
Instances of Schneider’s generalized protocol
of clock synchronization.

Damian Barsotti

September 13, 2023

Abstract

Schneider [7] generalizes a number of protocols for Byzantine fault-
tolerant clock synchronization and presents a uniform proof for their
correctness. In Schneider’s schema, each processor maintains a lo-
cal clock by periodically adjusting each value to one computed by a
convergence function applied to the readings of all the clocks. Then,
correctness of an algorithm, i.e. that the readings of two clocks at any
time are within a fixed bound of each other, is based upon some con-
ditions on the convergence function. To prove that a particular clock
synchronization algorithm is correct it suffices to show that the con-
vergence function used by the algorithm meets Schneider’s conditions.

Using the theorem prover Isabelle, we formalize the proofs that the
convergence functions of two algorithms, namely, the Interactive Con-
vergence Algorithm (ICA) of Lamport and Melliar-Smith [4] and the
Fault-tolerant Midpoint algorithm of Lundelius-Lynch [5], meet Schnei-
der’s conditions. Furthermore, we experiment on handling some parts
of the proofs with fully automatic tools like ICS[3] and CVC-lite[2].

These theories are part of a joint work with Alwen Tiu and Leonor
P. Nieto [1]. In this work the correctness of Schneider schema was also
verified using Isabelle (available at http://isa-afp.org/entries/GenClock.
shtml).

Contents
1 Interactive Convergence Algorithms (ICA) 2

1.1 Model of the system . 2
1.1.1 Types in the formalization 2
1.1.2 Some constants . 3
1.1.3 Convergence function 3

1.2 Translation Invariance property. 3
1.3 Precision Enhancement property 4

1.3.1 Auxiliary lemmas . 4
1.3.2 Main theorem . 11

1

http://isa-afp.org/entries/GenClock.shtml
http://isa-afp.org/entries/GenClock.shtml

1.4 Accuracy Preservation property 12
1.4.1 Main theorem . 14

2 Fault-tolerant Midpoint algorithm 16
2.1 Model of the system . 16

2.1.1 Types in the formalization 16
2.1.2 Some constants . 16
2.1.3 Convergence function 17

2.2 Translation Invariance property. 17
2.2.1 Auxiliary lemmas . 17
2.2.2 Main theorem . 23

2.3 Precision Enhancement property 25
2.3.1 Auxiliary lemmas . 25
2.3.2 Main theorem . 32

2.4 Accuracy Preservation property 35

A CVC-lite and ICS proofs 36
A.1 Lemma abs_distrib_div . 36
A.2 Bound for Precision Enhancement property 37
A.3 Accuracy Preservation property 37

1 Interactive Convergence Algorithms (ICA)
theory ICAInstance imports Complex-Main begin

This algorithm is presented in [4].

A proof of the three properties can be found in [8].

1.1 Model of the system

The main ideas for the formalization of the system were obtained from [8].

1.1.1 Types in the formalization

The election of the basics types was based on [8]. There, the process are
natural numbers and the real time and the clock readings are reals.
type-synonym process = nat
type-synonym time = real — real time
type-synonym Clocktime = real — time of the clock readings (clock time)

2

1.1.2 Some constants

Here we define some parameters of the algorithm that we use: the number
of process and the fix value that is used to discard the processes whose
clocks differ more than this amount from the own one (see [8]). The defined
constants must satisfy this axiom (if np = 0 we have a division by cero in
the definition of the convergence function).
axiomatization

np :: nat — Number of processes and
∆ :: Clocktime — Fix value to discard processes where
constants-ax: 0 <= ∆ ∧ np > 0

We define also the set of process that the algorithm manage. This definition
exist only for readability matters.
definition
PR :: process set where
[simp]: PR = {..<np}

1.1.3 Convergence function

This functions is called “Egocentric Average” ([7])

In this algorithm each process has an array where it store the clocks readings
from the others processes (including itself). We formalise that as a function
from processes to clock time as [8].

First we define an auxiliary function. It takes a function of clock readings
and two processes, and return de reading of the second process if the dif-
ference of the readings is grater than ∆, otherwise it returns the reading of
the first one.
definition

fiX :: [(process ⇒ Clocktime), process, process] ⇒ Clocktime where
fiX f p l = (if |f p − f l| <= ∆ then (f l) else (f p))

And finally the convergence function. This is defined with the builtin gen-
eralized summation over a set constructor of Isabelle. Also we had to use
the overloaded real function to typecast de number np.
definition

cfni :: [process, (process ⇒ Clocktime)] ⇒ Clocktime where
cfni p f = (

∑
l∈{..<np}. fiX f p l) / (real np)

1.2 Translation Invariance property.

We first need to prove this auxiliary lemma.
lemma trans-inv ′:

3

(
∑

l∈{..<np ′}. fiX (λ y. f y + x) p l) =
(
∑

l∈{..<np ′}. fiX f p l) + real np ′ ∗ x
apply (induct-tac np ′)
apply (auto simp add: cfni-def fiX-def of-nat-Suc

distrib-right lessThan-Suc)
done

theorem trans-inv:
∀ p f x . cfni p (λ y. f y + x) = cfni p f + x
apply (auto simp add: cfni-def trans-inv ′ distrib-right

divide-inverse constants-ax)
done

1.3 Precision Enhancement property

An informal proof of this theorem can be found in [8]

1.3.1 Auxiliary lemmas
lemma finitC :

C ⊆ PR =⇒ finite C
proof−

assume C ⊆ PR
thus ?thesis using finite-subset by auto

qed

lemma finitnpC :
finite (PR − C)

proof−
show ?thesis using finite-Diff by auto

qed

The next lemmas are about arithmetic properties of the generalized sum-
mation over a set constructor.
lemma sum-abs-triangle-ineq:
finite S =⇒
|
∑

l∈S . (f :: ′a ⇒ ′b::linordered-idom) l| <= (
∑

l∈S . |f l|)
(is ... =⇒ ?P S)
by (rule sum-abs)

lemma sum-le:
[[finite S ; ∀ r∈S . f r <= b]]
=⇒
(
∑

l∈S . f l) <= real (card S) ∗ b
(is [[finite S ; ∀ r∈S . f r <= b]] =⇒ ?P S)

proof(induct S rule: finite-induct)
show ?P {} by simp

next
fix F x

4

assume finit: finite F and xnotinF : x /∈ F and
HI1 : ∀ r∈F . f r ≤ b =⇒ sum f F ≤ real (card F) ∗ b
and HI2 : ∀ r∈insert x F . f r ≤ b

from HI1 HI2 and finit and xnotinF
have sum f (insert x F) <= b + real (card F) ∗ b

by auto
also
have ... = real (Suc (card F)) ∗ b

by (simp add: distrib-right of-nat-Suc)
also
from finit xnotinF have ...= real (card (insert x F)) ∗ b

by simp
finally
show ?P (insert x F) .

