Comparison-based Sorting Algorithms

Manuel Eberl

February 23, 2021

Abstract

This article contains a formal proof of the well-known fact that the number of comparisons that a comparison-based sorting algorithm needs to perform to sort a list of length \(n \) is at least \(\log_2(n!) \) in the worst case, i.e. \(\Omega(n \log n) \).

For this purpose, a shallow embedding for comparison-based sorting algorithms is defined: a sorting algorithm is a recursive datatype containing either a HOL function or a query of a comparison oracle with a continuation containing the remaining computation. This makes it possible to force the algorithm to use only comparisons and to track the number of comparisons made.

Contents

1 Linear orderings as relations 2
 1.1 Auxiliary facts 2
 1.2 Sortedness w.r.t. a relation 2
 1.3 Linear orderings 4
 1.4 Converting a list into a linear ordering 5
 1.5 Insertion sort 5
 1.6 Obtaining a sorted list of a given set 7
 1.7 Rank of an element in an ordering 9
 1.8 The bijection between linear orderings and lists .. 12

2 Lower bound on costs of comparison-based sorting 13
 2.1 Abstract description of sorting algorithms 13
 2.2 Lower bounds on number of comparisons 16
1 Linear orderings as relations

theory Linorder-Relations
imports
 Complex_Main
 HOL-Library.Multiset-Permutations
 List-Index.List-Index
begin

1.1 Auxiliary facts

lemma distinct-count-atmost-1':
 distinct xs = (∀a. count (mset xs) a ≤ 1)
proof –
{
 fix x have count (mset xs) x = (if x ∈ set xs then 1 else 0) ←→ count (mset xs) x ≤ 1
 using count-eq-zero-iff[of mset xs x]
 by (cases count (mset xs) x) (auto simp del: count-mset-0-iff)
}
thus ?thesis unfolding distinct-count-atmost-1' by blast
qed

lemma distinct-mset-mono:
 assumes distinct ys mset xs ⊆# mset ys
 shows distinct xs
unfolding distinct-count-atmost-1'
proof
 fix x
 from assms(2) have count (mset xs) x ≤ count (mset ys) x
 by (rule mset-subset-eq-count)
 also from assms(1) have ... ≤ 1 unfolding distinct-count-atmost-1' ..
 finally show count (mset xs) x ≤ 1 .
qed

lemma mset-eq-imp-distinct-iff:
 assumes mset xs = mset ys
 shows distinct xs ⇐⇒ distinct ys
using assms by (simp add: distinct-count-atmost-1')

lemma total-on-subset: total-on B R =⇒ A ⊆ B =⇒ total-on A R
by (auto simp: total-on-def)

1.2 Sortedness w.r.t. a relation

inductive sorted-wrt :: ('a × 'a) set ⇒ 'a list ⇒ bool for R where
 sorted-wrt R []
| sorted-wrt R xs ⇒ (∀y. y ∈ set xs ⇒ (x,y) ∈ R) ⇒ sorted-wrt R (x # xs)

lemma sorted-wrt-Nil [simp]: sorted-wrt R []
by (rule sorted-wrt.intros)

lemma sorted-wrt-Cons: sorted-wrt R (x ≠ xs) ⟷ (x, y) ∈ R ∧ sorted-wrt R xs
 by (auto intro: sorted-wrt.intros elim: sorted-wrt_cases)

lemma sorted-wrt-singleton [simp]: sorted-wrt R [x]
 by (intro sorted-wrt.intros) simp-all

lemma sorted-wrt-many:
 assumes trans R
 shows sorted-wrt R (x ≠ y ≠ xs) ⟷ (x, y) ∈ R ∧ sorted-wrt R (y ≠ xs)
 by (force intro: sorted-wrt.intros transD [OF assms] elim: sorted-wrt_cases)

lemma sorted-wrt-imp-le-last:
 assumes sorted-wrt R xs xs ≠ [] x ∈ set xs x ≠ last xs
 shows (x, last xs) ∈ R
 using assms by induction auto

lemma sorted-wrt-append:
 assumes sorted-wrt R xs sorted-wrt R ys
 shows sorted-wrt R (xs @ ys)
 using assms by (induction xs) (auto simp: sorted-wrt-Cons

lemma sorted-wrt-snoc:
 assumes sorted-wrt R xs (last xs, y) ∈ R trans R
 shows sorted-wrt R (xs @ [y])
 using assms by (induction xs) (auto simp: sorted-wrt-Cons

proof induction
 case (2 xs x)
 show ?case
 proof (cases xs = [])
 case False
 with 2 have (z,y) ∈ R if z ∈ set xs for z
 using that by (cases z = last xs)
 (auto intro: assms transD [OF assms(3), OF sorted-wrt-imp-le-last [OF 2(1)]])
 from False have *: last xs ∈ set xs by simp
 moreover from 2 False have (x,y) ∈ R by (intro transD [OF assms(3) 2(2)] [OF *]) simp
 ultimately show thesis using 2 False
 by (auto intro!: sorted-wrt.intros)
 qed (insert 2, auto intro: sorted-wrt.intros)
qed simp-all

lemma sorted-wrt-conv-nth:
 sorted-wrt R xs ⟷ (∀ i j. i < j ∧ j < length xs → (xs!i, xs!j) ∈ R)
 by (induction zs) (auto simp: sorted-wrt-Cons nth Conj sorted-wrt-nth split: nat.splits)
1.3 Linear orderings

