Comparison-based Sorting Algorithms

Manuel Eberl

September 13, 2023

Abstract

This article contains a formal proof of the well-known fact that number of comparisons that a comparison-based sorting algorithm needs to perform to sort a list of length n is at least $\log _{2}(n!)$ in the worst case, i. e. $\Omega(n \log n)$.

For this purpose, a shallow embedding for comparison-based sorting algorithms is defined: a sorting algorithm is a recursive datatype containing either a HOL function or a query of a comparison oracle with a continuation containing the remaining computation. This makes it possible to force the algorithm to use only comparisons and to track the number of comparisons made.

Contents

1 Linear orderings as relations 2

1.1 Auxiliary facts . 2
1.2 Sortedness w.r.t. a relation 2
1.3 Linear orderings . 4
1.4 Converting a list into a linear ordering 5
1.5 Insertion sort . 5
1.6 Obtaining a sorted list of a given set 7
1.7 Rank of an element in an ordering 9
1.8 The bijection between linear orderings and lists 12

2 Lower bound on costs of comparison-based sorting 13
2.1 Abstract description of sorting algorithms 13
2.2 Lower bounds on number of comparisons 16

1 Linear orderings as relations

theory Linorder-Relations
imports
Complex-Main
HOL-Combinatorics.Multiset-Permutations
List-Index.List-Index
begin

1.1 Auxiliary facts

lemma distinct-count-atmost-1':
distinct $x s=(\forall a$. count $($ mset xs $) a \leq 1)$
proof -
\{
fix x have count (mset xs) $x=($ if $x \in$ set $x s$ then 1 else 0$) \longleftrightarrow$ count (mset
xs) $x \leq 1$
using count-eq-zero-iff[of mset xs x]
by (cases count (mset xs) x) (auto simp del: count-mset-0-iff)
\}
thus ?thesis unfolding distinct-count-atmost-1 by blast
qed
lemma distinct-mset-mono:
assumes distinct ys mset $x s \subseteq \#$ mset ys
shows distinct xs
unfolding distinct-count-atmost-1'
proof
fix x
from $\operatorname{assms}(2)$ have count (mset $x s) x \leq$ count (mset ys) x
by (rule mset-subset-eq-count)
also from $\operatorname{assms}(1)$ have $\ldots \leq 1$ unfolding distinct-count-atmost- 1^{\prime}..
finally show count (mset $x s$) $x \leq 1$.
qed
lemma mset-eq-imp-distinct-iff:
assumes mset $x s=$ mset ys
shows distinct $x s \longleftrightarrow$ distinct ys
using assms by (simp add: distinct-count-atmost-1')
lemma total-on-subset: total-on $B R \Longrightarrow A \subseteq B \Longrightarrow$ total-on $A R$
by (auto simp: total-on-def)

1.2 Sortedness w.r.t. a relation

inductive sorted-wrt :: (' $a \times$ ' a) set \Rightarrow 'a list \Rightarrow bool for R where sorted-wrt R []
| sorted-wrt R xs $\Longrightarrow(\bigwedge y . y \in$ set $x s \Longrightarrow(x, y) \in R) \Longrightarrow$ sorted-wrt $R(x \# x s)$
lemma sorted-wrt-Nil [simp]: sorted-wrt R []

```
by (rule sorted-wrt.intros)
```

lemma sorted-wrt-Cons: sorted-wrt $R(x \# x s) \longleftrightarrow(\forall y \in$ set $x s .(x, y) \in R) \wedge$ sorted-wrt R xs
by (auto intro: sorted-wrt.intros elim: sorted-wrt.cases)
lemma sorted-wrt-singleton $[$ simp $]$: sorted-wrt $R[x]$
by (intro sorted-wrt.intros) simp-all
lemma sorted-wrt-many:
assumes trans R
shows sorted-wrt $R(x \# y \# x s) \longleftrightarrow(x, y) \in R \wedge$ sorted-wrt $R(y \# x s)$
by (force intro: sorted-wrt.intros transD[OF assms] elim: sorted-wrt.cases)
lemma sorted-wrt-imp-le-last:
assumes sorted-wrt R xs xs $\neq[] x \in$ set xs $x \neq$ last $x s$
shows $\quad(x$, last $x s) \in R$
using assms by induction auto
lemma sorted-wrt-append:
assumes sorted-wrt R xs sorted-wrt R ys
$\bigwedge x y . x \in$ set $x s \Longrightarrow y \in$ set $y s \Longrightarrow(x, y) \in R$ trans R
shows sorted-wrt R (xs @ ys)
using assms by (induction xs) (auto simp: sorted-wrt-Cons)
lemma sorted-wrt-snoc:
assumes sorted-wrt R xs (last xs, y) $\in R$ trans R
shows sorted-wrt R (xs @ [y])
using $\operatorname{assms}(1,2)$
proof induction
case (2 xs x)
show ?case
proof (cases xs = [])
case False
with 2 have $(z, y) \in R$ if $z \in$ set $x s$ for z using that by (cases $z=$ last $x s$)
(auto intro: assms transD[OF assms(3), OF sorted-wrt-imp-le-last $[O F$
2(1)]])
from False have *: last xs \in set xs by simp
moreover from 2 False have $(x, y) \in R$ by (intro trans $D[O F \operatorname{assms}(3)$ 2(2)[OF
*]]) simp
ultimately show ?thesis using 2 False
by (auto intro!: sorted-wrt.intros)
qed (insert 2, auto intro: sorted-wrt.intros)
qed simp-all
lemma sorted-wrt-conv-nth:
sorted-wrt R xs $\longleftrightarrow(\forall i j . i<j \wedge j<$ length $x s \longrightarrow(x s!i, x s!j) \in R)$
by (induction xs) (auto simp: sorted-wrt-Cons nth-Cons set-conv-nth split: nat.splits)

