Intersecting Chords Theorem

Lukas Bulwahn

October 27, 2022

Abstract

This entry provides a geometric proof of the intersecting chords theorem. The theorem states that when two chords intersect each other inside a circle, the products of their segments are equal.

After a short review of existing proofs in the literature [1, 3–5], I decided to use a proof approach that employs reasoning about lengths of line segments, the orthogonality of two lines and Pythagoras Law. Hence, one can understand the formalized proof easily with the knowledge of a few general geometric facts that are commonly taught in high-school.

This theorem is the 55th theorem of the Top 100 Theorems list.

Contents

1 Introduction .. 1
 1.1 Informal Proof Sketch ... 2

2 Intersecting Chord Theorem 3
 2.1 Preliminaries ... 3
 2.2 Properties of Chord Segments 5

1 Introduction

The intersecting chords theorem states:

When two chords intersect each other inside a circle, the products of their segments are equal.

To prove this theorem in Isabelle, I reviewed existing formalizations in theorem provers and proofs in the literature [1, 3–5]. At the time of this AFP submission, the formalization of geometry in Isabelle is limited to only a few concepts and theorems. Hence, I selected to formalize the proof approach that fitted best to the already existing geometry formalizations.

The proof in HOL Light [3] simply unfolds the involved geometric predicates and then proves the theorem using only algebraic computations on
real numbers. By a quick and shallow inspection of the proof script without executing the proof script step by step in HOL Light, I could not understand the proof script well enough to re-write the proof in Isabelle. As running the script in HOL Light seemed too involved to me, I ignored HOL Light’s proof approach and considered the other approaches in the literature.

The first proof approach [5] that I found in the literature employs similarity of triangles, the inscribed angle theorem, and basic reasoning with angles. The intersecting chords theorem only consists of two reasoning steps after stating the geometric observations about angles. However, the proof requires to formalize the concept of similarity of triangles, extend the existing formalization of angles, and prove the inscribed angle theorem. So, I abandoned this proof approach and considered the second proof approach.

The second proof approach [5] needs only basic geometric reasoning about lengths of line segments, the orthogonality of two lines and Pythagoras Law. More specifically, one must prove that the line that goes through the apex and the midpoint of the base in an isosceles triangle is orthogonal to the base. This is easily derived from the property of an isosceles triangle using the congruence properties of triangles, which is already formalized in AFP’s Triangle entry [2]. Furthermore, Pythagoras Law is a special case of the Law of Cosines, which is already formalized in AFP’s Triangle entry.

Ultimately, I decided to use this second proof approach, which I sketch in more detail in the next subsection.

1.1 Informal Proof Sketch

The proof of the intersecting chords theorem relies on the following observation which is depicted in Figure 1.
Instead of considering two arbitrary chords intersecting, consider one arbitrary chord with endpoints S and T on a circle with center C and one arbitrary point X on the chord ST. This point X on the chord creates two line segments on this chord, the left part SX, and the right part XT. Without loss of generality, we can assume that SX is longer that XT, as shown in Figure 1.

The key lemma for the intersecting chords theorem provides a closed expression for the length of these two line segment using the distances of the chord endpoints and the point to the center C, i.e., the lemma states:

$$SX \cdot XT = SC^2 - XC^2.$$

To prove this fact, we consider the midpoint M of the chord ST. First, as M is the midpoint, SM and TM are equal. Second, we observe that the lengths of the line segments SX and XT are:

$$SX = SM + MX \quad \text{and} \quad XT = TM - MX = SM - MX.$$

Third, the Pythagoras law for the triangles SMC and XMC states:

$$SM^2 + MC^2 = SC^2 \quad \text{and} \quad XM^2 + MC^2 = XC^2.$$

Finally, the product can be expressed as:

$$SX \cdot XT = (SM + MX) \cdot (TM - MX) = SM^2 - MX^2 = (SC^2 - MC^2) - (XC^2 - MC^2) = SC^2 - XC^2.$$

The intersecting chord theorem now follows directly from this lemma: as the distances SC and XC for two arbitrary chords intersecting at X are equal, also the products of the chord segments are equal.

2 Intersecting Chord Theorem

theory Chord-Segments
imports Triangle.Triangle
begin

2.1 Preliminaries

lemma betweenE-if-dist-leq:
 fixes $A B X :: 'a::euclidean-space$
 assumes between $(A, B) X$
 assumes $\text{dist} \ A \ X \leq \text{dist} \ B \ X$
 obtains u where $1 / 2 \leq u \leq 1$ and $X = u \ast_R A + (1 - u) \ast_R B$
proof (cases $A = B$)
 assume $A \neq B$
 from $\langle \text{between} \ (A, B) X \rangle$ obtain u where $u \geq 0 \ u \leq 1$ and $X: X = u \ast_R A + (1 - u) \ast_R B$

