Combinatorial Enumeration Algorithms

Paul Hofmeier and Emin Karayel

March 17, 2025

Abstract

Combinatorial objects have configurations which can be enumer-
ated by algorithms, but especially for imperative programs, it is diffi-
cult to find out if they produce the correct output and don’t generate
duplicates. Therefore, for some of the most common combinatorial
objects, namely n_ Sequences, n_ Permutations, n_ Subsets, Powerset,
Integer Compositions, Integer Partitions, Weak_ Integer Composi-
tions, Derangements and Trees, this entry formalizes efficient func-
tional programs and verifies their correctness. In addition, it provides
cardinality proofs for those combinatorial objects. Some cardinalities
are verified using the enumeration functions and others are shown using
existing libraries including other AFP entries.

Related books on combinatorics include [4] and [5]. Some of the car-
dinality theorems in this entry are also proved in another AFP entry, The
Twelvefold Way [3].

Contents
1 Injectivity for two argument functions 3
1.1 Correspondence between inj2-on and inj-on 4
1.2 Proofswithinj2. 4
1.3 Specializations of inj2 5
1.31 Cons 5
1.3.2 Noderight 5
1.33 Nodeleft 5
1.34 ConsSuc 6
2 Lemmas for cardinality proofs 6
3 Miscellaneous 6
3.1 count-list and replicate 6

N-Sequences

4.1 Definition
4.2 Algorithm
4.3 Verification
4.3.1 Correctness
4.3.2 Distinctness e
4.3.3 Cardinality oo
N-Permutations
5.1 Definition
5.2 Algorithm
5.3 Verification
5.3.1 Correctness o.ovov e e e e e
5.3.2 Distinctness oo
5.3.3 Cardinality
5.4 n-multiset extension (with remdups)
N-Subsets
6.1 Definition
6.2 Algorithm
6.3 Verification
6.3.1 mn-bool-lists
6.3.2 Correctnesso e e e e e
6.3.3 Distinctness
6.3.4 Cardinality L.
6.4 Alternative using Multiset permutations
6.5 mset-count L e e e e e
Powerset
7.1 Definition
7.2 Algorithm
7.3 Verification
7.3.1 Correctness
7.3.2 Distinctness oL
7.3.3 Cardinality
7.4 Alternative algorithm with n-sequence-enum
Integer Paritions
8.1 Definition
8.2 Algorithm
8.3 Verification
8.3.1 Correctness v it e
83.2 Distinctness oo
8.3.3 Cardinality

12
12
12
12
12
13
13
13
13
14

14
14
14
15
15
15
15
15

9 Integer Compositions 18

9.1 Definition e 18
9.2 Algorithm 18
9.3 Verification 19
9.3.1 Correctness oi i i e e e 19

9.3.2 Distinctness oo 19

9.3.3 Cardinality oL 20

10 Weak Integer Compositions 20
10.1 Definition 20
10.2 Algorithm 20
10.3 Verification 21
10.3.1 Correctness 21

10.3.2 Distinctness 21

10.3.3 Cardinality 21

11 Derangements 22
11.1 Definition 22
11.2 Algorithm 22
11.3 Verification 23
11.3.1 Correctness 23

11.3.2 Distinctness 23

12 Trees 24
12.1 Definition 24
12.2 Algorithm 24
12.3 Verification 24
12.3.1 Cardinality L. 24

12.3.2 Correctness 24

12.3.3 Distinctness 25

1 Injectivity for two argument functions

theory Common-Lemmas
imports
HOL.List
HOL—- Library. Tree
begin

This section introduces inj2-on which generalizes inj-on on curried functions
with two arguments and contains subsequent theorems about such functions.

We could use curried function directly with for example case-prod, but this
way the proofs become simpler and easier to read.

definition inj2-on :: (‘a = b = '¢) = 'a set = 'b set = bool where

inj2-on f A B +— (Val€A. Va12€A. VyleB. Vy2€B. fzl yl = fz2 y2 — xl
=2 Nyl = y2)

abbreviation inj2 :: ('a = 'b = '¢) = bool where
mnj2 f = inj2-on f UNIV UNIV

1.1 Correspondence between inj2-on and inj-on

lemma inj2-curried: inj2-on (curry f) A B +— inj-on f (AxB)
(proof)

lemma inj2-on-all: inj2 f = inj2-on f A B
(proof)

lemma inj2-inj-first: inj2 f = inj f
(proof)

lemma inj2-inj-second: inj2 f = inj (f x)
(proof)

lemma inj2-inj-second-flipped: inj2 f —> inj (A\z. fz y)
(proof)

1.2 Proofs with inj2

Already existing for inj:

thm distinct-map

lemma inj2-on-distinct-map:
assumes inj2-on f {z} (set xs)
shows distinct xs = distinct (map (f z) s)

{proof)

lemma inj2-distinct-map:
assumes inj2 f
shows distinct xs = distinct (map (f z) s)

