
Ceva’s Theorem

Mathias Schack Rabing

September 13, 2023

Abstract
This entry contains a definition of the area the triangle constructed

by three points. Building on this, some basic geometric properties
about the area of a triangle are derived. These properties are used to
prove Ceva’s theorem.

Contents

theory Ceva
imports

Triangle.Triangle
begin

definition Triangle-area :: ′a::real-inner ⇒ ′a ⇒ ′a ⇒ real
where Triangle-area x y z = abs(sin (angle x y z)) ∗ dist x y ∗ dist y z

lemma Triangle-area-per1 : Triangle-area a b c = Triangle-area b c a
proof −

have H : abs(sin (angle a b c)) ∗ dist b c = abs(sin (angle b a c)) ∗ dist a c
using sine-law-triangle
by (metis (mono-tags, opaque-lifting) abs-mult real-abs-dist)

show ?thesis
apply(simp add: Triangle-area-def)
using H

by (metis abs-of-nonneg angle-commute dist-commute sin-angle-nonneg sine-law-triangle)
qed

lemma Triangle-area-per2 : Triangle-area a b c = Triangle-area b a c
proof −

have H : abs(sin (angle a b c)) ∗ dist b c = abs(sin (angle b a c)) ∗ dist a c
using sine-law-triangle
by (metis (mono-tags, opaque-lifting) abs-mult real-abs-dist)

show ?thesis
using H
by (simp add: Triangle-area-def dist-commute[of a b])

1

qed

lemma collinear-angle:
fixes a b c :: ′a::euclidean-space
shows collinear {a, b, c} =⇒ a 6= b =⇒ b 6= c =⇒ angle a b c ∈ {0 , pi}

proof (cases a = c)
case True
assume Col : collinear {a, b, c}
assume H1 : a 6= b
assume H2 : b 6= c
assume H3 : a = c
show ?thesis

using H1 H3 angle-refl-mid
by auto

next
case False
assume Col : collinear {a, b, c}
assume H1 : a 6= b
assume H2 : b 6= c
assume H3 : a 6= c
consider (bet1) between (b, c) a | (bet2) between (c, a) b | (bet3) between (a, b)

c
using Col collinear-between-cases
by auto

then show ?thesis
proof cases

case bet1
assume B1 : between (b, c) a
have H : angle c a b = pi

apply(rule strictly-between-implies-angle-eq-pi)
using B1 H3 H1
by (auto simp: between-commute)

show ?thesis
by (smt (verit) H angle-nonneg angle-sum-triangle insert-iff)

next
case bet2
assume B1 : between (c, a) b
show ?thesis
by (metis H1 H2 bet2 between-commute sin-angle-zero-iff sin-pi strictly-between-implies-angle-eq-pi)

next
case bet3
assume B1 : between (a, b) c
have H : angle b c a = pi

apply(rule strictly-between-implies-angle-eq-pi)
using B1 H3 H2 H1
by (auto simp: between-commute)

show ?thesis
by (smt (verit) H angle-nonneg angle-sum-triangle insert-iff)

qed

2

qed

lemma Triangle-area-0 :
fixes c :: ′a::euclidean-space
shows Triangle-area a b c = 0 ←→ collinear {a,b,c}

proof −
show ?thesis

apply(simp add: Triangle-area-def)
using collinear-angle

by (metis (no-types, lifting) Angles.angle-collinear collinear-2 insertCI in-
sert-absorb sin-angle-zero-iff)
qed

lemma Angle-longer-side :
fixes a :: ′a :: euclidean-space
assumes Col : between (b,d) c
assumes NeqBC : b 6= c
shows angle a b c = angle a b d

proof (cases a = b ∨ b = d ∨ c = d)
case True
then show ?thesis

using Col
by auto

next
case False
assume H : ¬ (a = b ∨ b = d ∨ c = d)
have NeqAB : a 6= b

using H
by auto

have NeqBD : b 6= d
using H
by auto

have NeqCD : c 6= d
using H
by auto

have Goal1 : norm (d − b) ∗R (c − b) = norm (c − b) ∗R (d − b)
apply(rule vangle-eq-0D)
using Col
by (metis Groups.add-ac(2) NeqBC NeqCD add-le-same-cancel1 angle-def an-

