Chebyshev Polynomials

Manuel Eberl

November 21, 2023

Abstract

The multiple-angle formulas for cos and sin state that for any nat-
ural number n, the values of cosnz and sinnxz can be expressed in
terms of cosz and sinxz. To be more precise, there are polynomials
T, and U, such that cosnz = T, (cosz) and sinnz = U,(cosz)sinz.
These are called the Chebyshev polynomials of the first and second kind,
respectively.

This entry contains a definition of these two familes of polynomials
in Isabelle/HOL along with some of their most important properties.
In particular, it is shown that 7;, and U, are orthogonal families of
polynomials.

Moreover, we show the well-known result that for any monic poly-
nomial p of degree n > 0, it holds that sup,c(_1 47 [p(x)| > 2", and
that this inequality is sharp since equality holds with p = 2!="T,.
This has important consequences in the theory of function interpola-
tion, since it implies that the roots of T}, (also colled the Chebyshev
nodes) are exceptionally well-suited as interpolation nodes.

Contents

1 Parametricity of polynomial operations 3
2 Missing Library Material 6
2.1 Miscellaneous 6
2.2 Listso 6
2.3 Polynomials oo 8
2.4 Trigonometric functions 9
2.5 Hyperbolic functions 9
3 Chebyshev Polynomials 11
3.1 Definition 11
3.2 Relation to trigonometric functions 14
3.3 Relation to hyperbolic functions 16
3.4 Roots 17
3.5 Generating functions 19
3.6 Optimality with respect to the co-norm 19
3.7 Some basic equations 21
3.8 Signs of the coefficientso 27
3.9 Orthogonality and integrals 28
3.10 Clenshaw’s algorithm 31

1 Parametricity of polynomial operations

theory Polynomial_Transfer
imports "HOL-Computational_Algebra.Polynomial"
begin

definition rel_poly :: "('a = 'b = bool) = 'a :: zero poly = 'b ::
zero poly = bool" where
"rel_poly R p q «— rel_fun (=) R (coeff p) (coeff q)"

lemma left_unique_rel_poly [transfer_rule]: "left_unique R = left_unique
(rel_poly R)"
(proof)

lemma right_unique_rel_poly [transfer_rule]: "right_unique R — right_unique
(rel_poly R)"
(proof)

lemma bi_unique_rel_poly [transfer_rule]: "bi_unique R = bi_unique
(rel_poly R)"
(proof)

lemma rel_poly swap: "rel_poly R x y «— rel _poly (A\y x. R x y) y x"
(proof)

lemma coeff_transfer [transfer_rule]:
"rel_fun (rel_poly R) (rel_fun (=) R) coeff coeff"

(proof)

lemma map_poly_transfer:
assumes "rel_fun R S f g" "f 0 = 0" "g 0 = 0"
shows "rel_fun (rel_poly R) (rel_poly S) (map_poly f) (map_poly g)"
(proof)

lemma map_poly_transfer':
assumes "rel_fun R S f g" "rel_poly R p q" "f 0 = 0" "g 0 = 0"
shows "rel_poly S (map_poly f p) (map_poly g q)"
(proof)

lemma rel_poly_id: "p = q = rel_poly (=) p q"
{proof)

lemma left_total_rel_poly [transfer_rule]:
assumes "left_total R" "right_unique R" "R 0 0"
shows "left_total (rel_poly R)"

{proof)

lemma right_total_rel_poly [transfer_rule]:
assumes "right_total R" "left_unique R" "R 0 0"
shows "right_total (rel_poly R)"
(proof)

lemma bi_total_rel_poly [transfer_rule]:
assumes "bi_total R" "bi_unique R" "R 0 0"
shows "bi_total (rel_poly R)"
(proof)

lemma zero_poly_transfer [transfer_rule]: "R 0 0 =—> rel_poly R 0 0"

(proof)

lemma one_poly_transfer [transfer_rule]: "R 0 0 = R 1 1 = rel_poly
R11"

(proof)

lemma pCons_transfer [transfer_rule]:
"rel_fun R (rel_fun (rel_poly R) (rel_poly R)) pCons pCons"

{proof)

lemma plus_poly_transfer [transfer_rule]:
"rel fun R (rel_fun R R) (+) (+) =
rel_fun (rel_poly R) (rel_fun (rel_poly R) (rel_poly R)) (+) (+)"
(proof)

lemma minus_poly_transfer [transfer_rule]:
"rel fun R (rel_fun R R) (-) (-) =
rel_fun (rel_poly R) (rel_fun (rel_poly R) (rel_poly R)) (-) (-)"
(proof)

lemma uminus_poly_transfer [transfer_rule]:
"rel_fun R R uminus uminus = rel_fun (rel_poly R) (rel_poly R) uminus
uminus"

(proof)

lemma smult_transfer [transfer_rule]:
"rel fun R (rel_fun R R) (*) (%) =
rel_fun R (rel_fun (rel_poly R) (rel_poly R)) smult smult"

(proof)

lemma monom_transfer [transfer_rule]:
"R 0 0 = rel_fun R (rel_fun (=) (rel_poly R)) monom monom"

(proof)

lemma pderiv_transfer [transfer_rule]:
assumes "R 0 0" "rel_fun R (rel_fun R R) (+) (+)"
shows "rel_fun (rel_poly R) (rel_poly R) pderiv pderiv"

(proof)

lemma If_ transfer':
assumes "P = P'" "P —= R x x'" "-P = Ry y'"
shows "R (if P then x else y) (if P' then x' else y')"

(proof)

lemma nth_transfer:
assumes "list_all2 R xs ys" "i = j" "i < length xs"
shows "R (xs ! i) (ys ! j)"
(proof)

lemma Poly_transfer [transfer rule]:
assumes [transfer_rule]: "R 0 0" "bi_unique R"
shows "rel_fun (list_all2 R) (rel_poly R) Poly Poly"

(proof)

lemma poly of_list_transfer [transfer_rule]:
assumes [transfer_rule]: "R 0 0" "bi_unique R"
shows "rel_fun (list_all2 R) (rel_poly R) poly_of_list poly_of_list"

{proof)

lemma degree_transfer [transfer_rule]:
assumes [transfer_rule]: "R 0 0" "bi_unique R"
shows "rel_ fun (rel_poly R) (=) degree degree"

(proof)

lemma coeffs_transfer [transfer_rule]:
assumes [transfer_rule]: "R 0 0" "bi_unique R"
shows "rel_fun (rel_poly R) (list_all2 R) coeffs coeffs"

