
CoSMeDis: A confidentiality-verified distributed
social media platform

Thomas Bauereiss Andrei Popescu

March 19, 2025

Abstract
This entry contains the confidentiality verification of the (functional

kernel of) the CoSMeDis distributed social media platform presented in
[3]. CoSMeDis is a multi-node extension the CoSMed prototype social
media platform [2, 4, 6]. The confidentiality properties are formalized
as instances of BD Security [7, 8]. The lifting of confidentiality prop-
erties from single nodes to the entire CoSMeDis network is performed
using compositionality and transport theorems for BD Security, which
are described in [3] and formalized in the AFP entry [5].

Contents
1 Introduction 3

2 Preliminaries 5
2.1 The basic types . 5
2.2 Identifiers . 7

3 The CoSMeDis single node specification 8
3.1 The state . 9
3.2 The actions . 10

3.2.1 Initialization of the system 10
3.2.2 Starting action . 11
3.2.3 Creation actions . 11
3.2.4 Deletion (removal) actions 13
3.2.5 Updating actions . 13
3.2.6 Reading actions . 14
3.2.7 Listing actions . 17
3.2.8 Actions of communication with other APIs 20

3.3 The step function . 23
3.4 Code generation . 33

4 The CoSMeDis network of communicating nodes 34

1

5 Safety properties 38

6 Post confidentiality 41
6.1 Confidentiality for a secret issuer node 42

6.1.1 Observation setup . 42
6.1.2 Unwinding helper lemmas and definitions 45
6.1.3 Value setup . 52
6.1.4 Issuer declassification bound 54
6.1.5 Unwinding proof . 55

6.2 Confidentiality for a secret receiver node 57
6.2.1 Observation setup . 57
6.2.2 Unwinding helper definitions and lemmas 60
6.2.3 Value setup . 65
6.2.4 Declassification bound 67
6.2.5 Unwinding proof . 67

6.3 Confidentiality for the (binary) issuer-receiver composition . . 69
6.4 Confidentiality for the N-ary composition 73
6.5 Variation with dynamic declassification trigger 77

6.5.1 Issuer value setup . 77
6.5.2 Issuer declassification bound 81
6.5.3 Issuer unwinding proof 83
6.5.4 Confidentiality for the (binary) issuer-receiver compo-

sition . 86
6.5.5 Confidentiality for the N-ary composition 90

6.6 Variation with multiple independent secret posts 94
6.6.1 Issuer observation setup 94
6.6.2 Issuer value setup . 97
6.6.3 Issuer declassification bound 102
6.6.4 Issuer unwinding proof 103
6.6.5 Receiver observation setup 106
6.6.6 Receiver value setup 109
6.6.7 Receiver declassification bound 111
6.6.8 Receiver unwinding proof 111
6.6.9 Confidentiality for the N-ary composition 113
6.6.10 Composition of confidentiality guarantees for different

posts . 116

7 Friendship status confidentiality 121
7.1 Observation setup . 122
7.2 Unwinding helper definitions and lemmas 123
7.3 Dynamic declassification trigger 131
7.4 Value Setup . 133
7.5 Declassification bound . 135
7.6 Unwinding proof . 136

2

7.7 Confidentiality for the N-ary composition 138

8 Friendship request confidentiality 140
8.1 Value setup . 140
8.2 Declassification bound . 144
8.3 Unwinding proof . 145
8.4 Confidentiality for the N-ary composition 150

9 Remote (outer) friendship status confidentiality 151
9.1 Issuer node . 152

9.1.1 Observation setup . 152
9.1.2 Unwinding helper definitions and lemmas 155
9.1.3 Dynamic declassification trigger 161
9.1.4 Value setup . 162
9.1.5 Declassification bound 164
9.1.6 Unwinding proof . 165

9.2 Receiver nodes . 167
9.2.1 Observation setup . 167
9.2.2 Unwinding helper definitions and lemmas 169
9.2.3 Value Setup . 174
9.2.4 Declassification bound 175
9.2.5 Unwinding proof . 176

9.3 Confidentiality for the N-ary composition 178

1 Introduction
This entry contains the confidentiality verification of the (functional kernel
of) the CoSMeDis distributed social media platform presented in [3].

CoSMed [2, 4] (whose formalization is described in a separate AFP
entry, [6]) is a simple Facebook-style social media platform where users
can register, create posts and establish friendship relationships. CoSMeDis
is a multi-node distributed extension of CoSMed that follows a Diaspora-
style scheme [1]: Different nodes can be deployed independently at different
internet locations. The admins of any two nodes can initiate a protocol
to connect these nodes, after which the users of one node can establish
friendship relationships and share data with users of the other. Thus, a
node of CoSMeDis consists of CoSMed plus actions for connecting nodes
and cross-node post sharing and friending.

After this introduction and a section on technical preliminaries/prereq-
uisites, this document presents the specification of a single CoSMeDis node,
followed by a specification of the entire CoSMeDis network, consisting of a
finite but unbounded number of mutually communicating nodes.

Next is a section on proved safety properties about the system—essentially,
some system invariants that are needed in the proofs of confidentiality.

3

Next come the main sections, those dealing with confidentiality. The
confidentiality properties of CoSMeDis (like those of CoSMed) are formal-
ized as instances of BD Security [7], a general confidentiality verification
framework that has been formalized in the AFP entry [8]. They cover con-
fidentiality aspects about:

• posts

• friendship status (whether or not two users are friends)

• friendship request status (whether or not a user has submitted a friend-
ship request to another user)

Each of these types of confidentiality properties have dedicated sections (and
corresponding folders in the formalization) with self-explanatory names.

In addition to the properties lifted from CoSMed, we also prove the
confidentiality of remote friendships (i.e., friendship relations established
between users at different nodes), which is a new feature of CoSMeDis com-
pared to CoSMed. This has a dedicated section/folder as well.

The properties are first proved for individual nodes, and then they are
lifted to the entire CoSMeDis network using compositionality and transport
theorems for BD Security, which are described in [3] and formalized in the
AFP entry [5].

All the sections on confidentiality follow a similar structure (with some
variations), as can be seen in the names of their subsections. There are
subsections for:

• defining the observation and secrecy infrastructures1

• defining the declassification bounds and triggers2

• the main results, namely:

– the BD Security instance proved by unwinding for an individual
node

– the lifting of this result from a CoSMeDis node to an entire net-
work using the n-ary compositionality theorem for BD security

In the case of post confidentiality and outer friend confidentiality, the
secret may be communicated from the issuer to other nodes. For this pur-
pose, we formalize corresponding local security properties for the issuer and
the receiver nodes, contained in separate subsections with names containing
“Issuer” and “Receiver”, respectively.

1NB: The secrets are called “values” in the formalization.
2In many cases, the CoSMed and CoSMeDis bounds incorporate the triggers as well—

see [3, Appendix C] and [4, Section 3.3].

4

In the case of post confidentiality, we have a version with static de-
classification trigger and one with dynamic trigger. (The dynamic version
is described in [3, Appendix C].) Moreover, in the section on “independent
posts”, we formalize the lifting of the confidentiality of one given (arbitrary
but fixed) post to the confidentiality of two posts of arbitrary nodes of the
network (as described in [3, Appendix E]).

As a matter of notation, this formalization (similarly to all our AFP
formalizations involving BD security) differs from the paper [3] (and on
most papers on CoSMed, CoSMeDis or CoCon) in that the secrets are called
“values” (and consequently the type of secrets is denoted by “value”), and
are ranged over by v rather than s. On the other hand, we use s (rather
than σ) to range over states. Moreover, the formalization uses the following
notations for the various BD security components:

• ϕ for the secret discriminator for isSec

• f for the secret selector getSec

• γ for the observation discriminator isObs

• g for the observation selector getObs

Finally, what the paper [3] refers to as “nodes” are referred in the
formalization as “APIs”. (The “API” terminology is justified by the fact
that nodes behave similarly to a form communicating APIs.)

2 Preliminaries
theory Prelim

imports
Fresh-Identifiers.Fresh-String
Bounded-Deducibility-Security.Trivia

begin

2.1 The basic types
definition emptyStr = STR ′′′′

datatype name = Nam String.literal
definition emptyName ≡ Nam emptyStr
datatype inform = Info String.literal
definition emptyInfo ≡ Info emptyStr

datatype user = Usr name inform
fun nameUser where nameUser (Usr name info) = name

5

fun infoUser where infoUser (Usr name info) = info
definition emptyUser ≡ Usr emptyName emptyInfo

typedecl raw-data
code-printing type-constructor raw-data ⇀ (Scala) java.io.File

datatype img = emptyImg | Imag raw-data

datatype vis = Vsb String.literal

abbreviation FriendV ≡ Vsb (STR ′′friend ′′)

abbreviation PublicV ≡ Vsb (STR ′′public ′′)
fun stringOfVis where stringOfVis (Vsb str) = str

datatype title = Tit String.literal
definition emptyTitle ≡ Tit emptyStr
datatype text = Txt String.literal
definition emptyText ≡ Txt emptyStr

datatype post = Pst title text img

fun titlePost where titlePost (Pst title text img) = title
fun textPost where textPost (Pst title text img) = text
fun imgPost where imgPost (Pst title text img) = img

fun setTitlePost where setTitlePost (Pst title text img) title ′ = Pst title ′ text img
fun setTextPost where setTextPost(Pst title text img) text ′ = Pst title text ′ img
fun setImgPost where setImgPost (Pst title text img) img ′ = Pst title text img ′

definition emptyPost :: post where
emptyPost ≡ Pst emptyTitle emptyText emptyImg

lemma titlePost-emptyPost[simp]: titlePost emptyPost = emptyTitle
and textPost-emptyPost[simp]: textPost emptyPost = emptyText
and imgPost-emptyPost[simp]: imgPost emptyPost = emptyImg

〈proof 〉

lemma set-get-post[simp]:
titlePost (setTitlePost ntc title) = title
titlePost (setTextPost ntc text) = titlePost ntc
titlePost (setImgPost ntc img) = titlePost ntc

6

textPost (setTitlePost ntc title) = textPost ntc
textPost (setTextPost ntc text) = text
textPost (setImgPost ntc img) = textPost ntc

imgPost (setTitlePost ntc title) = imgPost ntc
imgPost (setTextPost ntc text) = imgPost ntc
imgPost (setImgPost ntc img) = img

〈proof 〉

lemma setTextPost-absorb[simp]:
setTitlePost (setTitlePost pst tit) tit1 = setTitlePost pst tit1
setTextPost (setTextPost pst txt) txt1 = setTextPost pst txt1
setImgPost (setImgPost pst img) img1 = setImgPost pst img1

〈proof 〉

datatype password = Psw String.literal
definition emptyPass ≡ Psw emptyStr

datatype salt = Slt String.literal
definition emptySalt ≡ Slt emptyStr

datatype requestInfo = ReqInfo String.literal
definition emptyRequestInfo ≡ ReqInfo emptyStr

2.2 Identifiers
datatype apiID = Aid String.literal
datatype userID = Uid String.literal
datatype postID = Pid String.literal

definition emptyApiID ≡ Aid emptyStr
definition emptyUserID ≡ Uid emptyStr
definition emptyPostID ≡ Pid emptyStr

fun apiIDAsStr where apiIDAsStr (Aid str) = str

definition getFreshApiID apiIDs ≡ Aid (fresh (set (map apiIDAsStr apiIDs))
(STR ′′1 ′′))

7

lemma ApiID-apiIDAsStr [simp]: Aid (apiIDAsStr apiID) = apiID
〈proof 〉

lemma member-apiIDAsStr-iff [simp]: str ∈ apiIDAsStr ‘ apiIDs ←→ Aid str ∈
apiIDs
〈proof 〉

lemma getFreshApiID: ¬ getFreshApiID apiIDs ∈∈ apiIDs
〈proof 〉

fun userIDAsStr where userIDAsStr (Uid str) = str

definition getFreshUserID userIDs ≡ Uid (fresh (set (map userIDAsStr userIDs))
(STR ′′2 ′′))

lemma UserID-userIDAsStr [simp]: Uid (userIDAsStr userID) = userID
〈proof 〉

lemma member-userIDAsStr-iff [simp]: str ∈ userIDAsStr ‘ (set userIDs) ←→ Uid
str ∈∈ userIDs
〈proof 〉

lemma getFreshUserID: ¬ getFreshUserID userIDs ∈∈ userIDs
〈proof 〉

fun postIDAsStr where postIDAsStr (Pid str) = str

definition getFreshPostID postIDs ≡ Pid (fresh (set (map postIDAsStr postIDs))
(STR ′′3 ′′))

lemma PostID-postIDAsStr [simp]: Pid (postIDAsStr postID) = postID
〈proof 〉

lemma member-postIDAsStr-iff [simp]: str ∈ postIDAsStr ‘ (set postIDs) ←→ Pid
str ∈∈ postIDs
〈proof 〉

lemma getFreshPostID: ¬ getFreshPostID postIDs ∈∈ postIDs
〈proof 〉

end

3 The CoSMeDis single node specification

This is the specification of a CoSMeDis node, as described in Sections II and
IV.B of [3]. NB: What that paper refers to as "nodes" are referred in this

8

formalization as "APIs".
A CoSMeDis node extends CoSMed [2, 4, 6] with inter-node communication
actions.
theory System-Specification

imports
Prelim
Bounded-Deducibility-Security.IO-Automaton

begin

An aspect not handled in this specification is the uniqueness of the node
IDs. These are assumed to be handled externally as follows: a node ID is an
URI, and therefore is unique.
declare List.insert[simp]

3.1 The state
record state =

admin :: userID

pendingUReqs :: userID list
userReq :: userID ⇒ requestInfo
userIDs :: userID list
user :: userID ⇒ user
pass :: userID ⇒ password

pendingFReqs :: userID ⇒ userID list
friendReq :: userID ⇒ userID ⇒ requestInfo
friendIDs :: userID ⇒ userID list

sentOuterFriendIDs :: userID ⇒ (apiID × userID) list
recvOuterFriendIDs :: userID ⇒ (apiID × userID) list

postIDs :: postID list
post :: postID ⇒ post
owner :: postID ⇒ userID
vis :: postID ⇒ vis

pendingSApiReqs :: apiID list
sApiReq :: apiID ⇒ requestInfo
serverApiIDs :: apiID list

serverPass :: apiID ⇒ password
outerPostIDs :: apiID ⇒ postID list
outerPost :: apiID ⇒ postID ⇒ post
outerOwner :: apiID ⇒ postID ⇒ userID
outerVis :: apiID ⇒ postID ⇒ vis

9

pendingCApiReqs :: apiID list
cApiReq :: apiID ⇒ requestInfo
clientApiIDs :: apiID list

clientPass :: apiID ⇒ password
sharedWith :: postID ⇒ (apiID × bool) list

definition IDsOK :: state ⇒ userID list ⇒ postID list ⇒ (apiID × postID list)
list ⇒ apiID list ⇒ bool
where
IDsOK s uIDs pIDs saID-pIDs-s caIDs ≡
list-all (λ uID. uID ∈∈ userIDs s) uIDs ∧
list-all (λ pID. pID ∈∈ postIDs s) pIDs ∧
list-all (λ (aID,pIDs). aID ∈∈ serverApiIDs s ∧
list-all (λ pID. pID ∈∈ outerPostIDs s aID) pIDs) saID-pIDs-s ∧
list-all (λ aID. aID ∈∈ clientApiIDs s) caIDs

3.2 The actions
3.2.1 Initialization of the system
definition istate :: state
where
istate ≡
(|
admin = emptyUserID,

pendingUReqs = [],
userReq = (λ uID. emptyRequestInfo),
userIDs = [],
user = (λ uID. emptyUser),
pass = (λ uID. emptyPass),

pendingFReqs = (λ uID. []),
friendReq = (λ uID uID ′. emptyRequestInfo),
friendIDs = (λ uID. []),

sentOuterFriendIDs = (λ uID. []),
recvOuterFriendIDs = (λ uID. []),

postIDs = [],
post = (λ papID. emptyPost),

10

owner = (λ pID. emptyUserID),
vis = (λ pID. FriendV),

pendingSApiReqs = [],
sApiReq = (λ aID. emptyRequestInfo),
serverApiIDs = [],
serverPass = (λ aID. emptyPass),
outerPostIDs = (λ aID. []),
outerPost = (λ aID papID. emptyPost),
outerOwner = (λ aID papID. emptyUserID),
outerVis = (λ aID pID. FriendV),

pendingCApiReqs = [],
cApiReq = (λ aID. emptyRequestInfo),
clientApiIDs = [],
clientPass = (λ aID. emptyPass),
sharedWith = (λpID. [])
|)

3.2.2 Starting action
definition startSys ::
state ⇒ userID ⇒ password ⇒ state
where
startSys s uID p ≡
s (|admin := uID,

userIDs := [uID],
user := (user s) (uID := emptyUser),
pass := (pass s) (uID := p)|)

definition e-startSys :: state ⇒ userID ⇒ password ⇒ bool
where
e-startSys s uID p ≡ userIDs s = []

3.2.3 Creation actions
definition createNUReq :: state ⇒ userID ⇒ requestInfo ⇒ state
where
createNUReq s uID reqInfo ≡
s (|pendingUReqs := pendingUReqs s @ [uID],

userReq := (userReq s)(uID := reqInfo)
|)

definition e-createNUReq :: state ⇒ userID ⇒ requestInfo ⇒ bool
where
e-createNUReq s uID requestInfo ≡
admin s ∈∈ userIDs s ∧ ¬ uID ∈∈ userIDs s ∧ ¬ uID ∈∈ pendingUReqs s

11

definition createUser :: state ⇒ userID ⇒ password ⇒ userID ⇒ password ⇒
state
where
createUser s uID p uID ′ p ′ ≡
s (|userIDs := uID ′ # (userIDs s),

user := (user s) (uID ′ := emptyUser),
pass := (pass s) (uID ′ := p ′),
pendingUReqs := remove1 uID ′ (pendingUReqs s),
userReq := (userReq s)(uID := emptyRequestInfo)|)

definition e-createUser :: state ⇒ userID ⇒ password ⇒ userID ⇒ password ⇒
bool
where
e-createUser s uID p uID ′ p ′ ≡
IDsOK s [uID] [] [] [] ∧ pass s uID = p ∧ uID = admin s ∧ uID ′ ∈∈ pendingUReqs

s

definition createPost :: state ⇒ userID ⇒ password ⇒ postID ⇒ state
where
createPost s uID p pID ≡
s (|postIDs := pID # postIDs s,

post := (post s) (pID := emptyPost),
owner := (owner s) (pID := uID)|)

definition e-createPost :: state ⇒ userID ⇒ password ⇒ postID ⇒ bool
where
e-createPost s uID p pID ≡
IDsOK s [uID] [] [] [] ∧ pass s uID = p ∧
¬ pID ∈∈ postIDs s

definition createFriendReq :: state ⇒ userID ⇒ password ⇒ userID ⇒ requestInfo
⇒ state
where
createFriendReq s uID p uID ′ req ≡
let pfr = pendingFReqs s in
s (|pendingFReqs := pfr (uID ′ := pfr uID ′ @ [uID]),

friendReq := fun-upd2 (friendReq s) uID uID ′ req|)

definition e-createFriendReq :: state ⇒ userID ⇒ password ⇒ userID ⇒ re-
questInfo ⇒ bool
where
e-createFriendReq s uID p uID ′ req ≡
IDsOK s [uID,uID ′] [] [] [] ∧ pass s uID = p ∧
¬ uID ∈∈ pendingFReqs s uID ′ ∧ ¬ uID ∈∈ friendIDs s uID ′

12

definition createFriend :: state ⇒ userID ⇒ password ⇒ userID ⇒ state
where
createFriend s uID p uID ′ ≡
let fr = friendIDs s; pfr = pendingFReqs s in
s (|friendIDs := fr (uID := fr uID @ [uID ′], uID ′ := fr uID ′ @ [uID]),

pendingFReqs := pfr (uID := remove1 uID ′ (pfr uID), uID ′ := remove1 uID
(pfr uID ′)),

friendReq := fun-upd2 (fun-upd2 (friendReq s) uID ′ uID emptyRequestInfo)
uID uID ′ emptyRequestInfo|)

definition e-createFriend :: state ⇒ userID ⇒ password ⇒ userID ⇒ bool
where
e-createFriend s uID p uID ′ ≡
IDsOK s [uID,uID ′] [] [] [] ∧ pass s uID = p ∧
uID ′ ∈∈ pendingFReqs s uID

3.2.4 Deletion (removal) actions
definition deleteFriend :: state ⇒ userID ⇒ password ⇒ userID ⇒ state
where
deleteFriend s uID p uID ′ ≡
let fr = friendIDs s in
s (|friendIDs := fr (uID := removeAll uID ′ (fr uID), uID ′ := removeAll uID (fr

uID ′))|)

definition e-deleteFriend :: state ⇒ userID ⇒ password ⇒ userID ⇒ bool
where
e-deleteFriend s uID p uID ′ ≡
IDsOK s [uID,uID ′] [] [] [] ∧ pass s uID = p ∧
uID ′ ∈∈ friendIDs s uID

3.2.5 Updating actions
definition updateUser :: state ⇒ userID ⇒ password ⇒ password ⇒ name ⇒
inform ⇒ state
where
updateUser s uID p p ′ name info ≡
s (|user := (user s) (uID := Usr name info),

pass := (pass s) (uID := p ′)|)

definition e-updateUser :: state ⇒ userID ⇒ password ⇒ password ⇒ name ⇒
inform ⇒ bool
where
e-updateUser s uID p p ′ name info ≡
IDsOK s [uID] [] [] [] ∧ pass s uID = p

definition updatePost :: state ⇒ userID ⇒ password ⇒ postID ⇒ post ⇒ state

13

where
updatePost s uID p pID pst ≡
let sW = sharedWith s in
s (|post := (post s) (pID := pst),

sharedWith := sW (pID := map (λ (aID,-). (aID,False)) (sW pID))|)

definition e-updatePost :: state ⇒ userID ⇒ password ⇒ postID ⇒ post ⇒ bool
where
e-updatePost s uID p pID pst ≡
IDsOK s [uID] [pID] [] [] ∧ pass s uID = p ∧
owner s pID = uID

definition updateVisPost :: state ⇒ userID ⇒ password ⇒ postID ⇒ vis ⇒ state
where
updateVisPost s uID p pID vs ≡
s (|vis := (vis s) (pID := vs)|)

definition e-updateVisPost :: state ⇒ userID ⇒ password ⇒ postID ⇒ vis ⇒ bool
where
e-updateVisPost s uID p pID vs ≡
IDsOK s [uID] [pID] [] [] ∧ pass s uID = p ∧
owner s pID = uID ∧ vs ∈ {FriendV , PublicV }

3.2.6 Reading actions
definition readNUReq :: state ⇒ userID ⇒ password ⇒ userID ⇒ requestInfo
where
readNUReq s uID p uID ′ ≡ userReq s uID ′

definition e-readNUReq :: state ⇒ userID ⇒ password ⇒ userID ⇒ bool
where
e-readNUReq s uID p uID ′ ≡
IDsOK s [uID] [] [] [] ∧ pass s uID = p ∧
uID = admin s ∧ uID ′ ∈∈ pendingUReqs s

definition readUser :: state ⇒ userID ⇒ password ⇒ userID ⇒ name
where
readUser s uID p uID ′ ≡ nameUser (user s uID ′)

definition e-readUser :: state ⇒ userID ⇒ password ⇒ userID ⇒ bool
where
e-readUser s uID p uID ′ ≡
IDsOK s [uID,uID ′] [] [] [] ∧ pass s uID = p

definition readAmIAdmin :: state ⇒ userID ⇒ password ⇒ bool
where
readAmIAdmin s uID p ≡ uID = admin s

14

definition e-readAmIAdmin :: state ⇒ userID ⇒ password ⇒ bool
where
e-readAmIAdmin s uID p ≡
IDsOK s [uID] [] [] [] ∧ pass s uID = p

definition readPost :: state ⇒ userID ⇒ password ⇒ postID ⇒ post
where
readPost s uID p pID ≡ post s pID

definition e-readPost :: state ⇒ userID ⇒ password ⇒ postID ⇒ bool
where
e-readPost s uID p pID ≡
IDsOK s [uID] [pID] [] [] ∧ pass s uID = p ∧
(owner s pID = uID ∨ uID ∈∈ friendIDs s (owner s pID) ∨ vis s pID = PublicV)

definition readOwnerPost :: state ⇒ userID ⇒ password ⇒ postID ⇒ userID
where
readOwnerPost s uID p pID ≡ owner s pID

definition e-readOwnerPost :: state ⇒ userID ⇒ password ⇒ postID ⇒ bool
where
e-readOwnerPost s uID p pID ≡
IDsOK s [uID] [pID] [] [] ∧ pass s uID = p ∧
(admin s = uID ∨ owner s pID = uID ∨ uID ∈∈ friendIDs s (owner s pID) ∨

vis s pID = PublicV)

definition readVisPost :: state ⇒ userID ⇒ password ⇒ postID ⇒ vis
where
readVisPost s uID p pID ≡ vis s pID

definition e-readVisPost :: state ⇒ userID ⇒ password ⇒ postID ⇒ bool
where
e-readVisPost s uID p pID ≡
IDsOK s [uID] [pID] [] [] ∧ pass s uID = p ∧
(admin s = uID ∨ owner s pID = uID ∨ uID ∈∈ friendIDs s (owner s pID) ∨

vis s pID = PublicV)

definition readOPost :: state ⇒ userID ⇒ password ⇒ apiID ⇒ postID ⇒ post
where
readOPost s uID p aID pID ≡ outerPost s aID pID

definition e-readOPost :: state ⇒ userID ⇒ password ⇒ apiID ⇒ postID ⇒ bool
where
e-readOPost s uID p aID pID ≡

15

IDsOK s [uID] [] [(aID,[pID])] [] ∧ pass s uID = p ∧
(admin s = uID ∨ (aID,outerOwner s aID pID) ∈∈ recvOuterFriendIDs s uID ∨

outerVis s aID pID = PublicV)

definition readOwnerOPost :: state ⇒ userID ⇒ password ⇒ apiID ⇒ postID ⇒
userID
where
readOwnerOPost s uID p aID pID ≡ outerOwner s aID pID

definition e-readOwnerOPost :: state ⇒ userID ⇒ password ⇒ apiID ⇒ postID
⇒ bool
where
e-readOwnerOPost s uID p aID pID ≡
IDsOK s [uID] [] [(aID,[pID])] [] ∧ pass s uID = p ∧
(admin s = uID ∨ (aID,outerOwner s aID pID) ∈∈ recvOuterFriendIDs s uID ∨

outerVis s aID pID = PublicV)

definition readVisOPost :: state ⇒ userID ⇒ password ⇒ apiID ⇒ postID ⇒ vis
where
readVisOPost s uID p aID pID ≡ outerVis s aID pID

definition e-readVisOPost :: state ⇒ userID ⇒ password ⇒ apiID ⇒ postID ⇒
bool
where
e-readVisOPost s uID p aID pID ≡
let post = outerPost s aID pID in
IDsOK s [uID] [] [(aID,[pID])] [] ∧ pass s uID = p ∧
(admin s = uID ∨ (aID,outerOwner s aID pID) ∈∈ recvOuterFriendIDs s uID ∨
outerVis s aID pID = PublicV)

definition readFriendReqToMe :: state ⇒ userID ⇒ password ⇒ userID ⇒ re-
questInfo
where
readFriendReqToMe s uID p uID ′ ≡ friendReq s uID ′ uID

definition e-readFriendReqToMe :: state ⇒ userID ⇒ password ⇒ userID ⇒ bool
where
e-readFriendReqToMe s uID p uID ′ ≡
IDsOK s [uID,uID ′] [] [] [] ∧ pass s uID = p ∧
uID ′ ∈∈ pendingFReqs s uID

definition readFriendReqFromMe :: state ⇒ userID ⇒ password ⇒ userID ⇒
requestInfo
where

16

readFriendReqFromMe s uID p uID ′ ≡ friendReq s uID uID ′

definition e-readFriendReqFromMe :: state ⇒ userID ⇒ password ⇒ userID ⇒
bool
where
e-readFriendReqFromMe s uID p uID ′ ≡
IDsOK s [uID,uID ′] [] [] [] ∧ pass s uID = p ∧
uID ∈∈ pendingFReqs s uID ′

definition readSApiReq :: state ⇒ userID ⇒ password ⇒ apiID ⇒ requestInfo
where
readSApiReq s uID p uID ′ ≡ sApiReq s uID ′

definition e-readSApiReq :: state ⇒ userID ⇒ password ⇒ apiID ⇒ bool
where
e-readSApiReq s uID p uID ′ ≡
IDsOK s [uID] [] [] [] ∧ pass s uID = p ∧
uID = admin s ∧ uID ′ ∈∈ pendingSApiReqs s

definition readCApiReq :: state ⇒ userID ⇒ password ⇒ apiID ⇒ requestInfo
where
readCApiReq s uID p uID ′ ≡ cApiReq s uID ′

definition e-readCApiReq :: state ⇒ userID ⇒ password ⇒ apiID ⇒ bool
where
e-readCApiReq s uID p uID ′ ≡
IDsOK s [uID] [] [] [] ∧ pass s uID = p ∧
uID = admin s ∧ uID ′ ∈∈ pendingCApiReqs s

3.2.7 Listing actions
definition listPendingUReqs :: state ⇒ userID ⇒ password ⇒ userID list
where
listPendingUReqs s uID p ≡ pendingUReqs s

definition e-listPendingUReqs :: state ⇒ userID ⇒ password ⇒ bool
where
e-listPendingUReqs s uID p ≡
IDsOK s [uID] [] [] [] ∧ pass s uID = p ∧ uID = admin s

definition listAllUsers :: state ⇒ userID ⇒ password ⇒ userID list
where
listAllUsers s uID p ≡ userIDs s

definition e-listAllUsers :: state ⇒ userID ⇒ password ⇒ bool
where

17

e-listAllUsers s uID p ≡ IDsOK s [uID] [] [] [] ∧ pass s uID = p

definition listFriends :: state ⇒ userID ⇒ password ⇒ userID ⇒ userID list
where
listFriends s uID p uID ′ ≡ friendIDs s uID ′

definition e-listFriends :: state ⇒ userID ⇒ password ⇒ userID ⇒ bool
where
e-listFriends s uID p uID ′ ≡
IDsOK s [uID,uID ′] [] [] [] ∧ pass s uID = p ∧
(uID = uID ′ ∨ uID ∈∈ friendIDs s uID ′)

definition listSentOuterFriends :: state⇒ userID ⇒ password ⇒ userID ⇒ (apiID
× userID) list
where
listSentOuterFriends s uID p uID ′ ≡ sentOuterFriendIDs s uID ′

definition e-listSentOuterFriends :: state ⇒ userID ⇒ password ⇒ userID ⇒ bool
where
e-listSentOuterFriends s uID p uID ′ ≡
IDsOK s [uID,uID ′] [] [] [] ∧ pass s uID = p ∧
(uID = uID ′ ∨ uID ∈∈ friendIDs s uID ′)

definition listRecvOuterFriends :: state⇒ userID ⇒ password ⇒ (apiID × userID)
list
where
listRecvOuterFriends s uID p ≡ recvOuterFriendIDs s uID

definition e-listRecvOuterFriends :: state ⇒ userID ⇒ password ⇒ bool
where
e-listRecvOuterFriends s uID p ≡
IDsOK s [uID] [] [] [] ∧ pass s uID = p

definition listInnerPosts :: state ⇒ userID ⇒ password ⇒ (userID × postID) list
where
listInnerPosts s uID p ≡
[(owner s pID, pID).

pID ← postIDs s,
vis s pID 6= FriendV ∨ uID ∈∈ friendIDs s (owner s pID) ∨ uID = owner s

pID
]

definition e-listInnerPosts :: state ⇒ userID ⇒ password ⇒ bool
where
e-listInnerPosts s uID p ≡ IDsOK s [uID] [] [] [] ∧ pass s uID = p

18

definition listOuterPosts :: state ⇒ userID ⇒ password ⇒ (apiID × postID) list
where
listOuterPosts s uID p ≡
[(saID, pID).

saID ← serverApiIDs s,
pID ← outerPostIDs s saID,

outerVis s saID pID = PublicV ∨ (saID, outerOwner s saID pID) ∈∈ recvOuter-
FriendIDs s uID
]

definition e-listOuterPosts :: state ⇒ userID ⇒ password ⇒ bool
where
e-listOuterPosts s uID p ≡ IDsOK s [uID] [] [] [] ∧ pass s uID = p

definition listClientsPost :: state ⇒ userID ⇒ password ⇒ postID ⇒ (apiID ×
bool) list
where
listClientsPost s uID p pID ≡ sharedWith s pID

definition e-listClientsPost :: state ⇒ userID ⇒ password ⇒ postID ⇒ bool
where
e-listClientsPost s uID p pID ≡
IDsOK s [uID] [pID] [] [] ∧ pass s uID = p ∧ uID = admin s

definition listPendingSApiReqs :: state ⇒ userID ⇒ password ⇒ apiID list
where
listPendingSApiReqs s uID p ≡ pendingSApiReqs s

definition e-listPendingSApiReqs :: state ⇒ userID ⇒ password ⇒ bool
where
e-listPendingSApiReqs s uID p ≡
IDsOK s [uID] [] [] [] ∧ pass s uID = p ∧ uID = admin s

definition listServerAPIs :: state ⇒ userID ⇒ password ⇒ apiID list
where
listServerAPIs s uID p ≡ serverApiIDs s

definition e-listServerAPIs :: state ⇒ userID ⇒ password ⇒ bool
where
e-listServerAPIs s uID p ≡
IDsOK s [uID] [] [] [] ∧ pass s uID = p ∧ uID = admin s

19

definition listPendingCApiReqs :: state ⇒ userID ⇒ password ⇒ apiID list
where
listPendingCApiReqs s uID p ≡ pendingCApiReqs s

definition e-listPendingCApiReqs :: state ⇒ userID ⇒ password ⇒ bool
where
e-listPendingCApiReqs s uID p ≡
IDsOK s [uID] [] [] [] ∧ pass s uID = p ∧ uID = admin s

definition listClientAPIs :: state ⇒ userID ⇒ password ⇒ apiID list
where
listClientAPIs s uID p ≡ clientApiIDs s

definition e-listClientAPIs :: state ⇒ userID ⇒ password ⇒ bool
where
e-listClientAPIs s uID p ≡
IDsOK s [uID] [] [] [] ∧ pass s uID = p ∧ uID = admin s

3.2.8 Actions of communication with other APIs
definition sendServerReq :: state ⇒ userID ⇒ password ⇒ apiID ⇒ requestInfo
⇒ (apiID × requestInfo) × state
where
sendServerReq s uID p aID reqInfo ≡
((aID,reqInfo),
s (|pendingSApiReqs := pendingSApiReqs s @ [aID],

sApiReq := (sApiReq s) (aID := reqInfo)|))

definition e-sendServerReq :: state ⇒ userID ⇒ password ⇒ apiID ⇒ requestInfo
⇒ bool
where
e-sendServerReq s uID p aID reqInfo ≡
IDsOK s [uID] [] [] [] ∧ pass s uID = p ∧
uID = admin s ∧ ¬ aID ∈∈ pendingSApiReqs s

definition receiveClientReq :: state ⇒ apiID ⇒ requestInfo ⇒ state
where
receiveClientReq s aID reqInfo ≡
s (|pendingCApiReqs := pendingCApiReqs s @ [aID],

cApiReq := (cApiReq s) (aID := reqInfo)|)

definition e-receiveClientReq :: state ⇒ apiID ⇒ requestInfo ⇒ bool
where
e-receiveClientReq s aID reqInfo ≡

20

¬ aID ∈∈ pendingCApiReqs s ∧ admin s ∈∈ userIDs s

definition connectClient :: state ⇒ userID ⇒ password ⇒ apiID ⇒ password ⇒
(apiID × password) × state
where
connectClient s uID p aID cp ≡
((aID, cp),
s (|clientApiIDs := (aID # clientApiIDs s),

clientPass := (clientPass s) (aID := cp),
pendingCApiReqs := remove1 aID (pendingCApiReqs s),
cApiReq := (cApiReq s)(aID := emptyRequestInfo)|)

)

definition e-connectClient :: state ⇒ userID ⇒ password ⇒ apiID ⇒ password
⇒ bool
where
e-connectClient s uID p aID cp ≡
IDsOK s [uID] [] [] [] ∧ pass s uID = p ∧
uID = admin s ∧
aID ∈∈ pendingCApiReqs s ∧ ¬ aID ∈∈ clientApiIDs s

definition connectServer :: state ⇒ apiID ⇒ password ⇒ state
where
connectServer s aID sp ≡
s (|serverApiIDs := (aID # serverApiIDs s),

serverPass := (serverPass s) (aID := sp),
pendingSApiReqs := remove1 aID (pendingSApiReqs s),
sApiReq := (sApiReq s)(aID := emptyRequestInfo)|)

definition e-connectServer :: state ⇒ apiID ⇒ password ⇒ bool
where
e-connectServer s aID sp ≡
aID ∈∈ pendingSApiReqs s ∧ ¬ aID ∈∈ serverApiIDs s

definition sendPost ::
state ⇒ userID ⇒ password ⇒ apiID ⇒ postID ⇒ (apiID × password × postID
× post × userID × vis) × state
where
sendPost s uID p aID pID ≡
((aID, clientPass s aID, pID, post s pID, owner s pID, vis s pID),
s(|sharedWith := (sharedWith s) (pID := insert2 aID True (sharedWith s pID))|))

definition e-sendPost :: state ⇒ userID ⇒ password ⇒ apiID ⇒ postID ⇒ bool

21

where
e-sendPost s uID p aID pID ≡
IDsOK s [uID] [pID] [] [aID] ∧ pass s uID = p ∧
uID = admin s ∧ aID ∈∈ clientApiIDs s

definition receivePost :: state ⇒ apiID ⇒ password ⇒ postID ⇒ post ⇒ userID
⇒ vis ⇒ state
where
receivePost s aID sp pID pst uID vs ≡
let opIDs = outerPostIDs s in
s (|outerPostIDs := opIDs (aID := List.insert pID (opIDs aID)),

outerPost := fun-upd2 (outerPost s) aID pID pst,
outerOwner := fun-upd2 (outerOwner s) aID pID uID,
outerVis := fun-upd2 (outerVis s) aID pID vs|)

definition e-receivePost :: state ⇒ apiID ⇒ password ⇒ postID ⇒ post ⇒ userID
⇒ vis ⇒ bool
where
e-receivePost s aID sp pID nt uID vs ≡
IDsOK s [] [] [(aID,[])] [] ∧ serverPass s aID = sp

definition sendCreateOFriend ::
state ⇒ userID ⇒ password ⇒ apiID ⇒ userID ⇒ (apiID × password × userID
× userID) × state
where
sendCreateOFriend s uID p aID uID ′ ≡
let ofr = sentOuterFriendIDs s in
((aID, clientPass s aID, uID, uID ′),
s (|sentOuterFriendIDs := ofr (uID := ofr uID @ [(aID,uID ′)])|))

definition e-sendCreateOFriend :: state ⇒ userID ⇒ password ⇒ apiID ⇒ userID
⇒ bool
where
e-sendCreateOFriend s uID p caID uID ′ ≡
IDsOK s [uID] [] [] [caID] ∧ pass s uID = p ∧
¬ (caID,uID ′) ∈∈ sentOuterFriendIDs s uID

definition receiveCreateOFriend :: state⇒ apiID ⇒ password ⇒ userID ⇒ userID
⇒ state
where
receiveCreateOFriend s saID sp uID uID ′ ≡

22

let ofr = recvOuterFriendIDs s in
s (|recvOuterFriendIDs := ofr (uID ′ := ofr uID ′ @ [(saID,uID)])|)

definition e-receiveCreateOFriend :: state ⇒ apiID ⇒ password ⇒ userID ⇒
userID ⇒ bool
where
e-receiveCreateOFriend s saID sp uID uID ′ ≡
IDsOK s [] [] [(saID,[])] [] ∧ serverPass s saID = sp ∧
¬ (saID,uID) ∈∈ recvOuterFriendIDs s uID ′

definition sendDeleteOFriend ::
state ⇒ userID ⇒ password ⇒ apiID ⇒ userID ⇒ (apiID × password × userID
× userID) × state
where
sendDeleteOFriend s uID p aID uID ′ ≡
let ofr = sentOuterFriendIDs s in
((aID, clientPass s aID, uID, uID ′),
s (|sentOuterFriendIDs := ofr (uID := remove1 (aID,uID ′) (ofr uID))|))

definition e-sendDeleteOFriend :: state ⇒ userID ⇒ password ⇒ apiID ⇒ userID
⇒ bool
where
e-sendDeleteOFriend s uID p caID uID ′ ≡
IDsOK s [uID] [] [] [caID] ∧ pass s uID = p ∧
(caID,uID ′) ∈∈ sentOuterFriendIDs s uID

definition receiveDeleteOFriend :: state ⇒ apiID ⇒ password ⇒ userID ⇒ userID
⇒ state
where
receiveDeleteOFriend s saID sp uID uID ′ ≡
let ofr = recvOuterFriendIDs s in
s (|recvOuterFriendIDs := ofr (uID ′ := remove1 (saID,uID) (ofr uID ′))|)

definition e-receiveDeleteOFriend :: state ⇒ apiID ⇒ password ⇒ userID ⇒
userID ⇒ bool
where
e-receiveDeleteOFriend s saID sp uID uID ′ ≡
IDsOK s [] [] [(saID,[])] [] ∧ serverPass s saID = sp ∧
(saID,uID) ∈∈ recvOuterFriendIDs s uID ′

3.3 The step function
datatype out =

outOK | outErr |

23

outBool bool| outName name |
outPost post | outVis vis |
outReq requestInfo |

outUID userID | outUIDL userID list |
outAIDL apiID list | outAIDBL (apiID × bool) list |
outUIDPIDL (userID × postID)list | outAIDPIDL (apiID × postID)list |
outAIDUIDL (apiID × userID) list |

O-sendServerReq apiID × requestInfo | O-connectClient apiID × password |
O-sendPost apiID × password × postID × post × userID × vis |
O-sendCreateOFriend apiID × password × userID × userID |
O-sendDeleteOFriend apiID × password × userID × userID

fun from-O-sendPost where
from-O-sendPost (O-sendPost antt) = antt
|from-O-sendPost - = undefined

datatype sActt =
sSys userID password

lemmas s-defs =
e-startSys-def startSys-def

fun sStep :: state ⇒ sActt ⇒ out ∗ state where
sStep s (sSys uID p) =
(if e-startSys s uID p

then (outOK , startSys s uID p)
else (outErr , s))

fun sUserOfA :: sActt ⇒ userID where
sUserOfA (sSys uID p) = uID

datatype cActt =
cNUReq userID requestInfo
|cUser userID password userID password
|cPost userID password postID
|cFriendReq userID password userID requestInfo
|cFriend userID password userID

lemmas c-defs =
e-createNUReq-def createNUReq-def
e-createUser-def createUser-def
e-createPost-def createPost-def

24

e-createFriendReq-def createFriendReq-def
e-createFriend-def createFriend-def

fun cStep :: state ⇒ cActt ⇒ out ∗ state where
cStep s (cNUReq uID req) =
(if e-createNUReq s uID req

then (outOK , createNUReq s uID req)
else (outErr , s))

|
cStep s (cUser uID p uID ′ p ′) =
(if e-createUser s uID p uID ′ p ′

then (outOK , createUser s uID p uID ′ p ′)
else (outErr , s))

|
cStep s (cPost uID p pID) =
(if e-createPost s uID p pID

then (outOK , createPost s uID p pID)
else (outErr , s))

|
cStep s (cFriendReq uID p uID ′ req) =
(if e-createFriendReq s uID p uID ′ req

then (outOK , createFriendReq s uID p uID ′ req)
else (outErr , s))

|
cStep s (cFriend uID p uID ′) =
(if e-createFriend s uID p uID ′

then (outOK , createFriend s uID p uID ′)
else (outErr , s))

fun cUserOfA :: cActt ⇒ userID where
cUserOfA (cNUReq uID req) = uID
|cUserOfA (cUser uID p uID ′ p ′) = uID
|cUserOfA (cPost uID p pID) = uID
|cUserOfA (cFriendReq uID p uID ′ req) = uID
|cUserOfA (cFriend uID p uID ′) = uID

datatype dActt =
dFriend userID password userID

lemmas d-defs =
e-deleteFriend-def deleteFriend-def

fun dStep :: state ⇒ dActt ⇒ out ∗ state where
dStep s (dFriend uID p uID ′) =
(if e-deleteFriend s uID p uID ′

then (outOK , deleteFriend s uID p uID ′)
else (outErr , s))

