Combinatorial Enumeration Algorithms

Paul Hofmeier and Emin Karayel

March 17, 2025

Abstract

Combinatorial objects have configurations which can be enumerated by algorithms, but especially for imperative programs, it is difficult to find out if they produce the correct output and don't generate duplicates. Therefore, for some of the most common combinatorial objects, namely n_Sequences, n_Permutations, n_Subsets, Powerset, Integer_Compositions, Integer_Partitions, Weak_Integer_Compositions, Derangements and Trees, this entry formalizes efficient functional programs and verifies their correctness. In addition, it provides cardinality proofs for those combinatorial objects. Some cardinalities are verified using the enumeration functions and others are shown using existing libraries including other AFP entries.

Related books on combinatorics include [4] and [5]. Some of the cardinality theorems in this entry are also proved in another AFP entry, The Twelvefold Way [3].

Contents

1	Injectivity for two argument functions	3
	1.1 Correspondence between <i>inj2-on</i> and <i>inj-on</i>	4
	1.2 Proofs with $inj2$	4
	1.3 Specializations of $inj2$	6
	1.3.1 Cons	6
	1.3.2 Node right	6
	1.3.3 Node left	7
	1.3.4 Cons Suc	7
2	Lemmas for cardinality proofs	7
3	Miscellaneous	7
	3.1 $count-list$ and replicate	8

4	N-S	equences 8
	4.1	Definition
	4.2	Algorithm
	4.3	Verification
		4.3.1 Correctness
		4.3.2 Distinctness
		4.3.3 Cardinality
5	N_F	Permutations 10
0	5.1	Definition 10
	5.2	Algorithm 11
	5.3	Varification 11
	0.0	$5.3.1 \text{Correctness} \qquad \qquad 11$
		$5.3.1$ Correctness \ldots 11
		$5.3.2 \text{Distinctions} \dots \dots \dots \dots \dots \dots \dots \dots \dots $
	5 /	<i>n</i> multiset optimizing (with rondups) 14
	0.4	<i>n-maniser</i> extension (with remdups)
6	N-S	ubsets 17
	6.1	Definition
	6.2	Algorithm
	6.3	Verification
		6.3.1 n-bool-lists
		6.3.2 Correctness
		6.3.3 Distinctness
		6.3.4 Cardinality
	6.4	Alternative using Multiset permutations
	6.5	<i>mset-count</i>
7	Dor	remaat 22
1	FOV	Definition 22
	(.1 7.0	Algorithm 22
	(.4 7.9	Algorithmi
	(.)	Verification 23 7.2.1 Compostprogg
		7.3.1 Correctness
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	7 4	Alternative elements with a construction of the second sec
	1.4	Alternative algorithm with n -sequence-enum
8	Inte	eger Paritions 24
	8.1	Definition
	8.2	Algorithm
	8.3	Verification
		8.3.1 Correctness
		8.3.2 Distinctness
		8.3.3 Cardinality

Inte	ger Co	ompositions																							29
9.1	Definit	$\sin \ldots$																							29
9.2	Algorit	hm																							29
9.3	Verifica	ation																							29
	9.3.1	Correctness																							29
	9.3.2	Distinctness																							31
	9.3.3	Cardinality			•	•			•		•		•			•	•	•	•	•	•		•	•	32
Wea	ık Inte	ger Compo	si	ti	or	ıs																			33
10.1	Definit	ion																							33
10.2	Algorit	hm																							33
10.3	Verifica	ation																							34
	10.3.1	Correctness																							34
	10.3.2	Distinctness																							35
	10.3.3	Cardinality							•		•		•			•	•	•					•	•	36
Der	angem	\mathbf{ents}																							37
Der 11.1	angem Definit	ents ion																							37 37
Der 11.1 11.2	angem Definit Algorit	ents sion	•	•	•	•	•	•	•			•	•	•	•	•	•		•	•	•	•	•	•	37 37 38
Der 11.1 11.2 11.3	angem Definit Algorit Verifica	ents ion thm ation	•	•	•		•	•	•	 	•		•		•		• •	· •	•	•	•	•			37 37 38 38
Der 11.1 11.2 11.3	angem Definit Algorit Verifica 11.3.1	ents ion ihm ation Correctness			• • •		•	•		 			•		•		• •	· •							37 37 38 38 38
Der 11.1 11.2 11.3	angem Definit Algorit Verifica 11.3.1 11.3.2	ents ion ihm tion Correctness Distinctness								· ·							- · - ·	· •							37 37 38 38 38 40
Der 11.1 11.2 11.3	angem Definit Algorit Verifics 11.3.1 11.3.2	ents ion thm ation Correctness Distinctness				•		• • •	•	· · ·							• · ·	· •							 37 37 38 38 38 40 41
Der: 11.1 11.2 11.3 Tree 12.1	angem Definit Algorit Verifica 11.3.1 11.3.2 es Definit	ents ion thm torrectness Distinctness tion	· · ·	· · · · · ·	· · ·	• • •	• • • •		• • • •	· · ·		· · ·	· · ·	· · · ·	• • • •	• • • •	• • • •	· •	•	· · · · ·	· · · · ·	· · · · ·		• • • •	 37 37 38 38 38 40 41 41
Der: 11.1 11.2 11.3 Tree 12.1 12.2	angem Definit Algorit Verifica 11.3.1 11.3.2 es Definit Algorit	ents ion thm correctness Distinctness ion thm	· · ·	· · ·	· · ·	· · · · · ·	• • • • •	• • • •	• • • •	· · ·	•	· · ·	· · ·	· · · · · · · ·	• • • • •	• • • •	• • • •	· •	· · ·	· · · · · ·	· · · · · ·	· · ·	· · ·	· · · · ·	 37 37 38 38 38 40 41 41 41
Der: 11.1 11.2 11.3 Tree 12.1 12.2 12.3	angem Definit Algorit Verifica 11.3.1 11.3.2 es Definit Algorit Verifica	ents ion thm torrectness Distinctness ion thm ation	· · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·	· · · · · · ·		• • • • • •	· · · · · · · · · · · · · · · · · · ·	•	· · ·	· · ·	· · · · · · · · ·	· · · · · · ·	· · · · · · · · ·	- · ·	· •	· · · · · · · · ·	· · · · · · · · ·	· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · ·	 37 37 38 38 38 40 41 41 41 42
Der: 11.1 11.2 11.3 Tree 12.1 12.2 12.3	angem Definit Algorit Verifica 11.3.1 11.3.2 es Definit Algorit Verifica 12.3.1	ents ion thm correctness Distinctness dion thm cardinality	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		• • • • • • • •	· · · · · · · · ·	· · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	- · ·	· •	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·		· · · · · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · · · ·	 37 37 38 38 38 40 41 41 41 42 42
Der: 11.1 11.2 11.3 Tree 12.1 12.2 12.3	Algorit Algorit Verifica 11.3.1 11.3.2 S Definit Algorit Verifica 12.3.1 12.3.2	ents ion thm correctness Distinctness ion thm cardinality Correctness	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • •		· · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	•	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· • •	· · · ·	· · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		37 37 38 38 38 40 41 41 41 41 42 42 42
	Inte 9.1 9.2 9.3 Wea 10.1 10.2 10.3	Integer Co 9.1 Definit 9.2 Algorit 9.3 Verifica 9.3.1 9.3.2 9.3.3 Weak Inte 10.1 Definit 10.2 Algorit 10.3 Verifica 10.3.1 10.3.2 10.3.3 10.3.3	Integer Compositions9.1Definition9.2Algorithm9.3Verification9.3.1Correctness9.3.2Distinctness9.3.3CardinalityWeak Integer Composition10.1Definition10.2Algorithm10.3Verification10.3.1Correctness10.3.2Distinctness10.3.3Cardinality	Integer Compositions9.1Definition9.2Algorithm9.3Verification9.3.1Correctness9.3.2Distinctness9.3.3CardinalityWeak Integer Composition10.1Definition10.2Algorithm10.3Verification10.3.1Correctness10.3.2Distinctness10.3.3Cardinality	Integer Compositions9.1Definition9.2Algorithm9.3Verification9.3.1Correctness9.3.2Distinctness9.3.3Cardinality9.3.3CardinalityWeak Integer Composition10.1Definition10.2Algorithm10.3Verification10.3.1Correctness10.3.2Distinctness10.3.3Cardinality	Integer Compositions 9.1 Definition 9.2 Algorithm 9.3 Verification 9.3.1 Correctness 9.3.2 Distinctness 9.3.3 Cardinality 9.3.3 Cardinality 10.1 Definition 10.2 Algorithm 10.3 Verification 10.3.1 Correctness 10.3.2 Distinctness 10.3.3 Cardinality	Integer Compositions 9.1 Definition 9.2 Algorithm 9.3 Verification 9.3 Verification 9.3.1 Correctness 9.3.2 Distinctness 9.3.3 Cardinality 9.3.3 Cardinality 10.1 Definition 10.2 Algorithm 10.3 Verification 10.3.1 Correctness 10.3.2 Distinctness 10.3.3 Cardinality	Integer Compositions 9.1 Definition 9.2 Algorithm 9.3 Verification 9.3 Verification 9.3.1 Correctness 9.3.2 Distinctness 9.3.3 Cardinality Weak Integer Compositions 10.1 Definition 10.2 Algorithm 10.3 Verification 10.3.1 Correctness 10.3.2 Distinctness 10.3.3 Cardinality	Integer Compositions 9.1 Definition 9.2 Algorithm 9.3 Verification 9.3.1 Correctness 9.3.2 Distinctness 9.3.3 Cardinality Weak Integer Compositions 10.1 Definition 10.2 Algorithm 10.3 Verification 10.3.1 Correctness 10.3.2 Distinctness 10.3.3 Cardinality	Integer Compositions 9.1 Definition 9.2 Algorithm 9.3 Verification 9.3.1 Correctness 9.3.2 Distinctness 9.3.3 Cardinality Weak Integer Compositions 10.1 Definition 10.2 Algorithm 10.3 Verification 10.3.1 Correctness 10.3.2 Distinctness 10.3.3 Cardinality	Integer Compositions 9.1 Definition 9.2 Algorithm 9.3 Verification 9.3.1 Correctness 9.3.2 Distinctness 9.3.3 Cardinality Weak Integer Compositions 10.1 Definition 10.2 Algorithm 10.3 Verification 10.3.1 Correctness 10.3.2 Distinctness 10.3.3 Cardinality	Integer Compositions 9.1 Definition 9.2 Algorithm 9.3 Verification 9.3.1 Correctness 9.3.2 Distinctness 9.3.3 Cardinality Weak Integer Compositions 10.1 Definition 10.2 Algorithm 10.3 Verification 10.3.1 Correctness 10.3.2 Distinctness 10.3.3 Cardinality	Integer Compositions 9.1 Definition 9.2 Algorithm 9.3 Verification 9.3.1 Correctness 9.3.2 Distinctness 9.3.3 Cardinality Weak Integer Compositions 10.1 Definition 10.2 Algorithm 10.3 Verification 10.3.1 Correctness 10.3.2 Distinctness 10.3.3 Cardinality	Integer Compositions 9.1 Definition 9.2 Algorithm 9.3 Verification 9.3.1 Correctness 9.3.2 Distinctness 9.3.3 Cardinality Weak Integer Compositions 10.1 Definition 10.2 Algorithm 10.3 Verification 10.3.1 Correctness 10.3.2 Distinctness 10.3.3 Cardinality	Integer Compositions 9.1 Definition 9.2 Algorithm 9.3 Verification 9.3.1 Correctness 9.3.2 Distinctness 9.3.3 Cardinality Weak Integer Compositions 10.1 Definition 10.2 Algorithm 10.3 Verification 10.3.1 Correctness 10.3.2 Distinctness 10.3.3 Cardinality	Integer Compositions 9.1 Definition 9.2 Algorithm 9.3 Verification 9.3.1 Correctness 9.3.2 Distinctness 9.3.3 Cardinality Weak Integer Compositions 10.1 Definition 10.2 Algorithm 10.3 Verification 10.3.1 Correctness 10.3.2 Distinctness 10.3.3 Cardinality	Integer Compositions 9.1 Definition 9.2 Algorithm 9.3 Verification 9.3.1 Correctness 9.3.2 Distinctness 9.3.3 Cardinality Weak Integer Compositions 10.1 Definition 10.2 Algorithm 10.3 Verification 10.3.1 Correctness 10.3.2 Distinctness 10.3.3 Cardinality	Integer Compositions 9.1 Definition 9.2 Algorithm 9.3 Verification 9.3.1 Correctness 9.3.2 Distinctness 9.3.3 Cardinality Weak Integer Compositions 10.1 Definition 10.2 Algorithm 10.3 Verification 10.3.1 Correctness 10.3.2 Distinctness 10.3.3 Cardinality	Integer Compositions 9.1 Definition 9.2 Algorithm 9.3 Verification 9.3.1 Correctness 9.3.2 Distinctness 9.3.3 Cardinality Weak Integer Compositions 10.1 Definition 10.2 Algorithm 10.3 Verification 10.3.1 Correctness 10.3.2 Distinctness 10.3.3 Cardinality	Integer Compositions 9.1 Definition 9.2 Algorithm 9.3 Verification 9.3.1 Correctness 9.3.2 Distinctness 9.3.3 Cardinality Weak Integer Compositions 10.1 Definition 10.2 Algorithm 10.3 Verification 10.3.1 Correctness 10.3.2 Distinctness 10.3.3 Cardinality	Integer Compositions 9.1 Definition 9.2 Algorithm 9.3 Verification 9.3.1 Correctness 9.3.2 Distinctness 9.3.3 Cardinality Weak Integer Compositions 10.1 Definition 10.2 Algorithm 10.3 Verification 10.3.1 Correctness 10.3.2 Distinctness 10.3.3 Cardinality	Integer Compositions 9.1 Definition 9.2 Algorithm 9.3 Verification 9.3.1 Correctness 9.3.2 Distinctness 9.3.3 Cardinality Weak Integer Compositions 10.1 Definition 10.2 Algorithm 10.3 Verification 10.3.1 Correctness 10.3.2 Distinctness 10.3.3 Cardinality	Integer Compositions 9.1 Definition 9.2 Algorithm 9.3 Verification 9.3.1 Correctness 9.3.2 Distinctness 9.3.3 Cardinality Weak Integer Compositions 10.1 Definition 10.2 Algorithm 10.3 Verification 10.3.1 Correctness 10.3.2 Distinctness 10.3.3 Cardinality	Integer Compositions 9.1 Definition 9.2 Algorithm 9.3 Verification 9.3.1 Correctness 9.3.2 Distinctness 9.3.3 Cardinality Weak Integer Compositions 10.1 Definition 10.2 Algorithm 10.3 Verification 10.3.1 Correctness 10.3.2 Distinctness 10.3.3 Cardinality	Integer Compositions 9.1 Definition 9.2 Algorithm 9.3 Verification 9.3.1 Correctness 9.3.2 Distinctness 9.3.3 Cardinality Weak Integer Compositions 10.1 Definition 10.2 Algorithm 10.3 Verification 10.3.1 Correctness 10.3.2 Distinctness 10.3.3 Cardinality