definition linorder-on :: 'a set ⇒ ('a × 'a) set ⇒ bool where
 linorder-on A R ≜ refl-on A R ∧ antisym R ∧ trans R ∧ total-on A R

lemma linorder-on-cases:
 assumes linorder-on A R x y ∈ A
 shows x = y ∨ ((x, y) ∈ R ∧ (y, x) /∈ R) ∨ ((y, x) ∈ R ∧ (x, y) /∈ R)
 using assms by (auto simp: linorder-on-def refl-on-def antisym-def)

lemma sorted-wrt-linorder-imp-index-le:
 assumes linorder-on A R set xs ⊆ A sorted-wrt R xs
 x ∈ set xs y ∈ set xs (x, y) ∈ R
 shows index xs x ≤ index xs y
 proof (cases x = y)
 case False
 define i j where i = index xs x and j = index xs y
 from False and assms have i ≠ j by (simp add: i-def)
 with (index xs x ≤ index xs y) have i < j by (simp add: i-def j-def)
 moreover from assms have j < length xs by (simp add: j-def)
 ultimately have (xs ! i, xs ! j) ∈ R using assms(3)
 by (auto simp: sorted-wrt-cone-nth)
 with assms show ?thesis by (simp-all add: i-def j-def)
 qed

lemma sorted-wrt-linorder-index-less-iff:
 assumes linorder-on A R set xs ⊆ A sorted-wrt R xs
 x ∈ set xs y ∈ set xs
 shows index xs x ≤ index xs y ⟷ (x, y) ∈ R
 using sorted-wrt-linorder-index-le-imp[OF assms] sorted-wrt-linorder-imp-index-le[OF assms]
 by blast

lemma sorted-wrt-linorder-index-less-iff:
assumes \(\text{linorder-on } A \ R \ 	ext{set } xs \subseteq A \ \text{sorted-wrt } R \ xs \)
\(x \in \text{set } xs \ y \in \text{set } xs \)

shows \(\text{index } xs \ x < \text{index } xs \ y \iff (y,x) \notin R \)
by \((\text{subst } \text{sorted-wrt-linorder-index-le-iff} | \text{OF assms}(1-3) \ \text{assms}(5,4), \ \text{symmetric})\)

auto

lemma \(\text{sorted-wrt-distinct-linorder-nth} \):
assumes \(\text{linorder-on } A \ R \ 	ext{set } xs \subseteq A \ \text{sorted-wrt } R \ xs \ \text{distinct } xs \)
\(i < \text{length } xs \ j < \text{length } xs \)
shows \((xs!i, xs!j) \in R \iff i \leq j \)
proof (cases \(i \) \(j \) rule: linorder-cases)
 case less
 with assms show \(?thesis\) by (simp add: \(\text{sorted-wrt-conv-nth} \))
next
 case equal
 from assms have \(xs!i \in \text{set } xs \) \(xs!j \in \text{set } xs \)
 by (auto simp: \(\text{set-conv-nth} \))
 with assms \(2 \) have \(xs!i \in A \) \(xs!j \in A \)
 by blast
 moreover from assms and greater have \(xs!i \neq xs!j \)
 by (simp add: \(\text{nth-eq-iff-index-eq} \))
 ultimately show \(?thesis\) using \((\text{linorder-on } A \ R) \ \text{greater} \)
 by (auto simp: \(\text{linorder-on-def } \) antisym-def)
qed

1.4 Converting a list into a linear ordering

definition \(\text{linorder-of-list} :: 'a \text{ list } \Rightarrow ('a \times 'a) \text{ set where} \)
\(\text{linorder-of-list } xs = \{(a,b). \ a \in \text{set } xs \land b \in \text{set } xs \land \text{index } xs \ a \leq \text{index } xs \ b\} \)

lemma \(\text{linorder-linorder-of-list} \ [\text{intro}, \text{simp}]: \)
assumes distinct \(xs \)
shows \(\text{linorder-on } (\text{set } xs) \ \text{(linorder-of-list } xs) \)
unfolding \(\text{linorder-on-def} \) using \(\text{assms} \)
by (auto simp: \(\text{refl-on-def } \) antisym-def \(\text{trans-def } \) total-on-def \(\text{linorder-of-list-def} \))

lemma \(\text{sorted-wrt-linorder-of-list} \ [\text{intro}, \text{simp}]: \)
distinct \(xs \Rightarrow \text{sorted-wrt } (\text{linorder-of-list } xs) \ xs \)
by (auto simp: \(\text{sorted-wrt-conv-nth } \) \(\text{linorder-of-list-def} \) \(\text{index-nth-id} \))

1.5 Insertion sort

code
primrec \(\text{insert-wrt} :: ('a \times 'a) \text{ set } \Rightarrow ('a \times 'a) \text{ set where} \)
\(\text{insert-wrt } R \ x \ [] = [x] \)
| \(\text{insert-wrt } R \ x \ (y \# y \#) = (if (x, y) \in R \text{ then } y \# y \# \text{ else } y \# \text{ insert-wrt } R \ x \ y) \)

