
Combinatorial Enumeration Algorithms

Paul Hofmeier and Emin Karayel

March 17, 2025

Abstract

Combinatorial objects have configurations which can be enumer-
ated by algorithms, but especially for imperative programs, it is diffi-
cult to find out if they produce the correct output and don’t generate
duplicates. Therefore, for some of the most common combinatorial
objects, namely n_Sequences, n_Permutations, n_Subsets, Powerset,
Integer_Compositions, Integer_Partitions, Weak_Integer_Composi-
tions, Derangements and Trees, this entry formalizes efficient func-
tional programs and verifies their correctness. In addition, it provides
cardinality proofs for those combinatorial objects. Some cardinalities
are verified using the enumeration functions and others are shown using
existing libraries including other AFP entries.

Related books on combinatorics include [4] and [5]. Some of the car-
dinality theorems in this entry are also proved in another AFP entry, The
Twelvefold Way [3].

Contents
1 Injectivity for two argument functions 3

1.1 Correspondence between inj2-on and inj-on 4
1.2 Proofs with inj2 . 4
1.3 Specializations of inj2 . 6

1.3.1 Cons . 6
1.3.2 Node right . 6
1.3.3 Node left . 7
1.3.4 Cons Suc . 7

2 Lemmas for cardinality proofs 7

3 Miscellaneous 7
3.1 count-list and replicate . 8

1

4 N-Sequences 8
4.1 Definition . 8
4.2 Algorithm . 9
4.3 Verification . 9

4.3.1 Correctness . 9
4.3.2 Distinctness . 9
4.3.3 Cardinality . 10

5 N-Permutations 10
5.1 Definition . 10
5.2 Algorithm . 11
5.3 Verification . 11

5.3.1 Correctness . 11
5.3.2 Distinctness . 13
5.3.3 Cardinality . 13

5.4 n-multiset extension (with remdups) 14

6 N-Subsets 17
6.1 Definition . 17
6.2 Algorithm . 18
6.3 Verification . 18

6.3.1 n-bool-lists . 18
6.3.2 Correctness . 20
6.3.3 Distinctness . 20
6.3.4 Cardinality . 20

6.4 Alternative using Multiset permutations 20
6.5 mset-count . 21

7 Powerset 22
7.1 Definition . 22
7.2 Algorithm . 23
7.3 Verification . 23

7.3.1 Correctness . 23
7.3.2 Distinctness . 24
7.3.3 Cardinality . 24

7.4 Alternative algorithm with n-sequence-enum 24

8 Integer Paritions 24
8.1 Definition . 24
8.2 Algorithm . 25
8.3 Verification . 25

8.3.1 Correctness . 25
8.3.2 Distinctness . 28
8.3.3 Cardinality . 28

2

9 Integer Compositions 29
9.1 Definition . 29
9.2 Algorithm . 29
9.3 Verification . 29

9.3.1 Correctness . 29
9.3.2 Distinctness . 31
9.3.3 Cardinality . 32

10 Weak Integer Compositions 33
10.1 Definition . 33
10.2 Algorithm . 33
10.3 Verification . 34

10.3.1 Correctness . 34
10.3.2 Distinctness . 35
10.3.3 Cardinality . 36

11 Derangements 37
11.1 Definition . 37
11.2 Algorithm . 38
11.3 Verification . 38

11.3.1 Correctness . 38
11.3.2 Distinctness . 40

12 Trees 41
12.1 Definition . 41
12.2 Algorithm . 41
12.3 Verification . 42

12.3.1 Cardinality . 42
12.3.2 Correctness . 42
12.3.3 Distinctness . 43

1 Injectivity for two argument functions
theory Common-Lemmas

imports
HOL.List
HOL−Library.Tree

begin

This section introduces inj2-on which generalizes inj-on on curried functions
with two arguments and contains subsequent theorems about such functions.

We could use curried function directly with for example case-prod, but this
way the proofs become simpler and easier to read.
definition inj2-on :: (′a ⇒ ′b ⇒ ′c) ⇒ ′a set ⇒ ′b set ⇒ bool where

3

inj2-on f A B ←→ (∀ x1∈A. ∀ x2∈A. ∀ y1∈B. ∀ y2∈B. f x1 y1 = f x2 y2 −→ x1
= x2 ∧ y1 = y2)

abbreviation inj2 :: (′a ⇒ ′b ⇒ ′c) ⇒ bool where
inj2 f ≡ inj2-on f UNIV UNIV

1.1 Correspondence between inj2-on and inj-on
lemma inj2-curried: inj2-on (curry f) A B ←→ inj-on f (A×B)

unfolding inj2-on-def inj-on-def by auto

lemma inj2-on-all: inj2 f =⇒ inj2-on f A B
unfolding inj2-on-def by simp

lemma inj2-inj-first: inj2 f =⇒ inj f
unfolding inj2-on-def inj-on-def by simp

lemma inj2-inj-second: inj2 f =⇒ inj (f x)
unfolding inj2-on-def inj-on-def by simp

lemma inj2-inj-second-flipped: inj2 f =⇒ inj (λx. f x y)
unfolding inj2-on-def inj-on-def by simp

1.2 Proofs with inj2

Already existing for inj:
thm distinct-map

lemma inj2-on-distinct-map:
assumes inj2-on f {x} (set xs)
shows distinct xs = distinct (map (f x) xs)
using assms distinct-map by (auto simp: inj2-on-def inj-onI)

lemma inj2-distinct-map:
assumes inj2 f
shows distinct xs = distinct (map (f x) xs)
using assms inj2-on-distinct-map inj2-on-all by fast

lemma inj2-on-distinct-concat-map:
assumes inj2-on f (set xs) (set ys)
shows [[distinct ys; distinct xs]] =⇒ distinct [f x y. x ← xs, y ← ys]

using assms proof(induct xs)
case Nil
then show ?case by simp

next
case (Cons x xs)
then have nin: x /∈ set xs

by simp

4

then have inj2-on f {x} (set ys)
using Cons unfolding inj2-on-def by simp

then have 1 : distinct (map (f x) ys)
using Cons inj2-on-distinct-map by fastforce

have 2 : distinct (concat (map (λx. map (f x) ys) xs))
using Cons unfolding inj2-on-def by simp

have 3 : [[xa ∈ set xs; xb ∈ set ys; f x xb = f xa xc; xc ∈ set ys]] =⇒ False for
xa xb xc

using Cons(4) unfolding inj2-on-def
using nin by force

from 1 2 3 show ?case
by auto

qed

lemma inj2-distinct-concat-map:
assumes inj2 f
shows [[distinct ys; distinct xs]] =⇒ distinct [f x y. x ← xs, y ← ys]
using assms inj2-on-all inj2-on-distinct-concat-map by blast

lemma inj2-distinct-concat-map-function:
assumes inj2 f
shows[[∀ x ∈ set xs. distinct (g x); distinct xs]] =⇒ distinct [f x y. x ← xs, y ←

g x]
proof(induct xs)

case Nil
then show ?case by simp

next
case (Cons x xs)
have 1 : distinct (map (f x) (g x))

using Cons assms inj2-distinct-map by fastforce

have 2 : distinct (concat (map (λx. map (f x) (g x)) xs))
using Cons by simp

have 3 :
∧

xa xb xc. [[xa ∈ set xs; xb ∈ set (g x); f x xb = f xa xc; xc ∈ set (g xa)]]
=⇒ False

using Cons assms unfolding inj2-on-def by auto

show ?case using 1 2 3
by auto

qed

lemma distinct-concat-Nil: distinct (concat (map (λy. []) xs))
by(induct xs) auto

lemma inj2-distinct-concat-map-function-filter :

5

assumes inj2 f
shows[[∀ x ∈ set xs. distinct (g x); distinct xs]] =⇒ distinct [f x y. x ← xs, y ←

g x, h x]
proof(induct xs)

case Nil
then show ?case by simp

next
case (Cons x xs)
have 1 : distinct (map (f x) (g x))

using Cons assms inj2-distinct-map by fastforce

have 2 : distinct (concat (map (λx. concat (map (λy. if h x then [f x y] else [])
(g x))) xs))

using Cons by simp

have 3 :
∧

xa xb xc.
[[h x; xa ∈ set (g x); xb ∈ set xs; f x xa = f xb xc; xc ∈ set (g xb); xc ∈ (if h

xb then UNIV else {})]] =⇒ False
by (metis Cons.prems(2) assms distinct.simps(2) inj2-on-def iso-tuple-UNIV-I)

then have 4 : distinct (concat (map (λy. []) (g x)))
using distinct-concat-Nil by auto

show ?case using 1 2 3 4 by auto
qed

1.3 Specializations of inj2
1.3.1 Cons
lemma Cons-inj2 : inj2 (#)

unfolding inj2-on-def by simp

lemma Cons-distinct-concat-map: [[distinct ys; distinct xs]] =⇒ distinct [x#y. x ←
xs, y ← ys]

using inj2-distinct-concat-map Cons-inj2 by auto

lemma Cons-distinct-concat-map-function:
[[∀ x ∈ set xs. distinct (g x) ; distinct xs]] =⇒ distinct [x # y. x ← xs, y ← g x]
using inj2-distinct-concat-map-function Cons-inj2 by auto

lemma Cons-distinct-concat-map-function-distinct-on-all:
[[∀ x. distinct (g x) ; distinct xs]] =⇒ distinct [x # y. x ← xs, y ← g x]
using Cons-distinct-concat-map-function by (metis (full-types))

1.3.2 Node right
lemma Node-right-inj2 : inj2 (λl r . Node l e r)

unfolding inj2-on-def by simp

6

lemma Node-right-distinct-concat-map:
[[distinct ys; distinct xs]] =⇒ distinct [Node x e y. x ← xs, y ← ys]
using inj2-distinct-concat-map Node-right-inj2 by fast

1.3.3 Node left
lemma Node-left-inj2 : inj2 (λr l. Node l e r)

unfolding inj2-on-def by simp

lemma Node-left-distinct-map: distinct xs = distinct (map (λl. 〈l, (), r〉) xs)
using inj2-distinct-map Node-left-inj2 by fast

