
CoSMed: A confidentiality-verified social media
platform

Thomas Bauereiss Andrei Popescu

March 19, 2025

Abstract

This entry contains the confidentiality verification of the (functional
kernel of) the CoSMed social media platform. The confidentiality prop-
erties are formalized as instances of BD Security [4, 5]. An innovation
in the deployment of BD Security compared to previous work is the
use of dynamic declassification triggers, incorporated as part of induc-
tive bounds, for providing stronger guarantees that account for the re-
peated opening and closing of access windows. To further strengthen
the confidentiality guarantees, we also prove “traceback” properties
about the accessibility decisions affecting the information managed by
the system.

Contents
1 Introduction 2

2 Preliminaries 3
2.1 The basic types . 3
2.2 Identifiers . 5

3 System specification 6
3.1 The state . 6
3.2 The actions . 7

3.2.1 Initialization of the system 7
3.2.2 Starting action . 7
3.2.3 Creation actions . 7
3.2.4 Updating actions . 9
3.2.5 Deletion (removal) actions 10
3.2.6 Reading actions . 10
3.2.7 Listing actions . 12

3.3 The step function . 13
3.4 Code generation . 18

1

4 Safety properties 19

5 The observation setup 24

6 Post confidentiality 24
6.1 Preliminaries . 25
6.2 Value Setup . 28
6.3 Declassification bound . 30
6.4 Unwinding proof . 31

7 Friendship status confidentiality 49
7.1 Preliminaries . 50
7.2 Value Setup . 55
7.3 Declassification bound . 67
7.4 Unwinding proof . 68

8 Friendship request confidentiality 84
8.1 Preliminaries . 85
8.2 Value Setup . 89
8.3 Declassification bound . 104
8.4 Unwinding proof . 106

9 Traceback Properties 135
9.1 Tracing Back Post Visibility Status 136
9.2 Tracing Back Friendship Status 144

1 Introduction
CoSMed [1, 2] is a minimalistic social media platform where users can reg-
ister, create posts and establish friendship relationships. This document
presents the formulation and proof of confidentiality properties about posts,
friendship relationships, and friendship requests.

After this introduction and a section on technical preliminaries, this doc-
ument presents the specification of the CoSMed system, as an input/output
(I/O) automaton. Next is a section on proved safety properties about the
system (invariants) that are needed in the proofs of confidentiality.

The confidentiality properties of CoSMed are expressed as instances of
BD Security [4], a general confidentiality verification framework that has
been formalized in the AFP entry [5]. They cover confidentiality aspects
about:

• posts

• friendship status (whether or not two users are friends)

2

• friendship request status (whether or not a user has submitted a friend-
ship request to another user)

Each of these types of confidentiality properties have dedicated sections (and
corresponding folders in the formalization) with self-explanatory names. BD
Security is defined in terms of an observation infrastructure, a secrecy in-
frastructure, a declassification trigger and a declassification bound. The
observations are always given by an arbitrary set of users (which is fixed in
the “Observation Setup” section). In each case, the declassification trigger
is vacuously false, since we use dynamic triggers which are made part of the
inductive definition of bounds. [1, Section 3.3] explains dynamic triggers in
detail. The secrets (called “values” in this formalization) and the declassi-
fication bounds (which relate indistinguishable secrets) are specific to each
property.

The proofs proceed using the method of BD Security unwinding, which
is part of the AFP entry on BD Security [5] and is described in detail in [6,
Section 4.1] and [4, Section 2.6]. For managing proof complexity, we take a
modular approach, building several unwinding relations that are connected
in a sequence and also have an exit point into error components. This
approach is presented in [6] as Corollary 6 (Sequential Unwinding Theorem)
and in [4] as Theorem 4 (Sequential Multiplex Unwinding Theorem).

The last section formalizes what we call traceback properties.1 These
are natural “supplements” that strengthen the confidentiality guarantees.
Indeed, confidentiality (in its BD security formulation) states: Unless a
user acquires such role or a document becomes public, that user cannot
learn such information. But can a user not forge the acquisition of that
role or maliciously determine the publication of the document? Traceback
properties show that this is not possible, except by identity theft. [1, Section
5.2] explains traceback properties (called there “accountability properties”)
in detail.

2 Preliminaries
theory Prelim

imports
Bounded-Deducibility-Security.Compositional-Reasoning
Fresh-Identifiers.Fresh-String

begin

2.1 The basic types
definition emptyStr = STR ′′′′

1In previous work, we called these types of properties accountability properties [1, 2] or
forensic properties [3]. The traceback properties terminology is used in [6].

3

datatype name = Nam String.literal
definition emptyName ≡ Nam emptyStr
datatype inform = Info String.literal
definition emptyInfo ≡ Info emptyStr

datatype user = Usr (nameUser : name) (infoUser : inform)
definition emptyUser ≡ Usr emptyName emptyInfo
fun niUser where niUser (Usr name info) = (name,info)

typedecl raw-data
code-printing type-constructor raw-data ⇀ (Scala) java.io.File

datatype img = emptyImg | Imag raw-data

datatype vis = Vsb String.literal

abbreviation FriendV ≡ Vsb (STR ′′friend ′′)
abbreviation PublicV ≡ Vsb (STR ′′public ′′)
fun stringOfVis where stringOfVis (Vsb str) = str

datatype title = Tit String.literal
definition emptyTitle ≡ Tit emptyStr
datatype text = Txt String.literal
definition emptyText ≡ Txt emptyStr

datatype post = Ntc (titlePost : title) (textPost : text) (imgPost : img)

fun setTitlePost where setTitlePost (Ntc title text img) title ′ = Ntc title ′ text img
fun setTextPost where setTextPost(Ntc title text img) text ′ = Ntc title text ′ img
fun setImgPost where setImgPost (Ntc title text img) img ′ = Ntc title text img ′

definition emptyPost :: post where
emptyPost ≡ Ntc emptyTitle emptyText emptyImg

lemma set-get-post[simp]:
titlePost (setTitlePost ntc title) = title
titlePost (setTextPost ntc text) = titlePost ntc
titlePost (setImgPost ntc img) = titlePost ntc

textPost (setTitlePost ntc title) = textPost ntc
textPost (setTextPost ntc text) = text

4

textPost (setImgPost ntc img) = textPost ntc

imgPost (setTitlePost ntc title) = imgPost ntc
imgPost (setTextPost ntc text) = imgPost ntc
imgPost (setImgPost ntc img) = img
by(cases ntc, auto)+

datatype password = Psw String.literal
definition emptyPass ≡ Psw emptyStr

datatype req = ReqInfo String.literal
definition emptyReq ≡ ReqInfo emptyStr

2.2 Identifiers
datatype userID = Uid String.literal
datatype postID = Nid String.literal

definition emptyUserID ≡ Uid emptyStr
definition emptyPostID ≡ Nid emptyStr

fun userIDAsStr where userIDAsStr (Uid str) = str

definition getFreshUserID userIDs ≡ Uid (fresh (set (map userIDAsStr userIDs))
(STR ′′2 ′′))

lemma UserID-userIDAsStr [simp]: Uid (userIDAsStr userID) = userID
by (cases userID) auto

lemma member-userIDAsStr-iff [simp]: str ∈ userIDAsStr ‘ (set userIDs) ←→ Uid
str ∈∈ userIDs
by (metis UserID-userIDAsStr image-iff userIDAsStr .simps)

lemma getFreshUserID: ¬ getFreshUserID userIDs ∈∈ userIDs
using fresh-notIn[of set (map userIDAsStr userIDs)] unfolding getFreshUserID-def
by auto

fun postIDAsStr where postIDAsStr (Nid str) = str

definition getFreshPostID postIDs ≡ Nid (fresh (set (map postIDAsStr postIDs))
(STR ′′3 ′′))

lemma PostID-postIDAsStr [simp]: Nid (postIDAsStr postID) = postID
by (cases postID) auto

5

lemma member-postIDAsStr-iff [simp]: str ∈ postIDAsStr ‘ (set postIDs) ←→ Nid
str ∈∈ postIDs
by (metis PostID-postIDAsStr image-iff postIDAsStr .simps)

lemma getFreshPostID: ¬ getFreshPostID postIDs ∈∈ postIDs
using fresh-notIn[of set (map postIDAsStr postIDs)] unfolding getFreshPostID-def
by auto

end

3 System specification
theory System-Specification
imports Prelim
begin

declare List.insert[simp]

3.1 The state
record state =

admin :: userID

pendingUReqs :: userID list
userReq :: userID ⇒ req
userIDs :: userID list
user :: userID ⇒ user
pass :: userID ⇒ password

pendingFReqs :: userID ⇒ userID list
friendReq :: userID ⇒ userID ⇒ req
friendIDs :: userID ⇒ userID list

postIDs :: postID list
post :: postID ⇒ post
owner :: postID ⇒ userID
vis :: postID ⇒ vis

definition IDsOK :: state ⇒ userID list ⇒ postID list ⇒ bool
where
IDsOK s uIDs pIDs ≡
list-all (λ uID. uID ∈∈ userIDs s) uIDs ∧
list-all (λ pID. pID ∈∈ postIDs s) pIDs

6

3.2 The actions
3.2.1 Initialization of the system
definition istate :: state
where
istate ≡
(|
admin = emptyUserID,

pendingUReqs = [],
userReq = (λ uID. emptyReq),
userIDs = [],
user = (λ uID. emptyUser),
pass = (λ uID. emptyPass),

pendingFReqs = (λ uID. []),
friendReq = (λ uID uID ′. emptyReq),
friendIDs = (λ uID. []),

postIDs = [],
post = (λ papID. emptyPost),
owner = (λ pID. emptyUserID),
vis = (λ pID. FriendV)
|)

3.2.2 Starting action
definition startSys ::
state ⇒ userID ⇒ password ⇒ state
where
startSys s uID p ≡
s (|admin := uID,

userIDs := [uID],
user := (user s) (uID := emptyUser),
pass := (pass s) (uID := p)|)

definition e-startSys :: state ⇒ userID ⇒ password ⇒ bool
where
e-startSys s uID p ≡ userIDs s = []

3.2.3 Creation actions
definition createNUReq :: state ⇒ userID ⇒ req ⇒ state
where
createNUReq s uID reqInfo ≡
s (|pendingUReqs := pendingUReqs s @ [uID],

userReq := (userReq s)(uID := reqInfo)
|)

7

definition e-createNUReq :: state ⇒ userID ⇒ req ⇒ bool
where
e-createNUReq s uID req ≡
admin s ∈∈ userIDs s ∧ ¬ uID ∈∈ userIDs s ∧ ¬ uID ∈∈ pendingUReqs s

definition createUser :: state ⇒ userID ⇒ password ⇒ userID ⇒ password ⇒
state
where
createUser s uID p uID ′ p ′ ≡
s (|userIDs := uID ′ # (userIDs s),

user := (user s) (uID ′ := emptyUser),
pass := (pass s) (uID ′ := p ′),
pendingUReqs := remove1 uID ′ (pendingUReqs s),
userReq := (userReq s)(uID := emptyReq)|)

definition e-createUser :: state ⇒ userID ⇒ password ⇒ userID ⇒ password ⇒
bool
where
e-createUser s uID p uID ′ p ′ ≡
IDsOK s [uID] [] ∧ pass s uID = p ∧ uID = admin s ∧ uID ′ ∈∈ pendingUReqs s

definition createPost :: state ⇒ userID ⇒ password ⇒ postID ⇒ title ⇒ state
where
createPost s uID p pID title ≡
s (|postIDs := pID # postIDs s,

post := (post s) (pID := Ntc title emptyText emptyImg),
owner := (owner s) (pID := uID)|)

definition e-createPost :: state ⇒ userID ⇒ password ⇒ postID ⇒ title ⇒ bool
where
e-createPost s uID p pID title ≡
IDsOK s [uID] [] ∧ pass s uID = p ∧
¬ pID ∈∈ postIDs s

definition createFriendReq :: state ⇒ userID ⇒ password ⇒ userID ⇒ req ⇒
state
where
createFriendReq s uID p uID ′ req ≡
let pfr = pendingFReqs s in
s (|pendingFReqs := pfr (uID ′ := pfr uID ′ @ [uID]),

friendReq := fun-upd2 (friendReq s) uID uID ′ req|)

8

definition e-createFriendReq :: state ⇒ userID ⇒ password ⇒ userID ⇒ req ⇒
bool
where
e-createFriendReq s uID p uID ′ req ≡
IDsOK s [uID,uID ′] [] ∧ pass s uID = p ∧
¬ uID ∈∈ pendingFReqs s uID ′ ∧ ¬ uID ∈∈ friendIDs s uID ′

definition createFriend :: state ⇒ userID ⇒ password ⇒ userID ⇒ state
where
createFriend s uID p uID ′ ≡
let fr = friendIDs s; pfr = pendingFReqs s in
s (|friendIDs := fr (uID := fr uID @ [uID ′], uID ′ := fr uID ′ @ [uID]),

pendingFReqs := pfr (uID := remove1 uID ′ (pfr uID), uID ′ := remove1 uID
(pfr uID ′)),

friendReq := fun-upd2 (fun-upd2 (friendReq s) uID ′ uID emptyReq) uID uID ′

emptyReq|)

definition e-createFriend :: state ⇒ userID ⇒ password ⇒ userID ⇒ bool
where
e-createFriend s uID p uID ′ ≡
IDsOK s [uID,uID ′] [] ∧ pass s uID = p ∧
uID ′ ∈∈ pendingFReqs s uID

3.2.4 Updating actions
definition updateUser :: state ⇒ userID ⇒ password ⇒ password ⇒ name ⇒
inform ⇒ state
where
updateUser s uID p p ′ name info ≡
s (|user := (user s) (uID := Usr name info),

pass := (pass s) (uID := p ′)|)

definition e-updateUser :: state ⇒ userID ⇒ password ⇒ password ⇒ name ⇒
inform ⇒ bool
where
e-updateUser s uID p p ′ name info ≡
IDsOK s [uID] [] ∧ pass s uID = p

definition updatePost :: state ⇒ userID ⇒ password ⇒ postID ⇒ post ⇒ state
where
updatePost s uID p pID pst ≡
s (|post := (post s) (pID := pst)|)

definition e-updatePost :: state ⇒ userID ⇒ password ⇒ postID ⇒ post ⇒ bool
where
e-updatePost s uID p pID pst ≡

9

IDsOK s [uID] [pID] ∧ pass s uID = p ∧
owner s pID = uID

definition updateVisPost :: state ⇒ userID ⇒ password ⇒ postID ⇒ vis ⇒ state
where
updateVisPost s uID p pID vs ≡
s (|vis := (vis s) (pID := vs)|)

definition e-updateVisPost :: state ⇒ userID ⇒ password ⇒ postID ⇒ vis ⇒ bool
where
e-updateVisPost s uID p pID vs ≡
IDsOK s [uID] [pID] ∧ pass s uID = p ∧
owner s pID = uID ∧ vs ∈ {FriendV , PublicV }

3.2.5 Deletion (removal) actions
definition deleteFriend :: state ⇒ userID ⇒ password ⇒ userID ⇒ state
where
deleteFriend s uID p uID ′ ≡
let fr = friendIDs s in
s (|friendIDs := fr (uID := removeAll uID ′ (fr uID), uID ′ := removeAll uID (fr

uID ′))|)

definition e-deleteFriend :: state ⇒ userID ⇒ password ⇒ userID ⇒ bool
where
e-deleteFriend s uID p uID ′ ≡
IDsOK s [uID,uID ′] [] ∧ pass s uID = p ∧
uID ′ ∈∈ friendIDs s uID

3.2.6 Reading actions
definition readNUReq :: state ⇒ userID ⇒ password ⇒ userID ⇒ req
where
readNUReq s uID p uID ′ ≡ userReq s uID ′

definition e-readNUReq :: state ⇒ userID ⇒ password ⇒ userID ⇒ bool
where
e-readNUReq s uID p uID ′ ≡
IDsOK s [uID] [] ∧ pass s uID = p ∧
uID = admin s ∧ uID ′ ∈∈ pendingUReqs s

definition readUser :: state ⇒ userID ⇒ password ⇒ userID ⇒ name × inform
where
readUser s uID p uID ′ ≡ niUser (user s uID ′)

definition e-readUser :: state ⇒ userID ⇒ password ⇒ userID ⇒ bool
where
e-readUser s uID p uID ′ ≡
IDsOK s [uID,uID ′] [] ∧ pass s uID = p

10

definition readAmIAdmin :: state ⇒ userID ⇒ password ⇒ bool
where
readAmIAdmin s uID p ≡ uID = admin s

definition e-readAmIAdmin :: state ⇒ userID ⇒ password ⇒ bool
where
e-readAmIAdmin s uID p ≡
IDsOK s [uID] [] ∧ pass s uID = p

definition readPost :: state ⇒ userID ⇒ password ⇒ postID ⇒ post
where
readPost s uID p pID ≡ post s pID

definition e-readPost :: state ⇒ userID ⇒ password ⇒ postID ⇒ bool
where
e-readPost s uID p pID ≡
let post = post s pID in
IDsOK s [uID] [pID] ∧ pass s uID = p ∧
(owner s pID = uID ∨ uID ∈∈ friendIDs s (owner s pID) ∨ vis s pID = PublicV)

definition readVisPost :: state ⇒ userID ⇒ password ⇒ postID ⇒ vis
where
readVisPost s uID p pID ≡ vis s pID

definition e-readVisPost :: state ⇒ userID ⇒ password ⇒ postID ⇒ bool
where
e-readVisPost s uID p pID ≡
let post = post s pID in
IDsOK s [uID] [pID] ∧ pass s uID = p ∧
(owner s pID = uID ∨ uID ∈∈ friendIDs s (owner s pID) ∨ vis s pID = PublicV)

definition readOwnerPost :: state ⇒ userID ⇒ password ⇒ postID ⇒ userID
where
readOwnerPost s uID p pID ≡ owner s pID

definition e-readOwnerPost :: state ⇒ userID ⇒ password ⇒ postID ⇒ bool
where
e-readOwnerPost s uID p pID ≡
let post = post s pID in
IDsOK s [uID] [pID] ∧ pass s uID = p ∧
(owner s pID = uID ∨ uID ∈∈ friendIDs s (owner s pID) ∨ vis s pID = PublicV)

definition readFriendReqToMe :: state ⇒ userID ⇒ password ⇒ userID ⇒ req

11

where
readFriendReqToMe s uID p uID ′ ≡ friendReq s uID ′ uID

definition e-readFriendReqToMe :: state ⇒ userID ⇒ password ⇒ userID ⇒ bool
where
e-readFriendReqToMe s uID p uID ′ ≡
IDsOK s [uID,uID ′] [] ∧ pass s uID = p ∧
uID ′ ∈∈ pendingFReqs s uID

definition readFriendReqFromMe :: state ⇒ userID ⇒ password ⇒ userID ⇒ req
where
readFriendReqFromMe s uID p uID ′ ≡ friendReq s uID uID ′

definition e-readFriendReqFromMe :: state ⇒ userID ⇒ password ⇒ userID ⇒
bool
where
e-readFriendReqFromMe s uID p uID ′ ≡
IDsOK s [uID,uID ′] [] ∧ pass s uID = p ∧
uID ∈∈ pendingFReqs s uID ′

3.2.7 Listing actions
definition listPendingUReqs :: state ⇒ userID ⇒ password ⇒ userID list
where
listPendingUReqs s uID p ≡ pendingUReqs s

definition e-listPendingUReqs :: state ⇒ userID ⇒ password ⇒ bool
where
e-listPendingUReqs s uID p ≡
IDsOK s [uID] [] ∧ pass s uID = p ∧ uID = admin s

definition listAllUsers :: state ⇒ userID ⇒ password ⇒ userID list
where
listAllUsers s uID p ≡ userIDs s

definition e-listAllUsers :: state ⇒ userID ⇒ password ⇒ bool
where
e-listAllUsers s uID p ≡ IDsOK s [uID] [] ∧ pass s uID = p

definition listFriends :: state ⇒ userID ⇒ password ⇒ userID ⇒ userID list
where
listFriends s uID p uID ′ ≡ friendIDs s uID ′

definition e-listFriends :: state ⇒ userID ⇒ password ⇒ userID ⇒ bool
where

12

e-listFriends s uID p uID ′ ≡
IDsOK s [uID,uID ′] [] ∧ pass s uID = p ∧
(uID = uID ′ ∨ uID ∈∈ friendIDs s uID ′)

definition listPosts :: state ⇒ userID ⇒ password ⇒ (userID × postID) list
where
listPosts s uID p ≡
[(owner s pID, pID).

pID ← postIDs s,
vis s pID = PublicV ∨ uID ∈∈ friendIDs s (owner s pID) ∨ uID = owner s

pID
]

definition e-listPosts :: state ⇒ userID ⇒ password ⇒ bool
where
e-listPosts s uID p ≡ IDsOK s [uID] [] ∧ pass s uID = p

3.3 The step function
datatype out =

outOK | outErr |

outBool bool| outNI name × inform | outPost post |
outImg img | outVis vis | outReq req |

outUID userID | outUIDL userID list |
outUIDNIDL (userID × postID)list

datatype sActt =
sSys userID password

lemmas s-defs =
e-startSys-def startSys-def

fun sStep :: state ⇒ sActt ⇒ out ∗ state where
sStep s (sSys uID p) =
(if e-startSys s uID p

then (outOK , startSys s uID p)
else (outErr , s))

fun sUserOfA :: sActt ⇒ userID where
sUserOfA (sSys uID p) = uID

13

datatype cActt =
cNUReq userID req
|cUser userID password userID password
|cFriendReq userID password userID req
|cFriend userID password userID
|cPost userID password postID title

lemmas c-defs =
e-createNUReq-def createNUReq-def
e-createUser-def createUser-def
e-createFriendReq-def createFriendReq-def
e-createFriend-def createFriend-def
e-createPost-def createPost-def

fun cStep :: state ⇒ cActt ⇒ out ∗ state where
cStep s (cNUReq uID req) =
(if e-createNUReq s uID req

then (outOK , createNUReq s uID req)
else (outErr , s))

|
cStep s (cUser uID p uID ′ p ′) =
(if e-createUser s uID p uID ′ p ′

then (outOK , createUser s uID p uID ′ p ′)
else (outErr , s))

|
cStep s (cFriendReq uID p uID ′ req) =
(if e-createFriendReq s uID p uID ′ req

then (outOK , createFriendReq s uID p uID ′ req)
else (outErr , s))

|
cStep s (cFriend uID p uID ′) =
(if e-createFriend s uID p uID ′

then (outOK , createFriend s uID p uID ′)
else (outErr , s))

|
cStep s (cPost uID p pID title) =
(if e-createPost s uID p pID title

then (outOK , createPost s uID p pID title)
else (outErr , s))

fun cUserOfA :: cActt ⇒ userID option where
cUserOfA (cNUReq uID req) = Some uID
|cUserOfA (cUser uID p uID ′ p ′) = Some uID
|cUserOfA (cFriendReq uID p uID ′ req) = Some uID
|cUserOfA (cFriend uID p uID ′) = Some uID
|cUserOfA (cPost uID p pID title) = Some uID

14

datatype dActt =
dFriend userID password userID

lemmas d-defs =
e-deleteFriend-def deleteFriend-def

fun dStep :: state ⇒ dActt ⇒ out ∗ state where
dStep s (dFriend uID p uID ′) =
(if e-deleteFriend s uID p uID ′

then (outOK , deleteFriend s uID p uID ′)
else (outErr , s))

fun dUserOfA :: dActt ⇒ userID where
dUserOfA (dFriend uID p uID ′) = uID

datatype uActt =
uUser userID password password name inform
|uPost userID password postID post
|uVisPost userID password postID vis

lemmas u-defs =
e-updateUser-def updateUser-def
e-updatePost-def updatePost-def
e-updateVisPost-def updateVisPost-def

fun uStep :: state ⇒ uActt ⇒ out ∗ state where
uStep s (uUser uID p p ′ name info) =
(if e-updateUser s uID p p ′ name info

then (outOK , updateUser s uID p p ′ name info)
else (outErr , s))

|
uStep s (uPost uID p pID pst) =
(if e-updatePost s uID p pID pst

then (outOK , updatePost s uID p pID pst)
else (outErr , s))

|
uStep s (uVisPost uID p pID visStr) =
(if e-updateVisPost s uID p pID visStr

then (outOK , updateVisPost s uID p pID visStr)
else (outErr , s))

fun uUserOfA :: uActt ⇒ userID where
uUserOfA (uUser uID p p ′ name info) = uID
|uUserOfA (uPost uID p pID pst) = uID
|uUserOfA (uVisPost uID p pID visStr) = uID

15

datatype rActt =
rNUReq userID password userID
|rUser userID password userID
|rAmIAdmin userID password
|rPost userID password postID
|rVisPost userID password postID
|rOwnerPost userID password postID
|rFriendReqToMe userID password userID
|rFriendReqFromMe userID password userID

lemmas r-defs =
readNUReq-def e-readNUReq-def
readUser-def e-readUser-def
readAmIAdmin-def e-readAmIAdmin-def
readPost-def e-readPost-def
readVisPost-def e-readVisPost-def
readOwnerPost-def e-readOwnerPost-def
readFriendReqToMe-def e-readFriendReqToMe-def
readFriendReqFromMe-def e-readFriendReqFromMe-def

fun rObs :: state ⇒ rActt ⇒ out where
rObs s (rNUReq uID p uID ′) =
(if e-readNUReq s uID p uID ′ then outReq (readNUReq s uID p uID ′) else outErr)
|
rObs s (rUser uID p uID ′) =
(if e-readUser s uID p uID ′ then outNI (readUser s uID p uID ′) else outErr)
|
rObs s (rAmIAdmin uID p) =
(if e-readAmIAdmin s uID p then outBool (readAmIAdmin s uID p) else outErr)
|
rObs s (rPost uID p pID) =
(if e-readPost s uID p pID then outPost (readPost s uID p pID) else outErr)
|
rObs s (rVisPost uID p pID) =
(if e-readVisPost s uID p pID then outVis (readVisPost s uID p pID) else outErr)
|
rObs s (rOwnerPost uID p pID) =
(if e-readOwnerPost s uID p pID then outUID (readOwnerPost s uID p pID) else

outErr)
|
rObs s (rFriendReqToMe uID p uID ′) =
(if e-readFriendReqToMe s uID p uID ′ then outReq (readFriendReqToMe s uID p

uID ′) else outErr)
|
rObs s (rFriendReqFromMe uID p uID ′) =
(if e-readFriendReqFromMe s uID p uID ′ then outReq (readFriendReqFromMe s

uID p uID ′) else outErr)

16

fun rUserOfA :: rActt ⇒ userID option where
rUserOfA (rNUReq uID p uID ′) = Some uID
|rUserOfA (rUser uID p uID ′) = Some uID
|rUserOfA (rAmIAdmin uID p) = Some uID
|rUserOfA (rPost uID p pID) = Some uID
|rUserOfA (rVisPost uID p pID) = Some uID
|rUserOfA (rOwnerPost uID p pID) = Some uID
|rUserOfA (rFriendReqToMe uID p uID ′) = Some uID
|rUserOfA (rFriendReqFromMe uID p uID ′) = Some uID

datatype lActt =
lPendingUReqs userID password
|lAllUsers userID password
|lFriends userID password userID
|lPosts userID password

lemmas l-defs =
listPendingUReqs-def e-listPendingUReqs-def
listAllUsers-def e-listAllUsers-def
listFriends-def e-listFriends-def
listPosts-def e-listPosts-def

fun lObs :: state ⇒ lActt ⇒ out where
lObs s (lPendingUReqs uID p) =
(if e-listPendingUReqs s uID p then outUIDL (listPendingUReqs s uID p) else

outErr)
|
lObs s (lAllUsers uID p) =
(if e-listAllUsers s uID p then outUIDL (listAllUsers s uID p) else outErr)
|
lObs s (lFriends uID p uID ′) =
(if e-listFriends s uID p uID ′ then outUIDL (listFriends s uID p uID ′) else outErr)
|
lObs s (lPosts uID p) =
(if e-listPosts s uID p then outUIDNIDL (listPosts s uID p) else outErr)

fun lUserOfA :: lActt ⇒ userID option where
lUserOfA (lPendingUReqs uID p) = Some uID
|lUserOfA (lAllUsers uID p) = Some uID
|lUserOfA (lFriends uID p uID ′) = Some uID
|lUserOfA (lPosts uID p) = Some uID

17

datatype act =
Sact sActt |

Cact cActt | Dact dActt | Uact uActt |

Ract rActt | Lact lActt

fun step :: state ⇒ act ⇒ out ∗ state where
step s (Sact sa) = sStep s sa
|
step s (Cact ca) = cStep s ca
|
step s (Dact da) = dStep s da
|
step s (Uact ua) = uStep s ua
|
step s (Ract ra) = (rObs s ra, s)
|
step s (Lact la) = (lObs s la, s)

fun userOfA :: act ⇒ userID option where
userOfA (Sact sa) = Some (sUserOfA sa)
|
userOfA (Cact ca) = cUserOfA ca
|
userOfA (Dact da) = Some (dUserOfA da)
|
userOfA (Uact ua) = Some (uUserOfA ua)
|
userOfA (Ract ra) = rUserOfA ra
|
userOfA (Lact la) = lUserOfA la

3.4 Code generation
export-code step istate getFreshPostID in Scala

end
theory Automation-Setup
imports System-Specification
begin

lemma add-prop:
assumes PROP (T)

18

shows A ==> PROP (T)
using assms .

lemmas exhaust-elim =
sActt.exhaust[of x, THEN add-prop[where A=a=Sact x], rotated −1]
cActt.exhaust[of x, THEN add-prop[where A=a=Cact x], rotated −1]
uActt.exhaust[of x, THEN add-prop[where A=a=Uact x], rotated −1]
rActt.exhaust[of x, THEN add-prop[where A=a=Ract x], rotated −1]
lActt.exhaust[of x, THEN add-prop[where A=a=Lact x], rotated −1]

for x a

lemma state-cong:
fixes s::state
assumes
pendingUReqs s = pendingUReqs s1 ∧ userReq s = userReq s1 ∧ userIDs s =
userIDs s1 ∧
postIDs s = postIDs s1 ∧ admin s = admin s1 ∧
user s = user s1 ∧ pass s = pass s1 ∧ pendingFReqs s = pendingFReqs s1 ∧

friendReq s = friendReq s1 ∧ friendIDs s = friendIDs s1 ∧
post s = post s1 ∧
owner s = owner s1 ∧
vis s = vis s1

shows s = s1
using assms by (cases s, cases s1) auto

end

4 Safety properties
theory Safety-Properties
imports Automation-Setup Bounded-Deducibility-Security.Compositional-Reasoning
begin

interpretation IO-Automaton where
istate = istate and step = step
done

declare if-splits[split]
declare IDsOK-def [simp]

lemmas eff-defs = s-defs c-defs d-defs u-defs
lemmas obs-defs = r-defs l-defs
lemmas all-defs = eff-defs obs-defs
lemmas step-elims = step.elims sStep.elims cStep.elims dStep.elims uStep.elims

declare sstep-Cons[simp]

19

lemma Lact-Ract-noStateChange[simp]:
assumes a ∈ Lact ‘ UNIV ∪ Ract ‘ UNIV
shows snd (step s a) = s
using assms by (cases a) auto

lemma Lact-Ract-noStateChange-set:
assumes set al ⊆ Lact ‘ UNIV ∪ Ract ‘ UNIV
shows snd (sstep s al) = s
using assms by (induct al) (auto split: prod.splits)

lemma reach-postIDs-persist:
pID ∈∈ postIDs s =⇒ step s a = (ou,s ′) =⇒ pID ∈∈ postIDs s ′

by (cases a) (auto elim: step-elims simp: eff-defs)

lemma reach-visPost: reach s =⇒ vis s pID ∈ {FriendV , PublicV }
proof (induction rule: reach-step-induct)

case (Step s a)
then show ?case proof (cases a)

case (Sact sAct)
with Step show ?thesis

by (cases sAct) (auto simp add: s-defs)
next

case (Cact cAct)
with Step show ?thesis

by (cases cAct) (auto simp add: c-defs)
next

case (Dact dAct)
with Step show ?thesis

by (cases dAct) (auto simp add: d-defs)
next

case (Uact uAct)
with Step show ?thesis

by (cases uAct) (auto simp add: u-defs)
qed auto

qed (auto simp add: istate-def)

lemma reach-owner-userIDs: reach s =⇒ pID ∈∈ postIDs s =⇒ owner s pID ∈∈
userIDs s
proof (induction rule: reach-step-induct)

case (Step s a)
then show ?case proof (cases a)

case (Sact sAct)
with Step show ?thesis

by (cases sAct) (auto simp add: s-defs)
next

case (Cact cAct)
with Step show ?thesis

by (cases cAct) (auto simp add: c-defs)

20

next
case (Dact dAct)
with Step show ?thesis

by (cases dAct) (auto simp add: d-defs)
next

case (Uact uAct)
with Step show ?thesis

by (cases uAct) (auto simp add: u-defs)
qed auto

qed (auto simp add: istate-def)

lemma reach-friendIDs-symmetric:
reach s =⇒ uID1 ∈∈ friendIDs s uID2 ←→ uID2 ∈∈ friendIDs s uID1
proof (induction rule: reach-step-induct)

case (Step s a) then show ?case proof (cases a)
case (Sact sAct) with Step show ?thesis by (cases sAct) (auto simp add:

s-defs) next
case (Cact cAct) with Step show ?thesis by (cases cAct) (auto simp add:

c-defs) next
case (Dact dAct) with Step show ?thesis by (cases dAct) (auto simp add:

d-defs) next
case (Uact uAct) with Step show ?thesis by (cases uAct) (auto simp add:

u-defs)
qed auto

qed (auto simp add: istate-def)

lemma reach-not-postIDs-vis-FriendV :
assumes reach s ¬ pid ∈∈ postIDs s
shows vis s pid = FriendV
using assms proof (induction rule: reach-step-induct)

case (Step s a) then show ?case proof (cases a)
case (Sact sAct) with Step show ?thesis by (cases sAct) (auto simp add:

s-defs) next
case (Cact cAct) with Step show ?thesis by (cases cAct) (auto simp add:

c-defs) next
case (Dact dAct) with Step show ?thesis by (cases dAct) (auto simp add:

d-defs) next
case (Uact uAct) with Step show ?thesis by (cases uAct) (auto simp add:

u-defs)
qed auto

qed (auto simp add: istate-def)

lemma reach-distinct-friends-reqs:
assumes reach s
shows distinct (friendIDs s uid) and distinct (pendingFReqs s uid)

and uid ′ ∈∈ pendingFReqs s uid =⇒ uid ′ /∈ set (friendIDs s uid)
and uid ′ ∈∈ pendingFReqs s uid =⇒ uid /∈ set (friendIDs s uid ′)

using assms proof (induction arbitrary: uid uid ′ rule: reach-step-induct)
case Istate

21

fix uid uid ′

show distinct (friendIDs istate uid) and distinct (pendingFReqs istate uid)
and uid ′ ∈∈ pendingFReqs istate uid =⇒ uid ′ /∈ set (friendIDs istate uid)
and uid ′ ∈∈ pendingFReqs istate uid =⇒ uid /∈ set (friendIDs istate uid ′)
unfolding istate-def by auto

next
case (Step s a)

have s ′: reach (snd (step s a)) using reach-step[OF Step(1)] .
{ fix uid uid ′

have distinct (friendIDs (snd (step s a)) uid) ∧ distinct (pendingFReqs (snd
(step s a)) uid)

∧ (uid ′ ∈∈ pendingFReqs (snd (step s a)) uid −→ uid ′ /∈ set (friendIDs
(snd (step s a)) uid))

proof (cases a)
case (Sact sa) with Step show ?thesis by (cases sa) (auto simp add: s-defs)

next
case (Cact ca) with Step show ?thesis by (cases ca) (auto simp add: c-defs)

next
case (Dact da) with Step show ?thesis by (cases da) (auto simp add: d-defs

distinct-removeAll) next
case (Uact ua) with Step show ?thesis by (cases ua) (auto simp add:

u-defs) next
case (Ract ra) with Step show ?thesis by auto next
case (Lact ra) with Step show ?thesis by auto

qed
} note goal = this
fix uid uid ′

from goal show distinct (friendIDs (snd (step s a)) uid)
and distinct (pendingFReqs (snd (step s a)) uid) by auto

assume uid ′ ∈∈ pendingFReqs (snd (step s a)) uid
with goal show uid ′ /∈ set (friendIDs (snd (step s a)) uid) by auto
then show uid /∈ set (friendIDs (snd (step s a)) uid ′)

using reach-friendIDs-symmetric[OF s ′] by simp
qed

lemma remove1-in-set: x ∈∈ remove1 y xs =⇒ x ∈∈ xs
by (induction xs) auto

lemma reach-IDs-used-IDsOK [rule-format]:
assumes reach s
shows uid ∈∈ pendingFReqs s uid ′ −→ IDsOK s [uid, uid ′] [] (is ?p)
and uid ∈∈ friendIDs s uid ′ −→ IDsOK s [uid, uid ′] [] (is ?f)
using assms proof −

from assms have uid ∈∈ pendingFReqs s uid ′ ∨ uid ∈∈ friendIDs s uid ′

−→ IDsOK s [uid, uid ′] []
proof (induction rule: reach-step-induct)

case Istate then show ?case by (auto simp add: istate-def)
next

case (Step s a) then show ?case proof (cases a)

22

case (Sact sa) with Step show ?thesis by (cases sa) (auto simp: s-defs) next
case (Cact ca) with Step show ?thesis by (cases ca) (auto simp: c-defs intro:

remove1-in-set) next
case (Dact da) with Step show ?thesis by (cases da) (auto simp: d-defs)

next
case (Uact ua) with Step show ?thesis by (cases ua) (auto simp: u-defs)

qed auto
qed
then show ?p and ?f by auto

qed

lemma IDs-mono[rule-format]:
assumes step s a = (ou, s ′)
shows uid ∈∈ userIDs s −→ uid ∈∈ userIDs s ′ (is ?u)
and pid ∈∈ postIDs s −→ pid ∈∈ postIDs s ′ (is ?n)
proof −

from assms have ?u ∧ ?n proof (cases a)
case (Sact sa) with assms show ?thesis by (cases sa) (auto simp add: s-defs)

next
case (Cact ca) with assms show ?thesis by (cases ca) (auto simp add: c-defs)

next
case (Dact da) with assms show ?thesis by (cases da) (auto simp add: d-defs)

next
case (Uact ua) with assms show ?thesis by (cases ua) (auto simp add: u-defs)

qed (auto)
then show ?u ?n by auto

qed

lemma IDsOK-mono:
assumes step s a = (ou, s ′)
and IDsOK s uIDs pIDs
shows IDsOK s ′ uIDs pIDs
using IDs-mono[OF assms(1)] assms(2)

by (auto simp add: list-all-iff)

end

theory Observation-Setup
imports Safety-Properties
begin

23

5 The observation setup

The observers are a arbitrary but fixed set of users:
consts UIDs :: userID set

type-synonym obs = act ∗ out

The observations are all their actions:
fun γ :: (state,act,out) trans ⇒ bool where
γ (Trans - a - -) =
(userOfA a ∈ Some ‘ UIDs)

fun g :: (state,act,out)trans ⇒ obs where
g (Trans - a ou -) = (a,ou)

end
theory Post-Intro

imports ../Safety-Properties ../Observation-Setup
begin

6 Post confidentiality

We prove the following property:

Given a group of users UIDs and a post PID,
that group cannot learn anything about the different versions of the post
PID (the initial created version and the later ones obtained by updating the
post)
beyond the updates performed while or last before one of the following holds:

• either a user in UIDs is the post’s owner, a friend of the owner, or the
admin

• or UIDs has at least one registered user and the post is marked as
“public”.

end

theory Post-Value-Setup
imports Post-Intro
begin

The ID of the confidential post:
consts PID :: postID

24

6.1 Preliminaries
definition eeqButPID where
eeqButPID ntcs ntcs1 ≡
∀ pid. pid 6= PID −→ ntcs pid = ntcs1 pid

lemmas eeqButPID-intro = eeqButPID-def [THEN meta-eq-to-obj-eq, THEN iffD2]

lemma eeqButPID-eeq[simp,intro!]: eeqButPID ntcs ntcs
unfolding eeqButPID-def by auto

lemma eeqButPID-sym:
assumes eeqButPID ntcs ntcs1 shows eeqButPID ntcs1 ntcs
using assms unfolding eeqButPID-def by auto

lemma eeqButPID-trans:
assumes eeqButPID ntcs ntcs1 and eeqButPID ntcs1 ntcs2 shows eeqButPID
ntcs ntcs2
using assms unfolding eeqButPID-def by (auto split: if-splits)

lemma eeqButPID-cong:
assumes eeqButPID ntcs ntcs1
and PID = PID =⇒ eqButT uu uu1
and pid 6= PID =⇒ uu = uu1
shows eeqButPID (ntcs (pid := uu)) (ntcs1 (pid := uu1))
using assms unfolding eeqButPID-def by (auto split: if-splits)

lemma eeqButPID-not-PID:
[[eeqButPID ntcs ntcs1 ; pid 6= PID]] =⇒ ntcs pid = ntcs1 pid
unfolding eeqButPID-def by (auto split: if-splits)

lemma eeqButPID-toEq:
assumes eeqButPID ntcs ntcs1
shows ntcs (PID := pst) = ntcs1 (PID := pst)
using eeqButPID-not-PID[OF assms] by auto

lemma eeqButPID-update-post:
assumes eeqButPID ntcs ntcs1
shows eeqButPID (ntcs (pid := ntc)) (ntcs1 (pid := ntc))
using eeqButPID-not-PID[OF assms]
using assms unfolding eeqButPID-def by auto

definition eqButPID :: state ⇒ state ⇒ bool where

25

eqButPID s s1 ≡
admin s = admin s1 ∧

pendingUReqs s = pendingUReqs s1 ∧ userReq s = userReq s1 ∧
userIDs s = userIDs s1 ∧ user s = user s1 ∧ pass s = pass s1 ∧

pendingFReqs s = pendingFReqs s1 ∧ friendReq s = friendReq s1 ∧ friendIDs s
= friendIDs s1 ∧

postIDs s = postIDs s1 ∧ admin s = admin s1 ∧
eeqButPID (post s) (post s1) ∧
owner s = owner s1 ∧
vis s = vis s1

lemmas eqButPID-intro = eqButPID-def [THEN meta-eq-to-obj-eq, THEN iffD2]

lemma eqButPID-refl[simp,intro!]: eqButPID s s
unfolding eqButPID-def by auto

lemma eqButPID-sym:
assumes eqButPID s s1 shows eqButPID s1 s
using assms eeqButPID-sym unfolding eqButPID-def by auto

lemma eqButPID-trans:
assumes eqButPID s s1 and eqButPID s1 s2 shows eqButPID s s2
using assms eeqButPID-trans unfolding eqButPID-def
by simp blast

lemma eqButPID-stateSelectors:
eqButPID s s1 =⇒
admin s = admin s1 ∧

pendingUReqs s = pendingUReqs s1 ∧ userReq s = userReq s1 ∧
userIDs s = userIDs s1 ∧ user s = user s1 ∧ pass s = pass s1 ∧

pendingFReqs s = pendingFReqs s1 ∧ friendReq s = friendReq s1 ∧ friendIDs s
= friendIDs s1 ∧

postIDs s = postIDs s1 ∧ admin s = admin s1 ∧
eeqButPID (post s) (post s1) ∧
owner s = owner s1 ∧
vis s = vis s1 ∧