{proof)

lemma inj2-on-distinct-concat-map:

assumes inj2-on [(set zs) (set ys)

shows [distinct ys; distinct zs] = distinct [f x y. x < s, y < ys]
(proof)

lemma inj2-distinct-concat-map:
assumes inj2 f
shows [distinct ys; distinct zs] = distinct [f x y. x < s, y < ys]
{proof)

lemma inj2-distinct-concat-map-function:

assumes nj2 f
shows[V z € set zs. distinct (g z); distinct zs] = distinct [fz y. x + xs, y +

g 1]
(proof)

lemma distinct-concat-Nil: distinct (concat (map (Ay. []) zs))
(proof)

lemma inj2-distinct-concat-map-function-filter:

assumes nj2 f

shows[V z € set zs. distinct (g x); distinct zs] = distinct [f x y. x + s, y +
gz, hxl
(proof)

1.3 Specializations of inj2

1.3.1 Cons

lemma Cons-inj2: inj2 (#)
(proof)

lemma Cons-distinct-concat-map: [distinct ys; distinct s] = distinct [c#y. © +
zs, Y <+ Y
{proof)

lemma Cons-distinct-concat-map-function:
[V z € set as. distinct (g x) ; distinct xs] = distinct [z # y. © < 8, y + g 1]

{proof)

lemma Cons-distinct-concat-map-function-distinct-on-all:
[V z. distinct (g z) ; distinct xs] = distinct [x # y. x < xs, y < g]

(proof)

1.3.2 Node right

lemma Node-right-inj2: inj2 (Al r. Node | e 1)
(proof)

lemma Node-right-distinct-concat-map:
[distinct ys; distinct zs] = distinct [Node © e y. © <+ zs, y + ys]
(proof)

1.3.3 Node left
lemma Node-left-inj2: inj2 (Ar 1. Node l e r)
(proof)

lemma Node-left-distinct-map: distinct xs = distinct (map (Al. (I, (), 1)) zs)
(proof)

1.3.4 Cons Suc

lemma Cons-Suc-inj2: inj2 (Az ys. Suc = # ys)
(proof)

lemma Cons-Suc-distinct-concat-map-function:
[V z € set xs. distinct (g z) ; distinct xs] = distinct [Suc © # y. x < 18, y

g]
(proof)

2 Lemmas for cardinality proofs

lemma length-concat-map: length [f z r . z < xs, + ys| = length ys * length xs
(proof)

An useful extension to length-concat

thm length-concat
lemma length-concat-map-function-sum-list:
assumes A z. z € set zs = length (g z) = hz
shows length [fx r . x < xs, r + g x| = sum-list (map h zs)

{proof)

lemma sum-list-extract-last: (3 z<[0..<Suc n]. fz) = O z+[0..<n]. fz) + fn
{proof)

lemma leg-sum-to-sum-list: (> x < n. fz) = (O] z+[0..<Suc n]. f z)
{proof)

lemma less-sum-to-sum-list: (3> x < n. fz) = (O z+[0..< n]. fx)
{proof)

3 Miscellaneous

Similar to length-removel:

lemma Suc-length-removel: x € set s = Suc (length (removel x xs)) = length
z$

{proof)

3.1 count-list and replicate

HOL.List doesn’t have many lemmas about count-list (when not using mul-
tisets)

lemma count-list-replicate: count-list (replicate ¢ y) y = «
(proof)

lemma count-list-full-elem: count-list zs y = length zs +— (Vx € set zs. x = y)
(proof)

The following lemma verifies the reverse of count-notin:

thm count-notin
lemma count-list-zero-not-elem: count-list xs x = 0 +— z ¢ set xs

(proof)

lemma count-list-length-replicate: count-list xs y = length xs <— xs = replicate
(length xs) y

{proof)

lemma count-list- True-False: count-list xs True + count-list xs False = length zs

(proof)
end

4 N-Sequences

theory n-Sequences
imports
HOL.List
Common-Lemmas
begin

4.1 Definition

definition n-sequences :: 'a set = nat = 'a list set where
n-sequences A n = {xs. set xzs C A A length zs = n}

Cardinality: card A " n
Example: n-sequences {0, 1} 2 = {[0,0], [0,1], [1,0], [1,1]}

4.2 Algorithm

fun n-sequence-enum :: 'a list = nat = 'a list list where
n-sequence-enum s 0 = [[|]
| n-sequence-enum s (Suc n) = [z#71 . T < xS, T n-sequence-enum s nJ

An enumeration of n-sequences already exists: n-lists. This part of this
AFP entry is mostly to establish the patterns used in the more complex
combinatorial objects.

lemma set (n-sequence-enum xzs n) = set (List.n-lists n xs)
{proof)

thm set-n-lists

4.3 Verification

4.3.1 Correctness

theorem n-sequence-enum-correct:
set (n-sequence-enum xs n) = n-sequences (set xs) n