25

fun dUserOfA :: dActt ⇒ userID where
dUserOfA (dFriend uID p uID ′) = uID

datatype uActt =
isuUser : uUser userID password password name inform
|isuPost: uPost userID password postID post
|isuVisPost: uVisPost userID password postID vis

lemmas u-defs =
e-updateUser-def updateUser-def
e-updatePost-def updatePost-def
e-updateVisPost-def updateVisPost-def

fun uStep :: state ⇒ uActt ⇒ out ∗ state where
uStep s (uUser uID p p ′ name info) =
(if e-updateUser s uID p p ′ name info

then (outOK , updateUser s uID p p ′ name info)
else (outErr , s))

|
uStep s (uPost uID p pID pst) =
(if e-updatePost s uID p pID pst

then (outOK , updatePost s uID p pID pst)
else (outErr , s))

|
uStep s (uVisPost uID p pID visStr) =
(if e-updateVisPost s uID p pID visStr

then (outOK , updateVisPost s uID p pID visStr)
else (outErr , s))

fun uUserOfA :: uActt ⇒ userID where
uUserOfA (uUser uID p p ′ name info) = uID
|uUserOfA (uPost uID p pID pst) = uID
|uUserOfA (uVisPost uID p pID visStr) = uID

datatype rActt =
rNUReq userID password userID
|rUser userID password userID
|rAmIAdmin userID password

|rPost userID password postID

|rOwnerPost userID password postID
|rVisPost userID password postID

|rOPost userID password apiID postID

26

|rOwnerOPost userID password apiID postID
|rVisOPost userID password apiID postID

|rFriendReqToMe userID password userID
|rFriendReqFromMe userID password userID
|rSApiReq userID password apiID
|rCApiReq userID password apiID

lemmas r-defs =
readNUReq-def e-readNUReq-def
readUser-def e-readUser-def
readAmIAdmin-def e-readAmIAdmin-def

readPost-def e-readPost-def

readOwnerPost-def e-readOwnerPost-def
readVisPost-def e-readVisPost-def

readOPost-def e-readOPost-def

readOwnerOPost-def e-readOwnerOPost-def
readVisOPost-def e-readVisOPost-def

readFriendReqToMe-def e-readFriendReqToMe-def
readFriendReqFromMe-def e-readFriendReqFromMe-def
readSApiReq-def e-readSApiReq-def
readCApiReq-def e-readCApiReq-def

fun rObs :: state ⇒ rActt ⇒ out where
rObs s (rNUReq uID p uID ′) =
(if e-readNUReq s uID p uID ′ then outReq (readNUReq s uID p uID ′) else outErr)
|
rObs s (rUser uID p uID ′) =
(if e-readUser s uID p uID ′ then outName (readUser s uID p uID ′) else outErr)
|
rObs s (rAmIAdmin uID p) =
(if e-readAmIAdmin s uID p then outBool (readAmIAdmin s uID p) else outErr)
|
rObs s (rPost uID p pID) =
(if e-readPost s uID p pID then outPost (readPost s uID p pID) else outErr)
|
rObs s (rOwnerPost uID p pID) =
(if e-readOwnerPost s uID p pID then outUID (readOwnerPost s uID p pID) else

outErr)
|
rObs s (rVisPost uID p pID) =
(if e-readVisPost s uID p pID then outVis (readVisPost s uID p pID) else outErr)
|

27

rObs s (rOPost uID p aID pID) =
(if e-readOPost s uID p aID pID then outPost (readOPost s uID p aID pID) else

outErr)
|
rObs s (rOwnerOPost uID p aID pID) =
(if e-readOwnerOPost s uID p aID pID then outUID (readOwnerOPost s uID p

aID pID) else outErr)
|
rObs s (rVisOPost uID p aID pID) =
(if e-readVisOPost s uID p aID pID then outVis (readVisOPost s uID p aID pID)

else outErr)
|

rObs s (rFriendReqToMe uID p uID ′) =
(if e-readFriendReqToMe s uID p uID ′ then outReq (readFriendReqToMe s uID p

uID ′) else outErr)
|
rObs s (rFriendReqFromMe uID p uID ′) =
(if e-readFriendReqFromMe s uID p uID ′ then outReq (readFriendReqFromMe s

uID p uID ′) else outErr)
|
rObs s (rSApiReq uID p aID) =
(if e-readSApiReq s uID p aID then outReq (readSApiReq s uID p aID) else outErr)
|
rObs s (rCApiReq uID p aID) =
(if e-readCApiReq s uID p aID then outReq (readCApiReq s uID p aID) else outErr)

fun rUserOfA :: rActt ⇒ userID where
rUserOfA (rNUReq uID p uID ′) = uID
|rUserOfA (rUser uID p uID ′) = uID
|rUserOfA (rAmIAdmin uID p) = uID

|rUserOfA (rPost uID p pID) = uID
|rUserOfA (rOwnerPost uID p pID) = uID
|rUserOfA (rVisPost uID p pID) = uID

|rUserOfA (rOPost uID p aID pID) = uID
|rUserOfA (rOwnerOPost uID p aID pID) = uID
|rUserOfA (rVisOPost uID p aID pID) = uID

|rUserOfA (rFriendReqToMe uID p uID ′) = uID
|rUserOfA (rFriendReqFromMe uID p uID ′) = uID
|rUserOfA (rSApiReq uID p aID) = uID
|rUserOfA (rCApiReq uID p aID) = uID

datatype lActt =

28

lPendingUReqs userID password
|lAllUsers userID password
|lFriends userID password userID
|lSentOuterFriends userID password userID
|lRecvOuterFriends userID password
|lInnerPosts userID password
|lOuterPosts userID password
|lClientsPost userID password postID
|lPendingSApiReqs userID password
|lServerAPIs userID password
|lPendingCApiReqs userID password
|lClientAPIs userID password

lemmas l-defs =
listPendingUReqs-def e-listPendingUReqs-def
listAllUsers-def e-listAllUsers-def
listFriends-def e-listFriends-def
listSentOuterFriends-def e-listSentOuterFriends-def
listRecvOuterFriends-def e-listRecvOuterFriends-def
listInnerPosts-def e-listInnerPosts-def
listOuterPosts-def e-listOuterPosts-def
listClientsPost-def e-listClientsPost-def
listPendingSApiReqs-def e-listPendingSApiReqs-def
listServerAPIs-def e-listServerAPIs-def
listPendingCApiReqs-def e-listPendingCApiReqs-def
listClientAPIs-def e-listClientAPIs-def

fun lObs :: state ⇒ lActt ⇒ out where
lObs s (lPendingUReqs uID p) =
(if e-listPendingUReqs s uID p then outUIDL (listPendingUReqs s uID p) else

outErr)
|
lObs s (lAllUsers uID p) =
(if e-listAllUsers s uID p then outUIDL (listAllUsers s uID p) else outErr)
|
lObs s (lFriends uID p uID ′) =
(if e-listFriends s uID p uID ′ then outUIDL (listFriends s uID p uID ′) else outErr)
|
lObs s (lSentOuterFriends uID p uID ′) =
(if e-listSentOuterFriends s uID p uID ′ then outAIDUIDL (listSentOuterFriends

s uID p uID ′) else outErr)
|
lObs s (lRecvOuterFriends uID p) =
(if e-listRecvOuterFriends s uID p then outAIDUIDL (listRecvOuterFriends s uID

p) else outErr)
|
lObs s (lInnerPosts uID p) =
(if e-listInnerPosts s uID p then outUIDPIDL (listInnerPosts s uID p) else outErr)

29

|
lObs s (lOuterPosts uID p) =
(if e-listOuterPosts s uID p then outAIDPIDL (listOuterPosts s uID p) else out-

Err)
|
lObs s (lClientsPost uID p pID) =
(if e-listClientsPost s uID p pID then outAIDBL (listClientsPost s uID p pID) else

outErr)
|
lObs s (lPendingSApiReqs uID p) =
(if e-listPendingSApiReqs s uID p then outAIDL (listPendingSApiReqs s uID p)

else outErr)
|
lObs s (lServerAPIs uID p) =
(if e-listServerAPIs s uID p then outAIDL (listServerAPIs s uID p) else outErr)
|
lObs s (lClientAPIs uID p) =
(if e-listClientAPIs s uID p then outAIDL (listClientAPIs s uID p) else outErr)
|
lObs s (lPendingCApiReqs uID p) =
(if e-listPendingCApiReqs s uID p then outAIDL (listPendingCApiReqs s uID p)

else outErr)

fun lUserOfA :: lActt ⇒ userID where
lUserOfA (lPendingUReqs uID p) = uID
|lUserOfA (lAllUsers uID p) = uID
|lUserOfA (lFriends uID p uID ′) = uID
|lUserOfA (lSentOuterFriends uID p uID ′) = uID
|lUserOfA (lRecvOuterFriends uID p) = uID
|lUserOfA (lInnerPosts uID p) = uID
|lUserOfA (lOuterPosts uID p) = uID
|lUserOfA (lClientsPost uID p pID) = uID
|lUserOfA (lPendingSApiReqs uID p) = uID
|lUserOfA (lServerAPIs uID p) = uID
|lUserOfA (lClientAPIs uID p) = uID
|lUserOfA (lPendingCApiReqs uID p) = uID

datatype comActt =
comSendServerReq userID password apiID requestInfo
|comReceiveClientReq apiID requestInfo
|comConnectClient userID password apiID password
|comConnectServer apiID password
|comReceivePost apiID password postID post userID vis
|comSendPost userID password apiID postID
|comReceiveCreateOFriend apiID password userID userID
|comSendCreateOFriend userID password apiID userID

30

|comReceiveDeleteOFriend apiID password userID userID
|comSendDeleteOFriend userID password apiID userID

lemmas com-defs =
sendServerReq-def e-sendServerReq-def
receiveClientReq-def e-receiveClientReq-def
connectClient-def e-connectClient-def
connectServer-def e-connectServer-def
receivePost-def e-receivePost-def
sendPost-def e-sendPost-def
receiveCreateOFriend-def e-receiveCreateOFriend-def
sendCreateOFriend-def e-sendCreateOFriend-def
receiveDeleteOFriend-def e-receiveDeleteOFriend-def
sendDeleteOFriend-def e-sendDeleteOFriend-def

fun comStep :: state ⇒ comActt ⇒ out × state where
comStep s (comSendServerReq uID p aID reqInfo) =
(if e-sendServerReq s uID p aID reqInfo

then let (x,s) = sendServerReq s uID p aID reqInfo in (O-sendServerReq x, s)
else (outErr , s))

|
comStep s (comReceiveClientReq aID reqInfo) =
(if e-receiveClientReq s aID reqInfo then (outOK , receiveClientReq s aID reqInfo)

else (outErr , s))
|
comStep s (comConnectClient uID p aID cp) =
(if e-connectClient s uID p aID cp

then let (aID-cp,s) = connectClient s uID p aID cp in (O-connectClient aID-cp,
s)

else (outErr , s))
|
comStep s (comConnectServer aID sp) =
(if e-connectServer s aID sp then (outOK , connectServer s aID sp) else (outErr ,

s))
|
comStep s (comReceivePost aID sp pID nt uID vs) =
(if e-receivePost s aID sp pID nt uID vs

then (outOK , receivePost s aID sp pID nt uID vs)
else (outErr , s))

|
comStep s (comSendPost uID p aID pID) =
(if e-sendPost s uID p aID pID

then let (x,s) = sendPost s uID p aID pID in (O-sendPost x, s)
else (outErr , s))

|
comStep s (comReceiveCreateOFriend aID cp uID uID ′) =
(if e-receiveCreateOFriend s aID cp uID uID ′

then (outOK , receiveCreateOFriend s aID cp uID uID ′)
else (outErr , s))

31

|
comStep s (comSendCreateOFriend uID p aID uID ′) =
(if e-sendCreateOFriend s uID p aID uID ′

then let (apuu,s) = sendCreateOFriend s uID p aID uID ′ in (O-sendCreateOFriend
apuu, s)

else (outErr , s))
|
comStep s (comReceiveDeleteOFriend aID cp uID uID ′) =
(if e-receiveDeleteOFriend s aID cp uID uID ′

then (outOK , receiveDeleteOFriend s aID cp uID uID ′)
else (outErr , s))

|
comStep s (comSendDeleteOFriend uID p aID uID ′) =
(if e-sendDeleteOFriend s uID p aID uID ′

then let (apuu,s) = sendDeleteOFriend s uID p aID uID ′ in (O-sendDeleteOFriend
apuu, s)

else (outErr , s))

fun comUserOfA :: comActt ⇒ userID option where
comUserOfA (comSendServerReq uID p aID reqInfo) = Some uID
|comUserOfA (comReceiveClientReq aID reqInfo) = None
|comUserOfA (comConnectClient uID p aID sp) = Some uID
|comUserOfA (comConnectServer aID sp) = None
|comUserOfA (comReceivePost aID sp pID nt uID vs) = None
|comUserOfA (comSendPost uID p aID pID) = Some uID
|comUserOfA (comReceiveCreateOFriend aID cp uID uID ′) = None
|comUserOfA (comSendCreateOFriend uID p aID uID ′) = Some uID
|comUserOfA (comReceiveDeleteOFriend aID cp uID uID ′) = None
|comUserOfA (comSendDeleteOFriend uID p aID uID ′) = Some uID

fun comApiOfA :: comActt ⇒ apiID where
comApiOfA (comSendServerReq uID p aID reqInfo) = aID
|comApiOfA (comReceiveClientReq aID reqInfo) = aID
|comApiOfA (comConnectClient uID p aID sp) = aID
|comApiOfA (comConnectServer aID sp) = aID
|comApiOfA (comReceivePost aID sp pID nt uID vs) = aID
|comApiOfA (comSendPost uID p aID pID) = aID
|comApiOfA (comReceiveCreateOFriend aID cp uID uID ′) = aID
|comApiOfA (comSendCreateOFriend uID p aID uID ′) = aID
|comApiOfA (comReceiveDeleteOFriend aID cp uID uID ′) = aID
|comApiOfA (comSendDeleteOFriend uID p aID uID ′) = aID

datatype act =
isSact: Sact sActt |

isCact: Cact cActt | isDact: Dact dActt | isUact: Uact uActt |

32

isRact: Ract rActt | isLact: Lact lActt |

isCOMact: COMact comActt

fun step :: state ⇒ act ⇒ out ∗ state where
step s (Sact sa) = sStep s sa
|
step s (Cact ca) = cStep s ca
|
step s (Dact da) = dStep s da
|
step s (Uact ua) = uStep s ua
|
step s (Ract ra) = (rObs s ra, s)
|
step s (Lact la) = (lObs s la, s)
|
step s (COMact ca) = comStep s ca

fun userOfA :: act ⇒ userID option where
userOfA (Sact sa) = Some (sUserOfA sa)
|
userOfA (Cact ca) = Some (cUserOfA ca)
|
userOfA (Dact da) = Some (dUserOfA da)
|
userOfA (Uact ua) = Some (uUserOfA ua)
|
userOfA (Ract ra) = Some (rUserOfA ra)
|
userOfA (Lact la) = Some (lUserOfA la)
|
userOfA (COMact ca) = comUserOfA ca

interpretation IO-Automaton where
istate = istate and step = step
〈proof 〉

3.4 Code generation
export-code step istate getFreshPostID in Scala

end

33

4 The CoSMeDis network of communicating nodes

This is the specification of an entire CoSMeDis network of communicating
nodes, as described in Section IV.B of [3] NB: What that paper refers to as
"nodes" are referred in this formalization as "APIs".
theory API-Network
imports

BD-Security-Compositional.Composing-Security-Network
System-Specification

begin

locale Network =
fixes AIDs :: apiID set
assumes finite-AIDs: finite AIDs
begin

fun comOfO :: apiID ⇒ (act × out) ⇒ com where
comOfO aid (COMact (comSendServerReq uid password aID req), ou) =
(if aid 6= aID ∧ ou 6= outErr then Send else Internal)

| comOfO aid (COMact (comConnectClient uID p aID sp), ou) =
(if aid 6= aID ∧ ou 6= outErr then Send else Internal)

| comOfO aid (COMact (comSendPost uID p aID nID), ou) =
(if aid 6= aID ∧ ou 6= outErr then Send else Internal)

| comOfO aid (COMact (comSendCreateOFriend uID p aID uID ′), ou) =
(if aid 6= aID ∧ ou 6= outErr then Send else Internal)

| comOfO aid (COMact (comSendDeleteOFriend uID p aID uID ′), ou) =
(if aid 6= aID ∧ ou 6= outErr then Send else Internal)

| comOfO aid (COMact (comReceiveClientReq aID req), ou) =
(if aid 6= aID ∧ ou 6= outErr then Recv else Internal)

| comOfO aid (COMact (comConnectServer aID sp), ou) =
(if aid 6= aID ∧ ou 6= outErr then Recv else Internal)

| comOfO aid (COMact (comReceivePost aID sp nID ntc uid v), ou) =
(if aid 6= aID ∧ ou 6= outErr then Recv else Internal)

| comOfO aid (COMact (comReceiveCreateOFriend aID sp uid uid ′), ou) =
(if aid 6= aID ∧ ou 6= outErr then Recv else Internal)

| comOfO aid (COMact (comReceiveDeleteOFriend aID sp uid uid ′), ou) =
(if aid 6= aID ∧ ou 6= outErr then Recv else Internal)

| comOfO - - = Internal

fun comOf :: apiID ⇒ (state, act, out) trans ⇒ com where
comOf aid (Trans - a ou -) = comOfO aid (a, ou)

fun syncO :: apiID ⇒ (act × out) ⇒ apiID ⇒ (act × out) ⇒ bool where
syncO aid1 (COMact (comSendServerReq uid p aid req), ou1) aid2 (a2 , ou2) =
(∃ req2 . a2 = (COMact (comReceiveClientReq aid1 req2)) ∧ ou1 = O-sendServerReq

(aid2 ,req2) ∧ ou2 = outOK)
| syncO aid1 (COMact (comConnectClient uid p aid sp), ou1) aid2 (a2 , ou2) =

(∃ sp2 . a2 = (COMact (comConnectServer aid1 sp2)) ∧ ou1 = O-connectClient

34

(aid2 ,sp2) ∧ ou2 = outOK)
| syncO aid1 (COMact (comSendPost uid p aid nid), ou1) aid2 (a2 , ou2) =

(∃ sp2 nid2 ntc2 uid2 v. a2 = (COMact (comReceivePost aid1 sp2 nid2 ntc2
uid2 v)) ∧ ou1 = O-sendPost (aid2 , sp2 , nid2 , ntc2 , uid2 , v) ∧ ou2 = outOK)
| syncO aid1 (COMact (comSendCreateOFriend uid p aid uid ′), ou1) aid2 (a2 ,
ou2) =

(∃ sp2 uid2 uid2 ′. a2 = (COMact (comReceiveCreateOFriend aid1 sp2 uid2
uid2 ′)) ∧ ou1 = O-sendCreateOFriend (aid2 , sp2 , uid2 , uid2 ′) ∧ ou2 = outOK)
| syncO aid1 (COMact (comSendDeleteOFriend uid p aid uid ′), ou1) aid2 (a2 ,
ou2) =

(∃ sp2 uid2 uid2 ′. a2 = (COMact (comReceiveDeleteOFriend aid1 sp2 uid2
uid2 ′)) ∧ ou1 = O-sendDeleteOFriend (aid2 , sp2 , uid2 , uid2 ′) ∧ ou2 = outOK)
| syncO - - - - = False

fun cmpO :: apiID ⇒ (act × out) ⇒ apiID ⇒ (act × out) ⇒ (apiID × act × out
× apiID × act × out) where

cmpO aid1 obs1 aid2 obs2 = (aid1 , fst obs1 , snd obs1 , aid2 , fst obs2 , snd obs2)

fun sync :: apiID ⇒ (state, act, out) trans ⇒ apiID ⇒ (state, act, out) trans ⇒
bool where

sync aid1 (Trans s1 a1 ou1 s1 ′) aid2 (Trans s2 a2 ou2 s2 ′) = syncO aid1 (a1 ,
ou1) aid2 (a2 , ou2)

lemma syncO-cases:
assumes syncO aid1 obs1 aid2 obs2
obtains
(Req) uid p aid req1 req2
where obs1 = (COMact (comSendServerReq uid p aid req1), O-sendServerReq

(aid2 ,req2))
and obs2 = (COMact (comReceiveClientReq aid1 req2), outOK)

| (Connect) uid p aid sp sp2
where obs1 = (COMact (comConnectClient uid p aid sp), O-connectClient

(aid2 ,sp2))
and obs2 = (COMact (comConnectServer aid1 sp2), outOK)

| (Notice) uid p aid nid sp2 nid2 ntc2 own2 v
where obs1 = (COMact (comSendPost uid p aid nid), O-sendPost (aid2 , sp2 ,

nid2 , ntc2 , own2 , v))
and obs2 = (COMact (comReceivePost aid1 sp2 nid2 ntc2 own2 v), outOK)

| (CFriend) uid p aid uid ′ sp2 uid2 uid2 ′

where obs1 = (COMact (comSendCreateOFriend uid p aid uid ′), O-sendCreateOFriend
(aid2 , sp2 , uid2 , uid2 ′))

and obs2 = (COMact (comReceiveCreateOFriend aid1 sp2 uid2 uid2 ′), outOK)
| (DFriend) uid p aid uid ′ sp2 uid2 uid2 ′

where obs1 = (COMact (comSendDeleteOFriend uid p aid uid ′), O-sendDeleteOFriend
(aid2 , sp2 , uid2 , uid2 ′))

and obs2 = (COMact (comReceiveDeleteOFriend aid1 sp2 uid2 uid2 ′), outOK)
〈proof 〉

35

lemma sync-cases:
assumes sync aid1 trn1 aid2 trn2
and validTrans trn1
obtains
(Req) uid p aid req s1 s1 ′ s2 s2 ′

where trn1 = Trans s1 (COMact (comSendServerReq uid p aid req)) (O-sendServerReq
(aid2 ,req)) s1 ′

and trn2 = Trans s2 (COMact (comReceiveClientReq aid1 req)) outOK s2 ′

| (Connect) uid p aid sp s1 s1 ′ s2 s2 ′

where trn1 = Trans s1 (COMact (comConnectClient uid p aid sp)) (O-connectClient
(aid2 ,sp)) s1 ′

and trn2 = Trans s2 (COMact (comConnectServer aid1 sp)) outOK s2 ′

| (Notice) uid p aid nid sp2 nid2 ntc2 own2 v s1 s1 ′ s2 s2 ′

where trn1 = Trans s1 (COMact (comSendPost uid p aid nid)) (O-sendPost
(aid2 , sp2 , nid2 , ntc2 , own2 , v)) s1 ′

and trn2 = Trans s2 (COMact (comReceivePost aid1 sp2 nid2 ntc2 own2 v))
outOK s2 ′

| (CFriend) uid p uid ′ sp s1 s1 ′ s2 s2 ′

where trn1 = Trans s1 (COMact (comSendCreateOFriend uid p aid2 uid ′))
(O-sendCreateOFriend (aid2 , sp, uid, uid ′)) s1 ′

and trn2 = Trans s2 (COMact (comReceiveCreateOFriend aid1 sp uid uid ′))
outOK s2 ′

| (DFriend) uid p aid uid ′ sp s1 s1 ′ s2 s2 ′

where trn1 = Trans s1 (COMact (comSendDeleteOFriend uid p aid2 uid ′))
(O-sendDeleteOFriend (aid2 , sp, uid, uid ′)) s1 ′

and trn2 = Trans s2 (COMact (comReceiveDeleteOFriend aid1 sp uid uid ′))
outOK s2 ′

〈proof 〉

fun tgtNodeOfO :: apiID ⇒ (act × out) ⇒ apiID where
tgtNodeOfO - (COMact (comSendServerReq uID p aID reqInfo), ou) = aID
| tgtNodeOfO - (COMact (comReceiveClientReq aID reqInfo), ou) = aID
| tgtNodeOfO - (COMact (comConnectClient uID p aID sp), ou) = aID
| tgtNodeOfO - (COMact (comConnectServer aID sp), ou) = aID
| tgtNodeOfO - (COMact (comSendPost uID p aID nID), ou) = aID
| tgtNodeOfO - (COMact (comReceivePost aID sp nID title text v), ou) = aID
| tgtNodeOfO - (COMact (comSendCreateOFriend uID p aID uID ′), ou) = aID
| tgtNodeOfO - (COMact (comReceiveCreateOFriend aID sp uid uid ′), ou) = aID
| tgtNodeOfO - (COMact (comSendDeleteOFriend uID p aID uID ′), ou) = aID
| tgtNodeOfO - (COMact (comReceiveDeleteOFriend aID sp uid uid ′), ou) = aID
| tgtNodeOfO - - = undefined

fun tgtNodeOf :: apiID ⇒ (state, act, out) trans ⇒ apiID where
tgtNodeOf - (Trans s (COMact (comSendServerReq uID p aID reqInfo)) ou s ′) =

aID
| tgtNodeOf - (Trans s (COMact (comReceiveClientReq aID reqInfo)) ou s ′) = aID
| tgtNodeOf - (Trans s (COMact (comConnectClient uID p aID sp)) ou s ′) = aID
| tgtNodeOf - (Trans s (COMact (comConnectServer aID sp)) ou s ′) = aID
| tgtNodeOf - (Trans s (COMact (comSendPost uID p aID nID)) ou s ′) = aID

36

| tgtNodeOf - (Trans s (COMact (comReceivePost aID sp nID title text v)) ou s ′)
= aID
| tgtNodeOf - (Trans s (COMact (comSendCreateOFriend uID p aID uID ′)) ou s ′)
= aID
| tgtNodeOf - (Trans s (COMact (comReceiveCreateOFriend aID sp uid uid ′)) ou
s ′) = aID
| tgtNodeOf - (Trans s (COMact (comSendDeleteOFriend uID p aID uID ′)) ou s ′)
= aID
| tgtNodeOf - (Trans s (COMact (comReceiveDeleteOFriend aID sp uid uid ′)) ou
s ′) = aID
| tgtNodeOf - - = undefined

abbreviation validTrans :: apiID ⇒ (state, act, out) trans ⇒ bool where
validTrans aid ≡ System-Specification.validTrans

sublocale TS-Network
where istate = λ-. istate and validTrans = validTrans and srcOf = λ-. srcOf
and tgtOf = λ-. tgtOf

and nodes = AIDs and comOf = comOf and tgtNodeOf = tgtNodeOf
and sync = sync
〈proof 〉

end

end
theory Automation-Setup

imports System-Specification
begin

lemma add-prop:
assumes PROP (T)
shows A ==> PROP (T)
〈proof 〉

lemmas exhaust-elim =
sActt.exhaust[of x, THEN add-prop[where A=a=Sact x], rotated −1]
cActt.exhaust[of x, THEN add-prop[where A=a=Cact x], rotated −1]
uActt.exhaust[of x, THEN add-prop[where A=a=Uact x], rotated −1]
rActt.exhaust[of x, THEN add-prop[where A=a=Ract x], rotated −1]
lActt.exhaust[of x, THEN add-prop[where A=a=Lact x], rotated −1]
comActt.exhaust[of x, THEN add-prop[where A=a=COMact x], rotated −1]

for x a

lemma state-cong:
fixes s::state
assumes
pendingUReqs s = pendingUReqs s1 ∧ userReq s = userReq s1 ∧ userIDs s =

37

userIDs s1 ∧
postIDs s = postIDs s1 ∧ admin s = admin s1 ∧
user s = user s1 ∧ pass s = pass s1 ∧ pendingFReqs s = pendingFReqs s1 ∧

friendReq s = friendReq s1 ∧ friendIDs s = friendIDs s1 ∧
sentOuterFriendIDs s = sentOuterFriendIDs s1 ∧
recvOuterFriendIDs s = recvOuterFriendIDs s1 ∧
post s = post s1 ∧
owner s = owner s1 ∧ vis s = vis s1 ∧
pendingSApiReqs s = pendingSApiReqs s1 ∧ sApiReq s = sApiReq s1 ∧ server-

ApiIDs s = serverApiIDs s1 ∧ serverPass s = serverPass s1 ∧
outerPostIDs s = outerPostIDs s1 ∧ outerPost s = outerPost s1 ∧
outerOwner s = outerOwner s1 ∧ outerVis s = outerVis s1 ∧
pendingCApiReqs s = pendingCApiReqs s1 ∧ cApiReq s = cApiReq s1 ∧ clien-

tApiIDs s = clientApiIDs s1 ∧ clientPass s = clientPass s1 ∧
sharedWith s = sharedWith s1

shows s = s1
〈proof 〉

end

5 Safety properties

Here we prove some safety properties (state invariants) for a CoSMeDis node
that are needed in the proof of BD Security properties.
theory Safety-Properties

imports
Automation-Setup

begin

declare Let-def [simp]
declare if-splits[split]
declare IDsOK-def [simp]

lemmas eff-defs = s-defs c-defs d-defs u-defs
lemmas obs-defs = r-defs l-defs
lemmas effc-defs = eff-defs com-defs
lemmas all-defs = effc-defs obs-defs

declare sstep-Cons[simp]

lemma Lact-Ract-noStateChange[simp]:
assumes a ∈ Lact ‘ UNIV ∪ Ract ‘ UNIV
shows snd (step s a) = s
〈proof 〉

lemma Lact-Ract-noStateChange-set:

38

assumes set al ⊆ Lact ‘ UNIV ∪ Ract ‘ UNIV
shows snd (sstep s al) = s
〈proof 〉

lemma reach-postIDs-persist:
pID ∈∈ postIDs s =⇒ step s a = (ou,s ′) =⇒ pID ∈∈ postIDs s ′

〈proof 〉

lemma userOfA-not-userIDs-outErr :
∃ uid. userOfA a = Some uid ∧ ¬ uid ∈∈ userIDs s =⇒
∀ aID uID p name. a 6= Sact (sSys uID p) =⇒
∀ uID name. a 6= Cact (cNUReq uID name) =⇒
fst (step s a) = outErr
〈proof 〉

lemma reach-vis: reach s =⇒ vis s pID ∈ {FriendV , PublicV }
〈proof 〉

lemma reach-not-postIDs-emptyPost:
reach s =⇒ PID /∈ set (postIDs s) =⇒ post s PID = emptyPost
〈proof 〉

lemma reach-not-postIDs-friendV :
reach s =⇒ PID /∈ set (postIDs s) =⇒ vis s PID = FriendV
〈proof 〉

lemma reach-owner-userIDs: reach s =⇒ pID ∈∈ postIDs s =⇒ owner s pID ∈∈
userIDs s
〈proof 〉

lemma reach-admin-userIDs: reach s =⇒ uID ∈∈ userIDs s =⇒ admin s ∈∈
userIDs s
〈proof 〉

lemma reach-pendingUReqs-distinct: reach s =⇒ distinct (pendingUReqs s)
〈proof 〉

lemma reach-pendingUReqs:
reach s =⇒ uid ∈∈ pendingUReqs s =⇒ uid /∈ set (userIDs s) ∧ admin s ∈∈
userIDs s
〈proof 〉

lemma reach-friendIDs-symmetric:
reach s =⇒ uID1 ∈∈ friendIDs s uID2 ←→ uID2 ∈∈ friendIDs s uID1
〈proof 〉

39

lemma reach-distinct-friends-reqs:
assumes reach s
shows distinct (friendIDs s uid) and distinct (pendingFReqs s uid)

and distinct (sentOuterFriendIDs s uid) and distinct (recvOuterFriendIDs s uid)
and uid ′ ∈∈ pendingFReqs s uid =⇒ uid ′ /∈ set (friendIDs s uid)
and uid ′ ∈∈ pendingFReqs s uid =⇒ uid /∈ set (friendIDs s uid ′)
〈proof 〉

lemma remove1-in-set: x ∈∈ remove1 y xs =⇒ x ∈∈ xs
〈proof 〉

lemma reach-IDs-used-IDsOK [rule-format]:
assumes reach s
shows uid ∈∈ pendingFReqs s uid ′ −→ IDsOK s [uid, uid ′] [] [] [] (is ?p)
and uid ∈∈ friendIDs s uid ′ −→ IDsOK s [uid, uid ′] [] [] [] (is ?f)
〈proof 〉

lemma reach-AID-used-valid:
assumes reach s
and aid ∈∈ serverApiIDs s ∨ aid ∈∈ clientApiIDs s ∨ aid ∈∈ pendingSApiReqs s
∨ aid ∈∈ pendingCApiReqs s
shows admin s ∈∈ userIDs s
〈proof 〉

lemma IDs-mono[rule-format]:
assumes step s a = (ou, s ′)
shows uid ∈∈ userIDs s −→ uid ∈∈ userIDs s ′ (is ?u)
and nid ∈∈ postIDs s −→ nid ∈∈ postIDs s ′ (is ?n)
and aid ∈∈ clientApiIDs s −→ aid ∈∈ clientApiIDs s ′ (is ?c)
and sid ∈∈ serverApiIDs s −→ sid ∈∈ serverApiIDs s ′ (is ?s)
and nid ∈∈ outerPostIDs s aid −→ nid ∈∈ outerPostIDs s ′ aid (is ?o)
〈proof 〉

lemma IDsOK-mono:
assumes step s a = (ou, s ′)
and IDsOK s uIDs pIDs saID-pIDs-s caIDs
shows IDsOK s ′ uIDs pIDs saID-pIDs-s caIDs
〈proof 〉

lemma step-outerFriendIDs-idem:
assumes step s a = (ou, s ′)
and ∀ uID p aID uID ′. a 6= COMact (comSendCreateOFriend uID p aID uID ′) ∧

a 6= COMact (comReceiveCreateOFriend aID p uID uID ′) ∧
a 6= COMact (comSendDeleteOFriend uID p aID uID ′) ∧
a 6= COMact (comReceiveDeleteOFriend aID p uID uID ′)

shows sentOuterFriendIDs s ′ = sentOuterFriendIDs s (is ?sent)

40

and recvOuterFriendIDs s ′ = recvOuterFriendIDs s (is ?recv)
〈proof 〉

lemma istate-sSys:
assumes step istate a = (ou, s ′)
obtains uid p where a = Sact (sSys uid p)

| s ′ = istate
〈proof 〉

end
theory Post-Intro

imports ../Safety-Properties
begin

6 Post confidentiality

We verify the following BD Security property of the CoSMeDis network:

Given a coalition consisting of groups of users UIDs j from multiple nodes
j and given a post PID at node i,
the coalition cannot learn anything about the updates to this post
beyond those updates performed while or last before one of the following
holds:
(1) Some user in UIDs i is the admin at node i, is the owner of PID or is
friends with the owner of PID
(2) PID is marked as public
unless some user in UIDs j for a node j different than i is admin of node j
or is remote friend with the owner of PID.3

As explained in [3], in order to prove this property for the CoSMeDis net-
work, we compose BD security properties of individual CoSMeDis nodes.
When formulating the individual node properties, we will distinguish be-
tween the secret issuer node i and the (potential) secret receiver nodes: all
nodes different from i. Consequently, we will have two BD security properties
– for issuers and for receivers – proved in their corresponding subsections.
Then we prove BD Security for the (binary) composition of an issuer and a
receiver node, and finally we prove BD Security for the n-ary composition
(of an entire CoSMeDis network of nodes).
Described above is the property in a form that employs a dynamic trigger

3So UIDs is a function from node identifiers (called API IDs in this formalization) to
sets of user IDs. We will write AID instead of i (which will be fixed in our locales) and
aid instead of j.

41

(i.e., an inductive bound that incorporates an iterated trigger) for the secret
issuer node. However, the first subsections of this section cover the static
version of this (multi-node) property, corresponding to a static BD security
property for the secret issuer. The dynamic version is covered after that, in
a dedicated subsection.
Finally, we lift the above BD security property, which refers to a single
secret source, i.e., a post at some node, to simultaneous BD Security for
two independent secret sources, i.e., two different posts at two (possibly
different) nodes. For this, we use the BD Security system compositionality
and transport theorems formalized in the AFP entry [5]. More details about
this approach can be found in [3]; in particular, Appendix A from that paper
discusses the transport theorem.
end

theory Post-Observation-Setup-ISSUER
imports Post-Intro

begin

6.1 Confidentiality for a secret issuer node

We verify that a group of users of a given node i can learn nothing about
the updates to the content of a post PID located at that node beyond the
existence of an update unless one of them is the admin or the owner of PID,
or becomes friends with the owner, or PID is marked as public. This is
formulated as a BD Security property and is proved by unwinding.
See [3] for more details.

6.1.1 Observation setup
type-synonym obs = act ∗ out

locale Fixed-UIDs = fixes UIDs :: userID set

locale Fixed-PID = fixes PID :: postID

locale ObservationSetup-ISSUER = Fixed-UIDs + Fixed-PID
begin

fun γ :: (state,act,out) trans ⇒ bool where
γ (Trans - a - -) ←→

(∃ uid. userOfA a = Some uid ∧ uid ∈ UIDs)
∨
(∃ ca. a = COMact ca)
∨

42

(∃ uid p. a = Sact (sSys uid p))

fun sPurge :: sActt ⇒ sActt where
sPurge (sSys uid pwd) = sSys uid emptyPass

fun comPurge :: comActt ⇒ comActt where
comPurge (comSendServerReq uID p aID reqInfo) = comSendServerReq uID emp-

tyPass aID reqInfo
|comPurge (comConnectClient uID p aID sp) = comConnectClient uID emptyPass
aID sp
|comPurge (comConnectServer aID sp) = comConnectServer aID sp
|comPurge (comSendPost uID p aID pID) = comSendPost uID emptyPass aID pID
|comPurge (comSendCreateOFriend uID p aID uID ′) = comSendCreateOFriend
uID emptyPass aID uID ′

|comPurge (comSendDeleteOFriend uID p aID uID ′) = comSendDeleteOFriend
uID emptyPass aID uID ′

|comPurge ca = ca

fun outPurge :: out ⇒ out where
outPurge (O-sendPost (aID, sp, pID, pst, uID, vs)) =
(let pst ′ = (if pID = PID then emptyPost else pst)
in O-sendPost (aID, sp, pID, pst ′, uID, vs))

|outPurge ou = ou

fun g :: (state,act,out)trans ⇒ obs where
g (Trans - (Sact sa) ou -) = (Sact (sPurge sa), outPurge ou)
|g (Trans - (COMact ca) ou -) = (COMact (comPurge ca), outPurge ou)
|g (Trans - a ou -) = (a,ou)

lemma comPurge-simps:
comPurge ca = comSendServerReq uID p aID reqInfo ←→ (∃ p ′. ca = comSend-

ServerReq uID p ′ aID reqInfo ∧ p = emptyPass)
comPurge ca = comReceiveClientReq aID reqInfo ←→ ca = comReceiveClientReq

aID reqInfo
comPurge ca = comConnectClient uID p aID sp←→ (∃ p ′. ca = comConnectClient

uID p ′ aID sp ∧ p = emptyPass)
comPurge ca = comConnectServer aID sp ←→ ca = comConnectServer aID sp
comPurge ca = comReceivePost aID sp nID nt uID v ←→ ca = comReceivePost

aID sp nID nt uID v
comPurge ca = comSendPost uID p aID nID ←→ (∃ p ′. ca = comSendPost uID

p ′ aID nID ∧ p = emptyPass)
comPurge ca = comSendCreateOFriend uID p aID uID ′ ←→ (∃ p ′. ca = com-

SendCreateOFriend uID p ′ aID uID ′ ∧ p = emptyPass)
comPurge ca = comReceiveCreateOFriend aID cp uID uID ′ ←→ ca = comRe-

43

ceiveCreateOFriend aID cp uID uID ′

comPurge ca = comSendDeleteOFriend uID p aID uID ′ ←→ (∃ p ′. ca = com-
SendDeleteOFriend uID p ′ aID uID ′ ∧ p = emptyPass)

comPurge ca = comReceiveDeleteOFriend aID cp uID uID ′ ←→ ca = comRe-
ceiveDeleteOFriend aID cp uID uID ′

〈proof 〉

lemma outPurge-simps[simp]:
outPurge ou = outErr ←→ ou = outErr
outPurge ou = outOK ←→ ou = outOK
outPurge ou = O-sendServerReq ossr ←→ ou = O-sendServerReq ossr
outPurge ou = O-connectClient occ ←→ ou = O-connectClient occ
outPurge ou = O-sendPost (aid, sp, pid, pst ′, uid, vs) ←→ (∃ pst.

ou = O-sendPost (aid, sp, pid, pst, uid, vs) ∧
pst ′ = (if pid = PID then emptyPost else pst))

outPurge ou = O-sendCreateOFriend oscf ←→ ou = O-sendCreateOFriend oscf
outPurge ou = O-sendDeleteOFriend osdf ←→ ou = O-sendDeleteOFriend osdf
〈proof 〉

lemma g-simps:
g (Trans s a ou s ′) = (COMact (comSendServerReq uID p aID reqInfo), O-sendServerReq

ossr)
←→ (∃ p ′. a = COMact (comSendServerReq uID p ′ aID reqInfo) ∧ p = emptyPass
∧ ou = O-sendServerReq ossr)

g (Trans s a ou s ′) = (COMact (comReceiveClientReq aID reqInfo), outOK)
←→ a = COMact (comReceiveClientReq aID reqInfo) ∧ ou = outOK
g (Trans s a ou s ′) = (COMact (comConnectClient uID p aID sp), O-connectClient

occ)
←→ (∃ p ′. a = COMact (comConnectClient uID p ′ aID sp) ∧ p = emptyPass ∧
ou = O-connectClient occ)

g (Trans s a ou s ′) = (COMact (comConnectServer aID sp), outOK)
←→ a = COMact (comConnectServer aID sp) ∧ ou = outOK

g (Trans s a ou s ′) = (COMact (comReceivePost aID sp nID nt uID v), outOK)
←→ a = COMact (comReceivePost aID sp nID nt uID v) ∧ ou = outOK

g (Trans s a ou s ′) = (COMact (comSendPost uID p aID nID), O-sendPost (aid,
sp, pid, pst ′, uid, vs))
←→ (∃ pst p ′. a = COMact (comSendPost uID p ′ aID nID) ∧ p = emptyPass ∧ ou
= O-sendPost (aid, sp, pid, pst, uid, vs) ∧ pst ′ = (if pid = PID then emptyPost
else pst))

g (Trans s a ou s ′) = (COMact (comSendCreateOFriend uID p aID uID ′),
O-sendCreateOFriend (aid, sp, uid, uid ′))
←→ (∃ p ′. a = (COMact (comSendCreateOFriend uID p ′ aID uID ′)) ∧ p = emp-
tyPass ∧ ou = O-sendCreateOFriend (aid, sp, uid, uid ′))

g (Trans s a ou s ′) = (COMact (comReceiveCreateOFriend aID cp uID uID ′),
outOK)
←→ a = COMact (comReceiveCreateOFriend aID cp uID uID ′) ∧ ou = outOK

g (Trans s a ou s ′) = (COMact (comSendDeleteOFriend uID p aID uID ′),
O-sendDeleteOFriend (aid, sp, uid, uid ′))

44

←→ (∃ p ′. a = COMact (comSendDeleteOFriend uID p ′ aID uID ′) ∧ p = empty-
Pass ∧ ou = O-sendDeleteOFriend (aid, sp, uid, uid ′))

g (Trans s a ou s ′) = (COMact (comReceiveDeleteOFriend aID cp uID uID ′),
outOK)
←→ a = COMact (comReceiveDeleteOFriend aID cp uID uID ′) ∧ ou = outOK
〈proof 〉

end

end
theory Post-Unwinding-Helper-ISSUER

imports Post-Observation-Setup-ISSUER
begin

locale Issuer-State-Equivalence-Up-To-PID = Fixed-PID
begin

6.1.2 Unwinding helper lemmas and definitions
definition eeqButPID where
eeqButPID psts psts1 ≡
∀ pid. if pid = PID then True else psts pid = psts1 pid

lemmas eeqButPID-intro = eeqButPID-def [THEN meta-eq-to-obj-eq, THEN iffD2]

lemma eeqButPID-eeq[simp,intro!]: eeqButPID psts psts
〈proof 〉

lemma eeqButPID-sym:
assumes eeqButPID psts psts1 shows eeqButPID psts1 psts
〈proof 〉

lemma eeqButPID-trans:
assumes eeqButPID psts psts1 and eeqButPID psts1 psts2 shows eeqButPID psts
psts2
〈proof 〉

lemma eeqButPID-cong:
assumes eeqButPID psts psts1
and pid = PID =⇒ eqButT uu uu1
and pid 6= PID =⇒ uu = uu1
shows eeqButPID (psts (pid := uu)) (psts1 (pid := uu1))
〈proof 〉

lemma eeqButPID-not-PID:
[[eeqButPID psts psts1 ; pid 6= PID]] =⇒ psts pid = psts1 pid
〈proof 〉

