
Chomsky-Schützenberger Representation Theorem

Moritz Roos and Tobias Nipkow

June 19, 2025

Abstract

The Chomksy-Schützenberger Representation Theorem says that
any context-free language is the homomorphic image of the intersection
of a regular language and a Dyck language.

Contents
1 Overview of the Proof 2

2 Production Transformation and Homomorphisms 4
2.1 Brackets . 4
2.2 Transformation . 5
2.3 Homomorphisms . 6

3 The Regular Language 8
3.1 P1 . 8
3.2 P2 . 10
3.3 P3 . 11
3.4 P4 . 12
3.5 P5 . 12
3.6 P7 and P8 . 13
3.7 Reg and Reg_sym . 14

4 Showing Regularity 15
4.1 An automaton for {xs. successively Q xs ∧ xs ∈ brackets P} . 16
4.2 Regularity of P2, P3 and P4 19
4.3 An automaton for P1 . 20
4.4 An automaton for P5 . 23

5 Definitions of L, Γ, P ′, L ′ 26

6 Lemmas for P ′ ` A ⇒∗ x ←→ x ∈ RA ∩ Dyck_lang Γ 27

7 Showing h(L ′) = L 36

1

8 The Theorem 41

theory Chomsky_Schuetzenberger
imports

Context_Free_Grammar .Parse_Tree
Context_Free_Grammar .Chomsky_Normal_Form
Finite_Automata_Not_HF
Dyck_Language_Syms

begin

This theory proves the Chomsky-Schützenberger representation theorem
[1]. We closely follow Kozen [2] for the proof. The theorem states that
every context-free language L can be written as h (R ∩ Dyck_lang Γ), for
a suitable alphabet Γ, a regular language R and a word-homomorphism h.

The Dyck language over a set Γ (also called it’s bracket language) is
defined as follows: The symbols of Γ are paired with [and], as in [g and]g
for g ∈ Γ. The Dyck language over Γ is the language of correctly bracketed
words. The construction of the Dyck language is found in theory Chom-
sky_Schuetzenberger .Dyck_Language_Syms.

1 Overview of the Proof
A rough proof of Chomsky-Schützenberger is as follows: Take some context-
free grammar for L with productions P. Wlog assume it is in Chomsky
Normal Form. Now define a new language L ′ with productions P ′ in the
following way from P:

If π = A → BC let π ′ = A → [1π B]1p [2π C]2p, if π = A → a let π ′ =
A → [1π]1p [2π]2p, where the brackets are viewed as terminals and the old
variables A, B, C are again viewed as nonterminals. This transformation
is implemented by the function transform_prod below. Note brackets are
now adorned with superscripts 1 and 2 to distinguish the first and second
occurrences easily. That is, we work with symbols that are triples of type
{[,]} × old_prod_type × {1 ,2}.

This bracketing encodes the parse tree of any old word. The old word is
easily recovered by the homomorphism which sends [1π to a if π = A → a,
and sends every other bracket to ε. Thus we have h(L ′) = L by essentially
exchanging π for π ′ and the other way round in the derivation. The direction
⊇ is done in transfer_parse_tree, the direction ⊆ is done directly in the proof
of the main theorem.

Then all that remains to show is, that L ′ is of the form R ∩ Dyck_lang
Γ (for Γ:= P × {1 , 2}) and the regularity of R.

For this, R := RS is defined via an intersection of 5 following regular
languages. Each of these is defined via a property on words x:

2

P1 x: after a]1p there always immediately follows a [2p in x. This especially
means, that]1p cannot be the end of the string.

successively P2 x: a]2π is never directly followed by some [in x.

successively P3 x: each [1A→BC is directly followed by [1B→_ in x (last
letter isn’t checked).

successively P4 x : each [1A→a is directly followed by]1A→a in x and each
[2A→a is directly followed by]2A→a in x (last letter isn’t checked).

P5 A x: there exists some y such that the word begins with [1A→y.

One then shows the key theorem P ′ ` A →∗ w ←→ w ∈ RA ∩
Dyck_lang Γ:

The→-direction (see lemma P ′_imp_Reg) is easily checked, by checking
that every condition holds during all derivation steps already. For this one
needs a version of R (and all the conditions) which ignores any Terminals
that might still exist in such a derivation step. Since this version operates
on symbols (a different type) it needs a fully new definition. Since these new
versions allow more flexibility on the words, it turns out that the original 5
conditions aren’t enough anymore to fully constrain to the target language.
Thus we add two additional constraints successively P7 and successively P8
on the symbol-version of RA that vanish when we ultimately restricts back
to words consisting only of terminal symbols. With these the induction goes
through:

(successively P7_sym) x: each Nt Y is directly preceded by some Tm
[1A→YC or some Tm [2A→BY in x;

(successively P8_sym) x: each Nt Y is directly followed by some]1A→YC
or some]2A→BY in x.

The ←-direction (see lemma Reg_and_dyck_imp_P ′) is more work.
This time we stick with fully terminal words, so we work with the stan-
dard version of RA: Proceed by induction on the length of w generalized
over A. For this, let x ∈ RA ∩ Dyck_lang Γ, thus we have the properties
P1 x, successively Pi x for i ∈ {2 ,3 ,4 ,7 ,8} and P5 A x available. From P5
A x we have that there exists π ∈ P s.t. fst π = A and x begins with [1π.
Since x ∈ Dyck_lang Γ it is balanced, so it must be of the form x = [1π y
]1π r1 for some balanced y. From P1 x it must then be of the form x =
[1π y]1π [2π r1 ′. Since x is balanced it must then be of the form x = [1π
y]1π [2π z]2π r2 for some balanced z. Then r2 must also be balanced. If
r2 was not empty it would begin with an opening bracket, but P2 x makes
this impossible - so r2 = [] and as such x = [1π y]1π [2π z]2π. Since our
grammar is in CNF, we can consider the following case distinction on π:

3

Case 1: π = A → BC. Since y,z are balanced substrings of x one easily
checks Pi y and Pi z for i ∈ {1 ,2 ,3 ,4}. From P3 x (and π = A →
BC) we further obtain P5 B y and P5 C z. So y ∈ RB ∩ Dyck_lang Γ
and z ∈ RC ∩ Dyck_lang Γ. From the induction hypothesis we thus
obtain P ′ ` B →∗ y and P ′ ` C →∗ z. Since π = A → BC we then
have A →1

π ′ [1π B]1π [2π C]2π →∗ [1π y]1π [2π z]2π = x as
required.

Case 2: π = A → a. Suppose we didn’t have y = []. Then from P4 x (and
π = A → a) we would have y =]1π. But since y is balanced it needs
to begin with an opening bracket, contradiction. So it must be that y
= []. By the same argument we also have that z = []. So really x =
[1π]1π [2π]2π and of course from π = A → a it holds A →1

π ′ [1π
]1π [2π]2π = x as required.

From the key theorem we obtain (by setting A := S) that L ′ = RS ∩
Dyck_lang Γ as wanted.

Only regularity remains to be shown. For this we use that RS ∩ Dyck_lang
Γ = (RS ∩ brackets Γ) ∩ Dyck_lang Γ, where brackets Γ (⊇ Dyck_lang Γ)
is the set of words which only consist of brackets over Γ. Actually, what
we defined as RS , isn’t regular, only (RS ∩ brackets Γ) is. The intersection
restricts to a finite amount of possible brackets, that are used in states for
finite automatons for the 5 languages that RS is the intersection of.

Throughout most of the proof below, we implicitly or explicitly assume
that the grammar is in CNF. This is lifted only at the very end.

2 Production Transformation and Homomorphisms
A fixed finite set of productions P, used later on:
locale locale_P =
fixes P :: (′n, ′t) Prods
assumes finiteP: ‹finite P›

2.1 Brackets
A type with 2 elements, for creating 2 copies as needed in the proof:
datatype version = One | Two

type_synonym (′n, ′t) bracket3 = ((′n, ′t) prod × version) bracket

abbreviation open_bracket1 :: (′n, ′t) prod ⇒ (′n, ′t) bracket3 ([1_ [1000])
where
[1p ≡ (Open (p, One))

abbreviation close_bracket1 :: (′n, ′t) prod ⇒ (′n, ′t) bracket3 (]1_ [1000]) where

4

]1p ≡ (Close (p, One))

abbreviation open_bracket2 :: (′n, ′t) prod ⇒ (′n, ′t) bracket3 ([2_ [1000]) where
[2p ≡ (Open (p, Two))

abbreviation close_bracket2 :: (′n, ′t) prod ⇒ (′n, ′t) bracket3 (]2_ [1000]) where
]2p ≡ (Close (p, Two))

Version for p = (A, w) (multiple letters) with bsub and esub:
abbreviation open_bracket1 ′ :: (′n, ′t) prod ⇒ (′n, ′t) bracket3 ([1_) where
[1p ≡ (Open (p, One))

abbreviation close_bracket1 ′ :: (′n, ′t) prod ⇒ (′n, ′t) bracket3 (]1_) where
]1p ≡ (Close (p, One))

abbreviation open_bracket2 ′ :: (′n, ′t) prod ⇒ (′n, ′t) bracket3 ([2_) where
[2p ≡ (Open (p, Two))

abbreviation close_bracket2 ′ :: (′n, ′t) prod ⇒ (′n, ′t) bracket3 (]2_) where
]2p ≡ (Close (p, Two))

Nice LaTeX rendering:
notation (latex output) open_bracket1 ([1_)

notation (latex output) open_bracket1 ′ ([1_)

notation (latex output) open_bracket2 ([2_)

notation (latex output) open_bracket2 ′ ([2_)

notation (latex output) close_bracket1 (]1_)

notation (latex output) close_bracket1 ′ (]1_)

notation (latex output) close_bracket2 (]2_)

notation (latex output) close_bracket2 ′ (]2_)

2.2 Transformation
abbreviation wrap1 :: ‹ ′n ⇒ ′t ⇒ (′n, (′n, ′t) bracket3) syms› where

‹wrap1 A a ≡
[Tm [1(A, [Tm a]),

Tm]1(A, [Tm a]),
Tm [2(A, [Tm a]),
Tm]2(A, [Tm a])]›

abbreviation wrap2 :: ‹ ′n ⇒ ′n ⇒ ′n ⇒ (′n, (′n, ′t) bracket3) syms› where
‹wrap2 A B C ≡

[Tm [1(A, [Nt B, Nt C]),

Nt B,
Tm]1(A, [Nt B, Nt C]),

Tm [2(A, [Nt B, Nt C]),

Nt C ,

5

Tm]2(A, [Nt B, Nt C])]›

The transformation of old productions to new productions used in the
proof:
fun transform_rhs :: ′n ⇒ (′n, ′t) syms ⇒ (′n, (′n, ′t) bracket3) syms where

‹transform_rhs A [Tm a] = wrap1 A a› |
‹transform_rhs A [Nt B, Nt C] = wrap2 A B C ›

The last equation is only added to permit us to state lemmas about
fun transform_prod :: (′n, ′t) prod ⇒ (′n, (′n, ′t) bracket3) prod where

‹transform_prod (A, α) = (A, transform_rhs A α)›

2.3 Homomorphisms
Definition of a monoid-homomorphism where multiplication is (@):
definition hom_list :: ‹(′a list ⇒ ′b list) ⇒ bool› where
‹hom_list h = (∀ a b. h (a @ b) = h a @ h b)›

lemma hom_list_Nil: hom_list h =⇒ h [] = []
unfolding hom_list_def by (metis self_append_conv)

The homomorphism on single brackets:
fun the_hom1 :: ‹(′n, ′t) bracket3 ⇒ ′t list› where

‹the_hom1 [1(A, [Tm a]) = [a]› |
‹the_hom1 _ = []›

The homomorphism on single bracket symbols:
fun the_hom_sym :: ‹(′n, (′n, ′t) bracket3) sym ⇒ (′n, ′t) sym list› where

‹the_hom_sym (Tm [1(A, [Tm a])) = [Tm a]› |
‹the_hom_sym (Nt A) = [Nt A]› |
‹the_hom_sym _ = []›

The homomorphism on bracket words:
fun the_hom :: ‹(′n, ′t) bracket3 list ⇒ ′t list › (h) where