IDsOK s = IDsOK s1
unfolding eqButPID-def IDsOK-def [abs-def] by auto

26

lemma eqButPID-not-PID:
eqButPID s s1 =⇒ pid 6= PID =⇒ post s pid = post s1 pid
unfolding eqButPID-def using eeqButPID-not-PID by auto

lemma eqButPID-actions:
assumes eqButPID s s1
shows listPosts s uid p = listPosts s1 uid p
using eqButPID-stateSelectors[OF assms]
by (auto simp: l-defs intro!: arg-cong2 [of - - - - cmap])

lemma eqButPID-setPost:
assumes eqButPID s s1
shows (post s)(PID := pst) = (post s1)(PID := pst)
using assms unfolding eqButPID-def using eeqButPID-toEq by auto

lemma eqButPID-update-post:
assumes eqButPID s s1
shows eeqButPID ((post s) (pid := ntc)) ((post s1) (pid := ntc))
using assms unfolding eqButPID-def using eeqButPID-update-post by auto

lemma eqButPID-cong[simp, intro]:∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|admin := uu1 |)) (s1

(|admin := uu2 |))∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|pendingUReqs :=

uu1 |)) (s1 (|pendingUReqs := uu2 |))∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|userReq := uu1 |))

(s1 (|userReq := uu2 |))∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|userIDs := uu1 |))

(s1 (|userIDs := uu2 |))∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|user := uu1 |)) (s1

(|user := uu2 |))∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|pass := uu1 |)) (s1

(|pass := uu2 |))∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|postIDs := uu1 |))

(s1 (|postIDs := uu2 |))∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|owner := uu1 |)) (s1

(|owner := uu2 |))∧
uu1 uu2 . eqButPID s s1 =⇒ eeqButPID uu1 uu2 =⇒ eqButPID (s (|post :=

uu1 |)) (s1 (|post := uu2 |))∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|vis := uu1 |)) (s1

(|vis := uu2 |))∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|pendingFReqs :=

uu1 |)) (s1 (|pendingFReqs := uu2 |))∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|friendReq := uu1 |))

(s1 (|friendReq := uu2 |))∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|friendIDs := uu1 |))

27

(s1 (|friendIDs := uu2 |))

unfolding eqButPID-def by auto

6.2 Value Setup
datatype value =

TVal post — updated content of the confidential post
| OVal bool — updated dynamic declassification trigger condition

Openness of the access window to the confidential information in a given
state, i.e. the dynamic declassification trigger condition:
definition openToUIDs where
openToUIDs s ≡
∃ uid ∈ UIDs.

uid ∈∈ userIDs s ∧
(uid = owner s PID ∨ uid ∈∈ friendIDs s (owner s PID) ∨
vis s PID = PublicV)

definition open where open s ≡ PID ∈∈ postIDs s ∧ openToUIDs s

lemmas open-defs = openToUIDs-def open-def

lemma eqButPID-openToUIDs:
assumes eqButPID s s1
shows openToUIDs s ←→ openToUIDs s1
using eqButPID-stateSelectors[OF assms]
unfolding openToUIDs-def by auto

lemma eqButPID-open:
assumes eqButPID s s1
shows open s ←→ open s1
using assms eqButPID-openToUIDs eqButPID-stateSelectors
unfolding open-def by auto

lemma not-open-eqButPID:
assumes 1 : ¬ open s and 2 : eqButPID s s1
shows ¬ open s1
using 1 unfolding eqButPID-open[OF 2] .

fun ϕ :: (state,act,out) trans ⇒ bool where
ϕ (Trans - (Uact (uPost uid p pid pst)) ou -) = (pid = PID ∧ ou = outOK)
|
ϕ (Trans s - - s ′) = (open s 6= open s ′)

lemma ϕ-def2 :
assumes step s a = (ou,s ′)
shows

28

ϕ (Trans s a ou s ′) ←→
(∃ uid p pst. a = Uact (uPost uid p PID pst) ∧ ou = outOK) ∨
open s 6= open s ′

proof (cases a)
case (Uact ua)
then show ?thesis

using assms
by (cases ua, auto simp: u-defs open-defs)

qed auto

fun f :: (state,act,out) trans ⇒ value where
f (Trans s (Uact (uPost uid p pid pst)) - s ′) =
(if pid = PID then TVal pst else OVal (open s ′))
|
f (Trans s - - s ′) = OVal (open s ′)

lemma Uact-uPost-step-eqButPID:
assumes a: a = Uact (uPost uid p PID pst)
and step s a = (ou,s ′)
shows eqButPID s s ′

using assms unfolding eqButPID-def eeqButPID-def
by (auto simp: u-defs split: if-splits)

lemma eqButPID-step:
assumes ss1 : eqButPID s s1
and step: step s a = (ou,s ′)
and step1 : step s1 a = (ou1 ,s1 ′)
shows eqButPID s ′ s1 ′

proof −
note [simp] = all-defs

eeqButPID-def
note [intro!] = eqButPID-intro
note ∗ =

step step1 ss1
eqButPID-stateSelectors[OF ss1]
eqButPID-setPost[OF ss1] eqButPID-update-post[OF ss1]

then show ?thesis
proof (cases a)

case (Sact x1)
then show ?thesis using ∗ by (cases x1) auto

next
case (Cact x2)
then show ?thesis using ∗ by (cases x2) auto

next
case (Dact x3)
then show ?thesis using ∗ by (cases x3) auto

next

29

case (Uact x4)
show ?thesis
proof (cases x4)

case (uUser x11 x12 x13 x14 x15)
then show ?thesis using Uact ∗ by auto

next
case (uPost x31 x32 x33 x34)
then show ?thesis using Uact ∗ by (cases x33 = PID) auto

next
case (uVisPost x51 x52 x53 x54)
then show ?thesis using Uact ∗ by (cases x53 = PID) auto

qed
qed auto

qed

lemma eqButPID-step-ϕ-imp:
assumes ss1 : eqButPID s s1
and step: step s a = (ou,s ′) and step1 : step s1 a = (ou1 ,s1 ′)
and ϕ: ϕ (Trans s a ou s ′)
shows ϕ (Trans s1 a ou1 s1 ′)
proof−

have s ′s1 ′: eqButPID s ′ s1 ′

using eqButPID-step local.step ss1 step1 by blast
show ?thesis using step step1 ϕ eqButPID-open[OF ss1] eqButPID-open[OF

s ′s1 ′]
using eqButPID-stateSelectors[OF ss1]
unfolding ϕ-def2 [OF step] ϕ-def2 [OF step1]
by (auto simp: u-defs)

qed

lemma eqButPID-step-ϕ:
assumes s ′s1 ′: eqButPID s s1
and step: step s a = (ou,s ′) and step1 : step s1 a = (ou1 ,s1 ′)
shows ϕ (Trans s a ou s ′) = ϕ (Trans s1 a ou1 s1 ′)
by (metis eqButPID-step-ϕ-imp eqButPID-sym assms)

end
theory Post
imports ../Observation-Setup Post-Value-Setup
begin

6.3 Declassification bound
fun T :: (state,act,out) trans ⇒ bool where T - = False

The bound may dynamically change from closed (B) to open (BO) access
to the confidential information (or vice versa) when the openness predicate
changes value. The bound essentially relates arbitrary value sequences in

30

the closed phase (i.e. observers learn nothing about the updates during that
phase) and identical value sequences in the open phase (i.e. observers may
learn everything about the updates during that phase); when transitioning
from a closed to an open access window (B-BO below), the last update in
the closed phase, i.e. the current version of the post, is also declassified in
addition to subsequent updates. This formalizes the “while-or-last-before”
scheme in the informal description of the confidentiality property. Moreover,
the empty value sequence is treated specially in order to capture harmless
cases where the observers may deduce that no secret updates have occurred,
e.g. if the system has not been initialized yet. See [2, Section 3.4] for a
detailed discussion of the bound.
inductive B :: value list ⇒ value list ⇒ bool
and BO :: value list ⇒ value list ⇒ bool
where
B-TVal[simp,intro!]:
(pstl = [] −→ pstl1 = []) =⇒ B (map TVal pstl) (map TVal pstl1)
|B-BO[intro]:

BO vl vl1 =⇒ (pstl = [] ←→ pstl1 = []) =⇒ (pstl 6= [] =⇒ last pstl = last pstl1)
=⇒

B (map TVal pstl @ OVal True # vl)
(map TVal pstl1 @ OVal True # vl1)

|BO-TVal[simp,intro!]:
BO (map TVal pstl) (map TVal pstl)
|BO-B[intro]:

B vl vl1 =⇒
BO (map TVal pstl @ OVal False # vl) (map TVal pstl @ OVal False # vl1)

lemma B-not-Nil: B vl vl1 =⇒ vl = [] =⇒ vl1 = []
by(auto elim: B.cases)

lemma B-OVal-True:
assumes B (OVal True # vl ′) vl1
shows ∃ vl1 ′. BO vl ′ vl1 ′ ∧ vl1 = OVal True # vl1 ′

using assms apply(auto elim!: B.cases)
by (metis append-self-conv2 hd-append list.map-disc-iff list.map-sel(1) list.sel(1)

list.sel(3) value.distinct(1))+

unbundle no relcomp-syntax

interpretation BD-Security-IO where
istate = istate and step = step and
ϕ = ϕ and f = f and γ = γ and g = g and T = T and B = B
done

6.4 Unwinding proof
lemma eqButPID-step-γ-out:

31

assumes ss1 : eqButPID s s1
and step: step s a = (ou,s ′) and step1 : step s1 a = (ou1 ,s1 ′)
and op: ¬ open s
and sT : reachNT s and s1 : reach s1
and γ: γ (Trans s a ou s ′)
shows ou = ou1
proof−

note [simp] = all-defs
open-defs

note s = reachNT-reach[OF sT]
note willUse =
step step1 γ
not-open-eqButPID[OF op ss1]
reach-visPost[OF s]
eqButPID-stateSelectors[OF ss1]
eqButPID-actions[OF ss1]
eqButPID-not-PID[OF ss1]
{fix uid p pid assume a = Ract (rPost uid p pid)
hence ?thesis using willUse
by (cases pid = PID) fastforce+

} note intCase1 = this
show ?thesis
proof (cases a)

case (Sact x1)
then show ?thesis using intCase1 willUse by (cases x1) auto

next
case (Cact x2)
then show ?thesis using intCase1 willUse by (cases x2) auto

next
case (Dact x3)
then show ?thesis using intCase1 willUse by (cases x3) auto

next
case (Uact x4)
then show ?thesis using intCase1 willUse by (cases x4) auto

next
case (Ract x5)
then show ?thesis using intCase1 willUse by (cases x5) auto

next
case (Lact x6)
then show ?thesis using intCase1 willUse by (cases x6) auto

qed
qed

lemma eqButPID-step-eq:
assumes ss1 : eqButPID s s1
and a: a = Uact (uPost uid p PID pst) ou = outOK
and step: step s a = (ou, s ′) and step1 : step s1 a = (ou ′, s1 ′)
shows s ′ = s1 ′

32

using ss1 step step1
using eqButPID-stateSelectors[OF ss1] eqButPID-setPost[OF ss1]
unfolding a by (auto simp: u-defs)

definition ∆0 :: state ⇒ value list ⇒ state ⇒ value list ⇒ bool where
∆0 s vl s1 vl1 ≡
¬ PID ∈∈ postIDs s ∧
s = s1 ∧ B vl vl1

definition ∆1 :: state ⇒ value list ⇒ state ⇒ value list ⇒ bool where
∆1 s vl s1 vl1 ≡
PID ∈∈ postIDs s ∧
(∃ pstl pstl1 . (pstl = [] −→ pstl1 = []) ∧ vl = map TVal pstl ∧ vl1 = map TVal

pstl1) ∧
eqButPID s s1 ∧ ¬ open s

definition ∆2 :: state ⇒ value list ⇒ state ⇒ value list ⇒ bool where
∆2 s vl s1 vl1 ≡
PID ∈∈ postIDs s ∧
(∃ pstl. vl = map TVal pstl ∧ vl1 = map TVal pstl) ∧
s = s1 ∧ open s

definition ∆31 :: state ⇒ value list ⇒ state ⇒ value list ⇒ bool where
∆31 s vl s1 vl1 ≡
PID ∈∈ postIDs s ∧
(∃ pstl pstl1 vll vll1 .

BO vll vll1 ∧ pstl 6= [] ∧ pstl1 6= [] ∧ last pstl = last pstl1 ∧
vl = map TVal pstl @ OVal True # vll ∧ vl1 = map TVal pstl1 @ OVal True

vll1) ∧
eqButPID s s1 ∧ ¬ open s

definition ∆32 :: state ⇒ value list ⇒ state ⇒ value list ⇒ bool where
∆32 s vl s1 vl1 ≡
PID ∈∈ postIDs s ∧
(∃ vll vll1 .

BO vll vll1 ∧
vl = OVal True # vll ∧ vl1 = OVal True # vll1) ∧

s = s1 ∧ ¬ open s

definition ∆4 :: state ⇒ value list ⇒ state ⇒ value list ⇒ bool where
∆4 s vl s1 vl1 ≡
PID ∈∈ postIDs s ∧
(∃ pstl vll vll1 .

B vll vll1 ∧
vl = map TVal pstl @ OVal False # vll ∧ vl1 = map TVal pstl @ OVal False

vll1) ∧
s = s1 ∧ open s

lemma istate-∆0 :

33

assumes B: B vl vl1
shows ∆0 istate vl istate vl1
using assms unfolding ∆0-def istate-def by auto

lemma unwind-cont-∆0 : unwind-cont ∆0 {∆0 ,∆1 ,∆2 ,∆31 ,∆32 ,∆4}
proof(rule, simp)

let ?∆ = λs vl s1 vl1 . ∆0 s vl s1 vl1 ∨
∆1 s vl s1 vl1 ∨ ∆2 s vl s1 vl1 ∨
∆31 s vl s1 vl1 ∨ ∆32 s vl s1 vl1 ∨ ∆4 s vl s1 vl1

fix s s1 :: state and vl vl1 :: value list
assume rsT : reachNT s and rs1 : reach s1 and ∆0 s vl s1 vl1
hence rs: reach s and ss1 : s1 = s and B: B vl vl1 and PID: ¬ PID ∈∈ postIDs

s
using reachNT-reach unfolding ∆0-def by auto
have vlvl1 : vl = [] =⇒ vl1 = [] using B-not-Nil B by auto
have op: ¬ open s using PID unfolding open-defs by auto
show iaction ?∆ s vl s1 vl1 ∨

((vl = [] −→ vl1 = []) ∧ reaction ?∆ s vl s1 vl1) (is ?iact ∨ (- ∧ ?react))
proof−

have ?react proof
fix a :: act and ou :: out and s ′ :: state and vl ′
let ?trn = Trans s a ou s ′ let ?trn1 = Trans s1 a ou s ′

assume step: step s a = (ou, s ′) and T : ¬ T ?trn and c: consume ?trn vl vl ′
show match ?∆ s s1 vl1 a ou s ′ vl ′ ∨ ignore ?∆ s s1 vl1 a ou s ′ vl ′ (is ?match

∨ ?ignore)
proof−

have ?match proof(cases ∃ uid p text. a = Cact (cPost uid p PID text) ∧
ou = outOK)

case True
then obtain uid p text where a: a = Cact (cPost uid p PID text) and

ou: ou = outOK by auto
have PID ′: PID ∈∈ postIDs s ′

using step PID unfolding a ou by (auto simp: c-defs)
show ?thesis proof(cases uid ∈ UIDs ∨ (∃ uid ′ ∈ UIDs. uid ′ ∈∈ userIDs

s ∧ (uid ′ ∈∈ friendIDs s uid)))
case True note uid = True
have op ′: open s ′ using uid using step PID ′ unfolding a ou by (auto

simp: c-defs open-defs)
have ϕ: ϕ ?trn using op op ′ unfolding ϕ-def2 [OF step] by simp
then obtain v where vl: vl = v # vl ′ and f : f ?trn = v
using c unfolding consume-def ϕ-def2 by(cases vl) auto
have v: v = OVal True using f op op ′ unfolding a by simp
then obtain vl1 ′ where BO ′: BO vl ′ vl1 ′ and vl1 : vl1 = OVal True #

vl1 ′

using B-OVal-True B unfolding vl v by auto
show ?thesis proof

show validTrans ?trn1 unfolding ss1 using step by simp
next

show consume ?trn1 vl1 vl1 ′ using ϕ f unfolding vl1 v consume-def

34

ss1 by simp
next

show γ ?trn = γ ?trn1 unfolding ss1 by simp
next

assume γ ?trn thus g ?trn = g ?trn1 unfolding ss1 by simp
next

show ?∆ s ′ vl ′ s ′ vl1 ′ using BO ′ proof(cases rule: BO.cases)
case (BO-TVal pstl)
hence ∆2 s ′ vl ′ s ′ vl1 ′ using PID ′ op ′ unfolding ∆2-def by auto
thus ?thesis by simp

next
case (BO-B vll vll1 pstl)
hence ∆4 s ′ vl ′ s ′ vl1 ′ using PID ′ op ′ unfolding ∆4-def by auto
thus ?thesis by simp

qed
qed

next
case False note uid = False
have op ′: ¬ open s ′ using step op uid unfolding open-defs a

by (auto simp add: c-defs reach-not-postIDs-vis-FriendV rs)
have ϕ: ¬ ϕ ?trn using op op ′ a unfolding ϕ-def2 [OF step] by auto
hence vl ′: vl ′ = vl using c unfolding consume-def by simp
show ?thesis proof

show validTrans ?trn1 unfolding ss1 using step by simp
next

show consume ?trn1 vl1 vl1 using ϕ unfolding consume-def ss1 by
auto

next
show γ ?trn = γ ?trn1 unfolding ss1 by simp

next
assume γ ?trn thus g ?trn = g ?trn1 unfolding ss1 by simp

next
show ?∆ s ′ vl ′ s ′ vl1 using B proof(cases rule: B.cases)

case (B-TVal pstl)
hence ∆1 s ′ vl ′ s ′ vl1 using PID ′ op ′ unfolding ∆1-def vl ′ by auto
thus ?thesis by simp

next
case (B-BO vll vll1 pstl pstl1)
show ?thesis
proof(cases pstl 6= [] ∧ pstl1 6= [])

case True
hence ∆31 s ′ vl ′ s ′ vl1 using B-BO PID ′ op ′ unfolding ∆31-def

vl ′ by auto
thus ?thesis by simp

next
case False
hence ∆32 s ′ vl ′ s ′ vl1 using B-BO PID ′ op ′ unfolding ∆32-def

vl ′ by auto
thus ?thesis by simp

35

qed
qed

qed
qed

next
case False note a = False
have op ′: ¬ open s ′

using a step PID op unfolding open-defs
by (cases a) (auto elim: step-elims simp: all-defs)

have ϕ: ¬ ϕ ?trn using PID step op op ′ unfolding ϕ-def2 [OF step] by
(auto simp: u-defs)

hence vl ′: vl ′ = vl using c unfolding consume-def by simp
have PID ′: ¬ PID ∈∈ postIDs s ′

using step PID a
by (cases a) (auto elim: step-elims simp: all-defs)

show ?thesis proof
show validTrans ?trn1 unfolding ss1 using step by simp

next
show consume ?trn1 vl1 vl1 using ϕ unfolding consume-def ss1 by

auto
next

show γ ?trn = γ ?trn1 unfolding ss1 by simp
next

assume γ ?trn thus g ?trn = g ?trn1 unfolding ss1 by simp
next

have ∆0 s ′ vl ′ s ′ vl1 using a B PID ′ unfolding ∆0-def vl ′ by simp
thus ?∆ s ′ vl ′ s ′ vl1 by simp

qed
qed
thus ?thesis by simp

qed
qed

thus ?thesis using vlvl1 by simp
qed

qed

lemma unwind-cont-∆1 : unwind-cont ∆1 {∆1}
proof(rule, simp)

let ?∆ = λs vl s1 vl1 . ∆1 s vl s1 vl1
fix s s1 :: state and vl vl1 :: value list
assume rsT : reachNT s and rs1 : reach s1 and ∆1 s vl s1 vl1
then obtain pstl pstl1 where
t: pstl = [] −→ pstl1 = []
and vl: vl = map TVal pstl and vl1 : vl1 = map TVal pstl1
and rs: reach s and ss1 : eqButPID s s1 and op: ¬ open s and PID: PID ∈∈

postIDs s
using reachNT-reach unfolding ∆1-def by auto
have vlvl1 : vl = [] =⇒ vl1 = [] using t unfolding vl vl1 by auto
have PID1 : PID ∈∈ postIDs s1 using eqButPID-stateSelectors[OF ss1] PID by

36

auto
have own: owner s PID ∈ set (userIDs s) using reach-owner-userIDs[OF rs

PID] .
hence own1 : owner s1 PID ∈ set (userIDs s1) using eqButPID-stateSelectors[OF

ss1] by auto
have op1 : ¬ open s1 using op ss1 eqButPID-open by auto
show iaction ?∆ s vl s1 vl1 ∨

((vl = [] −→ vl1 = []) ∧ reaction ?∆ s vl s1 vl1) (is ?iact ∨ (- ∧ ?react))
proof(cases pstl1)

case (Cons text1 pstll1) note pstl1 = Cons
define uid where uid: uid ≡ owner s PID define p where p: p ≡ pass s uid
define a1 where a1 : a1 ≡ Uact (uPost uid p PID text1)
have uid1 : uid = owner s1 PID and p1 : p = pass s1 uid unfolding uid p
using eqButPID-stateSelectors[OF ss1] by auto
obtain ou1 s1 ′ where step1 : step s1 a1 = (ou1 , s1 ′) by(cases step s1 a1)

auto
have ou1 : ou1 = outOK using step1 PID1 own1 unfolding a1 uid1 p1 by

(auto simp: u-defs)
have op1 ′: ¬ open s1 ′ using step1 op1 unfolding a1 ou1 open-defs by (auto

simp: u-defs)
have uid: uid /∈ UIDs unfolding uid using op PID own unfolding open-defs

by auto
let ?trn1 = Trans s1 a1 ou1 s1 ′

have ?iact proof
show step s1 a1 = (ou1 , s1 ′) using step1 .

next
show ϕ: ϕ ?trn1 unfolding ϕ-def2 [OF step1] a1 ou1 by simp
show consume ?trn1 vl1 (map TVal pstll1)
using ϕ unfolding vl1 consume-def pstl1 a1 by auto

next
show ¬ γ ?trn1 using uid unfolding a1 by auto

next
have eqButPID s1 s1 ′ using Uact-uPost-step-eqButPID[OF - step1] a1 by

auto
hence ss1 ′: eqButPID s s1 ′ using eqButPID-trans ss1 by blast
show ?∆ s vl s1 ′ (map TVal pstll1) using PID op t ss1 ′ unfolding ∆1-def

vl pstl1 by auto
qed
thus ?thesis by simp

next
case Nil note pstl1 = Nil
have ?react proof

fix a :: act and ou :: out and s ′ :: state and vl ′
let ?trn = Trans s a ou s ′

assume step: step s a = (ou, s ′) and T : ¬ T ?trn and c: consume ?trn vl vl ′
have PID ′: PID ∈∈ postIDs s ′ using reach-postIDs-persist[OF PID step] .
obtain ou1 s1 ′ where step1 : step s1 a = (ou1 , s1 ′) by(cases step s1 a) auto
let ?trn1 = Trans s1 a ou1 s1 ′

show match ?∆ s s1 vl1 a ou s ′ vl ′ ∨ ignore ?∆ s s1 vl1 a ou s ′ vl ′ (is ?match

37

∨ ?ignore)
proof(cases ∃ uid p textt. a = Uact (uPost uid p PID textt) ∧ ou = outOK)

case True then obtain uid p textt where
a: a = Uact (uPost uid p PID textt) and ou: ou = outOK by auto
hence ϕ: ϕ ?trn unfolding ϕ-def2 [OF step] by auto
then obtain text pstl ′ where pstl: pstl = text # pstl ′ and f : f ?trn = TVal

text
and vl ′: vl ′ = map TVal pstl ′
using c unfolding consume-def ϕ-def2 vl by (cases pstl) auto
have textt: textt = text using f unfolding a by auto
have uid: uid /∈ UIDs using step op PID unfolding a ou open-defs by

(auto simp: u-defs)
have eqButPID s s ′ using Uact-uPost-step-eqButPID[OF a step] by auto
hence s ′s1 : eqButPID s ′ s1 using eqButPID-sym eqButPID-trans ss1 by

blast
have op ′: ¬ open s ′ using step PID ′ op unfolding a ou open-defs by (auto

simp: u-defs)
have ?ignore proof

show ¬ γ ?trn unfolding a using uid by auto
next

show ?∆ s ′ vl ′ s1 vl1 using PID ′ s ′s1 op ′ unfolding ∆1-def vl ′ vl1 pstl1
by auto

qed
thus ?thesis by simp

next
case False note a = False
{assume ϕ: ϕ ?trn

then obtain text pstl ′ where pstl: pstl = text # pstl ′ and f : f ?trn =
TVal text

and vl ′: vl ′ = map TVal pstl ′ using c unfolding consume-def vl by (cases
pstl) auto

have False using f a ϕ by (cases ?trn rule: ϕ.cases) auto
}
hence ϕ: ¬ ϕ ?trn by auto
have op ′: ¬ open s ′ using a op ϕ unfolding ϕ-def2 [OF step] by auto
have vl ′: vl ′ = vl using c ϕ unfolding consume-def by auto
have s ′s1 ′: eqButPID s ′ s1 ′ using eqButPID-step[OF ss1 step step1] .
have op1 ′: ¬ open s1 ′ using op ′ eqButPID-open[OF s ′s1 ′] by simp
have

∧
uid p text. e-updatePost s1 uid p PID text ←→ e-updatePost s uid

p PID text
using eqButPID-stateSelectors[OF ss1] unfolding u-defs by auto
hence ou1 :

∧
uid p text. a = Uact (uPost uid p PID text) =⇒ ou1 = ou

using step step1 by auto
hence ϕ1 : ¬ ϕ ?trn1 using a op1 op1 ′ unfolding ϕ-def2 [OF step1] by

auto
have ?match proof

show validTrans ?trn1 using step1 by simp
next

show consume ?trn1 vl1 vl1 using ϕ1 unfolding consume-def by simp

38

next
show γ ?trn = γ ?trn1 unfolding ss1 by simp

next
assume γ ?trn

hence ou1 = ou using eqButPID-step-γ-out[OF ss1 step step1 op rsT
rs1] by simp

thus g ?trn = g ?trn1 by simp
next

show ?∆ s ′ vl ′ s1 ′ vl1 using s ′s1 ′ op ′ PID ′ unfolding ∆1-def vl ′ vl vl1
pstl1 by auto

qed
thus ?thesis by simp
qed

qed
thus ?thesis using vlvl1 by simp

qed
qed

lemma unwind-cont-∆2 : unwind-cont ∆2 {∆2}
proof(rule, simp)

let ?∆ = λs vl s1 vl1 . ∆2 s vl s1 vl1
fix s s1 :: state and vl vl1 :: value list
assume rsT : reachNT s and rs1 : reach s1 and ∆2 s vl s1 vl1
then obtain pstl where
vl: vl = map TVal pstl and vl1 : vl1 = map TVal pstl
and rs: reach s and ss1 : s1 = s and op: open s and PID: PID ∈∈ postIDs s
using reachNT-reach unfolding ∆2-def by fastforce
have vlvl1 : vl = [] =⇒ vl1 = [] unfolding vl vl1 by auto
have own: owner s PID ∈ set (userIDs s) using reach-owner-userIDs[OF rs

PID] .
show iaction ?∆ s vl s1 vl1 ∨

((vl = [] −→ vl1 = []) ∧ reaction ?∆ s vl s1 vl1) (is ?iact ∨ (- ∧ ?react))
proof−

have ?react proof
fix a :: act and ou :: out and s ′ :: state and vl ′
let ?trn = Trans s a ou s ′ let ?trn1 = Trans s1 a ou s ′

assume step: step s a = (ou, s ′) and T : ¬ T ?trn and c: consume ?trn vl vl ′
have PID ′: PID ∈∈ postIDs s ′ using reach-postIDs-persist[OF PID step] .
{assume op ′: ¬ open s ′

hence ϕ: ϕ ?trn using op unfolding ϕ-def2 [OF step] by simp
then obtain text pstl ′ where pstl: pstl = text # pstl ′ and f : f ?trn = TVal

text and vl ′: vl ′ = map TVal pstl ′
using c unfolding consume-def ϕ-def2 vl by(cases pstl) auto
obtain uid p where a: a = Uact (uPost uid p PID text) and ou: ou =

outOK
using f ϕ by (cases ?trn rule: ϕ.cases) auto

have False using step op op ′ PID PID ′ unfolding a ou open-defs by (auto
simp: u-defs)

}

39

hence op ′: open s ′ by auto
show match ?∆ s s1 vl1 a ou s ′ vl ′ ∨ ignore ?∆ s s1 vl1 a ou s ′ vl ′ (is ?match

∨ ?ignore)
proof−

have ?match proof(cases ϕ ?trn)
case True note ϕ = True
then obtain text pstl ′ where pstl: pstl = text # pstl ′ and f : f ?trn =

TVal text and vl ′: vl ′ = map TVal pstl ′
using c unfolding consume-def ϕ-def2 vl by(cases pstl) auto
obtain uid p textt where a: a = Uact (uPost uid p PID textt) and ou:

ou = outOK
using ϕ op op ′ unfolding ϕ-def2 [OF step] by auto
have textt: textt = text using f unfolding a by simp
show ?thesis proof

show validTrans ?trn1 unfolding ss1 using step by simp
next

show consume ?trn1 vl1 vl ′ using ϕ unfolding ss1 consume-def vl1 vl
vl ′ pstl f by auto

next
show γ ?trn = γ ?trn1 unfolding ss1 by simp

next
assume γ ?trn thus g ?trn = g ?trn1 unfolding ss1 by simp

next
show ?∆ s ′ vl ′ s ′ vl ′ using PID ′ op ′ unfolding ∆2-def vl1 vl ′ vl by auto
qed

next
case False note ϕ = False
hence vl ′: vl ′ = vl using c unfolding consume-def by auto
show ?thesis proof

show validTrans ?trn1 unfolding ss1 using step by simp
next

show consume ?trn1 vl1 vl using ϕ unfolding ss1 consume-def vl1 vl
vl ′ by auto

next
show γ ?trn = γ ?trn1 unfolding ss1 by simp

next
assume γ ?trn thus g ?trn = g ?trn1 unfolding ss1 by simp

next
show ?∆ s ′ vl ′ s ′ vl using PID ′ op ′ unfolding ∆2-def vl1 vl ′ vl by auto

qed
qed

thus ?thesis by simp
qed

qed
thus ?thesis using vlvl1 by simp
qed

qed

lemma unwind-cont-∆31 : unwind-cont ∆31 {∆31 ,∆32}

40

proof(rule, simp)
let ?∆ = λs vl s1 vl1 . ∆31 s vl s1 vl1 ∨ ∆32 s vl s1 vl1
fix s s1 :: state and vl vl1 :: value list
assume rsT : reachNT s and rs1 : reach s1 and ∆31 s vl s1 vl1
then obtain pstl pstl1 vll vll1 where BO: BO vll vll1 and
t: pstl 6= [] pstl1 6= [] last pstl = last pstl1
and vl: vl = map TVal pstl @ OVal True # vll
and vl1 : vl1 = map TVal pstl1 @ OVal True # vll1
and rs: reach s and ss1 : eqButPID s s1 and op: ¬ open s and PID: PID ∈∈

postIDs s
using reachNT-reach unfolding ∆31-def by auto
have vlvl1 : vl = [] =⇒ vl1 = [] using t unfolding vl vl1 by auto
have PID1 : PID ∈∈ postIDs s1 using eqButPID-stateSelectors[OF ss1] PID by

auto
have own: owner s PID ∈ set (userIDs s) using reach-owner-userIDs[OF rs

PID] .
hence own1 : owner s1 PID ∈ set (userIDs s1) using eqButPID-stateSelectors[OF

ss1] by auto
have op1 : ¬ open s1 using op ss1 eqButPID-open by auto
show iaction ?∆ s vl s1 vl1 ∨

((vl = [] −→ vl1 = []) ∧ reaction ?∆ s vl s1 vl1) (is ?iact ∨ (- ∧ ?react))
proof(cases length pstl1 ≥ 2)

case True then obtain text1 pstll1 where pstl1 : pstl1 = text1 # pstll1
and pstll1 : pstll1 6= [] by (cases pstl1) fastforce+
define uid where uid: uid ≡ owner s PID define p where p: p ≡ pass s uid
define a1 where a1 : a1 ≡ Uact (uPost uid p PID text1)
have uid1 : uid = owner s1 PID and p1 : p = pass s1 uid unfolding uid p
using eqButPID-stateSelectors[OF ss1] by auto
obtain ou1 s1 ′ where step1 : step s1 a1 = (ou1 , s1 ′) by(cases step s1 a1)

auto
have ou1 : ou1 = outOK using step1 PID1 own1 unfolding a1 uid1 p1 by

(auto simp: u-defs)
have op1 ′: ¬ open s1 ′ using step1 op1 unfolding a1 ou1 open-defs by (auto

simp: u-defs)
have uid: uid /∈ UIDs unfolding uid using op PID own unfolding open-defs

by auto
let ?trn1 = Trans s1 a1 ou1 s1 ′

have ?iact proof
show step s1 a1 = (ou1 , s1 ′) using step1 .

next
show ϕ: ϕ ?trn1 unfolding ϕ-def2 [OF step1] a1 ou1 by simp
show consume ?trn1 vl1 (map TVal pstll1 @ OVal True # vll1)
using ϕ unfolding vl1 consume-def pstl1 a1 by auto

next
show ¬ γ ?trn1 using uid unfolding a1 by auto

next
have eqButPID s1 s1 ′ using Uact-uPost-step-eqButPID[OF - step1] a1 by

auto
hence ss1 ′: eqButPID s s1 ′ using eqButPID-trans ss1 by blast

41

have ∆31 s vl s1 ′ (map TVal pstll1 @ OVal True # vll1)
using BO PID op t ss1 ′ pstll1 unfolding ∆31-def vl pstl1 by auto
thus ?∆ s vl s1 ′ (map TVal pstll1 @ OVal True # vll1) by simp

qed
thus ?thesis by simp

next
case False then obtain text1 where pstl1 : pstl1 = [text1] using t
by (cases pstl1) (auto simp: Suc-leI)
have ?react proof

fix a :: act and ou :: out and s ′ :: state and vl ′
let ?trn = Trans s a ou s ′

assume step: step s a = (ou, s ′) and T : ¬ T ?trn and c: consume ?trn vl vl ′
obtain ou1 s1 ′ where step1 : step s1 a = (ou1 , s1 ′) by(cases step s1 a) auto
let ?trn1 = Trans s1 a ou1 s1 ′

show match ?∆ s s1 vl1 a ou s ′ vl ′ ∨ ignore ?∆ s s1 vl1 a ou s ′ vl ′ (is ?match
∨ ?ignore)

proof(cases ∃ uid p textt. a = Uact (uPost uid p PID textt) ∧ ou = outOK)
case True then obtain uid p textt where
a: a = Uact (uPost uid p PID textt) and ou: ou = outOK by auto
hence ϕ: ϕ ?trn unfolding ϕ-def2 [OF step] by auto
then obtain text pstl ′ where pstl: pstl = text # pstl ′ and f : f ?trn = TVal

text
and vl ′: vl ′ = map TVal pstl ′ @ OVal True # vll
using c t unfolding consume-def ϕ-def2 vl by (cases pstl) auto
have textt: textt = text using f unfolding a by auto
have uid: uid /∈ UIDs using step op PID unfolding a ou open-defs by

(auto simp: u-defs)
have eqButPID s s ′ using Uact-uPost-step-eqButPID[OF a step] by auto
hence s ′s1 : eqButPID s ′ s1 using eqButPID-sym eqButPID-trans ss1 by

blast
have s ′s1 ′: s ′ = s1 ′ using step step1 ss1 eqButPID-step-eq unfolding a ou

by blast
have e-updatePost s ′ uid p PID textt using step unfolding a ou by(auto

simp: u-defs)
hence ϕ1 : ϕ ?trn1 using step1 unfolding a ϕ-def2 [OF step1] s ′s1 ′ by

auto
hence f1 : f ?trn1 = TVal text unfolding a textt by simp
show ?thesis proof(cases pstl ′ = [])

case True note pstl ′ = True
hence pstl: pstl = [text] unfolding pstl by auto
hence text1 : text1 = text using pstl pstl1 t by auto

have PID ′: PID ∈∈ postIDs s ′ using reach-postIDs-persist[OF PID step] .
have op ′: ¬ open s ′ using step PID ′ op unfolding a ou open-defs by

(auto simp: u-defs)
have ou1 : ou1 = outOK using ϕ1 op1 op ′ unfolding ϕ-def2 [OF step1]

s ′s1 ′ by auto
have ?match proof

show validTrans ?trn1 using step1 by simp
next

42

show consume ?trn1 vl1 (OVal True # vll1)
using ϕ1 f1 unfolding consume-def vl1 pstl1 pstl text1 by simp

next
show γ ?trn = γ ?trn1 unfolding ss1 by simp

next
assume γ ?trn
show g ?trn = g ?trn1 using ou ou1 by simp

next
have ∆32 s ′ vl ′ s1 ′ (OVal True # vll1)
using s ′s1 ′ BO PID ′ op ′ unfolding ∆32-def vl ′ pstl ′ by auto
thus ?∆ s ′ vl ′ s1 ′ (OVal True # vll1) by simp

qed
thus ?thesis by simp

next
case False note pstl ′NE = False
have lpstl ′: last pstl ′ = text1 using t pstl ′NE unfolding pstl pstl1 by

simp
have ?ignore proof

show ¬ γ ?trn unfolding a using uid by auto
next
have PID ′: PID ∈∈ postIDs s ′ using reach-postIDs-persist[OF PID step]

.
have op ′: ¬ open s ′ using step PID ′ op unfolding a ou open-defs by

(auto simp: u-defs)
have ou1 : ou1 = outOK using ϕ1 op1 op ′ unfolding ϕ-def2 [OF step1]

s ′s1 ′ by auto
have ∆31 s ′ vl ′ s1 vl1
using PID ′ s ′s1 op ′ BO pstl ′NE lpstl ′ unfolding ∆31-def vl ′ vl1 pstl1

by force
thus ?∆ s ′ vl ′ s1 vl1 by simp

qed
thus ?thesis by simp

qed
next

case False note a = False
{assume ϕ: ϕ ?trn

then obtain text pstl ′ where pstl: pstl = text # pstl ′ and f : f ?trn =
TVal text

and vl ′: vl ′ = map TVal pstl ′ @ OVal True # vll
using c t unfolding consume-def vl by (cases pstl) auto
have False using f a ϕ by (cases ?trn rule: ϕ.cases) auto

}
hence ϕ: ¬ ϕ ?trn by auto
have op ′: ¬ open s ′ using a op ϕ unfolding ϕ-def2 [OF step] by auto
have vl ′: vl ′ = vl using c ϕ unfolding consume-def by auto
have s ′s1 ′: eqButPID s ′ s1 ′ using eqButPID-step[OF ss1 step step1] .
have op1 ′: ¬ open s1 ′ using op ′ eqButPID-open[OF s ′s1 ′] by simp
have

∧
uid p text. e-updatePost s1 uid p PID text ←→ e-updatePost s uid

p PID text

43

using eqButPID-stateSelectors[OF ss1] unfolding u-defs by auto
hence ou1 :

∧
uid p text. a = Uact (uPost uid p PID text) =⇒ ou1 = ou

using step step1 by auto
hence ϕ1 : ¬ ϕ ?trn1 using a op1 op1 ′ unfolding ϕ-def2 [OF step1] by

auto
have ?match proof

show validTrans ?trn1 using step1 by simp
next

show consume ?trn1 vl1 vl1 using ϕ1 unfolding consume-def by simp
next

show γ ?trn = γ ?trn1 unfolding ss1 by simp
next

assume γ ?trn
hence ou1 = ou using eqButPID-step-γ-out[OF ss1 step step1 op rsT

rs1] by simp
thus g ?trn = g ?trn1 by simp

next
have PID ′: PID ∈∈ postIDs s ′ using reach-postIDs-persist[OF PID step] .
have ∆31 s ′ vl ′ s1 ′ vl1 using s ′s1 ′ op ′ PID ′ BO t
unfolding ∆31-def vl ′ vl vl1 pstl1 by fastforce
thus ?∆ s ′ vl ′ s1 ′ vl1 by simp

qed
thus ?thesis by simp
qed

qed
thus ?thesis using vlvl1 by simp

qed
qed

lemma unwind-cont-∆32 : unwind-cont ∆32 {∆2 ,∆32 ,∆4}
proof(rule, simp)

let ?∆ = λs vl s1 vl1 . ∆2 s vl s1 vl1 ∨ ∆32 s vl s1 vl1 ∨ ∆4 s vl s1 vl1
fix s s1 :: state and vl vl1 :: value list
assume rsT : reachNT s and rs1 : reach s1 and ∆32 s vl s1 vl1
then obtain vll vll1 where BO: BO vll vll1
and vl: vl = OVal True # vll
and vl1 : vl1 = OVal True # vll1
and rs: reach s and ss1 : s1 = s and op: ¬ open s and PID: PID ∈∈ postIDs s
using reachNT-reach unfolding ∆32-def by fastforce
have vlvl1 : vl = [] =⇒ vl1 = [] unfolding vl vl1 by auto
show iaction ?∆ s vl s1 vl1 ∨

((vl = [] −→ vl1 = []) ∧ reaction ?∆ s vl s1 vl1) (is ?iact ∨ (- ∧ ?react))
proof−

have ?react proof
fix a :: act and ou :: out and s ′ :: state and vl ′
let ?trn = Trans s a ou s ′

assume step: step s a = (ou, s ′) and T : ¬ T ?trn and c: consume ?trn vl vl ′
have PID ′: PID ∈∈ postIDs s ′ using reach-postIDs-persist[OF PID step] .
let ?trn1 = Trans s1 a ou s ′

44

show match ?∆ s s1 vl1 a ou s ′ vl ′ ∨ ignore ?∆ s s1 vl1 a ou s ′ vl ′ (is ?match
∨ ?ignore)

proof
show ?match proof(cases ϕ ?trn)

case True note ϕ = True
hence f : f ?trn = OVal True and vl ′: vl ′ = vll using c unfolding

consume-def vl by auto
have op ′: open s ′ using op ϕ f unfolding ϕ-def2 [OF step] by auto
show ?thesis proof

show validTrans ?trn1 using step unfolding ss1 by simp
next

show consume ?trn1 vl1 vll1 using ϕ f unfolding consume-def vl1 ss1
by simp

next
show γ ?trn = γ ?trn1 unfolding ss1 by simp

next
assume γ ?trn
thus g ?trn = g ?trn1 by simp

next
show ?∆ s ′ vl ′ s ′ vll1 using BO proof(cases rule: BO.cases)

case (BO-TVal pstll)
hence ∆2 s ′ vl ′ s ′ vll1 using PID ′ op ′ unfolding ∆2-def vl ′ by auto
thus ?thesis by simp

next
case (BO-B vlll pstll)
hence ∆4 s ′ vl ′ s ′ vll1 using PID ′ op ′ unfolding ∆4-def vl ′ by auto
thus ?thesis by simp

qed
qed

next
case False note ϕ = False
hence vl ′: vl ′ = vl using c unfolding consume-def vl by auto
have op ′: ¬ open s ′ using op ϕ unfolding ϕ-def2 [OF step] by auto
show ?thesis proof

show validTrans ?trn1 using step unfolding ss1 by simp
next
show consume ?trn1 vl1 vl1 using ϕ unfolding consume-def vl1 ss1 by

simp
next

show γ ?trn = γ ?trn1 unfolding ss1 by simp
next

assume γ ?trn
thus g ?trn = g ?trn1 by simp

next
have ∆32 s ′ vl ′ s ′ vl1 using BO PID ′ op ′ unfolding ∆32-def vl ′ vl vl1

by simp
thus ?∆ s ′ vl ′ s ′ vl1 by simp

qed
qed

45

qed
qed

thus ?thesis using vlvl1 by simp
qed

qed

lemma unwind-cont-∆4 : unwind-cont ∆4 {∆1 ,∆31 ,∆32 ,∆4}
proof(rule, simp)

let ?∆ = λs vl s1 vl1 . ∆1 s vl s1 vl1 ∨ ∆31 s vl s1 vl1 ∨ ∆32 s vl s1 vl1 ∨ ∆4
s vl s1 vl1

fix s s1 :: state and vl vl1 :: value list
assume rsT : reachNT s and rs1 : reach s1 and ∆4 s vl s1 vl1
then obtain pstl vll vll1 where B: B vll vll1
and vl: vl = map TVal pstl @ OVal False # vll and vl1 : vl1 = map TVal pstl