1 Injectivity for two argument functions

theory Common-Lemmas imports HOL.List HOL-Library.Tree begin

This section introduces *inj2-on* which generalizes *inj-on* on curried functions with two arguments and contains subsequent theorems about such functions.

We could use curried function directly with for example *case-prod*, but this way the proofs become simpler and easier to read.

definition inj2-on :: ('a \Rightarrow 'b \Rightarrow 'c) \Rightarrow 'a set \Rightarrow 'b set \Rightarrow bool where

 $\begin{array}{l} \textit{inj2-on } f \ A \ B \longleftrightarrow (\forall x1 \in A. \ \forall x2 \in A. \ \forall y1 \in B. \ \forall y2 \in B. \ f \ x1 \ y1 = f \ x2 \ y2 \longrightarrow x1 \\ = x2 \ \land \ y1 = y2) \end{array}$

abbreviation *inj2* :: $('a \Rightarrow 'b \Rightarrow 'c) \Rightarrow$ *bool* where *inj2* $f \equiv$ *inj2-on* f UNIV UNIV

1.1 Correspondence between *inj2-on* and *inj-on*

lemma *inj2-curried*: *inj2-on* (*curry* f) $A \ B \longleftrightarrow$ *inj-on* $f \ (A \times B)$ **unfolding** *inj2-on-def inj-on-def* **by** *auto*

lemma *inj2-on-all*: *inj2* $f \implies inj2-on f \land B$ **unfolding** *inj2-on-def* **by** *simp*

lemma *inj2-inj-first*: *inj2* $f \implies inj f$ **unfolding** *inj2-on-def inj-on-def* **by** *simp*

lemma *inj2-inj-second*: *inj2* $f \implies$ *inj* (f x) **unfolding** *inj2-on-def inj-on-def* **by** *simp*

lemma *inj2-inj-second-flipped: inj2* $f \implies inj (\lambda x. f x y)$ **unfolding** *inj2-on-def inj-on-def* by *simp*

1.2 Proofs with inj2

Already existing for *inj*:

 $\mathbf{thm}~distinct\text{-}map$

```
lemma inj2-on-distinct-map:

assumes inj2-on f \{x\} (set xs)

shows distinct xs = distinct (map (f x) xs)

using assms distinct-map by (auto simp: inj2-on-def inj-onI)
```

```
lemma inj2-distinct-map:

assumes inj2 f

shows distinct xs = distinct (map (f x) xs)

using assms inj2-on-distinct-map inj2-on-all by fast
```

```
lemma inj2-on-distinct-concat-map:

assumes inj2-on f (set xs) (set ys)

shows [distinct <math>ys; distinct xs] \implies distinct [f x y. x \leftarrow xs, y \leftarrow ys]

using assms proof(induct xs)

case Nil

then show ?case by simp

next

case (Cons x xs)

then have nin: x \notin set xs

by simp
```

then have inj2-on $f \{x\}$ (set ys) using Cons unfolding inj2-on-def by simp then have 1: distinct (map (f x) ys)using Cons inj2-on-distinct-map by fastforce have 2: distinct (concat (map $(\lambda x. map (f x) ys) xs))$) using Cons unfolding inj2-on-def by simp have 3: $[xa \in set xs; xb \in set ys; f x xb = f xa xc; xc \in set ys] \implies False$ for $xa \ xb \ xc$ using Cons(4) unfolding inj2-on-def using *nin* by *force* from 1 2 3 show ?case by *auto* qed **lemma** *inj2-distinct-concat-map*: assumes *inj2* f **shows** \llbracket distinct ys; distinct xs $\rrbracket \Longrightarrow$ distinct $[f x y. x \leftarrow xs, y \leftarrow ys]$ using assms inj2-on-all inj2-on-distinct-concat-map by blast **lemma** *inj2-distinct-concat-map-function*: assumes inj2 f**shows** $\forall x \in set xs. distinct (g x); distinct xs <math>\Rightarrow distinct [f x y. x \leftarrow xs, y \leftarrow$ g[x]**proof**(*induct xs*) case Nil then show ?case by simp \mathbf{next} case (Cons x xs) have 1: distinct (map (f x) (g x))using Cons assms inj2-distinct-map by fastforce have 2: distinct (concat (map $(\lambda x. map (f x) (g x)) xs)$) using Cons by simp have 3: $\bigwedge xa \ xb \ xc$. $[[xa \in set \ xs; \ xb \in set \ (g \ x); \ f \ x \ xb = f \ xa \ xc; \ xc \in set \ (g \ xa)]]$ \implies False using Cons assms unfolding inj2-on-def by auto show ?case using 1 2 3 by *auto* qed **lemma** distinct-concat-Nil: distinct (concat (map $(\lambda y. []) xs)$) **by**(*induct xs*) *auto*

lemma *inj2-distinct-concat-map-function-filter*:

assumes *inj2* f **shows** $\llbracket \forall x \in set xs. distinct (g x); distinct xs \rrbracket \Longrightarrow distinct [f x y. x \leftarrow xs, y \leftarrow xs, y \leftarrow xs, y \in y \in y$ g[x, h[x]]**proof**(*induct xs*) case Nil then show ?case by simp \mathbf{next} **case** (Cons x xs) have 1: distinct (map (f x) (g x))using Cons assms inj2-distinct-map by fastforce have 2: distinct (concat (map (λx . concat (map (λy . if h x then [f x y] else []) (g x))) xs))using Cons by simp have $3: \bigwedge xa \ xb \ xc$. [[h x; $xa \in set (g x)$; $xb \in set xs$; f x xa = f xb xc; $xc \in set (g xb)$; $xc \in (if h)$ xb then UNIV else $\{\}) \implies$ False by (metis Cons.prems(2) assms distinct.simps(2) inj2-on-def iso-tuple-UNIV-I)

then have 4: distinct (concat (map (λy . []) (g x))) using distinct-concat-Nil by auto

show ?case using 1 2 3 4 by auto qed

1.3 Specializations of *inj2*

1.3.1 Cons

lemma Cons-inj2: inj2 (#) unfolding inj2-on-def by simp

lemma Cons-distinct-concat-map: $\llbracket distinct \ ys; \ distinct \ xs \rrbracket \Longrightarrow distinct \ [x \# y. \ x \leftarrow xs, \ y \leftarrow ys]$ using inj2-distinct-concat-map Cons-inj2 by auto

lemma Cons-distinct-concat-map-function: $\llbracket \forall x \in set xs. distinct (g x); distinct xs \rrbracket \Longrightarrow distinct [x \# y. x \leftarrow xs, y \leftarrow g x]$ **using** *inj2-distinct-concat-map-function* Cons-*inj2* by *auto*

lemma Cons-distinct-concat-map-function-distinct-on-all: $\llbracket \forall x. \ distinct \ (g \ x) \ ; \ distinct \ xs \rrbracket \Longrightarrow distinct \ [x \ \# \ y. \ x \leftarrow xs, \ y \leftarrow g \ x]$ **using** Cons-distinct-concat-map-function **by** (metis (full-types))

1.3.2 Node right

lemma Node-right-inj2: inj2 ($\lambda l r$. Node l e r) unfolding inj2-on-def by simp **lemma** Node-right-distinct-concat-map:

 $\llbracket distinct \ ys; \ distinct \ xs \rrbracket \Longrightarrow distinct \ [Node \ x \ e \ y. \ x \leftarrow xs, \ y \leftarrow ys]$ using inj2-distinct-concat-map Node-right-inj2 by fast

1.3.3 Node left

lemma Node-left-inj2: inj2 ($\lambda r \ l.$ Node $l \ e \ r$) unfolding inj2-on-def by simp

lemma Node-left-distinct-map: distinct $xs = distinct (map (\lambda l. \langle l, (), r \rangle) xs)$ using inj2-distinct-map Node-left-inj2 by fast

1.3.4 Cons Suc

lemma Cons-Suc-inj2: inj2 ($\lambda x \ ys$. Suc $x \ \# \ ys$) unfolding inj2-on-def by simp

lemma Cons-Suc-distinct-concat-map-function: $\llbracket \forall x \in set xs. distinct (g x); distinct xs \rrbracket \Longrightarrow distinct [Suc x \# y. x \leftarrow xs, y \leftarrow g x]$ **using** *inj2-distinct-concat-map-function* Cons-Suc-*inj2* by *auto*

2 Lemmas for cardinality proofs

lemma length-concat-map: length $[f x r . x \leftarrow xs, r \leftarrow ys] = length ys * length xs$ **by**(induct xs arbitrary: ys) auto

An useful extension to *length-concat*

thm length-concat lemma length-concat-map-function-sum-list: assumes $\bigwedge x. x \in set xs \implies length (g x) = h x$ shows length $[f x r . x \leftarrow xs, r \leftarrow g x] = sum-list (map h xs)$ using assms by(induct xs) auto

lemma sum-list-extract-last: $(\sum x \leftarrow [0.. < Suc \ n]. f x) = (\sum x \leftarrow [0.. < n]. f x) + f n$ **by**(induct n) (auto simp: add.assoc)

lemma leq-sum-to-sum-list: $(\sum x \le n. f x) = (\sum x \leftarrow [0.. < Suc n]. f x)$ by (metis atMost-upto sum-set-upt-conv-sum-list-nat)

lemma less-sum-to-sum-list: $(\sum x < n. f x) = (\sum x \leftarrow [0..< n]. f x)$ **by** (simp add: atLeast-upt sum-list-distinct-conv-sum-set)

