
Comparison-based Sorting Algorithms

Manuel Eberl

March 17, 2025

Abstract

This article contains a formal proof of the well-known fact that
number of comparisons that a comparison-based sorting algorithm
needs to perform to sort a list of length n is at least log2(n!) in the
worst case, i. e. Ω(n log n).

For this purpose, a shallow embedding for comparison-based sorting
algorithms is defined: a sorting algorithm is a recursive datatype con-
taining either a HOL function or a query of a comparison oracle with
a continuation containing the remaining computation. This makes it
possible to force the algorithm to use only comparisons and to track
the number of comparisons made.

Contents
1 Linear orderings as relations 2

1.1 Auxiliary facts . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Sortedness w.r.t. a relation . . . . . . . . . . . . . . . . . . . 2
1.3 Linear orderings . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Converting a list into a linear ordering . . . . . . . . . . . . . 5
1.5 Insertion sort . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 Obtaining a sorted list of a given set . . . . . . . . . . . . . . 7
1.7 Rank of an element in an ordering . . . . . . . . . . . . . . . 9
1.8 The bijection between linear orderings and lists . . . . . . . . 12

2 Lower bound on costs of comparison-based sorting 13
2.1 Abstract description of sorting algorithms . . . . . . . . . . . 13
2.2 Lower bounds on number of comparisons . . . . . . . . . . . . 16

1



1 Linear orderings as relations
theory Linorder-Relations

imports
Complex-Main
HOL−Combinatorics.Multiset-Permutations
List−Index.List-Index

begin

1.1 Auxiliary facts
lemma distinct-count-atmost-1 ′:

distinct xs = (∀ a. count (mset xs) a ≤ 1 )
proof −

{
fix x have count (mset xs) x = (if x ∈ set xs then 1 else 0 ) ←→ count (mset

xs) x ≤ 1
using count-eq-zero-iff [of mset xs x]
by (cases count (mset xs) x) (auto simp del: count-mset-0-iff )

}
thus ?thesis unfolding distinct-count-atmost-1 by blast

qed

lemma distinct-mset-mono:
assumes distinct ys mset xs ⊆# mset ys
shows distinct xs
unfolding distinct-count-atmost-1 ′

proof
fix x
from assms(2 ) have count (mset xs) x ≤ count (mset ys) x

by (rule mset-subset-eq-count)
also from assms(1 ) have . . . ≤ 1 unfolding distinct-count-atmost-1 ′ ..
finally show count (mset xs) x ≤ 1 .

qed

lemma mset-eq-imp-distinct-iff :
assumes mset xs = mset ys
shows distinct xs ←→ distinct ys
using assms by (simp add: distinct-count-atmost-1 ′)

lemma total-on-subset: total-on B R =⇒ A ⊆ B =⇒ total-on A R
by (auto simp: total-on-def )

1.2 Sortedness w.r.t. a relation
inductive sorted-wrt :: ( ′a × ′a) set ⇒ ′a list ⇒ bool for R where

sorted-wrt R []
| sorted-wrt R xs =⇒ (

∧
y. y ∈ set xs =⇒ (x,y) ∈ R) =⇒ sorted-wrt R (x # xs)

lemma sorted-wrt-Nil [simp]: sorted-wrt R []

2



by (rule sorted-wrt.intros)

lemma sorted-wrt-Cons: sorted-wrt R (x # xs) ←→ (∀ y∈set xs. (x,y) ∈ R) ∧
sorted-wrt R xs

by (auto intro: sorted-wrt.intros elim: sorted-wrt.cases)

lemma sorted-wrt-singleton [simp]: sorted-wrt R [x]
by (intro sorted-wrt.intros) simp-all

lemma sorted-wrt-many:
assumes trans R
shows sorted-wrt R (x # y # xs) ←→ (x,y) ∈ R ∧ sorted-wrt R (y # xs)
by (force intro: sorted-wrt.intros transD[OF assms] elim: sorted-wrt.cases)

lemma sorted-wrt-imp-le-last:
assumes sorted-wrt R xs xs 6= [] x ∈ set xs x 6= last xs
shows (x, last xs) ∈ R
using assms by induction auto

lemma sorted-wrt-append:
assumes sorted-wrt R xs sorted-wrt R ys∧

x y. x ∈ set xs =⇒ y ∈ set ys =⇒ (x,y) ∈ R trans R
shows sorted-wrt R (xs @ ys)
using assms by (induction xs) (auto simp: sorted-wrt-Cons)

lemma sorted-wrt-snoc:
assumes sorted-wrt R xs (last xs, y) ∈ R trans R
shows sorted-wrt R (xs @ [y])
using assms(1 ,2 )

proof induction
case (2 xs x)
show ?case
proof (cases xs = [])

case False
with 2 have (z,y) ∈ R if z ∈ set xs for z

using that by (cases z = last xs)
(auto intro: assms transD[OF assms(3 ), OF sorted-wrt-imp-le-last[OF

2 (1 )]])
from False have ∗: last xs ∈ set xs by simp

moreover from 2 False have (x,y) ∈ R by (intro transD[OF assms(3 ) 2 (2 )[OF
∗]]) simp

ultimately show ?thesis using 2 False
by (auto intro!: sorted-wrt.intros)

qed (insert 2 , auto intro: sorted-wrt.intros)
qed simp-all

lemma sorted-wrt-conv-nth:
sorted-wrt R xs ←→ (∀ i j. i < j ∧ j < length xs −→ (xs!i, xs!j) ∈ R)
by (induction xs) (auto simp: sorted-wrt-Cons nth-Cons set-conv-nth split: nat.splits)