5
lemma set-insert-wrt [simp]: set (insert-wrt R x xs) = insert x (set xs)
 by (induction xs) auto

lemma mset-insert-wrt [simp]: mset (insert-wrt R x xs) = add-mset x (mset xs)
 by (induction xs) auto

lemma length-insert-wrt [simp]: length (insert-wrt R x xs) = Suc (length xs)
 by (induction xs) simp-all

definition insort-wrt :: ('a × 'a) set ⇒ 'a list ⇒ 'a list
 where
 insort-wrt R xs = foldr (insert-wrt R) xs []

lemma set-insort-wrt [simp]: set (insort-wrt R xs) = set xs
 by (induction xs) (simp-all add: insort-wrt-def)

lemma mset-insort-wrt [simp]: mset (insort-wrt R xs) = mset xs
 by (induction xs) (simp-all add: insort-wrt-def)

lemma length-insort-wrt [simp]: length (insort-wrt R xs) = length xs
 by (induction xs) (simp-all add: insort-wrt-def)

lemma sorted-wrt-insert-wrt [intro]:
 linorder-on A R ⇒ set (x # xs) ⊆ A ⇒
 sorted-wrt R xs ⇒ sorted-wrt R (insert-wrt R x xs)
proof (induction xs)
 case (Cons y ys)
 from Cons.prems have (x,y) ∈ R ∨ (y,x) ∈ R
 by (cases x = y) (auto simp: linorder-on-def refl-on-def total-on-def)
 with Cons show ?case
 by (auto simp: sorted-wrt-Cons intro: transD simp: linorder-on-def)
qed auto

lemma sorted-wrt-insort [intro]:
 assumes linorder-on A R set xs ⊆ A
 shows sorted-wrt R (insort-wrt R xs)
proof
 from assms have set (insort-wrt R xs) = set xs ∧ sorted-wrt R (insort-wrt R xs)
 by (induction xs) (auto simp: insort-wrt-def intro!: sorted-wrt-insert-wrt)
 thus ?thesis ..
qed

lemma distinct-insort-wrt [simp]: distinct (insort-wrt R xs) ⇐⇒ distinct xs
 by (simp add: distinct-count-atmost-1)

lemma sorted-wrt-linorder-unique:
 assumes linorder-on A R mset xs = mset ys sorted-wrt R xs sorted-wrt R ys
 shows xs = ys
proof
 from mset xs = mset ys have length xs = length ys by (rule mset-eq-length)
from this and assms(2−) show ?thesis
proof (induction xs ys rule: list-induct2)
 case (Cons x xs y ys)
 have set (x # xs) = set-mset (mset (x # xs)) by simp
 also have mset (x # xs) = mset (y # ys) by fact
 also have set-mset . . . = set (y # ys) by simp
 finally have eq: set (x # xs) = set (y # ys).
 have x = y proof (rule ccontr)
 assume x ≠ y
 with eq have x ∈ set ys y ∈ set xs by auto
 with Cons.prems and assms(1) and eq have (x, y) ∈ R (y, x) ∈ R
 by (auto simp: sorted-wrt-Cons)
 with assms(1) have x = y by (auto simp: linorder-on-def antisym-def)
 with x ≠ y show False by contradiction
 qed
 with Cons show ?case by (auto simp: sorted-wrt-Cons)
 qed auto
qed

1.6 Obtaining a sorted list of a given set

definition sorted-wrt-list-of-set where
 sorted-wrt-list-of-set R A =
 (if finite A then (THE xs. set xs = A ∧ distinct xs ∧ sorted-wrt R xs) else [])

lemma mset-remdups: mset (remdups xs) = mset-set (set xs)
proof (induction xs)
 case (Cons x xs)
 thus ?case by (cases x ∈ set xs) (auto simp: insert-absorb)
qed auto

lemma sorted-wrt-list-set:
 assumes linorder-on A R set xs ⊆ A
 shows sorted-wrt-list-of-set R (set xs) = insort-wrt R (remdups xs)
proof
 have sorted-wrt-list-of-set R (set xs) =
 (THE zsa. set zsa = set xs ∧ distinct zsa ∧ sorted-wrt R zsa)
 by (simp add: sorted-wrt-list-of-set-def)
 also have . . . = insort-wrt R (remdups xs)
 proof (rule the-equality)
 fix zsa assume zsa: set zsa = set xs ∧ distinct zsa ∧ sorted-wrt R zsa
 from zsa have mset zsa = mset-set (set zsa) by (subst mset-set-set) simp-all
 also from zsa have set zsa = set xs by simp
 also have mset-set . . . = mset (remdups xs) by (simp add: mset-remdups)
 finally show zsa = insort-wrt R (remdups xs) using zsa assms
 by (intro sorted-wrt-linorder-unique[OF assms(1)])
 (auto intro!: sorted-wrt-insort)
 qed
qed

7
qed (insert assms, auto intro!: sorted-wrt-insort)
finally show thesis.

qed

lemma linorder-sorted-wrt-exists:
 assumes linorder-on A R finite B B ⊆ A
 shows ∃xs. set xs = B ∧ distinct xs ∧ sorted-wrt R xs
proof −
 from ⟨finite B⟩ obtain xs where set xs = B distinct xs
 using finite-distinct-list by blast
 hence set (insort-wrt R xs) = B distinct (insort-wrt R xs)
 by simp-all
 moreover have sorted-wrt R (insort-wrt R xs)
 using assms (set xs = B) by (intro sorted-wrt-insort[OF assms][1]) auto
 ultimately show thesis by blast