@ OVal False # vll1
and rs: reach s and ss1 : s1 = s and op: open s and PID: PID ∈∈ postIDs s
using reachNT-reach unfolding ∆4-def by fastforce
have vlvl1 : vl = [] =⇒ vl1 = [] unfolding vl vl1 by auto
have own: owner s PID ∈ set (userIDs s) using reach-owner-userIDs[OF rs

PID] .
show iaction ?∆ s vl s1 vl1 ∨

((vl = [] −→ vl1 = []) ∧ reaction ?∆ s vl s1 vl1) (is ?iact ∨ (- ∧ ?react))
proof−

have ?react proof
fix a :: act and ou :: out and s ′ :: state and vl ′
let ?trn = Trans s a ou s ′ let ?trn1 = Trans s1 a ou s ′

assume step: step s a = (ou, s ′) and T : ¬ T ?trn and c: consume ?trn vl vl ′
have PID ′: PID ∈∈ postIDs s ′ using reach-postIDs-persist[OF PID step] .
show match ?∆ s s1 vl1 a ou s ′ vl ′ ∨ ignore ?∆ s s1 vl1 a ou s ′ vl ′ (is ?match

∨ ?ignore)
proof−

have ?match proof(cases pstl)
case (Cons text pstl ′) note pstl = Cons
{assume op ′: ¬ open s ′

hence ϕ: ϕ ?trn using op unfolding ϕ-def2 [OF step] by simp
hence f : f ?trn = TVal text
and vl ′: vl ′ = map TVal pstl ′ @ OVal False # vll
using c unfolding consume-def vl pstl by auto
obtain uid p where a: a = Uact (uPost uid p PID text) and ou: ou =

outOK
using f ϕ by (cases ?trn rule: ϕ.cases) auto
have False using step op op ′ PID PID ′ unfolding a ou open-defs by

(auto simp: u-defs)
}
hence op ′: open s ′ by auto
show ?thesis proof(cases ϕ ?trn)

case True note ϕ = True
hence f : f ?trn = TVal text and vl ′: vl ′ = map TVal pstl ′ @ OVal False

vll

46

using c unfolding consume-def vl pstl by auto
obtain uid p textt where a: a = Uact (uPost uid p PID textt) and ou:

ou = outOK
using ϕ op op ′ unfolding ϕ-def2 [OF step] by auto
have textt: textt = text using f unfolding a by simp
show ?thesis proof

show validTrans ?trn1 unfolding ss1 using step by simp
next

show consume ?trn1 vl1 (map TVal pstl ′ @ OVal False # vll1)
using ϕ unfolding ss1 consume-def vl1 vl vl ′ pstl f by auto

next
show γ ?trn = γ ?trn1 unfolding ss1 by simp

next
assume γ ?trn thus g ?trn = g ?trn1 unfolding ss1 by simp

next
have ∆4 s ′ vl ′ s ′ (map TVal pstl ′ @ OVal False # vll1)
using B PID ′ op ′ unfolding ∆4-def vl1 vl ′ vl by auto
thus ?∆ s ′ vl ′ s ′ (map TVal pstl ′ @ OVal False # vll1) by simp

qed
next

case False note ϕ = False
hence vl ′: vl ′ = vl using c unfolding consume-def by auto
show ?thesis proof

show validTrans ?trn1 unfolding ss1 using step by simp
next

show consume ?trn1 vl1 vl1 using ϕ unfolding ss1 consume-def vl1
vl vl ′ by auto

next
show γ ?trn = γ ?trn1 unfolding ss1 by simp

next
assume γ ?trn thus g ?trn = g ?trn1 unfolding ss1 by simp

next
have ∆4 s ′ vl ′ s ′ vl1
using B PID ′ op ′ unfolding ∆4-def vl1 vl ′ vl by auto
thus ?∆ s ′ vl ′ s ′ vl1 by simp

qed
qed

next
case Nil note pstl = Nil
show ?thesis proof(cases ϕ ?trn)

case True note ϕ = True
hence f : f ?trn = OVal False and vl ′: vl ′ = vll
using c unfolding consume-def vl pstl by auto
hence op ′: ¬ open s ′ using op step ϕ unfolding ϕ-def2 [OF step] by

auto
show ?thesis proof

show validTrans ?trn1 unfolding ss1 using step by simp
next

show consume ?trn1 vl1 vll1

47

using ϕ unfolding ss1 consume-def vl1 vl vl ′ pstl f by auto
next

show γ ?trn = γ ?trn1 unfolding ss1 by simp
next

assume γ ?trn thus g ?trn = g ?trn1 unfolding ss1 by simp
next

show ?∆ s ′ vl ′ s ′ vll1 using B proof(cases rule: B.cases)
case (B-TVal pstlll pstlll1)
hence ∆1 s ′ vl ′ s ′ vll1
using B PID ′ op ′ unfolding ∆1-def vl1 vl ′ vl by auto
thus ?thesis by simp

next
case (B-BO vlll vlll1 pstlll pstlll1)
show ?thesis proof(cases pstlll 6= [] ∧ pstlll1 6= [])

case True
hence ∆31 s ′ vl ′ s ′ vll1
using B-BO B PID ′ op ′ unfolding ∆31-def vl1 vl ′ vl by auto
thus ?thesis by simp

next
case False
hence ∆32 s ′ vl ′ s ′ vll1
using B-BO B PID ′ op ′ unfolding ∆32-def vl1 vl ′ vl by auto
thus ?thesis by simp

qed
qed

qed
next

case False note ϕ = False
hence vl ′: vl ′ = vl using c unfolding consume-def by auto
have op ′: open s ′ using ϕ op unfolding ϕ-def2 [OF step] by auto
show ?thesis proof

show validTrans ?trn1 unfolding ss1 using step by simp
next

show consume ?trn1 vl1 vl1 using ϕ unfolding ss1 consume-def vl1
vl vl ′ by auto

next
show γ ?trn = γ ?trn1 unfolding ss1 by simp

next
assume γ ?trn thus g ?trn = g ?trn1 unfolding ss1 by simp

next
have ∆4 s ′ vl ′ s ′ vl1
using B PID ′ op ′ unfolding ∆4-def vl1 vl ′ vl by auto
thus ?∆ s ′ vl ′ s ′ vl1 by simp

qed
qed

qed
thus ?thesis by simp
qed

qed

48

thus ?thesis using vlvl1 by simp
qed

qed

definition Gr where
Gr =
{
(∆0 , {∆0 ,∆1 ,∆2 ,∆31 ,∆32 ,∆4}),
(∆1 , {∆1}),
(∆2 , {∆2}),
(∆31 , {∆31 ,∆32}),
(∆32 , {∆2 ,∆32 ,∆4}),
(∆4 , {∆1 ,∆31 ,∆32 ,∆4})
}

theorem secure: secure
apply (rule unwind-decomp-secure-graph[of Gr ∆0])
unfolding Gr-def
apply (simp, smt insert-subset order-refl)
using
istate-∆0 unwind-cont-∆0 unwind-cont-∆1
unwind-cont-∆31 unwind-cont-∆32 unwind-cont-∆2 unwind-cont-∆4
unfolding Gr-def by auto

end
theory Friend-Intro

imports ../Safety-Properties ../Observation-Setup
begin

7 Friendship status confidentiality

We prove the following property:

Given a group of users UIDs and given two users UID1 and UID2 not in
that group,
that group cannot learn anything about the changes in the status of friend-
ship between UID1 and UID2
beyond what everybody knows, namely that

• there is no friendship between UID1 and UID2 before those users have
been created, and

• the updates form an alternating sequence of friending and unfriending,

49

and beyond those updates performed while or last before a user in UIDs is
friends with UID1 or UID2.
end

theory Friend-Value-Setup
imports Friend-Intro
begin

The confidential information is the friendship status between two arbitrary
but fixed users:
consts UID1 :: userID
consts UID2 :: userID

axiomatization where
UID1-UID2-UIDs: {UID1 ,UID2} ∩ UIDs = {}
and
UID1-UID2 : UID1 6= UID2

7.1 Preliminaries
fun eqButUIDl :: userID ⇒ userID list ⇒ userID list ⇒ bool where
eqButUIDl uid uidl uidl1 = (remove1 uid uidl = remove1 uid uidl1)

lemma eqButUIDl-eq[simp,intro!]: eqButUIDl uid uidl uidl
by auto

lemma eqButUIDl-sym:
assumes eqButUIDl uid uidl uidl1
shows eqButUIDl uid uidl1 uidl
using assms by auto

lemma eqButUIDl-trans:
assumes eqButUIDl uid uidl uidl1 and eqButUIDl uid uidl1 uidl2
shows eqButUIDl uid uidl uidl2
using assms by auto

lemma eqButUIDl-remove1-cong:
assumes eqButUIDl uid uidl uidl1
shows eqButUIDl uid (remove1 uid ′ uidl) (remove1 uid ′ uidl1)
proof −

have remove1 uid (remove1 uid ′ uidl) = remove1 uid ′ (remove1 uid uidl) by
(simp add: remove1-commute)

also have . . . = remove1 uid ′ (remove1 uid uidl1) using assms by simp
also have . . . = remove1 uid (remove1 uid ′ uidl1) by (simp add: remove1-commute)
finally show ?thesis by simp

qed

lemma eqButUIDl-snoc-cong:
assumes eqButUIDl uid uidl uidl1

50

and uid ′ ∈∈ uidl ←→ uid ′ ∈∈ uidl1
shows eqButUIDl uid (uidl ## uid ′) (uidl1 ## uid ′)
using assms by (auto simp add: remove1-append remove1-idem)

definition eqButUIDf where
eqButUIDf frds frds1 ≡

eqButUIDl UID2 (frds UID1) (frds1 UID1)
∧ eqButUIDl UID1 (frds UID2) (frds1 UID2)
∧ (∀ uid. uid 6= UID1 ∧ uid 6= UID2 −→ frds uid = frds1 uid)

lemmas eqButUIDf-intro = eqButUIDf-def [THEN meta-eq-to-obj-eq, THEN iffD2]

lemma eqButUIDf-eeq[simp,intro!]: eqButUIDf frds frds
unfolding eqButUIDf-def by auto

lemma eqButUIDf-sym:
assumes eqButUIDf frds frds1 shows eqButUIDf frds1 frds
using assms eqButUIDl-sym unfolding eqButUIDf-def
by presburger

lemma eqButUIDf-trans:
assumes eqButUIDf frds frds1 and eqButUIDf frds1 frds2
shows eqButUIDf frds frds2
using assms eqButUIDl-trans unfolding eqButUIDf-def by (auto split: if-splits)

lemma eqButUIDf-cong:
assumes eqButUIDf frds frds1
and uid = UID1 =⇒ eqButUIDl UID2 uu uu1
and uid = UID2 =⇒ eqButUIDl UID1 uu uu1
and uid 6= UID1 =⇒ uid 6= UID2 =⇒ uu = uu1
shows eqButUIDf (frds (uid := uu)) (frds1 (uid := uu1))
using assms unfolding eqButUIDf-def by (auto split: if-splits)

lemma eqButUIDf-eqButUIDl:
assumes eqButUIDf frds frds1
shows eqButUIDl UID2 (frds UID1) (frds1 UID1)

and eqButUIDl UID1 (frds UID2) (frds1 UID2)
using assms unfolding eqButUIDf-def by (auto split: if-splits)

lemma eqButUIDf-not-UID:
[[eqButUIDf frds frds1 ; uid 6= UID1 ; uid 6= UID2]] =⇒ frds uid = frds1 uid
unfolding eqButUIDf-def by (auto split: if-splits)

lemma eqButUIDf-not-UID ′:
assumes eq1 : eqButUIDf frds frds1
and uid: (uid,uid ′) /∈ {(UID1 ,UID2), (UID2 ,UID1)}
shows uid ∈∈ frds uid ′←→ uid ∈∈ frds1 uid ′

proof −

51

from uid have (uid ′ = UID1 ∧ uid 6= UID2)
∨ (uid ′ = UID2 ∧ uid 6= UID1)
∨ (uid ′ /∈ {UID1 ,UID2}) (is ?u1 ∨ ?u2 ∨ ?n12)

by auto
then show ?thesis proof (elim disjE)

assume ?u1
moreover then have uid ∈∈ remove1 UID2 (frds uid ′) ←→ uid ∈∈ remove1

UID2 (frds1 uid ′)
using eq1 unfolding eqButUIDf-def by auto

ultimately show ?thesis by auto
next

assume ?u2
moreover then have uid ∈∈ remove1 UID1 (frds uid ′) ←→ uid ∈∈ remove1

UID1 (frds1 uid ′)
using eq1 unfolding eqButUIDf-def by auto

ultimately show ?thesis by auto
next

assume ?n12
then show ?thesis using eq1 unfolding eqButUIDf-def by auto

qed
qed

definition eqButUID12 where
eqButUID12 freq freq1 ≡
∀ uid uid ′. if (uid,uid ′) ∈ {(UID1 ,UID2), (UID2 ,UID1)} then True else freq uid

uid ′ = freq1 uid uid ′

lemmas eqButUID12-intro = eqButUID12-def [THEN meta-eq-to-obj-eq, THEN
iffD2]

lemma eqButUID12-eeq[simp,intro!]: eqButUID12 freq freq
unfolding eqButUID12-def by auto

lemma eqButUID12-sym:
assumes eqButUID12 freq freq1 shows eqButUID12 freq1 freq
using assms unfolding eqButUID12-def
by presburger

lemma eqButUID12-trans:
assumes eqButUID12 freq freq1 and eqButUID12 freq1 freq2
shows eqButUID12 freq freq2
using assms unfolding eqButUID12-def by (auto split: if-splits)

lemma eqButUID12-cong:
assumes eqButUID12 freq freq1

and ¬ (uid,uid ′) ∈ {(UID1 ,UID2), (UID2 ,UID1)} =⇒ uu = uu1
shows eqButUID12 (fun-upd2 freq uid uid ′ uu) (fun-upd2 freq1 uid uid ′ uu1)

52

using assms unfolding eqButUID12-def fun-upd2-def by (auto split: if-splits)

lemma eqButUID12-not-UID:
[[eqButUID12 freq freq1 ; ¬ (uid,uid ′) ∈ {(UID1 ,UID2), (UID2 ,UID1)}]] =⇒ freq
uid uid ′ = freq1 uid uid ′

unfolding eqButUID12-def by (auto split: if-splits)

definition eqButUID :: state ⇒ state ⇒ bool where
eqButUID s s1 ≡
admin s = admin s1 ∧

pendingUReqs s = pendingUReqs s1 ∧ userReq s = userReq s1 ∧
userIDs s = userIDs s1 ∧ user s = user s1 ∧ pass s = pass s1 ∧

eqButUIDf (pendingFReqs s) (pendingFReqs s1) ∧
eqButUID12 (friendReq s) (friendReq s1) ∧
eqButUIDf (friendIDs s) (friendIDs s1) ∧

postIDs s = postIDs s1 ∧ admin s = admin s1 ∧
post s = post s1 ∧
owner s = owner s1 ∧
vis s = vis s1

lemmas eqButUID-intro = eqButUID-def [THEN meta-eq-to-obj-eq, THEN iffD2]

lemma eqButUID-refl[simp,intro!]: eqButUID s s
unfolding eqButUID-def by auto

lemma eqButUID-sym[sym]:
assumes eqButUID s s1 shows eqButUID s1 s
using assms eqButUIDf-sym eqButUID12-sym unfolding eqButUID-def by auto

lemma eqButUID-trans[trans]:
assumes eqButUID s s1 and eqButUID s1 s2 shows eqButUID s s2
using assms eqButUIDf-trans eqButUID12-trans unfolding eqButUID-def by metis

lemma eqButUID-stateSelectors:
eqButUID s s1 =⇒
admin s = admin s1 ∧

pendingUReqs s = pendingUReqs s1 ∧ userReq s = userReq s1 ∧
userIDs s = userIDs s1 ∧ user s = user s1 ∧ pass s = pass s1 ∧

eqButUIDf (pendingFReqs s) (pendingFReqs s1) ∧
eqButUID12 (friendReq s) (friendReq s1) ∧
eqButUIDf (friendIDs s) (friendIDs s1) ∧

53

postIDs s = postIDs s1 ∧ admin s = admin s1 ∧
post s = post s1 ∧
owner s = owner s1 ∧
vis s = vis s1 ∧

IDsOK s = IDsOK s1
unfolding eqButUID-def IDsOK-def [abs-def] by auto

lemma eqButUID-eqButUID2 :
eqButUID s s1 =⇒ eqButUIDl UID2 (friendIDs s UID1) (friendIDs s1 UID1)
unfolding eqButUID-def using eqButUIDf-eqButUIDl
by (smt eqButUIDf-eqButUIDl eqButUIDl.simps)

lemma eqButUID-not-UID:
eqButUID s s1 =⇒ uid 6= UID =⇒ post s uid = post s1 uid
unfolding eqButUID-def by auto

lemma eqButUID-cong[simp, intro]:∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|admin := uu1 |))

(s1 (|admin := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|pendingUReqs :=

uu1 |)) (s1 (|pendingUReqs := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|userReq := uu1 |))

(s1 (|userReq := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|userIDs := uu1 |))

(s1 (|userIDs := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|user := uu1 |)) (s1

(|user := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|pass := uu1 |)) (s1

(|pass := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|postIDs := uu1 |))

(s1 (|postIDs := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|owner := uu1 |))

(s1 (|owner := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|post := uu1 |)) (s1

(|post := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|vis := uu1 |)) (s1

(|vis := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ eqButUIDf uu1 uu2 =⇒ eqButUID (s (|pend-

ingFReqs := uu1 |)) (s1 (|pendingFReqs := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ eqButUID12 uu1 uu2 =⇒ eqButUID (s (|friendReq

:= uu1 |)) (s1 (|friendReq := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ eqButUIDf uu1 uu2 =⇒ eqButUID (s (|friendIDs

:= uu1 |)) (s1 (|friendIDs := uu2 |))

54

unfolding eqButUID-def by auto

7.2 Value Setup
datatype value =

FrVal bool — updated friendship status between UID1 and UID2
| OVal bool — updated dynamic declassification trigger condition

The dynamic declassification trigger condition holds, i.e. the access window
to the confidential information is open, as long as the two users have not
been created yet (so there cannot be friendship between them) or one of
them is friends with an observer.
definition openByA :: state ⇒ bool — Openness by absence
where openByA s ≡ ¬ UID1 ∈∈ userIDs s ∨ ¬ UID2 ∈∈ userIDs s

definition openByF :: state ⇒ bool — Openness by friendship
where openByF s ≡ ∃ uid ∈ UIDs. uid ∈∈ friendIDs s UID1 ∨ uid ∈∈ friendIDs
s UID2

definition open :: state ⇒ bool
where open s ≡ openByA s ∨ openByF s

lemmas open-defs = open-def openByA-def openByF-def

definition friends12 :: state ⇒ bool
where friends12 s ≡ UID1 ∈∈ friendIDs s UID2 ∧ UID2 ∈∈ friendIDs s UID1

fun ϕ :: (state,act,out) trans ⇒ bool where
ϕ (Trans s (Cact (cFriend uid p uid ′)) ou s ′) =
((uid,uid ′) ∈ {(UID1 ,UID2), (UID2 ,UID1)} ∧ ou = outOK ∨
open s 6= open s ′)

|
ϕ (Trans s (Dact (dFriend uid p uid ′)) ou s ′) =
((uid,uid ′) ∈ {(UID1 ,UID2), (UID2 ,UID1)} ∧ ou = outOK ∨
open s 6= open s ′)

|
ϕ (Trans s (Cact (cUser uid p uid ′ p ′)) ou s ′) =
(open s 6= open s ′)
|
ϕ - = False

fun f :: (state,act,out) trans ⇒ value where
f (Trans s (Cact (cFriend uid p uid ′)) ou s ′) =
(if (uid,uid ′) ∈ {(UID1 ,UID2), (UID2 ,UID1)} then FrVal True

else OVal True)
|
f (Trans s (Dact (dFriend uid p uid ′)) ou s ′) =
(if (uid,uid ′) ∈ {(UID1 ,UID2), (UID2 ,UID1)} then FrVal False

55

else OVal False)
|
f (Trans s (Cact (cUser uid p uid ′ p ′)) ou s ′) = OVal False
|
f - = undefined

lemma ϕE :
assumes ϕ: ϕ (Trans s a ou s ′) (is ϕ ?trn)
and step: step s a = (ou, s ′)
and rs: reach s
obtains (Friend) uid p uid ′ where a = Cact (cFriend uid p uid ′) ou = outOK f
?trn = FrVal True

uid = UID1 ∧ uid ′ = UID2 ∨ uid = UID2 ∧ uid ′ =
UID1

IDsOK s [UID1 , UID2] []
¬friends12 s friends12 s ′

| (Unfriend) uid p uid ′ where a = Dact (dFriend uid p uid ′) ou = outOK f
?trn = FrVal False

uid = UID1 ∧ uid ′ = UID2 ∨ uid = UID2 ∧ uid ′ =
UID1

IDsOK s [UID1 , UID2] []
friends12 s ¬friends12 s ′

| (OpenF) uid p uid ′ where a = Cact (cFriend uid p uid ′)
(uid ∈ UIDs ∧ uid ′ ∈ {UID1 ,UID2}) ∨ (uid ′ ∈ UIDs ∧

uid ∈ {UID1 ,UID2})
ou = outOK f ?trn = OVal True ¬openByF s openByF s ′

¬openByA s ¬openByA s ′

| (CloseF) uid p uid ′ where a = Dact (dFriend uid p uid ′)
(uid ∈ UIDs ∧ uid ′ ∈ {UID1 ,UID2}) ∨ (uid ′ ∈ UIDs

∧ uid ∈ {UID1 ,UID2})
ou = outOK f ?trn = OVal False openByF s ¬openByF

s ′

¬openByA s ¬openByA s ′

| (CloseA) uid p uid ′ p ′ where a = Cact (cUser uid p uid ′ p ′)
uid ′ ∈ {UID1 ,UID2} openByA s ¬openByA s ′

¬openByF s ¬openByF s ′

ou = outOK f ?trn = OVal False
using ϕ proof (elim ϕ.elims disjE conjE)

fix s1 uid p uid ′ ou1 s1 ′

assume (uid,uid ′) ∈ {(UID1 ,UID2), (UID2 ,UID1)} and ou: ou1 = outOK
and ?trn = Trans s1 (Cact (cFriend uid p uid ′)) ou1 s1 ′

then have trn: a = Cact (cFriend uid p uid ′) s = s1 s ′ = s1 ′ ou = ou1
and uids: uid = UID1 ∧ uid ′ = UID2 ∨ uid = UID2 ∧ uid ′ = UID1 using

UID1-UID2 by auto
then show thesis using ou uids trn step UID1-UID2-UIDs UID1-UID2 reach-distinct-friends-reqs[OF

rs]
by (intro Friend[of uid p uid ′]) (auto simp add: c-defs friends12-def)

next

56

fix s1 uid p uid ′ ou1 s1 ′

assume op: open s1 6= open s1 ′

and ?trn = Trans s1 (Cact (cFriend uid p uid ′)) ou1 s1 ′

then have trn: a = Cact (cFriend uid p uid ′) s = s1 s ′ = s1 ′ ou = ou1 by auto
then have uids: uid ∈ UIDs ∧ uid ′ ∈ {UID1 , UID2} ∨ uid ∈ {UID1 , UID2}
∧ uid ′ ∈ UIDs ou = outOK

¬openByF s1 openByF s1 ′ ¬openByA s1 ¬openByA s1 ′

using op step by (auto simp add: c-defs open-def openByA-def openByF-def)
then show thesis using op trn step UID1-UID2-UIDs UID1-UID2 by (intro

OpenF) auto
next

fix s1 uid p uid ′ ou1 s1 ′

assume (uid,uid ′) ∈ {(UID1 ,UID2), (UID2 ,UID1)} and ou: ou1 = outOK
and ?trn = Trans s1 (Dact (dFriend uid p uid ′)) ou1 s1 ′

then have trn: a = Dact (dFriend uid p uid ′) s = s1 s ′ = s1 ′ ou = ou1
and uids: uid = UID1 ∧ uid ′ = UID2 ∨ uid = UID2 ∧ uid ′ = UID1 using

UID1-UID2 by auto
then show thesis using step ou reach-friendIDs-symmetric[OF rs]

by (intro Unfriend) (auto simp: d-defs friends12-def)
next

fix s1 uid p uid ′ ou1 s1 ′

assume op: open s1 6= open s1 ′

and ?trn = Trans s1 (Dact (dFriend uid p uid ′)) ou1 s1 ′

then have trn: a = Dact (dFriend uid p uid ′) s = s1 s ′ = s1 ′ ou = ou1 by auto
then have uids: uid ∈ UIDs ∧ uid ′ ∈ {UID1 , UID2} ∨ uid ∈ {UID1 , UID2}
∧ uid ′ ∈ UIDs ou = outOK

openByF s1 ¬openByF s1 ′ ¬openByA s1 ¬openByA s1 ′

using op step by (auto simp add: d-defs open-def openByA-def openByF-def)
then show thesis using op trn step UID1-UID2-UIDs UID1-UID2 by (auto

intro: CloseF)
next

fix s1 uid p uid ′ p ′ ou1 s1 ′

assume op: open s1 6= open s1 ′

and ?trn = Trans s1 (Cact (cUser uid p uid ′ p ′)) ou1 s1 ′

then have trn: a = Cact (cUser uid p uid ′ p ′) s = s1 s ′ = s1 ′ ou = ou1 by
auto

then have uids: uid ′ = UID2 ∨ uid ′ = UID1 ou = outOK
¬openByF s1 ¬openByF s1 ′ openByA s1 ¬openByA s1 ′

using op step by (auto simp add: c-defs open-def openByF-def openByA-def)
then show thesis using trn step UID1-UID2-UIDs UID1-UID2 by (intro CloseA)

auto
qed

lemma step-open-ϕ:
assumes step s a = (ou, s ′)
and open s 6= open s ′

shows ϕ (Trans s a ou s ′)
using assms proof (cases a)

case (Sact sa) then show ?thesis using assms UID1-UID2 by (cases sa) (auto

57

simp: s-defs open-defs) next
case (Cact ca) then show ?thesis using assms by (cases ca) (auto simp: c-defs

open-defs) next
case (Dact da) then show ?thesis using assms by (cases da) (auto simp: d-defs

open-defs) next
case (Uact ua) then show ?thesis using assms by (cases ua) (auto simp: u-defs

open-defs)
qed auto

lemma step-friends12-ϕ:
assumes step s a = (ou, s ′)
and friends12 s 6= friends12 s ′

shows ϕ (Trans s a ou s ′)
using assms proof (cases a)

case (Sact sa) then show ?thesis using assms by (cases sa) (auto simp: s-defs
friends12-def) next

case (Cact ca) then show ?thesis using assms by (cases ca) (auto simp: c-defs
friends12-def) next

case (Dact da) then show ?thesis using assms by (cases da) (auto simp: d-defs
friends12-def) next

case (Uact ua) then show ?thesis using assms by (cases ua) (auto simp: u-defs
friends12-def)
qed auto

lemma eqButUID-friends12-set-friendIDs-eq:
assumes ss1 : eqButUID s s1
and f12 : friends12 s = friends12 s1
and rs: reach s and rs1 : reach s1
shows set (friendIDs s uid) = set (friendIDs s1 uid)
proof −

have dfIDs: distinct (friendIDs s uid) distinct (friendIDs s1 uid)
using reach-distinct-friends-reqs[OF rs] reach-distinct-friends-reqs[OF rs1] by

auto
from f12 have uid12 : UID1 ∈∈ friendIDs s UID2 ←→ UID1 ∈∈ friendIDs s1

UID2
UID2 ∈∈ friendIDs s UID1 ←→ UID2 ∈∈ friendIDs s1 UID1

using reach-friendIDs-symmetric[OF rs] reach-friendIDs-symmetric[OF rs1]
unfolding friends12-def by auto

from ss1 have fIDs: eqButUIDf (friendIDs s) (friendIDs s1) unfolding eqBu-
tUID-def by simp

show set (friendIDs s uid) = set (friendIDs s1 uid)
proof (intro equalityI subsetI)

fix uid ′

assume uid ′ ∈∈ friendIDs s uid
then show uid ′ ∈∈ friendIDs s1 uid

using fIDs dfIDs uid12 eqButUIDf-not-UID ′ unfolding eqButUIDf-def
by (metis (no-types, lifting) insert-iff prod.inject singletonD)

next
fix uid ′

58

assume uid ′ ∈∈ friendIDs s1 uid
then show uid ′ ∈∈ friendIDs s uid

using fIDs dfIDs uid12 eqButUIDf-not-UID ′ unfolding eqButUIDf-def
by (metis (no-types, lifting) insert-iff prod.inject singletonD)

qed
qed

lemma distinct-remove1-idem: distinct xs =⇒ remove1 y (remove1 y xs) = re-
move1 y xs
by (induction xs) (auto simp add: remove1-idem)

lemma Cact-cFriend-step-eqButUID:
assumes step: step s (Cact (cFriend uid p uid ′)) = (ou,s ′)
and s: reach s
and uids: (uid = UID1 ∧ uid ′ = UID2) ∨ (uid = UID2 ∧ uid ′ = UID1) (is ?u12
∨ ?u21)
shows eqButUID s s ′

using assms proof (cases)
assume ou: ou = outOK
then have uid ′ ∈∈ pendingFReqs s uid using step by (auto simp add: c-defs)
then have fIDs: uid ′ /∈ set (friendIDs s uid) uid /∈ set (friendIDs s uid ′)

and fRs: distinct (pendingFReqs s uid) distinct (pendingFReqs s uid ′)
using reach-distinct-friends-reqs[OF s] by auto

have eqButUIDf (friendIDs s) (friendIDs (createFriend s uid p uid ′))
using fIDs uids UID1-UID2 unfolding eqButUIDf-def
by (cases ?u12) (auto simp add: c-defs remove1-idem remove1-append)

moreover have eqButUIDf (pendingFReqs s) (pendingFReqs (createFriend s uid
p uid ′))

using fRs uids UID1-UID2 unfolding eqButUIDf-def
by (cases ?u12) (auto simp add: c-defs distinct-remove1-idem)

moreover have eqButUID12 (friendReq s) (friendReq (createFriend s uid p uid ′))
using uids unfolding eqButUID12-def
by (auto simp add: c-defs fun-upd2-eq-but-a-b)

ultimately show eqButUID s s ′ using step ou unfolding eqButUID-def by
(auto simp add: c-defs)
qed (auto)

lemma Cact-cFriendReq-step-eqButUID:
assumes step: step s (Cact (cFriendReq uid p uid ′ req)) = (ou,s ′)
and uids: (uid = UID1 ∧ uid ′ = UID2) ∨ (uid = UID2 ∧ uid ′ = UID1) (is ?u12
∨ ?u21)
shows eqButUID s s ′

using assms proof (cases)
assume ou: ou = outOK
then have uid /∈ set (pendingFReqs s uid ′) uid /∈ set (friendIDs s uid ′)

using step by (auto simp add: c-defs)
then have eqButUIDf (pendingFReqs s) (pendingFReqs (createFriendReq s uid p

uid ′ req))

59

using uids UID1-UID2 unfolding eqButUIDf-def
by (cases ?u12) (auto simp add: c-defs remove1-idem remove1-append)

moreover have eqButUID12 (friendReq s) (friendReq (createFriendReq s uid p
uid ′ req))

using uids unfolding eqButUID12-def
by (auto simp add: c-defs fun-upd2-eq-but-a-b)

ultimately show eqButUID s s ′ using step ou unfolding eqButUID-def by
(auto simp add: c-defs)
qed (auto)

lemma Dact-dFriend-step-eqButUID:
assumes step: step s (Dact (dFriend uid p uid ′)) = (ou,s ′)
and s: reach s
and uids: (uid = UID1 ∧ uid ′ = UID2) ∨ (uid = UID2 ∧ uid ′ = UID1) (is ?u12
∨ ?u21)
shows eqButUID s s ′

using assms proof (cases)
assume ou: ou = outOK
then have uid ′ ∈∈ friendIDs s uid using step by (auto simp add: d-defs)
then have fRs: distinct (friendIDs s uid) distinct (friendIDs s uid ′)

using reach-distinct-friends-reqs[OF s] by auto
have eqButUIDf (friendIDs s) (friendIDs (deleteFriend s uid p uid ′))

using fRs uids UID1-UID2 unfolding eqButUIDf-def
by (cases ?u12) (auto simp add: d-defs remove1-idem distinct-remove1-removeAll)

then show eqButUID s s ′ using step ou unfolding eqButUID-def by (auto simp
add: d-defs)
qed (auto)

lemma eqButUID-step:
assumes ss1 : eqButUID s s1
and step: step s a = (ou,s ′)
and step1 : step s1 a = (ou1 ,s1 ′)
and rs: reach s
and rs1 : reach s1
shows eqButUID s ′ s1 ′

proof −
note simps = eqButUID-def s-defs c-defs u-defs r-defs l-defs
from assms show ?thesis proof (cases a)

case (Sact sa) with assms show ?thesis by (cases sa) (auto simp add: simps)
next

case (Cact ca) note a = this
with assms show ?thesis proof (cases ca)

case (cFriendReq uid p uid ′ req) note ca = this
then show ?thesis

proof (cases (uid = UID1 ∧ uid ′ = UID2) ∨ (uid = UID2 ∧ uid ′ =
UID1))

60

case True
then have eqButUID s s ′ and eqButUID s1 s1 ′

using step step1 unfolding a ca
by (auto intro: Cact-cFriendReq-step-eqButUID)

with ss1 show eqButUID s ′ s1 ′ by (auto intro: eqButUID-sym
eqButUID-trans)

next
case False

have fRs: eqButUIDf (pendingFReqs s) (pendingFReqs s1)
and fIDs: eqButUIDf (friendIDs s) (friendIDs s1) using ss1 by (auto

simp: simps)
then have uid-uid ′: uid ∈∈ pendingFReqs s uid ′←→ uid ∈∈ pendingFReqs

s1 uid ′

uid ∈∈ friendIDs s uid ′←→ uid ∈∈ friendIDs s1 uid ′

using False by (auto intro!: eqButUIDf-not-UID ′)
have eqButUIDf ((pendingFReqs s)(uid ′ := pendingFReqs s uid ′ ##

uid))
((pendingFReqs s1)(uid ′ := pendingFReqs s1 uid ′ ## uid))

using fRs False
by (intro eqButUIDf-cong) (auto simp add: remove1-append re-

move1-idem eqButUIDf-def)
moreover have eqButUID12 (fun-upd2 (friendReq s) uid uid ′ req)

(fun-upd2 (friendReq s1) uid uid ′ req)
using ss1 by (intro eqButUID12-cong) (auto simp: simps)

moreover have e-createFriendReq s uid p uid ′ req
←→ e-createFriendReq s1 uid p uid ′ req

using uid-uid ′ ss1 by (auto simp: simps)
ultimately show ?thesis using assms unfolding a ca by (auto simp:

simps)
qed

next
case (cFriend uid p uid ′) note ca = this

then show ?thesis
proof (cases (uid = UID1 ∧ uid ′ = UID2) ∨ (uid = UID2 ∧ uid ′ =

UID1))
case True

then have eqButUID s s ′ and eqButUID s1 s1 ′

using step step1 rs rs1 unfolding a ca
by (auto intro!: Cact-cFriend-step-eqButUID)+

with ss1 show eqButUID s ′ s1 ′ by (auto intro: eqButUID-sym
eqButUID-trans)

next
case False

have fRs: eqButUIDf (pendingFReqs s) (pendingFReqs s1)
(is eqButUIDf (?pfr s) (?pfr s1))

and fIDs: eqButUIDf (friendIDs s) (friendIDs s1) using ss1 by (auto
simp: simps)

then have uid-uid ′: uid ∈∈ pendingFReqs s uid ′←→ uid ∈∈ pendingFReqs
s1 uid ′

61

uid ′ ∈∈ pendingFReqs s uid ←→ uid ′ ∈∈ pendingFReqs
s1 uid

uid ∈∈ friendIDs s uid ′←→ uid ∈∈ friendIDs s1 uid ′

uid ′ ∈∈ friendIDs s uid ←→ uid ′ ∈∈ friendIDs s1 uid
using False by (auto intro!: eqButUIDf-not-UID ′)
have eqButUIDl UID1 (remove1 uid ′ (?pfr s UID2)) (remove1 uid ′

(?pfr s1 UID2))
and eqButUIDl UID2 (remove1 uid ′ (?pfr s UID1)) (remove1 uid ′

(?pfr s1 UID1))
and eqButUIDl UID1 (remove1 uid (?pfr s UID2)) (remove1 uid (?pfr

s1 UID2))
and eqButUIDl UID2 (remove1 uid (?pfr s UID1)) (remove1 uid (?pfr

s1 UID1))
using fRs unfolding eqButUIDf-def
by (auto intro!: eqButUIDl-remove1-cong simp del: eqButUIDl.simps)

then have 1 : eqButUIDf ((?pfr s)(uid := remove1 uid ′ (?pfr s uid),
uid ′ := remove1 uid (?pfr s uid ′)))

((?pfr s1)(uid := remove1 uid ′ (?pfr s1 uid),
uid ′ := remove1 uid (?pfr s1 uid ′)))

using fRs False
by (intro eqButUIDf-cong) (auto simp add: eqButUIDf-def)

have uid = UID1 =⇒ eqButUIDl UID2 (friendIDs s UID1 ## uid ′)
(friendIDs s1 UID1 ## uid ′)

and uid = UID2 =⇒ eqButUIDl UID1 (friendIDs s UID2 ## uid ′)
(friendIDs s1 UID2 ## uid ′)

and uid ′ = UID1 =⇒ eqButUIDl UID2 (friendIDs s UID1 ## uid)
(friendIDs s1 UID1 ## uid)

and uid ′ = UID2 =⇒ eqButUIDl UID1 (friendIDs s UID2 ## uid)
(friendIDs s1 UID2 ## uid)

using fIDs uid-uid ′ by − (intro eqButUIDl-snoc-cong; simp add:
eqButUIDf-def)+

then have 2 : eqButUIDf ((friendIDs s)(uid := friendIDs s uid ##
uid ′,

uid ′ := friendIDs s uid ′ ## uid))
((friendIDs s1)(uid := friendIDs s1 uid ## uid ′,

uid ′ := friendIDs s1 uid ′ ## uid))
using fIDs by (intro eqButUIDf-cong) (auto simp add: eqButUIDf-def)

have 3 : eqButUID12 (fun-upd2 (fun-upd2 (friendReq s) uid ′ uid
emptyReq)

uid uid ′ emptyReq)
(fun-upd2 (fun-upd2 (friendReq s1) uid ′ uid emptyReq)

uid uid ′ emptyReq)
using ss1 by (intro eqButUID12-cong) (auto simp: simps)

have e-createFriend s uid p uid ′

←→ e-createFriend s1 uid p uid ′

using uid-uid ′ ss1 by (auto simp: simps)
with 1 2 3 show ?thesis using assms unfolding a ca by (auto simp:

simps)
qed

62

qed (auto simp: simps)
next

case (Uact ua) with assms show ?thesis by (cases ua) (auto simp add: simps)
next

case (Ract ra) with assms show ?thesis by (cases ra) (auto simp add: simps)
next

case (Lact la) with assms show ?thesis by (cases la) (auto simp add: simps)
next

case (Dact da) note a = this
with assms show ?thesis proof (cases da)

case (dFriend uid p uid ′) note ca = this
then show ?thesis

proof (cases (uid = UID1 ∧ uid ′ = UID2) ∨ (uid = UID2 ∧ uid ′ =
UID1))

case True
then have eqButUID s s ′ and eqButUID s1 s1 ′

using step step1 rs rs1 unfolding a ca
by (auto intro!: Dact-dFriend-step-eqButUID)+

with ss1 show eqButUID s ′ s1 ′ by (auto intro: eqButUID-sym
eqButUID-trans)

next
case False
have fIDs: eqButUIDf (friendIDs s) (friendIDs s1) using ss1 by (auto

simp: simps)
then have uid-uid ′: uid ∈∈ friendIDs s uid ′←→ uid ∈∈ friendIDs s1

uid ′

uid ′ ∈∈ friendIDs s uid ←→ uid ′ ∈∈ friendIDs s1 uid
using False by (auto intro!: eqButUIDf-not-UID ′)

have dfIDs: distinct (friendIDs s uid) distinct (friendIDs s uid ′)
distinct (friendIDs s1 uid) distinct (friendIDs s1 uid ′)

using reach-distinct-friends-reqs[OF rs] reach-distinct-friends-reqs[OF
rs1] by auto

have uid = UID1 =⇒ eqButUIDl UID2 (remove1 uid ′ (friendIDs s
UID1)) (remove1 uid ′ (friendIDs s1 UID1))

and uid = UID2 =⇒ eqButUIDl UID1 (remove1 uid ′ (friendIDs s
UID2)) (remove1 uid ′ (friendIDs s1 UID2))

and uid ′ = UID1 =⇒ eqButUIDl UID2 (remove1 uid (friendIDs s
UID1)) (remove1 uid (friendIDs s1 UID1))

and uid ′ = UID2 =⇒ eqButUIDl UID1 (remove1 uid (friendIDs s
UID2)) (remove1 uid (friendIDs s1 UID2))

using fIDs uid-uid ′ by − (intro eqButUIDl-remove1-cong; simp add:
eqButUIDf-def)+

then have 1 : eqButUIDf ((friendIDs s)(uid := remove1 uid ′ (friendIDs
s uid),

uid ′ := remove1 uid (friendIDs s uid ′)))
((friendIDs s1)(uid := remove1 uid ′ (friendIDs s1

uid),
uid ′ := remove1 uid (friendIDs s1 uid ′)))

using fIDs by (intro eqButUIDf-cong) (auto simp add: eqButUIDf-def)

63

have e-deleteFriend s uid p uid ′

←→ e-deleteFriend s1 uid p uid ′

using uid-uid ′ ss1 by (auto simp: simps d-defs)
with 1 show ?thesis using assms dfIDs unfolding a ca

by (auto simp: simps d-defs distinct-remove1-removeAll)
qed

qed
qed

qed

lemma eqButUID-openByA-eq:
assumes eqButUID s s1
shows openByA s = openByA s1
using assms unfolding openByA-def eqButUID-def by auto

lemma eqButUID-openByF-eq:
assumes ss1 : eqButUID s s1
shows openByF s = openByF s1
proof −

from ss1 have fIDs: eqButUIDf (friendIDs s) (friendIDs s1) unfolding eqBu-
tUID-def by auto

have ∀ uid ∈ UIDs. uid ∈∈ friendIDs s UID1 ←→ uid ∈∈ friendIDs s1 UID1
using UID1-UID2-UIDs UID1-UID2 by (intro ballI eqButUIDf-not-UID ′[OF

fIDs]; auto)
moreover have ∀ uid ∈ UIDs. uid ∈∈ friendIDs s UID2 ←→ uid ∈∈ friendIDs

s1 UID2
using UID1-UID2-UIDs UID1-UID2 by (intro ballI eqButUIDf-not-UID ′[OF

fIDs]; auto)
ultimately show openByF s = openByF s1 unfolding openByF-def by auto

qed

lemma eqButUID-open-eq: eqButUID s s1 =⇒ open s = open s1
using eqButUID-openByA-eq eqButUID-openByF-eq unfolding open-def by blast

lemma eqButUID-step-friendIDs-eq:
assumes ss1 : eqButUID s s1
and rs: reach s and rs1 : reach s1
and step: step s a = (ou,s ′) and step1 : step s1 a = (ou1 ,s1 ′)
and a: a 6= Cact (cFriend UID1 (pass s UID1) UID2) ∧ a 6= Cact (cFriend UID2
(pass s UID2) UID1) ∧

a 6= Dact (dFriend UID1 (pass s UID1) UID2) ∧ a 6= Dact (dFriend UID2
(pass s UID2) UID1)
and friendIDs s = friendIDs s1
shows friendIDs s ′ = friendIDs s1 ′

using assms proof (cases a)
case (Sact sa) then show ?thesis using assms by (cases sa) (auto simp: s-defs)

next
case (Uact ua) then show ?thesis using assms by (cases ua) (auto simp: u-defs)

next

64

case (Dact da) then show ?thesis using assms proof (cases da)
case (dFriend uid p uid ′)

with Dact assms show ?thesis
by (cases (uid,uid ′) ∈ {(UID1 ,UID2), (UID2 ,UID1)})