3



1.3 Linear orderings
definition linorder-on :: ′a set ⇒ ( ′a × ′a) set ⇒ bool where

linorder-on A R ←→ refl-on A R ∧ antisym R ∧ trans R ∧ total-on A R

lemma linorder-on-cases:
assumes linorder-on A R x ∈ A y ∈ A
shows x = y ∨ ((x, y) ∈ R ∧ (y, x) /∈ R) ∨ ((y, x) ∈ R ∧ (x, y) /∈ R)
using assms by (auto simp: linorder-on-def refl-on-def total-on-def antisym-def )

lemma sorted-wrt-linorder-imp-index-le:
assumes linorder-on A R set xs ⊆ A sorted-wrt R xs

x ∈ set xs y ∈ set xs (x,y) ∈ R
shows index xs x ≤ index xs y

proof −
define i j where i = index xs x and j = index xs y
{

assume j < i
moreover from assms have i < length xs by (simp add: i-def )

ultimately have (xs!j,xs!i) ∈ R using assms by (auto simp: sorted-wrt-conv-nth)
with assms have x = y by (auto simp: linorder-on-def antisym-def i-def j-def )

}
hence i ≤ j ∨ x = y by linarith
thus ?thesis by (auto simp: i-def j-def )

qed

lemma sorted-wrt-linorder-index-le-imp:
assumes linorder-on A R set xs ⊆ A sorted-wrt R xs

x ∈ set xs y ∈ set xs index xs x ≤ index xs y
shows (x,y) ∈ R

proof (cases x = y)
case False
define i j where i = index xs x and j = index xs y
from False and assms have i 6= j by (simp add: i-def j-def )
with ‹index xs x ≤ index xs y› have i < j by (simp add: i-def j-def )
moreover from assms have j < length xs by (simp add: j-def )
ultimately have (xs ! i, xs ! j) ∈ R using assms(3 )

by (auto simp: sorted-wrt-conv-nth)
with assms show ?thesis by (simp-all add: i-def j-def )

qed (insert assms, auto simp: linorder-on-def refl-on-def )

lemma sorted-wrt-linorder-index-le-iff :
assumes linorder-on A R set xs ⊆ A sorted-wrt R xs

x ∈ set xs y ∈ set xs
shows index xs x ≤ index xs y ←→ (x,y) ∈ R
using sorted-wrt-linorder-index-le-imp[OF assms] sorted-wrt-linorder-imp-index-le[OF

assms]
by blast

lemma sorted-wrt-linorder-index-less-iff :

4



assumes linorder-on A R set xs ⊆ A sorted-wrt R xs
x ∈ set xs y ∈ set xs

shows index xs x < index xs y ←→ (y,x) /∈ R
by (subst sorted-wrt-linorder-index-le-iff [OF assms(1−3 ) assms(5 ,4 ), symmet-

ric]) auto

lemma sorted-wrt-distinct-linorder-nth:
assumes linorder-on A R set xs ⊆ A sorted-wrt R xs distinct xs

i < length xs j < length xs
shows (xs!i, xs!j) ∈ R ←→ i ≤ j

proof (cases i j rule: linorder-cases)
case less
with assms show ?thesis by (simp add: sorted-wrt-conv-nth)

next
case equal
from assms have xs ! i ∈ set xs xs ! j ∈ set xs by (auto simp: set-conv-nth)
with assms(2 ) have xs ! i ∈ A xs ! j ∈ A by blast+
with ‹linorder-on A R› and equal show ?thesis by (simp add: linorder-on-def

refl-on-def )
next

case greater
with assms have (xs!j, xs!i) ∈ R by (auto simp add: sorted-wrt-conv-nth)
moreover from assms and greater have xs ! i 6= xs ! j by (simp add: nth-eq-iff-index-eq)
ultimately show ?thesis using ‹linorder-on A R› greater

by (auto simp: linorder-on-def antisym-def )
qed

1.4 Converting a list into a linear ordering
definition linorder-of-list :: ′a list ⇒ ( ′a × ′a) set where

linorder-of-list xs = {(a,b). a ∈ set xs ∧ b ∈ set xs ∧ index xs a ≤ index xs b}

lemma linorder-linorder-of-list [intro, simp]:
assumes distinct xs
shows linorder-on (set xs) (linorder-of-list xs)
unfolding linorder-on-def using assms
by (auto simp: refl-on-def antisym-def trans-def total-on-def linorder-of-list-def )

lemma sorted-wrt-linorder-of-list [intro, simp]:
distinct xs =⇒ sorted-wrt (linorder-of-list xs) xs
by (auto simp: sorted-wrt-conv-nth linorder-of-list-def index-nth-id)

1.5 Insertion sort
primrec insert-wrt :: ( ′a × ′a) set ⇒ ′a ⇒ ′a list ⇒ ′a list where

insert-wrt R x [] = [x]
| insert-wrt R x (y # ys) = (if (x, y) ∈ R then x # y # ys else y # insert-wrt R
x ys)

lemma set-insert-wrt [simp]: set (insert-wrt R x xs) = insert x (set xs)