45

lemma eeqButPID-toEq:
assumes eeqButPID psts psts1
shows psts (PID := pid) =

psts1 (PID := pid)
〈proof 〉

lemma eeqButPID-update-post:
assumes eeqButPID psts psts1
shows eeqButPID (psts (pid := pst)) (psts1 (pid := pst))
〈proof 〉

fun eqButF :: (apiID × bool) list ⇒ (apiID × bool) list ⇒ bool where
eqButF aID-bl aID-bl1 = (map fst aID-bl = map fst aID-bl1)

lemma eqButF-eq[simp,intro!]: eqButF aID-bl aID-bl
〈proof 〉

lemma eqButF-sym:
assumes eqButF aID-bl aID-bl1
shows eqButF aID-bl1 aID-bl
〈proof 〉

lemma eqButF-trans:
assumes eqButF aID-bl aID-bl1 and eqButF aID-bl1 aID-bl2
shows eqButF aID-bl aID-bl2
〈proof 〉

lemma eqButF-insert2 :
eqButF aID-bl aID-bl1 =⇒
eqButF (insert2 aID b aID-bl) (insert2 aID b aID-bl1)
〈proof 〉

definition eeqButPID-F where
eeqButPID-F sw sw1 ≡
∀ pid. if pid = PID then eqButF (sw PID) (sw1 PID) else sw pid = sw1 pid

lemmas eeqButPID-F-intro = eeqButPID-F-def [THEN meta-eq-to-obj-eq, THEN
iffD2]

lemma eeqButPID-F-eeq[simp,intro!]: eeqButPID-F sw sw
〈proof 〉

46

lemma eeqButPID-F-sym:
assumes eeqButPID-F sw sw1 shows eeqButPID-F sw1 sw
〈proof 〉

lemma eeqButPID-F-trans:
assumes eeqButPID-F sw sw1 and eeqButPID-F sw1 sw2 shows eeqButPID-F sw
sw2
〈proof 〉

lemma eeqButPID-F-cong:
assumes eeqButPID-F sw sw1
and PID = PID =⇒ eqButF uu uu1
and pid 6= PID =⇒ uu = uu1
shows eeqButPID-F (sw (pid := uu)) (sw1 (pid := uu1))
〈proof 〉

lemma eeqButPID-F-eqButF :
eeqButPID-F sw sw1 =⇒ eqButF (sw PID) (sw1 PID)
〈proof 〉

lemma eeqButPID-F-not-PID:
[[eeqButPID-F sw sw1 ; pid 6= PID]] =⇒ sw pid = sw1 pid
〈proof 〉

lemma eeqButPID-F-postSelectors:
eeqButPID-F sw sw1 =⇒ map fst (sw pid) = map fst (sw1 pid)
〈proof 〉

lemma eeqButPID-F-insert2 :
eeqButPID-F sw sw1 =⇒
eqButF (insert2 aID b (sw PID)) (insert2 aID b (sw1 PID))
〈proof 〉

lemma eeqButPID-F-toEq:
assumes eeqButPID-F sw sw1
shows sw (PID := map (λ (aID,-). (aID,b)) (sw PID)) =

sw1 (PID := map (λ (aID,-). (aID,b)) (sw1 PID))
〈proof 〉

lemma eeqButPID-F-updateShared:
assumes eeqButPID-F sw sw1
shows eeqButPID-F (sw (pid := aID-b)) (sw1 (pid := aID-b))
〈proof 〉

definition eqButPID :: state ⇒ state ⇒ bool where
eqButPID s s1 ≡
admin s = admin s1 ∧

47

pendingUReqs s = pendingUReqs s1 ∧ userReq s = userReq s1 ∧
userIDs s = userIDs s1 ∧ user s = user s1 ∧ pass s = pass s1 ∧

pendingFReqs s = pendingFReqs s1 ∧ friendReq s = friendReq s1 ∧ friendIDs s
= friendIDs s1 ∧
sentOuterFriendIDs s = sentOuterFriendIDs s1 ∧ recvOuterFriendIDs s = recvOuter-
FriendIDs s1 ∧

postIDs s = postIDs s1 ∧ admin s = admin s1 ∧
eeqButPID (post s) (post s1) ∧
owner s = owner s1 ∧
vis s = vis s1 ∧

pendingSApiReqs s = pendingSApiReqs s1 ∧ sApiReq s = sApiReq s1 ∧
serverApiIDs s = serverApiIDs s1 ∧ serverPass s = serverPass s1 ∧
outerPostIDs s = outerPostIDs s1 ∧ outerPost s = outerPost s1 ∧
outerOwner s = outerOwner s1 ∧
outerVis s = outerVis s1 ∧

pendingCApiReqs s = pendingCApiReqs s1 ∧ cApiReq s = cApiReq s1 ∧
clientApiIDs s = clientApiIDs s1 ∧ clientPass s = clientPass s1 ∧
eeqButPID-F (sharedWith s) (sharedWith s1)

lemmas eqButPID-intro = eqButPID-def [THEN meta-eq-to-obj-eq, THEN iffD2]

lemma eqButPID-refl[simp,intro!]: eqButPID s s
〈proof 〉

lemma eqButPID-sym:
assumes eqButPID s s1 shows eqButPID s1 s
〈proof 〉

lemma eqButPID-trans:
assumes eqButPID s s1 and eqButPID s1 s2 shows eqButPID s s2
〈proof 〉

lemma eqButPID-stateSelectors:
eqButPID s s1 =⇒
admin s = admin s1 ∧

pendingUReqs s = pendingUReqs s1 ∧ userReq s = userReq s1 ∧
userIDs s = userIDs s1 ∧ user s = user s1 ∧ pass s = pass s1 ∧

pendingFReqs s = pendingFReqs s1 ∧ friendReq s = friendReq s1 ∧ friendIDs s
= friendIDs s1 ∧
sentOuterFriendIDs s = sentOuterFriendIDs s1 ∧ recvOuterFriendIDs s = recvOuter-
FriendIDs s1 ∧

48

postIDs s = postIDs s1 ∧ admin s = admin s1 ∧
eeqButPID (post s) (post s1) ∧
owner s = owner s1 ∧
vis s = vis s1 ∧

pendingSApiReqs s = pendingSApiReqs s1 ∧ sApiReq s = sApiReq s1 ∧
serverApiIDs s = serverApiIDs s1 ∧ serverPass s = serverPass s1 ∧
outerPostIDs s = outerPostIDs s1 ∧ outerPost s = outerPost s1 ∧
outerOwner s = outerOwner s1 ∧
outerVis s = outerVis s1 ∧

pendingCApiReqs s = pendingCApiReqs s1 ∧ cApiReq s = cApiReq s1 ∧
clientApiIDs s = clientApiIDs s1 ∧ clientPass s = clientPass s1 ∧
eeqButPID-F (sharedWith s) (sharedWith s1) ∧

IDsOK s = IDsOK s1
〈proof 〉

lemma eqButPID-not-PID:
eqButPID s s1 =⇒ pid 6= PID =⇒ post s pid = post s1 pid
〈proof 〉

lemma eqButPID-eqButF :
eqButPID s s1 =⇒ eqButF (sharedWith s PID) (sharedWith s1 PID)
〈proof 〉

lemma eqButPID-not-PID-sharedWith:
eqButPID s s1 =⇒ pid 6= PID =⇒ sharedWith s pid = sharedWith s1 pid
〈proof 〉

lemma eqButPID-insert2 :
eqButPID s s1 =⇒
eqButF (insert2 aID b (sharedWith s PID)) (insert2 aID b (sharedWith s1 PID))
〈proof 〉

lemma eqButPID-actions:
assumes eqButPID s s1
shows listInnerPosts s uid p = listInnerPosts s1 uid p
〈proof 〉

49

lemma eqButPID-update:
assumes eqButPID s s1
shows (post s)(PID := txt) = (post s1)(PID := txt)
〈proof 〉

lemma eqButPID-update-post:
assumes eqButPID s s1
shows eeqButPID ((post s) (pid := pst)) ((post s1) (pid := pst))
〈proof 〉

lemma eqButPID-setShared:
assumes eqButPID s s1
shows (sharedWith s) (PID := map (λ (aID,-). (aID,b)) (sharedWith s PID)) =

(sharedWith s1) (PID := map (λ (aID,-). (aID,b)) (sharedWith s1 PID))
〈proof 〉

lemma eqButPID-updateShared:
assumes eqButPID s s1
shows eeqButPID-F ((sharedWith s) (pid := aID-b)) ((sharedWith s1) (pid :=
aID-b))
〈proof 〉

lemma eqButPID-cong[simp]:∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|admin := uu1 |)) (s1

(|admin := uu2 |))∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|pendingUReqs :=

uu1 |)) (s1 (|pendingUReqs := uu2 |))∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|userReq := uu1 |))

(s1 (|userReq := uu2 |))∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|userIDs := uu1 |))

(s1 (|userIDs := uu2 |))∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|user := uu1 |)) (s1

(|user := uu2 |))∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|pass := uu1 |)) (s1

(|pass := uu2 |))∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|postIDs := uu1 |))

(s1 (|postIDs := uu2 |))∧
uu1 uu2 . eqButPID s s1 =⇒ eeqButPID uu1 uu2 =⇒ eqButPID (s (|post :=

uu1 |)) (s1 (|post := uu2 |))∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|owner := uu1 |)) (s1

(|owner := uu2 |))∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|vis := uu1 |)) (s1

(|vis := uu2 |))∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|pendingFReqs :=

uu1 |)) (s1 (|pendingFReqs := uu2 |))

50

∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|friendReq := uu1 |))

(s1 (|friendReq := uu2 |))∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|friendIDs := uu1 |))

(s1 (|friendIDs := uu2 |))∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|sentOuterFriendIDs

:= uu1 |)) (s1 (|sentOuterFriendIDs := uu2 |))∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|recvOuterFriendIDs

:= uu1 |)) (s1 (|recvOuterFriendIDs := uu2 |))∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|pendingSApiReqs

:= uu1 |)) (s1 (|pendingSApiReqs := uu2 |))∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|sApiReq := uu1 |))

(s1 (|sApiReq := uu2 |))∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|serverApiIDs :=

uu1 |)) (s1 (|serverApiIDs := uu2 |))∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|serverPass := uu1 |))

(s1 (|serverPass := uu2 |))∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|outerPostIDs :=

uu1 |)) (s1 (|outerPostIDs := uu2 |))∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|outerPost := uu1 |))

(s1 (|outerPost := uu2 |))∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|outerOwner :=

uu1 |)) (s1 (|outerOwner := uu2 |))∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|outerVis := uu1 |))

(s1 (|outerVis := uu2 |))∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|pendingCApiReqs

:= uu1 |)) (s1 (|pendingCApiReqs := uu2 |))∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|cApiReq := uu1 |))

(s1 (|cApiReq := uu2 |))∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|clientApiIDs :=

uu1 |)) (s1 (|clientApiIDs := uu2 |))∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|clientPass := uu1 |))

(s1 (|clientPass := uu2 |))∧
uu1 uu2 . eqButPID s s1 =⇒ eeqButPID-F uu1 uu2 =⇒ eqButPID (s (|shared-

With := uu1 |)) (s1 (|sharedWith:= uu2 |))
〈proof 〉

lemma eqButPID-step:
assumes ss1 : eqButPID s s1
and step: step s a = (ou,s ′)
and step1 : step s1 a = (ou1 ,s1 ′)
shows eqButPID s ′ s1 ′

〈proof 〉

end

51

end

theory Post-Value-Setup-ISSUER
imports
../Safety-Properties
Post-Observation-Setup-ISSUER
Post-Unwinding-Helper-ISSUER

begin

locale Post-ISSUER = ObservationSetup-ISSUER
begin

6.1.3 Value setup
datatype value =

isPVal: PVal post — updating the post content locally
| isPValS : PValS (PValS-tgtAPI : apiID) post — sending the post to another node

lemma filter-isPValS-Nil: filter isPValS vl = [] ←→ list-all isPVal vl
〈proof 〉

fun ϕ :: (state,act,out) trans ⇒ bool where
ϕ (Trans - (Uact (uPost uid p pid pst)) ou -) = (pid = PID ∧ ou = outOK)
|
ϕ (Trans - (COMact (comSendPost uid p aid pid)) ou -) = (pid = PID ∧ ou 6=
outErr)

|
ϕ (Trans s - - s ′) = False

lemma ϕ-def2 :
shows
ϕ (Trans s a ou s ′) ←→
(∃ uid p pst. a = Uact (uPost uid p PID pst) ∧ ou = outOK) ∨
(∃ uid p aid. a = COMact (comSendPost uid p aid PID) ∧ ou 6= outErr)
〈proof 〉

lemma uPost-out:
assumes 1 : step s a = (ou,s ′) and a: a = Uact (uPost uid p PID pst) and 2 : ou
= outOK
shows uid = owner s PID ∧ p = pass s uid
〈proof 〉

lemma comSendPost-out:
assumes 1 : step s a = (ou,s ′) and a: a = COMact (comSendPost uid p aid PID)
and 2 : ou 6= outErr
shows ou = O-sendPost (aid, clientPass s aid, PID, post s PID, owner s PID, vis
s PID)

∧ uid = admin s ∧ p = pass s (admin s)

52

〈proof 〉

lemma ϕ-def3 :
assumes step s a = (ou,s ′)
shows
ϕ (Trans s a ou s ′) ←→
(∃ pst. a = Uact (uPost (owner s PID) (pass s (owner s PID)) PID pst) ∧ ou =

outOK) ∨
(∃ aid. a = COMact (comSendPost (admin s) (pass s (admin s)) aid PID) ∧

ou = O-sendPost (aid, clientPass s aid, PID, post s PID, owner s PID, vis
s PID))
〈proof 〉

lemma ϕ-cases:
assumes ϕ (Trans s a ou s ′)
and step s a = (ou, s ′)
and reach s
obtains
(UpdateT) uid p pID pst where a = Uact (uPost uid p PID pst) ou = outOK p

= pass s uid
uid = owner s PID

| (Send) uid p aid where a = COMact (comSendPost uid p aid PID) ou 6= outErr
p = pass s uid

uid = admin s
〈proof 〉

fun f :: (state,act,out) trans ⇒ value where
f (Trans s (Uact (uPost uid p pid pst)) - s ′) =
(if pid = PID then PVal pst else undefined)
|
f (Trans s (COMact (comSendPost uid p aid pid)) (O-sendPost (-, -, -, pst, -, -))
s ′) =
(if pid = PID then PValS aid pst else undefined)
|
f (Trans s - - s ′) = undefined

sublocale Issuer-State-Equivalence-Up-To-PID 〈proof 〉

lemma Uact-uPaperC-step-eqButPID:
assumes a: a = Uact (uPost uid p PID pst)
and step s a = (ou,s ′)
shows eqButPID s s ′

〈proof 〉

lemma eqButPID-step-ϕ-imp:
assumes ss1 : eqButPID s s1
and step: step s a = (ou,s ′) and step1 : step s1 a = (ou1 ,s1 ′)

53

and ϕ: ϕ (Trans s a ou s ′)
shows ϕ (Trans s1 a ou1 s1 ′)
〈proof 〉

lemma eqButPID-step-ϕ:
assumes s ′s1 ′: eqButPID s s1
and step: step s a = (ou,s ′) and step1 : step s1 a = (ou1 ,s1 ′)
shows ϕ (Trans s a ou s ′) = ϕ (Trans s1 a ou1 s1 ′)
〈proof 〉

end

end
theory Post-ISSUER

imports
Bounded-Deducibility-Security.Compositional-Reasoning
Post-Observation-Setup-ISSUER
Post-Value-Setup-ISSUER

begin

6.1.4 Issuer declassification bound

We verify that a group of users of some node i, allowed to take normal
actions to the system and observe their outputs and additionally allowed
to observe communication, can learn nothing about the updates to a post
located at node i and the sends of that post to other nodes beyond
(1) the presence of the sends (i.e., the number of the sending actions)
(2) the public knowledge that what is being sent is always the last version
(modeled as the correlation predicate)
unless:

• either a user in the group is the post’s owner or the administrator

• or a user in the group becomes a friend of the owner

• or the group has at least one registered user and the post is being
marked as "public"

See [3] for more details.
context Post-ISSUER
begin

fun T :: (state,act,out) trans ⇒ bool where
T (Trans s a ou s ′) ←→
(∃ uid ∈ UIDs.

uid ∈∈ userIDs s ′ ∧ PID ∈∈ postIDs s ′ ∧

54

(uid = admin s ′ ∨
uid = owner s ′ PID ∨
uid ∈∈ friendIDs s ′ (owner s ′ PID) ∨
vis s ′ PID = PublicV))

fun corrFrom :: post ⇒ value list ⇒ bool where
corrFrom pst [] = True
|corrFrom pst (PVal pstt # vl) = corrFrom pstt vl
|corrFrom pst (PValS aid pstt # vl) = (pst = pstt ∧ corrFrom pst vl)

abbreviation corr :: value list ⇒ bool where corr ≡ corrFrom emptyPost

definition B :: value list ⇒ value list ⇒ bool where
B vl vl1 ≡
corr vl1 ∧
(vl = [] −→ vl1 = []) ∧
map PValS-tgtAPI (filter isPValS vl) = map PValS-tgtAPI (filter isPValS vl1)

sublocale BD-Security-IO where
istate = istate and step = step and
ϕ = ϕ and f = f and γ = γ and g = g and T = T and B = B
〈proof 〉

6.1.5 Unwinding proof
lemma reach-PublicV-imples-FriendV [simp]:
assumes reach s
and vis s pID 6= PublicV
shows vis s pID = FriendV
〈proof 〉

lemma reachNT-state:
assumes reachNT s
shows ¬ (∃ uid ∈ UIDs.

uid ∈∈ userIDs s ∧ PID ∈∈ postIDs s ∧
(uid = admin s ∨ uid = owner s PID ∨ uid ∈∈ friendIDs s (owner s PID) ∨
vis s PID = PublicV))

〈proof 〉

lemma T-ϕ-γ:
assumes 1 : reachNT s and 2 : step s a = (ou,s ′)
and 3 : ϕ (Trans s a ou s ′) and

4 : ∀ ca. a 6= COMact ca
shows ¬ γ (Trans s a ou s ′)
〈proof 〉

55

lemma eqButPID-step-γ-out:
assumes ss1 : eqButPID s s1
and step: step s a = (ou,s ′) and step1 : step s1 a = (ou1 ,s1 ′)
and sT : reachNT s and T : ¬ T (Trans s a ou s ′)
and s1 : reach s1
and γ: γ (Trans s a ou s ′)
shows (∃ uid p aid pid. a = COMact (comSendPost uid p aid pid) ∧ outPurge ou
= outPurge ou1) ∨ ou = ou1
〈proof 〉

lemma eqButPID-step-eq:
assumes ss1 : eqButPID s s1
and a: a = Uact (uPost uid p PID pst) ou = outOK
and step: step s a = (ou, s ′) and step1 : step s1 a = (ou ′, s1 ′)
shows s ′ = s1 ′

〈proof 〉

definition ∆0 :: state ⇒ value list ⇒ state ⇒ value list ⇒ bool where
∆0 s vl s1 vl1 ≡
¬ PID ∈∈ postIDs s ∧ post s PID = emptyPost ∧
s = s1 ∧
corrFrom (post s1 PID) vl1 ∧
(vl = [] −→ vl1 = []) ∧
map PValS-tgtAPI (filter isPValS vl) = map PValS-tgtAPI (filter isPValS vl1)

definition ∆1 :: state ⇒ value list ⇒ state ⇒ value list ⇒ bool where
∆1 s vl s1 vl1 ≡
PID ∈∈ postIDs s ∧
eqButPID s s1 ∧
corrFrom (post s1 PID) vl1 ∧
(vl = [] −→ vl1 = []) ∧
map PValS-tgtAPI (filter isPValS vl) = map PValS-tgtAPI (filter isPValS vl1)

definition ∆2 :: state ⇒ value list ⇒ state ⇒ value list ⇒ bool where
∆2 s vl s1 vl1 ≡
PID ∈∈ postIDs s ∧
eqButPID s s1 ∧
vl = [] ∧ list-all isPVal vl1

lemma istate-∆0 :
assumes B: B vl vl1
shows ∆0 istate vl istate vl1
〈proof 〉

lemma unwind-cont-∆0 : unwind-cont ∆0 {∆0 ,∆1}
〈proof 〉

lemma unwind-cont-∆1 : unwind-cont ∆1 {∆1 ,∆2}

56

〈proof 〉

lemma unwind-cont-∆2 : unwind-cont ∆2 {∆2}
〈proof 〉

definition Gr where
Gr =
{
(∆0 , {∆0 ,∆1}),
(∆1 , {∆1 ,∆2}),
(∆2 , {∆2})
}

theorem Post-secure: secure
〈proof 〉

end

end
theory Post-Observation-Setup-RECEIVER

imports ../Safety-Properties
begin

6.2 Confidentiality for a secret receiver node

We verify that a group of users of a given node j can learn nothing about the
updates to the content of a post PID located at a different node i beyond the
existence of an update unless PID is being shared between the two nodes
and one of the users is the admin at node j or becomes a remote friend
of PID’s owner, or PID is marked as public. This is formulated as a BD
Security property and is proved by unwinding.
See [3] for more details.

6.2.1 Observation setup
type-synonym obs = act ∗ out

locale Fixed-UIDs = fixes UIDs :: userID set

locale Fixed-PID = fixes PID :: postID
locale Fixed-AID = fixes AID :: apiID

locale ObservationSetup-RECEIVER = Fixed-UIDs + Fixed-PID + Fixed-AID
begin

57

fun γ :: (state,act,out) trans ⇒ bool where
γ (Trans - a - -) ←→

(∃ uid. userOfA a = Some uid ∧ uid ∈ UIDs)
∨
(∃ ca. a = COMact ca)
∨
(∃ uid p. a = Sact (sSys uid p))

fun sPurge :: sActt ⇒ sActt where
sPurge (sSys uid pwd) = sSys uid emptyPass

fun comPurge :: comActt ⇒ comActt where
comPurge (comSendServerReq uID p aID reqInfo) = comSendServerReq uID emp-

tyPass aID reqInfo
|comPurge (comConnectClient uID p aID sp) = comConnectClient uID emptyPass
aID sp

|comPurge (comReceivePost aID sp pID pst uID vs) =
(let pst ′ = (if aID = AID ∧ pID = PID then emptyPost else pst)
in comReceivePost aID sp pID pst ′ uID vs)

|comPurge (comSendPost uID p aID pID) = comSendPost uID emptyPass aID pID
|comPurge (comSendCreateOFriend uID p aID uID ′) = comSendCreateOFriend
uID emptyPass aID uID ′

|comPurge (comSendDeleteOFriend uID p aID uID ′) = comSendDeleteOFriend
uID emptyPass aID uID ′

|comPurge ca = ca

fun g :: (state,act,out)trans ⇒ obs where
g (Trans - (Sact sa) ou -) = (Sact (sPurge sa), ou)
|g (Trans - (COMact ca) ou -) = (COMact (comPurge ca), ou)
|g (Trans - a ou -) = (a,ou)

lemma comPurge-simps:
comPurge ca = comSendServerReq uID p aID reqInfo ←→ (∃ p ′. ca = comSend-

ServerReq uID p ′ aID reqInfo ∧ p = emptyPass)
comPurge ca = comReceiveClientReq aID reqInfo ←→ ca = comReceiveClientReq

aID reqInfo
comPurge ca = comConnectClient uID p aID sp←→ (∃ p ′. ca = comConnectClient

uID p ′ aID sp ∧ p = emptyPass)
comPurge ca = comConnectServer aID sp ←→ ca = comConnectServer aID sp

58

comPurge ca = comReceivePost aID sp pID pst ′ uID v ←→ (∃ pst. ca = com-
ReceivePost aID sp pID pst uID v ∧ pst ′ = (if pID = PID ∧ aID = AID then
emptyPost else pst))

comPurge ca = comSendPost uID p aID pID ←→ (∃ p ′. ca = comSendPost uID
p ′ aID pID ∧ p = emptyPass)

comPurge ca = comSendCreateOFriend uID p aID uID ′ ←→ (∃ p ′. ca = com-
SendCreateOFriend uID p ′ aID uID ′ ∧ p = emptyPass)

comPurge ca = comReceiveCreateOFriend aID cp uID uID ′ ←→ ca = comRe-
ceiveCreateOFriend aID cp uID uID ′

comPurge ca = comSendDeleteOFriend uID p aID uID ′ ←→ (∃ p ′. ca = com-
SendDeleteOFriend uID p ′ aID uID ′ ∧ p = emptyPass)

comPurge ca = comReceiveDeleteOFriend aID cp uID uID ′ ←→ ca = comRe-
ceiveDeleteOFriend aID cp uID uID ′

〈proof 〉

lemma g-simps:
g (Trans s a ou s ′) = (COMact (comSendServerReq uID p aID reqInfo), ou ′)
←→ (∃ p ′. a = COMact (comSendServerReq uID p ′ aID reqInfo) ∧ p = emptyPass
∧ ou = ou ′)

g (Trans s a ou s ′) = (COMact (comReceiveClientReq aID reqInfo), ou ′)
←→ a = COMact (comReceiveClientReq aID reqInfo) ∧ ou = ou ′

g (Trans s a ou s ′) = (COMact (comConnectClient uID p aID sp), ou ′)
←→ (∃ p ′. a = COMact (comConnectClient uID p ′ aID sp) ∧ p = emptyPass ∧
ou = ou ′)

g (Trans s a ou s ′) = (COMact (comConnectServer aID sp), ou ′)
←→ a = COMact (comConnectServer aID sp) ∧ ou = ou ′

g (Trans s a ou s ′) = (COMact (comReceivePost aID sp pID pst ′ uID v), ou ′)
←→ (∃ pst. a = COMact (comReceivePost aID sp pID pst uID v) ∧ pst ′ = (if pID
= PID ∧ aID = AID then emptyPost else pst) ∧ ou = ou ′)

g (Trans s a ou s ′) = (COMact (comSendPost uID p aID nID), O-sendPost (aid,
sp, pid, pst, own, v))
←→ (∃ p ′. a = COMact (comSendPost uID p ′ aID nID) ∧ p = emptyPass ∧ ou =
O-sendPost (aid, sp, pid, pst, own, v))

g (Trans s a ou s ′) = (COMact (comSendCreateOFriend uID p aID uID ′), ou ′)
←→ (∃ p ′. a = (COMact (comSendCreateOFriend uID p ′ aID uID ′)) ∧ p = emp-
tyPass ∧ ou = ou ′)

g (Trans s a ou s ′) = (COMact (comReceiveCreateOFriend aID cp uID uID ′),
ou ′)
←→ a = COMact (comReceiveCreateOFriend aID cp uID uID ′) ∧ ou = ou ′

g (Trans s a ou s ′) = (COMact (comSendDeleteOFriend uID p aID uID ′), ou ′)
←→ (∃ p ′. a = COMact (comSendDeleteOFriend uID p ′ aID uID ′) ∧ p = empty-
Pass ∧ ou = ou ′)

g (Trans s a ou s ′) = (COMact (comReceiveDeleteOFriend aID cp uID uID ′),
ou ′)
←→ a = COMact (comReceiveDeleteOFriend aID cp uID uID ′) ∧ ou = ou ′

〈proof 〉

end

59

end
theory Post-Unwinding-Helper-RECEIVER

imports Post-Observation-Setup-RECEIVER
begin

6.2.2 Unwinding helper definitions and lemmas
locale Receiver-State-Equivalence-Up-To-PID = Fixed-PID + Fixed-AID
begin

definition eeqButPID where
eeqButPID psts psts1 ≡
∀ aid pid. if aid = AID ∧ pid = PID then True

else psts aid pid = psts1 aid pid

lemmas eeqButPID-intro = eeqButPID-def [THEN meta-eq-to-obj-eq, THEN iffD2]

lemma eeqButPID-eeq[simp,intro!]: eeqButPID psts psts
〈proof 〉

lemma eeqButPID-sym:
assumes eeqButPID psts psts1 shows eeqButPID psts1 psts
〈proof 〉

lemma eeqButPID-trans:
assumes eeqButPID psts psts1 and eeqButPID psts1 psts2 shows eeqButPID psts
psts2
〈proof 〉

lemma eeqButPID-cong:
assumes eeqButPID psts psts1
and aid = AID =⇒ pid = PID =⇒ eqButT uu uu1
and aid 6= AID ∨ pid 6= PID =⇒ uu = uu1
shows eeqButPID (fun-upd2 psts aid pid uu) (fun-upd2 psts1 aid pid uu1)
〈proof 〉

lemma eeqButPID-not-PID:
[[eeqButPID psts psts1 ; aid 6= AID ∨ pid 6= PID]] =⇒ psts aid pid = psts1 aid pid
〈proof 〉

lemma eeqButPID-toEq:
assumes eeqButPID psts psts1
shows fun-upd2 psts AID PID pst =

fun-upd2 psts1 AID PID pst
〈proof 〉

60

lemma eeqButPID-update-post:
assumes eeqButPID psts psts1
shows eeqButPID (fun-upd2 psts aid pid pst) (fun-upd2 psts1 aid pid pst)
〈proof 〉

fun eqButF :: (apiID × bool) list ⇒ (apiID × bool) list ⇒ bool where
eqButF aID-bl aID-bl1 = (map fst aID-bl = map fst aID-bl1)

lemma eqButF-eq[simp,intro!]: eqButF aID-bl aID-bl
〈proof 〉

lemma eqButF-sym:
assumes eqButF aID-bl aID-bl1
shows eqButF aID-bl1 aID-bl
〈proof 〉

lemma eqButF-trans:
assumes eqButF aID-bl aID-bl1 and eqButF aID-bl1 aID-bl2
shows eqButF aID-bl aID-bl2
〈proof 〉

lemma eqButF-insert2 :
eqButF aID-bl aID-bl1 =⇒
eqButF (insert2 aID b aID-bl) (insert2 aID b aID-bl1)
〈proof 〉

definition eqButPID :: state ⇒ state ⇒ bool where
eqButPID s s1 ≡
admin s = admin s1 ∧

pendingUReqs s = pendingUReqs s1 ∧ userReq s = userReq s1 ∧
userIDs s = userIDs s1 ∧ user s = user s1 ∧ pass s = pass s1 ∧

pendingFReqs s = pendingFReqs s1 ∧ friendReq s = friendReq s1 ∧ friendIDs s
= friendIDs s1 ∧
sentOuterFriendIDs s = sentOuterFriendIDs s1 ∧ recvOuterFriendIDs s = recvOuter-
FriendIDs s1 ∧

postIDs s = postIDs s1 ∧ admin s = admin s1 ∧
post s = post s1 ∧
owner s = owner s1 ∧
vis s = vis s1 ∧

pendingSApiReqs s = pendingSApiReqs s1 ∧ sApiReq s = sApiReq s1 ∧
serverApiIDs s = serverApiIDs s1 ∧ serverPass s = serverPass s1 ∧

61

outerPostIDs s = outerPostIDs s1 ∧
eeqButPID (outerPost s) (outerPost s1) ∧
outerOwner s = outerOwner s1 ∧
outerVis s = outerVis s1 ∧

pendingCApiReqs s = pendingCApiReqs s1 ∧ cApiReq s = cApiReq s1 ∧
clientApiIDs s = clientApiIDs s1 ∧ clientPass s = clientPass s1 ∧
sharedWith s = sharedWith s1

lemmas eqButPID-intro = eqButPID-def [THEN meta-eq-to-obj-eq, THEN iffD2]

lemma eqButPID-refl[simp,intro!]: eqButPID s s
〈proof 〉

lemma eqButPID-sym:
assumes eqButPID s s1 shows eqButPID s1 s
〈proof 〉

lemma eqButPID-trans:
assumes eqButPID s s1 and eqButPID s1 s2 shows eqButPID s s2
〈proof 〉

lemma eqButPID-stateSelectors:
eqButPID s s1 =⇒
admin s = admin s1 ∧

pendingUReqs s = pendingUReqs s1 ∧ userReq s = userReq s1 ∧
userIDs s = userIDs s1 ∧ user s = user s1 ∧ pass s = pass s1 ∧

pendingFReqs s = pendingFReqs s1 ∧ friendReq s = friendReq s1 ∧ friendIDs s
= friendIDs s1 ∧
sentOuterFriendIDs s = sentOuterFriendIDs s1 ∧ recvOuterFriendIDs s = recvOuter-
FriendIDs s1 ∧

postIDs s = postIDs s1 ∧ admin s = admin s1 ∧
post s = post s1 ∧
owner s = owner s1 ∧
vis s = vis s1 ∧

pendingSApiReqs s = pendingSApiReqs s1 ∧ sApiReq s = sApiReq s1 ∧
serverApiIDs s = serverApiIDs s1 ∧ serverPass s = serverPass s1 ∧
outerPostIDs s = outerPostIDs s1 ∧
eeqButPID (outerPost s) (outerPost s1) ∧
outerOwner s = outerOwner s1 ∧
outerVis s = outerVis s1 ∧

pendingCApiReqs s = pendingCApiReqs s1 ∧ cApiReq s = cApiReq s1 ∧
clientApiIDs s = clientApiIDs s1 ∧ clientPass s = clientPass s1 ∧

62

sharedWith s = sharedWith s1 ∧

IDsOK s = IDsOK s1
〈proof 〉

lemma eqButPID-not-PID:
eqButPID s s1 =⇒ aid 6= AID ∨ pid 6= PID =⇒ outerPost s aid pid = outerPost
s1 aid pid
〈proof 〉

lemma eqButPID-actions:
assumes eqButPID s s1
shows listInnerPosts s uid p = listInnerPosts s1 uid p
and listOuterPosts s uid p = listOuterPosts s1 uid p
〈proof 〉

lemma eqButPID-update:
assumes eqButPID s s1
shows fun-upd2 (outerPost s) AID PID pst = fun-upd2 (outerPost s1) AID PID
pst
〈proof 〉

lemma eqButPID-update-post:
assumes eqButPID s s1
shows eeqButPID (fun-upd2 (outerPost s) aid pid pst) (fun-upd2 (outerPost s1)
aid pid pst)
〈proof 〉

lemma eqButPID-cong[simp, intro]:∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|admin := uu1 |)) (s1

(|admin := uu2 |))∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|pendingUReqs :=

uu1 |)) (s1 (|pendingUReqs := uu2 |))∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|userReq := uu1 |))

(s1 (|userReq := uu2 |))∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|userIDs := uu1 |))

(s1 (|userIDs := uu2 |))∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|user := uu1 |)) (s1

(|user := uu2 |))∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|pass := uu1 |)) (s1

(|pass := uu2 |))∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|postIDs := uu1 |))

(s1 (|postIDs := uu2 |))∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|post := uu1 |)) (s1

(|post := uu2 |))∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|owner := uu1 |)) (s1

(|owner := uu2 |))

63

∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|vis := uu1 |)) (s1

(|vis := uu2 |))∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|pendingFReqs :=

uu1 |)) (s1 (|pendingFReqs := uu2 |))∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|friendReq := uu1 |))

(s1 (|friendReq := uu2 |))∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|friendIDs := uu1 |))

(s1 (|friendIDs := uu2 |))∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|sentOuterFriendIDs

:= uu1 |)) (s1 (|sentOuterFriendIDs := uu2 |))∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|recvOuterFriendIDs

:= uu1 |)) (s1 (|recvOuterFriendIDs := uu2 |))∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|pendingSApiReqs

:= uu1 |)) (s1 (|pendingSApiReqs := uu2 |))∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|sApiReq := uu1 |))

(s1 (|sApiReq := uu2 |))∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|serverApiIDs :=

uu1 |)) (s1 (|serverApiIDs := uu2 |))∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|serverPass := uu1 |))

(s1 (|serverPass := uu2 |))∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|outerPostIDs :=

uu1 |)) (s1 (|outerPostIDs := uu2 |))∧
uu1 uu2 . eqButPID s s1 =⇒ eeqButPID uu1 uu2 =⇒ eqButPID (s (|outerPost

:= uu1 |)) (s1 (|outerPost := uu2 |))∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|outerVis := uu1 |))

(s1 (|outerVis := uu2 |))∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|outerOwner :=

uu1 |)) (s1 (|outerOwner := uu2 |))∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|pendingCApiReqs

:= uu1 |)) (s1 (|pendingCApiReqs := uu2 |))∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|cApiReq := uu1 |))

(s1 (|cApiReq := uu2 |))∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|clientApiIDs :=

uu1 |)) (s1 (|clientApiIDs := uu2 |))∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|clientPass := uu1 |))

(s1 (|clientPass := uu2 |))∧
uu1 uu2 . eqButPID s s1 =⇒ uu1 = uu2 =⇒ eqButPID (s (|sharedWith := uu1 |))

(s1 (|sharedWith:= uu2 |))
〈proof 〉

lemma comReceivePost-step-eqButPID:
assumes a: a = COMact (comReceivePost AID sp PID pst uid vs)

64

and a1 : a1 = COMact (comReceivePost AID sp PID pst1 uid vs)
and step s a = (ou,s ′) and step s1 a1 = (ou1 ,s1 ′)
and eqButPID s s1
shows eqButPID s ′ s1 ′

〈proof 〉

lemma eqButPID-step:
assumes ss1 : eqButPID s s1
and step: step s a = (ou,s ′)
and step1 : step s1 a = (ou1 ,s1 ′)
shows eqButPID s ′ s1 ′

〈proof 〉

end

end

theory Post-Value-Setup-RECEIVER
imports
../Safety-Properties
Post-Observation-Setup-RECEIVER
Post-Unwinding-Helper-RECEIVER

begin

6.2.3 Value setup
locale Post-RECEIVER = ObservationSetup-RECEIVER
begin

datatype value = PValR post — post content received from the issuer node

fun ϕ :: (state,act,out) trans ⇒ bool where
ϕ (Trans - (COMact (comReceivePost aid sp pid pst uid vs)) ou -) =
(aid = AID ∧ pid = PID ∧ ou = outOK)
|
ϕ (Trans s - - s ′) = False

lemma ϕ-def2 :
ϕ (Trans s a ou s ′) ←→
(∃ uid p pst vs. a = COMact (comReceivePost AID p PID pst uid vs) ∧ ou =

outOK)
〈proof 〉

lemma comReceivePost-out:
assumes 1 : step s a = (ou,s ′) and a: a = COMact (comReceivePost AID p PID
pst uid vs) and 2 : ou = outOK
shows p = serverPass s AID
〈proof 〉

65

lemma ϕ-def3 :
assumes step s a = (ou,s ′)
shows
ϕ (Trans s a ou s ′) ←→
(∃ uid pst vs. a = COMact (comReceivePost AID (serverPass s AID) PID pst uid

vs) ∧ ou = outOK)
〈proof 〉

lemma ϕ-cases:
assumes ϕ (Trans s a ou s ′)
and step s a = (ou, s ′)
and reach s
obtains
(Recv) uid sp aID pID pst vs where a = COMact (comReceivePost aID sp pID

pst uid vs) ou = outOK
sp = serverPass s AID
aID = AID pID = PID

〈proof 〉

fun f :: (state,act,out) trans ⇒ value where
f (Trans s (COMact (comReceivePost aid sp pid pst uid vs)) - s ′) =
(if aid = AID ∧ pid = PID then PValR pst else undefined)
|
f (Trans s - - s ′) = undefined

sublocale Receiver-State-Equivalence-Up-To-PID 〈proof 〉

lemma eqButPID-step-ϕ-imp:
assumes ss1 : eqButPID s s1
and step: step s a = (ou,s ′) and step1 : step s1 a = (ou1 ,s1 ′)
and ϕ: ϕ (Trans s a ou s ′)
shows ϕ (Trans s1 a ou1 s1 ′)
〈proof 〉

lemma eqButPID-step-ϕ:
assumes s ′s1 ′: eqButPID s s1
and step: step s a = (ou,s ′) and step1 : step s1 a = (ou1 ,s1 ′)
shows ϕ (Trans s a ou s ′) = ϕ (Trans s1 a ou1 s1 ′)
〈proof 〉

end

end
theory Post-RECEIVER

imports

66

Bounded-Deducibility-Security.Compositional-Reasoning
Post-Observation-Setup-RECEIVER
Post-Value-Setup-RECEIVER

begin

6.2.4 Declassification bound

We verify that a group of users of some node i, allowed to take normal
actions to the system and observe their outputs and additionally allowed
to observe communication, can learn nothing about the updates to a post
received from a remote node j beyond the number of updates
unless:

• either a user in the group is the administrator

• or a user in the group becomes a remote friend of the post’s owner

• or the group has at least one registered user and the post is being
marked as "public"

See [3] for more details.
context Post-RECEIVER
begin

fun T :: (state,act,out) trans ⇒ bool where
T (Trans s a ou s ′) ←→
(∃ uid ∈ UIDs.

uid ∈∈ userIDs s ′ ∧ PID ∈∈ outerPostIDs s ′ AID ∧
(uid = admin s ′ ∨
(AID,outerOwner s ′ AID PID) ∈∈ recvOuterFriendIDs s ′ uid ∨
outerVis s ′ AID PID = PublicV))

definition B :: value list ⇒ value list ⇒ bool where
B vl vl1 ≡ length vl = length vl1

sublocale BD-Security-IO where
istate = istate and step = step and
ϕ = ϕ and f = f and γ = γ and g = g and T = T and B = B
〈proof 〉

6.2.5 Unwinding proof
lemma reach-PublicV-imples-FriendV [simp]:
assumes reach s
and vis s pID 6= PublicV
shows vis s pID = FriendV
〈proof 〉

67

lemma reachNT-state:
assumes reachNT s
shows
¬ (∃ uid ∈ UIDs.

uid ∈∈ userIDs s ∧ PID ∈∈ outerPostIDs s AID ∧
(uid = admin s ∨
(AID,outerOwner s AID PID) ∈∈ recvOuterFriendIDs s uid ∨
outerVis s AID PID = PublicV))

〈proof 〉

lemma eqButPID-step-γ-out:
assumes ss1 : eqButPID s s1
and step: step s a = (ou,s ′) and step1 : step s1 a = (ou1 ,s1 ′)
and sT : reachNT s and T : ¬ T (Trans s a ou s ′)
and s1 : reach s1
and γ: γ (Trans s a ou s ′)
shows ou = ou1
〈proof 〉

definition ∆0 :: state ⇒ value list ⇒ state ⇒ value list ⇒ bool where
∆0 s vl s1 vl1 ≡
¬ AID ∈∈ serverApiIDs s ∧
s = s1 ∧
length vl = length vl1

definition ∆1 :: state ⇒ value list ⇒ state ⇒ value list ⇒ bool where
∆1 s vl s1 vl1 ≡
AID ∈∈ serverApiIDs s ∧
eqButPID s s1 ∧
length vl = length vl1

lemma istate-∆0 :
assumes B: B vl vl1
shows ∆0 istate vl istate vl1
〈proof 〉

lemma unwind-cont-∆0 : unwind-cont ∆0 {∆0 ,∆1}
〈proof 〉

lemma unwind-cont-∆1 : unwind-cont ∆1 {∆1}
〈proof 〉

definition Gr where
Gr =

68

{
(∆0 , {∆0 ,∆1}),
(∆1 , {∆1})
}

theorem Post-secure: secure
〈proof 〉

end

end
theory Post-COMPOSE2
imports

Post-ISSUER
Post-RECEIVER
BD-Security-Compositional.Composing-Security

begin

6.3 Confidentiality for the (binary) issuer-receiver composi-
tion

type-synonym ttrans = (state, act, out) trans
type-synonym value1 = Post-ISSUER.value type-synonym value2 = Post-RECEIVER.value
type-synonym obs1 = Post-Observation-Setup-ISSUER.obs
type-synonym obs2 = Post-Observation-Setup-RECEIVER.obs

datatype cval = PValC post
type-synonym cobs = obs1 × obs2

locale Post-COMPOSE2 =
Iss: Post-ISSUER UIDs PID +
Rcv: Post-RECEIVER UIDs2 PID AID1

for UIDs :: userID set and UIDs2 :: userID set and
AID1 :: apiID and PID :: postID

+ fixes AID2 :: apiID
begin

abbreviation ϕ1 ≡ Iss.ϕ abbreviation f1 ≡ Iss.f abbreviation γ1 ≡ Iss.γ
abbreviation g1 ≡ Iss.g

abbreviation T1 ≡ Iss.T abbreviation B1 ≡ Iss.B
abbreviation ϕ2 ≡ Rcv.ϕ abbreviation f2 ≡ Rcv.f abbreviation γ2 ≡ Rcv.γ
abbreviation g2 ≡ Rcv.g

abbreviation T2 ≡ Rcv.T abbreviation B2 ≡ Rcv.B

fun isCom1 :: ttrans ⇒ bool where

69

isCom1 (Trans s (COMact ca1) ou1 s ′) = (ou1 6= outErr)
|isCom1 - = False

fun isCom2 :: ttrans ⇒ bool where
isCom2 (Trans s (COMact ca2) ou2 s ′) = (ou2 6= outErr)
|isCom2 - = False

fun isComV1 :: value1 ⇒ bool where
isComV1 (Iss.PValS aid1 txt1) = True
|isComV1 - = False

fun isComV2 :: value2 ⇒ bool where
isComV2 (Rcv.PValR txt2) = True

fun syncV :: value1 ⇒ value2 ⇒ bool where
syncV (Iss.PValS aid1 txt1) (Rcv.PValR txt2) = (txt1 = txt2)
|syncV - - = False

fun cmpV :: value1 ⇒ value2 ⇒ cval where
cmpV (Iss.PValS aid1 txt1) (Rcv.PValR txt2) = PValC txt1
|cmpV - - = undefined

fun isComO1 :: obs1 ⇒ bool where
isComO1 (COMact ca1 , ou1) = (ou1 6= outErr)
|isComO1 - = False

fun isComO2 :: obs2 ⇒ bool where
isComO2 (COMact ca2 , ou2) = (ou2 6= outErr)
|isComO2 - = False

fun comSyncOA :: out ⇒ comActt ⇒ bool where
comSyncOA (O-sendServerReq (aid2 , reqInfo1)) (comReceiveClientReq aid1 re-

qInfo2) =
(aid1 = AID1 ∧ aid2 = AID2 ∧ reqInfo1 = reqInfo2)

|comSyncOA (O-connectClient (aid2 , sp1)) (comConnectServer aid1 sp2) =
(aid1 = AID1 ∧ aid2 = AID2 ∧ sp1 = sp2)

|comSyncOA (O-sendPost (aid2 , sp1 , pid1 , pst1 , uid1 , vis1)) (comReceivePost
aid1 sp2 pid2 pst2 uid2 vis2) =

(aid1 = AID1 ∧ aid2 = AID2 ∧ (pid1 , pst1 , uid1 , vis1) = (pid2 , pst2 , uid2 ,
vis2))
|comSyncOA (O-sendCreateOFriend (aid2 , sp1 , uid1 , uid1 ′)) (comReceiveCreateOFriend
aid1 sp2 uid2 uid2 ′) =

