Concrete bounds for Chebyshev’s prime counting

functions

Manuel Eberl

March 17, 2025

Abstract

This entry derives explicit lower and upper bounds for Chebyshev’s
prime counting functions

Y(x) =Y logp d(z) = logp .
pF<z p<z
k>0

Concretely, the following inequalities are proven:
o (x) > 0.9z for z > 41
o Y(z)>0.82z if z > 97
o Yz)<yYP(xr)<l2zxifx >0

The proofs work by careful estimation of ¢(x), with Stirling’s formula
as a starting point, to prove the bound for all x > xg with a concrete
xg, followed by brute-force approximation for all x below zg.

An easy corollary of this is Bertrand’s postulate, i.e. the fact that
for any x > 1 the interval (z,2z) contains at least one prime (a fact
that has already been shown in the AFP using weaker bounds for v
and 9).

Contents

1 Concrete bounds for Chebyshev’s prime counting functions

1.1 Brute-force checking of bounds for ¢y and 9
1.1.1 Computing powers of a number
1.1.2 Computing prime powers
1.1.3 A generic checking function
1.1.4 Thed function
1.1.5 The 4 function

1.2 Auxiliary material L oo

1.3 Bounds for the remainder in Stirling’s approximation

1.4 Approximating +

1.5 Finalresultso oo

1 Concrete bounds for Chebyshev’s prime count-
ing functions

theory Chebyshev_Prime_Exhaust

imports
"HOL-Decision_Procs.Approximation"
"HOL-Library.Code_Target_Numeral"
"Prime_Number_Theorem.Prime_Counting Functions"

begin

The well-known Prime Number Theorem states that ¢ (z) ~ 0(z) ~ (x), i.e.
that both ¢ (z) and ¥(x) are bounded by (1 + ¢)x for sufficiently large z
for any € > 0. However, these are asymptotic bounds without giving any
concrete information on how 1 and ¥ behave for small x, or even how big x
must be until these bound shold.

To complement this, we shall prove some concrete, non-asymptotic bounds.
Concretely:

o Y(x) > 0.9z if z > 41
e O(z) > 0.82z if x > 97

o O(z)<tY(zr)<12zifx >0

Our formalisation loosely follows a blog entry by A.W. Walker: https://
awwalker.com/2017/02/05 /notes-on-the-chebyshev-theorem/

1.1 Brute-force checking of bounds for v and ¥

1.1.1 Computing powers of a number

function powers_below_aux :: "nat = nat = nat = nat list" where
"powers_below_aux ub n acc = (if acc = 0 V n < 1 V acc > ub then []
else
acc # powers_below_aux ub n (acc * n))"
by auto
termination
by (relation "Wellfounded.measure (A(ub, n, acc). 1 + ub - acc)")
(auto intro!: diff_less_mono2)

lemmas [simp del] = powers_below_aux.simps

lemma set_powers_below_aux:

assumes "acc > 0" "n > 1"

shows "set (powers_below_aux ub n acc) = range (A\i. acc * n ~ i)
N {..ub}"

using assms
proof (induction ub n acc rule: powers_below_aux.induct)

https://awwalker.com/2017/02/05/notes-on-the-chebyshev-theorem/
https://awwalker.com/2017/02/05/notes-on-the-chebyshev-theorem/

case (1 ub n acc)
show ?case
proof (cases "acc > ub")
case True
have "range (A\i. acc * n ~ i) N {..ub} = {}"
proof (intro equalityI subsetI)
fix k assume "k € range (A\i. acc * n ~ i) N {..ub}"
then obtain i where "acc * n =~ i < ub"
by auto
also have "ub < acc * n ~ 0"
using True by simp
finally have "n = i <n ~ 0"
using <acc > 0> by (subst (asm) mult_less_cancell) auto
hence "i < 0"
by (subst (asm) power_strict_increasing iff) (use <n > 1> in auto)
thus "k € {}"
by simp
qed auto
thus 7thesis
using True by (auto simp: powers_below_aux.simps)
next
case False
have "set (powers_below_aux ub n acc) = insert acc (set (powers_below_aux
ub n (acc * n)))"
using False "1.prems" by (subst powers_below_aux.simps) auto
also have "set (powers_below_aux ub n (acc * n)) = range (\i. acc
*n " Suc i) N {..ub}"
by (subst "1.IH") (use "1.prems" False in <auto simp: mult_ac>)
also have "insert acc (range (A\i. acc * n ~ Suc i) N {..ub}) =
range (Ai. acc * n ~ i) N {..ub}" (is "insert acc 7lhs
= ?rhs")
proof (intro equalityI subsetI)
fix x assume "x € insert acc 7lhs"
thus "x € ?rhs" using False
by (auto intro: rev_image_eqI[of 0] rev_image_eqI[of "Suc i" for

il)
next
fix x assume "x € ?rhs"
then obtain i where i: "x = acc * n ~ i" and le: "acc * n ~ i
S ub"

by auto
show "x € insert acc 7lhs"
proof (cases "i = 0")
case False
hence "x € ?lhs"
by (intro IntI rev_image_eqI[of "i-1"]) (use i le in auto)
thus 7thesis
by blast
qged (use i le in auto)

qed
finally show ?thesis .
qed
qed

definition powers_below :: "nat = nat = nat list" where
"powers_below ub n = powers_below_aux ub n n"

lemma set_powers_below:
assumes "n > 1"
shows "set (powers_below ub n) = (Ai. n ~ i) ¢ {1..} N {..ub}"
proof -
have "set (powers_below ub n) = range (Ai. n * n ~ i) N {..ub}"
unfolding powers_below_def
by (rule set_powers_below_aux) (use assms in auto)
also have "range (A\i. n * n ~ i) = (Ai. n ~ i) ¢ Suc ¢ UNIV"
by (simp add: image_image o_def)
also have "bij_betw Suc UNIV {1..}"
by (rule bij_betwI[of _ _ _ "Ai. i - 1"]) auto
hence "Suc ¢ UNIV = {1..}"
by (simp add: bij_betw_def)
finally show ?thesis .
qed

lemma distinct_powers_below_aux:
assumes "n > 1" "acc > 0"
shows "distinct (powers_below_aux ub n acc)"
using assms
by (induction ub n acc rule: powers_below_aux.induct; subst powers_below_aux.simps)
(auto simp: set_powers_below_aux)

lemma distinct_powers_below: "n > 1 —> distinct (powers_below ub n)"
unfolding powers_below_def by (rule distinct_powers_below_aux) auto

lemma hd_powers_below_aux:
assumes "acc < ub" "n > 1" "acc > 0"
shows "hd (powers_below_aux ub n acc) = acc"
by (subst powers_below_aux.simps) (use assms in auto)

lemma hd_powers_below:

assumes "n < ub" "n > 1"

shows "hd (powers_below ub n) = n"

unfolding powers_below_def by (subst hd_powers_below_aux) (use assms
in auto)

1.1.2 Computing prime powers

definition prime_powers_upto :: "nat = (nat x nat) list" where
"prime_powers_upto n =

sort_key fst (concat (map (Ap. map (\k. (k, p)) (powers_below n p))
(primes_upto n)))"

lemma map_key_sort_key: "map f (sort_key f xs) = sort (map f xs)"
proof -
have [simp]: "map f (insort_key f x xs) = insort (f x) (map f xs)" for
X xs
by (induction xs) auto
have [simp]: "map f (foldr (insort_key f) xs acc) =
foldr insort (map f xs) (map f acc)" for acc
by (induction xs arbitrary: acc) auto
show ?thesis
unfolding sort_key_def by simp
qed

lemma distinct_prime_powers_upto:
"distinct (map fst (prime_powers_upto n))"

proof -
have inj: "inj_on (powers_below n) {p. prime p A p < n}"
proof
fix p q assume pq: "p € {p. prime p A p < n}" "q € {p. prime p
AN p < np"

assume eq: '"powers_below n p = powers_below n q"
from eq have "hd (powers_below n p) = hd (powers_below n q)"
by simp
thus "p = q"
using pq by (simp add: hd_powers_below prime_gt_Suc_0_nat)
qed

have "distinct (concat (map (powers_below n) (primes_upto n)))"
proof (rule distinct_concat, goal_cases)
case 1
thus 7case
unfolding distinct_map using inj
by (simp add: set_primes_upto conj_commute)
next
case (2 ys)
thus 7case
by (auto simp: distinct_powers_below set_primes_upto prime_gt_Suc_0_nat)
next
case (3 ys zs)
thus 7case
by (auto simp: set_primes_upto set_powers_below prime_gt_Suc_0_nat
prime_power_inj’’)
qed
thus 7thesis
by (simp add: prime_powers_upto_def map_key_sort_key map_concat o_def)
qed

lemma sorted_prime_powers_upto:
"sorted (map fst (prime_powers_upto n))"
by (simp add: prime_powers_upto_def)

lemma set_prime_powers_upto:
"set (prime_powers_upto n) = {(q, aprimedivisor q) [q. primepow q A
q < n}"
proof -
have "set (prime_powers_upto n) =
(Up€fp. p < n A prime p}. (Ax. (x, p)) ¢ ((\i. p ~ i) < {1..}
N {..n}))"
by (simp add: prime_powers_upto_def set_primes_upto set_powers_below
prime_gt_Suc_0_nat)
also have "... = {(q, aprimedivisor q) |q. primepow q AN q < n}"
(is "?lhs = ?rhs")
proof (intro equalityI subsetI)
fix gp assume gp: "gqp € 7lhs"
then obtain q p where [simp]: "gp = (q, p)"
by (cases qp)
from gp obtain i where i: "prime p" "p < n" '"p
-~ i” IVi > 1/!
by auto
show '"gp € ?rhs"
using i by (auto simp: aprimedivisor_prime_power)
next
fix gqp assume gp: "qp € ?rhs”
then obtain q p where [simp]: "gp = (q, p)"
by (cases qp)
from gp have "primepow q"
by auto
then obtain p’ i where i: "prime p’" "q = p’ = i" "i > 0"
by (auto simp: primepow_def)
have [simp]: "p’ = p"
using gp i by (auto simp: aprimedivisor_prime_power)
have '"p =1 < p =~ i"
by (rule power_increasing) (use i prime_gt_O_nat[of p] in auto)
also have "... < n"
using i gp by simp
finally have "p < n"