5



by (induction xs) auto

lemma mset-insert-wrt [simp]: mset (insert-wrt R x xs) = add-mset x (mset xs)
by (induction xs) auto

lemma length-insert-wrt [simp]: length (insert-wrt R x xs) = Suc (length xs)
by (induction xs) simp-all

definition insort-wrt :: ( ′a × ′a) set ⇒ ′a list ⇒ ′a list where
insort-wrt R xs = foldr (insert-wrt R) xs []

lemma set-insort-wrt [simp]: set (insort-wrt R xs) = set xs
by (induction xs) (simp-all add: insort-wrt-def )

lemma mset-insort-wrt [simp]: mset (insort-wrt R xs) = mset xs
by (induction xs) (simp-all add: insort-wrt-def )

lemma length-insort-wrt [simp]: length (insort-wrt R xs) = length xs
by (induction xs) (simp-all add: insort-wrt-def )

lemma sorted-wrt-insert-wrt [intro]:
linorder-on A R =⇒ set (x # xs) ⊆ A =⇒

sorted-wrt R xs =⇒ sorted-wrt R (insert-wrt R x xs)
proof (induction xs)

case (Cons y ys)
from Cons.prems have (x,y) ∈ R ∨ (y,x) ∈ R

by (cases x = y) (auto simp: linorder-on-def refl-on-def total-on-def )
with Cons show ?case

by (auto simp: sorted-wrt-Cons intro: transD simp: linorder-on-def )
qed auto

lemma sorted-wrt-insort [intro]:
assumes linorder-on A R set xs ⊆ A
shows sorted-wrt R (insort-wrt R xs)

proof −
from assms have set (insort-wrt R xs) = set xs ∧ sorted-wrt R (insort-wrt R xs)

by (induction xs) (auto simp: insort-wrt-def intro!: sorted-wrt-insert-wrt)
thus ?thesis ..

qed

lemma distinct-insort-wrt [simp]: distinct (insort-wrt R xs) ←→ distinct xs
by (simp add: distinct-count-atmost-1 )

lemma sorted-wrt-linorder-unique:
assumes linorder-on A R mset xs = mset ys sorted-wrt R xs sorted-wrt R ys
shows xs = ys

proof −
from ‹mset xs = mset ys› have length xs = length ys by (rule mset-eq-length)
from this and assms(2−) show ?thesis

6



proof (induction xs ys rule: list-induct2 )
case (Cons x xs y ys)
have set (x # xs) = set-mset (mset (x # xs)) by simp
also have mset (x # xs) = mset (y # ys) by fact
also have set-mset . . . = set (y # ys) by simp
finally have eq: set (x # xs) = set (y # ys) .

have x = y
proof (rule ccontr)

assume x 6= y
with eq have x ∈ set ys y ∈ set xs by auto
with Cons.prems and assms(1 ) and eq have (x, y) ∈ R (y, x) ∈ R

by (auto simp: sorted-wrt-Cons)
with assms(1 ) have x = y by (auto simp: linorder-on-def antisym-def )
with ‹x 6= y› show False by contradiction

qed
with Cons show ?case by (auto simp: sorted-wrt-Cons)

qed auto
qed

1.6 Obtaining a sorted list of a given set
definition sorted-wrt-list-of-set where

sorted-wrt-list-of-set R A =
(if finite A then (THE xs. set xs = A ∧ distinct xs ∧ sorted-wrt R xs) else [])

lemma mset-remdups: mset (remdups xs) = mset-set (set xs)
proof (induction xs)

case (Cons x xs)
thus ?case by (cases x ∈ set xs) (auto simp: insert-absorb)

qed auto

lemma sorted-wrt-list-set:
assumes linorder-on A R set xs ⊆ A
shows sorted-wrt-list-of-set R (set xs) = insort-wrt R (remdups xs)

proof −
have sorted-wrt-list-of-set R (set xs) =

(THE xsa. set xsa = set xs ∧ distinct xsa ∧ sorted-wrt R xsa)
by (simp add: sorted-wrt-list-of-set-def )

also have . . . = insort-wrt R (remdups xs)
proof (rule the-equality)

fix xsa assume xsa: set xsa = set xs ∧ distinct xsa ∧ sorted-wrt R xsa
from xsa have mset xsa = mset-set (set xsa) by (subst mset-set-set) simp-all
also from xsa have set xsa = set xs by simp
also have mset-set . . . = mset (remdups xs) by (simp add: mset-remdups)
finally show xsa = insort-wrt R (remdups xs) using xsa assms

by (intro sorted-wrt-linorder-unique[OF assms(1 )])
(auto intro!: sorted-wrt-insort)

qed (insert assms, auto intro!: sorted-wrt-insort)

