ∈ B. a v b ∧ ¬ b v a
shows pre-well-ordered-set (A∪B) (v)

proof−
interpret A: pre-well-ordered-set A (v) using A.
interpret B: pre-well-ordered-set B (v) using B.
show ?thesis
apply (intro pre-well-ordered-set.intro well-related-extend semiattractive-extend)
apply unfold-locales
by (auto dest: AB[rule-format])

qed

lemma (in well-related-set) monotone-image-pre-well-ordered:
fixes leB (infix ‹v ′′› 50 )
assumes mono: monotone-on A (v) (v ′) f

and image: semiattractive (f ‘ A) (v ′)
shows pre-well-ordered-set (f ‘ A) (v ′)
by (intro pre-well-ordered-set.intro monotone-image-well-related[OF mono] im-

age)

locale well-ordered-set = antisymmetric + well-related-set
begin

sublocale pre-well-ordered-set..

sublocale total-ordered-set..

lemma well-ordered-subset: B ⊆ A =⇒ well-ordered-set B (v)
using well-related-subset antisymmetric-subset by (intro well-ordered-set.intro)

sublocale asym: well-founded-ordered-set A asympartp (v)
by (intro well-founded-ordered-set.intro asym.well-founded-axioms asympartp-transitive)

end

lemmas well-ordered-iff-antisymmetric-well-related = well-ordered-set-def [unfolded
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atomize-eq]

lemma well-ordered-set-empty[intro!]: well-ordered-set {} r
by (auto simp: well-ordered-iff-antisymmetric-well-related)

lemma (in antisymmetric) well-ordered-iff-well-related:
assumes XA: X ⊆ A
shows well-ordered-set X (v) ←→ well-related-set X (v) (is ?l ←→ ?r)

proof
interpret X : antisymmetric X using antisymmetric-subset[OF XA].
{ assume ?l

then interpret X : well-ordered-set X .
show ?r by unfold-locales

}
assume ?r
then interpret X : well-related-set X .
show ?l by unfold-locales

qed

context
fixes A :: ′a set and less-eq :: ′a ⇒ ′a ⇒ bool (infix ‹v› 50 )

begin

context
assumes A: ∀ a ∈ A. ∀ b ∈ A. a v b

begin

interpretation well-related-set A (v)
apply unfold-locales
using A by blast

lemmas trivial-well-related = well-related-set-axioms

lemma trivial-pre-well-order : pre-well-ordered-set A (v)
apply unfold-locales
using A by blast

end

interpretation less-eq-asymmetrize.

lemma well-ordered-iff-well-founded-total-ordered:
well-ordered-set A (v) ←→ total-ordered-set A (v) ∧ well-founded A (@)

proof (safe)
assume well-ordered-set A (v)
then interpret well-ordered-set A (v).
show total-ordered-set A (v) well-founded A (@) by unfold-locales

next
assume total-ordered-set A (v) and well-founded A (@)
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then interpret total-ordered-set A (v) + asympartp: well-founded A (@).
show well-ordered-set A (v)
proof

fix X assume XA: X ⊆ A and X 6= {}
from XA asympartp.nonempty-imp-ex-extremal[OF this]
show ∃ e. extreme X (w) e by (auto simp: not-asym-iff subsetD)

qed
qed

end

context
fixes less-eq :: ′a ⇒ ′a ⇒ bool (infix ‹v› 50 )

begin

lemma well-order-extend:
assumes A: well-ordered-set A (v) and B: well-ordered-set B (v)

and ABa: ∀ a ∈ A. ∀ b ∈ B. a v b −→ b v a −→ a = b
and AB: ∀ a ∈ A. ∀ b ∈ B. a v b

shows well-ordered-set (A∪B) (v)
proof−

interpret A: well-ordered-set A (v) using A.
interpret B: well-ordered-set B (v) using B.
show ?thesis
apply (intro well-ordered-set.intro antisymmetric-union well-related-extend ABa

AB)
by unfold-locales

qed

interpretation singleton: antisymmetric {a} (v) for a apply unfold-locales by
auto

lemmas singleton-antisymmetric[intro!] = singleton.antisymmetric-axioms

lemma singleton-well-ordered[intro!]: a v a =⇒ well-ordered-set {a} (v)
apply unfold-locales by auto

lemma closed-UN-well-ordered:
assumes anti: antisymmetric (

⋃
XX) (v)

and XX : ∀X∈XX . well-ordered-set X (v) ∧ (∀ x∈X . ∀ y∈
⋃

XX . ¬ x v y −→
y ∈ X)

shows well-ordered-set (
⋃

XX) (v)
apply (intro well-ordered-set.intro closed-UN-well-related anti)
using XX well-ordered-set.axioms by fast

end

lemma (in well-related-set) monotone-image-well-ordered:
fixes leB (infix ‹v ′′› 50 )
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assumes mono: monotone-on A (v) (v ′) f
and image: antisymmetric (f ‘ A) (v ′)

shows well-ordered-set (f ‘ A) (v ′)
by (intro well-ordered-set.intro monotone-image-well-related[OF mono] image)

3.1 Relating to Classes
locale well-founded-quasi-ordering = quasi-ordering + well-founded
begin

lemma well-founded-quasi-ordering-subset:
assumes X ⊆ A shows well-founded-quasi-ordering X (v) (@)
by (intro well-founded-quasi-ordering.intro quasi-ordering-subset well-founded-subset

assms)

end

class wf-qorder = ord +
assumes well-founded-quasi-ordering UNIV (≤) (<)

begin

interpretation well-founded-quasi-ordering UNIV
using wf-qorder-axioms unfolding class.wf-qorder-def by auto

subclass qorder ..

sublocale order : well-founded-quasi-ordering UNIV
rewrites

∧
x. x ∈ UNIV ≡ True

and
∧

X . X ⊆ UNIV ≡ True
and

∧
r . r � UNIV ≡ r

and
∧

P. True ∧ P ≡ P
and Ball UNIV ≡ All
and Bex UNIV ≡ Ex
and sympartp (≤)− ≡ sympartp (≤)
and

∧
P1 . (True =⇒ PROP P1 ) ≡ PROP P1

and
∧

P1 . (True =⇒ P1 ) ≡ Trueprop P1
and

∧
P1 P2 . (True =⇒ PROP P1 =⇒ PROP P2 ) ≡ (PROP P1 =⇒ PROP

P2 )
apply unfold-locales by (auto simp:atomize-eq)

end

context wellorder begin

subclass wf-qorder
apply (unfold-locales)
using less-induct by auto

sublocale order : well-ordered-set UNIV
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rewrites
∧

x. x ∈ UNIV ≡ True
and

∧
X . X ⊆ UNIV ≡ True

and
∧

r . r � UNIV ≡ r
and

∧
P. True ∧ P ≡ P

and Ball UNIV ≡ All
and Bex UNIV ≡ Ex
and sympartp (≤)− ≡ sympartp (≤)
and

∧
P1 . (True =⇒ PROP P1 ) ≡ PROP P1

and
∧

P1 . (True =⇒ P1 ) ≡ Trueprop P1
and

∧
P1 P2 . (True =⇒ PROP P1 =⇒ PROP P2 ) ≡ (PROP P1 =⇒ PROP

P2 )
apply (unfold well-ordered-iff-well-founded-total-ordered)
apply (intro conjI order .total-ordered-set-axioms)
by (auto simp: order .well-founded-axioms atomize-eq)

end

thm order .nonempty-imp-ex-extreme

3.2 omega-Chains
definition omega-chain A r ≡ ∃ f :: nat ⇒ ′a. monotone (≤) r f ∧ range f = A

lemma omega-chainI :
fixes f :: nat ⇒ ′a
assumes monotone (≤) r f range f = A shows omega-chain A r
using assms by (auto simp: omega-chain-def )

lemma omega-chainE :
assumes omega-chain A r

and
∧

f :: nat ⇒ ′a. monotone (≤) r f =⇒ range f = A =⇒ thesis
shows thesis
using assms by (auto simp: omega-chain-def )

lemma (in transitive) local-chain:
assumes CA: range C ⊆ A
shows (∀ i::nat. C i v C (Suc i)) ←→ monotone (<) (v) C

proof (intro iffI allI monotoneI )
fix i j :: nat
assume loc: ∀ i. C i v C (Suc i) and ij: i < j
have C i v C (i+k+1 ) for k
proof (induct k)

case 0
from loc show ?case by auto

next
case (Suc k)
also have C (i+k+1 ) v C (i+k+Suc 1 ) using loc by auto
finally show ?case using CA by auto

qed
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from this[of j−i−1 ] ij show C i v C j by auto
next

fix i
assume monotone (<) (v) C
then show C i v C (Suc i) by (auto dest: monotoneD)

qed

lemma pair-omega-chain:
assumes r a a r b b r a b shows omega-chain {a,b} r
using assms by (auto intro!: omega-chainI [of r λi. if i = 0 then a else b] mono-

toneI )

Every omega-chain is a well-order.
lemma omega-chain-imp-well-related:

fixes less-eq (infix ‹v› 50 )
assumes A: omega-chain A (v) shows well-related-set A (v)

proof
interpret less-eq-dualize.
from A obtain f :: nat ⇒ ′a where mono: monotone-on UNIV (≤) (v) f and

A: A = range f
by (auto elim!: omega-chainE)

fix X assume XA: X ⊆ A and X 6= {}
then obtain I where X : X = f ‘ I and I0 : I 6= {} by (auto simp: A sub-

set-image-iff )
from order .nonempty-imp-ex-extreme[OF I0 ]
obtain i where least I i by auto
with mono
show ∃ e. extreme X (w) e by (auto intro!: exI [of - f i] extremeI simp: X mono-

toneD)
qed

lemma (in semiattractive) omega-chain-imp-pre-well-ordered:
assumes omega-chain A (v) shows pre-well-ordered-set A (v)
apply (intro pre-well-ordered-set.intro omega-chain-imp-well-related assms)..

lemma (in antisymmetric) omega-chain-imp-well-ordered:
assumes omega-chain A (v) shows well-ordered-set A (v)
by (intro well-ordered-set.intro omega-chain-imp-well-related assms antisymmet-

ric-axioms)

3.2.1 Relation image that preserves well-orderedness.
definition well-image f A (v) fa fb ≡
∀ a b. extreme {x∈A. fa = f x} (v)− a −→ extreme {y∈A. fb = f y} (v)− b −→

a v b
for less-eq (infix ‹v› 50 )

lemmas well-imageI = well-image-def [unfolded atomize-eq, THEN iffD2 , rule-format]
lemmas well-imageD = well-image-def [unfolded atomize-eq, THEN iffD1 , rule-format]
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lemma (in pre-well-ordered-set)
well-image-well-related: pre-well-ordered-set (f‘A) (well-image f A (v))

proof−
interpret less-eq-dualize.
interpret im: transitive f‘A well-image f A (v)
proof (safe intro!: transitiveI well-imageI )

interpret less-eq-dualize.
fix x y z a c
assume fxfy: well-image f A (v) (f x) (f y)

and fyfz: well-image f A (v) (f y) (f z)
and xA: x ∈ A and yA: y ∈ A and zA: z ∈ A
and a: extreme {a ∈ A. f x = f a} (w) a
and c: extreme {c ∈ A. f z = f c} (w) c

have ∃ b. extreme {b ∈ A. f y = f b} (w) b
apply (rule nonempty-imp-ex-extreme) using yA by auto

then obtain b where b: extreme {b ∈ A. f y = f b} (w) b by auto
from trans[OF well-imageD[OF fxfy a b] well-imageD[OF fyfz b c]] a b c
show a v c by auto

qed
interpret im: well-related-set f‘A well-image f A (v)
proof

fix fX
assume fXfA: fX ⊆ f ‘ A and fX0 : fX 6= {}
define X where X ≡ {x∈A. f x ∈ fX}

with fXfA fX0 have XA: X ⊆ A and X 6= {} by (auto simp: ex-in-conv[symmetric])
from nonempty-imp-ex-extreme[OF this] obtain e where Xe: extreme X (w)

e by auto
with XA have eA: e ∈ A by auto
from fXfA have fX : f ‘ X = fX by (auto simp: X-def intro!: equalityI )
show ∃ fe. extreme fX (well-image f A (v))− fe
proof (safe intro!: exI extremeI elim!: subset-imageE)

from Xe fX show fefX : f e ∈ fX by auto
fix fx assume fxfX : fx ∈ fX
show well-image f A (v) (f e) fx
proof (intro well-imageI )

fix a b
assume fea: extreme {a ∈ A. f e = f a} (w) a

and feb: extreme {b ∈ A. fx = f b} (w) b
from fea eA have aA: a ∈ A and ae: a v e by auto
from feb fxfX have bA: b ∈ A and bX : b ∈ X by (auto simp: X-def )
with Xe have eb: e v b by auto
from trans[OF ae eb aA eA bA]
show a v b.

qed
qed

qed
show ?thesis by unfold-locales

qed
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end
theory Directedness

imports Binary-Relations Well-Relations
begin

Directed sets:
locale directed =

fixes A and less-eq (infix ‹v› 50 )
assumes pair-bounded: x ∈ A =⇒ y ∈ A =⇒ ∃ z ∈ A. x v z ∧ y v z

lemmas directedI [intro] = directed.intro

lemmas directedD = directed-def [unfolded atomize-eq, THEN iffD1 , rule-format]

context
fixes less-eq :: ′a ⇒ ′a ⇒ bool (infix ‹v› 50 )

begin

lemma directedE :
assumes directed A (v) and x ∈ A and y ∈ A

and
∧

z. z ∈ A =⇒ x v z =⇒ y v z =⇒ thesis
shows thesis
using assms by (auto dest: directedD)

lemma directed-empty[simp]: directed {} (v) by auto

lemma directed-union:
assumes dX : directed X (v) and dY : directed Y (v)

and XY : ∀ x∈X . ∀ y∈Y . ∃ z ∈ X ∪ Y . x v z ∧ y v z
shows directed (X ∪ Y ) (v)
using directedD[OF dX ] directedD[OF dY ] XY
apply (intro directedI ) by blast

lemma directed-extend:
assumes X : directed X (v) and Y : directed Y (v) and XY : ∀ x∈X . ∀ y∈Y . x
v y

shows directed (X ∪ Y ) (v)
proof −

{ fix x y
assume xX : x ∈ X and yY : y ∈ Y
let ?g = ∃ z∈X ∪ Y . x v z ∧ y v z
from directedD[OF Y yY yY ] obtain z where zY : z ∈ Y and yz: y v z by

auto
from xX XY zY yz have ?g by auto

}
then show ?thesis by (auto intro!: directed-union[OF X Y ])

qed
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end

sublocale connex ⊆ directed
proof

fix x y
assume x: x ∈ A and y: y ∈ A
then show ∃ z∈A. x v z ∧ y v z
proof (cases rule: comparable-cases)

case le
with refl[OF y] y show ?thesis by (intro bexI [of - y], auto)

next
case ge
with refl[OF x] x show ?thesis by (intro bexI [of - x], auto)

qed
qed

lemmas(in connex) directed = directed-axioms

lemma monotone-directed-image:
fixes ir (infix ‹�› 50 ) and r (infix ‹v› 50 )
assumes mono: monotone-on I (�) (v) f and dir : directed I (�)
shows directed (f ‘ I ) (v)

proof (rule directedI , safe)
fix x y assume x: x ∈ I and y: y ∈ I
with dir obtain z where z: z ∈ I and x � z and y � z by (auto elim:

directedE)
with mono x y have f x v f z and f y v f z by (auto dest: monotone-onD)
with z show ∃ fz ∈ f ‘ I . f x v fz ∧ f y v fz by auto

qed

definition directed-set A (v) ≡ ∀X ⊆ A. finite X −→ (∃ b ∈ A. bound X (v) b)
for less-eq (infix ‹v› 50 )

lemmas directed-setI = directed-set-def [unfolded atomize-eq, THEN iffD2 , rule-format]
lemmas directed-setD = directed-set-def [unfolded atomize-eq, THEN iffD1 , rule-format]

lemma directed-imp-nonempty:
fixes less-eq (infix ‹v› 50 )
shows directed-set A (v) =⇒ A 6= {}
by (auto simp: directed-set-def )

lemma directedD2 :
fixes less-eq (infix ‹v› 50 )
assumes dir : directed-set A (v) and xA: x ∈ A and yA: y ∈ A
shows ∃ z ∈ A. x v z ∧ y v z
using directed-setD[OF dir , of {x,y}] xA yA by auto

