
Chomsky-Schützenberger Representation Theorem

Moritz Roos and Tobias Nipkow

June 19, 2025

Abstract

The Chomksy-Schützenberger Representation Theorem says that
any context-free language is the homomorphic image of the intersection
of a regular language and a Dyck language.

Contents
1 Overview of the Proof 2

2 Production Transformation and Homomorphisms 4
2.1 Brackets . 4
2.2 Transformation . 5
2.3 Homomorphisms . 6

3 The Regular Language 7
3.1 P1 . 8
3.2 P2 . 9
3.3 P3 . 9
3.4 P4 . 10
3.5 P5 . 11
3.6 P7 and P8 . 11
3.7 Reg and Reg_sym . 12

4 Showing Regularity 13
4.1 An automaton for {xs. successively Q xs ∧ xs ∈ brackets P} . 14
4.2 Regularity of P2, P3 and P4 16
4.3 An automaton for P1 . 16
4.4 An automaton for P5 . 18

5 Definitions of L, Γ, P ′, L ′ 20

6 Lemmas for P ′ ` A ⇒∗ x ←→ x ∈ RA ∩ Dyck_lang Γ 20

7 Showing h(L ′) = L 21

1

8 The Theorem 23

theory Chomsky_Schuetzenberger
imports

Context_Free_Grammar .Parse_Tree
Context_Free_Grammar .Chomsky_Normal_Form
Finite_Automata_Not_HF
Dyck_Language_Syms

begin

This theory proves the Chomsky-Schützenberger representation theorem
[1]. We closely follow Kozen [2] for the proof. The theorem states that
every context-free language L can be written as h (R ∩ Dyck_lang Γ), for
a suitable alphabet Γ, a regular language R and a word-homomorphism h.

The Dyck language over a set Γ (also called it’s bracket language) is
defined as follows: The symbols of Γ are paired with [and], as in [g and]g
for g ∈ Γ. The Dyck language over Γ is the language of correctly bracketed
words. The construction of the Dyck language is found in theory Chom-
sky_Schuetzenberger .Dyck_Language_Syms.

1 Overview of the Proof
A rough proof of Chomsky-Schützenberger is as follows: Take some context-
free grammar for L with productions P. Wlog assume it is in Chomsky
Normal Form. Now define a new language L ′ with productions P ′ in the
following way from P:

If π = A → BC let π ′ = A → [1π B]1p [2π C]2p, if π = A → a let π ′ =
A → [1π]1p [2π]2p, where the brackets are viewed as terminals and the old
variables A, B, C are again viewed as nonterminals. This transformation
is implemented by the function transform_prod below. Note brackets are
now adorned with superscripts 1 and 2 to distinguish the first and second
occurrences easily. That is, we work with symbols that are triples of type
{[,]} × old_prod_type × {1 ,2}.

This bracketing encodes the parse tree of any old word. The old word is
easily recovered by the homomorphism which sends [1π to a if π = A → a,
and sends every other bracket to ε. Thus we have h(L ′) = L by essentially
exchanging π for π ′ and the other way round in the derivation. The direction
⊇ is done in transfer_parse_tree, the direction ⊆ is done directly in the proof
of the main theorem.

Then all that remains to show is, that L ′ is of the form R ∩ Dyck_lang
Γ (for Γ:= P × {1 , 2}) and the regularity of R.

For this, R := RS is defined via an intersection of 5 following regular
languages. Each of these is defined via a property on words x:

2

P1 x: after a]1p there always immediately follows a [2p in x. This especially
means, that]1p cannot be the end of the string.

successively P2 x: a]2π is never directly followed by some [in x.

successively P3 x: each [1A→BC is directly followed by [1B→_ in x (last
letter isn’t checked).

successively P4 x : each [1A→a is directly followed by]1A→a in x and each
[2A→a is directly followed by]2A→a in x (last letter isn’t checked).

P5 A x: there exists some y such that the word begins with [1A→y.

One then shows the key theorem P ′ ` A →∗ w ←→ w ∈ RA ∩
Dyck_lang Γ:

The→-direction (see lemma P ′_imp_Reg) is easily checked, by checking
that every condition holds during all derivation steps already. For this one
needs a version of R (and all the conditions) which ignores any Terminals
that might still exist in such a derivation step. Since this version operates
on symbols (a different type) it needs a fully new definition. Since these new
versions allow more flexibility on the words, it turns out that the original 5
conditions aren’t enough anymore to fully constrain to the target language.
Thus we add two additional constraints successively P7 and successively P8
on the symbol-version of RA that vanish when we ultimately restricts back
to words consisting only of terminal symbols. With these the induction goes
through:

(successively P7_sym) x: each Nt Y is directly preceded by some Tm
[1A→YC or some Tm [2A→BY in x;

(successively P8_sym) x: each Nt Y is directly followed by some]1A→YC
or some]2A→BY in x.

The ←-direction (see lemma Reg_and_dyck_imp_P ′) is more work.
This time we stick with fully terminal words, so we work with the stan-
dard version of RA: Proceed by induction on the length of w generalized
over A. For this, let x ∈ RA ∩ Dyck_lang Γ, thus we have the properties
P1 x, successively Pi x for i ∈ {2 ,3 ,4 ,7 ,8} and P5 A x available. From P5
A x we have that there exists π ∈ P s.t. fst π = A and x begins with [1π.
Since x ∈ Dyck_lang Γ it is balanced, so it must be of the form x = [1π y
]1π r1 for some balanced y. From P1 x it must then be of the form x =
[1π y]1π [2π r1 ′. Since x is balanced it must then be of the form x = [1π
y]1π [2π z]2π r2 for some balanced z. Then r2 must also be balanced. If
r2 was not empty it would begin with an opening bracket, but P2 x makes
this impossible - so r2 = [] and as such x = [1π y]1π [2π z]2π. Since our
grammar is in CNF, we can consider the following case distinction on π:

3

Case 1: π = A → BC. Since y,z are balanced substrings of x one easily
checks Pi y and Pi z for i ∈ {1 ,2 ,3 ,4}. From P3 x (and π = A →
BC) we further obtain P5 B y and P5 C z. So y ∈ RB ∩ Dyck_lang Γ
and z ∈ RC ∩ Dyck_lang Γ. From the induction hypothesis we thus
obtain P ′ ` B →∗ y and P ′ ` C →∗ z. Since π = A → BC we then
have A →1

π ′ [1π B]1π [2π C]2π →∗ [1π y]1π [2π z]2π = x as
required.