1.3.4 Cons Suc
lemma Cons-Suc-inj2 : inj2 (λx ys. Suc x # ys)

unfolding inj2-on-def by simp

lemma Cons-Suc-distinct-concat-map-function:
[[∀ x ∈ set xs. distinct (g x) ; distinct xs]] =⇒ distinct [Suc x # y. x ← xs, y ←

g x]
using inj2-distinct-concat-map-function Cons-Suc-inj2 by auto

2 Lemmas for cardinality proofs
lemma length-concat-map: length [f x r . x ← xs, r ← ys] = length ys ∗ length xs

by(induct xs arbitrary: ys) auto

An useful extension to length-concat
thm length-concat
lemma length-concat-map-function-sum-list:

assumes
∧

x. x ∈ set xs =⇒ length (g x) = h x
shows length [f x r . x ← xs, r ← g x] = sum-list (map h xs)
using assms by(induct xs) auto

lemma sum-list-extract-last: (
∑

x←[0 ..<Suc n]. f x) = (
∑

x←[0 ..<n]. f x) + f n
by(induct n) (auto simp: add.assoc)

lemma leq-sum-to-sum-list: (
∑

x ≤ n. f x) = (
∑

x←[0 ..<Suc n]. f x)
by (metis atMost-upto sum-set-upt-conv-sum-list-nat)

lemma less-sum-to-sum-list: (
∑

x < n. f x) = (
∑

x←[0 ..< n]. f x)
by (simp add: atLeast-upt sum-list-distinct-conv-sum-set)

3 Miscellaneous

Similar to length-remove1:
lemma Suc-length-remove1 : x ∈ set xs =⇒ Suc (length (remove1 x xs)) = length
xs

7

by(induct xs) auto

3.1 count-list and replicate

HOL.List doesn’t have many lemmas about count-list (when not using mul-
tisets)
lemma count-list-replicate: count-list (replicate x y) y = x

by (induct x) auto

lemma count-list-full-elem: count-list xs y = length xs ←→ (∀ x ∈ set xs. x = y)
proof(induct xs)

case Nil
then show ?case by simp

next
case (Cons z xs)
have [[count-list xs y = Suc (length xs); x ∈ set xs]] =⇒ x = y for x

by (metis Suc-n-not-le-n count-le-length)
then show ?case

using Cons by auto
qed

The following lemma verifies the reverse of count-notin:
thm count-notin
lemma count-list-zero-not-elem: count-list xs x = 0 ←→ x /∈ set xs

by(induct xs) auto

lemma count-list-length-replicate: count-list xs y = length xs ←→ xs = replicate
(length xs) y

by (metis count-list-full-elem count-list-replicate replicate-length-same)

lemma count-list-True-False: count-list xs True + count-list xs False = length xs
by(induct xs) auto

end

4 N-Sequences
theory n-Sequences

imports
HOL.List
Common-Lemmas

begin

4.1 Definition
definition n-sequences :: ′a set ⇒ nat ⇒ ′a list set where

n-sequences A n = {xs. set xs ⊆ A ∧ length xs = n}

8

Cardinality: card A ^ n

Example: n-sequences {0 , 1} 2 = {[0 ,0], [0 ,1], [1 ,0], [1 ,1]}

4.2 Algorithm
fun n-sequence-enum :: ′a list ⇒ nat ⇒ ′a list list where

n-sequence-enum xs 0 = [[]]
| n-sequence-enum xs (Suc n) = [x#r . x ← xs, r ← n-sequence-enum xs n]

An enumeration of n-sequences already exists: n-lists. This part of this
AFP entry is mostly to establish the patterns used in the more complex
combinatorial objects.
lemma set (n-sequence-enum xs n) = set (List.n-lists n xs)

by(induct n) auto

thm set-n-lists

4.3 Verification
4.3.1 Correctness
theorem n-sequence-enum-correct:

set (n-sequence-enum xs n) = n-sequences (set xs) n
proof standard

show set (n-sequence-enum xs n) ⊆ n-sequences (set xs) n
unfolding n-sequences-def by (induct n) auto+

next
show n-sequences (set xs) n ⊆ set (n-sequence-enum xs n)
proof(induct n)

case 0
then show ?case

unfolding n-sequences-def by auto
next

case (Suc n)

have [[n-sequences (set xs) n ⊆ set (n-sequence-enum xs n); set x ⊆ set xs;
length x = Suc n]]

=⇒ ∃ xa∈set xs. x ∈ (#) xa ‘ set (n-sequence-enum xs n) for x
unfolding n-sequences-def by (cases x) auto

from this Suc show ?case
unfolding n-sequences-def by auto

qed
qed

4.3.2 Distinctness
theorem n-sequence-enum-distinct:

9

distinct xs =⇒ distinct (n-sequence-enum xs n)
by (induct n) (auto simp: Cons-distinct-concat-map)

4.3.3 Cardinality
lemma n-sequence-enum-length:

length (n-sequence-enum xs n) = (length xs) ^ n
by(induct n arbitrary: xs) (auto simp: length-concat-map)

of course card-lists-length-eq can directly proof it but we want to derive it
from n-sequence-enum-length
thm card-lists-length-eq

theorem n-sequences-card:
assumes finite A
shows card (n-sequences A n) = card A ^ n

proof −
obtain xs where set: set xs = A and dis: distinct xs

using assms finite-distinct-list by auto
have length (n-sequence-enum xs n) = (length xs) ^ n

using n-sequence-enum-distinct n-sequence-enum-length by auto
then have card (set (n-sequence-enum xs n)) = card (set xs) ^ n

by (simp add: dis distinct-card n-sequence-enum-distinct)
then have card (n-sequences (set xs) n) = card (set xs) ^ n

by (simp add: n-sequence-enum-correct)
then show card (n-sequences A n) = card A ^ n

using set by simp
qed

end

5 N-Permutations
theory n-Permutations

imports
HOL−Combinatorics.Multiset-Permutations
Common-Lemmas
Falling-Factorial-Sum.Falling-Factorial-Sum-Combinatorics

begin

5.1 Definition
definition n-permutations :: ′a set ⇒ nat ⇒ ′a list set where

n-permutations A n = {xs. set xs ⊆ A ∧ distinct xs ∧ length xs = n}

Permutations with a maximum length. They are different from HOL−Combinatorics.Multiset-Permutations
because the entries must all be distinct.

Cardinality: ′falling factorial ′ (card A) n

10

Example: n-permutations {0 ,1 ,2} 2 = {[0 ,1], [0 ,2], [1 ,0], [1 ,2], [2 ,0],
[2 ,1]}
lemma permutations-of-set A ⊆ n-permutations A (card A)
by (simp add: length-finite-permutations-of-set n-permutations-def permutations-of-setD

subsetI)

5.2 Algorithm
fun n-permutation-enum :: ′a list ⇒ nat ⇒ ′a list list where

n-permutation-enum xs 0 = [[]]
| n-permutation-enum xs (Suc n) = [x#r . x ← xs, r ← n-permutation-enum
(remove1 x xs) n]

5.3 Verification
5.3.1 Correctness
lemma n-permutation-enum-subset: ys ∈ set (n-permutation-enum xs n) =⇒ set
ys ⊆ set xs
proof(induct n arbitrary: ys xs)

case 0
then show ?case by simp

next
case (Suc n)
obtain x where o1 : x∈set xs and o2 : ys ∈ (#) x ‘ set (n-permutation-enum

(remove1 x xs) n)
using Suc by auto

have y ∈ set (n-permutation-enum (remove1 x xs) n) =⇒ set y ⊆ set xs for y
using Suc set-remove1-subset by fast

then show ?case using o1 o2
by fastforce

qed

lemma n-permutation-enum-length: ys ∈ set (n-permutation-enum xs n) =⇒ length
ys = n

by (induct n arbitrary: ys xs) auto

lemma n-permutation-enum-elem-distinct: distinct xs =⇒ ys ∈ set (n-permutation-enum
xs n) =⇒ distinct ys
proof (induct n arbitrary: ys xs)

case 0
then show ?case

by simp
next

case (Suc n)
then obtain z zs where o: ys = z # zs

by auto

11

from this Suc have t: zs ∈ set (n-permutation-enum (remove1 z xs) n)
by auto

then have distinct zs
using Suc distinct-remove1 by fast

also have z /∈ set zs
using o t n-permutation-enum-subset Suc by fastforce

ultimately show ?case
using o by simp

qed

lemma n-permutation-enum-correct1 : distinct xs =⇒ set (n-permutation-enum xs
n) ⊆ n-permutations (set xs) n

unfolding n-permutations-def
using n-permutation-enum-subset n-permutation-enum-elem-distinct n-permutation-enum-length
by fast

lemma n-permutation-enum-correct2 : ys ∈ n-permutations (set xs) n =⇒ ys ∈ set
(n-permutation-enum xs n)
proof(induct n arbitrary: xs ys)

case 0
then show ?case unfolding n-permutations-def by simp

next
case (Suc n)
show ?case proof(cases ys)

case Nil
then show ?thesis using Suc

by (simp add: n-permutations-def)
next

case (Cons z zs)

have z-in: z ∈ set xs
using Suc Cons unfolding n-permutations-def by simp

have 1 : set zs ⊆ set xs
using Suc Cons unfolding n-permutations-def by simp

have 2 : length zs = n
using Suc Cons unfolding n-permutations-def by simp

have 3 : distinct zs
using Suc Cons unfolding n-permutations-def by simp

show ?thesis proof(cases z ∈ set zs)
case True
then have zs ∈ set (n-permutation-enum (remove1 z xs) n)

using Suc Cons unfolding n-permutations-def by auto

12

then show ?thesis
using True Cons z-in by auto

next
case False
then have x ∈ set zs =⇒ x ∈ set (remove1 z xs) for x

using 1 by(cases x = z) auto

then have zs ∈ n-permutations (set (remove1 z xs)) n
unfolding n-permutations-def using 2 3 by auto

then have zs ∈ set (n-permutation-enum (remove1 z xs) n)
using Suc by simp

then have ∃ x∈set xs. z # zs ∈ (#) x ‘ set (n-permutation-enum (remove1 x
xs) n)

unfolding image-def using z-in by simp
then show ?thesis

using False Cons by simp
qed

qed
qed

theorem n-permutation-enum-correct: distinct xs =⇒ set (n-permutation-enum xs
n) = n-permutations (set xs) n
proof standard

show distinct xs =⇒ set (n-permutation-enum xs n) ⊆ n-permutations (set xs) n
by (simp add: n-permutation-enum-correct1)

next
show distinct xs =⇒ n-permutations (set xs) n ⊆ set (n-permutation-enum xs n)

by (simp add: n-permutation-enum-correct2 subsetI)
qed

5.3.2 Distinctness
theorem n-permutation-distinct: distinct xs =⇒ distinct (n-permutation-enum xs
n)
proof(induct n arbitrary: xs)

case 0
then show ?case by simp

next
case (Suc n)
let ?f = λx. (n-permutation-enum (remove1 x xs) n)
from Suc have distinct (?f x) for x

by simp

from this Suc show ?case
by (auto simp: Cons-distinct-concat-map-function-distinct-on-all [of ?f xs])

qed

5.3.3 Cardinality
thm card-lists-distinct-length-eq

13

theorem finite A =⇒ card (n-permutations A n) = ffact n (card A)
unfolding n-permutations-def using card-lists-distinct-length-eq
by (metis (no-types, lifting) Collect-cong)