1.3 Linear orderings

```
definition linorder-on :: ' \(a\) set \(\Rightarrow\left({ }^{\prime} a \times ' a\right)\) set \(\Rightarrow\) bool where
    linorder-on \(A R \longleftrightarrow\) refl-on \(A R \wedge\) antisym \(R \wedge\) trans \(R \wedge\) total-on \(A R\)
lemma linorder-on-cases:
    assumes linorder-on \(A R x \in A y \in A\)
    shows \(\quad x=y \vee((x, y) \in R \wedge(y, x) \notin R) \vee((y, x) \in R \wedge(x, y) \notin R)\)
    using assms by (auto simp: linorder-on-def refl-on-def total-on-def antisym-def)
lemma sorted-wrt-linorder-imp-index-le:
    assumes linorder-on \(A R\) set \(x s \subseteq A\) sorted-wrt \(R\) xs
    \(x \in\) set \(x s y \in\) set \(x s(x, y) \in R\)
    shows index \(x s x \leq\) index \(x s\) y
proof -
    define \(i j\) where \(i=\) index xs \(x\) and \(j=\) index xs \(y\)
    \{
        assume \(j<i\)
        moreover from assms have \(i<\) length xs by (simp add: i-def)
    ultimately have \((x s!j, x s!i) \in R\) using assms by (auto simp: sorted-wrt-conv-nth)
    with assms have \(x=y\) by (auto simp: linorder-on-def antisym-def \(i\)-def \(j\)-def)
    \}
    hence \(i \leq j \vee x=y\) by linarith
    thus ?thesis by (auto simp: i-def \(j\)-def)
qed
lemma sorted-wrt-linorder-index-le-imp:
    assumes linorder-on \(A R\) set \(x s \subseteq A\) sorted-wrt \(R\) xs
    \(x \in\) set \(x s y \in\) set \(x s\) index \(x s x \leq i n d e x\) xs \(y\)
    shows \(\quad(x, y) \in R\)
proof (cases \(x=y\) )
    case False
    define \(i j\) where \(i=\) index xs \(x\) and \(j=\) index xs \(y\)
    from False and assms have \(i \neq j\) by (simp add: \(i\)-def \(j\)-def)
    with \(\langle\) index xs \(x \leq\) index xs \(y\rangle\) have \(i<j\) by (simp add: \(i\)-def \(j\)-def)
    moreover from assms have \(j<\) length xs by (simp add: \(j\)-def)
    ultimately have (xs ! i, xs ! j) \(\in R\) using assms(3)
    by (auto simp: sorted-wrt-conv-nth)
    with assms show ?thesis by (simp-all add: i-def \(j\)-def)
qed (insert assms, auto simp: linorder-on-def refl-on-def)
lemma sorted-wrt-linorder-index-le-iff:
    assumes linorder-on \(A R\) set xs \(\subseteq A\) sorted-wrt \(R\) xs
        \(x \in\) set xs \(y \in\) set \(x s\)
    shows index xs \(x \leq\) index xs \(y \longleftrightarrow(x, y) \in R\)
    using sorted-wrt-linorder-index-le-imp[OF assms] sorted-wrt-linorder-imp-index-le[OF
assms]
    by blast
```

lemma sorted-wrt-linorder-index-less-iff:

```
    assumes linorder-on A R set xs }\subseteqA\mathrm{ sorted-wrt R xs
        x\in set xs }y\in\mathrm{ set xs
    shows index xs x< index xs y \longleftrightarrow (y,x)\not\inR
    by (subst sorted-wrt-linorder-index-le-iff[OF assms(1-3) assms(5,4), symmet-
ric]) auto
lemma sorted-wrt-distinct-linorder-nth:
    assumes linorder-on A R set xs \subseteqA sorted-wrt R xs distinct xs
        i<length xs j< length xs
    shows (xs!i,xs!j)\inR\longleftrightarrow \longleftrightarrow <j
proof (cases i j rule: linorder-cases)
    case less
    with assms show ?thesis by (simp add: sorted-wrt-conv-nth)
next
    case equal
    from assms have xs !i set xs xs ! j\in set xs by (auto simp: set-conv-nth)
    with assms(2) have xs ! i \in A xs ! j }\inA\mathrm{ ( by blast +
    with <linorder-on A R` and equal show ?thesis by (simp add:linorder-on-def
refl-on-def)
next
    case greater
    with assms have (xs!j, xs!i) \inR by (auto simp add: sorted-wrt-conv-nth)
    moreover from assms and greater have xs !i\not= xs!j by (simp add: nth-eq-iff-index-eq)
    ultimately show ?thesis using <linorder-on A R> greater
        by (auto simp: linorder-on-def antisym-def)
qed
```


1.4 Converting a list into a linear ordering

definition linorder-of-list : : ' a list $\Rightarrow(' a \times$ ' $a)$ set where linorder-of-list $x s=\{(a, b) . a \in$ set xs $\wedge b \in$ set xs \wedge index xs $a \leq$ index xs $b\}$
lemma linorder-linorder-of-list [intro, simp]: assumes distinct xs
shows linorder-on (set xs) (linorder-of-list xs)
unfolding linorder-on-def using assms
by (auto simp: refl-on-def antisym-def trans-def total-on-def linorder-of-list-def)
lemma sorted-wrt-linorder-of-list [intro, simp]:
distinct $x s \Longrightarrow$ sorted-wrt (linorder-of-list xs) xs
by (auto simp: sorted-wrt-conv-nth linorder-of-list-def index-nth-id)