(aid1 = AID1 ∧ aid2 = AID2 ∧ (uid1 , uid1 ′) = (uid2 , uid2 ′))
|comSyncOA (O-sendDeleteOFriend (aid2 , sp1 , uid1 , uid1 ′)) (comReceiveDeleteOFriend
aid1 sp2 uid2 uid2 ′) =

(aid1 = AID1 ∧ aid2 = AID2 ∧ (uid1 , uid1 ′) = (uid2 , uid2 ′))
|comSyncOA - - = False

70

fun syncO :: obs1 ⇒ obs2 ⇒ bool where
syncO (COMact ca1 , ou1) (COMact ca2 , ou2) =
(ou1 6= outErr ∧ ou2 6= outErr ∧
(comSyncOA ou1 ca2 ∨ comSyncOA ou2 ca1)
)
|syncO - - = False

fun sync :: ttrans ⇒ ttrans ⇒ bool where
sync (Trans s1 a1 ou1 s1 ′) (Trans s2 a2 ou2 s2 ′) = syncO (a1 , ou1) (a2 , ou2)

definition cmpO :: obs1 ⇒ obs2 ⇒ cobs where
cmpO o1 o2 ≡ (o1 ,o2)

lemma isCom1-isComV1 :
assumes validTrans trn1 and reach (srcOf trn1) and ϕ1 trn1
shows isCom1 trn1 ←→ isComV1 (f1 trn1)
〈proof 〉

lemma isCom1-isComO1 :
assumes validTrans trn1 and reach (srcOf trn1) and γ1 trn1
shows isCom1 trn1 ←→ isComO1 (g1 trn1)
〈proof 〉

lemma isCom2-isComV2 :
assumes validTrans trn2 and reach (srcOf trn2) and ϕ2 trn2
shows isCom2 trn2 ←→ isComV2 (f2 trn2)
〈proof 〉

lemma isCom2-isComO2 :
assumes validTrans trn2 and reach (srcOf trn2) and γ2 trn2
shows isCom2 trn2 ←→ isComO2 (g2 trn2)
〈proof 〉

lemma sync-syncV :
assumes validTrans trn1 and reach (srcOf trn1)
and validTrans trn2 and reach (srcOf trn2)
and isCom1 trn1 and isCom2 trn2 and ϕ1 trn1 and ϕ2 trn2
and sync trn1 trn2
shows syncV (f1 trn1) (f2 trn2)
〈proof 〉

lemma sync-syncO:
assumes validTrans trn1 and reach (srcOf trn1)
and validTrans trn2 and reach (srcOf trn2)

71

and isCom1 trn1 and isCom2 trn2 and γ1 trn1 and γ2 trn2
and sync trn1 trn2
shows syncO (g1 trn1) (g2 trn2)
〈proof 〉

lemma sync-ϕ1-ϕ2 :
assumes v1 : validTrans trn1 and r1 : reach (srcOf trn1)
and v2 : validTrans trn2 and s2 : reach (srcOf trn2)
and c1 : isCom1 trn1 and c2 : isCom2 trn2
and sn: sync trn1 trn2
shows ϕ1 trn1 ←→ ϕ2 trn2 (is ?A ←→ ?B)
〈proof 〉

lemma textPost-textPost-cong[intro]:
assumes textPost pst1 = textPost pst2
and setTextPost pst1 emptyText = setTextPost pst2 emptyText
shows pst1 = pst2
〈proof 〉

lemma sync-ϕ-γ:
assumes validTrans trn1 and reach (srcOf trn1)
and validTrans trn2 and reach (srcOf trn2)
and isCom1 trn1 and isCom2 trn2
and γ1 trn1 and γ2 trn2
and so: syncO (g1 trn1) (g2 trn2)
and ϕ1 trn1 =⇒ ϕ2 trn2 =⇒ syncV (f1 trn1) (f2 trn2)
shows sync trn1 trn2
〈proof 〉

lemma isCom1-γ1 :
assumes validTrans trn1 and reach (srcOf trn1) and isCom1 trn1
shows γ1 trn1
〈proof 〉

lemma isCom2-γ2 :
assumes validTrans trn2 and reach (srcOf trn2) and isCom2 trn2
shows γ2 trn2
〈proof 〉

lemma isCom2-V2 :
assumes validTrans trn2 and reach (srcOf trn2) and ϕ2 trn2
shows isCom2 trn2
〈proof 〉

end

sublocale Post-COMPOSE2 < BD-Security-TS-Comp where
istate1 = istate and validTrans1 = validTrans and srcOf1 = srcOf and tgtOf1

72

= tgtOf
and ϕ1 = ϕ1 and f1 = f1 and γ1 = γ1 and g1 = g1 and T1 = T1 and

B1 = B1
and
istate2 = istate and validTrans2 = validTrans and srcOf2 = srcOf and tgtOf2

= tgtOf
and ϕ2 = ϕ2 and f2 = f2 and γ2 = γ2 and g2 = g2 and T2 = T2 and

B2 = B2
and isCom1 = isCom1 and isCom2 = isCom2 and sync = sync
and isComV1 = isComV1 and isComV2 = isComV2 and syncV = syncV
and isComO1 = isComO1 and isComO2 = isComO2 and syncO = syncO

〈proof 〉

context Post-COMPOSE2
begin

theorem secure: secure
〈proof 〉

end

end
theory Post-Network
imports
../API-Network
Post-ISSUER
Post-RECEIVER
BD-Security-Compositional.Composing-Security-Network

begin

6.4 Confidentiality for the N-ary composition
type-synonym ttrans = (state, act, out) trans
type-synonym obs = Post-Observation-Setup-ISSUER.obs
type-synonym value = Post-ISSUER.value + Post-RECEIVER.value

lemma value-cases:
fixes v :: value
obtains (PVal) pst where v = Inl (Post-ISSUER.PVal pst)

| (PValS) aid pst where v = Inl (Post-ISSUER.PValS aid pst)
| (PValR) pst where v = Inr (Post-RECEIVER.PValR pst)

〈proof 〉

locale Post-Network = Network
+ fixes UIDs :: apiID ⇒ userID set

and AID :: apiID and PID :: postID
assumes AID-in-AIDs: AID ∈ AIDs

73

begin

sublocale Iss: Post-ISSUER UIDs AID PID 〈proof 〉

abbreviation ϕ :: apiID ⇒ (state, act, out) trans ⇒ bool
where ϕ aid trn ≡ (if aid = AID then Iss.ϕ trn else Post-RECEIVER.ϕ PID AID
trn)

abbreviation f :: apiID ⇒ (state, act, out) trans ⇒ value
where f aid trn ≡ (if aid = AID then Inl (Iss.f trn) else Inr (Post-RECEIVER.f
PID AID trn))

abbreviation γ :: apiID ⇒ (state, act, out) trans ⇒ bool
where γ aid trn ≡ (if aid = AID then Iss.γ trn else ObservationSetup-RECEIVER.γ
(UIDs aid) trn)

abbreviation g :: apiID ⇒ (state, act, out) trans ⇒ obs
where g aid trn ≡ (if aid = AID then Iss.g trn else ObservationSetup-RECEIVER.g
PID AID trn)

abbreviation T :: apiID ⇒ (state, act, out) trans ⇒ bool
where T aid trn ≡ (if aid = AID then Iss.T trn else Post-RECEIVER.T (UIDs
aid) PID AID trn)

abbreviation B :: apiID ⇒ value list ⇒ value list ⇒ bool
where B aid vl vl1 ≡
(if aid = AID then list-all isl vl ∧ list-all isl vl1 ∧ Iss.B (map projl vl) (map projl

vl1)
else list-all (Not o isl) vl ∧ list-all (Not o isl) vl1 ∧ Post-RECEIVER.B (map

projr vl) (map projr vl1))

fun comOfV :: apiID ⇒ value ⇒ com where
comOfV aid (Inl (Post-ISSUER.PValS aid ′ pst)) = (if aid ′ 6= aid then Send else

Internal)
| comOfV aid (Inl (Post-ISSUER.PVal pst)) = Internal
| comOfV aid (Inr v) = Recv

fun tgtNodeOfV :: apiID ⇒ value ⇒ apiID where
tgtNodeOfV aid (Inl (Post-ISSUER.PValS aid ′ pst)) = aid ′

| tgtNodeOfV aid (Inl (Post-ISSUER.PVal pst)) = undefined
| tgtNodeOfV aid (Inr v) = AID

definition syncV :: apiID ⇒ value ⇒ apiID ⇒ value ⇒ bool where
syncV aid1 v1 aid2 v2 =

(∃ pst. aid1 = AID ∧ v1 = Inl (Post-ISSUER.PValS aid2 pst) ∧ v2 = Inr
(Post-RECEIVER.PValR pst))

lemma syncVI : syncV AID (Inl (Post-ISSUER.PValS aid ′ pst)) aid ′ (Inr (Post-RECEIVER.PValR
pst))

74

〈proof 〉

lemma syncVE :
assumes syncV aid1 v1 aid2 v2
obtains pst where aid1 = AID v1 = Inl (Post-ISSUER.PValS aid2 pst) v2 =
Inr (Post-RECEIVER.PValR pst)
〈proof 〉

fun getTgtV where
getTgtV (Inl (Post-ISSUER.PValS aid pst)) = Inr (Post-RECEIVER.PValR pst)
| getTgtV v = v

lemma comOfV-AID:
comOfV AID v = Send ←→ isl v ∧ Iss.isPValS (projl v) ∧ Iss.PValS-tgtAPI

(projl v) 6= AID
comOfV AID v = Recv ←→ Not (isl v)
〈proof 〉

lemmas ϕ-defs = Post-RECEIVER.ϕ-def2 Iss.ϕ-def2

sublocale Net: BD-Security-TS-Network-getTgtV
where istate = λ-. istate and validTrans = validTrans and srcOf = λ-. srcOf
and tgtOf = λ-. tgtOf

and nodes = AIDs and comOf = comOf and tgtNodeOf = tgtNodeOf
and sync = sync and ϕ = ϕ and f = f and γ = γ and g = g and T = T and

B = B
and comOfV = comOfV and tgtNodeOfV = tgtNodeOfV and syncV = syncV
and comOfO = comOfO and tgtNodeOfO = tgtNodeOfO and syncO = syncO
and source = AID and getTgtV = getTgtV
〈proof 〉

lemma list-all-Not-isl-projectSrcV : list-all (Not o isl) (Net.projectSrcV aid vlSrc)
〈proof 〉

context
fixes AID ′ :: apiID
assumes AID ′: AID ′ ∈ AIDs − {AID}
begin

interpretation Sink: Post-RECEIVER UIDs AID ′ PID AID 〈proof 〉

lemma Source-B-Sink-B-aux:
assumes list-all isl vl
and list-all isl vl1
and map Iss.PValS-tgtAPI (filter Iss.isPValS (map projl vl)) =

map Iss.PValS-tgtAPI (filter Iss.isPValS (map projl vl1))
shows length (map projr (Net.projectSrcV AID ′ vl)) = length (map projr (Net.projectSrcV
AID ′ vl1))
〈proof 〉

75

lemma Source-B-Sink-B:
assumes B AID vl vl1
shows Sink.B (map projr (Net.projectSrcV AID ′ vl)) (map projr (Net.projectSrcV
AID ′ vl1))
〈proof 〉

end

lemma map-projl-Inl: map (projl o Inl) vl = vl
〈proof 〉

lemma these-map-Inl-projl: list-all isl vl =⇒ these (map (Some o Inl o projl) vl)
= vl
〈proof 〉

lemma map-projr-Inr : map (projr o Inr) vl = vl
〈proof 〉

lemma these-map-Inr-projr : list-all (Not o isl) vl =⇒ these (map (Some o Inr o
projr) vl) = vl
〈proof 〉

sublocale BD-Security-TS-Network-Preserve-Source-Security-getTgtV
where istate = λ-. istate and validTrans = validTrans and srcOf = λ-. srcOf
and tgtOf = λ-. tgtOf

and nodes = AIDs and comOf = comOf and tgtNodeOf = tgtNodeOf
and sync = sync and ϕ = ϕ and f = f and γ = γ and g = g and T = T and

B = B
and comOfV = comOfV and tgtNodeOfV = tgtNodeOfV and syncV = syncV
and comOfO = comOfO and tgtNodeOfO = tgtNodeOfO and syncO = syncO
and source = AID and getTgtV = getTgtV
〈proof 〉

theorem secure: secure
〈proof 〉

end

end

theory DYNAMIC-Post-Value-Setup-ISSUER
imports
../Safety-Properties
Post-Observation-Setup-ISSUER
Post-Unwinding-Helper-ISSUER

begin

76

6.5 Variation with dynamic declassification trigger

This section formalizes the “dynamic” variation of one post confidentiality
properties, as described in [3, Appendix C].
locale Post = ObservationSetup-ISSUER
begin

6.5.1 Issuer value setup
datatype value =

isPVal: PVal post — updating the post content locally
| isPValS : PValS (tgtAPI : apiID) post — sending the post to another node
| isOVal: OVal bool — change in the dynamic declassification trigger condition

The dynamic declassification trigger condition holds, i.e. the access window
to the confidential information is open, when the post is public or one of
the observers is the administrator, the post’s owner, or a friend of the post’s
owner.
definition open where
open s ≡
∃ uid ∈ UIDs.

uid ∈∈ userIDs s ∧ PID ∈∈ postIDs s ∧
(uid = admin s ∨ uid = owner s PID ∨ uid ∈∈ friendIDs s (owner s PID) ∨
vis s PID = PublicV)

sublocale Issuer-State-Equivalence-Up-To-PID 〈proof 〉

lemma eqButPID-open:
assumes eqButPID s s1
shows open s ←→ open s1
〈proof 〉

lemma not-open-eqButPID:
assumes 1 : ¬ open s and 2 : eqButPID s s1
shows ¬ open s1
〈proof 〉

lemma step-isCOMact-open:
assumes step s a = (ou, s ′)
and isCOMact a
shows open s ′ = open s
〈proof 〉

lemma validTrans-isCOMact-open:
assumes validTrans trn
and isCOMact (actOf trn)
shows open (tgtOf trn) = open (srcOf trn)
〈proof 〉

77

lemma list-all-isOVal-filter-isPValS :
list-all isOVal vl =⇒ filter (Not o isPValS) vl = vl
〈proof 〉

lemma list-all-Not-isOVal-OVal-True:
assumes list-all (Not ◦ isOVal) ul
and ul @ vll = OVal True # vll ′
shows ul = []
〈proof 〉

lemma list-all-filter-isOVal-isPVal-isPValS :
assumes list-all (Not ◦ isOVal) ul
and filter isPValS ul = [] and filter isPVal ul = []
shows ul = []
〈proof 〉

lemma filter-list-all-isPValS-isOVal:
assumes list-all (Not ◦ isOVal) ul and filter isPVal ul = []
shows list-all isPValS ul
〈proof 〉

lemma filter-list-all-isPVal-isOVal:
assumes list-all (Not ◦ isOVal) ul and filter isPValS ul = []
shows list-all isPVal ul
〈proof 〉

lemma list-all-isPValS-Not-isOVal-filter :
assumes list-all isPValS ul shows list-all (Not ◦ isOVal) ul ∧ filter isPVal ul =
[]
〈proof 〉

lemma filter-isTValS-Nil:
filter isPValS vl = [] ←→
list-all (λ v. isPVal v ∨ isOVal v) vl
〈proof 〉

fun ϕ :: (state,act,out) trans ⇒ bool where
ϕ (Trans - (Uact (uPost uid p pid pst)) ou -) = (pid = PID ∧ ou = outOK)
|
ϕ (Trans - (COMact (comSendPost uid p aid pid)) ou -) = (pid = PID ∧ ou 6=
outErr)

|
ϕ (Trans s - - s ′) = (open s 6= open s ′)

lemma ϕ-def2 :

78

assumes step s a = (ou,s ′)
shows
ϕ (Trans s a ou s ′) ←→
(∃ uid p pst. a = Uact (uPost uid p PID pst) ∧ ou = outOK) ∨
(∃ uid p aid. a = COMact (comSendPost uid p aid PID) ∧ ou 6= outErr) ∨
open s 6= open s ′

〈proof 〉

lemma uTextPost-out:
assumes 1 : step s a = (ou,s ′) and a: a = Uact (uPost uid p PID pst) and 2 : ou
= outOK
shows uid = owner s PID ∧ p = pass s uid
〈proof 〉

lemma comSendPost-out:
assumes 1 : step s a = (ou,s ′) and a: a = COMact (comSendPost uid p aid PID)

and 2 : ou 6= outErr
shows ou = O-sendPost (aid, clientPass s aid, PID, post s PID, owner s PID, vis
s PID)

∧ uid = admin s ∧ p = pass s (admin s)
〈proof 〉

lemma step-open-isCOMact:
assumes step s a = (ou,s ′)
and open s 6= open s ′

shows ¬ isCOMact a ∧ ¬ (∃ ua. isuPost ua ∧ a = Uact ua)
〈proof 〉

lemma ϕ-def3 :
assumes step s a = (ou,s ′)
shows
ϕ (Trans s a ou s ′) ←→
(∃ pst. a = Uact (uPost (owner s PID) (pass s (owner s PID)) PID pst) ∧ ou =

outOK)
∨
(∃ aid. a = COMact (comSendPost (admin s) (pass s (admin s)) aid PID) ∧

ou = O-sendPost (aid, clientPass s aid, PID, post s PID, owner s PID, vis
s PID))
∨
open s 6= open s ′ ∧ ¬ isCOMact a ∧ ¬ (∃ ua. isuPost ua ∧ a = Uact ua)
〈proof 〉

fun f :: (state,act,out) trans ⇒ value where
f (Trans s (Uact (uPost uid p pid pst)) - s ′) =
(if pid = PID then PVal pst else OVal (open s ′))
|
f (Trans s (COMact (comSendPost uid p aid pid)) (O-sendPost (-, -, -, pst, -)) s ′)
=
(if pid = PID then PValS aid pst else OVal (open s ′))

79

|
f (Trans s - - s ′) = OVal (open s ′)

lemma f-open-OVal:
assumes step s a = (ou,s ′)
and open s 6= open s ′ ∧ ¬ isCOMact a ∧ ¬ (∃ ua. isuPost ua ∧ a = Uact ua)
shows f (Trans s a ou s ′) = OVal (open s ′)
〈proof 〉

lemma f-eq-PVal:
assumes step s a = (ou,s ′) and ϕ (Trans s a ou s ′)
and f (Trans s a ou s ′) = PVal pst
shows a = Uact (uPost (owner s PID) (pass s (owner s PID)) PID pst)
〈proof 〉

lemma f-eq-PValS :
assumes step s a = (ou,s ′) and ϕ (Trans s a ou s ′)
and f (Trans s a ou s ′) = PValS aid pst
shows a = COMact (comSendPost (admin s) (pass s (admin s)) aid PID)
〈proof 〉

lemma f-eq-OVal:
assumes step s a = (ou,s ′) and ϕ (Trans s a ou s ′)
and f (Trans s a ou s ′) = OVal b
shows open s ′ 6= open s
〈proof 〉

lemma uPost-comSendPost-open-eq:
assumes step: step s a = (ou, s ′)
and a: a = Uact (uPost uid p pid pst) ∨ a = COMact (comSendPost uid p aid
pid)
shows open s ′ = open s
〈proof 〉

lemma step-open-ϕ-f-PVal-γ:
assumes s: reach s
and step: step s a = (ou, s ′)
and PID: PID ∈ set (postIDs s)
and op: ¬ open s and fi: ϕ (Trans s a ou s ′) and f : f (Trans s a ou s ′) = PVal
pst
shows ¬ γ (Trans s a ou s ′)
〈proof 〉

lemma Uact-uPaperC-step-eqButPID:
assumes a: a = Uact (uPost uid p PID pst)
and step s a = (ou,s ′)
shows eqButPID s s ′

〈proof 〉

80

lemma eqButPID-step-ϕ-imp:
assumes ss1 : eqButPID s s1
and step: step s a = (ou,s ′) and step1 : step s1 a = (ou1 ,s1 ′)
and ϕ: ϕ (Trans s a ou s ′)
shows ϕ (Trans s1 a ou1 s1 ′)
〈proof 〉

lemma eqButPID-step-ϕ:
assumes s ′s1 ′: eqButPID s s1
and step: step s a = (ou,s ′) and step1 : step s1 a = (ou1 ,s1 ′)
shows ϕ (Trans s a ou s ′) = ϕ (Trans s1 a ou1 s1 ′)
〈proof 〉

end

end
theory DYNAMIC-Post-ISSUER

imports
Post-Observation-Setup-ISSUER
DYNAMIC-Post-Value-Setup-ISSUER
Bounded-Deducibility-Security.Compositional-Reasoning

begin

6.5.2 Issuer declassification bound

We verify that a group of users of some node i, allowed to take normal
actions to the system and observe their outputs and additionally allowed
to observe communication, can learn nothing about the updates to a post
located at node i and the sends of that post to other nodes beyond:
(1) the updates that occur during the times when one of the following holds,
and the last update before one of the following holds (because, for example,
observers can see the current version of the post when it is made public):

• either a user in the group is the post’s owner or the administrator

• or a user in the group is a friend of the owner

• or the group has at least one registered user and the post is marked
"public"

(2) the presence of the sends (i.e., the number of the sending actions)
(3) the public knowledge that what is being sent is always the last version
(modeled as the correlation predicate)
See [3, Appendix C] for more details. This is the dynamic-trigger (i.e.,
trigger-incorporating inductive bound) version of the property proved in

81

Section 6.1. For a discussion of this “while-or-last-before” style of formal-
izing bounds, see [4, Section 3.4] about the the corresponding property of
CoSMed.
context Post
begin

fun T :: (state,act,out) trans ⇒ bool where T - = False

inductive BC :: value list ⇒ value list ⇒ bool
and BO :: value list ⇒ value list ⇒ bool
where
BC-PVal[simp,intro!]:
list-all (Not o isOVal) ul =⇒ list-all (Not o isOVal) ul1 =⇒
map tgtAPI (filter isPValS ul) = map tgtAPI (filter isPValS ul1) =⇒
(ul = [] −→ ul1 = [])
=⇒ BC ul ul1

|BC-BO[intro]:
BO vl vl1 =⇒
list-all (Not o isOVal) ul =⇒ list-all (Not o isOVal) ul1 =⇒
map tgtAPI (filter isPValS ul) = map tgtAPI (filter isPValS ul1) =⇒
(ul = [] ←→ ul1 = []) =⇒
(ul 6= [] =⇒ isPVal (last ul) ∧ last ul = last ul1) =⇒
list-all isPValS sul
=⇒
BC (ul @ sul @ OVal True # vl)

(ul1 @ sul @ OVal True # vl1)

|BO-PVal[simp,intro!]:
list-all (Not o isOVal) ul =⇒ BO ul ul
|BO-BC [intro]:

BC vl vl1 =⇒
list-all (Not o isOVal) ul
=⇒
BO (ul @ OVal False # vl) (ul @ OVal False # vl1)

lemma list-all-filter-Not-isOVal:
assumes list-all (Not ◦ isOVal) ul
and filter isPValS ul = [] and filter isPVal ul = []
shows ul = []
〈proof 〉

lemma BC-not-Nil: BC vl vl1 =⇒ vl = [] =⇒ vl1 = []
〈proof 〉

lemma BC-OVal-True:
assumes BC (OVal True # vl ′) vl1
shows ∃ vl1 ′. BO vl ′ vl1 ′ ∧ vl1 = OVal True # vl1 ′

〈proof 〉

82

fun corrFrom :: post ⇒ value list ⇒ bool where
corrFrom pst [] = True
|corrFrom pst (PVal pstt # vl) = corrFrom pstt vl
|corrFrom pst (PValS aid pstt # vl) = (pst = pstt ∧ corrFrom pst vl)
|corrFrom pst (OVal b # vl) = (corrFrom pst vl)

abbreviation corr :: value list ⇒ bool where corr ≡ corrFrom emptyPost

definition B where
B vl vl1 ≡ BC vl vl1 ∧ corr vl1

lemma B-not-Nil:
assumes B: B vl vl1 and vl: vl = []
shows vl1 = []
〈proof 〉

sublocale BD-Security-IO where
istate = istate and step = step and
ϕ = ϕ and f = f and γ = γ and g = g and T = T and B = B
〈proof 〉

6.5.3 Issuer unwinding proof
lemma reach-PublicV-imples-FriendV [simp]:
assumes reach s
and vis s pid 6= PublicV
shows vis s pid = FriendV
〈proof 〉

lemma eqButPID-step-γ-out:
assumes ss1 : eqButPID s s1
and step: step s a = (ou,s ′) and step1 : step s1 a = (ou1 ,s1 ′)
and op: ¬ open s
and sT : reachNT s and s1 : reach s1
and γ: γ (Trans s a ou s ′)
shows (∃ uid p aid pid. a = COMact (comSendPost uid p aid pid) ∧ outPurge ou
= outPurge ou1) ∨

ou = ou1
〈proof 〉

lemma eqButPID-step-eq:
assumes ss1 : eqButPID s s1
and a: a = Uact (uPost uid p PID pst) ou = outOK

83

and step: step s a = (ou, s ′) and step1 : step s1 a = (ou ′, s1 ′)
shows s ′ = s1 ′

〈proof 〉

definition ∆0 :: state ⇒ value list ⇒ state ⇒ value list ⇒ bool where
∆0 s vl s1 vl1 ≡
¬ PID ∈∈ postIDs s ∧
s = s1 ∧ BC vl vl1 ∧
corr vl1

definition ∆1 :: state ⇒ value list ⇒ state ⇒ value list ⇒ bool where
∆1 s vl s1 vl1 ≡
PID ∈∈ postIDs s ∧
list-all (Not o isOVal) vl ∧ list-all (Not o isOVal) vl1 ∧
map tgtAPI (filter isPValS vl) = map tgtAPI (filter isPValS vl1) ∧
(vl = [] −→ vl1 = []) ∧
eqButPID s s1 ∧ ¬ open s ∧
corrFrom (post s1 PID) vl1

definition ∆11 :: state ⇒ value list ⇒ state ⇒ value list ⇒ bool where
∆11 s vl s1 vl1 ≡
PID ∈∈ postIDs s ∧
vl = [] ∧ list-all isPVal vl1 ∧
eqButPID s s1 ∧ ¬ open s ∧
corrFrom (post s1 PID) vl1

definition ∆2 :: state ⇒ value list ⇒ state ⇒ value list ⇒ bool where
∆2 s vl s1 vl1 ≡
PID ∈∈ postIDs s ∧
list-all (Not o isOVal) vl ∧
vl = vl1 ∧
s = s1 ∧ open s ∧
corrFrom (post s1 PID) vl1

definition ∆31 :: state ⇒ value list ⇒ state ⇒ value list ⇒ bool where
∆31 s vl s1 vl1 ≡
PID ∈∈ postIDs s ∧
(∃ ul ul1 sul vll vll1 .

BO vll vll1 ∧
list-all (Not o isOVal) ul ∧ list-all (Not o isOVal) ul1 ∧
map tgtAPI (filter isPValS ul) = map tgtAPI (filter isPValS ul1) ∧
ul 6= [] ∧ ul1 6= [] ∧
isPVal (last ul) ∧ last ul = last ul1 ∧
list-all isPValS sul ∧
vl = ul @ sul @ OVal True # vll ∧ vl1 = ul1 @ sul @ OVal True # vll1) ∧

eqButPID s s1 ∧ ¬ open s ∧
corrFrom (post s1 PID) vl1

84

definition ∆32 :: state ⇒ value list ⇒ state ⇒ value list ⇒ bool where
∆32 s vl s1 vl1 ≡
PID ∈∈ postIDs s ∧
(∃ sul vll vll1 .

BO vll vll1 ∧
list-all isPValS sul ∧
vl = sul @ OVal True # vll ∧ vl1 = sul @ OVal True # vll1) ∧

s = s1 ∧ ¬ open s ∧
corrFrom (post s1 PID) vl1

definition ∆4 :: state ⇒ value list ⇒ state ⇒ value list ⇒ bool where
∆4 s vl s1 vl1 ≡
PID ∈∈ postIDs s ∧
(∃ ul vll vll1 .

BC vll vll1 ∧
list-all (Not o isOVal) ul ∧
vl = ul @ OVal False # vll ∧ vl1 = ul @ OVal False # vll1) ∧

s = s1 ∧ open s ∧
corrFrom (post s1 PID) vl1

lemma istate-∆0 :
assumes B: B vl vl1
shows ∆0 istate vl istate vl1
〈proof 〉

lemma list-all-filter [simp]:
assumes list-all PP xs
shows filter PP xs = xs
〈proof 〉

lemma unwind-cont-∆0 : unwind-cont ∆0 {∆0 ,∆1 ,∆2 ,∆31 ,∆32 ,∆4}
〈proof 〉

lemma unwind-cont-∆1 : unwind-cont ∆1 {∆1 ,∆11}
〈proof 〉

lemma unwind-cont-∆11 : unwind-cont ∆11 {∆11}
〈proof 〉

lemma unwind-cont-∆31 : unwind-cont ∆31 {∆31 ,∆32}
〈proof 〉

lemma unwind-cont-∆32 : unwind-cont ∆32 {∆2 ,∆32 ,∆4}
〈proof 〉

lemma unwind-cont-∆2 : unwind-cont ∆2 {∆2}
〈proof 〉

85

lemma unwind-cont-∆4 : unwind-cont ∆4 {∆1 ,∆31 ,∆32 ,∆4}
〈proof 〉

definition Gr where
Gr =
{
(∆0 , {∆0 ,∆1 ,∆2 ,∆31 ,∆32 ,∆4}),
(∆1 , {∆1 ,∆11}),
(∆11 , {∆11}),
(∆2 , {∆2}),
(∆31 , {∆31 ,∆32}),
(∆32 , {∆2 ,∆32 ,∆4}),
(∆4 , {∆1 ,∆31 ,∆32 ,∆4})
}

theorem secure: secure
〈proof 〉

end

end
theory DYNAMIC-Post-COMPOSE2

imports
DYNAMIC-Post-ISSUER
Post-RECEIVER
BD-Security-Compositional.Composing-Security

begin

6.5.4 Confidentiality for the (binary) issuer-receiver composition
type-synonym ttrans = (state, act, out) trans
type-synonym value1 = Post.value type-synonym value2 = Post-RECEIVER.value
type-synonym obs1 = Post-Observation-Setup-ISSUER.obs
type-synonym obs2 = Post-Observation-Setup-RECEIVER.obs

datatype cval = PValC post
type-synonym cobs = obs1 × obs2

locale Post-COMPOSE2 =
Iss: Post UIDs PID +
Rcv: Post-RECEIVER UIDs2 PID AID1

for UIDs :: userID set and UIDs2 :: userID set and
AID1 :: apiID and PID :: postID

+ fixes AID2 :: apiID

86

begin

abbreviation ϕ1 ≡ Iss.ϕ abbreviation f1 ≡ Iss.f abbreviation γ1 ≡ Iss.γ
abbreviation g1 ≡ Iss.g

abbreviation T1 ≡ Iss.T abbreviation B1 ≡ Iss.B
abbreviation ϕ2 ≡ Rcv.ϕ abbreviation f2 ≡ Rcv.f abbreviation γ2 ≡ Rcv.γ
abbreviation g2 ≡ Rcv.g

abbreviation T2 ≡ Rcv.T abbreviation B2 ≡ Rcv.B

fun isCom1 :: ttrans ⇒ bool where
isCom1 (Trans s (COMact ca1) ou1 s ′) = (ou1 6= outErr)
|isCom1 - = False

fun isCom2 :: ttrans ⇒ bool where
isCom2 (Trans s (COMact ca2) ou2 s ′) = (ou2 6= outErr)
|isCom2 - = False

fun isComV1 :: value1 ⇒ bool where
isComV1 (Iss.PValS aid1 pst1) = True
|isComV1 - = False

fun isComV2 :: value2 ⇒ bool where
isComV2 (Rcv.PValR pst2) = True

fun syncV :: value1 ⇒ value2 ⇒ bool where
syncV (Iss.PValS aud1 pst1) (Rcv.PValR pst2) = (pst1 = pst2)
|syncV - - = False

fun cmpV :: value1 ⇒ value2 ⇒ cval where
cmpV (Iss.PValS aid1 pst1) (Rcv.PValR pst2) = PValC pst1
|cmpV - - = undefined

fun isComO1 :: obs1 ⇒ bool where
isComO1 (COMact ca1 , ou1) = (ou1 6= outErr)
|isComO1 - = False

fun isComO2 :: obs2 ⇒ bool where
isComO2 (COMact ca2 , ou2) = (ou2 6= outErr)
|isComO2 - = False

fun comSyncOA :: out ⇒ comActt ⇒ bool where
comSyncOA (O-sendServerReq (aid2 , reqInfo1)) (comReceiveClientReq aid1 re-

qInfo2) =
(aid1 = AID1 ∧ aid2 = AID2 ∧ reqInfo1 = reqInfo2)

|comSyncOA (O-connectClient (aid2 , sp1)) (comConnectServer aid1 sp2) =
(aid1 = AID1 ∧ aid2 = AID2 ∧ sp1 = sp2)

87

|comSyncOA (O-sendPost (aid2 , sp1 , pid1 , pst1 , uid1 , vs1)) (comReceivePost aid1
sp2 pid2 pst2 uid2 vs2) =

(aid1 = AID1 ∧ aid2 = AID2 ∧ (pid1 , pst1 , uid1 , vs1) = (pid2 , pst2 , uid2 ,
vs2))
|comSyncOA (O-sendCreateOFriend (aid2 , sp1 , uid1 , uid1 ′)) (comReceiveCreateOFriend
aid1 sp2 uid2 uid2 ′) =

(aid1 = AID1 ∧ aid2 = AID2 ∧ (uid1 , uid1 ′) = (uid2 , uid2 ′))
|comSyncOA (O-sendDeleteOFriend (aid2 , sp1 , uid1 , uid1 ′)) (comReceiveDeleteOFriend
aid1 sp2 uid2 uid2 ′) =

(aid1 = AID1 ∧ aid2 = AID2 ∧ (uid1 , uid1 ′) = (uid2 , uid2 ′))
|comSyncOA - - = False

fun syncO :: obs1 ⇒ obs2 ⇒ bool where
syncO (COMact ca1 , ou1) (COMact ca2 , ou2) =
(ou1 6= outErr ∧ ou2 6= outErr ∧
(comSyncOA ou1 ca2 ∨ comSyncOA ou2 ca1)
)
|syncO - - = False

fun sync :: ttrans ⇒ ttrans ⇒ bool where
sync (Trans s1 a1 ou1 s1 ′) (Trans s2 a2 ou2 s2 ′) = syncO (a1 , ou1) (a2 , ou2)

definition cmpO :: obs1 ⇒ obs2 ⇒ cobs where
cmpO o1 o2 ≡ (o1 ,o2)

lemma isCom1-isComV1 :
assumes v: validTrans trn1 and r : reach (srcOf trn1) and ϕ1 : ϕ1 trn1
shows isCom1 trn1 ←→ isComV1 (f1 trn1)
〈proof 〉

lemma isCom1-isComO1 :
assumes validTrans trn1 and reach (srcOf trn1) and γ1 trn1
shows isCom1 trn1 ←→ isComO1 (g1 trn1)
〈proof 〉

lemma isCom2-isComV2 :
assumes validTrans trn2 and reach (srcOf trn2) and ϕ2 trn2
shows isCom2 trn2 ←→ isComV2 (f2 trn2)
〈proof 〉

lemma isCom2-isComO2 :
assumes validTrans trn2 and reach (srcOf trn2) and γ2 trn2
shows isCom2 trn2 ←→ isComO2 (g2 trn2)

88

〈proof 〉

lemma sync-syncV :
assumes v1 : validTrans trn1 and reach (srcOf trn1)
and v2 : validTrans trn2 and reach (srcOf trn2)
and c1 : isCom1 trn1 and c2 : isCom2 trn2 and ϕ1 : ϕ1 trn1 and ϕ2 : ϕ2 trn2
and snc: sync trn1 trn2
shows syncV (f1 trn1) (f2 trn2)
〈proof 〉

lemma sync-syncO:
assumes validTrans trn1 and reach (srcOf trn1)
and validTrans trn2 and reach (srcOf trn2)
and isCom1 trn1 and isCom2 trn2 and γ1 trn1 and γ2 trn2
and sync trn1 trn2
shows syncO (g1 trn1) (g2 trn2)
〈proof 〉

lemma sync-ϕ1-ϕ2 :
assumes v1 : validTrans trn1 and r1 : reach (srcOf trn1)
and v2 : validTrans trn2 and s2 : reach (srcOf trn2)
and c1 : isCom1 trn1 and c2 : isCom2 trn2
and sn: sync trn1 trn2
shows ϕ1 trn1 ←→ ϕ2 trn2 (is ?A ←→ ?B)
〈proof 〉

lemma textPost-textPost-cong[intro]:
assumes textPost pst1 = textPost pst2
and setTextPost pst1 emptyText = setTextPost pst2 emptyText
shows pst1 = pst2
〈proof 〉

lemma sync-ϕ-γ:
assumes validTrans trn1 and reach (srcOf trn1)
and validTrans trn2 and reach (srcOf trn2)
and isCom1 trn1 and isCom2 trn2
and γ1 trn1 and γ2 trn2
and so: syncO (g1 trn1) (g2 trn2)
and ϕ1 trn1 =⇒ ϕ2 trn2 =⇒ syncV (f1 trn1) (f2 trn2)
shows sync trn1 trn2
〈proof 〉

lemma isCom1-γ1 :
assumes validTrans trn1 and reach (srcOf trn1) and isCom1 trn1
shows γ1 trn1
〈proof 〉

lemma isCom2-γ2 :
assumes validTrans trn2 and reach (srcOf trn2) and isCom2 trn2

89

shows γ2 trn2
〈proof 〉

lemma isCom2-V2 :
assumes validTrans trn2 and reach (srcOf trn2) and ϕ2 trn2
shows isCom2 trn2
〈proof 〉

end

sublocale Post-COMPOSE2 < BD-Security-TS-Comp where
istate1 = istate and validTrans1 = validTrans and srcOf1 = srcOf and tgtOf1

= tgtOf
and ϕ1 = ϕ1 and f1 = f1 and γ1 = γ1 and g1 = g1 and T1 = T1 and

B1 = B1
and
istate2 = istate and validTrans2 = validTrans and srcOf2 = srcOf and tgtOf2

= tgtOf
and ϕ2 = ϕ2 and f2 = f2 and γ2 = γ2 and g2 = g2 and T2 = T2 and

B2 = B2
and isCom1 = isCom1 and isCom2 = isCom2 and sync = sync
and isComV1 = isComV1 and isComV2 = isComV2 and syncV = syncV
and isComO1 = isComO1 and isComO2 = isComO2 and syncO = syncO
〈proof 〉

context Post-COMPOSE2
begin

theorem secure: secure
〈proof 〉

end

end
theory DYNAMIC-Post-Network

imports
DYNAMIC-Post-ISSUER
Post-RECEIVER
../API-Network
BD-Security-Compositional.Composing-Security-Network

begin

6.5.5 Confidentiality for the N-ary composition
type-synonym ttrans = (state, act, out) trans

90

type-synonym obs = Post-Observation-Setup-ISSUER.obs
type-synonym value = Post.value + Post-RECEIVER.value

lemma value-cases:
fixes v :: value
obtains (PVal) pst where v = Inl (Post.PVal pst)

| (PValS) aid pst where v = Inl (Post.PValS aid pst)
| (OVal) ov where v = Inl (Post.OVal ov)
| (PValR) pst where v = Inr (Post-RECEIVER.PValR pst)

〈proof 〉

locale Post-Network = Network
+ fixes UIDs :: apiID ⇒ userID set

and AID :: apiID and PID :: postID
assumes AID-in-AIDs: AID ∈ AIDs

begin

sublocale Iss: Post UIDs AID PID 〈proof 〉

abbreviation ϕ :: apiID ⇒ (state, act, out) trans ⇒ bool
where ϕ aid trn ≡ (if aid = AID then Iss.ϕ trn else Post-RECEIVER.ϕ PID AID
trn)

abbreviation f :: apiID ⇒ (state, act, out) trans ⇒ value
where f aid trn ≡ (if aid = AID then Inl (Iss.f trn) else Inr (Post-RECEIVER.f
PID AID trn))

abbreviation γ :: apiID ⇒ (state, act, out) trans ⇒ bool
where γ aid trn ≡ (if aid = AID then Iss.γ trn else ObservationSetup-RECEIVER.γ
(UIDs aid) trn)

abbreviation g :: apiID ⇒ (state, act, out) trans ⇒ obs
where g aid trn ≡ (if aid = AID then Iss.g trn else ObservationSetup-RECEIVER.g
PID AID trn)

abbreviation T :: apiID ⇒ (state, act, out) trans ⇒ bool
where T aid trn ≡ (if aid = AID then Iss.T trn else Post-RECEIVER.T (UIDs

aid) PID AID trn)

lemma T-def :
T aid trn ←→ aid 6= AID ∧ Post-RECEIVER.T (UIDs aid) PID AID trn
〈proof 〉

abbreviation B :: apiID ⇒ value list ⇒ value list ⇒ bool
where B aid vl vl1 ≡
(if aid = AID then list-all isl vl ∧ list-all isl vl1 ∧ Iss.B (map projl vl) (map projl

vl1)
else list-all (Not o isl) vl ∧ list-all (Not o isl) vl1 ∧ Post-RECEIVER.B (map

91

projr vl) (map projr vl1))

fun comOfV :: apiID ⇒ value ⇒ com where
comOfV aid (Inl (Post.PValS aid ′ pst)) = (if aid ′ 6= aid then Send else Internal)
| comOfV aid (Inl (Post.PVal pst)) = Internal
| comOfV aid (Inl (Post.OVal ov)) = Internal
| comOfV aid (Inr v) = Recv

fun tgtNodeOfV :: apiID ⇒ value ⇒ apiID where
tgtNodeOfV aid (Inl (Post.PValS aid ′ pst)) = aid ′

| tgtNodeOfV aid (Inl (Post.PVal pst)) = undefined
| tgtNodeOfV aid (Inl (Post.OVal ov)) = undefined
| tgtNodeOfV aid (Inr v) = AID

definition syncV :: apiID ⇒ value ⇒ apiID ⇒ value ⇒ bool where
syncV aid1 v1 aid2 v2 =
(∃ pst. aid1 = AID ∧ v1 = Inl (Post.PValS aid2 pst) ∧ v2 = Inr (Post-RECEIVER.PValR

pst))

lemma syncVI : syncV AID (Inl (Post.PValS aid ′ pst)) aid ′ (Inr (Post-RECEIVER.PValR
pst))
〈proof 〉

lemma syncVE :
assumes syncV aid1 v1 aid2 v2
obtains pst where aid1 = AID v1 = Inl (Post.PValS aid2 pst) v2 = Inr (Post-RECEIVER.PValR
pst)
〈proof 〉

fun getTgtV where
getTgtV (Inl (Post.PValS aid pst)) = Inr (Post-RECEIVER.PValR pst)
| getTgtV v = v

lemma comOfV-AID:
comOfV AID v = Send ←→ isl v ∧ Iss.isPValS (projl v) ∧ Iss.tgtAPI (projl v)
6= AID

comOfV AID v = Recv ←→ Not (isl v)
〈proof 〉

lemmas ϕ-defs = Post-RECEIVER.ϕ-def2 Iss.ϕ-def3

sublocale Net: BD-Security-TS-Network-getTgtV
where istate = λ-. istate and validTrans = validTrans and srcOf = λ-. srcOf
and tgtOf = λ-. tgtOf

and nodes = AIDs and comOf = comOf and tgtNodeOf = tgtNodeOf
and sync = sync and ϕ = ϕ and f = f and γ = γ and g = g and T = T and

B = B
and comOfV = comOfV and tgtNodeOfV = tgtNodeOfV and syncV = syncV
and comOfO = comOfO and tgtNodeOfO = tgtNodeOfO and syncO = syncO

92

and source = AID and getTgtV = getTgtV
〈proof 〉

lemma list-all-Not-isl-projectSrcV : list-all (Not o isl) (Net.projectSrcV aid vlSrc)
〈proof 〉

context
fixes AID ′ :: apiID
assumes AID ′: AID ′ ∈ AIDs − {AID}
begin

interpretation Recv: Post-RECEIVER UIDs AID ′ PID AID 〈proof 〉

lemma Iss-BC-BO-tgtAPI :
shows (Iss.BC vl vl1 −→ map Iss.tgtAPI (filter Iss.isPValS vl) =

map Iss.tgtAPI (filter Iss.isPValS vl1)) ∧
(Iss.BO vl vl1 −→ map Iss.tgtAPI (filter Iss.isPValS vl) =

map Iss.tgtAPI (filter Iss.isPValS vl1))
〈proof 〉

lemma Iss-B-Recv-B-aux:
assumes list-all isl vl
and list-all isl vl1
and map Iss.tgtAPI (filter Iss.isPValS (map projl vl)) =

map Iss.tgtAPI (filter Iss.isPValS (map projl vl1))
shows length (map projr (Net.projectSrcV AID ′ vl)) = length (map projr (Net.projectSrcV
AID ′ vl1))
〈proof 〉

lemma Iss-B-Recv-B:
assumes B AID vl vl1
shows Recv.B (map projr (Net.projectSrcV AID ′ vl)) (map projr (Net.projectSrcV
AID ′ vl1))
〈proof 〉

end

lemma map-projl-Inl: map (projl o Inl) vl = vl
〈proof 〉

lemma these-map-Inl-projl: list-all isl vl =⇒ these (map (Some o Inl o projl) vl)
= vl
〈proof 〉

lemma map-projr-Inr : map (projr o Inr) vl = vl
〈proof 〉

lemma these-map-Inr-projr : list-all (Not o isl) vl =⇒ these (map (Some o Inr o
projr) vl) = vl

93

〈proof 〉

sublocale BD-Security-TS-Network-Preserve-Source-Security-getTgtV
where istate = λ-. istate and validTrans = validTrans and srcOf = λ-. srcOf
and tgtOf = λ-. tgtOf

and nodes = AIDs and comOf = comOf and tgtNodeOf = tgtNodeOf
and sync = sync and ϕ = ϕ and f = f and γ = γ and g = g and T = T and

B = B
and comOfV = comOfV and tgtNodeOfV = tgtNodeOfV and syncV = syncV
and comOfO = comOfO and tgtNodeOfO = tgtNodeOfO and syncO = syncO
and source = AID and getTgtV = getTgtV
〈proof 〉

theorem secure: secure
〈proof 〉

end

end

theory Independent-Post-Observation-Setup-ISSUER
imports
../../Safety-Properties
../Post-Observation-Setup-ISSUER

begin

6.6 Variation with multiple independent secret posts

This section formalizes the lifting of the confidentiality of one given (arbi-
trary but fixed) post to the confidentiality of two posts of arbitrary nodes
of the network, as described in [3, Appendix E].