gle-nonneg angle-sum-triangle eq-add-iff order .eq-iff strictly-between-implies-angle-eq-pi)
have Goal2 : (a − b) · (c − b) ∗ norm (d − b) 6=
(a − b) · (d − b) ∗ norm (c − b) =⇒ a = b
apply(simp only: mult.commute[where b=norm (d − b)])
apply(simp only: mult.commute[where b=norm (c − b)])
apply(simp only: real-inner-class.inner-scaleR-right[THEN sym])
using Goal1
by auto

have Goal : (a − b) · (c − b) ∗ (norm (a − b) ∗ norm (d − b)) =

3

(a − b) · (d − b) ∗ (norm (a − b) ∗ norm (c − b))
using Goal2
by auto

show ?thesis
apply(simp add: angle-def)
using NeqAB NeqBD NeqCD NeqBC
apply(simp only: vangle-def)
using Goal
by (smt (verit, best) eq-iff-diff-eq-0 frac-eq-eq no-zero-divisors norm-eq-zero)

qed

lemma Triangle-area-comb :
fixes c :: ′a::euclidean-space
assumes Col : between (b,c) m
shows Triangle-area a b m + Triangle-area a c m = Triangle-area a b c

proof (cases b = m ∨ c = m)
case True
then
have Eq : b = m ∨ c = m

by auto
have Tri0 : Triangle-area a m m = 0

by (auto simp: Triangle-area-0)
show ?thesis

using Eq Tri0
using Triangle-area-per1 Triangle-area-per2
by (metis add.right-neutral add-0)

next
case False
then
have Neq : ¬(b = m ∨ c = m)

by auto
have NeqBM : b 6= m

using Neq
by auto

have NeqCM : c 6= m
using Neq
by auto

have Angle1 : angle a b m = angle a b c
using Col Angle-longer-side NeqBM NeqCM
by auto

have Angle2 : angle a c m = angle a c b
using Col Angle-longer-side NeqBM NeqCM between-commute
by metis

have |sin (angle a b m)| ∗ dist a b ∗ dist b m +
|sin (angle a c m)| ∗ dist a c ∗ dist c m =
|sin (angle a b c)| ∗ dist a b ∗ dist b m +
|sin (angle a c b)| ∗ dist a c ∗ dist c m

using Angle1 Angle2
by simp

4

also have |sin (angle a b c)| ∗ dist a b ∗ dist b m +
|sin (angle a c b)| ∗ dist a c ∗ dist c m =
|sin (angle a b c)| ∗ dist a b ∗ dist b m +
|sin (angle a b c)| ∗ dist a b ∗ dist c m

using sine-law-triangle
by (smt (verit) congruent-triangle-sss(17) dist-commute sin-angle-nonneg)

also have
|sin (angle a b c)| ∗ dist a b ∗ dist b m +
|sin (angle a b c)| ∗ dist a b ∗ dist c m =
|sin (angle a b c)| ∗ dist a b ∗ (dist b m + dist c m)

by (metis inner-add(2) inner-real-def)
also have |sin (angle a b c)| ∗ dist a b ∗ (dist b m + dist c m) =

|sin (angle a b c)| ∗ dist a b ∗ dist b c
by (metis assms between dist-commute)

finally have Goal : |sin (angle a b m)| ∗ dist a b ∗ dist b m +
|sin (angle a c m)| ∗ dist a c ∗ dist c m =
|sin (angle a b c)| ∗ dist a b ∗ dist b c

by simp
show ?thesis

apply(simp add: Triangle-area-def)
using Goal
by blast

qed

lemma Triangle-area-cal :
fixes a :: ′a::euclidean-space
assumes Col : collinear {a,m,b}
shows ∃ k. dist a m ∗ k = Triangle-area a c m ∧ dist b m ∗ k = Triangle-area

b c m
proof (cases b = m ∨ a = m)

case True
then
have Eq :(a 6= m ∧ b = m) ∨ (a = m ∧ b 6= m) ∨ (a = m ∧ b = m)

by auto
show ?thesis

using Eq
by(auto simp: Triangle-area-0 collinear-3-eq-affine-dependent exI [where x=Triangle-area

a c m / dist a m]
exI [where x=Triangle-area b c m / dist b m])

next
case False
then
have H : ¬ (b = m ∨ a = m)

by simp
have NeqBM : b 6= m and NeqMA : m 6= a

using H
by auto

have H1 : dist a m ∗ |sin (angle a m c)| ∗ dist c m =
|sin (angle a c m)| ∗ dist a c ∗ dist c m