qed

lemma sum-np-eq:
assumes

hC : C ⊆ PR
shows
(
∑

l∈{..<np}. f l) = (
∑

l∈C . f l) + (
∑

l∈({..<np}−C). f l)
proof−

note finitC [where C=C]
moreover
note finitnpC [where C=C]
moreover
have C ∩ ({..<np}−C) = {} by auto
moreover
from hC have C ∪ ({..<np}−C) = {..<np} by auto
ultimately
show ?thesis

using sum.union-disjoint[where A=C and B={..<np} − C]
by auto

qed

lemma abs-sum-np-ineq:
assumes

hC : C ⊆ PR
shows
|(
∑

l∈{..<np}. (f ::nat ⇒ real) l)| <=
(
∑

l∈C . |f l|) + (
∑

l∈({..<np}−C). |f l|)
(is ?abs-sum <= ?sumC + ?sumnpC)

proof−
from hC and sum-np-eq[where f=f]
have ?abs-sum = |(

∑
l∈C . f l) + (

∑
l∈({..<np}−C). f l)|

(is ?abs-sum = |?sumC ′ + ?sumnpC ′|)
by simp

also
from abs-triangle-ineq

5

have ...<= |?sumC ′| + |?sumnpC ′| .
also
have ... <= ?sumC + ?sumnpC
proof−

from hC finitC sum-abs-triangle-ineq
have |?sumC ′| <= ?sumC by blast
moreover
from finitnpC and

sum-abs-triangle-ineq[where f=f and S=PR−C]
have |?sumnpC ′| <= ?sumnpC

by force
ultimately
show ?thesis by arith

qed
finally
show ?thesis .

qed

The next lemmas are about the existence of bounds that are necesary in
order to prove the Precicion Enhancement theorem.
lemma fiX-ubound:

fiX f p l <= f p + ∆
proof(cases |f p − f l| ≤ ∆)

assume asm: |f p − f l| ≤ ∆
hence fiX f p l = f l by (simp add: fiX-def)
also
from asm have f l <= f p + ∆ by arith
finally
show ?thesis by arith

next
assume asm: ¬|f p − f l| ≤ ∆
hence fiX f p l = f p by (simp add: fiX-def)
also
from asm and constants-ax have f p <= f p + ∆ by arith
finally
show ?thesis by arith

qed

lemma fiX-lbound:
f p − ∆ <= fiX f p l

proof(cases |f p − f l| ≤ ∆)
assume asm: |f p − f l| ≤ ∆
hence fiX f p l = f l by (simp add: fiX-def)
also
from asm have f p − ∆ <= f l by arith
finally
show ?thesis by arith

next
assume asm: ¬|f p − f l| ≤ ∆

6

with constants-ax have f p − ∆ <= f p by arith
also
from asm have f p = fiX f p l by (simp add: fiX-def)
finally
show ?thesis by arith

qed

lemma abs-fiX-bound: |fiX f p l − f p | <= ∆
proof−

have f p − ∆ <= fiX f p l ∧ fiX f p l <= f p + ∆ −→ ?thesis
by arith
with fiX-lbound fiX-ubound show ?thesis by blast
qed

lemma abs-dif-fiX-bound:
assumes

hbx: ∀ l∈C . |f l − g l| <= x and
hby: ∀ l∈C . ∀ m∈C . |f l − f m| <= y and
hpC : p∈C and
hqC : q∈C

shows
|fiX f p r − fiX g q r | <= 2 ∗ ∆ + x + y

proof−
have |fiX f p r − fiX g q r | =
|fiX f p r − f p + f p − fiX g q r |
by auto

also
have ... <= |fiX f p r − f p | + |f p − fiX g q r |

by arith
also
from abs-fiX-bound
have ... <= ∆ + |f p − fiX g q r |

by simp
also
have ... = ∆ + |f p − g q + (g q − fiX g q r)|

by simp
also
from abs-triangle-ineq[where a = f p − g q and

b = g q − fiX g q r]
have ... <= ∆ + |f p − g q | + | g q − fiX g q r |

by simp
also
have ... = ∆ + |f p − g q | + | fiX g q r − g q|

by arith
also
from abs-fiX-bound
have ... <= 2 ∗ ∆ + |f p − g q |

by simp

7

also
have ... = 2 ∗ ∆ + |f p − f q + (f q − g q) |

by simp
also
from abs-triangle-ineq[where a = f p − f q and

b = f q − g q]
have ... <= 2 ∗ ∆ + |f p − f q | + | f q − g q |

by simp
finally
show ?thesis using hbx hby hpC hqC

by force
qed

lemma abs-dif-fiX-bound-C-aux1 :
assumes

hbx: ∀ l∈C . |f l − g l| <= x and
hby1 : ∀ l∈C . ∀ m∈C . |f l − f m| <= y and
hby2 : ∀ l∈C . ∀ m∈C . |g l − g m| <= y and
hpC : p∈C and
hqC : q∈C and
hrC : r∈C

shows
|fiX f p r − fiX g q r | <= x + y

proof(cases |f p − f r | ≤ ∆)
case True
note outer-IH = True
show ?thesis
proof(cases |g q − g r | ≤ ∆)

case True
show ?thesis
proof −

from hpC and hby1 have 0<=y by force
with hrC and hbx have | f r − g r | <= x + y by auto
with outer-IH and True show ?thesis

by (auto simp add: fiX-def)
qed

next
case False
show ?thesis
proof −

from outer-IH and False
have |fiX f p r − fiX g q r | = |f r − g q|

by (auto simp add: fiX-def)
also
have ... = | f r − f q + f q − g q | by simp
also
have ... <= | f r − f q | + | f q − g q |

by arith

8

also
from hbx hby1 hpC hqC hrC have ... <= x + y by force
finally
show ?thesis .

qed
qed

next
case False
note outer-IH = False
show ?thesis
proof(cases |g q − g r | ≤ ∆)

case True
show ?thesis
proof −

from outer-IH and True
have |fiX f p r − fiX g q r | = |f p − g r |

by (auto simp add: fiX-def)
also
have ... = | f p − f r + f r − g r | by simp
also
from abs-triangle-ineq[where a = f p − f r and

b = f r − g r]
have ... <= | f p − f r | + | f r − g r |

by auto
also
from hbx hby1 hpC hrC have ... <= x + y by force
finally
show ?thesis .

qed
next

case False
show ?thesis
proof −

from outer-IH and False
have |fiX f p r − fiX g q r | = |f p − g q|

by (auto simp add: fiX-def)
also
have ... = | f p − f q + f q − g q | by simp
also
from abs-triangle-ineq[where a = f p − f q and

b = f q − g q]
have ... <= | f p − f q | + | f q − g q |

by auto
also
from hbx hby1 hpC hqC have ... <= x + y by force
finally
show ?thesis .

qed
qed

9

qed

lemma abs-dif-fiX-bound-C-aux2 :
assumes

hbx: ∀ l∈C . |f l − g l| <= x and
hby1 : ∀ l∈C . ∀ m∈C . |f l − f m| <= y and
hby2 : ∀ l∈C . ∀ m∈C . |g l − g m| <= y and
hpC : p∈C and
hqC : q∈C and
hrC : r∈C

shows
y <= ∆ −→ |fiX f p r − fiX g q r | <= x

proof
assume hyd: y<=∆
show |fiX f p r − fiX g q r | <= x
proof−

from hpC and hrC and hby1 and hyd have |f p − f r | ≤ ∆
by force

moreover
from hqC and hrC and hby2 and hyd have |g q − g r | ≤ ∆

by force
moreover
from hrC and hbx have | f r − g r | <= x by auto
ultimately
show ?thesis

by (auto simp add: fiX-def)
qed

qed

lemma abs-dif-fiX-bound-C :
assumes

hbx: ∀ l∈C . |f l − g l| <= x and
hby1 : ∀ l∈C . ∀ m∈C . |f l − f m| <= y and
hby2 : ∀ l∈C . ∀ m∈C . |g l − g m| <= y and
hpC : p∈C and
hqC : q∈C and
hrC : r∈C

shows
|fiX f p r − fiX g q r | <=

x + (if (y <= ∆) then 0 else y)
proof (cases y <= ∆)

case True
with abs-dif-fiX-bound-C-aux2 and

hbx and hby1 and hby2 and hpC and hqC and hrC
have |fiX f p r − fiX g q r | <= x by blast
with True show ?thesis by simp