6.6.1 Issuer observation setup
locale Strong-ObservationSetup-ISSUER = Fixed-UIDs + Fixed-PID
begin

fun γ :: (state,act,out) trans ⇒ bool where
γ (Trans - a - -) ←→

(∃ uid. userOfA a = Some uid ∧ uid ∈ UIDs)
∨
— Communication actions are considered to be observable in order to make the

security properties compositional
(∃ ca. a = COMact ca)
∨
— The following actions are added to strengthen the observers in order to show

that all posts other than PID are completely independent of PID; the confidentiality

94

of PID is protected even if the observers can see all updates to other posts (and
actions contributing to the declassification triggers of those posts).

(∃ uid p pid pst. a = Uact (uPost uid p pid pst) ∧ pid 6= PID)
∨
(∃ uid p. a = Sact (sSys uid p))
∨
(∃ uid p uid ′ p ′. a = Cact (cUser uid p uid ′ p ′))
∨
(∃ uid p pid. a = Cact (cPost uid p pid))
∨
(∃ uid p uid ′. a = Cact (cFriend uid p uid ′))
∨
(∃ uid p uid ′. a = Dact (dFriend uid p uid ′))
∨
(∃ uid p pid v. a = Uact (uVisPost uid p pid v))

fun sPurge :: sActt ⇒ sActt where
sPurge (sSys uid pwd) = sSys uid emptyPass

fun comPurge :: comActt ⇒ comActt where
comPurge (comSendServerReq uID p aID reqInfo) = comSendServerReq uID emp-

tyPass aID reqInfo
|comPurge (comConnectClient uID p aID sp) = comConnectClient uID emptyPass
aID sp
|comPurge (comConnectServer aID sp) = comConnectServer aID sp
|comPurge (comSendPost uID p aID pID) = comSendPost uID emptyPass aID pID
|comPurge (comSendCreateOFriend uID p aID uID ′) = comSendCreateOFriend
uID emptyPass aID uID ′

|comPurge (comSendDeleteOFriend uID p aID uID ′) = comSendDeleteOFriend
uID emptyPass aID uID ′

|comPurge ca = ca

fun outPurge :: out ⇒ out where
outPurge (O-sendPost (aID, sp, pID, pst, uID, vs)) =
(let pst ′ = (if pID = PID then emptyPost else pst)
in O-sendPost (aID, sp, pID, pst ′, uID, vs))

|outPurge ou = ou

fun g :: (state,act,out)trans ⇒ obs where
g (Trans - (Sact sa) ou -) = (Sact (sPurge sa), outPurge ou)
|g (Trans - (COMact ca) ou -) = (COMact (comPurge ca), outPurge ou)
|g (Trans - a ou -) = (a,ou)

lemma comPurge-simps:

95

comPurge ca = comSendServerReq uID p aID reqInfo ←→ (∃ p ′. ca = comSend-
ServerReq uID p ′ aID reqInfo ∧ p = emptyPass)

comPurge ca = comReceiveClientReq aID reqInfo ←→ ca = comReceiveClientReq
aID reqInfo
comPurge ca = comConnectClient uID p aID sp←→ (∃ p ′. ca = comConnectClient

uID p ′ aID sp ∧ p = emptyPass)
comPurge ca = comConnectServer aID sp ←→ ca = comConnectServer aID sp
comPurge ca = comReceivePost aID sp nID nt uID v ←→ ca = comReceivePost

aID sp nID nt uID v
comPurge ca = comSendPost uID p aID nID ←→ (∃ p ′. ca = comSendPost uID

p ′ aID nID ∧ p = emptyPass)
comPurge ca = comSendCreateOFriend uID p aID uID ′ ←→ (∃ p ′. ca = com-

SendCreateOFriend uID p ′ aID uID ′ ∧ p = emptyPass)
comPurge ca = comReceiveCreateOFriend aID cp uID uID ′ ←→ ca = comRe-

ceiveCreateOFriend aID cp uID uID ′

comPurge ca = comSendDeleteOFriend uID p aID uID ′ ←→ (∃ p ′. ca = com-
SendDeleteOFriend uID p ′ aID uID ′ ∧ p = emptyPass)

comPurge ca = comReceiveDeleteOFriend aID cp uID uID ′ ←→ ca = comRe-
ceiveDeleteOFriend aID cp uID uID ′

〈proof 〉

lemma outPurge-simps[simp]:
outPurge ou = outErr ←→ ou = outErr
outPurge ou = outOK ←→ ou = outOK
outPurge ou = O-sendServerReq ossr ←→ ou = O-sendServerReq ossr
outPurge ou = O-connectClient occ ←→ ou = O-connectClient occ
outPurge ou = O-sendPost (aid, sp, pid, pst ′, uid, vs) ←→ (∃ pst.

ou = O-sendPost (aid, sp, pid, pst, uid, vs) ∧
pst ′ = (if pid = PID then emptyPost else pst))

outPurge ou = O-sendCreateOFriend oscf ←→ ou = O-sendCreateOFriend oscf
outPurge ou = O-sendDeleteOFriend osdf ←→ ou = O-sendDeleteOFriend osdf
〈proof 〉

lemma g-simps:
g (Trans s a ou s ′) = (COMact (comSendServerReq uID p aID reqInfo), O-sendServerReq

ossr)
←→ (∃ p ′. a = COMact (comSendServerReq uID p ′ aID reqInfo) ∧ p = emptyPass
∧ ou = O-sendServerReq ossr)

g (Trans s a ou s ′) = (COMact (comReceiveClientReq aID reqInfo), outOK)
←→ a = COMact (comReceiveClientReq aID reqInfo) ∧ ou = outOK
g (Trans s a ou s ′) = (COMact (comConnectClient uID p aID sp), O-connectClient

occ)
←→ (∃ p ′. a = COMact (comConnectClient uID p ′ aID sp) ∧ p = emptyPass ∧
ou = O-connectClient occ)

g (Trans s a ou s ′) = (COMact (comConnectServer aID sp), outOK)
←→ a = COMact (comConnectServer aID sp) ∧ ou = outOK

g (Trans s a ou s ′) = (COMact (comReceivePost aID sp nID nt uID v), outOK)
←→ a = COMact (comReceivePost aID sp nID nt uID v) ∧ ou = outOK

96

g (Trans s a ou s ′) = (COMact (comSendPost uID p aID nID), O-sendPost (aid,
sp, pid, pst ′, uid, vs))
←→ (∃ pst p ′. a = COMact (comSendPost uID p ′ aID nID) ∧ p = emptyPass ∧ ou
= O-sendPost (aid, sp, pid, pst, uid, vs) ∧ pst ′ = (if pid = PID then emptyPost
else pst))

g (Trans s a ou s ′) = (COMact (comSendCreateOFriend uID p aID uID ′),
O-sendCreateOFriend (aid, sp, uid, uid ′))
←→ (∃ p ′. a = (COMact (comSendCreateOFriend uID p ′ aID uID ′)) ∧ p = emp-
tyPass ∧ ou = O-sendCreateOFriend (aid, sp, uid, uid ′))

g (Trans s a ou s ′) = (COMact (comReceiveCreateOFriend aID cp uID uID ′),
outOK)
←→ a = COMact (comReceiveCreateOFriend aID cp uID uID ′) ∧ ou = outOK

g (Trans s a ou s ′) = (COMact (comSendDeleteOFriend uID p aID uID ′),
O-sendDeleteOFriend (aid, sp, uid, uid ′))
←→ (∃ p ′. a = COMact (comSendDeleteOFriend uID p ′ aID uID ′) ∧ p = empty-
Pass ∧ ou = O-sendDeleteOFriend (aid, sp, uid, uid ′))

g (Trans s a ou s ′) = (COMact (comReceiveDeleteOFriend aID cp uID uID ′),
outOK)
←→ a = COMact (comReceiveDeleteOFriend aID cp uID uID ′) ∧ ou = outOK
〈proof 〉

end

end

theory Independent-DYNAMIC-Post-Value-Setup-ISSUER
imports
../../Safety-Properties
Independent-Post-Observation-Setup-ISSUER
../Post-Unwinding-Helper-ISSUER

begin

6.6.2 Issuer value setup
locale Post = Strong-ObservationSetup-ISSUER
begin

datatype value =
isPVal: PVal post — updating the post content locally
| isPValS : PValS (tgtAPI : apiID) post — sending the post to another node
| isOVal: OVal bool — change in the dynamic declassification trigger condition

definition open where
open s ≡
∃ uid ∈ UIDs.

uid ∈∈ userIDs s ∧ PID ∈∈ postIDs s ∧
(uid = admin s ∨ uid = owner s PID ∨ uid ∈∈ friendIDs s (owner s PID) ∨
vis s PID = PublicV)

97

sublocale Issuer-State-Equivalence-Up-To-PID 〈proof 〉

lemma eqButPID-open:
assumes eqButPID s s1
shows open s ←→ open s1
〈proof 〉

lemma not-open-eqButPID:
assumes 1 : ¬ open s and 2 : eqButPID s s1
shows ¬ open s1
〈proof 〉

lemma step-isCOMact-open:
assumes step s a = (ou, s ′)
and isCOMact a
shows open s ′ = open s
〈proof 〉

lemma validTrans-isCOMact-open:
assumes validTrans trn
and isCOMact (actOf trn)
shows open (tgtOf trn) = open (srcOf trn)
〈proof 〉

lemma list-all-isOVal-filter-isPValS :
list-all isOVal vl =⇒ filter (Not o isPValS) vl = vl
〈proof 〉

lemma list-all-Not-isOVal-OVal-True:
assumes list-all (Not ◦ isOVal) ul
and ul @ vll = OVal True # vll ′
shows ul = []
〈proof 〉

lemma list-all-filter-isOVal-isPVal-isPValS :
assumes list-all (Not ◦ isOVal) ul
and filter isPValS ul = [] and filter isPVal ul = []
shows ul = []
〈proof 〉

lemma filter-list-all-isPValS-isOVal:
assumes list-all (Not ◦ isOVal) ul and filter isPVal ul = []
shows list-all isPValS ul
〈proof 〉

lemma filter-list-all-isPVal-isOVal:
assumes list-all (Not ◦ isOVal) ul and filter isPValS ul = []
shows list-all isPVal ul
〈proof 〉

98

lemma list-all-isPValS-Not-isOVal-filter :
assumes list-all isPValS ul shows list-all (Not ◦ isOVal) ul ∧ filter isPVal ul =
[]
〈proof 〉

lemma filter-isTValS-Nil:
filter isPValS vl = [] ←→
list-all (λ v. isPVal v ∨ isOVal v) vl
〈proof 〉

fun ϕ :: (state,act,out) trans ⇒ bool where
ϕ (Trans - (Uact (uPost uid p pid pst)) ou -) = (pid = PID ∧ ou = outOK)
|
ϕ (Trans - (COMact (comSendPost uid p aid pid)) ou -) = (pid = PID ∧ ou 6=
outErr)

|
ϕ (Trans s - - s ′) = (open s 6= open s ′)

lemma ϕ-def1 :
ϕ trn ←→
(∃ uid p pst. actOf trn = Uact (uPost uid p PID pst) ∧ outOf trn = outOK) ∨
(∃ uid p aid. actOf trn = COMact (comSendPost uid p aid PID) ∧ outOf trn 6=

outErr) ∨
((∀ uid p pid pst. actOf trn 6= Uact (uPost uid p pid pst)) ∧
(∀ uid p aid pid. actOf trn 6= COMact (comSendPost uid p aid pid)) ∧
open (srcOf trn) 6= open (tgtOf trn))

〈proof 〉

lemma ϕ-def2 :
assumes step s a = (ou,s ′)
shows
ϕ (Trans s a ou s ′) ←→
(∃ uid p pst. a = Uact (uPost uid p PID pst) ∧ ou = outOK) ∨
(∃ uid p aid. a = COMact (comSendPost uid p aid PID) ∧ ou 6= outErr) ∨
open s 6= open s ′

〈proof 〉

lemma uTextPost-out:
assumes 1 : step s a = (ou,s ′) and a: a = Uact (uPost uid p PID pst) and 2 : ou
= outOK
shows uid = owner s PID ∧ p = pass s uid
〈proof 〉

lemma comSendPost-out:
assumes 1 : step s a = (ou,s ′) and a: a = COMact (comSendPost uid p aid PID)

and 2 : ou 6= outErr

99

shows ou = O-sendPost (aid, clientPass s aid, PID, post s PID, owner s PID, vis
s PID)

∧ uid = admin s ∧ p = pass s (admin s)
〈proof 〉

lemma step-open-isCOMact:
assumes step s a = (ou,s ′)
and open s 6= open s ′

shows ¬ isCOMact a ∧ ¬ (∃ ua. isuPost ua ∧ a = Uact ua)
〈proof 〉

lemma ϕ-def3 :
assumes step s a = (ou,s ′)
shows
ϕ (Trans s a ou s ′) ←→
(∃ pst. a = Uact (uPost (owner s PID) (pass s (owner s PID)) PID pst) ∧ ou =

outOK)
∨
(∃ aid. a = COMact (comSendPost (admin s) (pass s (admin s)) aid PID) ∧

ou = O-sendPost (aid, clientPass s aid, PID, post s PID, owner s PID, vis
s PID))
∨
open s 6= open s ′ ∧ ¬ isCOMact a ∧ ¬ (∃ ua. isuPost ua ∧ a = Uact ua)
〈proof 〉

fun f :: (state,act,out) trans ⇒ value where
f (Trans s (Uact (uPost uid p pid pst)) - s ′) =
(if pid = PID then PVal pst else OVal (open s ′))
|
f (Trans s (COMact (comSendPost uid p aid pid)) (O-sendPost (-, -, -, pst, -)) s ′)
=
(if pid = PID then PValS aid pst else OVal (open s ′))
|
f (Trans s - - s ′) = OVal (open s ′)

lemma f-open-OVal:
assumes step s a = (ou,s ′)
and open s 6= open s ′ ∧ ¬ isCOMact a ∧ ¬ (∃ ua. isuPost ua ∧ a = Uact ua)
shows f (Trans s a ou s ′) = OVal (open s ′)
〈proof 〉

lemma f-eq-PVal:
assumes step s a = (ou,s ′) and ϕ (Trans s a ou s ′)
and f (Trans s a ou s ′) = PVal pst
shows a = Uact (uPost (owner s PID) (pass s (owner s PID)) PID pst)
〈proof 〉

lemma f-eq-PValS :
assumes step s a = (ou,s ′) and ϕ (Trans s a ou s ′)

100

and f (Trans s a ou s ′) = PValS aid pst
shows a = COMact (comSendPost (admin s) (pass s (admin s)) aid PID)
〈proof 〉

lemma f-eq-OVal:
assumes step s a = (ou,s ′) and ϕ (Trans s a ou s ′)
and f (Trans s a ou s ′) = OVal b
shows open s ′ 6= open s
〈proof 〉

lemma uPost-comSendPost-open-eq:
assumes step: step s a = (ou, s ′)
and a: a = Uact (uPost uid p pid pst) ∨ a = COMact (comSendPost uid p aid
pid)
shows open s ′ = open s
〈proof 〉

lemma step-open-ϕ-f-PVal-γ:
assumes s: reach s
and step: step s a = (ou, s ′)
and PID: PID ∈ set (postIDs s)
and op: ¬ open s and fi: ϕ (Trans s a ou s ′) and f : f (Trans s a ou s ′) = PVal
pst
shows ¬ γ (Trans s a ou s ′)
〈proof 〉

lemma Uact-uPaperC-step-eqButPID:
assumes a: a = Uact (uPost uid p PID pst)
and step s a = (ou,s ′)
shows eqButPID s s ′

〈proof 〉

lemma eqButPID-step-ϕ-imp:
assumes ss1 : eqButPID s s1
and step: step s a = (ou,s ′) and step1 : step s1 a = (ou1 ,s1 ′)
and ϕ: ϕ (Trans s a ou s ′)
shows ϕ (Trans s1 a ou1 s1 ′)
〈proof 〉

lemma eqButPID-step-ϕ:
assumes s ′s1 ′: eqButPID s s1
and step: step s a = (ou,s ′) and step1 : step s1 a = (ou1 ,s1 ′)
shows ϕ (Trans s a ou s ′) = ϕ (Trans s1 a ou1 s1 ′)
〈proof 〉

end

101

end
theory Independent-DYNAMIC-Post-ISSUER

imports
Independent-Post-Observation-Setup-ISSUER
Independent-DYNAMIC-Post-Value-Setup-ISSUER
Bounded-Deducibility-Security.Compositional-Reasoning

begin

6.6.3 Issuer declassification bound
context Post
begin

fun T :: (state,act,out) trans ⇒ bool where T - = False

We again use the dynamic declassification bound for the issuer node (Sec-
tion 6.5.2).
inductive BC :: value list ⇒ value list ⇒ bool
and BO :: value list ⇒ value list ⇒ bool
where
BC-PVal[simp,intro!]:
list-all (Not o isOVal) ul =⇒ list-all (Not o isOVal) ul1 =⇒
map tgtAPI (filter isPValS ul) = map tgtAPI (filter isPValS ul1) =⇒
(ul = [] −→ ul1 = [])
=⇒ BC ul ul1

|BC-BO[intro]:
BO vl vl1 =⇒
list-all (Not o isOVal) ul =⇒ list-all (Not o isOVal) ul1 =⇒
map tgtAPI (filter isPValS ul) = map tgtAPI (filter isPValS ul1) =⇒
(ul = [] ←→ ul1 = []) =⇒
(ul 6= [] =⇒ isPVal (last ul) ∧ last ul = last ul1) =⇒
list-all isPValS sul
=⇒
BC (ul @ sul @ OVal True # vl)

(ul1 @ sul @ OVal True # vl1)

|BO-PVal[simp,intro!]:
list-all (Not o isOVal) ul =⇒ BO ul ul
|BO-BC [intro]:

BC vl vl1 =⇒
list-all (Not o isOVal) ul
=⇒
BO (ul @ OVal False # vl) (ul @ OVal False # vl1)

lemma list-all-filter-Not-isOVal:
assumes list-all (Not ◦ isOVal) ul
and filter isPValS ul = [] and filter isPVal ul = []
shows ul = []

102

〈proof 〉

lemma BC-not-Nil: BC vl vl1 =⇒ vl = [] =⇒ vl1 = []
〈proof 〉

lemma BC-OVal-True:
assumes BC (OVal True # vl ′) vl1
shows ∃ vl1 ′. BO vl ′ vl1 ′ ∧ vl1 = OVal True # vl1 ′

〈proof 〉

fun corrFrom :: post ⇒ value list ⇒ bool where
corrFrom pst [] = True
|corrFrom pst (PVal pstt # vl) = corrFrom pstt vl
|corrFrom pst (PValS aid pstt # vl) = (pst = pstt ∧ corrFrom pst vl)
|corrFrom pst (OVal b # vl) = (corrFrom pst vl)

abbreviation corr :: value list ⇒ bool where corr ≡ corrFrom emptyPost

definition B where
B vl vl1 ≡ BC vl vl1 ∧ corr vl1

lemma B-not-Nil:
assumes B: B vl vl1 and vl: vl = []
shows vl1 = []
〈proof 〉

sublocale BD-Security-IO where
istate = istate and step = step and
ϕ = ϕ and f = f and γ = γ and g = g and T = T and B = B
〈proof 〉

6.6.4 Issuer unwinding proof
lemma reach-PublicV-imples-FriendV [simp]:
assumes reach s
and vis s pid 6= PublicV
shows vis s pid = FriendV
〈proof 〉

lemma eqButPID-step-γ-out:
assumes ss1 : eqButPID s s1
and step: step s a = (ou,s ′) and step1 : step s1 a = (ou1 ,s1 ′)
and op: ¬ open s

103

and sT : reachNT s and s1 : reach s1
and γ: γ (Trans s a ou s ′)
shows (∃ uid p aid pid. a = COMact (comSendPost uid p aid pid) ∧ outPurge ou
= outPurge ou1) ∨

ou = ou1
〈proof 〉

lemma eqButPID-step-eq:
assumes ss1 : eqButPID s s1
and a: a = Uact (uPost uid p PID pst) ou = outOK
and step: step s a = (ou, s ′) and step1 : step s1 a = (ou ′, s1 ′)
shows s ′ = s1 ′

〈proof 〉

definition ∆0 :: state ⇒ value list ⇒ state ⇒ value list ⇒ bool where
∆0 s vl s1 vl1 ≡
¬ PID ∈∈ postIDs s ∧
s = s1 ∧ BC vl vl1 ∧
corr vl1

definition ∆1 :: state ⇒ value list ⇒ state ⇒ value list ⇒ bool where
∆1 s vl s1 vl1 ≡
PID ∈∈ postIDs s ∧
list-all (Not o isOVal) vl ∧ list-all (Not o isOVal) vl1 ∧
map tgtAPI (filter isPValS vl) = map tgtAPI (filter isPValS vl1) ∧
(vl = [] −→ vl1 = []) ∧
eqButPID s s1 ∧ ¬ open s ∧
corrFrom (post s1 PID) vl1

definition ∆11 :: state ⇒ value list ⇒ state ⇒ value list ⇒ bool where
∆11 s vl s1 vl1 ≡
PID ∈∈ postIDs s ∧
vl = [] ∧ list-all isPVal vl1 ∧
eqButPID s s1 ∧ ¬ open s ∧
corrFrom (post s1 PID) vl1

definition ∆2 :: state ⇒ value list ⇒ state ⇒ value list ⇒ bool where
∆2 s vl s1 vl1 ≡
PID ∈∈ postIDs s ∧
list-all (Not o isOVal) vl ∧
vl = vl1 ∧
s = s1 ∧ open s ∧
corrFrom (post s1 PID) vl1

definition ∆31 :: state ⇒ value list ⇒ state ⇒ value list ⇒ bool where
∆31 s vl s1 vl1 ≡
PID ∈∈ postIDs s ∧
(∃ ul ul1 sul vll vll1 .

104

BO vll vll1 ∧
list-all (Not o isOVal) ul ∧ list-all (Not o isOVal) ul1 ∧
map tgtAPI (filter isPValS ul) = map tgtAPI (filter isPValS ul1) ∧
ul 6= [] ∧ ul1 6= [] ∧
isPVal (last ul) ∧ last ul = last ul1 ∧
list-all isPValS sul ∧
vl = ul @ sul @ OVal True # vll ∧ vl1 = ul1 @ sul @ OVal True # vll1) ∧

eqButPID s s1 ∧ ¬ open s ∧
corrFrom (post s1 PID) vl1

definition ∆32 :: state ⇒ value list ⇒ state ⇒ value list ⇒ bool where
∆32 s vl s1 vl1 ≡
PID ∈∈ postIDs s ∧
(∃ sul vll vll1 .

BO vll vll1 ∧
list-all isPValS sul ∧
vl = sul @ OVal True # vll ∧ vl1 = sul @ OVal True # vll1) ∧

s = s1 ∧ ¬ open s ∧
corrFrom (post s1 PID) vl1

definition ∆4 :: state ⇒ value list ⇒ state ⇒ value list ⇒ bool where
∆4 s vl s1 vl1 ≡
PID ∈∈ postIDs s ∧
(∃ ul vll vll1 .

BC vll vll1 ∧
list-all (Not o isOVal) ul ∧
vl = ul @ OVal False # vll ∧ vl1 = ul @ OVal False # vll1) ∧

s = s1 ∧ open s ∧
corrFrom (post s1 PID) vl1

lemma istate-∆0 :
assumes B: B vl vl1
shows ∆0 istate vl istate vl1
〈proof 〉

lemma list-all-filter [simp]:
assumes list-all PP xs
shows filter PP xs = xs
〈proof 〉

lemma unwind-cont-∆0 : unwind-cont ∆0 {∆0 ,∆1 ,∆2 ,∆31 ,∆32 ,∆4}
〈proof 〉

lemma unwind-cont-∆1 : unwind-cont ∆1 {∆1 ,∆11}
〈proof 〉

lemma unwind-cont-∆11 : unwind-cont ∆11 {∆11}
〈proof 〉

105

lemma unwind-cont-∆31 : unwind-cont ∆31 {∆31 ,∆32}
〈proof 〉

lemma unwind-cont-∆32 : unwind-cont ∆32 {∆2 ,∆32 ,∆4}
〈proof 〉

lemma unwind-cont-∆2 : unwind-cont ∆2 {∆2}
〈proof 〉

lemma unwind-cont-∆4 : unwind-cont ∆4 {∆1 ,∆31 ,∆32 ,∆4}
〈proof 〉

definition Gr where
Gr =
{
(∆0 , {∆0 ,∆1 ,∆2 ,∆31 ,∆32 ,∆4}),
(∆1 , {∆1 ,∆11}),
(∆11 , {∆11}),
(∆2 , {∆2}),
(∆31 , {∆31 ,∆32}),
(∆32 , {∆2 ,∆32 ,∆4}),
(∆4 , {∆1 ,∆31 ,∆32 ,∆4})
}

theorem secure: secure
〈proof 〉

end

end

theory Independent-Post-Observation-Setup-RECEIVER
imports
../../Safety-Properties
../Post-Observation-Setup-RECEIVER

begin

6.6.5 Receiver observation setup
locale Strong-ObservationSetup-RECEIVER = Fixed-UIDs + Fixed-PID + Fixed-AID
begin

fun γ :: (state,act,out) trans ⇒ bool where

106

γ (Trans - a - -) ←→
(∃ uid. userOfA a = Some uid ∧ uid ∈ UIDs)
∨
— Communication actions are considered to be observable in order to make the

security properties compositional
(∃ ca. a = COMact ca)
∨
— The following actions are added to strengthen the observers in order to show

that all posts other than PID of AID are completely independent of that post; the
confidentiality of the latter is protected even if the observers can see all updates to
other posts (and actions contributing to the declassification triggers of those posts).

(∃ uid p pid pst. a = Uact (uPost uid p pid pst))
∨
(∃ uid p. a = Sact (sSys uid p))
∨
(∃ uid p uid ′ p ′. a = Cact (cUser uid p uid ′ p ′))
∨
(∃ uid p pid. a = Cact (cPost uid p pid))
∨
(∃ uid p uid ′. a = Cact (cFriend uid p uid ′))
∨
(∃ uid p uid ′. a = Dact (dFriend uid p uid ′))
∨
(∃ uid p pid v. a = Uact (uVisPost uid p pid v))

fun sPurge :: sActt ⇒ sActt where
sPurge (sSys uid pwd) = sSys uid emptyPass

fun comPurge :: comActt ⇒ comActt where
comPurge (comSendServerReq uID p aID reqInfo) = comSendServerReq uID emp-

tyPass aID reqInfo
|comPurge (comConnectClient uID p aID sp) = comConnectClient uID emptyPass
aID sp

|comPurge (comReceivePost aID sp pID pst uID vs) =
(let pst ′ = (if aID = AID ∧ pID = PID then emptyPost else pst)
in comReceivePost aID sp pID pst ′ uID vs)

|comPurge (comSendPost uID p aID pID) = comSendPost uID emptyPass aID pID
|comPurge (comSendCreateOFriend uID p aID uID ′) = comSendCreateOFriend
uID emptyPass aID uID ′

|comPurge (comSendDeleteOFriend uID p aID uID ′) = comSendDeleteOFriend
uID emptyPass aID uID ′

|comPurge ca = ca

107

fun g :: (state,act,out)trans ⇒ obs where
g (Trans - (Sact sa) ou -) = (Sact (sPurge sa), ou)
|g (Trans - (COMact ca) ou -) = (COMact (comPurge ca), ou)
|g (Trans - a ou -) = (a,ou)

lemma comPurge-simps:
comPurge ca = comSendServerReq uID p aID reqInfo ←→ (∃ p ′. ca = comSend-

ServerReq uID p ′ aID reqInfo ∧ p = emptyPass)
comPurge ca = comReceiveClientReq aID reqInfo ←→ ca = comReceiveClientReq

aID reqInfo
comPurge ca = comConnectClient uID p aID sp←→ (∃ p ′. ca = comConnectClient

uID p ′ aID sp ∧ p = emptyPass)
comPurge ca = comConnectServer aID sp ←→ ca = comConnectServer aID sp
comPurge ca = comReceivePost aID sp pID pst ′ uID v ←→ (∃ pst. ca = com-

ReceivePost aID sp pID pst uID v ∧ pst ′ = (if pID = PID ∧ aID = AID then
emptyPost else pst))

comPurge ca = comSendPost uID p aID pID ←→ (∃ p ′. ca = comSendPost uID
p ′ aID pID ∧ p = emptyPass)

comPurge ca = comSendCreateOFriend uID p aID uID ′ ←→ (∃ p ′. ca = com-
SendCreateOFriend uID p ′ aID uID ′ ∧ p = emptyPass)

comPurge ca = comReceiveCreateOFriend aID cp uID uID ′ ←→ ca = comRe-
ceiveCreateOFriend aID cp uID uID ′

comPurge ca = comSendDeleteOFriend uID p aID uID ′ ←→ (∃ p ′. ca = com-
SendDeleteOFriend uID p ′ aID uID ′ ∧ p = emptyPass)

comPurge ca = comReceiveDeleteOFriend aID cp uID uID ′ ←→ ca = comRe-
ceiveDeleteOFriend aID cp uID uID ′

〈proof 〉

lemma g-simps:
g (Trans s a ou s ′) = (COMact (comSendServerReq uID p aID reqInfo), ou ′)
←→ (∃ p ′. a = COMact (comSendServerReq uID p ′ aID reqInfo) ∧ p = emptyPass
∧ ou = ou ′)

g (Trans s a ou s ′) = (COMact (comReceiveClientReq aID reqInfo), ou ′)
←→ a = COMact (comReceiveClientReq aID reqInfo) ∧ ou = ou ′

g (Trans s a ou s ′) = (COMact (comConnectClient uID p aID sp), ou ′)
←→ (∃ p ′. a = COMact (comConnectClient uID p ′ aID sp) ∧ p = emptyPass ∧
ou = ou ′)

g (Trans s a ou s ′) = (COMact (comConnectServer aID sp), ou ′)
←→ a = COMact (comConnectServer aID sp) ∧ ou = ou ′

g (Trans s a ou s ′) = (COMact (comReceivePost aID sp pID pst ′ uID v), ou ′)
←→ (∃ pst. a = COMact (comReceivePost aID sp pID pst uID v) ∧ pst ′ = (if pID
= PID ∧ aID = AID then emptyPost else pst) ∧ ou = ou ′)

g (Trans s a ou s ′) = (COMact (comSendPost uID p aID nID), O-sendPost (aid,
sp, pid, pst, own, v))
←→ (∃ p ′. a = COMact (comSendPost uID p ′ aID nID) ∧ p = emptyPass ∧ ou =
O-sendPost (aid, sp, pid, pst, own, v))

g (Trans s a ou s ′) = (COMact (comSendCreateOFriend uID p aID uID ′), ou ′)

108

←→ (∃ p ′. a = (COMact (comSendCreateOFriend uID p ′ aID uID ′)) ∧ p = emp-
tyPass ∧ ou = ou ′)

g (Trans s a ou s ′) = (COMact (comReceiveCreateOFriend aID cp uID uID ′),
ou ′)
←→ a = COMact (comReceiveCreateOFriend aID cp uID uID ′) ∧ ou = ou ′

g (Trans s a ou s ′) = (COMact (comSendDeleteOFriend uID p aID uID ′), ou ′)
←→ (∃ p ′. a = COMact (comSendDeleteOFriend uID p ′ aID uID ′) ∧ p = empty-
Pass ∧ ou = ou ′)

g (Trans s a ou s ′) = (COMact (comReceiveDeleteOFriend aID cp uID uID ′),
ou ′)
←→ a = COMact (comReceiveDeleteOFriend aID cp uID uID ′) ∧ ou = ou ′

〈proof 〉

end

end

theory Independent-Post-Value-Setup-RECEIVER
imports
../../Safety-Properties
Independent-Post-Observation-Setup-RECEIVER
../Post-Unwinding-Helper-RECEIVER

begin

6.6.6 Receiver value setup
locale Post-RECEIVER = Strong-ObservationSetup-RECEIVER
begin

datatype value = PValR post

fun ϕ :: (state,act,out) trans ⇒ bool where
ϕ (Trans - (COMact (comReceivePost aid sp pid pst uid vs)) ou -) =
(aid = AID ∧ pid = PID ∧ ou = outOK)
|
ϕ (Trans s - - s ′) = False

lemma ϕ-def2 :

shows
ϕ (Trans s a ou s ′) ←→
(∃ uid p pst vs. a = COMact (comReceivePost AID p PID pst uid vs) ∧ ou =

outOK)

〈proof 〉

lemma comReceivePost-out:

109

assumes 1 : step s a = (ou,s ′) and a: a = COMact (comReceivePost AID p PID
pst uid vs) and 2 : ou = outOK
shows p = serverPass s AID
〈proof 〉

lemma ϕ-def3 :
assumes step s a = (ou,s ′)
shows
ϕ (Trans s a ou s ′) ←→
(∃ uid pst vs. a = COMact (comReceivePost AID (serverPass s AID) PID pst uid

vs) ∧ ou = outOK)
〈proof 〉

lemma ϕ-cases:
assumes ϕ (Trans s a ou s ′)
and step s a = (ou, s ′)
and reach s
obtains
(Recv) uid sp aID pID pst vs where a = COMact (comReceivePost aID sp pID

pst uid vs) ou = outOK
sp = serverPass s AID
aID = AID pID = PID

〈proof 〉

fun f :: (state,act,out) trans ⇒ value where
f (Trans s (COMact (comReceivePost aid sp pid pst uid vs)) - s ′) =
(if aid = AID ∧ pid = PID then PValR pst else undefined)
|
f (Trans s - - s ′) = undefined

sublocale Receiver-State-Equivalence-Up-To-PID 〈proof 〉

lemma eqButPID-step-ϕ-imp:
assumes ss1 : eqButPID s s1
and step: step s a = (ou,s ′) and step1 : step s1 a = (ou1 ,s1 ′)
and ϕ: ϕ (Trans s a ou s ′)
shows ϕ (Trans s1 a ou1 s1 ′)
〈proof 〉

lemma eqButPID-step-ϕ:
assumes s ′s1 ′: eqButPID s s1
and step: step s a = (ou,s ′) and step1 : step s1 a = (ou1 ,s1 ′)
shows ϕ (Trans s a ou s ′) = ϕ (Trans s1 a ou1 s1 ′)
〈proof 〉

end

110

end
theory Independent-Post-RECEIVER

imports
Independent-Post-Observation-Setup-RECEIVER
Independent-Post-Value-Setup-RECEIVER
Bounded-Deducibility-Security.Compositional-Reasoning

begin

6.6.7 Receiver declassification bound
context Post-RECEIVER
begin

fun T :: (state,act,out) trans ⇒ bool where
T (Trans s a ou s ′) ←→
(∃ uid ∈ UIDs.

uid ∈∈ userIDs s ′ ∧ PID ∈∈ outerPostIDs s ′ AID ∧
(uid = admin s ′ ∨
(AID,outerOwner s ′ AID PID) ∈∈ recvOuterFriendIDs s ′ uid ∨
outerVis s ′ AID PID = PublicV))

definition B :: value list ⇒ value list ⇒ bool where
B vl vl1 ≡ length vl = length vl1

sublocale BD-Security-IO where
istate = istate and step = step and
ϕ = ϕ and f = f and γ = γ and g = g and T = T and B = B
〈proof 〉

6.6.8 Receiver unwinding proof
lemma reach-PublicV-imples-FriendV [simp]:
assumes reach s
and vis s pID 6= PublicV
shows vis s pID = FriendV
〈proof 〉

lemma reachNT-state:
assumes reachNT s
shows
¬ (∃ uid ∈ UIDs.

uid ∈∈ userIDs s ∧ PID ∈∈ outerPostIDs s AID ∧
(uid = admin s ∨
(AID,outerOwner s AID PID) ∈∈ recvOuterFriendIDs s uid ∨
outerVis s AID PID = PublicV))

〈proof 〉

111

lemma eqButPID-step-γ-out:
assumes ss1 : eqButPID s s1
and step: step s a = (ou,s ′) and step1 : step s1 a = (ou1 ,s1 ′)
and sT : reachNT s and T : ¬ T (Trans s a ou s ′)
and s1 : reach s1
and γ: γ (Trans s a ou s ′)
shows ou = ou1
〈proof 〉

definition ∆0 :: state ⇒ value list ⇒ state ⇒ value list ⇒ bool where
∆0 s vl s1 vl1 ≡
¬ AID ∈∈ serverApiIDs s ∧
s = s1 ∧
length vl = length vl1

definition ∆1 :: state ⇒ value list ⇒ state ⇒ value list ⇒ bool where
∆1 s vl s1 vl1 ≡
AID ∈∈ serverApiIDs s ∧
eqButPID s s1 ∧
length vl = length vl1

lemma istate-∆0 :
assumes B: B vl vl1
shows ∆0 istate vl istate vl1
〈proof 〉

lemma unwind-cont-∆0 : unwind-cont ∆0 {∆0 ,∆1}
〈proof 〉

lemma unwind-cont-∆1 : unwind-cont ∆1 {∆1}
〈proof 〉

definition Gr where
Gr =
{
(∆0 , {∆0 ,∆1}),
(∆1 , {∆1})
}

theorem Post-secure: secure
〈proof 〉

end

end
theory Independent-DYNAMIC-Post-Network

112

imports
Independent-DYNAMIC-Post-ISSUER
Independent-Post-RECEIVER
../../API-Network
BD-Security-Compositional.Composing-Security-Network

begin

6.6.9 Confidentiality for the N-ary composition
type-synonym ttrans = (state, act, out) trans
type-synonym obs = Post-Observation-Setup-ISSUER.obs
type-synonym value = Post.value + Post-RECEIVER.value

lemma value-cases:
fixes v :: value
obtains (PVal) pst where v = Inl (Post.PVal pst)

| (PValS) aid pst where v = Inl (Post.PValS aid pst)
| (OVal) ov where v = Inl (Post.OVal ov)
| (PValR) pst where v = Inr (Post-RECEIVER.PValR pst)

〈proof 〉

locale Post-Network = Network
+ fixes UIDs :: apiID ⇒ userID set

and AID :: apiID and PID :: postID
assumes AID-in-AIDs: AID ∈ AIDs

begin

sublocale Iss: Post UIDs AID PID 〈proof 〉

abbreviation ϕ :: apiID ⇒ (state, act, out) trans ⇒ bool
where ϕ aid trn ≡ (if aid = AID then Iss.ϕ trn else Post-RECEIVER.ϕ PID AID
trn)

abbreviation f :: apiID ⇒ (state, act, out) trans ⇒ value
where f aid trn ≡ (if aid = AID then Inl (Iss.f trn) else Inr (Post-RECEIVER.f
PID AID trn))

abbreviation γ :: apiID ⇒ (state, act, out) trans ⇒ bool
where γ aid trn ≡ (if aid = AID then Iss.γ trn else Strong-ObservationSetup-RECEIVER.γ
(UIDs aid) trn)

abbreviation g :: apiID ⇒ (state, act, out) trans ⇒ obs
where g aid trn ≡ (if aid = AID then Iss.g trn else Strong-ObservationSetup-RECEIVER.g
PID AID trn)

abbreviation T :: apiID ⇒ (state, act, out) trans ⇒ bool
where T aid trn ≡ (if aid = AID then Iss.T trn else Post-RECEIVER.T (UIDs
aid) PID AID trn)

113

abbreviation B :: apiID ⇒ value list ⇒ value list ⇒ bool
where B aid vl vl1 ≡
(if aid = AID then list-all isl vl ∧ list-all isl vl1 ∧ Iss.B (map projl vl) (map projl

vl1)
else list-all (Not o isl) vl ∧ list-all (Not o isl) vl1 ∧ Post-RECEIVER.B (map

projr vl) (map projr vl1))

fun comOfV :: apiID ⇒ value ⇒ com where
comOfV aid (Inl (Post.PValS aid ′ pst)) = (if aid ′ 6= aid then Send else Internal)
| comOfV aid (Inl (Post.PVal pst)) = Internal
| comOfV aid (Inl (Post.OVal ov)) = Internal
| comOfV aid (Inr v) = Recv

fun tgtNodeOfV :: apiID ⇒ value ⇒ apiID where
tgtNodeOfV aid (Inl (Post.PValS aid ′ pst)) = aid ′

| tgtNodeOfV aid (Inl (Post.PVal pst)) = undefined
| tgtNodeOfV aid (Inl (Post.OVal ov)) = undefined
| tgtNodeOfV aid (Inr v) = AID

definition syncV :: apiID ⇒ value ⇒ apiID ⇒ value ⇒ bool where
syncV aid1 v1 aid2 v2 =
(∃ pst. aid1 = AID ∧ v1 = Inl (Post.PValS aid2 pst) ∧ v2 = Inr (Post-RECEIVER.PValR

pst))

lemma syncVI : syncV AID (Inl (Post.PValS aid ′ pst)) aid ′ (Inr (Post-RECEIVER.PValR
pst))
〈proof 〉

lemma syncVE :
assumes syncV aid1 v1 aid2 v2
obtains pst where aid1 = AID v1 = Inl (Post.PValS aid2 pst) v2 = Inr (Post-RECEIVER.PValR
pst)
〈proof 〉

fun getTgtV where
getTgtV (Inl (Post.PValS aid pst)) = Inr (Post-RECEIVER.PValR pst)
| getTgtV v = v

lemma comOfV-AID:
comOfV AID v = Send ←→ isl v ∧ Iss.isPValS (projl v) ∧ Iss.tgtAPI (projl v)
6= AID

comOfV AID v = Recv ←→ Not (isl v)
〈proof 〉

lemmas ϕ-defs = Post-RECEIVER.ϕ-def2 Iss.ϕ-def3

sublocale Net: BD-Security-TS-Network-getTgtV
where istate = λ-. istate and validTrans = validTrans and srcOf = λ-. srcOf
and tgtOf = λ-. tgtOf

114

and nodes = AIDs and comOf = comOf and tgtNodeOf = tgtNodeOf
and sync = sync and ϕ = ϕ and f = f and γ = γ and g = g and T = T and

B = B
and comOfV = comOfV and tgtNodeOfV = tgtNodeOfV and syncV = syncV
and comOfO = comOfO and tgtNodeOfO = tgtNodeOfO and syncO = syncO
and source = AID and getTgtV = getTgtV
〈proof 〉

lemma list-all-Not-isl-projectSrcV : list-all (Not o isl) (Net.projectSrcV aid vlSrc)
〈proof 〉

context
fixes AID ′ :: apiID
assumes AID ′: AID ′ ∈ AIDs − {AID}
begin

interpretation Recv: Post-RECEIVER UIDs AID ′ PID AID 〈proof 〉

lemma Iss-BC-BO-tgtAPI :
shows (Iss.BC vl vl1 −→ map Iss.tgtAPI (filter Iss.isPValS vl) =

map Iss.tgtAPI (filter Iss.isPValS vl1)) ∧
(Iss.BO vl vl1 −→ map Iss.tgtAPI (filter Iss.isPValS vl) =

map Iss.tgtAPI (filter Iss.isPValS vl1))
〈proof 〉

lemma Iss-B-Recv-B-aux:
assumes list-all isl vl
and list-all isl vl1
and map Iss.tgtAPI (filter Iss.isPValS (map projl vl)) =

map Iss.tgtAPI (filter Iss.isPValS (map projl vl1))
shows length (map projr (Net.projectSrcV AID ′ vl)) = length (map projr (Net.projectSrcV
AID ′ vl1))
〈proof 〉

lemma Iss-B-Recv-B:
assumes B AID vl vl1
shows Recv.B (map projr (Net.projectSrcV AID ′ vl)) (map projr (Net.projectSrcV
AID ′ vl1))
〈proof 〉

end

lemma map-projl-Inl: map (projl o Inl) vl = vl
〈proof 〉

lemma these-map-Inl-projl: list-all isl vl =⇒ these (map (Some o Inl o projl) vl)
= vl
〈proof 〉

115

lemma map-projr-Inr : map (projr o Inr) vl = vl
〈proof 〉

lemma these-map-Inr-projr : list-all (Not o isl) vl =⇒ these (map (Some o Inr o
projr) vl) = vl
〈proof 〉

sublocale BD-Security-TS-Network-Preserve-Source-Security-getTgtV
where istate = λ-. istate and validTrans = validTrans and srcOf = λ-. srcOf
and tgtOf = λ-. tgtOf

and nodes = AIDs and comOf = comOf and tgtNodeOf = tgtNodeOf
and sync = sync and ϕ = ϕ and f = f and γ = γ and g = g and T = T and