1.5 Insertion sort

primrec insert-wrt :: (' $a \times$ ' $a)$ set $\Rightarrow{ }^{\prime} a \Rightarrow$ 'a list $\Rightarrow{ }^{\prime} a$ list where
insert-wrt $R x[]=[x]$
\mid insert-wrt $R x(y \# y s)=($ if $(x, y) \in R$ then $x \# y \#$ ys else $y \#$ insert-wrt R
x ys)
lemma set-insert-wrt [simp]: set (insert-wrt R x xs) $=$ insert $x($ set $x s)$

```
    by (induction xs) auto
lemma mset-insert-wrt [simp]: mset (insert-wrt R x xs) = add-mset x (mset xs)
    by (induction xs) auto
lemma length-insert-wrt [simp]: length (insert-wrt R x xs) = Suc (length xs)
    by (induction xs) simp-all
definition insort-wrt :: (' }a\times\mathrm{ `' a) set }=>\mp@subsup{}{}{\prime}'a list => ' 'a list where
    insort-wrt R xs = foldr (insert-wrt R) xs []
lemma set-insort-wrt [simp]: set (insort-wrt R xs) = set xs
    by (induction xs) (simp-all add: insort-wrt-def)
lemma mset-insort-wrt [simp]: mset (insort-wrt R xs) = mset xs
    by (induction xs) (simp-all add: insort-wrt-def)
lemma length-insort-wrt [simp]: length (insort-wrt R xs) = length xs
    by (induction xs) (simp-all add: insort-wrt-def)
lemma sorted-wrt-insert-wrt [intro]:
    linorder-on A R\Longrightarrow set (x # xs)\subseteqA\Longrightarrow
        sorted-wrt R xs \Longrightarrow sorted-wrt R (insert-wrt R x xs)
proof (induction xs)
    case (Cons y ys)
    from Cons.prems have (x,y)\inR\vee (y,x) \inR
        by (cases }x=y\mathrm{ ) (auto simp: linorder-on-def refl-on-def total-on-def)
    with Cons show ?case
        by (auto simp: sorted-wrt-Cons intro: transD simp: linorder-on-def)
qed auto
lemma sorted-wrt-insort [intro]:
    assumes linorder-on A R set xs \subseteqA
    shows sorted-wrt R (insort-wrt R xs)
proof -
    from assms have set (insort-wrt R xs) = set xs ^ sorted-wrt R (insort-wrt R xs)
    by (induction xs) (auto simp: insort-wrt-def intro!: sorted-wrt-insert-wrt)
    thus ?thesis ..
qed
lemma distinct-insort-wrt [simp]: distinct (insort-wrt R xs) \longleftrightarrow distinct xs
    by (simp add: distinct-count-atmost-1)
lemma sorted-wrt-linorder-unique:
    assumes linorder-on A R mset xs = mset ys sorted-wrt R xs sorted-wrt R ys
    shows }xs=y
proof -
    from <mset xs = mset ys` have length xs = length ys by (rule mset-eq-length)
    from this and assms(2-) show ?thesis
```

```
    proof (induction xs ys rule: list-induct2)
    case (Cons x xs y ys)
    have set (x# xs) = set-mset (mset (x# xs)) by simp
    also have mset (x#xs)=mset (y#ys) by fact
    also have set-mset ... = set (y#ys) by simp
    finally have eq: set (x # xs) = set (y # ys).
    have }x=
    proof (rule ccontr)
        assume }x\not=
        with eq have }x\in\mathrm{ set ys }y\in\mathrm{ set xs by auto
        with Cons.prems and assms(1) and eq have (x,y)\inR (y,x)\inR
            by (auto simp: sorted-wrt-Cons)
        with assms(1) have }x=y\mathrm{ by (auto simp: linorder-on-def antisym-def)
        with }\langlex\not=y\rangle\mathrm{ show False by contradiction
    qed
    with Cons show ?case by (auto simp: sorted-wrt-Cons)
    qed auto
qed
```


1.6 Obtaining a sorted list of a given set

```
definition sorted-wrt-list-of-set where
    sorted-wrt-list-of-set \(R A=\)
    (if finite \(A\) then (THE xs. set \(x s=A \wedge\) distinct \(x s \wedge\) sorted-wrt \(R\) xs) else [])
lemma mset-remdups: mset (remdups xs) \(=\) mset-set (set xs)
proof (induction \(x s\) )
    case (Cons \(x\) xs)
    thus ?case by (cases \(x \in\) set xs) (auto simp: insert-absorb)
qed auto
lemma sorted-wrt-list-set:
    assumes linorder-on \(A R\) set \(x s \subseteq A\)
    shows sorted-wrt-list-of-set \(R(\) set \(x s)=\) insort-wrt \(R(\) remdups xs)
proof -
    have sorted-wrt-list-of-set \(R(\) set xs \()=\)
                            (THE xsa. set xsa \(=\) set \(x s \wedge\) distinct xsa \(\wedge\) sorted-wrt \(R\) xsa)
    by (simp add: sorted-wrt-list-of-set-def)
    also have \(\ldots=\) insort-wrt \(R\) (remdups xs)
    proof (rule the-equality)
    fix \(x s a\) assume xsa: set xsa \(=\) set \(x s \wedge\) distinct xsa \(\wedge\) sorted-wrt \(R\) xsa
    from \(x s a\) have mset \(x s a=m s e t-s e t ~(s e t ~ x s a) ~ b y ~(s u b s t ~ m s e t-s e t-s e t) ~ s i m p-a l l ~\)
    also from \(x s a\) have set \(x s a=\) set \(x s\) by simp
    also have mset-set \(\ldots=\) mset (remdups xs) by (simp add: mset-remdups)
    finally show \(x s a=\) insort-wrt \(R\) (remdups xs) using xsa assms
        by (intro sorted-wrt-linorder-unique \([O F \operatorname{assms}(1)])\)
            (auto intro!: sorted-wrt-insort)
    qed (insert assms, auto intro!: sorted-wrt-insort)
```