‘i<n"”q=p

by simp
with i gp show "gp € 7lhs"
by auto
qed
finally show ?thesis .
qed

1.1.3 A generic checking function

locale chebyshev_check =

fixes f :: "nat = real"

and F :: "nat = ’a = float"

and A :: "nat set"

and plus :: "nat = float = float = float"
and rel :: "real = real = bool"

and P :: "nat = real = bool"

and num :: "’a = nat"

assumes plus: "/prec. rel X x = rel Y y —> rel (plus prec X Y)
(x + y)"

assumes P_rel: "Ax y k. Pk x — rel xy — Pk y"

assumes rel_0: "rel 0 0"

assumes A: "0 ¢ A"
begin

definition S where "S n = (O keAN{..n}. £ k)"
definition S’ where "S’ n = () keAN{..<n}. £ k)"

context
fixes prec :: nat
begin
function check_aux :: "’a list = nat = nat = float = nat = bool"
where

"check_aux ps 1b ub acc n = (if n > ub then True else
(let (acc’, ps’) =
(if ps # [] A num (hd ps) = n then
(plus prec acc (F prec (hd ps)), tl ps)
else (acc, ps))
in (n < 1b V P n (real_of_float acc’)) A check_aux ps’ 1lb ub acc’
(n+1)))"
by auto
termination
by (relation "Wellfounded.measure (A(_, _, ub, _, n). Suc ub - n)")
(auto split: if_splits)

definition check :: "’a list = nat = nat = bool" where
"check xs 1b ub =
check_aux xs 1b ub 0 (if xs = [] then 1b else min 1b (num (hd xs)))"

lemmas [simp del] = check_aux.simps

lemma check_aux_correct:

assumes '"sorted (map num ps)" "distinct (map num ps)"

assumes "Ap. p < ub = p € num ‘ set ps «—~> p € A A p > n"

assumes "/A\x. x € set ps = rel (real_of_float (F prec x)) (f (num
x))"

assumes "rel (real_of_float acc) (S’ n)"

assumes "check_aux ps 1b ub acc n"

assumes "k € {max 1b n..ub}"

shows "P k (S k)"

using assms
proof (induction ps 1b ub acc n rule: check_aux.induct)

case (1 ps 1b ub acc n)

hence "n < ub"

by auto

define ps’ where "ps’ = (if ps = [] V num (hd ps) # n then ps else
tl ps)"

define acc’ where "acc’ = (if ps = [] V num (hd ps) # n then acc else
plus prec acc (F prec (hd ps)))"

have acc’: "rel (real_of_float acc’) (S n)"
proof (cases "n € A")
case False
hence "acc’ = acc" using "1.prems"(3) [of n] <n < ub>
by (cases ps) (auto simp: acc’_def)
hence "rel (real_of_float acc’) (S’ n)"
using "1.prems"(5) by simp
also from False have "A N {..<n} = A N {..n}"
using nless_le by blast
hence "S’ n = S n"
by (simp add: S_def S’_def)
finally show ?thesis .
next
case True
hence "n € num ° set ps" "n > 0"
using "1.prems"(3) [of n] <n < ub> A by (auto intro: Nat.grOI)
have *: "num p > n" if "p € set ps" for p
using "1.prems"(3) [of "num p"] that <n < ub>
by (cases "num p < ub") auto
from <n € num ° set ps> obtain x
where ps_eq: "ps = x # ps’" "num x = n"
using <sorted (map num ps)> <distinct (map num ps)> *
by (cases ps) (fastforce simp: ps’_def)+
have "acc’ = plus prec acc (F prec x)"
using ps_eq by (auto simp: acc’_def)

¢

also have "rel (real_of_float ...) (S’ n + f (num x))"
by (intro plus "1.prems" <n > 0>) (auto simp: ps_eq)
also have "... = sum f (insert n (A N {..<n}))"

unfolding S’_def by (subst sum.insert) (auto simp: ps_eq)
also have "insert n (A N {..<n}) = A N {..n}"
using True by auto
also have "sum f ... = S n"
by (simp add: S_def)
finally show ?thesis .
qed

show 7case
proof (cases "m = k")

case True
have "P k (real_of_float acc’)"
using "1.prems"(6,7)
by (subst (asm) check_aux.simps) (use True in <auto simp: acc’_def>)
moreover have "rel (real_of_float acc’) (S n)"
by fact
ultimately show ?7thesis
using True P_rel by simp
next
case False
show ?thesis
proof (rule "1.IH"[of "(acc’, ps’)", OF _ _ refl])
show "sorted (map num ps’)"
using <sorted (map num ps)>
by (auto simp: ps’_def sorted_tl map_tl)
show "distinct (map num ps’)"
using <distinct (map num ps)>
by (auto simp: ps’_def distinct_tl map_t1)
show "(p € num ‘ set ps’) = (p € A ANn+1 < p)"if p: "p < ub"
for p
proof (cases "n € A")
case False
hence "n ¢ num ¢ set ps"
using "1.prems"(3) [of n] <n < ub> by auto
hence [simp]: "ps’ = ps"
by (auto simp: ps’_def)
show ?thesis using "1.prems"(3)[of p] p False
by (cases "mn = p") auto
next
case True
hence "n € num ° set ps"
using "1.prems"(3) [of n] <n < ub> by auto
have *: "num p > n" if "p € set ps" for p
using "1.prems"(3) [of "num p"] that <n < ub>
by (cases "num p < ub") auto
from <n € num ¢ set ps> obtain x
where ps_eq: "ps = x # ps’" "num x = n"
using <sorted (map num ps)> <distinct (map num ps)> *
by (cases ps) (fastforce simp: ps’_def)+
show ?thesis
by (cases "p = n")
(use "1.prems"(3)[of p] p <distinct (map num ps)> in <auto
simp: ps_eq>)

(4

¢

qed
next
have "rel (real_of_float acc’) (S n)"
by fact

also have "Sn =5’ (n + 1)"
unfolding S_def S’_def by (simp add: lessThan_Suc_atMost)

finally show "rel (real_of_float acc’) (S’ (n + 1))" .
next
show '"check_aux ps’ 1b ub acc’ (n + 1)"
using "1.prems"(6,7)
by (subst (asm) check_aux.simps) (auto simp: acc’_def ps’_def)
next
show "k € {max 1b (n+1)..ub}"
using "1.prems" False by auto
next
show "rel (real_of_float (F prec x)) (f (num x))"
if "x € set ps’" for x
using "1.prems" (4) [of x] that
by (cases ps) (auto simp: ps’_def split: if_splits)
qed (use <n < ub> in <auto simp: acc’_def ps’_def>)
qed
qed

lemma check_correct:
assumes "sorted (map num ps)" "distinct (map num ps)"
assumes "Ap. p < ub = p € num ‘ set ps +— p € A"
assumes "Ax. x € set ps = rel (real_of_float (F prec x)) (f (num
x))"
assumes '"check ps 1b ub"
assumes "k € {lb..ub}"
shows "P k (S k)"
proof (rule check_aux_correct)
define n where "n = (if ps = [] then 1b else min 1b (num (hd ps)))"
have "n < ub"
using assms by (auto simp: n_def)
show "sorted (map num ps)" "distinct (map num ps)"
by fact+
show "check_aux ps 1b ub O n"
using assms unfolding check_def n_def by simp
show "k € {max 1b n..ub}"
using assms by (auto simp: n_def)
show "p € num ¢ set ps ¢— p € A A n < p" if "p < ub" for p
using assms(3) [of p] that <sorted (map num ps)>
by (cases ps) (auto simp: n_def)

have "A N {..<n} = {}"
proof (intro equalityIl subsetI)
fix p assume p: "p € A N {..<n}"
hence "p € num ° set ps"
using assms (3) [of p] <n < ub> by auto
hence False
using p <sorted (map num ps)> by (cases ps) (auto simp: n_def)
thus "p € {}" ..
ged auto
thus "rel (real_of_float 0) (S’ n)"

10

by (simp add: S’_def rel_0)
qed (use assms in auto)

end

end

1.1.4 The 9 function

context
begin

interpretation primes_theta: chebyshev_check
"An. 1ln (real n)"
"Aprec n. the (1b_ln prec (Float (int n) 0))"

"{p. prime p}"
"float_plus_down"
"<y
"Mk x. x > ¢ * (real k + 1)"
"An. n"
for ¢ :: real

proof

show "real_of_float (float_plus_down prec X Y) < x + y"
if "real_of_float X < x" "real_of_float Y < y"

for x y :: real and X Y :: float and prec :: nat
using that by (simp add: float_plus_down_le)
qed auto

definition check_theta_lower_aux
where "check_theta_lower_aux = primes_theta.check_aux"

definition check_theta_lower where
"check_theta_lower c prec 1b ub =
primes_theta.check ¢ prec (primes_upto ub) 1b ub"

lemma check_theta_lower_aux_code [code]:
"check_theta_lower_aux c¢ prec ps 1b ub acc n
(if ub < n then True else let (acc’, ps’)
if ps # [] A hd ps = n
then (float_plus_down prec acc (the (1b_ln prec (Float (int
(hd ps)) 0))), t1 ps)
else (acc, ps)
in (n < 1b V ¢ * (real n + 1) < real_of_float acc’) A
check_theta_lower_aux ¢ prec ps’ 1b
ub acc’ (n + 1))"
unfolding check_theta_lower_aux_def
by (rule primes_theta.check_aux.simps)