‹the_hom l = concat (map the_hom1 l)›

The homomorphism extended to symbols:
fun the_hom_syms :: ‹(′n, (′n, ′t) bracket3) syms ⇒ (′n, ′t) syms› where

‹the_hom_syms l = concat (map the_hom_sym l)›

notation the_hom (h)
notation the_hom_syms (hs)

lemma the_hom_syms_hom: ‹hs (l1 @ l2) = hs l1 @ hs l2 ›
by simp

lemma the_hom_syms_keep_var : ‹hs [(Nt A)] = [Nt A]›
by simp

6

lemma the_hom_syms_tms_inj: ‹hs w = map Tm m =⇒ ∃w ′. w = map Tm w ′›

proof(induction w arbitrary: m)
case Nil
then show ?case by simp

next
case (Cons a w)
then obtain w ′ where ‹w = map Tm w ′›
by (metis (no_types, opaque_lifting) append_Cons append_Nil map_eq_append_conv

the_hom_syms_hom)
then obtain a ′ where ‹a = Tm a ′›
proof −

assume a1 :
∧

a ′. a = Tm a ′ =⇒ thesis
have f2 : ∀ ss s. [s::(′a, (′a, ′b) bracket3) sym] @ ss = s # ss

by auto
have ∀ ss s. (s::(′a, ′b) sym) # ss = [s] @ ss

by simp
then show ?thesis using f2 a1 by (metis sym.exhaust sym.simps(4) Cons.prems

map_eq_Cons_D the_hom_syms_hom the_hom_syms_keep_var)
qed
then show ‹∃w ′. a # w = map Tm w ′›

by (metis List.list.simps(9) ‹w = map Tm w ′›)
qed

Helper for showing the upcoming lemma:
lemma helper : ‹the_hom_sym (Tm x) = map Tm (the_hom1 x)›

by(induction x rule: the_hom1 .induct)(auto split: list.splits sym.splits)

Show that the extension really is an extension in some sense:
lemma h_eq_h_ext: ‹hs (map Tm x) = map Tm (h x)›
proof(induction x)

case Nil
then show ?case by simp

next
case (Cons a x)
then show ?case using helper [of a] by simp

qed

lemma the_hom1_strip: ‹(the_hom_sym x ′) = map Tm w =⇒ the_hom1 (destTm
x ′) = w›

by(induction x ′ rule: the_hom_sym.induct; auto)

lemma the_hom1_strip2 : ‹concat (map the_hom_sym w ′) = map Tm w =⇒
concat (map (the_hom1 ◦ destTm) w ′) = w›
proof(induction w ′ arbitrary: w)

case Nil
then show ?case by simp

next

7

case (Cons a w ′)
then show ?case

by(auto simp: the_hom1_strip map_eq_append_conv append_eq_map_conv)
qed

lemma h_eq_h_ext2 :
assumes ‹hs w ′ = (map Tm w)›
shows ‹h (map destTm w ′) = w›

using assms by (simp add: the_hom1_strip2)

3 The Regular Language
The regular Language Reg will be an intersection of 5 Languages. The
languages 2 , 3 ,4 are defined each via a relation P2 , P3 , P4 on neighbouring
letters and lifted to a language via successively. Language 1 is an intersection
of another such lifted relation P1 ′ and a condition on the last letter (if
existent). Language 5 is a condition on the first letter (and requires it to
exist). It takes a term of type ′n (the original variable type) as parameter.

Additionally a version of each language (taking symbols as input) is
defined which allows arbitrary interspersion of nonterminals.

As this interspersion weakens the description, the symbol version of the
regular language (Reg_sym) is defined using two additional languages lifted
from P7 and P8. These vanish when restricted to words only containing
terminals.

As stated in the introductory text, these languages will only be regular,
when constrained to a finite bracket set. The theorems about this, are in
the later section Showing Regularity.

3.1 P1
P1 will define a predicate on string elements. It will be true iff each]1p is
directly followed by [2p. That also means]1p cannot be the end of the string.

But first we define a helper function, that only captures the neighbouring
condition for two strings:
fun P1 ′ :: ‹(′n, ′t) bracket3 ⇒ (′n, ′t) bracket3 ⇒ bool› where

‹P1 ′]1p [2p
′ = (p = p ′)› |

‹P1 ′]1p y = False› |
‹P1 ′ x y = True›

A version of P1 ′ for symbols, i.e. strings that may still contain Nt’s:
fun P1 ′_sym :: ‹(′n, (′n, ′t) bracket3) sym ⇒ (′n, (′n, ′t) bracket3) sym ⇒ bool›
where

‹P1 ′_sym (Tm]1p) (Tm [2p
′) = (p = p ′)› |

‹P1 ′_sym (Tm]1p) y = False› |
‹P1 ′_sym x y = True›

8

lemma P1 ′D[simp]:
‹P1 ′]1p r ←→ r = [2p›

by(induction ‹]1p› ‹r› rule: P1 ′.induct) auto

Asserts that P1 ′ holds for every pair in xs, and that xs doesnt end in
]1p:
fun P1 :: (′n, ′t) bracket3 list ⇒ bool where

‹P1 xs = ((successively P1 ′ xs) ∧ (if xs 6= [] then (@ p. last xs =]1p) else True))›

Asserts that P1 ′ holds for every pair in xs, and that xs doesnt end in
Tm]1p:
fun P1_sym where

‹P1_sym xs = ((successively P1 ′_sym xs) ∧ (if xs 6= [] then (@ p. last xs = Tm
]1p) else True))›

lemma P1_for_tm_if_P1_sym[dest!]: ‹P1_sym (map Tm x) =⇒ P1 x›
proof(induction x rule: induct_list012)

case (3 x y zs)
then show ?case

by(cases ‹(Tm x :: (′a, (′a, ′b)bracket3) sym, Tm y :: (′a, (′a, ′b)bracket3) sym)›
rule: P1 ′_sym.cases) auto
qed simp_all

lemma P1I [intro]:
assumes ‹successively P1 ′ xs›

and ‹@ p. last xs =]1p›
shows ‹P1 xs›

proof(cases xs)
case Nil
then show ?thesis using assms by force

next
case (Cons a list)
then show ?thesis using assms by (auto split: version.splits sym.splits prod.splits)

qed

lemma P1_symI [intro]:
assumes ‹successively P1 ′_sym xs›

and ‹@ p. last xs = Tm]1p›
shows ‹P1_sym xs›

proof(cases xs rule: rev_cases)
case Nil
then show ?thesis by auto

next
case (snoc ys y)
then show ?thesis

using assms by (cases y) auto
qed

9

lemma P1_symD[dest]: ‹P1_sym xs =⇒ successively P1 ′_sym xs› by simp

lemma P1D_not_empty[intro]:
assumes ‹xs 6= []›

and ‹P1 xs›
shows ‹last xs 6=]1p›

proof−
from assms have ‹successively P1 ′ xs ∧ (@ p. last xs =]1p)›

by simp
then show ?thesis by blast

qed

lemma P1_symD_not_empty ′[intro]:
assumes ‹xs 6= []›

and ‹P1_sym xs›
shows ‹last xs 6= Tm]1p›

proof−
from assms have ‹successively P1 ′_sym xs ∧ (@ p. last xs = Tm]1p)›

by simp
then show ?thesis by blast

qed

lemma P1_symD_not_empty:
assumes ‹xs 6= []›

and ‹P1_sym xs›
shows ‹@ p. last xs = Tm]1p›
using P1_symD_not_empty ′[OF assms] by simp

3.2 P2
A]2π is never directly followed by some [:
fun P2 :: ‹(′n, ′t) bracket3 ⇒ (′n, ′t) bracket3 ⇒ bool› where

‹P2 (Close (p, Two)) (Open (p ′, v)) = False› |
‹P2 (Close (p, Two)) y = True› |
‹P2 x y = True›

fun P2_sym :: ‹(′n, (′n, ′t) bracket3) sym ⇒ (′n, (′n, ′t) bracket3) sym ⇒ bool›
where

‹P2_sym (Tm (Close (p, Two))) (Tm (Open (p ′, v))) = False› |
‹P2_sym (Tm (Close (p, Two))) y = True› |
‹P2_sym x y = True›

lemma P2_for_tm_if_P2_sym[dest]: ‹successively P2_sym (map Tm x) =⇒ suc-
cessively P2 x›

apply(induction x rule: induct_list012)
apply simp

apply simp
using P2 .elims(3) by fastforce

10

3.3 P3
Each [1A→BC is directly followed by [1B→_, and each [2A→BC is directly
followed by [1C→_:
fun P3 :: ‹(′n, ′t) bracket3 ⇒ (′n, ′t) bracket3 ⇒ bool› where

‹P3 [1(A, [Nt B, Nt C]) (p, ((X ,y), t)) = (p = True ∧ t = One ∧ X = B)› |
‹P3 [2(A, [Nt B, Nt C]) (p, ((X ,y), t)) = (p = True ∧ t = One ∧ X = C)› |
‹P3 x y = True›

Each [1A→BC is directly followed [1B→_ or Nt B, and each [2A→BC is
directly followed by [1C→_ or Nt C :
fun P3_sym :: ‹(′n, (′n, ′t) bracket3) sym ⇒ (′n, (′n, ′t) bracket3) sym ⇒ bool›
where

‹P3_sym (Tm [1(A, [Nt B, Nt C])) (Tm (p, ((X ,y), t))) = (p = True ∧ t = One
∧ X = B)› |

— Not obvious: the case (Tm [1(A, [Nt B, Nt C])) Nt X is set to True with the
catch all

‹P3_sym (Tm [1(A, [Nt B, Nt C])) (Nt X) = (X = B)› |

‹P3_sym (Tm [2(A, [Nt B, Nt C])) (Tm (p, ((X ,y), t))) = (p = True ∧ t = One ∧
X = C)› |
‹P3_sym (Tm [2(A, [Nt B, Nt C])) (Nt X) = (X = C)› |
‹P3_sym x y = True›

lemma P3D1 [dest]:
fixes r ::‹(′n, ′t) bracket3 ›
assumes ‹P3 [1(A, [Nt B, Nt C]) r›
shows ‹∃ l. r = [1(B, l)›
using assms by(induction ‹[1(A, [Nt B, Nt C]):: (

′n, ′t) bracket3 › r rule: P3 .induct)
auto

lemma P3D2 [dest]:
fixes r ::‹(′n, ′t) bracket3 ›
assumes ‹P3 [2(A, [Nt B, Nt C]) r›
shows ‹∃ l. r = [1(C , l)›
using assms by(induction ‹[1(A, [Nt B, Nt C]):: (

′n, ′t) bracket3 › r rule: P3 .induct)
auto

lemma P3_for_tm_if_P3_sym[dest]: ‹successively P3_sym (map Tm x) =⇒ suc-
cessively P3 x›
proof(induction x rule: induct_list012)

case (3 x y zs)
then show ?case

by(cases ‹(Tm x :: (′a, (′a, ′b) bracket3) sym, Tm y :: (′a, (′a, ′b) bracket3)
sym)› rule: P3_sym.cases) auto
qed simp_all

11

3.4 P4
Each [1A→a is directly followed by]1A→a and each [2A→a is directly followed
by]2A→a:
fun P4 :: ‹(′n, ′t) bracket3 ⇒ (′n, ′t) bracket3 ⇒ bool› where

‹P4 (Open ((A, [Tm a]), s)) (p, ((X , y), t)) = (p = False ∧ X = A ∧ y = [Tm
a] ∧ s = t)› |

‹P4 x y = True›

Each [1A→a is directly followed by]1A→a and each [2A→a is directly
followed by]2A→a:
fun P4_sym :: ‹(′n, (′n, ′t) bracket3) sym ⇒ (′n, (′n, ′t) bracket3) sym ⇒ bool›
where

‹P4_sym (Tm (Open ((A, [Tm a]), s))) (Tm (p, ((X , y), t))) = (p = False ∧ X
= A ∧ y = [Tm a] ∧ s = t)› |