lemma monotone-directed-set-image:
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fixes ir (infix ‹�› 50 ) and r (infix ‹v› 50 )
assumes mono: monotone-on I (�) (v) f and dir : directed-set I (�)
shows directed-set (f ‘ I ) (v)

proof (rule directed-setI )
fix X assume finite X and X ⊆ f ‘ I
from finite-subset-image[OF this]
obtain J where JI : J ⊆ I and Jfin: finite J and X : X = f ‘ J by auto
from directed-setD[OF dir JI Jfin]
obtain b where bI : b ∈ I and Jb: bound J (�) b by auto
from monotone-image-bound[OF mono JI bI Jb] bI
show Bex (f ‘ I ) (bound X (v)) by (auto simp: X)

qed

lemma directed-set-iff-extremed:
fixes less-eq (infix ‹v› 50 )
assumes Dfin: finite D
shows directed-set D (v) ←→ extremed D (v)

proof (intro iffI directed-setI conjI )
assume directed-set D (v)
from directed-setD[OF this order .refl Dfin]
show extremed D (v) by (auto intro: extremedI )

next
fix X assume XD: X ⊆ D and Xfin: finite X
assume extremed D (v)
then obtain b where b ∈ D and extreme D (v) b by (auto elim!: extremedE)
with XD show ∃ b ∈ D. bound X (v) b by auto

qed

lemma (in transitive) directed-iff-nonempty-pair-bounded:
directed-set A (v) ←→ A 6= {} ∧ (∀ x∈A. ∀ y∈A. ∃ z∈A. x v z ∧ y v z)
(is ?l ←→ - ∧ ?r)

proof (safe intro!: directed-setI del: notI subset-antisym)
assume dir : ?l
from directed-imp-nonempty[OF dir ] show A 6= {}.
fix x y assume x ∈ A y ∈ A
with directed-setD[OF dir , of {x,y}]
show ∃ z∈A. x v z ∧ y v z by auto

next
fix X
assume A0 : A 6= {} and r : ?r
assume finite X and X ⊆ A
then show Bex A (bound X (v))
proof (induct)

case empty
with A0 show ?case by (auto simp: bound-empty ex-in-conv)

next
case (insert x X)
then obtain y where xA: x ∈ A and XA: X ⊆ A and yA: y ∈ A and Xy:
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bound X (v) y by auto
from r yA xA obtain z where zA: z ∈ A and xz: x v z and yz: y v z by

auto
from bound-trans[OF Xy yz XA yA zA] xz zA
show ?case by auto

qed
qed

lemma (in transitive) directed-set-iff-nonempty-directed:
directed-set A (v) ←→ A 6= {} ∧ directed A (v)
apply (unfold directed-iff-nonempty-pair-bounded)
by (auto simp: directed-def )

lemma (in well-related-set) finite-sets-extremed:
assumes fin: finite X and X0 : X 6= {} and XA: X ⊆ A
shows extremed X (v)

proof−
interpret less-eq-asymmetrize.
from fin X0 XA show ?thesis
proof (induct card X arbitrary: X)

case 0
then show ?case by auto

next
case (Suc n)
note XA = ‹X ⊆ A› and X0 = ‹X 6= {}› and Sn = ‹Suc n = card X› and

finX = ‹finite X›
note IH = Suc(1 )
from nonempty-imp-ex-extreme[OF XA X0 ]
obtain l where l: extreme X (w) l by auto
from l have lX : l ∈ X by auto
with XA have lA: l ∈ A by auto
from Sn lX have n: n = card (X−{l}) by auto
show ?case
proof (cases X − {l} = {})

case True
with lA lX show ?thesis by (auto intro!: extremedI )

next
case False
from IH [OF n - this] finX XA
obtain e where e: extreme (X − {l}) (v) e by (auto elim!: extremedE)
with l show ?thesis by (auto intro!: extremedI [of - - e] extremeI )

qed
qed

qed

lemma (in well-related-set) directed-set:
assumes A0 : A 6= {} shows directed-set A (v)

proof (intro directed-setI )
fix X assume XA: X ⊆ A and Xfin: finite X

76



show Bex A (bound X (v))
proof (cases X = {})

case True
with A0 show ?thesis by (auto simp: bound-empty ex-in-conv)

next
case False
from finite-sets-extremed[OF Xfin this] XA
show ?thesis by (auto elim!: extremedE)

qed
qed

lemma prod-directed:
fixes leA (infix ‹vA› 50 ) and leB (infix ‹vB› 50 )
assumes dir : directed X (rel-prod (vA) (vB))
shows directed (fst ‘ X) (vA) and directed (snd ‘ X) (vB)

proof (safe intro!: directedI )
fix a b x y assume (a,x) ∈ X and (b,y) ∈ X
from directedD[OF dir this]
obtain c z where cz: (c,z) ∈ X and ac: a vA c and bc: b vA c and x vB z

and y vB z by auto
then show ∃ z∈fst ‘ X . fst (a,x) vA z ∧ fst (b,y) vA z

and ∃ z∈snd ‘ X . snd (a,x) vB z ∧ snd (b,y) vB z
by (auto intro!: bexI [OF - cz])

qed

class dir = ord + assumes directed UNIV (≤)
begin

sublocale order : directed UNIV (≤)
rewrites

∧
x. x ∈ UNIV ≡ True

and
∧

X . X ⊆ UNIV ≡ True
and

∧
r . r � UNIV ≡ r

and
∧

P. True ∧ P ≡ P
and Ball UNIV ≡ All
and Bex UNIV ≡ Ex
and sympartp (≤)− ≡ sympartp (≤)
and

∧
P1 . (True =⇒ PROP P1 ) ≡ PROP P1

and
∧

P1 . (True =⇒ P1 ) ≡ Trueprop P1
and

∧
P1 P2 . (True =⇒ PROP P1 =⇒ PROP P2 ) ≡ (PROP P1 =⇒ PROP

P2 )
using dir-axioms[unfolded class.dir-def ]
by (auto simp: atomize-eq)

end

class filt = ord +
assumes directed UNIV (≥)

begin
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sublocale order .dual: directed UNIV (≥)
rewrites

∧
x. x ∈ UNIV ≡ True

and
∧

X . X ⊆ UNIV ≡ True
and

∧
r . r � UNIV ≡ r

and
∧

P. True ∧ P ≡ P
and Ball UNIV ≡ All
and Bex UNIV ≡ Ex
and sympartp (≤)− ≡ sympartp (≤)
and

∧
P1 . (True =⇒ PROP P1 ) ≡ PROP P1

and
∧

P1 . (True =⇒ P1 ) ≡ Trueprop P1
and

∧
P1 P2 . (True =⇒ PROP P1 =⇒ PROP P2 ) ≡ (PROP P1 =⇒ PROP

P2 )
using filt-axioms[unfolded class.filt-def ]
by (auto simp: atomize-eq)

end

subclass (in linqorder) dir..

subclass (in linqorder) filt..

thm order .directed-axioms[where ′a = ′a ::dir ]

thm order .dual.directed-axioms[where ′a = ′a ::filt]

end

4 Completeness of Relations
Here we formalize various order-theoretic completeness conditions.
theory Complete-Relations

imports Well-Relations Directedness
begin

4.1 Completeness Conditions
Order-theoretic completeness demands certain subsets of elements to admit
suprema or infima.
definition complete (‹-−complete›[999 ]1000 ) where
C−complete A (v) ≡ ∀X ⊆ A. C X (v) −→ (∃ s. extreme-bound A (v) X s) for

less-eq (infix ‹v› 50 )

lemmas completeI = complete-def [unfolded atomize-eq, THEN iffD2 , rule-format]
lemmas completeD = complete-def [unfolded atomize-eq, THEN iffD1 , rule-format]
lemmas completeE = complete-def [unfolded atomize-eq, THEN iffD1 , rule-format,
THEN exE ]

lemma complete-cmono: CC ≤ DD =⇒ DD−complete ≤ CC−complete
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by (force simp: complete-def )

lemma complete-subclass:
fixes less-eq (infix ‹v› 50 )
assumes C−complete A (v) and ∀X ⊆ A. D X (v) −→ C X (v)
shows D−complete A (v)
using assms by (auto simp: complete-def )

lemma complete-empty[simp]: C−complete {} r ←→ ¬ C {} r by (auto simp:
complete-def )

context
fixes less-eq :: ′a ⇒ ′a ⇒ bool (infix ‹v› 50 )

begin

Toppedness can be also seen as a completeness condition, since it is
equivalent to saying that the universe has a supremum.
lemma extremed-iff-UNIV-complete: extremed A (v)←→ (λX r . X = A)−complete
A (v) (is ?l ←→ ?r)
proof

assume ?l
then obtain e where extreme A (v) e by (erule extremedE)
then have extreme-bound A (v) A e by auto
then show ?r by (auto intro!: completeI )

next
assume ?r
from completeD[OF this] obtain s where extreme-bound A (v) A s by auto
then have extreme A (v) s by auto
then show ?l by (auto simp: extremed-def )

qed

The dual notion of topped is called “pointed”, equivalently ensuring a
supremum of the empty set.
lemma pointed-iff-empty-complete: extremed A (v)←→ (λX r . X = {})−complete
A (v)−

by (auto simp: complete-def extremed-def )

Downward closure is topped.
lemma dual-closure-is-extremed:

assumes bA: b ∈ A and b v b
shows extremed {a ∈ A. a v b} (v)
using assms by (auto intro!: extremedI [of - - b])

Downward closure preserves completeness.
lemma dual-closure-is-complete:

assumes A: C−complete A (v) and bA: b ∈ A
shows C−complete {x∈A. x v b} (v)

proof (intro completeI )
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fix X assume XAb:X ⊆ {x ∈ A. x v b} and X : C X (v)
with completeD[OF A] obtain x where x: extreme-bound A (v) X x by auto
then have xA: x ∈ A by auto
from XAb have x v b by (auto intro!: extreme-boundD[OF x] bA)
with xA x show ∃ x. extreme-bound {x ∈ A. x v b} (v) X x by (auto intro!:

exI [of - x])
qed

interpretation less-eq-dualize.

Upward closure preserves completeness, under a condition.
lemma closure-is-complete:

assumes A: C−complete A (v) and bA: b ∈ A
and Cb: ∀X ⊆ A. C X (v) −→ bound X (w) b −→ C (X ∪ {b}) (v)

shows C−complete {x∈A. b v x} (v)
proof (intro completeI )

fix X assume XAb:X ⊆ {x ∈ A. b v x} and X : C X (v)
with Cb have XbC : C (X ∪ {b}) (v) by auto
from XAb bA have XbA: X ∪ {b} ⊆ A by auto
with completeD[OF A XbA] XbC
obtain x where x: extreme-bound A (v) (X∪{b}) x by auto
then show ∃ x. extreme-bound {x ∈ A. b v x} (v) X x

by (auto intro!: exI [of - x] extreme-boundI )
qed

lemma biclosure-is-complete:
assumes A: C−complete A (v) and aA: a ∈ A and bA: b ∈ A and ab: a v b

and Ca: ∀X ⊆ A. C X (v) −→ bound X (w) a −→ C (X ∪ {a}) (v)
shows C−complete {x∈A. a v x ∧ x v b} (v)

proof−
note closure-is-complete[OF A aA Ca]
from dual-closure-is-complete[OF this, of b] bA ab show ?thesis by auto

qed

end

One of the most well-studied notion of completeness would be the semi-
lattice condition: every pair of elements x and y has a supremum xt y (not
necessarily unique if the underlying relation is not antisymmetric).
definition pair-complete ≡ (λX r . ∃ x y. X = {x,y})−complete

lemma pair-completeI :
assumes

∧
x y. x ∈ A =⇒ y ∈ A =⇒ ∃ s. extreme-bound A r {x,y} s

shows pair-complete A r
using assms by (auto simp: pair-complete-def complete-def )

lemma pair-completeD:
assumes pair-complete A r
shows x ∈ A =⇒ y ∈ A =⇒ ∃ s. extreme-bound A r {x,y} s
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by (intro completeD[OF assms[unfolded pair-complete-def ]], auto)

context
fixes less-eq :: ′a ⇒ ′a ⇒ bool (infix ‹v› 50 )

begin

lemma pair-complete-imp-directed:
assumes comp: pair-complete A (v) shows directed A (v)

proof
fix x y :: ′a
assume x ∈ A y ∈ A
with pair-completeD[OF comp this] show ∃ z ∈ A. x v z ∧ y v z by auto

qed

end

lemma (in connex) pair-complete: pair-complete A (v)
proof (safe intro!: pair-completeI )

fix x y
assume x: x ∈ A and y: y ∈ A
then show ∃ s. extreme-bound A (v) {x, y} s
proof (cases rule:comparable-cases)

case le
with x y show ?thesis by (auto intro!: exI [of - y])

next
case ge
with x y show ?thesis by (auto intro!: exI [of - x])

qed
qed

The next one assumes that every nonempty finite set has a supremum.
abbreviation finite-complete ≡ (λX r . finite X ∧ X 6= {})−complete

lemma finite-complete-le-pair-complete: finite-complete ≤ pair-complete
by (unfold pair-complete-def , rule complete-cmono, auto)

The next one assumes that every nonempty bounded set has a supremum.
It is also called the Dedekind completeness.
abbreviation conditionally-complete A ≡ (λX r . ∃ b ∈ A. bound X r b ∧ X 6=
{})−complete A

lemma conditionally-complete-imp-nonempty-imp-ex-extreme-bound-iff-ex-bound:
assumes comp: conditionally-complete A r
assumes X ⊆ A and X 6= {}
shows (∃ s. extreme-bound A r X s) ←→ (∃ b∈A. bound X r b)
using assms by (auto 0 4 intro!:completeD[OF comp])

The ω-completeness condition demands a supremum for an ω-chain.

81



Directed completeness is an important notion in domain theory [1], as-
serting that every nonempty directed set has a supremum. Here, a set X is
directed if any pair of two elements in X has a bound in X.
definition directed-complete ≡ (λX r . directed X r ∧ X 6= {})−complete

lemma monotone-directed-complete:
assumes comp: directed-complete A r
assumes fI : f ‘ I ⊆ A and dir : directed I ri and I0 : I 6= {} and mono:

monotone-on I ri r f
shows ∃ s. extreme-bound A r (f ‘ I ) s
apply (rule completeD[OF comp[unfolded directed-complete-def ], OF fI ])
using monotone-directed-image[OF mono dir ] I0 by auto

lemma (in reflexive) dual-closure-is-directed-complete:
assumes comp: directed−complete A (v) and bA: b ∈ A
shows directed−complete {X ∈ A. b v X} (v)
apply (rule closure-is-complete[OF comp bA])

proof (intro allI impI directedI CollectI )
interpret less-eq-dualize.
fix X x y assume Xdir : directed X (v) and X : X ⊆ A

and bX : bound X (w) b and x: x ∈ X ∪ {b} and y: y ∈ X ∪ {b}
from x y X bA have xA: x ∈ A and yA: y ∈ A by auto
show ∃ z∈X ∪ {b}. x v z ∧ y v z
proof (cases x = b)

case [simp]: True
with y bX bA have b v y by auto
with y yA bA show ?thesis by (auto intro!: bexI [of - y])

next
case False
with x have x: x ∈ X by auto
show ?thesis
proof (cases y = b)

case [simp]: True
with x bX have b v x by auto
with x xA bA show ?thesis by (auto intro!: bexI [of - x])

next
case False
with y have y: y ∈ X by auto
from directedD[OF Xdir x y] show ?thesis by simp

qed
qed

qed

The next one is quite complete, only the empty set may fail to have a
supremum. The terminology follows [3], although there it is defined more
generally depending on a cardinal α such that a nonempty set X of cardi-
nality below α has a supremum.
abbreviation semicomplete ≡ (λX r . X 6= {})−complete
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lemma semicomplete-nonempty-imp-extremed:
semicomplete A r =⇒ A 6= {} =⇒ extremed A r
unfolding extremed-iff-UNIV-complete
using complete-cmono[of λX r . X = A λX r . X 6= {}]
by auto

lemma connex-dual-semicomplete: semicomplete {C . connex C r} (⊇)
proof (intro completeI )

fix X
assume X ⊆ {C . connex C r} and X 6= {}
then have connex (

⋂
X) r by (auto simp: connex-def )

then have extreme-bound {C . connex C r} (⊇) X (
⋂

X) by auto
then show ∃S . extreme-bound {C . connex C r} (⊇) X S by auto

qed

4.2 Pointed Ones
The term ‘pointed’ refers to the dual notion of toppedness, i.e., there is a
global least element. This serves as the supremum of the empty set.
lemma complete-sup: (CC t CC ′)−complete A r ←→ CC−complete A r ∧ CC ′−complete
A r

by (auto simp: complete-def )

lemma pointed-directed-complete:
directed−complete A r ←→ directed-complete A r ∧ extremed A r−

proof−
have [simp]: (λX r . directed X r ∧ X 6= {} ∨ X = {}) = directed by auto
show ?thesis
by (auto simp: directed-complete-def pointed-iff-empty-complete complete-sup[symmetric]

sup-fun-def )
qed

“Bounded complete” refers to pointed conditional complete, but this
notion is just the dual of semicompleteness. We prove this later.
abbreviation bounded-complete A ≡ (λX r . ∃ b∈A. bound X r b)−complete A

4.3 Relations between Completeness Conditions
context

fixes less-eq :: ′a ⇒ ′a ⇒ bool (infix ‹v› 50 )
begin

interpretation less-eq-dualize.

