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Abstract

We formalize the usual proof that the group generated by the func-
tion k 7→ k + 1 on the integers gives rise to a cofinitary group.
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theory CofGroups
imports Main HOL−Library.Nat-Bijection
begin

1 Introduction

Cofinitary groups have received a lot of attention in Set Theory. I will start
by giving some references, that together give a nice view of the area. See
also Kastermans [7] for my view of where the study of these groups (other
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than formalization) is headed. Starting work was done by Adeleke [1], Truss
[12] and [13], and Koppelberg [10]. Cameron [3] is a very nice survey. There
is also work on cardinal invariants related to these groups and other almost
disjoint families, see e.g. Brendle, Spinas, and Zhang [2], Hrušák, Steprans,
and Zhang [5], and Kastermans and Zhang [9]. Then there is also work on
constructions and descriptive complexity of these groups, see e.g. Zhang
[14], Gao and Zhang [4], and Kastermans [6] and [8].
In this note we work through formalizing a basic example of a cofinitary
group. We want to achieve two things by working through this example.
First how to formalize some proofs from basic set-theoretic algebra, and
secondly, to do some first steps in the study of formalization of this area of
set theory. This is related to the work of Paulson andGr‘abczewski [11] on
formalizing set theory, our preference however is towards using Isar resulting
in a development more readable for “normal” mathematicians.
A cofinitary group is a subgroup G of the symmetric group on N (in Isabelle
nat) such that all non-identity elements g ∈ G have finitely many fixed
points. A simple example of a cofinitary group is obtained by considering the
group G′ a subgroup of the symmetric group on Z (in Isabelle int generated
by the function upOne : Z → Z defined by k 7→ k + 1. No element in this
group other than the identity has a fixed point. Conjugating this group by
any bijection Z → N gives a cofinitary group.
We will develop a workable definition of a cofinitary group (Section 2) and
show that the group as described in the previous paragraph is indeed cofini-
tary (this takes the whole paper, but is all pulled together in Section 9).
Note: formalizing the previous paragraph is all that is completed in this
note.
Since this note is also written to be read by the proverbial “normal” mathe-
matician we will sometimes remark on notations as used in Isabelle as they
related to common notation. We do expect this proverbial mathematician
to be somewhat flexible though. He or she will need to be flexible in reading,
this is just like reading any other article; part of reading is reconstructing.

We end this introduction with a quick overview of the paper. In Section 2
we define the notion of cofinitary group. In Section 3 we define the function
upOne and give some of its basic properties. In Section 4 we define the set
Ex1 which is the underlying set of the group generated by upOne, there we
also derive a normal form theorem for the elements of this set. In Section 5
we show all elements in Ex1 are cofinitary bijections (cofinitary here is used
in the general meaning of having finitely many fixed points). In Section 6
we show this set is closed under composition and inverse, in effect showing
that it is a “cofinitary group” (cofinitary group here is in quotes, since we
only define it for sets of permutations on the natural numbers). In Section 7
we show the general theorem that conjugating a permutation by a bijection
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does the expected thing to the set of fixed points. In Section 8 we define the
function CONJ that is conjugation by ni-bij (a bijection from nat to int),
show that is acts well with respect to the group operations, use it to define
Ex2 which is the underlying set of the cofinitary group we are construction,
and show the basic properties of Ex2. Finally in Section 9 we quickly show
that all the work in the section before it combines to show that Ex2 is a
cofinitary group.

2 The Main Notions

First we define the two main notions.
We write S-inf for the symmetric group on the natural numbers (we do not
define this as a group, only as the set of bijections).
definition S-inf :: (nat ⇒ nat) set
where
S-inf = {f ::(nat ⇒ nat). bij f }

Note here that bij f is the predicate that f is a bijection. This is common
notation in Isabelle, a predicate applied to an object. Related to this inj f
means f is injective, and surj f means f is surjective.
The same notation is used for functionn application. Next we define a
function Fix, applying it to an object is also written by juxtaposition.

