
Isabelle Collections Framework Userguide

By Peter Lammich

March 19, 2025

1

Contents
1 Isabelle Collections Framework Userguide 3

1.1 Introduction . 3
1.1.1 Getting Started . 3
1.1.2 Introductory Example 4
1.1.3 Theories . 6
1.1.4 Iterators . 7

1.2 Structure of the Framework 8
1.2.1 Instantiation of Generic Algorithms 10
1.2.2 Naming Conventions 10

1.3 Extending the Framework . 11
1.4 Design Issues . 11

1.4.1 Data Refinement . 12
1.4.2 Operation Records . 12
1.4.3 Locales for Generic Algorithms 13
1.4.4 Explicit Invariants vs Typedef 13

2 Old Monadic Refinement Framework Userguide 14
2.1 Introduction . 14
2.2 Guided Tour . 14

2.2.1 Defining Programs . 14
2.2.2 Proving Programs Correct 15
2.2.3 Refinement . 17
2.2.4 Code Generation . 20
2.2.5 Foreach-Loops . 22

2.3 Pointwise Reasoning . 23
2.4 Arbitrary Recursion (TBD) 24
2.5 Reference . 24

2.5.1 Statements . 24
2.5.2 Refinement . 26
2.5.3 Proof Tools . 26
2.5.4 Packages . 28

2

1 Isabelle Collections Framework Userguide
1.1 Introduction

This is the Userguide for the (old) Isabelle Collection Framework. It does
not cover the Generic Collection Framework, nor the Automatic Refinement
Framework.
The Isabelle Collections Framework defines interfaces of various collection
types and provides some standard implementations and generic algorithms.
The relation between the data structures of the collection framework and
standard Isabelle types (e.g. for sets and maps) is established by abstraction
functions.
Amongst others, the following interfaces and data-structures are provided
by the Isabelle Collections Framework (For a complete list, see the overview
section in the implementations chapter of the proof document):

• Set and map implementations based on (associative) lists, red-black
trees, hashing and tries.

• An implementation of a FIFO-queue based on two stacks.

• Annotated lists implemented by finger trees.

• Priority queues implemented by binomial heaps, skew binomial heaps,
and annotated lists (via finger trees).

The red-black trees are imported from the standard isabelle library. The
binomial and skew binomial heaps are imported from the Binomial-Heaps
entry of the archive of formal proofs. The finger trees are imported from
the Finger-Trees entry of the archive of formal proofs.

1.1.1 Getting Started

To get started with the Isabelle Collections Framework (assuming that you
are already familiar with Isabelle/HOL and Isar), you should first read the
introduction (this section), that provides many basic examples. More ex-
amples are in the examples/ subdirectory of the collection framework. Sec-
tion 1.2 explains the concepts of the Isabelle Collections Framework in more
detail. Section 1.3 provides information on extending the framework along
with detailed examples, and Section 1.4 contains a discussion on the design
of this framework. There is also a paper [2] on the design of the Isabelle
Collections Framework available.

3

1.1.2 Introductory Example

We introduce the Isabelle Collections Framework by a simple example.
Given a set of elements represented by a red-black tree, and a list, we want
to filter out all elements that are not contained in the set. This can be done
by Isabelle/HOL’s filter-function1:
definition rbt-restrict-list :: ′a::linorder rs ⇒ ′a list ⇒ ′a list
where rbt-restrict-list s l == [x←l. rs.memb x s]

The type ′a rs is the type of sets backed by red-black trees. Note that the
element type of sets backed by red-black trees must be of sort linorder. The
function rs.memb tests membership on such sets.

Next, we show correctness of our function:
lemma rbt-restrict-list-correct:

assumes [simp]: rs.invar s
shows rbt-restrict-list s l = [x←l. x∈rs.α s]
by (simp add: rbt-restrict-list-def rs.memb-correct)

The lemma rs.memb-correct:

rs.invar s =⇒ rs.memb x s = (x ∈ rs.α s)

states correctness of the rs.memb-function. The function rs.α maps a red-
black-tree to the set that it represents. Moreover, we have to explicitely
keep track of the invariants of the used data structure, in this case red-black
trees. The premise rs.invar ?s represents the invariant assumption for the
collection data structure. Red-black-trees are invariant-free, so this defaults
to True. For uniformity reasons, these (unnecessary) invariant assumptions
are present in all correctness lemmata.
Many of the correctness lemmas for standard RBT-set-operations are sum-
marized by the lemma rs.correct:

rs.α (rs.empty ()) = {}
rs.invar (rs.empty ())
rs.α (rs.sng x) = {x}
rs.invar (rs.sng x)
rs.invar s =⇒ rs.memb x s = (x ∈ rs.α s)
rs.invar s =⇒ rs.α (rs.ins x s) = insert x (rs.α s)
rs.invar s =⇒ rs.invar (rs.ins x s)
[[rs.invar s; x /∈ rs.α s]] =⇒ rs.α (rs.ins-dj x s) = insert x (rs.α s)
[[rs.invar s; x /∈ rs.α s]] =⇒ rs.invar (rs.ins-dj x s)
rs.invar s =⇒ rs.α (rs.delete x s) = rs.α s − {x}
rs.invar s =⇒ rs.invar (rs.delete x s)
rs.invar s =⇒ rs.isEmpty s = (rs.α s = {})

1Note that Isabelle/HOL uses the list comprehension syntax [x←l. P x] as syntactic
sugar for filtering a list.

4

rs.invar s =⇒ rs.isSng s = (∃ e. rs.α s = {e})
rs.invar S =⇒ rs.ball S P = (∀ x∈rs.α S . P x)
rs.invar S =⇒ rs.bex S P = (∃ x∈rs.α S . P x)
rs.invar s =⇒ rs.size s = card (rs.α s)
rs.invar s =⇒ rs.size-abort m s = min m (card (rs.α s))
[[rs.invar s1 ; rs.invar s2]] =⇒ rs.α (rs.union s1 s2) = rs.α s1 ∪ rs.α s2
[[rs.invar s1 ; rs.invar s2]] =⇒ rs.invar (rs.union s1 s2)
[[rs.invar s1 ; rs.invar s2 ; rs.α s1 ∩ rs.α s2 = {}]]
=⇒ rs.α (rs.union-dj s1 s2) = rs.α s1 ∪ rs.α s2
[[rs.invar s1 ; rs.invar s2 ; rs.α s1 ∩ rs.α s2 = {}]]
=⇒ rs.invar (rs.union-dj s1 s2)
[[rs.invar s1 ; rs.invar s2]] =⇒ rs.α (rs.diff s1 s2) = rs.α s1 − rs.α s2
[[rs.invar s1 ; rs.invar s2]] =⇒ rs.invar (rs.diff s1 s2)
rs.invar s =⇒ rs.α (rs.filter P s) = {e ∈ rs.α s. P e}
rs.invar s =⇒ rs.invar (rs.filter P s)
[[rs.invar s1 ; rs.invar s2]] =⇒ rs.α (rs.inter s1 s2) = rs.α s1 ∩ rs.α s2
[[rs.invar s1 ; rs.invar s2]] =⇒ rs.invar (rs.inter s1 s2)
[[rs.invar s1 ; rs.invar s2]] =⇒ rs.subset s1 s2 = (rs.α s1 ⊆ rs.α s2)
[[rs.invar s1 ; rs.invar s2]] =⇒ rs.equal s1 s2 = (rs.α s1 = rs.α s2)
[[rs.invar s1 ; rs.invar s2]] =⇒ rs.disjoint s1 s2 = (rs.α s1 ∩ rs.α s2 = {})
[[rs.invar s1 ; rs.invar s2 ; rs.disjoint-witness s1 s2 = None]]
=⇒ rs.α s1 ∩ rs.α s2 = {}
[[rs.invar s1 ; rs.invar s2 ; rs.disjoint-witness s1 s2 = Some a]]
=⇒ a ∈ rs.α s1 ∩ rs.α s2
rs.invar s =⇒ set (rs.to-list s) = rs.α s
rs.invar s =⇒ distinct (rs.to-list s)
rs.α (rs.from-list l) = set l
rs.invar (rs.from-list l)