11

lemma check_theta_lower_code [code]:
"check_theta_lower c¢ prec 1b ub = (let ps = primes_upto ub in
check_theta_lower_aux ¢ prec ps 1b ub 0
(if ps = [] then 1b else min 1b (hd ps)))"
unfolding check_theta_lower_def primes_theta.check_def check_theta_lower_aux_def
by (simp add: Let_def)

lemma check_theta_lower_correct:
assumes "check_theta_lower c prec 1b ub"
shows "Vx&{real 1b..real ub}. primes_theta x > c * x"
proof
fix x assume x: "x € {real 1b..real ub}"
define ¥ where "k = nat |x]|"
show "c * x < primes_theta x"
proof (cases "c > 0")
case False
hence "c * x < 0"
using x by (auto intro: mult_nonpos_nonneg)
also have "0 < primes_theta x"
by (rule Y_nonneg)
finally show 7thesis .
next
case True
hence "c * x < ¢ * (real k + 1)"
using x by (intro mult_left_mono) (auto simp: k_def)
also have "c * (real k + 1) < primes_theta.S k"
proof (rule primes_theta.check_correct)
show "sorted (map (An. n) (primes_upto ub))"
"distinct (map (An. n) (primes_upto ub))"
by (simp_all add: sorted_primes_upto distinct_primes_upto)
show "k € {1b..ub}"
using x by (auto simp: k_def le_nat_iff le_floor_iff nat_le_iff
floor_le_iff)
show '"primes_theta.check c¢ prec (primes_upto ub) 1b ub"
using assms by (simp add: check_theta_lower_def)
next
fix p assume "p < ub"
thus "p € (An. n) ¢ set (primes_upto ub) <— p € {p. prime p}"
by (auto simp: set_primes_upto)
next
fix n
assume n: "n € set (primes_upto ub)"
hence "n > 0"
by (auto simp: set_primes_upto prime_gt_0_nat)
define x where "x = the (1b_ln prec (Float (int n) 0))"
have "1b_ln prec (Float (int n) 0) # None"
using <n > 0> by (subst 1b_Iln.simps) auto
hence "1b_ln prec (Float (int n) 0) = Some x"
by (cases "lb_ln prec (Float (int n) 0)") (auto simp: x_def)

12

from 1b_1nD[OF this] show "real_of_float x < In (real n)"
by simp

qed

also have '"primes_theta.S k = primes_theta k"
unfolding primes_theta.S_def primes_theta_def prime_sum_upto_def
by (intro sum.cong) auto

also have "primes_theta k = primes_theta x"
unfolding k_def by simp

finally show "c * x < primes_theta x" .

qged
qed

end

context
begin

interpretation primes_theta: chebyshev_check
"An. In (real n)"
"Aprec n. the (ub_ln prec (Float (int n) 0))"

"{p. prime p}"
"float_plus_up"
II(Z)H
"Mk x. x < ¢ * real k"
"An. n"
for ¢ :: real

proof

show "real_of_float (float_plus_up prec X Y) > x + y"
if "real_of_float X > x" "real_of_float Y > y"
for x y :: real and X Y :: float and prec :: nat
using that by (simp add: float_plus_up_le)
qed auto

definition check_theta_upper_aux
where "check_theta_upper_aux = primes_theta.check_aux"

definition check_theta_upper where
"check_theta_upper c¢ prec 1b ub =
primes_theta.check ¢ prec (primes_upto ub) 1b ub"

lemma check_theta_upper_aux_code [code]:
"check_theta_upper_aux c¢ prec ps 1lb ub acc n
(if ub < n then True else let (acc’, ps’)
if ps # [A hd ps = n
then (float_plus_up prec acc (the (ub_ln prec (Float (int

13

(hd ps)) 0))), tl ps)
else (acc, ps)
in (n < 1b V ¢ * real n > real_of_float acc’) A
check_theta_upper_aux c¢ prec ps’ 1b
ub acc’ (mn + 1))"
unfolding check_theta_upper_aux_def
by (rule primes_theta.check_aux.simps)

lemma check_theta_upper_code [code]:
"check_theta_upper c¢ prec 1b ub = (let ps = primes_upto ub in
check_theta_upper_aux c¢ prec ps lb ub 0
(if ps = [] then 1b else min 1b (hd ps)))"
unfolding check_theta_upper_def primes_theta.check_def check_theta_upper_aux_def
by (simp add: Let_def)

lemma check_theta_upper_correct:
assumes "check_theta_upper c prec 1b ub" "c > 0"
shows "Vx&{real 1b..real ub}. primes_theta x < c * x"
proof
fix x assume x: "x € {real 1b..real ub}"
define k where "k = nat [x]"
have "primes_theta.S k < ¢ * real k"
proof (rule primes_theta.check_correct)
show "sorted (map (An. n) (primes_upto ub))"
"distinct (map (An. n) (primes_upto ub))"
by (simp_all add: sorted_primes_upto distinct_primes_upto)
show "k € {1b..ub}"
using x by (auto simp: k_def le_nat_iff le_floor_iff nat_le_iff
floor_le_iff)
show "primes_theta.check c¢ prec (primes_upto ub) 1b ub"
using assms by (simp add: check_theta_upper_def)
next
fix p assume "p < ub"
thus "p € (An. n) ¢ set (primes_upto ub) <— p € {p. prime p}"
by (auto simp: set_primes_upto)
next
fix n
assume n: "n € set (primes_upto ub)"
hence "n > 0"
by (auto simp: set_primes_upto prime_gt_0_nat)
define x where "x = the (ub_ln prec (Float (int n) 0))"
have "ub_ln prec (Float (int n) 0) # None"
using <n > 0> by (subst ub_ln.simps) auto
hence "ub_ln prec (Float (int n) 0) = Some x"
by (cases "ub_ln prec (Float (int n) 0)") (auto simp: x_def)
from ub_InD[OF this] show "real_of_float x > 1n (real n)"
by simp
qed
also have "primes_theta.S k = primes_theta k"

14

unfolding primes_theta.S_def primes_theta_def prime_sum_upto_def
by (intro sum.cong) auto
also have '"primes_theta k = primes_theta x"
unfolding k_def by simp
also have "c * real k < ¢ * x"
using <c > 0> x by (intro mult_left_mono) (auto simp: k_def)
finally show "primes_theta x < ¢ * x" .
qed

end

1.1.5 The ¢ function

context
begin

interpretation primes_psi: chebyshev_check
"An. 1n (real (aprimedivisor n))"
"Aprec x. the (1b_ln prec (Float (int (snd x)) 0))"
"{p. primepow p}"
"float_plus_down"

HGON
"Mk x. x > ¢ * (real k + 1)"
"fst"
for ¢ :: real
proof

show "real_of_float (float_plus_down prec X Y) < x + y"
if "real of_float X < x" "real_of_float Y < y"

for x y :: real and X Y :: float and prec :: nat
using that by (simp add: float_plus_down_le)
qged auto

definition check_psi_lower_aux
where "check_psi_lower_aux = primes_psi.check_aux"

definition check_psi_lower where
"check_psi_lower c prec 1b ub =
primes_psi.check ¢ prec (prime_powers_upto ub) 1lb ub"

lemma check_psi_lower_aux_code [code]:
"check_psi_lower_aux ¢ prec ps lb ub acc n =
(if ub < n then True else let (acc’, ps’) =
if ps # [1 A fst (hd ps) = n
then (float_plus_down prec acc (the (1b_ln prec (Float (int
(snd (hd ps))) 0))), tl ps)
else (acc, ps)
in (n < 1b V ¢ * (real n + 1) < real_of_float acc’) A
check_psi_lower_aux c¢ prec ps’ 1b

15

ub acc’ (m + 1))"
unfolding check_psi_lower_aux_def
by (rule primes_psi.check_aux.simps)

lemma check_psi_lower_code [code]:
"check_psi_lower c prec lb ub = (let ps = prime_powers_upto ub in
check_psi_lower_aux c¢ prec ps 1b ub 0
(if ps = [] then 1b else min 1b (fst (hd ps))))"
unfolding check_psi_lower_def primes_psi.check_def check_psi_lower_aux_def
by (simp add: Let_def)

lemma check_psi_lower_correct:
assumes "check_psi_lower c prec 1b ub"
shows "Vxe{real 1b..real ub}. primes_psi x > c * x"
proof
fix x assume x: "x € {real 1b..real ub}"
define ¥k where "k = nat |x]|"
show "c * x < primes_psi x"
proof (cases "c > 0")
case False
hence "c * x < 0"
using x by (auto intro: mult_nonpos_nonneg)
also have "0 < primes_psi x"
by (rule t_nonneg)
finally show ?thesis .
next
case True
hence "c * x < ¢ * (real k + 1)"
using x by (intro mult_left_mono) (auto simp: k_def)
also have "c * (real k + 1) < primes_psi.S k"
proof (rule primes_psi.check_correct)
show "sorted (map fst (prime_powers_upto ub))"
"distinct (map fst (prime_powers_upto ub))"
by (simp_all add: sorted_prime_powers_upto distinct_prime_powers_upto)
show "k € {1b..ub}"
using x by (auto simp: k_def le_nat_iff le_floor_iff nat_le_iff
floor_le_iff)
show "primes_psi.check c¢ prec (prime_powers_upto ub) 1b ub"
using assms by (simp add: check_psi_lower_def)
next
fix p assume "p < ub"
thus "p € fst ¢ set (prime_powers_upto ub) <— p € {p. primepow
p}"
by (force simp: set_prime_powers_upto)
next
fix y
assume y: "y € set (prime_powers_upto ub)"
hence "snd y > 0"
by (auto simp: set_prime_powers_upto intro!: aprimedivisor_pos_nat