Given any function f we define Fix f to be the set of fixed points for this
function.
definition Fix :: ( ′a ⇒ ′a) ⇒ ( ′a set)
where
Fix f = { n . f (n) = n }

We then define a locale CofinitaryGroup that represents the notion of a
cofinitary group. An interpretation is given by giving a set of functions
nat → nat and showing that it satisfies the identities the locale assumes. A
locale is a way to collect together some information that can then later be
used in a flexible way (we will not make a lot of use of that here).
locale CofinitaryGroup =

fixes
dom :: (nat ⇒ nat) set

assumes
type-dom : dom ⊆ S-inf and
id-com : id ∈ dom and
mult-closed : f ∈ dom ∧ g ∈ dom =⇒ f ◦ g ∈ dom and
inv-closed : f ∈ dom =⇒ inv f ∈ dom and
cofinitary : f ∈ dom ∧ f 6= id =⇒ finite (Fix f )
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3 The Function upOne

Here we define the function, upOne, translation up by 1 and proof some of
its basic properties.
definition upOne :: int ⇒ int
where
upOne n = n + 1

declare upOne-def [simp] — automated tools can use the definition

First we show that this function is a bijection. This is done in the usual two
parts; we show it is injective by showing from the assumption that outputs
on two numbers are equal that these two numbers are equal. Then we show
it is surjective by finding the number that maps to a given number.
lemma inj-upOne: inj upOne
〈proof 〉

lemma surj-upOne: surj upOne
〈proof 〉

theorem bij-upOne: bij upOne
〈proof 〉

Now we show that the set of fixed points of upOne is empty. We show this
in two steps, first we show that no number is a fixed point, and then derive
from this that the set of fixed points is empty.
lemma no-fix-upOne: upOne n 6= n
〈proof 〉

theorem Fix upOne = {}
〈proof 〉

Finally we derive the equation for the inverse of upOne. The rule we use
references Hilbert-Choice since the inv operator, the operator that gives an
inverse of a function, is defined using Hilbert’s choice operator.
lemma inv-upOne-eq: (inv upOne) (n::int) = n − 1
〈proof 〉

We can also show this quickly using Hilbert_Choice.inv_f_eq properly in-
stantiated : upOne (n − 1 ) = n =⇒ inv upOne n = n − 1.
lemma (inv upOne) n = n − 1
〈proof 〉

4 The Set of Functions and Normal Forms

We define the set Ex1 of all powers of upOne and study some of its proper-
ties, note that this is the group generated by upOne (in Section 6 we prove
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it closed under composition and inverse). In Section 5 we show that all
its elements are cofinitary and bijections (bijections with finitely many fixed
points). Note that this is not a cofinitary group, since our definition requires
the group to be a subset of S-inf
inductive-set Ex1 :: (int ⇒ int) set where
base-func: upOne ∈ Ex1 |
comp-func: f ∈ Ex1 =⇒ (upOne ◦ f ) ∈ Ex1 |
comp-inv : f ∈ Ex1 =⇒ ((inv upOne) ◦ f ) ∈ Ex1

We start by showing a normal form for elements in this set.
lemma Ex1-Normal-form-part1 : f ∈ Ex1 =⇒ ∃ k. ∀ n. f (n) = n + k
〈proof 〉

Now we’ll show the other direction. Then we apply rule int-induct which
allows us to do the induction by first showing it true for k = 1, then showing
that if true for k = i it is also true for k = i+ 1 and finally showing that if
true for k = i then it is also true for k = i− 1.
All proofs are fairly straightforward and use extensionality for functions. In
the base case we are just dealing with upOne. In the other cases we define
the function ?h which satisfies the induction hypothesis. Then f is obtained
from this by adding or subtracting one pointwise.
In this proof we use some pattern matching to save on writing. In the state-
ment of the theorem, we match the theorem against ?P k thereby defining
the predicate ?P.
lemma Ex1-Normal-form-part2 :
(∀ f . ((∀n. f n = n + k) −→ f ∈ Ex1 )) (is ?P k)

〈proof 〉

Combining the two directions we get the normal form theorem.
theorem Ex1-Normal-form: (f ∈ Ex1 ) = (∃ k. ∀n. f (n) = n + k)
〈proof 〉