(proof)

lemma times_poly_transfer [transfer_rule]:
assumes [transfer_rule]: "rel_fun R (rel_fun R R) (+) (+)"
"rel_fun R (rel_fun R R) (*) (*)" "R 0 0" "bi_unique
R”
shows "rel_fun (rel_poly R) (rel_fun (rel_poly R) (rel_poly R)) (*)
(*) n
(proof)

lemma dvd_poly_transfer [transfer_rule]:
assumes [transfer rule]: "rel_fun R (rel_fun R R) (+) (+)"
"rel fun R (rel_fun R R) (*) (*)" "R 0 0" "bi_unique
R" "bi_total R"
shows "rel_ fun (rel_poly R) (rel_fun (rel_poly R) (=)) (dvd) (dvd)"

(proof)

lemma poly_transfer [transfer_rule]:
assumes [transfer_rule]: "rel_fun R (rel_fun R R) (+) (+)"

"rel _fun R (rel_fun R R) (%) (*)" "R 0 0" "bi_unique
Rll
shows "rel_fun (rel_poly R) (rel_fun R R) poly poly"
(proof)

lemma pcompose_transfer [transfer_rule]:
assumes [transfer_rule]: "rel_fun R (rel_fun R R) (+) (+)"
"rel_fun R (rel_fun R R) (*) (*)" "R 0 0" "bi_unique
R”
shows "rel_fun (rel_poly R) (rel_fun (rel_poly R) (rel_poly R)) pcompose
pcompose"

(proof)

lemma order_O_right: "order x 0 = Least (MA_. False)"

(proof)

lemma order_poly transfer [transfer rule]:
assumes [transfer_rule]:
"rel fun R (rel_fun R R) (+) (+)" "rel fun R (rel_fun R R) (*) (*)"
"rel_fun R R uminus uminus"
"R 0 0" "R 1 1" "bi_unique R" "bi_total R" "R x y" "rel_poly R p q"
shows "order x p = order y q"

(proof)

end

2 Missing Library Material

theory Chebyshev_Polynomials_Library
imports "HOL-Computational_Algebra.Polynomial" "HOL-Library.FuncSet"
begin

2.1 Miscellaneous

lemma bij_betw_Collect:
assumes "bij_betw f A B" "Ax. x € A = Q (f x) «— P x"
shows "bij_betw f {x€A. P x} {yeB. Q y}"

{proof)

lemma induct_nat_012[case_names 0 1 ge2]:
"P O = P (Suc 0) = (An. Pn = P (Suc n) = P (Suc (Suc n)))
= P n"

(proof)

2.2 Lists

lemma distinct_adj_conv_length_remdups_adj:

"distinct_adj xs «— length (remdups_adj xs) = length xs"
(proof)

lemma successively_conv_nth:
"successively P xs «— (Vi. Suc i < length xs — P (xs ! i) (xs !
Suc i))"

(proof)

lemma successively_nth: "successively P xs = Suc i < length xs —
P (xs ! i) (xs ! Suc i)"

(proof)

lemma distinct_adj_conv_nth:
"distinct_adj xs «— (Vi. Suc i < length xs — xs ! i # xs ! Suc i)"

(proof)

lemma distinct_adj_nth: "distinct_adj xs = Suc i < length xs —> xs
!'i # xs ! Suc i"

(proof)

The following two lemmas give a full characterisation of the filter function:
The list filter P xs is the only list ys for which there exists a strictly
increasing function f : {0,...,|ys| — 1} — {0,...,|xs| — 1} such that:
(] ysi = XS f(z)
o P(xs;) «— Jj<n. f(j) =1, i.e. the range of f are precisely the indices
of the elements of xs that satisfy P.

lemma filterkE:

fixes P :: "'a = bool" and xs :: "'a list"
assumes "length (filter P xs) = n"
obtains f :: "nat = nat" where

"strict_mono_on {..<n} f"

"Ai. i < n = f i < length xs"

”/\i. i <n=— filter Pxs ! i =xs ! £ 1i"

"Ai. i < length xs = P (xs ! i) «— (3j. j<n A f j=1i)"

(proof)

The following lemma shows the uniqueness of the above property. It is very
useful for finding a “closed form” for filter P xs in some concrete situation.
For example, if we know that exactly every other element of xs satisfies P,
we can use it to prove that filter P xs = map ((*) 2) [0..<length xs div
2]
lemma filter_eql:

fixes f :: "nat = nat" and xs ys :: "'a list"

defines "n = length ys"
assumes "strict_mono_on {..<n} f"

assumes "Ai. i < n = f i < length xs"

assumes "Ai. i <n = ys ! i =xs ! f i"

assumes "Ai. i < length xs = P (xs ! i) «— (3j. j<n A f j=1i)"
shows "filter P xs = ys"

(proof)

lemma filter_eq_iff:
"filter P xs = ys «—
(3f. strict_mono_on {..<length ys} f A
(Vi<length ys. £ i < length xs A ys ! i =xs ! £ i) A
(Vi<length xs. P (xs ! i) «— (3j. j < length ys A f j = i)))"
(is "?1hs = ?rhs")
(proof)

2.3 Polynomials

lemma poly_of_nat [simp]: "poly (of_nat n) x = of_nat n"
(proof)
lemma poly_of_int [simp]: "poly (of_int n) x = of_int n"

(proof)

lemma poly_numeral [simp]: "poly (numeral n) x = numeral n"

(proof)

- n

lemma order_gt_O_iff: "p # 0 = order x p > 0 «— poly p x =
{proof)

lemma order_eq O_iff: "p # 0 = order x p = 0 «— poly p x # 0"

(proof)

lemma coeff_pcompose_monom_linear [simp]:
fixes p :: "'a :: comm_ring 1 poly"
shows "coeff (pcompose p (monom c¢ (Suc 0))) k = ¢ ~ k * coeff p k"
(proof)

lemma of_nat_mult_conv_smult: "of_nat n * P = smult (of_nat n) P"
(proof)

lemma numeral _mult_conv_smult: "numeral n * P = smult (numeral n) P"

(proof)

lemma has_field_derivative_poly [derivative_intros]:
assumes "(f has_field_derivative f') (at x within A)"
shows "((Ax. poly p (f x)) has_field_derivative
(f' * poly (pderiv p) (f x))) (at x within A)"
{proof)

lemma sum_order_le_degree:

assumes "p # 0"
shows "(3 x | poly p x = 0. order x p) < degree p"
(proof)

2.4 Trigonometric functions

lemma sin_multiple_reduce:
"sin (x * numeral n :: 'a :: {real_normed_field, banach}) =
sin x * cos (x * of_nat (pred_numeral n)) + cos x * sin (x * of_nat
(pred_numeral n))"
(proof)

lemma cos_multiple_reduce:
"cos (x * numeral n :: 'a :: {real_normed_field, banach}) =
cos (x * of_nat (pred_numeral n)) * cos x - sin (x * of_nat (pred_numeral
n)) * sin x"

{(proof)

lemma arccos_eq_pi_iff: "x € {-1..1} = arccos x = pi «— x = -1"
{proof)

lemma arccos_eq_O_iff: "x € {-1..1} = arccos x = 0 «— x = 1"

(proof)