3 Miscellaneous

Similar to *length-remove1*:

lemma Suc-length-remove1: $x \in set xs \Longrightarrow Suc (length (remove1 x xs)) = length xs$

by(*induct xs*) *auto*

3.1 *count-list* and replicate

HOL.List doesn't have many lemmas about *count-list* (when not using multisets)

```
lemma count-list-replicate: count-list (replicate x y) y = x
by (induct x) auto
lemma count-list-full-elem: count-list xs y = length xs \longleftrightarrow (\forall x \in set xs. x = y)
proof(induct xs)
case Nil
then show ?case by simp
next
case (Cons z xs)
have [[count-list xs y = Suc (length xs); x \in set xs]] \Longrightarrow x = y for x
by (metis Suc-n-not-le-n count-le-length)
then show ?case
using Cons by auto
qed
```

The following lemma verifies the reverse of *count-notin*:

```
thm count-notin

lemma count-list-zero-not-elem: count-list xs \ x = 0 \iff x \notin set \ xs

by(induct xs) auto
```

lemma count-list-length-replicate: count-list $xs \ y = length \ xs \leftrightarrow xs = replicate$ (length xs) y

by (*metis count-list-full-elem count-list-replicate replicate-length-same*)

lemma count-list-True-False: count-list xs True + count-list xs False = length xs**by**(induct xs) auto

\mathbf{end}

4 N-Sequences

```
theory n-Sequences
imports
HOL.List
Common-Lemmas
begin
```

4.1 Definition

definition *n*-sequences :: 'a set \Rightarrow nat \Rightarrow 'a list set where *n*-sequences $A \ n = \{xs. set xs \subseteq A \land length xs = n\}$ Cardinality: card A $\ \widehat{} n$

Example: *n*-sequences $\{0, 1\}$ $\mathcal{Z} = \{[0,0], [0,1], [1,0], [1,1]\}$

4.2 Algorithm

fun *n*-sequence-enum :: 'a list \Rightarrow nat \Rightarrow 'a list list where *n*-sequence-enum xs 0 = [[]]

| n-sequence-enum xs (Suc n) = $[x \# r \cdot x \leftarrow xs, r \leftarrow n$ -sequence-enum xs n]

An enumeration of n-sequences already exists: *n-lists*. This part of this AFP entry is mostly to establish the patterns used in the more complex combinatorial objects.

lemma set (n-sequence-enum xs n) = set (List.n-lists n xs)by(induct n) auto

thm set-n-lists

4.3 Verification

4.3.1 Correctness

```
theorem n-sequence-enum-correct:
 set (n-sequence-enum xs n) = n-sequences (set xs) n
proof standard
 show set (n-sequence-enum xs n) \subseteq n-sequences (set xs) n
   unfolding n-sequences-def by (induct n) auto+
\mathbf{next}
 show n-sequences (set xs) n \subseteq set (n-sequence-enum xs n)
 proof(induct n)
   case \theta
   then show ?case
     unfolding n-sequences-def by auto
 next
   case (Suc n)
    have [n-sequences (set xs) n \subseteq set (n-sequence-enum xs n); set x \subseteq set xs;
length x = Suc \ n
     \implies \exists xa \in set xs. x \in (\#) xa \text{ 'set } (n\text{-sequence-enum } xs n) \text{ for } x
     unfolding n-sequences-def by (cases x) auto
   from this Suc show ?case
     unfolding n-sequences-def by auto
```

qed qed

4.3.2 Distinctness

theorem *n*-sequence-enum-distinct:

distinct $xs \implies$ distinct (n-sequence-enum xs n) by (induct n) (auto simp: Cons-distinct-concat-map)

4.3.3 Cardinality

```
lemma n-sequence-enum-length:
length (n-sequence-enum xs n) = (length xs) ^n
by(induct n arbitrary: xs) (auto simp: length-concat-map)
```

of course card-lists-length-eq can directly proof it but we want to derive it from n-sequence-enum-length

thm card-lists-length-eq

```
theorem n-sequences-card:

assumes finite A

shows card (n-sequences A n) = card A \cap n

proof –

obtain xs where set: set xs = A and dis: distinct xs

using assms finite-distinct-list by auto

have length (n-sequence-enum xs n) = (length xs) \cap n

using n-sequence-enum-distinct n-sequence-enum-length by auto

then have card (set (n-sequence-enum xs n)) = card (set xs) \cap n

by (simp add: dis distinct-card n-sequence-enum-distinct)

then have card (n-sequences (set xs) n) = card (set xs) \cap n

by (simp add: n-sequence-enum-correct)

then show card (n-sequences A n) = card A \cap n

using set by simp

qed
```

 \mathbf{end}

5 N-Permutations

```
theory n-Permutations

imports

HOL-Combinatorics.Multiset-Permutations

Common-Lemmas

Falling-Factorial-Sum.Falling-Factorial-Sum-Combinatorics

begin
```

5.1 Definition

definition *n*-permutations :: 'a set \Rightarrow nat \Rightarrow 'a list set where *n*-permutations $A \ n = \{xs. set \ xs \subseteq A \land distinct \ xs \land length \ xs = n\}$

Permutations with a maximum length. They are different from *HOL-Combinatorics.Multiset-Permut* because the entries must all be distinct.

Cardinality: 'falling factorial' (card A) n

Example: *n*-permutations $\{0,1,2\}$ $2 = \{[0,1], [0,2], [1,0], [1,2], [2,0], [2,1]\}$

lemma permutations-of-set $A \subseteq n$ -permutations A (card A)

by (*simp add: length-finite-permutations-of-set n-permutations-def permutations-of-setD subsetI*)

5.2 Algorithm

fun *n*-permutation-enum :: 'a list \Rightarrow nat \Rightarrow 'a list list where *n*-permutation-enum xs 0 = [[]]

| n-permutation-enum xs (Suc n) = [x#r . $x \leftarrow xs$, $r \leftarrow$ n-permutation-enum (remove1 x xs) n]

5.3 Verification

5.3.1 Correctness

lemma *n*-permutation-enum-subset: $ys \in set (n\text{-permutation-enum } xs \ n) \implies set$ $ys \subseteq set xs$ **proof**(*induct n arbitrary*: *ys xs*) **case** 0 **then show** ?case **by** *simp* **next case** (Suc *n*) **obtain** *x* **where** *o1*: *x*∈*set xs* **and** *o2*: *ys* \in (#) *x* ' *set* (*n*-permutation-enum (*remove1 x xs*) *n*) **using** Suc **by** *auto*

have $y \in set$ (*n*-permutation-enum (removel x xs) n) \Longrightarrow set $y \subseteq set$ xs for y using Suc set-removel-subset by fast

then show ?case using o1 o2 by fastforce qed

lemma *n*-permutation-enum-length: $ys \in set (n$ -permutation-enum $xs n) \Longrightarrow$ length ys = nby (induct n arbitrary: ys xs) auto

lemma *n*-permutation-enum-elem-distinct: distinct $xs \implies ys \in set$ (*n*-permutation-enum $xs \ n) \implies distinct \ ys$ **proof** (induct *n* arbitrary: $ys \ xs$) **case** 0 **then show** ?case **by** simp **next case** (Suc *n*) **then obtain** $z \ zs$ where $o: \ ys = z \ \# \ zs$ **by** auto

```
from this Suc have t: zs \in set (n-permutation-enum (removel z xs) n)
   by auto
 then have distinct zs
   using Suc distinct-remove1 by fast
 also have z \notin set zs
   using o t n-permutation-enum-subset Suc by fastforce
 ultimately show ?case
   using o by simp
qed
lemma n-permutation-enum-correct1: distinct xs \implies set (n-permutation-enum xs
n) \subseteq n-permutations (set xs) n
 unfolding n-permutations-def
 using n-permutation-enum-subset n-permutation-enum-elem-distinct n-permutation-enum-length
 by fast
lemma n-permutation-enum-correct2: ys \in n-permutations (set xs) n \Longrightarrow ys \in set
(n-permutation-enum \ xs \ n)
proof(induct n arbitrary: xs ys)
 case \theta
 then show ?case unfolding n-permutations-def by simp
\mathbf{next}
 case (Suc \ n)
 show ?case proof(cases ys)
   case Nil
   then show ?thesis using Suc
    by (simp add: n-permutations-def)
 \mathbf{next}
   case (Cons z zs)
   have z-in: z \in set xs
    using Suc Cons unfolding n-permutations-def by simp
   have 1: set zs \subseteq set xs
    using Suc Cons unfolding n-permutations-def by simp
   have 2: length zs = n
    using Suc Cons unfolding n-permutations-def by simp
   have 3: distinct zs
    using Suc Cons unfolding n-permutations-def by simp
   show ?thesis proof(cases z \in set zs)
    case True
    then have zs \in set (n-permutation-enum (remove1 z xs) n)
      using Suc Cons unfolding n-permutations-def by auto
```

```
then show ?thesis
      using True Cons z-in by auto
   next
     case False
     then have x \in set zs \Longrightarrow x \in set (removel z xs) for x
      using 1 by(cases x = z) auto
     then have zs \in n-permutations (set (removel z xs)) n
      unfolding n-permutations-def using 2 3 by auto
     then have zs \in set (n-permutation-enum (removel z xs) n)
      using Suc by simp
    then have \exists x \in set xs. z \# zs \in (\#) x 'set (n-permutation-enum (removel x
xs) n)
      unfolding image-def using z-in by simp
     then show ?thesis
      using False Cons by simp
   \mathbf{qed}
 qed
qed
```

theorem *n*-permutation-enum-correct: distinct $xs \implies set$ (*n*-permutation-enum xsn) = n-permutations (set xs) n**proof** standard

show distinct $xs \implies set$ (*n*-permutation-enum xs *n*) \subseteq *n*-permutations (set xs) *n* by (simp add: *n*-permutation-enum-correct1)

 \mathbf{next}

show distinct $xs \implies n$ -permutations (set xs) $n \subseteq set$ (n-permutation-enum xs n) by (simp add: n-permutation-enum-correct2 subsetI)

qed

5.3.2 Distinctness

theorem n-permutation-distinct: distinct $xs \implies distinct (n-permutation-enum xs n)$ proof(induct n arbitrary: xs) case θ then show ?case by simp next case (Suc n) let ?f = λx . (n-permutation-enum (remove1 x xs) n) from Suc have distinct (?f x) for x by simp

from this Suc show ?case
 by (auto simp: Cons-distinct-concat-map-function-distinct-on-all [of ?f xs])
qed

5.3.3 Cardinality

thm card-lists-distinct-length-eq

theorem finite $A \implies card$ (*n*-permutations A *n*) = ffact *n* (card A) unfolding *n*-permutations-def using card-lists-distinct-length-eq by (metis (no-types, lifting) Collect-cong)

5.4 *n*-multiset extension (with remdups)

```
definition n-multiset-permutations :: 'a multiset \Rightarrow nat \Rightarrow 'a list set where
  n-multiset-permutations A n = \{xs. mset xs \subseteq \# A \land length xs = n\}
fun n-multiset-permutation-enum :: 'a list \Rightarrow nat \Rightarrow 'a list list where
  n-multiset-permutation-enum xs \ n = remdups \ (n-permutation-enum xs \ n)
lemma distinct (n-multiset-permutation-enum xs n)
 by auto
lemma n-multiset-permutation-enum-correct1:
  mset ys \subseteq \# mset xs \Longrightarrow ys \in set (n-permutation-enum xs (length ys))
proof(induct ys arbitrary: xs)
 case Nil
  then show ?case
   by simp
\mathbf{next}
  case (Cons y ys)
 then have y \in set xs
   by (simp add: insert-subset-eq-iff)
  moreover have ys \in set (n-permutation-enum (removel y xs) (length ys))
   using Cons by (simp add: insert-subset-eq-iff)
 ultimately show ?case
   using Cons by auto
qed
lemma n-multiset-permutation-enum-correct2:
  ys \in set \ (n\text{-permutation-enum } xs \ n) \Longrightarrow mset \ ys \subseteq \# mset \ xs
proof(induct n arbitrary: xs ys)
 case \theta
 then show ?case
   by simp
\mathbf{next}
  case (Suc n)
 then show ?case
   using insert-subset-eq-iff mset-remove1 by fastforce
qed
lemma n-multiset-permutation-enum-correct:
```

```
set (n-multiset-permutation-enum xs n) = n-multiset-permutations (mset xs) n

unfolding n-multiset-permutations-def

proof(standard)

show set (n-multiset-permutation-enum xs n) \subseteq {xsa. mset xsa \subseteq# mset xs \land

length xsa = n}
```

```
 \mathbf{by} \; (simp \; add: \; n\text{-}multiset\text{-}permutation\text{-}enum\text{-}correct2 \; n\text{-}permutation\text{-}enum\text{-}length \\ subset I)
```