Case 2: π = A → a. Suppose we didn’t have y = []. Then from P4 x (and
π = A → a) we would have y =]1π. But since y is balanced it needs
to begin with an opening bracket, contradiction. So it must be that y
= []. By the same argument we also have that z = []. So really x =
[1π]1π [2π]2π and of course from π = A → a it holds A →1

π ′ [1π
]1π [2π]2π = x as required.

From the key theorem we obtain (by setting A := S) that L ′ = RS ∩
Dyck_lang Γ as wanted.

Only regularity remains to be shown. For this we use that RS ∩ Dyck_lang
Γ = (RS ∩ brackets Γ) ∩ Dyck_lang Γ, where brackets Γ (⊇ Dyck_lang Γ)
is the set of words which only consist of brackets over Γ. Actually, what
we defined as RS , isn’t regular, only (RS ∩ brackets Γ) is. The intersection
restricts to a finite amount of possible brackets, that are used in states for
finite automatons for the 5 languages that RS is the intersection of.

Throughout most of the proof below, we implicitly or explicitly assume
that the grammar is in CNF. This is lifted only at the very end.

2 Production Transformation and Homomorphisms
A fixed finite set of productions P, used later on:
locale locale_P =
fixes P :: (′n, ′t) Prods
assumes finiteP: ‹finite P›

2.1 Brackets
A type with 2 elements, for creating 2 copies as needed in the proof:
datatype version = One | Two

type_synonym (′n, ′t) bracket3 = ((′n, ′t) prod × version) bracket

abbreviation open_bracket1 :: (′n, ′t) prod ⇒ (′n, ′t) bracket3 ([1_ [1000])
where
[1p ≡ (Open (p, One))

abbreviation close_bracket1 :: (′n, ′t) prod ⇒ (′n, ′t) bracket3 (]1_ [1000]) where

4

]1p ≡ (Close (p, One))

abbreviation open_bracket2 :: (′n, ′t) prod ⇒ (′n, ′t) bracket3 ([2_ [1000]) where
[2p ≡ (Open (p, Two))

abbreviation close_bracket2 :: (′n, ′t) prod ⇒ (′n, ′t) bracket3 (]2_ [1000]) where
]2p ≡ (Close (p, Two))

Version for p = (A, w) (multiple letters) with bsub and esub:
abbreviation open_bracket1 ′ :: (′n, ′t) prod ⇒ (′n, ′t) bracket3 ([1_) where
[1p ≡ (Open (p, One))

abbreviation close_bracket1 ′ :: (′n, ′t) prod ⇒ (′n, ′t) bracket3 (]1_) where
]1p ≡ (Close (p, One))

abbreviation open_bracket2 ′ :: (′n, ′t) prod ⇒ (′n, ′t) bracket3 ([2_) where
[2p ≡ (Open (p, Two))

abbreviation close_bracket2 ′ :: (′n, ′t) prod ⇒ (′n, ′t) bracket3 (]2_) where
]2p ≡ (Close (p, Two))

Nice LaTeX rendering:
notation (latex output) open_bracket1 ([1_)

notation (latex output) open_bracket1 ′ ([1_)

notation (latex output) open_bracket2 ([2_)

notation (latex output) open_bracket2 ′ ([2_)

notation (latex output) close_bracket1 (]1_)

notation (latex output) close_bracket1 ′ (]1_)

notation (latex output) close_bracket2 (]2_)

notation (latex output) close_bracket2 ′ (]2_)

2.2 Transformation
abbreviation wrap1 :: ‹ ′n ⇒ ′t ⇒ (′n, (′n, ′t) bracket3) syms› where

‹wrap1 A a ≡
[Tm [1(A, [Tm a]),

Tm]1(A, [Tm a]),
Tm [2(A, [Tm a]),
Tm]2(A, [Tm a])]›

abbreviation wrap2 :: ‹ ′n ⇒ ′n ⇒ ′n ⇒ (′n, (′n, ′t) bracket3) syms› where
‹wrap2 A B C ≡

[Tm [1(A, [Nt B, Nt C]),

Nt B,
Tm]1(A, [Nt B, Nt C]),

Tm [2(A, [Nt B, Nt C]),

Nt C ,

5

Tm]2(A, [Nt B, Nt C])]›

The transformation of old productions to new productions used in the
proof:
fun transform_rhs :: ′n ⇒ (′n, ′t) syms ⇒ (′n, (′n, ′t) bracket3) syms where

‹transform_rhs A [Tm a] = wrap1 A a› |
‹transform_rhs A [Nt B, Nt C] = wrap2 A B C ›

The last equation is only added to permit us to state lemmas about
fun transform_prod :: (′n, ′t) prod ⇒ (′n, (′n, ′t) bracket3) prod where

‹transform_prod (A, α) = (A, transform_rhs A α)›

2.3 Homomorphisms
Definition of a monoid-homomorphism where multiplication is (@):
definition hom_list :: ‹(′a list ⇒ ′b list) ⇒ bool› where
‹hom_list h = (∀ a b. h (a @ b) = h a @ h b)›

lemma hom_list_Nil: hom_list h =⇒ h [] = []
〈proof 〉

The homomorphism on single brackets:
fun the_hom1 :: ‹(′n, ′t) bracket3 ⇒ ′t list› where

‹the_hom1 [1(A, [Tm a]) = [a]› |
‹the_hom1 _ = []›

The homomorphism on single bracket symbols:
fun the_hom_sym :: ‹(′n, (′n, ′t) bracket3) sym ⇒ (′n, ′t) sym list› where

‹the_hom_sym (Tm [1(A, [Tm a])) = [Tm a]› |
‹the_hom_sym (Nt A) = [Nt A]› |
‹the_hom_sym _ = []›

The homomorphism on bracket words:
fun the_hom :: ‹(′n, ′t) bracket3 list ⇒ ′t list › (h) where

‹the_hom l = concat (map the_hom1 l)›

The homomorphism extended to symbols:
fun the_hom_syms :: ‹(′n, (′n, ′t) bracket3) syms ⇒ (′n, ′t) syms› where