(proof)

4.3.2 Distinctness

theorem n-sequence-enum-distinct:
distinct s = distinct (n-sequence-enum xs n)

(proof)

4.3.3 Cardinality

lemma n-sequence-enum-length:
length (n-sequence-enum zs n) = (length xzs) ~n
(proof)

of course card-lists-length-eq can directly proof it but we want to derive it
from n-sequence-enum-length

thm card-lists-length-eq

theorem n-sequences-card:
assumes finite A
shows card (n-sequences A n) = card A " n

(proof)

end

5 N-Permutations

theory n-Permutations
imports
HOL— Combinatorics. Multiset- Permutations
Common-Lemmas
Falling-Factorial-Sum. Falling-Factorial-Sum-Combinatorics
begin

5.1 Definition

definition n-permutations :: 'a set = nat = 'a list set where
n-permutations A n = {xs. set s C A A distinct zs A length s = n}

Permutations with a maximum length. They are different from HOL— Combinatorics. Multiset-Permut
because the entries must all be distinct.

Cardinality: falling factorial’ (card A) n

Example: n-permutations {0,1,2} 2 = {[0,1], [0,2], [1,0], [1,2], [2,0],
[2,1]}
lemma permutations-of-set A C n-permutations A (card A)

(proof)

5.2 Algorithm

fun n-permutation-enum :: 'a list = nat = ’a list list where
n-permutation-enum xs 0 = [[]]

| n-permutation-enum xs (Suc n) = [x#r . © « xs, 1 + n-permutation-enum

(removel x xs) n]

5.3 Verification

5.3.1 Correctness

lemma n-permutation-enum-subset: ys € set (n-permutation-enum xs n) = set
ys C set zs

(proof)

lemma n-permutation-enum-length: ys € set (n-permutation-enum xs n) = length
ys =n
(proof)

lemma n-permutation-enum-elem-distinct: distinct s = ys € set (n-permutation-enum
xs n) = distinct ys
(proof)

lemma n-permutation-enum-correct!: distinct xs = set (n-permutation-enum xs
n) C n-permutations (set xs) n
(proof)

lemma n-permutation-enum-correct2: ys € n-permutations (set xs) n = ys € set
(n-permutation-enum s n)

(proof)

theorem n-permutation-enum-correct: distinct xs = set (n-permutation-enum zs
n) = n-permutations (set zs) n

(proof)

5.3.2 Distinctness

theorem n-permutation-distinct: distinct xs = distinct (n-permutation-enum xs
n)

(proof)

5.3.3 Cardinality

thm card-lists-distinct-length-eq
theorem finite A = card (n-permutations A n) = ffact n (card A)

{proof)

5.4 n-multiset extension (with remdups)

definition n-multiset-permutations :: 'a multiset = nat = 'a list set where
n-multiset-permutations A n = {xs. mset s CH# A A length zs = n}

fun n-multiset-permutation-enum :: 'a list = nat = 'a list list where
n-multiset-permutation-enum zs n = remdups (n-permutation-enum s n)

lemma distinct (n-multiset-permutation-enum xs n)
{proof)

lemma n-multiset-permutation-enum-correctl :
mset ys CH# mset ©s = ys € set (n-permutation-enum zs (length ys))

(proof)

lemma n-multiset-permutation-enum-correct2:
ys € set (n-permutation-enum xs n) = mset ys CH# mset xs

(proof)

lemma n-multiset-permutation-enum-correct:
set (n-multiset-permutation-enum xs n) = n-multiset-permutations (mset xs) n

(proof)

end

theory Filter-Bool-List
imports
HOL.List

begin

A simple algorithm to filter a list by a boolean list. A different approach
would be to filter by a set of indices, but this approach is faster, because
lookups are slow in ML.

fun filter-bool-list :: bool list = 'a list = 'a list where
filter-bool-list || - = |]
| filter-bool-list - [| = []
| filter-bool-list (b#bs) (x#xs) =
(if b then z#(filter-bool-list bs xs) else (filter-bool-list bs xs))

The following could be an alternative definition, but the version above pro-
vides a nice computational induction rule.
lemma filter-bool-list bs xs = map snd (filter fst (zip bs xs))

(proof)

lemma filter-bool-list-in:
n < length s => n < length bs = bsln = xsln € set (filter-bool-list bs xs)
(proof)

10

lemma filter-bool-list-not-elem: x ¢ set s => x ¢ set (filter-bool-list bs xs)
{proof)

lemma filter-bool-list-elem: © € set (filter-bool-list bs xs) = = € set xs
(proof)

lemma filter-bool-list-not-in:
distinct s = n < length xs= n < length bs = bs!n = Fulse
= zsln ¢ set (filter-bool-list bs xs)

(proof)

lemma filter-bool-list-elem-nth: ys € set (filter-bool-list bs xs)
= dn.ys=zs! n A bs!nAn<length bs A n < length zs