All implementations provided by this library are compatible with the Is-
abelle/HOL code-generator. Now follow some examples of using the code-
generator. Note that the code generator can only generate code for plain
constants without arguments, while the operations like rs.memb have argu-
ments, that are only hidden by an abbreviation.

There are conversion functions from lists to sets and, vice-versa, from sets
to lists:
definition conv-tests ≡ (

rs.from-list [1 ::int .. 10],
rs.to-list (rs.from-list [1 ::int .. 10]),
rs.to-sorted-list (rs.from-list [1 ::int,5 ,6 ,7 ,3 ,4 ,9 ,8 ,2 ,7 ,6]),
rs.to-rev-list (rs.from-list [1 ::int,5 ,6 ,7 ,3 ,4 ,9 ,8 ,2 ,7 ,6])

)

ML-val ‹@{code conv-tests}›

Note that sets make no guarantee about ordering, hence the only thing we
can prove about conversion from sets to lists is: rs.to-list-correct:

5

rs.invar s =⇒ set (rs.to-list s) = rs.α s
rs.invar s =⇒ distinct (rs.to-list s)

Some sets, like red-black-trees, also support conversion to sorted lists, and
we have: rs.to-sorted-list-correct:

rs.invar s =⇒ set (rs.to-sorted-list s) = rs.α s
rs.invar s =⇒ distinct (rs.to-sorted-list s)
rs.invar s =⇒ sorted (rs.to-sorted-list s)

and rs.to-rev-list-correct:

rs.invar s =⇒ set (rs.to-rev-list s) = rs.α s
rs.invar s =⇒ distinct (rs.to-rev-list s)
rs.invar s =⇒ sorted (rev (rs.to-rev-list s))

definition restrict-list-test ≡ rbt-restrict-list (rs.from-list [1 ::nat,2 ,3 ,4 ,5]) [1 ::nat,9 ,2 ,3 ,4 ,5 ,6 ,5 ,4 ,3 ,6 ,7 ,8 ,9]

ML-val ‹@{code restrict-list-test}›

definition big-test n = (rs.from-list [(1 ::int)..n])

ML-val ‹@{code big-test} (@{code int-of-integer} 9000)›

1.1.3 Theories

To make available the whole collections framework to your formalization,
import the theory Collections.Collections which includes everything. Here
is a small selection:

Collections.SetSpec Specification of sets and set functions

Collections.SetGA Generic algorithms for sets

Collections.SetStdImpl Standard set implementations (list, rb-tree, hashing,
tries)

Collections.MapSpec Specification of maps

Collections.MapGA Generic algorithms for maps

Collections.MapStdImpl Standard map implementations (list,rb-tree, hash-
ing, tries)

Collections.ListSpec Specification of lists

Collections.Fifo Amortized fifo queue

Collections.DatRef Data refinement for the while combinator

6

1.1.4 Iterators

An important concept when using collections are iterators. An iterator is
a kind of generalized fold-functional. Like the fold-functional, it applies a
function to all elements of a set and modifies a state. There are no guarantees
about the iteration order. But, unlike the fold functional, you can prove
useful properties of iterations even if the function is not left-commutative.
Proofs about iterations are done in invariant style, establishing an invariant
over the iteration.
The iterator combinator for red-black tree sets is rs.iterate, and the proof-
rule that is usually used is: rs.iteratei-rule-P:

[[rs.invar S ; I (rs.α S) σ0 ;∧
x it σ. [[c σ; x ∈ it; it ⊆ rs.α S ; I it σ]] =⇒ I (it − {x}) (f x σ);∧
σ. I {} σ =⇒ P σ;

∧
σ it. [[it ⊆ rs.α S ; it 6= {}; ¬ c σ; I it σ]] =⇒ P σ]]

=⇒ P (rs.iteratei S c f σ0)

The invariant I is parameterized with the set of remaining elements that
have not yet been iterated over and the current state. The invariant has to
hold for all elements remaining and the initial state: I (rs.α S) σ0. Moreover,
the invariant has to be preserved by an iteration step:∧

x it σ. [[x ∈ it; it ⊆ rs.α S ; I it σ]] =⇒ I (it − {x}) (f x σ)

And the proposition to be shown for the final state must be a consequence
of the invarant for no elements remaining:

∧
σ. I {} σ =⇒ P σ.

A generalization of iterators are interruptible iterators where iteration is
only continues while some condition on the state holds. Reasoning over
interruptible iterators is also done by invariants: rs.iteratei-rule-P:

[[rs.invar S ; I (rs.α S) σ0 ;∧
x it σ. [[c σ; x ∈ it; it ⊆ rs.α S ; I it σ]] =⇒ I (it − {x}) (f x σ);∧
σ. I {} σ =⇒ P σ;

∧
σ it. [[it ⊆ rs.α S ; it 6= {}; ¬ c σ; I it σ]] =⇒ P σ]]

=⇒ P (rs.iteratei S c f σ0)

Here, interruption of the iteration is handled by the premise∧
σ it. [[it ⊆ rs.α S ; it 6= {}; ¬ c σ; I it σ]] =⇒ P σ

that shows the proposition from the invariant for any intermediate state of
the iteration where the continuation condition does not hold (and thus the
iteration is interrupted).