 \mathbf{next}

show {*xsa. mset xsa* \subseteq # *mset xs* \land *length xsa* = *n*} \subseteq *set* (*n*-*multiset-permutation-enum xs n*)

using *n*-multiset-permutation-enum-correct1 by auto \mathbf{qed}

end theory Filter-Bool-List imports HOL.List begin

A simple algorithm to filter a list by a boolean list. A different approach would be to filter by a set of indices, but this approach is faster, because lookups are slow in ML.

fun filter-bool-list :: bool list ⇒ 'a list ⇒ 'a list where
 filter-bool-list [] - = []
| filter-bool-list - [] = []
| filter-bool-list (b#bs) (x#xs) =
 (if b then x#(filter-bool-list bs xs) else (filter-bool-list bs xs))

The following could be an alternative definition, but the version above provides a nice computational induction rule.

lemma filter-bool-list bs $xs = map \ snd \ (filter \ fst \ (zip \ bs \ xs))$ **by**(induct bs $xs \ rule: \ filter-bool-list.induct) \ auto$

lemma filter-bool-list-in:

 $n < length xs \implies n < length bs \implies bs!n \implies xs!n \in set (filter-bool-list bs xs)$ **proof** (induct bs xs arbitrary: n rule: filter-bool-list.induct) **case** (3 b bs x xs) **then show** ?case **by**(cases n) auto **qed** auto

lemma filter-bool-list-not-elem: $x \notin set \ xs \implies x \notin set$ (filter-bool-list bs xs) **by**(induct bs xs rule: filter-bool-list.induct) auto

lemma filter-bool-list-elem: $x \in set$ (filter-bool-list bs xs) $\implies x \in set xs$ using filter-bool-list-not-elem by fast

```
lemma filter-bool-list-not-in:

distinct xs \implies n < length xs \implies n < length bs \implies bs!n = False

\implies xs!n \notin set (filter-bool-list bs xs)

proof (induct bs xs arbitrary: n rule: filter-bool-list.induct)

case (\beta b bs x xs)

then show ?case proof(induct n)

case 0
```

```
then show ?case using filter-bool-list-not-elem
by force
qed auto
qed auto
lemma filter-bool-list-elem-nth: ys \in set (filter-bool-list bs xs)
```

```
\implies \exists n. ys = xs ! n \land bs ! n \land n < length bs \land n < length xs

proof(induct bs xs arbitrary: ys rule: filter-bool-list.induct)

case (1 xs)

then show ?case by simp

next

case (2 b bs)

then show ?case by simp

next

case (3 b bs y ys)

then show ?case

by(cases b) (force)+
```

```
qed
```

May be a useful conversion, since the algorithm could also be implemented with a list of indices.

```
lemma filter-bool-list-set-nth:
```

set (filter-bool-list bs xs) = { $xs ! n | n. bs ! n \land n < length bs \land n < length xs$ } by (auto simp: filter-bool-list-in filter-bool-list-elem-nth)

```
lemma filter-bool-list-exist-length: A \subseteq set xs
```

```
\implies \exists bs. length bs = length xs \land A = set (filter-bool-list bs xs)

proof(induct xs arbitrary: A)

case Nil

then show ?case

by auto

next

case (Cons x xs)

from Cons have A - \{x\} \subseteq set xs

by auto

from this Cons have 1: \exists bs. length bs = length xs \land A - \{x\} = set (filter-bool-list bs xs)

by simp
```

then have $\exists bs. length bs = length (x \# xs) \land A = set (filter-bool-list bs (x \# xs))$

by (metis Diff-empty Diff-insert0 insert-Diff-single insert-absorb list.simps(15) list.size(4) filter-bool-list.simps(3))

then show ?case . qed

lemma *filter-bool-list-card*:

 $\llbracket distinct \ xs; \ length \ xs = length \ bs \rrbracket \Longrightarrow card \ (set \ (filter-bool-list \ bs \ xs)) = count-list$

bs True

 $\mathbf{by}(\textit{induct bs xs rule: filter-bool-list.induct}) (\textit{auto simp: filter-bool-list-not-elem})$

lemma filter-bool-list-exist-length-card-True: $\llbracket distinct xs; A \subseteq set xs; n = card A \rrbracket$ $\implies \exists bs. length bs = length xs \land count-list bs True = card A \land A = set$ (filter-bool-list bs xs)

by (*metis filter-bool-list-card filter-bool-list-exist-length*)

lemma filter-bool-list-distinct: distinct $xs \implies$ distinct (filter-bool-list bs xs) **by**(induct bs xs rule: filter-bool-list.induct) (auto simp: filter-bool-list-not-elem)

```
lemma filter-bool-list-inj-aux:
    assumes length bs1 = length xs
    and length xs = length bs2
    and distinct xs
shows filter-bool-list bs1 xs = filter-bool-list bs2 xs \implies bs1 = bs2
using assms proof(induct rule: list-induct3)
    case Nil
    then show ?case by simp
    next
    case (Cons b1 bs1 x xs b2 bs2)
    then show ?case
    by(cases b1; cases b2, auto) (metis list.set-intros(1) filter-bool-list-not-elem)+
    qed
```

```
lemma filter-bool-list-inj:
```

distinct $xs \implies inj$ -on (λbs . filter-bool-list bs xs) {bs. length bs = length xs} unfolding inj-on-def using filter-bool-list-inj-aux by fastforce

 \mathbf{end}

6 N-Subsets

```
theory n-Subsets

imports

Common-Lemmas

HOL-Combinatorics.Multiset-Permutations

Filter-Bool-List

begin
```

6.1 Definition

definition *n*-subsets :: 'a set \Rightarrow nat \Rightarrow 'a set set where *n*-subsets $A \ n = \{B, B \subseteq A \land card B = n\}$

Cardinality: binomial (card A) n

Example: *n*-subsets $\{0,1,2\}$ $\mathcal{Z} = \{\{0,1\}, \{0,2\}, \{1,2\}\}$

6.2 Algorithm

fun *n*-bool-lists :: $nat \Rightarrow nat \Rightarrow bool list list where$ *n* $-bool-lists <math>n \ 0 = (if \ n > 0 \ then \ [] \ else \ [[]])$ | *n*-bool-lists $n \ (Suc \ x) = (if \ n = 0 \ then \ [replicate \ (Suc \ x) \ False]$ else if $n = Suc \ x \ then \ [replicate \ (Suc \ x) \ True]$ else if $n > x \ then \ []$ else [False# $xs \ . \ xs \leftarrow n$ -bool-lists $n \ x$] @ [True# $xs \ . \ xs \leftarrow n$ -bool-lists $(n-1) \ x$])

fun *n*-subset-enum :: 'a list \Rightarrow nat \Rightarrow 'a list list where *n*-subset-enum xs $n = [(filter-bool-list bs xs) . bs \leftarrow (n-bool-lists n (length xs))]$

6.3 Verification

6.3.1 n-bool-lists

lemma *n*-bool-lists-True-count: $xs \in set (n$ -bool-lists $n x) \Longrightarrow count$ -list xs True = n

by (induct x arbitrary: xs n) (auto split: if-splits simp: count-list-replicate)

lemma *n*-bool-lists-length: $xs \in set (n$ -bool-lists $n x) \Longrightarrow$ length xs = xby (induct x arbitrary: xs n) (auto split: if-splits)

```
lemma n-bool-lists-distinct: distinct (n-bool-lists n x)
proof(induct x arbitrary: n)
    case 0
    then show ?case by simp
next
    case (Suc x)
    then show ?case
    using distinct-map by fastforce
qed
```

lemma replicate-True-not-False: count-list ys $True = 0 \leftrightarrow ys = replicate$ (length ys) False

```
lemma n-bool-lists-correct-aux:

length xs = x \implies count-list xs \ True = n \implies xs \in set (n-bool-lists n x)

proof(induct x arbitrary: n xs)

case 0

then show ?case by auto

next

case (Suc x)

show ?case proof(cases n = 0)

case True

then show ?thesis

using Suc True replicate-True-not-False by auto

next
```

```
case c1: False
   then show ?thesis proof(cases n = Suc x)
     \mathbf{case} \ \mathit{True}
     then have xs = True \# replicate x True
       using Suc.prems count-list-length-replicate replicate-Suc by metis
     then show ?thesis
      using True by simp
   \mathbf{next}
     case c2: False
     then show ?thesis proof(cases n > x)
      case True
      then have xs = [
        using Suc.prems c2 count-le-length by (metis Suc-lessI linorder-not-less)
      then show ?thesis
        using Suc by auto
     \mathbf{next}
      case c3: False
      then show ?thesis proof (cases xs)
        case Nil
        then show ?thesis
          using Suc.prems(1) by auto
      \mathbf{next}
        case (Cons y ys)
        then show ?thesis proof (cases y)
          case True
          then show ?thesis using Suc c1 c2 c3 Cons
           by simp
        next
          case False
          then show ?thesis using Suc c1 c2 c3 Cons
           by simp
        qed
      \mathbf{qed}
     \mathbf{qed}
   qed
 qed
qed
lemma n-bool-lists-correct: set (n-bool-lists n x) = {xs. length xs = x \land count-list
xs True = n
proof(standard)
 show set (n-bool-lists n x) \subseteq {xs. length xs = x \land count-list xs True = n}
 \mathbf{proof}(cases \ x)
   case \theta
   then show ?thesis by simp
 \mathbf{next}
   case (Suc x)
   then show ?thesis using n-bool-lists-True-count n-bool-lists-length
     by blast
```

next show {xs. length $xs = x \land count-list xs \ True = n$ } $\subseteq set (n-bool-lists n x)$ using n-bool-lists-correct-aux by auto ged

6.3.2 Correctness

qed

```
lemma n-subset-enum-correct-aux1:

\llbracket distinct xs; \ length ys = \ length xs 
rbracket{} \\ \implies set (filter-bool-list ys xs) \in n-subsets (set xs) (count-list ys True)

unfolding n-subsets-def

by (auto simp: filter-bool-list-card filter-bool-list-elem)
```

lemma *n*-subset-enum-correct-aux2:

distinct $xs \implies n$ -subsets (set xs) $n \subseteq$ set (map set (n-subset-enum xs n)) unfolding n-subsets-def by (auto simp: n-bool-lists-correct image-def filter-bool-list-exist-length-card-True)

theorem *n*-subset-enum-correct:

distinct $xs \implies set (map \ set (n-subset-enum \ xs \ n)) = n-subsets (set \ xs) \ n$ **proof**(standard) **show** distinct $xs \implies set (map \ set (n-subset-enum \ xs \ n)) \subseteq n-subsets (set \ xs) \ n$ **using** n-subset-enum-correct-aux1 n-bool-lists-correct **by** auto

 \mathbf{next}

show distinct $xs \implies n$ -subsets (set xs) $n \subseteq set$ (map set (n-subset-enum xs n)) using n-subset-enum-correct-aux2 by auto

 \mathbf{qed}

6.3.3 Distinctness

```
theorem n-subset-enum-distinct-elem:
distinct xs \implies ys \in set (n-subset-enum xs \ n) \implies distinct ys
by(cases length xs < n) (auto simp: filter-bool-list-distinct)
```

theorem *n*-subset-enum-distinct: distinct $xs \implies distinct (n-subset-enum xs n)$ **by**(*auto simp: distinct-map n-bool-lists-distinct inj-on-def filter-bool-list-inj-aux n-bool-lists-length*)

6.3.4 Cardinality

Cardinality of *n*-subsets is already shown in *Binomial.n*-subsets.