‹P4_sym (Tm (Open ((A, [Tm a]), s))) (Nt X) = False› |
‹P4_sym x y = True›

lemma P4D[dest]:
fixes r ::‹(′n, ′t) bracket3 ›
assumes ‹P4 (Open ((A, [Tm a]), v)) r›
shows ‹r = Close ((A, [Tm a]), v)›
using assms by(induction ‹(Open ((A, [Tm a]), v))::(′n, ′t) bracket3 › r rule:

P4 .induct) auto

lemma P4_for_tm_if_P4_sym[dest]: ‹successively P4_sym (map Tm x) =⇒ suc-
cessively P4 x›
proof(induction x rule: induct_list012)

case (3 x y zs)
then show ?case

by(cases ‹(Tm x :: (′a, (′a, ′b) bracket3) sym, Tm y :: (′a, (′a, ′b) bracket3)
sym)› rule: P4_sym.cases) auto
qed simp_all

3.5 P5
P5 A x holds, iff there exists some y such that x begins with [1A→y:
fun P5 :: ‹ ′n ⇒ (′n, ′t) bracket3 list ⇒ bool› where

‹P5 A [] = False› |
‹P5 A ([1(X ,x) # xs) = (X = A)› |
‹P5 A (x # xs) = False›

P5_sym A x holds, iff either there exists some y such that x begins with
[1A→y, or if it begins with Nt A:
fun P5_sym :: ‹ ′n ⇒ (′n, (′n, ′t) bracket3) syms ⇒ bool› where

‹P5_sym A [] = False› |
‹P5_sym A (Tm [1(X ,x) # xs) = (X = A)› |
‹P5_sym A ((Nt X) # xs) = (X = A)› |

12

‹P5_sym A (x # xs) = False›

lemma P5D[dest]:
assumes ‹P5 A x›
shows ‹∃ y. hd x = [1(A,y)›
using assms by(induction A x rule: P5 .induct) auto

lemma P5_symD[dest]:
assumes ‹P5_sym A x›
shows ‹(∃ y. hd x = Tm [1(A,y)) ∨ hd x = Nt A›
using assms by(induction A x rule: P5_sym.induct) auto

lemma P5_for_tm_if_P5_sym[dest]: ‹P5_sym A (map Tm x) =⇒ P5 A x›
by(induction x) auto

3.6 P7 and P8
(successively P7_sym) w iff Nt Y is directly preceded by some Tm [1A→YC
or Tm [2A→BY in w:
fun P7_sym :: ‹(′n, (′n, ′t) bracket3) sym ⇒ (′n, (′n, ′t) bracket3) sym ⇒ bool›
where

‹P7_sym (Tm (b,(A, [Nt B, Nt C]), v)) (Nt Y) = (b = True ∧ ((Y = B ∧ v =
One) ∨ (Y=C ∧ v = Two)))› |

‹P7_sym x (Nt Y) = False› |
‹P7_sym x y = True›

lemma P7_symD[dest]:
fixes x:: ‹(′n, (′n, ′t) bracket3) sym›
assumes ‹P7_sym x (Nt Y)›
shows ‹(∃A C . x = Tm [1(A,[Nt Y , Nt C])) ∨ (∃A B. x = Tm [2(A,[Nt B, Nt Y]))›
using assms by(induction x ‹Nt Y ::(′n, (′n, ′t) bracket3) sym› rule: P7_sym.induct)

auto

(successively P8_sym) w iff Nt Y is directly followed by some]1A→YC
or]2A→BY in w:
fun P8_sym :: ‹(′n, (′n, ′t) bracket3) sym ⇒ (′n, (′n, ′t) bracket3) sym ⇒ bool›
where

‹P8_sym (Nt Y) (Tm (b,(A, [Nt B, Nt C]), v)) = (b = False ∧ ((Y = B ∧ v
= One) ∨ (Y=C ∧ v = Two)))› |

‹P8_sym (Nt Y) x = False› |
‹P8_sym x y = True›

lemma P8_symD[dest]:
fixes x:: ‹(′n, (′n, ′t) bracket3) sym›
assumes ‹P8_sym (Nt Y) x›
shows ‹(∃A C . x = Tm]1(A,[Nt Y , Nt C])) ∨ (∃A B. x = Tm]2(A,[Nt B, Nt Y]))›
using assms by(induction ‹Nt Y ::(′n, (′n, ′t) bracket3) sym› x rule: P8_sym.induct)

auto

13

3.7 Reg and Reg_sym
This is the regular language, where one takes the Start symbol as a param-
eter, and then has the searched for R := RA:
definition Reg :: ‹ ′n ⇒ (′n, ′t) bracket3 list set› where

‹Reg A = {x. (P1 x) ∧
(successively P2 x) ∧
(successively P3 x) ∧
(successively P4 x) ∧
(P5 A x)}›

lemma RegI [intro]:
assumes ‹(P1 x)›

and ‹(successively P2 x)›
and ‹(successively P3 x)›
and ‹(successively P4 x)›
and ‹(P5 A x)›

shows ‹x ∈ Reg A›
using assms unfolding Reg_def by blast

lemma RegD[dest]:
assumes ‹x ∈ Reg A›
shows ‹(P1 x)›

and ‹(successively P2 x)›
and ‹(successively P3 x)›
and ‹(successively P4 x)›
and ‹(P5 A x)›

using assms unfolding Reg_def by blast+

A version of Reg for symbols, i.e. strings that may still contain Nt’s. It
has 2 more Properties P7 and P8 that vanish for pure terminal strings:
definition Reg_sym :: ‹ ′n ⇒ (′n, (′n, ′t) bracket3) syms set› where

‹Reg_sym A = {x. (P1_sym x) ∧
(successively P2_sym x) ∧
(successively P3_sym x) ∧
(successively P4_sym x) ∧
(P5_sym A x) ∧
(successively P7_sym x) ∧
(successively P8_sym x)}›

lemma Reg_symI [intro]:
assumes ‹P1_sym x›

and ‹successively P2_sym x›
and ‹successively P3_sym x›
and ‹successively P4_sym x›
and ‹P5_sym A x›
and ‹(successively P7_sym x)›
and ‹(successively P8_sym x)›

shows ‹x ∈ Reg_sym A›

14

using assms unfolding Reg_sym_def by blast

lemma Reg_symD[dest]:
assumes ‹x ∈ Reg_sym A›
shows ‹P1_sym x›

and ‹successively P2_sym x›
and ‹successively P3_sym x›
and ‹successively P4_sym x›
and ‹P5_sym A x›
and ‹(successively P7_sym x)›
and ‹(successively P8_sym x)›

using assms unfolding Reg_sym_def by blast+

lemma Reg_for_tm_if_Reg_sym[dest]: ‹(map Tm x) ∈ Reg_sym A =⇒ x ∈ Reg
A›
by(rule RegI) auto

4 Showing Regularity
context locale_P
begin

abbreviation brackets::‹(′n, ′t) bracket3 list set› where
‹brackets ≡ {bs. ∀ (_,p,_) ∈ set bs. p ∈ P}›

This is needed for the construction that shows P2,P3,P4 regular.
datatype ′a state = start | garbage | letter ′a

definition allStates :: ‹(′n, ′t) bracket3 state set ›where
‹allStates = { letter (br ,(p,v)) | br p v. p ∈ P } ∪ {start, garbage}›

lemma allStatesI : ‹p ∈ P =⇒ letter (br ,(p,v)) ∈ allStates›
unfolding allStates_def by blast

lemma start_in_allStates[simp]: ‹start ∈ allStates›
unfolding allStates_def by blast

lemma garbage_in_allStates[simp]: ‹garbage ∈ allStates›
unfolding allStates_def by blast

lemma finite_allStates_if :
shows ‹finite(allStates)›

proof −
define S ::‹(′n, ′t) bracket3 state set› where S = {letter (br , (p, v)) | br p v. p
∈ P}

have 1 :S = (λ(br , p, v). letter (br , (p, v))) ‘ ({True, False} × P × {One, Two})

unfolding S_def by (auto simp: image_iff intro: version.exhaust)
have finite ({True, False} × P × {One, Two})

15

using finiteP by simp
then have ‹finite ((λ(br , p, v). letter (br , (p, v))) ‘ ({True, False} × P × {One,

Two}))›
by blast

then have ‹finite S›
unfolding 1 by blast

then have finite (S ∪ {start, garbage})
by simp

then show ‹finite (allStates)›
unfolding allStates_def S_def by blast

qed

end

4.1 An automaton for {xs. successively Q xs ∧ xs ∈ brackets P}
locale successivelyConstruction = locale_P where P = P for P :: (′n, ′t) Prods
+
fixes Q :: (′n, ′t) bracket3 ⇒ (′n, ′t) bracket3 ⇒ bool — e.g. P2
begin

fun succNext :: ‹(′n, ′t) bracket3 state ⇒ (′n, ′t) bracket3 ⇒ (′n, ′t) bracket3 state›
where

‹succNext garbage _ = garbage› |
‹succNext start (br ′, p ′, v ′) = (if p ′ ∈ P then letter (br ′, p ′,v ′) else garbage)› |
‹succNext (letter (br , p, v)) (br ′, p ′, v ′) = (if Q (br ,p,v) (br ′,p ′,v ′) ∧ p ∈ P ∧

p ′ ∈ P then letter (br ′,p ′,v ′) else garbage)›

theorem succNext_induct[case_names garbage startp startnp letterQ letternQ]:
fixes R :: (′n, ′t) bracket3 state ⇒ (′n, ′t) bracket3 ⇒ bool
fixes a0 :: (′n, ′t) bracket3 state

and a1 :: (′n, ′t) bracket3
assumes

∧
u. R garbage u

and
∧

br ′ p ′ v ′. p ′ ∈ P =⇒ R state.start (br ′, p ′, v ′)
and

∧
br ′ p ′ v ′. p ′ /∈ P =⇒ R state.start (br ′, p ′, v ′)

and
∧

br p v br ′ p ′ v ′. Q (br ,p,v) (br ′,p ′,v ′) ∧ p ∈ P ∧ p ′ ∈ P =⇒ R (letter
(br , p, v)) (br ′, p ′, v ′)

and
∧

br p v br ′ p ′ v ′. ¬(Q (br ,p,v) (br ′,p ′,v ′) ∧ p ∈ P ∧ p ′ ∈ P) =⇒ R (letter
(br , p, v)) (br ′, p ′, v ′)

shows R a0 a1
by (metis assms prod_cases3 state.exhaust)

abbreviation aut where ‹aut ≡ (|dfa ′.states = allStates,
init = start,
final = (allStates − {garbage}),
nxt = succNext |)›

interpretation aut : dfa ′ aut
proof(unfold_locales, goal_cases)