(auto simp: d-defs eqButUID-def eqButUIDf-not-UID ′)
qed

next
case (Cact ca) then show ?thesis using assms proof (cases ca)

case (cFriend uid p uid ′)
with Cact assms show ?thesis

by (cases (uid,uid ′) ∈ {(UID1 ,UID2), (UID2 ,UID1)})
(auto simp: c-defs eqButUID-def eqButUIDf-not-UID ′)

qed (auto simp: c-defs)
qed auto

lemma eqButUID-step-ϕ-imp:
assumes ss1 : eqButUID s s1
and rs: reach s and rs1 : reach s1
and step: step s a = (ou,s ′) and step1 : step s1 a = (ou1 ,s1 ′)
and a: a 6= Cact (cFriend UID1 (pass s UID1) UID2) ∧ a 6= Cact (cFriend UID2
(pass s UID2) UID1) ∧

a 6= Dact (dFriend UID1 (pass s UID1) UID2) ∧ a 6= Dact (dFriend UID2
(pass s UID2) UID1)
and ϕ: ϕ (Trans s a ou s ′)
shows ϕ (Trans s1 a ou1 s1 ′)
proof −

have eqButUID s ′ s1 ′ using eqButUID-step[OF ss1 step step1 rs rs1] .
then have open s = open s1 and open s ′ = open s1 ′

and openByA s = openByA s1 and openByA s ′ = openByA s1 ′

and openByF s = openByF s1 and openByF s ′ = openByF s1 ′

using ss1 by (auto simp: eqButUID-open-eq eqButUID-openByA-eq eqBu-
tUID-openByF-eq)

with ϕ a step step1 show ϕ (Trans s1 a ou1 s1 ′) using UID1-UID2-UIDs
by (elim ϕ.elims) (auto simp: c-defs d-defs)

qed

lemma eqButUID-step-ϕ:
assumes ss1 : eqButUID s s1
and rs: reach s and rs1 : reach s1
and step: step s a = (ou,s ′) and step1 : step s1 a = (ou1 ,s1 ′)
and a: a 6= Cact (cFriend UID1 (pass s UID1) UID2) ∧ a 6= Cact (cFriend UID2
(pass s UID2) UID1) ∧

a 6= Dact (dFriend UID1 (pass s UID1) UID2) ∧ a 6= Dact (dFriend UID2
(pass s UID2) UID1)
shows ϕ (Trans s a ou s ′) = ϕ (Trans s1 a ou1 s1 ′)
proof

assume ϕ (Trans s a ou s ′)
with assms show ϕ (Trans s1 a ou1 s1 ′) by (rule eqButUID-step-ϕ-imp)

65

next
assume ϕ (Trans s1 a ou1 s1 ′)
moreover have eqButUID s1 s using ss1 by (rule eqButUID-sym)
moreover have a 6= Cact (cFriend UID1 (pass s1 UID1) UID2) ∧

a 6= Cact (cFriend UID2 (pass s1 UID2) UID1) ∧
a 6= Dact (dFriend UID1 (pass s1 UID1) UID2) ∧
a 6= Dact (dFriend UID2 (pass s1 UID2) UID1)

using a ss1 unfolding eqButUID-def by auto
ultimately show ϕ (Trans s a ou s ′) using rs rs1 step step1

by (intro eqButUID-step-ϕ-imp[of s1 s])
qed

lemma createFriend-sym: createFriend s uid p uid ′ = createFriend s uid ′ p ′ uid
unfolding c-defs by (cases uid = uid ′) (auto simp: fun-upd2-comm fun-upd-twist)

lemma deleteFriend-sym: deleteFriend s uid p uid ′ = deleteFriend s uid ′ p ′ uid
unfolding d-defs by (cases uid = uid ′) (auto simp: fun-upd-twist)

lemma createFriendReq-createFriend-absorb:
assumes e-createFriendReq s uid ′ p uid req
shows createFriend (createFriendReq s uid ′ p1 uid req) uid p2 uid ′ = createFriend
s uid p3 uid ′

using assms unfolding c-defs by (auto simp: remove1-idem remove1-append fun-upd2-absorb)

lemma eqButUID-deleteFriend12-friendIDs-eq:
assumes ss1 : eqButUID s s1
and rs: reach s and rs1 : reach s1
shows friendIDs (deleteFriend s UID1 p UID2) = friendIDs (deleteFriend s1 UID1
p ′ UID2)
proof −

have distinct (friendIDs s UID1) distinct (friendIDs s UID2)
distinct (friendIDs s1 UID1) distinct (friendIDs s1 UID2)

using rs rs1 by (auto intro: reach-distinct-friends-reqs)
then show ?thesis

using ss1 unfolding eqButUID-def eqButUIDf-def unfolding d-defs
by (auto simp: distinct-remove1-removeAll)

qed

lemma eqButUID-createFriend12-friendIDs-eq:
assumes ss1 : eqButUID s s1
and rs: reach s and rs1 : reach s1
and f12 : ¬friends12 s ¬friends12 s1
shows friendIDs (createFriend s UID1 p UID2) = friendIDs (createFriend s1 UID1
p ′ UID2)
proof −

have f12 ′: UID1 /∈ set (friendIDs s UID2) UID2 /∈ set (friendIDs s UID1)
UID1 /∈ set (friendIDs s1 UID2) UID2 /∈ set (friendIDs s1 UID1)

using f12 rs rs1 reach-friendIDs-symmetric unfolding friends12-def by auto
have friendIDs s = friendIDs s1

66

proof (intro ext)
fix uid
show friendIDs s uid = friendIDs s1 uid

using ss1 f12 ′ unfolding eqButUID-def eqButUIDf-def
by (cases uid = UID1 ∨ uid = UID2) (auto simp: remove1-idem)

qed
then show ?thesis by (auto simp: c-defs)

qed

end
theory Friend
imports ../Observation-Setup Friend-Value-Setup
begin

7.3 Declassification bound
fun T :: (state,act,out) trans ⇒ bool
where T (Trans - - - -) = False

The bound follows the same “while-or-last-before” scheme as the bound for
post confidentiality (Section 6.3), alternating between open (BO) and closed
(BC) phases.
The access window is initially open, because the two users are known not to
exist when the system is initialized, so there cannot be friendship between
them.
The bound also incorporates the static knowledge that the friendship status
alternates between False and True.
fun alternatingFriends :: value list ⇒ bool ⇒ bool where

alternatingFriends [] - = True
| alternatingFriends (FrVal st # vl) st ′←→ st ′ = (¬st) ∧ alternatingFriends vl st
| alternatingFriends (OVal - # vl) st = alternatingFriends vl st

inductive BO :: value list ⇒ value list ⇒ bool
and BC :: value list ⇒ value list ⇒ bool
where
BO-FrVal[simp,intro!]:
BO (map FrVal fs) (map FrVal fs)
|BO-BC [intro]:

BC vl vl1 =⇒
BO (map FrVal fs @ OVal False # vl) (map FrVal fs @ OVal False # vl1)

|BC-FrVal[simp,intro!]:
BC (map FrVal fs) (map FrVal fs1)
|BC-BO[intro]:

BO vl vl1 =⇒ (fs = [] ←→ fs1 = []) =⇒ (fs 6= [] =⇒ last fs = last fs1) =⇒
BC (map FrVal fs @ OVal True # vl)

(map FrVal fs1 @ OVal True # vl1)

67

definition B vl vl1 ≡ BO vl vl1 ∧ alternatingFriends vl1 False

lemma BO-Nil-Nil: BO vl vl1 =⇒ vl = [] =⇒ vl1 = []
by (cases rule: BO.cases) auto

unbundle no relcomp-syntax

interpretation BD-Security-IO where
istate = istate and step = step and
ϕ = ϕ and f = f and γ = γ and g = g and T = T and B = B
done

7.4 Unwinding proof
lemma eqButUID-step-γ-out:
assumes ss1 : eqButUID s s1
and step: step s a = (ou,s ′) and step1 : step s1 a = (ou1 ,s1 ′)
and γ: γ (Trans s a ou s ′)
and os: open s −→ friendIDs s = friendIDs s1
shows ou = ou1
proof −

from γ obtain uid where uid: userOfA a = Some uid ∧ uid ∈ UIDs ∧ uid 6=
UID1 ∧ uid 6= UID2

∨ userOfA a = None
using UID1-UID2-UIDs by (cases userOfA a) auto

{ fix uid
assume uid ∈∈ friendIDs s UID1 ∨ uid ∈∈ friendIDs s UID2 and uid ∈ UIDs
with os have friendIDs s = friendIDs s1 unfolding open-def openByF-def by

auto
} note fIDs = this
{ fix uid uid ′

assume uid: uid 6= UID1 uid 6= UID2
have friendIDs s uid = friendIDs s1 uid (is ?f-eq)
and pendingFReqs s uid = pendingFReqs s1 uid (is ?pFR-eq)
and uid ∈∈ friendIDs s uid ′←→ uid ∈∈ friendIDs s1 uid ′ (is ?f-iff)

and uid ∈∈ pendingFReqs s uid ′←→ uid ∈∈ pendingFReqs s1 uid ′ (is ?pFR-iff)
and friendReq s uid uid ′ = friendReq s1 uid uid ′ (is ?FR-eq)
and friendReq s uid ′ uid = friendReq s1 uid ′ uid (is ?FR-eq ′)

proof −
show ?f-eq ?pFR-eq using uid ss1 UID1-UID2-UIDs unfolding eqButUID-def

by (auto intro!: eqButUIDf-not-UID)
show ?f-iff ?pFR-iff using uid ss1 UID1-UID2-UIDs unfolding eqButUID-def

by (auto intro!: eqButUIDf-not-UID ′)
from uid have ¬ (uid,uid ′) ∈ {(UID1 ,UID2), (UID2 ,UID1)} by auto
then show ?FR-eq ?FR-eq ′ using ss1 UID1-UID2-UIDs unfolding eqBu-

tUID-def
by (auto intro!: eqButUID12-not-UID)

qed

68

} note simps = this eqButUID-def r-defs s-defs c-defs l-defs u-defs d-defs
note facts = ss1 step step1 uid
show ?thesis
proof (cases a)

case (Ract ra) then show ?thesis using facts by (cases ra) (auto simp add:
simps)

next
case (Sact sa) then show ?thesis using facts by (cases sa) (auto simp add:

simps)
next

case (Cact ca) then show ?thesis using facts by (cases ca) (auto simp add:
simps)

next
case (Lact la)

then show ?thesis using facts proof (cases la)
case (lFriends uid p uid ′)

with γ have uid: uid ∈ UIDs using Lact by auto
then have uid-uid ′: uid ∈∈ friendIDs s uid ′←→ uid ∈∈ friendIDs s1 uid ′

using ss1 UID1-UID2-UIDs unfolding eqButUID-def by (intro eqBu-
tUIDf-not-UID ′) auto

show ?thesis
proof (cases (uid ′ = UID1 ∨ uid ′ = UID2) ∧ uid ∈∈ friendIDs s uid ′)

case True
with uid have friendIDs s = friendIDs s1 by (intro fIDs) auto
then show ?thesis using lFriends facts Lact by (auto simp: simps)

next
case False

then show ?thesis using lFriends facts Lact simps(1) uid-uid ′ by
(auto simp: simps)

qed
next

case (lPosts uid p)
then have o:

∧
PID. owner s PID = owner s1 PID

and n:
∧

PID. post s PID = post s1 PID
and PIDs: postIDs s = postIDs s1
and viss: vis s = vis s1

and fu:
∧

uid ′. uid ∈∈ friendIDs s uid ′←→ uid ∈∈ friendIDs s1 uid ′

and e: e-listPosts s uid p ←→ e-listPosts s1 uid p
using ss1 uid Lact unfolding eqButUID-def l-defs by (auto simp add:

simps(3))
have listPosts s uid p = listPosts s1 uid p

unfolding listPosts-def o n PIDs fu viss ..
with e show ?thesis using Lact lPosts step step1 by auto

qed (auto simp add: simps)
next

case (Uact ua) then show ?thesis using facts by (cases ua) (auto simp add:
simps)

next
case (Dact da) then show ?thesis using facts by (cases da) (auto simp add:

69

simps)
qed

qed

lemma toggle-friends12-True:
assumes rs: reach s

and IDs: IDsOK s [UID1 , UID2] []
and nf12 : ¬friends12 s

obtains al oul
where sstep s al = (oul, createFriend s UID1 (pass s UID1) UID2)

and al 6= [] and eqButUID s (createFriend s UID1 (pass s UID1) UID2)
and friends12 (createFriend s UID1 (pass s UID1) UID2)
and O (traceOf s al) = [] and V (traceOf s al) = [FrVal True]

proof cases
assume UID1 ∈∈ pendingFReqs s UID2 ∨ UID2 ∈∈ pendingFReqs s UID1
then show thesis proof

assume pFR: UID1 ∈∈ pendingFReqs s UID2
let ?a = Cact (cFriend UID2 (pass s UID2) UID1)
let ?s ′ = createFriend s UID1 (pass s UID1) UID2
let ?trn = Trans s ?a outOK ?s ′

have step: step s ?a = (outOK , ?s ′) using IDs pFR UID1-UID2
unfolding createFriend-sym[of s UID1 pass s UID1 UID2 pass s UID2]
by (auto simp add: c-defs)

moreover then have ϕ ?trn and f ?trn = FrVal True and friends12 ?s ′

by (auto simp: c-defs friends12-def)
moreover have ¬γ ?trn using UID1-UID2-UIDs by auto
ultimately show thesis using nf12 rs

by (intro that[of [?a] [outOK]]) (auto intro: Cact-cFriend-step-eqButUID)
next

assume pFR: UID2 ∈∈ pendingFReqs s UID1
let ?a = Cact (cFriend UID1 (pass s UID1) UID2)
let ?s ′ = createFriend s UID1 (pass s UID1) UID2
let ?trn = Trans s ?a outOK ?s ′

have step: step s ?a = (outOK , ?s ′) using IDs pFR UID1-UID2 by (auto simp
add: c-defs)

moreover then have ϕ ?trn and f ?trn = FrVal True and friends12 ?s ′

by (auto simp: c-defs friends12-def)
moreover have ¬γ ?trn using UID1-UID2-UIDs by auto
ultimately show thesis using nf12 rs

by (intro that[of [?a] [outOK]]) (auto intro: Cact-cFriend-step-eqButUID)
qed

next
assume pFR: ¬(UID1 ∈∈ pendingFReqs s UID2 ∨ UID2 ∈∈ pendingFReqs s

UID1)
let ?a1 = Cact (cFriendReq UID2 (pass s UID2) UID1 emptyReq)
let ?s1 = createFriendReq s UID2 (pass s UID2) UID1 emptyReq
let ?trn1 = Trans s ?a1 outOK ?s1
let ?a2 = Cact (cFriend UID1 (pass ?s1 UID1) UID2)

70

let ?s2 = createFriend ?s1 UID1 (pass ?s1 UID1) UID2
let ?trn2 = Trans ?s1 ?a2 outOK ?s2
have eFR: e-createFriendReq s UID2 (pass s UID2) UID1 emptyReq using IDs

pFR nf12
using reach-friendIDs-symmetric[OF rs]
by (auto simp add: c-defs friends12-def)

then have step1 : step s ?a1 = (outOK , ?s1) by auto
moreover then have ¬ϕ ?trn1 and ¬γ ?trn1 using UID1-UID2-UIDs by auto
moreover have eqButUID s ?s1 by (intro Cact-cFriendReq-step-eqButUID[OF

step1]) auto
moreover have rs1 : reach ?s1 using step1 by (intro reach-PairI [OF rs])
moreover have step2 : step ?s1 ?a2 = (outOK , ?s2) using IDs by (auto simp:

c-defs)
moreover then have ϕ ?trn2 and f ?trn2 = FrVal True and friends12 ?s2

by (auto simp: c-defs friends12-def)
moreover have ¬γ ?trn2 using UID1-UID2-UIDs by auto
moreover have eqButUID ?s1 ?s2 by (intro Cact-cFriend-step-eqButUID[OF

step2 rs1]) auto
moreover have ?s2 = createFriend s UID1 (pass s UID1) UID2

using eFR by (intro createFriendReq-createFriend-absorb)
ultimately show thesis using nf12 rs

by (intro that[of [?a1 , ?a2] [outOK , outOK]]) (auto intro: eqButUID-trans)
qed

lemma toggle-friends12-False:
assumes rs: reach s

and IDs: IDsOK s [UID1 , UID2] []
and f12 : friends12 s

obtains al oul
where sstep s al = (oul, deleteFriend s UID1 (pass s UID1) UID2)

and al 6= [] and eqButUID s (deleteFriend s UID1 (pass s UID1) UID2)
and ¬friends12 (deleteFriend s UID1 (pass s UID1) UID2)
and O (traceOf s al) = [] and V (traceOf s al) = [FrVal False]

proof −
let ?a = Dact (dFriend UID1 (pass s UID1) UID2)
let ?s ′ = deleteFriend s UID1 (pass s UID1) UID2
let ?trn = Trans s ?a outOK ?s ′

have step: step s ?a = (outOK , ?s ′) using IDs f12 UID1-UID2
by (auto simp add: d-defs friends12-def)

moreover then have ϕ ?trn and f ?trn = FrVal False and ¬friends12 ?s ′

using reach-friendIDs-symmetric[OF rs] by (auto simp: d-defs friends12-def)
moreover have ¬γ ?trn using UID1-UID2-UIDs by auto
ultimately show thesis using f12 rs

by (intro that[of [?a] [outOK]]) (auto intro: Dact-dFriend-step-eqButUID)
qed

definition ∆0 :: state ⇒ value list ⇒ state ⇒ value list ⇒ bool where
∆0 s vl s1 vl1 ≡

71

eqButUID s s1 ∧ friendIDs s = friendIDs s1 ∧ open s ∧
BO vl vl1 ∧ alternatingFriends vl1 (friends12 s1)

definition ∆1 :: state ⇒ value list ⇒ state ⇒ value list ⇒ bool where
∆1 s vl s1 vl1 ≡ (∃ fs fs1 .
eqButUID s s1 ∧ ¬open s ∧
alternatingFriends vl1 (friends12 s1) ∧
vl = map FrVal fs ∧ vl1 = map FrVal fs1)

definition ∆2 :: state ⇒ value list ⇒ state ⇒ value list ⇒ bool where
∆2 s vl s1 vl1 ≡ (∃ fs fs1 vlr vlr1 .
eqButUID s s1 ∧ ¬open s ∧ BO vlr vlr1 ∧
alternatingFriends vl1 (friends12 s1) ∧
(fs = [] ←→ fs1 = []) ∧
(fs 6= [] −→ last fs = last fs1) ∧
(fs = [] −→ friendIDs s = friendIDs s1) ∧
vl = map FrVal fs @ OVal True # vlr ∧
vl1 = map FrVal fs1 @ OVal True # vlr1)

lemma ∆2-I :
assumes eqButUID s s1 ¬open s BO vlr vlr1 alternatingFriends vl1 (friends12 s1)

fs = [] ←→ fs1 = [] fs 6= [] −→ last fs = last fs1
fs = [] −→ friendIDs s = friendIDs s1
vl = map FrVal fs @ OVal True # vlr
vl1 = map FrVal fs1 @ OVal True # vlr1

shows ∆2 s vl s1 vl1
using assms unfolding ∆2-def by blast

lemma istate-∆0 :
assumes B: B vl vl1
shows ∆0 istate vl istate vl1
using assms unfolding ∆0-def istate-def B-def open-def openByA-def openByF-def
friends12-def
by auto

lemma unwind-cont-∆0 : unwind-cont ∆0 {∆0 ,∆1 ,∆2}
proof(rule, simp)

let ?∆ = λs vl s1 vl1 . ∆0 s vl s1 vl1 ∨
∆1 s vl s1 vl1 ∨
∆2 s vl s1 vl1

fix s s1 :: state and vl vl1 :: value list
assume rsT : reachNT s and rs1 : reach s1 and ∆0 : ∆0 s vl s1 vl1
then have rs: reach s and ss1 : eqButUID s s1 and fIDs: friendIDs s = friendIDs

s1
and os: open s and BO: BO vl vl1 and aF1 : alternatingFriends vl1 (friends12

s1)
using reachNT-reach unfolding ∆0-def by auto

show iaction ?∆ s vl s1 vl1 ∨

72

((vl = [] −→ vl1 = []) ∧ reaction ?∆ s vl s1 vl1) (is ?iact ∨ (- ∧ ?react))
proof−

have ?react proof
fix a :: act and ou :: out and s ′ :: state and vl ′
let ?trn = Trans s a ou s ′

assume step: step s a = (ou, s ′) and T : ¬ T ?trn and c: consume ?trn vl vl ′
show match ?∆ s s1 vl1 a ou s ′ vl ′ ∨ ignore ?∆ s s1 vl1 a ou s ′ vl ′ (is ?match

∨ ?ignore)
proof cases

assume ϕ: ϕ ?trn
then have vl: vl = f ?trn # vl ′ using c by (auto simp: consume-def)
from BO have ?match proof (cases f ?trn)

case (FrVal fv)
with BO vl obtain vl1 ′ where vl1 ′: vl1 = f ?trn # vl1 ′ and BO ′: BO

vl ′ vl1 ′

proof (cases rule: BO.cases)
case (BO-BC vl ′′ vl1 ′′ fs)

moreover with vl FrVal obtain fs ′ where fs = fv # fs ′ by (cases
fs) auto

ultimately show ?thesis using FrVal BO-BC vl
by (intro that[of map FrVal fs ′ @ OVal False # vl1 ′′]) auto

qed auto
from fIDs have f12 : friends12 s = friends12 s1 unfolding friends12-def

by auto
show ?match using ϕ step rs FrVal proof (cases rule: ϕE)

case (Friend uid p uid ′)
then have IDs1 : IDsOK s1 [UID1 , UID2] []

using ss1 unfolding eqButUID-def by auto
let ?s1 ′ = createFriend s1 UID1 (pass s1 UID1) UID2
have s ′: s ′ = createFriend s UID1 p UID2

using Friend step by (auto simp: createFriend-sym)
have ss ′: eqButUID s s ′ using rs step Friend

by (auto intro: Cact-cFriend-step-eqButUID)
moreover then have os ′: open s ′ using os eqButUID-open-eq by

auto
moreover obtain al oul where al: sstep s1 al = (oul, ?s1 ′) al 6= []

and tr1 : O (traceOf s1 al) = []
V (traceOf s1 al) = [FrVal True]

and f12s1 ′: friends12 ?s1 ′

and s1s1 ′: eqButUID s1 ?s1 ′

using rs1 IDs1 Friend unfolding f12 by (auto elim: tog-
gle-friends12-True)

moreover have friendIDs s ′ = friendIDs ?s1 ′

using Friend(6) f12 unfolding s ′

by (intro eqButUID-createFriend12-friendIDs-eq[OF ss1 rs rs1]) auto
ultimately have ∆0 s ′ vl ′ ?s1 ′ vl1 ′

using ss1 BO ′ aF1 unfolding ∆0-def vl1 ′ Friend(3)
by (auto intro: eqButUID-trans eqButUID-sym)

moreover have ¬γ ?trn using Friend UID1-UID2-UIDs by auto

73

ultimately show ?match using tr1 vl1 ′ Friend
by (intro matchI-ms[OF al]) (auto simp: consumeList-def)

next
case (Unfriend uid p uid ′)

then have IDs1 : IDsOK s1 [UID1 , UID2] []
using ss1 unfolding eqButUID-def by auto

let ?s1 ′ = deleteFriend s1 UID1 (pass s1 UID1) UID2
have s ′: s ′ = deleteFriend s UID1 p UID2

using Unfriend step by (auto simp: deleteFriend-sym)
have ss ′: eqButUID s s ′ using rs step Unfriend

by (auto intro: Dact-dFriend-step-eqButUID)
moreover then have os ′: open s ′ using os eqButUID-open-eq by

auto
moreover obtain al oul where al: sstep s1 al = (oul, ?s1 ′) al 6= []

and tr1 : O (traceOf s1 al) = []
V (traceOf s1 al) = [FrVal False]

and f12s1 ′: ¬friends12 ?s1 ′

and s1s1 ′: eqButUID s1 ?s1 ′

using rs1 IDs1 Unfriend unfolding f12 by (auto elim: tog-
gle-friends12-False)

moreover have friendIDs s ′ = friendIDs ?s1 ′

using fIDs unfolding s ′ by (auto simp: d-defs)
ultimately have ∆0 s ′ vl ′ ?s1 ′ vl1 ′

using ss1 BO ′ aF1 unfolding ∆0-def vl1 ′ Unfriend(3)
by (auto intro: eqButUID-trans eqButUID-sym)

moreover have ¬γ ?trn using Unfriend UID1-UID2-UIDs by auto
ultimately show ?match using tr1 vl1 ′ Unfriend

by (intro matchI-ms[OF al]) (auto simp: consumeList-def)
qed auto

next
case (OVal ov)

with BO vl obtain vl1 ′ where vl1 ′: vl1 = OVal False # vl1 ′

and vl ′: vl = OVal False # vl ′
and BC : BC vl ′ vl1 ′

proof (cases rule: BO.cases)
case (BO-BC vl ′′ vl1 ′′ fs)
moreover then have fs = [] using vl unfolding OVal by (cases fs)

auto
ultimately show thesis using vl by (intro that[of vl1 ′′]) auto

qed auto
then have f ?trn = OVal False using vl by auto
with ϕ step rs show ?match proof (cases rule: ϕE)

case (CloseF uid p uid ′)
let ?s1 ′ = deleteFriend s1 uid p uid ′

let ?trn1 = Trans s1 a outOK ?s1 ′

have s ′: s ′ = deleteFriend s uid p uid ′ using CloseF step by auto
have step1 : step s1 a = (outOK , ?s1 ′)
using CloseF step ss1 fIDs unfolding eqButUID-def by (auto simp:

d-defs)

74

have s ′s1 ′: eqButUID s ′ ?s1 ′ using eqButUID-step[OF ss1 step step1
rs rs1] .

moreover have os ′: ¬open s ′ using CloseF os unfolding open-def
by auto

moreover have fIDs ′: friendIDs s ′ = friendIDs ?s1 ′

using fIDs unfolding s ′ by (auto simp: d-defs)
moreover have f12s1 : friends12 s1 = friends12 ?s1 ′

using CloseF(2) UID1-UID2-UIDs unfolding friends12-def d-defs
by auto

from BC have ∆1 s ′ vl ′ ?s1 ′ vl1 ′ ∨ ∆2 s ′ vl ′ ?s1 ′ vl1 ′

proof (cases rule: BC .cases)
case (BC-FrVal fs fs1)

then show ?thesis using aF1 os ′ fIDs ′ f12s1 s ′s1 ′ unfolding
∆1-def vl1 ′ by auto

next
case (BC-BO vlr vlr1 fs fs1)

then have ∆2 s ′ vl ′ ?s1 ′ vl1 ′ using s ′s1 ′ os ′ aF1 f12s1 fIDs ′

unfolding vl1 ′

by (intro ∆2-I [of - - - - - fs fs1]) auto
then show ?thesis ..

qed
moreover have open s1 ¬open ?s1 ′

using ss1 os s ′s1 ′ os ′ by (auto simp: eqButUID-open-eq)
moreover then have ϕ ?trn1 unfolding CloseF by auto

ultimately show ?match using step1 vl1 ′ CloseF UID1-UID2
UID1-UID2-UIDs

by (intro matchI [of s1 a outOK ?s1 ′ vl1 vl1 ′]) (auto simp:
consume-def)

next
case (CloseA uid p uid ′ p ′)

let ?s1 ′ = createUser s1 uid p uid ′ p ′

let ?trn1 = Trans s1 a outOK ?s1 ′

have s ′: s ′ = createUser s uid p uid ′ p ′ using CloseA step by auto
have step1 : step s1 a = (outOK , ?s1 ′)

using CloseA step ss1 unfolding eqButUID-def by (auto simp:
c-defs)

have s ′s1 ′: eqButUID s ′ ?s1 ′ using eqButUID-step[OF ss1 step step1
rs rs1] .

moreover have os ′: ¬open s ′ using CloseA os unfolding open-def
by auto

moreover have fIDs ′: friendIDs s ′ = friendIDs ?s1 ′

using fIDs unfolding s ′ by (auto simp: c-defs)
moreover have f12s1 : friends12 s1 = friends12 ?s1 ′

unfolding friends12-def by (auto simp: c-defs)
from BC have ∆1 s ′ vl ′ ?s1 ′ vl1 ′ ∨ ∆2 s ′ vl ′ ?s1 ′ vl1 ′

proof (cases rule: BC .cases)
case (BC-FrVal fs fs1)

then show ?thesis using aF1 os ′ fIDs ′ f12s1 s ′s1 ′ unfolding
∆1-def vl1 ′ by auto

75

next
case (BC-BO vlr vlr1 fs fs1)

then have ∆2 s ′ vl ′ ?s1 ′ vl1 ′ using s ′s1 ′ os ′ aF1 f12s1 fIDs ′

unfolding vl1 ′

by (intro ∆2-I [of - - - - - fs fs1]) auto
then show ?thesis ..

qed
moreover have open s1 ¬open ?s1 ′

using ss1 os s ′s1 ′ os ′ by (auto simp: eqButUID-open-eq)
moreover then have ϕ ?trn1 unfolding CloseA by auto

ultimately show ?match using step1 vl1 ′ CloseA UID1-UID2
UID1-UID2-UIDs

by (intro matchI [of s1 a outOK ?s1 ′ vl1 vl1 ′]) (auto simp:
consume-def)

qed auto
qed
then show ?match ∨ ?ignore ..

next
assume nϕ: ¬ϕ ?trn
then have os ′: open s = open s ′ and f12s ′: friends12 s = friends12 s ′

using step-open-ϕ[OF step] step-friends12-ϕ[OF step] by auto
have vl ′: vl ′ = vl using nϕ c by (auto simp: consume-def)
show ?thesis proof (cases a 6= Cact (cFriend UID1 (pass s UID1) UID2)

∧
a 6= Cact (cFriend UID2 (pass s UID2) UID1) ∧
a 6= Dact (dFriend UID1 (pass s UID1) UID2) ∧
a 6= Dact (dFriend UID2 (pass s UID2) UID1))

case True
obtain ou1 s1 ′ where step1 : step s1 a = (ou1 , s1 ′) by (cases step s1

a) auto
let ?trn1 = Trans s1 a ou1 s1 ′

have fIDs ′: friendIDs s ′ = friendIDs s1 ′

using eqButUID-step-friendIDs-eq[OF ss1 rs rs1 step step1 True fIDs] .
from True nϕ have nϕ ′: ¬ϕ ?trn1 using eqButUID-step-ϕ[OF ss1 rs

rs1 step step1] by auto
then have f12s1 ′: friends12 s1 = friends12 s1 ′

using step-friends12-ϕ[OF step1] by auto
have eqButUID s ′ s1 ′ using eqButUID-step[OF ss1 step step1 rs rs1] .
then have ∆0 s ′ vl ′ s1 ′ vl1 using os fIDs ′ aF1 BO

unfolding ∆0-def os ′ f12s1 ′ vl ′ by auto
then have ?match

using step1 nϕ ′ fIDs eqButUID-step-γ-out[OF ss1 step step1]
by (intro matchI [of s1 a ou1 s1 ′ vl1 vl1]) (auto simp: consume-def)

then show ?match ∨ ?ignore ..
next

case False
with nϕ have ou 6= outOK by auto
then have s ′ = s using step False by auto
then have ?ignore using ∆0 False UID1-UID2-UIDs unfolding vl ′ by

76

(intro ignoreI) auto
then show ?match ∨ ?ignore ..

qed
qed

qed
then show ?thesis using BO BO-Nil-Nil by auto

qed
qed

lemma unwind-cont-∆1 : unwind-cont ∆1 {∆1 , ∆0}
proof(rule, simp)

let ?∆ = λs vl s1 vl1 . ∆1 s vl s1 vl1 ∨ ∆0 s vl s1 vl1
fix s s1 :: state and vl vl1 :: value list
assume rsT : reachNT s and rs1 : reach s1 and 1 : ∆1 s vl s1 vl1
from rsT have rs: reach s by (intro reachNT-reach)
from 1 obtain fs fs1
where ss1 : eqButUID s s1 and os: ¬open s

and aF1 : alternatingFriends vl1 (friends12 s1)
and vl: vl = map FrVal fs and vl1 : vl1 = map FrVal fs1
unfolding ∆1-def by auto

from os have IDs: IDsOK s [UID1 , UID2] [] unfolding open-defs by auto
then have IDs1 : IDsOK s1 [UID1 , UID2] [] using ss1 unfolding eqButUID-def

by auto
show iaction ?∆ s vl s1 vl1 ∨

((vl = [] −→ vl1 = []) ∧ reaction ?∆ s vl s1 vl1) (is ?iact ∨ (- ∧ ?react))
proof cases

assume fs1 : fs1 = []
have ?react proof

fix a :: act and ou :: out and s ′ :: state and vl ′
let ?trn = Trans s a ou s ′

assume step: step s a = (ou, s ′) and T : ¬ T ?trn and c: consume ?trn vl vl ′
show match ?∆ s s1 vl1 a ou s ′ vl ′ ∨ ignore ?∆ s s1 vl1 a ou s ′ vl ′ (is ?match

∨ ?ignore)
proof cases

assume ϕ: ϕ ?trn
with vl c obtain fv fs ′ where vl ′: vl ′ = map FrVal fs ′ and fv: f ?trn =

FrVal fv
by (cases fs) (auto simp: consume-def)

from ϕ step rs fv have ss ′: eqButUID s s ′

by (elim ϕE) (auto intro: Cact-cFriend-step-eqButUID Dact-dFriend-step-eqButUID)
then have ¬open s ′ using os by (auto simp: eqButUID-open-eq)

moreover have eqButUID s ′ s1 using ss1 ss ′ by (auto intro: eqButUID-sym
eqButUID-trans)

ultimately have ∆1 s ′ vl ′ s1 vl1 using aF1 unfolding ∆1-def vl ′ vl1 by
auto

moreover have ¬γ ?trn using ϕ step rs fv UID1-UID2-UIDs by (elim
ϕE) auto

ultimately have ?ignore by (intro ignoreI) auto
then show ?match ∨ ?ignore ..

77

next
assume nϕ: ¬ϕ ?trn
then have os ′: open s = open s ′ and f12s ′: friends12 s = friends12 s ′

using step-open-ϕ[OF step] step-friends12-ϕ[OF step] by auto
have vl ′: vl ′ = vl using nϕ c by (auto simp: consume-def)
show ?thesis proof (cases a 6= Cact (cFriend UID1 (pass s UID1) UID2)

∧
a 6= Cact (cFriend UID2 (pass s UID2) UID1) ∧
a 6= Dact (dFriend UID1 (pass s UID1) UID2) ∧
a 6= Dact (dFriend UID2 (pass s UID2) UID1))

case True
obtain ou1 s1 ′ where step1 : step s1 a = (ou1 , s1 ′) by (cases step s1

a) auto
let ?trn1 = Trans s1 a ou1 s1 ′

from True nϕ have nϕ ′: ¬ϕ ?trn1 using eqButUID-step-ϕ[OF ss1 rs
rs1 step step1] by auto

then have f12s1 ′: friends12 s1 = friends12 s1 ′

using step-friends12-ϕ[OF step1] by auto
have eqButUID s ′ s1 ′ using eqButUID-step[OF ss1 step step1 rs rs1] .
then have ∆1 s ′ vl ′ s1 ′ vl1 using os aF1 vl vl1

unfolding ∆1-def os ′ vl ′ f12s1 ′ by auto
then have ?match

using step1 nϕ ′ os eqButUID-step-γ-out[OF ss1 step step1]
by (intro matchI [of s1 a ou1 s1 ′ vl1 vl1]) (auto simp: consume-def)

then show ?match ∨ ?ignore ..
next

case False
with nϕ have ou 6= outOK by auto
then have s ′ = s using step False by auto
then have ?ignore using 1 False UID1-UID2-UIDs unfolding vl ′ by

(intro ignoreI) auto
then show ?match ∨ ?ignore ..

qed
qed

qed
then show ?thesis using fs1 unfolding vl1 by auto

next
assume fs1 6= []
then obtain fs1 ′ where fs1 : fs1 = (¬friends12 s1) # fs1 ′

and aF1 ′: alternatingFriends (map FrVal fs1 ′) (¬friends12 s1)
using aF1 unfolding vl1 by (cases fs1) auto

obtain al oul s1 ′ where sstep s1 al = (oul, s1 ′) al 6= [] eqButUID s1 s1 ′

friends12 s1 ′ = (¬friends12 s1)
O (traceOf s1 al) = [] V (traceOf s1 al) = [FrVal (¬friends12

s1)]
using rs1 IDs1

by (cases friends12 s1) (auto intro: toggle-friends12-True toggle-friends12-False)
moreover then have ∆1 s vl s1 ′ (map FrVal fs1 ′)

using os aF1 ′ vl ss1 unfolding ∆1-def by (auto intro: eqButUID-sym

78

eqButUID-trans)
ultimately have ?iact using vl1 unfolding fs1

by (intro iactionI-ms[of s1 al oul s1 ′])
(auto simp: consumeList-def O-Nil-never list-ex-iff-length-V)

then show ?thesis ..
qed

qed

lemma unwind-cont-∆2 : unwind-cont ∆2 {∆2 ,∆0}
proof(rule, simp)

let ?∆ = λs vl s1 vl1 . ∆2 s vl s1 vl1 ∨ ∆0 s vl s1 vl1
fix s s1 :: state and vl vl1 :: value list
assume rsT : reachNT s and rs1 : reach s1 and 2 : ∆2 s vl s1 vl1
from rsT have rs: reach s by (intro reachNT-reach)
obtain fs fs1 vlr vlr1
where ss1 : eqButUID s s1 and os: ¬open s and BO: BO vlr vlr1

and aF1 : alternatingFriends vl1 (friends12 s1)
and vl: vl = map FrVal fs @ OVal True # vlr
and vl1 : vl1 = map FrVal fs1 @ OVal True # vlr1
and fs-fs1 : fs = [] ←→ fs1 = []
and last-fs: fs 6= [] −→ last fs = last fs1
and fs-fIDs: fs = [] −→ friendIDs s = friendIDs s1
using 2 unfolding ∆2-def by auto

from os have IDs: IDsOK s [UID1 , UID2] [] unfolding open-defs by auto
then have IDs1 : IDsOK s1 [UID1 , UID2] [] using ss1 unfolding eqButUID-def

by auto
show iaction ?∆ s vl s1 vl1 ∨

((vl = [] −→ vl1 = []) ∧ reaction ?∆ s vl s1 vl1) (is ?iact ∨ (- ∧ ?react))
proof cases

assume length fs1 > 1
then obtain fs1 ′

where fs1 : fs1 = (¬friends12 s1) # fs1 ′ and fs1 ′: fs1 ′ 6= []
and last-fs ′: last fs1 = last fs1 ′

and aF1 ′: alternatingFriends (map FrVal fs1 ′@ OVal True # vlr1) (¬friends12
s1)

using vl1 aF1 by (cases fs1) auto
obtain al oul s1 ′ where sstep s1 al = (oul, s1 ′) al 6= [] eqButUID s1 s1 ′

friends12 s1 ′ = (¬friends12 s1)
O (traceOf s1 al) = [] V (traceOf s1 al) = [FrVal (¬friends12

s1)]
using rs1 IDs1

by (cases friends12 s1) (auto intro: toggle-friends12-True toggle-friends12-False)
moreover then have ∆2 s vl s1 ′ (map FrVal fs1 ′ @ OVal True # vlr1)

using os aF1 ′ vl ss1 fs1 ′ last-fs ′ fs-fs1 last-fs BO unfolding fs1
by (intro ∆2-I [of - - vlr vlr1 - fs fs1 ′])

(auto intro: eqButUID-sym eqButUID-trans)
ultimately have ?iact using vl1 unfolding fs1

by (intro iactionI-ms[of s1 al oul s1 ′])
(auto simp: consumeList-def O-Nil-never list-ex-iff-length-V)

79

then show ?thesis ..
next

assume len1-leq-1 : ¬ length fs1 > 1
have ?react proof

fix a :: act and ou :: out and s ′ :: state and vl ′
let ?trn = Trans s a ou s ′ let ?trn1 = Trans s1 a ou s ′

assume step: step s a = (ou, s ′) and T : ¬ T ?trn and c: consume ?trn vl vl ′
show match ?∆ s s1 vl1 a ou s ′ vl ′ ∨ ignore ?∆ s s1 vl1 a ou s ′ vl ′ (is ?match

∨ ?ignore)
proof cases

assume ϕ: ϕ ?trn
show ?thesis proof cases

assume length fs > 1
then obtain fv fs ′

where fs1 : fs = fv # fs ′ and fs1 ′: fs ′ 6= []
and last-fs ′: last fs = last fs ′

using vl by (cases fs) auto
with ϕ c have fv: f ?trn = FrVal fv and vl ′: vl ′ = map FrVal fs ′ @ OVal

True # vlr
unfolding vl consume-def by auto

from ϕ step rs fv have ss ′: eqButUID s s ′

by (elim ϕE) (auto intro: Cact-cFriend-step-eqButUID Dact-dFriend-step-eqButUID)
then have ¬open s ′ using os by (auto simp: eqButUID-open-eq)

moreover have eqButUID s ′ s1 using ss1 ss ′ by (auto intro: eqButUID-sym
eqButUID-trans)

ultimately have ∆2 s ′ vl ′ s1 vl1
using aF1 vl ′ fs1 ′ fs-fs1 last-fs BO unfolding fs1 vl1
by (intro ∆2-I [of - - vlr vlr1 - fs ′ fs1])

(auto intro: eqButUID-sym eqButUID-trans)
moreover have ¬γ ?trn using ϕ step rs fv UID1-UID2-UIDs by (elim

ϕE) auto
ultimately have ?ignore by (intro ignoreI) auto
then show ?match ∨ ?ignore ..

next
assume len-leq-1 : ¬ length fs > 1
show ?thesis proof cases

assume fs: fs = []
then have fs1 : fs1 = [] and fIDs: friendIDs s = friendIDs s1

using fs-fs1 fs-fIDs by auto
from fs ϕ c have ov: f ?trn = OVal True and vl ′: vl ′ = vlr

unfolding vl consume-def by auto
with ϕ step rs have ?match proof (cases rule: ϕE)

case (OpenF uid p uid ′)
let ?s1 ′ = createFriend s1 uid p uid ′

let ?trn1 = Trans s1 a outOK ?s1 ′

have s ′: s ′ = createFriend s uid p uid ′ using OpenF step by auto
have eqButUIDf (pendingFReqs s) (pendingFReqs s1)

using ss1 unfolding eqButUID-def by auto
then have uid ′ ∈∈ pendingFReqs s uid ←→ uid ′ ∈∈ pendingFReqs