7



finally show ?thesis .
qed

lemma linorder-sorted-wrt-exists:
assumes linorder-on A R finite B B ⊆ A
shows ∃ xs. set xs = B ∧ distinct xs ∧ sorted-wrt R xs

proof −
from ‹finite B› obtain xs where set xs = B distinct xs

using finite-distinct-list by blast
hence set (insort-wrt R xs) = B distinct (insort-wrt R xs) by simp-all
moreover have sorted-wrt R (insort-wrt R xs)

using assms ‹set xs = B› by (intro sorted-wrt-insort[OF assms(1 )]) auto
ultimately show ?thesis by blast

qed

lemma linorder-sorted-wrt-list-of-set:
assumes linorder-on A R finite B B ⊆ A
shows set (sorted-wrt-list-of-set R B) = B distinct (sorted-wrt-list-of-set R B)

sorted-wrt R (sorted-wrt-list-of-set R B)
proof −

have ∃ !xs. set xs = B ∧ distinct xs ∧ sorted-wrt R xs
proof (rule ex-ex1I )

show ∃ xs. set xs = B ∧ distinct xs ∧ sorted-wrt R xs
by (rule linorder-sorted-wrt-exists assms)+

next
fix xs ys assume set xs = B ∧ distinct xs ∧ sorted-wrt R xs

set ys = B ∧ distinct ys ∧ sorted-wrt R ys
thus xs = ys
by (intro sorted-wrt-linorder-unique[OF assms(1 )]) (auto simp: set-eq-iff-mset-eq-distinct)

qed
from theI ′[OF this] show set (sorted-wrt-list-of-set R B) = B

distinct (sorted-wrt-list-of-set R B) sorted-wrt R (sorted-wrt-list-of-set R B)
by (simp-all add: sorted-wrt-list-of-set-def ‹finite B›)

qed

lemma sorted-wrt-list-of-set-eqI :
assumes linorder-on B R A ⊆ B set xs = A distinct xs sorted-wrt R xs
shows sorted-wrt-list-of-set R A = xs

proof (rule sorted-wrt-linorder-unique)
show linorder-on B R by fact
let ?ys = sorted-wrt-list-of-set R A
have fin [simp]: finite A by (simp-all add: assms(3 ) [symmetric])
have ∗: distinct ?ys set ?ys = A sorted-wrt R ?ys

by (rule linorder-sorted-wrt-list-of-set[OF assms(1 )] fin assms)+
from assms ∗ show mset ?ys = mset xs

by (subst set-eq-iff-mset-eq-distinct [symmetric]) simp-all
show sorted-wrt R ?ys by fact

qed fact+

8



1.7 Rank of an element in an ordering

The ‘rank’ of an element in a set w.r.t. an ordering is how many smaller
elements exist. This is particularly useful in linear orders, where there exists
a unique n-th element for every n.
definition linorder-rank where

linorder-rank R A x = card {y∈A−{x}. (y,x) ∈ R}

lemma linorder-rank-le:
assumes finite A
shows linorder-rank R A x ≤ card A
unfolding linorder-rank-def using assms
by (rule card-mono) auto

lemma linorder-rank-less:
assumes finite A x ∈ A
shows linorder-rank R A x < card A

proof −
have linorder-rank R A x ≤ card (A − {x})

unfolding linorder-rank-def using assms by (intro card-mono) auto
also from assms have . . . < card A by (intro psubset-card-mono) auto
finally show ?thesis .

qed

lemma linorder-rank-union:
assumes finite A finite B A ∩ B = {}
shows linorder-rank R (A ∪ B) x = linorder-rank R A x + linorder-rank R B

x
proof −

have linorder-rank R (A ∪ B) x = card {y∈(A∪B)−{x}. (y,x) ∈ R}
by (simp add: linorder-rank-def )

also have {y∈(A∪B)−{x}. (y,x) ∈ R} = {y∈A−{x}. (y,x) ∈ R} ∪ {y∈B−{x}.
(y,x) ∈ R} by blast

also have card . . . = linorder-rank R A x + linorder-rank R B x unfolding
linorder-rank-def

using assms by (intro card-Un-disjoint) auto
finally show ?thesis .

qed

lemma linorder-rank-empty [simp]: linorder-rank R {} x = 0
by (simp add: linorder-rank-def )

lemma linorder-rank-singleton:
linorder-rank R {y} x = (if x 6= y ∧ (y,x) ∈ R then 1 else 0 )

proof −
have linorder-rank R {y} x = card {z∈{y}−{x}. (z,x) ∈ R} by (simp add:

linorder-rank-def )
also have {z∈{y}−{x}. (z,x) ∈ R} = (if x 6= y ∧ (y,x) ∈ R then {y} else {})

by auto

9



also have card . . . = (if x 6= y ∧ (y,x) ∈ R then 1 else 0 ) by simp
finally show ?thesis .

qed

lemma linorder-rank-insert:
assumes finite A y /∈ A
shows linorder-rank R (insert y A) x =

(if x 6= y ∧ (y,x) ∈ R then 1 else 0 ) + linorder-rank R A x
using linorder-rank-union[of {y} A R x] assms by (auto simp: linorder-rank-singleton)

lemma linorder-rank-mono:
assumes linorder-on B R finite A A ⊆ B (x, y) ∈ R
shows linorder-rank R A x ≤ linorder-rank R A y
unfolding linorder-rank-def

proof (rule card-mono)
from assms have trans: trans R and antisym: antisym R by (simp-all add:

linorder-on-def )
from assms antisym show {y ∈ A − {x}. (y, x) ∈ R} ⊆ {ya ∈ A − {y}. (ya,

y) ∈ R}
by (auto intro: transD[OF trans] simp: antisym-def )

qed (insert assms, simp-all)

lemma linorder-rank-strict-mono:
assumes linorder-on B R finite A A ⊆ B y ∈ A (y, x) ∈ R x 6= y
shows linorder-rank R A y < linorder-rank R A x

proof −
from assms(1 ) have trans: trans R by (simp add: linorder-on-def )
from assms have ∗: (x, y) /∈ R by (auto simp: linorder-on-def antisym-def )
from this and ‹(y,x) ∈ R› have {z∈A−{y}. (z, y) ∈ R} ⊆ {z∈A−{x}. (z,x) ∈