As an example of reasoning about results of iterators, we implement a func-
tion that converts a hashset to a list that contains precisely the elements of
the set.
definition hs-to-list ′ s == hs.iteratei s (λ-. True) (#) []

7

The correctness proof works by establishing the invariant that the list con-
tains all elements that have already been iterated over. Again hs.invar s
denotes the invariant for hashsets which defaults to True.
lemma hs-to-list ′-correct:

assumes INV : hs.invar s
shows set (hs-to-list ′ s) = hs.α s
apply (unfold hs-to-list ′-def)
apply (rule-tac

I=λit σ. set σ = hs.α s − it
in hs.iterate-rule-P[OF INV])

The resulting proof obligations are easily discharged using auto:

apply auto
done

As an example for an interruptible iterator, we define a bounded existential-
quantification over the list elements. As soon as the first element is found
that fulfills the predicate, the iteration is interrupted. The state of the itera-
tion is simply a boolean, indicating the (current) result of the quantification:
definition hs-bex s P == hs.iteratei s (λσ. ¬ σ) (λx σ. P x) False

lemma hs-bex-correct:
hs.invar s =⇒ hs-bex s P ←→ (∃ x∈hs.α s. P x)
apply (unfold hs-bex-def)

The invariant states that the current result matches the result of the quantification
over the elements already iterated over:

apply (rule-tac
I=λit σ. σ ←→ (∃ x∈hs.α s − it. P x)
in hs.iteratei-rule-P)

The resulting proof obligations are easily discharged by auto:

apply auto
done

1.2 Structure of the Framework

The concepts of the framework are roughly based on the object-oriented
concepts of interfaces, implementations and generic algorithms.
The concepts used in the framework are the following:

Interfaces An interface describes some concept by providing an abstrac-
tion mapping α to a related Isabelle/HOL-concept. The definition is
generic in the datatype used to implement the concept (i.e. the con-
crete data structure). An interface is specified by means of a locale
that fixes the abstraction mapping and an invariant. For example, the

8

set-interface contains an abstraction mapping to sets, and is specified
by the locale SetSpec.set. An interface roughly matches the concept
of a (collection) interface in Java, e.g. java.util.Set.

Functions A function specifies some functionality involving interfaces. A
function is specified by means of a locale. For example, membership
query for a set is specified by the locale SetSpec.set-memb and equal-
ity test between two sets is a function specified by SetSpec.set-equal.
A function roughly matches a method declared in an interface, e.g.
java.util.Set#contains, java.util.Set#equals.

Operation Records In order to reference an interface with a standard set
of operations, those operations are summarized in a record, and there
is a locale that fixes this record, and makes available all operations.
For example, the locale SetSpec.StdSet fixes a record of standard set
operations and assumes their correctness. It also defines abbreviations
to easily access the members of the record. Internally, all the standard
operations, like hs.memb, are introduced by interpretation of such an
operation locale.

Generic Algorithms A generic algorithm specifies, in a generic way, how
to implement a function using other functions. Usually, a generic al-
gorithm lives in a locale that imports the necessary operation locales.
For example, the locale cart-loc defines a generic algorithm for the
cartesian product between two sets.
There is no direct match of generic algorithms in the Java Collections
Framework. The most related concept are abstract collection inter-
faces, that provide some default algorithms, e.g. java.util.AbstractSet.
The concept of Algorithm in the C++ Standard Template Library [4]
matches the concept of Generic Algorithm quite well.

Implementation An implementation of an interface provides a data struc-
ture for that interface together with an abstraction mapping and an in-
variant. Moreover, it provides implementations for some (or all) func-
tions of that interface. For example, red-black trees are an implementa-
tion of the set-interface, with the abstraction mapping rs.α and invari-
ant rs.invar ; and the constant rs.ins implements the insert-function,
as can be verified by set-ins rs.α rs.invar rs.ins. An implementation
matches a concrete collection interface in Java, e.g. java.util.TreeSet,
and the methods implemented by such an interface, e.g. java.util.TreeSet#add.

Instantiation An instantiation of a generic algorithm provides actual im-
plementations for the used functions. For example, the generic cartesian-
product algorithm can be instantiated to use red-black-trees for both
arguments, and output a list, as will be illustrated below in Sec-
tion 1.2.1. While some of the functions of an implementation need

9

to be implemented specifically, many functions may be obtained by
instantiating generic algorithms. In Java, instantiation of a generic
algorithm is matched most closely by inheriting from an abstract col-
lection interface. In the C++ Standard Template Library instantiation
of generic algorithms is done implicitely by the compiler.

1.2.1 Instantiation of Generic Algorithms

A generic algorithm is instantiated by interpreting its locale with the wanted
implementations. For example, to obtain a cartesian product between two
red-black trees, yielding a list, we can do the following:

setup Locale-Code.open-block
interpretation rrl: cart-loc rs-ops rs-ops ls-ops by unfold-locales
setup Locale-Code.close-block
setup ‹ICF-Tools.revert-abbrevs rrl›

It is then available under the expected name:
term rrl.cart

Note the three lines of boilerplate code, that work around some technical
problems of Isabelle/HOL: The Locale-Code.open-block and Locale-Code.close-block
commands set up code generation for any locale that is interpreted in be-
tween them. They also have to be specified if an existing locale that already
has interpretations is extended by new definitions.
The ICF-Tools.revert-abbrevs rrl reverts all abbreviations introduced by the
locale, such that the displayed information becomes nicer.

1.2.2 Naming Conventions

The Isabelle Collections Framework follows these general naming conven-
tions. Each implementation has a two-letter (or three-letter) and a one-
letter (or two-letter) abbreviation, that are used as prefixes for the related
constants, lemmas and instantiations.
The two-letter and three-letter abbreviations should be unique over all inter-
faces and instantiations, the one-letter abbreviations should be unique over
all implementations of the same interface. Names that reference the im-
plementation of only one interface are prefixed with that implementation’s
two-letter abbreviation (e.g. hs.ins for insertion into a HashSet (hs,h)),
names that reference more than one implementation are prefixed with the
one-letter (or two-letter) abbreviations (e.g. rrl.cart for the cartesian prod-
uct between two RBT-Sets, yielding a list-set)
The most important abbreviations are:

lm,l List Map

10

lmi,li List Map with explicit invariant

rm,r RB-Tree Map

hm,h Hash Map

ahm,a Array-based hash map

tm,t Trie Map

ls,l List Set

lsi,li List Set with explicit invariant

rs,r RB-Tree Set

hs,h Hash Set

ahs,a Array-based hash map

ts,t Trie Set

Each function name of an interface interface is declared in a locale inter-
face-name. This locale provides a fact name-correct. For example, there is
the locale set-ins providing the fact set-ins.ins-correct. An implementation
instantiates the locales of all implemented functions, using its two-letter ab-
breviation as instantiation prefix. For example, the HashSet-implementation
instantiates the locale set-ins with the prefix hs, yielding the lemma hs.ins-correct.
Moreover, an implementation with two-letter abbreviation aa provides a
lemma aa.correct that summarizes the correctness facts for the basic oper-
ations. It should only contain those facts that are safe to be used with the
simplifier. E.g., the correctness facts for basic operations on hash sets are
available via the lemma hs.correct.

1.3 Extending the Framework

The best way to add new features, i.e., interfaces, functions, generic algo-
rithms, or implementations to the collection framework is to use one of the
existing items as example.