finally show ？thesis．
qed
lemma linorder－sorted－wrt－exists：
assumes linorder－on $A R$ finite $B B \subseteq A$
shows \exists xs．set $x s=B \wedge$ distinct $x s \wedge$ sorted－wrt R xs
proof－
from〈finite $B\rangle$ obtain $x s$ where set $x s=B$ distinct $x s$
using finite－distinct－list by blast
hence set（insort－wrt $R x s$ ）$=B$ distinct（insort－wrt R xs）by simp－all
moreover have sorted－wrt R（insort－wrt R xs）
using assms 〈set xs $=B$ b by（intro sorted－wrt－insort［OF assms（1）］）auto
ultimately show ？thesis by blast
qed
lemma linorder－sorted－wrt－list－of－set：
assumes linorder－on $A R$ finite $B B \subseteq A$
shows set（sorted－wrt－list－of－set $R \quad B)=B$ distinct（sorted－wrt－list－of－set $R B$ ） sorted－wrt R（sorted－wrt－list－of－set $R B$ ）
proof－
have \exists ！xs．set $x s=B \wedge$ distinct $x s \wedge$ sorted－wrt R xs
proof（rule ex－ex1I）
show \exists xs．set $x s=B \wedge$ distinct $x s \wedge$ sorted－wrt R xs
by（rule linorder－sorted－wrt－exists assms）＋
next
fix $x s$ ys assume set $x s=B \wedge$ distinct $x s \wedge$ sorted－wrt R xs
set ys $=B \wedge$ distinct ys \wedge sorted－wrt R ys
thus $x s=y s$
by（intro sorted－wrt－linorder－unique $[O F \operatorname{assms}(1)]$ ）（auto simp：set－eq－iff－mset－eq－distinct）
qed
from theI＇$[$ OF this］show set（sorted－wrt－list－of－set $R \quad B$ ）$=B$
distinct（sorted－wrt－list－of－set $R B$ ）sorted－wrt R（sorted－wrt－list－of－set $R B$ ）
by（simp－all add：sorted－wrt－list－of－set－def 〈finite $B\rangle$ ）
qed
lemma sorted－wrt－list－of－set－eqI：
assumes linorder－on $B R A$ set $x s=A$ distinct xs sorted－wrt R xs
shows sorted－wrt－list－of－set $R A=x s$
proof（rule sorted－wrt－linorder－unique）
show linorder－on $B R$ by fact
let ？ys $=$ sorted－wrt－list－of－set $R A$
have fin［simp］：finite A by（simp－all add：assms（3）［symmetric］）
have $*$ ：distinct ？ys set ？ys $=A$ sorted－wrt R ？ys
by（rule linorder－sorted－wrt－list－of－set［OF assms（1）］fin assms）＋
from assms $*$ show mset ？ys $=$ mset xs
by（subst set－eq－iff－mset－eq－distinct［symmetric］）simp－all
show sorted－wrt R ？ys by fact
qed fact＋

