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Abstract
This entry provides a geometric proof of the intersecting chords

theorem. The theorem states that when two chords intersect each
other inside a circle, the products of their segments are equal.

After a short review of existing proofs in the literature [1, 3–5], I
decided to use a proof approach that employs reasoning about lengths
of line segments, the orthogonality of two lines and Pythagoras Law.
Hence, one can understand the formalized proof easily with the knowl-
edge of a few general geometric facts that are commonly taught in
high-school.

This theorem is the 55th theorem of the Top 100 Theorems list.
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1 Introduction
The intersecting chords theorem states:

When two chords intersect each other inside a circle, the products
of their segments are equal.

To prove this theorem in Isabelle, I reviewed existing formalizations in the-
orem provers and proofs in the literature [1, 3–5]. At the time of this AFP
submission, the formalization of geometry in Isabelle is limited to only a few
concepts and theorems. Hence, I selected to formalize the proof approach
that fitted best to the already existing geometry formalizations.

The proof in HOL Light [3] simply unfolds the involved geometric pred-
icates and then proves the theorem using only algebraic computations on
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real numbers. By a quick and shallow inspection of the proof script without
executing the proof script step by step in HOL Light, I could not understand
the proof script well enough to re-write the proof in Isabelle. As running
the script in HOL Light seemed too involved to me, I ignored HOL Light’s
proof approach and considered the other approaches in the literature.

The first proof approach [5] that I found in the literature employs sim-
ilarity of triangles, the inscribed angle theorem, and basic reasoning with
angles. The intersecting chords theorem only consists of two reasoning steps
after stating the geometric observations about angles. However, the proof
requires to formalize the concept of similarity of triangles, extend the ex-
isting formalization of angles, and prove the inscribed angle theorem. So, I
abandoned this proof approach and considered the second proof approach.

The second proof approach [5] needs only basic geometric reasoning
about lengths of line segments, the orthogonality of two lines and Pythago-
ras Law. More specifically, one must prove that the line that goes through
the apex and the midpoint of the base in an isosceles triangle is orthogonal
to the base. This is easily derived from the property of an isosceles triangle
using the congruence properties of triangles, which is already formalized in
AFP’s Triangle entry [2]. Furthermore, Pythagoras Law is a special case of
the Law of Cosines, which is already formalized in AFP’s Triangle entry.

Ultimately, I decided to use this second proof approach, which I sketch
in more detail in the next subsection.

1.1 Informal Proof Sketch

The proof of the intersecting chords theorem relies on the following obser-
vation which is depicted in Figure 1.
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Instead of considering two arbitrary chords intersecting, consider one
arbitrary chord with endpoints S and T on a circle with center C and one
arbitrary point X on the chord ST . This point X on the chord creates
two line segments on this chord, the left part SX, and the right part XT .
Without loss of generality, we can assume that SX is longer that XT , as
shown in Figure 1.

The key lemma for the intersecting chords theorem provides a closed
expression for the length of these two line segment using the distances of
the chord endpoints and the point to the center C, i.e., the lemma states:

SX ·XT = SC
2 −XC

2.

To prove this fact, we consider the midpoint M of the chord ST . First, as
M is the midpoint, SM and TM are equal. Second, we observe that the
lengths of the line segments SX and XT are:

SX = SM +MX and XT = TM −MX = SM −MX.

Third, the Pythagoras law for the triangles SMC and XMC states:

SM
2
+MC

2
= SC

2 and XM
2
+MC

2
= XC

2.

Finally, the product can be expressed as:

SX · XT = (SM + MX) · (TM − MX) = SM
2 − MX

2
=

(SC
2 −MC

2
)− (XC

2 −MC
2
) = SC

2 −XC
2.

The intersecting chord theorem now follows directly from this lemma: as
the distances SC and XC for two arbitrary chords intersecting at X are
equal, also the products of the chord segments are equal.