16

case 1
then show ?case by simp

next
case 2
then show ?case by simp

next
case (3 q x)
then show ?case

by(induction rule: succNext_induct[of _ q x]) (auto simp: allStatesI)
next

case 4
then show ?case

using finiteP by (simp add: finite_allStates_if)
qed

lemma nextl_in_allStates[intro,simp]: ‹q ∈ allStates =⇒ aut.nextl q ys ∈ all-
States›

using aut.nxt by(induction ys arbitrary: q) auto

lemma nextl_garbage[simp]: ‹aut.nextl garbage xs = garbage›
by(induction xs) auto

lemma drop_right: ‹xs@ys ∈ aut.language =⇒ xs ∈ aut.language›
proof(induction ys)

case (Cons a ys)
then have ‹xs @ [a] ∈ aut.language›

using aut.language_def aut.nextl_app by fastforce
then have ‹xs ∈ aut.language›

using aut.language_def by force
then show ?case by blast

qed auto

lemma state_after1 [iff]: ‹(succNext q a 6= garbage) = (succNext q a = letter a)›
by(induction q a rule: succNext.induct) (auto split: if_splits)

lemma state_after_in_P[intro]: ‹succNext q (br , p, v) 6= garbage =⇒ p ∈ P›
by(induction q ‹(br , p, v)› rule: succNext_induct) auto

lemma drop_left_general: ‹aut.nextl start ys = garbage =⇒ aut.nextl q ys =
garbage›
proof(induction ys)

case Nil
then show ?case by simp

next
case (Cons a ys)
show ?case

by(rule succNext.elims[of q a])(use Cons.prems in auto)
qed

17

lemma drop_left: ‹xs@ys ∈ aut.language =⇒ ys ∈ aut.language›
unfolding aut.language_def
by(induction xs arbitrary: ys) (auto dest: drop_left_general)

lemma empty_in_aut: ‹[] ∈ aut.language›
unfolding aut.language_def by simp

lemma singleton_in_aut_iff : ‹[(br , p, v)] ∈ aut.language ←→ p ∈ P›
unfolding aut.language_def by simp

lemma duo_in_aut_iff : ‹[(br , p, v), (br ′, p ′, v ′)] ∈ aut.language ←→ Q (br ,p,v)
(br ′,p ′,v ′) ∧ p ∈ P ∧ p ′ ∈ P›

unfolding aut.language_def by auto

lemma trio_in_aut_iff : ‹(br , p, v) # (br ′, p ′, v ′) # zs ∈ aut.language ←→ Q
(br ,p,v) (br ′,p ′,v ′) ∧ p ∈ P ∧ p ′ ∈ P ∧ (br ′,p ′,v ′) # zs ∈ aut.language›
proof(standard, goal_cases)

case 1
with drop_left have ∗:‹(br ′, p ′, v ′) # zs ∈ aut.language›

by (metis append_Cons append_Nil)
from drop_right 1 have ‹[(br , p, v), (br ′, p ′, v ′)] ∈ aut.language›

by simp
with duo_in_aut_iff have ∗∗:‹Q (br ,p,v) (br ′,p ′,v ′) ∧ p ∈ P ∧ p ′ ∈ P›

by blast
from ∗ ∗∗ show ?case by simp

next
case 2
then show ?case unfolding aut.language_def by auto

qed

lemma aut_lang_iff_succ_Q: ‹(successively Q xs ∧ xs ∈ brackets) ←→ (xs ∈
aut.language)›
proof(induction xs rule: induct_list012)

case 1
then show ?case using empty_in_aut by auto

next
case (2 x)
then show ?case

using singleton_in_aut_iff by auto
next

case (3 x y zs)
show ?case
proof(cases x)

case (fields br p v)
then have x_eq: ‹x = (br , p, v)›

by simp
then show ?thesis
proof(cases y)

case (fields br ′ p ′ v ′)

18

then have y_eq: ‹y = (br ′, p ′, v ′)›
by simp

have ‹(x # y # zs ∈ aut.language) ←→ Q (br ,p,v) (br ′,p ′,v ′) ∧ p ∈ P ∧
p ′ ∈ P ∧ (br ′,p ′,v ′) # zs ∈ aut.language›

unfolding x_eq y_eq using trio_in_aut_iff by blast
also have ‹... ←→ Q (br ,p,v) (br ′,p ′,v ′) ∧ p ∈ P ∧ p ′ ∈ P ∧

(successively Q ((br ′,p ′,v ′) # zs) ∧ (br ′,p ′,v ′) # zs ∈ brackets)›
using 3 unfolding x_eq y_eq by blast

also have ‹... ←→ successively Q ((br ,p,v) # (br ′,p ′,v ′) #zs) ∧ (br ,p,v)
(br ′,p ′,v ′) # zs ∈ brackets›

by force
also have ‹... ←→ successively Q (x # y #zs) ∧ x # y # zs ∈ brackets›

unfolding x_eq y_eq by blast
finally show ?thesis by blast

qed
qed

qed

lemma aut_language_reg: ‹regular aut.language›
by (meson aut.regular)

corollary regular_successively_inter_brackets: ‹regular {xs. successively Q xs ∧
xs ∈ brackets}›

using aut_language_reg aut_lang_iff_succ_Q by auto

end

4.2 Regularity of P2, P3 and P4
context locale_P
begin

lemma P2_regular :
shows ‹regular {xs. successively P2 xs ∧ xs ∈ brackets} ›

proof−
interpret successivelyConstruction P P2

by(unfold_locales)
show ?thesis using regular_successively_inter_brackets by blast

qed

lemma P3_regular :
‹regular {xs. successively P3 xs ∧ xs ∈ brackets} ›

proof−
interpret successivelyConstruction P P3

by(unfold_locales)
show ?thesis using regular_successively_inter_brackets by blast

qed

lemma P4_regular :

19

‹regular {xs. successively P4 xs ∧ xs ∈ brackets }›
proof−

interpret successivelyConstruction P P4
by(unfold_locales)

show ?thesis using regular_successively_inter_brackets by blast
qed

4.3 An automaton for P1
More Precisely, for the if not empty, then doesnt end in (Close_,1) part.
Then intersect with the other construction for P1 ′ to get P1 regular.
datatype P1_State = last_ok | last_bad | garbage

The good ending letters, are those that are not of the form (Close _ ,
1).
fun good where

‹good]1p = False› |
‹good (br , p, v) = True›

fun nxt1 :: ‹P1_State ⇒ (′n, ′t) bracket3 ⇒ P1_State› where
‹nxt1 garbage _ = garbage› |
‹nxt1 last_ok (br , p, v) = (if p /∈ P then garbage else (if good (br , p, v) then

last_ok else last_bad))› |
‹nxt1 last_bad (br , p, v) = (if p /∈ P then garbage else (if good (br , p, v) then

last_ok else last_bad))›

theorem nxt1_induct[case_names garbage startp startnp letterQ letternQ]:
fixes R :: P1_State ⇒ (′n, ′t) bracket3 ⇒ bool
fixes a0 :: P1_State

and a1 :: (′n, ′t) bracket3
assumes

∧
u. R garbage u

and
∧

br p v. p /∈ P =⇒ R last_ok (br , p, v)
and

∧
br p v. p ∈ P ∧ good (br , p, v) =⇒ R last_ok (br , p, v)

and
∧

br p v. p ∈ P ∧ ¬(good (br , p, v)) =⇒ R last_ok (br , p, v)
and

∧
br p v. p /∈ P =⇒ R last_bad (br , p, v)

and
∧

br p v. p ∈ P ∧ good (br , p, v) =⇒ R last_bad (br , p, v)
and

∧
br p v. p ∈ P ∧ ¬(good (br , p, v)) =⇒ R last_bad (br , p, v)

shows R a0 a1
by (metis (full_types) P1_State.exhaust assms prod_induct3)

abbreviation p1_aut where ‹p1_aut ≡ (|dfa ′.states = {last_ok, last_bad, garbage},
init = last_ok,
final = {last_ok},
nxt = nxt1 |)›

interpretation p1_aut : dfa ′ p1_aut
proof(unfold_locales, goal_cases)

case 1
then show ?case by simp

20

next
case 2
then show ?case by simp

next
case (3 q x)
then show ?case

by(induction rule: nxt1_induct[of _ q x]) auto
next

case 4
then show ?case by simp

qed

lemma nextl_garbage_iff [simp]: ‹p1_aut.nextl last_ok xs = garbage ←→ xs /∈
brackets›
proof(induction xs rule: rev_induct)

case Nil
then show ?case by simp

next
case (snoc x xs)
then have ‹xs @ [x] /∈ brackets ←→ (xs /∈ brackets ∨ [x] /∈ brackets)›

by auto
moreover have ‹(p1_aut.nextl last_ok (xs@[x]) = garbage) ←→

(p1_aut.nextl last_ok xs = garbage) ∨ ((p1_aut.nextl last_ok (xs @ [x]) =
garbage) ∧ (p1_aut.nextl last_ok (xs) 6= garbage))›

by auto
ultimately show ?case using snoc

apply (cases x)
apply (simp)

by (smt (z3) P1_State.exhaust P1_State.simps(3 ,5) nxt1 .simps(2 ,3))
qed

lemma lang_descr_full:
‹(p1_aut.nextl last_ok xs = last_ok ←→ (xs = [] ∨ (xs 6= [] ∧ good (last xs) ∧

xs ∈ brackets))) ∧
(p1_aut.nextl last_ok xs = last_bad ←→ ((xs 6= [] ∧ ¬good (last xs) ∧ xs ∈

brackets)))›
proof(induction xs rule: rev_induct)

case Nil
then show ?case by auto

next
case (snoc x xs)
then show ?case
proof(cases ‹p1_aut.nextl last_ok (xs@[x]) = garbage›)

case True
then show ?thesis using nextl_garbage_iff by fastforce

next
case False
then have br : ‹xs ∈ brackets› ‹[x] ∈ brackets›

using nextl_garbage_iff by fastforce+

21

with snoc consider ‹(p1_aut.nextl last_ok xs = last_ok)› | ‹(p1_aut.nextl
last_ok xs = last_bad)›

using nextl_garbage_iff by blast
then show ?thesis
proof(cases)

case 1
then show ?thesis using br by(cases ‹good x›) auto

next
case 2
then show ?thesis using br by(cases ‹good x›) auto

qed
qed

qed

lemma lang_descr : ‹xs ∈ p1_aut.language ←→ (xs = [] ∨ (xs 6= [] ∧ good (last
xs) ∧ xs ∈ brackets))›

unfolding p1_aut.language_def using lang_descr_full by auto

lemma good_iff [simp]:‹(∀ a b. last xs 6=]1(a, b)) = good (last xs)›
by (metis good.simps(1) good.elims(3) split_pairs)

lemma in_P1_iff : ‹(P1 xs ∧ xs ∈ brackets) ←→ (xs = [] ∨ (xs 6= [] ∧ good (last
xs) ∧ xs ∈ brackets)) ∧ successively P1 ′ xs ∧ xs ∈ brackets›

using good_iff by auto

corollary P1_eq: ‹{xs. P1 xs ∧ xs ∈ brackets} =
{xs. successively P1 ′ xs ∧ xs ∈ brackets} ∩ {xs. xs = [] ∨ (xs 6= [] ∧ good

(last xs) ∧ xs ∈ brackets)}›
using in_P1_iff by blast

lemma P1 ′_regular :
shows ‹regular {xs. successively P1 ′ xs ∧ xs ∈ brackets} ›

proof−
interpret successivelyConstruction P P1 ′

by(unfold_locales)
show ?thesis using regular_successively_inter_brackets by blast

qed

lemma aut_language_reg: ‹regular p1_aut.language›
using p1_aut.regular by blast

corollary aux_regular : ‹regular {xs. xs = [] ∨ (xs 6= [] ∧ good (last xs) ∧ xs ∈
brackets)}›

using lang_descr aut_language_reg p1_aut.language_def by simp

corollary regular_P1 : ‹regular {xs. P1 xs ∧ xs ∈ brackets}›
unfolding P1_eq using P1 ′_regular aux_regular using regular_Int by blast

end

22

4.4 An automaton for P5
locale P5Construction = locale_P where P=P for P :: (′n, ′t)Prods +
fixes A :: ′n
begin

datatype P5_State = start | first_ok | garbage

The good/ok ending letters, are those that are not of the form (Close _
, 1).
fun ok where