80

s1 uid
using OpenF by (intro eqButUIDf-not-UID ′) auto

then have step1 : step s1 a = (outOK , ?s1 ′)
using OpenF step ss1 fIDs unfolding eqButUID-def by (auto simp:

c-defs)
have s ′s1 ′: eqButUID s ′ ?s1 ′ using eqButUID-step[OF ss1 step step1

rs rs1] .
moreover have os ′: open s ′ using OpenF unfolding open-def by

auto
moreover have fIDs ′: friendIDs s ′ = friendIDs ?s1 ′

using fIDs unfolding s ′ by (auto simp: c-defs)
moreover have f12s1 : friends12 s1 = friends12 ?s1 ′

using OpenF(2) UID1-UID2-UIDs unfolding friends12-def c-defs
by auto

ultimately have ∆0 s ′ vl ′ ?s1 ′ vlr1
using BO aF1 unfolding ∆0-def vl ′ vl1 fs1 by auto

moreover have ¬open s1 open ?s1 ′

using ss1 os s ′s1 ′ os ′ by (auto simp: eqButUID-open-eq)
moreover then have ϕ ?trn1 unfolding OpenF by auto

ultimately show ?match using step1 vl1 fs1 OpenF UID1-UID2
UID1-UID2-UIDs

by (intro matchI [of s1 a outOK ?s1 ′ vl1 vlr1]) (auto simp:
consume-def)

qed auto
then show ?thesis ..

next
assume fs 6= []
then obtain fv where fs: fs = [fv] using len-leq-1 by (cases fs) auto
then have fs1 : fs1 = [fv] using len1-leq-1 fs-fs1 last-fs by (cases fs1)

auto
with aF1 have f12s1 : friends12 s1 = (¬fv) unfolding vl1 by auto
have fv: f ?trn = FrVal fv and vl ′: vl ′ = OVal True # vlr

using c ϕ unfolding vl fs by (auto simp: consume-def)
with ϕ step rs have ?match proof (cases rule: ϕE)

case (Friend uid p uid ′)
then have IDs1 : IDsOK s1 [UID1 , UID2] []

using ss1 unfolding eqButUID-def by auto
have fv: fv = True using fv Friend by auto
let ?s1 ′ = createFriend s1 UID1 (pass s1 UID1) UID2
have s ′: s ′ = createFriend s UID1 p UID2

using Friend step by (auto simp: createFriend-sym)
have ss ′: eqButUID s s ′ using rs step Friend

by (auto intro: Cact-cFriend-step-eqButUID)
moreover then have os ′: ¬open s ′ using os eqButUID-open-eq by

auto
moreover obtain al oul where al: sstep s1 al = (oul, ?s1 ′) al 6= []

and tr1 : O (traceOf s1 al) = []
V (traceOf s1 al) = [FrVal True]

and f12s1 ′: friends12 ?s1 ′

81

and s1s1 ′: eqButUID s1 ?s1 ′

using rs1 IDs1 Friend f12s1 unfolding fv by (auto elim:
toggle-friends12-True)

moreover have friendIDs s ′ = friendIDs ?s1 ′

using Friend(6) f12s1 unfolding s ′ fv
by (intro eqButUID-createFriend12-friendIDs-eq[OF ss1 rs rs1]) auto
ultimately have ∆2 s ′ vl ′ ?s1 ′ (OVal True # vlr1)

using BO ss1 aF1 unfolding vl ′ vl1 fs1 f12s1 fv
by (intro ∆2-I [of - - - - - [] []])

(auto intro: eqButUID-trans eqButUID-sym)
moreover have ¬γ ?trn using Friend UID1-UID2-UIDs by auto
ultimately show ?match using tr1 vl1 Friend unfolding fs1 fv

by (intro matchI-ms[OF al]) (auto simp: consumeList-def)
next

case (Unfriend uid p uid ′)
then have IDs1 : IDsOK s1 [UID1 , UID2] []

using ss1 unfolding eqButUID-def by auto
have fv: fv = False using fv Unfriend by auto
let ?s1 ′ = deleteFriend s1 UID1 (pass s1 UID1) UID2
have s ′: s ′ = deleteFriend s UID1 p UID2

using Unfriend step by (auto simp: deleteFriend-sym)
have ss ′: eqButUID s s ′ using rs step Unfriend

by (auto intro: Dact-dFriend-step-eqButUID)
moreover then have os ′: ¬open s ′ using os eqButUID-open-eq by

auto
moreover obtain al oul where al: sstep s1 al = (oul, ?s1 ′) al 6= []

and tr1 : O (traceOf s1 al) = []
V (traceOf s1 al) = [FrVal False]

and f12s1 ′: ¬friends12 ?s1 ′

and s1s1 ′: eqButUID s1 ?s1 ′

using rs1 IDs1 Unfriend f12s1 unfolding fv by (auto elim:
toggle-friends12-False)

moreover have friendIDs s ′ = friendIDs ?s1 ′

using Unfriend(6) f12s1 unfolding s ′ fv
by (intro eqButUID-deleteFriend12-friendIDs-eq[OF ss1 rs rs1])

ultimately have ∆2 s ′ vl ′ ?s1 ′ (OVal True # vlr1)
using BO ss1 aF1 unfolding vl ′ vl1 fs1 f12s1 fv
by (intro ∆2-I [of - - - - - [] []])

(auto intro: eqButUID-trans eqButUID-sym)
moreover have ¬γ ?trn using Unfriend UID1-UID2-UIDs by auto
ultimately show ?match using tr1 vl1 Unfriend unfolding fs1 fv

by (intro matchI-ms[OF al]) (auto simp: consumeList-def)
qed auto
then show ?thesis ..

qed
qed

next
assume nϕ: ¬ϕ ?trn
then have os ′: open s = open s ′ and f12s ′: friends12 s = friends12 s ′

82

using step-open-ϕ[OF step] step-friends12-ϕ[OF step] by auto
have vl ′: vl ′ = vl using nϕ c by (auto simp: consume-def)
show ?thesis proof (cases a 6= Cact (cFriend UID1 (pass s UID1) UID2)

∧
a 6= Cact (cFriend UID2 (pass s UID2) UID1) ∧
a 6= Dact (dFriend UID1 (pass s UID1) UID2) ∧
a 6= Dact (dFriend UID2 (pass s UID2) UID1))

case True
obtain ou1 s1 ′ where step1 : step s1 a = (ou1 , s1 ′) by (cases step s1

a) auto
let ?trn1 = Trans s1 a ou1 s1 ′

from True nϕ have nϕ ′: ¬ϕ ?trn1 using eqButUID-step-ϕ[OF ss1 rs
rs1 step step1] by auto

then have f12s1 ′: friends12 s1 = friends12 s1 ′

using step-friends12-ϕ[OF step1] by auto
have eqButUID s ′ s1 ′ using eqButUID-step[OF ss1 step step1 rs rs1] .

moreover have friendIDs s = friendIDs s1 −→ friendIDs s ′ = friendIDs
s1 ′

using eqButUID-step-friendIDs-eq[OF ss1 rs rs1 step step1 True] ..
ultimately have ∆2 s ′ vl ′ s1 ′ vl1

using os ′ os aF1 BO fs-fs1 last-fs fs-fIDs unfolding f12s1 ′ vl ′ vl vl1
by (intro ∆2-I) auto

then have ?match
using step1 nϕ ′ os eqButUID-step-γ-out[OF ss1 step step1]
by (intro matchI [of s1 a ou1 s1 ′ vl1 vl1]) (auto simp: consume-def)

then show ?match ∨ ?ignore ..
next

case False
with nϕ have ou 6= outOK by auto
then have s ′ = s using step False by auto
then have ?ignore using 2 False UID1-UID2-UIDs unfolding vl ′ by

(intro ignoreI) auto
then show ?match ∨ ?ignore ..

qed
qed

qed
then show ?thesis unfolding vl by auto

qed
qed

definition Gr where
Gr =
{
(∆0 , {∆0 ,∆1 ,∆2}),
(∆1 , {∆1 ,∆0}),
(∆2 , {∆2 ,∆0})
}

83

theorem secure: secure
apply (rule unwind-decomp-secure-graph[of Gr ∆0])
unfolding Gr-def
apply (simp, smt insert-subset order-refl)
using
istate-∆0 unwind-cont-∆0 unwind-cont-∆1 unwind-cont-∆2
unfolding Gr-def by (auto intro: unwind-cont-mono)

end
theory Friend-Request-Intro

imports ../Safety-Properties ../Observation-Setup
begin

8 Friendship request confidentiality

We prove the following property:

Given a group of users UIDs and given two users UID1 and UID2 not in
that group,
that group cannot learn anything about the friendship requests issued be-
tween UID1 and UID2
beyond what everybody knows, namely that

• there is no friendship between UID1 and UID2 before those users have
been created, and

• friendship status updates form an alternating sequence of friending and
unfriending, every successful friend creation is preceded by at least one
and at most two requests,

and beyond those requests performed while or last before a user in UIDs is
friends with UID1 or UID2.
end

theory Friend-Request-Value-Setup
imports Friend-Request-Intro
begin

The confidential information is the friendship requests between two arbitrary
but fixed users:
consts UID1 :: userID
consts UID2 :: userID

84

axiomatization where
UID1-UID2-UIDs: {UID1 ,UID2} ∩ UIDs = {}
and
UID1-UID2 : UID1 6= UID2

8.1 Preliminaries
fun eqButUIDl :: userID ⇒ userID list ⇒ userID list ⇒ bool where
eqButUIDl uid uidl uidl1 = (remove1 uid uidl = remove1 uid uidl1)

lemma eqButUIDl-eq[simp,intro!]: eqButUIDl uid uidl uidl
by auto

lemma eqButUIDl-sym:
assumes eqButUIDl uid uidl uidl1
shows eqButUIDl uid uidl1 uidl
using assms by auto

lemma eqButUIDl-trans:
assumes eqButUIDl uid uidl uidl1 and eqButUIDl uid uidl1 uidl2
shows eqButUIDl uid uidl uidl2
using assms by auto

lemma eqButUIDl-remove1-cong:
assumes eqButUIDl uid uidl uidl1
shows eqButUIDl uid (remove1 uid ′ uidl) (remove1 uid ′ uidl1)
proof −

have remove1 uid (remove1 uid ′ uidl) = remove1 uid ′ (remove1 uid uidl) by
(simp add: remove1-commute)

also have . . . = remove1 uid ′ (remove1 uid uidl1) using assms by simp
also have . . . = remove1 uid (remove1 uid ′ uidl1) by (simp add: remove1-commute)
finally show ?thesis by simp

qed

lemma eqButUIDl-snoc-cong:
assumes eqButUIDl uid uidl uidl1
and uid ′ ∈∈ uidl ←→ uid ′ ∈∈ uidl1
shows eqButUIDl uid (uidl ## uid ′) (uidl1 ## uid ′)
using assms by (auto simp add: remove1-append remove1-idem)

definition eqButUIDf where
eqButUIDf frds frds1 ≡

eqButUIDl UID2 (frds UID1) (frds1 UID1)
∧ eqButUIDl UID1 (frds UID2) (frds1 UID2)
∧ (∀ uid. uid 6= UID1 ∧ uid 6= UID2 −→ frds uid = frds1 uid)

lemmas eqButUIDf-intro = eqButUIDf-def [THEN meta-eq-to-obj-eq, THEN iffD2]

85

lemma eqButUIDf-eeq[simp,intro!]: eqButUIDf frds frds
unfolding eqButUIDf-def by auto

lemma eqButUIDf-sym:
assumes eqButUIDf frds frds1 shows eqButUIDf frds1 frds
using assms eqButUIDl-sym unfolding eqButUIDf-def
by presburger

lemma eqButUIDf-trans:
assumes eqButUIDf frds frds1 and eqButUIDf frds1 frds2
shows eqButUIDf frds frds2
using assms eqButUIDl-trans unfolding eqButUIDf-def by (auto split: if-splits)

lemma eqButUIDf-cong:
assumes eqButUIDf frds frds1
and uid = UID1 =⇒ eqButUIDl UID2 uu uu1
and uid = UID2 =⇒ eqButUIDl UID1 uu uu1
and uid 6= UID1 =⇒ uid 6= UID2 =⇒ uu = uu1
shows eqButUIDf (frds (uid := uu)) (frds1 (uid := uu1))
using assms unfolding eqButUIDf-def by (auto split: if-splits)

lemma eqButUIDf-eqButUIDl:
assumes eqButUIDf frds frds1
shows eqButUIDl UID2 (frds UID1) (frds1 UID1)

and eqButUIDl UID1 (frds UID2) (frds1 UID2)
using assms unfolding eqButUIDf-def by (auto split: if-splits)

lemma eqButUIDf-not-UID:
[[eqButUIDf frds frds1 ; uid 6= UID1 ; uid 6= UID2]] =⇒ frds uid = frds1 uid
unfolding eqButUIDf-def by (auto split: if-splits)

lemma eqButUIDf-not-UID ′:
assumes eq1 : eqButUIDf frds frds1
and uid: (uid,uid ′) /∈ {(UID1 ,UID2), (UID2 ,UID1)}
shows uid ∈∈ frds uid ′←→ uid ∈∈ frds1 uid ′

proof −
from uid have (uid ′ = UID1 ∧ uid 6= UID2)

∨ (uid ′ = UID2 ∧ uid 6= UID1)
∨ (uid ′ /∈ {UID1 ,UID2}) (is ?u1 ∨ ?u2 ∨ ?n12)

by auto
then show ?thesis proof (elim disjE)

assume ?u1
moreover then have uid ∈∈ remove1 UID2 (frds uid ′) ←→ uid ∈∈ remove1

UID2 (frds1 uid ′)
using eq1 unfolding eqButUIDf-def by auto

ultimately show ?thesis by auto
next

assume ?u2
moreover then have uid ∈∈ remove1 UID1 (frds uid ′) ←→ uid ∈∈ remove1

86

UID1 (frds1 uid ′)
using eq1 unfolding eqButUIDf-def by auto

ultimately show ?thesis by auto
next

assume ?n12
then show ?thesis using eq1 unfolding eqButUIDf-def by auto

qed
qed

definition eqButUID12 where
eqButUID12 freq freq1 ≡
∀ uid uid ′. if (uid,uid ′) ∈ {(UID1 ,UID2), (UID2 ,UID1)} then True else freq uid

uid ′ = freq1 uid uid ′

lemmas eqButUID12-intro = eqButUID12-def [THEN meta-eq-to-obj-eq, THEN
iffD2]

lemma eqButUID12-eeq[simp,intro!]: eqButUID12 freq freq
unfolding eqButUID12-def by auto

lemma eqButUID12-sym:
assumes eqButUID12 freq freq1 shows eqButUID12 freq1 freq
using assms unfolding eqButUID12-def
by presburger

lemma eqButUID12-trans:
assumes eqButUID12 freq freq1 and eqButUID12 freq1 freq2
shows eqButUID12 freq freq2
using assms unfolding eqButUID12-def by (auto split: if-splits)

lemma eqButUID12-cong:
assumes eqButUID12 freq freq1
and ¬ (uid,uid ′) ∈ {(UID1 ,UID2), (UID2 ,UID1)} =⇒ uu = uu1
shows eqButUID12 (fun-upd2 freq uid uid ′ uu) (fun-upd2 freq1 uid uid ′ uu1)
using assms unfolding eqButUID12-def fun-upd2-def by (auto split: if-splits)

lemma eqButUID12-not-UID:
[[eqButUID12 freq freq1 ; ¬ (uid,uid ′) ∈ {(UID1 ,UID2), (UID2 ,UID1)}]] =⇒ freq
uid uid ′ = freq1 uid uid ′

unfolding eqButUID12-def by (auto split: if-splits)

definition eqButUID :: state ⇒ state ⇒ bool where
eqButUID s s1 ≡
admin s = admin s1 ∧

pendingUReqs s = pendingUReqs s1 ∧ userReq s = userReq s1 ∧

87

userIDs s = userIDs s1 ∧ user s = user s1 ∧ pass s = pass s1 ∧

eqButUIDf (pendingFReqs s) (pendingFReqs s1) ∧
eqButUID12 (friendReq s) (friendReq s1) ∧
eqButUIDf (friendIDs s) (friendIDs s1) ∧

postIDs s = postIDs s1 ∧ admin s = admin s1 ∧
post s = post s1 ∧
owner s = owner s1 ∧
vis s = vis s1

lemmas eqButUID-intro = eqButUID-def [THEN meta-eq-to-obj-eq, THEN iffD2]

lemma eqButUID-refl[simp,intro!]: eqButUID s s
unfolding eqButUID-def by auto

lemma eqButUID-sym[sym]:
assumes eqButUID s s1 shows eqButUID s1 s
using assms eqButUIDf-sym eqButUID12-sym unfolding eqButUID-def by auto

lemma eqButUID-trans[trans]:
assumes eqButUID s s1 and eqButUID s1 s2 shows eqButUID s s2
using assms eqButUIDf-trans eqButUID12-trans unfolding eqButUID-def by metis

lemma eqButUID-stateSelectors:
eqButUID s s1 =⇒
admin s = admin s1 ∧

pendingUReqs s = pendingUReqs s1 ∧ userReq s = userReq s1 ∧
userIDs s = userIDs s1 ∧ user s = user s1 ∧ pass s = pass s1 ∧

eqButUIDf (pendingFReqs s) (pendingFReqs s1) ∧
eqButUID12 (friendReq s) (friendReq s1) ∧
eqButUIDf (friendIDs s) (friendIDs s1) ∧

postIDs s = postIDs s1 ∧ admin s = admin s1 ∧
post s = post s1 ∧
owner s = owner s1 ∧
vis s = vis s1 ∧

IDsOK s = IDsOK s1
unfolding eqButUID-def IDsOK-def [abs-def] by auto

lemma eqButUID-eqButUID2 :
eqButUID s s1 =⇒ eqButUIDl UID2 (friendIDs s UID1) (friendIDs s1 UID1)
unfolding eqButUID-def using eqButUIDf-eqButUIDl
by (smt eqButUIDf-eqButUIDl eqButUIDl.simps)

88

lemma eqButUID-not-UID:
eqButUID s s1 =⇒ uid 6= UID =⇒ post s uid = post s1 uid
unfolding eqButUID-def by auto

lemma eqButUID-cong[simp, intro]:∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|admin := uu1 |))

(s1 (|admin := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|pendingUReqs :=

uu1 |)) (s1 (|pendingUReqs := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|userReq := uu1 |))

(s1 (|userReq := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|userIDs := uu1 |))

(s1 (|userIDs := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|user := uu1 |)) (s1

(|user := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|pass := uu1 |)) (s1

(|pass := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|postIDs := uu1 |))

(s1 (|postIDs := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|owner := uu1 |))

(s1 (|owner := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|post := uu1 |)) (s1

(|post := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|vis := uu1 |)) (s1

(|vis := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ eqButUIDf uu1 uu2 =⇒ eqButUID (s (|pend-

ingFReqs := uu1 |)) (s1 (|pendingFReqs := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ eqButUID12 uu1 uu2 =⇒ eqButUID (s (|friendReq

:= uu1 |)) (s1 (|friendReq := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ eqButUIDf uu1 uu2 =⇒ eqButUID (s (|friendIDs

:= uu1 |)) (s1 (|friendIDs := uu2 |))

unfolding eqButUID-def by auto

8.2 Value Setup
datatype fUser = U1 | U2
datatype value =

isFRVal: FRVal fUser req — friendship requests from UID1 to UID2 (or vice
versa)
| isFVal: FVal bool — updates to the status of friendship between them
| isOVal: OVal bool — updated dynamic declassification trigger condition

The dynamic declassification trigger condition holds, i.e. the access window
to the confidential information is open, as long as the two users have not
been created yet (so there cannot be friendship between them) or one of

89

them is friends with an observer.
definition openByA :: state ⇒ bool — Openness by absence
where openByA s ≡ ¬ UID1 ∈∈ userIDs s ∨ ¬ UID2 ∈∈ userIDs s

definition openByF :: state ⇒ bool — Openness by friendship
where openByF s ≡ ∃ uid ∈ UIDs. uid ∈∈ friendIDs s UID1 ∨ uid ∈∈ friendIDs
s UID2

definition open :: state ⇒ bool
where open s ≡ openByA s ∨ openByF s

lemmas open-defs = open-def openByA-def openByF-def

definition friends12 :: state ⇒ bool
where friends12 s ≡ UID1 ∈∈ friendIDs s UID2 ∧ UID2 ∈∈ friendIDs s UID1

fun ϕ :: (state,act,out) trans ⇒ bool where
ϕ (Trans s (Cact (cFriendReq uid p uid ′ req)) ou s ′) =
((uid,uid ′) ∈ {(UID1 ,UID2), (UID2 ,UID1)} ∧ ou = outOK)
|
ϕ (Trans s (Cact (cFriend uid p uid ′)) ou s ′) =
((uid,uid ′) ∈ {(UID1 ,UID2), (UID2 ,UID1)} ∧ ou = outOK ∨
open s 6= open s ′)

|
ϕ (Trans s (Dact (dFriend uid p uid ′)) ou s ′) =
((uid,uid ′) ∈ {(UID1 ,UID2), (UID2 ,UID1)} ∧ ou = outOK ∨
open s 6= open s ′)

|
ϕ (Trans s (Cact (cUser uid p uid ′ p ′)) ou s ′) =
(open s 6= open s ′)
|
ϕ - = False

fun f :: (state,act,out) trans ⇒ value where
f (Trans s (Cact (cFriendReq uid p uid ′ req)) ou s ′) =

(if uid = UID1 ∧ uid ′ = UID2 then FRVal U1 req
else if uid = UID2 ∧ uid ′ = UID1 then FRVal U2 req

else OVal True)
|
f (Trans s (Cact (cFriend uid p uid ′)) ou s ′) =
(if (uid,uid ′) ∈ {(UID1 ,UID2), (UID2 ,UID1)} then FVal True

else OVal True)
|
f (Trans s (Dact (dFriend uid p uid ′)) ou s ′) =
(if (uid,uid ′) ∈ {(UID1 ,UID2), (UID2 ,UID1)} then FVal False

else OVal False)
|
f (Trans s (Cact (cUser uid p uid ′ p ′)) ou s ′) = OVal False
|

90

f - = undefined

lemma ϕE :
assumes ϕ: ϕ (Trans s a ou s ′) (is ϕ ?trn)
and step: step s a = (ou, s ′)
and rs: reach s
obtains (FReq1) u p req where a = Cact (cFriendReq UID1 p UID2 req) ou =
outOK

f ?trn = FRVal u req u = U1 IDsOK s [UID1 , UID2] []
¬friends12 s ¬friends12 s ′ open s ′ = open s

UID1 ∈∈ pendingFReqs s ′ UID2 UID1 /∈ set (pendingFReqs
s UID2)

UID2 ∈∈ pendingFReqs s ′ UID1 ←→ UID2 ∈∈ pendingFReqs
s UID1

| (FReq2) u p req where a = Cact (cFriendReq UID2 p UID1 req) ou =
outOK

f ?trn = FRVal u req u = U2 IDsOK s [UID1 , UID2] []
¬friends12 s ¬friends12 s ′ open s ′ = open s

UID2 ∈∈ pendingFReqs s ′ UID1 UID2 /∈ set (pendingFReqs
s UID1)

UID1 ∈∈ pendingFReqs s ′ UID2 ←→ UID1 ∈∈ pendingFReqs
s UID2
| (Friend) uid p uid ′ where a = Cact (cFriend uid p uid ′) ou = outOK f ?trn

= FVal True
uid = UID1 ∧ uid ′ = UID2 ∨ uid = UID2 ∧ uid ′ =

UID1
IDsOK s [UID1 , UID2] []
¬friends12 s friends12 s ′ uid ′ ∈∈ pendingFReqs s uid
UID1 /∈ set (pendingFReqs s ′ UID2)
UID2 /∈ set (pendingFReqs s ′ UID1)

| (Unfriend) uid p uid ′ where a = Dact (dFriend uid p uid ′) ou = outOK f
?trn = FVal False

uid = UID1 ∧ uid ′ = UID2 ∨ uid = UID2 ∧ uid ′ =
UID1

IDsOK s [UID1 , UID2] []
friends12 s ¬friends12 s ′

UID1 /∈ set (pendingFReqs s ′ UID2)
UID1 /∈ set (pendingFReqs s UID2)
UID2 /∈ set (pendingFReqs s ′ UID1)
UID2 /∈ set (pendingFReqs s UID1)

| (OpenF) uid p uid ′ where a = Cact (cFriend uid p uid ′)
(uid ∈ UIDs ∧ uid ′ ∈ {UID1 ,UID2}) ∨ (uid ′ ∈ UIDs ∧

uid ∈ {UID1 ,UID2})
ou = outOK f ?trn = OVal True ¬openByF s openByF s ′

¬openByA s ¬openByA s ′

friends12 s ′ = friends12 s
UID1 ∈∈ pendingFReqs s ′ UID2 ←→ UID1 ∈∈

pendingFReqs s UID2

91

UID2 ∈∈ pendingFReqs s ′ UID1 ←→ UID2 ∈∈
pendingFReqs s UID1

| (CloseF) uid p uid ′ where a = Dact (dFriend uid p uid ′)
(uid ∈ UIDs ∧ uid ′ ∈ {UID1 ,UID2}) ∨ (uid ′ ∈ UIDs

∧ uid ∈ {UID1 ,UID2})
ou = outOK f ?trn = OVal False openByF s ¬openByF

s ′

¬openByA s ¬openByA s ′

friends12 s ′ = friends12 s
UID1 ∈∈ pendingFReqs s ′ UID2 ←→ UID1 ∈∈

pendingFReqs s UID2
UID2 ∈∈ pendingFReqs s ′ UID1 ←→ UID2 ∈∈

pendingFReqs s UID1
| (CloseA) uid p uid ′ p ′ where a = Cact (cUser uid p uid ′ p ′)

uid ′ ∈ {UID1 ,UID2} openByA s ¬openByA s ′

¬openByF s ¬openByF s ′

ou = outOK f ?trn = OVal False
friends12 s ′ = friends12 s

UID1 ∈∈ pendingFReqs s ′ UID2 ←→ UID1 ∈∈
pendingFReqs s UID2

UID2 ∈∈ pendingFReqs s ′ UID1 ←→ UID2 ∈∈
pendingFReqs s UID1
using ϕ proof (elim ϕ.elims disjE conjE)

fix s1 uid p uid ′ req ou1 s1 ′

assume (uid,uid ′) ∈ {(UID1 ,UID2), (UID2 ,UID1)} and ou: ou1 = outOK
and ?trn = Trans s1 (Cact (cFriendReq uid p uid ′ req)) ou1 s1 ′

then have trn: a = Cact (cFriendReq uid p uid ′ req) s = s1 s ′ = s1 ′ ou = ou1
and uids: uid = UID1 ∧ uid ′ = UID2 ∨ uid = UID2 ∧ uid ′ = UID1 using

UID1-UID2 by auto
from uids show thesis proof

assume uid = UID1 ∧ uid ′ = UID2
then show thesis using ou uids trn step UID1-UID2-UIDs UID1-UID2 reach-distinct-friends-reqs[OF

rs]
by (intro FReq1 [of p req]) (auto simp add: c-defs friends12-def open-defs)

next
assume uid = UID2 ∧ uid ′ = UID1

then show thesis using ou uids trn step UID1-UID2-UIDs UID1-UID2 reach-distinct-friends-reqs[OF
rs]

by (intro FReq2 [of p req]) (auto simp add: c-defs friends12-def open-defs)
qed

next
fix s1 uid p uid ′ ou1 s1 ′

assume (uid,uid ′) ∈ {(UID1 ,UID2), (UID2 ,UID1)} and ou: ou1 = outOK
and ?trn = Trans s1 (Cact (cFriend uid p uid ′)) ou1 s1 ′

then have trn: a = Cact (cFriend uid p uid ′) s = s1 s ′ = s1 ′ ou = ou1
and uids: uid = UID1 ∧ uid ′ = UID2 ∨ uid = UID2 ∧ uid ′ = UID1 using

UID1-UID2 by auto
then show thesis using ou uids trn step UID1-UID2-UIDs UID1-UID2 reach-distinct-friends-reqs[OF

rs]

92

by (intro Friend[of uid p uid ′]) (auto simp add: c-defs friends12-def)
next

fix s1 uid p uid ′ ou1 s1 ′

assume op: open s1 6= open s1 ′

and ?trn = Trans s1 (Cact (cFriend uid p uid ′)) ou1 s1 ′

then have trn: a = Cact (cFriend uid p uid ′) s = s1 s ′ = s1 ′ ou = ou1 by auto
then have uids: uid ∈ UIDs ∧ uid ′ ∈ {UID1 , UID2} ∨ uid ∈ {UID1 , UID2}
∧ uid ′ ∈ UIDs ou = outOK

¬openByF s1 openByF s1 ′ ¬openByA s1 ¬openByA s1 ′

using op step by (auto simp add: c-defs open-def openByA-def openByF-def)
moreover have friends12 s1 ′←→ friends12 s1

using step trn uids UID1-UID2 UID1-UID2-UIDs
by (cases (uid,uid ′) ∈ {(UID1 ,UID2), (UID2 ,UID1)}) (auto simp add: c-defs

friends12-def)
moreover have UID1 ∈∈ pendingFReqs s1 ′ UID2 ←→ UID1 ∈∈ pendingFReqs

s1 UID2
using step trn uids UID1-UID2 UID1-UID2-UIDs
by (cases (uid,uid ′) ∈ {(UID1 ,UID2), (UID2 ,UID1)}) (auto simp add: c-defs)

moreover have UID2 ∈∈ pendingFReqs s1 ′ UID1 ←→ UID2 ∈∈ pendingFReqs
s1 UID1

using step trn uids UID1-UID2 UID1-UID2-UIDs
by (cases (uid,uid ′) ∈ {(UID1 ,UID2), (UID2 ,UID1)}) (auto simp add: c-defs)

ultimately show thesis using op trn step UID1-UID2-UIDs UID1-UID2 by
(intro OpenF) auto
next

fix s1 uid p uid ′ ou1 s1 ′

assume (uid,uid ′) ∈ {(UID1 ,UID2), (UID2 ,UID1)} and ou: ou1 = outOK
and ?trn = Trans s1 (Dact (dFriend uid p uid ′)) ou1 s1 ′

then have trn: a = Dact (dFriend uid p uid ′) s = s1 s ′ = s1 ′ ou = ou1
and uids: uid = UID1 ∧ uid ′ = UID2 ∨ uid = UID2 ∧ uid ′ = UID1 using

UID1-UID2 by auto
then show thesis using step ou reach-friendIDs-symmetric[OF rs] reach-distinct-friends-reqs[OF

rs]
by (intro Unfriend; auto simp: d-defs friends12-def) blast+

next
fix s1 uid p uid ′ ou1 s1 ′

assume op: open s1 6= open s1 ′

and ?trn = Trans s1 (Dact (dFriend uid p uid ′)) ou1 s1 ′

then have trn: a = Dact (dFriend uid p uid ′) s = s1 s ′ = s1 ′ ou = ou1 by auto
then have uids: uid ∈ UIDs ∧ uid ′ ∈ {UID1 , UID2} ∨ uid ∈ {UID1 , UID2}
∧ uid ′ ∈ UIDs ou = outOK

openByF s1 ¬openByF s1 ′ ¬openByA s1 ¬openByA s1 ′

using op step by (auto simp add: d-defs open-def openByA-def openByF-def)
moreover have friends12 s1 ′←→ friends12 s1

using step trn uids UID1-UID2 UID1-UID2-UIDs
by (cases (uid,uid ′) ∈ {(UID1 ,UID2), (UID2 ,UID1)}) (auto simp add: d-defs

friends12-def)
ultimately show thesis using op trn step UID1-UID2-UIDs UID1-UID2 by

(intro CloseF ; auto simp: d-defs)

93

next
fix s1 uid p uid ′ p ′ ou1 s1 ′

assume op: open s1 6= open s1 ′

and ?trn = Trans s1 (Cact (cUser uid p uid ′ p ′)) ou1 s1 ′

then have trn: a = Cact (cUser uid p uid ′ p ′) s = s1 s ′ = s1 ′ ou = ou1 by
auto

then have uids: uid ′ = UID2 ∨ uid ′ = UID1 ou = outOK
¬openByF s1 ¬openByF s1 ′ openByA s1 ¬openByA s1 ′

using op step by (auto simp add: c-defs open-def openByF-def openByA-def)
moreover have friends12 s1 ′←→ friends12 s1

using step trn uids UID1-UID2 UID1-UID2-UIDs
by (cases (uid,uid ′) ∈ {(UID1 ,UID2), (UID2 ,UID1)}) (auto simp add: c-defs

friends12-def)
ultimately show thesis using trn step UID1-UID2-UIDs UID1-UID2 by (intro

CloseA) (auto simp: c-defs)
qed

lemma step-open-ϕ:
assumes step s a = (ou, s ′)
and open s 6= open s ′

shows ϕ (Trans s a ou s ′)
using assms proof (cases a)

case (Sact sa) then show ?thesis using assms UID1-UID2 by (cases sa) (auto
simp: s-defs open-defs) next

case (Cact ca) then show ?thesis using assms by (cases ca) (auto simp: c-defs
open-defs) next

case (Dact da) then show ?thesis using assms by (cases da) (auto simp: d-defs
open-defs) next

case (Uact ua) then show ?thesis using assms by (cases ua) (auto simp: u-defs
open-defs)
qed auto

lemma step-friends12-ϕ:
assumes step s a = (ou, s ′)
and friends12 s 6= friends12 s ′

shows ϕ (Trans s a ou s ′)
using assms proof (cases a)

case (Sact sa) then show ?thesis using assms by (cases sa) (auto simp: s-defs
friends12-def) next

case (Cact ca) then show ?thesis using assms by (cases ca) (auto simp: c-defs
friends12-def) next

case (Dact da) then show ?thesis using assms by (cases da) (auto simp: d-defs
friends12-def) next

case (Uact ua) then show ?thesis using assms by (cases ua) (auto simp: u-defs
friends12-def)
qed auto

lemma step-pendingFReqs-ϕ:
assumes step s a = (ou, s ′)

94

and (UID1 ∈∈ pendingFReqs s UID2) 6= (UID1 ∈∈ pendingFReqs s ′ UID2)
∨ (UID2 ∈∈ pendingFReqs s UID1) 6= (UID2 ∈∈ pendingFReqs s ′ UID1)

shows ϕ (Trans s a ou s ′)
using assms proof (cases a)

case (Sact sa) then show ?thesis using assms by (cases sa) (auto simp: s-defs)
next

case (Cact ca) then show ?thesis using assms by (cases ca) (auto simp: c-defs)
next

case (Dact da) then show ?thesis using assms by (cases da) (auto simp: d-defs)
next

case (Uact ua) then show ?thesis using assms by (cases ua) (auto simp: u-defs)
qed auto

lemma eqButUID-friends12-set-friendIDs-eq:
assumes ss1 : eqButUID s s1
and f12 : friends12 s = friends12 s1
and rs: reach s and rs1 : reach s1
shows set (friendIDs s uid) = set (friendIDs s1 uid)
proof −

have dfIDs: distinct (friendIDs s uid) distinct (friendIDs s1 uid)
using reach-distinct-friends-reqs[OF rs] reach-distinct-friends-reqs[OF rs1] by

auto
from f12 have uid12 : UID1 ∈∈ friendIDs s UID2 ←→ UID1 ∈∈ friendIDs s1

UID2
UID2 ∈∈ friendIDs s UID1 ←→ UID2 ∈∈ friendIDs s1 UID1

using reach-friendIDs-symmetric[OF rs] reach-friendIDs-symmetric[OF rs1]
unfolding friends12-def by auto

from ss1 have fIDs: eqButUIDf (friendIDs s) (friendIDs s1) unfolding eqBu-
tUID-def by simp

show set (friendIDs s uid) = set (friendIDs s1 uid)
proof (intro equalityI subsetI)

fix uid ′

assume uid ′ ∈∈ friendIDs s uid
then show uid ′ ∈∈ friendIDs s1 uid

using fIDs dfIDs uid12 eqButUIDf-not-UID ′ unfolding eqButUIDf-def
by (metis (no-types, lifting) insert-iff prod.inject singletonD)

next
fix uid ′

assume uid ′ ∈∈ friendIDs s1 uid
then show uid ′ ∈∈ friendIDs s uid

using fIDs dfIDs uid12 eqButUIDf-not-UID ′ unfolding eqButUIDf-def
by (metis (no-types, lifting) insert-iff prod.inject singletonD)

qed
qed

lemma distinct-remove1-idem: distinct xs =⇒ remove1 y (remove1 y xs) = re-
move1 y xs
by (induction xs) (auto simp add: remove1-idem)

95

lemma Cact-cFriend-step-eqButUID:
assumes step: step s (Cact (cFriend uid p uid ′)) = (ou,s ′)
and s: reach s
and uids: (uid = UID1 ∧ uid ′ = UID2) ∨ (uid = UID2 ∧ uid ′ = UID1) (is ?u12
∨ ?u21)
shows eqButUID s s ′

using assms proof (cases)
assume ou: ou = outOK
then have uid ′ ∈∈ pendingFReqs s uid using step by (auto simp add: c-defs)
then have fIDs: uid ′ /∈ set (friendIDs s uid) uid /∈ set (friendIDs s uid ′)

and fRs: distinct (pendingFReqs s uid) distinct (pendingFReqs s uid ′)
using reach-distinct-friends-reqs[OF s] by auto

have eqButUIDf (friendIDs s) (friendIDs (createFriend s uid p uid ′))
using fIDs uids UID1-UID2 unfolding eqButUIDf-def
by (cases ?u12) (auto simp add: c-defs remove1-idem remove1-append)

moreover have eqButUIDf (pendingFReqs s) (pendingFReqs (createFriend s uid
p uid ′))

using fRs uids UID1-UID2 unfolding eqButUIDf-def
by (cases ?u12) (auto simp add: c-defs distinct-remove1-idem)

moreover have eqButUID12 (friendReq s) (friendReq (createFriend s uid p uid ′))
using uids unfolding eqButUID12-def
by (auto simp add: c-defs fun-upd2-eq-but-a-b)

ultimately show eqButUID s s ′ using step ou unfolding eqButUID-def by
(auto simp add: c-defs)
qed (auto)

lemma Cact-cFriendReq-step-eqButUID:
assumes step: step s (Cact (cFriendReq uid p uid ′ req)) = (ou,s ′)
and uids: (uid = UID1 ∧ uid ′ = UID2) ∨ (uid = UID2 ∧ uid ′ = UID1) (is ?u12
∨ ?u21)
shows eqButUID s s ′

using assms proof (cases)
assume ou: ou = outOK
then have uid /∈ set (pendingFReqs s uid ′) uid /∈ set (friendIDs s uid ′)

using step by (auto simp add: c-defs)
then have eqButUIDf (pendingFReqs s) (pendingFReqs (createFriendReq s uid p

uid ′ req))
using uids UID1-UID2 unfolding eqButUIDf-def
by (cases ?u12) (auto simp add: c-defs remove1-idem remove1-append)

moreover have eqButUID12 (friendReq s) (friendReq (createFriendReq s uid p
uid ′ req))

using uids unfolding eqButUID12-def
by (auto simp add: c-defs fun-upd2-eq-but-a-b)

ultimately show eqButUID s s ′ using step ou unfolding eqButUID-def by
(auto simp add: c-defs)
qed (auto)

96

lemma Dact-dFriend-step-eqButUID:
assumes step: step s (Dact (dFriend uid p uid ′)) = (ou,s ′)
and s: reach s
and uids: (uid = UID1 ∧ uid ′ = UID2) ∨ (uid = UID2 ∧ uid ′ = UID1) (is ?u12
∨ ?u21)
shows eqButUID s s ′

using assms proof (cases)
assume ou: ou = outOK
then have uid ′ ∈∈ friendIDs s uid using step by (auto simp add: d-defs)
then have fRs: distinct (friendIDs s uid) distinct (friendIDs s uid ′)

using reach-distinct-friends-reqs[OF s] by auto
have eqButUIDf (friendIDs s) (friendIDs (deleteFriend s uid p uid ′))

using fRs uids UID1-UID2 unfolding eqButUIDf-def
by (cases ?u12) (auto simp add: d-defs remove1-idem distinct-remove1-removeAll)

then show eqButUID s s ′ using step ou unfolding eqButUID-def by (auto simp
add: d-defs)
qed (auto)

lemma eqButUID-step:
assumes ss1 : eqButUID s s1
and step: step s a = (ou,s ′)
and step1 : step s1 a = (ou1 ,s1 ′)
and rs: reach s
and rs1 : reach s1
shows eqButUID s ′ s1 ′

proof −
note simps = eqButUID-def s-defs c-defs u-defs r-defs l-defs
from assms show ?thesis proof (cases a)

case (Sact sa) with assms show ?thesis by (cases sa) (auto simp add: simps)
next

case (Cact ca) note a = this
with assms show ?thesis proof (cases ca)

case (cFriendReq uid p uid ′ req) note ca = this
then show ?thesis

proof (cases (uid = UID1 ∧ uid ′ = UID2) ∨ (uid = UID2 ∧ uid ′ =
UID1))

case True
then have eqButUID s s ′ and eqButUID s1 s1 ′

using step step1 unfolding a ca
by (auto intro: Cact-cFriendReq-step-eqButUID)

with ss1 show eqButUID s ′ s1 ′ by (auto intro: eqButUID-sym
eqButUID-trans)

next
case False

have fRs: eqButUIDf (pendingFReqs s) (pendingFReqs s1)
and fIDs: eqButUIDf (friendIDs s) (friendIDs s1) using ss1 by (auto

simp: simps)

97

then have uid-uid ′: uid ∈∈ pendingFReqs s uid ′←→ uid ∈∈ pendingFReqs
s1 uid ′

uid ∈∈ friendIDs s uid ′←→ uid ∈∈ friendIDs s1 uid ′

using False by (auto intro!: eqButUIDf-not-UID ′)
have eqButUIDf ((pendingFReqs s)(uid ′ := pendingFReqs s uid ′ ##

uid))
((pendingFReqs s1)(uid ′ := pendingFReqs s1 uid ′ ## uid))

using fRs False
by (intro eqButUIDf-cong) (auto simp add: remove1-append re-

move1-idem eqButUIDf-def)
moreover have eqButUID12 (fun-upd2 (friendReq s) uid uid ′ req)

(fun-upd2 (friendReq s1) uid uid ′ req)
using ss1 by (intro eqButUID12-cong) (auto simp: simps)

moreover have e-createFriendReq s uid p uid ′ req
←→ e-createFriendReq s1 uid p uid ′ req

using uid-uid ′ ss1 by (auto simp: simps)
ultimately show ?thesis using assms unfolding a ca by (auto simp:

simps)
qed

next
case (cFriend uid p uid ′) note ca = this

then show ?thesis
proof (cases (uid = UID1 ∧ uid ′ = UID2) ∨ (uid = UID2 ∧ uid ′ =

UID1))
case True

then have eqButUID s s ′ and eqButUID s1 s1 ′

using step step1 rs rs1 unfolding a ca
by (auto intro!: Cact-cFriend-step-eqButUID)+

with ss1 show eqButUID s ′ s1 ′ by (auto intro: eqButUID-sym
eqButUID-trans)

next
case False

have fRs: eqButUIDf (pendingFReqs s) (pendingFReqs s1)
(is eqButUIDf (?pfr s) (?pfr s1))

and fIDs: eqButUIDf (friendIDs s) (friendIDs s1) using ss1 by (auto
simp: simps)

then have uid-uid ′: uid ∈∈ pendingFReqs s uid ′←→ uid ∈∈ pendingFReqs
s1 uid ′

uid ′ ∈∈ pendingFReqs s uid ←→ uid ′ ∈∈ pendingFReqs
s1 uid

uid ∈∈ friendIDs s uid ′←→ uid ∈∈ friendIDs s1 uid ′

uid ′ ∈∈ friendIDs s uid ←→ uid ′ ∈∈ friendIDs s1 uid
using False by (auto intro!: eqButUIDf-not-UID ′)
have eqButUIDl UID1 (remove1 uid ′ (?pfr s UID2)) (remove1 uid ′