1.7 Rank of an element in an ordering

The 'rank' of an element in a set w.r.t. an ordering is how many smaller elements exist. This is particularly useful in linear orders, where there exists a unique n-th element for every n.
definition linorder-rank where
linorder-rank $R A x=$ card $\{y \in A-\{x\} .(y, x) \in R\}$
lemma linorder-rank-le:
assumes finite A
shows linorder-rank $R A x \leq \operatorname{card} A$
unfolding linorder-rank-def using assms
by (rule card-mono) auto
lemma linorder-rank-less:
assumes finite $A x \in A$
shows linorder-rank $R A x<\operatorname{card} A$
proof -
have linorder-rank $R A x \leq \operatorname{card}(A-\{x\})$
unfolding linorder-rank-def using assms by (intro card-mono) auto
also from assms have $\ldots<\operatorname{card} A$ by (intro psubset-card-mono) auto
finally show?thesis .
qed
lemma linorder-rank-union:
assumes finite A finite $B A \cap B=\{ \}$
shows linorder-rank $R(A \cup B) x=$ linorder-rank $R A x+$ linorder-rank $R B$
x
proof -
have linorder-rank $R(A \cup B) x=\operatorname{card}\{y \in(A \cup B)-\{x\} .(y, x) \in R\}$
by (simp add: linorder-rank-def)
also have $\{y \in(A \cup B)-\{x\} .(y, x) \in R\}=\{y \in A-\{x\} .(y, x) \in R\} \cup\{y \in B-\{x\}$. $(y, x) \in R\}$ by blast
also have card $\ldots=$ linorder-rank $R A x+$ linorder-rank $R B x$ unfolding linorder-rank-def
using assms by (intro card-Un-disjoint) auto
finally show ?thesis .
qed
lemma linorder-rank-empty [simp]: linorder-rank $R\} x=0$
by (simp add: linorder-rank-def)
lemma linorder-rank-singleton:
linorder-rank $R\{y\} x=($ if $x \neq y \wedge(y, x) \in R$ then 1 else 0$)$
proof -
have linorder-rank $R\{y\} x=$ card $\{z \in\{y\}-\{x\} .(z, x) \in R\}$ by (simp add: linorder-rank-def)
also have $\{z \in\{y\}-\{x\} .(z, x) \in R\}=($ if $x \neq y \wedge(y, x) \in R$ then $\{y\}$ else $\{ \})$ by auto
also have card $\ldots=($ if $x \neq y \wedge(y, x) \in R$ then 1 else 0$)$ by simp finally show ?thesis.
qed
lemma linorder-rank-insert:
assumes finite A y $\notin A$
shows linorder-rank R (insert y A) $x=$
(if $x \neq y \wedge(y, x) \in R$ then 1 else 0$)+$ linorder-rank $R A x$
using linorder-rank-union $[$ of $\{y\} A R x]$ assms by (auto simp: linorder-rank-singleton)
lemma linorder-rank-mono:
assumes linorder-on $B R$ finite $A A \subseteq B(x, y) \in R$
shows linorder-rank $R A x \leq$ linorder-rank $R A y$
unfolding linorder-rank-def
proof (rule card-mono)
from assms have trans: trans R and antisym: antisym R by (simp-all add:
linorder-on-def)
from assms antisym show $\{y \in A-\{x\} .(y, x) \in R\} \subseteq\{y a \in A-\{y\} .(y a$, $y) \in R\}$
by (auto intro: transD[OF trans] simp: antisym-def)
qed (insert assms, simp-all)
lemma linorder-rank-strict-mono:
assumes linorder-on $B R$ finite $A A \subseteq B y \in A(y, x) \in R x \neq y$
shows linorder-rank R A $y<$ linorder-rank $R A x$
proof -
from assms(1) have trans: trans R by (simp add: linorder-on-def)
from assms have $*:(x, y) \notin R$ by (auto simp: linorder-on-def antisym-def)
from this and $\langle(y, x) \in R\rangle$ have $\{z \in A-\{y\} .(z, y) \in R\} \subseteq\{z \in A-\{x\} .(z, x) \in$ $R\}$
by (auto intro: transD[OF trans])
moreover from $*$ and assms have $y \notin\{z \in A-\{y\} .(z, y) \in R\} y \in\{z \in A-\{x\}$.
$(z, x) \in R\}$
by auto
ultimately have $\{z \in A-\{y\} .(z, y) \in R\} \subset\{z \in A-\{x\} .(z, x) \in R\}$ by blast
thus ?thesis using assms unfolding linorder-rank-def by (intro psubset-card-mono)
auto
qed
lemma linorder-rank-le-iff: assumes linorder-on $B R$ finite $A A \subseteq B x \in A y \in A$
shows linorder-rank $R A x \leq$ linorder-rank $R A y \longleftrightarrow(x, y) \in R$
proof (cases $x=y$)
case True
with assms show ?thesis by (auto simp: linorder-on-def refl-on-def)
next
case False
from $\operatorname{assms}(1)$ have trans: trans R by (simp-all add: linorder-on-def)
from assms have $x \in B y \in B$ by auto
with 〈linorder-on $B R$ and False have $((x, y) \in R \wedge(y, x) \notin R) \vee((y, x) \in R$ $\wedge(x, y) \notin R)$
by (fastforce simp: linorder-on-def antisym-def total-on-def)
thus ?thesis
proof
assume $(x, y) \in R \wedge(y, x) \notin R$
with assms show ?thesis by (auto intro!: linorder-rank-mono)
next
assume $*:(y, x) \in R \wedge(x, y) \notin R$
with linorder-rank-strict-mono[OF assms(1-3), of $y x]$ assms False
show ?thesis by auto
qed
qed
lemma linorder-rank-eq-iff:
assumes linorder-on $B R$ finite $A \subseteq B x \in A y \in A$
shows linorder-rank $R A x=$ linorder-rank $R A y \longleftrightarrow x=y$
proof
assume linorder-rank $R A x=$ linorder-rank $R A y$
with linorder-rank-le-iff[OF assms(1-5)] linorder-rank-le-iff[OF assms(1-3)
$\operatorname{assms}(5,4)$]
have $(x, y) \in R(y, x) \in R$ by simp-all
with assms show $x=y$ by (auto simp: linorder-on-def antisym-def)
qed simp-all
lemma linorder-rank-set-sorted-wrt:
assumes linorder-on $B R$ set $x s \subseteq B$ sorted-wrt R xs $x \in$ set xs distinct xs
shows linorder-rank R (set xs) $x=$ index xs x
proof -
define j where $j=$ index xs x
from assms have $j: j<$ length $x s$ by (simp add: j-def)
have $*: x=y \vee((x, y) \in R \wedge(y, x) \notin R) \vee((y, x) \in R \wedge(x, y) \notin R)$ if $y \in$ set $x s$ for y
using linorder-on-cases $[O F \operatorname{assms}(1)$, of $x y]$ assms that by auto
from assms have $\{y \in$ set $x s-\{x\} .(y, x) \in R\}=\{y \in$ set $x s-\{x\}$. index xs $y<$ index xs $x\}$
by (auto simp: sorted-wrt-linorder-index-less-iff[OF assms(1-3)] dest: *)
also have $\ldots=\{y \in$ set x s. index xs $y<j\}$ by (auto simp: j-def)
also have $\ldots=(\lambda i . x s!i)^{\prime}\{i . i<j\}$
proof safe
fix y assume $y \in$ set $x s$ index xs $y<j$
moreover from this and j have $y=x s$! index xs y by simp
ultimately show $y \in(!) x s$ ' $\{i . i<j\}$ by blast
qed (insert assms j, auto simp: index-nth-id)
also from assms and j have card $\ldots=\operatorname{card}\{i . i<j\}$
by (intro card-image) (auto simp: inj-on-def nth-eq-iff-index-eq)
also have $\ldots=j$ by simp
finally show ?thesis by (simp only: j-def linorder-rank-def)
qed

```
lemma bij-betw-linorder-rank:
    assumes linorder-on B R finite A A\subseteqB
    shows bij-betw (linorder-rank R A) A {..<card A}
proof -
    define xs where xs = sorted-wrt-list-of-set R A
    note xs = linorder-sorted-wrt-list-of-set[OF assms, folded xs-def]
    from <distinct xs〉 have len-xs: length xs = card A
    by (subst <set xs = A>[symmetric]) (auto simp: distinct-card)
    have rank: linorder-rank R (set xs) x = index xs x if x\inA for x
        using linorder-rank-set-sorted-wrt[OF assms(1), of xs x] assms that xs by
simp-all
    from xs len-xs show ?thesis
        by (intro bij-betw-byWitness[where f}\mp@subsup{f}{}{\prime}=\lambdai.xs!i]
            (auto simp: rank index-nth-id intro!: nth-mem)
qed
```


