Ceva’s Theorem

Mathias Schack Rabing
March 17, 2025

Abstract

This entry contains a definition of the area the triangle constructed
by three points. Building on this, some basic geometric properties
about the area of a triangle are derived. These properties are used to
prove Ceva’s theorem.

Contents

theory Ceva
imports

Triangle. Triangle
begin

definition Triangle-area :: 'a::real-inner = ’'a = 'a = real
where Triangle-area © y z = abs(sin (angle © y z)) * dist x y % dist y z

lemma Triangle-area-perl : Triangle-area a b ¢ = Triangle-area b ¢ a
proof —
have H : abs(sin (angle a b ¢)) * dist b ¢ = abs(sin (angle b a ¢)) x dist a ¢
using sine-law-triangle
by (metis (mono-tags, opaque-lifting) abs-mult real-abs-dist)
show ?thesis
apply(simp add: Triangle-area-def)
using H
by (metis abs-of-nonneg angle-commute dist-commute sin-angle-nonneg sine-law-triangle)
qed

lemma Triangle-area-per2 : Triangle-area a b ¢ = Triangle-area b a ¢
proof —
have H : abs(sin (angle a b ¢)) * dist b ¢ = abs(sin (angle b a ¢)) x dist a ¢
using sine-law-triangle
by (metis (mono-tags, opaque-lifting) abs-mult real-abs-dist)
show ?thesis
using H
by (simp add: Triangle-area-def dist-commute|of a b))

qed

lemma collinear-angle:
fixes a b c :: 'a::euclidean-space
shows collinear {a, b, ¢} = a # b= b# ¢ = angle a b c € {0, pi}
proof (cases a = c¢)
case True
assume Col : collinear {a, b, ¢}
assume HI : a # b
assume H2 : b # ¢
assume H3 : a =c
show ?thesis
using H1 H3 angle-refl-mid
by auto
next
case Fulse
assume Col : collinear {a, b, c}
assume HI :a # b
assume H2 : b # ¢
assume H3 : a # ¢
consider (betl) between (b, ¢) a | (bet2) between (c, a) b | (bet3) between (a, b)

using Col collinear-between-cases
by auto
then show ?thesis
proof cases
case bet1
assume B1: between (b, ¢) a
have H: angle c a b = pi
apply(rule strictly-between-implies-angle-eq-p1)
using BI H3 H1
by (auto simp: between-commute)
show ?thesis
by (smt (verit) H angle-nonneg angle-sum-triangle insert-iff)
next
case bet?2
assume B1: between (c, a) b
show ?thesis
by (metis H1 H2 bet2 between-commute sin-angle-zero-iff sin-pi strictly-between-implies-angle-eq-pi)
next
case bet3
assume B1: between (a, b) c
have H: angle b ¢ a = pi
apply(rule strictly-between-implies-angle-eg-pi)
using B! H3 H2 H1
by (auto simp: between-commute)
show ?thesis
by (smt (verit) H angle-nonneg angle-sum-triangle insert-iff)
qed

qed

lemma Triangle-area-0 :
fixes ¢ :: 'a::euclidean-space
shows Triangle-area a b ¢ = 0 <— collinear {a,b,c}
proof —
show ?thesis
apply(simp add: Triangle-area-def)
using collinear-angle
by (metis (no-types, lifting) Angles.angle-collinear collinear-2 insertCI in-
sert-absorb sin-angle-zero-iff)
qed