Pair-completeness implies that the universe is directed. Thus, with di-
rected completeness implies toppedness.
proposition directed-complete-pair-complete-imp-extremed:
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assumes dc: directed-complete A (v) and pc: pair-complete A (v) and A: A 6=
{}

shows extremed A (v)
proof−

have ∃ s. extreme-bound A (v) A s
apply (rule completeD[OF dc[unfolded directed-complete-def ]])
using pair-complete-imp-directed[OF pc] A by auto

then obtain t where extreme-bound A (v) A t by auto
then have ∀ x ∈ A. x v t and t ∈ A by auto
then show ?thesis by (auto simp: extremed-def )

qed

Semicomplete is conditional complete and topped.
proposition semicomplete-iff-conditionally-complete-extremed:

assumes A: A 6= {}
shows semicomplete A (v) ←→ conditionally-complete A (v) ∧ extremed A (v)

(is ?l ←→ ?r)
proof (intro iffI )

assume r : ?r
then have cc: conditionally-complete A (v) and e: extremed A (v) by auto
show ?l
proof (intro completeI )

fix X
assume X : X ⊆ A and X 6= {}
with extremed-imp-ex-bound[OF e X ]
show ∃ s. extreme-bound A (v) X s by (auto intro!: completeD[OF cc X ])

qed
next

assume l: ?l
with semicomplete-nonempty-imp-extremed[OF l] A
show ?r by (auto intro!: completeI dest: completeD)

qed

proposition complete-iff-pointed-semicomplete:
>−complete A (v) ←→ semicomplete A (v) ∧ extremed A (w) (is ?l ←→ ?r)
by (unfold pointed-iff-empty-complete complete-sup[symmetric], auto simp: sup-fun-def

top-fun-def )

Conditional completeness only lacks top and bottom to be complete.
proposition complete-iff-conditionally-complete-extremed-pointed:
>−complete A (v) ←→ conditionally-complete A (v) ∧ extremed A (v) ∧ ex-

tremed A (w)
unfolding complete-iff-pointed-semicomplete
apply (cases A = {})
apply (auto intro!: completeI dest: extremed-imp-ex-bound)[1 ]

unfolding semicomplete-iff-conditionally-complete-extremed
apply (auto intro:completeI )
done

If the universe is directed, then every pair is bounded, and thus has a
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supremum. On the other hand, supremum gives an upper bound, witnessing
directedness.
proposition conditionally-complete-imp-pair-complete-iff-directed:

assumes comp: conditionally-complete A (v)
shows pair-complete A (v) ←→ directed A (v) (is ?l ←→ ?r)

proof(intro iffI )
assume ?r
then show ?l

by (auto intro!: pair-completeI completeD[OF comp] elim: directedE)
next

assume pc: ?l
show ?r
proof (intro directedI )

fix x y assume x ∈ A and y ∈ A
with pc obtain z where extreme-bound A (v) {x,y} z by (auto dest: pair-completeD)
then show ∃ z∈A. x v z ∧ y v z by auto

qed
qed

end

4.4 Duality of Completeness Conditions
Conditional completeness is symmetric.
context fixes less-eq :: ′a ⇒ ′a ⇒ bool (infix ‹v› 50 )
begin

interpretation less-eq-dualize.

lemma conditionally-complete-dual:
assumes comp: conditionally-complete A (v) shows conditionally-complete A

(w)
proof (intro completeI )

fix X assume XA: X ⊆ A
define B where [simp]: B ≡ {b∈A. bound X (w) b}
assume bound: ∃ b∈A. bound X (w) b ∧ X 6= {}
with in-mono[OF XA] have B: B ⊆ A and ∃ b ∈ A. bound B (v) b and B 6=
{} by auto

from comp[THEN completeD, OF B] this
obtain s where s ∈ A and extreme-bound A (v) B s by auto
with in-mono[OF XA] show ∃ s. extreme-bound A (w) X s

by (intro exI [of - s] extreme-boundI , auto)
qed

Full completeness is symmetric.
lemma complete-dual:
>−complete A (v) =⇒ >−complete A (w)
apply (unfold complete-iff-conditionally-complete-extremed-pointed)
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using conditionally-complete-dual by auto

Now we show that bounded completeness is the dual of semicomplete-
ness.
lemma bounded-complete-iff-pointed-conditionally-complete:

assumes A: A 6= {}
shows bounded-complete A (v) ←→ conditionally-complete A (v) ∧ extremed A

(w)
apply (unfold pointed-iff-empty-complete)
apply (fold complete-sup)
apply (unfold sup-fun-def )
apply (rule arg-cong[of - - λCC . CC−complete A (v)])
using A by auto

proposition bounded-complete-iff-dual-semicomplete:
bounded-complete A (v) ←→ semicomplete A (w)

proof (cases A = {})
case True
then show ?thesis by auto

next
case False
then show ?thesis

apply (unfold bounded-complete-iff-pointed-conditionally-complete[OF False])
apply (unfold semicomplete-iff-conditionally-complete-extremed)
using Complete-Relations.conditionally-complete-dual by auto

qed

lemma bounded-complete-imp-conditionally-complete:
assumes bounded-complete A (v) shows conditionally-complete A (v)
using assms by (cases A = {}, auto simp:bounded-complete-iff-pointed-conditionally-complete)

Completeness in downward-closure:
lemma conditionally-complete-imp-semicomplete-in-dual-closure:

assumes A: conditionally-complete A (v) and bA: b ∈ A
shows semicomplete {a ∈ A. a v b} (v)

proof (intro completeI )
fix X assume X : X ⊆ {a ∈ A. a v b} and X0 : X 6= {}
then have X ⊆ A and Xb: bound X (v) b by auto
with bA completeD[OF A] X0 obtain s where Xs: extreme-bound A (v) X s

by auto
with Xb bA have sb: s v b by auto
with Xs have extreme-bound {a ∈ A. a v b} (v) X s

by (intro extreme-boundI , auto)
then show ∃ s. extreme-bound {a ∈ A. a v b} (v) X s by auto

qed

end

Completeness in intervals:
lemma conditionally-complete-imp-complete-in-interval:
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fixes less-eq (infix ‹v› 50 )
assumes comp: conditionally-complete A (v) and aA: a ∈ A and bA: b ∈ A

and aa: a v a and ab: a v b
shows >−complete {x ∈ A. a v x ∧ x v b} (v)

proof (intro completeI )
fix X assume X : X ⊆ {x ∈ A. a v x ∧ x v b}
note conditionally-complete-imp-semicomplete-in-dual-closure[OF comp bA]
from closure-is-complete[OF this, of a,simplified] aA ab
have semi: semicomplete {x ∈ A. a v x ∧ x v b} (v) by (simp add: conj-commute

cong: Collect-cong)
show Ex (extreme-bound {x ∈ A. a v x ∧ x v b} (v) X)
proof (cases X = {})

case True
with aA aa ab have extreme-bound {x ∈ A. a v x ∧ x v b} (v) X a by (auto

simp: bound-empty)
then show ?thesis by auto

next
case False
with completeD[OF semi X ] show ?thesis by simp

qed
qed

lemmas connex-bounded-complete = connex-dual-semicomplete[folded bounded-complete-iff-dual-semicomplete]

4.5 Completeness Results Requiring Order-Like Properties
Above results hold without any assumption on the relation. This part de-
mands some order-like properties.

It is well known that in a semilattice, i.e., a pair-complete partial order,
every finite nonempty subset of elements has a supremum. We prove the
result assuming transitivity, but only that.
lemma (in transitive) pair-complete-iff-finite-complete:

pair-complete A (v) ←→ finite-complete A (v) (is ?l ←→ ?r)
proof (intro iffI completeI , elim CollectE conjE)

fix X
assume pc: ?l
show finite X =⇒ X ⊆ A =⇒ X 6= {} =⇒ Ex (extreme-bound A (v) X)
proof (induct X rule: finite-induct)
case empty

then show ?case by auto
next

case (insert x X)
then have x: x ∈ A and X : X ⊆ A by auto
show ?case
proof (cases X = {})

case True
obtain x ′ where extreme-bound A (v) {x,x} x ′ using pc[THEN pair-completeD,

OF x x] by auto
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with True show ?thesis by (auto intro!: exI [of - x ′])
next

case False
with insert obtain b where b: extreme-bound A (v) X b by auto
with pc[THEN pair-completeD] x obtain c where c: extreme-bound A (v)

{x,b} c by auto
from c have cA: c ∈ A and xc: x v c and bc: b v c by auto
from b have bA: b ∈ A and bX : bound X (v) b by auto
show ?thesis
proof (intro exI extreme-boundI )

fix xb assume xb: xb ∈ insert x X
from bound-trans[OF bX bc X bA cA] have bound X (v) c.
with xb xc show xb v c by auto

next
fix d assume bound (insert x X) (v) d and dA: d ∈ A
with b have bound {x,b} (v) d by auto
with c show c v d using dA by auto

qed (fact cA)
qed

qed
qed (insert finite-complete-le-pair-complete, auto)

Gierz et al. [9] showed that a directed complete partial order is semicom-
plete if and only if it is also a semilattice. We generalize the claim so that
the underlying relation is only transitive.
proposition(in transitive) semicomplete-iff-directed-complete-pair-complete:

semicomplete A (v) ←→ directed-complete A (v) ∧ pair-complete A (v) (is ?l
←→ ?r)
proof (intro iffI )

assume l: ?l
then show ?r by (auto simp: directed-complete-def intro!: completeI pair-completeI

completeD[OF l])
next

assume ?r
then have dc: directed-complete A (v) and pc: pair-complete A (v) by auto
with pair-complete-iff-finite-complete have fc: finite-complete A (v) by auto
show ?l
proof (intro completeI )

fix X assume XA: X ⊆ A
have 1 : directed {x. ∃Y ⊆ X . finite Y ∧ Y 6= {} ∧ extreme-bound A (v) Y

x} (v) (is directed ?B -)
proof (intro directedI )

fix a b assume a: a ∈ ?B and b: b ∈ ?B
from a obtain Y where Y : extreme-bound A (v) Y a finite Y Y 6= {} Y ⊆

X by auto
from b obtain B where B: extreme-bound A (v) B b finite B B 6= {} B ⊆

X by auto
from XA Y B have AB: Y ⊆ A B ⊆ A finite (Y ∪ B) Y ∪ B 6= {} Y ∪ B

⊆ X by auto
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with fc[THEN completeD] have Ex (extreme-bound A (v) (Y ∪ B)) by auto
then obtain c where c: extreme-bound A (v) (Y ∪ B) c by auto
show ∃ c ∈ ?B. a v c ∧ b v c
proof (intro bexI conjI )

from Y B c show a v c and b v c by (auto simp: extreme-bound-iff )
from AB c show c ∈ ?B by (auto intro!: exI [of - Y ∪ B])

qed
qed
have B: ?B ⊆ A by auto
assume X 6= {}
then obtain x where xX : x ∈ X by auto
with fc[THEN completeD, of {x}] XA
obtain x ′ where extreme-bound A (v) {x} x ′ by auto
with xX have x ′B: x ′ ∈ ?B by (auto intro!: exI [of - {x}] extreme-boundI )
then have 2 : ?B 6= {} by auto
from dc[unfolded directed-complete-def , THEN completeD, of ?B] 1 2
obtain b where b: extreme-bound A (v) ?B b by auto
then have bA: b ∈ A by auto
show Ex (extreme-bound A (v) X)
proof (intro exI extreme-boundI UNIV-I )

fix x
assume xX : x ∈ X
with XA fc[THEN completeD, of {x}]
obtain c where c: extreme-bound A (v) {x} c by auto
then have cA: c ∈ A and xc: x v c by auto
from c xX have cB: c ∈ ?B by (auto intro!: exI [of - {x}] extreme-boundI )
with b have bA: b ∈ A and cb: c v b by auto
from xX XA cA bA trans[OF xc cb]
show x v b by auto

Here transitivity is needed.
next

fix x
assume xA: x ∈ A and Xx: bound X (v) x
have bound ?B (v) x
proof (intro boundI UNIV-I , clarify)

fix c Y
assume finite Y and YX : Y ⊆ X and Y 6= {} and c: extreme-bound A

(v) Y c
from YX Xx have bound Y (v) x by auto
with c xA show c v x by auto

qed
with b xA show b v x by auto

qed (fact bA)
qed

qed

The last argument in the above proof requires transitivity, but if we had
reflexivity then x itself is a supremum of {x} (see [[reflexive ?A ?less-eq;
?x ∈ ?A]] =⇒ extreme-bound ?A ?less-eq {?x} ?x) and so x v s would be
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immediate. Thus we can replace transitivity by reflexivity, but then pair-
completeness does not imply finite completeness. We obtain the following
result.
proposition (in reflexive) semicomplete-iff-directed-complete-finite-complete:

semicomplete A (v) ←→ directed-complete A (v) ∧ finite-complete A (v) (is ?l
←→ ?r)
proof (intro iffI )

assume l: ?l
then show ?r by (auto simp: directed-complete-def intro!: completeI pair-completeI

completeD[OF l])
next

assume ?r
then have dc: directed-complete A (v) and fc: finite-complete A (v) by auto
show ?l
proof (intro completeI )

fix X assume XA: X ⊆ A
have 1 : directed {x. ∃Y ⊆ X . finite Y ∧ Y 6= {} ∧ extreme-bound A (v) Y

x} (v) (is directed ?B -)
proof (intro directedI )

fix a b assume a: a ∈ ?B and b: b ∈ ?B
from a obtain Y where Y : extreme-bound A (v) Y a finite Y Y 6= {} Y ⊆

X by auto
from b obtain B where B: extreme-bound A (v) B b finite B B 6= {} B ⊆

X by auto
from XA Y B have AB: Y ⊆ A B ⊆ A finite (Y ∪ B) Y ∪ B 6= {} Y ∪ B

⊆ X by auto
with fc[THEN completeD] have Ex (extreme-bound A (v) (Y ∪ B)) by auto
then obtain c where c: extreme-bound A (v) (Y ∪ B) c by auto
show ∃ c ∈ ?B. a v c ∧ b v c
proof (intro bexI conjI )

from Y B c show a v c and b v c by (auto simp: extreme-bound-iff )
from AB c show c ∈ ?B by (auto intro!: exI [of - Y ∪ B])

qed
qed
have B: ?B ⊆ A by auto
assume X 6= {}
then obtain x where xX : x ∈ X by auto
with XA have extreme-bound A (v) {x} x

by (intro extreme-bound-singleton, auto)
with xX have xB: x ∈ ?B by (auto intro!: exI [of - {x}])
then have 2 : ?B 6= {} by auto
from dc[unfolded directed-complete-def , THEN completeD, of ?B] B 1 2
obtain b where b: extreme-bound A (v) ?B b by auto
then have bA: b ∈ A by auto
show Ex (extreme-bound A (v) X)
proof (intro exI extreme-boundI UNIV-I )

fix x
assume xX : x ∈ X

with XA have x: extreme-bound A (v) {x} x by (intro extreme-bound-singleton,
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auto)
from x xX have cB: x ∈ ?B by (auto intro!: exI [of - {x}])
with b show x v b by auto

next
fix x
assume Xx: bound X (v) x and xA: x ∈ A
have bound ?B (v) x
proof (intro boundI UNIV-I , clarify)

fix c Y
assume finite Y and YX : Y ⊆ X and Y 6= {} and c: extreme-bound A

(v) Y c
from YX Xx have bound Y (v) x by auto
with YX XA xA c show c v x by auto

qed
with xA b show b v x by auto

qed (fact bA)
qed

qed

4.6 Relating to Classes
Isabelle’s class complete-lattice is >−complete.
lemma (in complete-lattice) >−complete UNIV (≤)
by (auto intro!: completeI extreme-boundI Sup-upper Sup-least Inf-lower Inf-greatest)

