Comparison-based Sorting Algorithms

Manuel Eberl

March 17, 2025

Abstract

This article contains a formal proof of the well-known fact that number of comparisons that a comparison-based sorting algorithm needs to perform to sort a list of length n is at least $\log_2(n!)$ in the worst case, i. e. $\Omega(n \log n)$.

For this purpose, a shallow embedding for comparison-based sorting algorithms is defined: a sorting algorithm is a recursive datatype containing either a HOL function or a query of a comparison oracle with a continuation containing the remaining computation. This makes it possible to force the algorithm to use only comparisons and to track the number of comparisons made.

Contents

1	Linear orderings as relations		2
	1.1	Auxiliary facts	2
	1.2	Sortedness w.r.t. a relation	2
	1.3	Linear orderings	3
	1.4	Converting a list into a linear ordering	4
	1.5	Insertion sort	4
	1.6	Obtaining a sorted list of a given set	5
	1.7	Rank of an element in an ordering	6
	1.8	The bijection between linear orderings and lists	7
2	Lower bound on costs of comparison-based sorting		7
	2.1	Abstract description of sorting algorithms	$\overline{7}$
	2.2	Lower bounds on number of comparisons	9

1 Linear orderings as relations

```
theory Linorder-Relations

imports

Complex-Main

HOL-Combinatorics.Multiset-Permutations

List-Index.List-Index

begin
```

1.1 Auxiliary facts

lemma distinct-count-atmost-1': distinct $xs = (\forall a. count (mset xs) a \leq 1) \langle proof \rangle$

lemma distinct-mset-mono: **assumes** distinct ys mset $xs \subseteq \#$ mset ys **shows** distinct xs $\langle proof \rangle$

lemma mset-eq-imp-distinct-iff: **assumes** $mset \ xs = mset \ ys$ **shows** $distinct \ xs \longleftrightarrow distinct \ ys$ $\langle proof \rangle$

lemma total-on-subset: total-on $B \ R \Longrightarrow A \subseteq B \Longrightarrow$ total-on $A \ R \land proof \rangle$

1.2 Sortedness w.r.t. a relation

inductive sorted-wrt :: $(a \times a)$ set $\Rightarrow a$ list \Rightarrow bool for R where sorted-wrt R [] | sorted-wrt R xs $\Longrightarrow (\bigwedge y. \ y \in set \ xs \Longrightarrow (x,y) \in R) \Longrightarrow sorted$ -wrt $R \ (x \ \# xs)$

lemma sorted-wrt-Nil [simp]: sorted-wrt R [] $\langle proof \rangle$

lemma sorted-wrt-Cons: sorted-wrt R (x # xs) \longleftrightarrow ($\forall y \in set xs. (x,y) \in R$) \land sorted-wrt R xs $\langle proof \rangle$

lemma sorted-wrt-singleton [simp]: sorted-wrt R[x] $\langle proof \rangle$

lemma sorted-wrt-many: **assumes** trans R **shows** sorted-wrt R (x # y # xs) \longleftrightarrow (x,y) \in R \land sorted-wrt R (y # xs) $\langle proof \rangle$

lemma *sorted-wrt-imp-le-last*:

assumes sorted-wrt R xs xs \neq [] $x \in$ set xs $x \neq$ last xs **shows** $(x, last xs) \in R$ $\langle proof \rangle$

 ${\bf lemma} \ sorted{-}wrt{-}append{:}$

assumes sorted-wrt R xs sorted-wrt R ys $\bigwedge x \ y. \ x \in set \ xs \implies y \in set \ ys \implies (x,y) \in R \ trans \ R$ **shows** sorted-wrt $R \ (xs @ ys)$ $\langle proof \rangle$

lemma sorted-wrt-snoc: **assumes** sorted-wrt R xs (last xs, y) $\in R$ trans R **shows** sorted-wrt R (xs @ [y]) $\langle proof \rangle$

```
lemma sorted-wrt-conv-nth:
```

sorted-wrt $R \ xs \longleftrightarrow (\forall i j. \ i < j \land j < length \ xs \longrightarrow (xs!i, \ xs!j) \in R) \langle proof \rangle$