5

using sine-law-triangle
by (smt (verit) angle-commute dist-commute mult.commute sin-angle-nonneg)

have dist b m ∗ |sin (angle a m c)| ∗ dist c m =
dist b m ∗ |sin (pi − angle a m c)| ∗ dist c m
by auto

also have dist b m ∗ |sin (pi − angle a m c)| ∗ dist c m =
dist b m ∗ |sin (angle b m c)| ∗ dist c m
using angle-inverse[THEN sym] Col NeqBM NeqMA
by (smt (verit, ccfv-SIG) Angle-longer-side angle-commute between-commute

collinear-between-cases sin-pi-minus)
also have dist b m ∗ |sin (angle b m c)| ∗ dist c m =
|sin (angle b c m)| ∗ dist b c ∗ dist c m
using sine-law-triangle

by (metis abs-of-nonneg angle-commute dist-commute mult.commute sin-angle-nonneg)
finally have H2 : dist b m ∗ |sin (angle a m c)| ∗ dist c m =
|sin (angle b c m)| ∗ dist b c ∗ dist c m
by simp

show ?thesis
apply(simp add: Triangle-area-def)
apply(rule exI [where x=|sin (angle a m c)| ∗ dist c m])
using H1 H2
by auto

qed

lemma Triangle-area-comb-alt :
fixes a :: ′a::euclidean-space
assumes Col1 : collinear {a,m,b}
assumes Col2 : collinear {c,k,m}
shows Goal : ∃ h. dist a m ∗ h = Triangle-area a c k ∧ dist b m ∗ h =

Triangle-area b c k
proof −

obtain H where TriB : dist a m ∗ H = Triangle-area a c m ∧ dist b m ∗ H =
Triangle-area b c m

using Col1 Triangle-area-cal by blast
obtain h where TriS : dist a m ∗ h = Triangle-area a k m ∧ dist b m ∗ h =

Triangle-area b k m
using Col1 Triangle-area-cal by blast

consider (bet1) between (k, m) c | (bet2) between (m, c) k | (bet3) between (c,
k) m

using Col2 collinear-between-cases
by auto

then show ?thesis
proof cases

case bet1
have AreaAC : dist a m ∗ H = Triangle-area a c m and AreaBC : dist b m ∗

H = Triangle-area b c m
using TriB
by auto

have AreaAM : dist a m ∗ h = Triangle-area a k m and AreaBM : dist b m ∗

6

h = Triangle-area b k m
using TriS
by auto

assume Bet : between (k, m) c
have dist a m ∗ (h − H) = dist a m ∗ h − dist a m ∗ H

by (simp add: right-diff-distrib)
also have dist a m ∗ h − dist a m ∗ H = Triangle-area a k m − Triangle-area

a c m
using AreaAC AreaAM
by auto

also have Triangle-area a k m − Triangle-area a c m = Triangle-area a c k
using Bet Triangle-area-comb
by (metis Triangle-area-per1 Triangle-area-per2 diff-eq-eq)

finally have Goal1 : dist a m ∗ (h − H) = Triangle-area a c k
by simp

have dist b m ∗ (h − H) = dist b m ∗ h − dist b m ∗ H
by (simp add: right-diff-distrib)

also have dist b m ∗ h − dist b m ∗ H = Triangle-area b k m − Triangle-area
b c m

using AreaBC AreaBM
by auto

also have Triangle-area b k m − Triangle-area b c m = Triangle-area b c k
using Bet Triangle-area-comb
by (metis Triangle-area-per1 Triangle-area-per2 diff-eq-eq)

finally have Goal2 : dist b m ∗ (h − H) = Triangle-area b c k
by simp

show ?thesis
using Goal1 Goal2 by blast

next
case bet2
have AreaAC : dist a m ∗ H = Triangle-area a c m and AreaBC : dist b m ∗