4.7 Set-wise Completeness
lemma Pow-extreme-bound: X ⊆ Pow A =⇒ extreme-bound (Pow A) (⊆) X (

⋃
X)

by (intro extreme-boundI , auto 2 3 )

lemma Pow-complete: C−complete (Pow A) (⊆)
by (auto intro!: completeI dest: Pow-extreme-bound)

lemma directed-directed-Un:
assumes ch: XX ⊆ {X . directed X r} and dir : directed XX (⊆)

shows directed (
⋃

XX) r
proof (intro directedI , elim UnionE)

fix x y X Y assume xX : x ∈ X and X : X ∈ XX and yY : y ∈ Y and Y : Y ∈
XX

from directedD[OF dir X Y ]
obtain Z where X ⊆ Z Y ⊆ Z and Z : Z ∈ XX by auto
with ch xX yY have directed Z r x ∈ Z y ∈ Z by auto
then obtain z where z ∈ Z r x z ∧ r y z by (auto elim:directedE)
with Z show ∃ z∈

⋃
XX . r x z ∧ r y z by auto

qed

lemmas directed-connex-Un = directed-directed-Un[OF - connex.directed]

lemma directed-sets-directed-complete:
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assumes cl: ∀DC . DC ⊆ AA −→ (∀X∈DC . directed X r) −→ (
⋃

DC ) ∈ AA
shows directed−complete {X ∈ AA. directed X r} (⊆)

proof (intro completeI )
fix XX
assume ch: XX ⊆ {X ∈ AA. directed X r} and dir : directed XX (⊆)
with cl have (

⋃
XX) ∈ AA by auto

moreover have directed (
⋃

XX) r
apply (rule directed-directed-Un) using ch by (auto simp: dir)

ultimately show Ex (extreme-bound {X ∈ AA. directed X r} (⊆) XX)
by (auto intro!: exI [of -

⋃
XX ])

qed

lemma connex-directed-Un:
assumes ch: CC ⊆ {C . connex C r} and dir : directed CC (⊆)
shows connex (

⋃
CC ) r

proof (intro connexI , elim UnionE)
fix x y X Y assume xX : x ∈ X and X : X ∈ CC and yY : y ∈ Y and Y : Y ∈

CC
from directedD[OF dir X Y ]
obtain Z where X ⊆ Z Y ⊆ Z Z ∈ CC by auto
with xX yY ch have x ∈ Z y ∈ Z connex Z r by auto
then show r x y ∨ r y x by (auto elim:connexE)

qed

lemma connex-is-directed-complete: directed−complete {C . C ⊆ A ∧ connex C r}
(⊆)
proof (intro completeI )

fix CC assume CC : CC ⊆ {C . C ⊆ A ∧ connex C r} and directed CC (⊆)
with connex-directed-Un have Scon: connex (

⋃
CC ) r by auto

from CC have SA:
⋃

CC ⊆ A by auto
from Scon SA show ∃S . extreme-bound {C . C ⊆ A ∧ connex C r} (⊆) CC S

by (auto intro!: exI [of -
⋃

CC ] extreme-boundI )
qed

lemma (in well-ordered-set) well-ordered-set-insert:
assumes aA: total-ordered-set (insert a A) (v)
shows well-ordered-set (insert a A) (v)

proof−
interpret less-eq-asymmetrize.
interpret aA: total-ordered-set insert a A (v) using aA.
show ?thesis
proof (intro well-ordered-set.intro aA.antisymmetric-axioms well-related-setI )

fix X assume XaA: X ⊆ insert a A and X0 : X 6= {}
show ∃ e. extreme X (w) e
proof (cases a ∈ X)

case False
with XaA have X ⊆ A by auto
from nonempty-imp-ex-extreme[OF this X0 ] show ?thesis.

next
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case aX : True
show ?thesis
proof (cases X − {a} = {})

case True
with aX XaA have Xa: X = {a} by auto
from aA.refl[of a]
have a v a by auto
then show ?thesis by (auto simp: Xa)

next
case False
from nonempty-imp-ex-extreme[OF - False] XaA
obtain e where Xae: extreme (X−{a}) (w) e by auto
with Xae XaA have eaA: e ∈ insert a A by auto
then have e v a ∨ a v e by (intro aA.comparable, auto)
then show ?thesis
proof (elim disjE)

assume ea: e v a
with Xae show ?thesis by (auto intro!:exI [of - e])

next
assume ae: a v e
show ?thesis
proof (intro exI [of - a] extremeI aX)

fix x assume xX : x ∈ X
show a v x
proof (cases a = x)

case True with aA.refl[of a] show ?thesis by auto
next

case False
with xX have x ∈ X − {a} by auto
with Xae have e v x by auto
from aA.trans[OF ae this - eaA] xX XaA
show ?thesis by auto

qed
qed

qed
qed

qed
qed

qed

The following should be true in general, but here we use antisymmetry
to avoid the axiom of choice.
lemma (in antisymmetric) pointwise-connex-complete:

assumes comp: connex−complete A (v)
shows connex−complete {f . f ‘ X ⊆ A} (pointwise X (v))

proof (safe intro!: completeI exI )
fix F
assume FXA: F ⊆ {f . f ‘ X ⊆ A} and F : connex F (pointwise X (v))
show extreme-bound {f . f ‘ X ⊆ A} (pointwise X (v)) F (λx. The (extreme-bound
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A (v) {f x |. f ∈ F}))
proof (unfold pointwise-extreme-bound[OF FXA], safe)

fix x assume xX : x ∈ X
from FXA xX have FxA: {f x |. f ∈ F} ⊆ A by auto
have Ex (extreme-bound A (v) {f x |. f ∈ F})
proof (intro completeD[OF comp] FxA CollectI connexI , elim imageE , fold

atomize-eq)
fix f g assume fF : f ∈ F and gF : g ∈ F
from connex.comparable[OF F this] xX show f x v g x ∨ g x v f x by auto

qed
also note ex-extreme-bound-iff-the
finally
show extreme-bound A (v) {f x |. f ∈ F} (The (extreme-bound A (v) {f x |. f

∈ F})).
qed

qed

Our supremum/infimum coincides with those of Isabelle’s complete-lattice.
lemma complete-UNIV : >−complete (UNIV :: ′a::complete-lattice set) (≤)
proof−

have Ex (supremum X) for X :: ′a set
by (auto intro!: exI [of -

⊔
X ] supremumI simp:Sup-upper Sup-least)

then show ?thesis by (auto intro!: completeI )
qed

context
fixes X :: ′a :: complete-lattice set

begin

lemma supremum-Sup: supremum X (
⊔

X)
proof−

define it where it ≡ The (supremum X)
note completeD[OF complete-UNIV ,simplified, of X ]
from this[unfolded order .dual.ex-extreme-iff-the]
have 1 : supremum X it by (simp add: it-def )
then have

⊔
X = it by (intro Sup-eqI , auto)

with 1 show ?thesis by auto
qed

lemmas Sup-eq-The-supremum = order .dual.eq-The-extreme[OF supremum-Sup]

lemma supremum-eq-Sup: supremum X x ←→
⊔

X = x
using order .dual.eq-The-extreme supremum-Sup by auto

lemma infimum-Inf :
shows infimum X (

d
X)

proof−
define it where it ≡ The (infimum X)
note completeD[OF complete-dual[OF complete-UNIV ],simplified, of X ]
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from this[unfolded order .ex-extreme-iff-the]
have 1 : infimum X it by (simp add: it-def )
then have

d
X = it by (intro Inf-eqI , auto)

with 1 show ?thesis by auto
qed

lemmas Inf-eq-The-infimum = order .eq-The-extreme[OF infimum-Inf ]

lemma infimum-eq-Inf : infimum X x ←→
d

X = x
using order .eq-The-extreme infimum-Inf by auto

end

end

theory Fixed-Points
imports Complete-Relations Directedness

begin

5 Existence of Fixed Points in Complete Related
Sets

The following proof is simplified and generalized from Stouti–Maaden [22].
We construct some set whose extreme bounds – if they exist, typically when
the underlying related set is complete – are fixed points of a monotone or
inflationary function on any related set. When the related set is attractive,
those are actually the least fixed points. This generalizes [22], relaxing
reflexivity and antisymmetry.
locale fixed-point-proof = related-set +

fixes f
assumes f : f ‘ A ⊆ A

begin

sublocale less-eq-asymmetrize.

definition AA where AA ≡
{X . X ⊆ A ∧ f ‘ X ⊆ X ∧ (∀Y s. Y ⊆ X −→ extreme-bound A (v) Y s −→ s
∈ X)}

lemma AA-I :
X ⊆ A =⇒ f ‘ X ⊆ X =⇒ (

∧
Y s. Y ⊆ X =⇒ extreme-bound A (v) Y s =⇒ s

∈ X) =⇒ X ∈ AA
by (unfold AA-def , safe)

lemma AA-E :
X ∈ AA =⇒
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(X ⊆ A =⇒ f ‘ X ⊆ X =⇒ (
∧

Y s. Y ⊆ X =⇒ extreme-bound A (v) Y s =⇒
s ∈ X) =⇒ thesis) =⇒ thesis

by (auto simp: AA-def )

definition C where C ≡
⋂

AA

lemma A-AA: A ∈ AA by (auto intro!:AA-I f )

lemma C-AA: C ∈ AA
proof (intro AA-I )

show C ⊆ A using C-def A-AA f by auto
show f ‘ C ⊆ C unfolding C-def AA-def by auto
fix B b assume B: B ⊆ C extreme-bound A (v) B b
{ fix X assume X : X ∈ AA

with B have B ⊆ X by (auto simp: C-def )
with X B have b∈X by (auto elim!: AA-E)

}
then show b ∈ C by (auto simp: C-def AA-def )

qed

lemma CA: C ⊆ A using A-AA by (auto simp: C-def )

lemma fC : f ‘ C ⊆ C using C-AA by (auto elim!: AA-E)

context
fixes c assumes Cc: extreme-bound A (v) C c

begin

private lemma cA: c ∈ A using Cc by auto
private lemma cC : c ∈ C using Cc C-AA by (blast elim!:AA-E)
private lemma fcC : f c ∈ C using cC AA-def C-AA by auto
private lemma fcA: f c ∈ A using fcC CA by auto

lemma qfp-as-extreme-bound:
assumes infl-mono: ∀ x ∈ A. x v f x ∨ (∀ y ∈ A. y v x −→ f y v f x)
shows f c ∼ c

proof (intro conjI bexI sympartpI )
show f c v c using fcC Cc by auto
from infl-mono[rule-format, OF cA]
show c v f c
proof (safe)

Monotone case:
assume mono: ∀ b∈A. b v c −→ f b v f c
define D where D ≡ {x ∈ C . x v f c}
have D ∈ AA
proof (intro AA-I )

show D ⊆ A unfolding D-def C-def using A-AA f by auto
have fxC : x ∈ C =⇒ x v f c =⇒ f x ∈ C for x using C-AA by (auto simp:
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AA-def )
show f ‘ D ⊆ D
proof (unfold D-def , safe intro!: fxC )

fix x assume xC : x ∈ C
have x v c x ∈ A using Cc xC CA by auto
then show f x v f c using mono by (auto dest:monotoneD)

qed
have DC : D ⊆ C unfolding D-def by auto
fix B b assume BD: B ⊆ D and Bb: extreme-bound A (v) B b
have B ⊆ C using DC BD by auto
then have bC : b ∈ C using C-AA Bb BD by (auto elim!: AA-E)
have bfc: ∀ a∈B. a v f c using BD unfolding D-def by auto
with f cA Bb
have b v f c by (auto simp: extreme-def image-subset-iff )
with bC show b ∈ D unfolding D-def by auto

qed
then have C ⊆ D unfolding C-def by auto
then show c v f c using cC unfolding D-def by auto

qed
qed

lemma extreme-qfp:
assumes attract: ∀ q ∈ A. ∀ x ∈ A. f q ∼ q −→ x v f q −→ x v q

and mono: monotone-on A (v) (v) f
shows extreme {q ∈ A. f q ∼ q ∨ f q = q} (w) c

proof−
have fcc: f c ∼ c

apply (rule qfp-as-extreme-bound)
using mono by (auto elim!: monotone-onE)

define L where [simp]: L ≡ {a ∈ A. ∀ s ∈ A. (f s ∼ s ∨ f s = s) −→ a v s}
have L ∈ AA
proof (unfold AA-def , intro CollectI conjI allI impI )

show XA: L ⊆ A by auto
show f ‘ L ⊆ L
proof safe

fix x assume xL: x ∈ L
show f x ∈ L
proof (unfold L-def , safe)

have xA: x ∈ A using xL by auto
then show fxA: f x ∈ A using f by auto
{ fix s assume sA: s ∈ A and sf : f s ∼ s ∨ f s = s

then have x v s using xL sA sf by auto
then have f x v f s using mono fxA sA xA by (auto elim!:monotone-onE)}
note fxfs = this
{ fix s assume sA: s ∈ A and sf : f s ∼ s

then show f x v s using fxfs attract mono sf fxA sA xA by (auto
elim!:monotone-onE)

}
{ fix s assume sA: s ∈ A and sf : f s = s
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with fxfs[OF sA] show f x v s by simp}
qed

qed
fix B b assume BL: B ⊆ L and b: extreme-bound A (v) B b
then have BA: B ⊆ A by auto
with BL b have bA: b ∈ A by auto
show b ∈ L
proof (unfold L-def , safe intro!: bA)

{ fix s assume sA: s ∈ A and sf : f s ∼ s ∨ f s = s
have bound B (v) s using sA BL b sf by auto

}
note Bs = this
{ fix s assume sA: s ∈ A and sf : f s ∼ s

with b sA Bs show b v s by auto
}
{ fix s assume sA: s ∈ A and sf : f s = s

with b sA Bs show b v s by auto
}

qed
qed
then have C ⊆ L by (simp add: C-def Inf-lower)
with cC have c ∈ L by auto
with L-def fcc
show ?thesis by auto

qed

end

lemma ex-qfp:
assumes comp: CC−complete A (v) and C : CC C (v)

and infl-mono: ∀ a ∈ A. a v f a ∨ (∀ b ∈ A. b v a −→ f b v f a)
shows ∃ s ∈ A. f s ∼ s
using qfp-as-extreme-bound[OF - infl-mono] completeD[OF comp CA, OF C ]

by auto

lemma ex-extreme-qfp-fp:
assumes comp: CC−complete A (v) and C : CC C (v)

and attract: ∀ q ∈ A. ∀ x ∈ A. f q ∼ q −→ x v f q −→ x v q
and mono: monotone-on A (v) (v) f

shows ∃ c. extreme {q ∈ A. f q ∼ q ∨ f q = q} (w) c
using extreme-qfp[OF - attract mono] completeD[OF comp CA, OF C ] by auto

lemma ex-extreme-qfp:
assumes comp: CC−complete A (v) and C : CC C (v)

and attract: ∀ q ∈ A. ∀ x ∈ A. f q ∼ q −→ x v f q −→ x v q
and mono: monotone-on A (v) (v) f

shows ∃ c. extreme {q ∈ A. f q ∼ q} (w) c
proof−

from completeD[OF comp CA, OF C ]
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obtain c where Cc: extreme-bound A (v) C c by auto
from extreme-qfp[OF Cc attract mono]
have Qc: bound {q ∈ A. f q ∼ q} (w) c by auto
have fcc: f c ∼ c

apply (rule qfp-as-extreme-bound[OF Cc])
using mono by (auto simp: monotone-onD)

from Cc CA have cA: c ∈ A by auto
from Qc fcc cA show ?thesis by (auto intro!: exI [of - c])

qed

end

context
fixes less-eq :: ′a ⇒ ′a ⇒ bool (infix ‹v› 50 ) and A :: ′a set and f
assumes f : f ‘ A ⊆ A

begin

interpretation less-eq-symmetrize.
interpretation fixed-point-proof A (v) f using f by unfold-locales

theorem complete-infl-mono-imp-ex-qfp:
assumes comp: >−complete A (v) and infl-mono: ∀ a∈A. a v f a ∨ (∀ b∈A. b
v a −→ f b v f a)

shows ∃ s∈A. f s ∼ s
apply (rule ex-qfp[OF comp - infl-mono]) by auto

end

corollary (in antisymmetric) complete-infl-mono-imp-ex-fp:
assumes comp: >−complete A (v) and f : f ‘ A ⊆ A

and infl-mono: ∀ a∈A. a v f a ∨ (∀ b∈A. b v a −→ f b v f a)
shows ∃ s ∈ A. f s = s

proof−
interpret less-eq-symmetrize.
from complete-infl-mono-imp-ex-qfp[OF f comp infl-mono]
obtain s where sA: s ∈ A and fss: f s ∼ s by auto
from f sA have fsA: f s ∈ A by auto
have f s = s using antisym fsA sA fss by auto
with sA show ?thesis by auto

qed

context semiattractive begin

interpretation less-eq-symmetrize.