R}
by (auto intro: transD[OF trans])

moreover from ∗ and assms have y /∈ {z∈A−{y}. (z, y) ∈ R} y ∈ {z∈A−{x}.
(z, x) ∈ R}

by auto
ultimately have {z∈A−{y}. (z, y) ∈ R} ⊂ {z∈A−{x}. (z,x) ∈ R} by blast
thus ?thesis using assms unfolding linorder-rank-def by (intro psubset-card-mono)

auto
qed

lemma linorder-rank-le-iff :
assumes linorder-on B R finite A A ⊆ B x ∈ A y ∈ A
shows linorder-rank R A x ≤ linorder-rank R A y ←→ (x, y) ∈ R

proof (cases x = y)
case True
with assms show ?thesis by (auto simp: linorder-on-def refl-on-def )

next
case False
from assms(1 ) have trans: trans R by (simp-all add: linorder-on-def )
from assms have x ∈ B y ∈ B by auto

10



with ‹linorder-on B R› and False have ((x,y) ∈ R ∧ (y,x) /∈ R) ∨ ((y,x) ∈ R
∧ (x,y) /∈ R)

by (fastforce simp: linorder-on-def antisym-def total-on-def )
thus ?thesis
proof

assume (x,y) ∈ R ∧ (y,x) /∈ R
with assms show ?thesis by (auto intro!: linorder-rank-mono)

next
assume ∗: (y,x) ∈ R ∧ (x,y) /∈ R
with linorder-rank-strict-mono[OF assms(1−3 ), of y x] assms False

show ?thesis by auto
qed

qed

lemma linorder-rank-eq-iff :
assumes linorder-on B R finite A A ⊆ B x ∈ A y ∈ A
shows linorder-rank R A x = linorder-rank R A y ←→ x = y

proof
assume linorder-rank R A x = linorder-rank R A y
with linorder-rank-le-iff [OF assms(1−5 )] linorder-rank-le-iff [OF assms(1−3 )

assms(5 ,4 )]
have (x, y) ∈ R (y, x) ∈ R by simp-all

with assms show x = y by (auto simp: linorder-on-def antisym-def )
qed simp-all

lemma linorder-rank-set-sorted-wrt:
assumes linorder-on B R set xs ⊆ B sorted-wrt R xs x ∈ set xs distinct xs
shows linorder-rank R (set xs) x = index xs x

proof −
define j where j = index xs x
from assms have j: j < length xs by (simp add: j-def )
have ∗: x = y ∨ ((x, y) ∈ R ∧ (y, x) /∈ R) ∨ ((y, x) ∈ R ∧ (x, y) /∈ R) if y ∈

set xs for y
using linorder-on-cases[OF assms(1 ), of x y] assms that by auto

from assms have {y∈set xs−{x}. (y, x) ∈ R} = {y∈set xs−{x}. index xs y <
index xs x}

by (auto simp: sorted-wrt-linorder-index-less-iff [OF assms(1−3 )] dest: ∗)
also have . . . = {y∈set xs. index xs y < j} by (auto simp: j-def )
also have . . . = (λi. xs ! i) ‘ {i. i < j}
proof safe

fix y assume y ∈ set xs index xs y < j
moreover from this and j have y = xs ! index xs y by simp
ultimately show y ∈ (!) xs ‘ {i. i < j} by blast

qed (insert assms j, auto simp: index-nth-id)
also from assms and j have card . . . = card {i. i < j}

by (intro card-image) (auto simp: inj-on-def nth-eq-iff-index-eq)
also have . . . = j by simp
finally show ?thesis by (simp only: j-def linorder-rank-def )

qed

11



lemma bij-betw-linorder-rank:
assumes linorder-on B R finite A A ⊆ B
shows bij-betw (linorder-rank R A) A {..<card A}

proof −
define xs where xs = sorted-wrt-list-of-set R A
note xs = linorder-sorted-wrt-list-of-set[OF assms, folded xs-def ]
from ‹distinct xs› have len-xs: length xs = card A

by (subst ‹set xs = A› [symmetric]) (auto simp: distinct-card)
have rank: linorder-rank R (set xs) x = index xs x if x ∈ A for x

using linorder-rank-set-sorted-wrt[OF assms(1 ), of xs x] assms that xs by
simp-all

from xs len-xs show ?thesis
by (intro bij-betw-byWitness[where f ′ = λi. xs ! i])