‹ok (Open ((X , _), One)) = (X = A)› |
‹ok _ = False›

fun nxt2 :: ‹P5_State ⇒ (′n, ′t) bracket3 ⇒ P5_State› where
‹nxt2 garbage _ = garbage› |
‹nxt2 start (br , (X , r), v) = (if (X ,r) /∈ P then garbage else (if ok (br , (X , r),

v) then first_ok else garbage))› |
‹nxt2 first_ok (br , p, v) = (if p /∈ P then garbage else first_ok)›

theorem nxt2_induct[case_names garbage startnp start_p_ok start_p_nok first_ok_np
first_ok_p]:

fixes R :: P5_State ⇒ (′n, ′t) bracket3 ⇒ bool
fixes a0 :: P5_State

and a1 :: (′n, ′t) bracket3
assumes

∧
u. R garbage u

and
∧

br p v. p /∈ P =⇒ R start (br , p, v)
and

∧
br X r v. (X , r) ∈ P ∧ ok (br , (X , r), v) =⇒ R start (br , (X , r), v)

and
∧

br X r v. (X , r) ∈ P ∧ ¬ok (br , (X , r), v) =⇒ R start (br , (X , r), v)
and

∧
br X r v. (X , r) /∈ P =⇒ R first_ok (br , (X , r), v)

and
∧

br X r v. (X , r) ∈ P =⇒ R first_ok (br , (X , r), v)
shows R a0 a1

by (metis (full_types, opaque_lifting) P5_State.exhaust assms surj_pair)

abbreviation p5_aut where ‹p5_aut ≡ (|dfa ′.states = {start, first_ok, garbage},
init = start,
final = {first_ok},
nxt = nxt2 |)›

interpretation p5_aut : dfa ′ p5_aut
proof(unfold_locales, goal_cases)

case 1
then show ?case by simp

next
case 2
then show ?case by simp

next
case (3 q x)
then show ?case by(induction rule: nxt2_induct[of _ q x]) auto

next

23

case 4
then show ?case by simp

qed

corollary nxt2_start_ok_iff : ‹ok x ∧ fst(snd x) ∈ P ←→ nxt2 start x = first_ok›
by(auto elim!: nxt2 .elims ok.elims split: if_splits)

lemma empty_not_in_lang[simp]:‹[] /∈ p5_aut.language›
unfolding p5_aut.language_def by auto

lemma singleton_in_lang_iff : ‹[x] ∈ p5_aut.language ←→ ok (hd [x]) ∧ [x] ∈
brackets›

unfolding p5_aut.language_def using nxt2_start_ok_iff by (cases x) fastforce

lemma singleton_first_ok_iff : ‹p5_aut.nextl start ([x]) = first_ok ∨ p5_aut.nextl
start ([x]) = garbage›
by(cases x) (auto split: if_splits)

lemma first_ok_iff : ‹xs 6= [] =⇒ p5_aut.nextl start xs = first_ok ∨ p5_aut.nextl
start xs = garbage›
proof(induction xs rule: rev_induct)

case Nil
then show ?case by blast

next
case (snoc x xs)
then show ?case
proof(cases ‹xs = []›)

case True
then show ?thesis unfolding True using singleton_first_ok_iff by auto

next
case False
with snoc have ‹p5_aut.nextl start xs = first_ok ∨ p5_aut.nextl start xs =

garbage›
by blast

then show ?thesis
by(cases x) (auto split: if_splits)

qed
qed

lemma lang_descr : ‹xs ∈ p5_aut.language ←→ (xs 6= [] ∧ ok (hd xs) ∧ xs ∈
brackets)›
proof(induction xs rule: rev_induct)

case (snoc x xs)
then have IH : ‹(xs ∈ p5_aut.language) = (xs 6= [] ∧ ok (hd xs) ∧ xs ∈ brackets)›

by blast
then show ?case
proof(cases xs)

case Nil

24

then show ?thesis using singleton_in_lang_iff by auto
next

case (Cons y ys)
then have xs_eq: ‹xs = y # ys›

by blast
then show ?thesis
proof(cases ‹xs ∈ p5_aut.language›)

case True
then have ‹(xs 6= [] ∧ ok (hd xs) ∧ xs ∈ brackets)›

using IH by blast
then show ?thesis

using p5_aut.language_def snoc by(cases x) auto
next

case False
then have ‹p5_aut.nextl start xs = garbage›

unfolding p5_aut.language_def using first_ok_iff [of xs] Cons by auto
then have ‹p5_aut.nextl start (xs@[x]) = garbage›

by simp
then show ?thesis using IH unfolding xs_eq p5_aut.language_def by auto

qed
qed

qed simp

lemma in_P5_iff : ‹P5 A xs ∧ xs ∈ brackets ←→ (xs 6= [] ∧ ok (hd xs) ∧ xs ∈
brackets)›

using P5 .elims(3) by fastforce

lemma aut_language_reg: ‹regular p5_aut.language›
using p5_aut.regular by blast

corollary aux_regular : ‹regular {xs. xs 6= [] ∧ ok (hd xs) ∧ xs ∈ brackets}›
using lang_descr aut_language_reg p5_aut.language_def by simp

lemma regular_P5 :‹regular {xs. P5 A xs ∧ xs ∈ brackets}›
using in_P5_iff aux_regular by presburger

end

context locale_P
begin

corollary regular_Reg_inter : ‹regular (brackets ∩ Reg A)›
proof−

interpret P5Construction P A ..
from finiteP have regs: ‹regular {xs. P1 xs ∧ xs ∈ brackets}›

‹regular {xs. successively P2 xs ∧ xs ∈ brackets}›
‹regular {xs. successively P3 xs ∧ xs ∈ brackets}›
‹regular {xs. successively P4 xs ∧ xs ∈ brackets}›

25

‹regular {xs. P5 A xs ∧ xs ∈ brackets}›
using regular_P1 P2_regular P3_regular P4_regular regular_P5
by blast+

hence ‹regular ({xs. P1 xs ∧ xs ∈ brackets} ∩
{xs. successively P2 xs ∧ xs ∈ brackets} ∩
{xs. successively P3 xs ∧ xs ∈ brackets} ∩
{xs. successively P4 xs ∧ xs ∈ brackets} ∩
{xs. P5 A xs ∧ xs ∈ brackets})›
by (meson regular_Int)

moreover have set_eq: ‹{xs. P1 xs ∧ xs ∈ brackets} ∩
{xs. successively P2 xs ∧ xs ∈ brackets} ∩
{xs. successively P3 xs ∧ xs ∈ brackets} ∩
{xs. successively P4 xs ∧ xs ∈ brackets} ∩
{xs. P5 A xs ∧ xs ∈ brackets}

= brackets ∩ Reg A› by auto

ultimately show ?thesis by argo
qed

A lemma saying that all Dyck_lang words really only consist of brackets
(trivial definition wrangling):
lemma Dyck_lang_subset_brackets: ‹Dyck_lang (P × {One, Two}) ⊆ brackets›

unfolding Dyck_lang_def using Ball_set by auto

end

5 Definitions of L, Γ, P ′, L ′

locale Chomsky_Schuetzenberger_locale = locale_P where P = P for P :: (′n, ′t)Prods
+
fixes S :: ′n
assumes CNF_P: ‹CNF P›

begin

lemma P_CNFE [dest]:
assumes ‹π ∈ P›
shows ‹∃A a B C . π = (A, [Nt B, Nt C]) ∨ π = (A, [Tm a])›
using assms CNF_P unfolding CNF_def by fastforce

definition L where
‹L = Lang P S›

definition Γ where
‹Γ = P × {One, Two}›

26

definition P ′ where
‹P ′ = transform_prod ‘ P›

definition L ′ where
‹L ′ = Lang P ′ S›

6 Lemmas for P ′ ` A⇒∗ x ←→ x ∈ RA ∩ Dyck_lang
Γ

lemma prod1_snds_in_tm [intro, simp]: ‹(A, [Nt B, Nt C]) ∈ P =⇒ snds_in_tm
Γ (wrap2 A B C)›

unfolding snds_in_tm_def using Γ_def by auto

lemma prod2_snds_in_tm [intro, simp]: ‹(A, [Tm a]) ∈ P =⇒ snds_in_tm Γ
(wrap1 A a)›

unfolding snds_in_tm_def using Γ_def by auto

lemma bal_tm_wrap1 [iff]: ‹bal_tm (wrap1 A a)›
unfolding bal_tm_def by (simp add: bal_iff_bal_stk)

lemma bal_tm_wrap2 [iff]: ‹bal_tm (wrap2 A B C)›
unfolding bal_tm_def by (simp add: bal_iff_bal_stk)

This essentially says, that the right sides of productions are in the Dyck
language of Γ, if one ignores any occuring nonterminals. This will be needed
for →.
lemma bal_tm_transform_rhs[intro!]:

‹(A,α) ∈ P =⇒ bal_tm (transform_rhs A α)›
by auto

lemma snds_in_tm_transform_rhs[intro!]:
‹(A,α) ∈ P =⇒ snds_in_tm Γ (transform_rhs A α)›
using P_CNFE by (fastforce)

The lemma for →
lemma P ′_imp_bal:

assumes ‹P ′ ` [Nt A] ⇒∗ x›
shows ‹bal_tm x ∧ snds_in_tm Γ x›
using assms proof(induction rule: derives_induct)
case base
then show ?case unfolding snds_in_tm_def by auto

next
case (step u A v w)
have ‹bal_tm (u @ [Nt A] @ v)› and ‹snds_in_tm Γ (u @ [Nt A] @ v)›

using step.IH step.prems by auto
obtain w ′ where w ′_def : ‹w = transform_rhs A w ′› and A_w ′_in_P: ‹(A,w ′)
∈ P›

using P ′_def step.hyps(2) by force

27

have bal_tm_w: ‹bal_tm w›
using bal_tm_transform_rhs[OF ‹(A,w ′) ∈ P›] w ′_def by auto

then have ‹bal_tm (u @ w @ v)›
using ‹bal_tm (u @ [Nt A] @ v)› by (metis bal_tm_empty bal_tm_inside

bal_tm_prepend_Nt)
moreover have ‹snds_in_tm Γ (u @ w @ v)›

using snds_in_tm_transform_rhs[OF ‹(A,w ′) ∈ P›] ‹snds_in_tm Γ (u @ [Nt
A] @ v)› w ′_def by (simp)

ultimately show ?case using ‹bal_tm (u @ w @ v)› by blast
qed

Another lemma for →
lemma P ′_imp_Reg:

assumes ‹P ′ ` [Nt T] ⇒∗ x›
shows ‹x ∈ Reg_sym T ›
using assms proof(induction rule: derives_induct)
case base
show ?case by(rule Reg_symI) simp_all

next
case (step u A v w)
have uAv: ‹u @ [Nt A] @ v ∈ Reg_sym T ›

using step by blast
have ‹(A, w) ∈ P ′›

using step by blast
then obtain w ′ where w ′_def : ‹transform_prod (A, w ′) = (A, w)› and ‹(A,w ′)
∈ P›

by (smt (verit, best) transform_prod.simps P ′_def P_CNFE fst_conv im-
age_iff)

then obtain B C a where w_eq: ‹w = wrap1 A a ∨ w = wrap2 A B C › (is ‹w
= ?w1 ∨ w = ?w2 ›)

by fastforce
then have w_resym: ‹w ∈ Reg_sym A›

by auto
have P5_uAv: ‹P5_sym T (u @ [Nt A] @ v)›

using Reg_symD[OF uAv] by blast
have P1_uAv: ‹P1_sym (u @ [Nt A] @ v)›

using Reg_symD[OF uAv] by blast
have left: ‹successively P1 ′_sym (u@w) ∧

successively P2_sym (u@w) ∧
successively P3_sym (u@w) ∧
successively P4_sym (u@w) ∧
successively P7_sym (u@w) ∧
successively P8_sym (u@w)›

proof(cases u rule: rev_cases)
case Nil
then show ?thesis using w_eq by auto

next
case (snoc ys y)

28

then have ‹successively P7_sym (ys @ [y] @ [Nt A] @ v)›
using Reg_symD[OF uAv] snoc by auto

then have ‹P7_sym y (Nt A)›
by (simp add: successively_append_iff)

then obtain R X Y v ′ where y_eq: ‹y = (Tm (Open((R, [Nt X , Nt Y]), v ′)))›
and ‹v ′ = One =⇒ A = X› and ‹v ′ = Two =⇒ A = Y ›

by blast
then have ‹P3_sym y (hd w)›

using w_eq ‹P7_sym y (Nt A)› by force
hence ‹P1 ′_sym (last (ys@[y])) (hd w) ∧

P2_sym (last (ys@[y])) (hd w) ∧
P3_sym (last (ys@[y])) (hd w) ∧
P4_sym (last (ys@[y])) (hd w) ∧
P7_sym (last (ys@[y])) (hd w) ∧
P8_sym (last (ys@[y])) (hd w)›

unfolding y_eq using w_eq by auto
with Reg_symD[OF uAv] moreover have

‹successively P1 ′_sym (ys @ [y]) ∧
successively P2_sym (ys @ [y]) ∧
successively P3_sym (ys @ [y]) ∧
successively P4_sym (ys @ [y]) ∧
successively P7_sym (ys @ [y]) ∧
successively P8_sym (ys @ [y])›
unfolding snoc using successively_append_iff by blast

ultimately show
‹successively P1 ′_sym (u@w) ∧

successively P2_sym (u@w) ∧
successively P3_sym (u@w) ∧
successively P4_sym (u@w) ∧
successively P7_sym (u@w) ∧
successively P8_sym (u@w)›
unfolding snoc using Reg_symD[OF w_resym] using successively_append_iff

by blast
qed
have right: ‹successively P1 ′_sym (w@v) ∧

successively P2_sym (w@v) ∧
successively P3_sym (w@v) ∧
successively P4_sym (w@v) ∧
successively P7_sym (w@v) ∧
successively P8_sym (w@v)›

proof(cases v)
case Nil
then show ?thesis using w_eq by auto

next
case (Cons y ys)
then have ‹successively P8_sym ([Nt A] @ y # ys)›

using Reg_symD[OF uAv] Cons using successively_append_iff by blast
then have ‹P8_sym (Nt A) y›