16

primepow_gt_Suc_0)
define x where "x = the (1b_ln prec (Float (int (smnd y)) 0))"
have "1b_ln prec (Float (int (snd y)) 0) # None"
using <snd y > 0> by (subst 1lb_ln.simps) auto
hence "1b_ln prec (Float (int (snd y)) 0) = Some x"
by (cases "lb_ln prec (Float (int (snd y)) 0)") (auto simp: x_def)
from 1b_I1nD[OF this] show "real_ of_float x < 1ln (real (aprimedivisor
(fst y)))"
using y by (auto simp: set_prime_powers_upto)
qed
also have '"primes_psi.S k = primes_psi k"
unfolding primes_psi.S_def primes_psi_def sum_upto_def
by (intro sum.mono_neutral_cong_left) (auto simp: primepow_gt_O_nat
mangoldt_def)
also have '"primes_psi k = primes_psi x"
unfolding k_def by simp
finally show "¢ * x < primes_psi x" .
qed
qed

end

context
begin

interpretation primes_psi: chebyshev_check
"An. 1n (real (aprimedivisor n))"
"Aprec x. the (ub_ln prec (Float (int (snd x)) 0))"
"{p. primepow p}"
"float_plus_up"

II(>)VI
"Mk x. x < ¢ * real k"
llfstll
for ¢ :: real
proof

show '"real_of_float (float_plus_up prec X Y) > x + y"
if "real_of_float X > x" "real_of_float Y > y"
for x y :: real and X Y :: float and prec :: nat
using that by (simp add: float_plus_up_le)
qed auto

definition check_psi_upper_aux
where "check_psi_upper_aux = primes_psi.check_aux"
definition check_psi_upper where

"check_psi_upper c prec 1b ub =
primes_psi.check ¢ prec (prime_powers_upto ub) 1lb ub"

17

lemma check_psi_upper_aux_code [code]:
"check_psi_upper_aux ¢ prec ps lb ub acc n =
(if ub < n then True else let (acc’, ps’) =
if ps # [] A fst (hd ps) = n
then (float_plus_up prec acc (the (ub_ln prec (Float (int
(snd (hd ps))) 0))), tl ps)
else (acc, ps)
in (n < 1b V ¢ * real n > real_of_float acc’) A
check_psi_upper_aux c¢ prec ps’ 1b
ub acc’ (m + 1))"
unfolding check_psi_upper_aux_def
by (rule primes_psi.check_aux.simps)

lemma check_psi_upper_code [code]:
"check_psi_upper c prec lb ub = (let ps = prime_powers_upto ub in
check_psi_upper_aux c¢ prec ps 1b ub 0
(if ps = [] then 1b else min 1b (fst (hd ps))))"
unfolding check_psi_upper_def primes_psi.check_def check_psi_upper_aux_def
by (simp add: Let_def)

lemma check_psi_upper_correct:
assumes "check_psi_upper c¢ prec 1lb ub" "c > 0"
shows "Vx&{real 1b..real ub}. primes_psi x < c * x"
proof
fix x assume x: "x € {real 1b..real ub}"
define ¥ where "k = nat |x]"
have "primes_psi.S k < ¢ * real k"
proof (rule primes_psi.check_correct)
show "sorted (map fst (prime_powers_upto ub))"
"distinct (map fst (prime_powers_upto ub))"
by (simp_all add: sorted_prime_powers_upto distinct_prime_powers_upto)
show "k € {1b..ub}"
using x by (auto simp: k_def le_nat_iff le_floor_iff nat_le_iff
floor_le_iff)
show "primes_psi.check ¢ prec (prime_powers_upto ub) 1b ub"
using assms by (simp add: check_psi_upper_def)
next
fix p assume "p < ub"
thus "p € fst ‘ set (prime_powers_upto ub) <— p € {p. primepow p}"
by (force simp: set_prime_powers_upto)
next
fix y
assume y: "y € set (prime_powers_upto ub)"
hence "snd y > 0"
by (auto simp: set_prime_powers_upto intro!: aprimedivisor_pos_nat
primepow_gt_Suc_0)
define x where "x = the (ub_ln prec (Float (int (snd y)) 0))"
have "ub_ln prec (Float (int (snd y)) 0) # None"

18

using <snd y > 0> by (subst ub_ln.simps) auto
hence "ub_In prec (Float (int (snd y)) 0) = Some x"
by (cases "ub_Iln prec (Float (int (snd y)) 0)") (auto simp: x_def)
from ub_InD[OF this] show "real_of_float x > ln (real (aprimedivisor
(fst y)))"
using y by (auto simp: set_prime_powers_upto)
qed
also have "primes_psi.S k = primes_psi k"
unfolding primes_psi.S_def primes_psi_def sum_upto_def
by (intro sum.mono_neutral_cong_left) (auto simp: primepow_gt_O_nat
mangoldt_def)
also have "primes_psi k = primes_psi x"
unfolding k_def by simp
also have "c * real k < ¢ * x"
using x assms by (intro mult_left_mono) (auto simp: k_def)
finally show "primes_psi x < ¢ * x" .
qed

end

end

theory Chebyshev_Prime_Bounds

imports
"Prime_Number_Theorem.Prime_Counting Functions"
"Prime_Distribution_Elementary.Prime_Distribution_Elementary_Library"
"Prime_Distribution_Elementary.Primorial"
"HOL-Decision_Procs.Approximation"
"HOL-Library.Code_Target_Numeral"
Chebyshev_Prime_Exhaust

begin

1.2 Auxiliary material
context comm_monoid_set

begin

lemma union_disjoint’:
assumes "finite C" "A U B =C" "A N B = {}"
shows "f (FgA) (FgB) =Fg¢C"
using union_disjoint[of A B gl assms by auto

end

lemma sum_mset_nonneg:
fixes X :: "’a :: ordered_comm_monoid_add multiset"
shows "(Ax. x €# X =— x > 0) = sum_mset X > 0"
by (induction X) (auto)

lemma of_int_sum_mset: "of_int (sum_mset M) = sum_mset (image_mset of_int

19

M) n
by (induction M) auto

lemma sum_sum_mset: "()_ x€A.) yc#B. f x y) = (O y€#B.) x€A. f x
y-)ll

by (induction B) (auto simp: algebra_simps sum.distrib)

lemma sum_mset_diff_distrib:
fixes f g :: "?a = ’b :: ab_group_add"
shows " xe#h. fx - gx) = O xe#h. £ x) - O xc#h. g x)"
by (induction A) (auto simp: algebra_simps)

lemma sum_mset_neg_distrib:
fixes £ :: "’a = ’b :: ab_group_add"
shows " xe#hd. —-f x) = -(Q_xc#A. £ x)"
by (induction A) (auto simp: algebra_simps)

1.3 Bounds for the remainder in Stirling’s approximation

definition In_fact_remainder :: "real = real" where
"ln_fact_remainder x = ln (fact (nat [x]|)) - (x * 1ln x - x)"

lemma 1n_fact_remainder_bounds:

assumes x: "x > 3"

shows "In_fact_remainder x < 1lnx / 2 + 1In (2 *pi) / 2+ 1/ (12
* [x)r

and "ln_fact_remainder x > -lnx / 2 + 1n (2 * pi) / 2 -1/ (2 *

x)"
proof -

define n where "n

define f where "f

nat |x|"
(M. t* (Int-1) +1nt /2 :: real)"

have "ln |x] > 1"
proof -
have "1 < In (3 :: real)"
by (approximation 10)
also have "1n 3 < In |x]"
using assms by simp
finally show 7thesis .
qed

have n: "n > 1"
using x by (auto simp: n_def le_nat_iff)
have "ln_fact_remainder x = 1ln (fact n) + Inx / 2 - f x"
by (simp add: 1n_fact_remainder_def n_def f_def algebra_simps)
also have "In (fact n) < 1n (2 * pi) / 2+ fn+ 1/ (12 * n)"
using In_fact_bounds(2) [of n] n by (auto simp: f_def In_mult add_divide_distrib
algebra_simps)
also have "... +Inx /2 -fx=1lnx/2+ (fn-f x) + 1n (2 * pi)

20

/ 2+ 1/ (12 * n)"
using n by (simp add: algebra_simps ln_mult)
also have "f n < f x"
unfolding f_def using assms <In |x]| > 1>
by (intro add_mono mult_mono) (auto simp: n_def)
finally show "In_fact_remainder x < In x / 2 + 1n (2 * pi) / 2 + 1/
(12 * |x])"

using assms by (simp add: n_def)

define f’ :: "real = real" where "f’ = (Ax. Inx + 1/ (2 * x))"
have f’_mono: "f’ x < f> y" if "x < y" "x > 1/ 2" for x y :: real
using that (1)
proof (rule DERIV_nonneg_imp_nondecreasing)
fix t assume t: "t > x" "t < y"
hence "t > 0"
using <x > 1 / 2> by auto
have "(t -1 /2 /t ~2 > 0"
using t that by auto
have "(f’ has_field_derivative (1 / t -1/ (2 xt ~ 2))) (at t)"
using <t > 0> by (auto simp: f’_def power2_eq_square intro!: derivative_eq_intros)
also have "1 /t -1/ (2*t ~2)=(t-1/2)/t 2"
using <t > 0> by (simp add: field_simps eval_nat_numeral del: div_diff)
finally show "Jy. (f’ has_real_derivative y) (at t) AN 0 < y"
using <(t -1 /2) /t ~ 2 > 0> by blast
qed

have f’_nonneg: "f’ t > 0" if "t > 3" for ¢
proof -
have "0 < £’ 3"
unfolding f’_def by (approximation 10)
also have "f’ 3 < f’ t"
by (rule f’_mono) (use that in auto)
finally show ?thesis .
qed

have "f x - f n < f’ x * frac x"
proof (cases "n < x")
case False
hence "x = n"
using assms unfolding n_def by linarith
thus 7thesis using f’_nonnegl[of x] assms
by (simp add: n_def)
next
case True
have "dz::real. z>n Nz <x ANfx-fn=(x-n) *f’ z"
using True assms n
by (intro MVT2) (auto intro!: derivative_eq_intros simp: f_def f’_def)
then obtain z :: real where z: "z > n" "z < x" "f x - fn = (x -
n) * £’ z"