2 Intersecting Chord Theorem
theory Chord-Segments
imports Triangle.Triangle
begin

2.1 Preliminaries
lemma betweenE-if-dist-leq:

fixes A B X :: ′a::euclidean-space
assumes between (A, B) X
assumes dist A X ≤ dist B X
obtains u where 1 / 2 ≤ u u ≤ 1 and X = u ∗R A + (1 − u) ∗R B

proof (cases A = B)
assume A 6= B
from ‹between (A, B) X› obtain u where u: u ≥ 0 u ≤ 1 and X : X = u ∗R

A + (1 − u) ∗R B

3



by (metis add.commute betweenE between-commute)
from X have X = B + u ∗R (A − B) and X = A + (u − 1 ) ∗R (A − B)

by (simp add: scaleR-diff-left real-vector .scale-right-diff-distrib)+
from ‹X = B + u ∗R (A − B)› have dist-B: dist B X = norm (u ∗R (A − B))

by (auto simp add: dist-norm)
from ‹X = A + (u − 1 ) ∗R (A − B)› have dist-A: dist A X = norm ((u − 1 )
∗R (A − B))

by (auto simp add: dist-norm)
from ‹A 6= B› have norm (A − B) > 0 by auto
from this ‹dist A X ≤ dist B X› have u ≥ 1 / 2

using dist-A dist-B by simp
from this ‹u ≤ 1 › X that show thesis by blast

next
assume A = B
define u :: real where u = 1
from ‹between (A, B) X› ‹A = B› have 1 / 2 ≤ u u ≤ 1 X = u ∗R A + (1 −

u) ∗R B
unfolding u-def by auto

with that show thesis by blast
qed

lemma dist-geq-iff-midpoint-in-between:
fixes A B X :: ′a::euclidean-space
assumes between (A, B) X
shows dist A X ≤ dist B X ←→ between (X , B) (midpoint A B)

proof
assume dist A X ≤ dist B X
from ‹between (A, B) X› this obtain u

where u: 1 / 2 ≤ u u ≤ 1 and X : X = u ∗R A + (1 − u) ∗R B
using betweenE-if-dist-leq by blast

have M : midpoint A B = (1 / 2 ) ∗R A + (1 / 2 ) ∗R B
unfolding midpoint-def by (simp add: scaleR-add-right)

from ‹1 / 2 ≤ u› have 1 : midpoint A B = (1 / (2 ∗ u)) ∗R X + (1 − (1 / (2
∗ u))) ∗R B

proof −
have (2 − u ∗ 2 ) / (2 ∗ u) = 1 / u − u / u

using u(1 ) by (simp add: diff-divide-distrib)
also have . . . = 1 / u − 1 using u(1 ) by auto
finally have (2 − u ∗ 2 ) / (2 ∗ u) = 1 / u − 1 .
from ‹1 / 2 ≤ u› this show ?thesis

using X M by (simp add: scaleR-add-right scaleR-add-left[symmetric])
qed
moreover from u have 2 : (1 / (2 ∗ u)) ≥ 0 (1 / (2 ∗ u)) ≤ 1 by auto
ultimately show between (X , B) (midpoint A B)

using betweenI [of concl: B X ] by (metis add.commute between-commute)
next

assume between (X , B) (midpoint A B)
then have between (A, midpoint A B) X

using ‹between (A, B) X› between-midpoint(1 ) between-swap by blast
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then have dist A X ≤ dist A (midpoint A B)
using between zero-le-dist by force

also have dist A (midpoint A B) ≤ dist B (midpoint A B)
by (simp add: dist-midpoint)

also from ‹between (X , B) (midpoint A B)› have dist B (midpoint A B) ≤ dist
B X

using between zero-le-dist by (metis add.commute dist-commute le-add-same-cancel1 )
finally show dist A X ≤ dist B X .

qed

2.2 Properties of Chord Segments
lemma chord-property:

fixes S C :: ′a :: euclidean-space
assumes dist C S = dist C T
assumes between (S , T ) X
shows dist S X ∗ dist X T = (dist C S) ^ 2 − (dist C X) ^ 2

proof −
define M where M = midpoint S T
have between (S , T ) M

unfolding M-def by (simp add: between-midpoint(1 ))
have dist T M = dist S M

unfolding M-def by (simp add: dist-midpoint)

have distances: max (dist S X) (dist X T ) = (dist S M ) + (dist X M ) ∧
min (dist S X) (dist X T ) = (dist S M ) − (dist X M )

proof cases
assume dist S X ≤ dist X T
then have between (X , T ) M

using ‹between (S , T ) X› M-def
by (simp add: dist-geq-iff-midpoint-in-between dist-commute)