B = B
and comOfV = comOfV and tgtNodeOfV = tgtNodeOfV and syncV = syncV
and comOfO = comOfO and tgtNodeOfO = tgtNodeOfO and syncO = syncO
and source = AID and getTgtV = getTgtV
〈proof 〉

theorem secure: secure
〈proof 〉

end

end
theory Independent-Posts-Network

imports
Independent-DYNAMIC-Post-Network
BD-Security-Compositional.Independent-Secrets

begin

6.6.10 Composition of confidentiality guarantees for different posts

We combine two confidentiality guarantees for two different posts in arbi-
trary nodes of the network.
For this purpose, we have strengthened the observation power of the security
property for individual posts to make all transitions that update other posts
observable, as well as all transitions that contribute to the state of the trigger
(see the observation setup theories). This guarantees that the confidentiality
of one post is independent of actions affecting other posts, which will allow
us to combine security guarantees for different posts.
We now prove a few helper lemmas establishing that now the observable
transitions indeed fully determine the state of the trigger.
fun obsEffect :: state ⇒ obs ⇒ state where

obsEffect s (Uact (uPost uid p pid pst), ou) = updatePost s uid p pid pst
| obsEffect s (Uact (uVisPost uid p pid v), ou) = updateVisPost s uid p pid v
| obsEffect s (Sact (sSys uid p), ou) = startSys s uid p
| obsEffect s (Cact (cUser uid p uid ′ p ′), ou) = createUser s uid p uid ′ p ′

116

| obsEffect s (Cact (cPost uid p pid), ou) = createPost s uid p pid
| obsEffect s (Cact (cFriend uid p uid ′), ou) = createFriend s uid p uid ′

| obsEffect s (Dact (dFriend uid p uid ′), ou) = deleteFriend s uid p uid ′

| obsEffect s (COMact (comSendPost uid p aid pid), ou) = snd (sendPost s uid p
aid pid)
| obsEffect s (COMact (comReceivePost aid p pid pst uid v), ou) = receivePost s
aid p pid pst uid v
| obsEffect s (COMact (comReceiveCreateOFriend aid p uid uid ′), ou) = receive-
CreateOFriend s aid p uid uid ′

| obsEffect s (COMact (comReceiveDeleteOFriend aid p uid uid ′), ou) = receiveDele-
teOFriend s aid p uid uid ′

| obsEffect s - = s

fun obsStep :: state ⇒ obs ⇒ state where
obsStep s (a,ou) = (if ou 6= outErr then obsEffect s (a,ou) else s)

fun obsSteps :: state ⇒ obs list ⇒ state where
obsSteps s obsl = foldl obsStep s obsl

definition triggerEq :: state ⇒ state ⇒ bool where
triggerEq s s ′ ←→ userIDs s = userIDs s ′ ∧ postIDs s = postIDs s ′ ∧ admin s

= admin s ′ ∧
owner s = owner s ′ ∧ friendIDs s = friendIDs s ′ ∧ vis s = vis s ′

∧
outerPostIDs s = outerPostIDs s ′ ∧ outerOwner s = outerOwner

s ′ ∧
recvOuterFriendIDs s = recvOuterFriendIDs s ′ ∧ outerVis s =

outerVis s ′

lemma triggerEq-refl[simp]: triggerEq s s
and triggerEq-sym: triggerEq s s ′ =⇒ triggerEq s ′ s
and triggerEq-trans: triggerEq s s ′ =⇒ triggerEq s ′ s ′′ =⇒ triggerEq s s ′′

〈proof 〉

unbundle no relcomp-syntax

context Post
begin

lemma [simp]: outOK = outPurge ou ←→ ou = outOK 〈proof 〉
lemma [simp]: sPurge sa = sSys (sUserOfA sa) emptyPass 〈proof 〉
lemma sStep-unfold: sStep s sa = (if userIDs s = []

then (case sa of sSys uid p ⇒ (outOK , startSys s uid p))
else (outErr , s))

〈proof 〉

lemma triggerEq-open:
assumes triggerEq s s ′

shows open s ←→ open s ′

117

〈proof 〉

lemma triggerEq-not-γ:
assumes validTrans (Trans s a ou s ′) and ¬γ (Trans s a ou s ′)
shows triggerEq s s ′

〈proof 〉

lemma triggerEq-obsStep:
assumes validTrans (Trans s a ou s ′) and γ (Trans s a ou s ′) and triggerEq s s1
shows triggerEq s ′ (obsStep s1 (g (Trans s a ou s ′)))
〈proof 〉

lemma triggerEq-obsSteps:
assumes validFrom s tr and triggerEq s s ′

shows triggerEq (tgtOfTrFrom s tr) (obsSteps s ′ (O tr))
〈proof 〉

end

context Post-RECEIVER
begin

lemma sPurge-simp[simp]: sPurge sa = sSys (sUserOfA sa) emptyPass 〈proof 〉

definition T-state s ′ ≡
(∃ uid ∈ UIDs.

uid ∈∈ userIDs s ′ ∧ PID ∈∈ outerPostIDs s ′ AID ∧
(uid = admin s ′ ∨
(AID,outerOwner s ′ AID PID) ∈∈ recvOuterFriendIDs s ′ uid ∨
outerVis s ′ AID PID = PublicV))

lemma T-T-state: T trn ←→ T-state (tgtOf trn)
〈proof 〉

lemma triggerEq-T :
assumes triggerEq s s ′

shows T-state s ←→ T-state s ′

〈proof 〉

lemma never-T-not-T-state:
assumes validFrom s tr and never T tr and ¬T-state s
shows ¬T-state (tgtOfTrFrom s tr)
〈proof 〉

lemma triggerEq-not-γ:
assumes validTrans (Trans s a ou s ′) and ¬γ (Trans s a ou s ′)
shows triggerEq s s ′

〈proof 〉

118

lemma triggerEq-obsStep:
assumes validTrans (Trans s a ou s ′) and γ (Trans s a ou s ′) and triggerEq s s1
shows triggerEq s ′ (obsStep s1 (g (Trans s a ou s ′)))
〈proof 〉

lemma triggerEq-obsSteps:
assumes validFrom s tr and triggerEq s s ′

shows triggerEq (tgtOfTrFrom s tr) (obsSteps s ′ (O tr))
〈proof 〉

end

context Post-Network
begin

fun nObsStep :: (apiID ⇒ state) ⇒ (apiID, act × out) nobs ⇒ (apiID ⇒ state)
where

nObsStep s (LObs aid obs) = s(aid := obsStep (s aid) obs)
| nObsStep s (CObs aid1 obs1 aid2 obs2) = s(aid1 := obsStep (s aid1) obs1 , aid2
:= obsStep (s aid2) obs2)

fun nObsSteps :: (apiID ⇒ state) ⇒ (apiID, act × out) nobs list ⇒ (apiID ⇒
state) where

nObsSteps s obsl = foldl nObsStep s obsl

definition nTriggerEq :: (apiID ⇒ state) ⇒ (apiID ⇒ state) ⇒ bool where
nTriggerEq s s ′←→ (∀ aid. triggerEq (s aid) (s ′ aid))

lemma nTriggerEq-refl[simp]: nTriggerEq s s
and nTriggerEq-sym: nTriggerEq s s ′ =⇒ nTriggerEq s ′ s
and nTriggerEq-trans: nTriggerEq s s ′ =⇒ nTriggerEq s ′ s ′′ =⇒ nTriggerEq s s ′′

〈proof 〉

lemma nTriggerEq-open:
assumes nTriggerEq s s ′

shows ∀ aid. Iss.open (s aid) ←→ Iss.open (s ′ aid)
〈proof 〉

lemma nTriggerEq-not-γ:
assumes nValidTrans trn and ¬Net.nγ trn
shows nTriggerEq (nSrcOf trn) (nTgtOf trn)
〈proof 〉

lemma nTriggerEq-obsStep:
assumes nValidTrans trn and Net.nγ trn and nTriggerEq (nSrcOf trn) s1
shows nTriggerEq (nTgtOf trn) (nObsStep s1 (Net.ng trn))
〈proof 〉

119

lemma triggerEq-obsSteps:
assumes validFrom s tr and nTriggerEq s s ′

shows nTriggerEq (nTgtOfTrFrom s tr) (nObsSteps s ′ (O tr))
〈proof 〉

lemma O-eq-nTriggerEq:
assumes O: O tr = O tr ′ and tr : validFrom s (tr ## trn) and tr ′: validFrom s ′

(tr ′ ## trn ′)
and γ: Net.nγ trn and γ ′: Net.nγ trn ′ and g: Net.ng trn = Net.ng trn ′

and s-s ′: nTriggerEq s s ′

shows nTriggerEq (nSrcOf trn) (nSrcOf trn ′) and nTriggerEq (nTgtOf trn) (nTgtOf
trn ′)
〈proof 〉

end

We are now ready to combine two confidentiality properties for different
posts in different nodes.
locale Posts-Network =

Post1 : Post-Network AIDs UIDs AID1 PID1
+ Post2 : Post-Network AIDs UIDs AID2 PID2
for AIDs :: apiID set
and UIDs :: apiID ⇒ userID set
and AID1 :: apiID and AID2 :: apiID
and PID1 :: postID and PID2 :: postID
+
assumes AID1-neq-AID2 : AID1 6= AID2
begin

The combined observations consist of the local actions of observing users
and their outputs, as usual. We do not consider communication actions
here for simplicity, because this would require us to combine the purgings of
observations of the two properties. This is straightforward, but tedious.
fun nγ :: (apiID, state, (state, act, out) trans) ntrans ⇒ bool where

nγ (LTrans s aid (Trans - a - -)) = (∃ uid. userOfA a = Some uid ∧ uid ∈ UIDs
aid ∧ (¬isCOMact a))
| nγ (CTrans s aid1 trn1 aid2 trn2) = False

fun g :: (state,act,out) trans ⇒ obs where
g (Trans - (Sact sa) ou -) = (Sact (Post1 .Iss.sPurge sa), ou)
| g (Trans - a ou -) = (a,ou)

fun ng :: (apiID, state, (state, act, out) trans) ntrans ⇒ (apiID, act × out) nobs
where

ng (LTrans s aid trn) = LObs aid (g trn)
| ng (CTrans s aid1 trn1 aid2 trn2) = undefined

abbreviation validSystemTrace ≡ Post1 .validFrom (λ-. istate)

120

We now instantiate the generic technique for combining security properties
with independent secret sources.
sublocale BD-Security-TS-Two-Secrets λ-. istate Post1 .nValidTrans Post1 .nSrcOf
Post1 .nTgtOf
Post1 .Net.nϕ Post1 .nf ′ Post1 .Net.nγ Post1 .Net.ng Post1 .Net.nT Post1 .B AID1
Post2 .Net.nϕ Post2 .nf ′ Post2 .Net.nγ Post2 .Net.ng Post2 .Net.nT Post2 .B AID2
nγ ng
〈proof 〉

theorem two-posts-secure:
secure
〈proof 〉

end

end
theory Post-All
imports
Post-COMPOSE2
Post-Network
DYNAMIC-Post-COMPOSE2
DYNAMIC-Post-Network
Independent-Posts/Independent-Posts-Network
begin

end
theory Friend-Intro

imports ../Safety-Properties
begin

7 Friendship status confidentiality

We verify the following property:

Given a coalition consisting of groups of users UIDs j from multiple nodes
j and given two users UID1 and UID2 at some node i who are not in these
groups,
the coalition cannot learn anything about the changes in the status of friend-
ship between UID1 and UID2
beyond what everybody knows, namely that

• there is no friendship between them before those users have been cre-
ated, and

• the updates form an alternating sequence of friending and unfriending,

121

and beyond those updates performed while or last before a user in the group
UIDs i is friends with UID1 or UID2.

The approach to proving this is similar to that for post confidentiality (ex-
plained in the introduction of the post confidentiality section 6), but concep-
tually simpler since here secret information is not communicated between
different nodes (so we don’t need to distinguish between an issuer node and
the other, receiver nodes).
Moreover, here we do not consider static versions of the bounds, but go
directly for the dynamic ones. Also, we prove directly the BD security for a
network of n nodes, omitting the case of two nodes.
Note that, unlike for post confidentiality, here remote friendship plays no
role in the statement of the property. This is because, in CoSMeDis, the
listing of a user’s friends is only available to local (same-node) friends of
that user, and not to the remote (outer) friends.
end
theory Friend-Observation-Setup

imports Friend-Intro
begin

7.1 Observation setup
type-synonym obs = act ∗ out

locale FriendObservationSetup =
fixes UIDs :: userID set — local group of observers at a given node

begin

fun γ :: (state,act,out) trans ⇒ bool where
γ (Trans - a - -) = (∃ uid. userOfA a = Some uid ∧ uid ∈ UIDs ∨ (∃ ca. a =
COMact ca))

fun g :: (state,act,out)trans ⇒ obs where
g (Trans - a ou -) = (a,ou)

end

locale FriendNetworkObservationSetup =
fixes UIDs :: apiID ⇒ userID set — groups of observers at different nodes

begin

abbreviation γ :: apiID ⇒ (state,act,out) trans ⇒ bool where
γ aid trn ≡ FriendObservationSetup.γ (UIDs aid) trn

abbreviation g :: apiID ⇒ (state,act,out)trans ⇒ obs where

122

g aid trn ≡ FriendObservationSetup.g trn

end

end

theory Friend-State-Indistinguishability
imports Friend-Observation-Setup

begin

7.2 Unwinding helper definitions and lemmas
locale Friend = FriendObservationSetup +
fixes

UID1 :: userID
and

UID2 :: userID
assumes

UID1-UID2-UIDs: {UID1 ,UID2} ∩ UIDs = {}
and

UID1-UID2 : UID1 6= UID2
begin

fun eqButUIDl :: userID ⇒ userID list ⇒ userID list ⇒ bool where
eqButUIDl uid uidl uidl1 = (remove1 uid uidl = remove1 uid uidl1)

lemma eqButUIDl-eq[simp,intro!]: eqButUIDl uid uidl uidl
〈proof 〉

lemma eqButUIDl-sym:
assumes eqButUIDl uid uidl uidl1
shows eqButUIDl uid uidl1 uidl
〈proof 〉

lemma eqButUIDl-trans:
assumes eqButUIDl uid uidl uidl1 and eqButUIDl uid uidl1 uidl2
shows eqButUIDl uid uidl uidl2
〈proof 〉

lemma eqButUIDl-remove1-cong:
assumes eqButUIDl uid uidl uidl1
shows eqButUIDl uid (remove1 uid ′ uidl) (remove1 uid ′ uidl1)
〈proof 〉

lemma eqButUIDl-snoc-cong:
assumes eqButUIDl uid uidl uidl1
and uid ′ ∈∈ uidl ←→ uid ′ ∈∈ uidl1
shows eqButUIDl uid (uidl ## uid ′) (uidl1 ## uid ′)

123

〈proof 〉

definition eqButUIDf where
eqButUIDf frds frds1 ≡

eqButUIDl UID2 (frds UID1) (frds1 UID1)
∧ eqButUIDl UID1 (frds UID2) (frds1 UID2)
∧ (∀ uid. uid 6= UID1 ∧ uid 6= UID2 −→ frds uid = frds1 uid)

lemmas eqButUIDf-intro = eqButUIDf-def [THEN meta-eq-to-obj-eq, THEN iffD2]

lemma eqButUIDf-eeq[simp,intro!]: eqButUIDf frds frds
〈proof 〉

lemma eqButUIDf-sym:
assumes eqButUIDf frds frds1 shows eqButUIDf frds1 frds
〈proof 〉

lemma eqButUIDf-trans:
assumes eqButUIDf frds frds1 and eqButUIDf frds1 frds2
shows eqButUIDf frds frds2
〈proof 〉

lemma eqButUIDf-cong:
assumes eqButUIDf frds frds1
and uid = UID1 =⇒ eqButUIDl UID2 uu uu1
and uid = UID2 =⇒ eqButUIDl UID1 uu uu1
and uid 6= UID1 =⇒ uid 6= UID2 =⇒ uu = uu1
shows eqButUIDf (frds (uid := uu)) (frds1 (uid := uu1))
〈proof 〉

lemma eqButUIDf-eqButUIDl:
assumes eqButUIDf frds frds1
shows eqButUIDl UID2 (frds UID1) (frds1 UID1)

and eqButUIDl UID1 (frds UID2) (frds1 UID2)
〈proof 〉

lemma eqButUIDf-not-UID:
[[eqButUIDf frds frds1 ; uid 6= UID1 ; uid 6= UID2]] =⇒ frds uid = frds1 uid
〈proof 〉

lemma eqButUIDf-not-UID ′:
assumes eq1 : eqButUIDf frds frds1
and uid: (uid,uid ′) /∈ {(UID1 ,UID2), (UID2 ,UID1)}
shows uid ∈∈ frds uid ′←→ uid ∈∈ frds1 uid ′

〈proof 〉

definition eqButUID12 where

124

eqButUID12 freq freq1 ≡
∀ uid uid ′. if (uid,uid ′) ∈ {(UID1 ,UID2), (UID2 ,UID1)} then True else freq uid

uid ′ = freq1 uid uid ′

lemmas eqButUID12-intro = eqButUID12-def [THEN meta-eq-to-obj-eq, THEN
iffD2]

lemma eqButUID12-eeq[simp,intro!]: eqButUID12 freq freq
〈proof 〉

lemma eqButUID12-sym:
assumes eqButUID12 freq freq1 shows eqButUID12 freq1 freq
〈proof 〉

lemma eqButUID12-trans:
assumes eqButUID12 freq freq1 and eqButUID12 freq1 freq2
shows eqButUID12 freq freq2
〈proof 〉

lemma eqButUID12-cong:
assumes eqButUID12 freq freq1

and ¬ (uid,uid ′) ∈ {(UID1 ,UID2), (UID2 ,UID1)} =⇒ uu = uu1
shows eqButUID12 (fun-upd2 freq uid uid ′ uu) (fun-upd2 freq1 uid uid ′ uu1)
〈proof 〉

lemma eqButUID12-not-UID:
[[eqButUID12 freq freq1 ; ¬ (uid,uid ′) ∈ {(UID1 ,UID2), (UID2 ,UID1)}]] =⇒ freq
uid uid ′ = freq1 uid uid ′

〈proof 〉

definition eqButUID :: state ⇒ state ⇒ bool where
eqButUID s s1 ≡
admin s = admin s1 ∧

pendingUReqs s = pendingUReqs s1 ∧ userReq s = userReq s1 ∧
userIDs s = userIDs s1 ∧ user s = user s1 ∧ pass s = pass s1 ∧

eqButUIDf (pendingFReqs s) (pendingFReqs s1) ∧
eqButUID12 (friendReq s) (friendReq s1) ∧
eqButUIDf (friendIDs s) (friendIDs s1) ∧

postIDs s = postIDs s1 ∧ admin s = admin s1 ∧
post s = post s1 ∧ vis s = vis s1 ∧
owner s = owner s1 ∧

pendingSApiReqs s = pendingSApiReqs s1 ∧ sApiReq s = sApiReq s1 ∧

125

serverApiIDs s = serverApiIDs s1 ∧ serverPass s = serverPass s1 ∧
outerPostIDs s = outerPostIDs s1 ∧ outerPost s = outerPost s1 ∧ outerVis s =

outerVis s1 ∧
outerOwner s = outerOwner s1 ∧
sentOuterFriendIDs s = sentOuterFriendIDs s1 ∧
recvOuterFriendIDs s = recvOuterFriendIDs s1 ∧

pendingCApiReqs s = pendingCApiReqs s1 ∧ cApiReq s = cApiReq s1 ∧
clientApiIDs s = clientApiIDs s1 ∧ clientPass s = clientPass s1 ∧
sharedWith s = sharedWith s1

lemmas eqButUID-intro = eqButUID-def [THEN meta-eq-to-obj-eq, THEN iffD2]

lemma eqButUID-refl[simp,intro!]: eqButUID s s
〈proof 〉

lemma eqButUID-sym[sym]:
assumes eqButUID s s1 shows eqButUID s1 s
〈proof 〉

lemma eqButUID-trans[trans]:
assumes eqButUID s s1 and eqButUID s1 s2 shows eqButUID s s2
〈proof 〉

lemma eqButUID-stateSelectors:
assumes eqButUID s s1
shows admin s = admin s1
pendingUReqs s = pendingUReqs s1 userReq s = userReq s1
userIDs s = userIDs s1 user s = user s1 pass s = pass s1
eqButUIDf (pendingFReqs s) (pendingFReqs s1)
eqButUID12 (friendReq s) (friendReq s1)
eqButUIDf (friendIDs s) (friendIDs s1)

postIDs s = postIDs s1
post s = post s1 vis s = vis s1
owner s = owner s1

pendingSApiReqs s = pendingSApiReqs s1 sApiReq s = sApiReq s1
serverApiIDs s = serverApiIDs s1 serverPass s = serverPass s1
outerPostIDs s = outerPostIDs s1 outerPost s = outerPost s1 outerVis s = outer-
Vis s1
outerOwner s = outerOwner s1
sentOuterFriendIDs s = sentOuterFriendIDs s1
recvOuterFriendIDs s = recvOuterFriendIDs s1

pendingCApiReqs s = pendingCApiReqs s1 cApiReq s = cApiReq s1
clientApiIDs s = clientApiIDs s1 clientPass s = clientPass s1
sharedWith s = sharedWith s1

126

IDsOK s = IDsOK s1
〈proof 〉

lemma eqButUID-eqButUID2 :
eqButUID s s1 =⇒ eqButUIDl UID2 (friendIDs s UID1) (friendIDs s1 UID1)
〈proof 〉

lemma eqButUID-not-UID:
eqButUID s s1 =⇒ uid 6= UID =⇒ post s uid = post s1 uid
〈proof 〉

lemma eqButUID-cong[simp, intro]:∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|admin := uu1 |))

(s1 (|admin := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|pendingUReqs :=

uu1 |)) (s1 (|pendingUReqs := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|userReq := uu1 |))

(s1 (|userReq := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|userIDs := uu1 |))

(s1 (|userIDs := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|user := uu1 |)) (s1

(|user := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|pass := uu1 |)) (s1

(|pass := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|postIDs := uu1 |))

(s1 (|postIDs := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|owner := uu1 |))

(s1 (|owner := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|post := uu1 |)) (s1

(|post := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|vis := uu1 |)) (s1

(|vis := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ eqButUIDf uu1 uu2 =⇒ eqButUID (s (|pend-

ingFReqs := uu1 |)) (s1 (|pendingFReqs := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ eqButUID12 uu1 uu2 =⇒ eqButUID (s (|friendReq

:= uu1 |)) (s1 (|friendReq := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ eqButUIDf uu1 uu2 =⇒ eqButUID (s (|friendIDs

:= uu1 |)) (s1 (|friendIDs := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|pendingSApiReqs

:= uu1 |)) (s1 (|pendingSApiReqs := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|sApiReq := uu1 |))

(s1 (|sApiReq := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|serverApiIDs :=

127

uu1 |)) (s1 (|serverApiIDs := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|serverPass := uu1 |))

(s1 (|serverPass := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|outerPostIDs :=

uu1 |)) (s1 (|outerPostIDs := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|outerPost := uu1 |))

(s1 (|outerPost := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|outerVis := uu1 |))

(s1 (|outerVis := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|outerOwner :=

uu1 |)) (s1 (|outerOwner := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|sentOuterFriendIDs

:= uu1 |)) (s1 (|sentOuterFriendIDs := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|recvOuterFriendIDs

:= uu1 |)) (s1 (|recvOuterFriendIDs := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|pendingCApiReqs

:= uu1 |)) (s1 (|pendingCApiReqs := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|cApiReq := uu1 |))

(s1 (|cApiReq := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|clientApiIDs :=

uu1 |)) (s1 (|clientApiIDs := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|clientPass := uu1 |))

(s1 (|clientPass := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|sharedWith :=

uu1 |)) (s1 (|sharedWith:= uu2 |))
〈proof 〉

definition friends12 :: state ⇒ bool
where friends12 s ≡ UID1 ∈∈ friendIDs s UID2 ∧ UID2 ∈∈ friendIDs s UID1

lemma step-friendIDs:
assumes step s a = (ou, s ′)
and a 6= Cact (cFriend uid (pass s uid) uid ′) ∧ a 6= Cact (cFriend uid ′ (pass s
uid ′) uid) ∧

a 6= Dact (dFriend uid (pass s uid) uid ′) ∧ a 6= Dact (dFriend uid ′ (pass s
uid ′) uid)
shows uid ∈∈ friendIDs s ′ uid ′←→ uid ∈∈ friendIDs s uid ′ (is ?uid)

and uid ′ ∈∈ friendIDs s ′ uid ←→ uid ′ ∈∈ friendIDs s uid (is ?uid ′)
〈proof 〉

lemma step-friends12 :
assumes step s a = (ou, s ′)
and a 6= Cact (cFriend UID1 (pass s UID1) UID2) ∧ a 6= Cact (cFriend UID2
(pass s UID2) UID1) ∧

a 6= Dact (dFriend UID1 (pass s UID1) UID2) ∧ a 6= Dact (dFriend UID2
(pass s UID2) UID1)
shows friends12 s ′←→ friends12 s
〈proof 〉

128

lemma step-pendingFReqs:
assumes step: step s a = (ou, s ′)
and ∀ req. a 6= Cact (cFriend uid (pass s uid) uid ′) ∧ a 6= Cact (cFriend uid ′ (pass
s uid ′) uid) ∧

a 6= Dact (dFriend uid (pass s uid) uid ′) ∧ a 6= Dact (dFriend uid ′ (pass
s uid ′) uid) ∧

a 6= Cact (cFriendReq uid (pass s uid) uid ′ req) ∧
a 6= Cact (cFriendReq uid ′ (pass s uid ′) uid req)

shows uid ∈∈ pendingFReqs s ′ uid ′←→ uid ∈∈ pendingFReqs s uid ′ (is ?uid)
and uid ′ ∈∈ pendingFReqs s ′ uid ←→ uid ′ ∈∈ pendingFReqs s uid (is ?uid ′)
〈proof 〉

lemma eqButUID-friends12-set-friendIDs-eq:
assumes ss1 : eqButUID s s1
and f12 : friends12 s = friends12 s1
and rs: reach s and rs1 : reach s1
shows set (friendIDs s uid) = set (friendIDs s1 uid)
〈proof 〉

lemma distinct-remove1-idem: distinct xs =⇒ remove1 y (remove1 y xs) = re-
move1 y xs
〈proof 〉

lemma Cact-cFriend-step-eqButUID:
assumes step: step s (Cact (cFriend uid p uid ′)) = (ou,s ′)
and s: reach s
and uids: (uid = UID1 ∧ uid ′ = UID2) ∨ (uid = UID2 ∧ uid ′ = UID1) (is ?u12
∨ ?u21)
shows eqButUID s s ′

〈proof 〉

lemma Cact-cFriendReq-step-eqButUID:
assumes step: step s (Cact (cFriendReq uid p uid ′ req)) = (ou,s ′)
and uids: (uid = UID1 ∧ uid ′ = UID2) ∨ (uid = UID2 ∧ uid ′ = UID1) (is ?u12
∨ ?u21)
shows eqButUID s s ′

〈proof 〉

lemma Dact-dFriend-step-eqButUID:
assumes step: step s (Dact (dFriend uid p uid ′)) = (ou,s ′)
and s: reach s
and uids: (uid = UID1 ∧ uid ′ = UID2) ∨ (uid = UID2 ∧ uid ′ = UID1) (is ?u12
∨ ?u21)
shows eqButUID s s ′

〈proof 〉

129

lemma eqButUID-step:
assumes ss1 : eqButUID s s1
and step: step s a = (ou,s ′)
and step1 : step s1 a = (ou1 ,s1 ′)
and rs: reach s
and rs1 : reach s1
shows eqButUID s ′ s1 ′

〈proof 〉

lemma eqButUID-step-friendIDs-eq:
assumes ss1 : eqButUID s s1
and rs: reach s and rs1 : reach s1
and step: step s a = (ou,s ′) and step1 : step s1 a = (ou1 ,s1 ′)
and a: a 6= Cact (cFriend UID1 (pass s UID1) UID2) ∧ a 6= Cact (cFriend UID2
(pass s UID2) UID1) ∧

a 6= Dact (dFriend UID1 (pass s UID1) UID2) ∧ a 6= Dact (dFriend UID2
(pass s UID2) UID1)
and friendIDs s = friendIDs s1
shows friendIDs s ′ = friendIDs s1 ′

〈proof 〉

lemma createFriend-sym: createFriend s uid p uid ′ = createFriend s uid ′ p ′ uid
〈proof 〉

lemma deleteFriend-sym: deleteFriend s uid p uid ′ = deleteFriend s uid ′ p ′ uid
〈proof 〉

lemma createFriendReq-createFriend-absorb:
assumes e-createFriendReq s uid ′ p uid req
shows createFriend (createFriendReq s uid ′ p1 uid req) uid p2 uid ′ = createFriend
s uid p3 uid ′

〈proof 〉

lemma eqButUID-deleteFriend12-friendIDs-eq:
assumes ss1 : eqButUID s s1
and rs: reach s and rs1 : reach s1
shows friendIDs (deleteFriend s UID1 p UID2) = friendIDs (deleteFriend s1 UID1
p ′ UID2)
〈proof 〉

lemma eqButUID-createFriend12-friendIDs-eq:
assumes ss1 : eqButUID s s1
and rs: reach s and rs1 : reach s1
and f12 : ¬friends12 s ¬friends12 s1
shows friendIDs (createFriend s UID1 p UID2) = friendIDs (createFriend s1 UID1
p ′ UID2)
〈proof 〉

130

end

end

theory Friend-Openness
imports Friend-State-Indistinguishability

begin

7.3 Dynamic declassification trigger
context Friend
begin

The dynamic declassification trigger condition holds, i.e. the access window
to the confidential information is open, as long as the two users have not
been created yet (so there cannot be friendship between them) or while one
of them is a local friend of an observer.
definition openByA :: state ⇒ bool
where openByA s ≡ ¬ UID1 ∈∈ userIDs s ∨ ¬ UID2 ∈∈ userIDs s

definition openByF :: state ⇒ bool
where openByF s ≡ ∃ uid ∈ UIDs. uid ∈∈ friendIDs s UID1 ∨ uid ∈∈ friendIDs
s UID2

definition open :: state ⇒ bool
where open s ≡ openByA s ∨ openByF s

lemmas open-defs = open-def openByA-def openByF-def

lemma step-openByA-cases:
assumes step s a = (ou, s ′)
and openByA s 6= openByA s ′

obtains (CloseA) uid p uid ′ p ′ where a = Cact (cUser uid p uid ′ p ′)
uid ′ = UID1 ∨ uid ′ = UID2 ou = outOK p = pass s

uid
openByA s ¬openByA s ′

〈proof 〉

lemma step-openByF-cases:
assumes step s a = (ou, s ′)
and openByF s 6= openByF s ′

obtains
(OpenF) uid p uid ′ where a = Cact (cFriend uid p uid ′) ou = outOK p = pass

s uid
uid ∈ UIDs ∧ uid ′ ∈ {UID1 ,UID2} ∨ uid ∈ {UID1 ,UID2}

∧ uid ′ ∈ UIDs
openByF s ′ ¬openByF s

| (CloseF) uid p uid ′ where a = Dact (dFriend uid p uid ′) ou = outOK p = pass

131

s uid
uid ∈ UIDs ∧ uid ′ ∈ {UID1 ,UID2} ∨ uid ∈ {UID1 ,UID2}

∧ uid ′ ∈ UIDs
openByF s ¬openByF s ′

〈proof 〉

lemma step-open-cases:
assumes step: step s a = (ou, s ′)
and op: open s 6= open s ′

obtains
(CloseA) uid p uid ′ p ′ where a = Cact (cUser uid p uid ′ p ′)

uid ′ = UID1 ∨ uid ′ = UID2 ou = outOK p = pass s uid
openByA s ¬openByA s ′ ¬openByF s ¬openByF s ′

| (OpenF) uid p uid ′ where a = Cact (cFriend uid p uid ′) ou = outOK p = pass
s uid

uid ∈ UIDs ∧ uid ′ ∈ {UID1 ,UID2} ∨ uid ∈ {UID1 ,UID2}
∧ uid ′ ∈ UIDs

openByF s ′ ¬openByF s ¬openByA s ¬openByA s ′

| (CloseF) uid p uid ′ where a = Dact (dFriend uid p uid ′) ou = outOK p = pass
s uid

uid ∈ UIDs ∧ uid ′ ∈ {UID1 ,UID2} ∨ uid ∈ {UID1 ,UID2}
∧ uid ′ ∈ UIDs

openByF s ¬openByF s ′ ¬openByA s ¬openByA s ′

〈proof 〉

lemma eqButUID-openByA-eq:
assumes eqButUID s s1
shows openByA s = openByA s1
〈proof 〉

lemma eqButUID-openByF-eq:
assumes ss1 : eqButUID s s1
shows openByF s = openByF s1
〈proof 〉

lemma eqButUID-open-eq: eqButUID s s1 =⇒ open s = open s1
〈proof 〉

lemma eqButUID-step-γ-out:
assumes ss1 : eqButUID s s1
and step: step s a = (ou,s ′) and step1 : step s1 a = (ou1 ,s1 ′)

and γ: γ (Trans s a ou s ′)
and os: open s −→ friendIDs s = friendIDs s1
shows ou = ou1
〈proof 〉

132

end

end

theory Friend-Value-Setup
imports Friend-Openness

begin

7.4 Value Setup
context Friend
begin

datatype value =
FrVal bool — updated friendship status between UID1 and UID2
| OVal bool — updated dynamic declassification trigger condition

fun ϕ :: (state,act,out) trans ⇒ bool where
ϕ (Trans s (Cact (cFriend uid p uid ′)) ou s ′) =
((uid,uid ′) ∈ {(UID1 ,UID2), (UID2 ,UID1)} ∧ ou = outOK ∨
open s 6= open s ′)

|
ϕ (Trans s (Dact (dFriend uid p uid ′)) ou s ′) =
((uid,uid ′) ∈ {(UID1 ,UID2), (UID2 ,UID1)} ∧ ou = outOK ∨
open s 6= open s ′)

|
ϕ (Trans s (Cact (cUser uid p uid ′ p ′)) ou s ′) =
(open s 6= open s ′)
|
ϕ - = False

fun f :: (state,act,out) trans ⇒ value where
f (Trans s (Cact (cFriend uid p uid ′)) ou s ′) =
(if (uid,uid ′) ∈ {(UID1 ,UID2), (UID2 ,UID1)} then FrVal True

else OVal True)
|
f (Trans s (Dact (dFriend uid p uid ′)) ou s ′) =
(if (uid,uid ′) ∈ {(UID1 ,UID2), (UID2 ,UID1)} then FrVal False

else OVal False)
|
f (Trans s (Cact (cUser uid p uid ′ p ′)) ou s ′) = OVal False
|
f - = undefined

lemma ϕE :
assumes ϕ: ϕ (Trans s a ou s ′) (is ϕ ?trn)
and step: step s a = (ou, s ′)

133

and rs: reach s
obtains (Friend) uid p uid ′ where a = Cact (cFriend uid p uid ′) ou = outOK f
?trn = FrVal True

uid = UID1 ∧ uid ′ = UID2 ∨ uid = UID2 ∧ uid ′ =
UID1

IDsOK s [UID1 , UID2] [] [] []
¬friends12 s friends12 s ′

| (Unfriend) uid p uid ′ where a = Dact (dFriend uid p uid ′) ou = outOK f
?trn = FrVal False

uid = UID1 ∧ uid ′ = UID2 ∨ uid = UID2 ∧ uid ′ =
UID1

IDsOK s [UID1 , UID2] [] [] []
friends12 s ¬friends12 s ′

| (OpenF) uid p uid ′ where a = Cact (cFriend uid p uid ′)
(uid ∈ UIDs ∧ uid ′ ∈ {UID1 ,UID2}) ∨ (uid ′ ∈ UIDs ∧

uid ∈ {UID1 ,UID2})
ou = outOK f ?trn = OVal True ¬openByF s openByF s ′

¬openByA s ¬openByA s ′

| (CloseF) uid p uid ′ where a = Dact (dFriend uid p uid ′)
(uid ∈ UIDs ∧ uid ′ ∈ {UID1 ,UID2}) ∨ (uid ′ ∈ UIDs

∧ uid ∈ {UID1 ,UID2})
ou = outOK f ?trn = OVal False openByF s ¬openByF

s ′

¬openByA s ¬openByA s ′

| (CloseA) uid p uid ′ p ′ where a = Cact (cUser uid p uid ′ p ′)
uid ′ ∈ {UID1 ,UID2} openByA s ¬openByA s ′

¬openByF s ¬openByF s ′

ou = outOK f ?trn = OVal False
〈proof 〉

lemma step-open-ϕ:
assumes step s a = (ou, s ′)
and open s 6= open s ′

shows ϕ (Trans s a ou s ′)
〈proof 〉

lemma step-friends12-ϕ:
assumes step s a = (ou, s ′)
and friends12 s 6= friends12 s ′

shows ϕ (Trans s a ou s ′)
〈proof 〉

lemma eqButUID-step-ϕ-imp:
assumes ss1 : eqButUID s s1
and rs: reach s and rs1 : reach s1
and step: step s a = (ou,s ′) and step1 : step s1 a = (ou1 ,s1 ′)
and a: a 6= Cact (cFriend UID1 (pass s UID1) UID2) ∧ a 6= Cact (cFriend UID2
(pass s UID2) UID1) ∧

a 6= Dact (dFriend UID1 (pass s UID1) UID2) ∧ a 6= Dact (dFriend UID2

134

(pass s UID2) UID1)
and ϕ: ϕ (Trans s a ou s ′)
shows ϕ (Trans s1 a ou1 s1 ′)
〈proof 〉

lemma eqButUID-step-ϕ:
assumes ss1 : eqButUID s s1
and rs: reach s and rs1 : reach s1
and step: step s a = (ou,s ′) and step1 : step s1 a = (ou1 ,s1 ′)
and a: a 6= Cact (cFriend UID1 (pass s UID1) UID2) ∧ a 6= Cact (cFriend UID2
(pass s UID2) UID1) ∧

a 6= Dact (dFriend UID1 (pass s UID1) UID2) ∧ a 6= Dact (dFriend UID2
(pass s UID2) UID1)
shows ϕ (Trans s a ou s ′) = ϕ (Trans s1 a ou1 s1 ′)
〈proof 〉

end

end
theory Friend

imports
Friend-Value-Setup
Bounded-Deducibility-Security.Compositional-Reasoning

begin

7.5 Declassification bound
context Friend
begin

fun T :: (state,act,out) trans ⇒ bool
where T trn = False

The bound has the same “while-or-last-before” shape as the dynamic ver-
sion of the issuer bound for post confidentiality (Section 6.5.2), alternating
between phases with open (BO) or closed (BC) access to the confidential
information.
The access window is initially open, because the two users are known not to
exist when the system is initialized, so there cannot be friendship between
them.
The bound also incorporates the static knowledge that the friendship status
alternates between False and True.
fun alternatingFriends :: value list ⇒ bool ⇒ bool where

alternatingFriends [] - = True
| alternatingFriends (FrVal st # vl) st ′←→ st ′ = (¬st) ∧ alternatingFriends vl st
| alternatingFriends (OVal - # vl) st = alternatingFriends vl st

inductive BO :: value list ⇒ value list ⇒ bool

135

and BC :: value list ⇒ value list ⇒ bool
where
BO-FrVal[simp,intro!]:
BO (map FrVal fs) (map FrVal fs)
|BO-BC [intro]:

BC vl vl1 =⇒
BO (map FrVal fs @ OVal False # vl) (map FrVal fs @ OVal False # vl1)

|BC-FrVal[simp,intro!]:
BC (map FrVal fs) (map FrVal fs1)
|BC-BO[intro]:

BO vl vl1 =⇒ (fs = [] ←→ fs1 = []) =⇒ (fs 6= [] =⇒ last fs = last fs1) =⇒
BC (map FrVal fs @ OVal True # vl)

(map FrVal fs1 @ OVal True # vl1)

definition B vl vl1 ≡ BO vl vl1 ∧ alternatingFriends vl1 False

lemma BO-Nil-Nil: BO vl vl1 =⇒ vl = [] =⇒ vl1 = []
〈proof 〉

unbundle no relcomp-syntax

sublocale BD-Security-IO where
istate = istate and step = step and
ϕ = ϕ and f = f and γ = γ and g = g and T = T and B = B
〈proof 〉

7.6 Unwinding proof
lemma toggle-friends12-True:

assumes rs: reach s
and IDs: IDsOK s [UID1 , UID2] [] [] []
and nf12 : ¬friends12 s

obtains al oul
where sstep s al = (oul, createFriend s UID1 (pass s UID1) UID2)

and al 6= [] and eqButUID s (createFriend s UID1 (pass s UID1) UID2)
and friends12 (createFriend s UID1 (pass s UID1) UID2)
and O (traceOf s al) = [] and V (traceOf s al) = [FrVal True]
〈proof 〉

lemma toggle-friends12-False:
assumes rs: reach s

and IDs: IDsOK s [UID1 , UID2] [] [] []
and f12 : friends12 s

obtains al oul
where sstep s al = (oul, deleteFriend s UID1 (pass s UID1) UID2)

and al 6= [] and eqButUID s (deleteFriend s UID1 (pass s UID1) UID2)
and ¬friends12 (deleteFriend s UID1 (pass s UID1) UID2)

136

and O (traceOf s al) = [] and V (traceOf s al) = [FrVal False]
〈proof 〉

definition ∆0 :: state ⇒ value list ⇒ state ⇒ value list ⇒ bool where
∆0 s vl s1 vl1 ≡
eqButUID s s1 ∧ friendIDs s = friendIDs s1 ∧ open s ∧
BO vl vl1 ∧ alternatingFriends vl1 (friends12 s1)

definition ∆1 :: state ⇒ value list ⇒ state ⇒ value list ⇒ bool where
∆1 s vl s1 vl1 ≡ (∃ fs fs1 .
eqButUID s s1 ∧ ¬open s ∧
alternatingFriends vl1 (friends12 s1) ∧
vl = map FrVal fs ∧ vl1 = map FrVal fs1)

definition ∆2 :: state ⇒ value list ⇒ state ⇒ value list ⇒ bool where
∆2 s vl s1 vl1 ≡ (∃ fs fs1 vlr vlr1 .
eqButUID s s1 ∧ ¬open s ∧ BO vlr vlr1 ∧
alternatingFriends vl1 (friends12 s1) ∧
(fs = [] ←→ fs1 = []) ∧
(fs 6= [] −→ last fs = last fs1) ∧
(fs = [] −→ friendIDs s = friendIDs s1) ∧
vl = map FrVal fs @ OVal True # vlr ∧
vl1 = map FrVal fs1 @ OVal True # vlr1)

lemma ∆2-I :
assumes eqButUID s s1 ¬open s BO vlr vlr1 alternatingFriends vl1 (friends12 s1)

fs = [] ←→ fs1 = [] fs 6= [] −→ last fs = last fs1
fs = [] −→ friendIDs s = friendIDs s1
vl = map FrVal fs @ OVal True # vlr
vl1 = map FrVal fs1 @ OVal True # vlr1

shows ∆2 s vl s1 vl1
〈proof 〉

lemma istate-∆0 :
assumes B: B vl vl1
shows ∆0 istate vl istate vl1
〈proof 〉

lemma unwind-cont-∆0 : unwind-cont ∆0 {∆0 ,∆1 ,∆2}
〈proof 〉

lemma unwind-cont-∆1 : unwind-cont ∆1 {∆1 , ∆0}
〈proof 〉

lemma unwind-cont-∆2 : unwind-cont ∆2 {∆2 ,∆0}
〈proof 〉

137

definition Gr where
Gr =
{
(∆0 , {∆0 ,∆1 ,∆2}),
(∆1 , {∆1 ,∆0}),
(∆2 , {∆2 ,∆0})
}

theorem secure: secure
〈proof 〉

end

end
theory Friend-Network

imports
../API-Network
Friend
BD-Security-Compositional.Composing-Security-Network

begin

7.7 Confidentiality for the N-ary composition
locale FriendNetwork = Network + FriendNetworkObservationSetup +
fixes

AID :: apiID
and

UID1 :: userID
and

UID2 :: userID
assumes

UID1-UID2-UIDs: {UID1 ,UID2} ∩ (UIDs AID) = {}
and

UID1-UID2 : UID1 6= UID2
and

AID-AIDs: AID ∈ AIDs
begin

sublocale Issuer : Friend UIDs AID UID1 UID2 〈proof 〉

abbreviation ϕ :: apiID ⇒ (state, act, out) trans ⇒ bool
where ϕ aid trn ≡ (Issuer .ϕ trn ∧ aid = AID)

abbreviation f :: apiID ⇒ (state, act, out) trans ⇒ Friend.value
where f aid trn ≡ Friend.f UID1 UID2 trn

abbreviation T :: apiID ⇒ (state, act, out) trans ⇒ bool

138

where T aid trn ≡ False

abbreviation B :: apiID ⇒ Friend.value list ⇒ Friend.value list ⇒ bool
where B aid vl vl1 ≡ (if aid = AID then Issuer .B vl vl1 else (vl = [] ∧ vl1 = []))

abbreviation comOfV aid vl ≡ Internal
abbreviation tgtNodeOfV aid vl ≡ undefined
abbreviation syncV aid1 vl1 aid2 vl2 ≡ False

lemma [simp]: validTrans aid trn =⇒ lreach aid (srcOf trn) =⇒ ϕ aid trn =⇒
comOf aid trn = Internal
〈proof 〉

sublocale Net: BD-Security-TS-Network-getTgtV
where istate = λ-. istate and validTrans = validTrans and srcOf = λ-. srcOf
and tgtOf = λ-. tgtOf

and nodes = AIDs and comOf = comOf and tgtNodeOf = tgtNodeOf
and sync = sync and ϕ = ϕ and f = f and γ = γ and g = g and T = T and

B = B
and comOfV = comOfV and tgtNodeOfV = tgtNodeOfV and syncV = syncV
and comOfO = comOfO and tgtNodeOfO = tgtNodeOfO and syncO = syncO
and source = AID and getTgtV = id
〈proof 〉

sublocale BD-Security-TS-Network-Preserve-Source-Security-getTgtV
where istate = λ-. istate and validTrans = validTrans and srcOf = λ-. srcOf
and tgtOf = λ-. tgtOf

and nodes = AIDs and comOf = comOf and tgtNodeOf = tgtNodeOf
and sync = sync and ϕ = ϕ and f = f and γ = γ and g = g and T = T and

B = B
and comOfV = comOfV and tgtNodeOfV = tgtNodeOfV and syncV = syncV
and comOfO = comOfO and tgtNodeOfO = tgtNodeOfO and syncO = syncO
and source = AID and getTgtV = id
〈proof 〉

theorem secure: secure
〈proof 〉

end

end
theory Friend-All
imports Friend-Network
begin

end
theory Friend-Request-Intro

imports

139

../Friend-Confidentiality/Friend-Openness

../Friend-Confidentiality/Friend-State-Indistinguishability
begin

8 Friendship request confidentiality

We verify the following property:

Given a coalition consisting of groups of users UIDs j from multiple nodes
j and given two users UID1 and UID2 at some node i who are not in these
groups,
the coalition cannot learn anything about the the friendship requests issued
between UID1 and UID2
beyond what everybody knows, namely that

• every successful friend creation is preceded by at least one and at most
two requests, and

• friendship status updates form an alternating sequence of friending
and unfriending,

and beyond the existence of requests issued while or last before a user in the
group UIDs i is a local friend of UID1 or UID2.