1.4 Design Issues

In this section, we motivate some of the design decisions of the Isabelle
Collections Framework and report our experience with alternatives. Many
of the design decisions are justified by restrictions of Isabelle/HOL and the
code generator, so that there may be better options if those restrictions
should vanish from future releases of Isabelle/HOL.

The main design goals of this development are:

11

1. Make available various implementations of collections under a unified
interface.

2. It should be easy to extend the framework by new interfaces, functions,
algorithms, and implementations.

3. Allow simple and concise reasoning over functions using collections.

4. Allow generic algorithms, that are independent of the actual data
structure that is used.

5. Support generation of executable code.

6. Let the user precisely control what data structures are used in the
implementation.

1.4.1 Data Refinement

In order to allow simple reasoning over collections, we use a data refinement
approach. Each collection interface has an abstraction function that maps
it on a related Isabelle/HOL concept (abstract level). The specification of
functions are also relative to the abstraction. This allows most of the cor-
rectness reasoning to be done on the abstract level. On this level, the tool
support is more elaborated and one is not yet fixed to a concrete implemen-
tation. In a next step, the abstract specification is refined to use an actual
implementation (concrete level). The correctness properties proven on the
abstract level usually transfer easily to the concrete level.
Moreover, the user has precise control how the refinement is done, i.e. what
data structures are used. An alternative would be to do refinement com-
pletely automatic, as e.g. done in the code generator setup of the The-
ory Executable-Set. This has the advantage that it induces less writing over-
head. The disadvantage is that the user looses a great amount of control
over the refinement. For example, in Executable-Set, all sets have to be rep-
resented by lists, and there is no possibility to represent one set differently
from another.
For a more detailed discussion of the data refinement issue, we refer to the
monadic refinement framework, that is available in the AFP (http://isa-afp.
org/entries/Refine_Monadic.shtml)

1.4.2 Operation Records

In order to allow convenient access to the most frequently used functions
of an interface, we have grouped them together in a record, and defined
a locale that only fixes this record. This greatly reduces the boilerplate

12

http://isa-afp.org/entries/Refine_Monadic.shtml
http://isa-afp.org/entries/Refine_Monadic.shtml

required to define a new (generic) algorithm, as only the operation locale
(instead of every single function) has to be included in the locale for the
generic algorithm.
Note however, that parameters of locales are monomorphic inside the locale.
Thus, we have to import an own instance for the locale for every element
type of a set, or key/value type of a map. For iterators, where this problem
was most annoying, we have installed a workaround that allows polymorphic
iterators even inside locales.

1.4.3 Locales for Generic Algorithms

A generic algorithm is defined within a locale, that includes the required
functions (or operation locales). If many instances of the same interface are
required, prefixes are used to distinguish between them. This makes the
code for a generic algorithm quite consise and readable.
However, there are some technical issues that one has to consider:

• When fixing parameters in the declaration of the locale, their types
will be inferred independently of the definitions later done in the locale
context. In order to get the correct types, one has to add explicit type
constraints.

• The code generator has problems with generating code from defini-
tions inside a locale. Currently, the Locale-Code-package provides a
rather convenient workaround for that issue: It requires the user to
enclose interpretations and definitions of new constants inside already
interpreted locales within two special commands, that set up the code
generator appropriately.

1.4.4 Explicit Invariants vs Typedef

The interfaces of this framework use explicit invariants. This provides a
more general specification which allows some operations to be implemented
more efficiently, cf. lsi.ins-dj in Collections.ListSetImpl-Invar.
Most implementations, however, hide the invariant in a typedef and setup
the code generator appropriately. In that case, the invariant is just λ-. True,
and removed automatically by the simplifier and classical reasoner. However,
it still shows up in some premises and conclusions due to uniformity reasons.

13

2 Old Monadic Refinement Framework Userguide
2.1 Introduction

This is the old userguide from Refine-Monadic. It contains the manual
approach of using the mondaic refinement framework with the Isabelle Col-
lection Framework. An alternative, more simple approach is provided by the
Automatic Refinement Framework and the Generic Collection Framework.
The Isabelle/HOL refinement framework is a library that supports program
and data refinement.
Programs are specified using a nondeterminism monad: An element of the
monad type is either a set of results, or the special element FAIL, that
indicates a failed assertion.
The bind-operation of the monad applies a function to all elements of the
result-set, and joins all possible results.
On the monad type, an ordering ≤ is defined, that is lifted subset ordering,
where FAIL is the greatest element. Intuitively, S ≤ S ′ means that program
S refines program S ′, i.e., all results of S are also results of S ′, and S may
only fail if S ′ also fails.

2.2 Guided Tour

In this section, we provide a small example program development in our
framework. All steps of the development are heavily commented.

2.2.1 Defining Programs

A program is defined using the Haskell-like do-notation, that is provided
by the Isabelle/HOL library. We start with a simple example, that iterates
over a set of numbers, and computes the maximum value and the sum of all
elements.
definition sum-max :: nat set ⇒ (nat×nat) nres where

sum-max V ≡ do {
(-,s,m) ← WHILE (λ(V ,s,m). V 6={}) (λ(V ,s,m). do {

x←SPEC (λx. x∈V);
let V=V−{x};
let s=s+x;
let m=max m x;
RETURN (V ,s,m)
}) (V ,0 ,0);
RETURN (s,m)
}

The type of the nondeterminism monad is ′a nres, where ′a is the type of
the results. Note that this program has only one possible result, however,

14

the order in which we iterate over the elements of the set is unspecified.
This program uses the following statements provided by our framework:
While-loops, bindings, return, and specification. We briefly explain the
statements here. A complete reference can be found in Section 2.5.1.
A while-loop has the form WHILE b f σ0, where b is the continuation con-
dition, f is the loop body, and σ0 is the initial state. In our case, the state
used for the loop is a triple (V , s, m), where V is the set of remaining
elements, s is the sum of the elements seen so far, and m is the maximum
of the elements seen so far. The WHILE b f σ0 construct describes a par-
tially correct loop, i.e., it describes only those results that can be reached
by finitely many iterations, and ignores infinite paths of the loop. In order
to prove total correctness, the construct WHILET b f σ0 is used. It fails if
there exists an infinite execution of the loop.
A binding do {x←(S1::

′a nres); S2} nondeterministically chooses a result of
S1, binds it to variable x, and then continues with S2. If S1 is FAIL, the
bind statement also fails.
The syntactic form do { let x=V ; (S :: ′a ⇒ ′b nres)} assigns the value V to
variable x, and continues with S.
The return statement RETURN x specifies precisely the result x.
The specification statement SPEC Φ describes all results that satisfy the
predicate Φ. This is the source of nondeterminism in programs, as there
may be more than one such result. In our case, we describe any element of
set V.
Note that these statement are shallowly embedded into Isabelle/HOL, i.e.,
they are ordinary Isabelle/HOL constants. The main advantage is, that
any other construct and datatype from Isabelle/HOL may be used inside
programs. In our case, we use Isabelle/HOL’s predefined operations on sets
and natural numbers. Another advantage is that extending the framework
with new commands becomes fairly easy.