‹the_hom_syms l = concat (map the_hom_sym l)›

notation the_hom (h)
notation the_hom_syms (hs)

lemma the_hom_syms_hom: ‹hs (l1 @ l2) = hs l1 @ hs l2 ›
〈proof 〉

lemma the_hom_syms_keep_var : ‹hs [(Nt A)] = [Nt A]›
〈proof 〉

6

lemma the_hom_syms_tms_inj: ‹hs w = map Tm m =⇒ ∃w ′. w = map Tm w ′›

〈proof 〉

Helper for showing the upcoming lemma:
lemma helper : ‹the_hom_sym (Tm x) = map Tm (the_hom1 x)›
〈proof 〉

Show that the extension really is an extension in some sense:
lemma h_eq_h_ext: ‹hs (map Tm x) = map Tm (h x)›
〈proof 〉

lemma the_hom1_strip: ‹(the_hom_sym x ′) = map Tm w =⇒ the_hom1 (destTm
x ′) = w›
〈proof 〉

lemma the_hom1_strip2 : ‹concat (map the_hom_sym w ′) = map Tm w =⇒
concat (map (the_hom1 ◦ destTm) w ′) = w›
〈proof 〉

lemma h_eq_h_ext2 :
assumes ‹hs w ′ = (map Tm w)›
shows ‹h (map destTm w ′) = w›
〈proof 〉

3 The Regular Language
The regular Language Reg will be an intersection of 5 Languages. The
languages 2 , 3 ,4 are defined each via a relation P2 , P3 , P4 on neighbouring
letters and lifted to a language via successively. Language 1 is an intersection
of another such lifted relation P1 ′ and a condition on the last letter (if
existent). Language 5 is a condition on the first letter (and requires it to
exist). It takes a term of type ′n (the original variable type) as parameter.

Additionally a version of each language (taking symbols as input) is
defined which allows arbitrary interspersion of nonterminals.

As this interspersion weakens the description, the symbol version of the
regular language (Reg_sym) is defined using two additional languages lifted
from P7 and P8. These vanish when restricted to words only containing
terminals.

As stated in the introductory text, these languages will only be regular,
when constrained to a finite bracket set. The theorems about this, are in
the later section Showing Regularity.

7

3.1 P1
P1 will define a predicate on string elements. It will be true iff each]1p is
directly followed by [2p. That also means]1p cannot be the end of the string.

But first we define a helper function, that only captures the neighbouring
condition for two strings:
fun P1 ′ :: ‹(′n, ′t) bracket3 ⇒ (′n, ′t) bracket3 ⇒ bool› where

‹P1 ′]1p [2p
′ = (p = p ′)› |

‹P1 ′]1p y = False› |
‹P1 ′ x y = True›

A version of P1 ′ for symbols, i.e. strings that may still contain Nt’s:
fun P1 ′_sym :: ‹(′n, (′n, ′t) bracket3) sym ⇒ (′n, (′n, ′t) bracket3) sym ⇒ bool›
where

‹P1 ′_sym (Tm]1p) (Tm [2p
′) = (p = p ′)› |

‹P1 ′_sym (Tm]1p) y = False› |
‹P1 ′_sym x y = True›

lemma P1 ′D[simp]:
‹P1 ′]1p r ←→ r = [2p›
〈proof 〉

Asserts that P1 ′ holds for every pair in xs, and that xs doesnt end in
]1p:
fun P1 :: (′n, ′t) bracket3 list ⇒ bool where

‹P1 xs = ((successively P1 ′ xs) ∧ (if xs 6= [] then (@ p. last xs =]1p) else True))›

Asserts that P1 ′ holds for every pair in xs, and that xs doesnt end in
Tm]1p:
fun P1_sym where

‹P1_sym xs = ((successively P1 ′_sym xs) ∧ (if xs 6= [] then (@ p. last xs = Tm
]1p) else True))›

lemma P1_for_tm_if_P1_sym[dest!]: ‹P1_sym (map Tm x) =⇒ P1 x›
〈proof 〉

lemma P1I [intro]:
assumes ‹successively P1 ′ xs›

and ‹@ p. last xs =]1p›
shows ‹P1 xs›
〈proof 〉

lemma P1_symI [intro]:
assumes ‹successively P1 ′_sym xs›

and ‹@ p. last xs = Tm]1p›
shows ‹P1_sym xs›
〈proof 〉

8

lemma P1_symD[dest]: ‹P1_sym xs =⇒ successively P1 ′_sym xs› 〈proof 〉

lemma P1D_not_empty[intro]:
assumes ‹xs 6= []›

and ‹P1 xs›
shows ‹last xs 6=]1p›
〈proof 〉

lemma P1_symD_not_empty ′[intro]:
assumes ‹xs 6= []›

and ‹P1_sym xs›
shows ‹last xs 6= Tm]1p›
〈proof 〉

lemma P1_symD_not_empty:
assumes ‹xs 6= []›

and ‹P1_sym xs›
shows ‹@ p. last xs = Tm]1p›
〈proof 〉

3.2 P2
A]2π is never directly followed by some [:
fun P2 :: ‹(′n, ′t) bracket3 ⇒ (′n, ′t) bracket3 ⇒ bool› where

‹P2 (Close (p, Two)) (Open (p ′, v)) = False› |
‹P2 (Close (p, Two)) y = True› |
‹P2 x y = True›

fun P2_sym :: ‹(′n, (′n, ′t) bracket3) sym ⇒ (′n, (′n, ′t) bracket3) sym ⇒ bool›
where

‹P2_sym (Tm (Close (p, Two))) (Tm (Open (p ′, v))) = False› |
‹P2_sym (Tm (Close (p, Two))) y = True› |
‹P2_sym x y = True›

lemma P2_for_tm_if_P2_sym[dest]: ‹successively P2_sym (map Tm x) =⇒ suc-
cessively P2 x›
〈proof 〉

3.3 P3
Each [1A→BC is directly followed by [1B→_, and each [2A→BC is directly
followed by [1C→_:
fun P3 :: ‹(′n, ′t) bracket3 ⇒ (′n, ′t) bracket3 ⇒ bool› where

‹P3 [1(A, [Nt B, Nt C]) (p, ((X ,y), t)) = (p = True ∧ t = One ∧ X = B)› |
‹P3 [2(A, [Nt B, Nt C]) (p, ((X ,y), t)) = (p = True ∧ t = One ∧ X = C)› |
‹P3 x y = True›