29

by fastforce
then obtain R X Y v ′ where y_eq: ‹y = (Tm (Close((R, [Nt X , Nt Y]), v ′)))›

and ‹v ′ = One =⇒ A = X› and ‹v ′ = Two =⇒ A = Y ›
by blast

have ‹P1 ′_sym (last w) (hd (y#ys)) ∧
P2_sym (last w) (hd (y#ys)) ∧
P3_sym (last w) (hd (y#ys)) ∧
P4_sym (last w) (hd (y#ys)) ∧
P7_sym (last w) (hd (y#ys)) ∧
P8_sym (last w) (hd (y#ys))›

unfolding y_eq using w_eq by auto
with Reg_symD[OF uAv] moreover have

‹successively P1 ′_sym (y # ys) ∧
successively P2_sym (y # ys) ∧
successively P3_sym (y # ys) ∧
successively P4_sym (y # ys) ∧
successively P7_sym (y # ys) ∧
successively P8_sym (y # ys)›
unfolding Cons by (metis P1_symD successively_append_iff)

ultimately show ‹successively P1 ′_sym (w@v) ∧
successively P2_sym (w@v) ∧
successively P3_sym (w@v) ∧
successively P4_sym (w@v) ∧
successively P7_sym (w@v) ∧
successively P8_sym (w@v)›

unfolding Cons using Reg_symD[OF w_resym] successively_append_iff by
blast

qed
from left right have P1_uwv: ‹successively P1 ′_sym (u@w@v)›

using w_eq by (metis (no_types, lifting) List.list.discI hd_append2 succes-
sively_append_iff)

from left right have ch:
‹successively P2_sym (u@w@v) ∧

successively P3_sym (u@w@v) ∧
successively P4_sym (u@w@v) ∧
successively P7_sym (u@w@v) ∧
successively P8_sym (u@w@v)›

using w_eq by (metis (no_types, lifting) List.list.discI hd_append2 succes-
sively_append_iff)

moreover have ‹P5_sym T (u@w@v)›
using w_eq P5_uAv by (cases u) auto

moreover have ‹P1_sym (u@w@v)›
proof(cases v rule: rev_cases)

case Nil
then have ‹@ p. last (u@w@v) = Tm (Close(p, One))›

using w_eq by auto
with P1_uwv show ‹P1_sym (u @ w @ v)›

30

by blast
next

case (snoc vs v ′)
then have ‹@ p. last v = Tm (Close(p, One))›
using P1_symD_not_empty[OF _ P1_uAv] by (metis Nil_is_append_conv

last_appendR not_Cons_self2)
then have ‹@ p. last (u@w@v) = Tm (Close(p, One))›

by (simp add: snoc)
with P1_uwv show ‹P1_sym (u @ w @ v)›

by blast
qed
ultimately show ‹(u@w@v) ∈ Reg_sym T ›

by blast
qed

This will be needed for the direction ←.
lemma transform_prod_one_step:

assumes ‹π ∈ P›
shows ‹P ′ ` [Nt (fst π)] ⇒ snd (transform_prod π)›

proof−
obtain w ′ where w ′_def : ‹transform_prod π = (fst π, w ′)›

by (metis fst_eqD transform_prod.simps surj_pair)
then have ‹(fst π, w ′) ∈ P ′›

using assms by (simp add: P ′_def rev_image_eqI)
then show ?thesis

by (simp add: w ′_def derive_singleton)
qed

The lemma for ←
lemma Reg_and_dyck_imp_P ′:

assumes ‹x ∈ (Reg A ∩ Dyck_lang Γ)›
shows ‹P ′ ` [Nt A] ⇒∗ map Tm x› using assms

proof(induction ‹length (map Tm x)› arbitrary: A x rule: less_induct)
case less
then have IH : ‹

∧
w H . [[length (map Tm w) < length (map Tm x); w ∈ Reg H

∩ Dyck_lang (Γ)]] =⇒
P ′ ` [Nt H] ⇒∗ map Tm w›

using less by simp
have xReg: ‹x ∈ Reg A› and xDL: ‹x ∈ Dyck_lang (Γ)›

using less by blast+

have p1x: ‹P1 x›
and p2x: ‹successively P2 x›
and p3x: ‹successively P3 x›
and p4x: ‹successively P4 x›
and p5x: ‹P5 A x›
using RegD[OF xReg] by blast+

from p5x obtain π t where hd_x: ‹hd x = [1π› and pi_def : ‹π = (A, t)›

31

by (metis List.list.sel(1) P5 .elims(2))
with xReg have ‹[1π ∈ set x›

by (metis List.list.sel(1) List.list.set_intros(1) RegD(5) P5 .elims(2))
then have pi_in_P: ‹π ∈ P›

using xDL unfolding Dyck_lang_def Γ_def by fastforce
have bal_x: ‹bal x›

using xDL by blast
then have ‹∃ y r . bal y ∧ bal r ∧ [1π # tl x = [1π # y @]1π # r›

using hd_x bal_x bal_Open_split[of ‹[1π ›, where ?xs = ‹tl x›]
by (metis (no_types, lifting) List.list.exhaust_sel List.list.inject Product_Type.prod.inject

P5 .simps(1) p5x)
then obtain y r1 where ‹[1π # tl x = [1π # y @]1π # r1 › and bal_y:

‹bal y› and bal_r1 : ‹bal r1 ›
by blast

then have split1 : ‹x = [1π # y @]1π # r1 ›
using hd_x by (metis List.list.exhaust_sel List.list.set(1) ‹[1π ∈ set x› empty_iff)

have ‹r1 6= []›
proof(rule ccontr)

assume ‹¬ r1 6= []›
then have ‹last x =]1π ›

using split1 by(auto)
then show ‹False›

using p1x using P1D_not_empty split1 by blast
qed
from p1x have hd_r1 : ‹hd r1 = [2π›
using split1 ‹r1 6= []› by (metis (no_types, lifting) List.list.discI List.successively.elims(1)

P1 ′D P1 .simps successively_Cons successively_append_iff)
from bal_r1 have ‹∃ z r2 . bal z ∧ bal r2 ∧ [2π # tl r1 = [2π # z @]2π # r2 ›
using bal_Open_split[of ‹[2π› ‹tl r1 ›] by (metis List.list.exhaust_sel List.list.sel(1)

Product_Type.prod.inject hd_r1 ‹r1 6= []›)
then obtain z r2 where split2 ′: ‹[2π # tl r1 = [2π # z @]2π # r2 › and

bal_z: ‹bal z› and bal_r2 : ‹bal r2 ›
by blast+

then have split2 : ‹x = [1π # y @]1π # [2π # z @]2π # r2 ›
by (metis ‹r1 6= []› hd_r1 list.exhaust_sel split1)

have r2_empty: ‹r2 = []› — prove that if r2 was not empty, it would need to
start with an open bracket, else it cant be balanced. But this cant be with P2.

proof(cases r2)
case (Cons r2 ′ r2 ′s)
with bal_r2 obtain g where r2_begin_op: ‹r2 ′ = (Open g)›

using bal_start_Open[of r2 ′ r2 ′s] using Cons by blast
have ‹successively P2 (]2π # r2 ′ # r2 ′s)›

using p2x unfolding split2 Cons successively_append_iff by (metis ap-
pend_Cons successively_append_iff)

then have ‹P2]2π (r2 ′)›
by fastforce

with r2_begin_op have ‹False›
by (metis P2 .simps(1) split_pairs)

then show ?thesis by blast

32

qed blast
then have split3 : ‹x = [1π # y @]1π # [2π # z @[]2π]›

using split2 by blast
consider (BC) ‹∃B C . π = (A, [Nt B, Nt C])› | (a) ‹∃ a. π = (A, [Tm a])›

using assms pi_in_P local.pi_def by fastforce
then show ‹P ′ ` [Nt A] ⇒∗ map Tm x›
proof(cases)

case BC
then obtain B C where pi_eq: ‹π = (A, [Nt B, Nt C])›

by blast
from split3 have y_successivelys:

‹successively P1 ′ y ∧
successively P2 y ∧
successively P3 y ∧
successively P4 y›

using P1 .simps p1x p2x p3x p4x by (metis List.list.simps(3) Nil_is_append_conv
successively_Cons successively_append_iff)

have y_not_empty: ‹y 6= []›
using p3x pi_eq split1 by fastforce

have ‹@ p. last y =]1p›
proof(rule ccontr)

assume ‹¬ (@ p. last y =]1p)›
then obtain p where last_y: ‹last y =]1p ›

by blast
obtain butl where butl_def : ‹y = butl @ [last y]›

by (metis append_butlast_last_id y_not_empty)

have ‹successively P1 ′ ([1π # y @]1π # [2π # z @[]2π])›
using p1x split3 by auto

then have ‹successively P1 ′ ([1π # (butl@[last y]) @]1π # [2π # z @[]2π
])›

using butl_def by simp
then have ‹successively P1 ′ (([1π # butl) @ last y # []1π] @ [2π # z @ [

]2π])›
by (metis (no_types, opaque_lifting) Cons_eq_appendI append_assoc ap-

pend_self_conv2)
then have ‹P1 ′]1p]1π ›

using last_y by (metis (no_types, lifting) List.successively.simps(3) ap-
pend_Cons successively_append_iff)

then show ‹False›
by simp

qed
with y_successivelys have P1y: ‹P1 y›

by blast
with p3x pi_eq have ‹∃ g. hd y = [1(B,g)›
using y_not_empty split3 by (metis (no_types, lifting) P3D1 append_is_Nil_conv

hd_append2 successively_Cons)
then have ‹P5 B y›

33

by (metis ‹y 6= []› P5 .simps(2) hd_Cons_tl)
with y_successivelys P1y have ‹y ∈ Reg B›

by blast
moreover have ‹y ∈ Dyck_lang (Γ)›
using split3 bal_y Dyck_lang_substring by (metis append_Cons append_Nil

hd_x split1 xDL)
ultimately have ‹y ∈ Reg B ∩ Dyck_lang (Γ)›

by force
moreover have ‹length (map Tm y) < length (map Tm x)›

using length_append length_map lessI split3 by fastforce
ultimately have der_y: ‹P ′ ` [Nt B] ⇒∗ map Tm y›

using IH [of y B] split3 by blast
from split3 have z_successivelys:

‹successively P1 ′ z ∧
successively P2 z ∧
successively P3 z ∧
successively P4 z›
using P1 .simps p1x p2x p3x p4x by (metis List.list.simps(3) Nil_is_append_conv

successively_Cons successively_append_iff)
then have successively_P3 : ‹successively P3 (([1π # y @ []1π]) @ [2π # z

@ []2π])›
using split3 p3x by (metis List.append.assoc append_Cons append_Nil)

have z_not_empty: ‹z 6= []›
using p3x pi_eq split1 successively_P3 by (metis List.list.distinct(1) List.list.sel(1)

append_Nil P3 .simps(2) successively_Cons successively_append_iff)
then have ‹P3 [2π (hd z)›
by (metis append_is_Nil_conv hd_append2 successively_Cons successively_P3

successively_append_iff)
with p3x pi_eq have ‹∃ g. hd z = [1(C ,g)›

using split_pairs by blast
then have ‹P5 C z›

by (metis List.list.exhaust_sel ‹z 6= []› P5 .simps(2))
moreover have ‹P1 z›
proof−

have ‹@ p. last z =]1p›
proof(rule ccontr)

assume ‹¬ (@ p. last z =]1p)›
then obtain p where last_y: ‹last z =]1p ›

by blast
obtain butl where butl_def : ‹z = butl @ [last z]›

by (metis append_butlast_last_id z_not_empty)
have ‹successively P1 ′ ([1π # y @]1π # [2π # z @[]2π])›

using p1x split3 by auto
then have ‹successively P1 ′ ([1π # y @]1π # [2π # butl @ [last z] @[