5.4 n-multiset extension (with remdups)
definition n-multiset-permutations :: ′a multiset ⇒ nat ⇒ ′a list set where

n-multiset-permutations A n = {xs. mset xs ⊆# A ∧ length xs = n}

fun n-multiset-permutation-enum :: ′a list ⇒ nat ⇒ ′a list list where
n-multiset-permutation-enum xs n = remdups (n-permutation-enum xs n)

lemma distinct (n-multiset-permutation-enum xs n)
by auto

lemma n-multiset-permutation-enum-correct1 :
mset ys ⊆# mset xs =⇒ ys ∈ set (n-permutation-enum xs (length ys))

proof(induct ys arbitrary: xs)
case Nil
then show ?case

by simp
next

case (Cons y ys)
then have y ∈ set xs

by (simp add: insert-subset-eq-iff)
moreover have ys ∈ set (n-permutation-enum (remove1 y xs) (length ys))

using Cons by (simp add: insert-subset-eq-iff)
ultimately show ?case

using Cons by auto
qed

lemma n-multiset-permutation-enum-correct2 :
ys ∈ set (n-permutation-enum xs n) =⇒ mset ys ⊆# mset xs

proof(induct n arbitrary: xs ys)
case 0
then show ?case

by simp
next

case (Suc n)
then show ?case

using insert-subset-eq-iff mset-remove1 by fastforce
qed

lemma n-multiset-permutation-enum-correct:
set (n-multiset-permutation-enum xs n) = n-multiset-permutations (mset xs) n
unfolding n-multiset-permutations-def

proof(standard)
show set (n-multiset-permutation-enum xs n) ⊆ {xsa. mset xsa ⊆# mset xs ∧

length xsa = n}

14

by (simp add: n-multiset-permutation-enum-correct2 n-permutation-enum-length
subsetI)
next
show {xsa. mset xsa ⊆# mset xs ∧ length xsa = n} ⊆ set (n-multiset-permutation-enum

xs n)
using n-multiset-permutation-enum-correct1 by auto

qed

end
theory Filter-Bool-List

imports
HOL.List

begin

A simple algorithm to filter a list by a boolean list. A different approach
would be to filter by a set of indices, but this approach is faster, because
lookups are slow in ML.
fun filter-bool-list :: bool list ⇒ ′a list ⇒ ′a list where

filter-bool-list [] - = []
| filter-bool-list - [] = []
| filter-bool-list (b#bs) (x#xs) =

(if b then x#(filter-bool-list bs xs) else (filter-bool-list bs xs))

The following could be an alternative definition, but the version above pro-
vides a nice computational induction rule.
lemma filter-bool-list bs xs = map snd (filter fst (zip bs xs))

by(induct bs xs rule: filter-bool-list.induct) auto

lemma filter-bool-list-in:
n < length xs =⇒ n < length bs =⇒ bs!n =⇒ xs!n ∈ set (filter-bool-list bs xs)

proof (induct bs xs arbitrary: n rule: filter-bool-list.induct)
case (3 b bs x xs)
then show ?case by(cases n) auto

qed auto

lemma filter-bool-list-not-elem: x /∈ set xs =⇒ x /∈ set (filter-bool-list bs xs)
by(induct bs xs rule: filter-bool-list.induct) auto

lemma filter-bool-list-elem: x ∈ set (filter-bool-list bs xs) =⇒ x ∈ set xs
using filter-bool-list-not-elem by fast

lemma filter-bool-list-not-in:
distinct xs =⇒ n < length xs=⇒ n < length bs =⇒ bs!n = False
=⇒ xs!n /∈ set (filter-bool-list bs xs)

proof (induct bs xs arbitrary: n rule: filter-bool-list.induct)
case (3 b bs x xs)
then show ?case proof(induct n)

case 0

15

then show ?case using filter-bool-list-not-elem
by force

qed auto
qed auto

lemma filter-bool-list-elem-nth: ys ∈ set (filter-bool-list bs xs)
=⇒ ∃n. ys = xs ! n ∧ bs ! n ∧ n < length bs ∧ n < length xs

proof(induct bs xs arbitrary: ys rule: filter-bool-list.induct)
case (1 xs)
then show ?case by simp

next
case (2 b bs)
then show ?case by simp

next
case (3 b bs y ys)
then show ?case

by(cases b) (force)+
qed

May be a useful conversion, since the algorithm could also be implemented
with a list of indices.
lemma filter-bool-list-set-nth:

set (filter-bool-list bs xs) = {xs ! n |n. bs ! n ∧ n < length bs ∧ n < length xs}
by (auto simp: filter-bool-list-in filter-bool-list-elem-nth)

lemma filter-bool-list-exist-length: A ⊆ set xs
=⇒ ∃ bs. length bs = length xs ∧ A = set (filter-bool-list bs xs)

proof(induct xs arbitrary: A)
case Nil
then show ?case

by auto
next

case (Cons x xs)
from Cons have A − {x} ⊆ set xs

by auto
from this Cons have 1 : ∃ bs. length bs = length xs ∧ A − {x} = set (filter-bool-list

bs xs)
by simp

then have ∃ bs. length bs = length (x # xs) ∧ A = set (filter-bool-list bs (x #
xs))

by (metis Diff-empty Diff-insert0 insert-Diff-single insert-absorb list.simps(15)
list.size(4) filter-bool-list.simps(3))

then show ?case .
qed

lemma filter-bool-list-card:
[[distinct xs; length xs = length bs]] =⇒ card (set (filter-bool-list bs xs)) = count-list

16

bs True
by(induct bs xs rule: filter-bool-list.induct) (auto simp: filter-bool-list-not-elem)

lemma filter-bool-list-exist-length-card-True: [[distinct xs; A ⊆ set xs; n = card A]]
=⇒ ∃ bs. length bs = length xs ∧ count-list bs True = card A ∧ A = set

(filter-bool-list bs xs)
by (metis filter-bool-list-card filter-bool-list-exist-length)

lemma filter-bool-list-distinct: distinct xs =⇒ distinct (filter-bool-list bs xs)
by(induct bs xs rule: filter-bool-list.induct) (auto simp: filter-bool-list-not-elem)

lemma filter-bool-list-inj-aux:
assumes length bs1 = length xs
and length xs = length bs2
and distinct xs

shows filter-bool-list bs1 xs = filter-bool-list bs2 xs =⇒ bs1 = bs2
using assms proof(induct rule: list-induct3)

case Nil
then show ?case by simp

next
case (Cons b1 bs1 x xs b2 bs2)
then show ?case

by(cases b1 ; cases b2 , auto) (metis list.set-intros(1) filter-bool-list-not-elem)+
qed

lemma filter-bool-list-inj:
distinct xs =⇒ inj-on (λbs. filter-bool-list bs xs) {bs. length bs = length xs}
unfolding inj-on-def using filter-bool-list-inj-aux by fastforce

end

6 N-Subsets
theory n-Subsets

imports
Common-Lemmas
HOL−Combinatorics.Multiset-Permutations
Filter-Bool-List

begin

6.1 Definition
definition n-subsets :: ′a set ⇒ nat ⇒ ′a set set where

n-subsets A n = {B. B ⊆ A ∧ card B = n}

Cardinality: binomial (card A) n

Example: n-subsets {0 ,1 ,2} 2 = {{0 ,1}, {0 ,2}, {1 ,2}}

17

6.2 Algorithm
fun n-bool-lists :: nat ⇒ nat ⇒ bool list list where

n-bool-lists n 0 = (if n > 0 then [] else [[]])
| n-bool-lists n (Suc x) = (if n = 0 then [replicate (Suc x) False]

else if n = Suc x then [replicate (Suc x) True]
else if n > x then []
else [False#xs . xs ← n-bool-lists n x] @ [True#xs . xs ← n-bool-lists (n−1) x])

fun n-subset-enum :: ′a list ⇒ nat ⇒ ′a list list where
n-subset-enum xs n = [(filter-bool-list bs xs) . bs ← (n-bool-lists n (length xs))]