next
case False
with abs-dif-fiX-bound-C-aux1 and

10

hbx and hby1 and hby2 and hpC and hqC and hrC
have |fiX f p r − fiX g q r | <= x + y by blast
with False show ?thesis by simp

qed

1.3.2 Main theorem
theorem prec-enh:
assumes

hC : C ⊆ PR and
hbx: ∀ l∈C . |f l − g l| <= x and
hby1 : ∀ l∈C . ∀ m∈C . |f l − f m| <= y and
hby2 : ∀ l∈C . ∀ m∈C . |g l − g m| <= y and
hpC : p∈C and
hqC : q∈C

shows | cfni p f − cfni q g | <=
(real (card C) ∗ (x + (if (y <= ∆) then 0 else y)) +

real (card ({..<np} − C)) ∗ (2 ∗ ∆ + x + y)) / real np
(is | ?dif-div-np | <= ?B)

proof−
have |(

∑
l∈{..<np}. fiX f p l) −

(
∑

l∈{..<np}. fiX g q l)| =
|(
∑

l∈{..<np}. fiX f p l −fiX g q l)|
(is |?dif | = |?dif ′|)
by (simp add: sum-subtractf)

also
from abs-sum-np-ineq hC
have ... <=

(
∑

l∈C . |fiX f p l − fiX g q l|) +
(
∑

l∈({..<np}−C). |fiX f p l − fiX g q l|)
(is |?dif ′| <= ?boundC ′ + ?boundnpC ′)
by simp

also
have ... <=

real (card C) ∗ (x + (if (y <= ∆) then 0 else y))+
real (card ({..<np}−C)) ∗ (2 ∗ ∆ + x + y)
(is ... <= ?boundC + ?boundnpC)

proof−
have ?boundC ′ <= ?boundC
proof −

from abs-dif-fiX-bound-C and
hbx and hby1 and hby2 and hpC and hqC

have ∀ r∈C .
|fiX f p r − fiX g q r | <= x +

(if (y <= ∆) then 0 else y)
by blast

thus ?thesis using sum-le[where S=C] and finitC [OF hC]
by force

qed

11

moreover
have ?boundnpC ′ <= ?boundnpC
proof −

from abs-dif-fiX-bound and
hbx and hby1 and hpC and hqC

have ∀ r∈({..<np}−C). |fiX f p r − fiX g q r | <= 2 ∗ ∆ + x + y
by blast

with finitnpC
show ?thesis

by (auto intro: sum-le)
qed
ultimately
show ?thesis by arith

qed
finally
have bound: |?dif | <= ?boundC + ?boundnpC .
thus ?thesis
proof−

have ?dif-div-np = ?dif / real np
by (simp add: cfni-def divide-inverse algebra-simps)

hence | cfni p f − cfni q g | = |?dif | / real np
by force

with bound show ?thesis
by (auto simp add: cfni-def divide-inverse constants-ax)

qed
qed

1.4 Accuracy Preservation property

First, a simple lemma about an arithmetic propertie of the generalized sum-
mation over a set constructor.
lemma sum-div-card:
(
∑

l∈{..<n::nat}. f l) + q ∗ real n=
(
∑

l∈{..<n}. f l + q)
(is ?Sl n = ?Sr n)

proof (induct n)
case 0 thus ?case by simp
next
case (Suc n)
thus ?case

by (auto simp: of-nat-Suc distrib-left lessThan-Suc)
qed

Next, some lemmas about bounds that are used in the proof of Accuracy
Preservation
lemma bound-aux-C :
assumes

hby: ∀ l∈C . ∀ m∈C . |f l − f m| <= x and

12

hpC : p∈C and
hqC : q∈C and
hrC : r∈C

shows
|fiX f p r − f q| <= x

proof (cases | f p − f r | <= ∆)
case True
then have |fiX f p r − f q| = | f r − f q |

by (simp add: fiX-def)
also
from hby hqC hrC have ... <= x by blast
finally
show ?thesis .

next
case False
then have |fiX f p r − f q| = | f p − f q |

by (simp add: fiX-def)
also
from hby hpC hqC have ... <= x by blast
finally
show ?thesis .

qed

lemma bound-aux:
assumes

hby: ∀ l∈C . ∀ m∈C . |f l − f m| <= x and
hpC : p∈C and
hqC : q∈C

shows
|fiX f p r − f q| <= x + ∆

proof (cases | f p − f r | <= ∆)
case True
then have |fiX f p r − f q| = | f r − f q |

by (simp add: fiX-def)
also
have ... = | (f r − f p) + (f p − f q) |

by arith
also
have ... <= | f p − f r | + | f p − f q |

by arith
also
from True have ... <= ∆ + | f p − f q | by arith
also
from hby hpC hqC have ... <= ∆ + x by simp
finally
show ?thesis by simp

next
case False
then have |fiX f p r − f q| = | f p − f q |

13

by (simp add: fiX-def)
also
from hby hpC hqC have ... <= x by blast
finally
show ?thesis using constants-ax by arith

qed

1.4.1 Main theorem
lemma accur-pres:
assumes

hC : C ⊆ PR and
hby: ∀ l∈C . ∀ m∈C . |f l − f m| <= x and
hpC : p∈C and
hqC : q∈C

shows | cfni p f − f q | <=
(real (card C) ∗ x + real (card ({..<np} − C)) ∗ (x + ∆))/

real np
(is ?abs1 <= (?bC + ?bnpC)/real np)

proof−
from abs-sum-np-ineq and hC have
|
∑

l∈{..<np}. fiX f p l − f q | <=
(
∑

l∈C . | fiX f p l − f q |) +
(
∑

l∈({..<np}−C). | fiX f p l − f q |)
by simp

also
have
... <= real (card C) ∗ x +

real (card ({..<np} − C)) ∗ (x + ∆)
proof−

have (
∑

l∈C . | fiX f p l − f q |) <=
real (card C) ∗ x

proof−
from bound-aux-C and

hby and hpC and hqC
have ∀ r∈C .
|fiX f p r − f q| <= x
by blast

thus ?thesis using sum-le[where S=C] and finitC [OF hC]
by force

qed
moreover
have (

∑
l∈({..<np}−C). | fiX f p l − f q |) <=

real (card ({..<np} − C)) ∗ (x + ∆)
proof −

from bound-aux and
hby and hpC and hqC

have ∀ r∈({..<np}−C).
|fiX f p r − f q| <= x + ∆

14

by blast
thus ?thesis using sum-le[where S={..<np}−C]

and finitnpC
by force

qed
ultimately
show ?thesis by arith

qed
finally
have bound: |

∑
l∈{..<np}. fiX f p l − f q|

≤ real (card C) ∗ x + real (card ({..<np} − C)) ∗ (x + ∆)
.

thus
?thesis

proof−
from constants-ax have

res: inverse (real np) ∗ real np = 1
by auto

have
(cfni p f − f q) ∗ real np =
(
∑

l∈{..<np}. fiX f p l) ∗ real np / real np − f q ∗ real np
by (simp add: cfni-def algebra-simps)

also
have ... =
(
∑

l∈{..<np}. fiX f p l) − f q ∗ real np
by simp

also
from sum-div-card[where f=fiX f p and n=np and q=− f q]
have ... = (

∑
l∈{..<np}. fiX f p l − f q)

by simp
finally
have
(cfni p f − f q) ∗ real np = (

∑
l∈{..<np}. fiX f p l − f q)

.
— cambia

hence
(cfni p f − f q) ∗ real np / real np =
(
∑

l∈{..<np}. fiX f p l − f q)/ real np
by auto

with constants-ax have
(cfni p f − f q) =
(
∑

l∈{..<np}. fiX f p l − f q) / real np
by simp
hence | cfni p f − f q | =
|(
∑

l∈{..<np}. fiX f p l − f q) / real np |
by simp

also have
... = |(

∑
l∈{..<np}. fiX f p l − f q)| / real np

by auto

15

finally have | cfni p f − f q | =
|(
∑

l∈{..<np}. fiX f p l − f q)| / real np
.

with bound show ?thesis
by (auto simp add: cfni-def divide-inverse constants-ax)

qed
qed

end

2 Fault-tolerant Midpoint algorithm
theory LynchInstance imports Complex-Main begin

This algorithm is presented in [5].