6.4 Alternative using Multiset permutations

It would be possible to define *n*-bool-lists using permutations-of-multiset with the following definition:

fun *n*-bool-lists2 :: $nat \Rightarrow nat \Rightarrow bool \ list \ set \ where$

n-bool-lists2 $n \ x = (if \ n > x \ then \ \{\}$ else permutations-of-multiset (mset (replicate n True @ replicate (x-n) False)))

6.5 mset-count

Correspondence between *count-list* and *count* (mset xs) and transfer of a few results for multisets to lists.

lemma count-list-count-mset: count-list ys $T = n \Longrightarrow$ count (mset ys) T = nby (induct ys arbitrary: n) auto

lemma count-mset-count-list: count (mset ys) $T = n \Longrightarrow$ count-list ys T = nby(induct ys arbitrary: n) auto

lemma count-mset-replicate-aux1:

 $\begin{bmatrix} \neg x < n; mset ys = mset (replicate n True) + mset (replicate (x - n) False) \end{bmatrix} \implies count (mset ys) True = n$ by (auto simp: count-list-count-mset count-mset)

```
lemma count-mset-replicate-aux2:
  assumes \neg length xs < count-list xs True
  shows mset xs = mset (replicate (count-list xs True) True) + mset (replicate
  (length xs - count-list xs True) False)
  proof -
  have count-list xs B =
        count-list (replicate (count-list xs True) True) B + count-list (replicate
  (length xs - count-list xs True) False) B
      for B
      proof(cases B)
      case True
      then show ?thesis
      by (simp add: count-list-replicate)
      next
      case False
```

have count-list xs False = count-list (replicate (length xs - count-list xs True) False) False

by (metis count-list-True-False count-list-replicate diff-add-inverse)

from this False show ?thesis using assms by auto qed

then show mset xs = mset (replicate (count-list xs True) True) + mset (replicate

```
(length xs - count-list xs True) False)
   using multiset-eqI by blast
qed
lemma n-bool-lists2-correct: set (n-bool-lists n x) = n-bool-lists2 n x
proof(standard)
 have [\neg length ys < count-list ys True; x = length ys; n = count-list ys True]
        \implies ys \in permutations-of-multiset
               (mset (replicate (count-list ys True) True) + mset (replicate (length
ys - count-list ys True) False))
        for ys
   using count-mset-replicate-aux2 permutations-of-multisetI by blast
 then show set (n-bool-lists n x) \subseteq n-bool-lists2 n x
   unfolding n-bool-lists-correct
   by (auto simp: count-le-length leD)
next
 have \llbracket \neg x < n; ys \in permutations-of-multiset (mset (replicate n True) + mset
(replicate (x - n) False))
        \implies count (mset ys) True = n for ys
   using count-mset-replicate-aux1 permutations-of-multisetD by blast
 then have [\![\neg x < n; ys \in permutations \text{-}of-multiset (mset (replicate n True) +
mset (replicate (x - n) False))
        \implies count-list ys True = n for ys
   by (simp add: count-list-count-mset)
 then show n-bool-lists2 n x \subseteq set (n-bool-lists n x) unfolding n-bool-lists-correct
```

end

7 Powerset

theory Powerset imports Main n-Sequences Common-Lemmas Filter-Bool-List begin

7.1 Definition

Pow A

Cardinality: $2 \uparrow card A$

Example: $Pow \{0,1\} = \{\{\}, \{1\}, \{0\}, \{0, 1\}\}$

7.2 Algorithm

fun all-bool-lists :: $nat \Rightarrow bool \ list \ list \ where$ all-bool-lists 0 = [[]]| all-bool-lists (Suc x) = concat [[False#xs, True#xs] . $xs \leftarrow all$ -bool-lists x]

fun powerset-enum where

powerset-enum $xs = [(filter-bool-list x xs) . x \leftarrow all-bool-lists (length xs)]$

7.3 Verification

First we show the relevant theorems for *all-bool-lists*, then we'll transfer the results to the enumeration algorithm for powersets.

lemma distinct-concat-aux: distinct $xs \implies$ distinct (concat (map ($\lambda xs.$ [False # xs, True # xs]) xs))by (induct xs) auto **lemma** distinct-all-bool-lists : distinct (all-bool-lists x) **by** (*induct* x) (*auto simp add: distinct-concat-aux*) **lemma** all-bool-lists-correct: set (all-bool-lists x) = {xs. length xs = x} **proof**(*standard*) **show** set (all-bool-lists x) \subseteq {xs. length xs = x} **by** (*induct* x) *auto* \mathbf{next} **show** {*xs. length* xs = x} \subseteq *set* (*all-bool-lists* x) proof(induct x)case θ then show ?case by simp \mathbf{next} case (Suc x) have length $ys = Suc \ x \Longrightarrow \exists xs. \ ys = False \ \# \ xs \lor ys = True \ \# \ xs$ for ys**by** (*metis* (*full-types*) Suc-length-conv) then show ?case using Suc **by** *fastforce* qed qed

7.3.1 Correctness

theorem powerset-enum-correct: set (map set (powerset-enum xs)) = Pow (set xs) **proof**(standard) **show** set (map set (powerset-enum xs)) \subseteq Pow (set xs) **using** filter-bool-list-not-elem **by** fastforce **next have** $\bigwedge x. x \subseteq$ set $xs \implies x \in (\lambda x. set (filter-bool-list x xs))$ ' {zs. length zs =length xs} **unfolding** image-def **using** filter-bool-list-exist-length image-def **by** auto **then show** Pow (set xs) \subseteq set (map set (powerset-enum xs))

7.3.2 Distinctness

```
theorem powerset-enum-distinct-elem: distinct xs \implies ys \in set (powerset-enum xs) \implies distinct ys

using filter-bool-list-distinct by auto

theorem powerset-enum-distinct: distinct xs \implies distinct (powerset-enum xs)

proof –

assume dis: distinct xs

then have distinct (map (\lambda x. filter-bool-list x xs) (all-bool-lists (length xs)))

using distinct-map filter-bool-list-inj distinct-all-bool-lists

by (metis all-bool-lists-correct)

then show ?thesis

using dis by simp

qed
```

7.3.3 Cardinality

Cardinality for powersets is already shown in *card-Pow*.

7.4 Alternative algorithm with *n*-sequence-enum

fun all-bool-lists2 :: nat \Rightarrow bool list list **where** all-bool-lists2 n = n-sequence-enum [True, False] n

lemma all-bool-lists2-distinct: distinct (all-bool-lists2 n) **by** (auto simp add: n-sequence-enum-distinct)

lemma all-bool-lists2-correct: set (all-bool-lists n) = set (all-bool-lists2 n) by (auto simp: all-bool-lists-correct n-sequence-enum-correct n-sequences-def)

end

8 Integer Paritions

```
theory Integer-Partitions

imports

HOL-Library.Multiset

Common-Lemmas

Card-Number-Partitions.Card-Number-Partitions

begin
```

8.1 Definition

definition integer-partitions :: nat \Rightarrow nat multiset set where integer-partitions $i = \{A. \text{ sum-mset } A = i \land 0 \notin \# A\}$ Cardinality: Partition i (from Card-Number-Partitions. Card-Number-Partitions [2])

Example: integer-partitions $4 = \{\{4\}, \{3,1\}, \{2,2\}, \{2,1,1\}, \{1,1,1,1\}\}$

8.2 Algorithm

fun integer-partitions-enum-aux :: nat \Rightarrow nat list list where integer-partitions-enum-aux 0 m = [[]]

| integer-partitions-enum-aux n m =

 $[h \# r : h \leftarrow [1 .. < Suc \ (min \ n \ m)], r \leftarrow integer-partitions-enum-aux \ (n-h) \ h]$

fun integer-partitions-enum :: nat \Rightarrow nat list list **where** integer-partitions-enum n = integer-partitions-enum-aux n n

8.3 Verification

8.3.1 Correctness

lemma integer-partitions-empty: $[] \in set (integer-partitions-enum-aux n m) \implies n = 0$

 $\mathbf{by}(induct \ n) \ auto$

```
lemma integer-partitions-enum-aux-first:
```

 $x \# xs \in set (integer-partitions-enum-aux n m)$ $\implies xs \in set (integer-partitions-enum-aux (n-x) x)$ by(induct n) auto

```
lemma integer-partitions-enum-aux-max-n:
x \# xs \in set \ (integer-partitions-enum-aux \ n \ m) \implies x \le n
by (induct \ n) \ auto
```

```
lemma integer-partitions-enum-aux-max-head:
x \# xs \in set \ (integer-partitions-enum-aux \ n \ m) \implies x \leq m
by (induct \ n) \ auto
```

```
lemma integer-partitions-enum-aux-max:

xs \in set (integer-partitions-enum-aux n m) \implies x \in set xs \implies x \leq m

proof(induct xs arbitrary: n m x)

case Nil

then show ?case using integer-partitions-enum-aux-max-head by simp

next

case (Cons y xs)

then show ?case

using integer-partitions-enum-aux-max-head integer-partitions-enum-aux-first

by fastforce

qed
```

lemma *integer-partitions-enum-aux-sum*:

```
xs \in set (integer-partitions-enum-aux \ n \ m) \Longrightarrow sum-list \ xs = n
proof(induct xs arbitrary: n m)
 case Nil
  then show ?case using integer-partitions-empty by simp
next
  case (Cons x xs)
  then have [xs \in set (integer-partitions-enum-aux (n-x) x)] \implies sum-list xs =
(n-x)
   by simp
 moreover have xs \in set (integer-partitions-enum-aux (n-x) x)
   using Cons integer-partitions-enum-aux-first by simp
 moreover have x \leq n
   using Cons integer-partitions-enum-aux-max-n by simp
 ultimately show ?case
   by simp
\mathbf{qed}
lemma integer-partitions-enum-aux-not-null-aux:
 x \# xs \in set \ (integer-partitions-enum-aux \ n \ m) \Longrightarrow x \neq 0
 by (induct n) auto
lemma integer-partitions-enum-aux-not-null:
  xs \in set \ (integer-partitions-enum-aux \ n \ m) \Longrightarrow x \in set \ xs \Longrightarrow x \neq 0
proof(induct \ xs \ arbitrary: \ x \ n \ m)
 case Nil
 then show ?case by simp
\mathbf{next}
 case (Cons y xs)
 show ?case proof(cases y = x)
   \mathbf{case} \ True
   then show ?thesis
     using Cons integer-partitions-enum-aux-not-null-aux by simp
 \mathbf{next}
   case False
   then show ?thesis
    using Cons integer-partitions-enum-aux-not-null-aux integer-partitions-enum-aux-first
      by fastforce
 qed
qed
lemma integer-partitions-enum-aux-head-minus:
    h \leq m \Longrightarrow h > 0 \Longrightarrow n \geq h \Longrightarrow
 ys \in set (integer-partitions-enum-aux (n-h) h) \Longrightarrow h \# ys \in set (integer-partitions-enum-aux (n-h) h) \Longrightarrow h \# ys \in set (integer-partitions-enum-aux n)
n m
```

```
case \theta
```

```
then show ?case by simp next
```

case (Suc n)

proof(induct n)

then have $1: 1 \leq m$ by simp

have 2: $(\exists x. (x = min (Suc n) m \lor Suc 0 \le x \land x < Suc n \land x < m) \land h \# ys$ $\in (\#) \ x \ (integer-partitions-enum-aux \ (Suc \ n - x) \ x))$ unfolding *image-def* using Suc by auto from 1 2 have Suc $0 \le m \land (\exists x. (x = min (Suc n) m \lor Suc 0 \le x \land x < Suc$ $n \wedge x < m$ $\wedge h \# ys \in (\#) x$ 'set (integer-partitions-enum-aux (Suc n - x) x)) by simp then show ?case by auto qed **lemma** integer-partitions-enum-aux-head-plus: $h < m \Longrightarrow h > 0 \Longrightarrow ys \in set (integer-partitions-enum-aux n h)$ $\implies h \# ys \in set \ (integer-partitions-enum-aux \ (h + n) \ m)$ using integer-partitions-enum-aux-head-minus by simp **lemma** *integer-partitions-enum-correct-aux1*: assumes $0 \notin \# A$ and $\forall x \in \# A. x \leq m$ **shows** $\exists xs \in set$ (integer-partitions-enum-aux $(\sum_{\#} A) m$). A = mset xsusing assms proof(induct A arbitrary: m rule: multiset-induct-max) case *empty* then show ?case by simp \mathbf{next} case $(add \ h \ A)$ have $hc1: h \leq m$ using add by simp have hc2: h > 0using add by simp **obtain** ys where o1: $ys \in set$ (integer-partitions-enum-aux $(\sum_{\#} A) h$) and o2: A = mset ysusing add by force have $h \# ys \in set$ (integer-partitions-enum-aux $(h + \sum_{\#} A) m$) using integer-partitions-enum-aux-head-plus hc1 o1 hc2 by blast then show ?case using o2 by force qed **theorem** *integer-partitions-enum-correct*: set (map m set (integer-partitions-enum n)) = integer-partitions n**proof**(*standard*) have $[xs \in set (integer-partitions-enum-aux \ n \ n)] \implies \sum_{\#} (mset \ xs) = n$ for xs **by** (*simp add: integer-partitions-enum-aux-sum sum-mset-sum-list*)