6.3 Verification
6.3.1 n-bool-lists
lemma n-bool-lists-True-count: xs ∈ set (n-bool-lists n x) =⇒ count-list xs True =
n
by (induct x arbitrary: xs n) (auto split: if-splits simp: count-list-replicate)

lemma n-bool-lists-length: xs ∈ set (n-bool-lists n x) =⇒ length xs = x
by (induct x arbitrary: xs n) (auto split: if-splits)

lemma n-bool-lists-distinct: distinct (n-bool-lists n x)
proof(induct x arbitrary: n)

case 0
then show ?case by simp

next
case (Suc x)
then show ?case

using distinct-map by fastforce
qed

lemma replicate-True-not-False: count-list ys True = 0 ←→ ys = replicate (length
ys) False

using count-list-zero-not-elem count-list-full-elem count-list-length-replicate by
fastforce

lemma n-bool-lists-correct-aux:
length xs = x =⇒ count-list xs True = n =⇒ xs ∈ set (n-bool-lists n x)

proof(induct x arbitrary: n xs)
case 0
then show ?case by auto

next
case (Suc x)
show ?case proof(cases n = 0)
case True
then show ?thesis

using Suc True replicate-True-not-False by auto
next

18

case c1 : False
then show ?thesis proof(cases n = Suc x)

case True
then have xs = True # replicate x True

using Suc.prems count-list-length-replicate replicate-Suc by metis
then show ?thesis

using True by simp
next

case c2 : False
then show ?thesis proof(cases n > x)

case True
then have xs = []

using Suc.prems c2 count-le-length by (metis Suc-lessI linorder-not-less)
then show ?thesis

using Suc by auto
next

case c3 : False
then show ?thesis proof (cases xs)

case Nil
then show ?thesis

using Suc.prems(1) by auto
next

case (Cons y ys)
then show ?thesis proof (cases y)

case True
then show ?thesis using Suc c1 c2 c3 Cons

by simp
next

case False
then show ?thesis using Suc c1 c2 c3 Cons

by simp
qed

qed
qed

qed
qed

qed

lemma n-bool-lists-correct: set (n-bool-lists n x) = {xs. length xs = x ∧ count-list
xs True = n}
proof(standard)

show set (n-bool-lists n x) ⊆ {xs. length xs = x ∧ count-list xs True = n}
proof(cases x)

case 0
then show ?thesis by simp

next
case (Suc x)
then show ?thesis using n-bool-lists-True-count n-bool-lists-length

by blast

19

qed
next

show {xs. length xs = x ∧ count-list xs True = n} ⊆ set (n-bool-lists n x)
using n-bool-lists-correct-aux by auto

qed

6.3.2 Correctness
lemma n-subset-enum-correct-aux1 :
[[distinct xs; length ys = length xs]]
=⇒ set (filter-bool-list ys xs) ∈ n-subsets (set xs) (count-list ys True)

unfolding n-subsets-def
by (auto simp: filter-bool-list-card filter-bool-list-elem)

lemma n-subset-enum-correct-aux2 :
distinct xs =⇒ n-subsets (set xs) n ⊆ set (map set (n-subset-enum xs n))
unfolding n-subsets-def
by (auto simp: n-bool-lists-correct image-def filter-bool-list-exist-length-card-True)

theorem n-subset-enum-correct:
distinct xs =⇒ set (map set (n-subset-enum xs n)) = n-subsets (set xs) n

proof(standard)
show distinct xs =⇒ set (map set (n-subset-enum xs n)) ⊆ n-subsets (set xs) n

using n-subset-enum-correct-aux1 n-bool-lists-correct by auto
next

show distinct xs =⇒ n-subsets (set xs) n ⊆ set (map set (n-subset-enum xs n))
using n-subset-enum-correct-aux2 by auto

qed

6.3.3 Distinctness
theorem n-subset-enum-distinct-elem:

distinct xs =⇒ ys ∈ set (n-subset-enum xs n) =⇒ distinct ys
by(cases length xs < n) (auto simp: filter-bool-list-distinct)

theorem n-subset-enum-distinct: distinct xs =⇒ distinct (n-subset-enum xs n)
by(auto simp: distinct-map n-bool-lists-distinct inj-on-def filter-bool-list-inj-aux

n-bool-lists-length)

6.3.4 Cardinality

Cardinality of n-subsets is already shown in Binomial.n-subsets.

6.4 Alternative using Multiset permutations

It would be possible to define n-bool-lists using permutations-of-multiset with
the following definition:
fun n-bool-lists2 :: nat ⇒ nat ⇒ bool list set where

20

n-bool-lists2 n x = (if n > x then {}
else permutations-of-multiset (mset (replicate n True @ replicate (x−n) False)))

6.5 mset-count

Correspondence between count-list and count (mset xs) and transfer of a
few results for multisets to lists.
lemma count-list-count-mset: count-list ys T = n =⇒ count (mset ys) T = n

by(induct ys arbitrary: n) auto

lemma count-mset-count-list: count (mset ys) T = n =⇒ count-list ys T = n
by(induct ys arbitrary: n) auto

lemma count-mset-replicate-aux1 :
[[¬ x < n; mset ys = mset (replicate n True) + mset (replicate (x − n) False)]]
=⇒ count (mset ys) True = n

by (auto simp: count-list-count-mset count-mset)

lemma count-mset-replicate-aux2 :
assumes ¬ length xs < count-list xs True
shows mset xs = mset (replicate (count-list xs True) True) + mset (replicate

(length xs − count-list xs True) False)
proof −

have count-list xs B =
count-list (replicate (count-list xs True) True) B + count-list (replicate

(length xs − count-list xs True) False) B
for B

proof(cases B)
case True
then show ?thesis

by (simp add: count-list-replicate)
next

case False

have count-list xs False = count-list (replicate (length xs − count-list xs True)
False) False

by (metis count-list-True-False count-list-replicate diff-add-inverse)

from this False show ?thesis
using assms by auto

qed

then have count (mset xs) B =
count (mset (replicate (count-list xs True) True) + mset (replicate (length

xs − count-list xs True) False)) B
for B
by (metis count-mset-count-list count-union)

then show mset xs = mset (replicate (count-list xs True) True) + mset (replicate

21

(length xs − count-list xs True) False)
using multiset-eqI by blast

qed

lemma n-bool-lists2-correct: set (n-bool-lists n x) = n-bool-lists2 n x
proof(standard)

have [[¬ length ys < count-list ys True; x = length ys; n = count-list ys True]]
=⇒ ys ∈ permutations-of-multiset

(mset (replicate (count-list ys True) True) + mset (replicate (length
ys − count-list ys True) False))

for ys
using count-mset-replicate-aux2 permutations-of-multisetI by blast

then show set (n-bool-lists n x) ⊆ n-bool-lists2 n x
unfolding n-bool-lists-correct
by (auto simp: count-le-length leD)

next
have [[¬ x < n; ys ∈ permutations-of-multiset (mset (replicate n True) + mset

(replicate (x − n) False))]]
=⇒ count (mset ys) True = n for ys

using count-mset-replicate-aux1 permutations-of-multisetD by blast
then have [[¬ x < n; ys ∈ permutations-of-multiset (mset (replicate n True) +

mset (replicate (x − n) False))]]
=⇒ count-list ys True = n for ys

by (simp add: count-list-count-mset)
then show n-bool-lists2 n x ⊆ set (n-bool-lists n x) unfolding n-bool-lists-correct

by (auto simp: length-finite-permutations-of-multiset)
qed

end

7 Powerset
theory Powerset

imports
Main
n-Sequences
Common-Lemmas
Filter-Bool-List

begin

7.1 Definition

Pow A

Cardinality: 2 ^ card A

Example: Pow {0 ,1} = {{}, {1}, {0}, {0 , 1}}

22

7.2 Algorithm
fun all-bool-lists :: nat ⇒ bool list list where

all-bool-lists 0 = [[]]
| all-bool-lists (Suc x) = concat [[False#xs, True#xs] . xs ← all-bool-lists x]

fun powerset-enum where
powerset-enum xs = [(filter-bool-list x xs) . x ← all-bool-lists (length xs)]

7.3 Verification

First we show the relevant theorems for all-bool-lists, then we’ll transfer the
results to the enumeration algorithm for powersets.
lemma distinct-concat-aux: distinct xs =⇒ distinct (concat (map (λxs. [False #
xs, True # xs]) xs))

by (induct xs) auto

lemma distinct-all-bool-lists : distinct (all-bool-lists x)
by (induct x) (auto simp add: distinct-concat-aux)

lemma all-bool-lists-correct: set (all-bool-lists x) = {xs. length xs = x}
proof(standard)

show set (all-bool-lists x) ⊆ {xs. length xs = x}
by (induct x) auto

next
show {xs. length xs = x} ⊆ set (all-bool-lists x)
proof(induct x)

case 0
then show ?case by simp

next
case (Suc x)
have length ys = Suc x =⇒ ∃ xs. ys = False # xs ∨ ys = True # xs for ys

by (metis (full-types) Suc-length-conv)
then show ?case using Suc

by fastforce
qed

qed

7.3.1 Correctness
theorem powerset-enum-correct: set (map set (powerset-enum xs)) = Pow (set xs)
proof(standard)

show set (map set (powerset-enum xs)) ⊆ Pow (set xs)
using filter-bool-list-not-elem by fastforce

next
have

∧
x. x ⊆ set xs =⇒ x ∈ (λx. set (filter-bool-list x xs)) ‘ {zs. length zs =

length xs}
unfolding image-def using filter-bool-list-exist-length image-def by auto

then show Pow (set xs) ⊆ set (map set (powerset-enum xs))

23

using all-bool-lists-correct by auto
qed

7.3.2 Distinctness
theorem powerset-enum-distinct-elem: distinct xs =⇒ ys ∈ set (powerset-enum
xs) =⇒ distinct ys

using filter-bool-list-distinct by auto

theorem powerset-enum-distinct: distinct xs =⇒ distinct (powerset-enum xs)
proof −

assume dis: distinct xs
then have distinct (map (λx. filter-bool-list x xs) (all-bool-lists (length xs)))

using distinct-map filter-bool-list-inj distinct-all-bool-lists
by (metis all-bool-lists-correct)

then show ?thesis
using dis by simp

qed

7.3.3 Cardinality

Cardinality for powersets is already shown in card-Pow.