2.1 Model of the system

The main ideas for the formalization of the system were obtained from [8].

2.1.1 Types in the formalization

The election of the basics types was based on [8]. There, the process are
natural numbers and the real time and the clock readings are reals.
type-synonym process = nat
type-synonym time = real — real time
type-synonym Clocktime = real — time of the clock readings (clock time)

2.1.2 Some constants

Here we define some parameters of the algorithm that we use: the number
of process and the number of lowest and highest readed values that the
algorithm discards. The defined constants must satisfy this axiom. If not,
the algorithm cannot obtain the maximum and minimum value, because it
will have discarded all the values.
axiomatization

np :: nat — Number of processes and
khl :: nat — Number of lowest and highest values where
constants-ax: 2 ∗ khl < np

We define also the set of process that the algorithm manage. This definition
exist only for readability matters.
definition
PR :: process set where
[simp]: PR = {..<np}

16

2.1.3 Convergence function

This functions is called “Fault-tolerant Midpoint” ([7])

In this algorithm each process has an array where it store the clocks readings
from the others processes (including itself). We formalise that as a function
from processes to clock time as [8].

First we define two functions. They take a function of clock readings and
a set of processes and they return a set of khl processes which has the
greater (smaller) clock readings. They were defined with the Hilbert’s ε-
operator (the indefinite description operator SOME in Isabelle) because
in this way the formalization is not fixed to a particular eleccion of the
processes’s readings to discards and then the modelization is more general.
definition
kmax :: (process ⇒ Clocktime) ⇒ process set ⇒ process set where
kmax f P = (SOME S . S ⊆ P ∧ card S = khl ∧

(∀ i∈S . ∀ j∈(P−S). f j <= f i))

definition
kmin :: (process ⇒ Clocktime) ⇒ process set ⇒ process set where
kmin f P = (SOME S . S ⊆ P ∧ card S = khl ∧

(∀ i∈S . ∀ j∈(P−S). f i <= f j))

With the previus functions we define a new one reduce1. This take a function
of clock readings and a set of processes and return de set of readings of the
not dicarded processes. In order to define this function we use the image
operator ((‘)) of Isabelle.
definition
reduce :: (process ⇒ Clocktime) ⇒ process set ⇒ Clocktime set where
reduce f P = f ‘ (P − (kmax f P ∪ kmin f P))

And finally the convergence function. This is defined with the builtin Max
and Min functions of Isabelle.
definition
cfnl :: process ⇒ (process ⇒ Clocktime) ⇒ Clocktime where
cfnl p f = (Max (reduce f PR) + Min (reduce f PR)) / 2

2.2 Translation Invariance property.
2.2.1 Auxiliary lemmas

These lemmas proves the existence of the maximum and minimum of the
image of a set, if the set is finite and not empty.
lemma ex-Maxf :

1The name of this function was taken from [5].

17

fixes S and f :: ′a ⇒ (′b::linorder)
assumes fin: finite S
shows S 6= {} ==> ∃m∈S . ∀ s ∈ S . f s ≤ f m

using fin
proof (induct)

case empty thus ?case by simp
next

case (insert x S)
show ?case
proof (cases)

assume S = {} thus ?thesis by simp
next

assume nonempty: S 6= {}
then obtain m where m: m∈S ∀ s∈S . f s ≤ f m

using insert by blast
show ?thesis
proof (cases)

assume f x ≤ f m thus ?thesis using m by blast
next

assume ∼ f x ≤ f m thus ?thesis using m
by(simp add:linorder-not-le order-less-le)
(blast intro: order-trans)

qed
qed

qed

lemma ex-Minf :
fixes S and f :: ′a ⇒ (′b::linorder)

assumes fin: finite S
shows S 6= {} ==> ∃m∈S . ∀ s ∈ S . f m ≤ f s

using fin
proof (induct)

case empty thus ?case by simp
next

case (insert x S)
show ?case
proof (cases)

assume S = {} thus ?thesis by simp
next

assume nonempty: S 6= {}
then obtain m where m: m∈S ∀ s∈S . f m ≤ f s

using insert by blast
show ?thesis
proof (cases)

assume f m ≤ f x thus ?thesis using m by blast
next

assume ∼ f m ≤ f x thus ?thesis using m
by(simp add:linorder-not-le order-less-le)
(blast intro: order-trans)

18

qed
qed

qed

This trivial lemma is needed by the next two.
lemma khl-bound: khl < np

using constants-ax by arith

The next two lemmas prove that de functions kmin and kmax return some
values that satisfy their definition. This is not trivial because we need to
prove the existence of these values, according to the rule of the Hilbert’s
operator. We will need this lemma many times because is the only thing
that we know about these functions.
lemma kmax-prop:
fixes f :: nat ⇒ Clocktime

shows
(kmax f PR) ⊆ PR ∧ card (kmax f PR) = khl ∧

(∀ i∈(kmax f PR). ∀ j∈PR − (kmax f PR). f j ≤ f i)
proof−

have khl <= np −→
(∃ S . S ⊆ PR ∧ card S = khl ∧ (∀ i∈S . ∀ j∈PR − S . f j ≤ f i))
(is khl <= np −→ ?P khl)

proof(induct (khl))
have ?P 0 by force
thus 0 <= np −→ ?P 0 ..

next
fix n
assume asm: n <= np −→ ?P n
show Suc n <= np −→ ?P (Suc n)
proof

assume asm2 : Suc n <= np
with asm have ?P n by simp
then obtain S where

SinPR : S⊆PR and
cardS : card S = n and
HI : (∀ i∈S . ∀ j∈PR − S . f j ≤ f i)
by blast

let ?e = SOME i. i∈PR−S ∧
(∀ j∈PR−S . f j ≤ f i)

let ?S = insert ?e S
have ∃ i. i∈PR−S ∧ (∀ j∈PR−S . f j ≤ f i)
proof−

from SinPR and finite-subset
have finite (PR−S)

by auto
moreover
from cardS and asm2 SinPR
have S⊂PR by auto
hence PR−S 6= {} by auto

19

ultimately
show ?thesis using ex-Maxf by blast

qed
hence

ePRS : ?e ∈ PR−S and maxH : (∀ j ∈ PR−S . f j ≤ f ?e)
by (auto dest!: someI-ex)

from maxH and HI
have (∀ i∈?S . ∀ j∈PR − ?S . f j ≤ f i)

by blast
moreover
from SinPR and finite-subset
cardS and ePRS
have card ?S = Suc n

by (auto dest: card-insert-disjoint)
moreover
have ?S ⊆ PR using SinPR and ePRS by auto
ultimately
show ?P (Suc n) by blast

qed
qed
hence ?P khl using khl-bound by auto
then obtain S where

S≤PR ∧ card S = khl ∧ (∀ i∈S . ∀ j∈PR − S . f j ≤ f i) ..
thus ?thesis by (unfold kmax-def)
(rule someI [where P=λS . S ⊆ PR ∧ card S = khl ∧ (∀ i∈S . ∀ j∈PR − S .