1.3 Linear orderings

definition linorder-on :: 'a set \Rightarrow ('a \times 'a) set \Rightarrow bool where linorder-on A R \leftrightarrow refl-on A R \wedge antisym R \wedge trans R \wedge total-on A R

lemma linorder-on-cases:

assumes linorder-on $A \ R \ x \in A \ y \in A$ shows $x = y \lor ((x, y) \in R \land (y, x) \notin R) \lor ((y, x) \in R \land (x, y) \notin R)$ $\langle proof \rangle$

lemma sorted-wrt-linorder-index-le-imp:

assumes linorder-on $A \ R \ set \ xs \subseteq A \ sorted-wrt \ R \ xs \ x \in set \ xs \ y \in set \ xs \ index \ xs \ x \leq index \ xs \ y$ **shows** $(x,y) \in R$ $\langle proof \rangle$

lemma sorted-wrt-linorder-index-le-iff: **assumes** linorder-on $A \ R \ set \ xs \subseteq A \ sorted-wrt \ R \ xs$ $x \in set \ xs \ y \in set \ xs$ **shows** index $xs \ x \leq index \ xs \ y \longleftrightarrow (x,y) \in R$ $\langle proof \rangle$

lemma sorted-wrt-linorder-index-less-iff: assumes linorder-on $A \ R$ set $xs \subseteq A$ sorted-wrt $R \ xs$ $\begin{array}{l} x \in set \; xs \; y \in set \; xs \\ \textbf{shows} \quad index \; xs \; x < index \; xs \; y \longleftrightarrow \; (y,x) \notin R \\ \langle proof \rangle \end{array}$

lemma sorted-wrt-distinct-linorder-nth: **assumes** linorder-on $A \ R \ set \ xs \subseteq A \ sorted-wrt \ R \ xs \ distinct \ xs$ $i < length \ xs \ j < length \ xs$ **shows** $(xs!i, \ xs!j) \in R \iff i \leq j$ $\langle proof \rangle$

1.4 Converting a list into a linear ordering

definition linorder-of-list :: 'a list \Rightarrow ('a \times 'a) set where linorder-of-list $xs = \{(a,b). a \in set xs \land b \in set xs \land index xs a \leq index xs b\}$

```
lemma linorder-linorder-of-list [intro, simp]:
assumes distinct xs
shows linorder-on (set xs) (linorder-of-list xs)
⟨proof⟩
```

lemma sorted-wrt-linorder-of-list [intro, simp]: distinct $xs \implies$ sorted-wrt (linorder-of-list xs) xs $\langle proof \rangle$

1.5 Insertion sort

primrec insert-wrt :: $('a \times 'a)$ set $\Rightarrow 'a \Rightarrow 'a$ list $\Rightarrow 'a$ list where insert-wrt $R x \parallel = [x]$

| insert-wrt R x (y # ys) = (if (x, y) \in R then x # y # ys else y # insert-wrt R x ys)

lemma set-insert-wrt [simp]: set (insert-wrt $R \ x \ xs$) = insert x (set xs) $\langle proof \rangle$

lemma mset-insert-wrt [simp]: mset (insert-wrt R x xs) = add-mset x (mset xs) $\langle proof \rangle$

lemma length-insert-wrt [simp]: length (insert-wrt $R \ x \ xs$) = Suc (length xs) $\langle proof \rangle$

definition insort-wrt :: $('a \times 'a)$ set \Rightarrow 'a list \Rightarrow 'a list where insort-wrt R xs = foldr (insert-wrt R) xs []

lemma set-insort-wrt [simp]: set (insort-wrt R xs) = set $xs \langle proof \rangle$

lemma mset-insort-wrt [simp]: mset (insort-wrt R xs) = mset $xs \langle proof \rangle$

lemma length-insort-wrt [simp]: length (insort-wrt R xs) = length xs

 $\langle proof \rangle$

lemma sorted-wrt-insort [intro]: **assumes** linorder-on $A \ R \ set \ xs \subseteq A$ **shows** sorted-wrt $R \ (insort-wrt \ R \ xs)$ $\langle proof \rangle$

lemma distinct-insort-wrt [simp]: distinct (insort-wrt R xs) \longleftrightarrow distinct $xs \langle proof \rangle$

```
lemma sorted-wrt-linorder-unique:

assumes linorder-on A \ R \ mset \ xs = mset \ ys \ sorted-wrt \ R \ xs \ sorted-wrt \ R \ ys

shows xs = ys

\langle proof \rangle
```

1.6 Obtaining a sorted list of a given set

definition *sorted-wrt-list-of-set* where sorted-wrt-list-of-set R A =(if finite A then (THE xs. set $xs = A \land distinct xs \land sorted-wrt R xs)$ else []) **lemma** mset-remdups: mset (remdups xs) = mset-set (set xs) $\langle proof \rangle$ **lemma** *sorted-wrt-list-set*: **assumes** linorder-on A R set $xs \subseteq A$ **shows** sorted-wrt-list-of-set R (set xs) = insort-wrt R (remdups xs) $\langle proof \rangle$ **lemma** *linorder-sorted-wrt-exists*: **assumes** linorder-on A R finite $B B \subseteq A$ **shows** $\exists xs. set xs = B \land distinct xs \land sorted-wrt R xs$ $\langle proof \rangle$ **lemma** *linorder-sorted-wrt-list-of-set*: **assumes** linorder-on A R finite $B B \subseteq A$ **shows** set (sorted-wrt-list-of-set R B) = B distinct (sorted-wrt-list-of-set R B) sorted-wrt R (sorted-wrt-list-of-set R B) $\langle proof \rangle$ **lemma** *sorted-wrt-list-of-set-eqI*: **assumes** linorder-on $B \ R \ A \subseteq B$ set xs = A distinct xs sorted-wrt R xs**shows** sorted-wrt-list-of-set R A = xs $\langle proof \rangle$