21

by blast
have "f’ z < £’ x"
by (rule f’_mono) (use z assms n in auto)

have "f x - fn = (x - n) * f> z"
by fact
also have "... < (x - n) * £’ x"
using <f’ z < f’ x> True by (intro mult_left_mono) auto
also have "x - n = frac x"
using assms by (simp add: n_def frac_def)
finally show ?thesis
by (simp add: mult_ac)
qed

also have "... < f’ x * 1"
using frac_lt_1[of x] f’_nonneg[of x] assms
by (intro mult_left_mono) auto

finally have "f n - f x > -1 / (2 * x) - 1n x"
by (simp add: f’_def)

have "-Inx /2 -1/ (2 *x) +1In (2 * pi) / 2 =
Inx/ 2+ (-1 / (2 *x) -1nx) + 1n (2 * pi) / 2"
by (simp add: algebra_simps)
also have "-1 / (2 * x) - Inx < fn - f x"
by fact
also have "In x / 2+ (fn - f x) +1n (2 *pi) / 2 =
In (2 *pi) / 2+ fn+1nx/2 -1 x"
by (simp add: algebra_simps)
also have "In (2 * pi) / 2 + £ n < 1n (fact n)"
using In_fact_bounds (1) [of n] n by (auto simp: f_def In_mult add_divide_distrib
algebra_simps)
also have "In (fact n) + In x / 2 - f x = 1n_fact_remainder x"
by (simp add: 1n_fact_remainder_def f_def n_def algebra_simps)
finally show "In_fact_remainder x > -Iln x / 2 + 1n (2 * pi) / 2 - 1
/(2 * x)"
by simp
qed

lemma abs_Iln_fact_remainder_bounds:
assumes x: "x > 3"
shows "|1n_fact_remainder x| < In x / 2 + 1"
proof -
have "In_fact_remainder x < Inx / 2 + (In (2 * pi) / 2 + 1 / (12 *
[x]))"
using In_fact_remainder_bounds (1) [of x] assms by (simp add: algebra_simps)
also have "1 / (12 * |x]) < 1 / 36"
using assms by auto
also have "In (2 ¥ pi) / 2+ 1/ 36 < 1"
by (approximation 10)

22

finally have less: "ln_fact_remainder x < In x / 2 + 1"
by simp

have "-(In x / 2+ 1) = -lnx / 2 + (-1)"
by simp
also have "-1 <0 -1/ (2 * x)"
using assms by simp
also have "0 < 1n (2 * pi) / 2"
using pi_gt3 by simp
also have "-In x / 2 + (In (2 * pi) / 2 -1/ (2 * x)) < 1ln_fact_remainder

n

X
using In_fact_remainder_bounds(2) [of x] assms by (simp add: algebra_simps)
finally have "- (In x / 2 + 1) < 1n_fact_remainder x" by - simp_all
with less show 7thesis
by linarith
qed

1.4 Approximating v

unbundle prime_counting syntax

lemma primes_psi_lower_rec:
fixes f :: "real = real"
assumes "Ax. x > x0 = fx < f (x/ c) + h x"
assumes "x0 > 0" "x * ¢ > x0 * ¢ "~ n" "c > 1"
shows "fx < f (x/c " n)+ O k<n. h (x/c k)"
using assms(2-)
proof (induction n arbitrary: x)
case 0
thus 7case by auto
next
case (Suc n)
have "0 < x0 * ¢ ~ n"
using Suc.prems by auto
also have "... < x"
using Suc.prems by auto
finally have "x > 0" .

have "x0 * ¢ " n < 1 * x"
using Suc.prems by simp
also have "1 * x < ¢ * x"
by (rule mult_right_mono) (use Suc.prems <x > 0> in auto)
finally have "f x < f (x /¢ "n) + O k<n. h (x / c ~ k)"
by (intro Suc.IH) (use Suc.prems in <auto simp: mult_ac>)
also have "f (x / ¢ "n) < f (x/c ~"n/c)+h(x/c ~n)"
by (rule assms(1)) (use Suc.prems <x > 0> in <auto simp: field_simps
less_imp_le>)
finally show ?case
by (simp add: mult_ac add_ac)

23

qed

locale chebyshev_multiset =
fixes L :: "int multiset"
assumes L_nonzero: "0 ¢# L"
begin

definition chi_L :: "real = int" ("xp")
where "chi_ L t = (O 1€#L. sgn 1 * [t / [1|])"

definition psi_L :: "real = real" ("#p")
where "psi_L x = sum_upto (\d. mangoldt d * chi_L (x / d)) x"

definition alpha_L :: real ("ar")
where "alpha L = -()_1€#L. 1n |1| / 1"

definition period :: nat
where "period = nat (Lcm (set_mset L))"

lemma period_pos: "period > 0"
proof -
have "Lcm (set_mset L) # 0"
using L_nonzero unfolding period_def by (subst Lcm_0_iff) auto
moreover have "Lcm (set_mset L) > 0"
by auto
ultimately have "Lcm (set_mset L) > 0"
by linarith
thus 7thesis
by (simp add: period_def)
qed

lemma dvd_period: "1 €# L = 1 dvd period"
unfolding period_def by auto

lemma chi_L_decompose:
"xr (x + of_int (m * int period)) = xp x + m * int period * (D 1€#L.
1/ 1"
proof -
have "real_of_int (x; (x + of_int (m * int period))) =
(3" 1€e#L. of_int (sgn 1 * |(x + of_int m * real period) / real_of_int

12100
by (simp add: chi_L_def of_int_sum_mset multiset.map_comp o_def)
also have "... = (0. 1€#L. real_of_int (sgn 1 * (|x / of_int |1|])) +
m * period / 1)"
proof (intro arg conglof _ _ sum_mset] image_mset_cong, goal_cases)
case (1 1)
with L_nonzero have [simp]: "1 # 0"
by auto

24

have "(x + of_int m * real period) / real_of_int |1| =
x / of_int |1| + of_int (m * period div |1|)"
using dvd_period[of 1] 1 by (subst real_of_int_div) (auto simp:
field_simps)
also have "floor ... = |x / of_int |1| :: real| + m * period div |1|"
by (subst floor_add_int) auto
also have "real_of_int ... = |x / of_int |1|| + m * period / |1|"
using dvd_period[of 1] 1 by (simp add: real_of_int_div)
also have "sgn 1 * ... = sgn 1 * |x / of_int |1|| + m * period / 1"
by (simp add: sgn_if)
finally show ?case
by simp
qed
also have "... = of_int (xp x) + (Q_1€#L. m * period / 1)"
by (subst sum_mset.distrib)
(auto simp: chi_L_def of_int_sum_mset multiset.map_comp o_def)
also have "(>_1c#L. m * period / 1) = m * period * (> 1€#L. 1 / 1)"
by (simp add: sum_mset_distrib_left)
finally show ?thesis
by simp
qed

lemma chi_L_floor: "chi_L (floor x) = chi_L x"
unfolding chi_L_def
proof (intro arg conglof _ _ sum_mset] image_mset_cong, goal_cases)
case (1 1)
thus ?case
using floor_divide_real_eq div[of "|1|" x] floor_divide_of_int_eq[of

n \;XJ non |l | n]
by auto

qed

end

locale balanced_chebyshev_multiset = chebyshev_multiset +
assumes balanced: "()_ 1€#L. 1 / 1) = 0"
begin

lemma chi_L_mod: "x; (of_int (a mod int period)) = xr (of_int a)"
proof -
have a: "a = a mod period + period * (a div period)"
by simp
have "of_int a = real_of_int (a mod int period) +
real_of_int (a div int period * int period)"
by (subst a, unfold of_int_add) auto
also have "real_of_int (xr ...) = real_of_int (xr (real_of_int (a mod
int period)))"
using balanced by (subst chi_L_decompose) auto

25

finally show ?thesis
by linarith

qed
sublocale chi: periodic_fun_simple chi_L "of_int period"
proof

fix x :: real

have "y (x + real_of_int (int period)) = xr (of_int (|x + real_of_int
(int period)| mod int period))"
unfolding chi_L_mod chi_L_floor ..
also have "|x + real_of_int (int period)]| mod int period = |x| mod int
period"
by simp
also have "xr ... = xp x"
by (simp add: chi_L_mod chi_L_floor)
finally show "y (x + real_of_int (int period)) = x x" .
qed

definition psi_IL_remainder where
"psi_L_remainder x = () 1€#L. sgn 1 * In_fact_remainder (x / |1]))"

lemma abs_sum_mset_le:
fixes £ :: "’a = ’b :: ordered_ab_group_add_abs"
shows "|> xe#Ad. £ x| < O xe#d. |[f x|)"
by (induction A) (auto intro: order.trans[OF abs_triangle_ineq])

lemma psi_L_remainder_bounds:
fixes x :: real
assumes x: "x > 3" "Al. 1 €# L = x > 3 * |1|"
shows "|psi_L_remainder x| <
ln x * size L / 2 - 1/2 ¥ (O 1€#L. 1n |1|) + size L"
proof -
have nonzero: "1 # 0" if "1 €# L" for 1
using L_nonzero that by auto
have "psi_L_remainder x = () 1€#L. sgn 1 * ln_fact_remainder (x / |1]))"
by (simp add: psi_L_remainder_def)

also have "|...| < (O 1€#L. |sgn 1 * In_fact_remainder (x / |1])|)"
by (rule abs_sum_mset_le)
also have "... = (3 1€#L. |ln_fact_remainder (x / |1])])"
by (intro arg conglof _ _ sum_mset] image_mset_cong)
(auto simp: nonzero abs_mult simp flip: of_int_abs)
also have "... < (O 1€#L. In (x / |1]) / 2 + 1)"
using x

by (intro sum_mset_mono less_imp_le[OF abs_ln_fact_remainder_bounds])
(auto simp: nonzero field_simps)

also have "... = (0 1e€#L. 1 /2 * (In x - 1n [1]) + 1"
using assms
by (intro arg_conglof _ _ sum_mset] image_mset_cong) (auto simp: algebra_simps