moreover have $xs \in set$ (integer-partitions-enum-aux n n) $\Longrightarrow 0 \notin \#$ mset xs for xs

using integer-partitions-enum-aux-not-null by auto

ultimately show set (map mset (integer-partitions-enum n)) \subseteq integer-partitions n

unfolding integer-partitions-def by auto

 \mathbf{next}

have $0 \notin \# A \Longrightarrow A \in mset$ 'set (integer-partitions-enum-aux $(\sum \# A)$ $(\sum \# A)$) for A

unfolding *image-def*

using integer-partitions-enum-correct-aux1 by (simp add: sum-mset.remove) then show integer-partitions $n \subseteq$ set (map mset (integer-partitions-enum n)) unfolding integer-partitions-def by auto

qed

8.3.2 Distinctness

lemma integer-partitions-enum-aux-distinct: distinct (integer-partitions-enum-aux n m) **proof**(induct n m rule:integer-partitions-enum-aux.induct) **case** (1 m) **then show** ?case **by** simp **next case** (2 n m) **have** distinct $[h\#r . h \leftarrow [1..< Suc (min (Suc n) m)], r \leftarrow integer-partitions-enum-aux$ ((Suc n)-h) h] **apply**(subst Cons-distinct-concat-map-function) **using** 2 **by** auto **then show** ?case **by** simp **qed**

theorem integer-partitions-enum-distinct: distinct (integer-partitions-enum n) using integer-partitions-enum-aux-distinct by simp

8.3.3 Cardinality

lemma partitions-bij-betw-count: bij-betw count {N. count N partitions n} {p. p partitions n} by (rule bij-betw-byWitness[where f'=Abs-multiset]) (auto simp: partitions-imp-finite-elements)

lemma card-partitions-count-partitions: card $\{p. p \text{ partitions } n\} = card \{N. \text{ count } N \text{ partitions } n\}$ using bij-betw-same-card partitions-bij-betw-count by metis

this sadly is not proven in Card-Number-Partitions. Card-Number-Partitions

lemma card-partitions-number-partition: card $\{p. p \text{ partitions } n\} = card \{N. number-partition n N\}$ using card-partitions-count-partitions count-partitions-iff by simp

```
lemma integer-partitions-number-partition-eq:
integer-partitions n = \{N. number-partition \ n \ N\}
using integer-partitions-def number-partition-def by auto
```

```
lemma integer-partitions-cardinality-aux:
card (integer-partitions n) = (\sum k \le n. Partition n k)
using card-partitions-number-partition integer-partitions-number-partition-eq card-partitions
by simp
```

```
theorem integer-partitions-cardinality:
card (integer-partitions n) = Partition (2*n) n
using integer-partitions-cardinality-aux Partition-sum-Partition-diff add-implies-diff
le-add1 mult-2
by simp
```

 \mathbf{end}

9 Integer Compositions

```
theory Integer-Compositions
imports
Common-Lemmas
begin
```

9.1 Definition

definition integer-compositions :: nat \Rightarrow nat list set where integer-compositions $i = \{xs. sum-list xs = i \land 0 \notin set xs\}$

Integer compositions are *integer-partitions* where the order matters.

Cardinality: sum from n = 1 to i (binomial (i-1) (n-1)) = 2(i-1)

Example: integer-compositions $3 = \{[3], [2,1], [1,2], [1,1,1]\}$

9.2 Algorithm

fun integer-composition-enum :: $nat \Rightarrow nat$ list list where integer-composition-enum 0 = [[]]| integer-composition-enum (Suc n) =

[Suc $m \# xs. m \leftarrow [0.. < Suc n], xs \leftarrow integer-composition-enum (n-m)]$

9.3 Verification

9.3.1 Correctness

lemma integer-composition-enum-tail-elem: $x \# xs \in set \ (integer-composition-enum \ n) \implies xs \in set \ (integer-composition-enum \ (n - x))$ $\mathbf{by}(induct \ n) \ auto$

```
lemma integer-composition-enum-not-null-aux:
 x \# xs \in set \ (integer-composition-enum \ n) \Longrightarrow x \neq 0
 \mathbf{by}(induct \ n) \ auto
lemma integer-composition-enum-not-null: xs \in set (integer-composition-enum n)
\implies 0 \notin set xs
proof(induct xs arbitrary: n)
 case Nil
 then show ?case
   by simp
\mathbf{next}
 case (Cons a xs)
 then show ?case
  using integer-composition-enum-not-null-aux integer-composition-enum-tail-elem
   by fastforce
qed
lemma integer-composition-enum-empty: [] \in set (integer-composition-enum n)
\implies n = 0
 \mathbf{by}(induct \ n) auto
lemma integer-composition-enum-sum: xs \in set (integer-composition-enum n) \Longrightarrow
sum-list xs = n
proof(induct n arbitrary: xs rule: integer-composition-enum.induct)
 case 1
 then show ?case by simp
\mathbf{next}
 case (2 x)
 show ?case proof(cases xs)
   case Nil
   then show ?thesis using 2 by auto
 \mathbf{next}
   case (Cons y ys)
   have p1: sum-list ys = Suc \ x - y using 2 Cons
     by auto
   have Suc x \ge y
     using 2 Cons by auto
   then have p2: sum-list ys = Suc \ x - y \Longrightarrow y + sum-list \ ys = Suc \ x
     by simp
   show ?thesis
     using p1 p2 Cons by simp
 qed
qed
```

lemma integer-composition-enum-head-set:

assumes $x \neq 0$ and x < nshows $xs \in set$ (integer-composition-enum (n-x)) $\implies x \# xs \in set$ (integer-composition-enum n)using assms proof (induct n arbitrary: x xs) case θ then show ?case by simp \mathbf{next} case c1: (Suc n)from c1.prems have 1: $\forall y \in \{0.. < n\}. \ x = Suc \ y \longrightarrow xs \notin set \ (integer-composition-enum \ (n - y)) \Longrightarrow$ x = Suc n $\mathbf{by}(induct \ x) \ simp-all$ then have $2: \forall y \in \{0.. < n\}$. $x = Suc \ y \longrightarrow xs \notin set$ (integer-composition-enum $(n - y) \implies xs = []$ using c1.prems(1) by simpshow ?case using 1 2 by auto qed **lemma** *integer-composition-enum-correct-aux*: $0 \notin set \ xs \implies xs \in set \ (integer-composition-enum \ (sum-list \ xs))$ **by**(*induct xs*) (*auto simp: integer-composition-enum-head-set*) **theorem** *integer-composition-enum-correct*: set (integer-composition-enum n) = integer-compositions n**proof** standard **show** set (integer-composition-enum n) \subseteq integer-compositions nunfolding integer-compositions-def using integer-composition-enum-not-null integer-composition-enum-sum by autonext **show** integer-compositions $n \subseteq$ set (integer-composition-enum n) **unfolding** *integer-compositions-def* using integer-composition-enum-correct-aux by auto qed

9.3.2 Distinctness

theorem integer-composition-enum-distinct: distinct (integer-composition-enum n) proof(induct n rule: integer-composition-enum.induct) case 1 then show ?case by auto next case (2 n)

have h1: $x \in set [0..<Suc n] \implies distinct (integer-composition-enum (n - x))$ for x

using 2 by simp

have h2: distinct [0..< n]by simp

have distinct [Suc $m \#xs. m \leftarrow [0..< n]$, $xs \leftarrow integer-composition-enum (n-m)$] using h1 h2 Cons-Suc-distinct-concat-map-function by simp then show ?case by auto qed

9.3.3 Cardinality

lemma *sum-list-two-pow-aux*: $(\sum x \leftarrow [0.. < n]. (2::nat) (n - x)) + 2 (0 - 1) + 2 0 = 2 (Suc n)$ proof(induct n)case θ then show ?case by simp \mathbf{next} case c1: (Suc n) have $x \le n \Longrightarrow 2$ $(Suc \ n - x) = 2 * 2$ (n - x) for x by (simp add: Suc-diff-le) also have $x \in set \ [0..<Suc \ n] \Longrightarrow x \leq n$ for x by auto ultimately have $(\sum x \leftarrow [0.. < Suc \ n]. \ 2 \ \widehat{} (Suc \ n - x)) = (\sum x \leftarrow [0.. < Suc \ n].$ $2 \ast 2 \widehat{(n-x)}$ **by** (*metis* (*mono-tags*, *lifting*) *map-eq-conv*) also have ... = $(\sum x \leftarrow [0.. < n]. 2 * 2 \cap (n - x)) + 2 * 2 \cap (0)$ using sum-list-extract-last by simp also have $(\sum x \leftarrow [0.. < n]. (2::nat) * (2::nat) \cap (n - x)) = 2 * (\sum x \leftarrow [0.. < n]. 2$ (n - x)using sum-list-const-mult by fast ultimately have $(\sum x \leftarrow [0.. < Suc n]. (2::nat) \land (Suc n - x))$ = $2*(\sum x \leftarrow [0.. < n]. 2 \land (n - x)) + 2* 2 \land (0)$ by metis then show ?case using c1 by simp qed **lemma** *sum-list-two-pow*: Suc $(\sum x \leftarrow [0..< n])$. $2 \cap (n - Suc x)) = 2 \cap n$ using sum-list-two-pow-aux sum-list-extract-last $\mathbf{by}(cases \ n)$ auto **lemma** integer-composition-enum-length: length (integer-composition-enum n) = $2\hat{(n-1)}$

```
proof(induct n rule: integer-composition-enum.induct)
 case 1
 then show ?case by simp
\mathbf{next}
 case (2 n)
  then have length [Suc m \ \#xs. \ m \leftarrow [0..< n], \ xs \leftarrow integer-composition-enum
(n-m)]
       = (\sum x \leftarrow [0.. < n]. \ 2 \ \widehat{} (n - x - 1))
   using length-concat-map-function-sum-list [of
       \left[\theta .. < n\right]
       \lambda x. integer-composition-enum (n - x)
       \lambda x. 2 (n - x - 1)
       \lambda m xs. Suc m \# xs]
   by auto
 then show ?case
   using sum-list-two-pow
   by simp
qed
theorem integer-compositions-card:
  card (integer-compositions n) = 2^{(n-1)}
```

```
using integer-composition-enum-correct integer-composition-enum-length
integer-composition-enum-distinct distinct-card by metis
```

 \mathbf{end}

10 Weak Integer Compositions

theory Weak-Integer-Compositions imports HOL-Combinatorics.Multiset-Permutations Common-Lemmas begin

10.1 Definition

definition weak-integer-compositions :: $nat \Rightarrow nat$ ist set where weak-integer-compositions $i \ l = \{xs. \ length \ xs = l \land sum-list \ xs = i\}$

Weak integer compositions are similar to integer compositions, with the trade-off that 0 is allowed but the composition must have a fixed length.