lemma Angle-longer-side :
fixes a :: ‘a :: euclidean-space
assumes Col : between (b,d) c
assumes NeqBC : b # ¢
shows angle a b ¢ = angle a b d
proof (casesa=bV b=dV c=d)
case True
then show ?thesis
using Col
by auto
next
case Fulse
assume H: - (a=bVb=dV c=d)
have NegAB : a # b
using H
by auto
have NegBD : b # d
using H
by auto
have NeqCD : ¢ # d
using H
by auto
have Goall : norm (d — b) *xg (¢ — b) = norm (¢ — b) *xg (d — b)
apply(rule vangle-eq-0D)
using Col
by (metis Groups.add-ac(2) NeqBC NeqCD add-le-same-cancell angle-def an-
gle-nonneg angle-sum-triangle eq-add-iff order.eq-iff strictly-between-implies-angle-eq-pi)
have Goal2 : (a — b) - (¢ — b) * norm (d — b) #
(a—23)-(d—="0)*«norm (¢ —b) = a=>
apply(simp only: mult.commutelwhere b=norm (d — b)])
apply(simp only: mult.commute]where b=norm (¢ — b)])
apply(simp only: real-inner-class.inner-scaleR-right{ THEN sym))
using Goall
by auto
have Goal : (a — b) - (¢ — b) * (norm (a — b) * norm (d — b)) =

(@ —b)+(d—10b)* (norm (a — b) *x norm (¢ — b))
using Goal2
by auto
show ?thesis
apply(simp add: angle-def)
using NeqAB NeqBD NeqCD NeqBC
apply(simp only: vangle-def)
using Goal
by (smt (verit, best) eq-iff-diff-eq-0 frac-eq-eq no-zero-divisors norm-eq-zero)
qed

lemma Triangle-area-comb :
fixes ¢ :: 'a::euclidean-space
assumes Col : between (b,c) m
shows Triangle-area a b m + Triangle-area a ¢ m = Triangle-area a b ¢
proof (cases b =m V ¢ = m)
case True
then
have Fq: b=mV c=m
by auto
have Tri0 : Triangle-area a m m = 0
by (auto simp: Triangle-area-0)
show ?thesis
using Fq Tri0
using Triangle-area-perl Triangle-area-per2
by (metis add.right-neutral add-0)
next
case Fulse
then
have Neqg: =(b=m V ¢ =m)
by auto
have NegBM : b # m
using Neq
by auto
have NeqCM : ¢ # m
using Neq
by auto
have Anglel : angle a b m = angle a b ¢
using Col Angle-longer-side NeqBM NeqCM
by auto
have Angle2 : angle a ¢ m = angle a ¢ b
using Col Angle-longer-side NeqBM NeqCM between-commute
by metis
have |sin (angle a b m)| * dist a b * dist b m +
|sin (angle a ¢ m)| * dist a ¢ x dist ¢ m =
|sin (angle a b c)| * dist a b * dist b m +
|sin (angle a ¢ b)| * dist a ¢ x dist ¢ m
using Anglel Angle2
by simp

also have |sin (angle a b ¢)| x dist a b x dist b m +
|sin (angle a ¢ b)| % dist a ¢ x dist ¢ m =
|sin (angle a b c)| * dist a b * dist b m +
|sin (angle a b c)| = dist a b x dist ¢ m
using sine-law-triangle
by (smt (verit) congruent-triangle-sss(17) dist-commute sin-angle-nonneg)
also have
|sin (angle a b ¢)| * dist a b = dist b m +
|sin (angle a b c)| * dist a b * dist ¢ m =
|sin (angle a b c)| * dist a b * (dist b m + dist ¢ m)
by (metis inner-add(2) inner-real-def)
also have |sin (angle a b ¢)| x dist a b x (dist b m + dist ¢ m) =
|sin (angle a b c)| * dist a b * dist b ¢
by (metis assms between dist-commute)
finally have Goal : |sin (angle a b m)| % dist a b = dist b m +
|sin (angle a ¢ m)| % dist a ¢ x dist ¢ m =
|sin (angle a b ¢)| * dist a b x dist b ¢
by simp
show ?thesis
apply(simp add: Triangle-area-def)
using Goal
by blast
qed