(?pfr s1 UID2))
and eqButUIDl UID2 (remove1 uid ′ (?pfr s UID1)) (remove1 uid ′

(?pfr s1 UID1))
and eqButUIDl UID1 (remove1 uid (?pfr s UID2)) (remove1 uid (?pfr

s1 UID2))

98

and eqButUIDl UID2 (remove1 uid (?pfr s UID1)) (remove1 uid (?pfr
s1 UID1))

using fRs unfolding eqButUIDf-def
by (auto intro!: eqButUIDl-remove1-cong simp del: eqButUIDl.simps)

then have 1 : eqButUIDf ((?pfr s)(uid := remove1 uid ′ (?pfr s uid),
uid ′ := remove1 uid (?pfr s uid ′)))

((?pfr s1)(uid := remove1 uid ′ (?pfr s1 uid),
uid ′ := remove1 uid (?pfr s1 uid ′)))

using fRs False
by (intro eqButUIDf-cong) (auto simp add: eqButUIDf-def)

have uid = UID1 =⇒ eqButUIDl UID2 (friendIDs s UID1 ## uid ′)
(friendIDs s1 UID1 ## uid ′)

and uid = UID2 =⇒ eqButUIDl UID1 (friendIDs s UID2 ## uid ′)
(friendIDs s1 UID2 ## uid ′)

and uid ′ = UID1 =⇒ eqButUIDl UID2 (friendIDs s UID1 ## uid)
(friendIDs s1 UID1 ## uid)

and uid ′ = UID2 =⇒ eqButUIDl UID1 (friendIDs s UID2 ## uid)
(friendIDs s1 UID2 ## uid)

using fIDs uid-uid ′ by − (intro eqButUIDl-snoc-cong; simp add:
eqButUIDf-def)+

then have 2 : eqButUIDf ((friendIDs s)(uid := friendIDs s uid ##
uid ′,

uid ′ := friendIDs s uid ′ ## uid))
((friendIDs s1)(uid := friendIDs s1 uid ## uid ′,

uid ′ := friendIDs s1 uid ′ ## uid))
using fIDs by (intro eqButUIDf-cong) (auto simp add: eqButUIDf-def)

have 3 : eqButUID12 (fun-upd2 (fun-upd2 (friendReq s) uid ′ uid
emptyReq)

uid uid ′ emptyReq)
(fun-upd2 (fun-upd2 (friendReq s1) uid ′ uid emptyReq)

uid uid ′ emptyReq)
using ss1 by (intro eqButUID12-cong) (auto simp: simps)

have e-createFriend s uid p uid ′

←→ e-createFriend s1 uid p uid ′

using uid-uid ′ ss1 by (auto simp: simps)
with 1 2 3 show ?thesis using assms unfolding a ca by (auto simp:

simps)
qed

qed (auto simp: simps)
next

case (Uact ua) with assms show ?thesis by (cases ua) (auto simp add: simps)
next

case (Ract ra) with assms show ?thesis by (cases ra) (auto simp add: simps)
next

case (Lact la) with assms show ?thesis by (cases la) (auto simp add: simps)
next

case (Dact da) note a = this
with assms show ?thesis proof (cases da)

case (dFriend uid p uid ′) note ca = this

99

then show ?thesis
proof (cases (uid = UID1 ∧ uid ′ = UID2) ∨ (uid = UID2 ∧ uid ′ =

UID1))
case True

then have eqButUID s s ′ and eqButUID s1 s1 ′

using step step1 rs rs1 unfolding a ca
by (auto intro!: Dact-dFriend-step-eqButUID)+

with ss1 show eqButUID s ′ s1 ′ by (auto intro: eqButUID-sym
eqButUID-trans)

next
case False
have fIDs: eqButUIDf (friendIDs s) (friendIDs s1) using ss1 by (auto

simp: simps)
then have uid-uid ′: uid ∈∈ friendIDs s uid ′←→ uid ∈∈ friendIDs s1

uid ′

uid ′ ∈∈ friendIDs s uid ←→ uid ′ ∈∈ friendIDs s1 uid
using False by (auto intro!: eqButUIDf-not-UID ′)

have dfIDs: distinct (friendIDs s uid) distinct (friendIDs s uid ′)
distinct (friendIDs s1 uid) distinct (friendIDs s1 uid ′)

using reach-distinct-friends-reqs[OF rs] reach-distinct-friends-reqs[OF
rs1] by auto

have uid = UID1 =⇒ eqButUIDl UID2 (remove1 uid ′ (friendIDs s
UID1)) (remove1 uid ′ (friendIDs s1 UID1))

and uid = UID2 =⇒ eqButUIDl UID1 (remove1 uid ′ (friendIDs s
UID2)) (remove1 uid ′ (friendIDs s1 UID2))

and uid ′ = UID1 =⇒ eqButUIDl UID2 (remove1 uid (friendIDs s
UID1)) (remove1 uid (friendIDs s1 UID1))

and uid ′ = UID2 =⇒ eqButUIDl UID1 (remove1 uid (friendIDs s
UID2)) (remove1 uid (friendIDs s1 UID2))

using fIDs uid-uid ′ by − (intro eqButUIDl-remove1-cong; simp add:
eqButUIDf-def)+

then have 1 : eqButUIDf ((friendIDs s)(uid := remove1 uid ′ (friendIDs
s uid),

uid ′ := remove1 uid (friendIDs s uid ′)))
((friendIDs s1)(uid := remove1 uid ′ (friendIDs s1

uid),
uid ′ := remove1 uid (friendIDs s1 uid ′)))

using fIDs by (intro eqButUIDf-cong) (auto simp add: eqButUIDf-def)
have e-deleteFriend s uid p uid ′

←→ e-deleteFriend s1 uid p uid ′

using uid-uid ′ ss1 by (auto simp: simps d-defs)
with 1 show ?thesis using assms dfIDs unfolding a ca

by (auto simp: simps d-defs distinct-remove1-removeAll)
qed

qed
qed

qed

lemma eqButUID-openByA-eq:

100

assumes eqButUID s s1
shows openByA s = openByA s1
using assms unfolding openByA-def eqButUID-def by auto

lemma eqButUID-openByF-eq:
assumes ss1 : eqButUID s s1
shows openByF s = openByF s1
proof −

from ss1 have fIDs: eqButUIDf (friendIDs s) (friendIDs s1) unfolding eqBu-
tUID-def by auto

have ∀ uid ∈ UIDs. uid ∈∈ friendIDs s UID1 ←→ uid ∈∈ friendIDs s1 UID1
using UID1-UID2-UIDs UID1-UID2 by (intro ballI eqButUIDf-not-UID ′[OF

fIDs]; auto)
moreover have ∀ uid ∈ UIDs. uid ∈∈ friendIDs s UID2 ←→ uid ∈∈ friendIDs

s1 UID2
using UID1-UID2-UIDs UID1-UID2 by (intro ballI eqButUIDf-not-UID ′[OF

fIDs]; auto)
ultimately show openByF s = openByF s1 unfolding openByF-def by auto

qed

lemma eqButUID-open-eq: eqButUID s s1 =⇒ open s = open s1
using eqButUID-openByA-eq eqButUID-openByF-eq unfolding open-def by blast

lemma eqButUID-step-friendIDs-eq:
assumes ss1 : eqButUID s s1
and rs: reach s and rs1 : reach s1
and step: step s a = (ou,s ′) and step1 : step s1 a = (ou1 ,s1 ′)
and a: a 6= Cact (cFriend UID1 (pass s UID1) UID2) ∧ a 6= Cact (cFriend UID2
(pass s UID2) UID1) ∧

a 6= Dact (dFriend UID1 (pass s UID1) UID2) ∧ a 6= Dact (dFriend UID2
(pass s UID2) UID1)
and friendIDs s = friendIDs s1
shows friendIDs s ′ = friendIDs s1 ′

using assms proof (cases a)
case (Sact sa) then show ?thesis using assms by (cases sa) (auto simp: s-defs)

next
case (Uact ua) then show ?thesis using assms by (cases ua) (auto simp: u-defs)

next
case (Dact da) then show ?thesis using assms proof (cases da)

case (dFriend uid p uid ′)
with Dact assms show ?thesis

by (cases (uid,uid ′) ∈ {(UID1 ,UID2), (UID2 ,UID1)})
(auto simp: d-defs eqButUID-def eqButUIDf-not-UID ′)

qed
next

case (Cact ca) then show ?thesis using assms proof (cases ca)
case (cFriend uid p uid ′)

with Cact assms show ?thesis
by (cases (uid,uid ′) ∈ {(UID1 ,UID2), (UID2 ,UID1)})

101

(auto simp: c-defs eqButUID-def eqButUIDf-not-UID ′)
qed (auto simp: c-defs)

qed auto

lemma eqButUID-step-ϕ-imp:
assumes ss1 : eqButUID s s1
and rs: reach s and rs1 : reach s1
and step: step s a = (ou,s ′) and step1 : step s1 a = (ou1 ,s1 ′)
and a: ∀ req. a 6= Cact (cFriend UID1 (pass s UID1) UID2) ∧

a 6= Cact (cFriend UID2 (pass s UID2) UID1) ∧
a 6= Cact (cFriendReq UID1 (pass s UID1) UID2 req) ∧
a 6= Cact (cFriendReq UID2 (pass s UID2) UID1 req) ∧
a 6= Dact (dFriend UID1 (pass s UID1) UID2) ∧
a 6= Dact (dFriend UID2 (pass s UID2) UID1)

and ϕ: ϕ (Trans s a ou s ′)
shows ϕ (Trans s1 a ou1 s1 ′)
proof −

have eqButUID s ′ s1 ′ using eqButUID-step[OF ss1 step step1 rs rs1] .
then have open s = open s1 and open s ′ = open s1 ′

and openByA s = openByA s1 and openByA s ′ = openByA s1 ′

and openByF s = openByF s1 and openByF s ′ = openByF s1 ′

using ss1 by (auto simp: eqButUID-open-eq eqButUID-openByA-eq eqBu-
tUID-openByF-eq)

with ϕ a step step1 show ϕ (Trans s1 a ou1 s1 ′) using UID1-UID2-UIDs
by (elim ϕ.elims) (auto simp: c-defs d-defs)

qed

lemma eqButUID-step-ϕ:
assumes ss1 : eqButUID s s1
and rs: reach s and rs1 : reach s1
and step: step s a = (ou,s ′) and step1 : step s1 a = (ou1 ,s1 ′)
and a: ∀ req. a 6= Cact (cFriend UID1 (pass s UID1) UID2) ∧

a 6= Cact (cFriend UID2 (pass s UID2) UID1) ∧
a 6= Cact (cFriendReq UID1 (pass s UID1) UID2 req) ∧
a 6= Cact (cFriendReq UID2 (pass s UID2) UID1 req) ∧
a 6= Dact (dFriend UID1 (pass s UID1) UID2) ∧
a 6= Dact (dFriend UID2 (pass s UID2) UID1)

shows ϕ (Trans s a ou s ′) = ϕ (Trans s1 a ou1 s1 ′)
proof

assume ϕ (Trans s a ou s ′)
with assms show ϕ (Trans s1 a ou1 s1 ′) by (rule eqButUID-step-ϕ-imp)

next
assume ϕ (Trans s1 a ou1 s1 ′)
moreover have eqButUID s1 s using ss1 by (rule eqButUID-sym)
moreover have ∀ req. a 6= Cact (cFriend UID1 (pass s1 UID1) UID2) ∧

a 6= Cact (cFriend UID2 (pass s1 UID2) UID1) ∧
a 6= Cact (cFriendReq UID1 (pass s1 UID1) UID2 req) ∧
a 6= Cact (cFriendReq UID2 (pass s1 UID2) UID1 req) ∧

102

a 6= Dact (dFriend UID1 (pass s1 UID1) UID2) ∧
a 6= Dact (dFriend UID2 (pass s1 UID2) UID1)

using a ss1 unfolding eqButUID-def by auto
ultimately show ϕ (Trans s a ou s ′) using rs rs1 step step1

by (intro eqButUID-step-ϕ-imp[of s1 s])
qed

lemma createFriend-sym: createFriend s uid p uid ′ = createFriend s uid ′ p ′ uid
unfolding c-defs by (cases uid = uid ′) (auto simp: fun-upd2-comm fun-upd-twist)

lemma deleteFriend-sym: deleteFriend s uid p uid ′ = deleteFriend s uid ′ p ′ uid
unfolding d-defs by (cases uid = uid ′) (auto simp: fun-upd-twist)

lemma createFriendReq-createFriend-absorb:
assumes e-createFriendReq s uid ′ p uid req
shows createFriend (createFriendReq s uid ′ p1 uid req) uid p2 uid ′ = createFriend
s uid p3 uid ′

using assms unfolding c-defs by (auto simp: remove1-idem remove1-append fun-upd2-absorb)

lemma eqButUID-deleteFriend12-friendIDs-eq:
assumes ss1 : eqButUID s s1
and rs: reach s and rs1 : reach s1
shows friendIDs (deleteFriend s UID1 p UID2) = friendIDs (deleteFriend s1 UID1
p ′ UID2)
proof −

have distinct (friendIDs s UID1) distinct (friendIDs s UID2)
distinct (friendIDs s1 UID1) distinct (friendIDs s1 UID2)

using rs rs1 by (auto intro: reach-distinct-friends-reqs)
then show ?thesis

using ss1 unfolding eqButUID-def eqButUIDf-def unfolding d-defs
by (auto simp: distinct-remove1-removeAll)

qed

lemma eqButUID-createFriend12-friendIDs-eq:
assumes ss1 : eqButUID s s1
and rs: reach s and rs1 : reach s1
and f12 : ¬friends12 s ¬friends12 s1
shows friendIDs (createFriend s UID1 p UID2) = friendIDs (createFriend s1 UID1
p ′ UID2)
proof −

have f12 ′: UID1 /∈ set (friendIDs s UID2) UID2 /∈ set (friendIDs s UID1)
UID1 /∈ set (friendIDs s1 UID2) UID2 /∈ set (friendIDs s1 UID1)

using f12 rs rs1 reach-friendIDs-symmetric unfolding friends12-def by auto
have friendIDs s = friendIDs s1
proof (intro ext)

fix uid
show friendIDs s uid = friendIDs s1 uid

using ss1 f12 ′ unfolding eqButUID-def eqButUIDf-def
by (cases uid = UID1 ∨ uid = UID2) (auto simp: remove1-idem)

103

qed
then show ?thesis by (auto simp: c-defs)

qed

end
theory Friend-Request
imports ../Observation-Setup Friend-Request-Value-Setup
begin

8.3 Declassification bound
fun T :: (state,act,out) trans ⇒ bool
where T (Trans - - - -) = False

Friendship updates form an alternating sequence of friending and unfriend-
ing, and every successful friend creation is preceded by one or two friendship
requests.
fun validValSeq :: value list ⇒ bool ⇒ bool ⇒ bool ⇒ bool where

validValSeq [] - - - = True
| validValSeq (FRVal U1 req # vl) st r1 r2 ←→ (¬st) ∧ (¬r1) ∧ validValSeq vl st
True r2
| validValSeq (FRVal U2 req # vl) st r1 r2 ←→ (¬st) ∧ (¬r2) ∧ validValSeq vl st
r1 True
| validValSeq (FVal True # vl) st r1 r2 ←→ (¬st) ∧ (r1 ∨ r2) ∧ validValSeq vl
True False False
| validValSeq (FVal False # vl) st r1 r2 ←→ st ∧ (¬r1) ∧ (¬r2) ∧ validValSeq vl
False False False
| validValSeq (OVal True # vl) st r1 r2 ←→ validValSeq vl st r1 r2
| validValSeq (OVal False # vl) st r1 r2 ←→ validValSeq vl st r1 r2

abbreviation validValSeqFrom :: value list ⇒ state ⇒ bool
where validValSeqFrom vl s
≡ validValSeq vl (friends12 s) (UID1 ∈∈ pendingFReqs s UID2) (UID2 ∈∈ pend-

ingFReqs s UID1)

With respect to the friendship status updates, we use the same “while-or-
last-before” bound as for friendship status confidentiality.
inductive BO :: value list ⇒ value list ⇒ bool
and BC :: value list ⇒ value list ⇒ bool
where
BO-FVal[simp,intro!]:
BO (map FVal fs) (map FVal fs)
|BO-BC [intro]:

BC vl vl1 =⇒
BO (map FVal fs @ OVal False # vl) (map FVal fs @ OVal False # vl1)

|BC-FVal[simp,intro!]:
BC (map FVal fs) (map FVal fs1)
|BC-BO[intro]:

104

BO vl vl1 =⇒ (fs = [] ←→ fs1 = []) =⇒ (fs 6= [] =⇒ last fs = last fs1) =⇒
BC (map FVal fs @ OVal True # vl)

(map FVal fs1 @ OVal True # vl1)

Taking into account friendship requests, two value sequences vl and vl1 are
in the bound if

• vl1 (with friendship requests) forms a valid value sequence,

• vl and vl1 are in BO (without friendship requests),

• vl1 is empty if vl is empty, and

• vl1 begins with OVal False if vl begins with OVal False.

The last two points are due to the fact that UID1 and UID1 might not
exist yet if vl is empty (or before OVal False), in which case the observer
can deduce that no friendship request has happened yet.
definition B vl vl1 ≡ BO (filter (Not o isFRVal) vl) (filter (Not o isFRVal) vl1)
∧

validValSeqFrom vl1 istate ∧
(vl = [] −→ vl1 = []) ∧
(vl 6= [] ∧ hd vl = OVal False −→ vl1 6= [] ∧ hd vl1 = OVal

False)

lemma BO-Nil-iff : BO vl vl1 =⇒ vl = [] ←→ vl1 = []
by (cases rule: BO.cases) auto

unbundle no relcomp-syntax

interpretation BD-Security-IO where
istate = istate and step = step and
ϕ = ϕ and f = f and γ = γ and g = g and T = T and B = B
done

lemma validFrom-validValSeq:
assumes validFrom s tr
and reach s
shows validValSeqFrom (V tr) s
using assms proof (induction tr arbitrary: s)

case (Cons trn tr s)
then obtain a ou s ′ where trn: trn = Trans s a ou s ′

and step: step s a = (ou, s ′)
and tr : validFrom s ′ tr
and s ′: reach s ′

by (cases trn) (auto iff : validFrom-Cons intro: reach-PairI)
then have vVS-tr : validValSeqFrom (V tr) s ′ by (intro Cons.IH)
show ?case proof cases

105

assume ϕ: ϕ (Trans s a ou s ′)
then have V : V (Trans s a ou s ′ # tr) = f (Trans s a ou s ′) # V tr by auto
from ϕ vVS-tr Cons.prems step show ?thesis unfolding trn V by (elim ϕE)

auto
next

assume ¬ϕ (Trans s a ou s ′)
then have V (Trans s a ou s ′ # tr) = V tr and friends12 s ′ = friends12 s

and UID1 ∈∈ pendingFReqs s ′ UID2 ←→ UID1 ∈∈ pendingFReqs s
UID2

and UID2 ∈∈ pendingFReqs s ′ UID1 ←→ UID2 ∈∈ pendingFReqs s
UID1

using step-friends12-ϕ[OF step] step-pendingFReqs-ϕ[OF step] by auto
with vVS-tr show ?thesis unfolding trn by auto

qed
qed auto

lemma validFrom istate tr =⇒ validValSeqFrom (V tr) istate
using validFrom-validValSeq[of istate] reach.Istate unfolding istate-def friends12-def
by auto

8.4 Unwinding proof
lemma eqButUID-step-γ-out:
assumes ss1 : eqButUID s s1
and step: step s a = (ou,s ′) and step1 : step s1 a = (ou1 ,s1 ′)
and γ: γ (Trans s a ou s ′)
and os: open s −→ friendIDs s = friendIDs s1
shows ou = ou1
proof −

from γ obtain uid where uid: userOfA a = Some uid ∧ uid ∈ UIDs ∧ uid 6=
UID1 ∧ uid 6= UID2

∨ userOfA a = None
using UID1-UID2-UIDs by (cases userOfA a) auto

{ fix uid
assume uid ∈∈ friendIDs s UID1 ∨ uid ∈∈ friendIDs s UID2 and uid ∈ UIDs
with os have friendIDs s = friendIDs s1 unfolding open-def openByF-def by

auto
} note fIDs = this
{ fix uid uid ′

assume uid: uid 6= UID1 uid 6= UID2
have friendIDs s uid = friendIDs s1 uid (is ?f-eq)
and pendingFReqs s uid = pendingFReqs s1 uid (is ?pFR-eq)
and uid ∈∈ friendIDs s uid ′←→ uid ∈∈ friendIDs s1 uid ′ (is ?f-iff)

and uid ∈∈ pendingFReqs s uid ′←→ uid ∈∈ pendingFReqs s1 uid ′ (is ?pFR-iff)
and friendReq s uid uid ′ = friendReq s1 uid uid ′ (is ?FR-eq)
and friendReq s uid ′ uid = friendReq s1 uid ′ uid (is ?FR-eq ′)

proof −
show ?f-eq ?pFR-eq using uid ss1 UID1-UID2-UIDs unfolding eqButUID-def

by (auto intro!: eqButUIDf-not-UID)

106

show ?f-iff ?pFR-iff using uid ss1 UID1-UID2-UIDs unfolding eqButUID-def
by (auto intro!: eqButUIDf-not-UID ′)

from uid have ¬ (uid,uid ′) ∈ {(UID1 ,UID2), (UID2 ,UID1)} by auto
then show ?FR-eq ?FR-eq ′ using ss1 UID1-UID2-UIDs unfolding eqBu-

tUID-def
by (auto intro!: eqButUID12-not-UID)

qed
} note simps = this eqButUID-def r-defs s-defs c-defs l-defs u-defs d-defs
note facts = ss1 step step1 uid
show ?thesis
proof (cases a)

case (Ract ra) then show ?thesis using facts
apply (cases ra) by (auto simp add: simps)

next
case (Sact sa) then show ?thesis using facts by (cases sa) (auto simp add:

simps)
next

case (Cact ca) then show ?thesis using facts by (cases ca) (auto simp add:
simps)

next
case (Lact la)

then show ?thesis using facts proof (cases la)
case (lFriends uid p uid ′)

with γ have uid: uid ∈ UIDs using Lact by auto
then have uid-uid ′: uid ∈∈ friendIDs s uid ′←→ uid ∈∈ friendIDs s1 uid ′

using ss1 UID1-UID2-UIDs unfolding eqButUID-def by (intro eqBu-
tUIDf-not-UID ′) auto

show ?thesis
proof (cases (uid ′ = UID1 ∨ uid ′ = UID2) ∧ uid ∈∈ friendIDs s uid ′)

case True
with uid have friendIDs s = friendIDs s1 by (intro fIDs) auto
then show ?thesis using lFriends facts Lact by (auto simp: simps)

next
case False

then show ?thesis using lFriends facts Lact simps(1) uid-uid ′ by
(auto simp: simps)

qed
next

case (lPosts uid p)
then have o:

∧
pid. owner s pid = owner s1 pid

and n:
∧

pid. post s pid = post s1 pid
and pids: postIDs s = postIDs s1
and viss: vis s = vis s1

and fu:
∧

uid ′. uid ∈∈ friendIDs s uid ′←→ uid ∈∈ friendIDs s1 uid ′

and e: e-listPosts s uid p ←→ e-listPosts s1 uid p
using ss1 uid Lact unfolding eqButUID-def l-defs by (auto simp add:

simps(3))
have listPosts s uid p = listPosts s1 uid p

unfolding listPosts-def o n pids fu viss ..

107

with e show ?thesis using Lact lPosts step step1 by auto
qed (auto simp add: simps)

next
case (Uact ua) then show ?thesis using facts by (cases ua) (auto simp add:

simps)
next

case (Dact da) then show ?thesis using facts by (cases da) (auto simp add:
simps)

qed
qed

lemma produce-FRVal:
assumes rs: reach s
and IDs: IDsOK s [UID1 , UID2] []
and vVS : validValSeqFrom (FRVal u req # vl) s
obtains a uid uid ′ s ′

where step s a = (outOK , s ′)
and a = Cact (cFriendReq uid (pass s uid) uid ′ req)
and uid = UID1 ∧ uid ′ = UID2 ∨ uid = UID2 ∧ uid ′ = UID1
and ϕ (Trans s a outOK s ′)
and f (Trans s a outOK s ′) = FRVal u req
and validValSeqFrom vl s ′

proof (cases u)
case U1

then have step s (Cact (cFriendReq UID1 (pass s UID1) UID2 req)) =
(outOK , createFriendReq s UID1 (pass s UID1) UID2 req)

and ¬friends12 (createFriendReq s UID1 (pass s UID1) UID2 req)
using IDs vVS reach-friendIDs-symmetric[OF rs] by (auto simp: c-defs

friends12-def)
then show thesis using U1 vVS UID1-UID2 by (intro that[of - - UID1 UID2])

(auto simp: c-defs)
next

case U2
then have step s (Cact (cFriendReq UID2 (pass s UID2) UID1 req)) =

(outOK , createFriendReq s UID2 (pass s UID2) UID1 req)
and ¬friends12 (createFriendReq s UID2 (pass s UID2) UID1 req)

using IDs vVS reach-friendIDs-symmetric[OF rs] by (auto simp: c-defs
friends12-def)

then show thesis using U2 vVS UID1-UID2 by (intro that[of - - UID2 UID1])
(auto simp: c-defs)
qed

lemma toggle-friends12-True:
assumes rs: reach s

and IDs: IDsOK s [UID1 , UID2] []
and nf12 : ¬friends12 s
and vVS : validValSeqFrom (FVal True # vl) s

obtains a uid uid ′ s ′

108

where step s a = (outOK , s ′)
and a = Cact (cFriend uid (pass s uid) uid ′)
and s ′ = createFriend s UID1 (pass s UID1) UID2
and uid = UID1 ∧ uid ′ = UID2 ∨ uid = UID2 ∧ uid ′ = UID1
and friends12 s ′

and eqButUID s s ′

and ϕ (Trans s a outOK s ′)
and f (Trans s a outOK s ′) = FVal True
and ¬γ (Trans s a outOK s ′)
and validValSeqFrom vl s ′

proof −
from vVS have UID1 ∈∈ pendingFReqs s UID2 ∨ UID2 ∈∈ pendingFReqs s

UID1 by auto
then show thesis proof

assume pFR: UID1 ∈∈ pendingFReqs s UID2
let ?a = Cact (cFriend UID2 (pass s UID2) UID1)
let ?s ′ = createFriend s UID1 (pass s UID1) UID2
let ?trn = Trans s ?a outOK ?s ′

have step: step s ?a = (outOK , ?s ′) using IDs pFR UID1-UID2
unfolding createFriend-sym[of s UID1 pass s UID1 UID2 pass s UID2]
by (auto simp add: c-defs)

moreover then have ϕ ?trn and f ?trn = FVal True and friends12 ?s ′

and UID1 /∈ set (pendingFReqs ?s ′ UID2)
and UID2 /∈ set (pendingFReqs ?s ′ UID1)

using reach-distinct-friends-reqs[OF rs] by (auto simp: c-defs friends12-def)
moreover have ¬γ ?trn using UID1-UID2-UIDs by auto
ultimately show thesis using nf12 rs vVS
by (intro that[of ?a ?s ′ UID2 UID1]) (auto intro: Cact-cFriend-step-eqButUID)

next
assume pFR: UID2 ∈∈ pendingFReqs s UID1
let ?a = Cact (cFriend UID1 (pass s UID1) UID2)
let ?s ′ = createFriend s UID1 (pass s UID1) UID2
let ?trn = Trans s ?a outOK ?s ′

have step: step s ?a = (outOK , ?s ′) using IDs pFR UID1-UID2 by (auto simp
add: c-defs)

moreover then have ϕ ?trn and f ?trn = FVal True and friends12 ?s ′

and UID1 /∈ set (pendingFReqs ?s ′ UID2)
and UID2 /∈ set (pendingFReqs ?s ′ UID1)

using reach-distinct-friends-reqs[OF rs] by (auto simp: c-defs friends12-def)
moreover have ¬γ ?trn using UID1-UID2-UIDs by auto
ultimately show thesis using nf12 rs vVS
by (intro that[of ?a ?s ′ UID1 UID2]) (auto intro: Cact-cFriend-step-eqButUID)

qed
qed

lemma toggle-friends12-False:
assumes rs: reach s

and IDs: IDsOK s [UID1 , UID2] []
and f12 : friends12 s

109

and vVS : validValSeqFrom (FVal False # vl) s
obtains a s ′

where step s a = (outOK , s ′)
and a = Dact (dFriend UID1 (pass s UID1) UID2)
and s ′ = deleteFriend s UID1 (pass s UID1) UID2
and ¬friends12 s ′

and eqButUID s s ′

and ϕ (Trans s a outOK s ′)
and f (Trans s a outOK s ′) = FVal False
and ¬γ (Trans s a outOK s ′)
and validValSeqFrom vl s ′

proof −
let ?a = Dact (dFriend UID1 (pass s UID1) UID2)
let ?s ′ = deleteFriend s UID1 (pass s UID1) UID2
let ?trn = Trans s ?a outOK ?s ′

from vVS have step: step s ?a = (outOK , ?s ′)
and UID1 /∈ set (pendingFReqs ?s ′ UID2) UID2 /∈ set (pendingFReqs ?s ′

UID1)
using IDs f12 UID1-UID2 by (auto simp add: d-defs friends12-def)

moreover then have ϕ ?trn and f ?trn = FVal False and ¬friends12 ?s ′

by (auto simp: d-defs friends12-def)
moreover have ¬γ ?trn using UID1-UID2-UIDs by auto
ultimately show thesis using f12 rs vVS

by (intro that[of ?a ?s ′]) (auto intro: Dact-dFriend-step-eqButUID)
qed

lemma toggle-friends12 :
assumes rs: reach s

and IDs: IDsOK s [UID1 , UID2] []
and f12 : friends12 s 6= fv
and vVS : validValSeqFrom (FVal fv # vl) s

obtains a s ′

where step s a = (outOK , s ′)
and friends12 s ′ = fv
and eqButUID s s ′

and ϕ (Trans s a outOK s ′)
and f (Trans s a outOK s ′) = FVal fv
and ¬γ (Trans s a outOK s ′)
and validValSeqFrom vl s ′

proof (cases friends12 s)
case True
moreover then have UID1 /∈ set (pendingFReqs s UID2) UID2 /∈ set (pendingFReqs

s UID1)
and fv = False
and vVS : validValSeqFrom (FVal False # vl) s

using vVS f12 unfolding friends12-def by auto
moreover then have UID1 /∈ set (pendingFReqs (deleteFriend s UID1 (pass

s UID1) UID2) UID2)
UID2 /∈ set (pendingFReqs (deleteFriend s UID1 (pass s UID1)

110

UID2) UID1)
by (auto simp: d-defs)

ultimately show thesis using assms
by (elim toggle-friends12-False, blast, blast, blast) (elim that, blast+)

next
case False

moreover then have fv = True
and vVS : validValSeqFrom (FVal True # vl) s

using vVS f12 by auto
moreover have UID1 /∈ set (pendingFReqs (createFriend s UID1 (pass s UID1)

UID2) UID2)
UID2 /∈ set (pendingFReqs (createFriend s UID1 (pass s UID1)

UID2) UID1)
using reach-distinct-friends-reqs[OF rs] by (auto simp: c-defs)

ultimately show thesis using assms
by (elim toggle-friends12-True, blast, blast, blast) (elim that, blast+)

qed

lemma BO-cases:
assumes BO vl vl1
obtains (Nil) vl = [] and vl1 = []

| (FVal) fv vl ′ vl1 ′ where vl = FVal fv # vl ′ and vl1 = FVal fv # vl1 ′ and
BO vl ′ vl1 ′

| (OVal) vl ′ vl1 ′ where vl = OVal False # vl ′ and vl1 = OVal False # vl1 ′

and BC vl ′ vl1 ′

using assms proof (cases rule: BO.cases)
case (BO-FVal fs) then show thesis by (cases fs) (auto intro: Nil FVal) next
case (BO-BC vl ′′ vl1 ′′ fs) then show thesis by (cases fs) (auto intro: FVal

OVal)
qed

lemma BC-cases:
assumes BC vl vl1
obtains (Nil) vl = [] and vl1 = []

| (FVal) fv fs where vl = FVal fv # map FVal fs and vl1 = []
| (FVal1) fv fs fs1 where vl = map FVal fs and vl1 = FVal fv # map FVal

fs1
| (BO-FVal) fv fv ′ fs vl ′ vl1 ′ where vl = FVal fv # map FVal fs @ FVal fv ′

OVal True # vl ′
and vl1 = FVal fv ′ # OVal True # vl1 ′ and BO

vl ′ vl1 ′

| (BO-FVal1) fv fv ′ fs fs1 vl ′ vl1 ′ where vl = map FVal fs @ FVal fv ′ # OVal
True # vl ′

and vl1 = FVal fv # map FVal fs1 @ FVal fv ′ #
OVal True # vl1 ′

and BO vl ′ vl1 ′

| (FVal-BO) fv vl ′ vl1 ′ where vl = FVal fv # OVal True # vl ′
and vl1 = FVal fv # OVal True # vl1 ′ and BO vl ′ vl1 ′

111

| (OVal) vl ′ vl1 ′ where vl = OVal True # vl ′ and vl1 = OVal True # vl1 ′

and BO vl ′ vl1 ′

using assms proof (cases rule: BC .cases)
case (BC-FVal fs fs1)

then show ?thesis proof (induction fs1)
case Nil then show ?case by (induction fs) (auto intro: that(1 ,2)) next
case (Cons fv fs1 ′) then show ?case by (intro that(3)) auto

qed
next

case (BC-BO vl ′ vl1 ′ fs fs1)
then show ?thesis proof (cases fs1 rule: rev-cases)

case Nil then show ?thesis using BC-BO by (intro that(7)) auto next
case (snoc fs1 ′ fv ′)

moreover then obtain fs ′ where fs = fs ′ ## fv ′ using BC-BO
by (induction fs rule: rev-induct) auto

ultimately show ?thesis using BC-BO proof (induction fs1 ′)
case Nil

then show ?thesis proof (induction fs ′)
case Nil then show ?thesis by (intro that(6)) auto next
case (Cons fv ′′ fs ′′) then show ?thesis by (intro that(4)) auto

qed
next

case (Cons fv ′′ fs1 ′′) then show ?thesis by (intro that(5)) auto
qed

qed
qed

definition ∆0 :: state ⇒ value list ⇒ state ⇒ value list ⇒ bool where
∆0 s vl s1 vl1 ≡
s = s1 ∧ B vl vl1 ∧ open s ∧ (¬IDsOK s [UID1 , UID2] [])

definition ∆1 :: state ⇒ value list ⇒ state ⇒ value list ⇒ bool where
∆1 s vl s1 vl1 ≡
eqButUID s s1 ∧ friendIDs s = friendIDs s1 ∧ open s ∧
BO (filter (Not o isFRVal) vl) (filter (Not o isFRVal) vl1) ∧
validValSeqFrom vl1 s1 ∧
IDsOK s1 [UID1 , UID2] []

definition ∆2 :: state ⇒ value list ⇒ state ⇒ value list ⇒ bool where
∆2 s vl s1 vl1 ≡ (∃ fs fs1 .
eqButUID s s1 ∧ ¬open s ∧
validValSeqFrom vl1 s1 ∧
filter (Not o isFRVal) vl = map FVal fs ∧
filter (Not o isFRVal) vl1 = map FVal fs1)

definition ∆3 :: state ⇒ value list ⇒ state ⇒ value list ⇒ bool where
∆3 s vl s1 vl1 ≡ (∃ fs fs1 vlr vlr1 .
eqButUID s s1 ∧ ¬open s ∧ BO vlr vlr1 ∧

112

validValSeqFrom vl1 s1 ∧
(fs = [] ←→ fs1 = []) ∧
(fs 6= [] −→ last fs = last fs1) ∧
(fs = [] −→ friendIDs s = friendIDs s1) ∧
filter (Not o isFRVal) vl = map FVal fs @ OVal True # vlr ∧
filter (Not o isFRVal) vl1 = map FVal fs1 @ OVal True # vlr1)

lemma ∆2-I :
assumes eqButUID s s1 ¬open s

validValSeqFrom vl1 s1
filter (Not o isFRVal) vl = map FVal fs
filter (Not o isFRVal) vl1 = map FVal fs1

shows ∆2 s vl s1 vl1
using assms unfolding ∆2-def by blast

lemma ∆3-I :
assumes eqButUID s s1 ¬open s BO vlr vlr1

validValSeqFrom vl1 s1
fs = [] ←→ fs1 = [] fs 6= [] −→ last fs = last fs1
fs = [] −→ friendIDs s = friendIDs s1
filter (Not o isFRVal) vl = map FVal fs @ OVal True # vlr
filter (Not o isFRVal) vl1 = map FVal fs1 @ OVal True # vlr1

shows ∆3 s vl s1 vl1
using assms unfolding ∆3-def by blast

lemma istate-∆0 :
assumes B: B vl vl1
shows ∆0 istate vl istate vl1
using assms unfolding ∆0-def istate-def B-def open-def openByA-def openByF-def
friends12-def
by auto

lemma unwind-cont-∆0 : unwind-cont ∆0 {∆0 ,∆1 ,∆2 ,∆3}
proof(rule, simp)

let ?∆ = λs vl s1 vl1 . ∆0 s vl s1 vl1 ∨
∆1 s vl s1 vl1 ∨
∆2 s vl s1 vl1 ∨
∆3 s vl s1 vl1

fix s s1 :: state and vl vl1 :: value list
assume rsT : reachNT s and rs1 : reach s1 and ∆0 : ∆0 s vl s1 vl1
then have rs: reach s and ss1 : s1 = s and B: B vl vl1 and os: open s

and IDs: ¬IDsOK s [UID1 , UID2] []
using reachNT-reach unfolding ∆0-def by auto

from IDs have UID1 /∈ set (pendingFReqs s UID2) and ¬friends12 s
and UID2 /∈ set (pendingFReqs s UID1)

using reach-IDs-used-IDsOK [OF rs] unfolding friends12-def by auto
with B have BO: BO (filter (Not ◦ isFRVal) vl) (filter (Not ◦ isFRVal) vl1)

113

and vl-vl1 : vl = [] −→ vl1 = []
and vl-OVal: vl 6= [] ∧ hd vl = OVal False −→ vl1 6= [] ∧ hd vl1 = OVal

False
and vVS : validValSeqFrom vl1 s

unfolding B-def by (auto simp: istate-def friends12-def)
show iaction ?∆ s vl s1 vl1 ∨

((vl = [] −→ vl1 = []) ∧ reaction ?∆ s vl s1 vl1) (is ?iact ∨ (- ∧ ?react))
proof −

have ?react proof
fix a :: act and ou :: out and s ′ :: state and vl ′
let ?trn = Trans s a ou s ′

assume step: step s a = (ou, s ′) and T : ¬ T ?trn and c: consume ?trn vl vl ′
show match ?∆ s s1 vl1 a ou s ′ vl ′ ∨ ignore ?∆ s s1 vl1 a ou s ′ vl ′ (is ?match

∨ ?ignore)
proof cases

assume ϕ: ϕ ?trn
then obtain uid p uid ′ p ′ where a: a = Cact (cUser uid p uid ′ p ′)

¬openByA s ′ ¬openByF s ′

ou = outOK f ?trn = OVal False
friends12 s ′ = friends12 s

UID1 ∈∈ pendingFReqs s ′ UID2 ←→ UID1 ∈∈
pendingFReqs s UID2

UID2 ∈∈ pendingFReqs s ′ UID1 ←→ UID2 ∈∈
pendingFReqs s UID1

using step rs IDs by (elim ϕE) (auto simp: openByA-def)
with c ϕ have vl: vl = OVal False # vl ′ unfolding consume-def by auto
with vl-OVal obtain vl1 ′ where vl1 : vl1 = OVal False # vl1 ′ by (cases

vl1) auto
from BO vl vl1 have BC ′: BC (filter (Not ◦ isFRVal) vl ′) (filter (Not ◦

isFRVal) vl1 ′)
by (cases rule: BO-cases) auto

then have ∆2 s ′ vl ′ s ′ vl1 ′ ∨ ∆3 s ′ vl ′ s ′ vl1 ′ using vVS a unfolding vl1
proof (cases rule: BC .cases)

case BC-FVal
then show ?thesis using vVS a unfolding vl1

by (intro disjI1 ∆2-I) (auto simp: open-def)
next

case BC-BO
then show ?thesis using vVS a unfolding vl1

by (intro disjI2 ∆3-I) (auto simp: open-def)
qed
then have ?match using step a ϕ unfolding ss1 vl1

by (intro matchI [of s a ou s ′]) (auto simp: consume-def)
then show ?thesis ..

next
assume nϕ: ¬ϕ ?trn
then have s ′: open s ′ friends12 s ′ = friends12 s

UID1 ∈∈ pendingFReqs s ′ UID2 ←→ UID1 ∈∈ pendingFReqs s
UID2

114

UID2 ∈∈ pendingFReqs s ′ UID1 ←→ UID2 ∈∈ pendingFReqs s
UID1

using os step-open-ϕ[OF step] step-friends12-ϕ[OF step] step-pendingFReqs-ϕ[OF
step]

by auto
moreover have vl ′ = vl using nϕ c by (auto simp: consume-def)
ultimately have ∆0 s ′ vl ′ s ′ vl1 ∨ ∆1 s ′ vl ′ s ′ vl1

using vVS B BO unfolding ∆0-def ∆1-def
by (cases IDsOK s ′ [UID1 , UID2] []) auto

then have ?match using step c nϕ unfolding ss1
by (intro matchI [of s a ou s ′]) (auto simp: consume-def)

then show ?thesis ..
qed

qed
then show ?thesis using vl-vl1 by auto

qed
qed

lemma unwind-cont-∆1 : unwind-cont ∆1 {∆1 ,∆2 ,∆3}
proof(rule, simp)

let ?∆ = λs vl s1 vl1 . ∆1 s vl s1 vl1 ∨
∆2 s vl s1 vl1 ∨
∆3 s vl s1 vl1

fix s s1 :: state and vl vl1 :: value list
assume rsT : reachNT s and rs1 : reach s1 and ∆1 : ∆1 s vl s1 vl1
then have rs: reach s and ss1 : eqButUID s s1 and fIDs: friendIDs s = friendIDs

s1
and os: open s and BO: BO (filter (Not o isFRVal) vl) (filter (Not o

isFRVal) vl1)
and vVS1 : validValSeq vl1 (friends12 s1)

(UID1 ∈∈ pendingFReqs s1 UID2)
(UID2 ∈∈ pendingFReqs s1 UID1) (is ?vVS vl1 s1)

and IDs1 : IDsOK s1 [UID1 , UID2] []
using reachNT-reach unfolding ∆1-def by auto

show iaction ?∆ s vl s1 vl1 ∨
((vl = [] −→ vl1 = []) ∧ reaction ?∆ s vl s1 vl1) (is ?iact ∨ (- ∧ ?react))

proof cases
assume ∃ u req vl1 ′. vl1 = FRVal u req # vl1 ′

then obtain u req vl1 ′ where vl1 : vl1 = FRVal u req # vl1 ′ by auto
obtain a uid uid ′ s1 ′ where step1 : step s1 a = (outOK , s1 ′) and ϕ (Trans

s1 a outOK s1 ′)
and a: a = Cact (cFriendReq uid (pass s1 uid) uid ′ req)

and uid: uid = UID1 ∧ uid ′ = UID2 ∨ uid = UID2 ∧ uid ′

= UID1
and f (Trans s1 a outOK s1 ′) = FRVal u req and ?vVS

vl1 ′ s1 ′

using rs1 IDs1 vVS1 UID1-UID2-UIDs unfolding vl1 by (blast intro: pro-
duce-FRVal)

moreover then have ¬γ (Trans s1 a outOK s1 ′) using UID1-UID2-UIDs by

115

auto
moreover have eqButUID s1 s1 ′ using step1 a uid by (auto intro: Cact-cFriendReq-step-eqButUID)
moreover have friendIDs s1 ′ = friendIDs s1 and IDsOK s1 ′ [UID1 , UID2]