Cardinality: binomial (i + n - 1) i

Example: weak-integer-compositions $2 \ 2 = \{[2,0], [1,1], [0,2]\}$

10.2 Algorithm

fun weak-integer-composition-enum :: $nat \Rightarrow nat$ list list **where**

weak-integer-composition-enum i $0 = (if \ i = 0 \ then \ [[]] \ else \ [])$ weak-integer-composition-enum i $(Suc \ 0) = [[i]]$ weak-integer-composition-enum i $l = [h\#r \ . \ h \leftarrow [0..< Suc \ i], \ r \leftarrow weak-integer-composition-enum \ (i-h) \ (l-1)]$

10.3 Verification

10.3.1 Correctness

```
lemma weak-integer-composition-enum-length:
 xs \in set (weak-integer-composition-enum \ i \ l) \implies length \ xs = l
proof(induct l arbitrary: xs i)
 case \theta
 then show ?case by simp
\mathbf{next}
 case (Suc l)
 then show ?case by(cases l) auto
qed
lemma weak-integer-composition-enum-sum-list:
 xs \in set (weak-integer-composition-enum \ i \ l) \implies sum-list \ xs = i
proof(induct l arbitrary: xs i)
 case \theta
 then show ?case by simp
\mathbf{next}
 case (Suc l)
 then show ?case by(cases l) auto
qed
lemma weak-integer-composition-enum-head:
 assumes xs \in set (weak-integer-composition-enum (sum-list xs) (length xs))
  shows x \# xs \in set (weak-integer-composition-enum (x + sum-list xs) (Suc
(length xs)))
proof(cases length xs)
 case \theta
 then show ?thesis by simp
\mathbf{next}
 case (Suc y)
```

have 1: $[n \in set xs; 0 < n] \implies 0 < sum-list xs$ for n using sum-list-eq-0-iff by fast

have 2: $xs \notin set$ (weak-integer-composition-enum 0 (Suc y)) $\implies 0 < sum-list$ using Suc assms not-gr0 by fastforce

have $x \# xs \notin (\#) (x + sum-list xs)$ 'set (weak-integer-composition-enum 0 (Suc y))

 $\implies \exists xa \in \{0..< x + sum-list xs\}. \ x \ \# \ xs \in (\#) \ xa \ `set \ (weak-integer-composition-enum (x + sum-list xs - xa) \ (Suc \ y))$

unfolding image-def using Suc assms 1 2 by auto

from Suc this show ?thesis
 by auto
ged

qou

 ${\bf lemma}\ weak-integer-composition-enum-correct-aux:$

 $xs \in set (weak-integer-composition-enum (sum-list xs) (length xs))$

by (*induct xs*) (*auto simp: weak-integer-composition-enum-head*)

theorem weak-integer-composition-enum-correct:

set (weak-integer-composition-enum i l) = weak-integer-compositions i l**proof** standard

show set (weak-integer-composition-enum $i \ l$) \subseteq weak-integer-compositions $i \ l$ **unfolding** weak-integer-compositions-def

using weak-integer-composition-enum-length weak-integer-composition-enum-sum-list by auto

 \mathbf{next}

show weak-integer-compositions i $l \subseteq$ set (weak-integer-composition-enum i l) unfolding weak-integer-compositions-def

10.3.2 Distinctness

theorem weak-integer-composition-enum-distinct: distinct (weak-integer-composition-enum i l**proof**(*induct rule: weak-integer-composition-enum.induct*) case (1 i)then show ?case by simp \mathbf{next} case (2 i)then show ?case by simp \mathbf{next} case (3 i l)have distinct $[h \# r : h \leftarrow [0 ... < Suc i], r \leftarrow weak-integer-composition-enum (i-h)$ $(Suc \ l)$] **apply**(subst Cons-distinct-concat-map-function) using 3 by auto then show ?case by simp qed

10.3.3 Cardinality

The following is a generalization of the binomial coefficient to multisets. Sometimes it is called multiset coefficient. Here we call it "multichoose" [4].

definition multichoose:: $nat \Rightarrow nat \Rightarrow nat$ (infix) (multichoose) 65) where *n* multichoose k = (n + k - 1) choose k

lemma weak-integer-composition-enum-zero: length (weak-integer-composition-enum 0 (Suc n)) = 1

 $\mathbf{by}(induct \ n)$ auto

lemma a-choose-equivalence: Suc $(\sum x \leftarrow [0.. < k]. n + (k - x) choose (k - x)) =$ Suc (n + k) choose k

proof –

have $m \ge k \Longrightarrow (\sum x \leftarrow [0.. < Suc \ k]. \ m - x \ choose \ (k - x)) = Suc \ m \ choose \ k$ for m

using sum-choose-diagonal leq-sum-to-sum-list by metis

then have 1: Suc $(\sum x \leftarrow [0.. < k])$. (n + k) - x choose (k - x)) = Suc (n + k) choose k

by simp

have Suc $(\sum x \leftarrow [0..<k]. (n+k) - x$ choose $(k-x)) = Suc (\sum x \leftarrow [0..<k]. n + (k-x)$ choose (k-x))

by (metis (no-types, opaque-lifting) Nat.diff-add-assoc2 add.commute binomial-n-0 diff-is-0-eq' nle-le)

then show ?thesis using 1 by simp qed

lemma composition-enum-length: length (weak-integer-composition-enum i n) = nmultichoose iunfolding multichoose-def proof(induct i n rule: weak-integer-composition-enum.induct) case (1 i) then show ?case by simp next case (2 i) then show ?case by simp next case (3 i n) then have $x \in set [0... < i] \Longrightarrow$ length (weak-integer-composition-enum (i - x) (Suc n)) = n + (i - x) choose (i - x) for xby simp

then have ev: length $[h\#r \, . \, h \leftarrow [0.. < i], r \leftarrow weak-integer-composition-enum (i-h) (Suc n)] = (\sum x \leftarrow [0.. < i]. n + (i - x) choose (i - x))$

have $Suc (\sum x \leftarrow [0.. < i]. n + (i - x) choose (i - x)) = Suc (n + i) choose i$ using a-choose-equivalence by simp

then show ?case using weak-integer-composition-enum-zero ev by auto qed

theorem weak-integer-compositions-cardinality: card (weak-integer-compositions n k) = k multichoose n **using** weak-integer-composition-enum-correct weak-integer-composition-enum-distinct composition-enum-length distinct-card by metis

end

11 Derangements

```
theory Derangements-Enum
imports
HOL-Combinatorics.Multiset-Permutations
Common-Lemmas
```

begin

11.1 Definition

fun no-overlap :: 'a list \Rightarrow 'a list \Rightarrow bool where no-overlap - [] = True | no-overlap [] - = True | no-overlap (x # xs) (y # ys) = ($x \neq y \land$ no-overlap xs ys)

lemma no-overlap-nth: length $xs = \text{length } ys \implies i < \text{length } xs \implies \text{no-overlap } xs$ $ys \implies xs \mid i \neq ys \mid i$

by(*induct xs ys arbitrary: i rule: list-induct2*) (*auto simp: less-Suc-eq-0-disj*)

lemma nth-no-overlap: length $xs = \text{length } ys \implies \forall i < \text{length } xs. xs ! i \neq ys ! i \implies \text{no-overlap } xs ys$ **proof** (induct xs ys rule: list-induct2) **case** (Cons x xs y ys) **then show** ?case **using** Suc-less-eq nth-Cons-Suc **by** fastforce **qed** simp

definition derangements :: 'a list \Rightarrow 'a list set where

derangements $xs = \{ys. \text{ distinct } ys \land \text{ length } xs = \text{ length } ys \land \text{ set } xs = \text{ set } ys \land \text{ no-overlap } xs \; ys \}$

A derangement of a list is a permutation where every element changes its position, assuming all elements are distinguishable.

An alternative definition exists in *Derangements*. *Derangements* [1].

Cardinality: count-derangements (length xs) (from Derangements.Derangements)

Example: derangements $[0,1,2] = \{[1,2,0], [2,0,1]\}$

11.2 Algorithm

fun derangement-enum-aux :: 'a list \Rightarrow 'a list \Rightarrow 'a list list where derangement-enum-aux [] ys = [[]]

 $| derangement-enum-aux (x \# xs) ys = [y \# r . y \leftarrow ys, r \leftarrow derangement-enum-aux xs (remove1 y ys), y \neq x]$

fun derangement-enum :: 'a list \Rightarrow 'a list list where derangement-enum xs = derangement-enum-aux xs xs

11.3 Verification

11.3.1 Correctness

lemma derangement-enum-aux-elem-length: $zs \in set$ (derangement-enum-aux xsys) \implies length xs = length zs**by**(induct xs arbitrary: ys zs) auto

lemma derangement-enum-aux-not-in: $y \notin set ys \implies zs \in set$ (derangement-enum-aux xs ys) $\implies y \notin set zs$ **proof**(induct xs arbitrary: ys zs) case Nil then show ?case by simp next case (Cons x xs) then obtain z zs2 where ob: zs = z # zs2by auto have $zs2 \in set$ (derangement-enum-aux xs (remove1 z ys)) $\implies y \notin set zs2$ using Cons notin-set-remove1 by fast then show ?case using Cons ob by auto qed

lemma derangement-enum-aux-in: $y \in set zs \Longrightarrow zs \in set$ (derangement-enum-aux xs ys) $\Longrightarrow y \in set ys$ using derangement-enum-aux-not-in by fast

lemma derangement-enum-aux-distinct-elem: distinct $ys \Longrightarrow zs \in set$ (derangement-enum-aux $xs \ ys$) \Longrightarrow distinct zs

```
proof(induct xs arbitrary: ys zs)
 case Nil
 then show ?case by simp
\mathbf{next}
 case (Cons x xs)
 obtain z zs2 where ob: zs = z \# zs2
   using Cons by auto
 then have ev: zs2 \in set (derangement-enum-aux xs (remove1 z ys))
   using Cons ob by auto
 have distinct zs2
   using ev Cons distinct-remove1 by fast
 moreover have z \notin set zs2
   using ev Cons(2) derangement-enum-aux-in by fastforce
 ultimately show ?case using ob by simp
qed
lemma derangement-enum-aux-no-overlap: zs \in set (derangement-enum-aux xs ys)
\implies no-overlap xs zs
 by(induct xs arbitrary: zs ys) auto
lemma derangement-enum-aux-set:
 length xs = length ys \Longrightarrow zs \in set (derangement-enum-aux xs ys) \Longrightarrow set zs =
set ys
proof(induct xs ys arbitrary: zs rule: derangement-enum-aux.induct)
 case (1 ys)
 then show ?case by simp
next
 case (2 x xs ys)
 obtain z zs2 where ob: zs = z \# zs2
   using 2 by auto
 have ev1: zs2 \in set (derangement-enum-aux xs (remove1 z ys))
   using 2 ob by simp
 have ev2:z \in set ys
   using 2 ob by simp
 have length xs = length (remove1 z ys)
   using ev2 Suc-length-removel 2.prems(1) by force
 then have set zs^2 = set (removel z ys)
   using 2.hyps[of z zs2] ev1 ev2 by simp
 then show ?case
   using ob notin-set-remove1 ev2 in-set-remove1 by fastforce
\mathbf{qed}
lemma derangement-enum-correct-aux1:
 [] distinct zs; length ys = length zs; length ys = length xs; set ys = set zs; no-overlap
xs zs
  \implies zs \in set (derangement-enum-aux xs ys)
```

```
proof(induct xs arbitrary: zs ys)
 case Nil
 then show ?case by simp
\mathbf{next}
 case (Cons x xs)
 obtain z zs2 where ob: zs = z \# zs2
   using Cons length-0-conv neq-Nil-conv by metis
 have e1: z \neq x
   using Cons.prems(5) ob by auto
 have distinct zs2
   using Cons.prems(1) ob by auto
 moreover have length (removel z ys) = length zs2 using Cons.prems ob
   by (simp add: length-remove1)
 moreover have length (removel z ys) = length xs
   by (simp add: Cons.prems(3) Cons.prems(4) length-remove1 ob)
 moreover have set (remove1 z ys) = set zs2
   using Cons ob by (metis distinct-card distinct-remdups length-remdups-eq re-
move1.simps(2) set-remdups set-remove1-eq)
 moreover have no-overlap xs zs2
   using Cons.prems(5) ob by fastforce
 ultimately have zs2 \in set (derangement-enum-aux xs (remove1 z ys))
   using Cons.hyps[of zs2 (remove1 z ys)] by simp
 then show ?case
   using ob e1 Cons by simp
qed
theorem derangement-enum-correct: distinct xs \implies derangements xs = set (derangement-enum
```

xs)

 $\begin{array}{l} \textbf{proof}(standard) \\ \textbf{show} \ distinct \ xs \implies derangements \ xs \subseteq set \ (derangement-enum \ xs) \\ \textbf{unfolding} \ derangements-def \ \textbf{using} \ derangement-enum \ correct-aux1 \ \textbf{by} \ auto \\ \textbf{next} \\ \textbf{show} \ distinct \ xs \implies set \ (derangement-enum \ xs) \subseteq \ derangements \ xs \\ \textbf{unfolding} \ derangements-def \\ \textbf{using} \ derangement-enum-aux-set \ derangement-enum-aux-distinct-elem \ derangement-enum-aux-elem-length \ derangement-enum-aux-no-overlap \\ \textbf{by} \ auto \\ \textbf{qed} \end{array}$