The approach here is similar to that for friendship status confidentiality
(explained in the introduction of Section 7). Like in the case of friendship
status, here secret information is not communicated between different nodes
(so again we don’t need to distinguish between an issuer node and the other,
receiver nodes).
end

theory Friend-Request-Value-Setup
imports Friend-Request-Intro

begin

8.1 Value setup
context Friend
begin

datatype fUser = U1 | U2
datatype value =

isFRVal: FRVal fUser requestInfo — friendship requests from UID1 to UID2 (or
vice versa)
| isFVal: FVal bool — updated friendship status between UID1 and UID2

140

| isOVal: OVal bool — updated dynamic declassification trigger condition

fun ϕ :: (state,act,out) trans ⇒ bool where
ϕ (Trans s (Cact (cFriendReq uid p uid ′ req)) ou s ′) =
((uid,uid ′) ∈ {(UID1 ,UID2), (UID2 ,UID1)} ∧ ou = outOK)
|
ϕ (Trans s (Cact (cFriend uid p uid ′)) ou s ′) =
((uid,uid ′) ∈ {(UID1 ,UID2), (UID2 ,UID1)} ∧ ou = outOK ∨
open s 6= open s ′)

|
ϕ (Trans s (Dact (dFriend uid p uid ′)) ou s ′) =
((uid,uid ′) ∈ {(UID1 ,UID2), (UID2 ,UID1)} ∧ ou = outOK ∨
open s 6= open s ′)

|
ϕ (Trans s (Cact (cUser uid p uid ′ p ′)) ou s ′) =
(open s 6= open s ′)
|
ϕ - = False

fun f :: (state,act,out) trans ⇒ value where
f (Trans s (Cact (cFriendReq uid p uid ′ req)) ou s ′) =

(if uid = UID1 ∧ uid ′ = UID2 then FRVal U1 req
else if uid = UID2 ∧ uid ′ = UID1 then FRVal U2 req

else OVal True)
|
f (Trans s (Cact (cFriend uid p uid ′)) ou s ′) =
(if (uid,uid ′) ∈ {(UID1 ,UID2), (UID2 ,UID1)} then FVal True

else OVal True)
|
f (Trans s (Dact (dFriend uid p uid ′)) ou s ′) =
(if (uid,uid ′) ∈ {(UID1 ,UID2), (UID2 ,UID1)} then FVal False

else OVal False)
|
f (Trans s (Cact (cUser uid p uid ′ p ′)) ou s ′) = OVal False
|
f - = undefined

lemma ϕE :
assumes ϕ: ϕ (Trans s a ou s ′) (is ϕ ?trn)
and step: step s a = (ou, s ′)
and rs: reach s
obtains (FReq1) u p req where a = Cact (cFriendReq UID1 p UID2 req) ou =
outOK

f ?trn = FRVal u req u = U1 IDsOK s [UID1 , UID2] [] [] []
¬friends12 s ¬friends12 s ′ open s ′ = open s

UID1 ∈∈ pendingFReqs s ′ UID2 UID1 /∈ set (pendingFReqs
s UID2)

UID2 ∈∈ pendingFReqs s ′ UID1 ←→ UID2 ∈∈ pendingFReqs
s UID1

141

| (FReq2) u p req where a = Cact (cFriendReq UID2 p UID1 req) ou =
outOK

f ?trn = FRVal u req u = U2 IDsOK s [UID1 , UID2] [] [] []
¬friends12 s ¬friends12 s ′ open s ′ = open s

UID2 ∈∈ pendingFReqs s ′ UID1 UID2 /∈ set (pendingFReqs
s UID1)

UID1 ∈∈ pendingFReqs s ′ UID2 ←→ UID1 ∈∈ pendingFReqs
s UID2
| (Friend) uid p uid ′ where a = Cact (cFriend uid p uid ′) ou = outOK f ?trn

= FVal True
uid = UID1 ∧ uid ′ = UID2 ∨ uid = UID2 ∧ uid ′ =

UID1
IDsOK s [UID1 , UID2] [] [] []
¬friends12 s friends12 s ′ uid ′ ∈∈ pendingFReqs s uid
UID1 /∈ set (pendingFReqs s ′ UID2)
UID2 /∈ set (pendingFReqs s ′ UID1)

| (Unfriend) uid p uid ′ where a = Dact (dFriend uid p uid ′) ou = outOK f
?trn = FVal False

uid = UID1 ∧ uid ′ = UID2 ∨ uid = UID2 ∧ uid ′ =
UID1

IDsOK s [UID1 , UID2] [] [] []
friends12 s ¬friends12 s ′

UID1 /∈ set (pendingFReqs s ′ UID2)
UID1 /∈ set (pendingFReqs s UID2)
UID2 /∈ set (pendingFReqs s ′ UID1)
UID2 /∈ set (pendingFReqs s UID1)

| (OpenF) uid p uid ′ where a = Cact (cFriend uid p uid ′)
(uid ∈ UIDs ∧ uid ′ ∈ {UID1 ,UID2}) ∨ (uid ′ ∈ UIDs ∧

uid ∈ {UID1 ,UID2})
ou = outOK f ?trn = OVal True ¬openByF s openByF s ′

¬openByA s ¬openByA s ′

friends12 s ′ = friends12 s
UID1 ∈∈ pendingFReqs s ′ UID2 ←→ UID1 ∈∈

pendingFReqs s UID2
UID2 ∈∈ pendingFReqs s ′ UID1 ←→ UID2 ∈∈

pendingFReqs s UID1
| (CloseF) uid p uid ′ where a = Dact (dFriend uid p uid ′)

(uid ∈ UIDs ∧ uid ′ ∈ {UID1 ,UID2}) ∨ (uid ′ ∈ UIDs
∧ uid ∈ {UID1 ,UID2})

ou = outOK f ?trn = OVal False openByF s ¬openByF
s ′

¬openByA s ¬openByA s ′

friends12 s ′ = friends12 s
UID1 ∈∈ pendingFReqs s ′ UID2 ←→ UID1 ∈∈

pendingFReqs s UID2
UID2 ∈∈ pendingFReqs s ′ UID1 ←→ UID2 ∈∈

pendingFReqs s UID1
| (CloseA) uid p uid ′ p ′ where a = Cact (cUser uid p uid ′ p ′)

uid ′ ∈ {UID1 ,UID2} openByA s ¬openByA s ′

142

¬openByF s ¬openByF s ′

ou = outOK f ?trn = OVal False
friends12 s ′ = friends12 s

UID1 ∈∈ pendingFReqs s ′ UID2 ←→ UID1 ∈∈
pendingFReqs s UID2

UID2 ∈∈ pendingFReqs s ′ UID1 ←→ UID2 ∈∈
pendingFReqs s UID1
〈proof 〉

lemma step-open-ϕ:
assumes step s a = (ou, s ′)
and open s 6= open s ′

shows ϕ (Trans s a ou s ′)
〈proof 〉

lemma step-friends12-ϕ:
assumes step s a = (ou, s ′)
and friends12 s 6= friends12 s ′

shows ϕ (Trans s a ou s ′)
〈proof 〉

lemma step-pendingFReqs-ϕ:
assumes step s a = (ou, s ′)
and (UID1 ∈∈ pendingFReqs s UID2) 6= (UID1 ∈∈ pendingFReqs s ′ UID2)
∨ (UID2 ∈∈ pendingFReqs s UID1) 6= (UID2 ∈∈ pendingFReqs s ′ UID1)

shows ϕ (Trans s a ou s ′)
〈proof 〉

lemma eqButUID-step-ϕ-imp:
assumes ss1 : eqButUID s s1
and rs: reach s and rs1 : reach s1
and step: step s a = (ou,s ′) and step1 : step s1 a = (ou1 ,s1 ′)
and a: ∀ req. a 6= Cact (cFriend UID1 (pass s UID1) UID2) ∧

a 6= Cact (cFriend UID2 (pass s UID2) UID1) ∧
a 6= Cact (cFriendReq UID1 (pass s UID1) UID2 req) ∧
a 6= Cact (cFriendReq UID2 (pass s UID2) UID1 req) ∧
a 6= Dact (dFriend UID1 (pass s UID1) UID2) ∧
a 6= Dact (dFriend UID2 (pass s UID2) UID1)

and ϕ: ϕ (Trans s a ou s ′)
shows ϕ (Trans s1 a ou1 s1 ′)
〈proof 〉

lemma eqButUID-step-ϕ:
assumes ss1 : eqButUID s s1
and rs: reach s and rs1 : reach s1
and step: step s a = (ou,s ′) and step1 : step s1 a = (ou1 ,s1 ′)
and a: ∀ req. a 6= Cact (cFriend UID1 (pass s UID1) UID2) ∧

a 6= Cact (cFriend UID2 (pass s UID2) UID1) ∧
a 6= Cact (cFriendReq UID1 (pass s UID1) UID2 req) ∧

143

a 6= Cact (cFriendReq UID2 (pass s UID2) UID1 req) ∧
a 6= Dact (dFriend UID1 (pass s UID1) UID2) ∧
a 6= Dact (dFriend UID2 (pass s UID2) UID1)

shows ϕ (Trans s a ou s ′) = ϕ (Trans s1 a ou1 s1 ′)
〈proof 〉

end

end
theory Friend-Request

imports
Friend-Request-Value-Setup
Bounded-Deducibility-Security.Compositional-Reasoning

begin

8.2 Declassification bound
context Friend
begin

fun T :: (state,act,out) trans ⇒ bool
where T trn = False

Friendship updates form an alternating sequence of friending and unfriend-
ing, and every successful friend creation is preceded by one or two friendship
requests.
fun validValSeq :: value list ⇒ bool ⇒ bool ⇒ bool ⇒ bool where

validValSeq [] - - - = True
| validValSeq (FRVal U1 req # vl) st r1 r2 ←→ (¬st) ∧ (¬r1) ∧ validValSeq vl st
True r2
| validValSeq (FRVal U2 req # vl) st r1 r2 ←→ (¬st) ∧ (¬r2) ∧ validValSeq vl st
r1 True
| validValSeq (FVal True # vl) st r1 r2 ←→ (¬st) ∧ (r1 ∨ r2) ∧ validValSeq vl
True False False
| validValSeq (FVal False # vl) st r1 r2 ←→ st ∧ (¬r1) ∧ (¬r2) ∧ validValSeq vl
False False False
| validValSeq (OVal True # vl) st r1 r2 ←→ validValSeq vl st r1 r2
| validValSeq (OVal False # vl) st r1 r2 ←→ validValSeq vl st r1 r2

abbreviation validValSeqFrom :: value list ⇒ state ⇒ bool
where validValSeqFrom vl s
≡ validValSeq vl (friends12 s) (UID1 ∈∈ pendingFReqs s UID2) (UID2 ∈∈ pend-

ingFReqs s UID1)

With respect to the friendship status updates, we use the same “while-or-
last-before” bound as for friendship status confidentiality.
inductive BO :: value list ⇒ value list ⇒ bool
and BC :: value list ⇒ value list ⇒ bool
where

144

BO-FVal[simp,intro!]:
BO (map FVal fs) (map FVal fs)
|BO-BC [intro]:

BC vl vl1 =⇒
BO (map FVal fs @ OVal False # vl) (map FVal fs @ OVal False # vl1)

|BC-FVal[simp,intro!]:
BC (map FVal fs) (map FVal fs1)
|BC-BO[intro]:

BO vl vl1 =⇒ (fs = [] ←→ fs1 = []) =⇒ (fs 6= [] =⇒ last fs = last fs1) =⇒
BC (map FVal fs @ OVal True # vl)

(map FVal fs1 @ OVal True # vl1)

Taking into account friendship requests, two value sequences vl and vl1 are
in the bound if

• vl1 (with friendship requests) forms a valid value sequence,

• vl and vl1 are in BO (without friendship requests),

• vl1 is empty if vl is empty, and

• vl1 begins with OVal False if vl begins with OVal False.

The last two points are due to the fact that UID1 and UID1 might not
exist yet if vl is empty (or before OVal False), in which case the observer
can deduce that no friendship request has happened yet.
definition B vl vl1 ≡ BO (filter (Not o isFRVal) vl) (filter (Not o isFRVal) vl1)
∧

validValSeqFrom vl1 istate ∧
(vl = [] −→ vl1 = []) ∧
(vl 6= [] ∧ hd vl = OVal False −→ vl1 6= [] ∧ hd vl1 = OVal

False)

lemma BO-Nil-iff : BO vl vl1 =⇒ vl = [] ←→ vl1 = []
〈proof 〉

sublocale BD-Security-IO where
istate = istate and step = step and
ϕ = ϕ and f = f and γ = γ and g = g and T = T and B = B
〈proof 〉

8.3 Unwinding proof
lemma validFrom-validValSeq:

assumes validFrom s tr
and reach s

145

shows validValSeqFrom (V tr) s
〈proof 〉

lemma validFrom istate tr =⇒ validValSeqFrom (V tr) istate
〈proof 〉

lemma produce-FRVal:
assumes rs: reach s
and IDs: IDsOK s [UID1 , UID2] [] [] []
and vVS : validValSeqFrom (FRVal u req # vl) s
obtains a uid uid ′ s ′

where step s a = (outOK , s ′)
and a = Cact (cFriendReq uid (pass s uid) uid ′ req)
and uid = UID1 ∧ uid ′ = UID2 ∨ uid = UID2 ∧ uid ′ = UID1
and ϕ (Trans s a outOK s ′)
and f (Trans s a outOK s ′) = FRVal u req
and validValSeqFrom vl s ′

〈proof 〉

lemma toggle-friends12-True:
assumes rs: reach s

and IDs: IDsOK s [UID1 , UID2] [] [] []
and nf12 : ¬friends12 s
and vVS : validValSeqFrom (FVal True # vl) s

obtains a uid uid ′ s ′

where step s a = (outOK , s ′)
and a = Cact (cFriend uid (pass s uid) uid ′)
and s ′ = createFriend s UID1 (pass s UID1) UID2
and uid = UID1 ∧ uid ′ = UID2 ∨ uid = UID2 ∧ uid ′ = UID1
and friends12 s ′

and eqButUID s s ′

and ϕ (Trans s a outOK s ′)
and f (Trans s a outOK s ′) = FVal True
and ¬γ (Trans s a outOK s ′)
and validValSeqFrom vl s ′

〈proof 〉

lemma toggle-friends12-False:
assumes rs: reach s

and IDs: IDsOK s [UID1 , UID2] [] [] []
and f12 : friends12 s
and vVS : validValSeqFrom (FVal False # vl) s

obtains a s ′

where step s a = (outOK , s ′)
and a = Dact (dFriend UID1 (pass s UID1) UID2)
and s ′ = deleteFriend s UID1 (pass s UID1) UID2
and ¬friends12 s ′

and eqButUID s s ′

146

and ϕ (Trans s a outOK s ′)
and f (Trans s a outOK s ′) = FVal False
and ¬γ (Trans s a outOK s ′)
and validValSeqFrom vl s ′

〈proof 〉

lemma toggle-friends12 :
assumes rs: reach s

and IDs: IDsOK s [UID1 , UID2] [] [] []
and f12 : friends12 s 6= fv
and vVS : validValSeqFrom (FVal fv # vl) s

obtains a s ′

where step s a = (outOK , s ′)
and friends12 s ′ = fv
and eqButUID s s ′

and ϕ (Trans s a outOK s ′)
and f (Trans s a outOK s ′) = FVal fv
and ¬γ (Trans s a outOK s ′)
and validValSeqFrom vl s ′

〈proof 〉

lemma BO-cases:
assumes BO vl vl1
obtains (Nil) vl = [] and vl1 = []

| (FVal) fv vl ′ vl1 ′ where vl = FVal fv # vl ′ and vl1 = FVal fv # vl1 ′ and
BO vl ′ vl1 ′

| (OVal) vl ′ vl1 ′ where vl = OVal False # vl ′ and vl1 = OVal False # vl1 ′

and BC vl ′ vl1 ′

〈proof 〉

lemma BC-cases:
assumes BC vl vl1
obtains (Nil) vl = [] and vl1 = []

| (FVal) fv fs where vl = FVal fv # map FVal fs and vl1 = []
| (FVal1) fv fs fs1 where vl = map FVal fs and vl1 = FVal fv # map FVal

fs1
| (BO-FVal) fv fv ′ fs vl ′ vl1 ′ where vl = FVal fv # map FVal fs @ FVal fv ′

OVal True # vl ′
and vl1 = FVal fv ′ # OVal True # vl1 ′ and BO

vl ′ vl1 ′

| (BO-FVal1) fv fv ′ fs fs1 vl ′ vl1 ′ where vl = map FVal fs @ FVal fv ′ # OVal
True # vl ′

and vl1 = FVal fv # map FVal fs1 @ FVal fv ′ #
OVal True # vl1 ′

and BO vl ′ vl1 ′

| (FVal-BO) fv vl ′ vl1 ′ where vl = FVal fv # OVal True # vl ′
and vl1 = FVal fv # OVal True # vl1 ′ and BO vl ′ vl1 ′

| (OVal) vl ′ vl1 ′ where vl = OVal True # vl ′ and vl1 = OVal True # vl1 ′

147

and BO vl ′ vl1 ′

〈proof 〉

definition ∆0 :: state ⇒ value list ⇒ state ⇒ value list ⇒ bool where
∆0 s vl s1 vl1 ≡
s = s1 ∧ B vl vl1 ∧ open s ∧ (¬IDsOK s [UID1 , UID2] [] [] [])

definition ∆1 :: state ⇒ value list ⇒ state ⇒ value list ⇒ bool where
∆1 s vl s1 vl1 ≡
eqButUID s s1 ∧ friendIDs s = friendIDs s1 ∧ open s ∧
BO (filter (Not o isFRVal) vl) (filter (Not o isFRVal) vl1) ∧
validValSeqFrom vl1 s1 ∧
IDsOK s1 [UID1 , UID2] [] [] []

definition ∆2 :: state ⇒ value list ⇒ state ⇒ value list ⇒ bool where
∆2 s vl s1 vl1 ≡ (∃ fs fs1 .
eqButUID s s1 ∧ ¬open s ∧
validValSeqFrom vl1 s1 ∧
filter (Not o isFRVal) vl = map FVal fs ∧
filter (Not o isFRVal) vl1 = map FVal fs1)

definition ∆3 :: state ⇒ value list ⇒ state ⇒ value list ⇒ bool where
∆3 s vl s1 vl1 ≡ (∃ fs fs1 vlr vlr1 .
eqButUID s s1 ∧ ¬open s ∧ BO vlr vlr1 ∧
validValSeqFrom vl1 s1 ∧
(fs = [] ←→ fs1 = []) ∧
(fs 6= [] −→ last fs = last fs1) ∧
(fs = [] −→ friendIDs s = friendIDs s1) ∧
filter (Not o isFRVal) vl = map FVal fs @ OVal True # vlr ∧
filter (Not o isFRVal) vl1 = map FVal fs1 @ OVal True # vlr1)

lemma ∆2-I :
assumes eqButUID s s1 ¬open s

validValSeqFrom vl1 s1
filter (Not o isFRVal) vl = map FVal fs
filter (Not o isFRVal) vl1 = map FVal fs1

shows ∆2 s vl s1 vl1
〈proof 〉

lemma ∆3-I :
assumes eqButUID s s1 ¬open s BO vlr vlr1

validValSeqFrom vl1 s1
fs = [] ←→ fs1 = [] fs 6= [] −→ last fs = last fs1
fs = [] −→ friendIDs s = friendIDs s1
filter (Not o isFRVal) vl = map FVal fs @ OVal True # vlr
filter (Not o isFRVal) vl1 = map FVal fs1 @ OVal True # vlr1

shows ∆3 s vl s1 vl1

148

〈proof 〉

lemma istate-∆0 :
assumes B: B vl vl1
shows ∆0 istate vl istate vl1
〈proof 〉

lemma unwind-cont-∆0 : unwind-cont ∆0 {∆0 ,∆1 ,∆2 ,∆3}
〈proof 〉

lemma unwind-cont-∆1 : unwind-cont ∆1 {∆1 ,∆2 ,∆3}
〈proof 〉

lemma unwind-cont-∆2 : unwind-cont ∆2 {∆2 , ∆1}
〈proof 〉

lemma unwind-cont-∆3 : unwind-cont ∆3 {∆3 ,∆1}
〈proof 〉

definition Gr where
Gr =
{
(∆0 , {∆0 ,∆1 ,∆2 ,∆3}),
(∆1 , {∆1 ,∆2 ,∆3}),
(∆2 , {∆2 ,∆1}),
(∆3 , {∆3 ,∆1})
}

theorem secure: secure
〈proof 〉

end

end
theory Friend-Request-Network

imports
../API-Network
Friend-Request
BD-Security-Compositional.Composing-Security-Network

begin

149

8.4 Confidentiality for the N-ary composition
locale FriendRequestNetwork = Network + FriendNetworkObservationSetup +
fixes

AID :: apiID
and

UID1 :: userID
and

UID2 :: userID
assumes

UID1-UID2-UIDs: {UID1 ,UID2} ∩ (UIDs AID) = {}
and

UID1-UID2 : UID1 6= UID2
and

AID-AIDs: AID ∈ AIDs
begin

sublocale Issuer : Friend UIDs AID UID1 UID2 〈proof 〉

abbreviation ϕ :: apiID ⇒ (state, act, out) trans ⇒ bool
where ϕ aid trn ≡ (Issuer .ϕ trn ∧ aid = AID)

abbreviation f :: apiID ⇒ (state, act, out) trans ⇒ Friend.value
where f aid trn ≡ Friend.f UID1 UID2 trn

abbreviation T :: apiID ⇒ (state, act, out) trans ⇒ bool
where T aid trn ≡ False

abbreviation B :: apiID ⇒ Friend.value list ⇒ Friend.value list ⇒ bool
where B aid vl vl1 ≡ (if aid = AID then Issuer .B vl vl1 else (vl = [] ∧ vl1 = []))

abbreviation comOfV aid vl ≡ Internal
abbreviation tgtNodeOfV aid vl ≡ undefined
abbreviation syncV aid1 vl1 aid2 vl2 ≡ False

lemma [simp]: validTrans aid trn =⇒ lreach aid (srcOf trn) =⇒ ϕ aid trn =⇒
comOf aid trn = Internal
〈proof 〉

sublocale Net: BD-Security-TS-Network-getTgtV
where istate = λ-. istate and validTrans = validTrans and srcOf = λ-. srcOf
and tgtOf = λ-. tgtOf

and nodes = AIDs and comOf = comOf and tgtNodeOf = tgtNodeOf
and sync = sync and ϕ = ϕ and f = f and γ = γ and g = g and T = T and

B = B
and comOfV = comOfV and tgtNodeOfV = tgtNodeOfV and syncV = syncV
and comOfO = comOfO and tgtNodeOfO = tgtNodeOfO and syncO = syncO
and source = AID and getTgtV = id
〈proof 〉

150

sublocale BD-Security-TS-Network-Preserve-Source-Security-getTgtV
where istate = λ-. istate and validTrans = validTrans and srcOf = λ-. srcOf
and tgtOf = λ-. tgtOf

and nodes = AIDs and comOf = comOf and tgtNodeOf = tgtNodeOf
and sync = sync and ϕ = ϕ and f = f and γ = γ and g = g and T = T and

B = B
and comOfV = comOfV and tgtNodeOfV = tgtNodeOfV and syncV = syncV
and comOfO = comOfO and tgtNodeOfO = tgtNodeOfO and syncO = syncO
and source = AID and getTgtV = id
〈proof 〉

theorem secure: secure
〈proof 〉

end

end
theory Friend-Request-All
imports Friend-Request-Network
begin

end
theory Outer-Friend-Intro

imports ../Safety-Properties
begin

9 Remote (outer) friendship status confidentiality

We verify the following property, which is specific to CosMeDis, in that it
does not have a CoSMed counterpart: Given a coalition consisting of groups
of users UIDs j from multiple nodes j and a user UID at some node i not
in these groups,
the coalition may learn about the occurrence of remote friendship actions of
UID (because network traffic is assumed to be observable),
but they learn nothing about the content (who was added or deleted as a
friend) of remote friendship actions between UID and remote users who are
not in the coalition
beyond what everybody knows, namely that, with respect to each other user
uid ′, those actions form an alternating sequence of friending and unfriending,
unless a user in UIDs i becomes a local friend of UID.

Similarly to the other properties, this property is proved using the system
compositionality and transport theorems for BD security.
Note that, unlike inner friendship, outer friendship is not necessarily sym-

151

metric. It is always established from a user of a server to a user of a client,
the former giving the latter unilateral access to his friend-only posts. These
unilateral friendship permissions are stored on the client.
When proving the single-node BD security properties, the bound refers to
outer friendship-status changes issued by the user UID concerning friending
or unfriending some user UID ′ located at a node j different from i. Such
changes occur as communicating actions between the “secret issuer” node i
and the “secret receiver” nodes j.
end
theory Outer-Friend

imports Outer-Friend-Intro
begin

type-synonym obs = act ∗ out

The observers UIDs j are an arbitrary, but fixed sets of users at each node j
of the network, and the secret is the friendship information of user UID at
node AID.
locale OuterFriend =
fixes UIDs :: apiID ⇒ userID set
and AID :: apiID
and UID :: userID
assumes UID-UIDs: UID /∈ UIDs AID
and emptyUserID-not-UIDs:

∧
aid. emptyUserID /∈ UIDs aid

datatype value =
isFrVal: FrVal apiID userID bool — updates to the friendship status of UID
| isOVal: OVal bool — a change in the “openness" status of the UID friendship info

end
theory Outer-Friend-Issuer-Observation-Setup

imports ../Outer-Friend
begin

9.1 Issuer node
9.1.1 Observation setup

We now consider the network node AID, at which the user UID is registered,
whose remote friends are to be kept confidential.
locale OuterFriendIssuer = OuterFriend
begin

fun γ :: (state,act,out) trans ⇒ bool where
γ (Trans - a ou -) ←→ (∃ uid. userOfA a = Some uid ∧ uid ∈ UIDs AID) ∨

(∃ ca. a = COMact ca ∧ ou 6= outErr)

152

Purging communicating actions: password information is removed, the user
IDs of friends added or deleted by UID are removed, and the information
whether UID added or deleted a friend is removed
fun comPurge :: comActt ⇒ comActt where
comPurge (comSendServerReq uID p aID reqInfo) = comSendServerReq uID emp-

tyPass aID reqInfo
|comPurge (comReceiveClientReq aID reqInfo) = comReceiveClientReq aID reqInfo
|comPurge (comConnectClient uID p aID sp) = comConnectClient uID emptyPass
aID sp
|comPurge (comConnectServer aID sp) = comConnectServer aID sp
|comPurge (comReceivePost aID sp nID nt uID v) = comReceivePost aID sp nID
nt uID v
|comPurge (comSendPost uID p aID nID) = comSendPost uID emptyPass aID nID
|comPurge (comSendCreateOFriend uID p aID uID ′) =

(if uID = UID ∧ uID ′ /∈ UIDs aID
then comSendCreateOFriend uID emptyPass aID emptyUserID
else comSendCreateOFriend uID emptyPass aID uID ′)

|comPurge (comReceiveCreateOFriend aID cp uID uID ′) = comReceiveCreateOFriend
aID cp uID uID ′

|comPurge (comSendDeleteOFriend uID p aID uID ′) =
(if uID = UID ∧ uID ′ /∈ UIDs aID
then comSendCreateOFriend uID emptyPass aID emptyUserID
else comSendDeleteOFriend uID emptyPass aID uID ′)

|comPurge (comReceiveDeleteOFriend aID cp uID uID ′) = comReceiveDeleteOFriend
aID cp uID uID ′

lemma comPurge-simps:
comPurge ca = comSendServerReq uID p aID reqInfo ←→ (∃ p ′. ca = comSend-

ServerReq uID p ′ aID reqInfo ∧ p = emptyPass)
comPurge ca = comReceiveClientReq aID reqInfo ←→ ca = comReceiveClientReq

aID reqInfo
comPurge ca = comConnectClient uID p aID sp←→ (∃ p ′. ca = comConnectClient

uID p ′ aID sp ∧ p = emptyPass)
comPurge ca = comConnectServer aID sp ←→ ca = comConnectServer aID sp
comPurge ca = comReceivePost aID sp nID nt uID v ←→ ca = comReceivePost

aID sp nID nt uID v
comPurge ca = comSendPost uID p aID nID ←→ (∃ p ′. ca = comSendPost uID

p ′ aID nID ∧ p = emptyPass)
comPurge ca = comSendCreateOFriend uID p aID uID ′

←→ (∃ p ′ uid ′′. (ca = comSendCreateOFriend uID p ′ aID uid ′′ ∨ ca = comSend-
DeleteOFriend uID p ′ aID uid ′′) ∧ uID = UID ∧ uid ′′ /∈ UIDs aID ∧ uID ′ =
emptyUserID ∧ p = emptyPass)
∨ (∃ p ′. ca = comSendCreateOFriend uID p ′ aID uID ′ ∧ ¬(uID = UID ∧ uID ′

/∈ UIDs aID) ∧ p = emptyPass)
comPurge ca = comReceiveCreateOFriend aID cp uID uID ′ ←→ ca = comRe-

ceiveCreateOFriend aID cp uID uID ′

comPurge ca = comSendDeleteOFriend uID p aID uID ′ ←→ (∃ p ′. ca = com-
SendDeleteOFriend uID p ′ aID uID ′ ∧ ¬(uID = UID ∧ uID ′ /∈ UIDs aID) ∧ p =
emptyPass)

153

comPurge ca = comReceiveDeleteOFriend aID cp uID uID ′ ←→ ca = comRe-
ceiveDeleteOFriend aID cp uID uID ′

〈proof 〉

Purging outputs: the user IDs of friends added or deleted by UID are re-
moved from outer friend creation and deletion outputs.
fun outPurge :: out ⇒ out where
outPurge (O-sendCreateOFriend (aID, sp, uID, uID ′)) =
(if uID = UID ∧ uID ′ /∈ UIDs aID
then O-sendCreateOFriend (aID, sp, uID, emptyUserID)
else O-sendCreateOFriend (aID, sp, uID, uID ′))

|outPurge (O-sendDeleteOFriend (aID, sp, uID, uID ′)) =
(if uID = UID ∧ uID ′ /∈ UIDs aID
then O-sendCreateOFriend (aID, sp, uID, emptyUserID)
else O-sendDeleteOFriend (aID, sp, uID, uID ′))

|outPurge ou = ou

lemma outPurge-simps[simp]:
outPurge ou = outErr ←→ ou = outErr
outPurge ou = outOK ←→ ou = outOK
outPurge ou = O-sendServerReq ossr ←→ ou = O-sendServerReq ossr
outPurge ou = O-connectClient occ ←→ ou = O-connectClient occ
outPurge ou = O-sendPost osn ←→ ou = O-sendPost osn
outPurge ou = O-sendCreateOFriend (aID, sp, uID, uID ′)
←→ (∃ uid ′′. (ou = O-sendCreateOFriend (aID, sp, uID, uid ′′) ∨ ou = O-sendDeleteOFriend
(aID, sp, uID, uid ′′)) ∧ uID = UID ∧ uid ′′ /∈ UIDs aID ∧ uID ′ = emptyUserID)
∨ (ou = O-sendCreateOFriend (aID, sp, uID, uID ′) ∧ ¬(uID = UID ∧ uID ′

/∈ UIDs aID))
outPurge ou = O-sendDeleteOFriend (aID, sp, uID, uID ′)
←→ (ou = O-sendDeleteOFriend (aID, sp, uID, uID ′) ∧ ¬(uID = UID ∧ uID ′ /∈

UIDs aID))
〈proof 〉

fun g :: (state,act,out)trans ⇒ obs where
g (Trans - (COMact ca) ou -) = (COMact (comPurge ca), outPurge ou)
|g (Trans - a ou -) = (a,ou)

lemma g-simps:
g (Trans s a ou s ′) = (COMact (comSendServerReq uID p aID reqInfo), O-sendServerReq

ossr)
←→ (∃ p ′. a = COMact (comSendServerReq uID p ′ aID reqInfo) ∧ p = emptyPass
∧ ou = O-sendServerReq ossr)

g (Trans s a ou s ′) = (COMact (comReceiveClientReq aID reqInfo), outOK)
←→ a = COMact (comReceiveClientReq aID reqInfo) ∧ ou = outOK
g (Trans s a ou s ′) = (COMact (comConnectClient uID p aID sp), O-connectClient

occ)
←→ (∃ p ′. a = COMact (comConnectClient uID p ′ aID sp) ∧ p = emptyPass ∧
ou = O-connectClient occ)

g (Trans s a ou s ′) = (COMact (comConnectServer aID sp), outOK)

154

←→ a = COMact (comConnectServer aID sp) ∧ ou = outOK
g (Trans s a ou s ′) = (COMact (comReceivePost aID sp nID nt uID v), outOK)
←→ a = COMact (comReceivePost aID sp nID nt uID v) ∧ ou = outOK

g (Trans s a ou s ′) = (COMact (comSendPost uID p aID nID), O-sendPost osn)
←→ (∃ p ′. a = COMact (comSendPost uID p ′ aID nID) ∧ p = emptyPass ∧ ou =
O-sendPost osn)

g (Trans s a ou s ′) = (COMact (comSendCreateOFriend uID p aID uID ′),
O-sendCreateOFriend (aid, sp, uid, uid ′))
←→ ((∃ p ′ uid ′′. (a = COMact (comSendCreateOFriend uID p ′ aID uid ′′) ∨ a =
COMact (comSendDeleteOFriend uID p ′ aID uid ′′)) ∧ uID = UID ∧ uid ′′ /∈ UIDs
aID ∧ uID ′ = emptyUserID ∧ p = emptyPass)
∨ (∃ p ′. a = COMact (comSendCreateOFriend uID p ′ aID uID ′) ∧ ¬(uID =

UID ∧ uID ′ /∈ UIDs aID) ∧ p = emptyPass))
∧ ((∃ uid ′′. (ou = O-sendCreateOFriend (aid, sp, uid, uid ′′) ∨ ou = O-sendDeleteOFriend

(aid, sp, uid, uid ′′)) ∧ uid = UID ∧ uid ′′ /∈ UIDs aid ∧ uid ′ = emptyUserID)
∨ (ou = O-sendCreateOFriend (aid, sp, uid, uid ′) ∧ ¬(uid = UID ∧ uid ′ /∈

UIDs aid)))
g (Trans s a ou s ′) = (COMact (comReceiveCreateOFriend aID cp uID uID ′),

outOK)
←→ a = COMact (comReceiveCreateOFriend aID cp uID uID ′) ∧ ou = outOK

g (Trans s a ou s ′) = (COMact (comSendDeleteOFriend uID p aID uID ′),
O-sendDeleteOFriend (aid, sp, uid, uid ′))
←→ (∃ p ′. a = COMact (comSendDeleteOFriend uID p ′ aID uID ′) ∧ ¬(uID =
UID ∧ uID ′ /∈ UIDs aID) ∧ p = emptyPass)
∧ (ou = O-sendDeleteOFriend (aid, sp, uid, uid ′) ∧ ¬(uid = UID ∧ uid ′ /∈

UIDs aid))
g (Trans s a ou s ′) = (COMact (comReceiveDeleteOFriend aID cp uID uID ′),

outOK)
←→ a = COMact (comReceiveDeleteOFriend aID cp uID uID ′) ∧ ou = outOK
〈proof 〉

end

end

theory Outer-Friend-Issuer-State-Indistinguishability
imports Outer-Friend-Issuer-Observation-Setup

begin

9.1.2 Unwinding helper definitions and lemmas
context OuterFriendIssuer
begin

fun filterUIDs :: (apiID × userID) list ⇒ (apiID × userID) list where
filterUIDs auidl = filter (λauid. (snd auid) ∈ UIDs (fst auid)) auidl

fun removeUIDs :: (apiID × userID) list ⇒ (apiID × userID) list where

155

removeUIDs auidl = filter (λauid. (snd auid) /∈ UIDs (fst auid)) auidl

fun eqButUIDs :: (apiID × userID) list ⇒ (apiID × userID) list ⇒ bool where
eqButUIDs uidl uidl1 = (filterUIDs uidl = filterUIDs uidl1)

lemma eqButUIDs-eq[simp,intro!]: eqButUIDs uidl uidl
〈proof 〉

lemma eqButUIDs-sym:
assumes eqButUIDs uidl uidl1
shows eqButUIDs uidl1 uidl
〈proof 〉

lemma eqButUIDs-trans:
assumes eqButUIDs uidl uidl1 and eqButUIDs uidl1 uidl2
shows eqButUIDs uidl uidl2
〈proof 〉

lemma eqButUIDs-remove1-cong:
assumes eqButUIDs uidl uidl1
shows eqButUIDs (remove1 auid uidl) (remove1 auid uidl1)
〈proof 〉

lemma eqButUIDs-snoc-cong:
assumes eqButUIDs uidl uidl1

shows eqButUIDs (uidl ## auid ′) (uidl1 ## auid ′)
〈proof 〉

definition eqButUIDf where
eqButUIDf frds frds1 ≡

eqButUIDs (frds UID) (frds1 UID)
∧ (∀ uid. uid 6= UID −→ frds uid = frds1 uid)

lemmas eqButUIDf-intro = eqButUIDf-def [THEN meta-eq-to-obj-eq, THEN iffD2]

lemma eqButUIDf-eeq[simp,intro!]: eqButUIDf frds frds
〈proof 〉

lemma eqButUIDf-sym:
assumes eqButUIDf frds frds1 shows eqButUIDf frds1 frds
〈proof 〉

lemma eqButUIDf-trans:
assumes eqButUIDf frds frds1 and eqButUIDf frds1 frds2
shows eqButUIDf frds frds2

156

〈proof 〉

lemma eqButUIDf-cong:
assumes eqButUIDf frds frds1
and uid 6= UID =⇒ uu = uu1
and uid = UID =⇒ eqButUIDs uu uu1
shows eqButUIDf (frds (uid := uu)) (frds1 (uid := uu1))
〈proof 〉

lemma eqButUIDf-not-UID:
[[eqButUIDf frds frds1 ; uid 6= UID]] =⇒ frds uid = frds1 uid
〈proof 〉

definition eqButUID :: state ⇒ state ⇒ bool where
eqButUID s s1 ≡
admin s = admin s1 ∧

pendingUReqs s = pendingUReqs s1 ∧ userReq s = userReq s1 ∧
userIDs s = userIDs s1 ∧ user s = user s1 ∧ pass s = pass s1 ∧

pendingFReqs s = pendingFReqs s1 ∧
friendReq s = friendReq s1 ∧
friendIDs s = friendIDs s1 ∧

postIDs s = postIDs s1 ∧ admin s = admin s1 ∧
post s = post s1 ∧ vis s = vis s1 ∧
owner s = owner s1 ∧

pendingSApiReqs s = pendingSApiReqs s1 ∧ sApiReq s = sApiReq s1 ∧
serverApiIDs s = serverApiIDs s1 ∧ serverPass s = serverPass s1 ∧
outerPostIDs s = outerPostIDs s1 ∧ outerPost s = outerPost s1 ∧ outerVis s =

outerVis s1 ∧
outerOwner s = outerOwner s1 ∧
eqButUIDf (sentOuterFriendIDs s) (sentOuterFriendIDs s1) ∧
recvOuterFriendIDs s = recvOuterFriendIDs s1 ∧

pendingCApiReqs s = pendingCApiReqs s1 ∧ cApiReq s = cApiReq s1 ∧
clientApiIDs s = clientApiIDs s1 ∧ clientPass s = clientPass s1 ∧
sharedWith s = sharedWith s1

lemmas eqButUID-intro = eqButUID-def [THEN meta-eq-to-obj-eq, THEN iffD2]

lemma eqButUID-refl[simp,intro!]: eqButUID s s
〈proof 〉

lemma eqButUID-sym[sym]:
assumes eqButUID s s1 shows eqButUID s1 s
〈proof 〉

157

lemma eqButUID-trans[trans]:
assumes eqButUID s s1 and eqButUID s1 s2 shows eqButUID s s2
〈proof 〉

lemma eqButUID-stateSelectors:
assumes eqButUID s s1
shows admin s = admin s1
pendingUReqs s = pendingUReqs s1 userReq s = userReq s1
userIDs s = userIDs s1 user s = user s1 pass s = pass s1
pendingFReqs s = pendingFReqs s1
friendReq s = friendReq s1
friendIDs s = friendIDs s1

postIDs s = postIDs s1
post s = post s1 vis s = vis s1
owner s = owner s1

pendingSApiReqs s = pendingSApiReqs s1 sApiReq s = sApiReq s1
serverApiIDs s = serverApiIDs s1 serverPass s = serverPass s1
outerPostIDs s = outerPostIDs s1 outerPost s = outerPost s1 outerVis s = outer-
Vis s1
outerOwner s = outerOwner s1
eqButUIDf (sentOuterFriendIDs s) (sentOuterFriendIDs s1)
recvOuterFriendIDs s = recvOuterFriendIDs s1

pendingCApiReqs s = pendingCApiReqs s1 cApiReq s = cApiReq s1
clientApiIDs s = clientApiIDs s1 clientPass s = clientPass s1
sharedWith s = sharedWith s1

IDsOK s = IDsOK s1
〈proof 〉

lemmas eqButUID-eqButUIDf = eqButUID-stateSelectors(22)

lemma eqButUID-eqButUIDs:
eqButUID s s1 =⇒ eqButUIDs (sentOuterFriendIDs s UID) (sentOuterFriendIDs
s1 UID)
〈proof 〉

lemma eqButUID-not-UID:
eqButUID s s1 =⇒ uid 6= UID =⇒ sentOuterFriendIDs s uid = sentOuterFrien-
dIDs s1 uid
〈proof 〉

lemma eqButUID-sentOuterFriends-UIDs:
assumes eqButUID s s1
and uid ′ ∈ UIDs aid

158

shows (aid, uid ′) ∈∈ sentOuterFriendIDs s UID ←→ (aid, uid ′) ∈∈ sentOuter-
FriendIDs s1 UID
〈proof 〉

lemma eqButUID-sentOuterFriendIDs-cong:
assumes eqButUID s s1
and uid ′ /∈ UIDs aid
shows eqButUID (s(|sentOuterFriendIDs := (sentOuterFriendIDs s)(UID := sentOuter-
FriendIDs s UID ## (aid, uid ′))|)) s1
and eqButUID s (s1 (|sentOuterFriendIDs := (sentOuterFriendIDs s1)(UID :=
sentOuterFriendIDs s1 UID ## (aid, uid ′))|))
and eqButUID s (s1 (|sentOuterFriendIDs := (sentOuterFriendIDs s1)(UID := re-
move1 (aid, uid ′) (sentOuterFriendIDs s1 UID))|))
and eqButUID (s(|sentOuterFriendIDs := (sentOuterFriendIDs s)(UID := remove1
(aid, uid ′) (sentOuterFriendIDs s UID))|)) s1
〈proof 〉

lemma eqButUID-cong:∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|admin := uu1 |))

(s1 (|admin := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|pendingUReqs :=

uu1 |)) (s1 (|pendingUReqs := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|userReq := uu1 |))