2.5 Hyperbolic functions

lemma cosh_double_cosh: "cosh (2 * x :: 'a :: {banach, real_normed_field})
= 2 * (cosh x)%2 - 1"
(proof)

lemma sinh_multiple_reduce:
"sinh (x * numeral n :: 'a :: {real_normed_field, banach}) =
sinh x * cosh (x * of_nat (pred_numeral n)) + cosh x * sinh (x *
of_nat (pred_numeral n))"

{(proof)

lemma cosh_multiple_reduce:
"cosh (x * numeral n :: 'a :: {real_normed_field, banach}) =
cosh (x * of_nat (pred_numeral n)) * cosh x + sinh (x * of_nat (pred_numeral
n)) * sinh x"

{proof)
lemma cosh_arcosh_real [simp]:
assumes "x > (1 :: real)"
shows "cosh (arcosh x) = x"
{proof)
lemma arcosh_eq_0_iff_real [simp]: "x > 1 —> arcosh x = 0 «—— x = (1
:: real)"
(proof)

lemma arcosh_nonneg real [simp]:
assumes "x > 1"

shows "arcosh (x :: real) > 0"
(proof)
lemma arcosh_real_strict_mono:
fixes x y :: real
assumes "1 < x" "x < y"
shows "arcosh x < arcosh y"
(proof)
lemma arcosh_less_iff_real [simp]:
fixes x y :: real
assumes "1 < x" "1 < y"
shows "arcosh x < arcosh y +— x < y"
(proof)
lemma arcosh_real_gt_1_iff [simp]: "x > 1 —> arcosh x > 0 «— x #
(1 :: real)"
(proof)
lemma sinh_arcosh_real: "x > 1 = sinh (arcosh x) = sqrt (x? - 1)"
(proof)
lemma sinh_arsinh_real [simp]: "sinh (arsinh x :: real) = x"
(proof)
lemma arsinh_real_strict_mono:
fixes x y :: real
assumes "x < y"
shows "arsinh x < arsinh y"
(proof)
lemma arsinh_less_iff_real [simp]:
fixes x y :: real
shows "arsinh x < arsinh y «— x < y"
(proof)

lemma arsinh_real_eq_O_iff [simp]: "arsinh x = 0 «—— x = (0 ::

(proof)

lemma arsinh_real_pos_iff [simp]: "arsinh x > 0 «— x > (0 ::

(proof)

lemma arsinh_real_neg_iff [simp]: "arsinh x < 0 «— x < (0 ::

(proof)

10

real)"

real)"

real)"

Jusy

Y

Figure 1: Some of the Chebyshev polynomials of the first kind, 77 to T5.

lemma cosh_arsinh_real: "cosh (arsinh x) = sqrt (x*> + 1)"

(proof)
end

3 Chebyshev Polynomials

theory Chebyshev_Polynomials

imports
"HOL-Analysis.Analysis"
"HOL-Real_Asymp.Real_Asymp"
"HOL-Computational_Algebra.Formal_Laurent_Series"
"Polynomial_Interpolation.Ring_Hom_Poly"
"Descartes_Sign_Rule.Descartes_Sign_Rule"
Polynomial_Transfer
Chebyshev_Polynomials_Library

begin

3.1 Definition

We choose the recursive definition of 7T}, and U,, and do some setup to define
both of them at once.

locale gen_cheb_poly =

fixes ¢ :: "'a :: comm_ring 1"
begin
fun f :: "nat = 'a = 'a" where
"fOx=1"

| "f (Suc 0) x = ¢ * x"
| "f (Suc (Sucn)) x=2*x *f (Sucn) x-fn x"

fun P :: "nat = ('a :: comm_ring_1) poly" where

11

A=

Figure 2: Some of the Chebyshev polynomials of the second kind, Uy to Us.

HP O = 1”
| "P (Suc 0) = [:0, c:]"
| "P (Suc (Suc n)) = [:0, 2:] * P (Suc n) - P n"

lemma eval [simp]: "poly (P n) x = f n x"

{proof)

lemma eval_O:
"f noO= (if odd n then 0 else (-1) ~ (a div 2))"
(proof)

lemma eval_1 [simp]:
"fnil=ofnatnx* (¢c-1) + 1"

(proof)

lemma uminus [simp]: "f n (-x) = (-1) " n * f n x"
{proof)

lemma pcompose_minus: "pcompose (P n) (monom (-1) 1) = (-1) ~ n * P n"
{proof)

lemma degree_le: "degree (P n) < n"

{(proof)

12

lemma lead_coeff:
"coeff (P n) n= (if n =0 then 1 elsec * 2 ~ (n - 1))"

(proof)

lemma degree_eq:
"¢ ¥ 2" (n - 1) # 0 = degree (P n :: 'a poly) = n"
(proof)

lemmas [simp del] = f.simps(3) P.simps(3)
end

The two related constants Cheb_poly and cheb_poly denote the n-th Cheby-

shev polynomial of the first kind 7}, and its interpretation as a function.

We make the definition polymorphic so that it works on every commutative

ring; however, many results will only hold for rings (or even only fields) of

characteristic 0.

definition cheb_poly :: "nat = 'a :: comm_ring 1 = 'a" where
"cheb_poly = gen_cheb_poly.f 1"

definition Cheb_poly :: "nat = 'a :: comm_ring 1 poly" where
"Cheb_poly = gen_cheb_poly.P 1"

interpretation cheb_poly: gen_cheb_poly 1
rewrites "gen_cheb_poly.f 1 = cheb_poly" and "gen_cheb_poly.P 1 = Cheb_poly"

and "Ax :: 'a. 1 * x = x"
and "An. of_ nat n * (1 -1 :: 'a) +1 = 1"
{proof)

lemmas cheb_poly_simps [code] = cheb_poly.f.simps
lemmas Cheb_poly_simps [code] = cheb_poly.P.simps

lemma Cheb_poly_of_int: "of_int_poly (Cheb_poly n) = Cheb_poly n"
{proof)

lemma degree_Cheb_poly [simp]:

"degree (Cheb_poly n :: 'a :: {idom, ring char_O} poly) = n"
(proof)
lemma lead_coeff_Cheb_poly [simp]:
"lead_coeff (Cheb_poly n :: 'a :: {idom, ring char_O} poly) =2 =~ (n-1)"
(proof)

lemma Cheb_poly_nonzero [simp]: "Cheb_poly n # 0"
(proof)

lemma continuous_cheb_poly [continuous_intros]:
fixes f :: "'b :: topological_space = 'a :: {real_normed_algebra_1,
comm_ring 1}"

13

shows "continuous_on A f = continuous_on A (A\x. cheb_poly n (f x))"
(proof)

Similarly, we introduce two constants for U,,.