7.4 Alternative algorithm with n-sequence-enum
fun all-bool-lists2 :: nat ⇒ bool list list where

all-bool-lists2 n = n-sequence-enum [True, False] n

lemma all-bool-lists2-distinct: distinct (all-bool-lists2 n)
by (auto simp add: n-sequence-enum-distinct)

lemma all-bool-lists2-correct: set (all-bool-lists n) = set (all-bool-lists2 n)
by (auto simp: all-bool-lists-correct n-sequence-enum-correct n-sequences-def)

end

8 Integer Paritions
theory Integer-Partitions

imports
HOL−Library.Multiset
Common-Lemmas
Card-Number-Partitions.Card-Number-Partitions

begin

8.1 Definition
definition integer-partitions :: nat ⇒ nat multiset set where

integer-partitions i = {A. sum-mset A = i ∧ 0 /∈# A}

24

Cardinality: Partition i (from Card-Number-Partitions.Card-Number-Partitions
[2])

Example: integer-partitions 4 = {{4}, {3 ,1}, {2 ,2} {2 ,1 ,1}, {1 ,1 ,1 ,1}}

8.2 Algorithm
fun integer-partitions-enum-aux :: nat ⇒ nat ⇒ nat list list where

integer-partitions-enum-aux 0 m = [[]]
| integer-partitions-enum-aux n m =
[h#r . h ← [1 ..< Suc (min n m)], r ← integer-partitions-enum-aux (n−h) h]

fun integer-partitions-enum :: nat ⇒ nat list list where
integer-partitions-enum n = integer-partitions-enum-aux n n

8.3 Verification
8.3.1 Correctness
lemma integer-partitions-empty: [] ∈ set (integer-partitions-enum-aux n m) =⇒ n
= 0

by(induct n) auto

lemma integer-partitions-enum-aux-first:
x # xs ∈ set (integer-partitions-enum-aux n m)
=⇒ xs ∈ set (integer-partitions-enum-aux (n−x) x)

by(induct n) auto

lemma integer-partitions-enum-aux-max-n:
x#xs ∈ set (integer-partitions-enum-aux n m) =⇒ x ≤ n
by (induct n) auto

lemma integer-partitions-enum-aux-max-head:
x#xs ∈ set (integer-partitions-enum-aux n m) =⇒ x ≤ m
by (induct n) auto

lemma integer-partitions-enum-aux-max:
xs ∈ set (integer-partitions-enum-aux n m) =⇒ x ∈ set xs =⇒ x ≤ m

proof(induct xs arbitrary: n m x)
case Nil
then show ?case using integer-partitions-enum-aux-max-head by simp

next
case (Cons y xs)
then show ?case

using integer-partitions-enum-aux-max-head integer-partitions-enum-aux-first
by fastforce

qed

lemma integer-partitions-enum-aux-sum:

25

xs ∈ set (integer-partitions-enum-aux n m) =⇒ sum-list xs = n
proof(induct xs arbitrary: n m)

case Nil
then show ?case using integer-partitions-empty by simp

next
case (Cons x xs)
then have [[xs ∈ set (integer-partitions-enum-aux (n−x) x)]] =⇒ sum-list xs =

(n−x)
by simp

moreover have xs ∈ set (integer-partitions-enum-aux (n−x) x)
using Cons integer-partitions-enum-aux-first by simp

moreover have x ≤ n
using Cons integer-partitions-enum-aux-max-n by simp

ultimately show ?case
by simp

qed

lemma integer-partitions-enum-aux-not-null-aux:
x#xs ∈ set (integer-partitions-enum-aux n m) =⇒ x 6= 0
by (induct n) auto

lemma integer-partitions-enum-aux-not-null:
xs ∈ set (integer-partitions-enum-aux n m) =⇒ x ∈ set xs =⇒ x 6= 0

proof(induct xs arbitrary: x n m)
case Nil
then show ?case by simp

next
case (Cons y xs)
show ?case proof(cases y = x)

case True
then show ?thesis

using Cons integer-partitions-enum-aux-not-null-aux by simp
next

case False
then show ?thesis
using Cons integer-partitions-enum-aux-not-null-aux integer-partitions-enum-aux-first

by fastforce
qed

qed

lemma integer-partitions-enum-aux-head-minus:
h ≤ m =⇒ h > 0 =⇒ n ≥ h =⇒

ys ∈ set (integer-partitions-enum-aux (n−h) h)=⇒ h#ys ∈ set (integer-partitions-enum-aux
n m)
proof(induct n)

case 0
then show ?case by simp

next
case (Suc n)

26

then have 1 : 1 ≤ m by simp

have 2 : (∃ x. (x = min (Suc n) m ∨ Suc 0 ≤ x ∧ x < Suc n ∧ x < m) ∧ h # ys
∈ (#) x ‘ set (integer-partitions-enum-aux (Suc n − x) x))

unfolding image-def using Suc by auto

from 1 2 have Suc 0 ≤ m ∧(∃ x. (x = min (Suc n) m ∨ Suc 0 ≤ x ∧ x < Suc
n ∧ x < m)

∧ h # ys ∈ (#) x ‘ set (integer-partitions-enum-aux (Suc n − x) x))
by simp

then show ?case by auto
qed

lemma integer-partitions-enum-aux-head-plus:
h ≤ m =⇒ h > 0 =⇒ ys ∈ set (integer-partitions-enum-aux n h)
=⇒ h#ys ∈ set (integer-partitions-enum-aux (h + n) m)

using integer-partitions-enum-aux-head-minus by simp

lemma integer-partitions-enum-correct-aux1 :
assumes 0 /∈# A
and ∀ x ∈# A. x ≤ m

shows ∃ xs∈set (integer-partitions-enum-aux (
∑

A) m). A = mset xs
using assms proof(induct A arbitrary: m rule: multiset-induct-max)

case empty
then show ?case by simp

next
case (add h A)
have hc1 : h ≤ m

using add by simp

have hc2 : h > 0
using add by simp

obtain ys where o1 : ys ∈ set (integer-partitions-enum-aux (
∑

A) h) and o2 :
A = mset ys

using add by force

have h#ys ∈ set (integer-partitions-enum-aux (h +
∑

A) m)
using integer-partitions-enum-aux-head-plus hc1 o1 hc2 by blast

then show ?case
using o2 by force

qed

theorem integer-partitions-enum-correct:
set (map mset (integer-partitions-enum n)) = integer-partitions n

proof(standard)
have [[xs ∈ set (integer-partitions-enum-aux n n)]] =⇒

∑
(mset xs) = n for xs

27

by (simp add: integer-partitions-enum-aux-sum sum-mset-sum-list)
moreover have xs ∈ set (integer-partitions-enum-aux n n) =⇒ 0 /∈# mset xs

for xs
using integer-partitions-enum-aux-not-null by auto

ultimately show set (map mset (integer-partitions-enum n)) ⊆ integer-partitions
n

unfolding integer-partitions-def by auto
next

have 0 /∈# A =⇒ A ∈ mset ‘ set (integer-partitions-enum-aux (
∑

A) (
∑

#

A)) for A
unfolding image-def
using integer-partitions-enum-correct-aux1 by (simp add: sum-mset.remove)

then show integer-partitions n ⊆ set (map mset (integer-partitions-enum n))
unfolding integer-partitions-def by auto

qed

8.3.2 Distinctness
lemma integer-partitions-enum-aux-distinct:

distinct (integer-partitions-enum-aux n m)
proof(induct n m rule:integer-partitions-enum-aux.induct)

case (1 m)
then show ?case by simp

next
case (2 n m)
have distinct [h#r . h ← [1 ..< Suc (min (Suc n) m)], r ← integer-partitions-enum-aux

((Suc n)−h) h]
apply(subst Cons-distinct-concat-map-function)
using 2 by auto

then show ?case by simp
qed

theorem integer-partitions-enum-distinct:
distinct (integer-partitions-enum n)
using integer-partitions-enum-aux-distinct by simp

8.3.3 Cardinality
lemma partitions-bij-betw-count:

bij-betw count {N . count N partitions n} {p. p partitions n}
by (rule bij-betw-byWitness[where f ′=Abs-multiset]) (auto simp: partitions-imp-finite-elements)

lemma card-partitions-count-partitions:
card {p. p partitions n} = card {N . count N partitions n}
using bij-betw-same-card partitions-bij-betw-count by metis

this sadly is not proven in Card-Number-Partitions.Card-Number-Partitions
lemma card-partitions-number-partition:

card {p. p partitions n} = card {N . number-partition n N}
using card-partitions-count-partitions count-partitions-iff by simp

28

lemma integer-partitions-number-partition-eq:
integer-partitions n = {N . number-partition n N}
using integer-partitions-def number-partition-def by auto

lemma integer-partitions-cardinality-aux:
card (integer-partitions n) = (

∑
k≤n. Partition n k)

using card-partitions-number-partition integer-partitions-number-partition-eq card-partitions
by simp

theorem integer-partitions-cardinality:
card (integer-partitions n) = Partition (2∗n) n
using integer-partitions-cardinality-aux Partition-sum-Partition-diff add-implies-diff

le-add1 mult-2
by simp

end

9 Integer Compositions
theory Integer-Compositions

imports
Common-Lemmas

begin

9.1 Definition
definition integer-compositions :: nat ⇒ nat list set where

integer-compositions i = {xs. sum-list xs = i ∧ 0 /∈ set xs}

Integer compositions are integer-partitions where the order matters.

Cardinality: sum from n = 1 to i (binomial (i−1) (n−1)) = 2^(i−1)

Example: integer-compositions 3 = {[3], [2 ,1], [1 ,2], [1 ,1 ,1]}

9.2 Algorithm
fun integer-composition-enum :: nat ⇒ nat list list where

integer-composition-enum 0 = [[]]
| integer-composition-enum (Suc n) =

[Suc m #xs. m ← [0 ..< Suc n], xs ← integer-composition-enum (n−m)]

9.3 Verification
9.3.1 Correctness
lemma integer-composition-enum-tail-elem:

x#xs ∈ set (integer-composition-enum n) =⇒ xs ∈ set (integer-composition-enum
(n − x))

29

by(induct n) auto

lemma integer-composition-enum-not-null-aux:
x#xs ∈ set (integer-composition-enum n) =⇒ x 6= 0
by(induct n) auto

lemma integer-composition-enum-not-null: xs ∈ set (integer-composition-enum n)
=⇒ 0 /∈ set xs
proof(induct xs arbitrary: n)

case Nil
then show ?case

by simp
next

case (Cons a xs)
then show ?case
using integer-composition-enum-not-null-aux integer-composition-enum-tail-elem
by fastforce

qed

lemma integer-composition-enum-empty: [] ∈ set (integer-composition-enum n)
=⇒ n = 0

by(induct n) auto

lemma integer-composition-enum-sum: xs ∈ set (integer-composition-enum n) =⇒
sum-list xs = n
proof(induct n arbitrary: xs rule: integer-composition-enum.induct)

case 1
then show ?case by simp

next
case (2 x)
show ?case proof(cases xs)

case Nil
then show ?thesis using 2 by auto

next
case (Cons y ys)
have p1 : sum-list ys = Suc x − y using 2 Cons

by auto

have Suc x ≥ y
using 2 Cons by auto

then have p2 : sum-list ys = Suc x − y =⇒ y + sum-list ys = Suc x
by simp

show ?thesis
using p1 p2 Cons by simp

qed
qed

lemma integer-composition-enum-head-set:

30

assumesx 6= 0 and x ≤ n
shows xs ∈ set (integer-composition-enum (n−x)) =⇒ x#xs ∈ set (integer-composition-enum

n)
using assms proof(induct n arbitrary: x xs)

case 0
then show ?case

by simp
next

case c1 : (Suc n)
from c1 .prems have 1 :
∀ y∈{0 ..<n}. x = Suc y −→ xs /∈ set (integer-composition-enum (n − y)) =⇒

x = Suc n
by(induct x) simp-all

then have 2 : ∀ y∈{0 ..<n}. x = Suc y −→ xs /∈ set (integer-composition-enum
(n − y)) =⇒ xs = []

using c1 .prems(1) by simp
show ?case using 1 2 by auto

qed

lemma integer-composition-enum-correct-aux:
0 /∈ set xs =⇒ xs ∈ set (integer-composition-enum (sum-list xs))
by(induct xs) (auto simp: integer-composition-enum-head-set)

theorem integer-composition-enum-correct:
set (integer-composition-enum n) = integer-compositions n

proof standard
show set (integer-composition-enum n) ⊆ integer-compositions n

unfolding integer-compositions-def
using integer-composition-enum-not-null integer-composition-enum-sum by

auto
next

show integer-compositions n ⊆ set (integer-composition-enum n)
unfolding integer-compositions-def
using integer-composition-enum-correct-aux by auto

qed

9.3.2 Distinctness
theorem integer-composition-enum-distinct:

distinct (integer-composition-enum n)
proof(induct n rule: integer-composition-enum.induct)

case 1
then show ?case by auto

next
case (2 n)

have h1 : x ∈ set [0 ..<Suc n] =⇒ distinct (integer-composition-enum (n − x))
for x

31

using 2 by simp

have h2 : distinct [0 ..<n]
by simp

have distinct [Suc m #xs. m ← [0 ..< n], xs ← integer-composition-enum (n−m)]
using h1 h2 Cons-Suc-distinct-concat-map-function by simp

then show ?case by auto
qed

9.3.3 Cardinality
lemma sum-list-two-pow-aux:
(
∑

x←[0 ..< n]. (2 ::nat) ^ (n − x)) + 2 ^ (0 − 1) + 2 ^ 0 = 2 ^ (Suc n)
proof(induct n)

case 0
then show ?case by simp

next
case c1 : (Suc n)

have x ≤ n =⇒ 2 ^ (Suc n − x) = 2 ∗ 2^ (n − x) for x
by (simp add: Suc-diff-le)

also have x ∈ set [0 ..<Suc n] =⇒ x ≤ n for x
by auto

ultimately have (
∑

x←[0 ..<Suc n]. 2 ^ (Suc n − x)) = (
∑

x←[0 ..<Suc n].
2∗ 2 ^ (n − x))

by (metis (mono-tags, lifting) map-eq-conv)

also have ... = (
∑

x←[0 ..< n]. 2∗ 2 ^ (n − x)) + 2∗ 2 ^ (0)
using sum-list-extract-last by simp

also have (
∑

x←[0 ..< n]. (2 ::nat)∗ (2 ::nat) ^ (n − x)) = 2∗(
∑

x←[0 ..< n]. 2
^ (n − x))

using sum-list-const-mult by fast

ultimately have (
∑

x←[0 ..<Suc n]. (2 ::nat) ^ (Suc n − x))
= 2∗(

∑
x←[0 ..< n]. 2 ^ (n − x)) + 2∗ 2 ^ (0)

by metis

then show ?case using c1
by simp

qed

lemma sum-list-two-pow:
Suc (

∑
x←[0 ..<n]. 2 ^ (n − Suc x)) = 2 ^ n

using sum-list-two-pow-aux sum-list-extract-last by(cases n) auto

lemma integer-composition-enum-length:
length (integer-composition-enum n) = 2^(n−1)

32

proof(induct n rule: integer-composition-enum.induct)
case 1
then show ?case by simp

next
case (2 n)
then have length [Suc m #xs. m ← [0 ..< n], xs ← integer-composition-enum

(n−m)]
= (

∑
x←[0 ..<n]. 2 ^ (n − x − 1))

using length-concat-map-function-sum-list [of
[0 ..< n]
λ x. integer-composition-enum (n − x)
λ x. 2 ^ (n − x − 1)
λ m xs. Suc m #xs]

by auto

then show ?case
using sum-list-two-pow
by simp

qed

theorem integer-compositions-card:
card (integer-compositions n) = 2^(n−1)
using integer-composition-enum-correct integer-composition-enum-length

integer-composition-enum-distinct distinct-card by metis

end

10 Weak Integer Compositions
theory Weak-Integer-Compositions

imports
HOL−Combinatorics.Multiset-Permutations
Common-Lemmas

begin

10.1 Definition
definition weak-integer-compositions :: nat ⇒ nat ⇒ nat list set where

weak-integer-compositions i l = {xs. length xs = l ∧ sum-list xs = i}

Weak integer compositions are similar to integer compositions, with the
trade-off that 0 is allowed but the composition must have a fixed length.

Cardinality: binomial (i + n − 1) i

Example: weak-integer-compositions 2 2 = {[2 ,0], [1 ,1], [0 ,2]}

10.2 Algorithm
fun weak-integer-composition-enum :: nat ⇒ nat ⇒ nat list list where

33

weak-integer-composition-enum i 0 = (if i = 0 then [[]] else [])
| weak-integer-composition-enum i (Suc 0) = [[i]]
| weak-integer-composition-enum i l =
[h#r . h ← [0 ..< Suc i], r ← weak-integer-composition-enum (i−h) (l−1)]

10.3 Verification
10.3.1 Correctness
lemma weak-integer-composition-enum-length:

xs ∈ set (weak-integer-composition-enum i l) =⇒ length xs = l
proof(induct l arbitrary: xs i)

case 0
then show ?case by simp

next
case (Suc l)
then show ?case by(cases l) auto

qed

lemma weak-integer-composition-enum-sum-list:
xs ∈ set (weak-integer-composition-enum i l) =⇒ sum-list xs = i

proof(induct l arbitrary: xs i)
case 0
then show ?case by simp

next
case (Suc l)
then show ?case by(cases l) auto

qed

lemma weak-integer-composition-enum-head:
assumes xs ∈ set (weak-integer-composition-enum (sum-list xs) (length xs))
shows x # xs ∈ set (weak-integer-composition-enum (x + sum-list xs) (Suc

(length xs)))
proof(cases length xs)

case 0
then show ?thesis by simp

next
case (Suc y)

have 1 : [[n ∈ set xs; 0 < n]] =⇒ 0 < sum-list xs for n
using sum-list-eq-0-iff by fast

have 2 : xs /∈ set (weak-integer-composition-enum 0 (Suc y)) =⇒ 0 < sum-list
xs

using Suc assms not-gr0 by fastforce

have x # xs /∈ (#) (x + sum-list xs) ‘ set (weak-integer-composition-enum 0
(Suc y))

34

=⇒ ∃ xa∈{0 ..<x + sum-list xs}. x # xs ∈ (#) xa ‘ set (weak-integer-composition-enum
(x + sum-list xs − xa) (Suc y))

unfolding image-def using Suc assms 1 2 by auto

from Suc this show ?thesis
by auto

qed

lemma weak-integer-composition-enum-correct-aux:
xs ∈ set (weak-integer-composition-enum (sum-list xs) (length xs))
by (induct xs) (auto simp: weak-integer-composition-enum-head)

theorem weak-integer-composition-enum-correct:
set (weak-integer-composition-enum i l) = weak-integer-compositions i l

proof standard
show set (weak-integer-composition-enum i l) ⊆ weak-integer-compositions i l

unfolding weak-integer-compositions-def
using weak-integer-composition-enum-length weak-integer-composition-enum-sum-list
by auto

next
show weak-integer-compositions i l ⊆ set (weak-integer-composition-enum i l)

unfolding weak-integer-compositions-def
using weak-integer-composition-enum-correct-aux by auto

qed

10.3.2 Distinctness
theorem weak-integer-composition-enum-distinct: distinct (weak-integer-composition-enum
i l)
proof(induct rule: weak-integer-composition-enum.induct)

case (1 i)
then show ?case

by simp
next

case (2 i)
then show ?case

by simp
next

case (3 i l)
have distinct [h#r . h ← [0 ..< Suc i], r ← weak-integer-composition-enum (i−h)

(Suc l)]
apply(subst Cons-distinct-concat-map-function)
using 3 by auto

then show ?case by simp
qed

35

10.3.3 Cardinality

The following is a generalization of the binomial coefficient to multisets.
Sometimes it is called multiset coefficient. Here we call it "multichoose" [4].
definition multichoose:: nat ⇒ nat ⇒ nat (infixl ‹multichoose› 65) where

n multichoose k = (n + k −1) choose k

lemma weak-integer-composition-enum-zero: length (weak-integer-composition-enum
0 (Suc n)) = 1

by(induct n) auto

lemma a-choose-equivalence: Suc (
∑

x←[0 ..<k]. n + (k − x) choose (k − x)) =
Suc (n + k) choose k
proof −

have m ≥ k =⇒ (
∑

x←[0 ..< Suc k]. m − x choose (k − x)) = Suc m choose k
for m

using sum-choose-diagonal leq-sum-to-sum-list by metis
then have 1 : Suc (

∑
x←[0 ..<k]. (n + k) − x choose (k − x)) = Suc (n + k)

choose k
by simp

have Suc (
∑

x←[0 ..<k]. (n + k) − x choose (k − x)) = Suc (
∑

x←[0 ..<k]. n
+ (k − x) choose (k − x))

by (metis (no-types, opaque-lifting) Nat.diff-add-assoc2 add.commute bino-
mial-n-0 diff-is-0-eq ′ nle-le)

then show ?thesis using 1 by simp
qed

lemma composition-enum-length: length (weak-integer-composition-enum i n) = n
multichoose i

unfolding multichoose-def
proof(induct i n rule: weak-integer-composition-enum.induct)

case (1 i)
then show ?case by simp

next
case (2 i)
then show ?case by simp

next
case (3 i n)

then have x ∈ set [0 ..< i] =⇒
length (weak-integer-composition-enum (i − x) (Suc n)) = n + (i − x) choose