(proof)

May be a useful conversion, since the algorithm could also be implemented
with a list of indices.

lemma filter-bool-list-set-nth:
set (filter-bool-list bs xs) = {xs! n |n. bs! n A n < length bs A\ n < length xs}

(proof)

lemma filter-bool-list-exist-length: A C set xs
= T bs. length bs = length xs N A = set (filter-bool-list bs xs)

(proof)

lemma filter-bool-list-card:
[distinct xs; length xs = length bs] = card (set (filter-bool-list bs xs)) = count-list
bs True

{proof)

lemma filter-bool-list-exist-length-card-True: [distinct xs; A C set xs; n = card A]
= Jbs. length bs = length xs N count-list bs True = card A N A = set
(filter-bool-list bs xs)

{proof)

lemma filter-bool-list-distinct: distinct xs = distinct (filter-bool-list bs xs)
(proof)

lemma filter-bool-list-inj-auz:
assumes length bs1 = length xs
and length xs = length bs2
and distinct s
shows filter-bool-list bs1 zs = filter-bool-list bs2 zs = bsl = bs2

(proof)
lemma filter-bool-list-ing:

distinct xs = inj-on (Abs. filter-bool-list bs xs) {bs. length bs = length xs}
(proof)

11

end

6 N-Subsets

theory n-Subsets
imports
Common-Lemmas
HOL— Combinatorics. Multiset- Permutations
Filter-Bool-List
begin

6.1 Definition

definition n-subsets :: ‘a set = nat = ’a set set where
n-subsets A n = {B. BC A A card B = n}

Cardinality: binomial (card A) n
Example: n-subsets {0,1,2} 2 = {{0,1}, {0,2}, {1,2}}

6.2 Algorithm

fun n-bool-lists :: nat = nat = bool list list where
n-bool-lists n 0 = (if n > 0 then [else [[]])
| n-bool-lists n (Suc) = (if n = 0 then [replicate (Suc z) False]
else if n = Suc x then [replicate (Suc x) True]
else if n > x then [|
else [False#xs . xs < n-bool-lists n z] @ [Trueftxzs . xs < n-bool-lists (n—1) z])

fun n-subset-enum :: 'a list = nat = 'a list list where
n-subset-enum zs n = [(filter-bool-list bs xs) . bs < (n-bool-lists n (length xs))]

6.3 Verification
6.3.1 n-bool-lists

lemma n-bool-lists- True-count: xs € set (n-bool-lists n x) = count-list xs True =
n

{proof)

lemma n-bool-lists-length: xs € set (n-bool-lists n ©) = length zs = x

(proof)

lemma n-bool-lists-distinct: distinct (n-bool-lists n x)
(proof)

lemma replicate- True-not-False: count-list ys True = 0 «— ys = replicate (length
ys) False

12

{proof)

lemma n-bool-lists-correct-auz:
length zs = © = count-list xs True = n => xs € set (n-bool-lists n x)

(proof)

lemma n-bool-lists-correct: set (n-bool-lists n x) = {zs. length xs = x A count-list
xs True = n}

(proof)

6.3.2 Correctness

lemma n-subset-enum-correct-auzi:
[distinct xs; length ys = length xs]
= set (filter-bool-list ys xs) € n-subsets (set xs) (count-list ys True)
(proof)

lemma n-subset-enum-correct-aux2:
distinct xs = n-subsets (set xs) n C set (map set (n-subset-enum xs n))

(proof)

theorem n-subset-enum-correct:
distinct xs = set (map set (n-subset-enum xs n)) = n-subsets (set xs) n

(proof)
6.3.3 Distinctness

theorem n-subset-enum-distinct-elem:
distinct xs = ys € set (n-subset-enum s n) = distinct ys

(proof)

theorem n-subset-enum-distinct: distinct xs = distinct (n-subset-enum xs n)
{proof)

6.3.4 Cardinality

Cardinality of n-subsets is already shown in Binomial.n-subsets.

6.4 Alternative using Multiset permutations
It would be possible to define n-bool-lists using permutations-of-multiset with
the following definition:

fun n-bool-lists2 :: nat = nat = bool list set where
n-bool-lists2 n x = (if n > =z then {}
else permutations-of-multiset (mset (replicate n True @ replicate (x—n) False)))

13

6.5 mset-count

Correspondence between count-list and count (mset zs) and transfer of a
few results for multisets to lists.

lemma count-list-count-mset: count-list ys T = n = count (mset ys) T = n

(proof)

lemma count-mset-count-list: count (mset ys) T = n = count-list ys T = n
{proof)

lemma count-mset-replicate-aux?:
[- = < n; mset ys = mset (replicate n True) + mset (replicate (x — n) False)]
= count (mset ys) True = n
(proof)

lemma count-mset-replicate-aux2:

assumes — length xs < count-list zs True

shows mset s = mset (replicate (count-list zs True) True) + mset (replicate
(length xs — count-list s True) False)