qed

lemma linorder-sorted-wrt-list-of-set:
 assumes linorder-on A R finite B B ⊆ A
 shows set (sorted-wrt-list-of-set R B) = B distinct (sorted-wrt-list-of-set R B)
sorted-wrt R (sorted-wrt-list-of-set R B)
proof −
 have ∃!xs. set xs = B ∧ distinct xs ∧ sorted-wrt R xs
 proof (rule ex-ex1I)
 show ∃xs. set xs = B ∧ distinct xs ∧ sorted-wrt R xs
 by (rule linorder-sorted-wrt-exists assms)+
next
 fix xs ys assume set xs = B ∧ distinct xs ∧ sorted-wrt R xs
 set ys = B ∧ distinct ys ∧ sorted-wrt R ys
 thus xs = ys
 by (intro sorted-wrt-linorder-unique[OF assms[1]]) (auto simp: set-eq-iff-mset-eq-distinct)
 qed
 from theI'[OF this] show set (sorted-wrt-list-of-set R B) = B
distinct (sorted-wrt-list-of-set R B) sorted-wrt R (sorted-wrt-list-of-set R B)
 by (simp-all add: sorted-wrt-list-of-set-def ⟨finite B⟩)

qed

lemma sorted-wrt-list-of-set-eqI:
 assumes linorder-on B R A ⊆ B set xs = A distinct xs sorted-wrt R xs
 shows sorted-wrt-list-of-set R A = xs
proof (rule sorted-wrt-linorder-unique)
 show linorder-on B R by fact
 let ?ys = sorted-wrt-list-of-set R A
 have fin [simp]: finite A by (simp-all add: assms3) [symmetric]
 have *: distinct ?ys set ?ys = A sorted-wrt R ?ys
 by (rule linorder-sorted-wrt-list-of-set[OF assms[1]] fin assms)+
 from assms * show mset ?ys = mset xs
 by (subst set-eq_iff-mset-eq-distinct [symmetric]) simp-all
 show sorted-wrt R ?ys by fact

qed fact+
1.7 Rank of an element in an ordering

The ‘rank’ of an element in a set w.r.t. an ordering is how many smaller elements exist. This is particularly useful in linear orders, where there exists a unique n-th element for every n.

definition linorder-rank where
linorder-rank R A x = \(\text{card} \{y \in A - \{x\}. \; (y,x) \in R\}\)

lemma linorder-rank-le:
assumes finite A
sows linorder-rank R A x \leq \(\text{card} \; A\)
unfolding linorder-rank-def using \texttt{assms}
by (rule card-mono) auto

lemma linorder-rank-less:
assumes finite A x \in A
sows linorder-rank R A x $<$ \(\text{card} \; A\)
proof
- have linorder-rank R A x \leq \(\text{card} \; (A - \{x\})\)
 unfolding linorder-rank-def using \texttt{assms} by (intro card-mono) auto
also from \texttt{assms} have \ldots $<$ \(\text{card} \; A\) by (intro psubset-card-mono) auto
finally show \texttt{?thesis}.
qed

lemma linorder-rank-union:
assumes finite A finite B $A \cap B$ = \{
shows linorder-rank R $(A \cup B)$ x = linorder-rank R A x + linorder-rank R B x
proof
- have linorder-rank R $(A \cup B)$ x = \(\text{card} \; \{y \in (A \cup B) - \{x\}$. \; $(y,x) \in R\}\)
 by (simp add: linorder-rank-def)
also have \(\{y \in (A \cup B) - \{x\}. \; (y,x) \in R\} = \{y \in A - \{x\}. \; (y,x) \in R\} \cup \{y \in B - \{x\}. \; (y,x) \in R\}\)
by blast
also have \(\text{card} \ldots = \text{linorder-rank} \; R \; A \; x + \text{linorder-rank} \; R \; B \; x\)
unfolding linorder-rank-def
using \texttt{assms} by (intro card-Un-disjoint) auto
finally show \texttt{?thesis}.
qed

lemma linorder-rank-empty [simp]: linorder-rank R \{
\} x = 0
by (simp add: linorder-rank-def)

lemma linorder-rank-singleton:
linorder-rank R \{y\} x = (if x \neq y \land $(y,x) \in R$ then 1 else 0)
proof
- have linorder-rank R \{y\} x = \(\text{card} \; \{z \in \{y\} - \{x\}. \; (z,x) \in R\}\)
 by (simp add: linorder-rank-def)
also have \(\{z \in \{y\} - \{x\}. \; (z,x) \in R\} = (if \; x \neq \; y \; \land \; (y,x) \in R \; \text{then} \; \{y\} \; \text{else} \; \{\})\)
by auto
also have \(\text{card} \ldots = (if \; x \neq \; y \; \land \; (y,x) \in R \; \text{then} \; 1 \; \text{else} \; 0)\) by simp
finally show \(?thesis\).

qed

lemma linorder-rank-insert:
 assumes finite A y \notin A
 shows linorder-rank R (insert y A) x =
 (if x \neq y \land (y,x) \in R then 1 else 0) + linorder-rank R A x
 using linorder-rank-union[of \{y\} A R x] assms by (auto simp: linorder-rank-singleton)

lemma linorder-rank-mono:
 assumes linorder-on B R finite A A \subseteq B (x, y) \in R
 shows linorder-rank R A x \leq linorder-rank R A y
 unfolding linorder-rank-def
 proof (rule card-mono)
 from assms have trans: trans R and antisym: antisym R by (simp-all add: linorder-on-def)
 from assms antisym show \{y \in A - \{x\}. (y, x) \in R\} \subseteq \{ya \in A - \{y\}. (ya, y) \in R\}
 moreover from \star and assms have y \notin \{z \in A - \{y\}. (z, y) \in R\} y \in \{z \in A - \{x\}. (z, x) \in R\}
 by auto
 ultimately have \{z \in A - \{y\}. (z, y) \in R\} \subseteq \{z \in A - \{x\}. (z, x) \in R\} by blast
 thus \?thesis using assms unfolding linorder-rank-def by (intro psubset-card-mono)
 auto
 qed