Each [1A→BC is directly followed [1B→_ or Nt B, and each [2A→BC is
directly followed by [1C→_ or Nt C :

9

fun P3_sym :: ‹(′n, (′n, ′t) bracket3) sym ⇒ (′n, (′n, ′t) bracket3) sym ⇒ bool›
where

‹P3_sym (Tm [1(A, [Nt B, Nt C])) (Tm (p, ((X ,y), t))) = (p = True ∧ t = One
∧ X = B)› |

— Not obvious: the case (Tm [1(A, [Nt B, Nt C])) Nt X is set to True with the
catch all

‹P3_sym (Tm [1(A, [Nt B, Nt C])) (Nt X) = (X = B)› |

‹P3_sym (Tm [2(A, [Nt B, Nt C])) (Tm (p, ((X ,y), t))) = (p = True ∧ t = One ∧
X = C)› |
‹P3_sym (Tm [2(A, [Nt B, Nt C])) (Nt X) = (X = C)› |
‹P3_sym x y = True›

lemma P3D1 [dest]:
fixes r ::‹(′n, ′t) bracket3 ›
assumes ‹P3 [1(A, [Nt B, Nt C]) r›
shows ‹∃ l. r = [1(B, l)›
〈proof 〉

lemma P3D2 [dest]:
fixes r ::‹(′n, ′t) bracket3 ›
assumes ‹P3 [2(A, [Nt B, Nt C]) r›
shows ‹∃ l. r = [1(C , l)›
〈proof 〉

lemma P3_for_tm_if_P3_sym[dest]: ‹successively P3_sym (map Tm x) =⇒ suc-
cessively P3 x›
〈proof 〉

3.4 P4
Each [1A→a is directly followed by]1A→a and each [2A→a is directly followed
by]2A→a:
fun P4 :: ‹(′n, ′t) bracket3 ⇒ (′n, ′t) bracket3 ⇒ bool› where

‹P4 (Open ((A, [Tm a]), s)) (p, ((X , y), t)) = (p = False ∧ X = A ∧ y = [Tm
a] ∧ s = t)› |

‹P4 x y = True›

Each [1A→a is directly followed by]1A→a and each [2A→a is directly
followed by]2A→a:
fun P4_sym :: ‹(′n, (′n, ′t) bracket3) sym ⇒ (′n, (′n, ′t) bracket3) sym ⇒ bool›
where

‹P4_sym (Tm (Open ((A, [Tm a]), s))) (Tm (p, ((X , y), t))) = (p = False ∧ X
= A ∧ y = [Tm a] ∧ s = t)› |

‹P4_sym (Tm (Open ((A, [Tm a]), s))) (Nt X) = False› |
‹P4_sym x y = True›

10

lemma P4D[dest]:
fixes r ::‹(′n, ′t) bracket3 ›
assumes ‹P4 (Open ((A, [Tm a]), v)) r›
shows ‹r = Close ((A, [Tm a]), v)›
〈proof 〉

lemma P4_for_tm_if_P4_sym[dest]: ‹successively P4_sym (map Tm x) =⇒ suc-
cessively P4 x›
〈proof 〉

3.5 P5
P5 A x holds, iff there exists some y such that x begins with [1A→y:
fun P5 :: ‹ ′n ⇒ (′n, ′t) bracket3 list ⇒ bool› where

‹P5 A [] = False› |
‹P5 A ([1(X ,x) # xs) = (X = A)› |
‹P5 A (x # xs) = False›

P5_sym A x holds, iff either there exists some y such that x begins with
[1A→y, or if it begins with Nt A:
fun P5_sym :: ‹ ′n ⇒ (′n, (′n, ′t) bracket3) syms ⇒ bool› where

‹P5_sym A [] = False› |
‹P5_sym A (Tm [1(X ,x) # xs) = (X = A)› |
‹P5_sym A ((Nt X) # xs) = (X = A)› |
‹P5_sym A (x # xs) = False›

lemma P5D[dest]:
assumes ‹P5 A x›
shows ‹∃ y. hd x = [1(A,y)›
〈proof 〉

lemma P5_symD[dest]:
assumes ‹P5_sym A x›
shows ‹(∃ y. hd x = Tm [1(A,y)) ∨ hd x = Nt A›
〈proof 〉

lemma P5_for_tm_if_P5_sym[dest]: ‹P5_sym A (map Tm x) =⇒ P5 A x›
〈proof 〉

3.6 P7 and P8
(successively P7_sym) w iff Nt Y is directly preceded by some Tm [1A→YC
or Tm [2A→BY in w:
fun P7_sym :: ‹(′n, (′n, ′t) bracket3) sym ⇒ (′n, (′n, ′t) bracket3) sym ⇒ bool›
where

‹P7_sym (Tm (b,(A, [Nt B, Nt C]), v)) (Nt Y) = (b = True ∧ ((Y = B ∧ v =
One) ∨ (Y=C ∧ v = Two)))› |

11

‹P7_sym x (Nt Y) = False› |
‹P7_sym x y = True›

lemma P7_symD[dest]:
fixes x:: ‹(′n, (′n, ′t) bracket3) sym›
assumes ‹P7_sym x (Nt Y)›
shows ‹(∃A C . x = Tm [1(A,[Nt Y , Nt C])) ∨ (∃A B. x = Tm [2(A,[Nt B, Nt Y]))›
〈proof 〉

(successively P8_sym) w iff Nt Y is directly followed by some]1A→YC
or]2A→BY in w:
fun P8_sym :: ‹(′n, (′n, ′t) bracket3) sym ⇒ (′n, (′n, ′t) bracket3) sym ⇒ bool›
where

‹P8_sym (Nt Y) (Tm (b,(A, [Nt B, Nt C]), v)) = (b = False ∧ ((Y = B ∧ v
= One) ∨ (Y=C ∧ v = Two)))› |

‹P8_sym (Nt Y) x = False› |
‹P8_sym x y = True›

lemma P8_symD[dest]:
fixes x:: ‹(′n, (′n, ′t) bracket3) sym›
assumes ‹P8_sym (Nt Y) x›
shows ‹(∃A C . x = Tm]1(A,[Nt Y , Nt C])) ∨ (∃A B. x = Tm]2(A,[Nt B, Nt Y]))›
〈proof 〉