H = Triangle-area b c m
using TriB
by auto

have AreaAM : dist a m ∗ h = Triangle-area a k m and AreaBM : dist b m ∗
h = Triangle-area b k m

using TriS
by auto

assume Bet : between (m, c) k
have dist a m ∗ (H − h) = dist a m ∗ H − dist a m ∗ h

by (simp add: right-diff-distrib)
also have dist a m ∗ H − dist a m ∗ h = Triangle-area a c m − Triangle-area

a k m
using AreaAC AreaAM
by auto

also have Triangle-area a c m − Triangle-area a k m = Triangle-area a c k
using Bet Triangle-area-comb
by (smt (verit) between-triv1)

finally have Goal1 : dist a m ∗ (H − h) = Triangle-area a c k

7

by simp
have dist b m ∗ (H − h) = dist b m ∗ H − dist b m ∗ h

by (simp add: right-diff-distrib)
also have dist b m ∗ H − dist b m ∗ h = Triangle-area b c m − Triangle-area

b k m
using AreaBC AreaBM
by auto

also have Triangle-area b c m − Triangle-area b k m = Triangle-area b c k
using Bet Triangle-area-comb
by (smt (verit) between-triv1)

finally have Goal2 : dist b m ∗ (H − h) = Triangle-area b c k
by simp

show ?thesis
using Goal1 Goal2 by blast

next
case bet3
have AreaAC : dist a m ∗ H = Triangle-area a c m and AreaBC : dist b m ∗

H = Triangle-area b c m
using TriB
by auto

have AreaAM : dist a m ∗ h = Triangle-area a k m and AreaBM : dist b m ∗
h = Triangle-area b k m

using TriS
by auto

assume Bet : between (c, k) m
have dist a m ∗ (H + h) = Triangle-area a c k

by (simp add: AreaAC TriS Triangle-area-comb bet3 distrib-left)
moreover have dist b m ∗ (H + h) = Triangle-area b c k

by (simp add: AreaBC TriS Triangle-area-comb bet3 distrib-left)
ultimately show ?thesis

by blast
qed

qed

lemma Cevas :
fixes a :: ′a::euclidean-space
assumes MidCol : collinear {a,k,d} ∧ collinear {b,k,e} ∧ collinear {c,k,f }
assumes TriCol : collinear {a,f ,b} ∧ collinear {a,e,c} ∧ collinear {b,d,c}
assumes Triangle : ¬ collinear {a,b,c}
shows dist a f ∗ dist b d ∗ dist c e = dist f b ∗ dist d c ∗ dist e a

proof −
obtain n1 where Tri1 : dist a f ∗ n1 = Triangle-area a c k ∧ dist b f ∗ n1 =

Triangle-area b c k
by (meson MidCol TriCol Triangle-area-comb-alt)

obtain n2 where Tri2 : dist a e ∗ n2 = Triangle-area a b k ∧ dist c e ∗ n2 =
Triangle-area c b k

by (meson MidCol TriCol Triangle-area-comb-alt)
obtain n3 where Tri3 : dist b d ∗ n3 = Triangle-area b a k ∧ dist c d ∗ n3 =

Triangle-area c a k

8

by (meson MidCol TriCol Triangle-area-comb-alt)
have Tri1 ′1 : dist a f ∗ n1 = Triangle-area a c k and Tri1 ′2 : dist b f ∗ n1 =

Triangle-area b c k
using assms
by (auto simp: Tri1)

have Tri2 ′1 : dist c e ∗ n2 = Triangle-area c b k and Tri2 ′2 : dist a e ∗ n2 =
Triangle-area a b k

using assms
by (auto simp: Tri2)

have Tri3 ′1 : dist c d ∗ n3 = Triangle-area c a k and Tri3 ′2 : dist b d ∗ n3 =
Triangle-area b a k

using assms
by (auto simp: Tri3)

have dist a f ∗ n1 ∗ dist b d ∗ n3 ∗ dist c e ∗ n2 =
Triangle-area a c k ∗ Triangle-area b a k ∗ Triangle-area c b k

using Tri1 ′1 Tri2 ′1 Tri3 ′2
by simp

also have Triangle-area a c k ∗ Triangle-area b a k ∗ Triangle-area c b k =
Triangle-area c a k ∗ Triangle-area a b k ∗ Triangle-area b c k