definition cheb_poly' :: "nat = 'a :: comm_ring 1 = 'a" where
"cheb_poly' = gen_cheb_poly.f 2"

definition Cheb_poly' :: "nmat = 'a :: comm_ring_1 poly" where
"Cheb_poly' = gen_cheb_poly.P 2"

interpretation cheb_poly': gen_cheb_poly 2
rewrites "gen_cheb_poly.f 2 = cheb_poly'" and "gen_cheb_poly.P 2 =
Cheb_poly'"
and "An. of_nat n * (2 -1 :: 'a) + 1 = of_nat (Suc n)"

(proof)

lemmas cheb_poly'_simps [code]
lemmas Cheb_poly'_simps [code]

cheb_poly'.f.simps
cheb_poly'.P.simps

lemma Cheb_poly'_of_int: "of_int_poly (Cheb_poly' n) = Cheb_poly' n"
(proof)

lemma degree_Cheb_poly' [simp]:

"degree (Cheb_poly' n :: 'a :: {idom, ring_char_ O} poly) = n"
(proof)
lemma lead_coeff_Cheb_poly' [simp]:
"lead_coeff (Cheb_poly' n :: 'a :: {idom, ring char_O} poly) = 2 ~ n"
(proof)
lemma Cheb_poly_nonzero' [simp]: "Cheb_poly' n # (0 :: 'a :: {comm_ring 1,
ring_char_O0} poly)"
(proof)

lemma continuous_cheb_poly' [continuous_intros]:
fixes £ :: "'b :: topological_space = 'a :: {real_normed_algebra_1,
comm_ring 1}"
shows "continuous_on A f = continuous_on A (A\x. cheb_poly' n (f x))"
(proof)

3.2 Relation to trigonometric functions

Consider the multiple angle formulas for the cosine function:

coslx = cosx
cos2z =1+ 2cos’x
cos3xr = —3cosx + 4cos®

cosdr =1 — 8cos?z + 8cos* x

14

It seems that for any n € N, we can write cos(nz) as a sum of powers
cos’x for 0 < i < n, i.e. as a polynomial in cosz of degree n. It turns out
that this polynomial is exactly T;,. This can also serve as an alternative,
trigonometric definition of T,.

Proving it is a simple induction:

lemma cheb_poly_cos [simp]:

fixes x :: "'a :: {banach, real_normed_field}"
shows "cheb_poly n (cos x) = cos (of_nat n * x)"
(proof)

If we look at the multiple angular formulae for the sine function, we see a
similar pattern:

sinlz = sinz
sin2z = 2sinz cosx
sin 3z = sinz(—1 + 4 cos® z)

sin 4z = sin (-4 cos z + 8 cos® z)

It seems that sin nz/ sin z can be expressed as a polynomial in cos = of degree
n — 1. This polynomial turns out to be exactly U,_1.

lemma cheb_poly'_cos:

fixes x :: "'a :: {banach, real_normed_field}"

shows "cheb_poly' n (cos x) * sin x = sin (of_nat (n+1) * x)"
(proof)

lemma cheb_poly_conv_cos:
assumes "|x::real| < 1"
shows "cheb_poly n x = cos (n * arccos x)"

(proof)

lemma cheb_poly'_cos':

fixes x :: "'a :: {real_normed_field, banach}"

shows "sin x # 0 = cheb_poly' n (cos x) = sin (of_nat (n+1) * x)
/ sin x"

{proof)

lemma cheb_poly'_conv_cos:
assumes "|x::real| < 1"
shows "cheb_poly' n x = sin (real (n+1) * arccos x) / sqrt (1 - x2)"

(proof)

lemma cos_multiple:
fixes x :: "'a :: {banach, real_normed_field}"
shows "cos (numeral n * x) = poly (Cheb_poly (numeral n)) (cos x)"

{proof)

15

lemma sin_multiple:

fixes x :: "'a :: {banach, real_normed_field}"

shows "sin (numeral n * x) = sin x * poly (Cheb_poly' (pred_numeral
n)) (cos x)"

(proof)

Example application: quadruple-angle formulas for sin and cos:

lemma cos_quadruple:
fixes x :: "'a :: {banach, real_normed_field}"
shows "cos (4 * x) =8 * cos x ~ 4 -8 x cosx ~ 2+ 1"

(proof)

lemma sin_quadruple:
fixes x :: "'a :: {banach, real_normed_field}"
shows "sin (4 * x) = sin x * (8 ¥ cos x ~ 3 - 4 * cos x)"

{proof)

3.3 Relation to hyperbolic functions

lemma cheb_poly_cosh [simp]:

fixes x :: "'a :: {banach, real_normed_field}"
shows "cheb_poly n (cosh x) = cosh (of_nat n * x)"
(proof)

lemma cheb_poly'_cosh:

fixes x :: "'a :: {real_normed_field, banach}"

shows "cheb_poly' n (cosh x) * sinh x = sinh (of_nat (a+1) * x)"
(proof)

lemma cheb_poly_conv_cosh:

assumes "(x :: real) > 1"
shows "cheb_poly n x = cosh (n * arcosh x)"
(proof)

lemma cheb_poly'_cosh':

fixes x :: "'a :: {real_normed_field, banach}"

shows "sinh x # 0 = cheb_poly' n (cosh x) = sinh (of_nat (n+1) *
x) / sinh x"

{proof)
lemma cheb_poly'_conv_cosh:

assumes "x > (1 :: real)"

shows "cheb_poly' n x = sinh (real (n+1) * arcosh x) / sqrt (x? -
D"
(proof)

16

3.4 Roots

T, has n distinct real roots, namely:

<2k +1 >
T = COS T
2n

These are called the Chebyshev nodes of degree n.

definition cheb_node :: "nat = nat = real" where
"cheb_node n k = cos (real (2+k+1) / real (2*n) * pi)"

lemma cheb_poly_cheb_node [simp]:
assumes "k < n"
shows "cheb_poly n (cheb_node n k) = 0"

(proof)

lemma strict_antimono_cheb_node: "monotone_on {..<n} (<) (>) (cheb_node
n) n

(proof)

lemma cheb_node_pos_iff:
assumes k: "k < n"
shows "cheb_node n k > 0 «—— k < n div 2"

(proof)

lemma cheb_poly_roots_bij_betw:
"bij_betw (cheb_node n) {..<n} {x. cheb_poly n x = O}"
(proof)

lemma card_cheb_poly_roots: "card {x::real. cheb_poly n x = O} = n
{proof)

It is easy to see that all the Chebyshev nodes have order 1 as roots of T,.

lemma order_Cheb_poly_cheb_node [simp]:
assumes "k < n"
shows "order (cheb_node n k) (Cheb_poly n) = 1"

(proof)

lemma order_Cheb_poly [simp]:
assumes "poly (Cheb_poly n) (x :: real) = 0"
shows "order x (Cheb_poly n) = 1"

(proof)

This also means that T}, is square-free. We only show this for the case where
we view T,, as a real polynomial, but this also holds in every other reasonable
ring since R is a splitting field of T,, (as we have just shown). However, we
chose not to do this here.