3.7 Reg and Reg_sym
This is the regular language, where one takes the Start symbol as a param-
eter, and then has the searched for R := RA:
definition Reg :: ‹ ′n ⇒ (′n, ′t) bracket3 list set› where

‹Reg A = {x. (P1 x) ∧
(successively P2 x) ∧
(successively P3 x) ∧
(successively P4 x) ∧
(P5 A x)}›

lemma RegI [intro]:
assumes ‹(P1 x)›

and ‹(successively P2 x)›
and ‹(successively P3 x)›
and ‹(successively P4 x)›
and ‹(P5 A x)›

shows ‹x ∈ Reg A›
〈proof 〉

lemma RegD[dest]:
assumes ‹x ∈ Reg A›
shows ‹(P1 x)›

and ‹(successively P2 x)›

12

and ‹(successively P3 x)›
and ‹(successively P4 x)›
and ‹(P5 A x)›
〈proof 〉

A version of Reg for symbols, i.e. strings that may still contain Nt’s. It
has 2 more Properties P7 and P8 that vanish for pure terminal strings:
definition Reg_sym :: ‹ ′n ⇒ (′n, (′n, ′t) bracket3) syms set› where

‹Reg_sym A = {x. (P1_sym x) ∧
(successively P2_sym x) ∧
(successively P3_sym x) ∧
(successively P4_sym x) ∧
(P5_sym A x) ∧
(successively P7_sym x) ∧
(successively P8_sym x)}›

lemma Reg_symI [intro]:
assumes ‹P1_sym x›

and ‹successively P2_sym x›
and ‹successively P3_sym x›
and ‹successively P4_sym x›
and ‹P5_sym A x›
and ‹(successively P7_sym x)›
and ‹(successively P8_sym x)›

shows ‹x ∈ Reg_sym A›
〈proof 〉

lemma Reg_symD[dest]:
assumes ‹x ∈ Reg_sym A›
shows ‹P1_sym x›

and ‹successively P2_sym x›
and ‹successively P3_sym x›
and ‹successively P4_sym x›
and ‹P5_sym A x›
and ‹(successively P7_sym x)›
and ‹(successively P8_sym x)›
〈proof 〉

lemma Reg_for_tm_if_Reg_sym[dest]: ‹(map Tm x) ∈ Reg_sym A =⇒ x ∈ Reg
A›
〈proof 〉

4 Showing Regularity
context locale_P
begin

abbreviation brackets::‹(′n, ′t) bracket3 list set› where
‹brackets ≡ {bs. ∀ (_,p,_) ∈ set bs. p ∈ P}›

13

This is needed for the construction that shows P2,P3,P4 regular.
datatype ′a state = start | garbage | letter ′a

definition allStates :: ‹(′n, ′t) bracket3 state set ›where
‹allStates = { letter (br ,(p,v)) | br p v. p ∈ P } ∪ {start, garbage}›

lemma allStatesI : ‹p ∈ P =⇒ letter (br ,(p,v)) ∈ allStates›
〈proof 〉

lemma start_in_allStates[simp]: ‹start ∈ allStates›
〈proof 〉

lemma garbage_in_allStates[simp]: ‹garbage ∈ allStates›
〈proof 〉

lemma finite_allStates_if :
shows ‹finite(allStates)›
〈proof 〉

end

4.1 An automaton for {xs. successively Q xs ∧ xs ∈ brackets P}
locale successivelyConstruction = locale_P where P = P for P :: (′n, ′t) Prods
+
fixes Q :: (′n, ′t) bracket3 ⇒ (′n, ′t) bracket3 ⇒ bool — e.g. P2
begin

fun succNext :: ‹(′n, ′t) bracket3 state ⇒ (′n, ′t) bracket3 ⇒ (′n, ′t) bracket3 state›
where

‹succNext garbage _ = garbage› |
‹succNext start (br ′, p ′, v ′) = (if p ′ ∈ P then letter (br ′, p ′,v ′) else garbage)› |
‹succNext (letter (br , p, v)) (br ′, p ′, v ′) = (if Q (br ,p,v) (br ′,p ′,v ′) ∧ p ∈ P ∧

p ′ ∈ P then letter (br ′,p ′,v ′) else garbage)›

theorem succNext_induct[case_names garbage startp startnp letterQ letternQ]:
fixes R :: (′n, ′t) bracket3 state ⇒ (′n, ′t) bracket3 ⇒ bool
fixes a0 :: (′n, ′t) bracket3 state

and a1 :: (′n, ′t) bracket3
assumes

∧
u. R garbage u

and
∧

br ′ p ′ v ′. p ′ ∈ P =⇒ R state.start (br ′, p ′, v ′)
and

∧
br ′ p ′ v ′. p ′ /∈ P =⇒ R state.start (br ′, p ′, v ′)

and
∧

br p v br ′ p ′ v ′. Q (br ,p,v) (br ′,p ′,v ′) ∧ p ∈ P ∧ p ′ ∈ P =⇒ R (letter
(br , p, v)) (br ′, p ′, v ′)

and
∧

br p v br ′ p ′ v ′. ¬(Q (br ,p,v) (br ′,p ′,v ′) ∧ p ∈ P ∧ p ′ ∈ P) =⇒ R (letter
(br , p, v)) (br ′, p ′, v ′)

shows R a0 a1
〈proof 〉

14

abbreviation aut where ‹aut ≡ (|dfa ′.states = allStates,
init = start,
final = (allStates − {garbage}),
nxt = succNext |)›

interpretation aut : dfa ′ aut
〈proof 〉

lemma nextl_in_allStates[intro,simp]: ‹q ∈ allStates =⇒ aut.nextl q ys ∈ all-
States›
〈proof 〉

lemma nextl_garbage[simp]: ‹aut.nextl garbage xs = garbage›
〈proof 〉

lemma drop_right: ‹xs@ys ∈ aut.language =⇒ xs ∈ aut.language›
〈proof 〉

lemma state_after1 [iff]: ‹(succNext q a 6= garbage) = (succNext q a = letter a)›
〈proof 〉

lemma state_after_in_P[intro]: ‹succNext q (br , p, v) 6= garbage =⇒ p ∈ P›
〈proof 〉