11.3.2 Distinctness

lemma derangement-enum-aux-distinct: distinct $ys \implies distinct (derangement-enum-aux xs ys)$ **proof**(induct xs arbitrary: ys) **case** Nil **then show** ?case by simp

```
\begin{array}{c} \textbf{next} \\ \textbf{case} \ (Cons \ x \ xs) \\ \textbf{show} \ ?case \\ \textbf{using} \ inj2-distinct-concat-map-function-filter[of \\ Cons \\ ys \\ \lambda y. \ derangement-enum-aux \ xs \ (remove1 \ y \ ys) \\ \lambda y. \ y \neq x \\ \end{bmatrix} \\ \textbf{using} \ Cons \ Cons-inj2 \\ \textbf{by} \ (simp) \\ \textbf{qed} \end{array}
```

theorem derangement-enum-distinct: distinct $xs \implies$ distinct (derangement-enum xs)

using derangement-enum-aux-distinct by auto

\mathbf{end}

12 Trees

theory Trees imports HOL-Library.Tree Common-Lemmas

begin

12.1 Definition

The set of trees can be defined with the pre-existing *tree* datatype:

definition trees :: $nat \Rightarrow unit$ tree set where trees $n = \{t. size \ t = n\}$

Cardinality: Catalan number of n

Example: trees $0 = \{Leaf\}$

12.2 Algorithm

fun tree-enum :: nat \Rightarrow unit tree list **where** tree-enum $0 = [Leaf] \mid$ tree-enum (Suc n) = $[\langle t1, (), t2 \rangle$. $i \leftarrow [0..<Suc n], t1 \leftarrow$ tree-enum $i, t2 \leftarrow$ tree-enum (n-i)]

12.3 Verification

12.3.1 Cardinality

- **lemma** *length-tree-enum*:
- length (tree-enum(Suc n)) = $(\sum i \le n. length(tree-enum i) * length(tree-enum (n i)))$

lemma tree-enum-correct1: $t \in set$ (tree-enum n) \Longrightarrow size t = n

by (simp add: length-concat comp-def sum-list-triv atLeast-upt interv-sum-list-conv-sum-set-nat flip: lessThan-Suc-atMost)

12.3.2 Correctness

```
by (induct n arbitrary: t rule: tree-enum.induct) (simp, fastforce)
lemma tree-enum-correct2: n = size \ t \implies t \in set \ (tree-enum \ n)
proof (induct n arbitrary: t rule: tree-enum.induct)
  case 1
  then show ?case by simp
next
  case (2 n)
  show ?case proof(cases t)
   case Leaf
   then show ?thesis
     by (simp add: 2.prems)
  \mathbf{next}
   case (Node l e r)
   have i1: (size l) < Suc n using 2.prems Node by auto
   have i2: (size r) < Suc n using 2.prems Node by auto
   have t1: l \in set (tree-enum (size l))
     apply(rule \ 2.hyps(1) \ [of \ (size \ l)])
     using i1 by auto
   have t2: r \in set (tree-enum (size r))
     apply(rule 2.hyps(1) [of (size r)])
     using i2 by auto
   have \langle l, (), r \rangle \notin (\lambda t1, \langle t1, (), \langle \rangle) 'set (tree-enum (size l + size r)) \Longrightarrow
        \exists x \in \{0.. < size \ l + size \ r\}. \ \exists x \in set \ (tree-enum \ x). \ \langle l, (), \ r \rangle \in Node \ xa \ () \ `
set (tree-enum (size l + size r - x))
     using t1 t2 by fastforce
   then have \langle l, e, r \rangle \in set (tree-enum (size \langle l, e, r \rangle))
     by auto
   then show ?thesis
     using Node using 2.prems by simp
  \mathbf{qed}
qed
```

theorem tree-enum-correct: set(tree-enum n) = trees nproof(standard) show set (tree-enum n) \subseteq trees n unfolding trees-def using tree-enum-correct1 by auto next show trees $n \subseteq set$ (tree-enum n) unfolding trees-def using tree-enum-correct2 by auto qed

12.3.3 Distinctness

lemma tree-enum-Leaf: $\langle \rangle \in set (tree-enum n) \leftrightarrow (n = 0)$ by(cases n) auto

lemma tree-enum-elem-injective: $n \neq m \implies x \in set$ (tree-enum n) $\implies y \in set$ (tree-enum m) $\implies x \neq y$ using tree-enum-correct1 by auto

lemma tree-enum-elem-injective2: $x \in set$ (tree-enum n) $\implies y \in set$ (tree-enum m) $\implies x = y \implies n = m$ using tree-enum-elem-injective by auto

lemma concat-map-Node-not-equal:

```
xs \neq [] \implies xs2 \neq [] \implies ys \neq [] \implies ys2 \neq [] \implies
  \forall \ x \in \ set \ xs. \ \forall \ y \in \ set \ ys \ . \ x \neq y \Longrightarrow
  [\langle l, (), r \rangle. \ l \leftarrow xs2, \ r \leftarrow xs] \neq [\langle l, (), r \rangle. \ l \leftarrow ys2, \ r \leftarrow ys]
proof(induct xs)
  case Nil
  then show ?case by simp
\mathbf{next}
  case (Cons x xs)
  then show ?case proof(induct ys)
    case Nil
    then show ?case by simp
  \mathbf{next}
    case (Cons y ys)
    obtain x2 x2s where o1: xs2 = x2 \# x2s
      by (meson Cons.prems(3) neq-Nil-conv)
    obtain y2 \ y2s where o2: \ ys2 = \ y2 \ \# \ y2s
      by (meson Cons.prems(5) neq-Nil-conv)
    have [\langle l, (), r \rangle. l \leftarrow x2 \# x2s, r \leftarrow x \# xs] \neq [\langle l, (), r \rangle. l \leftarrow y2 \# y2s, r \leftarrow y \#
ys
      using Cons.prems(6) by auto
    then show ?case
      using of of by simp
  qed
qed
```

lemma tree-enum-not-empty: tree-enum $n \neq []$ $\mathbf{by}(induct \ n)$ auto **lemma** tree-enum-distinct-aux-outer: **assumes** $\forall i \leq n$. distinct (tree-enum i) and distinct xs and $\forall i \in set xs. i < n$ and sorted-wrt (<) xs **shows** distinct (map (λi . [$\langle l, (), r \rangle$. $l \leftarrow$ tree-enum $i, r \leftarrow$ tree-enum (n-i)]) xs) using assms proof(induct xs arbitrary: n) case Nil then show ?case by simp \mathbf{next} **case** (Cons x xs) have b1: x < n using Cons by auto have $\forall i \in set xs . x < i$ using Cons.prems(4) strict-sorted-simps(2) by simp then have $\forall i \in set xs$. (n - i) < (n - x)using b1 diff-less-mono2 by simp **then have** $\forall i \in set xs. \forall t1 \in set (tree-enum (n - x)). \forall t2 \in set (tree-enum (n - x)). \forall$ (n-i)). $t1 \neq t2$ using tree-enum-correct1 by (metis less-irrefl-nat) then have $1: \forall i \in set xs. [\langle l, (), r \rangle. l \leftarrow tree-enum x, r \leftarrow tree-enum (n-x)] \neq$ $[\langle l, (), r \rangle$. $l \leftarrow tree-enum i, r \leftarrow tree-enum (n-i)]$ using concat-map-Node-not-equal tree-enum-not-empty by simp have 2: distinct (map (λi . [$\langle l, (), r \rangle$. $l \leftarrow$ tree-enum $i, r \leftarrow$ tree-enum (n-i)]) xs) using Cons by auto from 1 2 show ?case by auto qed **lemma** tree-enum-distinct-aux-left: $\forall i < n. distinct (tree-enum i) \implies distinct ([\langle l, (), r \rangle. i \leftarrow [0..< n], l \leftarrow$ tree-enum i])proof(induct n)case θ then show ?case by simp \mathbf{next} case (Suc n) have 1:distinct (tree-enum n) using Suc.prems by auto have 2: distinct ([$\langle l, (), r \rangle$. $i \leftarrow [0.. < n], l \leftarrow tree-enum i$]) using Suc by simp **have** 3: distinct (map (λl . $\langle l, (), r \rangle$) (tree-enum n))

```
using Node-left-distinct-map 1 by simp
 have 4: [\Lambda t \ n. \ t \in set \ (tree-enum \ n) \Longrightarrow size \ t = n; \ m < n; \ y \in set \ (tree-enum \ n)
n); y \in set (tree-enum m) \implies False \text{ for } m y
    by blast
  from 1 2 3 4 tree-enum-correct1 show ?case
    by fastforce
qed
theorem tree-enum-distinct: distinct(tree-enum n)
proof(induct n rule: tree-enum.induct)
  case 1
  then show ?case by simp
\mathbf{next}
  case (2 n)
  then have Ir: i < Suc \ n \Longrightarrow distinct \ (tree-enum \ i) for i
    by (metis atLeastLessThan-iff set-upt zero-le)
  have c1: distinct (concat (map (\lambda i. [\langle l, (), r \rangle). l \leftarrow tree-enum i, r \leftarrow tree-enum
(n-i)]) [0..< n]))
  proof(rule distinct-concat)
    show distinct (map (\lambda i. [\langle l, (), r \rangle. l \leftarrow tree-enum i, r \leftarrow tree-enum (n-i)])
[\theta ... < n])
      apply(rule tree-enum-distinct-aux-outer)
      using Ir by auto
  next
     have \bigwedge x. \ x < n \implies distinct ([\langle l, (), r \rangle. \ l \leftarrow tree-enum \ x, \ r \leftarrow tree-enum
(n-x)])
      using Ir by (simp add: Node-right-distinct-concat-map)
   then show \bigwedge ys. ys \in set (map (\lambda i. [\langle l, (), r \rangle. l \leftarrow tree-enum i, r \leftarrow tree-enum i)
(n-i)]) [0..< n]) \implies distinct ys
      by auto
  \mathbf{next}
    have \llbracket [\langle l, (), r \rangle, l \leftarrow tree-enum x, r \leftarrow tree-enum (n-x)] \neq
        [\langle l, (), r \rangle. l \leftarrow tree-enum z, r \leftarrow tree-enum (n-z)];
        y \in set (tree-enum x); y \in set (tree-enum z)
       \implies False for x \neq y
      using tree-enum-elem-injective2 by auto
    then show \bigwedge ys \ zs.
         [ys \in set (map (\lambda i. [\langle l, (), r \rangle. l \leftarrow tree-enum i, r \leftarrow tree-enum (n-i)])
[\theta ... < n]);
          zs \in set (map (\lambda i. [\langle l, (), r \rangle. l \leftarrow tree-enum i, r \leftarrow tree-enum (n-i)])
[0..{<}n]); ys \neq zs]\!]
       \implies set ys \cap set zs = \{\}
      by fastforce
  ged
  have distinct (tree-enum n)
```

```
using 2 by simp
  then have c2: distinct (map (\lambda t1. \langle t1, (), \langle \rangle \rangle) (tree-enum n))
   using Node-left-distinct-map by fastforce
 have c3: \bigwedge xa \ xb. \ [xa < n; \ xb \in set \ (tree-enum \ xa); \ xb \in set \ (tree-enum \ n); \ \langle \rangle \in
set (tree-enum (n - xa)) \implies False
   by (simp add: tree-enum-Leaf)
 from c1 c2 c3 show ?case
   by fastforce
qed
end
theory Combinatorial-Enumeration-Algorithms
 imports
   n-Sequences
   n-Permutations
   n-Subsets
   Powerset
    Integer-Partitions
    Integer-Compositions
    Weak-Integer-Compositions
   Derangements-Enum
    Trees
begin
```

end

References

- L. Bulwahn. Derangements formula. Archive of Formal Proofs, June 2015. https://isa-afp.org/entries/Derangements.html, Formal proof development.
- [2] L. Bulwahn. Cardinality of number partitions. Archive of Formal Proofs, January 2016. https://isa-afp.org/entries/Card_Number_Partitions. html, Formal proof development.
- [3] L. Bulwahn. The twelvefold way. Archive of Formal Proofs, December 2016. https://isa-afp.org/entries/Twelvefold_Way.html, Formal proof development.
- [4] R. Stanley. *Enumerative Combinatorics: Volume 1.* Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2011.
- [5] D. Stanton and D. White. Constructive Combinatorics. Springer, 1986.