(proof)

lemma n-bool-lists2-correct: set (n-bool-lists n x) = n-bool-lists2 n x
(proof)

end

7 Powerset
theory Powerset
imports
Main
n-Sequences
Common-Lemmas

Filter-Bool-List
begin

7.1 Definition
Pow A
Cardinality: 2 ~ card A

Example: Pow {0,1} = {{}, {1}, {0}, {0, 1}}

7.2 Algorithm

fun all-bool-lists :: nat = bool list list where
all-bool-lists 0 = [[]]

14

| all-bool-lists (Suc x) = concat [[False#xs, Truedtzs] . xs < all-bool-lists x]

fun powerset-enum where
powerset-enum xs = [(filter-bool-list x xs) . x + all-bool-lists (length xs)]

7.3 Verification

First we show the relevant theorems for all-bool-lists, then we’ll transfer the
results to the enumeration algorithm for powersets.

lemma distinct-concat-aux: distinct s = distinct (concat (map (Azs. [False #
xs, True # xs]) xs))
{proof)

lemma distinct-all-bool-lists : distinct (all-bool-lists x)
{proof)

lemma all-bool-lists-correct: set (all-bool-lists) = {xs. length zs = z}

(proof)

7.3.1 Correctness

theorem powerset-enum-correct: set (map set (powerset-enum xs)) = Pow (set xs)

(proof)

7.3.2 Distinctness

theorem powerset-enum-distinct-elem: distinct s = ys € set (powerset-enum
xs) = distinct ys
(proof)

theorem powerset-enum-distinct: distinct xs = distinct (powerset-enum xs)

(proof)

7.3.3 Cardinality

Cardinality for powersets is already shown in card-Pow.

7.4 Alternative algorithm with n-sequence-enum

fun all-bool-lists2 :: nat = bool list list where
all-bool-lists2 n = n-sequence-enum [True, False] n

lemma all-bool-lists2-distinct: distinct (all-bool-lists2 n)
{proof)

lemma all-bool-lists2-correct: set (all-bool-lists n) = set (all-bool-lists2 n)
(proof)

end

15

8 Integer Paritions

theory Integer-Partitions
imports
HOL— Library. Multiset
Common-Lemmas
Card-Number-Partitions. Card- Number-Partitions
begin

8.1 Definition

definition integer-partitions :: nat = nat multiset set where
integer-partitions i = {A. sum-mset A = i N 0 ¢# A}

Cardinality: Partition i (from Card-Number-Partitions. Card-Number-Partitions
[2])
Example: integer-partitions 4 = {{4}, {3,1}, {2,2} {2,1,1}, {1,1,1,1}}

8.2 Algorithm

fun integer-partitions-enum-auz :: nat = nat = nat list list where
integer-partitions-enum-aux 0 m = [[]]

| integer-partitions-enum-auz n m =
[h#tr . h < [1..< Suc (min n m)|, r < integer-partitions-enum-auz (n—h) h]

fun integer-partitions-enum :: nat = nat list list where
integer-partitions-enum n = integer-partitions-enum-auz n n

8.3 Verification

8.3.1 Correctness
lemma integer-partitions-empty: [| € set (integer-partitions-enum-auz n m) = n
=0

(proof)

lemma integer-partitions-enum-auz-first:
x # xs € set (integer-partitions-enum-aux n m)
= 1s € set (integer-partitions-enum-aux (n—1))
(proof)

lemma integer-partitions-enum-auz-maz-n:
zftas € set (integer-partitions-enum-aux n m) = z < n
{proof)

lemma integer-partitions-enum-auz-maz-head:
T#as € set (integer-partitions-enum-auz n m) = ¢ < m

(proof)

16

lemma integer-partitions-enum-auz-max:
zs € set (integer-partitions-enum-aur n m) = ¢ € set xs = ¢ < m

(proof)

lemma integer-partitions-enum-auz-sum:
zs € set (integer-partitions-enum-auz n m) = sum-list xs = n
(proof)

lemma integer-partitions-enum-auz-not-null-aux:
zftas € set (integer-partitions-enum-aux n m) = x # 0
{proof)

lemma integer-partitions-enum-auz-not-null:
zs € set (integer-partitions-enum-auz n m) = x € set s => x # 0

(proof)

lemma integer-partitions-enum-auz-head-minus:
hi<m=h>0=n>h=
ys € set (integer-partitions-enum-aux (n—h) h)== h#ys € set (integer-partitions-enum-auz
n m)

(proof)

lemma integer-partitions-enum-auz-head-plus:
h<m = h> 0 = ys € set (integer-partitions-enum-auz n h)
= h#ys € set (integer-partitions-enum-aux (h + n) m)
(proof)

lemma integer-partitions-enum-correct-auzl :
assumes 0 ¢# A
and Vz €# A.z < m
shows Jzseset (integer-partitions-enum-auz (> 4 A) m). A = mset zs