using Triangle-area-per2
by metis

also have Triangle-area c a k ∗ Triangle-area a b k ∗ Triangle-area b c k =
dist b f ∗ n1 ∗ dist c d ∗ n3 ∗ dist a e ∗ n2

using Tri1 ′2 Tri2 ′2 Tri3 ′1
by simp

also have dist b f ∗ n1 ∗ dist c d ∗ n3 ∗ dist a e ∗ n2 =
dist f b ∗ n1 ∗ dist d c ∗ n3 ∗ dist e a ∗ n2

using dist-commute
by metis

finally have Goal: dist a f ∗ n1 ∗ dist b d ∗ n3 ∗ dist c e ∗ n2 =
dist f b ∗ n1 ∗ dist d c ∗ n3 ∗ dist e a ∗ n2

by simp
then consider (n2) n2 = 0 | (n1) n1 = 0 | (n3) n3 = 0 |

(dist) dist a f ∗ (dist b d ∗ dist c e) = dist f b ∗ (dist d c ∗ dist e a)
by auto

then show ?thesis
proof cases

case n2
then show ?thesis
proof −

assume n0 : n2 = 0
have H1 : Triangle-area c b k = 0

using Tri2 ′1 n0
by auto

have H1 ′ : collinear {c,b,k}
using H1 Triangle-area-0
by auto

have H1 : Triangle-area a b k = 0
using Tri2 ′2 n0

9

by auto
have H2 ′ : collinear {a,b,k}

using H1 Triangle-area-0
by auto

have H : b = k
using H1 ′ H2 ′ collinear-3-trans Triangle collinear-3-trans
by (metis Triangle-area-0 Triangle-area-per1)

have H1 : b = f
using H Triangle collinear-3-trans MidCol TriCol
by (metis doubleton-eq-iff)

have H2 : b = d
using H H1 Triangle collinear-3-trans MidCol TriCol
by blast

show ?thesis
using H H1 H2
by simp

qed
next

case n1
then show ?thesis
proof −

assume n0 : n1 = 0
have H1 : Triangle-area a c k = 0

using Tri1 ′1 n0
by auto

have H1 ′ : collinear {a,c,k}
using H1 Triangle-area-0
by auto

have H1 : Triangle-area b c k = 0
using Tri1 ′2 n0
by auto

have H2 ′ : collinear {b,c,k}
using H1 Triangle-area-0
by auto

have H : c = k
using H1 ′ H2 ′ collinear-3-trans Triangle collinear-3-trans
by (smt (verit) insert-commute)

have H1 : c = d
using H H1 ′ H2 ′ Triangle

by (metis Tri3 ′1 Tri3 ′2 Triangle-area-0 Triangle-area-per2 dist-eq-0-iff
mult-eq-0-iff)

have H2 : c = e
using H H1 H1 ′ H2 ′ Triangle

by (metis Tri2 ′1 Tri2 ′2 Triangle-area-0 Triangle-area-per2 dist-eq-0-iff
mult-eq-0-iff)

show ?thesis
using H H1 H2
by simp

qed

10

next
case n3
then show ?thesis
proof −

assume n0 : n3 = 0
have H1 : Triangle-area c a k = 0

using Tri3 ′1 n0
by auto

have H1 ′ : collinear {c,a,k}
using H1 Triangle-area-0
by auto

have H1 : Triangle-area b a k = 0
using Tri3 ′2 n0
by auto

have H2 ′ : collinear {b,a,k}
using H1 Triangle-area-0
by auto

have H : a = k
using H1 ′ H2 ′ collinear-3-trans Triangle
by (metis (full-types) insert-commute)

have H1 : a = f
using H H1 ′ H2 ′ Triangle

by (metis Tri1 ′1 Tri1 ′2 Triangle-area-0 Triangle-area-per1 dist-eq-0-iff
mult-eq-0-iff)

have H2 : a = e
using H H1 H1 ′ H2 ′ collinear-3-trans Triangle
by (metis MidCol TriCol collinear-3-eq-affine-dependent)

show ?thesis
using H H1 H2
by simp
qed

next
case dist
then show ?thesis

by auto
qed

qed

end

11