2.2.2 Proving Programs Correct

The next step in the program development is to prove the program correct
w.r.t. a specification. In refinement notion, we have to prove that the pro-
gram S refines a specification Φ if the precondition Ψ holds, i.e., Ψ =⇒ S
≤ SPEC Φ.
For our purposes, we prove that sum-max really computes the sum and the
maximum.

As usual, we have to think of a loop invariant first. In our case, this is
rather straightforward. The main complication is introduced by the partially
defined Max-operator of the Isabelle/HOL standard library.
definition sum-max-invar V 0 ≡ λ(V ,s::nat,m).

15

V⊆V 0

∧ s=
∑

(V 0−V)
∧ m=(if (V 0−V)={} then 0 else Max (V 0−V))
∧ finite (V 0−V)

We have extracted the most complex verification condition — that the in-
variant is preserved by the loop body — to an own lemma. For complex
proofs, it is always a good idea to do that, as it makes the proof more
readable.
lemma sum-max-invar-step:

assumes x∈V sum-max-invar V 0 (V ,s,m)
shows sum-max-invar V 0 (V−{x},s+x,max m x)

In our case the proof is rather straightforward, it only requires the lemma it-step-insert-iff,
that handles the V 0 − (V − {x}) terms that occur in the invariant.

using assms unfolding sum-max-invar-def by (auto simp: it-step-insert-iff)

The correctness is now proved by first invoking the verification condition
generator, and then discharging the verification conditions by auto. Note
that we have to apply the sum-max-invar-step lemma, before we unfold the
definition of the invariant to discharge the remaining verification conditions.
theorem sum-max-correct:

assumes PRE : V 6={}
shows sum-max V ≤ SPEC (λ(s,m). s=

∑
V ∧ m=Max V)

The precondition V 6={} is necessary, as the Max-operator from Isabelle/HOL’s
standard library is not defined for empty sets.

using PRE unfolding sum-max-def
apply (intro WHILE-rule[where I=sum-max-invar V] refine-vcg) — Invoke vcg

Note that we have explicitely instantiated the rule for the while-loop with the
invariant. If this is not done, the verification condition generator will stop at the
WHILE-loop.

apply (auto intro: sum-max-invar-step) — Discharge step
unfolding sum-max-invar-def — Unfold invariant definition
apply (auto) — Discharge remaining goals
done

In this proof, we specified the invariant explicitely. Alternatively, we may
annotate the invariant at the while loop, using the syntax WHILEI b f σ0.
Then, the verification condition generator will use the annotated invariant
automatically.

Total Correctness Now, we reformulate our program to use a total cor-
rect while loop, and annotate the invariant at the loop. The invariant is
strengthened by stating that the set of elements is finite.

16

definition sum-max ′-invar V 0 σ ≡
sum-max-invar V 0 σ
∧ (let (V ,-,-)=σ in finite (V 0−V))

definition sum-max ′ :: nat set ⇒ (nat×nat) nres where
sum-max ′ V ≡ do {
(-,s,m) ← WHILET

sum-max ′-invar V (λ(V ,s,m). V 6={}) (λ(V ,s,m). do {
x←SPEC (λx. x∈V);
let V=V−{x};
let s=s+x;
let m=max m x;
RETURN (V ,s,m)
}) (V ,0 ,0);
RETURN (s,m)
}

theorem sum-max ′-correct:
assumes NE : V 6={} and FIN : finite V
shows sum-max ′ V ≤ SPEC (λ(s,m). s=

∑
V ∧ m=Max V)

using NE FIN unfolding sum-max ′-def
apply (intro refine-vcg) — Invoke vcg

This time, the verification condition generator uses the annotated invariant. More-
over, it leaves us with a variant. We have to specify a well-founded relation, and
show that the loop body respects this relation. In our case, the set V decreases in
each step, and is initially finite. We use the relation finite-psubset and the inv-image
combinator from the Isabelle/HOL standard library.

apply (subgoal-tac wf (inv-image finite-psubset fst),
assumption) — Instantiate variant

apply simp — Show variant well-founded

unfolding sum-max ′-invar-def — Unfold definition of invariant
apply (auto intro: sum-max-invar-step) — Discharge step

unfolding sum-max-invar-def — Unfold definition of invariant completely
apply (auto intro: finite-subset) — Discharge remaining goals
done

2.2.3 Refinement

The next step in the program development is to refine the initial program
towards an executable program. This usually involves both, program refine-
ment and data refinement. Program refinement means changing the struc-
ture of the program. Usually, some specification statements are replaced by
more concrete implementations. Data refinement means changing the used
data types towards implementable data types.
In our example, we implement the set V with a distinct list, and replace

17

the specification statement SPEC (λx. x ∈ V) by the head operation on
distinct lists. For the lists, we use the list-set data structure provided by
the Isabelle Collection Framework [1, 3].
For this example, we write the refined program ourselves. An automation of
this task can be achieved with the automatic refinement tool, which is avail-
able as a prototype in Refine-Autoref. Usage examples are in ex/Automatic-
Refinement.
definition sum-max-impl :: nat ls ⇒ (nat×nat) nres where

sum-max-impl V ≡ do {
(-,s,m) ← WHILE (λ(V ,s,m). ¬ls.isEmpty V) (λ(V ,s,m). do {

x←RETURN (the (ls.sel V (λx. True)));
let V=ls.delete x V ;
let s=s+x;
let m=max m x;
RETURN (V ,s,m)
}) (V ,0 ,0);
RETURN (s,m)
}

Note that we replaced the operations on sets by the respective operations
on lists (with the naming scheme ls.xxx). The specification statement was
replaced by the (ls.sel V (λx. True)), i.e., selection of an element that satis-
fies the predicate λx. True. As ls.sel returns an option datatype, we extract
the value with the. Moreover, we omitted the loop invariant, as we don’t
need it any more.

Next, we have to show that our concrete pogram actually refines the abstract
one.
theorem sum-max-impl-refine:

assumes (V ,V ′)∈build-rel ls.α ls.invar
shows sum-max-impl V ≤ ⇓Id (sum-max V ′)

Let R be a refinement relation2, that relates concrete and abstract values.
Then, the function ⇓ R maps a result-set over abstract values to the greatest result-
set over concrete values that is compatible w.r.t. R. The value FAIL is mapped to
itself.
Thus, the proposition S ≤ ⇓ R S ′ means, that S refines S ′ w.r.t. R, i.e., every value
in the result of S can be abstracted to a value in the result of S ′.
Usually, the refinement relation consists of an invariant I and an abstraction func-
tion α. In this case, we may use the br I α-function to define the refinement
relation.
In our example, we assume that the input is in the refinement relation specified by
list-sets, and show that the output is in the identity relation. We use the identity
here, as we do not change the datatypes of the output.