lemma drop_left_general: ‹aut.nextl start ys = garbage =⇒ aut.nextl q ys =
garbage›
〈proof 〉

lemma drop_left: ‹xs@ys ∈ aut.language =⇒ ys ∈ aut.language›
〈proof 〉

lemma empty_in_aut: ‹[] ∈ aut.language›
〈proof 〉

lemma singleton_in_aut_iff : ‹[(br , p, v)] ∈ aut.language ←→ p ∈ P›
〈proof 〉

lemma duo_in_aut_iff : ‹[(br , p, v), (br ′, p ′, v ′)] ∈ aut.language ←→ Q (br ,p,v)
(br ′,p ′,v ′) ∧ p ∈ P ∧ p ′ ∈ P›
〈proof 〉

lemma trio_in_aut_iff : ‹(br , p, v) # (br ′, p ′, v ′) # zs ∈ aut.language ←→ Q
(br ,p,v) (br ′,p ′,v ′) ∧ p ∈ P ∧ p ′ ∈ P ∧ (br ′,p ′,v ′) # zs ∈ aut.language›
〈proof 〉

lemma aut_lang_iff_succ_Q: ‹(successively Q xs ∧ xs ∈ brackets) ←→ (xs ∈
aut.language)›
〈proof 〉

15

lemma aut_language_reg: ‹regular aut.language›
〈proof 〉

corollary regular_successively_inter_brackets: ‹regular {xs. successively Q xs ∧
xs ∈ brackets}›
〈proof 〉

end

4.2 Regularity of P2, P3 and P4
context locale_P
begin

lemma P2_regular :
shows ‹regular {xs. successively P2 xs ∧ xs ∈ brackets} ›
〈proof 〉

lemma P3_regular :
‹regular {xs. successively P3 xs ∧ xs ∈ brackets} ›
〈proof 〉

lemma P4_regular :
‹regular {xs. successively P4 xs ∧ xs ∈ brackets }›
〈proof 〉

4.3 An automaton for P1
More Precisely, for the if not empty, then doesnt end in (Close_,1) part.
Then intersect with the other construction for P1 ′ to get P1 regular.
datatype P1_State = last_ok | last_bad | garbage

The good ending letters, are those that are not of the form (Close _ ,
1).
fun good where

‹good]1p = False› |
‹good (br , p, v) = True›

fun nxt1 :: ‹P1_State ⇒ (′n, ′t) bracket3 ⇒ P1_State› where
‹nxt1 garbage _ = garbage› |
‹nxt1 last_ok (br , p, v) = (if p /∈ P then garbage else (if good (br , p, v) then

last_ok else last_bad))› |
‹nxt1 last_bad (br , p, v) = (if p /∈ P then garbage else (if good (br , p, v) then

last_ok else last_bad))›

theorem nxt1_induct[case_names garbage startp startnp letterQ letternQ]:
fixes R :: P1_State ⇒ (′n, ′t) bracket3 ⇒ bool
fixes a0 :: P1_State

and a1 :: (′n, ′t) bracket3

16

assumes
∧

u. R garbage u
and

∧
br p v. p /∈ P =⇒ R last_ok (br , p, v)

and
∧

br p v. p ∈ P ∧ good (br , p, v) =⇒ R last_ok (br , p, v)
and

∧
br p v. p ∈ P ∧ ¬(good (br , p, v)) =⇒ R last_ok (br , p, v)

and
∧

br p v. p /∈ P =⇒ R last_bad (br , p, v)
and

∧
br p v. p ∈ P ∧ good (br , p, v) =⇒ R last_bad (br , p, v)

and
∧

br p v. p ∈ P ∧ ¬(good (br , p, v)) =⇒ R last_bad (br , p, v)
shows R a0 a1
〈proof 〉

abbreviation p1_aut where ‹p1_aut ≡ (|dfa ′.states = {last_ok, last_bad, garbage},
init = last_ok,
final = {last_ok},
nxt = nxt1 |)›

interpretation p1_aut : dfa ′ p1_aut
〈proof 〉

lemma nextl_garbage_iff [simp]: ‹p1_aut.nextl last_ok xs = garbage ←→ xs /∈
brackets›
〈proof 〉

lemma lang_descr_full:
‹(p1_aut.nextl last_ok xs = last_ok ←→ (xs = [] ∨ (xs 6= [] ∧ good (last xs) ∧

xs ∈ brackets))) ∧
(p1_aut.nextl last_ok xs = last_bad ←→ ((xs 6= [] ∧ ¬good (last xs) ∧ xs ∈

brackets)))›
〈proof 〉

lemma lang_descr : ‹xs ∈ p1_aut.language ←→ (xs = [] ∨ (xs 6= [] ∧ good (last
xs) ∧ xs ∈ brackets))›
〈proof 〉

lemma good_iff [simp]:‹(∀ a b. last xs 6=]1(a, b)) = good (last xs)›
〈proof 〉

lemma in_P1_iff : ‹(P1 xs ∧ xs ∈ brackets) ←→ (xs = [] ∨ (xs 6= [] ∧ good (last
xs) ∧ xs ∈ brackets)) ∧ successively P1 ′ xs ∧ xs ∈ brackets›
〈proof 〉

corollary P1_eq: ‹{xs. P1 xs ∧ xs ∈ brackets} =
{xs. successively P1 ′ xs ∧ xs ∈ brackets} ∩ {xs. xs = [] ∨ (xs 6= [] ∧ good

(last xs) ∧ xs ∈ brackets)}›
〈proof 〉

lemma P1 ′_regular :
shows ‹regular {xs. successively P1 ′ xs ∧ xs ∈ brackets} ›
〈proof 〉

17

lemma aut_language_reg: ‹regular p1_aut.language›
〈proof 〉

corollary aux_regular : ‹regular {xs. xs = [] ∨ (xs 6= [] ∧ good (last xs) ∧ xs ∈
brackets)}›
〈proof 〉

corollary regular_P1 : ‹regular {xs. P1 xs ∧ xs ∈ brackets}›
〈proof 〉

end

4.4 An automaton for P5
locale P5Construction = locale_P where P=P for P :: (′n, ′t)Prods +
fixes A :: ′n
begin

datatype P5_State = start | first_ok | garbage

The good/ok ending letters, are those that are not of the form (Close _
, 1).
fun ok where