theorem complete-mono-imp-ex-extreme-qfp:
assumes comp: >−complete A (v) and f : f ‘ A ⊆ A

and mono: monotone-on A (v) (v) f
shows ∃ s. extreme {p ∈ A. f p ∼ p} (v) s
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proof−
interpret dual: fixed-point-proof A (w) rewrites dual.sym = (∼)

using f by unfold-locales (auto intro!:ext)
show ?thesis
apply (rule dual.ex-extreme-qfp[OF complete-dual[OF comp] - - monotone-on-dual[OF

mono]])
apply simp
using f sym-order-trans by blast

qed

end

corollary (in antisymmetric) complete-mono-imp-ex-extreme-fp:
assumes comp: >−complete A (v) and f : f ‘ A ⊆ A

and mono: monotone-on A (v) (v) f
shows ∃ s. extreme {s ∈ A. f s = s} (v)− s

proof−
interpret less-eq-symmetrize.
interpret fixed-point-proof A (v) f using f by unfold-locales
have ∃ c. extreme {q ∈ A. f q ∼ q ∨ f q = q} (w) c

apply (rule ex-extreme-qfp-fp[OF comp - - mono])
using antisym f by (auto dest: order-sym-trans)

then obtain c where c: extreme {q ∈ A. f q ∼ q ∨ f q = q} (w) c by auto
then have f c = c using antisym f by blast
with c have extreme {q ∈ A. f q = q} (w) c by auto
then show ?thesis by auto

qed

6 Fixed Points in Well-Complete Antisymmetric
Sets

In this section, we prove that an inflationary or monotone map over a well-
complete antisymmetric set has a fixed point.

In order to formalize such a theorem in Isabelle, we followed Grall’s [11]
elementary proof for Bourbaki–Witt and Markowsky’s theorems. His idea
is to consider well-founded derivation trees over A, where from a set C ⊆ A
of premises one can derive f (

⊔
C) if C is a chain. The main observation is

as follows: Let D be the set of all the derivable elements; that is, for each
d ∈ D there exists a well-founded derivation whose root is d. It is shown
that D is a chain, and hence one can build a derivation yielding f (

⊔
D),

and f (
⊔
D) is shown to be a fixed point.

lemma bound-monotone-on:
assumes mono: monotone-on A r s f and XA: X ⊆ A and aA: a ∈ A and rXa:

bound X r a
shows bound (f‘X) s (f a)

proof (safe)
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fix x assume xX : x ∈ X
from rXa xX have r x a by auto
with xX XA mono aA show s (f x) (f a) by (auto elim!:monotone-onE)

qed

context fixed-point-proof begin

To avoid the usage of the axiom of choice, we carefully define derivations
so that any derivable element determines its lower set. This led to the
following definition:
definition derivation X ≡ X ⊆ A ∧ well-ordered-set X (v) ∧
(∀ x ∈ X . let Y = {y ∈ X . y @ x} in
(∃ y. extreme Y (v) y ∧ x = f y) ∨
f ‘ Y ⊆ Y ∧ extreme-bound A (v) Y x)

lemma empty-derivation: derivation {} by (auto simp: derivation-def )

lemma assumes derivation P
shows derivation-A: P ⊆ A and derivation-well-ordered: well-ordered-set P (v)
using assms by (auto simp: derivation-def )

lemma derivation-cases[consumes 2 , case-names suc lim]:
assumes derivation X and x ∈ X

and
∧

Y y. Y = {y ∈ X . y @ x} =⇒ extreme Y (v) y =⇒ x = f y =⇒ thesis
and

∧
Y . Y = {y ∈ X . y @ x} =⇒ f ‘ Y ⊆ Y =⇒ extreme-bound A (v) Y x

=⇒ thesis
shows thesis
using assms unfolding derivation-def Let-def by auto

definition derivable x ≡ ∃X . derivation X ∧ x ∈ X

lemma derivableI [intro?]: derivation X =⇒ x ∈ X =⇒ derivable x by (auto simp:
derivable-def )
lemma derivableE : derivable x =⇒ (

∧
P. derivation P =⇒ x ∈ P =⇒ thesis) =⇒

thesis
by (auto simp: derivable-def )

lemma derivable-A: derivable x =⇒ x ∈ A by (auto elim: derivableE dest:derivation-A)

lemma UN-derivations-eq-derivable: (
⋃
{P. derivation P}) = {x. derivable x}

by (auto simp: derivable-def )

end

locale fixed-point-proof2 = fixed-point-proof + antisymmetric +
assumes derivation-infl: ∀X x y. derivation X −→ x ∈ X −→ y ∈ X −→ x v

y −→ x v f y
and derivation-f-refl: ∀X x . derivation X −→ x ∈ X −→ f x v f x

begin
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lemma derivation-lim:
assumes P: derivation P and fP: f ‘ P ⊆ P and Pp: extreme-bound A (v) P p
shows derivation (P ∪ {p})

proof (cases p ∈ P)
case True
with P show ?thesis by (auto simp: insert-absorb)

next
case pP: False
interpret P: well-ordered-set P (v) using derivation-well-ordered[OF P].
have PA: P ⊆ A using derivation-A[OF P].
from Pp have pA: p ∈ A by auto
have bp: bound P (v) p using Pp by auto
then have pp: p v p using Pp by auto
have 1 : y ∈ P −→ {x. (x = p ∨ x ∈ P) ∧ x @ y} = {x ∈ P. x @ y} for y

using Pp by (auto dest!: extreme-bound-imp-bound)
{ fix x assume xP: x ∈ P and px: p v x

from xP Pp have x v p by auto
with px have p = x using xP PA pA by (auto intro!: antisym)
with xP pP
have False by auto

}
note 2 = this
then have 3 : {x. (x = p ∨ x ∈ P) ∧ x @ p} = P using Pp by (auto intro!:

asympartpI )
have wr : well-ordered-set (P ∪ {p}) (v)

apply (rule well-order-extend[OF P.well-ordered-set-axioms])
using pp bp pP 2 by auto

from P fP Pp
show derivation (P ∪ {p}) by (auto simp: derivation-def pA wr [simplified] 1 3 )

qed

lemma derivation-suc:
assumes P: derivation P and Pp: extreme P (v) p shows derivation (P ∪ {f

p})
proof (cases f p ∈ P)

case True
with P show ?thesis by (auto simp: insert-absorb)

next
case fpP: False
interpret P: well-ordered-set P (v) using derivation-well-ordered[OF P].
have PA: P ⊆ A using derivation-A[OF P].
with Pp have pP: p ∈ P and pA: p ∈ A by auto
with f have fpA: f p ∈ A by auto
from pP have pp: p v p by auto
from derivation-infl[rule-format, OF P pP pP pp] have p v f p.
{ fix x assume xP: x ∈ P

then have xA: x ∈ A using PA by auto
have xp: x v p using xP Pp by auto
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from derivation-infl[rule-format, OF P xP pP this]
have x v f p.

}
note Pfp = this
then have bfp: bound P (v) (f p) by auto
{ fix y assume yP: y ∈ P

note yfp = Pfp[OF yP]
{ assume fpy: f p v y

with yfp have f p = y using yP PA pA fpA antisym by auto
with yP fpP have False by auto

}
with Pfp yP have y @ f p by auto

}
note Pfp = this
have 1 :

∧
y. y ∈ P −→ {x. (x = f p ∨ x ∈ P) ∧ x @ y} = {x ∈ P. x @ y}

and 2 : {x. (x = f p ∨ x ∈ P) ∧ x @ f p} = P using Pfp by auto
have wr : well-ordered-set (P ∪ {f p}) (v)
apply (rule well-order-extend[OF P.well-ordered-set-axioms singleton-well-ordered])
using Pfp derivation-f-refl[rule-format, OF P pP] by auto

from P Pp
show derivation (P ∪ {f p}) by (auto simp: derivation-def wr [simplified] 1 2

fpA)
qed

lemma derivable-closed:
assumes x: derivable x shows derivable (f x)

proof (insert x, elim derivableE)
fix P
assume P: derivation P and xP: x ∈ P
note PA = derivation-A[OF P]
then have xA: x ∈ A using xP by auto
interpret P: well-ordered-set P (v) using derivation-well-ordered[OF P].
interpret P.asympartp: transitive P (@) using P.asympartp-transitive.
define Px where Px ≡ {y. y ∈ P ∧ y @ x} ∪ {x}
then have PxP: Px ⊆ P using xP by auto
have x v x using xP by auto
then have Pxx: extreme Px (v) x using xP PA by (auto simp: Px-def )
have wr : well-ordered-set Px (v) using P.well-ordered-subset[OF PxP].
{ fix z y assume zPx: z ∈ Px and yP: y ∈ P and yz: y @ z

then have zP: z ∈ P using PxP by auto
have y @ x
proof (cases z = x)

case True
then show ?thesis using yz by auto

next
case False
then have zx: z @ x using zPx by (auto simp: Px-def )
from P.asym.trans[OF yz zx yP zP xP] show ?thesis.

qed
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}
then have 1 :

∧
z. z ∈ Px −→ {y ∈ Px. y @ z} = {y ∈ P. y @ z} using Px-def

by blast
have Px: derivation Px using PxP PA P by (auto simp: wr derivation-def 1 )
from derivation-suc[OF Px Pxx]
show ?thesis by (auto intro!: derivableI )

qed

The following lemma is derived from Grall’s proof. We simplify the
claim so that we consider two elements from one derivation, instead of two
derivations.
lemma derivation-useful:

assumes X : derivation X and xX : x ∈ X and yX : y ∈ X and xy: x @ y
shows f x v y

proof−
interpret X : well-ordered-set X (v) using derivation-well-ordered[OF X ].
note XA = derivation-A[OF X ]
{ fix x y assume xX : x ∈ X and yX : y ∈ X

from xX yX have (x @ y −→ f x v y ∧ f x ∈ X) ∧ (y @ x −→ f y v x ∧ f y
∈ X)

proof (induct x arbitrary: y)
case (less x)
note xX = ‹x ∈ X› and IHx = this(2 )
with XA have xA: x ∈ A by auto
from ‹y ∈ X› show ?case
proof (induct y)

case (less y)
note yX = ‹y ∈ X› and IHy = this(2 )
with XA have yA: y ∈ A by auto
show ?case
proof (rule conjI ; intro impI )

assume xy: x @ y
from X yX
show f x v y ∧ f x ∈ X
proof (cases rule:derivation-cases)

case (suc Z z)
with XA have zX : z ∈ X and zA: z ∈ A and zy: z @ y and yfz: y = f

z by auto
from xX zX show ?thesis
proof (cases rule: X .comparable-three-cases)

case xz: less
with IHy[OF zX zy] have fxz: f x v z and fxX : f x ∈ X by auto
from derivation-infl[rule-format, OF X fxX zX fxz] have f x v y by

(auto simp: yfz)
with fxX show ?thesis by auto

next
case eq
with xX zX have x = z by auto
with yX yfz show ?thesis by auto
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next
case zx: greater
with IHy[OF zX zy] yfz xy have False by auto
then show ?thesis by auto

qed
next

case (lim Z )
note Z = ‹Z = {z ∈ X . z @ y}› and fZ = ‹f ‘ Z ⊆ Z ›
from xX xy have x ∈ Z by (auto simp: Z )
with fZ have f x ∈ Z by auto
then have f x @ y and f x ∈ X by (auto simp: Z )
then show ?thesis by auto

qed
next

assume yx: y @ x
from X xX
show f y v x ∧ f y ∈ X
proof (cases rule:derivation-cases)

case (suc Z z)
with XA have zX : z ∈ X and zA: z ∈ A and zx: z @ x and xfz: x = f

z by auto
from yX zX show ?thesis
proof (cases rule: X .comparable-three-cases)

case yz: less
with IHx[OF zX zx yX ] have fyz: f y v z and fyX : f y ∈ X by auto
from derivation-infl[rule-format, OF X fyX zX fyz] have f y v x by

(auto simp: xfz)
with fyX show ?thesis by auto

next
case eq
with yX zX have y = z by auto
with xX xfz show ?thesis by auto

next
case greater
with IHx[OF zX zx yX ] xfz yx have False by auto
then show ?thesis by auto

qed
next

case (lim Z )
note Z = ‹Z = {z ∈ X . z @ x}› and fZ = ‹f ‘ Z ⊆ Z ›
from yX yx have y ∈ Z by (auto simp: Z )
with fZ have f y ∈ Z by auto
then have f y @ x and f y ∈ X by (auto simp: Z )
then show ?thesis by auto

qed
qed

qed
qed

}
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with assms show f x v y by auto
qed

Next one is the main lemma of this section, stating that elements from
two possibly different derivations are comparable, and moreover the lower
one is in the derivation of the upper one. The latter claim, not found in
Grall’s proof, is crucial in proving that the union of all derivations is well-
related.
lemma derivations-cross-compare:

assumes X : derivation X and Y : derivation Y and xX : x ∈ X and yY : y ∈ Y
shows (x @ y ∧ x ∈ Y ) ∨ x = y ∨ (y @ x ∧ y ∈ X)

proof−
{ fix X Y x y

assume X : derivation X and Y : derivation Y and xX : x ∈ X and yY : y ∈ Y
interpret X : well-ordered-set X (v) using derivation-well-ordered[OF X ].
interpret X .asympartp: transitive X (@) using X .asympartp-transitive.
interpret Y : well-ordered-set Y (v) using derivation-well-ordered[OF Y ].
have XA: X ⊆ A using derivation-A[OF X ].
then have xA: x ∈ A using xX by auto
with f have fxA: f x ∈ A by auto
have YA: Y ⊆ A using derivation-A[OF Y ].
then have yA: y ∈ A using yY by auto
with f have fyA: f y ∈ A by auto
{ fix Z

assume Z : Z = {z ∈ X . z @ x}
and fZ : f ‘ Z ⊆ Z
and Zx: extreme-bound A (v) Z x
and IHx: ∀ z ∈ X . z @ x −→ (z @ y ∧ z ∈ Y ) ∨ z = y ∨ (y @ z ∧ y ∈ X)

have (y @ x ∧ y ∈ X) ∨ x v y
proof (cases ∃ z ∈ Z . y @ z)

case True
then obtain z where zZ : z ∈ Z and yz: y @ z by auto
from zZ Z have zX : z ∈ X and zx: z @ x by auto
from IHx[rule-format, OF zX zx] yz have yX : y ∈ X by auto
from X .asym.trans[OF yz zx yX zX xX ] have y @ x.
with yX show ?thesis by auto

next
case False
have bound Z (v) y
proof

fix z assume z ∈ Z
then have zX : z ∈ X and zx: z @ x and nyz: ¬ y @ z using Z False by

auto
with IHx[rule-format, OF zX zx] X show z v y by auto

qed
with yA Zx have xy: x v y by auto
then show ?thesis by auto

qed
}
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note lim-any = this
{ fix z Z

assume Z : Z = {z ∈ X . z @ x}
and Zz: extreme Z (v) z
and xfz: x = f z
and IHx: (z @ y ∧ z ∈ Y ) ∨ z = y ∨ (y @ z ∧ y ∈ X)

have zX : z ∈ X and zx: z @ x using Zz Z by (auto simp: extreme-def )
then have zA: z ∈ A using XA by auto
from IHx have (y @ x ∧ y ∈ X) ∨ x v y
proof (elim disjE conjE)

assume zy: z @ y and zY : z ∈ Y
from derivation-useful[OF Y zY yY zy] xfz have xy: x v y by auto
then show ?thesis by auto

next
assume zy: z = y
then have y @ x using zx by auto
with zy zX show ?thesis by auto

next
assume yz: y @ z and yX : y ∈ X
from X .asym.trans[OF yz zx yX zX xX ] have y @ x.
with yX show ?thesis by auto

qed
}
note lim-any this

}
note lim-any = this(1 ) and suc-any = this(2 )
interpret X : well-ordered-set X (v) using derivation-well-ordered[OF X ].
interpret Y : well-ordered-set Y (v) using derivation-well-ordered[OF Y ].
have XA: X ⊆ A using derivation-A[OF X ].
have YA: Y ⊆ A using derivation-A[OF Y ].
from xX yY show ?thesis
proof (induct x arbitrary: y)

case (less x)
note xX = ‹x ∈ X› and IHx = this(2 )
from xX XA f have xA: x ∈ A and fxA: f x ∈ A by auto
from ‹y ∈ Y ›
show ?case
proof (induct y)

case (less y)
note yY = ‹y ∈ Y › and IHy = less(2 )
from yY YA f have yA: y ∈ A and fyA: f y ∈ A by auto
from X xX show ?case
proof (cases rule: derivation-cases)

case (suc Z z)
note Z = ‹Z = {z ∈ X . z @ x}› and Zz = ‹extreme Z (v) z› and xfz =