(proof)

theorem integer-partitions-enum-correct:
set (map mset (integer-partitions-enum n)) = integer-partitions n

(proof)

8.3.2 Distinctness

lemma integer-partitions-enum-auz-distinct:
distinct (integer-partitions-enum-auz n m)

(proof)

theorem integer-partitions-enum-distinct:
distinct (integer-partitions-enum n)
(proof)

17

8.3.3 Cardinality

lemma partitions-bij-betw-count:
bij-betw count {N. count N partitions n} {p. p partitions n}

(proof)

lemma card-partitions-count-partitions:
card {p. p partitions n} = card {N. count N partitions n}

{proof)

this sadly is not proven in Card-Number-Partitions. Card-Number-Partitions

lemma card-partitions-number-partition:
card {p. p partitions n} = card {N. number-partition n N}

{proof)

lemma integer-partitions-number-partition-eq:
integer-partitions n = {N. number-partition n N}
(proof)

lemma integer-partitions-cardinality-aux:
card (integer-partitions n) = (> k<n. Partition n k)

(proof)

theorem integer-partitions-cardinality:
card (integer-partitions n) = Partition (2+n) n
{proof)

end

9 Integer Compositions
theory Integer-Compositions
imports

Common-Lemmas
begin

9.1 Definition

definition integer-compositions :: nat = nat list set where
integer-compositions i = {xs. sum-list xs = i A 0 ¢ set zs}

Integer compositions are integer-partitions where the order matters.
Cardinality: sum from n = 1 to i (binomial (i—1) (n—1)) = 27(i—1)

Example: integer-compositions 3 = {[3], [2,1], [1,2], [1,1,1]}

9.2 Algorithm

fun integer-composition-enum :: nat = nat list list where

18

integer-composition-enum 0 = [[]]
| integer-composition-enum (Suc n) =
[Suc m #xs. m + [0..< Suc n], zs « integer-composition-enum (n—m)]

9.3 Verification

9.3.1 Correctness

lemma integer-composition-enum-tail-elem:
xftxs € set (integer-composition-enum n) = xs € set (integer-composition-enum
(n — 1))

{proof)

lemma integer-composition-enum-not-null-auz:
z#axs € set (integer-composition-enum n) = = # 0

(proof)

lemma integer-composition-enum-not-null: xs € set (integer-composition-enum n)
= 0 ¢ set zs

(proof)

lemma integer-composition-enum-empty: [| € set (integer-composition-enum n)
—n=10
(proof)

lemma integer-composition-enum-sum: zs € set (integer-composition-enum n) =
sum-list zs = n

(proof)

lemma integer-composition-enum-head-set:

assumesz # 0 and z < n

shows xs € set (integer-composition-enum (n—z)) = x#xs € set (integer-composition-enum
n)
(proof)

lemma integer-composition-enum-correct-aux:
0 ¢ set xs = xs € set (integer-composition-enum (sum-list xs))
(proof)

theorem integer-composition-enum-correct:
set (integer-composition-enum n) = integer-compositions n
(proof)

9.3.2 Distinctness

theorem integer-composition-enum-distinct:
distinct (integer-composition-enum n)

(proof)

19

9.3.3 Cardinality

lemma sum-list-two-pow-aux:
> a+[0..< n]. (2:nat) “(n—2)+ 2" (0—-1)+ 270 =2"(Sucn)
(proof)

lemma sum-list-two-pow:
Suc (3 z+[0..<n]. 2 " (n — Sucz)) =2 "n
(proof)

lemma integer-composition-enum-length:
length (integer-composition-enum n) = 2 (n—1)
(proof)

theorem integer-compositions-card:
card (integer-compositions n) = 27 (n—1)
(proof)

end

10 Weak Integer Compositions

theory Weak-Integer-Compositions
imports
HOL— Combinatorics. Multiset- Permutations
Common-Lemmas
begin

10.1 Definition

definition weak-integer-compositions :: nat = nat = nat list set where
weak-integer-compositions i | = {xs. length xs = | A sum-list xs = i}

Weak integer compositions are similar to integer compositions, with the
trade-off that 0 is allowed but the composition must have a fixed length.