‹ok (Open ((X , _), One)) = (X = A)› |
‹ok _ = False›

fun nxt2 :: ‹P5_State ⇒ (′n, ′t) bracket3 ⇒ P5_State› where
‹nxt2 garbage _ = garbage› |
‹nxt2 start (br , (X , r), v) = (if (X ,r) /∈ P then garbage else (if ok (br , (X , r),

v) then first_ok else garbage))› |
‹nxt2 first_ok (br , p, v) = (if p /∈ P then garbage else first_ok)›

theorem nxt2_induct[case_names garbage startnp start_p_ok start_p_nok first_ok_np
first_ok_p]:

fixes R :: P5_State ⇒ (′n, ′t) bracket3 ⇒ bool
fixes a0 :: P5_State

and a1 :: (′n, ′t) bracket3
assumes

∧
u. R garbage u

and
∧

br p v. p /∈ P =⇒ R start (br , p, v)
and

∧
br X r v. (X , r) ∈ P ∧ ok (br , (X , r), v) =⇒ R start (br , (X , r), v)

and
∧

br X r v. (X , r) ∈ P ∧ ¬ok (br , (X , r), v) =⇒ R start (br , (X , r), v)
and

∧
br X r v. (X , r) /∈ P =⇒ R first_ok (br , (X , r), v)

and
∧

br X r v. (X , r) ∈ P =⇒ R first_ok (br , (X , r), v)
shows R a0 a1
〈proof 〉

abbreviation p5_aut where ‹p5_aut ≡ (|dfa ′.states = {start, first_ok, garbage},
init = start,
final = {first_ok},

18

nxt = nxt2 |)›

interpretation p5_aut : dfa ′ p5_aut
〈proof 〉

corollary nxt2_start_ok_iff : ‹ok x ∧ fst(snd x) ∈ P ←→ nxt2 start x = first_ok›
〈proof 〉

lemma empty_not_in_lang[simp]:‹[] /∈ p5_aut.language›
〈proof 〉

lemma singleton_in_lang_iff : ‹[x] ∈ p5_aut.language ←→ ok (hd [x]) ∧ [x] ∈
brackets›
〈proof 〉

lemma singleton_first_ok_iff : ‹p5_aut.nextl start ([x]) = first_ok ∨ p5_aut.nextl
start ([x]) = garbage›
〈proof 〉

lemma first_ok_iff : ‹xs 6= [] =⇒ p5_aut.nextl start xs = first_ok ∨ p5_aut.nextl
start xs = garbage›
〈proof 〉

lemma lang_descr : ‹xs ∈ p5_aut.language ←→ (xs 6= [] ∧ ok (hd xs) ∧ xs ∈
brackets)›
〈proof 〉

lemma in_P5_iff : ‹P5 A xs ∧ xs ∈ brackets ←→ (xs 6= [] ∧ ok (hd xs) ∧ xs ∈
brackets)›
〈proof 〉

lemma aut_language_reg: ‹regular p5_aut.language›
〈proof 〉

corollary aux_regular : ‹regular {xs. xs 6= [] ∧ ok (hd xs) ∧ xs ∈ brackets}›
〈proof 〉

lemma regular_P5 :‹regular {xs. P5 A xs ∧ xs ∈ brackets}›
〈proof 〉

end

context locale_P
begin

corollary regular_Reg_inter : ‹regular (brackets ∩ Reg A)›
〈proof 〉

A lemma saying that all Dyck_lang words really only consist of brackets

19

(trivial definition wrangling):
lemma Dyck_lang_subset_brackets: ‹Dyck_lang (P × {One, Two}) ⊆ brackets›
〈proof 〉

end

5 Definitions of L, Γ, P ′, L ′

locale Chomsky_Schuetzenberger_locale = locale_P where P = P for P :: (′n, ′t)Prods
+
fixes S :: ′n
assumes CNF_P: ‹CNF P›

begin

lemma P_CNFE [dest]:
assumes ‹π ∈ P›
shows ‹∃A a B C . π = (A, [Nt B, Nt C]) ∨ π = (A, [Tm a])›
〈proof 〉

definition L where
‹L = Lang P S›

definition Γ where
‹Γ = P × {One, Two}›

definition P ′ where
‹P ′ = transform_prod ‘ P›

definition L ′ where
‹L ′ = Lang P ′ S›

6 Lemmas for P ′ ` A⇒∗ x ←→ x ∈ RA ∩ Dyck_lang
Γ

lemma prod1_snds_in_tm [intro, simp]: ‹(A, [Nt B, Nt C]) ∈ P =⇒ snds_in_tm
Γ (wrap2 A B C)›
〈proof 〉

lemma prod2_snds_in_tm [intro, simp]: ‹(A, [Tm a]) ∈ P =⇒ snds_in_tm Γ
(wrap1 A a)›
〈proof 〉

lemma bal_tm_wrap1 [iff]: ‹bal_tm (wrap1 A a)›
〈proof 〉

20

lemma bal_tm_wrap2 [iff]: ‹bal_tm (wrap2 A B C)›
〈proof 〉

This essentially says, that the right sides of productions are in the Dyck
language of Γ, if one ignores any occuring nonterminals. This will be needed
for →.
lemma bal_tm_transform_rhs[intro!]:

‹(A,α) ∈ P =⇒ bal_tm (transform_rhs A α)›
〈proof 〉

lemma snds_in_tm_transform_rhs[intro!]:
‹(A,α) ∈ P =⇒ snds_in_tm Γ (transform_rhs A α)›
〈proof 〉

The lemma for →
lemma P ′_imp_bal:

assumes ‹P ′ ` [Nt A] ⇒∗ x›
shows ‹bal_tm x ∧ snds_in_tm Γ x›
〈proof 〉

Another lemma for →
lemma P ′_imp_Reg:

assumes ‹P ′ ` [Nt T] ⇒∗ x›
shows ‹x ∈ Reg_sym T ›
〈proof 〉

This will be needed for the direction ←.
lemma transform_prod_one_step:

assumes ‹π ∈ P›
shows ‹P ′ ` [Nt (fst π)] ⇒ snd (transform_prod π)›
〈proof 〉

The lemma for ←
lemma Reg_and_dyck_imp_P ′:

assumes ‹x ∈ (Reg A ∩ Dyck_lang Γ)›
shows ‹P ′ ` [Nt A] ⇒∗ map Tm x› 〈proof 〉

7 Showing h(L ′) = L
Particularly ⊇ is formally hard. To create the witness in L ′ we need to use
the corresponding production in P ′ in each step. We do this by defining
the transformation on the parse tree, instead of only the word. Simple
induction on the derivation wouldn’t (in the induction step) get us enough
information on where the corresponding production needs to be applied in
the transformed version.
abbreviation ‹roots ts ≡ map root ts›