(auto simp: rank index-nth-id intro!: nth-mem)
qed

1.8 The bijection between linear orderings and lists
theorem bij-betw-linorder-of-list:

assumes finite A
shows bij-betw linorder-of-list (permutations-of-set A) {R. linorder-on A R}

proof (intro bij-betw-byWitness[where f ′ = λR. sorted-wrt-list-of-set R A] ballI
subsetI ,

goal-cases)
case (1 xs)
thus ?case by (intro sorted-wrt-list-of-set-eqI ) (auto simp: permutations-of-set-def )

next
case (2 R)
hence R: linorder-on A R by simp
from R have in-R: x ∈ A y ∈ A if (x,y) ∈ R for x y using that

by (auto simp: linorder-on-def refl-on-def )
let ?xs = sorted-wrt-list-of-set R A
have xs: distinct ?xs set ?xs = A sorted-wrt R ?xs

by (rule linorder-sorted-wrt-list-of-set[OF R] assms order .refl)+
thus ?case using sorted-wrt-linorder-index-le-iff [OF R, of ?xs]

by (auto simp: linorder-of-list-def dest: in-R)
next

case (4 xs)
then obtain R where R: linorder-on A R and xs [simp]: xs = sorted-wrt-list-of-set

R A by auto
let ?xs = sorted-wrt-list-of-set R A
have xs: distinct ?xs set ?xs = A sorted-wrt R ?xs

by (rule linorder-sorted-wrt-list-of-set[OF R] assms order .refl)+
thus ?case by auto

qed (auto simp: permutations-of-set-def )

corollary card-finite-linorders:
assumes finite A

12



shows card {R. linorder-on A R} = fact (card A)
proof −

have card {R. linorder-on A R} = card (permutations-of-set A)
by (rule sym, rule bij-betw-same-card [OF bij-betw-linorder-of-list[OF assms]])

also from assms have . . . = fact (card A) by (rule card-permutations-of-set)
finally show ?thesis .

qed

end

2 Lower bound on costs of comparison-based sort-
ing

theory Comparison-Sort-Lower-Bound
imports

Complex-Main
Linorder-Relations
Stirling-Formula.Stirling-Formula
Landau-Symbols.Landau-More

begin

2.1 Abstract description of sorting algorithms

We have chosen to model a sorting algorithm in the following way: A sorting
algorithm takes a list with distinct elements and a linear ordering on these
elements, and it returns a list with the same elements that is sorted w. r. t.
the given ordering.
The use of an explicit ordering means that the algorithm must look at the
ordering, i. e. it has to use pair-wise comparison of elements, since all the in-
formation that is relevant for producing the correct sorting is in the ordering;
the elements themselves are irrelevant.
Furthermore, we record the number of comparisons that the algorithm makes
by not giving it the relation explicitly, but in the form of a comparison oracle
that may be queried.
A sorting algorithm (or ‘sorter’) for a fixed input list (but for arbitrary
orderings) can then be written as a recursive datatype that is either the
result (the sorted list) or a comparison query consisting of two elements
and a continuation that maps the result of the comparison to the remaining
computation.
datatype ′a sorter = Return ′a list | Query ′a ′a bool ⇒ ′a sorter

Cormen et al. [1] use a similar ‘decision tree’ model where an sorting algo-
rithm for lists of fixed size n is modelled as a binary tree where each node
is a comparison of two elements. They also demand that every leaf in the
tree be reachable in order to avoid ‘dead’ subtrees (if the algorithm makes

13



redundant comparisons, there may be branches that can never be taken).
Then, the worst-case number of comparisons made is simply the height of
the tree.
We chose a subtly different model that does not have this restriction on the
algorithm but instead uses a more semantic way of counting the worst-case
number of comparisons: We simply use the maximum number of comparisons
that occurs for any of the (finitely many) inputs.
We therefore first define a function that counts the number of queries for a
specific ordering and then a function that counts the number of queries in
the worst case (ranging over a given set of allowed orderings; typically, this
will be the set of all linear orders on the list).
primrec count-queries :: ( ′a × ′a) set ⇒ ′a sorter ⇒ nat where

count-queries - (Return -) = 0
| count-queries R (Query a b f ) = Suc (count-queries R (f ((a, b) ∈ R)))

definition count-wc-queries :: ( ′a × ′a) set set ⇒ ′a sorter ⇒ nat where
count-wc-queries Rs sorter = (if Rs = {} then 0 else Max ((λR. count-queries R

sorter) ‘ Rs))

lemma count-wc-queries-empty [simp]: count-wc-queries {} sorter = 0
by (simp add: count-wc-queries-def )

lemma count-wc-queries-aux:
assumes

∧
R. R ∈ Rs =⇒ sorter = sorter ′ R Rs ⊆ Rs ′ finite Rs ′

shows count-wc-queries Rs sorter ≤ Max ((λR. count-queries R (sorter ′ R)) ‘
Rs ′)
proof (cases Rs = {})

case False
hence count-wc-queries Rs sorter = Max ((λR. count-queries R sorter) ‘ Rs)

by (simp add: count-wc-queries-def )
also have (λR. count-queries R sorter) ‘ Rs = (λR. count-queries R (sorter ′ R))

‘ Rs
by (intro image-cong refl) (simp-all add: assms)

also have Max . . . ≤ Max ((λR. count-queries R (sorter ′ R)) ‘ Rs ′) using False
by (intro Max-mono assms image-mono finite-imageI ) auto

finally show ?thesis .
qed simp-all

primrec eval-sorter :: ( ′a × ′a) set ⇒ ′a sorter ⇒ ′a list where
eval-sorter - (Return ys) = ys
| eval-sorter R (Query a b f ) = eval-sorter R (f ((a,b) ∈ R))