lemma Triangle-area-cal :
fixes a :: 'a::euclidean-space
assumes Col : collinear {a,m,b}
shows 3 k. dist a m x k = Triangle-area a ¢ m A dist b m x k = Triangle-area
becm
proof (cases b=m V a = m)
case True
then
have Eg:(a#m Ab=m)V(a=mAb#m)V (a=mAb=m)
by auto
show ?thesis
using Fq
by (auto simp: Triangle-area-0 collinear-3-eq-affine-dependent exI [where = Triangle-area
acm / dist a m]
exl[where z="Triangle-area b ¢ m / dist b m))
next
case Fulse
then
have H: - (b=m V a = m)
by simp
have NegBM : b # m and NegMA : m # a
using H
by auto
have HI: dist a m * |sin (angle a m ¢)| x dist ¢ m =
|sin (angle a ¢ m)| * dist a ¢ x dist ¢ m

using sine-law-triangle
by (smt (verit) angle-commute dist-commute mult.commute sin-angle-nonneg)
have dist b m * |sin (angle a m ¢)| * dist ¢ m =
dist b m * |sin (pi — angle a m ¢)| % dist ¢ m
by auto
also have dist b m x |sin (pi — angle a m c)| x dist ¢ m =
dist b m * |sin (angle b m ¢)| * dist ¢ m
using angle-inverse[THEN sym| Col NeqBM NeqMA
by (smt (verit, ccfv-SIG) Angle-longer-side angle-commute between-commaute
collinear-between-cases sin-pi-minus)
also have dist b m x |sin (angle b m c)| x dist ¢ m =
|sin (angle b ¢ m)| * dist b ¢ * dist ¢ m
using sine-law-triangle
by (metis abs-of-nonneg angle-commute dist-commute mult.commute sin-angle-nonneg)
finally have H2: dist b m x |sin (angle a m c)| * dist ¢ m =
|sin (angle b ¢ m)| * dist b ¢ * dist c m
by simp
show ?thesis
apply(simp add: Triangle-area-def)
apply(rule exl[where z=|sin (angle a m c)| * dist ¢ m])
using H1 H2
by auto
qed

lemma Triangle-area-comb-alt :
fixes a :: 'a::euclidean-space
assumes Coll : collinear {a,m,b}
assumes Col2 : collinear {c,k,m}
shows Goal : 3 h. dist a m * h = Triangle-area a ¢ k N dist b m x h =
Triangle-area b ¢ k
proof —
obtain H where TriB : dist a m * H = Triangle-area a ¢ m A dist b m x H =
Triangle-area b ¢ m
using Coll Triangle-area-cal by blast
obtain h where TriS : dist a m x h = Triangle-area a k m A dist b m x h =
Triangle-area b k m
using Coll Triangle-area-cal by blast
consider (betl) between (k, m) ¢ | (bet2) between (m, ¢) k| (bet3) between (c,
k) m
using Col2 collinear-between-cases
by auto
then show ?thesis
proof cases
case betl1
have AreaAC : dist a m x H = Triangle-area a ¢ m and AreaBC : dist b m *
H = Triangle-area b ¢ m
using TriB
by auto
have AreaAM : dist a m x h = Triangle-area a k m and AreaBM : dist b m %

h = Triangle-area b k m
using TriS
by auto
assume Bet : between (k, m) c
have dist a m x (h — H) = dist a m * h — dist a m « H
by (simp add: right-diff-distrib)
also have dist a m x h — dist a m x H = Triangle-area a k m — Triangle-area
acm
using AreaAC Area AM
by auto
also have Triangle-area a k m — Triangle-area a ¢ m = Triangle-area a c k
using Bet Triangle-area-comb
by (metis Triangle-area-perl Triangle-area-per2 diff-eq-eq)
finally have Goall : dist a m x (h — H) = Triangle-area a ¢ k
by simp
have dist bm x (h — H) = dist bm x h — dist b m x H
by (simp add: right-diff-distrib)
also have dist b m x h — dist b m * H = Triangle-area b k m — Triangle-area
becm
using AreaBC AreaBM
by auto
also have Triangle-area b k m — Triangle-area b ¢ m = Triangle-area b ¢ k
using Bet Triangle-area-comb
by (metis Triangle-area-per! Triangle-area-per2 diff-eq-eq)
finally have Goal2 : dist b m * (h — H) = Triangle-area b ¢ k
by simp
show ?thesis
using Goall Goal2 by blast
next
case bet?2
have AreaAC : dist a m x H = Triangle-area a ¢ m and AreaBC : dist b m *
H = Triangle-area b ¢ m
using TriB
by auto
have AreaAM : dist a m * h = Triangle-area a k m and AreaBM : dist b m
h = Triangle-area b k m
using TriS
by auto
assume Bet : between (m, c) k
have dist a m x (H — h) = dist am « H — dist a m x h
by (simp add: right-diff-distrib)
also have dist a m x H — dist a m x h = Triangle-area a ¢ m — Triangle-area
akm
using AreaAC AreaAM
by auto
also have Triangle-area a ¢ m — Triangle-area a k m = Triangle-area a c k
using Bet Triangle-area-comb
by (smt (verit) between-trivi)
finally have Goall : dist a m x (H — h) = Triangle-area a ¢ k