lemma rsquarefree_Cheb_poly_real: "rsquarefree (Cheb_poly n :: real poly)"

17

(proof)

Similarly, the n distinct real roots of U, are:

k+1
, =cos [——
Yi n+17r

definition cheb_node' :: "mat = nat = real" where
"cheb_node' n k = cos (real (k+1) / real (n+1) * pi)"

lemma cheb_poly'_cheb_node' [simp]:
assumes "k < n"
shows "cheb_poly' n (cheb_node' n k) = 0"

(proof)

lemma strict_antimono_cheb_node': "monotone_on {..<n} (<) (>) (cheb_node'
n) n

(proof)

lemma cheb_node'_pos_iff:
assumes k: "k < n"
shows "cheb_node' n k > 0 «— k < n div 2"

(proof)

lemma cheb_poly'_roots_bij_betw:
"bij_betw (cheb_node' n) {..<n} {x. cheb_poly' n x = O}"
(proof)

lemma card_cheb_poly'_roots: "card {x::real. cheb_poly' n x = O} = n"

(proof)

lemma order_Cheb_poly'_cheb_node' [simp]:
assumes "k < n"
shows "order (cheb_node' n k) (Cheb_poly' n) = 1"

(proof)

lemma order_Cheb_poly' [simp]:
assumes "poly (Cheb_poly' n) (x :: real) = 0"
shows "order x (Cheb_poly' n) = 1"

(proof)

lemma rsquarefree_Cheb_poly'_real: "rsquarefree (Cheb_poly' n :: real
pOly) n
(proof)

18

3.5 Generating functions

T, and U, have the following rational generating functions:

S nr =T S e !
n=0 n=0

T 12tz +12 T 1 2tx 4+ 2

This is a simple consequence of the linear recurrence equations they satisfy
(which we used as their definitions).

Due to some limitations coming from the type class structure, we cannot
currently write this down nicely as an equation, but the following form is
almost as good.

theorem Abs_fps_Cheb_poly:
fixes F X T :: "real fps fps"
defines "X = fps_const fps_X" and "T = fps_X"
defines "F = Abs_fps (fps_of_poly o Cheb_poly)"
shows "Fox (1 -2%T*X+T?) =1-TxX"
(proof)

theorem Abs_fps_Cheb_poly':
fixes F X T :: "real fps fps"
defines "X fps_const fps_X" and "T = fps_X"
defines "F Abs_fps (fps_of_poly o Cheb_poly')"
shows "F % (1 -2 T * X + T?) = 1"

(proof)

3.6 Optimality with respect to the oco-norm

We now turn towards a property of T, that explains why they are interesting
for interpolating smooth functions. If f : [0,1] — R is a smooth function
on the unit interval, the approximation error attained when interpolating f

with a polynomial P of degree n at the interpolation points x1,...,x, is
) 1
o (x —x;) .

=1

Therefore, it makes sense to choose the interpolation points such that [;- (z—
x;) is minimal.

We will show below results that imply that this product cannot be smaller
than 2'=" and it is easy to see that if we choose z; to be the Chebyshev
nodes then the product becomes exactly 2'~" and thus optimal.

Out first result is now the following: The co-norm of a monic polynomial of
degree n on the unit interval [~1,1] is at least 2!=™. This gives us a kind
of lower bound on the “oscillation” of polynomials: a monic polynomial of
degree n cannot stay closer than 2'=" to 0 at every point of the unit interval.

19

lemma Sup_abs_poly_bound_aux:

fixes p :: "real poly"

assumes "lead_coeff p = 1"

shows "3xe{-1..1}. |poly p x| > 1 / 2 ~ (degree p - 1)"
(proof)

lemma Sup_abs_poly_bound_unit_ivl:

fixes p :: "real poly"

shows "(SUP x€{-1..1}. |poly p x|) > |lead_coeff p| / 2 ~ (degree
p - 1)!/
(proof)

Using an appropriate change of variables, we obtain the following bound in
the most general form for a non-constant polynomial P(x) on some non-
empty interval [a, b]:

b— g dee®)
sup [P(o)] 2 20160 (1)
z€a,b]

where lc(p) denotes the leading coefficient of p.

theorem Sup_abs_poly_bound:

fixes p :: "real poly"

assumes "a < b" and "degree p > 0"

shows "(SUP x€{a..b}. |poly p x|) > 2 * |lead_coeff p| * ((b - a)
/ 4) ~ degree p"
(proof)

If we scale T}, with a factor of 2!~ it exactly attains the lower bound we
just derived. The Chebyshev polynomials of the first kind are, in that sense,
the polynomials that stay closest to 0 within the unit interval.

With some more work (that we will not do), one can see that T, is in fact
the only polynomial that attains this minimal deviation (see e.g. Corol-
lary 3.4B in Mason & Handscomb [1]). This fact, however, requires proving
the Equioscillation Theorem, which is not so easy and beyond the scope of
this entry.

lemma abs_cheb_poly_le_1:

assumes "(x :: real) € {-1..1}"
shows "|cheb_poly n x| < 1"
(proof)

theorem Sup_abs_poly_bound_sharp:
fixes n :: nat and p :: "real poly"
defines "p = smult (1 / 2 = (n - 1)) (Cheb_poly n)"
shows '"degree p = n" and "lead_coeff p = 1"
and "(SUP x€{-1..1}. |poly px|) =1/2 " (m - 1"
(proof)

20

A related fact: among all the real polynomials of degree n whose absolute
value is bounded by 1 within the unit interval, 7}, is the one that grows
fastest outside the unit interval.

theorem cheb_poly_fastest_growth:
fixes p :: "real poly"
defines "n = degree p"
assumes p_bounded: "Ax. |x| < 1 = |poly p x| < 1"
assumes x: "x ¢ {-1<..<1}"
shows "|cheb_poly n x| > |poly p x|"
(proof)

3.7 Some basic equations

We first set up a mechanism to allow us to prove facts about Chebyshev
polynomials on any ring with characteristic 0 by proving them for Chebyshev
polynomials over R.

definition rel_ring int :: "'a :: ring_1 = 'b :: ring 1 = bool" where
"rel_ring int x y «— (Jn::int. x = of_int n A y = of_int n)"

lemma rel_ring int_0: "rel_ring int 0 0"

{proof)

lemma rel_ring int_1: "rel_ring int 1 1"

(proof)

lemma rel_ring int_add:
"rel_fun rel_ring_int (rel_fun rel_ring_int rel_ring_int) (+) (+)"

(proof)

lemma rel_ring int_mult:
"rel_fun rel_ring int (rel_fun rel_ring_int rel_ring_int) (*) (*)"