We now get an obvious bound on the maximum number of different results
that a given sorter can produce.
lemma card-range-eval-sorter :

assumes finite Rs
shows card ((λR. eval-sorter R e) ‘ Rs) ≤ 2 ^ count-wc-queries Rs e

14



using assms
proof (induction e arbitrary: Rs)

case (Return xs Rs)
have ∗: (λR. eval-sorter R (Return xs)) ‘ Rs = (if Rs = {} then {} else {xs})

by auto
show ?case by (subst ∗) auto

next
case (Query a b f Rs)
have f True ∈ range f f False ∈ range f by simp-all
note IH = this [THEN Query.IH ]
let ?Rs1 = {R∈Rs. (a, b) ∈ R} and ?Rs2 = {R∈Rs. (a, b) /∈ R}
let ?A = (λR. eval-sorter R (f True)) ‘ ?Rs1 and ?B = (λR. eval-sorter R (f

False)) ‘ ?Rs2
from Query.prems have fin: finite ?Rs1 finite ?Rs2 by simp-all

have ∗: (λR. eval-sorter R (Query a b f )) ‘ Rs ⊆ ?A ∪ ?B
proof (intro subsetI , elim imageE , goal-cases)

case (1 xs R)
thus ?case by (cases (a,b) ∈ R) auto

qed

show ?case
proof (cases Rs = {})

case False
have card ((λR. eval-sorter R (Query a b f )) ‘ Rs) ≤ card (?A ∪ ?B)

by (intro card-mono finite-UnI finite-imageI fin ∗)
also have . . . ≤ card ?A + card ?B by (rule card-Un-le)
also have . . . ≤ 2 ^ count-wc-queries ?Rs1 (f True) + 2 ^ count-wc-queries

?Rs2 (f False)
by (intro add-mono IH fin)

also have count-wc-queries ?Rs1 (f True) ≤ Max ((λR. count-queries R (f
((a,b)∈R))) ‘ Rs)

by (intro count-wc-queries-aux Query.prems) auto
also have count-wc-queries ?Rs2 (f False) ≤ Max ((λR. count-queries R (f

((a,b)∈R))) ‘ Rs)
by (intro count-wc-queries-aux Query.prems) auto

also have 2 ^ . . . + 2 ^ . . . = (2 ^ Suc . . . :: nat) by simp
also have Suc (Max ((λR. count-queries R (f ((a,b)∈R))) ‘ Rs)) =

Max (Suc ‘ ((λR. count-queries R (f ((a,b)∈R))) ‘ Rs)) using False
by (intro mono-Max-commute finite-imageI Query.prems) (auto simp: inc-

seq-def )
also have Suc ‘ ((λR. count-queries R (f ((a,b)∈R))) ‘ Rs) =

(λR. Suc (count-queries R (f ((a,b)∈R)))) ‘ Rs by (simp add:
image-image)

also have Max . . . = count-wc-queries Rs (Query a b f ) using False
by (auto simp add: count-wc-queries-def )

finally show ?thesis by − simp-all
qed simp-all

qed

15



The following predicate describes what constitutes a valid sorting result for
a given ordering and a given input list. Note that when the ordering is
linear, the result is actually unique.
definition is-sorting :: ( ′a × ′a) set ⇒ ′a list ⇒ ′a list ⇒ bool where

is-sorting R xs ys ←→ (mset xs = mset ys) ∧ sorted-wrt R ys

2.2 Lower bounds on number of comparisons

For a list of n distinct elements, there are n! linear orderings on n elements,
each of which leads to a different result after sorting the original list. Since
a sorter can produce at most 2k different results with k comparisons, we get
the bound 2k ≥ n!:
theorem

fixes sorter :: ′a sorter and xs :: ′a list
assumes distinct: distinct xs
assumes sorter :

∧
R. linorder-on (set xs) R =⇒ is-sorting R xs (eval-sorter R

sorter)
defines Rs ≡ {R. linorder-on (set xs) R}
shows two-power-count-queries-ge: fact (length xs) ≤ (2 ^ count-wc-queries Rs

sorter :: nat)
and count-queries-ge: log 2 (fact (length xs)) ≤ real (count-wc-queries

Rs sorter)
proof −
have Rs ⊆ Pow (set xs × set xs) by (auto simp: Rs-def linorder-on-def refl-on-def )
hence fin: finite Rs by (rule finite-subset) simp-all
from assms have fact (length xs) = card (permutations-of-set (set xs))

by (simp add: distinct-card)
also have permutations-of-set (set xs) ⊆ (λR. eval-sorter R sorter) ‘ Rs
proof (rule subsetI , goal-cases)

case (1 ys)
define R where R = linorder-of-list ys
define zs where zs = eval-sorter R sorter
from 1 and distinct have mset-ys: mset ys = mset xs

by (auto simp: set-eq-iff-mset-eq-distinct permutations-of-set-def )
from 1 have ∗: linorder-on (set xs) R unfolding R-def using linorder-linorder-of-list[of

ys]
by (simp add: permutations-of-set-def )

from sorter [OF this] have mset xs = mset zs sorted-wrt R zs
by (simp-all add: is-sorting-def zs-def )

moreover from 1 have sorted-wrt R ys unfolding R-def
by (intro sorted-wrt-linorder-of-list) (simp-all add: permutations-of-set-def )

ultimately have zs = ys
by (intro sorted-wrt-linorder-unique[OF ∗]) (simp-all add: mset-ys)

moreover from ∗ have R ∈ Rs by (simp add: Rs-def )
ultimately show ?case unfolding zs-def by blast

qed
hence card (permutations-of-set (set xs)) ≤ card ((λR. eval-sorter R sorter) ‘