by (metis add.commute betweenE between-commute)
from \(X\) have \(X = B + u \cdot_R (A - B)\) and \(X = A + (u - 1) \cdot_R (A - B)\)
 by (simp add: scaleR-diff-left real-vector.scale-right-diff-distrib+)
from \(\langle X = B + u \cdot_R (A - B) \rangle\) have \(\text{dist-B: dist } B X = \text{norm } (u \cdot_R (A - B))\)
 by (auto simp add: dist-norm)
from \(\langle X = A + (u - 1) \cdot_R (A - B) \rangle\) have \(\text{dist-A: dist } A X = \text{norm } ((u - 1) \cdot_R (A - B))\)
 by (auto simp add: dist-norm)
from \(\langle A \neq B \rangle\) have \(\text{norm } (A - B) > 0\) by auto
from this \(\langle \text{dist } A X \leq \text{dist } B X \rangle\) have \(u \geq 1 / 2\)
 using dist-A dist-B by simp
from this \(\langle u \leq 1 \rangle\) \(X\) that show thesis by blast
next
assume \(A = B\)
define \(u::\text{real}\) where \(u = 1\)
from \(\langle \text{between } (A, B) X \rangle\) \(\langle A = B \rangle\) have \(1 / 2 \leq u u \leq 1\)
 \(X = u \cdot_R A + (1 - u) \cdot_R B\)
 unfolding \(u\)-def by auto
 with that show thesis by blast
qed

lemma \(\text{dist-geq-iff-midpoint-in-between:}\)
 fixes \(A X::\text{'}a::\text{euclidean-space}\)
 assumes \(\langle \text{between } (A, B) X \rangle\)
 shows \(\text{dist } A X \leq \text{dist } B X \iff \text{between } (X, B) (\text{midpoint } A B)\)
proof
assume \(\text{dist } A X \leq \text{dist } B X\)
from \(\langle \text{between } (A, B) X \rangle\) this obtain \(u\)
 where \(u::\text{real}\) where \(u = 1\)
 and \(X = u \cdot_R A + (1 - u) \cdot_R B\)
 unfolding \(\text{midpoint-def}\) by (simp add: scaleR-add-right)
from \(\langle 1 / 2 \leq u \rangle\) have \(1::\text{real}\) \(\text{between } (1 / (2 * u)) \cdot_R X + (1 - (1 / (2 * u))) \cdot_R B\)
proof
 have \((2 - u * 2) / (2 * u) = 1 / u - 1 / u\)
 using \(u(1)\) by (simp add: diff-divide-distrib)
 also have \(\ldots = 1 / u - 1\) using \(u(1)\) by auto
 finally have \((2 - u * 2) / (2 * u) = 1 / u - 1\)
from \(\langle 1 / 2 \leq u \rangle\) this show ?thesis
 using \(X M\) by (simp add: scaleR-add-right scaleR-add-left[symmetric])
qed
moreover from \(u\) have \(2::\text{real}\) \(\geq 0\)
 \(\text{between } (X, B) (\text{midpoint } A B)\)
ultimately show \(\langle \text{between } (X, B) (\text{midpoint } A B) \rangle\)
 by (metis add.commute between-commate)
next
assume \(\text{between } (X, B) (\text{midpoint } A B)\)
then have \(\langle \text{between } (A, \text{midpoint } A B) X \rangle\)
 using \(\langle \text{between } (A, B) X \rangle\) between-midpoint(1) between-swapp by blast

then have \(\text{dist} A X \leq \text{dist} A (\text{midpoint} A B) \)
 using between zero-le-dist by force
also have \(\text{dist} A (\text{midpoint} A B) \leq \text{dist} B (\text{midpoint} A B) \)
 by (simp add: dist-midpoint)
also from \(\langle \text{between} (X, B) (\text{midpoint} A B) \rangle \)
 have \(\text{dist} B (\text{midpoint} A B) \leq \text{dist} B X \)
 using between zero-le-dist by (metis add.commute dist-commute le-add-same-cancel1)
finally show \(\text{dist} A X \leq \text{dist} B X \).
qed

2.2 Properties of Chord Segments

lemma chord-property:
 fixes \(S \), \(C \) :: 'a :: euclidean-space
 assumes \(\text{dist} C S = \text{dist} C T \)
 assumes \(\text{between} (S, T) X \)
 shows \(\text{dist} S X \cdot \text{dist} X T = (\text{dist} C S)^2 - (\text{dist} C X)^2 \)
proof
 define \(M \) where \(M = \text{midpoint} S T \)
 have \(\text{between} (S, T) M \)
 unfolding M-def by (simp add: between-midpoint(1))
 have \(\text{dist} T M = \text{dist} S M \)
 unfolding M-def by (simp add: dist-midpoint)
 have distances:
 \(\max (\text{dist} S X) (\text{dist} X T) = (\text{dist} S M) + (\text{dist} X M) \)
 \(\min (\text{dist} S X) (\text{dist} X T) = (\text{dist} S M) - (\text{dist} X M) \)
proof cases
assume \(\text{dist} S X \leq \text{dist} X T \)
then have \(\text{between} (X, T) M \)
 using \(\langle \text{between} (S, T) X \rangle \cdot \text{M-def} \)
 by (simp add: dist-geq-iff-midpoint-in-between dist-commute)
then have \(\text{between} (S, M) X \)
 using \(\langle \text{between} (S, T) X \rangle \langle \text{between} (S, T) M \rangle \cdot \text{between-swap by blast} \)
from \(\langle \text{between} (X, T) M \rangle \)
 have \(\text{dist} X T = \text{dist} X M + \text{dist} M T \)
 using between by auto
moreover from \(\langle \text{between} (S, M) X \rangle \)
 have \(\text{dist} S X = \text{dist} S M - \text{dist} M X \)
 using between-dist-commute by force
ultimately show \(\text{thesis} \)
 using \(\langle \text{dist} S X \leq \text{dist} X T \rangle \langle \text{dist} T M = \text{dist} S M \rangle \)
 by (simp add: add.commute dist-commute max-def min-def)