26

1n_div nonzero)
also have "... = 1n x / 2 * size L + (-1/2) * ()_1€#L. 1In |1|) + size
LH
unfolding sum_mset_distrib_left of_int_sum_mset
by (simp add: sum_mset.distrib sum_mset_diff_distrib diff_divide_distrib
sum_mset_neg_distrib)
finally show ?thesis
using assms by (simp add: mult_left_mono divide_right_mono add_mono)
qed

lemma psi_L_eq:
assumes "x > 0"
shows "psi_L x = af, * x + psi_L_remainder x"
proof -
have "psi_L x = (3 1€#L. sgn 1 *
sum_upto (Ad. mangoldt d * |x / (d * |1]D]) x)"
by (simp add: psi_L_def chi_L_def sum_upto_def sum_mset_distrib_left
of _int_sum_mset
multiset.map_comp o_def sum_sum_mset algebra_simps sum_distrib_left
sum_distrib_right)

also have "... = (O 1€c#L. sgn 1 *
sum_upto (Ad. mangoldt d * |x / (d * |1]D]) (x / |1]))"
proof (intro arg conglof _ _ sum_mset] image_mset_cong, goal_cases)
case (1 1)
have "1 # 0"

using 1 L_nonzero by auto

have "sum_upto (Ad. mangoldt d * real_of_int |x / real_of_int (int
d * |1]D]) (x / real_of_int |1|) =
sum_upto (Ad. mangoldt d * real_of_int |x / real_of_int (int
d* [1]D]) x"
unfolding sum_upto_def
proof (intro sum.mono_neutral_left subsetI balll, goal_cases)

case (2 d)

hence "real d < x / |real_of_int 1|"
by auto

also have "... < x / 1"

using <1 # 0> and assms by (intro divide_left_mono) auto
finally show 7case
using 2 by auto
next
case (3 d)
hence "x < d * |1|" and "d > 0"
using <1 # 0> and assms by (auto simp: field_simps)
hence "x / real_of_int (int d * |1|) > 0" and "x / real_of_int
(int d * |1]) < 1"
using assms by auto
hence "|x / real_of_int (int d * |1])] = O"
by linarith

27

thus ?case

by simp
qed auto
thus 7case
by simp
qed
also have "... = (O 1€#L. sgn 1 * ln (fact (nat [x/|1]])))"
by (subst 1ln_fact_conv_sum_mangoldt [symmetric]) (auto simp: mult_ac)
also have "... = O 1e#L. x /1 *Inx - x *1n |1| /1 -x /1 + sgn
1 * 1ln_fact_remainder (x / |1|))"
proof (intro arg conglof _ _ sum_mset] image_mset_cong, goal_cases)
case (1 1)

hence [simp]: "1 # 0"
using L_nonzero by auto
have "ln (fact (nat |x/|1||)) =x / |1| * 1n (x / |1|) - x / |1| + 1n_fact_remainder
(x / |1PD"
by (simp add: 1n_fact_remainder_def)
also have "real_of_int (sgn 1) * ... =x /1 * Inx - x * 1n |1| /
1-x/1+sgnl * 1ln_fact_remainder (x / |1])"
using assms by (auto simp: sgn_if In_div diff_divide_distrib algebra_simps)
finally show ?case .
qed
also have "... = (x * Inx - x) * (O.1e€#L. 1 /1) - x x (O 1€#L. In
|1] /1) + (O 1€#L. sgn 1 * 1ln_fact_remainder (x / |1]))"
by (simp add: sum_mset.distrib sum_mset_diff_distrib sum_mset_distrib_left
diff_divide_distrib)
also have "... = ap * x + psi_L_remainder x"
by (subst balanced) (auto simp: alpha_L_def psi_L_remainder_def)
finally show ?thesis .
qed

lemma primes_psi_lower_bound:
fixes x C :: real
defines "x0 = Max (insert 3 ((A1. 3 * |1|) ¢ set_mset L))"
assumes x: "x > x0"
assumes chi_lel: "An. n € {0..<period} = X (real n) < 1"
defines "C = 1 / 2 * (O_1€#L. 1n |1|) - size L"

shows "tp x > ap * x - 1ln x * size L / 2 + C"
proof -
have chi_le1’: "yx; x < 1" for x
proof -

have "y x = xp (floor x mod period)"
by (simp add: chi_L_mod chi_L_floor)

also have "floor x mod period = real (nat (floor x mod period))"
using period_pos by auto

also have "y, ... < 1"
by (rule chi_lel) (use period_pos in <auto simp: nat_less_iff>)

28

finally show ?thesis .
qed

have x0: "x0 > 3" "Al. 1 €# L —> x0 > 3 * |1|"
unfolding x0_def by auto

have *: "x x y < x" if "y < 1" "x > 0" for x y :: real
using mult_left_mono[0OF that] by auto

have "|psi_L_remainder x| < ln x * real (size L) / 2 -
1/ 2% (O 1€#L. 1n (real_of_int |1|)) + real (size L)"
by (rule psi_L_remainder_bounds)
(use x x0 in <force simp flip: of_int_abs>)+
hence "|psi_L_remainder x| < ln x * size L / 2 - C"
by (simp add: C_def algebra_simps)
hence "ap * x - 1ln x * size L / 2 + C < «ap * x + psi_L_remainder x"
by linarith
also have "ajy * x + psi_L_remainder x = i x"
using x x0(1) by (subst psi_L_eq) auto
also have "¢y x < ¢ x"
unfolding psi_L_def primes_psi_def sum_upto_def
by (intro sum_mono *) (auto simp: mangoldt_nonneg chi_lel’)
finally show ?thesis
by (simp add: C_def)
qed

end

lemma psi_lower_bound_precise:
assumes x: "x > 90"
shows "p x > 0.92128 * x - 2.5 * In x - 1.6"
proof -
interpret balanced_chebyshev_multiset "{#1, -2, -3, -5, 30#}"
by unfold_locales auto

define C :: real where "C = ((In 2 + (In 3+ (In 5 + 1n 30))) / 2 -
5) n
have "alpha L =1n2 /2 - (In 30 /30 -1n5/5-1In3/3)"
by (simp add: alpha_L_def)
also have "... > 0.92128"
by (approximation 30)
finally have "alpha L > 0.92128" .
have "C > -1.6"
unfolding C_def by (approximation 20)

have "0.92128 * x - In x * 5 / 2 + (-1.6) < alpha L * x - In x * 5
/ 2+ C"
using <alpha_L > _> <C > _> x by (intro diff_mono add_mono mult_right_mono)
auto

29

also have "chi L k < 1" if "k € {..<30}" for k :: nat
using that unfolding lessThan_nat_numeral pred_numeral_simps arith_simps
by (elim insertE) (auto simp: chi_L_def)
hence "alpha L * x -~ Inx * 5/ 2+ C < ¢ x"
using primes_psi_lower_bound[of x] x by (simp add: C_def period_def)
finally show ?thesis
by (simp add: mult_ac)
qed

context balanced_chebyshev_multiset
begin

lemma psi_upper_bound:
fixes x ¢ C :: real
defines "x0 = Max ({3, 55 * ¢} U {3 * |1| [1. 1 €# L})"
assumes x: "x > x0"
assumes chi_nonneg: "An. n € {0..<period} = x (real n) > 0"
assumes chi_gel: "An. real n € {1..<c} = X (real n) > 1"
assumes c: "c > 1" "¢ < period”
assumes "«ap > 0"
shows "¢y x < ¢/ (c - 1) *ap * x + (3 * size L) / (4 * 1n c) * 1In
x T2+ Y x0"
proof -
have L_nonzero’: "1 # 0" if "1 e# L" for 1
using that L_nonzero by auto

have chi_nonneg: "xp x > 0" for x
proof -
have "y x = xp (floor x mod period)"
by (simp add: chi_L_mod chi_L_floor)
also have "floor x mod period = real (nat (floor x mod period))"
using period_pos by auto
also have "xp ... > 0"
by (rule chi_nonneg) (use period_pos in <auto simp: nat_less_iff>)
finally show ?7thesis .
qed

have chi_gel: "xp x > 1" if "x > 1" "x < c¢" for x
proof -
have "y x = xr (floor x mod period)"
by (simp add: chi_L_mod chi_L_floor)
also have "floor x mod period = real (mat (floor x mod period))"
using period_pos by auto
also have "y ... > 1"
proof (rule chi_gel)
have "real_of_int |x| < c¢"
using that by linarith
hence "real_of_int (|x]| mod int period) < c"
using that period_pos c¢ by simp