21

fun wrap1_Sym :: ‹ ′n ⇒ (′n, ′t) sym ⇒ version ⇒ (′n,(′n, ′t) bracket3) tree list›
where

wrap1_Sym A (Tm a) v = [Sym (Tm (Open ((A, [Tm a]),v))), Sym (Tm (Close
((A, [Tm a]), v)))] |

‹wrap1_Sym _ _ _ = []›

fun wrap2_Sym :: ‹ ′n ⇒ (′n, ′t) sym ⇒ (′n, ′t) sym ⇒ version ⇒ (′n,(′n, ′t)
bracket3) tree ⇒ (′n,(′n, ′t) bracket3) tree list› where

wrap2_Sym A (Nt B) (Nt C) v t = [Sym (Tm (Open ((A, [Nt B, Nt C]), v))), t
, Sym (Tm (Close ((A, [Nt B, Nt C]), v)))] |

‹wrap2_Sym _ _ _ _ _ = []›

fun transform_tree :: (′n, ′t) tree ⇒ (′n,(′n, ′t) bracket3) tree where
‹transform_tree (Sym (Nt A)) = (Sym (Nt A))› |
‹transform_tree (Sym (Tm a)) = (Sym (Tm [1(SOME A. True, [Tm a])))› |
‹transform_tree (Rule A [Sym (Tm a)]) = Rule A ((wrap1_Sym A (Tm a)

One)@(wrap1_Sym A (Tm a) Two))› |
‹transform_tree (Rule A [t1 , t2]) = Rule A ((wrap2_Sym A (root t1) (root t2)

One (transform_tree t1)) @ (wrap2_Sym A (root t1) (root t2) Two (transform_tree
t2)))› |

‹transform_tree (Rule A y) = (Rule A [])›

lemma root_of_transform_tree[intro, simp]: ‹root t = Nt X =⇒ root (transform_tree
t) = Nt X›
〈proof 〉

lemma transform_tree_correct:
assumes ‹parse_tree P t ∧ fringe t = w›
shows ‹parse_tree P ′ (transform_tree t) ∧ hs (fringe (transform_tree t)) = w›
〈proof 〉

lemma
transfer_parse_tree:
assumes ‹w ∈ Ders P S›
shows ‹∃w ′ ∈ Ders P ′ S . w = hs w ′›
〈proof 〉

This is essentially h(L ′) ⊇ L:
lemma P_imp_h_L ′:

assumes ‹w ∈ Lang P S›
shows ‹∃w ′ ∈ L ′. w = h w ′›
〈proof 〉

This lemma is used in the proof of the other direction (h(L ′) ⊆ L):
lemma hom_ext_inv[simp]:

assumes ‹π ∈ P›
shows ‹hs (snd (transform_prod π)) = snd π›
〈proof 〉

This lemma is essentially the other direction (h(L ′) ⊆ L):

22

lemma L ′_imp_h_P:
assumes ‹w ′ ∈ L ′›
shows ‹h w ′ ∈ Lang P S›
〈proof 〉

8 The Theorem
The constructive version of the Theorem, for a grammar already in CNF:
lemma Chomsky_Schuetzenberger_CNF :

‹regular (brackets ∩ Reg S)
∧ L = h ‘ ((brackets ∩ Reg S) ∩ Dyck_lang Γ)
∧ hom_list (h :: (′n, ′t) bracket3 list ⇒ ′t list)›

〈proof 〉

end

Now we want to prove the theorem without assuming that P is in CNF.
Of course any grammar can be converted into CNF, but this requires an
infinite type of nonterminals (because the conversion to CNF may need to
invent new nonterminals). Therefore we cannot just re-enter locale_P. Now
we make all the assumption explicit.

The theorem for any grammar, but only for languages not containing ε:
lemma Chomsky_Schuetzenberger_not_empty:

fixes P :: ‹(′n :: infinite, ′t) Prods› and S :: ′n
defines ‹L ≡ Lang P S − {[]}›
assumes finiteP: ‹finite P›
shows ‹∃ (R::(′n, ′t) bracket3 list set) h Γ. regular R ∧ L = h ‘ (R ∩ Dyck_lang

Γ) ∧ hom_list h›
〈proof 〉

The Chomsky-Schützenberger theorem that we really want to prove:
theorem Chomsky_Schuetzenberger :

fixes P :: ‹(′n :: infinite, ′t) Prods› and S :: ′n
defines ‹L ≡ Lang P S›
assumes finite: ‹finite P›
shows ‹∃ (R::(′n, ′t) bracket3 list set) h Γ. regular R ∧ L = h ‘ (R ∩ Dyck_lang

Γ) ∧ hom_list h›
〈proof 〉

no_notation the_hom (h)
no_notation the_hom_syms (hs)

end

23

References
[1] N. Chomsky and M. Schützenberger. The algebraic theory of context-

free languages. In P. Braffort and D. Hirschberg, editors, Computer
Programming and Formal Systems, volume 26 of Studies in Logic and
the Foundations of Mathematics, pages 118–161. Elsevier, 1959.

[2] D. Kozen. Automata and computability. Undergraduate texts in com-
puter science. Springer, 1997.

24

	Overview of the Proof
	Production Transformation and Homomorphisms
	Brackets
	Transformation
	Homomorphisms

	The Regular Language
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 P1
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 P2
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 P3
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 P4
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 P5
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 P7 and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 P8
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Reg and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Reg_sym

	Showing Regularity
	An automaton for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 {xs. successively Q xs xs brackets P}
	Regularity of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 P2, 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 P3 and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 P4
	An automaton for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 P1
	An automaton for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 P5

	Definitions of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 L, 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 , 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 P2mu'-2mu, 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 L2mu'-2mu
	Lemmas for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 P2mu'-2mu A * x -3mu x RA Dyck_lang
	Showing 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 h(L2mu'-2mu) = L
	The Theorem