2Also called coupling invariant.

18

The proof is done automatically by the refinement verification condition genera-
tor. Note that the theory Collection-Bindings sets up all the necessary lemmas to
discharge refinement conditions for the collection framework.

using assms unfolding sum-max-impl-def sum-max-def
apply (refine-rcg) — Decompose combinators, generate data refinement goals

apply (refine-dref-type) — Type-based heuristics to instantiate data refinement
goals

apply (auto simp add:
ls.correct refine-hsimp refine-rel-defs) — Discharge proof obligations

done

Refinement is transitive, so it is easy to show that the concrete program
meets the specification.
theorem sum-max-impl-correct:

assumes (V ,V ′)∈build-rel ls.α ls.invar and V ′6={}
shows sum-max-impl V ≤ SPEC (λ(s,m). s=

∑
V ′ ∧ m=Max V ′)

proof −
note sum-max-impl-refine
also note sum-max-correct
finally show ?thesis using assms .

qed

Just for completeness, we also refine the total correct program in the same
way.
definition sum-max ′-impl :: nat ls ⇒ (nat×nat) nres where

sum-max ′-impl V ≡ do {
(-,s,m) ← WHILET (λ(V ,s,m). ¬ls.isEmpty V) (λ(V ,s,m). do {

x←RETURN (the (ls.sel V (λx. True)));
let V=ls.delete x V ;
let s=s+x;
let m=max m x;
RETURN (V ,s,m)
}) (V ,0 ,0);
RETURN (s,m)
}

theorem sum-max ′-impl-refine:
(V ,V ′)∈build-rel ls.α ls.invar =⇒ sum-max ′-impl V ≤ ⇓Id (sum-max ′ V ′)
unfolding sum-max ′-impl-def sum-max ′-def
apply refine-rcg
apply refine-dref-type
apply (auto simp: refine-hsimp ls.correct refine-rel-defs)
done

theorem sum-max ′-impl-correct:
assumes (V ,V ′)∈build-rel ls.α ls.invar and V ′6={}
shows sum-max ′-impl V ≤ SPEC (λ(s,m). s=

∑
V ′ ∧ m=Max V ′)

19

using ref-two-step[OF sum-max ′-impl-refine sum-max ′-correct] assms

Note that we do not need the finiteness precondition, as list-sets are always finite.
However, in order to exploit this, we have to unfold the build-rel construct, that
relates the list-set on the concrete side to the set on the abstract side.

apply (auto simp: build-rel-def)
done

2.2.4 Code Generation

In order to generate code from the above definitions, we convert the function
defined in our monad to an ordinary, deterministic function, for that the
Isabelle/HOL code generator can generate code.
For partial correct algorithms, we can generate code inside a deterministic
result monad. The domain of this monad is a flat complete lattice, where top
means a failed assertion and bottom means nontermination. (Note that exe-
cuting a function in this monad will never return bottom, but just diverge).
The construct nres-of x embeds the deterministic into the nondeterministic
monad.
Thus, we have to construct a function ?sum-max-code such that:
schematic-goal sum-max-code-aux: nres-of ?sum-max-code ≤ sum-max-impl V

This is done automatically by the transfer procedure of our framework.

unfolding sum-max-impl-def
apply (refine-transfer)
done

In order to define the function from the above lemma, we can use the com-
mand concrete-definition, that is provided by our framework:
concrete-definition sum-max-code for V uses sum-max-code-aux

This defines a new constant sum-max-code:
thm sum-max-code-def

And proves the appropriate refinement lemma:
thm sum-max-code.refine

Note that the concrete-definition command is sensitive to patterns of the
form RETURN - and nres-of, in which case the defined constant will not
contain the RETURN or nres-of. In any other case, the defined constant
will just be the left hand side of the refinement statement.

Finally, we can prove a correctness statement that is independent from our
refinement framework:
theorem sum-max-code-correct:

20

assumes ls.α V 6= {}
shows sum-max-code V = dRETURN (s,m) =⇒ s=

∑
(ls.α V) ∧ m=Max (ls.α

V)
and sum-max-code V 6= dFAIL

The proof is done by transitivity, and unfolding some definitions:

using nres-correctD[OF order-trans[OF sum-max-code.refine sum-max-impl-correct,
of V ls.α V]] assms

by (auto simp: refine-rel-defs)

For total correctness, the approach is the same. The only difference is, that
we use RETURN instead of nres-of :
schematic-goal sum-max ′-code-aux:

RETURN ?sum-max ′-code ≤ sum-max ′-impl V
unfolding sum-max ′-impl-def
apply (refine-transfer)
done

concrete-definition sum-max ′-code for V uses sum-max ′-code-aux

theorem sum-max ′-code-correct:
[[ls.α V 6= {}]] =⇒ sum-max ′-code V = (

∑
(ls.α V), Max (ls.α V))

using order-trans[OF sum-max ′-code.refine sum-max ′-impl-correct,
of V ls.α V]

by (auto simp: refine-rel-defs)

If we use recursion combinators, a plain function can only be generated,
if the recursion combinators can be defined. Alternatively, for total cor-
rect programs, we may generate a (plain) function that internally uses the
deterministic monad, and then extracts the result.
schematic-goal sum-max ′′-code-aux:

RETURN ?sum-max ′′-code ≤ sum-max ′-impl V
unfolding sum-max ′-impl-def
apply (refine-transfer the-resI) — Using the-resI for internal monad and result

extraction
done

concrete-definition sum-max ′′-code for V uses sum-max ′′-code-aux

theorem sum-max ′′-code-correct:
[[ls.α V 6= {}]] =⇒ sum-max ′′-code V = (

∑
(ls.α V), Max (ls.α V))

using order-trans[OF sum-max ′′-code.refine sum-max ′-impl-correct,
of V ls.α V]

by (auto simp: refine-rel-defs)

Now, we can generate verified code with the Isabelle/HOL code generator:
export-code sum-max-code sum-max ′-code sum-max ′′-code checking SML
export-code sum-max-code sum-max ′-code sum-max ′′-code checking OCaml?