next
assume \(\lnot (\text{dist} S X \leq \text{dist} X T) \)
then have \(\text{dist} T X \leq \text{dist} S X \) by (simp add: dist-commute)
then have \(\text{between} (S, X) M \)
 using \(\langle \text{between} (S, T) X \rangle \cdot \text{M-def} \)
 by (simp add: dist-geq-iff-midpoint-in-between midpoint-sym dist-commute)
then have \(\text{between} (T, M) X \)
 using \(\langle \text{between} (S, T) X \rangle \langle \text{between} (S, T) M \rangle \cdot \text{between-swap between-commute} \)
by metis
from ⟨between (S, X) M⟩ have dist S X = dist S M + dist M X
 using between by auto
moreover from ⟨between (T, M) X⟩ have dist T X = dist T M − dist M X
 using between dist-commute by force
ultimately show thesis
 using ¬dist S X ≤ dist X T, ⟨dist T M = dist S M⟩ by (metis dist-commute max-def min-def)
qed

have orthogonal (C − M) (S − M)
 using ⟨dist C S = dist C T⟩ M-def
by (auto simp add: isosceles-triangle-orthogonal-on-midpoint)
have orthogonal (C − M) (X − M)
proof −
 have between (S, T) M
 using M-def between-midpoint(1) by blast
 obtain c where (X − M) = c *R (S − M)
proof (cases S = M)
 assume S ≠ M
 then obtain c where (X − M) = c *R (S − M)
 using between-implies-scaled-diff [OF ⟨between (S, T) X, ⟨between (S, T) M⟩⟩]
by metis
from this that show thesis by blast
next
 assume S = M
from this ⟨between (S, T) X⟩ have X = M
 by (simp add: midpoint-between M-def)
from ⟨X = M, ⟨S = M⟩, have (X − M) = 0 *R (S − M)⟩ by simp
from this that show thesis by blast
qed
from this ⟨orthogonal (C − M) (S − M)⟩ show thesis
 by (auto intro: orthogonal-clauses(2))
qed
from ⟨orthogonal (C − M) (S − M)⟩, ⟨orthogonal (C − M) (X − M)⟩ have
 (dist S M) 2 + (dist M C) 2 = (dist C S) 2
 (dist X M) 2 + (dist M C) 2 = (dist C X) 2
by (auto simp only: Pythagoras)
then have geometric-observation:
 (dist S M) 2 = (dist C S) 2 − (dist M C) 2
 (dist X M) 2 = (dist C X) 2 − (dist M C) 2
by auto

have dist S X * dist X T = max (dist S X) (dist X T) * min (dist S X) (dist X T)
 by (auto split: split-max)
also have . . . = (dist S M + (dist X M)) * ((dist S M) − (dist X M))
 using distances by simp
also have . . . = (dist S M) 2 − (dist X M) 2
 by (simp add: field-simps power2-eq-square)
also have \(\ldots = ((dist C S)^2 - (dist M C)^2) - (dist C X)^2 - (dist M C)^2 \)
using geometric-observation by simp
also have \(\ldots = (dist C S)^2 - (dist C X)^2 \) by simp
finally show \(?thesis\).

qed

theorem product-of-chord-segments:
fixes \(S_1 \ T_1 \ S_2 \ T_2 \ X \ C :: \text{euclidean-space} \)
assumes between \((S_1, \ T_1) \ X \) between \((S_2, \ T_2) \ X \)
assumes \(dist C S_1 = r \ dist C T_1 = r \)
assumes \(dist C S_2 = r \ dist C T_2 = r \)
shows \(dist S_1 X \ast dist X T_1 = dist S_2 X \ast dist X T_2 \)

proof –
from \(\langle dist C S_1 = r \rangle \langle dist C T_1 = r \rangle \langle between (S_1, \ T_1) \ X \rangle \)
have \(dist S_1 X \ast dist X T_1 = r \ast 2 - (dist C X)^2 \)
by (subst chord-property) auto
also from \(\langle dist C S_2 = r \rangle \langle dist C T_2 = r \rangle \langle between (S_2, \ T_2) \ X \rangle \)
have \(\ldots = dist S_2 X \ast dist X T_2 \)
by (subst chord-property) auto
finally show \(?thesis\).

qed

end

References