(s1 (|userReq := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|userIDs := uu1 |))

(s1 (|userIDs := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|user := uu1 |)) (s1

(|user := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|pass := uu1 |)) (s1

(|pass := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|postIDs := uu1 |))

(s1 (|postIDs := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|owner := uu1 |))

(s1 (|owner := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|post := uu1 |)) (s1

(|post := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|vis := uu1 |)) (s1

(|vis := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|pendingFReqs :=

uu1 |)) (s1 (|pendingFReqs := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|friendReq := uu1 |))

(s1 (|friendReq := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|friendIDs := uu1 |))

(s1 (|friendIDs := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|pendingSApiReqs

159

:= uu1 |)) (s1 (|pendingSApiReqs := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|sApiReq := uu1 |))

(s1 (|sApiReq := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|serverApiIDs :=

uu1 |)) (s1 (|serverApiIDs := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|serverPass := uu1 |))

(s1 (|serverPass := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|outerPostIDs :=

uu1 |)) (s1 (|outerPostIDs := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|outerPost := uu1 |))

(s1 (|outerPost := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|outerVis := uu1 |))

(s1 (|outerVis := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|outerOwner :=

uu1 |)) (s1 (|outerOwner := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ eqButUIDf uu1 uu2 =⇒ eqButUID (s (|sentOuter-

FriendIDs := uu1 |)) (s1 (|sentOuterFriendIDs := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|recvOuterFriendIDs

:= uu1 |)) (s1 (|recvOuterFriendIDs := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|pendingCApiReqs

:= uu1 |)) (s1 (|pendingCApiReqs := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|cApiReq := uu1 |))

(s1 (|cApiReq := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|clientApiIDs :=

uu1 |)) (s1 (|clientApiIDs := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|clientPass := uu1 |))

(s1 (|clientPass := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|sharedWith :=

uu1 |)) (s1 (|sharedWith:= uu2 |))
〈proof 〉

lemma distinct-remove1-idem: distinct xs =⇒ remove1 y (remove1 y xs) = re-
move1 y xs
〈proof 〉

lemma eqButUID-step:
assumes ss1 : eqButUID s s1
and step: step s a = (ou,s ′)
and step1 : step s1 a = (ou1 ,s1 ′)
and rs: reach s
and rs1 : reach s1
shows eqButUID s ′ s1 ′

〈proof 〉

end

end

160

theory Outer-Friend-Issuer-Openness
imports Outer-Friend-Issuer-State-Indistinguishability

begin

9.1.3 Dynamic declassification trigger
context OuterFriendIssuer
begin

The dynamic declassification trigger condition holds, i.e. the access window
to the confidential information is open, while an observer is a local friend of
the user UID.
definition open :: state ⇒ bool
where open s ≡ ∃ uid ∈ UIDs AID. uid ∈∈ friendIDs s UID

lemma open-step-cases:
assumes open s 6= open s ′

and step s a = (ou, s ′)
obtains
(OpenF) uid p uid ′ where a = Cact (cFriend uid p uid ′) ou = outOK p = pass

s uid
uid ∈ UIDs AID ∧ uid ′ = UID ∨ uid = UID ∧ uid ′ ∈ UIDs

AID
open s ′ ¬open s

| (CloseF) uid p uid ′ where a = Dact (dFriend uid p uid ′) ou = outOK p = pass
s uid

uid ∈ UIDs AID ∧ uid ′ = UID ∨ uid = UID ∧ uid ′ ∈ UIDs
AID

open s ¬open s ′

〈proof 〉

lemma COMact-open:
assumes step s a = (ou, s ′)
and a = COMact ca
shows open s = open s ′

〈proof 〉

lemma eqButUID-open-eq: eqButUID s s1 =⇒ open s = open s1
〈proof 〉

end

end

theory Outer-Friend-Issuer-Value-Setup
imports Outer-Friend-Issuer-Openness

begin

161

9.1.4 Value setup
context OuterFriendIssuer
begin

fun ϕ :: (state,act,out) trans ⇒ bool where
ϕ (Trans s (COMact (comSendCreateOFriend uID p aID uID ′)) ou s ′) =
(uID = UID ∧ uID ′ /∈ UIDs aID ∧ ou 6= outErr)
|
ϕ (Trans s (COMact (comSendDeleteOFriend uID p aID uID ′)) ou s ′) =
(uID = UID ∧ uID ′ /∈ UIDs aID ∧ ou 6= outErr)
|
ϕ (Trans s - - s ′) = (open s 6= open s ′)

fun f :: (state,act,out) trans ⇒ value where
f (Trans s (COMact (comSendCreateOFriend uID p aID uID ′)) ou s ′) = FrVal
aID uID ′ True
|
f (Trans s (COMact (comSendDeleteOFriend uID p aID uID ′)) ou s ′) = FrVal aID
uID ′ False
|
f (Trans s - - s ′) = OVal (open s ′)

lemma ϕE :
assumes ϕ: ϕ (Trans s a ou s ′) (is ϕ ?trn)
and step: step s a = (ou, s ′)
and rs: reach s
obtains
(Friend) p aID uID ′ where a = COMact (comSendCreateOFriend UID p aID

uID ′) ou 6= outErr
f ?trn = FrVal aID uID ′ True uID ′ /∈ UIDs aID

| (Unfriend) p aID uID ′ where a = COMact (comSendDeleteOFriend UID p aID
uID ′) ou 6= outErr

f ?trn = FrVal aID uID ′ False uID ′ /∈ UIDs aID
| (OpenF) uid p uid ′ where a = Cact (cFriend uid p uid ′) ou = outOK p = pass
s uid

uid ∈ UIDs AID ∧ uid ′ = UID ∨ uid = UID ∧ uid ′ ∈ UIDs
AID

open s ′ ¬open s
f ?trn = OVal True

| (CloseF) uid p uid ′ where a = Dact (dFriend uid p uid ′) ou = outOK p = pass
s uid

uid ∈ UIDs AID ∧ uid ′ = UID ∨ uid = UID ∧ uid ′ ∈ UIDs
AID

open s ¬open s ′

f ?trn = OVal False
〈proof 〉

162

lemma eqButUID-step-γ-out:
assumes ss1 : eqButUID s s1
and step: step s a = (ou,s ′) and step1 : step s1 a = (ou1 ,s1 ′)

and γ: γ (Trans s a ou s ′)
and os1 : ¬open s1
and ϕ: ϕ (Trans s1 a ou1 s1 ′) ←→ ϕ (Trans s a ou s ′)
shows ou = ou1
〈proof 〉

lemma step-open-ϕ:
assumes step s a = (ou, s ′)
and open s 6= open s ′

shows ϕ (Trans s a ou s ′)
〈proof 〉

lemma step-sendOFriend-eqButUID:
assumes step s a = (ou, s ′)
and reach s
and uID ′ /∈ UIDs aID
and a = COMact (comSendCreateOFriend UID (pass s UID) aID uID ′) ∨

a = COMact (comSendDeleteOFriend UID (pass s UID) aID uID ′)
shows eqButUID s s ′

〈proof 〉

lemma eqButUID-step-ϕ-imp:
assumes ss1 : eqButUID s s1
and rs: reach s and rs1 : reach s1
and step: step s a = (ou,s ′) and step1 : step s1 a = (ou1 ,s1 ′)
and a: ∀ aID uID ′. uID ′ /∈ UIDs aID −→

a 6= COMact (comSendCreateOFriend UID (pass s UID) aID uID ′)
∧

a 6= COMact (comSendDeleteOFriend UID (pass s UID) aID uID ′)
and ϕ: ϕ (Trans s a ou s ′)
shows ϕ (Trans s1 a ou1 s1 ′)
〈proof 〉

lemma eqButUID-step-ϕ:
assumes ss1 : eqButUID s s1
and rs: reach s and rs1 : reach s1
and step: step s a = (ou,s ′) and step1 : step s1 a = (ou1 ,s1 ′)
and a: ∀ aID uID ′. uID ′ /∈ UIDs aID −→

a 6= COMact (comSendCreateOFriend UID (pass s UID) aID uID ′)
∧

a 6= COMact (comSendDeleteOFriend UID (pass s UID) aID uID ′)
shows ϕ (Trans s a ou s ′) = ϕ (Trans s1 a ou1 s1 ′)
〈proof 〉

163

lemma eqButUID-step-γ:
assumes ss1 : eqButUID s s1
and rs: reach s and rs1 : reach s1
and step: step s a = (ou,s ′) and step1 : step s1 a = (ou1 ,s1 ′)
and a: ∀ aID uID ′. uID ′ /∈ UIDs aID −→

a 6= COMact (comSendCreateOFriend UID (pass s UID) aID uID ′)
∧

a 6= COMact (comSendDeleteOFriend UID (pass s UID) aID uID ′)
shows γ (Trans s a ou s ′) = γ (Trans s1 a ou1 s1 ′)
〈proof 〉

end

end
theory Outer-Friend-Issuer

imports
Outer-Friend-Issuer-Value-Setup
Bounded-Deducibility-Security.Compositional-Reasoning

begin

9.1.5 Declassification bound
context OuterFriendIssuer
begin

fun T :: (state,act,out) trans ⇒ bool
where T trn = False

For each user uid at a node aid, the remote friendship updates with the
fixed user UID at node AID form an alternating sequence of friending and
unfriending.
Note that actions involving remote users who are observers do not produce
secret values; instead, those actions are observable, and the property we
verify does not protect their confidentiality.
fun validValSeq :: value list ⇒ (apiID × userID) list ⇒ bool where

validValSeq [] - = True
| validValSeq (FrVal aid uid True # vl) auidl ←→ (aid, uid) /∈ set auidl ∧ uid /∈
UIDs aid ∧ validValSeq vl (auidl ## (aid, uid))
| validValSeq (FrVal aid uid False # vl) auidl ←→ (aid, uid) ∈∈ auidl ∧ uid /∈
UIDs aid ∧ validValSeq vl (removeAll (aid, uid) auidl)
| validValSeq (OVal - # vl) auidl = validValSeq vl auidl

abbreviation validValSeqFrom :: value list ⇒ state ⇒ bool where
validValSeqFrom vl s ≡ validValSeq vl (removeUIDs (sentOuterFriendIDs s UID))

When the access window is closed, observers may learn about the occurrence
of remote friendship actions (by observing network traffic), but not their

164

content; the actions can be replaced by different actions involving different
users (who are not observers) without affecting the observations.
inductive BC :: value list ⇒ value list ⇒ bool
where

BC-Nil[simp,intro]: BC [] []
| BC-FrVal[intro]:

BC vl vl1 =⇒ uid ′ /∈ UIDs aid =⇒ BC (FrVal aid uid st # vl) (FrVal aid uid ′

st ′ # vl1)

When the access window is open, i.e. the user UID is a local friend of an
observer, all information about the remote friends of UID is declassified;
when the access window closes again, the contents of future updates are
kept confidential.
definition BO vl vl1 ≡
(vl1 = vl) ∨
(∃ vl0 vl ′ vl1 ′. vl = vl0 @ OVal False # vl ′ ∧ vl1 = vl0 @ OVal False # vl1 ′ ∧

BC vl ′ vl1 ′)

definition B vl vl1 ≡ (BC vl vl1 ∨ BO vl vl1) ∧ validValSeqFrom vl1 istate

lemma B-Nil-Nil: B vl vl1 =⇒ vl1 = [] ←→ vl = []
〈proof 〉

sublocale BD-Security-IO where
istate = istate and step = step and
ϕ = ϕ and f = f and γ = γ and g = g and T = T and B = B
〈proof 〉

9.1.6 Unwinding proof
definition ∆0 :: state ⇒ value list ⇒ state ⇒ value list ⇒ bool where
∆0 s vl s1 vl1 ≡
s1 = istate ∧ s = istate ∧ B vl vl1

definition ∆1 :: state ⇒ value list ⇒ state ⇒ value list ⇒ bool where
∆1 s vl s1 vl1 ≡
BO vl vl1 ∧
s1 = s ∧
validValSeqFrom vl1 s1

definition ∆2 :: state ⇒ value list ⇒ state ⇒ value list ⇒ bool where
∆2 s vl s1 vl1 ≡
BC vl vl1 ∧
eqButUID s s1 ∧ ¬open s1 ∧
validValSeqFrom vl1 s1

165

lemma validValSeq-prefix: validValSeq (vl @ vl ′) auidl =⇒ validValSeq vl auidl
〈proof 〉

lemma filter-removeAll: filter P (removeAll x xs) = removeAll x (filter P xs)
〈proof 〉

lemma step-validValSeqFrom:
assumes step: step s a = (ou, s ′)
and rs: reach s
and c: consume (Trans s a ou s ′) vl vl ′ (is consume ?trn vl vl ′)
and vVS : validValSeqFrom vl s
shows validValSeqFrom vl ′ s ′

〈proof 〉

lemma istate-∆0 :
assumes B: B vl vl1
shows ∆0 istate vl istate vl1
〈proof 〉

lemma unwind-cont-∆0 : unwind-cont ∆0 {∆1 ,∆2}
〈proof 〉

lemma unwind-cont-∆1 : unwind-cont ∆1 {∆1 ,∆2}
〈proof 〉

lemma unwind-cont-∆2 : unwind-cont ∆2 {∆2}
〈proof 〉

definition Gr where
Gr =
{
(∆0 , {∆1 ,∆2}),
(∆1 , {∆1 ,∆2}),
(∆2 , {∆2})
}

theorem secure: secure
〈proof 〉

end

end
theory Outer-Friend-Receiver-Observation-Setup

imports ../Outer-Friend
begin

166

9.2 Receiver nodes
9.2.1 Observation setup
locale OuterFriendReceiver = OuterFriend +
fixes AID ′ :: apiID — The ID of this (arbitrary, but fixed) receiver node
begin

fun γ :: (state,act,out) trans ⇒ bool where
γ (Trans - a ou -) ←→ (∃ uid. userOfA a = Some uid ∧ uid ∈ UIDs AID ′) ∨

(∃ ca. a = COMact ca ∧ ou 6= outErr)

fun sPurge :: sActt ⇒ sActt where
sPurge (sSys uid pwd) = sSys uid emptyPass

fun comPurge :: comActt ⇒ comActt where
comPurge (comSendServerReq uID p aID reqInfo) = comSendServerReq uID emp-

tyPass aID reqInfo
|comPurge (comReceiveClientReq aID reqInfo) = comReceiveClientReq aID reqInfo
|comPurge (comConnectClient uID p aID sp) = comConnectClient uID emptyPass
aID sp
|comPurge (comConnectServer aID sp) = comConnectServer aID sp
|comPurge (comReceivePost aID sp nID nt uID v) = comReceivePost aID sp nID
nt uID v
|comPurge (comSendPost uID p aID nID) = comSendPost uID emptyPass aID nID
|comPurge (comSendCreateOFriend uID p aID uID ′) = comSendCreateOFriend
uID emptyPass aID uID ′

|comPurge (comReceiveCreateOFriend aID cp uID uID ′) =
(if aID = AID ∧ uID = UID ∧ uID ′ /∈ UIDs AID ′

then comReceiveCreateOFriend aID cp uID emptyUserID
else comReceiveCreateOFriend aID cp uID uID ′)

|comPurge (comSendDeleteOFriend uID p aID uID ′) = comSendDeleteOFriend
uID emptyPass aID uID ′

|comPurge (comReceiveDeleteOFriend aID cp uID uID ′) =
(if aID = AID ∧ uID = UID ∧ uID ′ /∈ UIDs AID ′

then comReceiveCreateOFriend aID cp uID emptyUserID
else comReceiveDeleteOFriend aID cp uID uID ′)

lemma comPurge-simps:
comPurge ca = comSendServerReq uID p aID reqInfo ←→ (∃ p ′. ca = comSend-

ServerReq uID p ′ aID reqInfo ∧ p = emptyPass)
comPurge ca = comReceiveClientReq aID reqInfo ←→ ca = comReceiveClientReq

aID reqInfo

167

comPurge ca = comConnectClient uID p aID sp←→ (∃ p ′. ca = comConnectClient
uID p ′ aID sp ∧ p = emptyPass)

comPurge ca = comConnectServer aID sp ←→ ca = comConnectServer aID sp
comPurge ca = comReceivePost aID sp nID nt uID v ←→ ca = comReceivePost

aID sp nID nt uID v
comPurge ca = comSendPost uID p aID nID ←→ (∃ p ′. ca = comSendPost uID

p ′ aID nID ∧ p = emptyPass)
comPurge ca = comSendCreateOFriend uID p aID uID ′ ←→ (∃ p ′. ca = com-

SendCreateOFriend uID p ′ aID uID ′ ∧ p = emptyPass)
comPurge ca = comReceiveCreateOFriend aID cp uID uID ′

←→ (∃ uid ′′. (ca = comReceiveCreateOFriend aID cp uID uid ′′ ∨ ca = comRe-
ceiveDeleteOFriend aID cp uID uid ′′) ∧ aID = AID ∧ uID = UID ∧ uid ′′ /∈ UIDs
AID ′ ∧ uID ′ = emptyUserID)
∨ (ca = comReceiveCreateOFriend aID cp uID uID ′ ∧ ¬(aID = AID ∧ uID =

UID ∧ uID ′ /∈ UIDs AID ′))
comPurge ca = comSendDeleteOFriend uID p aID uID ′ ←→ (∃ p ′. ca = com-

SendDeleteOFriend uID p ′ aID uID ′ ∧ p = emptyPass)
comPurge ca = comReceiveDeleteOFriend aID cp uID uID ′ ←→ ca = comRe-

ceiveDeleteOFriend aID cp uID uID ′ ∧ ¬(aID = AID ∧ uID = UID ∧ uID ′ /∈
UIDs AID ′)
〈proof 〉

fun g :: (state,act,out)trans ⇒ obs where
g (Trans - (Sact sa) ou -) = (Sact (sPurge sa), ou)
|g (Trans - (COMact ca) ou -) = (COMact (comPurge ca), ou)
|g (Trans - a ou -) = (a,ou)

lemma g-simps:
g (Trans s a ou s ′) = (COMact (comSendServerReq uID p aID reqInfo), ou ′)
←→ (∃ p ′. a = COMact (comSendServerReq uID p ′ aID reqInfo) ∧ p = emptyPass
∧ ou = ou ′)

g (Trans s a ou s ′) = (COMact (comReceiveClientReq aID reqInfo), ou ′)
←→ a = COMact (comReceiveClientReq aID reqInfo) ∧ ou = ou ′

g (Trans s a ou s ′) = (COMact (comConnectClient uID p aID sp), ou ′)
←→ (∃ p ′. a = COMact (comConnectClient uID p ′ aID sp) ∧ p = emptyPass ∧
ou = ou ′)

g (Trans s a ou s ′) = (COMact (comConnectServer aID sp), ou ′)
←→ a = COMact (comConnectServer aID sp) ∧ ou = ou ′

g (Trans s a ou s ′) = (COMact (comReceivePost aID sp nID nt uID v), ou ′)
←→ a = COMact (comReceivePost aID sp nID nt uID v) ∧ ou = ou ′

g (Trans s a ou s ′) = (COMact (comSendPost uID p aID nID), ou ′)
←→ (∃ p ′. a = COMact (comSendPost uID p ′ aID nID) ∧ p = emptyPass ∧ ou =
ou ′)

g (Trans s a ou s ′) = (COMact (comSendCreateOFriend uID p aID uID ′), ou ′)
←→ (∃ p ′. a = COMact (comSendCreateOFriend uID p ′ aID uID ′) ∧ p = empty-
Pass ∧ ou = ou ′)

168

g (Trans s a ou s ′) = (COMact (comReceiveCreateOFriend aID cp uID uID ′),
ou ′)
←→ (((∃ uid ′′. (a = COMact (comReceiveCreateOFriend aID cp uID uid ′′) ∨ a =
COMact (comReceiveDeleteOFriend aID cp uID uid ′′)) ∧ aID = AID ∧ uID =
UID ∧ uid ′′ /∈ UIDs AID ′ ∧ uID ′ = emptyUserID)
∨ (a = COMact (comReceiveCreateOFriend aID cp uID uID ′) ∧ ¬(aID = AID

∧ uID = UID ∧ uID ′ /∈ UIDs AID ′)))
∧ ou = ou ′)

g (Trans s a ou s ′) = (COMact (comSendDeleteOFriend uID p aID uID ′), ou ′)
←→ (∃ p ′. a = COMact (comSendDeleteOFriend uID p ′ aID uID ′) ∧ p = empty-
Pass ∧ ou = ou ′)

g (Trans s a ou s ′) = (COMact (comReceiveDeleteOFriend aID cp uID uID ′),
ou ′)
←→ a = COMact (comReceiveDeleteOFriend aID cp uID uID ′) ∧ ¬(aID = AID
∧ uID = UID ∧ uID ′ /∈ UIDs AID ′) ∧ ou = ou ′

〈proof 〉

end

end

theory Outer-Friend-Receiver-State-Indistinguishability
imports Outer-Friend-Receiver-Observation-Setup

begin

9.2.2 Unwinding helper definitions and lemmas
context OuterFriendReceiver
begin

fun eqButUIDl :: (apiID × userID) list ⇒ (apiID × userID) list ⇒ bool where
eqButUIDl auidl auidl1 = (remove1 (AID,UID) auidl = remove1 (AID,UID)
auidl1)

lemma eqButUIDl-eq[simp,intro!]: eqButUIDl auidl auidl
〈proof 〉

lemma eqButUIDl-sym:
assumes eqButUIDl auidl auidl1
shows eqButUIDl auidl1 auidl
〈proof 〉

lemma eqButUIDl-trans:
assumes eqButUIDl auidl auidl1 and eqButUIDl auidl1 auidl2
shows eqButUIDl auidl auidl2
〈proof 〉

169

lemma eqButUIDl-remove1-cong:
assumes eqButUIDl auidl auidl1
shows eqButUIDl (remove1 auid auidl) (remove1 auid auidl1)
〈proof 〉

lemma eqButUIDl-snoc-cong:
assumes eqButUIDl auidl auidl1
and auid ′ ∈∈ auidl ←→ auid ′ ∈∈ auidl1
shows eqButUIDl (auidl ## auid ′) (auidl1 ## auid ′)
〈proof 〉

definition eqButUIDf where
eqButUIDf frds frds1 ≡
(∀ uid. if uid ∈ UIDs AID ′ then frds uid = frds1 uid else eqButUIDl (frds uid)

(frds1 uid))

lemmas eqButUIDf-intro = eqButUIDf-def [THEN meta-eq-to-obj-eq, THEN iffD2]

lemma eqButUIDf-eeq[simp,intro!]: eqButUIDf frds frds
〈proof 〉

lemma eqButUIDf-sym:
assumes eqButUIDf frds frds1 shows eqButUIDf frds1 frds
〈proof 〉

lemma eqButUIDf-trans:
assumes eqButUIDf frds frds1 and eqButUIDf frds1 frds2
shows eqButUIDf frds frds2
〈proof 〉

lemma eqButUIDf-cong:
assumes eqButUIDf frds frds1
and uid ∈ UIDs AID ′ =⇒ uu = uu1
and uid /∈ UIDs AID ′ =⇒ eqButUIDl uu uu1
shows eqButUIDf (frds (uid := uu)) (frds1 (uid := uu1))
〈proof 〉

lemma eqButUIDf-UIDs:
[[eqButUIDf frds frds1 ; uid ∈ UIDs AID ′]] =⇒ frds uid = frds1 uid
〈proof 〉

definition eqButUID :: state ⇒ state ⇒ bool where
eqButUID s s1 ≡

170

admin s = admin s1 ∧

pendingUReqs s = pendingUReqs s1 ∧ userReq s = userReq s1 ∧
userIDs s = userIDs s1 ∧ user s = user s1 ∧ pass s = pass s1 ∧

pendingFReqs s = pendingFReqs s1 ∧
friendReq s = friendReq s1 ∧
friendIDs s = friendIDs s1 ∧

postIDs s = postIDs s1 ∧ admin s = admin s1 ∧
post s = post s1 ∧ vis s = vis s1 ∧
owner s = owner s1 ∧

pendingSApiReqs s = pendingSApiReqs s1 ∧ sApiReq s = sApiReq s1 ∧
serverApiIDs s = serverApiIDs s1 ∧ serverPass s = serverPass s1 ∧
outerPostIDs s = outerPostIDs s1 ∧ outerPost s = outerPost s1 ∧ outerVis s =

outerVis s1 ∧
outerOwner s = outerOwner s1 ∧
sentOuterFriendIDs s = sentOuterFriendIDs s1 ∧
eqButUIDf (recvOuterFriendIDs s) (recvOuterFriendIDs s1) ∧

pendingCApiReqs s = pendingCApiReqs s1 ∧ cApiReq s = cApiReq s1 ∧
clientApiIDs s = clientApiIDs s1 ∧ clientPass s = clientPass s1 ∧
sharedWith s = sharedWith s1

lemmas eqButUID-intro = eqButUID-def [THEN meta-eq-to-obj-eq, THEN iffD2]

lemma eqButUID-refl[simp,intro!]: eqButUID s s
〈proof 〉

lemma eqButUID-sym[sym]:
assumes eqButUID s s1 shows eqButUID s1 s
〈proof 〉

lemma eqButUID-trans[trans]:
assumes eqButUID s s1 and eqButUID s1 s2 shows eqButUID s s2
〈proof 〉

lemma eqButUID-stateSelectors:
assumes eqButUID s s1
shows admin s = admin s1
pendingUReqs s = pendingUReqs s1 userReq s = userReq s1
userIDs s = userIDs s1 user s = user s1 pass s = pass s1
pendingFReqs s = pendingFReqs s1
friendReq s = friendReq s1
friendIDs s = friendIDs s1

postIDs s = postIDs s1

171

post s = post s1 vis s = vis s1
owner s = owner s1

pendingSApiReqs s = pendingSApiReqs s1 sApiReq s = sApiReq s1
serverApiIDs s = serverApiIDs s1 serverPass s = serverPass s1
outerPostIDs s = outerPostIDs s1 outerPost s = outerPost s1 outerVis s = outer-
Vis s1
outerOwner s = outerOwner s1
sentOuterFriendIDs s = sentOuterFriendIDs s1
eqButUIDf (recvOuterFriendIDs s) (recvOuterFriendIDs s1)

pendingCApiReqs s = pendingCApiReqs s1 cApiReq s = cApiReq s1
clientApiIDs s = clientApiIDs s1 clientPass s = clientPass s1
sharedWith s = sharedWith s1

IDsOK s = IDsOK s1
〈proof 〉

lemma eqButUID-UIDs:
eqButUID s s1 =⇒ uid ∈ UIDs AID ′ =⇒ recvOuterFriendIDs s uid = recvOuter-
FriendIDs s1 uid
〈proof 〉

lemma eqButUID-recvOuterFriends-UIDs:
assumes eqButUID s s1
and uid 6= UID ∨ aid 6= AID
shows (aid, uid) ∈∈ recvOuterFriendIDs s uid ′←→ (aid, uid) ∈∈ recvOuterFrien-
dIDs s1 uid ′

〈proof 〉

lemma eqButUID-remove1-UID-recvOuterFriends:
assumes eqButUID s s1
shows remove1 (AID,UID) (recvOuterFriendIDs s uid) = remove1 (AID,UID)
(recvOuterFriendIDs s1 uid)
〈proof 〉

lemma eqButUID-cong:∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|admin := uu1 |))

(s1 (|admin := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|pendingUReqs :=

uu1 |)) (s1 (|pendingUReqs := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|userReq := uu1 |))

(s1 (|userReq := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|userIDs := uu1 |))

(s1 (|userIDs := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|user := uu1 |)) (s1

(|user := uu2 |))

172

∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|pass := uu1 |)) (s1

(|pass := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|postIDs := uu1 |))

(s1 (|postIDs := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|owner := uu1 |))

(s1 (|owner := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|post := uu1 |)) (s1

(|post := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|vis := uu1 |)) (s1

(|vis := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|pendingFReqs :=

uu1 |)) (s1 (|pendingFReqs := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|friendReq := uu1 |))

(s1 (|friendReq := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|friendIDs := uu1 |))

(s1 (|friendIDs := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|pendingSApiReqs

:= uu1 |)) (s1 (|pendingSApiReqs := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|sApiReq := uu1 |))

(s1 (|sApiReq := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|serverApiIDs :=

uu1 |)) (s1 (|serverApiIDs := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|serverPass := uu1 |))

(s1 (|serverPass := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|outerPostIDs :=

uu1 |)) (s1 (|outerPostIDs := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|outerPost := uu1 |))

(s1 (|outerPost := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|outerVis := uu1 |))

(s1 (|outerVis := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|outerOwner :=

uu1 |)) (s1 (|outerOwner := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|sentOuterFriendIDs

:= uu1 |)) (s1 (|sentOuterFriendIDs := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ eqButUIDf uu1 uu2 =⇒ eqButUID (s (|recvOuter-

FriendIDs := uu1 |)) (s1 (|recvOuterFriendIDs := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|pendingCApiReqs

:= uu1 |)) (s1 (|pendingCApiReqs := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|cApiReq := uu1 |))

(s1 (|cApiReq := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|clientApiIDs :=

uu1 |)) (s1 (|clientApiIDs := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|clientPass := uu1 |))

(s1 (|clientPass := uu2 |))∧
uu1 uu2 . eqButUID s s1 =⇒ uu1 = uu2 =⇒ eqButUID (s (|sharedWith :=

173

uu1 |)) (s1 (|sharedWith:= uu2 |))
〈proof 〉

end

end

theory Outer-Friend-Receiver-Value-Setup
imports Outer-Friend-Receiver-State-Indistinguishability

begin

9.2.3 Value Setup
context OuterFriendReceiver
begin

fun ϕ :: (state,act,out) trans ⇒ bool where
ϕ (Trans s (COMact (comReceiveCreateOFriend aID cp uID uID ′)) ou s ′) =
(aID = AID ∧ uID = UID ∧ uID ′ /∈ UIDs AID ′ ∧ ou = outOK)
|
ϕ (Trans s (COMact (comReceiveDeleteOFriend aID cp uID uID ′)) ou s ′) =
(aID = AID ∧ uID = UID ∧ uID ′ /∈ UIDs AID ′ ∧ ou = outOK)
|
ϕ - = False

fun f :: (state,act,out) trans ⇒ value where
f (Trans s (COMact (comReceiveCreateOFriend aID cp uID uID ′)) ou s ′) = FrVal
AID ′ uID ′ True
|
f (Trans s (COMact (comReceiveDeleteOFriend aID cp uID uID ′)) ou s ′) = FrVal
AID ′ uID ′ False
|
f - = undefined

lemma recvOFriend-eqButUID:
assumes step s a = (ou, s ′)
and reach s
and a = COMact (comReceiveCreateOFriend AID cp UID uID ′) ∨ a = COMact
(comReceiveDeleteOFriend AID cp UID uID ′)
and uID ′ /∈ UIDs AID ′

shows eqButUID s s ′

〈proof 〉

lemma eqButUID-step:
assumes ss1 : eqButUID s s1
and step: step s a = (ou,s ′)

174

and step1 : step s1 a = (ou1 ,s1 ′)
and rs: reach s
and rs1 : reach s1
shows eqButUID s ′ s1 ′

〈proof 〉

lemma eqButUID-step-γ-out:
assumes ss1 : eqButUID s s1
and step: step s a = (ou,s ′) and step1 : step s1 a = (ou1 ,s1 ′)
and ϕ: ϕ (Trans s1 a ou1 s1 ′) ←→ ϕ (Trans s a ou s ′)
and γ: γ (Trans s a ou s ′)
shows ou = ou1
〈proof 〉

lemma eqButUID-step-γ:
assumes ss1 : eqButUID s s1
and step: step s a = (ou,s ′) and step1 : step s1 a = (ou1 ,s1 ′)
and ϕ: ϕ (Trans s1 a ou1 s1 ′) ←→ ϕ (Trans s a ou s ′)
shows γ (Trans s a ou s ′) = γ (Trans s1 a ou1 s1 ′)
〈proof 〉

end

end
theory Outer-Friend-Receiver

imports
Outer-Friend-Receiver-Value-Setup
Bounded-Deducibility-Security.Compositional-Reasoning

begin

9.2.4 Declassification bound
context OuterFriendReceiver
begin

fun T :: (state,act,out) trans ⇒ bool
where T trn = False

For each user uid at this receiver node AID ′, the remote friendship updates
with the fixed user UID at the issuer node AID form an alternating sequence
of friending and unfriending.
Note that actions involving remote users who are observers do not produce
secret values; instead, those actions are observable, and the property we
verify does not protect their confidentiality.
Moreover, there is no declassification trigger on the receiver side, so OVal

175

values are never produced by receiver nodes, only by the issuer node.
definition friendsOfUID :: state ⇒ userID set where

friendsOfUID s = {uid. (AID,UID) ∈∈ recvOuterFriendIDs s uid ∧ uid /∈ UIDs
AID ′}

fun validValSeq :: value list ⇒ userID set ⇒ bool where
validValSeq [] - = True
| validValSeq (FrVal aid uid True # vl) uids ←→ uid /∈ uids ∧ aid = AID ′ ∧ uid
/∈ UIDs AID ′ ∧ validValSeq vl (insert uid uids)
| validValSeq (FrVal aid uid False # vl) uids ←→ uid ∈ uids ∧ aid = AID ′ ∧ uid
/∈ UIDs AID ′ ∧ validValSeq vl (uids − {uid})
| validValSeq (OVal ov # vl) uids ←→ False

abbreviation validValSeqFrom vl s ≡ validValSeq vl (friendsOfUID s)

Observers may learn about the occurrence of remote friendship actions (by
observing network traffic), but not their content; remote friendship actions at
a receiver node AID ′ can be replaced by different actions involving different
users of that node (who are not observers) without affecting the observations.
inductive BC :: value list ⇒ value list ⇒ bool
where

BC-Nil[simp,intro]: BC [] []
| BC-FrVal[intro]:

BC vl vl1 =⇒ uid ′ /∈ UIDs AID ′ =⇒ BC (FrVal aid uid st # vl) (FrVal AID ′

uid ′ st ′ # vl1)

definition B vl vl1 ≡ BC vl vl1 ∧ validValSeqFrom vl1 istate

lemma BC-Nil-Nil: BC vl vl1 =⇒ vl1 = [] ←→ vl = []
〈proof 〉

lemma BC-id: validValSeq vl uids =⇒ BC vl vl
〈proof 〉

lemma BC-append: BC vl vl1 =⇒ BC vl ′ vl1 ′ =⇒ BC (vl @ vl ′) (vl1 @ vl1 ′)
〈proof 〉

sublocale BD-Security-IO where
istate = istate and step = step and
ϕ = ϕ and f = f and γ = γ and g = g and T = T and B = B
〈proof 〉

9.2.5 Unwinding proof
definition ∆0 :: state ⇒ value list ⇒ state ⇒ value list ⇒ bool where
∆0 s vl s1 vl1 ≡ BC vl vl1 ∧ eqButUID s s1 ∧ validValSeqFrom vl1 s1

176

lemma istate-∆0 :
assumes B: B vl vl1
shows ∆0 istate vl istate vl1
〈proof 〉

lemma friendsOfUID-cong:
assumes recvOuterFriendIDs s = recvOuterFriendIDs s ′

shows friendsOfUID s = friendsOfUID s ′

〈proof 〉

lemma friendsOfUID-step-not-UID:
assumes uid 6= UID ∨ aid 6= AID ∨ uid ′ ∈ UIDs AID ′

shows friendsOfUID (receiveCreateOFriend s aid sp uid uid ′) = friendsOfUID s
and friendsOfUID (receiveDeleteOFriend s aid sp uid uid ′) = friendsOfUID s
〈proof 〉

lemma friendsOfUID-step-Create-UID:
assumes uid ′ /∈ UIDs AID ′

shows friendsOfUID (receiveCreateOFriend s AID sp UID uid ′) = insert uid ′

(friendsOfUID s)
〈proof 〉

lemma friendsOfUID-step-Delete-UID:
assumes e-receiveDeleteOFriend s AID sp UID uid ′

and rs: reach s
shows friendsOfUID (receiveDeleteOFriend s AID sp UID uid ′) = friendsOfUID
s − {uid ′}
〈proof 〉

lemma step-validValSeqFrom:
assumes step: step s a = (ou, s ′)
and rs: reach s
and c: consume (Trans s a ou s ′) vl vl ′ (is consume ?trn vl vl ′)
and vVS : validValSeqFrom vl s
shows validValSeqFrom vl ′ s ′

〈proof 〉

lemma unwind-cont-∆0 : unwind-cont ∆0 {∆0}
〈proof 〉

definition Gr where
Gr =
{
(∆0 , {∆0})
}

177

theorem secure: secure
〈proof 〉

end

end
theory Outer-Friend-Network
imports
../API-Network
Issuer/Outer-Friend-Issuer
Receiver/Outer-Friend-Receiver
BD-Security-Compositional.Composing-Security-Network

begin

9.3 Confidentiality for the N-ary composition
locale OuterFriendNetwork = OuterFriend + Network +
assumes AID-AIDs: AID ∈ AIDs
begin

sublocale Issuer : OuterFriendIssuer UIDs AID UID 〈proof 〉

abbreviation ϕ :: apiID ⇒ (state, act, out) trans ⇒ bool
where ϕ aid trn ≡ (if aid = AID then Issuer .ϕ trn else OuterFriendReceiver .ϕ
UIDs AID UID aid trn)

abbreviation f :: apiID ⇒ (state, act, out) trans ⇒ value
where f aid trn ≡ (if aid = AID then Issuer .f trn else OuterFriendReceiver .f aid
trn)

abbreviation γ :: apiID ⇒ (state, act, out) trans ⇒ bool
where γ aid trn ≡ (if aid = AID then Issuer .γ trn else OuterFriendReceiver .γ
UIDs aid trn)

abbreviation g :: apiID ⇒ (state, act, out) trans ⇒ obs
where g aid trn ≡ (if aid = AID then Issuer .g trn else OuterFriendReceiver .g
UIDs AID UID aid trn)

abbreviation T :: apiID ⇒ (state, act, out) trans ⇒ bool
where T aid trn ≡ False

abbreviation B :: apiID ⇒ value list ⇒ value list ⇒ bool
where B aid vl vl1 ≡ (if aid = AID then Issuer .B vl vl1 else OuterFriendReceiver .B
UIDs AID UID aid vl vl1)

fun comOfV where

178

comOfV aid (FrVal aid ′ uid ′ st) = (if aid 6= AID then Recv else (if aid ′ 6= aid
then Send else Internal))
| comOfV aid (OVal ov) = Internal

fun tgtNodeOfV where
tgtNodeOfV aid (FrVal aid ′ uid ′ st) = (if aid = AID then aid ′ else AID)
| tgtNodeOfV aid (OVal ov) = AID

abbreviation syncV aid1 v1 aid2 v2 ≡ (v1 = v2)

sublocale Net: BD-Security-TS-Network-getTgtV
where istate = λ-. istate and validTrans = validTrans and srcOf = λ-. srcOf
and tgtOf = λ-. tgtOf

and nodes = AIDs and comOf = comOf and tgtNodeOf = tgtNodeOf
and sync = sync and ϕ = ϕ and f = f and γ = γ and g = g and T = T and

B = B
and comOfV = comOfV and tgtNodeOfV = tgtNodeOfV and syncV = syncV
and comOfO = comOfO and tgtNodeOfO = tgtNodeOfO and syncO = syncO
and source = AID and getTgtV = id
〈proof 〉

context
fixes AID ′ :: apiID
assumes AID ′: AID ′ ∈ AIDs − {AID}
begin

interpretation Receiver : OuterFriendReceiver UIDs AID UID AID ′ 〈proof 〉

lemma Issuer-BC-Receiver-BC :
assumes Issuer .BC vl vl1
shows Receiver .BC (Net.projectSrcV AID ′ vl) (Net.projectSrcV AID ′ vl1)
〈proof 〉

lemma Collect-setminus: Collect P − A = {u. u /∈ A ∧ P u}
〈proof 〉

lemma Issuer-vVS-Receiver-vVS :
assumes Issuer .validValSeq vl auidl
shows Receiver .validValSeq (Net.projectSrcV AID ′ vl) {uid. (AID ′,uid) ∈∈ auidl}
〈proof 〉

lemma Issuer-B-Receiver-B:
assumes Issuer .B vl vl1
shows Receiver .B (Net.projectSrcV AID ′ vl) (Net.projectSrcV AID ′ vl1)
〈proof 〉

end

179

sublocale BD-Security-TS-Network-Preserve-Source-Security-getTgtV
where istate = λ-. istate and validTrans = validTrans and srcOf = λ-. srcOf
and tgtOf = λ-. tgtOf

and nodes = AIDs and comOf = comOf and tgtNodeOf = tgtNodeOf
and sync = sync and ϕ = ϕ and f = f and γ = γ and g = g and T = T and

B = B
and comOfV = comOfV and tgtNodeOfV = tgtNodeOfV and syncV = syncV
and comOfO = comOfO and tgtNodeOfO = tgtNodeOfO and syncO = syncO
and source = AID and getTgtV = id
〈proof 〉

theorem secure: secure
〈proof 〉

end

end
theory Outer-Friend-All
imports Outer-Friend-Network
begin

end

References

[1] The Diaspora project. https://diasporafoundation.org/, 2021.

[2] T. Bauereiß, A. Pesenti Gritti, A. Popescu, and F. Raimondi. CoSMed:
A confidentiality-verified social media platform. In J. C. Blanchette and
S. Merz, editors, Interactive Theorem Proving - 7th International Con-
ference, ITP 2016, Nancy, France, August 22-25, 2016, Proceedings, vol-
ume 9807 of Lecture Notes in Computer Science, pages 87–106. Springer,
2016.

[3] T. Bauereiß, A. Pesenti Gritti, A. Popescu, and F. Raimondi. CoSMeDis:
A distributed social media platform with formally verified confidentiality
guarantees. In 2017 IEEE Symposium on Security and Privacy, SP 2017,
San Jose, CA, USA, May 22-26, 2017, pages 729–748. IEEE Computer
Society, 2017.

[4] T. Bauereiß, A. Pesenti Gritti, A. Popescu, and F. Raimondi. CoSMed:
A confidentiality-verified social media platform. J. Autom. Reason.,
61(1-4):113–139, 2018.

180

https://diasporafoundation.org/

[5] T. Bauereiss and A. Popescu. Compositional BD Security. In M. Eberl,
G. Klein, A. Lochbihler, T. Nipkow, L. Paulson, and R. Thiemann, edi-
tors, Archive of Formal Proofs, 2021.

[6] T. Bauereiss and A. Popescu. CoSMed: A confidentiality-verified so-
cial media platform. In M. Eberl, G. Klein, A. Lochbihler, T. Nipkow,
L. Paulson, and R. Thiemann, editors, Archive of Formal Proofs, 2021.

[7] A. Popescu, T. Bauereiss, and P. Lammich. Bounded-Deducibility secu-
rity (invited paper). In L. Cohen and C. Kaliszyk, editors, 12th Interna-
tional Conference on Interactive Theorem Proving, ITP 2021, June 29
to July 1, 2021, Rome, Italy (Virtual Conference), volume 193 of LIPIcs,
pages 3:1–3:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[8] A. Popescu, P. Lammich, and T. Bauereiss. Bounded-deducibility secu-
rity. In G. Klein, T. Nipkow, and L. Paulson, editors, Archive of Formal
Proofs, 2014.

181

	Introduction
	Preliminaries
	The basic types
	Identifiers

	The CoSMeDis single node specification
	The state
	The actions
	Initialization of the system
	Starting action
	Creation actions
	Deletion (removal) actions
	Updating actions
	Reading actions
	Listing actions
	Actions of communication with other APIs

	The step function
	Code generation

	The CoSMeDis network of communicating nodes
	Safety properties
	Post confidentiality
	Confidentiality for a secret issuer node
	Observation setup
	Unwinding helper lemmas and definitions
	Value setup
	Issuer declassification bound
	Unwinding proof

	Confidentiality for a secret receiver node
	Observation setup
	Unwinding helper definitions and lemmas
	Value setup
	Declassification bound
	Unwinding proof

	Confidentiality for the (binary) issuer-receiver composition
	Confidentiality for the N-ary composition
	Variation with dynamic declassification trigger
	Issuer value setup
	Issuer declassification bound
	Issuer unwinding proof
	Confidentiality for the (binary) issuer-receiver composition
	Confidentiality for the N-ary composition

	Variation with multiple independent secret posts
	Issuer observation setup
	Issuer value setup
	Issuer declassification bound
	Issuer unwinding proof
	Receiver observation setup
	Receiver value setup
	Receiver declassification bound
	Receiver unwinding proof
	Confidentiality for the N-ary composition
	Composition of confidentiality guarantees for different posts

	Friendship status confidentiality
	Observation setup
	Unwinding helper definitions and lemmas
	Dynamic declassification trigger
	Value Setup
	Declassification bound
	Unwinding proof
	Confidentiality for the N-ary composition

	Friendship request confidentiality
	Value setup
	Declassification bound
	Unwinding proof
	Confidentiality for the N-ary composition

	Remote (outer) friendship status confidentiality
	Issuer node
	Observation setup
	Unwinding helper definitions and lemmas
	Dynamic declassification trigger
	Value setup
	Declassification bound
	Unwinding proof

	Receiver nodes
	Observation setup
	Unwinding helper definitions and lemmas
	Value Setup
	Declassification bound
	Unwinding proof

	Confidentiality for the N-ary composition