[]
using step1 a uid by (auto simp: c-defs)

ultimately have ?iact using ss1 fIDs os BO unfolding vl1
by (intro iactionI [of s1 a outOK s1 ′]) (auto simp: consume-def ∆1-def intro:

eqButUID-trans)
then show ?thesis ..

next
assume nFRVal1 : ¬ (∃ u req vl1 ′. vl1 = FRVal u req # vl1 ′)
have ?react proof

fix a :: act and ou :: out and s ′ :: state and vl ′
let ?trn = Trans s a ou s ′

assume step: step s a = (ou, s ′) and T : ¬ T ?trn and c: consume ?trn vl vl ′
show match ?∆ s s1 vl1 a ou s ′ vl ′ ∨ ignore ?∆ s s1 vl1 a ou s ′ vl ′ (is ?match

∨ ?ignore)
proof cases

assume ϕ: ϕ ?trn
then have vl: vl = f ?trn # vl ′ using c by (auto simp: consume-def)
from BO show ?thesis proof (cases f ?trn)

case (FVal fv)
with BO obtain vl1 ′ where vl1 : vl1 = f ?trn # vl1 ′

using BO-Nil-iff [OF BO] FVal vl nFRVal1
by (cases rule: BO-cases; cases vl1 ; cases hd vl1) auto
with BO have BO ′: BO (filter (Not o isFRVal) vl ′) (filter (Not o

isFRVal) vl1 ′)
using FVal vl by (cases rule: BO-cases) auto

from fIDs have f12 : friends12 s = friends12 s1 unfolding friends12-def
by auto

have ?match using ϕ step rs FVal proof (cases rule: ϕE)
case (Friend uid p uid ′)

then have IDs1 : IDsOK s1 [UID1 , UID2] []
using ss1 unfolding eqButUID-def by auto

let ?s1 ′ = createFriend s1 UID1 (pass s1 UID1) UID2
have s ′: s ′ = createFriend s UID1 p UID2

using Friend step by (auto simp: createFriend-sym)
have ss ′: eqButUID s s ′ using rs step Friend

by (auto intro: Cact-cFriend-step-eqButUID)
moreover then have os ′: open s ′ using os eqButUID-open-eq by

auto
moreover obtain a1 uid1 uid1 ′ p1
where step s1 a1 = (outOK , ?s1 ′) friends12 ?s1 ′

a1 = Cact (cFriend uid1 p1 uid1 ′)
uid1 = UID1 ∧ uid1 ′ = UID2 ∨ uid1 = UID2 ∧ uid1 ′ = UID1
ϕ (Trans s1 a1 outOK ?s1 ′)
f (Trans s1 a1 outOK ?s1 ′) = FVal True
eqButUID s1 ?s1 ′ ?vVS vl1 ′ ?s1 ′

using rs1 IDs1 Friend vVS1 unfolding vl1 f12 Friend(3)

116

by (elim toggle-friends12-True) blast+
moreover then have IDsOK ?s1 ′ [UID1 , UID2] [] by (auto simp:

c-defs)
moreover have friendIDs s ′ = friendIDs ?s1 ′

using Friend(6) f12 unfolding s ′

by (intro eqButUID-createFriend12-friendIDs-eq[OF ss1 rs rs1]) auto
ultimately show ?match using ss1 BO ′ Friend UID1-UID2-UIDs

unfolding vl1 ∆1-def
by (intro matchI [of s1 a1 outOK ?s1 ′])

(auto simp: consume-def intro: eqButUID-trans eqButUID-sym)
next

case (Unfriend uid p uid ′)
then have IDs1 : IDsOK s1 [UID1 , UID2] []

using ss1 unfolding eqButUID-def by auto
let ?s1 ′ = deleteFriend s1 UID1 (pass s1 UID1) UID2
have s ′: s ′ = deleteFriend s UID1 p UID2

using Unfriend step by (auto simp: deleteFriend-sym)
have ss ′: eqButUID s s ′ using rs step Unfriend

by (auto intro: Dact-dFriend-step-eqButUID)
moreover then have os ′: open s ′ using os eqButUID-open-eq by

auto
moreover obtain a1 uid1 uid1 ′ p1
where step s1 a1 = (outOK , ?s1 ′) ¬friends12 ?s1 ′

a1 = Dact (dFriend uid1 p1 uid1 ′)
uid1 = UID1 ∧ uid1 ′ = UID2 ∨ uid1 = UID2 ∧ uid1 ′ = UID1
ϕ (Trans s1 a1 outOK ?s1 ′)
f (Trans s1 a1 outOK ?s1 ′) = FVal False
eqButUID s1 ?s1 ′ ?vVS vl1 ′ ?s1 ′

using rs1 IDs1 Unfriend vVS1 unfolding vl1 f12 Unfriend(3)
by (elim toggle-friends12-False) blast+

moreover have friendIDs s ′ = friendIDs ?s1 ′ IDsOK ?s1 ′ [UID1 ,
UID2] []

using fIDs IDs1 unfolding s ′ by (auto simp: d-defs)
ultimately show ?match using ss1 BO ′ Unfriend UID1-UID2-UIDs

unfolding vl1 ∆1-def
by (intro matchI [of s1 a1 outOK ?s1 ′])

(auto simp: consume-def intro: eqButUID-trans eqButUID-sym)
qed auto
then show ?thesis ..

next
case (OVal ov)

with BO obtain vl1 ′ where vl1 ′: vl1 = OVal False # vl1 ′

using BO-Nil-iff [OF BO] OVal vl nFRVal1
by (cases rule: BO-cases; cases vl1 ; cases hd vl1) auto
with BO have BC ′: BC (filter (Not o isFRVal) vl ′) (filter (Not o

isFRVal) vl1 ′)
using OVal vl by (cases rule: BO-cases) auto

from BO vl OVal have f ?trn = OVal False by (cases rule: BO-cases)
auto

117

with ϕ step rs have ?match proof (cases rule: ϕE)
case (CloseF uid p uid ′)

let ?s1 ′ = deleteFriend s1 uid p uid ′

let ?trn1 = Trans s1 a outOK ?s1 ′

have s ′: s ′ = deleteFriend s uid p uid ′ using CloseF step by auto
have step1 : step s1 a = (outOK , ?s1 ′)
and pFR1 ′: pendingFReqs ?s1 ′ = pendingFReqs s1
using CloseF step ss1 fIDs unfolding eqButUID-def by (auto simp:

d-defs)
have s ′s1 ′: eqButUID s ′ ?s1 ′ using eqButUID-step[OF ss1 step step1

rs rs1] .
moreover have os ′: ¬open s ′ using CloseF os unfolding open-def

by auto
moreover have fIDs ′: friendIDs s ′ = friendIDs ?s1 ′

using fIDs unfolding s ′ by (auto simp: d-defs)
moreover have f12s1 : friends12 s1 = friends12 ?s1 ′

using CloseF(2) UID1-UID2-UIDs unfolding friends12-def d-defs
by auto

from BC ′ have ∆2 s ′ vl ′ ?s1 ′ vl1 ′ ∨ ∆3 s ′ vl ′ ?s1 ′ vl1 ′

proof (cases rule: BC .cases)
case (BC-FVal fs fs1)

then show ?thesis using vVS1 os ′ fIDs ′ f12s1 s ′s1 ′ pFR1 ′

unfolding ∆2-def vl1 ′ by auto
next

case (BC-BO vlr vlr1 fs fs1)
then have ∆3 s ′ vl ′ ?s1 ′ vl1 ′ using s ′s1 ′ os ′ vVS1 f12s1 fIDs ′

pFR1 ′

unfolding vl1 ′ by (intro ∆3-I [of - - - - - fs fs1]) auto
then show ?thesis ..

qed
moreover have open s1 ¬open ?s1 ′

using ss1 os s ′s1 ′ os ′ by (auto simp: eqButUID-open-eq)
moreover then have ϕ ?trn1 unfolding CloseF by auto

ultimately show ?match using step1 vl1 ′ CloseF UID1-UID2
UID1-UID2-UIDs

by (intro matchI [of s1 a outOK ?s1 ′ vl1 vl1 ′]) (auto simp:
consume-def)

next
case (CloseA uid p uid ′ p ′)

let ?s1 ′ = createUser s1 uid p uid ′ p ′

let ?trn1 = Trans s1 a outOK ?s1 ′

have s ′: s ′ = createUser s uid p uid ′ p ′ using CloseA step by auto
have step1 : step s1 a = (outOK , ?s1 ′)
and pFR1 ′: pendingFReqs ?s1 ′ = pendingFReqs s1

using CloseA step ss1 unfolding eqButUID-def by (auto simp:
c-defs)

have s ′s1 ′: eqButUID s ′ ?s1 ′ using eqButUID-step[OF ss1 step step1
rs rs1] .

moreover have os ′: ¬open s ′ using CloseA os unfolding open-def

118

by auto
moreover have fIDs ′: friendIDs s ′ = friendIDs ?s1 ′

using fIDs unfolding s ′ by (auto simp: c-defs)
moreover have f12s1 : friends12 s1 = friends12 ?s1 ′

unfolding friends12-def by (auto simp: c-defs)
from BC ′ have ∆2 s ′ vl ′ ?s1 ′ vl1 ′ ∨ ∆3 s ′ vl ′ ?s1 ′ vl1 ′

proof (cases rule: BC .cases)
case (BC-FVal fs fs1)

then show ?thesis using vVS1 os ′ fIDs ′ f12s1 s ′s1 ′ pFR1 ′

unfolding ∆2-def vl1 ′ by auto
next

case (BC-BO vlr vlr1 fs fs1)
then have ∆3 s ′ vl ′ ?s1 ′ vl1 ′ using s ′s1 ′ os ′ vVS1 f12s1 fIDs ′

pFR1 ′

unfolding vl1 ′ by (intro ∆3-I [of - - - - - fs fs1]) auto
then show ?thesis ..

qed
moreover have open s1 ¬open ?s1 ′

using ss1 os s ′s1 ′ os ′ by (auto simp: eqButUID-open-eq)
moreover then have ϕ ?trn1 unfolding CloseA by auto

ultimately show ?match using step1 vl1 ′ CloseA UID1-UID2
UID1-UID2-UIDs

by (intro matchI [of s1 a outOK ?s1 ′ vl1 vl1 ′]) (auto simp:
consume-def)

qed auto
then show ?thesis ..

next
case (FRVal u req)

obtain p
where a: (a = Cact (cFriendReq UID1 p UID2 req) ∧ UID1 ∈∈

pendingFReqs s ′ UID2 ∧
UID1 /∈ set (pendingFReqs s UID2) ∧
(UID2 ∈∈ pendingFReqs s ′ UID1 ←→ UID2 ∈∈ pendingFReqs

s UID1)) ∨
(a = Cact (cFriendReq UID2 p UID1 req) ∧ UID2 ∈∈ pendingFReqs

s ′ UID1 ∧
UID2 /∈ set (pendingFReqs s UID1) ∧
(UID1 ∈∈ pendingFReqs s ′ UID2 ←→ UID1 ∈∈ pendingFReqs

s UID2))
ou = outOK ¬friends12 s ¬friends12 s ′ open s ′ = open s

using ϕ step rs FRVal by (cases rule: ϕE) fastforce+
then have fIDs ′: friendIDs s ′ = friendIDs s using step by (auto simp:

c-defs)
have eqButUID s s ′ using a step

by (auto intro: Cact-cFriendReq-step-eqButUID)
then have ∆1 s ′ vl ′ s1 vl1
unfolding ∆1-def using ss1 fIDs ′ fIDs os a(5) vVS1 IDs1 BO vl FRVal

by (auto intro: eqButUID-trans eqButUID-sym)
moreover from ϕ step rs a have ¬γ (Trans s a ou s ′)

119

using UID1-UID2-UIDs by auto
ultimately have ?ignore by (intro ignoreI) auto
then show ?thesis ..

qed
next

assume nϕ: ¬ϕ ?trn
then have os ′: open s = open s ′ and f12s ′: friends12 s = friends12 s ′

using step-open-ϕ[OF step] step-friends12-ϕ[OF step] by auto
have vl ′: vl ′ = vl using nϕ c by (auto simp: consume-def)
show ?thesis proof (cases ∀ req. a 6= Cact (cFriend UID1 (pass s UID1)

UID2) ∧
a 6= Cact (cFriend UID2 (pass s UID2) UID1) ∧
a 6= Cact (cFriendReq UID2 (pass s UID2) UID1

req) ∧
a 6= Cact (cFriendReq UID1 (pass s UID1) UID2

req) ∧
a 6= Dact (dFriend UID1 (pass s UID1) UID2) ∧
a 6= Dact (dFriend UID2 (pass s UID2) UID1))

case True
obtain ou1 s1 ′ where step1 : step s1 a = (ou1 , s1 ′) by (cases step s1

a) auto
let ?trn1 = Trans s1 a ou1 s1 ′

have fIDs ′: friendIDs s ′ = friendIDs s1 ′ using True
by (intro eqButUID-step-friendIDs-eq[OF ss1 rs rs1 step step1 - fIDs])

auto
from True nϕ have nϕ ′: ¬ϕ ?trn1 using eqButUID-step-ϕ[OF ss1 rs

rs1 step step1] by auto
then have f12s1 ′: friends12 s1 = friends12 s1 ′

and pFRs ′: UID1 ∈∈ pendingFReqs s1 UID2 ←→ UID1 ∈∈
pendingFReqs s1 ′ UID2

UID2 ∈∈ pendingFReqs s1 UID1 ←→ UID2 ∈∈ pendingFReqs
s1 ′ UID1

using step-friends12-ϕ[OF step1] step-pendingFReqs-ϕ[OF step1]
by auto

have eqButUID s ′ s1 ′ using eqButUID-step[OF ss1 step step1 rs rs1] .
then have ∆1 s ′ vl ′ s1 ′ vl1 using os fIDs ′ vVS1 BO IDsOK-mono[OF

step1 IDs1]
unfolding ∆1-def os ′ f12s1 ′ pFRs ′ vl ′ by auto

then have ?match
using step1 nϕ ′ fIDs eqButUID-step-γ-out[OF ss1 step step1]
by (intro matchI [of s1 a ou1 s1 ′ vl1 vl1]) (auto simp: consume-def)

then show ?match ∨ ?ignore ..
next

case False
with nϕ have ou 6= outOK by auto
then have s ′ = s using step False by auto
then have ?ignore using ∆1 False UID1-UID2-UIDs unfolding vl ′ by

(intro ignoreI) auto
then show ?match ∨ ?ignore ..

120

qed
qed

qed
moreover have vl = [] −→ vl1 = [] proof

assume vl = []
with BO have filter (Not ◦ isFRVal) vl1 = [] using BO-Nil-iff [OF BO] by

auto
with nFRVal1 show vl1 = [] by (cases vl1 ; cases hd vl1) auto

qed
ultimately show ?thesis by auto

qed
qed

lemma unwind-cont-∆2 : unwind-cont ∆2 {∆2 , ∆1}
proof(rule, simp)

let ?∆ = λs vl s1 vl1 . ∆2 s vl s1 vl1 ∨ ∆1 s vl s1 vl1
fix s s1 :: state and vl vl1 :: value list
assume rsT : reachNT s and rs1 : reach s1 and 2 : ∆2 s vl s1 vl1
from rsT have rs: reach s by (intro reachNT-reach)
from 2 obtain fs fs1
where ss1 : eqButUID s s1 and os: ¬open s

and vVS1 : validValSeqFrom vl1 s1
and fs: filter (Not o isFRVal) vl = map FVal fs
and fs1 : filter (Not o isFRVal) vl1 = map FVal fs1
unfolding ∆2-def by auto

from os have IDs: IDsOK s [UID1 , UID2] [] unfolding open-defs by auto
then have IDs1 : IDsOK s1 [UID1 , UID2] [] using ss1 unfolding eqButUID-def

by auto
show iaction ?∆ s vl s1 vl1 ∨

((vl = [] −→ vl1 = []) ∧ reaction ?∆ s vl s1 vl1) (is ?iact ∨ (- ∧ ?react))
proof cases

assume vl1 : vl1 = []
have ?react proof

fix a :: act and ou :: out and s ′ :: state and vl ′
let ?trn = Trans s a ou s ′

assume step: step s a = (ou, s ′) and T : ¬ T ?trn and c: consume ?trn vl vl ′
show match ?∆ s s1 vl1 a ou s ′ vl ′ ∨ ignore ?∆ s s1 vl1 a ou s ′ vl ′ (is ?match

∨ ?ignore)
proof cases

assume ϕ: ϕ ?trn
with c have vl: vl = f ?trn # vl ′ by (auto simp: consume-def)
with fs have ?ignore proof (cases f ?trn)

case (FRVal u req)
obtain p

where a: (a = Cact (cFriendReq UID1 p UID2 req) ∧ UID1 ∈∈
pendingFReqs s ′ UID2 ∧

UID1 /∈ set (pendingFReqs s UID2) ∧
(UID2 ∈∈ pendingFReqs s ′ UID1 ←→ UID2 ∈∈ pendingFReqs

s UID1)) ∨

121

(a = Cact (cFriendReq UID2 p UID1 req) ∧ UID2 ∈∈ pendingFReqs
s ′ UID1 ∧

UID2 /∈ set (pendingFReqs s UID1) ∧
(UID1 ∈∈ pendingFReqs s ′ UID2 ←→ UID1 ∈∈ pendingFReqs

s UID2))
ou = outOK ¬friends12 s ¬friends12 s ′ open s ′ = open s

using ϕ step rs FRVal by (cases rule: ϕE) fastforce+
then have fIDs ′: friendIDs s ′ = friendIDs s using step by (auto simp:

c-defs)
have eqButUID s s ′ using a step

by (auto intro: Cact-cFriendReq-step-eqButUID)
then have ∆2 s ′ vl ′ s1 vl1

unfolding ∆2-def using ss1 os a(5) vVS1 vl fs fs1
by (auto intro: eqButUID-trans eqButUID-sym)

moreover from ϕ step rs a have ¬γ (Trans s a ou s ′)
using UID1-UID2-UIDs by auto

ultimately show ?ignore by (intro ignoreI) auto
next

case (FVal fv)
with fs vl obtain fs ′ where fs ′: fs = fv # fs ′ by (cases fs) auto
from ϕ step rs FVal have ss ′: eqButUID s s ′

by (elim ϕE) (auto intro: Cact-cFriend-step-eqButUID Dact-dFriend-step-eqButUID)
then have ¬open s ′ using os by (auto simp: eqButUID-open-eq)

moreover have eqButUID s ′ s1 using ss1 ss ′ by (auto intro: eqBu-
tUID-sym eqButUID-trans)

ultimately have ∆2 s ′ vl ′ s1 vl1
using vVS1 fs ′ fs unfolding ∆2-def vl vl1 FVal by auto
moreover have ¬γ ?trn using ϕ step rs FVal UID1-UID2-UIDs by

(elim ϕE) auto
ultimately show ?ignore by (intro ignoreI) auto

qed auto
then show ?thesis ..

next
assume nϕ: ¬ϕ ?trn
then have os ′: open s = open s ′ and f12s ′: friends12 s = friends12 s ′

using step-open-ϕ[OF step] step-friends12-ϕ[OF step] by auto
have vl ′: vl ′ = vl using nϕ c by (auto simp: consume-def)
show ?thesis proof (cases ∀ req. a 6= Cact (cFriend UID1 (pass s UID1)

UID2) ∧
a 6= Cact (cFriend UID2 (pass s UID2) UID1) ∧
a 6= Cact (cFriendReq UID2 (pass s UID2) UID1

req) ∧
a 6= Cact (cFriendReq UID1 (pass s UID1) UID2

req) ∧
a 6= Dact (dFriend UID1 (pass s UID1) UID2) ∧
a 6= Dact (dFriend UID2 (pass s UID2) UID1))

case True
obtain ou1 s1 ′ where step1 : step s1 a = (ou1 , s1 ′) by (cases step s1

a) auto

122

let ?trn1 = Trans s1 a ou1 s1 ′

from True nϕ have nϕ ′: ¬ϕ ?trn1
using eqButUID-step-ϕ[OF ss1 rs rs1 step step1] by auto

then have f12s1 ′: friends12 s1 = friends12 s1 ′

and pFRs ′: UID1 ∈∈ pendingFReqs s1 UID2 ←→ UID1 ∈∈
pendingFReqs s1 ′ UID2

UID2 ∈∈ pendingFReqs s1 UID1 ←→ UID2 ∈∈ pendingFReqs
s1 ′ UID1

using step-friends12-ϕ[OF step1] step-pendingFReqs-ϕ[OF step1]
by auto

have eqButUID s ′ s1 ′ using eqButUID-step[OF ss1 step step1 rs rs1] .
then have ∆2 s ′ vl ′ s1 ′ vl1 using os vVS1 fs fs1

unfolding ∆2-def os ′ f12s1 ′ pFRs ′ vl ′ by auto
then have ?match

using step1 nϕ ′ os eqButUID-step-γ-out[OF ss1 step step1]
by (intro matchI [of s1 a ou1 s1 ′ vl1 vl1]) (auto simp: consume-def)

then show ?match ∨ ?ignore ..
next

case False
with nϕ have ou 6= outOK by auto
then have s ′ = s using step False by auto
then have ?ignore using 2 False UID1-UID2-UIDs unfolding vl ′ by

(intro ignoreI) auto
then show ?match ∨ ?ignore ..

qed
qed

qed
then show ?thesis using vl1 by auto

next
assume vl1 6= []
then obtain v vl1 ′ where vl1 : vl1 = v # vl1 ′ by (cases vl1) auto
with fs1 have ?iact proof (cases v)

case (FRVal u req)
obtain a uid uid ′ s1 ′ where step1 : step s1 a = (outOK , s1 ′) and ϕ (Trans

s1 a outOK s1 ′)
and a: a = Cact (cFriendReq uid (pass s1 uid) uid ′ req)
and uid: uid = UID1 ∧ uid ′ = UID2 ∨ uid = UID2 ∧

uid ′ = UID1
and f (Trans s1 a outOK s1 ′) = FRVal u req
and vVS1 ′: validValSeqFrom vl1 ′ s1 ′

using rs1 IDs1 vVS1 UID1-UID2-UIDs unfolding vl1 FRVal by (blast
intro: produce-FRVal)

moreover then have ¬γ (Trans s1 a outOK s1 ′) using UID1-UID2-UIDs
by auto

moreover have eqButUID s1 s1 ′ using step1 a uid
by (auto intro: Cact-cFriendReq-step-eqButUID)

moreover then have ∆2 s vl s1 ′ vl1 ′ using ss1 os vVS1 ′ fs fs1 unfolding
vl1 FRVal

by (intro ∆2-I [of s s1 ′ vl1 ′ vl fs fs1]) (auto intro: eqButUID-trans)

123

ultimately show ?iact using ss1 os unfolding vl1 FRVal
by (intro iactionI [of s1 a outOK s1 ′]) (auto simp: consume-def intro:

eqButUID-trans)
next

case (FVal fv)
then obtain fs1 ′ where fs1 ′: fs1 = fv # fs1 ′

using vl1 fs1 by (cases fs1) auto
from FVal vVS1 vl1 have f12 : friends12 s1 6= fv

and vVS1 : validValSeqFrom (FVal fv # vl1 ′) s1 by auto
then show ?iact using rs1 IDs1 vl1 FVal ss1 os fs fs1 fs1 ′ vl1 FVal

by (elim toggle-friends12 [of s1 fv vl1 ′], blast, blast, blast)
(intro iactionI [of s1 - - - vl1 vl1 ′],

auto simp: consume-def intro: ∆2-I [of s - vl1 ′ vl fs fs1 ′] eqButUID-trans)
qed auto
then show ?thesis ..

qed
qed

lemma unwind-cont-∆3 : unwind-cont ∆3 {∆3 ,∆1}
proof(rule, simp)

let ?∆ = λs vl s1 vl1 . ∆3 s vl s1 vl1 ∨ ∆1 s vl s1 vl1
fix s s1 :: state and vl vl1 :: value list
assume rsT : reachNT s and rs1 : reach s1 and 3 : ∆3 s vl s1 vl1
from rsT have rs: reach s by (intro reachNT-reach)
obtain fs fs1 vlr vlr1
where ss1 : eqButUID s s1 and os: ¬open s and BO: BO vlr vlr1

and vVS1 : validValSeqFrom vl1 s1
and fs: filter (Not o isFRVal) vl = map FVal fs @ OVal True # vlr
and fs1 : filter (Not o isFRVal) vl1 = map FVal fs1 @ OVal True # vlr1
and fs-fs1 : fs = [] ←→ fs1 = []
and last-fs: fs 6= [] −→ last fs = last fs1
and fs-fIDs: fs = [] −→ friendIDs s = friendIDs s1
using 3 unfolding ∆3-def by auto

have BC : BC (map FVal fs @ OVal True # vlr) (map FVal fs1 @ OVal True
vlr1)

using fs fs1 fs-fs1 last-fs BO by auto
from os have IDs: IDsOK s [UID1 , UID2] [] unfolding open-defs by auto
then have IDs1 : IDsOK s1 [UID1 , UID2] [] using ss1 unfolding eqButUID-def

by auto
show iaction ?∆ s vl s1 vl1 ∨

((vl = [] −→ vl1 = []) ∧ reaction ?∆ s vl s1 vl1) (is ?iact ∨ (- ∧ ?react))
proof cases

assume ∃ u req vl1 ′. vl1 = FRVal u req # vl1 ′

then obtain u req vl1 ′ where vl1 : vl1 = FRVal u req # vl1 ′ by auto
obtain a uid uid ′ s1 ′ where step1 : step s1 a = (outOK , s1 ′) and ϕ: ϕ (Trans

s1 a outOK s1 ′)
and a: a = Cact (cFriendReq uid (pass s1 uid) uid ′ req)

and uid: uid = UID1 ∧ uid ′ = UID2 ∨ uid = UID2 ∧ uid ′

124

= UID1
and f : f (Trans s1 a outOK s1 ′) = FRVal u req
and validValSeqFrom vl1 ′ s1 ′

using rs1 IDs1 vVS1 UID1-UID2-UIDs unfolding vl1 by (blast intro: pro-
duce-FRVal)

moreover have eqButUID s1 s1 ′ using step1 a uid by (auto intro: Cact-cFriendReq-step-eqButUID)
moreover have friendIDs s1 ′ = friendIDs s1 and IDsOK s1 ′ [UID1 , UID2]

[]
using step1 a uid by (auto simp: c-defs)

ultimately have ∆3 s vl s1 ′ vl1 ′ using ss1 os BO fs-fs1 last-fs fs-fIDs fs fs1
unfolding vl1

by (intro ∆3-I [of - - vlr vlr1 vl1 ′ fs fs1 vl])
(auto simp: consume-def intro: eqButUID-trans)

moreover have ¬γ (Trans s1 a outOK s1 ′) using a uid UID1-UID2-UIDs by
auto

ultimately have ?iact using step1 ϕ f unfolding vl1
by (intro iactionI [of s1 a outOK s1 ′]) (auto simp: consume-def)

then show ?thesis ..
next

assume nFRVal1 : ¬(∃ u req vl1 ′. vl1 = FRVal u req # vl1 ′)
from BC show ?thesis proof (cases rule: BC-cases)

case (BO-FVal fv fv ′ fs ′ vl ′′ vl1 ′′)
then have fs ′: filter (Not o isFRVal) vl = map FVal (fv # fs ′ ## fv ′) @

OVal True # vl ′′
and fs1 ′: filter (Not o isFRVal) vl1 = FVal fv ′ # OVal True # vl1 ′′

using fs fs1 by auto
have ?react proof

fix a :: act and ou :: out and s ′ :: state and vl ′
let ?trn = Trans s a ou s ′ let ?trn1 = Trans s1 a ou s ′

assume step: step s a = (ou, s ′) and T : ¬ T ?trn and c: consume ?trn
vl vl ′

show match ?∆ s s1 vl1 a ou s ′ vl ′ ∨ ignore ?∆ s s1 vl1 a ou s ′ vl ′ (is
?match ∨ ?ignore)

proof cases
assume ϕ: ϕ ?trn
with c have vl: vl = f ?trn # vl ′ by (auto simp: consume-def)
with fs ′ have ?ignore proof (cases f ?trn)

case (FRVal u req)
obtain p

where a: (a = Cact (cFriendReq UID1 p UID2 req) ∧ UID1 ∈∈
pendingFReqs s ′ UID2 ∧

UID1 /∈ set (pendingFReqs s UID2) ∧
(UID2 ∈∈ pendingFReqs s ′ UID1 ←→ UID2 ∈∈ pendingFReqs

s UID1)) ∨
(a = Cact (cFriendReq UID2 p UID1 req) ∧ UID2 ∈∈

pendingFReqs s ′ UID1 ∧
UID2 /∈ set (pendingFReqs s UID1) ∧

(UID1 ∈∈ pendingFReqs s ′ UID2 ←→ UID1 ∈∈ pendingFReqs
s UID2))

125

ou = outOK ¬friends12 s ¬friends12 s ′ open s ′ = open s
using ϕ step rs FRVal by (cases rule: ϕE) fastforce+
then have fIDs ′: friendIDs s ′ = friendIDs s using step by (auto

simp: c-defs)
have eqButUID s s ′ using a step

by (auto intro: Cact-cFriendReq-step-eqButUID)
then have ∆3 s ′ vl ′ s1 vl1

using ss1 a os BO vVS1 fs-fs1 last-fs fs-fIDs fs fs1 fIDs ′ vl FRVal
by (intro ∆3-I [of s ′ s1 vlr vlr1 vl1 fs fs1 vl ′])

(auto intro: eqButUID-trans eqButUID-sym)
moreover from a have ¬γ (Trans s a ou s ′)

using UID1-UID2-UIDs by auto
ultimately show ?ignore by (intro ignoreI) auto

next
case (FVal fv ′′)

with vl fs ′ have FVal: f ?trn = FVal fv
and vl ′: filter (Not ◦ isFRVal) vl ′ = map FVal (fs ′ ##

fv ′) @ OVal True # vl ′′
by auto

from ϕ step rs FVal have ss ′: eqButUID s s ′

by (elim ϕE) (auto intro: Cact-cFriend-step-eqButUID Dact-dFriend-step-eqButUID)
then have ¬open s ′ using os by (auto simp: eqButUID-open-eq)

moreover have eqButUID s ′ s1 using ss1 ss ′ by (auto intro:
eqButUID-sym eqButUID-trans)

ultimately have ∆3 s ′ vl ′ s1 vl1 using BO-FVal(3) vVS1 vl ′ fs1 ′

by (intro ∆3-I [of s ′ s1 vl ′′ vl1 ′′ vl1 fs ′ ## fv ′ [fv ′] vl ′]) auto
moreover have ¬γ ?trn using ϕ step rs FVal UID1-UID2-UIDs by

(elim ϕE) auto
ultimately show ?ignore by (intro ignoreI) auto

qed auto
then show ?thesis ..

next
assume nϕ: ¬ϕ ?trn
then have os ′: open s = open s ′ and f12s ′: friends12 s = friends12 s ′

using step-open-ϕ[OF step] step-friends12-ϕ[OF step] by auto
have vl ′: vl ′ = vl using nϕ c by (auto simp: consume-def)

show ?thesis proof (cases ∀ req. a 6= Cact (cFriend UID1 (pass s UID1)
UID2) ∧

a 6= Cact (cFriend UID2 (pass s UID2) UID1)
∧

a 6= Cact (cFriendReq UID2 (pass s UID2)
UID1 req) ∧

a 6= Cact (cFriendReq UID1 (pass s UID1)
UID2 req) ∧

a 6= Dact (dFriend UID1 (pass s UID1) UID2)
∧

a 6= Dact (dFriend UID2 (pass s UID2) UID1))
case True

obtain ou1 s1 ′ where step1 : step s1 a = (ou1 , s1 ′) by (cases step

126

s1 a) auto
let ?trn1 = Trans s1 a ou1 s1 ′

from True nϕ have nϕ ′: ¬ϕ ?trn1
using eqButUID-step-ϕ[OF ss1 rs rs1 step step1] by auto

then have f12s1 ′: friends12 s1 = friends12 s1 ′

and pFRs ′: UID1 ∈∈ pendingFReqs s1 UID2 ←→ UID1 ∈∈
pendingFReqs s1 ′ UID2

UID2 ∈∈ pendingFReqs s1 UID1 ←→ UID2 ∈∈
pendingFReqs s1 ′ UID1

using step-friends12-ϕ[OF step1] step-pendingFReqs-ϕ[OF step1]
by auto

have eqButUID s ′ s1 ′ using eqButUID-step[OF ss1 step step1 rs rs1]
.

thm ∆3-I [of s ′ s1 ′ vl ′′ vl1 ′′ vl1 fv # fs ′ ## fv ′ [fv ′] vl ′]
then have ∆3 s ′ vl ′ s1 ′ vl1 using os vVS1 fs ′ fs1 ′ BO-FVal

unfolding os ′ f12s1 ′ pFRs ′ vl ′
by (intro ∆3-I [of s ′ s1 ′ vl ′′ vl1 ′′ vl1 fv # fs ′ ## fv ′ [fv ′] vl]) auto

then have ?match
using step1 nϕ ′ os eqButUID-step-γ-out[OF ss1 step step1]
by (intro matchI [of s1 a ou1 s1 ′ vl1 vl1]) (auto simp: consume-def)

then show ?match ∨ ?ignore ..
next

case False
with nϕ have ou 6= outOK by auto
then have s ′ = s using step False by auto
then have ?ignore using 3 False UID1-UID2-UIDs unfolding vl ′

by (intro ignoreI) auto
then show ?match ∨ ?ignore ..

qed
qed

qed
then show ?thesis using fs ′ by auto

next
case (BO-FVal1 fv fv ′ fs ′ fs1 ′ vl ′′ vl1 ′′)

then have fs ′: filter (Not o isFRVal) vl = map FVal (fs ′ ## fv ′) @ OVal
True # vl ′′

and fs1 ′: filter (Not o isFRVal) vl1 = map FVal (fv # fs1 ′ ## fv ′) @
OVal True # vl1 ′′

using fs fs1 by auto
with nFRVal1 obtain vl1 ′

where vl1 : vl1 = FVal fv # vl1 ′

and vl1 ′: filter (Not o isFRVal) vl1 ′ = map FVal (fs1 ′ ## fv ′) @ OVal
True # vl1 ′′

by (cases vl1 ; cases hd vl1) auto
with vVS1 have f12 : friends12 s1 6= fv

and vVS1 : validValSeqFrom (FVal fv # vl1 ′) s1 by auto
then have ?iact using rs1 IDs1 vl1 ss1 os BO-FVal1 (3) fs ′ vl1 ′

by (elim toggle-friends12 [of s1 fv vl1 ′], blast, blast, blast)
(intro iactionI [of s1 - - - vl1 vl1 ′],

127

auto simp: consume-def
intro: ∆3-I [of s - vl ′′ vl1 ′′ vl1 ′ fs ′ ## fv ′ fs1 ′ ## fv ′ vl]

eqButUID-trans)
then show ?thesis ..

next
case (FVal-BO fv vl ′′ vl1 ′′)

then have fs ′: filter (Not o isFRVal) vl = FVal fv # OVal True # vl ′′
and fs1 ′: filter (Not o isFRVal) vl1 = FVal fv # OVal True # vl1 ′′

using fs fs1 by auto
have ?react proof

fix a :: act and ou :: out and s ′ :: state and vl ′
let ?trn = Trans s a ou s ′ let ?trn1 = Trans s1 a ou s ′

assume step: step s a = (ou, s ′) and T : ¬ T ?trn and c: consume ?trn
vl vl ′

show match ?∆ s s1 vl1 a ou s ′ vl ′ ∨ ignore ?∆ s s1 vl1 a ou s ′ vl ′ (is
?match ∨ ?ignore)

proof cases
assume ϕ: ϕ ?trn
with c have vl: vl = f ?trn # vl ′ by (auto simp: consume-def)
with fs ′ show ?thesis proof (cases f ?trn)

case (FRVal u req)
obtain p

where a: (a = Cact (cFriendReq UID1 p UID2 req) ∧ UID1 ∈∈
pendingFReqs s ′ UID2 ∧

UID1 /∈ set (pendingFReqs s UID2) ∧
(UID2 ∈∈ pendingFReqs s ′ UID1 ←→ UID2 ∈∈ pendingFReqs

s UID1)) ∨
(a = Cact (cFriendReq UID2 p UID1 req) ∧ UID2 ∈∈

pendingFReqs s ′ UID1 ∧
UID2 /∈ set (pendingFReqs s UID1) ∧

(UID1 ∈∈ pendingFReqs s ′ UID2 ←→ UID1 ∈∈ pendingFReqs
s UID2))

ou = outOK ¬friends12 s ¬friends12 s ′ open s ′ = open s
using ϕ step rs FRVal by (cases rule: ϕE) fastforce+
then have fIDs ′: friendIDs s ′ = friendIDs s using step by (auto

simp: c-defs)
have eqButUID s s ′ using a step

by (auto intro: Cact-cFriendReq-step-eqButUID)
then have ∆3 s ′ vl ′ s1 vl1

using ss1 a os BO vVS1 fs-fs1 last-fs fs-fIDs fs fs1 fIDs ′ vl FRVal
by (intro ∆3-I [of s ′ s1 vlr vlr1 vl1 fs fs1 vl ′])

(auto intro: eqButUID-trans eqButUID-sym)
moreover from a have ¬γ (Trans s a ou s ′)

using UID1-UID2-UIDs by auto
ultimately have ?ignore by (intro ignoreI) auto
then show ?thesis ..

next
case (FVal fv ′′)

with vl fs ′ have FVal: f ?trn = FVal fv

128

and vl ′: filter (Not ◦ isFRVal) vl ′ = OVal True # vl ′′
by auto

from fs1 ′ nFRVal1 obtain vl1 ′

where vl1 : vl1 = FVal fv # vl1 ′

and vl1 ′: filter (Not ◦ isFRVal) vl1 ′ = OVal True # vl1 ′′

by (cases vl1 ; cases hd vl1) auto
have ?match using ϕ step rs FVal proof (cases rule: ϕE)

case (Friend uid p uid ′)
then have IDs1 : IDsOK s1 [UID1 , UID2] []

and f12s1 : ¬friends12 s1
and fv: fv = True

using ss1 vVS1 FVal unfolding eqButUID-def vl1 by auto
let ?s1 ′ = createFriend s1 UID1 (pass s1 UID1) UID2
have s ′: s ′ = createFriend s UID1 p UID2

using Friend step by (auto simp: createFriend-sym)
have ss ′: eqButUID s s ′ using rs step Friend

by (auto intro: Cact-cFriend-step-eqButUID)
moreover then have os ′: ¬open s ′ using os eqButUID-open-eq

by auto
moreover obtain a1 uid1 uid1 ′ p1
where step s1 a1 = (outOK , ?s1 ′) friends12 ?s1 ′

a1 = Cact (cFriend uid1 p1 uid1 ′)
uid1 = UID1 ∧ uid1 ′ = UID2 ∨ uid1 = UID2 ∧ uid1 ′ =

UID1
ϕ (Trans s1 a1 outOK ?s1 ′)
f (Trans s1 a1 outOK ?s1 ′) = FVal True
eqButUID s1 ?s1 ′ validValSeqFrom vl1 ′ ?s1 ′

using rs1 IDs1 Friend vVS1 f12s1 unfolding vl1 FVal
by (elim toggle-friends12-True; blast)
moreover then have IDsOK ?s1 ′ [UID1 , UID2] [] by (auto

simp: c-defs)
moreover have friendIDs s ′ = friendIDs ?s1 ′

using Friend(6) f12s1 unfolding s ′

by (intro eqButUID-createFriend12-friendIDs-eq[OF ss1 rs rs1])
auto

ultimately show ?match
using ss1 FVal-BO Friend UID1-UID2-UIDs vl ′ vl1 ′ unfolding

vl1 fv
by (intro matchI [of s1 a1 outOK ?s1 ′])
(auto simp: consume-def intro: eqButUID-trans eqButUID-sym

intro!: ∆3-I [of s ′ ?s1 ′ vl ′′ vl1 ′′ vl1 ′ [] [] vl ′])
next

case (Unfriend uid p uid ′)
then have IDs1 : IDsOK s1 [UID1 , UID2] []

and f12s1 : friends12 s1
and fv: fv = False

using ss1 vVS1 FVal unfolding eqButUID-def vl1 by auto
let ?s1 ′ = deleteFriend s1 UID1 (pass s1 UID1) UID2
have s ′: s ′ = deleteFriend s UID1 p UID2

129

using Unfriend step by (auto simp: deleteFriend-sym)
have ss ′: eqButUID s s ′ using rs step Unfriend

by (auto intro: Dact-dFriend-step-eqButUID)
moreover then have os ′: ¬open s ′ using os eqButUID-open-eq

by auto
moreover obtain a1 uid1 uid1 ′ p1
where step s1 a1 = (outOK , ?s1 ′) ¬friends12 ?s1 ′

a1 = Dact (dFriend uid1 p1 uid1 ′)
uid1 = UID1 ∧ uid1 ′ = UID2 ∨ uid1 = UID2 ∧ uid1 ′ =

UID1
ϕ (Trans s1 a1 outOK ?s1 ′)
f (Trans s1 a1 outOK ?s1 ′) = FVal False
eqButUID s1 ?s1 ′ validValSeqFrom vl1 ′ ?s1 ′

using rs1 IDs1 Unfriend vVS1 f12s1 unfolding vl1 FVal
by (elim toggle-friends12-False; blast)
moreover then have IDsOK ?s1 ′ [UID1 , UID2] [] by (auto

simp: d-defs)
moreover have friendIDs s ′ = friendIDs ?s1 ′

using Unfriend(6) f12s1 unfolding s ′

by (intro eqButUID-deleteFriend12-friendIDs-eq[OF ss1 rs rs1])
ultimately show ?match

using ss1 FVal-BO Unfriend UID1-UID2-UIDs vl ′ vl1 ′ unfolding
vl1 fv

by (intro matchI [of s1 a1 outOK ?s1 ′])
(auto simp: consume-def intro: eqButUID-trans eqButUID-sym

intro!: ∆3-I [of s ′ ?s1 ′ vl ′′ vl1 ′′ vl1 ′ [] [] vl ′])
qed auto
then show ?thesis ..

qed auto
next

assume nϕ: ¬ϕ ?trn
then have os ′: open s = open s ′ and f12s ′: friends12 s = friends12 s ′

using step-open-ϕ[OF step] step-friends12-ϕ[OF step] by auto
have vl ′: vl ′ = vl using nϕ c by (auto simp: consume-def)

show ?thesis proof (cases ∀ req. a 6= Cact (cFriend UID1 (pass s UID1)
UID2) ∧

a 6= Cact (cFriend UID2 (pass s UID2) UID1)
∧

a 6= Cact (cFriendReq UID2 (pass s UID2)
UID1 req) ∧

a 6= Cact (cFriendReq UID1 (pass s UID1)
UID2 req) ∧

a 6= Dact (dFriend UID1 (pass s UID1) UID2)
∧

a 6= Dact (dFriend UID2 (pass s UID2) UID1))
case True

obtain ou1 s1 ′ where step1 : step s1 a = (ou1 , s1 ′) by (cases step
s1 a) auto

let ?trn1 = Trans s1 a ou1 s1 ′

130

from True nϕ have nϕ ′: ¬ϕ ?trn1
using eqButUID-step-ϕ[OF ss1 rs rs1 step step1] by auto

then have f12s1 ′: friends12 s1 = friends12 s1 ′

and pFRs ′: UID1 ∈∈ pendingFReqs s1 UID2 ←→ UID1 ∈∈
pendingFReqs s1 ′ UID2

UID2 ∈∈ pendingFReqs s1 UID1 ←→ UID2 ∈∈
pendingFReqs s1 ′ UID1

using step-friends12-ϕ[OF step1] step-pendingFReqs-ϕ[OF step1]
by auto

have eqButUID s ′ s1 ′ using eqButUID-step[OF ss1 step step1 rs rs1]
.