f j ≤ f i)])
qed

lemma kmin-prop:
fixes f :: nat ⇒ Clocktime

shows
(kmin f PR) ⊆ PR ∧ card (kmin f PR) = khl ∧

(∀ i∈(kmin f PR). ∀ j∈PR − (kmin f PR). f i ≤ f j)
proof−

have khl <= np −→
(∃ S . S ⊆ PR ∧ card S = khl ∧ (∀ i∈S . ∀ j∈PR − S . f i ≤ f j))
(is khl <= np −→ ?P khl)

proof(induct (khl))
have ?P 0 by force
thus 0 <= np −→ ?P 0 ..

next
fix n
assume asm: n <= np −→ ?P n
show Suc n <= np −→ ?P (Suc n)
proof

assume asm2 : Suc n <= np
with asm have ?P n by simp
then obtain S where

SinPR : S⊆PR and

20

cardS : card S = n and
HI : (∀ i∈S . ∀ j∈PR − S . f i ≤ f j)
by blast

let ?e = SOME i. i∈PR−S ∧
(∀ j∈PR−S . f i ≤ f j)

let ?S = insert ?e S
have ∃ i. i∈PR−S ∧ (∀ j∈PR−S . f i ≤ f j)
proof−

from SinPR and finite-subset
have finite (PR−S)

by auto
moreover
from cardS and asm2 SinPR
have S⊂PR by auto
hence PR−S 6= {} by auto
ultimately
show ?thesis using ex-Minf by blast

qed
hence

ePRS : ?e ∈ PR−S and minH : (∀ j ∈ PR−S . f ?e ≤ f j)
by (auto dest!: someI-ex)

from minH and HI
have (∀ i∈?S . ∀ j∈PR − ?S . f i ≤ f j)

by blast
moreover
from SinPR and finite-subset and

cardS and ePRS
have card ?S = Suc n

by (auto dest: card-insert-disjoint)
moreover
have ?S ⊆ PR using SinPR and ePRS by auto
ultimately
show ?P (Suc n) by blast

qed
qed
hence ?P khl using khl-bound by auto
then obtain S where

S≤PR ∧ card S = khl ∧ (∀ i∈S . ∀ j∈PR − S . f i ≤ f j) ..
thus ?thesis by (unfold kmin-def)
(rule someI [where P=λS . S ⊆ PR ∧ card S = khl ∧ (∀ i∈S . ∀ j∈PR − S .

f i ≤ f j)])
qed

The next two lemmas are trivial from the previous ones
lemma finite-kmax:
finite (kmax f PR)
proof−

have finite PR by auto
with kmax-prop and finite-subset show ?thesis

21

by blast
qed

lemma finite-kmin:
finite (kmin f PR)
proof−

have finite PR by auto
with kmin-prop and finite-subset show ?thesis

by blast
qed

This lemma is necesary because the definition of the convergence function
use the builtin Max and Min.
lemma reduce-not-empty:
reduce f PR 6= {}
proof−

from constants-ax have
0 < (np − 2 ∗ khl) by arith

also
{

from kmax-prop kmin-prop
have card (kmax f PR) = khl ∧ card (kmin f PR) = khl

by blast
hence card (kmax f PR ∪ kmin f PR) <= 2 ∗ khl
using card-Un-le[of kmax f PR kmin f PR] by simp

}
hence
... <= card PR − card (kmax f PR ∪ kmin f PR)
by simp

also
{

from kmax-prop and kmin-prop have
(kmax f PR ∪ kmin f PR) ⊆ PR by blast

}
hence
... = card (PR−(kmax f PR ∪ kmin f PR))
apply (intro card-Diff-subset[THEN sym])
apply (rule finite-subset)
by auto

finally
have 0 < card (PR−(kmax f PR ∪ kmin f PR)) .
hence (PR−(kmax f PR ∪ kmin f PR)) 6= {}

by (intro notI , simp only: card-0-eq, simp)
thus ?thesis

by (auto simp add: reduce-def)
qed

The next three are the main lemmas necessary for prove the Translation

22

Invariance property.
lemma reduce-shift:
fixes f :: nat ⇒ Clocktime

shows
f ‘ (PR − (kmax f PR ∪ kmin f PR)) =

f ‘ (PR − (kmax (λ p. f p + c) PR ∪ kmin (λ p. f p + c) PR))
apply (unfold kmin-def kmax-def)
by simp

lemma max-shift:
fixes f :: nat ⇒ Clocktime and S
assumes notEmpFin: S 6= {} finite S
shows
Max (f‘S) + x = Max ((λ p. f p + x) ‘ S)
proof−

from notEmpFin have f‘S 6= {} and (λ p. f p + x) ‘ S 6= {}
by auto

with notEmpFin have
Max (f‘S) ∈ f ‘ S Max ((λ p. f p + x)‘S) ∈ (λ p. f p + x) ‘ S
(∀ fs ∈ (f‘S). fs ≤ Max (f‘S))
(∀ fs ∈ ((λ p. f p + x)‘S). fs ≤ Max ((λ p. f p + x)‘S))
by auto

thus ?thesis by force
qed

lemma min-shift:
fixes f :: nat ⇒ Clocktime and S
assumes notEmpFin: S 6= {} finite S
shows
Min (f‘S) + x = Min ((λ p. f p + x) ‘ S)
proof−

from notEmpFin have f‘S 6= {} and (λ p. f p + x) ‘ S 6= {}
by auto

with notEmpFin have
Min (f‘S) ∈ f ‘ S Min ((λ p. f p + x)‘S) ∈ (λ p. f p + x) ‘ S
(∀ fs ∈ (f‘S). Min (f‘S) <= fs)
(∀ fs ∈ ((λ p. f p + x)‘S). Min ((λ p. f p + x)‘S) <= fs)
by auto

thus ?thesis by force
qed

2.2.2 Main theorem
theorem trans-inv:
fixes f :: nat ⇒ Clocktime

shows
cfnl p f + x = cfnl p (λ p. f p + x)
proof−

have cfnl p (λ p. f p + x) =

23

(Max (reduce (λ p. f p + x) PR) + Min (reduce (λ p. f p + x) PR)) / 2
by (unfold cfnl-def , simp)

also
have ... =
(Max ((λ p. f p + x) ‘

(PR − (kmax (λ p. f p + x) PR ∪ kmin (λ p. f p + x) PR))) +
Min ((λ p. f p + x) ‘

(PR − (kmax (λ p. f p + x) PR ∪ kmin (λ p. f p + x) PR)))) / 2
by (unfold reduce-def , simp)

also
have
... =
(Max (f ‘

(PR − (kmax (λ p. f p + x) PR ∪ kmin (λ p. f p + x) PR))) + x +
Min (f ‘

(PR − (kmax (λ p. f p + x) PR ∪ kmin (λ p. f p + x) PR))) + x) / 2
proof−

have finite (PR − (kmax (λ p. f p + x) PR ∪ kmin (λ p. f p + x) PR))
by auto

moreover
from reduce-not-empty have

PR − (kmax (λ p. f p + x) PR ∪ kmin (λ p. f p + x) PR) 6= {}
by (auto simp add: reduce-def)

ultimately
have

Max ((λ p. f p + x) ‘
(PR − (kmax (λ p. f p + x) PR ∪ kmin (λ p. f p + x) PR)))
=
Max (f ‘

(PR − (kmax (λ p. f p + x) PR ∪ kmin (λ p. f p + x) PR))) + x
and

Min ((λ p. f p + x) ‘
(PR − (kmax (λ p. f p + x) PR ∪ kmin (λ p. f p + x) PR)))
=
Min (f ‘