1.8 The bijection between linear orderings and lists

```
theorem bij-betw-linorder-of-list:
    assumes finite \(A\)
    shows bij-betw linorder-of-list (permutations-of-set \(A\) ) \(\{R\). linorder-on \(A R\}\)
proof (intro bij-betw-byWitness[where \(f^{\prime}=\lambda R\). sorted-wrt-list-of-set \(\left.R A\right]\) ballI
subsetI,
        goal-cases)
    case (1 xs)
    thus ?case by (intro sorted-wrt-list-of-set-eqI) (auto simp: permutations-of-set-def)
next
    case (2 \(R\) )
    hence \(R\) : linorder-on \(A R\) by simp
    from \(R\) have \(i n-R: x \in A y \in A\) if \((x, y) \in R\) for \(x y\) using that
        by (auto simp: linorder-on-def refl-on-def)
    let ? \(\mathrm{xs}=\) sorted-wrt-list-of-set \(R A\)
    have xs: distinct ? xs set ?xs \(=A\) sorted-wrt \(R\) ? xs
    by (rule linorder-sorted-wrt-list-of-set \([O F R]\) assms order.refl) +
    thus ?case using sorted-wrt-linorder-index-le-iff [OF R, of ?xs]
    by (auto simp: linorder-of-list-def dest: in-R)
next
    case (4 \(x s\) )
    then obtain \(R\) where \(R\) : linorder-on \(A R\) and \(x s[\) simp \(]\) : xs \(=\) sorted-wrt-list-of-set
\(R A\) by auto
    let ? \(\mathrm{xs}=\) sorted-wrt-list-of-set \(R A\)
    have xs: distinct ?xs set ?xs \(=A\) sorted-wrt \(R\) ?xs
    by (rule linorder-sorted-wrt-list-of-set \([O F R]\) assms order.refl \()+\)
    thus ?case by auto
qed (auto simp: permutations-of-set-def)
corollary card-finite-linorders:
    assumes finite \(A\)
```

```
    shows card {R. linorder-on A R} = fact (card A)
proof -
    have card {R. linorder-on A R} = card (permutations-of-set A)
    by (rule sym, rule bij-betw-same-card [OF bij-betw-linorder-of-list[OF assms]])
    also from assms have ... = fact (card A) by (rule card-permutations-of-set)
    finally show?thesis
qed
end
```


2 Lower bound on costs of comparison-based sorting

theory Comparison-Sort-Lower-Bound
imports
Complex-Main
Linorder-Relations
Stirling-Formula.Stirling-Formula
Landau-Symbols.Landau-More
begin

2.1 Abstract description of sorting algorithms

We have chosen to model a sorting algorithm in the following way: A sorting algorithm takes a list with distinct elements and a linear ordering on these elements, and it returns a list with the same elements that is sorted w.r.t. the given ordering.
The use of an explicit ordering means that the algorithm must look at the ordering, i. e. it has to use pair-wise comparison of elements, since all the information that is relevant for producing the correct sorting is in the ordering; the elements themselves are irrelevant.

Furthermore, we record the number of comparisons that the algorithm makes by not giving it the relation explicitly, but in the form of a comparison oracle that may be queried.
A sorting algorithm (or 'sorter') for a fixed input list (but for arbitrary orderings) can then be written as a recursive datatype that is either the result (the sorted list) or a comparison query consisting of two elements and a continuation that maps the result of the comparison to the remaining computation.

```
datatype 'a sorter = Return 'a list | Query 'a 'a bool }=>\mp@subsup{|}{}{\prime}a\mathrm{ a sorter
```

Cormen et al. [1] use a similar 'decision tree' model where an sorting algorithm for lists of fixed size n is modelled as a binary tree where each node is a comparison of two elements. They also demand that every leaf in the tree be reachable in order to avoid 'dead' subtrees (if the algorithm makes
redundant comparisons, there may be branches that can never be taken). Then, the worst-case number of comparisons made is simply the height of the tree.
We chose a subtly different model that does not have this restriction on the algorithm but instead uses a more semantic way of counting the worst-case number of comparisons: We simply use the maximum number of comparisons that occurs for any of the (finitely many) inputs.
We therefore first define a function that counts the number of queries for a specific ordering and then a function that counts the number of queries in the worst case (ranging over a given set of allowed orderings; typically, this will be the set of all linear orders on the list).

```
primrec count-queries \(::\left({ }^{\prime} a \times{ }^{\prime} a\right)\) set \(\Rightarrow{ }^{\prime} a\) sorter \(\Rightarrow\) nat where
    count-queries - (Return -) \(=0\)
\(\mid\) count-queries \(R(\) Query a bf) \(=\) Suc (count-queries \(R(f((a, b) \in R)))\)
definition count-wc-queries :: ( \(\left.a \times{ }^{\prime} a\right)\) set set \(\Rightarrow{ }^{\prime} a\) sorter \(\Rightarrow\) nat where
    count-wc-queries Rs sorter \(=(\) if \(R s=\{ \}\) then 0 else Max \(((\lambda R\). count-queries \(R\)
sorter) ' \(R s\) )
lemma count-wc-queries-empty [simp]: count-wc-queries \(\}\) sorter \(=0\)
    by (simp add: count-wc-queries-def)
lemma count-wc-queries-aux:
    assumes \(\bigwedge R . R \in R s \Longrightarrow\) sorter \(=\) sorter \(^{\prime} R R s \subseteq R s^{\prime}\) finite \(R s^{\prime}\)
    shows count-wc-queries Rs sorter \(\leq \operatorname{Max}\left(\left(\lambda R\right.\right.\). count-queries \(R\left(\right.\) sorter \(\left.\left.^{\prime} R\right)\right)\) '
\(R s^{\prime}\) )
proof (cases Rs \(=\{ \}\) )
    case False
    hence count-wc-queries Rs sorter \(=\operatorname{Max}((\lambda R\). count-queries \(R\) sorter \()\) ' \(R s)\)
        by (simp add: count-wc-queries-def)
    also have \((\lambda R \text {. count-queries } R \text { sorter })^{\prime} R s=\left(\lambda R\right.\). count-queries \(R\left(\right.\) sorter \(\left.\left.^{\prime} R\right)\right)\)
    ‘ Rs
        by (intro image-cong refl) (simp-all add: assms)
    also have Max \(\ldots \leq \operatorname{Max}\left(\left(\lambda R \text {. count-queries } R\left(\text { sorter' }^{\prime} R\right)\right)^{\prime} R s^{\prime}\right)\) using False
        by (intro Max-mono assms image-mono finite-imageI) auto
    finally show ?thesis .
qed simp-all
primrec eval-sorter :: (' \(a \times\) ' \(a)\) set \(\Rightarrow{ }^{\prime} a\) sorter \(\Rightarrow{ }^{\prime} a\) list where
    eval-sorter \(-(\) Return ys \()=y s\)
| eval-sorter \(R(\) Query abf) \(=\) eval-sorter \(R(f((a, b) \in R))\)
```