21

export-code sum-max-code sum-max ′-code sum-max ′′-code checking Haskell?
export-code sum-max-code sum-max ′-code sum-max ′′-code checking Scala

2.2.5 Foreach-Loops

In the sum-max example above, we used a while-loop to iterate over the
elements of a set. As this pattern is used commonly, there is an abbreviation
for it in the refinement framework. The construct FOREACH S f σ0 iterates
f :: ′x⇒ ′s⇒ ′s for each element in S :: ′x set, starting with state σ0::

′s.
With foreach-loops, we could have written our example as follows:
definition sum-max-it :: nat set ⇒ (nat×nat) nres where

sum-max-it V ≡ FOREACH V (λx (s,m). RETURN (s+x,max m x)) (0 ,0)

theorem sum-max-it-correct:
assumes PRE : V 6={} and FIN : finite V
shows sum-max-it V ≤ SPEC (λ(s,m). s=

∑
V ∧ m=Max V)

using PRE unfolding sum-max-it-def
apply (intro FOREACH-rule[where I=λit σ. sum-max-invar V (it,σ)] refine-vcg)
apply (rule FIN) — Discharge finiteness of iterated set
apply (auto intro: sum-max-invar-step) — Discharge step
unfolding sum-max-invar-def — Unfold invariant definition
apply (auto) — Discharge remaining goals
done

definition sum-max-it-impl :: nat ls ⇒ (nat×nat) nres where
sum-max-it-impl V ≡ FOREACH (ls.α V) (λx (s,m). RETURN (s+x,max m

x)) (0 ,0)

Note: The nondeterminism for iterators is currently resolved at transfer
phase, where they are replaced by iterators from the ICF.
lemma sum-max-it-impl-refine:

notes [refine] = inj-on-id
assumes (V ,V ′)∈build-rel ls.α ls.invar
shows sum-max-it-impl V ≤ ⇓Id (sum-max-it V ′)
unfolding sum-max-it-impl-def sum-max-it-def

Note that we specified inj-on-id as additional introduction rule. This is due to
the very general iterator refinement rule, that may also change the set over that is
iterated.

using assms
apply refine-rcg — This time, we don’t need the refine-dref-type heuristics, as no

schematic refinement relations are generated.
apply (auto simp: refine-hsimp refine-rel-defs)
done

schematic-goal sum-max-it-code-aux:
RETURN ?sum-max-it-code ≤ sum-max-it-impl V
unfolding sum-max-it-impl-def

22

apply (refine-transfer)
done

Note that the transfer method has replaced the iterator by an iterator from
the Isabelle Collection Framework.
thm sum-max-it-code-aux
concrete-definition sum-max-it-code for V uses sum-max-it-code-aux

theorem sum-max-it-code-correct:
assumes ls.α V 6= {}
shows sum-max-it-code V = (

∑
(ls.α V), Max (ls.α V))

proof −
note sum-max-it-code.refine[of V]
also note sum-max-it-impl-refine[of V ls.α V]
also note sum-max-it-correct
finally show ?thesis using assms by (auto simp: refine-rel-defs)

qed

export-code sum-max-it-code checking SML
export-code sum-max-it-code checking OCaml?
export-code sum-max-it-code checking Haskell?
export-code sum-max-it-code checking Scala

definition sum-max-it-list ≡ sum-max-it-code o ls.from-list
ML-val ‹
@{code sum-max-it-list} (map @{code nat-of-integer} [1 ,2 ,3 ,4 ,5])

›

2.3 Pointwise Reasoning

In this section, we describe how to use pointwise reasoning to prove refine-
ment statements and other relations between element of the nondeterminism
monad.
Pointwise reasoning is often a powerful tool to show refinement between
structurally different program fragments.

The refinement framework defines the predicates nofail and inres. nofail S
states that S does not fail, and inres S x states that one possible result of S
is x (Note that this includes the case that S fails).
Equality and refinement can be stated using nofail and inres:

(?S = ?S ′) = (nofail ?S = nofail ?S ′ ∧ (∀ x. inres ?S x = inres ?S ′ x))

(?S ≤ ?S ′) = (nofail ?S ′ −→ nofail ?S ∧ (∀ x. inres ?S x −→ inres ?S ′ x))

Useful corollaries of this lemma are pw-leI, pw-eqI, and pwD.
Once a refinement has been expressed via nofail/inres, the simplifier can be
used to propagate the nofail and inres predicates inwards over the structure

23

of the program. The relevant lemmas are contained in the named theorem
collection refine-pw-simps.
As an example, we show refinement of two structurally different programs
here, both returning some value in a certain range:
lemma do { ASSERT (fst p > 2); SPEC (λx. x≤(2 ::nat)∗(fst p + snd p)) }
≤ do { let (x,y)=p; z←SPEC (λz. z≤x+y);

a←SPEC (λa. a≤x+y); ASSERT (x>2); RETURN (a+z)}
apply (rule pw-leI)
apply (auto simp add: refine-pw-simps split: prod.split)

apply (rename-tac a b x)
apply (case-tac x≤a+b)
apply (rule-tac x=0 in exI)
apply simp
apply (rule-tac x=a+b in exI)
apply (simp)
apply (rule-tac x=x−(a+b) in exI)
apply simp
done

2.4 Arbitrary Recursion (TBD)

While-loops are suited to express tail-recursion. In order to express ar-
bitrary recursion, the refinement framework provides the nrec-mode for the
partial-function command, as well as the fixed point combinators REC (par-
tial correctness) and RECT (total correctness).
Examples for partial-function can be found in ex/Refine-Fold. Examples for
the recursion combinators can be found in ex/Recursion and ex/Nested-DFS.

2.5 Reference
2.5.1 Statements

SUCCEED The empty set of results. Least element of the refinement or-
dering.

FAIL Result that indicates a failing assertion. Greatest element of the re-
finement ordering.

RES X All results from set X.

RETURN x Return single result x. Defined in terms of RES : RETURN x
= RES {x}.

EMBED r Embed partial-correctness option type, i.e., succeed if r=None,
otherwise return value of r.

24

SPEC Φ Specification. All results that satisfy predicate Φ. Defined in
terms of RES : SPEC Φ = SPEC Φ

bind M f Binding. Nondeterministically choose a result from M and apply
f to it. Note that usually the do-notation is used, i.e., do {x←M ; f x}
or do {M ;f } if the result of M is not important. If M fails, bind M f
also fails.

ASSERT Φ Assertion. Fails if Φ does not hold, otherwise returns (). Note
that the default usage with the do-notation is: do {ASSERT Φ; f }.

ASSUME Φ Assumption. Succeeds if Φ does not hold, otherwise returns
(). Note that the default usage with the do-notation is: do {ASSUME
Φ; f }.

REC body Recursion for partial correctness. May be used to express arbi-
trary recursion. Returns SUCCEED on nontermination.

RECT body Recursion for total correctness. Returns FAIL on nontermina-
tion.

WHILE b f σ0 Partial correct while-loop. Start with state σ0, and repeat-
edly apply f as long as b holds for the current state. Non-terminating
paths are ignored, i.e., they do not contribute a result.

WHILET b f σ0 Total correct while-loop. If there is a non-terminating
path, the result is FAIL.

WHILEI b f σ0, WHILET
I b f σ0 While-loop with annotated invariant. It

is asserted that the invariant holds.

FOREACH S f σ0 Foreach loop. Start with state σ0, and transform the
state with f x for each element x∈S. Asserts that S is finite.

FOREACH I S f σ0 Foreach-loop with annotated invariant.
Alternative syntax: FOREACH I S f σ0.
The invariant is a predicate of type I :: ′a set ⇒ ′b ⇒ bool, where I it
σ means, that the invariant holds for the remaining set of elements it
and current state σ.