1.7 Rank of an element in an ordering

The 'rank' of an element in a set w.r.t. an ordering is how many smaller elements exist. This is particularly useful in linear orders, where there exists a unique n-th element for every n.

```
definition linorder-rank where
  linorder-rank R A x = card \{y \in A - \{x\}, (y,x) \in R\}
lemma linorder-rank-le:
 assumes finite A
 shows linorder-rank R \ A \ x \leq card \ A
 \langle proof \rangle
lemma linorder-rank-less:
 assumes finite A \ x \in A
 shows linorder-rank R A x < card A
\langle proof \rangle
lemma linorder-rank-union:
 assumes finite A finite B A \cap B = \{\}
 shows linorder-rank R (A \cup B) x = linorder-rank R A x + linorder-rank R B
x
\langle proof \rangle
lemma linorder-rank-empty [simp]: linorder-rank R {} x = 0
  \langle proof \rangle
lemma linorder-rank-singleton:
  linorder-rank R \{y\} x = (if x \neq y \land (y,x) \in R then 1 else 0)
\langle proof \rangle
lemma linorder-rank-insert:
 assumes finite A \ y \notin A
 shows
           linorder-rank R (insert y A) x =
            (if x \neq y \land (y,x) \in R \text{ then } 1 \text{ else } 0) + linorder\text{-rank } R A x
  \langle proof \rangle
lemma linorder-rank-mono:
 assumes linorder-on B R finite A \subseteq B(x, y) \in R
 shows linorder-rank R A x < linorder-rank R A y
  \langle proof \rangle
lemma linorder-rank-strict-mono:
 assumes linorder-on B R finite A \ A \subseteq B \ y \in A \ (y, x) \in R \ x \neq y
 shows linorder-rank R A y < linorder-rank R A x
\langle proof \rangle
lemma linorder-rank-le-iff:
 assumes linorder-on B R finite A \ A \subseteq B \ x \in A \ y \in A
```

shows linorder-rank $R \ A \ x \leq$ linorder-rank $R \ A \ y \longleftrightarrow (x, y) \in R$ $\langle proof \rangle$

lemma linorder-rank-eq-iff: **assumes** linorder-on B R finite $A \ A \subseteq B \ x \in A \ y \in A$ **shows** linorder-rank R A x = linorder-rank R A $y \longleftrightarrow x = y$ $\langle proof \rangle$

lemma linorder-rank-set-sorted-wrt: **assumes** linorder-on $B \ R \ set \ xs \subseteq B \ sorted-wrt \ R \ xs \ x \in set \ xs \ distinct \ xs$ **shows** linorder-rank $R \ (set \ xs) \ x = index \ xs \ x$ $\langle proof \rangle$

1.8 The bijection between linear orderings and lists

theorem bij-betw-linorder-of-list: **assumes** finite A **shows** bij-betw linorder-of-list (permutations-of-set A) {R. linorder-on A R} $\langle proof \rangle$

corollary card-finite-linorders: **assumes** finite A **shows** card {R. linorder-on A R} = fact (card A) $\langle proof \rangle$

 \mathbf{end}

2 Lower bound on costs of comparison-based sorting

theory Comparison-Sort-Lower-Bound imports Complex-Main Linorder-Relations Stirling-Formula.Stirling-Formula Landau-Symbols.Landau-More begin

2.1 Abstract description of sorting algorithms

We have chosen to model a sorting algorithm in the following way: A sorting algorithm takes a list with distinct elements and a linear ordering on these

elements, and it returns a list with the same elements that is sorted w.r.t. the given ordering.

The use of an explicit ordering means that the algorithm must look at the ordering, i. e. it has to use pair-wise comparison of elements, since all the information that is relevant for producing the correct sorting is in the ordering; the elements themselves are irrelevant.

Furthermore, we record the number of comparisons that the algorithm makes by not giving it the relation explicitly, but in the form of a comparison oracle that may be queried.

A sorting algorithm (or 'sorter') for a fixed input list (but for arbitrary orderings) can then be written as a recursive datatype that is either the result (the sorted list) or a comparison query consisting of two elements and a continuation that maps the result of the comparison to the remaining computation.

datatype 'a sorter = Return 'a list | Query 'a 'a bool \Rightarrow 'a sorter

Cormen *et al.* [1] use a similar 'decision tree' model where an sorting algorithm for lists of fixed size n is modelled as a binary tree where each node is a comparison of two elements. They also demand that every leaf in the tree be reachable in order to avoid 'dead' subtrees (if the algorithm makes redundant comparisons, there may be branches that can never be taken). Then, the worst-case number of comparisons made is simply the height of the tree.