We now get an obvious bound on the maximum number of different results that a given sorter can produce.

```
lemma card-range-eval-sorter:
    assumes finite Rs
    shows card \(\left((\lambda R\right.\). eval-sorter \(\left.R e){ }^{\prime} R s\right) \leq{ }^{2}\) count-wc-queries Rse
```

```
using assms
proof (induction e arbitrary: Rs)
    case (Return xs Rs)
    have *:(\lambdaR. eval-sorter R (Return xs))' Rs=(if Rs={} then {} else {xs})
by auto
    show ?case by (subst *) auto
next
    case (Query a b fRs)
    have f True \in range ff False \in range f by simp-all
    note IH = this [THEN Query.IH]
    let ?Rs1 = {R\inRs. (a,b) \inR} and ?Rs2 = {R\inRs. (a,b)\not\inR}
    let ?A = (\lambdaR. eval-sorter R (f True))' ?Rs1 and ?B = (\lambdaR. eval-sorter R (f
False))'?Rs2
    from Query.prems have fin: finite ?Rs1 finite ?Rs2 by simp-all
    have *:(\lambdaR. eval-sorter R (Query a bf))'Rs\subseteq?A\cup?B
    proof (intro subsetI, elim imageE, goal-cases)
        case (1 xs R)
        thus ?case by (cases (a,b)\inR) auto
    qed
    show ?case
    proof (cases Rs={})
    case False
    have card ((\lambdaR. eval-sorter R (Query a b f))'Rs)\leqcard (?A\cup?B)
        by (intro card-mono finite-UnI finite-imageI fin *)
    also have ... \leq card ?A + card ?B by (rule card-Un-le)
    also have ... \leq 2 ^count-wc-queries ?Rs1 (f True) + 2 ^count-wc-queries
?Rs2 (f False)
    by (intro add-mono IH fin)
    also have count-wc-queries ?Rs1 (f True) \leqMax (( }\lambdaR\mathrm{ . count-queries R (f
((a,b)\inR)))' Rs)
    by (intro count-wc-queries-aux Query.prems) auto
    also have count-wc-queries ?Rs2 (f False) \leq Max (( }\lambdaR\mathrm{ . count-queries R ( }
((a,b)\inR)))`Rs)
    by (intro count-wc-queries-aux Query.prems) auto
    also have 2` ... + 2^ .. = (2`Suc ... :: nat) by simp
    also have Suc (Max ((\lambdaR. count-queries R (f ((a,b)\inR)))'Rs)) =
                    Max (Suc ' ((\lambdaR. count-queries R (f ((a,b)\inR)))' Rs)) using False
            by (intro mono-Max-commute finite-imageI Query.prems) (auto simp: inc-
seq-def)
    also have Suc ' ((\lambdaR. count-queries R (f ((a,b)\inR)))' Rs)=
                                    (\lambdaR. Suc (count-queries R (f ((a,b)\inR))))' Rs by (simp add:
image-image)
    also have Max ... = count-wc-queries Rs (Query a b f) using False
            by (auto simp add: count-wc-queries-def)
    finally show ?thesis by - simp-all
    qed simp-all
qed
```

The following predicate describes what constitutes a valid sorting result for a given ordering and a given input list. Note that when the ordering is linear, the result is actually unique.
definition is-sorting $::\left({ }^{\prime} a \times{ }^{\prime} a\right)$ set \Rightarrow 'a list \Rightarrow ' a list \Rightarrow bool where
is-sorting R xs ys $\longleftrightarrow($ mset $x s=$ mset ys $) \wedge$ sorted-wrt R ys