lemma linorder-rank-strict-mono:
 assumes linorder-on B R finite A A \subseteq B y \in A (y, x) \in R x \neq y
 shows linorder-rank R A y < linorder-rank R A x
 proof (cases x = y)
 case True
 with assms show \?thesis by (auto simp: linorder-on-def refl-on-def)
 next
 case False
 from assms(1) have trans: trans R by (simp-all add: linorder-on-def)
 from assms have x \in B y \in B by auto
 with \ linerorder-on B R and False have ((x, y) \in R \implies (y, x) \notin R) \lor ((y, x) \in R \lor

\[(x, y) \notin R\]

by (fastforce simp: linorder-on-def antisym-def total-on-def)

thus \(\vdash\) thesis

proof

assume \((x, y) \in R \land (y, x) \notin R\)

with assms show \(\vdash\) thesis by (auto intro: linorder-rank-mono)

next

assume \(*: (y, x) \in R \land (x, y) \notin R\)

with linorder-rank-strict-mono[OF assms(1-3), of \(y\ x\)]

assms False

show \(\vdash\) thesis by auto

qed

qed

lemma linorder-rank-eq-iff:

assumes linorder-on B R finite A A \(\subseteq\) B \(x\ \in\ A\) \(y\ \in\ A\)

shows linorder-rank R A x = linorder-rank R A y \(\iff\) x = y

proof

define j where j = index xs x

from assms have j < length xs by (simp add: j-def)

have \(*: x = y \lor ((x, y) \in R \land (y, x) \notin R) \lor ((y, x) \in R \land (x, y) \notin R)\) if \(y\ \in\ set\ xs\) for \(y\)

using linorder-on-cases[OF assms(1), of \(x\ y\)]

assms that by auto

from assms have \{y\in set xs - \{x\}. (y, x) \in R\} = \{y\in set xs - \{x\}. index xs y < index xs x\}

by (auto simp: sorted-wrt-linorder-index-less-iff[OF assms(1-3)] dest: *)

also have \(\ldots = \{y\in set xs. index xs y < j\}\) by (auto simp: j-def)

also have \(\ldots = (\lambda i. \xs! i) \cdot \{i. i < j\}\)

proof safe

fix \(y\) assume \(y\ \in\ set\ xs\ index\ xs\ y\ <\ j\)

moreover from this and \(j\) have \(y = xs! index\ xs\ y\) by simp

ultimately show \(y\ \in\ (!)\ xs\ \cdot\ \{i. i < j\}\) by blast

qed (insert assms \(j\), auto simp: index-nth-id)

also from assms and \(j\) have card \(\ldots =\) card \(\{i. i < j\}\)

by (intro card-image) (auto simp: inj-on-def nth-eq-iff-index-eq)

also have \(\ldots = j\) by simp

finally show \(\vdash\) thesis by (simp only: j-def linorder-rank-def)

qed
lemma bij-betw-linorder-rank:
 assumes linorder-on B R finite A A ⊆ B
 shows bij-betw (linorder-rank R A) A {..<\text{card } A}
proof –
 define xs where xs = sorted-wrt-list-of-set R A
 note xs = linorder-sorted-wrt-list-of-set[OF assms, folded xs-def]
 from ⟨distinct xs⟩ have len-xs: length xs = card A
 by (subst ⟨set xs = A⟩ [symmetric]) (auto simp: distinct-card)
 have rank: linorder-rank R (set xs) x = index xs x if x ∈ A for x
 using linorder-rank-set-sorted-wrt[OF assms (1), of xs x] assms that xs
 by simp-all
 from xs len-xs show ?thesis
 by (intro bij-betw-byWitness[where f′ = \lambda i. xs ! i])
 (auto simp: rank index-nth-id intro: nth-mem)
qed

1.8 The bijection between linear orderings and lists

theorem bij-betw-linorder-of-list:
 assumes finite A
 shows bij-betw linorder-of-list (permutations-of-set A) {R. linorder-on A R}
proof (intro bij-betw-byWitness[where f′ = \lambda. sorted-wrt-list-of-set R A] ballI)
 goal-cases
 case (1 xs)
 thus ?case by (intro sorted-wrt-list-of-set-eqI) (auto simp: permutations-of-set-def)
next
 case (2 R)
 hence R: linorder-on A R by simp
 from R have in-R: x ∈ A y ∈ A if (x,y) ∈ R for x y using that
 by (auto simp: linorder-on-def refl-on-def)
 let ?xs = sorted-wrt-list-of-set R A
 have xs: distinct ?xs set ?xs = A sorted-wrt R ?xs
 by (rule linorder-sorted-wrt-list-of-set[OF R] assms order_refl)+
 thus ?case using sorted-wrt-linorder-index-le-iff[OF R, of ?xs]
 by (auto simp: linorder-of-list-def dest: in-R)
next
 case (4 xs)
 then obtain R where R: linorder-on A R and xs [simp]: xs = sorted-wrt-list-of-set R A by auto
 let ?xs = sorted-wrt-list-of-set R A
 have xs: distinct ?xs set ?xs = A sorted-wrt R ?xs
 by (rule linorder-sorted-wrt-list-of-set[OF R] assms order_refl)+
 thus ?case by auto
qed (auto simp: permutations-of-set-def)

corollary card-finite-linorders:
 assumes finite A
 shows card {R. linorder-on A R} = fact (card A)