(proof)

lemma rel_ring int_minus:
"rel_fun rel_ring_int (rel_fun rel_ring int rel_ring int) (-) (-)"
(proof)

lemma rel_ring_int_uminus:
"rel_fun rel_ring int rel_ring int uminus uminus"

(proof)

lemma sgn_of_int: "sgn (of_int n :: 'a :: linordered_idom) = of_int (sgn
n) n

(proof)

lemma rel_ring int_sgn:
"rel_fun rel_ring_int (rel_ring int :: 'a :: linordered_idom = 'b ::
linordered_idom = bool) sgn sgn"

21

(proof)

lemma bi_unique_rel_ring_int:

"bi_unique (rel_ring_int :: 'a :: ring char_0 = 'b :: ring char_0 =
bool)"

(proof)

lemmas rel_ring int_transfer =
rel_ring int_O rel_ring int_1 rel_ring int_add rel_ring int_mult rel_ring int_minus
rel_ring int_uminus bi_unique_rel_ring int

lemma rel_poly_rel_ring int:
"rel_poly rel_ring int p q «— (3r. p = of_int_poly r A q = of_int_poly
r) n

{(proof)

lemma Cheb_poly_transfer:
"rel_fun (=) (rel_poly rel_ring int) Cheb_poly Cheb_poly"

(proof)

lemma Cheb_poly'_transfer:
"rel_fun (=) (rel_poly rel_ring_int) Cheb_poly' Cheb_poly

(proof)

rn

context
fixes T :: "'a :: {idom, ring char_O} itself"
notes [transfer_rule] = rel_ring int_transfer [where 7'a = real and
?'b = 'a]
Cheb_poly_transfer[where 7'a = real and 7'b

= 'a]

Cheb_poly'_transfer[where 7'a = real and ?7'b
= 1a]

transfer_rule_of_nat transfer rule_numeral
begin

The following rule allows us to prove an equality of real polynomials P = @
by proving that P(cosz) = Q(cosz) for all z € (0,) for some o > 0.
This holds because there are infinitely many such cosx, but P — @, being a
polynomial, can only have finitely many roots if P # 0.
lemma Cheb_poly_equalities_aux:
fixes p q :: "real poly"
assumes "a > 0"
assumes "Ax. x € {0<..<a} = poly p (cos x) = poly q (cos x)"
shows "p = gq"

(proof)
First, we show that T),(z) = nU,—1(z):

lemma pderiv_Cheb_poly: "pderiv (Cheb_poly n) = of_nat n * (Cheb_poly'
(n-1) :: 'a poly)"

22

(proof)

Next, we show that:

Up(x) = ((n+ 1) Ty (2) — 2Un(2))

x2 -1

lemma pderiv_Cheb_poly':

"pderiv (Cheb_poly' n) * [:-1, 0, 1 :: 'a:] =
of_nat (n+1) * Cheb_poly (n+1) - [:0,1:] * Cheb_poly' n"
(proof)

Next, we have T,,(z) = 3(Un(2) — Up—2(z)).

lemma Cheb_poly_rec:

assumes n: "n > 2"

shows "2 * Cheb_poly n = Cheb_poly' n - (Cheb_poly' (n - 2) :: 'a poly)"
(proof)

lemma cheb_poly_rec:
assumes n: "n > 2"
shows "2 * cheb_poly n x = cheb_poly' n x - cheb_poly' (n - 2) (x::'a)"
(proof)

Next, we have U, (z) = 2U,—1(z) + Tp(x).

lemma Cheb_poly'_rec:
assumes n: "n > 0"
shows "Cheb_poly' n

n

[:0,1::'a:] * Cheb_poly' (n - 1) + Cheb_poly
n

(proof)

lemma cheb_poly'_rec:
assumes n: "n > 0"
shows "cheb_poly' n x = x * cheb_poly' (n-1) x + cheb_poly n (x::'a)"
(proof)

Next, Tp(7) = 2T —1(x) + (22 — 1)Up_2(2).

lemma Cheb_poly_rec':

assumes n: "n > 2"

shows "Cheb_poly n = [:0,1::'a:] * Cheb_poly (n-1) + [:-1,0,1:] * Cheb_poly'
(n-2)"
(proof)

lemma cheb_poly_rec':

assumes n: "n > 2"

shows "cheb_poly n x = x * cheb_poly (n-1) x + (x* - 1) * cheb_poly'
(n-2) (x::'a)"

(proof)

T, and U_; are a solution to a Pell-like equation on polynomials:

To(z)? + (1 — 22U, 1(z)? =1

23

lemma Cheb_poly_Pell:
assumes n: "n > 0"
shows "Cheb_poly n =~ 2 + [:1, 0, -1::'a:] * Cheb_poly' (n - 1) ~ 2

lemma cheb_poly_Pell:

assumes n: "n > 0"

shows "cheb_poly n x ~ 2 + (1 - x?) * cheb_poly' (n-1) x ~ 2 = (1 ::
Ia) "

(proof)

The following Turan-style equation also holds:
Tn+1<m)2 — Tnyo(z) Ty (z) =1 — a?

lemma Cheb_poly_Turan:

"Cheb_poly (n+1) ~ 2 - Cheb_poly (n+2) * Cheb_poly n = [:1,0,-1::'a:]"

{(proof)

lemma cheb_poly_Turan:

"cheb_poly (n+1) x = 2 - cheb_poly (n+2) x * cheb_poly n x = (1 - x
S 2 ta)!

{proof)

And, the analogous one for U,:
Un+1(2)? = Upya(2)Un(2) = 1

lemma Cheb_poly'_Turan:

"Cheb_poly' (n+1) =~ 2 - Cheb_poly' (n+2) * Cheb_poly' n = (1 :: 'a
poly)"
(proof)

lemma cheb_poly'_Turan:
"cheb_poly' (n+1) x = 2 - cheb_poly' (n+2) x * cheb_poly' n x = (1
la) n

" (proof)

There is also a nice formula for the product of two Chebyshev polynomials
of the first kind:

T T () = 5 (T () + T ()

lemma Cheb_poly_prod:
assumes '"'n < m"

shows "2 * Cheb_poly m * Cheb_poly n = Cheb_poly (m + n) + (Cheb_poly

(m - n) :: 'a poly)"

24

(proof)

lemma cheb_poly_prod':

assumes '"'n < m"

shows "2 * cheb_poly m x * cheb_poly n x = cheb_poly (m + n) x + cheb_poly
(m - n) (x :: 'a)"

(proof)

In particular, this leads to a divide-and-conquer-style recurrence relation for
T,, for even and odd n:

Ton(x) = 2T, (x)? — 1
T2n+1 = 2Tn($)Tn+1($) — X

lemma Cheb_poly_even:

"Cheb_poly (2 * n) = 2 * Cheb_poly n ~ 2 - (1 :: 'a poly)"
{proof)

lemma cheb_poly_even:
"cheb_poly (2 * n) x = 2 % cheb_poly nx =~ 2 - (1 :: 'a)"