then have between (S , M ) X
using ‹between (S , T ) X› ‹between (S , T ) M › between-swap by blast

from ‹between (X , T ) M › have dist X T = dist X M + dist M T
using between by auto

moreover from ‹between (S , M ) X› have dist S X = dist S M − dist M X
using between dist-commute by force

ultimately show ?thesis
using ‹dist S X ≤ dist X T › ‹dist T M = dist S M ›
by (simp add: add.commute dist-commute max-def min-def )

next
assume ¬ (dist S X ≤ dist X T )
then have dist T X ≤ dist S X by (simp add: dist-commute)
then have between (S , X) M

using ‹between (S , T ) X› M-def
by (simp add: dist-geq-iff-midpoint-in-between midpoint-sym between-commute)
then have between (T , M ) X
using ‹between (S , T ) X› ‹between (S , T ) M › between-swap between-commute

by metis
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from ‹between (S , X) M › have dist S X = dist S M + dist M X
using between by auto

moreover from ‹between (T , M ) X› have dist T X = dist T M − dist M X
using between dist-commute by force

ultimately show ?thesis
using ‹¬ dist S X ≤ dist X T › ‹dist T M = dist S M ›
by (metis dist-commute max-def min-def )

qed

have orthogonal (C − M ) (S − M )
using ‹dist C S = dist C T › M-def
by (auto simp add: isosceles-triangle-orthogonal-on-midpoint)

have orthogonal (C − M ) (X − M )
proof −

have between (S , T ) M
using M-def between-midpoint(1 ) by blast

obtain c where (X − M ) = c ∗R (S − M )
proof (cases S = M )

assume S 6= M
then obtain c where (X − M ) = c ∗R (S − M )

using between-implies-scaled-diff [OF ‹between (S , T ) X› ‹between (S , T )
M ›] by metis

from this that show thesis by blast
next

assume S = M
from this ‹between (S , T ) X› have X = M

by (simp add: midpoint-between M-def )
from ‹X = M › ‹S = M › have (X − M ) = 0 ∗R (S − M ) by simp
from this that show thesis by blast

qed
from this ‹orthogonal (C − M ) (S − M )› show ?thesis

by (auto intro: orthogonal-clauses(2 ))
qed
from ‹orthogonal (C − M ) (S − M )› ‹orthogonal (C − M ) (X − M )› have
(dist S M ) ^ 2 + (dist M C ) ^ 2 = (dist C S) ^ 2
(dist X M ) ^ 2 + (dist M C ) ^ 2 = (dist C X) ^ 2
by (auto simp only: Pythagoras)

then have geometric-observation:
(dist S M ) ^ 2 = (dist C S) ^ 2 − (dist M C ) ^ 2
(dist X M ) ^ 2 = (dist C X) ^ 2 − (dist M C ) ^ 2
by auto

have dist S X ∗ dist X T = max (dist S X) (dist X T ) ∗ min (dist S X) (dist X
T )

by (auto split: split-max)
also have . . . = ((dist S M ) + (dist X M )) ∗ ((dist S M ) − (dist X M ))

using distances by simp
also have . . . = (dist S M ) ^ 2 − (dist X M ) ^ 2

by (simp add: field-simps power2-eq-square)
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also have . . . = ((dist C S) ^ 2 − (dist M C ) ^ 2 ) − ((dist C X) ^ 2 − (dist
M C ) ^ 2 )

using geometric-observation by simp
also have . . . = (dist C S) ^ 2 − (dist C X) ^ 2 by simp
finally show ?thesis .

qed

theorem product-of-chord-segments:
fixes S1 T1 S2 T2 X C :: ′a :: euclidean-space
assumes between (S1, T1) X between (S2, T2) X
assumes dist C S1 = r dist C T1 = r
assumes dist C S2 = r dist C T2 = r
shows dist S1 X ∗ dist X T1 = dist S2 X ∗ dist X T2

proof −
from ‹dist C S1 = r› ‹dist C T1 = r› ‹between (S1, T1) X›
have dist S1 X ∗ dist X T1 = r ^ 2 − (dist C X) ^ 2

by (subst chord-property) auto
also from ‹dist C S2 = r› ‹dist C T2 = r› ‹between (S2, T2) X›
have . . . = dist S2 X ∗ dist X T2

by (subst chord-property) auto
finally show ?thesis .

qed

end
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