(i − x) for x
by simp

then have ev: length [h#r . h ← [0 ..< i], r ← weak-integer-composition-enum
(i−h) (Suc n)] =

(
∑

x←[0 ..< i]. n + (i − x) choose (i − x))

36

using length-concat-map-function-sum-list [of
[0 ..< i]
λx. (weak-integer-composition-enum (i−x) (Suc n))
λx. n + (i−x) choose (i−x)
λh r . h#r
] by simp

have Suc (
∑

x←[0 ..<i]. n + (i − x) choose (i − x)) = Suc (n + i) choose i
using a-choose-equivalence by simp

then show ?case using weak-integer-composition-enum-zero ev by auto
qed

theorem weak-integer-compositions-cardinality: card (weak-integer-compositions n
k) = k multichoose n
using weak-integer-composition-enum-correct weak-integer-composition-enum-distinct

composition-enum-length
distinct-card by metis

end

11 Derangements
theory Derangements-Enum

imports
HOL−Combinatorics.Multiset-Permutations
Common-Lemmas

begin

11.1 Definition
fun no-overlap :: ′a list ⇒ ′a list ⇒ bool where

no-overlap - [] = True
| no-overlap [] - = True
| no-overlap (x#xs) (y#ys) = (x 6= y ∧ no-overlap xs ys)

lemma no-overlap-nth: length xs = length ys =⇒ i < length xs =⇒ no-overlap xs
ys =⇒ xs ! i 6= ys ! i

by(induct xs ys arbitrary: i rule: list-induct2) (auto simp: less-Suc-eq-0-disj)

lemma nth-no-overlap: length xs = length ys =⇒ ∀ i < length xs. xs ! i 6= ys ! i
=⇒ no-overlap xs ys
proof (induct xs ys rule: list-induct2)

case (Cons x xs y ys)
then show ?case using Suc-less-eq nth-Cons-Suc by fastforce

qed simp

definition derangements :: ′a list ⇒ ′a list set where

37

derangements xs = {ys. distinct ys ∧ length xs = length ys ∧ set xs = set ys ∧
no-overlap xs ys }

A derangement of a list is a permutation where every element changes its
position, assuming all elements are distinguishable.

An alternative definition exists in Derangements.Derangements [1].

Cardinality: count-derangements (length xs) (from Derangements.Derangements)

Example: derangements [0 ,1 ,2] = {[1 ,2 ,0], [2 ,0 ,1]}

11.2 Algorithm
fun derangement-enum-aux :: ′a list ⇒ ′a list ⇒ ′a list list where

derangement-enum-aux [] ys = [[]]
| derangement-enum-aux (x#xs) ys = [y#r . y ← ys, r ← derangement-enum-aux
xs (remove1 y ys), y 6= x]

fun derangement-enum :: ′a list ⇒ ′a list list where
derangement-enum xs = derangement-enum-aux xs xs

11.3 Verification
11.3.1 Correctness
lemma derangement-enum-aux-elem-length: zs ∈ set (derangement-enum-aux xs
ys) =⇒ length xs = length zs

by(induct xs arbitrary: ys zs) auto

lemma derangement-enum-aux-not-in: y /∈ set ys =⇒ zs ∈ set (derangement-enum-aux
xs ys) =⇒ y /∈ set zs
proof(induct xs arbitrary: ys zs)

case Nil
then show ?case by simp

next
case (Cons x xs)
then obtain z zs2 where ob: zs = z#zs2

by auto
have zs2 ∈ set (derangement-enum-aux xs (remove1 z ys)) =⇒ y /∈ set zs2

using Cons notin-set-remove1 by fast
then show ?case using Cons ob

by auto
qed

lemma derangement-enum-aux-in: y ∈ set zs =⇒ zs ∈ set (derangement-enum-aux
xs ys) =⇒ y ∈ set ys

using derangement-enum-aux-not-in by fast

lemma derangement-enum-aux-distinct-elem: distinct ys =⇒ zs ∈ set (derangement-enum-aux
xs ys) =⇒ distinct zs

38

proof(induct xs arbitrary: ys zs)
case Nil
then show ?case by simp

next
case (Cons x xs)
obtain z zs2 where ob: zs = z#zs2

using Cons by auto
then have ev: zs2 ∈ set (derangement-enum-aux xs (remove1 z ys))

using Cons ob by auto

have distinct zs2
using ev Cons distinct-remove1 by fast

moreover have z /∈ set zs2
using ev Cons(2) derangement-enum-aux-in by fastforce

ultimately show ?case using ob by simp
qed

lemma derangement-enum-aux-no-overlap: zs ∈ set (derangement-enum-aux xs ys)
=⇒ no-overlap xs zs

by(induct xs arbitrary: zs ys) auto

lemma derangement-enum-aux-set:
length xs = length ys =⇒ zs ∈ set (derangement-enum-aux xs ys) =⇒ set zs =

set ys
proof(induct xs ys arbitrary: zs rule: derangement-enum-aux.induct)

case (1 ys)
then show ?case by simp

next
case (2 x xs ys)
obtain z zs2 where ob: zs = z#zs2

using 2 by auto
have ev1 : zs2 ∈ set (derangement-enum-aux xs (remove1 z ys))

using 2 ob by simp
have ev2 :z ∈ set ys

using 2 ob by simp

have length xs = length (remove1 z ys)
using ev2 Suc-length-remove1 2 .prems(1) by force

then have set zs2 = set (remove1 z ys)
using 2 .hyps[of z zs2] ev1 ev2 by simp

then show ?case
using ob notin-set-remove1 ev2 in-set-remove1 by fastforce

qed

lemma derangement-enum-correct-aux1 :
[[distinct zs;length ys = length zs; length ys = length xs; set ys = set zs; no-overlap

xs zs]]
=⇒ zs ∈ set (derangement-enum-aux xs ys)

39

proof(induct xs arbitrary: zs ys)
case Nil
then show ?case by simp

next
case (Cons x xs)
obtain z zs2 where ob: zs = z#zs2

using Cons length-0-conv neq-Nil-conv by metis

have e1 : z 6= x
using Cons.prems(5) ob by auto

have distinct zs2
using Cons.prems(1) ob by auto

moreover have length (remove1 z ys) = length zs2 using Cons.prems ob
by (simp add: length-remove1)

moreover have length (remove1 z ys) = length xs
by (simp add: Cons.prems(3) Cons.prems(4) length-remove1 ob)

moreover have set (remove1 z ys) = set zs2
using Cons ob by (metis distinct-card distinct-remdups length-remdups-eq re-

move1 .simps(2) set-remdups set-remove1-eq)
moreover have no-overlap xs zs2

using Cons.prems(5) ob by fastforce

ultimately have zs2 ∈ set (derangement-enum-aux xs (remove1 z ys))
using Cons.hyps[of zs2 (remove1 z ys)] by simp

then show ?case
using ob e1 Cons by simp

qed

theorem derangement-enum-correct: distinct xs =⇒ derangements xs = set (derangement-enum
xs)
proof(standard)

show distinct xs =⇒ derangements xs ⊆ set (derangement-enum xs)
unfolding derangements-def using derangement-enum-correct-aux1 by auto

next
show distinct xs =⇒ set (derangement-enum xs) ⊆ derangements xs

unfolding derangements-def
using derangement-enum-aux-set derangement-enum-aux-distinct-elem derange-

ment-enum-aux-elem-length derangement-enum-aux-no-overlap
by auto

qed

11.3.2 Distinctness
lemma derangement-enum-aux-distinct: distinct ys =⇒ distinct (derangement-enum-aux
xs ys)
proof(induct xs arbitrary: ys)

case Nil
then show ?case by simp

40

next
case (Cons x xs)
show ?case

using inj2-distinct-concat-map-function-filter [of
Cons
ys
λy. derangement-enum-aux xs (remove1 y ys)
λy. y 6= x

]
using Cons Cons-inj2
by (simp)

qed

theorem derangement-enum-distinct: distinct xs =⇒ distinct (derangement-enum
xs)

using derangement-enum-aux-distinct by auto

end

12 Trees
theory Trees
imports

HOL−Library.Tree
Common-Lemmas

begin

12.1 Definition

The set of trees can be defined with the pre-existing tree datatype:
definition trees :: nat ⇒ unit tree set where

trees n = {t. size t = n}

Cardinality: Catalan number of n

Example: trees 0 = {Leaf }

12.2 Algorithm
fun tree-enum :: nat ⇒ unit tree list where
tree-enum 0 = [Leaf] |
tree-enum (Suc n) = [〈t1 , (), t2 〉. i ← [0 ..<Suc n], t1 ← tree-enum i, t2 ←
tree-enum (n−i)]

41

12.3 Verification
12.3.1 Cardinality
lemma length-tree-enum:

length (tree-enum(Suc n)) = (
∑

i≤n. length(tree-enum i) ∗ length(tree-enum (n
− i)))
by (simp add: length-concat comp-def sum-list-triv atLeast-upt interv-sum-list-conv-sum-set-nat

flip: lessThan-Suc-atMost)