(PR − (kmax (λ p. f p + x) PR ∪ kmin (λ p. f p + x) PR))) + x
using max-shift and min-shift
by auto

thus ?thesis by auto
qed
also
from reduce-shift
have
... =
(Max (f ‘

(PR − (kmax f PR ∪ kmin f PR))) + x +
Min (f ‘

(PR − (kmax f PR ∪ kmin f PR))) + x) / 2
by auto

24

also
have ... = ((Max (reduce f PR)+ x) + (Min (reduce f PR) + x)) / 2

by (auto simp add: reduce-def)
also
have ... = (Max (reduce f PR) + Min (reduce f PR)) / 2 + x

by auto
finally
show ?thesis by (auto simp add: cfnl-def)

qed

2.3 Precision Enhancement property

An informal proof of this theorem can be found in [6]

2.3.1 Auxiliary lemmas

This first lemma is most important for prove the property. This is a conse-
cuence of the card-Un-Int lemma
lemma pigeonhole:
assumes

finitA: finite A and
Bss: B ⊆ A and Css: C ⊆ A and
cardH : card A + k <= card B + card C

shows k <= card (B ∩ C)
proof−

from Bss Css have B ∪ C ⊆ A by blast
with finitA have card (B ∪ C) <= card A

by (simp add: card-mono)
with cardH have

h: k <= card B + card C − card (B ∪ C)
by arith

from finitA Bss Css and finite-subset
have finite B ∧ finite C by auto
thus ?thesis

using card-Un-Int and h by force
qed

This lemma is a trivial consecuence of the previous one. With only this
lemma we can prove the Precision Enhancement property with the bound
π(x, y) = x+ y. But this bound not satisfy the property

π(2Λ + 2βρ, δS + 2ρ(rmax + β) + 2Λ) ≤ δS

that is used in [8] for prove the Schneider’s schema.
lemma subsets-int:
assumes

finitA: finite A and
Bss: B ⊆ A and Css: C ⊆ A and

25

cardH : card A < card B + card C
shows

B ∩ C 6= {}
proof−

from finitA Bss Css cardH
have 1 <= card (B ∩ C)

by (auto intro!: pigeonhole)
thus ?thesis by auto

qed

This lemma is true because reduce f PR is the image of PR − (kmax f PR
∪ kmin f PR) by the function f.
lemma exist-reduce:
∀ c ∈ reduce f PR. ∃ i∈ PR−(kmax f PR ∪ kmin f PR). f i = c
proof
fix c assume asm: c ∈ reduce f PR
thus ∃ i∈ PR−(kmax f PR ∪ kmin f PR). f i = c

by (auto simp add: reduce-def kmax-def kmin-def)
qed

The next three lemmas are consequence of the definition of reduce, kmax
and kmin
lemma finite-reduce:
finite (reduce f PR)
proof(unfold reduce-def)

show finite (f ‘ (PR − (kmax f PR ∪ kmin f PR)))
by auto

qed

lemma kmax-ge:
∀ i∈ (kmax f PR). ∀ r ∈ (reduce f PR). r <= f i

proof
fix i assume asm: i ∈ kmax f PR
show ∀ r∈reduce f PR. r ≤ f i
proof

fix r assume asm2 : r ∈ reduce f PR
show r ≤ f i
proof−

from asm2 and exist-reduce have
∃ j ∈ PR−(kmax f PR ∪ kmin f PR). f j = r by blast

then obtain j
where fjr :j ∈ PR−(kmax f PR ∪ kmin f PR) ∧ f j = r

by blast
hence j ∈ (PR − kmax f PR)

by blast
from this fjr asm
show ?thesis using kmax-prop

by auto
qed

26

qed
qed

lemma kmin-le:
∀ i∈ (kmin f PR). ∀ r ∈ (reduce f PR). f i <= r

proof
fix i assume asm: i ∈ kmin f PR
show ∀ r∈reduce f PR. f i ≤ r
proof

fix r assume asm2 : r ∈ reduce f PR
show f i <= r
proof−

from asm2 and exist-reduce have
∃ j∈ PR−(kmax f PR ∪ kmin f PR). f j = r by blast

then obtain j
where fjr :j ∈ PR−(kmax f PR ∪ kmin f PR) ∧ f j = r

by blast
hence j ∈ (PR − kmin f PR)

by blast
from this fjr asm
show ?thesis using kmin-prop

by auto
qed

qed
qed

The next lemma is used for prove the Precision Enhancement property. This
has been proved in ICS. The proof is in the appendix A.1. This cannot be
prove by a simple arith or auto tactic.

This lemma is true also with 0 <= c !!
lemma abs-distrib-div:

0 < (c::real) =⇒ |a / c − b / c| = |a − b| / c
proof−

assume ch: 0<c
{

fix d :: real
assume dh: 0<=d
have a ∗ d − b ∗ d = (a − b) ∗ d

by (simp add: algebra-simps)
hence |a ∗ d − b ∗ d| = |(a − b) ∗ d|

by simp
also with dh have
... = |a − b| ∗ d
by (simp add: abs-mult)

finally
have |a ∗ d − b ∗ d| = |a − b| ∗ d

.

27

}
with ch and divide-inverse show ?thesis

by (auto simp add: divide-inverse)
qed

The next three lemmas are about the existence of bounds of the values Max
(reduce f PR) and Min (reduce f PR). These are used in the proof of the
main property.
lemma uboundmax:
assumes

hC : C ⊆ PR and
hCk: np <= card C + khl

shows
∃ i∈C . Max (reduce f PR) <= f i

proof−
from reduce-not-empty and finite-reduce
have maxrinr : Max (reduce f PR) ∈ reduce f PR

by simp
with exist-reduce
have ∃ i∈ PR−(kmax f PR ∪ kmin f PR). f i = Max (reduce f PR)

by simp
then obtain pmax where

pmax-in-reduc: pmax ∈ PR−(kmax f PR ∪ kmin f PR) and
fpmax-ismax: f pmax = Max (reduce f PR) ..

hence C ∩ insert pmax (kmax f PR) 6= {}
proof−

from kmax-prop and pmax-in-reduc
and finite-kmax and hCk have
card PR < card C + card (insert pmax (kmax f PR))
by simp

moreover
from pmax-in-reduc and kmax-prop
have insert pmax (kmax f PR) ⊆ PR by blast
moreover
note hC
ultimately
show ?thesis

using subsets-int[of PR C insert pmax (kmax f PR)]
by simp

qed
hence res: ∃ i∈C . i=pmax ∨ i ∈ kmax f PR by blast
then obtain i where

iinC : i∈C and altern: i=pmax ∨ i ∈ kmax f PR ..
thus ?thesis
proof(cases i=pmax)

case True
with iinC fpmax-ismax show ?thesis by force

next

28

case False
with altern maxrinr fpmax-ismax kmax-ge
have f pmax <= f i by simp
with iinC fpmax-ismax show ?thesis by auto

qed
qed

lemma lboundmin:
assumes

hC : C ⊆ PR and
hCk: np <= card C + khl

shows
∃ i∈C . f i <= Min (reduce f PR)

proof−
from reduce-not-empty and finite-reduce
have minrinr : Min (reduce f PR) ∈ reduce f PR

by simp
with exist-reduce
have ∃ i∈ PR−(kmax f PR ∪ kmin f PR). f i = Min (reduce f PR)

by simp
then obtain pmin where

pmin-in-reduc: pmin ∈ PR−(kmax f PR ∪ kmin f PR) and
fpmin-ismin: f pmin = Min (reduce f PR) ..