5 All Elements Cofinitary Bijections.

We now show all elements in CofGroups.Ex1 are bijections, Theorem all-bij,
and have no fixed points, Theorem no-fixed-pt.
theorem all-bij: f ∈ Ex1 =⇒ bij f
〈proof 〉

theorem no-fixed-pt:
assumes f-Ex1 : f ∈ Ex1
and f-not-id: f 6= id
shows Fix f = {}

〈proof 〉
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6 Closed under Composition and Inverse

We start by showing that this set is closed under composition. These facts
can later be conjugated to easily obtain the corresponding results for the
group on the natural numbers.
theorem closed-comp: f ∈ Ex1 ∧ g ∈ Ex1 =⇒ f ◦ g ∈ Ex1
〈proof 〉

Now we show the set is closed under inverses. This is done by an induction
on the definition of CofGroups.Ex1 only using the normal form theorem and
rewriting of expressions.
theorem closed-inv: f ∈ Ex1 =⇒ inv f ∈ Ex1
〈proof 〉

7 Conjugation with a Bijection

An abbreviation of the bijection from the natural numbers to the integers
defined in the library. This will be used to coerce the functions above to be
on the natural numbers.
abbreviation ni-bij == int-decode

lemma bij-f-o-inf-f : bij f =⇒ f ◦ inv f = id
〈proof 〉

The following theorem is a key theorem in showing that the group we are
interested in is cofinitary. It states that when you conjugate a function with
a bijection the fixed points get mapped over.
theorem conj-fix-pt:

∧
f ::( ′a ⇒ ′b).

∧
g::( ′b ⇒ ′b). (bij f )

=⇒ ((inv f )‘(Fix g)) = Fix ((inv f ) ◦ g ◦ f )
〈proof 〉

8 Bijections on N

In this section we define the subset Ex2 of S-inf that is the conjugate of
CofGroups.Ex1 bij ni-bij, and show its basic properties.
CONJ is the function that will conjugate CofGroups.Ex1 to Ex2.
definition CONJ :: (int ⇒ int) ⇒ (nat ⇒ nat)
where
CONJ f = (inv ni-bij) ◦ f ◦ ni-bij

declare CONJ-def [simp] — automated tools can use the definition

We quickly check that this function is of the right type, and then show three
of its properties that are very useful in showing Ex2 is a group.
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lemma type-CONJ : f ∈ Ex1 =⇒ (inv ni-bij) ◦ f ◦ ni-bij ∈ S-inf
〈proof 〉

lemma inv-CONJ :
assumes bij-f : bij f
shows inv (CONJ f ) = CONJ (inv f ) (is ?left = ?right)

〈proof 〉

lemma comp-CONJ :
CONJ (f ◦ g) = (CONJ f ) ◦ (CONJ g) (is ?left = ?right)

〈proof 〉

lemma id-CONJ : CONJ id = id
〈proof 〉

We now define the group we are interested in, and show the basic facts that
together will show this is a cofinitary group.
definition Ex2 :: (nat ⇒ nat) set
where
Ex2 = CONJ‘Ex1

theorem mem-Ex2-rule: f ∈ Ex2 = (∃ g. (g ∈ Ex1 ∧ f = CONJ g))
〈proof 〉

theorem Ex2-cofinitary:
assumes f-Ex2 : f ∈ Ex2
and f-nid: f 6= id
shows Fix f = {}

〈proof 〉

lemma id-Ex2 : id ∈ Ex2
〈proof 〉

lemma inv-Ex2 : f ∈ Ex2 =⇒ (inv f ) ∈ Ex2
〈proof 〉

lemma comp-Ex2 :
assumes f-Ex2 : f ∈ Ex2 and
g-Ex2 : g ∈ Ex2
shows f ◦ g ∈ Ex2

〈proof 〉
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9 The Conclusion

With all that we have shown we have already clearly shown Ex2 to be a
cofinitary group. The formalization also shows this, we just have to refer to
the correct theorems proved above.
interpretation CofinitaryGroup Ex2
〈proof 〉

end
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