(proof)

lemma Cheb_poly_odd:
"Cheb_poly (2 * n + 1)
{proof)

2 * Cheb_poly n * Cheb_poly (Suc n) - [:0,1::'a:]"

lemma cheb_poly_odd:
"cheb_poly (2 * n + 1) x
(x :: 'a)"

(proof)

2 * cheb_poly n x * cheb_poly (Suc n) x -

Remarkably, we also have the following formula for the composition of two
Chebyshev polynomials of the first kind:

theorem Cheb_poly_mult:
"(Cheb_poly (m * n) :: 'a poly) = pcompose (Cheb_poly m) (Cheb_poly
n) n

(proof)

corollary cheb_poly _mult: "cheb_poly m (cheb_poly n x) = cheb_poly (m *
n) (x :: 'a)"
(proof)

For the Chebyshev polynomials of the second kind, the following more com-
plicated relationship holds:

Unn—1(2) = Un—1(Tn(2)) - Un—1(x)

25

theorem Cheb_poly' _mult:
assumes "m > 0" "n > 0"
shows "(Cheb_poly' (m * n - 1) :: 'a poly) =
pcompose (Cheb_poly' (m-1)) (Cheb_poly n) * Cheb_poly' (n-1)"
(proof)

lemma cheb_poly' mult:
assumes "m > 0" "n > 0"
shows "cheb_poly' (m * n - 1) (x :: 'a) =
cheb_poly' (m-1) (cheb_poly n x) * cheb_poly' (n-1) x"

(proof)
The following two lemmas tell tell us that
2 1
U (1) = 2(";:) = gn(n+1)(n+2)
9 1 n+1
Uat-1) = (12") = s 0 2

This is good to know because our formula for U], has a “division by zero”
at 1, so we cannot use it to establish these values.

lemma poly_pderiv_Cheb_poly'_1:

"3 * poly (pderiv (Cheb_poly' n) :: 'a poly) 1 = of_nat ((n + 2) * (n
+ 1) * n)"
(proof)
lemma poly_pderiv_Cheb_poly'_neg 1:

"3 * poly (pderiv (Cheb_poly' n) :: 'a poly) (-1) = (-1)7Suc n * of_nat
((@+2) x (m+ 1) *n)"
(proof)

Another alternative definition of T}, and U, is as the solutions of the ordinary
differential equations

(1 — 2T — 2T, +nT, =0
(1 — 22U/ — 32U, +n(n+2)U, =0

lemma Cheb_poly_ODE:

fixes n :: nat

defines "p = (Cheb_poly n :: 'a poly)"

shows "[:1,0,-1:] * (pderiv °~ 2) p - [:0,1:] * pderiv p + of_nat
n~2x*xp=20"
(proof)

lemma Cheb_poly'_ ODE:
fixes n :: nat
defines "p = (Cheb_poly' n :: 'a poly)"

26

shows "[:1,0,-1:] * (pderiv °~ 2) p - [:0,3:] * pderiv p + of_nat
(n*(n+2)) * p = 0"
(proof)

end

lemma cheb_poly_prod:

fixes x :: "'a :: field_char_0O"

assumes '"'n < m"

shows "cheb_poly m x * cheb_poly n x = (cheb_poly (m + n) x + cheb_poly
(m -n) x) /2"

(proof)

lemma has_field_derivative_cheb_poly [derivative_intros]:
assumes "(f has_field_derivative f') (at x within A)"
shows "((Ax. cheb_poly n (f x)) has_field_derivative
(of_nat n * cheb_poly' (n- 1) (f x) * £')) (at x within
A
(proof)

lemma has_field_derivative_cheb_poly' [derivative_intros]:
"(cheb_poly' n has_field_derivative
(if x = 1 then of nat ((n +2) * (n + 1) *n) / 3
else if x = -1 then (-1)"Suc n * of_nat ((n + 2) * (n + 1) * n)
/ 3
else (of_nat (n+1) * cheb_poly (Suc n) x - x * cheb_poly' n x) /
(x? - 1))
(at x within A)" (is "(_ has_field_derivative ?f') (at _ within _)")
(proof)

lemmas has_field_derivative_cheb_poly'' [derivative_intros] =
DERIV_chain'[OF _ has_field_derivative_cheb_poly']

3.8 Signs of the coeflicients

Since Ty, (—z) = (—1)"T,(x) and analogously for U,, the Chebyshev poly-
nomials are even functions when n is even and odd functions when 7 is odd.
Consequently, when 7 is even, the coefficients of X* for any odd k are 0 and
analogously when n is odd.

lemma coeff_Cheb_poly_eq_O:

assumes "odd (n + k)"

shows "coeff (Cheb_poly n :: 'a :: {idom,ring char_O} poly) k = 0"
(proof)

lemma coeff_Cheb_poly'_eq 0:

assumes "odd (n + k)"

shows "coeff (Cheb_poly' n :: 'a :: {idom,ring_char_O} poly) k = 0"
(proof)

27

Next, we analyse the behaviour of the signs of the coefficients of T,, and U,
more generally and show that:

¢ The leading coefficient is positive.
o After that, every second coefficient is 0.

e The remaining coeflicients are non-zero and their signs alternate.

In conclusion, we have

sgn([X"] T(X)) = sen([X*] Un(X)) =
{0 if k>nor (n+k) is odd

(—1) "3" otherwise

The proof works using Descartes’ rule of signs: We know that T}, and U,
have n distinct real roots and | %] of them are positive. By Descartes’ rule
of signs, this implies that the coefficient sequences of T;, and U,, must have
at least |5]| sign alternations. However, we also already know that every
other coefficient of T}, and U, starting with [X"~1] is 0, so the number of

sign alternations must be ezactly |3 |.

lemma sgn_coeff_Cheb_poly_aux:

fixes n :: nat and P :: "real poly"

assumes 'degree P = n"

assumes "Ai. odd (n + i) = coeff P i = 0"

assumes '"card {x. x > 0 A poly P x = O} = n div 2"

assumes "rsquarefree P"

assumes '"coeff P n > 0"

shows "sgn (coeff P i) = (if i > n V odd (n + i) then 0 else (-1) ~
((n - i) div 2))"
(proof)

theorem sgn_coeff_Cheb_poly:
"sgn (coeff (Cheb_poly n) i :: 'a :: linordered_idom) =
(if i >n V odd (n + i) then 0 else (-1) ~ ((n - i) div 2))"

(proof)

theorem sgn_coeff_Cheb_poly':
"sgn (coeff (Cheb_poly' n) i :: 'a :: linordered_idom) =
(if i >n V odd (n + i) then 0 else (-1) ~ ((n - i) div 2))"

(proof)

3.9 Orthogonality and integrals

lemma cis_eq_1_iff: "cis x = 1 «— (dn. x = 2 * pi * real_of_int n)"
(proof)