hence C ∩ insert pmin (kmin f PR) 6= {}
proof−

from kmin-prop and pmin-in-reduc
and finite-kmin and hCk have
card PR < card C + card (insert pmin (kmin f PR))
by simp

moreover
from pmin-in-reduc and kmin-prop
have insert pmin (kmin f PR) ⊆ PR by blast
moreover
note hC
ultimately
show ?thesis

using subsets-int[of PR C insert pmin (kmin f PR)]
by simp

qed
hence res: ∃ i∈C . i=pmin ∨ i ∈ kmin f PR by blast
then obtain i where

iinC : i∈C and altern: i=pmin ∨ i ∈ kmin f PR ..
thus ?thesis
proof(cases i=pmin)

case True
with iinC fpmin-ismin show ?thesis by force

next
case False
with altern minrinr fpmin-ismin kmin-le

29

have f i <= f pmin by simp
with iinC fpmin-ismin show ?thesis by auto

qed
qed

lemma same-bound:
assumes

hC : C ⊆ PR and
hCk: np <= card C + khl and
hnk: 3 ∗ khl < np

shows
∃ i∈C . Min (reduce f PR) <= f i ∧ g i <= Max (reduce g PR)

proof−
have b1 : khl + 1 <= card (C ∩ (PR − kmin f PR))
proof(rule pigeonhole)

show finite PR by simp
next

show C ⊆ PR by fact
next

show PR − kmin f PR ⊆ PR by blast
next

show card PR + (khl + 1) ≤ card C + card (PR − kmin f PR)
proof−

from hnk and hCk have
np + khl < np + card C − khl by arith

also
from kmin-prop
have ... = np + card C − card (kmin f PR)

by auto
also
have ... = card C + (card PR − card (kmin f PR))
proof−

from kmin-prop have
card (kmin f PR) <= card PR
by (intro card-mono, auto)

thus ?thesis by (simp)
qed
also
from kmin-prop
have ... = card C + card (PR − kmin f PR)
proof−

from kmin-prop and finite-kmin have
card PR − card (kmin f PR) = card (PR − kmin f PR)
by (intro card-Diff-subset[THEN sym])(auto)

thus ?thesis by auto
qed
finally
show ?thesis

by (simp)

30

qed
qed

have C ∩ (PR − kmin f PR) ∩ (PR − kmax g PR) 6= {}
proof(intro subsets-int)

show finite PR by simp
next

show C ∩ (PR − kmin f PR) ⊆ PR
by blast

next
show PR − kmax g PR ⊆ PR

by blast
next

show card PR <
card (C ∩ (PR − kmin f PR)) + card (PR − kmax g PR)

proof−
from kmax-prop and finite-kmax
have card (PR − kmax g PR)= card PR − card (kmax g PR)

by (intro card-Diff-subset, auto)
with kmax-prop have

card (PR − kmax g PR) = card PR − khl by simp
with b1
show ?thesis by arith

qed
qed

hence
∃ i. i ∈ C ∧ i ∈ (PR − kmin f PR) ∧ i ∈ (PR − kmax g PR)
by blast

then obtain i where
in-C : i ∈ C and
not-in-kmin: i ∈ (PR − kmin f PR) and
not-in-kmax: i ∈ (PR − kmax g PR) by blast

have Min (reduce f PR) <= f i
proof(cases i ∈ kmax f PR)

case True
from reduce-not-empty and finite-reduce have

Min (reduce f PR) ∈ reduce f PR by auto
with True show ?thesis

using kmax-ge by blast
next

case False
with not-in-kmin
have i ∈ PR − (kmax f PR ∪ kmin f PR)

by blast
with reduce-def have f i ∈ reduce f PR

by auto
with reduce-not-empty and finite-reduce
show ?thesis by auto

31

qed
moreover
have g i <= Max (reduce g PR)
proof(cases i ∈ kmin g PR)

case True
from reduce-not-empty and finite-reduce have

Max (reduce g PR) ∈ reduce g PR by auto
with True show ?thesis

using kmin-le by blast
next

case False
with not-in-kmax
have i ∈ PR − (kmax g PR ∪ kmin g PR)

by blast
with reduce-def have g i ∈ reduce g PR

by auto
with reduce-not-empty and finite-reduce
show ?thesis by auto

qed
moreover
note in-C
ultimately
show ?thesis by blast

qed

2.3.2 Main theorem

The most part of this theorem can be proved with CVC-lite using the three
previous lemmas (appendix A.2).
theorem prec-enh:
assumes

hC : C ⊆ PR and
hCF : np − nF <= card C and
hFn: 3 ∗ nF < np and
hFk: nF = khl and
hbx: ∀ l∈C . |f l − g l| <= x and
hby1 : ∀ l∈C . ∀ m∈C . |f l − f m| <= y and
hby2 : ∀ l∈C . ∀ m∈C . |g l − g m| <= y and
hpC : p∈C and
hqC : q∈C

shows | cfnl p f − cfnl q g | <= y / 2 + x
proof−

from hCF and hFk
have hCk: np <= card C + khl by arith
from hFn and hFk
have hnk: 3 ∗ khl < np by arith
let ?maxf = Max (reduce f PR)

and ?minf = Min (reduce f PR)
and ?maxg = Max (reduce g PR)

32

and ?ming = Min (reduce g PR)
from abs-distrib-div
have |cfnl p f − cfnl q g| =
|?maxf + ?minf + − ?maxg + − ?ming| / 2
by (unfold cfnl-def) simp

moreover
have |?maxf + ?minf + − ?maxg + − ?ming| <= y + 2 ∗ x

— The rest of the property can be proved by CVC-lite (see appendix A.2)
proof (cases 0 <= ?maxf + ?minf + − ?maxg + − ?ming)

case True
hence
|?maxf + ?minf + − ?maxg + − ?ming| =

?maxf + ?minf + − ?maxg + − ?ming by arith
moreover
from uboundmax hC hCk
obtain mxf

where mxfinC : mxf∈C and
maxf : ?maxf <= f mxf by blast

moreover
from lboundmin hC hCk
obtain mng

where mnginC : mng∈C and
ming: g mng <= ?ming by blast

moreover
from same-bound hC hCk hnk
obtain mxn

where mxninC : mxn∈C and
mxnf : ?minf ≤ f mxn and
mxng: g mxn ≤ ?maxg by blast

ultimately
have
| ?maxf + ?minf + − ?maxg + − ?ming| <=
(f mxf + − g mng) + (f mxn + − g mxn) by arith

also
from mxninC hbx abs-le-D1
have
... <= (f mxf + − g mng) + x
by auto

also
have
... = (f mxf + − f mng) + (f mng + − g mng) + x
by arith

also
have ... <= y + (f mng + − g mng) + x
proof−

from mxfinC mnginC hby1 abs-le-D1
have f mxf + − f mng <= y

by auto
thus ?thesis

33

by auto
qed
also
from mnginC hbx abs-le-D1
have ... <= y + 2 ∗ x

by auto
finally
show ?thesis .