Cardinality: binomial (i + n — 1) i

Example: weak-integer-compositions 2 2 = {[2,0], [1,1], [0,2]}

10.2 Algorithm

fun weak-integer-composition-enum :: nat = nat = nat list list where
weak-integer-composition-enum i 0 = (if i = 0 then [[]] else [])

| weak-integer-composition-enum i (Suc 0) = [[i]]

| weak-integer-composition-enum i | =
[h#tr . h < [0..< Suc i), r < weak-integer-composition-enum (i—h) (I—1)]

20

10.3 Verification
10.3.1 Correctness

lemma weak-integer-composition-enum-length:
xs € set (weak-integer-composition-enum i l) = length xs = |
(proof)

lemma weak-integer-composition-enum-sum-list:
zs € set (weak-integer-composition-enum i 1) = sum-list s = 1
(proof)

lemma weak-integer-composition-enum-head:
assumes s € set (weak-integer-composition-enum (sum-list zs) (length xs))
shows = # xs € set (weak-integer-composition-enum (z + sum-list xs) (Suc

(length xs)))
(proof)

lemma weak-integer-composition-enum-correct-auz:
xs € set (weak-integer-composition-enum (sum-list zs) (length xs))

{proof)

theorem weak-integer-composition-enum-correct:
set (weak-integer-composition-enum i l) = weak-integer-compositions i |

(proof)

10.3.2 Distinctness

theorem weak-integer-composition-enum-distinct: distinct (weak-integer-composition-enum
i 1)
(proof)

10.3.3 Cardinality

The following is a generalization of the binomial coefficient to multisets.
Sometimes it is called multiset coefficient. Here we call it "multichoose" [4].

definition multichoose:: nat = nat = nat (infixl (multichoose) 65) where
n multichoose k = (n + k —1) choose k

lemma weak-integer-composition-enum-zero: length (weak-integer-composition-enum
0 (Suc n)) =1
(proof)

lemma a-choose-equivalence: Suc (> z+[0..<k]. n + (k — x) choose (k — z)) =
Suc (n + k) choose k
(proof)

lemma composition-enum-length: length (weak-integer-composition-enum i n) = n
multichoose ©
(proof)

21

theorem weak-integer-compositions-cardinality: card (weak-integer-compositions n
k) = k multichoose n

{proof)

end

11 Derangements

theory Derangements-Enum
imports
HOL—- Combinatorics. Multiset-Permutations
Common-Lemmas

begin

11.1 Definition

fun no-overlap :: 'a list = 'a list = bool where
no-overlap - [| = True

| no-overlap [] - = True

| no-overlap (x#xs) (y#ys) = (z # y A no-overlap zs ys)

lemma no-overlap-nth: length s = length ys = ¢ < length vs = no-overlap zs
ys = xs ! i # ys!1i
(proof)

lemma nth-no-overlap: length xs = length ys = V i < length xs. zs ! i # ys | ¢
= no-overlap s ys

(proof)

definition derangements :: 'a list = 'a list set where
derangements xs = {ys. distinct ys A length xs = length ys N\ set s = set ys A
no-overlap s ys }

A derangement of a list is a permutation where every element changes its
position, assuming all elements are distinguishable.

An alternative definition exists in Derangements. Derangements [1].

Cardinality: count-derangements (length xs) (from Derangements. Derangements)

Example: derangements [0,1,2] = {[1,2,0], [2,0,1]}

11.2 Algorithm

fun derangement-enum-auz :: 'a list = 'a list = ’a list list where
derangement-enum-auz [| ys = [[]]

| derangement-enum-auz (x#xs) ys = [y#r . y < ys, r < derangement-enum-auz

xs (removel y ys), y # x]

22

fun derangement-enum :: 'a list = 'a list list where
derangement-enum xs = derangement-enum-aux Ts Is

11.3 Verification
11.3.1 Correctness

lemma derangement-enum-auz-elem-length: zs € set (derangement-enum-auz xs
ys) = length xs = length zs
(proof)

lemma derangement-enum-auz-not-in: y ¢ set ys = zs € set (derangement-enum-aux
xs ys) = y ¢ set zs
(proof)

lemma derangement-enum-auz-in: y € set zs = zs € set (derangement-enum-aux
xs ys) = y € set ys
{proof)

lemma derangement-enum-auz-distinct-elem: distinct ys = zs € set (derangement-enum-auz
xs ys) = distinct zs

(proof)

lemma derangement-enum-auz-no-overlap: zs € set (derangement-enum-auz xs ys)
= no-overlap xs zs

(proof)

lemma derangement-enum-auz-set:
length xzs = length ys = zs € set (derangement-enum-auz s ys) = set zs =
set ys

(proof)

lemma derangement-enum-correct-auxl:

[distinct zs;length ys = length zs; length ys = length xs; set ys = set zs; no-overlap
xs 28]

= 25 € set (derangement-enum-aux xs ys)

(proof)

theorem derangement-enum-correct: distinct s = derangements xs = set (derangement-enum
xs)
(proof)

11.3.2 Distinctness

lemma derangement-enum-auz-distinct: distinct ys = distinct (derangement-enum-aux
xs ys)

(proof)

23

theorem derangement-enum-distinct: distinct xs = distinct (derangement-enum
xs)