30

moreover have "1 < |x| mod int period"
by (use period_pos c that in <auto simp: floor_less_iff>)
ultimately show "real (mat (|x| mod int period)) € {1..<c}"
by auto
qed
finally show ?thesis .
qed

have "finite {3 * 1 [1. 1 €# L}"
by auto
have x1: "x0 > 3" "x0 > 55 * c¢"
unfolding x0_def by (rule Max_ge; simp)+
have x2: "3 * |1| < x0" if "1 €# L" for 1
unfolding x0_def by (rule Max_ge) (use that in auto)

define C where "C = 1/2 * () 1€#L. In |1]) - size L"
have *: "x < x x y" if "y > 1" "x > 0" for x y :: real
using mult_left_mono[of 1 y x] that by simp

have rec: "¢y x < ¢ (x / c) +ap ¥ x + 1n x * size L / 2 - C" if x:
"x > x0" for x :: real
proof -
have "x / ¢ < x"
using c using divide_left_mono[of 1 ¢ x] <x0 > 3> x by auto
have "¢ x = ¢ (x / ¢c) + O.d | d >0 A real d € {x/c<..x}. mangoldt
"
unfolding v _def sum_upto_def
by (rule sum.union_disjoint’ [symmetric])
(use ¢ <x / ¢ < x> in auto)
also have "(>.d | d > 0 A real d € {x/c<..x}. mangoldt d) <
G-d | d>0 A real d € {x/c<..x}. mangoldt d * x; (x
/ d)"
using ¢ by (intro sum_mono * mangoldt_nonneg) (auto intro!: chi_gel
simp: field_simps)
also have "... < (3.d | d > 0 A real d < x. mangoldt d * x5 (x /
d)"
by (intro sum_mono2) (auto intro!: mult_nonneg nonneg mangoldt_nonneg
chi_nonneg)
also have "... = ¢ x"
by (simp add: psi_L_def sum_upto_def)
finally have "¢ x < 9 (x / c) + ¢ x"
by - simp_all

have L: "3 * |real_of_int 1| < x" if "1 €# L" for 1
using x2[0F that] x by linarith

have "y x < ¢ (x / ¢c) + Y x"

by fact
also have "¢ x = af * x + psi_L_remainder x"

31

using <x0 > 3> x by (subst psi_L_eq) auto
also have "|psi_L_remainder x| < ln x * size L / 2 - C"
using psi_L_remainder_bounds[of x] <x0 > 3> x L by (simp add: C_def)
hence "psi_L_remainder x < ln x * size L / 2 - C"
by linarith
finally show "¢ x < ¢ (x / ¢) + ap * x + 1In x * size L / 2 - C"
by (simp add: algebra_simps)
qed

define m where "m = nat [log ¢ (x / x0)1]"
have "x > 0"
using x x1 by simp

have "¢ x < ¢ x0 + (Q_k<m. a, * x / ¢ "k + 1n (x / ¢ ~ k) * size
L/2-0"
proof -
have " x < ¢ (x/ ¢ "m) + O k<m. af * (x/ c " k) +1n (x / c
~ k) * size L / 2 - C)"
proof (rule primes_psi_lower_rec)
fix x :: real assume "x > x0"
thus "¢Y x < ¢ (x/ ¢c) + (ap * x + 1n x * size L / 2 - C)"
using rec[of x] by (simp add: algebra_simps)
next
have "¢ ~ m = ¢ powr real m"
using ¢ by (simp add: powr_realpow)
also have "... < ¢ powr (log ¢ (x / x0) + 1)"
using ¢ x <x0 > 3> by (intro powr_mono) (auto simp: m_def)
also have "... = ¢ * x / x0"
using ¢ x <x0 > 3> by (auto simp: powr_add)
finally show "x0 * ¢ " m < x * c"
using <x0 > 3> by (simp add: field_simps)
qged (use x1 c in auto)
also have "¢y (x / ¢ ~“m) < ¢ x0"
proof (rule 1 _mono)
have "x / x0 = ¢ powr log ¢ (x / x0)"
using ¢ x <x0 > 3> by simp

also have "... < ¢ powr m"
unfolding m_def using c¢ <x0 > 3> x by (intro powr_mono) auto
also have "... = ¢ =~ m"

using ¢ by (simp add: powr_realpow)
finally show "x / ¢ ~m < x0"
using <x0 > 3> ¢ by (simp add: field_simps)

qed
finally show ?thesis
by simp
qed
also have "... =9 x0 + O k<m. af, * x / ¢ "k + (Inx - k * In ¢)

* size L / 2 - C)"
using x(1) <x0 > 3> ¢ by (simp add: 1n_div ln_realpow)

32

also have "... =4 x0 + oy, * x * O k<m. 1 / ¢ "~ k) + 1n x * m * size
L/ 2-real (O k<m. k) * 1ln ¢ * size L / 2 - C * m"
by (simp add: sum_diff_distrib sum_subtractf sum.distrib sum_distrib_left
sum_distrib_right algebra_simps diff_divide_distrib sum_divide_distrib)
also have "(O"k<m. 1 /¢ "k) = (1 -(1/¢c) " m)/ (2-1/¢c"
using sum_gp_strict[of "1/c" m] ¢ by (simp add: field_simps)
also have "... < 1/ (1 -1/ ¢c)"
using ¢ by (intro divide_right_mono) auto
also have "1 / (1 - 1/c) =c / (c - D"
using ¢ by (simp add: field_simps)
also have "(>_ k<m. k) = real m * (real m - 1) / 2"
by (induction m) (auto simp: field_simps)
finally have "¢ x < ¢ x0 + ¢ / (¢ - 1) * af * x +
Iln x * m * size L / 2 -
real m * (realm - 1) / 2 * 1In ¢ * size L / 2 - C *
ml!
using <oy > 0> <x > 0> x1 by (simp add: mult_left_mono mult_right_mono
mult_ac)
also have "... =Y x0 + ¢ / (c - 1) * ar * x + m/2 * (size L * (In x
- (realm - 1)/2 * In c + 2) - (), 1€#L. 1n |1]))"
by (simp add: algebra_simps C_def)
also have "m/2 * (size L * (In x - (real m - 1)/2 * In c + 2) - (O _1€#L.
In 1) <
m/2 * (size L * (3/2 * 1n x) - 0)"
proof (intro mult_left_mono diff_mono)
have "real m > log ¢ (x / x0)"
using ¢ <x0 > 3> x unfolding m_def by auto
hence "In x - (real m - 1)/2 * In ¢ + 2 <
In x - (log ¢ (x / x0) - 1)/2 * 1ln c + 2"
using ¢ by (intro diff_mono add_mono mult_right_mono divide_right_mono)
auto
also have "... = (In x + In x0 + (In c + 4)) / 2"
using ¢ x <x0 > 3> by (simp add: log_def In_div field_simps)
also have "In x0 < 1n x"
using x x1 by simp
also have "ln ¢ + 4 < 1n x"
proof -
have "exp (4 :: real) < 55"
by (approximation 10)
hence "exp 4 * ¢ < 55 * ¢"
using ¢ by (intro mult_right_mono) auto
also have "55 *x ¢ < x0"
by fact
also have "... < x
by fact
finally have "exp (In ¢ + 4) < exp (1n x)"
unfolding exp_add using ¢ x1 x by (simp add: mult_ac)
thus ?thesis
by (simp only: exp_le_cancel_iff)

n

33

qed
also have "(In x + In x + Inx) /2 =3/ 2 * 1In x"
by simp
finally show "ln x - (realm - 1) /2 *1Inc+2 < 3/ 2 % 1n x"
by - simp
qed (auto intro!: sum_mset_nonneg simp: L_nonzero’ Ints_nonzero_abs_gel)
also have "m / 2 * (size L * (3/2 * In x) - 0) =3/ 4 *m * size L
* In x"
by simp
also have "... < 3/ 4 * (Inx / 1ln c) * size L * 1n x"
proof (intro mult_left_mono mult_right_mono)
have "real m < log ¢ (x / x0) + 1"
unfolding m_def using c x <x0 > 3> by auto
also have "... /2= (Inx / 1n c + (1 - log c x0)) / 2"
using <x0 > 3> <x > x0> ¢
by (simp add: log_def 1n_div field_simps)
also have "1 - log ¢ x0 < 0"
using x1 ¢ by simp
finally show "real m < 1n x / 1In c¢" by - simp_all
ged (use x x1 in auto)
also have "... = (3 * size L) / (4 * 1n ¢c) * 1n x ~ 2"
by (simp add: power2_ eq_square)
finally show "¢ x < ¢/ (¢ - 1) * af * x + (3 * size L) / (4 * 1n c)
¥ In x = 2 + 1 x0O"
by (simp add: algebra_simps)
qed

end

1.5 Final results

theorem psi_lower_ge_9:
assumes x: "x > 41"
shows "p x> 0.9 * x"
proof (cases "x > 900")
case False
have "Vx&{real 41..real 900}. primes_psi x > 0.9 * x"
by (rule check_psi_lower_correct[where prec = 16]) eval
from bspec[OF this, of x] show 7thesis
using assms False by simp
next
case x: True
define f :: "real = real"
where "f = (Ax. 0.02128 * x - 2.5 ¥ In x - 1.6)"
have "0 < £ 900"
unfolding f_def by (approximation 10)
also have "f 900 < f x"
using x
proof (rule DERIV_nonneg_imp_nondecreasing, goal_cases)

34

case (1 t)
have "(f has_real_derivative (0.02128 - 2.5 / t)) (at t)"
unfolding f_def using 1 by (auto intro!: derivative_eq_intros)
moreover have "0.02128 - 2.5 / t > 0"
using 1 by (auto simp: field_simps)
ultimately show ?case
by blast
qed
finally have "0.9 * x < 0.9 * x + f x"
by linarith

also have "... = 0.92128 * x - 2.5 * In x - 1.6"
by (simp add: f_def)
also have "... < ¢ x"

by (rule psi_lower_bound_precise) (use x in auto)
finally show ?thesis .
qed

theorem primes_theta_ge_82:
assumes "x > 97"
shows ") x > 0.82 * x"
proof (cases "x > 46000")
case False
have "Vxe{real 97..real 46000}. ¥ x > 0.82 * x"
by (rule check_theta_lower_correct[where prec = 20]) eval
from bspec[OF this, of x] show 7thesis
using False assms by simp
next
case True
with assms have x: "x > 46000"
by auto
define f :: "real = real"
where "f = (Ax. 0.10128 * x - 2.5 * In x - 2 * In x * sqrt x - 1.6)"
have "0 < f 46000"
unfolding f_def by (approximation 30)
also have "f 46000 < f x"
using x
proof (rule DERIV_nonneg_imp_nondecreasing, goal_cases)
case (1 t)
define D where "D = 0.10128 - 2.5 / t - 2 * sqrt t / t - In t / sqrt
tll
have deriv: "(f has_real_derivative D) (at t)"
unfolding f_def
by (rule derivative_eq_intros refl | use 1 in force)+
(simp add: field_simps D_def)
have "0.10128 - D =2.5/t + 2 / sqrt t + In t / sqrt t"
using 1 by (simp add: D_def field_simps del: div_add div_diff div_mult_selfl
div_mult_self2 div_mult_self3 div_mult_self4)
also have "... < 2.5 / 46000 + 2 / 214 + In t / sqrt t"
using 1 by (intro add_mono) (auto simp: real_le_rsqrt)