]2π])›
using butl_def by (metis append_assoc)

then have ‹successively P1 ′ (([1π # y @]1π # [2π # butl) @ last z # [
]2π] @ [])›

by (metis (no_types, opaque_lifting) Cons_eq_appendI append_assoc

34

append_self_conv2)
then have ‹P1 ′]1p]2π ›
using last_y by (metis List.append.right_neutral List.successively.simps(3)

successively_append_iff)
then show ‹False›

by simp
qed
then show ‹P1 z›

using z_successivelys by blast
qed

ultimately have ‹z ∈ Reg C ›
using z_successivelys by blast

moreover have ‹z ∈ Dyck_lang (Γ)›
using xDL[simplified split3] bal_z Dyck_lang_substring[of z [1π # y @]1π

[2π # [] []2π]]
by auto

ultimately have ‹z ∈ Reg C ∩ Dyck_lang (Γ)›
by force

moreover have ‹length (map Tm z) < length (map Tm x)›
using length_append length_map lessI split3 by fastforce

ultimately have der_z: ‹P ′ ` [Nt C] ⇒∗ map Tm z›
using IH [of z C] split3 by blast

have ‹P ′ ` [Nt A] ⇒∗ [Tm [1π] @ [(Nt B)] @ [Tm]1π , Tm [2π] @ [(Nt
C)] @ [Tm]2π]›

using transform_prod_one_step[OF pi_in_P] using pi_eq by auto
also have ‹P ′ ` [Tm [1π] @ [(Nt B)] @ [Tm]1π , Tm [2π] @ [(Nt C)] @ [

Tm]2π] ⇒∗ [Tm [1π] @ map Tm y @ [Tm]1π , Tm [2π] @ [(Nt C)] @
[Tm]2π]›

using der_y using derives_append derives_prepend by blast
also have ‹P ′ ` [Tm [1π] @ map Tm y @ [Tm]1π , Tm [2π] @ [(Nt C)] @

[Tm]2π] ⇒∗ [Tm [1π] @ map Tm y @ [Tm]1π , Tm [2π] @ (map Tm
z) @ [Tm]2π]›

using der_z by (meson derives_append derives_prepend)
finally have ‹P ′ ` [Nt A] ⇒∗ [Tm [1π] @ map Tm y @ [Tm]1π , Tm [2π]

@ (map Tm z) @ [Tm]2π]›
.

then show ?thesis using split3 by simp
next

case a
then obtain a where pi_eq: ‹π = (A, [Tm a])›

by blast
have ‹y = []›
proof(cases y)

case (Cons y ′ ys ′)
have ‹P4 [1π y ′›

using Cons append_Cons p4x split3 by (metis List.successively.simps(3))
then have ‹y ′ = Close (π, One)›

using pi_eq P4D by auto

35

moreover obtain g where ‹y ′ = (Open g)›
using Cons bal_start_Open bal_y by blast

ultimately have ‹False›
by blast

then show ?thesis by blast
qed blast
have ‹z = []›
proof(cases z)

case (Cons z ′ zs ′)
have ‹P4 [2π z ′›

using p4x split3 by (simp add: Cons ‹y = []›)
then have ‹z ′ = Close (π, One)›

using pi_eq bal_start_Open bal_z local.Cons by blast
moreover obtain g where ‹z ′ = (Open g)›

using Cons bal_start_Open bal_z by blast
ultimately have ‹False›

by blast
then show ?thesis by blast

qed blast
have ‹P ′ ` [Nt A] ⇒∗ [Tm [1π, Tm]1π , Tm [2π , Tm]2π]›

using transform_prod_one_step[OF pi_in_P] pi_eq by auto
then show ?thesis using ‹y = []› ‹z = []› by (simp add: split3)

qed
qed

7 Showing h(L ′) = L
Particularly ⊇ is formally hard. To create the witness in L ′ we need to use
the corresponding production in P ′ in each step. We do this by defining
the transformation on the parse tree, instead of only the word. Simple
induction on the derivation wouldn’t (in the induction step) get us enough
information on where the corresponding production needs to be applied in
the transformed version.
abbreviation ‹roots ts ≡ map root ts›

fun wrap1_Sym :: ‹ ′n ⇒ (′n, ′t) sym ⇒ version ⇒ (′n,(′n, ′t) bracket3) tree list›
where

wrap1_Sym A (Tm a) v = [Sym (Tm (Open ((A, [Tm a]),v))), Sym (Tm (Close
((A, [Tm a]), v)))] |

‹wrap1_Sym _ _ _ = []›

fun wrap2_Sym :: ‹ ′n ⇒ (′n, ′t) sym ⇒ (′n, ′t) sym ⇒ version ⇒ (′n,(′n, ′t)
bracket3) tree ⇒ (′n,(′n, ′t) bracket3) tree list› where

wrap2_Sym A (Nt B) (Nt C) v t = [Sym (Tm (Open ((A, [Nt B, Nt C]), v))), t
, Sym (Tm (Close ((A, [Nt B, Nt C]), v)))] |

‹wrap2_Sym _ _ _ _ _ = []›

fun transform_tree :: (′n, ′t) tree ⇒ (′n,(′n, ′t) bracket3) tree where

36

‹transform_tree (Sym (Nt A)) = (Sym (Nt A))› |
‹transform_tree (Sym (Tm a)) = (Sym (Tm [1(SOME A. True, [Tm a])))› |
‹transform_tree (Rule A [Sym (Tm a)]) = Rule A ((wrap1_Sym A (Tm a)

One)@(wrap1_Sym A (Tm a) Two))› |
‹transform_tree (Rule A [t1 , t2]) = Rule A ((wrap2_Sym A (root t1) (root t2)

One (transform_tree t1)) @ (wrap2_Sym A (root t1) (root t2) Two (transform_tree
t2)))› |

‹transform_tree (Rule A y) = (Rule A [])›

lemma root_of_transform_tree[intro, simp]: ‹root t = Nt X =⇒ root (transform_tree
t) = Nt X›

by(induction t rule: transform_tree.induct) auto

lemma transform_tree_correct:
assumes ‹parse_tree P t ∧ fringe t = w›
shows ‹parse_tree P ′ (transform_tree t) ∧ hs (fringe (transform_tree t)) = w›
using assms proof(induction t arbitrary: w)
case (Sym x)
from Sym have pt: ‹parse_tree P (Sym x)› and ‹fringe (Sym x) = w›

by blast+
then show ?case
proof(cases x)

case (Nt x1)
then have ‹transform_tree (Sym x) = (Sym (Nt x1))›

by simp
then show ?thesis using Sym by (metis Nt Parse_Tree.fringe.simps(1)

Parse_Tree.parse_tree.simps(1) the_hom_syms_keep_var)
next

case (Tm x2)
then obtain a where ‹transform_tree (Sym x) = (Sym (Tm [1(SOME A. True, [Tm a])))›

by simp
then have ‹fringe ... = [Tm [1(SOME A. True, [Tm a])]›

by simp
then have ‹hs ... = [Tm a]›

by simp
then have ‹... = w› using Sym using Tm ‹transform_tree (Sym x) = Sym

(Tm [1(SOME A. True, [Tm a]))›
by force
then show ?thesis using Sym by (metis Parse_Tree.parse_tree.simps(1)

‹fringe (Sym (Tm [1(SOME A. True, [Tm a]))) = [Tm [1(SOME A. True, [Tm a])]›
‹hs [Tm [1(SOME A. True, [Tm a])] = [Tm a]› ‹transform_tree (Sym x) = Sym
(Tm [1(SOME A. True, [Tm a]))›)

qed
next

case (Rule A ts)
from Rule have pt: ‹parse_tree P (Rule A ts)› and fr : ‹fringe (Rule A ts) =

w›

37

by blast+
from Rule have IH : ‹

∧
x2a w ′. [[x2a ∈ set ts; parse_tree P x2a ∧ fringe x2a =

w ′]] =⇒ parse_tree P ′ (transform_tree x2a) ∧ hs (fringe (transform_tree x2a)) =
w ′›

using P ′_def by blast
from pt have ‹(A, roots ts) ∈ P›

by simp
then obtain B C a where

def : ‹(A, roots ts) = (A, [Nt B, Nt C]) ∧ transform_prod (A, roots ts) = (A,
[Tm [1(A, [Nt B, Nt C]) , Nt B, Tm]1(A, [Nt B, Nt C]), Tm [2(A, [Nt B, Nt C]), Nt
C , Tm]2(A, [Nt B, Nt C])])
∨

(A, roots ts) = (A, [Tm a]) ∧ transform_prod (A, roots ts) = (A, [Tm
[1(A, [Tm a]) , Tm]1(A, [Tm a]), Tm [2(A, [Tm a]), Tm]2(A, [Tm a])])›

by fastforce
then obtain t1 t2 e1 where ei_def : ‹ts = [e1] ∨ ts = [t1 , t2]›

by blast
then consider (Tm) ‹roots ts = [Tm a] ∧ ts = [Sym (Tm a)]› |
(Nt_Nt) ‹roots ts = [Nt B, Nt C] ∧ ts = [t1 , t2]›
by (smt (verit, best) def list.inject list.simps(8 ,9) not_Cons_self2 prod.inject

root.elims sym.distinct(1))
then show ?case
proof(cases)

case Tm
then have ts_eq: ‹ts = [Sym (Tm a)]› and roots: ‹roots ts = [Tm a]›

by blast+
then have ‹transform_tree (Rule A ts) = Rule A [Sym (Tm [1(A,[Tm a])),

Sym(Tm]1(A,[Tm a])), Sym (Tm [2(A,[Tm a])), Sym(Tm]2(A, [Tm a]))]›
by simp

then have ‹hs (fringe (transform_tree (Rule A ts))) = [Tm a]›
by simp

also have ‹... = w›
using fr unfolding ts_eq by auto

finally have ‹hs (fringe (transform_tree (Rule A ts))) = w› .
moreover have ‹parse_tree (P ′) (transform_tree (Rule A [Sym (Tm a)]))›

using pt roots unfolding P ′_def by force
ultimately show ?thesis unfolding ts_eq P ′_def by blast

next
case Nt_Nt
then have ts_eq: ‹ts = [t1 , t2]› and roots: ‹roots ts = [Nt B, Nt C]›

by blast+
then have root_t1_eq_B: ‹root t1 = Nt B› and root_t2_eq_C : ‹root t2 =

Nt C ›
by blast+

then have ‹transform_tree (Rule A ts) = Rule A ((wrap2_Sym A (Nt B) (Nt C)
One (transform_tree t1)) @ (wrap2_Sym A (Nt B) (Nt C) Two (transform_tree
t2)))›

by (simp add: ts_eq)
then have ‹hs (fringe (transform_tree (Rule A ts))) = hs (fringe (transform_tree

38

t1)) @ hs (fringe (transform_tree t2))›
by auto

also have ‹... = fringe t1 @ fringe t2 ›
using IH pt ts_eq by force

also have ‹... = fringe (Rule A ts)›
using ts_eq by simp

also have ‹... = w›
using fr by blast

ultimately have ‹hs (fringe (transform_tree (Rule A ts))) = w›
by blast

have ‹parse_tree P t1 › and ‹parse_tree P t2 ›
using pt ts_eq by auto

then have ‹parse_tree P ′ (transform_tree t1)› and ‹parse_tree P ′ (transform_tree
t2)›

by (simp add: IH ts_eq)+
have root1 : ‹map Parse_Tree.root (wrap2_Sym A (Nt B) (Nt C) version.One