(proof)
end
12 Trees

theory Trees
imports
HOL- Library. Tree
Common-Lemmas

begin

12.1 Definition

The set of trees can be defined with the pre-existing tree datatype:

definition trees :: nat = unit tree set where
trees n = {t. size t = n}

Cardinality: Catalan number of n

Example: trees 0 = {Leaf}

12.2 Algorithm

fun tree-enum :: nat = unit tree list where

tree-enum 0 = [Leaf] |

tree-enum (Suc n) = [(t1, (), t2). i < [0..<Suc n], t1 < tree-enum i, t2 <
tree-enum (n—1)]

12.3 Verification
12.3.1 Cardinality

lemma length-tree-enum:
length (tree-enum(Suc n)) = (D i<n. length(tree-enum i) x length(tree-enum (n

— 1))

{proof)

12.3.2 Correctness

lemma tree-enum-correctl: t € set (tree-enum n) = size t = n
{proof)

lemma tree-enum-correct2: n = size t = t € set (tree-enum n)

24

(proof)

theorem tree-enum-correct: set(tree-enum n) = trees n

(proof)

12.3.3 Distinctness

lemma tree-enum-Leaf: () € set (tree-enum n) <— (n = 0)

(proof)

lemma tree-enum-elem-injective: n = m = x € set (tree-enum n) = y € set
(tree-enum m) = = # y
{proof)

lemma tree-enum-elem-injective2: x € set (tree-enum n) = y € set (tree-enum
m)=z=y=—mn=m
{proof)

lemma concat-map-Node-not-equal:
v | = as2 £ | = ys £ | = ys2 £ | —
V x€ setxs. ¥V y € set ys . v # y =
(L, Oy r). L as2, r < xs] £ [{I, (), 7). | < ys2, r < ys]

(proof)

lemma tree-enum-not-empty: tree-enum n # [|
(proof)

lemma tree-enum-distinct-auz-outer:
assumes Vi < n. distinct (tree-enum 1)
and distinct zs
andV i € setzs. i < n
and sorted-wrt (<) s
shows distinct (map (M\i. [(I, (), r). | < tree-enum i, r < tree-enum (n—1)]) xs)

(proof)

lemma tree-enum-distinct-auz-left:
YV i < n. distinct (tree-enum i) = distinct ([(I, (), r). i + [0..< n], |
tree-enum i)

(proof)

theorem tree-enum-distinct: distinct(tree-enum n)
(proof)
end
theory Combinatorial-Enumeration-Algorithms
imports
n-Sequences
n-Permutations
n-Subsets
Powerset

25

Integer-Partitions
Integer-Compositions
Weak-Integer-Compositions
Derangements-Enum
Trees

begin

end

References

[1] L. Bulwahn. Derangements formula. Archive of Formal Proofs, June
2015. https://isa-afp.org/entries/Derangements.html, Formal proof de-
velopment.

[2] L. Bulwahn. Cardinality of number partitions. Archive of Formal Proofs,
January 2016. https://isa-afp.org/entries/Card Number Partitions.
html, Formal proof development.

[3] L. Bulwahn. The twelvefold way. Archive of Formal Proofs, December
2016. https://isa-afp.org/entries/ Twelvefold_ Way.html, Formal proof
development.

[4] R. Stanley. Enumerative Combinatorics: Volume 1. Cambridge Studies
in Advanced Mathematics. Cambridge University Press, 2011.

[5] D. Stanton and D. White. Constructive Combinatorics. Springer, 1986.

26

https://isa-afp.org/entries/Derangements.html
https://isa-afp.org/entries/Card_Number_Partitions.html
https://isa-afp.org/entries/Card_Number_Partitions.html
https://isa-afp.org/entries/Twelvefold_Way.html

	Injectivity for two argument functions
	Correspondence between 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 inj2-on and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 inj-on
	Proofs with inj2
	Specializations of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 inj2
	Cons
	Node right
	Node left
	Cons Suc

	Lemmas for cardinality proofs
	Miscellaneous
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 count-list and replicate

	N-Sequences
	Definition
	Algorithm
	Verification
	Correctness
	Distinctness
	Cardinality

	N-Permutations
	Definition
	Algorithm
	Verification
	Correctness
	Distinctness
	Cardinality

	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 n-multiset extension (with remdups)

	N-Subsets
	Definition
	Algorithm
	Verification
	n-bool-lists
	Correctness
	Distinctness
	Cardinality

	Alternative using Multiset permutations
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 mset-count

	Powerset
	Definition
	Algorithm
	Verification
	Correctness
	Distinctness
	Cardinality

	Alternative algorithm with 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 n-sequence-enum

	Integer Paritions
	Definition
	Algorithm
	Verification
	Correctness
	Distinctness
	Cardinality

	Integer Compositions
	Definition
	Algorithm
	Verification
	Correctness
	Distinctness
	Cardinality

	Weak Integer Compositions
	Definition
	Algorithm
	Verification
	Correctness
	Distinctness
	Cardinality

	Derangements
	Definition
	Algorithm
	Verification
	Correctness
	Distinctness

	Trees
	Definition
	Algorithm
	Verification
	Cardinality
	Correctness
	Distinctness