12.3.2 Correctness
lemma tree-enum-correct1 : t ∈ set (tree-enum n) =⇒ size t = n

by (induct n arbitrary: t rule: tree-enum.induct) (simp, fastforce)

lemma tree-enum-correct2 : n = size t =⇒ t ∈ set (tree-enum n)
proof (induct n arbitrary: t rule: tree-enum.induct)

case 1
then show ?case by simp

next
case (2 n)
show ?case proof(cases t)

case Leaf
then show ?thesis

by (simp add: 2 .prems)
next

case (Node l e r)

have i1 : (size l) < Suc n using 2 .prems Node by auto
have i2 : (size r) < Suc n using 2 .prems Node by auto

have t1 : l ∈ set (tree-enum (size l))
apply(rule 2 .hyps(1) [of (size l)])
using i1 by auto

have t2 : r ∈ set (tree-enum (size r))
apply(rule 2 .hyps(1) [of (size r)])
using i2 by auto

have 〈l, (), r〉 /∈ (λt1 . 〈t1 , (), 〈〉〉) ‘ set (tree-enum (size l + size r)) =⇒
∃ x∈{0 ..<size l + size r}. ∃ xa∈set (tree-enum x). 〈l, (), r〉 ∈ Node xa () ‘

set (tree-enum (size l + size r − x))
using t1 t2 by fastforce

then have 〈l, e, r〉 ∈ set (tree-enum (size 〈l, e, r〉))
by auto

then show ?thesis
using Node using 2 .prems by simp

qed
qed

42

theorem tree-enum-correct: set(tree-enum n) = trees n
proof(standard)

show set (tree-enum n) ⊆ trees n
unfolding trees-def using tree-enum-correct1 by auto

next
show trees n ⊆ set (tree-enum n)

unfolding trees-def using tree-enum-correct2 by auto
qed

12.3.3 Distinctness
lemma tree-enum-Leaf : 〈〉 ∈ set (tree-enum n) ←→ (n = 0)

by(cases n) auto

lemma tree-enum-elem-injective: n 6= m =⇒ x ∈ set (tree-enum n) =⇒ y ∈ set
(tree-enum m) =⇒ x 6= y

using tree-enum-correct1 by auto

lemma tree-enum-elem-injective2 : x ∈ set (tree-enum n) =⇒ y ∈ set (tree-enum
m) =⇒ x = y =⇒ n = m

using tree-enum-elem-injective by auto

lemma concat-map-Node-not-equal:
xs 6= [] =⇒ xs2 6= [] =⇒ ys 6= [] =⇒ ys2 6= [] =⇒
∀ x∈ set xs. ∀ y ∈ set ys . x 6= y =⇒
[〈l, (), r〉. l ← xs2 , r ← xs] 6= [〈l, (), r〉. l ← ys2 , r ← ys]

proof(induct xs)
case Nil
then show ?case by simp

next
case (Cons x xs)
then show ?case proof(induct ys)

case Nil
then show ?case by simp

next
case (Cons y ys)
obtain x2 x2s where o1 : xs2 = x2 # x2s

by (meson Cons.prems(3) neq-Nil-conv)
obtain y2 y2s where o2 : ys2 = y2 # y2s

by (meson Cons.prems(5) neq-Nil-conv)

have [〈l, (), r〉. l ← x2#x2s, r ← x # xs] 6= [〈l, (), r〉. l ← y2#y2s, r ← y #
ys]

using Cons.prems(6) by auto
then show ?case

using o1 o2 by simp
qed

qed

43

lemma tree-enum-not-empty: tree-enum n 6= []
by(induct n) auto

lemma tree-enum-distinct-aux-outer :
assumes ∀ i ≤ n. distinct (tree-enum i)
and distinct xs
and ∀ i ∈ set xs. i < n
and sorted-wrt (<) xs
shows distinct (map (λi. [〈l, (), r〉. l ← tree-enum i, r ← tree-enum (n−i)]) xs)

using assms proof(induct xs arbitrary: n)
case Nil
then show ?case by simp

next
case (Cons x xs)
have b1 : x < n using Cons by auto

have ∀ i ∈ set xs . x < i
using Cons.prems(4) strict-sorted-simps(2) by simp

then have ∀ i ∈ set xs . (n − i) < (n − x)
using b1 diff-less-mono2 by simp

then have ∀ i ∈ set xs. ∀ t1∈ set (tree-enum (n − x)). ∀ t2 ∈ set (tree-enum
(n − i)) . t1 6= t2

using tree-enum-correct1 by (metis less-irrefl-nat)
then have 1 : ∀ i ∈ set xs. [〈l, (), r〉. l ← tree-enum x, r ← tree-enum (n−x)] 6=

[〈l, (), r〉. l ← tree-enum i, r ← tree-enum (n−i)]
using concat-map-Node-not-equal tree-enum-not-empty by simp

have 2 : distinct (map (λi. [〈l, (), r〉. l ← tree-enum i, r ← tree-enum (n−i)])
xs)

using Cons by auto

from 1 2 show ?case by auto
qed

lemma tree-enum-distinct-aux-left:
∀ i < n. distinct (tree-enum i) =⇒ distinct ([〈l, (), r〉. i ← [0 ..< n], l ←

tree-enum i])
proof(induct n)

case 0
then show ?case by simp

next
case (Suc n)
have 1 :distinct (tree-enum n)

using Suc.prems by auto
have 2 : distinct ([〈l, (), r〉. i ← [0 ..< n], l ← tree-enum i])

using Suc by simp
have 3 : distinct (map (λl. 〈l, (), r〉) (tree-enum n))

44

using Node-left-distinct-map 1 by simp

have 4 : [[
∧

t n. t ∈ set (tree-enum n) =⇒ size t = n; m < n; y ∈ set (tree-enum
n); y ∈ set (tree-enum m)]] =⇒ False for m y

by blast

from 1 2 3 4 tree-enum-correct1 show ?case
by fastforce

qed

theorem tree-enum-distinct: distinct(tree-enum n)
proof(induct n rule: tree-enum.induct)

case 1
then show ?case by simp

next
case (2 n)
then have Ir : i < Suc n =⇒ distinct (tree-enum i) for i

by (metis atLeastLessThan-iff set-upt zero-le)

have c1 : distinct (concat (map (λi. [〈l, (), r〉. l ← tree-enum i, r ← tree-enum
(n−i)]) [0 ..<n]))

proof(rule distinct-concat)
show distinct (map (λi. [〈l, (), r〉. l ← tree-enum i, r ← tree-enum (n−i)])

[0 ..<n])
apply(rule tree-enum-distinct-aux-outer)
using Ir by auto

next
have

∧
x. x < n =⇒ distinct ([〈l, (), r〉. l ← tree-enum x, r ← tree-enum

(n−x)])
using Ir by (simp add: Node-right-distinct-concat-map)

then show
∧

ys. ys ∈ set (map (λi. [〈l, (), r〉. l ← tree-enum i, r ← tree-enum
(n−i)]) [0 ..<n]) =⇒ distinct ys

by auto
next

have [[[〈l, (), r〉. l ← tree-enum x, r ← tree-enum (n−x)] 6=
[〈l, (), r〉. l ← tree-enum z, r ← tree-enum (n−z)];
y ∈ set (tree-enum x); y ∈ set (tree-enum z)]]
=⇒ False for x z y

using tree-enum-elem-injective2 by auto
then show

∧
ys zs.

[[ys ∈ set (map (λi. [〈l, (), r〉. l ← tree-enum i, r ← tree-enum (n−i)])
[0 ..<n]);

zs ∈ set (map (λi. [〈l, (), r〉. l ← tree-enum i, r ← tree-enum (n−i)])
[0 ..<n]); ys 6= zs]]

=⇒ set ys ∩ set zs = {}
by fastforce

qed

have distinct (tree-enum n)

45

using 2 by simp
then have c2 : distinct (map (λt1 . 〈t1 , (), 〈〉〉) (tree-enum n))

using Node-left-distinct-map by fastforce

have c3 :
∧

xa xb. [[xa < n; xb ∈ set (tree-enum xa); xb ∈ set (tree-enum n); 〈〉 ∈
set (tree-enum (n − xa))]] =⇒ False

by (simp add: tree-enum-Leaf)

from c1 c2 c3 show ?case
by fastforce

qed
end
theory Combinatorial-Enumeration-Algorithms

imports
n-Sequences
n-Permutations
n-Subsets
Powerset
Integer-Partitions
Integer-Compositions
Weak-Integer-Compositions
Derangements-Enum
Trees

begin

end

References

[1] L. Bulwahn. Derangements formula. Archive of Formal Proofs, June
2015. https://isa-afp.org/entries/Derangements.html, Formal proof de-
velopment.

[2] L. Bulwahn. Cardinality of number partitions. Archive of Formal Proofs,
January 2016. https://isa-afp.org/entries/Card_Number_Partitions.
html, Formal proof development.

[3] L. Bulwahn. The twelvefold way. Archive of Formal Proofs, December
2016. https://isa-afp.org/entries/Twelvefold_Way.html, Formal proof
development.

[4] R. Stanley. Enumerative Combinatorics: Volume 1. Cambridge Studies
in Advanced Mathematics. Cambridge University Press, 2011.

[5] D. Stanton and D. White. Constructive Combinatorics. Springer, 1986.

46

https://isa-afp.org/entries/Derangements.html
https://isa-afp.org/entries/Card_Number_Partitions.html
https://isa-afp.org/entries/Card_Number_Partitions.html
https://isa-afp.org/entries/Twelvefold_Way.html

	Injectivity for two argument functions
	Correspondence between 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 inj2-on and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 inj-on
	Proofs with inj2
	Specializations of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 inj2
	Cons
	Node right
	Node left
	Cons Suc

	Lemmas for cardinality proofs
	Miscellaneous
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 count-list and replicate

	N-Sequences
	Definition
	Algorithm
	Verification
	Correctness
	Distinctness
	Cardinality

	N-Permutations
	Definition
	Algorithm
	Verification
	Correctness
	Distinctness
	Cardinality

	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 n-multiset extension (with remdups)

	N-Subsets
	Definition
	Algorithm
	Verification
	n-bool-lists
	Correctness
	Distinctness
	Cardinality

	Alternative using Multiset permutations
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 mset-count

	Powerset
	Definition
	Algorithm
	Verification
	Correctness
	Distinctness
	Cardinality

	Alternative algorithm with 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 n-sequence-enum

	Integer Paritions
	Definition
	Algorithm
	Verification
	Correctness
	Distinctness
	Cardinality

	Integer Compositions
	Definition
	Algorithm
	Verification
	Correctness
	Distinctness
	Cardinality

	Weak Integer Compositions
	Definition
	Algorithm
	Verification
	Correctness
	Distinctness
	Cardinality

	Derangements
	Definition
	Algorithm
	Verification
	Correctness
	Distinctness

	Trees
	Definition
	Algorithm
	Verification
	Cardinality
	Correctness
	Distinctness