thm ∆3-I [of s ′ s1 ′ vl ′′ vl1 ′′ vl1 [fv] [fv] vl ′]
then have ∆3 s ′ vl ′ s1 ′ vl1 using os vVS1 fs ′ fs1 ′ FVal-BO

unfolding os ′ f12s1 ′ pFRs ′ vl ′
by (intro ∆3-I [of s ′ s1 ′ vl ′′ vl1 ′′ vl1 [fv] [fv] vl]) auto

then have ?match
using step1 nϕ ′ os eqButUID-step-γ-out[OF ss1 step step1]
by (intro matchI [of s1 a ou1 s1 ′ vl1 vl1]) (auto simp: consume-def)

then show ?match ∨ ?ignore ..
next

case False
with nϕ have ou 6= outOK by auto
then have s ′ = s using step False by auto
then have ?ignore using 3 False UID1-UID2-UIDs unfolding vl ′

by (intro ignoreI) auto
then show ?match ∨ ?ignore ..

qed
qed

qed
then show ?thesis using fs ′ by auto

next
case (OVal vl ′′ vl1 ′′)

then have fs ′: filter (Not o isFRVal) vl = OVal True # vl ′′
and fs1 ′: filter (Not o isFRVal) vl1 = OVal True # vl1 ′′

and BO ′′: BO vl ′′ vl1 ′′

using fs fs1 by auto
from fs fs ′ have fs: fs = [] by (cases fs) auto
with fs-fIDs have fIDs: friendIDs s = friendIDs s1 by auto
have ?react proof

fix a :: act and ou :: out and s ′ :: state and vl ′
let ?trn = Trans s a ou s ′ let ?trn1 = Trans s1 a ou s ′

assume step: step s a = (ou, s ′) and T : ¬ T ?trn and c: consume ?trn
vl vl ′

show match ?∆ s s1 vl1 a ou s ′ vl ′ ∨ ignore ?∆ s s1 vl1 a ou s ′ vl ′ (is
?match ∨ ?ignore)

proof cases
assume ϕ: ϕ ?trn
with c have vl: vl = f ?trn # vl ′ by (auto simp: consume-def)
with fs ′ show ?thesis proof (cases f ?trn)

131

case (FRVal u req)
obtain p

where a: (a = Cact (cFriendReq UID1 p UID2 req) ∧ UID1 ∈∈
pendingFReqs s ′ UID2 ∧

UID1 /∈ set (pendingFReqs s UID2) ∧
(UID2 ∈∈ pendingFReqs s ′ UID1 ←→ UID2 ∈∈ pendingFReqs

s UID1)) ∨
(a = Cact (cFriendReq UID2 p UID1 req) ∧ UID2 ∈∈

pendingFReqs s ′ UID1 ∧
UID2 /∈ set (pendingFReqs s UID1) ∧

(UID1 ∈∈ pendingFReqs s ′ UID2 ←→ UID1 ∈∈ pendingFReqs
s UID2))

ou = outOK ¬friends12 s ¬friends12 s ′ open s ′ = open s
using ϕ step rs FRVal by (cases rule: ϕE) fastforce+
then have fIDs ′: friendIDs s ′ = friendIDs s using step by (auto

simp: c-defs)
have eqButUID s s ′ using a step

by (auto intro: Cact-cFriendReq-step-eqButUID)
then have ∆3 s ′ vl ′ s1 vl1
using ss1 a os OVal(3) vVS1 fs ′ fs1 ′ fs fs-fs1 fIDs ′ fIDs unfolding

vl FRVal
by (intro ∆3-I [of s ′ s1 vl ′′ vl1 ′′ vl1 fs fs1 vl ′])

(auto intro: eqButUID-trans eqButUID-sym)
moreover from ϕ step rs a have ¬γ (Trans s a ou s ′)

using UID1-UID2-UIDs by auto
ultimately have ?ignore by (intro ignoreI) auto
then show ?thesis ..

next
case (OVal ov ′)

with vl fs ′ have OVal: f ?trn = OVal True
and vl ′: filter (Not ◦ isFRVal) vl ′ = vl ′′

by auto
from fs1 ′ nFRVal1 obtain vl1 ′

where vl1 : vl1 = OVal True # vl1 ′

and vl1 ′: filter (Not ◦ isFRVal) vl1 ′ = vl1 ′′

by (cases vl1 ; cases hd vl1) auto
have ?match using ϕ step rs OVal proof (cases rule: ϕE)

case (OpenF uid p uid ′)
let ?s1 ′ = createFriend s1 uid p uid ′

have s ′: s ′ = createFriend s uid p uid ′

using OpenF step by auto
from OpenF(2) have uids: uid 6= UID1 ∧ uid 6= UID2 ∧ uid ′ =

UID1 ∨
uid 6= UID1 ∧ uid 6= UID2 ∧ uid ′ = UID2 ∨
uid ′ 6= UID1 ∧ uid ′ 6= UID2 ∧ uid = UID1 ∨
uid ′ 6= UID1 ∧ uid ′ 6= UID2 ∧ uid = UID2

using UID1-UID2-UIDs by auto
have eqButUIDf (pendingFReqs s) (pendingFReqs s1)

using ss1 unfolding eqButUID-def by auto

132

then have uid ′ ∈∈ pendingFReqs s uid ←→ uid ′ ∈∈ pendingFReqs
s1 uid

using OpenF by (intro eqButUIDf-not-UID ′) auto
then have step1 : step s1 a = (outOK , ?s1 ′)

using OpenF step ss1 fIDs unfolding eqButUID-def by (auto
simp: c-defs)

have s ′s1 ′: eqButUID s ′ ?s1 ′ using eqButUID-step[OF ss1 step
step1 rs rs1] .

moreover have os ′: open s ′ using OpenF unfolding open-def
by auto

moreover have fIDs ′: friendIDs s ′ = friendIDs ?s1 ′

using fIDs unfolding s ′ by (auto simp: c-defs)
moreover have f12s1 : friends12 s1 = friends12 ?s1 ′

UID1 ∈∈ pendingFReqs s1 UID2 ←→ UID1 ∈∈
pendingFReqs ?s1 ′ UID2

UID2 ∈∈ pendingFReqs s1 UID1 ←→ UID2 ∈∈
pendingFReqs ?s1 ′ UID1

using uids unfolding friends12-def c-defs by auto
moreover then have validValSeqFrom vl1 ′ ?s1 ′ using vVS1

unfolding vl1 by auto
ultimately have ∆1 s ′ vl ′ ?s1 ′ vl1 ′

using BO ′′ IDsOK-mono[OF step1 IDs1] unfolding ∆1-def vl ′
vl1 ′ by auto

moreover have ϕ ?trn ←→ ϕ (Trans s1 a outOK ?s1 ′)
using OpenF(1) uids by (intro eqButUID-step-ϕ[OF ss1 rs rs1

step step1]) auto
ultimately show ?match using step1 ϕ OpenF(1 ,3 ,4) unfolding

vl1
by (intro matchI [of s1 a outOK ?s1 ′ - vl1 ′]) (auto simp:

consume-def)
qed auto
then show ?thesis ..

qed auto
next

assume nϕ: ¬ϕ ?trn
then have os ′: open s = open s ′ and f12s ′: friends12 s = friends12 s ′

using step-open-ϕ[OF step] step-friends12-ϕ[OF step] by auto
have vl ′: vl ′ = vl using nϕ c by (auto simp: consume-def)

show ?thesis proof (cases ∀ req. a 6= Cact (cFriend UID1 (pass s UID1)
UID2) ∧

a 6= Cact (cFriend UID2 (pass s UID2) UID1)
∧

a 6= Cact (cFriendReq UID2 (pass s UID2)
UID1 req) ∧

a 6= Cact (cFriendReq UID1 (pass s UID1)
UID2 req) ∧

a 6= Dact (dFriend UID1 (pass s UID1) UID2)
∧

a 6= Dact (dFriend UID2 (pass s UID2) UID1))

133

case True
obtain ou1 s1 ′ where step1 : step s1 a = (ou1 , s1 ′) by (cases step

s1 a) auto
let ?trn1 = Trans s1 a ou1 s1 ′

from True nϕ have nϕ ′: ¬ϕ ?trn1
using eqButUID-step-ϕ[OF ss1 rs rs1 step step1] by auto

then have f12s1 ′: friends12 s1 = friends12 s1 ′

and pFRs ′: UID1 ∈∈ pendingFReqs s1 UID2 ←→ UID1 ∈∈
pendingFReqs s1 ′ UID2

UID2 ∈∈ pendingFReqs s1 UID1 ←→ UID2 ∈∈
pendingFReqs s1 ′ UID1

using step-friends12-ϕ[OF step1] step-pendingFReqs-ϕ[OF step1]
by auto

have eqButUID s ′ s1 ′ using eqButUID-step[OF ss1 step step1 rs rs1]
.

moreover have friendIDs s ′ = friendIDs s1 ′

using eqButUID-step-friendIDs-eq[OF ss1 rs rs1 step step1 - fIDs]
True

by auto
ultimately have ∆3 s ′ vl ′ s1 ′ vl1 using os vVS1 fs ′ fs1 ′ OVal

unfolding os ′ f12s1 ′ pFRs ′ vl ′
by (intro ∆3-I [of s ′ s1 ′ vl ′′ vl1 ′′ vl1 [] [] vl]) auto

then have ?match
using step1 nϕ ′ os eqButUID-step-γ-out[OF ss1 step step1]
by (intro matchI [of s1 a ou1 s1 ′ vl1 vl1]) (auto simp: consume-def)

then show ?match ∨ ?ignore ..
next

case False
with nϕ have ou 6= outOK by auto
then have s ′ = s using step False by auto
then have ?ignore using 3 False UID1-UID2-UIDs unfolding vl ′

by (intro ignoreI) auto
then show ?match ∨ ?ignore ..

qed
qed

qed
then show ?thesis using fs ′ by auto

next
case (FVal1 fv fs ′ fs1 ′)

from this(1) have False proof (induction fs ′ arbitrary: fs)
case (Cons fv ′′ fs ′′)

then obtain fs ′′′ where map FVal (fv ′′ # fs ′′′) @ OVal True # vlr =
map FVal (fv ′′ # fs ′′)

by (cases fs) auto
with Cons.IH [of fs ′′′] show False by auto

qed auto
then show ?thesis ..

next
case (FVal) then show ?thesis by (induction fs) auto next

134

case (Nil) then show ?thesis by auto
qed

qed
qed

definition Gr where
Gr =
{
(∆0 , {∆0 ,∆1 ,∆2 ,∆3}),
(∆1 , {∆1 ,∆2 ,∆3}),
(∆2 , {∆2 ,∆1}),
(∆3 , {∆3 ,∆1})
}

theorem secure: secure
apply (rule unwind-decomp-secure-graph[of Gr ∆0])
unfolding Gr-def
apply (simp, smt insert-subset order-refl)
using
istate-∆0 unwind-cont-∆0 unwind-cont-∆1 unwind-cont-∆2 unwind-cont-∆3
unfolding Gr-def by (auto intro: unwind-cont-mono)

end
theory Traceback-Intro

imports ../Safety-Properties
begin

9 Traceback Properties

In this section, we prove traceback properties. These properties trace back
the actions leading to:

• the current visibility status of a post

• the current friendship status of two users

They state that the current status can only occur via a “legal” sequence
of actions. Because the BD properties have (dynamic triggers within) de-
classification bounds that refer to such statuses, the traceback properties
complement BD Security in adding confidentiality assurance. [1, Section
5.2] gives more details and explanations.
end
theory Post-Visibility-Traceback

imports Traceback-Intro
begin

135

consts PID :: postID
consts VIS :: vis

9.1 Tracing Back Post Visibility Status

We prove the following traceback property: If, at some point t on a system
trace, the visibility of a post PID has a value VIS, then one of the following
holds:

• Either VIS is FriendV (i.e., friends-only) which is the default at post
creation

• Or the post’s owner had issued a successful “update visibility” action
setting the visibility to VIS, and no other successful update actions to
PID’s visibility occur between the time of that action and t.

This will be captured in the predicate proper, and the main theorem states
that proper tr holds for any trace tr that leads to post PID acquiring visi-
bility VIS.

SNC uidd trn means “The transaction trn is a successful post creation by
user uidd”
fun SNC :: userID ⇒ (state,act,out) trans ⇒ bool where
SNC uidd (Trans s (Cact (cPost uid p pid tit)) ou s ′) = (ou = outOK ∧ (uid,pid)
= (uidd,PID))
|
SNC uidd - = False

SNVU uidd vvs trn means "The transaction trn is a successful post visibility
update for PID, by user uidd, to value vvs”
fun SNVU :: userID ⇒ vis ⇒ (state,act,out) trans ⇒ bool where
SNVU uidd vvs (Trans s (Uact (uVisPost uid p pid vs)) ou s ′) =

(ou = outOK ∧ (uid,pid) = (uidd,PID) ∧ vs = vvs)
|
SNVU uidd vvis - = False

definition proper :: (state,act,out) trans trace ⇒ bool where
proper tr ≡
VIS = FriendV
∨
(∃ uid tr1 trn tr2 trnn tr3 .

tr = tr1 @ trn # tr2 @ trnn # tr3 ∧
SNC uid trn ∧ SNVU uid VIS trnn ∧ (∀ vis. never (SNVU uid vis) tr3))

definition proper1 :: (state,act,out) trans trace ⇒ bool where

136

proper1 tr ≡
∃ tr2 trnn tr3 .

tr = tr2 @ trnn # tr3 ∧
SNVU (owner (srcOf trnn) PID) VIS trnn

lemma not-never-ex:
assumes ¬ never P xs
shows ∃ xs1 x xs2 . xs = xs1 @ x # xs2 ∧ P x ∧ never P xs2
using assms proof(induct xs rule: rev-induct)

case (Nil)
thus ?case unfolding list-all-iff empty-iff by auto

next
case (snoc y ys)
show ?case
proof(cases P y)

case True thus ?thesis using snoc
apply(intro exI [of - ys]) apply(intro exI [of - y] exI [of - []]) by auto

next
case False then obtain xs1 x xs2 where ys = xs1 @ x # xs2 ∧ P x ∧ never

P xs2
using snoc by auto
thus ?thesis using snoc False
apply(intro exI [of - xs1]) apply(intro exI [of - x] exI [of - xs2 ## y]) by auto

qed
qed

lemma SNVU-postIDs:
assumes validTrans trn and SNVU uid vs trn
shows PID ∈∈ postIDs (srcOf trn)
proof(cases trn)

case (Trans s a ou s ′)
then show ?thesis

using assms
by (cases a) (auto simp: all-defs elim: step-elims)

qed

lemma SNVU-visib:
assumes validTrans trn and SNVU uid vs trn
shows vis (tgtOf trn) PID = vs
proof(cases trn)

case (Trans s a ou s ′)
then show ?thesis

using assms
by (cases a) (auto simp: all-defs elim: step-elims)

qed

lemma owner-validTrans:
assumes validTrans trn and PID ∈∈ postIDs (srcOf trn)
shows owner (srcOf trn) PID = owner (tgtOf trn) PID

137

proof(cases trn)
case (Trans s a ou s ′)
then show ?thesis

using assms
by (cases a) (auto simp: all-defs elim: step-elims)

qed

lemma owner-valid:
assumes valid tr and PID ∈∈ postIDs (srcOf (hd tr))
shows owner (srcOf (hd tr)) PID = owner (tgtOf (last tr)) PID
using assms using owner-validTrans IDs-mono validTrans by induct auto

lemma SNVU-vis-validTrans:
assumes validTrans trn and PID ∈∈ postIDs (srcOf trn)
and ∀ vs. ¬ SNVU (owner (srcOf trn) PID) vs trn
shows vis (srcOf trn) PID = vis (tgtOf trn) PID
proof(cases trn)

case (Trans s a ou s ′)
then show ?thesis

using assms
by (cases a) (auto simp: all-defs elim: step-elims)

qed

lemma SNVU-vis-valid:
assumes valid tr and PID ∈∈ postIDs (srcOf (hd tr))
and ∀ vis. never (SNVU (owner (srcOf (hd tr)) PID) vis) tr
shows vis (srcOf (hd tr)) PID = vis (tgtOf (last tr)) PID
using assms proof induct

case (Singl)
thus ?case using SNVU-vis-validTrans by auto

next
case (Cons trn tr)
have n: PID ∈∈ postIDs (srcOf (hd tr))
using Cons by (simp add: IDs-mono(2) validTrans)
have v: ∀ vis. never (SNVU (owner (srcOf (hd tr)) PID) vis) tr
using Cons by (simp add: owner-validTrans)
have vis (srcOf trn) PID = vis (srcOf (hd tr)) PID
using Cons SNVU-vis-validTrans by auto
also have ... = vis (tgtOf (last tr)) PID
using n v Cons(4) by auto
finally show ?case using Cons by auto

qed

lemma proper1-never :
assumes vtr : valid tr and PID: PID ∈∈ postIDs (srcOf (hd tr))
and tr : proper1 tr and v: vis (tgtOf (last tr)) PID = VIS
shows ∃ tr2 trnn tr3 .

tr = tr2 @ trnn # tr3 ∧
SNVU (owner (srcOf trnn) PID) VIS trnn ∧ (∀ vis. never (SNVU (owner

138

(srcOf trnn) PID) vis) tr3)
proof−

obtain tr2 trnn tr3 where
tr : tr = tr2 @ trnn # tr3 and SNVU : SNVU (owner (srcOf trnn) PID) VIS

trnn
using tr unfolding proper1-def by auto
define uid where uid ≡ owner (srcOf trnn) PID
show ?thesis
proof(cases never (λ trn. ∃ vis. SNVU uid vis trn) tr3)

case True thus ?thesis using tr SNVU unfolding uid-def list-all-iff by blast
next

case False
from not-never-ex[OF this] obtain tr3a tr3n tr3b vs where tr3 : tr3 = tr3a @

tr3n # tr3b
and SNVUtr3n: SNVU uid vs tr3n and n: ∀ vs. never (SNVU uid vs) tr3b
unfolding list-all-iff by blast
have trnn: validTrans trnn and
tr3n: validTrans tr3n and vtr3 : valid tr3 using tr unfolding tr tr3

by (metis Nil-is-append-conv append-self-conv2 list.distinct(1) tr tr3 valid-ConsE
valid-append vtr)+

hence PID-trnn: PID ∈∈ postIDs (srcOf trnn) and
PID-tr3n: PID ∈∈ postIDs (srcOf tr3n) using SNVU-postIDs SNVU SNVUtr3n

by auto
have vvv: valid (trnn # tr3a @ [tr3n])
using vtr unfolding tr tr3

by (smt Nil-is-append-conv append-self-conv2 hd-append2 list.distinct(1) list.sel(1)
valid-Cons-iff valid-append)

hence PID-tr3n ′: PID ∈∈ postIDs (tgtOf tr3n) using tr3n SNVUtr3n
by (simp add: IDs-mono(2) PID-tr3n validTrans)
from owner-valid[OF vvv] PID-trnn
have 000 : owner (tgtOf tr3n) PID = uid unfolding uid-def by simp
hence 0 : owner (srcOf tr3n) PID = uid using PID-tr3n owner-validTrans tr3n

by blast
have 00 : vs = vis (tgtOf tr3n) PID using SNVUtr3n tr3n SNVU-visib by auto
have vis: vs = VIS
proof(cases tr3b = [])

case True
thus ?thesis using v 00 unfolding tr tr3 by simp

next
case False

hence tgt: tgtOf tr3n = srcOf (hd tr3b) and tr3b: valid tr3b using vtr3
unfolding tr3

apply (metis valid-append list.distinct(2) self-append-conv2 valid-ConsE)
by (metis False append-self-conv2 list.distinct(1) tr3 valid-Cons-iff valid-append

vtr3)
show ?thesis unfolding 00 tgt

using v False PID-tr3n ′

using SNVU-vis-valid[OF tr3b - n[unfolded 000 [symmetric] tgt]]
unfolding tr tr3 tgt by simp

139

qed
show ?thesis apply(intro exI [of - tr2 @ trnn # tr3a])
apply(intro exI [of - tr3n] exI [of - tr3b])
using SNVUtr3n n unfolding tr tr3 0 vis by simp

qed
qed

lemma SNVU-validTrans:
assumes validTrans trn
and PID ∈∈ postIDs (srcOf trn)
and vis (srcOf trn) PID 6= VIS
and vis (tgtOf trn) PID = VIS
shows SNVU (owner (srcOf trn) PID) VIS trn
proof(cases trn)

case (Trans s a ou s ′)
then show ?thesis

using assms
by (cases a) (auto simp: all-defs elim: step-elims)

qed

lemma valid-mono-postID:
assumes valid tr
and PID ∈∈ postIDs (srcOf (hd tr))
shows PID ∈∈ postIDs (tgtOf (last tr))
using assms proof induct

case (Singl trn)
then show ?case using IDs-mono(2) by (cases trn) auto

next
case (Cons trn tr)
then show ?case using IDs-mono(2) by (cases trn) auto

qed

lemma proper1-valid:
assumes V : VIS 6= FriendV
and a: valid tr
PID ∈∈ postIDs (srcOf (hd tr))
vis (srcOf (hd tr)) PID 6= VIS
vis (tgtOf (last tr)) PID = VIS
shows proper1 tr
using a unfolding valid-valid2 proof induct

case (Singl trn)
then show ?case unfolding proper1-def using SNVU-validTrans
by (intro exI [of - owner (srcOf trn) PID] exI [of - []] exI [of - trn]) auto

next
case (Rcons tr trn)
hence PID ∈∈ postIDs (srcOf (hd tr)) using Rcons by simp

140

from valid-mono-postID[OF ‹valid2 tr›[unfolded valid2-valid] this]
have PID ∈∈ postIDs (tgtOf (last tr)) by simp
hence 0 : PID ∈∈ postIDs (srcOf trn) using Rcons by simp
show ?case
proof(cases vis (srcOf trn) PID = VIS)

case False
hence SNVU (owner (srcOf trn) PID) VIS trn
apply (intro SNVU-validTrans) using 0 Rcons by auto
thus ?thesis unfolding proper1-def
by (intro exI [of - tr] exI [of - trn] exI [of - []]) auto

next
case True
hence proper1 tr using Rcons by auto
then obtain trr trnn tr3 where
tr : tr = trr @ trnn # tr3 and SNVU : SNVU (owner (srcOf trnn) PID) VIS

trnn
unfolding proper1-def using V by auto
have vis (tgtOf trn) PID = VIS using Rcons.prems by auto
thus ?thesis
using SNVU V unfolding proper1-def tr
by(intro exI [of - trr] exI [of - trnn] exI [of - tr3 ## trn]) auto

qed
qed

lemma istate-postIDs:
¬ PID ∈∈ postIDs istate
unfolding istate-def by simp

definition proper2 :: (state,act,out) trans trace ⇒ bool where
proper2 tr ≡
∃ uid tr1 trn tr2 .

tr = tr1 @ trn # tr2 ∧ SNC uid trn

lemma SNC-validTrans:
assumes VIS 6= FriendV and validTrans trn
and ¬ PID ∈∈ postIDs (srcOf trn)
and PID ∈∈ postIDs (tgtOf trn)
shows ∃ uid. SNC uid trn
proof(cases trn)

case (Trans s a ou s ′)
then show ?thesis

using assms
by (cases a) (auto simp: all-defs elim: step-elims)

qed

lemma proper2-valid:

141

assumes V : VIS 6= FriendV
and a: valid tr
¬ PID ∈∈ postIDs (srcOf (hd tr))
PID ∈∈ postIDs (tgtOf (last tr))
shows proper2 tr
using a unfolding valid-valid2 proof induct

case (Singl trn)
then obtain uid where SNC uid trn using SNC-validTrans V by auto
thus ?case unfolding proper2-def using SNC-validTrans
by (intro exI [of - uid] exI [of - []] exI [of - trn]) auto

next
case (Rcons tr trn)
show ?case
proof(cases PID ∈∈ postIDs (srcOf trn))

case False
then obtain uid where SNC uid trn
using Rcons SNC-validTrans V by auto
thus ?thesis unfolding proper2-def
apply − apply (intro exI [of - uid] exI [of - tr]) by (intro exI [of - trn] exI [of -

[]]) auto
next

case True
hence proper2 tr using Rcons by auto
then obtain uid tr1 trnn tr2 where
tr : tr = tr1 @ trnn # tr2 and SFRC : SNC uid trnn
unfolding proper2-def by auto
have PID ∈∈ postIDs (tgtOf trn) using V Rcons.prems by auto
show ?thesis using SFRC unfolding proper2-def tr
apply − apply (intro exI [of - uid] exI [of - tr1])
by (intro exI [of - trnn] exI [of - tr2 ## trn]) simp

qed
qed

lemma proper2-valid-istate:
assumes V : VIS 6= FriendV
and a: valid tr
srcOf (hd tr) = istate
PID ∈∈ postIDs (tgtOf (last tr))
shows proper2 tr
using proper2-valid assms istate-postIDs by auto

lemma SNC-visPost:
assumes VIS 6= FriendV
and validTrans trn SNC uid trn and reach (srcOf trn)
shows vis (tgtOf trn) PID 6= VIS
proof(cases trn)

case (Trans s a ou s ′)

142

then show ?thesis
using assms
apply (cases a) apply (auto simp: all-defs elim: step-elims)
subgoal for x2 apply(cases x2)

using reach-not-postIDs-vis-FriendV
by (auto simp: all-defs elim: step-elims) .

qed

lemma SNC-postIDs:
assumes validTrans trn and SNC uid trn
shows PID ∈∈ postIDs (tgtOf trn)
proof(cases trn)

case (Trans s a ou s ′)
then show ?thesis

using assms
by (cases a) (auto simp: all-defs elim: step-elims)

qed

lemma SNC-owner :
assumes validTrans trn and SNC uid trn
shows uid = owner (tgtOf trn) PID
proof(cases trn)

case (Trans s a ou s ′)
then show ?thesis

using assms
by (cases a) (auto simp: all-defs elim: step-elims)

qed

theorem post-accountability:
assumes v: valid tr and i: srcOf (hd tr) = istate
and PIDin: PID ∈∈ postIDs (tgtOf (last tr))
and PID: vis (tgtOf (last tr)) PID = VIS
shows proper tr
proof(cases VIS = FriendV)

case True thus ?thesis unfolding proper-def by auto
next

case False
have proper2 tr using proper2-valid-istate[OF False v i PIDin] .
then obtain uid tr1 trn trr where
tr : tr = tr1 @ trn # trr and SNC : SNC uid trn unfolding proper2-def by auto
hence trn: validTrans trn and r : reach (srcOf trn) using v unfolding tr

apply (metis list.distinct(2) self-append-conv2 valid-ConsE valid-append)
by (metis (mono-tags, lifting) append-Cons hd-append i list.sel(1) reach.simps

tr v valid-append valid-init-reach)
hence N : PID ∈∈ postIDs (tgtOf trn) vis (tgtOf trn) PID 6= VIS
using SNC-postIDs SNC-visPost False SNC by auto
hence trrNE : trr 6= [] and 1 : last tr = last trr using PID unfolding tr by

auto
hence trr-v: valid trr using v unfolding tr

143

by (metis valid-Cons-iff append-self-conv2 list.distinct(1) valid-append)
have 0 : tgtOf trn = srcOf (hd trr) using v trrNE unfolding tr
by (metis valid-append list.distinct(2) self-append-conv2 valid-ConsE)
have proper1 trr using proper1-valid[OF False trr-v N [unfolded 0] PID[unfolded

1]] .
from proper1-never [OF trr-v N (1)[unfolded 0] this PID[unfolded 1]] obtain tr2

trnn tr3 where
trr : trr = tr2 @ trnn # tr3 and SNVU : SNVU (owner (srcOf trnn) PID) VIS

trnn
and vis: ∀ vis. never (SNVU (owner (srcOf trnn) PID) vis) tr3 by auto
have 00 : srcOf (hd (tr2 @ [trnn])) = tgtOf trn using v unfolding tr trr
by (metis 0 append-self-conv2 hd-append2 list.sel(1) trr)
have trnn: validTrans trnn using trr-v unfolding trr
by (metis valid-Cons-iff append-self-conv2 list.distinct(1) valid-append)
have vv: valid (tr2 @ [trnn])
using v unfolding tr trr
by (smt Nil-is-append-conv append-self-conv2 hd-append2 list.distinct(1) list.sel(1)

valid-Cons-iff valid-append)
have uid = owner (tgtOf trn) PID using SNC trn SNC-owner by auto
also have ... = owner (tgtOf trnn) PID
using owner-valid[OF vv] N (1) unfolding 00 by simp
also have ... = owner (srcOf trnn) PID
using SNVU trnn SNVU-postIDs owner-validTrans by auto
finally have uid: uid = owner (srcOf trnn) PID .
show ?thesis unfolding proper-def
apply(rule disjI2)
apply(intro exI [of - uid] exI [of - tr1])
apply(rule exI [of - trn], rule exI [of - tr2])
apply(intro exI [of - trnn] exI [of - tr3])
using SNC SNVU vis unfolding tr trr uid by auto

qed

end
theory Friend-Traceback
imports Traceback-Intro
begin

9.2 Tracing Back Friendship Status

We prove the following traceback property: If, at some point t on a system
trace, the users UID and UID ′ are friends, then one of the following holds:

• Either UID had issued a friend request to UID ′, eventually followed
by an approval (i.e., a successful UID-friend creation action) by UID ′

such that between that approval and t there was no successful UID ′-
unfriending (i.e., friend deletion) by UID or UID-unfriending by UID ′

• Or vice versa (with UID and UID ′ swapped)

144

This property is captured by the predicate proper, which decomposes any
valid system trace tr starting in the initial state for which the target state
tgtOf (last tr) has UID and UID ′ as friends, as follows: tr is the concatena-
tion of tr1, trn, tr2, trnn and tr3 where

• trn represents the time of the relevant friend request

• trnn represents the time of the approval of this request

• tr3 contains no unfriending between the two users

The main theorem states that proper tr holds for any trace tr that leads to
UID and UID ′ being friends.
consts UID :: userID
consts UID ′ :: userID

SFRC means “is a successful friend request creation”
fun SFRC :: userID ⇒ userID ⇒ (state,act,out) trans ⇒ bool where
SFRC uidd uidd ′ (Trans s (Cact (cFriendReq uid p uid ′ -)) ou s ′) = (ou = outOK
∧ (uid,uid ′) = (uidd,uidd ′))
|
SFRC uidd uidd ′ - = False

SFC means “is a successful friend creation”
fun SFC :: userID ⇒ userID ⇒ (state,act,out) trans ⇒ bool where
SFC uidd uidd ′ (Trans s (Cact (cFriend uid p uid ′)) ou s ′) = (ou = outOK ∧
(uid,uid ′) = (uidd,uidd ′))
|
SFC uidd uidd ′ - = False

SFD means “is a successful friend deletion”
fun SFD :: userID ⇒ userID ⇒ (state,act,out) trans ⇒ bool where
SFD uidd uidd ′ (Trans s (Dact (dFriend uid p uid ′)) ou s ′) = (ou = outOK ∧
(uid,uid ′) = (uidd,uidd ′))
|
SFD uidd uidd ′ - = False

definition proper1 :: (state,act,out) trans trace ⇒ bool where
proper1 tr ≡
∃ trr trnn tr3 . tr = trr @ trnn # tr3 ∧

(SFC UID UID ′ trnn ∨ SFC UID ′ UID trnn) ∧
never (SFD UID UID ′) tr3 ∧ never (SFD UID ′ UID) tr3

lemma SFC-validTrans:
assumes validTrans trn
and ¬ UID ′ ∈∈ friendIDs (srcOf trn) UID
and UID ′ ∈∈ friendIDs (tgtOf trn) UID
shows SFC UID UID ′ trn ∨ SFC UID ′ UID trn

145

proof(cases trn)
case (Trans s a ou s ′)
then show ?thesis

using assms
by (cases a) (auto elim: step-elims simp: all-defs)

qed

lemma SFD-validTrans:
assumes validTrans trn
and UID ′ ∈∈ friendIDs (tgtOf trn) UID
shows ¬ SFD UID UID ′ trn ∧ ¬ SFD UID ′ UID trn
proof(cases trn)

case (Trans s a ou s ′)
then show ?thesis

using assms
by (cases a) (auto elim: step-elims simp: all-defs)

qed

lemma SFC-SFD:
assumes SFC uid1 uid2 trn shows ¬ SFD uid3 uid4 trn
proof(cases trn)

case (Trans s a ou s ′) note trn = Trans
show ?thesis using assms unfolding trn
by (cases a) auto

qed

lemma proper1-valid:
assumes valid tr
and ¬ UID ′ ∈∈ friendIDs (srcOf (hd tr)) UID
and UID ′ ∈∈ friendIDs (tgtOf (last tr)) UID
shows proper1 tr
using assms unfolding valid-valid2 proof induct

case (Singl trn)
then show ?case unfolding proper1-def using SFC-validTrans
by (intro exI [of - []] exI [of - trn]) auto

next
case (Rcons tr trn)
show ?case
proof(cases UID ′ ∈∈ friendIDs (srcOf trn) UID)

case False
hence SFC UID UID ′ trn ∨ SFC UID ′ UID trn
using Rcons SFC-validTrans by auto
thus ?thesis unfolding proper1-def
apply − apply (rule exI [of - tr]) by (intro exI [of - trn] exI [of - []]) auto

next
case True
hence proper1 tr using Rcons by auto
then obtain trr trnn tr3 where
tr : tr = trr @ trnn # tr3 and

146

SFC : SFC UID UID ′ trnn ∨ SFC UID ′ UID trnn and
n: never (SFD UID UID ′) tr3 ∧ never (SFD UID ′ UID) tr3
unfolding proper1-def by auto
have UID ′ ∈∈ friendIDs (tgtOf trn) UID using Rcons.prems(2) by auto
hence SFD: ¬ SFD UID UID ′ trn ∧ ¬ SFD UID ′ UID trn
using SFD-validTrans ‹validTrans trn› by auto
show ?thesis using SFC n SFD unfolding proper1-def tr
apply − apply (rule exI [of - trr])
by (intro exI [of - trnn] exI [of - tr3 ## trn]) simp

qed
qed

lemma istate-friendIDs:
¬ UID ′ ∈∈ friendIDs (istate) UID
unfolding istate-def by simp

lemma proper1-valid-istate:
assumes valid tr and srcOf (hd tr) = istate
and UID ′ ∈∈ friendIDs (tgtOf (last tr)) UID
shows proper1 tr
using assms istate-friendIDs proper1-valid by auto

definition proper2 :: userID ⇒ userID ⇒ (state,act,out) trans trace⇒ bool where
proper2 uid uid ′ tr ≡
∃ tr1 trnn tr2 . tr = tr1 @ trnn # tr2 ∧ SFRC uid uid ′ trnn

lemma SFRC-validTrans:
assumes validTrans trn
and ¬ uid ∈∈ pendingFReqs (srcOf trn) uid ′

and uid ∈∈ pendingFReqs (tgtOf trn) uid ′

shows SFRC uid uid ′ trn
proof(cases trn)

case (Trans s a ou s ′)
then show ?thesis

using assms
by (cases a) (auto elim: step-elims simp: all-defs)

qed

lemma proper2-valid:
assumes valid tr
and ¬ uid ∈∈ pendingFReqs (srcOf (hd tr)) uid ′

and uid ∈∈ pendingFReqs (tgtOf (last tr)) uid ′

shows proper2 uid uid ′ tr
using assms unfolding valid-valid2 proof induct

case (Singl trn)
thus ?case unfolding proper2-def using SFRC-validTrans
by (intro exI [of - []] exI [of - trn]) auto

147

next
case (Rcons tr trn)
show ?case
proof(cases uid ∈∈ pendingFReqs (srcOf trn) uid ′)

case False
hence SFRC uid uid ′ trn
using Rcons SFRC-validTrans by auto
thus ?thesis unfolding proper2-def
apply − apply (rule exI [of - tr]) by (intro exI [of - trn] exI [of - []]) auto

next
case True
hence proper2 uid uid ′ tr using Rcons by auto
then obtain trr trnn tr3 where
tr : tr = trr @ trnn # tr3 and SFRC : SFRC uid uid ′ trnn
unfolding proper2-def by auto
have uid ∈∈ pendingFReqs (tgtOf trn) uid ′ using Rcons.prems(2) by auto
show ?thesis using SFRC unfolding proper2-def tr
apply − apply (rule exI [of - trr])
by (intro exI [of - trnn] exI [of - tr3 ## trn]) simp

qed
qed

lemma istate-pendingFReqs:
¬ uid ∈∈ pendingFReqs (istate) uid ′

unfolding istate-def by simp

lemma proper2-valid-istate:
assumes valid tr and srcOf (hd tr) = istate
and uid ∈∈ pendingFReqs (tgtOf (last tr)) uid ′

shows proper2 uid uid ′ tr
using assms istate-pendingFReqs proper2-valid by auto

lemma SFC-pendingFReqs:
assumes validTrans trn
and SFC uid ′ uid trn
shows uid ∈∈ pendingFReqs (srcOf trn) uid ′

proof(cases trn)
case (Trans s a ou s ′)
then show ?thesis

using assms
by (cases a) (auto elim: step-elims simp: all-defs)

qed

definition proper :: (state,act,out) trans trace ⇒ bool where
proper tr ≡
∃ tr1 trn tr2 trnn tr3 . tr = tr1 @ trn # tr2 @ trnn # tr3 ∧

148

(SFRC UID ′ UID trn ∧ SFC UID UID ′ trnn ∨
SFRC UID UID ′ trn ∧ SFC UID ′ UID trnn) ∧

never (SFD UID UID ′) tr3 ∧ never (SFD UID ′ UID) tr3

theorem friend-accountability:
assumes v: valid tr and i: srcOf (hd tr) = istate
and UID: UID ′ ∈∈ friendIDs (tgtOf (last tr)) UID
shows proper tr
proof−

have proper1 tr using proper1-valid-istate[OF assms] .
then obtain trr trnn tr3 where
tr : tr = trr @ trnn # tr3 and
SFC : SFC UID UID ′ trnn ∨ SFC UID ′ UID trnn (is ?A ∨ ?B) and
n: never (SFD UID UID ′) tr3 ∧ never (SFD UID ′ UID) tr3
unfolding proper1-def by auto
have trnn: validTrans trnn and trr : valid trr using tr
apply (metis valid-Cons-iff append-self-conv2 assms(1) list.distinct(1) valid-append)
by (metis SFC SFC-pendingFReqs append-self-conv2 i istate-pendingFReqs list.distinct(1)

list.sel(1) tr v valid-Cons-iff valid-append)
show ?thesis using SFC proof

assume SFC : ?A
have 0 : UID ′ ∈∈ pendingFReqs (srcOf trnn) UID
using SFC-pendingFReqs[OF trnn SFC] .
hence srcOf trnn 6= istate unfolding istate-def by auto
hence 2 : trr 6= [] using i unfolding tr by auto
hence i: srcOf (hd trr) = istate using i unfolding tr by auto
have srcOf trnn = tgtOf (last trr) using tr v valid-append 2 by auto
hence 1 : UID ′ ∈∈ pendingFReqs (tgtOf (last trr)) UID using 0 by simp
have proper2 UID ′ UID trr using proper2-valid-istate[OF trr i 1] .
then obtain tr1 trn tr2 where
trr : trr = tr1 @ trn # tr2 and SFRC : SFRC UID ′ UID trn
unfolding proper2-def by auto
show ?thesis unfolding proper-def
apply(rule exI [of - tr1], rule exI [of - trn], rule exI [of - tr2],

rule exI [of - trnn], rule exI [of - tr3])
unfolding tr trr using SFRC SFC n by simp

next
assume SFC : ?B
have 0 : UID ∈∈ pendingFReqs (srcOf trnn) UID ′

using SFC-pendingFReqs[OF trnn SFC] .
hence srcOf trnn 6= istate unfolding istate-def by auto
hence 2 : trr 6= [] using i unfolding tr by auto
hence i: srcOf (hd trr) = istate using i unfolding tr by auto
have srcOf trnn = tgtOf (last trr) using tr v valid-append 2 by auto
hence 1 : UID ∈∈ pendingFReqs (tgtOf (last trr)) UID ′ using 0 by simp
have proper2 UID UID ′ trr using proper2-valid-istate[OF trr i 1] .
then obtain tr1 trn tr2 where
trr : trr = tr1 @ trn # tr2 and SFRC : SFRC UID UID ′ trn
unfolding proper2-def by auto

149

show ?thesis unfolding proper-def
apply(rule exI [of - tr1], rule exI [of - trn], rule exI [of - tr2],

rule exI [of - trnn], rule exI [of - tr3])
unfolding tr trr using SFRC SFC n by simp

qed
qed

end

References

[1] T. Bauereiß, A. Pesenti Gritti, A. Popescu, and F. Raimondi. Cosmed:
A confidentiality-verified social media platform. In J. C. Blanchette and
S. Merz, editors, Interactive Theorem Proving - 7th International Con-
ference, ITP 2016, Nancy, France, August 22-25, 2016, Proceedings, vol-
ume 9807 of Lecture Notes in Computer Science, pages 87–106. Springer,
2016.

[2] T. Bauereiß, A. Pesenti Gritti, A. Popescu, and F. Raimondi. CoSMed:
A confidentiality-verified social media platform. J. Autom. Reason.,
61(1-4):113–139, 2018.

[3] S. Kanav, P. Lammich, and A. Popescu. A conference management
system with verified document confidentiality. In A. Biere and R. Bloem,
editors, Computer Aided Verification - 26th International Conference,
CAV 2014, Held as Part of the Vienna Summer of Logic, VSL 2014,
Vienna, Austria, July 18-22, 2014. Proceedings, volume 8559 of Lecture
Notes in Computer Science, pages 167–183. Springer, 2014.

[4] A. Popescu, T. Bauereiss, and P. Lammich. Bounded-Deducibility secu-
rity (invited paper). In L. Cohen and C. Kaliszyk, editors, 12th Interna-
tional Conference on Interactive Theorem Proving, ITP 2021, June 29
to July 1, 2021, Rome, Italy (Virtual Conference), volume 193 of LIPIcs,
pages 3:1–3:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[5] A. Popescu, P. Lammich, and T. Bauereiss. Bounded-deducibility secu-
rity. In G. Klein, T. Nipkow, and L. Paulson, editors, Archive of Formal
Proofs, 2014.

[6] A. Popescu, P. Lammich, and P. Hou. Cocon: A conference manage-
ment system with formally verified document confidentiality. J. Autom.
Reason., 65(2):321–356, 2021.

150

	Introduction
	Preliminaries
	The basic types
	Identifiers

	System specification
	The state
	The actions
	Initialization of the system
	Starting action
	Creation actions
	Updating actions
	Deletion (removal) actions
	Reading actions
	Listing actions

	The step function
	Code generation

	Safety properties
	The observation setup
	Post confidentiality
	Preliminaries
	Value Setup
	Declassification bound
	Unwinding proof

	Friendship status confidentiality
	Preliminaries
	Value Setup
	Declassification bound
	Unwinding proof

	Friendship request confidentiality
	Preliminaries
	Value Setup
	Declassification bound
	Unwinding proof

	Traceback Properties
	Tracing Back Post Visibility Status
	Tracing Back Friendship Status