(transform_tree t1)) = [Tm [1(A, [Nt B, Nt C]) , Nt B, Tm]1(A, [Nt B, Nt C])]›
using root_t1_eq_B by auto

moreover have root2 : ‹map Parse_Tree.root (wrap2_Sym A (Nt B) (Nt C)
Two (transform_tree t2)) = [Tm [2(A, [Nt B, Nt C]), Nt C , Tm]2(A, [Nt B, Nt C])
] ›

using root_t2_eq_C by auto
ultimately have ‹parse_tree P ′ (transform_tree (Rule A ts))›

using ‹parse_tree P ′ (transform_tree t1)› ‹parse_tree P ′ (transform_tree
t2)›

‹(A, map Parse_Tree.root ts) ∈ P› roots
by (force simp: ts_eq P ′_def)

then show ?thesis
using ‹hs (fringe (transform_tree (Rule A ts))) = w› by auto

qed
qed

lemma
transfer_parse_tree:
assumes ‹w ∈ Ders P S›
shows ‹∃w ′ ∈ Ders P ′ S . w = hs w ′›

proof−
from assms obtain t where t_def : ‹parse_tree P t ∧ fringe t = w ∧ root t =

Nt S›
using parse_tree_if_derives DersD by meson

then have root_tr : ‹root (transform_tree t) = Nt S›
by blast

from t_def have ‹parse_tree P ′ (transform_tree t) ∧ hs (fringe (transform_tree
t)) = w›

using transform_tree_correct assms by blast
with root_tr have ‹fringe (transform_tree t) ∈ Ders P ′ S ∧ w = hs (fringe

(transform_tree t))›
using fringe_steps_if_parse_tree by (metis DersI)

39

then show ?thesis by blast
qed

This is essentially h(L ′) ⊇ L:
lemma P_imp_h_L ′:

assumes ‹w ∈ Lang P S›
shows ‹∃w ′ ∈ L ′. w = h w ′›

proof−
have ex: ‹∃w ′ ∈ Ders P ′ S . (map Tm w) = hs w ′›

using transfer_parse_tree by (meson Lang_Ders assms imageI subsetD)
then obtain w ′ where w ′_def : ‹w ′ ∈ Ders P ′ S› ‹(map Tm w) = hs w ′›

using ex by blast
moreover obtain w ′′ where ‹w ′ = map Tm w ′′›

using w ′_def the_hom_syms_tms_inj by metis
then have ‹w = h w ′′›

using h_eq_h_ext2 by (metis h_eq_h_ext w ′_def (2))
moreover have ‹w ′′ ∈ L ′›

using DersD L ′_def Lang_def ‹w ′ = map Tm w ′′› w ′_def (1) by fastforce
ultimately show ?thesis

by blast
qed

This lemma is used in the proof of the other direction (h(L ′) ⊆ L):
lemma hom_ext_inv[simp]:

assumes ‹π ∈ P›
shows ‹hs (snd (transform_prod π)) = snd π›

proof−
obtain A a B C where pi_def : ‹π = (A, [Nt B, Nt C]) ∨ π = (A, [Tm a])›

using assms by fastforce
then show ?thesis

by auto
qed

This lemma is essentially the other direction (h(L ′) ⊆ L):
lemma L ′_imp_h_P:

assumes ‹w ′ ∈ L ′›
shows ‹h w ′ ∈ Lang P S›

proof−
from assms L ′_def have ‹w ′ ∈ Lang P ′ S›

by simp
then have ‹P ′ ` [Nt S] ⇒∗ map Tm w ′›

by (simp add: Lang_def)
then obtain n where ‹P ′ ` [Nt S] ⇒(n) map Tm w ′›

by (metis rtranclp_power)
then have ‹P ` [Nt S] ⇒∗ hs (map Tm w ′)›
proof(induction rule: deriven_induct)

case 0
then show ?case by auto

next

40

case (Suc n u A v x ′)
from ‹(A, x ′) ∈ P ′› obtain π where ‹π ∈ P› and transf_π_def : ‹(transform_prod

π) = (A, x ′)›
using P ′_def by auto

then obtain x where π_def : ‹π = (A, x)›
by auto

have ‹hs (u @ [Nt A] @ v) = hs u @ hs [Nt A] @ hs v›
by simp

then have ‹ P ` [Nt S] ⇒∗ hs u @ hs [Nt A] @ hs v›
using Suc.IH by auto

then have ‹ P ` [Nt S] ⇒∗ hs u @ [Nt A] @ hs v›
by simp

then have ‹ P ` [Nt S] ⇒∗ hs u @ x @ hs v›
using π_def ‹π ∈ P› derive.intros by (metis Transitive_Closure.rtranclp.rtrancl_into_rtrancl)
have ‹hs x ′ = hs (snd (transform_prod π))›

by (simp add: transf_π_def)
also have ‹... = snd π›

using hom_ext_inv ‹π ∈ P› by blast
also have ‹... = x›

by (simp add: π_def)
finally have ‹hs x ′ = x›

by simp
with ‹ P ` [Nt S] ⇒∗ hs u @ x @ hs v› have ‹ P ` [Nt S] ⇒∗ hs u @ hs x ′

@ hs v›
by simp

then show ?case by auto
qed
then show ‹h w ′ ∈ Lang P S›

by (metis Lang_def h_eq_h_ext mem_Collect_eq)
qed

8 The Theorem
The constructive version of the Theorem, for a grammar already in CNF:
lemma Chomsky_Schuetzenberger_CNF :

‹regular (brackets ∩ Reg S)
∧ L = h ‘ ((brackets ∩ Reg S) ∩ Dyck_lang Γ)
∧ hom_list (h :: (′n, ′t) bracket3 list ⇒ ′t list)›

proof −
have ‹∀A. ∀ x. P ′ ` [Nt A] ⇒∗ (map Tm x) ←→ x ∈ Dyck_lang Γ ∩ Reg A›
proof−

have ‹∀A. ∀ x. P ′ ` [Nt A] ⇒∗ (map Tm x) −→ x ∈ Dyck_lang Γ ∩ Reg A›
using P ′_imp_Reg P ′_imp_bal Dyck_langI_tm by blast

moreover have ‹∀A. ∀ x. x ∈ Dyck_lang Γ ∩ Reg A −→ P ′ ` [Nt A] ⇒∗ (map
Tm x) ›

using Reg_and_dyck_imp_P ′ by blast
ultimately show ?thesis by blast

qed

41

then have ‹L ′ = Dyck_lang Γ ∩ (Reg S)›
by (auto simp add: Lang_def L ′_def)

then have ‹h ‘ (Dyck_lang Γ ∩ Reg S) = h ‘ L ′›
by simp

also have ‹... = Lang P S›
proof(standard)

show ‹h ‘ L ′ ⊆ Lang P S›
using L ′_imp_h_P by blast

next
show ‹Lang P S ⊆ h ‘ L ′›

using P_imp_h_L ′ by blast
qed
also have ‹... = L›

by (simp add: L_def)
finally have ‹h ‘ (Dyck_lang Γ ∩ Reg S) = L›

by auto
moreover have ‹Dyck_lang Γ ∩ (brackets ∩ Reg S) = Dyck_lang Γ ∩ Reg S›

using Dyck_lang_subset_brackets unfolding Γ_def by fastforce
moreover have hom: ‹hom_list h›

by (simp add: hom_list_def)
moreover from finiteP have ‹regular (brackets ∩ Reg S)›

using regular_Reg_inter by fast
ultimately have ‹regular (brackets ∩ Reg S) ∧ L = h ‘ ((brackets ∩ Reg S) ∩

Dyck_lang Γ) ∧ hom_list h›
by (simp add: inf_commute)

then show ?thesis unfolding Γ_def by blast
qed

end

Now we want to prove the theorem without assuming that P is in CNF.
Of course any grammar can be converted into CNF, but this requires an
infinite type of nonterminals (because the conversion to CNF may need to
invent new nonterminals). Therefore we cannot just re-enter locale_P. Now
we make all the assumption explicit.

The theorem for any grammar, but only for languages not containing ε:
lemma Chomsky_Schuetzenberger_not_empty:

fixes P :: ‹(′n :: infinite, ′t) Prods› and S :: ′n
defines ‹L ≡ Lang P S − {[]}›
assumes finiteP: ‹finite P›
shows ‹∃ (R::(′n, ′t) bracket3 list set) h Γ. regular R ∧ L = h ‘ (R ∩ Dyck_lang

Γ) ∧ hom_list h›
proof −

define h where ‹h = (the_hom:: (′n, ′t) bracket3 list ⇒ ′t list)›
obtain ps where ps_def : ‹set ps = P›

using ‹finite P› finite_list by auto
from cnf_exists obtain ps ′ where

‹CNF(set ps ′)› and lang_ps_eq_lang_ps ′: ‹Lang (set ps ′) S = Lang (set ps)

42

S − {[]}›
by blast

then have ‹finite (set ps ′)›
by auto

interpret Chomsky_Schuetzenberger_locale ‹(set ps ′)› S
apply unfold_locales
using ‹finite (set ps ′)› ‹CNF (set ps ′)› by auto

have ‹regular (brackets ∩ Reg S) ∧ Lang (set ps ′) S = h ‘ (brackets ∩ Reg S ∩
Dyck_lang Γ) ∧ hom_list h›

using Chomsky_Schuetzenberger_CNF L_def h_def by argo
moreover have ‹Lang (set ps ′) S = L − {[]}›
unfolding lang_ps_eq_lang_ps ′ using L_def ps_def by (simp add: assms(1))

ultimately have ‹regular (brackets ∩ Reg S) ∧ L − {[]} = h ‘ (brackets ∩ Reg
S ∩ Dyck_lang Γ) ∧ hom_list h›

by presburger
then show ?thesis

using assms(1) by auto
qed

The Chomsky-Schützenberger theorem that we really want to prove:
theorem Chomsky_Schuetzenberger :

fixes P :: ‹(′n :: infinite, ′t) Prods› and S :: ′n
defines ‹L ≡ Lang P S›
assumes finite: ‹finite P›
shows ‹∃ (R::(′n, ′t) bracket3 list set) h Γ. regular R ∧ L = h ‘ (R ∩ Dyck_lang

Γ) ∧ hom_list h›
proof(cases ‹[] ∈ L›)

case False
then show ?thesis
using Chomsky_Schuetzenberger_not_empty[OF finite, of S] unfolding L_def

by auto
next

case True
obtain R::(′n, ′t) bracket3 list set and h and Γ where

reg_R: ‹(regular R)› and L_minus_eq: ‹L−{[]} = h ‘ (R ∩ Dyck_lang Γ)›
and hom_h: ‹hom_list h›

by (metis L_def Chomsky_Schuetzenberger_not_empty finite)
then have reg_R_union: ‹regular(R ∪ {[]})›

by (meson regular_Un regular_nullstr)
have ‹[] = h([])›

by (simp add: hom_h hom_list_Nil)
moreover have ‹[] ∈ Dyck_lang Γ›

by auto
ultimately have ‹[] ∈ h ‘ ((R ∪ {[]}) ∩ Dyck_lang Γ)›

by blast
with True L_minus_eq have ‹L = h ‘ ((R ∪ {[]}) ∩ Dyck_lang Γ)›

using ‹[] ∈ Dyck_lang Γ› ‹[] = h []› by auto
then show ?thesis using reg_R_union hom_h by blast

qed

43

no_notation the_hom (h)
no_notation the_hom_syms (hs)

end

References
[1] N. Chomsky and M. Schützenberger. The algebraic theory of context-

free languages. In P. Braffort and D. Hirschberg, editors, Computer
Programming and Formal Systems, volume 26 of Studies in Logic and
the Foundations of Mathematics, pages 118–161. Elsevier, 1959.

[2] D. Kozen. Automata and computability. Undergraduate texts in com-
puter science. Springer, 1997.

44

	Overview of the Proof
	Production Transformation and Homomorphisms
	Brackets
	Transformation
	Homomorphisms

	The Regular Language
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 P1
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 P2
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 P3
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 P4
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 P5
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 P7 and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 P8
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Reg and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Reg_sym

	Showing Regularity
	An automaton for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 {xs. successively Q xs xs brackets P}
	Regularity of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 P2, 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 P3 and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 P4
	An automaton for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 P1
	An automaton for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 P5

	Definitions of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 L, 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 , 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 P2mu'-2mu, 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 L2mu'-2mu
	Lemmas for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 P2mu'-2mu A * x -3mu x RA Dyck_lang
	Showing 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 h(L2mu'-2mu) = L
	The Theorem