‹x = f z›
then have zx: z @ x and zX : z ∈ X by auto
note IHz = IHx[OF zX zx yY ]
have 1 : y @ x ∧ y ∈ X ∨ x v y using suc-any[OF X Y xX yY Z Zz xfz
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IHz] IHy by auto
from Y yY show ?thesis
proof (cases rule: derivation-cases)

case (suc W w)
note W = ‹W = {w ∈ Y . w @ y}› and Ww = ‹extreme W (v) w› and

yfw = ‹y = f w›
then have wY : w ∈ Y and wy: w @ y by auto
have IHw: w @ x ∧ w ∈ X ∨ w = x ∨ x @ w ∧ x ∈ Y using IHy[OF

wY wy] by auto
have x @ y ∧ x ∈ Y ∨ y v x using suc-any[OF Y X yY xX W Ww yfw

IHw] by auto
with 1 show ?thesis using antisym xA yA by auto

next
case (lim W )
note W = ‹W = {w ∈ Y . w @ y}› and fW = ‹f ‘ W ⊆ W › and Wy =

‹extreme-bound A (v) W y›
have x @ y ∧ x ∈ Y ∨ y v x using lim-any[OF Y X yY xX W fW Wy]

IHy by auto
with 1 show ?thesis using antisym xA yA by auto

qed
next

case (lim Z )
note Z = ‹Z = {z ∈ X . z @ x}› and fZ = ‹f ‘ Z ⊆ Z › and Zx =

‹extreme-bound A (v) Z x›
have 1 : y @ x ∧ y ∈ X ∨ x v y using lim-any[OF X Y xX yY Z fZ Zx ]

IHx[OF - - yY ] by auto
from Y yY show ?thesis
proof (cases rule: derivation-cases)

case (suc W w)
note W = ‹W = {w ∈ Y . w @ y}› and Ww = ‹extreme W (v) w› and

yfw = ‹y = f w›
then have wY : w ∈ Y and wy: w @ y by auto
have IHw: w @ x ∧ w ∈ X ∨ w = x ∨ x @ w ∧ x ∈ Y using IHy[OF

wY wy] by auto
have x @ y ∧ x ∈ Y ∨ y v x using suc-any[OF Y X yY xX W Ww yfw

IHw] by auto
with 1 show ?thesis using antisym xA yA by auto

next
case (lim W )
note W = ‹W = {w ∈ Y . w @ y}› and fW = ‹f ‘ W ⊆ W › and Wy =

‹extreme-bound A (v) W y›
have x @ y ∧ x ∈ Y ∨ y v x using lim-any[OF Y X yY xX W fW Wy]

IHy by auto
with 1 show ?thesis using antisym xA yA by auto

qed
qed

qed
qed

qed
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sublocale derivable: well-ordered-set {x. derivable x} (v)
proof (rule well-ordered-set.intro)

show antisymmetric {x. derivable x} (v)
apply unfold-locales by (auto dest: derivable-A antisym)

show well-related-set {x. derivable x} (v)
apply (fold UN-derivations-eq-derivable)
apply (rule closed-UN-well-related)
by (auto dest: derivation-well-ordered derivations-cross-compare well-ordered-set.axioms)

qed

lemma pred-unique:
assumes X : derivation X and xX : x ∈ X
shows {z ∈ X . z @ x} = {z. derivable z ∧ z @ x}

proof
{ fix z assume z ∈ X and z @ x

then have derivable z ∧ z @ x using X by (auto simp: derivable-def )
}
then show {z ∈ X . z @ x} ⊆ {z. derivable z ∧ z @ x} by auto
{ fix z assume derivable z and zx: z @ x

then obtain Y where Y : derivation Y and zY : z ∈ Y by (auto simp:
derivable-def )

then have z ∈ X using derivations-cross-compare[OF X Y xX zY ] zx by auto
}
then show {z ∈ X . z @ x} ⊇ {z. derivable z ∧ z @ x} by auto

qed

The set of all derivable elements is itself a derivation.
lemma derivation-derivable: derivation {x. derivable x}

apply (unfold derivation-def )
apply (safe intro!: derivable-A derivable.well-ordered-set-axioms elim!: deriv-

ableE)
apply (unfold mem-Collect-eq pred-unique[symmetric])
by (auto simp: derivation-def )

Finally, if the set of all derivable elements admits a supremum, then it
is a fixed point.
context

fixes p
assumes p: extreme-bound A (v) {x. derivable x} p

begin

lemma sup-derivable-derivable: derivable p
using derivation-lim[OF derivation-derivable - p] derivable-closed
by (auto intro: derivableI )

private lemmas sucp = sup-derivable-derivable[THEN derivable-closed]

lemma sup-derivable-prefixed: f p v p using sucp p by auto
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lemma sup-derivable-postfixed: p v f p
apply (rule derivation-infl[rule-format, OF derivation-derivable])
using sup-derivable-derivable by auto

lemma sup-derivable-qfp: f p ∼ p
using sup-derivable-prefixed sup-derivable-postfixed by auto

lemma sup-derivable-fp: f p = p
using sup-derivable-derivable sucp
by (auto intro!: antisym sup-derivable-prefixed sup-derivable-postfixed simp: deriv-

able-A)

end

end

The assumptions are satisfied by monotone functions.
context fixed-point-proof begin

context
assumes ord: antisymmetric A (v)

begin

interpretation antisymmetric using ord.

context
assumes mono: monotone-on A (v) (v) f

begin

interpretation fixed-point-proof2
proof

show mono-imp-derivation-infl:
∀X x y. derivation X −→ x ∈ X −→ y ∈ X −→ x v y −→ x v f y

proof (intro allI impI )
fix X x y
assume X : derivation X and xX : x ∈ X and yX : y ∈ X and xy: x v y
interpret X : well-ordered-set X (v) using derivation-well-ordered[OF X ].
note XA = derivation-A[OF X ]
from xX yX xy show x v f y
proof (induct x)

case (less x)
note IH = this(2 ) and xX = ‹x ∈ X› and yX = ‹y ∈ X› and xy = ‹x v y›
from xX yX XA have xA: x ∈ A and yA: y ∈ A by auto
from X xX show ?case
proof (cases rule: derivation-cases)

case (suc Z z)
then have zX : z ∈ X and zsx: z @ x and xfz: x = f z by auto
then have zx: z v x by auto
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from X .trans[OF zx xy zX xX yX ] have zy: z v y.
from zX XA have zA: z ∈ A by auto
from zy monotone-onD[OF mono] zA yA xfz show x v f y by auto

next
case (lim Z )
note Z = ‹Z = {z ∈ X . z @ x}› and Zx = ‹extreme-bound A (v) Z x›
from f yA have fyA: f y ∈ A by auto
have bound Z (v) (f y)
proof

fix z assume zZ : z ∈ Z
with Z xX have zsx: z @ x and zX : z ∈ X by auto
then have zx: z v x by auto
from X .trans[OF zx xy zX xX yX ] have zy: z v y.
from IH [OF zX zsx yX ] zy show z v f y by auto

qed
with Zx fyA show ?thesis by auto

qed
qed

qed
show mono-imp-derivation-f-refl:
∀X x . derivation X −→ x ∈ X −→ f x v f x

proof (intro allI impI )
fix X x
assume X : derivation X and xX : x ∈ X
interpret X : well-ordered-set X (v) using derivation-well-ordered[OF X ].
note XA = derivation-A[OF X ]
from monotone-onD[OF mono] xX XA show f x v f x by auto

qed
qed

lemmas mono-imp-fixed-point-proof2 = fixed-point-proof2-axioms

corollary mono-imp-sup-derivable-fp:
assumes p: extreme-bound A (v) {x. derivable x} p
shows f p = p
by (simp add: sup-derivable-fp[OF p])

lemma mono-imp-sup-derivable-lfp:
assumes p: extreme-bound A (v) {x. derivable x} p
shows extreme {q ∈ A. f q = q} (w) p

proof (safe intro!: extremeI )
from p show p ∈ A by auto
from sup-derivable-fp[OF p]
show f p = p.
fix q assume qA: q ∈ A and fqq: f q = q
have bound {x. derivable x} (v) q
proof (safe intro!: boundI elim!:derivableE)

fix x X
assume X : derivation X and xX : x ∈ X
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from X interpret well-ordered-set X (v) by (rule derivation-well-ordered)
from xX show x v q
proof (induct x)

case (less x)
note xP = this(1 ) and IH = this(2 )
with X show ?case
proof (cases rule: derivation-cases)

case (suc Z z)
with IH [of z] have zq: z v q and zX : z ∈ X by auto
from monotone-onD[OF mono - qA zq] zX derivation-A[OF X ]
show ?thesis by (auto simp: fqq suc)

next
case lim
with IH have bound {z ∈ X . z @ x} (v) q by auto
with lim qA show ?thesis by auto

qed
qed

qed
with p qA show p v q by auto

qed

lemma mono-imp-ex-least-fp:
assumes comp: well-related-set−complete A (v)
shows ∃ p. extreme {q ∈ A. f q = q} (w) p

proof−
interpret fixed-point-proof using f by unfold-locales
have ∃ p. extreme-bound A (v) {x. derivable x} p

apply (rule completeD[OF comp])
using derivable-A derivable.well-related-set-axioms by auto

then obtain p where p: extreme-bound A (v) {x. derivable x} p by auto
from p mono-imp-sup-derivable-lfp[OF p] sup-derivable-qfp[OF p]
show ?thesis by auto

qed

end

end

end

Bourbaki-Witt Theorem on well-complete pseudo-ordered set:
theorem (in pseudo-ordered-set) well-complete-infl ′-imp-ex-fp:

assumes comp: well-related-set−complete A (v)
and f : f ‘ A ⊆ A and infl: ∀ x ∈ A. ∀ y ∈ A. x v y −→ x v f y

shows ∃ p ∈ A. f p = p
proof−

interpret fixed-point-proof using f by unfold-locales
interpret fixed-point-proof2
proof
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show dinfl: ∀X x y. derivation X −→ x ∈ X −→ y ∈ X −→ x v y −→ x v f
y

using infl by (auto dest!:derivation-A)
show drefl: ∀X x. derivation X −→ x ∈ X −→ f x v f x

using f by (auto dest!: derivation-A)
qed
have ∃ p. extreme-bound A (v) {x. derivable x} p

apply (rule completeD[OF comp])
using derivable.well-related-set-axioms derivable-A by auto

with sup-derivable-fp
show ?thesis by auto

qed

Bourbaki-Witt Theorem on posets:
corollary (in partially-ordered-set) well-complete-infl-imp-ex-fp:

assumes comp: well-related-set−complete A (v)
and f : f ‘ A ⊆ A and infl: ∀ x ∈ A. x v f x

shows ∃ p ∈ A. f p = p
proof (intro well-complete-infl ′-imp-ex-fp[OF comp f ] ballI impI )

fix x y assume x: x ∈ A and y: y ∈ A and xy: x v y
from y infl have y v f y by auto
from trans[OF xy this x y] f y show x v f y by auto

qed

7 Completeness of (Quasi-)Fixed Points
We now prove that, under attractivity, the set of quasi-fixed points is com-
plete.
definition setwise where setwise r X Y ≡ ∀ x∈X . ∀ y∈Y . r x y

lemmas setwiseI [intro] = setwise-def [unfolded atomize-eq, THEN iffD2 , rule-format]
lemmas setwiseE [elim] = setwise-def [unfolded atomize-eq, THEN iffD1 , elim-format,
rule-format]

context fixed-point-proof begin

abbreviation setwise-less-eq (infix ‹vs› 50 ) where (vs) ≡ setwise (v)

7.1 Least Quasi-Fixed Points for Attractive Relations.
lemma attract-mono-imp-least-qfp:

assumes attract: attractive A (v)
and comp: well-related-set−complete A (v)
and mono: monotone-on A (v) (v) f

shows ∃ c. extreme {p ∈ A. f p ∼ p ∨ f p = p} (w) c ∧ f c ∼ c
proof−

interpret attractive using attract by auto
interpret sym: transitive A (∼) using sym-transitive.
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define ecl (‹[-]∼›) where [x]∼ ≡ {y ∈ A. x ∼ y} ∪ {x} for x
define Q where Q ≡ {[x]∼ |. x ∈ A}
{ fix X x assume XQ: X ∈ Q and xX : x ∈ X

then have XA: X ⊆ A by (auto simp: Q-def ecl-def )
then have xA: x ∈ A using xX by auto
obtain q where qA: q ∈ A and X : X = [q]∼ using XQ by (auto simp: Q-def )
have xqqx: x ∼ q ∨ x = q using X xX by (auto simp: ecl-def )
{fix y assume yX : y ∈ X

then have yA: y ∈ A using XA by auto
have y ∼ q ∨ y = q using yX X by (auto simp: ecl-def )
then have x ∼ y ∨ y = x using sym-order-trans xqqx xA qA yA by blast

}
then have 1 : X ⊆ [x]∼ using X qA by (auto simp: ecl-def )
{ fix y assume y ∈ A and x ∼ y ∨ y = x

then have q ∼ y ∨ y = q using sym-order-trans xqqx xA qA by blast
}
then have 2 : X ⊇ [x]∼ using X xX by (auto simp: ecl-def )
from 1 2 have X = [x]∼ by auto

}
then have XQx: ∀X ∈ Q. ∀ x ∈ X . X = [x]∼ by auto
have RSLE-eq: X ∈ Q =⇒ Y ∈ Q =⇒ x ∈ X =⇒ y ∈ Y =⇒ x v y =⇒ X vs

Y for X Y x y
proof−

assume XQ: X ∈ Q and YQ: Y ∈ Q and xX : x ∈ X and yY : y ∈ Y and
xy: x v y

then have XA: X ⊆ A and YA: Y ⊆ A by (auto simp: Q-def ecl-def )
then have xA: x ∈ A and yA: y ∈ A using xX yY by auto
{ fix xp yp assume xpX : xp ∈ X and ypY : yp ∈ Y

then have xpA: xp ∈ A and ypA: yp ∈ A using XA YA by auto
then have xp ∼ x ∨ xp = x using xpX XQx xX XQ by (auto simp: ecl-def )
then have xpy: xp v y using attract[OF - - xy xpA xA yA] xy by blast
have yp ∼ y ∨ yp = y using ypY XQx yY YQ by (auto simp: ecl-def )
then have xp v yp using dual.attract[OF - - xpy ypA yA xpA] xpy by blast

}
then show X vs Y using XQ YQ XA YA by auto

qed
have compQ: well-related-set−complete Q (vs)
proof (intro completeI )

fix XX assume XXQ: XX ⊆ Q and XX : well-related-set XX (vs)
have BA:

⋃
XX ⊆ A using XXQ by (auto simp: Q-def ecl-def )

from XX interpret XX : well-related-set XX (vs).
interpret UXX : semiattractive

⋃
XX (v) by (rule semiattractive-subset[OF

BA])
have well-related-set (

⋃
XX) (v)

proof(unfold-locales)
fix Y assume YXX : Y ⊆

⋃
XX and Y0 : Y 6= {}

have {X ∈ XX . X ∩ Y 6= {}} 6= {} using YXX Y0 by auto
from XX .nonempty-imp-ex-extreme[OF - this]
obtain E where E : extreme {X ∈ XX . X ∩ Y 6= {}} (vs)− E by auto
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then have E ∩ Y 6= {} by auto
then obtain e where eE : e ∈ E and eX : e ∈ Y by auto
have extreme Y (w) e
proof (intro extremeI eX)

fix x assume xY : x ∈ Y
with YXX obtain X where XXX : X ∈ XX and xX : x ∈ X by auto
with xY E XXX have E vs X by auto
with eE xX show e v x by auto

qed
then show ∃ e. extreme Y (w) e by auto

qed
with completeD[OF comp BA]
obtain b where extb: extreme-bound A (v) (

⋃
XX) b by auto

then have bb: b v b using extreme-def bound-def by auto
have bA: b ∈ A using extb extreme-def by auto
then have XQ: [b]∼ ∈ Q using Q-def bA by auto
have bX : b ∈ [b]∼ by (auto simp: ecl-def )
have extreme-bound Q (vs) XX [b]∼
proof(intro extreme-boundI )

show [b]∼ ∈ Q using XQ.
next

fix Y assume YXX : Y ∈ XX
then have YQ: Y ∈ Q using XXQ by auto
then obtain y where yA: y ∈ A and Yy: Y = [y]∼ by (auto simp: Q-def )
then have yY : y ∈ Y by (auto simp: ecl-def )
then have y ∈

⋃
XX using yY YXX by auto

then have y v b using extb by auto
then show Y vs [b]∼ using RSLE-eq[OF YQ XQ yY bX ] by auto

next
fix Z assume boundZ : bound XX (vs) Z and ZQ: Z ∈ Q
then obtain z where zA: z ∈ A and Zz: Z = [z]∼ by (auto simp: Q-def )
then have zZ : z ∈ Z by (auto simp: ecl-def )
{ fix y assume y ∈

⋃
XX

then obtain Y where yY : y ∈ Y and YXX : Y ∈ XX by auto
then have YA: Y ⊆ A using XXQ Q-def by (auto simp: ecl-def )
then have Y vs Z using YXX boundZ bound-def by auto
then have y v z using yY zZ by auto

}
then have bound (

⋃
XX) (v) z by auto

then have b v z using extb zA by auto
then show [b]∼ vs Z using RSLE-eq[OF XQ ZQ bX zZ ] by auto

qed
then show Ex (extreme-bound Q (vs) XX) by auto

qed
interpret Q: antisymmetric Q (vs)
proof

fix X Y assume XY : X vs Y and YX : Y vs X and XQ: X ∈ Q and YQ:
Y ∈ Q

then obtain q where qA: q ∈ A and X : X = [q]∼ using Q-def by auto

115



then have qX : q ∈ X using X by (auto simp: ecl-def )
then obtain p where pA: p ∈ A and Y : Y = [p]∼ using YQ Q-def by auto
then have pY : p ∈ Y using X by (auto simp: ecl-def )
have pq: p v q using XQ YQ YX qX pY by auto
have q v p using XQ YQ XY qX pY by auto
then have p ∈ X using pq X pA by (auto simp: ecl-def )
then have X = [p]∼ using XQ XQx by auto
then show X = Y using Y by (auto simp: ecl-def )

qed
define F where F X ≡ {y ∈ A. ∃ x ∈ X . y ∼ f x} ∪ f ‘ X for X
have XQFXQ:

∧
X . X ∈ Q =⇒ F X ∈ Q

proof−
fix X assume XQ: X ∈ Q
then obtain x where xA: x ∈ A and X : X = [x]∼ using Q-def by auto
then have xX : x ∈ X by (auto simp: ecl-def )
have fxA: f x ∈ A using xA f by auto
have FXA: F X ⊆ A using f fxA X by (auto simp: F-def ecl-def )
have F X = [f x]∼
proof (unfold X , intro equalityI subsetI )

fix z assume zFX : z ∈ F [x]∼
then obtain y where yX : y ∈ [x]∼ and zfy: z ∼ f y ∨ z = f y by (auto

simp: F-def )
have yA: y ∈ A using yX xA by (auto simp: ecl-def )
with f have fyA: f y ∈ A by auto
have zA: z ∈ A using zFX FXA by (auto simp: X)
have y ∼ x ∨ y = x using X yX by (auto simp: ecl-def )

then have f y ∼ f x ∨ f y = f x using mono xA yA by (auto simp:
monotone-on-def )

then have z ∼ f x ∨ z = f x using zfy sym.trans[OF - - zA fyA fxA] by
(auto simp:)

with zA show z ∈ [f x]∼ by (auto simp: ecl-def )
qed (auto simp: xX F-def ecl-def )
with FXA show F X ∈ Q by (auto simp: Q-def ecl-def )

qed
then have F : F ‘ Q ⊆ Q by auto
then interpret Q: fixed-point-proof Q (vs) F by unfold-locales
have monoQ: monotone-on Q (vs) (vs) F
proof (intro monotone-onI )

fix X Y assume XQ: X ∈ Q and YQ: Y ∈ Q and XY : X vs Y
then obtain x y where xX : x ∈ X and yY : y ∈ Y using Q-def by (auto

simp: ecl-def )
then have xA: x ∈ A and yA: y ∈ A using XQ YQ by (auto simp: Q-def

ecl-def )
have x v y using XY xX yY by auto
then have fxfy: f x v f y using monotone-on-def [of A (v) (v) f ] xA yA mono

by auto
have fxgX : f x ∈ F X using xX F-def by blast
have fygY : f y ∈ F Y using yY F-def by blast
show F X vs F Y using RSLE-eq[OF XQFXQ[OF XQ] XQFXQ[OF YQ]
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fxgX fygY fxfy].
qed
have QdA: {x. Q.derivable x} ⊆ Q using Q.derivable-A by auto
interpret Q: fixed-point-proof2 Q (vs) F

using Q.mono-imp-fixed-point-proof2 [OF Q.antisymmetric-axioms monoQ].
from Q.mono-imp-ex-least-fp[OF Q.antisymmetric-axioms monoQ compQ]
obtain P where P: extreme {q ∈ Q. F q = q} (vs)− P by auto
then have PQ: P ∈ Q by (auto simp: extreme-def )
from P have FPP: F P = P using PQ by auto
with P have PP: P vs P by auto
from P obtain p where pA: p ∈ A and Pp: P = [p]∼ using Q-def by auto
then have pP: p ∈ P by (auto simp: ecl-def )
then have fpA: f p ∈ A using pA f by auto
have f p ∈ F P using pP F-def fpA by auto
then have F P = [f p]∼ using XQx XQFXQ[OF PQ] by auto
then have fp: f p ∼ p ∨ f p = p using pP FPP by (auto simp: ecl-def )
have p v p using PP pP by auto
with fp have fpp: f p ∼ p by auto
have e: extreme {p ∈ A. f p ∼ p ∨ f p = p} (w) p
proof (intro extremeI CollectI conjI pA fp, elim CollectE conjE)

fix q assume qA: q ∈ A and fq: f q ∼ q ∨ f q = q
define Z where Z ≡ {z ∈ A. q ∼ z}∪{q}
then have qZ : q ∈ Z using qA by auto
then have ZQ: Z ∈ Q using qA by (auto simp: Z-def Q-def ecl-def )
have fqA: f q ∈ A using qA f by auto
then have f q ∈ Z using fq by (auto simp: Z-def )
then have 1 : Z = [f q]∼ using XQx ZQ by auto
then have f q ∈ F Z using qZ fqA by (auto simp: F-def )
then have F Z = [f q]∼ using XQx XQFXQ[OF ZQ] by auto
with 1 have Z = F Z by auto
then have P vs Z using P ZQ by auto
then show p v q using pP qZ by auto

qed
with fpp show ?thesis using e by auto

qed

7.2 General Completeness
lemma attract-mono-imp-fp-qfp-complete:

assumes attract: attractive A (v)
and comp: CC−complete A (v)
and wr-CC : ∀C ⊆ A. well-related-set C (v) −→ CC C (v)
and extend: ∀X Y . CC X (v) −→ CC Y (v) −→ X vs Y −→ CC (X ∪ Y )

(v)
and mono: monotone-on A (v) (v) f
and P: P ⊆ {x ∈ A. f x = x}

shows CC−complete ({q ∈ A. f q ∼ q} ∪ P) (v)
proof (intro completeI )

interpret attractive using attract.
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fix X assume Xfix: X ⊆ {q ∈ A. f q ∼ q} ∪ P and XCC : CC X (v)
with P have XA: X ⊆ A by auto
define B where B ≡ {b ∈ A. ∀ a ∈ X . a v b}
{ fix s a assume sA: s ∈ A and as: ∀ a ∈ X . a v s and aX : a ∈ X

then have aA: a ∈ A using XA by auto
then have fafs: f a v f s using mono f aX sA as by (auto elim!: monotone-onE)
have a v f s
proof (cases f a = a)

case True
then show ?thesis using fafs by auto

next
case False
then have a ∼ f a using P aX Xfix by auto
also from fafs have f a v f s by auto
finally show ?thesis using f aA sA by auto

qed
}
with f have fBB: f ‘ B ⊆ B unfolding B-def by auto
have BA: B ⊆ A by (auto simp: B-def )
have compB: CC−complete B (v)
proof (unfold complete-def , intro allI impI )

fix Y assume YS : Y ⊆ B and YCC : CC Y (v)
with BA have YA: Y ⊆ A by auto
define C where C ≡ X∪Y
then have CA: C ⊆ A using XA YA C-def by auto
have XY : X vs Y using B-def YS by auto
then have CCC : CC C (v) using extend XA YA XCC YCC C-def by auto
then obtain s where s: extreme-bound A (v) C s

using completeD[OF comp CA, OF CCC ] by auto
then have sA: s ∈ A by auto
show Ex (extreme-bound B (v) Y )
proof (intro exI extreme-boundI )

{ fix x assume x ∈ X
then have x v s using s C-def by auto

}
then show s ∈ B using sA B-def by auto

next
fix y assume y ∈ Y
then show y v s using s C-def using extremeD by auto

next
fix c assume cS : c ∈ B and bound Y (v) c
then have bound C (v) c using C-def B-def by auto
then show s v c using s BA cS by auto

qed
qed
from fBB interpret B: fixed-point-proof B (v) f by unfold-locales
from BA have ∗: {x ∈ A. f x ∼ x} ∩ B = {x ∈ B. f x ∼ x} by auto
have asB: attractive B (v) using attractive-subset[OF BA] by auto
have monoB: monotone-on B (v) (v) f using monotone-on-cmono[OF BA]
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mono by (auto dest!: le-funD)
have compB: well-related-set−complete B (v)

using wr-CC compB BA by (simp add: complete-def )
from B.attract-mono-imp-least-qfp[OF asB compB monoB]
obtain l where extreme {p ∈ B. f p ∼ p ∨ f p = p} (w) l and fll: f l ∼ l by

auto
with P have l: extreme ({p ∈ B. f p ∼ p} ∪ P ∩ B) (w) l by auto
show Ex (extreme-bound ({q ∈ A. f q ∼ q} ∪ P) (v) X)
proof (intro exI extreme-boundI )

show l ∈ {q ∈ A. f q ∼ q} ∪ P using l BA by auto
fix a assume a ∈ X
with l show a v l by (auto simp: B-def )

next
fix c assume c: bound X (v) c and cfix: c ∈ {q ∈ A. f q ∼ q} ∪ P
with P have cA: c ∈ A by auto
with c have c ∈ B by (auto simp: B-def )
with cfix l show l v c by auto

qed
qed

lemma attract-mono-imp-qfp-complete:
assumes attractive A (v)

and CC−complete A (v)
and ∀C ⊆ A. well-related-set C (v) −→ CC C (v)
and ∀X Y . CC X (v) −→ CC Y (v) −→ X vs Y −→ CC (X ∪ Y ) (v)
and monotone-on A (v) (v) f

shows CC−complete {p ∈ A. f p ∼ p} (v)
using attract-mono-imp-fp-qfp-complete[OF assms, of {}] by simp

lemma antisym-mono-imp-fp-complete:
assumes anti: antisymmetric A (v)

and comp: CC−complete A (v)
and wr-CC : ∀C ⊆ A. well-related-set C (v) −→ CC C (v)
and extend: ∀X Y . CC X (v) −→ CC Y (v) −→ X vs Y −→ CC (X ∪ Y )

(v)
and mono: monotone-on A (v) (v) f

shows CC−complete {p ∈ A. f p = p} (v)
proof−

interpret antisymmetric using anti.
have ∗: {q ∈ A. f q ∼ q} ⊆ {p ∈ A. f p = p} using f by (auto intro!: antisym)
from ∗ attract-mono-imp-fp-qfp-complete[OF attractive-axioms comp wr-CC ex-

tend mono, of {p∈A. f p = p}]
show ?thesis by (auto simp: subset-Un-eq)

qed

end
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7.3 Instances
7.3.1 Instances under attractivity
context attractive begin

interpretation less-eq-symmetrize.

Full completeness
theorem mono-imp-qfp-complete:

assumes comp: >−complete A (v) and f : f ‘ A ⊆ A and mono: monotone-on
A (v) (v) f

shows >−complete {p ∈ A. f p ∼ p} (v)
apply (intro fixed-point-proof .attract-mono-imp-qfp-complete comp mono)

apply unfold-locales
by (auto simp: f )

Connex completeness
theorem mono-imp-qfp-connex-complete:

assumes comp: connex−complete A (v)
and f : f ‘ A ⊆ A and mono: monotone-on A (v) (v) f

shows connex−complete {p ∈ A. f p ∼ p} (v)
apply (intro fixed-point-proof .attract-mono-imp-qfp-complete mono comp)

apply unfold-locales
by (auto simp: f intro: connex-union well-related-set.connex)

Directed completeness
theorem mono-imp-qfp-directed-complete:

assumes comp: directed−complete A (v)
and f : f ‘ A ⊆ A and mono: monotone-on A (v) (v) f

shows directed−complete {p ∈ A. f p ∼ p} (v)
apply (intro fixed-point-proof .attract-mono-imp-qfp-complete mono comp)

apply unfold-locales
by (auto simp: f intro!: directed-extend intro: well-related-set.connex connex.directed)