FOREACHC S c f σ0 Foreach-loop with explicit continuation condition.
Alternative syntax: FOREACHC S c f σ0.
If c:: ′σ⇒bool becomes false for the current state, the iteration imme-
diately terminates.

25

FOREACHC
I S c f σ0 Foreach-loop with explicit continuation condition

and annotated invariant.
Alternative syntax: FOREACHC

I S c f σ0.

partial-function (nrec) Mode of the partial function package for the nonde-
terminism monad.

2.5.2 Refinement

(≤) Refinement ordering. S ≤ S ′ means, that every result in S is also a
result in S ′. Moreover, S may only fail if S ′ fails. ≤ forms a complete
lattice, with least element SUCCEED and greatest element FAIL.

⇓ R Concretization. Takes a refinement relation R::(′c× ′a) set that relates
concrete to abstract values, and returns a concretization function ⇓ R.

⇑ R Abstraction. Takes a refinement relation and returns an abstraction
function. The functions ⇓R and ⇑R form a Galois-connection, i.e., we
have: S ≤ ⇓R S ′←→ ⇑R S ≤ S ′.

br α I Builds a refinement relation from an abstraction function and an
invariant. Those refinement relations are always single-valued.

nofail S Predicate that states that S does not fail.

inres S x Predicate that states that S includes result x. Note that a failing
program includes all results.

2.5.3 Proof Tools

Verification Condition Generator:

Method: intro refine-vcg
Attributes: refine-vcg

Transforms a subgoal of the form S ≤ SPEC Φ into verification condi-
tions by decomposing the structure of S. Invariants for loops without
annotation must be specified explicitely by instantiating the respective
proof-rule for the loop construct, e.g., intro WHILE-rule[where I=. . .]
refine-vcg.
refine-vcg is a named theorems collection that contains the rules that
are used by default.

Refinement Condition Generator:

26

Method: refine-rcg [thms].
Attributes: refine0, refine, refine2.
Flags: refine-no-prod-split.

Tries to prove a subgoal of the form S ≤ ⇓R S ′ by decomposing the
structure of S and S ′. The rules to be used are contained in the
theorem collection refine. More rules may be passed as argument to
the method. Rules contained in refine0 are always tried first, and rules
in refine2 are tried last. Usually, rules that decompose both programs
equally should be put into refine. Rules that may make big steps,
without decomposing the program further, should be put into refine0
(e.g., Id-refine). Rules that decompose the programs differently and
shall be used as last resort before giving up should be put into refine2,
e.g., remove-Let-refine.
By default, this procedure will invoke the splitter to split product
types in the goals. This behaviour can be disabled by setting the flag
refine-no-prod-split.

Refinement Relation Heuristics:

Method: refine-dref-type [(trace)].
Attributes: refine-dref-RELATES, refine-dref-pattern.
Flags: refine-dref-tracing.

Tries to instantiate schematic refinement relations based on their type.
By default, this rule is applied to all subgoals. Internally, it uses the
rules declared as refine-dref-pattern to introduce a goal of the form
RELATES ?R, that is then solved by exhaustively applying rules de-
clared as refine-dref-RELATES.
The flag refine-dref-tracing controls tracing of resolving RELATES-
goals. Tracing may also be enabled by passing (trace) as argument.

Pointwise Reasoning Simplification Rules:

Attributes: refine-pw-simps

A theorem collection that contains simplification lemmas to push in-
wards nofail and inres predicates into program constructs.

Refinement Simp Rules:

Attributes: refine-hsimp

A theorem collection that contains some simplification lemmas that
are useful to prove membership in refinement relations.

27

Transfer:

Method: refine-transfer [thms]
Attribute: refine-transfer

Tries to prove a subgoal of the form α f ≤ S by decomposing the struc-
ture of f and S. This is usually used in connection with a schematic
lemma, to generate f from the structure of S.
The theorems declared as refine-transfer are used to do the transfer.
More theorems may be passed as arguments to the method. Moreover,
some simplification for nested abstraction over product types (λ(a,b)
(c,d). . . .) is done, and the monotonicity prover is used on monotonicity
goals.
There is a standard setup for α=RETURN (transfer to plain function
for total correct code generation), and α=nres-of (transfer to deter-
ministic result monad, for partial correct code generation).

Automatic Refinement:

Method: refine-autoref
Attributes: ...

See automatic refinement package for documentation (TBD)

Concrete Definition:

Command: concrete-definition name [attribs] for params uses thm
where attribs and the for-part are optional.
Declares a new constant from the left-hand side of a refinement
lemma. Has special handling for left-hand sides of the forms
RETURN - and nres-of, in which cases those topmost functions
are not included in the defined constant.
The refinement lemma is folded with the new constant and reg-
istered as name.refine.

Command: prepare-code-thms thms takes a list of definitional theo-
rems and sets up lemmas for the code generator for those defini-
tions. This includes handling of recursion combinators.

2.5.4 Packages

The following parts of the refinement framework are not included by default,
but can be imported if necessary:

28

Collection-Bindings: Sets up refinement rules for the Isabelle Collection
Framework. With this theory loaded, the refinement condition gener-
ator will discharge most data refinements using the ICF automatically.
Moreover, the transfer procedure will replace FOREACH -statements
by the corresponding ICF-iterators.

end

References

[1] P. Lammich. Collections framework. In G. Klein, T. Nipkow,
and L. Paulson, editors, Archive of Formal Proofs. http://isa-afp.org/
entries/collections.shtml, Dec. 2009. Formal proof development.

[2] P. Lammich and A. Lochbihler. The Isabelle collections framework.
In M. Kaufmann and L. Paulson, editors, Interactive Theorem Prov-
ing, volume 6172 of Lecture Notes in Computer Science, pages 339–354.
Springer, 2010.

[3] P. Lammich and A. Lochbihler. The Isabelle collections framework.
In M. Kaufmann and L. Paulson, editors, Interactive Theorem Prov-
ing, volume 6172 of Lecture Notes in Computer Science, pages 339–354.
Springer, 2010.

[4] A. Stepanov and M. Lee. The standard template library. Technical
Report 95-11(R.1), HP Laboratories, November 1995.

29

http://isa-afp.org/entries/collections.shtml
http://isa-afp.org/entries/collections.shtml

	Isabelle Collections Framework Userguide
	Introduction
	Getting Started
	Introductory Example
	Theories
	Iterators

	Structure of the Framework
	Instantiation of Generic Algorithms
	Naming Conventions

	Extending the Framework
	Design Issues
	Data Refinement
	Operation Records
	Locales for Generic Algorithms
	Explicit Invariants vs Typedef

	Old Monadic Refinement Framework Userguide
	Introduction
	Guided Tour
	Defining Programs
	Proving Programs Correct
	Refinement
	Code Generation
	Foreach-Loops

	Pointwise Reasoning
	Arbitrary Recursion (TBD)
	Reference
	Statements
	Refinement
	Proof Tools
	Packages