12
proof
 have card {R. linorder-on A R} = card (permutations-of-set A)
 by (rule sym, rule bij-betw-same-card [OF bij-betw-linorder-of-list[OF assms]])
 also from assms have ... = fact (card A) by (rule card-permutations-of-set)
 finally show ?thesis .
qed

2 Lower bound on costs of comparison-based sorting

theory Comparison-Sort-Lower-Bound
imports
 Complex/Main
 Linorder-Relations
 Stirling-Formula
 Stirling-Formula.Landau-Symbols.Landau-More
begin

2.1 Abstract description of sorting algorithms

We have chosen to model a sorting algorithm in the following way: A sorting
algorithm takes a list with distinct elements and a linear ordering on these
elements, and it returns a list with the same elements that is sorted w.r.t.
the given ordering.

The use of an explicit ordering means that the algorithm must look at the
ordering, i.e. it has to use pair-wise comparison of elements, since all the in-
formation that is relevant for producing the correct sorting is in the ordering;
the elements themselves are irrelevant.

Furthermore, we record the number of comparisons that the algorithm makes
by not giving it the relation explicitly, but in the form of a comparison oracle
that may be queried.

A sorting algorithm (or ‘sorter’) for a fixed input list (but for arbitrary
orderings) can then be written as a recursive datatype that is either the
result (the sorted list) or a comparison query consisting of two elements
and a continuation that maps the result of the comparison to the remaining
computation.

datatype 'a sorter = Return 'a list | Query 'a 'a bool ⇒ 'a sorter

Cormen et al. [1] use a similar ‘decision tree’ model where an sorting algo-
rithm for lists of fixed size \(n \) is modelled as a binary tree where each node
is a comparison of two elements. They also demand that every leaf in the
tree be reachable in order to avoid ‘dead’ subtrees (if the algorithm makes
redundant comparisons, there may be branches that can never be taken).
Then, the worst-case number of comparisons made is simply the height of the tree.

We chose a subtly different model that does not have this restriction on the algorithm but instead uses a more semantic way of counting the worst-case number of comparisons: We simply use the maximum number of comparisons that occurs for any of the (finitely many) inputs.

We therefore first define a function that counts the number of queries for a specific ordering and then a function that counts the number of queries in the worst case (ranging over a given set of allowed orderings; typically, this will be the set of all linear orders on the list).

\[
\text{primrec count-queries :: } (a \times a) \text{ set } \Rightarrow a \text{ sorter } \Rightarrow \text{ nat where}
\]

\[
\text{count-queries - } (\text{Return } -) = 0
\]

\[
| \text{count-queries } R (\text{Query } a \ b \ f) = \text{Suc} \ (\text{count-queries } R (f ((a, b) \in R)))
\]

\[
\text{definition count-wc-queries :: } (a \times a) \text{ set set } \Rightarrow a \text{ sorter } \Rightarrow \text{ nat where}
\]

\[
\text{count-wc-queries } Rs \ sorter = (\text{if } Rs = \{} \text{ then } 0 \text{ else Max } ((\lambda R. \text{ count-queries } R \ sorter) ' Rs))
\]

\[
\text{lemma count-wc-queries-empty [simp]: count-wc-queries } \{} \text{ sorter } = 0
\]

by \((\text{simp add: count-wc-queries-def})\)

\[
\text{lemma count-wc-queries-aux:}
\]

assumes \(\forall R. R \in Rs \implies \text{ sorter } = \text{ sorter' } R Rs \subseteq Rs' \text{ finite } Rs'\)

shows \(\text{ count-wc-queries } Rs \text{ sorter } \leq \text{ Max } ((\lambda R. \text{ count-queries } R \ (\text{ sorter' } R)) ' Rs')\)

proof \((\text{cases } Rs = \{\})\)

\[
\text{ case False}
\]

hence \(\text{ count-wc-queries } Rs \text{ sorter } = \text{ Max } ((\lambda R. \text{ count-queries } R \text{ sorter}) ' Rs')\)

by \((\text{simp add: count-wc-queries-def})\)

also have \((\lambda R. \text{ count-queries } R \text{ sorter}) ' Rs = (\lambda R. \text{ count-queries } R \ (\text{ sorter' } R)) ' Rs\)

by \((\text{intro image-cong refl}) (\text{simp-all add: assms})\)

also have \(\text{ Max } . . . \leq \text{ Max } ((\lambda R. \text{ count-queries } R \ (\text{ sorter' } R)) ' Rs')\) using \False\)

by \((\text{intro Max-mono assms image-mono finite-imageI}) \text{ auto} \)

finally show \(\text{thesis} . \)

qed simp-all

\[
\text{primrec eval-sorter :: } (a \times a) \text{ set } \Rightarrow a \text{ sorter } \Rightarrow a \text{ list where}
\]

\[
\text{eval-sorter - } (\text{Return } ys) = ys
\]

\[
| \text{eval-sorter } R (\text{Query } a \ b \ f) = \text{eval-sorter } R (f ((a, b) \in R)))
\]

We now get an obvious bound on the maximum number of different results that a given sorter can produce.