by simp
have dist bm « (H — h) = distbm « H — dist b m x h
by (simp add: right-diff-distrib)
also have dist b m x H — dist b m x h = Triangle-area b ¢ m — Triangle-area
bkm
using AreaBC AreaBM
by auto
also have Triangle-area b ¢ m — Triangle-area b k m = Triangle-area b c k
using Bet Triangle-area-comb
by (smt (verit) between-trivi)
finally have Goal2 : dist b m x (H — h) = Triangle-area b ¢ k
by simp
show ?thesis
using Goall Goal2 by blast
next
case bet3
have AreaAC : dist a m * H = Triangle-area a ¢ m and AreaBC : dist b m *
H = Triangle-area b ¢ m
using TriB
by auto
have AreaAM : dist a m * h = Triangle-area a k m and AreaBM : dist b m *
h = Triangle-area b k m
using TriS
by auto
assume Bet : between (¢, k) m
have dist a m * (H + h) = Triangle-area a ¢ k
by (simp add: AreaAC TriS Triangle-area-comb bet8 distrib-left)
moreover have dist b m x (H + h) = Triangle-area b ¢ k
by (simp add: AreaBC TriS Triangle-area-comb bet3 distrib-left)
ultimately show #thesis
by blast
qed
qed

lemma Cevas :
fixes a :: ‘a::euclidean-space
assumes MidCol : collinear {a,k,d} A collinear {b,k,e} N collinear {c,k,f}
assumes TriCol : collinear {a,f,b} A collinear {a,e,c} A collinear {b,d,c}
assumes Triangle : — collinear {a,b,c}
shows dist a f x dist b d * dist ¢c e = dist f b * dist d ¢ * dist e a
proof —
obtain n! where Tril: dist a f x nl = Triangle-area a c k A dist b f x n1 =
Triangle-area b c k
by (meson MidCol TriCol Triangle-area-comb-alt)
obtain n2 where Tri2 : dist a e x n2 = Triangle-area a b k N\ dist ¢ e x n2 =
Triangle-area ¢ b k
by (meson MidCol TriCol Triangle-area-comb-alt)
obtain n3 where Tri8 : dist b d * n8 = Triangle-area b a k A dist ¢ d x n8 =
Triangle-area ¢ a k