35

also have "In t / sqrt t < 1n 46000 / sqrt 46000"
using 1(1)
proof (rule DERIV_nonpos_imp_nonincreasing, goal_cases)
case (1 u)
have "((A\t. 1n t / sqrt t) has_real_derivative ((2 - 1n u) / (2
*¥ u * sqrt u))) (at uw)"
by (rule derivative_eq_intros refl | use 1 in force)+
(use 1 in <simp add: field_simps>)
moreover {
have "2 < 1n (10::real)"
by (approximation 30)
also have "... < 1n u"
using 1 by simp
finally have "In u > 2" .
}
hence "((2 - In u) / (2 * u * sqrt w)) < 0"
using 1 by (intro divide_nonpos_nonneg) auto
ultimately show ?case
by blast
qed
also have "... < 0.0501"
by (approximation 30)
also have "2.5 / 46000 + 2 / 214 + 0.0501 < (0.10128 :: real)"

by simp
finally have "D > 0"
by simp
with deriv show 7case by blast

qed

finally have "0.82 * x < 0.82 * x + f x"
by linarith

also have "... = 0.92128 * x - 2.5 * In x - 2 * In x * sqrt x — 1.6"
by (simp add: f_def)
also have "... < 0.92128 * x - 2.5 ¥ In x - 1.6 + ¢ x - ¢ x"

using ¢ _minus_v_bound[of x] x by simp
also have "0.92128 * x - 2.5 * In x - 1.6 < ¢ x"
by (rule psi_lower_bound_precise) (use x in auto)
finally show ?thesis by simp
qed

corollary primorial_ge_exp_82:
assumes "x > 97"
shows "primorial x > exp (0.82 * x)"
proof -
have "primorial x = exp (¥ x)"
using 1n_primorial[of x] primorial_pos[of x]
by (metis exp_ln of_nat_0_less_iff)
also have "... > exp (0.82 * x)"

36

using primes_theta_ge_82[0F assms] by simp
finally show ?thesis .
qed

theorem primes_psi_le_111:
assumes "x > 0"
shows "p x < 1.11 * x"
proof -
have "Vxec{real 0..real 146000}. primes_psi x < 1.04 * x"
proof (rule check_psi_upper_correct[where prec = 16])
show "check_psi_upper (104 / 102?) 16 0 146000"
by eval
qged auto
hence initial: "primes_psi x < 1.04 * x" if "x € {0..146000}" for x
using that by auto

show ?thesis
proof (cases "x > 146000")
case False
thus ?7thesis
using initial[of x] assms by simp
next
case x: True
define L :: "int multiset" where "L = {#1, -2, -3, -5, 30#}"
have [simp]: "set_mset L = {1, -2, -3, -5, 30}" "size L = 5"
by (simp_all add: L_def)
interpret balanced_chebyshev_multiset L
by unfold_locales (auto simp: L_def)
define x0 :: real where "x0 = Max ({3, 55 * 6} U {3 * |real_of_int
1] /1. 1 e# Lp"

have x0: "x0 = 330"
proof -
have "x0 = Max ({3, 55 * 6} U {3 * |real_of_int 1| [1. 1 €# L}I"
unfolding x0_def ..
also have "{3 * |real_of_int 1| [1. 1 €# L} = (A\1. 3 * |of_int 1|)
set_mset L"
by blast
finally show ?thesis
by simp
qed

¢

define f :: "real = real"
where "f = (A\t. 2.093 * In t ~ 2 + 343.2 - 0.0044 * t)"

have alpha L: "alpha L =1n 2 /2 - (In 30 /30 -1In5/5-1n 3

/ 3) "
unfolding alpha_L_def by (simp add: L_def)

37

have "alpha L > 0"

unfolding alpha_L by (approximation 10)
have period: "period = 30"

by (simp add: period_def)

have "¢y x < 6 / (6 - 1) * alpha_ L * x + (3 * size L) / (4 * 1n 6)
* Inx = 2 + ¢ x0"
unfolding x0_def
proof (rule psi_upper_bound; (unfold period)?)
show "chi_ L (real n) > 0" if "n € {0..<30}" for n
unfolding chi_L_def
using that unfolding atLeastLessThan_nat_numeral pred_numeral_simps
arith_simps
by (auto simp: L_def)
next
show "chi_L (real n) > 1" if "real n € {1..<6}" for n
proof -
have "n € {1..<6}"
using that by auto
also have "{1..<6} = {1,2,3,4,5::nat}"
by auto
finally show ?thesis
unfolding chi_L_def by (elim insertE) (auto simp: L_def)
qed
qed (use <alpha_ L > 0> x in auto)

also have "... = 6/5 * alpha L * x + 15 / (4 * 1n 6) * (1n x)? + ¢
x0"
by simp
also have "¢ x0 < 343.2"
using initial[of x0] by (simp add: x0)
also have "6/5 * alpha_L < 1.1056"
unfolding alpha_L by (approximation 30)
also have "15 / (4 * 1n 6 :: real) < 2.093"
by (approximation 20)
finally have "¢y x < 1.1056 * x + 2.093 * 1ln x ~ 2 + 343.2"
using x by - simp_all
also have "... = 1.11 * x + f x"
by (simp add: algebra_simps f_def)
also have "f x < f 146000"

using x

proof (rule DERIV_nonpos_imp_nonincreasing, goal_cases)
case (1 t)
define f’ :: "real = real"

where "f’ = (A\t. 4.186 * In t / t - 0.0044)"
have "(f has_field_derivative f’ t) (at t)"

using 1 unfolding f_def f’_def

by (auto intro!: derivative_eq_intros)
moreover {

38

have "f’ t < f’ 146000"
using 1(1)
proof (rule DERIV_nonpos_imp_nonincreasing, goal_cases)
case (1 u)
have "(f’ has_field_derivative (4.186 * (1 - 1nu) / u ~ 2))

(at w)"
using 1 unfolding f’_def
by (auto intro!: derivative_eq_intros simp: field_simps power2_eq_square)
moreover have "4.186 * (1 - 1Inu) /u =~ 2 < 0"
using 1 exp_le by (auto intro!: divide_nonpos_nonneg simp:
1ln_ge_iff)
ultimately show ?case
by blast
qed
also have "... < 0"
unfolding f’_def by (approximation 10)
finally have "f’ t < 0" .
}
ultimately show ?case
by blast
qed

also have "f 146000 < 0"
unfolding f_def by (approximation 10)
finally show 7thesis
by - simp_all
qged
qed

corollary primes_theta_le_111:
assumes "x > 0"
shows ") ox < 1.11 * x"
using primes_psi_le_111[0F assms] ¥_le_v [of x]
by linarith

As an easy corollary, we obtain Bertrand’s postulate: For any real number
x > 1, the interval (x,2z) contains at least one prime.

corollary bertrands_postulate:
assumes "x > 1"
shows "dp. prime p A real p € {x<..<2*x}"
proof (cases "x > 7")
case False
consider "x € {1<..<2}" | "x € {2..<3}" | "x € {3..<5}" | "x € {5..<7}"
using False assms by force
thus 7thesis
proof cases
case 1
thus 7thesis by (intro exI[of _ 2]; simp)
next
case 2

39

thus 7thesis by (intro exI[of _ 3]; simp)
next
case 3
thus ?thesis by (intro exI[of _ 5]; simp)
next
case 4
thus 7thesis by (intro exI[of _ 7]; simp)
qed
next
case x: True
have fin: "finite {p. prime p A real p < 1.999 * x}"
by (rule finite_subset[of _ "{..nat [2*x]|}"])
(use x in <auto simp: le_nat_iff le_floor_iff>)

have "9 (1.999 * x) > 1.11 * x"
proof (cases "x > 49")
case False
have "Vxe{real 11..real 100}. ¥ x > 0.556 * x"
by (rule check_theta_lower_correct[where prec = 10]) eval
from bspec[OF this, of "1.999*x"] show ?thesis
using False x by simp
next
case True
thus ?thesis
using primes_theta_ge_82[of "1.999#x"] True by auto
qged

have "9 x < 1.11 * x"

by (rule primes_theta_le_111) (use x in auto)
also have "... <1 (1.999 * x)"

by fact
finally have "¢ (1.999 * x) > ¢ x" .

have "{p. prime p A real p € {x<..1.999*x}} # {}"
proof
assume eq: "{p. prime p A real p € {x<..1.999*x}} = {}"
have "9 (1.999 *# x) =9 x + (O_p | prime p A real p € {x<..1.999%x}.
In p)"
unfolding primes_theta_def prime_sum_upto_def
by (rule sum.union_disjoint’ [symmetric]) (use fin in auto)
also note eq
finally show False
using <9 (1.999 * x) > ¥ x> by simp
qed
thus ?thesis
by auto
qed

unbundle no prime_counting syntax

40

end

41

	Concrete bounds for Chebyshev's prime counting functions
	Brute-force checking of bounds for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000
	Computing powers of a number
	Computing prime powers
	A generic checking function
	The 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 function
	The 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 function

	Auxiliary material
	Bounds for the remainder in Stirling's approximation
	Approximating 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000
	Final results