next
case False
hence
|?maxf + ?minf + − ?maxg + − ?ming| =

?maxg + ?ming + − ?maxf + − ?minf by arith
moreover
from uboundmax hC hCk
obtain mxg

where mxginC : mxg∈C and
maxg: ?maxg <= g mxg by blast

moreover
from lboundmin hC hCk
obtain mnf

where mnfinC : mnf∈C and
minf : f mnf <= ?minf by blast

moreover
from same-bound hC hCk hnk
obtain mxn

where mxninC : mxn∈C and
mxnf : ?ming ≤ g mxn and
mxng: f mxn ≤ ?maxf by blast

ultimately
have
| ?maxf + ?minf + − ?maxg + − ?ming| <=
(g mxg + − f mnf) + (g mxn + − f mxn) by arith

also
from mxninC hbx
have ... <= (g mxg + − f mnf) + x

by (auto dest!: abs-le-D2)
also
have
... = (g mxg + − g mnf) + (g mnf + − f mnf) + x
by arith

also
have ... <= y + (g mnf + − f mnf) + x
proof−

from mxginC mnfinC hby2 abs-le-D1
have g mxg + − g mnf <= y

by auto
thus ?thesis

by auto

34

qed
also
from mnfinC hbx
have ... <= y + 2 ∗ x

by (auto dest!: abs-le-D2)
finally
show ?thesis .

qed
ultimately
show ?thesis

by simp
qed

2.4 Accuracy Preservation property

No new lemmas are needed for prove this property. The bound has been
found using the lemmas uboundmax and lboundmin

This theorem can be proved with ICS and CVC-lite assuming those lemmas
(see appendix A.3).
theorem accur-pres:
assumes

hC : C ⊆ PR and
hCF : np − nF <= card C and
hFk: nF = khl and
hby: ∀ l∈C . ∀ m∈C . |f l − f m| <= y and
hqC : q∈C

shows | cfnl p f − f q | <= y
proof−

from hCF and hFk
have npleCk: np <= card C + khl by arith
show ?thesis
proof(cases f q <= cfnl p f)

case True
from npleCk hC and uboundmax
have ∃ i∈C . Max (reduce f PR) <= f i

by auto
then obtain pi where

hpiC : pi ∈ C and
fpiGeMax: Max (reduce f PR) <= f pi by blast

from reduce-not-empty
have Min (reduce f PR) <= Max (reduce f PR)

by (auto simp add: reduce-def)
with fpiGeMax have

cfnlLefpi: cfnl p f <= f pi
by (auto simp add: cfnl-def)

with True have
| cfnl p f − f q | <= | f pi − f q |
by arith

35

with hpiC and hqC and hby show ?thesis
by force

next
case False
from npleCk hC and lboundmin
have ∃ i∈C . f i <= Min (reduce f PR)

by auto
then obtain qi where

hqiC : qi ∈ C and
fqiLeMax: f qi <= Min (reduce f PR) by blast

from reduce-not-empty
have Min (reduce f PR) <= Max (reduce f PR)

by (auto simp add: reduce-def)
with fqiLeMax
have f qi <= cfnl p f

by (auto simp add: cfnl-def)
with False have
| cfnl p f − f q | <= | f qi − f q |
by arith

with hqiC and hqC and hby show ?thesis
by force

qed
qed

end

A CVC-lite and ICS proofs

A.1 Lemma abs_distrib_div

In the proof of the Fault-Tolerant Mid Point Algorithm we need to prove
this simple lemma:
lemma abs-distrib-div:

0 < (c::real) =⇒ |a / c − b / c| = |a − b| / c

It is not possible to prove this lemma in Isabelle using arith nor auto tactics.
Even if we added lemmas to the default simpset of HOL.
In the translation from Isabelle to ICS we need to change the division by a
multiplication because this tools do not accept formulas with this arithmetic
operator. Moreover, to translate the absolute value we define e constant for
each application of that function. In ICS it is proved automatically.
File abs_distrib_mult.ics:
It was not possible to find the proof in CVC-lite because the formula is not
linear. Two proofs where attempted. In the first one we use lambda abstrac-
tion to define the absolute value. The second one is the same translation
that we do in ICS.

36

File abs_distrib_mult.cvc:
File abs_distrib_mult2.cvc:

A.2 Bound for Precision Enhancement property

In order to prove Precision Enhancement for Lynch’s algorithm we need to
prove that:

have |Max (reduce f PR) + Min (reduce f PR) +
− Max (reduce g PR) + − Min (reduce g PR)| <= y + 2 ∗ x

This is the result of the whole theorem where we multiply by two both sides
of the inequality.
In order to do the proof we need to translate also the lemmas uboundmax,
lboundmin, same_bound (lemmas about the existence of some bounds), the
axiom constants_ax and the assumptions of the theorem.
We make five different translations. In each one we where increasing the
amount of eliminated quantifiers.
File bound_prec_enh4.cvc:
Note that we leave quantifiers in some assumptions.
In the next file we also try to do the proof with all quantifiers, but CVC
cannot find it.
File bound_prec_enh.cvc:
We also try to do the proof removing all quantifiers and the proof was
successful.
File bound_prec_enh7.cvc:
From this last file we make the translation also for ICS adding a constant
for each application of the absolute value. In this case ICS do not find the
proof.
File bound_prec_enh.ics:

A.3 Accuracy Preservation property

The proof of this property was successful in both tools. Even in CVC-lite
the proof was find without the need of removing the quantifiers.
File accur_pres.cvc:
File accur_pres.ics:

References

[1] D. Barsotti, L. P. Nieto, and A. Tiu. Verication of clock synchronization
algorithms: Experiments on a combination of deductive tools. In Pro-
ceedings of AVOCS 2005, volume 145 of ENTCS, pages 63–68. Elsevier

37

Science B. V., 2005. Available by WWW from http://www.cs.famaf.unc.
edu.ar/~damian/publications/clock.pdf.

[2] CVC Lite home page. http://verify.stanford.edu/CVCL/, 2006.

[3] ICS: Integrated Canonizer and Solver home page. http://ics.csl.sri.com/,
2006.

[4] L. Lamport and P. M. Melliar-Smith. Synchronizing clocks in the pres-
ence of faults. J. ACM, 32(1):52–78, 1985.

[5] J. Lundelius and N. Lynch. A new fault-tolerant algorithm for clock
synchronization. In PODC ’84: Proceedings of the third annual ACM
symposium on Principles of distributed computing, pages 75–88, New
York, NY, USA, 1984. ACM Press.

[6] P. S. Miner. Verification of fault-tolerant clock synchronization systems.
NASA Technical Paper 3349, NASA Langley Research Center, November
1993.

[7] F. B. Schneider. Understanding protocols for Byzantine clock synchro-
nization. Technical Report TR 87–859, Cornell University, Dept. of Com-
puter Science, Upson Hall, Ithaca, NY 14853, 1987.

[8] N. Shankar. Mechanical verification of a generalized protocol for byzan-
tine fault tolerant clock synchronization. In J. Vytopil, editor, Formal
Techniques in Real-Time and Fault-Tolerant Systems, volume 571 of Lec-
ture Notes in Computer Science, pages 217–236, Nijmegen, The Nether-
lands, jan 1992. Springer-Verlag.

38

http://www.cs.famaf.unc.edu.ar/~damian/publications/clock.pdf
http://www.cs.famaf.unc.edu.ar/~damian/publications/clock.pdf
http://verify.stanford.edu/CVCL/
http://ics.csl.sri.com/

	Interactive Convergence Algorithms (ICA)
	Model of the system
	Types in the formalization
	Some constants
	Convergence function

	Translation Invariance property.
	Precision Enhancement property
	Auxiliary lemmas
	Main theorem

	Accuracy Preservation property
	Main theorem

	Fault-tolerant Midpoint algorithm
	Model of the system
	Types in the formalization
	Some constants
	Convergence function

	Translation Invariance property.
	Auxiliary lemmas
	Main theorem

	Precision Enhancement property
	Auxiliary lemmas
	Main theorem

	Accuracy Preservation property

	CVC-lite and ICS proofs
	Lemma abs_distrib_div
	Bound for Precision Enhancement property
	Accuracy Preservation property