Rs)

16



by (intro card-mono finite-imageI fin)
also from fin have . . . ≤ 2 ^ count-wc-queries Rs sorter by (rule card-range-eval-sorter)
finally show ∗: fact (length xs) ≤ (2 ^ count-wc-queries Rs sorter :: nat) .

have ln (fact (length xs)) = ln (real (fact (length xs))) by simp
also have . . . ≤ ln (real (2 ^ count-wc-queries Rs sorter))
proof (subst ln-le-cancel-iff )

show real (fact (length xs)) ≤ real (2 ^ count-wc-queries Rs sorter)
by (subst of-nat-le-iff ) (rule ∗)

qed simp-all
also have . . . = real (count-wc-queries Rs sorter) ∗ ln 2 by (simp add: ln-realpow)
finally have real (count-wc-queries Rs sorter) ≥ ln (fact (length xs)) / ln 2

by (simp add: field-simps)
also have ln (fact (length xs)) / ln 2 = log 2 (fact (length xs)) by (simp add:

log-def )
finally show ∗∗: log 2 (fact (length xs)) ≤ real (count-wc-queries Rs sorter) .

qed

lemma ln-fact-bigo: (λn. ln (fact n) − (ln (2 ∗ pi ∗ n) / 2 + n ∗ ln n − n)) ∈
O(λn. 1 / n)

and asymp-equiv-ln-fact [asymp-equiv-intros]: (λn. ln (fact n)) ∼[at-top] (λn. n
∗ ln n)
proof −

include asymp-equiv-syntax
define f where f = (λn. ln (2 ∗ pi ∗ real n) / 2 + real n ∗ ln (real n) − real n)
have eventually (λn. ln (fact n) − f n ∈ {0 ..1/(12∗real n)}) at-top

using eventually-gt-at-top[of 1 ::nat]
proof eventually-elim

case (elim n)
with ln-fact-bounds[of n] show ?case by (simp add: f-def )

qed
hence eventually (λn. norm (ln (fact n) − f n) ≤ (1/12 ) ∗ norm (1 / real n))

at-top
using eventually-gt-at-top[of 0 ::nat] by eventually-elim (simp-all add: field-simps)

thus (λn. ln (fact n) − f n) ∈ O(λn. 1 / real n)
using bigoI [of λn. ln (fact n) − f n 1/12 λn. 1 / real n] by simp

also have (λn. 1 / real n) ∈ o(f ) unfolding f-def by (intro smallo-real-nat-transfer)
simp

finally have (λn. f n + (ln (fact n) − f n)) ∼ f
by (subst asymp-equiv-add-right) simp-all

hence (λn. ln (fact n)) ∼ f by simp
also have f ∼ (λn. n ∗ ln n + (ln (2∗pi∗n)/2 − n)) by (simp add: f-def

algebra-simps)
also have . . . ∼ (λn. n ∗ ln n) by (subst asymp-equiv-add-right) auto
finally show (λn. ln (fact n)) ∼ (λn. n ∗ ln n) .

qed

This leads to the following well-known Big-Omega bound on the number of

17



comparisons that a general sorting algorithm has to make:
corollary count-queries-bigomega:

fixes sorter :: nat ⇒ nat sorter
assumes sorter :

∧
n R. linorder-on {..<n} R =⇒

is-sorting R [0 ..<n] (eval-sorter R (sorter n))
defines Rs ≡ λn. {R. linorder-on {..<n} R}
shows (λn. count-wc-queries (Rs n) (sorter n)) ∈ Ω(λn. n ∗ ln n)

proof −
have (λn. n ∗ ln n) ∈ Θ(λn. ln (fact n))

by (subst bigtheta-sym) (intro asymp-equiv-imp-bigtheta asymp-equiv-intros)
also have (λn. ln (fact n)) ∈ Θ(λn. log 2 (fact n)) by (simp add: log-def )
also have (λn. log 2 (fact n)) ∈ O(λn. count-wc-queries (Rs n) (sorter n))
proof (intro bigoI [where c = 1 ] always-eventually allI , goal-cases)

case (1 n)
have norm (log 2 (fact n)) = log 2 (fact (length [0 ..<n])) by simp
also from sorter [of n] have . . . ≤ real (count-wc-queries (Rs n) (sorter n))
using count-queries-ge[of [0 ..<n] sorter n] by (auto simp: Rs-def atLeast0LessThan)

also have . . . = 1 ∗ norm . . . by simp
finally show ?case by simp

qed
finally show ?thesis by (simp add: bigomega-iff-bigo)

qed

end

References

[1] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction
to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

18


	Linear orderings as relations
	Auxiliary facts
	Sortedness w.r.t. a relation
	Linear orderings
	Converting a list into a linear ordering
	Insertion sort
	Obtaining a sorted list of a given set
	Rank of an element in an ordering
	The bijection between linear orderings and lists

	Lower bound on costs of comparison-based sorting
	Abstract description of sorting algorithms
	Lower bounds on number of comparisons