2.2 Lower bounds on number of comparisons

For a list of n distinct elements, there are n ! linear orderings on n elements, each of which leads to a different result after sorting the original list. Since a sorter can produce at most 2^{k} different results with k comparisons, we get the bound $2^{k} \geq n!$:

```
theorem
    fixes sorter :: 'a sorter and xs :: 'a list
    assumes distinct: distinct xs
    assumes sorter: \R. linorder-on (set xs) R\Longrightarrowis-sorting R xs (eval-sorter R
sorter)
    defines Rs \equiv{R. linorder-on (set xs) R}
    shows two-power-count-queries-ge: fact (length xs) \leq (2 ^ count-wc-queries Rs
sorter :: nat)
    and count-queries-ge: log 2 (fact (length xs)) \leq real (count-wc-queries
Rs sorter)
proof -
    have Rs\subseteq Pow (set xs }\times\mathrm{ set xs) by (auto simp:Rs-def linorder-on-def refl-on-def)
    hence fin: finite Rs by (rule finite-subset) simp-all
    from assms have fact (length xs) = card (permutations-of-set (set xs))
        by (simp add: distinct-card)
    also have permutations-of-set (set xs)}\subseteq(\lambdaR\mathrm{ . eval-sorter R sorter) 'Rs
    proof (rule subsetI, goal-cases)
        case (1 ys)
        define }R\mathrm{ where }R=\mathrm{ linorder-of-list ys
        define zs where zs = eval-sorter R sorter
        from 1 and distinct have mset-ys: mset ys = mset xs
            by (auto simp: set-eq-iff-mset-eq-distinct permutations-of-set-def)
    from 1 have *: linorder-on (set xs) R unfolding R-def using linorder-linorder-of-list[of
ys]
            by (simp add: permutations-of-set-def)
            from sorter[OF this] have mset xs = mset zs sorted-wrt R zs
                by (simp-all add: is-sorting-def zs-def)
    moreover from 1 have sorted-wrt R ys unfolding R-def
        by (intro sorted-wrt-linorder-of-list) (simp-all add: permutations-of-set-def)
    ultimately have zs=ys
            by (intro sorted-wrt-linorder-unique[OF *]) (simp-all add: mset-ys)
    moreover from * have R\inRs by (simp add: Rs-def)
    ultimately show ?case unfolding zs-def by blast
    qed
    hence card (permutations-of-set (set xs)) \leq card (( }\lambdaR\mathrm{ . eval-sorter R sorter) '
Rs)
```

```
    by (intro card-mono finite-imageI fin)
    also from fin have ... \leq2^ count-wc-queries Rs sorter by (rule card-range-eval-sorter)
    finally show *: fact (length xs)\leq(2 ^ count-wc-queries Rs sorter :: nat) .
    have ln (fact (length xs)) = ln (real (fact (length xs))) by simp
    also have .. \leqln (real (2 ^ count-wc-queries Rs sorter))
    proof (subst ln-le-cancel-iff)
    show real (fact (length xs)) \leqreal (2` count-wc-queries Rs sorter)
        by (subst of-nat-le-iff) (rule *)
    qed simp-all
    also have ... = real (count-wc-queries Rs sorter) * ln 2 by (simp add:ln-realpow)
    finally have real (count-wc-queries Rs sorter) \geqln (fact (length xs)) / ln 2
    by (simp add: field-simps)
    also have ln (fact (length xs)) / ln 2 = log 2 (fact (length xs)) by (simp add:
log-def)
    finally show **: log 2 (fact (length xs)) \leq real (count-wc-queries Rs sorter).
qed
lemma ln-fact-bigo: (\lambdan.ln (fact n) - (ln (2*pi*n)/2 + n*ln n-n))\in
O(\lambdan.1/n)
    and asymp-equiv-ln-fact [asymp-equiv-intros]: (\lambdan.ln (fact n)) ~[at-top] (\lambdan.n
* ln n)
proof -
    include asymp-equiv-notation
    define f}\mathrm{ where f=( \n. ln (2* pi* real n)/2 + real n*ln (real n) - real n)
    have eventually ( }\lambdan.ln(fact n) - fn \in{0..1/(12*real n)}) at-to
        using eventually-gt-at-top[of 1::nat]
    proof eventually-elim
        case (elim n)
        with ln-fact-bounds[of n] show ?case by (simp add: f-def)
    qed
    hence eventually ( }\lambdan.\operatorname{norm}(\operatorname{ln}(\mathrm{ fact n) - f n) < (1/12)* norm (1 / real n))
at-top
    using eventually-gt-at-top[of 0::nat] by eventually-elim (simp-all add: field-simps)
    thus }(\lambdan.ln(fact n) - fn)\inO(\lambdan. 1 / real n
    using bigoI[of \lambdan.ln (fact n) - fn 1/12 \lambdan. 1 / real n] by simp
    also have (\lambdan.1 / real n)\ino(f) unfolding f-def by (intro smallo-real-nat-transfer)
simp
    finally have (\lambdan.fn + (ln (fact n) - fn)) ~f
        by (subst asymp-equiv-add-right) simp-all
    hence ( }\lambdan.\operatorname{ln}(\mathrm{ fact n)) }~f\mathrm{ by simp
    also have f~(\lambdan. n* ln n + (ln (2*pi*n)/2 - n)) by (simp add: f-def
algebra-simps)
    also have ...~(\lambdan.n*ln n) by (subst asymp-equiv-add-right) auto
    finally show (\lambdan.ln (fact n)) ~ (\lambdan.n*\operatorname{ln}n).
qed
```

This leads to the following well-known Big-Omega bound on the number of
comparisons that a general sorting algorithm has to make:

```
corollary count-queries-bigomega:
    fixes sorter :: nat }=>\mathrm{ nat sorter
    assumes sorter: \n R. linorder-on {..<n} R\Longrightarrow
                            is-sorting R [0..<n] (eval-sorter R (sorter n))
    defines Rs \equiv\lambdan.{R. linorder-on {..<n} R}
    shows (\lambdan. count-wc-queries (Rs n) (sorter n)) \in\Omega(\lambdan.n*\operatorname{ln}n)
proof -
    have (\lambdan.n*\operatorname{ln}n)\in\Theta(\lambdan. ln (fact n))
        by (subst bigtheta-sym) (intro asymp-equiv-imp-bigtheta asymp-equiv-intros)
    also have ( }\lambdan.\operatorname{ln}(fact n))\in\Theta(\lambdan. log 2 (fact n)) by (simp add: log-def)
    also have (\lambdan. log 2 (fact n)) \inO(\lambdan. count-wc-queries (Rs n) (sorter n))
    proof (intro bigoI[where c=1] always-eventually allI, goal-cases)
        case (1 n)
        have norm (log 2 (fact n)) = log 2 (fact (length [0..<n])) by simp
        also from sorter[of n] have .. \leq real (count-wc-queries (Rs n) (sorter n))
        using count-queries-ge[of [0..<n] sorter n] by (auto simp: Rs-def atLeast0LessThan)
        also have ... = 1* norm \ldots. by simp
        finally show ?case by simp
    qed
    finally show ?thesis by (simp add: bigomega-iff-bigo)
qed
end
```


References

[1] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