We chose a subtly different model that does not have this restriction on the algorithm but instead uses a more semantic way of counting the worst-case number of comparisons: We simply use the maximum number of comparisons that occurs for any of the (finitely many) inputs.

We therefore first define a function that counts the number of queries for a specific ordering and then a function that counts the number of queries in the worst case (ranging over a given set of allowed orderings; typically, this will be the set of all linear orders on the list).

primec count-queries :: $('a \times 'a)$ set \Rightarrow 'a sorter \Rightarrow nat where count-queries - (Return -) = 0

 $| \text{ count-queries } R (\text{Query } a \ b \ f) = Suc (\text{ count-queries } R \ (f \ ((a, \ b) \in R)))$

definition count-wc-queries :: $('a \times 'a)$ set set \Rightarrow 'a sorter \Rightarrow nat where count-wc-queries Rs sorter = (if Rs = {} then 0 else Max ((λR . count-queries R sorter) 'Rs))

lemma count-wc-queries-empty [simp]: count-wc-queries {} sorter = 0 $\langle proof \rangle$

lemma count-wc-queries-aux: assumes $\bigwedge R$. $R \in Rs \implies$ sorter = sorter' R $Rs \subseteq Rs'$ finite Rs' **shows** count-wc-queries Rs sorter $\leq Max$ ((λR . count-queries R (sorter ' R)) ' Rs') $\langle proof \rangle$

primec eval-sorter :: $('a \times 'a)$ set \Rightarrow 'a sorter \Rightarrow 'a list where eval-sorter - (Return ys) = ys | eval-sorter R (Query a b f) = eval-sorter R (f ((a,b) \in R))

We now get an obvious bound on the maximum number of different results that a given sorter can produce.

lemma card-range-eval-sorter: **assumes** finite Rs **shows** card ((λR . eval-sorter R e) ' Rs) ≤ 2 ^ count-wc-queries Rs e $\langle proof \rangle$

The following predicate describes what constitutes a valid sorting result for a given ordering and a given input list. Note that when the ordering is linear, the result is actually unique.

definition is-sorting :: $('a \times 'a)$ set \Rightarrow 'a list \Rightarrow 'a list \Rightarrow bool where is-sorting R xs ys \longleftrightarrow (mset xs = mset ys) \land sorted-wrt R ys

2.2 Lower bounds on number of comparisons

For a list of n distinct elements, there are n! linear orderings on n elements, each of which leads to a different result after sorting the original list. Since a sorter can produce at most 2^k different results with k comparisons, we get the bound $2^k \ge n!$:

theorem

fixes sorter :: 'a sorter and xs :: 'a list assumes distinct: distinct xsassumes sorter: $\land R$. linorder-on (set xs) $R \implies$ is-sorting R xs (eval-sorter Rsorter) defines $Rs \equiv \{R. \text{ linorder-on (set } xs) R\}$ shows two-power-count-queries-ge: fact (length xs) $\leq (2 \land \text{count-wc-queries } Rs$ sorter :: nat) and count-queries-ge: log 2 (fact (length xs)) \leq real (count-wc-queries Rs sorter) $\langle \text{proof} \rangle$

lemma ln-fact-bigo: $(\lambda n. \ln (fact n) - (\ln (2 * pi * n) / 2 + n * \ln n - n)) \in O(\lambda n. 1 / n)$

and asymp-equiv-ln-fact [asymp-equiv-intros]: $(\lambda n. \ln (fact n)) \sim [at-top] (\lambda n. n * ln n)$

 $\langle proof \rangle$

include asymp-equiv-syntax

 $\langle proof \rangle$

This leads to the following well-known Big-Omega bound on the number of comparisons that a general sorting algorithm has to make:

corollary count-queries-bigomega: **fixes** sorter :: nat \Rightarrow nat sorter **assumes** sorter: $\land n \ R$. linorder-on {..<n} $R \Longrightarrow$ is-sorting $R \ [0..<n]$ (eval-sorter $R \ (sorter \ n)$) **defines** $Rs \equiv \land n. \ \{R. \ linorder-on \ \{..<n\} \ R\}$ **shows** $(\land n. \ count-wc-queries \ (Rs \ n) \ (sorter \ n)) \in \Omega(\land n. \ n \ s \ ln \ n)$ $\langle proof \rangle$

 \mathbf{end}

References

[1] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. *Introduction to Algorithms*. McGraw-Hill Higher Education, 2nd edition, 2001.