Well Completeness
theorem mono-imp-qfp-well-complete:

assumes comp: well-related-set−complete A (v)
and f : f ‘ A ⊆ A and mono: monotone-on A (v) (v) f

shows well-related-set−complete {p ∈ A. f p ∼ p} (v)
apply (intro fixed-point-proof .attract-mono-imp-qfp-complete mono comp)

apply unfold-locales
by (auto simp: f well-related-extend)

end

7.3.2 Usual instances under antisymmetry
context antisymmetric begin

Knaster–Tarski
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theorem mono-imp-fp-complete:
assumes comp: >−complete A (v)

and f : f ‘ A ⊆ A and mono: monotone-on A (v) (v) f
shows >−complete {p ∈ A. f p = p} (v)

proof−
interpret fixed-point-proof using f by unfold-locales
show ?thesis
apply (intro antisym-mono-imp-fp-complete mono antisymmetric-axioms comp)
by auto

qed

Markowsky 1976
theorem mono-imp-fp-connex-complete:

assumes comp: connex−complete A (v)
and f : f ‘ A ⊆ A and mono: monotone-on A (v) (v) f

shows connex−complete {p ∈ A. f p = p} (v)
proof−

interpret fixed-point-proof using f by unfold-locales
show ?thesis
apply (intro antisym-mono-imp-fp-complete antisymmetric-axioms mono comp)
by (auto intro: connex-union well-related-set.connex)

qed

Pataraia
theorem mono-imp-fp-directed-complete:

assumes comp: directed−complete A (v)
and f : f ‘ A ⊆ A and mono: monotone-on A (v) (v) f

shows directed−complete {p ∈ A. f p = p} (v)
proof−

interpret fixed-point-proof using f by unfold-locales
show ?thesis
apply (intro antisym-mono-imp-fp-complete mono antisymmetric-axioms comp)

by (auto intro: directed-extend connex.directed well-related-set.connex)
qed

Bhatta & George 2011
theorem mono-imp-fp-well-complete:

assumes comp: well-related-set−complete A (v)
and f : f ‘ A ⊆ A and mono: monotone-on A (v) (v) f

shows well-related-set−complete {p ∈ A. f p = p} (v)
proof−

interpret fixed-point-proof using f by unfold-locales
show ?thesis
apply (intro antisym-mono-imp-fp-complete mono antisymmetric-axioms comp)
by (auto intro!: antisym well-related-extend)

qed

end
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end
theory Continuity

imports Complete-Relations
begin

7.4 Scott Continuity, ω-Continuity
In this Section, we formalize Scott continuity and ω-continuity. We then
prove that a Scott continuous map is ω-continuous and that an ω-continuous
map is “nearly” monotone.
definition continuous (‹-−continuous› [1000 ]1000 ) where
C−continuous A (v) B (E) f ≡
f ‘ A ⊆ B ∧
(∀X s. C X (v) −→ X 6= {} −→ X ⊆ A −→ extreme-bound A (v) X s −→

extreme-bound B (E) (f‘X) (f s))
for leA (infix ‹v› 50 ) and leB (infix ‹E› 50 )

lemmas continuousI [intro?] =
continuous-def [unfolded atomize-eq, THEN iffD2 , unfolded conj-imp-eq-imp-imp,

rule-format]

lemmas continuousE =
continuous-def [unfolded atomize-eq, THEN iffD1 , elim-format, unfolded conj-imp-eq-imp-imp,

rule-format]

lemma
fixes prec-eq (infix ‹�› 50 ) and less-eq (infix ‹v› 50 )
assumes C−continuous I (�) A (v) f
shows continuous-carrierD[dest]: f ‘ I ⊆ A

and continuousD: C X (�) =⇒ X 6= {} =⇒ X ⊆ I =⇒ extreme-bound I (�)
X b =⇒ extreme-bound A (v) (f ‘ X) (f b)

using assms by (auto elim!: continuousE)

lemma continuous-comp:
fixes leA (infix ‹vA› 50 ) and leB (infix ‹vB› 50 ) and leC (infix ‹vC› 50 )
assumes KfL: ∀X ⊆ A. K X (vA) −→ L (f ‘ X) (vB)
assumes f : K−continuous A (vA) B (vB) f and g: L−continuous B (vB) C

(vC) g
shows K−continuous A (vA) C (vC) (g ◦ f )
apply (intro continuousI )

proof −
from f g have fAB: f ‘ A ⊆ B and gBC : g ‘ B ⊆ C by auto
then show (g ◦ f ) ‘ A ⊆ C by auto
fix X s
assume XA: X ⊆ A and X0 : X 6= {} and XK : K X (vA) and Xs: extreme-bound

A (vA) X s
from fAB XA have fXB: f ‘ X ⊆ B by auto
from X0 have fX0 : f ‘ X 6= {} by auto
from KfL XA XK have fXL: L (f ‘ X) (vB) by auto
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from continuousD[OF f XK X0 XA Xs]
have extreme-bound B (vB) (f ‘ X) (f s).
from continuousD[OF g fXL fX0 fXB this]
show extreme-bound C (vC) ((g◦f )‘X) ((g◦f ) s) by (auto simp: image-comp)

qed

lemma continuous-comp-top:
fixes leA (infix ‹vA› 50 ) and leB (infix ‹vB› 50 ) and leC (infix ‹vC› 50 )
assumes f : K−continuous A (vA) B (vB) f and g: >−continuous B (vB) C

(vC) g
shows K−continuous A (vA) C (vC) (g ◦ f )
by (rule continuous-comp[OF - f g], auto)

lemma id-continuous:
fixes leA (infix ‹vA› 50 )
shows K−continuous A (vA) A (vA) (λx. x)
by (auto intro: continuousI )

lemma cst-continuous:
fixes leA (infix ‹vA› 50 ) and leB (infix ‹vB› 50 )
assumes b ∈ B and bb: b vB b
shows K−continuous A (vA) B (vB) (λx. b)
apply (intro continuousI )
using assms(1 ) apply auto
using assms extreme-bound-singleton-refl[of B (vB) b] by blast

lemma continuous-cmono:
assumes CD: C ≤ D shows D−continuous ≤ C−continuous

proof (safe intro!: le-funI le-boolI )
fix I A f and prec-eq (infix ‹�› 50 ) and less-eq (infix ‹v› 50 )
assume cont: D−continuous I (�) A (v) f
show C−continuous I (�) A (v) f
proof (rule continuousI )

from cont show f ‘ I ⊆ A by auto
fix X s assume X : C X (�) and X0 : X 6= {} and XI : X ⊆ I and Xs:

extreme-bound I (�) X s
from CD X have D X (�) by auto
from continuousD[OF cont, OF this X0 XI Xs]
show extreme-bound A (v) (f ‘ X) (f s).

qed
qed

context
fixes prec-eq :: ′i ⇒ ′i ⇒ bool (infix ‹�› 50 ) and less-eq :: ′a ⇒ ′a ⇒ bool

(infix ‹v› 50 )
begin

lemma continuous-subclass:
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assumes CD: ∀X⊆I . X 6= {} −→ C X (�) −→ D X (�) and cont: D−continuous
I (�) A (v) f

shows C−continuous I (�) A (v) f
using cont by (auto simp: continuous-def CD[rule-format])

lemma chain-continuous-imp-well-continuous:
assumes cont: connex−continuous I (�) A (v) f
shows well-related-set−continuous I (�) A (v) f
by (rule continuous-subclass[OF - cont], auto simp: well-related-set.connex)

lemma well-continuous-imp-omega-continous:
assumes cont: well-related-set−continuous I (�) A (v) f
shows omega-chain−continuous I (�) A (v) f
by (rule continuous-subclass[OF - cont], auto simp: omega-chain-imp-well-related)

end

abbreviation scott-continuous I (�) ≡ directed-set−continuous I (�)
for prec-eq (infix ‹�› 50 )

lemma scott-continuous-imp-well-continuous:
fixes prec-eq :: ′i ⇒ ′i ⇒ bool (infix ‹�› 50 ) and less-eq :: ′a ⇒ ′a ⇒ bool

(infix ‹v› 50 )
assumes cont: scott-continuous I (�) A (v) f
shows well-related-set−continuous I (�) A (v) f
by (rule continuous-subclass[OF - cont], auto simp: well-related-set.directed-set)

lemmas scott-continuous-imp-omega-continuous =
scott-continuous-imp-well-continuous[THEN well-continuous-imp-omega-continous]

7.4.1 Continuity implies monotonicity
lemma continuous-imp-mono-refl:

fixes prec-eq (infix ‹�› 50 ) and less-eq (infix ‹v› 50 )
assumes cont: C−continuous I (�) A (v) f and xyC : C {x,y} (�)

and xy: x � y and yy: y � y
and x: x ∈ I and y: y ∈ I

shows f x v f y
proof−

have fboy: extreme-bound A (v) (f ‘ {x,y}) (f y)
proof (intro continuousD[OF cont] xyC )

from x y show CI : {x,y} ⊆ I by auto
show Cy: extreme-bound I (�) {x,y} y using xy yy x y by auto

qed auto
then show ?thesis by auto

qed

lemma omega-continuous-imp-mono-refl:
fixes prec-eq (infix ‹�› 50 ) and less-eq (infix ‹v› 50 )
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assumes cont: omega-chain−continuous I (�) A (v) f
and xx: x � x and xy: x � y and yy: y � y
and x: x ∈ I and y: y ∈ I

shows f x v f y
apply (rule continuous-imp-mono-refl[OF cont, OF pair-omega-chain])
using assms by auto

context reflexive begin

lemma continuous-imp-monotone-on:
fixes leB (infix ‹E› 50 )
assumes cont: C−continuous A (v) B (E) f

and II : ∀ i ∈ A. ∀ j ∈ A. i v j −→ C {i,j} (v)
shows monotone-on A (v) (E) f

proof−
show ?thesis

apply (intro monotone-onI continuous-imp-mono-refl[OF cont])
using II by auto

qed

lemma well-complete-imp-monotone-on:
fixes leB (infix ‹E› 50 )
assumes cont: well-related-set−continuous A (v) B (E) f
shows monotone-on A (v) (E) f
by (auto intro!: continuous-imp-monotone-on cont pair-well-related)

end

end
theory Kleene-Fixed-Point

imports Complete-Relations Continuity
begin

8 Iterative Fixed Point Theorem
Kleene’s fixed-point theorem states that, for a pointed directed complete
partial order 〈A,v〉 and a Scott-continuous map f : A→ A, the supremum
of {fn(⊥) | n ∈ N} exists in A and is a least fixed point. Mashburn [17]
generalized the result so that 〈A,v〉 is a ω-complete partial order and f is
ω-continuous.

In this section we further generalize the result and show that for ω-
complete relation 〈A,v〉 and for every bottom element ⊥ ∈ A, the set
{fn(⊥) | n ∈ N} has suprema (not necessarily unique, of course) and, they
are quasi-fixed points. Moreover, if (v) is attractive, then the suprema are
precisely the least quasi-fixed points.
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8.1 Existence of Iterative Fixed Points
The first part of Kleene’s theorem demands to prove that the set {fn(⊥) | n ∈ N}
has a supremum and that all such are quasi-fixed points. We prove this claim
without assuming anything on the relation v besides ω-completeness and
one bottom element.
notation compower (‹-^-›[1000 ,1000 ]1000 )

lemma monotone-on-funpow: assumes f : f ‘ A ⊆ A and mono: monotone-on A
r r f

shows monotone-on A r r (f^n)
proof (induct n)

case 0
show ?case using monotone-on-id by (auto simp: id-def )

next
case (Suc n)
with funpow-dom[OF f ] show ?case

by (auto intro!: monotone-onI monotone-onD[OF mono] elim!:monotone-onE)
qed

no-notation bot (‹⊥›)

context
fixes A and less-eq (infix ‹v› 50 ) and bot (‹⊥›) and f
assumes bot: ⊥ ∈ A ∀ q ∈ A. ⊥ v q
assumes cont: omega-chain−continuous A (v) A (v) f

begin

interpretation less-eq-symmetrize.

private lemma f : f ‘ A ⊆ A using cont by auto

private abbreviation(input) Fn ≡ {f^n ⊥ |. n :: nat}

private lemma fn-ref : f^n ⊥ v f^n ⊥ and fnA: f^n ⊥ ∈ A
proof (atomize(full), induct n)

case 0
from bot show ?case by simp

next
case (Suc n)
then have fn: f^n ⊥ ∈ A and fnfn: f^n ⊥ v f^n ⊥ by auto
from f fn omega-continuous-imp-mono-refl[OF cont fnfn fnfn fnfn]
show ?case by auto

qed

private lemma FnA: Fn ⊆ A using fnA by auto

private lemma Fn-chain: omega-chain Fn (v)
proof (intro omega-chainI )
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show fn-monotone: monotone (≤) (v) (λn. f^n ⊥)
proof

fix n m :: nat
assume n ≤ m
from le-Suc-ex[OF this] obtain k where m: m = n + k by auto
from bot fn-ref fnA omega-continuous-imp-mono-refl[OF cont]
show f^n ⊥ v f^m ⊥ by (unfold m, induct n, auto)

qed
qed auto

private lemma Fn: Fn = range (λn. f^n ⊥) by auto

theorem kleene-qfp:
assumes q: extreme-bound A (v) Fn q
shows f q ∼ q

proof
have fq: extreme-bound A (v) (f ‘ Fn) (f q)

apply (rule continuousD[OF cont - - FnA q])
using Fn-chain by auto

with bot have nq: f^n ⊥ v f q for n by (induct n, auto simp: extreme-bound-iff )
then show q v f q using f q by blast
have f (f^n ⊥) ∈ Fn for n by (auto intro!: range-eqI [of - - Suc n])
then have f ‘ Fn ⊆ Fn by auto
from extreme-bound-subset[OF this fq q]
show f q v q.

qed

lemma ex-kleene-qfp:
assumes comp: omega-chain−complete A (v)
shows ∃ p. extreme-bound A (v) Fn p
apply (intro comp[THEN completeD, OF FnA])
using Fn-chain
by auto

8.2 Iterative Fixed Points are Least.
Kleene’s theorem also states that the quasi-fixed point found this way is a
least one. Again, attractivity is needed to prove this statement.
lemma kleene-qfp-is-least:

assumes attract: ∀ q ∈ A. ∀ x ∈ A. f q ∼ q −→ x v f q −→ x v q
assumes q: extreme-bound A (v) Fn q
shows extreme {s ∈ A. f s ∼ s} (w) q

proof(safe intro!: extremeI kleene-qfp[OF q])
from q
show q ∈ A by auto
fix c assume c: c ∈ A and cqfp: f c ∼ c
{

fix n::nat
have f^n ⊥ v c

127



proof(induct n)
case 0
show ?case using bot c by auto

next
case IH : (Suc n)
have c v c using attract cqfp c by auto
with IH have f^(Suc n) ⊥ v f c

using omega-continuous-imp-mono-refl[OF cont] fn-ref fnA c by auto
then show ?case using attract cqfp c fnA by blast

qed
}
then show q v c using q c by auto

qed

lemma kleene-qfp-iff-least:
assumes comp: omega-chain−complete A (v)
assumes attract: ∀ q ∈ A. ∀ x ∈ A. f q ∼ q −→ x v f q −→ x v q
assumes dual-attract: ∀ p ∈ A. ∀ q ∈ A. ∀ x ∈ A. p ∼ q −→ q v x −→ p v x
shows extreme-bound A (v) Fn = extreme {s ∈ A. f s ∼ s} (w)

proof (intro ext iffI kleene-qfp-is-least[OF attract])
fix q
assume q: extreme {s ∈ A. f s ∼ s} (w) q
from q have qA: q ∈ A by auto
from q have qq: q v q by auto
from q have fqq: f q ∼ q by auto
from ex-kleene-qfp[OF comp]
obtain k where k: extreme-bound A (v) Fn k by auto
have qk: q ∼ k
proof

from kleene-qfp[OF k] q k
show q v k by auto
from kleene-qfp-is-least[OF - k] q attract
show k v q by blast

qed
show extreme-bound A (v) Fn q
proof (intro extreme-boundI ,safe)

fix n
show f^n ⊥ v q
proof (induct n)

case 0
from bot q show ?case by auto

next
case S :(Suc n)
from fnA f have fsnbA: f (f^n ⊥) ∈ A by auto
have fnfn: f^n ⊥ v f^n ⊥ using fn-ref by auto
have f (f^n ⊥) v f q

using omega-continuous-imp-mono-refl[OF cont] fnA qA S fnfn qq by auto
then show ?case using fsnbA qA attract fqq by auto

qed
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next
fix x
assume bound Fn (v) x and x: x ∈ A
with k have kx: k v x by auto
with dual-attract[rule-format, OF - - x qk] q k
show q v x by auto

next
from q show q ∈ A by auto

qed
qed

end

context attractive begin

interpretation less-eq-dualize + less-eq-symmetrize.

theorem kleene-qfp-is-dual-extreme:
assumes comp: omega-chain−complete A (v)

and cont: omega-chain−continuous A (v) A (v) f and bA: b ∈ A and bot: ∀ x
∈ A. b v x

shows extreme-bound A (v) {f^n b |. n :: nat} = extreme {s ∈ A. f s ∼ s} (w)
apply (rule kleene-qfp-iff-least[OF bA bot cont comp])
using continuous-carrierD[OF cont]
by (auto dest: sym-order-trans order-sym-trans)

end

corollary(in antisymmetric) kleene-fp:
assumes cont: omega-chain−continuous A (v) A (v) f

and b: b ∈ A ∀ x ∈ A. b v x
and p: extreme-bound A (v) {f^n b |. n :: nat} p

shows f p = p
using kleene-qfp[OF b cont] p cont[THEN continuous-carrierD]
by (auto 2 3 intro!:antisym)

no-notation compower (‹-^-›[1000 ,1000 ]1000 )

end
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