\[
\text{lemma card-range-eval-sorter:}
\]

assumes \(\text{ finite } Rs\)

shows \(\text{ card } ((\lambda R. \text{ eval-sorter } R \ e) ' Rs) \leq 2 \ (\text{ count-wc-queries } Rs \ e)\)

using \assms
proof (induction e arbitrary: Rs)
case (Return xs Rs)
 have *: (λR. eval-sorter R (Return xs)) 'Rs = (if Rs = {} then {} else {xs})
 by auto
 show ?case by (subst *) auto
next
case (Query a b f Rs)
 have f True ∈ range f f False ∈ range f by simp-all
note IH = this [THEN Query.IH]
 let ?Rs1 = {R ∈ Rs. (a, b) ∈ R} and ?Rs2 = {R ∈ Rs. (a, b) /∈ R}
 let ?A = (λR. eval-sorter R (f True)) 'Rs1 and ?B = (λR. eval-sorter R (f False)) 'Rs2
 from Query.prems have fin: finite ?Rs1 finite ?Rs2 by simp-all
 have *: (λR. eval-sorter R (Query a b f)) 'Rs ⊆ ?A ∪ ?B
proof (intro subsetI, elim imageE, goal-cases)
 case (1 xs R)
 thus ?case by (cases (a, b) ∈ R) auto
qed

show ?case
proof (cases Rs = { })
 case False
 have card ((λR. eval-sorter R (Query a b f)) 'Rs) ≤ card (?A ∪ ?B)
 by (intro card-mono finite-UnI finite-imageI fin *)
 also have ... ≤ card ?A + card ?B by (rule card-Un-le)
 also have ... ≤ 2 ^ count-wc-queries ?Rs1 (f True) + 2 ^ count-wc-queries ?Rs2 (f False)
 by (intro add-mono IH fin)
 also have count-wc-queries ?Rs1 (f True) ≤ Max ((λR. count-queries R (f ((a, b) ∈ R))) 'Rs)
 by (intro count-wc-queries-aux Query.prems) auto
 also have count-wc-queries ?Rs2 (f False) ≤ Max ((λR. count-queries R (f ((a, b) ∈ R))) 'Rs)
 by (intro count-wc-queries-aux Query.prems) auto
 also have Suc (Max ((λR. count-queries R (f ((a, b) ∈ R))) 'Rs)) =
 Max (Suc ' ((λR. count-queries R (f ((a, b) ∈ R))) 'Rs)) using False
 by (intro mono-Max-commute finite-imageI Query.prems) (auto simp: inc-seq-def)
 also have Suc ' ((λR. count-queries R (f ((a, b) ∈ R))) 'Rs) =
 (λR. Suc (count-queries R (f ((a, b) ∈ R)))) 'Rs by (simp add: image-image)
 also have Max ... = count-wc-queries Rs (Query a b f) using False
 by (auto simp add: count-wc-queries-def)
 finally show ?thesis by - simp-all
qed simp-all
qed

The following predicate describes what constitutes a valid sorting result for
a given ordering and a given input list. Note that when the ordering is linear, the result is actually unique.

definition is-sorting :: ('a × 'a) set ⇒ 'a list ⇒ 'a list ⇒ bool where
 is-sorting R xs ys ⟷ (mset xs = mset ys) ∧ sorted-wrt R ys

2.2 Lower bounds on number of comparisons

For a list of \(n \) distinct elements, there are \(n! \) linear orderings on \(n \) elements, each of which leads to a different result after sorting the original list. Since a sorter can produce at most \(2^k \) different results with \(k \) comparisons, we get the bound \(2^k \geq n! \):

theorem
 fixes sorter :: 'a sorter and xs :: 'a list
 assumes distinct: distinct xs
 assumes sorter: ∀ R. linorder-on (set xs) R ⇒ is-sorting R xs (eval-sorter R sorter)
 defines Rs ≡ { R. linorder-on (set xs) R }
 shows two-power-count-queries-ge: fact (length xs) ≤ (2 ^ count-wc-queries Rs sorter :: nat)
 and count-queries-ge: log 2 (fact (length xs)) ≤ real (count-wc-queries Rs sorter)
 proof
 −
 have Rs ⊆ Pow (set xs × set xs) by (auto simp: Rs-def linorder-on-def refl-on-def)
 hence fin: finite Rs by (rule finite-subset) simp
 from assms have fact (length xs) = card (permutations-of-set (set xs))
 by (simp add: distinct-card)
 also have permutations-of-set (set xs) ⊆ (λ R. eval-sorter R sorter) ' Rs
 proof (rule subsetI, goal-cases)
 case 1 ys
 define R where R = linorder-of-list ys
 define zs where zs = eval-sorter R sorter
 from 1 and distinct have mset-ys: mset ys = mset xs
 by (auto simp: set-eq-iff-mset-eq-distinct permutations-of-set-def)
 from 1 have *: linorder-on (set xs) R unfolding R-def using linorder-linorder-of-list[of ys]
 by (simp add: permutations-of-set-def)
 from sorter[of this] have mset xs = mset zs sorted-wrt R zs
 by (simp-all add: is-sorting-def zs-def)
 moreover from 1 have sorted-wrt R ys unfolding R-def
 by (intro sorted-wrt-linorder-of-list) (simp-all add: permutations-of-set-def)
 ultimately have zs = ys
 by (intro sorted-wrt-linorder-unique[of *]) (simp-all add: mset-ys)
 moreover from * have R ∈ Rs by (simp add: Rs-def)
 ultimately show ?case unfolding zs-def by blast
 qed
 hence card (permutations-of-set (set xs)) ≤ card ((λ R. eval-sorter R sorter) ' Rs)
 by (intro card-mono finite-imageI fin)
also from fin have \ldots \leq 2 \sim \text{count-wc-queries} Rs \text{sorter by} \ (\text{rule card-range-eval-sorter})

finally show \ast: \text{fact} (\text{length} xs) \leq (2 \sim \text{count-wc-queries} Rs \text{sorter :: nat}) .