by (meson MidCol TriCol Triangle-area-comb-alt)
have Tri1'l : dist a f *x n1 = Triangle-area a ¢ k and Tri1’2 : dist b f * nl =
Triangle-area b ¢ k
using assms
by (auto simp: Tril)
have Tri2'1 : dist ¢ e * n2 = Triangle-area ¢ b k and Tri2’2 : dist a e * n2 =
Triangle-area a b k
using assms
by (auto simp: Tri2)
have Tri3’1 : dist ¢ d * n3 = Triangle-area ¢ a k and Tri3’2 : dist b d * n3 =
Triangle-area b a k
using assms
by (auto simp: Tri3)
have dist a f x nl * dist b d * n3 x dist c e x n2 =
Triangle-area a ¢ k * Triangle-area b a k * Triangle-area ¢ b k
using Tril'1 Tri2'1 Tri3'2
by simp
also have Triangle-area a c k x Triangle-area b a k x Triangle-area ¢ b k =
Triangle-area ¢ a k * Triangle-area a b k * Triangle-area b ¢ k
using Triangle-area-per?2
by metis
also have Triangle-area ¢ a k * Triangle-area a b k * Triangle-area b ¢ k =
dist b f * nl = dist ¢ d * n3 x dist a e x n2
using Tril'2 Tri2'2 Tri3'1
by simp
also have dist b f x nl * dist ¢ d * n3 * dist a e x n2 =
dist f b x nl % dist d ¢ x n3 % dist e a * n2
using dist-commute
by metis
finally have Goal: dist a f * nl * dist b d x n8 * dist c e ¥ n2 =
dist f b x nl % dist d ¢ x n8 % dist e a * n2
by simp
then consider (n2) n2 =0 | (nl) nl =0 | (n3) n3 = 0 |
(dist) dist a f * (dist b d * dist ¢ e) = dist f b x (dist d ¢ * dist e a)
by auto
then show ?thesis
proof cases
case n2
then show ?thesis
proof —
assume n0 : n2 = 0
have H1 : Triangle-area ¢ b k = 0
using Tri2'1 n0
by auto
have H1': collinear {c,b,k}
using H1 Triangle-area-0
by auto
have H1 : Triangle-area a b k = 0
using Tri2’2 n0

by auto
have H2': collinear {a,b,k}
using H1 Triangle-area-0
by auto
have H : b=k
using H1' H2' collinear-3-trans Triangle collinear-3-trans
by (metis Triangle-area-0 Triangle-area-perl)
have HI : b= f
using H Triangle collinear-3-trans MidCol TriCol
by (metis doubleton-eq-iff)
have H2 : b= d
using H H1 Triangle collinear-3-trans MidCol TriCol
by blast
show ?thesis
using H H1 H2
by simp
qed
next
case nl
then show ?thesis
proof —
assume n0 : nl = 0
have H1 : Triangle-area a ¢ k = 0
using Tril’1 n0
by auto
have H1': collinear {a,c,k}
using H1 Triangle-area-0
by auto
have H1 : Triangle-area b ¢ k = 0
using Tril 2 n0
by auto
have H2': collinear {b,c,k}
using H1 Triangle-area-0
by auto
have H : c =k
using H1' H2' collinear-3-trans Triangle collinear-3-trans
by (smt (verit) insert-commute)
have Hl : ¢ = d
using H H1' H2' Triangle
by (metis Tri3'1 Tri3'2 Triangle-area-0 Triangle-area-per?2 dist-eq-0-iff
mult-eq-0-iff)
have H2 : c = ¢
using H H1 H1' H2' Triangle
by (metis Tri2’t Tri2'2 Triangle-area-0 Triangle-area-per2 dist-eq-0-iff
mult-eq-0-iff)
show ?thesis
using H H1 H2
by simp
qed

10

next
case nJ
then show ?thesis
proof —
assume nl : n8 = 0
have HI : Triangle-area c a k = 0
using Tri8’1 n0
by auto
have H1': collinear {c,a,k}
using H1 Triangle-area-0
by auto
have H1 : Triangle-area b a k = 0
using Tri3’2 n0
by auto
have H2': collinear {b,a,k}
using H1 Triangle-area-0
by auto
have H : a =k
using H1' H2' collinear-3-trans Triangle
by (metis (full-types) insert-commute)
have Hl :a=f
using H H1' H2' Triangle
by (metis Tri1’t Tril’2 Triangle-area-0 Triangle-area-perl dist-eq-0-iff
mult-eq-0-iff)
have H2 : a = ¢
using H HI H1' H2' collinear-3-trans Triangle
by (metis MidCol TriCol collinear-3-eq-affine-dependent)
show ?thesis
using H H1 H?2
by simp
qed
next
case dist
then show ?thesis
by auto
qed
qed

end

11