28

context

fixes n :: nat and x :: "nat = real"

defines "x = (\k. cos (real (Suc (2 * k)) / real (2 * n) * pi))"
begin

lemma cheb_poly_orthogonality discrete_aux:

assumes "1 € {0<..<2*n}"

shows "(> k<n. cos (real 1 * real (Suc (2 * k)) / real (2 * n) * pi))
= Q"
(proof)

Fork=0,...,n—11let 2 = COS(%F) be the Chebyshev nodes of order n,

i.e. the roots of T},. Then the following discrete orthogonality relation holds
for the Chebyshev polynomials of the first kind (for any i,j < n):

> Tian)Tiar) =% ifi=j#0
k=0 0 ifi#j
theorem cheb_poly_orthogonality_discrete:
fixes i j :: nat

assumes "i < n" "j < n"
shows "(> k<n. cheb_poly i (x k) * cheb_poly j (x k)) =
(if i = j then if i = O then n else n / 2 else 0)"

(proof)
A similar relation holds for the Chebyshev polynomials of the second kind:

n—1 n ifi=j=n-1
> Uilw)Uj(ar)(1—af) =45 ifi=j#0
k=0 0 ifi#j

theorem cheb_poly'_orthogonality_discrete:
fixes i j :: nat
assumes "i < n" "j < n"
shows "(> k<n. cheb_poly' i (x k) * cheb_poly' j (x k) * (1 - xk ~
2) =
(if i = j then if i = n - 1 then n else n / 2 else 0)"

(proof)

end

We now show the continuous orthogonality relations. For the polynomials
of the first kind, the relation is:

lT()T() m ifm=n=0
()T (z o
-1 0 ifm#n

29

The proof works by a change of variables x = cosf, which converts the
integral to the easier form [cos(mt) cos(nt) dx, which can then be solved
by a computing an indefinite integral (with appropriate case distinctions on
m and n).

theorem cheb_poly_orthogonality:

fixes m n :: nat

defines "I = if m = n then if m = O then pi else pi / 2 else 0"

shows "((\x. cheb_poly m x * cheb_poly n x / sqrt (1 - x?)) has_integral
I) {-1..1}"
(proof)

For the polynomials of the second kind, the relation is:

1

T ifm=n
_ _)2
_/1Um(x)Un(ac)\/ 1—22dx {O it £ n

The proof works the same as before.

theorem cheb_poly'_orthogonality:

fixes m n :: nat

defines "I = if m = n then pi / 2 else 0"

shows "((\x. cheb_poly' m x * cheb_poly' n x * sqrt (1 - x?)) has_integral
I) {-1..1}"
(proof)

We additionally show the following property about the integral from -1 to

1
1
1+ (=1
[Tty ae = 50
—1

theorem cheb_poly_integral_negl 1:
"(cheb_poly n has_integral ((1 + (-1)"n) / (1 - n%?))) {-1..1::real}"
(proof)

And, for the polynomials of the second kind:
1+ (=1)"

n+1
-1

theorem cheb_poly'_integral_negl_1:

"(cheb_poly' n has_integral (1 + (-1) ~ n) / (n+1)) {-1..1::real}"
(proof)

30

3.10 Clenshaw’s algorithm

Clenshaw’s algorithm allows us to efficiently evaluate a weighted sum of
Chebyshev polynomials of the first kind, i.e.

=0

This is useful when evaluating interpolations.

locale clenshaw =

fixes g :: "nat = 'a :: comm_ring 1"

fixes a b :: "nat = 'a"

assumes g_rec: "An. g (Suc (Suc n)) =an *g (Sucn) +bn *gn"
begin

context
fixes N :: nat and ¢ :: "nat = 'a"
begin

function clenshaw_aux where
"n > N = clenshaw_aux n = 0"
| "m < N —> clenshaw_aux n =
¢ (Suc n) + a n * clenshaw_aux (n+1) + b (Suc n) * clenshaw_aux (n+2)"

(proof)

termination (proof)

lemma clenshaw_aux_correct_aux:

assumes '"'n < N"

shows "g n * ¢ n + g (Suc n) * clenshaw_aux n + b n * g n * clenshaw_aux
(Suc n) = O k=n..N. c k * g k)"

(proof)

fun clenshaw_aux' where

"clenshaw_aux' 0 accl acc2 =g 0 * c 0 + g1 * accl +b 0 *x g 0 * acc2"
| "clenshaw_aux' (Suc n) accl acc2 = clenshaw_aux' n (¢ (Suc n) + a n
* accl + b (Suc n) * acc2) accl"

lemma clenshaw_aux'_correct: "clenshaw aux' N0 0 = (O k<N. ck * g
k) n
(proof)

lemmas [simp del] = clenshaw_aux'.simps
end
lemma clenshaw_aux'_cong:

"(Nk. k < n = ¢ k = c' k) = clenshaw_aux' ¢ n accl acc2 = clenshaw_aux'
c' n accl acc2"

{proof)

31

definition clenshaw where '"clenshaw N ¢ = clenshaw_aux' ¢ N 0 0"

theorem clenshaw_correct: "clenshaw N c¢ O k<N. ck * g k)"

(proof)

end

definition cheb_eval :: "'a :: comm_ring_1 list = 'a = 'a" where
"cheb_eval cs x = () k<length cs. cs ! k * cheb_poly k x)"

interpretation cheb_poly: clenshaw "An. cheb_poly n x" "A_. 2 * x" ")_.
_1 n

(proof)

fun cheb_eval_aux where
"cheb_eval_aux 0 cs x accl acc2 = hd cs + x * accl - acc2"
| "cheb_eval_aux (Suc n) cs x accl acc2 =
cheb_eval _aux n (tl cs) x (hd cs + 2 * x * accl - acc2) accl"

lemma cheb_eval_aux_altdef:
"length cs = Suc n —
cheb_eval_aux n cs x accl acc2 =
cheb_poly.clenshaw_aux' x (Ak. rev cs ! k) n accl acc2"

{proof)
lemmas [simp del] = cheb_eval_aux.simps
lemma cheb_eval_code [code]:

"cheb_eval [] x = 0"

"cheb_eval [c] x = c"

"cheb_eval (cl1 # c2 # cs) x =
cheb_eval_aux (Suc (length cs)) (rev (cl # c2 # cs)) x 0 0"

(proof)

end

References

[1] J. Mason and D. Handscomb. Chebyshev Polynomials. CRC Press,
2002.

32

	Parametricity of polynomial operations
	Missing Library Material
	Miscellaneous
	Lists
	Polynomials
	Trigonometric functions
	Hyperbolic functions

	Chebyshev Polynomials
	Definition
	Relation to trigonometric functions
	Relation to hyperbolic functions
	Roots
	Generating functions
	Optimality with respect to the -norm
	Some basic equations
	Signs of the coefficients
	Orthogonality and integrals
	Clenshaw's algorithm