have \ln (\text{fact} (\text{length} xs)) = \ln (\text{real} (\text{fact} (\text{length} xs))) \text{ by simp}
also have \ldots \leq \ln (\text{real} (2 \sim \text{count-wc-queries} Rs \text{sorter}))
proof (\text{subst} \ln-le-cancel-iff)
 show \ln (\text{fact} (\text{length} xs)) \leq \ln (2 \sim \text{count-wc-queries} Rs \text{sorter})
 by (\text{subst} of-nat-le-iff) (\text{rule} \ast)
qed simp-all
also have \ldots = \text{real} (\text{count-wc-queries} Rs \text{sorter}) \ast \ln 2 \text{ by} (\text{simp add: ln-realpow})
finally have \text{real} (\text{count-wc-queries} Rs \text{sorter}) \geq \ln (\text{fact} (\text{length} xs)) / \ln 2
by (\text{simp add: field-simps})
also have \ln (\text{fact} (\text{length} xs)) / \ln 2 = \ln (\text{fact} (\text{length} xs)) \text{ by} (\text{simp add: log-def})
finally show \ast\ast: \ln (\text{fact} (\text{length} xs)) \leq \text{real} (\text{count-wc-queries} Rs \text{sorter}) .
qed

\textbf{lemma} ln-fact-bigo: (\ln. \ln (\text{fact} n) - (\ln (2 \ast \pi \ast n) / 2 + n \ast \ln n - n)) \in O(\ln. 1 / n)
and asymp-equiv-ln-fact \ [asymp-equiv-intros]: (\ln. \ln (\text{fact} n)) \sim [\text{at-top}] (\ln. n \ast \ln n)
proof –
 include asymp-equiv-notation
define f where \(f = (\lambda n. \ln (2 \ast \pi \ast real n) / 2 + real n \ast \ln (real n) - real n))
have eventually \(\ln. \ln (\text{fact} n) - f n \in \{0..1/(12*real n)}\) at-top
 using eventually-at-top[of 1::nat]
proof eventually-elim
 case (elim n)
 with ln-fact-bounds[of n] show ?case by (simp add: f-def)
qed
hence eventually \(\ln. \text{norm} (\ln (\text{fact} n) - f n) \leq (1/12) \ast \text{norm} (1 / \text{real} n))\)
at-top
 using eventually-at-top[of 0::nat] by eventually-elim (simp-all add: field-simps)
thus \(\ln. \ln (\text{fact} n) - f n \in O(\ln. 1 / \text{real} n)\)
 using bigoI[of \ln. \ln (\text{fact} n) - f n 1/12 \ln. 1 / \text{real} n] by simp
also have \(\ln. 1 / \text{real} n) \in o(f)\) unfolding f-def by (intro smallo-real-nat-transfer)
simp
finally have \(\ln. f n + (\ln (\text{fact} n) - f n)) \sim f\)
 by (subst asymp-equiv-add-right) simp-all
hence \(\ln. \ln (\text{fact} n)) \sim f \text{ by simp}\)
 also have \(f \sim (\ln. n \ast \ln n + (\ln (2*\pi*n)/2 - n)) \text{ by} (\text{simp add: f-def algebra-simps})\)
 also have \ldots \sim \(\ln. n \ast \ln n) \text{ by} (\text{subst} asymp-equiv-add-right)\) auto
finally show \(\ln. \ln (\text{fact} n)) \sim (\ln. n \ast \ln n) .\)
qed

This leads to the following well-known Big-Omega bound on the number of comparisons that a general sorting algorithm has to make:
corollary count-queries-bigomega:
 fixes sorter :: nat ⇒ nat sorter
 assumes sorter: ∀ n R. linorder-on {..<n} R ⇒
is-sorting R [0..<n] (eval-sorter R (sorter n))
defines Rs ≡ λ n. { R, linorder-on {..<n} R }
sshows (λ n. count-wc-queries (Rs n) (sorter n)) ∈ Ω(λ n. n * ln n)
proof –
 have (λ n. n * ln n) ∈ Θ(λ n. ln (fact n))
 by (subst bigtheta-sym) (intro asymp-equiv-imp-bigtheta asymp-equiv-intros)
also have (λ n. ln (fact n)) ∈ Θ(λ n. log 2 (fact n)) by (simp add: log-def)
also have (λ n. log 2 (fact n)) ∈ O(λ n. count-wc-queries (Rs n) (sorter n))
proof (intro bigoI[where c = 1] always-eventually allI, goal-cases)
case (1 n)
 have norm (log 2 (fact n)) = log 2 (fact (length [0..<n])) by simp
also from sorter[n] have ... ≤ real (count-wc-queries (Rs n) (sorter n))
 using count-queries-ge[of [0..<n] sorter n] by (auto simp: Rs-def atLeast0LessThan)

also have ... = 1 * norm ... by simp
finally show ?case by simp
qed
finally show ?thesis by (simp add: bigomega-iff-bigo)
qed

end

References